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ABSTRACT 

The study of cellular diversity is a fundamental requirement for understanding how 

multicellular organisms function. During the development of multicellular organisms, cells 

differentiate into various cell types with different molecular compositions, exhibit different 

phenotypes, and show distinct morphologies. Each single cell occupies a specific spatial 

location within different tissues and organs and performs a unique function. A holistic 

understanding of cells requires the integration of multiple “omics” modalities, including 

genomics, epigenomics, transcriptomics, and proteomics. Current well-established single-

cell sequencing methods have been used to build enormous single-cell transcriptomic atlases. 

While single-cell sequencing methods are now capable of multi-omic profiling, they all 

require cell dissociation, during which important spatial context information is lost. To study 

cellular diversity within its native spatial context, our lab has developed innovative spatial 

genomics and transcriptomics tools that enable multi-omics profiling at single-cell resolution 

while preserving intact tissue organization. This thesis presents two projects that leverage 

these tools to investigate cellular diversity in complex tissues across different biological 

scales, from subnuclear to tissue-level organization. In Chapter 2, we applied spatial multi-

omics to the mouse cerebellum, achieving single-cell resolution profiling of 100,049 

genomic loci, 17,856 nascent transcripts, 60 mature mRNAs, and 28 immunofluorescently 

labeled subnuclear structures. To achieve this, we developed innovative two-layer barcodes 

for DNA sequential fluorescence in situ hybridization (seqFISH). Combining cell-type 

information from nascent and mature transcriptomes, we captured the three-dimensional 

genomic architecture and its interactions with subnuclear compartments in a cell-type-

specific manner. Our findings show that repressive chromatin compartments have greater 

cell-type specificity than active chromatin compartments in the mouse cerebellum. In 

Chapter 3, we integrated single-cell multiome sequencing, which profiles single-nucleus 

RNA and chromatin accessibility (ATAC) from the same cells, with seqFISH spatial 

transcriptomics. This approach was applied to the 17- to 18-week-old human fetal kidney, 

targeting 224 marker genes. By combining sequencing and spatial profiling data, we 

constructed a comprehensive developmental atlas of human kidney organogenesis, providing 
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new insights into the tissue organization and gene expression patterns during kidney 

development.  
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1 
C h a p t e r  1  

INTRODUCTION 

1.1 The need for single-cell multi-omics to understand cellular heterogeneity 

 XA cell is the fundamental functional unit of a living organism. In multicellular organisms, 

cells differentiate into diverse cell types that have different molecular compositions, exhibit 

distinct phenotypes, and have varied morphological structures. Each cell type occupies 

specific spatial locations and performs distinct functions (Zeng 2022; Arendt et al. 2016). 

Understanding this cellular heterogeneity is essential for understanding biological systems 

in both healthy and pathological states. The rapid development of single-cell sequencing 

technologies has revolutionized this field and generated enormous single-cell atlases of 

various organs and tissues under healthy and disease conditions (Kozareva et al. 2021; Hodge 

et al. 2019; Tabula Sapiens Consortium* et al. 2022; Lindström et al. 2018; Rozenblatt-

Rosen et al. 2021; Tang et al. 2009; Shalek et al. 2013). However, most studies focus on 

single-cell transcriptomics, where a cell type is defined purely by gene expression patterns. 

It is important to develop a multi-omics method that can simultaneously profile the different 

molecular regulators in the gene regulatory network including the genomic DNA, epigenetic 

modifications, gene expression, and protein production (Badia-I-Mompel et al. 2023; Levine 

& Davidson 2005; Zhu et al. 2020). In addition, it is crucial to profile cells within their native 

tissue context to understand their responses to environmental stimuli. This need has 

motivated our laboratory to develop innovative spatial genomic and transcriptomic profiling 

tools.  

In the introduction, I discuss recent advances in sequencing and spatial multi-omics 

technologies. In Chapter 2, I present our work on the detailed profiling of chromatin 

organization in the mouse cerebellum in a cell-type-specific manner. In Chapter 3, I present 

our study investigating the tissue organization of the human fetal kidney by integrating 

single-cell multiome sequencing and spatial transcriptomics. 
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1.2 Sequencing-based multi-omics technologies 

Since researchers from Cambridge first performed single-cell RNA sequencing (scRNA‑seq) 

using a next‑generation sequencing platform (Tang et al. 2009), the field of single‑cell 

sequencing has transformed how we study cell diversity. Single-cell sequencing technologies 

enable us to measure individual cells by their gene expression, revealing cell-type-specific 

features and exploring cellular heterogeneity in complex biological systems, such as brain 

function, organogenesis, oncogenesis, and other diseases (Lake et al. 2023; Nofech-Mozes 

et al. 2023; Cao et al. 2020; Braun et al. 2023; Mathys et al. 2019; Rood et al. 2025). By 

assigning each cell a unique barcode, researchers can track RNA, DNA and even proteins 

molecules from single cells using either droplet microfluidics (like 10x Genomics) (Zheng 

et al. 2017), or plate‑based methods (SMART‑seq) (Ramsköld et al. 2012; Hagemann-Jensen 

et al. 2020). Recent advance in this field enabled us to capture multiple types of molecules 

simultaneously from a single cell, acquiring multi-omic readouts. Those advances greatly 

enhanced our understanding of gene regulation, epigenetic modification, and protein 

expression dynamics. These approaches are particularly valuable in fields like lineage 

tracing, neuroscience, immunology, and oncology, where cellular heterogeneity plays a 

critical role (Baysoy et al. 2023; Nadalin et al. 2024; Xiong et al. 2024; Liu et al. 2023). 

Techniques such as CITE-seq (cellular indexing of transcriptomes and epitopes by 

sequencing) (Stoeckius et al. 2017) and REAP-seq (RNA expression and protein sequencing 

assay) (Peterson et al. 2017) enable the simultaneous profiling of transcriptomic and protein 

expression at the single-cell level. Both methods utilize oligo-conjugated antibodies, 

assigning the same unique barcode to transcripts and antibody-bound oligos. These 

techniques have been applied in clinical and immunological research (Y. Su et al. 2020). 

However, both CITE-seq and REAP-seq rely on oligo conjugated antibodies, which can be 

limited by available antibodies and potential change of antibody specificity upon 

conjugation. To address these limitations, alternative methods like PHAGE-ATAC have 

been developed, using nanobody-presenting phages to detect epitopes, where the phage's 

hypervariable regions serve as barcodes (Fiskin et al. 2022). 
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In addition to profiling transcripts and proteins simultaneously, methods have been 

developed to jointly detect DNA and RNA molecules from single cells (Dey et al. 2015). 

The ability of sequencing DNA and RNA simultaneously from the same cells enables the 

integration of transcriptomics with epigenetic modifications, such as genomic DNA 

methylation (Lister et al. 2009; Flusberg et al. 2010), open and close chromatin status, or 

chromatin modifications (Angermueller et al. 2016). Methods like scNMT-seq (single-cell 

nucleosome, methylation, and transcription sequencing) allow simultaneous profiling of 

DNA methylation, nucleosome occupancy, and gene expression in single-cells (Clark et al. 

2018; Cerrizuela et al. 2022). Other techniques focus on measuring chromatin accessibility 

together with transcriptomics. For example, SHARE-seq (Ma et al. 2020; Li et al. 2024), 

Paired-seq (Zhu et al. 2019), and 10X Genomics Multiome sequencing (Belhocine et al. 

2021) allow jointly scATAC-seq (assay for transposase-accessible chromatin sequencing) 

and scRNA-seq from the same cell. Applied to hair follicle cells, SHARE-seq showed that 

chromatin accessibility at distal open regions of chromatin (DORCs) precedes target gene 

expression during differentiation, enabling the prediction of a cell's future transcriptional 

state and inferring its lineage trajectory from chromatin potential (Ma et al. 2020). 

Alternative approaches, such as Paired-Tag and epiDamID, profile histone modifications 

together with transcription, relating gene expression with histone mark association (Zhu et 

al. 2021; Rang et al. 2022). These methods collectively enhance our understanding of 

hierarchical structure of the gene regulation network and how epigenetic modifications 

regulate gene expression. Recent advancements have led to methods that integrate more than 

two modalities, such as DOGMA-seq and NEAT-seq, that can simultaneously profile gene 

expression, protein abundance, and chromatin accessibility (Mimitou et al. 2021), (A. F. 

Chen et al. 2022). 

1.3 Spatial-based multi-omics technologies 

Cells must be dissociated from their native tissue environment before going through single-

cell sequencing protocols, during which spatial context information is lost (Longo et al. 

2021). In contrast, imaging-based spatial technologies can perform single-cell multi-omics 
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profiling while preserving spatial information, as they typically involve repeated imaging 

of the same region from the same cell on the same slides, allowing sequential detection of 

different molecules (Marx 2021).  

Imaging-based spatial technologies are built upon in situ hybridization (ISH), where 

complementary strand of nucleic acid probes are hybridized to a specific segment DNA or 

RNA target within a histologic section (Anon n.d.). To enable multiplexed target detection, 

instead of directly readout the target, barcodes attached on primary probes that hybridize to 

target RNA or DNA species were detected (Lubeck et al. 2014; Chen et al. 2015; Shah et al. 

2017; Xia et al. 2019; J.-H. Su et al. 2020). The field has diverged into two directions for 

decoding barcodes. The first direction is based on Fluorescence In Situ Hybridization (FISH). 

Each primary probe contains overhangs with four or five barcode binding sites, each site is 

15-20 nucleotides long. Fluorescent readouts hybridize to the barcode binding sites, are 

imaged, and are removed during sequential imaging rounds, utilizing multiple rounds of 

hybridizations to decode barcodes. Our laboratory developed sequential fluorescent in situ 

hybridization (seqFISH) and seqFISH+ that allow detection of 10,421 intron species (Shah 

et al. 2018), 10,000 mRNA transcripts from mouse brain (Eng & Others 2019), and 100,049 

genomic DNA loci from mouse cerebellum (Takei et al. 2025). MERFISH, using similar 

strategy but different barcoding scheme, was able to barcode 10,050 transcripts in cell 

cultures (Xia et al. 2019). The second direction is based on in situ sequencing, where a short 

barcode sequence is attached to primary probes, and the barcode are sequenced by in situ 

sequencing such as FISSEQ (Lee et al. 2015) and STAR-map (Wang et al. 2018). These 

methods can be seamlessly integrated with immunofluorescence staining, to visualize both 

the expression levels and subcellular distribution of targeted proteins, whereas sequencing-

based methods only measure protein abundance (Im et al. 2019).  

A unique advantage of imaging-based spatial technologies is their ability to directly 

reconstruct the three-dimensional genome organization at the single-cell level by using 

multiplexed DNA FISH. For imaging-based multi-omics technologies, transcriptomics and 

genomics profiling can be easily integrated with protein measurement by sequentially apply 
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multiplexed RNA and DNA FISH and immunofluorescence staining. This provides us an 

unprecedent opportunity to understand how chromosomes are organized physically, and 

genome association with chromatin marks, in relation to gene expression at a cell-type-

specific manner in intact complex tissues. 

In 2018, our laboratory profiled 10,421 genes at their nascent transcription active sites using 

intron seqFISH, integrating this with chromosome painting to visualize entire chromosomes 

and map the transcriptionally active sites to their corresponding chromosomes (Shah et al. 

2018). In 2019, Alistair's group utilized Optical Reconstruction of Chromatin Architecture 

(ORCA) to profile a 700-kb genomic region spanning the Bithorax Complex in Drosophila 

embryos at 10 kb–2 kb resolution, while simultaneously imaging 30 cell-type-specific 

mRNAs or nascent transcripts (Mateo et al. 2019). By leveraging cell-typing information 

from the marker gene expression, they identified cell-type-specific physical borders between 

active and Polycomb-repressed DNA, and cell-type diverse enhancer-promoter contacts at 

the kilobase scale. This study showed the ability of imaging-based methods to resolve fine-

scale chromatin interactions in complex tissues at the single-cell level, although it was 

limited to a relatively small genomic region due to constraints on the total number of 

barcodes they can detect in single experiment. Later In 2021, Yodai Takei from our lab 

expanded the barcoding capacity and employed DNA seqFISH+ to profile 3,660 

chromosomal loci across the mouse genome in mouse embryonic stem cells (mESCs), with 

2,460 loci at 1 Mb resolution and 1,200 loci at 25-kb resolution (Takei et al. 2021). DNA 

seqFISH+ was integrated with RNA seqFISH probing 70 mRNAs and 17 chromatin markers 

using sequential immunofluorescence. This research identified many genomic loci as “fixed 

points” in nuclear organization: they are more frequently located the surface of nuclear 

bodies, and zones with combinatorial chromatin marks. The same method, applied to the 

complex tissue of mouse brain, revealed cell-type specific nuclear organization, its relation 

to gene-transcription, and how the radial organization of chromosomes are shaped (Takei et 

al. 2021).  

https://paperpile.com/c/NebdGi/rxmJ
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To overcome the limitation of 1-Mb whole-genome resolution, we developed an innovative 

two-layer barcoding scheme of DNA seqFISH+, enabling the profiling of the entire mouse 

genome at 25-kb resolution (100,049 genomic loci), together with 18,000 nascent transcripts, 

60 mRNAs, and 26 subnuclear marks (Takei et al. 2025). By combining the chromatin 

organization data from two-layer DNA seqFISH+ with cell-type information from RNA 

seqFISH, our study revealed that repressive chromatin compartments exhibit greater 

diversity across cell types than active chromatin compartments. Notably, a group of specific 

genomic loci associated with H4K20me3 marked constitutive repressive compartments in 

the interior of Purkinje nucleus were found to locate at the nuclear periphery, associated with 

Lamin, in Bergmann glial cells. Despite achieving a 25-kb resolution for DNA seqFISH+, 

the practical genomic resolution of chromatin profiling is limited by the diffraction-limited 

immunofluorescence (200–300 nm, corresponding to 100-200-kb of genomic DNA) in 

conventional confocal microscopy (Takei et al. 2025). Expansion microscopy has been 

applied to increase the resolution of histone modification immunofluorescence staining to 

75nm, around 10-kb resolution (Woodworth et al. 2021; Labade et al. 2024). Additionally, 

Epigenomic MERFISH, which uses antibodies targeting specific histone modifications 

followed by in situ tagmentation and transcription, improves the detection of epigenetic 

modifications to the promoter-enhancer level (Lu et al. 2022). 

In addition to imaging-base spatial technologies, sequencing technologies have been applied 

in spatial profiling. Instead of assigning unique barcodes to individual cells, these methods 

pattern slides with oligos or beads, each linked to a specific spatial location as “pixels.” For 

Visium and Visium HD, oligos are arrayed on a solid slide surface in a grid, with each spot 

containing a unique barcode identifying its position at 55 μm (Visium) (Kuppe et al. 2022) 

and 2 μm (Visium HD) resolution (Oliveira et al. 2024). Stereo-seq uses DNA nanoball 

(DNB) patterned arrays on lithographically etched chips with ultra-small 500 nm spots (A. 

Chen et al. 2022; Gong et al. 2025), while Slide-seq uses densely packed barcoded beads to 

achieve 10 μm resolution (Rodriques et al. 2019). DBiT-seq creates a spatial map by 

delivering two sets of molecular barcodes through perpendicular microfluidic channels, 

achieving up to 10 μm resolution (Liu et al. 2020). Single-cell multi-omics sequencing 

https://paperpile.com/c/NebdGi/CQow
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methods mentioned in section 1.2 can be directly applied to sequencing-based spatial 

methods to enable spatial multi-omics profiling. For example, spatial ATAC-RNA seq was 

able to simultaneously apply ATAC-seq and RNA-seq from individual pixels from mouse 

and human tissue (Zhang et al. 2023). Another method, Patho-DBit, profiles all RNA types, 

including small RNAs like microRNAs, from FFPE tissue samples, mapping their spatial 

patterns, which are less explored in spatial research (Bai et al. 2024). Sequencing-based 

spatial technologies have several advantages: they are relatively straightforward to 

implement, leveraging established sequencing protocols, and usually provide comprehensive 

whole-transcriptome or whole-genome coverage. However, these methods cannot achieve 

the same subcellular spatial resolution as imaging-based approaches and can suffer from low 

detection efficiency and signal contamination between adjacent locations. 

1.4 Computational methods to integrate multi-omics datasets 

As rapidly developing experimental methods produce single-cell multi-omic datasets, 

computational tools have become essential for integrating multi-modality information and 

interpreting the biological meaning behind the data. Each modality provides a large number 

of features per cell: gene expression data include thousands to tens of thousands of gene 

expression levels per cell, chromatin accessibility data include hundreds of thousands of 

accessibility scores across the genome per cell, and protein profiling data include from 

several to hundreds of protein measurements per cell. These datasets are high-dimensional 

and noisy; different data modalities have inherently different scales, distributions, and noise 

levels (Tang et al. 2023). Different technology platforms introduce different technical biases 

(You et al. 2024; Angerer et al. 2017; Colino-Sanguino et al. 2024), complicating both the 

integration of modalities within single experiments and the co-analysis of datasets from 

different platforms 

For paired experimental methods where information from different modalities is collected 

from the same cell or same slide barcode, integrating multi-omics datasets seems 

computationally straightforward because different modalities are linked through a common 

cell identifier. It was a common practice to analyze each single-modality dataset 
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independently using state-of-the-art pipelines first and then project cell typing defined from 

one modality to another at a pseudo-bulk level. For example, it is a common practice to 

identify cell types using transcriptome data first and then use these cell type labels to perform 

differential peak analysis on paired single-cell ATAC datasets. This is because transcriptome 

datasets are considered more robust for cell type prediction due to its fewer dimensions and 

less dropouts compared with single-cell ATAC data.  

Joint analysis of paired multi-omics datasets is being pursued with advanced computational 

methods that integrate multiple modalities simultaneously to uncover deeper biological 

insights. Seurat’s WNN Analysis dynamically weights the importance of each data type for 

individual cells, thus integrated multi-modalities despite the inherent difference of different 

modalities (Hao et al. 2021). MOFA+ employs a Bayesian model to uncover latent factors 

that capture both common and unique patterns across multiple omics layers (Argelaguet et 

al. 2020). In addition to above methods that focus on cell typing through joint analysis of 

multi-omic data, tools such as SCENIC+ (Bravo González-Blas et al. 2023) are designed 

specifically to infer gene-regulatory networks from paired single-cell multi-omic datasets. 

Despite the rapid growth of multi-omics datasets, the scientific community has a significantly 

larger collection of unpaired single-modality datasets. To fully utilize these existing unpaired 

datasets, various computational tools have been developed to integrate them into a shared 

latent space. For instance, tools like Harmony (Korsunsky et al. 2019) and SpaGE (Abdelaal 

et al. 2020) are designed to project different modalities into a common space, enabling the 

alignment of diverse data types. Specifically, Multi-Omics Factor Analysis (MOFA) 

(Argelaguet et al. 2018) employs factor analysis to uncover shared and modality-specific 

factors across datasets. Another approach used autoencoder-based models, such as Multi-VI 

(Ashuach et al. 2023) for integration of scRNA-seq and scATAC-seq data. For spatial data 

integration, tools like Tangram (Biancalani et al. 2021), SpaGE (Abdelaal et al. 2020), and 

gimVI (Lopez et al. 2019) map non-spatial scRNA-seq data onto spatial coordinates, thereby 

reconstructing spatially resolved gene expression patterns. 

 

https://paperpile.com/c/NebdGi/em9g
https://paperpile.com/c/NebdGi/lnoN
https://paperpile.com/c/NebdGi/lnoN
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1.5 Summary 

We are at an exciting moment in the single-cell multi-omics era, with both sequencing and 

spatial technologies advancing rapidly. Imagine that, in a perfect world, one could identify a 

cell type by its transcriptome, confirm a mutation through genomic data, visualize the 3D 

chromosome organization together with epigenetic modifications that regulate gene 

expression, and observe the functional protein outputs, the spatial location of a particular 

cell, and neighborhood interaction between cells — all in one comprehensive framework. 

Building on the concept of “virtual cells,” which aims to reconstruct cellular activity in silico 

(Bunne et al. 2024), my vision is to leverage these multidimensional data to develop “virtual 

tissue,” enabling the simulation of tissue- or even organ-level behavior. Such integrative 

approaches will profoundly update our understanding of biology and disease, at the same 

time offering new opportunities in drug discovery, precision medicine, and beyond. 
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C h a p t e r 2  

SPATIAL MULTI-OMICS REVEALS CELL-TYPE-SPECIFIC 
NUCLEAR COMPARTMENTS 

A modified version of this chapter was published as: 

*Takei Y, *Yang Y, White J, Goronzy IN, Yun J, Prasad M, Ombelets LJ, Schindler S, Bhat 
P, Guttman M, Cai L. Spatial multi-omics reveals cell-type-specific nuclear compartments. 
Nature. 2025 Apr 9. doi: 10.1038/s41586-025-08838-x. *These authors contributed equally. 
 
2.1 Abstract 

The mammalian nucleus is compartmentalized by diverse subnuclear structures. These 

subnuclear structures, marked by nuclear bodies and histone modifications, are often cell-

type specific and affect gene regulation and 3D genome organization (Solovei et al. 2016; 

Bhat et al. 2021; Belmont 2021). Understanding nuclear organization and its role in gene 

expression requires identifying the molecular constituents of subnuclear structures and 

mapping their associations with specific genomic loci and their transcriptional levels in 

individual cells, within complex tissues. Here, we introduce two-layer DNA seqFISH+, 

which allows simultaneous mapping of 100,049 genomic loci, together with nascent 

transcriptome for 17,856 genes and a diverse set of immunofluorescently labeled subnuclear 

structures all in single cells in both cell lines and complex tissues. These data enable imaging-

based chromatin profiling of diverse subnuclear markers and capture changes in chromatin 

organization at genomic scales from 100–200 kb to approximately 1 Mb, depending on the 

subnuclear marker and DNA locus. Using multi-omics datasets in the adult mouse 

cerebellum, we showed that repressive chromatin regions are more variable by cell type than 

active regions across the genome. We also discovered RNA polymerase II (RNAPII)-

enriched foci were locally associated with long, cell-type specific genes (> 200kb), in a 

manner distinct from nuclear speckles. Further, our analysis revealed that cell-type specific 

facultative and constitutive heterochromatin regions marked by H3K27me3 and H4K20me3 

are enriched at specific genes and gene clusters, respectively, and shape radial chromosomal 
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positioning and inter-chromosomal interactions in neurons and glial cells. Together, our 

results provide a single-cell high-resolution multi-omics view of subnuclear structures and 

chromatin marks, associated genomic loci, and their impacts on gene regulation, directly 

within complex tissues. 

2.2 Introduction 

Recent imaging-based genome-wide multimodal technologies have enabled direct profiling 

of the 3D organization of the nucleus in single cells (Nguyen et al. 2020; Su et al. 2020; 

Payne et al. 2021; Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021; Lu et al. 2022), 

providing spatial context to our understanding of nuclear architecture derived from genome-

wide sequencing-based approaches (Dekker et al. 2017; Kempfer & Pombo 2020; Jerkovic 

& Cavalli 2021; Conte et al. 2020; Wang et al. 2021; Boninsegna et al. 2022). For example, 

we had previously shown that specific associations between genomic loci and subnuclear 

structures are conserved across single cells, despite the apparent variability in the 3D genome 

structure of individual cells (Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021). Furthermore, 

imaging-based transcriptomic approaches have revealed the organization of the nascent 

transcriptome within the nucleus (Shah et al. 2018) and identified cell-type specific 

transcriptional programs in tissues (Eng et al. 2019). However, due to optical crowding, 

current genome-wide imaging approaches are limited to resolving genomic sites at the 

megabase level (Su et al. 2020; Payne et al. 2021; Takei, Yun, et al. 2021; Takei, Zheng, et 

al. 2021), limiting the achievable level of insight to larger genomic regions, rather than 

individual genes across the genome.   

To enable a more detailed understanding of nuclear organization and its relationship to gene 

regulation, higher genomic coverage measurements are required together with measurements 

of diverse subnuclear structures in single cells. Here we introduce a two-layer barcoding 

DNA seqFISH+ scheme that increases the multiplexing capability of single-cell multi-omics 

to ~100,000 species, up from the previous ~10,000 (Shah et al. 2018; Eng et al. 2019; Xia et 

al. 2019), corresponding to 25-kb coverage across the genome (Methods) (Fig. 1b, Extended 

Data Fig. 1). This two-layer DNA seqFISH+ can be combined with transcriptomic and 
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immunofluorescence measurements to perform simultaneous investigation of gene 

expression profiles and chromatin organization across the genome in individual cells (Fig. 

1a, Extended Data Figs. 1-7), and enables identification of nuclear compartments and their 

associated genes in a cell-type specific fashion. We note that our measurements can capture 

the cell-type specific changes of chromatin organization at 100–200 kb to approximately 1- 

Mb genomic scales, depending on the immunofluorescence target and chromosome locus, 

due to the limited spatial resolution of diffraction-limited immunofluorescence images 

(~200–300 nm) and target-specific issues related to the processing of imaging-based 

chromatin profiles as described below.  

2.3 Results 

Two-layer seqFISH+: Single-cell spatial multi-omics technology 

Building upon our previous multimodal technology (Takei, Yun, et al. 2021; Takei, Zheng, 

et al. 2021), our goal was to employ a multi-omics approach to characterize the genomic 

landscape of individual cells in greater depth. The motivation for the two-layer strategy was 

sparked by previous observations that while some DNA loci are close together, those 

separated by more than 3 Mb on the genome are on average likely more than 300 nm apart 

from each other (Wang et al. 2016; Bintu et al. 2018; Takei, Yun, et al. 2021; Takei, Zheng, 

et al. 2021; Chen et al. 2023; Hafner et al. 2023), beyond the diffraction limit. We therefore 

divided each chromosome into 1.5 Mb blocks and distributed them into three orthogonal 

fluorescent channels such that adjacent chromosome blocks within the same fluorescent 

channel are separated by 3 Mb. We then sequentially imaged DNA loci at 25-kb increments 

in a different block in parallel, circumventing optical crowding, because within the same 

fluorescent channel, the loci imaged in any given round are genomically at least 3 Mb apart 

from each other. We used 96 rounds of imaging to impart two-layer barcodes on 100,049 

loci across the genome. The initial 60 rounds resolve 25-kb segments within each 

chromosome block while the subsequent 36 rounds decode chromosome block identities 

based on the unique combinations of the 9-pseudocolors across 4 barcoding rounds by 

leveraging the previous seqFISH+ pseudocolor approach (Eng et al. 2019; Takei, Yun, et al. 
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2021; Takei, Zheng, et al. 2021) to the chromosome blocks (Fig. 1b). We have named this 

imaging-based two-layer barcoding method as two-layer seqFISH+. 

We then combined two-layer DNA seqFISH+ with transcriptomic and subnuclear structure 

measurements to generate multi-omics datasets that integrate information on individual 

genomic loci (100,049 loci on 20 chromosomes by two-layer DNA seqFISH+), with 

information on mature and nascent transcripts (up to 1,247 genes based on mRNAs detection 

by mRNA seqFISH+ or non-barcoded mRNA seqFISH and 17,856 genes based on intron 

detection by intron seqFISH+) and as well as information on subnuclear structures and 

chromatin marks based on sequential immunofluorescence assays (using up to 65 antibodies) 

in thousands of single cells (Fig. 1a-g, Extended Data Fig. 1).  

We initially applied this technology to two different mouse cell lines (mouse embryonic stem 

cells (mESCs), and mammary gland epithelial NMuMG cells), and then compared the results 

to those from established approaches for benchmarking. We began with two-layer DNA 

seqFISH+ in mESCs, detecting 63,466 ± 20,525 (median ± s.d.) DNA dots per cell across 

100,049 genomic loci in 1,076 cells from two biological replicates (Fig. 1h, top). The 

estimated detection efficiency was 21.1% while the false positive rate was estimated at 1.6% 

(Fig. 1h, bottom). In addition, throughout the imaging rounds, we imaged the fiducial marker 

targeting endogenous genomic loci (Takei, Yun, et al. 2021), achieving a precise alignment 

of images from different rounds with a median alignment accuracy of 47.3 nm for DNA 

seqFISH+ (Extended Data Fig. 3a-c). We then compared our two-layer DNA seqFISH+ data 

with previously generated DNA seqFISH+ data (Takei, Yun, et al. 2021) as well as the 

sequencing-based method, Hi-C (Lieberman-Aiden et al. 2009; Bonev et al. 2017), and 

confirmed that A/B compartments (Lieberman-Aiden et al. 2009; Bonev et al. 2017) 

(Spearman’s correlation coefficient of 0.82 between two-layer DNA seqFISH+ and Hi-C in 

the genome-wide comparison) and other measures are overall consistent amongst the datasets 

(Fig. 1i, Extended Data Fig. 3). However, we note that the two-layer barcoding scheme 

under-detects the DNA loci near the boundary of 1.5 Mb chromosome blocks by 

approximately 20%, leading to artificial boundaries in the pairwise spatial distance 
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calculations with 25 kb bins (Extended Data Fig. 3l-t), but minimally affects chromatin 

profiling and megabase-scale pairwise spatial distance analyses shown below (Extended 

Data Fig. 3f, g; see Supplementary Notes for detailed discussion). 

Next we examined transcriptomic data from mRNA seqFISH+ (detecting 6,496 ± 2,068 

(median ± s.d.) spots per cell and 204 genes with averaged spot counts of >10 per cell), and 

intron seqFISH+ (1,197 ± 421 (median ± s.d.) transcription active sites per cell and 3,092 

genes with averaged spot counts of >0.1 per cell) in mESCs, which correspond to 78.9% and 

29.1% estimated detection efficiency, respectively (Extended Data Fig. 2a-k). These 

detection efficiencies are similar or favorable compared to 5-45% detection efficiencies by 

typical single-cell RNA-seq measurements (Svensson et al. 2017; Marshall et al. 2020). Our 

imaging-based transcriptomic measurements also showed a high degree of agreement with 

sequencing-based orthogonal measurements (Extended Data Fig. 2a, h).  

To gain further insight into the spatial organization of these loci, we employed imaging-

based chromatin profiling (Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021), which 

measures spatial proximity between genomic loci visualized by two-layer DNA seqFISH+ 

and subnuclear structures visualized by sequential immunofluorescence (Fig. 1g, j, Extended 

Data Figs. 4-7). To examine subnuclear structures, we included various histone 

modifications (Kouzarides 2007) (e.g., H3K27ac, H3K9me3) as well as other chromatin-

associated factors associated with nuclear bodies such as nuclear speckles (Chen & Belmont 

2019) (e.g., SF3A66) and the nucleolus (Pederson 2011) (e.g., Fibrillarin), and the nuclear 

lamina (Van Steensel & Belmont 2017) (e.g., Lamin B1). The imaging-based chromatin 

profiles in mESCs were overall consistent with those generated by sequencing-based 

methods (e.g., CUT&RUN (Skene & Henikoff 2017; Skene et al. 2018), pA-DamID (van 

Schaik et al. 2020), and RD-SPRITE (Quinodoz et al. 2021)) as well as previous imaging-

based approaches for a wide range of subnuclear structures and histone modifications (e.g., 

Lamin B1, H3K4me3) (Fig. 1j, k, Extended Data Figs. 4-7). Our imaging-based chromatin 

profiling also captured biological changes of lamina-associated domains (LADs) between 
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mESCs and NMuMG cells, similarly to the orthogonal sequencing datasets (Extended 

Data Figs. 4k, 5a).  

We note that there are fundamental differences between imaging- and sequencing-based 

chromatin profiling approaches. Specifically, our imaging-based chromatin profiling 

approach captures spatial proximity of DNA loci relative to subnuclear structures or histone 

modifications (Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021) (either average spatial 

proximity or fraction of loci within certain thresholds; see Methods), rather than detecting 

their individual molecular binding at individual genomic sites, which sequencing-based 

methods such as ChIP-seq (Johnson et al. 2007), CUT&RUN (Skene & Henikoff 2017; 

Skene et al. 2018), and CUT&Tag (Kaya-Okur et al. 2019)  as well as imaging-based 

epigenomic MERFISH for targeted loci (Lu et al. 2022) typically characterize (Extended 

Data Fig. 4g, j). Similarly, it is difficult to distinguish a DNA locus being enriched with a 

given chromatin marker from being spatially associated with neighboring DNA loci enriched 

with the marker in single cells. In addition, spatial resolution in our imaging-based chromatin 

profiling is fundamentally limited by the diffraction-limited immunofluorescence images 

(~200–300 nm spatial resolution) (Woodworth et al. 2021). Thus, we used 100–200 kb 

genomic bins, which are typically 100-300 nm away from the adjacent bin for the spatial 

chromatin profiling analysis. Third, because we used the z-score based linear scaling in the 

chromatin profiling to achieve a systematic way to extract the chromatin marker enrichment 

information, the dynamic range of fluorescence intensities of a given marker can affect the 

interpretation of the marker enriched DNA loci (Extended Data Fig. 4g, j). Finally, the 

analysis methods for imaging-based chromatin profiles may reflect different chromatin 

features (see Methods).  

Nonetheless, because of the improved coverage of genomic loci provided by two-layer DNA 

seqFISH+, this newly generated chromatin profiling revealed chromatin organization at 100 

kb–1 Mb practical resolution (Fig. 1i, j, l, Extended Data Fig. 5-7), a level that was 

inaccessible in previous imaging-based genome-wide studies (Su et al. 2020; Payne et al. 

2021; Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021), including the previous DNA 
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seqFISH+ with genomic bins approximately 1 Mb apart (Takei, Yun, et al. 2021; Takei, 

Zheng, et al. 2021). For example, for nuclear speckle associations, we detected DNA 

seqFISH+ SF3A66 peaks that correspond to Rn7sk peaks from the RD-SPRITE profile with 

100-kb binning (Fig. 1l, Extended Data Fig. 6c-e). While we also identified the same 100-kb 

bin peaks between imaging-based and sequencing-based chromatin profiling in some cases 

(e.g. RNAPIISer5-P), the overall correlation between datasets improved significantly up to 

~350–400 kb on average, depending on the marker and chromosome (Extended Data Figs. 

5e, 7a). These results showed context-dependent practical resolution of chromatin profiling 

at genomic scales from 100–200 kb to approximately 1 Mb. 

Together, these results confirm the high quality of the spatial multi-omic datasets, which 

enable us to perform an integrated analysis of nuclear organization across multiple imaging 

modalities. We will refer to this two-layer DNA seqFISH+ as DNA seqFISH+ for simplicity 

below.  

Single-cell spatial multi-omics in the mouse cerebellum 

Having established the validity of our approach in mouse cell lines, we proceeded to examine 

the relationships between chromatin organization and gene regulation in the naive tissue 

context. We chose the adult mouse cerebellum, a well-defined brain structure with diverse 

cell types (Kozareva et al. 2021), to examine the cell-type specificity of nuclear organization. 

Thus, we applied DNA seqFISH+ (100,049 loci), intron seqFISH+ (17,856 genes), mRNA 

seqFISH (60 marker genes), and sequential immunofluorescence (27 markers) to the adult 

mouse cerebellum.   

We identified distinct cell types by mRNA seqFISH transcriptomic profiling and spatially 

resolved the organization of these diverse cell types in the tissue sections (Fig. 2a-c, Extended 

Data Figs. 8-10), capturing the layer organization of the mouse cerebellum at the single-cell 

resolution. We were able to identify major cell types in the adult mouse brain cerebellum 

(Kozareva et al. 2021), including neurons such as Purkinje cells, Purkinje layer interneurons 

(PLI), subtypes of molecular layer interneurons (MLI1 and MLI2), and granule cells, as well 
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as non-neuronal cells such as Bergmann glia, astrocytes, oligodendrocyte precursor cells 

and oligodendrocytes (OPC/ODC), and endothelial cells. We confirmed the expected layer 

organization of the adult mouse cerebellum (Kozareva et al. 2021), such as spatially close 

arrangement of Purkinje cells and Bergmann glia at the Purkinje cell layer, which is adjacent 

to the granule cell (GC) layer, largely consisting of granule cells (Fig. 2a, Extended Data Fig. 

8a-c). Our multi-omics profiling across 4,015 cells further allowed us to compare the 

genomic landscapes of the different cell types at multiple levels, including nascent 

transcriptional states by intron seqFISH+ and chromatin states by sequential fluorescence 

(Fig. 2b, Extended Data Fig. 8). These analyses revealed highly consistent cell-type specific 

states at each level of analysis (i.e., transcriptional and chromatin). 

Cell-type specific active and repressive chromatin regions in mouse cerebellar cells 

Based on the imaging of diverse subnuclear markers together with genome-wide DNA loci 

by DNA seqFISH+, we were able to identify several different types of chromatin regions. 

Active chromatin regions involved nuclear speckles (SF3A66), which are known to enrich 

in pre-mRNA splicing factors (Chen & Belmont 2019), and other active chromatin markers 

such as H3K27ac and RNA polymerase II (RNAPIISer5-P) (Fig. 2d, e, Extended Data Fig. 

9d, e). In addition, we also identified at least four major repressive chromatin regions 

(Solovei et al. 2016; Falk et al. 2019) by examining eight repressive markers, including 

constitutive heterochromatin (major satellite DNA repeats (MajSat), H4K20me3), 

facultative heterochromatin (H3K27me3), nucleolus (ITS1 RNA), and nuclear periphery 

(Lamin B1) (Fig. 2d-f, Extended Data Fig. 9d-g). 

Interestingly, we observed that repressive markers were associated with genomic loci in a 

highly cell-type specific fashion, while active chromatin profiles were largely conserved 

between cell types using 200 kb bins (Fig. 2g). For example, by comparing Purkinje and 

MLI1 cells, we observed that the profiles of active chromatin regions associated with nuclear 

speckles (marked by SF3A66, as described above) were highly correlated with Pearson 

correlation coefficient of 0.89, whereas those of repressive regions, marked by H3K27me3, 

were less so with Pearson correlation coefficient of 0.24 (Fig. 2g, right). These observations 
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were consistent across various active and repressive markers and in all cell types and cell 

lines examined (Extended Data Fig. 9h).  

Furthermore, some of the repressive markers also showed cell-type specific subnuclear 

localization patterns. For example, H4K20me3 marker stained subnuclear territories that 

were segregated from pericentromeric heterochromatin characterized by MajSat (Linhoff et 

al. 2015) in Purkinje cells and MLI1, while those markers stained spatially overlapped 

regions in Bergmann glia (Fig. 2f, Extended Data Fig. 9f). In addition, regions marked with 

mH2A1 and H3K27me2 staining, which correlated with H3K27me3 foci in all cell types, 

also stained pericentromeric regions only in Purkinje cells (Extended Data Fig. 9f). Thus, 

genomic loci showed cell-type dependent associations with subnuclear territories stained by 

those repressive markers (Extended Data Fig. 9f, g). Finally, we observed cell-type specific 

organization of subnuclear foci (Extended Data Fig. 10b-e). In particular, while larger 

MajSat foci exhibited more interior localization in the nucleus in Purkinje cells and MLI1, 

consistent with a previous report in Purkinje cells (Solovei et al. 2004), such a trend was not 

observed in Bergmann glia (Extended Data Fig. 10e), suggesting a different pericentromeric 

heterochromatin organization between those neurons and glial cells. 

We examine these active and repressive chromatin regions and their cell-type specificities 

using DNA seqFISH+ datasets in more detail below (Extended Data Figs. 11-16). We also 

note that major biological observations were further validated by additional sequential FISH 

experiments (~60% detection efficiency) with a smaller set of 22 DNA loci with two 

biological replicates (Extended Data Fig. 17). 

Active chromatin regions show distinct sequence features and cell-type specific gene 

expression patterns 

We first focused on transcriptionally active chromatin regions. Previous work had shown 

that speckle-associated genomic regions are largely conserved across cell types (Zhang et al. 

2020; Takei, Zheng, et al. 2021), but associations with RNAPII have not been fully explored 

in tissues. In cerebellar cells, genomic regions associated with nuclear speckles tended to be 
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higher in GC content, enriched in shorter-length genes, and enriched in RNAPIISer5-P 

marks, regardless of cell type (Fig. 3a-c, Extended Data Figs. 10b, 11a, b), consistent with 

previous works(Chen et al. 2018; Quinodoz et al. 2018; Zhang et al. 2020; Takei, Zheng, et 

al. 2021; Alexander et al. 2021). The RNAPIISer5-P broad regions, lacking SF3A66 nuclear 

speckle marks, formed a distinct territory far from the speckles (Fig. 3b, Extended Data Fig. 

11c), similar to those observed in human cells (Chen et al. 2018). Those speckle-enriched 

and RNAPIISer5-P broad regions not only showed different sequencing features (e.g., GC 

content) (Fig. 3c, Extended Data Figs. 11b, 12a-c) but also encoded a distinct set of Gene 

Ontology (GO) terms and a different percentage of housekeeping genes (i.e., a higher 

percentage of housekeeping genes in speckle-enriched regions) in each cell type (Extended 

Data Figs. 11d, 12d). 

Both nuclear speckles and RNAPIISer5-P broad associated loci showed subtle cell type 

dependent patterns in their genomic locations (Extended Data Fig. 11e). Nevertheless, we 

observed that increased association of genomic loci to one of these markers are typically 

correlated with cell-type specific gene expression programs (Fig. 3d, e, Extended Data Fig. 

11f, g). For example, increased locus associations toward either nuclear speckles or 

RNAPIISer5-P foci are coupled with increased gene expression of the loci when comparing 

Bergmann glia and MLI1 (Fig. 3d, e, bottom). We note that Purkinje cells were an exception, 

however, where only increased associations to RNAPIISer5-P foci correlated with increased 

gene expression (Fig. 3e, Extended Data Fig. 11g). 

Furthermore, we classified a third active chromatin region associated with RNAPIISer5-P 

sharp peaks (< 2 Mb) and exhibited a distinct set of characteristics. Genomic loci in this 

region tended to belong to genomic regions with lower GC content (Extended Data Fig. 12a-

c), and contained longer genes than the speckle region in all cell types as well as the 

RNAPIISer5-P broad region in some cell types (Fig. 3c, Extended Data Fig. 11b). In 

addition, these RNAPIISer5-P sharp loci showed more cell-type specific features, compared 

to the other active regions (Extended Data Fig. 11e). This observation motivated us to further 
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characterize the chromatin states and gene expression profiles of long genes (> 200 kb) 

across cell types.  

We were particularly interested in long genes because neuronal tissues (including 

cerebellum) generally express a greater number of long genes, relative to other tissue types 

(Gabel et al. 2015). In addition, long genes are overrepresented among genes involved in 

synaptic processes (Koopmans et al. 2019) and brain disorders such as autism spectrum 

disorder (ASD) (King et al. 2013; Zhao et al. 2018). Furthermore, transcriptionally-active 

long genes in tissues have been reported to have unique chromatin signatures including 

activation-dependent rearrangements (Walczak et al. 2013), broad enhancer-like chromatin 

domains (Zhao et al. 2018), chromatin decondensation (Winick-Ng et al. 2021), and 

transcriptional loops (Leidescher et al. 2022). Therefore, it is of crucial importance to 

understand their subnuclear organization in the naive tissue context. 

By using our multi-omics datasets, we found a strong link between the association of long 

genes with the RNAPIISer5-P foci and their cell-type specific gene expression (Fig. 3f, g). 

Examples of such genes included Cntnap5b and Dpp10 in Purkinje cells, Pam in MLI1 and 

MLI2/PLI, Adgrl3 in MLI1 and Bergmann, Slc4a4 in Bergmann, and Kcnd2 and Cadps2 in 

Granule cells. These long genes tend to play cell-type specific roles in the corresponding 

cells (e.g., Cadps2, a secretory granule-associated protein indispensable for normal cerebellar 

functions (Sadakata et al. 2007)), and, indeed, their RNAPIISer5-P enrichment was typically 

observed only in specific cell types (Fig. 3g). We further confirmed that those long genes are 

generally enriched for synaptic genes and ASD candidate genes (Extended Data Fig. 12d), 

consistent with previous observations (King et al. 2013; Zhao et al. 2018; Koopmans et al. 

2019). The cell-type specificity was also reflected in the nascent transcription patterns 

observed by intron seqFISH+ profiles (Fig. 3g), open chromatin states (Extended Data Fig. 

11i), and the local positional changes of DNA loci from the nuclear periphery to nuclear 

interior (Extended Data Fig. 12e-g), which coincides with a transcription-dependent 

detachment of genomic loci from the nuclear lamina upon synthetic transcriptional activation 

(Brueckner et al. 2020). Chromatin profiling, again combining DNA seqFISH+ with 
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sequential immunofluorescence, further identified other subnuclear markers associated 

with these long genes, including H3K4me2, H4K8ac, and CBP (Extended Data Fig. 11h, 

12h). However, the nuclear speckle marker SF3A66 typically did not appear at those loci 

(Fig. 3h, i, Extended Data Fig. 11h), demonstrating a spatial partitioning between nuclear 

speckles and other active markers (e.g., RNAPIISer5-P, H3K4me2) (Fig. 3b, Extended Data 

Fig. 11c). This cell-type specific drastic chromatin reorganization at long gene loci contrasts 

with the relatively small positional changes observed at gene-dense genomic loci around 

nuclear speckles (Zhang et al. 2020; Takei, Zheng, et al. 2021). The differential subnuclear 

organization between nuclear speckle-associated loci and transcriptionally active long gene 

loci was also recently reported in the adult mouse brain cerebellum in an independent study 

(Zhao et al. 2023). The distinct subnuclear organization of transcriptionally active loci 

between nuclear speckles and RNAPII may be functionally important in gene regulation, 

such as gene expression amplification (Alexander et al. 2021) and mRNA splicing (Bhat et 

al. 2023), and could also be critical in promoting gene misexpression in disease (e.g., speckle-

associated loci in schizophrenia (Ahanger et al. 2021)). 

Cell-type specific organization of H3K27me3-associated repressive chromatin regions 

In contrast to active genomic regions, genomic loci associated with repressive chromatin 

markers were highly cell-type specific (Fig. 2f, g). We first examined H3K27me3-marked 

regions, given the role of this repressive histone modification in silencing neurodegeneration-

related genes (Von Schimmelmann et al. 2016). We found there are two major subsets of 

H3K27me3-associated loci in cerebellar cells. The first set of loci were non-cell-type specific 

and enriched with genes involved in general developmental processes, represented by gene 

ontology (GO) terms related to pattern specification, such as the Hox gene clusters on Chr2 

and Chr6 (Extended Data Fig. 13a). These associations are consistent with previous data in 

other biological contexts such as embryonic development (O’Geen et al. 2007; Vieux-

Rochas et al. 2015). The other set of H3K27me3-associated loci were cell-type specific. 

Specifically, Purkinje cells showed the H3K27me3 enrichment at genomic loci with longer 

genes and lower GC content, compared to other cell types such as MLI1 and Bergmann glia 
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(Fig. 4a, Extended Data Fig. 13b). This Purkinje-specific region included genes such as 

Grin2b, whose repression is functionally important in Purkinje cells (Galliano et al. 2018), 

and Ptprd, which regulates developmental neurogenesis (Tomita et al. 2020) (Fig. 4b-d, 

Extended Data Fig. 13c, d). Some of these long genes (36 out of 46 genes) are 

developmentally down-regulated from the newborn to the adult Purkinje cells (Stoyanova et 

al. 2021) (Extended Data Fig. 13e).  

In addition, we found that H3K27me3- and Lamin B1-enriched loci are negatively correlated 

in most cell types (Fig. 4b, Extended Data Fig. 13f). However, a subset of H3K27me3-

associated loci is enriched with Lamin B1 in Purkinje cells. For example, Ptprd gene locus, 

spanning for ~2.2 Mb in Chr4, localized to the nuclear periphery and were marked by Lamin 

B1 in all major cell types (Purkinje cells, MLI1, and Bergmann glia), but were also marked 

by H3K27me3 only in Purkinje cells (Fig. 4b-d and Extended Data Fig. 13d). Despite these 

global organizational differences of the H3K27me3 foci around the nuclear periphery, the 

increased association toward either H3K27me3 or Lamin B1 showed decreased nascent 

transcription levels when comparing the pairs of cell types (Extended Data Fig. 13g). 

Together, Purkinje cells show a unique organization of their H3K27me3 repressive staining, 

perhaps related to their overall highly transcriptionally active nuclei (Van’t Sant et al. 2021) 

and increased H3K27me3 modification levels (Extended Data Fig. 8k, l). 

The H4K20me3 subnuclear organization is associated with specific gene families 

We next examined the subnuclear organization of the repressive region marked by 

H4K20me3. H4K20me3 is a repressive histone modification at constitutive heterochromatin 

regions and involved in gene silencing (Agredo & Kasinski 2023). Among the repressive 

markers we imaged, H4K20me3 staining marked unique territories adjacent to 

pericentromeric heterochromatin (Linhoff et al. 2015) in Purkinje cells (Fig. 5a, Extended 

Data Fig. 14a). While H4K20me3 was previously characterized in specific biological 

contexts such as olfactory receptor choice (Magklara et al. 2011; Clowney et al. 2012; 

Armelin-Correa et al. 2014; Monahan et al. 2019; Tan et al. 2019) and Rett Syndrome 

(Linhoff et al. 2015), the cell-type specific association of DNA loci with this modification as 
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well as its broader impact on chromatin organization remain elusive. We therefore 

examined the cell-type specific DNA loci associated with H4K20me3 regions in the nucleus 

to characterize their underlying genomic features (Fig. 5b, Extended Data Fig. 14a-c). 

We found that H4K20me3-enriched loci were depleted from H3K27me3 and Lamin B1 

markers in Purkinje cells (Extended Data Fig. 14b, c). Notably, we also found that 

H4K20me3-enriched loci in Purkinje cells occur in non-CG methylation (mCH) deserts, i.e. 

regions that do not accumulate mCH during development (Lister et al. 2013; Tan et al. 2021), 

as well as in mouse strain-specific diverse regions (SSDRs) (Lilue et al. 2018; Lilue et al. 

2019) (Fig. 5c, Extended Data Fig. 14d). Those enrichments contrasted from spatially 

adjacent pericentromeric MajSat-associated loci, which are mostly found within 2 Mb from 

chromosome start coordinates (Fig. 5c, Extended Data Fig. 14a). Moreover, the H4K20me3-

enriched loci appeared on specific chromosomes, including Chr7 and Chr17 (Fig. 5b) and 

included both gene-coding regions and gene deserts. In the gene-coding regions, we 

identified gene clusters, such as vomeronasal receptors (Vmn), secretoglobins (Scgb), and 

zinc finger proteins (Zfp) (Extended Data Fig. 14e), some of which (e.g. Vmn, Zfp) are 

genomically distributed across multiple chromosomes. We also found that Vmn gene clusters 

are consistently marked by H4K20me3, and do not show nuclear lamina association (Fig. 

5d-f, Extended Data Fig. 14h, i). In contrast, other gene family clusters such as olfactory 

receptors (Olfr) had a more mixed profile, associating with H4K20me3 in some cells while 

with Lamin B1 at the nuclear periphery in others. This feature gave Olfr genes overall lower 

H4K20me3 enrichments in Purkinje cells (Fig. 5d-f, Extended Data Fig. 14h, i), despite 

showing similar sequencing features (i.e., mCH deserts and SSDRs) as Vmn family genes 

(Lister et al. 2013; Lilue et al. 2018; Lilue et al. 2019). We note although our measurements 

capture spatial proximity rather than molecular interactions, some of those gene family loci 

(e.g., Vmn, Zfp, Olfr) were previously reported to have molecular interactions with the 

H4K20me3 modification by ChIP-qPCR in the mouse main olfactory epithelium (Magklara 

et al. 2011). Taken together, these data reveal that H4K20me3-marked regions constitute a 

separate subnuclear territory with highly specific locus associations. 
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H4K20me3 supports cell-type specific radial chromatin organization 

We noticed that certain chromosomal loci such as those in Chr4, Chr7, and Chr17 showed 

neuron-specific interior radial positioning, different from their arrangement in Bergmann glia 

(Fig. 5g, Extended Data Fig. 14j). Given that a majority of these loci were enriched for 

H4K20me3 in Purkinje cells, we wondered whether H4K20me3 may be related to the cell-

type specific radial positioning of chromosomes. Consistent with this notion, we found that 

H4K20me3 territories tend to form in the nuclear interior in Purkinje cells (Solovei et al. 

2004) (Fig. 5a), and H4K20me3-associated loci were therefore also localized to the interior 

(Fig. 5g, Extended Data Fig. 14k). For example, H4K20me3-associated Vmn gene clusters 

are found at 2.7 ± 0.6 μm (median ± s.d.) interior from the nuclear periphery, in contrast to 

1.5 ± 0.5μm (median ± s.d.) for the weakly H4K20me3-associated Olfr gene clusters and 1.3 

± 0.5 μm (median ± s.d.) from all genomic loci in Purkinje cells (Extended Data Fig. 14e). 

At the same time, those genomic loci were excluded from RNAPIISer5-P enrichment as 

outliers compared to other loci with similar radial positions in the nucleus (Extended Data 

Fig. 14k). 

Interestingly, we found the loci enriched in H4K20me3 in Purkinje cells were highly 

conserved with other neurons in their association with the H4K20me3 territories (Fig. 5h-j, 

Extended Data Fig. 14l, m; 90.5% with MLI1 and 92.5% with MLI2/PLI). However, those 

loci were not enriched with H4K20me3 in Bergmann glia (8.7%), where they localized at 

the nuclear periphery and showed enrichment for Lamin B1 (Fig. 5h-j, Extended Data Fig. 

14m). For example, the Skint gene cluster and the gene desert regions, which are ~6.8 Mb 

apart in Chr4, were enriched with H4K20me3 at the nuclear interior and depleted for Lamin 

B1 in three types of neurons, while the same genomic regions were not marked by 

H4K20me3 and instead showed enrichment with Lamin B1 and localization to the nuclear 

periphery in Bergmann glia (Fig. 5g-k). By contrast, chromosomal loci in Chr11 and Chr19 

showed more interior radial positioning in glial nuclei compared to neurons (Fig. 5g). We 

had observed similar differences between neuron versus glia radial chromosomal positioning 

in the adult mouse cerebral cortex (Takei, Zheng, et al. 2021), where Chr7 and Chr17 are 
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positioned in the nuclear interior in neurons whereas Chr11 and Chr19 are interior in 

astrocytes. Similarly, 60.5% of H4K20me3-associated loci identified in Purkinje cells 

corresponded to radial repositioning loci from the nuclear periphery to interior in forebrain 

neurons, but not in glial cells, during postnatal brain development (Tan et al. 2021; Tan et al. 

2023) (Extended Data Fig. 14n). These results suggest that different brain regions can exhibit 

conserved nuclear organization patterns that are distinct between neurons and glial cells. 

Furthermore, despite the association differences of the identified genomic loci between 

H4K20m3 and Lamin B1 in neurons and glial cells, the majority of genes in those genomic 

loci remain silenced regardless of the cell types (Extended Data Fig. 9j). These results 

suggest that the cell-type specific association changes between those two repressive markers 

could potentially have structural roles of chromatin organization, rather than contributing to 

cell-type specific gene expression changes. We speculate that those genes in different 

repressive subnuclear structures could have differential sensitivities to the disruption of each 

subnuclear structure in specific diseases or aging processes. 

Subnuclear structures underpin the 3D organization of the genome 

Having examined the features of each separate chromatin region, we next investigated the 

spatial relationship of the genome organization with the subnuclear structures in the different 

cell types of the adult mouse cerebellum (Fig. 6, Extended Data Figs. 15, 16). To do so, we 

systematically calculated the average inter-chromosomal distances between pairs of genomic 

loci enriched with subnuclear markers using top 5% genomic loci associated with each 

marker. We observed that, in all cell types, pairs of genomic loci enriched with the same 

specific markers - such as markers for nuclear speckles and pericentromeric heterochromatin 

- show closer average inter-chromosomal distances compared to those with random selection 

(Fig. 6a, c, Extended Data Fig. 15a-c, f), consistent with previous literature (Hewitt et al. 

2008; Clowney et al. 2012; Quinodoz et al. 2018; Quinodoz et al. 2021; Takei, Yun, et al. 

2021; Takei, Zheng, et al. 2021; Arrastia et al. 2021). Lamin B1-enriched loci were an 

exception, showing longer spatial distances between pairs of inter-chromosomal loci relative 

to controls, suggesting a lack of interaction (Fig. 6a, c, Extended Data Fig. 15a, b). At the 
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other end of the spectrum, H3K27me3-enriched loci were on average closer to each other 

than random pairs in MLI1 and Bergmann glia but not in Purkinje cells (Fig. 6c). These 

observations can be explained by the fact that loci localizing to the nuclear periphery, which 

generally encompasses a larger area, are more likely to be distant from each other, than pairs 

of loci in the nuclear interior. Thus, pairs of chromosomes with exterior radial positioning at 

the nuclear periphery tend to be spatially farther away from each other. Consistent with this 

notion, chromatin profiles showed that H3K27me3-enriched loci localized to the interior in 

MLI1 and in Bergmann glia, but appear at the nuclear periphery in Purkinje cells, while 

Lamin B1-enriched loci are at the nuclear periphery in all cell types (Extended Data Fig. 

13f).  

We further examined the relationships between subnuclear structure and 3D genome 

organization using the H4K20me3-enriched loci identified in Purkinje cells (Figs. 5g, 6b, 

Extended Data Figs. 15c, d, 16, Supplementary Movie 1). Consistent with the above model, 

DNA loci enriched with H4K20me3, which are generally located at the nuclear interior in 

neurons such as Purkinje and MLI1, exhibited increased inter-chromosome association (i.e., 

shorter distances) (Fig. 6b, d, Extended Data Fig. 15c, d). In contrast, in Bergmann glia, 

where those H4K20me3 loci are present at the nuclear periphery enriched with Lamin B1 

(Fig. 5j), we observed decreased inter-chromosomal association of the loci (i.e., increased 

distances) (Fig. 6a, Extended Data Fig. 15c). Furthermore, we found long-range intra-

chromosomal associations between the Purkinje H4K20me3-enriched loci (e.g., Chr4 122.0 

and 144.0 Mb) were conserved in all those three cell types but not in mESCs (Fig. 6a, 

Extended Data Fig. 15e). These results suggest that long-range intra-chromosomal 

interactions are promoted by either H4K20me3 (in Purkinje cells and MLI1) or the nuclear 

lamina (in Bergmann glia) in the mouse cerebellum. The recent report similarly identified 

long-range intra-chromosomal interactions in neurons and glial cells from other regions of 

the mouse brain but not in mESCs (Winick-Ng et al. 2021). We observed that many of these 

loci are H4K20me3-associated (e.g., Chr7, Vmn2r, and Mrgpr gene clusters in Fig. 5h) in 

the Purkinje cells, suggesting that those intra-chromosomal interactions could also be 

mediated by distinct subnuclear structures (H4K20me3 or Lamin B1) in a cell-type specific 



 

 

35 
fashion. Finally, we showed that H4K20me3-associated loci spatially cluster in single cells 

(Extended Data Fig. 16). In Purkinje cells and MLI1, 50.7% and 46.7% of clusters 

respectively are formed by inter-chromosomal hubs, including higher-order organization by 

three chromosomes (e.g., Chr4, Chr7, and Chr12), while only 18.0% of clusters show such 

inter-chromosomal organization in Bergmann glia (Extended Data Fig. 16). Thus, there are 

neuron-specific higher-order inter-chromosomal organization around the H4K20me3 in the 

mouse cerebellum. Together, these data support a model in which subnuclear structures help 

to shape the 3D genome organization in the nucleus in a cell-type specific fashion (Fig. 6d). 

2.4 Discussion 

Here we demonstrated how high-resolution seqFISH-based single-cell multi-omics profiling 

can reveal cell-type specific chromatin organization in native tissues and identify specific 

genes associated with each chromatin marker. We showed that our new barcoding strategy 

(two-layer DNA seqFISH+) can effectively cover a large number (>100,000) of genomic 

loci across the genome, larger than what is feasible with existing imaging-based omics 

methods (Shah et al. 2018; Eng et al. 2019; Xia et al. 2019). By combining with sequential 

immunofluorescence and transcriptome measurements, our imaging-based chromatin 

profiling can map spatial proximity of genomic loci to various subnuclear structures and 

chromatin marks using 100-200 kb bin sizes in a cell-type specific fashion. While our 

imaging-based approach does not capture individual molecular binding at cis-regulatory 

elements at <1-5 kb resolution (i.e., enhancer, promoter resolution of individual genes) as 

obtained in sequencing-based single-cell chromatin profiling (Zhu et al. 2021; Bartosovic & 

Castelo-Branco 2022) and imaging-based epigenomic MERFISH for targeted loci(Lu et al. 

2022), our datasets uniquely contain a large number of chromatin marks for each of the DNA 

loci as well as inter-chromosomal interactions and radial positioning of the DNA loci within 

the same nucleus. These datasets with improved genomic coverage and diverse subnuclear 

markers uniquely allow us to perform integrated analysis and discover cell-type specific 

subnuclear organizations, their associated genomic loci, and their impact on 3D genome 

organization and gene regulation. 
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The high-resolution spatial multi-omics data revealed that repressive chromatin regions 

are globally organized in a more cell-type specific fashion compared to active chromatin 

regions in the adult mouse cerebellum, while subtle changes of genomic loci toward active 

subnuclear markers between cell types are tightly linked to cell-type specific gene expression 

programs. Specifically, we systematically show that transcriptionally active genomic loci of 

long genes (>200 kb), including those for neuronal identities such as synaptic processes 

(Koopmans et al. 2019) and those involved in brain disorders such as ASD (King et al. 2013; 

Zhao et al. 2018), tend to localize at the RNAPIISer5-P foci away from nuclear speckles. 

These observations about subnuclear organization at the level of individual long genes 

became possible with improved genomic coverage of two-layer DNA seqFISH+ developed 

in this study and were previously inaccessible with DNA seqFISH+ (Takei, Yun, et al. 2021; 

Takei, Zheng, et al. 2021) or DNA-MERFISH (Su et al. 2020) or in situ genome 

sequencing(Payne et al. 2021) due to their genome-wide coverage (up to ~ 1 Mb). 

The cell-type specific repressive and active subnuclear organizations are correlated with 

variations in the chromosomal structures in different cell types. In particular, we 

demonstrated that H4K20me3-stained territories, localized adjacent to pericentromeric 

heterochromatin (Linhoff et al. 2015), confine genomic loci enriched with a subset of specific 

gene families (e.g., Vmn, Zfp) with a high specificity. Within the adult mouse cerebellum, 

this confinement was seen at the nuclear interior in neuronal cells, but not Bergmann glia. In 

contrast, the same set of loci switched to the nuclear lamina association at the nuclear 

periphery in Bergmann glia cells. Thus, those genomic loci contribute to cell-type specific 

3D genome organization, including radial positioning of chromosomes and inter-

chromosomal interactions. Previously, H4K20me3 had been shown to be involved in 

chromosomal organization of olfactory receptor genes in the olfactory sensory neurons 

(Magklara et al. 2011; Clowney et al. 2012; Armelin-Correa et al. 2014; Monahan et al. 2019; 

Tan et al. 2019). Our results now reveal a broader role for H4K20me3 in organizing the 3D 

genome with a different set of genomic loci (e.g. Vmn, Skint gene clusters), in a cell-type-

dependent manner. The H4K20me3 association in neurons may account for a wide-range of 

3D genome organization, including the neuron-specific radial reorganization of 
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chromosomes during development (Tan et al. 2021; Tan et al. 2023) and long-range intra- 

and inter-chromosomal interactions in the other mouse brain regions (Winick-Ng et al. 2021; 

Tan et al. 2021). The H4K20me3 organization could also be disrupted in neurological and 

neurodegenerative disorders (Baltanás et al. 2011; Linhoff et al. 2015; Chomiak et al. 2022) 

and can be investigated further with the seqFISH-based high-resolution spatial multi-omics 

approach. Lastly, cell-type specific repressive chromatin organization may reflect regulatory 

history of cells and the path used to arrive at specific cell states (Letsou & Cai 2016).   

We note several technical limitations of our spatial multi-omics measurements. First, the 

practical genomic resolution of the imaging-based chromatin profiling analysis, measuring 

spatial proximity of DNA loci and subnuclear markers rather than their molecular 

interactions, is fundamentally limited by the diffraction-limited immunofluorescence images 

(~200–300 nm spatial resolution), which can be further improved by super-resolution 

imaging of individual chromatin marks or protein molecules (Woodworth et al. 2021; 

Pownall et al. 2023). Second, to generate the chromatin profiles systematically across 

different immunofluorescence marks, we linearly normalized fluorescence intensities of each 

marker in each cell and determined whether a given DNA locus is enriched in a high intensity 

region of the immunofluorescence mark. This approach was chosen to be systematic, but can 

result in differences for marks with different dynamic ranges in the nuclei. Third, the two-

layer barcoding scheme under-detects DNA loci near the chromosome block boundaries, 

which leads to block patterns in pairwise spatial distance calculations of DNA loci 

(Supplementary Notes) and potentially limits the ability to detect DNA loci with local DNA 

looping. However, we observed little effects on the cell-type specific chromatin profiles, but 

note that analyses examining how subnuclear markers and 3D chromosome structures co-

vary in single cells could be affected. Lastly, while we did not observe a large-scale distortion 

of the nuclei, the fixation and in situ hybridization steps could perturb the smaller scale 

chromatin structures in single cells. 
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2.6 Main figures 

Fig. 1| Development and validation of single-cell spatial multi-omics technology.  

a, Schematic of spatial multi-omics, imaging mature and nascent transcriptome as well as 

chromosome and subnuclear structures within the same cell. b, Detailed schematic of two-

layer DNA seqFISH+ barcoding strategy. Chromosomes are splitted into 1.5-Mb blocks, in 

which each 25-kb locus is imaged as a diffraction limited spot during the first 60 rounds of 
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imaging with three orthogonal fluorescent channels. Then each 1.5-Mb block is uniquely 

barcoded across 4 rounds with 9-pseudocolors during the subsequent 36 rounds of imaging. 

Finally, by decoding the region and block identities, 100,049 of 25-kb loci can be uniquely 

resolved across 20 chromosomes. One barcoding round was redundant and used for stringent 

barcode decoding. c, Representative visualization of decoded mRNA spots for marker genes 

in single cells for mESCs (top) and NMuMG cells (bottom). d, e, Representative 

visualization of decoded intron or DNA locus spots in single nuclei by intron seqFISH+ (d) 

or two-layer DNA seqFISH+ (e) colored by chromosome identities (Chr1-19, X). Same 

mESCs are shown in c. f, Representative 3D visualization of decoded DNA locus spots in 

the single nucleus of mESCs. The DNA loci are colored by chromosome identities (left) 

similarly to e or chromosome coordinates (right). The selected nucleus is highlighted with a 

yellow box in e. g, Representative immunofluorescence raw images (top) and decoded DNA 

locus spots colored by z-score normalized immunofluorescence intensity of the 

corresponding marker (bottom) in the same nucleus of mESCs in f. h, Total on- and off-

target barcode counts per cell (top). Average counts of individual barcode per cell (bottom). 

n = 100,049 and 31,171 DNA loci for on- and off-target barcodes by two-layer DNA 

seqFISH+. i, Representative A/B compartment eigenvector profiles between Hi-C (Bonev et 

al. 2017; Pascual-Reguant et al. 2018) and two-layer DNA seqFISH+ for mESCs and 

NMuMG cells. j, Representative visualization of Lamin B1 chromatin profiles by pA-

DamID (van Schaik et al. 2022) (top) and two-layer DNA seqFISH+ (middle), and fraction 

of loci within 500 nm from the nuclear periphery (bottom) in mESCs. k, Genome-wide 

comparison of fraction of DNA loci at the nuclear periphery by DNA seqFISH+ and Lamin 

B1 enrichment over control by pA-DamID (van Schaik et al. 2022) with 100 kb binning (n 

= 25,110 loci). Spearman correlation coefficient of 0.91. l, Representative visualization of 

chromatin profiles of nuclear speckle markers by RD-SPRITE (Quinodoz et al. 2021) (top) 

and two-layer DNA seqFISH+ (bottom). The same 100-kb bin peaks detected by both 

methods are highlighted by black arrows and gene names. n = 1,076 cells from two biological 

replicates of mESCs in c-l and n = 384 cells from one biological replicate of NMuMG cells 

in c, i.  
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Fig. 2| Single-cell spatial multi-omics in the adult mouse brain cerebellum.  

a, Spatial distribution of cell type clusters from a single z-section of the adult mouse 

cerebellum. b, Cell type clusters determined by mRNA seqFISH projected onto UMAP-

embedding of mRNA seqFISH (left), intron seqFISH+ (middle), sequential 

immunofluorescence (right). c, Decoded DNA locus spots (top) from a single z-section of 

cells in the black box in a. Zoomed-in 3D views of decoded intron spots (middle left) and 

DNA locus spots (middle right, bottom) in the nucleus from a yellow-boxed Purkinje cell 

(top). The decoded spots are colored by chromosome identities (top, middle) or 

chromosome coordinates (bottom). d, Immunofluorescence raw images (left) and DNA 

spots colored by z-score normalized immunofluorescence intensity (right) in the nucleus 

from a cell highlighted in c. e, Genomic features and representative imaging-based 
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chromatin profiling in Purkinje cells in chromosome 15. f, Representative raw 

immunofluorescence images from a single z-section for each cell type (top). Illustration 

showing cell-type specific organization of repressive markers (bottom). The intense 

H3K27me3 cluster visible in Bergmann glia, representing the inactive X chromosome 

territory (Linhoff et al. 2015), is not depicted. g, Degree of similarity of chromatin profiles 

between pairs of cell types (left) and corresponding examples (right). n = 12,562 loci. 200 

kb binning was used for the visualization and analysis (e, g). n = 4,015 cells from two 

biological replicates of the adult mouse cerebellum in a-g. 
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Fig. 3| Distinct active chromatin markers organize transcriptionally-active genomic 

loci.  

a, Representative classification of three types of active domains (nuclear speckle, 

RNAPIISer5-P broad and sharp) in Purkinje cells and Bergmann glia along with the 

chromatin profiling of SF3A66 (nuclear speckle marker) and RNAPIISer5-P. b, 

Visualization of genomic loci colored by the ensemble-average active domain classification 

in a (left) and corresponding raw immunofluorescence image (right) from a single z-section 

for each cell type. c, Comparison of genomic features across different active domains in 

each cell type. n = 1,405, 4,102, 679, 4,892 loci (Purkinje) and 3,161, 3,115, 411, 4,080 

loci (Bergmann) from left to right category. d, Comparison of differential association of 

genomic loci with SF3A66 and RNAPIISer5-P between pairs of cell types. e, Comparison 
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of differential mRNA expression between pairs of cell types at differentially associated 

loci for either PolII (RNAPIISer5-P) or Speckle (SF3A66) in each cell type, colored in d. n 

= 110, 55, 121, 94 loci (top) and 134, 94, 109, 67 loci (bottom) from left to right category. 

In box plots, the center lines for the median, boxes for the interquartile range, whiskers for 

values within 1.5 times the interquartile range, and points for outliers (c, e). f, 

Representative genomic regions with long genes (>200 kb) (top), corresponding mRNA 

expression(Kozareva et al. 2021) (middle), and RNAPIISer5-P chromatin profiles (bottom) 

in each cell type. g, Heatmaps for RNAPIISer5-P chromatin profiles (left), nascent RNA 

expression (middle), and mRNA expression (Kozareva et al. 2021) (right) for highly 

correlated long genes (n = 132 genes, Methods). h, Similarity of RNAPIISer5-P peaks with 

other markers on the long genes in g in each cell type. i, Representative single cell 

visualization of long gene loci with cell-type specific gene expression (Dpp10 in Purkinje 

cells and Adgrl3 in MLI1), relative to nuclear speckles (SF3A66) and RNAPIISer5-P with 

a maximum z-projection of two z-sections. Scale bars, 500 nm. j, Illustration showing 

nuclear speckle and RNAPIISer5-P subnuclear markers associated with distinct genomic 

loci in a cell-type specific fashion. 200 kb binning (n = 12,562 loci in total) was used for 

the analysis and visualization (a, c-h). n = 2,336, 128, 263, 88, and 518 cells for Granule, 

Purkinje, MLI1, MLI2+PLI, and Bergmann glia cells from two biological replicates of the 

adult mouse cerebellum in a-i.  
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Fig. 4| Cell-type specific organization of H3K27me3-associated chromatin regions. 

a, Comparison of genomic features between loci that were differentially associated with 

H3K27me3 in two cell types. n = 600, 260 loci for Purkinje cells (PC) and MLI1. p values 

by two-sided Wilcoxon’s signed rank-sum test. The center lines for the median, boxes for 

the interquartile range, whiskers for values within 1.5 times the interquartile range, and 

points for outliers. b, Comparison of Lamin B1 and H3K27me3 chromatin profiles in each 

cell type. r represents a Pearson correlation coefficient. c, H3K27me3 profiles across cell 

types, highlighted with Hox cluster. Identified Purkinje-specific long gene loci associated 

with H3K27me3 are shown as blue dots (b) and binary heatmap (c). d, Representative 

single cell visualization of genomic loci highlighted (b, c), relative to H3K27me3. Scale 

bars, 500 nm. e, Illustration showing H3K27me3 subnuclear foci associated with common 

and Purkinje-specific genomic loci at the nuclear interior or periphery. 200 kb binning (n = 

12,562 loci in total) was used for the analysis and visualization (a-c). n = 128, 263, 88, and 

518 cells for Purkinje, MLI1, MLI2+PLI, and Bergmann glia cells from two biological 

replicates of the adult mouse cerebellum in a-d.  
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Fig. 5| The H4K20me3-marked territories confine specific genomic loci in neurons.  

a, DNA FISH (MajSat) and sequential immunofluorescence images for markers enriched 

near pericentromeric repressive heterochromatin in Purkinje cells. b, H4K20me3 

enrichment across chromosomes in Purkinje cells. c, Barplots comparing the locus 

characteristics such as mCH desert (Lister et al. 2013) and SSDRs(Lilue et al. 2018; Lilue 

et al. 2019) between MajSat- and H4K20me3-enriched loci in Purkinje cells. d, Ensemble-

averaged and single allele chromatin profiles sorted by H4K20me3 enrichment from 

bottom to top in Purkinje cells. e, Visualization of H4K20me3-enriched Vmn and Olfr gene 

family loci with H4K20me3 staining. f, Illustration showing the differences of subnuclear 

localization between Vmn (magenta) and Olfr (cyan) gene family loci. g, Comparison of 

other genomic features (top) along with radial positioning of chromosomal loci from 

nuclear interior to exterior across cell types (bottom). h, H4K20me3 and Lamin B1 

chromatin profiles at the H4K20me3-enriched regions, highlighted by triangles (g). i, 

https://paperpile.com/c/Ouoe5f/LAxaD
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Visualization of H4K20me3 enriched loci in Chr4 and Chr7 (g) overlaid on the 

H4K20me3 immunofluorescence image in Purkinje and Bergmann cells. j, Transition of 

H4K20me3-enriched loci from Purkinje cells to MLI1 or Bergmann glia. n = 252 loci. k, 

Illustration showing the localization switching of genomic loci between neurons and 

Bergmann glia. 200 kb binning (n = 12,562 loci in total) was used for the analysis and 

visualization. n = 128, 263, 88, and 518 cells for Purkinje, MLI1, MLI2+PLI, and 

Bergmann glia cells from two biological replicates of the adult mouse cerebellum in a-e, g-

j. 
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Fig. 6| Cell-type specific subnuclear structures and 3D genome organization.  

a, Ensemble-averaged spatial distances between pairs of genomic loci along with 

chromatin profiling with 1.5 Mb bins from each cell type. Locations of pairs of 

H4K20me3-associated loci in Purkinje cells in Fig. 5c are highlighted as black circles. b, 

Representative 3D images of the nucleus with H4K20me3 staining and chromosomal loci 

in each cell type. The H4K20me3-associated loci in Purkinje cells identified in Fig. 5c are 

highlighted as colored spots. c, Cumulative distribution of inter-chromosomal distances 

between pairs of loci with top 5% association to a given marker compared to random pairs 

of loci (n = 1,000 trials). 1.5 Mb binning (n = 1,678 loci in total), grouped by the 

chromosome paint block barcodes, was used. d, Illustration showing the differences of cell-

type specific intra- and inter-chromosomal spatial arrangements around H4K20me3-

enriched subnuclear territories in neurons or at the nuclear periphery in Bergmann glia. n = 

128, 263, and 518 cells for Purkinje, MLI1, and Bergmann glia cells from two biological 

replicates of the adult mouse cerebellum in a-c. 
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2.7 Extended data figures 

 

Extended Data Fig. 1| Detailed schematic of single-cell spatial multi-omics.  
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a, Flow chart of the sample preparation and imaging in single-cell spatial multi-omics. b, 

Schematic of mRNA seqFISH+ with 4 barcoding rounds with 16-pseudocolors including 

one round of error correction using one fluorescent channel (640 nm). This coding scheme 

can resolve up to 4,096 barcodes, while a subset of 1,194 barcodes were used to resolve 

mRNA species in cell culture experiments. c, Schematic of intron seqFISH+ with 5 

barcoding rounds with 12-pseudocolors including one round of error correction using one 

fluorescent channel (561 nm). This coding scheme can resolve up to 20,736 barcodes, while 

a subset of 17,856 barcodes were used to resolve intronic RNA species in cell culture and 

tissue experiments. d, Schematic of non-barcoded mRNA seqFISH using one fluorescent 

channel (488 nm in cell culture experiments; 640 nm in tissue experiments). Unlike the 

exponential barcoding scheme in b and c whose coding capacity increases exponentially to 

the number of barcoding rounds, the number of RNA species that can be distinguished 

increases linearly to the number of hybridization rounds. e, Schematic of sequential 

immunofluorescence using two fluorescent channels (640 nm and 561 nm) in cell culture 

and tissue experiments. Similar to d, the number of antibody species that can be multiplexed 

scales linearly to the number of hybridization rounds. f, Implementation of DNA seqFISH+ 

(left), by leveraging the combinations of region barcoding (top) and chromosome block 

barcoding (bottom). To implement this, each primary probe (left, middle) contained three 

identical 15-nt readout binding sites (black) for one of the 60 regions in hybridizations 1-60 

as well as three 15-nt readout binding sites (red) for three out of four chromosome paint 

barcoding rounds (hybridizations 61-96) in each fluorescent channel. Representative images 

for the nucleus from mESCs across 96 rounds of serial hybridization and imaging of two-

layer DNA seqFISH+ (right) for region barcoding (top) and chromosome block barcoding 

(bottom). A fiducial marker targeting a locally repetitive 3632454L22Rik locus by a single 

DNA FISH probe (Takei, Yun, et al. 2021) appears in all rounds of imaging. Background 

subtracted images used for an analysis (Methods) are shown from a single z-section for visual 

clarity.  
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Extended Data Fig. 2| Validation of mRNA and intron seqFISH+ in cell culture 
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experiments.  

a, Spearman correlation between average mRNA counts by mRNA seqFISH+ (left) or non-

barcoded sequential mRNA FISH (right) and bulk RNA-seq in mESCs(Antebi et al. 2017) 

(top) and NMuMG cells(Pascual-Reguant et al. 2018) (bottom). By comparing the slope 

values for mRNA seqFISH+ and sequential mRNA FISH relative to bulk RNA-seq in each 

cell line, we estimated the detection efficiency of mRNA seqFISH+ as 78.9% and 43.0% in 

mESCs and NMuMG cells, respectively. b, Pearson correlation of average mRNA counts 

profiled by mRNA seqFISH+ (orange) and non-barcoded mRNA seqFISH (purple) between 

two biological replicates from mESCs. n = 1,194 and 53 genes for mRNA seqFISH+ and 

non-barcoded mRNA seqFISH profiling, respectively, in a, b. c, Visual representation of on- 

and off-target barcode counts and filtered barcodes by comparing mRNA seqFISH+ results 

from mESCs between seeds 3 and 4 decoding stringency (Methods). Those filtered barcodes 

(n = 150 barcodes, including both on- and off-target barcodes) were excluded from the 

downstream analysis. d, Total on- and off-target barcodes detected per cell by mRNA 

seqFISH+ in mouse ES cells (top) and NMuMG cells (bottom). e, Average counts per each 

on- and off-target barcode per cell by mRNA seqFISH+ in mESCs (top) and NMuMG cells 

(bottom). n = 1,163, 2,783, and 150 for on-target, off-target, and filtered barcodes, 

respectively in c-e. f, Representative visualization of homologous chromosomes 

(chromosome 4) by DNA seqFISH+ and transcription active sites by intron seqFISH+ near 

chromosome territories in the nucleus of mESCs. Intron spots detected within 500 nm from 

chromosome territories of their own chromosome captured by DNA seqFISH+ were 

considered to be transcription active sites, and other spots were filtered out from the 

downstream analysis. g, Pearson correlation between average intron counts per cell 

computed from all intron spots and transcription active sites defined by the criteria in f. h, 

Spearman correlation between scaled intron counts at transcription active sites by intron 

seqFISH+ and bulk GRO-seq (Jonkers et al. 2014), measuring the amount of 

transcriptionally active RNA polymerase II (RNAPII), in mESCs. i, Pearson correlation of 

average intron counts at the transcription active sites by intron seqFISH+ and non-barcoded 

intron seqFISH for n = 33 genes (Shah et al. 2018) in mESCs. The slope of 0.291 indicates 

a relative detection efficiency of 29.1%. j, Pearson correlation of average barcode counts at 

https://paperpile.com/c/Ouoe5f/xU5ng
https://paperpile.com/c/Ouoe5f/zWHwv
https://paperpile.com/c/Ouoe5f/QaGqq
https://paperpile.com/c/Ouoe5f/5DUDF


 

 

66 
transcription active sites per cell by intron seqFISH+ between two biological replicates 

from mouse ES cells. n = 17,856 genes for intron seqFISH+ in g, h, j. k, Total barcode counts 

at transcription active sites per cell by intron seqFISH+ in mESCs (top) and NMuMG cells 

(bottom). l, Average counts at transcription active sites per each on- and off-target barcode 

per cell by intron seqFISH+ in mESCs (top) and NMuMG cells (bottom). n = 17,856 and 

2,880 for on- and off-target barcodes, respectively in k and l. m, Heatmap of gene expression 

profiles across single cells for top differentially expressed genes between mESCs and 

NMuMG cells by intron seqFISH+ (n = 10 genes for each cell line). n, The GO terms (top 

five plus manually selected three) identified from intron seqFISH+ profiles between mESCs 

and NMuMG cells represent their corresponding cell type identities. Three genes from each 

term were randomly selected for a display. o, Violin plot overlaid with reaction norm plot 

showing the paired distribution of nuclear heights of mESCs in live (left) and fixed cells after 

a mock seqFISH protocol (right). P value by a two-sided paired t-test. p, Violin plot showing 

the distribution of differences of nuclear heights between live cells and after a mock 

seqFISH+ protocol. Horizontal lines represent the height differences of individual nuclei. q, 

Side views of a representative nuclear height from live cells (top) and fixed cells after a mock 

seqFISH+ protocol (bottom). Horizontal red lines mark the determined top and bottom of the 

cells. While live, the nucleus was imaged using a nuclear pore (Nup37) GFP transgene. After 

the mock protocol, the nucleus was imaged using Lamin B1 immunofluorescence. We note 

that subnuclear staining enrichment patterns may differ between nuclear pore and Lamin B1 

targets. r, Each row shows overlays of z-slices and coordinates of fit point spread functions 

(rounded to the nearest z-slice) for the range of z-slices 2 below to 2 above a boundary of the 

cell illustrated in r. n = 1,076 cells from two biological replicates of mESCs and n = 384 

cells from one biological replicate of NMuMG cells in a-p. n = 43 cells from two biological 

replicates of Nup37-GFP mESCs for live cell experiments in o-r.  
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Extended Data Fig. 3| Validation of DNA seqFISH+ in cell culture experiments.  
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a, Quantification of the median fiducial marker localization relative to the reference image 

across 96 rounds of two-layer DNA seqFISH+ imaging together with additional rounds of 

RNA seqFISH+ and sequential immunofluorescence imaging in mESCs, representing a high 

image alignment accuracy with a median error of 47.3 nm in 3D across imaging rounds. 

Shaded areas represent the interquartile range. n = 1,332-2,402 matched fiducial markers in 

each hybridization round from three fluorescent channels. On average, 54.4 ± 18.2% (median 

± s.d.) of fiducial markers detected in the reference image were used for the alignment, which 

corresponds to 0.66 ± 0.20 DNA spots per cell. b, The distribution of fiducial marker 

localization error in xy or z or xyz directions from 96 rounds of two-layer DNA seqFISH+ 

imaging in mESCs. The localization errors were calculated as translations of matched 

fiducial marker spots at given dimensions. c, Quantification of the median reference fiducial 

marker localization between pairs of fluorescence channels after the chromatic shift 

correction in 3D, suggesting a minimum chromatic effects across fluorescent channels after 

the correction. n = 2,301 matched spots in mESCs. d, Total on- and off-target barcodes 

detected per cell by two-layer DNA seqFISH+ in NMuMG cells (left). Average counts per 

each on- and off-target barcode per cell by two-layer DNA seqFISH+ in NMuMG cells 

(right). n = 100,049 and 31,171 for on- and off-target barcodes, respectively. e, The 

distribution of mean on-target barcode counts per cell grouped by chromosome identities by 

two-layer DNA seqFISH+ in mESCs (top) and NMuMG cells (bottom). The differences in 

detection efficiency between autosomal and X chromosomal loci reflect the identities of male 

mESCs and female NMuMG cells. We note chromosome 19 in NMuMG cells could be 

trisomy because of the 43.0% greater average barcode counts per cell than those in the other 

chromosomes. n = 100,049 loci in total. f, Heatmap comparing average spatial distances of 

pairs of loci between two-layer DNA seqFISH+ (upper right) and previous DNA seqFISH+ 

(Takei, Yun, et al. 2021) (lower left) at the DNA seqFISH+ 1-Mb resolution loci in Chr4 in 

mESCs. n = 149 loci. g, Pearson correlation of mean spatial distances of pairs of intra-

chromosomal loci between two-layer DNA seqFISH+ and previous DNA seqFISH+ (Takei, 

Yun, et al. 2021) at the DNA seqFISH+ 1-Mb resolution 25-kb loci across the genome in 

mESCs. h, Pearson correlation of mean spatial distances of pairs of intra-chromosomal loci 

between two biological replicates of two-layer DNA seqFISH+ using the same loci in g in 
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mESCs. n = 159,397 pairs that were detected in both measurements in g, h. i, 

Representative visualization of eigenvectors between Hi-C (Bonev et al. 2017; Pascual-

Reguant et al. 2018) (top) and two-layer DNA seqFISH+ (bottom) for mESCs and NMuMG 

cells, confirming the highly concordant compartment organization between the 

measurements. j, Spearman correlation of eigenvectors between Hi-C and DNA seqFISH+ 

across the mouse genome for mESCs (top) and NMuMG cells (bottom). n = 23,547, 23,582 

loci that were commonly profiled between the measurements for mESCs and NMuMG cells. 

k, Comparison of changes of eigenvectors between mESCs and NMuMG cells computed by 

DNA seqFISH+ (x-axis) and Hi-C(Bonev et al. 2017; Pascual-Reguant et al. 2018) datasets 

(y-axis), representing concordant biological changes between the measurements. The A/B 

compartment scores from the principal eigenvector for both DNA seqFISH+ and Hi-C 

datasets were percentile normalized for comparison. The boxed regions with dashed lines 

represent genomic loci with more than 20% changes between cell lines with indicated 

numbers of loci. r represents Pearson correlation coefficient. 100 kb binning was used in i-

k. l, Heatmap comparing median spatial distances of pairs of loci between two-layer DNA 

seqFISH+ (upper right) and previous DNA seqFISH+ (Takei, Yun, et al. 2021) (lower left) 

at the previously profiled 25-kb resolution loci in Chr3 and Chr14 in mESCs. n = 60 loci for 

each chromosome. Fluorescent channels used for two-layer DNA seqFISH+ loci are shown 

(top). We note that visible block patterns between loci in different fluorescent channels are 

likely due to the under-detection of DNA loci near the boundary of chromosome blocks 

introduced by the two-layer barcode scheme (see Supplementary Notes for details). m, 

Pearson correlation of median spatial distances of pairs of intra-chromosomal loci between 

two-layer DNA seqFISH+ and previous DNA seqFISH+ (Takei, Yun, et al. 2021) at 

previously profiled 25-kb resolution loci at the selected regions in Chr1-19, X in mESCs. n, 

Pearson correlation of median spatial distances of pairs of intra-chromosomal loci between 

two biological replicates of two-layer DNA seqFISH+ using the same 25-kb loci in l in 

mESCs. n = 35,400 pairs that were commonly profiled between the measurements in m, n. 

o, Representative Hi-C (Bonev et al. 2017; Pascual-Reguant et al. 2018) map (top) and 

median spatial distance map between pairs of intra-chromosomal loci by the two-layer DNA 

seqFISH+ in mESCs (bottom). The left and bottom lines with cyan and red colors mark 
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chromosomal block boundaries used for the two-layer DNA seqFISH+ barcoding. p, 

Average detection efficiency of 25-kb genomic loci with locus identities from 1-60 within 

1.5-Mb blocks (n = 1,678) used in the two-layer DNA seqFISH+ barcoding. q, Illustration 

showing the decrease of fluorescence intensity of a chromosomal block paint. DNA spots 

located at the periphery of the paint block are preferentially dropped during the two-layer 

DNA seqFISH+ decoding. r, Illustration of the under-detection simulation on 60 genomic 

loci. The 60 continuous 25-kb genomic loci are splitted into the first and second 30-loci 

blocks, and identified genomic loci furthest from block centroid are dropped in simulated 

under-detection. s, Total counts of detected 25-kb genomic loci with identities from region 

ID 1-60 across 20 chromosomal regions before and after the under-detection in DNA 

seqFISH+ data (Takei, Yun, et al. 2021). The cyan and red bars mark simulated block 

boundaries. t, Representative median spatial distance maps between pairs of intra-

chromosomal loci before and after the under-detection in DNA seqFISH+ data (Takei, Yun, 

et al. 2021). The cyan and red bars above the distance matrices mark simulated block 

boundaries. See Supplementary Notes for additional visualization and detailed explanation. 

n = 1,076 cells from two biological replicates of mESCs, n = 384 cells from one biological 

replicate of NMuMG cells in this study, and n = 446 cells from two biological replicates of 

mESCs by previous DNA seqFISH+ (Takei, Yun, et al. 2021) in b-t.  
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Extended Data Fig. 4| Validation of imaging-based chromatin profiling in cell culture 

experiments.  
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a, b, Representative images by sequential immunofluorescence (n = 65 markers) in a and 

DNA FISH of repetitive elements (n = 6 markers) in b in mESCs. c, Pearson correlation of 

imaging-based chromatin profiling for each marker (n = 69 markers in a, b, except E-

Cadherin and HA-tag that do not stain nucleus) across the genome between two biological 

replicates in mESCs (left), showing H3K9me2 as an outlier, and corresponding density plot 

for individual loci (n = 100,049 loci) for H3K9ac as an example (right). d, Pearson 

correlation of imaging-based chromatin profiling for each marker (n = 13 markers) between 

two-layer DNA seqFISH+ and previous DNA seqFISH+ (Takei, Yun, et al. 2021) at the 

DNA seqFISH+ 1-Mb resolution 25-kb loci across the genome in mESCs (left), 

corresponding density plot for individual loci (n = 2,460 loci) for H3K9ac (middle), and 

corresponding chromatin profiles for H3K9ac as an example (right). The exact genomic loci 

targeted by 1-Mb resolution DNA seqFISH+ are shown by red dots (top right). e, Heat map 

showing the enrichment of subnuclear markers in pericentromeric heterochromatin 

(H3K9me3, MajSat), the nucleolus (Fibrillarin, ITS1_RNA), and nuclear speckles (SF3A66, 

Malat1_RNA) in mESCs computed by the imaging-based chromatin profiling. The strong 

nucleolar enrichments were observed in chromosomes 12, 16, 18, and 19, consistent with the 

previous report in mESCs derived from the 129/Ola mouse strain (Takei, Yun, et al. 2021). 

f, Quantification of an overlap of top 5% genomic loci associated with each marker between 

pairs of markers in mESCs. We note that genomic loci associated with nuclear speckles or 

nucleolus markers show high overlap scores (87.4%, 83.0% respectively) before and after 

DNA seqFISH+ procedure as represented by Malat1_RNA (imaged before DNA seqFISH+) 

and SF3A66 (imaged after DNA seqFISH+) as well as ITS1_RNA (imaged before DNA 

seqFISH+) and Fibrillarin (imaged after DNA seqFISH+) comparison, indicating a high 

degree of preservation of subnuclear structures in our protocol. g, Representative raw images 

of pericentromeric heterochromatin markers (H3K9me3, MajSat) and their colocalization 

patterns in mESCs. h, Spearman correlation of imaging-based chromatin profiling and 

sequencing-based chromatin profiling (pA-DamID for Lamin B1(van Schaik et al. 2022), 

CUT&Tag for other markers (Yang et al. 2022)) across the genome in mESCs. We note that 

imaging-based chromatin profiling measures spatial proximity between DNA loci and 

subnuclear structures, while sequencing-based profiling captures molecular interactions 
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between genomic DNA and antibodies of interest. i, Pearson correlation of imaging-based 

chromatin profiling and published RD-SPRITE datasets (Quinodoz et al. 2021) across the 

genome in mESCs, representing a similar enrichment around the subnuclear structures. RD-

SPRITE characterized the frequency of interactions between each RNA marker and genomic 

regions. j, The enrichment of MajSat and H3K9me3 in mESCs along the chromosomal 

coordinates. Each chromosome was percentile normalized along the x-axis, similarly to the 

previous analysis (Quinodoz et al. 2021). While H3K9me3 by CUT&RUN did not show 

enrichment based on the chromosomal coordinates, MajSat by RD-SPIRTE as well as 

MajSat and H3K9me3 by DNA seqFISH+ showed overall enrichment based on the 

chromosomal coordinates. This is because the pericentromeric MajSat DNA repeats are 

located at the beginning of each mouse chromosome and RD-SPRITE and DNA seqFISH+ 

can capture distance-based decay. The H3K9me3 chromatin profiles by DNA seqFISH+ 

capture similar features due to the pericentromeric enrichment of H3K9me3, which spatially 

overlaps with MajSat as shown in a, b, g. On the other hand, CUT&RUN, which can capture 

local molecular interactions between H3K9me3 and DNA loci, does not capture the 

H3K9me3 enrichment in pericentromeric heterochromatin as such enrichment is outside the 

interaction range of the method. These fundamental differences of the methods could lead to 

the lack of strong correlation of H3K9me3 by CUT&RUN and DNA seqFISH+ in h. For the 

comparison with orthogonal sequencing-based datasets, imaging-based chromatin profiles 

with the fraction of loci calculation were used in h-j. k, Comparison of changes of chromatin 

profiles between mESCs and NMuMG cells computed by DNA seqFISH+ (x-axis) and 

sequencing-based datasets (CUT&Tag or CUT&RUN generated in this study or published 

pA-DamID (van Schaik et al. 2022)) (y-axis), representing a degree of similarity of 

biological changes between the measurements. The boxed regions with dashed lines 

represent genomic loci with more than 20% changes between cell lines with indicated 

numbers of loci. r represents Pearson correlation coefficient. 100 kb binning was used in e, 

f, h-k. n = 1,076 cells from two biological replicates of mESCs and n = 384 cells from one 

biological replicate of NMuMG cells. 
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Extended Data Fig. 5| Additional validation of imaging-based chromatin profiling at 
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the nuclear lamina in cell culture experiments.  

a, Representative chromatin profiles for Lamin B1 and at the nuclear periphery along with 

lamina-associated domains (LADs). The LADs in mESCs were obtained from published 

DamID datasets(Peric-Hupkes et al. 2010) or DNA seqFISH+ using Lamin B1 

immunofluorescence or physical distance from nuclear periphery (see Methods). The Lamin 

B1 profiles in mESCs were obtained from the published pA-DamID datasets (van Schaik et 

al. 2022) while those in NMuMG cells were generated by CUT&RUN (Skene & Henikoff 

2017; Skene et al. 2018) in this study by using optimized protocol for nuclear lamina 

(Ahanger et al. 2021) in differentiated cells. Representative cell-line specific peaks are 

highlighted by orange dashed boxes. b, Spearman correlation matrix of DNA seqFISH+ 

(either fraction of loci or z-score calculations) and pA-DamID (van Schaik et al. 2022) 

chromatin profiles for nuclear lamina associations in mESCs, using 100 kb bins across the 

genome. c, Genome-wide comparison of fraction of loci within 500 nm from the nuclear 

periphery or with Lamin B1 association with 100 kb binning by DNA seqFISH+. Lamin B1 

enriched DNA loci are physically closer to the nuclear periphery as expected. Spearman 

correlation coefficient of 0.95. d, Genome-wide comparison of fraction of loci within 500 

nm from the nuclear periphery or average spatial distance from the nuclear periphery with 

100 kb binning by DNA seqFISH+ (left). Spearman correlation coefficient of 0.95. The 

distribution of the average spatial distance from the nuclear periphery (right) for a subset of 

DNA loci with less than 2% of each locus within 500 nm of the nuclear periphery (n = 3,485 

loci), heighted as a black box (left). The average spatial distance from the nuclear periphery 

can resolve the radial organization of DNA loci in the nucleus for the loci with low interaction 

with the nuclear periphery. e, The Spearman correlation of the fraction of loci within 500 nm 

from the nuclear periphery in mESCs with smoothed pA-DamID data (van Schaik et al. 

2022) (window size 2-48) was calculated for each chromosome, together with the change 

point in the correlation curve. Black dashed line represents the average change point of the 

curve from all chromosomes. 25 kb bins were used. f, Representative visualization of Lamin 

B1 chromatin profiles by pA-DamID(van Schaik et al. 2022) (top) and two-layer DNA 

seqFISH+ (middle), and fraction of loci within 500 nm from the nuclear periphery (bottom). 

The baselines of DNA seqFISH+ profiles were normalized by the expected fraction of LADs 
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by pA-DamID (log2 enrichment > 0) in each chromosome in mESCs for visual clarity. 

Genomic regions in the cyan boxes (left panels) are further shown with LAD called from the 

nuclear periphery distance data by DNA seqFISH+ (right panels). g, The scatter plots 

represent the Spearman correlation between DNA seqFISH+ and pA-DamID (van Schaik et 

al. 2022) datasets in chromosome 2 displayed in a. h, The scatter plots represent the 

Spearman correlation between DNA seqFISH+ and pA-DamID (van Schaik et al. 2022) or 

CUT&RUN datasets across the genome. Some of the outlier loci that were outside the display 

range in y-axis are not displayed for visual clarity. The genomic loci were colored by 

chromosomal coordinates, representing enrichment differences between methods based on 

the chromosomal coordinates in g, h. i, Comparison of Lamin B1 enrichment among loci 

with different categories as constitutive lamina- associated domains (cLADs), facultative 

LADs (fLADs), and constitutive inter-LADs (ciLADs) (Peric-Hupkes et al. 2010; Meuleman 

et al. 2013) Similarly to g, h, we found Lamin B1 enrichment differences between DNA 

seqFISH+ and DamID based on the chromosomal coordinates. We also confirmed the higher 

Lamin B1 enrichments at LADs (cLADs and fLADs) than those at ciLADs in each group. j, 

Genome-wide comparison of LADs calling in mESCs between published DamID (Peric-

Hupkes et al. 2010) and DNA seqFISH+. LADs by DNA seqFISH+ were orthogonally 

computed by using the fraction of loci data of either Lamin B1 (left) or physical distance 

from the nuclear periphery (right), both of which yielded a similar degree of overlap with 

LADs identified by DamID. k, The size distribution of LADs called from the nuclear 

periphery distance data by DNA seqFISH+. l, The fraction of loci within 500 nm from the 

nuclear periphery (top) and average distance from the nuclear periphery (bottom) across 

different LAD sizes captured by DamID (Peric-Hupkes et al. 2010) in mESCs. Smaller 

LADs are less likely to be near the nuclear lamina and are more often positioned toward the 

nuclear interior. In box plots, the center lines for the median, boxes for the interquartile range, 

whiskers for values within 1.5 times the interquartile range, and points for outliers in i and l. 

m, Additional example of Lamin B1 profiles by pA-DamID (van Schaik et al. 2022) or by 

two-layer DNA seqFISH+ (middle, fraction of loci; bottom, z-score). The fraction of loci 

processing of DNA seqFISH+ data (middle) showed improved similarity with pA-DamID 

profiles compared to the z-score processing (bottom). The entire chromosome 8 is shown in 
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f. The display ranges in y-axis are optimized for the smaller LADs for visual clarity. We 

note that median Lamin B1 z-score profiles or average spatial distance profiles from the 

nuclear periphery capture information even when the DNA loci are far from the nuclear 

periphery. In contrast, the fraction of loci data as well as DamID and pA-DamID assays 

capture information only when the loci are in contact with or in close proximity to the nuclear 

periphery or Lamin B1. These distinct types of information in the chromatin profiles can lead 

to apparent differences in the chromatin profiles, especially at the small-scale LADs and 

iLADs. 100 kb binning was used in a-d, f-m. n = 1,076 cells from two biological replicates 

of mESCs and n = 384 cells from one biological replicate of NMuMG cells.  
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Extended Data Fig. 6| Additional validation of imaging-based chromatin profiling at 

nuclear speckles and the nucleolus in cell culture experiments.  

a, Pearson correlation matrix of SF3A66 DNA seqFISH+ (either fraction of loci or z-score 

calculations) and Rn7sk RD-SPRITE (Quinodoz et al. 2021)chromatin profiles for nuclear 

speckle associations in mESCs, using 100 kb bins across the genome. b, Pearson correlation 
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plots of pairs of speckle association profiles in a. c, Representative chromatin profiles for 

nuclear speckles by Rn7sk RD-SPRITE (Quinodoz et al. 2021) (top) and SF3A66 DNA 

seqFISH+ (fraction of loci, middle; z-score, bottom) in mESCs. Genomic regions within the 

cyan boxes (left panels) are further zoomed-in, with the same 100-kb bin peaks detected by 

both methods highlighted by black arrows (right panels). d, Additional chromatin profiles 

for nuclear speckles by RD-SPRITE (Quinodoz et al. 2021) (either Malat1 or Rn7sk RNA) 

and SF3A66 DNA seqFISH+ (either fraction of loci or z-score) in mESCs, overlaid with 

detected confident peaks (orange dots). The genomic region within the black box (left) is 

further zoomed-in, with the same 100-kb bin peaks detected by both methods highlighted by 

black arrows (right). The same genomic region is shown in Fig. 1l. e, The comparison of 

genomic distance from each detected peak in one profile to the closest peak in the RD-

SPRITE Rn7sk profile to evaluate the similarity of peak location between the imaging-based 

and sequencing-based profiles. The peak similarity within RD-SPRITE data was calculated 

using Rn7sk and Malat1 profiles as a positive control. The randomized peak locations in both 

fraction or median imaging-based chromatin profiles were used as negative controls. f, 

Pearson correlation matrix of Fibrillarin DNA seqFISH+ (either fraction of loci or z-score 

calculations) with ITS1 RD-SPRITE (Quinodoz et al. 2021) and NAD-seq (Bizhanova et al. 

2020) chromatin profiles for nucleolar associations in mESCs, using 100 kb bins across the 

genome. g, Representative chromatin profiles for the nucleolus by NAD-seq (Bizhanova et 

al. 2020) and ITS1 RD-SPRITE (Quinodoz et al. 2021) and Fibrillarin DNA seqFISH+ 

(fraction of loci or z-score) in chromosomes without or with rDNA in mESCs. h, Pearson 

correlation plots of nucleolar association profiles by DNA seqFISH+ (fraction of loci, left 

panels; z-score, right panels) and NAD-seq(Bizhanova et al. 2020) for chromosomes in g. 

We found that the basal values varied between the fraction of loci and z-score DNA 

seqFISH+ profiling as represented by the elevated differences in correlation with NAD-seq 

in non-rDNA containing chromosomes (e.g. chromosome 2). This may reflect the fact that 

fraction of loci calculation more effectively captures the associations with high Fibrillarin-

stained regions (nucleolus), while the median z-score can include the local enrichment of the 

staining, such as open chromatin region staining, at the background level. Nonetheless, both 

DNA seqFISH+ profiles (fraction of loci and z-score) showed consistency in top enriched 
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loci (Jaccard score of 0.66 for the top 2.5% of enriched loci) and Pearson correlation 

coefficient of 0.62 across the genome in f, i. i, Pearson correlation plots of pairs of nucleolar 

association profiles by DNA seqFISH+ (either fraction of loci or z-score), ITS1 RD-SPRITE 

(Quinodoz et al. 2021)NAD-seq(Bizhanova et al. 2020) in f (Bizhanova et al. 2020) 100 kb 

binning was used in a-i. n = 1,076 cells for two-layer DNA seqFISH+ from two biological 

replicates of mESCs. 
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Extended Data Fig. 7| Additional validation of imaging-based chromatin profiling with 

additional markers in cell culture experiments.  

a, The Spearman correlation between the fraction of loci for RNAPIISer5-P, H3K4me3, and 

H3K27me3 in mESCs and their corresponding smoothed CUT&Tag enrichment scores 

(window size 2-48) for each chromosome. The average change points from all chromosomes 

in the correlation curves were also identified and visualized as black dashed lines. b-d, 

Spearman correlation matrix of DNA seqFISH+ (either fraction of loci or z-score 

calculations) and CUT&Tag chromatin profiles for RNAPIISer5-P in b, H3K4me3 in c, and 

H3K27me3 in d in mESCs, using 100 kb bins across the genome. e-f, Representative 
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chromatin profiles for RNAPIISer5-P in e, H3K4me3 in f, and H3K27me3 in g by 

CUT&Tag and DNA seqFISH+ (either fraction of loci or z-score) in mESCs, overlaid with 

detected confident peaks (orange dots). Genomic regions within the black box (left) are 

further zoomed-in (right). h-j, The distribution of peak width detected by DNA seqFISH+ 

(fraction of loci, top; z-score, bottom) for RNAPIISer5-P in h, H3K4me3 in i, and 

H3K27me3 in j in mESCs. We observed that these peak widths typically range from 50-kb 

to 150-kb sizes across markers. The original 25 kb bins were used in a, e-j. n = 1,076 cells 

for two-layer DNA seqFISH+ from two biological replicates of mESCs. 
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Extended Data Fig. 8| Validation and characterization of spatial multi-omics 

measurements in the adult mouse brain cerebellum. 
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a, Large-field DAPI images of the adult mouse brain cerebellum coronal sections from 

two biological replicates. Yellow boxes represent unique fields of view (FOVs) imaged in 

each biological replicate. b, Representative images from a single z-section in one field of 

view for DAPI staining (left) and spatial distribution of cell clusters computed from mRNA 

seqFISH profiles (right). The cell type annotation for each cell cluster (0-11) was determined 

by the comparison with the single-nucleus RNA sequencing dataset (Kozareva et al. 2021) 

shown in d. c, Representative images of spatial distribution of cell clusters for Purkinje cell 

subtypes (top) and corresponding marker gene expression in the nucleus (bottom), reflecting 

the known patterns of parasagittal stripes between Aldoc positive and negative Purkinje cells 

in the mouse cerebellum (De Zeeuw 2021; Kozareva et al. 2021; Chen et al. 2022). d, 

Comparison of cell clusters (0-11) defined by mRNA seqFISH and cell types identified by 

the single-nucleus RNA sequencing (Kozareva et al. 2021). Based on the degree of Pearson 

correlation, we annotated our mRNA seqFISH clusters as shown in b. e, Marker gene 

expression profiles in each cell cluster. Those include previously characterized marker genes 

(Kozareva et al. 2021; Chen et al. 2022) such as Flt1 in Endothelial cells (cluster 8), Olig1 

in oligodendrocyte precursor cells and oligodendrocytes (cluster 10), Aqp4 in Astrocytes 

(cluster 9), Gdf10 in Bergmann glia (cluster 2), Gabra6 in Granular cells (clusters 0 and 1), 

Sorcs3 in MLI1 (cluster 4), Nxph1 in MLI2/PLI (cluster 7), and Ppp1r17 in Purkinje cells 

(clusters 6 and 11, which can be further divided by Aldoc and Plcb4 as shown in c). f, 

Distribution of nuclear volume for cells in each cell cluster. g, Distribution of total intron 

counts per cell in each cell cluster by intron seqFISH+. In box plots, the center lines for the 

median, boxes for the interquartile range, whiskers for values within 1.5 times the 

interquartile range, and points for outliers in f, g. h, Reproducibility of intron seqFISH+ from 

two biological replicates with the adult mouse brain cerebellum. n = 17,849 genes that were 

detected at least once in each replicate. i, Comparison of gene expression profiles by intron 

seqFISH+ and single-nucleus RNA sequencing (Kozareva et al. 2021) in four major cell 

types showed overall high consistency of cell-type specific gene expression programs. Genes 

with averaged intron counts of more than 0.01 per cell by intron seqFISH+ were used for 

comparison (n = 1,422, 1,115, 2,322, and 5,473 genes for Granule, Bergmann, MLI1, and 

Purkinje cells). j, Heatmap of nascent gene expression profiles of differentially expressed 
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genes by intron seqFISH+ across single cells grouped by cell clusters defined by mRNA 

seqFISH. k, Heatmap of sequential immunofluorescence intensity profiles across cell 

clusters defined by mRNA seqFISH. Note that HDAC1 and SOX2 were expressed in 

Bergmann glia (cluster 2) and astrocyte (cluster 9), consistent with previous studies 

(MacDonald & Roskams 2008; Cerrato et al. 2018). l, Representative sequential 

immunofluorescence images from a single z-section in the adult mouse brain cerebellum. m, 

UMAP-embedding of cells colored by two biological replicates (left) and each cell cluster 

defined by intron seqFISH+ profiles (middle) or sequential immunofluorescence intensity 

profiles (right). n, Comparison of cell clusters defined by mRNA seqFISH and intron 

seqFISH+ (top) or sequential immunofluorescence (bottom), representing robust 

identification of similar cell clusters regardless of the measurement modalities in the adult 

mouse brain cerebellum. n = 4,015 cells (n = 1,504, 832, 518, 357, 263, 164, 113, 88, 76, 56, 

29, 15 cells from mRNA seqFISH cluster 0 to 11) from two biological replicates of the adult 

mouse brain cerebellum. 

  

https://paperpile.com/c/Ouoe5f/kM9f7+GmIvp
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Extended Data Fig. 9| Additional validation and characterization of spatial multi-omics 
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measurements in the adult mouse brain cerebellum.  

a, Total on- and off-target barcodes detected per cell by DNA seqFISH+ in the mouse 

cerebellum (left). Average counts per each on- and off-target barcode per cell by DNA 

seqFISH+ in the mouse cerebellum (right). n = 100,049 and 31,171 for on- and off-target 

barcodes, respectively. b, Total on-target barcodes detected per cell by DNA seqFISH+ in 

each transcriptionally-defined cell cluster in the mouse cerebellum. n = 1,504, 832, 518, 357, 

263, 164, 113, 88, 76, 56, 29, 15 cells from mRNA seqFISH cluster 0 to 11. c, Pearson 

correlation of imaging-based chromatin profiling across the genome for each marker (n = 26 

markers) in each cell type between two biological replicates of the adult mouse brain 

cerebellum. d, Quantification of an overlap of top 5% genomic loci associated with each 

marker between pairs of markers in Purkinje cells, largely separating active and repressive 

chromatin markers. e, Genomic features and representative imaging-based chromatin 

profiling with four markers in each cell type in chromosome 16. f, Representative raw 

immunofluorescence images for various repressive markers from a single z-section for each 

cell type (left). Purkinje-specific pericentromeric staining by H3K27me2 and mH2A1 is 

highlighted by green arrows. The intense mH2A1 and H3K27me3 clusters visible in 

Bergmann glia highlighted by white arrows represent the inactive X chromosome (Xi) 

territory (Linhoff et al. 2015) in the female mouse cerebellum section. Scatter plots for 

individual loci show the relationship of each repressive marker enrichment in each cell type 

(right). g, Degree of overlap of top 5% enriched loci between pairs of repressive markers in 

each cell type. h, Degree of similarity of chromatin profiles between pairs of cell types by 

Pearson correlation, including cell lines (mESCs and NMuMG cells) (left) or using fraction 

of loci data (right), representing the similar trends regardless of the processing method. i, 

Comparison of the distribution of detected peak sizes in each cell type for selected markers 

used for downstream analysis. j, Comparison of gene expression profiles in RNAPIISer5-P, 

SF3A66 enriched loci or H4K20me3-associated loci identified in Purkinje cells in each cell 

type, representing a silencing of gene expression at the majority of the H4K20me3-associated 

loci regardless of cell types. The gene expression profiles were calculated from the published 

snRNA-seq datasets in the adult mouse brain cerebellum (Kozareva et al. 2021). In box plots, 

the center lines for the median, boxes for the interquartile range, whiskers for values within 

https://paperpile.com/c/Ouoe5f/zZt3W
https://paperpile.com/c/Ouoe5f/kDb21
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1.5 times the interquartile range, and points for outliers in b, c, i, j. 200 kb binning (n = 

12,562 loci in total) was used for the analysis in c-h. n = 4,015 cells from two biological 

replicates of the adult mouse brain cerebellum.
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Extended Data Fig. 10| Additional validation of imaging-based chromatin profiling and 

characterization of subnuclear foci in the adult mouse brain cerebellum.  

a, Comparison of z-score normalized SF3A66 chromatin profiles (x-axis, top) and spatial 

distances from segmented SF3A66 foci computed from the closest spatial distance between 

DNA loci and binary SF3A66 masks (y-axis, top), representing a high degree of similarity 

between z-score-based SF3A66 chromatin profiles and physical distances from SF3A66 foci 

across cell types. Comparison of spatial distances around nuclear speckles (Rnu2 RNA and 

SF3A66) from segmented Rnu2 RNA foci (x-axis, bottom) and SF3A66 foci (y-axis, 

bottom), representing a robustness of our approach in measuring genomic loci organization 
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around subnuclear structures across cell types. We also note that Rnu2 RNA and SF3A66 

immunofluorescence imaging was performed before and after DNA seqFISH+ procedure, 

indicating that our protocol preserved the subnuclear structures in the tissue section 

experiments. 200 kb binning (n = 12,562 loci in total) was used for the analysis. b, 

Representative raw SF3A66 images overlaid with decoded DNA loci in SF3A66 associated 

domains or negative control regions with a maximum z-projection of four sections. The 

spatial overlaps between DNA loci and nuclear speckles marked by SF3A66 are highlighted 

by colored arrows. The SF3A66-associated loci shown here were identified within SF3A66 

domains in all three cell types. c, Representative raw images of H4K20me3 and nucleolar 

markers (Fibrillarin, ITS1 RNA) with a maximum z-projection of four sections in Purkinje 

cells (top) and Bergmann glia cells (bottom). We did not detect Fibrillarin signals in 

Bergmann glia cells as quantified in d. We note that we performed sequential 

immunofluorescence preparation using tens of antibodies under one condition. Some 

antibodies (e.g., Fibrillarin) may require optimized conditions for each antibody in 

tissues(Eberhart et al. 2012). d, Comparison of subnuclear marker foci features for Purkinje 

cells (PC), MLI1, and Bergmann glia (BG) by quantifying foci number per cell, individual 

foci volume, and total foci volume per cell (from left to right panel for each marker) 

characterized cell-type specific foci organization. We note that by comparing foci features 

from two nuclear speckle markers, Rnu2 RNA (imaged before DNA seqFISH+) and SF3A66 

antibody (imaged after DNA seqFISH+), we confirmed that nuclear speckle organization 

was consistent before and after DNA seqFISH+. In contrast, in the case of nucleoli, the 

staining of the nucleolar marker, Fibrillarin, was weaker or not detected (e.g., Bergmann glia 

in c). This can be seen by the decreased volumes of nucleolar Fibrillarin foci relative to those 

from nucleolar ITS1 RNA by RNA FISH. While Fibrillarin staining quality was poor in the 

tissue section experiments, the nucleolar subnuclear structures themselves were preserved as 

shown by the comparison between Fibrillarin and ITS1 in MLI1 (e) and Purkinje cells (c, e). 

We also note that downstream analysis regarding nucleolar association across cell types was 

performed with ITS1, instead of Fibrillarin. In box plots, the black diamonds for the mean, 

the center lines for the median, boxes for the interquartile range, whiskers for values within 

1.5 times the interquartile range, and points for outliers. Some of the outlier foci (n = 5 in 

https://paperpile.com/c/Ouoe5f/jh5Wm
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total) that were outside the display range are not displayed for visual clarity. e, Kernel 

density estimation of the centroid of subnuclear foci from nuclear interior to exterior in each 

cell type. By comparing the different markers in each cell type (left), we characterized cell-

type specific radial organization of subnuclear foci in the nucleus. We confirmed the trend 

of more nuclear interior organization of nucleoli relative to MajSat in Purkinje cells, 

consistent with literature(Solovei et al. 2004). In addition, we compared the radial 

organization of different sizes of MajSat foci in each cell type (right). We confirmed the foci 

size dependent radial organization in Purkinje cells (i.e., larger foci tend to be more nuclear 

interior), consistent with literature(Solovei et al. 2004). We further extended such 

observation in MLI1 and revealed the lack of MajSat foci size dependent radial organization 

in Bergmann glia. f, mESCs were down-sampled to 500, 250, 100, and 50 cells, with 30 

replicates per group. The correlation between the downsampled fraction of loci and median 

z-scores with the respective ensemble scores calculated from all 1,076 mESCs was calculated 

and plotted for immunofluorescence markers SF3A66, RNAPIISer5-P, LaminB1, 

H3K27me3, H3K9me3, and Fibrillarin. The median Pearson correlation for the 

downsampled data showed that median z-score was more robust to down-sampling. g, The 

relationship between the number of cells and the number of spots per bin in mESCs (E14 

cells) and mouse brain cerebellum experiments. 200 kb binning was used for the mouse brain 

cerebellum data. 100 kb binning was used for mESC data in f, g. mESCs were down-sampled 

from n = 1,076 cells from two biological replicates in f, g. n = 2,336, 128, 263, 88, and 518 

cells for Granule, Purkinje, MLI1, MLI2+PLI, and Bergmann glia cells from two biological 

replicates of the adult mouse cerebellum in a-e, g. 

https://paperpile.com/c/Ouoe5f/HZGCz
https://paperpile.com/c/Ouoe5f/HZGCz
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Extended Data Fig. 11| Additional visualization and characterization of distinct active 
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chromatin regions and long gene loci.  

a, Representative classification of three types of active domains (nuclear speckle, 

RNAPIISer5-P broad and sharp) along with the chromatin profiling of SF3A66 (nuclear 

speckle marker) and RNAPIISer5-P across cell types. b, Comparison of genomic features 

across different active domains in each cell type. n = 2,531, 1,789, 458, 4,220 loci (Granule), 

n = 2,533, 2,060, 1,228, 4,654 loci (MLI1), and n = 2,376 2,015 1,367 4,210 loci (MLI2+PLI) 

from left to right category. The boxplots for median gene length per bin for each cell type 

are also displayed as a linear scale up to 300 kb (bottom panels) for visual clarity. c, 

Representative raw images of active markers from a single z-section of the adult mouse brain 

cerebellum, showing distinct organization between nuclear speckles (SF3A66) and other 

active markers (e.g. RNAPIISer5-P, H3K4me2, H4K8ac) regardless of the cell types. d, GO 

term comparison between SF3A66 and RNAPIISer5-P associated genomic loci in each cell 

type, representing largely distinct enrichment. Similar observation of distinct pathway 

enrichments between speckle-associating and speckle-non-associating p53 target genes was 

previously observed in human cell lines(Alexander et al. 2021). e, Overlap of each active 

domain across cell types, showing more cell-type specific organization of RNAPIISer5-P 

sharp domains. f, Comparison of differential association of genomic loci with SF3A66 and 

RNAPIISer5-P between pairs of cell types. g, Comparison of differential mRNA 

expression(Kozareva et al. 2021) between pairs of cell types at differentially associated loci 

with either PolII (RNAPIISer5-P) or Speckle (SF3A66) in each cell type. n = 150, 114, 198, 

126 loci (MLI1 vs. Purkinje), n = 203, 136, 139, 146 loci (Granule vs. Purkinje), n = 164, 

85, 143, 79 loci (Granule vs. MLI1), and n = 147, 96, 117, 87 loci (Granule vs. Bergmann) 

from left to right category. In box plots, the center lines for the median, boxes for the 

interquartile range, whiskers for values within 1.5 times the interquartile range, and points 

for outliers in b, g. h, Representative genomic regions with long genes (>200 kb) (top), 

corresponding mRNA expression(Kozareva et al. 2021) (middle), and chromatin profiles of 

different active markers (bottom) in each cell type. Nuclear speckles marked by SF3A66 

were not enriched at the differentially expressed long genes highlighted with red arrows 

(top). i, Comparison of Purkinje RNAPIISer5-P enrichment between long genes with the 

absence or presence of highly open chromatin regions defined by ATAC-seq >20 kb peaks 

https://paperpile.com/c/Ouoe5f/iSG45
https://paperpile.com/c/Ouoe5f/kDb21
https://paperpile.com/c/Ouoe5f/kDb21
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in Purkinje cells(Kwak et al. 2021). The red dots for the median and error bars for the 

interquartile range. p values by two-sided Wilcoxon’s signed rank-sum test. 200 kb binning 

(n = 12,562 loci in total) was used for the analysis in a, b, e-h. n = 2,336, 128, 263, 88, and 

518 cells for Granule, Purkinje, MLI1, MLI2+PLI, and Bergmann glia cells from two 

biological replicates of the adult mouse cerebellum.  

https://paperpile.com/c/Ouoe5f/WWSYB
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Extended Data Fig. 12| Additional validation and characterization of distinct active 

chromatin regions and long gene loci.  

a, Histogram of RNAPIISer5-P peak size in each cell type. To separate RNAPIISer5-P broad 

and sharp domains, a threshold value of 2 Mb was used as a default. b, Comparison of GC 
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content across different RNAPIISer5-P domain sizes in each cell type. c, The comparison 

of GC content between RNAPIISer5-P broad and sharp domains by different threshold 

values in Purkinje cells, representing robust changes of GC content between two domains 

regardless of the thresholding values. d, Comparison of percentage of genes categorized as 

housekeeping genes (left), synaptic genes (middle), or autism genes (right) in active domains 

(n = 7,423-11,994, 3,677-9,049, 800-2,651 genes for nuclear speckles, RNAPIISer5-P broad 

and sharp, respectively) for each cell type as well as in cell-type specific long genes (n = 132 

genes) identified in this study. To classify the genes, annotations from previous studies or 

databases were used (see Methods). e, Example visualization of changes of spatial distance 

from the nuclear periphery for long gene loci relative to their flanking loci. To compute the 

relative spatial distance change, a mean distance for 1 Mb of each of the flanking loci was 

subtracted by that for 1 Mb of each long gene locus for each cell type. f, Comparison of gene 

expression and spatial distance changes of long gene loci from the nuclear periphery (left 

panel for each cell type). The spatial distance changes were quantified as illustrated in e. The 

gene expression states were binarized (on or off) using a threshold value of 1 for the 

expression level measured by snRNA-seq (Kozareva et al. 2021) The relative distances were 

then compared between on and off states (right panel for each cell type). On average, the on-

state loci positioned 53.6, 66.7, 77.2, 56.0, 89.1 nm more toward the nuclear interior than the 

off-state loci when spatial distances were computed relative to the flanking loci in Purkinje, 

MLI1, MLI2+PLI, Granule, and Bergmann glia. The black dots represent the median and 

whiskers represent the interquartile range. p values by two-sided Wilcoxon’s signed rank-

sum test. g, Comparison of the radial positioning of on- and off-state long gene loci in 

different cell types (with the same definition in f) as well as genomic loci located in different 

active regions (nuclear speckles, RNAPIISer5-P broad and sharp domains). The radial 

positioning of transcriptionally active on-state long gene loci appears to be more toward the 

nuclear interior compared to the off-state long gene loci in most of the cell types. We note 

that we observed transcriptionally active long gene loci tend to localize more toward the 

nuclear periphery compared to nuclear speckle-associated genomic loci, consistent with a 

recent finding (Zhao et al. 2023). h, Comparison of H3K4me2 chromatin profiles by two-

layer DNA seqFISH+ in the adult mouse brain cerebellum in this study and 1-Mb resolution 

https://paperpile.com/c/Ouoe5f/kDb21
https://paperpile.com/c/Ouoe5f/ZdaUT
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DNA seqFISH+ in the adult mouse brain cerebral cortex (Takei, Zheng, et al. 2021). 

Genomic regions in the black boxes (left) are further shown with long gene (>200 kb) 

annotations and scaled mRNA expression profiles from the corresponding brain regions 

(Tasic et al. 2016; Kozareva et al. 2021)(right). The exact genomic loci targeted by 1-Mb 

resolution DNA seqFISH+ are represented by colored dots. We note that the H3K4me2 

enrichment at the Dpp10 locus was not captured in the excitatory neurons despite the gene 

being transcriptionally active possibly because the previous DNA seqFISH+ probes (Takei, 

Zheng, et al. 2021), targeting 25-kb loci with ~1 Mb gap in between on average, did not cover 

the genomic region of the Dpp10 locus. On the other hand, the two-layer DNA seqFISH+ 

probes cover all possible 25-kb loci across the genome except for highly repetitive genomic 

regions and therefore detect the H3K4me2 enrichment at the Dpp10 locus in Purkinje cells. 

n = 1,895 and 155 cells for excitatory neurons and Pvalb neurons from three biological 

replicates for the 1-Mb resolution DNA seqFISH+. 200 kb binning (n = 12,562 loci in total) 

was used for the analysis in a-h. n = 2,336, 128, 263, 88, and 518 cells for Granule, Purkinje, 

MLI1, MLI2+PLI, and Bergmann glia from two biological replicates of the adult mouse 

cerebellum. 

https://paperpile.com/c/Ouoe5f/fpV33
https://paperpile.com/c/Ouoe5f/x3Ix2+kDb21
https://paperpile.com/c/Ouoe5f/fpV33
https://paperpile.com/c/Ouoe5f/fpV33
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Extended Data Fig. 13| Additional visualization and characterization of cell-type 

specific H3K27me3-associated regions.  

a, The top eleven GO terms identified from H3K27me3 chromatin profiles in each cell type 

represent the enrichment of similar GO terms across cell types. b, Comparison of genomic 
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features between loci that were differentially associated with H3K27me3 between two cell 

types. n = 595, 359 loci for Purkinje cells (PC) vs. Bergmann glia (BG) and n = 169, 491 loci 

for MLI1 vs. BG. c, Additional examples of H3K27me3 profiles across cell types along with 

Hox cluster in Chr2 and Purkinje-specific H3K27me3-associated long gene loci (top). d, 

Representative single cell visualization of genomic loci relative to H3K27me3 in Bergmann 

glia. Scale bars, 500 nm. e, Violin plot of expression changes between P0 and adult Purkinje 

cells (Stoyanova et al. 2021), representing the down-regulaiton of 36 out of 46 differentially 

expressed genes categorized as Purkinje-specific H3K27me3-associated long genes from the 

P0 to adult. f, Comparison of spatial distance from nuclear periphery and H3K27me3 or 

Lamin B1 chromatin profiles in each cell type. g, Comparison of differential association with 

each subnuclear marker at differentially expressed loci defined by intron seqFISH+ between 

pairs of major cell types. The increased association with SF3A66 at transcriptionally up-

regulated loci was similarly observed in the adult mouse cerebral cortex (Takei, Zheng, et al. 

2021). n = 114, 129 loci for Bergmann glia vs. Purkinje cells, n = 48, 81 loci for MLI1 vs. 

Purkinje cells, and n = 151, 114 loci for Bergmann glia vs. MLI1. p values by two-sided 

Wilcoxon’s signed rank-sum test in b, g. In box plots, the center lines for the median, boxes 

for the interquartile range, whiskers for values within 1.5 times the interquartile range, and 

points for outliers in b, g. 200 kb binning (n = 12,562 loci in total) was used for the analysis 

in a-c, f, g. n = 128, 263, 88, and 518 cells for Purkinje, MLI1, MLI2+PLI, and Bergmann 

glia cells from two biological replicates of the adult mouse cerebellum.  

https://paperpile.com/c/Ouoe5f/epK8x
https://paperpile.com/c/Ouoe5f/fpV33
https://paperpile.com/c/Ouoe5f/fpV33
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Extended Data Fig. 14| Additional visualization and characterization of H4K20me3-
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associated regions.  

a, Cartoon illustration of a mouse chromosome (top) and representative imaging-based 

chromatin profiling of repressive markers in Purkinje cells in chromosome 17 (bottom). b, 

Scatter plots of pairs of chromatin profiles (left), colored by the locus category of MajSat 

(orange), H4K20me3 (purple), H4K20me3 weak (light purple), or others (gray) and 

corresponding box plots showing H4K20me3 enrichment for loci in each category (right). c, 

Comparison of quantile of H4K20me3 and H4K20me3-weak category loci in b for each 

repressive marker, representing stronger enrichment of repressive markers around 

pericentromeric heterochromatin (MajSat, H4K20me3, H3K9me3, ATRX, H3K27me2, 

Fibrillarin, and mH2A1) at H4K20me3 loci (purple) over H4K20me3-weak loci (light 

purple). In contrast, two repressive markers (H3K27me3 and Lamin B1) are more depleted 

at H4K20me3 loci compared to H4K20me3-weak loci. d, Barplots comparing the locus 

characteristics such as mCH desert(Lister et al. 2013) and SSDRs(Lilue et al. 2018; Lilue et 

al. 2019) between H4K20me3-weak loci (n = 455) and all 200-kb loci (n = 12,562) in 

Purkinje cells. e, Gene family characteristics either mCH desert (Lister et al. 2013), SSDRs 

(Lilue et al. 2018; Lilue et al. 2019), or both (left) and their radial positioning relative to 

nuclear periphery and H4K20me3 enrichment (middle), as well as their enrichments across 

chromosomes (right). Only a subset of genomic loci annotated with those categories with 

corresponding gene family names were included in this analysis. In box plots, the center lines 

for the median, boxes for the interquartile range, whiskers for values within 1.5 times the 

interquartile range, and points for outliers in b, c, e. f, H4K20me3 and H4K20me3-weak loci 

(n = 236, 455, respectively) distribution across chromosomes in Purkinje cells. g, GO term 

comparison between H4K20me3 and H4K20me3-weak associated genomic loci in Purkinje 

cells revealed enrichment of distinct gene families at each category. h, Additional 

visualization of H4K20me3-enriched Vmn and Olfr gene family loci overlaid with 

H4K20me3 staining with a maximum z-projection of four sections in Purkinje cells. i, 

Additional examples of ensemble-averaged and single allele chromatin profiles sorted by 

H4K20me3 enrichment from bottom to top in Purkinje cells. j, Comparison of ensemble-

averaged radial positioning of genome-wide DNA loci in the nucleus across cell types 

separates neurons and glial cells. k, Comparison between RNAPIISer5-P enrichment and 

https://paperpile.com/c/Ouoe5f/LAxaD
https://paperpile.com/c/Ouoe5f/ncLjv+mAJVS
https://paperpile.com/c/Ouoe5f/ncLjv+mAJVS
https://paperpile.com/c/Ouoe5f/LAxaD
https://paperpile.com/c/Ouoe5f/ncLjv+mAJVS
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spatial distance from nuclear periphery for individual loci. Top 5% H4K20me3-enriched 

loci (purple, n = 277) in each cell type tend to localize in the nuclear interiors yet excluded 

from RNAPIISer5-P in neurons (Purkinje, MLI1, and MLI2/PLI) but not in Bergmann glia 

cells. Those neuron-specific outlier loci found here were not observed in human cell 

culture(Chen et al. 2018). l, Transition of H4K20me3-enriched loci from Purkinje to 

MLI2/PLI cells showed largely conserved H4K20me3-associated loci between neuronal cell 

types. n = 252 loci. m, The H4K20me3-enriched regions in Purkinje cells shown with radial 

positioning of genomic loci (top) or H4K20me3 and Lamin B1 chromatin profiles (bottom) 

across cell types. Cell-type specific changes of radial positioning of genomic loci can be 

observed at the H4K20me3 enriched regions identified in Purkinje cells, highlighted as gray 

shaded regions (top). n, Comparison of locus identity overlap between H4K20me3-

associated loci in this study and radial down loci changing their localization from the nuclear 

periphery to interior in forebrain neurons during postnatal development (Tan et al. 2021), 

showing a high degree of overlap (60.5% and 33.6%, top and middle) relative to the control 

loci without H4K20me3 enrichment (7.8%, bottom) despite using different methods applied 

to distinct mouse brain regions. 200 kb binning (n = 12,562 loci in total) was used for the 

analysis in a-g, i-n. n = 4,015 cells from two biological replicates of the adult mouse brain 

cerebellum. 

https://paperpile.com/c/Ouoe5f/Szl4O
https://paperpile.com/c/Ouoe5f/lmkec
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Extended Data Fig. 15| Additional visualization and characterization of 3D genome 
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organization associated with subnuclear structures.  

a, Ensemble-averaged spatial distances between pairs of genomic loci along with chromatin 

profiling from each cell type across chromosomes (Chr1-19, X). b, Additional examples of 

ensemble-averaged spatial distances between pairs of genomic loci along with chromatin 

profiling from each cell type at specific chromosomes. Locations of pairs of H4K20me3-

associated loci in Purkinje cells in Fig. 5c are highlighted as black circles in chromosome 12. 

c, Cumulative distribution of inter-chromosomal distances between pairs of loci with top 5% 

association to MajSat or Purkinje-specific H4K20me3 characterized in Fig. 5c (left) or from 

loci associated with specific gene families (right) compared to random pairs of loci (n = 1,000 

trials). d, Representative 3D images of the nucleus with MajSat or H4K20me3 staining and 

chromosomal loci in each cell type. Identified Purkinje H4K20me3 loci highlighted with 

colors tend to colocalize at H4K20me3 territories in Purkinje and MLI1 cells, but localize at 

the nuclear periphery in Bergmann glia cells. Bergmann glia cells are shown as a side view 

for visual clarity. Additional panels (right) represent a zoom-in view of the specific 

H4K20me3-associated genomic regions identified in Purkinje cells and their neighboring 

genomic regions (2 Mb upstream and downstream regions). The view points are rotated from 

the original 3D images of the nucleus for visual clarity. e, Ensemble-averaged spatial distance 

between pairs of genomic loci as a function of genomic distance in chromosome 4 (top) and 

12 (bottom). Pairs of H4K20me3 loci (orange) identified in Purkinje cells showed closer 

spatial distances compared to the similar genomic distance pairs in Purkinje, MLI1, and 

Bergmann glia cells, but not in mESCs. To evaluate this more quantitatively, we performed 

1,000 rounds of bootstrap iterations for each genomic distance and calculated 95% 

confidence intervals (CI). For chromosome 4, in Purkinje and MLI1 cells, all of the intra-

chromosomal locus pairs had pairwise distances falling below the lower bound of 95% CI. 

For Bergmann glia, 95.2% of genomic loci pairs were below the lower bound and only 30.0% 

of pairs in mESCs had pairwise distance smaller than lower bound. Similarly, for 

chromosome 12, all intra-chromosomal genomic loci pairs had pairwise distances smaller 

than the lower bound of 95% CI in Purkinje cells. In MLI1 and Bergmann glia, those 

percentages were 83.3% and 66.7% respectively, while none of the pairs in mESCs fell below 

the lower bound. f, Comparison of normalized inter-chromosomal distances of 1.5 Mb paint 
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blocks that contain transcriptionally “on” or “off” long genes, as well as paint blocks that 

are located within nuclear speckle and RNAPIISer5-P broad peaks. Median distances from 

one thousand rounds of random bootstraps were used as expected inter-chromosomal 

distances. We note that we observed nuclear speckle-associated genomic loci are more 

enriched with inter-chromosomal interactions compared to the transcriptionally active long 

gene loci, consistent with a recent finding (Zhao et al. 2023). 1.5 Mb binning (n = 1,678 loci 

in total), grouped by the chromosome paint block barcodes, was used for the analysis in a-c, 

e, f. n = 128, 263, and 518 cells for Purkinje, MLI1, and Bergmann glia cells from two 

biological replicates of the adult mouse cerebellum. n = 1,076 cells from two biological 

replicates of mESCs. 

 

https://paperpile.com/c/Ouoe5f/ZdaUT
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Extended Data Fig. 16| Additional visualization and characterization of 3D genome 

organization around H4K20me3.  

a, Representative 3D visualization of H4K20me3-associated genomic loci identified in 

Purkinje cells (left in each panel) and clustering results of their organization (right in each 

panel). Each cluster is circled out, and the corresponding inter-chromosomal entropy scores 
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are shown on the side. The entropy score is calculated based on chromosomal distribution 

within each cluster, with a score of 0 indicating that loci in a given cluster all come from a 

single chromosome. Higher entropy score reflected a higher level of inter-chromosomal 

interaction among the loci within a cluster. b, Illustration of the inter-chromosomal entropy 

score for each cluster formed by H4K20me3-associated genomic loci. The different colored 

spots represent DNA loci from different chromosomes. c, The cumulative distribution plot 

showing the differences of the cluster entropy scores across different cell types. The initial 

value at entropy zero represents the percentage of single-chromosome clusters. d, Stacked 

barplot comparing the cell-type specific differences of number of unique chromosomes in 

each cluster formed by H4K20me3-associated loci. In Purkinje cells, MLI1, and Bergmann 

glia, 49.3, 54.3, 82.1% of cluster formed by single chromosome, 29.6, 32.0, 16.5% of cluster 

formed by two chromosomes, 21.1, 13.7, 1.4% of cluster formed by three or more 

chromosomes, suggesting that a significantly larger percentage of clusters formed a higher-

order chromosome organization with those loci in Purkinje cells and MLI1 compared to 

Bergmann glia. e, Heatmap of the percentage of chromosomal co-occurrence within 

H4K20me3-associated loci formed clusters, capturing the cell-type specific inter-

chromosomal organization for Purkinje cells and MLI1 whereas Bergmann glia lacks such 

inter-chromosomal organization at those loci. f, Percentage of clusters formed by the 

H4K20me3-associated loci from three chromosomes. Top 5 unique chromosome 

compositions are shown for each cell type. Original 25-kb DNA loci without binning were 

used for the analysis in c-f. n = 361, 637, and 1,104 clusters from 128, 263, and 518 cells 

(Purkinje cells, MLI1, and Bergmann glia) from two biological replicates of the adult mouse 

cerebellum in c-f.    
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Extended Data Fig. 17| Validation imaging experiments with DNA seqFISH and 

sequential immunofluorescence in the adult mouse brain cerebellum.  

a, Large-field DAPI images of the adult mouse brain cerebellum coronal sections from two 

biological replicates for validation imaging experiments. Yellow boxes represent unique 

fields of view (FOVs) imaged in each biological replicate.  b, Summary of the design of the 

validation experiments. c, Example images of Purkinje cell layer by DAPI staining (top) and 

identified cell type identities (red, Purkinje cells and blue, Bergmann glia) (bottom). d, 

Identification of Purkinje cells and Bergmann glia using nuclear volume and HDAC1 

intensity, a marker for Bergmann glia. HDAC1 immunofluorescence intensity was 

normalized by the mean intensity for each biological replicate. e, Degree of similarity of 

chromatin profiles between two-layer DNA seqFISH+ (x-axis) and validation DNA seqFISH 

(y-axis) evaluated by Pearson correlation for two cell types, representing the robustness of 

our chromatin profiling approach. f, Representative comparison of chromatin profiles of the 

identical marker (H3K27me3) between two-layer DNA seqFISH+ and validation DNA 
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seqFISH for two cell types. The systematic comparison is shown in e. g, Validation of 

cell-type specific RNAPIISer5-P enrichment at the identified long gene loci, confirming the 

enrichment in the expected cell types (Cntnap5b, Dpp10 in Purkinje cells and Adgrl3 in 

Bergmann glia). h, Validation of common and cell-type specific H3K27me3 enrichment at 

the identified gene loci, confirming the enrichment of Hoxa cluster and Cbx3 in both cell 

types and Grin2b and Ptprd only in Purkinje cells. i, Validation of enrichment of H4K20me3 

(left) and Lamin B1 (right) at the identified H4K20me3-associated genomic loci, confirming 

the enrichment of H4K20me3 in Purkinje cells and Lamin B1 in Bergmann glia. Control loci 

from the same chromosomes are also shown for comparison. j, The cumulative distribution 

of spatial distances between pairs of genomic loci. The 3D genome organization of identified 

H4K20me3-associated loci in Purkinje cells was compared for inter-chromosomal pairs 

(top), intra-chromosomal pairs in chromosome 4 (middle) and chromosome 12 (bottom), 

confirming the closer spatial distances in pairs of H4K20me3-associated loci relative to 

control pairs in Purkinje cells. Similarly, we confirmed the larger spatial distances for inter-

chromosomal pairs and shorter spatial distances in intra-chromosomal pairs in chromosome 

4 in Bergmann glia cells as expected. We note that we did not separate homologous 

chromosomes in the intra-chromosomal analysis and thus half of the intra-chromosomal 

distances are expected to be computed between homologous chromosomes. n = 93 and 405 

cells for Purkinje and Bergmann glia cells from two biological replicates of the adult mouse 

cerebellum for validation experiments in a-j. n = 128 and 518 cells for Purkinje cells and 

Bergmann glia from two biological replicates of the adult mouse cerebellum for two-layer 

DNA seqFISH+ experiments in e, f. 
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2.8 METHODS 

Data reporting 

No statistical methods were used to predetermine sample size. The experiments were not 

randomized, and the investigators were not blinded to allocation during experiments and 

outcome assessment. 

RNA seqFISH+ encoding strategy 

To spatially resolve mRNA profiles for 1,194 genes in the cell culture experiments (see ‘Cell 

culture experiment’), we used a modified version of RNA seqFISH+ encoding scheme(Eng 

et al. 2019) consisting of 16-pseudocolor bases with 4 rounds of barcoding including one-

error correction round, which can accommodate up to 4,096 (= 163) genes, in one fluorescent 

channel (635 nm) (Supplementary Table 1). Additional 64 genes for mRNA and non-coding 

RNA species were encoded as a non-barcoded seqFISH scheme (Shah et al. 2016; Shah et 

al. 2018; Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021) in one fluorescent channel (488 

nm). In addition, to spatially resolve the nascent transcriptome (17,856 genes) typically at 

their transcription active sites in the nucleus (Shah et al. 2018), we applied a modified version 

of RNA seqFISH+ encoding scheme (Eng et al. 2019) consisting of 12-pseudocolor bases 

with 5 rounds of barcoding including one-error correction round, which can accommodate 

up to 20,736 (= 124) genes, in one fluorescent channel (561 nm). This intron seqFISH+ 

approach allows us to super-resolve subcellular localization of intronic RNAs at the sub-

pixel resolution while original intron seqFISH decoding for 10,421 genes (Shah et al. 2018) 

was performed with pixel resolution using three fluorescent channels. 

 

Similarly, for mouse brain cerebellum experiments (see ‘Tissue slice experiment’), we 

profiled 60 mRNA species including cell-type marker genes in the adult mouse brain 

cerebellum (Kozareva et al. 2021) with the non-barcoded seqFISH strategy in one fluorescent 

channel (635 nm) as well as 17,856 genes for nascent transcripts by intron seqFISH+ in one 

fluorescent channel (561 nm) as described above. 

https://paperpile.com/c/Ouoe5f/lCx3s
https://paperpile.com/c/Ouoe5f/lCx3s
https://paperpile.com/c/Ouoe5f/8rHOc+5DUDF+SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/8rHOc+5DUDF+SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/5DUDF
https://paperpile.com/c/Ouoe5f/lCx3s
https://paperpile.com/c/Ouoe5f/5DUDF
https://paperpile.com/c/Ouoe5f/kDb21
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Two-layer DNA seqFISH+ encoding strategy 

To spatially resolve whole mouse chromosomes with 25-kb bin coverage, a two-layer 

barcoding strategy, consisting of diffraction limited locus imaging and chromosome paint 

imaging, was developed. First, mm10 mouse genome was divided into non-overlapping 25-

kb loci and up to 60 loci were grouped together to make 1.5-Mb chromosome paint blocks. 

Those chromosome paint blocks were then separated into three groups according to their 

genomic coordinates in order to be encoded by three orthogonal fluorescent channels (n = 

560, 559, and 559 blocks used in 635 nm, 561 nm, and 488 nm fluorescent channels). In 

total, 96 rounds of imaging were performed to decode the 100,049 loci encoded in two-layer 

DNA seqFISH+ (Supplementary Table 2). In the initial 60 rounds of imaging, 25-kb loci 

were sequentially read out one at a time for all chromosome paint blocks based on their 

genomic coordinates within each block in each fluorescent channel. These 60 rounds can 

resolve the identities of 25-kb loci within each chromosome paint block but cannot 

distinguish which specific chromosome paint block those loci belong to. In the subsequent 

36 rounds of imaging, chromosome paint block identities were decoded by painting the 

individual 1.5-Mb blocks using a 9-pseudocolor base seqFISH+ coding scheme (Eng et al. 

2019) with 4 rounds of barcoding in each fluorescent channel. This allows to resolve up to 

729 (= 93) chromosome paint blocks in each fluorescent channel with one extra round for a 

stringent decoding. While original implementations of seqFISH+ (Eng et al. 2019; Takei, 

Yun, et al. 2021; Takei, Zheng, et al. 2021) barcoded individual diffraction limited spots, this 

strategy barcodes individual chromosome paint blocks with unique pseudocolor 

combinations. This two-layer DNA seqFISH+ strategy, leveraging two layers of orthogonal 

barcoding (i.e. sequential barcoding of diffraction limited loci and scalable barcoding of 

chromosome paint blocks), can efficiently encode up to 131,220 (= 60 × 729 × 3) genomic 

loci within 96 rounds in three fluorescent channels, which are sufficient to accommodate all 

25-kb loci in the mouse and human genome.  

 

Primary probe design and synthesis 

https://paperpile.com/c/Ouoe5f/lCx3s
https://paperpile.com/c/Ouoe5f/lCx3s
https://paperpile.com/c/Ouoe5f/lCx3s+SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/lCx3s+SxSTX+fpV33
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mRNA seqFISH+, intron seqFISH+, and non-barcoded RNA seqFISH probes were 

designed as described before (Shah et al. 2018; Eng et al. 2019; Takei, Yun, et al. 2021; 

Takei, Zheng, et al. 2021). In brief, 35-nt RNA target binding sequences, 15-nt readout probe 

binding sites (Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021), and a pair of 20-nt primer 

binding sites at 5’ and 3’ end of the primary probes were concatenated (up to 150-nt for 

mRNA seqFISH+ and non-barcoded RNA seqFISH; up to 170-nt for intron seqFISH+) to 

allow enzymatic probe amplification steps below. We used 32 primary probes per gene for 

mRNA seqFISH+, 12-25 primary probes (25 probes whenever possible) per gene for intron 

seqFISH+, and 8-50 primary probes per gene for non-barcoded RNA seqFISH. 

 

For two-layer DNA seqFISH+ primary probes, the chromosomal DNA binding sequences 

were selected from mm10 newBalance DNA FISH probes at PaintSHOP resources 

(Hershberg et al. 2021)(https://github.com/beliveau-lab/PaintSHOP_resources). 

Specifically, primary probes with reported off-target scores less than or equal to 200 were 

initially selected and the total number of probes in each defined 25-kb locus was counted. 

Then the primary probes were sorted by the off-target score and 30 probes were selected 

from the smallest off-target score per genomic locus while the genomic locus with less than 

30 probes were filtered out. After the selection, the primary probe sequences were assembled 

with readout probe and primer binding sites similarly to the DNA seqFISH+ study (Takei, 

Yun, et al. 2021; Takei, Zheng, et al. 2021) with modified combinations of readout probe 

binding sites based on the two-layer DNA seqFISH+ coding scheme (see ‘Two-layer DNA 

seqFISH+ encoding strategy’). At each 25-kb locus targeted, we used 30 primary probes 

selected with the criteria above to image individual loci as diffraction limited spots. Those 

primary probes (up to 170-nt) consist of the genomic region specific sequences (30-37-

nt)(Hershberg et al. 2021) flanked by spacer sequences (“AA” and “A”), three identical 15-

nt readout binding sites, corresponding to one of the 60 rounds of sequential diffraction 

limited spot imaging (hybridizations 1-60) in each fluorescent channel, three 15-nt readout 

binding sites, corresponding to three out of four chromosome paint barcoding rounds 

(hybridizations 61-96) in each fluorescent channel, and a pair of 20-nt primer binding sites 

at 5’ and 3’ end of the primary probes. 

https://paperpile.com/c/Ouoe5f/5DUDF+lCx3s+SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/5DUDF+lCx3s+SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
https://github.com/beliveau-lab/PaintSHOP_resources
https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/RSHkO


 

 

113 
 

RNA seqFISH+ and two-layer DNA seqFISH+ primary probes were generated from oligo 

array pools (Twist Bioscience for 150-nt oligos; Agilent Technologies for 170-nt oligos) 

based on Oligopaint technologies (Beliveau et al. 2012) with enzymatic amplifications as 

described previously(Shah et al. 2018; Eng et al. 2019; Takei, Yun, et al. 2021; Takei, Zheng, 

et al. 2021). Total of 3,001,470 two-layer DNA seqFISH+ primary probes were obtained 

from 13 different oligo array pools. Briefly, we performed PCR with Q5 Hot Start High-

Fidelity (NEB M0494S), column purification with QIAquick PCR Purification Kit (Qiagen 

28104), in vitro transcription (NEB E2040S) at 42°C for 8 hours in the presence of RNasin 

Ribonuclease Inhibitor (Promega N2111) and Pyrophosphatase (NEB M0361S), and reverse 

transcription (Thermo Scientific EP0751) at 50°C for 2 hours and then at 55°C for 2 hours 

followed by heat inactivation at 85°C for 5 minutes, RNA hydrolysis by 1 M NaOH at 65°C 

for 15 minutes, and neutralization by an equal amount of 1 M acetic acid. Then generated 

primary probes were concentrated by ethanol precipitation, pooled if necessary, then dried 

to a powder by speed-vac, and stored at -20°C. The primer pairs for the amplification were 

selected from previous studies (Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021). 

 

The DNA FISH probes for mouse repetitive elements (LINE1, SINEB1, Telomere, MinSat, 

MajSat, and rDNA) and 3632454L22Rik fiducial marker were designed and synthesized as 

described before(Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021). Similarly, RNA FISH 

probes for mouse repetitive elements were designed and synthesized for this study. In brief, 

SINEB1 and two orthogonal sets of MERVL RNA FISH probes were generated using 

genomic DNA of E14 mESCs extracted with DNeasy Blood and Tissue Kits (Qiagen 69504) 

as a template for PCR, followed by in vitro transcription and reverse transcription. The PCR 

primers consisted of genomic DNA binding sites, originally designed for RT-qPCR (Zhang 

et al. 2019), and overhangs of readout probe binding sites. Single RNA FISH probes targeting 

MajSat (both sense and antisense strands), telomeric repeat-containing RNA (TERRA), and 

Nsmce2 intronic RNA repetitive regions used as internal fiducial markers were designed 

with overhangs of readout probe binding sites and purchased from Integrated DNA 

Technologies. 

https://paperpile.com/c/Ouoe5f/tkJN7
https://paperpile.com/c/Ouoe5f/5DUDF+lCx3s+SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/5DUDF+lCx3s+SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/pFTWy
https://paperpile.com/c/Ouoe5f/pFTWy
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Readout probe design and synthesis 

To implement the two-layer DNA seqFISH+ strategy, 96 unique readout probes were used 

in each fluorescent channel for a total of 288 unique readout probes for 3 fluorescent 

channels. The readouts probe sequences were obtained from our previous DNA seqFISH+ 

studies (Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021) as well as additional orthogonal 

readout probe sequences were generated and validated similarly to those previous studies. 

The RNA seqFISH+ readout probe sequences were selected from a subset of the two-layer 

DNA seqFISH+ readout probe sequences. The readout probe sequences (12-15-nt) for 

sequential immunofluorescence were selected from our previous studies (Takei, Yun, et al. 

2021; Takei, Zheng, et al. 2021) and further designed and validated with the same criteria for 

this study. The fluorescently-labeled readout probes (Integrated DNA Technologies) that can 

bind to the readout sequences on the primary probes or primary antibodies were conjugated 

in-house to Alexa Fluor 647–NHS ester (Invitrogen A20006), Cy3B–NHS ester (GE 

Healthcare PA63101), or Alexa Fluor 488–NHS ester (Invitrogen A20000) as described 

before (Eng et al. 2019) or directly purchased (Integrated DNA Technologies).  

 

DNA-antibody conjugation 

The oligonucleotide-conjugated antibodies were prepared similarly to those previously 

described (Gong et al. 2016; Agasti et al. 2017; Takei, Yun, et al. 2021). The BSA-free 

primary antibodies were purchased from commercial vendors whenever possible. For the 

BSA-free primary antibodies, we used the crosslinking of 5’ thiol-modified 18-nt DNA 

oligonucleotides (Integrated DNA Technologies) to lysine residues on antibodies via 

PEGylated SMCC cross-linker (SM(PEG)2) (Thermo Scientific Thermo Scientific 22102) 

(Agasti et al. 2017; Takei, Yun, et al. 2021). In addition, for some of the BSA-free primary 

antibodies, we used the crosslinking of 5’ azide-modified 18-nt DNA oligonucleotides 

(Integrated DNA Technologies) to lysine residues on antibodies via DBCO-PEG4-NHS 

(Sigma-Aldrich 764019) cross-linker with modifications from previous protocols(Gong et 

al. 2016). In brief, primary antibodies (90-100 μg) were buffer-exchanged to 1× PBS 

(Invitrogen AM9624) using 50KDa Amicon Ultra Centrifugal Filter Unit (Millipore, 

https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/lCx3s
https://paperpile.com/c/Ouoe5f/tEpdH+Ymylo+SxSTX
https://paperpile.com/c/Ouoe5f/Ymylo+SxSTX
https://paperpile.com/c/Ouoe5f/tEpdH
https://paperpile.com/c/Ouoe5f/tEpdH
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UFC505096) and reacted with 10 equivalents of DBCO-PEG4-NHS at 4°C for 4–6 

hours. Then the antibody solution was exchanged with 1× PBS using the 50KDa Amicon 

Ultra Centrifugal Filter Unit and reacted with 10 equivalents of the azide-modified 18-nt 

DNA oligonucleotides at 4°C for 48 hours. The DNA-primary antibody conjugates were 

washed with 1× PBS and concentrated using the 50KDa Amicon Ultra Centrifugal Filter 

Unit. For BSA-containing primary antibodies, we used SiteClick R-PE Antibody Labeling 

Kit (Life Technologies S10467) to crosslink 5’ DBCO-modified 18-nt DNA 

oligonucleotides (Integrated DNA Technologies) to the specific sites on primary antibodies 

(Agasti et al. 2017; Takei, Yun, et al. 2021). In all conjugation strategies, excess 

oligonucleotides in the antibody solution were removed using the 50KDa Amicon Ultra 

Centrifugal Filter Unit at the final step. The oligonucleotide-conjugated primary antibodies 

were individually validated by immunofluorescence for their subcellular localization patterns 

and stored in 1× PBS at −80 °C as small aliquots. The oligonucleotide-conjugated primary 

antibodies are listed in Supplementary Table 3. 

 

Cell culture and preparation 

E14 mouse embryonic stem cells (E14Tg2a.4) (RRID:MMRRC_015890-UCD) from 

Mutant Mouse Regional Resource Centers were maintained on 0.1% gelatin (Sigma-Aldrich 

G1393) coated 6-well plates under the serum/LIF condition containing 15% ES-grade FBS 

(Gibco 16141061), 1,000 units/mL leukemia inhibitory factor (LIF) (Sigma-Aldrich 

ESG1106), 1× non-essential amino acids (Gibco 11140050), 1 mM sodium pyruvate (Gibco 

11360070), 55 μM 2-mercaptoethanol (Gibco 21985023), 1× penicillin, and streptomycin 

(Gibco 15140122) in DMEM GlutaMAX (Gibco 10566016). NMuMG mammary gland cells 

(ATCC CRL-1636) were maintained on 6-well plates (Thermo Scientific 150687) in 10% 

FBS (Corning 35-010-CV), 10 μg/mL insulin (Gibco 12585014), 1× penicillin and 

streptomycin (Gibco 15140122), and DMEM (Corning 10-013-CV). 

For live cell imaging of E14 cells with nuclear pore (Nup37) staining, the cells were 

transfected with a linearized Nup37-EGFP plasmid (Addgene plasmid # 104562) using 

FuGENE HD transfection reagent (Promega E2311). The polyclonal E14 cells were selected 

https://paperpile.com/c/Ouoe5f/Ymylo+SxSTX
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with 1 μg/mL puromycin, and coverslips were subsequently prepared in the same manner 

as the seqFISH+ experiments as described below. 

 

The coverslips were prepared as previously described (Takei, Yun, et al. 2021). In brief, E14 

cells were plated on poly-D-lysine (Sigma-Aldrich P6407) and human laminin (BioLamina 

LN511) coated coverslips (25 mm x 60 mm) and incubated for 24 hours. Similarly, NMuMG 

cells were plated on poly-D-lysine (Sigma-Aldrich P7280) and human laminin (BioLamina 

LN511) coated coverslips and incubated for 24 hours. The cells were washed with 1× PBS 

(Invitrogen AM9624) once and fixed with freshly prepared 4% formaldehyde (Thermo 

Scientific 28908) in 1× PBS at room temperature for 10 minutes. The fixed cells were washed 

with 1× PBS a few times and stored in 70% ethanol at -20°C (Finn et al. 2019; Takei, Yun, 

et al. 2021) until the cell culture experiment below. 

 

Cell culture experiment 

The samples for cell culture experiments were prepared similarly to our previous study 

(Takei, Yun, et al. 2021) with some modifications. First, the samples were permeabilized and 

prepared for sequential immunofluorescence. The fixed cells on the coverslips were dried 

and permeabilized with 0.5% Triton-X (Sigma-Aldrich 93443) in 1× PBS at room 

temperature for 15 minutes using a sterilized custom-made chamber with a silicon plate 

(McMASTER-CARR 86915K16) attached on each coverslip. The samples were then 

washed three times with 1× PBS and blocked at room temperature for 15 minutes with a 

blocking solution consisting of 1× PBS, 10 mg/mL UltraPure BSA (Invitrogen AM2616), 

0.3% Triton-X, 0.1% dextran sulfate (Sigma D4911) and 0.5 mg/mL sheared Salmon Sperm 

DNA (Invitrogen AM9680). Then DNA oligo-conjugated primary antibodies were incubated 

in the blocking solution with 100-fold diluted SUPERase In RNase Inhibitor (Invitrogen 

AM2694) at 4°C overnight. The typical estimate of the final concentration of each primary 

antibody in the blocking solution was 5-10 ng/μL. After DNA oligo-conjugated primary 

antibody incubation, the samples were washed with 1× PBS three times and incubated at 

room temperature for 15 minutes. The samples were then post-fixed with freshly made 4% 

formaldehyde in 1× PBS at room temperature for 5 minutes, washed with 1× PBS six times, 

https://paperpile.com/c/Ouoe5f/SxSTX
https://paperpile.com/c/Ouoe5f/dzqd6+SxSTX
https://paperpile.com/c/Ouoe5f/dzqd6+SxSTX
https://paperpile.com/c/Ouoe5f/SxSTX
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and incubated at room temperature for 15 minutes. The samples were further post-fixed 

with 1.5 mM BS(PEG)5 (PEGylated bis(sulfosuccinimidyl)suberate) (Thermo Scientific 

A35396) in 1× PBS at room temperature for 20 minutes and quenched with 100 mM Tris-

HCl pH7.4 (Alfa Aesar J62848) at room temperature for 5 minutes. We note these post-

fixation steps allow the stabilization of antibodies and samples during the heating step 

required for DNA FISH preparation. After the post-fixation steps, the samples were washed 

with 1xPBS three times and air dried upon removing the custom silicon chamber. 

 

After the sequential immunofluorescence preparation above, the samples were prepared for 

RNA seqFISH steps. The custom-made flow cells (fluidic volume ~30 μl), made from glass 

slide (25 x 75 mm) with 1 mm thickness and 1 mm diameter holes and a PET film coated on 

both sides with an acrylic adhesive with total thickness 0.25 mm (Grace Bio-Labs 

RD481902), were attached to the prepared coverslips. The samples were rinsed with 4× SSC 

and hybridized with RNA seqFISH primary probe pools (1-10 nM per probe), 4 nM Nsmce2 

fiducial marker probe, and 10 nM polyT LNA oligo (Qiagen) in a 50% hybridization buffer 

consisting of 50% formamide (Invitrogen AM9342), 2× SSC, and 10% (w/v) dextran sulfate 

(Millipore 3710-OP). The hybridization was performed at 37°C for 48-72 hours in a humid 

chamber. After primary probe hybridization, the samples were washed with a 55% wash 

buffer consisting of 55% formamide, 2× SSC, and 0.1% Triton X-100 at room temperature 

for 30 minutes and rinsed three times with 4× SSC. Then the samples were imaged for RNA 

seqFISH as described below (see ‘Sequential imaging’).  

 

After RNA seqFISH imaging, the samples were prepared for DNA seqFISH+ steps. The 

samples were taken from the microscope, rinsed with 1× PBS, and incubated with 100-fold 

diluted RNase A/T1 Mix (Thermo Fisher EN0551) in 1× PBS at 37°C for 1 hour to digest 

RNA species and remove RNA seqFISH+ primary probes. The samples were then rinsed 

three times with 1× PBS and three times with a 50% denaturation buffer consisting of 50% 

formamide and 2× SSC and incubated at room temperature for 15 minutes. Following the 

incubation, the samples were heated on the heat block at 90°C for 5 minutes in the 50% 

denaturation buffer with aluminum sealing tapes (Thermo Scientific 232698) on the inlet and 
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outlet of the custom chamber. Immediately after heating, the samples were rinsed with 

4× SSC and hybridized with a DNA seqFISH+ primary hybridization buffer consisting of 

two-layer DNA seqFISH+ probes (~0.2 nM per probe), rDNA probes (~10 nM per probe), 

~1 μM LINE1 probe, ~1 μM SINEB1 probe, 100 nM 3632454L22Rik fiducial marker probe 

(Integrated DNA Technologies), 35% formamide, 2× SSC, and 10% (w/v) dextran sulfate 

(Millipore 3710-OP) at 37°C for 5-7 days in a humid chamber. After the hybridization step, 

the samples were washed with a 35% wash buffer, consisting of 35% formamide, 2× SSC, 

and 0.1% Triton X-100, for six times and then incubated at room temperature for 15 minutes, 

followed by rinsing for three times with 4× SSC.  

 

After DNA seqFISH+ hybridization, the samples were further processed to stably maintain 

DNA seqFISH+ primary probes on the chromosomal DNA during imaging routines. First, 

250 nM global ligation bridge oligo(Takei, Yun, et al. 2021; Takei, Zheng, et al. 

2021)(Integrated DNA Technologies) was hybridized in a 20% hybridization buffer 

consisting of 20% formamide, dextran sulfate (Sigma D4911), and 4xSSC at 37°C for 2 

hours. The samples were then washed three times with a 12.5% wash buffer consisting of 

12.5% formamide, 2× SSC, and 0.1% Triton X-100, incubated at room temperature for 5 

minutes, and rinsed three times with 1× PBS. Next, to perform ligation between 5’- and 3’-

end of the DNA seqFISH+ primary probes with the hybridized ligation bridge oligo, the 

samples were incubated with 20-fold diluted Quick Ligase in 1× Quick Ligase Reaction 

Buffer from Quick Ligation Kit (NEB M2200) supplemented with additional 1 mM ATP 

(NEB P0756) at room temperature for 1 hour. The samples were then washed with the 12.5% 

wash buffer and rinsed three times with 1× PBS. After the ligation steps above, the samples 

were further processed with amine modification and post-fixation to synergistically stabilize 

the probes as we demonstrated before (Takei, Yun, et al. 2021). For the amine modification, 

the samples were rinsed with 1× Labeling Buffer A and incubated with 10-fold diluted Label 

IT Amine Modifying Reagent in 1× Labeling Buffer A from Label IT Nucleic Acid 

Modifying Reagent (Mirus Bio MIR 3900) at room temperature for 45 minutes. After three 

rinses with 1× PBS, the samples were post-fixed with 1.5 mM BS(PEG)5 in 1× PBS at room 

temperature for 30 minutes and quenched with 100 mM Tris-HCl pH7.4 at room temperature 

https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/SxSTX
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for 5 minutes. Then the samples were washed with the 55% wash buffer at room 

temperature for 5 minutes, rinsed with 4× SSC for three times, and stored in 4× SSC at 4°C 

until the imaging for DNA seqFISH+ and sequential immunofluorescence (see ‘Sequential 

imaging’). 

 

Tissue slice experiment 

All animal care and experiments were carried out in accordance with Caltech Institutional 

Animal Care and Use Committee (IACUC) and NIH guidelines. 6-week-old C57BL/6J 

female mice from The Jackson Laboratory (Stock No: 000664 | B6) were used for the 

cerebellum tissue slice experiments. The brain samples and coverslips with 15-20 μm coronal 

sections of the cerebellum were prepared similarly to those described before(Takei, Zheng, 

et al. 2021).  

 

The tissue slice experiments were performed similarly to the cell culture experiment (see 

‘Cell culture experiment’) and our previous mouse cortex experiment (Takei, Zheng, et al. 

2021) with some modifications. In brief, the permeabilization and sequential 

immunofluorescence were performed as described before (Takei, Zheng, et al. 2021). After 

the sequential immunofluorescence preparation, custom-made flow cells (fluidic volume 

about 40 μl) were attached to the coverslips. Then the RNA seqFISH preparation and 

imaging were performed similarly to the cell culture experiment with a different set of non-

barcoded mRNA seqFISH primary probes including mouse cerebellum marker genes 

(Kozareva et al. 2021), intron seqFISH+ probes, and polyT LNA oligo (Qiagen). After RNA 

seqFISH imaging, the samples were prepared for DNA seqFISH+ steps similarly to the cell 

culture experiment except the extended 90°C heating time to 6 minutes, followed by DNA 

seqFISH+ and sequential immunofluorescence imaging as described below (see ‘Sequential 

imaging’). 

 

Automated microscope setup 

All imaging experiments were performed with the confocal fluorescence imaging platform 

and fluidics delivery system as described before (Shah et al. 2018; Eng et al. 2019; Takei, 
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Yun, et al. 2021; Takei, Zheng, et al. 2021). In brief, the microscope (Leica DMi8) was 

equipped with a confocal scanner unit (Yokogawa CSU-W1), a sCMOS camera (Andor Zyla 

4.2 Plus), a 63× oil objective (NA = 1.40, Leica 11506349), Borealis beam conditioning unit 

(Andor), a motorized stage (ASI MS2000), fiber coupled lasers (635, 561, 488, and 405 nm) 

from CNI and Shanghai Dream Lasers Technology, and filter sets from Semrock. In addition, 

the custom-made automated sampler was set up for automated buffer exchange coupled with 

hybridization and imaging routines (see ‘Sequential imaging’) to move to the well of the 

designated hybridization buffer corresponding to each hybridization round from a 2.0-mL 

96-well plate (Corning 3960). The hybridization buffer and other buffers were moved 

through a multichannel fluidic valve (IDEX Health & Science EZ1213-820-4) to the custom-

made flow cell with a syringe pump (Hamilton Company 63133-01). The automated fluidics 

delivery and imaging were controlled by a custom-written script in μManager (Edelstein et 

al. 2010). 

 

Sequential imaging 

The seqFISH hybridization and imaging routines were performed as described previously 

(Shah et al. 2018; Eng et al. 2019; Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021). In 

brief, the sample with the custom-made flow cell was connected to the automated fluidics 

system on the microscope. The field of views (FOVs) for the images were registered based 

on the DAPI-based nuclear staining. Then imaging of RNA seqFISH+ as well as sequential 

immunofluorescence for some targets was performed with the sequential hybridization and 

imaging routines described below. The samples were then disconnected from the fluidics 

system and proceeded to the DNA seqFISH+ preparation (see ‘Cell culture experiment’ and 

‘Tissue slice experiment’). Next, the registered FOVs for RNA seqFISH+ were loaded and 

manually shifted to find the same cells in the original FOVs, followed by DNA seqFISH+ 

and sequential immunofluorescence imaging using the sequential hybridization and imaging 

routines described below. 

The sequential hybridization and imaging routines were performed at room temperature on 

the automated confocal microscope. Briefly, for the sequential hybridization routine, the 

serial hybridization buffer, which consisted of a mixture of two or three unique readout 
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probes (10-250 nM) with different fluorophores (Alexa Fluor 647, Cy3B or Alexa Fluor 

488) and 10% EC buffer (10% ethylene carbonate (Sigma E26258), 10% dextran sulfate 

(Sigma D4911) and 4× SSC), was picked up from a 96-well plate and incubated in the flow 

cell for 20 minutes. The samples were then washed with 1 mL of a 4× SSCT buffer (4× SSC 

and 0.1% Triton-X), 330 μL of the 12.5% wash buffer, and 200 μL of 4× SSC, followed by 

a staining with about 200 μL of the DAPI solution consisting of 5 μg/mL DAPI (Sigma 

D8417) and 4× SSC for 30 seconds. The sample was then imaged with an anti-bleaching 

buffer consisting of 50 mM Tris-HCl pH 8.0 (Invitrogen 15568025), 4× SSC, 3 mM Trolox 

(Sigma 238813), 10% D-glucose (Sigma G7528), 100-fold diluted catalase (Sigma C3155), 

1 mg/mL glucose oxidase (Sigma G2133). After the image acquisition detailed below, the 

sample was washed with 1 mL of the 55% wash buffer for 1 minute to strip off readout 

probes, followed by an additional incubation for 1 minute and rinsing with 4× SSC. Those 

serial hybridization, imaging, and signal extinguishing routines were repeated until the 

completion of all designated rounds.  

 

The imaging conditions were determined based on the previous studies (Takei, Yun, et al. 

2021; Takei, Zheng, et al. 2021). Briefly, snapshots were acquired per fluorescent channel 

per field of view with 250 nm z-steps over 6 μm for cell culture experiments and 12 μm for 

tissue slice experiments. The pixel size for x and y is 103 nm. RNA seqFISH+ imaging was 

performed with 635 nm, 561 nm, and 488 nm fluorescent channels by omitting a 405 nm 

fluorescent channel to prevent a potential damage on the nuclei prior to DNA FISH (Takei, 

Zheng, et al. 2021) except for a DAPI alignment hybridization round in the end. The readout 

probes for fiducial markers were also included in the first 2 fluorescent channels to allow 

image registration at the subpixel resolution. For the tissue slice experiments, polyA staining 

was performed in the 488 nm fluorescent channel. DNA seqFISH+ imaging was performed 

with 635 nm, 561 nm, 488 nm, and 405 nm fluorescent channels with DNA seqFISH+ targets 

in the first 3 fluorescent channels and DAPI staining in the 405 nm fluorescent channel. The 

readout probes for fiducial markers were also included in the first 3 fluorescent channels to 

allow image registration at the subpixel resolution. Imaging for sequential 

immunofluorescence was similarly performed with 635 nm, 561 nm, 488 nm, and 405 nm 
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fluorescent channels, staining primary antibody targets in the first 2 fluorescent channels, 

fiducial markers in the third fluorescent channel, and DAPI in the last 405 nm fluorescent 

channel. At the beginning and end of the imaging rounds, fiducial marker images only with 

fiducial markers were obtained in the first 3 fluorescent channels for image registration. 

Furthermore, at the end of all imaging routines, images were manually checked and 

problematic imaging rounds such as off-focus and intensity saturation were repeated. 

 

CUT&Tag 

CUT&Tag(Kaya-Okur et al. 2019) experiments were performed according to the protocol of 

Epicypher CUTANA Direct-to-PCR CUT&Tag Protocol (v1.7) with minor modifications. 

In brief, for each condition, approximately 100,000 cells were harvested from mESCs or 

NMuMG cells by centrifugation at 600 x g for 3 minutes at room temperature. Then nuclear 

extraction was performed with nuclear extraction buffer, consisting of 20 mM HEPES pH 

7.4 (Teknova H1030), 10 mM KCl (Invitrogen AM9640G), 0.1% Triton X-100 (Sigma-

Aldrich 93443), 0.5 mM spermidine (Epicypher 21-1005), and 1× cOmplete EDTA-free 

Protease Inhibitor Cocktail (Sigma 11873580001) in nuclease-free water (Invitrogen 

10977015), on ice for 10 minutes, followed by centrifugation at 600 x g for 3 minutes. 

Isolated nuclei were aliquoted to 8-strip PCR tubes containing Concanavalin A (ConA) 

coated magnetic beads (Epicypher 21-1401) activated by bead activation buffer, consisting 

of 20 mM HEPES pH 7.4, 10 mM KCl, 1 mM CaCl2 (Sigma-Aldrich 21115), and 1 mM 

MnCl2 (Sigma-Aldrich M1787), and incubated at room temperature for 10 minutes. Nuclei-

bound ConA beads were buffer exchanged by using a magnetic rack to 50 μl of cold antibody 

150 buffer (20 mM HEPES pH 7.4, 150 mM NaCl, 0.5 mM spermidine, 1× cOmplete EDTA-

free Protease Inhibitor Cocktail, 0.01% digitonin, and 2 mM EDTA (Invitrogen AM9260G)) 

containing primary antibodies (RNAPIISer5-P (Cell Signaling 13523S), H3K27me3 (Cell 

Signaling 9733S), or IgG (Epicypher 13-0042)) at a 50-fold (RNAPIISer5-P, H3K27me3) 

or 100-fold dilution (IgG), and incubated overnight at 4°C. The samples were then incubated 

with 0.5 μg of anti-rabbit IgG secondary antibody (Invitrogen 31212) in 50 μl of digitonin 

150 buffer (20 mM HEPES pH 7.4, 150 mM NaCl, 0.5 mM spermidine, 1× cOmplete EDTA-

free Protease Inhibitor Cocktail, and 0.01% digitonin) at room temperature for 30 minutes, 
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followed by two washes with cold digitonin 150 buffer. The samples were then incubated 

with 50 μL of digitonin 300 buffer (20 mM HEPES pH 7.4, 300 mM NaCl, 0.5 mM 

spermidine, 1× cOmplete EDTA-free Protease Inhibitor Cocktail, and 0.01% digitonin) 

containing 2.5 μL of pAG-Tn5 (EpiCypher 15-1017) at room temperature for 1 hour in each 

tube, followed by two washes with cold digitonin 300 buffer. The samples were then 

incubated with 50 μL of tagmentation buffer (10 mM MgCl2 (Invitrogen AM9530G) in 

digitonin 300 buffer) in each tube at 37°C for 1 hour, followed by a wash with TAPS buffer, 

consisting of 10 mM TAPS buffer pH 8.5 (Boston BioProducts BB-2375) and 0.2 mM 

EDTA. Then 5 μL of SDS release buffer (10 mM TAPS buffer pH 8.5 and 0.1% SDS 

(Invitrogen 24730020)) was added to each tube, followed by an incubation at 58°C for 1 hour 

and a subsequent addition of 15 μL of SDS quench buffer (0.67% Triton X-100). Then 

sequencing library was prepared by adding 2 μL of i5 and i7 primers (Integrated DNA 

technologies, 10 μM stock each) and 25 μL of Q5 High-Fidelity 2× Master Mix (NEB 

M0492S) to each tube, followed by an amplification for 15 (RNAPIISer5-P and H3K27me3) 

or 17 (IgG control) PCR cycles. The libraries were then purified by using 1.2× magnetic 

beads (Omega Bio-Tek M1378) according to the manufacturer’s protocol. After the libraries 

were quantified and pooled, paired-end sequencing of CUT&Tag libraries was performed on 

the Illumina NextSeq 2000 sequencing systems using NextSeq 1000/2000 P2 Reagents (100 

Cycles) v3. 

  

CUT&RUN 

CUT&RUN(Skene & Henikoff 2017; Skene et al. 2018) experiments were performed 

according to the protocol of CUTANA ChIC/CUT&RUN kit (EpiCypher 14-1048) with 

modifications of buffer compositions based on the Genome Organization using CUT and 

RUN Technology (GO-CaRT)(Ahanger et al. 2021), which successfully generated Lamin 

B1 profiles in differentiated cells. In brief, nuclear extraction was performed with 

approximately 100,000 cells from E14-mESCs or NMuMG cells for each condition, 

similarly to the CUT&Tag protocol described above, with modified nuclear isolation 

buffer(Ahanger et al. 2021), consisting of 10 mM HEPES pH7.4, 10 mM KCl, 0.1% 

IGEPAL CA-630 (Sigma-Aldrich I8896), 0.5 mM Spermidine, 1× cOmplete EDTA-free 
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Protease Inhibitor Cocktail. Isolated nuclei were aliquoted to 8-strip PCR tubes 

containing activated ConA beads and incubated overnight at 4°C with primary antibodies 

(H3K4me3 (Cell Signaling 9751T), H3K9me3 (Diagenode C15410193), Lamin B1 (Abcam 

ab16048), IgG (Epicypher 13-0042)) at a 50-fold dilution (H3K4me3, H3K9me3, Lamin B1) 

or 100-fold dilution (IgG) in a 50 μL of blocking buffer, consisting of a wash buffer (20 mM 

HEPES pH7.4, 150 mM NaCl, 0.1% BSA (Invitrogen AM2616), 0.5 mM Spermidine, 1× 

cOmplete EDTA-free Protease Inhibitor Cocktail) with 2 mM EDTA. The samples were then 

washed twice with cold wash buffer and incubated with 50 μL of the wash buffer containing 

2.5 μL of pAG-MNase (EpiCypher 15-1016) at room temperature for 10 minutes in each 

tube, followed by two washes with the cold wash buffer. The samples were then incubated 

in the wash buffer supplemented with 2 mM CaCl2 at 4°C for 2 hours, followed by an 

incubation with a stop buffer (Epicypher 21-1003) at 37°C for 10 minutes. Then DNA 

fragments were purified from supernatant using the CUTANA DNA Purification Kit 

(EpiCypher 14-0050), followed by sequencing library preparation using CUTANA 

CUT&RUN Library Prep Kit (EpiCypher 14-1002) according to the manufacturer’s protocol 

with 12 PCR cycles. After the libraries were quantified and pooled, paired-end sequencing 

of CUT&RUN libraries was performed on the Illumina NextSeq 2000 sequencing systems 

using NextSeq 1000/2000 P2 Reagents (100 Cycles) v3. 

 

Nuclear and cytoplasmic segmentation 

The 3D nuclear and 2D cytoplasmic segmentation for individual cells were performed with 

a generalist, deep learning-based segmentation method, Cellpose (Stringer et al. 2021). First, 

for the nuclear segmentation, aligned and scaled images with Lamin B1, H3K27me3, 

H4K20me3, and DAPI in cell culture experiments or with BRG1, mH2A1, and DAPI in 

cerebellum tissue slice experiments were combined and used as 3D segmentation inputs for 

the Cellpose with specific parameters (flow_threshold=0.5, cellprob_threshold=0.5 in cell 

culture and flow_threshold=0.8, cellprob_threshold=0.5 in tissues). The original 3D nuclear 

segmentation labels were then eroded by 2 pixels if different labels were located at adjacent 

pixels to avoid potential misassignment. In addition, the labels whose centroids were located 

within 20 pixels from the edge of the images in x or y dimensions were filtered out. Second, 
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for the cytoplasmic segmentation in cell culture experiments, aligned polyA images with 

a maximum intensity z-projection by ImageJ were used as 2D segmentation inputs for the 

Cellpose. The obtained cytoplasmic labels were then converted to ImageJ ROIs, eroded by 

4 pixels, and manually corrected if necessary by using an ImageJ plugin, LabelsToROIs 

(Waisman et al. 2021). For cerebellum tissue slice experiments, we only computed nuclear 

labels and did not create cytoplasmic labels, similarly to our previous tissue slice experiments 

(Takei, Zheng, et al. 2021). Finally, the obtained nuclear labels and cytoplasmic ROIs were 

loaded to MATLAB, and then were matched and renumbered by comparing the centroid 

location of nuclear labels with cytoplasmic ROIs. In this step, any matches without unique 

pairs were filtered out. The nuclear properties (e.g., volume, centroid) were then extracted 

from segmented nuclear labels using regionprops3 function in MATLAB. The final nuclear 

and cytoplasmic labels for individual cells were stored as labeled images. 

 

Evaluation of nuclear preservation in live and fixed cells 

To evaluate the nuclear height differences in live and fixed cells, we performed 3D confocal 

imaging of the same nuclei in live cells as well as in fixed cells after a mock seqFISH+ 

protocol. Specifically, we used a polyclonal E14 line stably expressing a fluorescent-tagged 

nuclear pore (Nup37-EGFP). After the mock seqFISH+ protocol by following the cell culture 

experiment protocol up to the probe hybridization step, we imaged the same nuclei using 

Lamin B1 immunofluorescence using Lamin B1 primary antibody (Abcam ab16048) and 

anti-rabbit secondary antibody (Invitrogen A32732). We also note that the minimal effect of 

DNA seqFISH+ heating on nuclear structures was previously validated by comparing 

immunofluorescence signals before and after heating at voxel levels (Takei, Yun, et al. 

2021). 

 

We first used custom trained Cellpose models to find 3D segmentations for the nuclei in all 

image stacks (Stringer et al. 2021; Pachitariu & Stringer 2022). We obtained 2D masks by 

first finding 3D binary masks for each nucleus from labeled images computed by Cellpose, 

then taking the maximum projection of the nuclear binary mask along the z-axis. We used 
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the maximum projected nuclear masks to find cropping bound for each individual nucleus 

and to mask out neighboring nuclei and other unwanted signals before fitting. 

 

We analyzed the image stacks of nuclear pore GFP fluorescence in live nuclei and 

corresponding images of Lamin B1 stain in the same nuclei post mock protocol using 

gaussian fitting functions modified from a published single molecule microscopy fitting 

package, ADCG (Alternating Descent Conditional Gradient), to localize the fluorescence 

puncta in both the Nup37-GFP and Lamin B1 IF images (Boyd et al. 2017). Our package 

containing the modified code, seqFISH_ADCG.jl version 0.1.3, is hosted at 

https://github.com/CaiGroup/SeqFISH_ADCG.jl. The ADCG algorithm iteratively builds 

models of images by finding local maxima in the convolution of the image-model residuals, 

adding a new PSF to the model at the coordinates where the convolution is maximal, then 

refining the coordinate and brightness parameters of each PSF by gradient descent in each 

iteration.  

 

For the Nup37-GFP images acquired in live cells, we used our modified 3D tiled 

implementation of ADCG to fit nuclear pore puncta to obtain their xyz localization 

coordinates. Then we filtered out punctas from outside of the nuclei. Tiles were 13x13x8 

voxels (xyz) and overlapped by 3 voxels with neighbors on all sides. We aimed to set the 

manual z-threshold just outside the z-slice where the highest or lowest puncta peaks in 

intensity. For the fixed images of Lamin B1 stain, we found points on the nuclear periphery 

using only the first step of ADCG without tiling, by finding the local maxima above a 

threshold of convolution of the images with the point spread function. Performing gradient 

descent to optimize the fit coordinates and brightness of PSFs is not feasible for the Lamin 

B1 stain images because the region of Lamin B1 fluorescence is continuous. However, the 

Lamin B1 signals were bright and there was no difficulty in measuring the boundary of the 

nuclei. While the localization accuracy of the punctas are less than one z-section (250 nm), 

there is 1 z-section uncertainty on where the top of the nuclei are. Then the degree of 

difference in nuclear heights in live cells and after the mock seqFISH+ protocol was 

evaluated by using a two-sided paired t-test. 
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We note that we used laminin-coated coverslips to seed E14 cells, a condition known to 

promote monolayer formation rather than 3D colonies in mESCs. This condition has been 

used for live cell imaging of mESCs with effective cell state transitions and differentiation 

(Hormoz et al. 2016; Gu et al. 2018). We also note that the nuclear morphology of mESCs 

under this condition could differ from the nuclei extracted in suspension for single-cell Hi-C 

studies (Nagano et al. 2017; Stevens et al. 2017). 

 

seqFISH image processing 

The seqFISH image processing steps were performed based on previous studies(Takei, Yun, 

et al. 2021; Takei, Zheng, et al. 2021) with modifications. In brief, the preprocessing of the 

images were first performed by applying a flat field correction, a chromatic aberration 

correction considering full affine shifts in the X and Y dimensions (scaling, rotation, 

translation and shearing) but only translation in the Z dimension, and a background 

subtraction using the ImageJ rolling ball background subtraction algorithm with a radius of 

3 pixels. Second, pixel locations for seqFISH spots were identified by using a Laplacian of 

Gaussians filter and a 3D local maxima finder with thresholding values obtained from semi-

manual steps (Takei, Yun, et al. 2021). The identified seqFISH spot locations were further 

super-resolved at a sub-pixel resolution using a 3D radial center algorithm(Parthasarathy 

2012; Liu et al. 2013). Third, images from different hybridization rounds were aligned to the 

initial hybridization (hybridization 1) image in DNA seqFISH+ at a subpixel resolution by 

computing the translation of identified fiducial markers in each fluorescent channel as 

detailed below. To align RNA and DNA images, the alignment to correct any rotation 

computed from DAPI staining images was further applied. 

 

Using the aligned spots, seqFISH decoding was performed. The decoding of non-barcoded 

RNA seqFISH was performed based on the previous studies (Takei, Yun, et al. 2021; Takei, 

Zheng, et al. 2021). In addition, the decoding of mRNA and intron seqFISH+ was performed 

similarly to those used for 1-Mb resolution DNA seqFISH+ experiments (Takei, Yun, et al. 

2021; Takei, Zheng, et al. 2021) with appropriate pseudocolor numbers and barcode keys 
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with a voxel search radius of square root of 3 and one round of the error correction. We 

then used seed information generated during the barcode finding in seqFISH experiments for 

stringency (Shah et al. 2018; Eng et al. 2019; Takei, Yun, et al. 2021; Takei, Zheng, et al. 

2021). For mRNA seqFISH+ for cell culture experiments, we compared seed 3 and seed 4 

results of mESCs, and filtered out top 150 barcodes, including on and off targets, that are 

differentially identified between those. Then the results of at least 3 out of 4 seeds from 

remaining barcodes were used for the downstream analysis. For intron seqFISH+ 

experiments, we used the results of at least 4 out of 5 seeds as before (Shah et al. 2018). For 

the intron seqFISH+ experiments in cell culture, the distance to the nearest chromosome 

territory defined by the DNA seqFISH+ result was computed for each intron spot. Then 

intron spots within 500 nm from their own chromosome territories were considered to be 

transcription active sites (TASs), and other spots, which include introns outside TASs as well 

as false positives, were filtered out from the downstream analysis. 

 

The decoding of two-layer DNA seqFISH+ was newly developed by leveraging the previous 

25-kb resolution DNA seqFISH+ decoding approach (Takei, Yun, et al. 2021; Takei, Zheng, 

et al. 2021). At each rounded pixel location where the spots were identified in the first 60 

hybridization rounds, z-scored chromosome paint intensities for each cell and each 

hybridization round were computed for the next 36 hybridization rounds to provide 36 z-

scored chromosome paint intensity values on each spot, corresponding to 9 pseudocolors for 

4 barcoding rounds described in ‘Two-layer DNA seqFISH+ encoding strategy’. The 

barcodes for each spot were identified by matching the pseudocolors with the largest 

chromosome paint intensity z-score values in each barcoding round and compared with 

codewords identifying their genomic loci. To avoid false assignments, we dropped loci 

whose lowest chromosome paint intensity z-score in any barcoding round was above 0, or 

whose highest was below 0.5.  

 

The alignment accuracy for the images was evaluated by calculating the Euclidean distances 

of individual aligned fiducial markers between a fiducial marker reference image and each 

serial round image in 3D or given dimensions at each field of view. We note that we 
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computed x-y-z translations of matched fiducial marker spots using a subset of fiducial 

markers that were successfully aligned with a given alignment setting, similarly to our 

previous studies (Eng et al. 2019; Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021). The 

offset of each image for the alignment was then calculated by taking an average of the 

translation of the identified fiducial markers in each fluorescent channel at each field of view. 

For the fiducial markers, we used the endogenous DNA FISH spots targeting a repetitive 

region at 3632454L22Rik loci in ChrX (Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021), 

which labeled 1-2 spots per nucleus. 

 

Sequential immunofluorescence and DNA FISH image processing 

To obtain subnuclear structures for individual cells, we used sequential immunofluorescence 

and repetitive DNA FISH images. Similarly to image processing for the spot detection 

described above, the images were corrected for a chromatic aberration shift and aligned to 

the initial hybridization image in DNA seqFISH+ by computing and propagating the 

translation of identified fiducial markers in an orthogonal fluorescent channel (488 nm) that 

was not used for sequential immunofluorescence or repetitive DNA FISH. In contrast to 

image processing for the spot detection, the background subtraction processing was not 

applied to the images except for the subnuclear foci analysis below. The mean intensities for 

each nuclear label were computed for all markers using the aligned images. 

 

Subnuclear foci analysis 

The foci detection for subnuclear markers was performed as described previously (Takei, 

Zheng, et al. 2021). In brief, aligned sequential immunofluorescence and DNA FISH images 

were background subtracted using the ImageJ rolling ball background subtraction algorithm 

with a radius of 9 pixels and binarized by Yen’s auto threshold method in ImageJ for each 

slice in the z-stack, followed by filling and opening steps. The subnuclear foci properties 

were then extracted from each of the labeled objects using regionprops3 function in 

MATLAB after removing objects smaller than 20 voxels or greater than 100,000 voxels and 

assigned to corresponding cells using nuclear labels. To compare the cell-type specific 
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subnuclear foci organization, the distributions of foci properties such as foci number per 

cell, individual foci volume, and total foci volume per cell were compared across cell types. 

 

Conversion of voxel information to physical size 

After image processing steps above, we converted the voxel information of the images or 

decoded spots to physical size (0.103 μm for x and y and 0.250 μm for z) for the downstream 

analysis below. 

 

Separation of homologous chromosomes 

In our previous works (Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021), we used DBSCAN 

to cluster genomic loci into their separate chromosome copies based on their spatial location. 

This worked well in most cases, but failed in cases where two copies of a chromosome were 

close to each other. To address these cases, we developed a package, 

DNASeqFISHChromosomeAssignment.jl, that clusters loci first with DBSCAN, then 

refines the clustering by taking each locus’s spatial and genomic coordinates into account. It 

checks whether each DBSCAN cluster has a proportion of unique genomic loci below a user-

defined threshold and whether the average spatial distance between subsequent loci is above 

another user-defined threshold. If so, it splits the cluster using an algorithm that we call 

Longest Disjoint Paths (LDP). This algorithm conceptualizes chromosomes as invisible 

strings on which we can image beads at selected genomic loci with DNA seqFISH. We can 

infer which loci are on each copy of the chromosome by stringing together subsequent 

genomic loci to find a distinct path for each chromosome copy. The LDP algorithm is 

stringent and does not assign all valid loci to a chromosome copy on its own. To assign loci 

that are not included in one of the LDPs to a chromosome copy, we cluster each unassigned 

locus with the LDP that has the most loci within a user-specified search radius of the locus. 

 

Finding the multiple longest disjoint paths is an integer programming problem similar to a 

maximum flow problem. To set up the problem, the LDP algorithm first constructs a directed 

graph where nodes represent loci. Loci within a user-specified spatial radius (different for 

different datasets) and different genomic coordinates are connected by directed edges 

https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
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pointing towards the locus of larger genomic coordinates. Edges are weighted according 

to the formula 

1
𝑔! − 𝑔"

𝑒#
||%!#%"||#

&'#  

where 𝑔" and 𝑔!are genomic coordinates of the parent and child nodes of the directed edge, 

𝑟" and 𝑟! are the position vectors of parent and child nodes, and 𝜎 is a user set parameter. We 

then reduce the number of edges in the graph by finding its transitive reduction, then 

removing any outgoing edge from a node that has lower weight than that node’s lowest 

weighted outgoing edge in the transitive reduction. To finish framing the problem, we add 

imaginary source and destination nodes to the graph that respectively have outgoing or 

incoming edges of no weight connecting them to every node that represents a genomic locus.  

 

Our integer programming problem is tasked to find the maximally weighted edges that 

comprise one or more disjoint paths. To enforce that all chosen edges are part of disjoint 

paths, we add the following constraints: the solution can choose either exactly one incoming 

edge and one outgoing edge or no edges from each node representing a genomic locus and 

no more outgoing edges from the source than the maximum allowed number of 

chromosomes that can be chosen. 

 

2D and 3D visualization of DNA seqFISH+ data 

The 2D visualization of DNA seqFISH+ spots was performed as described before(Bhat et al. 

2023). Because raw DNA seqFISH+ images are barcoded and the identities of DNA spots 

are indistinguishable without decoding, we reconstructed images after decoding from 

rounded voxel location of the decoded DNA seqFISH+ spots by applying a multidimensional 

Gaussian filter (sigma = 1) with scipy.ndimage.gaussian_filter package in python and 

overlaid with aligned raw immunofluorescence images by using ImageJ. Those composite 

images are displayed in 2D either as a single z-section or a maximum z-projection of multiple 

z-sections as specified in each figure caption. 

 

https://paperpile.com/c/Ouoe5f/47cjg
https://paperpile.com/c/Ouoe5f/47cjg


 

 

132 
The 3D visualization of DNA seqFISH+ or intron seqFISH+ data was performed by using 

python API Mayavi2(Ramachandran & Varoquaux 2011). Physical coordinates of all 

detected DNA spots or decoded intron spots were stored as x, y and z numpy arrays and then 

visualized as spheres. DNA spheres were colored differently to represent different 

chromosomes or gene families, or displayed as transparent small spheres when they were 

shown as background. Intron spheres were colored by chromosome identities of each gene. 

Genomically adjacent DNA spots were connected using tubes to show the organization of a 

single chromosome. H4K20me3 immunofluorescence and MajSat DNAFISH signals were 

visualized by displaying a surface around x, y, and z coordinates with intensity z-score values 

above 2. 

 

Sequencing feature analysis in the mouse genome 

To compute GC content per 25 kb genomic bins, we created a bed file for the 25 kb bins with 

unmasked mouse mm10 reference genome and performed the computation within each bin 

using ‘bedtools nuc’(Quinlan & Hall 2010). To compute the gene density and gene length 

features per 25 kb genomic bins, we downloaded GRCm38/mm10 refGene database, 

retrieved the longest gene annotation for each gene, and mapped back the gene name and 

corresponding gene length to each 25 kb genomic bin. We then further computed the GC 

content, gene density per 100 kb and 200 kb bins. Meidan gene length per 100 kb and 200 

kb bins were defined by the median gene lengths of genes falling in those bins. 

 

Sequencing-based data processing 

CUT&Tag and CUT&RUN sequencing data produced in this study was processed using the 

nf-core/cutandrun pipeline (Ewels et al. 2020) (version 3.1) with Nextflow (Di Tommaso et 

al. 2017) (version 24.04.1). Briefly, reads were aligned to the mm10 genome using bowtie2 

(Langmead & Salzberg 2012) (version 2.4.2), keeping only reads with a minimum alignment 

q score of 20. Then, reads were masked using the mm10 blacklist from ENCODE (Amemiya 

et al. 2019). Finally, bigWig files were generated from masked alignments with 100 kb bins 

using the bamCoverage function of deeptools (Ramírez et al. 2016) (version 3.5.1). 

 

https://paperpile.com/c/Ouoe5f/b3zQy
https://paperpile.com/c/Ouoe5f/sDw81
https://paperpile.com/c/Ouoe5f/wRytI
https://paperpile.com/c/Ouoe5f/Pagy3
https://paperpile.com/c/Ouoe5f/Pagy3
https://paperpile.com/c/Ouoe5f/0VDoc
https://paperpile.com/c/Ouoe5f/dTdnk
https://paperpile.com/c/Ouoe5f/dTdnk
https://paperpile.com/c/Ouoe5f/oGJFn
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A/B compartment score file from the Hi-C matrix was downloaded from the original 

study at the 100 kb bin size for mESCs (Bonev et al. 2017) or kindly provided by Sandra 

Peiró at the 25 kb bin size for NMuMG cells (Pascual-Reguant et al. 2018). Compartment 

scores of NMuMG cells were further binned using a mean score of 25 kb bins in each 100 

kb bin. 

 

Processed bulk RNA-seq data for cell culture were obtained from NCBI GEO (accession 

GSE98674 for mESCs (Antebi et al. 2017) and accession GSE96033 for NMuMG 

cells(Pascual-Reguant et al. 2018)). For the GRO-seq analysis in mESCs (Jonkers et al. 

2014), single-end FASTQ files were downloaded from NCBI GEO (accession GSE48895) 

and first trimmed to keep the first 32 bases using the cutadapt package (version 1.18)(Martin 

2011). Trimmed reads were aligned to the mm10 genome using bowtie2 (Langmead & 

Salzberg 2012). Uniquely mapped reads were filtered and sorted before duplicate reads were 

removed using samtools (Li et al. 2009). Strand-specific RPKM bigwig signal files were 

generated using bamCoverage with filterRNAstrand option employed and step size of 10. 

Forward and reverse strand aligned gene body bed files (generated from GENCODE vM25 

annotation) were used to compute GRO-seq signal intensity within gene body regions using 

computeMatrix command of deeptools. GRO-seq intensity within ±500bp around gene 

transcription start sites was calculated using a similar approach. 

 

The processed pA-DamID data for Lamin B1 (log2-normalized LaminB1 pA-DamID scores) 

in mESCs was obtained from NCBI GEO (accession GSE181693)(van Schaik et al. 2022) 

and binned with 100 kb. The different categories lamina-associated domains (cLADs, 

fLADs, and ciLADs) from Lamin B1 DamID datasets were obtained from NCBI GEO 

(accession GSE17051) (Peric-Hupkes et al. 2010; Meuleman et al. 2013) and mm9 genomic 

coordinates of the obtained files were converted to mm10 using the UCSC Genome Browser 

program liftover. Similarly, the LADs in mESCs were obtained from the original 

study(Peric-Hupkes et al. 2010) and mm9 genomic coordinates were converted to mm10. 

 

https://paperpile.com/c/Ouoe5f/mL4AE
https://paperpile.com/c/Ouoe5f/zWHwv
https://paperpile.com/c/Ouoe5f/xU5ng
https://paperpile.com/c/Ouoe5f/zWHwv
https://paperpile.com/c/Ouoe5f/QaGqq
https://paperpile.com/c/Ouoe5f/QaGqq
https://paperpile.com/c/Ouoe5f/mZTqX
https://paperpile.com/c/Ouoe5f/mZTqX
https://paperpile.com/c/Ouoe5f/0VDoc
https://paperpile.com/c/Ouoe5f/0VDoc
https://paperpile.com/c/Ouoe5f/CP1Pn
https://paperpile.com/c/Ouoe5f/7jxc8
https://paperpile.com/c/Ouoe5f/0wh8s+aJtZi
https://paperpile.com/c/Ouoe5f/0wh8s
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The RNA & DNA SPRITE (RD-SPRITE) data was obtained from NCBI GEO (accession 

GSE151515)(Quinodoz et al. 2021). To map the distribution of specific RNA molecules 

across the genome, the frequency of interactions between each RNA transcript and distinct 

genomic regions was quantified, as detailed previously. Briefly, we partitioned the genome 

into 100 kb bins and the raw interaction frequencies were determined by counting the 

instances in which an RNA transcript and a genomic bin co-occurred within SPRITE 

clusters. We focused on SPRITE clusters containing 2-1,000 reads for our analyses, as 

previously described. For the weighted bedgraphs, raw interaction counts were applied to a 

scaling factor based on the size of the corresponding SPRITE cluster. This normalization 

involved calculating all possible pairwise interactions within a cluster and assigning each 

interaction a weight of 2/n, where 'n' represents the total number of reads within that cluster. 

 

Differential gene expression analysis 

For cell culture study, single cell intron count matrices and metadata from mESC and 

NMuMG intron seqFISH+ experiments were loaded to Seurat (Stuart et al. 2019) (version 

3.2.0). Intron counts of two biological replicates of mESC sample and one biological 

replicate of NMuMG sample were aggregated to generate normalized ensemble count data 

for mESC and NMuMG respectively. Intron differential expression analysis between mESC 

and NMuMG were performed using DESeq2 (Love et al. 2014) (version 1.26.0). Genes with 

the adjusted p-value < 0.01 and absolute value of log2 fold change > 2 were selected as 

significantly differential expressed genes. 

 

The adult mouse cerebellum single-nucleus RNA-seq (snRNA-seq) data (Kozareva et al. 

2021) was obtained from NCBI GEO (accession GSE165371). Single-cell cell-gene count 

matrices and sample meta tables were loaded to Seurat (version 3.2.0) for cell-type specific 

analysis. Gene counts of each cell cluster were aggregated for every replicate sample as 

ensemble count data for differential expression analysis using DESeq2. Differentially 

expressed genes were selected using the same criteria described above. Transcriptional 

activities across the mm10 reference genome were computed by summing averaged DEseq2 

normalized counts of identified differentially expressed genes located within each 200 kb 

https://paperpile.com/c/Ouoe5f/2QFhq
https://paperpile.com/c/Ouoe5f/51Bmr
https://paperpile.com/c/Ouoe5f/p6p67
https://paperpile.com/c/Ouoe5f/kDb21
https://paperpile.com/c/Ouoe5f/kDb21
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genomic bins within cell types. The resultant average gene counts at 200 kb bins were 

used to calculate log2-fold expression change between pairs of cell types. The same analysis 

was performed by using intron seqFISH+ measurements with cell type information defined 

by mRNA seqFISH clusters. 

 

For the cerebellum study, to compare the relationships between cell-type specific gene 

expression and immunofluorescence marker enrichment, differentially expressed 200 kb bins 

between pairs of cell types obtained above were selected, and the ensemble-averaged 

immunofluorescence marker differences between the same cell type pair were further 

calculated, similarly to our previous study (Takei, Zheng, et al. 2021). Box plots were then 

used to show the immunofluorescence marker differences between those differentially 

expressed 200 kb bins computed from intron seqFISH+ measurements. 

 

The mouse primary visual cortex scRNA-seq data(Tasic et al. 2016) were obtained from 

NCBI GEO (accession GSE71585) with the cell-type annotation and processed TPM files 

and normalized as described before (Eng et al. 2019; Takei, Zheng, et al. 2021). The obtained 

cell-type specific gene expression levels were compared with the processed chromatin 

profiles (Zenodo doi: 10.5281/zenodo.4708111) from the adult mouse cerebral cortex (Takei, 

Zheng, et al. 2021). 

 

Imaging-based transcriptomic data analysis 

The similarity of ensemble-averaged mature or nascent transcriptome profiles by mRNA 

seqFISH+ or intron seqFISH+ in cell culture was compared to those by bulk RNA-seq in 

mESCs (Antebi et al. 2017) and NMuMG cells (Pascual-Reguant et al. 2018) or GRO-seq in 

mESCs (Jonkers et al. 2014) by using Spearman correlation, confirming high consistency of 

the datasets. 

 

The preprocessing, clustering, and visualization of the imaging-based transcriptomic data 

(mRNA and intron seqFISH+) for the adult mouse brain cerebellum were performed with a 

Scanpy toolkit (Wolf et al. 2018) in Python. For mRNA seqFISH analysis, we chose genes 

https://paperpile.com/c/Ouoe5f/fpV33
https://paperpile.com/c/Ouoe5f/x3Ix2
https://paperpile.com/c/Ouoe5f/lCx3s+fpV33
https://paperpile.com/c/Ouoe5f/fpV33
https://paperpile.com/c/Ouoe5f/fpV33
https://paperpile.com/c/Ouoe5f/xU5ng
https://paperpile.com/c/Ouoe5f/zWHwv
https://paperpile.com/c/Ouoe5f/QaGqq
https://paperpile.com/c/Ouoe5f/SZr9v
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based on the max copy number of at least 20 in any cells, which yielded 49 genes. The 

gene count matrix with those genes was then used for the further clustering analysis. We then 

applied total count normalization and log(counts + 1) to transform the matrix, and performed 

the dimensional reduction with principal component analysis (PCA), followed by batch 

correction with Scanorama (Hie et al. 2019). We then constructed a nearest-neighbor graph 

with k = 40 neighbors using the top 30 principal components, followed by clustering of cells 

with Leiden clustering (Traag et al. 2019) and embedding using uniform manifold 

approximation and projection (UMAP) (Becht et al. 2018). Similarly, cells were clustered 

with Scanpy (Wolf et al. 2018) using intron seqFISH+ datasets. Briefly, we applied total 

count normalization, log(counts + 1), and scaling to transform the matrix, and performed the 

dimensional reduction with PCA and batch correction with Scanorama (Hie et al. 2019). We 

then performed construction of a nearest-neighbor graph with k = 25 neighbors using the top 

30 principal components, Leiden clustering (Traag et al. 2019), and UMAP embedding 

(Becht et al. 2018). During these steps we filtered out cells based on the nuclear volume. 

Specifically, we filtered out cells with nuclear volume less than 100 μm3 as a potential mis-

segmentation. In addition, after Leiden clustering, we filtered out cells with nuclear volume 

outside the interquartile range in each cluster to minimize the doublets. In the end, we 

obtained n = 4,015 cells, consisting of n = 1,504, 832, 518, 357, 263, 164, 113, 88, 76, 56, 

29, 15 cells from Leiden cluster 0 to 11, in two biological replicates of adult mouse brain 

cerebellum datasets (Supplementary Table 4). 

 

The clustering results for individual cell types of the mouse brain cerebellum were compared 

to the normalized pseudo-bulk snRNA-seq expression profiles of each cell type in the adult 

mouse cerebellum, computed in the original study (Kozareva et al. 2021). The gene 

expression profiles of 49 genes after the filtering described above were used for the 

comparison. The degree of similarity for each cell type between imaging and sequencing 

datasets was evaluated by using the Pearson correlation and cell-type identity was annotated 

to each mRNA seqFISH cluster. Those clusters were annotated as Granule (cluster 0, 1), 

Bergmann glia (cluster 2), MLI1 (cluster 4), Purkinje cells (cluster 6, 11), MLI2/PLI (cluster 

7), Endothelial (cluster 8), Astrocyte (cluster 9), and OPC/ODC (cluster 10). Clusters 3 and 

https://paperpile.com/c/Ouoe5f/ysqNl
https://paperpile.com/c/Ouoe5f/tTx9z
https://paperpile.com/c/Ouoe5f/pNTvh
https://paperpile.com/c/Ouoe5f/SZr9v
https://paperpile.com/c/Ouoe5f/ysqNl
https://paperpile.com/c/Ouoe5f/tTx9z
https://paperpile.com/c/Ouoe5f/pNTvh
https://paperpile.com/c/Ouoe5f/kDb21
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5 were filtered out due to the mixture of cell types. Similarly, nascent transcriptional 

profiles of the four major cell types (Granule, Bergmann glia, MLI1, and Purkinje cells) in 

the adult mouse brain cerebellum by intron seqFISH+ were compared to RNA expression 

profiles of each cell type obtained from snRNA-seq datasets (Kozareva et al. 2021), using a 

subset of genes with detected average copy number of more than 0.01 per cell per each cell 

type by intron seqFISH+. 

 

Single-cell global chromatin state analysis 

Cells were clustered by averaged intensity profiles of individual immunofluorescence 

markers in each nucleus as performed before (Takei, Zheng, et al. 2021) by using a Scanpy 

toolkit (Wolf et al. 2018) in Python. Briefly, we used the mean intensity profiles of each 

immunofluorescence marker (n = 27 markers) within each nuclear label. Similarly to the 

intron seqFISH+ analysis, we then applied total intensity normalization, log(intensity + 1), 

and scaling to transform the matrix, and then performed the dimensional reduction with PCA 

and batch correction with Scanorama (Hie et al. 2019). Then we performed construction of 

a nearest-neighbor graph with k = 40 neighbors using the top 30 principal components, 

Leiden clustering (Traag et al. 2019), and UMAP embedding (Becht et al. 2018). The 

similarity of obtained clusters was compared to those from mRNA seqFISH by computing 

the overlapped fraction between a given pair of clusters. 

 

Estimation of detection efficiency and false positive rates for two-layer DNA seqFISH+ 

The estimation of detection efficiency by two-layer DNA seqFISH+ for cycling mESCs as 

well as post-mitotic diploid cells in the female mouse brain was performed similarly to our 

previous studies (Takei et al. 2017; Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021). 

Briefly, by considering the cell cycle distribution, we estimated detection efficiency as 21.1 

± 6.8% (median ± s.d.) from 63,466 ± 20,525 (median ± s.d.) DNA spots per cell for 100,049 

loci in single male mESCs (n = 1,076 cells), while 5.0 ± 3.5% (median ± s.d.) from 9,912.0 

± 6,932.0 (median ± s.d.) counts per cell for 100,049 loci in post-mitotic Purkinje cells (n = 

113 cells) in the female mouse brain cerebellum. We note that the lower detection efficiency 

of the brain samples could be caused by incomplete coverage of entire nuclei in z direction 

https://paperpile.com/c/Ouoe5f/kDb21
https://paperpile.com/c/Ouoe5f/fpV33
https://paperpile.com/c/Ouoe5f/SZr9v
https://paperpile.com/c/Ouoe5f/ysqNl
https://paperpile.com/c/Ouoe5f/tTx9z
https://paperpile.com/c/Ouoe5f/pNTvh
https://paperpile.com/c/Ouoe5f/TdK5V+SxSTX+fpV33
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for some cells, optical clouding of spots due to smaller nuclear sizes in tissues, as well as 

reduced hybridization efficiency due to the tissue thickness and different fixation conditions. 

       

The estimation of false positive rates from two-layer DNA seqFISH+ was adapted from the 

previous DNA seqFISH+ scheme (Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021). To 

compute the false positive rates, both on-target barcodes (n = 100,049 barcodes) and blank 

barcodes, consisting of all the remaining error-correctable barcodes (n = 31,171 barcodes) in 

the codebook (Supplementary Table 2), were run simultaneously. The false positive rates 

were then computed by mean off-target barcode counts per barcode per cell divided by the 

sum of mean on- and off-target barcode counts per barcode per cell, which provided false 

rates of 1.6%, 1.8%, and 4.6% in mESCs (n = 1,076 cells), NMuMG cells (n = 384 cells), 

and cells in the adult mouse brain cerebellum (n = 4,015 cells). 

 

Estimation of detection efficiency and false positive rates for mRNA and intron 

seqFISH+ 

The detection efficiency for mRNA seqFISH+ and intron seqFISH+ was estimated relative 

to the non-barcoded sequential single-molecule FISH (smFISH) detection efficiency, 

similarly to our previous studies (Shah et al. 2018; Eng et al. 2019). Briefly, the slope of 

seqFISH+ relative to smFISH was computed either directly (intron seqFISH+) or indirectly 

with RNA-seq (mRNA seqFISH+). From the slope values, we estimated the detection 

efficiency of mRNA seqFISH+ as 78.9% and 43.0% in mESCs and NMuMG cells and the 

detection efficiency of intron seqFISH+ after removing non-transcription active site spots as 

29.1% in mESCs. For mRNA seqFISH+, 150 barcodes, which were identified as outliers 

during seed 3 and seed 4 barcode comparison (Extended Data Fig. 2) and included both on- 

and off-target barcodes, were filtered out from the analysis.  

 

The estimation of false positive rates for mRNA seqFISH+ measurements was performed 

similarly to DNA seqFISH+ measurements (Takei, Yun, et al. 2021; Takei, Zheng, et al. 

2021) by using all on- and off-target barcodes from the codebook (Supplementary Table 1) 

simultaneously during the barcode decoding step. The false positive rate was computed with 

https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/5DUDF+lCx3s
https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
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on-target (n = 1,163) and off-target (n = 2,783) barcodes (n = 150 barcodes filtered out 

as described above) for mRNA seqFISH+. The false positive rates were computed by mean 

off-target barcode counts per barcode per cell divided by the sum of mean on- and off-target 

barcode counts per barcode per cell. With this calculation, the false positive rates for mRNA 

seqFISH+ were estimated as 7.9% and 10.2% in mESCs and NMuMG cells. We note that 

the different stringency of decoding results can be chosen by using different seed values (see 

‘seqFISH image processing’). In comparison with the decoding results of at least 3 out of 4 

seeds above, more stringent results only from 4 seeds were estimated as 54.5% and 29.8% 

for detection efficiency and 3.2% and 4.8% for false positive rates in mESCs and NMuMG 

cells. 

 

For intron seqFISH+, we implemented an additional filtering step of decoded spots by 

leveraging spatial locations of intron seqFISH+ and two-layer DNA seqFISH+ spots, given 

the fact that transcription active sites are at the chromosome territories (Shah et al. 2018). 

Specifically, we filtered out intron seqFISH+ spots that are more than 0.5 μm away from 

their chromosome territories computed from DNA seqFISH+ homologous chromosomes. To 

evaluate false positive rates from the filtered spots, we pre-assigned chromosome identity to 

each of the off-target barcodes (n = 2,880) with the same composition of chromosome 

identities as on-target barcodes (n = 17,856). Then the false positive rates for intron 

seqFISH+ were similarly calculated as mRNA seqFISH+ and estimated as 7.7% and 10.0% 

in mESCs and NMuMG cells. We used the filtered-out intron seqFISH+ data for downstream 

analysis in mESCs and NMuMG cells. 

 

Pairwise spatial distance analysis for DNA loci 

We calculated mean pairwise distances between genomic loci similarly to our previous 

studies(Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021) with modifications. When 

computing pairwise distances for one chromosome, we only considered distances between 

pairs of loci that we found to be on the same homologous chromosome. To calculate mean 

distances, we count co-detections and sum pairwise distances for each loci pair in separated 

chromosomes in each cell. After evaluating for all cells, we divide the sums of pairwise 

https://paperpile.com/c/Ouoe5f/5DUDF
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distances by the number of co-detections. The pairwise spatial distance maps without 

binning (25-kb) or with 200-kb or 1.5-Mb (paint barcode) binning were used as specified in 

each figure. 

 

The 1-Mb and 25-kb DNA seqFISH+ datasets (n = 2,460, 1,200 loci, respectively) from two 

biological replicates of mESCs (Takei, Yun, et al. 2021) were obtained from the 4D 

Nucleome data portal (https://data.4dnucleome.org/) under accession number 

4DNESL2AY9CM. The median spatial distances were then compared to those from this 

study by using commonly profiled genomic loci. Characterization of cell-type specific inter-

chromosomal association was conducted on the pairwise spatial distance matrix at the 1.5-

Mb bin size (paint barcode). Spatial distances between top 5% genomic loci associated with 

each subnuclear marker or all loci annotated with specific gene families were selected in each 

cell type. In this analysis, spatial distances from pairs of intra-chromosomal loci were filtered 

out to only access spatial distances of pairs of inter-chromosomal loci. Random 5% of the 

genomic loci were selected by bootstrap 1,000 times and inter-chromosomal spatial distances 

from random selected genomic loci were extracted to compare with marker specific spatial 

distances in each cell type, similarly to previously described(Arrastia et al. 2021). Within 

cerebellum cell types, inter-chromosomal distances of 1.5-Mb paint blocks containing 

speckle peaks, broad RNAPIISer5-P peaks, transcriptionally active and inactive long genes 

were calculated respectively. For each category of paint blocks, expected inter-chromosomal 

distance was calculated as the median of 1,000 rounds of bootstrapping of randomly sampled 

paint blocks. Inter-chromosomal distances within each category minus the expected inter-

chromosomal distance was used as the normalized inter-chromosomal distances. 

 

Normalization for pairwise spatial distance analysis 

The two-layer DNA seqFISH+ spatial distance maps typically contain boundaries between 

loci encoded in different chromosome blocks in different fluorescent channels (Extended 

Data Fig. 3l-t, Supplementary Notes). We note that these boundaries do not affect all the 

analysis performed in the paper, such as A/B compartment analysis, spatial chromatin 

https://paperpile.com/c/Ouoe5f/SxSTX
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profiling, and spatial distance analysis (>= 1 Mb bin sizes), which were further validated 

by orthogonal datasets in mESCs and NMuMG cells. 

 

To remove these block patterns from two-layer DNA seqFISH+ spatial distance maps at 25 

kb bins, we corrected the ensemble-averaged spatial distance distribution shift due to the 

block barcoding scheme as discussed in Supplementary Notes. According to the two-layer 

barcoding scheme, each genomic locus was assigned two coordinates, genomic coordinate 

(1D genomic location) and block coordinate (block identity). Thus, for a given genomic locus 

pair i,j, there are three distances: genomic distance Gij, block distance Bij and spatial distance. 

The pairwise distances of loci pairs with identical genomic and block distances at single 

allele level followed a gamma distribution. Consider all loci pairs i and j with a genomic 

distance Gij=n, for such pairs, two block distances were possible: Bij = b1 or b2. Two gamma 

distributions were fitted to the distribution of pairwise distances at the single-cell level, 

represented as P(i,j∣Gij =n, Bij =b1) and P(i,j∣Gij =n, Bij =b2). These two distributions were 

shifted to the generalized distance distribution P(i,j∣Gij =n) by percentile mapping using 

probability density functions. The median spatial distance map between pairs of intra-

chromosomal loci using shifted distances were calculated as the normalized distance maps. 

 

Radial organization analysis for DNA loci and subnuclear foci within the nucleus 

The radial organization of DNA loci within the nucleus was evaluated by computing the 

convex hull surface of the DNA loci similarly to previous studies (Liu et al. 2020; Su et al. 

2020; Payne et al. 2021). To compute the radial positioning of DNA loci within the nucleus, 

we constructed a 3D convex hull for each nucleus using the DNA seqFISH+ spots per cell 

using the SciPy spatial library in Python. At this step, cells with less than 100 DNA seqFISH+ 

spots were filtered out. We then calculated the spatial distance of individual spots from the 

nuclear periphery by calculating the distance of intersection from the convex hull surface to 

the centroid of the nucleus through the individual spots. The radial scores of genomic loci 

were similarly computed by scaling the spatial distance from the nuclear center to nuclear 

periphery as 0 to 1. The computed median distance profiles from the nuclear periphery in 

each cell type were compared by Pearson or Spearman correlation with Lamin B1 chromatin 

https://paperpile.com/c/Ouoe5f/w1hMR+gRlM8+wgMpy
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profiles of the corresponding cell type, which are independently measured and typically 

enriched at the nuclear periphery, with 100-kb binning for the cell culture datasets and with 

200-kb binning for the adult mouse brain cerebellum datasets. Similarly, the radial 

organization of subnuclear foci within the nucleus was computed using the centroid voxel 

location of each of the foci.  

  

The similarity of radial positioning of genomic loci among cell types in the adult mouse brain 

cerebellum was computed by Pearson correlation of median radial scores across cell types 

with 200-kb binned loci. The top 5% variable loci in radial positioning between neurons and 

glial cells were computed by using the radial profiles of neuronal cells (Purkinje cells, MLI1, 

MLI2/PLI) and glial cells (Bergmann glia, Astrocytes) as input. Out of 629 variable loci, we 

identified 409 loci moved interior of the nucleus in neurons versus 220 loci in glial cells. We 

then compared the degree of overlap between those variable loci and Purkinje H4K20me3-

associated loci or mCH desert loci (Lister et al. 2013). 

 

Imaging-based chromatin profiling analysis 

We used z-score normalization of each chromatin marker (antibodies and ncRNAs) in each 

3D nuclear label to compute voxel resolution chromatin profiling, similarly to those 

previously described (Takei, Yun, et al. 2021; Takei, Zheng, et al. 2021). Briefly, the 

intensity values for each marker obtained from aligned sequential immunofluorescence or 

RNA FISH or DNA FISH images were normalized by computing intensity z-scores at 

individual voxels per each nuclear label and then the z-scored intensity profiles for each 

marker were computed at rounded voxel locations where the final decoded DNA spots were 

identified by DNA seqFISH+. This approach allows us to investigate matrices consisting of 

DNA loci by subnuclear markers in individual cells. Specifically, each single cell was 

presented as DNA loci to subnuclear marker matrix, where each detected 25-kb DNA locus 

is represented as a vector with features including the normalized z-scores of subnuclear 

marker intensities, as well as radial positioning inside the nucleus.  

 

https://paperpile.com/c/Ouoe5f/LAxaD
https://paperpile.com/c/Ouoe5f/SxSTX+fpV33
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Then DNA loci and their associated features were binned into 100-kb, 200-kb, or 1.5-Mb 

(paint barcode). Single cells were then grouped according to cell type to calculate the 

ensemble-averaged level of subnuclear marker scores per each cell type. For cell culture 

study, median scores of each feature associated with DNA bins from mESCs or NMuMG 

cells were calculated to get the ensemble-averaged marker intensity z-score at 25-kb, 100-

kb, 200-kb or 1.5-Mb bins. For the cerebellum data, single cells assigned to different cell 

types were grouped and median scores of each feature were calculated per each cell type at 

200-kb and 1.5-Mb bins. For both cell culture and cerebellum studies, the rare case of DNA 

bins which were filtered out during radial score calculation were also filtered out in this 

analysis.   

 

The fraction of loci chromatin profiles were also calculated at 25 kb, 100 kb, and 200 kb bin 

sizes. For each cell type and genomic bin, the fraction of loci with the z-score higher than 

1.5 for each immunofluorescence marker or spatial distance from the nuclear periphery 

smaller than 500 nm was calculated as a fraction score. Both median and fraction of loci 

ensemble profiles were used to assess the practical resolution for the cell culture study. We 

note that without special indication, ensemble chromatin profiles refer to median z-score 

profile in this paper. 

 

We also performed imaging-based chromatin profiling by calculating the closest spatial 

distances between segmented subnuclear foci (see ‘Subnuclear foci analysis’) and DNA loci. 

This analysis showed a high degree of similarity between z-score-based SF3A66 chromatin 

profiles and physical distances from SF3A66 foci across cell types in the adult mouse 

cerebellum. We also confirmed that our DNA seqFISH+ protocol preserved the subnuclear 

structures in the tissue sections by showing the high degree of similarity of DNA locus 

organization around nuclear speckle markers (Rnu2 by RNA FISH and SF3A66 by 

immunofluorescence), which were imaged before and after DNA seqFISH+ preparation, 

respectively. In addition, as the nucleolar marker Fibrillarin had a low signal-to-noise ratio 

in tissue experiments, we used ITS1 RNA, another nucleolar marker, for the chromatin 

profiling and visualization of the nucleolus in tissue experiments. We note this low signal-
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to-noise ratio was not observed in cell culture experiments. 

 

To validate the imaging-based chromatin profiles in this study, we compared those with 1-

Mb resolution imaging-based chromatin profiles by DNA seqFISH+ obtained from the 

original study (Takei, Yun, et al. 2021) and other sequencing-based datasets such as 

CUT&Tag, CUT&RUN, and pA-DamID (van Schaik et al. 2022). The comparison of 

chromatin profiles between DNA seqFISH+ (n = 2,460 loci) and two-layer DNA seqFISH+ 

was performed at commonly profiled 25-kb genomic loci that are on average ~1 Mb apart, 

while those between two-layer DNA seqFISH+ and sequencing datasets were with 100 kb 

binning. The degree of similarity between datasets was evaluated by Pearson or Spearman 

correlation. In addition, to further validate the genomic loci to the nuclear lamina association, 

we compared the enrichments of imaging-based Lamin B1 profiles from mESCs across 

previously identified lamina-associated domains (Peric-Hupkes et al. 2010; Meuleman et al. 

2013). See ‘Sequencing-based data processing’ for the details of sequencing-based data 

source and processing. 

 

To evaluate the practical resolution of  imaging-based chromatin profiles in this study, we 

used both ensemble fraction and median z-score profiles in mESCs. For the nuclear speckle 

associations, the SF3A66 imaging profiles were compared with the speckle marker RD-

SPRITE (Quinodoz et al. 2021) profiles with 100 kb bins. Local maxima in the imaging-

based SF3A66 fraction and median z-score profiles were detected using the 

scipy.find_peaks() function and were compared to the local maxima in the RD-SPRITE 

Rn7sk profiles. The distance from each detected local maxima in the imaging track to the 

closest local maxima in the RD-SPRITE Rn7sk track was calculated to evaluate the similarity 

between the imaging and sequencing profiles. The peak similarity within the sequencing 

method was calculated using the above method for RD-SPRITE Rn7sk and Malat1 profiles 

as a positive control. The closest distance of randomized peaks in both fraction or median 

imaging profiles to the detected peaks in RD-SPRITE Rn7sk profiles were calculated as 

negative controls. 

 

https://paperpile.com/c/Ouoe5f/SxSTX
https://paperpile.com/c/Ouoe5f/7jxc8
https://paperpile.com/c/Ouoe5f/0wh8s+aJtZi
https://paperpile.com/c/Ouoe5f/0wh8s+aJtZi
https://paperpile.com/c/Ouoe5f/2QFhq
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For three chromatin markers (RNAPIISer5-P, H3K4me3, and H3K27me3), we compared 

the imaging-based fraction and median z-score immunofluorescence profiles with the 

CUT&Tag profiles in mESCs generated in this study. Peaks were identified using 

scipy.find_peaks() function in the 25-kb binned imaging profiles for these chromatin 

markers. Due to the higher noise level in the 25-kb binned chromatin profiles, we assessed 

the reliability of the detected peaks using a downsampling bootstrap analysis. In this 

procedure, 80% of mESCs were randomly selected, and both fraction and median z-score 

profiles were calculated from the selected 80% of cells, as previously described. This 

downsampling was repeated 500 times, and peaks were detected in each iteration's fraction 

and median z-score profiles. The percentage of times each 25-kb bin was identified as a peak 

was then calculated. Bins detected as peaks in at least 80% of the bootstrap iterations were 

considered true peaks for median z-score and 50% threshold was used for fraction profile, 

and their peak widths were calculated using the function scipy.signal.peak_widths(). These 

confident peak widths typically ranged from 50-kb to 150-kb sizes across markers. 

Chromosome X was excluded from this analysis due to its high noise. Furthermore, the 

CUT&Tag profiles were smoothed using various window sizes of 2–48 (corresponding to 

50–1200 kb), and the Spearman correlation between the smoothed sequencing and the 

imaging profiles was computed for each chromosome. The elbow changing point of the 

correlation curve was decided using the KneeLocator function in the python package Kneed. 

 

Lamina associated domains (LADs) were detected using scipy.signal.find_peaks() function 

in both fraction and median z-score chromatin profiles in mESCs (25 kb and 100 kb bins) 

and NMuMG cells (100 kb bins) for Lamin B1 marker as well as for spatial distance from 

the nuclear periphery. In both mESCs and NMuMG cells, Spearman correlation of fractional 

distance from the nuclear periphery profiles with pA-DamID profile(van Schaik et al. 2022) 

were calculated with 100 kb bins. For spatial distance profiles to the nuclear periphery 

distance in mESCs with 25 kb bins, the Spearman correlation of smoothed pA-DamID 25-

kb bin profiles from bin window sizes of 2–48 (corresponding to 50–1200 kb) were 

calculated in each chromosome, and the elbow changing point of the correlation curve was 

detected using python package Kneed as described above. LAD peaks and peak width were 

https://paperpile.com/c/Ouoe5f/7jxc8
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calculated with 100-kb binned Lamin B1 and spatial distance to nuclear periphery 

profiles in mESCs as described in “Peak definition of chromatin profiles”. For each detected 

LAD in imaging-based chromatin profiles, the percentage of bins overlapped with DamID 

(Peric-Hupkes et al. 2010) LADs in mESCs was calculated. 

 

For nucleolar associated domains (NADs), the fraction and median z-score imaging-based 

chromatin profiles of Fibrillarin marker were compared to the nucleolar ITS1 enrichment 

profiles from RD-SPRITE (Quinodoz et al. 2021) as well as the enrichment scores from 

NAD-seq (Bizhanova et al. 2020) in mESCs. Pearson correlation coefficients were calculated 

between these profiles across the genome as well as within individual chromosomes. 

 

Downsampling of mESCs was performed to assess the robustness of the fraction and median 

z-score chromatin profiles. Measured mESCs were randomly downsampled to 25, 50, 100, 

250, and 500 cells, with 30 repetitions for each group. The 100-kb binned fraction and 

median z-score chromatin profiles were calculated for the chromatin markers SF3A66, 

RNAPIISer5-P, Lamin B1, H3K27me3, H3K9me3, and Fibrillarin. For each iteration of 

downsampling, the Pearson correlation between the downsampled chromatin profile and the 

original ensemble chromatin profile from all 1,076 cells measured was calculated for each 

chromatin marker. The robustness of the chromatin profiles was evaluated based on the 

changes of Pearson correlation coefficients as a function of the number of cells.  

 

We note that the dynamic range of fluorescence intensities for a given marker can influence 

the interpretation of the marker enriched DNA loci. For example, H3K9me3 staining 

intensities are predominantly enriched in the chromocenter in mESCs (Extended Data Fig. 

4g), and therefore the marker enrichment on DNA loci reflects their spatial proximity to the 

chromocenter (Fig. 1g, Extended Data Fig. 4j). Conversely, for markers with a more diffuse 

nuclear localization (e.g., H3K9ac, RNAPIISer5-P), the marker enrichment on DNA loci 

may indicate the relative level of enrichment across genomic regions. In addition, we note 

that local enrichment or depletion of a marker on a DNA locus could be masked out if the 

DNA locus is spatially close to bright foci of the marker (e.g., H3K9me3 staining at the 

https://paperpile.com/c/Ouoe5f/0wh8s
https://paperpile.com/c/Ouoe5f/2QFhq
https://paperpile.com/c/Ouoe5f/KySQi
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chromocenter) in single cells. Furthermore, we note that in our imaging-based chromatin 

profiling, the fluorescence intensity z-scores were determined from total voxels per marker 

in each nucleus and the baseline of the values could be different from the other orthogonal 

datasets, depending on their normalization methods. 

 

In addition, while the fraction of loci processing improved the similarity with orthogonal 

sequencing-based datasets for certain markers (e.g. Lamin B1, Fibrillarin), there are several 

advantages to using the median z-score or average spatial distances. First, the median z-score 

chromatin profiling is more robust when fewer spots are detected (Extended Data Fig. 10f, 

g). For example, in some cerebellar cell types, chromatin profiles are more robustly 

reproduced using the median z-score based on the number of spots detected per defined bin. 

Second, the median z-score and average spatial distance calculations capture information 

even when loci are far from subnuclear markers. For certain markers (e.g., Lamin B1 or the 

nuclear periphery), these profiles can provide qualitatively different information. For 

example, in the adult mouse brain cerebellum datasets, using average spatial distances from 

the nuclear periphery enables us to identify DNA loci closer to the nuclear interior. The 

fraction of loci data cannot distinguish loci that are more toward the nuclear interior if they 

do not contact with the nuclear periphery. The average positioning has also been used 

previously to identify 3D genome reorganization during postnatal development in the mouse 

brain (Tan et al. 2021). Given these factors, as well as the overall consistency in top enriched 

loci regardless of the processing methods, we used the z-score-based chromatin profiling for 

the adult mouse brain cerebellum. 

  

The similarities of genome-wide chromatin profiles between cell types in the adult mouse 

cerebellum were evaluated by computing the Pearson correlation coefficient of each marker 

between given pairs of cell types with 200 kb binning. In addition, the similarities of 

chromatin profiles between pairs of markers in each cell type were evaluated by comparing 

the overlap of top 5% genomic loci associated with each marker in each cell type. 

 

https://paperpile.com/c/Ouoe5f/lmkec
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To compare differential association between two markers in each cell type, the top 5% 

differentially associated bins were selected. The ensemble-averaged z-score intensity of two 

markers were plotted along the x- and y- axis, respectively. We then moved a slope = 1 line 

along the x or y axis until 5% of the bins above or lower this line were identified. Similarly, 

SF3A66 z-score change and RNAPIISer5-P z-score change between two cell types were 

plotted along the x- and y-axis, respectively. A slope = 4 line was moved along the SF3A66 

axis until 5% of the bins were on the left or right side of this line to define the top 5% SF3A66 

differentially associated bins. A slope = 0 line was moved along the RNAPIISer5-P axis until 

5% of the bins were above or below the line to define the 5% RNAPIISer5-P differentially 

associated bins. 

 

We also computed compartment scores (Nichols & Corces 2021) by using selected 

immunofluorescence markers including H3K27ac, H3K27me3, H3K9me3, and Lamin B1 

in mESCs and NMuMG cells. For each chromosome, correlation matrices of mESC and 

NMuMG 100 kb ensemble-averaged immunofluorescence z-scores for the above 4 markers 

were computed. The first eigenvectors of the above correlation matrices were calculated as 

immunofluorescence A/B compartment scores. The sign of the compartment scores was 

checked for each chromosome and multiplied by -1 to flip the signs if necessary to correct 

the direction of the eigenvector of the entire chromosome. The similarity of Hi-C and 

imaging datasets were then compared by computing Spearman correlation using 100-kb bins. 

 

To compare the enrichment score of immunofluorescence markers between mouse cell lines, 

the enrichment scores for each dataset were first normalized by percentile to avoid the 

difference across different methods. Differential scores were calculated by subtraction of 

percentile scores between mESCs and NMuMG cells within sequencing-based or imaging-

based data, and then Pearson's correlation was calculated to examine the similarity of 

differential association between sequencing-based and imaging-based methods. The changes 

of A/B compartment scores between mouse cell lines obtained from Hi-C or two-layer DNA 

seqFISH+ were similarly computed and Pearson’s correlation of differential A/B 

https://paperpile.com/c/Ouoe5f/8E9R3
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compartment scores between Hi-C and two-layer DNA seqFISH+ was calculated to 

compare the similarity of the biological changes captured by those orthogonal methods. 

 

Peak definition of chromatin profiles 

To characterize genome fragments associated with various subnuclear markers, peak calling 

was performed on ensemble-averaged 200-kb binned z-score tracks for both cell culture and 

cerebellum studies. One dimension ensemble-averaged z-scores of each subnuclear marker 

were mean-centered within chromosomes first, then scipy.signal.find_peaks function was 

performed with manually decided “prominence” and “height threshold” parameters to call 

out the peaks. Overlapping peaks were merged to one broader peak. For the nuclear periphery 

distance, negative mean centered distance was used due to its negative correlation with 

lamina-associated domains. Genomic bins characterized as Purkinje H4K20me3-associated 

peaks (see ‘Characterization of H4K20me3-associated genomic loci’) were compared to the 

peak definition in other cell types for H4K20me3 and nuclear periphery. Then the transition 

of H4K20me3 bins into other type of repressive bins in other cell types were visualized using 

Sankey plot using pySankey package. 

 

The LAD calling of imaging-based Lamin B1 profiles was similarly performed using 100 kb 

bins with slightly optimized parameters for mESCs and NMuMG cells. Specifically, for the 

ensemble-averaged Lamin B1 z-scores, the baseline was first elevated by 0.3, and peaks were 

called using python scipy.signal.find_peaks package, with parameters as follows: 

prominence of 0.1, height threshold of 0.1, relative height to be 0.4. For ensemble-averaged 

spatial distances from the nuclear periphery, the ensemble track was mean centered within 

the chromosome, flipped and baseline elevated by 0.3. Peaks were called using python 

scipy.signal.find_peaks package, with parameters as follows: prominence of 0.1, height 

threshold of 0.1, relative height to be 0.35. 

 

To classify active subnuclear organization, RNAPIISer5-P peaks spanning more than 2 Mb 

were defined to be broad peaks and rest peaks were defined to be sharp peaks. SF3A66 peaks 

overlapped with RNAPIISer5-P peaks were assigned to be speckle peaks. Similarities of 
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speckle peaks, broad and sharp RNAPIISer5-P peaks across cerebellum cell types were 

calculated by defined overlapping score: the sum of the fractions of the number of 

overlapping peaks in all peaks in both cell types and then divided by 2. To compare to the 

active subnuclear markers, we computed repressive peaks using peaks at least in one of the 

following repressive markers (nuclear periphery, H4K20me3, or H3K27me3). We note that 

we arbitrarily chose 2 Mb as a size of cut-off of the RNPIISer5-P broad and sharp domain. 

The differences of the GC content between broad and sharp domains were well conserved 

regardless of the cut-off values of 1 Mb, 2 Mb, and 4 Mb. 

 

Characterization of cell-type-specific long genes 

To characterize long gene specific association with subnuclear markers, genes with > 200 kb 

were defined as long genes and DNA bins containing long genes were selected for further 

analysis. Pseudo-bulk normalized mRNA counts of different cell types in the adult mouse 

brain cerebellum provided by snRNA-seq study(Kozareva et al. 2021) were used to represent 

mRNA expression level. For each long gene, the maximum RNAPIISer5-P normalized z-

scores among the gene spanned 200kb DNA bins were calculated as long gene RNAPIISer5-

P level. Pearson correlation between normalized mRNA counts and RNAPIISer5-P z-scores 

of each long gene across cell types was calculated. Among 867 defined long genes, 132 genes 

were identified with a Pearson correlation coefficient higher than 0.8. To further evaluate 

other subnuclear marker profiles in long gene regions, jaccard index between peaks of other 

subnuclear markers and RNAPIISer5-P peaks in long gene DNA bins were calculated using 

scipy.spatial.distance. Specific immunofluorescence markers (SOX2, HDAC1, ATRX, 

Fibrillarin, RNAPIISer2-P) were filtered out from this analysis due to the cell-type specific 

staining or low signal-to-noise ratio. 

 

To compare the relationship between RNAPIISer5-P enrichment and open chromatin region 

at the long gene loci, the processed file of genome length for the open chromatin regions by 

ATAC-seq in Purkinje cells was obtained from the original study(Kwak et al. 2021). Then 

the Purkinje RNAPIISer5-P enrichment at the cell-type specific RNAPIISer5-P long gene 

loci (Pearson’s r > 0.8) with or without a highly open conformation containing >20,000-bp 

https://paperpile.com/c/Ouoe5f/kDb21
https://paperpile.com/c/Ouoe5f/WWSYB
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peaks (Kwak et al. 2021) (n = 17, 263 genes, respectively) were compared by two-sided 

Wilcoxon’s signed rank-sum test. 

 

The relative spatial distances of the cell-type specific RNAPIISer5-P long gene loci (n = 132) 

and neighboring loci from the nuclear periphery were calculated by comparing their 

ensemble-averaged spatial distances from the nuclear periphery in each cell type. 

Specifically, 1 Mb genomic spans centered by each of the long gene loci were decided as the 

center regions first. Then flanking regions were defined as 1 Mb up-stream and down-stream 

of the center regions. Relative spatial distance from the nuclear periphery was calculated by 

using the mean distance to the nuclear periphery of the flanking regions minus the 

corresponding mean distance to the nuclear periphery of the gene center regions. The 

computed relative spatial distance from the nuclear periphery versus scaled snRNA 

expression (Kozareva et al. 2021) were compared for the long genes in each cell type in the 

adult mouse cerebellum. The long genes with scaled expression larger than 1 were considered 

as transcriptionally active in each cell type, and the relative spatial distance from the nuclear 

periphery between transcriptionally active and inactive genes were compared by two-sided 

Wilcoxon’s signed rank-sum test. In addition, radial positioning of transcriptionally active 

and inactive long gene loci were also compared together with that of speckle peaks and broad 

RNAPIISer5-P peaks. 

 

To identify Purkinje-specific H3K27me3-associated long genes, the cell-type-specific 

H3K27me3-associated loci were first identified by comparing H3K27me3 profiles between 

pairs of cell types in the adult mouse brain cerebellum (see ‘Imaging-based chromatin 

profiling analysis’). Then Purkinje-specific H3K27me3-associated long genes (n = 116 

genes) were obtained by finding long genes (>200 kb) annotated in the Purkinje-specific 

H3K27me3-associated loci relative to MLI1, MLI2/PLI, or Bergmann glia cells. The 

developmental gene expression profiles of those long genes were further examined by using 

a differential gene expression analysis with a provided processed data (Stoyanova et al. 

2021), identifying 36 out of 46 developmental differentially expressed genes, which is a 

https://paperpile.com/c/Ouoe5f/WWSYB
https://paperpile.com/c/Ouoe5f/kDb21
https://paperpile.com/c/Ouoe5f/epK8x
https://paperpile.com/c/Ouoe5f/epK8x
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subset of Purkinje-specific H3K27me3-associated long genes, are down-regulated from 

P0 to adult Purkinje cells. 

 

Characterization of H4K20me3-associated genomic loci 

To examine H4K20me3-associated genomic locus, 200-kb DNA bins identified as 

H4K20me3-associated peaks that are not assigned as MajSat peaks in the analysis under 

‘Peak definition of chromatin profiles’ were further processed. H4K20me3-associated DNA 

bins with a normalized z-score >= 1 in Purkinje cells were defined to be H4K20me3-

associated bins, others are defined to be weak H4K20me3-associated bins. To compare the 

other repressive marker enrichments at the H4K20me3-associated loci in Purkinje cells, 

quantile-normalized immunofluorescence marker z-scores were compared. 

 

To compare the gene expression levels of these H4K20me3-associated genomic loci, the 

genes with the whole gene body inside the H4K20me3-associated genomic loci were 

selected. The expression levels of those genes measured by snRNA-seq (Kozareva et al. 

2021) were shown as box plots along with those inside the RNAPIISer5-P and speckle peaks 

for comparison in each cell type. 

 

To characterize gene families and functions associated with the H4K20me3 marker, gene 

prefixes were extracted by cropping gene name symbols before any digit or symbol character. 

Recurrent gene prefixes were considered to be gene family, and then enrichment of gene 

families in H4K20me3-associated locus were computed at 200kb bins. Number of 

H4K20me3-associated bins in Purkinje cells that overlap with DNA bins containing SSDR 

genes (Lilue et al. 2018; Lilue et al. 2019) or DNA bins previously identified as mCH desert 

(Lister et al. 2013) were further counted by converting mm9 genomic coordinates provided 

by the original studies to mm10 using the UCSC Genome Browser program liftover. 

  

Individual H4K20me3 profiles in Purkinje cells were further investigated to characterize the 

chromatin organization of individual alleles at strong and weak H4K20me3-associated DNA 

bins. H4K20me3-associated peaks enriched with Vmn and Olfr gene families were selected 

https://paperpile.com/c/Ouoe5f/kDb21
https://paperpile.com/c/Ouoe5f/kDb21
https://paperpile.com/c/Ouoe5f/ncLjv+mAJVS
https://paperpile.com/c/Ouoe5f/LAxaD
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to represent strong and weak H4K20me3-associate genomic locus respectively. The 

genomic region spanning up to 10 Mb upstream or downstream of the beginning or end Vmn 

or Olfr H4K20me3-associated peaks were selected to separate homologous chromosomes. 

H4K20me3 and Lamin B1 immunofluorescence intensity z-scores in those regions from all 

alleles detected in Purkinje cells were collected, then visualized as heatmaps. 

 

The individual spatial clusters formed by these H4K20me3-associated loci were profiled 

directly in single cells. The H4K20me3-associated loci were extracted in each cell, and then 

each spatial cluster was defined as a group of H4K20me3-associated loci with pairwise 

spatial distance smaller than 0.45 μm. Specifically, a spatial pairwise distance matrix of 

H4K20me3-associated loci was calculated for each single cell. Each of the DNA loci was 

considered as a node, and nodes with spatial distance smaller than 0.45um were considered 

as spatially connected, forming a graph in each single cell. Each connected component in 

this graph was called using the function “networkx.connected_components”, and was 

considered as a cluster.  Clusters with less than 10 DNA loci were filtered out to reduce noise. 

The thresholding of 0.45 μm was determined since 0.45 μm is the peak of intra-chromosomal 

distance across all cell types, filtering out clusters with less than 10 loci was equivalent to 

maintaining the top 10% of clusters across cell types. To examine the inter-chromosomal 

association within each spatial cluster, the entropy of chromosomal distribution was 

calculated as an indicator of inter-chromosomal mixture score using the “scipy.stats.entropy” 

function with base = 2. Note that if a cluster contains only one chromosome, the entropy is 

0, and as the entropy increases, the cluster becomes more mixed with different chromosomes. 

The co-occurrence frequency of different chromosomes was calculated within different cell 

types. We also calculated the number and the composition of chromosomes for each cluster 

in each cell type. Specifically, the percentage of clusters formed by single chromosomes, two 

chromosomes, and three or more chromosomes among all clusters were calculated in each 

cell type. Then top 5 triplet clusters that occurred most frequently in each cell type were 

further visualized to show cell-type specific higher-order genome organization with the 

H4K20me3-associated loci.  
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Gene ontology analysis 

Gene ontology (GO) analysis was performed using ClusterProfiler (3.18.1) (Yu et al. 2012) 

under R (4.0.3) platform. Specific pairs of inputs below were formed into a gene list with 

corresponding annotations, and comparison between different annotations were conducted 

using “compareCluster” function using default settings, then gene ontology terms were 

further combined using “simplify” function at 0.7 cutoff. Visualizations of pathway 

enrichment were plotted by calling the “dotplot” function built in ClusterProfiler. 

To compare the pathway enrichment between mESC and NMuMG cells, GO analysis was 

performed on the differentially expressed genes identified by intron seqFISH+. To compare 

the speckle and RNAPII associated gene pathways, genes overlapping with top 5% of 

SF3A66 or RNAPIISer5-P genomic loci in each major cell type in the adult mouse 

cerebellum were selected to compare the pathway enrichment. To obtain pathway 

enrichment associated with H3K27me3, genes overlapping with top 5% genomic loci 

associated with H3K27me3 or Lamin B1 in each major cell type in the adult mouse 

cerebellum were used for GO comparison. Similarly, genes located in Purkinje H4K20me3 

or H4K20me3 weak genomic loci were extracted and compared for the GO enrichment. 200 

kb binned genomic loci were used in this analysis for the tissue experiments. 

 

Gene category annotations 

The list of housekeeping genes that are conserved between mouse and human was obtained 

from the Housekeeping and Reference Transcript Atlas database (Hounkpe et al. 2021). The 

list of synaptic genes in human was obtained from the SynGO database (Koopmans et al. 

2019) and converted to mouse orthologous genes by using Ensembl BioMarts (Kinsella et 

al. 2011). Similarly, the list of autism spectrum disorder (ASD) candidate genes in human 

was obtained from the SFARI Gene database(Abrahams et al. 2013) (gene score 1, 2) and 

converted to mouse orthologous genes. 

 

Validation tissue slice experiment and analysis 

To validate the robustness of the two-layer DNA seqFISH+ results, the adult brain 

cerebellum tissue slice experiments were repeated with less multiplexed DNA seqFISH. 

https://paperpile.com/c/Ouoe5f/xiyeM
https://paperpile.com/c/Ouoe5f/z9E56
https://paperpile.com/c/Ouoe5f/anDoI
https://paperpile.com/c/Ouoe5f/anDoI
https://paperpile.com/c/Ouoe5f/4VIl3
https://paperpile.com/c/Ouoe5f/4VIl3
https://paperpile.com/c/Ouoe5f/57I00
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Specifically, we designed an increased number of 100 primary probes per 25 kb locus for 

a higher sensitivity for selected 22 genomic regions (Supplementary Table 5) using mm10 

newBalance DNA FISH probes at PaintSHOP resources (Hershberg et al. 2021) and then 

those sequences were attached with four identical readout probe binding sequences shared 

within each of the 25 kb loci to sequentially image each locus at a time. Those primary probes 

were generated from an oligo array (Twist Bioscience), as described above (see ‘Primary 

probe design and synthesis’). The validation tissue slice experiments were performed 

similarly to the protocol above (see ‘Tissue slice experiment’) using a different set of primary 

probes as described above as well as a subset of primary antibodies (Supplementary Table 

4) by omitting RNA seqFISH steps. The images were taken under the same condition as the 

two-layer DNA seqFISH+ datasets. 

 

The image processing was performed similarly to those described above (see ‘Nuclear and 

cytoplasmic segmentation’ and ‘seqFISH image processing) except that DAPI and Lamin 

B1 images were used as 3D nuclear segmentation inputs for the Cellpose (Stringer et al. 

2021). In addition, to distinguish Purkinje cells and Bergmann glia in the Purkinje cell layer, 

the Purkinje cell layers were manually segmented as a ROI in each image using ImageJ and 

a subset of nuclear labels whose xy centroids are within the ROI were considered for further 

processing. The cell type identities in this layer were then determined by comparing obtained 

mean normalized HDAC1 intensities per replicate and nuclear volumes. 

 

The detection efficiency of the validation experiments was estimated as 60.0% for 22 

genomic loci (n = 128 and 518 cells for Purkinje cells and Bergmann glia from two biological 

replicates), which is an order of magnitude higher compared to the ~5% efficiency in the 

two-layer DNA seqFISH+ tissue experiments (see ‘Estimation of detection efficiency and 

false positive rates for two-layer DNA seqFISH+’). 

 

The imaging-based chromatin profiles were generated by using the z-score normalization 

(see ‘Imaging-based chromatin profiling analysis’). The degree of similarity between the 

validation experiment datasets and two-layer DNA seqFISH+ datasets (200 kb bins) were 

https://paperpile.com/c/Ouoe5f/RSHkO
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compared by computing Pearson correlation coefficients. The distributions of z-score 

values for each marker for each locus were shown as boxplots for each cell type. In addition, 

the distributions of spatial distances for pairs of genomic loci, including control locus pairs 

with similar genomic distances, were shown for both inter-chromosomal and intra-

chromosomal associations. We note that computed intra-chromosomal spatial distances 

contain those between homologous chromosomes as we did not separate homologous 

chromosomes within a cell. 

 

Statistics and reproducibility 

Cells shown in Fig. 1 and Extended Data Figs. 2-7 are representatives of 1,076 cells from 

two biological replicates of mESCs or 384 cells from one biological replicate of NMuMG 

cells. Cells shown in Figs. 2-6 and Extended Data Figs. 6-16 are representative of 4,015 cells 

from two biological replicates of the adult mouse brain cerebellum. 

 

2.9 Appendix 

 

Analysis and Normalization of Technical Artifacts in Two-layer DNA seqFISH+ 

In this appendix, we will discuss the potential mechanism and normalization of the technical 

noise by two-layer DNA seqFISH+, which is observed as block patterns in median spatial 

distance maps between pairs of intra-chromosomal loci. At the same time, we show that the 

technical noise does not affect the chromatin profiling analysis that we performed. 

In Section 1, we show that the block pattern results from the down-sampling of genomic loci 

near block boundaries, rather than distortions or aberrations in the data. In Section 2, we 

show that the chromatin profiles are not affected by the technical noise using simulated 

down-sampling (Section 2.1), and two-layer DNA seqFISH+ datasets (Section 2.2). Finally, 

we introduce a normalization method to remove the technical noise in two-layer DNA 

seqFISH+ median distance maps (Section 3). We then discuss the limitations of  the 

proposed normalization method (Limitations), and discuss potential solutions to recover or 
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avoid down-sampled genomic loci in the future when using two-layer barcoded DNA 

seqFISH+ in section Discussions. 

Down-sampling of genomic loci reproduces the technical noise in spatial distance maps 

The two-layer DNA seqFISH+ intra-chromosomal pairwise distance maps showed a block 

pattern of squares, matching the 60-loci (1.5-Mb) chromosome blocks used for the two-layer 

barcoding (Appendix Fig. 1a). Here, we provide multiple lines of evidence that these block 

patterns result from the down-sampling of genomic loci near block boundaries, rather than 

from distortions or aberrations in the data. 

 

Consistent with down-sampling, the genomic loci near the beginning and end of each 60-loci 

block have lower detection rates on average compared to those in the center of the blocks 

(Appendix Fig. 1b). In the two-layer barcoding scheme, the identity of each 60 contiguous 

25-kb DNA loci were decoded with the fluorescence intensity of the chromosomal block 

paint. In this barcoding scheme, it is possible that the genomic loci in higher paint intensity 

regions are more likely to be decoded than the loci in lower paint intensity regions in 3D 

spaces in the images. This could potentially lead to lower detection efficiency of genomic 

loci near the beginning and end of each chromosomal block, which are on-average more 

likely to be at the periphery of each chromosomal paint in the images (Appendix Fig. 1c). As 

a consequence, the down-sampling of DNA bins near the block boundary in 3D space led to 

enrichment of apparent increase in interactions between loci in the center of the paint blocks 

in the pairwise interaction maps. 

 

To confirm this mechanism of block pattern formation, we used the previously published 25-

kb DNA seqFISH+ data(Takei et al. 2021) as ground truth for a down-sampling simulation. 

The original DNA seqFISH+ dataset profiled 60 continuous 25-kb genomic loci for each 

target genomic region in mESCs. We divided those 60 genomic loci into two groups 

consisting of two contiguous 30-loci blocks and calculated the spatial distance maps of pairs 

of genomic loci. In the down-sampling simulation, we dropped 20% of detected DNA spots 

furthest from the centroids of each of the computed blocks  to simulate the lowered detection 

https://paperpile.com/c/DYabjs/xH9MW
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efficiency at the edge of paint signals in the two-layer barcoding scheme (Appendix Fig. 

1d). The down-sampled data recapitulated the technical noise features that were observed in 

the two-layer DNA seqFISH+ data. First, we observed a decrease in the number of detected 

DNA bins at the start and end segments of artificial 30-loci blocks after the down-sampling 

DNA spots based on the spatial location relative to the chromosomal paint center (Appendix 

Fig. 1e), similarly to the two-layer DNA seqFISH+ datasets. Second, we found that the 

spatial distance maps calculated from the down-sampled data show a block pattern in 

accordance with the genomic location of the simulated down-sampling (Appendix Fig. 1f).  

 

Future works will be focused on ameliorating the down-sampling effect by developing deep-

learning image processing tools to allow recovery of genomic loci near boundaries with 

lower paint intensities.    
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Appendix Fig. 1| The down-sampling simulation of ground truth data can 

recapitulate technical noise features observed in spatial distance maps by two-layer 

DNA seqFISH+.  

a, Representative Hi-C map (Bonev et al. 2017) (left) and median spatial distance map 

between pairs of intra-chromosomal loci by the two-layer DNA seqFISH+ in mESCs (right). 

The left and bottom lines with green and red colors mark block boundaries used for the two-

layer DNA seqFISH+ barcoding. b, Average detection efficiency of 25-kb genomic loci with 

locus identities from 1-60 within 1.5-Mb blocks used in the two-layer DNA seqFISH+ 

barcoding. c, Illustration showing the decrease of fluorescence intensity of a paint block 

(left), and DNA spots located at the periphery of the paint block are dropped (right). d, 

Illustration of down-sampling simulation on 60 genomic loci. The 60 continuous 25-kb 

genomic loci are splitted into the first and second 30-loci blocks, and identified genomic loci 

furthest from block centroid are dropped in simulated down-sampling. e, Total counts of 

detected 25-kb genomic loci with identities from 1-60 across 20 chromosomes before and 

after down-sampling in DNA seqFISH+ data (Takei et al. 2021). The green and red bars 

mark simulated block boundaries. f, Representative median spatial distance maps between 

pairs of intra-chromosomal loci before and after down-sampling in DNA seqFISH+ data 

(Takei et al. 2021). The green and red bars above distance matrices mark simulated block 

boundaries. n = 1,076 cells from two biological replicates of mESCs by two-layer DNA 

seqFISH+ in this study and n = 446 cells from two biological replicates of mESCs by original 

DNA seqFISH+ (Takei et al. 2021).  
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Down-sampling does not affect chromatin profiling analysis 

In order to test the effect of the down-sampling of genomic loci at the paint block boundaries 

on the imaging-based chromatin profiles, we examined the changes of chromatin profiles by 

two-layer DNA seqFISH+ at the block boundaries. Specifically, we plotted RNAPIISer5-P 

and SF3A66 profiles in Purkinje cells and Bergmann glia at 200-kb resolution, a resolution 

we used in this study. Notably, those tracks showed sub-megabase patterns with no 

discontinuities bias at the block border (Appendix Fig. 2a), confirming that the down-

sampling of genomic loci does not have a significant effect on the chromatin profiling 

analysis in our two DNA seqFISH+ data.  

 

Furthermore, we used the published DNA seqFISH+ datasets along with sequential 

immunofluorescence(Takei et al. 2021) to simulate the effect of down-sampling on 

chromatin profiling analysis, similarly to Section 1. First, we computed z-score normalized 

fluorescence intensities of major immunofluorescence markers (SF3A66, RNAPIISer5-P, 

H3K9ac and H3K27me3) of the published DNA seqFISH+ datasets as we performed in the 

two-layer DNA seqFISH+ analysis. Median ensemble z-scores of selected 

immunofluorescence markers for each genomic loci were calculated for original and down-

sampled data at 25-kb, 50-kb, and 100-kb resolutions. Simulated down-sampled 

immunofluorescence z-scores of most genomic loci fell within the 95% confidence interval 

(98.85% for 25-kb resolution, 96.32% for 100-kb resolution, 94.66% for 200-kb resolution) 

(Appendix Fig. 2b). Those results further support that the down-sampling of genomic loci 

does not have a significant effect on the chromatin profiling analysis in DNA seqFISH+ data. 

 

Down-sampling does not affect A/B compartment analysis  

We further confirmed that A/B compartments were not affected by the down-sampling by 

comparing our results with published Hi-C datasets in mESCs and NMuMG cells(Bonev et 

al. 2017; Pascual-Reguant et al. 2018). Specifically, we computed the A/B compartment 

scores using selected immunofluorescence markers including H3K27ac, H3K27me3, 

H3K9me3, and LaminB1 as described in Methods (see “Imaging-based chromatin profiling 

analysis” section). We then examined the changes of computed A/B compartment scores at 

https://paperpile.com/c/DYabjs/xH9MW
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the block boundaries used for the two-layer DNA seqFISH+ barcoding. Notably, we did 

not observe the bias at the paint borders, suggesting that the down-sampling does not affect 

the A/B compartment scores we obtained. 

 

 
Appendix Fig. 2| Representative examples showing that down-sampling does not affect 

chromatin profiling and A/B compartment analysis.  

a, Representative examples of RNAPIISer5-P and SF3A66 chromatin profiles by two-layer 

DNA seqFISH+ in Purkinje and Bergman cells in 10 Mb regions. Colored lines show 

different 60-loci blocks. b, Representative examples of chromatin profiling for each marker 

before and after down-sampling computed from mESC 25-kb DNA seqFISH+ data(Takei et 

al. 2021). c, Representative examples of A/B compartment scores (y-axis) computed from 

two-layer barcode DNA seqFISH+ chromatin profile, compared with Hi-C computed A/B 

compartment scores(Bonev et al. 2017; Pascual-Reguant et al. 2018). Colored lines show 

different 60-loci blocks. n = 1,076 cells from two biological replicates of mESCs and n = 

384 cells from one biological replicate of NMuMG cells by two-layer DNA seqFISH+ in 

https://paperpile.com/c/DYabjs/xH9MW
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this study and n = 446 cells from two biological replicates of mESCs by original DNA 

seqFISH+(Takei et al. 2021). 

 

Normalization to remove block patterns in the spatial distance maps 

Since the block pattern in the spatial distance maps we described in Section 1 can be 

quantified as a pairwise distance shift related to block distance, we tested whether correcting 

distance shifts will remove the block pattern in spatial distance maps. According to the two-

layer barcoding scheme, each genomic locus was assigned two coordinates: genomic 

coordinate (1D genomic location) and block coordinate (block identity). Thus, for a given 

genomic locus pair i,j, there are three distances: genomic distance Gij, block distance Bij, and 

spatial distance. By plotting spatial distance of pairs of genomic loci as a function of genomic 

distance, we found that the spatial distance is smaller for any given locus pair i,j with a fixed 

genomic distance when the pair loci are located at closer blocks(Appendix Fig. 3a). We 

considered that this distance shift results from the down-sampling of genomic loci due to the 

two-layer barcoding scheme as discussed in Section 1.  

 

To correct the spatial distance shift, we corrected the distribution of pairwise distances at the 

single chromosome level. Genomic locus pairs separated by a fixed genomic distance could 

be located in genomically closer blocks (or the same block) or genomically further blocks. 

We shifted both the distance distributions for pairs located at closer blocks and further blocks 

to an intermediate distribution (Appendix Fig. 3b), and recalculated a normalized distance 

map as detailed in Methods (see “Pairwise spatial distance analysis for DNA loci” section).  

 

By applying this normalization method, we showed that the block patterns were successfully 

removed both from simulated down-sampled DNA seqFISH+ data and two-layer barcoded 

DNA seqFISH+ data in mESCs. In the published DNA seqFISH+ data, simulated down-

sampled distance matrix was recovered after correction (Appendix Fig. 3c). In the two-layer 

DNA seqFISH+ data, block patterns disappeared in normalized distance matrices (Appendix 

Fig. 3d), reflected in a better bin-wise correlation with corresponding distance maps 

computed by DNA seqFISH+ data (Appendix Fig. 3e), and Hi-C contact matrices in diagonal 

https://paperpile.com/c/DYabjs/xH9MW
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plot (Appendix Fig. 3f). The bin-wise correlation of Hi-C contact matrices and corrected 

distance matrices improved after normalization (from -0.833 to -0.910 for genomic locus 

closer than 1.5 Mb, from -0.885 and -0.919 for genomic locus closer than 3 Mb, 

Chromosome 1 is shown in Appendix Fig. 3g). Genome-wide bin-wise correlation with Hi-

C did not change significantly, since the block patterns are originally only notable for close 

genomic locus pairs (<5 Mb).  
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Appendix Fig. 3| Normalization of block patterns can correct ensemble-averaged 

spatial distance maps.  

a, Median physical distance computed from two-layer DNA seqFISH+ as a function of 

genomic distance at 25-kb resolution, separated by different block distances between genome 

loci pairs for chromosome 6 in mESCs. b, Pairwise distance probability density function of 

genomic loci pairs with genomic distance (Gi,j) at 0.75 Mb, 2.25 Mb, 3.75 Mb, 5.35 Mb 

separated by different paint block distances (Bi,j) (left panel). Right panel illustrates the fitted 

gamma distribution (left) and merged gamma distribution (right). c, Normalization of 

simulated data. Median spatial distance between pairs of intra-chromosomal loci from 

simulation of DNA seqFISH+ at 25-kb resolution, original (left), down-sampled (middle) 

and normalized down-sampled data (right). Red and green bars above distance matrices mark 

block boundaries. d, Physical distance as a function of genomic distance at 25-kb resolution 

after normalization of two-layer DNA seqFISH+ data. e, Concordance of DNA seqFISH+ 

distance map with original (upper panel) and corrected (lower panel) two-layer DNA 

seqFISH+ distance map at 25-kb resolution. For each panel, bottom left shows DNA 

seqFISH+ distance map, top right shows original or normalized two-layer DNA seqFISH+ 

map. f. Concordance between corrected two-layer DNA seqFISH+ (top right) and Hi-C maps 

(bottom left) at 25-kb resolution. Upper panel shows entire chromosomes, bottom panel 

shows 10 Mb genomic regions. g, Bin-wise correlation of Hi-C maps to original (left) and 

corrected (right) two-layer DNA seqFISH+ distance matrices on chromosome 1 at 25-kb 

resolution in mESCs. Upper panels show the correlation of genomic loci separated within 

1.5-Mb, the center panels use genomic loci separated up to 3 Mb, and the lower panels use 

genomic loci separated up to 5 Mb. n = 1,076 cells from two biological replicates of mESCs 

by two-layer DNA seqFISH+ in this study and n = 446 cells from two biological replicates 

of mESCs by original DNA seqFISH+ (Takei et al. 2021).  

 

Limitations 

For cerebellum data, due to the difficulty in separating alleles compared to cultured cell data, 

the distance distribution across genomic locus pairs with a fixed genomic distance appeared 

as a mixture of gamma and gaussian distributions. Thus, the normalization approach could 

https://paperpile.com/c/DYabjs/xH9MW
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not be applied to cerebellum data. While the normalization procedure can remove the 

block effects in the ensemble-averaged pairwise distance matrices, to recover the loci near 

block boundaries in single cells, future works can use deep-learning image processing tools 

to ameliorate the effect of the lower paint intensities near the boundaries in the two-layer 

barcoding schemes. 

 

Discussions 

The block pattern from  down-sampling of genomic loci near block boundaries is the main 

reason that we were not able to use the median spatial distance maps for downstream analysis 

like loop detection. The normalized spatial distance maps were not accurate enough  for 

reconstructing A/B compartments and chromosome loops, and we were not able to apply the 

normalization method to cerebellum tissue. If we can recover the down-sampled genomic 

loci, we may be able to reconstruct more accurate spatial distance maps without the block 

pattern, fully leveraging the comprehensive information in  the dataset. 

One solution to recover the down-sampled genomic loci is to segment the aggregated blob 

fluorescence signals of each chromosome block, aligning the masks of block signals from all 

rounds of hybridizations, and decode the block identities at block level. In this way, by 

changing the segmentation threshold, we are able to control to a certain extent how much of 

the boundary is included. Another solution is to use machine learning or deep learning to 

train a classifier on a down-sampling simulation of ground truth data, like in section 1, and 

apply it to the two-layer barcoded data.  

 

Lastly, we observed that the down-sampling of genomic loci near block boundaries has 

minimal impact on the chromatin profiling. Since distance matrix calculations require 

simultaneous detection of genomic locus pairs, they are highly sensitive to detection 

efficiency drops (impact scales quadratically). In contrast, chromatin profiling is the z-score 

normalized fluorescence intensities for each genomic locus, thus is relatively resistant to 

moderate down-sampling effects, explaining why chromatin profiling data remains robust 

despite these technical artifacts. 

 



 

 

168 
Appendix references 

Bonev, Boyan, Netta Mendelson Cohen, Quentin Szabo, Lauriane Fritsch, Giorgio L. 

Papadopoulos, Yaniv Lubling, Xiaole Xu, et al. 2017. “Multiscale 3D Genome Rewiring 

during Mouse Neural Development.” Cell 171 (3): 557–72.e24. 

Pascual-Reguant, Laura, Enrique Blanco, Silvia Galan, François Le Dily, Yasmina Cuartero, 

Gemma Serra-Bardenys, Valerio Di Carlo, et al. 2018. “Lamin B1 Mapping Reveals the 

Existence of Dynamic and Functional Euchromatin Lamin B1 Domains.” Nature 

Communications 9 (1): 3420. 

Takei, Yodai, Jina Yun, Shiwei Zheng, Noah Ollikainen, Nico Pierson, Jonathan White, 

Sheel Shah, et al. 2021. “Integrated Spatial Genomics Reveals Global Architecture of Single 

Nuclei.” Nature 590 (7845): 344–50. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://paperpile.com/b/DYabjs/iHHTm
http://paperpile.com/b/DYabjs/iHHTm
http://paperpile.com/b/DYabjs/iHHTm
http://paperpile.com/b/DYabjs/iHHTm
http://paperpile.com/b/DYabjs/iHHTm
http://paperpile.com/b/DYabjs/dOTTG
http://paperpile.com/b/DYabjs/dOTTG
http://paperpile.com/b/DYabjs/dOTTG
http://paperpile.com/b/DYabjs/dOTTG
http://paperpile.com/b/DYabjs/dOTTG
http://paperpile.com/b/DYabjs/dOTTG
http://paperpile.com/b/DYabjs/xH9MW
http://paperpile.com/b/DYabjs/xH9MW
http://paperpile.com/b/DYabjs/xH9MW
http://paperpile.com/b/DYabjs/xH9MW
http://paperpile.com/b/DYabjs/xH9MW


 

 

169 
C h a p t e r  3  

AN ATLAS OF HUMAN FETAL KIDNEY ORGANOGENESIS 
INTEGRATING SINGLE-CELL MULTIOME SEQUENCING AND 

SPATIAL TRANSCRIPTOMICS 

3.1 Introduction 

The mammalian kidney plays a crucial role in maintaining body fluid homeostasis through 

its epithelial networks: the nephron and the collecting duct (Nielsen et al. 2012). The nephron 

eliminates toxic compounds, while also recovering molecules, such as proteins, metabolites, 

and ions. The collecting system regulates water, salt, and pH balance. Loss of kidney 

function, as in end-stage renal disease (ESRD), results in high morbidity and mortality, with 

dialysis and transplantation as primary treatments. A comprehensive understanding of kidney 

development is vital for developing accurate disease models and synthetic kidney surrogates 

(Oxburgh et al. 2017). While most current studies on kidney development utilize mouse 

models, it is important to note that the human kidney has unique features, including the 

completion of nephrogenesis before birth, which differs from mice where nephrogenesis 

continues postnatally, approximately 1 million nephrons (Hughson et al. 2003) compared to 

about 18,000 in mice, a multilobar structure versus the unilobar mouse kidney with a single 

lobe (Lindström, McMahon, et al. 2018), and distinct regulatory programs and gene activity 

during development (Kim et al. 2024). Therefore, constructing a complete atlas of human 

kidney development is essential. A complete atlas would serve as a reference for normal 

human kidney development and highlight the cellular and molecular features absent in 

current kidney organoids (Khoshdel-Rad, Ahmadi, and Moghadasali 2022; Fausto et al. 

2024); these insights would guide efforts to extend organoid maturation to more advanced 

developmental stages and help identify novel therapeutic targets (Tran et al. 2022). 

 

The development of the human kidney is a complex and spatially orchestrated process, with 

nephrogenesis being the essential aspect, where progenitor cells differentiate into functional 

nephrons (McMahon 2016; Cullen-McEwen, Sutherland, and Black 2016). Spatial cues, 

https://paperpile.com/c/LhjhPN/neeS
https://paperpile.com/c/LhjhPN/ALY4
https://paperpile.com/c/LhjhPN/DAWI
https://paperpile.com/c/LhjhPN/998g
https://paperpile.com/c/LhjhPN/jQ7H
https://paperpile.com/c/LhjhPN/CEHI+WuPq
https://paperpile.com/c/LhjhPN/CEHI+WuPq
https://paperpile.com/c/LhjhPN/jRGi
https://paperpile.com/c/LhjhPN/lTMk+EOf5


 

 

170 
including morphogen gradients and localized cell-cell interactions, play a crucial role in 

directing cell fate and organization (Lindström et al. 2021; Wu et al. 2022). The human fetal 

kidney at 17- to 18-weeks of gestation is particularly well-suited for studying kidney 

development, as it represents a period of active nephrogenesis. During this period, the fetal 

kidney contains a variety of cell types, including SIX2+ nephron progenitors and maturing 

nephrons (Lindström, De Sena Brandine, et al. 2018), each located in spatially distinct 

regions . Thus, examining one section of the human fetal kidney at this stage provides a 

comprehensive view of nephrons at various developmental stages, offering valuable insights 

into the process of nephrogenesis. 

 

To fully understand the molecular and spatial complexities of kidney development, advanced 

genomic techniques are essential. Single-cell multiome sequencing, which allows single-cell 

RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin 

sequencing (scATAC-seq) simultaneously from the same cell, provides insights into 

advanced cell type identification and gene regulation landscape (Ma et al. 2020; Guyer et al. 

2023; Chopp et al. 2023). Spatial transcriptomics reveals the cell organization and cell-cell 

interactions in the kidney tissue (Polonsky et al. 2024; Abedini et al. 2024). By integrating 

both technologies, this thesis aims to construct a detailed atlas of the human fetal kidney at 

17-to 18-week of gestation, serving as a valuable resource for the community. 

 

3.2 Results 

Jointly profiling of gene expression and chromatin accessibility of human fetal kidney 

To generate a comprehensive atlas of human fetal kidney development that integrates single-

cell molecular profiles with spatial organization, we employed 10X Genomics multiome 

sequencing and spatial transcriptomics by seqFISH on human 17.1- to 18.6-week kidneys (N 

= 4) (Fig. 1a). For each fetus, one kidney was processed with the 10X Genomics multiome 

workflow to capture both single-nucleus RNA and ATAC profiles simultaneously, providing 

detailed transcriptomic and epigenetic data at the single-cell level. Additionally, for the 17.1-

week fetus, the remaining kidney was sectioned and analyzed with seqFISH to map spatial 

gene expression patterns, preserving the tissue's anatomical context. This approach yielded 

https://paperpile.com/c/LhjhPN/n8jW+cEYc
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high-quality paired transcriptomic and epigenomic measurements from individual cells 

via multiome sequencing, as well as spatially resolved gene expression data from seqFISH, 

enabling the integration of cellular identity with tissue architecture. 

 

The transcriptomic data from the multiome dataset served as an anchor for integrating the 

spatial transcriptomics and single-cell multiome sequencing profiles. Therefore, we first 

analyzed the single-nucleus RNA sequencing (snRNA-seq) data from the multiome 

sequencing results using Seurat v5 pipeline (Hao et al. 2024). From this snRNA-seq data, we 

obtained 37,784 high-quality nuclei after performing rigorous quality control and removing 

potential doublets. Each nucleus had a median of 5,393 unique molecular identifiers (UMIs), 

ensuring sufficient sequencing depth for accurate cell type classification (You et al. 2021). 

We used Harmony from Seurat v5 to remove batch effects across different samples 

(Korsunsky et al. 2019). Subsequently, unsupervised uniform manifold approximation and 

projection (UMAP) clustering identified 23 distinct clusters corresponding to coarse cell 

types (Fig. 1b). Based on the expression of well-known marker genes, these clusters were 

grouped into five major lineages: nephrogenic cells (NPC), ureteric cells (UPC), interstitial 

cells (INT), vascular cells (VAS), and immune cells (IMM) (Fig. 1d) (Combes et al. 2019; 

Lindström, McMahon, et al. 2018; Kim et al. 2024). Violin plots illustrate the expression 

levels of key marker genes across these lineages, confirming their identities (Fig. 1d). 

 

To identify fine-grained cell types within each lineage, we performed sub-clustering analysis 

on each lineage separately. For the nephrogenic lineage, which consists of the major 

components forming the nephron (the basic functional unit of the kidney), we identified 28 

sub-clusters (Fig. 1c). Each sub-cluster was characterized by specific marker gene expression 

patterns, as shown in the violin plots (Fig. 1e), allowing us to map the developmental stages 

of these cells. Similarly, sub-clustering of the other lineages revealed a rich diversity of cell 

types (Fig. 1f), with their marker genes detected and visualized for the ureteric, interstitial, 

vascular, and immune compartments (Figs. 1g). 
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After confirming that we captured the major lineages and fine-grained cell types, we 

curated a set of 224 marker genes from the snRNA-seq data to probe in RNA seqFISH 

experiments. These genes were selected from the top marker genes of sub-clusters identified 

in the snRNA-seq data across all five lineages in the human fetal kidney. This selection 

enables the transcriptomic data to act as anchors for integrating the single-cell multiome 

sequencing and spatial transcriptomics data, allowing the projection of jointly profiled 

epigenetic information onto the spatial profiling based on cell identities determined from 

snRNA-seq and seqFISH. To enhance coverage, we also included expert-curated 

conventional marker genes that were not detected as marker genes in the snRNA-seq analysis 

(Fig. 1h). Among the 224 genes, 200 were probed using the barcoded RNA seqFISH+ 

strategy, with 6 pseudocolors and 4 rounds of hybridization on the Cy3b channel, while the 

remaining 24 genes were probed using a non-barcoded seqFISH approach on the 488 nm 

channel. 
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Fig. 1 | Identification of coarse and fine-grained cell types in human fetal kidneys using 

snRNA-seq 

a, Schematic of the experimental methodology: From four human fetuses aged 17.1- to 18.6- 

week, one kidney per fetus was subjected to 10X multiome sequencing. Additionally, the 

remaining 17.1-week female kidney was used for spatial transcriptomics profiling via 

seqFISH. b, UMAP embedding of single-nucleus RNA sequencing data from four human 
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fetal kidney samples, comprising 37,784 cells clustered into 23 groups (0–22), colored 

by cluster assignments. Five main lineage clusters are circled and labeled: nephrogenic cells 

(NPC), ureteric cells (UPC), interstitial cells (INT), vascular cells (VAS), and immune cells 

(IMM). Harmony batch correction was applied to integrate the four samples. c, UMAP 

embedding of sub-clustered nephrogenic cells from four human fetal kidney samples, 

colored by sub-cluster assignments from 0-27, comprising 19247 cells. d, Violin plot 

showing the expression levels of marker genes for 23 major cell types (clusters 0–22) across 

all lineages, ordered by the developmental stages of nephrogenic cells (NPC), ureteric cells 

(UPC), interstitial cells (INT), vascular cells (VAS), and immune cells (IMM). The cluster 

0-22 definition follows the cluster assignment in a. e, Violin plots showing marker gene 

expression for 28 nephrogenic sub-clusters (0–27), ordered by their developmental stages. 

The cluster definition follows cell assignment in c. f, UMAP embeddings of sub-clustered 

cells from the remaining four lineages: 3928 ureteric cells (UPC) with subclusters from 0-7, 

10272 interstitial cells (INT) with subclusters 0-14, 816 vascular cells (VAS) with 

subclusters 0-3, and 435 immune cells with subclusters 0-10 (IMM). g, Heatmap showing 

scaled marker gene expression levels for sub-clusters within the four lineages described in 

panel f, ordered by the developmental stages of ureteric cells (UPC), interstitial cells (INT), 

vascular cells (VAS), and immune cells (IMM). h, Heatmap of single-nucleus expression 

levels for 224 selected marker genes for seqFISH profiling, across all 37,784 cells, clustered 

as in panel b, ordered by developmental stages in the same sequence as panel d. 

 

seqFISH profiling of human fetal kidney 

We performed RNA seqFISH+ on a 15 μm thick coronal section from the 17.1 week old 

human fetal kidney, confirming that the midline section includes the cortex with the 

nephrogenic zone, medulla with renal pyramids, and renal pelvis, encompassing all major 

anatomical structures of the fetal kidney (Fig. 2a). To direct cluster the seqFISH data, 

scTransform normalization were applied on the seqFISH data to remove the detection 

efficiency bias of barcoded (563 nm) and non-barcoded (488 nm) channels (Hafemeister and 

Satija 2019), and UMAP dimension reduction was performed for visualizing different cell 

types (Fig. 2b). Using 224 measured genes, we identified all five major lineages involved in 

https://paperpile.com/c/LhjhPN/Ptje
https://paperpile.com/c/LhjhPN/Ptje
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kidney organogenesis and their subtypes through direct clustering of the seqFISH+ data 

(Fig. 2c). Notably, rare cell types, including RENIN+ and FOXD1+ cells, were detected in 

the coronal section, as shown in the UMAP plot of clustering. The spatial distribution of 

marker genes representing key nephrogenesis structures and lineage specific cell types 

corresponded closely with their expected locations (Fig. 2g).  

In addition to the recovery of rare cell populations, we identified a previously unreported cell 

type: SLC12A3+ ureteric cells. Typically, SLC12A3 is expressed in distal convoluted tubule 

(DCT) cells of the nephron (Miao et al. 2021; Li and Gu 2022). However, seqFISH data 

revealed low but detectable SLC12A3 expression in a subset of ureteric cells located in the 

deep medullary region (Fig. 2h). To confirm that this represents a genuine cell type and not 

a technical artifact, we integrated snRNA-seq and seqFISH+ data by projecting nephron 

progenitor (NPC) and ureteric epithelium (UE) cells into a shared latent space using harmony 

(Fig. 2i). This further confirmed that SLC12A3+ cells form a distinct subpopulation within 

the ureteric lineage, present in both sequencing and spatial datasets, validating the 

authenticity of the SLC12A3 signal (Fig. 2j). Notably, this subpopulation was not detected 

when clustering snRNA-seq data alone but emerged only upon co-clustering with spatial 

data, underscoring the ability of spatial transcriptomics to identify novel cell types using a 

small panel of 224 genes. This unexpected expression pattern suggests a potential specialized 

role for SLC12A3 during the 17-week stage of human kidney development. 

 

While nephron, ureteric, and interstitial lineages were accurately identified, vascular 

endothelial and immune cells suffered from contaminated signal from neighbor cells. 

Subclustering analysis revealed significant contamination of their clusters with marker genes 

from other lineages, such as PDGFRA, PDGFRB, and MEIS1 from interstitial cells. This 

contamination likely resulted from inaccurate cell segmentation, leading to misassignment 

of transcripts from adjacent cells. The elongated morphology of vascular endothelial cells, 

characterized by small nuclei, and the small size and variable shapes of immune cells made 

them particularly susceptible to segmentation errors in 2D spatial experiments. Precise cell 

segmentation in spatial transcriptomics, especially for cell types with complex morphologies, 

is necessary for future experiments. 

https://paperpile.com/c/LhjhPN/Ot2e+gtXy
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Fig. 2 | Validation and characterization of seqFISH on human fetal kidney  

a, Whole-slide DAPI image of the 17 week female human fetal kidney coronal section. b, 

UMAP embedding of direct seqFISH clustering of cells, colored by lineage assignments 

(NPC: nephrogenic cells, UPC: ureteric cells, INT: interstitial cells, VAS: vascular cells, 

IMM: immune cells). c, UMAP embedding of single-nucleus RNA sequencing clustering of 

cells from 4 human fetal kidney samples, colored by lineage assignments. d, Pearson 

correlation of pseudo-bulk counts between seqFISH and single-nucleus RNA sequencing for 

the 224 spatially profiled mRNAs within nephrogenic, ureteric, and interstitial lineages. e, 

UMAP embedding of direct SeqFISH clustering of cells from nephrogenic and ureteric 

lineages, colored by subcluster identification (as detailed in f). f, Comparison of cell clusters 

(0-54) defined by seqFISH and cell types identified by single-nucleus RNA sequencing. 

Cells from nephrogenic and ureteric lineages are ranked first by the developmental stage 

within the nephron lineage and then within the ureteric lineage, based on single-nucleus RNA 

sequencing. g, Overview of whole-slide seqFISH profiling, with the left half displaying 

detected marker genes for key cell types and the right half showing each detected cell colored 

by its lineage assignment. h, Zoom-in of a section showing detected SLC12A3 and RET 

mRNAs. RET is a marker gene for ureteric cells, illustrating the reliable detection of 

SLC12A3+ nephron cells in the distal tubule, as well as ureteric cells. i, UMAP embedding 

of Harmony batch-corrected co-embedding of SeqFISH and single-nucleus RNA sequencing 

cells from both nephrogenic and ureteric lineages, colored by lineage. j, Feature plot 

displaying the expression levels of SLC12A3 from both seqFISH and single-nucleus RNA 

sequencing, revealing two distinct SLC12A3+ populations in the single-nucleus RNA 

sequencing data when co-embedded with spatial data. 

 

Imputation of spatially unmeasured gene expression 

Having validated that both snRNA-seq and seqFISH+ profiles faithfully captured major and 

rare cell types in the 17-week and 18-week human fetal kidneys, we next explored whether 

genes not directly probed in seqFISH could be inferred from snRNA-seq gene expression 
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profiles. Because vascular and immune cells were sparse in our snRNA-seq dataset ( 816 

vascular cells and 435 immune cells), we focused on the major nephron, ureteric, and 

interstitial lineages, selecting 194 highly variable genes within those lineages from the 224 

genes profiled by seqFISH+. Notably, the seqFISH+ dataset profiled a substantially larger 

number of cells (730,893) compared to snRNA-seq (37,784 cells). After subdividing the 

whole fetal kidney slide into five anatomical lobes, we applied tangram imputation 

independently to each lobe (see Methods) (Fig. 3a) (Biancalani et al. 2021). Tangram 

mapping revealed a high correlation between imputed and measured seqFISH+ gene 

expressions for most genes (Fig. 3b, left panel). Leave-one-out cross-validation (LOOCV) 

further showed that 82.99 % of genes maintained correlation coefficients above 0.2 (Fig. 3b 

left panel). As expected, the few genes like with LOOCV scores below 0.1, such as unique 

cluster markers REN and TUBB3, showed lower accuracy when left out, presumably 

because seqFISH+ lacked alternative markers for those specialized cell populations. 

Encouragingly, rare populations such as FOXI1+ intercalated cells were clearly recovered. 

 

A key challenge in mapping single-nucleus RNA sequencing (snRNA-seq) gene expression 

data to spatial coordinates is evaluating the reliability of the imputed gene expressions. Since 

Tangram employs a probabilistic approach, results can vary across independent runs. We 

hypothesize that genes which cannot be accurately imputed also exhibit lower consistency 

across multiple imputation runs. To test this hypothesis, we performed two rounds of Leave-

One-Out Cross-Validation (LOOCV) for all 194 genes. We found that the correlation 

between the LOOCV-imputed gene expressions and the seqFISH+ ground truth was 

positively associated with the Pearson correlation of imputation across independent Tangram 

runs (Fig. 3c). Genes that showed high consistency across runs but lower correlations with 

the seqFISH+ ground truth often exhibited sparse expression in seqFISH+, even though they 

had clear expression patterns in snRNA-seq. These findings suggest that consistency across 

multiple Tangram runs is an effective predictor of imputation accuracy. 

 

To assess the imputation consistency for genes not probed in seqFISH+, we performed five 

independent runs of Tangram and calculated the median correlation between every pair of 

https://paperpile.com/c/LhjhPN/8gdJ
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runs for each gene. A total of 4,875 genes demonstrated high consistency (> 0.4) across 

these runs. We further validated this approach using five known glomerulus podocyte 

markers: NPHS1, CLIC5, NTNG1 (Menon et al. 2018), TCF21 (Kliewe et al. 2021), and 

CLIC3 (Cheval et al. 2011), with median correlations of 0.96, 0.90, 0.86, and 0.10, 

respectively. For four of these five genes, the imputed expressions agreed well with the 

expected spatial patterns. However, CLIC3 exhibited a lower median correlation (0.10) and 

less accurate imputation judging by its imputed gene expression pattern(Fig. 3g). 

Additionally, the gene TCF21, which is expressed in both nephron and interstitial lineages 

according to snRNA-seq (Fig. 3f), was accurately predicted, with higher imputation values 

in both lineages. 

  

https://paperpile.com/c/LhjhPN/A2y9
https://paperpile.com/c/LhjhPN/YroW
https://paperpile.com/c/LhjhPN/3tqE
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Fig. 3 | Imputation of unprofiled genes through integrating single-nucleus RNA 

sequencing and seqFISH  

a, Whole-slide DAPI image of the coronal section from the 17-week-old female human fetal 

kidney. Red borders indicate manually defined anatomical lobes used for downsampling in 

Tangram computations. b, ECDF plots depicting the spatial correlation score, calculated as 

the cosine similarity between imputed gene counts and ground truth seqFISH gene counts, 

as defined in the Tangram paper [citation]. The left panel illustrates the imputation results 

trained using all 194 highly variable genes from cells in the nephrogenic, ureteric, and 

interstitial lineages. The right panel presents the leave-one-out cross-validation (LOOCV) 

spatial correlation for these 194 genes. c, Scatter plot where each point represents a gene, 

with the x-axis showing the Pearson’s correlation coefficient between imputed expressions 

from two independent LOOCV rounds and the y-axis showing the spatial correlation score 

from the LOOCV test. Points are colored based on the difference in sparsity, defined as the 

sparsity of single-nucleus sequencing data minus that of SeqFISH data for each gene. d, e, 

Left: ECDF plot of imputation robustness scores for all genes, calculated as the median 

Pearson’s correlation across all pairs from five independent Tangram imputation runs. A 

threshold of 0.4 on this median correlation classifies 4,875 genes as reliably imputed. Right: 

Highlight of five glomerulus marker genes with robustness scores ranging from high to low. 

f, Feature plots displaying the expression levels of the selected five glomerulus genes from 

single-nucleus RNA sequencing data. g, Spatial expression patterns comparing ground truth 

seqFISH and imputed expression for NPHS1 which marks glomerulus region, alongside 

imputed expressions for four additional glomerulus marker genes (shown in panels d and f) 

not detected in seqFISH. Notably, the gene CLIC3, with a low robustness score, exhibits a 

poor spatial pattern in its imputed expression. 

 

3.3 Discussion 

Through integration of single-nucleus RNA sequencing (snRNA-seq) and spatial 

transcriptomics profiling using seqFISH, we constructed a comprehensive human fetal 

kidney atlas. This atlas accurately captures all major cell types from snRNA-seq dissociated 

cells and their spatial distributions. By carefully selecting a compact set of 224 marker genes, 
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we successfully reconstructed the complete spatial organization of all cell types within 

the complex two-dimensional architecture of the developing human fetal kidney tissue. 

Remarkably, this small gene panel enabled the accurate prediction of at least ~4,700 gene 

expression patterns through the integration of snRNA-seq and seqFISH data, demonstrating 

the efficiency and predictive power of our approach. 

 

The next step in our research is to infer neighborhood relationships of gene regulation 

networks from the imputed gene expression data, which would elucidate local co-expression 

patterns critical for understanding spatial gene interactions. However, a significant challenge 

lies in validating these inferred relationships, requiring us to rigorously confirm the accuracy 

of imputed gene expression patterns, potentially from seqFISH experiments targeting another 

set of genes for validation. In contrast to the challenges faced with imputation-based 

predictions, we achieved accurate classification of cell types at a fine-grained resolution 

directly from the seqFISH data. These classifications align closely with the snRNA-seq 

results and our established knowledge of kidney development, making neigborhood analysis 

based on cell-typing a solid future direction. 

 

Although single-cell ATAC sequencing (scATAC-seq) data was not explored in this thesis, 

it needs to be closely investigated in the future, to fully use the power of single-cell multiome 

sequencing. Mapping scATAC-seq data to spatial transcriptomics profiles could provide 

insights into the epigenetic regulatory mechanisms governing gene expression in the spatial 

context of the developing kidney. However, this integration is likely to be challenging due 

to the inherent differences in data modalities, including the sparsity of scATAC-seq data, 

requiring advanced computational frameworks for alignment. Nevertheless, within the 

existing sequencing data, we can leverage tools like SCENIC+ to infer gene regulatory 

networks, identifying key transcription factors that drive cell differentiation (Bravo 

González-Blas et al. 2023). Combining these networks with trajectory analysis will enable 

us to map developmental lineages, further elucidating the cellular dynamics of kidney 

organogenesis. 

 

https://paperpile.com/c/LhjhPN/Da6m
https://paperpile.com/c/LhjhPN/Da6m
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This dataset is exceptionally information-rich and poised to significantly advance our 

understanding of human kidney development. Its high-resolution mapping of cell types, 

spatial organization, and predictive gene expression patterns provides a robust foundation for 

investigating the molecular mechanisms underlying kidney organogenesis. Furthermore, the 

atlas holds potential for transformative applications, including modeling congenital kidney 

disorders, informing the development of kidney organoids, and guiding regenerative 

medicine strategies. Future efforts to validate spatial gene relationships and integrate 

epigenetic data will enhance the utility of this resource, establishing it as a cornerstone for 

developmental biology and nephrology research. 

 

3.4 Methods 

Single-cell preparation for 10X multiome sequencing 

Collection, preservation, and preparation of human fetal kidneys followed the protocol as 

previously described (Kim et al. 2024). Libraries were prepared from dissociated single 

nuclei using the 10X Genomics Chromium Next GEM Single-Cell Multiome ATAC + Gene 

Expression kit, according to the manufacturer's instructions. 

 

Primary probe design and synthesis 

To spatially profile 224 marker genes in the human fetal kidney, we categorized the gene 

targets into two groups: 200 genes were examined using barcoded RNA seqFISH+, and 24 

genes were profiled using non-barcoded RNA seqFISH. The barcoded RNA seqFISH+ 

primary probes were developed based on a previously described, modified RNA seqFISH+ 

encoding strategy, employing 6-pseudocolor bases across 4 rounds of barcoding, including 

one round for error correction. This approach enables the detection of up to 216 genes in a 

single fluorescent channel at 561 nm. The remaining 24 genes were encoded using a non-

barcoded seqFISH method in another fluorescent channel at 488 nm. The design of probes 

for both mRNA seqFISH+ and non-barcoded RNA seqFISH was adapted from previously 

reported protocols with minor modifications (Eng et al. 2019; Takei et al. 2021, 2025). Each 

primary probe was constructed with a 35-nucleotide sequence for binding to the RNA target, 

a 15-nucleotide region for readout probe attachment, and a pair of 20-nucleotide primer 

https://paperpile.com/c/LhjhPN/jQ7H
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binding sites at the 5’ and 3’ ends to enable enzymatic amplification]. For each gene, 24 

primary probes were designed in both barcoded and non-barcoded RNA seqFISH methods. 

 

Primary probes for mRNA seqFISH+ and non-barcoded RNA seqFISH were produced by 

Twist Bioscience, following methods outlined in prior studies with slight adjustments (Eng 

et al. 2019; Takei et al. 2021, 2025). The amplification startes with PCR amplification of 

DNA templates using Q5 Hot Start High-Fidelity polymerase (NEB M0494S), followed by 

purification with the QIAquick PCR Purification Kit (Qiagen 28104). In vitro transcription 

was conducted at 42°C for 16 hours using NEB’s E2040S kit, supplemented with RNasin 

Ribonuclease Inhibitor (Promega N2111) and Pyrophosphatase (NEB M0361S). Reverse 

transcription was performed using Thermo Scientific’s EP0751 at 50°C for 2 hours, then at 

55°C for an additional 2 hours, followed by heat inactivation at 85°C for 5 minutes. RNA 

hydrolysis was carried out with 1 M NaOH at 80°C for 10 minutes, neutralized with an 

equivalent molecular amount of 10 M acetic acid. The resulting probes were purified using 

SPRI beads eluted with RNase free water (Liu et al. 2023), and their concentrations were 

measured to allow pooling of barcoded and non-barcoded probes. Amplification used primer 

set 7, selected from previous research (Eng et al. 2019; Takei et al. 2021, 2025). 

 

Readout probe design and synthesis 

To minimize non-specific binding of readout probes to human fetal kidney sections, we first 

conducted a control experiment to evaluate readout random sticking on human fetal kidney 

tissue. Specifically, we screened 60 distinct 15-nt readout DNA oligos using the established 

tissue seqFISH protocol, omitting the primary probe pools during the primary probe 

incubation step (see Methods section for “Tissue slice preparation”). Based on this screening, 

we selected the 48 readout probes that exhibited the least sticking, assigning 24 to the 561 

nm fluorescent channel and the remaining 24 to the 488 nm channel. The 60 readout 

sequences used for screening were selected from our previous RNA seqFISH+ studies (Eng 

et al. 2019; Takei et al. 2021, 2025). To prepare the fluorescently labeled readout oligos, 

amine-modified 15-nt readout DNA oligos were ordered from Integrated DNA 

Technologies, designed to bind the corresponding readout sequences on the primary probes. 



 

 

185 
These oligos were conjugated in-house to either Cy3B–NHS ester (GE Healthcare 

PA63101) for the 561 nm channel or Alexa Fluor 488–NHS ester (Invitrogen A20000) for 

the 488 nm channel, following previously described conjugation protocols (Eng et al. 2019). 

 

Tissue slice preparation 

Tissue slice preparation were performed following previous publications (Eng et al. 2019; 

Takei et al. 2021, 2025). In short, coverslips were first functionalized with (APTES; Sigma-

Aldrich, catalog no. A3648) and coated with Poly-D-lysine (Sigma-Aldrich, catalog no. 

P7280). Paraformaldehyde (PFA) fixed human fetal kidney tissue blocks were stored in -

80°C until processing. Coronal sections of human fetal kidney were sectioned using a 

cryostat (Leica CM3050) to 15 to 20 μm and immediately attached onto the functionalized 

coverslips. The sections were immediately fixed with 4% PFA in PBS at room temperature 

for 10 minutes, followed by three washes with 1× PBS to remove remaining PFA. SeqFISH 

imaging rounds were performed as previously described (Eng et al. 2019; Takei et al. 2021, 

2025), with 100ms exposure time under channel 561 and 300ms exposure time under channel 

488. 

 

Image analysis 

Image analysis were performed using pyFISH pipeline as described in prior studies 

(Polonsky et al. 2024), published code are shared through github: 

https://github.com/CaiGroup/pyfish_tools.git. The pyFISH pipeline is designed for barcoded 

and non-barcoded seqFISH experiments, took raw images across rounds of hybridizations 

from seqFISH experiments and codebook, output gene-by-cell matrix for single-cell 

analysis. 

 

Single cell multiome sequencing data processing 

10X Single-cell multiome sequencing data were processed using the CellRanger-ARC 

pipeline  to (Satpathy et al. 2019) demultiplex, align to reference genome and transciptome, 

and generate gene-to-cell count matrices. The resulting filtered feature matrix was analyzed 

using the Seurat v5 pipeline. Rigorous quality control was applied to remove low-quality 

https://paperpile.com/c/LhjhPN/Juop
https://github.com/CaiGroup/pyfish_tools.git
https://paperpile.com/c/LhjhPN/CRYn
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cells based on standard metrics, including the number of total detected UMIs and 

mitochondrial gene fraction per cell. Potential doublets, identified by the co-expression of 

marker genes from multiple lineages, were also filtered out. To preserve biologically relevant 

populations, cells expressing FOXI1, characteristic of intercalated cells in the kidney, who 

were filtered out due to its low total gene counts, were recovered from filtered out cells. 

 

The filtered gene expression matrix was normalized using scTransform to account for 

variations in sequencing depth and other technical factors. Principal Component Analysis 

(PCA) was performed to reduce dimensionality, followed by Harmony batch correction to 

integrate data from four samples and mitigate batch effects within the PCA embeddings. 

Clustering was conducted on the Harmony-corrected PCA space to delineate distinct cell 

populations. For visualization, Uniform Manifold Approximation and Projection (UMAP) 

was applied to the Harmony-corrected embeddings. Each cluster, representing a distinct cell 

type, was assigned to one of five main lineages based on the expression of top enriched 

marker genes. Subclustering was performed within each lineage using the same analytical 

pipeline to identify fine-grained cell types. 

 

SeqFISH data processing 

The seqFISH gene-by-cell matrix, generated by the pyFISH pipeline, was first filtered based 

on the probability that each segmented mask corresponds to a genuine cell. Segmentation 

was performed within the pyFISH pipeline using the Cellpose generalized model, utilizing 

the DAPI channel for nuclei and the 488 nm autofluorescence channel for cytoplasm 

(Stringer and Pachitariu 2025). Segmentations lacking a DAPI signal or corresponding to 

cells with an area smaller than 800 pixels were filtered out to exclude malformed cells. The 

filtered gene-by-cell matrix was then processed using the Seurat v5 pipeline, where cells with 

fewer than 10 total detected transcripts were removed. Subsequently, scTransform was 

applied to normalize differences in detection efficiency between barcoded and non-barcoded 

channels, as non-barcoded seqFISH typically exhibits higher detection efficiency. Standard 

principal component analysis (PCA) and uniform manifold approximation and projection 

(UMAP) dimensionality reduction techniques were employed to cluster the cells. During 

https://paperpile.com/c/LhjhPN/9Y6u
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initial clustering, clusters with mixtured marker genes from different lineages were 

identified as spatial doublets, and were removed. Subclustering was then performed within 

each lineage following similar strategy, with lineage identification from the initial clustering. 

 

Integration of single-nucleus RNA sequencing data and seqFISH data 

Due to seqFISH+ profiling approximately 20 times more cells than the 10X multiome 

sequencing protocol (730,893 cells for seqFISH+ and 37784 cells for multiome sequencing), 

downsampling was necessary to enable computations to complete with reasonable time and 

resource for Tangram, a deep learning model that benefits from GPU acceleration for large 

datasets (Biancalani et al. 2021). To perform downsampling, the entire tissue section was 

manually divided into five anatomical lobes, each containing a varying number of cells. 

Within each lobe, cells were randomly downsampled to have the same number of cells in the 

input single-nucleus RNA sequencing (snRNA-seq) data from the multiome protocol. 

 

Leave-One-Out Cross-Validation (LOOCV) was performed to assess the accuracy of gene 

imputation. For each gene, Tangram was used to predict its spatial expression pattern based 

on the remaining genes from the seqFISH data and the snRNA-seq data. The accuracy 

(spatial correlation metric) was measured by the cosine correlation between the predicted 

expression counts and the ground truth seqFISH+ counts for the left-out gene. To evaluate 

the robustness of the imputation, five rounds of Tangram imputations with identical settings 

were performed for the cells in lobe 4. For each gene, the Pearson correlation between every 

pair of the five imputation rounds was calculated, and the median of these correlations was 

used to quantify the robustness of imputation. 
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C h a p t e r  4  

CONCLUSION 

4.1 FUTURE DIRECTIONS  

Spatial technology has always fascinated me for its versatility in measuring biological 

systems at various scales. This thesis introduces two projects that demonstrate this versatility: 

In Chapter 2, we use spatial multi-omics to investigate the mouse cerebellum, capturing 

chromatin organization at single-cell resolution in a cell-type-specific manner. In Chapter 3, 

we profile a human fetal kidney section using seqFISH, integrating with paired single-cell 

sequencing data, emphasizing tissue-level cellular interactions. Both projects aim to reveal 

cellular diversity: one by focusing on subnuclear level resolution, and the other on cell-cell 

interactions across large sections, demonstrating the power of spatial technologies, such as 

seqFISH, to address varied research needs, from subnuclear to tissue-level scales. While 

spatial technologies like seqFISH enable the study of cell function in its native environment, 

they typically lack the whole-transcriptome or whole-genome coverage at single-base 

resolution provided by single-cell sequencing methods. In studies targeting over 10,000 

genes or genomic loci, seqFISH’s detection efficiency for individual genes diminishes due 

to massive multiplexing (Eng et al. 2019; Takei et al. 2025). To overcome this limitation, a 

key future direction is to enhance the number of transcripts or genomic loci detectable in a 

single experiment.  

 

Signal amplification is critical for achieving brighter signals with a low signal-to-noise ratio, 

which shortens exposure times, thus allowing imaging of large areas and more rounds of 

hybridizations for greater multiplexing. Techniques like branched DNA (Xia et al. 2019), 

Rolling Circle Amplification (RCA) (Wang et al. 2018), Hybridization Chain Reaction 

(HCR) (Shah et al. 2016; Gandin et al. 2025), ClampFISH (Dardani et al. 2022), and in vitro 

transcription (Zombie) (Askary et al. 2020; Kudo et al. 2024) have been explored in various 

studies for multiplexing. However, each has limitations: branched DNA can be difficult to 

permeabilize into tissues, RCA and HCR can suffer from non-specific amplification, and 
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ClampFISH requires precise probe design. No single method is ideal, and further 

investigation is needed to optimize amplification strategies. Developing more efficient and 

error-tolerant barcoding schemes is another important aspect for in situ hybridization based 

methods like seqFISH and MERFISH. For in situ sequencing based methods, while they can 

theoretically offer a vast number of unique barcodes by extending the barcode sequence 

length, they face challenges due to signal crowding (Chang et al. 2023; Lee et al. 2022). In 

each sequencing cycle, transcripts are labeled with one of four fluorophores corresponding 

to the bases A, T, C, or G, and overlapping fluorescent signals from neighboring transcripts 

makes decoding impossible. Combining those methods with super-resolution or expansion 

microscopy could be the solution for resolving overlapping transcripts. 

 

In our spatial multi-omics approach described in Chapter 2, imaging-based chromatin 

profiling measures the spatial proximity of DNA loci and subnuclear markers, rather than 

their direct molecular interactions, with a practical genomic resolution limited by the 

diffraction limit of conventional fluorescence microscopy to approximately 200–300 nm, 

corresponding to roughly 100–200 kb on the genomic scale. This constraint obscures finer-

scale chromatin interactions, typically occurring at 10-20 kb (Greenwald et al. 2019). To 

address this, expansion microscopy and super-resolution microscopy can enhance 

immunofluorescence staining of chromatin marks, increasing the detection resolution to 

approximately 10-kb genomic resolution (Woodworth et al. 2021). It is also possible to 

directly detect the molecular interactions between histone modifications and specific 

genomic loci. For instance, Epigenomic MERFISH utilizes antibody-directed Tn5 

tagmentation to spatially profile genomic loci associated with the H3K4me3 modification 

(Lu, Ang, and Zhuang 2022). Additionally, in situ proximity ligation assays (isPLA), 

traditionally used for detecting protein-protein interactions, could be adapted for DNA-

protein interactions. In this method, a FISH probe targets a specific genomic locus, such as 

an enhancer or promoter, while an oligo-conjugated antibody binds to a histone modification. 

The oligonucleotides from both side can only be ligated and amplified when the genomic 

locus and targeted histone modification are in close proximity (Fredriksson et al. 2002; 

Sharanek et al. 2022). RIBOmap used similar strategy to detect ribosome-mRNA 
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interactions (Zeng et al. 2023). Alternatively, Fluorescence Resonance Energy Transfer 

(FRET) microscopy could detect those interactions by labeling DNA and histone 

modifications with donor and acceptor fluorophores that exhibit energy transfer when they 

are within 10nm proximity (Cremazy et al. 2005). Spatially resolving of finer scale of 

chromatin profiling could significantly deepen our understanding of cell-type-specific gene 

expression regulation within complex tissues. 
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