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SUMMARY

This analysis deals with three-dimensional boundary layer flows
which are of particular interest in the design of turbomachinery. By
assuming only small lateral pressure gradients and applying perturbation
procedure to the steady, laminar honndary layer equations of motion a
set of zeroth and first order equations is found. While the zeroth order
equations are just the two-dimensional ones for flow over flat plate, the
first order equations retain the characteristic Blasius similarity for a
family of external flows expressible by U* = bz . W A z®
(where u* 3 w* are the perturbation velocities, X § 2 are the
coordinates and A & B  are arbilrary constants). For various types
of such external flows (which may or may not be rotational) boundary
layer velocity distributions were found by a numerical solution.

The investigation is divided into two parts, the first one dealing
with boundary layer flows over plane surfaces and the second one
considering such flows over surfaces with very sharply varying lateral
curvature. In order to obtain solutions in the second part it was
necessary to expand the appropriate equations in terms of the product
of the local surface curvature and the boundary layer thickness. In
addition, the effects of compressibility and rotation (of the surface) on
the flows over a plane surface were quantitatively evaluated.

Comparison of the present results with the more exact solutions
of other investigators in certain special cases, and with the visual
studies of three-dimensional boundary layer flow in cascades, indicates

a fair qualitative agreement.
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SYMBOLS

A BD constants describing external flow and rotation
b vector position of fluid element

C curvature of the external flow streamline, also curvature
of the Z axis

d function connected with « flow when curvature is infinite

D quantity determining the nature of the momentum-integral
equations

E energy

f function connected with U flow

F function connected with W flow

%,6 functions connected with W¥ flow
h, hyhy length stretching factors
H, H, expressions appearing in momentum-integral equations
?\'g ® unit vectors in Cartesian system
function connected with & flow over curved wall

*
function connected with & flow over curved wall

arbitrary functionof x , € or X , Z

R
A
J{, Mach number bascd on standard conditions
M
F pressure

P I parameters used in momentum-integral equations
q vector velocity LWtV R
a 3 a + o :1&,4’?{\"' :
9n vector velocity 9.t 9. without the bar
these designate
9. vector velocity along S, coordinate the corresponding
magnitudes

ci,_ vector velocity along S, coordinate

Q ZL‘l for Mmoo TU+RW
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perpendicular distance of fluid element from axis of rotation
gas constant
Reynolds number U%S

coordinate along the streamline of the external flow
coordinate normal to the streamline of the external flow

function connected with W* flow over curved wall

temperature

uV¥W velacities in the boundary layer

UVW velocities of the external flow

* %% Cartesian coordinates

X %Z curvilinear coordinates

XYZ

k

A

e

¥
S
st

A+
8

coordinates in compressible flow
coordinate used for very large curvature = '€+\3

limiting deflection - deflection of boundary layer flow from
direction of external flow at Y=o

angle betwee tangent to 2 axis and Z axis

ratio of specific heats

boundary layer thickness

(- 1,2 ) displacement thickness in 5, ; coordinate syslem

(=1L 3< 1,2 ) momentum thickness inS, S, coordinate system

KSmagnitude of components of vorticity

curvalure parameter 2 C {:‘%R.‘
similarity variable - ‘i\{% ALSO gi%

direction of CL”” vector

direction of a vector
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w thermal conductivity
M absolute viscosity
Y kinematic viscosity
P density
G X hyperbolic coordinates
Toi shear at Y=o (L=1,2)
WV ¥ magnitude of vector potential components
@ vector angular velocity
W02 @, components of angular velocity along x Y & axes respectively
£} stream function
v  differential operator
Superscripts
¢ basic flow quantities, also standard quantities in compressible
flow
X perturbation quantities
! differentiation with respect to
=~ bar above quantity indicates compressible flow (vectors excepted)
mmiR exponents of X &% respectively in description of external flow
Subscripts
mm i kR functions correspond to the specific exponents m,m i Rk

partial differentiation may be indicated by subscripts.



I. INTRODUCTION

A. Fluid Mechanical Problems of Turbomachinery

Due to the demands of supersonic flight, the designer of modern
compressors and turbines used in flight propulsion is faced today with
an ever more acute problem of increase in power requirements. The
conventional solution as represented by almost any turbomachine in
present usage and development, consists of sufficiently increasing the
size of the machinery until the power requirements are met. In practice,
inasmuch as the cross-sectional area of the machine is usually limited,
this amounts to the addition of extra stages and thus an increase in axial
length of the machine. Because the stages of these machines are
designed to operate at very moderate pressure ratios, far below those
obtainable in cascades and single stage experiments, the important
engineering problem,of increase in power output per unit weight of the
machinery, remains unsolved. This impasse is primarily due to the fact,
that whenever turbomachinery of high pressure ratio per stage is
designed, real fluid effects become very important and must be accounted
for in the design.

These real fluid effects demonstrate themselves primarily in
the so called secondary flow and in three-dimensional boundary layer
flow. The term secondary flow is usually used to designate flows arising
from nonuniform total pressure or enthalpy,in regions not bordering on
physical boundaries where the effects of viscosity may be neglected.

On the other hand, by the term three-dimensional boundary layer flow,

we understand similar flows in the relatively thin regions next to solid



walls, where viscosity plays a dominant part. The intimate under-
standing of secondary flow, as well as three-dimensional boundary
layer behavior, is a necessary prerequisite to a successful design
of the high pressure ratio per stage turbomachinery.

When the external flow (that is flow immediately adjacent to
the region designated as boundary layer) is curved, the development
of the boundary layer is strongly influenced by the corresponding
normal pressure gradient toward the center of curvature, giving rise
to a "crosswise' flow. In a corner between the blades and the hub, or
the blades and the casing of a turbomachine, this problem is even more
complicated, due to the interaction effects of the boundary layer flowing
over this very sharply curved surface and due to the sharp curvature
itself. The lack of theories explaining the behavior of boundary layer
when a lateral curvature of the external flow exists, or when the
boundary layer flow takes place in a corner, has heen especially

apparent in connection with the problem of turbomachinery design.

B. Review of Three-Dimensional Boundary Layer Flow Investigations

A critical review of the hitherto carried investigations reveals
a definite division of these into three separate groups. The first group
consists of the investigations of the forms of the boundary layer equations,
and discussion of boundary layer behavior as inferred from these forms,
without an actual solution of the equations. The second group of

investigations concerns itself with solutions of some specialized cases



of three-dimensional boundary layer flow. Finally, the third group
consists of general, but approximate treatment of three dimensional
boundary layer flow by momentum-integral method. In accordance
with this division, but not in order of their chronological appearance,
the various investigations will now be discussed.

Howarth(l) establishes the form of three-dimensional, incom-
pressible boundary layer equations in a general orthogonal curvilinear
coordinate system (5, Yy, 9,). Since these equations make use of the
length elements, defined with respect to the Cartesian coordimte system
by: () + (OL%) + (dzY = (h \ ds,) + (ohé) +(ha\(d57", they are applicable to
many configurations. The only important restriction limiting their use
lies in the fact that neither of the stretching factors h,(s, s,) 4 h,(5,5,)is a
function of the coordinate Y perpendicular to the wall over which the
boundary layer is flowing. Howarth's equations are therefore restricted
to the cases where the lateral curvature of the wall, over which the flow
takes place, is not very large, and cannot be applied to corner boundary
layer flows. Nevertheless, by considering this form of the equations,
Howarth is able to point out the significance of the remaining two curva-
tures, and in particular, he points out that for boundary layers flowing
over cylinders, the curvature effects vanish from the equations of
motion. Consequently, for these cases the boundary layer equations
may be written in the Cartesian form.

(2)

Hayes also considers a coordinate system similar to that

of Howarth (and therefore subject to the same limitations), but gives



his equations in the differential as well as integral form. Further-
more, he makes no restriction of incompressibility and gives the
appropriate forms of the energy equation as well. By assigning
specific values to the stretching factors Hayes is able to discuss the
form of those equations in cylindrical flow, conical flow, ovecr a body
of revolution and in a coordinate system fitting the streamlines of the
external flow (often called intrinsic coordinate system). One important
result so obtained is the conclusion, that the action of the external
stream curvature is needed for the production of cross flow. Hayes
notes a number of simplifications which could be made when the actual
solution of the equations is attempted. One of these is linearization
based on the small size of cross flow. Another is the possibility of
correlation of the compressible boundary layer flow (with no heat transfer
and Prandll number equal to unity) with that of constant density. Havyes
found that this correlation which in two-dimensional boundary layer
flow is obtained by stretching of the % coordinate {and is designated
sometimes as the Howarth's transformation), in three-dimensional
boundary layer flow may cause the appearance of fictitious curvature
terms.

The work of Moore(3) concerns itself with the compressible
form of the boundary layer equations in a Cartesian system and also
in a system suitable for application to conical flows. By defining the
components of a vector potential in terms of the velocities, he is able

to satisfy the continuity condition identically, and thus, reduce by one



the number of equations entering the problem. The application of the
so called Howarth's transformation,and (in the case of conical flows)
modified Mangler's transformation, gives to these equations a form
which is somewhat similar to that for incompressible, two-dimensional
boundary layer. In discussion of these equations, Moore shows that,
when the external flow streamlines are straight and parallel, the
shape of the leading edge has no effect on the three-dimensional bound-
ary layer flow, as long as the curvature of the leading edge varies in a
continuous manner. He notes also that in compressible flows having
conical symmetry, the Blasius similarity variable may be applied,
thus reducing the number of independent variables to two,and implying
a parabolic boundary layer development along rays from the apex.

Of interest to turbomachinery applications is the work of

(4)

Burgers, who considers the equations and problems which arise in

the study of boundary layers formed in just such machines. In particular,
he concentrates on the effect of angular velocity,and establishes the

form of boundary layer equations applicable to a Cartesian coordinate

system rotating with a constant angular velocity about an axis fixed in

space.




By considering successively the cases involving the tangential
velocity (in the 2z direction) and the angular velocity @ , Burgers is
able to demonstrate qualitatively the presence of the additional forces
caused by the rotation which (depending on the shape of the surface
over which the boundary layer is developing) may, or may not, offset
the effect of pressure gradients in the X direction. In addition to
these considerations, Burgers attempts also to discuss the effect of the
blades, but inasmuch as he neglects to establish the equations governing
such flow, (axial symmetry considerations cannot apply here) this part
of his paper is necessarily approximate and sketchy. In general there-
fore, Burgers investigation is limited mainly to axially symmetric cases,
and also to cases when the external flow (considered with respect to an
inertial system]} is irrotational. These two conditions are certainly not
true in the more realistic approach to the turbomachinery problem.

(5)

The work of Tetrevin, who gives the momentum-integral
equations for fluid of variable density and viscosity is essentially
superseded by the more general equations given by Hayes.

The investigations falling into the second group of this class-
ification, in the main consist of cases where:

a) the changes with respect to one of the independent coordinate

are zero,
b) where there is some sort of symmetry, and
c) where there is some characleristic parameter which is

small.



(7)

For inslance, Prandtl(é) and Sears are able to treat the
cases of infinitely long yawed cylinder, where if x and Z coordinates

are taken in the chordwise and spanwise directions respectively, none

of the physical quantities involved in the flow can be functions of Z .

This results in the separation of momentum equations, and in fact,

the equations in the chordwise direction remain the same as in the two-
dimensional case. This property of the equations is also utilized by
Wild, (8) who computes the boundary layer over a yawed infinite wing
using the momentum-integral method, and by Young and Booth, (9) who
apply the same method to turbulent boundary layer. Since the equations
in the chordwise direction remain identical to those for two-dimensional
flow, the phenomenon of chordwise flow reversal accurs exactly at the
position of separation in two-dimensional boundary layer flow. Con-
sequently all the above solutions have the drawback of not being able to
indicate the position of chordwise flow reversal in real wings, where
undoubtedly the boundary layer quantities are not independent of the
spanwise coordinate. Nevertheless it is interesting to note that

experiments of Altman and Hayter(lo) seem to show that



even in the case of small localized spanwise pressure gradients, the
chordwise boundary layer appears to be independent of the spanwise
boundary layer, and thus the above mentioned (and often called ""simple
sweep'') theories should give reasonably good results as far as the
general development of boundary layer thickness and computations of
drag (in absence of flow reversal) are concerned.

Another case where the boundary layer quantities are independ-
ent of one of the coordinates, occurs in the investigation of Bodewart, (11)

who considered axially symmetric rotary flow over solid ground, a

case which may be important in meteorology. No separation of the




equations occurs, but nevertheless the equations may be converted into
ordinary differential equations if a similarity parameter based on the
square root of the product of curvature and local external flow velocity
is used. Bodewart obtained the solution of these equations, and one of
his most interesting results is that; the deflection o , of the boundary
layer flow at the ground from the direction of the external flow, equals
about 50. 6° inwards, and is independent of the radius. This then points
to the effect of the rotation of the surface, for when such occurs in an
otherwise stationary fluid {(as computed by von KArmén in Reference 12),
the boundary layer due to the action of the centrifugal force is displaced
outwards.

When the restriction of axial symmetry in Bodewart's case is
removed, and thus the plate, over which the boundary layer flow takes
place, posses a definite leading edge, solutions for rotary flows may
be obtained if an expansion in terms of total turning of the external flow

is considered. For small turning, considering only first order terms,

- /
— -
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(

Mager and Hansen 13) found such a solution for compressible and

incompressible cases. In this solution the limiting deflection is also

independent of the radius, but is shown to depend directly on the turn-

ing of the external flow. Compressibility, besides the characteristic

"'stretching' of the ial coordinate, is shown to cxcrcise a scale effect

on the crosswise flow (that is in the 5, direction) in the boundary layer.
Of somewhat more direct application to turbomachinery and

(14)

helicopter blading design may be the results of Fogarty, who

considers laminar boundary layer flow on a slowly rotating blade at

large distances from the axis of rotation. These two assumptions are

4

sufficient to achieve a separation of the momentum equations, so that
the velocity in the chordwise direction (just like in the yawed wing case)
becomes completely independent of the spanwise velocity,and of the

angular velocity, while the second momentum equation becomes linear.
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-Actually, as it will become apparent later, ‘the assumption of small
angular velocity, provided it is interpreted properly, is not as critical
as may seem at first in application to axial type of turbomachinery,
and the results of Fogarty,which show rather small effects of the
rotation,should be applicable there if an additional limitation that

the external flow be potential is also satisfied.

Another investigation treating rotation of the surface,over which
the boundary layer is flowing, is that by Howarth, (15) who by expanding
in terms of polar angle, establishes the form of equations describing
the boundary layer on a sphere rotating in a stationary fluid. Because
the convergence is expected to be slow, the solulion may be considered
practical only for small values of this parameter;that is,near the poles.
Howarth actually neglects to solve the so obtained equations,and con-

siders,instead,an approximate solution by the momentum-integral method.

(_‘;
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Thus calculated results indicate that inflow into the boundary layer
occurs over large part of the surface, while the outflow is confined

to the vicinity of the equatorial plane. At the equatorial plane there
is then an interesting region of interaction between the boundary layers
from the two hemispheres, but unfortunately,the boundary layer
equations fail to represent this region adequately. In addition to the
rotating sphere, Howarth discusses in the same paper also the case of
a thin hollow, semi-infinite cylinder rotating about an axis parallel to

the external flow velocity Q . The boundary layer velocities for this

Cels

case (in all three directions) are shown to be identical to those obtained
by Rlasius for flow over a flat plate.

In another investigation(,lé) Howarth also treats the flow near a
stagnation point; that is, when the external flow velocities are represent-
able by U=Bx , W =Az,and the external flow streamlines are given by
Z = Cowt. (X\NB . Howarth shows that in this case the equations are

reducible to two simultaneous,third order,total differential equations
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containing the single parameter (A/®). The shape of the streamlines
indicates clearly that when (A/8) =0 , the equations must correspond
to two-dimensional flow,and when (Al®)= 1.0, the equations describe a
flow about a body of revolution located symmetrically in the stream.
These are the two limiting cases,and therefore the solutions of the

equations for OQ(A/B) €10 are of interest.

A/8 =0 -— A/B =10

By expanding in powers of (A/®) , Howarth obtains such solutions when
(A/®) is small. For large values of (A/8), Adams numerical method
was used. The deflection <, of boundary layer flow at the surface
from the direction of the external flow,is greatest for (A/B) — O, and
equals 210, when the external flow has turned through 55. 8°. For

(A/B) = 1,0,%0and there is no crossw}se flow in the boundary layer.

Of considerably greater practical interest than the cases treated
(17,18, 19)

by Howarth, are the results of Moore, who oblained solution
for boundary layer flow over a cone at angle of attack to a supersonic
stream. These solutions show, that when angle of attack is assumed

small (solution obtained by method of perturbations), although the
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boundary layer thickens on the downstream side of the cone, no

separation of the circumferential flow occurs. On the other hand,when
the considerations are restricted to the planes of symmetry of the flow,
regardless of the angle of attack, on the downstream side of the cone
solutions exist for only very limited values of the angle of attack. This
is in line with the remarks of Hayes(,z) and Moore suspects this fact to
be connected with laminar separation of the circumferential flow. The
validity of these results is still in question. It is possible that Moore's
inability to find solutions,for certain angles of attack,is due to the im-
proper assumption about the character of the external flow. It is thus
implied that if for large angles of attack the external flow is considered
rotational,and if the velocity of the external flow normal to the wall is
not neglected - the boundary layer type of solution may be recovered.
The advantages of symmetry are used in the two investigations

dealing with boundary layer flow in a corner between two intersecting



walls. Carrier(zo) considers such a flow when the angle between the
two walls is TT/Q., with no pressure gradients in the external flow, and
obtains a solution by numerical relaxation of the appropriate equations
of motion. This solution shows that Blasius type of similarity holds,
and constant velocity lines deviate only slightly from hyperbolic shape,

this deviation being greatest close to the line of symmetry. Loitzianskii

yrz
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and Bolshakow(ZI) treated the boundary layer flow between two walls
intersecting at an arbitrary angle. No pressure gradient of the external
flow was considered, but because the momentum-integral method was

used, the results apply to laminar, as well as to turbulent boundary layers.
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These results indicate that,except for the cases where the included
angle between the two walls is small {(of the order of 10° or less),
the effect of the interference of the two boundary layers on the drag
is insignificant.

As may be seen from this review,the investigations falling into
the sccond class treat only very specialized cases of three-dimensional
boundary layer flow, and furnish a comparatively small amount of
information as far as the general behavior of the three-dimensional
boundary layer is concerned.

Of greatest practical interest to turbomachinery designers are

the general but approximate,treatments of three-dimensional boundary

: 22
layer flow by use of momentum-integral method as given by Timman!%?)
and by Ma,ger€23) Both of these references use an intrinsic coordinate

system,and show that when written in such system the equations reduce
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to two quasi-linear, partial differential equations, which may be para-
bolic, hyperbolic, or elliptic,depending on the relations between the
assumed velocity distributions and the parameters describing these
distributions. In Reference ( 22), laminar boundary layer is considered,
and hyperbolic nature of the equations is assumed, so that a solution by
method of characteristics is suggested. In Reference (23),on the other
hand, for turbulent boundary layer, the examination of the experimental

(24)

data of Gruschwitz indicated a parabolic nature of the equations,and
consequently,solutions were obtained by integration along a streamline
of the external flow. Inasmuch as the data of Reference (24) pertain
to only one special case of turbulent boundary layer (in a curving duct),
the important question,which remained unanswered,is whether a
solution of three-dimensional momentum-integral equations by method
of characteristics is feasible.

Another important question which remained unanswered is that
of the velocity distributions to be used in the momentum-integral method.
Timman made his choice of velocity distributions from purely qualitative
argument,and there is no assurance whether these velocities correspond
to real flows. Mager,on the other hand,used Gruschwitz data to establish
velocity distributions, but he assumed his profiles to be fixed in shape,
a condition which certainly is not satisfied in presence of pressure
gradients. Since experimental data are lacking,it appears that much

knowledge about velocity distributions could be gained from analytical

solutions of three-dimensional boundary layer equations.
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C. Statement of the Problem

The object of this investigation is a solution of the three-dimen-
sional, steady, laminar boundary layer flow equations for a number
of general external flows with small lateral pressure gradients, which
may be of particular interest in turbomachinery, so that a proper
choice of velocity distributions can be made when applying the integral
methods. Also,on the basis of the results so obtained, the question of
the nature of the momentum-integral equations will be reexamined in an
effort to determine the proper procedure which should be used in their
solution.

In addition,the boundary layer flow over very sharply curved
surfaces in the transverse direction (but not too sharply, to cause inter-
action of the boundary layer),and in the presence of small lateral
pressure gradients, will be investigated, so as to give the designers some
insight into the phenomena that takes place in the corners. The invest-
igation is limited to steady, laminar boundary layer flow because ahof our
inability to treat the equations of unsteady and turbulent viscous motion
of fluids,and b) it has been shown in two-dimensional boundary layer
flow that the effect of the parameters important in laminar boundary layers

has been qualitatively the same in turbulent boundary layer flow.
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II. ANALYSIS OF THREE-DIMENSIONAL BOUNDARY
LAYER FLOW OVER A PLANE

A. Preliminary Remarks

One useful approximation in the study of turbomachinery is to
consider such a machine as developed at a particular radius into a
series of infinite cascades. When boundary layer flow on the casing
or hub of turbomachinery is studied, such development will prove of
value, because as long as the ratio of boundary layer thickness to the
radius of the developed cylinder is small, the effect of lateral curvature
is negligible,and the basic equations remain essentially unchanged. (1)

An example of such a development at the casing radius of an
axial flow compressor is illustrated in Figure 1. Consider now the
so-called absolute flow, that is the flow relative to the stationary
casing (streamline "A'). As may be seen from Figure 1, this flow
undergoes a series of small periodic deflections from the so-called
mean flow, duc to the action of the consccutive rotor and stator blade
rows of a compressor. If desired,the physical blades could be con-
sidered infinitely thin and their action on the flow could be represented
by an equivalent force field. In constructing a model for study of
boundary layer flow on compressor casing,one could,therefore,consider
the external flow caused by such a force field,and compute the boundary
layer development corresponding to it. The small deviations of the

external flow from the mean velocity suggest the use of small pertur-

bation procedure in the solution of boundary layer equations. Since,



however, the mean velocity, which is the obvious invariant in such a
procedure, is at a definite angle to the cascade axes, the perturbation
quantities must be functions of both; the coordinate directed along the
mean velocity (say x) and the one perpendicular to it (say z). A
moments consideration will reveal that a completely analogous picture

is obtained if the development of boundary layer on the hub of the
compressor is desired {streamline '""B'"). Here, however, since the

hub is rotating, it is necessary to use as the invariant quantity the so-
called relative velocity, and in addition. in the boundary layer equations,

the centrifugal and Coriolis forces must be included.

Now let us consider boundary layer development on the actual
blades, away from either the hub or the casing. In general, the
compressor blades are designed so that the external flow deflects ouly
little in the radial direction from a cylindrical surface parallel to the

axis of the compressor. Therefore,the perturbation procedure with
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respect to some conveniently chosen relative (to the blade) velocity
may again be used to advantage, and since the system is non-inertial,
the Coriolis and centrifugal acceleration terms must be included in the
equations. The blade surface as such is generally only slightly curved
(with the exception ot high impulse turbines),and therefore effects of
this curvature may be neglected, just as is done in two-dimensional

airfoil considerations.

It appears, therefore,that a useful model for study of boundary
layer behavior in turbomachinery may be constructed from the consider-
ations of boundary layer flow over a plane surface,and affected by
arbitrary, but small, pressure gradients. To illustrate the effect of
Coriolis and centrifugal forces, the surface may be set in rotation
with constant angular velocity about an axis; so located, that the com-

ponent of the angular velocity perpendicular to the surface be small.
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This restriction on the relative location of the axis of rotation should
present no objections when axial type of turbomachinery is considered.

This,then,is the model which will be subsequently investigated.

T _fXIS OF
Ro7dtion

B. Boundary Layer Equations

The motion of an incompressible, steady, viscous fluid, flowing
relative to a coordinate system rotating with a uniform angular

velocity, is described by the momentum equations:

~§1(VxQ) + BB x k) +26%3 =-w(E+57) 4 V[v(w-g ) -x(:3)]
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and the equation of continuity:
v-g =0 (2)

Assuming that the velocity v is of ( (55, and restricting our
considerations to a thin layer, so that Y is of 0($), but the velocities
u,,aT , N and the lengths X , 2 are of O(i‘) as compared to some
characteristic length and velocity, the order of magnitude of the various
terms involved in Equations (1) and (2) may be evaluated. Neglecting
all terms of O (5), or smaller,as compared to those of O(i),one obtains

the boundary layer equations. For Cartesian system these are writlen

as:
Wl T Vly Wity + WM - @l j'st oV lyy (3a)
2000 —ON) — & % Py (3b)
Wy +‘\!"Na Wz 2@ U calrri_ ) —1(3 Pz T Y Na% (3c)

and
W +V3+N?_=O (4)

Since as previously mentioned ®r and the velocities W and W are of
0(1), Equation (3b) indicates that Pé is of O(1). This occurs because
a pressure gradient is necessary to balance the effect of the centripetal

and Coriolis forces. But the total change of pressure throughout the
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boundary layer along a normal to the wall is still of O (&), and although
this is larger than on a nonrotating flat plate (where it is of 0 (6") ), it
mavy still be neglected. A reasonable assumption,therefore,is to

consider P as a functionof X and Z only.

C. External Flow

The external flow is defined as the flow where the effects of
viscosity may be neglected,regardless whether it is rotational or
irrotational. This definition is different from that used in conventional
mechanics of the boundary layer flow,and implies a division of the total
flow field into a region where effects of viscosity are neglected,and a
(still thiner) region where such effects are considered. If the external
flow is rotational,then it must satisfy the Eulerian equations for the

variation of pressure:

10U, +VU3 tWUz + 2(0,W - w_N) -cS'rrx S .'.C.P,Q (5a)
UV +VVy W +2(@0 - oW -drry = -1
g TR : S o Py (5b)
Gy T R, 2007 o, < L,
(5¢)

and the equation of continuity:

Uy +V& +W; = (54)
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If this flow is irrotational then in addition to Equations (5),it must also

satisfy:
'E:: = w\é - _VL: O
NG Uz B Wx =0 (6)
E = VK - Ua =0

When the surface over which the flow takes place is rotating and the
irrotationality of the external flow with respect to an inertial (non-

rotating) system is maintained, then with reference to the non-inertial

system the vorticity components are:

E: = - L,
A T m L Wy (7
$ - 20

In the present analysis it will be assumed that Equations (6) and

(7} are not necessarily satisfied, however,if the flow is rotational,the

vorticity components E and $ , and in particular the derivatives Ubs‘
C

and Wa are small as compared to Uy . Furthermore since we are
interested only in the thin boundary layer solution, the velocity V. will

be assumed of O(é\J , 8o that terms like VU% and VW% will still be

considered small as compared to T Uk Thus rctaining only tecrms of

OKUUX) , s0 as to be consistent with the boundary layer equations, we

obtain from Equations (5):
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UU)( +WU1 + LCQLN - (.SFY’,\ = —'_Px
¢ (8a)

"

Ul ~ W, -2l = =g b (8D)

The external flow components U W and the angular velocity @ are

assumed known. In particular we take:

p = P° + p*(x,zﬁ P*« p°

Y- 4 U o) U« v’

W= Wia) W« )
W = 2601*5‘07,*‘1’@5 WD K @, Wy

as describing the external flow and the angular velocity. In Equation (9)
velocity v° , Ppressure p" and angular velocity @ are assumed
constant. The component ®, is taken of the same order when compared
to @ as U¥ when comparedto U . The third external flow com-
ponent V may be assumed as given by the L"Mé’“‘?’v . Use of this

assumption will be made when treating the boundary layer flow over

sharply curved surface.

D. Derivation of the Perturbed Flow Equations

Corresponding to Equations (9), the flow in the boundary layer

is expressed by: o "
W= W +Ww

- ° *
= "\r:\i (10)
W= W
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Making use of Equations (8), (9), and (10) in Equations (3) and (4) one

obtains the zeroth order equations:

ka)fo + \)'"kkca/ = \)U?g%
Wy + UOB = O

and the first order equations:

o ¥ ¥ o o ¥ ¥..0 o, % *
+ W Ty +V = v U

o, o, . ¥ ¥
S el a0t = UL Yy

A T

Equations (ll) are just the Blasius equations and their solution is:

« = UFm
o - Lyvye '
v o= Z.q'}f (r\'\\: =
= 4 \U°
AEEERES
with F  satisfying:
FE' o+ LEY =0
and boundary conditions:

FO) = F) = O
Fiieo) = 1.0

(11)

(12a)

(12b)

(12¢)
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These values may then be used in the solution of the system of
Equations (12).

Introducing the vector potential components in the
manner of Reference (3):

U.* = ’\“\’ta_
&y
o= - (\\‘x + L{Dl\)

Equation (12c¢) is identically satisfied, while Equations (12a) and (12b)
become:

o o‘( vo! _ 2 . ey 0 *
W \l(ax +11/3Lk 4 \)a% N/ﬁ“?z)wa UUX + V\"?‘u&

. . . (13)
G 59y 20U UL gy

Now taking for:

il

%
Wo(x,m 2) %JVXU" ]C(”\\

i

~ ¥
¢ (M) %qu" gm

(14)

so that the velocities in the boundary layer are given by:

U°F' + U*zg
W*%‘

W

H

W

H

| % (15)
o= -4 [k [ E-R e UG- g+ 2 )
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and Equations (13) become:

e Al “(X%Flw +EF“({’3H%M H%V% ‘ X%:": © (16a)
L . W Fla + XE“E Yk = (-F) =0
MRS R ' oo (16b)
The appropriate boundary conditions are:
foy = fo) = gtoy = gloy = O
{‘koo\ - g(=0) = 10 (17)

E. Discussion of Equations(16)

It is clear from the form of Equations (16), that in order to
insure complete similarity, that is,in order to convert Equations (16)
to two total differential equations in one independent variable M » the
external flow —U* , W* must be expressible in the form: Ut B x™ T't"b

3

W¥ = Ax™2®% . A number of such cases for a given choice of L , K |
m , and m will be discussed below. For the time being, suppose that
an appropriate choice for the external flow has been made,and that
Equations (16) are thus total differential equations. The inspection of
the system reveals that Equation (16b) is completely independent of

Equation (l6a),and may be solved first for 9 (M) . This separation of

equations indicates, that physically, to the first order of approximation,
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the transverse flow W' lor W) s completely independent of the u
flow,and depends only on the gradients of the external lateral flow W*
and possibly the angular rotation term W, . Furthermore,it should
be noted that only the gradients of W* in the X direction enter
Equation (16b). This means that the distribution of the W flow with
M. will not be affected by the W; gradients, even if such exist.
The effect of the external flow gradients on the velocity dis-
tribution %‘ may be investigated by taking account of the boundary

conditions at M= 0. In this way one obtains:
X *
gu(O) = :ﬁ* (2w, — W, ) (18)

It should be remembered that X will not enter this equation if proper
substitution of W* is made., In Equation (18),however, the old form

is retained, so as to indicate more clearly the nature of the changes in
Q" (0) corresponding to changes in W*x and ®,; . The quantity g"‘(o)
indicates the curvature of the profile of the w velocity distribution at
y=0 . It may be seen from Equation (18) that the effect of angular
velocity @, counteracts,in general,the effect of W: . If ®2 is zero,
(the plate is either stationary or the X axis is parallel to the axis of
rotation) the sign of Wt will determine the sign of the curvature

%‘“ (0) . This behavior of the wt velocity profile is then completely
analogous to the behavior of the two-dimensional velocity profile. There
is,however,an important difference between the interpretation of this

result in a two-dimensional boundary layer and a three-dimensional
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boundary layer. From the sketch it may be seen that

$ %ut < Q
Qm

%“‘(O\ » 0 corresponding to W*;g < O results in lower values of W close

to the surface. If W: is made sufficiently large negative, reversals
of the W  velocity may be expected. In two-dimensional flow such
behavior of velocity profile leads to the separation of the boundary layer.
In three-dimensional flow however, the decrease and possible reversal
of the W velocity mean that only one component of the flow qm
‘Et" ~lwt kw) has a tendency to change dircction. The boundary
layer,in general,will still adhere to the surface. Experimental evidence
of this fact was obtained in Reference (25), where it is noted that on a
yawed wing with turbulent boundary layer, the reversal of the W flow
alone did not cause the large pressure fluctuations usually observed in
separated two-dimensional boundary layers.

Equation (16a) is coupled with Equation (16b) through the term
-%_%\:“% . Clearly then,if W is nota function of 2 , the two equations
are completely separated. This result is more general than the one

derived for yawed infinite bodies, since U may remain an arbitrary
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function of 2 . The curvature of the o velocity profile at y=0

*
U
[t} - VX
‘% (O) - X U* (19)

is given again by the velocity gradient in the X direction. Therefore,
if the equations are uncoupled and U* is not a function of 2 , the
reversal of the W profile will occur exactly at the same position
where separation occurs in two-dimensional flow. If UJ'F is a function
of %, then the position of flow reversal will also be a function of 2z

Since the fluid in the boundary layer is affected by the same
pressure gradient as the external flow, but must follow it more closely
having less inertia, an angular deflection exists between the streamlines
of the external flow and thosce of the boundary layer flow. This deflection,
which may be considered as a measure of ""secondary flow'" in the
boundary layer (hereafter designated as crosswise flow), is greatest
when the limiting streamline at Y= O 1s considered. Designating

the direction of the external flow by:

¥ *
W
O = Arctan T5U* X g
and that in the boundary layer by:
~1% !
X Wa _ + g2
FHm) = Arctan T g

one obtains for the deflection to the first order of approximation:
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T-0 = HA%.*Q

and the limiting deflection:
‘w* g“(o\ O) 20)
K = ‘—Uo k £'(0) - 1 (

by L'Hospital's rule. Equation (20) shows that the existence of cross-

wise flow to our order of approximation is determined solely by

Equation (16b),and is completely independent of the possible changes in

the W velocity profile. One may thus state that the factors affecting
. W

crosswise flow in the boundary layer are the w gradient and the

. . ®
rotational velocity term x ﬁ%

In regard to rotation it should be noted, that since no derivatives
of ®, have occurred, this quantity could have been a function of X
and z without affecting in any way Equations (16). This would actually
take place if the plane X  were slightly carved,

Equations (16) were obtained by use of the perturbation pro-
cedure. Inasmuch as all velocity components vanish at Y= 0, one may
properly question the validity of the perturbation procedure in the
region 3= 0. To clarify this objection an argument will be given
which is similar to that advanced by Moore.( 17)

Consider for example term MW W, which appears in Equations

(3a). Making use of Equations (15) and dividing by (Uof_
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*

aFHU[UX ep - B(PF AR+ K%)(U*ﬁz— Tett)

Following the perturbation procedure, terms of 0 k{)")) are neglected
*
when compared to terms of O(%a\ . The question which needs to be
answered is, whether this is proper, since both terms vanish as n- 0.
Writing the last two terms as: .
) U 15__ 1)
v Us 0 oyt
V(AR - Y+ AR (L0 -
ATEI LA LR v EENT

one asks whether under all conditions

v (F1 - )
U° f(%;—\ Ut F) N qF « 10

or in other words,whether
U: Is '
(ot - &
*
S AR

is always of O(1) or smaller. Expanding the functions f and F
about n: 0 and making use of boundary conditions (17):
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o o ") »
fon - B - et

Substituting these expressions and taking the limit as n— 0

Uiy _ MLy ..
Lim ku‘% IX{H = ConsT. w

n—>0 (‘%{F' - UULi F)Ji + %_*lF F'(0)

where the constant depends on the external flow. Since F'"(0) i not

zero, the limit is at most of 0 (1) . Thus,the neglections due to the

perturbation procedure are justifiable. It should be noted that if the flow
& were not Blasius flow, but some other flow in which F"(O) could

become zero (the flow would be separating), then the omissions due to

the perturbation procedure could not be justified and one may expect it

to fail.

F. Special Cases of Three-Dimensional Boundary Layer Flow

Since the external flow may be rotational,a large variety of choices
can be made for the external flow, all of which will give total differential
equations out of Equations(16). Cases illustrating the three-dimensional
boundary layer behavior for some such choices are discussed below.

It should be noted that,similarily to the corresponding two-dimensional
situation in choosing expressions for A and Wt it is assumed that
these satisfy the equation of continuity only after due account is taken of

the outflow from the boundary layer.



Y

o W-A U5 -0

This assumption presupposes that the external flow is potential

with straight streamlines which are inclined at some definite angle to

the R axis,and thus,also to the leading edge of the plate. For this case

)
\\

Equation (16a) need not be considered and Equation (16b) becomes:

8+§%=O (23)

The solution which satisfied both Equation (23) and the boundary con-

ditions (17) is obviously:
q-F (24)

The limiting deflection becomes
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o =

TES -] -0

showing that there is no crosswise flow in the boundary layer and all
the flow takes place in the direction of the external flow. This result,
then, is in agreement with a similar result obtained in Reference (3),
and shows that the inclination of the leading edge has no effect what-
soever on the three-dimensional character of boundary layer flow, as
long as the external flow has constant velocity and straight streamlines.
In applying momentum integral methods to three-dimensional
boundary layer flow, it is usually convenient to consider the various
displacement and momentum thicknesses, along, and normal to the
direction of the exlernal flow. In order to facilitate interpretation of
the present results in this different coordinate system (95, tot,Sz,) ,
the expressions for the various quantities involved in such analysis
are derived in Appendix A, and will be evaluated for each case under
discussion. In the present case, of course, the values of these express-

ions are known, and one has:

& . L1
X - QQ-’/Z
Sa _ 0664
X Ro"*
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2y W=Az ; Ubx; 6-0

This again is an example of an irrotational flow. The magnitude

and direction of the external flow velocity are given by:
n ¥

b
f)— 1. * "o = |+ ?U'-'ox
w i =z i\__ ?;
T U
The shape of the external flow streamlines is obtained from

dx | odzx o dx | dz

U~ W TUhex Az

(@]

or
A/
Consr. (UD+E)X\} ’ 2 Com‘(.(i + %ox)

b

Z

We thus have external flow with straight streamlines, but diverging

LIS AN
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in the X% plane. This flow is similar to that studied by Howarth,(lé)

the diffcrence lies in the location of the stagnation point which is here

removed from the origin to a point x= - %
Equations (16) become now:
in E et N 3 A " = 0
A - 2 + A + 4=
vt -Ff +ZF+ SFq +1 (25a)
W Far - 25b
¢ 39 =0 (25b)

Clearly,again,the solution of Equation (25b) is
g=F
and thus,there is no crosswise flow in the boundary layer in spite of the
divergence of the streamlines.
One seeks solutions of Equations (25a) involving the ratio A/B

explicitly. These may be obtained setting

A
t- f, vt % fi (26)
where fo satisfies:
ﬂ‘L S1-FR o2 Flort-o (27)

with boundary conditions:
1

{»0(0\} = f;((ﬂ =0 {0(003 = 1.0
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and fi satisties:

fm . g‘_ﬁl B F|f1 ' %ani + F"F = O (28)

1

with boundary conditions:

fo) - f0 =0 5 fre) =0
The solution of Equations (27) and (28) for f’ and {, ., satisfying
the appropriate boundary conditions,has been obtained by the numerical
method described in Appendix B. These solutions are presented in
Figure (2a).

The two solutions have a definite physical meaning, since f:
satisfies the equation which one would obtain from Equation (1l6a) if

.
V\] -0 . In other words,the solution f; illustrates the effect of the

¥ '
velocity gradient Uy, , while ":1 is due to the divergence of the stream-

lines.
The displacement thickness now is:
@ ®
5! x 5_ dq“ 1124 767A x—-405g%;k
2 o7 172, +- fo B U
%, rR
and the momentum thickness is similarily obtained as:
® ® ®
SV _ Ay 1073 ~—°x~\
L {0,6@4: 0285 S N

Designating the terms involved in computation of displacement
and momentum thicknesses by (Q), @ , and @ , we note that 0)

represents the effect of basic flow, @ the effect of acceleration in
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the % direction;and (3) the effect of acceleration in the X direction.
We thus see that although this case is probably of not much
practical significance, it demonstrates very clearly the effect on the
basic flow W of accelerations inthe Z and X directions. Finally,
it should be mentioned that these results are in qualitative agreement
with those of Reference (16), when the parameter used by Howarth

equals unity.

3 W= AT U% @, 0

This is an example of rotational flow and represents a general-

ization of Case 1. The magnitude and direction of the external flow

velocity is given by:

QR =T

o

m

A
= — Y
9 l ] (Al

The external flow streamlines are obtained from

1 A n+i

—— X CoNsT.
oL U + N

Z =

The external flow streamlines thus represent various parabolas and
the flow due to each m may be imagined as caused by a cascade of
infinitely thin blades. It should be noted that for values of M < 0, the
velocities become infinite at the origin,and thus such regions must be

excluded from our considerations.
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Equation (16b) becomes now for any particular value of m :

n F il (Y _
wt 7 In NL(F%% 1)=0 (29)
with boundary conditions given by Equations (17). Equation (16a), just
as in Case l,need not be considered. It is perhaps not immediately
clear that this is true. One,for instance,may surmise that in spite of

¥
the fact that U = 0 ; there exisls some perturbation in the X direction

due to the W flow. Imagine then that U is represented by
° \
[V U F‘ + M(Xlz)f

instead of Equation (15). In such case Equation (16a) would become:
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with boundary conditions:
\ \
floy = {10} = freo) = 0

Since the equation is homogeneous, the solution which satisfies
the boundary conditions is Jf =0, and thus,no perturbation in the X
direction exists,

The solution of Equation (29) for 9 when m =1 maybe obtained
by setting:

q,= F-an

where G must satisfy:

6 1 Ea - Pe-[a- ] - 0

2 (30)

with boundary conditions:
G0} = Go) = Gle) = O

The solution of Equation (30) for G s given in Reference (13), where
boundary layer for external flow having circular streamlines has been
computed. For the convenience of the reader this solution is also shown
in Figure (2b). Since for m=1 the shape of the external flow stream-
lines is given by

A

% = ﬁ)ox’ + CONST.
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which will nearly match the circles of radius % for small values
of x , it is not surprising that the boundary layer solutions correspond.
This correspondence with Reference (13) is especially evident when the
velocities OU (in the direction of external flow) and Cb (normal to

the direction of external flow) arc considered:
0
9 = U'F

Qs =W*(@"~FW: Ax (FP+@-F)= AxG

These are the same as those given in Reference (13).

Equation (29) was also solved for m=1 and m <=1, by
relaxation. It should be mentioned that analytical relations between
various solutions are difficult to obtain because of the nonhomogeneity
of Equation (29},and because F and G are known only in terms of
their tabulated values. The solutions for =0, 4 , L , ~ L/’L are shown
in Figure (2b).

It may be seen from this figure that an increase in ™ from
¥=0 to m:1 corresponds to an increase in crosswise flow, CtﬁW*L%'— ')
since the value of

Vg = '

%'“' %0 N %%.. F
increases with m. . On the other hand,a decrease in the value of m
from m=z0 to m=-‘{l corresponds to a reversal of the direction of the

crosswise flow, since the quantity %‘~ ' becomes negative. This
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behavior of three~dimensional boundary layer may be explained by
considering the driving force of crosswise flow, which is the pressure
gradient in the direction of 9, coordinate. Consideration of this
pressure gradient is equivalent in this case (velocity Q = constant) to
consideration of the curvature of the external flow streamlines. Now

for m =2 , this curvature is given by
. A
= — X
¢= 27
while for m=-%2 the expression for curvature becomes:

A

. 1 -
C=-5 &%
2 U
Thus it is apparent that the change in the direction of crosswise flow
corresponds to the change in the direction of the crosswise pressure
gradient.

The boundary layer thicknesses and maximum flow deflection for

all these values of M/ are presented in Table I.

moy,

¥
4 Wab™ UM 0,00

This may be rotational or irrotational flow. If the flow is

f e ¥ .
irrotational,however, further restrictions on U must be made; that is,

the coefficients must be so adjusted,that the relation

vk = WS

is satisficd. The external flow velocity is given by

Q=U°(1 + %oix"“)
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It should be noted that due to the linearization,no changes in
the direction of the flow stemming from Ui( (X.Z) are considered.
Consequently, although the magnitude Q& may now change along the
streamline, all streamlines remain parallel and identical in shape to
those considered in Case (3). We may expcctythereforcythat the
equation for W will remain unchanged, while the equation for ot
will reflect the effect of pressure gradients. Inspection of Equations
(16) reveals that this indeed is the case. Equation (l6a) becomes now:

{ul N _‘7:: ¥z' B mF‘¥|m + Fuk}i_‘, m\km,\" my o= O (31)

m m

It should be noted that,as already previously pointed out, the
presence of 2 in the expression for U* has no effect whatsoever on
the velocity profile fl . Physically, it is clear that this occurs because

8 , the external flow direction,is not a function of Z, and because
the total turning of the external flow is of 0 k%ﬁ , so that along any
particular streamline only very small variations of Z occur.

The solution of Equation (31) was obtained numerically for
ms= 1 L;VZ, . These solutions,together with the Blasius profile,are
shown in Figure (2c). It is interesting to note that the behavior of the f'
solutions in Figure (2c¢) and the %' solutions in Figure (2b) is
essentially similar, indicating that apparently the effect of FH(%"’TLHM
term (by which the two Equations (29) and (30) differ) is mainly to

increase the scale of the u¥ profile. For m =- L/L this term vanishes
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and_the two solutions are identical.

Since the flow in the‘ X direction may now decelerate, there
will in general exist lines along which the W velocity reverses its
direction at Y= 0 . At such locations the boundary layer flow is in Z

direction only. To find the shape of such lines one computes first:
¥
o T [ + U]
Gylyo = U [FLO) + 5.410)
and this will be zero if

N i}
Fo) = - 5 1)

¥ . . .
Since U is a function of % & %, the last equation gives the

shape of the lines along which the reversal of W velocity takes place.

These are:
z‘b] = - E‘I—(E) g" )Zm
u‘a§3=0=0 ) ‘((:“ (0) B
In order to permit such estimates, the value of 11‘.}%3) = o - is
3re
included in Table I,where all other significant quantities for this case

are listed.

¥ v
5) W Ax™a® - U= BX 2" ¢ @0

To insure that this flow be possible and | remain still of 0(8),
the components N* and U* were chosen so that they themselves
satisfy continuity., (The situation, with respect to V , is then analogous
to two~dimensional flow over flat plate). This may be accomplished

by choosing:
m_ i = 'TL (, = h." L
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R
B = - a A
For such casc then: mil kA
¥ X R
W= heva® o U= -oqhe 3
and
'3 A k.'i il
Q= U’ [i"{{ﬁ U" X ]
o = Aok
U X %
The shape of the external flow streamlines is given by:
lk. L4 L 1 «v&i‘k Rt L
(C’ONﬁT [ U Const fn+ix .
and A L xm«.)
, ( U° m+4
Z= CoNsT @€ k=1

It is clear then,that this case deals with both the direction ©

velocity Q varying with ¥ and 2% .

‘Em + %{.:\, - (n+1}F‘.F;U+(’n,+5/2,)F"% (’Yb-*i) 9. +ntt)= O

n

ST SETM G A

Equations (16) become:

and

It should be noted that Equation (32b) remains identical with

(32a)

(32b)

Equation (29), and Equation (32a) although changed from Equation (31),

s1ill is independent of the exponent of %

This occurs because along
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each streamline there is only small variation with © . When m-0
Equations (32) become identical with Equations (25). Inspection of
the shape of the streamlines in that case reveals that the streamlines
are straight and diverging,so that the identical form of the equations is
understandable.

The solution of Equation (32b) has been discussed in Case (3).
To solve Equation (32a} it is more convenient (in order to avoid the

integration of %‘M,) to substitute:

%m, = q\%« 5/1_[ &/2‘ -Eme [m(%n+ flm)]

where M. = m+1 ‘%m satisfies Equation (31),and “17\/ must
satisfy:

W ke et 5 I s
{ll‘n ' f_);% ‘—m\'Fﬁ,‘n.\-(m‘* /l)F {1'“*'(1.“ %nF\I:O (32C)

im

with boundary conditions:

fz,.\(o) = 1[‘ o) - { L) = O

m L

The solution of Equation (32a) has been obtained numerically
for ~ =1 , 1, ~1/2, and is shown in Figure (2d). It may be seen in
this figure, that with M decreasing, the correction function fz‘n
increases. Interpreted in terms of the uf velocity profile, this means
for AQ%H >0 , that the velocity profile "spoils" more and more as m

decreases. This behavior may easily be explained when the shape of
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the streamlines of the external flow and the limiting deflection are

congidered.
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For m5 L , the streamlines of the external flow are concave,
and thus the crosswise flow (indicated by the limiting deflection o )
is such as to cause an outward flow of low momentum air. Consequently,
the uf velocity profile is less affected by the negative pressure gradient
than in the casc when such crosswise flow does not exist., This is
especially apparent in Figure (3), where a comparison of the velocity
profile for Cases (4) and (5) (when U* is proportional to Xl) is made.
On the other hand,for w = — Yo, , the streamlines are convex,and the
crosswise flow is now such as to cause an inward flow of low momentum
air. This effect,combined with an unfavorable velocity gradient in the
direction of the external flow, causes the large detrimental effect on the
w¥ velocity profile.

Since Equation (32b) is identical with Equation (29),the constants
in the expressions for the momentum and displacement thicknesses
ét: gf:« and gz remain identical to those of Case {3). To illustratc
the magnitude of the remaining thicknesses,their size was computed for
w=141. The results of this computation are:

t L k-1
%QZ" = 172 + 190 % Rz«

é:: i/1 5 _A_ :LR—L){\L
~ Re = 0.664 + 0.1 7U°R'

The location where W velocity reverses its direction may again be

estimated from: fl
0 ° -{n+1)
2k4] = E%£~l }L-(¢L+ 1) x
Uy),.s O F'lo) kA
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G. Kifect of Angular Velocity

Case (1) is identical with that of a thin ,hollow, semi-infinite,
circular cylinder rotating with a constant angular velocity @ about
its axis, which is placed parallel to a stream moving with velocity U’ ,
since for such case ®>=0,and W=-A® = constant. Consequently, the
result obtained for Case (1) is identical with that given by Howarth, (15)
except for the fact that Howarth uses an absolute (non-rotating) system

of coordinates.
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Of more interest however is a case where W,

Tr¥
for example,external flow W= Ax , U=0 , »,=0

need not be considered, while Equation (16b) becomes
L N SN | szPﬁ(iﬂ )< 0
TH39-79 A
with boundary conditions:

qo) = glo) =0 gl = 10
Solution of Equation (33) may be sought by setting

%:81 ~2,%%alo)

where 9y satisfies Equation (29) with m=1, and

Qs
satisfy:
it F Al et
%o * 5 e Fg’m +(4-F) =0

with houndary conditions:

310 = 4,00 = gm0

The solution of Equation (33a) is presented in Figure (4)

this value of %uo

[\
a = F‘("I"’?_,K%_»l.‘,o

and the limiting deflection becomes:

o = %x;[g,w - 22 (2.05)|

exists, that is,
where the surface and the axis of rotation are not parallel. Consider,

Equation {16a)

(33)

must

(33a)

With
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When the external flow is potential:

A=2w,= 20D
so that 2
WX
A = iZi A«(l;?o = 121 Q
L (14) .

Fogarty gives for an analogous case:

. 2({);!

Q

This difference must be laid to the fact that no attempt has
been made in this investigation to achieve very high accuracy in the
numerical solution of the various differential equations, and consequently,
the value of %"1'0(0) as obtained from Figure (4) may be in slight error.

It may be seen from Figure (4), that the effect of negative 4,
is to increase the crossflow caused by W*= Ax (providing A 0).

On the other hand, had 0, been positive, then the effect of
angular rotation would have been to decrease the crossflow caused by
W¥= Ax . This fact may be of importance in certain types of turbo-
machinery where the hub shape is such as to give D> O | because in
such cases the crossflow may be decreased by simply increasing the
angular velocity ®

Similar qualitative considerations can be carried out in the case
of the flow over compressor blades. Consider the situation indicated
in the sketch below, and assume that on the suction surface the external
flow is deflecting toward the tip of the blade, while on the pressure
surtace the tlow deflects toward the root. Consideration of the coordinate

system will show that A must be negative in both of these instances.
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Since ®; (and thus D ) is positive on the suction surface and
negative on the pressure surface, we see that angular rotation for
this condition tends to increase the crossflow on the suction surface

and decrease the crossflow on the pressure surface,

H. Effect of Compressibility

To estimate the effect of compressibility on three-dimensional
boundary layer flow, the Equation system (1) and (2) must be replaced

(considering an inertial system) by:
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P%g{ z“VP+/*V1q,+%f‘v(v'q)lfl[w*\'ﬂzﬁ () (9%8) - %{V'@WM (34b)
o % rpled) = A+ v Uk)T] e

i A a{le G 9l 0l 15:908)- Seg

and

P:p@\ﬂ‘

(344)

lf,now,all the quantities are considered relative to some standard
quantities, the viscosity is assumed to vary linearly with the temperature,
the Prandtl number is set equal to unity,and a condition of zero heat

transfcr at the plate surface is imposed, then,by application of the

Howarth's transformation:

ooe DN
Y ]
e ™

= (574

the Equation system (34) reduces to:
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LD Lo A(Pig, Pug
\ (()XY ('\l./x + LQZ}&Q‘{Y +(Q\ZLQZ\[ :—‘E p? + i(%’“’ 4 %L‘?)@YY ‘\‘(‘P{W

b T
Po G TO

Velocities in the boundary layer are here represented by:

uv-”\pY
W= 9Py
Definitions:
~ v’
n= Y X
— S S
Ve U [Fay « L))

result in the zeroth order equation:

=W - =

267 + FE' =0

and after some manipulation in the first order equations

(35a)

(35b)

(35c¢)

(35d)

(36)

(37)
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It is thus seen that the relaxation of restrictions on compress-
ibility of the fluid in three-dimensional boundary layer flow, causes,
besides the characteristic "stretching' of the ’YL coordinate, also the
appearance of additional nonhomogeneous terms in Equations (38).
The effect of these additional terms may easily be evaluated if

* ¥
W=Ax and U =BX. For such cases

g F-a(1+ 7}&)

(39)
P R0+ 1, O 00
where %c‘s, satisfies
-~ W Tf—'” —_—_— 3"11— B 12y
Jic.i + ’i%u“F °|*+1F {c‘iJr(fL i ) =0 (40)

with boundary conditions

f0 =@ =l -0

e i

and fo R %1 satisty lquations (27) and (28) respectively.

¥ *
Similarily if W =Az and U=BX then the solution of
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Equations (38) is:

VI s (41)

—t
i
-t f

[a]

_+
—
o® | >
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el
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Solution of Equation (40) is shown in Figure (5a),and the velocity
— -1
profiles %‘ and f from Equations (39) at \k=i-5 are shown in Figure
(5b). It may be seen in this figure that compressibility has the overall

effect of increasing the magnitude of the W* and the uf velocity.

I.  Discussion of the Results and Remarks on Momentum-Integral

Equations

Before proceeding with the discussion,it should be emphasized
again, that the results of the present analysis are valid strictly only in
the limit of vanishing pressure gradients of the external flow. The
extent to which they apply, for small,but finite pressure gradients,depends
on the relative magnitude of the effect here evaluated,rather than on the
pressure gradient itself,and consequently,no definite statement as to the
limit of the applicability of the results may be made.

Some idea,however, may be obtained comparing the results of
Case (4) with =0 to those for two-dimensional boundary layer. In
particular,the separation point in such cases,and when m=1, is accord-
ing to Reference (26) given by various methods as:

Inner and outer solution (Karméan and Millikan) Bx _ 0.107%
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Bx
Expansion in series (Howarth) S 0.12.0
Momentum equation {quartic expression for velocity) ‘6&0-15@

The present method gives the value BS., - 020 . 1t is thus seen that
the present method tends to underestimate the position of the separ-
ation point by considerable amount. One mavy therefore expect that
from a quantitative standpoint predictions of flow reversal position will
be inaccurate.

At least part of this discrepancy may be caused by the fact that
due to the large number of differential equations that had to be solved
numerically, accuracy was sacrificed in favor of speed; that is, the
number of points chosen for the relaxation procedure may have been not
quite sufficient. Still,even with very accurate and tedious computational
procedures,one may not expect a linearized solution to give an accurate
representation of the phenomena everywhere in the flow field. There-
fore,it is important to understand that the numerical results of this
investigation represent at best quantitative trends only, and shauld not
be interpreted as final values. This applies in particular to those
results which involve the value of second derivative of velocity distrib-
ution functions at 4= O ., For that reason too, the values of the
appropriate friction coefficients were not listed, although they could
have been easily obtained from the computed curves.

Keeping,however,the main object of this investigation in mind,
which is to furnish information on the velocity distributions existing in

three-dimensional boundary layer so that integral methods may be
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applied, a number of questions arising in connection with application
of such methods may now be answered.

In particular the choice of the coordinate system and the general
character of the equations will be considered.

For the purpose of general treatment of three-dimensional
boundary layer flow, the present results seem to indicate that a choice
of an intrinsic coordinate system is preferable to a Cartesian coordinate
system. This becomes apparent when the expressions for the velocities
in the intrinsic coordinate system are considered:

qu - u'e Ut p

1

q.- Wg-F) e
As may be seen from these expressions,the crossflow velocity is small,
even for relatively large W* . This,then,suggests a possible
simplification of the resulting equations when such are written in an
intrinsic coordinate system. Furthermore, when curvature of the
external flow streamlines is zero, Cases (1), (2), and (5) indicate that
crossflow will also tend to vanish,and the equations along the S.i.
coordinate will behave like two-dimensional ones. Finally,the intrinsic
coordinate system has the advantage of giving a more significant
physical picture of boundary layer flow,inasmuch as it inherently makes
clear how the movement of the fluid in the boundary layer différs from

that of the external flow.
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The form of the momentum-integral equations in an intrinsic

coordinate system has been given in Reference {23) and is:

38 Bjﬁ 1 24 'LEH (0 é o, . 43
R TR A B4 TS 0 (432)

W 4 %2 4 208 (g gy (%5@ ~Sa-5 ) -—-®u =0 (43b)

357» asi Q—DS

We note that the three-dimensional momentum-integral equations
consist of two equations with five unknowns. Since these were derived
from a determinate system of Equations (1) and (2), additional relations
must exist between the various momentum and displacement thicknesses,
and these could be found if the velocities 9s and Q. were known.
The conventional procedure,at this point,is to assume the velocities Q.
and q, as a two parameter family,and use the ensuing differential

equations to solve for these two parameters. We thus assume that

9y = 9Py B2)
q‘?&: (11 (Pix P'L)

so that Equations (42) become:

. s A5\ B | (35u ) P
Bg-ﬁ_ & a__%ﬁ')a—g' + —-—]—'-‘-L)—'J _], PSS 2 + -
&w\ 95, * IV, /| 99, K 99, Z)PL) D52, H‘l O (14a)
+
PN @%‘ti\é}i +(Bs§}§&,+ L.%ij& f W, =0
\B'?Ly '551 E?i 852, 3?7_ ’351 DSL (44b)
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where HL and HL are functions of P, P, L, . R but contain no

derivatives of either of the parameters B, and P,
We thus see that in terms of these parameters the momentum-
integral equations become two quasilinear partial differential equations,

which may be elliptic, parabolic,or hyperbolic,depending on the nature

of the coefficients. More specifically, the nature of these equations

depends on the quantity D which is defined as:

-2
v - +4 ++
%11 2’_5.’2 3o By Ayt 3}31 ?‘_§_g %%u
B e || AR A7y \ BTN ) L2 \
= - +

) 4: + +4+ gr’r %H
s k|| dr ¥m Y. .
Y ~ P) b2 b 2 £y

3?1 DDL ’a?')_ 2 R i

The System (44) then is;

elliptic for d VYo
parabolic for § =0

hyperbolic for & ¢ O

The evaluation of 4\ hinges on the specific choice of the para-

meters B\ , Pa To consider this question a bit further, we note

++
that inasmuch as CL’“ is small, the momentum thickness 9122 is of
o
second order as compared to d,, and may be neglected in Equations (44).

For such small crossflow case the quantity N hecomes:



or since

It is thus obvious from Equations (45) that for small crossflow the

simplified form of Equations (44) cannot be elliptic.

OBy
Won

%
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3%
3N

A
Na

(452)

(45b)

When the simplified equations are hyperbolic,the slope of the

characteristics in the physical plane

30 38y
B?a 3?1
A5 Ay
BN 3%
d_s_&] i %
B 9P,
4+
eIt pit
5@:_ AP,
and
A5,
As, | 7 0

(51 09,) is given by:

(46a)

(46D)
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so that one of the characteristics is a streamline of the external flow.
Inspection of Equation (46a) and Equation (45a) shows that when the
equations are parabolic the other characteristic becomes also the

streamline of the external flow.

The simplified equations will become parabolic when

3y 28}
k17 AR,
= 0
%, A%,
This will occur when g;l = QL = 0 , (when there is no crossflow at all)

+ +
and when 5, = ¢ éL , where % s not an implicit function of the
parameters P, and P, . Consequently if a simple "form factor"

. . . st st . .
relation exists between the thicknesses n & o, the equations will
be parabolic. Now, for small crossflow, the expressions for 61 and

é;’: are (Cf. Appendix A):

O

+ 4

N R

+t ¥ N g B Yy 'd
Lo § e fona

and these can differ at most by a constant, since 8‘ ¢ F are functions of
N\ only. This fact is further explicitly shown in Table I for the various
cases studied. From these expressions it follows then that: 1) for small

crossflow the momentum-integral equations are parabolic with the
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single characteristic lying along the streamline of the external flow
and 2) the correct choice of the parameters P, and P, must be
such that it will result in parabolic equations when the crossflow is
small.

It appears, then, that a proper procedure in integrating the
three-dimensional boundary layer momentum-integral equations is to
integrate these along the streamline of the external flow (along the §,
coordinate), which may always be done as long as the initial conditions

are specified along the 5, coordinate.
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III. ANALYSIS OF THREE-DIMENSIONAL BOUNDARY LAYER
FLOW ON A SHARPLY CURVED SURFACE

A. Preliminary Remarks

The analysis of Part II,although useful in studying boundary layer
flow whenever that flow takes place on surfaces which are plane or only
slightly curved, is inapplicable if that flow occurs close to "bounding
walls'' as may be the case in corners between the blades and the casing
of a compressor. Since the experimental evidence points strongly to
these regions as regions of high total pressure loss (see for instance
Reference (27)),it is desirable and of interest to study such configur-
ations.

As mentioned in the introduction, in spite of its importance,the
problem of corner boundary layer flow has been treated (to the best
knowledge of the author) in only two investigations (References (20) and
(21)). Actually the problem consists of two separate parts; first one,
due to the interaction of the boundary layer flowing on the two inter-
secting walls,and the second one due to the rapid change in surface
curvature. In References (20 and (21), the corners treated are sharp,
and thus no distinction can be made between the two different phases of
the problem.

In practice,however, the corners are rarely sharp and usually
some sort of fillet exists between the two intersecting walls. This
fact immediately suggests that the two walls be treated as one continuous

surface with very large curvature. If the radius of this curvature is
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of order of magnitude of boundary layer thickness, or larger (a re-
striction which is almost alwﬁys met in practice), the interaction
effect of the two separate boundary layers is completely removed and
it is expected that a simplification of equations will result.
This,then,is the model which will be treated in Part III of this
investigation. The effect of angular velocity or compressibility on

corner flow will not be considered.

B. Derivation of Boundary Layer Equations

For the purpose of this analysis it is convenient to use an
orthogonal,curvilinear coordinate system illustrated in Figure (6).
The transformation from the Cartesian system X, LA'Z to the curvi-

linear system ¥, %| Z is given by:

X = X z
Y= %1 } %co«(s ; girCOW." Xsin(’adi
5 ° (47)
7~ §cm(\5tﬁ 1y A
s : (3L ab .
Restricting the analysis to C=C(Z)= az the length stretching
factors become:
= . = U 48
hi =1 ) hl =1 | h?s L+ 4 (48)

It should be pointed out that in this coordinate system the Z axis
plays a role of a reference line and will be used to describe the shape

of the wall over which the fluid is flowing. Coordinate g will then
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measure the distance perpendicular to this wall, while the x axis
is pointed in thc dircction of the main flow, so that X = % -0
represent the leading edge of the configuration.

By use of Equations (48) and standard transformation formulae,
the Navier-Stokes equations of motion (1) and the equation of continuity

(2) are transformed to: (velocities W , V , W are taken here in the X ,

% , Z directions respectively)

U W L [ - L }}u L ou i M de
Wax+v3% ;t%%n "a Pt Ve et 32 "B O T o
W, LW @:_L&v[ﬁ*&ul dv .l W& cow
X "ba B 92 g p g LA Ay (tegV oE (beg) 9% (Lreg} H% N

W de g wde
*k]%ﬂz - 1}(1%'%)‘ dr e % di
(49)
S, L M U dwde
3 aw aN C;“;Vi [— i_ ‘QE "::;;_ + T LE =
a;j MY 3y +M% = tse] p Mc% 3% w9y (““A’ I (Laey)ardz

e _dg \de L M WE 1
(ﬂz%\ pr3 M%\ (l Mc\a) dz MIETTY Ly 3‘3 Mua\
and

) Wy - Q
UJ'C%) 51 t+ Ve +(l+€.\a) 3% 3% (50)

Applying boundary layer approximations, that is,considering V-

— i
and Y of 0(8) , ¢ of O(“’g), and neglecting all terms of order 3 or
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smaller, Equations (49) are simplified to
Ak M WU

Moy WM 19D
UWRTVAG T eai”[

'A—-

M% 39 ]

L2
L e 3y
(51)
2 A
M, W W, W L P [—‘iﬂr&tb—‘é-—‘ﬂ—c—q
S AR R G AN T AT A A

It is interesting to note, that even if ¢ were considered of @) (’igz) or
larger,no additional terms from Equations (49) would have to be retained
in Equations (51).

Equations (50) and (51) are the boundary layer equations of
motion for flow over a sharply,laterally curved surface. Theydiffer
from the usual three-dimensional boundary layer equations, such as
derived for instance in References (1) and (2), by the presence of

additional viscous terms, depending on curvature of the wall.

C. Perturbed Boundary Layer Flow Equations

It is clear from the form of the Equations (50) and (51) that if
W= %El - 0 then w-0 will satisfy the third momentum equation as well
as the boundary conditions,and thus constitutes the solution for this
particular case. This fact suggests that we seek solutions by small

perturbation procedure analogous to the one used previously, because
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such solutions will then match the solutions of Part II in regions where

curvature goes to zero.

To obtain the perturbed boundary layer flow equations we

consider a velocity and pressure system given by Equations (9) and (10).

Substitution of these quantities into Equations (50) and (51) yields the

zeroth order equations (basic flow):

au ) o
ufau*-\ya :y(& _(;_.B_l‘t_\

X

3%1 L1eQ ‘9%
(52)
W, T, e
—_ t — - =
A ’Qg t 11y
and the first order equations:
A
) *Bd ocm E AT V(@E& < 5"‘)
AN o Nt uyvf" Ltp L 1 33_* }__EN N*c,
\Y ~= + 3~7.+ - fa
X %4 g o p umd g Leg 3y (iwg\
(53)
dp «
£ 0
)
* ¥
X

3 i+c% = L+d§



D. Solution of the Basic Flow Equations

The system of Equations (52) may be reduced to a single partial

differential equation by defining a stream function =

Uf’:“ -:}*—*: 3‘%—*
i C% ‘é (54)

L

po L 28

L4y IN

Equation of continuity is then identically satisfied, while the

momentum equation becomes:

25 gz - LRy - VRgg5 +[ GG Ngx - % Ngg + Yy

+v(Rgg ~ 28 ag)je + (g gy -Rg-32333)- O (55)
To obtain solution of Equation (55) we set: E =C %, ' ’YL=% ?;I'J’",E (56)

@2 [079F |Fln) + &Rl + § Ryt |

It is evident from the differential equations (52) and (53) that %r ~L€ is

a singularity of the equation. An examination of the coordinate trans-
formation, from the original Cartesian system to the present curvilinear
system, shows the neceseity of restricting % <- é— for a wunique
correspondence. This condition makes the maximum permissible value

of é to be
{
nax = (57)
2 s

Consequently, it is sufficient to consider only the first term in the expan-

sion of the stream funcion. Substituting, therefore, Equation (56) into
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(55), neglecting all higher powers of ¥ than the first,and equating

each of the coefficients of § to zero,we obtain the zeroth in & equation;
8% +pp' <0 (58)

and the first in § equation:

2" 4 1ek - (R) 4 (qF LR R Ry -F)= 0 50,

The boundary conditions on Equations (58) and (59) may be

determined if the expressions for velocities are considered. These are:

.. U (' + &R
U“‘H%n\ s

A LA [LEAR L))

so that the boundary conditions on Equations (58) and (59) become:

Flo) - F(0)= R(0) = k() =0
Flee) = 1.0 R (=)= M
Obviously then , F(“’\\ is just the usual Blasius function. Equation
(59) was solved for R' numerically. This solution is shown in Figure
(7a). It may be seen in this figure that IS T and therefore a fair
approximation for W velocity of the basic flow is
!
o Ft én
o _ —_— 62
w=U em (62)

This approximation has been used subsequently.
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E. Discussion of the Solution For Basic Flow

Equations (52) were solved by expanding the expression for
stream function in terms of the curvature parameter € . Itis inter-
esting to nole that « differenl approach might have been undertaken if ¢
were not required to go into ¢=0 . Setting:

Y-teed)

Transforms Equations (52) into:

{h2a)

which are identical with the equations for an axially symmetric jet.
(Reference (26), pp. 147).
Introducing a stream function:
R - vx din)

defined by
W=

Pd Lo
% 38

il

- a2
o’

.Uo

'YL?

transforms Equations (52a) into:

X
2 o

U
VX

i
O

lqm+dw*l&l (52b)

with boundary conditions different from those of a jet,namely:
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IS . - d -
at ,Y‘L,S ’T\O = -—’): Q}VI \ d,~ d, O
i
at fY\--—‘: oo B d' = &'O

Note,now,that as (= ¢ (that is the corner becomes very sharp),
M0 -
The boundary conditions indicate that function d may be

expanded about Mo 0:

d‘ d:__%l\g)mc_k CL('!O\,Y\’-*_{,

Substituting this expansion into the differential Equation (52b)

and taking the limit as M »me >0 , we obtain the result that

d') =0 (63)

or that for very large curvatures the velocity has a separation profile.
In Figure (8) is shown velocity profile taken from Reference (20) along
a 45° line. It may be seen from this figure that this velocity profile
exhibits,indeed,the indications of separated flow,and thus seems to
confirm the result (63). The existence of such separated or very nearly
scparated profiles for very large curvatures of the wall and the identical
form of Equations (52a) with those for a symmetrical jet, might perhaps
shed some light on the phenomenon of transverse contamination. These
considerations are,however,beyond the scope of Lhis investigatlion.

In any case,in view of the discussion of the validity of the

perturbation procedure in boundary layer flow, result (63) indicates that
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Equations (52a) are inadmaissible for such handling of the problem.
Since the coordinate transformation (47) is right handed, the

curvature parameter & will always be:
€50 for convex wall ( Z bends away from g )
€ <0 for concave wall ( Z bends toward \3 )

The Equation (62) for the & velocity indicates thus that the effect of
a concave wall is detrimental to the boundary layer flow, while a

convex wall tends to improve the W velocity profile.

In order to solve the perturbation equations it is first necessary

to express the variation of pressure in terms of the external flow. By

malkineg nee nf the Fulerian enuationeg. ae nreviousgslyv evnlained. one
maxing use 01 the ulerian equations, as previously explalned, one
obtains: %
4 93 ¢ 9V
TR
¥ .
LA a_pf oW, € W* (Lim v°) (64)
- T T e 3 e "' - >%
P Leg F X Axey 4

It should be noted that now,use must be made of the assumption that V
is correctly represented by the UME\"EU .

Introducing the components of the vector potential, now defined

as
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- Y
(L+ey EF
[
w’f = 5..:
d (65)
R A |
o) = (K )
the equation of continuity is again identically satisfied, while the
momentum equations become:
g+ Uevy vty — g Yy) “3(% F) G
— 7Ok <
(66)

*

e’ _orr®
vl + gty U "Uzza b (i"“a\%* 1“5 s

It may be noted that again, as in the flow over a plane wall, the second

momentum equation (and thus the w* velocity) is completely

independent of the first (or the o¥ velocity), and is affected only by the

basic flow and the external flow, both of which are known.

Since we demand from the solutions that these go smoothly into

the solutions for three-dimensional boundary layer when C— 0, the

vector potential components are now expanded similarily to Equations (57).
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e g8 - L fep + E L + § Lope |

(Q(x N\ﬁ \HL [%(Y\) 4 ét(ﬂ\ gt (fr\y--- ] (67)

Introducing Equations (67) and (57) into Equations (66), results

in the zeroth in § equations:

I - -Ug = ‘w*‘ M -
](u *%J[‘H "F) +{-12- ]1 xﬁ:‘;gng,x -0

) (68)

%“ +-§:% (T(W )8‘ +iw_ﬂ* - 0

d ’x?’&

and the first order in 5 equatmns

C s R [ s R - L) - o

(69)
~ IR FANNE I _ _ )
e[ %*Ht -TGEmE) =0
with the nonhomogeneous parts defined as:
i " " ~_U‘* ! 1 [— ) 1
Lemz)= ~3q>< S bmf (e gt % (P + )4 ) e
“(X + i)([:“ R ')]E Wik ! ‘ kR )%
(69a)

< 1¥
~W L 3 s | vV N~ hT d_loC. [
3 e ey 3 (fa e e

—]
—
=
Y
—
]

g fe g ] e k) enerlg

*

- )(’YL*—-—- -~ ‘Z,.L”T't’l‘*"("“/q F)
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Equations (68) as might have been expected are identical with
Equations (16) when @,=0 .

Since the expressions for the velocities are now:

el

i+§
_ ¥d loge
vriga@ ey R fpsonfsthle i G e o
W + &)

the boundary conditions on Equations (69) become:
{(o) :{'(o% - L'(0) = %(o) 9l0) - t(o)zt‘(o): 0
fleo) = glo)

(71)

L) =m
t ()= 0

{nspection of the boundary conditions shows that functions ][ & % are
identical with those obtained for the flow over a plane wall.

To change Equations (69) into total differential equations, proper
form of expressions for U (L,2)  and W' (x, Z) must be chosen.
This investigation will be restricted to cases where U*(W‘i% O and
W* = W*(i) . For such cases, inspection of Equations (69) and (70)
shows that L~ 0 is not a solution of Equation (69) and thus the
velocity W s improperly normalized when v*- O Since,however,U*

was considered an arbitrary function of X and Z, we may replace it
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~
in Equations (67) (with the exception of the term originating in %1% )
- - ¥
by some other function M (¥ % ), which is not zero when U = O

In this case the equation for Jf becomes:
%m ' E{.” _ 3 ﬂi F’%l +(_j_— ~1M—3~)F"§ -0
L M 2 M (68a)

and that for L

C” s %U~(%+§ MI)F‘LI-F( _ﬂ):a_)‘:ul L 0
with (69b)
L‘“I’rﬁm h’*‘l"’k &i'"*'[ Mx(;qfv\Q‘ 4—— R_-\-F) F ]% N*
o dlogt o
_§;m+i)\ R E )rm” A9t (- ¥)g iy e

with boundary conditions

f(0) = $10) = = Qo) = L£(0) = fueo) < L) =0 (71a)

These boundary conditions indicate that ]Q =0 is a solution of
Equation (68a) and only Equation (69b) will have to be considered in
this case.

Inspection of Equation (69b) indicates that a convenient choice

of function M appears to be:

ME E) = X O%%%EN (72)

¥ _
so that with this choice of M and W* =W (X) , Equations (69b)

become:



32

K e

moF - 1y -N* 1 2
) +~ZL”~[(52,\X%*)F]L (2437 .\.\IZ*‘)PL—L 0

L= (- Frlg - F't

(69¢)
For W =AY" and U'=0 Equations (69) become thus
PHECITE Rl LA mIPL - (0P g <0 309
e SE-T(E e m|t-m@"s (s Bty [%(F"TR‘) %(F‘“\‘FM
(73b)

Mg+ g L () O

Equations (73) were solved numerically for m=0 and m=1. These

solutions are shown in Figures (7b) and (7c).

G. An Example of a Flow in a Corner

To illustrate the manner in which the derived results are applied
to an actual boundary layer flow over a sharply curved wall, such flow
has been computed assuming the wall shape to be hyperbolic.

For such a wall
ll% = U = constant

and
ZZ“ %2 - 1

so that the curvature becomes
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¢~ % —‘9;""5/
(YL+G'L) 4

and i N
¢
s T
Since X and T are known for each value of 2 and 4 , both

the curvature and its logarithmic derivative may easily be computed.
It remains,however,to establish the scale of 7 as compared to that
of # and Y4 . This may be done by considering the condition of no
interaction:

Cuax %g =i th\x/Yké

Since -1

Cuaw = C

and .
6, - 045 (i o®)

so that the maximum value of X, for which the assumptions made here

apply,is given by
- L o th
Y, = 04150 Re

The present computations were carried out for X maw CMax T Lo and
Re =0bL500. Two cases were computed with W’i Ax™, U*=0 and
m=0 and m=1. The results of these computations are shown in Figures

{(9a) to (9d) where Ctu and the directional deviation 6 - are

plotted. It should be noted, that in order to afford a direct comparison,

the magnitude of the velocity W* is the same in both cases, which
means that the constant A is different in the two cases.

Physically,such an external flow may be thought of as a vortex
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of constant strength for m=0 and a vortex of an increasing strength
for m=4{ . Examination of Figure (9a) shows that for m=0 an
accumulation of low momentum air occurs on the "upstream' wall of
the corner. This is confirmed by Figure (9b),where the directional
deviations indicate crossflow from the "downstream'' wall onto the
"upstream' wall. The indications,therefore,are that by causing the
large curving of the external flow, the corner establishes a crosswise
pressure gradient and thus causes an accumulation of low momentum
air on the "upstream' wall. Away from the corner where the stream-
lines of the external flow become straight again, the boundary layer flow
becomes identical with that described in Case (1) of Part II.

When m=1 , however, examination of Figures (c) and (9d) reveals
that now the large accumulation of the low momentum air occurs on the
"downstream' wall with corresponding large deflections in that region.
This,apparently,is due to the fact that in this case the external flow
posseses a crosswise pressure gradient before it reaches the corner,and
this pressure gradient not only opposes the one established by the corner,
but also causes complete stall of the W flow on the "downstream' wall,
so that almost all the flow (as evidenced by large deflection) that takes

place in that region is the E direction.

H. Discussion of Results and Qualitative Comparison with Exveriment

The results of the present analysis furnish some light on the

behavior of boundary layers in cascades. We imagine a blade passage
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as represented schematically below with % axis suitably bent to the

cross-sectional shape of the passage walls (P), (C), and (S).

_ i
12 Z
= Z
T - s
Py 5 — S) W= A
E Z
: (D)I -
A 97
N - = =

LMitiNG
STREAMUNE

Q \\(\/

x1

W\

The shape of the passage in the ¥ direction may be represented by a
- s ¥ . ¥ -

parabolic variation of W velocity (say W =A% ). Results of corner

flow investigation indicate that we may expect larger than usual cross-

wise flows along the line B-h . Tn particular,concentrating our

attention on the limiting streamline which starts at the (P) wall of
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this passage, the results of Case {3) in Part II indicate that the direction
of this limiting streamline on wall (C} would be given by:

oA(%) = B26 %}x
Assuming about 22° degrees of turning at the outlet from the passage,
and that the total length of the passage along the 5, coordinate ~chord,
we may inquire at what spacing of walls (P) and (S) the limiting
streamline would reach wall (S) at the trailing edge. A simple com-

putation yields

Solidity = —<rord = B

Spacing
Finally, upon reaching the second corner, the limiting streamline would
be sharply swept up on wall (S) at point (D) ,» due to the very large
deflections along the line B-8 . Although such a picture of boundary
layer behavior furnishes at best only a very approximate and rough idea
of flow in cascades, where undoubtedly neither the passage shape nor
the external flow can be represented so simply, still, it is felt that this
picture retains most of the important characteristics. To ascertain
this belief and to obtain at least some qualitative comparison with
experiment, References {28) and (29) concerned with visualization of
such flows were studied. The examination of the data of these references
shows similarily shaped limiting streamlines on wall (C) and large
swept flow (D). The limiting streamline is shown to reach the trailing
edge of the other blade at solidity 1.5. Consequently, it is felt that
at least some of the results of the present analysis have a qualitative

experimental confirmation.
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APPENDIX A

Expressions for Various Boundary Layer Quantities

a) Flow Over a Plane Surface

Velocity along the $, coordinate:
qu = ULs O + wWsin @

¥ ¥,
9 ~ (W
%Io +0\U°>

¥
58 x10 e d X

q, *(ver+Ut) 4 Okﬁj)z

Velocity along the 3. coordinate:
S WO ~ USinG X W*u W ur -yt ')NW*( - F)
617» % 60& - -‘- ~ %

Velocity of the external flow:

r~ 2 Z.LIL o
- [ v ]y v L)

Direction of the external flow:

W W
< arctan = X% =
6 - arc vyt e

Direction of boundary layer flow:
W‘t \ W* '
19’(7‘0 = a\nc‘*ah ont ¥ ) v
V™40 U

Crossflow deflection:

* Sp¥ A
X9 WoWhe
G0 - T - e LE-L
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Limiting deflection:

K _
oklx, 0,%) = U 11

Displacement thicknesses:

Sy

N 5—6—‘1& S Q q/i) d\"\ .’é,’q\h{ &;1. F‘)dq-} .%:S}FL %\)0\1\]

X QR

<k 0
g4 Xﬁld”k %.é}%o}oq-’md

Momentum thicknesses:

t+t
Syt

oL | 1_27:& g( q'i\q;dm v — [XFU ) dYLJr I,U S(.F(F o) lflﬂd“q

¥ ~ ®

¥
b) Flow Over a Sharply Curved Surface: U=0 ; W*: Ax™

Velocity along the . coordinate:

d.lo
Qe ¥ UTF + Elum(L- F)+x"—‘%&“1~1
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Velocity along the S, coordinate:

qu ¥ W {g‘ -ty g[u- F')Y\«’L']E
Displacement thicknesses:

. ~ > g - dloge WG
gt ey 6 e+ 2 i

dor B o o forren o
Momentum thicknesses:

5u Q. wﬂ(F iF(h\**é[: U_FYWdW'S 1F)W¢W —-x—iﬁ'FLdn}
Fat o]

LI ‘é—f{&éu-vm— [Flelan - LT eI

4 fw Flndn - 5‘1 (1- F'\O‘“ﬂ\

s U g rrea g lgrsimin frend)
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APPENDIX B
Numerical Procedure Used in the Solution of the Differential Equations

To illustrate in detail the numerical procedure followed, let us con-

sider Equation (29):

§rig-mlFg-1)-0 (29)

with boundary conditions:
q(0) = g(o) =0 S AC ORI N ¢

Because of the two point boundary conditions it is convenient to solve
Equation (29) by use of the relaxation procedure. We note that Fquation

(29) is of second order in %‘ :

d'z( \ F (kt I) 4y
el z.(?% - nFg-t) =0 (294)
At a specific value of ’V‘L 2 ’YLO , Equation (29A) may be approximated
by an algebraic expression:
ﬁ- \ \ ) F \ ) ot
e &) 4 (89 n(Rgm 1) - O (298)

which utilizes the values of %1 at = Mo+ h and %‘_1 at Y\: m\°— h

Examination of Equation (29) and function F' reveals that %‘ =10 will
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satisfy that equation for all WL>6-0 . Consequently, the boundary

condition at infinity may be replaced by an equivalent boundary condition
say at ”L: ¥
g(&) = 1.0

Dividing now the interval Oﬁ”ﬁg into I parts of size h | we
get, together with the two boundary conditions at N\_f 0 and nlr8 , r+4
algebraic equations for the determination of the r+1 values of %’ .
These must be solved simultaneously and it is convenient Lo do so by
relaxation. In this method the initial values of %‘ are first guessed at.
These will in general not satisfy Equation (29B), giving at each value of’vlo
a definite residue. By systematically modifying (relaxing) the initially
assumed values of %‘ , so that all the residues are reduced to zero,
the simultaneous solution of the r+1 equations is obtained. But this
solution is equivalent to an approximate solution of the differential
Equation (29). The degree of the approximation clearly depcnds on the
size of the interval h . In this investigation h =10 was used for most
of the differential equations so solved. In certain cases, however,
where greater detail was deemed necessary, the size of h was locally
decreased. It should also be mentioned that for most of the cases
solved, the residues were considered sufficiently small to cease further
relaxing when they all were less than 10.005]

When the differential equations were of higher order, say for

instance:
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{0 emrf (g em)t om0 -

it was tound convenient, to solve instead, a system of two simultaneous

equations:

L)+ S W -mep P lamlf om0 312

o

1
Here the solution of Equation (31A) for Ji' was first obtained by

2 {m

relaxation., The function I (L'L-l"’n’qf in this initial step, could either

be guessed at, or simply set equal to zero. Next, with the so obtained
values of JF , Equation (31B) was solved for f using Simpson's rule.
These values of f were used in the new solution of Equation (31A) and
the process was repeated until no further changes in fl were obtained.
For most of the so solved equations, the convergence was very rapid,

and usually only four to five cycles were needed to give the final solution.



~96-

CASING

E GUIDE VANES STATOR 1
LUUEUEAIL L Y LV YN

STREAMLINE A
~STREAMLINE "B”

STREAMLINE A"
/ STREAMLINE "B~

/ / OTOR
ROTATION

MEAN VELOCITY
RELATIVE TO CASING

N
MEAN VELOCITY
RELATIVE TO HUB

FIGURE I.- SCHEMATIC REPRESENTATION OF

EXTERNAL FLOW IN AN AXIAL
COMPRESSOR.



=97~

25

¢ ol {/ \ N~
| // > ‘}lef:
s \
O 1 2 3 a4 5 6
FIGURE 2 -

BOUNDARY LAYER PERTURBATION
VELOCITY PROFILES
a) EXTERNAL FLOW ;W*=Az: U¥*=Bx



-98-

2.0

<
>N
/

) G'//
) ////// e
-0.5 -
-1.0

o I 2 3 4 5 6 7
FIGURE 2.- CONTD |

b.) EXTERNAL FLOW: W=ax". U% 0



-99u

3.0

2.5 N
/=
2.0
TN
frm & F] / m= |
\\

NipEy

05~ 7
o | 2 3_ 4 5 6 7

FIGURE 2.- CONT'D
Lo% on o x%x_mi
Cc)EXTERNAL FLOW:. W =Ax;U=Bx z



-100-

3.0

2.5

/i

T

)/
!/
/

/~

ol
|

FIGURE 2.- CONTD
d.) EXTERNAL FLOW -

wEax" ZK ; ‘)‘;-'-~',:,-|§,':',-Azk'—'xn‘H



-101-

3.0

;
2.5 /\\\< il
2.0 ’//\ \
sl >
" // f'n \\ "
:'ml.o /// \g
ol
0
0 1 2 3,4 5 6 7

FIGURE 3~ COMPARISON OF THE u®VELOCITY
PROFILES FOR EXTERNAL FLOWS
we Axn; U*=- Bzix2 AND
W= axzK 3U*=""§" AzZkT 2



-102-

1.0
gy, w
05— |
\\
0 1
o | 2 3 4 5 6

FIGURE 4.- EFFECT OF ANGULAR VELOCITY
w,= D \ .
EXTERNAL FLOW . W =Ax; U =0



-103-

. S~

FIGURE 5.- EFFECT OF COMPRESSIBILITY
rg
a) FUNGTION fg,




-104-

ol /TN

Y N

A \\
IEaoaNE
A

FIGURE 5.- CONT’D

b) PERTURBATION VELOCITY
PROFILES FOR EXTERNAL

FLOW W™ Ax; U®=Bx AT M=15



-105-

FIGURE 6.— CURVILINEAR COORDINATE SYSTEM
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