
Use of Light Coherence for Exoplanet Detection and
Characterization

Thesis by
Yeyuan (Yinzi) Xin

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy in Physics

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended May 28th, 2025



ii

© 2025

Yeyuan (Yinzi) Xin
ORCID: 0000-0002-6171-9081

All rights reserved except where otherwise noted



iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dimitri Mawet, who first took
me on as a SURF student, then again as a PhD student. You have always been so
supportive of me, giving me independence in my research and providing incredibly
helpful advice and insight at many stages over these years. I always come out of
our meetings with renewed direction as well as renewed motivation, and I am so
grateful to have been part of your group.

I would also like to acknowledge the many people who have guided, supported, and
enriched my journey in the field of high-contrast imaging. In chronological order, I
would like to first thank Garreth Ruane and Jacques Robert-Delorme, who mentored
me as an undergraduate student, an experience I greatly enjoyed and which led me
to apply to graduate school in the field.

Next, thank you to Kerri Cahoy and Ewan Douglas, my mentors during my Master’s
program at MIT. It was really cool getting to work on a cubesat that a) made it
into space and b) accomplished its goal! Ewan especially taught me so much of
what I know about optics and astronomy, and always took care to include me in
research activities I would find interesting. Thank you as well to fellow STARLab
graduate students Rachel Morgan and Greg Allan, who brightened my time at MIT
and remain great colleagues and friends.

I also want to thank Laurent Pueyo, who took me in as a visiting researcher at
the STScI and gave me the support and mentorship I needed to finish my Master’s
project, as well as Jules Fowler, Iva Laginja, Scott Will, and Remi Soummer for
creating such a lively and welcoming environment at STScI.

At Caltech, I would like to thank Kent Wallace for mentorship on an early project
on the Zernike wavefront sensor, and Nem Jovanovic, who enabled my work in
photonic lanterns, including me in an amazing collaboration and providing advice
and support throughout the way. I want to thank Dan Echeverri, Jerry Xuan, Yoo
Jung Kim, and Jon Lin, who have all helped me with my research in significant ways;
Sunil Golwala, Ashley Baker, and Katie Bouman for their interest in my research
and for serving on my committee; and Judy McClain for her patience and help with
all of my conference travels. To former and current group mates: Jorge, Dan, Niyati,
Jerry, Katelyn, Aniket, Elijah, Jason, JB, Ashley, Bin, Arielle, Susan, Yapeng, and
Andrea — overlapping with you all has been such a great pleasure!



iv

Thank you as well to the SCExAO team, in particular Julien Lozi, Sebastien Vievard,
Olivier Guyon, and Vincent Deo, for supporting my lanterns work at such an amazing
facility. I also wish to recognize and acknowledge the very significant cultural role
and reverence that the summit of Maunakea has always had within the indigenous
Hawaiian community. We are most fortunate to have the opportunity to conduct
observations from this mountain.

Last but not least, I wish to thank those in my personal life. I am very grateful to
my parents, whose hard work and sacrifices have enabled me to chase my dreams.
To my little sister Faye, and my sworn sisters Carol, Stephanie, and Kathy — I am
so glad to have all of you in my life. Finally, to my partner Willis, who has been by
my side this whole time even when we were a hemisphere apart — I want to thank
you for more than I can express in words, and I can’t wait to experience our future
adventures together.



v

ABSTRACT

Since the first detection of an exoplanet in 1992, over 5,000 exoplanets have now
been found through a variety of methods, both indirect (such as the radial velocity or
transit method) and direct (such as with imaging, coronagraphy, and interferometry).
The direct imaging and spectroscopy of exoplanets in particular plays a key role
in characterizing their atmospheres, which can help distinguish between different
models of planet formation and detect molecular signatures associated with life.
However, directly observing exoplanets is extremely difficult: the small angular
separations between the star and the planet require large telescopes to resolve, and
the flux ratios between a planet and its star range from 10−4 in the infrared for
hot, young, massive planets to 10−10 in the optical for mature Earth-like planets.
Photon noise from the star drowns out the planet signal in conventional imagers or
spectrographs, so dedicated instruments are needed to remove the majority of the
starlight before it reaches the detector. Additional wavefront sensing and control
methods are also needed to compensate for aberrations in the system — from fast
varying atmospheric fluctuations to slower quasi-static drifts in the instrument and
telescope.

This thesis presents advances in instrumentation for directly characterizing exoplan-
ets, focusing on exploiting the coherence properties of light to increase sensitivity.
It presents the invention of the Photonic Lantern Nuller, which uses a multimode-
to-single-mode demultiplexing waveguide to cancel out starlight while maintaining
planet light, allowing for the direct characterization of planets at a telescope’s diffrac-
tion limit. The PLN was experimentally characterized in the lab, enhanced using
common-path wavefront sensing control techniques, and demonstrated on sky at
the Subaru Telescope. This thesis also presents work on the Keck Planet Imager
and Characterizer, a fiber-fed high-resolution spectrograph — namely, the on-sky
demonstration of the speckle nulling technique to destructively interfere residual
starlight. Future directions in optimal stellar suppression and instrument-informed
data analysis techniques are also discussed.

The advances in instrumentation and methodology from this work have applications
to giant planets on existing ten-meter class ground-based telescopes, Earth-like
exoplanets on the planned Habitable Worlds Observatory space telescope, and many
planets of interest on future thirty-meter class telescopes.



vi

PUBLISHED CONTENT AND CONTRIBUTIONS

Xin, Yinzi, Daniel Echeverri, Nemanja J. Jovanovic, et al. (2025). “Implicit electric
field conjugation with a photonic lantern nuller”. In: Journal of Astronomical
Telescopes, Instruments, and Systems 11.2, p. 025004. doi: 10.1117/1.JATIS.
11.2.025004. url: https://doi.org/10.1117/1.JATIS.11.2.025004.

Xin, Yinzi, Daniel Echeverri, Nemanja Jovanovic, et al. (2024a). “Laboratory
demonstration of a Photonic Lantern Nuller in monochromatic and broadband
light”. In: Journal of Astronomical Telescopes, Instruments, and Systems 10.2,
p. 025001. doi: 10.1117/1.JATIS.10.2.025001. url: https://doi.org/
10.1117/1.JATIS.10.2.025001.
Y.X. conducted the laboratory experiments to characterize the lantern and demon-
strate its nulling properties, and wrote the paper.

– (2024b). “Wavefront sensing and control for a photonic lantern nuller for exoplanet
characterization”. In: Optical and Infrared Interferometry and Imaging IX. Ed.
by Jens Kammerer, Stephanie Sallum, and Joel Sanchez-Bermudez. Vol. 13095.
International Society for Optics and Photonics. SPIE, 130950S. doi: 10.1117/
12.3019168. url: https://doi.org/10.1117/12.3019168.
Y.X. adapted the code used to run the experiment, performed the experiment,
analyzed the data, and wrote the paper.

Xin, Yinzi, Laurent Pueyo, et al. (Mar. 2024). “Coronagraphic Data Post-processing
Using Projections on Instrumental Modes”. In: The Astrophysical Journal 963.2,
96, p. 96. doi:10.3847/1538-4357/ad1879. arXiv:2401.04269[astro-ph.IM].
Y.X. conceptualized the post-processing technique, formulated the mathematical
model and projection matrix, demonstrated the technique using numerical sim-
ulations, characterized its performance using detection testing techniques, and
wrote the paper.

Xin, Yinzi, Daniel Echeverri, Nemanja Jovanovic, et al. (2023). “Laboratory char-
acterization of a mode-selective photonic lantern for exoplanet characterization”.
In: Techniques and Instrumentation for Detection of Exoplanets XI. Ed. by Gar-
reth J. Ruane. Vol. 12680. International Society for Optics and Photonics. SPIE,
p. 126800I. doi: 10.1117/12.2676421. url: https://doi.org/10.1117/
12.2676421.
Y.X. conducted the laboratory experiments to characterize the lantern and demon-
strate its nulling properties, and wrote the paper.

Xin, Yinzi, Jerry W. Xuan, Dimitri Mawet, Jason Wang, Garreth Ruane, Daniel
Echeverri, Nemanja Jovanovic, Clarissa Do Ó, et al. (July 2023). “On-sky speckle
nulling through a single-mode fiber with the Keck Planet Imager and Charac-
terizer”. In: Journal of Astronomical Telescopes, Instruments, and Systems 9,
035001, p. 035001. doi: 10.1117/1.JATIS.9.3.035001. arXiv: 2307.11893
[astro-ph.IM].

https://doi.org/10.1117/1.JATIS.11.2.025004
https://doi.org/10.1117/1.JATIS.11.2.025004
https://doi.org/10.1117/1.JATIS.11.2.025004
https://doi.org/10.1117/1.JATIS.10.2.025001
https://doi.org/10.1117/1.JATIS.10.2.025001
https://doi.org/10.1117/1.JATIS.10.2.025001
https://doi.org/10.1117/12.3019168
https://doi.org/10.1117/12.3019168
https://doi.org/10.1117/12.3019168
https://doi.org/10.3847/1538-4357/ad1879
https://arxiv.org/abs/2401.04269
https://doi.org/10.1117/12.2676421
https://doi.org/10.1117/12.2676421
https://doi.org/10.1117/12.2676421
https://doi.org/10.1117/1.JATIS.9.3.035001
https://arxiv.org/abs/2307.11893
https://arxiv.org/abs/2307.11893


vii

Y.X. wrote the code to perform speckle nulling with KPIC, tested the algorithm
using the internal source, demonstrated it on-sky, performed the data analysis,
and wrote the paper.

Xin, Yinzi, Jerry W. Xuan, Dimitri Mawet, Jason Wang, Garreth Ruane, Daniel
Echeverri, Nemanja Jovanovic, Clarissa Ó, et al. (June 2023). “On-sky speckle
nulling through a single-mode fiber with the Keck Planet Imager and Charac-
terizer”. In: Adaptive Optics for Extremely Large Telescopes 7th Edition. ON-
ERA. Avignon, France. doi: 10.13009/AO4ELT7-2023-008. url: https:
//hal.science/hal-04419970.
Y.X. wrote the code to perform speckle nulling with KPIC, tested the algorithm
using the internal source, demonstrated it on-sky, performed the data analysis,
and wrote the paper.

Xin, Yinzi, Nemanja Jovanovic, et al. (Oct. 2022). “Efficient Detection and Char-
acterization of Exoplanets within the Diffraction Limit: Nulling with a Mode-
selective Photonic Lantern”. In: The Astrophysical Journal 938.2, 140, p. 140.
doi: 10.3847/1538-4357/ac9284. arXiv: 2209.07644 [astro-ph.IM].
Y.X. conceptualized the instrument, derived its operating principles, and per-
formed simulations predicting its behavior and performance, and wrote the paper.

https://doi.org/10.13009/AO4ELT7-2023-008
https://hal.science/hal-04419970
https://hal.science/hal-04419970
https://doi.org/10.3847/1538-4357/ac9284
https://arxiv.org/abs/2209.07644


viii

TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Published Content and Contributions . . . . . . . . . . . . . . . . . . . . . . vi
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxii
Chapter I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Study of Exoplanets . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of Observational Methods . . . . . . . . . . . . . . . . . 4
1.3 Instrumentation for Direct Exoplanet Observations . . . . . . . . . . 9
1.4 Optical Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter II: Efficient Detection and Characterization of Exoplanets within the
Diffraction Limit: Nulling with a Mode-selective Photonic Lantern . . . . 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Photonic Lantern Nuller Concept . . . . . . . . . . . . . . . . . . . 23
2.3 Sensitivity to Aberrations . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Simulation of Exoplanet Characterization . . . . . . . . . . . . . . . 31
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter III: Laboratory demonstration of a Photonic Lantern Nuller in monochro-
matic and broadband light . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Lantern Characterization . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Photonic Lantern Nuller Demonstration . . . . . . . . . . . . . . . . 49
3.4 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter IV: Implicit Electric Field Conjugation with the Photonic Lantern
Nuller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1 Implicit Electric Field Conjugation . . . . . . . . . . . . . . . . . . 64
4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Implementation and Results . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter V: On-sky Demonstration of the Photonic Lantern Nuller at the
Subaru Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1 The Subaru Coronagraphic Extreme Adaptive Optics Instrument . . . 78
5.2 Daytime Calibration and Testing . . . . . . . . . . . . . . . . . . . . 80
5.3 On-sky Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



ix

Chapter VI: Enhancing Fiber-fed Spectroscopy with Speckle Nulling on the
Keck Planet Imager and Characterizer . . . . . . . . . . . . . . . . . . . 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter VII: Coronagraphic Data Post-processing Using Projections on In-
strumental Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2 Coronagraphic Signals . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3 Response Matrices and Robust Observables . . . . . . . . . . . . . . 110
7.4 Detection Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5 Example: Nancy Grace Roman Space Telescope Hybrid Lyot Coro-

nagraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.6 Quadratic Model Approximation and Extension . . . . . . . . . . . 124
7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Chapter VIII: Summary and Perspectives . . . . . . . . . . . . . . . . . . . . 131
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



x

LIST OF ILLUSTRATIONS

Number Page
1.1 Known exoplanets as of March 2025. Since the first discovery of two

exoplanets orbiting a pulsar in 1995, over 5000 exoplanets have been
found by a variety of methods, spanning a wide range of parame-
ters. Studying exoplanets can help answer questions about how our
own solar system formed and inform us about the existence of life
elsewhere in the universe. Figure from Akeson et al. (2013). . . . . . 2

1.2 Routes to form planetary bodies. Mechanisms are indicated with an
arrow and labeled. Gravitational instabilities (involving a collection
of particles or gas) are indicated by dashed arrows. Accretion pro-
cesses that rely on surface forces are in green, gravitational forces
in black, gas accretion in blue, and pebble accretion (which involves
both gas and gravity) is in magenta. The disk instability (DI) mecha-
nism is depicted at the very left. Other processes fall under the core
accretion (CA) umbrella. Figure and caption from Ormel (2024). . . 3

1.3 Simulated spectra of an Earth-like exoplanet with and without life.
Characterizing the chemical abundances of molecules such as O2 and
CO2 can detect the disequilibrium chemistry that can arise from the
existence of life. Figure from the Decadal Survey for Astronomy
and Astrophysics (National Research Council, 2021), courtesy of N.
Batalha and the PICASO project (Batalha et al., 2019). . . . . . . . . 4

1.4 Schematics of various exoplanet detection techniques. . . . . . . . . 5
1.5 A schematic of a classical Lyot coronagraph. Plane P1 is the entrance

pupil plane; plane P2 is the focal plane, where the occulting mask
is; plane P3 is the second pupil plane, where the Lyot stop is; and
plane P4 is the second focal plane, where the light from the on-axis
source has been strongly attenuated. Figure and caption adapted from
Olivier Guyon et al. (1999). . . . . . . . . . . . . . . . . . . . . . . 10



xi

1.6 Illustration of the principle of nulling interferometry. The light of a
star is collected by two apertures separated by a baseline B. A phase
delay of 𝜋 is introduced into one of the arms to produce a deep central
minimum in the interference of the light beams. If a planet orbits
the star at an angular separation of 𝜃, its light enters the instrument
off-axis introducing a further delay of 𝐵 sin 𝜃. As a consequence,
the starlight is locally highly suppressed while the planet light is not.
Figure and caption adapted from Lagadec et al. (2021). . . . . . . . . 11

1.7 Upper limit on the off-axis throughput of a coronagraph for different
stellar radii, assuming a stellar suppression level of 10−10. Figure and
caption adapted from O. Guyon et al. (2006a). . . . . . . . . . . . . 12

1.8 Select electric field amplitude profiles (LP modes) for the guided
modes of a step-index fiber. Figure and caption adapted from Paschotta
(2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Comparison of multi-aperture nulling interferometer configurations
(left column) with single-aperture nulling phase masks (central col-
umn). Phases of 0 and 𝜋 are shown as white and black, respectively.
Intermediate phases in the bottom row are shown in various shades
of gray. Each small circle in the left column represents a separate
telescope aperture. Central column: single-aperture “linear" nulling
phase masks, arranged to show their topological correspondence to
the separated-aperture nulling cases to their left. Right column:
“Round" single-aperture phase masks (in which at least one of the
phase transitions is circular) that also topologically correspond to
the leftmost entries in their rows. Figure and caption adapted from
Eugene Serabyn, Liewer, and Ruane (2024). . . . . . . . . . . . . . . 17

1.10 A) Schematics of a 2-port photonic lantern, and the Kronig-Penney
model analogy for the transition between the single-mode and the
multi-mode regime. B) Schematics of a one dimensional waveguide
(left) and a one dimensional quantum well (right). Figure and caption
adapted from Leon-Saval, Argyros, and Bland-Hawthorn (2013a). . . 18



xii

1.11 Modal analysis of A) a conventional 3-SMF photonic lantern, B) a
mode-selective 3-SMF photonic lantern, and C) a mode-selective 6-
SMF photonic lantern. (Left A, B, and C) Schematics of FMF end
of the modeled photonic lanterns showing the different cores sizes
corresponding to the similar/dissimilar fibers. Figure and caption
adapted from Leon-Saval, Fontaine, et al. (2014). . . . . . . . . . . . 19

2.1 (a) Schematic of a focal-plane VFN with a single-mode fiber. The
beam is focused onto a vortex mask, which imparts a different phase
pattern on the star and planet point-spread-functions. The beam is
then collimated and refocused onto a single-mode fiber. The on-
axis star light rejected while the planet light gets partially coupled.
(b) Coupling efficiency, 𝜂, or throughput, of a planet as a function of
its angular separation from the star. . . . . . . . . . . . . . . . . . . 23

2.2 Left: Schematics of a six-port mode-selective photonic lantern spatial-
multiplexer fiber system. Each LP mode at the few mode fiber (FMF)
face is mapped to one of the six single-mode ports of the SMF face,
such that light with an LP mode shape at the FMF side will result
in flux in the corresponding SMF core. The device is bi-directional,
so light injected into one of the SMF ports will propagate into the
LP mode corresponding to that port at the FMF face. Right: The
field amplitudes of the first six LP modes, corresponding to the ideal
modes of six-port MSPL. . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Coupling maps for each port with no vortex (top left), and a charge 1
(top middle) and charge 2 (top right) vortex. The maps span -3 𝜆/𝐷
to 3 𝜆/𝐷 in each direction. Bottom left: Throughput line profiles
with no vortex. The four nulled ports satisfying 𝑙 ± 𝑚′ ≠ 0 are LP
11ab and LP 21ab. Bottom middle: Throughput line profiles with a
charge 1 vortex. The four nulled ports satisfying 𝑙 ± 𝑚′ ≠ 0 are LP
01, LP 21ab, and LP02. Bottom right: Throughput line profiles for
each port with a charge 2 vortex. The four nulled ports satisfying
𝑙 ± 𝑚′ ≠ 0 are LP 01, LP 11ab, and LP02. Although nulls in the
LP 21ab ports are not guaranteed by symmetry, in this case, their
central throughputs are spuriously low, and including them in the
data analysis may provide some additional gains. . . . . . . . . . . . 28



xiii

2.4 Line profiles for summed throughput of nulled ports for PLNs with no
vortex (left), a charge 1 vortex (middle) and a charge 2 vortex (right),
using MSPLs with varying numbers of output ports. As the number
of ports increases, each additional port brings decreasing returns in
additional throughput. The current limit of what can be practically
manufactured is six ports. Thus, we choose to use a six-port MSPL
in our PLN design, which balances the total throughput of the nulled
ports with what is practically manufacturable. Note that a higher V
number of 8.48 was necessary to generate up to 19 LP modes. Here,
we wish to compare the effect of port number independently of V
number effects, so fix the V number at 8.48 for all port numbers.
Thus, due to the difference in V number, the line profiles shown in
this analysis have slightly different shapes from those in Figure 2.3. . 29

2.5 Stellar coupling rate as a function of individual Zernike polynomial
amplitude, with no vortex (top), a charge 1 vortex (middle), and a
charge 2 vortex (bottom). For the nulled ports, solid lines indicate
modes predicted to couple (those satisfying 𝑙 ± (𝑚′ +𝑚) = 0), while
dashed lines indicate modes that are not predicted to couple (to first
order, though higher-order coupling effects can be seen). Values of
𝜂𝑠 falling below 10−6 are likely numerical noise, and are not shown.
Lines that fall entirely below 10−6 are light grey in the legend. . . . . 38

2.6 Left: Stellar coupling rates as a function of tip-tilt jitter, random-
uniformly distributed in position angle, with no vortex (left), a charge
1 vortex (middle), and a charge 2 vortex (right). The standard devia-
tion of the per-frame tip-tilt amplitude is given by 𝜎𝑡𝑡 , with position
angle drawn uniformly between 0 and 2𝜋. . . . . . . . . . . . . . . . 39

2.7 Left: Mean focal-plane PSF in the presence of WFE as measured
by the KPIC PyWFS. Middle: Unaberrated focal-plane PSF. Right:
Difference between the aberrated and ideal PSFs. Reminder that these
are not simulations of the Keck PSF, but of the measured wavefront
error residuals propagated through a system with an ideal circular
aperture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



xiv

2.8 Mean coupling calculated over 590 frames of WFE residuals from
the KPIC PyWFS, for the no vortex (left), charge 1 (middle), and
charge 2 (right) configurations. The ports on the bottom axis are
(from left to right): LP01, LP11a, LP11b, LP21a, LP21b, and LP02.
Coupling values for ports that are not considered nulled are depicted
in light grey. Off-axis planet coupling (where it is expected based
on the coupling maps) remains higher than the stellar coupling in the
presence of these WFE realizations. . . . . . . . . . . . . . . . . . . 40

2.9 Example ROC curves at different separations in the presence of with
photon noise, assuming wavefront error averages to a baseline null
depth. For both vortex charges, the inclusion of other ports of the PLN
provides detection gains relative to the VFN. The grey areas indicate
false positive rates which are not well sampled as they involve fewer
than 3 datasets with false detections. . . . . . . . . . . . . . . . . . . 41

2.10 Left: Select spatial probability distribution cross-sections, using a
charge 2 VFN. The three panels are plotted on the same color scale.
Middle: Select spatial probability distribution cross-sections, using
a charge 2 PLN. The three panels are plotted on the same color scale.
The parameters closest to that of the injected planet are marked
with orange stars. Right: Probability distributions of the flux ratio,
marginalized over the spatial dimensions. The flux ratio of the in-
jected planet is marked by the red line. The model-fitting shows that
the PLN can provide better constraints on planet model parameters
compared to the VFN. . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.11 Spatial probability distributions given the correctly identified flux
ratio of 2.15 × 10−6 (the panels are plotted on the same color scale).
Planets at a separation of 1.25 𝜆/𝐷 are injected at a variety of injected
position angles (marked by the orange stars). At position angles other
than 0 and 𝜋/2, additional solutions exist beyond the two guaranteed
by the instrumental symmetry. However, an observing strategy that
involves taking data with multiple rotations of the instrument relative
to the sky will reduce the number of best fit position angle solutions
to the fundamental two. . . . . . . . . . . . . . . . . . . . . . . . . 42
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3.1 a) A picture of a six-port MSPL. The lantern is the stiff silver portion
in the top right, with the MM end facing towards the right. Each SMF
output of the lantern is connected to one of the white fiber pigtails.
b) A microscope image of the MM face taken with a Dino-Lite Edge
3.0. The residual fiber cores are arranged in a pentagonal pattern,
visible towards the bottom left as small black circles. The resid-
ual fiber cores are embedded in the multi-mode core (dark brown),
which is surrounded by fiber-doped glass cladding (light brown ring).
Surrounding the cladding is a silica substrate (outermost dark brown
ring), followed by the glue (rough tan material) that attaches the
lantern to the connector. c) A schematic of the design of the MM
face for comparison. The observed MM core diameter and distance
between adjacent residual SMF cores are both consistent with the
design values of 15 𝜇m and 7 𝜇m respectively. . . . . . . . . . . . . 45

3.2 The optical setup for OAH measurements of the lantern modes. The
light from the laser is split by a 50:50 polarization-maintaining split-
ter. Half the light is sent to the imaging arm, through a polarization
controller, then to one of the single-mode inputs of the MSPL. The
light coming out of the MM face of the lantern goes through a lens
that collimates the beam, then to a lens that focuses the image onto
an infrared camera. The other half of the light is sent to the reference
beam path, where it passes through a PM fiber coil delay line, then
through a lens that creates a diverging beam large enough to cover
the entire lantern mode image. The polarization controller is used
to match the polarizations of the two beams. The reference beam
interferes with the lantern mode at the detector, creating fringes that
allow us to retrieve the complex mode field using Fourier analysis. . 48
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3.3 a) The measured hologram of the LP 21b port, centered and back-
ground subtracted. b) The same hologram as part (a), but zoomed
in to the center to show the fringes. Note that the fringes of interest
resulting from interference between the two beams are the fine hor-
izontal ones. c) The reference beam intensity, plotted on the same
spatial scale as part (a), showing that the faint, wide, vertical stripes
are not from the interference of the two beams, but rather the struc-
ture of the reference beam itself. d) The 2D Fourier transform of the
hologram in part (a). e) The Fourier-space signal in part (d), cropped
to the top right lobe. This lobe is centered to minimize the tip-tilt sig-
nal in the final reconstructed mode. f) The final reconstructed mode,
obtained by first applying a Gaussian window with a 𝜎 of 27 pixels to
part (d) to filter out edge effects, then a 2D inverse Fourier transform.
The signal is then divided by the square root of the reference beam
intensity to remove its impact, then normalized to a total intensity of
1. The amplitude is indicated by brightness, and the phase indicated
by hue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 a) The measured modes corresponding to each port of the MSPL,
obtained using OAH. The amplitude of each mode is indicated by
brightness, and the phase indicated by hue. Each mode has its global
piston phase term removed, and has been normalized to a total inten-
sity of one. The axes correspond to pixels on the camera, centered
about zero. b) The dot-products between the measured modes, which
show that they are orthogonal as predicted. The median of the dot-
product magnitudes between two different modes is 0.011, which
is commensurate with our measurement uncertainty for the mode
shapes themselves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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3.5 A light source is fed into the bench with a SMF mounted to the source
stage. The light is collimated by an off-axis parabola (OAP) mirror.
The collimated light is filtered by a baffle before reflecting off of a
12 × 12 Boston Micromachines deformable mirror (DM). Then, a
set of relay OAPs magnifies the beam. We leave the mask mount
empty for this work. The beam then passes through an adjustable-
size iris, which we use to control the 𝐹# of the system. The beam is
then focused by the last OAP onto the injection stage, which holds
both a single-mode fiber and the 6-port MSPL. A Femto OE-200
photodiode is used to measure the coupled flux. A Thorlabs S122C
power meter on a retractable stage can be inserted into the beam just
before the injection mount to measure the incident flux, which can
be used to normalize the coupled flux measurements for throughput
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 a) Monochromatic PLN throughput maps measured with 1568.772
nm light from the TLX2 tunable narrow linewidth laser injected into
the PoRT testbed with a PM fiber. White dashed lines indicate cross-
sections plotted in Figure 3.7. b) Simulated throughput maps based on
the mode profiles reconstructed using OAH at the same wavelength,
assuming that the lantern is flux-preserving. White dashed lines
indicate cross-sections plotted in Figure 3.7. c) Monochromatic PoRT
throughput maps of the nulled ports with fine spatial sampling of
the center. The red crosses indicate the axial center of the lantern,
identified using the map in part (d). d) The summed throughput of the
four maps in part (c). The location of minimum summed throughput
is taken to be the lantern center, where 𝜂𝑠 is measured. . . . . . . . . 55

3.7 Simulated and measured throughput cross-sections (as indicated in
Figure 3.6) for the nulled ports of the PLN. For comparison, the ideal
throughput cross-sections with perfect LP modes is also plotted. The
measured PLN throughput diverges from the ideal PLN because of
imperfect mode shapes. However, considering the overall through-
put losses through the lantern reported in Table 3.1, the shapes of
the measured throughput maps agree well with the predictions simu-
lated using the measured modes. The shown measurements are with
the monochromatic laser in the first polarization state, but the other
measured profiles lie closely to the same curve. . . . . . . . . . . . 57
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3.8 Monochromatic PLN throughput maps measured with 1568.772 nm
light from the TLX2 tunable narrow linewidth laser injected into the
PoRT testbed with a 90◦ polarization rotating fiber, such that the
polarization is orthogonal to that of Fig. 3.6. a) Throughput maps
of all ports across the PLN field of view. b) Throughput maps of the
nulled ports with fine spatial sampling of the center (note that the LP
21 maps are on a different color scale from the LP 11 maps). The red
crosses indicate the axial center of the lantern, identified using the
map in part (c). c) The summed throughput of the four maps in part
(b). The location of minimum summed throughput is taken to be the
lantern center, where 𝜂𝑠 is measured. . . . . . . . . . . . . . . . . . 58

3.9 Laboratory PLN results measured on PoRT, using an SLD light source
from 1450 nm to 1625 nm injected with a PM fiber. a) Throughput
maps of all ports across the PLN field of view. b) Throughput maps
of the nulled ports with fine spatial sampling of the center (note that
the LP 21 maps are on a different color scale from the LP 11 maps).
The red crosses indicate the axial center of the lantern, identified
using the map in part (c). c) The summed throughput of the four
maps in part (b). The location of minimum summed throughput is
taken to be the lantern center, where 𝜂𝑠 is measured. . . . . . . . . . 59

3.10 Laboratory PLN results measured on PoRT, using an SLD light source
from 1450 nm to 1625 nm injected with a 90◦ polarization rotating
fiber. a) Throughput maps of all ports across the PLN field of view.
b) Throughput maps of the nulled ports with fine spatial sampling of
the center (note that the LP 21 maps are on a different color scale
from the LP 11 maps). The red crosses indicate the axial center of
the lantern, identified using the map in part (c). c) The summed
throughput of the four maps in part (b). The location of minimum
summed throughput is taken to be the lantern center, where 𝜂𝑠 is
measured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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3.11 Difference in the finely-sampled central throughput maps between
two orthogonal polarization states, with throughput maps for po-
larization 1 subtracted from the maps for polarization 2, using a)
monochromatic light and b) broadband light. The monochromatic
null-depth of the LP 21a port with the second polarization state is
almost an order of magnitude deeper than the first, suggesting that
the lantern mode shapes do depend on the polarization at some level.
The limitations that these polarized differences impose on the null
that wavefront sensing and control can achieve should be examined
as part of future work. . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 a) A simplified diagram of the experimental setup. A monochromatic
1568.772 nm laser is injected into the bench, and the beam is colli-
mated. A 12 × 12 deformable mirror can be used to manipulate the
wavefront of the beam before it is focused onto the lantern ; the inset
shows example DM probe modes 𝑝1+ and 𝑝2+ . The SMF outputs
of the lantern can then be routed to either a V-groove array to be
imaged onto the camera, or to the photodiode. The photodiode is
calibrated to a photometer that can slide into the beam just before the
lantern, and thus provides measurements normalized to the incoming
beam. While performing wavefront control, all four nulled ports are
routed to the V-groove, with the non-nulled ports disconnected in
order to not saturate the camera. After performing wavefront control,
we sequentially route the nulled outputs to the coupling photodiode
to obtain coupling maps for each port. The coupling photodiode is
calibrated to a photodiode that can be inserted before the lantern in
order to normalize the coupling maps to the incident light on the
lantern, providing normalized measurements of 𝜂. b) The image on
the camera cropped to the region of interest. The white circles indi-
cate the photometric apertures used to measure coupling through the
lantern’s nulled ports. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 a) The singular values of the response matrix 𝑆 when measuring all
four nulled ports. b) The corresponding singular modes in DM space,
arranged in order of descending singular value. . . . . . . . . . . . . 68
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4.3 a) An example iEFC run targeting all four nulled ports. The vertical
gray line indicates a change in camera integration time along with a
control matrix recalibration. The final null depths from this run are
compared to the initial null depths in Table 4.1. b) The DM solution
found by iEFC targeting all four nulled ports at once. The root-mean-
square (RMS) of the DM control values is 0.033, corresponding to
approximately 120 nm of stroke. c) A timeseries of the fractional
fluctuations in the null obtained with iEFC, spanning the timescale
of one iEFC iteration. The gray shaded region corresponds to the
timescale of one photometric measurement, and each iEFC iteration
takes five photometric measurements: four for the probes and one
without any probe. The LP 11a and LP 11b nulls exhibit significant
fluctuations over the timescale of an iEFC iteration, showing that
these nulls are likely limited by testbed instability and not the lantern
itself. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 a) The normalized coupling maps through the nulled ports with the
original DM surface, with spatial extent in units of 𝜆/𝐷. The white
dashed box in the first panel indicates the finely-sampled region shown
in (c) and (d) b) The normalized coupling maps using the DM solution
found with iEFC, with spatial extent in units of 𝜆/𝐷. The dashed
white lines indicate the locations of the S/N ratio cross-sections shown
in Fig. 4.5. c) Finely-sampled coupling maps of the lantern center
with the original DM surface, spanning 1/5 of the spatial extent in
part (a). d) Finely-sampled coupling maps of the lantern center
using the DM solution found with iEFC, spanning 1/5 of the spatial
extent in part (a). The red crosses indicate the location where the
beam is aligned for the camera measurements, and also where 𝜂𝑠 is
measured. We observe that iEFC spatially redistributes the coupling
values through the lantern, lowering the coupling in the middle of
the field of view and causing a diffuse extension of the coupling
distribution at larger separations. . . . . . . . . . . . . . . . . . . . . 70

4.5 A comparison of the relative S/N ratio 𝜂𝑝/
√
𝜂𝑠 along the cross-

sections indicated in Fig. 4.4b, before and after performing iEFC.
In this case, wavefront control significantly improves the S/N ratio
for three of ports while slightly degrading it in one. A theory for the
observed tradeoff between ports is discussed in Section 4.4. . . . . . 71
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4.6 a) An example iEFC run targeting only the LP 21b port, showing
significant improvement in the null. The final 𝜂𝑠 = 7.42 × 10−5 is
extracted from camera photometry and converted to a normalized
coupling value based on the calibrated initial measurement. b) The
relative S/N ratio (𝜂𝑝/

√
𝜂𝑠) along the cross-section indicated in Fig.

4.4b, before and after running iEFC. The peak coupling 𝜂𝑝𝑝𝑒𝑎𝑘 is
0.110, giving a null depth 𝜂𝑠/𝜂𝑝𝑝𝑒𝑎𝑘 of 6.73 × 10−4. c) The DM
solution found by iEFC targeting only the LP 21b port. The RMS of
the control values is 0.0064, corresponding to approximately 22 nm
of stroke, five times smaller than the RMS of the control values for
the solution targeting all four ports. . . . . . . . . . . . . . . . . . . 72

5.1 A simplified schematic of the elements of SCExAO relevant to pho-
tonic lanterns work. SCExAO receives light from AO3k, the pri-
mary adaptive optics system of the Subaru Telescope. The visible
wavelength light is sent to a separate bench, which contains the AO
wavefront sensor. The near-infrared light is sent to the photonics
injection unit as well as a PSF monitoring camera. The injection
unit consists of a two-lens injection system (in which the carriage
position for one of the lenses can be adjusted to control the 𝐹# of the
beam), and stage to which lanterns or fibers can be mounted, which
can also be translated in XY (in the plane perpendicular to the beam)
as well as F (to control the lateral position relative to the focus of the
beam). The outputs of the lantern are dispersed onto a spectrograph.
There is no dedicated tip-tilt mirror; however, coarse alignment can
be obtained by adjusting the stage on which the DM is mounted, and
faster control can be obtained by applying tip-tilt on the DM itself. . . 79

5.2 Left) An example frame obtained from the detector, showing the
spectra from (from left to right) the LP 11a, LP 11b, LP 21a, LP
21b, and LP 02 ports. The shaded regions indicate the traces used for
spectral extraction. Right) The extracted spectra from the traces in-
dicated on the left, obtained by summing the counts in each row. The
blue shading indicates the wavelength region summed over for com-
puting coupling maps. Smaller row numbers correspond to longer
wavelengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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5.3 Calibration of detector pixel row to wavelength using narrowband
filters. A cubic polynomial is fit to the data for each port. The overall
flux is very low below the 25th row, and the inversion in the fitted
polynomial results in the wavelength calibration only being valid up
to approximately the 200th row. The rest of this work thus only uses
data between the 25th and 200th rows, or between approximately
1.30 𝜇m and 1.65 𝜇m. The gray shaded regions indicate the regions
excluded from the rest of this work. . . . . . . . . . . . . . . . . . . 81

5.4 Top) The laboratory coupling maps corresponding to the five mea-
sured ports, with spatial scale in mas. The right-most panel is the
summed coupling across the first four (nulled) ports. Three points
of interest are marked, corresponding to intended locations at which
on-sky data was later taken. 𝑃0 indicates the center, the location
of minimum summed coupling, where stellar coupling is measured.
𝑃1 indicates the location of maximum coupling for the LP 11a port.
𝑃2 indicates the location of maximum coupling for the LP 11b port.
Bottom) Wavelength-calibrated null depths (stellar coupling divided
by peak coupling) for each port. . . . . . . . . . . . . . . . . . . . . 82

5.5 Left) The on-sky coupling maps corresponding to the five measured
ports, with spatial scale in mas. Additional on-sky data was taken
at the three locations �̂�0, �̂�1, �̂�2. These are the estimated positions
of the points indicated in Fig. 5.4, with some alignment uncertainty
due the coarse sampling and rough quality of the on-sky coupling
maps. Right) The measured drift in the alignment between the lantern
position and the central pixel on the PSF monitoring camera. The
calibrated daytime position is at the center, marked with the black
dot. The range of the scans presented on the left as well as in Fig. 5.4
(approximately the FOV of the lantern) is indicated by the gray circle.
The position of the lantern obtained during the on-sky observation
is indicated with the blue square, while the position of the lantern
measured the afternoon after the observation is indicated with the
green triangle, showing a significant shift in the alignment between
calibration and observation, which continues in the same direction
even after the observation. . . . . . . . . . . . . . . . . . . . . . . . 84
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5.6 The median over time of the fluxes measured at points �̂�0, �̂�1, �̂�2.
At the estimated lantern center �̂�0, the non-nulled port LP 02 has the
highest coupling, as expected. Meanwhile, LP 11a has the highest
coupling at �̂�1, and LP 11b has the highest coupling at �̂�2, as expected. 85

5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.8 Left) Data after PSF subtraction for Dataset 1 (top) and Dataset 2

(bottom) with a fake companion injected with a flux ratio of 0.1.
Right) Data after PSF subtraction for Dataset 1 (top) and Dataset
2 (bottom) without any injected fake companions. In the case of
Dataset 1, the difference in the scale of the PSF-subtracted data
between the companion and no-companion case is visible by eye,
while in Dataset 2, the signal of the companion is comparable to that
of the post-subtraction residuals. . . . . . . . . . . . . . . . . . . . . 87

5.9 Detection results for Dataset 1. Left) The difference in log-likelihoods
lnL𝑖 − lnL0 between a fitted model with a companion at each loca-
tion and a model containing only noise, for a dataset that has a fake
companion injected (top) and for one without a fake companion (bot-
tom). Right) The respective best-fit flux (in uncalibrated units) as a
function of wavelength at the best-fit spatial location. This data shows
a strong detection of the binary companion when it exists, with both
lnL𝑖−lnL0 and the retrieved flux significantly higher than in the case
without an injected companion, as well as an accurate localization of
the companion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.10 Detection results for Dataset 2. Left) The difference in log-likelihoods
lnL𝑖 − lnL0 between a fitted model with a companion at each lo-
cation and a model containing only noise, for a dataset that has a
fake companion injected (top) and for one without a fake companion
(bottom). Right) The respective best-fit flux (in uncalibrated units)
as a function of wavelength at the best-fit spatial location. This data
shows a present but weaker detection of the binary companion when
it exists. The map of lnL𝑖 − lnL0 clearly favors the existence of a
binary companion, but the retrieved flux is not significantly above the
retrieved flux in the case of no injected companion. The localization
is also weaker than with Dataset 1. . . . . . . . . . . . . . . . . . . . 89
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6.1 a) Diagram of KPIC. Light from the telescope is reflected off of a de-
formable mirror, which is used to change the shape of the wavefront.
The light then propagates to a tip-tilt mirror, which is used to put the
star’s PSF on a specified pixel on the tracking camera that receives J
and H band light from the dichroic. The K and L band light is sent
to the fiber injection unit, which routes it to NIRSPEC. The inlay
depicts the alignment procedure on the tracking camera: the star is
positioned on the red cross such that the fiber position (indicated by
the black cross) coincides with the predicted planet position. b) Raw
contrast from 1.99 to 2.04 𝜇m at each iteration during a laboratory
test of speckle nulling. The ratio of initial raw contrast to the mean
raw contrast of the last three iterations is 27.5. Further increasing the
exposure time did not result in a deeper null, indicating that the null
depth was limited by systematic effects. . . . . . . . . . . . . . . . . 97

6.2 On-sky speckle nulling results from October 11, 2022. a) Raw con-
trast from 2.29 to 2.34 𝜇m at each iteration of speckle nulling. Black
squares correspond to the original flat map, which is the DM map that
maximizes co-axial throughput through the fiber, calibrated using the
internal source before the observing night begins. Pink crosses cor-
respond to probes used to determine the speckle’s phase, as described
by Equations 7-11. We take one measurement of the intermediate
null immediately after applying a solution map (shown in green) and
a second measurement (with the same solution map) just after the
next probe cycle but before applying the next map (shown in purple).
In the absence of noise or drift, we expect these measurements to be
the same as the DM state is identical, so the difference between them
gives us a measure of the variability. Blue triangles correspond to the
final solution map at the end of seven iterations. There is significant
variability in measurements with the same instrument state, but by
comparing the average of the blue triangles and the average of the
black squares in iteration 7, we find that speckle nulling improves the
raw contrast by a factor of 2.6 relative to using the flat map. b) Com-
parison of co-axial throughputs with and without speckle nulling,
showing that speckle nulling does not decrease the throughput 𝜂𝑝. . . 98
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6.3 Raw contrast measurements over time when the loop is opened after
the speckle nulling sequence. In the time it takes to make a phase
measurement using 1 minute exposures plus overheads (indicated
with blue shading), the raw contrast increased by a factor of two.
This degradation limits our ability to measure the drifting phase
quickly enough to correct it, which is likely limiting our null-depth.
The dashed line indicates the raw contrast with the flat map (average
of the black squares from iteration 7 from Figure 6.2), which is
commensurate with the raw contrast that the null eventually degrades
to after 30 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Comparison of speckle spectra obtained with and without speckle
nulling. a) Data from October 11, 2022. On top, the average spectrum
from the last 9 frames with the final speckle nulling DM solution is
plotted in blue, and the average spectrum from the last 9 frames with
the flat map is plotted in black. Below it, the ratio of the two shows
the spectral shape of the null. The wavelength range targeted by
speckle nulling (the range over which flux was summed to calculate
the raw contrast) is indicated with light blue shading. In the targeted
order from 2.29 to 2.34 𝜇m, speckle nulling achieved a suppression
ratio of 2.6. b) Data from November 12, 2022. On top, a frame at the
end of a speckle nulling iteration is plotted in blue, and the spectrum
obtained immediately afterwards with the flat map is plotted in black.
Below it, the ratio of the two shows the spectral shape of the null. The
wavelength range targeted by speckle nulling (the range over which
flux was summed to calculate the raw contrast) is indicated with light
blue shading. In the targeted order from 2.22 to 2.27 𝜇m, speckle
nulling achieved a suppression ratio of 2.8. . . . . . . . . . . . . . . 101
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7.1 The CGI optical train and wavefront sensing and control architecture.
The optical elements of the HLC mode of interest are depicted in the
top panel. Before an observation, the high order wavefront sensing
and control loop is performed on a bright reference star to generate
a ‘dark hole’ (an area where starlight is suppressed). Then, the DM
shapes are fixed, and the telescope slews to the target star for the
observation. During the observation, wavefront errors accrue as a
result of instrumental disturbances and drifts, the effects of which
this work aims to mitigate in post-processing. Figure from Kasdin,
Bailey, et al. (2020). . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 The singular values of Al (left) and Aq (right). Note that the transfer
matrices are rectangular and have 𝑁pix = 5476 total singular modes,
but the singular values beyond the size of the input dimension are all 0.117

7.3 Top: The first 10 singular modes of Al as represented in the the
detector plane intensity basis (linear scale). Bottom: The first 10
singular modes of Aq as represented in the the detector plane intensity
basis (linear scale). The HLC design is nearly circularly symmetric,
broken only by the six secondary mirror struts (which can also be seen
in the Lyot stop). Because the quadratic transfer matrix depends only
on the coronagraph operator C, its singular modes exhibit cosine and
sine-like azimuthal behavior associated with circularly symmetric
operators. However, the linear transfer matrix depends on both C
as well as on the focal-plane electric field at the end of dark hole
creation, which is random and not circularly symmetric. Thus, its
singular modes show no such symmetry structures. These singular
modes correspond to the intensity patterns most likely to be attributed
to wavefront error. Meanwhile, the companion’s intensity pattern (the
PSF at its location) overlaps very little with these dominant modes, so
its signal is mostly retained when the dominant modes are projected
out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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7.4 1) Initial dark hole intensity achieved using electric field conjugation
with the HLC. 2) A single snapshot with linear-regime wavefront
aberrations. 3) The same snapshot with an injected companion with
a flux ratio of 2 × 10−7 at 6.5𝜆/𝐷 (indicated with red circle). 4)
A single snapshot with quadratic-regime wavefront aberrations. 5)
The same snapshot with an injected companion with a flux ratio of
5×10−6 at 4𝜆/𝐷 (indicated with red circle). All intensities are shown
in log10 of raw contrast. . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 a. Example linear-regime intensity error from the optical model.
b. Corresponding linear-regime intensity error reconstructed by re-
sponse matrix Al, plotted on the same scale as (a). c. The difference
between the response matrix prediction and the optical model predic-
tion, plotted on the same scale as (a) and (b). d. Example quadratic-
regime intensity error from the optical model. e. Corresponding
quadratic-regime intensity error reconstructed by the response ma-
trix Aq, plotted on the same scale as (d). f. The difference between
the response matrix prediction and the optical model prediction, plot-
ted on the same scale as (d) and (e). Slight differences arise because
the model includes both the linear and quadratic error terms while
the matrix predictions only include one or the other, i.e. the linear
matrix prediction neglects the contribution of the quadratic term and
the quadratic matrix prediction neglects the contribution of the lin-
ear term (as well as the influence of any Zernikes past the first 100).
While the linear matrix prediction is biased low near the peaks and the
quadratic matrix prediction biased high overall, our method depends
only on how well the spatial structure of the errors are reproduced. A
relevant metric for characterizing the spatial overlap is the normalized
inner product between the optical model prediction and the transfer
matrix prediction, where a value of 1 indicates perfect spatial overlap
and a value of 0 indicates perfect spatial orthogonality. In this case,
the normalized inner product is 0.936 for the linear regime example
and 0.985 for the quadratic regime example, sufficient for providing
a quantifiable improvement in detection sensitivity. . . . . . . . . . . 121
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7.6 Detection test results for the quadratic regime noise model. The
companion planet considered has flux ratio of 5.4×10−7 and is located
at 4.0𝜆/𝐷. Left: Histograms from using raw intensities compared
to those from using quadratic robust observables with the optimal
cutoff of 𝑁𝑚 = 70. The histograms using raw intensity overlap
significantly, making it difficult to distinguish between a model with a
planet and a model without one, while the histograms using the robust
observables are further separated and more distinguishable. Middle:
Histograms for using raw intensities and a random projection matrix
of the same size as the instrumentally-motivated projection. Both
sets of histograms overlap significantly, and the random projection
does not improve the distinguishability of the two models. Right:
ROC curves corresponding to the histograms. Grey area indicates
false positive rates which are not well sampled as they involve less
than 3 datasets with false detections. The ROC curve shows that
while using the robust observables results in a FPR = 0.01 and
TPR = 0.9 detection of the injected planet, both the raw intensity
and the randomly dimensionally reduced data remain very far from
detectability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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C h a p t e r 1

INTRODUCTION

1.1 The Study of Exoplanets
Though humans have long speculated about the existence of exoplanets — planets
orbiting stars other than our own sun — the first evidence came only in 1992,
with the discovery of two planets orbiting a pulsar (Wolszczan and Frail, 1992).
This revelation was quickly followed by the 1995 discovery of another planet, the
hot jupiter 51 Pegasi b, orbiting a Solar-type star (Mayor and Queloz, 1995). As
shown in Fig. 1.1, over 5,000 exoplanets have since been found through a variety
of methods (Akeson et al., 2013)1, and the study of these objects holds promise for
answering two of the greatest scientific questions of our time: how did we get here?
And — are we alone?

Theories of planet formation are intricately linked to those of stellar formation
and the properties of the circumstellar environment. When a star forms from the
gravitational collapse of a molecular cloud, conservation of angular momentum
leads to the emergence of a disk of leftover gas and dust that orbits the star. This
initial protoplanetary disk then provides the materials from which planets are formed.

Two primary pathways have been proposed for planet formation. One is a bottom-
up process (depicted in Fig. 1.2 with solid lines), in which small dust grains first
coagulate into millimeter-size pebbles, which then clump together (e.g. through
streaming instability (Youdin and Goodman, 2005)), then accrete more pebbles over
time (Johansen et al., 2021) to eventually form a rocky core. While the smaller
cores will remain as rocky planets, more massive cores may continue to accrete gas
and dust until they become gas giants (Youdin and Zhu, 2025).

The second pathway is a top-down process that only applies to giant planets, in
which an instability in the protoplanetary disk causes the local material to collapse
into a giant planet, which then accretes additional material along its orbit (Mercer,
Anthony and Stamatellos, Dimitris, 2020). This process is indicated in Fig. 1.2 as
the dashed blue line. This disk instability formation pathway is expected to primarily
produce gas giants far away from their host stars, where conditions for collapse are
more favorable.

1NASA exoplanet archive: https://exoplanetarchive.ipac.caltech.edu/
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Figure 1.1: Known exoplanets as of March 2025. Since the first discovery of two
exoplanets orbiting a pulsar in 1995, over 5000 exoplanets have been found by a
variety of methods, spanning a wide range of parameters. Studying exoplanets can
help answer questions about how our own solar system formed and inform us about
the existence of life elsewhere in the universe. Figure from Akeson et al. (2013).

Testing these theories requires observational data. Observable quantities such as
an exoplanet’s mass, luminosity, orbital parameters, and molecular composition can
probe the formation history of the exoplanet, and their distributions in aggregate can
also provide insight about exoplanet demographics as a whole. One complication is
that formed planets will continue to interact with their own disks, other planets in
the system, and other gravitationally bound objects (such as a binary companion to
their host star). As a result, they can migrate through their disk on timescales that
depend on the specific process, and their current-day location may not be indicative
of where they originally formed. Untangling the myriad of factors that contribute
to the diversity of observed exoplanets is therefore a significant challenge.

Characterizing exoplanet atmospheres through spectroscopy is a particularly pow-
erful approach for understanding exoplanet formation, as the chemical composition
of an exoplanet is a strong tracer of its history (Mollière et al., 2022). For example,
a giant planet that formed via disk instability is expected to have a composition
similar to that of its host star, while planets that formed through core accretion may
have a different composition that varies with formation location and the phases (gas
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Figure 1.2: Routes to form planetary bodies. Mechanisms are indicated with an
arrow and labeled. Gravitational instabilities (involving a collection of particles
or gas) are indicated by dashed arrows. Accretion processes that rely on surface
forces are in green, gravitational forces in black, gas accretion in blue, and pebble
accretion (which involves both gas and gravity) is in magenta. The disk instability
(DI) mechanism is depicted at the very left. Other processes fall under the core
accretion (CA) umbrella. Figure and caption from Ormel (2024).

or solid) of the compounds there. If a planet migrates its formation, its composition
will reflect the materials actually accreted during its migration, helping to distin-
guish between different models of its formation and migration history (Mollière
et al., 2022).

Atmospheric characterization is also crucial for the search for biosignatures that
may indicate extraterrestrial life, as biological processes can lead to chemical dis-
equilibrium in a planet’s atmosphere (see Fig. 1.3) (National Research Council,
2021). Currently, transit spectroscopy methods can probe the chemical composition
of small rocky planets around M dwarfs, while direct spectroscopy can probe the
composition of massive self-luminous gas giants. Neither of these planet types is
promising for hosting life similar to Earth’s — even rocky planets in the habitable
zone around M dwarfs, where water is in its liquid phase, likely receive too much
X-ray irradiation as a result of the M dwarfs’ high stellar activity (National Research
Council, 2021). Therefore, one of the most exciting directions in the future of exo-
planet science is the direct characterization of true Earth analogues — rocky planets
in the habitable zone around solar type stars, the only place we already know that
life exists.
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Figure 1.3: Simulated spectra of an Earth-like exoplanet with and without life.
Characterizing the chemical abundances of molecules such as O2 and CO2 can detect
the disequilibrium chemistry that can arise from the existence of life. Figure from
the Decadal Survey for Astronomy and Astrophysics (National Research Council,
2021), courtesy of N. Batalha and the PICASO project (Batalha et al., 2019).

1.2 Overview of Observational Methods
Although the very first exoplanets were detected using pulsar timing variations, in
which the impact of the exoplanet is seen as a deviation in the arrival times of radio
pulses (Wolszczan and Frail, 1992), the majority of planets that have been found
since then were detected using other techniques. This section first summarizes the
four major indirect detection methods, which rely on measurements of the planet’s
host star to infer the presence of the planet. It then describes the method of directly
detecting and measuring the light of exoplanets. Figure 1.4 shows a schematic
illustrating each of these detection techniques.

Radial Velocity
The radial velocity approach measures the spectral lines of stars over time to search
for periodic frequency oscillations — the Doppler redshift and blueshift of stellar
motion induced by the gravitational tug of a planet. The semi-amplitude 𝐾𝑅𝑉 of this
shift is given by

𝐾𝑅𝑉 =
28.4329ms−1
√

1 − 𝑒2

𝑀𝑝 sin 𝑖
𝑀J

(𝑀𝑝 + 𝑀∗
𝑀⊙

)−2/3 ( 𝑃
yr
)−1/3

, (1.1)

where 𝑒 is the planet eccentricity, 𝑀𝑝 the planet mass, 𝑖 the planet inclination, 𝑀∗
the stellar mass, 𝑃 the planet period, and 𝑀J and 𝑀⊙ the masses of Jupiter and the
sun respectively (Lovis, Fischer, et al., 2010). This method has been responsible
for finding ∼ 1000 of known planets to-date (Akeson et al., 2013), and is able to
constrain their orbital periods and eccentricities. Unfortunately, the semi-amplitude
𝐾𝑅𝑉 depends on both the mass of the planet and its orbital inclination, so while the
quantity 𝑀𝑝 sin(𝑖) can be deduced, these two parameters cannot be disentangled
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Figure 1.4: Schematics of various exoplanet detection techniques.

from each other. This method also does not probe the planet’s atmosphere, and thus
provides no direct measurement of its composition.

Transit Photometry
Transit photometry searches for periodic dips in a star system’s brightness that result
from a planet occulting part of its light as it passes in front of the star (the primary
eclipse), as well as when the planet’s contribution to the total intensity is blocked
as it passes behind the star (the secondary eclipse). If the star is assumed to be
uniformly bright, then transit depth Δ𝐹 (the fraction of light lost during primary
transit) is then the relative areas of the two objects, given by

Δ𝐹 =

(
𝑅𝑝

𝑅∗

)2
, (1.2)

where 𝑅𝑝 and 𝑅∗ are the planet and the stellar radius, respectively.

The transit method, such as used by the National Aeronautics and Space Adminis-
tration (NASA) Kepler and Transiting Exoplanet Survey Satellite (TESS) missions,
have been collectively responsible for detecting over 4000 planets (Akeson et al.,
2013). Photometric measurements can be very precise, and this method has been
successful in not only detecting planets and measuring their orbital periods, but
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also in constraining many other parameters (stellar radius, planet radius, orbital
inclination) based on the shape of the transit lightcurve. The measurements can also
be used to detect the presence of additional planets through variations in the transit
timing, a technique known as transit-timing variations (Agol and Fabrycky, 2018).

Additionally, when the planet passes in front of the star, part of the starlight passes
through the planet’s atmosphere, allowing for the measurement of atomic and molec-
ular absorption features; and when the planet passes behind the star, the light that
is lost is then a measure of the planet’s emission. These techniques are collec-
tively known as transit spectroscopy, and are one way to measure the atmospheric
composition of exoplanets (Seager, 2008).

Astrometry
Like the radial velocity method, the astrometry method relies on measuring a per-
turbation to the star induced by the planet, in this case deviations in the spatial
position of the star relative to its proper motion. The astrometric deviation 𝛼 in
arcsec, induced by a planet, is given by

𝛼 = (
𝑀𝑝

𝑀∗
) (
𝑎𝑝

AU
) ( 𝑑

pc
)−1arcsec, (1.3)

where 𝑎𝑝 is the semi-major axis of the planet, and 𝑑 the distance to the system
(Perryman et al., 2014).

The European Space Agency (ESA) GAIA mission (Gaia Collaboration et al., 2016)
has measured the positions of over a billion stars with very high precision, and
early data releases have already been used with great success to identify stars whose
astrometric motion hints at potential planets, to be subsequently followed up by other
methods to make detections. In the coming years, upcoming data releases from
GAIA will provide exciting opportunities for additional follow-up observational
campaigns.

Microlensing
Microlensing relies on capturing the chance alignment between a planet’s host star
and a distant background star. The host star, when passing in front of the background
star, will act as a gravitational lens that distorts and magnifies the background star’s
light, and the presence of planets can be inferred from deviations in the lightcurve
of this lensing event (Gaudi, 2012). So far, over 50 planets have been found through
this method (Akeson et al., 2013), with more detections anticipated from the Roman
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Space Telescope mission. However, unlike for the other planet detection methods,
microlensing observations of the same system cannot be repeated, so any additional
information about the planet would have to be obtained through other means.

Direct Observation
Direct observation, commonly referred to as direct imaging or high contrast imaging,
measures the light from the planet itself, which has either been thermally emitted by
the planet or reflected from its host star. The most simple and intuitive method is to
pass the combined star and planet light through an imaging instrument and record
the intensity, corresponding to the astrophysical intensity distribution convolved
with the optical transfer function of the telescope. Planets whose separation from
their star is greater than the telescope’s diffraction limit (1.22𝜆/𝐷 where 𝜆 is the
wavelength of light and𝐷 the telescope diameter), and are bright enough to stand out
against various sources of noise, will appear in the image as point sources distinct
from their host star.

However, directly measuring exoplanet light is extremely difficult: the small angular
separations between the star and the planet require large telescopes to resolve, and
the flux ratios between a planet and its star ranges from 10−4 in the infrared for hot,
young, massive planets to 10−10 in the optical for mature Earth-like planets (National
Research Council, 2021). Photon noise from the star drowns out the planet signal
in conventional imagers or spectrographs, so dedicated instruments are needed to
remove the majority of the starlight before it reaches the detector. The challenge of
reaching small angular scales with high sensitivity is why, to date, the handful of
directly detected planets have all been massive (multiple 𝑀𝐽 , or the mass of Jupiter),
young and self-luminous from the heat of their formation, and widely separated
from their host star (Traub and Oppenheimer, 2010).

Despite the limited number of planets that have been detected through this method,
direct observations have already led to a greater understanding of this population of
giant, widely-separated planets, as well as of brown dwarfs, a type of object larger
than planets but smaller than stars, typically deuterium burning but not massive
enough to fuse hydrogen. Notable directly imaged systems include the four HR8799
planets (Christian Marois, Bruce Macintosh, et al., 2008), two 𝛽 Pictoris planets
(Lagrange et al., 2009; Nowak et al., 2020), and 51 Eri b (Macintosh et al., 2015),
which are among the first to have ever been imaged. A few dozen companions
have been detected since, tending to appear around higher mass stars with ages of
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10-100 Myr with an occurrence rate of less than 10% (Currie et al., 2023). The
masses of these companions cannot be directly measured using imaging but can be
inferred based on the age of the system, though they are sensitive to both the age
that is assumed and the particular model used to predict the evolution of luminosity
over time. Any constraints on the dynamical mass from other methods (primarily
astrometry) thus give valuable insight into both the age of a system as well as the
validity of various evolutionary models for the system.

A complication in the study of these objects is that the distinction between massive
planets and brown dwarfs close to the mass boundary between them (∼ 13𝑀𝐽) is
not obvious. The preferred criterion for categorization is based on their formation
pathway — planets are formed primarily through accretion while brown dwarfs are
formed primarily through collapse — but this is not a directly observable quantity.
Many studies have attempted to characterize the potential differences between the
planet population and the brown dwarf population. Some approaches analyze the
demographics of the objects and their orbital parameters, tentatively showing that
the objects on the lower end of the mass spectrum (2 − 15𝑀𝐽 , ostensibly planets)
are statistically distinct from the objects on the higher end of the mass spectrum
(15 − 75𝑀𝐽 , ostensibly brown dwarfs), and they tend to appear closer to their host
stars, on less eccentric orbits, and with spin axes that align with the spin axis of
their star (Currie et al., 2023). These findings are consistent with the theory that the
lower mass objects/planets primarily form in a disk around the host star while the
higher mass objects/brown dwarfs form through the direct collapse of a molecular
cloud.

As discussed in Section 1.1, atmospheric characterization is another approach to
constrain the formation pathway of these objects, as objects that form through grav-
itational collapse are expected to have compositions similar to their host star, while
objects that form through core accretion are expected to have the composition of the
solid materials in the vicinity of their formation. High-resolution spectroscopy, in
particular, enables the detection of distinct absorption lines corresponding to atomic
and molecular species in the planet’s atmosphere (Q. M. Konopacky et al., 2013).
By measuring the abundance of compounds such as CO2 and H2O, the C/O and
C/H ratios of several directly imaged objects have been constrained to have approx-
imately solar compositions (around stars whose composition is expected to also be
approximately solar) (J. W. Xuan et al., 2024). These results are consistent with
gravitational collapse, but they may also be consistent with core accretion outside
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the snowlines of the relevant compounds (CO in this case), as those compounds
would be in their solid state and therefore accreted, thus also resulting in a stel-
lar composition. Additional measurements, such as that of the 12C/13C ratio, can
help distinguish between these possible explanations, as CO inside the snowline is
expected to be enriched in 13C (Zhang et al., 2021). However, measuring 12C/13C
requires higher signal-to-noise data, and has thus only been done for a few objects so
far. The James Webb Space Telescope has also recently enabled access to cooler ob-
jects, in which NH3 can be detected, the abundance of which can similarly constrain
the atmospheric composition and be used to test models of the object’s formation
(Mâlin et al., 2025).

Moving forward, the direct characterization of fainter and closer-in planets is needed
to understand the full diversity of the planet population and test formation theories for
different systems across the exoplanet parameter space. Of particular interest is the
bulk of the gas giant population, many of which have been detected using the radial
velocity method but not spectroscopically characterized. Transit spectroscopy is
inherently limited to exoplanets close to their host star, simply because the probability
of transit decreases with orbital distance as approximately 𝑅𝑝/𝑎𝑝, as, geometrically,
a smaller range of possible inclinations will result in the star’s occultation from our
line of sight. Direct spectroscopy, on the other hand, is theoretically limited only
by our telescopes and technology. Consequently, direct spectroscopy is perhaps the
only way to characterize the atmosphere of not only gas giants, but true Earth-like
planets in the habitable zones of sun-like stars, making the technology development
needed to enable this one of the priorities recommended by the National Academy of
Sciences 2020 Decadal Survey in Astronomy and Astrophysics (National Research
Council, 2021).

1.3 Instrumentation for Direct Exoplanet Observations
This section provides an overview of the starlight-suppressing instruments needed
to achieve the angular resolutions and sensitivities necessary for direct exoplanet
characterization.

Starlight Suppression
The suppression of light from a central source has historical roots in the two fields
of coronagraphy and nulling interferometry, and although these fields have devel-
oped their own tools, practices, and terminology, they ultimately share the same
underlying principles.
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Figure 1.5: A schematic of a classical Lyot coronagraph. Plane P1 is the entrance
pupil plane; plane P2 is the focal plane, where the occulting mask is; plane P3 is the
second pupil plane, where the Lyot stop is; and plane P4 is the second focal plane,
where the light from the on-axis source has been strongly attenuated. Figure and
caption adapted from Olivier Guyon et al. (1999).

The first coronagraph was invented in 1931 by Bernard Lyot to observe the corona
of the sun without the need for a natural eclipse (Lyot, 1939). The schematic of
this classical Lyot coronagraph is shown in Figure 1.5. An intuitive explanation
of the instrument is that when the on-axis light from the telescope is focused onto
an occulting spot, it gets scattered into a ring in the following pupil plane. This
ring of light is spatially filtered out with an undersized pupil mask (the Lyot stop),
such that when the beam is refocused onto the detector, most of the light from the
central source has been removed. Meanwhile, off-axis sources that do not land on
the occulter will pass through the system mostly unchanged.

Coronagraphs in general are modeled and designed using Fourier optics. The
propagation of light between successive pupil and focal planes in an imaging system
can be approximated with Fraunhofer diffraction, which is valid when diffracted light
is viewed in the far-field or, as in this case, a lens is used to focus the light. According
to the Fraunhofer diffraction equation, the resulting complex amplitude 𝑈 (𝑥, 𝑦, 𝑧)
of an incoming wave of complex amplitude 𝐴(𝑥′, 𝑦′) (after being diffracted by the
telescope aperture and focused by a lens) is given by

𝑈 (𝑥, 𝑦, 𝑧) ≈ 𝑒
𝑖𝑘𝑧𝑒𝑖𝑘 (𝑥

2+𝑦2)/2𝑧

𝑖𝜆𝑧

∬
Aperture

𝐴(𝑥′, 𝑦′)𝑒𝑖 𝑘𝑧 (𝑥′𝑥+𝑦′𝑦)𝑑𝑥′𝑑𝑦′. (1.4)

This transformation is proportional to the Fourier transform, which is thus one of the
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Figure 1.6: Illustration of the principle of nulling interferometry. The light of
a star is collected by two apertures separated by a baseline B. A phase delay of
𝜋 is introduced into one of the arms to produce a deep central minimum in the
interference of the light beams. If a planet orbits the star at an angular separation of
𝜃, its light enters the instrument off-axis introducing a further delay of 𝐵 sin 𝜃. As a
consequence, the starlight is locally highly suppressed while the planet light is not.
Figure and caption adapted from Lagadec et al. (2021).

primary tools for simulating, modeling, and designing coronagraphic instruments.
Modern coronagraph designs that are more optimized than the classical Lyot coro-
nagraph but remain based on a series of focal and pupil plane masks include the
apodized pupil lyot coronagraph (Soummer, 2005), the four-quadrant phase mask
coronagraph (D. Rouan et al., 2000), and the vortex coronagraph (D. Mawet et al.,
2010).

Nulling interferometry, on the other hand, was born out of astronomical interferom-
etry that combines the light of multiple telescopes. In 1978, Bracewell proposed
that by combining the beams from two telescopes and shifting the phase of one
of them by 𝜋, a transmission null would be created at the center (where the light
deconstructively interferes), with an overall on-sky transmission pattern of sinu-
soidal fringes (see Fig. 1.6) (Bracewell, 1978). Variations of Bracewell nulling
can be implemented on subapertures or subregions of single telescopes, resulting
in instrument designs such as the Achromatic Interferometric Coronagraph (Gay,
Rabbia, and Pierre Baudoz, 1997) or the Visible Nuller Coronagraph (Mennesson
et al., 2003).

Theoretically, an instrument that manipulates the collected light can be described
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Figure 1.7: Upper limit on the off-axis throughput of a coronagraph for different
stellar radii, assuming a stellar suppression level of 10−10. Figure and caption
adapted from O. Guyon et al. (2006a).

as a linear operator (a function of the instrument optics) acting upon the complex
amplitude of the incoming wavefront. When all of the light in the system is ac-
counted for (including light scattered away), then conservation of energy implies
that the linear operator must be unitary. O. Guyon et al. (2006a) used this algebraic
representation to explore the theoretical limits of stellar suppression, showing that
for a given desired coronagraphic contrast (the level by which the stellar light is
attenuated), a fundamental tradeoff exists between the achievable planet throughput
and the angular size of the star. As shown in Fig. 1.7, a coronagraph that can reject
the light of a larger star will also suffer from lower planet throughput, especially at
close-in separations. O. Guyon et al. (2006a) proposes the idea of an optimal coro-
nagraph, which uses a combination of beamsplitters to manifest the exact unitary
matrix that reaches the theoretical limit for a given stellar size and planet separation.
However, only in recent years have various instrument architectures and technolo-
gies (primarily based in photonics) shown promise for realizing these near-optimal
unitary transformations.

Although nulling-type instruments are a subset of coronagraphs, for the rest of this
work, ‘conventional coronagraphs’ will be used to refer to instruments designed to
observe objects at separations > 2𝜆/𝐷 from the host star, while ‘nullers’ will be
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used to refer to instruments designed to observe objects at separations at or less than
1𝜆/𝐷. While the design space itself is continuous and there is no clear boundary,
this distinction is somewhat useful when discussing the classes of instruments that
have been developed and implemented at real observatories.

1.4 Optical Waveguides
This section provides an overview of optical waveguides, one of the key technologies
used in modern astronomical instrumentation (at optical and infrared wavelengths),
and also one of the foundations for the instrumentation discussed in this work.

Light Propagation in a Medium
The following derivations for light propagation in waveguides are adapted from
Paschotta (2022), Step Index Fibers (2025), and Weakly Guiding Fibers (2025).

The behavior of light propagating in a medium can be calculated using Maxwell’s
equations:

∇ × E = −𝜇0
𝜕𝐻

𝜕𝑡
, (1.5)

∇ ×H = 𝜖
𝜕𝐸

𝜕𝑡
. (1.6)

In cylindrical coordinates, an electromagnetic wave propagating down a waveguide
in the 𝑧 direction takes the form of

E = ®𝐸 (𝑟, 𝜑)𝑒𝑖𝛽𝑧−𝑖𝜔𝑡 , (1.7)

H = ®𝐻 (𝑟, 𝜑)𝑒𝑖𝛽𝑧−𝑖𝜔𝑡 . (1.8)

The wave equations for each component of the electric-field ®𝐸 (𝑟, 𝜑) and magnetic
field profile ®𝐻 (𝑟, 𝜑) are thus given by

(𝑘2 − 𝛽2)𝐸𝑟 = 𝑖𝛽
𝜕𝐸𝑧

𝜕𝑟
+ 𝑖𝜔𝜇0

1
𝑟

𝜕𝐻𝑧

𝜕𝜑
, (1.9)

(𝑘2 − 𝛽2)𝐸𝜑 = 𝑖𝛽
1
𝑟

𝜕𝐸𝑧

𝜕𝜑
− 𝑖𝜔𝜇0

𝜕𝐻𝑧

𝜕𝑟
, (1.10)
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(𝑘2 − 𝛽2)𝐻𝑟 = 𝑖𝛽
𝜕𝐻𝑧

𝜕𝑟
− 𝑖𝜔𝜖 1

𝑟

𝜕𝐸𝑧

𝜕𝜑
, (1.11)

(𝑘2 − 𝛽2)𝐻𝜑 = 𝑖𝛽
1
𝑟

𝜕𝐻𝑧

𝜕𝜑
+ 𝑖𝜔𝜖 𝜕𝐸𝑧

𝜕𝑟
, (1.12)

𝜕2𝐸𝑧

𝜕𝑟2 +
1
𝑟

𝜕𝐸𝑧

𝜕𝑟
+ 1
𝑟2
𝜕2𝐸𝑧

𝜕𝜑2 + (𝑘
2 − 𝛽2)𝐸𝑧 = 0, (1.13)

𝜕2𝐻𝑧

𝜕𝑟2 +
1
𝑟

𝜕𝐻𝑧

𝜕𝑟
+ 1
𝑟2
𝜕2𝐻𝑧

𝜕𝜑2 + (𝑘
2 − 𝛽2)𝐻𝑧 = 0. (1.14)

Here, 𝑘 = 2𝜋𝑛/𝜆 is the (potentially spatially varying) wavenumber, where 𝑛 is the
(potentially spatially varying) index of refraction of the medium, and 𝜆 the vacuum
wavelength of the light. The solutions to these equations for a given waveguide
geometry are the modes that can be supported by that waveguide.

Optical Fibers
A simple step-index optical fiber consists of a cylindrical core of a constant index
of refraction 𝑛core surrounded by a cladding, also of constant index of refraction 𝑛cl.
Typically, the difference in the indices of refraction is small ((𝑛core−𝑛cl)/𝑛core ≪ 1),
such that the weakly guiding approximation can be used. In this case, the wave
equations are significantly simplified and many of the modes become degenerate.
The complex electric field profiles of the resulting supported modes (known as the
linearly polarized modes, or LP modes) are the solutions to

𝜕2𝐸

𝜕𝑟2 +
1
𝑟

𝜕𝐸

𝜕𝑟
+ 1
𝑟2
𝜕2𝐸

𝜕𝜑2 + (𝑘
2 − 𝛽2)𝐸 = 0. (1.15)

Because the index of refraction within the material is constant and the geometry
cylindrically symmetric, the solution will take the separable form of

𝐸 (𝑟, 𝜑) = 𝐹𝑙𝑚 (𝑟) (𝑎 sin (𝑖𝑙𝜑) + 𝑏 cos (𝑖𝑙𝜑)). (1.16)

Plugging this into Eq. 1.15, performing a separation of variables, and multiplying
through by 𝑟2 yields a radial equation of

𝑟2𝐹′′𝑙𝑚 (𝑟) + 𝑟𝐹
′
𝑙𝑚 (𝑟) + (𝑟

2𝑘2 − 𝑙2 − 𝑟2𝛽2)𝐹𝑙𝑚 = 0. (1.17)
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Figure 1.8: Select electric field amplitude profiles (LP modes) for the guided modes
of a step-index fiber. Figure and caption adapted from Paschotta (2022).

The solutions to this differential equation are given by: Bessel functions 𝐽𝑙 (𝑢𝑟/𝑟core)
for the core (where𝑢 = 𝑟core

√︁
𝑛2

core𝑘
2 − 𝛽2), and modified Bessel functions𝐾𝑙 (𝑤𝑟/𝑟core)

for the cladding, (where 𝑤 = 𝑟core

√︃
𝛽2 − 𝑛2

cl𝑘
2). Meanwhile, the azimuthal compo-

nent of the solution are the sines and cosines indexed by the mode order 𝑙. Figure
1.8 shows the solutions for the core, i.e. the LP modes, across a range of azimuthal
mode index 𝑙 and radial mode order 𝑚.

The boundary condition for continuity across the core-cladding interface gives

𝑢2 + 𝑤2 = 𝑟2
core(𝑛2

core − 𝑛2
cl)𝑘

2. (1.18)

The quantity
√︃
𝑛2

core − 𝑛2
cl is often denoted as the numerical aperture, or NA, which

is also related to the maximum angle of incidence of light that the fiber can accept
by NA = 𝑛in sin 𝜃max, where 𝑛in is the index of refraction of medium through which
the input beam is traveling.
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Step-index fibers can be characterized by a dimensionless quantity known as the V
number, or 𝑉 = (2𝜋/𝜆)𝑟coreNA, which determines the number of modes that the
fiber can support. At V numbers of less than𝑉𝑐 ≈ 2.405, a fiber can support only the
fundamental mode (LP 01), while fibers with higher V numbers can support a larger
number of modes (which can be estimated as approximately 𝑉2/4). For a given
fiber, the cutoff wavelength 𝜆𝑐 below which the fiber is no longer single-moded can
also be calculated as 𝜆𝑐 = 2𝜋

𝑉𝑐
𝑟coreNA.

A Gaussian profile is often used to approximate the LP 01 mode of a single-mode
fiber (SMF):

Ψ(𝑟) =
√︂

2
𝜋𝑎2 𝑒

−(𝑟/𝑎)2 . (1.19)

The quantity 2𝑎 is referred to as the mode field diameter (MFD), which for a given
fiber varies with wavelength as approximately (Jeunhomme, 1989)

MFD = 2𝑟core
(
0.65 + 0.434( 𝜆

𝜆𝑐
)3/2 + 0.01419( 𝜆

𝜆𝑐
)6
)
. (1.20)

SMFs and their modal filtering have found many applications in astronomical in-
strumentation as a way to route light across (potentially long) distances while main-
taining modal purity, e.g. for beam combination over long distances or to maintain
a stable line-spread profile for spectroscopy. Of particular relevance to this work are
fiber nullers such as the Palomar Fiber Nuller (Haguenauer and E. Serabyn, 2006),
which isolates two subpupils of a telescope and applies a 𝜋 phase shift across one
of them before injecting the beam into an SMF. For an on-axis source, the two
beams destructively interfere such that no light couples into the fiber, but some of
the light of an off-axis source would couple in depending on its location on-sky.
The light in the fiber can then be routed to a detector or spectrograph to be analyzed.
Figure 1.9 shows variations on the fiber nuller phase mask, in analogy with their
discrete telescope counterparts. The Vortex Fiber Nuller design (Ruane, Ji Wang,
et al., 2018) in particular is already implemented as part of the Keck Planet Imager
and Characterizer (KPIC) instrument at the Keck II Telescope, with first detections
demonstrated in 2024 (Echeverri, J. W. Xuan, et al., 2024) and a currently ongoing
science campaign.
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Figure 1.9: Comparison of multi-aperture nulling interferometer configurations
(left column) with single-aperture nulling phase masks (central column). Phases
of 0 and 𝜋 are shown as white and black, respectively. Intermediate phases in
the bottom row are shown in various shades of gray. Each small circle in the left
column represents a separate telescope aperture. Central column: single-aperture
“linear" nulling phase masks, arranged to show their topological correspondence to
the separated-aperture nulling cases to their left. Right column: “Round" single-
aperture phase masks (in which at least one of the phase transitions is circular)
that also topologically correspond to the leftmost entries in their rows. Figure and
caption adapted from Eugene Serabyn, Liewer, and Ruane (2024).

Photonic Lanterns
A waveguide somewhat more complex than optical fibers is the photonic lantern
(PL), a device of key interest to this work. Intuitively, a photonic lantern is a
bundle of SMF cores embedded in a shared cladding, the entirety of which has been
stretched and tapered on one end (see Fig. 1.10a for a schematic of a 2-port lantern).
This results in an adiabatic transition in the behavior of the waveguide as a bundle
of discrete SMFs on one end into a multi-mode fiber on the other end, where the
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Figure 1.10: A) Schematics of a 2-port photonic lantern, and the Kronig-Penney
model analogy for the transition between the single-mode and the multi-mode
regime. B) Schematics of a one dimensional waveguide (left) and a one dimen-
sional quantum well (right). Figure and caption adapted from Leon-Saval, Argyros,
and Bland-Hawthorn (2013a).

original cladding of the bundle now forms the propagation medium.

Although there is no analytic solution for light propagation through a photonic
lantern, an analogy for the behavior of the supported modes can be found in the
Kronig-Penney model for particles in a potential well; as shown in Fig. 1.10b,
the modes supported in a waveguide are mathematically analogous to the states
supported by a quantum potential well, with the quantity 1/𝑛 (where 𝑛 is the index
of refraction) corresponding to the potential 𝑉 , and the transverse wavevector 𝑘𝑇
of the waveguide mode (see Fig. 1.10a for the definition of 𝑘𝑇 relative to 𝛽 and
𝑘) corresponding to the energy 𝐸 of the electron state (Leon-Saval, Argyros, and
Bland-Hawthorn, 2013a). By analogy, the single-mode end corresponds to an array
of separate potential wells each supporting one electron state, which are gradually
squeezed together such that the states become less localized, until the final states
on the multi-mode end are the states supported by the broader potential well of the
cladding material. The effective behavior is that when light enters the array of SMFs
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Figure 1.11: Modal analysis of A) a conventional 3-SMF photonic lantern, B) a
mode-selective 3-SMF photonic lantern, and C) a mode-selective 6-SMF photonic
lantern. (Left A, B, and C) Schematics of FMF end of the modeled photonic
lanterns showing the different cores sizes corresponding to the similar/dissimilar
fibers. Figure and caption adapted from Leon-Saval, Fontaine, et al. (2014).

on one end, the photonic lantern multiplexes them together into a multi-mode output.
When used in reverse, light that enters the multi-mode end gets demultiplexed into
separate SMFs that each correspond to a specific mode profile.

When fiber cores with different properties are used to construct the lantern (as shown
in Fig. 1.11), the degeneracies in the transition region are broken, the modes retain
distinct values of 𝛽 without mixing, and each SMF thus maps to a specific LP mode;
this type of lantern is called a mode-selective photonic lantern (MSPL) (Leon-Saval,
Fontaine, et al., 2014). Hybrid lanterns, in which certain modes are isolated (such
as the LP 01 mode) but the rest are mixed are also possible.

Several astronomical applications of photonic lanterns have been proposed and
demonstrated, such as for focal-plane wavefront sensing (Lin, Fitzgerald, et al.,
2022a; Norris, Wei, et al., 2020), interferometric imaging (Kim, Fitzgerald, Lin,
Sallum, et al., 2024), and spectroastrometry (Kim, Fitzgerald, Lin, Xin, et al.,
2024). The majority of the rest of this thesis (Chapters 2-5) focuses on using a
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mode-selective photonic lantern for nulling applications. Chapters 6 and 7 concern
other advances in high-contrast imaging instrumentation and data analysis that can
also be applied to photonic lantern nulling.
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C h a p t e r 2

EFFICIENT DETECTION AND CHARACTERIZATION OF
EXOPLANETS WITHIN THE DIFFRACTION LIMIT: NULLING

WITH A MODE-SELECTIVE PHOTONIC LANTERN

Xin, Yinzi et al. (Oct. 2022). “Efficient Detection and Characterization of Exoplanets
within the Diffraction Limit: Nulling with a Mode-selective Photonic Lantern”.
In: The Astrophysical Journal 938.2, 140, p. 140. doi: 10.3847/1538-4357/
ac9284. arXiv: 2209.07644 [astro-ph.IM].

This chapter is a reproduction of my first paper on using photonic lanterns for
nulling, which introduced the concept behind the instrument, explained the theory,
and presented simulations that characterized the properties of the photonic lantern
nuller (PLN) with respect to various design parameters (such as mode count) and
external factors (such as wavefront aberrations and tip-tilt jitter). I showed that
relative to designs such as the Vortex Fiber Nuller, the PLN achieved higher off-axis
throughput and also provided enough spatial information to localize a hypothetical
companion, albeit with a 180 degree degeneracy due to symmetries in the instrument.
The PLN then became a significant part of the rest of my thesis work, with several
future chapters dedicated to laboratory and on-sky demonstrations.

Abstract
Coronagraphs allow for faint off-axis exoplanets to be observed, but are limited
to angular separations greater than a few beam widths. Accessing closer-in sep-
arations would greatly increase the expected number of detectable planets, which
scales inversely with the inner working angle. The vortex fiber nuller (VFN) is an
instrument concept designed to characterize exoplanets within a single beam width.
It requires few optical elements and is compatible with many coronagraph designs
as a complementary characterization tool. However, the peak throughput for planet
light is limited to about 20%, and the measurement places poor constraints on the
planet location and flux ratio. We propose to augment the VFN design by replacing
its single-mode fiber with a six-port mode-selective photonic lantern, retaining the
original functionality while providing several additional ports that reject starlight
but couple planet light. We show that the photonic lantern can also be used as a

https://doi.org/10.3847/1538-4357/ac9284
https://doi.org/10.3847/1538-4357/ac9284
https://arxiv.org/abs/2209.07644
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nuller without a vortex. We present monochromatic simulations characterizing the
response of the photonic lantern nuller (PLN) to astrophysical signals and wavefront
errors, and show that combining exoplanet flux from the nulled ports significantly
increases the overall throughput of the instrument. We show using synthetically
generated data that the PLN detects exoplanets more effectively than the VFN.
Furthermore, with the PLN, the exoplanet can be partially localized, and its flux
ratio constrained. The PLN has the potential to be a powerful characterization tool
complementary to traditional coronagraphs in future high-contrast instruments.

2.1 Introduction
While conventional coronagraphs dramatically reduce the photon noise from the
star, they are practically limited to angular separations greater than a few 𝜆/𝐷
(the size of a resolution element, where 𝜆 is the wavelength and 𝐷 the telescope
diameter). The ability to access closer-in exoplanets would greatly increase the
expected yield of detectable planets, since yield scales approximately inversely
with the inner working angle (IWA), with yield ∝ IWA −0.98 (Stark et al., 2015).
Additionally, planets observable with coronagraphy in the visible and near-infrared
regime may fall within the inaccessible inner working angle at longer wavelengths,
where features of key biosignatures such as carbon monoxide and methane exist.
Gaining access to closer separations at those longer wavelengths will thus enable
better characterization of planets detected.

Meanwhile, techniques such as nonredundant masking interferometry (P. G. Tuthill,
Monnier, and Danchi, 2000) or cross-aperture nulling interferometry (Bracewell,
1978; E. Serabyn et al., 2019) can access very small angular separations. However,
these approaches result in lower efficiency than coronagraphy since only a small
portion of the aperture is used. The Vortex Fiber Nuller (VFN) is an instrument
concept that straddles the space between the two approaches, with a smaller IWA
than coronagraphs but more efficient at routing the planet light to a diffraction-
limited spectrograph than single-baseline cross-aperture interferometry (Ruane, Ji
Wang, et al., 2018). This technique is capable of characterizing exoplanets within
1 𝜆/𝐷, requires few optical elements, and is compatible with many coronagraph
designs as a complementary characterization tool.
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Figure 2.1: (a) Schematic of a focal-plane VFN with a single-mode fiber. The
beam is focused onto a vortex mask, which imparts a different phase pattern on the
star and planet point-spread-functions. The beam is then collimated and refocused
onto a single-mode fiber. The on-axis star light rejected while the planet light gets
partially coupled. (b) Coupling efficiency, 𝜂, or throughput, of a planet as a function
of its angular separation from the star.

2.2 Photonic Lantern Nuller Concept
Vortex Fiber Nulling
The Vortex Fiber Nuller is an instrument concept that enables spectroscopy of
exoplanets within 1 𝜆/𝐷, using a vortex mask to generate a vortex phase pattern on
the incoming beam (Ruane, Ji Wang, et al., 2018). Figure 2.1(a) shows that when
the beam is on-axis (such as light from a star), the resulting pattern is orthogonal to
the fundamental mode of a single-mode fiber (SMF) and does not couple to it. This
result can be demonstrated by calculating the coupling efficiency of a field 𝑓 (𝑟, 𝜃)
with the SMF mode 𝜓01(𝑟): ∫

𝜓01(𝑟) 𝑓 (𝑟, 𝜃)𝑑𝐴. (2.1)

For the field created by a vortex, the integral is separable, and the polar term is given
by

∫ 2𝜋

0
exp(𝑖𝑙𝜃)𝑑𝜃, (2.2)

where 𝑙 is an integer that denotes the vortex charge. This integral evaluates to 0 for
𝑙 ≠ 0, reflecting that the vortex field is orthogonal to the SMF mode.

However, as shown in Fig. 2.1(b), off-axis planet light from ∼ 0.5𝜆/𝐷 to ∼ 1.3𝜆/𝐷
can couple in, with a peak throughput of 19% at 0.9 𝜆/𝐷. The coupled planet
light can thus be directed to a spectrograph for immediate characterization, while
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the starlight is rejected. A focal-plane VFN is explored in this work, but Ruane,
Echeverri, et al. (2019) showed that the vortex can also be placed in the pupil plane,
resulting in a pupil-plane VFN that operates on the same principle of rejecting
on-axis starlight with an imprinted vortex.

The range of angular separations probed by the VFN is smaller than the inner
working angle of all classical coronagraphs, and is a region known to harbor po-
tentially habitable exoplanets detected via radial velocity (RV) and transit methods.
Additional advantages of the VFN compared to classical coronagraphs include its
relative insensitivity to telescope aperture shape, polarization aberrations, and many
wavefront aberration modes (Ruane, Ji Wang, et al., 2018). Since its conceptual
development, the VFN concept has been tested in the lab, achieving azimuthally
averaged peak coupling of 16% (close to the theoretical limit) and starlight sup-
pression of 6 × 10−5, which can be attributed to the minor wavefront errors in the
system (Monochromatic; Broadband, Echeverri, Ruane, Nemanja Jovanovic, Dim-
itri Mawet, et al., 2019; Echeverri, Ruane, Nemanja Jovanovic, Hayama, et al.,
2019).

While the original VFN design is already compelling, it has several drawbacks. The
planet throughput is relatively low, with a theoretical limit of ∼ 20%, depending
on the configuration. The measurement from a VFN also lacks spatial information
— since the coupling map is circularly symmetric, there is no way to determine
from the data the position angle of the planet, information that is (in the absence of
other measurements) necessary for constraining the orbital parameters of the planet.
Since there is only one flux measurement and the coupling into the SMF varies with
the radial separation of the planet, there is also a degeneracy between the planet
flux and its separation. Here, we present an augmentation to the VFN that enhances
throughput and provides additional constraints on the orbit and flux of the planet,
while retaining the functionality of the VFN concept. This new design relies on a
device called the mode-selective photonic lantern.

Mode-Selective Photonic Lanterns
A photonic lantern is a photonic mode converter that adiabatically interfaces between
a multi-mode port and several single-mode ports, where the distribution of flux in
the single-mode outputs is related to the power in each mode at the multi-mode
input (Leon-Saval, Argyros, and Bland-Hawthorn, 2013b). Photonic lanterns have
been proposed for use in astrophysics for spectrometer coupling (Lin, Nemanja
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Jovanovic, and Fitzgerald, 2021) and for focal-plane wavefront sensing, allowing for
the measurement of the input wavefront while maintaining single-mode fiber outputs
suited for injection into spectrographs for spectral characterization (N. Jovanovic,
Schwab, et al., 2016; Corrigan et al., 2018; Norris, Wei, et al., 2020). Each mode at
the few-mode fiber (FMF) face of the lantern is mapped to a SMF output, such that
light coupling to a given mode at the FMF side will result in flux in the corresponding
SMF core. The device is bi-directional, so light injected into one of the SMF ports
will propagate into the mode corresponding to that port at the FMF face.

While standard photonic lanterns have similar cores and are not designed with a
particular mode structure in mind, mode-selective photonic lanterns (MSPL, Leon-
Saval, Fontaine, et al., 2014) utilize dissimilar cores that enable ports to be mapped
into LP modes. A partially mode-selective photonic lantern has one port corre-
sponding to the LP 01 mode, while the rest of the ports exhibit an unspecified
structure. In a fully mode-selective photonic lantern, all ports correspond to LP
modes. Figure 2.2 shows a schematic of a six-port MSPL based on the design from
Leon-Saval, Fontaine, et al. (2014), where each port corresponds to one of the first
six LP modes.

To synergize the action of the VFN with symmetry properties of the LP modes,
we propose to replace the single-mode fiber of the original VFN with a MSPL,
resulting in a Photonic Lantern Nuller (PLN) instrument concept that improves
upon the original design.

VFN with a Mode-Selective Photonic Lantern
The PLN replaces the single-mode fiber of the VFN by a MSPL as described in Sec-
tion 2.2. Specifically, the light after the vortex mask is focused onto the FMF face of
the MSPL and propagates through to the single-mode outputs. Each output port can
then be coupled into individual SMFs and routed to photodetectors or spectrographs.
The port corresponding to the LP 01 mode provides the same response as the VFN,
where on-axis light is nulled while off-axis light can couple. Additionally, if we
label the LP mode azimuthal order by 𝑚′ analogously to the Zernike polynomials,
i.e. positive 𝑚′ indicating an azimuthal component of cos(𝑚′𝜃) and negative 𝑚′

indicating sin(𝑚′𝜃), then, a photonic lantern port combined with an optical vortex
with azimuthal charge 𝑙, will result in an on-axis null except when 𝑙 ± 𝑚′ = 0. This
result can be derived by extending Equation 2.1 to an arbitrary fiber mode 𝜓𝑛′𝑚′ ,
and separating out the polar integral:
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LP 01 LP 11a LP 11b

LP 21a LP 21b LP 02

Figure 2.2: Left: Schematics of a six-port mode-selective photonic lantern spatial-
multiplexer fiber system. Each LP mode at the few mode fiber (FMF) face is mapped
to one of the six single-mode ports of the SMF face, such that light with an LP mode
shape at the FMF side will result in flux in the corresponding SMF core. The device
is bi-directional, so light injected into one of the SMF ports will propagate into the
LP mode corresponding to that port at the FMF face. Right: The field amplitudes
of the first six LP modes, corresponding to the ideal modes of six-port MSPL.

∫ 2𝜋

0
exp(𝑖𝑙𝜃) cos(𝑚′𝜃)𝑑𝜃, 𝑚′ ≥ 0, or∫ 2𝜋

0
exp(𝑖𝑙𝜃) sin(𝑚′𝜃)𝑑𝜃, 𝑚′ < 0.

(2.3)

Recalling the exponential trigonometric identities cos(𝑥) = (𝑒𝑖𝑥 + 𝑒−𝑖𝑥)/2 and
sin(𝑥) = (𝑒𝑖𝑥 − 𝑒−𝑖𝑥)/(2𝑖), we find that these overlap integrals evaluate to 0 for
𝑙 ± 𝑚′ ≠ 0. Thus, on-axis nulls are created in multiple ports, from which planet
spectra can be extracted. Additionally, the existence of ports with 𝑚′ ≠ 0 allows for
a nuller configuration with no vortex at all, as the overlap integrals for the LP11ab
and LP21ab ports evaluate to zero when 𝑙 = 0. This means that the photonic lantern
can be used by itself as a nuller, as contemporaneously presented in P. Tuthill (2022).

To demonstrate these properties, we simulate the PLN configurations using HCIPy
(Por, S. Y. Haffert, et al., 2018). Our optical propagation model propagates the
desired input wavefront through a circular pupil (with 𝜆/𝐷 chosen to equal 1), and
then into a focal plane. For the configuration without a vortex, this becomes the
final focal-plane electric field. For the configurations with a vortex, either a charge
1 or 2 vortex is applied in the focal plane. As with the VFN, a vortex with charge
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higher than 2 results in lower peak throughput and larger IWA, so we do not focus
on them in this work.

The square of the overlap integral of the focal-plane electric field distribution with
each LP mode gives the relative intensity coupled into the corresponding port.
We explore using an MSPL with six LP modes and a V number equal to 4.71.
Our simulations assume perfect mode shapes as well as perfect transitions, free
from cross-coupling and losses. Characterizing the impact of these real-world
imperfections, from realistic designs as well as from fabrication errors, is left for
future work.

Given wavelength, the optimal coupling into the lantern depends on the the mode
field diameter (MFD) of the lantern modes and the focal ratio 𝐹# (Ruane, Echeverri,
et al., 2019). While the real MFDs of photonic lanterns are tunable within a small
range (Leon-Saval, private communication), in practice, the coupling in a real system
will be optimized by changing the focal ratio. However, since our simulations already
set 𝜆/𝐷 = 1 and 𝐹# = 1, we optimize coupling by tuning the MFD (expressed in
units of 𝜆/𝐷). Specifically, for each configuration (no vortex, 𝑙 = 1, 𝑙 = 2), we
simulate a range of MFDs and find the value that maximizes the peak of the x-axis
cross-section of the summed throughput of the nulled ports. Although Section 2.4
shows that summed throughput does not fully predict instrument performance, it
is still a useful proxy for choosing the MFD, as optimizing directly for detection
capability would require knowledge of the level and distribution of on-sky wavefront
error, which is not predictable a priori.

From our simulations, we find that the optimal MFD is 2.8 𝜆/𝐷 for the no vortex
and charge 1 cases, and 3.2 𝜆/𝐷 for the charge 2 case. We present the results of
our simulations using these diameters. Figure 2.3 shows the ideal spatial coupling
efficiency for a point source as a function of angular separation from the optical
axis, or coupling map, for every port (top panels) along with the line profile along
the horizontal axis (bottom panels). We also plot the total flux collected across all
ports (dashed pink lines) as well as the total flux collected from only the nulled
ports satisfying 𝑙 ± 𝑚′ ≠ 0 (solid black lines). The total nulled throughput curves
demonstrate that the additional ports increase both the peak throughput as well as
the field of view for which planet light couples.

While MSPLs with more than six ports can in theory be fabricated, manufacturing
MSPLs with large numbers of modes remains a practical challenge because the adi-
abaticity of the lantern transition becomes more difficult to achieve as the number of
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Figure 2.3: Coupling maps for each port with no vortex (top left), and a charge 1
(top middle) and charge 2 (top right) vortex. The maps span -3 𝜆/𝐷 to 3 𝜆/𝐷 in each
direction. Bottom left: Throughput line profiles with no vortex. The four nulled
ports satisfying 𝑙 ± 𝑚′ ≠ 0 are LP 11ab and LP 21ab. Bottom middle: Throughput
line profiles with a charge 1 vortex. The four nulled ports satisfying 𝑙 ± 𝑚′ ≠ 0
are LP 01, LP 21ab, and LP02. Bottom right: Throughput line profiles for each
port with a charge 2 vortex. The four nulled ports satisfying 𝑙 ± 𝑚′ ≠ 0 are LP 01,
LP 11ab, and LP02. Although nulls in the LP 21ab ports are not guaranteed by
symmetry, in this case, their central throughputs are spuriously low, and including
them in the data analysis may provide some additional gains.

modes increases (Velázquez-Benítez et al., 2018). While larger port numbers may
become available with the advancement of photonics technology, Figure 2.4 shows
that increasing the total number of ports brings diminishing returns in throughput,
especially at angular separations < 𝜆/𝐷. In addition, using fewer ports has the
advantage that it requires fewer detector pixels, which are always at a cost pre-
mium. Considering these factors, and that MSPLs with more than six ports are not
readily manufacturable with current photonics technology, we choose to focus our
investigations on a PLN design with a six-port MSPL.

2.3 Sensitivity to Aberrations
Zernike Aberrations
One benefit of the original VFN was its insensitivity to many low order Zernike
wavefront error modes. If the charge of the vortex is denoted by 𝑙, and the Zernike
aberrations are denoted by 𝑍𝑚𝑛 (𝑟, 𝜃), where 𝑛 is the radial order and𝑚 indicating the
azimuthal structure, i.e. cos(𝑚𝜃) for positive 𝑚 and sin(𝑚𝜃) for negative 𝑚, then
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Figure 2.4: Line profiles for summed throughput of nulled ports for PLNs with
no vortex (left), a charge 1 vortex (middle) and a charge 2 vortex (right), using
MSPLs with varying numbers of output ports. As the number of ports increases,
each additional port brings decreasing returns in additional throughput. The current
limit of what can be practically manufactured is six ports. Thus, we choose to use a
six-port MSPL in our PLN design, which balances the total throughput of the nulled
ports with what is practically manufacturable. Note that a higher V number of 8.48
was necessary to generate up to 19 LP modes. Here, we wish to compare the effect
of port number independently of V number effects, so fix the V number at 8.48 for
all port numbers. Thus, due to the difference in V number, the line profiles shown
in this analysis have slightly different shapes from those in Figure 2.3.

only aberrations that cancel out the vortex charge (𝑙 ± 𝑚 = 0) will couple. This can
be demonstrated analogously to the case of LP modes, replacing the 𝑚′ of a given
port in Equation 2.3 with the 𝑚 of a given Zernike mode.

The additional photonic lantern ports obey a similar principle, but the structure of
the LP mode and the Zernike mode will interact, and the polar overlap integral is
now given by

∫ 2𝜋

0
exp(𝑖𝑙𝜃) cos(𝑚′𝜃) cos(𝑚𝜃)𝑑𝜃, 𝑚′, 𝑚 ≥ 0, or∫ 2𝜋

0
exp(𝑖𝑙𝜃) cos(𝑚′𝜃) sin(𝑚𝜃)𝑑𝜃, 𝑚′ ≥ 0, 𝑚 < 0, or∫ 2𝜋

0
exp(𝑖𝑙𝜃) sin(𝑚′𝜃) cos(𝑚𝜃)𝑑𝜃, 𝑚′ < 0, 𝑚 ≥ 0, or∫ 2𝜋

0
exp(𝑖𝑙𝜃) sin(𝑚′𝜃) sin(𝑚𝜃)𝑑𝜃, 𝑚′, 𝑚 < 0.

(2.4)

Thus, for each port, only aberrations satisfying 𝑙 ± (𝑚′ +𝑚) = 0 will couple (to first
order). Figure 2.5 shows the simulated stellar coupling, 𝜂𝑠, as a function of the input
amplitude of the first ten Zernike aberrations. In this work, we compute coupling
normalized to the summed intensity of the beam, such that the stellar coupling is
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equivalent to the null-depth. The fact that the LP 01 port is sensitive primarily to tip,
tilt, and coma (for charge 1) and astigmatism followed by second-order responses
to tip and tilt (for charge 2) is consistent with theoretical predictions as well as the
numerical simulations presented in Ruane, Echeverri, et al. (2019). The results for
the other ports show that, as predicted by the azimuthal order conditions, each port
is only sensitive to a few specific lower-order aberrations satisfying 𝑙± (𝑚′+𝑚) = 0.
For example, the LP 21ab ports with a charge 1 vortex and the LP 11ab ports with
a charge 2 vortex are all insensitive to defocus (𝑚 = 0) and astigmatism (𝑚 = ±2).
The LP 02 ports have the same azimuthal order as the corresponding LP 01 ports,
and thus reject the same low-order aberrations.

Tip-tilt Jitter
Ruane, Echeverri, et al. (2019) predicted that for ground-based observatories, tip-tilt
jitter (evolving much faster than the typical exposure times) will likely be a significant
contribution to degradation of the VFN’s null-depth. We thus present simulations
of average null-depth achieved (𝜂𝑠) as a function of the standard deviation of tip-tilt
jitter (𝜎𝑡𝑡). For each data point, 100 independent realizations of tip-tilt are generated,
with amplitude drawn from a normal distribution with standard deviation 𝜎𝑡𝑡 and
position angle drawn uniformly between 0 and 2𝜋. The 100 frames are then averaged
to calculate an averaged 𝜂𝑠. The results are presented in Figure 2.6. For example, to
achieve a null depth of 10−3 in the LP11ab ports of the no vortex PLN, the standard
deviation of tip-tilt jitter must be smaller than ∼ 0.1𝜆/𝐷. To achieve a null depth
of 10−3 in the LP01 port of the charge 1 and charge 2 configurations, the standard
deviation of tip-tilt jitter must be smaller than∼ 0.1𝜆/𝐷 and∼ 0.3𝜆/𝐷, respectively.
For context, the Keck Planet Imager and Characterizer (KPIC) instrument at the Keck
II telescope, a fiber injection unit for high resolution spectroscopy that currently has
an VFN mode as well as the capability to test a future PLN on-sky, typically achieves
on-sky jitter standard deviations of 6-7 mas, corresponding to 0.14 waves at 2.2 𝜇m
(Delorme et al., 2021a).

KPIC Atmospheric Residuals
We also simulate the performance of the PLN under WFE conditions measured by
the pyramid wavefront sensor (PyWFS) of KPIC. The atmospheric seeing the night
the data was taken was 0.6 arcsec, and the wavefront sensor achieved residuals of
150 nm RMS. It should be noted that the PyWFS does not see all of the errors in
the optical system, as recent on-sky demonstrations of the VFN on KPIC (Echeverri
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et al, in prep) do not achieve the level of starlight suppression predicted by these
residuals alone. Specifically, in the real KPIC instrument, there is additional tip-tilt
error downstream of the PyWFS that is not captured in these simulations. Thus, these
simulations should be interpreted as an optimistic limit, while the real performance
will be impacted by additional errors invisible to the PyWFS.

For our simulation, we take 590 frames of measured wavefront error, expressed in
the form of reconstructed Zernike coefficients. From each frame of coefficients, we
generate a pupil plane WFE map. As an intermediate diagnostic, we calculate the
focal-plane image PSF averaged over these frames, compared it to an ideal PSF with
no WFE in Figure 2.7.

For our simulation, we propagate an on-axis beam with that WFE through our PLN
models to calculate the output null depths. We also propagate off-axis beams with
each frame of WFE (at 0.84𝜆/𝐷 for no vortex and charge 1 configurations and
1.3𝜆/𝐷 for charge 2 configuration). Figure 2.8 shows the mean coupling over all
the frames. In the nulled ports of the PLN, the mean off-axis planet coupling over
these frames (where it is expected based on the coupling maps) remains significantly
higher than the stellar coupling in the presence of this WFE.

2.4 Simulation of Exoplanet Characterization
In this section, we demonstrate the exoplanet detection and characterization capa-
bilities of a PLN and compare it to those of the VFN.

Synthetic Data Generation
We consider the outputs of the instrument to be the intensity at the single simulated
wavelength in each port. In reality, the light in each port can be fed in to a
spectrograph, and spectral analysis can be used to increase detectability by orders of
magnitude (Ji Wang et al., 2017). However, we neglect spectral information in this
preliminary demonstration of the PLN performance relative to the VFN, and leave
exploring the combination of a broadband PLN and spectral analysis to future work.

We assume that the integration time of an observation is significantly longer than
the coherence time of atmospheric residuals, such that fluctuations in wavefront
error will average out to the null depth. Consequently, we assume that the primary
contribution to non-static noise is photon noise.

The following process was used to generate the synthetic data. We first average
the 590 intensity frames from the simulation of KPIC PyWFS residuals in Section



32

2.3 to obtain the average null depth. To generate realizations of photon noise, we
calculate the stellar photon rate entering the instrument:

PR = 𝑓0 × 10−𝑚/2.5 × 𝐴 × Δ𝜆 × 𝜂𝑡 , (2.5)

where 𝑓0 = 9.56×109 photons m−2 s−1 𝜇m−1 is the zero point number corresponding
to the photon flux per unit wavelength of a magnitude zero star in H band, 𝑚 is the
stellar magnitude, 𝐴 the telescope area, Δ𝜆 the bandwidth, and 𝜂𝑡 the throughput of
the telescope before reaching the PLN instrument. We choose the stellar magnitude
to be 𝑚 = 5 and use the Keck telescope area (𝐴 = 76 m2). We assume a bandwidth
of Δ𝜆 = 0.15𝜇m and upstream telescope throughput of 𝜂𝑡 = 0.06, a typical value
for Keck.

For each port of the PLN, we multiply PR by its null depth to calculate the photon
rate per port. We then multiply that photon rate by the assumed exposure time of
60 s to obtain the counts per exposure. We add normally-distributed noise with a
variance equal to the number of counts, an approximation for Poisson-distributed
photon noise that is valid at our high photon count rates. We assume that each
dataset corresponds to 5 hours of integration time, and thus generate 300 exposures
per dataset. We generate a total of 1000 such datasets for analysis.

We also generate off-axis point-spread-functions (PSFs) that can be injected as
astrophysical signal. The off-axis PSFs do not include WFE, since the simulations
show that, at the WFE amplitudes of interest in our work, the planet coupling at
separations of interest is not significantly impacted. In order to create data with an
injected companion, the off-axis PSF at the desired separation is scaled appropriately
based on the desired flux ratio, then added to each exposure of the simulated intensity
of the on-axis source.

Detection
In this section, we characterize the detectability of planets, comparing the perfor-
mance of the VFN and the PLN. For each dataset generated in Section 2.4, we
first take the mean of the 300 exposures and subtract off the nominal on-axis signal
with no WFE. We then perform detection testing on the resulting data, using a total
energy test statistic:

𝜖 =
∑︁
𝑖

𝑦2
𝑖 , (2.6)
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where 𝑖 is the port index of the PLN and 𝑦𝑖 the signal in the port. The test statistic
𝜖 is calculated from the data and compared to a threshold 𝜉, which is chosen to
provide a desired false-alarm rate. A detection is claimed if 𝜖 ≥ 𝜉, and a lack of
detection is claimed otherwise.

There are four possible outcomes when comparing the test statistic calculated from
a dataset to the value of the test statistic set as the detection threshold. The first is
a true positive, in that a real companion in the data is detected; the fraction of real
companions detected is the true positive rate (TPR). A second possible outcome
is that a real companion is not detected, occurring at a rate of 1 − TPR. A third
outcome is that there is no companion in the data, but the detection test incorrectly
claims a detection. The rate at which this occurs is the false positive rate (FPR). The
fourth and last outcome is that there is no companion, and a detection is correctly
not claimed, occurring at a rate of 1 − FPR.

Choosing a threshold for the test statistic is a balancing act between the TPR and
FPR: as the threshold is decreased, detecting real companions becomes more likely,
but false detections also become more likely. This dependency can be characterized
by examining the possible values of the test statistic and calculating the TPR and
FPR if that value were the detection threshold. Plotting the TPR as a function of the
FPR results in a receiver operating characteristic (ROC) curve, which characterizes
the performance of a detection scheme and can be used in the determination of flux
ratio detection limits.

Figure 2.9 shows ROC curves from the distribution of 𝜖 over the 1000 datasets. The
VFN corresponds to the case where only the LP 01 port is used, while with the
PLN, all four nulled ports are used. The simulations show that for both charges, the
inclusion of the other nulled ports of the PLN provides detection gains relative to the
VFN. For a given rate of false positives, the PLN can achieve a higher true positive
rate than the VFN. At close in separations ≤ 1𝜆/𝐷, the charge 1 PLN achieves
the best performance. At separations greater than ≈ 1.25𝜆/𝐷, the charge 2 PLN
starts to perform better. Despite having higher throughput, the photonic lantern
without a vortex does not outperform both the charge 1 and the charge 2 PLNs at any
separation, emphasizing that the distribution of flux relative to the achievable null-
depths matters more than sheer throughput. However, the no vortex PLN has the
advantage of not requiring an additional optic in a pupil or focal plane, and can thus
be realized with a simpler optical system. Additionally, the relative performance of
the different configurations will ultimately depend on the distribution of WFE, as
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the ports in each configuration are sensitive to different subsets of modes.

Model-Fitting
Data from the VFN consists of only one measurement that contains no information
on position angle and cannot discriminate between the effects of flux ratio and
separation. Unlike the VFN, the spatial structures of the PLN modes allows for the
retrieval of the planet’s location, albeit with degeneracy in the position angle as a
result of their symmetry.

To illustrate this capability, we attempt to fit models to one of the simulated datasets
of the charge 2 VFN from Section 2.4, where a planet with a flux ratio of 2 × 10−6

is injected at (𝑋 = 1.25 𝜆/𝐷, 𝑌 = 0 𝜆/𝐷). We believe that a configuration that
slightly breaks the symmetry would be a better strategy for localization than any of
the configurations presented here. Determining how to do this effectively would be
part of future work. For this work, our primary aim was to show that this localization
capability exists in this architecture, so we choose to focus on just one configuration.

First, we assume that the average null-depth can be estimated, such as by observing
a reference star. This assumes telescope conditions are reasonably stable between
observations of the reference and target stars, as the accuracy of the null-depth esti-
mation will be impacted by quasi-static aberrations as well as differential alignment
onto the vortex or lantern centers, which would lead to differences between the
reference and target observations.

The estimated null-depth is subtracted from the average of the measurement frames.
This step is necessary to debias the data, since if only the nominal on-axis signal
(without any wavefront error) is subtracted, the WFE that sets the null-depth will
contribute to the apparent flux of the planet. We then fit a model to the data through
Chi-squared (𝜒2) minimization, using only data from the LP 01 port for the VFN,
and data from all six ports for the PLN.

The three model parameters for a planet are its location coordinates (𝑋,𝑌 ) and its
flux ratio (FR). We first generate a grid of parameter values, choosing 𝑋 to span
from 0 𝜆/𝐷 to 3 𝜆/𝐷 and 𝑌 to span from -3 𝜆/𝐷 to 3 𝜆/𝐷. This spans the spatial
half-plane, which is enough for our purposes, as the symmetry of the modes means
the position angle can at best be localized with a 180 degeneracy. The flux ratios
are chosen to range logarithmically from 10−7 to 10−5.

A planet corresponding to each set of parameters from the grid is simulated with
the instrument model. The 𝜒2 of the difference between the model and the data is
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calculated using 𝜒2 =
∑
𝑖 (𝑦𝑖 − 𝑥𝑖)2/𝜎2

𝑖
, where 𝑦𝑖 is the measured data in port 𝑖, 𝑥𝑖 is

the model, and 𝜎𝑖 is the standard deviation of the noise across the 300 frames. The
probability distribution is then calculated by taking P(𝑋,𝑌, FR) ∝ exp

{
−𝜒2/2

}
,

and normalizing such that the total probability over the entire explored parameter
space is 1.

Figure 2.10 depicts the three spatial cross-sections of the resulting probability dis-
tributions for the charge 2 VFN and PLN, corresponding to the flux ratio values
from the grid closest to the injected value of 2× 10−6. The parameter set in the grid
closest to that of the injected planet is marked with an orange star. Also shown is the
probability distribution of the flux ratio, marginalized over the spatial dimensions.
As expected, it is largely unconstrained by the VFN, which cannot distinguish be-
tween the competing effects of flux ratio and separation. However, with the spatial
information provided by the PLN, the retrieved probability distribution of the flux
ratio peaks at the correct value of 2 × 10−6. Given the best fit flux ratio using PLN,
fitting a Gaussian curve to the y-axis cross-section of the spatial probability distri-
bution reveals that the position angle can be localized to ∼ 1 𝜆/𝐷 with the PLN,
while it is completely unconstrained by the VFN. These simulation results show
that compared to the VFN, the PLN can provide better constraints on the planet’s
location and flux ratio.

The response of the PLN to off-axis signal is not rotationally symmetric. We thus
explore injecting and recovering a planet signal at varying position angles. Figure
2.11 shows that, given the correct flux ratio, the localization response varies as a
function of position angle. At position angles other than 0 and 𝜋/2, additional solu-
tions exist beyond the two guaranteed by the instrumental symmetry. However, an
observing strategy that involves taking data with multiple rotations of the instrument
relative to the sky will reduce the number of best fit position angle solutions to the
fundamental two. Finding the most efficient observational strategy to best constrain
the position angle given an unknown random initial orientation, and exploring the
possibility of introducing slight asymmetries to break this degeneracy, are topics
left for future work.
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2.5 Conclusions
This work presents a proof-of-concept study of the Photonic Lantern Vortex Fiber
Nuller. The advantage the MSPL offers over the SMF is two-fold. First, a photonic
lantern, regardless of modal selectivity, accepts more input modes than the SMF,
increasing the overall amount of light that can couple in. This improves the overall
field of view and total planet coupling provided by the VFN. Second, the symmetries
resulting from modal selectivity interact with the vortex field to create not just on-
axis nulls, but also ports insensitive to low-order aberrations that do not meet a
specific azimuthal order condition. Together, these properties of the PLN result in
an instrument that rejects starlight while maintaining a substantial amount of planet
light in the regions of interest. Additionally, while the PLN is meant for integration
with spectrographs, motivated by the science that can be done in the spectral domain,
the ports with different modal structures captures some spatial information, enabling
planet localization that is not possible with the VFN. However, the instrumental
symmetries that provide starlight and wavefront error rejection currently also cause
degeneracies in the spatial information captured. Future work will explore whether
introducing slight asymmetries into the instrument can lift the spatial degeneracies
with minimal impact to the achievable null depth.

This work simulates the PLN’s ideal behavior at a single wavelength. However,
the modes of a realistic mode-selective photonic lantern will deviate from the ideal
LP modes. Furthermore, its modes will actually vary with wavelength. Finite-
difference beam propagation simulations are needed to simulate the behavior of
a realistic photonic lantern design across different wavelengths, since its modes
will no longer correspond to perfect LP modes, and there will be modal cross-
coupling due to imperfections in the design as well as the fabrication process.
Additional performance simulations will be conducted to characterize the impact
of this non-ideal, wavelength dependent behavior on science results. This work
includes simulating the PLN with synthetic planetary spectra and investigating
methods to analyze the data, building upon current practices in exoplanet spectral
analysis (J. J. Wang, Ruffio, et al., 2021). We will identify best practices to account
for the wavelength dependent mode-structure and throughput and the optimal method
for combining data from the different ports, including the possibility of obtaining
concurrent stellar spectra in the non-nulled ports to be used for calibration and
analysis. We will investigate if multiple sets of spectroscopic data can be used to
cross-calibrate systematic errors. The single-mode outputs are ideal for downstream
spectroscopy using photonic spectrographs (Gatkine, Veilleux, and Dagenais, 2019).
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We will thus investigate strategies for optimal integration of PLN with an on-chip
photonic spectrograph on each of the single-mode outputs (nulled or otherwise) to
measure the spectra of the planet/companion and star, as well for cross-calibration.

Future work also includes verifying the behavior of a PLN in the lab — both the
characterization of the photonic lantern device itself, and after integration with a
vortex. We intend to characterize the PLN with different levels of wavefront error, as
well as investigate the possibility of performing wavefront control to achieve better
nulls, potentially compensating for defects such as residual optical surface error or
even non-ideal photonic lantern modes. If the laboratory characterization validates
the performance of the PLN, an on-sky demonstration will be attempted.

This work on the PLN also naturally ties in to several related topics, such as
the development of wavefront sensing algorithms through photonic lanterns (Lin,
Fitzgerald, et al., 2022a; Norris, Wei, et al., 2020), or the leveraging of the photonic
lantern design paradigm to push towards the theoretical limits of optical signal
separation.
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Figure 2.5: Stellar coupling rate as a function of individual Zernike polynomial
amplitude, with no vortex (top), a charge 1 vortex (middle), and a charge 2 vortex
(bottom). For the nulled ports, solid lines indicate modes predicted to couple (those
satisfying 𝑙± (𝑚′+𝑚) = 0), while dashed lines indicate modes that are not predicted
to couple (to first order, though higher-order coupling effects can be seen). Values
of 𝜂𝑠 falling below 10−6 are likely numerical noise, and are not shown. Lines that
fall entirely below 10−6 are light grey in the legend.
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Figure 2.6: Left: Stellar coupling rates as a function of tip-tilt jitter, random-
uniformly distributed in position angle, with no vortex (left), a charge 1 vortex
(middle), and a charge 2 vortex (right). The standard deviation of the per-frame
tip-tilt amplitude is given by 𝜎𝑡𝑡 , with position angle drawn uniformly between 0
and 2𝜋.
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Figure 2.7: Left: Mean focal-plane PSF in the presence of WFE as measured by the
KPIC PyWFS. Middle: Unaberrated focal-plane PSF. Right: Difference between
the aberrated and ideal PSFs. Reminder that these are not simulations of the Keck
PSF, but of the measured wavefront error residuals propagated through a system
with an ideal circular aperture.
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Figure 2.8: Mean coupling calculated over 590 frames of WFE residuals from
the KPIC PyWFS, for the no vortex (left), charge 1 (middle), and charge 2 (right)
configurations. The ports on the bottom axis are (from left to right): LP01, LP11a,
LP11b, LP21a, LP21b, and LP02. Coupling values for ports that are not considered
nulled are depicted in light grey. Off-axis planet coupling (where it is expected based
on the coupling maps) remains higher than the stellar coupling in the presence of
these WFE realizations.
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Figure 2.9: Example ROC curves at different separations in the presence of with
photon noise, assuming wavefront error averages to a baseline null depth. For both
vortex charges, the inclusion of other ports of the PLN provides detection gains
relative to the VFN. The grey areas indicate false positive rates which are not well
sampled as they involve fewer than 3 datasets with false detections.
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Figure 2.10: Left: Select spatial probability distribution cross-sections, using
a charge 2 VFN. The three panels are plotted on the same color scale. Middle:
Select spatial probability distribution cross-sections, using a charge 2 PLN. The
three panels are plotted on the same color scale. The parameters closest to that of
the injected planet are marked with orange stars. Right: Probability distributions
of the flux ratio, marginalized over the spatial dimensions. The flux ratio of the
injected planet is marked by the red line. The model-fitting shows that the PLN can
provide better constraints on planet model parameters compared to the VFN.
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Figure 2.11: Spatial probability distributions given the correctly identified flux
ratio of 2.15 × 10−6 (the panels are plotted on the same color scale). Planets at a
separation of 1.25𝜆/𝐷 are injected at a variety of injected position angles (marked by
the orange stars). At position angles other than 0 and 𝜋/2, additional solutions exist
beyond the two guaranteed by the instrumental symmetry. However, an observing
strategy that involves taking data with multiple rotations of the instrument relative to
the sky will reduce the number of best fit position angle solutions to the fundamental
two.
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C h a p t e r 3

LABORATORY DEMONSTRATION OF A PHOTONIC
LANTERN NULLER IN MONOCHROMATIC AND

BROADBAND LIGHT

Xin, Yinzi et al. (2024). “Laboratory demonstration of a Photonic Lantern Nuller
in monochromatic and broadband light”. In: Journal of Astronomical Telescopes,
Instruments, and Systems 10.2, p. 025001. doi: 10.1117/1.JATIS.10.2.
025001. url: https://doi.org/10.1117/1.JATIS.10.2.025001.

This chapter is a reproduction of my paper which details the first laboratory demon-
stration of the PLN. In this work, I characterized a mode-selective photonic lantern
sent to us by collaborators at the University of Sydney and the University of Cen-
tral Florida, then demonstrated its use as a nuller on the Polychromatic Reflective
Testbed (PoRT) at the Caltech Exoplanet Technology Lab. I measured the modes
of the lantern, which are not ideal LP modes due to imperfections that result in
‘cross-coupling’ between the ports. I then characterized the nulling behavior of the
lantern on PoRT and compared it to simulations using the measured modes, and
showed that the experiment agrees with the prediction. The null-depths achieved in
this work are on the order of 10−2, with future work in Chapter 4 further improving
these null-depths using wavefront control.

Abstract
Photonic lantern nulling (PLN) is a method for enabling the detection and char-
acterization of close-in exoplanets by exploiting the symmetries of the ports of a
mode-selective photonic lantern (MSPL) to cancel out starlight. A six-port MSPL
provides four ports where on-axis starlight is suppressed, while off-axis planet light
is coupled with efficiencies that vary as a function of the planet’s spatial position.
We characterize the properties of a six-port MSPL in the laboratory and perform
the first testbed demonstration of the PLN in monochromatic light (1569 nm) and
in broadband light (1450 nm to 1625 nm), each using two orthogonal polarizations.
We compare the measured spatial throughput maps with those predicted by simu-
lations using the lantern’s modes. We find that the morphologies of the measured
throughput maps are reproduced by the simulations, though the real lantern is lossy

https://doi.org/10.1117/1.JATIS.10.2.025001
https://doi.org/10.1117/1.JATIS.10.2.025001
https://doi.org/10.1117/1.JATIS.10.2.025001
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and has lower throughputs overall. The measured ratios of on-axis stellar leakage
to peak off-axis throughput are around 10−2, likely limited by testbed wavefront
errors. These null-depths are already sufficient for observing young gas giants at
the diffraction limit using ground-based observatories. Future work includes using
wavefront control to further improve the nulls, as well as testing and validating the
PLN on-sky.

3.1 Motivation
Previous conceptual work on the PLN assumed a perfect, lossless MSPL (Xin,
Nemanja Jovanovic, et al., 2022). However, a real MSPL will not have the ideal
mode shapes corresponding to perfect LP modes, and the device itself will have
some additional throughput loss. In this work, we characterize the properties of a
real photonic lantern including manufacturing imperfections (described in Section
3.2). We then integrate it into a testbed to demonstrate the PLN in the lab (described
in Section 3.3).

3.2 Lantern Characterization
A picture of the MSPL (optimized to have six ports at 1550 nm) is shown in Fig.
3.1a. The lantern is the stiff silver portion in the top right, with the MM end facing
towards the right. Each SMF output of the lantern is connected to one of the white
fiber pigtails.

We first characterize the properties of this lantern on its own by taking microscope
images of the MM interface, measuring the throughput through each port, and using
an interferometer to reconstruct the mode shapes corresponding to each port.

Microscope Imaging of Lantern Interface
We use a Dino-Lite Edge 3.0 microscope to image the multimode interface of the
lantern, which is shown in Fig. 3.1b. The residual fiber cores are arranged in
a pentagonal pattern, visible towards the bottom left as small black circles. The
residual fiber cores are embedded in the multi-mode core (dark brown), which
is surrounded by fiber-doped glass cladding (light brown ring). Surrounding the
cladding is a silica substrate (outermost dark brown ring), followed by the glue
(rough tan material) that attaches the lantern to the connector. The microscope
image verifies the expected pentagonal arrangement of the single cores for the
MSPL design presented in Leon-Saval, Fontaine, et al. (2014), also depicted in
schematic form in Fig. 3.1c. The observed MM core diameter and distance between
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Figure 3.1: a) A picture of a six-port MSPL. The lantern is the stiff silver portion
in the top right, with the MM end facing towards the right. Each SMF output of
the lantern is connected to one of the white fiber pigtails. b) A microscope image
of the MM face taken with a Dino-Lite Edge 3.0. The residual fiber cores are
arranged in a pentagonal pattern, visible towards the bottom left as small black
circles. The residual fiber cores are embedded in the multi-mode core (dark brown),
which is surrounded by fiber-doped glass cladding (light brown ring). Surrounding
the cladding is a silica substrate (outermost dark brown ring), followed by the glue
(rough tan material) that attaches the lantern to the connector. c) A schematic of
the design of the MM face for comparison. The observed MM core diameter and
distance between adjacent residual SMF cores are both consistent with the design
values of 15 𝜇m and 7 𝜇m respectively.

adjacent residual SMF cores are both consistent with the design values of 15 𝜇m
and 7 𝜇m respectively.

End-to-end Throughput Measurements
Next, we measured the throughput of each of the lantern’s ports from the single-mode
inputs to the MM face using a power meter (Thorlabs S122C), with a laser diode
(Thorlabs KLS1550) as the light source. We first took a background measurement
with the light turned off. Next, we took a measurement of the power coming out of
the fiber directly connected to the laser. Then, we connected the light source fiber to
one of the SMF pigtails of the photonic lantern and measured the power coming out
of the MM face. After background subtracting the measurements, we take the ratio
of the power coming out of the MM face to the power coming out of the source fiber
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Table 3.1: The average and standard deviation of five throughput measurements for
each lantern port. Note that these throughput measurements are of the entire lantern
assembly, including any connectorization losses or losses through the SMF pigtails,
such as Fresnel loss and propagation loss.

Port Throughput Standard Deviation
LP 01 0.886 0.013
LP 11a 0.890 0.013
LP 11b 0.778 0.017
LP 21a 0.583 0.009
LP 21b 0.614 0.022
LP 02 0.617 0.014

to be the throughput of that port. We repeat this process five times for each port,
and report the mean and standard deviation of those five measurements in Table 3.1.
These throughput measurements are of the entire lantern assembly and include any
connectorization losses (e.g. at the interfaces to the LC connectors), splice losses
(e.g. between the lantern and the SMF pigtails), and losses from Fresnel reflection
and propagation through the pigtails — and are consistent with losses expected from
the assembly manufacturing. Note that in comparison, a typical SMF patch cable
of equivalent length would have throughput > 95%.

Characterization of Modes
We use a technique called off-axis holography (OAH) to measure the complex
electric field corresponding to each of the lantern’s ports. A detailed discussion of
the principles of OAH can be found in Cuche, Marquet, and Depeursinge (2000). In
summary, a broad reference beam is interfered with an image of the lantern mode,
creating fringes across the image. The fringes create sidelobes in Fourier space,
and by filtering the Fourier-transformed signal, the electric field of the mode can
be reconstructed. The principles and process of OAH is also similar to that of the
self-coherent camera (P. Baudoz et al., 2006a).

A picture of our optical setup for OAH is shown in Fig. 3.2. For this experiment, we
use a polarized tunable narrow linewidth laser (Thorlabs TLX2), set to a wavelength
of 1568.772 nm with a linewidth of 10 kHz, which equates to ∼ 10−16 m. This
results in a coherence length of ∼ 104 m. The light is split by a 50:50 polarization-
maintaining (PM) splitter, which sends half the light to the imaging arm of the
interferometer, and the other half to the reference beam arm. The light in the
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imaging arm goes through a polarization controller, then to one of the single-mode
inputs of the MSPL. The light coming out of the MM face of the lantern goes
through a lens that collimates the beam, then to a lens that focuses the image onto
an InGaAs camera (First Light C-RED 2), which has a pixel pitch of 15 𝜇m.

The light in the reference beam path passes through a PM fiber coil (to better match
path lengths between the two arms, even though the long coherence length does
not necessitate this), then through a lens that forms a diverging beam large enough
to cover the entire lantern mode image. This reference beam interferes with the
lantern mode image, creating fringes that allow us to retrieve the complex mode
field using Fourier analysis. Ideally, the reference beam should be collimated into
a flat wavefront; however, we have simply made it large enough that its phase is
slowly varying over the extent of the mode image, so does not significantly impact
the reconstructions.

The visibility of the fringes is highest when the polarization state of the two beams
are matched. To match the polarization between the two arms, a calibration polarizer
is first inserted into the reference arm. The polarizer is then fixed to the angle that
cancels the flux of the reference beam on the detector. Then, the polarizer is moved
into the lantern arm, and the polarization controller set to minimize the flux that
goes through the polarizer and onto the detector. This process aligns the polarization
states of both arms to each other. The calibration polarizer is then removed from
the beam for the rest of the experiment.

See Cuche, Marquet, and Depeursinge (2000) for the principles of using Fourier
analysis to retrieve complex amplitudes from off-axis holography (OAH). For our
work, an example hologram of the LP 21b port (after dark subtraction and centering)
is shown in Fig. 3.3a, and the same hologram zoomed in to the center (such that
the fringes are visible) is shown in Fig. 3.3b. Note that the fringes of interest
resulting from interference between the two beams are the fine horizontal ones.
The faint, wide, vertical stripes are not from the interference of the two beams, but
rather the structure of the reference beam itself, as shown in Fig. 3.3c. We apply
a 2D Fourier transform to the (full-sized) hologram to obtain the Fourier space
signal (Fouriergram) shown in Fig. 3.3d. We then isolate the top right lobe of the
Fouriergram, shown in Fig. 3.3e.

The cropped lobe in Fig. 3.3e is centered to minimize the amount of tip-tilt signal in
the final reconstructed mode, shown in Fig. 3.3f. To obtain this final reconstructed
mode, we first apply a broad Gaussian window (with a 𝜎 of 27 pixels) to the cropped
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Figure 3.2: The optical setup for OAH measurements of the lantern modes. The
light from the laser is split by a 50:50 polarization-maintaining splitter. Half the
light is sent to the imaging arm, through a polarization controller, then to one of
the single-mode inputs of the MSPL. The light coming out of the MM face of the
lantern goes through a lens that collimates the beam, then to a lens that focuses the
image onto an infrared camera. The other half of the light is sent to the reference
beam path, where it passes through a PM fiber coil delay line, then through a lens
that creates a diverging beam large enough to cover the entire lantern mode image.
The polarization controller is used to match the polarizations of the two beams. The
reference beam interferes with the lantern mode at the detector, creating fringes that
allow us to retrieve the complex mode field using Fourier analysis.

Fouriergram to filter out edge effects, then apply an inverse Fourier transform. We
then divide by the square-root of the reference beam intensity to remove the impact
of its non-uniformity. Finally, we normalize the mode such that its summed intensity
is 1. Because the arms of the interferometer are long, and the path length difference
between the reference arm and the lantern arm fluctuates widely (due to vibrations
and other bench instabilities), we are unable to constrain the global phase of the
modes (i.e, the uniform phase term, or the phase piston as expressed in the focal
plane). Fortunately, we do not need to know the global phase to predict the coupled
intensities, since they are not impacted by the global phases of each mode.

We apply this same reconstruction process to the other 5 modes of the lantern. We
also obtain and analyze three separate datasets taken across multiple days and con-
firm that the measurements are qualitatively stable. After matching the global phases
between the three different measurements, we take their mean and re-normalize each
mode to a total intensity of 1 to obtain the final reconstructions, shown in Figure
3.4a. In Figure 3.4b, we plot the dot-products between the measured modes, which
show that they are orthogonal as predicted (the median of the dot-product mag-
nitudes between two different modes is 0.011, which is commensurate with our
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Figure 3.3: a) The measured hologram of the LP 21b port, centered and background
subtracted. b) The same hologram as part (a), but zoomed in to the center to show
the fringes. Note that the fringes of interest resulting from interference between the
two beams are the fine horizontal ones. c) The reference beam intensity, plotted on
the same spatial scale as part (a), showing that the faint, wide, vertical stripes are not
from the interference of the two beams, but rather the structure of the reference beam
itself. d) The 2D Fourier transform of the hologram in part (a). e) The Fourier-space
signal in part (d), cropped to the top right lobe. This lobe is centered to minimize
the tip-tilt signal in the final reconstructed mode. f) The final reconstructed mode,
obtained by first applying a Gaussian window with a 𝜎 of 27 pixels to part (d)
to filter out edge effects, then a 2D inverse Fourier transform. The signal is then
divided by the square root of the reference beam intensity to remove its impact, then
normalized to a total intensity of 1. The amplitude is indicated by brightness, and
the phase indicated by hue.

measurement uncertainty for the mode shapes themselves).

In Section 3.3, the throughput maps simulated using these measured modes are
compared to the actual throughput maps obtained on the testbed.

3.3 Photonic Lantern Nuller Demonstration
After characterizing the properties of the MSPL, we integrated it into the Polychro-
matic Reflective Testbed (PoRT) (Echeverri, Ruane, Benjamin Calvin, et al., 2020)
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Figure 3.4: a) The measured modes corresponding to each port of the MSPL,
obtained using OAH. The amplitude of each mode is indicated by brightness, and
the phase indicated by hue. Each mode has its global piston phase term removed,
and has been normalized to a total intensity of one. The axes correspond to pixels on
the camera, centered about zero. b) The dot-products between the measured modes,
which show that they are orthogonal as predicted. The median of the dot-product
magnitudes between two different modes is 0.011, which is commensurate with our
measurement uncertainty for the mode shapes themselves.

at Caltech to demonstrate using it as a nuller.

Experimental Setup
A diagram of the PoRT testbed is shown in Fig. 3.5. A light source is fed into the
bench with a single-mode fiber mounted to the source stage. The light is collimated
by an off-axis parabola (OAP) mirror. The collimated light is filtered by a baffle
before reflecting off of a 12 × 12 Boston Micromachines deformable mirror (DM).
Then, a set of relay OAPs magnifies the beam. In the resulting collimated beam is a
mask mount that can be used to insert a pupil plane mask (such as a vortex); however,
we leave it empty for this work. The beam then passes through an adjustable-size
iris, which we use to control the 𝐹# of the system. The iris aperture diameter (𝐷)
can range from 1-15 mm, which, given the injection focal length ( 𝑓 ) of 54.4 mm,
can provide focal numbers (𝐹# = 𝑓 /𝐷) ranging from approximately 3.6 to 55.

The beam is then focused by the last OAP onto the injection stage, which holds
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both a SMF and the 6-port MSPL. The injection stage can move in translation in
all three axes, which allows light to be injected into either the SMF or the MSPL,
and can also be used to scan the face of either optic (the fiber or the lantern) across
the focused beam. To measure the coupled flux through the SMF, the output end
of the SMF is routed to an InGaAs (Femto OE-200-IN2) photodiode. To measure
the coupled flux through one of the lantern ports, the corresponding SMF pigtail is
routed to the Femto photodiode. This setup can only measure one port at a time, so
the measurements for the different ports are made sequentially.

To normalize the data, we use a retractable stage to insert a power meter (Thorlabs
S122C) into the beam just before the injection mount to measure the incident flux.
After calibrating the readings to that of the Femto photodiode, these beam flux
measurements can be used to normalize the coupled flux measurements, in order to
obtain throughput measurements.

To best compare our results to the predictions from simulation, we wish to inject a
beam with a flat wavefront into the photonic lantern. To flatten the wavefront, we
use the SMF as a wavefront calibrator, since coupling into an SMF is maximized
when the wavefront is flat. This is most easily seen by expressing the coupling
as proportional to the square of the overlap integral of the electric field with the
SMF mode (approximated as a Gaussian), expressed in the pupil plane with radial
coordinate 𝜌 and angular coordinate 𝜙:

𝜂 ∝
���� ∫ 𝐷

0
𝑒
−
(
𝜋𝐷 𝑓 𝜌

2

)2

𝑒𝑖Φ(𝜌,𝜙)𝑑𝐴

����2. (3.1)

Here, 𝐷 is the diameter of the aperture (assumed to be circular), 𝐷 𝑓 is the mode-field
diameter of the SMF, and Φ is the wavefront error. The coupling is thus maximized
when Φ is uniform over the entire aperture (i.e. there is no wavefront error), as any
deviations from uniformity will reduce the value of the integral.

We first optimize coupling into the SMF by adjusting the X, Y, and Z directions of the
injection stage. We then optimize the iris size, achieving maximum injection with
an 𝐹# of 3.8. Then, we tune the twelve lowest-order Zernike modes of the DM map.
We obtain a peak throughput of 74.1%, whereas the theoretical coupling (calculated
as the overlap integral of the ideal SMF mode with the focal-plane electric field
given a perfectly flat wavefront) is 82.8%. We have not accounted for Fresnel loss
at the face of the fiber and propagation loss through the fiber, which may explain
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Figure 3.5: A light source is fed into the bench with a SMF mounted to the source
stage. The light is collimated by an off-axis parabola (OAP) mirror. The collimated
light is filtered by a baffle before reflecting off of a 12 × 12 Boston Micromachines
deformable mirror (DM). Then, a set of relay OAPs magnifies the beam. We leave
the mask mount empty for this work. The beam then passes through an adjustable-
size iris, which we use to control the 𝐹# of the system. The beam is then focused by
the last OAP onto the injection stage, which holds both a single-mode fiber and the
6-port MSPL. A Femto OE-200 photodiode is used to measure the coupled flux. A
Thorlabs S122C power meter on a retractable stage can be inserted into the beam
just before the injection mount to measure the incident flux, which can be used to
normalize the coupled flux measurements for throughput measurements.

part of the discrepancy. The remaining losses may be a result of uncalibrated higher
order wavefront errors.

Next, we keep the DM map that optimizes injection into the SMF (which implies
minimal wavefront aberration), but translate the injection stage to the location of
the photonic lantern. We then tune the iris size to set the 𝐹# into the lantern, a
procedure that we discuss below.

There are several metrics one could use to determine the optimal 𝐹#. The signal in a
given port is the sum of both the stellar throughput at the center (𝜂𝑠) and the off-axis
throughput at the planet location (𝜂𝑝). Broadly, we wish to maximize the signal-to-
noise ratio (i.e., the planet light relative to photon noise from stellar leakage), which
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scales as 𝜂𝑝/
√
𝜂𝑠. While 𝜂𝑠 changes as a function of 𝐹#, wavefront control can

be used to further improve the null — without significantly impacting the 𝐹# that
maximizes the off-axis throughput for each port. Although implementing wavefront
control with a PLN is left for future work, because it would give us additional control
over 𝜂𝑠, we choose to optimize iris size for planet throughput instead. We expect
the exoplanet light to mostly couple into one of the LP 11 ports (since they tend
to have higher throughput overall), so the peak off-axis throughput (𝜂𝑝peak) through
either the LP11a or the LP11b port is a simple proxy for exoplanet throughput. In
our work, we maximize through the LP 11a mode (though the LP 11b mode would
be an equally valid choice), resulting in a 𝐹# of 6.2.

In theory, the truly optimal 𝐹# depends on the planet location, and what the right
metric is depends on how well that location is known. In practice, the 𝐹# of an
instrument will be fixed to a certain value regardless of the target being observed,
and most reasonable optimization metrics targeting close-in planets will result in
similar 𝐹#’s.

Key Results - Monochromatic
In Figure 3.6a, we present the PLN throughput maps measured with 1568.772 nm
light from the TLX2 tunable narrow linewidth laser, injected into the PoRT testbed
with a PM fiber. The peak off-axis throughput of each port is reported in Table 3.2.

We also simulate throughput maps based on the mode profiles we reconstructed
in Section 3.2 (note that the OAH data was taken using the same wavelength as
the monochromatic PoRT measurements, but that the relative polarization between
the OAH measurements and the PoRT measurements is unknown). We plot the
simulated maps in Fig. 3.6b on the same color-scale as the PoRT measurements.
We use a manual image alignment procedure to set the field of view, sampling, and
rotation angle of the simulations to achieve the best match (across all six-ports) to
the measured throughput maps.

The simulation with OAH modes assumes that the lantern is flux-preserving —
that whatever light gets coupled into a given port is maintained through the lantern.
The real lantern assembly is lossy, so has lower throughputs than in simulation.
Qualitatively, however, the simulated throughput maps and the measured throughput
maps have similar morphologies, showing that our measurements of the PLN’s
behavior largely agree with the model.

To better resolve the central null, we repeat the scans, but with finer spatial sampling
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by a factor of 5. The results are shown in Fig. 3.6c. Because the maps are
asymmetric due to manufacturing imperfections, and the apparent centers of the
modes slightly offset from each other, it is ambiguous which XY coordinate, even
in simulation, should be designated as the theoretical axial center to which the star
would be aligned. One approach, which we use for this work, is to sum up the
central throughput maps of the four nulled ports (shown in Fig. 3.6d), and then take
the location of minimum summed throughput as the center. The stellar leakages
(𝜂𝑠) at the identified center for each port are reported in Table 3.2.

In Figure 3.7, we plot select cross-sections of the throughput maps shown in Figure
3.6, and compare them against the throughput maps of an ideal MSPL with perfect LP
modes. We show that the imperfect mode shapes cause different throughput profiles
from an ideal MSPL, but that the measured profiles agree with the simulations using
the modes obtained from OAH, except with additional losses from propagating
through the lantern. Note that, while we do not see this phenomenon in our measured
throughput maps, it is possible for the planet throughput at a given spatial location
to be higher in one particular port than predicted with perfect LP modes. This is
simply a result of the imperfect mode shapes, which distribute planet light differently
amongst the ports, i.e., for a given planet position, the lantern imperfections can
cause higher throughput in one port at the expense of throughput in other ports,
relative to perfect LP modes.

In Table 3.2, we also report the values of 𝜂𝑠/𝜂𝑝peak . Because the overall loss of
each port cancels out in this ratio, it allows for a direct comparison between the
PoRT measurements and the simulations using OAH modes. The quantity 𝜂𝑠/𝜂𝑝peak

is often referred to as the ‘null-depth’ in discrete-aperture nulling interferometry
contexts, though it is also called the ‘raw contrast’ in fiber-fed spectroscopy contexts
(which is different from how raw contrast is typically used in coronagraphy contexts).
To avoid confusion over terminology, we will refer to it in this work explicitly as
𝜂𝑠/𝜂𝑝peak .

We then repeat the experiment using orthogonally polarized light by injecting the
laser into the bench with a 90◦ polarization rotating fiber (see Appendix 3.3 for the
throughput maps, as well as a comparison between the maps obtained for the two
polarizations). A summary of the important measurements is presented in Table
3.2.
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Figure 3.6: a) Monochromatic PLN throughput maps measured with 1568.772
nm light from the TLX2 tunable narrow linewidth laser injected into the PoRT
testbed with a PM fiber. White dashed lines indicate cross-sections plotted in Figure
3.7. b) Simulated throughput maps based on the mode profiles reconstructed using
OAH at the same wavelength, assuming that the lantern is flux-preserving. White
dashed lines indicate cross-sections plotted in Figure 3.7. c) Monochromatic PoRT
throughput maps of the nulled ports with fine spatial sampling of the center. The red
crosses indicate the axial center of the lantern, identified using the map in part (d).
d) The summed throughput of the four maps in part (c). The location of minimum
summed throughput is taken to be the lantern center, where 𝜂𝑠 is measured.

Key Results - Broadband
We also repeat the same experiment using a broadband Super-Luminescent Diode
(SLD) light source with wavelength coverage from 1450 nm to 1625 nm (Thorlabs
S5FC1550P-A2). The throughput maps for both polarizations are presented in
the Appendix, along with a comparison between them. The peak and coaxial
throughput values, as well as the ratio, determined using the same methodology as
with monochromatic light, are reported in Table 3.3. The broadband null-depths are
not significantly different from the monochromatic ones (with a difference varying
from a few percent to a factor of 2), indicating that the nulls are fairly achromatic.
This is as expected: the MSPL is designed to be mode-selective across a wide
wavelength range, and thus the (vortex-free) PLN is intrinsically achromatic, one of
its major advantages compared to other nulling techniques.

We did not perform OAH using the SLD, as the bandwidth of light results in a much
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Table 3.2: Key monochromatic PLN metrics from a) simulations using the modes
measured with OAH assuming that the lantern is flux-preserving, b) the PoRT
testbed with the laser routed through a PM fiber (polarization 1), and c) the PoRT
testbed with the laser routed through a 90◦ polarization rotating fiber (polarization
2). 𝜂𝑝peak refers to the maximum throughput of each map, or what the throughput of a
planet at the location of maximum coupling would be. For the nulled ports, 𝜂𝑠 refers
to the throughput at the coaxial center of the lantern, corresponding to the stellar
leakage. For the nulled ports, we also report the ratio 𝜂𝑠/𝜂𝑝peak , which is unaffected
by the overall throughput of a port, and thus allows for a direct comparison between
the PoRT measurements and the simulations using OAH modes.

LP 01 LP 11a LP 11b LP 21a LP 21b LP 02
𝜂𝑝peak (Sim.) 0.610 0.463 0.542 0.285 0.288 0.232
𝜂𝑝peak (Pol. 1) 0.421 0.385 0.384 0.138 0.130 0.160
𝜂𝑝peak (Pol. 2) 0.461 0.396 0.379 0.146 0.140 0.171
𝜂𝑠 (Sim.) N/A 7.32 × 10−4 3.65 × 10−3 5.91 × 10−3 9.05 × 10−4 N/A
𝜂𝑠 (Pol. 1) N/A 4.05 × 10−3 2.64 × 10−2 2.85 × 10−3 1.77 × 10−3 N/A
𝜂𝑠 (Pol. 2) N/A 6.53 × 10−3 3.00 × 10−2 5.12 × 10−4 1.07 × 10−3 N/A

𝜂𝑠/𝜂𝑝peak (Sim.) N/A 1.59 × 10−3 6.69 × 10−3 2.05 × 10−2 3.18 × 10−3 N/A
𝜂𝑠/𝜂𝑝peak (Pol. 1) N/A 1.05 × 10−2 6.88 × 10−2 2.07 × 10−2 1.37 × 10−2 N/A
𝜂𝑠/𝜂𝑝peak (Pol. 2) N/A 1.69 × 10−2 7.82 × 10−2 3.72 × 10−3 8.24 × 10−3 N/A

Table 3.3: Key broadband PLN metrics from a) the PoRT testbed with the SLD
routed through a PM fiber (polarization 1), and b) the PoRT testbed with the SLD
routed through a 90◦ polarization rotating fiber (polarization 2). 𝜂𝑝peak refers to the
maximum throughput of each map, or what the throughput of a planet at the location
of maximum coupling would be. For the nulled ports, 𝜂𝑠 refers to the throughput at
the coaxial center of the lantern, corresponding to the stellar leakage. For the nulled
ports, we also report the ratio 𝜂𝑠/𝜂𝑝peak .

LP 01 LP 11a LP 11b LP 21a LP 21b LP 02
𝜂𝑝peak ( Pol. 1) 0.438 0.404 0.374 0.132 0.124 0.177
𝜂𝑝peak (Pol. 2) 0.451 0.387 0.386 0.133 0.129 0.205
𝜂𝑠 (Pol. 1) N/A 7.98 × 10−3 3.46 × 10−2 2.55 × 10−3 1.26 × 10−3 N/A
𝜂𝑠 (Pol. 2) N/A 8.54 × 10−3 3.24 × 10−2 2.52 × 10−3 1.34 × 10−3 N/A

𝜂𝑠/𝜂𝑝peak (Pol. 1) N/A 2.06 × 10−2 8.97 × 10−2 1.92 × 10−2 9.79 × 10−3 N/A
𝜂𝑠/𝜂𝑝peak (Pol. 2) N/A 2.21 × 10−2 8.40 × 10−2 1.89 × 10−2 1.04 × 10−2 N/A
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Figure 3.7: Simulated and measured throughput cross-sections (as indicated in
Figure 3.6) for the nulled ports of the PLN. For comparison, the ideal throughput
cross-sections with perfect LP modes is also plotted. The measured PLN throughput
diverges from the ideal PLN because of imperfect mode shapes. However, consid-
ering the overall throughput losses through the lantern reported in Table 3.1, the
shapes of the measured throughput maps agree well with the predictions simulated
using the measured modes. The shown measurements are with the monochromatic
laser in the first polarization state, but the other measured profiles lie closely to the
same curve.

smaller coherence length (∼ 10 microns), making matching path lengths practically
infeasible.

Additional Throughput Maps and Polarization Comparison
We present the throughput maps measured using monochromatic light in the second
polarization state (with the 90◦ polarization rotating fiber) in Fig. 3.8, using broad-
band light in the first polarization state (with the PM fiber) in Fig. 3.9, and using
broadband light in the second polarization state in Fig. 3.10.

In Fig. 3.11, we plot the difference in the finely-sampled central throughput maps
between the two orthogonal polarization states (the maps for polarization 1 are
subtracted from the maps for polarization 2).

When observing the key measurements in Table 3.2 and 3.3, we find that the
differences between the two polarization states are slight for most of the ports.
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Figure 3.8: Monochromatic PLN throughput maps measured with 1568.772 nm
light from the TLX2 tunable narrow linewidth laser injected into the PoRT testbed
with a 90◦ polarization rotating fiber, such that the polarization is orthogonal to
that of Fig. 3.6. a) Throughput maps of all ports across the PLN field of view. b)
Throughput maps of the nulled ports with fine spatial sampling of the center (note
that the LP 21 maps are on a different color scale from the LP 11 maps). The red
crosses indicate the axial center of the lantern, identified using the map in part (c).
c) The summed throughput of the four maps in part (b). The location of minimum
summed throughput is taken to be the lantern center, where 𝜂𝑠 is measured.

However, the monochromatic null-depth of the LP 21a port shows a stark difference,
with the second polarization state exhibiting a null-depth that is almost an order of
magnitude deeper than the first. This result suggests that the lantern mode shapes
might depend on the polarization at some level. The limitations that these polarized
differences impose on the null that wavefront sensing and control can achieve should
be examined as part of future work.

One caveat is that the throughput maps presented were measured sequentially, not
simultaneously. However, the measurements for polarization state 1 and for polar-
ization state 2 were obtained about several hours apart, over which the testbench is
relatively stable. We confirmed this stability by measuring the finely sampled LP21b
map in both polarization states, one immediately after the other, and confirming that
the difference map is consistent (in both features and magnitude) with the difference
map obtained using the original data taken hours apart.
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Figure 3.9: Laboratory PLN results measured on PoRT, using an SLD light source
from 1450 nm to 1625 nm injected with a PM fiber. a) Throughput maps of all
ports across the PLN field of view. b) Throughput maps of the nulled ports with
fine spatial sampling of the center (note that the LP 21 maps are on a different color
scale from the LP 11 maps). The red crosses indicate the axial center of the lantern,
identified using the map in part (c). c) The summed throughput of the four maps in
part (b). The location of minimum summed throughput is taken to be the lantern
center, where 𝜂𝑠 is measured.

3.4 Discussion and Future Work
In Table 3.2, we also include the values for 𝜂𝑝peak , 𝜂𝑠, and 𝜂𝑠/𝜂𝑝peak obtained from
the monochromatic simulation using OAH modes. The simulated value of 𝜂𝑠/𝜂𝑝peak

assumes no wavefront error, so is indicative of the limit imposed by the modal
impurities of the lantern. For the nulled port measurements, 𝜂𝑠/𝜂𝑝peak is generally
higher on the testbed than in simulation. The difference suggests that the wavefront
of the PoRT testbed, optimized for injection through a single-mode fiber, is still not
perfectly flat. This is likely due to a combination of limited calibration precision,
uncalibrated higher order wavefront modes, and testbed drifts between the time
of SMF calibration and the time the PLN measurements were taken. However, a
perfectly flat wavefront is not necessarily the optimal wavefront for a real PLN with
modal impurities, as the deformable mirror can be used to partially compensate
for the modal impurities of the lantern, and improve the null even beyond that
predicted by a flat wavefront. For example, with monochromatic light in the second
polarization, we measure an 𝜂𝑠 that is an order of magnitude than predicted by
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Figure 3.10: Laboratory PLN results measured on PoRT, using an SLD light
source from 1450 nm to 1625 nm injected with a 90◦ polarization rotating fiber. a)
Throughput maps of all ports across the PLN field of view. b) Throughput maps of
the nulled ports with fine spatial sampling of the center (note that the LP 21 maps are
on a different color scale from the LP 11 maps). The red crosses indicate the axial
center of the lantern, identified using the map in part (c). c) The summed throughput
of the four maps in part (b). The location of minimum summed throughput is taken
to be the lantern center, where 𝜂𝑠 is measured.

simulation. This suggests that the wavefront error in the system is interfering with
the lantern mode in a way that deepens the stellar null. This also suggests that the
difference in mode shape between the two polarizations is causing a difference in
𝜂𝑠 on the order of ∼ 10−3. Exploring using wavefront sensing and control schemes
with the PLN, including in the presence of polarization differences, is left for future
work. Although the MSPL does not lend itself to linear wavefront control (Lin,
Fitzgerald, et al., 2022b), it is a good candidate for data driven control such as
Implicit Electric Field Conjugation (S. Y. Haffert, Males, et al., 2023a) because of
the low dimensionality from its limited number of ports.

The 𝜂𝑠/𝜂𝑝peak values of ∼ 10−2 currently achieved by the PLN are approximately
the same as the null-depth the VFN achieves on sky, limited by the adaptive optics
residuals of the Keck II telescope (Echeverri, J. Xuan, et al., 2023). Under these
conditions, the VFN was able to tentatively detect a companion with flux ratio of
1/400 (Echeverri, J. W. Xuan, et al., 2024). Given that the PLN is expected to have
even higher throughput, it could be used — as is — on ground-based telescopes, with
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Figure 3.11: Difference in the finely-sampled central throughput maps between two
orthogonal polarization states, with throughput maps for polarization 1 subtracted
from the maps for polarization 2, using a) monochromatic light and b) broadband
light. The monochromatic null-depth of the LP 21a port with the second polarization
state is almost an order of magnitude deeper than the first, suggesting that the lantern
mode shapes do depend on the polarization at some level. The limitations that these
polarized differences impose on the null that wavefront sensing and control can
achieve should be examined as part of future work.

signal-to-noise expected to exceed that of the VFN’s. Additionally, the PLN has the
potential to partially constrain the planet’s location, a capability the VFN lacks (Xin,
Nemanja Jovanovic, et al., 2022), as well as the potential for image reconstruction
similar to what has been explored for a non-mode-selective photonic lantern in
Kim, Fitzgerald, Lin, Sallum, et al. (2024). Thus, future work includes testing and
validating the PLN on-sky, as it can already be used to obtain scientifically useful
observations of close-in giant exoplanets.

Like the VFN, the PLN’s null-depths on-sky at Keck II would be expected to
be limited by the residuals of the AO system. However, given a better adaptive
optics system (or a space environment) the modal impurity or ‘cross-talk’ of the
lantern will become the dominant limiting factor. Wavefront control with one DM
can only partially compensate for the cross-talk, as it would only modulate phase
and not amplitude in the pupil plane. Wavefront control with two DMs is still
chromatic, and thus expected to achieve nulls with smaller bandwidths than nulls
resulting purely from the lantern’s mode-selectivity. Therefore, more work should
be invested in creating MSPLs with lower levels of cross-talk, as this would result
in deeper, naturally broadband nulls that would relieve additional demand on the
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wavefront control system (Nemanja Jovanovic et al., 2023).

Lastly, although the lantern we use in this work is optimized for 1550 nm, silica-based
mode-selective lanterns can be designed to operate at different wavelengths, ranging
from the visible spectrum up to about 2 um. However, other fiber technologies (Price
et al., 2006) would be needed to access wavelengths outside of this range.

3.5 Conclusion
In this work, we characterize the properties of a MSPL optimized around 1550nm,
and perform the first laboratory demonstration of a PLN. We measure the throughput
maps for each port (in two polarizations for both monochromatic and broadband
light) and calculate the null-depths of the nulled ports, which are around the 10−2

level. We find that the mode shapes measured using off-axis holography can be
used in simulations to model and predict the behavior of a real PLN. Future work
involves using wavefront sensing and control to further improve the null-depths, as
well efforts towards improving the modal purity of the lanterns themselves. In the
meantime, the photonic lantern nuller already achieves broadband nulls suitable for
observing young gas giants at the diffraction limit using ground-based observatories,
a capability that should be tested on-sky.
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C h a p t e r 4

IMPLICIT ELECTRIC FIELD CONJUGATION WITH THE
PHOTONIC LANTERN NULLER

Xin, Yinzi et al. (2025). “Implicit electric field conjugation with a photonic lantern
nuller”. In: Journal of Astronomical Telescopes, Instruments, and Systems 11.2,
p. 025004. doi: 10.1117/1.JATIS.11.2.025004. url: https://doi.org/
10.1117/1.JATIS.11.2.025004.

This chapter is a reproduction of my paper on adapting a wavefront control tech-
nique originally developed to create focal plane dark zones with coronagraphs to
instead improve the nulls of a PLN. The implicit Electric Field Conjugation (iEFC)
algorithm uses a deformable mirror to probe the existing starlight and apply a cor-
rection, minimizing it over successive iterations. In this work, I showed that using
iEFC with a PLN can reduce null-depths from the 10−2 level to the 10−4 level for
three of the four ports simultaneously, while the null of last port remains largely
stagnant. I use simulations to investigate the source of this behavior, finding that it
can be explained by the lantern cross-coupling manifesting partially as amplitude
aberration in the focal plane, where the deformable mirror can only apply phase
corrections. I find that solutions that simultaneously null all ports are physically
possible (the coupling integral in this case allows for phase modulations to compen-
sate for amplitude aberrations, which is not possible with coronagraphs), but that
the pair-wise probing approach used in iEFC does not result in the identification
of such solutions. Modifying the probing approach to enable more comprehensive
sensing of potential solutions through mode-sorting instruments, such as the PLN,
presents an interesting topic for future work.

Abstract
The Photonic Lantern Nuller (PLN) is an instrument concept designed to charac-
terize exoplanets within a single beam-width from its host star. The PLN leverages
the spatial symmetry of a mode-selective photonic lantern (MSPL) to create nulled
ports, which cancel out on-axis starlight but allow off-axis exoplanet light to couple.
The null-depths are limited by wavefront aberrations in the system as well as by
imperfections in the lantern. We show that the implicit electric field conjugation

https://doi.org/10.1117/1.JATIS.11.2.025004
https://doi.org/10.1117/1.JATIS.11.2.025004
https://doi.org/10.1117/1.JATIS.11.2.025004
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algorithm can be used to reduce the stellar coupling through the PLN by orders of
magnitude while maintaining the majority of the off-axis light, leading to deeper
null depths (∼ 10−4) and thus higher sensitivity to potential planet signals. We dis-
cuss a theory for the tradeoff we observed between the different ports, where iEFC
improves the nulls of some ports at the expense of others, and show that targeting
one port alone can lead to deeper starlight rejection through that port than when
targeting all ports at once. We also observe different levels of stability depending
on the port and discuss the implications for practically implementing this technique
for science observations.

4.1 Implicit Electric Field Conjugation
In this work, we present the results of using wavefront control — specifically the
implicit electric field conjugation algorithm (iEFC) (S. Y. Haffert, Males, et al.,
2023a) — to deepen the central nulls of the PLN.

The implicit electric field conjugation algorithm for active suppression of starlight
is described in S. Y. Haffert, Males, et al. (2023a). We present a simplified overview
of it here.

The stellar electric field can be modulated by applying probes on the deformable
mirror (DM), and the electric field is linearly related to the difference between an
image with some probe and the image with the same probe but with opposite sign.
Minimizing the measurement 𝛿— a series of such ‘differenced’ images — thus also
minimizes the electric field. We can empirically calibrate the influence of the DM
on 𝛿 by applying a mode on the DM and encoding the change in 𝛿 that it produces
into a response matrix:

𝛿 = 𝑆𝛼, (4.1)

where 𝛼 is the DM command and 𝑆 the calibrated response matrix. The basis set of
modes whose influence is sequentially measured and encoded into 𝑆 are referred to
as the “calibration modes.”

The iEFC solution for the desired DM input is given by

𝛼 = arg min
𝛼

|𝛿 + 𝑆𝛼 |2 + 𝜆 |𝛼 |2 = −(𝑆𝑇𝑆 + 𝜆𝐼)−1𝑆𝑇𝛿 = −𝐶𝛿. (4.2)
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The parameter 𝜆 can be set to penalize large DM solutions, and the control matrix
𝐶 = (𝑆𝑇𝑆 + 𝜆𝐼)−1𝑆𝑇 is computed ahead of time, after calibrations are complete.

Unlike the alternative electric field conjugation (EFC) algorithm (Give’on et al.,
2007), which is model-based, iEFC is data-driven. It has the advantage of not being
limited by model fidelity but also the disadvantage of requiring testbed calibration
time. We choose to use iEFC, however, because it is relatively more advantageous for
the PLN than for conventional coronagraphs, as the PLN has a much more limited
field-of-view (FOV) and thus requires significantly fewer modes to be calibrated
than for a coronagraphic dark hole. The number of calibrated modes required scales
linearly with the area of the FOV, which scales quadratically with FOV radius, so the
iEFC calibration overhead for the PLN (with a FOV radius of ∼ 2𝜆/𝐷) compared
to a typical coronagraphic dark hole (extending to ∼ 10𝜆/𝐷) is smaller by a factor
of 22/102, or about 0.04.

For this work, we use the implementation of iEFC from the lina package (Milani,
Derby, and Douglas, n.d.).

4.2 Experimental Setup
A detailed schematic of the front-end of Polychromatic Reflective Testbed (PoRT)
can be found in Xin, Echeverri, et al. (2024), along with the PLN coupling maps
measured using the testbed without wavefront control — i.e. the DM merely flattened
by maximizing coupling through a single-mode fiber. The results obtained in Xin,
Echeverri, et al. (2024) were obtained using a photodiode with only one input,
and therefore had to be measured sequentially. However, for wavefront control,
it is convenient to be able to measure the coupling through all the relevant ports
simultaneously.

In Figure 4.1a, we present an updated simplified diagram of PoRT, which now
includes a back-end that images the outputs of the nulled ports onto a camera,
allowing the fluxes coupled into each port to be simultaneously measured using
photometry. As in Xin, Echeverri, et al. (2024), we use a Thorlabs TLX2 laser
set to a wavelength of 1568.772 nm injected into the bench with a polarization
maintaining fiber, and use a tunable iris to set the 𝐹# of the beam being injected into
the lantern to maximize the throughput into the LP 11 ports, resulting in 𝐹# = 6.2.
Note that one polarization of light is used for this experiment. Xin, Echeverri, et al.
(2024) showed that the lantern exhibited polarized differences at the level of a few
10−3 (in coupled intensity) between two orthogonal polarizations of light. With



66

M
o

u
n

t

Photodiode

Camera
M
o
u
n
t

Laser

Collimating
OAP

Focusing 
OAP

D
M

Focusing 
lens

V-groove 
array

Lantern
Collimating 

lens

Used for WFC

Used to measure 
normalized coupling

Retractable 
photodiode for 
normalization

Example probesa b

Figure 4.1: a) A simplified diagram of the experimental setup. A monochromatic
1568.772 nm laser is injected into the bench, and the beam is collimated. A 12× 12
deformable mirror can be used to manipulate the wavefront of the beam before it is
focused onto the lantern ; the inset shows example DM probe modes 𝑝1+ and 𝑝2+ .
The SMF outputs of the lantern can then be routed to either a V-groove array to be
imaged onto the camera, or to the photodiode. The photodiode is calibrated to a
photometer that can slide into the beam just before the lantern, and thus provides
measurements normalized to the incoming beam. While performing wavefront
control, all four nulled ports are routed to the V-groove, with the non-nulled ports
disconnected in order to not saturate the camera. After performing wavefront
control, we sequentially route the nulled outputs to the coupling photodiode to
obtain coupling maps for each port. The coupling photodiode is calibrated to a
photodiode that can be inserted before the lantern in order to normalize the coupling
maps to the incident light on the lantern, providing normalized measurements of 𝜂.
b) The image on the camera cropped to the region of interest. The white circles
indicate the photometric apertures used to measure coupling through the lantern’s
nulled ports.

conventional coronagraphs, these polarized differences would limit the achievable
contrast due to different DM solutions being needed for each polarization (Ashcraft et
al., 2025). However, the overlap integral of the PLN allows for more nulling degrees
of freedom than conventional coronagraphs with a focal-plane detector (see 4.4).
This potentially enables joint solutions that null both polarizations simultaneously
despite the differences in mode shape, a study that is left for future work.

Figure 4.1b shows an example camera image, cropped to the region containing
the lantern outputs and with the dark frame (the camera image when the light
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source is turned off) subtracted. The overlaid circles indicate the apertures used for
photometry, where each intensity measurement is the sum of the counts contained
within the defined circle. When the incoming beam is aligned to the ‘center’ of the
lantern (which we choose as the location of minimum summed coupling through
the nulled ports), these intensity measurements correspond to the stellar coupling
through each port of the lantern. These intensity measurements are proportional to
𝜂𝑠, or the fraction of the incoming starlight coupled into each port. For closed-loop
wavefront control, all four nulled ports are routed to the V-groove, and we work
directly with the intensity measurements made on the camera (i.e. the sum of the
counts within each defined aperture). We leave the non-nulled ports disconnected in
order to not saturate the camera. After performing wavefront control, we sequentially
route the nulled outputs to the coupling photodiode to obtain coupling maps for each
port. The coupling photodiode is calibrated to a photodiode that can be inserted
before the lantern in order to normalize the coupling maps to the incident light on
the lantern, providing normalized measurements of 𝜂.

4.3 Implementation and Results
Example targeting all nulled ports
We define the following two sets of probes, where 𝑍𝑛 is the 𝑛th Noll-ordered Zernike
mode defined across the 12 × 12 DM actuator grid:

𝑝1± = ±(𝑍5 + 𝑍6 + 𝑍7 + 𝑍8)/
√

4 (4.3)

𝑝2± = ±(𝑍5 − 𝑍6 + 𝑍7 − 𝑍8)/
√

4. (4.4)

The probe mode shapes of 𝑝1+ and 𝑝2+ are shown in the inset of Fig. 4.1a. This choice
of probe is motivated by the fact that the LP 11 modes are primarily sensitive to
Coma (𝑍 = 5 and 6) while the LP 21 modes are primarily sensitive to Astigmatism
(𝑍 = 7 and 8). In fact, simulations show that the dominant modes of 𝑆 when
sensed using completely random probes that modulate the whole DM, as obtained
through a singular-value decomposition (SVD), are indeed Coma and Astigmatism
first, followed by higher-order irregular modes. We find that in the presence of
noise, however, using 𝑝1 and 𝑝2 as defined results in much better signal and iEFC
performance than using more complex probes.

Using a probe amplitude of 0.02 and a calibration mode (i.e. the basis vectors for
representing DM inputs) amplitude of 0.01 (both in DM control units that range
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Figure 4.2: a) The singular values of the response matrix 𝑆 when measuring all
four nulled ports. b) The corresponding singular modes in DM space, arranged in
order of descending singular value.

from 0 to 1, mapping to the control voltage range of the DM, which has a 3.5 𝜇m
stroke), we then calibrate the response matrix 𝑆 across the set of Zernikes modes
from 𝑍4 to 𝑍30 (a total of 27 modes). The singular values and singular modes of 𝑆
in DM space (arranged in order of descending singular value) are displayed in Fig.
4.2, showing the dominance of Coma and Astigmatism in the instrumental response.
From 𝑆, we calculate the control matrix 𝐶 using 𝜆 equal to 1/10 of the maximum
diagonal value of 𝑆𝑇𝑆.

Figure 4.3a shows an example closed-loop iEFC run, which significantly deepens
the nulls in three of the ports, while the last null ends up approximately the same as
it started. Normalized coupling maps are obtained using the photodiode, both with
the original DM map and with the DM map after running iEFC, and are presented
in Figure 4.4. The metrics of stellar coupling, planet coupling, and null depth
before and after iEFC are presented in Table 4.1, and select cross-sections of the
relative signal-to-noise (S/N) ratio, given by 𝜂𝑝/

√
𝜂𝑠, before and after iEFC are also

presented in Figure 4.5.

This experiment shows a typical tradeoff that we observe with iEFC with the PLN,
where certain nulls become degraded to deepen others if it reduces the stellar
coupling overall. In this case, the LP 11 nulls have likely reached the limit imposed
by the stability of the testbed, as measurements of the null with the loop open
show significant fluctuations on the timescale of an iEFC measurement (Fig. 4.3c).
Meanwhile, the LP 21 ports have not reached the limit imposed by testbed stability.
This can be demonstrated by running iEFC on them individually as in Section 4.3,
which results in deeper nulls in those ports than when running iEFC on all four
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Figure 4.3: a) An example iEFC run targeting all four nulled ports. The vertical
gray line indicates a change in camera integration time along with a control matrix
recalibration. The final null depths from this run are compared to the initial null
depths in Table 4.1. b) The DM solution found by iEFC targeting all four nulled
ports at once. The root-mean-square (RMS) of the DM control values is 0.033,
corresponding to approximately 120 nm of stroke. c) A timeseries of the fractional
fluctuations in the null obtained with iEFC, spanning the timescale of one iEFC
iteration. The gray shaded region corresponds to the timescale of one photometric
measurement, and each iEFC iteration takes five photometric measurements: four
for the probes and one without any probe. The LP 11a and LP 11b nulls exhibit
significant fluctuations over the timescale of an iEFC iteration, showing that these
nulls are likely limited by testbed instability and not the lantern itself.

Table 4.1: The values of 𝜂𝑝𝑝𝑒𝑎𝑘 (the peak planet coupling, or the maximum coupling
value for each port) and 𝜂𝑠 (the stellar coupling) for the four nulled ports before and
after performing iEFC, targeting all nulled ports at once. Also shown is the null
depth (𝜂𝑠/𝜂𝑝𝑝𝑒𝑎𝑘 ) for each port before and after performing iEFC.

LP 11a LP 11b LP 21a LP 21b
𝜂𝑝peak (Before) 0.394 0.358 0.131 0.112
𝜂𝑝peak (After) 0.246 0.224 0.108 0.0715
𝜂𝑠 (Before) 5.34 × 10−3 1.65 × 10−2 3.70 × 10−3 1.31 × 10−3

𝜂𝑠 (After) 5.80 × 10−5 8.10 × 10−5 2.35 × 10−4 1.15 × 10−3

𝜂𝑠/𝜂𝑝peak (Before) 1.35 × 10−2 4.62 × 10−2 2.83 × 10−2 1.16 × 10−2

𝜂𝑠/𝜂𝑝peak (After) 2.36 × 10−4 3.62 × 10−4 2.18 × 10−3 1.61 × 10−2

ports at once. In Section 4.4, we discuss simulations that provide more insight
into this observed tradeoff, as well as the predicted behavior of iEFC under various
conditions that are not realizable on the actual testbed.
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Figure 4.4: a) The normalized coupling maps through the nulled ports with the
original DM surface, with spatial extent in units of 𝜆/𝐷. The white dashed box
in the first panel indicates the finely-sampled region shown in (c) and (d) b) The
normalized coupling maps using the DM solution found with iEFC, with spatial
extent in units of 𝜆/𝐷. The dashed white lines indicate the locations of the S/N ratio
cross-sections shown in Fig. 4.5. c) Finely-sampled coupling maps of the lantern
center with the original DM surface, spanning 1/5 of the spatial extent in part (a).
d) Finely-sampled coupling maps of the lantern center using the DM solution found
with iEFC, spanning 1/5 of the spatial extent in part (a). The red crosses indicate the
location where the beam is aligned for the camera measurements, and also where
𝜂𝑠 is measured. We observe that iEFC spatially redistributes the coupling values
through the lantern, lowering the coupling in the middle of the field of view and
causing a diffuse extension of the coupling distribution at larger separations.

Example targeting a single port
For these runs targeting a single port, LP 21b, we use a different set of probes that
better captures the effect of the control modes on this port. Simulations show that
while the most dominant mode of 𝑆 in this case is Astigmatism, as expected, the
second dominant mode has a complex and irregular shape (somewhat resembling the
eventual simulated DM solution), and thus sensing it well requires probes comprised
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Figure 4.5: A comparison of the relative S/N ratio 𝜂𝑝/
√
𝜂𝑠 along the cross-sections

indicated in Fig. 4.4b, before and after performing iEFC. In this case, wavefront
control significantly improves the S/N ratio for three of ports while slightly degrading
it in one. A theory for the observed tradeoff between ports is discussed in Section
4.4.

of many Zernikes:

𝑝3± ∝ ±
30∑︁
𝑛=4

𝑍𝑛 (4.5)

𝑝4± ∝ ±
30∑︁
𝑛=4
(−1)𝑛𝑍𝑛. (4.6)

In this case, 𝑝3± and 𝑝4± are each normalized to have an RMS of 1 before being
multiplied by the desired probe amplitude in DM control units.

Figure 4.6 shows an example iEFC run targeting just the LP 21b port (i.e. the
corresponding control matrix𝐶 is calculated using a response matrix 𝑆 that includes
only measurements from the LP 21b port). A probe amplitude of 0.02 is used, and
a final 𝜂𝑠 of 7.42 × 10−5 is achieved, significantly deeper than reached during the
experiment targeting all four ports at once. For this experiment, the final 𝜂𝑠 is
extracted from camera photometry and converted to a normalized coupling value
based on the calibrated initial measurement. This is because we observed the
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Figure 4.6: a) An example iEFC run targeting only the LP 21b port, showing
significant improvement in the null. The final 𝜂𝑠 = 7.42 × 10−5 is extracted from
camera photometry and converted to a normalized coupling value based on the
calibrated initial measurement. b) The relative S/N ratio (𝜂𝑝/

√
𝜂𝑠) along the cross-

section indicated in Fig. 4.4b, before and after running iEFC. The peak coupling
𝜂𝑝𝑝𝑒𝑎𝑘 is 0.110, giving a null depth 𝜂𝑠/𝜂𝑝𝑝𝑒𝑎𝑘 of 6.73 × 10−4. c) The DM solution
found by iEFC targeting only the LP 21b port. The RMS of the control values is
0.0064, corresponding to approximately 22 nm of stroke, five times smaller than the
RMS of the control values for the solution targeting all four ports.

null degrade significantly in the time it took to measure a coupling map with the
photodiode (approximately 30 minutes). This drift in the null also limits our ability
to push to deeper nulls by relinearizing the response matrix, since the null also
significantly degrades during the calibration process. A model-based algorithm
(Give’on et al., 2007) or an algorithm that recalibrates on-the-fly may be able to
avoid this problem.

However, the peak planet coupling 𝜂𝑝𝑝𝑒𝑎𝑘 is not significantly impacted by these drifts,
so we measure it using the photodiode, obtaining 𝜂𝑝𝑝𝑒𝑎𝑘 = 0.110. The retained planet
throughput shows that the iEFC solution is less aggressive when targeting only one
port, and ultimately achieves a null depth 𝜂𝑠/𝜂𝑝𝑝𝑒𝑎𝑘 of 6.73 × 10−4. The S/N ratio
cross-sections before and after iEFC are presented in Figure 4.6b, showing that
the limitation observed in Fig. 4.3 is not due to this port in particular, but is a
consequence of targeting all four ports at once, a phenomenon discussed further in
Section 4.4.

4.4 Discussion
We conducted several simulations to further explore and corroborate the behavior
observed on the testbed, elucidating some notable properties of performing iEFC
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with a PLN. Simulations were conducted with both a realistic lantern model (using
the measured modes of the real lantern) as well as with a ‘perfect’ lantern model
with ideal LP modes. The first set of simulations and their key takeaways are as
follows:

1. Simulating iEFC through a realistic lantern model corroborates the behavior
observed on the testbed, where the LP 11ab and LP 21a ports improve at the
expense of the LP 21b port. However, both LP 11ab ports can now reach an
𝜂𝑠 of 2× 10−5 simultaneously (even deeper if traded-off against each other by
relinearizing at different times), likely because there is no instability or noise
in the simulation. Meanwhile, the LP 21a port bottoms out at a shallower
𝜂𝑠 ≈ 2 × 10−3, perhaps a tradeoff related to the deeper LP 11 nulls.

2. Simulating iEFC through a perfect lantern model with static phase-only aber-
rations in the pupil shows all four ports reaching extremely deep contrasts
(𝜂𝑠 ∼ 10−9 to 10−12 in the absence of other noise, depending on the exact
aberration). The static phase aberration in this case has a peak-to-valley
(PTV) value of 0.2 radians.

3. Simulating iEFC through a perfect lantern model with static phase and am-
plitude aberrations (0.1 radians PTV each) in the pupil shows that the ports
are now limited to shallower nulls (𝜂𝑠 ∼ 10−5 to 10−7 in the absence of other
noise, with an observed tradeoff amongst the ports that depends on the exact
aberration).

Back-propagating the measured modes and the ideal LP modes into the pupil plane
and taking their difference shows that the cross-coupling of the lantern from manu-
facturing imperfections appears as both phase and amplitude deviations in the pupil
plane. These simulations thus suggest that the cross-coupling manifesting partially
as amplitude aberration in the pupil plane is what prevents all four ports from being
nulled.

However, the typical coronagraphic solution of adding a second DM to correct for
amplitude errors is not a necessary or even particularly effective solution in this case.
The observed behavior does not seem to be a fundamental limitation of physics, but
rather a unique property of mode-sorters such as the PLN and how iEFC senses the
electric field through the ports. For example, simulating model-based EFC with a
realistic lantern model given perfect knowledge of the electric field shows that one
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DM is, in fact, capable of compensating for cross-coupling down to 𝜂𝑠 < 10−11 and
beyond. Therefore, one DM has enough control authority to compensate for both
phase and amplitude errors in the pupil, e.g. by manipulating phase to balance out
amplitude asymmetries such that the overlap integral is still zero.

The limitation, therefore, lies with the sensing: as mentioned in Section 4.3, an
SVD of the iEFC response matrix 𝑆 shows that the most dominant modes are
approximately Coma X&Y (primarily impacting the LP 11 ports), followed by 0◦

and 45◦ Astigmatism (primarily impacting the LP 21 ports), followed by weaker
irregular modes. Fully compensating for amplitude asymmetries would require
higher spatial frequency modes — as is observed in the DM solution obtained with
EFC given perfect knowledge of the electric field; however, these modes are not
well-sensed by the current pairwise probing approach, which mainly captures the
effect of the most dominant low order modes.

While improvements in the lantern manufacturing process may reduce cross-coupling
to the degree that this is no longer a problem at the contrasts required for ground-
based astronomy, these sensing considerations will likely remain relevant at the
higher contrasts required for space telescope instrumentation. Therefore, future
work includes exploring alternative methods for sensing the electric field, and build-
ing response matrices in a way that addresses the unique physical characteristics of
mode-sorters, where the outputs are not pixels directly sensing the local intensity
but rather ports whose coupling is determined by an overlap integral. This work
would be applicable to the PLN and as well as other designs such as the Single-mode
Complex Amplitude Refinement (SCAR) coronagraph (Por and S. Y. Haffert, 2020;
S. Y. Haffert, Por, et al., 2020).

Meanwhile, the experiment targeting the LP 21b port alone is limited by a rapid drift
in the null. This behavior differs from those of the LP 11 nulls when targeting all
four ports at once, which exhibit large fluctuations but very little degradation over
time. Based on theoretical sensitivities to aberrations (Xin, Nemanja Jovanovic,
et al., 2022), we believe this is because the LP 11 nulls are primarily affected by
zero-mean tip-tilt fluctuations, while the LP 21 nulls are primarily affected by higher
order modes (as can be inferred from the DM solution in Fig. 4.6c) that drift over
time.

The combined behavior of instrument sensitivity and the aberrations’ spatial and
temporal characteristics, the layout of the adaptive optics (AO) system, and whether
the planet location is already known — these factors all have implications for
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the use of iEFC for on-sky observations. For example, if the planet location is
already known, then it is more advantageous to target one or two ports, maximizing
sensitivity at the planet’s location. However, for a survey, or for a planet whose
location is not well-constrained, it would be necessary to target either both LP 11
ports, both LP 21 ports, or all four ports at once in order to obtain more coverage of
the sky.

The choice of which ports to target also depends on whether the AO system is set up
to perform iEFC in real time during the observation. Some systems, such as the Keck
Planet Imager and Characterizer (KPIC) (Delorme et al., 2021b), have a dedicated
second-stage DM that is not seen by the primary AO wavefront sensor. This means
that the DM can be changed during the course of the observation without impacting
the AO loop, as is done by KPIC to perform speckle nulling through the single-mode
fiber (Xin, J. W. Xuan, et al., 2023), a control architecture that would allow the iEFC
loop to run independently on sky. However, many instruments do not have this extra
DM, so any changes to the DM made by the iEFC loop have to be accounted for
with an ‘offset’ to the primary AO wavefront sensor. This process adds significant
complexity, and though it has been demonstrated on sky with a Shack-Hartmann
wavefront sensor (Potier et al., 2022), it is more difficult with Pyramid wavefront
sensors, with which it has not yet been reliably implemented on-sky. Although any
combination of ports could be targeted on sky using systems with a second-stage
DM, since iEFC can be run in real time, for instruments without a second-stage
DM, a more viable strategy would be to run iEFC during daytime calibrations,
then observe in open loop. This method relies on the null being relatively stable, or
primarily sensitive to aberrations that fluctuate about a zero mean in time, which can
inform the choice of ports used (i.e. the LP 11 ports on the PoRT testbed, though this
would depend on environmental conditions). Although there is no primary AO loop
for space-based telescopes, similar interactions may arise with upstream low-order
wavefront sensors (Pourcelot et al., 2023), and additional effort is needed to ensure
that both the low-order and focal-plane loops can run concurrently.

An additional consideration for ground-based telescopes is whether to observe us-
ing pupil-tracking or field-tracking mode. Running iEFC actively on-sky would
benefit from a more stable pupil-to-instrument relationship, but would require a
more complicated data analysis approach to fit the rotationally-varying planet signal
(Goyal et al. in prep). Depending on various factors (such as the speed of sky
rotation, the rate of quasi-static speckle evolution, and the planet brightness and
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separation), the rotating planet signal (after post-processing with a modified version
of Angular Differential Imaging (Christian Marois, Lafrenière, et al., 2006)) may or
may not provide an overall gain in detection sensitivity compared to the static planet
signal from field-tracking mode. Meanwhile, if iEFC is used to calibrate the PLN
during the day to compensate for static bench and lantern imperfections without
seeing the pupil, then either mode can be used depending on which provides the
best post-processed performance, which is currently an open question. Additional
work and empirical experience is needed to identify the best approach for scientific
observations, including considerations of robustness and ease of use.

Additionally, this demonstration uses a laser due to the limitations of the photometric
backend, but broadband nulls would be necessary for spectroscopic applications.
Laboratory results presented in Xin, Echeverri, et al. (2024) indicate that the nulls
of the PLN are naturally broadband at the 𝜂𝑠 ∼ 10−3 level, and multi-wavelength
control scales more advantageously for the PLN than for coronagraphs, as there
are fewer degrees of freedom per wavelength that must be controlled by the DM.
However, future work is needed to either demonstrate that monochromatic control
can achieve a null that is sufficiently spectrally wide enough for science, or to
demonstrate full multi-wavelength control.

4.5 Conclusion
In this work, we showed that implicit electric field conjugation, a focal-plane wave-
front control method developed for coronagraphs, can also be used to improve the
null depths of the PLN. We find that there is a tradeoff amongst the ports, where
deepening some of the nulls can occur at the expense of the others, but overall, the
null depths can be improved by one to two orders of magnitude for up to three of
the four ports at once. We conduct simulations that corroborate and provide addi-
tional insight into the behavior observed on the testbed, as well as reveal an electric
field sensing problem for mode-sorters that will be explored in future work. Future
work also includes chromatically dispersing the outputs of the PLN, performing
iEFC in broadband light, and characterizing the null depths achievable across the
10-20% bandwidths applicable to high-resolution spectroscopy science. Although
the symmetries of the mode-selective photonic lantern prohibit it from being used
as a linear wavefront sensor (Lin, Fitzgerald, et al., 2022a), it may be possible to
design a hybrid lantern with some asymmetric ports and some symmetric ports,
allowing for nulling and wavefront sensing simultaneously without the need for DM
probes. Additionally, preparations for on-sky demonstrations of the PLN are also
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currently underway.
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C h a p t e r 5

ON-SKY DEMONSTRATION OF THE PHOTONIC LANTERN
NULLER AT THE SUBARU TELESCOPE

In 2024, I had the opportunity to install the mode-selective photonic lantern on
the Subaru Coronagraphic Extreme Adaptive Optics Instrument (SCExAO) at the
Subaru Observatory in Hawaii, which has a spectrally dispersed backend with a
resolving power of approximately 𝑅 = 𝜆/Δ𝜆 = 500. The first attempt at an on-
sky demonstration in September 2024 was unsuccessful due to the difficulty in
aligning the lantern on-sky in the presence of atmospheric turbulence, identifying
the need for a more robust alignment procedure. A second opportunity to go on-sky
in March 2025 was lost due to a motor failure that caused the injection carriage
(which controls the 𝐹# of the beam) to become stuck very far from the correct
position. This chapter describes the third attempt at an on-sky demonstration using
a new calibration strategy: fixing the position of the lantern relative to the central
pixel of the PSF monitoring camera during daytime calibrations and using a tip-tilt
loop on-sky to drive the PSF to the same pixel. The new calibration strategy was
unsuccessful due to an extreme misalignment between the lantern injection arm and
the PSF monitoring camera, which occurred between the daytime calibrations and
the on-sky observations and continued to drift even after the observation. However,
the conditions were sufficiently good on-sky that the position of the lantern could
be approximately recovered in real time. I took on-sky data of a bright star at three
different lantern positions, then used this data to calculate null-depths for two of the
ports, as well as to place constraints on the detection sensitivity to a hypothetical
binary companion observed using reference differential imaging. This chapter thus
presents the results of the first successful on-sky demonstration of the PLN.

5.1 The Subaru Coronagraphic Extreme Adaptive Optics Instrument
The Subaru Coronagraphic Extreme Adaptive Optics Instrument (SCExAO) is an
extremely complex instrument with multiple modules operating at multiple wave-
lengths. For simplicity, only the elements relevant to this work will be described
and shown in the schematic in Fig. 5.1. For a detailed description of the instrument,
see Lozi et al. (2020).

SCExAO receives light from AO3k, the primary adaptive optics (AO) system of the
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Figure 5.1: A simplified schematic of the elements of SCExAO relevant to photonic
lanterns work. SCExAO receives light from AO3k, the primary adaptive optics
system of the Subaru Telescope. The visible wavelength light is sent to a separate
bench, which contains the AO wavefront sensor. The near-infrared light is sent to
the photonics injection unit as well as a PSF monitoring camera. The injection
unit consists of a two-lens injection system (in which the carriage position for one
of the lenses can be adjusted to control the 𝐹# of the beam), and stage to which
lanterns or fibers can be mounted, which can also be translated in XY (in the plane
perpendicular to the beam) as well as F (to control the lateral position relative to the
focus of the beam). The outputs of the lantern are dispersed onto a spectrograph.
There is no dedicated tip-tilt mirror; however, coarse alignment can be obtained by
adjusting the stage on which the DM is mounted, and faster control can be obtained
by applying tip-tilt on the DM itself.

Subaru Telescope. SCExAO is also equipped with its own 2000-actuator deformable
mirror and wavefront sensor, and typically runs a second AO loop for finer wavefront
correction. For work with the PLN, near-infrared light is sent to the photonics
injection unit as well as a PSF monitoring camera. The injection unit consists of a
two-lens injection system (in which the carriage position for one of the lenses can
be adjusted to control the 𝐹# of the beam), and stage to which lanterns or fibers can
be mounted, which can also be translated in XY (in the plane perpendicular to the
beam) as well as F (to control the lateral position relative to the focus of the beam).
The outputs of the lantern are dispersed onto a spectrograph. There is no dedicated
tip-tilt mirror; however, coarse alignment can be obtained by adjusting the stage on
which the DM is mounted, and faster control can be obtained by applying tip-tilt
on the DM itself, although precautions have to be taken as the same DM is also
applying the AO correction.
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Figure 5.2: Left) An example frame obtained from the detector, showing the spectra
from (from left to right) the LP 11a, LP 11b, LP 21a, LP 21b, and LP 02 ports. The
shaded regions indicate the traces used for spectral extraction. Right) The extracted
spectra from the traces indicated on the left, obtained by summing the counts in each
row. The blue shading indicates the wavelength region summed over for computing
coupling maps. Smaller row numbers correspond to longer wavelengths.

After the light has been injected into the lantern, the outputs of the lantern are routed
through a V-groove array and spectrally dispersed onto a camera to create parallel
spectral traces. An example frame on the spectrograph detector is shown in Fig.
5.2a, along with the traces used for spectral extraction. Example spectra for the five
ports, extracted by summing across each row, are shown in Fig. 5.2b. The resolving
power of this spectrograph is 𝑅 ≈ 500.

To prevent saturation of the detector, the trace of the LP 01 port, which is very
bright when the lantern is centered, is placed off to the side such that it lands off the
detector when working with the other five ports. The stage holding the camera can
be translated relative to the spectral traces to view the LP 01 trace when desired,
e.g. to aid with alignment.

5.2 Daytime Calibration and Testing
We performed calibrations during the daytime to align the lantern to the beam,
using the default flattened DM setting of SCExAO. We optimized the injection 𝐹#
to maximize the peak coupling into the LP 11a port, resulting in an 𝐹# of about 6,
consistent with previous laboratory experiments presented in Xin, Echeverri, et al.
(2024).

The wavelengths corresponding to the pixels are calibrated by inserting a series
of narrowband filters in front of the light source and measuring the resulting peak
intensity on the detector. The wavelength as a function of pixel row for each port is
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Figure 5.3: Calibration of detector pixel row to wavelength using narrowband
filters. A cubic polynomial is fit to the data for each port. The overall flux is very
low below the 25th row, and the inversion in the fitted polynomial results in the
wavelength calibration only being valid up to approximately the 200th row. The
rest of this work thus only uses data between the 25th and 200th rows, or between
approximately 1.30 𝜇m and 1.65 𝜇m. The gray shaded regions indicate the regions
excluded from the rest of this work.

shown in Fig. 5.3, along with the best fit cubic polynomials used to map pixel row
number to wavelength in 𝜇m. The overall transmission is very low below the 25th
row, and because of the inversion in the fitted polynomial, the wavelength calibration
is only valid up to the 200th row. The rest of this work thus only uses data between
the 25th and 200th rows, or between approximately 1.30 𝜇m and 1.65 𝜇m.

The lantern was designed to operate at 1.55 𝜇m. To calculate coupling maps in the
wavelength region of interest, we sum the flux between the 25th and 100th row for
each port (corresponding to the wavelengths between approximately 1.47 𝜇m and
1.67 𝜇m). There are two methods for translating the beam relative to the lantern: by
translating the injection stage itself or by applying a tip-tilt to the incoming beam.
Tip-tilt applied to the incoming beam can be seen as a shift on the PSF monitoring
camera, which is calibrated to milliarcseconds (mas), while the injection stage
translation is not calibrated to physical units. However, the range of tip-tilt we can
apply to the beam is limited to about 50 mas from the center, so it cannot capture
the full extent of the coupling maps. We therefore use the following approach to
calibrate the lantern position. We first fix the PSF on the PSF monitoring camera to
the central pixel and scan the injection stage in X and Y. We then move the stage to
the position of minimum summed coupling (across the four nulled ports), then fix
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Figure 5.4: Top) The laboratory coupling maps corresponding to the five measured
ports, with spatial scale in mas. The right-most panel is the summed coupling across
the first four (nulled) ports. Three points of interest are marked, corresponding to
intended locations at which on-sky data was later taken. 𝑃0 indicates the center,
the location of minimum summed coupling, where stellar coupling is measured. 𝑃1
indicates the location of maximum coupling for the LP 11a port. 𝑃2 indicates the
location of maximum coupling for the LP 11b port. Bottom) Wavelength-calibrated
null depths (stellar coupling divided by peak coupling) for each port.

the position of the injection stage and scan the PSF across a 100× 100 mas window.
We then obtain another scan using the injection stage, centered about the null. We
fit the two sets of data to each other, finding the best-fit magnification and rotation
angle, to calibrate units of lantern translation to mas.

The full coupling maps obtained by translating the lantern, with spatial scale cal-
ibrated to mas, are shown in Fig. 5.4a. Three points of interest are marked,
corresponding to intended locations at which on-sky data was later taken (see Sec-
tion 5.3). 𝑃0 is the center of the lantern to which the star would be aligned, and
where the stellar coupling (𝜂𝑠) is measured. 𝑃1 and 𝑃2 mark where the peak off-axis
coupling (𝜂𝑝𝑝𝑒𝑎𝑘 ) occurs for the LP 11a and LP 11b ports respectively.

Figure 5.4b shows the computed null-depths (𝜂𝑠/𝜂𝑝𝑝𝑒𝑎𝑘 ) for each port. In this case,
𝜂𝑝𝑝𝑒𝑎𝑘 for each wavelength is measured at the location of peak summed coupling
for that port, identified using the coupling maps from Fig. 5.4 — i.e., for each port,
the spatial location of this measurement is consistent across wavelengths rather than
being independently calculated for each wavelength.

Because multiple submodules of SCExAO are used in any given engineering night
and the hardware configuration is different for each, the instrument cannot be left in
the calibrated configuration. We save the settings for the lantern alignment in order
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to restore it later on-sky. However, as detailed in Section 5.3, precisely recovering
the alignment of the lantern poses significant difficulties, and future work is needed
to identify sources of misalignment between the daytime and on-sky configurations,
as well as to develop more robust strategies for recovering the alignment on-sky.

5.3 On-sky Observations
Misalignment and Attempted Recovery
During an engineering night on March 11th, 2025, we observed HD144206, a B-type
star with an H-band magnitude of 4.923. We found that the flux through the lantern
was higher when the AO loop was open than when it was closed, indicating the
presence of a severe misalignment. We used manual gradient ascent to reposition
the lantern such that the beam fell within its field-of-view (FOV), then conducted
a scan to obtain the coupling maps shown on the left of Fig. 5.5. Because of
the relatively good atmospheric conditions and AO correction, the scan revealed a
central minimum in the sum of flux across the nulled ports. We aligned the lantern
to this position, which we indicate as �̂�0, our estimate of the location of 𝑃0, with �̂�1

and �̂�2 indicating our estimates of 𝑃1 and 𝑃2 respectively.

The relative position of the injection stage between the daytime position and the
onsky position, converted to units of mas, is plotted on the right of Fig. 5.5,
showing that the misalignment caused the beam to initially land entirely out of the
lantern’s FOV. Additionally, data taken the afternoon after the observation shows that
the alignment continued to drift in the same direction even after the observation. It is
unclear what exactly caused this misalignment, but possibilities include mechanical
settling (due to the instrument being craned just prior to calibrations), or a potential
shift in an optic upstream. It is possible that this extreme of an misalignment will
not typically occur on a regular basis; however, characterizing the typical level of
misalignment will be an important part of future work.

On-sky measurements
After the lantern alignment was approximately recovered, we took data at the three
points �̂�0, �̂�1, and �̂�2. The median across all frames of the spectra obtained at each
of these points is presented in Fig. 5.6. At the estimated center �̂�0, LP 02 (the
non-nulled port) has the highest coupling, as expected. Meanwhile, LP 11a has the
highest coupling at �̂�1, and LP 11b has the highest coupling at �̂�2, as expected.

From these flux measurements, we calculate the onsky null-depths for the LP 11a
and LP 11b ports by dividing the median of their stellar coupling 𝜂𝑃0

by the median
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Figure 5.5: Left) The on-sky coupling maps corresponding to the five measured
ports, with spatial scale in mas. Additional on-sky data was taken at the three
locations �̂�0, �̂�1, �̂�2. These are the estimated positions of the points indicated
in Fig. 5.4, with some alignment uncertainty due the coarse sampling and rough
quality of the on-sky coupling maps. Right) The measured drift in the alignment
between the lantern position and the central pixel on the PSF monitoring camera.
The calibrated daytime position is at the center, marked with the black dot. The
range of the scans presented on the left as well as in Fig. 5.4 (approximately the FOV
of the lantern) is indicated by the gray circle. The position of the lantern obtained
during the on-sky observation is indicated with the blue square, while the position
of the lantern measured the afternoon after the observation is indicated with the
green triangle, showing a significant shift in the alignment between calibration and
observation, which continues in the same direction even after the observation.

of their peak coupling (𝜂𝑃1
and 𝜂𝑃2

respectively). These null-depths are plotted
across wavelength in Fig. 5.7. We also plot the 𝜂𝑃0

measured in the LP 21b port
divided by its 𝜂𝑃2

coupling. Although this is not a null-depth (since peak coupling
does not occur for the LP 21b port at �̂�2), as seen in Fig. 5.6, this port receives
a significant amount of flux for an object at this position and thus can provide
scientifically valuable information about the object.

Rather than first taking the median across the 𝜂𝑃0
frames, we can also divide the flux

by the appropriate median of 𝜂𝑃1
or 𝜂𝑃2

and plot the distribution. The bottom row
of Fig. 5.7 shows these histograms at the lantern design wavelength of 1.550 𝜇m. A
potential avenue for future work is analyzing these distributions using the null self-
calibration (NSC) method, which can increase sensitivity by fitting a statistical model
to the distribution to separately constrain the contributions to the null-depth from
the underlying astrophysical signal and the atmospheric or instrumental fluctuations
(Hanot et al., 2011; Martinod et al., 2021).
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Figure 5.6: The median over time of the fluxes measured at points �̂�0, �̂�1, �̂�2. At
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as expected. Meanwhile, LP 11a has the highest coupling at �̂�1, and LP 11b has the
highest coupling at �̂�2, as expected.
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Figure 5.7:

Estimated detection sensitivity
Lastly, we estimate the detection sensitivity to a binary companion located at 𝑃1.
Our data at 𝑃0 was taken in two separate sequences, one before the data at 𝑃1 and
𝑃2, and one after. We choose to use the first sequence for our analysis, as the second
sequence occurred during the end of the night when the sun was rising and the
conditions were degrading. We split this first sequence of frames obtained at 𝑃0

into two halves of 400 frames (over approximately 2 minutes) each. We use the
first half as the science data to which we can choose to inject a fake companion
(by scaling the data measured at 𝑃1 by a desired flux ratio). The second half we
use as a reference dataset, as if we had conducted a reference differential imaging



86

observation of a point-source star. This order of frame allocation will be referred
to as Dataset 1. We also perform the same analysis allocating the first half as the
reference dataset and injecting a fake companion (or not) to the second half to serve
as the science data. This order of frame allocation will be referred to as Dataset 2.
Although SCExAO operates in pupil-tracking mode (there is a pupil mask within
the instrument rotationally matched to the telescope pupil), for this work, we assume
that the sky rotation is negligible such that the companion remains at 𝑃1 the entire
time, a reasonable assumption for our data which spans the order of minutes. For
longer observations with noticeable sky rotation, a more sophisticated algorithm
would be needed to take advantage of the additional angular 2diversity and fit for
the location of the companion (Goyal et al. in prep).

The four mock science datasets are thus Dataset 1 with a fake companion, Dataset 1
without a fake companion, Dataset 2 with a fake companion, and Dataset 2 without a
fake companion, where the fake companion, when injected, has a flux ratio of 1/10.
We first perform PSF calibration by subtracting a normalized median estimate of the
reference PSF from the science data for each wavelength independently, as to make
the PSF subtraction process agnostic to potential differences in spectra between the
science target star and the reference star. The resulting data are shown in Fig. 5.8. In
the case of Dataset 1, the difference in the scale of the PSF-subtracted data between
the companion and no-companion case is visible by eye, while in Dataset 2, the
signal of the companion is comparable to that of the post-subtraction residuals.

To estimate the detectability of the companion, we fit the PSF-subtracted data 𝐷
to forward-models of the planet PSF 𝑀 , in this case the spatially-varying coupling
data obtained during daytime calibrations propagated through the same normalized
median subtraction as the science data. For simplicity, we collapse our individual
wavelength solutions for each port into the mean across all of them. At each spatial
location 𝑖, for each spectral channel 𝑗 , we find the companion flux 𝑓𝑖 𝑗 that maximizes
the log-likelihood computed across all ports 𝑘:

𝑓𝑖 𝑗 = arg max
𝑓

{−1
2

∑︁
𝑘

(𝐷 𝑗 𝑘 − 𝑓 𝑀𝑖 𝑗 𝑘 )2

𝜎2
𝑗 𝑘

}. (5.1)

Here, 𝑓𝑖 𝑗 is the relative scaling factor between the companion signal in the data and
the flux as measured with the lab source. We compute it across a logarithmically-
spaced grid spanning from 10−2 to 1. Its actual value is not physically meaningful
as each were taken with different camera settings, and neither are calibrated to
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Figure 5.8: Left) Data after PSF subtraction for Dataset 1 (top) and Dataset 2
(bottom) with a fake companion injected with a flux ratio of 0.1. Right) Data after
PSF subtraction for Dataset 1 (top) and Dataset 2 (bottom) without any injected
fake companions. In the case of Dataset 1, the difference in the scale of the PSF-
subtracted data between the companion and no-companion case is visible by eye,
while in Dataset 2, the signal of the companion is comparable to that of the post-
subtraction residuals.

absolute flux units. We leave 𝑓𝑖 𝑗 in uncalibrated units for this work; however,
it would be possible to calibrate these values to astrophysical units, such as by
observing photometric standard stars.

We then assign the sum of log-likelihoods across wavelengths as the log-likelihood
for that spatial position:

lnL𝑖 = −
1
2

∑︁
𝑗

∑︁
𝑘

(𝐷 𝑗 𝑘 − 𝑓𝑖 𝑗𝑀𝑖 𝑗 𝑘 )2

𝜎2
𝑗 𝑘

. (5.2)

Lastly, we estimate lnL0 as the log-likelihood of the data being entirely noise,

lnL0 = −1
2

∑︁
𝑗

∑︁
𝑘

𝐷2
𝑗 𝑘

𝜎2
𝑗 𝑘

(5.3)
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Figure 5.9: Detection results for Dataset 1. Left) The difference in log-likelihoods
lnL𝑖 − lnL0 between a fitted model with a companion at each location and a model
containing only noise, for a dataset that has a fake companion injected (top) and
for one without a fake companion (bottom). Right) The respective best-fit flux (in
uncalibrated units) as a function of wavelength at the best-fit spatial location. This
data shows a strong detection of the binary companion when it exists, with both
lnL𝑖 − lnL0 and the retrieved flux significantly higher than in the case without an
injected companion, as well as an accurate localization of the companion.

and plot the difference in log-likelihood lnL𝑖−lnL0 for all positions 𝑖 in Fig. 5.9 (for
Dataset 1) and Fig. 5.10 (for Dataset 2). This quantity lnL𝑖 − lnL0 is a measure of
the relative likelihood of the model with a companion in that given position, relative
to the likelihood of there being no companion, in logarithmic scale. Also plotted
are the retrieved fluxes (in uncalibrated units) for each of the mock science datasets.

We find that for Dataset 1, we obtain a strong detection of the binary companion
when it exists, with both lnL𝑖− lnL0 and the retrieved flux significantly higher than
in the case without an injected companion, as well as an accurate localization of the
companion. Dataset 2, on the other hand, shows a present but weaker detection of
the binary companion when it exists. The map of lnL𝑖 − lnL0 clearly favors the
existence of a binary companion, but the retrieved flux is not significantly above
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Figure 5.10: Detection results for Dataset 2. Left) The difference in log-likelihoods
lnL𝑖 − lnL0 between a fitted model with a companion at each location and a model
containing only noise, for a dataset that has a fake companion injected (top) and
for one without a fake companion (bottom). Right) The respective best-fit flux (in
uncalibrated units) as a function of wavelength at the best-fit spatial location. This
data shows a present but weaker detection of the binary companion when it exists.
The map of lnL𝑖 − lnL0 clearly favors the existence of a binary companion, but the
retrieved flux is not significantly above the retrieved flux in the case of no injected
companion. The localization is also weaker than with Dataset 1.

the retrieved flux in the case of no injected companion. The localization is also
weaker than with Dataset 1, though still informative. The difference between these
two orders of frame allocation indicates the presence of time-correlated systematic
noise that has not been averaged out, which is expected as the data only spans
about 4-minutes. Additionally, we observe the presence of non-Gaussianity in our
noise, as seen in the histograms in Fig. 5.7, and as manifested as a bias towards
positive values in the maps of lnL𝑖 − lnL0 for the noise-only datasets (which would
be symmetric about zero in the case of Gaussian, zero-mean noise). While we
have implemented one of most simple detection methods as an initial estimate of
the detectability of a hypothetical 1:10 binary companion, future work includes
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using more sophisticated post-processing algorithms to improve the sensitivity,
such as PCA-based PSF subtraction methods (which typically whitens the noise)
(Soummer, Laurent Pueyo, and Larkin, 2012a; Laurent Pueyo, 2016a), calibration
of tip-tilt using centroids obtained from the PSF monitoring camera, and statistical
null self-calibration using the distribution of null fluctuations (Hanot et al., 2011).
Additionally, Bayesian inference tools can be used to calculate the Bayes factors
between the various models in order to more rigorously characterize the sensitivity.

5.4 Conclusion
In this work, we present the first on-sky demonstration of the PLN on the SCExAO
instrument, which injects an AO-corrected beam into the PLN and disperses the
outputs onto a spectrograph with 𝑅 ≈ 500. We first explain the daytime calibration
procedure and show results from laboratory testing. We then present the results of
on-sky engineering: first our attempt to correct for a severe misalignment between
daytime calibrations and on-sky observations, then our measurements of on-sky
spectra at three different points (the null, the location of peak coupling for the
LP 11a port, and the location of peak coupling for the LP 11b port). From this
data, we calculate null-depths for the LP 11 ports to be approximately 10−1. We
then use our on-sky data to generate a mock binary dataset and a reference star
dataset in order to constrain the detectability of a hypothetical binary companion,
showing that a companion with a flux ratio of 0.1 can be detected with 2 minutes of
science exposures and 2 minutes of reference star exposures. However, the level of
significance and retrieved companion flux depends on which subset of frames are
used as the science data as opposed to the reference data, indicating the presence
of time-correlated systematic noise that has not been averaged out. Future work
includes diagnosing sources of misalignment between daytime calibrations and on-
sky observations and testing more robust on-sky alignment procedures. It also
includes observing binary systems on-sky to detect and characterize companions, as
well as using more sophisticated post-processing algorithms to improve the detection
sensitivity and Bayesian tools to better characterize it. Additionally, dispersing the
light onto a spectrograph with higher resolving power (𝑅 >> 4000) in the future
would enable high-resolution techniques based on spectrally resolving atomic and
molecular absorption lines, which can improve detection sensitivity by a factor of
∼ 100 in flux ratio and also enable atmospheric characterization of the companion
by detecting the absorption signatures of particular compounds.
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C h a p t e r 6

ENHANCING FIBER-FED SPECTROSCOPY WITH SPECKLE
NULLING ON THE KECK PLANET IMAGER AND

CHARACTERIZER

Xin, Yinzi et al. (July 2023). “On-sky speckle nulling through a single-mode fiber
with the Keck Planet Imager and Characterizer”. In: Journal of Astronomical
Telescopes, Instruments, and Systems 9, 035001, p. 035001. doi: 10.1117/1.
JATIS.9.3.035001. arXiv: 2307.11893 [astro-ph.IM].

While the bulk of my thesis focuses on developing the PLN, I was also an active
part of the instrument team for the Keck Planet Imager and Characterizer (KPIC)
instrument, a fiber-fed spectrograph routing AO-corrected light from the Keck II
telescope, through a single-mode fiber, to NIRSPEC, Keck’s high-resolution spec-
trograph with 𝑅 = 35000. KPIC has both a direct spectroscopy mode (where the
fiber is centered on the companion) and a Vortex Fiber Nuller mode, so it is a useful
platform and benchmark for exploring the possibilities of a PLN-fed high-resolution
spectrograph. I helped to characterize the upgraded version of KPIC in 2022 before
it was deployed, with calibrating the instrument for observations, and with con-
ducting the observations themselves. I also used the instrument as a platform for
demonstrating wavefront sensing and control techniques, and this chapter repro-
duces my paper on using speckle nulling through the single-mode fiber (in direct
spectroscopy mode). Speckle nulling is a variation on probed focal-plane wavefront
control, similar to the iEFC algorithm used in Chapter 4, so this work also provides
an estimate of how well iEFC with a PLN might work if implemented on-sky with
similar hardware (spectrograph resolving power, detector characteristics, etc.). For
this work, I used the deformable mirror of KPIC to destructively interfere starlight
leaking through the fiber with itself to suppress it during science observations, re-
ducing the contamination caused by stellar noise. This technique can consistently
achieve suppression factors of 2.5 to 3 on-sky and led to the most sensitive detection
limit achieved by KPIC at this spatial separation (J. J. Wang, Dimitri Mawet, et al.,
2024).

https://doi.org/10.1117/1.JATIS.9.3.035001
https://doi.org/10.1117/1.JATIS.9.3.035001
https://arxiv.org/abs/2307.11893
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Abstract
The Keck Planet Imager and Characterizer (KPIC) is an instrument at the Keck II
telescope that enables high-resolution spectroscopy of directly imaged exoplanets
and substellar companions. KPIC uses single-mode fibers to couple the adaptive
optics system to Keck’s near-infrared spectrometer (NIRSPEC). However, KPIC’s
sensitivity at small separations is limited by the leakage of stellar light into the fiber.
Speckle nulling uses a deformable mirror to destructively interfere starlight with
itself, a technique typically used to reduce stellar signal on a focal-plane imaging
detector. We present the first on-sky demonstration of speckle nulling through an
optical fiber with KPIC, using NIRSPEC to collect exposures that measure speckle
phase for quasi-real-time wavefront control while also serving as science data. We
repeat iterations of measurement and correction, each using at least 5 exposures. We
show a decrease in the on-sky leaked starlight by a factor of 2.6 to 2.8 in the targeted
spectral order, at a spatial separation of 2.0 𝜆/𝐷 in K-band. This corresponds to
an estimated factor of 2.6 to 2.8 decrease in the required exposure time to reach
a given SNR, relative to conventional KPIC observations. The performance of
speckle nulling is limited by instability in the speckle phase: when the loop is
opened, the null-depth degrades by a factor of 2 on the timescale of a single phase
measurement, which would limit the suppression that can be achieved. Future work
includes exploring gradient-descent methods, which may be faster and thereby able
to achieve deeper nulls. In the meantime, the speckle nulling algorithm demonstrated
in this work can be used to decrease stellar leakage and improve the signal-to-noise
of science observations.

6.1 Introduction
The Keck Planet Imager and Characterizer (KPIC) is a dedicated instrument for the
high-resolution spectroscopy of directly imaged companions, combining Keck II’s
adaptive optics system with its high-dispersion near-infrared spectrometer (NIR-
SPEC) (Delorme et al., 2021b) using single-mode fibers. It is part of a family
of instruments that leverages adaptive optics in combination with high-resolution
spectroscopy, including HiRISE (Otten et al., 2021), RISTRETTO (Lovis, Blind,
et al., 2022), REACH (Kotani et al., 2020), and VIS-X (Sebastiaan Y. Haffert et al.,
2021). Although the combination of high-contrast imaging and high-dispersion
coronagraphy is currently unable to access rocky planets in the habitable zone, the
use of this technique on the Extremely Large Telescopes has the potential to reach
this regime (Snellen et al., 2015).
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KPIC operates by coupling the planet’s light into a single-mode fiber and routing
it to NIRSPEC. Because the star is typically orders of magnitude brighter than the
planet and the planet is close to the star (< 1”), the signal on the spectrograph is
often dominated by stellar light leaking into the fiber. Although cross-correlating
the observed spectrum with an atmospheric model of the planet can help disentangle
the star and planet signals (Quinn M. Konopacky et al., 2013; Schwarz et al., 2016),
the leaked starlight nevertheless contributes a significant amount of photon noise
as well as systematic errors, such as through increased telluric signals and fringing.
This noise limits the sensitivity of the instrument at close separations less than 1
arcsecond, though (as a rule of thumb) KPIC becomes limited by thermal background
at separations greater than ∼ 1 arcsecond, depending on the target magnitude.

To motivate speckle nulling, we examine the impact of stellar leakage and throughput
on the integration time required to reach a given signal-to-noise ratio (SNR) on a
planet’s spectra. We denote the fractional planet throughput (co-axial with the SMF)
as 𝜂𝑝 and the fractional off-axis stellar throughput (or leakage) as 𝜂𝑠. According to
Ruane, Ji Wang, et al. (2018), if the measurement is photon-noise limited (e.g. the
noise scales as the square-root of photon count), the integration time 𝜏 required to
reach a given SNR scales as

𝜏 ∝ 𝜂𝑠
𝜂2
𝑝

. (6.1)

If the measurement is limited by systematic errors (e.g. the noise scales linearly
with photon count), then the relative integration time to reach a given SNR scales as

𝜏 ∝ 𝜂𝑠
𝜂𝑝
. (6.2)

In either case, it is advantageous to decrease 𝜂𝑠 with wavefront control, while keeping
𝜂𝑝 as high as possible. For wavefront control, we use a Boston Micromachines
deformable mirror (DM) with 1000 actuators, which was added as part of Phase
II of KPIC (N. Jovanovic, B. Calvin, et al., 2020). In this work, we explore using
speckle nulling with a single-mode-fiber-fed spectrograph, adapting an algorithm
originally used for suppressing starlight (speckles) on a focal-plane imaging detector
(Bottom et al., 2016). Speckle nulling aims to reduce 𝜂𝑠 using the DM, and because
the DM typically only applies a small perturbation to the wavefront, its impact on
𝜂𝑝 is expected to be very minor. This is unlike conventional coronagraphs, which
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can achieve very good starlight suppression and thus very low 𝜂𝑠, but may result in
a sizable decrease in 𝜂𝑝, especially at close separations (O. Guyon et al., 2006a).

In practice, there are other considerations that impact the relative integration time,
such as different fractional overheads for each per-frame integration time, or if any
frames taken for probing or calibration need to be discarded. In our case, our
integration overheads while speckle nulling are only slightly higher than that of
conventional KPIC observations (20% versus 10-15%), and, as discussed in Section
6.3, all of the frames taken in our implementation may be used for science.

We derive the equations for speckle nulling through a fiber in Section 6.2, and
present laboratory and on-sky demonstrations with KPIC in Section 6.3.

6.2 Methods
The equations describing traditional speckle nulling at a focal-plane are given in
Bottom et al. (2016). We adapt those equations for speckle nulling through a fiber
here.

We define the complex amplitude of the scalar electric field (“electric field" here-
after) contributed by the speckle to the focal plane as 𝐸𝑠0 (𝑥, 𝑦) and the focal plane
electric field induced by the DM as 𝐸DM0 (𝑥, 𝑦). The coupling of the focal plane
electric field into a single-mode fiber can be described as an overlap integral between
the field and the mode of the fiber centered at its physical location, denoted by (the
real-valued) Ψ(𝑥, 𝑦).

We can define the (potentially time-varying) contribution of the speckle to the
electric field through the fiber as

𝐸𝑠 = 𝑎𝑠𝑒
𝑖𝜙𝑠 =

∫
𝑑𝑥𝑑𝑦Ψ(𝑥, 𝑦)𝐸𝑠0 (𝑥, 𝑦), (6.3)

and the contribution of the DM through the fiber as

𝐸DM = 𝑎DM𝑒
𝑖𝜙DM =

∫
𝑑𝑥𝑑𝑦Ψ(𝑥, 𝑦)𝐸DM0 (𝑥, 𝑦). (6.4)

The electric field through the fiber can thus be described as

𝐸fib = 𝐸𝑠 + 𝐸DM = 𝑎𝑠𝑒
𝑖𝜙𝑠 + 𝑎DM𝑒

𝑖𝜙DM . (6.5)

The intensity (𝐼fib) measured at the output of the fiber is
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𝐼fib = |𝐸fib |2 = 𝑎2
𝑠 + 𝑎2

DM + 2𝑎𝑠𝑎DM cos (𝜙𝑠 − 𝜙DM). (6.6)

Assigning any flux through the fiber as speckle flux to be nulled, the speckle
amplitude can be calculated as 𝑎𝑠 =

√
𝐼fib. The speckle phase can be determined by

applying DM probes. By taking measurements with 𝜙DM = [0, 𝜋/2, 𝜋, 3𝜋/2], we
obtain the following probe measurements (assuming no noise):

𝐼1 = 𝑎2
𝑠 + 𝑎2

DM + 2𝑎𝑠𝑎DM cos (𝜙𝑠) (6.7)

𝐼2 = 𝑎2
𝑠 + 𝑎2

DM + 2𝑎𝑠𝑎DM sin (𝜙𝑠) (6.8)

𝐼3 = 𝑎2
𝑠 + 𝑎2

DM − 2𝑎𝑠𝑎DM cos (𝜙𝑠) (6.9)

𝐼4 = 𝑎2
𝑠 + 𝑎2

DM − 2𝑎𝑠𝑎DM sin (𝜙𝑠). (6.10)

The speckle phase can be estimated as

𝜙𝑠 = tan−1
[ 𝐼2 − 𝐼4
𝐼1 − 𝐼3

]
. (6.11)

Any incoherent flux would appear in all probe measurements and thus subtract out in
the phase calculation. The DM can then be used to apply 𝑎DM = 𝑎𝑠 and 𝜙DM = 𝜙𝑠+𝜋
such that 𝐼fib = 0. Theoretically, there are many ways to achieve the desired 𝑎DM

and 𝜙DM through the fiber. We choose to use a sinusoid on the DM, which applies a
speckle with a point-source-like extent in the focal plane. We calibrate the sinusoid’s
spatial frequency and direction to maximize influence through the fiber, and apply
𝑎DM and 𝜙DM as the sinusoid’s amplitude and phase as respectively.

This derivation assumes that the light is monochromatic. In our application, we
target a narrow wavelength band (chosen to be one echelle order of the NIRSPEC
spectrograph, which spans approximately 45 nm or aΔ𝜆/𝜆 of 0.02) that corresponds
to a spread in the focal plane of ∼ 0.05 𝜆/𝐷. Since this is much smaller than the
spatial extent of a single-sinusoid speckle (∼ 1 𝜆/𝐷), we expect the effect of chro-
maticity to be small. In Section 6.3, we show empirically that the monochromatic
assumption is indeed valid, as the wavelength band we work with is narrow com-
pared to the null created by the sinusoid. Extending speckle nulling into broadband
may be possible by calibrating multiple sinusoids that target different wavelengths,
a topic left for future work.
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6.3 Results
Laboratory Test
A simplified diagram of KPIC is shown in Figure 6.1a. Light from the telescope is
reflected by a deformable mirror, which is used to change the phase of the wavefront.
The light then propagates through to a tip-tilt mirror, which is used to put the star’s
point-spread-function (PSF) on a specified pixel on the tracking camera which
receives 𝐽- and 𝐻-band light from the dichroic. The 𝐾- and 𝐿-band light is sent to
a focusing lens, which injects it into the SMF that then routes it to NIRSPEC.

We first tested the algorithm using Keck’s internal broadband source to characterize
the suppression achievable in the lab, in the absence of atmosphere. We calibrated
the DM sinusoid spatial frequency and direction to maximize influence into a fiber
separated by 98 mas (the predicted separation of HD 206893c at the time of testing)
from the star. On KPIC, 98 mas corresponds to 2.2 𝜆/𝐷 in 𝐾-band (the science
band seen by NIRSPEC, with a central wavelength of 2.2 𝜇m). We also calibrated
the amplitude of the sinusoid in DM units (from 0 to 1) to 𝑎𝐷𝑀 in square-root-of-
raw-contrast units.

We then perform the speckle nulling sequence, first taking the four probe frames to
calculate the phase, then taking an unprobed frame to measure the raw contrast and
converting it to DM units. We apply a DM correction with a gain on the amplitude
(0.5 for in-lab tests, though we found that 0.25 works better on-sky) and a phase of
𝜙𝑠 + 𝜋. We repeat this procedure until the null stops improving. Here, we do not
apply any other perturbations to the DM and just use it to null the underlying static
speckle. However, in future work, it may be possible to simulate on-sky conditions
by injecting atmospheric turbulence or phase drift on the DM.

Figure 6.1b shows the nulling sequence, using the raw contrast (the ratio of leaked
off-axis starlight to the fractional co-axial throughput) in NIRSPEC order that spans
1.99 to 2.04 𝜇m as the metric. The ratio of initial raw contrast to the mean raw
contrast of the last three iterations is 27.5. Meanwhile, because the DM-induced
perturbation to the wavefront is indeed very small, the change in co-axial throughput
is actually below our ability to measure, since Keck’s internal light source is variable
by 10-20%. Towards the end of the nulling sequence, increasing the exposure time
did not result in a deeper null, indicating that the null depth was limited by systematic
effects. We did not explore the source of this limitation, since this suppression
ratio was already much higher than we expected to achieve on-sky (where the
performance is expected to be limited by instrumental phase drift or atmospheric
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Figure 6.1: a) Diagram of KPIC. Light from the telescope is reflected off of a
deformable mirror, which is used to change the shape of the wavefront. The light
then propagates to a tip-tilt mirror, which is used to put the star’s PSF on a specified
pixel on the tracking camera that receives J and H band light from the dichroic. The
K and L band light is sent to the fiber injection unit, which routes it to NIRSPEC. The
inlay depicts the alignment procedure on the tracking camera: the star is positioned
on the red cross such that the fiber position (indicated by the black cross) coincides
with the predicted planet position. b) Raw contrast from 1.99 to 2.04 𝜇m at each
iteration during a laboratory test of speckle nulling. The ratio of initial raw contrast
to the mean raw contrast of the last three iterations is 27.5. Further increasing the
exposure time did not result in a deeper null, indicating that the null depth was
limited by systematic effects.

turbulence). However, we speculate that this limit may be due to incoherent light
in the instrument, introduced, for example, by optical elements such as dichroics,
whose internal reflections can result in ghosts, or light that loses optical coherence
with the main beam if the optical path difference between the two beams is greater
than the coherence length. Here, the coherence length of the (combined 𝐾 and 𝐿
band) beam in question is on the order of ten microns.

On-sky Engineering
We tested speckle nulling on-sky on October 11, 2022 on HD 206893, a star with a
𝐾-band magnitude of 5.593 (Cutri et al., 2003). We placed the fiber at a separation of
91 mas (2.0 𝜆/𝐷 in 𝐾-band), which was the predicted separation of the companion
HD 206893c on that night (J. J. Wang, Kulikauskas, and Blunt, 2021; Hinkley et al.,
2023). The on-sky nulling sequence, targeting the raw contrast from 2.29 to 2.34
𝜇m (where many useful CO absorption lines lie), is shown in Figure 6.2a. The
frames were obtained using an exposure time of 59.0 seconds, with the exception of
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Figure 6.2: On-sky speckle nulling results from October 11, 2022. a) Raw contrast
from 2.29 to 2.34 𝜇m at each iteration of speckle nulling. Black squares correspond
to the original flat map, which is the DM map that maximizes co-axial throughput
through the fiber, calibrated using the internal source before the observing night
begins. Pink crosses correspond to probes used to determine the speckle’s phase,
as described by Equations 7-11. We take one measurement of the intermediate
null immediately after applying a solution map (shown in green) and a second
measurement (with the same solution map) just after the next probe cycle but before
applying the next map (shown in purple). In the absence of noise or drift, we expect
these measurements to be the same as the DM state is identical, so the difference
between them gives us a measure of the variability. Blue triangles correspond to the
final solution map at the end of seven iterations. There is significant variability in
measurements with the same instrument state, but by comparing the average of the
blue triangles and the average of the black squares in iteration 7, we find that speckle
nulling improves the raw contrast by a factor of 2.6 relative to using the flat map.
b) Comparison of co-axial throughputs with and without speckle nulling, showing
that speckle nulling does not decrease the throughput 𝜂𝑝.

the probe measurements for iterations 6 and 7 and the raw contrast measurements for
iterations 5 and 6, which were obtained with an exposure time of 119.5 seconds (to
test if increasing exposure time would improve the null). There is not enough data
to fully compare the behavior of the iterations using 2 minute exposures to those
using 1 minute exposures, but it tentatively seems that using the longer exposure
time decreases the spread in probe measurements but does not lead to a deeper null.
There is a trend towards deeper raw contrasts in the beginning, but the null becomes
limited around 1 × 10−2.

We observed significant variability in the measurements given the exact same in-
strument state. As a result, we took certain measures to characterize the level
of variability, and to make sure that our comparisons and conclusions about our
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implementation are as valid as possible.

First, we took two raw contrast measurements of each intermediate null to measure
the level of variability given the same instrument state. We take one measurement
immediately after applying a solution map and a second measurement (with the
same solution map) just after the next probe cycle but before applying the next map.
These two separate measurements of intermediate nulls before and after the probe
cycle are shown in Figure 6.2a in green and purple respectively.

Second, the blue triangle measurements in Figure 6.2a were all taken with the same
DM map, and also taken as close to each other in time as possible. Although
iteration 6 had a deeper null, iteration 7 is a fairer comparison to the final flat
map measurements, since they were taken closer together in time, so the difference
between them is less impacted by the variability.

Additionally, to check that the apparent gain from speckle nulling is not due to
variability, after the last iteration, we flipped back and forth between the final DM
map solution from speckle nulling and the original flat map — i.e. we took three
frames using the solution map, followed by three frames with the original flat map,
then repeated this twice for a total of 9 frames with each map. Comparing the
mean raw contrasts across this set of measurements, we find that speckle nulling
improved the null-depth by a factor of 2.6 relative to the flat map. Additionally,
the raw contrasts during the probe measurements are not noticeably higher than
the measurements with the DM solutions, and are still deeper than the raw contrast
without speckle nulling at all. Thus, even the probe measurements can be used as
science data, and no exposures have to be excluded from analysis.

Lastly, after collecting data comparing the final solution map with the flat map,
we reset the DM to our final solution map. Then, we opened the loop and took
short exposures to characterize the timescale of the null degradation. The open loop
raw contrast over time is shown in Figure 6.3. This sequence shows that the null
quickly degrades — in the time it takes to make a phase measurement using 1-minute
exposures plus overheads (indicated with blue shading), the raw contrast increased
by a factor of two. This degradation limits our ability to measure the drifting phase
quickly enough to correct it, which is likely limiting our null-depth. This drift in
phase may be due to the rotation of the pupil plane in our observation mode, as we fix
the companion location to a specific point on the tracking camera and allow the pupil
to rotate to maintain that position throughout the night. Unfortunately, in our case,
the loop speed is limited by the photon rate, so the exposure time cannot be further
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Figure 6.3: Raw contrast measurements over time when the loop is opened after the
speckle nulling sequence. In the time it takes to make a phase measurement using
1 minute exposures plus overheads (indicated with blue shading), the raw contrast
increased by a factor of two. This degradation limits our ability to measure the
drifting phase quickly enough to correct it, which is likely limiting our null-depth.
The dashed line indicates the raw contrast with the flat map (average of the black
squares from iteration 7 from Figure 6.2), which is commensurate with the raw
contrast that the null eventually degrades to after 30 minutes.

decreased. Future work may involve trying gradient-descent-based approaches to
nulling, or keeping a running estimate of the speckle phase. These methods may
be faster at combating phase drift, since an update can be made using fewer probes.
Future instruments with higher photon sensitivity may also be able to run with lower
integration times and therefore at faster rates.

In Figure 6.2b, we compare the fractional co-axial planet throughput obtained with
the flat map with the throughput obtained with the final speckle nulling DM solution,
and show that speckle nulling does not decrease the throughput 𝜂𝑝. In Figure 6.4a,
we plot the average spectrum from the last 9 frames with the flat map and the average
spectrum from the last 9 frames with the final speckle nulling DM solution. We also
plot the ratio of the two across wavelength to show the spectral shape of the null. The
null ratios across the different orders are summarized in Table 6.1. Interestingly,
the null is not deepest in the targeted order from 2.29 to 2.34 𝜇m. There is no
conclusive explanation for this behavior, but one possible interpretation is that by
the time these frames were taken, the underlying phase had already drifted in a way
that caused the null to be deeper in an order different from the targeted one. The
null is also rather broad, spanning several orders adjacent to the targeted one, and
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Figure 6.4: Comparison of speckle spectra obtained with and without speckle
nulling. a) Data from October 11, 2022. On top, the average spectrum from the
last 9 frames with the final speckle nulling DM solution is plotted in blue, and the
average spectrum from the last 9 frames with the flat map is plotted in black. Below
it, the ratio of the two shows the spectral shape of the null. The wavelength range
targeted by speckle nulling (the range over which flux was summed to calculate
the raw contrast) is indicated with light blue shading. In the targeted order from
2.29 to 2.34 𝜇m, speckle nulling achieved a suppression ratio of 2.6. b) Data from
November 12, 2022. On top, a frame at the end of a speckle nulling iteration is
plotted in blue, and the spectrum obtained immediately afterwards with the flat map
is plotted in black. Below it, the ratio of the two shows the spectral shape of the null.
The wavelength range targeted by speckle nulling (the range over which flux was
summed to calculate the raw contrast) is indicated with light blue shading. In the
targeted order from 2.22 to 2.27 𝜇m, speckle nulling achieved a suppression ratio
of 2.8.

the starlight does not increase in any of the orders as a result of speckle nulling, so
data across the entire observed spectrum benefits from using the technique.

Science Observation
We used speckle nulling for a science observation of the same target on November
12, 2022. This time, we targeted the order from 2.22 to 2.27 𝜇m, which has slightly
higher flux on the detector, which we believed might provide slightly better signal for
speckle nulling. We prioritized obtaining science-suitable exposures (including the
probe measurements), so kept the loop closed without stopping to obtain diagnostic
engineering data. We only flipped back to the flat map once, immediately after a
frame at the null. The comparison of the fluxes from two frames is shown in the
right panel of Figure 6.4. The null ratios across the different orders are summarized
in Table 6.1.
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Table 6.1: Decrease in stellar coupling achieved through on-sky speckle nulling.
The observed star is HD 206893, a star with a 𝐾-band bagnitude of 5.593. The
fiber was placed 91 mas from the star at the predicted location of HD 206893c. The
table lists the mean null ratio for each spectral order. Values for the order targeted
by speckle nulling are in bold.

Wavelength (𝜇m) Null Ratio (Oct. 11) Null Ratio (Nov. 12)
1.94-1.98 1.8 1.1
1.99-2.03 2.3 1.2
2.05-2.09 2.9 1.5
2.10-2.14 3.2 1.9
2.16-2.20 3.1 2.4
2.22-2.27 2.9 2.8
2.29-2.34 2.6 2.8
2.36-2.41 2.2 2.5
2.44-2.49 1.7 2.1

On this night, speckle nulling achieved a suppression ratio of 2.8 relative to using
the flat map. This shows that the gain achieved with speckle nulling is repeatable
over different nights.

6.4 Conclusion
We demonstrate the successful on-sky application of speckle nulling through an
optical fiber, using a science spectrograph to simultaneously collect science data
and measure speckle phase. We achieve a gain in stellar suppression of about 2.6 to
2.8, and show that this gain is repeatable over different nights. This suppression is
achieved with minimal impact to the planet throughput (any change is well below
what we can measure). Thus, using speckle nulling is expected to decrease the
required integration time to reach a desired SNR by a factor or 2.6 to 2.8. The
performance of speckle nulling on-sky is likely limited by the drift in phase on the
timescale of a phase measurement, likely caused by instabilities in the instrument.
Future work could involve exploring gradient-descent algorithms to null starlight,
which may be faster and therefore better able to combat the drifting phase. In the
meantime, the speckle nulling algorithm demonstrated in this work can be used to
decrease stellar leakage and improve the signal-to-noise of science observations.
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C h a p t e r 7

CORONAGRAPHIC DATA POST-PROCESSING USING
PROJECTIONS ON INSTRUMENTAL MODES

Xin, Yinzi et al. (Mar. 2024). “Coronagraphic Data Post-processing Using Projec-
tions on Instrumental Modes”. In: The Astrophysical Journal 963.2, 96, p. 96.
doi: 10.3847/1538-4357/ad1879. arXiv: 2401.04269 [astro-ph.IM].

This chapter reproduces my paper on modeling a coronagraph instrument to find a
subset of the data that is robust to wavefront aberrations, such that projecting the
data onto the subspace results in higher signal-to-noise and stronger detections. This
work models the Roman Space Telescope Hybrid Lyot Coronagraph; however, while
the PLN has much fewer output degrees of freedom, the underlying principles are
the same, and a similar concept can be applied, (e.g. by weighing the signal in linear
combinations of ports by their relative sensitivity to aberrations). An important
finding of this work is that the robust subspace is dependent on the instrument
design as well as the level of dynamic wavefront aberrations relative to the static
portion of the electric field. Although simple in premise, treating the case of large
dynamic aberrations required an expansion of the term quadratic in wavefront error
that was very atypical for and not yet explicitly documented within the field. I
simulated mock detections with synthetic Roman Hybrid Lyot Coronagraph data
to show that using such a projection increased detection sensitivity by about 28%
with aberrations in the linear regime, and a factor of 2 with aberrations in the
quadratic regime. While a projection is a simple way to implement information
about the instrument in the data analysis, future implementations will likely include
this model as a statistical prior along with other sources of information. This project
has followed me to many places: I began it as a Master’s student at MIT, met a key
collaborator on a visit to the Observatory Côte d’Azur, continued it as a visiting
researcher at the Space Telescope Science Institute, and finished it while a graduate
student at Caltech.

Abstract
Directly observing exoplanets with coronagraphs is impeded by the presence of
speckles from aberrations in the optical path, which can be mitigated in hardware

https://doi.org/10.3847/1538-4357/ad1879
https://arxiv.org/abs/2401.04269
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with wave front control, as well as in post-processing. This work explores using an
instrument model in post-processing to separate astrophysical signals from residual
aberrations in coronagraphic data. The effect of wave front error (WFE) on the
coronagraphic intensity consists of a linear contribution and a quadratic contribution.
When either of the terms is much larger than the other, the instrument response can
be approximated by a transfer matrix mapping WFE to detector plane intensity.
From this transfer matrix, a useful projection onto instrumental modes that removes
the dominant error modes can be derived. We apply this approach to synthetically
generated Roman Space Telescope hybrid Lyot coronagraph data to extract “robust
observables," which can be used instead of raw data for applications such as detection
testing. The projection improves planet flux ratio detection limits by about 28%
in the linear regime and by over a factor of 2 in the quadratic regime, illustrating
that robust observables can increase sensitivity to astrophysical signals and improve
the scientific yield from coronagraphic data. While this approach does not require
additional information such as observations of reference stars or modulations of
a deformable mirror, it can and should be combined with these other techniques,
acting as a model-informed prior in an overall post-processing strategy.

7.1 Introduction
Specialist high-contrast techniques are required to directly observe faint astrophysi-
cal objects near brighter objects, such as exoplanets, brown dwarfs, or circumstellar
disks orbiting much brighter central stars. High contrast observations are essential
for answering scientific questions involving binary and planetary system popula-
tion statistics, planet and disk formation and evolution, planetary atmospheres, and
planet habitability and the search for biosignatures (Traub and Oppenheimer, 2010).
Measuring these exoplanet signals is difficult because they often lie at small angular
separations from their host star and can be many orders of magnitude fainter. One
major obstacle for high contrast observations is photon noise from the light of the
central star. Practical matters such as detector saturation aside, if the star is orders of
magnitude brighter than its companion, the photon noise associated with the outer
lobes of star’s point-spread-function (PSF) can overwhelm any signal from the com-
panion, even if the on-axis star’s signal is perfectly known. As a result, instruments
to directly suppress starlight, such as coronagraphs and nullers, are important in
increasing the photon signal-to-noise (SNR) of faint companions.

Another important source of noise is wavefront error (WFE), which distorts the
signal of the on-axis point source. Sources of wavefront error include atmospheric
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turbulence, imperfections in the optics, or thermo-mechanical changes in the tele-
scope or instrument. At an instant in time, a perturbation to the wavefront scatters
energy from the core of the PSF into speckles throughout the image that can resem-
ble off-axis sources. If the magnitude of the WFE electric field is smaller than that
of the underlying electric field from the PSF, then the speckles are symmetric about
zero in detector plane intensity and average out over time. When the wavefront
error is the larger term, as in the case of uncorrected atmospheric turbulence, the
speckles are predominantly positive, increasing rather than decreasing the intensity
over most of the focal plane, and averaging out to a halo that can obscure off-axis
signals. Scattered starlight at larger spatial separations increases the photon noise
at those locations in the detector plane, which can also dominate over signals from
faint companions.

The goal of high contrast instruments is to separate the signal of the on-axis star from
off-axis sources. Coronagraphs are passive optical elements that spatially filter the
light to suppress the signal of an on-axis star, reducing its associated photon noise
while letting through off-axis signals (O. Guyon et al., 2006b). Adaptive optics (AO;
Tyson, 2000) and focal plane wavefront control (Groff et al., 2015) actively correct
for wavefront error to reduce their impact. However, even with suppression from
coronagraphs or nullers, the sensitivity to faint astrophysical signals is still limited
by residual starlight and its associated photon noise.

Post-processing techniques can use additional available information to further mit-
igate the effects of WFE and increase sensitivity to real astrophysical signals (see
Cantalloube et al. (2022) for a discussion of the state-of-the-art of high contrast
post-processing in the context of a direct imaging data challenge). For example,
angular differential imaging (ADI) exploits observations at different roll angles,
taking advantage of azimuthal averaging of the wavefront error (Christian Marois,
Lafreniere, et al., 2006; Flasseur et al., 2018). Other methods rely on performing
principal component analysis (PCA) on reference observations of a calibration star
similar to the host star, but without astrophysical companions, to calibrate out resid-
ual static or quasi-static starlight (Lafrenière et al., 2007; Soummer, Laurent Pueyo,
and Larkin, 2012b; Laurent Pueyo, 2016b). Additional sources of information on
residual WFE include telemetry from wavefront sensing and control (WFSC) sys-
tems such as wavefront sensor residuals (Vogt et al., 2011) or focal plane electric
field estimates (Pogorelyuk, Kasdin, and Rowley, 2019), data from a self-coherent
camera (P. Baudoz et al., 2006b), and data at different wavelengths as exploited in
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spectral deconvolution (Sparks and Ford, 2002).

This work shows that the modeled or measured instrument sensitivity to wavefront
error can be included as an additional source of information in the post-processing
of coronagraphic data, information that, in theory, can be combined with the other
techniques discussed. This work examines an approach that uses this physical
optics model to construct a projection removing the dominant error modes in the
appropriate wavefront error regime, and finds that this can improve sensitivity to
faint companions by up to and over a factor of 2.

7.2 Coronagraphic Signals
Data Formation
The model used in this work assumes the light through the instrument is monochro-
matic. With a discrete representation of the optical planes of an instrument, a
coronagraph can be modeled as a linear operator C, a constant 2D matrix trans-
forming the electric field vector at the pupil plane, 𝑬𝒔, into the electric field vector
at the detector plane, 𝑬det. If 𝑬𝒔0 is the electric field vector of the central source
(star) at the pupil plane in the absence of aberrations, and 𝜟𝑬𝒔 a vector of small
perturbations to that electric field, representing wavefront aberrations (which can be
variable in time), then the electric field vector at the detector plane, assuming that
the star is the only source of light, is

𝑬det = C𝑬𝒔 = C𝑬𝒔0 + C𝜟𝑬𝒔 (𝑡). (7.1)

The intensity measured is the element-wise norm squared of the detector plane
electric field (here, 𝑥 indicates the element-wise complex conjugate of 𝑥 and ◦
indicates the element-wise product):

𝑰𝒔 = |𝑬det |2

= |C𝑬𝒔0 |2 + 2 Re
{
(C𝑬𝒔0) ◦ C𝜟𝑬𝒔 (𝑡)

}
+ |C𝜟𝑬𝒔 (𝑡) |2.

(7.2)

The vector of the pupil plane electric field of a binary companion is given by

𝑬 𝒑 =
√
𝑐𝑬𝒔0𝑒

−𝑖𝒌·𝒙 +
√
𝑐𝜟𝑬𝒔 (𝑡)𝑒−𝑖𝒌·𝒙 = 𝑬 𝒑0 + 𝜟𝑬 𝒑 (𝑡), (7.3)

where 𝑐 is the flux ratio between the planet and the star, 𝒌 is the pupil plane wave
vector indicating the companion’s location, and 𝒙 is the pupil plane coordinate
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vector. Namely, the planet’s pupil-plane electric field is the star’s electric field, but
tilted and scaled by the square root of the flux ratio. The detector plane intensity for
the planet can be expressed as

𝑰 𝒑 = |C𝑬 𝒑0 |2 + 2 Re
{
(C𝑬 𝒑0) ◦ C𝜟𝑬 𝒑 (𝑡)

}
+ |C𝜟𝑬 𝒑 (𝑡) |2. (7.4)

The total intensity on the detector plane from the star and the planet is the sum of
Eqs. 7.2 and 7.4. However, we can make two simplifying assumptions. The first
assumption is that the flux of the planet is small relative to the flux of the star, such that
𝑐 ≪ 1. The second assumption is that the magnitude of the wavefront error is small
relative to the total magnitude of the electric field, namely 𝜟𝑬𝒔 (𝑡) ≪ 𝑬𝒔0, which
implies 𝜟𝑬 𝒑 (𝑡) ≪ 𝑬 𝒑0. This is true if we are both in the “small phase regime"
(when there is much less than one wave of wavefront error) and the fractional
amplitude error is much less than one. These assumptions imply that the last two
terms of Eq. 7.4 are small relative to the other terms, so we can approximate the
total intensity as

𝑰tot ≈ |C𝑬𝒔0 |2 + 2 Re
{
(C𝑬𝒔0) ◦ C𝜟𝑬𝒔 (𝑡)

}
+ |C𝜟𝑬𝒔 (𝑡) |2 + |C𝑬 𝒑0 |2. (7.5)

The first term |C𝑬𝒔0 |2 is the residual starlight not blocked by the coronagraph in
the case of no aberrations. The second term 2 Re

{
(C𝑬𝒔0) ◦ C𝜟𝑬𝒔

}
is linear in the

wavefront aberration and corresponds to the interference of the aberration, propa-
gated to the focal plane, with the underlying residual starlight from the coronagraph,
analogous to speckle pinning (Bloemhof, 2002; Perrin et al., 2003). The third term
|C𝜟𝑬𝒔 |2 is the quadratic term, corresponding to the norm squared of the wavefront
error propagated to the focal plane. The last term |C𝑬 𝒑0 |2 is the nominal off-axis
signal of interest.

Whether the effect of wavefront errors at some location in the detector plane are
dominated by the linear term or the quadratic term depends on the attenuation of
starlight by the coronagraph and the level of the propagated wavefront error at that
location. If the propagated wavefront aberrations are smaller in complex amplitude
than the residual starlight after the coronagraph with no aberrations, the linear term is
dominant. When a coronagraph is not used, this corresponds to the speckle pinning
regime, in which the aberrations primarily interfere with the wings of the telescope’s
PSF (Bloemhof, 2002). The same phenomenon occurs with a coronagraph; however,
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as the amplitude of the PSF wings are reduced by the coronagraph, the range of WFE
over which this occurs is much more limited. Otherwise, if the propagated wavefront
aberrations have relatively larger magnitudes, the quadratic term is dominant. For
a given location in the focal plane, the local point of transition between the linear
and quadratic regimes occurs when |2 Re

{
(C𝑬𝒔0) ◦ C𝜟𝑬𝒔

}
| = |C𝜟𝑬𝒔 |2, or roughly

when |2C𝑬𝒔0 | = |C𝜟𝑬𝒔 |.

This point of transition is different for each pixel, and also depends on the coron-
agraph design as well as the “nominal” wavefront (whether it is flat, as is typical
for ground-based coronagraphs, or the wavefront corresponding to a dark hole, as
is planned for space-based coronagraphs). For this work, we use as an example
the Hybrid Lyot Coronagraph (HLC) of the Coronagraph Instrument of the Roman
Space Telescope. With the dark hole presented in Section 7.5, which has an aver-
age raw contrast (residual stellar intensity divided by unocculted peak intensity) of
5.6 × 10−9, the point at which |C𝜟𝑬𝒔 | > |2C𝑬𝒔0 | for 50% of the pixels in the dark
hole region occurs at roughly 0.1 waves root-mean-square (RMS) of phase error, on
average. This means that wavefront errors less than 0.1 waves RMS will primarily
be in the linear regime, while wavefront errors larger than 0.1 waves RMS will
primarily be in the quadratic regime, although this is somewhat dependent on the
form of the wavefront’s spatial power spectral density (PSD) that we use in Section
7.5.

In this work, robust observables are only formulated for WFE that is predominantly
linear or predominantly quadratic throughout the entire focal plane. However, it
may be possible to obtain robust observables for when both terms have comparable
contributions, a topic that is left for future work.

Linear Regime
From Equation 7.5, if we then assume that the linear error term is dominant, then
we can drop the quadratic contribution such that the detector plane intensity is
approximately

𝑰tot,𝒍 ≈ |C𝑬𝒔0 |2 + 2 Re
{
(C𝑬𝒔0) ◦ C𝜟𝑬𝒔 (𝑡)

}
+ |C𝑬 𝒑0 |2. (7.6)

The contribution of the wavefront error to the intensity can be expressed as a linear
transformation Al acting on the wavefront error:
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𝑰tot,𝒍 ≈ |C𝑬𝒔0 |2 + Al𝜟𝑬𝒔 (𝑡) + |C𝑬 𝒑0 |2. (7.7)

The transfer matrix Al can be calculated semi-analytically from the coronagraph
operator and the unaberrated electric field, as derived from Equation 7.6:

Al𝑘 𝑗 =
𝜕𝐼𝑘

𝜕𝛥𝐸𝑠 𝑗
= 2 Re

{
(
∑︁
𝑖

C𝑘𝑖𝐸𝑠0𝑖 )∗C𝑘 𝑗

}
. (7.8)

The indices 𝑖 and 𝑗 label the input basis vectors used to represent the wavefront
error, and the index 𝑘 labels the detector pixel.

It is desirable to reduce the term dependent on WFE, Al𝜟𝑬𝒔 (𝑡), relative to the terms
containing astrophysical signals of interest. This can be achieved by left-multiplying
the measured intensities by a matrix Kl, that projects out the dominant modes of Al.
The following Section 7.3 describes the process of calculating Al and finding from
it an appropriate Kl. The observables obtained using projection matrix Kl are given
by

𝑶 𝒍 = Kl𝑰tot,𝒍 . (7.9)

When the wavefront errors are in the linear regime, this projection is expected to
suppress the contribution of wavefront errors to the measured data. As long as the
measurements retain most of the astrophysical signal, then the projection will boost
its SNR.

Quadratic Regime
In the quadratic-dominated regime, we can drop the linear contribution in Eq. 7.5,
such that the detector plane intensity is approximately

𝑰tot,𝒒 ≈ |C𝑬𝒔0 |2 + |C𝜟𝑬𝒔 (𝑡) |2 + |C𝑬 𝒑0 |2. (7.10)

In a discrete numerical model, the contribution of the quadratic term to each pixel
labeled 𝑘 in the detector plane can be expressed as

|C𝜟𝑬𝒔 |2𝑘 = (
∑︁
𝑚

C𝑘𝑚𝛥𝐸𝑠𝑚)∗(
∑︁
𝑛

C𝑘𝑛𝛥𝐸𝑠𝑛) =
∑︁
𝑖

∑︁
𝑗

𝛥𝐸∗𝑠𝑖M𝑘𝑖 𝑗𝛥𝐸𝑠 𝑗 . (7.11)
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The indices𝑚, 𝑛, 𝑖, and 𝑗 label the input basis vectors used to represent the wavefront
error (expressed here in terms of perturbation to the complex electric field), and the
index 𝑘 labels the detector pixel. The quantity M̂ with elements M𝑘𝑖 𝑗 is a 3-
tensor containing the second order partial derivative matrix (Hessian) of each pixel
intensity with respect to the wavefront error, and relates each pairwise combination
of pupil basis vectors to its effect on each detector plane pixel 𝑘 . Each entry can
be calculated semi-analytically from the coronagraph operator using the following
formula derived from Equation 7.11:

M𝑘𝑖 𝑗 =
𝜕2𝐼𝑘

𝜕𝛥𝐸∗𝑠𝑖𝜕𝛥𝐸𝑠 𝑗
= C𝑘𝑖C∗𝑘 𝑗 + C𝑘 𝑗C∗𝑘𝑖 . (7.12)

Assuming there are 𝑁pix pixels of interest on the detector, and 𝑁 basis vectors are
used to represent the wavefront error, then, through a remapping, the 3-tensor M̂ of
size (𝑁pix×𝑁 ×𝑁) can be expanded into a matrix acting on the space of all pairwise
combinations of pupil basis vectors. Since Hessians are symmetric because partial
derivatives commute (M𝑘𝑖 𝑗 = M𝑘 𝑗𝑖), the ordering of each pair of segments does not
matter, and the derivatives corresponding to the same pair of original basis vectors
can be consolidated into the same entry. This results in an input vector space of size(𝑁+1

2
)
, or the number of pairwise combinations of pupil basis vectors.

The 3-tensor M̂ can thus be represented as a (𝑁pix ×
(𝑁+1

2
)
) matrix Aq of second

derivatives, acting on a vector 𝜷 of perturbations defined for each pairwise combi-
nation Δ𝐸𝑠𝑖Δ𝐸𝑠 𝑗 . This results in the following expression for the quadratic term:

|C𝜟𝑬𝒔 |2 = Aq𝜷. (7.13)

The projection is similar to the linear case: the detector intensities can be left-
multiplied by a matrix Kq that projects out the dominant quadratic error modes of
M. The observables with the appropriate projection Kq are given by

𝑶𝒒 = Kq𝑰tot,𝒒 . (7.14)

7.3 Response Matrices and Robust Observables
Calculating the Response Matrix
This section details the numerical calculation of instrument response matrices and
the projection matrices. In this work, the response matrix is calculated with the
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wavefront aberrations represented in the Zernike basis. In this basis, 𝛥𝐸𝑍𝑛 is the
coefficient of the aberration induced by the 𝑛𝑡ℎ Noll ordered Zernike polynomial
(Noll, 1976), and 𝑁 is the total number of polynomials chosen to construct the
response matrix:

𝜟𝑬𝒔 =
©«
𝛥𝐸𝑍1

...

𝛥𝐸𝑍𝑁

ª®®¬ . (7.15)

We define 𝑁pix as the total number of detector pixels of the optical model and
𝑁basis as the number of Zernike modes to include. The coronagraph operator C
is the 𝑁pix × 𝑁basis matrix that, when applied to a vector of Zernike coefficients,
gives the perturbation they induce in the focal plane electric field. This operator
is typically either already part of the optical model, or obtainable by propagating
Zernike modes through the optical model and using finite differences to populate its
columns. Given the operator C and the initial unaberrated focal plane electric field,
we can calculate both Al and Aq using Equations 7.8 and 7.12. Note that the term
(∑𝑘 C𝑘 𝑗𝐸𝑠0 𝑗

) in Equation 7.8 is simply the initial unaberrated focal plane electric
field at pixel 𝑘 . For more complicated models without simple analytical solutions
(such as those that include distortion), automatic differentiation, in which arbitrary
exact derivatives can be computed without finite differences, may be useful (Pope
et al., 2021).

The linear transfer matrix poses no computational problems, as its size is𝑁pix×𝑁basis.
However, for the quadratic transfer matrix Aq, the size of the input dimension
quickly becomes computationally burdensome for high 𝑁basis. For the example
system shown in Section 7.5, a 𝑁basis of 528 results in a Aq matrix of width(𝑁basis+1

2
)
= 139, 656 (the number of pairwise combinations of pupil basis vectors),

and length 5,476 (the number of detector pixels of the model). This Aq matrix, when
represented as (non-complex) doubles, is over 6GB in size. As explained in Section
7.3, the calculation of the projection matrix involves a singular value decomposition
(SVD) of the response matrix. Since calculating the SVD of a matrix of this
size is too computationally expensive, we restrict our quadratic transfer matrix to
only include the first 𝑁redu = 100 Zernikes, which results in an Aq with a width
of only

(𝑁redu+1
2

)
= 5050. This model is valid only in a smaller area closer to

the central star — namely within ∼ 5𝜆/𝐷, where 𝜆 is the wavelength and 𝐷 the
telescope diameter. However, in Appendix 7.6, we explore using an approximation
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of the quadratic transfer matrix that can extend the area of applicability while
circumventing impractical computational costs.

Calculating the Projection Matrix
Once a response matrix A is obtained, a singular value decomposition of A = USV𝑇

is performed, revealing its singular modes and corresponding singular values. Then
a choice of the number of modes to project out (𝑁𝑚) is made. The remaining
𝑁pix−𝑁𝑚 modes are kept in the post-processing projection K. Accordingly, K is the
subset of U that contains the 𝑚 +1𝑡ℎ and higher left singular modes of A. A pseudo-
code summary of the process to find K is given in Algorithm 1. The optimal 𝑁𝑚
depends on the signal of interest. For the point-source companion signals explored
in this work, 𝑁𝑚 is chosen as the cutoff that results in the best detection limit at the
separation of interest.

Algorithm 1 Calculate projection matrix K
Input: Transfer matrix A
Input: Cutoff mode (number of modes to project out), 𝑁𝑚
Input: Indices of detector plane pixels in region of interest, idx
Output: Projection matrix K
𝑈, 𝑆,𝑉𝑇 ← svd(A)
K← transpose(𝑈 (idx, 𝑁𝑚 + 1 : end))

If the linear and quadratic projections are used in the appropriate regimes to increase
SNR, they could, for example, allow for a binary signal detection with a deeper flux
ratio than using the raw intensity data. Detection tests can be performed on both
projected and unprojected data to quantify this effect.

7.4 Detection Testing
Detections are typically claimed from a statistical hypothesis test (see e.g. Kasdin
and Braems, 2006; Jensen-Clem et al., 2017; Ceau et al., 2019). A test statistic 𝑇
is calculated from the data and compared to a threshold 𝜉. A detection is claimed
if 𝑇 ≥ 𝜉, and a lack of a detection is claimed otherwise. The fraction of real
companions detected is the true positive rate (TPR). A false positive occurs if there
is no companion in the data, but the detection test incorrectly claims a detection.
The rate at which this occurs is the false positive rate (FPR).

As the detection threshold 𝜉 is decreased, detecting real companions becomes more
likely, but false detections also become more likely (Jensen-Clem et al., 2017).
Varying the threshold and plotting the TPR as a function of the FPR results in a
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receiver operating characteristic (ROC) curve, an example of which is shown in
Figure 7.6. ROC curves characterize the performance of a detection scheme and are
used in the determination of flux ratio detection limits.

This work uses a simple Delta Reduced Chi-squared (𝛥𝜒2
𝑟 ) statistic, or the difference

in the reduced 𝜒2 of the data assuming it contains only noise, and the reduced 𝜒2

of the data assuming it contains noise and the companion signal. The formula for
calculating this test statistic from the data is given by Equation 7.16 (the bars indicate
vector norm, the divisions are element-wise):

𝛥𝜒2
𝑟 =

1
𝜈

(��� y
𝝈

���2 − ���y − x
𝝈

���2) . (7.16)

In this formula, y is the data, which is the synthetically generated realizations of
𝑰tot, with or without a planet. Meanwhile, x is the unaberrated model of the planet
signal 𝑰 𝒑0 = |C𝑬 𝒑0 |2 (assuming that it is known, such as through a maximum-
likelihood-estimation). The estimated uncertainty of the data is denoted by 𝝈, and
𝜈 is the degrees of freedom (the number of data elements minus the number of free
parameters; a binary system’s three free parameters are the flux ratio, separation,
and position angle). This use of this test statistic is motivated by an assumption
that the noise is Gaussian and uncorrelated, under which this quantity is related
to the relative log-probabilities of the data containing both the planet signal and
noise, versus containing only noise. The noise being uncorrelated and Gaussian is
generically not the case. However, the effects of the correlation and non-Gaussianity
of the injected noise on the resulting test statistic distributions is properly simulated
and captured by the Monte Carlo methods used in this work.

7.5 Example: Nancy Grace Roman Space Telescope Hybrid Lyot Corona-
graph

In this section, the use of robust observables with the Hybrid Lyot Coronagraph of
the Roman Space Telescope is analyzed through simulation. However, this approach
could also be applied to other coronagraphs, as long as the exposure times are short
enough such that wavefront error has not been averaged out. The optical model of
CGI is shown in Figure 7.1 (Kasdin, Bailey, et al., 2020). The optical elements
corresponding to the HLC mode (the relevant mode for this work) are depicted in
the top panel.
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Figure 7.1: The CGI optical train and wavefront sensing and control architecture.
The optical elements of the HLC mode of interest are depicted in the top panel. Be-
fore an observation, the high order wavefront sensing and control loop is performed
on a bright reference star to generate a ‘dark hole’ (an area where starlight is sup-
pressed). Then, the DM shapes are fixed, and the telescope slews to the target star
for the observation. During the observation, wavefront errors accrue as a result of
instrumental disturbances and drifts, the effects of which this work aims to mitigate
in post-processing. Figure from Kasdin, Bailey, et al. (2020).

Optical Model
The HLC operates around a dark hole state, which is obtained using focal plane
wavefront control (with deformable mirrors) to measure and minimize the electric
field in the detector plane. Such focal plane wavefront control significantly sup-
presses the amount of starlight in the dark hole, and allows for much deeper raw
contrasts than with just a flattened wavefront. Before an observation, the dark hole
is generated using high order wavefront sensing and control loop on a bright ref-
erence star. Then, the DM shapes are fixed, and the telescope slews to the target
star for the observation. During the observation, wavefront errors accrue as a result
of instrumental disturbances and drifts. This work aims to mitigate the effects of
those wavefront errors in post-processing. Note that as a result of the dark-hole
generation, the nominal electric field 𝑬𝒔0 is not a flat wavefront, but the pupil plane
electric-field obtained at the end of the dark-hole generation sequence.

A Lightweight Space Coronagraph Simulator (LSCS) 1 derived from the HLC model
in the Fast Linearized Coronagraph Optimizer (FALCO; Riggs et al., 2018) toolbox

1https://github.com/leonidprinceton/LightweightSpaceCoronagraphSimulator
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is used for the following simulations. The LSCS relies on the HLC numerical model
and focal-plane wavefront control algorithm included in FALCO to first generate
the initial dark hole electric field. The numerical model in FALCO is also used to
calculate C from the finite-difference sensitivities of the focal plane electric field to
pupil plane phase error expressed in the Zernike basis (we have made the assumption
that the matrix transformation is approximately linear in phase, valid when the phase
error is much less than a wave). Although we use finite-differences to calculate C,
one could also construct it by multiplying together all the matrix transformations of
the optical model. These simulations are conducted at a single wavelength of 546
nm.

The average raw contrast of the initial dark hole is 5.6 × 10−9. The LSCS model
takes in Zernike coefficients for phase aberrations, calculates their effect on the focal
plane electric field, and adds them to the initial dark hole electric field to obtain the
focal plane electric field in the presence of wavefront errors. The intensity can be
calculated as the norm-square of the focal plane electric field. Detector and photon
noise are not simulated. Since the default LSCS models only the first 136 Zernikes,
FALCO is first used to extend the LSCS model to 528 Zernikes in order for the
entire dark hole to be sampled.

This results in using 528 Zernikes to sample the entire dark hole, or a 𝑁basis of 528.
The LSCS models a detector that is 74× 74 pixels, with 3 pixels per 𝜆/𝐷, for a total
pixel number of 𝑁pix = 5476. The number of pixels defined to be in the dark hole
is 𝑁DH = 2608. This model does not consider the effects of amplitude errors, and
only analyzes phase errors, which, from end-to-end modeling of Roman CGI, are
expected to be the dominant form of dynamic aberrations (J. E. Krist et al., 2023).
However, for a system where dynamic amplitude errors are comparable to dynamic
phase errors, both should be included.

Response Matrices
The Zernike coefficient drift values from the Observing Scenario simulations (OS 9;
J. Krist, 2020), based on physical modeling of the telescope, indicate that the WFE
expected on Roman will fall within the linear regime of this dark hole. However,
the level of wavefront error may end up being higher than currently expected.
Additionally, on ground based telescopes, wavefront error from adaptive optics
residuals is typically in the quadratic regime. Therefore, for illustrative purposes,
both a linearly-dominated noise model and quadratically-dominated noise model are
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examined.

The matrices Al and Aq are calculated according to Section 7.3. The linear matrix
includes all Zernikes present in the optical model, and thus has an input dimension
of 𝑁basis = 528. The quadratic matrix includes only the first 100 Zernikes, and thus
has an input dimension of

(𝑁redu+1
2

)
= 5, 050. The relevant dimensions of the objects

used in this analysis are listed in Table 7.1. Note that the cutoff number 𝑁𝑚 is a
variable to optimized over.

Table 7.1: Quantities and Dimensions for Analysis of the Roman Space Telescope
HLC

Quantity Description Dimension (Dependency) Dimension (Value)
𝑬pup Vector of electric in pupil plane 𝑁basis 528
𝑬det Vector of detector plane electric field 𝑁pix 5, 476
𝑰det Vector of detector plane intensity 𝑁pix 5, 476
𝑬DH Vector of detector plane electric field in dark hole 𝑁DH 2, 608
𝑰DH Vector of detector plane intensity in dark hole 𝑁DH 2, 608
Al Linear-regime instrument response matrix 𝑁pix × 𝑁basis 5, 476 × 528
Ul Left singular matrix of Al 𝑁pix × 𝑁pix 5, 476 × 5, 476
Sl Singular value matrix of Al 𝑁pix × 𝑁basis 5, 476 × 528
Vl Right singular matrix of Al 𝑁basis × 𝑁basis 528 × 528
Kl Linear-regime projection matrix (𝑁pix − 𝑁𝑚) × 𝑁DH (𝑁pix − 𝑁𝑚) × 2, 608
𝑶 𝒍 Vector of linear-regime observables (𝑁pix − 𝑁𝑚) (𝑁pix − 𝑁𝑚)
Aq Quadratic-regime instrument response matrix 𝑁pix ×

(𝑁redu+1
2

)
5, 476 × 5, 050

Uq Left singular matrix of Aq 𝑁pix × 𝑁pix 5, 476 × 5, 476
Sq Singular value matrix of Aq 𝑁pix ×

(𝑁redu+1
2

)
5, 476 × 5, 050

Vq Right singular matrix of Aq
(𝑁redu+1

2
)
×
(𝑁redu+1

2
)

5, 050 × 5, 050
Kq Quadratic-regime projection matrix (𝑁pix − 𝑁𝑚) × 𝑁DH (𝑁pix − 𝑁𝑚) × 2, 608
𝑶𝒒 Vector of quadratic-regime observables (𝑁pix − 𝑁𝑚) (𝑁pix − 𝑁𝑚)
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Projection Matrices
According to Algorithm 1, a singular value decomposition of A = USV𝑇 is per-
formed for each transfer matrix, revealing their singular modes and corresponding
singular values. The singular values of the transfer matrices are shown in the top of
Figure 7.2. The first 10 singular modes of each transfer matrix as represented in the
detector plane intensity basis (with pixels not in the dark hole masked) are plotted
in Figure 7.3.
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Figure 7.2: The singular values of Al (left) and Aq (right). Note that the transfer
matrices are rectangular and have 𝑁pix = 5476 total singular modes, but the singular
values beyond the size of the input dimension are all 0.

From both the linear and the quadratic transfer matrix, model-based projection
matrices with a range of cutoff modes are calculated according to Algorithm 1.
To rule out the effect of dimensionality alone on the dataset, random projection
matrices of the same size are also generated. This is done by taking the SVD of a
matrix the same size as the A matrices, but populated with values drawn uniformly
from -1 to 1, and then removing the same number of dominant modes as is done
with A. These matrices are applied to synthetically generated data to quantify their
effect on the detectability of binary companion signals.

Synthetic Data Analysis
Synthetic Data Generation

FALCO is used to generate a library of off-axis PSFs corresponding to the dark
hole state, which can be injected as binary companions. These off-axis PSFs do not
incorporate any WFE that is added on top of the dark hole state. However, the effect
of WFE on the off-axis signal is expected to be much, much smaller than its effect
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Figure 7.3: Top: The first 10 singular modes of Al as represented in the the detector
plane intensity basis (linear scale). Bottom: The first 10 singular modes of Aq as
represented in the the detector plane intensity basis (linear scale). The HLC design
is nearly circularly symmetric, broken only by the six secondary mirror struts (which
can also be seen in the Lyot stop). Because the quadratic transfer matrix depends
only on the coronagraph operator C, its singular modes exhibit cosine and sine-like
azimuthal behavior associated with circularly symmetric operators. However, the
linear transfer matrix depends on both C as well as on the focal-plane electric field
at the end of dark hole creation, which is random and not circularly symmetric.
Thus, its singular modes show no such symmetry structures. These singular modes
correspond to the intensity patterns most likely to be attributed to wavefront error.
Meanwhile, the companion’s intensity pattern (the PSF at its location) overlaps very
little with these dominant modes, so its signal is mostly retained when the dominant
modes are projected out.

on the on-axis stellar signal, so not modeling the effects of wavefront error on the
off-axis signal should have a negligible impact on the data.

The optical system is first initialized in the dark hole state. Two noise models are
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considered, one in the linear regime, and one in the quadratic regime. Each dataset
thus consists of 20 instantaneous frames of independent noise realizations. For each
frame, the spatial PSD given in Equation 7.17 is used to generate the wavefront
error.

𝑃𝑆𝐷 (𝑛𝑧) = 𝑎𝑛𝑧𝑏 (7.17)

In this equation, 𝑛𝑧 is Noll-ordered index of the Zernike coefficient. The normal-
ization parameter 𝑎 is chosen to be 10 nm for the linear regime, and 130 nm for the
quadratic regime. The power law exponent 𝑏 is chosen to be -2. These PSDs corre-
spond to an average wavefront error (calculated over 100 realizations) of about 7 nm
(0.013 waves) RMS for the linear regime data, and about 110 nm (0.2 waves) RMS
for the quadratic regime data. As discussed in Section 7.2, the linear-quadratic tran-
sition occurs at approximately 0.1 waves RMS. Although 110 nm RMS of dynamic
wavefront error is unrealistically high for the Roman HLC, we include this regime
for demonstration purposes, as this level of WFE would be relevant on ground-based
telescopes.

The resulting 528 Zernike coefficients are propagated through the LSCS to calculate
the resulting dark hole intensities. In order to create data with an injected companion
planet, the off-axis PSF at the desired separation is scaled by the companion’s flux
ratio, and then added to the dark hole intensity. The separation of the injected
companion is set to be 6.5𝜆/𝐷 in the linear case (which is the middle of the
dark hole) and 4.0𝜆/𝐷 in the quadratic case (since the model is only valid within
∼ 5𝜆/𝐷). The position angles of both are set to be 0. Frames without the injected
companion are used for the control case. Figure 7.4 shows example data frames:
the initial dark hole, example frames with the aberrations from both noise models
applied, and the same frames with injected companion signals. The flux ratio of the
companion is 2×10−7 for frame with linear-regime errors and 5×10−6 for the frame
with quadratic-regime errors. These flux ratios correspond to particularly bright
planets chosen to be visible by eye.

It is worthwhile to examine how well the response matrices calculated in Section
7.5 can reconstruct the intensity errors present in the synthetic data. Figure 7.5
compares the intensity error resulting from WFE as calculated from the optical
model with the intensity error calculated by multiplying the WFE by the appropriate
response matrix, for example frames in both the linear and the quadratic regimes.
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Figure 7.4: 1) Initial dark hole intensity achieved using electric field conjugation
with the HLC. 2) A single snapshot with linear-regime wavefront aberrations. 3)
The same snapshot with an injected companion with a flux ratio of 2 × 10−7 at
6.5𝜆/𝐷 (indicated with red circle). 4) A single snapshot with quadratic-regime
wavefront aberrations. 5) The same snapshot with an injected companion with a
flux ratio of 5 × 10−6 at 4𝜆/𝐷 (indicated with red circle). All intensities are shown
in log10 of raw contrast.

In both regimes, the response matrices largely reproduce the spatial structure of the
intensity error from the optical model.

Processing Synthetic Data

The quantity |C𝑬𝒔0 |2 is the initial dark hole intensity without any extra WFE applied
(as determined from the data at the end of the dark-hole digging sequence on the
reference star, for example). This nominal signal is first subtracted from each frame.
Then, the pixels within the defined dark hole are gathered into the vector 𝜟𝑰DH.
The data is left-multiplied by the appropriate K matrix to obtain the observables
𝑶 = K𝜟𝑰DH. The data is also left-multiplied by the random matrix of the same size
as K to obtain data whose dimension has been reduced randomly. For each case, the
average of the data over the twenty frames is used as the final measurement, while
the standard deviation of the frames is used as the measurement uncertainty. Note
that the process outlined does not rely on reference stars or dithering by deformable
mirrors, and can be used even on observations for which reference observations or
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Figure 7.5: a. Example linear-regime intensity error from the optical model.
b. Corresponding linear-regime intensity error reconstructed by response matrix
Al, plotted on the same scale as (a). c. The difference between the response
matrix prediction and the optical model prediction, plotted on the same scale as
(a) and (b). d. Example quadratic-regime intensity error from the optical model.
e. Corresponding quadratic-regime intensity error reconstructed by the response
matrix Aq, plotted on the same scale as (d). f. The difference between the response
matrix prediction and the optical model prediction, plotted on the same scale as
(d) and (e). Slight differences arise because the model includes both the linear and
quadratic error terms while the matrix predictions only include one or the other,
i.e. the linear matrix prediction neglects the contribution of the quadratic term
and the quadratic matrix prediction neglects the contribution of the linear term (as
well as the influence of any Zernikes past the first 100). While the linear matrix
prediction is biased low near the peaks and the quadratic matrix prediction biased
high overall, our method depends only on how well the spatial structure of the
errors are reproduced. A relevant metric for characterizing the spatial overlap is
the normalized inner product between the optical model prediction and the transfer
matrix prediction, where a value of 1 indicates perfect spatial overlap and a value of
0 indicates perfect spatial orthogonality. In this case, the normalized inner product
is 0.936 for the linear regime example and 0.985 for the quadratic regime example,
sufficient for providing a quantifiable improvement in detection sensitivity.

wavefront diversity is unavailable.
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Flux Ratio Detection Limits

Detection tests are applied to these measured intensities and observables in order to
characterize the detectability of a companion with these measurements. Detection
limits are determined using the Monte Carlo method. One thousand random datasets
are generated for each noise model with a given flux ratio. Each dataset is processed
as raw intensity data, and with each projection matrix with a different cutoff mode,
and the 𝛥𝜒2

𝑟 values are calculated for each case. Figure 7.6 shows example his-
tograms of the resulting 𝛥𝜒2

𝑟 values for a 𝑐 = 5.4 × 10−7 at 4.0𝜆/𝐷 companion
with the quadratic noise model, as well as the corresponding ROC curves, for the
projection matrix with cutoff mode 𝑁𝑚 = 70 (which, as shown in Figure 7.7, is the
optimal cutoff at this spatial separation). The ROC curve shows that while using the
robust observables results in a FPR = 0.01 and TPR = 0.9 detection of the injected
companion, both the raw intensity and the randomly dimensionally reduced data
remain very far from detectability.
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Figure 7.6: Detection test results for the quadratic regime noise model. The
companion planet considered has flux ratio of 5.4 × 10−7 and is located at 4.0𝜆/𝐷.
Left: Histograms from using raw intensities compared to those from using quadratic
robust observables with the optimal cutoff of 𝑁𝑚 = 70. The histograms using raw
intensity overlap significantly, making it difficult to distinguish between a model
with a planet and a model without one, while the histograms using the robust
observables are further separated and more distinguishable. Middle: Histograms
for using raw intensities and a random projection matrix of the same size as the
instrumentally-motivated projection. Both sets of histograms overlap significantly,
and the random projection does not improve the distinguishability of the two models.
Right: ROC curves corresponding to the histograms. Grey area indicates false
positive rates which are not well sampled as they involve less than 3 datasets with
false detections. The ROC curve shows that while using the robust observables
results in a FPR = 0.01 and TPR = 0.9 detection of the injected planet, both the
raw intensity and the randomly dimensionally reduced data remain very far from
detectability.

This process is repeated for a range of flux ratios (to a precision of two significant
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figures). The resulting FPR = 0.01 and TPR = 0.9 detection limits for both
regimes, as a function of cutoff mode 𝑁𝑚, are shown in Figure 7.7. Note that
these flux ratio detection limits are not based on any statistical assumptions or
extrapolations, but rather real FPRs and TPRs calculated by analyzing one thousand
synthetically generated datasets, with injected companions of the given flux ratios
and separations. The results show that with the linear-regime noise model, the robust
observables increases the detectability of a companion at 6.5𝜆/𝐷 by 28%. With the
quadratic-regime noise model, using robust observables increases the detectability
of a companion at 4.0𝜆/𝐷 by over a factor of two, and the improvement is not
particularly sensitive to 𝑁𝑚 beyond the first few modes. For the linear regime, this
approach can also easily be extended to companions throughout the entire dark hole,
though significant computation would be required to optimize 𝑁𝑚 at all separations.
For the quadratic regime, our model is only valid within ∼ 5𝜆/𝐷, though Appendix
7.6 discusses a method that can be used to extend the spatial coverage without
incurring impractical computational costs.
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Figure 7.7: Flux ratio detection limits (FPR = 0.01, TPR = 0.90) for a binary
companion (to two significant figures) as a function of cutoff mode. Upward triangles
indicate that a projection matrix with the specified cutoff mode performs worse than
using the raw intensity, which occurs when the modes the majority of the planet
signal overlaps with have also been projected out. Left: Linear regime with a
companion at 6.5 𝜆/𝐷. The optimal cutoff mode is 2,727, which results in a
detection limit of 2.8×10−9. Unshowable in log-log scale is the detection limit with
𝑁𝑚 = 0, which, with observables, is 3.9 × 10−9. This is, as expected from the fact
that no error modes are removed, equal to the raw intensity detection limit. Right:
Left: Quadratic regime with a companion at 4.0𝜆/𝐷. The optimal cutoff mode is
70, which results in a detection limit of 5.4 × 10−7. Unshowable in log-log scale is
the detection limit with 𝑁𝑚 = 0, which, with observables, is 1.4 × 10−6. This is, as
expected from the fact that no error modes are removed, equal to the raw intensity
detection limit.
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7.6 Quadratic Model Approximation and Extension
As explained in Section 7.3, the calculation of the projection matrix involves a
singular value decomposition (SVD) of the response matrix, but a quadratic response
matrix that includes all 528 Zernikes needed to span the dark hole would have a
size of 5, 476 × 139, 656. Since calculating the SVD of a matrix of this size is
too computationally burdensome, we explore an approximation of the quadratic
response that models only the impact of norm-squared of each input basis vector
while neglecting the effects of the pairwise combinations. Namely, we use an
approximate response matrix A′q with elements:

A′q𝑘 𝑗 = C∗𝑘 𝑗C𝑘 𝑗 . (7.18)

The index 𝑗 labels the input basis vector and the index 𝑘 labels the detector pixel.
The size of A′q scales linearly with the number of Zernike models, and in our case
would be of size 5, 476 × 528, which is easily decomposable.

Note that A′q cannot be used to accurately reproduce quadratic-regime intensity error.
However, A′q is nevertheless useful for identifying a subspace robust to quadratic
regime wavefront errors, leading to increased signal-to-noise. We can observe this
by comparing the detection test results with and without using the approximation
for a model with 100 Zernikes. We calculate the approximation A′q using Equation
7.18, and use the original Aq from Section 7.5. Detection tests on quadratic-regime
synthetic data, similar to the one from Section 7.5 are performed, using projection
matrices derived from both Aq and A′q. The resulting flux ratio detection limits as
a function of cutoff mode are shown in Figure 7.8.

The full matrix achieves the best results with a cutoff mode of 70, leading to a
detection limit of 5.4 × 10−7 while the approximate matrix achieves the best results
with a cutoff mode of 2,727, also leading to a detection limit of 5.4 × 10−7. These
results show that the approximation performs as well as the full model.

To understand why this is the case, we analyze the subspaces spanned by the
identified optimal projection matrices. We define P as the projection onto the
dominant modes of Aq, P′ as the projection onto the dominant modes of A′q, and
Pr as a random projection matrix the same shape as P′. We also define K as the
projection onto the remaining modes (the robust subspace) of the full model, K′

as the projection onto the robust subspace of the approximate model, and Kr as a
random projection matrix the same shape as K′. We then calculate the subspace
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Figure 7.8: Quadratic regime flux ratio detection limits (FPR = 0.01, TPR = 0.90),
to two significant figures, as a function of cutoff mode, for a companion at 4.0 𝜆/𝐷.
Only the first 100 Zernikes are used in the model used to calculated the full and
approximate quadratic transfer matrices, but WFE up to 538 Zernikes are included
in the synthetic data. Upward triangles or spikes indicate that a projection matrix
with the specified cutoff mode performs worse than using the raw intensity, which
occurs when the modes the majority of the planet signal overlaps with have also
been projected out. The full matrix achieves the best results with a cutoff mode of
70, leading to a detection limit of 5.4× 10−7 while the approximate matrix achieves
the best results with a cutoff mode of 2,727, also leading to a detection limit of
5.4 × 10−7. Unshowable in log-log scale is the detection limit with 𝑁𝑚 = 0, which,
with observables, is 1.4 × 10−6. This is, as expected from the fact that no error
modes are removed, the same as the raw intensity detection limit of 1.4 × 10−6.
These results indicate that the approximation performs as well as the full model.

angles (Jordan, 1875) between each of these projection matrices and P using the
function scipy.linalg.subspace_angles. These subspace angles provide an indication
of how much the subspace spanned by each of these projection matrices overlaps
with the subspace spanned by the dominant modes identified by the full model. The
results are shown in Figure 7.9.

The number of principle angles with value 0 is the dimension of overlap between the
subspaces. As expected, the subspace angles between P and itself are all 0, meaning
it overlaps completely with itself. Also as expected, the angles between K and P
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Figure 7.9: The subspace angles between various projection matrices (onto domi-
nant modes on the right, onto a robust subspace on the left) and P, the projection onto
the dominant error modes determined from the full quadratic model. The number
of principle angles with value 0 is the dimension of overlap between the subspaces.
Angles with value 𝜋/2 indicate overlap with the subspace orthogonal to P. P′ (the
space of dominant modes derived from the approximate model) overlaps with P
(the space of dominant modes derived from the full model) significantly more than
random. Crucially, K′ (the robust subspace from the approximate model) overlaps
with the subspace orthogonal to P’s significantly more than random, which is why
data projected onto this subspace is still robust to wavefront error.

are all 𝜋/2, as K is orthogonal to P. Both of the random matrices have a random
distribution of angles with P centered around 𝜋/4. Meanwhile, P′ (the space of
dominant modes derived from the approximate model) overlaps with P (the space
of dominant modes derived from the full model) significantly more than random.
Crucially, K′ (the robust subspace from the approximate model) overlaps with P
significantly less than random, and with the subspace orthogonal to P’s significantly
more than random, which is why data projected onto this subspace is still robust
to wavefront error. This result shows why the approximate model, despite poorly
predicting the detector intensity response, is nevertheless useful for identifying a
subspace that overlaps significantly with the robust subspace of the full model.

We can thus use this approximation with all 528 Zernikes in our model to analyze
spatial separations beyond the ∼ 5 𝜆/𝐷 spanned by the first 100 Zernikes. To
demonstrate this, we build A′q528 according to Equation 7.18, and perform detection
tests at a separation of 6.5 𝜆/𝐷. The results are shown in Figure 7.10.
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Figure 7.10: Quadratic regime flux ratio detection limits (FPR = 0.01, TPR =

0.90), to two significant figures, as a function of cutoff mode, for a companion at
6.5 𝜆/𝐷. Upward triangles indicate that a projection matrix with the specified cutoff
mode performs worse than using the raw intensity, which occurs when the modes the
majority of the planet signal overlaps with have also been projected out. The optimal
cutoff mode is 38, which results in a detection limit of 2.0 × 10−7. Unshowable
in log-log scale is the detection limit with 𝑁𝑚 = 0, which, with observables, is
4.9×10−7. This is, as expected from the fact that no error modes are removed, close
to the raw intensity detection limit of 5.1 × 10−7.

Our tests show that the approximation A′q528 can successfully increase signal-to-
noise at spatial separations beyond the original regime of validity of Aq. Thus, even
though the input dimension of the quadratic model scales cumbersomely with the
number of basis vectors, an approximation considering only norm-squared terms
can still be used to find observables that are robust to quadratic wavefront error, and
thus provide detection gains at farther spatial separations of interest.

7.7 Discussion
Temporally Correlated WFE and Compatibility with Other Post-processing
Techniques
This work aims to characterize the effect of using robust observables in isola-
tion. Thus, only noise models in which the WFE is uncorrelated in time are
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examined, since additional post-processing techniques are typically used to handle
time-correlated data. Robust observables are compatible with these other post-
processing techniques, and can serve as an instrument-motivated prior in the overall
post-processing strategy. For example, random errors can first be reduced by pro-
jecting the data into a subspace that is robust to wavefront error. Then, reference
observations along with PCA-based methods such as KLIP (Soummer, Laurent
Pueyo, and Larkin, 2012b) can be used to calibrate static and quasi-static errors and
de-correlate the frames in time. This is similar to the calibration approach used in
non-redundant aperture masking (NRM) interferometry or kernel-phase interferom-
etry, in which data is projected onto closure-phases or kernel-phases respectively,
which are then calibrated based on reference observations (Martinache, 2010; Ire-
land, 2013; Pope et al., 2021). A more sophisticated approach would be to formulate
post-processing as a statistical inference problem, where a least-squares fit with the
reference frames makes one up term in the cost function, and a prior over the in-
strumental modes (e.g. weighted by the singular value spectrum) makes up another
term.

Ygouf et al. (2016) shows that for the time-varying wavefront error expected on the
Roman Space Telescope HLC, classical PSF subtraction with a reference observation
increases the contrast gain by a factor of a few to about ten, depending on the
scenario. Future work includes investigating how much overall post-processing gain
can be achieved when robust observables and calibration strategies are combined,
and which hybrid strategies maximize the sensitivity that can be obtained with all
available information.

PSD Engineering
The robust observables derived in this work are agnostic to the actual temporal
or spatial PSD of the static and dynamical wavefront errors, and are intended to
be applied when these PSDs are not well-known or imperfectly characterized. As
of today, this is the case for all ground-based instruments (as predictions of the
influence of the atmosphere are quite imperfect), and space-based missions (as HST
and JWST observatory level key metrics for requirements are expressed in terms
of encircled energy, not contrast). However, it has been proposed that for future
space telescope coronagraphs, the telescope WFE PSD must comply with stringent
requirements in order to facilitate exoplanet detection (Nemati et al., 2020).

For instance, the PASTIS approach (Leboulleux et al., 2018; Laginja et al., 2019)
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considers the effects of the quadratic response on the average intensity contrast over
the entire dark hole (or region of interest), calculating which modes the coronagraph
is most sensitive to in order to determine stability tolerances for the segments
accordingly. Calculating robust observables for post-processing is akin to doing
PASTIS backwards, where the modes the coronagraph is most sensitive to are
calculated in order to project them out of the data. For such telescopes, that have
PSDs engineered based on the instrument response, the additional gain from using
robust observables will depend on how well the error modes are suppressed in
hardware, as well as the timescales at which power in those modes leaks through.
To some extent, robust observables will remain applicable to such future telescopes
and instruments in the spatial and temporal sub-spaces in which they do not meet
their requirements.

Model Accuracy
In this analysis, the model used to generate the instrument response matrices is
exactly the same model that is used to generate the synthetic data. In a real ob-
servations, the instrument model will not exactly match the behavior of the actual
instrument, and one future avenue to explore is how well a model must match the
instrument in order for robust observables to work on real data. This technique’s
robustness can be investigated by first calculating the response matrices using one
model, then changing the parameters of the model (e.g. the coronagraphic mask
size and displacement, the DM alignment, the detector pixel scale) before generating
synthetic data, and examining how well the robust observables work in the presence
of model mismatch.

For instruments equipped with wavefront modulating devices such as deformable
mirrors, however, the instrument response matrix may also be calculated experimen-
tally. If a perturbation within the linear regime is applied, the difference in measured
intensity can be directly registered into the appropriate column of the linear response
matrix. The technique for experimentally building the quadratic response matrices
is equivalent to the approach used for PASTIS (Laginja et al., 2019), with the differ-
ence that the measurements are not averaged over a dark hole, but rather maintained
for every pixel. Additionally, some wavefront and control schemes such as implicit
electric-field conjugation (S. Y. Haffert, Males, et al., 2023b) already involve an
empirical measurement of the instrument response, which can be used to derive
linear-regime robust observables without having to set aside additional calibration
time. Experimentally building instrument response matrices circumvents the need
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to have a well-matched numerical model, and allows for the response matrices to
capture effects in the real instrument.

7.8 Conclusions
A coronagraph model with linear and quadratic contributions of wavefront error
to detector plane intensity is developed, and when either term is dominant, the
coronagraph response can be approximated by a transfer matrix. A useful projection
can be found from this transfer matrix that removes the dominant error modes,
resulting in observables that are more robust to WFE in the regime of interest. These
robust observables are extracted from synthetically generated data with the Hybrid
Lyot Coronagraph of the Roman Space Telescope in both the linear and quadratic
regimes. The performance of the robust observables is compared to that of the
raw intensity data through calculations of their respective binary companion flux
ratio detection limits. In these examples, using the robust observables significantly
increases the sensitivity to the signal of a binary companion. A projection onto a
robust subspace can in theory be combined with other families of post-processing
algorithms. Hybrid post-processing approaches would incorporate information on
the instrument response alongside the other available information (such as angular
diversity, spectral diversity, reference observations, or WFC telemetry) to fully
maximize the sensitivity to astrophysical signals in coronagraphic data; however,
the approach outlined in this work can be applied to observational data and result in
post-processing gains even if such additional information is unavailable.
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C h a p t e r 8

SUMMARY AND PERSPECTIVES

This thesis covers advances in instrumentation for directly detecting and charac-
terizing exoplanets at close-in separations, within the working angles accessible to
conventional coronagraphs. A major focus of this work is the Photonic Lantern
Nuller, which uses a mode-demultiplexing waveguide called a mode-selective pho-
tonic lantern to destructively interfere on-axis starlight while allowing off-axis planet
light through. This thesis covers the development of the Photonic Lantern Nuller
from the original concept, through a comprehensive laboratory characterization, to
an on-sky demonstration. It also presents other advances in high contrast instru-
mentation, demonstrated with other instruments but with potential applications to
the PLN.

8.1 Summary
The first few chapters in this thesis cover the development of the Photonic Lantern
Nuller instrument. Chapter 2 reproduces the paper in which the concept, theory, and
simulated behavior of the PLN with various parameters under different conditions.
It shows that the PLN augments the overall planet throughput relative to the Vortex
Fiber Nuller, a predecessor design, reaching 60% throughput compared to the VFN’s
10-18%. It presents simulations that predict the anticipated null degradation due
to sources of wavefront error, such as Zernike aberrations, fast tip-tilt jitter, or
atmospheric residuals reconstructed from wavefront sensor data from the Keck II
telescope. The PLN overall has similar wavefront error rejection properties to the
VFN as a result of its symmetries, and also adds the ability to partially localize the
location of the planet.

Chapter 3 details the laboratory characterization of a mode-selective photonic
lantern. The throughput of the lantern ports were measured, and the mode-profiles
characterized using off-axis holography, which interferes a reference beam with
each mode of the lantern to reconstruct its electric-field profile. The lantern was
then integrated with the Polychromatic Reflective Testbed and demonstrated as a
nuller. The experiments measured null-depths (stellar coupling divided by peak
planet coupling) of approximately 10−2, as well as spatial coupling profiles that
match the predictions from simulation. Measurements were made using both a
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monochromatic light source as well as a broadband light source, as well as with two
orthogonal polarizations of light, to characterize the impact of bandwidth and po-
larization on the achieved null-depth, showing them both to be minor at this contrast
level.

Chapter 4 details the use of the implicit Electric Field Conjugation algorithm to
deepen the null-depths of the PLN to the 10−4 level, although only achieving this
with three out of four ports simultaneously. I use simulations to explain the origin of
this behavior, identifying an electric-field sensing problem unique to mode-sorting
nullers that forms an intriguing topic for future work.

Chapter 5 presents an on-sky demonstration of the PLN at the Subaru Telescope with
the Subaru Coronagraphic Extreme Adaptive Optics instrument. Despite significant
challenges in instrument alignment, spectrally-dipsersed on-sky null-depths were
successfully measured for the LP 11a and LP 11b ports to be about 10−1, with
statistical distributions that suggest the limitation is mostly due to fast-changing AO
residuals. Further analysis of the on-sky data suggests that a 1:10 binary companion
should be detectable with a few minutes of data each on the target system and on a
point-source reference star.

While the bulk of my thesis focuses on developing the PLN, I was also an active
part of the instrument team for the Keck Planet Imager and Characterizer (KPIC).
KPIC is a useful platform and benchmark for a potential PLN-fed high-resolution
spectrograph, and I leveraged my time as part of the instrument team to demonstrate
wavefront sensing and control techniques, informing their potential on-sky feasibil-
ity with the PLN. Chapter 6 thus presents work on speckle nulling with KPIC, where
starlight is actively destructively interfered with itself in order to reduce contami-
nation in the science data, improving the suppression by a factor of 2.6-2.8 on-sky.
Speckle nulling is algorithmically similar to iEFC and has similar requirements, so
this work also serves as an estimate of how well iEFC with a PLN might work, if
implemented on-sky with similar hardware (spectrograph resolving power, detector
characteristics, etc.).

Chapter 7 reproduces my paper on using a model of a coronagraphic instrument to
identify a subspace in the data that is less sensitive to wavefront aberrations. I show
that projecting the data onto this robust subspace can improve detection sensitivity
by a factor of 28% to a factor of 2, depending on the wavefront error regime. This
work uses a simulation of the Roman Space Telescope Hybrid Lyot Coronagraph
instrument. However, the concept of using instrumental responses to wavefront error



133

Pupil

2 0 2

2

0

2

PSF

2 0 2

2

0

2

Rs = 0.001 l/D

2 0 2

2

0

2

Rs = 0.01 l/D

Figure 8.1: From left to right: 1) The pupil aperture for the James Webb Space
Telescope. 2) The corresponding PSF in the focal plane. 3) A waveguide mode
optimized for a planet at 𝑋 = 1.0𝜆/𝐷 and 𝑅𝑠 = 0.001𝜆/𝐷, achieving 𝜂𝑠 = 5.89 ×
10−7 and 𝜂𝑝 = 0.993. 4) A waveguide mode optimized for a planet at 𝑋 = 1.0𝜆/𝐷
and 𝑅𝑠 = 0.01𝜆/𝐷, achieving 𝜂𝑠 = 4.40 × 10−5 and 𝜂𝑝 = 0.993.

in post-processing can be extended to instruments like the PLN, such as by weighing
the signal in linear combinations ports by their relative sensitivity to aberrations.

8.2 Perspectives
Optimal Waveguide-based Nullers
Although the PLN is a compelling instrument that can access 1𝜆/𝐷 scales with
high planet throughput, its design came from leveraging the symmetries of a mode-
selective photonic lantern to cancel out starlight, without explicitly considering
planet throughput in the design process. However, one can imagine a different
waveguide that both nulls starlight and preserves more of the planet light, perhaps
concentrating all of the planet light in one port to maximize sensitivity in the
presence of photon noise. For simplicity, consider a waveguide that supports one
mode, optimized for a planet at one spatial location. A mode that minimizes the
relative integration time 𝜂𝑠/𝜂2

𝑝 would depend on the pupil aperture function, the
stellar radius 𝑅𝑠, and the planet location, and can be calculated using numerical
optimizers.

Two example mode solutions for the James Webb Space Telescope pupil with a
planet at 𝑋 = 1.0𝜆/𝐷 (for 𝑅𝑠 = 0.001𝜆/𝐷 and 𝑅𝑠 = 0.01𝜆/𝐷 respectively),
calculated using the SLSQP algorithm from the scipy.optimize.minimize module
(Virtanen et al., 2020) are shown in Fig. 8.1. This JWST pupil is also one of the
primary pupil configurations being explored for the Habitable Worlds Observatory,
which (as discussed in Section 8.2) would benefit from an infrared nulling instrument
operating at the∼ 1𝜆/𝐷 regime, in order to perform follow-up infrared spectroscopy
of exoplanets discovered at optical wavelengths.
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These solutions achieved 𝜂𝑠 = 5.89 × 10−7 and 𝜂𝑝 = 0.993 for 𝑅𝑠 = 0.001𝜆/𝐷 and
𝜂𝑠 = 4.40× 10−5 and 𝜂𝑝 = 0.993 for 𝑅𝑠 = 0.01𝜆/𝐷. However, the solution returned
by the optimizer depends on the initial guess, so more work would be needed to find
globally-optimal solutions (i.e. by starting with an semi-analytic initialization using
a framework similar to that in O. Guyon et al. (2006a)). Another complication is the
manufacturability of the mode and the multiplexibility of the modes into a device
like a photonic lantern, as numerically optimal solutions may require unrealistic
manufacturing techniques or tolerances. Therefore, it will likely be worthwhile to
include manufacturing constraints in the optimization process as well.

Simultaneous Nulling and Wavefront Sensing
This thesis focused on using a mode-selective photonic lantern to perform nulling,
where four of the ports are nulled, and the other two ports are not-nulled. While the
non-nulled ports can be useful for photometric and spectral calibration of the star
or for monitoring overall atmospheric and AO conditions, they do not contribute
meaningful information about the wavefront, as only asymmetric mixed modes are
sensitive to both the shape and sign of wavefront aberrations (Lin, Fitzgerald, et al.,
2022b).

A possible extension of the work in this thesis would be to use hybrid photonic
lanterns to simultaneously perform nulling and wavefront sensing. For example, the
first three ports (LP 01 and LP 11ab) could be made mode-selective, providing a
throughput monitoring port along with two nulling ports, while the remaining ones
are left mixed for wavefront sensing. The advantage of this configuration is that there
is no non-common path aberration between the sensing ports and the nulling ports,
whose relationship should remain very stable over time. The wavefront sensing
ports could be used in closed-loop with a deformable mirror, and/or used in post-
processing to calibrate the intensity in the nulled ports to remove the contribution
known to come from wavefront error. This technique falls under the umbrella of
Coherent Differential Imaging (CDI). In general, CDI methods seek to sense and
remove the coherent portion of the light, which can only be due to the star. Designing
instruments that enable and harness the potential of CDI is a particularly interesting
avenue for future work.

Probing the Exoplanet Parameter Space with Nulling
The PLN and other close inner working angle nullers can serve different roles in
the broader context of exoplanet science, depending on where and how they are
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used. The range of exoplanets that can be directly observed with a coronagraph
or nuller design depends primarily on the observing wavelength 𝜆, the size of the
telescope aperture 𝐷 (or the length of the baseline between apertures 𝐵), and the
contrast achievable given the stability of the optical wavefront. Generally, high
contrast is harder to achieve and maintain at closer separations to the star, so the
smaller the planet’s separation is in units of 𝜆/𝐷, the harder it will be to detect.
Therefore, the exoplanets that an instrument can target will depend on the telescope
it is on. As shown in Fig. 8.2, the different environments of ground- and space-
based telescopes, as well as the different limitations they face, mean that they are
ultimately better suited for probing different regions of the exoplanet parameter
space.

On the 6 − 10m class telescopes on the ground, conventional coronagraphs are
typically used to observe companions farther than ∼ 100 mas from their host star
at near-infrared wavelengths, reaching flux ratio sensitivies down to 10−6 − 10−7.
Meanwhile, interferometer arrays such as VLTI/GRAVITY (S. Lacour et al., 2020)
and CHARA (Brummelaar et al., 2005), as well as newer nulling instruments on
10m class telescopes (Echeverri, J. W. Xuan, et al., 2024; Norris, Cvetojevic, et al.,
2020) — including the PLN — are just beginning to directly access the 1-5 AU
parameter space for nearby stars, with significant efforts dedicated to improving
performance and sensitivity in the near future.

Future generation instruments on the Extremely Large Telescopes (ELTs) will have
very large diameters (∼ 30m), but will ultimately remain limited in sensitivity due to
the presence of the Earth’s atmosphere. A compelling science case for coronagraphy
on the ELTs is access to the rocky planets in the habitable zone of M dwarfs, which
have less extreme flux ratios (on the order of 10−6) relative to their solar-type
counterparts, but are also closer in (National Research Council, 2021). Nulling
instruments on the ELTs will be able to directly access the even closer-in population
of Hot Jupiters (HJs), providing direct spectral measurements of known transiting
HJs (as well as detecting similar objects that do not transit).

Space telescopes, on the other hand, are not limited by the Earth’s atmosphere,
but telescopes with larger aperture diameters are much harder to build and launch.
Relative to the ELTs, space telescopes are therefore better suited for observing
fainter but farther away exoplanets, such as Jovian-like planets (flux ratios of∼ 10−8)
with the Roman Space Telescope and eventually Earth-like planets (flux ratios of
∼ 10−10) with the Habitable Worlds Observatory (HWO). However, the requirements
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Figure 8.2: Flux ratio (contrast) versus apparent angular separation. The filled
orange circles indicate direct imaging detections of young, self-luminous planets
imaged in the near-infrared by ground-based telescopes. The orange curves show
measured performance of ground-based coronagraphs. The GPI curve shows typical
performance, while the SPHERE curve shows the best achieved performance to-date
on Sirius. Achieved performance with Hubble Space Telescope (HST) and James
Webb Space Telescope (JWST) are also shown. The predicted and required perfor-
mance at 565 nm for (two configurations of) the Roman Coronagraph instrument is
shown as solid black curves. State of the art lab coronagraph lab demonstrations
in the Decadal Survey Testbed (DST) are shown as magenta curves. The notional
performance goal for the Habitable Worlds Observatory is shown as a red horizontal
line. For consistency, known self-luminous planets discovered in the near-infrared
are shown with vertical arrows pointing to the predicted contrast ratios at visible
wavelengths. Figure and caption adapted from Exoplanet Program: Technology
Overview (2024), courtesy of Karl Stapelfeldt and NASA/JPL/Caltech.

for observing Earth analogues are different for instruments operating at optical
wavelengths as opposed to those operating at near-infrared wavelengths. Plotting the
distribution of habitable zone distances of a provisional HWO target list (Mamajek
and Stapelfeldt, 2024) converted to 𝜆/𝐷 units for 𝜆 = 500nm and 𝜆 = 1500nm
(Fig. 8.3) shows that most of the habitable zones accessible by a coronagraph
at optical wavelengths will no longer be accessible in the infrared. For these
planets, a nulling mode operating at smaller separations (∼ 1𝜆/𝐷) could perform
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Figure 8.3: The distribution of Earth-equivalent insolation separations (a proxy for
habitable zone location) of a tentative HWO target list in units of 𝜆/𝐷. Most habit-
able zones that are observable with a coronagraph at optical wavelengths (∼ 0.5 um)
are no longer accessible at infrared wavelengths (∼ 1.5 um). Nulling interferometers
designed for closer-in separations are needed to spectrally characterize these planets
at infrared wavelengths.

spectroscopic follow-up in the infrared, where molecules like CO2 and CH4 have
the strongest features. Their abundances, interpreted in conjunction with those
of O2 and H2O, are needed to provide constraints on disequilibrium chemistry in
the planet’s atmosphere and the potential existence of life. It is unclear which
nulling architecture or design will eventually best meet the demands of the HWO
mission; however, the invention, characterization, and demonstration of the PLN
presented in this thesis expands the space of possibilities, contributing valuable
relevant knowledge in photonics-based instrument design, wavefront sensing and
control with mode-sorters, calibration and operational procedures, and more.
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