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ABSTRACT

Line spectrum signals appear in diverse application areas such as molecular dy-
namics, power electronics, speech processing, and target localization. They are
composed of sums of complex exponentials with distinct frequencies. Identifying
the parameters of these constituent complex exponentials has been a prominent re-
search topic in signal processing for over four decades. In this thesis, we focus on
two specific applications involving line spectrum signals: direction of arrival (DOA)
estimation using sensor arrays, and denoising of discrete-time periodic signals.

The main contribution of this thesis on the topic of DOA estimation is to propose
unconventional sensor array geometries and algorithms in the presence of aperture
constraints. In the first part, we demonstrate that under an aperture constraint, the
traditional integer arrays (defined as arrays with sensors placed at integer multiples
of the half-wavelength distance 𝜆/2) can perform only suboptimally because of the
restrictive sensor placement at integer locations. To address this, we propose to use
‘rational arrays’ that can have sensors located at rational multiples of𝜆/2. This offers
greater flexibility in sensor placement under aperture constraints. In particular, we
propose rational coprime arrays that can approach the Cramér-Rao bound (CRB)
even at low signal-to-noise ratio (SNR) and with a limited number of snapshots,
and can outperform the integer arrays. Numerical simulations show that rational
arrays are also better equipped to resolve closely separated DOAs. To enable the
derivation of the theoretical results and identifiability guarantees for rational coprime
arrays, we extend the number-theoretic concepts such as greatest common divisor
and coprimality to the case of rational numbers, and prove several number-theoretic
properties. Rational arrays are also demonstrated to have important advantages
when the DOAs are known to lie in a sector of the space, and for identifying O(𝑁2)
uncorrelated sources using 𝑁 sensors under aperture constraint.

In the second part of the thesis, we propose modifications to the traditionally used
sparse (integer) array design criteria. These modifications are aimed at mitigating the
impact of mutual coupling on DOA estimation and reducing the required aperture.
To reduce the impact of mutual coupling, we propose two types of sparse arrays
that have either double or triple minimum inter-element spacing compared to the
traditionally used 𝜆/2 spacing. This introduces ‘holes’ at lags 1 and 2 in the
difference coarrays (defined as the set of differences in sensor locations). The
first type of arrays, called weight-constrained sparse arrays, have O(𝑁) aperture,
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making them suitable when the available aperture is constrained and the number
of DOAs is small. A general array construction, to further reduce the weights at
other coarray lags, is also proposed. The second type of arrays, called weight-
constrained nested arrays, have O(𝑁2) degrees of freedom and are suitable when
there are no aperture restrictions. Extensive Monte-Carlo simulations demonstrate
that the proposed arrays have significantly smaller DOA estimation errors compared
to the well-known sparse arrays from the literature, in the presence of high mutual
coupling.

Because of the central holes in the difference coarrays of the weight-constrained
arrays, there are two segments of consecutive entries in their coarrays: one on the
positive side and the other on the negative side. To leverage these both, we propose
to use an augmented coarray covariance matrix for the subspace-based algorithms
such as multiple signal classification (MUSIC) and estimation of signal parameters
via rotational invariance (ESPRIT). This further reduces the DOA estimation error
for the weight-constrained arrays, and the computation time of augmented-MUSIC
is significantly less than that of optimization-based methods, such as coarray inter-
polation and dictionary-based methods. We also develop methods to algorithmically
interpolate the missing entries in the coarray at lags 1 and 2, to generate a larger
coarray matrix. This approach demonstrates the capability to identify up to twice as
many DOAs compared to what can be achieved using only the one-sided segment
of consecutive lags in the coarray. This mitigates the main disadvantage of having
central holes in the coarrays of weight-constrained arrays, while still benefiting from
their advantage in reducing the impact of mutual coupling.

One major drawback of using coarray-MUSIC for DOA estimation is its inefficiency
(i.e., the mean squared error (MSE) does not approach CRB, even asymptotically).
We conduct several experiments to provide new insights into the complex relation-
ship of coarray-MUSIC MSE on several parameters, such as array geometry, DOA
separation, and accuracy of the estimated array output correlations. Furthermore, we
demonstrate that an alternative way of constructing the Toeplitz covariance matrix
can greatly improve the MSE compared to coarray-MUSIC, and can lead to efficient
DOA estimation. This approach is based on solving an optimization problem whose
objective is derived using the asymptotic error distribution of the known entries from
the covariance matrix. We also propose a modification to the Toeplitz covariance
matrix construction approach to account for the presence of mutual coupling and
provide simulations with different sparse arrays.
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The third part of the thesis is focused on developing a periodicity-aware signal
denoising framework using Capon-optimized Ramanujan filter banks and pruned
Ramanujan dictionaries. The signal reconstruction (synthesis) is done by solv-
ing a regularized optimization problem, based on the outputs of the analysis filter
bank. This hybrid analysis-synthesis framework ensures that the denoised output is
necessarily composed of discrete-time periodic components. Capon beamforming
principles from array signal processing are utilized to optimize the Ramanujan fil-
ters to the incoming data. A computationally efficient way of obtaining the inverses
of the required autocorrelation matrices is derived using Levinson’s recursion. The
proposed denoising method is observed to be effective even when the signal length
is small and demonstrates a high SNR gain across a wide range of input signal
SNRs. Furthermore, we derive several decimation properties of Ramanujan sub-
space signals, which help in reducing the required computations by appropriately
downsampling the filter outputs without any loss of information.

Towards the end of the thesis, we theoretically investigate the locations of zeros
of Ramanujan filters. Additionally, we propose an ideal interpolation filter model
for Ramanujan subspace signals, which has potential application in developing a
synthesis filter bank counterpart to the Ramanujan analysis filter bank for perfect
signal reconstruction. We also explore the use of dictionary learning to represent
periodic signals, and adapt a convolutional neural network based DOA estimation
method to sparse arrays.
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C h a p t e r 1

INTRODUCTION

A key aspect of many signal processing systems is transforming signals from their
natural domain (typically the time domain or space domain) into an alternate repre-
sentation domain. Representing signals in such an alternate domain can be helpful
in enhancing intuitive understanding and also simplifying their processing. The
‘transforms’ that convert signals from one domain into another typically do so by
representing the signals using a new set of basis functions. One of the most widely
used tools for such signal transformations is the Fourier transform. It converts the
time-domain or space-domain signals into the frequency domain by representing
them as a linear combination of a set of complex exponentials as basis functions.
The complex exponential basis functions are parametrized by the ‘frequency’ vari-
able 𝜔. The frequency-domain representation of signals enables several important
tasks in signal processing, such as filtering, noise reduction, compression, and
parameter extraction.

When a signal is composed of a finite number of discrete frequency components, its
frequency spectrum is characterized by distinct ‘lines’ at specific frequencies, and
is called a Line Spectrum. Signals having line spectra are also commonly referred
to as sum-of-sinusoids because they can be represented as the sum of finitely many
sinusoids (or, complex exponentials) with distinct frequencies. Mathematically, a
discrete-time line spectrum signal can be expressed as

𝑥(𝑛) =
𝑀∑︁
𝑖=1

𝐴𝑖𝑒
𝑗𝜔𝑖𝑛, (1.1)

where 𝜔𝑖 are discrete-time frequencies, 𝑛 is discrete-time index, and 𝐴𝑖 are the
complex amplitudes. The discrete-time Fourier transform (DTFT) of such a signal
is shown in Fig. 1.1. Line spectrum signals frequently arise in various applications,
including direction of arrival (DOA) estimation using sensor arrays [1], [2], bearing
and range estimation in synthetic aperture radar (SAR) [3], channel estimation
in wireless communications [4], pitch estimation in speech processing [5], [6],
detecting periodicity structure in repeating signals [7], power electronics [8], and
simulation of atomic systems in molecular dynamics [9]. These applications rely on
accurately estimating the discrete frequencies that make up the signal, making line
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Figure 1.1: A representative example of the DTFT of a general line spectrum signal
from Eq. (1.1).

spectrum estimation an essential tool in signal processing. Some of the techniques
proposed in the literature for line spectrum estimation include classical subspace-
based algorithms such as multiple signal classification (MUSIC) [10] and estimation
of signal parameters via rotational invariance techniques (ESPRIT) [11], maximum
likelihood based method [12], sparsity-based and dictionary-based algorithms [13],
[14], compressed sensing [15], and atomic-norm based methods [16], [17].

This thesis focuses on two specific scenarios involving line spectrum estimation:
i) DOA estimation using sensor arrays, and ii) denoising of discrete-time periodic
signals. Both scenarios share a common characteristic: the line spectral structure
of the underlying signals, but they arise in distinctly different contexts with different
objectives. DOA estimation is typically used in applications where detecting the
location of a target is essential, and the data is collected using sensor arrays that
spatially sample incoming waves. In contrast, periodic signal denoising is primarily
concerned with time-domain signals, where the goal can be to remove noise from
periodic structures (such as those found in electrocardiograms (ECG) [18] or gravi-
tational waves [19]) to gain a clearer understanding of the physical phenomena that
generate the signals. Examples of the line spectra arising in the context of DOA
estimation and periodic signals are shown in Fig. 1.2. For DOA estimation, the
line spectrum is in the angular domain, whereas a periodic signal exhibits a line
spectrum in the frequency domain.

In the rest of this chapter, we provide a brief introduction to sensor arrays, DOA
estimation, and denoising of periodic signals. We then outline the new contributions
of the thesis. The outline of the chapter is as follows. In Sec. 1.1, we discuss the
important applications of sensor arrays. Sec. 1.2 reviews the passive array output
equation. Sec 1.3 discusses periodic signals and the role of Ramanujan sums in
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Figure 1.2: Examples of line spectra arising in the context of DOA estimation and
periodic signals. (a) A MUSIC spectrum (see Sec. 2.2) showing line spectrum
in the angular domain in the context of DOA estimation. (b) A DTFT of a noisy
periodic signal showing a line spectrum in the frequency domain.

analyzing periodicity. Sec. 1.4 motivates the use of learned transformations for
signal representation. Sec 1.5 provides a chapter-wise overview and contributions
of this thesis. Lastly, Sec. 1.6 and Sec. 1.7 define the notations and acronyms used
in this thesis.

1.1 Sensor Arrays
Sensor arrays are composed of multiple sensors that sample incoming waves from
various directions. The signals received at these sensors are then processed collec-
tively. This joint processing enables the extraction of information that a single sensor
alone would not be able to provide. An important application of sensor arrays is to
determine the directions of arrivals (DOAs) of sources impinging on the arrays, to
localize the sources, or even to track moving sources over time. Another important
application of sensor arrays is to achieve direction-dependent beamforming gain to
improve the signal-to-noise ratio (SNR). A beamformer can amplify signals from
specific directions and attenuate signals from certain others. The field of array signal
processing has evolved over several decades to develop efficient signal processing
techniques for DOA estimation and beamforming [1], [2].

DOA estimation and beamforming play crucial roles in numerous application areas.
In wireless communication and cellular networks, MIMO (multiple input multiple
output) systems employ transmitting and receiving arrays to enhance channel ca-
pacity, reduce interference, and facilitate efficient communication [20], [21]. In
radar and sonar systems, DOA estimation is essential for target detection, tracking,
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and localization [22], [23]. In radio astronomy, antenna arrays gather signals from
distant celestial objects and improve image resolution by creating large synthetic
apertures [24]. In seismology, array signal processing is used to detect seismic
waves, locate earthquakes, and study geological structures [25], [26]. Microphone
arrays are used in acoustical array signal processing to enhance speech signals and
reduce noise [27], [28]. Furthermore, array signal processing finds applications in
medical imaging techniques, such as ultrasound and electroencephalogram (EEG)
[21], [29]. More recently, in self-driving cars, sensor arrays and automotive radar
are used for mapping and autonomous navigation, supplementing other detection
modalities such as cameras and LIDAR [30].

1.2 Array Output Equation
We consider a linear array z consisting of 𝑁 sensors placed at locations 𝑧1, 𝑧2, . . .,
𝑧𝑁−1, 𝑧𝑁 that sample the electromagnetic waves impinging on them. This array is
represented as

z =

[
𝑧1 𝑧2 · · · 𝑧𝑁−1 𝑧𝑁

]
. (1.2)

In some situations, it is mathematically convenient to assume that the leftmost sensor
is placed at the origin. In this case, the sensors are assumed to be placed at locations
0, 𝑧1 . . . , 𝑧𝑁−2, 𝑧𝑁−1, and the array is represented as

z =

[
0 𝑧1 · · · 𝑧𝑁−2 𝑧𝑁−1

]
. (1.3)

The convention for the array representation that we use will be clear from the
context. We assume that the sensors are omnidirectional and arranged in a linear
configuration, as illustrated in Fig. 1.3. The aperture 𝐴 of the array is defined as
the distance between the leftmost and rightmost sensors:

𝐴 = 𝑧𝑁 − 𝑧1. (1.4)

There are 𝐷 electromagnetic waves impinging on the array, which are emitted by 𝐷
far-field sources. Because of the far-field assumption, the impinging waves can be
well approximated as plane waves. The sources are assumed to be monochromatic
with wavelength 𝜆. All sources are assumed to lie in a plane. The angles of the
incoming plane waves measured from the array normal are called directions of
arrivals (DOAs) and are denoted by 𝜃1, 𝜃2, . . . , 𝜃𝐷 . DOAs are assumed to be in the
range [−90◦, 90◦).
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Figure 1.3: Standard model of a passive linear array of 𝑁 sensors receiving plane
waves from 𝐷 far-field sources at angles 𝜃1, 𝜃2, . . . , 𝜃𝐷 from the array normal.

Traditionally, the sensors are placed at locations that correspond to integer multiples
of a unit separation distance 𝑑:

𝑧𝑖 = 𝑛𝑖 · 𝑑, (1.5)

where 𝑛𝑖 are integers. The uniform linear array (ULA) is most commonly used in
array signal processing, and has sensors placed at locations 𝑛𝑖 = 𝑖 − 1. Now, if the
amplitude from the 𝑖-th source is 𝑠𝑖, the output produced at 𝑁 sensors by this single
source is proportional to [1]

𝑠𝑖 ·


𝑒 𝑗𝜔𝑖𝑛1

𝑒 𝑗𝜔𝑖𝑛2

...

𝑒 𝑗𝜔𝑖𝑛𝑁

︸    ︷︷    ︸
a(𝜔𝑖)

, (1.6)

where 𝜔𝑖 = 2𝜋𝑑 sin 𝜃𝑖/𝜆, and

a(𝜔𝑖) =
[
𝑒 𝑗𝜔𝑖𝑛1 𝑒 𝑗𝜔𝑖𝑛2 . . . 𝑒 𝑗𝜔𝑖𝑛𝑁

]𝑇
(1.7)

is called the steering vector corresponding to direction 𝜔𝑖. When there are 𝐷
sources, the array output is given by

x =

𝐷∑︁
𝑖=1

𝑠𝑖 a(𝜔𝑖) + n = As + n. (1.8)
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Here, the vector s =

[
𝑠1 𝑠2 . . . 𝑠𝐷

]𝑇
∈ C𝐷 contains the source amplitudes and

n ∈ C𝑁 is the additive random noise. The array manifold matrix A contains steering
vectors corresponding to 𝐷 source directions:

A =

[
a(𝜔1) a(𝜔2) . . . a(𝜔𝐷)

]
. (1.9)

If the unit distance 𝑑 is larger than the half-wavelength distance 𝜆/2, there is spatial
aliasing [1]. So typically, 𝑑 is taken to be 𝜆/2, and the relationship between the
physical DOA 𝜃𝑖 and the corresponding 𝜔𝑖 becomes

𝜔𝑖 = 𝜋 sin 𝜃𝑖 . (1.10)

As the DOAs 𝜃𝑖 lie in the range [−90◦, 90◦), 𝜔𝑖 belong to the range [−𝜋, 𝜋). Note
that 𝜔 = 𝜋 sin 𝜃 is an invertible map when 𝜃 is in the range [−90◦, 90◦), and hence
there is a one-to-one correspondence between the physical DOA domain 𝜃 and the
parametric domain𝜔. Thus, we interchangeably refer to both 𝜃𝑖 and𝜔𝑖 as the DOAs.
Given the array output vector x, the information about sources, such as DOAs, signal
powers, and the number of sources 𝐷, can be estimated.

Throughout this thesis, we make a normalizing assumption 𝑑 = 𝜆/2 = 1, without
loss of generality [1]. Arrays that have sensors placed on a grid with unit separation
𝑑 = 1 are called integer arrays. Integer arrays that are not ULAs are called
sparse integer arrays, or simply sparse arrays. Most of the array signal processing
literature focuses on integer arrays. However, we will point out in Chapter 3 that
the integer constraint on sensor locations can be too restrictive, especially when a
given number of sensors 𝑁 are to be placed in an available aperture 𝐴. This can
prevent optimal placement of the sensors, leading to a higher DOA estimation error.
To overcome this drawback, we propose to use rational arrays in Chapter 3.

1.2.1 Difference Coarray
For an integer array z =

[
𝑛1 𝑛2 · · · 𝑛𝑁−1 𝑛𝑁

]
, the difference coarray is

defined as the set of all pairwise differences in the sensor locations:

Dz = {𝑛𝑖 − 𝑛 𝑗 }𝑁𝑖, 𝑗=1. (1.11)

The difference coarray is symmetric, and D+
z is used to represent the set of non-

negative entries in Dz. The coarray weights are defined as

𝑤(𝑙) = |{(𝑛𝑖, 𝑛 𝑗 ) s.t. 𝑛𝑖 − 𝑛 𝑗 = 𝑙}|, (1.12)
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where | · | denotes the cardinality of the set. The 𝑙-th coarray weight 𝑤(𝑙) denotes
the number of sensor pairs with distance 𝑙 between them. In discrete mathematics,
a related concept of difference basis has been studied widely [31], [32]. The set
of integers {𝑛1, 𝑛2, . . . , 𝑛𝑁 } is a difference basis with respect to an integer 𝐿 if the
difference coarray contains all integers from −𝐿 to 𝐿. We will see in Chapter 2
that such a uniform segment in coarray is of importance for DOA estimation with
sparse arrays. Many well-known sparse arrays, such as minimum redundancy arrays
(MRAs) [33], nested arrays [34], and coprime arrays [35], have a large segment
of O(𝑁2) consecutive lags present in the difference coarray, and such arrays are
well-suited to estimate the DOAs using coarray-domain processing, as we will see.

1.2.2 Effect of Mutual Coupling Between Sensors
When sensors have electromagnetic coupling between them, the array output does
not follow the standard model in Eq. (1.8). This is called the mutual coupling
effect, and it is challenging to precisely model mathematically [36]. In practice, it
is usually unknown to the user. In numerical simulations, the effect of coupling on
the array output is typically modeled as [37]–[39]:

x = CAs + n, (1.13)

where C is the coupling matrix. The structure of the coupling matrix depends on
several factors, as discussed later in Sec. 2.4. Mutual coupling can severely degrade
the accuracy of DOA estimation [1], [39]. Sparse arrays are better at reducing the
impact of mutual coupling because the sensors are farther apart from each other on
average, compared to a ULA. However, many of the existing sparse arrays from the
literature may still not be robust to the presence of strong mutual coupling, as we
will demonstrate in Chapter 4. Thus, we propose unconventional sparse arrays that
are better at mitigating the effect of mutual coupling compared to the known sparse
arrays. For such unconventional array geometries, we also propose improved DOA
estimation algorithms in Chapter 5.

1.3 Periodic Signals and Ramanujan Sums
Periodicity is one of the most fundamental and pervasive patterns that occur in
nature, manifesting across different phenomena ranging from the oscillating pen-
dulum to the rhythmic cycles of biological processes. In the context of signal
processing, periodic signals are particularly important as they serve as the foun-
dation for analyzing many naturally occurring signals. Many real-world signals,
such as electromagnetic waves, electrical signals, and even biological signals such
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as ECG, exhibit periodic characteristics, though often with added noise or irregu-
larities. The periodic component of a signal often carries important information
about the underlying phenomenon, such as the frequency of a heartbeat in an ECG
or the pitch in a segment of tonal music. Understanding the structural properties of
periodic signals, such as their frequency, amplitude, and phase, can provide insights
into the system being observed.

Periodic signals also occur naturally as discrete-time sequences. For example,
certain biological sequences, like tandem repeats in DNA, exhibit periodic segments
which can be indicative of genetic disorders or mutations [40]–[42]. Similarly,
protein repeats in amino acid sequences follow periodic patterns that are crucial in
determining the structural and binding properties of proteins [43], [44], which are
fundamental to cellular processes. The study of these periodic patterns in biological
systems has implications for fields such as genetics, bioinformatics, and molecular
biology, where understanding the timing and repetition of sequences can reveal
insights into genetic codes and molecular structures.

Mathematically, a discrete-time signal 𝑥(𝑛) is periodic if there exists an integer 𝑃
such that

𝑥(𝑛 + 𝑃) = 𝑥(𝑛) ∀ 𝑛 ∈ Z. (1.14)

Any such 𝑃 is called a repetition index, and the smallest positive repetition index
is called the period of 𝑥(𝑛). Most traditional methods for estimating component
periods in periodic signals rely on the Fourier transform to analyze the non-zero
frequency components in the signal [45]–[48]. The drawbacks of these methods
for discrete-time signals are highlighted in Chapter 1 of [49], especially when the
signal length is short and the period is not a divisor of the signal length.

1.3.1 Ramanujan Sums
Several authors have shown that Ramanujan sums can be used for signal processing
applications arising in the context of periodic signals [50]–[59]. Ramanujan sums
[60] were introduced by mathematician Srinivasa Ramanujan in 1918, and they
exhibit several beautiful number-theoretic properties. For every integer 𝑞 > 0, the
𝑞𝑡ℎ Ramanujan sum is defined as

𝑐𝑞 (𝑛) =
𝑞∑︁
𝑘=1

(𝑘,𝑞)=1

𝑒 𝑗2𝜋𝑘𝑛/𝑞 =
𝑞∑︁
𝑘=1

(𝑘,𝑞)=1

𝑊−𝑘𝑛
𝑞 =

𝑞∑︁
𝑘=1

(𝑘,𝑞)=1

𝑊 𝑘𝑛
𝑞 . (1.15)

Here,
𝑊𝑞 = 𝑒

− 𝑗2𝜋/𝑞 (1.16)
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is a 𝑞-th complex root of unity, and (𝑘, 𝑞) = 1 means that 𝑘 and 𝑞 are coprime
integers. Ramanujan showed that these sequences have several interesting properties
[60]:

1. The 𝑞-th Ramanujan sum 𝑐𝑞 (𝑛) is periodic with period exactly equal to 𝑞 (and
not a proper divisor of 𝑞).

2. Although defined in terms of the powers of the complex root of unity, 𝑐𝑞 (𝑛)
is always real and integer-valued. The fact that 𝑐𝑞 (𝑛) is real can be easily
deduced, but 𝑐𝑞 (𝑛) being integer-valued is a surprising property.

3. For any distinct integers 𝑝 and 𝑞, the corresponding Ramanujan sums 𝑐𝑞 (𝑛)
and 𝑐𝑝 (𝑛) are orthogonal over a length that is a common multiple of 𝑝 and 𝑞.

4. Many arithmetic functions, such as the divisor function and the Euler totient
function [61], can be expressed as functions of Ramanujan sums.

A comprehensive analysis of Ramanujan sums in the context of signal processing
for detecting periods in a discrete-time signal was developed in [52] and [62].
Ramanujan sums were generalized to Ramanujan subspaces S𝑞, and dictionary
approaches were also developed for detecting periods. A generalized framework of
nested periodic dictionaries is presented in [53]. Ramanujan periodicity transform
(RPT) is shown to be useful in applications such as robust detection of brain stimuli
for brain-computer interfaces [54]–[56] and removal of interference from ECG
signals [57]–[59]. Ramanujan filters and Ramanujan filter banks (RFB) were first
proposed in [63] and further developed in [64]. An overview of developments
related to Ramanujan subspaces, filters, and dictionaries can be found in [65].

In Chapter 7, we will introduce a denoising method for periodic signals based
on Ramanujan dictionaries and Ramanujan filter banks, and prove several multirate
properties of Ramanujan sums. We will also propose an interpolation filter model for
Ramanujan subspace signals and provide a characterization of zeros of Ramanujan
filters in Chapter 8.

1.4 Learned Transformation for Signal Representation
The Fourier transform and the frequency-domain representation may not always
provide the most suitable representation for every type of signal. Depending on the
specific characteristics of the signal and the intended application, several alternative
transformations are frequently used in signal processing. For example, the discrete
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cosine transform (DCT) is particularly effective for natural images, especially in
image compression tasks [66]. Similarly, the Haar transform and more general
wavelet transforms are useful for multi-resolution analysis of signals [67].

In certain applications, it can be beneficial to use a transformation specifically de-
signed for the signals and tasks at hand, rather than relying on standard transforma-
tions like the Fourier transform or DCT. For example, principal component analysis
(PCA) [68] is a widely used method for efficiently representing high-dimensional
data. PCA is closely related to the Karhunen-Loève transform (KLT) [69], which
learns to represent signals using a few orthogonal principal components that cap-
ture the most variability in the data. This learned transformation enables efficient
data representation and is commonly applied in dimensionality reduction and other
related applications.

Unlike the Fourier transform, DCT, and PCA, which all provide invertible trans-
formations, it is also possible to learn an overcomplete set for representing a class
of signals. The key advantage of this approach is that signals can be expressed
as sparse linear combinations of the components in the learned representation set.
A widely used method for learning such overcomplete representation is dictionary
learning [70]–[73]. There are several different dictionary learning techniques pre-
sented in the literature, and K-SVD [74] is one of the most popular algorithms. It
has demonstrated effectiveness across a range of applications [75], [76]. In the first
half of Chapter 9, we will explore the role of dictionary learning methods for the
representation of periodic signals.

In the last decade, the use of machine learning and deep learning has become
widespread across various fields [77] for representing and processing signals and
data. Deep neural networks and other network architectures can be trained for
specific tasks, allowing them to inherently learn useful features from the data that
are difficult to capture analytically. While the universal function approximation
capabilities of neural networks have been known for decades [78]–[81], with the
recent advancements in hardware and algorithms for fast computations, the use of
deep networks has become practical. Instead of using DCT coefficients as features
for the image compression task, neural networks such as autoencoders [82] can
learn to compress and reconstruct images effectively, and can also be tailored to a
specific class of images. In the second half of Chapter 9, we adapt a convolutional
neural network (CNN) based DOA estimation method for sparse arrays by proposing
various alternative inputs to the network.
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1.5 Contributions and Outline of This Thesis
With the aforementioned background, this thesis primarily focuses on developing
novel sensor array geometries, algorithms, and theoretical results for processing
line spectrum signals, with applications in DOA estimation and periodic signal de-
noising. Chapter 2 provides a brief review of sparse arrays and DOA estimation
algorithms. In Chapter 3, we introduce non-integer arrays for DOA estimation and
demonstrate their advantages over traditional integer arrays. Chapter 4 presents new
weight-constrained sparse arrays, which are particularly useful for DOA estimation
under high mutual coupling and aperture constraints. We also develop new algo-
rithms to enhance the performance of these weight-constrained arrays in Chapter 5.
In Chapter 6, we elaborate on certain lesser-known defects of coarray-domain DOA
estimation, and also explore a few ways to combat them. Following this, Chapter 7
proposes a framework for periodicity-aware signal denoising using Ramanujan filter
banks and dictionaries. In Chapter 8, we develop some further theoretical properties
of Ramanujan filters. In Chapter 9, we examine two widely used learning-based
methods for DOA estimation and periodic signal representation. Finally, Chapter
10 concludes the thesis and provides directions for future research.

1.5.1 Review of Sparse Arrays and DOA Estimation Algorithms (Chapter 2)
In this chapter, we provide a brief summary of sparse sensor arrays and the subspace-
based DOA estimation algorithms that will be utilized throughout the thesis. We
also explain the importance of the difference coarray and coarray-domain DOA
estimation algorithms. In later chapters (Chapters 3, 4, and 5), we will adapt these
algorithms appropriately for the new array configurations that we propose. We also
discuss the practicality of the mutual coupling model used in array signal processing.
Next, we explain that the coarray-MUSIC is observed to be asymptotically inefficient
for sparse arrays. This means that the coarray-MUSIC mean squared error (MSE) is
larger than the Cramér-Rao bound (CRB) even for a large SNR and a large number
of snapshots. Later in Chapter 6, we explore different ways of constructing the
coarray-domain covariance matrices and experimentally analyze their effect on the
efficiency of DOA estimation.

1.5.2 Non-Integer Arrays for Direction of Arrival Estimation (Chapter 3)
Linear arrays with sensors positioned at integer locations (in multiples of the half-
wavelength distance 𝑑 = 𝜆/2) are widely used in array signal processing. However,
the requirement for sensor locations to be integers can be overly restrictive in appli-
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cations where a limited number of sensors are to be placed within a fixed aperture.
To address this limitation, this chapter explores arrays where the sensor locations
can be rational numbers. It is shown that rational arrays possess several important
advantages over integer arrays, primarily by offering greater design flexibility. In
particular, we introduce sparse and coprime rational arrays, and provide general ar-
ray constructions that are applicable for any given number of sensors 𝑁 and available
aperture 𝐴. To demonstrate the theoretical identifiability properties of these pro-
posed arrays, we first extend integer number-theoretic concepts, such as the greatest
common divisor and coprimality, to rational numbers. Using these number-theoretic
extensions, we provide results regarding the steering vector invertibility of general
rational arrays and the unique identifiability of rational coprime arrays. Some of the
theoretical results can be further extended to arbitrary arrays where sensor locations
can even be irrational.

By adapting the standard DOA estimation algorithm, such as root-MUSIC, for pro-
posed rational arrays, we demonstrate their advantages over traditional integer arrays
when limited sensors are to be placed in a given aperture. Extensive Monte-Carlo
simulations reveal that rational arrays can approach the CRB even at low SNR and
with a limited number of snapshots, outperforming integer arrays. Furthermore, ra-
tional arrays are observed to be better equipped for resolving closely spaced sources,
and they also have smaller MSE for most two-DOA configurations. Additionally, we
show that when signals are coming from a confined angular sector, rational arrays
can leverage this information more effectively, allowing for sensor placement over a
larger aperture while retaining unique identifiability properties.

Lastly, we highlight another advantage of rational arrays by examining their dif-
ference coarrays. While integer arrays, including nested and coprime arrays, are
well-known for their capability to identify O(𝑁2) uncorrelated sources using 𝑁

sensors in the difference coarray domain, they typically require a sufficiently large
aperture to do this. In contrast, rational arrays can identify O(𝑁2) uncorrelated
sources even with a limited aperture. We demonstrate that by adding a few sensors
at non-integer locations within an otherwise integer array, it is possible to introduce
a significant number of fractional lags at which autocorrelation can be estimated.
Furthermore, carefully designed sparse integer arrays can be scaled to create ratio-
nal arrays that fit within the available aperture and have a large ULA segment in
coarray at rational locations. To illustrate these benefits, we provide Monte-Carlo
simulations and address practical challenges associated with reducing the aperture
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size, such as the increased mutual coupling.

1.5.3 Weight-Constrained Arrays For DOA Estimation Under High Mutual
Coupling and Aperture Constraints (Chapter 4)

Following the development of nested arrays and coprime arrays, several improved
sparse array constructions have been proposed in the literature to identify O(𝑁2)
directions with 𝑁 sensors. These constructions typically aim to maximize the
degrees of freedom (DOFs) of the arrays and reduce the impact of mutual coupling
on DOA estimation. In this chapter, we propose modifications to the traditionally
followed sparse array design criteria to better mitigate the effect of mutual coupling
and reduce the required aperture for such sparse arrays. We argue that having O(𝑁2)
degrees of freedom may not be of interest, especially for large 𝑁 . Furthermore, a
large aperture for these arrays may not be practical when space for sensor placement
is limited. With the modified array design criteria, we present two types of sparse
array designs that can effectively address high mutual coupling by ensuring that the
coarray weights satisfy either 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0. In addition, several
other coarray weights are small constants that do not increase with the number of
sensors 𝑁 . The first type of array has an aperture of O(𝑁), making it suitable
when the available aperture is constrained and the number of DOAs does not exceed
O(𝑁). These arrays are constructed by appropriately dilating a ULA and adding a
few additional sensors. Despite having an aperture of O(𝑁) length, these arrays can
still identify more than 𝑁 DOAs. The second type of array possesses O(𝑁2) degrees
of freedom and is suitable when there are no aperture restrictions. These arrays are
created by properly dilating a nested array and augmenting it with several additional
sensors. We compare the proposed arrays with existing ones in the literature by
analyzing their coarray properties and conducting several Monte-Carlo simulations.
In the presence of high mutual coupling, the proposed arrays can estimate DOAs
with significantly smaller errors than other arrays from the literature, demonstrating
the effectiveness of reducing coarray weights at critical small-valued lags.

1.5.4 Improved DOA Estimation Algorithms and Generalized Constructions
for Weight-Constrained Arrays (Chapter 5)

The weight-constrained arrays discussed in Chapter 4 have ‘central holes’ in their
difference coarrays at locations 1 and 2. The DOA estimation simulations presented
in that chapter only utilize the one-sided ULA segment within the coarrays of weight-
constrained arrays. To leverage the ULA segments on the positive and negative sides
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of the coarray, we propose using two different techniques: i) augmented root-MUSIC
and augmented ESPRIT, and ii) covariance interpolation. These techniques can also
be applied to other arrays from the literature that have central holes in the coarray,
such as the CADiS [83] and cMRA [84].

The proposed augmented root-MUSIC and augmented ESPRIT methods rely on
the singular value decomposition (SVD) of an augmented coarray matrix. This
augmented coarray matrix is created by stacking the Toeplitz matrices formed by
arranging the estimated correlations at lags corresponding to the ULA segments on
positive and negative sides in the coarray. The proposed method can still accurately
identify up to ⌊𝐿/2⌋ DOAs, where 𝐿 is the length of a one-sided ULA segment in the
coarray. Our numerical simulations show that the augmented root-MUSIC achieves
a smaller MSE compared to the standard root-MUSIC that uses only the one-sided
ULA segment from the difference coarray. Additionally, we compare the proposed
algorithms to other DOA estimation techniques that can utilize the non-central ULA
segments in the coarray, including dictionary-based DOA estimation and coarray
interpolation. The computation time for the proposed augmented root-MUSIC
and augmented ESPRIT is significantly less than that of other optimization-based
methods.

The second method of covariance interpolation results in the generation of a larger
Toeplitz matrix, which is then used to estimate DOAs using the root-MUSIC or
ESPRIT. This approach demonstrates the capability to accurately identify up to
twice as many DOAs compared to what can be achieved using only the one-sided
ULA segment in the coarray. Additionally, even when the number of DOAs is
limited, the DOA estimation error after interpolation is significantly smaller than
that obtained using just the one-sided ULA segment in the coarray. Consequently,
we can mitigate the disadvantage of having central holes in the coarrays of weight-
constrained arrays while still benefiting from their advantages in reducing the impact
of mutual coupling on DOA estimation.

In the last part of this chapter, we also propose a generalized construction of weight-
constrained sparse arrays with 𝑤(1) = 0 that additionally satisfy the property that,
for a given integer 𝑃, the coarray weights𝑤(𝑙) for 2 ≤ 𝑙 ≤ 𝑃 are constants that do not
increase with the number of sensors 𝑁 . We prove that the difference coarrays of the
proposed arrays contain a large one-sided ULA segment of length O(𝑁), starting
from lag 2. We analyze the effect of the parameter 𝑃 on coarray properties and
coupling leakage values. Numerical simulations indicate that the proposed arrays
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exhibit greater robustness to mutual coupling compared to the weight-constrained
arrays proposed in the previous chapter. Additionally, the newly proposed arrays
can also have smaller DOA estimation errors when compared to well-known sparse
arrays from the literature, especially under conditions of high mutual coupling
and aperture constraints. Finally, we discuss the limitations encountered when
attempting to further generalize weight-constrained arrays (for example, to make
𝑤(1) = 𝑤(2) = 𝑤(3) = 0) due to the currently adopted array generation procedure.

1.5.5 On the Efficiency of Coarray-Domain DOA Estimation Algorithms (Chap-
ter 6)

Sparse arrays are widely known for their ability to identify O(𝑁2) directions of ar-
rival (DOAs) using 𝑁 sensors through the difference coarray domain. The coarray-
MUSIC is based on the eigendecomposition of a Toeplitz matrix formed by ‘direct
augmentation’, where the estimated correlations at consecutive lags from the dif-
ference coarray are arranged to form the coarray covariance matrix. However, this
approach has been found to be inefficient, even under high SNR and with a large
number of snapshots. In the first part of this chapter, to understand when and how the
coarray-MUSIC loses its efficiency, we consider the simplest case of a ULA when
the number of sources 𝐷 is less than the number of sensors 𝑁 . Standard (element
space) MUSIC already achieves CRB in this case, but we observe that coarray-
MUSIC suffers significant performance loss, similar to what has been observed for
sparse arrays. We also consider two variations of the coarray-MUSIC algorithm
by using tall and fat variations of the coarray covariance matrix. Additionally, we
experimentally find that coarray-MUSIC MSE for two-source cases varies in sur-
prising ways with DOA separation. We also demonstrate that perturbing different
array output correlations has different effects on coarray-MUSIC MSE. These ob-
servations provide valuable insights into the (in)efficiency of coarray-MUSIC and
provide directions for further investigations.

In the second part of this chapter, we demonstrate that an alternative way of con-
structing the coarray covariance matrix can greatly improve the MSE compared to
coarray-MUSIC and can lead to efficient DOA estimation. This approach constructs
a Toeplitz covariance matrix by solving an optimization problem whose objective
is derived using the asymptotic error distribution of the known entries from the
covariance matrix. When the number of sources 𝐷 is less than the number of
sensors 𝑁 , the DOA estimation MSE with this approach does not saturate at high
SNR, unlike that of coarray-MUSIC. We experimentally demonstrate that this leads
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to efficient DOA estimation for many different sparse arrays. For the other case,
when 𝐷 > 𝑁 and the CRB saturates at high SNR, the MSE with this Toeplitz
matrix approach is found to be close to the CRB. We identify that whitening the
error vector using its asymptotic error distribution is a key feature of this method
that is crucial for the observed improvement in MSE. Although this Toeplitz matrix
construction approach acts as an interpolation algorithm for arrays that have holes in
their difference coarrays (such as coprime arrays), this approach is also observed to
greatly improve the DOA estimation MSE for arrays that do not have holes in their
difference coarrays (such as nested arrays). These observations establish a relatively
simpler alternative to some of the recently proposed methods in the literature for
efficient DOA estimation using sparse arrays. We also propose a modification to
the Toeplitz covariance matrix construction approach to account for the presence of
mutual coupling and provide simulations with different sparse arrays.

1.5.6 Periodicity-Aware Signal Denoising Using Capon-Optimized Ramanu-
jan Filter Banks and Pruned Ramanujan Dictionaries (Chapter 7)

In this chapter, we propose a ‘periodicity-aware’ hybrid analysis-synthesis frame-
work for denoising discrete-time periodic signals. Our method utilizes Ramanu-
jan filter banks (RFB) for analysis and dictionaries for synthesis. The synthesis
dictionary retains appropriate subspaces for signal reconstruction by pruning the
Ramanujan dictionary based on the outputs of the RFB. Unlike existing denoising
methods, our proposed approach ensures that the denoised output consists of integer-
periodic components with periods smaller than a pre-selected value. The proposed
denoising method is observed to be effective even when the signal length is small
and demonstrates a high SNR gain across a wide range of input signal SNRs.

Furthermore, we adapt each filter in the analysis bank to the incoming data by
optimizing the filter coefficients through a multi-band Capon formulation. Capon
beamforming is a popular beamforming technique in array signal processing, and
we utilize it here for optimizing Ramanujan filters. This adaptation helps suppress
spurious energy peaks generated by higher period filters in the analysis bank, thus
enhancing denoising performance. Implementing multiband Capon filters requires
the inversion of several autocorrelation matrices. To reduce the required computa-
tions, we introduce a method to recursively compute these inverses using Levinson’s
recursion from the linear prediction theory.

Next, we prove several multirate properties of Ramanujan subspace signals. An
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important property among these is that, after decimation, a 𝑞-th Ramanujan subspace
signal remains in the 𝑞-th Ramanujan space if and only if the decimation rate 𝑀 is
coprime to 𝑞. This insight helps reduce the computations required in the analysis
phase of the denoising framework by downsampling the filter outputs. We also
discuss the applicability of the decimation property to the non-zero bandwidth
outputs of Ramanujan filters and Capon-optimized filters. We provide extensive
Monte-Carlo simulations that compare different variants of the proposed method
with several existing denoising techniques.

1.5.7 Theoretical Properties of Ideal Ramanujan Filters (Chapter 8)
The Ramanujan filter bank used in the first stage of the denoising framework devel-
oped in Chapter 7 does not have a known synthesis filter bank counterpart for perfect
signal reconstruction. To make progress towards developing such a synthesis filter
bank, we theoretically investigate an ideal interpolation filter model for Ramanujan
subspace signals in the first part of this chapter. The interpolation filter consists of
an expander ↑ 𝑀 followed by the ideal 𝑞-th Ramanujan filter 𝐶𝑞 (𝑒 𝑗𝜔). The output
space of this interpolation filter is, in general, only a proper subspace of the 𝑞-th
Ramanujan subspace S𝑞. For the special case when 𝑀 and 𝑞 are coprime, we prove
that the output space is the entire Ramanujan subspace S𝑞. We also discuss a more
general form of this model for the representation of periodic signals, which may
have a potential application in denoising periodic signals. When 𝑀 and 𝑞 are not
coprime, we provide a bound on the dimension of the output space of the interpola-
tion filter. For this general case, we also conjecture that the provided bound in fact
equals the dimension of the output space.

In the second part of the chapter, we analyze the locations of zeros of FIR Ramanujan
filters that have the first few periods of Ramanujan sums as their filter coefficients.
All the zeros of FIR Ramanujan filters are shown to lie on or inside the unit circle
in the 𝑧-plane by appealing to Lucas’ theorem. A convenient factorization appears
as a corollary of this result, which is useful to identify common factors between
different Ramanujan filters in a filter bank. For certain families of Ramanujan filters,
further structure is identified in the locations of zeros of those filters. It is shown
that increasing the number of periods of Ramanujan sums in the filter definition
only increases zeros on the unit circle in the 𝑧-plane. A potential application of
these results is that by identifying common factors between different Ramanujan
filters, one can obtain efficient implementations of Ramanujan filter banks, as we
demonstrate.
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1.5.8 Learning-Based Methods for Representing Periodic Signals and DOA
Estimation (Chapter 9)

In this chapter, we explore the role of dictionary learning for periodic signal repre-
sentation and machine learning for DOA estimation. In the first part, we demonstrate
that a well-known dictionary learning algorithm, K-SVD [74], can effectively learn
Ramanujan and Farey periodicity dictionaries from noisy, sparse coefficient data
generated from these dictionaries, without explicitly enforcing any periodicity struc-
ture during the learning process. The similarity between the learned dictionary and
the original periodicity dictionary highlights the effectiveness of K-SVD in learning
an appropriate dictionary from the data without specific application constraints.
Additionally, we explore how different parameter selections impact the similarity
of the learned dictionary to the underlying Ramanujan or Farey dictionaries. Two
variations of K-SVD, along with different initialization methods, are analyzed for
their effects on representation quality and denoising performance.

In the second part, we experiment with the role of machine learning for DOA
estimation. In the last decade, deep neural networks have increasingly been utilized
to enhance DOA estimation performance. We begin by demonstrating how these
methods can be applied to sparse arrays, such as nested arrays, by adapting a recent
approach based on convolutional neural networks (CNNs). We propose various
alternative inputs (proxy spectra) for the network, and our experiments indicate that
even small modifications to the input can improve DOA estimation performance
without altering the network structure. Furthermore, these experiments show that
with the modified input proxy spectra, it is possible to identify more sources than the
number of physical sensors, as one would expect with nested arrays. This finding
opens up new possibilities for combining coarray principles with machine learning
methods for DOA estimation.

1.6 Notations
The notations used in this thesis are defined in this section. Vectors are represented
using boldface lowercase letters such as a, and matrices are represented by boldface
uppercase letters such as A. The notations A𝑇 , A∗, and A𝐻 respectively denote the
transpose, complex conjugate, and Hermitian (or transpose conjugate) of the matrix
A. The 𝑘-th column of matrix A is denoted by A(:, 𝑘), and A𝑖, 𝑗 or [A]𝑖, 𝑗 is the
(𝑖, 𝑗)-th entry of the matrix A. The 𝑛 × 𝑛 identity matrix is denoted by I𝑛. We use
the notations 1𝑛 to denote the 𝑛 × 1 column vector containing all ones and 0𝑛 to
denote the 𝑛 × 1 column vector containing all zeros. The subscripts in I𝑛, 1𝑛, and
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0𝑛 may be omitted when the sizes are clear from the context. The vectorization of
matrix A =

[
a1 a2 . . . a𝑛

]
having columns a1, a2, . . . , a𝑛 is defined as

vec (A) =


a1

a2
...

a𝑛


. (1.17)

The Kronecker product of an 𝑚 × 𝑛 matrix A and a 𝑝 × 𝑞 matrix B is defined as

A ⊗ B =


[A]1,1B [A]1,2B . . . [A]1,𝑛B
[A]2,1B [A]2,2B . . . [A]2,𝑛B

...
...

. . .
...

[A]𝑚,1B [A]𝑚,2B . . . [A]𝑚,𝑛B


. (1.18)

The resulting matrix is of size 𝑚𝑝 × 𝑛𝑞. The Khatri-Rao product is the columnwise
Kronecker product of two matrices. That is, for matrices A =

[
a1 a2 . . . a𝑛

]
and B =

[
b1 b2 . . . b𝑛

]
, their Khatri-Rao product is

A ⊙ B =

[
a1 ⊗ b1 a2 ⊗ b2 . . . a𝑛 ⊗ b𝑛

]
. (1.19)

For a vector v, | |v| |1 and | |v| |2 denote the 𝐿1 and 𝐿2 norms respectively. If the
subscript is omitted, the 𝐿2 norm is assumed. | |v| |0 represented the 𝐿0 pseudonorm.
For a Hermitian symmetric matrix A, A ⪰ 0 means that it is a positive semidefinite
matrix. The rank of the matrix is denoted by rank(A). Trace of a matrix is the
sum of the entries of the matrix on its principal diagonal, and is denoted by tr(A).
The operation diag(A) extracts the diagonal of the matrix A and returns it as a
column vector. A diagonal matrix with entries corresponding to those in a vector a
is represented as diag(a).

Sets are represented in blackboard or calligraphic fonts such as P or P. The sets
of natural numbers (i.e., positive integers), integers, real numbers, and complex
numbers are denoted by N, Z, R, and C, respectively. R𝑁 and C𝑁 denote the 𝑁-
dimensional real and complex Euclidean vector spaces, respectively. The dimension
of a vector space 𝑋 is denoted by dim 𝑋 . We use the notation span{a1, a2, . . . , a𝑛}
to denote the space formed by the span (i.e., all linear combinations) of the vectors
a1, a2, . . . , a𝑛. We also use span{ 𝑓1, 𝑓2, . . . , 𝑓𝑛} to denote the space formed by the
span of functions or sequences 𝑓1, 𝑓2, . . . , 𝑓𝑛.
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The union of two sets P1 and P2 is denoted by P1 ∪ P2. For a set of numbers P, 𝛼P
is the set formed by multiplying each element in P by 𝛼, whereas P + 𝛼 is the set
formed by adding 𝛼 to each element in P. The cardinality of a set P is denoted by
|P|. The notation [[𝑛1, 𝑛2]] is used to denote the set of integers 𝑛 s.t. 𝑛1 ≤ 𝑛 ≤ 𝑛2.

The greatest common divisor (gcd) of two integers 𝑎 and 𝑏 is denoted as gcd(𝑎, 𝑏)
or simply (𝑎, 𝑏). So (𝑎, 𝑏) = 1 means that the integers 𝑎 and 𝑏 are coprime, and
have no common factor other than 1. For any positive integer 𝑎, (𝑎, 0) = 𝑎 by
definition. lcm(𝑎, 𝑏) denotes the least common multiple of the two integers. The
notation 𝑎 |𝑏 means that integer 𝑎 divides integer 𝑏. The notation (𝑎 mod 𝑏) is
used to denote the remainder when integer 𝑎 is divided by integer 𝑏. The number of
integers 𝑏 in 1 ≤ 𝑏 ≤ 𝑎 satisfying (𝑎, 𝑏) = 1 is called the Euler totient function [61]
and is denoted as 𝜙(𝑎). The sum of Euler’s totient function from 1 to 𝑎 is denoted
by Φ(𝑎):

Φ(𝑎) =
𝑎∑︁
𝑖=1

𝜙(𝑖). (1.20)

The largest integer not greater than a real number 𝑥 is denoted by ⌊𝑥⌋, and the
smallest integer not smaller than 𝑥 is denoted by ⌈𝑥⌉. These are called the floor and
the ceiling, respectively. Rounding operation round(𝑥) denotes the integer closest
to 𝑥.

The imaginary unit is 𝑗 =
√
−1. The 𝑞-th complex root of unity is 𝑊𝑞 = 𝑒− 𝑗2𝜋/𝑞.

The term ‘coprime frequencies’ with respect to an integer 𝑞 is used to refer to the
frequencies 2𝜋𝑘/𝑞, where 0 ≤ 𝑘 < 𝑞, and (𝑘, 𝑞) = 1. The 2-dimensional complex
plane is often referred to as the 𝑧-plane in the context of digital signal processing.

The notation E(·) is reserved for the statistical expectation operation. A random
vector p that is asymptotically normally distributed with zero mean and covariance
matrix W, is denoted as

p ∼ 𝐴𝑠𝑁 (0,W). (1.21)

The standard big-O notation of complexity is denoted by O(·). For example, O(𝑁)
denotes the asymptotically linear growth and O(𝑁2) denotes the asymptotically
quadratic growth in terms of the parameter 𝑁 .

1.7 List of Acronyms
The following acronyms are commonly used in this thesis:

• CRB: Cramér–Rao bound
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• DFT: discrete Fourier transform

• DOA: direction of arrival

• ESPRIT: estimation of signal parameters via rotational invariance techniques

• EVD: eigenvalue decomposition

• FIR: finite impulse response

• IIR: infinite impulse response

• MRA: minimum redundancy array

• MSE: mean square error

• MUSIC: multiple signal classification

• RFB: Ramanujan filter bank

• SNR: signal-to-noise ratio

• SVD: singular value decomposition

• ULA: uniform linear array

• WCNA: weight-constrained nested array (see Chapter 4)

• WCSA: weight-constrained sparse array (see Chapter 4)
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C h a p t e r 2

REVIEW OF SPARSE ARRAYS AND DOA ESTIMATION
ALGORITHMS

2.1 Introduction
DOA estimation has been an active area of research for the past several decades [2],
and subspace-based DOA estimation algorithms such as MUSIC [10], root-MUSIC
[85], and ESPRIT [11] that are based on the eigendecomposition of the covariance
matrix of the array output have been widely popular. In recent years, DOA estimation
using sparse arrays has gained significant attention [34], [35], [83], [86]–[90]. Well-
designed sparse arrays, such as minimum redundancy arrays (MRAs) [33], nested
arrays [34], coprime arrays [35], and their numerous generalizations proposed in the
literature [39], [83], [91], [92], can identify O(𝑁2) sources using 𝑁 sensors through
the so-called ‘difference coarray domain’. Coarray domain DOA estimation uses
the ‘coarray covariance matrix’ formed either by spatial smoothing of the array
output covariance matrix [34] or by the direct augmentation approach [93]. Then,
subspace-based DOA estimation algorithms are applied to the coarray covariance
matrix. This way of estimating DOAs through the difference coarray domain is called
coarray-based DOA estimation. In this chapter, we provide a brief review of the
subspace-based DOA estimation algorithms, the fundamentals of sparse arrays, and
coarray-based DOA estimation. The known results regarding the CRB, analytical
MSE, and efficiency (defined in Sec. 2.6.3) are also summarized.

Chapter Outline: In Sec. 2.2, we provide a brief overview of the popular subspace-
based DOA estimation algorithms such as MUSIC and root-MUSIC. Then we
introduce well-known sparse arrays from the literature and the concept of difference
coarray in Sec. 2.3. Sec. 2.4 discusses the effect of mutual coupling. Next, Sec.
2.5 reviews the coarray-MUSIC algorithm and the two commonly used ways of
forming the coarray covariance matrix. Sec. 2.6 summarizes the known results on
the efficiency of direct-MUSIC and coarray-MUSIC. The content of this chapter is
based on some parts of [94].

2.2 Subspace-Based DOA Estimation Algorithms
As explained in Sec. 1.2, the array output (Eq. (1.8)) is expressed in terms of the
array manifold matrix A, source amplitude vector s, and the random noise vector
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n. Both the source amplitudes and the noise are considered to be random variables,
while the DOAs 𝜃1, 𝜃2, . . . , 𝜃𝐷 are unknown constants. The array output is recorded
over a period of time, and the sampled array outputs, indexed by 𝑘 = 1, 2, . . . , 𝐾 ,
are referred to as the ‘snapshots’ of the array output:

x[𝑘] = As[𝑘] + n[𝑘] . (2.1)

Throughout this thesis, we assume that the number of sources 𝐷 is known and fixed.
If 𝐷 is not known, there are methods available in the literature to estimate 𝐷, based
either on information-theoretic criteria (such as Akaike information criterion or
Bayesian information criterion) or based on the eigenvalues of the estimated signal
covariance matrix, such as SORTE [95]. We make the following standard statistical
assumptions on the random source amplitudes and noise [1]:

E(s) = E(n) = 0, (2.2)

E(nn𝐻) = 𝜎2
𝑛 I, E(ss𝐻) = Rss, (2.3)

E(sn𝐻) = 0. (2.4)

These assumptions imply that the source amplitudes and noise are zero-mean random
vectors uncorrelated with each other. Furthermore, noise is white with variance 𝜎2

𝑛 ,
and can typically be assumed to be Gaussian. The source covariance matrix Rss is
assumed to have full rank 𝐷. While source amplitudes can be correlated in general,
we will see in Sec. 2.5 that the coarray-domain formulation requires an additional
assumption: that the source amplitudes are uncorrelated (i.e. Rss is diagonal). In
this thesis, the SNR is computed as

SNR =

𝐷∑︁
𝑖=1

𝑝𝑖/(𝐷𝜎2
𝑛 ), (2.5)

where 𝑝𝑖 = [Rss]𝑖𝑖 is the power of the 𝑖-th source. The source powers are assumed
to be equal in most simulations, except where it is explicitly mentioned otherwise.

Under these statistical assumptions, the array output covariance matrix can be readily
shown to be

E(xx𝐻) = Rxx = ARssA𝐻 + 𝜎2
𝑛 I. (2.6)

Note that when there are fewer sources than the number of sensors (i.e., 𝐷 < 𝑁),
the first term ARssA𝐻 has rank 𝐷, and its column span is the same as the column
span of A. This 𝐷-dimensional space is called the ‘signal subspace’, and its 𝑁 − 𝐷
dimensional orthogonal complement in C𝑁 is called the ‘noise subspace’. The
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subspace-based DOA estimation algorithms aim at estimating these subspaces based
on the eigendecomposition of Rxx.

Let Rxx have eigendecomposition

Rxx = E𝚲E𝐻 , where E =

[
Es En

]
. (2.7)

Here, the diagonal matrix 𝚲 has eigenvalues in non-increasing order, and E is a
unitary matrix containing the eigenvectors. Then it can be shown that the matrix
Es ∈ C𝑁×𝐷 containing the top-𝐷 eigenvectors spans the signal subspace, whereas
En ∈ C𝑁×(𝑁−𝐷) containing the rest of the eigenvectors spans the noise subspace.

In practice, the ideal output covariance matrix Rxx is not known and the sample
covariance matrix R̂xx obtained from 𝐾 snapshots of x is used as an estimate of the
unknown Rxx:

R̂xx =
1
𝐾

𝐾∑︁
𝑘=1

x[𝑘]x𝐻 [𝑘] . (2.8)

Based on the eigendecomposition of R̂xx, estimates of signal and noise subspace are
obtained as follows:

R̂xx = Ê�̂�Ê𝐻 , where Ê =

[
Ês Ên

]
. (2.9)

The estimated signal and noise subspace matrices Ês ∈ C𝑁×𝐷 and Ên ∈ C𝑁×(𝑁−𝐷)

are used to estimate the DOAs using algorithms such as MUSIC [10], root-MUSIC
[85], and ESPRIT [11].

2.2.1 MUSIC Algorithm
Based on Eqs. (2.6) and (2.7), it can be shown that

a(𝜔𝑖)𝐻En = 0 (2.10)

for all true DOAs 𝜔1, 𝜔2, . . . , 𝜔𝐷 . Using this fact, the MUSIC (MUltiple SIgnal
Classification) algorithm first obtains a pseudospectrum based on the estimated
noise subspace Ên as follows [10]:

𝑃(𝜔) = 1
a𝐻 (𝜔)ÊnÊ𝐻

n a(𝜔)
. (2.11)

Because a(𝜔𝑖)𝐻Ên ≈ 0 for true DOAs 𝜔1, 𝜔2, . . . , 𝜔𝐷 , the MUSIC spectrum 𝑃(𝜔)
will produce sharp peaks when 𝜔 is close to the true DOAs. Furthermore, if the
augmented manifold matrix defined as

A𝑎𝑢𝑔 =

[
a(𝜔1) a(𝜔2) . . . a(𝜔𝐷) | a(𝜔𝐷+1)

]
(2.12)
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has full column rank for all 𝜔𝐷+1 in the range [−𝜋, 𝜋) that are distinct to any of
𝜔1, 𝜔2, . . . , 𝜔𝐷 , it can be shown [94], [96], [97] that there is no other 𝜔 ∈ [−𝜋, 𝜋)
that satisfies Eq. (2.10), thus ensuring that there are no false peaks in 𝑃(𝜔). A ULA
satisfies these conditions for any set of 𝐷 distinct DOAs when 𝐷 < 𝑁 , because of
the Vandermonde structure of the augmented manifold matrix.

Under these conditions, the locations of the peaks of 𝑃(𝜔) provide an estimate of
the DOAs in the 𝜔 domain. The heights of the peaks in the MUSIC spectrum
simply indicate how close the quantity a𝐻 (𝜔)Ên is to 0, and are not related to
the source powers. The MUSIC algorithm based on the eigendecomposition of
R̂xx is sometimes called ‘direct-MUSIC’ or ‘element space MUSIC’ to contrast it
with ‘coarray-MUSIC’ explained in Sec. 2.5. Note that to obtain the locations of
peaks in the MUSIC spectrum, one needs to perform a dense grid search. A denser
grid can lead to a more accurate DOA estimate, but it requires more computations.
Thus, search-free DOA estimation algorithms such as root-MUSIC and ESPRIT are
preferred for some array geometries, such as ULA.

2.2.2 Root-MUSIC Algorithm
Root-MUSIC [85] offers a search-free alternative to the MUSIC algorithm, and is
usually used when the array is a ULA. The 𝑁-sensor ULA

z =

[
0 1 2 . . . 𝑁 − 1

]
(2.13)

has a Vandermonde steering vector given by

a(𝜔) =
[
1 𝑒 𝑗𝜔 𝑒 𝑗2𝜔 . . . 𝑒 𝑗 (𝑁−1)𝜔

]𝑇
. (2.14)

Based on the estimated noise subspace matrix Ên, the root-MUSIC algorithm first
forms a degree 2𝑁 − 2 polynomial

𝑄(𝑧) = v𝑇 (𝑧−1)ÊnÊ𝐻
n v(𝑧), (2.15)

where
v(𝑧) =

[
1 𝑧 𝑧2 . . . 𝑧𝑁−1

]𝑇
(2.16)

is obtained by substituting 𝑧 = 𝑒 𝑗𝜔 in a(𝜔). The roots of 𝑄(𝑧) appear in reciprocal
conjugate pairs. The arguments (angles from 𝑋-axis) of the 𝐷 roots of 𝑄(𝑧) that
are inside the unit circle and closest to the unit circle in the complex 𝑧-plane provide
estimates of the DOAs. Note that the MUSIC spectrum 𝑃(𝜔) is the reciprocal
of 𝑄(𝑧) evaluated on the unit circle |𝑧 | = 1. Root-MUSIC usually has a smaller
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estimation error than MUSIC, as the magnitude errors in the roots of 𝑄(𝑧) do not
affect the DOA estimates obtained from root-MUSIC [98]. As originally proposed,
the Root-MUSIC is applicable only to the ULA.

2.3 Sparse Arrays and Their Difference Coarrays
An 𝑁-sensor ULA can identify up to 𝑁 − 1 DOAs using the above-mentioned
subspace-based DOA estimation algorithms [1], and is widely used in several array
signal processing tasks. However, there is another important subclass of linear
integer arrays called sparse arrays. Sparse arrays have their sensors separated by
non-uniform distances, and have 𝑛𝑖+1 − 𝑛𝑖 > 1 for at least one pair of consecutive
sensors. There are three main advantages of sparse arrays over ULA [94]:

1. Well-designed sparse arrays with 𝑁 sensors can identify up to O(𝑁2) DOAs
unambiguously, if the source amplitudes are uncorrelated and the number of
snapshots 𝐾 is large enough. This is significantly larger than ULA, which can
identify at most 𝑁 − 1 DOAs.

2. Sparse arrays have sensors farther apart from each other on average compared
to a ULA. This reduces the impact of mutual coupling between sensors, as
discussed in Sec. 2.4.

3. For a fixed number of sensors, sparse arrays with 𝑁 sensors have a larger
aperture than an𝑁-sensor ULA. The larger aperture typically implies a smaller
DOA estimation MSE, and the array can resolve closely spaced DOAs [99].

However, unlike the ULA, the manifold matrix of sparse arrays is not a Vandermonde
matrix, and thus, the sparse arrays can suffer from ambiguity in DOA estimation.
However, well-designed sparse arrays can employ coarray-based DOA estimation
algorithms and can unambiguously identify up to O(𝑁2) DOAs. The key to iden-
tifying O(𝑁2) DOAs with sparse arrays is difference coarray, which we review
next.

2.3.1 Difference Coarray
Consider a sparse integer array

z =

[
𝑛1 𝑛2 · · · 𝑛𝑁−1 𝑛𝑁

]
. (2.17)
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Its difference coarray is the set formed by pairwise differences between sensor
locations:

Dz = {𝑛𝑖 − 𝑛 𝑗 }𝑁𝑖, 𝑗=1. (2.18)

The difference coarray is symmetric, and D+
z is used to represent the non-negative

entries in Dz. Note that Dz can contain up to 𝑁2 − 𝑁 + 1 distinct elements. The
coarray weights are defined as

𝑤(𝑙) = |{(𝑛𝑖, 𝑛 𝑗 ) s.t. 𝑛𝑖 − 𝑛 𝑗 = 𝑙}|. (2.19)

The 𝑙-th coarray weight 𝑤(𝑙) denotes the number of sensor pairs with distance 𝑙
between them. The missing coarray elements have 𝑤(𝑙) = 0, which implies that
no two sensors are separated by a distance 𝑙. These are known as the ‘holes’ in the
difference coarray.

The importance of the difference coarray becomes clear when, in addition to the
standard statistical assumption from Eq. (2.2), the source amplitudes are assumed
to be uncorrelated:

Rss =


𝑝1 0 . . . 0
0 𝑝2 . . . 0

0 0 . . . 0
0 0 . . . 𝑝𝐷


. (2.20)

Here, 𝑝𝑖 > 0 is the power of the 𝑖-th source. Under this uncorrelated assumption, it
can be verified that

E(x𝑘x∗𝑚) =
𝐷∑︁
𝑖=1

𝑝𝑖𝑒
𝑗𝜔𝑖 𝑙 + 𝜎2

𝑛 𝛿(𝑙), where 𝑙 = 𝑛𝑘 − 𝑛𝑚, (2.21)

and 𝛿(𝑙) = 1 when 𝑙 = 0, and 0 otherwise. Because these pairwise correlations
between sensor outputs depend only on the distance 𝑙 between sensors, we denote
them as 𝑅(𝑙).

In practice, we can estimate these correlations by averaging the corresponding
entries from the sample covariance matrix of the array output:

𝑅(𝑙) = 1
𝑤(𝑙)

∑︁
𝑛𝑖−𝑛 𝑗=𝑙

1
𝐾

𝐾∑︁
𝑘=1

𝑥𝑛𝑖 [𝑘]𝑥∗𝑛 𝑗 [𝑘] =
1

𝑤(𝑙)
∑︁

𝑛𝑖−𝑛 𝑗=𝑙
[R̂xx]𝑖, 𝑗 . (2.22)

Note that 𝑅(𝑙) can thus be calculated for all ‘lags’ 𝑙 that appear in the difference
coarray Dz. This explains the central role of difference coarray and associated



28

coarray weights for sparse arrays. DOA estimation performed using the estimated
correlations 𝑅(𝑙), 𝑙 ∈ Dz is called coarray-based DOA estimation. Sparse arrays
that can estimate correlations at a large number of consecutive lags are particularly
suitable to identify 𝐷 > 𝑁 DOAs. For most sparse arrays from the literature, the
consecutive lags in the difference coarray are of the form −𝐿 ≤ 𝑙 ≤ 𝐿, and such
a segment of consecutive lags is called a ‘central ULA segment’ in the coarray.
Well-designed sparse arrays can have 𝐿 = O(𝑁2), and can identify O(𝑁2) DOAs
using coarray domain processing, as we will see in Sec. 2.5.

2.3.2 Commonly Encountered Sparse Arrays from the Literature
In this section, we review the most commonly encountered sparse arrays from the
literature.

Minimum Redundancy Arrays

Minimum redundancy arrays (MRAs) are one of the earliest known sparse arrays
[33]. The sensor positions of MRAs are chosen such that the coarray size is maxi-
mized, under the constraint that the coarray is a ULA (i.e., the coarray contains only
consecutive lags). However, finding such an optimal MRA requires an exhaustive
search because no closed-form expression for sensor positions is available. Such an
exhaustive search quickly becomes computationally intractable even for moderately
large 𝑁 . The tabulated sensor positions are available for only a small number of
sensors [33], [84], [100]. The introduction of nested arrays [34] and coprime arrays
[35], which have closed-form expressions for sensor locations, has opened up a new
direction for research in the design of sparse arrays. Although nested arrays and
coprime arrays can identify fewer DOAs than an MRA with the same number of
sensors, their closed-form expression for sensor positions for any 𝑁 makes them
more practical and attractive.

Nested Arrays

Nested arrays [34] are formed by the union of a standard ULA with 𝑁1 sensors and
a sparse ULA with 𝑁2 sensors as shown in Fig. 2.1(a):

z𝑁𝐴 = {1, 2, . . . , 𝑁1} ∪ {𝑁1 + 1, 2(𝑁1 + 1), . . . , 𝑁2(𝑁1 + 1)}. (2.23)

The difference coarray of the nested arrays is the following ULA:

Dz𝑁𝐴
= {−𝑁2(𝑁1 + 1) + 1, . . . ,−1, 0, 1, . . . 𝑁2(𝑁1 + 1) − 1}. (2.24)
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1 2 3 𝑁1 𝑁1 + 1 2(𝑁1 + 1) 3(𝑁1 + 1) 𝑁2(𝑁1 + 1)

Dense ULA Sparse ULA

0 𝑁1 2𝑁1

0

(𝑁2 − 1)𝑁1

𝑁2 2𝑁2 (2𝑁2 − 1)𝑁1

Sparse ULA 1

Sparse ULA 2 (𝑁1, 𝑁2) = 1

(a)

(b)

Figure 2.1: (a) A nested array consists of a dense ULA of 𝑁1 sensors followed
by a sparse ULA of 𝑁2 sensors with interelement spacing 𝑁1 + 1. (b) A coprime
array is a union of two sparse ULAs with interelement spacings 𝑁1 and 𝑁2 where
(𝑁1, 𝑁2) = 1.

For a given total number of sensors 𝑁 = 𝑁1 + 𝑁2, the optimal values of 𝑁1 and 𝑁2

that maximize the length of the coarray are [34]

𝑁1 = ⌊𝑁/2⌋ , and 𝑁2 = 𝑁 − ⌊𝑁/2⌋ . (2.25)

Although the length of the ULA segment in the coarray of a nested array is less
than that of an MRA with the same number of sensors, it is easy to generate the
nested array for any given number of sensors 𝑁 , unlike an MRA. However, one of
the drawbacks of the nested array is that it contains several sensors that are closely
placed, because of the dense ULA segment of 𝑁1 sensors, and this can lead to
increased mutual coupling [39], [101].

Coprime Arrays

Coprime arrays [35] are formed by the union of two sparse ULAs as shown in Fig.
2.1(b). The first sparse ULA has elements spaced by the integer 𝑁1, and has 𝑁2

sensors. The second array has adjacent elements spaced by the integer 𝑁2, and has
2𝑁1 sensors. The integers 𝑁1 and 𝑁2 are chosen to be coprime, that is, (𝑁1, 𝑁2) = 1.

z𝐶𝑃𝐴 = {0, 𝑁1, 2𝑁1 . . . , (𝑁2 − 1)𝑁1} ∪ {0, 𝑁2, 2𝑁2, . . . , (2𝑁1 − 1)𝑁2}. (2.26)

The total number of sensors is 𝑁 = 2𝑁1 + 𝑁2 − 1. It has been shown [35], [83] that
the difference coarray of the coprime array contains a central ULA segment from
−𝑁1(𝑁2+1)+1 to 𝑁1(𝑁2+1)−1. For a fixed number of sensors 𝑁 , the ULA segment
in the coarray of the coprime array is smaller than that of the nested arrays. However,
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coprime arrays are better at mitigating the effect of mutual coupling because they
have fewer sensor pairs separated by a small distance [91].

The introduction of nested arrays and coprime arrays provided a new direction
to sparse array design research. Numerous generalizations of nested arrays and
coprime arrays along with new improved sparse array designs have been proposed
in the literature [39], [83], [91], [92], [101]–[105]. Designing sparse arrays that
have long central ULA segments in the coarray along with other desirable properties
has since been an active and growing area of research.

2.4 The Effect of Mutual Coupling
When sensors have electromagnetic coupling between them, the array output does
not follow the standard model in Eq. (2.1). This is called the mutual coupling
effect, and it is challenging to precisely model mathematically [36]. In practice, it
is usually unknown to the user. In numerical simulations, the effect of coupling is
typically modeled as [37]–[39]

x[𝑘] = CAs[𝑘] + n[𝑘], (2.27)

where C is the coupling matrix with entries

C𝑖, 𝑗 = 𝑐 |𝑛𝑖−𝑛 𝑗 | . (2.28)

The coupling coefficients 𝑐𝑙 are assumed to be non-zero for 𝑙 ≤ 𝐵. Here, 𝑐0 = 1, and
the rest of the non-zero coupling coefficients 𝑐𝑙 for 1 ≤ 𝑙 ≤ 𝐵 have their magnitudes
inversely proportional to 𝑙, i.e.,

|𝑐𝑚/𝑐𝑛 | = 𝑛/𝑚. (2.29)

For a ULA, C is a banded Toeplitz matrix [37]. The coupling strength is character-
ized by |𝑐1 | = 𝑐. Another metric to characterize the amount of mutual coupling is
the coupling leakage defined as

L =
| |C − C𝑑𝑖𝑎𝑔 | |𝐹

| |C| |𝐹
. (2.30)

where | | · | |𝐹 denotes the Frobenius norm, and C𝑑𝑖𝑎𝑔 is a diagonal matrix with the
same diagonal entries as that of C. Because the coupling coefficients are inversely
proportional to the distance between sensors, the sensor pairs with small separations
contribute the most to the effect of mutual coupling. Thus, many sparse arrays from
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the literature aim at reducing the coarray weights 𝑤(1), 𝑤(2), and 𝑤(3) to reduce
the effect of mutual coupling on DOA estimation.

To mitigate the impact of mutual coupling on DOA estimation, some papers [106]–
[108] estimate the coupling matrix along with the DOAs. In this thesis, we take a
different approach of simply using well-designed sparse arrays for DOA estimation,
without explicitly estimating the coupling matrix. In this ‘coupling-agnostic’ ap-
proach, we do not explicitly account for mutual coupling algorithmically but rather
design sparse arrays that can effectively handle the presence of mutual coupling.
Reducing the effect of mutual coupling is a motivation for the modified sparse array
design criteria that we propose later in Chapter 4.

2.4.1 A Note on the Practicality of the Mutual Coupling Model
While this basic phenomenon of coupling is a direct consequence of Faraday’s
law of induction, the actual application in an antenna array is quite complicated
(for example, see p. 475 of [109], and [110]). Furthermore, the geometry of the
antennas used in the array (i.e., whether they are dipole antennas, sleeve dipole
antennas, spiral antennas, etc.) plays a role in determining the mutual coupling
behavior [111], [112], [113]. The coupling matrix C is actually the inverse of a
so-called normalized impedance matrix Z0 that has been used to model the self- and
mutual-coupling in the antenna elements [114], [115], [116], [106]. As seen from
these references, there are multiple ways to formulate the matrix Z0, and they yield
quite different results. A summary of different methods and their pros and cons can
be found in [110]. While these papers are insightful, they do not offer any way to
estimate the ratio 𝑐 = |𝑐1 |, which actually comes from the inverse Z−1

0 .

The element [Z0]𝑘,𝑚 is proportional to 𝑧𝑘𝑚 which is the mutual impedance between
the 𝑘th and 𝑚th sensor. These impedances are approximately proportional to
1/(𝑛𝑘 − 𝑛𝑚). This is consistent with the fact that the radiation term for the electric
field from an accelerated charge (as in the case of a sinusoidal current in an antenna
wire) varies as 1/𝑟 rather than as 1/𝑟2 (Chapter 28 of [117]). The 1/𝑟 assumption
has been used in the past, and it can be verified in the estimates of impedances
reported in Table 1 of [115] and Table 2 of [116]. The fact that the dependence is
not exactly of the form 1/𝑟 is well known even from basic examples such as can be
found on page 189 of [118] (e.g., set 𝑑 >> 𝑎, 𝑏 in Eqs. (10) and (11) therein).

Now, it is difficult to see how the above assumption on [Z0]𝑘,𝑚 reflects in the
matrix C. As explained earlier, it is often assumed that C𝑖, 𝑗 = 𝑐 |𝑛𝑖−𝑛 𝑗 | and that
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|𝑐𝑚/𝑐𝑛 | = 𝑛/𝑚. While this is similar to the properties of [Z0]𝑘,𝑚, it is hard to give
a theoretical justification that the properties of Z0 will be inherited like this by the
elements of the inverse C = Z−1

0 . A more detailed description of the difficulties
involved in modeling mutual coupling can be found in [119]. However, this model
of mutual coupling has been widely used [38], [39], [106] in the signal processing
community, and the same is used in this thesis as well.

2.5 Coarray-Based DOA Estimation
The sample covariance matrix R̂xx (Eq. (2.8)) of the array output has size 𝑁 × 𝑁 .
So, based on its eigendecomposition, one can identify no more than 𝑁 − 1 DOAs.
However, as discussed in Sec. 2.3.1, when the source amplitudes are uncorrelated,
correlations 𝑅(𝑙) can be estimated for all lags 𝑙 in the difference coarray. The
sparse arrays can estimate 𝐷 > 𝑁 DOAs through coarray-domain DOA estimation
performed using these correlations, as explained next.

Well-designed sparse arrays such as MRAs, nested arrays, coprime array, and their
generalizations contain a large central ULA segment in their difference coarrays.
Suppose the difference coarray Dz of the array z contains central ULA segment
from 𝑙 = −(𝐿 − 1) to 𝑙 = 𝐿 − 1. This means that 𝑤(𝑙) ≠ 0 for 𝑙 = −𝐿 + 1,−𝐿 +
2, . . . 𝐿 − 2, 𝐿 − 1. The total length of the ULA segment in the coarray is 2𝐿 − 1.
Based on the correlations estimated at these consecutive lags, the spatial smoothing
based algorithm computes the following matrix [34]:

R̂𝑆𝑆 =
1
𝐿

0∑︁
𝑙=−𝐿+1

�̂�𝑙 · �̂�𝐻𝑙 , (2.31)

where �̂�𝑙 ∈ C𝐿 is a vector containing 𝐿 consecutive correlation entries starting from
lag 𝑙:

�̂�𝑙 =

[
𝑅(𝑙) 𝑅(𝑙 + 1) . . . 𝑅(𝑙 + 𝐿 − 1)

]𝑇
. (2.32)

Note that the matrix R̂𝑆𝑆 acts like a proxy for the output covariance matrix that a
ULA with 𝐿 physical sensors would have produced. The spatial smoothing MUSIC
algorithm (SS-MUSIC) simply uses R̂𝑆𝑆 in place of R̂xx to estimate the DOAs. As
the central ULA segments in the coarrays of well-designed arrays can have lengths
as large as O(𝑁2), the matrix R̂𝑆𝑆 has size O(𝑁2) × O(𝑁2), and can thus identify
up to O(𝑁2) DOAs.

In [93], it was noted that there is an equivalent alternative to SS-MUSIC, called
direct augmentation MUSIC (DA-MUSIC). It proposes to construct a matrix by
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arranging the estimated correlations at consecutive lags 𝑅(−𝐿 + 1), . . . , 𝑅(𝐿 − 1)
in a Toeplitz matrix R̂𝐷𝐴 as follows:

[R̂𝐷𝐴]𝑖, 𝑗 = 𝑅(𝑖 − 𝑗). (2.33)

It is shown in [93] that the matrices R̂𝑆𝑆 and R̂𝐷𝐴 are related as follows:

R̂𝑆𝑆 =
1
𝐾

R̂𝐷𝐴R̂𝐻
𝐷𝐴. (2.34)

Note that this relation is valid even for a finite number of snapshots 𝐾 . Both R̂𝐷𝐴

and R̂𝑆𝑆 are Hermitian Toeplitz matrices. Furthermore, R̂𝑆𝑆 is positive semidefinite,
but R̂𝐷𝐴 may not be. Considering the above relation between R̂𝐷𝐴 and R̂𝑆𝑆, DA-
MUSIC proposed to use matrix R̂𝐷𝐴 instead of R̂𝑆𝑆 to estimate the DOAs. Since
R̂𝐷𝐴 may have non-negative eigenvalues, the eigenvectors corresponding to the 𝐷
eigenvalues with largest magnitude form the signal subspace.

It is equivalent to use either one of these matrices for subspace-based DOA estimation
when a large number of snapshots are available. With limited snapshots, the direct-
augmentation method can yield better performance as shown in [120]. Performing
MUSIC using either of the coarray matrices R̂𝐷𝐴 and R̂𝑆𝑆 is called ‘coarray-MUSIC’.
An example of coarray-MUSIC spectra obtained with a nested array and a coprime
array for estimating 𝐷 > 𝑁 DOAs is shown in Fig. 2.2. Fig. 2.2(a) estimates
𝐷 = 25 DOAs using a 10-sensor nested array with 𝑁1 = 𝑁2 = 5 when SNR = 0
dB and 𝐾 = 300 snapshots. Fig. 2.2(b) estimates 𝐷 = 25 DOAs using a 17-sensor
coprime array with 𝑁1 = 5 and 𝑁2 = 8 when SNR = 10 dB and 𝐾 = 500. One
can also use adaptations of other subspace-based DOA estimation algorithms, such
as root-MUSIC and ESPRIT, with the coarray matrices (R̂𝐷𝐴 and R̂𝑆𝑆) instead of
R̂xx. These coarray-domain algorithms are called coarray root-MUSIC and coarray-
ESPRIT.

It is important to note that the fundamental assumption in using sparse arrays
and coarray-based estimation of more DOAs than the number of sensors is that
the sources are uncorrelated. Without this assumption, Eq. (2.21) is not valid,
and the coarray domain DOA estimation is not well-motivated. However, such an
assumption is difficult to verify practically, and it may not hold true, especially
in situations where multipath propagation is possible. Developing algorithms and
sparse arrays that are robust to the presence of correlations is of practical interest.
One of the recent attempts in this direction is the MESA algorithm [121] based on a
stochastic maximum likelihood formulation. It is shown in [121] that coarray-based
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Figure 2.2: Coarray-MUSIC plots. (a) Identifying 𝐷 = 25 DOAs using a 10-sensor
nested array with 𝑁1 = 𝑁2 = 5 when SNR = 0 dB and 𝐾 = 300. (b) Identifying
𝐷 = 35 DOAs with 17-sensor coprime array with 𝑁1 = 5, 𝑁2 = 8 when SNR = 10
dB and 𝐾 = 500. The black vertical lines correspond to the true DOAs.

methods can be sensitive to source correlations due to the destruction of the Toeplitz
covariance structure, and the MESA algorithm can be robust to source correlations,
especially when 𝐷 < 𝑁 . Further research in this direction is required to enhance
the practical utility of sparse arrays.

2.6 CRB, Analytical MSE, and Efficiency of DOA Estimation
The Cramér-Rao bound (CRB) is used to obtain a lower bound on the variance of an
unbiased estimator. For DOA estimation using MUSIC, CRB and analytical MSE
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expressions were derived many decades ago for the case when there are fewer sources
than the number of sensors in [122]. However, the CRB for estimating more sources
than the number of sensors was derived only recently [86], [87]. Furthermore, [87]
also provides an analytical MSE expression for coarray-MUSIC. It has been noted
[87] that the DOA estimation MSE for coarray-MUSIC using sparse arrays does not
equal CRB even asymptotically when more than one source is present. This is in
contrast with the ‘direct-MUSIC’ which achieves CRB asymptotically [122]. The
discrepancy between the MSE and the CRB is quantified by the efficiency (defined
formally in Sec. 2.6.3). In this section, we summarize the details regarding the
CRB, MSE, and efficiency for direct-MUSIC and coarray-MUSIC.

2.6.1 Cramér-Rao Bound for DOA Estimation
The expression for CRB for DOA estimation derived in [96], [122] provides a lower
bound on the variances of unbiased DOA estimates obtained using any algorithm,
including direct-MUSIC and coarray-MUSIC. However, this CRB expression is
valid only when 𝐷 < 𝑁 , and not valid when 𝐷 ≥ 𝑁 . Even for 𝐷 < 𝑁 , the
above CRB expression does not use the a-priori assumption that the sources are
uncorrelated, which is a common assumption in coarray-based methods. A general
expression for CRB under the uncorrelated assumption was derived recently in [86],
[87]. This CRB expression is valid for both situations 𝐷 < 𝑁 and 𝐷 ≥ 𝑁 as long
as the Fisher information matrix (FIM) is nonsingular, and the precise condition for
this nonsingularity is also provided. There is an important difference in the behavior
of CRB as a function of SNR in the two situations.

For a fixed number of snapshots, the CRB decreases monotonically with SNR when
𝐷 < 𝑁 , but in most situations when 𝐷 ≥ 𝑁 , the CRB does not keep decreasing
as SNR increases but rather saturates for large SNR. This behavior is illustrated in
Fig. 2.3 by plotting the CRB values for MRA, nested array, and coprime arrays with
𝑁 = 16 sensors when the DOAs are uniformly spaced in the𝜔-domain from −0.98𝜋
to 0.98𝜋, and 𝐾 = 500 snapshots are used. The values plotted are the average CRB
values of the 𝜔-domain DOAs. When 𝐷 = 10, the CRB does not saturate, whereas
when 𝐷 = 30, the CRB saturates for all three arrays. The CRB for MRA is the
lowest and saturates around 6.37 × 10−7. The CRBs for nested array and coprime
array saturate around 2.45×10−6 and 3.76×10−6 respectively. As one would expect
based on the sizes of the difference coarrays, the MRA has the lowest CRB, followed
by the nested array and the coprime array. To the best of our knowledge, a CRB for
DOA estimation in the presence of mutual coupling is not known in the literature.
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Figure 2.3: Plots of CRB for sparse arrays identifying (a) 𝐷 = 10 and (b) 𝐷 = 30
DOAs with 𝑁 = 16 sensors. When 𝐷 < 𝑁 , CRB does not saturate, whereas when
𝐷 ≥ 𝑁 , CRB saturates at large SNR.

2.6.2 Analytical MSE of Direct-MUSIC and Coarray-MUSIC
In addition to the CRB, another quantity of interest is the analytical MSE of DOA
estimation algorithms like MUSIC and root-MUSIC. The analytical MSE is usually
derived based on first-order perturbation analysis and is also referred to as the
theoretical MSE. Note that this is different from the experimental or Monte-Carlo
MSE obtained by performing numerical simulations. For element space MUSIC,
the analytical MSE expressions are derived in [122], and dependence on the number
of snapshots 𝐾 , number of sensors 𝑁 , and SNR is analyzed. The error analysis for
element space root-MUSIC for ULA is derived in [98]. Asymptotically, with a large
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number of snapshots, both element space MUSIC and element space root-MUSIC
have the same analytical MSE. In spite of this, root-MUSIC is preferred over MUSIC
because the radial errors in the locations of the roots of the root-MUSIC polynomial
do not change the DOAs estimated with root MUSIC, but can change the locations
of peaks in the MUSIC spectrum [98]. An additional advantage of root-MUSIC is
that it is a search-free algorithm, unlike MUSIC. The error analysis of ESPRIT for
ULA is performed in [123], and two variations of ESPRIT, namely LS-ESPRIT and
TLS-ESPRIT, are shown to have the same asymptotic MSE.

The analytical expression for the MSE of coarray-MUSIC was derived recently in
[87]. It was found that the MSE for SS-MUSIC and DA-MUSIC is identical due to
the equivalence of the two methods. However, coarray-domain DOA estimation is
distinctly different from element-space domain estimation in terms of efficiency, as
we will see next.

2.6.3 Efficiency of Direct-MUSIC and Coarray-MUSIC
The efficiency of an estimate is defined as the ratio of the CRB to the MSE. The
average efficiency over 𝐷 DOAs is defined as [87]

𝜅 =

∑𝐷
𝑖=1𝐶𝑅𝐵(𝜔𝑖)∑𝐷
𝑖=1 𝑀𝑆𝐸 (𝜔𝑖)

. (2.35)

The MSE can either be obtained based on a Monte-Carlo simulation, or an analytical
expression can be used if available. For an unbiased DOA estimator, the efficiency
is always between 0 and 1, i.e. 0 ≤ 𝜅 ≤ 1. DOA estimation is said to be efficient
when 𝜅 = 1, and inefficient when 𝜅 < 1. It has been noted in [96], [122] that
asymptotically, with either a large number of snapshots 𝐾 , or at large SNR, the
analytical MSE of direct-MUSIC is the same as the CRB. That is, direct-MUSIC is
known to be asymptotically efficient. However, the coarray-MUSIC is observed to
be inefficient even asymptotically [87].

First, consider the variation of CRB and coarray-MUSIC MSE with the number of
snapshots𝐾 . Asymptotically, for a large number of snapshots, the CRB and coarray-
MUSIC MSE expressions have 1/𝐾 dependence on the number of snapshots 𝐾 , and
hence as 𝐾 is increased, CRB and MSE decrease without a bound irrespective of
whether 𝐷 < 𝑁 or 𝐷 ≥ 𝑁 . Although both quantities go to zero asymptotically, it
has been observed that when 𝐷 > 1, their ratio 𝜅 remains strictly smaller than 1
[87]. Thus, coarray-MUSIC is not efficient asymptotically with a large number of
snapshots.
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On the other hand, the dependence of efficiency 𝜅 on SNR is more complicated.
When 1 < 𝐷 < 𝑁 , the CRB decreases monotonically with SNR without a bound,
whereas the MSE saturates to a non-zero value at large SNR [87]. This implies that
the coarray-MUSIC based estimation of DOAs is highly inefficient when 1 < 𝐷 <

𝑁 , i.e., 𝜅 is nearly 0 when the SNR is large [87]. For the other case of 𝐷 ≥ 𝑁 ,
both CRB and MSE saturate to non-zero values as SNR increases and 0 < 𝜅 < 1.
Although 𝜅 does not go to zero in this case, it remains smaller than 1 even at large
SNR. Thus, coarray-MUSIC based DOA estimation is asymptotically inefficient
with SNR when 𝐷 > 1.

For nested arrays in particular, it has been proved in [124] that even for 𝐷 = 2 and
in the absence of noise (𝜎𝑛 = 0), coarray-MUSIC cannot precisely identify the true
signal and noise subspaces, unless the source signals are temporally orthogonal.
This means that even asymptotically at large SNR, coarray-MUSIC can only find
a close approximation to the true signal and noise subspaces, and cannot identify
them precisely. Thus, the DOA estimation MSE with coarray-MUSIC cannot go to
zero at large SNR, leading to the loss of efficiency 𝜅 < 1. In another recent paper
[125], a non-asymptotic (finite snapshot) analysis of coarray-ESPRIT is presented.

To alleviate these drawbacks of coarray-MUSIC, recently some alternate algorithms
such as weighted least squares [90] method, augmented Toeplitz matrix reconstruc-
tion approach [89], and weighted proxy covariance matrix construction approach
[124] have been proposed in the literature to improve the efficiency of coarray-
based DOA estimation. Out of these, the weighted least squares approach provably
achieves asymptotic efficiency for both 𝐷 ≥ 𝑁 and 𝐷 < 𝑁 cases, and the gap be-
tween CRB and MSE for coarray DOA estimation becomes negligible as the number
of snapshots increases.

2.7 Concluding Remarks
In this chapter, we briefly reviewed the important concepts related to DOA estimation
that will be used throughout this thesis. In particular, we reviewed subspace-based
DOA estimation algorithms, the fundamentals of sparse arrays, and coarray-based
DOA estimation. This serves as the foundation for Chapter 3 to Chapter 6 of this
thesis. In Chapters 3, 4, and 5, we will develop new sparse array geometries and
algorithms for DOA estimation under aperture constraints and mutual coupling.
Chapter 6 will focus on further investigations regarding the efficiency of coarray-
domain DOA estimation.
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C h a p t e r 3

NON-INTEGER ARRAYS FOR DIRECTION OF ARRIVAL
ESTIMATION

3.1 Introduction
The majority of the array signal processing literature has been focused on the use
of linear integer arrays for DOA estimation and beamforming. The linear integer
arrays have 𝑚 sensors 1 placed at locations 𝑧𝑖 = 𝑛𝑖 · 𝜆/2, where 𝑛𝑖 are integers for
𝑖 = 1, 2, . . . , 𝑚, and 𝜆 is the wavelength of impinging monochromatic sources. As
discussed in the previous chapter, the ULA with 𝑛𝑖 = 𝑖 − 1 is widely used due to its
simplicity and Vandermonde manifold structure [1], [10]. Sparse integer arrays such
as MRAs, nested arrays, and coprime arrays can even identify more sources than the
number of sensors through the difference coarray domain. Some non-integer linear
arrays have been mentioned in the literature for beamforming and to some extent for
DOA estimation (see below), but they have not been studied in detail.

In this chapter, we consider non-integer arrays for the DOA estimation task. First, we
systematically introduce rational arrays that have sensors placed at locations 𝑟𝑖 ·𝜆/2,
where 𝑟𝑖 are rational numbers, i.e., 𝑟𝑖 = 𝑃𝑖/𝑄𝑖 where 𝑃𝑖 and 𝑄𝑖 are integers. These
are, in general, non-integer arrays and include integer arrays (𝑟𝑖 = integers) as special
cases. It will be demonstrated that this broader class of rational arrays can offer
some advantages compared to integer arrays, in addition to increased flexibility.

We show that rational arrays are able to better utilize the aperture when a limited
number of sensors are to be distributed in a fixed aperture. In particular, we propose
rational coprime arrays for this and show that they have better performance (reduced
DOA estimation error) than integer array alternatives. Furthermore, if the impinging
signals are known to span only a portion of the entire spatial scope of [−90◦, +90◦),
sensors can be better placed at rational locations to ensure maximum aperture, while
still maintaining unique identifiability property. Rational sensor positions also allow
scaling of already developed integer arrays. An appropriately scaled array preserves
the desirable properties of the original integer array, like symmetry or a large ULA
segment in the coarray, and at the same time satisfies the aperture constraint. Later

1In this chapter, we use 𝑚 to denote the number of sensors, to be consistent with the notation
used in [88]. In the rest of the thesis, 𝑁 is used to denote the number of sensors.
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in this chapter, we also briefly consider arbitrary arrays, where sensors can be placed
at any real numbers instead of rational numbers.

For such non-integer arrays, it is important to consider steering vector invertibil-
ity and unique identifiability of sources without ambiguity, using subspace-based
algorithms such as MUSIC. Papers [97], [126] provide a necessary and sufficient
condition for steering vector invertibility for integer arrays. We extend it here for
the case of rational arrays. This requires extensions of some common arithmetic
notions, such as gcd (greatest common divisor), lcm (least common multiple), and
coprimality, to the case of rational numbers. Some online sources, such as [127],
[128], present some discussions about gcd and lcm for rational numbers. However,
these notions are introduced in this chapter systematically with proofs for complete-
ness. We also propose a unifying notion of coprimality for rational numbers, which
plays a central role in many theoretical developments considered in this chapter.

The well-known conditions for the unique unambiguous identifiability of sources
with MUSIC in terms of the rank of the augmented array manifold matrix [96] are
applicable to non-integer arrays as well. For 𝑚-sensor integer ULAs, the Vander-
monde structure ensures that they can identify 𝑚 − 1 sources unambiguously [1].
However, even for general integer arrays, it is not easy to characterize the conditions
for unambiguous identifiability with MUSIC explicitly in terms of sensor positions.
Some insights on detecting and resolving manifold ambiguities for general linear
arrays can also be found in [129] and [130], respectively. For the case of rational
coprime arrays that are proposed in this chapter, we will present generalizations of
identifiability results given in [97], [126] to the non-integer case. All identifiability
discussions in this chapter are based on the second-order statistics of the received
signal only. It is possible to identify more sources with higher order statistics [131],
[132], but that is not the focus of this chapter.

The above developments on rational arrays can be further generalized in two direc-
tions. First, for the case of restricted spatial scope (i.e., when the sources are known
to be in only a sector of the space), we present a relaxed coprimality condition that
still ensures unambiguous identifiability. Then we further extend the results to arrays
with sensors placed at arbitrary (real number) locations based on the generalization
of gcd and coprimality to the case of real numbers.

Lastly, we will demonstrate that rational arrays have another important advantage
over integer arrays, through their difference coarrays. Rational arrays can identify
O(𝑚2) uncorrelated sources using𝑚 sensors through the difference coarray domain,
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even in the presence of aperture constraint. Integer arrays such as minimum redun-
dancy arrays (MRAs), nested arrays, and coprime arrays can also identify O(𝑚2)
uncorrelated sources using 𝑚 sensors. However, they can do so only when there
is no aperture constraint, that is, a large enough aperture is available. The unique
advantage of rational arrays is that they can do the same even when only a short
aperture is available.

Note that for the case of rational arrays, it is possible to rewrite the rational sensor
locations 𝑟𝑖 as 𝑑𝑛𝑖 where 𝑛𝑖 are integers and 𝑑 is a rational ‘scaling factor’. While
the ‘scaled integer representation’ for rational arrays will be useful at times, we
will see that the rational framework considered in this chapter has some advantages.
When a fixed number of sensors are to be placed in a given aperture, it is often
more convenient and straightforward to directly toy with rational placements of
the sensors. The ‘scaling factor’ 𝑑 and equivalent integers 𝑛𝑖 vary haphazardly
even with small changes in sensor locations 𝑟𝑖, and the equivalent scaled integer
representation may not be useful to understand the properties and DOA estimation
performance of the array. Thus the general rational framework presented in this
chapter is indeed useful. Furthermore, note that it may not be possible to express
arbitrary (non-rational) sensor position 𝑧𝑖 as 𝑑𝑛𝑖 where 𝑛𝑖 are integers as we explain
in Sec. 3.6. For such arbitrary (real-valued) arrays, the theoretical results follow
easily based on the further generalization of the rational framework, in particular by
extending coprimality to the case of real numbers.

3.1.1 Past Work on Non-Integer Arrays
Non-integer arrays do arise in practice when the sensor positions are optimized to
achieve a certain objective. Such arrays have been proposed for many beamforming
applications. For example, some papers propose to optimize the sensor locations
in order to reduce the sidelobe level in beamforming [133], [134]. Similarly, some
methods optimize sensor location to suppress interferences [135], or achieve a
desired beampattern by choosing sensor locations appropriately [136]. The resulting
optimal arrays in these cases are not integer arrays.

Apart from beamforming, there are some methods in the literature that perform
DOA estimation with such arbitrary non-integer arrays. Usually, such techniques
approximate array manifolds of arbitrary non-uniform arrays with array manifolds
of virtual ULAs, in order to easily apply root-MUSIC like techniques for DOA
estimation. This includes techniques such as array interpolation [137] and manifold
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separation [138]. Some papers have developed a method to interpolate the covari-
ance matrix of the data obtained from non-integer arrays to detect more sources
than the number of sensors [139], [140]. There are also Fourier domain MUSIC
methods [141] that can be applied to arbitrary two-dimensional non-integer arrays
to perform DOA estimation. Another paper has proposed irregular Vandermonde
decomposition and atomic norm minimization based gridless DOA estimation for
non-uniform linear arrays [142]. Although these methods are appealing and work
well in practice, there has been no clear account of when such methods produce
theoretically unambiguous DOA estimates.

3.1.2 Scope and Outline of This Chapter
This chapter systematically introduces non-integer arrays and demonstrates the use-
fulness of such arrays. In Sec. 3.2, we review some basic properties of rational
numbers and extend the notions of gcd, lcm, and coprimality to the case of rational
numbers. In Sec. 3.3, we introduce rational arrays and discuss when such arrays
can be better suited. Depending on the aperture and number of sensors available,
we discuss the possible advantages provided by rational arrays. We also provide
a necessary and sufficient condition for steering vector invertibility in this section.
Sec. 3.4 proposes rational coprime arrays and provides a unique identifiability result
for such arrays when used with MUSIC. We then provide Monte-Carlo simulations
comparing MSE and CRB of rational arrays and integer arrays. In Sec. 3.5, we
extend these results for the case of restricted spatial scope. We then prove the
theoretical results on steering vector invertibility and identifiability. In Sec. 3.6,
we further generalize number theoretic concepts and related DOA estimation results
to arrays whose sensors can be arbitrary real numbers. Sec. 3.7 demonstrates that
adding a few rational location sensors to an otherwise integer array increases the
number of resolvable sources through the difference coarray domain. This leads
to rational arrays that satisfy the aperture constraint and at the same time identify
O(𝑚2) sources with 𝑚 sensors. We also discuss the effect of mutual coupling in
such situations and provide Monte-Carlo performance evaluations. Finally, Sec. 3.8
concludes the chapter and provides future directions. The content of this chapter is
based on papers [88], [143]–[145].

3.2 Rational Number Theory: Some Basic Results
In this section, we explain how some basic definitions, properties, and results from
integer number theory can be extended to the case of rational numbers. A real
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number 𝑟 is said to be rational if it can be expressed in the form 𝑟 = 𝑃/𝑄, where
𝑄 ≠ 0, and 𝑃,𝑄 ∈ Z. Furthermore, if (𝑃,𝑄) = 1, 𝑃/𝑄 is called the ‘reduced form’
or ‘lowest form’ of the rational number 𝑟 .

When dealing with integers, the notions of gcd, lcm, and coprimality are commonly
encountered. They also play an important role in determining some properties of the
integer arrays in terms of sensor positions. For example, the necessary and sufficient
condition for the invertibility of the steering vector [97], [126] of an integer array
with sensors placed at locations 0, 𝑛1, 𝑛2, . . . , 𝑛𝑚−1 ∈ N is given by

gcd(𝑛1, 𝑛2, . . . , 𝑛𝑚−1) = 1. (3.1)

Similarly, Euclid’s theorem of coprime numbers was used to obtain results pertain-
ing to large ULA segments in the coarray of sparse coprime arrays (for instance,
properties 1-5 from sec. VI of [35]). To introduce rational coprime arrays (Sec.
3.4) and develop some similar identifiability results for such arrays, we first extend
these arithmetic notions of gcd and coprimality to rationals. Although some online
sources like [127], [128] discuss gcd and lcm for rational numbers, here we establish
more specific results that are useful in the context of array signal processing.

3.2.1 GCD and LCM of Rational Numbers
First, let us formally define the notion of ‘common divisors’ for a set of rational
numbers.

Definition 1 (Common divisor of rationals). A rational number 𝑟 is called a common
divisor of rational numbers 𝑟1, 𝑟2, . . . , 𝑟𝑚 if

𝑟𝑖 = 𝐾𝑖 · 𝑟, where 𝐾𝑖 ∈ Z, 𝑖 = 1, 2, . . . 𝑚. (3.2)

A common rational divisor always exists for a set of rational numbers. For example,
if 𝑟𝑖 = 𝑃𝑖/𝑄𝑖 then 𝑟 = 1/∏𝑚

𝑖=1𝑄𝑖 is always a common divisor. Now the gcd and lcm
for rationals can be defined analogously to integers:

Definition 2 (gcd of rationals). The greatest common divisor (gcd) of 𝑚 rational
numbers 𝑟1, 𝑟2, . . . , 𝑟𝑚 is defined as the largest possible positive rational number 𝑟
such that

𝑟𝑖 = 𝐾𝑖 · 𝑟, where 𝐾𝑖 ∈ Z, 𝑖 = 1, 2, . . . , 𝑚. (3.3)

The gcd is denoted as gcd(𝑟1, 𝑟2, . . . , 𝑟𝑚), or simply (𝑟1, 𝑟2, . . . , 𝑟𝑚).
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Note that for 𝑟 to be the gcd in the above definition, (𝐾1, 𝐾2, . . . , 𝐾𝑚) = 1. If not,
let 𝐾′ = (𝐾1, 𝐾2, . . . , 𝐾𝑚) > 1. Then 𝑟′ = 𝑟𝐾′ > 𝑟 also satisfies the above gcd
definition, which contradicts that 𝑟 is the greatest common divisor.

Definition 3 (lcm of rationals). The least common multiple (lcm) of 𝑚 rational
numbers 𝑟1, 𝑟2, . . . , 𝑟𝑚 is defined as the smallest possible positive rational number 𝑙
such that

𝑙 = 𝐿𝑖 · 𝑟𝑖, where 𝐿𝑖 ∈ Z, 𝑖 = 1, 2, . . . , 𝑚. (3.4)

The lcm is denoted as lcm(𝑟1, 𝑟2, . . . , 𝑟𝑚). For 𝑙 to be the lcm in the above definition,
(𝐿1, 𝐿2, . . . , 𝐿𝑚) = 1. The gcd and lcm of any 𝑚 rational numbers always exist, and
they are positive rational numbers themselves. They can be expressed in terms of
numerators and denominators of the individual rational numbers as follows [127],
[128]:

Fact 1 (Formula for gcd and lcm of rationals). Let 𝑟𝑖 = 𝑃𝑖/𝑄𝑖, 𝑖 = 1, 2, . . . , 𝑚 be
positive rational numbers in their reduced form (i.e., 𝑃𝑖, 𝑄𝑖 ∈ N, (𝑃𝑖, 𝑄𝑖) = 1 ∀𝑖).
Then,

gcd(𝑟1, 𝑟2, . . . , 𝑟𝑚) =
gcd(𝑃1, 𝑃2, . . . , 𝑃𝑚)
lcm(𝑄1, 𝑄2, . . . , 𝑄𝑚)

, (3.5)

and
lcm(𝑟1, 𝑟2, . . . , 𝑟𝑚) =

lcm(𝑃1, 𝑃2, . . . , 𝑃𝑚)
gcd(𝑄1, 𝑄2, . . . , 𝑄𝑚)

. (3.6)

Proof. Let 𝑟 = 𝑃/𝑄 (with 𝑃,𝑄 ∈ N and (𝑃,𝑄) = 1) be a common rational divisor
of 𝑟1, 𝑟2, . . . , 𝑟𝑚, i.e.,

𝑟𝑖 =
𝑃𝑖

𝑄𝑖
= 𝐾𝑖 ·

𝑃

𝑄
where, 𝐾𝑖 ∈ N ∀𝑖. (3.7)

Now let 𝐾𝑖1, 𝐾𝑖2 ∈ N be such that

𝐾𝑖2 = (𝐾𝑖, 𝑄), and 𝐾𝑖1 = 𝐾𝑖/𝐾𝑖2, (3.8)

so that 𝐾𝑖2 |𝑄 and (𝐾𝑖1, 𝑄) = 1. Thus, we get

𝑃𝑖

𝑄𝑖
=
𝑃𝐾𝑖1
𝑄/𝐾𝑖2

∀𝑖. (3.9)

Since (𝑃,𝑄) = 1, 𝐾𝑖2 |𝑄, and (𝐾𝑖1, 𝑄) = 1, we have (𝑃𝐾𝑖1, 𝑄/𝐾𝑖2) = 1. Since
both LHS and RHS of Eq. (3.9) are in reduced form, we get

𝑃𝑖 = 𝑃𝐾𝑖1, 𝑄𝑖 = 𝑄/𝐾𝑖2 for some 𝐾𝑖1, 𝐾𝑖2 ∈ N. (3.10)
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Since this is true for every 𝑖, we have that

𝑃 |𝑃𝑖 ∀𝑖, and 𝑄𝑖 |𝑄 ∀𝑖. (3.11)

For 𝑟 to be the largest of all such possible divisors, one must choose the largest
numerator 𝑃 and the smallest denominator𝑄 satisfying the above constraints. Thus,
if 𝑟 = 𝑃/𝑄 is the gcd, we must have

𝑃 = gcd(𝑃1, 𝑃2, . . . , 𝑃𝑚), and 𝑄 = lcm(𝑄1, 𝑄2, . . . , 𝑄𝑚). (3.12)

This completes the proof for the formula in Eq. (3.5). One can similarly prove the
formula (3.6) for the lcm of rational numbers. □

It can further be shown that (𝑃,𝑄) = 1 in the above proof so that the gcd 𝑟 = 𝑃/𝑄
is indeed in the reduced form.

Example. Consider 𝑟1 = 4/5, 𝑟2 = 2/7, and 𝑟3 = 10/3. We can calculate the gcd of
these rational numbers using the formula (3.5) as follows:

gcd(𝑟1, 𝑟2, 𝑟3) = gcd(4, 2, 10)/𝑙𝑐𝑚(5, 7, 3) = 2/105. (3.13)

Indeed, 𝑟1 = 42 · (2/105), 𝑟2 = 15 · (2/105), and 𝑟3 = 175 · (2/105). Note that the
‘quotients’ 42, 15, and 175 are coprime. Similarly, by (3.6), the lcm of the numbers
is

lcm(𝑟1, 𝑟2, 𝑟3) = lcm(4, 2, 10)/gcd(5, 7, 3) = 20/1. (3.14)

Indeed, 25 · 𝑟1 = 20, 70 · 𝑟2 = 20, and 6 · 𝑟3 = 20 with the ‘multipliers’ 25, 70, and
6 being coprime.

Now, consider a special case when only two numbers are under consideration. It
is well known that for two integers 𝑎 and 𝑏, gcd(𝑎, 𝑏) · lcm(𝑎, 𝑏) = 𝑎𝑏. A similar
relation holds true for rational numbers as well. For two positive rational number
𝑟1 = 𝑃1/𝑄1, 𝑟2 = 𝑃2/𝑄2 with (𝑃1, 𝑄1) = 1 and (𝑃2, 𝑄2) = 1,

gcd(𝑟1, 𝑟2) · lcm(𝑟1, 𝑟2) =
gcd(𝑃1, 𝑃2)
lcm(𝑄1, 𝑄2)

· lcm(𝑃1, 𝑃2)
gcd(𝑄1, 𝑄2)

(3.15)

=
𝑃1𝑃2

𝑄1𝑄2
= 𝑟1𝑟2. (3.16)

Another interesting way to motivate the gcd and lcm of rational numbers is by ex-
tending the well-known prime factorization theorem [61], [146] to rational numbers
by allowing negative powers in the exponents of primes. This extension of prime
factorization and connection to the gcd definition is explained next.
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3.2.2 Rational Numbers: Prime Factorization and GCD
According to the fundamental theorem of arithmetic, every integer greater than unity
can be represented uniquely as a product of prime numbers (up to the ordering of
factors). Let {𝑎𝑘 }, 𝑘 = 1, 2, . . . be the list of primes in increasing order. With this,
the unique canonical representation of every positive integer 𝑛 can be written as
[61], [146]

𝑛 =

∞∏
𝑘=1

𝑎
𝑚𝑘

𝑘
, 𝑚𝑘 ∈ Z, 𝑚𝑘 ≥ 0, (3.17)

where a finite number of the exponents 𝑚𝑘 are non-zero. With this, it can be seen
that for 𝑁 positive integers 𝑛1, 𝑛2, . . . , 𝑛𝑁 having prime factorization

𝑛𝑖 =

∞∏
𝑘=1

𝑎
𝑚𝑖 𝑘

𝑘
, 𝑚𝑖 𝑘 ∈ Z, 𝑚𝑖 𝑘 ≥ 0 𝑖 = 1, 2, . . . , 𝑁, (3.18)

the gcd and lcm can be expressed as

gcd(𝑛1, 𝑛2, . . . , 𝑛𝑁 ) =
∞∏
𝑘=1

𝑎
𝑚𝑖𝑛(𝑚1𝑘 ,𝑚2𝑘 ,...,𝑚𝑁 𝑘)
𝑘

, (3.19)

𝑙𝑐𝑚(𝑛1, 𝑛2, . . . , 𝑛𝑁 ) =
∞∏
𝑘=1

𝑎
𝑚𝑎𝑥(𝑚1𝑘 ,𝑚2𝑘 ,...,𝑚𝑁 𝑘)
𝑘

. (3.20)

Note. Eq. (3.19) and (3.20) for two integers 𝑛1 and 𝑛2 also provide a quick proof of
the property that the product of gcd and lcm of two positive integers is the same as
the product of the integers:

gcd(𝑛1, 𝑛2) lcm(𝑛1, 𝑛2) =
∞∏
𝑘=1

𝑎
𝑚𝑖𝑛(𝑚1𝑘 ,𝑚2𝑘)
𝑘

∞∏
𝑘=1

𝑎
𝑚𝑎𝑥(𝑚1𝑘 ,𝑚2𝑘)
𝑘

(3.21)

=

∞∏
𝑘=1

𝑎
𝑚1𝑘
𝑘
𝑎
𝑚2𝑘
𝑘

= 𝑛1𝑛2. (3.22)

Extension for rational numbers. The integer canonical factorization (3.17) can be
extended to represent positive rational numbers 𝑟 by allowing the exponents 𝑚𝑖 to
be negative as follows [146]:

𝑟 =

∞∏
𝑘=1

𝑎
𝑚𝑖

𝑘
, 𝑚𝑖 ∈ Z. (3.23)

The primes with positive exponents contribute to the numerator of the rational
number, and the primes with negative exponents contribute to the denominator of
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the rational number. Thus, every positive rational number other than unity has a
unique prime factorization of the form (3.23). For example, 6/7 = 21 · 31 · 7−1, and
100/21 = 22 · 3−1 · 52 · 7−1.

Now, for 𝑁 rational numbers given by

𝑟𝑖 =

∞∏
𝑘=1

𝑎
𝑚𝑖𝑘

𝑘
, 𝑚𝑖𝑘 ∈ Z, 𝑖 = 1, 2, . . . , 𝑁, (3.24)

we can define the gcd and lcm similar to that in (3.19) and (3.20) as follows:

gcd(𝑟1, 𝑟2, . . . , 𝑟𝑁 ) =
∞∏
𝑘=1

𝑎
(min𝑖 𝑚𝑖𝑘)
𝑘

, (3.25)

lcm(𝑟1, 𝑟2, . . . , 𝑟𝑁 ) =
∞∏
𝑘=1

𝑎
(max𝑖 𝑚𝑖𝑘)
𝑘

. (3.26)

It can be verified that these canonical definitions are equivalent to Definition 2 and
Definition 3. Here we provide a proof for the equivalence of the gcd formulae (3.5)
and (3.25):

Proof. Let the prime factorization of 𝑁 rational numbers be

𝑟𝑖 = 𝑃𝑖/𝑄𝑖 =
∞∏
𝑘=1

𝑎
𝑚𝑖𝑘

𝑘
, 𝑚𝑖𝑘 ∈ Z, 𝑖 = 1, 2, . . . , 𝑁. (3.27)

Thus, the numerators and denominators can be written as

𝑃𝑖 =

∞∏
𝑘:𝑚𝑖𝑘≥0

𝑎
𝑚𝑖𝑘

𝑘
=

∞∏
𝑘=1

𝑎
𝑚𝑎𝑥(0,𝑚𝑖𝑘)
𝑘

, (3.28)

and

𝑄𝑖 =

∞∏
𝑘:𝑚𝑖𝑘≤0

𝑎
−𝑚𝑖𝑘

𝑘
=

∞∏
𝑘=1

𝑎
−𝑚𝑖𝑛(0,𝑚𝑖𝑘)
𝑘

. (3.29)

From the canonical formula for gcd of rationals (Eq. 3.25), we get

gcd(𝑟1, 𝑟2, . . . , 𝑟𝑁 ) =
∞∏
𝑘=1

𝑎
(min𝑖 𝑚𝑖𝑘)
𝑘

(3.30)

=
∏

𝑘:min𝑖 𝑚𝑖𝑘≥0
𝑎
(min𝑖 𝑚𝑖𝑘)
𝑘

·
[ ∏
𝑘:𝑚𝑖𝑛𝑖𝑚𝑖𝑘≤0

𝑎
(−min𝑖 𝑚𝑖𝑘)
𝑘

]−1

(3.31)

=

∞∏
𝑘=1

𝑎
min𝑖 𝑚𝑎𝑥(0,𝑚𝑖𝑘)
𝑘

·
[ ∞∏
𝑘=1

𝑎
max𝑖 −𝑚𝑖𝑛(0,𝑚𝑖𝑘)
𝑘

]−1

(3.32)

= gcd(𝑃1, . . . , 𝑃𝑁 ) · [lcm(𝑄1, . . . , 𝑄𝑁 )]−1. (3.33)

□
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The equivalence of lcm formulae (3.6) and (3.26) can be proved similarly.

3.2.3 Coprimality of Rational Numbers
We know two integers 𝑎 and 𝑏 are coprime if (𝑎, 𝑏) = 1. Note that for rationals 𝑟1

and 𝑟2, (𝑟1, 𝑟2) = 1 can only happen if 𝑟1, 𝑟2 ∈ Z in view of Definition 2. So, instead
of using (𝑟1, 𝑟2) = 1, we define two rational numbers to be coprime if (𝑟1, 𝑟2) ≤ 1.
More generally:

Definition 4 (Coprime rationals). A set of𝑚 positive rational numbers 𝑟1, 𝑟2, . . . , 𝑟𝑚

is said to be coprime if (𝑟1, 𝑟2, . . . , 𝑟𝑚) ≤ 1.

Let 𝑟𝑖 = 𝑃𝑖/𝑄𝑖 (with 𝑃𝑖, 𝑄𝑖 ∈ N and (𝑃𝑖, 𝑄𝑖) = 1∀𝑖). In view of the formula (3.5),
𝑟𝑖 are coprime if and only if

gcd(𝑃1, 𝑃2, . . . , 𝑃𝑚) ≤ lcm(𝑄1, 𝑄2, . . . , 𝑄𝑚). (3.34)

i.e., the gcd of numerators is smaller than or equal to the lcm of denominators. Note
that if 𝑟𝑖 ∈ N ∀𝑖, lcm(𝑄1, 𝑄2, . . . , 𝑄𝑚) = 1, as 𝑄𝑖 = 1 ∀𝑖. Thus the condition in
Definition 4 becomes

gcd(𝑃1, 𝑃2, . . . , 𝑃𝑚) ≤ 1, (3.35)

which reduces to the integer coprime definition

gcd(𝑃1, 𝑃2, . . . , 𝑃𝑚) = 1 (3.36)

because 𝑃𝑖-s are integers.

To the best of our knowledge, the notion of coprimality has not been extended to
rational numbers before. The above definition unifies the coprimality for integers
and rationals in the following sense: two or more numbers, either integers or ratio-
nals, are coprime if and only if they cannot be expressed as integer multiples of a
number larger than unity. This unification serves as the motivation for the above
definition. Furthermore, this coprimality definition is useful in characterizing steer-
ing vector invertibility (Theorem 1) and DOA identifiability with rational coprime
arrays (Theorem 2).

Examples. With the above definition of coprimality, 7/3 and 41/5 are coprime
because (7/3, 41/5) = 1/15 < 1. On the other hand, 64/3 and 80/5 are not, because
(64/3, 80/5) = 16/15 > 1.

Now we enumerate some properties related to the coprimality of rationals:
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1. If 𝑟𝑖 ≤ 1 for some 𝑖, then 𝑃𝑖 ≤ 𝑄𝑖. Thus we have gcd(𝑃1, . . . , 𝑃𝑚) ≤ 𝑃𝑖 ≤
𝑄𝑖 ≤ lcm(𝑄1, . . . , 𝑄𝑚), and hence gcd(𝑟1, . . . , 𝑟𝑚) ≤ 1, as expected.

2. Note that the gcd cannot be larger than 𝑟𝑖−𝑟 𝑗 for any 𝑖 ≠ 𝑗 , as it has to ‘divide’
both the numbers 𝑟𝑖 and 𝑟 𝑗 (in view of Definition 1). Thus, if 𝑟𝑖 − 𝑟 𝑗 ≤ 1 for
any 1 ≤ 𝑗 < 𝑖 ≤ 𝑚, then gcd(𝑟1, 𝑟2, . . . , 𝑟𝑚) ≤ 1.

3. For the case of two rational numbers, it can be verified that a generalization
of Euclid’s lemma (or Bézout’s identity) [61] holds. See Lemma 1 below.

4. Furthermore, a generalized form of Bézout’s identity for more than two num-
bers holds for the case of rational numbers as well. See Lemma 2 below.

Lemma 1 (Generalized Euclid’s Lemma). Two positive rational numbers 𝑟1, 𝑟2 are
coprime if and only if

∃ 𝑎1, 𝑎2 ∈ Z such that 0 < 𝑎1𝑟1 + 𝑎2𝑟2 ≤ 1. (3.37)

Proof. Let (𝑟1, 𝑟2) = 𝑟 . Then,

𝑟𝑖 = 𝐾𝑖 · 𝑟, 𝑖 = 1, 2 and (𝐾1, 𝐾2) = 1. (3.38)

Now, consider the expression

𝑎1𝑟1 + 𝑎2𝑟2 = 𝑟 (𝑎1𝐾1 + 𝑎2𝐾2). (3.39)

Only if part: Assume 0 < 𝑟 ≤ 1. Since (𝐾1, 𝐾2) = 1, by Euclid’s lemma (Bézout’s
identity) for integers, we can find 𝑏1, 𝑏2 ∈ Z such that 𝑏1𝐾1 + 𝑏2𝐾2 = 1. Choosing
𝑎1 = 𝑏1, 𝑎2 = 𝑏2 in (3.39) gives

0 < 𝑎1𝑟1 + 𝑎2𝑟2 = 𝑟 ≤ 1. (3.40)

If part: Let there be 𝑎1, 𝑎2 ∈ Z such that 0 < 𝑎1𝑟1 + 𝑎2𝑟2 = 𝑟′ ≤ 1. Thus we get

𝑟 (𝑎1𝐾1 + 𝑎2𝐾2) = 𝑟′. (3.41)

Since 𝑎1𝐾1 + 𝑎2𝐾2 ∈ N, 𝑟 ≤ 𝑟′ ≤ 1. This completes the proof of Lemma 1. □

Lemma 2. Let 𝑟1, 𝑟2, . . . , 𝑟𝑚 be positive rational numbers with the greatest common
divisor 𝑟. Then there exist integers 𝐾1, 𝐾2, . . . , 𝐾𝑚 such that

𝐾1𝑟1 + 𝐾2𝑟2 + . . . + 𝐾𝑚𝑟𝑚 = 𝑟. (3.42)

More generally, the set of all numbers of the form 𝐾1𝑟1 + 𝐾2𝑟2 + . . . + 𝐾𝑚𝑟𝑚, where
𝐾𝑖 ∈ Z is the set of all numbers that are integer multiples of 𝑟.
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Lemma 2 can be proved in a similar fashion to Lemma 1, by using the generalization
of Bézout’s identity for more than two integers.

3.3 Theory of Rational Arrays
In this section, we formally introduce rational arrays and present some results.
Rational arrays have the form

z =

[
𝑟0 𝑟1 𝑟2 · · · 𝑟𝑚−1

]
, (3.43)

where
𝑟0 = 0 < 𝑟1 < 𝑟2 < . . . < 𝑟𝑚−1, (3.44)

and
𝑟𝑖 = 𝑃𝑖/𝑄𝑖, 𝑃𝑖, 𝑄𝑖 ∈ N, (𝑃𝑖, 𝑄𝑖) = 1 ∀𝑖 > 0. (3.45)

Here, the first sensor 𝑟0 is assumed to be located at the origin, without loss of
generality. These arrays will be called rational arrays to contrast them with integer
arrays, where the sensor positions are all integers.

Note that it is possible to rewrite the array (3.43) as

z =

[
𝑛0𝑑 𝑛1𝑑 𝑛2𝑑 · · · 𝑛𝑚−1𝑑

]
(3.46)

for some rational number 𝑑 and integers 𝑛𝑖. Although this ‘scaled integer repre-
sentation’ can be useful in some situations, our rational representation has some
advantages. As we discuss next, we often operate under the setting where the aper-
ture 𝐴 and the number of sensors 𝑚 are fixed (or given). Under these constraints,
the task is to design an array that can provide a theoretical guarantee for identifiabil-
ity and improve DOA estimation performance compared to standard integer arrays,
including ULA. For this task, it is often convenient and straightforward to directly
toy with rational placements of the sensors and come up with suitable arrays rather
than to construct an integer array with possibly a much larger aperture and scale it
down with some 𝑑. Interpreting rational arrays as larger integer arrays with some
small 𝑑 is possible, but such a presentation doesn’t shed much light on why these
arrays would perform better than integer arrays (with 𝑑 = 𝜆/2 = 1). For example, if
aperture 𝐴 = 3 and number of available sensors 𝑚 = 4, the array [0, 0.95, 2.05, 3]
can be considered to be 0.05 ∗ [0, 19, 41, 60]. However, artificially constructing
such integer locations does not help in understanding, for example, how this array
would perform compared to the integer array [0, 1, 2, 3]. Furthermore, the rational
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𝑟 = 1

𝑚 − 10

Available Aperture 𝐴 = 𝑚 − 1

1

Figure 3.1: When the available array aperture 𝐴 equals 𝑚 − 1, the standard integer
ULA can be used for DOA estimation.

framework used here generalizes naturally to arrays with non-rational sensor po-
sitions. As discussed later in Sec. 3.6, arbitrary (non-rational) arrays cannot, in
general, be expressed as in (Eq. (3.46)) with integers 𝑛𝑖. But the results presented
in Sec. 3.3 to 3.5 considering rational sensor positions with a constant 𝑑 = 𝜆/2 = 1
are easily generalizable (as Theorems 6 and 7) to arrays with arbitrary (real-valued)
sensor positions.

We now discuss how rational arrays can have some benefit over integer arrays when
𝑚 sensors are to be placed in a limited aperture of length 𝐴. The standard 𝑚-sensor
integer ULA (𝑟𝑖 = 𝑖) can be used when 𝐴 = 𝑚 − 1 as shown in Fig. 3.1. ULAs
have Vandermonde array manifold matrix (Eq. (1.9)), which ensures unambiguous
identifiability of 𝑚 − 1 sources. Furthermore, the Vandermonde structure also
facilitates the application of Root-MUSIC and ESPRIT algorithms to the ULA
output. When 𝐴 ≠ 𝑚 − 1, two cases are possible, which are discussed next.

3.3.1 Situations where 𝐴 < 𝑚 − 1
In this case, the standard 𝑚-sensor integer ULA cannot be used. One possibility
is to use a shorter ULA z =

[
0 1 2 · · · ⌊𝐴⌋

]
, that fits the available aperture

as shown in Fig. 3.2(a). However, this does not use all the available sensors and
restricts the number of resolvable sources to ⌊𝐴⌋. If we relax the integer constraint
on sensor locations, we can use the following array:

z =

[
0 𝑟 2𝑟 · · · (𝑚 − 1)𝑟

]
, 𝑟 < 1. (3.47)

This array is a scaled version of the standard integer ULA, as shown in Fig. 3.2(b).
The shrinking factor 𝑟 < 1 can be appropriately chosen to satisfy the aperture
constraint. This shrunk rational ULA still has a Vandermonde array manifold matrix
and has no ambiguity for sources in [−90◦, 90◦). This allows the array to be used
to identify 𝑚 − 1 sources. Disadvantages of such shrinking include increased DOA
estimation error and CRB due to reduced aperture [96] compared to the standard
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𝑟 = 1

𝑚 − 10 ⌊ 𝐴 ⌋

Available Aperture 𝐴 < 𝑚 − 1 (a)

Available Aperture 𝐴 < 𝑚 − 1

𝑟 < 1

(𝑚 − 1)𝑟 = 𝐴0

(b)

Figure 3.2: Situation where 𝐴 < 𝑚 − 1. (a) Integer ULA can only fit ⌊𝐴⌋ + 1
sensors in the available aperture and can identify only ⌊𝐴⌋ DOAs. (b) A shrunk
rational ULA with appropriately chosen interelement spacing 𝑟 < 1 that satisfies
the aperture constraint can identify 𝑚 − 1 DOAs.

𝑚-sensor integer ULA. One way to counterbalance this effect is to increase the
number of snapshots.

However, contrary to what one may intuitively expect, when sources impinge on
the array from directions away from the array normal, shrunk rational ULAs can
provide more accurate DOA estimates than a standard integer ULA. In Fig. 3.3(a),
one source is fixed at 80◦, and we plot the analytical MSE in the frequency variables
𝜔 corresponding to the DOAs [122] as the second source is varied. When the second
source is between −90◦ and −60◦, the MSE for the integer ULA (𝑟 = 1) is worse
than many rational ULAs. Note that MSE at 90◦ and −90◦ is the same for ULAs
as a(𝜔) is periodic in 𝜔 for ULAs. So sources that are far away from the array
normal on both sides (like 85◦ and −85◦) are difficult to differentiate based on their
steering vectors a(𝜔). At the extreme, the steering vectors corresponding to 90◦ and
−90◦ are exactly the same for any integer array. This results in higher MSE when
sources from both extreme ends of the interval [-90◦, −90◦) are present. However,
for rational arrays, a(𝜔) may not be periodic with period 2𝜋, and thus MSE does not
increase even when extreme sources are present. This point about the periodicity of
𝜔 for rational arrays is further discussed in Sec. 3.3.3.

In addition to the theoretical increase in MSE due to reduced aperture, another effect
to consider in practice is the increased mutual coupling between sensors due to array
shrinking. For a demonstrative simulation, here we consider the coupling model as
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Figure 3.3: Comparison of (a) analytical MSE in the absence of mutual coupling and
(b) numerical (Monte-Carlo) MSE in the presence of mutual coupling (Eq. (3.48))
when one DOA is fixed at 80◦ and the other DOA is varied. Integer ULA (𝑟 = 1)
has higher MSE when sources impinge from the directions far away from the array
normal on both sides.

in Eq. (2.27), and coupling coefficients of the form

𝑐𝑑 =


0.3𝑒 𝑗𝜋/4/𝑑 if 0 < 𝑑 ≤ 1,

0.3𝑒 𝑗𝜋/7/𝑑 if 1 < 𝑑 ≤ 3.
(3.48)
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Fig. 3.3(b) shows the MSE of the DOA frequency variables 𝜔 averaged over 500
Monte-Carlo simulations for shrunk ULAs with different values of 𝑟 in Eq. (3.47),
in the presence of mutual coupling. We see that shrunk rational ULAs still have
better MSE than the integer ULA when the second source is between −90◦ to −70◦.
It should be noted that the MSE for shrunk ULAs increases significantly if 𝑟 is made
smaller than 0.8 and very strong mutual coupling between sensors is considered.

In summary, compared to integer ULA, a shrunk rational ULA with 𝑟 = 0.9 or
𝑟 = 0.95 worsens the estimation error for DOAs close to the array normal only
marginally but can improve the estimation error for DOAs away from the normal
significantly, even in the presence of moderate mutual coupling.

3.3.2 Situations where 𝐴 > 𝑚 − 1
For this complementary scenario, we propose rational coprime arrays in Sec. 3.4.
But first, consider two integer arrays that can be used in this case. We will show that
these integer arrays have some limitations. These limitations motivate the rational
coprime array proposed in the next section.

One integer array that can be used in this case is the standard 𝑚-sensor ULA, as its
aperture 𝑚 − 1 is smaller than the available aperture 𝐴 as shown in Fig. 3.4(a). This
ULA can identify up to 𝑚 − 1 sources unambiguously. However, it utilizes only a
part of the available aperture. It does not take advantage of the benefits of the larger
aperture [96], such as a smaller mean squared error in DOA estimation and reduced
CRB.

Another integer array that can be considered is the integer coprime array proposed
in [97], [126]. These arrays have the form

z =

[
0 𝑀 2𝑀 · · · . (𝑚 − 2)𝑀 | 𝑁

]
, (3.49)

where 𝑀 and 𝑁 are coprime integers. The array consists of a sparse integer ULA
with an extra sensor at the location 𝑁 as shown in Fig. 3.4(b). Theorem 2 of [97],
[126] shows that such an array can identify any𝑚−2 sources with MUSIC if no two
sources are equivalent modulo 2𝜋/𝑀 in the 𝜔 domain. Although this array cannot
identify 𝑚 − 1 sources like the standard ULA, 𝑀 and 𝑁 satisfying (𝑀, 𝑁) = 1 can
be chosen so as to span a larger aperture than the standard ULA. One possible choice
is to take 𝑀 to be ⌊𝐴/(𝑚 − 2)⌋ and 𝑁 to be the largest integer coprime to 𝑀 that
is smaller than 𝐴. This choice of 𝑀 and 𝑁 utilizes the available aperture almost
entirely.
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Available Aperture 𝐴 > 𝑚 − 1

𝑟 = 1

0 𝑚 − 1

(a)

Available Aperture 𝐴 > 𝑚 − 1

𝑀0 2𝑀 (𝑚 − 2)𝑀𝑁 3𝑀

(b)

Available Aperture 𝐴 = 99

𝑀 = 10 𝑚 − 2 𝑀 = 50 𝑁 = 99

(c)

𝑟 > 1

0

Available Aperture 𝐴 > 𝑚 − 1 (d)

Figure 3.4: Situation where 𝐴 > 𝑚 − 1. (a) An integer ULA of 𝑚 sensors cannot
utilize the full available aperture. (b) An integer coprime array [97], [126] consisting
of an (𝑚 − 1)-sensor sparse ULA with interelement spacing 𝑀 and an additional
sensor located at 𝑁 where (𝑀, 𝑁) = 1 can be suitable for this case. (c) An example
with 𝐴 = 99 and𝑚 = 27, where the integer coprime array cannot utilize the available
aperture well. Most of the sensors are concentrated in only half of the aperture. (d)
We cannot simply use a sparse rational ULA because it cannot identify the DOAs
unambiguously.

However, in addition to maximizing the array aperture, there are other factors that
help reduce the MSE and CRB. [99], [147] show that increasing second-order and
higher moments of sensor positions helps achieve this. One way of increasing
second-order and higher moments of sensor positions is to distribute the sensors
in a ‘spread-out’ fashion (while still satisfying identifiability conditions). Now, for
the integer coprime array (3.49), some values of 𝑚 and 𝐴 might not allow a well
‘spread-out’ positioning of sensors because of the integer constraint on 𝑀 and 𝑁 .
As an example, consider 𝑚 = 52 and the available aperture 𝐴 = 99. In this case,
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only 𝑀 = 1 is possible, and thus the ULA part of (3.49) is concentrated in only
half of the aperture from 0 to 50 as shown in Fig. 3.4(c). We can still place the
additional sensor at 𝑁 = 99 so as to make use of the entire aperture. Instead of this,
the rational array proposed in Sec. 3.4 spreads out the ULA part of the array to
span the entire aperture, instead of just moving one sensor to the extreme. Thus, the
rational counterpart (3.56) provides better DOA estimates than the integer coprime
array (3.49,) as we shall see. It also offers some identifiability guarantees as we
shall explain in Sec. 3.4.

Note that one may also consider expanding the 𝑚-sensor integer ULA by a factor
𝑟 > 1 to span the available aperture as shown in Fig. 3.4(d). However, this creates
ambiguity. The steering vector of such a sparse ULA is given by

a(𝜔) =
[
1 𝑒 𝑗𝜔𝑟 𝑒 𝑗𝜔2𝑟 . . . 𝑒 𝑗𝜔(𝑚−1)𝑟

]
, 𝑟 > 1. (3.50)

Note that for two sources 𝜔1 and 𝜔2 such that 𝜔1 − 𝜔2 = 2𝜋/𝑟, a(𝜔1) = a(𝜔2).
Hence, these sources cannot be distinguished from the array output. However, such
sparse ULAs will be revisited later in Sec. 3.5 for their use in the case of restricted
spatial scope.

3.3.3 Remark on Frequency Interpretation of 𝜔
It is important to note that the quantity 𝑒 𝑗𝜔𝑧 does not in general have a repetition
interval of 2𝜋 in 𝜔, i.e. 𝑒 𝑗 (𝜔+2𝜋)𝑧 ≠ 𝑒 𝑗𝜔𝑧, in general. Instead, 𝑒 𝑗𝜔𝑧 is periodic with
period 2𝜋/𝑧 in 𝜔. Thus, only when 𝑧 is an integer, 𝑒 𝑗𝜔𝑧 has a repetition interval
of 2𝜋 with respect to the variable 𝜔. Hence, when dealing with non-integer arrays
(i.e. 𝑧𝑖 are not integers), we cannot consider other shifted intervals of 𝜔 with length
2𝜋, like [0, 2𝜋), as a substitute for the range [−𝜋, 𝜋). Furthermore, the naturally
used concept in DSP about the equivalence of digital frequencies 𝜔 and 𝜔 ± 2𝑘𝜋 is
no longer true. Thus, in this chapter, we plot the MUSIC spectrum with physical
DOA variable 𝜃 on the 𝑋-axis instead of 𝜔. Note that the MUSIC spectrum thus
plotted for rational arrays does not always have the same value at angles −90◦ and
90◦, unlike integer arrays.

3.3.4 Invertibility of Steering Vector
For any algorithm to be able to unambiguously identify the DOAs 𝜃1, . . . , 𝜃𝐷 from
the array output x (Eq. (2.1)), it is necessary that

a(𝜔1) ≠ a(𝜔2), for − 𝜋 ≤ 𝜔1 < 𝜔2 < 𝜋. (3.51)
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In other words, the mapping 𝜔 ↦→ a(𝜔) should be invertible for 𝜔 ∈ [−𝜋, 𝜋). It is
well-known that invertibility of the manifold, while necessary, is not sufficient for
unambiguous DOA identifiability. For integer arrays, the setwise coprimality of the
sensor locations (Eq. (3.1)) was shown to be the necessary and sufficient condition
for the invertibility of the steering vector [97], [126]. With the extended definition
of coprimality to rational numbers, we have the following generalization.

Theorem 1 (Invertibility of steering vector). For −𝜋 ≤ 𝜔 < 𝜋, the steering vector

a(𝜔) =

[
1 𝑒 𝑗𝜔𝑟1 𝑒 𝑗𝜔𝑟2 . . . 𝑒 𝑗𝜔𝑟𝑚−1

]𝑇
of the rational array in Eq. (3.43) is

invertible if and only if the sensor locations 𝑟𝑖 are coprime, i.e.

gcd(𝑟1, 𝑟2, . . . , 𝑟𝑚−1) ≤ 1. (3.52)

Or equivalently, when 𝑟𝑖 = 𝑃𝑖/𝑄𝑖 are in their reduced forms,

gcd(𝑃1, 𝑃2, . . . , 𝑃𝑚−1) ≤ lcm(𝑄1, 𝑄2, . . . , 𝑄𝑚−1). (3.53)

The proof follows along similar lines to the integer case [97], [126], with appro-
priate modifications for rational sensor positions and corresponding use of gcd and
coprimality definitions for rational numbers. In Sec. 3.5 we generalize this result
further to the case when signals are impinging from a restricted spatial scope on the
array (Theorem 4) and provide the proof for this further generalized version of the
result.

Note that for the special case of integer array, 𝑟𝑖 = 𝑛𝑖 ∈ Z ∀𝑖, the above condition
reduces to (3.1). If 𝑟𝑖 ≤ 1 for any 𝑖 or 𝑟𝑖 − 𝑟 𝑗 ≤ 1 for some 1 ≤ 𝑗 < 𝑖 ≤ 𝑚 − 1, the
condition (3.52) is readily satisfied, given the gcd properties from Sec. 3.2.

Examples. The steering vector corresponding to the array

z =

[
0 10/3 25/3 10 45/4

]
(3.54)

is invertible, because gcd(10/3, 25/3, 10, 45/4) = 5/12 < 1. On the other hand,
the steering vector corresponding to the array

z =

[
0 9/4 45/8 81/8 45/4 18

]
(3.55)

is not invertible because gcd(9/4, 45/8, 81/8, 45/4, 18) = 9/8 > 1.
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3.4 Rational Coprime Arrays
For the case considered in Sec. 3.3.2 where aperture 𝐴 > 𝑚 − 1, we propose to use
the following 𝑚-sensor rational array:

z =

[
0 𝑟1 2𝑟1 · · · (𝑚 − 2)𝑟1 | 𝑟2

]
. (3.56)

Here, 𝑟1 and 𝑟2 are rational coprime numbers, i.e., (𝑟1, 𝑟2) ≤ 1. The array is a sparse
rational ULA with 𝑚 − 1 elements, plus an extra element appended at 𝑟2. Note that
the steering vector of this array is invertible (see Theorem 1) as

gcd(𝑟1, 2𝑟1, · · · , (𝑚 − 2)𝑟1, 𝑟2) = gcd(𝑟1, 𝑟2) ≤ 1. (3.57)

While this array ‘spreads-out’ the ULA part compared to its integer counterpart
(3.49), we must still ensure that it can identify the DOAs unambiguously. It is
well-known [96] that the MUSIC algorithm can identify 𝐷 sources corresponding
to 𝜔1, . . . , 𝜔𝐷 unambiguously, i.e., without producing any false peaks, if and only
if the augmented array manifold matrix of the array given by

A𝑎𝑢𝑔 =

[
a(𝜔1) a(𝜔2) . . . a(𝜔𝐷) | a(𝜔𝐷+1)

]
(3.58)

is full column rank for all 𝜔𝐷+1 in the range [−𝜋, 𝜋) that are distinct to any of
𝜔1, 𝜔2, . . . , 𝜔𝐷 . This condition ensures that no other steering vector a(𝜔) lies in
the column span of the steering vectors corresponding to the DOAs, and thus no
false peaks are produced. It can be verified that the result holds valid for any linear
array, and in particular for the rational arrays under consideration. Using the rank
condition for A𝑎𝑢𝑔, we can arrive at the following identifiability result similar to
Theorem 2 of [97], [126].

Theorem 2 (Rational coprime array: Identifiability with MUSIC). Consider an
𝑚-sensor rational array as in Eq. (3.56), with (𝑟1, 𝑟2) ≤ 1. Let there be 𝐷 ≤
𝑚 − 2 sources with distinct DOAs 𝜃1, 𝜃2, . . . , 𝜃𝐷 . If the frequency variables
𝜔1, 𝜔2, . . . , 𝜔𝐷 , where 𝜔𝑖 = 𝜋 sin 𝜃𝑖, are distinct modulo 2𝜋/𝑟1, then the MUSIC
algorithm will identify the DOAs without producing any false peaks.

Note that 𝜔1, . . . , 𝜔𝐷 are said to be distinct modulo 2𝜋/𝑟1 if

𝜔𝑖 − 𝜔𝑙 ≠ 2𝜋𝑘/𝑟1, 𝑖 ≠ 𝑙 (3.59)

for any integer 𝑘 . Note that (3.59) is equivalent to the condition

𝑒 𝑗𝜔𝑖𝑟1 ≠ 𝑒 𝑗𝜔𝑙𝑟1 , 𝑖 ≠ 𝑙. (3.60)
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In practice, such distinctness is satisfied with probability one when the spatial
distribution of sources is assumed to be uniform in [−90◦, 90◦). However, if the
two sources are approximately equivalent modulo 2𝜋/𝑟1, the MSE can increase
substantially as shown in Fig. 3.11 later. The severity with which MSE increases
is experimentally found to be very sensitive to the position of the extra sensor at 𝑟2

relative to the sparse ULA part of the array. In Sec. 3.4.2, we will further discuss
the effect of sensor location 𝑟2 on DOA estimation performance and provide two
ways of constructing rational coprime arrays that mitigate the worsening of DOA
estimation error.

Similar to Theorem 1, we generalize Theorem 2 further to the case when signals are
impinging from a restricted spatial scope in Sec. 3.5, and also provide a detailed
proof parallel to [97], [126].

3.4.1 DOA Estimation Examples with the Proposed Rational Coprime Arrays
In this section, we demonstrate that it is indeed possible to unambiguously iden-
tify sources with the proposed rational coprime arrays by presenting simulation
examples. We also illustrate the scenario where rational arrays are better suited.

Example 1. Consider 𝑚 = 8 sensors and an available aperture 𝐴 = 11. We consider
the following three arrays under this setting:

z1 =

[
0 11/6 22/6 33/6 44/6 55/6 11 | 26/5

]
, (3.61)

z2 =

[
0 1 2 3 4 5 6 7

]
, (3.62)

z3 =

[
0 1 2 3 4 5 6 | 11

]
. (3.63)

Of the three arrays, z1 is a rational coprime array of the form (3.56), with 𝑟1 = 11/6
and 𝑟2 = 26/5 satisfying (𝑟1, 𝑟2) = 1/30 < 1. Hence according to Theorem 2, it can
identify any 6(= 𝑚 − 2) sources that satisfy condition (3.59). Arrays z2 and z3 are
two possible integer alternatives considered in Sec. 3.3.2. Array z2 is a standard
8-sensor integer ULA that can identify up to 7 sources unambiguously, but it only
utilizes a part of the entire available aperture. Array z3 has a 7-sensor ULA segment
and an extra sensor at location 11 in order to utilize the entire available aperture.
The ULA part with 7 sensors still ensures that it can unambiguously identify any 6
sources. Also note that z3 can be viewed as an array of the form (3.49) with 𝑀 = 1
and 𝑁 = 11. It is not possible to use 𝑀 ≥ 2 here, as that would violate the aperture
constraint.
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(a)

(b)

(c)

Figure 3.5: Identifying 6 sources from Example 1. MUSIC spectrum obtained with
(a) rational coprime array z1, (b) standard ULA z2, and (c) modified ULA z3. True
DOAs are shown in black vertical lines.
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Now consider 6 uncorrelated sources with DOAs−80◦,−60◦,−15◦, 25◦, 45◦, and 80◦

impinging on these arrays. The sources have SNR of 0 dB, and 𝐾 = 600 snapshots
are used. Fig. 3.5 shows the MUSIC spectrum produced by these arrays. It can be
seen that the integer arrays z2 and z3 do not correctly identify the source at −80◦,
and have significant DOA estimation error for the source at 80◦. On the other hand,
our proposed rational coprime array z1 produces six clear peaks in the spectrum that
are close to the true DOAs and thus provides accurate DOA estimates.

Example 2. For this example, we consider 𝑚 = 13 sensors and an available aperture
of 20. We compare three arrays, similar to those considered in the previous example:

z4 =

[
0 20/11 2 · 20/11 · · · 20 | 37/5

]
, (3.64)

z5 =

[
0 1 2 3 · · · 12

]
, (3.65)

z6 =

[
0 1 2 3 · · · 11| 20

]
. (3.66)

Now consider 11 uncorrelated sources with nearby DOAs −25◦,−20◦, · · · , 20◦, 25◦

and SNR of 20 dB impinging on the arrays. 𝐾 = 1000 snapshots are used. Fig.
3.6 shows the MUSIC spectrum produced by the three arrays. It can be seen that
the proposed rational array z4 clearly estimates 11 sources that are close to the true
DOAs, whereas the integer arrays z5 and z6 do not identify all the sources correctly,
and produce an incorrect number of peaks in the spectrum.

These examples clearly demonstrate the advantages of rational coprime arrays over
other integer arrays. Sparse distribution of sensors in a given aperture helps rational
coprime arrays to identify the correct number of sources (example 2), along with
smaller DOA estimation error (example 1) with MUSIC compared to the integer-
array alternatives.

3.4.2 Which Rational Coprime Array is Better?
The rational coprime array in Eq. (3.56) has two design parameters, namely,
the rational numbers 𝑟1 and 𝑟2. For simulations in the previous subsection, we
considered the available aperture 𝐴 and the available number of sensors𝑚 satisfying
𝐴 > 𝑚 − 1. To design the rational array, we chose 𝑟1 = 𝐴/(𝑚 − 2), and 𝑟2 to be any
number coprime to 𝑟1. However, we found that the CRB and the DOA estimation
error of the array vary considerably depending on the value of 𝑟2. Especially when
the sources become approximately equivalent modulo 2𝜋/𝑟1, the increase in the
DOA estimation error was found to be very sensitive to the location of the extra
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(a)

(b)

(c)

Figure 3.6: Identifying 11 closely spaced sources from Example 2. MUSIC spec-
trum obtained with (a) rational coprime array z4, (b) standard ULA z5, and (c)
modified ULA z6. True DOAs are shown in black vertical lines.
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Figure 3.7: Effect of the location of 𝑟2 of array z1 from Example 1 on the MSE.
Choosing 𝑟2 = 1, or equivalently 𝑟2 = 𝐴 − 1 leads to the smallest MSE.

sensor at 𝑟2. In this section, we demonstrate this effect of the location 𝑟2 on DOA
estimation errors and discuss two ways of choosing 𝑟1 and 𝑟2 to mitigate this effect.

Consider the situation in Example 1. In Fig. 3.7, we keep fixed 𝑟1 = 11/6, and vary
the location of 𝑟2 to see its effect on the analytical MSE [122] of the array. Notice
that the array z1 with 𝑟2 = 26/5 is in fact not an optimal array. The array with 𝑟2 = 1
(or equivalently 𝑟2 = 𝐴 − 1 = 10, due to symmetry) was found to have the smallest
MSE. We experimentally found this to be the case for many other settings of 𝐴,
𝑚, and DOAs configurations. Based on this observation, we suggest two specific
rational array designs for a given aperture 𝐴 and number of sensors𝑚, both of which
are found to have similar DOA estimation performance:
Design 1: 𝑟1 = 𝐴/(𝑚 − 2), and 𝑟2 = 𝐴 − 1, so that

z =

[
0 𝐴

𝑚−2
2𝐴
𝑚−2 · · · 𝐴 | 𝐴 − 1

]
. (3.67)

Design 2: 𝑟1 = (𝐴 − 1)/(𝑚 − 2), and 𝑟2 = 𝐴, so that

z =

[
0 𝐴−1

𝑚−2
2(𝐴−1)
𝑚−2 · · · 𝐴 − 1 | 𝐴

]
. (3.68)

It can be verified that 𝑟1 and 𝑟2 thus chosen are always guaranteed to be rationally
coprime, i.e., (𝑟1, 𝑟2) ≤ 1. For array (3.68), if (𝐴 − 1)/(𝑚 − 2) is the irreducible
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form of 𝑟1 (i.e. 𝐴 − 1 and 𝑚 − 2 are coprime) then by (3.5), we have

gcd(𝑟1, 𝑟2) =
gcd(𝐴 − 1, 𝐴)
lcm(𝑚 − 2, 1) =

1
𝑚 − 2

≤ 1. (3.69)

If 𝐴 − 1 and 𝑚 − 2 are not coprime, let 𝑟1 = 𝑎/𝑏 be the irreducible form of 𝑟1, with
(𝑎, 𝑏) = 1. Then 𝑎 is a divisor of 𝐴 − 1, so we have (𝑎, 𝐴) ≤ (𝐴 − 1, 𝐴) = 1, thus
implying (𝑎, 𝐴) = 1. With this,

gcd(𝑟1, 𝑟2) =
gcd(𝑎, 𝐴)
lcm(𝑏, 1) =

1
𝑏
≤ 1. (3.70)

Similar arguments also show that 𝑟1 and 𝑟2 are coprime for Design 1 as well. We
will also show in Sec. 3.4.4 that the rational coprime arrays thus designed have
better performance than most rational coprime arrays with 𝑟1 = 𝐴/(𝑚 − 2) and
randomly chosen 𝑟2, especially around the ambiguity regions (i.e. when sources are
approximately equivalent modulo 2𝜋/𝑟1). Another point to note is that these array
designs do not have a large mutual coupling between adjacent sensors. Design 2
has no sensor pairs with a distance smaller than 1. Design 1 has no sensor pair with
a distance smaller than 1 if 𝐴 ≥ 2(𝑚 − 2), and has exactly one sensor pair with a
distance smaller than 1 if 𝐴 < 2(𝑚 − 2).

Note that here it was much more convenient to directly toy with the rational sensor
locations to design an array. It was not possible to artificially consider our rational
array as a scaled version of some integer array, as in (3.46,) to design a value of
𝑟2 that guarantees coprimality of 𝑟1 and 𝑟2. As 𝑟2 is changed, the equivalent 𝑑
and corresponding integer sensor locations 𝑛𝑖 change very haphazardly and are not
useful to find an optimal 𝑟2 for our rational coprime array.

3.4.3 Root-MUSIC for Rational Arrays
Even when the MUSIC spectrum of rational coprime array provably produces peaks
close to the true DOA values (Theorem 2), the accuracy of the DOAs estimated
through the MUSIC peak search depends on the grid size on which 𝑃(𝜔) from Eq.
(2.11) is evaluated. Thus, for fair Monte-Carlo MSE comparisons, using a gridless
DOA estimation method for rational arrays is desired. Two gridless DOA estimation
methods that avoid grid-based DOA search are popular in the literature, namely,
root-MUSIC [85] and ESPRIT [11] (see Sec. 2.2). Non-uniform rational arrays,
and in particular rational coprime arrays, do not have shift invariance in the sensor
positions, which is required for applying ESPRIT. Root-MUSIC (Eq. (2.15)), on
the other hand, is usually used for ULAs. The arguments of the 𝐷 roots of 𝑄(𝑧) in



65

Eq. (2.15) that are inside the unit circle and closest to the unit circle in the complex
𝑧-plane provide estimates of the DOAs.

For integer arrays (𝑟𝑖 = 𝑛𝑖 ∈ N) that are not ULAs, root-MUSIC can in principle still

be applied by substituting v(𝑧) =
[
1 𝑧𝑛1 𝑧𝑛2 . . . 𝑧𝑛𝑚−1

]𝑇
in Eq. (2.15), as 𝑄(𝑧)

is still a polynomial (with integer powers of 𝑧). Although the polynomial degree can
be large now, if the augmented manifold matrix has full column rank, the roots of
𝑄(𝑧) closest to the unit circle in the 𝑧-plane will still correspond to the true DOAs
when SNR is not too low. However, for rational arrays, 𝑟𝑖 are not integers, and𝑄(𝑧)
is no longer a polynomial. To handle this, we substitute 𝑧 = 𝑒 𝑗𝜔𝑟 instead of 𝑧 = 𝑒 𝑗𝜔

in a(𝜔), where 𝑟 = (𝑟1, . . . , 𝑟𝑚−1) ≤ 1 so that

v(𝑧) =
[
1 𝑧𝑟1/𝑟 𝑧𝑟2/𝑟 . . . 𝑧𝑟𝑚−1/𝑟

]𝑇
. (3.71)

Substituting this v(𝑧) in Eq. (2.15) produces a polynomial𝑄(𝑧) with integer powers,
as 𝑟𝑖/𝑟 are integers (see Definition 2). This substitution may create a polynomial
of a very large degree, especially if 𝑟 is small, which increases the computations
required to find all the zeros of 𝑄(𝑧). The closer 𝑟 is to 1, the lower is the degree of
the polynomial𝑄(𝑧), and the lower is the computational complexity. Note that since
we substituted 𝑧 = 𝑒 𝑗𝜔𝑟 , we only consider the zeros of 𝑄(𝑧) having phase values in
the range [−𝜋𝑟, 𝜋𝑟). But since 𝑄(𝑧) can typically have a large degree, we get many
more than 𝐷 zeros having phase values in the range [−𝜋𝑟, 𝜋𝑟). It is possible that
some of the spurious zeros are closer to the unit circle than the zeros corresponding
to the true DOAs, especially when SNR or the number of snapshots is low. To
handle this, we first find 𝐿 ≥ 𝐷 zeros of 𝑄(𝑧) inside the unit circle and closest
to the unit circle having phase values in the range [−𝜋𝑟, 𝜋𝑟). We then multiply
the phase values of the 𝐿 zeros by 1/𝑟 to get DOA candidates {𝜔𝑙}𝐿𝑙=1 ∈ [−𝜋, 𝜋).
Now we evaluate MUSIC spectrum 𝑃(𝜔) from Eq. (2.11) at each candidate DOA
{𝜔𝑙}𝐿𝑙=1 corresponding to each of the 𝐿 ≥ 𝐷 zeros closest to the unit circle. The
𝜔𝑙-s that produce 𝐷 largest values of 𝑃(𝜔𝑙) are taken to be the final DOA estimates.
In practice, we found that using 𝐿 = 𝐷 is enough for most combinations of DOAs
when SNR is not too low, and the number of snapshots 𝐾 is large enough.

As an example, Fig. 3.8 shows that six DOAs −85◦, −40◦, −20◦, 25◦, 50◦, and 75◦

with SNR 3 dB are correctly estimated by root-MUSIC with 𝐿 = 𝐷 using rational
coprime array z10 (explained in the next section) when 𝐾 = 400 snapshots are used
but not when 𝐾 = 100 snapshots are used. In the next section, all the numerical
(Monte-Carlo) simulations to calculate MSE for rational arrays are based on this
adaptation of root-MUSIC with 𝐿 = 𝐷.
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Figure 3.8: Applying root-MUSIC to rational array z10. Phases of six zeros closest
to the unit circle (shown in red lines) correctly estimate the DOAs with (a) 𝐾 = 400
but not with (b) 𝐾 = 100. Green lines correspond to scaled values of true DOAs,
i.e. {𝑟𝜔𝑖}6

𝑖=1, where 𝑟 = (𝑟1, 𝑟2) = 1/3, and blue dots denote the zeros of 𝑄(𝑧) in
the sector [−𝜋𝑟, 𝜋𝑟).

3.4.4 Performance Evaluation of Rational Coprime Arrays
In this section, we quantitatively compare the DOA estimation performance of
rational coprime arrays with integer array alternatives. Consider an example where
aperture 𝐴 = 17, and 𝑚 = 8 sensors are available. Consider the following arrays:

z7 =

[
0 1 2 3 4 5 6 7

]
(3.72)

z8 =

[
0 1 2 3 4 5 6 | 17

]
(3.73)

z9 =

[
0 2 4 6 8 10 12 | 17

]
(3.74)

z10 =

[
0 8/3 16/3 8 32/3 40/3 16 | 17

]
(3.75)

Array z7 is the standard integer ULA, and array z8 is the modified ULA, like the
previous examples. Array z9 is an integer coprime array (3.49) with 𝑀 = 2 and
𝑁 = 17. It can identify any 6 (= 𝑚 − 2) DOAs that are distinct modulo 2𝜋/𝑀
[97], [126]. Note that it is not possible to use 𝑀 ≥ 3 here, as that would violate
the aperture constraint. Array z10 is a rational coprime array of the form (3.68),
as proposed in Design 2 of sec. 3.4.2, and can identify any 6(= 𝑚 − 2) that are
distinct modulo 2𝜋/𝑟1 (Theorem 2). Now consider 6 nearby uncorrelated sources
with DOAs in the range −15◦ to 15◦ impinging on these arrays. The sources have
an SNR of 5 dB, and 𝐾 = 400 snapshots are used. Fig. 3.9 shows the MUSIC
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Figure 3.9: Identifying 6 nearby DOAs −12.6◦, −7.7◦, −2.8◦, 2.8◦, 7.7◦, 12.6◦
when 𝑚 = 8 and 𝐴 = 17. MUSIC spectrum obtained with (a) integer ULA z7, (b)
modified ULA z8, (c) integer coprime array z9, and (d) rational coprime array z10.
True DOAs are shown in black vertical lines.

spectrum produced by these arrays. We see that the rational coprime array provides
six clear peaks that are easy to identify, unlike the other three integer arrays.

For numerical comparison of the arrays, we consider CRB, analytical MSE, and
experimental (Monte-Carlo) MSE of the estimated frequency variables 𝜔. The
CRB and analytical MSE expressions from [122] are used as they are applicable to
general non-integer arrays as well. To calculate experimental MSE, we perform 1000
Monte-Carlo simulations for each setting, with randomly generated white Gaussian
noise and source amplitude realizations to generate received signal snapshots x[𝑘].
We then apply root-MUISC with 𝐿 = 𝐷 (see Sec. 3.4.3) using each of the four
arrays z7 to z10 to estimate the DOAs.

First, consider six uncorrelated signals with DOAs −18◦, −11◦, −4◦, 4◦, 11◦, and
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18◦. In Fig. 3.10(a), the number of snapshots is fixed at 𝐾 = 100 and the SNR
is varied. The rational coprime array z10 has the lowest CRB and analytical MSE,
followed next by the integer coprime array z9. The experimental MSE values for
the rational coprime array z10 are very close to CRB even at lower SNRs, unlike
any of the other arrays. For this challenging scenario of six closely spaced DOAs,
the theoretical MSE and CRB for ULA z7 are very large for most SNR values.
However, as estimated𝜔 always lies in [−𝜋, 𝜋), the experimental MSE saturates and
does not grow indefinitely. In Fig. 3.10(b), SNR is fixed at 0 dB, and the number
of snapshots is varied. We see that the rational coprime array z10 is clearly superior
to all other arrays, providing about two orders of magnitude improvement in the
experimental (Monte-Carlo) MSE over the other arrays. The experimental MSE for
rational coprime array z10 is close to CRB even with 𝐾 = 50 snapshots, whereas
other arrays require a much higher number of snapshots to achieve this.

Next, in Fig. 3.11, we compare theoretical MSE for two source scenarios when one
source is fixed at 𝜃 = 30◦ and the other source is varied from −90◦ to 90◦. SNR of
0 dB and 𝐾 = 600 is assumed. Here, for comparison, we also consider two other
rational coprime arrays. We consider an array designed based on Design 1 with
𝑟1 = 𝐴/(𝑚 − 2) = 17/6 and 𝑟2 = 𝐴 − 1:

z11 =

[
0 17/6 17/3 17/2 34/3 85/6 17 | 16

]
, (3.76)

and a sub-optimal rational coprime array with 𝑟1 = 𝐴/(𝑚 − 2) = 17/6 and a
randomly chosen 𝑟2 = 25/3:

z12 =

[
0 17/6 17/3 17/2 34/3 85/6 17 | 25/3

]
. (3.77)

The theoretical MSE plots shown in Fig. 3.11(a) reveal many interesting features.
As expected, the MSE for all arrays becomes very large when the two DOAs get
close. However, the MSE does not decrease monotonically as the separation between
two DOAs increases. In addition to small oscillations seen for all arrays, note that
the rational coprime arrays z10 to z12 show ‘bumps’ in their MSE when the second
DOA is around −70◦ and −10◦. These regions correspond to the 𝜔 variables of two
sources becoming approximately equivalent modulo 2𝜋/𝑟1 of the respective arrays
(see Theorem 2). As mentioned in the remarks following Theorem 2, we can clearly
see that the severity of these ‘bumps’ depends on the rational array design, and in
particular, the value of 𝑟2. As can be seen here, the MSE in these ‘bump’ regions
can become significantly large for some sub-optimal values of 𝑟2. However, the
rational arrays z10 and z11 with our proposed designs from the previous subsection
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Figure 3.10: Experimental (Monte-Carlo) MSE (shown in solid lines), theoretical
MSE (shown with dashed lines), and CRB (shown in dotted lines) for the four arrays
under consideration as (a) SNR is varied when the number of snapshots 𝐾 = 100,
(b) number of snapshots is varied when SNR = 0 dB.

mitigate this effect quite well. The averaged numerical MSE obtained over 1000
Monte-Carlo simulations for each direction setting is shown in Fig. 3.11(b) and
matches quite well with the theoretical MSE. Overall, the two proposed designs of
rational arrays provide the smallest MSE for almost all two-DOA scenarios, except
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Figure 3.11: Comparison of (a) theoretical, and (b) Monte-Carlo MSE values when
one DOA is fixed at 30◦ and the other DOA is varied from−90◦ to 90◦. The proposed
rational coprime arrays z10 and z11 have the lowest MSE, except possibly when the
two DOAs come close to being equivalent modulo 2𝜋/𝑟1.

for the slight increase in MSE around the ‘bump’ regions. The two designs have
very similar performance compared to each other.

Next, to compare the ability of the proposed rational arrays to resolve nearby DOAs,
we consider the scenario where two sources are fixed at 0◦ and 8◦, and a third
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Figure 3.12: Comparison of numerical (Monte-Carlo) MSE when two sources are
fixed at 0◦ and 8◦ and a third in-between DOA is varied. The rational coprime array
is found to have the best resolution.

in-between DOA is varied from 0◦ to 8◦. We consider SNR of 0 dB and 𝐾 = 600
snapshots and perform 1000 Monte-Carlo simulations. Fig. 3.12 shows that the
ULA z7 cannot resolve any three DOAs in the span of 8◦. The other arrays have
relatively large MSE when the third DOA is close to the two fixed DOAs, and
it becomes lowest around 4◦ as expected. Notice that the transition region from
high MSE to low MSE is the sharpest for the proposed rational coprime array z10,
indicating they have higher DOA resolution. The MSE values are also the smallest
for the rational coprime array compared to the other integer arrays.

In summary, the extensive numerical evaluations provided in this section show that
the proposed rational coprime array has better MSE and CRB than integer array
alternatives. The rational coprime arrays perform close to CRB at a considerably
lower number of snapshots and lower SNR compared to the integer arrays, indicating
their robustness to adverse SNR and snapshot conditions. The two proposed rational
array designs are also found to have the lowest MSE for almost all two-DOA
scenarios. Lastly, the rational coprime array also provided the best resolution
for nearby sources.
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3.5 Restricted Spatial Scope
In many applications, the incoming sources do not necessarily span the entire spatial
scope of [−90◦, +90◦). It is possible that there are applications where the potential
range of directions could be known or estimated a-priori based on application
specific information. Many recent papers, especially the machine learning based
methods for DOA estimation [148], [149], assume that the signals are impinging
on the array from a restricted spatial scope, such as, for example, [−60◦, +60◦).
In such a scenario of restricted spatial scope, one may still use the arrays that are
designed to work for the entire spatial scope. However, there are certain advantages
in incorporating the a-priori spatial scope information in array design, as we will
elaborate next.

3.5.1 Sparse ULAs for Restricted Spatial Scope
Consider 𝐷 ≤ 𝑚 − 1 DOAs that are known a-priori to be restricted in spatial scope
Θ = [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥), where −90◦ ≤ 𝜃𝑚𝑖𝑛 < 𝜃𝑚𝑎𝑥 ≤ +90◦. If Θ = [−30◦, +30◦), it can
be shown (as a consequence of Theorem 3 to be proved next) that sparse integer
ULA

z =

[
0 2 4 . . . 2(𝑚 − 1)

]
(3.78)

is sufficient to unambiguously identify any 𝑚 −1 sources in Θ with MUSIC. Even if
the standard ULA can be used in this case, the array in (3.78) has a larger aperture
than that of the standard𝑚-sensor integer ULA. As a consequence, (3.78) can resolve
more closely separated sources, and has lower estimation error than the standard
ULA. It can also be shown (Theorem 3) that the array in (3.78) can even identify
𝑚 − 1 sources unambiguously with MUSIC if they are restricted in the spatial scope
Θ = [0◦, +90◦).

However, when the sources are restricted to some other arbitrary spatial scope
Θ = [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥), the integer constraint on the sensor location might prevent taking
full advantage of the restricted spatial scope. For example, if Θ = [−45◦, +45◦),
the only integer ULA with unique identifiability property is the standard 𝑚-sensor
ULA (Theorem 3). If we relax the integer constraint and consider sparse rational
ULAs, it is possible to span a larger aperture without losing the unique identifiability
property with MUSIC.

Theorem 3 (Sparse ULAs for restricted spatial scope: Identifiability with MUSIC).
Consider the task of estimating 𝐷 ≤ 𝑚 − 1 DOAs that are known a-priori to be
restricted in spatial scope Θ = [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥), where −90◦ ≤ 𝜃𝑚𝑖𝑛 < 𝜃𝑚𝑎𝑥 ≤ +90◦.



73

Let 𝜔𝑚𝑖𝑛 = 𝜋 sin 𝜃𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 = 𝜋 sin 𝜃𝑚𝑎𝑥 be such that

𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛 = 2𝜋/𝜂 (3.79)

for some 𝜂 ≥ 1. Then, the uniform array

z =

[
0 𝛽 2𝛽 . . . (𝑚 − 1)𝛽

]
(3.80)

can identify any 𝐷 ≤ 𝑚 − 1 distinct DOAs in Θ with MUSIC without producing
any false peaks if and only if 𝛽 ≤ 𝜂.

Note that just like the standard DOA practice of assuming 𝜔 ∈ [−𝜋, 𝜋), or equiva-
lently 𝜃 ∈ [−90◦, +90◦), the interval Θ = [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥) is assumed to be open from
one end and closed from the other so as to have a sharp theorem statement.

Proof. The steering vector corresponding to array (3.80) is

a(𝜔) =
[
1 𝑒 𝑗 𝛽𝜔 𝑒 𝑗2𝛽𝜔 . . . 𝑒 𝑗 (𝑚−1)𝛽𝜔

]𝑇
(3.81)

To unambiguously identify any 𝐷 distinct DOAs in Θ using MUSIC, the augmented
array manifold matrix of the array

A𝑎𝑢𝑔 =

[
a(𝜔1) a(𝜔2) . . . a(𝜔𝐷) | a(𝜔𝐷+1)

]
(3.82)

should have full column rank for any set of distinct 𝜔1, . . . , 𝜔𝐷+1 in [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥).
Note that since the array is uniform, A𝑎𝑢𝑔 is a Vandermonde matrix. Thus, A𝑎𝑢𝑔 is
full column rank if and only if the generators 𝑒 𝑗 𝛽𝜔1 , 𝑒 𝑗 𝛽𝜔2 , . . . , 𝑒 𝑗 𝛽𝜔𝐷 , 𝑒 𝑗 𝛽𝜔𝐷+1 are
all distinct.

If part. Suppose 𝛽 ≤ 𝜂. Since 𝜔1, . . . , 𝜔𝐷+1 are distinct and lie in [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥)
satisfying (3.79), the generators must be all distinct. If not, let 𝑒 𝑗 𝛽𝜔𝑘 = 𝑒 𝑗 𝛽𝜔𝑙 for
some 𝑘 ≠ 𝑙. This implies that |𝜔𝑘 − 𝜔𝑙 | = 2𝑘𝜋/𝛽 for some 𝑘 ∈ N. This contradicts
that 𝜔𝑘 , 𝜔𝑙 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥), because |𝜔𝑘 − 𝜔𝑙 | = 2𝑘𝜋/𝛽 ≥ 2𝜋/𝜂 = 𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛.
Thus A𝑎𝑢𝑔 is full column rank for any set of distinct 𝜔1, . . . , 𝜔𝐷+1 in [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥)
if 𝛽 ≤ 𝜂.

Only if part. Suppose 𝛽 > 𝜂. Then there exists 𝜔1, 𝜔2 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) such that
𝜔2 − 𝜔1 = 2𝜋/𝛽. Since the generators 𝑒 𝑗 𝛽𝜔1 and 𝑒 𝑗 𝛽𝜔2 are the same in this case,
A𝑎𝑢𝑔 cannot be full column rank. This completes the proof of Theorem 3. □
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(a) (b)

Figure 3.13: Identifying 8 sources in restricted spatial scope Θ = [−45◦, +45◦).
MUSIC spectrum obtained with (a) standard integer ULA (b) rational array (3.80)
with 𝛽 = 1.4. The true DOAs are shown in solid black lines.

Examples. For 𝛽 = 𝜂 = 2, 𝜃𝑚𝑖𝑛 = −30◦ and 𝜃𝑚𝑎𝑥 = +30◦ satisfies (3.79), and so
does 𝜃𝑚𝑖𝑛 = 0◦ and 𝜃𝑚𝑎𝑥 = +90◦. Thus, array (3.78) can unambiguously identify
up to 𝑚 − 1 DOAs that lie in the corresponding restricted spatial scope, as claimed
before.

Now, for Θ = [−45◦, +45◦) we have 𝜂 =
√

2. The only integer value of 𝛽 satisfying
𝛽 ≤ 𝜂 is 1 in this case. So among integer ULAs, only the standard 𝑚-sensor integer
ULA can be used, as claimed before. Now, without the integer array constraint,
choosing the largest possible 𝛽 to maximize the aperture of the corresponding array
(3.80) is desirable. In practice, one has to choose 𝛽 such that array (3.80) is easy
to realize as well. One such option could be 𝛽 = 1.4. To illustrate the advantage
offered by such sparse rational arrays, consider a standard 10-sensor integer ULA
and a 10-sensor sparse rational array as in (3.80) with 𝛽 = 1.4. Both arrays have
no ambiguity for up to 9 sources in Θ = [−45◦, +45◦). Consider eight sources with
DOAs −40◦,−30◦,−20◦,−10◦, 10◦, 20◦, 30◦, and 40◦ with SNR 0 dB impinging
on the array. Fig. 3.13 shows the MUSIC spectrum obtained with 300 snapshots
from both arrays. It is clear that the sparse rational ULA provides accurate DOA
estimates, whereas the integer ULA has higher estimation errors.

3.5.2 Generalizing the Results for Rational Arrays
The results for rational arrays given in Theorems 1 and 2 can be generalized for the
case of restricted spatial scope. In this section, we state and prove these generaliza-
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tions. We first prove a lemma that is useful in these generalizations.

Lemma 3. Let 𝑟1, 𝑟2 be positive rational numbers and −𝜋 ≤ 𝜔𝑚𝑖𝑛 < 𝜔𝑚𝑎𝑥 ≤ 𝜋 be
such that 𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛 = 2𝜋/𝜂 where 𝜂 ≥ 1. Then the following statements are
equivalent:

1. There exist distinct 𝜔1 and 𝜔2 in the range [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) such that

𝑒 𝑗𝜔1𝑟1 = 𝑒 𝑗𝜔2𝑟1 and 𝑒 𝑗𝜔1𝑟2 = 𝑒 𝑗𝜔2𝑟2; (3.83)

2. gcd(𝑟1, 𝑟2) > 𝜂.

Proof. Assume the first statement is true. Without loss of generality, let 𝜔2 > 𝜔1.
Now, 𝑒 𝑗𝜔1𝑟1 = 𝑒 𝑗𝜔2𝑟1 implies that

(𝜔2 − 𝜔1)𝑟1 = 2𝜋𝑙1, 𝑙1 ∈ N. (3.84)

Since𝜔2−𝜔1 < 𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛 = 2𝜋/𝜂, 𝑙1 is constrained as: 1 ≤ 𝑙1 < 𝑟1/𝜂. Similarly,
𝑒 𝑗𝜔1𝑟2 = 𝑒 𝑗𝜔2𝑟2 implies that

(𝜔2 − 𝜔1)𝑟2 = 2𝜋𝑙2, 𝑙2 ∈ N, 1 ≤ 𝑙2 < 𝑟2/𝜂. (3.85)

From the above two equations, we get

𝑡 =
2𝜋

𝜔2 − 𝜔1
=
𝑟1

𝑙1
=
𝑟2

𝑙2
> 𝜂. (3.86)

Thus,
𝑟1 = 𝑡𝑙1, 𝑟2 = 𝑡𝑙2, 𝑙1, 𝑙2 ∈ N. (3.87)

This means 𝑟1 and 𝑟2 have a common rational divisor 𝑡 > 𝜂 which implies
gcd(𝑟1, 𝑟2) > 𝜂.

Conversely, the second statement from the lemma implies that ∃ 𝑡 > 𝜂 such that

𝑟1 = 𝑡𝑙1, 𝑟2 = 𝑡𝑙2, 𝑙1, 𝑙2 ∈ N. (3.88)

Now choose 𝜔𝑚𝑖𝑛 ≤ 𝜔1 < 𝜔2 < 𝜔𝑚𝑎𝑥 such that

𝜔2 − 𝜔1 = 2𝜋𝑙1/𝑟1 = 2𝜋𝑙2/𝑟2 = 2𝜋/𝑡. (3.89)

It is indeed possible to choose such 𝜔1 and 𝜔2 in [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) because 𝑡 > 𝜂. Now,
(3.89) implies that

𝑒 𝑗𝜔1𝑟1 = 𝑒 𝑗𝜔2𝑟1 and 𝑒 𝑗𝜔1𝑟2 = 𝑒 𝑗𝜔2𝑟2 . (3.90)

This completes the proof of the lemma. □
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Interpretation of the Lemma. This lemma establishes a necessary and sufficient
condition for the unambiguous identification of the frequency of a complex sinusoid
in terms of the sampling locations. Consider a complex sinusoid 𝑒 𝑗𝜔𝑧, and we want
to identify the frequency 𝜔 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) based on samples of this sinusoid at two
locations of 𝑧 = 𝑟1 and 𝑧 = 𝑟2. Eq. (3.83) means that there are two frequencies 𝜔1

and 𝜔2 in the given range such that the complex exponentials 𝑒 𝑗𝜔1𝑧 and 𝑒 𝑗𝜔2𝑧 are
indistinguishable based on their sampled values at 𝑧 = 𝑟1 and 𝑧 = 𝑟2. The Lemma
claims that this is possible if and only if (𝑟1, 𝑟2) > 𝜂. For the special case of 𝜂 = 1,
the range [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) covers the entire range of discrete-time frequencies [−𝜋, 𝜋)
and the condition (𝑟1, 𝑟2) > 1 implies that 𝑟1 and 𝑟2 are not rationally coprime.

Theorem 4 (Invertibility of steering vector). Let a(𝜔) = [1, 𝑒 𝑗𝜔𝑟1 , 𝑒 𝑗𝜔𝑟2 , . . . , 𝑒 𝑗𝜔𝑟𝑚−1]𝑇

be the steering vector for rational array (3.43). Let 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 , where −𝜋 ≤
𝜔𝑚𝑖𝑛 < 𝜔𝑚𝑎𝑥 ≤ 𝜋, be such that 𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛 = 2𝜋/𝜂 for some 𝜂 ≥ 1. Then
𝜔 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) can be found uniquely from a(𝜔) if and only if the sensor loca-
tions 𝑟𝑖 = 𝑃𝑖/𝑄𝑖 (where (𝑃𝑖, 𝑄𝑖) = 1, 𝑃𝑖, 𝑄𝑖 ∈ N ∀𝑖) are such that

gcd(𝑟1, 𝑟2, . . . , 𝑟𝑚−1) ≤ 𝜂. (3.91)

Or equivalently,

gcd(𝑃1, 𝑃2, . . . , 𝑃𝑚−1) ≤ 𝜂 · lcm(𝑄1, 𝑄2, . . . , 𝑄𝑚−1). (3.92)

Note that for the special case of 𝜂 = 1, we get the statement of Theorem 1.

Proof. Only if part. If gcd(𝑟1, 𝑟2, . . . , 𝑟𝑚−1) > 𝜂, then

gcd(𝑃1, 𝑃2, . . . , 𝑃𝑚−1)︸                       ︷︷                       ︸
𝑔

> 𝜂 · lcm(𝑄1, 𝑄2, . . . , 𝑄𝑚−1)︸                        ︷︷                        ︸
ℎ

. (3.93)

Taking out the common factor 𝑔 from numerators 𝑃𝑖, we can write

𝑃𝑖 = 𝑔𝑥𝑖, 𝑥𝑖 ∈ N, (𝑥𝑖, 𝑄𝑖) = 1 ∀𝑖. (3.94)

Thus, the steering vector can be written as

a(𝜔) = [1, 𝑒 𝑗𝜔𝑔
𝑥1
𝑄1 , 𝑒

𝑗𝜔𝑔
𝑥2
𝑄2 , . . . , 𝑒

𝑗𝜔𝑔
𝑥𝑚−1
𝑄𝑚−1 ]𝑇 . (3.95)

Now consider 𝜔′ = 𝜔 + 2𝜋ℎ/𝑔. Since 𝑔 > 𝜂ℎ from the assumption, there exists
such 𝜔, 𝜔′ in the range [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥). We now show that a(𝜔′) = a(𝜔). For this,
consider the (𝑖 + 1)-th entry of a(𝜔′):

𝑒
𝑗𝜔′𝑔

𝑥𝑖
𝑄𝑖 = 𝑒

𝑗𝜔𝑔
𝑥𝑖
𝑄𝑖 · 𝑒 𝑗2𝜋

ℎ
𝑔
𝑔

𝑥𝑖
𝑄𝑖 = 𝑒

𝑗𝜔𝑔
𝑥𝑖
𝑄𝑖 · 𝑒 𝑗2𝜋𝑥𝑖

ℎ
𝑄𝑖 = 𝑒

𝑗𝜔𝑔
𝑥𝑖
𝑄𝑖 . (3.96)
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which is nothing but the (𝑖 + 1)-th entry of a(𝜔). The last equality in (3.96) follows
because 𝑄𝑖 divides ℎ for every 𝑖. Since (3.96) holds for every 𝑖 = 1, 2, . . . , 𝑚 − 1,
we have found 𝜔, 𝜔′ ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) having identical steering vectors:

a(𝜔′) = a(𝜔).

This proves that condition gcd(𝑟1, 𝑟2, . . . , 𝑟𝑚−1) ≤ 𝜂 is necessary for invertibility of
steering vector in the range [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥).

If part. Here we take a constructive approach. We want to be able to uniquely
determine 𝜔 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) from a(𝜔) given that (3.91) or equivalently (3.92) is
true. From each individual elements [a(𝜔)]𝑖+1 = 𝑒 𝑗𝜔𝑟𝑖 of the steering vector, we
can uniquely identify 𝜔 only within a modulo 2𝜋/𝑟𝑖 ambiguity. That is, we can
write

𝜔 = Ω𝑖 + 2𝜋
𝑙𝑖

𝑟𝑖
, 𝑙𝑖 ∈ Z (3.97)

with a unique 𝜔𝑚𝑖𝑛 ≤ Ω𝑖 < 𝜔𝑚𝑖𝑛 + 2𝜋/𝑟𝑖 satisfying 𝑒 𝑗Ω𝑖𝑟𝑖 = [a(𝜔)]𝑖+1. The integer
𝑙𝑖 can possibly take a value in the range 0 ≤ 𝑙𝑖 < 𝑟𝑖/𝜂. To uniquely identify 𝜔, we
shall prove that there exists a unique set of 𝑙𝑖s for 𝑖 = 1, 2, . . . , 𝑚 − 1 such that

Ω1 + 2𝜋
𝑙1

𝑟1
= Ω2 + 2𝜋

𝑙2

𝑟2
= . . . = Ω𝑚−1 + 2𝜋

𝑙𝑚−1

𝑟𝑚−1
. (3.98)

If possible, let there be another possible set of 𝑙𝑖s for 𝑖 = 1, 2, . . . , 𝑚 − 1 such that

Ω1 + 2𝜋
𝑙1

𝑟1
= Ω2 + 2𝜋

𝑙2

𝑟2
= . . . = Ω𝑚−1 + 2𝜋

𝑙𝑚−1

𝑟𝑚−1
. (3.99)

Subtracting (3.99) from (3.98) gives

𝑙1 − 𝑙1
𝑟1

=
𝑙2 − 𝑙2
𝑟2

= . . . =
𝑙𝑚−1 − 𝑙𝑚−1

𝑟𝑚−1
. (3.100)

Note that 𝑙𝑖 ≠ 𝑙𝑖 for any 𝑖, because otherwise the entire sets of 𝑙𝑖s and 𝑙𝑖s become
identical. Also, without loss of generality, let 𝑙1 > 𝑙1. Since 𝑟𝑖 > 0 ∀𝑖, this means
𝑙𝑖 > 𝑙𝑖 ∀𝑖 as well. Further, note that since 𝑙𝑖, 𝑙𝑖 ∈ Z and 0 ≤ 𝑙𝑖, 𝑙𝑖 < 𝑟𝑖/𝜂, we have
that 𝑙𝑖 − 𝑙𝑖 < 𝑟𝑖/𝜂 for every 𝑖. Thus taking reciprocal of Eq. (3.100) gives us

𝑡 =
𝑟1

𝑙1 − 𝑙1
=

𝑟2

𝑙2 − 𝑙2
= . . . =

𝑟𝑚−1

𝑙𝑚−1 − 𝑙𝑚−1
> 𝜂. (3.101)

Thus,
𝑟𝑖 = 𝑡 (𝑙𝑖 − 𝑙𝑖) ∀𝑖. (3.102)

Hence we have found 𝑡 > 𝜂 that is a common rational divisor of all 𝑟𝑖-s, which contra-
dicts that gcd(𝑟1, 𝑟2, . . . , 𝑟𝑚−1) ≤ 𝜂. This proves that condition gcd(𝑟1, 𝑟2, . . . , 𝑟𝑚−1) ≤
𝜂 is sufficient. □
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Theorem 5 (Rational coprime array: Identifiability with MUSIC). Consider the
task of estimating DOAs that are known a-priori to be restricted in spatial scope
Θ = [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥), where −90◦ ≤ 𝜃𝑚𝑖𝑛 < 𝜃𝑚𝑎𝑥 ≤ +90◦. Let 𝜔𝑚𝑖𝑛 = 𝜋 sin 𝜃𝑚𝑖𝑛
and 𝜔𝑚𝑎𝑥 = 𝜋 sin 𝜃𝑚𝑎𝑥 be such that 𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛 = 2𝜋/𝜂 for some 𝜂 ≥ 1. Let
𝐷 ≤ 𝑚 − 2 sources with DOAs 𝜃1, 𝜃2, . . . , 𝜃𝐷 be such that the frequency variables
𝜔1, 𝜔2, . . . , 𝜔𝐷 , where 𝜔𝑖 = 𝜋 sin 𝜃𝑖, are distinct modulo 2𝜋/𝑟1. Then the 𝑚-sensor
rational array as in Eq. (3.56), with (𝑟1, 𝑟2) ≤ 𝜂 can identify these with MUSIC
without producing any false peaks.

Note that for the special case of 𝜂 = 1, we get the statement of Theorem 2.

Proof. The augmented array manifold matrix for this array is given by

A𝑎𝑢𝑔 =


a𝑟1 (𝜔1) a𝑟1 (𝜔2) . . . a𝑟1 (𝜔𝐷) a𝑟1 (𝜔𝐷+1)

𝑒 𝑗𝜔1𝑟2 𝑒 𝑗𝜔2𝑟2 . . . 𝑒 𝑗𝜔𝐷𝑟2 𝑒 𝑗𝜔𝐷+1𝑟2

 , (3.103)

where a𝑟1 (𝜔) = [1, 𝑒 𝑗𝜔𝑟1 , 𝑒 𝑗2𝜔𝑟1 , . . . , 𝑒 𝑗 (𝑚−2)𝜔𝑟1]𝑇 . We need to show that A𝑎𝑢𝑔 is
full column rank for any sources satisfying (3.59) and any𝜔𝐷+1 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) that
is distinct from 𝜔1, . . . , 𝜔𝐷 . Note that the (𝑚 − 1) × 𝐷 submatrix

A1 =

[
a𝑟1 (𝜔1) a𝑟1 (𝜔2) . . . a𝑟1 (𝜔𝐷)

]
∈ C(𝑚−1)×𝐷 (3.104)

is Vandermonde. Since the sources 𝜔1, 𝜔2, . . . , 𝜔𝐷 are such that (3.60) holds, the
generators 𝑒 𝑗𝜔𝑖𝑟1 of the Vandermonde matrix A1 are all distinct. Furthermore, since
𝐷 ≤ 𝑚 − 2, the matrix is tall. This ensures that A1 has full column rank 𝐷. Now
consider the augmented version of A1:

A2 =

[
a𝑟1 (𝜔1) a𝑟1 (𝜔2) . . . a𝑟1 (𝜔𝐷) | a𝑟1 (𝜔𝐷+1)

]
, (3.105)

where 𝜔𝐷+1 is distinct from any of sources. Now consider the following two cases.

Case 1. Let 𝜔𝐷+1 be distinct modulo 2𝜋/𝑟1 from all the 𝐷 sources frequencies. In
this case, A2 has full column rank 𝐷 + 1 as the generator elements are all distinct
and 𝐷 + 1 ≤ 𝑚 − 1 (i.e. A2 is either square or tall). This also ensures that the
augmented manifold matrix (3.103) is full rank.
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Case 2. Let 𝜔𝐷+1 − 𝜔𝑙 = 2𝜋𝑘/𝑟1 for some source 𝜔𝑙 . Since (3.59) holds, there can
be only one such source 𝜔𝑙 . Without loss of generality let 𝜔𝐷+1 − 𝜔1 = 2𝜋𝑘/𝑟1, or
equivalently,

𝑒 𝑗𝜔1𝑟1 = 𝑒 𝑗𝜔𝐷+1𝑟1 . (3.106)

Thus we have a𝑟1 (𝜔1) = a𝑟1 (𝜔𝐷+1), so A2 is no longer full column rank. Here, the
additional sensor placed at 𝑟2 comes to help. If A𝑎𝑢𝑔 does not have full column

rank, there should be a non-zero vector c =

[
𝑐1 𝑐2 . . . 𝑐𝐷 | 𝑐𝐷+1

]𝑇
such that

A𝑎𝑢𝑔c = 0. (3.107)

This, in particular, means that
A2c = 0. (3.108)

Since a𝑟1 (𝜔1) = a𝑟1 (𝜔𝐷+1), we can rewrite (3.108) as

A1

[
𝑐1 + 𝑐𝐷+1 𝑐2 . . . 𝑐𝐷

]𝑇
= 0. (3.109)

As A1 is full column rank, (3.109) implies that

𝑐1 + 𝑐𝐷+1 = 0, and 𝑐2 = 𝑐3 = . . . = 𝑐𝐷 = 0. (3.110)

Note that 𝑐1 and 𝑐𝐷+1 cannot be zero as c ≠ 0. With this, the last row of the matrix
equation (3.107) implies that

𝑒 𝑗𝜔1𝑟2 = 𝑒 𝑗𝜔𝐷+1𝑟2 . (3.111)

But from Lemma 3, we have that (3.106) and (3.111) are not possible together as
(𝑟1, 𝑟2) ≤ 𝜂. Thus, we have shown that A𝑎𝑢𝑔 must have rank 𝐷 + 1 for any choice
of 𝜔𝐷+1 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) that is distinct from 𝜔1, . . . , 𝜔𝐷 as long as the source
frequencies are distinct modulo 2𝜋/𝑟1. Thus, MUSIC will work without producing
false peaks. This proves Theorem 5. □

The results presented in this section can be further generalized to the case where
sensor positions are possibly irrational. It requires the gcd and coprimality concepts
of rational numbers to be further extended to real numbers. The next section explains
these generalizations.
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3.6 Arrays with Arbitrary (Non-Rational) Sensor Locations
In this section, we consider linear arrays with arbitrary sensor locations that may
be any (possibly non-rational) real numbers. This discussion is motivated more by
academic interest than by potential practical impact. Due to limited precision in
practice, the sensor positions of any array are likely to be slightly perturbed from
their intended location, making it a non-rational array with probability one. Also,
the non-integer optimum sensor positions obtained for beamforming [133], [134],
or interference suppression [135] are often irrational. While irrational quantities
are eventually approximated by rational quantities in practice, it is still of academic
interest to explore the irrational case, as it offers a further generalization of the
rational case.

In Sec. 3.2 we extended some number-theoretic properties of integers to rational
numbers. However, there are significant differences when it comes to the case
of real numbers. For instance, prime factorization could be extended to rational
numbers by allowing exponents of primes to be negative (see Sec. 3.2.2). However,
for arbitrary irrational numbers, a further extension of prime factorization does not
seem possible. Nonetheless, there is a way to define gcd and coprimality for real
numbers, as we show next. We also demonstrate the usefulness of these definitions
for sensor arrays and DOA identifiability.

Definition 5 (gcd of real numbers). The greatest common divisor (gcd) of 𝑚 real
numbers 𝑧1, 𝑧2, . . . , 𝑧𝑚 is defined as the largest possible positive real number 𝑧 such
that

𝑧𝑖 = 𝐾𝑖 · 𝑧 where, 𝐾𝑖 ∈ Z, 𝑖 = 1, 2, . . . , 𝑚, (3.112)

if it exists.

It is denoted as 𝑧 = (𝑧1, 𝑧2, . . . 𝑧𝑚) or gcd(𝑧1, 𝑧2, . . . 𝑧𝑚). We explained in Sec. 3.2
that for rationals, a common rational divisor (Definition 1) always exists. However,
for real numbers that are not necessarily rationals, the gcd may or may not exist!
This is because, for two real numbers 𝑧1 and 𝑧2, there may or may not exist a number
𝑧 such that

𝑧1 = 𝑘1𝑧, 𝑧2 = 𝑘2𝑧 for some 𝑘1, 𝑘2 ∈ Z. (3.113)

For example, let 𝑧1 = 𝜋 and 𝑧2 = 𝜋2. If a common divisor 𝑧 exists, then

𝑧2

𝑧1
= 𝜋 =

𝑘2

𝑘1
, (3.114)
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which leads to a contradiction because 𝜋 is irrational whereas 𝑘2/𝑘1 is a rational
number. But consider another example with 𝑧1 =

√
2 and 𝑧2 = 5/

√
2. In this case,

𝑧 = 1/
√

2 is a common factor and in fact the gcd of 𝑧1 and 𝑧2. If the ratio of two real
numbers is not a rational number, then there does not exist a common divisor of the
two real numbers.

Next, we extend the coprime definition to real numbers:

Definition 6 (Coprime real numbers). A set of positive real numbers 𝑧1, 𝑧2, · · · , 𝑧𝑚
is said to be coprime if gcd(𝑧1, 𝑧2, · · · , 𝑧𝑚) either does not exist or is less than or
equal to 1.

Just like the case of rationals, the above definition unifies the coprimality for any
type of numbers (including rationals and integers) in the following sense: two (or
more) positive real numbers are coprime if and only if they cannot be expressed as
integer multiples of a number larger than unity. Note that this includes two cases:
i) gcd does not exist, and ii) gcd exists but is less than or equal to one.

With this notion of coprimality, the steering vector invertibility (Theorem 4) can be
further extended to arrays with arbitrary (real-valued) sensor locations as follows.

Theorem 6 (Invertibility of steering vector). Let a(𝜔) = [1, 𝑒 𝑗𝜔𝑧1 , 𝑒 𝑗𝜔𝑧2 , . . . , 𝑒 𝑗𝜔𝑧𝑚−1]𝑇

be the steering vector of an arbitrary (possibly non-rational) array[
0 𝑧1 𝑧2 . . . 𝑧𝑚−1

]
. (3.115)

Let −𝜋 ≤ 𝜔𝑚𝑖𝑛 < 𝜔𝑚𝑎𝑥 < 𝜋 be such that 𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛 = 2𝜋/𝜂 for some 𝜂 ≥ 1.
Then 𝜔 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) can be found uniquely from a(𝜔) if and only if the sensor
locations 𝑧𝑖 satisfy either of the following two conditions:

1. gcd(𝑧1, 𝑧2, . . . 𝑧𝑚−1) does not exist;

2. gcd(𝑧1, 𝑧2, . . . 𝑧𝑚−1) ≤ 𝜂.

Next, similar to rational coprime array (3.56), we propose the following 𝑚-sensor
coprime array:

z =

[
0 𝑧1 2𝑧1 · · · (𝑚 − 2)𝑧1 | 𝑧2

]
, (3.116)

where 𝑧1 and 𝑧2 are coprime real numbers according to Definition 6. Similar to
Theorem 5, we can state the following identifiability result for such arrays.
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Theorem 7 (Arbitrary coprime array: Identifiability with MUSIC). Consider the
task of estimating DOAs that are known a-priori to be restricted in spatial scope
Θ = [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥), where −90◦ ≤ 𝜃𝑚𝑖𝑛 < 𝜃𝑚𝑎𝑥 ≤ +90◦. Assume 𝜔𝑚𝑖𝑛 = 𝜋 sin 𝜃𝑚𝑖𝑛
and 𝜔𝑚𝑎𝑥 = 𝜋 sin 𝜃𝑚𝑎𝑥 are such that 𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛 = 2𝜋/𝜂 for some 𝜂 ≥ 1. Let
𝐷 ≤ 𝑚 − 2 sources with DOAs 𝜃1, 𝜃2, . . . , 𝜃𝐷 be such that the frequency variables
𝜔1, 𝜔2, . . . , 𝜔𝐷 , where 𝜔𝑖 = 𝜋 sin 𝜃𝑖, are distinct modulo 2𝜋/𝑧1. Then the 𝑚-sensor
array (3.116) where (𝑧1, 𝑧2) either does not exist, or is ≤ 𝜂, can identify these sources
with MUSIC without producing any false peaks.

Theorem 6 and Theorem 7 can be proved in similar fashions as Theorem 4 and
Theorem 5 respectively, by considering the gcd and coprimality notions for real
numbers and appropriately modifying the arguments in the proofs. For example, the
only if part of the proof for Theorem 6 follows by showing that a(𝜔+2𝜋/𝑧) = a(𝜔),
when (𝑧1, 𝑧2) = 𝑧 > 𝜂. The if part can be proved just like the if part of Theorem 4
by replacing rational sensor locations 𝑟𝑖 with real-valued sensor locations 𝑧𝑖. The
same argument holds for the proof of Theorem 7. The detailed proofs are omitted
here to avoid repetition.

As a demonstrative example, we consider the situation in Example 2 from Sec.
3.4.1, with 𝐴 = 20 and 𝑚 = 13. We compare the integer arrays z5 and z6 with a
real-valued coprime array, with 𝑧1 =

√
3 and 𝑧2 = 20 in (3.116):

z13 =

[
0

√
3 2

√
3 · · · 11

√
3 | 20

]
. (3.117)

The MUSIC spectra obtained with the three arrays2 are shown in Fig. 3.14. We see
that just like the rational coprime array z4 from Fig. 3.6, arbitrary (non-rational)
coprime array z13 also produces very sharp peaks near the true DOAs in contrast to
the integer arrays z5 and z6.

3.7 Difference Coarrays of Rational Arrays
The difference coarray of the general rational array from Eq. (3.43) consists of all
possible unique differences in sensor positions: {𝑟𝑖−𝑟 𝑗 }𝑚−1

𝑖, 𝑗=0. We have seen that well-
designed sparse integer arrays (𝑟𝑖 ∈ Z) such as MRAs, nested arrays, and coprime
arrays contain a large central segment of 2𝑚′ − 1 consecutive integer differences
in their difference coarray, where 𝑚′ is O(𝑚2). Array output correlations can be
estimated at these lags, and an 𝑚′×𝑚′ Toeplitz coarray covariance matrix is formed

2The implementation on a digital computer typically constrains the irrational numbers to be
approximated with a 64-bit or 128-bit representation.
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Figure 3.14: Identifying 11 closely spaced sources from Example 2. MUSIC
spectrum obtained with (a) arbitrary (non-rational) coprime array z13, (b) standard
ULA z5, and (c) modified ULA z6. True DOAs are shown in black vertical lines.
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by using the method described in Sec. 2.5 to identify DOAs using coarray-domain
DOA estimation algorithms.

However, when there is an aperture constraint, the situation changes. If the available
aperture is 𝐴, clearly one cannot place 𝑚 > ⌊𝐴⌋ sensors at integer locations.
Furthermore, the farthest distance between the sensors placed at integer locations in
an aperture of length 𝐴 also cannot exceed ⌊𝐴⌋. This limits the number of sources
that can be identified via sparse integer arrays under the aperture constraint. Without
the aperture constraint, well-designed 𝑚-sensor sparse arrays could identify O(𝑚2)
sources. But under the aperture constraint, since the largest coarray lag that the
array can produce is limited to ⌊𝐴⌋, the number of resolvable sources cannot exceed
⌊𝐴⌋, even when the DOA estimation is done through the coarray domain.

To summarize, if 𝐷 ≥ 𝑚 and 𝐷 ≥ 𝐴, no 𝑚-sensor integer array with aperture 𝐴
can identify all DOAs. In this scenario, placing some sensors at rational locations
allows us to satisfy the aperture constraint as well as estimate more sources than the
number of sensors, as we demonstrate next.

3.7.1 Motivating Examples
Consider a standard integer ULA with 𝑚 = 11 sensors. This can identify up to
10 (= 𝑚 − 1) sources unambiguously using MUSIC [10]. Suppose now we have
an extra sensor that can be used without increasing the array aperture and without
moving the already placed sensors. If we place the extra sensor at a non-integer
location 9.5, the array becomes

z =

[
0 1 2 . . . 7 8 9 9.5 10

]
. (3.118)

With this extra sensor, the difference coarray now consists of all half-integer lags
from −9.5 to 9.5 in addition to integer lags from −10 to 10. The one-sided coarray
steering vector is given by

a𝑐 (𝜔) =
[
1 𝑒 𝑗𝜔/2 𝑒 𝑗𝜔 𝑒 𝑗3𝜔/2 . . . 𝑒 𝑗10𝜔

]
. (3.119)

Thus, with the addition of an extra sensor, we can potentially identify up to 20
sources with the coarray methods. To do this, first a 21 × 21 Toeplitz coarray
covariance matrix R̂ is constructed in a similar manner to the direct-augmentation
approach described in Sec. 2.5. Based on the estimate of the noise subspace Ê𝑛
obtained by eigendecomposition of Ê𝑛, The MUSIC spectrum is then obtained as
[10]

𝑃(𝜔) =
(
a𝐻𝑐 (𝜔)Ê𝑛Ê𝐻

𝑛 a𝑐 (𝜔)
)−1

, (3.120)
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where a𝑐 (𝜔) is the coarray steering vector (3.119).

Since the coarray is uniform, a suitably modified root-MUSIC [85] can also be used
to get DOA estimates. First, a degree 40 polynomial

𝑄(𝑧) = v𝑇 (𝑧−1)Ê𝑛Ê𝐻
𝑛 v(𝑧), (3.121)

where v(𝑧) =
[
1 𝑧 𝑧2 . . . 𝑧20

]𝑇
, is formed by substituting 𝑧 = 𝑒 𝑗𝜔/2 in a𝑐 (𝜔).

Note that this is different from the standard root-MUSIC (Chapter 2) for ULA, where
𝑧 = 𝑒 𝑗𝜔 is used. For ULA, the arguments of the 𝐷 roots of 𝑄(𝑧) that are inside the
unit circle and closest to the unit circle in the complex 𝑧-plane provide estimates
of the DOAs. But for array (3.118), since we used 𝑧 = 𝑒 𝑗𝜔/2 instead of 𝑧 = 𝑒 𝑗𝜔,
only the roots lying in the half-plane corresponding to the positive real axis are
considered.

Fig. 3.15 shows an example. There are 12 DOAs corresponding to angles −80◦,
−55◦, −40◦, −25◦, −15◦, −5◦, 5◦, 15◦, 25◦, 40◦, 55◦, and 80◦ with SNR −5 dB.
800 snapshots are used. The MUSIC spectrum shows 12 clear peaks close to
the true DOA angles. The root-MUSIC plot has 12 pairs of reciprocal conjugate
roots lying close to the unit circle in the right half-plane. The arguments of these
roots correspond to 𝜔𝑖/2 for sources 𝜔1, . . . , 𝜔12. Note that any integer array with
aperture 10 could have identified only up to 10 sources, but placing a sensor at
a rational location allows us to estimate more sources. We will see in the next
subsection that even more sources can be correctly identified if the array aperture
can be increased.

We would like to remark that in the above example if we are allowed to change
the sensor positions while keeping the aperture the same, we can also consider the
following array: [

0 1/3 4/3 . . . 22/3 25/3 28/3 10
]
. (3.122)

This array is just a shifted version of the array[
−1/3 0 1 . . . 8 9 9 + 2/3

]
. (3.123)

Array (3.123) has a standard 10-sensor ULA with two additional sensors: one on
the left side at −1/3 and the other at 9 + 2/3 on the right side. Note that the array
aperture is still 10, so the aperture constraint is satisfied. The addition of two rational
location sensors to the 10-sensor integer ULA ensures that the difference coarray of
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(a)

(b)

Figure 3.15: Identifying 12 sources with the 12-element nested rational array (3.118)
having aperture 𝐴 = 10. (a) MUSIC spectrum and (b) root-MUSIC plot. The true
DOAs (in MUSIC plot) and corresponding angles 𝜔𝑖/2 (in root-MUSIC plot) are
shown in solid black lines.

this array has equispaced lags of the form

𝑘/3, where 𝑘 = −30,−29, . . . , 29, 30. (3.124)

Thus, this array can ideally identify up to 30 sources. The coarray of the array
is a rational ULA and is equivalent to an integer ULA scaled by a factor of 1/3.
A disadvantage of such shrinking is the increase in the DOA estimation mean
squared error and reduction of resolution (ability to resolve two nearby sources)
[86], [96]. To counter this effect and still identify a large number of sources with
such a coarray, a very high number of snapshots may be required, which may not
be feasible in practice. We observed in our simulations that as long as the effective
coarray scaling factor is not 0.5 or lower, a large number of well-separated DOAs
could be identified with a reasonable (up to 1000) number of snapshots.

3.7.2 Mutual Coupling and Monte-Carlo Simulations
In addition to the increase in MSE due to reduced aperture, another effect to consider
in practice is the increased mutual coupling between sensors due to array shrinking.
For a demonstrative simulation with mutual coupling, consider a scenario with
𝑚 = 12 sensors and aperture 𝐴 = 15. The goal is to identify more than 15 sources.
No integer array (even sparse arrays) in the given aperture can do this. One way to
achieve this is to scale the array (3.118) by a factor of 1.5. Note that the resulting
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12-element array

z =

[
0 1.5 3 4.5 . . . 12 13.5 14.25 15

]
(3.125)

is still a rational array. It has all coarray lags of the form

3𝑘/4, where 𝑘 = −20, 29, . . . , 19, 20. (3.126)

Note that the effective scaling factor for the coarray is 0.75. When the coarray
has a uniform segment (possibly rational) with 2𝑚′ − 1 distinct differences, and the
effective scaling factor (compared to the integer ULA) is smaller than unity, the
array can ideally identify up to 𝑚′ − 1 sources with coarray MUSIC. Thus, similar
to (3.118), the 12-element rational array (3.125) can identify up to 20 sources even
though the aperture is 15. The increased aperture (compared to (3.118)) helps
identify a relatively larger number of sources with a smaller number of snapshots.
To identify DOAs with coarray root-MUSIC using this array, we will have to form
a degree 40 polynomial by substituting 𝑧 = 𝑒3 𝑗𝜔/4. The roots corresponding to
the DOAs lie in the sector of the complex plane that has phase values in the range
[−135◦, 135◦).

Now consider 17 sources with SNR 10 dB impinging on the 12-sensor array (3.125).
The sources are well separated, but not uniformly spaced in the 𝜔 domain. 1000
snapshots are used. We also consider mutual coupling of the form (2.27) with 𝐵 = 5
and coupling coefficients of values 𝑐0 = 1, and

𝑐𝑑 = 0.1𝑒 𝑗𝜋/4/𝑑 if 0 < 𝑑 ≤ 5. (3.127)

Fig. 3.16 shows the resulting MUSIC spectrum and root-MUSIC plot. Root-
MUSIC clearly identifies all 17 sources even in the presence of the mutual coupling
considered here.

Notice that due to the sparse nature of such arrays, not many sensor pairs have a
distance smaller than 1 between them if the effective scaling factor is not too small.
The array (3.125) has only two physical sensor pairs with a distance smaller than
1. Even though the coarray has many ‘virtual sensors’ with a distance smaller than
1, mutual coupling does not depend on the coarray spacing. This is why we saw
in Fig. 3.16 that the array (3.125) could still identify all the 17 sources, even in the
presence of small mutual coupling as in (3.127).

Fig. 3.17 shows the variation in MSE of root-MUSIC DOA estimates averaged
over 2500 Monte-Carlo runs for the array (3.125). Seventeen DOAs uniformly
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(a)

(b)

Figure 3.16: Identifying 17 sources with the 12-element rational array (3.125) having
aperture 𝐴 = 15 in presence of mutual coupling (3.127). (a) MUSIC spectrum and
(b) root-MUSIC plot. The true DOAs (in MUSIC plot) and corresponding angles
3𝜔𝑖/4 (in root-MUSIC plot) are shown in solid black lines.

spaced in the 𝜔 domain are considered. The Cramér-Rao bound (CRB) evaluated
according to the expression in [86] is also plotted as a reference. As SNR is varied,
keeping the number of snapshots fixed at 1000, the MSE saturates (Fig. 3.17(a)).
Whereas, when the number of snapshots is varied keeping the SNR fixed at 10 dB,
the MSE reduces monotonically (Fig. 3.17(b)). Furthermore, there is a gap between
MSE and CRB in both cases, indicating that the DOA estimates are not statistically
efficient. These behaviors are known to arise whenever there are more sources than
sensors, even for integer sparse arrays [86], [87]. The MSE in presence of mutual
coupling of the form 𝑐𝑑 = 0.1𝑒 𝑗𝜋/4/𝑑, 0 < 𝑑 ≤ 5 is also included in Fig. 3.17(b)
for comparison.

3.7.3 General Construction by Scaling Integer Arrays
Note that the arrays (3.118) and (3.125) are in fact scaled versions of a two-level
nested array [34]

z =

[
0 2 4 6 . . . 16 18 19 20

]
, (3.128)

where the sparse subarray is on the left and the dense subarray is on the right.
Generalizing this, we can take a general rational nested array to be

𝑟

[
1 2 . . . 𝑁1 (𝑁1 + 1) 2(𝑁1 + 1) . . . 𝑁2(𝑁1 + 1)

]
(3.129)
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Figure 3.17: Monte-Carlo MSE and CRB for array (3.125) when identifying 17
DOAs equispaced in 𝜔 domain. (a) Number of snapshots 𝐾 = 1000, and (b) SNR
= 10 dB.

for any rational number 𝑟. It contains a dense ULA of 𝑁1 sensors with inter-element
distance 𝑟, and a sparse ULA of 𝑁2 sensors with inter-element distance (𝑁1 + 1)𝑟.
This scaled version of the standard integer nested array has a similarly scaled
ULA coarray having 2𝑁2(𝑁1 + 1) − 1 elements [34]. If 𝑟 < 1, the identifiability
properties of the coarray will continue to be valid, and we can indeed estimate up
to 𝑁2(𝑁1 + 1) − 1 sources with this rational array using coarray MUSIC.
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Similarly, we can consider a full version of the coprime rational array (3.56) as
follows: [

0 𝑟1 . . . (𝑚1 − 1)𝑟1 | 𝑟2 2𝑟2 . . . (𝑚2 − 1)𝑟2

]
. (3.130)

Here, 𝑟1 and 𝑟2 are coprime rational numbers with (𝑟1, 𝑟2) = 𝑟 < 1, and 𝑚1 and 𝑚2

are the numbers of elements in the two sparse subarrays. The difference coarray of
the array (3.130) has all the elements of the form

𝑘𝑟1 − 𝑙𝑟2, where 𝑘 = 0, 1, . . . , 𝑚1 − 1, 𝑙 = 0, 1, . . . , 𝑚2 − 1. (3.131)

Now, suppose we choose

𝑚1 = 𝑛2 = 𝑟2/𝑟 and 𝑚2 = 2𝑛1 = 2𝑟1/𝑟. (3.132)

Note that 𝑛1, 𝑛2 ∈ Z and (𝑛1, 𝑛2) = 1 as 𝑟 is the gcd of 𝑟1 and 𝑟2. With this particular
choice of 𝑚1 and 𝑚2, the difference coarray elements (3.131) can be written as

𝑟 [𝑘𝑛1 − 𝑙𝑛2], where 𝑘 = 0, 1, . . . 𝑛2 − 1, 𝑙 = 0, 1, . . . 2𝑛1 − 1. (3.133)

The coarray elements in (3.133) are nothing but the coarray elements of the integer
coprime array [35][

0 𝑛1 . . . (𝑛2 − 1)𝑛1 | 𝑛2 . . . (2𝑛1 − 1)𝑛2

]
, (3.134)

scaled by a rational factor 𝑟 = (𝑟1, 𝑟2). Integer coprime array (3.134) is known to
have a ULA segment from −𝑛1(𝑛2 + 1) + 1 to 𝑛1(𝑛2 + 1) − 1 in its coarray [83].
Thus, the rational coprime array (3.130) has all coarray lags of the form

𝑟 · 𝑘, where 𝑘 = −𝑛1(𝑛2 + 1) + 1, . . . , 𝑛1(𝑛2 + 1) − 1. (3.135)

Hence, the particular choice (3.132) simplifies the design procedure for rational
coprime arrays. We can start with any integer coprime array (3.134) with (𝑛1, 𝑛2) = 1
and scale it by a factor 𝑟 < 1 to get a rational coprime array (3.130), where 𝑚1 = 𝑛2,
𝑚2 = 2𝑛1, 𝑟1 = 𝑟𝑛1, and 𝑟2 = 𝑟𝑛2. The rational coprime array designed this way can
identify 𝑛1(𝑛2+1) −1 sources through coarray MUSIC or root-MUSIC, just like the
integer coprime array (3.134). To apply root-MUSIC in the coarray domain with
arrays (3.129) and (3.130), we have to substitute 𝑧 = 𝑒 𝑗𝜔𝑟 to form the root-MUSIC
polynomial. MRAs can also be scaled similarly when the aperture is constrained.
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3.8 Concluding Remarks
In this chapter, we considered non-integer arrays for DOA estimation. In partic-
ular, the proposed rational arrays offer more flexibility in array design and have
some advantages over integer arrays when a limited number of sensors are to be
distributed in a fixed aperture. Along with qualitatively better MUSIC plots with
sharp peaks, the rational arrays provided the lowest MSE in DOA estimation that
is close to the CRB, even with a low number of snapshots and low SNR. Also, ra-
tional arrays resolved nearby sources well and performed better than integer arrays
in most two-DOA scenarios. They were also shown to be useful when the spatial
scope of impinging signals is restricted. In order to systematically analyze such
arrays, we extended number-theoretic concepts such as gcd, lcm, and coprimality to
rational numbers. This allowed us to characterize the condition for steering vector
invertibility, propose rational coprime arrays, and provide a result on unique identi-
fiability with MUSIC. These results are further extended for the case when signals
are impinging from a restricted spatial scope. The notion of coprimality is further
extended to real numbers, thus allowing us to propose arbitrary (non-rational) co-
prime arrays. The theoretical results for arbitrary (non-rational) arrays follow easily
because of the proposed generalization of the integer array framework, first to the
rational case and then to arbitrary (non-rational) sensor location arrays. Lastly, we
presented a unique advantage of rational arrays through their difference coarrays.
The rational arrays can identify O(𝑚2) uncorrelated sources using 𝑚 sensors even
in the presence of aperture constraint. Sparse integer arrays can do this only if a
large aperture is available.

Extending gcd and coprimality concepts to rational matrices is an appealing future
work that may motivate 2D rational arrays. It would also be interesting to explore
other non-subspace-based DOA estimation algorithms in the context of rational
arrays as future work. Designing rational arrays that satisfy some rational copri-
mality condition for the difference coarray positions would be useful to explore in
the context of coarray-MUSIC. The effect of mutual coupling on coarray shrinking
can also be explored further. The general construction of arrays provided in this
chapter for identifying O(𝑚2) DOAs under aperture constraint was based on scaling
on already existing sparse integer arrays with large central ULA segments. This is
because we still required the coarray to be uniform, albeit rational. This leads to the
following questions: i) how to estimate DOAs using non-uniform rational difference
coarrays, and ii) how to choose rational sensor locations to get a particular desired
non-uniform difference coarray. These questions can be explored in the future.
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C h a p t e r 4

WEIGHT-CONSTRAINED ARRAYS FOR DOA ESTIMATION
UNDER HIGH MUTUAL COUPLING AND APERTURE

CONSTRAINTS

4.1 Introduction
In the last chapter, we developed rational arrays for DOA estimation, where the
sensors are placed at rational locations (in multiples of half-wavelength distance
𝜆/2). This was primarily motivated by the better flexibility that rational arrays
offer under aperture constraints. In this chapter, we consider another commonly
encountered challenge in practice: mutual coupling between sensors (Sec. 2.4).
Sparse integer arrays are useful to reduce the impact of mutual coupling because
the sensors are farther apart from each other compared to a ULA. The commonly
encountered sparse integer arrays in the literature, such as MRAs, nested arrays,
and coprime arrays, were discussed in Sec. 2.3. Such well-designed sparse arrays
can identify up to O(𝑁2) DOAs through the difference coarray domain when the
source amplitudes are uncorrelated. Although nested arrays and coprime arrays can
identify fewer DOAs than an MRA with the same number of sensors, their closed-
form expression for sensor positions for any 𝑁 makes them more practical and
attractive. These arrays with closed-form expressions of sensor positions that can
identify O(𝑁2) DOAs through the coarray domain have revolutionized the research
on sparse array design.

4.1.1 Traditional Array Design Criteria and Their Drawbacks
Following the development of nested arrays and coprime arrays, several generaliza-
tions of these arrays, such as generalized coprime arrays [83] and improved nested
arrays [102], have been proposed. Several extensions of these arrays including super
nested arrays [39], [101], augmented nested arrays [103], dilated nested arrays [92],
MISC arrays [104], thinned coprime arrays [91], and padded coprime arrays [105]
have also been advanced. Most of these sparse array designs are motivated by the
following three key principles:

1. Sensor locations should be easily describable using a closed-form expression
or simple generation rules.
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2. The difference coarray of the array should have a long central ULA segment,
typically of O(𝑁2) length.

3. The number of sensor pairs with small separations should be kept to a mini-
mum.

The closed-form expression for sensor locations (criterion 1) is necessary to create
arrays easily for any given number of sensors 𝑁 . The large central ULA segment of
O(𝑁2) length in the coarray (criterion 2) is enforced to ensure that the arrays can
identify a large number of DOAs using coarray-based DOA estimation algorithms
such as coarray-MUSIC and coarray-ESPRIT. However, note that a large difference
coarray with O(𝑁2) unique lags also means that the array aperture is of length
O(𝑁2). Such a large aperture may not be practical when a large number of sensors
𝑁 is used. It is becoming more common to use almost a hundred sensors for large
antenna arrays and massive MIMO in 6G technology [150], [151]. With such a large
number of sensors, it may no longer be necessary for the arrays to have the capability
to identify O(𝑁2) sources because the number of DOAs is typically not that large. In
practical situations where the arrays are deployed, such as in smartphones and self-
driving cars, there may be physical constraints on the array aperture. In such cases
with aperture constraints, an O(𝑁2) aperture may not be of interest or desirable.

The third criterion above is to reduce the impact of mutual coupling between sensors
[36], [37], [39] on DOA estimation. We discussed in Sec. 2.4 that the exact impact
of mutual coupling on the array output is unknown to the user and can be difficult
to model precisely. However, the sensor pairs with small separations contribute the
most to the mutual coupling. Thus, to reduce the effect of mutual coupling on DOA
estimation error, the coarray weights for small lags such as 𝑤(1), 𝑤(2), and 𝑤(3)
that contribute the most to the effect of mutual coupling are kept to a minimum
(criterion 3). However, in order to ensure that the difference coarray of the array
has a large central ULA segment, these coarray weights are ensured to be non-zero.
Some extensions of coprime arrays, such as extended padded coprime array [105]
and thinned coprime array [91], can already achieve the smallest possible non-zero
coarray weights at lags 1, 2, and 3 (i.e., 𝑤(1) = 𝑤(2) = 𝑤(3) = 1). However, as
we will see later in Sec. 4.5, in the presence of high mutual coupling, these arrays
may still result in poorer DOA estimation compared to proposed arrays because of
non-zero 𝑤(1), 𝑤(2), and 𝑤(3).
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To summarize, when dealing with arrays that have a large number of sensors 𝑁 , we
may no longer require O(𝑁2) degrees of freedom (DOFs). Instead, other practical
considerations, such as aperture constraint and robustness to high mutual coupling,
become a priority. To address these requirements, we consider modifications to the
second and third array design criteria in this chapter and accordingly design sparse
arrays. Instead of aiming for a ULA segment of O(𝑁2) length in the coarray, we
propose to develop arrays with O(𝑁) aperture that have a large ULA segment of
O(𝑁) length in the coarray. While such sparse arrays that are suitable under aperture
constraint can no longer identify O(𝑁2) DOAs, they can still identify 𝐷 > 𝑁 DOAs,
as we will see. Furthermore, instead of enforcing coarray weights 𝑤(1) and 𝑤(2)
to be non-zero, we propose arrays that have either 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0,
to further reduce the impact of mutual coupling. Although such arrays do not
have a central ULA segment in the coarray, we still ensure that there exists a
large one-sided ULA segment in their difference coarrays. Table 4.1 summarizes
the proposed modifications to the array design criteria and their advantages and
disadvantages. Sparse arrays with a closed form for sensor positions, such as nested
arrays and coprime arrays, can identify fewer DOAs compared to MRAs. However,
they became popular because of the practical benefit of having closed-form sensor
locations (criterion 1) for any number of sensors. By making modifications to the
other two design criteria as described in Table 4.1, we further sacrifice the maximum
number of identifiable DOAs, but in turn, achieve practical benefits such as improved
robustness to high mutual coupling and suitability under aperture constraint.

4.1.2 Our Contributions and Connections to Literature
Adhering to the modified array design criteria, we first develop several sparse
and weight-constrained arrays that have O(𝑁) aperture and either 𝑤(1) = 0 or
𝑤(1) = 𝑤(2) = 0. These constructions are based on appropriately dilating a
uniform linear array (ULA) and augmenting it with a few additional sensors. The
one-sided ULA segments in the difference coarrays of these arrays start either from
lag 𝑙 = 2 or 𝑙 = 3, and the coarrays have only a few holes. These arrays have a small
aperture of O(𝑁) length, compared to the traditional sparse arrays having O(𝑁2)
aperture. Thus, when there is a fixed aperture constraint, these arrays can place
more sensors in the same aperture compared to traditional sparse arrays. These
arrays are better suited when the aperture is constrained, the number of DOAs 𝐷 is
O(𝑁), and high mutual coupling is present. One may wonder why we cannot use an
𝑁-sensor uniform linear array (ULA) instead of the proposed O(𝑁) aperture arrays.
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This is because DOA estimation using ULA can suffer significantly in the presence
of mutual coupling due to the densely packed sensors. Furthermore, an 𝑁-sensor
ULA can identify only up to 𝑁 − 1 DOAs, whereas the proposed O(𝑁) aperture
arrays can identify 𝐷 > 𝑁 DOAs (such as 𝐷 = 2𝑁) through the difference coarray
domain, although these arrays no longer have O(𝑁2) degrees of freedom.

Next, for the situation where robustness to high mutual coupling is needed but the
array aperture is not constrained, we propose another type of sparse and weight-
constrained arrays. These arrays have either 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0 and
O(𝑁2) degrees of freedom. We achieve this by suitably dilating a nested array
and appending it with several extra sensors. The one-sided ULA segment in the
difference coarray of these arrays starts either from 𝑙 = 2 or 𝑙 = 3 and has O(𝑁2)
length. Through Monte-Carlo simulations, we demonstrate that in certain situations,
our proposed arrays, having O(𝑁2) aperture and O(𝑁2) degrees of freedom, can
outperform arrays proposed in the literature. Please note that the proposed arrays
do not have a central ULA segment in their difference coarrays (because 𝑤(1) = 0),
unlike many other well-known sparse arrays. However, we can still apply a modified
coarray root-MUSIC on the one-sided ULA segment of the coarray. It is important
to note that using a one-sided ULA segment from the coarray reduces the number
of identifiable DOAs using coarray-MUSIC compared to the case when there exists
a central ULA segment in the coarray.

We now explain the novelty of our contributions in light of what is already known
about sparse arrays. To the best of our knowledge, O(𝑁) aperture arrays that
can identify more DOAs than the number of sensors have not been systematically
developed, or even mentioned in the literature before. Furthermore, to the best of our
knowledge, all simulations in the literature considered a fixed number of sensors 𝑁 .
Instead of only comparing different array geometries for a fixed number of sensors
𝑁 , we also propose comparing different array geometries under a fixed aperture
constraint. This can be called ‘aperture-constrained’ evaluation of sensor arrays. To
achieve good performance under such aperture-constrained settings, an ‘aperture-
aware’ design of sparse arrays is required. One way to do this is to explicitly impose
a strict constraint on the array aperture in the design stage. In this chapter, we take
a different approach and propose a class of array geometries with a smaller O(𝑁)
aperture instead of a large O(𝑁2) aperture. Because of this, the proposed O(𝑁)
aperture arrays can be more suitable than many other arrays from the literature under
aperture constraints. In summary, motivated by practical aperture constraints that
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certain applications may require, we propose an ‘aperture-constrained’ evaluation of
sensor arrays and an ‘aperture-aware’ design approach, through this chapter. Such
designs can be more practically useful than the large O(𝑁2) aperture arrays for
certain applications.

Similarly, arrays with 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0 are not very common in the
literature. The CADiS array proposed in [83] is one such sparse array construction
with a closed form for sensor locations and 𝑤(𝑙) = 0 for small values of 𝑙 such as
1, 2, 3, etc. However, CADiS arrays are not available for certain numbers of sensors
(such as 17, 23, and 29) [91]. Furthermore, under aperture constraint, it may not
be easy to come up with the design parameters (integers 𝑀 , 𝑁 , and 𝑝 from [83]
such that 𝑀 and 𝑁 are coprime and 𝑝 is a divisor of 𝑀). Additionally, some of our
proposed arrays with O(𝑁2) aperture can identify more DOAs than CADiS with
coarray-MUSIC, as we will see. This is because the one-sided ULA segment in the
difference coarray of CADiS does not start immediately after a few initial holes,
unlike the proposed arrays. Another array construction called generalized nested
array (GNA) [152] includes CADiS arrays as its special case and shares the property
that 𝑤(𝑙) = 0 for small values of 𝑙. Similar to the CADiS array, it may not be easy to
decide design parameters (coprime integers 𝛼 and 𝛽 from [152]), especially under
aperture constraint. Some arrays tabulated in [84] also have 𝑤(1) = 0, but these are
obtained through an elaborate search and do not have closed-form expressions for
the sensor positions. The tabulation is available only for 𝑁 ≤ 20.

The contributions and outline of this chapter are as follows:

1. We discuss the drawbacks of the sparse array design criteria and motivate
modifications proposed in Table 4.1 (Sec. 4.1.1).

2. We describe and justify the application of coarray-MUSIC to a one-sided
ULA segment in coarray (Sec. 4.2).

3. We introduce new O(𝑁) aperture arrays with 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0
that can perform better than many sparse arrays from literature (Sec. 4.3).

4. We propose O(𝑁2) aperture arrays with 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0 that
can identify a large number of DOAs under high mutual coupling (Sec. 4.4).

5. We compare the coarray properties and coarray-MUSIC spectra of the pro-
posed arrays with several arrays from the literature (Sec. 4.5.1). We present
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thorough Monte-Carlo simulations under two simulation settings: fixed 𝑁

(Sec. 4.5.2), and fixed aperture 𝐴 (Sec. 4.5.3). We present several additional
simulations to demonstrate the effect of coupling parameters and source cor-
relations (Secs. 4.5.4, 4.5.5), and discuss when we can expect the proposed
arrays to perform well (Sec. 4.5.6).

The content of this chapter is based on papers [153]–[155].

4.2 Coarray-MUSIC Using One-Sided ULA Segment in Coarray
The new arrays proposed in this chapter do not have a central ULA segment in the
coarray, as they have 𝑤(1) = 0. These arrays have one-sided ULA segments in the
coarray from lag 𝐿1 to 𝐿2 where 0 < 𝐿1 < 𝐿2. In this section, we describe how to
estimate DOAs using such one-sided ULA segment of length 𝐿 = 𝐿2 − 𝐿1 + 1 in
the coarray, and show that up to ⌊𝐿/2⌋ DOAs can be identified using the procedure
described. This procedure is similar to the direct-augmentation approach with
matrix R̂𝐷𝐴 described in Sec. 2.5. However, there are some subtleties involved as
we explain next.

Similar to R̂𝐷𝐴, based on the estimated correlations 𝑅(𝑙), 𝐿1 ≤ 𝑙 ≤ 𝐿2, we can
create a Toeplitz matrix R̂:

R̂ =



𝑅(𝐿2 − 𝑟1 + 1) 𝑅(𝐿2 − 𝑟1) . . . 𝑅(𝐿1 + 1) 𝑅(𝐿1)
𝑅(𝐿2 − 𝑟1 + 2) 𝑅(𝐿2 − 𝑟1 + 1) . . . 𝑅(𝐿1 + 2) 𝑅(𝐿1 + 1)

...
...

. . .
...

...

𝑅(𝐿2 − 1) 𝑅(𝐿2 − 2) . . . 𝑅(𝐿1 + 𝑟1 − 1) 𝑅(𝐿1 + 𝑟1 − 2)
𝑅(𝐿2) 𝑅(𝐿2 − 1) . . . 𝑅(𝐿1 + 𝑟1) 𝑅(𝐿1 + 𝑟1 − 1)


.

(4.1)
The matrix R̂ has size 𝑟1 × 𝑟2, where 𝑟1 = ⌊𝐿/2⌋ + 1 and 𝑟2 = ⌈𝐿/2⌉, and its entries
are R̂𝑚,𝑛 = 𝑅(𝐿2 − 𝑟1 + 1 + 𝑚 − 𝑛). The 𝑘-th column of R̂ contains 𝑟1 consecutive
correlations starting from 𝑅(𝐿1 + 𝑟2 − 𝑘). Note that when 𝐿1 = −𝐿2, R̂ = R̂𝐷𝐴. R̂
is a square matrix when 𝐿 is odd, whereas R̂ is a tall matrix when 𝐿 is even. Even
when R̂ is square, it is not a Hermitian matrix in general, unlike R̂𝐷𝐴 and R̂𝑆𝑆. We
would like to note that later in Sec. 6.3, two variations of the coarray-covariance
matrix (namely, ‘tall’ and ‘fat’ variations) are proposed. Here, R̂ is formed in a
similar way, but using the correlation entries from a one-sided ULA segment in
the coarray. Furthermore, unlike that in Sec. 6.3, the size of R̂ is fixed and does
not depend on the number of DOAs 𝐷. The dimensions (⌊𝐿/2⌋ + 1) × ⌈𝐿/2⌉ of
the matrix R̂ are chosen such that the number of DOAs we can identify using a
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subspace-based algorithm is maximized. As explained next, up to ⌊𝐿/2⌋ DOAs can
be identified by computing the SVD of R̂.

To see this, first consider an ideal version of the matrix R̂, with entries 𝑅(𝑙) instead
of 𝑅(𝑙). With a large number of snapshots, the matrix R̂ converges to the ideal
𝑟1 × 𝑟2 matrix R with entries

[R]𝑚,𝑛 = 𝑅(𝐿2 − 𝑟1 + 1 + 𝑚 − 𝑛). (4.2)

As the ideal correlations 𝑅(𝑙) have the sum-of-sinusoids form (Eq. (2.21)), the last
(i.e. 𝑟2-th) column of R containing entries 𝑅(𝐿1) to 𝑅(𝐿1 + 𝑟1 − 1) can be written
as

R(:, 𝑟2) =


1 . . . 1
𝑒 𝑗𝜔1 . . . 𝑒 𝑗𝜔𝐷

...
. . .

...

𝑒 𝑗𝜔1 (𝑟1−1) . . . 𝑒 𝑗𝜔𝐷 (𝑟1−1)

︸                                ︷︷                                ︸
A𝑐


𝑝1𝑒

𝑗𝜔1𝐿1

𝑝2𝑒
𝑗𝜔2𝐿1

...

𝑝𝐷𝑒
𝑗𝜔𝐷𝐿1


. (4.3)

Similarly, the 𝑘-th column of R can be expressed as

R(:, 𝑘) = A𝑐b𝑘 , (4.4)

where b𝑘 is a 𝐷-dimensional vector with 𝑚-th entry [b𝑘 ]𝑚 = 𝑝𝑚𝑒
𝑗𝜔𝑚 (𝐿1+𝑟2−𝑘) .

Collecting such equations for all columns of R (i.e. for 𝑘 = 1, . . . , 𝑟2), we get

R = A𝑐PB𝐻
𝑐 , (4.5)

where A𝑐 is an 𝑟1 × 𝐷 matrix with entries [A𝑐]𝑚,𝑛 = 𝑒 𝑗𝜔𝑛 (𝑚−1) , P is a 𝐷 × 𝐷

diagonal matrix containing source powers 𝑝1, . . . , 𝑝𝐷 , and B𝑐 is an 𝑟2 × 𝐷 matrix
with entries [B𝑐]𝑚,𝑛 = 𝑒− 𝑗𝜔𝑛 (𝐿1+𝑟2−𝑚) . Since the DOAs 𝜔1, . . . , 𝜔𝐷 are distinct, as
long as 𝑟1 ≥ 𝐷 and 𝑟2 ≥ 𝐷 the Vandermonde matrices A𝑐 and B𝑐 have rank 𝐷.
Thus, using Sylvester’s rank inequality for matrices, it can be concluded that matrix
R also has rank 𝐷. Now, as A𝑐 and R have the same rank 𝐷, and any vector x
satisfying x𝐻A𝑐 = 0 also satisfies x𝐻R = 0 (from Eq. (4.5)), it can be concluded
that matrices A𝑐 and R have the same column spans.

In practice, we only have access to the matrix R̂. We can estimate the column span
of A𝑐 (and its orthogonal complement) through an SVD of R̂:

R̂ = Û�̂�V̂𝐻 , (4.6)
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where Û is an 𝑟1 × 𝑟1 matrix with orthonormal columns, and �̂� is an 𝑟1 × 𝑟2 matrix
containing singular values arranged in descending order along the principal diagonal.
The first 𝐷 columns of Û provide an approximation to the column span of A𝑐. The
matrix Û𝑛 containing the last 𝑟1 −𝐷 columns of Û provides an approximation to the
‘noise subspace’ (the orthogonal complement of A𝑐). As long as 𝐷 < 𝑟1, we obtain
a non-trivial noise subspace with a dimension of at least one. Thus, by using Û𝑛 in
place of Ê𝑛, and a𝑐 (𝑧) (where [a𝑐 (𝑧)]𝑖 = 𝑧𝑖−1) in place of a(𝑧) in Eq. (2.15), we can
get a coarray root-MUSIC polynomial, from which the DOAs can be estimated.

In summary, even when R̂ is not a square matrix, we can apply SVD to estimate
signal subspace and noise subspace from R̂ and use coarray-based root-MUSIC to
estimate DOAs using the one-sided ULA segment from the difference coarray. Note
that 𝐷 < 𝑟1 and 𝐷 ≤ 𝑟2 for the above-described method to work. Thus, to maximize
the number of DOAs we can identify using this approach, min(𝑟1 − 1, 𝑟2) should
be as large as possible. As we only have the 𝐿 contiguous correlation estimates
𝑅(𝐿1), . . . , 𝑅(𝐿2) to form the Teoplitz matrix R̂, 𝑟1 and 𝑟2 should also satisfy
𝑟1 + 𝑟2 − 1 = 𝐿. Under this constraint, it can be verified that the largest value for
min(𝑟1 − 1, 𝑟2) is obtained when 𝑟1 = ⌊𝐿/2⌋ + 1 and 𝑟2 = ⌈𝐿/2⌉. Thus it is possible
to identify a maximum of 𝑟1 − 1 = ⌊𝐿/2⌋ DOAs in this way by applying SVD to the
matrix R̂ of size (⌊𝐿/2⌋ + 1) × ⌈𝐿/2⌉.

We would like to note that some papers, such as [83], [91], have reported DOA
estimation performance using a subspace-based algorithm with CADiS arrays that
have a one-sided ULA segment in the coarray. However, they do not describe or
justify their method for identifying DOAs using such a one-sided ULA segment in
coarray, or derive the maximum number of identifiable sources. In fact, the number
of identifiable sources reported in [91] for CADiS array when using subspace-based
DOA estimation is one less than ⌊𝐿/2⌋ when 𝐿 is even.

It is possible to use techniques other than coarray-based algorithms to identify
more DOAs than the number of sensors. Some examples include the weighted
least squares method [90], stochastic maximum likelihood estimation [121], and
dictionary-based methods [156]. This chapter primarily focuses on introducing new
sparse arrays that can handle strong mutual coupling and aperture constraints, rather
than focusing on various algorithms that can be applied for DOA estimation. With
suitable adaptations, it is possible to use other DOA estimation algorithms with the
proposed arrays. This section demonstrated the adaptation of widely used coarray-
MUSIC for one-sided ULA segments in the difference coarray. Other algorithms,
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such as coarray interpolation and dictionary-based estimation, will be considered in
the next chapter.

4.3 Proposed Weight-Constrained Sparse Arrays with O(𝑁) Aperture
In this section, we first systematically develop sparse arrays that have an aperture
of O(𝑁) length and 𝑤(1) = 0. We will start by explaining a procedure to generate
such arrays by properly dilating a ULA and adding a few extra sensors. We will
then propose modifications to the construction to make other crucial weights (𝑤(2)
and 𝑤(3)) small constants independent of 𝑁 while keeping 𝑤(1) = 0. We will also
develop sparse arrays that have O(𝑁) aperture and 𝑤(1) = 𝑤(2) = 0. Moreover,
we will discuss further modifications to make 𝑤(3) and 𝑤(4) small constants in-
dependent of 𝑁 . The coarray properties of the arrays proposed in this section are
summarized in Table 4.2. These arrays will be called weight-constrained sparse
arrays (WCSAs). We assume 𝑁 > 5 to ensure that the general expressions for all
arrays are valid.

4.3.1 Proposed Sparse Arrays with O(𝑁) Aperture and 𝑤(1) = 0
We want to create a sparse array with O(𝑁) aperture and 𝑤(1) = 0. We also want to
ensure that the array has a large ULA segment in its coarray from lag two onwards
for easy application of coarray root-MUSIC. To achieve this, we follow these steps:

1. Expand an (𝑁 − 1)-sensor ULA by a factor of two to create a ‘2-sparse’ ULA
{0, 2, ..., 2(𝑁 − 2)}. This is called the array dilation step.

2. Place the 𝑁-th sensor at location 2𝑁−1. This is called the array augmentation
step.

Thus, we get the array

z1 =

[
︸                         ︷︷                         ︸

2-sparse ULA

0 2 4 . . . 2(𝑁 − 2) 2𝑁 − 1
]
. (4.7)

Note that the coarray of the 2-sparse ULA consists only of the even lags from
−2(𝑁 − 2) to 2(𝑁 − 2). The augmented sensor is placed at a distance of three from
the last sensor of the 2-sparse ULA and is at odd distances from the other 𝑁 − 1
sensors. This creates lags 3, 5, . . . , 2𝑁 − 1 in the coarray, which were missing from
the coarray of the 2-sparse ULA. Thus, the coarray D+

z1
of z1 is

D+
z1
= {0,︸                              ︷︷                              ︸

One-sided ULA segment in coarray

2, 3, 4, . . . , 2𝑁 − 4, 2𝑁 − 3, 2𝑁 − 1}. (4.8)



102

Ta
bl

e
4.

2:
C

oa
rr

ay
pr

op
er

tie
s

of
th

e
w

ei
gh

t-c
on

st
ra

in
ed

sp
ar

se
ar

ra
ys

w
ith

O
(𝑁

)a
pe

rtu
re

pr
op

os
ed

in
Se

c.
4.

3.
A

rr
ay

ap
er

tu
re

(𝐴
),

co
ar

ra
y

w
ei

gh
ts
𝑤
(𝑙
),

U
LA

se
gm

en
ti

n
th

e
co

ar
ra

y,
co

ar
ra

y
ho

le
s,

an
d

m
ax

im
um

nu
m

be
ro

fi
de

nt
ifi

ab
le

D
O

A
s

w
ith

co
ar

ra
y-

M
U

SI
C

𝐷
𝑚

ar
e

co
m

pa
re

d.
‘𝐴

’i
n

th
e

se
co

nd
la

st
co

lu
m

n
re

fe
rs

to
th

e
ap

er
tu

re
lis

te
d

in
th

e
se

co
nd

co
lu

m
n.

A
rr

ay
z 6

ha
s
𝑤
(1
)=

𝑤
(2
)=

0
an

d
co

ns
ta

nt
𝑤
(3
)a

nd
𝑤
(4
)i

nd
ep

en
de

nt
of
𝑁

.

A
rr

ay
A

pe
rtu

re
C

oa
rr

ay
W

ei
gh

ts
U

LA
Se

gm
en

ti
n

C
oa

rr
ay

H
ol

es
in

co
ar

ra
y

𝐷
𝑚

𝐴
𝑤
(1
)

𝑤
(2
)

𝑤
(3
)

𝑤
(4
)

𝑤
(5
)

St
ar

t(
𝐿

1)
En

d
(𝐿

2)
Le

ng
th

(𝐿
)

U
LA

𝑁
−

1
𝑁
−

1
𝑁
−

2
𝑁
−

3
𝑁
−

4
𝑁
−

5
−𝑁

+
1

𝑁
−

1
2𝑁

−
1

N
on

e
𝑁
−

1

z 1
2𝑁

−
1

0
𝑁
−

2
1

𝑁
−

3
1

2
2𝑁

−
3

2𝑁
−

4
1,
𝐴
−

1
𝑁
−

2

z(
1) 2

3𝑁
−

5
0

2
𝑁
−

3
1

1
2

3𝑁
−

7
3𝑁

−
8

1,
𝐴
−

1
⌊ 1
.5
𝑁
⌋ −

4

z(
2) 2

3𝑁
−

3
0

1
𝑁
−

3
1

1
2

3𝑁
−

7
3𝑁

−
8

1,
𝐴
−

3,
𝐴
−

1
⌊ 1
.5
𝑁
⌋ −

4

z(
1) 3

4𝑁
−

9
0

2
1

𝑁
−

4
1

2
4𝑁

−
13

4𝑁
−

14
1,
𝐴
−

3,
𝐴
−

1
2𝑁

−
7

z(
2) 3

4𝑁
−

8
0

1
2

𝑁
−

4
1

2
4𝑁

−
13

4𝑁
−

14
1,
𝐴
−

4,
𝐴
−

2,
𝐴
−

1
2𝑁

−
7

z 4
3𝑁

0
0

𝑁
−

3
1

1
3

3𝑁
−

7
3𝑁

−
9

1,
2,
𝐴
−6
,
𝐴
−3
,

𝐴
−

2,
𝐴
−

1
⌊ (

3𝑁
−

9)
/2
⌋

z 5
4𝑁

−
5

0
0

2
𝑁
−

4
1

3
4𝑁

−
13

4𝑁
−

15
1,

2,
𝐴
−7
,
𝐴
−4
,

𝐴
−

2,
𝐴
−

1
2𝑁

−
8

z 6
5𝑁

−
12

0
0

3
1

𝑁
−

5
3

5𝑁
−

21
5𝑁

−
23

1,
2,
𝐴
−8
,
𝐴
−5
,

𝐴
−4
,
𝐴
−2
,
𝐴
−1

⌊ (
5𝑁

−
23

)/
2⌋



103

The array z1 has an aperture 𝐴 = 2𝑁 − 1 and its coarray includes a ULA segment
of length 𝐿 = 2𝑁 − 4 starting from 𝐿1 = 2 and ending at 𝐿2 = 2𝑁 − 3. Since
the coarray is symmetric, it also contains a ULA segment from −𝐿2 to −𝐿1. As
explained in Sec. 4.2, we can identify up to ⌊𝐿/2⌋ = 𝑁 − 2 DOAs by using coarray
root-MUSIC with this array. Although an 𝑁-sensor ULA can identify one more
DOA than z1, the proposed array can tolerate mutual coupling better than the ULA,
as we will see in Section 4.5, because it has 𝑤(1) = 0.

Note that the coarray D+
z1

has two holes located at positions 1 and 2𝑁 − 2. It is
not possible to eliminate the extra hole at position 2𝑁 − 2. For any array that has
𝑤(1) = 0, 𝑤(𝐴 − 1) must also be zero. This is because there are sensors at 0 and 𝐴
for an array with aperture 𝐴. No sensor can be placed at either location 1 or 𝐴 − 1,
as that will create a sensor pair with separation 1. With no sensors at 1 and 𝐴 − 1,
𝑤(𝐴− 1) must be zero. Thus, there are no holes in the coarray D+

z1
apart from those

that arise as a necessary consequence of our design constraint 𝑤(1) = 0.

4.3.2 Further Reducing 𝑤(2) and 𝑤(3)
Even though the array z1 can make 𝑤(1) equal to zero, it has 𝑤(2) equal to 𝑁 − 2
because of the 2-sparse ULA segment in the array. To further reduce the mutual
coupling, we need to construct an array where 𝑤(2) is a small constant independent
of the number of sensors, while also ensuring that 𝑤(1) is zero. To achieve this, we
can start with a ‘3-sparse’ ULA having (𝑁 −2) sensors and add two more sensors at
a distance of either 2 or 4 units from the same end or opposite ends of the 3-sparse
ULA.

Augmenting both sensors on the same side gives the array

z(1)2 =

[
︸                         ︷︷                         ︸

3-sparse ULA

0 3 6 . . . 3(𝑁 − 3) 3𝑁 − 7 3𝑁 − 5
]
, (4.9)

and its coarray is

D+
z(1)2

= {0, 2, 3, . . . , 3𝑁 − 8, 3𝑁 − 7,3𝑁 − 5}. (4.10)

The ULA segment in the coarray (underlined) is from 𝐿1 = 2 to 𝐿2 = 3𝑁 − 7.
Similar to the previous design, the coarray has only two holes located at positions
1 and 3𝑁 − 6 (= 𝐴 − 1). An important advantage of this design over z1 is that
𝑤(2) = 2, independent of the number of sensors 𝑁 used. This further reduces the
impact of mutual coupling compared to the previous design z1. However, z(1)2 has
larger aperture than z1.
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Instead of placing both additional sensors on the same side, they can be placed on
opposite sides of the 3-sparse ULA to get the array

z(2)2 =

[
−2 ︸                         ︷︷                         ︸

3-sparse ULA

0 3 6 . . . 3(𝑁 − 3) 3𝑁 − 5
]
. (4.11)

By doing so, 𝑤(2) now becomes 1 instead of 2. The coarray still has ULA segment
from 2 to 3𝑁 − 7, but the array aperture is now 3𝑁 − 3 instead of 3𝑁 − 5, and the
coarray D+

z(2)2
has three holes at 1, 3𝑁 − 6 (= 𝐴 − 3), and 3𝑁 − 4 (= 𝐴 − 1).

The arrays z(1)2 and z(2)2 make 𝑤(2) a constant independent of the number of sensors
𝑁 , but their 𝑤(3) increases linearly with 𝑁 because of the 3-sparse ULA segment
in the array. To make 𝑤(1) = 0 and both 𝑤(2) and 𝑤(3) small constants, we
propose the following construction. We use a 4-sparse ULA of 𝑁 − 3 sensors with
appropriately placed three other sensors to get the array

z(1)3 =

[
−2 ︸                     ︷︷                     ︸

4-sparse ULA

0 4 . . . 4(𝑁 − 4) 4𝑁 − 13 4𝑁 − 11
]
. (4.12)

Its coarray is

D+
z3
= {0, 2, 3, 4, . . . , 4𝑁 − 14, 4𝑁 − 13,4𝑁 − 11, 4𝑁 − 9}. (4.13)

This array construction has constant 𝑤(1) = 0, 𝑤(2) = 2, 𝑤(3) = 1 independent
of the number of sensors 𝑁 , and its coarray has ULA segment from 𝐿1 = 2 to
𝐿2 = 4𝑁 − 13. By rearranging the three additionally placed sensors, we get the
following variation of this array configuration:

z(2)3 =

[
−5 −2 ︸                     ︷︷                     ︸

4-sparse ULA

0 4 . . . 4(𝑁 − 4) 4𝑁 − 13
]
. (4.14)

The advantage of this array over z(1)3 is that 𝑤(2) is reduced to 1. In the next
subsection, to further reduce the impact of mutual coupling, we develop sparse
arrays with 𝑤(1) = 𝑤(2) = 0.

4.3.3 Proposed Arrays with O(𝑁) Aperture and 𝑤(1) = 𝑤(2) = 0
We can construct O(𝑁) aperture arrays that have both 𝑤(1) = 𝑤(2) = 0 by using
a similar construction mechanism of ULA dilation and augmentation. Consider an
array with a 3-sparse ULA of 𝑁 − 2 sensors and two additional sensors placed at
distances of 4 and 5 units from the opposite ends of the 3-sparse ULA:

z4 =

[
−5 ︸                         ︷︷                         ︸

3-sparse ULA

0 3 6 . . . 3(𝑁 − 3) 3𝑁 − 5
]
. (4.15)
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The sensor located at 3𝑁 − 5 is positioned at a distance of 4 from one end of the
3-sparse ULA. This sensor produces differences {4, 7, 10, . . . , 3𝑁 − 5} with the
sensors of the 3-sparse ULA. On the other hand, the sensor at −5 is located at a
distance of 5 from the opposite end of the 3-sparse ULA and creates differences
{5, 8, 11, . . . , 3𝑁 − 4} with the sensors of the 3-sparse ULA. When combined with
the self-differences {0, 3, 6, . . . , 3(𝑁 − 3)} created by the sensor pairs within the
3-sparse ULA, we get that the coarray of z4 is

D+
z4
= {0, 3, 4, 5 . . . , 3(𝑁 − 3), 3𝑁 − 8, 3𝑁 − 7,3𝑁 − 5, 3𝑁 − 4, 3𝑁}. (4.16)

The largest difference of 3𝑁 is between the two augmented sensors.

This array with an aperture of length 3𝑁 has 𝑤(1) = 𝑤(2) = 0. Its coarray contains
a ULA segment starting from 𝐿1 = 3 and ending at 𝐿2 = 3𝑁 − 7. It can identify
up to ⌊(3𝑁 − 9)/2⌋ DOAs using coarray root-MUSIC. In addition to the holes at 1,
and 2, the coarray has four additional holes located at 3𝑁 − 6, 3𝑁 − 3, 3𝑁 − 2, and
3𝑁 − 1.

4.3.4 Further Reducing 𝑤(3) and 𝑤(4)
Although z4 has 𝑤(1) = 𝑤(2) = 0, its 𝑤(3) increases as 𝑁 increases. To make 𝑤(3)
constant we consider the following array:

z5 =

[
−5 ︸                         ︷︷                         ︸

4-sparse ULA

0 4 8 . . . 4(𝑁 − 4) 4𝑁 − 13 4𝑁 − 10
]
. (4.17)

Array z5 consists of a 4-sparse ULA of 𝑁 − 3 sensors and three additional sensors
placed at positions −5, 4𝑁 − 13, and 4𝑁 − 10. The 4-sparse ULA creates self-
differences 4 [[0, 𝑁 − 4]] in the coarray. The sensor at location −5 is at a distance
5 from the 4-sparse ULA segment, and creates differences 4 [[1, 𝑁 − 3]] + 1. The
sensor at location 4𝑁−13 is at distance 3 from the 4-sparse ULA segment, and creates
differences 4 [[1, 𝑁 − 3]] −1. The sensor at location 4𝑁 −10 is at a distance 6 from
the 4-sparse ULA segment, and creates differences 4 [[1, 𝑁 − 3]] + 2. Combined
with the additional differences 4𝑁 − 8 and 4𝑁 − 5 between the augmented sensors,
we get that the coarray of z5 isD+

z5
= {0, 3, 4, 5, . . . , 4𝑁 − 13,4𝑁−11, 4𝑁−10, 4𝑁−

8, 4𝑁 − 5}. The ULA segment in the coarray is from 𝐿1 = 3 to 𝐿2 = 4𝑁 − 13. The
coarray has four holes in addition to the holes at positions 1 and 2.

The first three weights 𝑤(𝑙), 1 ≤ 𝑙 ≤ 3 of z5 do not increase with 𝑁 . We can go a
step further to also make 𝑤(4) a constant by considering the following array:

z6 =

[
−7 −4 ︸                     ︷︷                     ︸

5-sparse ULA

0 5 . . . 5(𝑁 − 5) 5𝑁 − 22 5𝑁 − 19
]
. (4.18)
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Array z6 consists of a 5-sparse ULA of 𝑁 − 4 sensors and four augmented sensors
placed at positions −7, −4, 5𝑁 − 22, and 5𝑁 − 19. The 5-sparse ULA creates
self-differences 5 [[0, 𝑁 − 5]]. The sensor at location 5𝑁 − 19 creates differences
5 [[1, 𝑁 − 4]] +1, the sensor at location−7 creates differences 5 [[1, 𝑁 − 4]] +2, the
sensor at location 5𝑁 − 22 creates differences 5 [[1, 𝑁 − 4]] − 2, and the sensor at
location −4 creates differences 5 [[1, 𝑁 − 4]] −1 with the sensors from the 5-sparse
ULA segment. Combined with the additional differences 5𝑁 − 12 and 5𝑁 − 15
between the augmented sensors, we get that the coarray of z6 is

D+
z6
= {0, 3, 4, 5 . . . , 5𝑁 − 21,5𝑁 − 19, 5𝑁 − 18, 5𝑁 − 15, 5𝑁 − 12}. (4.19)

The ULA segment in the coarray (underlined) is from 𝐿1 = 3 to 𝐿2 = 5𝑁 − 21. The
array has 𝑤(1) = 𝑤(2) = 0, 𝑤(3) = 3, and 𝑤(4) = 𝑤(6) = 𝑤(7) = 𝑤(8) = 𝑤(9) =
1, and 𝑤(5) = 𝑁 − 5. Out of the first nine coarray weights 𝑤(𝑙), 1 ≤ 𝑙 ≤ 9, only
𝑤(5) increases with the number of sensors 𝑁 . There are five holes in addition to
the holes at positions 1 and 2 in the coarray.

4.4 Proposed Weight-Constrained Nested Arrays with O(𝑁2) Aperture
In this section, we develop sparse arrays with O(𝑁2) aperture that have either
𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0. For arrays in the previous section, we expanded
a ULA and added a few extra sensors. For O(𝑁2) aperture arrays, we will start
by expanding a nested array. However, we will need to add several extra sensors
to ensure that the coarray has a ULA segment from lag 2 or 3 onwards. These
arrays will be called weight-constrained nested arrays (WCNAs). These arrays are
well-suited for identifying a large number of DOAs under high mutual coupling,
as we will see in Sec. 4.5. However, they have large apertures, and so they are
not suitable when there is an aperture constraint. Coarray properties of the arrays
described in this section are summarized in Table 4.3.

4.4.1 Weight-Constrained Nested Arrays with 𝑤(1) = 0
Consider a standard nested array [34] z𝑛 = P1 ∪ P2 where, P1 = [[1, 𝑁1]] and
P2 = (𝑁1 + 1) [[1, 𝑁2]]. We assume that 𝑁1 > 3, so that the general expressions
are valid. The coarray of the nested array is D+

z𝑛 = [[0, (𝑁1 + 1)𝑁2 − 1]]. Now,
consider the array

w(1)
1 = (2P1) ∪ (2P2) ∪ P3, (4.20)
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where P3 = 2P2 + 3. This array w(1)
1 is formed by first expanding a nested array to

create a ‘2-sparse’ nested array (2P1) ∪ (2P2) and appending it with another sparse
ULA segment P3 containing 𝑁2 sensors. P3 is just a shifted version of 2P2 to the
right by three units. Note that the coarray of the dilated nested array (2P1) ∪ (2P2)
only contains even lags from −2(𝑁1 +1)𝑁2 +2 to 2(𝑁1 +1)𝑁2−2. Thus, we append
P3 to fill up the missing odd lags (except lag 1, to ensure 𝑤(1) = 0). The array has
a total of 𝑁1 + 2𝑁2 sensors, and its aperture 𝐴 = 2(𝑁1 + 1)𝑁2 + 1 is slightly larger
than twice that of the original nested array z𝑛. We will now prove that the coarray
of w(1)

1 has a ULA segment from 𝐿1 = 2 to 𝐿2 = 2(𝑁1 + 1)𝑁2 − 1.

Lemma 4. The difference coarray D+
w(1)

1
of w(1)

1 contains a ULA segment from

𝐿1 = 2 to 𝐿2 = 2(𝑁1 + 1)𝑁2 − 1.

Proof. As the difference coarray of the nested array is D+
z𝑛 = [[0, (𝑁1 + 1)𝑁2 − 1]],

it is easy to see that all even differences from 0 to 2(𝑁1 + 1)𝑁2 − 2 are created by
the sensors from (2P1) ∪ (2P2). Now consider the first sensor from P3 located at
2(𝑁1+1)+3. It creates odd differences {3, 5, . . . , 2(𝑁1+1)+1} = 2 [[1, (𝑁1 + 1)]]+1
with the sensors from 2P1 ∪ {2(𝑁1 + 1)}. Similarly, the 𝑘-th sensor in P3 located at
2(𝑁1+1)𝑘 +3 creates differences of the form 2 [[1, (𝑁1 + 1)]] +2(𝑁1+1) (𝑘 −1) +1
with the sensor from 2P1 ∪ {2(𝑁1 + 1)}. Putting together these differences for all
sensors in P3 (i.e., for 𝑘 ∈ [[1, 𝑁2]]), we get that P3 generates all odd differences
from 2 [[1, (𝑁1 + 1)𝑁2]] + 1. Furthermore, when 𝑁1 > 1, there are no sensor pairs
with unit separation, and thus 𝑤(1) = 𝑤(𝐴 − 1) = 0. Thus, we have proved that the
difference coarray of w(1)

1 is

D+
w(1)

1
= {0, 2, 3, 4, . . . , 2(𝑁1 + 1)𝑁2 − 1,2(𝑁1 + 1)𝑁2 + 1}, (4.21)

which contains a ULA segment from 𝐿1 = 2 to 𝐿2 = 2(𝑁1 + 1)𝑁2 − 1. □

The array has 𝑤(1) = 0, and the difference coarray Dw(1)
1

has only two holes, one at
location 1 and the other at location 𝐴 − 1. The length of the ULA segment in the
coarray is 𝐿 = 𝐿2 − 𝐿1 + 1 = 2(𝑁1 + 1)𝑁2 − 2, and thus the number of identifiable
DOAs is ⌊𝐿/2⌋ = (𝑁1 + 1)𝑁2 − 1, which is the same as the number of identifiable
DOAs with the original nested array z𝑛. However w(1)

1 uses 𝑁2 additional sensors
compared to z𝑛. Furthermore, when 𝑁1 > 3, it can be verified that 𝑤(2) = 𝑁1,
𝑤(3) = 𝑁2, 𝑤(4) = 𝑁1 − 1, and 𝑤(5) = 1.
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For a total number of sensors 𝑁 , optimal 𝑁1 and 𝑁2 to maximize the ULA segment
in the coarray of w(1)

1 are found by solving

max
𝑁1,𝑁2

2(𝑁1 + 1)𝑁2 − 2

s.t. 𝑁1 + 2𝑁2 = 𝑁.

(4.22)

The optimal solution to the above problem is given by 𝑁2 = round((𝑁 + 1)/4), and
𝑁1 = 𝑁 − 2𝑁2. With the optimal values of 𝑁1 and 𝑁2, the maximum number of
identifiable DOAs is O(𝑁2) (approximately (𝑁 + 1)2/8 − 2). Thus, the array w(1)

1
can identify O(𝑁2) DOAs using coarray-MUSIC.

Note that P3 is a 2(𝑁1 + 1)-sparse ULA of 𝑁2 sensors placed at a distance three to
the right of the sensors at location 2(𝑁1 + 1). It was introduced to fill up the odd-
valued differences missing from the coarray of the expanded nested array. These
odd valued differences are created between the sensors from P3 and the sensors from
the (𝑁1 +1)-sensor 2-sparse ULA segment given by 2P1 ∪ {2(𝑁1 +1)}. Noting this,
we can consider the following variation of the array

w(2)
1 = (2P1) ∪ (2P2) ∪ P′3, (4.23)

where P′3 = 2P2 − 2𝑁2(𝑁1 + 1) − 1. Here, the 2(𝑁1 + 1)-sparse ULA segment of
𝑁2 sensors P′3 is placed three units to the left of the sensor at location 2, instead of
placing it three units to the right of the sensor at 2(𝑁1 +1). Thus, it creates the same
set of odd-valued differences with the 2-sparse ULA segment 2P1 ∪ {2(𝑁1 + 1)}.
Hence, it can be shown similar to Lemma 4 that array w(2)

1 also has the same ULA
segment in its coarray from 𝐿1 = 2 to 𝐿2 = 2(𝑁1 + 1)𝑁2 − 1. However, the aperture
of w(2)

1 is roughly twice that of w(1)
1 , and its coarray has many holes, unlike that of

w(1)
1 which had only two holes. By shifting the P3 to the other side of the nested

array, 𝑤(3) reduces from 𝑁2 to 1. Thus, array w(2)
1 has reduced mutual coupling, at

the cost of a larger aperture compared to w(1)
1 .

4.4.2 Weight-Constrained Nested arrays with 𝑤(1) = 𝑤(2) = 0
To create a sparse array with O(𝑁2) degrees of freedom and 𝑤(1) = 𝑤(2) = 0,
we expand a nested array by a factor of 3 and augment it with two additional
appropriately placed sparse ULA segments. Consider the array

w2 = (3P1) ∪ (3P2) ∪ P4 ∪ P5, (4.24)

where P1 = [[1, 𝑁1]], P2 = (𝑁1 + 1) [[1, 𝑁2]], and

P4 = 3P2 − 3𝑁2(𝑁1 + 1) − 1, P5 = 3P2 + 5. (4.25)
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Here P4 and P5 are 3(𝑁1+1)-sparse ULA segments of 𝑁2 sensors placed at distances
of 4 and 5 units, respectively, from the opposite ends of the 3-sparse ULA segment
3P1 ∪ {3(𝑁1 + 1)𝑁2}. Array w2 has a total of 𝑁1 + 3𝑁2 sensors, and its aperture
𝐴 = 3(𝑁1 + 1) (2𝑁2 − 1) + 6, which is roughly six times that of the original nested
array z𝑛. Similar to Lemma 4, it can be shown that w2 has a ULA segment in its
coarray from 𝐿1 = 3 to 𝐿2 = 3(𝑁1 + 1)𝑁2 − 1.

Lemma 5. The difference coarray D+
w2

of w2 contains a ULA segment from 𝐿1 = 3
to 𝐿2 = 3(𝑁1 + 1)𝑁2 − 1.

The proof is similar to that of Lemma 4, and details are omitted due to space
constraints. The main idea is that the dilated nested array (3P1) ∪ (3P2) creates
self-differences 3 [[0, (𝑁1 + 1)𝑁2 − 1]]. The sensors from P4 create differences
3 [[1, (𝑁1 + 1)𝑁2 − 1]] +1 with the sensors from 3P1∪{3(𝑁1 +1)𝑁2}. The sensors
from P5 create differences 3 [[1, (𝑁1 + 1)𝑁2 − 1]] + 2 with the sensors from 3P1 ∪
{3(𝑁1 + 1)𝑁2}. Combining the three sets of differences, a ULA segment from
𝐿1 = 3 to 𝐿2 = 3(𝑁1 + 1)𝑁2 − 1 is obtained.

Array w2 has 𝑤(1) = 𝑤(2) = 0. However, it has a large aperture and contains
several holes in its difference coarray. The length of the one-sided ULA segment
in its coarray is 𝐿 = 3(𝑁1 + 1)𝑁2 − 3, and thus it can identify up to ⌊𝐿/2⌋ ≈
1.5(𝑁1 + 1)𝑁2 − 2 DOAs with coarray-MUSIC. However w2 uses 2𝑁2 additional
sensors compared to z𝑛. It can be verified that when 𝑁1 > 3, 𝑤(3) = 𝑁1, 𝑤(4) = 1,
and 𝑤(5) = 𝑁2.

Given 𝑁 sensors, the optimal 𝑁1 and 𝑁2 to maximize the ULA segment in the
coarray of w2 are found by solving

max
𝑁1,𝑁2

3(𝑁1 + 1)𝑁2 − 3

s.t. 𝑁1 + 3𝑁2 = 𝑁.

(4.26)

The optimal solution to the above problem is given by 𝑁2 = round((𝑁 + 1)/6), and
𝑁1 = 𝑁 − 3𝑁2. With the optimal values of 𝑁1 and 𝑁2, the maximum number of
identifiable DOAs is O(𝑁2) (approximately (𝑁 +1)2/8−2). Thus, the array w2 has
𝑤(1) = 𝑤(2) = 0 and can identify O(𝑁2) DOAs using coarray-MUSIC.

4.5 Simulation Results
In this section, we compare our proposed weight-constrained arrays (with O(𝑁)
aperture array from Sec. 4.3 as well as O(𝑁2) aperture arrays from Sec. 4.4) with
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other sparse arrays from the literature. Out of several generalizations of nested
arrays [34], we choose the following four in our comparisons. Super nested arrays
(SNA) [39], [101] have the same length of difference coarray as the parent nested
arrays, but are more robust to mutual coupling because of reduced coarray weights
at small lags. Therefore, we use SNA for comparison instead of nested arrays. We
use a third-order super nested array (SNA3) if available, and if not, a second-order
super nested array (SNA2) is used. Augmented nested arrays (ANA) [103] are
formed by rearranging and distributing the sensors from the dense subarray of the
nested array on the two sides of the sparse subarray of the nested array. Out of the
four variations of ANAs, we use ANAII-2, which has the largest DOFs and small
mutual coupling compared to the other variations. Recently proposed variations of
nested arrays called dilated nested arrays (DNA) and displaced DNA (DDNA) [92]
are also used in comparisons. All these modifications of the nested array require two
parameters, 𝑁1 and 𝑁2, for their construction. For a given total number of sensors,
optimal values of 𝑁1 and 𝑁2 are used for each array. One key drawback of all these
variations of nested arrays is that 𝑤(2) of these arrays increases linearly with 𝑁1

(and optimal 𝑁1 is proportional to 𝑁).

We also include MRAs [33] in our comparison, but MRAs are available only for a
limited number of sensors [33], [100]. In [84], the authors performed a restricted
search for MRAs for 𝑁 ≤ 20 and tabulated the (approximate) MRAs they found
using their restricted search. They also noted a general pattern of sensor locations
in the arrays they obtained. The maximum inter-element spacing constraint (MISC)
arrays [104] seem to be motivated by this general closed-form pattern noticed in
[84]. In addition, the authors of [84] compiled another set of arrays, which we
call constrained-MRAs (cMRA). These arrays maximize the ULA segment in the
difference coarray under the constraint that 𝑤(1) = 0. The tabulated cMRAs in
[84] are only an approximation to the ideal cMRAs because of the restricted search
performed. As these arrays have 𝑤(1) = 0, they can effectively mitigate mutual
coupling, as we will see in the simulations.

Out of several generalizations of coprime arrays (CPA) [35], we choose the fol-
lowing four in our comparisons. CADiS array [83] is generated by displacing and
compressing one of the sparse ULAs of a coprime array. These arrays can have
𝑤(𝑙) = 0 for several small values of 𝑙 and hence can effectively mitigate mutual
coupling, similar to the proposed arrays. However, as noted in Sec. 4.1.2, the ULA
segment in the difference coarray of CADiS does not start immediately after the
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few initial holes, unlike the proposed arrays, and hence the maximum number of
identifiable DOAs can be smaller than our proposed arrays, as well will see. Fur-
thermore, CADiS requires 3 design parameters (𝑀 , 𝑁 , and 𝑝 from [83] such that
𝑀 and 𝑁 are coprime and 𝑝 > 1 divides 𝑀). For a given total number of sensors,
or a fixed aperture, it is not easy to come up with optimal parameters that maximize
the ULA segment in the coarray of CADiS, without enumerating all possibilities of
design parameters (𝑀 , 𝑁 , and 𝑝 from [83]). Furthermore, for a certain number of
sensors (such as 17, 23, and 29), there are no possible CADiS array constructions
[91]. Another modification of coprime arrays we use for comparison is the thinned
coprime array (TCA) [91]. It has the same aperture and DOFs as the original co-
prime array but with fewer sensors and smaller coarray weights than the original
coprime array. Four variations of padded coprime arrays (PCA) are proposed in
[105] by characterizing hole locations in a tailored CADiS array and filling up those
holes by augmenting a small number of additional sensors. Out of these, extended
PCA (ePCA) has the longest ULA segment in the coarray. Impressively, ePCA (with
parameters 𝑀 and 𝑁 from [105]) can achieve 𝑤(𝑙) = 1, 1 ≤ 𝑙 ≤ 𝑀 − 1 when 𝑀 is
odd. In some simulations, we also consider the enhanced and generalized coprime
array (EGCA) [157], which can have a larger ULA segment in coarray and smaller
mutual coupling than other variations of coprime arrays.

In Section 4.5.1, we compare the coarray properties for various arrays and illustrate
coarray-MUSIC spectra obtained when estimating 𝐷 > 𝑁 DOAs. We then conduct
two types of Monte-Carlo simulations. The first set of simulations compares different
arrays when the number of sensors 𝑁 is fixed, and the array apertures can differ.
The second set of simulations involves a fixed array aperture, while the number
of sensors in the arrays can vary. Each data point in the graphs is averaged over
1000 Monte-Carlo trials in every Monte-Carlo simulation. In these trials, the source
amplitudes s[𝑘] and noise realizations n[𝑘] are randomly chosen according to the
signal model described in Chapter 2. All sources are assumed to have equal powers.
To estimate DOAs with sparse arrays, we use the coarray root-MUSIC algorithm,
as described in Sec. 4.2, using the largest ULA segment (possibly one-sided) in
the difference coarray. As for the ULA, we apply direct root-MUSIC (i.e., using
R̂xx), as it usually performs better than coarray root-MUSIC [87], [158]. The DOA
estimation mean squared error (MSE) is calculated in the 𝜔 domain as

1
1000𝐷

1000∑︁
𝑞=1

𝐷∑︁
𝑖=1

(𝜔𝑖 − �̂�𝑖𝑞)2, (4.27)
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where {�̂�𝑖𝑞}𝐷𝑖=1 are the estimated DOA in the 𝑞-th Monte-Carlo trial. The mutual
coupling model described in Eq. (2.27) is used with 𝐵 = 10, 𝑐1 = 𝑐𝑒 𝑗𝜋/3, and
𝑐𝑙 = (𝑐1/𝑙)𝑒− 𝑗 (𝑙−1)𝜋/8, where |𝑐1 | = 𝑐 ∈ [0, 1], represents the coupling strength.
These values for coupling coefficients have been used in most of the papers on sparse
arrays[39], [91], [92], [105], and we use the same values in all our simulations here
for consistency. We provide some simulations with different coupling coefficients
later in Sec. 4.5.5.

4.5.1 Array Properties and Coarray-MUSIC Spectra
We now compare the coarray properties of the proposed arrays with the well-known
arrays discussed in the previous subsection for a fixed number of sensors, 𝑁 = 16.
For nested array variations, array designs with optimal 𝑁1 and 𝑁2 that maximize
the number of identifiable DOAs are chosen. Similarly, an optimal pair of coprime
integers that maximizes the number of identifiable DOAs is chosen for the coprime
array. The same design parameters are chosen for ePCA. Out of the possible TCA
configurations, we choose the array that can identify the most number of DOAs. Out
of possible CADiS configurations, we choose the one with 𝑤(𝑙) = 0 for 𝑙 = 1, 2 for
a fair comparison with the proposed arrays. Fig. 4.1 plots the coarray weights 𝑤(𝑙)
for 0 ≤ 𝑙 ≤ 40. It is observed that although the proposed arrays have some large
weights, the weights that contribute the most to the mutual coupling effect are either
zero or relatively small. With fixed 𝑁 = 16, each array has a different aperture 𝐴
and the maximum number of identifiable DOAs using coarray root-MUSIC (𝐷𝑚),
as shown in Table 4.4. The proposed O(𝑁) aperture arrays have a relatively smaller
aperture and can identify fewer DOAs than O(𝑁2) aperture arrays. The coupling
leakage values (L) in Table 4.4 are calculated with 𝑐 = 0.3 and 𝐵 = 10 (Eq. (2.30)).
The coupling leakage is found to be smallest for z6, followed next by CADiS, w2,
and z5. Coarray weights 𝑤(𝑙) for 1 ≤ 𝑙 ≤ 5 are also shown in the Table. Only
the proposed arrays, CADiS, and cMRA have 𝑤(1) = 0. Although CADiS has a
small mutual coupling, it can identify fewer DOAs compared to the proposed O(𝑁2)
aperture arrays w(1)

1 , w(2)
1 , and w2.

Next, we consider the task of estimating 𝐷 = 22 (> 𝑁 = 16) DOAs uniformly
spaced in the 𝜔 domain from −0.9𝜋 to 0.9𝜋 with these arrays. SNR of 0 dB and 100
snapshots are considered. Note that ULA, z1, and z(2)2 , and z4 cannot identify 22
DOAs with coarray-MUSIC as they have 𝐷𝑚 < 22. These arrays will be included
in the comparisons in the next subsections for simulations with smaller 𝐷. Fig. 4.2
shows the coarray-MUSIC spectra obtained for the rest of the arrays. We observe
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Table 4.4: Properties of arrays with 𝑁 = 16. The last 9 arrays (z1 to w2) are the new
proposed arrays. Coupling leakage L is calculated with 𝑐 = 0.3 and 𝐵 = 10. MSE
for estimating 22 DOAs is the smallest for arrays with 𝑤(1) = 0 (see Sec. 4.5.1).

Array 𝐴 L 𝐷𝑚

Coarray weights
MSE

w(1) w(2) w(3) w(4) w(5)

SNA2 71 0.2139 71 2 5 4 1 6 0.0174

ANAII-2 84 0.2071 84 2 5 2 3 4 0.0285

EGCA 88 0.1447 65 1 6 1 4 1 0.0772

DNA 77 0.1843 71 1 6 1 4 1 0.0716

DDNA 86 0.1738 72 1 5 1 3 1 0.0748

MISC 83 0.1865 83 1 6 1 4 2 0.093

MRA 90 0.2299 90 4 2 1 1 3 0.0315

cMRA 80 0.1489 38 0 5 2 4 3 0.0001

CPA 63 0.1997 39 2 2 2 9 2 0.0172

CADiS 88 0.1113 30 0 0 7 0 0 0.0001

TCA 75 0.1515 47 1 1 1 2 10 0.0658

ePCA 85 0.1623 65 1 2 1 8 1 0.0369

ULA 15 0.4443 15 15 14 13 12 11 -

z1 31 0.233 14 0 14 1 13 1 -

z(2)2 45 0.1592 20 0 1 13 1 1 -

z(2)3 56 0.1290 25 0 1 2 12 1 0.0002

z4 48 0.1506 19 0 0 13 1 1 -

z5 59 0.118 24 0 0 2 12 1 0.0005

z6 68 0.1061 28 0 0 3 1 11 0.0003

w(1)
1 73 0.1875 35 0 8 4 7 1 0.0003

w(2)
1 127 0.1779 35 0 8 1 7 1 0.0001

w2 126 0.117 34 0 0 7 1 3 0.0002
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Figure 4.1: Coarray weights 𝑤(𝑙), 0 ≤ 𝑙 ≤ 40 for the arrays under consideration.
All arrays have 𝑁 = 16. Out of the proposed arrays shown here, z1, z(2)2 , z(2)3 ,
w(1)

1 , and w(2)
1 have 𝑤(1) = 0, and z4, z5, z6, and w2 have 𝑤(1) = 𝑤(2) = 0. The

only other arrays that have 𝑤(1) = 0 are CADiS [83] and (approximate) constrained
MRAs (cMRA) [84]. See Sec. 4.5.1 for details.
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Figure 4.2: Coarray-MUSIC spectra obtained when identifying 𝐷 = 22 DOAs
uniformly spaced in 𝜔 domain from −0.9𝜋 to 0.9𝜋 with different 16-sensor arrays
from Table 4.4. SNR of 0 dB, mutual coupling with 𝑐 = 0.3 and 𝐵 = 10, and
100 snapshots are considered. Black vertical lines correspond to the true DOA
locations. Except for CADiS and cMRA, all other arrays from the literature do not
correctly identify all 22 DOAs and miss out on at least one DOA. On the other hand,
the proposed arrays are able to identify all DOAs correctly with a small MSE by
producing coarray-MUSIC spectra having peak locations close to each true DOA.
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that arrays that do not have 𝑤(1) = 0 do not produce correct peaks in the coarray-
MUSIC spectra for some DOAs. On the other hand, the proposed arrays, CADiS,
and cMRA can effectively mitigate the effect of mutual coupling and produce peaks
in the coarray-MUSIC spectra corresponding to all 22 DOAs. The DOA estimation
MSE is also small for these arrays with 𝑤(1) = 0, as shown in the last column of
Table 4.4.

4.5.2 Monte-Carlo Simulations with a Fixed Number of Sensors
With the same set of arrays with 𝑁 = 16 sensors, we perform Monte-Carlo simu-
lations to compare DOA estimation performance. First, for the simulations in Fig.
4.3, we consider 𝐷 = 6 DOAs spaced uniformly in the 𝜔 domain from −0.8𝜋 to
0.8𝜋. We consider SNR of 5 dB, 500 snapshots, and coupling strength 𝑐 = 0.5. Out
of these three, we fix two quantities at a time and vary the third quantity to measure
its impact on DOA estimation error. We see that in this situation, with a relatively
small number of sensors and few DOAs, many of the proposed arrays perform worse
than the other sparse arrays. However, notably, z6 performs the best in this situation
for a large range of 𝑐, SNR, and snapshots. Array z6 performs well because it has
𝑤(1) = 𝑤(2) = 0, and small 𝑤(3) and 𝑤(4), which makes it robust to the presence
of high mutual coupling. In particular, in Fig. 4.3(a), we see that the increase
in MSE for the proposed arrays is gradual as the coupling strength 𝑐 is increased.
In contrast, for most of the other arrays, MSE increases drastically as 𝑐 increases
beyond a certain point. The sudden increase in MSE usually indicates some of the
DOAs being misidentified (similar to the case in Fig. 4.2). Despite having a smaller
aperture and shorter ULA segment in coarray compared to the other O(𝑁2) aperture
arrays, we see from Fig. 4.3(b) and Fig. 4.3(c) that z6 performs better when SNR is
larger than 0 dB and more than 100 snapshots are used.

Next, we change the number of DOAs to 𝐷 = 20 and repeat the above set of
simulations. The DOAs are spaced uniformly from −0.9𝜋 to 0.9𝜋 in the 𝜔 domain.
In Fig. 4.4 we see a clear separation between the arrays based on whether𝑤(1) = 0 or
not. Arrays with 𝑤(1) = 0 (irrespective of whether the aperture is O(𝑁) or O(𝑁2))
have smaller MSE than arrays for which𝑤(1) ≠ 0. The MSE for z(2)2 is large because
𝐷 = 20 DOAs is barely within the maximum number of identifiable DOAs (𝐷𝑚)
with this array (see Table 4.4). From Fig. 4.4(a) note that for 𝑐 ≤ 0.2, proposed
arrays have larger MSE than most other arrays. For such small mutual coupling, the
arrays with larger lengths of the ULA segment in the coarray have smaller MSE.
This indicates that for small mutual coupling, making 𝑤(1) = 0 to reduce mutual
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Figure 4.3: MSE when estimating 𝐷 = 6 DOAs uniformly spaced in 𝜔 from −0.8𝜋
to 0.8𝜋 with 16-sensor arrays. (a) SNR = 5 dB and 𝐾 = 500, (b) 𝑐 = 0.5 and
𝐾 = 500, (c) 𝑐 = 0.5 and SNR = 5 dB. Although many of the proposed arrays
perform worse than other arrays from the literature, z6 is found to perform the best
in most situations.
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Figure 4.4: MSE when estimating 𝐷 = 20 DOAs uniformly spaced in𝜔 from −0.9𝜋
to 0.9𝜋 with 16-sensor arrays. (a) SNR = 5 dB and 𝐾 = 500, (b) 𝑐 = 0.5 and
𝐾 = 500, (c) 𝑐 = 0.5 and SNR = 5 dB. Arrays with 𝑤(1) = 0 have smaller MSE,
whereas arrays with 𝑤(1) ≠ 0 cannot identify all the DOAs correctly, resulting in
high MSE.
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coupling is not as critical as it is when high mutual coupling is present (𝑐 > 0.2).
We see a similar ordering of arrays in Figs. 4.4(b) and 4.4(c). The MSEs saturated
to a high value are indicative of misidentified DOAs. This simulation makes it clear
that under high mutual coupling and for larger 𝐷, 𝑤(1) = 0 is required to correctly
identify the DOAs.

4.5.3 Monte-Carlo Simulations Under Aperture Constraint
As we explained in the introduction, array design may be constrained by the avail-
able aperture in practical applications. To compare array performance under such
practical constraints, we consider a situation where a maximum aperture of length
100 and a maximum of 50 sensors are available. For each array type under consid-
eration, we appropriately choose the number of sensors such that the array satisfies
the aperture constraint of 100. For example, a super nested array has 19 sensors,
ULA and z1 have 50 sensors each, and z3 has 27 sensors. Table 4.5 shows the num-
ber of sensors, the maximum number of identifiable DOAs with coarray-MUSIC
(𝐷𝑚), coupling leakage (L) calculated with 𝑐 = 0.3, 𝐵 = 10, and the first 5 coarray
weights. Note that the proposed O(𝑁) aperture arrays can fit more sensors in the
available aperture than the O(𝑁2) aperture arrays from the literature and at the same
time, have a smaller coupling leakage than many of those arrays (except CADiS,
which has 𝑤(𝑙) = 0 for 1 ≤ 𝑙 ≤ 4).

In general, arrays with fewer sensors and sparser sensor arrangements can help
minimize the impact of mutual coupling. However, a smaller number of sensors
also means fewer observations per snapshot, which may result in less accurate
DOA estimation. On the other hand, an array with a larger number of sensors
provides more spatial samples of the impinging signals. But, under the aperture
constraint, the sensors need to be closer to each other on average, which increases
the effect of mutual coupling. Therefore, there is an interesting tradeoff in choosing
the appropriate number of sensors and array geometry when the array aperture is
constrained, and mutual coupling is present.

In Fig. 4.5, we examine the scenario with 𝐷 = 6 DOAs located at −0.8𝜋, −0.35𝜋,
−0.1𝜋, 0.05𝜋, 0.4𝜋, and 0.8𝜋 in the𝜔 domain. The DOAs are spaced non-uniformly,
unlike the other simulation examples. We compare the MSE of DOA estimation
for different arrays constructed under the 𝐴 ≤ 100 and 𝑁 ≤ 50 constraints. We
consider an SNR of 5 dB, coupling strength of 𝑐 = 0.5, and 500 snapshots, and vary
one of these three quantities at a time to measure its impact on DOA estimation
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Table 4.5: Properties of arrays when 𝐴 ≤ 100 and 𝑁 ≤ 50. Coupling leakage L is
calculated with 𝑐 = 0.3 and 𝐵 = 10. Many of the proposed O(𝑁) aperture arrays
have more sensors but smaller L compared to the O(𝑁2) aperture arrays from the
literature.

Array 𝑁 L 𝐷𝑚

Coarray weights

w(1) w(2) w(3) w(4) w(5)

SNA3 19 0.1684 99 1 5 2 4 1

ANAII-2 17 0.2152 86 2 7 2 5 2

DNA 18 0.1909 89 1 8 1 6 1

DDNA 17 0.1692 80 1 5 1 3 1

MISC 17 0.1814 93 1 6 1 4 2

MRA 16 0.2299 90 4 2 1 1 3

cMRA 18 0.1722 48 0 8 2 7 2

Coprime 20 0.1757 59 2 2 2 2 11

CADiS 16 0.0712 25 0 0 0 0 6

TCA 17 0.1436 59 1 1 1 1 10

ePCA 18 0.1414 75 1 1 1 1 10

ULA 50 0.46 49 49 48 47 46 45

z1 50 0.2437 48 0 48 1 47 1

z(2)2 34 0.1611 47 0 1 31 1 1

z(2)3 27 0.1246 47 0 1 2 23 1

z4 33 0.157 45 0 0 30 1 1

z5 26 0.1179 44 0 0 2 22 1

z6 22 0.1031 43 0 0 3 1 17

w(1)
1 18 0.1801 44 0 8 5 7 1

w(2)
1 14 0.1649 27 0 6 1 5 1

w2 14 0.1088 25 0 0 5 1 3
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Figure 4.5: MSE when estimating 𝐷 = 6 DOAs spaced non-uniformly in 𝜔 domain
with different arrays under aperture constraint 𝐴 ≤ 100 and 𝑁 ≤ 50. (a) SNR
= 5 dB and 𝐾 = 500, (b) 𝑐 = 0.5 and 𝐾 = 500, (c) 𝑐 = 0.5 and SNR = 5 dB.
The proposed O(𝑁) aperture arrays perform much better than other sparse arrays,
because under the aperture constraint, they can fit in more sensors while maintaining
small coupling leakage.
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Figure 4.6: MSE when estimating 𝐷 = 20 DOAs uniformly spaced in𝜔 from −0.9𝜋
to 0.9𝜋 with different arrays under aperture constraint 𝐴 ≤ 100 and 𝑁 ≤ 50. (a)
SNR = 5 dB and 𝐾 = 500, (b) 𝑐 = 0.3 and 𝐾 = 1000, (c) 𝑐 = 0.3 and SNR = 5 dB.
Despite high coupling leakage L, ULA performs the best under low SNR or a small
number of snapshots. The proposed array z1 performs well at higher SNRs or when
a large number of snapshots are available. CADiS and ULA are found to perform
well under very high mutual coupling.
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performance. Based on the results, we observe that the proposed O(𝑁) arrays
perform significantly better than all other O(𝑁2) aperture arrays. In particular, from
Fig. 4.5(a) it can be observed that O(𝑁) arrays perform better than other arrays even
when 𝑐 = 0 (i.e. when no mutual coupling is present). This is because O(𝑁) arrays
have more sensors than O(𝑁2) aperture arrays under aperture constraint. From Figs.
4.5(b) and 4.5(c) it can be observed that for SNR larger than −10 dB and more than
100 snapshots, many of the proposed O(𝑁) aperture sparse arrays perform better
than other arrays.

Next, in Fig. 4.6, we consider 𝐷 = 20 DOAs spaced uniformly in the 𝜔 domain
from −0.9𝜋 to 0.9𝜋. We consider the same arrays as in the previous simulation
with 𝐴 ≤ 100 and 𝑁 ≤ 50. In Fig. 4.6(a), when 𝐾 = 500 and SNR is 5 dB,
ULA performs the best for most values of 𝑐 despite its large coupling leakage and
smaller aperture compared to the other arrays. A part of the reason for this may be
that ULA has a large number of sensors, and it uses direct root-MUSIC (and not
coarray root-MUSIC). CADiS is also found to perform well for higher values of 𝑐.
However, in Fig. 4.6(b), where 𝑐 = 0.3 and 𝐾 = 1000, we see that z1 can perform
the best when the SNR is -5dB or more. In Fig. 4.6(c), where 𝑐 = 0.3 and SNR = 5
dB, we observe that for more than 800 snapshots z1 can perform better than ULA.
In Figs. 4.6(b) and 4.6(c), when SNR is less than −10 dB, or when fewer than 800
snapshots are used, ULA is observed to be better than other arrays despite having
large coupling leakage.

4.5.4 Additional Simulations with Weight-Constrained Nested Arrays
The proposed weight-constrained nested arrays with O(𝑁2) aperture have an ad-
vantage when there is no aperture constraint, and a large number of DOAs need to
be identified under high mutual coupling. This is demonstrated by the simulation in
Fig. 4.7. Here, we consider arrays with 𝑁 = 25 sensors. Note that cMRA [84] is not
available for 𝑁 > 20. Out of the possible CADiS array configurations for 𝑁 = 25,
we choose the array with 𝑤(𝑙) = 0 for 1 ≤ 𝑙 ≤ 4 to reduce the mutual coupling
effect. SNR of 5 dB, coupling strength 𝑐 = 0.3, and 500 snapshots are considered.
We vary the number of DOAs 𝐷 and plot the MSE for different arrays. We can see
that the proposed array w2 has the smallest MSE when 35 ≤ 𝐷 ≤ 80. Also, arrays
w(1)

1 , w(2)
1 , and w2 can identify more DOAs than CADiS.

It is clear that when we want to identify a large number of DOAs 𝐷 without aperture
constraint, WCNAs are better suited. In Fig. 4.8, we drop the WCSAs with O(𝑁)
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Figure 4.7: MSE when identifying 𝐷 DOAs spaced uniformly in the𝜔 domain from
−0.9𝜋 to 0.9𝜋 with 25-sensor arrays. SNR = 5 dB, 𝐾 = 500, and 𝑐 = 0.3. Array w2
has the smallest MSE when 35 ≤ 𝐷 ≤ 80. Arrays w(1)

1 , w(2)
1 , and w2 can identify

more DOAs than CADiS.

aperture and only consider WCNAs and other sparse arrays with O(𝑁2) aperture.
𝑁 = 30 sensors, SNR of 5 dB, coupling strength 𝑐 = 0.4, and 500 snapshots
are considered. The number of DOAs 𝐷 is varied on the 𝑋-axis. The CADiS
array configuration that has the largest number of identifiable DOAs with coarray-
MUSIC is used. We observe that the proposed weight-constrained nested array w2

with 𝑤(1) = 𝑤(2) = 0 has the smallest MSE and can effectively identify a large
number of DOAs in the presence of mutual coupling with small MSE.

As mentioned in the introduction of this chapter, the CADiS array can have multiple
possible configurations for a given number of sensors. Here we provide additional
simulations to further compare the proposed WCNAs with different CADiS config-
urations. In Fig. 4.9, for each value of 𝑁 , we choose the CADiS array configuration
with the longest ULA segment in the coarray. Nested CADiS [83] is not considered
as it does not have 𝑤(1) = 0. We compare the maximum number of identifiable
DOAs using coarray-MUSIC (𝐷𝑚), coupling leakage L when 𝑐 = 0.3, and required
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Figure 4.8: MSE when identifying 𝐷 DOAs spaced uniformly in the𝜔 domain from
−0.9𝜋 to 0.9𝜋 with 30-sensor arrays. SNR = 5 dB, 𝐾 = 500, and 𝑐 = 0.4. Array w2
has the smallest MSE when 30 ≤ 𝐷 ≤ 90.

array aperture for the optimal CADiS, cMRA, and the proposed WCNAs. Notice
from Fig. 4.9(a) that the proposed WCNAs can identify more DOAs than CADiS.
Values of 𝑁 for which CADiS has 𝐷𝑚 = 0 are those for which CADiS is not avail-
able. From Fig. 4.9(b), note that array w2 has either comparable or smaller coupling
leakage than CADiS for most values of 𝑁 . However, arrays w(2)

1 and w2 require
almost double the aperture than CADiS and w(1)

1 (Fig. 4.9(c)).

Next, in Fig. 4.10, for 𝑁 = 20 sensors, we compare the proposed WCNAs with
all possible (eight, in this case) configurations of CADiS arrays. Different CADiS
array configurations provide different degrees of freedom and robustness to mutual
coupling. However, we see here for the case of 𝑁 = 20 that w2 still performs better
than all CADiS configurations for 𝑐 ≤ 0.5. For larger 𝑐, some CADiS configurations
having 𝑤(𝑙) = 0 for several small values of 𝑙 perform better than WCNAs. However,
such CADiS configurations are observed to have significantly smaller 𝐷𝑚 than
WCNAs.
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Figure 4.9: Comparing the proposed arrays w(1)
1 , w(2)

1 , and w2 with CADiS and
cMRA in terms of the number of identifiable DOAs using coarray-MUSIC (𝐷𝑚),
coupling leakage L when 𝑐 = 0.3, and required array aperture. For each value of
𝑁 , the CADiS array configuration having the longest ULA segment in the coarray is
considered. cMRA is available only for 𝑁 < 20. The breaks in the plot for CADiS
correspond to the values of 𝑁 for which CADiS is not available. The proposed
WCNAs can identify more DOAs than CADiS with coarray-MUSIC, and w2 has a
comparable or smaller coupling leakage than CADiS for most values of 𝑁 . However,
apertures of w(2)

1 and w2 are roughly twice that of CADiS and w(1)
1 .
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Figure 4.10: MSE when estimating 𝐷 = 30 DOAs uniformly spaced in 𝜔 from
−0.9𝜋 to 0.9𝜋 with 20-sensor arrays. All possible configurations of CADiS are
considered. The parameters of the CADiS arrays are mentioned in the brackets (𝑀 ,
𝑁 , and 𝑝 from [83], respectively). (a) SNR = 5 dB and 𝐾 = 500, (b) 𝑐 = 0.3 and
𝐾 = 500, (c) 𝑐 = 0.3 and SNR = 5 dB. Array w2 performs the best in this case when
𝑐 ≤ 0.5 for any number of snapshots and SNR.
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4.5.5 Effect of Coupling Parameters and Source Correlations
In most of our simulations with mutual coupling, we have used coupling coefficients
of the form 𝑐1 = 𝑐𝑒 𝑗𝜋/3, and 𝑐𝑙 = (𝑐1/𝑙)𝑒− 𝑗 (𝑙−1)𝜋/8, and with 𝐵 = 10. As mentioned
before, these values for coupling coefficients have been used in most of the papers on
sparse arrays[39], [91], [92], [105], and we use the same values in our simulations
above for consistency. However, we have observed [154] that the DOA estimation
performance may vary based on the phases of the coupling coefficients chosen. Here
we present one example of this effect.

We compare some of the WCSAs with a few other sparse arrays from the literature
under an aperture-constrained setting. We assume that a fixed aperture 𝐴 = 50
and a maximum of 30 sensors are available. For each array type, we appropriately
choose the number of sensors such that the array satisfies the aperture constraint.
For example, the ULA has 30 sensors, z1 has 25 sensors, z(1)2 has 18 sensors, and so
on. Super nested array, coprime array, CADiS, and MISC array with the appropriate
number of sensors that fit in the available aperture are chosen. Under this simulation
setting, the array performances are found to vary a lot depending on the specific
mutual coupling parameters chosen. Here we present three different examples.
Mutual coupling with 𝐵 = 100, 𝑐1 = 𝑒𝑥𝑝( 𝑗𝜋/3) and 𝑐𝑙 = (𝑐1/𝑙)𝑒𝑥𝑝(− 𝑗 (𝑙−1)𝜋/𝑀)
is assumed where𝑀 is 5, 7, and 8 for Figs. 4.11(a), 4.11(b), and 4.11(c) respectively.
Four sources with SNR 0 dB and 1000 snapshots are considered. In Fig. 4.11(a),
z(1)2 performs better than other sparse arrays when |𝑐1 | ≤ 0.6, and better than ULA
when 0.2 < |𝑐1 | ≤ 0.6. In Figs. 4.11(b) and 4.11(c), it is difficult to pick a clear
winner, but z1 performs better than O(𝑁2) aperture sparse arrays in many situations.
Further research is required to understand the sensitivity of different arrays and DOA
estimation algorithms to the phases of mutual coupling coefficients.

Next, in Fig. 4.12, we also plot the MSE for the arrays from Table 4.5 (with 𝐴 ≤ 100
and 𝑁 ≤ 50) as the parameter 𝐵 in the mutual coupling model is varied from 10
to 100. We observe that the general trend of the proposed arrays compared to
existing arrays remains consistent as the parameter 𝐵 is changed. This means that
for different values of 𝐵, many of the proposed arrays can still perform better than
the existing arrays.

As mentioned at the end of Sec. 2.5, although coarray-based DOA estimation
assumes uncorrelated sources, correlated sources can be present in practical sit-
uations. To evaluate the DOA estimation performance of the weight-constrained
arrays proposed in this chapter for correlated sources, we conduct additional simu-
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Figure 4.11: Comparing different arrays under the constraints 𝐴 ≤ 50 and 𝑁 ≤ 30.
Mutual coupling coefficients are of the form 𝑐𝑙 = (𝑐1/𝑙)𝑒𝑥𝑝(− 𝑗 (𝑙 − 1)𝜋/𝑀). (a)
𝑀 = 5, (b) 𝑀 = 7, and (c) 𝑀 = 8. 𝐷 = 4, 𝐾 = 1000, and SNR = 0 dB. Under
different conditions, proposed sparse arrays z1 or z(1)2 can perform better than other
sparse arrays with O(𝑁2) aperture. z3 in the figure legends refer to the array z(1)3
from Table 4.2.
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Figure 4.12: MSE when identifying 𝐷 = 6 DOAs spaced uniformly in the𝜔 domain
from −0.8𝜋 to 0.8𝜋 for arrays with 𝐴 ≤ 100 and 𝑁 ≤ 50. SNR = 5 dB, 𝐾 = 500,
and 𝑐 = 0.5. The general trend of the proposed arrays compared to existing arrays
remains consistent as the parameter 𝐵 is changed.

lation experiments. Using the 16-sensor arrays from Table 4.4, 10 DOAs uniformly
spaced in the 𝜔-domain from −0.9𝜋 to 0.9𝜋 are estimated. Although when the
sources are correlated, the ideal correlations do not have the sum of sinusoids form
as in Eq. (2.21), we still estimate 𝑅(𝑙) as in Eq. (2.22) and construct the matrix
by R̂ from Eq. (4.1) to estimate DOAs. In Fig. 4.13, the correlation coefficient
between the second and fifth sources is set to 𝜌𝑒− 𝑗𝜋/4, and the rest of the sources are
uncorrelated. The magnitude of the correlation coefficient 𝜌 is varied on the 𝑥-axis
to measure its impact on DOA estimation MSE. We observe that in the absence of
mutual coupling (𝑐 = 0), the rate of increase in MSE for most of the proposed arrays
is not significantly different from the rate of increase in MSE for other sparse arrays.
Moreover, in the presence of mutual coupling with 𝑐 = 0.4, the proposed arrays
still perform much better than other arrays from the literature, in the presence of a
correlated source pair.

Next, in Fig. 4.14, we introduce a correlation coefficient of 𝜌/2 · 𝑒 𝑗𝜋/3 between
the seventh and ninth source, in addition to the correlation coefficient of 𝜌𝑒− 𝑗𝜋/4

between the second and fifth source. Thus, there are now two correlated source
pairs. These numerical results indicate that the proposed arrays can continue to
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Figure 4.13: MSE when estimating𝐷 = 10 DOAs uniformly spaced in𝜔 from−0.9𝜋
to 0.9𝜋 with 16-sensor arrays when SNR = 5 dB, and 𝐾 = 500. The correlation
coefficient between the second and fifth source is taken to be 𝜌𝑒− 𝑗𝜋/4. (a) 𝑐 = 0,
and (b) 𝑐 = 0.4.

perform well in the presence of high mutual coupling and high correlations between
a few pairs of sources.

4.5.6 Main Conclusions From Simulations
The observations from the above numerical simulations can be summarized as
follows. These also serve as a guideline for the situations in which the proposed
arrays can be used and can be expected to perform well.
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Figure 4.14: MSE when estimating 𝐷 = 10 DOAs uniformly spaced in 𝜔 from
−0.9𝜋 to 0.9𝜋 with 16-sensor arrays when SNR = 5 dB, and 𝐾 = 500. The
correlation coefficient between the second and fifth source is taken to be 𝜌𝑒− 𝑗𝜋/4,
and the correlation coefficient between the seventh and ninth source is 𝜌/2 · 𝑒 𝑗𝜋/3.
(a) 𝑐 = 0, and (b) 𝑐 = 0.4.

For a fixed number of sensors: When 𝑐 > 0.2 and 𝐷 is large, arrays with
𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0 are necessary to effectively mitigate the effect of
mutual coupling, and correctly identify all DOAs (Fig. 4.2, Fig. 4.4). Arrays with
𝑤(1) ≠ 0 perform poorly in this setting. However, there is no advantage to using
arrays with 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0 when 𝑐 < 0.2. For a small number of
DOAs, O(𝑁) aperture array having small coarray weights (such as z6) can perform
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well (Fig. 4.3). Proposed arrays with O(𝑁2) are suitable for identifying a large
number of DOAs with smaller errors in the presence of mutual coupling (Fig. 4.7).
The proposed arrays also continue to perform well when a few source pairs are
correlated (Figs. 4.13 and 4.14).

Under aperture constraint: Under fixed aperture, the proposed O(𝑁) aperture
arrays can accommodate a larger number of sensors while still maintaining low
coupling leakage (Table 4.5). This makes them effective regardless of the mutual
coupling strength when there are only a few DOAs (Fig. 4.5). For a larger number
of DOAs, some of the proposed arrays (such as z1) can perform well provided a high
SNR and a larger number of snapshots are available (Fig. 4.6). At low SNRs and
for a small number of snapshots, ULA is found to perform the best despite having
high coupling leakage.

4.6 Concluding Remarks
In this chapter, we introduced new weight-constrained arrays that are robust to
the presence of high mutual coupling. We argued that with a large number of
sensors 𝑁 , we may not always require O(𝑁2) degrees of freedom, and O(𝑁2)
length aperture of such sparse arrays can be impractical for various applications.
To better accommodate aperture constraints and mitigate the impact of high mutual
coupling, we proposed two modifications to the array design criteria and presented
several O(𝑁) aperture arrays with either 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0. Many
of these arrays can still identify 𝐷 > 𝑁 DOAs (such as 𝐷 = 2𝑁) using coarray-
MUSIC on a one-sided ULA segment present in the coarray. These arrays are
obtained by appropriately dilating a ULA and augmenting it with a few additional
sensors. Through Monte-Carlo simulations, we demonstrated that these new arrays
can outperform existing arrays from the literature under high mutual coupling or
aperture constraint conditions. Additionally, we proposed another type of arrays
with 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0 and O(𝑁2) aperture, called weight-constrained
nested arrays, which are suitable for identifying a large number of DOAs under high
mutual coupling when aperture is not constrained.

The theme of ‘aperture-aware’ array design introduced in this work can be further
explored to design sparse arrays systematically under aperture constraints. Several
interesting array design questions arise under such a setting. For example, given a
fixed aperture 𝐴 and a fixed number of sensors 𝑁 < 𝐴, it would be of interest to know
the sensor arrangement that leads to the lowest mutual coupling and gives the best
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DOA estimation performance. Furthermore, similar to the 1D weight-constrained
arrays introduced in this chapter, 2D sparse arrays that have zero coarray weights at
smaller lags are also of interest for future research.

Note that all the simulations in this section are based on coarray root-MUSIC. We
chose coarray root-MUSIC because it has theoretical identifiability guarantees under
ideal conditions, is conceptually simple to use, and does not require hyperparameter
tuning like some other methods (such as dictionary-based methods) do. However,
because of the DOA estimation algorithm based on a one-sided coarray segment, the
proposed arrays are at a ‘disadvantage’ compared to the arrays having a central ULA
segment in the coarray. For the arrays with central ULA segment in the coarray,
both sides of the coarray are used to form the matrix R̂, whereas, for the arrays
with central holes in their coarray (i.e., 𝑤(1) = 0), only one side of the coarray is
used. Despite this limitation, the proposed arrays have a smaller MSE compared to
other sparse arrays in the literature in the presence of mutual coupling under several
simulation settings. This already demonstrates the value of our proposed arrays.

However, to further enhance the performance of the proposed arrays, other DOA
estimation algorithms that can use both sides of the difference coarray should be
considered. In the next chapter, we explore different algorithms that can do this. In
particular, we propose ‘augmented root-MUSIC’ that can utilize the ULA segments
on both sides of the coarrays with central holes. We have found that for some
of the proposed arrays, the augmented root-MUSIC can have over an order of
magnitude smaller MSE than coarray root-MUSIC that uses a one-sided ULA
segment. Another option is to algorithmically fill up the central holes in the coarrays
by using appropriate coarray interpolation techniques [159]–[161]. However, it can
be challenging to incorporate mutual coupling into such algorithms. Once the
central holes are appropriately filled through interpolation, we can use the central
ULA segment in the coarray instead of the one-sided segment. These directions are
explored in the next chapter.
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C h a p t e r 5

IMPROVED DOA ESTIMATION ALGORITHMS AND
GENERALIZED CONSTRUCTIONS FOR

WEIGHT-CONSTRAINED ARRAYS

5.1 Introduction
In the last chapter, we highlighted some drawbacks of the traditional sparse array
design principles. In particular, we argued that an O(𝑁2) length aperture may not be
suitable for practical applications with limited available aperture, especially when a
large 𝑁 is used. Furthermore, it was observed that although 𝑤(𝑙) > 0 for 𝑙 = 1, 2, 3,
etc., ensure that the coarray contains a central ULA segment, such arrays may
not work well in the presence of high mutual coupling. Thus, we proposed some
modifications to the array design criteria and developed weight-constrained sparse
arrays (WCSAs). These arrays are designed to have either 𝑤(1) = 0 or 𝑤(1) =

𝑤(2) = 0 and have O(𝑁) aperture, unlike the traditional sparse arrays. WCSAs
are suitable in the presence of high mutual coupling and when a small aperture of
O(𝑁) length is desired. Additionally, we also proposed weight-constrained nested
arrays (WCNAs) that have either 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0 to reduce the impact
of mutual coupling on DOA estimation, and have O(𝑁2) aperture like traditional
sparse arrays. WCNAs are suitable for identifying O(𝑁2) DOAs in the presence of
high mutual coupling. Because of zero coarray weights at lags 1 and 2, WCSAs and
WCNAs are robust to high mutual coupling, as demonstrated through simulations
in the previous chapter.

The coarrays of the weight-constrained arrays have central holes at lags 1 and 2
because of 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0, as shown in Fig. 5.1. There is a ULA
segment of length 𝐿 from lags 𝐿1 to 𝐿2 on the positive side of the difference coarrays
of weight-constrained arrays. There is also a corresponding ULA segment on the
negative side of the coarray from lags −𝐿2 to −𝐿1. In Chapter 4, to estimate the
DOAs using weight-constrained arrays, we only used the one-sided ULA segment
in the coarray starting from lag 2 or 3. Despite not using the ULA segment on the
other side of the difference coarray, WCSAs and WCNAs are demonstrated to have
smaller DOA estimation MSE under high mutual coupling in Sec. 4.5. This already
shows the advantage of WCSAs and WCNAs under high mutual coupling. However,
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Figure 5.1: A representative demonstration of the coarrays of the weight-constrained
arrays proposed in Chapter 4. Because of the central holes at lags 1 and 2, the
coarrays do not contain a central ULA segment. There is a one-sided ULA segment
on the positive side of the coarray from lags 𝐿1 to 𝐿2, and a corresponding ULA
segment on the negative side of the coarray from lags −𝐿2 to −𝐿1.

to further improve the DOA estimation performance of these arrays having central
holes, it is important to develop algorithms that use both positive and negative
sides of the difference coarrays. To address this, in this chapter, we consider a few
alternate algorithms for DOA estimation using such arrays.

First, we propose coarray matrix augmentation, where the coarray Toeplitz matrices
containing the correlations at lags from the ULA segment on the positive side and
the negative side of the difference coarray are stacked to form a taller augmented
matrix. We propose to use subspace-based algorithms such as root-MUSIC and
ESPRIT with the augmented matrix and provide theoretical justification for doing
so.

Next, we consider some other approaches from the literature that can also use both
sides of the coarray having central holes, such as dictionary-based DOA estimation
and covariance interpolation. We observe that the dictionary-based DOA estimation
approach is not suitable when 𝐷 is large, but the covariance interpolation can
work well. Several interpolation algorithms are proposed in the literature, such as
[160]–[165]. When there are holes in the difference coarray, these algorithms can
interpolate the missing correlation values and form a matrix that is larger in size
than what can be obtained by spatial smoothing or direct augmentation approaches
(Sec. 2.5). Most of the previous papers have used interpolation for coprime arrays
or other similar arrays that already contain a large central ULA segment. By filling
the holes that appear after the ULA segment in the coarray, a few additional degrees
of freedom from the non-ULA part of the coarray are utilized.

To the best of our knowledge, this is the first time covariance interpolation is being
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proposed for the arrays with central holes in the coarray at lags such as 1 and 2.
After interpolation, the estimated Toeplitz covariance matrix is used to perform
root-MUSIC. We will demonstrate in our simulations that after interpolation, up
to twice the number of DOAs can be identified using WCNAs, compared to what
is possible with only using a one-sided ULA segment in the coarray. Thus, with
interpolation, we mitigate the critical disadvantage of the non-central ULA segment
in the difference coarray of WCNAs but still retain the advantage of robustness to
mutual coupling because of 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0.

We want to note that although we focus on demonstrating the advantages of using
interpolation for weight-constrained nested arrays in this chapter, similar advantages
will also be observed for other arrays with central holes in the difference coarray.
Some examples of such arrays from the literature include CADiS [83], generalized
nested arrays (GNA) [152], and generalized non-redundant sparse arrays [166]. The
algorithms discussed in this chapter also apply to such arrays.

In the last part of this chapter, we propose a generalized construction for weight-
constrained sparse arrays. Out of WCSAs proposed in Chapter 4 (see Table 4.2),
z1 has 𝑤(1) = 0, but 𝑤(2) increases linearly with 𝑁 . Arrays z(1)2 and z(2)2 have
𝑤(1) = 0 and 𝑤(2) is a small constant, but 𝑤(3) increases linearly with 𝑁 . Arrays
z(1)3 and z(2)3 have 𝑤(1) = 0, and 𝑤(2) and 𝑤(3) are small constants, but 𝑤(4)
increases linearly with 𝑁 . By ensuring that the coarray weights at the initial few
lags are small constants that do not depend on 𝑁 , we reduce the impact of mutual
coupling on DOA estimation.

To retain the advantages that arise from O(𝑁) aperture and 𝑤(1) = 0, and to reduce
the impact of mutual coupling on DOA estimation even further, a natural question
that arises is whether it is possible to construct an array such that:

1. The array aperture has O(𝑁) length and 𝑤(1) = 0.

2. For a given integer 𝑃, the coarray weights 𝑤(𝑙) for 2 ≤ 𝑙 ≤ 𝑃 do not increase
with the number of sensors 𝑁 .

3. The difference coarray contains a large ULA segment starting from lag 𝑙 = 2.

We answer this question affirmatively in the last part of this chapter by proposing a
generalized WCSA construction that provably satisfies the above requirements. The
effects of changing the parameter 𝑃 on different array properties, such as aperture,
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number of identifiable DOAs using coarray domain root-MUSIC or ESPRIT, and
coupling leakage, are analyzed. Improved constructions of sparse arrays under the
constraints 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0 are of interest to further improve the DOA
estimation accuracy under high mutual coupling.

Chapter outline. Sec. 5.2 proposes coarray matrix augmentation and provides theo-
retical justification for the proposed algorithms. Sec. 5.3 describes the interpolation
algorithm that we propose to apply for weight-constrained arrays. In Sec. 5.4,
we compare the DOA estimation performance and computation time of augmented
root-MUSIC, augmented ESPRIT, covariance interpolation, and dictionary-based
approach. In Sec. 5.5, we propose a generalized construction for WCSA. Then
in Sec. 5.6, we compare the proposed generalized construction of WCSA with
previously proposed constructions, as well as other well-known sparse arrays from
the literature. Finally, Sec. 5.7 concludes the chapter. The content of this chapter is
based on papers [167]–[169].

5.2 Augmented Coarray Root-MUSIC
To utilize both ULA segments present in the coarrays of WCSAs, in this chapter,
we propose to use coarray-domain subspace algorithms such as coarray-MUSIC
and coarray-ESPRIT using an augmented coarray matrix. This matrix is formed by
stacking R̂(+) and R̂(−) as follows:

R̂𝑎𝑢𝑔 =

[
R̂(−)

R̂(+)

]
. (5.1)

Here, R̂(+) and R̂(−) are the Toeplitz matrices of size 𝑟1 × 𝑟2 where

𝑟1 = ⌊𝐿/2⌋ + 1, and 𝑟2 = ⌈𝐿/2⌉ . (5.2)

The matrices are constructed based on the correlations from the ULA segment in
the positive side of the coarray (i.e., 𝑅(𝑙) for 𝐿1 ≤ 𝑙 ≤ 𝐿2) and the negative side of
the coarray (i.e., 𝑅(𝑙) for −𝐿2 ≤ 𝑙 ≤ −𝐿1), respectively. The (𝑖, 𝑗)-th entry in R̂(+)

is given by
R̂(+)
𝑖, 𝑗

= 𝑅(𝐿1 + ⌈𝐿/2⌉ − 1 + 𝑖 − 𝑗). (5.3)

The (𝑖, 𝑗)-th entry in R̂(−) is given by

R̂(−)
𝑖, 𝑗

= 𝑅(−𝐿2 + ⌈𝐿/2⌉ − 1 + 𝑖 − 𝑗). (5.4)

Note that these matrices are not Hermitian and positive semidefinite, and are not
even square matrices when 𝐿 is even. The augmented matrix R̂𝑎𝑢𝑔 is a tall matrix
of size 2𝑟1 × 𝑟2.
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It can be shown that under ideal situations (with no mutual coupling and a large
number of snapshots), the augmented matrix R𝑎𝑢𝑔 admits a rank-𝐷 matrix decom-
position. This is based on Vandermonde-like decompositions of the individual
Toeplitz matrices R(+) and R(−) , as explained next. Here R𝑎𝑢𝑔, R(+) , and R(−) are
the matrices with ideal correlations 𝑅(𝑙) instead of the estimated correlations 𝑅(𝑙).

Similar to the decomposition of R shown in Sec. 4.2, R(+) can be decomposed as

R(+) = A(+)PB𝐻 . (5.5)

Here, A(+) is an 𝑟1 × 𝐷 matrix with entries

A(+)
𝑚,𝑛 = 𝑒

𝑗𝜔𝑛 (𝐿1+𝑚−1) . (5.6)

P is a 𝐷 × 𝐷 diagonal matrix containing source powers 𝑝1, . . . , 𝑝𝐷 . B is an 𝑟2 × 𝐷
matrix with entries

B𝑚,𝑛 = 𝑒− 𝑗𝜔𝑛 (𝑟2−𝑚) . (5.7)

Similar to Eq. (5.5), R(−) can be decomposed as

R(−) = A(−)PB𝐻 , (5.8)

where A(−) is an 𝑟1 × 𝐷 matrix with entries A(−)
𝑚,𝑛 = 𝑒 𝑗𝜔𝑛 (−𝐿2+𝑚−1) . Note that the

matrix A(+) is the manifold matrix corresponding to the first 𝑟1 lags in the ULA
segment on the positive side (i.e., 𝐿1 ≤ 𝑙 ≤ 𝐿1 + 𝑟1 − 1), and A(−) is the manifold
matrix corresponding to the first 𝑟1 lags in the ULA segment on the negative side
(i.e., −𝐿2 ≤ 𝑙 ≤ −𝐿2 + 𝑟1 − 1).

Combining the above decompositions of R(+) and R(−) , we get the following de-
composition for R𝑎𝑢𝑔:

R𝑎𝑢𝑔 =

[
R(−)

R(+)

]
=

[
A(−)

A(+)

]
PB𝐻 . (5.9)

Next, we want to show that the column span of R𝑎𝑢𝑔 is the same as the column span
of the following virtual augmented array manifold matrix:

A𝑎𝑢𝑔 =

[
A(−)

A(+)

]
. (5.10)

To see this, note that A𝑎𝑢𝑔 and B both have rank 𝐷 when 𝐷 < 𝑟1 and all DOAs
are distinct. Hence, using Sylvester’s rank inequalities, it can be concluded that
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R𝑎𝑢𝑔 and A𝑎𝑢𝑔 have the same rank. Combining this with the fact that any vector
x satisfying x𝐻A𝑎𝑢𝑔 = 0 also satisfies x𝐻R𝑎𝑢𝑔 = 0 (from Eq. (5.9)), it can be
concluded that matrices A𝑎𝑢𝑔 and R𝑎𝑢𝑔 have the same column span.

In practice, we can only estimate this column span (or equivalently, its orthogonal
complement) from the estimated matrix R̂𝑎𝑢𝑔 with entries 𝑅(𝑙). This can be done
by performing SVD (singular value decomposition) of the matrix R̂𝑎𝑢𝑔. The first
𝐷 left singular vectors corresponding to the largest 𝐷 singular values provide an
estimate of the 𝐷-dimensional signal subspace (i.e., the column span of A𝑎𝑢𝑔),
and the rest of the singular vectors span its orthogonal complement (i.e., the noise
subspace). An important point to note here is that the signal and noise subspaces
thus obtained are in C2𝑟1 , whereas without the matrix augmentation proposed here
(when only using one-sided ULA segment), the signal and noise subspaces are in
C𝑟1 . Furthermore, the number of ‘noise eigenvectors’ obtained after augmentation
is 2𝑟1 − 𝐷, which is more than the 𝑟1 − 𝐷 noise eigenvectors that can be obtained
without the matrix augmentation. Note that the maximum number of identifiable
DOAs using the proposed augmentation is still ⌊𝐿/2⌋. However, by estimating these
signal and noise subspaces in a higher dimension, we hope to improve the DOA
estimation accuracy of the arrays that have central holes in their difference coarrays.

Based on this estimated noise subspace, we can use root-MUSIC to construct an
appropriate polynomial and estimate the DOAs based on the 𝐷 roots of the polyno-
mial that are closest to the unit circle. The root-MUSIC based on the noise subspace
obtained from R̂𝑎𝑢𝑔 is called augmented root-MUSIC. Instead of augmented root-
MUSIC, it is also possible to use augmented-ESPRIT, with appropriately chosen
subarrays and invariance required for ESPRIT.

5.3 Covariance Interpolation for WCNAs
Given a sparse array z of aperture 𝐴, the interpolation task is to estimate an ideal
Toeplitz covariance matrix of size (𝐴+1) × (𝐴+1) that a ULA of the same aperture
would have produced. In the absence of mutual coupling and noise, this ideal
covariance matrix corresponding to the fictitious ULA of aperture 𝐴 is given by [1],
[94]

R𝑈 = A𝑈PA𝐻
𝑈 . (5.11)

Here, A𝑈 is the array manifold corresponding to the ULA of aperture 𝐴, and P is the
source covariance matrix. As the manifold matrix of ULA A𝑈 is Vandermonde and
P is diagonal when sources are uncorrelated, R𝑈 is a rank-𝐷, positive semi-definite,
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Toeplitz matrix [1]. Note that in this situation, when the array output covariance is
Toeplitz, the coarray covariance matrix R̂𝐷𝐴 described in Sec. 2.5 is the same as
R𝑈 .

The output covariance R̂xx (Eq. 2.6) of the sparse array provides estimates of some
entries in R𝑈 , and it has been shown in [163] that asymptotically (with large 𝐾),
the distribution of the error between the estimated values from R̂xx and their ideal
counterpart in R𝑈 can be approximated as follows:

vec
(
R̂xx − ΓR𝑈𝚪

𝑇 − 𝜎2
𝑛 I

)
∼ 𝐴𝑠𝑁 (0, Ŵ). (5.12)

Here 𝚪 is a row selection matrix of size 𝑁 × (𝐴 + 1) corresponding to the sensor
positions of the sparse array z. 𝐴𝑠𝑁 (0, Ŵ) denotes an asymptomatically normal
distribution with mean 0 and covariance Ŵ. The covariance matrix Ŵ is given by

Ŵ = R̂𝑇
xx ⊗ R̂xx/𝐾, (5.13)

where ⊗ denotes the Kronecker product between matrices. This fact is used to
‘whiten’ the error term and solve the following optimization problem for covariance
interpolation [163]:

min
T(u)⪰0

| |Ŵ−1/2 vec(R̂xx − 𝚪T(u)𝚪𝑇 ) | |2 + 𝜆 tr(T(u)). (5.14)

Here, the Hermitian Toeplitz matrix to be estimated is parameterized by its first
column u, and T(u) denotes the Hermitian Toeplitz matrix having u as its first
column. The first term in the optimization objective is the discrepancy between the
correlation estimates that are available in R̂xx and the corresponding entries from
T(u). Because these error terms are correlated according to Eq. (5.12), a ‘whitening
transform’ is applied by premultiplying vec(R̂xx − 𝚪T(u)𝚪𝑇 ) with Ŵ−1/2, and the
𝑙2 norm of this whitened error vector is used as the first term in the objective.
For simplicity, we drop the noise term 𝜎2

𝑛 I, but [163] proposes first to estimate
noise variance �̂�2

𝑛 and use it instead. To promote low-rank solutions, a convex
relaxation of the rank penalty is added in the objective as a trace regularization term
tr(T(u)). The positive semi-definiteness constraint on T(u) is enforced explicitly,
and the hyperparameter 𝜆 selects the trade-off between the data fidelity term and
trace regularization. In our simulations, 𝜆 is chosen to be 0.01. Similar to the
simulations in [163], we have found that the performance of the proposed algorithm
is not very sensitive to 𝜆.

In our experimentation with different interpolation methods from the literature, we
found that the above interpolation algorithm works better than others, especially
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Figure 5.2: MUSIC spectra (left) and corresponding root-MUSIC plots (right)
when estimating DOAs using WCNA w(1)

1 with 𝑁 = 8. SNR is 0 dB, 𝐾 = 200,
and no mutual coupling is present. For root-MUSIC plots, the solid circles show
𝐷 conjugate pairs of roots closest to the unit circle, and crosses denote other roots
of the root-MUSIC polynomial. The black lines denote the angles corresponding
to true DOAs {𝜔𝑖}𝐷𝑖=1. (a) Estimating 𝐷 = 6 non-uniformly spaced DOAs using
one-sided ULA segment in coarray, as in Chapter 4, MSE = 0.0990. (b) Estimating
the same six DOAs with interpolation, MSE = 1.3785×10−4. The MUSIC spectrum
has much sharper peaks in this case. (c) Estimating 𝐷 = 18 DOAs uniformly spaced
in 𝜔 domain from −0.9𝜋 to 0.9𝜋 with interpolation, MSE = 5.9150 × 10−5.
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when no mutual coupling is present. So, we use this to interpolate the coarrays
of WCNAs. This interpolation method does not average the correlation entries
from R̂xx that correspond to the same lag. Recall that averaging of the entries
from R̂xx that correspond to the same lag is done in Eq. (2.22) for computing
the coarray covariance matrix. As discussed in Sec. 6.2, this averaging has been
observed to be the reason for the loss of efficiency for coarray-based DOA estimation
algorithms [90], [125], [158]. Furthermore, instead of simply using the 𝑙2 norm of
the error term vec(R̂xx − 𝚪T(u)𝚪𝑇 ) as it is, the above method whitens this error
term vec(R̂xx − 𝚪T(u)𝚪𝑇 ) by premultiplying it with Ŵ−1/2 based on its asymptotic
distribution. This is a unique feature of the above interpolation algorithm that is
not used in other interpolation methods. Later in Chapter 6, we will experimentally
evaluate the efficiency of DOA estimates obtained by this method.

For a demonstrative example of covariance interpolation, we consider the WCNA
w(1)

1 with 𝑁 = 8 sensors and demonstrate how the array can effectively be utilized by
interpolation (Eq. (5.14)). Without interpolation, using a one-sided ULA segment
in its coarray, w(1)

1 can identify up to 𝐷𝑚 = 9 DOAs. First, consider six DOAs
−50◦, 10◦, 0◦, 40◦, 50◦, and 80◦ with SNR 0 dB and 200 snapshots. Although no
mutual coupling is considered here for this simulation, it will be considered in
the other simulations later. Fig. 5.2(a) shows the MUSIC spectrum and root-
MUSIC plot obtained when using a one-sided ULA segment in the coarray. The
mean squared error in the 𝜔-domain is 0.0990, and the MUSIC spectrum is not
very sharp. In contrast, the MUSIC spectrum after interpolation in Fig. 5.2(b) is
much sharper, and in the root-MUSIC plot, phases of the roots closest to the unit
circle match well with the true DOAs (corresponding to the black lines), unlike
the previous case. The MSE after interpolation is 1.3785 × 10−4, which is about
three orders of magnitude smaller than that without interpolation. To solve the
optimization problem (5.14), we used CVX, a package for specifying and solving
convex programs [170], [171]. Next, we consider 18(= 2𝐷𝑚) DOAs uniformly
spaced in the 𝜔 domain. These DOAs cannot be estimated using only the one-
sided ULA segment from the coarray of w(1)

1 . The MUSIC and root-MUSIC plots
from Fig. 5.2(c) obtained after interpolation show that all the DOAs are correctly
identified. The MSE, in this case, is 5.9150 × 10−5.

5.4 Simulations Comparing Proposed Algorithms
In this section, we compare the performance of the augmented root-MUSIC al-
gorithm and other DOA estimation methods that use both sides of the difference
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coarray through Monte-Carlo simulations. We consider different WCSAs (z1 to
z6), WCNAs (w(1)

1 , w(2)
1 , and w2). Please refer to Sec. 4.3 and Sec. 4.4 for the

details of these arrays. We also consider CADiS array [83] and cMRA [84] from
the literature that have central holes in their difference coarrays. All arrays have
16 sensors, and the mutual coupling model described in Eq. (2.27) is used with
𝐵 = 10, 𝑐1 = 𝑐𝑒 𝑗𝜋/3, and 𝑐𝑙 = (𝑐1/𝑙)𝑒− 𝑗 (𝑙−1)𝜋/8, where |𝑐1 | = 𝑐 ∈ [0, 1], represents
the coupling strength. The source amplitudes {s[𝑘]}𝐾

𝑘=1 and noise {n[𝑘]}𝐾
𝑘=1 are

randomly sampled in each Monte-Carlo trial.

5.4.1 Augmented Root-MUSIC
Figs. 5.3 and 5.4 show the Monte-Carlo MSEs averaged over 1000 Monte-Carlo
trials when 𝐷 = 6 and 𝐷 = 20, respectively. Out of the three quantities, SNR =
5dB, the number of snapshots 𝐾 = 500, and coupling strength 𝑐 = 0.4, two are
kept fixed, and the other is varied on the 𝑋-axis. The DOA estimation MSEs with
coarray root-MUSIC using only the one-sided segments in the coarray are denoted
in solid lines, whereas the MSEs when using augmented root-MUSIC are denoted
in dashed lines. It can be observed that in both cases (𝐷 < 𝑁 and 𝐷 > 𝑁), when
SNR is larger than -10 dB, more than 400 snapshots are used, and coupling strength
𝑐 < 0.6, most arrays have significantly smaller MSE with augmented root-MUSIC
than one-sided root-MUSIC. There is about an order of magnitude improvement in
the MSE when augmented root-MUSIC is used. This demonstrates the advantage
of the proposed matrix augmentation to use the ULA segments on both sides of the
difference coarrays when the coarray has central holes. However, the polynomial
formed in augmented root-MUSIC has a much higher degree than the root-MUSIC
polynomial formed using only a one-sided ULA segment in the coarray. This
significantly increases the computation time of the augmented root-MUSIC. In
Table 5.1, we compare the computation time of different methods discussed in this
section. Compared to the computation time of coarray root-MUSIC using a one-
sided ULA segment in the coarray, the augmented root-MUSIC required about 12
times more computation time for the array z5.

Finally, to observe the improvement offered over the root-MUSIC performed one-
sided ULA segment, we rerun the simulations from Fig. 4.3 of Chapter 4 using the
augmented root-MUSIC algorithm. The resulting plots are shown in Fig. 5.5. Note
that in Fig. 4.3, only array z6 performed better than other arrays from the literature.
Whereas in Fig. 5.5 above using augmented root-MUSIC, many of the proposed
arrays now have over an order of magnitude smaller MSE than earlier and perform at
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Figure 5.3: Coarray root-MUSIC MSE for estimating 𝐷 = 6 DOAs uniformly
separated in 𝜔 from −0.9𝜋 to 0.9𝜋 with 16-sensor arrays. Solid lines show MSE
obtained when using a one-sided ULA segment in the coarray (i.e., matrix R̂(+)),
and dashed lines show MSE obtained when using both sides of the ULA segments
in the coarray (i.e., matrix R̂𝑎𝑢𝑔). (a) 𝑐 = 0.4 and 𝐾 = 500, (b) 𝑐 = 0.4 and SNR =
5 dB, (c) SNR = 5 dB and 𝐾 = 500. Augmented root-MUSIC with R̂𝑎𝑢𝑔 improves
the DOA estimation MSE compared to R̂(+) for most of the arrays.
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Figure 5.4: Simulation settings are the same as in Fig. 5.3, but with 𝐷 = 20 instead
of 𝐷 = 6. Augmented root-MUSIC with R̂𝑎𝑢𝑔 improves the DOA estimation MSE
compared to R̂(+) for WCSAs and WCNAs, as well as CADiS and cMRA over a
wide range of SNR, snapshots, and coupling strength.
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Figure 5.5: MSE when estimating 𝐷 = 6 DOAs uniformly spaced in 𝜔 from −0.8𝜋
to 0.8𝜋 with 16-sensor arrays using augmented root-MUSIC. (a) SNR = 5 dB and
𝐾 = 500, (b) 𝑐 = 0.5 and 𝐾 = 500, (c) 𝑐 = 0.5 and SNR = 5 dB. These plots
are analogous to the plots from Fig. 4.3. We observe here that because of the use
of both ULA segments present in the coarrays of weight-constrained sparse arrays,
now many of the proposed arrays can perform at par or better than other arrays from
the literature.
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Table 5.1: Comparison of computation times of different DOA estimation methods
applied to array z5 with 𝑁 = 16, averaged over 400 Monte-Carlo runs. The runtime
of coarray root-MUSIC using a one-sided ULA segment in the coarray is taken as
the reference value (x).

DOA estimation method Runtime
Coarray root-MUSIC
(One-sided ULA segment) x

Augmented root-MUSIC 11.8x
Coarray ESPRIT 0.4x
Augmented ESPRIT 0.6x
Dictionary-based estimation 1057x
Interpolation followed by root-MUSIC 240x

par or better than arrays from the literature. This further highlights the importance
of developing improved DOA estimation algorithms to leverage the advantage of
weight-constrained arrays under mutual coupling.

5.4.2 Augmented ESPRIT
Next, as explained in the previous section, it is also possible to estimate the DOAs
using ESPRIT applied on the augmented coarray matrix R̂𝑎𝑢𝑔. Fig. 5.6 shows the
coarray ESPRIT and augmented ESPRIT MSEs averaged over 1000 Monte-Carlo
trials when 𝐷 = 20. These plots show that the improvement in MSE obtained
with augmented ESPRIT is much smaller than the improvement observed with
augmented root-MUSIC in Figs. 5.3 and 5.4. Further investigations into why we do
not observe significant improvement with augmented ESPRIT will be of interest in
the future. However, augmented ESPRIT requires a much smaller computation time
than that of augmented root-MUSIC, as seen in Table 5.1. Notably, although the
size of the augmented matrix R̂𝑎𝑢𝑔 is doubled in one of the dimensions compared to
the one-sided coarray matrix R̂(+) previously used, the increase in the computation
time for augmented ESPRIT is much smaller compared to the increase in runtime
observed for augmented root-MUSIC. The reason for this is that the root-finding step
dominates the computation time of augmented root-MUSIC, whereas augmented
ESPRIT does not require finding roots. The computation time of SVD of an 𝑚 × 𝑛
matrix is O(min(𝑚𝑛2, 𝑛𝑚2)) and thus increases only linearly from R̂(+) to R̂𝑎𝑢𝑔

when one of the dimensions of the matrix is doubled. However, the computation
time of root-finding algorithms typically scales cubically with the degree of the
polynomial, and its effect is observed in the increase in the computation time of
augmented root-MUSIC.
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Figure 5.6: Simulation settings are the same as in Fig. 5.4, but using coarray
ESPRIT and augmented ESPRIT instead of coarray root-MUSIC and augmented
root-MUSIC. Improvement in MSE obtained with augmented ESPRIT is much
smaller than the improvement observed with augmented root-MUSIC.
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Instead of using subspace-based methods for DOA estimation considered thus far, it
is possible to use other DOA estimation methods that use both sides of the difference
coarray. We consider two such methods here, namely, the dictionary-based DOA
estimation and covariance interpolation (Sec. 5.3). These approaches are based on
solving an optimization problem and require heavy computation, as demonstrated
by the much higher computation time in Table 5.1.

5.4.3 Coarray-Domain Dictionary-Based DOA estimation
The coarray-domain dictionary-based approach to DOA estimation is based on
solving the following optimization problem:

min
p̄

| |̂rx − Dp̄| |22 + 𝜆 | |p̄| |1. (5.15)

where r̂x = vec (R̂xx), and the dictionary D is constructed based on 𝑀 sampled
directions 𝜔1, . . . 𝜔𝑀 as

D =

[
b(𝜔1) b(𝜔2) . . . b(𝜔𝑀) vec (I)

]
, (5.16)

where b(𝜔) = a∗(𝜔) ⊗ a(𝜔) is the Kronecker product of the steering vector corre-
sponding to direction 𝜔 with its conjugate. We use 𝑀 = 2000 and a regularization
parameter 𝜆 = 0.01 in the simulations. CVX [170], [171] is used to solve the
optimization problem. We observe that under high mutual coupling, the dictionary-
based DOA estimation works well when 𝐷 is small, but it does not work well when
𝐷 is large. In Figs. 5.7(a) and 5.7(b), the dictionary-based spectra obtained for
array z5 with 𝑁 = 16 sensors are shown, when estimating 𝐷 = 6 and 𝐷 = 20
DOAs, respectively. SNR 5 is dB, 𝐾 = 500 snapshots are used, and the cou-
pling strength is 𝑐 = 0.4. We observe that there are several spurious peaks in the
dictionary-based spectrum when 𝐷 = 20 and the DOAs are not correctly identified.
In Figs. 5.7(c) and 5.7(d), we plot the MSEs averaged over 200 Monte-Carlo trials
as coupling strength 𝑐 is varied, when 𝐷 = 6 and 𝐷 = 20, respectively. When
𝐷 = 20, most arrays have high MSE when 𝑐 > 0.2. CADiS and w2 are observed to
have the lowest MSE. These arrays are more robust to mutual coupling because of
𝑤(1) = 𝑤(2) = 0. Unlike the subspace-based DOA estimation algorithms, the ac-
curacy of the dictionary-based approach depends on hyperparameters 𝑀 and 𝜆 that
may require appropriate hyperparameter tuning. Furthermore, the dictionary-based
approach requires several orders of magnitude higher computation time (Table 5.1).
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Figure 5.7: Dictionary-based DOA estimation. (a) and (b) show the dictionary-
based spectra obtained for array z5 with 𝑁 = 16 sensors, 𝐾 = 500, SNR 5 dB,
and 𝑐 = 0.4 when 𝐷 = 6 and 𝐷 = 20, respectively. There are several spurious
peaks when 𝐷 = 20 and the DOAs are not correctly identified. (c) and (d) show the
variation in Monte-Carlo MSE averaged over 200 trials, as the coupling strength 𝑐
is varied on the 𝑋-axis, when 𝐷 = 6 and 𝐷 = 20, respectively. When 𝐷 = 20, most
arrays have high MSE when 𝑐 > 0.2.

5.4.4 Covariance Interpolation
As explained in Sec. 5.3, the covariance interpolation algorithmically interpolated
the holes at lags such as 1 and 2 so that we still get a large two-sided ULA segment
in the coarray. Here, we provide an example to demonstrate its effectiveness. Fig.
5.8 shows the MUSIC spectra obtained using WCNA w(1)

1 with 𝑁 = 8 sensors when
SNR is 0 dB, 𝐾 = 200, and 𝑐 = 0.2. When estimating 𝐷 = 6 non-uniformly spaced
DOAs using one-sided ULA segment in coarray without interpolation (Fig. 5.8(a)),
the MUSIC spectrum is not sharp, and MSE is high. Whereas after interpolation
(Fig. 5.8(b)), the MSE is reduced by about two orders of magnitude. Furthermore,
it is possible to identify more than ⌊𝐿/2⌋ DOAs after interpolation, as seen in Fig.
5.8(c).
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Figure 5.8: MUSIC spectra when estimating DOAs using WCNA w(1)
1 with 𝑁 = 8,

SNR 0 dB, 𝐾 = 200, and 𝑐 = 0.2. (a) Estimating 𝐷 = 6 non-uniformly spaced
DOAs located at −50◦, 10◦, 0◦, 40◦, 50◦, and 80◦ using one-sided ULA segment
in coarray, as in the previous chapter, MSE = 0.0977. (b) Estimating the same six
DOAs with interpolation, MSE = 1.00 × 10−3. The MUSIC spectrum has much
sharper peaks in this case. (c) Estimating 𝐷 = 18 DOAs uniformly spaced in 𝜔
domain from −0.9𝜋 to 0.9𝜋 with interpolation, MSE = 1.23 × 10−4.
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Figure 5.9: MSE when estimating 𝐷 = 6 DOAs spaced uniformly in𝜔 domain from
−0.8𝜋 to 0.8𝜋. The solid lines denote the MSE obtained after interpolation, and
the dashed lines denote the MSE obtained (without interpolation) using the longest
ULA segment in the coarray. (a) SNR = 5 dB and 𝐾 = 500, (b) SNR = 5 dB and
𝑐 = 0.2, (c) 𝐾 = 500 and 𝑐 = 0.2.
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Figure 5.10: MSE when estimating 𝐷 = 16 DOAs spaced uniformly in 𝜔 domain
from −0.9𝜋 to 0.9𝜋. Coarray root-MUSIC is used for SNA, whereas interpolation
(Eq. (5.14)) followed by root-MUSIC is used for WCNAs and CADiS. The coprime
array with 8 sensors cannot identify 16 DOAs (even after interpolation) and is
excluded. (a) SNR = 5 dB and 𝐾 = 500, (b) SNR = 5 dB and 𝑐 = 0.2, (c) 𝐾 = 500
and 𝑐 = 0.2.
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Next, we perform Monte-Carlo simulations for both cases when 𝐷 < 𝐷𝑚 (Fig. 5.9)
and 𝐷 > 𝐷𝑚 (Fig. 5.10). We consider super nested array (SNA) [39], (extended)
coprime array [35], [94], CADiS array [83], and the three WCNAs explained in
the previous section, all with 𝑁 = 8 sensors. Each simulation point in the plots
is averaged over 1000 Monte-Carlo runs with randomly chosen {s[𝑘], n[𝑘]}𝐾

𝑘=1.
We also consider the coupling coefficient with values 𝑐1 = 𝑐 · 𝑒 𝑗𝜋/3 and 𝑐𝑙 =

(𝑐1/𝑙)𝑒− 𝑗 (𝑙−1)𝜋/8 for 2 ≤ 𝑙 ≤ 10. Even in the presence of mutual coupling, we
solve the same optimization in Eq. (5.14). CADiS array also has central holes in its
coarray [83], so we apply the above interpolation to CADiS as well.

In Fig. 5.9, six DOAs are considered. The solid lines denote the MSE obtained after
interpolation (Eq.(5.14)), and the dashed lines denote the MSE obtained when using
the longest ULA segment in the difference coarray (possibly one-sided). Out of the
three quantities, SNR = 5dB, snapshots 𝐾 = 500, and coupling strength 𝑐 = 0.2, two
are kept fixed and the third is varied on the 𝑋-axis. In Fig. 5.9(a) for 𝑐 ≤ 0.5, the
WCNAs w(2)

1 and w2 after interpolation have the lowest MSEs. Similarly, in Fig.
5.9(b) we observe that for all different numbers of snapshots, w(2)

1 and w2 perform
the best. Array w(1)

1 performs worse than CADiS here in Fig. 5.9(b) when 𝑐 = 0.2,
but in Fig. 5.9(a) we see that w(1)

1 can perform better than CADiS when 𝑐 > 0.5.
Lastly, Fig. 5.9(c) shows that as SNR increases w(2)

1 can perform significantly better
than w2.

Here, we would like to note that a surprising behavior of an increase in MSE at high
SNR is observed when interpolation is used in the presence of mutual coupling.
This effect is observed rather dramatically in Fig. 5.9(c) for the CADiS array,
but the increase in MSE can still be seen to some extent for WCNAs at higher
SNRs. This unusual effect seems to be because of the particular choice of the
optimization problem (Eq. (5.14)). In our simulations, we have noticed that this
unusual behavior can go away by appropriately modifying the optimization problem
by dropping/compensating for Ŵ in Eq. (5.14). However, with the modified
optimization, overall DOA estimation accuracy is lower using the optimization from
Eq. (5.14). Thus, in this chapter, we still use the interpolation technique from [163]
even in the presence of mutual coupling, and a careful study of this increase in MSE
at high SNR is deferred to future work. Robust interpolation methods that explicitly
account for the presence of mutual coupling in their optimization objective should
be developed in the future.

Next, in Fig. 5.10, we consider 16 DOAs and perform similar Monte-Carlo simula-
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tions as in Fig. 5.9. Note that none of the arrays, except SNA, could have identified
16 DOAs using coarray root-MUSIC without interpolation. Monte-Carlo simula-
tions from Fig. 5.10 demonstrate that it is indeed possible to correctly identify
more than 𝐷𝑚 (= ⌊𝐿/2⌋) DOAs with a small MSE, after interpolation. The array
w2 is observed to perform the best. This demonstrates the ability of WCNAs to
effectively handle mutual coupling by enforcing 𝑤(1) = 𝑤(2) = 0 and at the same
time estimate more DOAs with interpolation.

5.5 Generalized Construction of Weight-Constrained Sparse Arrays
In this section, we propose a generalized construction of WCSAs where, in addition
to O(𝑁) aperture and 𝑤(1) = 0, the coarray weights 𝑤(𝑙) for 2 ≤ 𝑙 ≤ 𝑃 are
small constants that do not increase with 𝑁 . Here 𝑃 can be any integer satisfying
2 < 𝑃 < 𝑁 . Similar to the construction procedure of the previously proposed
WCSAs, we start with a (𝑃 + 1)-sparse ULA of 𝑁 − 𝑃 sensors:

P1 = (𝑃 + 1) [[0, 𝑁 − 𝑃 − 1]] . (5.17)

The rest of the 𝑃 sensors are appended appropriately to ensure that the resulting
array contains a large ULA segment in the coarray. Note that the differences of the
form (𝑃+1)𝑘 for each 𝑘 ∈ [[0, 𝑁 −𝑃−1]] are created by self-differences of sensors
within P1. The missing differences of the form (𝑃 + 1)𝑘 + 𝑞 where 1 ≤ 𝑞 ≤ 𝑃

should be generated when the rest of the 𝑃 sensors are augmented, while ensuring
that no two sensors are at a distance of 1 unit from each other. The following array
construction can achieve this:

z∗ = P1 ∪ P2 ∪ P3 ∪ P4, (5.18)

where,
P2 = −2[[1, ⌊𝑃/2⌋]], (5.19)

P3 = (𝑃 + 1) (𝑁 − 𝑃 − 1) + 1 + 2[[1, ⌊(𝑃 − 1)/2⌋]], (5.20)

P4 =


−𝑃 − 2 if 𝑃 is odd,

(𝑃 + 1) (𝑁 − 𝑃 − 1) + 𝑃 + 2 if 𝑃 is even.
(5.21)

Here, P2 is a 2-sparse ULA of ⌊𝑃/2⌋ sensors placed at a distance of 2 units to the
left of P1. P3 is a 2-sparse ULA of ⌊(𝑃 − 1)/2⌋ sensors placed at a distance of 3
units to the right of the P1. Finally, P4 is a single sensor placed at a distance of 𝑃 + 2
units on the left of P1 if 𝑃 is odd, and on the right if 𝑃 is even. Fig. 5.11 shows the
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Figure 5.11: The generalized construction of weight-constrained sparse array z∗
from Eq. (5.18) when 𝑃 is odd.

proposed generalized construction of the weight-constrained sparse arrays when 𝑃
is odd.

Note that all interelement spacings are ensured to be at least two units by construc-
tion, thus ensuring 𝑤(1) = 0. Also, it can be verified that the aperture of the array
z∗ is

𝐴 = (𝑃 + 1) (𝑁 − 𝑃 + 1), (5.22)

and thus, for a fixed 𝑃, it has O(𝑁) length, as desired. Now we prove that the
difference coarray of z∗ contains a large ULA segment starting from lag 2:

Lemma 6. The difference coarray D+
z∗ of z∗ contains a ULA segment from 𝐿1 = 2

to 𝐿2 = (𝑃 + 1) (𝑁 − 𝑃) − 1.

Proof. Note that for each 𝑘 ∈ [[0, 𝑁 − 𝑃 − 1]]:

• P1 creates self-lags of the form (𝑃 + 1)𝑘 in the coarray.

• The 𝑚-th sensor in P2 located at −2𝑚 is at a distance of 2𝑚 from the left
end of the (𝑃 + 1)-sparse ULA P1. Thus, it creates differences of the form
{(𝑃 + 1)𝑘 + 2𝑚} with the sensors from P1.

• Similarly, 𝑛-th sensor in P3 located at (𝑃 + 1) (𝑁 − 𝑃 − 1) + 2𝑛 + 1 is at a
distance of 2𝑛 + 1 from the right end of the (𝑃 + 1)-sparse ULA P1. Thus, it
creates differences of the form {(𝑃 + 1)𝑘 + 2𝑛 + 1} with the sensors from P1.

• Considering all values of 𝑚 in [[1, ⌊𝑃/2⌋]] for P1 and all values of 𝑛 in
[[1, ⌊(𝑃 − 1)/2⌋]], it can be seen that all differences of the form {(𝑃+1)𝑘+𝑞}
where 𝑞 ∈ [[2, 𝑃]] are generated between the sensors from P2 ∪ P3 and P1.

• Finally, the sensor from P4 is at a distance of 𝑃 + 2 units from P1 (either
from the left or right end, depending on whether 𝑃 is odd or even). Thus it
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creates differences of the form {(𝑃 + 1)𝑘 + 𝑃 + 2} = {(𝑃 + 1) (𝑘 + 1) + 1} for
𝑘 ∈ [[0, 𝑁 − 𝑃 − 1]] with the sensors from P1.

Combining the above sets of differences for all values of 𝑘 ∈ [[0, 𝑁 − 𝑃 − 1]], we
get that all lags in the range [[2, (𝑃 + 1) (𝑁 − 𝑃) − 1 are created in the difference
coarray. Thus, the difference coarrayD+

z∗ of z∗ contains a ULA segment from 𝐿1 = 2
to 𝐿2 = (𝑃 + 1) (𝑁 − 𝑃) − 1. □

Remark. Note that the ULA segment in the coarray of z∗ may extend beyond 𝐿2 for
some combinations of 𝑁 and 𝑃. In other words, the coarray D+

z∗ does not necessarily
have a hole at location 𝐿2 + 1 = (𝑃 + 1) (𝑁 − 𝑃). We have observed in our examples
that for odd values of 𝑃, there is indeed a hole in the coarray at lag (𝑃 + 1) (𝑁 − 𝑃),
whereas, for even values of 𝑃, there is no hole at lag (𝑃 + 1) (𝑁 − 𝑃). For even
values of 𝑃, only two holes (at locations 1 and 𝐴 − 1) are observed in the coarray
D+

z∗ .

Now, to see that the coarray weights 𝑤(𝑙) for 2 ≤ 𝑙 ≤ 𝑃 do not increase with the
number of sensors 𝑁 , consider the following two observations. First, as 𝑁 increases,
only the size of sparse ULA P1 increases, and the relative positions of P2, P3, and
P4 from the endpoints of sparse ULA P1 remain the same. Secondly, all sensors in
P1 except the first sensor at 0 and the last sensor at location (𝑃 + 1) (𝑁 − 𝑃 − 1) are
at least 𝑃 + 1 distance apart from any other sensors and hence do not contribute to
𝑤(𝑙) for 2 ≤ 𝑙 ≤ 𝑃. Combining these two observations, it can be concluded that
the coarray weights 𝑤(𝑙) for 2 ≤ 𝑙 ≤ 𝑃 do not increase with the number of sensors
𝑁 . Furthermore, the coarray weights 𝑤(𝑙) for 2 ≤ 𝑙 ≤ 𝑃 remain small constants
that do not depend on 𝑁 . For example, when 4 < 𝑃 < 𝑁 − 1, it can be verified that
𝑤(2) = 𝑃 − 2, 𝑤(3) = 2, 𝑤(4) = 𝑃 − 4, and 𝑤(5) = 2.

For a given number of sensors 𝑁 , there is an interesting tradeoff in choosing an
optimal value of 𝑃. Note that both the aperture and 𝐿2 are quadratic functions of
𝑃, and are maximized when 𝑃 is approximately 𝑁/2. Thus, increasing 𝑃 increases
the aperture and the length of the ULA segment in the coarray up to a certain point.
When 𝑁 is large, increasing 𝑃 increases the number of coarray weights 𝑤(𝑙) for
2 ≤ 𝑙 ≤ 𝑃 having small values, thus contributing to a reduction in mutual coupling.
However, on the other hand, the values of coarray weights corresponding to even
lags increase with increasing 𝑃, contributing to an increase in mutual coupling.

Fig. 5.12 illustrates these behaviors. For different numbers of sensors, we plot
the array aperture, the number of identifiable DOAs using coarray MUSIC (𝐷𝑚 =



160

0 5 10 15 20
P

0

200

400

600

800

A
pe

rt
ur

e

N = 25
N = 35
N = 45
N = 55

(a)

0 5 10 15 20
P

0

100

200

300

400

D
m

N = 25
N = 35
N = 45
N = 55

(b)

0 5 10 15 20
P

0.1

0.15

0.2

0.25

C
ou

pl
in

g 
Le

ak
ag

e

N = 25
N = 35
N = 45
N = 55(c)

Figure 5.12: The effect of varying the parameter 𝑃 on the aperture 𝐴, maximum
number of identifiable DOAs using coarray MUSIC 𝐷𝑚 = ⌊𝐿/2⌋, and coupling
leakage L of the proposed generalized construction of WCSA z∗. The aperture and
𝐷𝑚 peak around 𝑃 ≈ 𝑁/2, and the coupling leakage is lowest for 5 ≤ 𝑃 ≤ 7 when
25 ≤ 𝑁 ≤ 55.
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⌊𝐿/2⌋), and the coupling leakage as 𝑃 is varied on the 𝑋-axis. Coupling coefficients
with 𝐵 = 1000 and |𝑐1 | = 0.3 are considered to calculate coupling leakage. As
expected, the aperture and 𝐷𝑚 increase with increasing 𝑃 up to a point and then
decrease. The coupling leakage L decreases rapidly at smaller values of 𝑃 and then
increases as 𝑃 is increased further. The optimum 𝑃 is observed to be between 5 and
8 when 25 ≤ 𝑁 ≤ 55. As we will see in the simulation examples in the next section,
generalized WCSAs z∗ with values of 𝑃 between 5 and 8 indeed have small DOA
estimation errors.

5.6 Simulations with Generalized Construction of WCSAs
Now, we compare the performance of the proposed generalized construction of
WCSA with previously proposed WCSAs and other sparse arrays through Monte-
Carlo simulations. Each simulation point is averaged over 1000 Monte-Carlo runs
with randomly chosen {s[𝑘], n[𝑘]}𝐾

𝑘=1. For ULA, direct MUSIC is used (when
𝐷 < 𝑁), whereas for all sparse arrays, coarray-ESPRIT is used to estimate DOAs.
For the proposed WCSA z∗, the ULA segment in the coarray from 𝐿1 = 2 to
𝐿2 = (𝑃 + 1) (𝑁 − 𝑃) − 1 is used. The mutual coupling parameters with 𝐵 = 10,
𝑐1 = 𝑐𝑒 𝑗𝜋/3, and 𝑐𝑙 = (𝑐1/𝑙)𝑒− 𝑗 (𝑙−1)𝜋/8 are used.

First, we compare the performance of the proposed WCSA z∗ with the WCSAs z1

to z6 proposed in Sec. 4.3 for estimating 𝐷 = 25 DOAs using 𝑁 = 30 sensors. Note
that some of the previously proposed WCSA (z4, z5, and z6) have 𝑤(1) = 𝑤(2) = 0,
whereas rest of the arrays have only 𝑤(1) = 0. From Fig. 5.13, we observe that the
proposed WCSA z∗ has a smaller MSE than previously proposed WCSA for several
different values of 𝑃 for a wide range of SNR and snapshots and when the coupling
strength is lower than 0.5. In particular, the reduction in MSE for z∗ with 𝑃 = 8 is
observed to be the most significant.

Next, for a fixed number of sensors 𝑁 = 16, we compare the DOA estimation error
of the proposed array z∗ for 4 ≤ 𝑃 ≤ 8 with different well-known sparse arrays from
the literature, such as super nested array (SNA) [39], [101], augmented nested ar-
ray (ANAII-2) [103], extended generalized coprime array (EGCA) [157], displaced
dilated nested array (DDNA) [92], MISC arrays [104], minimum redundancy array
(MRA) [33], [84], (approximate) constrained MRAs (cMRAs) [84], extended co-
prime array [35], CADiS array [83], thinned coprime array (TCA) [91], and extended
padded coprime array (ePCA) [105]. Out of these arrays, cMRA has 𝑤(1) = 0, and
CADiS can have 𝑤(𝑙) = 0 for several small values of 𝑙. Fig. 5.14 clearly shows
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Figure 5.13: Comparing coarray ESPRIT MSE for estimating 𝐷 = 25 DOAs
uniformly separated in 𝜔 from −0.95𝜋 to 0.95𝜋 with 30-sensor arrays. (a) 𝑐 = 0.3,
𝐾 = 500, (b) SNR = 5 dB, 𝑐 = 0.3, and (c) SNR = 5 dB, 𝐾 = 500. The proposed
WCSA z∗ with several different values of 𝑃 has lower MSE than previously proposed
WCSAs (z1 to z6) for a wide range of SNR and snapshots when the mutual coupling
strength is lower than 0.5.



163

-30 -20 -10 0 10 20 30
SNR (dB)

10-5

10-4

10-3

10-2

10-1

100

M
S

E

SNA2

ANAII-2

EGCA

DDNA

MISC

MRA

cMRA

Coprime

CADIS

TCA

ePCA

z
*
(P=3)

z
*
(P=4)

z
*
(P=5)

z
*
(P=6)

z
*
(P=7)

z
*
(P=8)

(a)

0 500 1000 1500 2000
Snapshots

10-5

10-4

10-3

10-2

10-1

100

M
S

E

SNA2

ANAII-2

EGCA

DDNA

MISC

MRA

cMRA

Coprime

CADIS

TCA

ePCA

z
*
(P=3)

z
*
(P=4)

z
*
(P=5)

z
*
(P=6)

z
*
(P=7)

z
*
(P=8)

(b)

0 0.2 0.4 0.6 0.8 1
Coupling Strength

10-6

10-4

10-2

100

M
S

E

SNA2

ANAII-2

EGCA

DDNA

MISC

MRA

cMRA

Coprime

CADIS

TCA

ePCA

z
*
(P=3)

z
*
(P=4)

z
*
(P=5)

z
*
(P=6)

z
*
(P=7)

z
*
(P=8)

(c)

Figure 5.14: Comparing coarray ESPRIT MSE for estimating 𝐷 = 20 DOAs
uniformly separated in 𝜔 from −0.9𝜋 to 0.9𝜋 with 16-sensor arrays. (a) 𝑐 = 0.4,
𝐾 = 500, (b) SNR = 5 dB, 𝑐 = 0.4, and (c) SNR = 5 dB, 𝐾 = 500. The proposed
WCSA z∗, CADiS, and cMRA are the arrays that have 𝑤(1) = 0 and they can
correctly identify the DOAs with small MSE when the coupling strength is larger
than 0.2.
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Figure 5.15: Comparing coarray ESPRIT MSE of the arrays with 𝑁 = 50 under the
aperture constraint 𝐴 ≤ 300 when estimating 𝐷 = 25 DOAs separated uniformly
in 𝜔 from −0.9𝜋 to 0.9𝜋. All possible configurations of CADiS satisfying the
constraints are compared with three configurations of the proposed array satisfying
the constraints. (a) 𝑐 = 0.3, 𝐾 = 500, (b) SNR = 5dB, 𝑐 = 0.3, (c) SNR = 5dB,
𝐾 = 500. The proposed array z∗ with 𝑃 = 5 is observed to have the lowest MSE.
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that arrays that do not have 𝑤(1) = 0 perform poorly when 𝑐 > 0.2. The proposed
array can perform even better than cMRA and CADiS in some situations (here, for
example, z∗ with 𝑃 = 6).

Similar to MRAs, no closed-form expression is available for cMRAs. Sensor
positions are only available for 𝑁 < 20 [84] and are found by extensive numerical
search. CADiS can have several possible configurations for a given number of
sensors, however, the optimal configuration parameters (𝑀 , 𝑁 , and 𝑝 from [83]) may
be difficult to choose without enumerating all possibilities. CADiS is also observed
to have more holes in the coarray, whereas the proposed arrays are observed to have
either 2 or 4 holes in the coarray. Furthermore, the CADiS array with 𝑁 sensors
has an aperture of O(𝑁2) length, whereas the proposed WCSA has an aperture of
O(𝑁) length. Thus, the proposed array may have an advantage in the presence of
an aperture constraint, as demonstrated by the next simulation.

In Fig. 5.15, we consider the situation where 𝑁 = 50 and a maximum aperture of
length 300 is available. There are three possible configurations of CADiS satisfying
this constraint, and they are compared with three configurations of the proposed
WCSA satisfying the constraints. It is observed that the proposed WCSAs have
lower MSE than possible CADiS configurations and, in particular, the proposed
WCSA z∗ with 𝑃 = 5 performs the best. Furthermore, the lengths of the ULA
segments in the coarray of the proposed array with 𝑃 = 4 and 𝑃 = 5 (228 and 268,
respectively) are equal to or longer than those of all three CADiS configurations
(228, 144, and 99). This demonstrates that for a given number of sensors 𝑁 and
available aperture 𝐴, the proposed array z∗ can place the senors in the available
aperture better than CADiS and produce a longer ULA segment in the difference
coarray.

5.7 Concluding Remarks
In the first part of this chapter, we proposed coarray matrix augmentation and
covariance interpolation for effectively using the non-central ULA segments in the
coarrays of weight-constrained arrays. We proved that the ideal augmented coarray
matrix R𝑎𝑢𝑔 has the same column span as the augmented manifold matrix A𝑎𝑢𝑔, and
proposed applying root-MUSIC and ESPRIT using the augmented coarray matrix.
Simulation results demonstrated that augmented root-MUSIC significantly improves
the accuracy of DOA estimation compared to using only the one-sided ULA segment
of arrays that have central holes in their difference coarrays. Although augmented
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ESPRIT showed only marginal improvement in DOA estimation MSE, it has a
much lower computation time, as it does not involve a computationally dominant
root-finding step.

With covariance interpolation, we experimentally demonstrated that the arrays could
identify up to twice the number of DOAs compared to what is possible using only the
one-sided ULA segment in the difference coarray. Even when the number of DOAs
is small, the MSE obtained after interpolation is over an order of magnitude smaller
than that without interpolation. This mitigates the disadvantage of the non-central
ULA segments in the coarrays of WCNAs, but retains the advantage of robustness
to mutual coupling because of 𝑤(1) = 0 or 𝑤(1) = 𝑤(2) = 0.

In the simulations, we observed an undesirable increase in MSE at high SNRs when
the interpolation algorithm in Eq. (5.14) is used. In the future, further investiga-
tions are required to understand the reasons behind this behavior. Furthermore, a
‘coupling-aware’ interpolation algorithm that can incorporate the coupling matrix
C in the optimization objective would be of interest. One possible way of doing
this is considered in Sec. 6.6. Solving the optimization problem for interpolation is
computationally heavy and not suitable for real-time applications, especially when
the number of sensors 𝑁 is large. Thus, developing computationally efficient algo-
rithms to effectively utilize the arrays with non-central ULA segments in coarrays
would be beneficial.

In the last part of this chapter, we proposed a generalized construction for weight-
constrained sparse arrays that have O(𝑁) aperture and 𝑤(1) = 0. Furthermore, for a
given integer 2 < 𝑃 < 𝑁 , the proposed array configuration satisfies the property that
𝑤(𝑙) ≤ 𝑃−2 for 2 ≤ 𝑙 ≤ 𝑃. As these coarray weights do not grow with an increasing
number of sensors 𝑁 , the impact of mutual coupling on DOA estimation is reduced.
We proved that the difference coarray of the proposed construction z∗ contains a
large ULA segment from lag 𝐿1 = 2 to 𝐿2 = (𝑃 + 1) (𝑁 − 𝑃) − 1. Monte-Carlo
simulations demonstrated that the proposed arrays can perform better than WCSAs
proposed in Chapter 4 and several well-known sparse arrays from the literature.
Furthermore, for a fixed 𝑃, the aperture of the proposed weight-constrained sparse
array z∗ increases linearly with 𝑁 , which is helpful under the aperture constraint.

In the future, it would be of interest to develop generalized constructions of WCSAs
such that 𝑤(1) = 𝑤(2) = 0 and 𝑤(𝑙) for 3 ≤ 𝑙 ≤ 𝑃 are small constants independent
of 𝑁 . However, we have observed that with the currently adopted construction
mechanism of dilating a ULA and appending it with a few additional sensors, this
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is possible only when 𝑃 < 5. A similar limitation, because of the currently adopted
construction mechanism, is also encountered for constructing weight-constrained
arrays with 𝑤(1) = 𝑤(2) = 𝑤(3) = 0. A different array construction would be
required to achieve the above.
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C h a p t e r 6

ON THE EFFICIENCY OF COARRAY-DOMAIN DOA
ESTIMATION ALGORITHMS

6.1 Introduction
In Chapter 2, we briefly reviewed the coarray-domain DOA estimation algorithms.
The key step for estimating the DOAs via coarray-domain processing is the con-
struction of a ‘coarray covariance matrix’ based on the known entries in the sample
covariance matrix of the array output (R̂xx). First, array output correlations are
estimated at each lag 𝑙 in the difference coarray according to Eq. (2.22). Then, the
coarray covariance matrix is usually formed either by employing spatial smoothing
to obtain the matrix R̂𝑆𝑆 (Eq. (2.31)) or through a direct augmentation approach to
obtain the matrix R̂𝐷𝐴 (Eq. (2.33)). When the difference coarray Dz of the array z
contains central ULA segment of length 2𝐿 − 1 from lags 𝑙 = −(𝐿 − 1) to 𝑙 = 𝐿 − 1,
the size of these matrices is 𝐿 × 𝐿. Subsequently, popular subspace-based DOA
estimation algorithms such as MUSIC, root-MUSIC, and ESPRIT are applied using
R̂𝑆𝑆 or R̂𝐷𝐴. Because the two matrices are related to each other [93] by the relation
in Eq. (2.34), the same DOA estimates are obtained by using either of the two
matrices.

In Chapter 2, we also discussed some properties and trends of CRB and analytical
MSE expressions for direct-MUSIC and coarray-MUSIC derived in [86], [87],
[122]. It was noted [87] that the MSE of DOA estimation using coarray-MUSIC
with sparse arrays does not converge to CRB, even asymptotically, when more
than one source is present. This means that coarray-MUSIC is inefficient, even
asymptotically with a large number of snapshots and SNR. This contrasts with
the direct MUSIC, which does achieve the CRB asymptotically. However, these
observations in [87] regarding coarray-MUSIC inefficiency were made for sparse
arrays (nested array, coprime array, and MRA), but not for a ULA. Although there
is no advantage in using coarray-MUSIC over direct-MUSIC for ULA (in terms
of degrees of freedom), such analysis is useful to gain insights into the efficiency
of coarray-MUSIC. Furthermore, [87] studied the effect of SNR on the efficiency
of sparse arrays, however, the effect of the number of snapshots on efficiency was
not considered. It is worth mentioning that some recent papers have pointed out
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the asymptotic inefficiency of coarray-MUSIC for DOA estimation and suggested
alternative coarray-based algorithms. Among these alternatives are the weighted
least squares (WLS) [90] method, which provably achieves CRB asymptotically,
an augmented Toeplitz matrix reconstruction approach [89], and a weighted proxy
covariance matrix construction approach [124].

Thus, in the first part of this chapter, we conduct a series of experiments to inves-
tigate when and how the coarray-MUSIC loses its efficiency for a simple scenario
involving a ULA and fewer sources than the number of sensors. In this case, direct-
MUSIC already achieves CRB asymptotically, as the number of snapshots increases.
However, we observe that coarray-MUSIC suffers from significant performance loss
even in this case, similar to what has been observed for sparse arrays. It is worth
noting that the only difference between coarray-MUSIC and direct-MUSIC for ULA
is the diagonal averaging of the array output covariance matrix, and hence, this ob-
servation is surprising. This observation for ULA suggests that the loss of efficiency
is an artifact of the coarray-MUSIC algorithm, rather than the array sparsity. We
also consider two different variations of the coarray covariance matrix, namely, the
‘tall’ and ‘fat’ coarray covariance matrices that can be used for DOA estimation
instead of the standard square coarray covariance matrix.

Through further experiments, we encounter some surprising observations. We
observe that the coarray-MUSIC MSE for two-source situations does not decrease
monotonically with the separation between the two DOAs. In another experiment,
we analyze the relative importance of each array output correlation. We start
with the ideal array output correlations and perturb one of the entries at a time to
see its effect on DOA estimation MSE. Our findings show that perturbing array
output correlations at a lag around 𝑁/2 results in the largest MSE. These surprising
observations provide new insights into the complex relationship of coarray-MUSIC
MSE on several parameters, such as array geometry, DOA separation, and accuracy
of the estimated array output correlations.

In the second part of this chapter, we further examine the crucial step of coarray-
domain matrix formation to mitigate the source of inefficiency in coarray-domain
DOA estimation. Note that the 𝐿 × 𝐿 matrices R̂𝑆𝑆 and R̂𝐷𝐴 act as substitutes for
the output covariance matrix that a fictitious ULA with 𝐿 physical sensors would
have produced. So instead of constructing the matrix using spatial smoothing or
direct augmentation, we use the Toeplitz covariance matrix construction approach
proposed in [163] to estimate the larger covariance matrix of the fictitious ULA.
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This approach formulates an optimization problem to construct a large Toeplitz
covariance matrix, upon which subspace-based DOA estimation algorithms can
be applied. We demonstrate that by using this approach for the covariance matrix
construction, it is possible to obtain large improvements in the DOA estimation MSE.
Our numerical experiments demonstrate that when 𝐷 < 𝑁 , the DOA estimation
MSE is close to CRB, and does not saturate at large SNR, unlike that of the coarray-
MUSIC. When 𝐷 > 𝑁 , MSE can be much smaller than that of coarray-MUSIC,
and, in some situations, can even be better than the CRB, because of the potential
bias in the DOA estimates produced by this method. For the situations where
mutual coupling is present, and the coupling matrix C is known (or can be reliably
estimated), we propose a modification to the Toeplitz covariance matrix construction
approach. The numerical simulations show that with this modification to incorporate
the knowledge of C, the DOA estimation MSE can be very close to the CRB, and
in some situations can even be smaller than the CRB, similar to the case without
mutual coupling.

We would like to note that several optimization problems with a similar flavor to
that in [163] have been proposed in the literature for coarray interpolation [160]–
[162], [164], [165]. However, to the best of our knowledge, these methods have not
been investigated in terms of the efficiency of DOA estimates obtained using them.
Our experiments demonstrate that even for arrays such as ULA, nested arrays, and
MRAs that do not have holes in the difference coarray and hence there is no ‘need’
for ‘interpolating’ the coarray, constructing the covariance matrix according to the
optimization in [163] can greatly improve the DOA estimation MSE. Importantly,
unlike these other optimization problems for coarray interpolation, the method
from [163] involves a key step of ‘error whitening’. As we will see later in the
simulations, the whitening step is observed to be a major contributor to the reduction
of MSE. In this chapter, we want to establish a simpler alternative to some of the
recently proposed methods from the literature, such as [90], [172], and highlight the
importance of developing other ways of constructing a coarray covariance matrix
for efficient DOA estimation using sparse arrays.

Chapter Outline: Sec. 6.2 investigates coarray-MUSIC efficiency for ULA. Fol-
lowing that, in Section 6.3, we explain the tall and fat variations of the coarray
covariance matrix, along with examples of DOA estimation using these matrices.
Next, in Sec. 6.4, we describe the Toeplitz covariance matrix construction approach
and explain the key features of this approach that contribute to the improvement in
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DOA estimation MSE. Sec. 6.5 provides simulations with different sparse arrays
that demonstrate the effectiveness of this approach in reducing the DOA estimation
MSE. Sec. 6.6 proposes a modification to the Toeplitz covariance matrix con-
struction approach to account for the presence of mutual coupling, and provides
simulations with different sparse arrays. Finally, Sec. 6.7 concludes this chapter.
The content from Sec. 6.2 to Sec. 6.5 of this chapter is based on papers [158],
[173].

6.2 Efficiency of Coarray-MUSIC for ULA
In previous investigations on the efficiency of coarray-MUSIC, [87], [124], one ques-
tion that remained unexplored was whether the coarray-MUSIC approach achieves
CRB at least for the ULA. Since the 𝑁-sensor ULA can only identify up to 𝑁 − 1
sources unambiguously using second-order statistics [1], we will focus on the case
where 𝐷 < 𝑁 . The difference coarray D of the ULA is comprised of all lags from
−(𝑁 − 1) to 𝑁 − 1. Therefore, in the case of ULA, transitioning to the coarray
domain does not increase degrees of freedom. As direct (element space) MUSIC
already asymptotically achieves CRB when 𝐷 < 𝑁 , the goal here is not to find a
better algorithm but to gain further insight into when and how the coarray-MUSIC
loses its efficiency. Thus, the first part of this chapter experimentally investigates
the asymptotic efficiency of coarray-MUSIC for ULA when 𝐷 < 𝑁 .

For the 𝑁-sensor ULA, the correlations 𝑅(𝑙) from Eq. (2.22) can be expressed as

𝑅(𝑙) = 1
𝑁 − |𝑙 |

∑︁
𝑖− 𝑗=𝑙

[R̂xx]𝑖, 𝑗 . (6.1)

Thus, for the case of ULA, the coarray covariance matrix R̂𝐷𝐴 (Eq. (2.33)) formed
for coarray-MUSIC is simply the ‘Toeplitzized’ (diagonally averaged) version of
R̂xx.

For the ULA, the ideal covariance matrix Rxx (Eq. (2.6)) is Toeplitz when the sources
are uncorrelated. Thus, intuitively it may seem that the Toeplitzization of R̂xx to
form R̂𝐷𝐴 would not worsen the results, but the opposite is true. We performed
a Monte-Carlo experiment for an 11-sensor ULA (𝑁 = 11) to estimate six DOAs
at −60◦,−40◦, 0◦, 15◦, 40◦, and 60◦. The experimental MSE (averaged over 1000
Monte-Carlo runs) and analytical MSE are compared with CRB for both direct-
MUSIC (using R̂xx) and coarray-MUSIC (using R̂𝐷𝐴). From Fig. 6.1 we observe
that experimental (Monte-Carlo) MSE matches analytical MSE for both direct-
MUSIC and coarray-MUSIC. However, the direct-MUSIC MSE practically equals
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Figure 6.1: Experimental (Monte-Carlo) MSE, theoretical MSE [87], [122], and
CRB [86] for direct-MUSIC (using R̂xx) and coarray-MUSIC (using R̂𝐷𝐴) when (a)
SNR is varied when the number of snapshots 𝐾 = 500, (b) number of snapshots is
varied when SNR = 0 dB. Corresponding efficiency (Eq. (2.35)) plots are shown in
(c) and (d) respectively.

CRB, whereas the coarray-MUSIC MSE does not approach CRB asymptotically
with a large SNR or a large number of snapshots.

In Fig. 6.1(a), we see that the MSE saturates when the number of snapshots is
fixed and SNR is varied, but the CRB doesn’t. This is similar to what has been
observed in the case of sparse arrays when 𝐷 < 𝑁 in [87]. Additionally, Fig. 6.1(c)
shows that the efficiency of coarray-MUSIC even for ULA goes to zero at higher
SNR. However, we would also like to note an important detail that the efficiency of
coarray-MUSIC is observed to be better than direct-MUSIC when SNR is smaller
than -10 dB. Furthermore, in Fig. 6.1(b), we observe that for the other case when the
number of snapshots is varied keeping SNR fixed, the coarray-MUSIC MSE does
not approach CRB even for a large number of snapshots, although neither MSE nor
CRB saturates in this case.

The interesting thing to note here is that for the ULA, the only difference between
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direct-MUSIC and coarray-MUSIC is the diagonal averaging of R̂xx. However,
the DOA estimation performance changes drastically. Even though the ideal array
output covariance Rxx is Toeplitz, the Toeplitzization of the observed R̂xx adversely
affects DOA estimation performance.

6.3 Two Variations of Coarray Covariance Matrix
From the previous section, we can conclude that the inefficiency in DOA esti-
mation with sparse arrays using coarray-MUSIC is not due to the sparse arrays
themselves but rather an issue with the coarray-MUSIC algorithm. Although there
are some other recently proposed coarray-based algorithms that perform better than
coarray-MUSIC, they are more complex and require solving an optimization prob-
lem, which increases computational complexity. Examples of such algorithms are
the weighted least squares method [90], which can achieve CRB asymptotically, the
Toeplitz matrix reconstruction approach [89], and the weighted proxy covariance
matrix construction approach [124]. As coarray-MUSIC is a simple modification
of the direct-MUSIC algorithm, it remains a popular choice for coarray-based DOA
estimation due to its simplicity.

In this section, we explore alternatives to the standard coarray covariance matrix
R̂𝐷𝐴. Recall that, when the difference coarray D contains a uniform segment
from −(𝐿 − 1) to 𝐿 − 1, the matrix R̂𝐷𝐴 is an 𝐿 × 𝐿 square Toeplitz matrix.
Performing MUSIC with R̂𝐷𝐴 produces a noise subspace of dimension (𝐿 − 𝐷) in
C𝐿 . The accuracy of DOA estimation depends on the accuracy of the noise subspace
estimate. The two alternatives for R̂𝐷𝐴 that we examine are of different dimensions
and provide a noise subspace in a different space than C𝐿 . Since we assume the
number of sources 𝐷 to be known, we can construct either a tall matrix (R̂𝑡𝑎𝑙𝑙

𝐷𝐴
) or a

fat matrix (R̂ 𝑓 𝑎𝑡

𝐷𝐴
), as explained next.

R̂𝑡𝑎𝑙𝑙
𝐷𝐴

is a (2𝐿 − 𝐷) × 𝐷 tall Toeplitz matrix with entries

[R̂𝑡𝑎𝑙𝑙
𝐷𝐴]𝑖, 𝑗 = 𝑅(𝑖 − 𝑗 + 𝐷 − 𝐿). (6.2)

A full singular value decomposition (SVD) of R̂𝑡𝑎𝑙𝑙
𝐷𝐴

gives

R̂𝑡𝑎𝑙𝑙
𝐷𝐴 = Û𝑡𝑎𝑙𝑙�̂�𝑡𝑎𝑙𝑙

(
V̂𝑡𝑎𝑙𝑙

)𝐻
, (6.3)

where Û𝑡𝑎𝑙𝑙 is a (2𝐿 − 𝐷) × (2𝐿 − 𝐷) matrix with orthonormal columns and �̂�𝑡𝑎𝑙𝑙

is a (2𝐿 − 𝐷) × 𝐷 matrix containing singular values arranged in descending order
along the principal diagonal. It can be shown that under ideal conditions (large
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snapshots and 𝜎𝑛 = 0), the first 𝐷 columns of Û𝑡𝑎𝑙𝑙 will have the same column span
as the (2𝐿 − 𝐷) × 𝐷 matrix A𝑡𝑎𝑙𝑙

𝑣 with entries

[A𝑡𝑎𝑙𝑙
𝑣 ]𝑘,𝑙 = 𝑒 𝑗𝜔𝑙𝑘 . (6.4)

The remaining (2𝐿−2𝐷) columns of Û𝑡𝑎𝑙𝑙 approximate the ‘noise subspace’, which
is the orthogonal complement of A𝑡𝑎𝑙𝑙

𝑣 . The noise subspace can be used to obtain
an estimate of the DOAs {𝜔𝑖}𝐷𝑖=1 through the use of the MUSIC spectrum or by
rooting the root-MUSIC polynomial. Note that by obtaining the SVD of R̂𝑡𝑎𝑙𝑙

𝐷𝐴
, we

get a (2𝐿 − 2𝐷)-dimensional noise subspace in C2𝐿−𝐷 . This is in contrast with the
standard coarray-MUSIC, which provides (𝐿 − 𝐷)-dimensional noise subspace in
C𝐿 . DOA estimation using R̂𝑡𝑎𝑙𝑙

𝐷𝐴
will be called ‘tall-MUSIC’ or ‘tall root-MUSIC’.

Similarly, we can construct a (𝐷 +1) × (2𝐿−𝐷 −1) dimensional fat Toeplitz matrix
R̂ 𝑓 𝑎𝑡

𝐷𝐴
with entries

[R̂ 𝑓 𝑎𝑡

𝐷𝐴
]𝑖, 𝑗 = 𝑅(𝑖 − 𝑗 + 𝐿 − 𝐷 − 1). (6.5)

Applying SVD to the matrix R̂ 𝑓 𝑎𝑡

𝐷𝐴
gives

R̂ 𝑓 𝑎𝑡

𝐷𝐴
= Û 𝑓 𝑎𝑡�̂� 𝑓 𝑎𝑡

(
V̂ 𝑓 𝑎𝑡

)𝐻
, (6.6)

where Û 𝑓 𝑎𝑡 is a (𝐷 + 1) × (𝐷 + 1) matrix, and entries of �̂� 𝑓 𝑎𝑡 are arranged in
descending order. The first 𝐷 columns of Û 𝑓 𝑎𝑡 provide an estimate of the column
span of (𝐷 + 1) ×𝐷 matrix with entries [A 𝑓 𝑎𝑡

𝑣 ]𝑘,𝑙 = 𝑒 𝑗𝜔𝑙𝑘 . The last column of Û 𝑓 𝑎𝑡 ,
which is orthogonal to the rest of the columns of Û 𝑓 𝑎𝑡 , is a vector approximating
the ‘noise subspace’ in C𝐷+1. Thus, through SVD of R̂ 𝑓 𝑎𝑡

𝐷𝐴
, we obtain a single ‘noise

vector’ in a much lower dimension C(𝐷+1) . DOA estimation using R̂ 𝑓 𝑎𝑡

𝐷𝐴
will be

called ‘fat-MUSIC’ or ‘fat root-MUSIC’.

6.3.1 Computational Complexity
The two variations of coarray-MUSIC presented above have an advantage in terms of
computational complexity. For standard coarray-MUSIC, the computational com-
plexity for the eigendecomposition of R̂𝐷𝐴 is O(𝐿3). However, the computational
complexity of finding SVD of an 𝑚 × 𝑛 matrix is O(min(𝑚𝑛2, 𝑛𝑚2)). Therefore,
the complexity of computing SVD of R̂𝑡𝑎𝑙𝑙

𝐷𝐴
is O((2𝐿 − 𝐷)𝐷2) = O(𝐿𝐷2), and the

complexity of computing SVD of R̂ 𝑓 𝑎𝑡

𝐷𝐴
is also O(𝐿𝐷2). Obtaining DOA estimates

by rooting the root-MUSIC polynomial adds an additional component to the over-
all computational complexity. The polynomial for tall root-MUSIC is of degree
2(2𝐿 − 𝐷) − 2, and for fat root-MUSIC, it is of degree 2𝐷. The computational
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Figure 6.2: Estimating three DOAs −30◦, 10◦, and 50◦ with an 11-sensor ULA,
200 snapshots, and SNR 0 dB. (a) Standard coarray-MUSIC (using R̂𝐷𝐴), (b) tall-
MUSIC (using R̂𝑡𝑎𝑙𝑙

𝐷𝐴
), (c) fat-MUSIC (using R̂ 𝑓 𝑎𝑡

𝐷𝐴
), and (d) direct-MUSIC (using

R̂xx). The phases (angle with 𝑋-axis) of the blue and the red lines indicate the true
DOAs 𝜔𝑖 and estimated DOAs 𝜔𝑖 respectively.

complexity of rooting a degree-𝑛 polynomial is usually O(𝑛3), but some efficient al-
gorithms with O(𝑛2 log 𝑛) computational complexity are also available [174]. Thus,
accounting for the matrix decomposing and polynomial rooting, fat root-MUSIC
has the best overall computational complexity. In our MATLAB simulations, we
observed that fat-MUSIC has a runtime reduction of over 8-fold compared to stan-
dard coarray-MUSIC when 𝑁 = 30 and 𝐷 = 2. Moreover, it has an over 35-fold
reduction in runtime when 𝑁 = 60 and 𝐷 = 6.

6.3.2 Simulation Examples with Tall and Fat Coarray-MUSIC
First, we consider three DOAs and an 11-sensor ULA. The ground-truth values of
the DOAs to be estimated are −30◦, 10◦, and 50◦. To estimate the DOAs, we use
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Figure 6.3: Estimating six DOAs −60◦,−40◦, 0◦, 15◦, 40◦, and 60◦ with an 11-
sensor ULA. Direct-MUSIC, coarray-MUSIC, tall-MUSIC, and fat-MUSIC are
considered. (a) SNR is varied when the number of snapshots 𝐾 = 200, (b) the
number of snapshots is varied when SNR = 10 dB. Tall-MUSIC performs at par
with coarray-MUSIC, and fat-MUSIC performs slightly worse. Fat-MUSIC has the
best computational complexity.
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four methods: standard coarray-MUSIC (R̂𝐷𝐴), tall-MUSIC (R̂𝑡𝑎𝑙𝑙
𝐷𝐴

), fat-MUSIC
(R̂ 𝑓 𝑎𝑡

𝐷𝐴
), and direct-MUSIC (R̂xx). The simulation involves 200 snapshots and an

SNR of 0 dB. Fig. 6.2 shows the root-MUSIC plots obtained with each method.
We observe that ‘tall root-MUSIC’ has more zeros than the standard coarray root-
MUSIC, whereas the ‘fat root-MUSIC’ does not have any extra zeros apart from
those corresponding to the DOAs. Although direct-MUSIC performs the best, ‘tall
root-MUSIC’ performs slightly better than standard coarray root-MUSIC in this
example.

Next, we perform a Monte-Carlo simulation to compare the DOA estimation perfor-
mance of tall-MUSIC and fat-MUSIC with that of coarray-MUSIC. We consider an
11-sensor ULA and six DOAs −60◦,−40◦, 0◦, 15◦, 40◦, and 60◦. The simulation is
conducted with 200 snapshots in Fig. 6.3(a), where SNR is varied, and with SNR
of 10 dB in Fig. 6.3(b), where the number of snapshots is varied. We observe that
the tall-MUSIC performs on par with the standard coarray-MUSIC, but no better on
average, while the fat-MUSIC performs slightly worse. Hence, using the tall and
fat variation of the coarray covariance matrix does not seem to enhance the DOA
estimation performance fundamentally. However, tall-MUSIC R̂𝑡𝑎𝑙𝑙

𝐷𝐴
can be utilized

as a viable alternative to the standard coarray-MUSIC, and fat-MUSIC can be used
when reduced computational complexity is desired.

Next, in Fig. 6.4, we explore scenarios involving two sources. Specifically, we
consider a setup where one DOA is fixed at 0◦, while we vary the location of
the other DOA. We use an 11-sensor ULA, 400 snapshots, and a 10 dB SNR. We
compare the DOA estimation MSE of direct-MUSIC, coarray-MUSIC, tall-MUSIC,
and fat-MUSIC. The results from Fig. 6.4(a) indicate that the MSEs of the three
coarray-based methods are highly variable compared to that of direct-MUSIC. For
some DOA separations, the MSE of coarray-MUSIC and tall-MUSIC is close to the
CRB, but for other separations, the MSE is over an order of magnitude greater than
the CRB.

In Fig. 6.4(b), we plot the efficiency of direct-MUSIC and coarray-MUSIC against
DOA separation. We find that the coarray-MUSIC efficiency has peaks for certain
DOA separations and is not monotonically increasing as the DOA separation is
increased. It should be noted that the efficiency of direct-MUSIC also has peaks at
similar locations as that of coarray-MUSIC; however, the difference in the efficiency
values at peaks and valleys is negligible for direct-MUSIC, but that for coarray-
MUSIC is very drastic. Lastly, in Fig. 6.4(c), we use a 21-sensor ULA instead of
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Figure 6.4: Estimating 2 DOAs with an 11-sensor ULA, with 400 snapshots, and
SNR 10 dB. One DOA is fixed at 0◦, and the other DOA is varied. (a) MSE with
direct-MUSIC, coarray-MUSIC, tall-MUSIC, and fat-MUSIC. (b) Efficiency for
direct-MUSIC and coarray-MUSIC. (c) Using a 21-sensor ULA with everything
else the same as in (b). Coarray-MUSIC efficiency is observed to be much more
sensitive to DOA separation than direct-MUSIC.
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Figure 6.5: DOA estimation MSE for 15-sensor ULA when array output correlations
are perturbed from their ideal value, one at a time. Three different perturbation
variances, 0.01, 0.1, and 0.5, are considered. MSE is largest when correlations at
lags around 𝑁/2 are perturbed, and smallest for 𝑙0 = 1 and 𝑙0 = 𝑁 − 1.

an 11-sensor ULA and observe that the number of peaks has roughly doubled. The
separation between the locations of consecutive peaks is observed to be roughly
2𝜋/𝑁 in both cases.

Lastly, we conduct an additional experiment. We obtain the ideal array output
correlations 𝑅(𝑙) from the entries of Rxx (Eq. (2.6)). By applying MUSIC with
Rxx, DOAs can be recovered precisely. To understand how the perturbation in each
of the array output correlations affects the DOA estimation performance, we take
𝑅(𝑙0) = 𝑅(𝑙0) + 𝜖 and 𝑅(−𝑙0) = 𝑅(−𝑙0) + 𝜖∗ for a specific lag index 𝑙0 > 0, and
the rest of the array output correlations are kept unperturbed. Here, 𝜖 is random
complex Gaussian perturbation with variance𝜎2

𝑝 . We then form the Toeplitz coarray
covariance matrix R̂𝐷𝐴 as in Eq. (2.33) and perform DOA estimation using coarray-
MUSIC. In Fig. 6.5, we plot the MSE averaged over 500 Monte-Carlo runs for
each perturbation index, considering a 15-sensor ULA and 3 DOAs. We find that
perturbing the ideal correlation at different lags affects the DOA estimation MSE
differently. Rather surprisingly, MSE is largest when correlations at lags around
𝑁/2 are perturbed, and smallest for 𝑙0 = 1 and 𝑙0 = 𝑁 − 1.
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6.4 Optimization-Based Construction of Coarray Covariance Matrix
In Sec. 6.2, we experimentally demonstrated that coarray-MUSIC is inefficient
even for ULA, indicating that the particular way of constructing the coarray co-
variance matrix by populating the estimated correlation entries 𝑅(𝑙) is the cause
of inefficiency. In this section, we consider an optimization-based approach for
constructing a Toeplitz covariance matrix from [163]. In Chapter 5, we had used
this method for estimating the DOAs with the weight-constrained arrays (see Eq.
(5.14)). For such arrays with holes in the difference coarray, the Toeplitz covariance
matrix construction approach was interpreted as a ‘covariance interpolation algo-
rithm’, similar to [160]–[162], [164], [165]. While the purpose of using the Toeplitz
covariance matrix construction approach in Chapter 5 was to interpolate the holes
in the coarrays of weight-constrained arrays, the investigations in the rest of this
chapter are around the DOA estimation efficiency of the Toeplitz covariance matrix
construction approach. We will see in the next section that this way of constructing
the coarray covariance matrix is not only beneficial for the arrays having holes in
the difference coarrays (such as coprime arrays and weight-constrained arrays), but
can also greatly improve the DOA estimation MSE for sparse arrays such as nested
arrays and MRAs that do not have holes in their difference coarrays and hence do
not ‘need’ their coarrays to be ‘interpolated’ in the traditional sense.

Given the sample covariance matrix R̂xx of a sparse array z with aperture 𝐴, the
Toeplitz covariance matrix construction approach from [163] aims at recovering the
ideal Hermitian Toeplitz covariance matrix R𝑈 that a fictitious ULA of aperture 𝐴
would have produced. That is, even though the physical array is a sparse array over
an aperture of length 𝐴, it aims to recover the covariance matrix that a ULA over
that aperture would have produced. An optimization problem is proposed in [163]
for this. As in the last chapter (Eq. 5.14), we use the following slightly modified
version of the optimization problem for simplicity:

min
T(u)⪰0

| |Ŵ−1/2 vec(R̂xx − 𝚪T(u)𝚪𝑇 ) | |2 + 𝜆 tr(T(u)). (6.7)

As the ideal Hermitian Toeplitz matrix to be estimated (R𝑈) can be parameterized
by its first column, the optimization problem is formulated in terms of a parameter
vector u, and T(u) denotes the Hermitian Toeplitz matrix having u as its first
column. 𝚪 is a row selection matrix of size 𝑁 × (𝐴 + 1) corresponding to the sensor
positions of the sparse array z, i.e. 𝚪𝑖, 𝑗 = 1 if 𝑛𝑖 = 𝑗 , and zero otherwise. Matrix
Ŵ = R̂𝑇

xx⊗R̂xx/𝐾 , where ⊗ is the Kronecker product. Note that vec(R̂xx−𝚪T(u)𝚪𝑇 )
is the discrepancy between the correlation estimates that are available in R̂xx and
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the corresponding entries from T(u). The premultiplication by Ŵ−1/2 is motivated
by the asymptotic distribution of the terms in this error vector [163], [175]:

vec(R̂xx − 𝚪R𝑈𝚪
𝑇 − 𝜎2

𝑛 I) ∼ 𝐴𝑠𝑁 (0, Ŵ). (6.8)

Thus, the first term in the optimization objective | |Ŵ−1/2 vec(R̂xx − 𝚪T(u)𝚪𝑇 ) | |2 is
the 𝑙2 norm of the ‘whitened’ error vector. We drop the noise term𝜎2

𝑛 I for simplicity,
but [163] proposes first to estimate noise variance �̂�2

𝑛 and use it instead. The second
term in the objective is trace regularization tr(T(u)), and is added to the objective as
a convex relaxation of the rank penalty. The positive semi-definiteness constraint on
T(u) is enforced explicitly, and the hyperparameter 𝜆 selects the trade-off between
the data fidelity term and trace regularization. In our simulations, 𝜆 is chosen to be
0.01. Similar to the simulations in [163], we have found that the performance of the
proposed algorithm is not very sensitive to 𝜆, as long as 𝜆 is not too large. The two
key features of this method, which we think are important for the improvement in
DOA estimation observed in the simulations, are explained next.

First, this approach does not average the correlation entries from R̂xx corresponding
to the same lag to form the correlation sequence 𝑅(𝑙). This averaging to form the
correlation sequence 𝑅(𝑙) is the key step before the formation of coarray covariance
matrices R̂𝑆𝑆 and R̂𝐷𝐴, and it is what fundamentally motivates the coarray-domain
DOA estimation. In Sec. 6.2 and in papers such as [90], [125], this averaging has
been recently observed to be the reason behind the inefficiency of coarray-based
DOA estimation algorithms. By not averaging the entries from R̂xx that correspond
to the same lag, this method retains the information present in R̂xx as it is.

Second, instead of simply using the 𝑙2 norm of the error term vec(R̂xx−𝚪T(u)𝚪𝑇 ) as
it is, the above method whitens this error term by premultiplying it with Ŵ−1/2 based
on its asymptotic distribution. To demonstrate the importance of this whitening step,
in our simulations, we also consider the following optimization instead of Eq. (6.7):

min
T(u)⪰0

| | vec(R̂xx − 𝚪T(u)𝚪𝑇 ) | |2 + 𝜆 tr(T(u)). (6.9)

Note that Eq. (6.9) still does not average the correlation entries from R̂xx corre-
sponding to the same lag and is a reasonable way of formulating an optimization
problem to construct a coarray covariance matrix. However, it does not take into
account the correlations between the entries in the error vector. To demonstrate the
importance of this, we will compare the DOA estimation MSE obtained by using the
covariance matrices estimated according to Eq. (6.7) and Eq. (6.9). To the best of
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our knowledge, most of the interpolation algorithms from the literature [160]–[162],
[164], [165] do not take into account the correlations between the entries in the error
vector, and do not perform error whitening as done in Eq. (6.7).

6.5 Efficiency of the Optimization-Based Approach for Different Arrays
Now we compare the DOA estimation MSE obtained from the three methods of
constructing the coarray covariance matrix, namely, direct augmentation (R̂𝐷𝐴),
interpolation with whitening (Eq. (6.7)), and interpolation without whitening (Eq.
(6.9)). To solve the optimization problems, we use CVX, a package for specifying
and solving convex programs [170], [171]. Then, root-MUSIC is applied with these
three matrices to estimate the DOAs. First, consider the simplest case of a ULA
with 𝑁 = 12 sensors. For a ULA, R̂𝐷𝐴 is simply a ‘toeplitzized’ (i.e., diagonally
averaged) version of R̂xx. Although direct root-MUSIC (using R̂xx) is efficient, after
toeplitzization (i.e., when using R̂𝐷𝐴), DOA estimation is no longer efficient. Note
that Eq. (6.7) and Eq. (6.9) also create Toeplitz matrices similar to R̂𝐷𝐴, but they
are formed in a different way by solving optimization problems rather than arranging
the estimated correlation in a Toeplitz manner. Fig. 6.6 plots the DOA estimation
MSEs obtained with the three methods along with CRB when there are 𝐷 = 10
sources separated uniformly in the 𝜔-domain and 500 snapshots are used. Each
simulation point in the plots is averaged over 500 Monte-Carlo runs with randomly
chosen {s[𝑘], n[𝑘]}𝐾

𝑘=1. For the ULA (top left in Fig. 6.6), as SNR is varied on the
𝑋-axis, we observe that the DOA estimation MSE when using the matrix obtained
with Eq. (6.7) does not saturate and practically equals CRB when SNR is larger
than -10 dB. This is a huge improvement compared to the coarray root-MUSIC,
which has saturating MSE for large SNR. Thus, at large SNR, by using the matrix
obtained from Eq. (6.7) instead of R̂𝐷𝐴, the efficiency 𝜅 improves from nearly 0 to
nearly 1. Also note that the DOA estimation MSE when using the matrix obtained
with Eq. (6.9) shows no improvement compared to the coarray root-MUSIC. This
clearly highlights the key importance of the whitening used in Eq. (6.7).

In the rest of the plots in Fig. 6.6, the same quantities are compared for different
well-known sparse arrays from the literature (see Sec. 4.5 for the acronyms of the
different arrays) as well as the weight-constrained arrays proposed in Chapter 4.
All arrays have 𝑁 = 12 sensors. We observe a similar large improvement in the
MSE for all these sparse arrays when the matrix obtained from Eq. (6.7) is used
instead of direct augmentation. Thus, the Toeplitz covariance matrix construction
approach (with whitening) almost completely mitigates the inefficiency of coarray
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Figure 6.6: Comparing DOA estimation MSE with coarray root-MUSIC (using
matrix R̂𝐷𝐴), interpolation with whitening (using matrix obtained by solving Eq.
(6.7)), interpolation without whitening (using matrix obtained by solving Eq. (6.9)),
and the CRB when estimating 𝐷 = 10 DOAs separated uniformly in the 𝜔-domain
form −0.9𝜋 to 0.9𝜋 using 𝑁 = 12 sensor arrays and 𝐾 = 500 snapshots.

root-MUSIC for sparse arrays when 𝐷 < 𝑁 , changing the efficiency 𝜅 from nearly
0 to nearly 1 when SNR is large.

Next, in Fig. 6.7 we consider the task of estimating 𝐷 = 20 DOAs with 12-
sensor sparse arrays. We observe that for this case where 𝐷 > 𝑁 , the covariance
matrix construction approach with whitening provides a significant improvement
in MSE over coarray-MUSIC. Although CRB saturates at high SNR in this case
when 𝐷 > 𝑁 , the MSE obtained with the matrix from Eq. (6.7) is close to CRB.
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Figure 6.7: Comparing DOA estimation MSE with coarray root-MUSIC (using
matrix R̂𝐷𝐴), interpolation with whitening (using matrix obtained by solving Eq.
(6.7)), interpolation without whitening (using matrix obtained by solving Eq. (6.9)),
and the CRB when estimating 𝐷 = 20 DOAs separated uniformly in the 𝜔-domain
form −0.9𝜋 to 0.9𝜋 using 𝑁 = 12 sensor arrays and 𝐾 = 500 snapshots.

When whitening is not used, the improvement over coarray root-MUSIC is small.
Interestingly, also note that for many arrays in Fig. 6.7, the MSE when using the
interpolation with whitening is smaller than CRB. This behavior can be attributed
to the fact that the DOA estimates obtained with the matrix from Eq. (6.7) can
potentially be biased. One of the sources of bias is the regularization term used in
the optimization problem. Some other methods from the literature, such as [172],
have also reported attaining MSE lower than the CRB because of biased DOA
estimates.
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Figure 6.8: Comparing DOA estimation MSE with coarray root-MUSIC (using
matrix R̂𝐷𝐴), interpolation with whitening (using matrix obtained by solving Eq.
(6.7)), interpolation without whitening (using matrix obtained by solving Eq. (6.9)),
and the CRB when estimating 𝐷 = 30 DOAs separated uniformly in the 𝜔-domain
form −0.9𝜋 to 0.9𝜋 using 𝑁 = 12 sensor arrays and 𝐾 = 500 snapshots.

This behavior can be seen even more pronounced in Fig. 6.8 where 𝐷 = 30 DOAs
are estimated with 12-sensor arrays. The arrays that have an aperture less than 30
cannot identify 30 DOAs even with the larger Toeplitz covariance matrix obtained
after solving the optimization problems, and are omitted from Fig. 6.8. For the
rest of the arrays, we see that while the interpolation without whitening does offer
some improvement over coarray root-MUSIC, interpolation with whitening offers
much greater improvement and has MSE smaller than CRB. Further investigations
are required to understand this behavior, and will be of interest for the future.
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6.6 Modification of the Optimization-Based Approach in the Presence of Mu-
tual Coupling

In the previous section (Sec. 6.5), we considered the situations without any mutual
coupling. In this section, we explore how the situation changes when mutual
coupling is present. One option is to still solve the optimization problems in Eq.
(6.7) and Eq. (6.9) even if the coupling is present. In Chapter 5, we used this
approach even in the presence of mutual coupling. However, if the coupling matrix
C is known (or can be reliably estimated), the optimization problem can be modified
to improve the DOA estimation accuracy. In the presence of mutual coupling, the
array output is given by Eq. (2.27) and thus, the ideal array output covariance matrix
is

Rxx = CARssA𝐻C𝐻 + 𝜎2
𝑛 I. (6.10)

Hence, we propose to solve the following modified optimization problem from Eq.
(6.7) when the coupling matrix C is known:

min
T(u)⪰0

| |Ŵ−1/2 vec(R̂xx − C𝚪T(u)𝚪𝑇C𝐻) | |2 + 𝜆 tr(T(u)). (6.11)

Note that this way of formulating the optimization problem compensates for the
effect of mutual coupling. It also retains the two important advantages mentioned
in the previous section, namely, (a) not averaging the correlation entries from R̂xx

corresponding to the same lag and (b) using the asymptotic distribution to whiten
the correlated error terms, using the Ŵ matrix.

Now we compare the DOA estimation MSE obtained with the above ‘coupling
compensated interpolation’ formulation of the optimization problem with the other
ways of constructing coarray covariance matrix, namely, direct augmentation (i.e.,
just using R̂𝐷𝐴), interpolation with whitening (Eq. (6.7)), and interpolation without
whitening (Eq. (6.9)). Out of these methods, only the coupling compensated
interpolation approach assumes the knowledge of C. To the best of our knowledge,
the CRB for DOA estimation in the presence of mutual coupling has not been derived
in the literature. In the simulations below, for a reference, we plot the CRB derived
in [86], [87] that assumes no mutual coupling is present. The CRB derived under
the assumption of no mutual coupling is a lower bound for the CRB when mutual
coupling is present.

The coupling coefficients of the form

𝑐1 = 0.2𝑒 𝑗𝜋/3, 𝑐𝑙 = (𝑐1/𝑙)𝑒− 𝑗 (𝑙−1)𝜋/8 for 2 ≤ 𝑙 ≤ 10 (6.12)
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Figure 6.9: Comparing DOA estimation MSE with coarray root-MUSIC (using
matrix R̂𝐷𝐴), interpolation with whitening (using matrix obtained by solving Eq.
(6.7)), interpolation without whitening (using matrix obtained by solving Eq. (6.9)),
coupling compensated interpolation (using matrix obtained by solving Eq. (6.11),
and the CRB when estimating 𝐷 = 10 DOAs separated uniformly in the 𝜔-domain
form −0.9𝜋 to 0.9𝜋 using 𝑁 = 12 sensor arrays and 𝐾 = 500 snapshots. Mutual
coupling with parameters as described in Eq. (6.12) is considered in these simula-
tions.

are assumed in the simulations. Arrays have 𝑁 = 12 sensors, and 𝐾 = 500 snapshots
are used. Each simulation point in the plots is averaged over 500 Monte-Carlo runs
with randomly chosen {s[𝑘], n[𝑘]}𝐾

𝑘=1. Fig. 6.9 plots the DOA estimation MSEs
obtained with the four methods along with CRB when there are 𝐷 = 10 sources
separated uniformly in the 𝜔-domain.
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Figure 6.10: Comparing DOA estimation MSE with coarray root-MUSIC (using
matrix R̂𝐷𝐴), interpolation with whitening (using matrix obtained by solving Eq.
(6.7)), interpolation without whitening (using matrix obtained by solving Eq. (6.9)),
coupling compensated interpolation (using matrix obtained by solving Eq. (6.11),
and the CRB when estimating 𝐷 = 20 DOAs separated uniformly in the 𝜔-domain
form −0.9𝜋 to 0.9𝜋 using 𝑁 = 12 sensor arrays and 𝐾 = 500 snapshots. Mutual
coupling with parameters as described in Eq. (6.12) is considered in these simula-
tions.

Simulations in the previous section (without mutual coupling) demonstrated that the
interpolation with whitening (Eq. (6.7)) achieved CRB when 𝐷 < 𝑁 . However, in
Fig. 6.9, we observe that when coupling is present, interpolation with whitening
does not achieve CRB. On the contrary, for several arrays, the MSE obtained with the
matrix from Eq. (6.7) increases at higher SNR. Similar behavior was also observed
in the last chapter in Fig. 5.9 for 𝐷 < 𝑁 . In the optimization problem from Eq.
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Figure 6.11: Comparing DOA estimation MSE with coarray root-MUSIC (using
matrix R̂𝐷𝐴), interpolation with whitening (using matrix obtained by solving Eq.
(6.7)), interpolation without whitening (using matrix obtained by solving Eq. (6.9)),
coupling compensated interpolation (using matrix obtained by solving Eq. (6.11),
and the CRB when estimating 𝐷 = 30 DOAs separated uniformly in the 𝜔-domain
form −0.9𝜋 to 0.9𝜋 using 𝑁 = 12 sensor arrays and 𝐾 = 500 snapshots. Mutual
coupling with parameters as described in Eq. (6.12) is considered in these simula-
tions.

(6.7), the effect of the coupling matrix C is present in the term Ŵ−1/2, but it is
not accounted for in the term 𝚪T(u)𝚪𝑇 . This mismatch manifests in a surprising
manner, and the MSE is observed to increase at higher SNR. It would be of interest
for the future to understand why this increase in MSE at high SNR is observed for
only some arrays.

On the other hand, the optimization problem from Eq. (6.9) does not involve
whitening (premultiplication with Ŵ−1/2). The DOA estimation MSE obtained
with this matrix saturates similarly to the coarray root-MUSIC for all arrays, and
it also does not increase at higher SNR. Thus, when the mutual coupling matrix C
is not known, interpolation without whitening Eq. (6.9) can be a better alternative
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than interpolation with whitening Eq. (6.7), especially for higher SNRs.

When the coupling matrix C is known, we use the matrix obtained from coupling
compensated interpolation (Eq. (6.11)). It is observed in Fig. 6.9 that this provides
a large improvement in DOA estimation MSE. The MSE does not saturate and is
very close to CRB, indicating that the efficiency is almost unity. To the best of
our knowledge, such a result on efficient DOA estimation in the presence of mutual
coupling has not been reported in the literature before.

Similar to Figs. 6.7 and 6.8, we consider the task of estimating 𝐷 = 20 and 𝐷 = 30
DOAs in Figs. 6.10 and 6.11 respectively, but when the mutual coupling described
in Eq. (6.12) is considered. The DOA estimation error when using interpolation
without whitening saturates at high SNR. The interpolation with whitening shows
a similar trend to that in Fig. 6.9, where the MSE can worsen at higher SNRs for
some arrays. The coupling compensated interpolation method provides the smallest
MSE, and it is observed to be smaller than CRB for many arrays. Achieving MSE
smaller than SRB is possible when there is bias in the estimates. These results
demonstrate that the DOA estimation algorithms that can compensate for the effect
of mutual coupling can lead to large improvements in the DOA estimation.

6.7 Concluding Remarks
In this chapter, we conducted several experiments to investigate the efficiency of
coarray-MUSIC and a Toeplitz covariance matrix construction approach for DOA
estimation. In the first part, we demonstrated that, similar to sparse arrays, coarray-
MUSIC is asymptotically inefficient for ULAs as well. This behavior is surprising
because the only difference between coarray-MUSIC and direct-MUSIC for ULAs
is the diagonal averaging of the array output covariance matrix. This observation
for ULA indicates that the loss of efficiency is an artifact of the coarray-MUSIC
algorithm rather than a result of array sparsity. In scenarios with two sources,
coarray-MUSIC demonstrated increased sensitivity to DOA separation compared to
direct-MUSIC. We examined two variations of coarray-MUSIC: tall-MUSIC and
fat-MUSIC. These variations allow for the extraction of the noise subspace in a
different dimensional space. While tall-MUSIC exhibits a comparable MSE to
coarray-MUSIC, and fat-MUSIC significantly reduces computational complexity,
neither modification improves efficiency. Lastly, we observed that perturbing the
ideal array output correlations at a lag around 𝑁/2 leads to the largest MSE for
coarray-MUSIC. These observations provide new insights into the complex interplay
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between various factors, such as array geometry, DOA separation, and the accuracy
of the estimated array output correlations, all of which affect the MSE of coarray-
MUSIC. Further research is necessary to better understand the behavior of coarray-
MUSIC MSE.

In the later part of the chapter, we explored an alternative way of constructing
a Toeplitz covariance matrix proposed in [163]. This approach from [163] is
observed to greatly improve the DOA estimation performance with sparse arrays
when no mutual coupling is present. When the number of DOAs 𝐷 is smaller
than the number of sensors 𝑁 , this approach is found to produce efficient DOA
estimates at large SNRs for many different sparse arrays. When 𝐷 > 𝑁 , we
observed that this approach still provides a large improvement in MSE, and for some
arrays, the MSE can be even smaller than the CRB because of the biased DOA
estimates. Whitening of the correlated error terms is found to be an important factor
in the MSE improvement obtained with this optimization-based approach. However,
when mutual coupling is present, solving the optimization problem from [163] is
observed to work poorly when SNR is large. For this situation, we proposed a way
of compensating for the effect of mutual coupling if the coupling matrix C is known.
The coupling compensated interpolation is observed to be efficient when 𝐷 < 𝑁

and can have an MSE smaller than the CRB for 𝐷 > 𝑁 .

Recently, a few other methods, such as WLS [90] and a stochastic maximum like-
lihood based method [172], have also been proposed in the literature to mitigate
the inefficiency of coarray-domain DOA estimation. However, these methods are
quite elaborate and can be difficult to implement. On the other hand, the approaches
based on direct augmentation and spatial smoothing are conceptually straightforward
and easy to implement, given the popularity and simplicity of the subspace-based
DOA estimation algorithms like root-MUSIC. But they produce inefficient DOA
estimates. Thus, it is of great interest to investigate other ways of constructing
coarray covariance matrices that retain the conceptual simplicity of estimating the
Toeplitz covariance matrix, followed by applying root-MUSIC, and still achieve
efficient DOA estimation. While the optimization-based approach we considered in
this chapter is one such method that shows promising results, it is computationally
expensive compared to coarray-MUSIC because of the optimization-based solution.
In the future, it would be of interest to explore other possibilities of constructing
the coarray covariance matrix that are computationally efficient and also produce
efficient DOA estimates. A deep learning based methodology for subspace rep-
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resentation learning has been developed very recently [176], [177]. It would also
be of interest to understand the bias introduced by the optimization problems and
theoretically analyze the analytical MSE expression for the Toeplitz covariance ma-
trix construction approach. Furthermore, a careful study of the optimization-based
approach and the increase in MSE at high SNR in the presence of mutual coupling
will be of great interest in the future. Robust interpolation methods that explicitly
account for the presence of mutual coupling in their optimization objective should
also be developed in the future.
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C h a p t e r 7

PERIODICITY-AWARE SIGNAL DENOISING USING
CAPON-OPTIMIZED RAMANUJAN FILTER BANKS AND

PRUNED RAMANUJAN DICTIONARIES

7.1 Introduction
Signal denoising is a widely studied problem in signal processing [75], [76], [178]–
[182]. Due to the random nature of the noise, the noise-free signal cannot be re-
covered just from its noisy measurements in the absence of any other information.
A key to successful denoising is to appropriately incorporate some a-priori infor-
mation about the nature of the signal in the denoising process. For example, it
is well-known that most of the energy of natural images is concentrated in only a
few dominant wavelet coefficients. This makes wavelet denoising [179] a suitable
denoising method for natural images. Noisy periodic signals have a line spectrum in
the frequency domain, added with noise, as shown in Fig. 1.1(b). Discrete Fourier
Transform (DFT) based denoising works well for harmonic signals if the compo-
nent frequencies lie on the DFT frequency grid. Invertible transforms like DFT
and wavelet transform can be readily used to denoise appropriate classes of signals.
Such denoising methods usually threshold the transformed signal according to some
scheme, and then perform the inverse transformation to get a denoised signal [179],
[183], [184].

Instead of an invertible transformation, an overcomplete set can also be used for
representing a class of signals. For an appropriately chosen overcomplete set,
the signals can be represented as sparse linear combinations of the vectors in the
representation set, and denoising can then be posed as a sparse vector recovery
problem. Orthogonal matching pursuit (OMP) [180], [185], and LASSO [186]
are examples of popular algorithms to solve such sparse vector recovery problems.
Instead of explicitly choosing an appropriate overcomplete set for sparse signal
representation, it is also possible to learn a representation set beforehand from clean
data, or directly from the patches of the noisy signal to be denoised. One such
well-known method for dictionary learning is K-SVD [74]. It has been adapted for
denoising natural images [75], [76].

In this chapter, we consider the class of discrete-time periodic signals. Periodic
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signals form an important class of signals as many naturally occurring signals can be
approximated as noisy periodic signals. The structural properties of the underlying
periodic signal often carry important information about the phenomenon being
observed. Some examples of periodic signals are segments of tonal music, voiced
speech, and ECG. Discrete-time periodic sequences also occur in nature. These
include tandem repeats in the DNA [42] that are indicative of genetic disorders and
protein repeats [187] in amino acids that are indicative of their structural and binding
properties.

When such signals are contaminated with noise, denoising them is an important
processing step in many applications. Although there are numerous methods in the
literature for signal and image denoising, most of them do not work well for periodic
signals, as we will demonstrate through our simulations. This is because they are
not designed with the a-priori information that the underlying signal is periodic.
These methods do not respect the periodic structure of the signal and produce a
non-periodic signal as the denoised output. It was demonstrated in [53] that the
DFT representation of periodic signals is not useful to identify the periods if the
component frequencies do not lie on the DFT frequency grid, especially when only
a short signal length is available. Non-harmonic analysis (NHA) was developed
in [181], particularly for denoising the sum of sinusoid signals. It poses denoising
as a mean squared error minimization problem. However, this class of signals
may not be discrete-time periodic with an integer period, which is the focus of this
chapter. Furthermore, NHA requires a good initialization, which the DFT may
not be able to provide. In order to overcome these limitations, we propose a new
‘periodicity-aware’ denoising method for discrete-time periodic signals.

7.1.1 Scope and Outline
To develop a ‘periodicity-aware’ denoising method for discrete-time periodic sig-
nals, we use representation tools developed for periodic signals based on Ramanujan
sums and subspaces. These include Ramanujan filter banks (RFB) [63], [64] and Ra-
manujan dictionaries [53]. This choice is motivated by the fact that Ramanujan-sum
representations have already been shown to be well-suited for identifying multiple
periodic components in discrete time signals [53], [63], [64]. These are reviewed in
Sec. 7.2. In Sec. 7.3, we describe our proposed hybrid signal denoising framework
in detail. The need for a hybrid framework arises because a perfect reconstruction
synthesis counterpart for the Ramanujan analysis filter bank is not known. Thus
in our framework, analysis is done by RFB, and synthesis is done by a pruned
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Ramanujan dictionary. This guarantees that the denoised signal is composed of
integer-periodic components with periods smaller than a pre-selected value. To our
knowledge, no other denoising method is known to have this property. We demon-
strate that the proposed method produces the best SNR gain for periodic signals and
outperforms many traditional denoising techniques. It produces a stable SNR gain
over a large range of input SNR values, even when the signal length is not very large.

In Sec. 7.4, we further optimize each filter in the analysis bank based on incoming
data using the Capon formulation used in array signal processing for finding an
optimal beamformer. Since the filters are multi-banded, we need to use multi-
constrained Capon type optimization to get the optimal filter coefficients based on
the data. We show that this significantly improves the denoising performance when
the signal length is sufficiently large. In Sec. 7.5, we discuss a recursive way to
compute inverses of several autocorrelation matrices required for the entire bank of
Capon filters, to reduce the computations. In Sec. 7.6 we prove several multirate
properties of Ramanujan subspace signals and Ramanujan sums. In particular, we
show that after decimation, a 𝑞-th Ramanujan subspace signal remains in the same
subspace 𝑆𝑞 if and only if the decimation ratio 𝑀 is coprime to 𝑞. This property
motivates the decimation of the filter bank outputs in the denoising framework, as it
still approximately preserves the average per-sample signal energy of the outputs (as
we shall show). Such decimation of filter outputs reduces the required computations
when the filters are implemented using their polyphase representation [188]. Lastly,
in 7.7, we provide extensive Monte-Carlo simulations to compare various denoising
methods. We discuss the effect of hyperparameter values on denoising performance
and the applicability of the proposed method in denoising ECG signals. We also
discuss the applicability of the proposed framework for the period estimation and
component separation tasks and provide simulation examples.

The main contributions of this chapter are as follows:

1. We propose the idea of using the Ramanujan analysis filter bank followed by
a synthesis dictionary for denoising periodic signals, and demonstrate that it
can achieve a good denoising performance.

2. We propose the use of optimized analysis bank filters with the same passband
locations as Ramanujan filter banks. These filters are optimized based on
data, similar to Capon beamformers. Each filter in the RFB has multiple look
directions (at ‘coprime frequencies’) and is optimized to maximize its output
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signal to interference plus noise ratio (SINR). We use a multi-passband style
Capon beamformer algorithm to design the analysis bank.

3. We discuss the computational cost incurred to implement the Capon-optimized
filters and provide a way to reduce computations by recursively calculating
inverses of several autocorrelation matrices using Levinson’s recursion from
linear prediction theory.

4. We derive new theoretical properties of Ramanujan subspace signals, in the
context of decimation. We show that the downsampled versions of Ramanujan
subspace signals belong in the same space under some coprimality conditions.
We show that such decimation creates no aliasing and preserves the average
per-sample signal energy.

5. We introduce a subspace of signals that can be considered to be a nonzero
bandwidth approximation of the infinitesimal-bandwidth ideal Ramanujan
subspace signals. We discuss the applicability of the above decimation result
to such signals. We show that this helps to further reduce computations by
downsampling filter bank outputs for both RFB and Capon-optimized filter
banks.

6. We provide extensive Monte-Carlo simulation results to validate the major
new developments described above. We compare different variants of the
proposed methods with each other and with existing methods. We will see
that the proposed method, which uses Capon-optimized filters, works signifi-
cantly better than existing methods. We also investigate the effect of different
hyperparameters in the proposed method on denoising performance in detail.

The content of this chapter is based on papers [189], [190].

7.2 Ramanujan Filter Banks and Dictionaries
It has been well-established in the past decade that Ramanujan sums are particularly
useful to identify component periods of a discrete-time periodic signal [52], [62],
[65]. The 𝑞-th Ramanujan sum 𝑐𝑞 (𝑛) was defined for every positive integer 𝑞 in Eq.
(1.15). It can be equivalently expressed as

𝑐𝑞 (𝑛) =
𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝑒 𝑗2𝜋𝑘𝑛/𝑞 =
𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝑊−𝑘𝑛
𝑞 =

𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝑊 𝑘𝑛
𝑞 . (7.1)
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Note that in this chapter, we prefer to have the summation index in the definition of
Ramanujan sums from 𝑘 = 0 to 𝑘 = 𝑞 − 1 instead of 𝑘 = 1 to 𝑘 = 𝑞. Ramanujan
sums exhibit several useful properties. Despite having complex exponentials in its
definition, the 𝑞-th Ramanujan sum takes only real integer values for all 𝑛 and is
periodic with period 𝑞 [52], [62], [65]. The 𝑞-th Ramanujan subspace 𝑆𝑞 [52] is the
class of signals of the form

𝑥(𝑛) =
𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝛼𝑘𝑊
𝑘𝑛
𝑞 , (7.2)

where 𝛼𝑘 can be any complex numbers. It has been shown that 𝑆𝑞 is a 𝜙(𝑞)-
dimensional subspace. It contains period 𝑞 signals that have non-zero DFT value
only at the ‘coprime frequencies’ 2𝜋𝑘/𝑞 where 0 ≤ 𝑘 ≤ 𝑞 − 1 and 𝑘 is coprime to
𝑞. It can be shown that the 𝜙(𝑞) shifted versions of 𝑐𝑞 (𝑛) also span 𝑆𝑞, i.e. any
𝑥(𝑛) ∈ 𝑆𝑞 can be expressed as

𝑥(𝑛) =
𝜙(𝑞)−1∑︁
𝑙=0

𝛽𝑙𝑐𝑞 (𝑛 − 𝑙) (7.3)

for appropriate coefficients 𝛽𝑙 . Note that the signals in 𝑆𝑞 have infinite length in
the time domain and infinitesimal bandwidth in the frequency domain. A review of
Ramanujan sums, Ramanujan subspaces, and their properties can be found in [52],
and an overview was given in [65].

7.2.1 Nested Periodic Dictionaries
Consider a signal x ∈ R𝑁 that can have periodic components with periods from 1 to
𝑃𝑚𝑎𝑥 . We assume in this chapter that 𝑃𝑚𝑎𝑥 , the bound on the maximum component
period of the signal, is known a-priori. Then x can be represented as [53], [191]

x = Db, where D =

[
H1 H2 · · · H𝑃𝑚𝑎𝑥

]
. (7.4)

Here, H𝑞 are the matrices of size 𝑁 × 𝜙(𝑞) whose columns are the 𝑞-th Ramanujan
sum and its 𝜙(𝑞) shifted versions truncated to length 𝑁 . Thus, H𝑞 spans the
signals from the 𝑞-th Ramanujan subspace 𝑆𝑞 that are truncated to length 𝑁 . This
dictionary is called the Ramanujan dictionary [53]. The coefficient vector b has
non-zero entries at locations corresponding to the subspaces in which the periodic
components of x lie. The size of D is 𝑁 ×Φ(𝑃𝑚𝑎𝑥), where

Φ(𝑞) =
𝑞∑︁
𝑘=1

𝜙(𝑘). (7.5)
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Figure 7.1: Dictionary coherence values of Ramanujan, Farey, and natural periodic
dictionaries compared against the Welch bound as 𝑃𝑚𝑎𝑥 is varied, keeping the
number of rows constant at 100.

As Φ(𝑃𝑚𝑎𝑥) grows O(𝑃2
𝑚𝑎𝑥) [191], D is a fat matrix if the number of samples

𝑁 is not too large. Since D is a fixed known matrix, obtaining b from x can
be considered a sparse vector recovery problem. Two other dictionary choices
apart from the Ramanujan dictionary are the Farey dictionary [191] and the natural
periodic dictionary [53]. The Farey dictionary has complex-valued entries, whereas
the natural periodic dictionary has only zeros and ones. For details, see [53]. For
successful sparse signal recovery, it is desirable to have the representation matrix
with low mutual coherence [192]. When the columns of a dictionary D have a unit
𝑙2 norm, the mutual coherence is defined as the maximum absolute value of the
inner product between any two distinct columns

𝜇(D) = max
𝑖≠ 𝑗

|d𝐻𝑖 d 𝑗 |, (7.6)

where d𝑖 is the 𝑖-th column of D. For a dictionary of size 𝑁 × 𝑀 , 𝜇(D) is lower-
bounded as follows [193]:

𝜇(𝐷) ≥
√︁
(𝑀 − 𝑁)/𝑁 (𝑀 − 1). (7.7)

This is known as the Welch bound. Fig. 7.1 shows the coherence values for
Ramanujan, Farey, and natural periodic dictionaries when the number of rows is
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100 and the maximum period 𝑃𝑚𝑎𝑥 is varied from 10 to 50. Out of the three, the
Ramanujan dictionary has the lowest mutual coherence and hence may be considered
to be a better choice to analyze periodic signals. Thus, in this work, we use the
Ramanujan dictionary for signal reconstruction. That is, we take H𝑞 as

H𝑞 =


| | |

𝑐𝑞 (𝑛) 𝑐𝑞 (𝑛 − 1) . . . 𝑐𝑞 (𝑛 − (𝜙(𝑞) − 1))
| | |

 . (7.8)

The columns of H𝑞 are the first 𝜙(𝑞) shifted versions of the 𝑞-th Ramanujan sum
𝑐𝑞 (𝑛), truncated to length 𝑁 . We will also demonstrate in the next Chapter 9
that under favorable circumstances, K-SVD [74] can learn Ramanujan and Farey
dictionaries from the noisy, sparse coefficient data generated from them even if no
periodicity structure is imposed in the learning stage.

7.2.2 Ramanujan Filter Banks
The dictionary method is not suitable when the periodicity structure of the signal
evolves over time. Ramanujan filter banks (RFB) [63], [64], [194] are proposed for
such a scenario. RFB consists of FIR filters that correspond to each period from 1
to 𝑃𝑚𝑎𝑥 . The 𝑞-th Ramanujan filter is given by

𝐶
(𝑙)
𝑞 (𝑧) =

𝑙𝑞−1∑︁
𝑛=0

𝑐𝑞 (𝑛)𝑧−𝑛, 1 ≤ 𝑞 ≤ 𝑃𝑚𝑎𝑥 . (7.9)

Its filter coefficients are the first 𝑙 periods of the 𝑞-th Ramanujan sum. Thus, the
filter length of the 𝑞-th filter is 𝑁𝑞 = 𝑙𝑞. A qualitative plot of the frequency response
of the 9𝑡ℎ Ramanujan filter is shown in Fig. 7.2. 𝐶 (𝑙)

𝑞 (𝑧) has 𝜙(𝑞) passbands around
the coprime frequencies.

Increasing 𝑙 reduces the width of the passbands and the frequency response ap-
proaches the ideal Ramanujan filter 𝐶𝑞 (𝑒 𝑗𝜔), which consists of a set of Dirac-delta
functions with infinitesimal bandwidth. When a signal 𝑥(𝑛) is passed through the
𝑞-th Ramanujan filter, the filter outputs are convolutions of 𝑥(𝑛) with filter coeffi-
cients 𝑐𝑞 (𝑛), 0 ≤ 𝑛 ≤ 𝑙𝑞 − 1. When 𝑙 is large, the outputs can be considered to
approximately belong to 𝑆𝑞. A period vs. time plane plot [63], [64] is generated
by plotting the windowed filter output energy as a function of time. These plots
are similar to time-frequency plots. Indices of the filters whose outputs have high
energy indicate the component periods of the signal. Periodicities in proteins [187]
and DNAs [42] have been analyzed successfully using RFB. Multiplier-less imple-
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Figure 7.2: A qualitative plot of the frequency response magnitude of the FIR
Ramanujan filter 𝐶 (𝑙)

9 (𝑒 𝑗𝜔), when 𝑙 is finite [194].

mentation [194] and efficient implementation by factoring common zeros [195] have
also been proposed.

7.3 Hybrid Analysis-Synthesis Framework
The RFB has one FIR filter 𝐶 (𝑙)

𝑞 (𝑧) corresponding to each 𝑞 in 1 ≤ 𝑞 ≤ 𝑃𝑚𝑎𝑥 . The
RFB is not like traditional analysis filter banks for which we can typically find a
stable synthesis filter bank yielding perfect reconstruction [188], primarily because
of the multiband structure of the Ramanujan filters. Such a perfect reconstruction
filter bank scheme would have been useful in denoising, but since it does not
exist, we use a different type of synthesis mechanism to obtain the denoised signal.
We propose to use RFB for analysis and Ramanujan dictionaries for synthesis in
our denoising framework. Thus, we have a hybrid of an analysis filter bank and a
synthesis dictionary. Later in Sec. 7.6, we also derive some decimation properties of
Ramanujan subspace signals and discuss their application in the context of denoising.

7.3.1 Ramanuajan Dictionaries for Synthesis
The synthesis dictionary in our denoising framework is generated based on the
outputs of the RFB. To explain the basic idea, consider a noiseless signal x ∈ R𝑁

whose periodic components do not change over time. Consider an ideal Ramanujan
filter bank with the ideal Ramanujan filters 𝐶𝑞 (𝑒 𝑗𝜔) for 1 ≤ 𝑞 ≤ 𝑃𝑚𝑎𝑥 , instead of
𝐶

(𝑙)
𝑞 (𝑧). Suppose the filters with indices 𝑞 = 𝑟1, 𝑟2, · · · , 𝑟𝑚 produce non-zero outputs

when x is passed through the ideal RFB. Due to the ideal nature of the filters assumed
here, we can conclude that the signal has non-zero frequency components possibly
only at 2𝜋𝑘𝑖 𝑗/𝑟𝑖, where (𝑘𝑖 𝑗 , 𝑟𝑖) = 1, 𝑖 = 1, . . . , 𝑚. In other words, the signal x is
a linear combination of the signals from the Ramanujan subspaces 𝑆𝑟1 , 𝑆𝑟2 . . . , 𝑆𝑟𝑚 .
Since the columns of H𝑞 (Eq. (7.4)) span the signals from 𝑆𝑞 that are truncated to
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length 𝑁 , x can be expressed as

x = D̂b, where D̂ =

[
H𝑟1 H𝑟2 · · · H𝑟𝑚

]
. (7.10)

Here D̂ is a matrix of size 𝑁×∑𝑚
𝑖=1 𝜙(𝑟𝑖) and b is a

∑𝑚
𝑖=1 𝜙(𝑟𝑖) dimensional coefficient

vector. We shall call this operation of retaining only a few subspaces from the
complete Ramanujan dictionary D as dictionary pruning. That is, D̂ is a pruned
version of D in (7.4), and the pruning is based on the output of the RFB. If x consists
of only a few component periods in the range 1 ≤ 𝑞 ≤ 𝑃𝑚𝑎𝑥 , the matrix D̂ will
have a much lesser number of columns than Φ(𝑃𝑚𝑎𝑥). In summary, a signal x that
has no components with a period larger than 𝑃𝑚𝑎𝑥 , lies in the column space of an
appropriate pruned Ramanujan dictionary D̂ as shown in Eq. (7.10).

In this work, we want to get an estimate of the noise-free version x of a signal from
its given noisy version y = x + e, where e is additive noise to the noiseless periodic
signal x. The task now is to appropriately combine the information at RFB output
with the noisy input signal y, to extract a cleaner version x̂ of the input. We will
do this by using the appropriately pruned dictionary for synthesis. This is a unique
aspect of our method.

7.3.2 Proposed Denoising Framework
Let the noisy version y = x + e be input to a practical RFB (i.e., with finite 𝑙)
having filters up to 𝑃𝑚𝑎𝑥 . We assume that 𝑃𝑚𝑎𝑥 , the largest possible period that
signal components can have, is known. As described earlier, filters with large 𝑙
have narrower passband widths. In this case, the sidelobes of the filters can be
assumed to be sufficiently suppressed in the passbands of other Ramanujan filters.
So, under moderate noise conditions, it is reasonable to expect the filters with indices
𝑟1, 𝑟2, . . . , 𝑟𝑚 to produce the outputs with much higher energies than the other filters
in RFB. The small non-zero outputs of the other filters are largely due to the noise
present. So now we threshold the output energies to attenuate the noise components.
An appropriately chosen threshold should ideally retain only the subspace indices
𝑟1, 𝑟2, . . . , 𝑟𝑚. These are the filter index values that would have produced non-zero
outputs if the noiseless signal x was passed through the RFB instead of y. Once
the indices 𝑟𝑖 are known, a pruned synthesis dictionary D̂ like in Eq. (7.10) can be
formed.

Now the only remaining thing is to estimate the coefficient vector b. Once we have
an estimate b̂ for the unknown coefficient vector b, the denoised signal is taken to
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be
x̂ = D̂b̂. (7.11)

Since the input noisy signal y is known to us, we can obtain b̂ by solving the
following 𝑙1 regularized least squares optimization problem:

b̂ = arg min
b

| |y − D̂b| |22 + 𝜆 | |b| |1. (7.12)

The first term in the objective function ensures that the denoised signal has some
resemblance to the input noisy signal y, as expected in a denoising task. The second
regularization term prefers solutions with smaller magnitudes of entries in b. Such
𝑙1-regularized optimization problems are known to promote sparse solutions. 𝜆 is
a regularization hyperparameter that can either be chosen heuristically or based on
the expected noise variance. This optimization problem can be solved efficiently by
convex optimization algorithms such as [196].

Since the denoised output x̂ lies in the column space of D̂, it is composed of integer-
periodic components with periods corresponding to 𝑟1, . . . , 𝑟𝑚. Thus, x̂ is also
guaranteed to be integer-periodic when enough samples are considered. We can
‘see’ this periodic behavior if we plot x̂ for a large enough number of samples.
More samples of x̂ can be obtained by extending the pruned synthesis dictionary D̂
to include more rows, and using the same coefficient vector b̂. The output being
composed of integer-periodic components with periods smaller than 𝑃𝑚𝑎𝑥 is a unique
advantage of our method.

It is possible to estimate b̂ by solving the following optimization problem:

b̂ = arg min
b

| |b| |0 s.t. | |y − D̂b| |22 ≤ 𝜖 . (7.13)

Here, 𝜖 is again a noise-dependent hyperparameter. This 𝑙0 norm minimization
problem is an NP-hard problem. However, it can be solved heuristically by sparse
coding algorithms such as OMP [180]. In our numerical simulations, we noticed
that both versions of estimating b̂ (i.e., Eq. (7.12) and Eq. (7.13)) led to very similar
SNR gains, so we consistently use the computationally efficient method (Eq. (7.12))
in our simulations.
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7.3.3 Details
Consider the two operations that directly contribute to the denoising effect. First
is the thresholding of the outputs of RFB, followed by dictionary pruning to elim-
inate certain subspaces from signal representation. And second, the optimization
problems (Eq. (7.12) or Eq. (7.13)) solved to get b̂. These sparsity-promoting opti-
mization problems with 𝑙1 and 𝑙0 norms can further drop some of the less significant
subspaces from the representation of x̂ by setting some entries in b̂ to be zero.

A good value for the RFB threshold depends on the noise variance. In practice, it is
usually found out heuristically. It is, however, possible that some of the low-energy
harmonics of a signal produce lower energy outputs at the corresponding filter as
compared to the noise energy at other filters. For example, for a period-10 signal
having both period-2 and period-5 components, the subspaces retained after the
pruning step may only be 𝑆5 and 𝑆10 if the period-2 component is of low energy
and gets thresholded. Since we have two denoising contributors, we can carefully
balance the two to reduce such unwanted dropping of low-energy harmonics.

One option is to set the RFB output threshold conservatively. This reduces the
possibility of low-energy harmonics being dropped. Here, the hope is that several
other noise subspaces retained at this stage will be dropped by the optimization
algorithm in the next stage. However, we did not find this option as effective in our
simulations.

Another option is to set RFB thresholds slightly higher. This would almost com-
pletely eliminate all the noise subspaces. However, many of the low-energy har-
monics might also get thresholded in the process. To rectify this to some extent, we
manually reintroduce the ‘divisor subspaces’ that correspond to the harmonics. More
precisely, in addition to the subspaces corresponding to the indices 𝑟1, 𝑟2, · · · , 𝑟𝑚,
we also add subspaces corresponding to the divisors of 𝑟1, 𝑟2, · · · , 𝑟𝑚 in the syn-
thesis dictionary. If 𝑟𝑖 has 𝑘𝑖 divisors 𝑑𝑖1, 𝑑𝑖2, · · · , 𝑑𝑖𝑘𝑖 , the synthesis dictionary is
given by

D̂𝑑𝑖𝑣 = [H𝑑11 , · · · ,H𝑑1𝑘1︸             ︷︷             ︸
divisors of 𝑟1

, · · · ,H𝑑𝑚1 , · · · ,H𝑑𝑚𝑘𝑚︸               ︷︷               ︸
divisors of 𝑟𝑚

] . (7.14)

This way, the lost subspace 𝑆2 in the above example will be reintroduced, since 2 is
a divisor of 10.

For the given set of indices 𝑟1, 𝑟2, . . . , 𝑟𝑚, the dictionary generated according to Eq.
(7.10) will be referred to as a ‘without-divisors’ dictionary, whereas the dictionary
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generated according to Eq. (7.14) will be referred to as a ‘with-divisors’ dictionary.
To summarize the above example of the period-10 signal where 𝑟1 = 5 and 𝑟2 = 10,
the ‘without-divisors’ and ‘with-divisors’ synthesis dictionaries are

D̂ =

[
H5 H10

]
, (7.15)

D̂𝑑𝑖𝑣 =

[
H1 H2 H5 H10

]
. (7.16)

Consider another example, where a signal has non-zero energy output for 𝑟1 = 1, 𝑟2 =

7, and 𝑟3 = 12 after thresholding. Then the two types of synthesis dictionaries will
be

D̂ =

[
H1 H7 H12

]
, (7.17)

D̂𝑑𝑖𝑣 =

[
H1 H2 H3 H4 H6 H7 H12

]
. (7.18)

because 2, 3, 4, and 6 are divisors of 12. Fig. 7.3 shows the complete ‘periodicity-
aware’ denoising framework using Ramanujan analysis filter bank and pruned syn-
thesis dictionary. The proposed framework uses the a-priori knowledge that the
noiseless signal is composed of integer-periodic components with periods up to
𝑃𝑚𝑎𝑥 , and thus produces an appropriate signal as the output composed of integer-
periodic components.

7.3.4 Experimental Results
In this section, we compare the denoising performance of our proposed framework
with some of the well-known denoising methods from the literature. We use the
SNR gain metric for comparisons. It is defined as the increase in the signal-to-
noise ratio (SNR) of the denoised signal compared to that of the noisy signal.
Before presenting Monte-Carlo simulations, we will present a specific instance of
denoising. Fig. 7.4(a) shows a unit-norm period-12 signal. Fig. 7.4(b) shows the
noisy signal obtained by adding white Gaussian noise. The SNR of the noisy signal
is 0 dB. We use 100 samples of the signal for denoising. The hyperparameters of
the proposed framework are chosen as follows: 𝑃𝑚𝑎𝑥 = 40, 𝑙 = 10, and 𝜆 = 0.01.
The RFB threshold is set to 0.4 times the maximum energy output of the filter
bank. So, the retained subspace indices H𝑟1 , . . . ,H𝑟𝑚 are such that the energy of
the 𝑟𝑖-th filter is at least 0.4 times the largest filter output energy. Later in this
subsection, we also present Monte-Carlo simulation results (Fig. 7.5), where we
perform a hyperparameter search for different input SNRs to obtain a good set of
hyperparameters.
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(f)  Unpruned dictionary, OMP Denoising, SNR Gain 7.2054 dB
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(j) Wavelet Denoising, SNR Gain -0.66338 dB

Figure 7.4: Comparison of different denoising methods for a period-12 signal. See
Sec. 7.3.4 for details and discussion. (a) Original signal 𝑥(𝑛), (b) noisy version
𝑦(𝑛), and (c)-(j) denoised versions 𝑥(𝑛) using various methods.

The denoised signal is obtained by solving Eq. (7.12). When the ‘with-divisors’
synthesis dictionary (Eq. (7.14)) is used, we get the best denoising signal as shown in
Fig. 7.4(c). It has the highest SNR gain of over 10 dB. Note that the denoised signal
is exactly periodic and visually quite similar to the original signal. The ‘without-
divisors’ synthesis dictionary (Eq. (7.10)) loses out on a lower energy harmonic
and produces a much lower SNR gain (Fig. 7.4(d)). This justifies the inclusion of
divisor subspaces in our synthesis dictionary. Denoising with the 𝑙1 reconstruction
(Eq. (7.12)) and the 𝑙0 reconstruction (Eq. (7.13)) were found to produce similar
SNR gains with pruned dictionaries, so we consistently use 𝑙1 reconstruction in
our proposed method. Next, Fig. 7.4(e) shows the denoised signal obtained by 𝑙1
reconstruction using the full (i.e., unpruned) Ramanujan dictionary as in Eq. (7.4).
The low SNR gain with the unpruned dictionary justifies the need for the crucial
dictionary pruning step. The OMP denoising with the unpruned dictionary (Fig.
7.4(f)) provided a good SNR gain in this case, but on average it is found to perform
poorer than the ‘without-divisors’ dictionary method as we will see later in Fig. 7.5.
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Comparing the denoised output of the proposed method with the results from Fig.
7.4(g-j), we see that our method clearly outperforms DFT, NHA [181], wavelet
[179], and K-SVD [76] based denoising methods. None of these methods yields a
truly periodic signal. The DFT denoising (Fig. 7.4(g)) does not perform that well
here because the signal period, 12, is not a divisor of the signal length 100, and thus
the signal frequency components do not lie on the DFT frequency grid.

The NHA-based denoising method [181] requires a good initialization from DFT to
perform well. Also, it suffers from error propagation due to the iterative addition
of frequency components in its denoising steps. These reasons limit the denoising
ability of NHA (Fig. 7.4(h)). The data-adaptive K-SVD denoising technique also
performs poorly (Fig. 7.4(i)). One possible reason is that with the small signal
length, K-SVD is not able to learn a good dictionary from the patches of the noisy
signal. The wavelet denoising (Fig. 7.4(j)) produces a completely unacceptable
denoising result. Wavelets provide a good representation for signals with time-
localized supports, such as, for example, bump signals [184], whereas the periodic
signals are very different from this.

Note that implementing many of the denoising methods requires choosing some
hyperparameters. For example, our proposed method has three hyperparameters,
namely, the regularization level 𝜆, the RFB threshold, and the filter lengths 𝑁𝑞 = 𝑙𝑞
that are controlled by the hyperparameter 𝑙. The 𝑃𝑚𝑎𝑥 value is assumed to be
known a-priori. Similarly, OMP denoising requires a threshold 𝜖 , NHA requires
similar iteration terminating hyperparameters, and KSVD-based denoising requires
choosing the number of dictionary columns and signal patch size.

For the Monte-Carlo simulations that we perform next, we have access to the noise-
less ground truth signal of the synthetically generated dataset. Thus, we perform
a hyperparameter search for each of the denoising methods at every input SNR by
joint search over appropriate sets of values. For the proposed method, we jointly
search energy threshold level and regularization level 𝜆 by joint search from the sets
{0, 0.1, 0.2, . . . , 1} and {0.0001, 0.001, 0.01, 0.033, 0.1, 0.33, 1} respectively, while
keeping 𝑙 = 10 fixed. This hyperparameter search process based on the synthetic
data can be considered analogous to the ‘validation phase’ from machine learning
based methods performed to tune the hyperparameters. In practice, we only receive
a noisy signal. Even though we do not have access to the noiseless ground truth
signal in this case, we assume that an estimate of the noise level (i.e., SNR of the
noisy signal) is available. Then, to perform denoising, we can use the values of



208

-10 -5 0 5 10 15
Noisy Signal SNR (dB)

-15

-10

-5

0

5

10

S
N

R
 G

ai
n 

(d
B

)

Proposed, with-divisors
Proposed, without-divisors
Unpruned, l-1
Unpruned, OMP
DFT Denoising
NHA Denoising
K-SVD Denoising
Wavelet Denoising

(a)

-10 -5 0 5 10 15
Noisy Signal SNR (dB)

-15

-10

-5

0

5

10

S
N

R
 G

ai
n 

(d
B

)

Proposed, with-divisors
Proposed, without-divisors
Unpruned, l-1
Unpruned, OMP
DFT Denoising
NHA Denoising
K-SVD Denoising
Wavelet Denoising

(b)

Figure 7.5: Comparison of SNR gains offered by different denoising methods
averaged over 1000 Monte-Carlo runs consisting of (a) period-12 signals and (b)
sum of period-7 and period-12 (effective period 84) signals.

hyperparameters that provided the best SNR gain at the particular input SNR in the
hyperparameter search phase.

Now we perform Monte-Carlo simulations by generating 1000 period-12 signals
randomly and adding Gaussian noise to them. Fig. 7.5(a) shows the SNR gains
offered at various noise levels in the input (when hyperparameters found by the
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hyperparameter search, as explained above, are used). The proposed method that
uses the ‘with-divisors’ dictionary offers the best SNR gain that is stable over a
large range of input SNR values, followed next by the ‘without-divisors’ dictionary
method. To compare the denoising performance for signals with multiple periodic
components, we also considered signals that are combinations of period-7 and
period-12 signals. Since the effective period of such signals is 7 × 12 = 84, data
with only 100 samples hardly even ‘looks’ periodic. Even in this case, the proposed
denoising method demonstrated results superior to the other methods as seen in Fig.
7.5(b).

7.4 Optimizing Ramanujan Filters Using Capon Beamforming Principles
In our denoising framework, the energy of the 𝑞-th RFB filter output indicates
the presence or absence of the period 𝑞 component. Ideally, we would want the
outputs of the 𝑞-th Ramanujan filter to be nonzero only when the signal contains
the coprime frequency components corresponding to 𝑞 (i.e., 2𝜋𝑘/𝑞 where 𝑘 and 𝑞
are coprime). However, the passbands of practical Ramanujan filters 𝐶 (𝑙)

𝑞 (𝑧) have
non-zero bandwidth (Fig. 7.2). So it is possible that 𝐶 (𝑙)

𝑞 (𝑧) does not completely
attenuate frequency components that correspond to other periods and lie close to
some 𝑘 · 2𝜋/𝑞, (𝑘, 𝑞) = 1. As an example, consider a period-18 signal with SNR 2
dB. Fig. 7.6(a) shows the period vs. time plane plot produced by the RFB. Many
filters around index 𝑞 = 18 and 𝑞 = 9 (a harmonic of period-18 signal) produce
high energy outputs. In addition to this, several other filters corresponding to larger
periods also produce high-energy outputs. In such cases, it may not be possible to
find a good threshold that retains only the appropriate subspaces in the synthesis
dictionary.

One way to prevent this is to make the filter passbands narrower by increasing
𝑙 for 𝐶 (𝑙)

𝑞 (𝑧). However, this increases the time domain filter length 𝑞𝑙, resulting
in poorer time domain localization and increased transient output samples. To
avoid this, we propose to adapt each filter in the RFB to the incoming data. We
want the 𝑞-th filter to pass the set of 𝜙(𝑞) coprime frequencies unattenuated and
almost completely attenuate all other frequency components present in the signal.
To achieve this, we use the principle of minimum variance distortionless response
(MVDR) beamformer or Capon’s method [1], [197] from array signal processing.
We show that optimizing each filter this way greatly improves the period vs. time
plane plots. As a preview, Fig. 7.6(b) shows the period vs. time plane plot obtained
at the output of the Capon-optimized filter bank. It is much cleaner than the period
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Time-Period Plot Using Capon
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Figure 7.6: Period vs. time plane plot [63], [64] of a period-18 signal, produced by
(a) RFB and (b) Capon-optimized filter bank.

vs. time plane plot produced by RFB and has significant energy outputs only for
filters with 𝑞 = 18, 𝑞 = 9, and 𝑞 = 6, which are the correct harmonics of the period-
18 signal under consideration. This data-adaptive method of optimizing filters in the
analysis bank reduces the possibility of selecting incorrect Ramanujan subspaces
and thus improves the average denoising SNR gain, as we will see.

7.4.1 Review of Capon Beamforming
In a typical setting in the field of array signal processing, an 𝑁-sensor uniform
linear array (ULA) is used for receiving signals from different spatial directions.
The inter-sensor spacing is assumed to be 𝜇/2, where 𝜇 is the wavelength of the
incoming electromagnetic waves. Suppose we want to receive the signal from a
particular direction 𝜃0 in space, but there are interfering signals coming from other
directions 𝜃1, 𝜃2, . . . , 𝜃𝐷 as well. In this setting, the array output x ∈ C𝑁 is modeled
as [1]

x = 𝑐0a(𝜔0) + Ac + e. (7.19)

Here, the ‘frequency variables’ 𝜔0, 𝜔1, . . . , 𝜔𝐷 ∈ [−𝜋, 𝜋) are related to spatial
angles of arrivals 𝜃0, 𝜃1, . . . , 𝜃𝐷 as 𝜔𝑖 = 𝜋 sin 𝜃𝑖. The steering vector corresponding
to direction 𝜔 is defined as a(𝜔) = [1, 𝑒 𝑗𝜔, . . . , 𝑒 𝑗 (𝑁−1)𝜔]𝑇 , and the 𝑁 × 𝐷 array
manifold matrix A is defined as

A =

[
a(𝜔1) a(𝜔2) . . . a(𝜔𝐷)

]
. (7.20)

Here e represents noise, and c = [𝑐1, . . . , 𝑐𝐷]𝑇 where the source amplitudes 𝑐𝑖 are
assumed to be random variables.
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A beamformer h ∈ C𝑁 computes a linear combination 𝑦 = h𝐻x of the array output x.
Note that h𝐻a(𝜔) = 𝐻∗(𝑒 𝑗𝜔), where 𝐻 (𝑒 𝑗𝜔) = ∑𝑁−1

𝑛=0 ℎ(𝑛)𝑒− 𝑗𝜔𝑛 is the discrete-time
Fourier transform of the beamformer h. With this,

𝑦 = h𝐻x = 𝑐0𝐻
∗(𝑒 𝑗𝜔0) +

𝐷∑︁
𝑖=1

𝑐𝑖𝐻
∗(𝑒 𝑗𝜔𝑖 ) + h𝐻e. (7.21)

To receive the signal from a particular direction 𝜃0, the beamformer should have a
fixed gain 𝐻 (𝑒 𝑗𝜔0) = 1 for the ‘look direction’ 𝜔0 and 𝐻 (𝑒 𝑗𝜔𝑖 ) = 0 for 𝑖 = 1, . . . , 𝐷.
Since the interfering directions are not known, the Capon beamformer aims to
reduce the combined effect of interference and noise in a statistical sense based
on the covariance of the received data. Assuming that source amplitudes 𝑐𝑖 are
zero-mean random variables independent of each other and also independent of the
zero-mean noise e, the mean square value of the beamformer output 𝑦 is given by

E[|𝑦 |2] = h𝐻Rxxh

= 𝑝0 |𝐻 (𝑒 𝑗𝜔0) |2 +
𝐷∑︁
𝑖=1

𝑝𝑖 |𝐻 (𝑒 𝑗𝜔𝑖 ) |2 + h𝐻Reeh,
(7.22)

where Rxx is the covariance of array output, 𝑝𝑖 = E[𝑐𝑖𝑐𝐻𝑖 ] is the power of the 𝑖-th
source, and Ree is noise covariance. Under the look direction constraint𝐻 (𝑒 𝑗𝜔0) = 1,
minimizing the effect of interferers and noise is equivalent to minimizing E[|𝑦 |2].
Thus, finding the optimal beamformer is posed as the following optimization prob-
lem:

min
h∈C𝑁

h𝐻Rxxh s.t. h𝐻a(𝜔0) = 1. (7.23)

It can be shown [1], [197] that when Rxx is invertible, the solution to this problem
is given by

h =
R−1

xx a(𝜔0)
a𝐻 (𝜔0)R−1

xx a(𝜔0)
. (7.24)

In practice, we only have an estimate R̂xx for the covariance matrix, obtained from
a finite number of snapshots. So, R̂xx which is used in place of Rxx in (7.24) to get
the beamformer coefficients.

7.4.2 Multi-Band Capon Formulation to Optimize Analysis Filters
Note that the optimal beamformer h can be equivalently interpreted as a standard
𝑁-tap FIR filter with impulse response ℎ(𝑛) having a passband around the look
direction 𝜔0. When 𝑁 is large enough, some of the zeros of the optimal Capon
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Figure 7.7: Magnitude response of the Capon-optimized filter h10 closely approx-
imates the Ramanujan filter 𝐶 (𝑙)

10 (𝑧) in the passbands and puts zeros very close to
the other frequency components present in the signal (denoted with black vertical
lines).

beamformer typically lie very close to the unit circle in the 𝑧-plane with phase values
that are very close to the interfering signal frequencies 𝜔𝑖. Thus, the interferences
are almost completely attenuated by the Capon beamformer.

Now consider a 𝑞-th Ramanujan filter in our denoising framework. We want its
output to contain only the coprime frequency components corresponding to the
period 𝑞, and attenuate the frequency components corresponding to other periods.
This is very similar to the Capon beamformer setting. The frequency components
corresponding to other periods are like unknown interferences. The difference,
however, is that we want the filter frequency magnitude to be unity at multiple
frequencies 𝑘 · 2𝜋/𝑞 with (𝑘, 𝑞) = 1 and not just one ‘look direction’ 𝜔0. We
can get such a multi-banded filter by solving the following multi-constrained Capon
optimization problem:

h𝑞 = arg min
h∈C𝑁𝑞

h𝐻R𝑞h

s.t. h𝐻a(𝜔𝑘 ) = 1, 𝜔𝑘 = 2𝜋𝑘/𝑞,
1 ≤ 𝑘 ≤ 𝑞, (𝑘, 𝑞) = 1.

(7.25)
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Figure 7.8: Total output energies for each filter in RFB and Capon-optimized banks.
The Capon-optimized filter bank does not produce spurious peaks for higher period
filters, thus making a good choice of threshold easy.

Here the 𝑞-th filter h𝑞 has length 𝑁𝑞. R𝑞 is the estimated 𝑁𝑞 ×𝑁𝑞 correlation matrix
of the incoming data:

R𝑞 =
1

𝑁 − 𝑁𝑞 + 1

𝑁−𝑁𝑞+1∑︁
𝑖=1

y(𝑖 : 𝑖 + 𝑁𝑞 − 1)y𝐻 (𝑖 : 𝑖 + 𝑁𝑞 − 1), (7.26)

where y is the length-𝑁 noisy periodic signal to be denoised. Such a multi-
constrained Capon formulation has been studied in the past [198]–[200]. The
optimal solution to (7.25) is given by

h𝑞 = R−1
𝑞 A𝑞 (A𝐻

𝑞 R−1
𝑞 A𝑞)−11𝜙(𝑞) . (7.27)

In our application, A𝑞 =

[
a(𝜔1) . . . a(𝜔𝜙(𝑞))

]
where, 𝜔1, . . . , 𝜔𝜙(𝑞) are the

𝜙(𝑞) coprime passband frequencies and 1𝜙(𝑞) denotes the 𝜙(𝑞)-dimensional vector
containing all ones.

7.4.3 Denoising using Capon-Optimized Filter Bank
Before comparing the denoising performance with RFB and Capon-optimized filter
bank, let’s compare their filter magnitude responses. In our examples, we set the
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Figure 7.9: Period vs. time plane plot after denoising the period-18 signal considered
in Fig. 7.6. Denoising and plotting Period vs. time plane plots using (a) RFB and
(b) Capon-optimized filter bank.

length of 𝑞-th filters in both RFB and Capon-optimized filter banks to be 𝑁𝑞 = 3𝑞.
The RFB filters are independent of the signal under consideration, whereas Capon-
optimized filters depend on the data correlation matrix. Consider again the period
18 signal with 3 harmonic components and SNR of 2 dB that was used in Fig.
7.6. Fig. 7.7 shows the magnitude responses of the Ramanujan filter and the
Capon-optimized filter (Eq. (7.27)) corresponding to 𝑞 = 10 for this signal. The
Capon-optimized filters achieve high attenuation at the frequencies corresponding
to signal components that correspond to periods other than 𝑞. For this reason, the
Capon-optimized filters provided much cleaner period vs. time plane plots, as was
seen in Fig. 7.6. Note that in the passbands, the magnitude responses of the 𝑞-th
Ramanujan filter and 𝑞-th Capon-optimized filter were found to be very similar in
most cases.

Fig. 7.8 shows the total output energy produced by each filter in the RFB and Capon-
optimized filter banks. Unlike the RFB, the Capon-optimized filter bank does not
produce spurious high-energy peaks, especially for the filters corresponding to
higher periods. This makes the selection of a good threshold to retain appropriate
subspaces in the synthesis dictionary easier, as shown in the figure. As one would
expect, this further improves the denoising performance. Fig. 7.9 shows the period
vs. time plane plots of the signal considered in Fig. 7.6 after denoising. Denoising
and plotting the period vs. time plane plots is done with RFB in Fig. 7.9(a) and
Capon-optimized bank in Fig. 7.9(b). We can see that the period vs. time plane
plot for the signal denoised with Capon-optimized bank has practically zero energy
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Figure 7.10: Comparison of SNR gains obtained by the hybrid denoising system
when the analysis bank is (i) RFB and (ii) Capon-optimized. The plots are obtained
by averaging the performance over 1000 Monte Carlo runs for period-12 signals.

outputs for filters other than those corresponding to 18, 9, and 6, which are the
harmonics of the period-18 signal considered. The small non-zero energies at the
start and the end for the other filters are due to transient portions of the convolution
outputs, where not all filter coefficients are involved in the convolution. The filter
length 𝑁𝑞 = 3𝑞 increases with the filter index 𝑞, and so does the length of transients.

Fig. 7.10 shows the average SNR gain obtained with the Capon-optimized filter bank
and RFB filter bank for 1000 randomly generated period-12 signals of length 400.
We consider denoising using both the ‘with-divisors’ dictionary and the ‘without-
divisors’ dictionary for each filter bank. The filter length is chosen to be 𝑁𝑞 = 3𝑞
for both filter banks. Note that the filter length used here is much smaller than that
used in the previous simulations from Sec. 7.3.4. We see that the combination
of the Capon-optimized filter bank and the ‘with-divisors’ dictionary consistently
provides the best average SNR gain between 12-15 dB. Several other comparative
simulations are presented in Sec. 7.7.
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7.5 Discussions on Computational Complexity
The difference in computational complexities of the RFB-based denoising frame-
work and the Capon-based denoising framework arises because of the way filters
are designed. Implementing Ramanujan filters (Eq. (7.9)) is not computationally
expensive, as they have data-independent fixed filter coefficients defined based on
Ramanujan sums. On the other hand, implementing Capon-optimized filters first
requires computing filter coefficients based on data. Computing the 𝑞-th Capon-
optimized filter coefficients requires computing the 𝑁𝑞 × 𝑁𝑞 data correlation matrix
R𝑞 (Eq. (7.26)) and then evaluating Eq. (7.27). Inverting R𝑞 requires O(𝑞3)
computations. Furthermore, inverting the expression A𝐻

𝑞 R−1
𝑞 A𝑞 from (7.27) also

requires O(𝜙(𝑞)3) = O(𝑞3) computations. This is the cost we have to pay for the
improved denoising performance.

For streaming (or non-stationary) data, it is possible to update the R−1
𝑞 term itera-

tively as we receive new samples instead of explicitly evaluating R−1
𝑞 , to save some

computational cost. We do not consider streaming (or non-stationary) data in this
chapter, as it requires several careful modifications to the current method that vary
depending on the nature of how periodicity structure changes over time. For the sta-
tionary signals (whose periodicity structure does not change over time) considered
in this chapter, the ideal correlation matrix of the signal is Toeplitz. So instead of
generating separate 𝑁𝑞 × 𝑁𝑞 autocorrelation matrices for each 𝑞 as in Eq. (7.26),
we can generate a single 𝑁𝑃𝑚𝑎𝑥

× 𝑁𝑃𝑚𝑎𝑥
autocorrelation matrix R𝑃𝑚𝑎𝑥

by setting
𝑞 = 𝑃𝑚𝑎𝑥 in Eq. (7.26). We then ‘Toeplitzize’ it by averaging the entries along
all the diagonals of the matrix to get a Toeplitz estimate R̂ for the autocorrelation
matrix as follows:

R̂(𝑖, 𝑗) =
∑︁

1≤𝑖′ , 𝑗′≤𝑁𝑃𝑚𝑎𝑥
𝑖′− 𝑗′=𝑖− 𝑗

R𝑃𝑚𝑎𝑥
(𝑖′, 𝑗 ′). (7.28)

Let R̂𝑞 denote the 𝑁𝑞 × 𝑁𝑞 leading principal submatrix of R̂. This R̂𝑞 can be taken
as an estimate of the ideal 𝑁𝑞 × 𝑁𝑞 Toeplitz autocorrelation matrix and can be used
in place of R𝑞 in (7.27). When the signal length is large enough, the submatrices of
R̂ will closely approximate the R𝑞 computed according to Eq. (7.26). There is an
important computational advantage to using this replacement. It is possible to find
inverses of all R̂𝑞 from 𝑞 = 1 to 𝑞 = 𝑃𝑚𝑎𝑥 in O(𝑃3

𝑚𝑎𝑥) computation by leveraging
Levinson’s recursion from the linear prediction theory [201] as we explain next.

In linear prediction theory, the task is to predict the next signal sample for 𝑥(𝑛) from
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its past 𝑁 samples:

�̂�(𝑛) =
𝑁∑︁
𝑖=1

−𝑎∗𝑁,𝑖𝑥(𝑛 − 𝑖), 𝑒(𝑛) = 𝑥(𝑛) − �̂�(𝑛). (7.29)

Here, �̂�(𝑛) is the predicted value, and 𝑒(𝑛) is the prediction error. The 𝑁-th order
optimal linear prediction coefficients satisfy

R̂𝑁+1a𝑁 =

[
𝜖𝑁 0 0 . . . 0

]𝑇
, (7.30)

where R̂𝑁+1 is the (𝑁 + 1) × (𝑁 + 1) Toeplitz autocorrelation matrix of 𝑥(𝑛),
a𝑁 =

[
1 𝑎𝑁,1 𝑎𝑁,2 . . . 𝑎𝑁,𝑁

]𝑇
contains the 𝑁 prediction coefficients {𝑎𝑁,𝑖}𝑁𝑖=1,

and 𝜖𝑁 = E[|𝑒(𝑛) |2] is the mean squared prediction error. Eq. (7.30) is known
as the augmented normal equation. It is well-known [201] that using Levinson’s
recursion it is possible to find the optimal predictor coefficient vectors a1 to a𝑁 and
corresponding prediction errors 𝜖1 to 𝜖𝑁 in O(𝑁2) computations. Putting together
the augmented normal equations for orders 1 to 𝑁 , it can be shown [201] that

Δ𝐻𝑁+1R̂𝑁+1Δ𝑁+1 = Λ𝑁+1, (7.31)

where

Δ𝑁+1 =



1 0 . . . 0
𝑎𝑁,1 1 . . . 0
𝑎𝑁,2 𝑎𝑁−1,1 . . . 0
...

...
. . .

...

𝑎𝑁,𝑁 𝑎𝑁−1,𝑁−1 . . . 1


(7.32)

is a lower triangular matrix containing predictor coefficients of all orders, andΛ𝑁+1 =

diag(𝜖𝑁 ,𝜖𝑁−1,. . . , 𝜖0) is a diagonal matrix containing prediction errors. From Eq.
(7.31) we get

R̂−1
𝑁+1 = Δ𝑁+1Λ

−1
𝑁+1Δ

𝐻
𝑁+1 =

𝑛=𝑁∑︁
𝑛=0

ā𝑛ā𝐻𝑛
𝜖𝑛

, (7.33)

where ā𝑛 is the (𝑛 + 1)-th column of Δ𝑁+1. Using this, we can compute the inverses
recursively as follows:

R̂−1
𝑁+1 =

a𝑁a𝐻
𝑁

𝜖𝑁
+

[
0 0
0 R̂−1

𝑁

]
. (7.34)

Here, the 𝑁-th recursive step requires only O(𝑁2) computations as all the predic-
tor coefficients and prediction errors can be computed by Levinson’s recursion in
O(𝑁2). Thus, going back to our discussion on implementing the Capon-optimized
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Figure 7.11: Frequency domain representation of a signal 𝑥(𝑛) ∈ 𝑆𝑞. Decimated
signal 𝑥(𝑀𝑛) still belongs to 𝑆𝑞 with permuted 𝛼𝑘s if and only if (𝑀, 𝑞) = 1. See
Lemma 8.

analysis filters from Eq. (7.27), using the Toeplitz submatrices R̂𝑞 in place of R𝑞

allows us to compute the R̂−1
𝑞 for 𝑞 = 1 to 𝑃𝑚𝑎𝑥 with O(𝑃3

𝑚𝑎𝑥) computations. This
saves a considerable number of computations as we need to evaluate (7.26) for a
single 𝑞 = 𝑃𝑚𝑎𝑥 , ‘Toeplitzize’ it, and then efficiently find inverses for all leading
principal submatrices recursively.

However, computing the inverse of (A𝐻
𝑞 R−1

𝑞 A𝑞) required in the expression (7.27)
still requires O(𝜙(𝑞)3) for every 𝑞. The presence of matrices A𝑞 prevents the
recursive efficient computation of these inverses.

7.6 Multirate Properties of Ramanujan Subspace Signals
In this section, we derive some multirate properties of Ramanujan subspace signals.
These properties allow us to decimate the outputs of the filters in the Ramanujan
filter bank, without losing information. Thus, we can use some of the multirate
properties to further reduce the required computations by decimating the filter bank
outputs in the proposed denoising framework. These ideas are also applicable to the
Capon-optimized version of the RFB. Strictly speaking, the theoretical results are
applicable only to signals in S𝑞 which have infinite time duration and infinitesimal
bandwidth (Fig. 7.11). But, we also discuss the applicability of the results for the
outputs of the realizable analysis filters, which have nonzero bandwidth around the
coprime frequencies.

For this section, we will require a basic result from number theory, which we restate
from [61] using our notations and conventions. As [61] does not provide explicit
proof for the result, we include it here for clarity and completeness.
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Lemma 7 (Thm. 58 from [61]). Let 𝑀, 𝑞 ∈ N be such that (𝑀, 𝑞) = 1. Then the
two sets A = {𝑘 | 0 ≤ 𝑘 ≤ 𝑞 − 1, (𝑘, 𝑞) = 1} and B = {𝑘𝑀 mod 𝑞 | 0 ≤ 𝑘 ≤
𝑞 − 1, (𝑘, 𝑞) = 1} are identical.

Proof. If (𝑘, 𝑞) = 1 for some 1 ≤ 𝑘 ≤ 𝑞 − 1, we have (𝑘𝑀, 𝑞) = 1 as (𝑀, 𝑞) = 1.
Thus (𝑘𝑀 − 𝑞𝑙, 𝑞) = 1 for any 𝑙 ∈ Z and in particular ((𝑘𝑀 mod 𝑞), 𝑞) = 1.
Since 0 ≤ 𝑘𝑀 mod 𝑞 ≤ 𝑞 − 1, we can conclude that B ⊂ A. Since A has 𝜙(𝑞)
distinct entries, it suffices to show that all entries in B are distinct. If they are not,
let 0 ≤ 𝑘1 < 𝑘2 ≤ 𝑞 − 1 be such that

𝑘1𝑀 mod 𝑞 = 𝑘2𝑀 mod 𝑞. (7.35)

This implies (𝑘2 − 𝑘1)𝑀 = 𝑞𝑙 for some 𝑙 ∈ N, i.e.,

(𝑘2 − 𝑘1)
𝑙

=
𝑞

𝑀
for some 𝑙 ∈ N. (7.36)

Since 0 < 𝑘2 − 𝑘1 < 𝑞 − 1, Eq. (7.36) contradicts (𝑀, 𝑞) = 1. Thus, B has 𝜙(𝑞)
distinct entries and A = B. □

7.6.1 Decimating Ramanujan Subspace Signals
In this subsection, we explore what happens when an ideal infinite length 𝑥(𝑛) ∈ 𝑆𝑞
is decimated. We have the following result.

Lemma 8 (Coprime decimation property of Ramanujan subspace signals). Let
𝑥(𝑛) ∈ 𝑆𝑞, the 𝑞-th Ramanujan subspace, and 𝑀 be the decimation ratio. Then the
decimated signal 𝑦(𝑛) = 𝑥(𝑀𝑛) still belongs to 𝑆𝑞 if and only if (𝑀, 𝑞) = 1.

Proof. If part. Since 𝑥(𝑛) ∈ 𝑆𝑞, it can be represented as in Eq. (7.2). Since
𝑊𝑚
𝑞 = 𝑊

𝑚−𝑙𝑞
𝑞 = 𝑊

(𝑚 mod 𝑞)
𝑞 for any 𝑙 ∈ Z, we get

𝑥(𝑀𝑛) =
𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝛼𝑘𝑊
𝑘𝑀𝑛
𝑞 =

𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝛼𝑘𝑊
(𝑘𝑀 mod 𝑞)𝑛
𝑞

Now let 𝑘′ = 𝑘𝑀 mod 𝑞. Using Lemma 7, we can conclude that when (𝑀, 𝑞) = 1,

𝑥(𝑀𝑛) =
𝑞−1∑︁
𝑘′=0

(𝑘′ ,𝑞)=1

�̄�𝑘 ′𝑊
𝑘 ′𝑛
𝑞 ∈ 𝑆𝑞 . (7.37)

where �̄�𝑘 ′ = 𝛼𝑘 . This concludes if part of the proof. The only if part is a consequence
of Lemma 10 proved later. □
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The following are a few important observations based on the above lemma and its
proof:

• From Eq. (7.37) we can see that the coprime decimation of a Ramanujan
subspace signals 𝑥(𝑛) only permutes the coefficients 𝛼𝑘 among the coprime
frequency locations.

• Since the permutation of coefficients 𝛼𝑘 does not produce any loss of infor-
mation, it follows that there is no loss of information (or ‘aliasing’) when
𝑥(𝑛) ∈ 𝑆𝑞 is decimated by 𝑀 such that (𝑀, 𝑞) = 1.

• One way to recover 𝑥(𝑛) back from 𝑦(𝑛) = 𝑥(𝑀𝑛) is to decimate 𝑦(𝑛) again
by 𝐿 such that 𝑀𝐿 mod 𝑞 = 1. When 𝑀 and 𝑞 are coprime, such an 𝐿

always exists because of Euclid’s lemma [61]. Indeed, 𝑥(𝑛) = 𝑦(𝐿𝑛) =

𝑥(𝑀𝐿𝑛) = 𝑥((𝑀𝐿 mod 𝑞)𝑛) = 𝑥(𝑛). The second last equality follows
because 𝑥(𝑛) ∈ 𝑆𝑞 has period 𝑞.

Ramanujan sum 𝑐𝑞 (𝑛) belongs in 𝑆𝑞 and has 𝛼𝑘 = 1 ∀𝑘 when expressed in the form
of Eq. (7.2). Thus, as a corollary of Lemma 8, we have the following interesting
coprime decimation identity for Ramanujan sums.

Corollary 1 (Coprime decimation identity for Ramanujan sums). 𝑐𝑞 (𝑀𝑛) = 𝑐𝑞 (𝑛)
for any 𝑀 such that (𝑀, 𝑞) = 1.

We know that the Ramanujan subspace 𝑆𝑞 does not include all period 𝑞 signals
[52]. The set of all period-𝑞 signals does not form a subspace, as the addition of
period-𝑞 signals can result in a signal with a period that is a divisor of 𝑞. However,
the set of all signals with repetition index 𝑞 does form a subspace. We denote it as
𝑅𝑞. Recall that for a periodic signal 𝑥(𝑛), the period 𝑃 is the smallest integer such
that 𝑥(𝑛 + 𝑃) = 𝑥(𝑛) ∀𝑛, whereas any multiple of 𝑃 is a repetition index of 𝑥(𝑛). If
𝑥(𝑛) ∈ 𝑅𝑞, its period (smallest repetition interval) can be any divisor of 𝑞. Thus,

𝑅𝑞 =
⊕
𝑞𝑖 |𝑞

𝑆𝑞𝑖 , (7.38)

where ⊕ denotes the outer sum. Since Ramanujan subspaces are orthogonal to each
other [52], every 𝑥(𝑛) ∈ 𝑅𝑞 can be uniquely expressed as

𝑥(𝑛) =
∑︁
𝑞𝑖 |𝑞

𝑥𝑞𝑖 (𝑛), (7.39)
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Figure 7.12: A signal 𝑥(𝑛) ∈ 𝑆(𝑝)𝑞 has its Fourier transform concentrated around the
coprime frequencies 2𝜋𝑘/𝑞 with (𝑘, 𝑞) = 1.

where 𝑥𝑞𝑖 (𝑛) ∈ 𝑆𝑞𝑖 are (orthogonal) projections of 𝑥(𝑛) onto 𝑆𝑞𝑖 . Now note that if
(𝑀, 𝑞) = 1 then (𝑀, 𝑞𝑖) = 1 for all divisors 𝑞𝑖 of 𝑞. So using Lemma 8 we get

𝑥(𝑀𝑛) =
∑︁
𝑞𝑖 |𝑞

𝑥𝑞𝑖 (𝑀𝑛) =
∑︁
𝑞𝑖 |𝑞

𝑥𝑞𝑖 (𝑛) = 𝑥(𝑛). (7.40)

So we have proved the following result.

Corollary 2 (Coprime decimation property for periodic signals). For any 𝑥(𝑛) ∈ 𝑅𝑞,
if (𝑀, 𝑞) = 1 then 𝑥(𝑀𝑛) ∈ 𝑅𝑞.

Now let 𝑆(𝑝)𝑞 be the class of multi-banded signals whose discrete-time Fourier
transform is concentrated around the coprime frequency locations (Fig. 7.12).
More precisely, the discrete-time Fourier transform of a signal 𝑥(𝑛) ∈ 𝑆

(𝑝)
𝑞 with

𝑝 ≥ 1 satisfies

𝑋 (𝑒 𝑗𝜔) = 0 if
����𝜔 − 𝑘 2𝜋

𝑞

���� > 𝜋

𝑝𝑞
∀𝑘 s.t. (𝑘, 𝑞) = 1. (7.41)

Notice that each of the 𝜙(𝑞) bands has a bandwidth no greater than 2𝜋/(𝑝𝑞). This
subspace can be considered a finite-bandwidth approximation of 𝑆𝑞. Consider a
signal 𝑥(𝑛) ∈ 𝑆

(𝛼𝑀)
𝑞 where (𝑀, 𝑞) = 1 and 𝛼 ≥ 1. As an extension of Lemma

8, it then follows that 𝑥(𝑀𝑛) will belong to 𝑆(𝛼)𝑞 . Decimation by 𝑀 expands the
bandwidth of each of the 𝜙(𝑞) bands by a factor of 𝑀 (and scales the magnitudes
by a factor of 1/𝑀) so that each band now has a bandwidth of 2𝜋/𝛼𝑞, instead
of 2𝜋/𝛼𝑞𝑀 . The stretched bands also have the center frequencies 2𝜋𝑘/𝑞, with
(𝑘, 𝑞) = 1, but in some permuted order. Since each of the 𝜙(𝑞) bands was narrow
enough (𝛼 ≥ 1), there is no aliasing when the signal is decimated. In fact, if 𝑞 is
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even, the minimum separation between center frequencies 2𝜋𝑘/𝑞, with (𝑘, 𝑞) = 1
is 4𝜋𝑘/𝑞. So signals in 𝑆(𝛼𝑀)

𝑞 with 𝛼 ≥ 0.5 can also be decimated by a factor of
𝑀 without causing aliasing. This can be interpreted as a discrete-time sampling
theorem for the class of signals 𝑆(𝛼𝑀)

𝑞 . It is possible to recover the original signal
from the decimated version, albeit through a somewhat complex reconstruction
procedure involving multiple filters. Summarizing, we have proved the following.

Lemma 9 (Coprime decimation of finite-bandwidth approximation of Ramanujan
subspace signals). If 𝑥(𝑛) ∈ 𝑆(𝛼𝑀)

𝑞 with (𝑀, 𝑞) = 1 and 𝛼 ≥ 1, then 𝑥(𝑀𝑛) ∈ 𝑆(𝛼)𝑞

and no aliasing occurs with such decimation.

An analogous result can also be stated for 𝑅(𝛼𝑀)
𝑞 , which is the finite-bandwidth

approximation of the subspace of signals with repetition index 𝑞. A signal 𝑥(𝑛) ∈
𝑅
(𝑝)
𝑞 with 𝑝 ≥ 1 if

𝑋 (𝑒 𝑗𝜔) = 0 if
����𝜔 − 𝑘 2𝜋

𝑞

���� > 𝜋

𝑝𝑞
for 𝑘 = 0, 1, . . . , 𝑞 − 1. (7.42)

The discrete-time Fourier transform of signals in 𝑅(𝛼𝑀)
𝑞 has bandwidths of 2𝜋𝑘/(𝛼𝑀𝑞)

around frequency locations 2𝜋𝑘/𝑞. For such signals, we have the following result.

Corollary 3 (Coprime decimation of finite-bandwidth approximation of periodic
signals). If 𝑥(𝑛) ∈ 𝑅(𝛼𝑀)

𝑞 with (𝑀, 𝑞) = 1 and 𝛼 ≥ 1, then 𝑥(𝑀𝑛) ∈ 𝑅(𝛼)
𝑞 and no

aliasing occurs with such decimation.

Next, we examine what happens with non-coprime decimation.

Lemma 10 (Non-coprime decimation property of Ramanujan subspace signals).
Let 𝑥(𝑛) ∈ 𝑆𝑞, the 𝑞-th Ramanujan subspace, and 𝑀 be the decimation ratio such
that (𝑀, 𝑞) = 𝑔. Then the decimated signal 𝑦(𝑛) = 𝑥(𝑀𝑛) ∈ 𝑆𝑞′ , where 𝑞′ = 𝑞/𝑔.

Proof. With 𝑥(𝑛) ∈ 𝑆𝑞 represented as in Eq. (7.2), the decimated signal is

𝑦(𝑛) = 𝑥(𝑀𝑛) =
𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝛼𝑘𝑊
𝑘𝑀𝑛
𝑞

=

𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝛼𝑘𝑊
𝑘𝑀 ′𝑛
𝑞′ =

𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝛼𝑘𝑊
(𝑘𝑀 ′ mod 𝑞′)𝑛
𝑞′ ,

(7.43)

where 𝑀′ = 𝑀/𝑔. Note that (𝑀′, 𝑞′) = 1. Since (𝑘, 𝑞) = 1 and 𝑞′ is a divisor of 𝑞,
we have (𝑘, 𝑞′) = 1. This gives us (𝑘𝑀′, 𝑞′) = 1 and so ((𝑘𝑀′ mod 𝑞′), 𝑞′) = 1.
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Thus the terms 𝑊 𝑘𝑀 ′𝑛
𝑞′ are effectively of the form 𝑊 𝑘 ′𝑛

𝑞′ where 0 ≤ 𝑘′ ≤ 𝑞′ − 1 and
(𝑘′, 𝑞′) = 1. This gives us

𝑦(𝑛) =
𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝛼𝑘𝑊
(𝑘𝑀 ′ mod 𝑞′)𝑛
𝑞′ =

𝑞′−1∑︁
𝑘′=0

(𝑘′ ,𝑞′ )=1

�̄�𝑘 ′𝑊
𝑘 ′𝑛
𝑞′ . (7.44)

Here, �̄�𝑘 ′ =
∑𝑞−1

𝑘=0
(𝑘,𝑞)=1

1𝑘∼𝑘 ′𝛼𝑘 where 1𝑘∼𝑘 ′ = 1 if (𝑘𝑀′ mod 𝑞′) = 𝑘′, and zero

otherwise. From the RHS of Eq. (7.44), it is clear that 𝑦(𝑛) ∈ 𝑆𝑞′ . □

When 𝑔 = 1, 𝑞 and 𝑀 are coprime, and we get the if statement of Lemma 8.
Furthermore, the only if part of Lemma 8 is now obvious in the light of Lemma 10.
For the special case of 𝑐𝑞 (𝑛) ∈ 𝑆𝑞, we have the following conjecture:

Conjecture 1. [Non-coprime decimation of Ramanujan sums] Let (𝑀, 𝑞) = 𝑔, and
𝑞′ = 𝑞/𝑔. Then

𝑐𝑞 (𝑀𝑛) =
𝜙(𝑞)
𝜙(𝑞′) 𝑐𝑞

′ (𝑛). (7.45)

The conjecture was numerically checked to be true for many different values of 𝑞
and 𝑀 , however, a proof is not yet known. When 𝑔 = 1, 𝑞′ = 𝑞 and we get back the
coprime decimation identity for Ramanujan sums: 𝑐𝑞 (𝑀𝑛) = 𝑐𝑞 (𝑛) (Corollary 1).

7.6.2 Decimating Filter Bank Outputs to Reduce Computations
Lemma 8 and its extension to signals from space 𝑆(𝛼𝑀)

𝑞 where (𝑀, 𝑞) = 1 and 𝛼 ≥ 1
open up avenues to decimate the RFB filter outputs in our denoising framework.
For this, first consider the following observations:

• Coprime decimation of signals from 𝑆
(𝛼𝑀)
𝑞 permutes the stretched (and scaled

by a factor of 1/𝑀) frequency bands of the original signal. As there is no
aliasing, the total energy of the decimated signal is 1/𝑀 times the total energy
of the undecimated signal. Since the number of samples in the decimated
signal is also reduced by a factor of 𝑀 , the average per-sample energy of the
decimated signal is the same as that of the undecimated signal.

• The outputs 𝑦𝑞 (𝑛) of 𝐶 (𝑙)
𝑞 (𝑧) can be approximately considered to be signals

from spaces 𝑆(𝛼𝑀)
𝑞 , for appropriate𝑀 and𝛼. This approximation is reasonable

when 𝑙 is not too small, so most of the energy of the filter output is indeed
concentrated around the coprime frequencies. A similar approximation can
also be considered for the outputs of Capon-optimized filters.
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Figure 7.13: Coprime decimation approximately preserves the average per-sample
energy of the filter outputs for both RFB (top) and Capon-optimized filter bank
(bottom).

• The selection of subspaces in the dictionary pruning stage of our denoising
method is only based on the energies of the filter bank outputs.

These observations suggest that it is reasonable to decimate the output of the 𝑞-th
filter by a decimation ratio 𝑀𝑞 such that (𝑀𝑞, 𝑞) = 1. We experimentally found
that the average per-sample energies of decimated outputs of RFB and Capon-
optimized banks indeed reasonably approximate the corresponding average per-
sample energies of undecimated outputs. Fig. 7.13 shows an example of a period-
15 signal having SNR 0 dB. The average per-sample energies of decimated and
undecimated outputs match reasonably well, especially so for the Capon-optimized
filter bank. 𝑀𝑞, in this case, was chosen to be the smallest integer larger than unity
that is coprime to 𝑞 (see Eq. (7.46)).
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As each filter is now followed by a decimator, we can implement the filters in
polyphase form, and using the multirate identities move decimators before the
polyphase filters [188]. Each polyphase filter then operates at a lower rate, and the
number of computations performed by the 𝑞-th filter is reduced by a factor of 𝑀𝑞.
Fig. 7.14 shows the initial stages of the proposed periodicity-aware denoising frame-
work that uses Capon-optimized filters and coprime decimation. The later stages
of forming a pruned synthesis dictionary and denoising by solving the optimization
problem are the same as in Fig. 7.3.

7.7 Comparative Simulations with Decimation, and Other Investigations
In this section, we provide several Monte-Carlo simulations comparing the different
variants of our proposed denoising method and other well-known denoising algo-
rithms. Please see Sec. 7.3.4 for details of the denoising methods with which we
compare our proposed denoising method. Here, the signal length is taken to be 400,
and the filter length of the 𝑞-th filter is 𝑁𝑞 = 3𝑞. For each simulation setting, we
generate 1000 random periodic signals of length 400 and add white Gaussian noise
to them. Then we perform a joint hyperparameter search as explained in Sec. 7.3.4,
to choose a good set of hyperparameter values for each denoising method. The
effect of varying different parameters of the proposed framework on the denoising
performance is investigated in Sec. 7.7.1. We also briefly discuss the applicability
of the proposed framework for other tasks, such as period estimation and component
separation, later in this section.

As discussed before, there are 4 variants of our proposed method depending on the
choice of filter bank (Ramanujan filters and Capon-optimized filters) and choice of
synthesis dictionary (‘with-divisors’ and ‘without-divisors’). When sufficient signal
length is available, the Capon-optimized banks are always found to perform better
than RFB for denoising. Also, the ‘with-divisors’ synthesis dictionary is found to be
a better choice than the ‘without-divisors’ synthesis dictionary. Furthermore, it is
possible to choose the coprime decimation ratios 𝑀𝑞-s (see Sec. 7.6.2) for efficient
implementation in many different ways.

Fig. 7.15(a) shows SNR gains for different denoising methods averaged over 1000
different period-15 signals. Here we use the ‘smallest coprime decimation’, i.e., the
output of the 𝑞-th filter is decimated by 𝑀 𝑠

𝑞:

𝑀 𝑠
𝑞 = min

𝑀>1
𝑀 s.t. (𝑀, 𝑞) = 1. (7.46)

Similar to previous simulations, the combination of the Capon-optimized filter bank
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Figure 7.15: Comparing the proposed denoising method that uses coprime deci-
mation with other denoising methods. SNR gains averaged over 1000 Monte-Carlo
runs. (a) Period-15 signals, decimation ratio 𝑀 𝑠

𝑞 (Eq. 7.46) (b) period-10 signals,
decimation ratio 𝑀10

𝑞 (Eq. 7.47).

and the ‘with-divisors’ synthesis dictionary gives the best SNR gain, followed next
by the combination of RFB and the ‘with-divisors’ dictionary. Fig. 7.15(b) considers
1000 different period-10 signals. Here, the decimation ratio is taken as 𝑀10

𝑞 , where

𝑀𝐿
𝑞 = max

𝑀≤𝐿
𝑀 s.t. (𝑀, 𝑞) = 1. (7.47)
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Figure 7.16: Comparing the effect of decimation values and signal period on de-
noising performance when denoising with (a) Capon-optimized filter bank and
‘with-divisors’ dictionary (b) RFB and ‘with-divisors’ dictionary. SNR gains aver-
aged over 1000 Monte-Carlo runs.

chooses the largest integer coprime to 𝑞 that is not larger than 𝐿 as the decimation
rate for the 𝑞-th filter. In this case, the DFT performs very well as the signal
period, 10, is a divisor of the signal length 400, so the signal frequencies lie on
the DFT grid. However, the proposed method that uses Capon-optimized filters
and the ‘with-divisors’ dictionary still performs marginally better. In this case, the
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combination of the Capon-optimized bank and the ‘without-divisors’ dictionary has
better SNR gain than the combination of RFB and the ‘with-divisors’ dictionary,
unlike the previous case of period-15 signals.

We now compare the effect of different values of decimation and the period of the
signals under consideration. In Fig. 7.16 we consider three decimation schemes,
namely, no decimation, smallest coprime decimation (𝑀 𝑠

𝑞), and larger coprime
decimation (𝑀10

𝑞 ), and four period schemes, namely, period-15, period-12, period-
10, and periods 6 to 15. For the ‘periods 6 to 15’ case, 100 random signals of
each period are included, totaling 1000 signals. Fig. 7.16(a) uses Capon-optimized
filters, whereas Fig. 7.16(b) uses RFB. The ‘with-divisors’ dictionary is used for
signal reconstruction in both cases.

The plots reveal many interesting trends. Firstly, note that SNR gains obtained with
Capon-optimized filters increase with noisy signal SNR at first and then saturate,
whereas SNR gains obtained with RFB decrease with noisy signal SNR. From the
relative positioning of trends within Fig. 7.16(a), we see that the primary factor
that affects the SNR gains with Capon-optimized filters is the signal period. Signals
with relatively smaller periods (6 to 15, and 10) have larger SNR gains, and the
signals with larger periods (12 and 15) have smaller SNR gains. SNR gains for the
period-12 signal with no decimation and with the smallest coprime decimation (𝑀 𝑠

𝑞)
are practically the same, indicating that small coprime decimation does not degrade
the denoising performance. SNR gains for period 6 to 15 signals with large coprime
decimation (𝑀10

𝑞 ) are only marginally less than those with the smallest coprime
decimation (𝑀 𝑠

𝑞) at higher SNRs. The high average SNR gain for period 6 to 15
signals indicates that with Capon-optimized filters, it is possible to get a good set of
hyperparameters that work well with signals having a range of different periods.

On the other hand, we see some different trends from Fig. 7.16(b) when RFB
is used instead of Capon-optimized filters. Here, the primary factor that affects
the SNR gains is the decimation. No decimation plots are on the top, followed
by the smallest coprime decimation plots. Large coprime decimation plots are at
the bottom. Furthermore, SNR gains for period 6 to 15 signals are comparatively
smaller, even with small decimation. This indicates that with a common set of
hyperparameters, it is difficult to get good denoising for a range of periods when
RFB is used.

Summarizing, using Capon-optimized filters in our proposed denoising framework
is found to have some important advantages. They provide consistently better
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performance than using Ramanujan filters. They are also more robust to coprime
decimation than Ramanujan filters. Furthermore, they do not have diminishing SNR
gain as the noisy signal SNR increases. Finally, compared to Ramanujan filters,
they can better denoise signals with a range of different periods with a common set
of hyperparameters.

7.7.1 Effect of Hyperparameters
In this subsection, we discuss how the different hyperparameters in our proposed
method affect the denoising performance. In the above simulations, we used
𝑁𝑞 = 3𝑞 and performed a hyperparameter search for the energy threshold value
and regularization level 𝜆. For the hyperparameter search, we compute the SNR
gain obtained by each combination of values from the sets {0, 0.1, 0.2, . . . , 1} and
{0.0001, 0.001, 0.01, 0.033, 0.1, 0.33, 1} for threshold and 𝜆 respectively, averaged
over 1000 signals having periods from 6 to 15. We report the best combination of
hyperparameters along with the corresponding average SNR gain in Tables 7.1 and
7.2. All four variants, based on the choice of filter bank and synthesis dictionary,
are included. All methods use the smallest coprime decimation 𝑀 𝑠

𝑞 (Eq. (7.46)).
As expected, it is observed that when using the ‘with-divisors’ dictionary, a higher
threshold is preferred compared to the case of the ‘without-divisors’ dictionary. This
is because some of the subspaces lost due to a higher threshold can be reintroduced
by the ‘with-divisors’ dictionary. Also, note that the values of 𝜆 when using a
Capon-optimized filter bank are the same for ‘with-divisors’ and ‘without-divisors’
dictionaries.

Next, in Fig. 7.17, we demonstrate how the SNR gain changes as we vary the
different hyperparameters of the four variants of the proposed denoising framework.
The average SNR gain for 1000 noisy signals with periods from 6 to 15, with SNR
0 dB, is considered. The default values of the parameters are as follows: threshold
= 0.5, 𝜆 = 0.01, 𝑙 = 𝑁𝑞/𝑞 = 3, 𝑃𝑚𝑎𝑥 = 40, signal length = 400, and decimation 𝑀 𝑠

𝑞

(Eq. (7.46)). We vary one of these parameters at a time, keeping the others fixed in
each sub-figure.

In Fig. 7.17(a), we see that the best SNR gains for Capon-optimized banks are
obtained at lower threshold values than those for RFB. This is so because Capon
filters better filter out the noise and other harmonic components than Ramanujan
filters, as discussed previously (Fig. 7.8). From Fig. 7.17(b), we see that SNR gain
is not very sensitive to 𝜆 when 𝜆 ≤ 0.1, and decreases rapidly when 𝜆 is increased
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Table 7.1: Values of the hyperparameters (filter bank threshold and regular-
ization level 𝜆) selected by joint search over the sets {0, 0.1, 0.2, . . . , 1} and
{0.0001, 0.001, 0.01, 0.033, 0.1, 0.33, 1} respectively for 1000 random signals with
periods from 6 to 15 when using the RFB in the first stage of the proposed denoising
framework.

Table 7.2: Values of the hyperparameters (filter bank threshold and regular-
ization level 𝜆) selected by joint search over the sets {0, 0.1, 0.2, . . . , 1} and
{0.0001, 0.001, 0.01, 0.033, 0.1, 0.33, 1} respectively for 1000 random signals with
periods from 6 to 15 when using the Capon-optimized filter bank in the first stage
of the proposed denoising framework.

from 0.1. Next, from Fig. 7.17(c), we see that Ramanujan filters need a much larger
filter length to match the performance of Capon-optimized filters. However, a larger
filter length is practical only if a large data length is available. For Capon-optimized
filters, 𝑙 = 3 already gives a high SNR gain which does not increase much when 𝑙 is
further increased. This was the reason for fixing 𝑙 = 3 in our previous simulations.

In Fig. 7.17(d), we vary the 𝑃𝑚𝑎𝑥 value, which was assumed to be 40 throughout
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Figure 7.17: (a)-(f) Effect of hyperparameters on average SNR gain of 1000 signals
having periods from 6 to 15 and SNR 0 dB. The default values of the parameters
are as follows: threshold = 0.5, 𝜆 = 0.01, 𝑙 = 𝑁𝑞/𝑞 = 3, 𝑃𝑚𝑎𝑥 = 40, and smallest
coprime decimation 𝑀 𝑠

𝑞 (Eq. (7.46)). One of the parameters is varied in each
sub-figure, keeping the others fixed.

the chapter. We see that changing the 𝑃𝑚𝑎𝑥 value does not affect the performance
with the Capon-optimized bank, whereas performance with RFB decreases. This is
an important advantage of Capon-optimized banks, especially when a good a-priori
estimate of 𝑃𝑚𝑎𝑥 may not be available. Fig. 7.17(e) shows the effect of change
in decimation on SNR gain. The smallest coprime decimation 𝑀 𝑠

𝑞 (Eq. (7.46))
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and larger decimations 𝑀𝐿
𝑞 (Eq. (7.47)) with 𝐿 = 5, 10, 15, 20, 25 are considered.

We see that increasing the decimation values decreases the SNR gains, but not too
severely. Lastly, in Fig. 7.17(f), we see that as the signal length is increased, the
denoising performance improves, as expected.

7.7.2 Period Estimation and Component Separation
In this subsection, we discuss the applicability of the proposed framework for period
estimation and component separation. However, note that this is not the primary
objective of the proposed framework, and a good set of hyperparameters obtained
previously for denoising may not be optimal for the period estimation or component
separation tasks.
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Figure 7.18: Probability of correct (a) period estimation (b) repetition index esti-
mation for 1000 signals with periods from 6 to 15.
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As discussed before, the indices 𝑟1, . . . , 𝑟𝑚 correspond to the periods of the com-
ponents contributing to the reconstructed signal x̂ (see Eq. (7.11)). In practice,
we noticed that all the retained subspaces in the synthesis dictionary have non-zero
contributions to the reconstructed signal. This is because, with a good set of hyper-
parameters and a large signal length, the appropriately pruned synthesis dictionary
is usually tall when the signal has a small number of periodic components. In this
case, the period of the denoised signal x̂ is given by 𝑙𝑐𝑚(𝑟1, 𝑟2, . . . , 𝑟𝑚), where
𝑙𝑐𝑚 denotes the least common multiple [63], [64]. Also note that the operation of
introducing divisor subspaces in Eq. (7.14) does not change the overall period of
the reconstructed signal x̂, as the 𝑙𝑐𝑚 of the divisors 𝑑11, . . . , 𝑑𝑚𝑘𝑚 is the same as
the 𝑙𝑐𝑚 of 𝑟1, . . . , 𝑟𝑚.

In Fig. 7.18(a), we plot the fraction of the 1000 signals with periods from 6 to 15
for which the period of the denoised signal estimated by 𝑙𝑐𝑚(𝑟1, 𝑟2, . . . , 𝑟𝑚) is the
same as that of the original noiseless signal. We see that the Capon-optimized bank
that uses the ‘with-divisors’ dictionary has higher period estimation accuracy. Here,
for period estimation, we used the parameter values obtained through the hyperpa-
rameter search (Tables 7.1 and 7.2) in the context of denoising. If the parameters
were optimized for period estimation instead, period estimation performance would
be even better. Fig. 7.18(b) shows the fraction of the signals for which the repetition
index is correctly estimated. We say that the repetition index is correctly estimated
when the indices 𝑟1, . . . , 𝑟𝑚 contain the correct indices corresponding to the com-
ponents of the noiseless signal, possibly along with some additional indices. This
fraction is observed to approach 1 as SNR is increased.

Next, we consider the task of periodic component separation. However, note that
there is a fundamental limitation in separating periodic components that share a
common harmonic, regardless of the method used. For example, if a signal 𝑥(𝑛)
has period-12 and period-9 components 𝑥12(𝑛) and 𝑥9(𝑛), they cannot be uniquely
separated. This is because we can add any period-3 signal to 𝑥12(𝑛) and subtract the
same signal from 𝑥9(𝑛) without changing 𝑥(𝑛), and the periods of the component
signals. Similarly, the period-1 (or ‘DC component’) cannot be uniquely split
between component periods. We can separate the periodic components only when
the signal components are zero-mean and the component periods are mutually
coprime. See [52] for more details. In what follows, the period-𝑃 component is
estimated as

x̂𝑃 =

[
H𝑃1 . . . H𝑃𝐿

]
b̂𝑃, (7.48)
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where 𝑃1, . . . , 𝑃𝐿 are divisors of 𝑃 and b̂𝑃 contains coefficient from the estimated
vector b̂ (Eq. (7.12)) that correspond to subspaces H𝑃1 , · · · ,H𝑃𝐿

. We should note
that the accuracy of component separation depends crucially on the accuracy of the
component period estimation. Fig. 7.19 shows an example of a period-84 signal
with SNR 0 dB having zero-mean components with periods 7 and 12. The signal
length is 400, but we only plot 50 or 100 samples for better visual comparison. Fig.
7.19(b)-(d) show the noiseless signal and its components, whereas Fig. 7.19(e)-(g)
show the denoised signal and its components obtained as per Eq. (7.48). As the
component period estimation was correct in this case, we see that the separated
components from the denoised signal match quite well with the components from
the original signal.

7.7.3 Denoising an ECG Signal
As an example of a real-life signal that can be approximately periodic, we consider
the task of denoising a heart monitoring ECG recording. We use the ECG recordings
from the MIT-BIH normal sinus rhythm database [202], [203]. We first downsample
the signal by a factor of three and add a 0 dB random white Gaussian noise to it. Fig.
7.20 shows the resampled ECG signal, its noisy version, and the output produced
by the proposed denoising framework that uses Capon-optimized bank and ‘with-
divisors’ dictionary. The periodicity in the ECG peaks (R region) is captured
correctly in the denoised output, but the denoising is not so great in other parts (P,
Q, S, and T regions). This is because of multiple reasons. The primary reason is
that the original ECG signal is not exactly integer-periodic, whereas our method is
particularly designed for integer-periodic signals. Secondly, the hyperparameters
were not optimized for such types of approximately periodic signals. Furthermore,
note that our denoising method is designed to produce outputs with integer-periodic
components only. However, this suppresses the abnormalities or the non-periodic
components in the ECG, and this may not be desirable for a clinical diagnosis.

7.8 Concluding Remarks
In this chapter, we proposed a hybrid periodicity-aware denoising framework. The
analysis part consists of Ramanujan filter banks, and the synthesis is done via a
pruned Ramanujan dictionary. The proposed method is guaranteed to produce a de-
noised output composed of integer-periodic components, unlike the other denoising
methods from the literature. We further proposed to optimize the analysis filters
using a multi-band Capon formulation, which further improved denoising perfor-
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Figure 7.20: Denoising an ECG recording of a normal sinus rhythm. (a) Original
ECG (resampled), (b) noisy ECG, and (c) denoised ECG.

mance, at the cost of increased computations. Some ways to reduce computations
based on a recursive computation of the inverses of Toeplitz autocorrelation ma-
trices were discussed. We also derived several multirate properties of Ramanujan
subspace signals. In particular, the coprime decimation properties further allowed
us to reduce the computations required in the analysis stage of the proposed denois-
ing framework. Extensive Monte-Carlo simulations demonstrated that the proposed
denoising framework provides better SNR gains than the other denoising methods
from the literature.

Out of the four variants of the proposed methods, denoising using Capon-optimized
filter bank and ‘with-divisors’ dictionary was found to perform best. It has the
following features:

• Works well with small coprime decimation in the analysis stage, and for
signals with a range of different periods.
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• Best hyperparameters depend on signal length, range of periods, etc. (For
length 400 signals with periods from 6 to 15: 𝑙 = 3, threshold = 0.5, and
𝜆 = 0.01 are optimal.)

• Performance does not degrade as 𝑃𝑚𝑎𝑥 is increased.

• Can estimate the component periods better than RFB.

• Can be used for component separation, when applicable.

• Calculating filter coefficients is computationally expensive.

Although the proposed method works well when denoising synthetically generated
integer-periodic signals, it has some limitations. It is inadequate for denoising
non-integer periodic signals or approximately periodic signals such as ECG. Fur-
thermore, the method is currently not suitable for signals with time-varying periods.
Adapting the method for these challenging scenarios would require several careful
modifications that vary depending on the nature of how the periodicity structure
changes over time.

In the future, penalties can be introduced for using dictionary columns corresponding
to the 𝑞-th Ramanujan subspace in the 𝑙1 optimization problem based on (some
decreasing function of) the energy of the 𝑞-th filter output. As the proposed method
is based on filtering around ‘coprime frequencies’ corresponding to several integers,
we expect the denoising performance to degrade if the noise is concentrated around
these frequencies and is not white (as was considered in this chapter). The effect of
such noise models on the proposed denoising framework should be explored in the
future.
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C h a p t e r 8

THEORETICAL PROPERTIES OF IDEAL RAMANUJAN
FILTERS

8.1 Introduction
In the previous chapter, we introduced a hybrid analysis-synthesis denoising frame-
work for periodic signals, utilizing Ramanujan analysis filter banks and synthesis
dictionaries. The initial stage of this denoising process employed the Ramanujan
filter bank (RFB), which is effective in detecting periodicity in streaming data.
However, the synthesis component of our proposed denoising framework relied
on solving an optimization problem with Ramanujan dictionaries. This approach
may not be ideal, especially when the periodic structure of the signal varies over
time. Instead of the hybrid analysis-synthesis framework, a perfect reconstruction
analysis-synthesis bank [188] using Ramanujan filters would be of great interest for
denoising periodic signals. Implementing such a filter bank requires decimating
the outputs from the RFB during the analysis stage, as well as incorporating an
interpolation filter model for Ramanujan subspace signals in the synthesis stage.
Due to the multiband frequency response of the Ramanujan filters (see Fig. 7.2), a
standard maximally decimated filter bank does not yield a beneficial structure.

We also proved several multirate properties of Ramanujan subspace signals related to
decimation in the previous chapter. This was valuable for reducing the computational
complexity of the hybrid analysis-synthesis denoising framework by decimating the
outputs of the Ramanujan filters. To make progress towards developing a synthesis
filter bank counterpart for the RFB, we now investigate interpolation properties of
Ramanujan filters in this chapter. In the first part, we propose an interpolation filter
model for Ramanujan subspace signals, wherein an expander ↑𝑀 is followed by a
𝑞-th ideal Ramanujan filter. The expander ↑ 𝑀 , in general, reduces the output space
of the filter to a proper subspace of the 𝑞-th Ramanujan subspace S𝑞. However, we
show that the output space of the interpolation filter is the entire S𝑞 when 𝑀 and 𝑞
are coprime. We also extend this model to the case of more general periodic signals
by using a multirate synthesis bank model. These models have potential application
in the denoising of periodic signals using a complete analysis-synthesis filter bank
structure. This latter aspect requires a detailed study and is beyond the scope of this
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chapter. We discuss the general case when𝑀 and 𝑞may not be coprime. In this case,
we provide a bound on the dimension of the output space of the interpolation filter,
and also conjecture that the bound is in fact the actual dimension of the output space.
The developments in this chapter are largely motivated by the theoretical interest in
understanding the properties of Ramanujan subspace signals and Ramanujan filters.

In the second part of this chapter, we analyze the locations of zeros of the transfer
functions of FIR Ramanujan filters. FIR Ramanujan filters have a few periods of
the Ramanujan sums as their filter coefficients. Understanding these locations is
important for developing a corresponding synthesis filter bank. We discover an
interesting structure regarding the positions of the zeros in Ramanujan filters. We
prove that all zeros of these filters lie either on or inside the unit circle in the
𝑧-plane. This finding indicates that a simple ‘inverse synthesis filter’ cannot be
used in the synthesis filter bank, because such inverse filters would be unstable
because of having some poles on the unit circle in the 𝑧-plane. Additionally, we
derive a factorization formula for the filter response that helps identify the common
factors among different Ramanujan filters. A key application of these results is the
potential to obtain efficient implementations of the RFB by sharing the common
factors present in various filters, based on the set of shared zeros among different
Ramanujan filters.

8.1.1 Scope and Outline
In Sec. 8.2, we introduce the interpolation filter model for Ramanujan subspace
signals. The expander ↑ 𝑀 generally reduces the output space of the filter to a proper
subspace of the 𝑞-th Ramanujan subspace S𝑞. However, we demonstrate that when
𝑀 and 𝑞 are coprime, the output space of the interpolation filter encompasses the
entire S𝑞. Additionally, we discuss a more general multirate synthesis bank model
for periodic signals. In Sec. 8.3, we examine the scenario where 𝑀 and 𝑞 may
not be coprime. In this case, we provide a bound on the dimension of the output
space of the interpolation filter and conjecture that this bound represents the actual
dimension of the output space. In Sec. 8.4 we prove a lemma that characterizes the
locations of zeros of FIR Ramanujan filters in terms of critical points of cyclotomic
polynomials by using Lucas’s theorem. As a corollary, a factorization formula is
obtained for the filters. In Sec. 8.5 we show that the plots of zeros are indeed in
accordance with the derived result, and identify further structure in the locations of
zeros for some specific families of Ramanujan filters. Zeros of Ramanujan filters
in which multiple periods are used as filter coefficients are also characterized. In
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Sec. 8.6, we illustrate a possible application of derived results in designing efficient
implementation structures for Ramanujan filter banks. Sec. 8.7 concludes the
chapter. The content of this chapter is based on papers [195], [204].

8.2 Interpolation Filter Model for Ramanujan Subspace Signals
Recall that the 𝑞-th Ramanujan subspace S𝑞 [52] is the 𝜙(𝑞)-dimensional space of
signals of the form

𝑥(𝑛) =
𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝛼𝑘𝑊
𝑘𝑛
𝑞 =

𝜙(𝑞)−1∑︁
𝑙=0

𝛽𝑙𝑐𝑞 (𝑛 − 𝑙), (8.1)

where 𝛼𝑘 and 𝛽𝑙 are complex coefficients. The two representations in (8.1) are
equivalent because the ‘coprime DFT columns’𝑊 𝑘𝑛

𝑞 where (𝑘, 𝑞) = 1, 0 ≤ 𝑘 ≤ 𝑞−1
and the first 𝜙(𝑞) shifted versions of 𝑐𝑞 (𝑛) both span the same space of signals S𝑞
[52]. S𝑞 contains those period-𝑞 signals that can have non-zero DFT value only at
the ‘coprime frequencies’ 2𝜋𝑘/𝑞 where 0 ≤ 𝑘 ≤ 𝑞 − 1 and 𝑘 is coprime to 𝑞. Thus,
signals in S𝑞 have an infinite length in the time domain and infinitesimally small
bandwidth in the frequency domain. The ideal 𝑞-th Ramanujan filter has 𝑐𝑞 (𝑛) as
its filter coefficients. Thus, it has a frequency response

𝐶𝑞 (𝑒 𝑗𝜔) =
∑︁
𝑛

𝑐𝑞 (𝑛)𝑒− 𝑗𝜔𝑛 = 2𝜋
𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝛿(𝜔 − 2𝜋𝑘/𝑞), (8.2)

where 𝛿(·) is the Dirac-delta function. The frequency response 𝐶𝑞 (𝑒 𝑗𝜔) is nonzero
only at 𝜙(𝑞) coprime frequencies.

When an input signal 𝑠(𝑛) passes through an ideal Ramanujan filter with impulse
response 𝑐𝑞 (𝑛), the output of this digital filter has the form∑︁

𝑘

𝑠(𝑘) 𝑐𝑞 (𝑛 − 𝑘), (8.3)

which is a linear combination of shifted versions of 𝑐𝑞 (𝑛). The collection of all
outputs is therefore the set of all signals spanned by {𝑐𝑞 (𝑛 − 𝑘)} and is called the
output space of the filter 𝑐𝑞 (𝑛). It can be shown [52] that this is nothing but the
𝜙(𝑞)-dimensional Ramanujan subspace S𝑞 which can also be spanned by the 𝜙(𝑞)
shifted versions 𝑐𝑞 (𝑛 − 𝑘), 0 ≤ 𝑘 ≤ 𝜙(𝑞) − 1 of the 𝑞-th Ramanujan sum 𝑐𝑞 (𝑛).
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Figure 8.1: An interpolation filter. Here the filter has impulse response 𝑐𝑞 (𝑛) which
is the 𝑞th Ramanujan sum.

Now consider Fig. 8.1 where the ideal Ramanujan filter is preceded by an expander
↑𝑀 . The expander has the input-output description [188]

𝑟 (𝑛) =

𝑠(𝑛/𝑀) if 𝑛 is multiple of 𝑀,

0 otherwise.
(8.4)

This system shown in the Fig. 8.1 is an interpolation filter. Outputs of interpolation
filters often arise in the context of filter bank bases (Sec. 11.4, of [188]), and are
also referred to as shift invariant subspaces because if 𝑦(𝑛) is in this space then so
is 𝑦(𝑛 − 𝑖𝑀) for any integer 𝑖. Let the output space of the Ramanujan interpolation
filter from Fig. 8.1 be denoted by V𝑀 . Now, since the filter output is a linear
combination of the form ∑︁

𝑘

𝑠(𝑘)𝑐𝑞 (𝑛 − 𝑘𝑀), (8.5)

the output space is usually only a subspace of S𝑞, that is, V𝑀 ⊆ S𝑞. We will now
show that under certain conditions, the output space V𝑀 of Fig. 8.1 is the entire
Ramanujan subspace S𝑞.

Lemma 11 (Interpolation using ideal Ramanujan filter). The output space V𝑀 of
the interpolation filter shown in Fig. 8.1 is the entire Ramanujan space S𝑞 when
(𝑀, 𝑞) = 1.

Proof. To show that Fig. 8.1 spans the 𝑞-th Ramanujan subspace S𝑞, we need to
show that any 𝑥(𝑛) ∈ S𝑞 can be produced as the output of the interpolation filter for
some input signal 𝑠(𝑛). Let the 𝑥(𝑛) ∈ S𝑞 be

𝑥(𝑛) =
𝜙(𝑞)−1∑︁
𝑙=0

𝛽𝑙𝑐𝑞 (𝑛 − 𝑙). (8.6)

We want to find an input 𝑠(𝑛) such that the output 𝑦(𝑛) given by Eq. (8.5) equals
𝑥(𝑛) in (8.6). When (𝑀, 𝑞) = 1, by Euclid’s lemma [61] there exists 𝛼, 𝛽 ∈ Z such
that

𝛼𝑀 + 𝛽𝑞 = 1. (8.7)
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Now consider the input 𝑠(𝑛) to be

𝑠(𝑛) =

𝛽𝑙 if 𝑛 = 𝛼𝑙, 0 ≤ 𝑙 ≤ 𝜙(𝑞) − 1,

0 otherwise.
. (8.8)

The filter output can then be expressed as

𝑦(𝑛) =
∑︁
𝑘

𝑠(𝑘) 𝑐𝑞 (𝑛 − 𝑘𝑀) =
𝜙(𝑞)−1∑︁
𝑙=0

𝛽𝑙𝑐𝑞 (𝑛 − 𝛼𝑙𝑀). (8.9)

But since 𝑐𝑞 (𝑛) is periodic with period 𝑞, we have

𝑐𝑞 (𝑛 − 𝛼𝑙𝑀) = 𝑐𝑞 (𝑛 − (𝛼𝑙𝑀 mod 𝑞)) (8.10)

= 𝑐𝑞 (𝑛 − 𝑙 (𝛼𝑀 mod 𝑞)) = 𝑐𝑞 (𝑛 − 𝑙). (8.11)

The last equality follows from Eq. (8.7). Thus,

𝑦(𝑛) =
𝜙(𝑞)−1∑︁
𝑙=0

𝛽𝑙𝑐𝑞 (𝑛 − 𝑙) = 𝑥(𝑛). (8.12)

This proves that V𝑀 = S𝑞 when (𝑀, 𝑞) = 1. □

A natural question to ask is whether V𝑀 = S𝑞 can also happen when (𝑀, 𝑞) ≠ 1,
or whether (𝑀, 𝑞) ≠ 1 guarantees that V𝑀 is a proper subspace of S𝑞. This will be
explored in Sec. 8.3. We first show how the interpolation filter model for signals
in S𝑞 can be extended for all signals satisfying 𝑦(𝑛) = 𝑦(𝑛 + 𝑞) by constructing a
synthesis filter bank model.

A signal satisfying 𝑦(𝑛) = 𝑦(𝑛 + 𝑞) is said to have a repetition index of 𝑞. Its period
(smallest repetition interval) can be any divisor of 𝑞. We can represent such a 𝑦(𝑛)
as [62]

𝑦(𝑛) =
∑︁
𝑞𝑖 |𝑞

𝑦𝑞𝑖 (𝑛), (8.13)

where 𝑞𝑖 are divisors of 𝑞 and 𝑦𝑞𝑖 (𝑛) ∈ S𝑞𝑖 . As a result, such a signal can be
represented as in Fig. 8.2, where (𝑀𝑖, 𝑞𝑖) = 1. In fact the output space of Fig. 8.2
is precisely the space R𝑞 of all periodic signals satisfying 𝑦(𝑛) = 𝑦(𝑛 + 𝑞) because
R𝑞 =

⊕
𝑞𝑖 |𝑞 S𝑞𝑖 , where ⊕ denotes the outer sum. This gives a useful synthesis

filter-bank representation for any periodic signal satisfying 𝑦(𝑛) = 𝑦(𝑛 + 𝑞).

In the future, if we can design a multirate analysis bank in conjunction with the
above synthesis filter bank to project a noisy periodic signal onto the subspace
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c  (n)q1

y  (n)q1s (n)1 M1

c  (n)q2

y  (n)q2s (n)2 M2

c  (n)qD

y  (n)qDs  (n)D MD

y(n)

Figure 8.2: Ramanujan multirate synthesis filter bank for signals satisfying 𝑦(𝑛) =
𝑦(𝑛 + 𝑞). Here 𝑞𝑖 are the 𝐷 divisors of the integer 𝑞, and 𝑀𝑖 are coprime to 𝑞𝑖, that
is, (𝑀𝑖, 𝑞𝑖) = 1.

R𝑞, it will be useful for denoising. One way to achieve this is by using Fig.
2 preceded by an analysis filter bank consisting of ‘biorthogonal partner’ filters
[205], [206]. Practically, we need to replace the Ramanujan filters 𝑐𝑞 (𝑛) with
their FIR approximations, and the output space of the filter bank would only be an
approximation of R𝑞. An important point to note is that when the interpolation
ratio 𝑀 > 1, it is possible to find FIR biorthogonal filter partners corresponding to
FIR approximations of Ramanujan filters. This cannot be achieved when 𝑐𝑞 (𝑛) is
used as a digital filter without an expander ↑ 𝑀 . The filter design problems here are
quite involved. We, therefore, leave this for future work and only briefly mention
this possible application in the current chapter.

8.3 Further Results on the Output Space
In this section, we consider further theoretical results regarding the interpolation
filter model from Fig. 8.1. Firstly, note that the converse of Lemma 11 is not true in
general. That is, if (𝑀, 𝑞) ≠ 1, the output space of the interpolation filter can still
be S𝑞.

For example, take 𝑞 = 2 and 𝑀 to be any even integer. Clearly (𝑀, 𝑞) = 2. As the
subspace 𝑆2 has dimension one and is spanned by 𝑐2(𝑛), it just contains all signals
for the form 𝛾𝑐2(𝑛) where 𝛾 can be any complex scalar. Now note that when 𝑞 = 2,
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the interpolation scheme in Fig. 8.1 can produce 𝑦(𝑛) = 𝛾𝑐2(𝑛) irrespective of the
value of 𝑀 , for instance, by choosing 𝑠(𝑛) = 𝛾𝛿(𝑛). Thus, it is possible for the
interpolation filter to span S2 even when (𝑀, 2) ≠ 1. We come back to this later in
Sec. 8.3.2 to discuss whether V𝑀 = S𝑞 can happen more generally when 𝑞 ≠ 2 and
(𝑀, 𝑞) ≠ 1.

Since V𝑀 is a subspace of S𝑞, it is equal to S𝑞 if and only if its dimension is 𝜙(𝑞),
because S𝑞 has dimension 𝜙(𝑞). To examine the dimension of the output space V𝑀 ,
we first prove the following result.

Lemma 12. If (𝑀, 𝑞) = 𝑔, the expander ↑ 𝑀 in Fig. 8.1 can be changed to ↑ 𝑔
without affecting the output space spanned by the interpolation filter.

In other words, we can i) divide 𝑀 by any of its factors that are coprime to 𝑞, or ii)
multiply 𝑀 by any integers that are coprime to 𝑞, without altering the output space
of the interpolation filter.

Proof. Let the output subspaces spanned by the interpolation filters with expanders
↑ 𝑀 and ↑ 𝑔 be V𝑀 and V𝑔 respectively. These interpolation filters are shown in
Fig. 8.3 with correspondingly labeled input and output signals. To show that the
two output spaces are the same, we will be show that for any given input 𝑠𝑀 (𝑛) there
exists a corresponding 𝑠𝑔 (𝑛) such that 𝑦𝑀 (𝑛) = 𝑦𝑔 (𝑛) and vice versa.

Since 𝑔 divides 𝑀 , let 𝑀 = 𝑀′𝑔. Now for any given input 𝑠𝑀 (𝑛), choose 𝑠𝑔 (𝑀′𝑛) =
𝑠𝑀 (𝑛) and 0 otherwise. It can be checked that both outputs 𝑦𝑀 (𝑛) and 𝑦𝑔 (𝑛) are
the same in this case. Thus, V𝑀 ⊆ V𝑔.

Next, since (𝑀, 𝑞) = 𝑔, by Euclid’s Lemma (or Beźout identity) [61], ∃ 𝛼, 𝛽 ∈ Z

such that
𝛼𝑀 + 𝛽𝑞 = 𝑔. (8.14)

Now for any given input 𝑠𝑔 (𝑛), choose

𝑠𝑀 (𝑛) =

𝑠𝑔 (𝑙) if 𝑛 = 𝛼𝑙,

0 otherwise.
(8.15)

Then the output 𝑦𝑀 (𝑛) is

𝑦𝑀 (𝑛) =
∞∑︁

𝑘=−∞
𝑠𝑀 (𝑘)𝑐𝑞 (𝑛 − 𝑀𝑘) =

∞∑︁
𝑙=−∞

𝑠𝑔 (𝑙)𝑐𝑞 (𝑛 − 𝑀𝛼𝑙). (8.16)
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sM(n) yM(n)M c [n]q
rM(n)

∈ 𝑉!

sg(n) yg(n)g c [n]q
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∈ 𝑉"

sM[n] yM[n]M1 c [n]q
rM[n]

∈ 𝑉!
g

Figure 8.3: Figure for Lemma 12. When(𝑀, 𝑞) = 𝑔, the output spaces V𝑀 and V𝑔

are identical.

Since 𝑐𝑞 (𝑛) is periodic with period 𝑞, we get

𝑦𝑀 (𝑛) =
∞∑︁

𝑙=−∞
𝑠𝑔 (𝑙)𝑐𝑞 (𝑛 − (𝑀𝛼 mod 𝑞)𝑙) (8.17)

=

∞∑︁
𝑙=−∞

𝑠𝑔 (𝑙)𝑐𝑞 (𝑛 − 𝑔𝑙) = 𝑦𝑔 (𝑛). (8.18)

The second last equality follows from Eq. (8.14). Thus, V𝑔 ⊆ V𝑀 . Combined with
V𝑀 ⊆ V𝑔, we get V𝑔 = V𝑀 . □

8.3.1 A Bound on the Dimension of V𝑀

In this section, we prove a bound on the dimension of V𝑀 , or equivalently V𝑔, when
(𝑀, 𝑞) = 𝑔. Note that

V𝑀 = V𝑔 = 𝑠𝑝𝑎𝑛{𝑐𝑞 (𝑛), 𝑐𝑞 (𝑛 ± 𝑔), 𝑐𝑞 (𝑛 ± 2𝑔), . . .} (8.19)

Since 𝑐𝑞 (𝑛) is periodic with period 𝑞, it is enough to consider

𝑠𝑝𝑎𝑛{𝑐𝑞 (𝑛), 𝑐𝑞 (𝑛 − 𝑔), 𝑐𝑞 (𝑛 − 2𝑔), . . . , 𝑐𝑞 (𝑛 − (𝑞′ − 1)𝑔)} (8.20)

where 𝑞′ = 𝑞/𝑔. Now clearly, dimV𝑔 = rank(B(𝑔)
𝑞 ) where B(𝑔)

𝑞 is a 𝑞 × 𝑞′ matrix

B(𝑔)
𝑞 =


| | |

𝑐𝑞 (𝑛) 𝑐𝑞 (𝑛 − 𝑔) . . . 𝑐𝑞 (𝑛 − (𝑞′ − 1)𝑔)
| | |

 . (8.21)

For every 0 ≤ 𝑙 ≤ 𝑞′ − 1, the (𝑙 + 1)-th column of B(𝑔)
𝑞 has the entries 𝑐𝑞 (𝑛− 𝑙𝑔) for

𝑛 = 0, 1, . . . , 𝑞 − 1. Note that matrix B(𝑔)
𝑞 retains every 𝑔-th column of the circulant

matrix B𝑞 defined in [52], starting from the first column. For 𝑔 = 1, B(𝑔)
𝑞 = B𝑞, and

it has rank 𝜙(𝑞) [52]. Here we want to more generally find the rank of B(𝑔)
𝑞 , where

𝑔 can be any divisor of 𝑞. We now prove the following.
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Lemma 13. dimV𝑀 = rank(B(𝑔)
𝑞 ) ≤ 𝜙(𝑞′).

Proof. Consider the columns of B(𝑔)
𝑞 :

𝑐𝑞 (𝑛 − 𝑙𝑔) =
𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝑊
(𝑛−𝑙𝑔)𝑘
𝑞 =

𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝑊 𝑘𝑛
𝑞 𝑊

−𝑙𝑔𝑘
𝑞 . (8.22)

Since 𝑔 divides 𝑞, we get

𝑐𝑞 (𝑛 − 𝑙𝑔) =
𝑞−1∑︁
𝑘=0

(𝑘,𝑞)=1

𝑊 𝑘𝑛
𝑞 𝑊

−𝑙𝑘
𝑞′ (where 𝑞′ = 𝑞/𝑔). (8.23)

Thus, the matrix B(𝑔)
𝑞 can be factorized as

B(𝑔)
𝑞 = V𝑞 ·

(
C(𝑞)
𝑞′

)𝐻
, (8.24)

where V𝑞 is a 𝑞 × 𝜙(𝑞) matrix formed by retaining the ‘coprime index columns’ of
the 𝑞 × 𝑞 DFT matrix

V𝑞 =


| | |
𝑊𝑛
𝑞 . . . 𝑊 𝑘𝑛

𝑞 . . . 𝑊
(𝑞−1)𝑛
𝑞

| | |

 ,
0≤𝑘≤𝑞−1

s.t. (𝑘,𝑞)=1,
0≤𝑛≤𝑞−1

(8.25)

and C(𝑞)
𝑞′ is a 𝑞′ × 𝜙(𝑞) matrix

C(𝑞)
𝑞′ =


| | |

𝑊 𝑙
𝑞′ . . . 𝑊 𝑘𝑙

𝑞′ . . . 𝑊
(𝑞−1)𝑙
𝑞′

| | |

 ,
0≤𝑘≤𝑞−1

s.t. (𝑘,𝑞)=1,
0≤𝑙≤𝑞′−1.

(8.26)

Note that even though the 𝑞′-th root of unity is involved in C(𝑞)
𝑞′ , the index 𝑘 still

takes values in the range 1 ≤ 𝑘 ≤ 𝑞 satisfying (𝑘, 𝑞) = 1. As V𝑞 is a 𝑞 × 𝜙(𝑞)
submatrix of the 𝑞 × 𝑞 DFT matrix, it has rank 𝜙(𝑞). To find the rank of C(𝑞)

𝑞′ ,
consider the set of its columns:

rank(C(𝑞)
𝑞′ ) = dim

{
𝑊 𝑘𝑙
𝑞′ , 0 ≤ 𝑘 ≤ 𝑞 − 1, (𝑘, 𝑞) = 1

}
(8.27)

= dim
{
𝑊

(𝑘 mod 𝑞′)𝑙
𝑞′ , 0 ≤ 𝑘 ≤ 𝑞 − 1, (𝑘, 𝑞) = 1

}
. (8.28)

Note that since 𝑞′ is a divisor of 𝑞, (𝑘, 𝑞) = 1 implies that (𝑘, 𝑞′) = 1. Then
by Euclid’s lemma [61], (𝑘 − 𝑑𝑞′, 𝑞′) = 1 for all 𝑑 ∈ Z. So, in particular,
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((𝑘 mod 𝑞′), 𝑞′) = 1 whenever (𝑘, 𝑞) = 1. Combining this with the fact that
0 ≤ (𝑘 mod 𝑞′) ≤ 𝑞′ − 1, we see that there can only be 𝜙(𝑞′) distinct values of (𝑘
mod 𝑞′) in Eq. (8.28). Thus, rank(C(𝑞)

𝑞′ ) ≤ 𝜙(𝑞′). Now since

rank(B(𝑔)
𝑞 ) ≤ min{rank(V𝑞), rank(C(𝑞)

𝑞′ )}, (8.29)

rank(B(𝑔)
𝑞 ) is also upper bounded by 𝜙(𝑞′). This completes the proof. □

We end this section by presenting a conjecture that is motivated by the fact that
rank(B(𝑔)

𝑞 ) was found to be equal to 𝜙(𝑞′) in all examples that we numerically
checked:

Conjecture 2. dimV𝑀 = rank(B(𝑔)
𝑞 ) = 𝜙(𝑞′).

In other words, we observed that the bound proved in Lemma 13 is in fact the
dimension of V𝑀 . The validity of this conjecture depends on another conjecture:

Conjecture 3. Let 𝑞, 𝑞′ ∈ N be such that 𝑞′|𝑞. Then the following two sets are
identical:

A = {𝑘 mod 𝑞′ | 0 ≤ 𝑘 ≤ 𝑞 − 1, (𝑘, 𝑞) = 1}, (8.30)

B = {𝑘′ | 0 ≤ 𝑘′ ≤ 𝑞′ − 1, (𝑘′, 𝑞′) = 1}. (8.31)

Furthermore, for any 0 ≤ 𝑘′ ≤ 𝑞′ − 1 such that (𝑘′, 𝑞′) = 1, there are exactly
𝜙(𝑞)/𝜙(𝑞′) values of 𝑘 satisfying (𝑘, 𝑞) = 1, 0 ≤ 𝑘 ≤ 𝑞 − 1 such that 𝑘 mod 𝑞′ =
𝑘′.

Conjecture 3 was numerically checked to be true for many different values of 𝑞 and
𝑞′, however, a proof is not yet known. Furthermore, it cen be readily verified that
the Conjecture 1 from Chapter 7 about the decimation of Ramanujan sums

𝑐𝑞 (𝑀𝑛) =
𝜙(𝑞)
𝜙(𝑞′) 𝑐𝑞

′ (𝑛), (8.32)

where (𝑀, 𝑞) = 𝑔 and 𝑞′ = 𝑞/𝑔, is also a direct consequence of Conjecture 3.

8.3.2 Can V𝑀 = S𝑞 When (𝑀, 𝑞) ≠ 1?
As stated before, V𝑀 = S𝑞 can happen if and only if dimV𝑀 = 𝜙(𝑞). Since dimV𝑀

is upper bounded by 𝜙(𝑞′), where 𝑞′ = 𝑞/(𝑀, 𝑞) (Lemma 13), let’s examine the
ratio 𝜙(𝑞)/𝜙(𝑞′). Let 𝑞 and 𝑞′ have prime factorizations [61]

𝑞 =
∏
𝑖

𝑝
𝑚𝑖

𝑖
and 𝑞′ =

∏
𝑖

𝑝
𝑛𝑖
𝑖
, (8.33)
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where 𝑝1, 𝑝2, . . . are all the primes in increasing order and the exponents𝑚𝑖, 𝑛𝑖 ≥ 0.
Since 𝑞′|𝑞, we have 𝑛𝑖 ≤ 𝑚𝑖 ∀𝑖. Then, using the formula for the Euler totient
function [61], we have

𝜙(𝑞)
𝜙(𝑞′) =

∏
𝑖:𝑚𝑖≥1 𝑝

𝑚𝑖−1
𝑖

(𝑝𝑖 − 1)∏
𝑖:𝑛𝑖≥1 𝑝

𝑛𝑖−1
𝑖

(𝑝𝑖 − 1)
(8.34)

=
∏
𝑖:𝑛𝑖≥1

𝑝
𝑚𝑖−𝑛𝑖
𝑖

∏
𝑖:𝑛𝑖=0,
𝑚𝑖≥1

𝑝
𝑚𝑖−1
𝑖

(𝑝𝑖 − 1). (8.35)

The first product is over the primes that divide both 𝑞 and 𝑞′, and the second product
is over the primes that divide 𝑞 but not 𝑞′. With this, it can be verified that the ratio
𝜙(𝑞)/𝜙(𝑞′) is equal to 1 if and only if

𝑚𝑖 = 𝑛𝑖 ∀𝑖 s.t. 𝑛𝑖 ≥ 1,

𝑚𝑖 = 1, 𝑝𝑖 = 2 ∀𝑖 s.t. 𝑛𝑖 = 0, 𝑚𝑖 ≥ 1.
(8.36)

It can be verified that this condition is satisfied by 𝑞 and 𝑞′ if and only if either i)
𝑞 = 𝑞′, or ii) 𝑞 = 2𝑞′ for an odd integer 𝑞′.

Now given that these are the only possibilities for which 𝜙(𝑞) = 𝜙(𝑞′), as a con-
sequence of Conjecture 2, we can state the following stronger version of Lemma
11: If the Conjecture 2 is true, V𝑀 = S𝑞 if and only if either i) (𝑀, 𝑞) = 1, or ii)
(𝑀, 𝑞) = 2, and 𝑞/2 is odd.

8.4 Locations of Zeros of FIR Ramanujan Filters
In this section, we study the locations of zeros of Ramanujan filters. For the rest of
the chapter, we consider the FIR Ramanujan filters, which have the first few periods
of the Ramanujan sums as their filter coefficients. Note that this is different from
the ideal Ramanujan filters considered in previous sections.

The transfer function of the 𝑞-th FIR Ramanujan filter having one period of the
Ramanujan sum as its filter coefficient is given by

𝐶𝑞 (𝑧) =
𝑞−1∑︁
𝑛=0

𝑐𝑞 (𝑛)𝑧−𝑛. (8.37)

Note that later in Sec. 8.5.4 will also define extended filters based on 𝑙 successive
periods of 𝑐𝑞 (𝑛) [63][64], and its transfer function will be denoted by 𝐶 (𝑙)

𝑞 (𝑧):

𝐶
(𝑙)
𝑞 (𝑧) =

𝑞𝑙−1∑︁
𝑛=0

𝑐𝑞 (𝑛)𝑧−𝑛. (8.38)
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In the light of this definition from Eq. (8.38), the transfer function of the filter
with a single period of Ramanujan sum as its filter coefficient should be denoted as
𝐶

(1)
𝑞 (𝑧). We drop the superscript (𝑙) when 𝑙 = 1 to avoid the clutter.

In order to make 𝐶𝑞 (𝑧) a polynomial in 𝑧 with positive powers, we multiply it by
𝑧𝑞−1 to get 𝐶𝑞 (𝑧):

𝐶𝑞 (𝑧) = 𝑧𝑞−1𝐶𝑞 (𝑧) =
𝑞−1∑︁
𝑛=0

𝑐𝑞 (𝑛)𝑧𝑞−1−𝑛. (8.39)

Note that the zeros of 𝐶𝑞 (𝑧) and 𝐶𝑞 (𝑧), which are not at the origin, are the same.
Also, 𝐶𝑞 (𝑧) has no zero at 𝑧 = 0 for any positive integer 𝑞. Hence, for simplicity,
we study the location of zeros of 𝐶𝑞 (𝑧) and discard the zeros at the origin to get the
zeros of 𝐶𝑞 (𝑧).

As 𝑐𝑞 (0) ≠ 0 for any 𝑞, 𝐶𝑞 (𝑧) is a degree 𝑞 − 1 polynomial in 𝑧. Hence, it has 𝑞 − 1
(possibly complex) zeros. In this section, we will prove the following Lemma. The
terms ‘cyclotomic polynomial’ and ‘critical points’ are explained after the lemma.

Lemma 14 (Zeros of Ramanujan Filters). Let 𝐶𝑞 (𝑧) =
∑𝑞−1
𝑛=0 𝑐𝑞 (𝑛)𝑧

−𝑛 and let
𝐶𝑞 (𝑧) = 𝑧𝑞−1𝐶𝑞 (𝑧). Out of the 𝑞 − 1 zeros of 𝐶𝑞 (𝑧):

1. 𝜙(𝑞) − 1 zeros are located strictly inside the unit circle in 𝑧-plane and corre-
spond to the critical points of the 𝑞-th cyclotomic polynomial 𝐹𝑞 (𝑧) defined
in (8.40).

2. The remaining 𝑞 − 𝜙(𝑞) zeros are located on the unit circle in 𝑧-plane at
𝑊 𝑘
𝑞 , (𝑘, 𝑞) ≠ 1.

The zeros of 𝐶𝑞 (𝑧) are the non-zero zeros of 𝐶𝑞 (𝑧).

The 𝑞-th cyclotomic polynomial 𝐹𝑞 (𝑧) mentioned above is defined as

𝐹𝑞 (𝑧)
Δ
=

𝑞∏
𝑘=1

(𝑘,𝑞)=1

(𝑧 −𝑊 𝑘
𝑞 ). (8.40)

The term ‘critical points’ of 𝐹𝑞 (𝑧) refers to the zeros of 𝑑𝐹𝑞 (𝑧)/𝑑𝑧.

Note that 𝐹𝑞 (𝑧) is a degree 𝜙(𝑞) polynomial. Its zeros are located on the unit circle
in the 𝑧-plane at 𝑧 = 𝑊 𝑘

𝑞 , where (𝑘, 𝑞) = 1, 0 ≤ 𝑘 ≤ 𝑞 − 1. Also note

¤𝐹𝑞 (𝑧)
Δ
=
𝑑𝐹𝑞 (𝑧)
𝑑𝑧

= 𝐹𝑞 (𝑧)
©«

𝑞∑︁
𝑘=1

(𝑘,𝑞)=1

1
𝑧 −𝑊 𝑘

𝑞

ª®®¬ . (8.41)
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We will appeal to the following theorem by Lucas in the proof.

Theorem 8 (Lucas, theorem (6,1) of [207]). All the critical points of any non-
constant polynomial 𝑓 (𝑧) lie in the convex hull H of zeros of 𝑓 (𝑧). If the zeros of
𝑓 (𝑧) are not collinear, no critical point of 𝑓 (𝑧) lies on the boundary of H unless it
is a multiple zero of 𝑓 (𝑧).

Proof of Lemma 14. We can rewrite 𝐶𝑞 (𝑧) as follows:

𝐶𝑞 (𝑧) =
𝑞−1∑︁
𝑛=0

𝑐𝑞 (𝑛)𝑧−𝑛 =
𝑞−1∑︁
𝑛=0

𝑞∑︁
𝑘=1

(𝑘,𝑞)=1

𝑊 𝑘𝑛
𝑞 𝑧

−𝑛. (8.42)

Therefore, 𝐶𝑞 (𝑧) = 𝑧𝑞−1
𝑞∑︁
𝑘=1

(𝑘,𝑞)=1

𝑞−1∑︁
𝑛=0

(𝑊 𝑘
𝑞 𝑧

−1)𝑛

= 𝑧𝑞−1
𝑞∑︁
𝑘=1

(𝑘,𝑞)=1

1 − (𝑊 𝑘
𝑞 𝑧

−1)𝑞

1 −𝑊 𝑘
𝑞 𝑧

−1

= 𝑧𝑞−1(1 − 𝑧−𝑞)
𝑞∑︁
𝑘=1

(𝑘,𝑞)=1

1
1 −𝑊 𝑘

𝑞 𝑧
−1

= (𝑧𝑞 − 1)
𝑞∑︁
𝑘=1

(𝑘,𝑞)=1

1
𝑧 −𝑊 𝑘

𝑞

=
𝑧𝑞 − 1
𝐹𝑞 (𝑧)

¤𝐹𝑞 (𝑧).

(8.43)

A related expression for ¤𝐹𝑞 (𝑧)/𝐹𝑞 (𝑧) was obtained in a different context for one
sided 𝑧-transform of Ramanujan sums in [208]:

∞∑︁
𝑛=0

𝑐𝑞 (𝑛)𝑧−𝑛 =
𝑧𝑑𝐹𝑞 (𝑧)/𝑑𝑧
𝐹𝑞 (𝑧)

(8.44)

The infinite sum in (8.44) converges to the RHS only when |𝑧 | > 1, whereas no such
assumption is required in the derivation (8.43).

Now, from (8.43), we can see that either of the two factors in (8.43) can contribute
to zeros of 𝐶𝑞 (𝑧). For the first factor, the zeros of 𝐹𝑞 (𝑧) are located at 𝑧 = 𝑊 𝑘

𝑞 ,
where (𝑘, 𝑞) = 1, 0 ≤ 𝑘 ≤ 𝑞 − 1 and the zeros of the numerator (𝑧𝑞 − 1) are at
𝑧 = 𝑊 𝑘

𝑞 , 0 ≤ 𝑘 ≤ 𝑞 − 1. Hence, after cancellation we are left with 𝑞 − 𝜙(𝑞) zeros
for 𝐶𝑞 (𝑧) which are located at𝑊 𝑘

𝑞 , (𝑘, 𝑞) ≠ 1.
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The remaining 𝜙(𝑞) − 1 zeros of 𝐶𝑞 (𝑧) are contributed by the other factor ¤𝐹𝑞 (𝑧).
Since 𝐹𝑞 (𝑧) is a non-constant polynomial, by Lucas’s theorem we have that the
critical points of 𝐹𝑞 (𝑧), namely the zeros of ¤𝐹𝑞 (𝑧), lie in the convex hull of the zeros
of 𝐹𝑞 (𝑧). Since the zeros of 𝐹𝑞 (𝑧) are on the unit circle in the 𝑧-plane, the convex
hull of the zeros is strictly inside the unit circle, except at the zeros itself. Now note
that ¤𝐹𝑞 (𝑧) cannot have a zero where 𝐹𝑞 (𝑧) is zero, since none of the zeros of 𝐹𝑞 (𝑧)
are repeated. Hence, all the zeros of 𝐶𝑞 (𝑧) contributed by the term ¤𝐹𝑞 (𝑧) lie strictly
inside the unit circle in the 𝑧-plane. This completes the proof of Lemma 14. □

Now we obtain an expression for 𝐶𝑞 (𝑧) which enables efficient implementation of
Ramanujan filter banks as explained in Sec. 8.6 later. We have

𝐶𝑞 (𝑧) =
𝐶𝑞 (𝑧)
𝑧𝑞−1 =

𝑧𝑞 − 1
𝑧𝑞−𝜙(𝑞)𝐹𝑞 (𝑧)

·
¤𝐹𝑞 (𝑧)
𝑧𝜙(𝑞)−1 . (8.45)

Applying an identity for cyclotomic polynomials [209], [210]

𝑧𝑞 − 1 =
∏
𝑞𝑘 |𝑞

𝐹𝑞𝑘 (𝑧) (8.46)

gives us

𝐶𝑞 (𝑧) =
©«
∏
𝑞𝑘 |𝑞
𝑞𝑘<𝑞

𝐹𝑞𝑘 (𝑧)
ª®®¬ ·

¤𝐹𝑞 (𝑧)
𝑧𝜙(𝑞)−1 , (8.47)

where
𝐹𝑞 (𝑧) = 𝑧−𝜙(𝑞)𝐹𝑞 (𝑧) (8.48)

is a causal version of the cyclotomic polynomial.

8.5 Identifying Further Structure in the Locations of Zeros
Fig. 8.4 shows plots of zeros of 𝐶𝑞 (𝑧) for some selected values of 𝑞. In each of
these plots, the zeros are indeed in accordance with Lemma 14. We can see that the
locations of zeros seem to exhibit a lot more structure than what is stated in Lemma
14. For example, notice that 𝑧 = 1 is always a zero of 𝐶𝑞 (𝑧) for any 𝑞 > 1. This
follows from the fact that

∑𝑞−1
𝑛=0 𝑐𝑞 (𝑛) = 0 for any 𝑞. In the following subsections, we

consider special cases of 𝑞 and further derive properties for zeros of corresponding
families of Ramanujan filters. We believe that these are of sufficient academic
interest to merit inclusion here. We also obtain zeros for generalized filters with 𝑙
periods of Ramanujan sums as filter coefficients instead of just one.
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Figure 8.4: Zeros of 𝐶𝑞 (𝑧) for some selected values of 𝑞 plotted on the 𝑧-plane.
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8.5.1 Case When 𝑞 is a Power of Two
For 𝑞 = 2𝑚 where 𝑚 is a natural number, we have [52]

𝑐𝑞 (𝑛) =


0 if 2𝑚−1 does not divide 𝑛,

−2𝑚−1 if 2𝑚−1 divides 𝑛 but 2𝑚 does not divide 𝑛,

2𝑚−1 if 2𝑚 divides 𝑛.

(8.49)

Hence we have
𝐶𝑞 (𝑧) = 2𝑚−1𝑧(2

𝑚−1) − 2𝑚−1𝑧(2
𝑚−1−1)

= 2𝑚−1𝑧(2
𝑚−1−1) (𝑧(2𝑚−1) − 1).

(8.50)

Discarding the zeros at 𝑧 = 0, the zeros of 𝐶𝑞 (𝑧) are the 2𝑚−1-th roots of unity, and
lie on the unit circle in the 𝑧-plane. No zeros lie inside the unit circle. We can
indeed verify this result from Fig. 8.4. The zeros of 𝐶4(𝑧) are the square roots of
unity. Similarly, the zeros of 𝐶𝑞 (𝑧) for 𝑞 = 8 and 𝑞 = 16 are the fourth and the
eighth roots of unity, respectively.

8.5.2 Case When 𝑞 is a Prime Number
For 𝑞 = 𝑝, a prime, we have [52]

𝑐𝑞 (𝑛) =

𝑞 − 1 if 𝑛 is multiple of 𝑞,

−1 otherwise.
(8.51)

So we have
𝐶𝑞 (𝑧) = (𝑞 − 1)𝑧𝑞−1 − 𝑧𝑞−2 − 𝑧𝑞−3 − . . . − 1

= (𝑧 − 1)
[
(𝑞 − 1)𝑧𝑞−2 + (𝑞 − 2)𝑧𝑞−3 + . . . + 2𝑧 + 1)

]
.

(8.52)

Hence, we have one zero located at 𝑧 = 1, and the other 𝑞 − 2 zeros are the zeros of
the special integer coefficient polynomial

𝑔𝑞 (𝑧) = (𝑞 − 1)𝑧𝑞−2 + (𝑞 − 2)𝑧𝑞−3 + . . . + 2𝑧 + 1. (8.53)

Since 𝑞 is prime, we know from Lemma 14 that the zeros of 𝑔𝑞 (𝑧) are strictly inside
the unit circle. We can verify this result for prime values of 𝑞 = 3, 5, 7, 11 from the
Fig. 8.4. Except at 𝑧 = 1, all the zeros of 𝐶𝑞 (𝑧) lie strictly inside the unit circle.

8.5.3 Case When 𝑞 is a Power of a Prime
For 𝑞 = 𝑝𝑚 where 𝑝 is a prime, we have [52]

𝑐𝑞 (𝑛) =


0 if 𝑝𝑚−1 does not divide 𝑛,

−𝑝𝑚−1 if 𝑝𝑚−1 divides 𝑛 but 𝑝𝑚 does not divide 𝑛,

(𝑝 − 1)𝑝𝑚−1 if 𝑝𝑚 divides 𝑛.

(8.54)
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Hence we have

𝐶𝑞 (𝑧) = (𝑝 − 1)𝑝𝑚−1𝑧(𝑝
𝑚−1) +

𝑝−1∑︁
𝑘=1

−𝑝𝑚−1𝑧(𝑝
𝑚−1−𝑘 𝑝𝑚−1)

= 𝑝𝑚−1𝑧(𝑝
𝑚−1−1)

[
(𝑝 − 1)𝑧((𝑝−1)𝑝𝑚−1) −

𝑝−1∑︁
𝑘=1

𝑧(𝑝−𝑘−1)𝑝𝑚−1

]
.

(8.55)

On further simplification, we get

𝐶𝑞 (𝑧) = 𝑝𝑚−1𝑧(𝑝
𝑚−1−1)𝐶𝑝 (𝑧𝑝

𝑚−1). (8.56)

Hence, discarding the zeros at 𝑧 = 0, we have that the zeros of𝐶𝑞 (𝑧) are the 𝑝𝑚−1-th
roots of zeros of 𝐶𝑝 (𝑧).

To visualize the relation (8.56), compare the locations of zeros for 𝐶3(𝑧) and 𝐶9(𝑧)
from Fig. 8.4. Here we have 𝑝 = 3, 𝑚 = 2, and 𝑞 = 32 = 9. The zero of 𝐶3(𝑧) at
𝑧 = 1 gives rise to three zeros of 𝐶9(𝑧) on the unit circle. These three zeros are the
𝑝𝑚−1-th i.e. 3𝑟𝑑 roots of 𝑧 = 1. Similarly, the zero of 𝐶3(𝑧) at 𝑧 = −1/2 gives rise
to three zeros of 𝐶9(𝑧) that lie inside the unit circle, and correspond to cube roots
of 𝑧 = −1/2.

8.5.4 Case When Multiple Periods of Ramanujan Sums are Used in the Filter
Definition

When the filter impulse response has 𝑙 periods of 𝑐𝑞 (𝑛) as filter coefficients, we
have

𝐶
(𝑙)
𝑞 (𝑧) =

𝑞𝑙−1∑︁
𝑛=0

𝑐𝑞 (𝑛)𝑧−𝑛 =
𝑞−1∑︁
𝑛=0

𝑐𝑞 (𝑛)𝑧−𝑛
[
1 + 𝑧−𝑞 + . . . 𝑧−(𝑙−1)𝑞] (8.57)

=

(
𝑞−1∑︁
𝑛=0

𝑐𝑞 (𝑛)𝑧−𝑛
) (

𝑙−1∑︁
𝑘=0

𝑧−𝑞𝑘
)
= 𝐶𝑞 (𝑧)

(
1 − 𝑧−𝑞𝑙
1 − 𝑧−𝑞

)
. (8.58)

From this we can see that the 𝑞𝑙 − 1 zeros of 𝐶 (𝑙)
𝑞 (𝑧) are of two categories: (a) the

zeros of 𝐶𝑞 (𝑧), and (b) zeros that are 𝑞𝑙-th roots of unity which are not also 𝑞-th
roots of unity. There are 𝑞(𝑙 − 1) such zeros of the second category. Fig. 8.5 shows
the locations of zeros for 𝐶 (𝑙)

7 for 1 ≤ 𝑙 ≤ 5.

8.5.5 A Special Case of 𝑞 as a Product of Two Numbers
One can ask whether we can characterize zeros of 𝐶𝑞 (𝑧) where 𝑞 = 𝑝1𝑝2, where 𝑝1

and 𝑝2 are some integers. We were not able to characterize this for general integers
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Figure 8.5: Zeros of 𝐶 (𝑙)
7 (𝑧) for 1 ≤ 𝑙 ≤ 6. As 𝑙 increases, only the number of zeros

on the unit circle increases, whereas the zeros inside the unit circle stay the same.

𝑝1 and 𝑝2. However, in this section we consider a very specific case of this, where
𝑝1 = 2 and 𝑝2 is odd. Here we use the multiplicative property of the Ramanujan
sums [52]:

𝑐𝑝1𝑝2 (𝑛) = 𝑐𝑝1 (𝑛)𝑐𝑝2 (𝑛) if (𝑝1, 𝑝2) = 1. (8.59)

When 𝑝1 = 2 and 𝑝2 is odd, the coprime condition is satisfied. Now note that
𝑐2(𝑛) = {1,−1} in its first period. Hence for 𝑞 = 2𝑝2 we have

𝐶𝑞 (𝑧) =
𝑞−1∑︁
𝑛=0

𝑐2(𝑛)𝑐𝑝2 (𝑛)𝑧−𝑛 =
𝑞−1∑︁
𝑛=0

(−1)𝑛𝑐𝑝2 (𝑛)𝑧−𝑛 (8.60)

=

𝑞−1∑︁
𝑛=0

𝑐𝑝2 (𝑛) (−𝑧)−𝑛 = 𝐶
(2)
𝑝2 (−𝑧). (8.61)

Hence the zeros of 𝐶𝑞 (𝑧) for 𝑞 = 2𝑝2, where 𝑝2 is odd, are the negatives of the
zeros of 𝐶 (2)

𝑝2 (𝑧). As an example the zeros of 𝐶14(𝑧) (𝑞 = 14 from Fig. 8.4) are the
negatives of the zeros of 𝐶 (2)

7 (𝑧) (𝑙 = 2 from Fig. 8.5).
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Figure 8.6: (a) Standard implementation of two filters from RFB, (b) Equivalent
efficient implementation, by extracting a common factor 𝑃(𝑧).

8.6 Efficient Structure for Ramanujan Filter Banks
In this section, we show how the factorization (8.47) leads to a possible way of
implementing the Ramanujan filter banks more efficiently. Firstly, note that cyclo-
tomic polynomials have integer coefficients. The coefficients of 𝐹𝑞 (𝑧) remain small
even when 𝑞 is large. In particular, the first 104 cyclotomic polynomials have no
coefficients other than 1, 0, or -1 [209], [210]. Hence, the first 104 cyclotomic
polynomials can be implemented without any multipliers!

Now we present an example of an efficient implementation of a 2-filter RFB con-
sisting of 𝐶12(𝑧) and 𝐶18(𝑧). We pull out a common filter factor from the first terms
of the expression (8.47) for 𝑞 = 12 and 𝑞 = 18. Note that

𝐶12(𝑧) = 𝑃(𝑧)𝐹4(𝑧) ·
(
𝑧−3 ¤𝐹12(𝑧)

)
and

𝐶18(𝑧) = 𝑃(𝑧)𝐹9(𝑧) ·
(
𝑧−5 ¤𝐹18(𝑧)

)
,

(8.62)

where, 𝑃(𝑧) is the common factor given by

𝑃(𝑧) = 𝐹1(𝑧)𝐹2(𝑧)𝐹3(𝑧)𝐹6(𝑧). (8.63)

Hence, instead of standard implementation as in Fig. 8.6(a), we can implement the
two filters as in Fig. 8.6(b). Since the filter 𝐹𝑞 (𝑧) has order of 𝜙(𝑞), 𝑃(𝑧) is a
sixth order filter (since

∑
𝑞𝑘 |𝑞 𝜙(𝑞𝑘 ) = 𝑞 [61]). Therefore, the implementation as in

Fig. 8.6(b) saves computations corresponding to a sixth order filter, by reusing the
common filter factor 𝑃(𝑧).

This saves a lot of repetitive convolutions of signals with impulse responses. This
particular example was chosen as it well illustrates the point of filters having common
factors, owing to many common divisors of 12 and 18. In practice, an RFB usually
has all filters from 𝐶1(𝑧) to 𝐶𝑁 (𝑧) for some integer 𝑁 . When the filter bank has
many filters, there are multiple ways in which common factors can be shared, and
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some are more efficient than others. An interesting problem for the future would be
to identify the most efficient way to exploit such common factors.

8.7 Concluding Remarks
In this chapter, we considered the interpolation filter model for Ramanujan subspace
signals. In general, when the ideal 𝑞-th Ramanujan filter 𝐶𝑞 (𝑒 𝑗𝜔) is preceded by
an expander ↑ 𝑀 , the output space of the filter is a subspace of the 𝑞-th Ramanujan
subspace S𝑞. But under the coprimality of 𝑀 and 𝑞, the output space is the full
Ramanujan subspace S𝑞. For the general case when (𝑀, 𝑞) = 𝑔, we proved that
the dimension of the output space of the interpolation filter is bounded by 𝜙(𝑞/𝑔),
and furthermore conjectured it to be exactly 𝜙(𝑞/𝑔). In the future, we hope to
prove this by proving Conjecture 2 and Conjecture 3, for which we haven’t been
able to find counterexamples. The interpolation filter model (in particular Lemma
11) has potential application in developing a complete analysis-synthesis filter bank
structure which is useful for denoising periodic signals. However, this requires
several careful practical considerations, which will be explored in future work.

In this chapter, we also proved that all the zeros of FIR Ramanujan filters lie on or
inside the unit circle in the 𝑧-plane. A general proof was based on Lucas’s theorem.
We considered different special cases of 𝑞, such as primes and powers of primes,
and discovered interrelations between them. We also characterized the zeros of
Ramanujan filters having 𝑙 periods of 𝑐𝑞 (𝑛) instead of just one period. It was shown
with an illustrative example that the factorization of the filter transfer function in
terms of cyclotomic polynomials and their derivatives opens up a possibility of
efficient implementation of RFB.
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C h a p t e r 9

LEARNING-BASED METHODS FOR REPRESENTING
PERIODIC SIGNALS AND DOA ESTIMATION

9.1 Introduction
In this chapter, we explore the use of two popular learning-based methods for
periodicity estimation and DOA estimation. In the first part, we examine whether
a popular dictionary learning algorithm called K-SVD [74] can effectively learn
periodicity dictionaries from data. In the second part, we explore the use of a
convolutional neural network for DOA estimation.

It is common in many signal processing applications to use overcomplete dictionaries
to represent data [70]–[75]. A good review of different dictionary types can be found
in [70]. One way to construct representation dictionaries is to design them based
on a-priori knowledge or a mathematical model regarding the signals that are to be
represented. Such dictionaries are called analytical dictionaries. These dictionaries
often have the advantage of fast implicit implementation. For example, a tight frame
is an 𝑚 × 𝑛 dictionary D that satisfies

DD𝑇x =
𝑛

𝑚
x (9.1)

for all vectors x. For this dictionary D, D𝑇 is a possible analysis operator that
produces analysis coefficients. This means that for a given signal x, a valid coefficient
vector corresponding to the dictionary D can be computed easily as 𝑚

𝑛
D𝑇x. Some

examples of analytical dictionaries are curvelets, contourlets, and bandlets.

Another way to develop dictionaries is to use a set of realizations of data for
training. The advantage of such trained dictionaries that are directly learned from
data is that they adapt to the non-idealities of the data well instead of relying on
inaccurate modeling of these non-idealities. There are many dictionary learning
algorithms, such as K-SVD [74], method of optimal directions (MOD) [211], union
of orthonormal bases [212], and so on. Overcomplete dictionaries are widely
used along with sparse vector recovery formulation for many applications such as
denoising [75], DOA estimation [73], and data compression [72], to name a few.
In addition to analytical and learned dictionaries, there is also a class of parametric
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dictionaries [213]. Atoms of these dictionaries are structured but have a few free
parameters that can be optimized by the training algorithm according to the data.

We have seen in Chapter 7 that Ramanujan sums are useful in identifying periodic
structures in signals. The dictionaries used for this purpose are analytical dictio-
naries such as Ramanujan and Farey dictionaries [53], [62]. In the first part of this
chapter, we explore the use of dictionary learning methods in the context of period
estimation and periodic signal representation using dictionaries. We investigate
whether K-SVD can learn the known dictionaries for period estimation from sparse
coefficient periodic data generated from Ramanujan and Farey dictionaries. We also
experimentally analyze the dependence of the similarity of the learned dictionary
and the known dictionaries for period estimation with different parameters.

The second part of this chapter focuses on DOA estimation. Most of the classical
DOA estimation methods are based on the standard data model used in array signal
processing (Eq. (2.1)). Classical subspace-based methods like MUSIC, ESPRIT,
and their variants (Sec. 2.2) estimate DOAs using an estimate of the covariance
matrix from finite snapshots. Dictionary-based methods and associated sparse signal
recovery approaches [214] are also popular for DOA estimation. Atomic norm
minimization based methods [17] have also been developed for DOA estimation.
These methods exploit the mathematical framework of the data model and hence
work very well when the received data is indeed in accordance with the model.
However, the widely used data model in array signal processing (Eq. (2.1)) is based
on many simplifying assumptions such as far-field signals, isotropic sensors, and so
on. Furthermore, in the presence of non-idealities or imperfections such as gain and
phase errors, mutual coupling, and sensor position errors, the received data is not in
accordance with the simplified data model (Eq. (2.1)). Such deviation of received
data from the assumed data model deteriorates the performance of classical DOA
estimation methods.

To overcome this, data-adaptive techniques such as machine learning and deep neural
networks are used. Although there have been a few attempts in the past with radial
basis functions [215] and support vector regression [216], the renewed interest is due
to improved computational resources and the success of neural networks in many
real-world problems [77]. In [148], Liu et. al. successfully show that a network
based on auto-encoder and parallel multi-layer classifiers outperforms classical
methods in the presence of array imperfections. Following that, many networks
such as CNN [149] and ResNet [217] have been proposed for DOA estimation, and
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demonstrate improved performance. Papers like [218], [219] also propose deep
learning based methods to perform the traditional MUSIC algorithm.

In the second part of this chapter, we work with the CNN-based method proposed
in [149]. The reason for this is twofold. First, [149] uses a simple four-layer
convolutional network. Thus, it has fewer parameters and a smaller training time
compared to many of the other networks for DOA estimation. And second, the
method combines model-based and data-driven approaches. The data model is
incorporated in the method through the so-called ‘proxy spectrum’, which is the
input provided to the network. The network learns to refine this proxy spectrum
based on the training data provided.

We show how the above method can be applied to sparse arrays such as nested
arrays. In Sec. 2.3 we saw that well-designed sparse arrays such as nested arrays,
coprime arrays, and MRAs can estimate O(𝑁2) sources using 𝑁 physical sensors in
the array. By modifying the CNN-based method for sparse arrays, we demonstrate
how to augment the machine learning methods with the ability to identify more
sources than the number of sensors by the use of coarray principles. Furthermore,
we also propose many possible alternative inputs (proxy spectra) to the network
without changing the network structure. The experimental simulations demonstrate
that the proposed proxy spectra can lead to improved DOA estimation performance,
especially for the sparse arrays.

Chapter Outline. In Sec. 9.2 we review the known dictionaries for period estimation
and a popular dictionary learning algorithm, the K-SVD. In Sec. 9.3 we formalize
the dictionary-learning goals of this chapter and describe the experimental setting.
Sec. 9.4 presents experimental results and discussions. Next, in Sec. 9.5 we review
the CNN-based method from [149]. In Sec. 9.6 we explain how to adapt the CNN-
based method for sparse arrays. In Sec. 9.7 we consider several other possible
proxy spectra that can be used as input to the CNN. Sec. 9.8 presents experimental
simulations demonstrating the ability to identify more sources. We also compare the
DOA estimation errors for the various proposed proxy spectra. Sec. 9.9 concludes
the chapter. The content of this chapter is based on papers [220], [221].

9.2 Review of Periodicity Dictionaries and K-SVD Algorithm
In this section, we review the known dictionaries for period estimation and the
K-SVD algorithm used for dictionary learning.
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9.2.1 Nested Periodic Dictionaries for Period Estimation
Any length 𝑁 periodic signal x with period 𝑃 ≤ 𝑁 can be represented as [52]
x = F𝑁b , where

F𝑁 =

[
G𝑞1 G𝑞2 . . . G𝑞𝑘

]
. (9.2)

Here, 𝑞1, 𝑞2, . . . , 𝑞𝑘 are the divisors of signal length 𝑁 . The matrices G𝑞𝑖 have the
𝜙(𝑞𝑖) circularly shifted versions of the 𝑞𝑖-th Ramanujan sums as the columns and
hence span the corresponding periodic subspaces 𝑆𝑞𝑖 . The columns are periodically
repeated to make the number of rows equal to 𝑁 . This representation is called
the Ramanujan Periodic Transform (RPT). The component or hidden periods can
be found by identifying the set of divisors {𝑞𝑖} that have corresponding non-zero
entries in the coefficient vector b.

Although the RPT is shown to have some applications, it is useful only when the
component periods of the signal are the divisors of the signal length 𝑁 . General-
izing the transform matrix for RPT, a framework of nested periodic matrices and
dictionaries was proposed in [53]. Namely, the above matrix F𝑁 was replaced with
full rank matrix B defined as

B =

[
H𝑞1 H𝑞2 . . . H𝑞𝑘

]
, (9.3)

where H𝑞𝑖 can be any 𝑁 × 𝜙(𝑞𝑖) matrix containing columns of period 𝑞𝑖. Examples
of nested periodic matrices are natural basis matrices, DFT matrices, and Ramanujan
matrices. In order to identify periods that may not be divisors of signal length, the
use of overcomplete Farey dictionaries was proposed in [191] and was extended to
other periodicity matrices in [53]. Here, the matrix B in the above formulation is
replaced with a dictionary

D = [H1 H2 . . . H𝑃𝑚𝑎𝑥
] . (9.4)

Here, each H𝑖 contains 𝜙(𝑖) columns of period 𝑖, hence all the periods from 1
to 𝑃𝑚𝑎𝑥 are represented in this dictionary. The last periods of H𝑖 are truncated
if needed in order to make their length equal to the signal length 𝑁. The period
estimation problem is formulated as a sparse vector recovery problem in this setting.
Examples of nested periodic dictionaries include the Farey Dictionary, which has
columns from multiple DFT matrices, the Ramanujan dictionary, which has shifted
Ramanujan sums as columns, and the natural periodic dictionary, which has columns
from different identity matrices.
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9.2.2 Learning Dictionary via K-SVD
Over the last two decades, many researchers have developed methods to learn
dictionaries from the given data samples. The objective is to represent the data
as sparse linear combinations of the columns of a dictionary. In this chapter, we
use K-SVD [74], which is one such popular dictionary learning algorithm. K-SVD
is shown to have numerous applications, including denoising [75], compression
[74], and face recognition [222]. It is a generalization of the 𝑘-means clustering
algorithm. The objective function of K-SVD is

min
D,𝚪

| |Y − D𝚪| |2𝐹 subject to | |𝜸𝑖 | |0 ≤ 𝑇0 ∀𝑖. (9.5)

Here, Y is the training data matrix, D is a dictionary, and 𝚪 is the coefficient matrix
of the data with respect to the dictionary D, and 𝜸𝑖 denotes the 𝑖-th column of 𝚪.
In this sparsity-constrained formulation, each coefficient vector 𝜸𝑖 is constrained to
have at most 𝑇0 non-zero entries.

The K-SVD algorithm alternates between two steps. In the first stage of sparse
coding, the dictionary D is kept fixed and the coefficients 𝜸𝑖 are updated with the
solution of 𝑙0 norm constrained error minimization problem

�̂�𝑖 = min
𝜸𝑖

| |Y𝑖 − D𝜸𝑖 | |22 subject to | |𝜸𝑖 | |0 ≤ 𝑇0. (9.6)

As the 𝑙0 norm is NP-hard to deal with, approximate sparse coding algorithms like
orthogonal matching pursuit (OMP) [223] or FOCUSS [224] can be used at this
stage. The optimal solution is recovered with a high probability by OMP if the
sparsity 𝑇0 is low [225].

In the second stage, columns of the dictionary D are updated successively. To update
the 𝑖-th column, the representation error matrix without the 𝑖-th column is evaluated
as follows:

E𝑖 = Y −
∑︁
𝑗≠𝑖

d 𝑗𝜸 𝑗 . (9.7)

Here, 𝜸 𝑗 denotes the 𝑗-th row of 𝚪, and d 𝑗 is the 𝑗-th column of the dictionary D.
To the preserve sparsity constraint, a reduced error matrix E𝑅

𝑖
is formed by keeping

those columns of E𝑖 with indices from the set H𝑖 =
{
𝑗 | 𝚪𝑖 𝑗 ≠ 0

}
. These indices

correspond to examples that use the 𝑖-th column in their current representation.
With this, the problem reduces to finding a rank one approximation of the restricted
error matrix E𝑅

𝑖
, which can be conveniently found from the SVD: E𝑅

𝑖
= U𝚺V𝐻 .

The superscript 𝑅 is used to denote matrices or vectors restricted according to the
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set H𝑖, whereas the superscript 𝐻 denotes the conjugate transpose of the matrix.
The dictionary column is updated by the first left singular vector d𝑖 = u1, and the
corresponding coefficient row is updated with the first right singular vector scaled
with the largest singular value 𝜸𝑖 = 𝜎1v𝐻1 .

The K-SVD can also be formulated as an error-constrained objective minimizing
the sparsity as follows:

min
D,𝚪

| |𝜸𝑖 | |0 subject to | |y𝑖 − D𝜸𝑖 | |2 ≤ 𝜖 ∀𝑖. (9.8)

Fast implementation of K-SVD has been developed in [226] using batch-OMP. The
K-SVD can also be used for complex dictionary learning as in [227].

K-SVD is susceptible to local minima, and its performance depends on initialization.
Thus, as we will see in Sec. 9.4, we average the performance over many Monte-Carlo
runs and also study the effect of random initialization as against knowledge-based
initialization.

9.3 Goals and Experimental Setting
Now we use the dictionary learning methods in the context of period estimation and
periodic signal representation using dictionaries. In particular, we seek answers to
two questions.

1. Can K-SVD learn the periodicity dictionaries like Ramanujan and Farey from
the data without explicit periodicity constraints? If so, under what conditions?

2. What are the advantages of K-SVD learned dictionaries over known period-
icity dictionaries? Does it offer better representation in case of noisy data?

In the remainder of this section, we describe the evaluation metrics and experimental
setting.

9.3.1 Evaluation Metrics
In order to compare the learned dictionaries under different settings, we use two
evaluation metrics. The dictionary similarity metric 𝜌(D, D̃) measures how well
the columns from the original dictionary D are recovered by the learned dictionary
D̃. To compute this, for each column in the original dictionary, we find a column
from the learned dictionary that has the maximum normalized inner product with
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it. We then take an average of this maximum inner product over all columns of the
dictionary. Thus,

𝜌(D, D̃) = 1
𝑀

𝑀∑︁
𝑖=1

max
𝑘

|d𝐻𝑖 d̃𝑘 |. (9.9)

A value of 𝜌(D, D̃) close to 1 indicates that most of the columns from the original
dictionary are close to some column of the reconstructed dictionary.

We also define the following two error metrics 𝑒1(X,Y,D) and 𝑒2(Y,D) that capture
how well the learned dictionary can represent the training data:

𝑒1(X,Y,D) = 1
𝑁

𝑁∑︁
𝑖=1

| |D𝜸𝑖 − x𝑖 | |22
| |x𝑖 | |22

, (9.10)

𝑒2(Y,D) = 1
𝑁

𝑁∑︁
𝑖=1

| |D𝜸𝑖 − y𝑖 | |22
| |y𝑖 | |22

. (9.11)

Here, Y is the noisy data matrix, X is the noiseless data matrix, and D is the learned
dictionary. Note that in order to calculate these metrics, we first need to compute
the coefficient vectors 𝜸𝑖 from the given noisy data Y adhering to sparsity or error
constraints. With the coefficients 𝜸𝑖 calculated, 𝑒1 is the relative mean squared
error (MSE) of the representation D𝚪 with respect to the noiseless data X. Note
that even if Y does not appear directly in Eq. (9.10), it is required to find the
coefficients 𝜸𝑖. Since error 𝑒1 captures how well the representation based on the
learned dictionary is able to match the noiseless data, it can be regarded as the
denoising error. Similarly, 𝑒2 is relative MSE with respect to noisy data Y. This
indicates how well the dictionary can represent noisy data. Note that if the training
data does not have any noise, then X = Y, and thus 𝑒1 = 𝑒2.

9.3.2 Experimental Setting
For all our experiments, we first create either a Ramanujan or a Farey dictionary
that can represent component periods up to some integer 𝑃𝑚𝑎𝑥 . We then generate
𝑇0-sparse data from the dictionary and learn a dictionary using K-SVD from this
data. The standard (real-valued) K-SVD is used for the real data generated from the
Ramanujan dictionary, whereas the complex-valued K-SVD is used for the complex
data generated from the Farey dictionary.

With the following default values of parameters, we vary one or two parameters at
a time and see how the performance varies. The maximum component period 𝑃𝑚𝑎𝑥
is 15, and the signal length or the number of rows of the dictionary is 60. Thus, the
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(a) (b)

Figure 9.1: Variation of dictionary similarities with SNR and datapoints. (a)
Ramanujan Dictionary, and (b) Farey dictionary.

number of dictionary columns is Φ(15) = 72, so that the true underlying dictionary
is overcomplete. We set the sparsity to 5, and 500 data points are used for dictionary
learning. 100 Monte-Carlo simulations are run for each parameter set, each with
100 K-SVD iterations.

9.4 Experimental Results
Our experiments show that the K-SVD algorithm is indeed able to learn the well-
known periodicity dictionaries from data. The accuracy with which this learning
takes place (i.e., dictionary similarity and representation errors) depends on a num-
ber of parameters in the experiments, as explained through the simulations next.

Fig. 9.1(a) shows the variation of dictionary similarity with SNR of the training
data and the number of datapoints for the Ramanujan dictionary. We see that the
K-SVD is able to recover the underlying dictionary when SNR is high, and more
data helps recover the dictionary columns even at relatively lower SNR values. Fig.
9.1(b) shows similar trends observed for the Farey dictionary. Thus, we see that the
complex K-SVD can also learn dictionaries with similar performance.

Next, Fig. 9.2 shows representation errors 𝑒1 and 𝑒2 for the case of learning the
Ramanujan dictionary. Note that both representation errors reduce with higher SNR
and more data. However, it is interesting to note that for very few data points, 𝑒2 in
fact does not reduce with increasing SNR. Exactly similar trends were also observed
for complex K-SVD, hence we have skipped those graphs here.

To see the effect of sparsity, we perform two kinds of experiments. In one experiment,
all the training datapoints have fixed sparsity, and in another experiment, different
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(a) (b)

Figure 9.2: Variation of representation errors with SNR and datapoints for Ramanu-
jan dictionary. (a) Error 𝑒1, and (b) error 𝑒2.

(a)

(b)

Figure 9.3: Variation of (a) dictionary similarity and (b) representation error with
sparsity and maximum sparsity.

datapoints can have different sparsity, which we call variable sparse data. For
example, 20 variable sparse data means that the sparsity of different datapoints can
be anything between 1 and 20. Based on Fig. 9.3, for both real and complex
K-SVD, we see that the K-SVD learned dictionary has a lower representation error
when sparsity is very low or high. On the other hand, the dictionary similarity
decreases monotonically as sparsity increases. This suggests that even when we
have low similarity to the underlying dictionary, the representation error can be
small. Also, note that K-SVD is able to learn a good dictionary even when sparsity
is not fixed. In fact, the representation error and dictionary similarity improve in
this case. Intuitively, this can be attributed to the fraction of the data that has
lesser sparsity, as it reveals more information about the columns of the underlying
dictionary.
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(a)

(b)

Figure 9.4: Variation of (a) dictionary similarity and (b) representation error with
the allowed number of dictionary columns.

(a)

(b)

Figure 9.5: Variation of (a) dictionary similarity and (b) representation error with
the maximum period.

Fig. 9.4 shows the variation with the number of columns the learned dictionary
is allowed to have. Note that when the allowed number of columns exceeds 72,
we recover all atoms of the underlying dictionary. Also interesting is that if more
than 72 columns are allowed, the representation error does not reduce, but in fact
increases.

From Fig. 9.5 we note that with the length fixed, a better dictionary is learned
when the data has a lower component period. This means that there needs to be at
least a certain number of periods of the periodic components included in the data
length. Also, note that the complex-valued K-SVD is much more robust to larger
component periods than the real-valued K-SVD. The similarity is relatively higher
even for larger periods.

Fig. 9.6 demonstrates results of a similar nature as the signal length is varied. Here,
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(a) (b)

Figure 9.6: Variation of (a) dictionary similarity and (b) representation error with
signal length.

(a) (b)

Figure 9.7: Variation of dictionary similarities for different K-SVD versions and
initialization. (a) Ramanujan dictionary, and (b) Farey dictionary.

with the maximum period fixed, a longer signal length is preferred, which again
emphasizes that there needs to be at least a certain number of periods of the periodic
components included in the data length. Here too, the complex K-SVD is more
robust to smaller signal lengths.

Fig. 9.7 compares two different versions of K-SVD, namely, sparsity-constrained
formulation (Eq. (9.5)) and error-constrained formulation (Eq. (9.8)). For both
versions, we consider two initializations: random initialization and Ramanujan
initialization. At high SNR, both versions and random as well as knowledge-
based initialization of K-SVD perform equally well. Also, notice that for random
initialization, error based optimization gives marginally better dictionary similarity
than sparsity-based optimization.
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(a)

(b)

Figure 9.8: Effect of initialization on representation error 𝑒2 for Ramanujan dictio-
nary.

Now in pursuit of seeking whether there is any advantage of learned dictionaries over
the known analytic dictionaries, we study the variations of representation error for
known and trained dictionaries, and with different initializations. From Fig. 9.8(a),
we see that for denoising type error 𝑒1, the Ramanujan dictionary without any further
optimization gives better performance than the learned dictionaries. However, with
regards to the representation error 𝑒2 (Fig. 9.8(b)), the learned dictionaries adapt
better to the noisy data. Here too, all the trends were similar for the Farey dictionary
as well, and hence we have skipped those graphs.

Within the learned dictionaries with two different initializations, we see that the
Ramanujan initialization has both errors smaller than the random initialization.
Thus, the knowledge-based initialization is better than the random initialization for
representing noisy data through a learned dictionary.

9.5 Review of CNN-Based Method from [149]
In the remainder of the chapter, we focus our attention on the recent CNN-based
method [149] proposed for DOA estimation. Here, our primary contribution is
demonstrating how to adapt such machine learning methods for sparse arrays. This
is done by proposing a modification of the input proxy spectrum used as input to the
recent CNN-based method for sparse arrays. The second contribution is proposing
alternative proxy spectra that may be used as input to the CNN.

The method in [149] first generates a proxy spectrum based on a dictionary formula-
tion of the DOA estimation problem, as explained below. The proxy spectrum is then
refined further by a four-layer convolutional neural network. Assume that the DOAs
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are impinging from a spatial scope of Θ = [−60◦, 60◦]. Consider the discretized set
of directions 𝜙1, 𝜙2, . . . , 𝜙𝐿 sampled with 1◦ angular separation within the spatial
scope Θ. With this, the array output signal (Eq. (2.1)) can also be expressed as:

x[𝑘] =
𝐿∑︁
𝑙=1

a(𝜙𝑙)𝑠𝑙 [𝑘] + n̄[𝑘], (9.12)

𝑠𝑙 [𝑘] = s𝑚 [𝑘] if 𝜙𝑙 ≈ 𝜃𝑚, zero otherwise. (9.13)

Here, the steering vectors a(·) are defined in terms of the physical direction angles
𝜙1, 𝜙2, . . . , 𝜙𝐿 instead of their 𝜔-domain equivalents as in Eq. (2.1). n̄[𝑘] now
consists of error terms due to angle discretization in addition to the noise. Let the
manifold matrix corresponding to the discretized set of directions be

Ā =

[
a(𝜙1) a(𝜙2) . . . a(𝜙𝐿)

]
∈ C𝑁×𝐿 . (9.14)

Now, the vectorized form of the covariance matrix can be expressed as:

ŷ = vec(R̂xx) = Ã𝜂 + 𝜖 . (9.15)

Here, 𝜂 ∈ R𝐿 is the spatial spectrum vector of the signal with non-zero entries at
locations corresponding to the DOAs 𝜃1, . . . , 𝜃𝐷 and 𝜖 is the error term. The matrix
Ã is defined as

Ã = Ā∗ ⊙ Ā, (9.16)

where ⊙ denotes the Khatir-Rao (KR) product (column-wise Kronecker product).
Eq. (9.15) is the motivation for the proxy used as input to the network in [149]:

𝜂 = Ã𝐻 vec (R̂xx). (9.17)

Since 𝜂 ∈ R𝐿 , 𝜂 typically has a very small imaginary component under moderate
noise conditions.

Next, the real and imaginary parts of this proxy spectrum are provided as input to
a four-layer convolutional network. The network structure used in [149] is given in
Fig. 9.9. The network is trained with ideal spectrum 𝜂 as labels and hence learns to
refine the input proxy spectrum 𝜂 to produce an output spectrum that is close to the
true spectrum 𝜂.

Notice that the method combines model-based and data-driven approaches. The
data model is incorporated through the input proxy spectrum 𝜂, which is derived
based on Eq. (9.15). The method also incorporates the data-driven approach as the
proxy spectrum is refined by the CNN, which is trained based on the data.
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Figure 9.9: The CNN network structure used in [149]. The output size of each layer
is maintained to be 𝐿 by appropriate zero padding before performing convolutions,
where 𝐿 is the number of discretized directions considered (see Eq. (9.12)).

9.6 Proposed Modifications for Sparse Arrays
In this section, we adapt the above CNN-based method for sparse arrays. We have
seen in Sec. 2.3 that sparse arrays such as nested arrays, coprime arrays, and MRAs
[33] can identify O(𝑁2) DOAs using 𝑁 sensors, and the key is estimating correlation
values corresponding to the different lags determined by the difference coarray.

Here, we consider a nested array with stx sensors:

z =

[
1 2 3 4 8 12

]
. (9.18)

The difference coarray of this array is a uniform linear array (ULA) with 23 locations
from -11 to 11, and the correlations 𝑅(𝑙) can be estimated for all lags from 𝑙 = −11
to 𝑙 = 11 as per Eq. (2.22). Let r̄ denote the 23-dimensional vector consisting of
these 𝑅(𝑙) values. It can be shown that

r̄ = B𝜂 + e, (9.19)

where B is the coarray manifold matrix

B =

[
b(𝜙1) b(𝜙2) . . . b(𝜙𝐿)

]
, (9.20)
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with b(𝜙) as the coarray steering vector

b(𝜙) =
[
𝑒−11 𝑗𝜋𝑠𝑖𝑛𝜙 𝑒−10 𝑗𝜋𝑠𝑖𝑛𝜙 . . . 𝑒11 𝑗𝜋𝑠𝑖𝑛𝜙

]𝑇
, (9.21)

and e is the error term, which is typically small.

To adapt the CNN method for sparse arrays, we form the spatially smoothed matrix
R̂𝑆𝑆 according to Eq. (2.31). The manifold matrix corresponding to the nonnegative
part of the ULA coarray is

Ā𝑐 =

[
a𝑐 (𝜙1) a𝑐 (𝜙2) . . . a𝑐 (𝜙𝐿)

]
, (9.22)

where
a𝑐 (𝜃) =

[
1 𝑒 𝑗𝜋𝑠𝑖𝑛𝜃 . . . 𝑒11 𝑗𝜋𝑠𝑖𝑛𝜃

]𝑇
(9.23)

is the corresponding coarray steering vector. To adapt the CNN method for sparse
arrays, we use R̂𝑆𝑆 in place of R̂xx, and Ā𝑐 in place of Ā. Note that this adaptation can
also be used for all machine learning based methods that use the covariance matrix
R̂xx as the input to the network. This coarray adaptation augments the machine
learning methods with the capability to identify more sources than the number of
sensors.

In particular, for the method under consideration, we use

Ã𝑐 = Ā∗
𝑐 ⊙ Ā𝑐 (9.24)

in place of Ã in Eq. (9.14). This gives a possible proxy spectrum (called Hermitian
proxy in the next subsection) that is derived based on the coarray:

𝜂 = Ã𝐻
𝑐 vec (R̂𝑆𝑆). (9.25)

In the next subsection, we also propose several other proxy spectrum alternatives.

9.7 Proposed Proxy Spectra
In addition to the above adaptation for sparse arrays, we also propose several other
ways to construct the proxy spectrum at the input of the CNN. We enumerate them
here, providing reasons for choosing these proxies.

1. Original proxy (from [149]): See Eq. (9.15).

𝜂 = Ã𝐻 vec (R̂xx) (9.26)
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Figure 9.10: Comparison of different proxy spectra for a two-source scenario from
training data. The original proxy has a non-zero ‘floor’, whereas pseudoinverse,
DFT, and pseudo-DFT proxies have ringing patterns.

2. Hermitian proxy: This is the adaptation of the original proxy for the case of
sparse arrays (see Eq. (9.25)).

𝜂 = Ã𝐻
𝑐 vec (R̂𝑆𝑆) (9.27)

We call it Hermitian proxy as it premultiplies the vectorized R̂𝑆𝑆 with the
Hermitian of the matrix Ã𝑐.

3. Pseudoinverse proxy: Here, the idea is to use pseudoinverse Ã†
𝑐 instead

of Ã𝐻
𝑐 used in the Hermitian proxy. This is expected to lead to a closer

approximation of the ideal spectrum in Euclidean distance when noise is
small (See Eq. (9.15)).

𝜂 = Ã†
𝑐 vec (R̂𝑆𝑆) (9.28)

4. DFT of correlation: Here we take 𝐿 samples of the DFT of r̄ at non-uniform
frequency locations 𝜋𝑠𝑖𝑛𝜙𝑙 , 1 ≤ 𝑙 ≤ 𝐿. In view of (9.20) and (9.21), this is
mathematically equivalent to

𝜂 = B𝐻 r̄, (9.29)

where B is as defined in (9.20).
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Figure 9.11: Comparison of different proxy spectra for a seven-source scenario used
for testing (where the number of sensors is only 6). The peaks in original proxy
(from [149]) are much harder to identify in this case.

5. ‘Pseudo-DFT’ of correlation: Here we use the pseudoinverse B† in place of
B𝐻 used in the DFT of correlation proxy. The motivation is similar to the
pseudoinverse proxy above.

𝜂 = B†r̄ (9.30)

6. Normalized MUSIC proxy: Here, input to the network is a normalized
MUSIC spectrum. The idea is to explore if a collaborative approach between
MUSIC and neural network based methods leads to improved results.

In Fig. 9.10, we qualitatively compare the different proxies obtained for a two-source
scenario from the training data. The real parts of different proxies are plotted against
the discretized directions 𝜙1, . . . , 𝜙𝐿 on the 𝑋-axis. We also plot the ideal spectrum
for comparison, which takes the value unity at DOA locations and is zero everywhere
else. Notice that the original proxy (9.26) has a nonzero ‘floor’ for all angles. Also,
the peaks in the original proxy spectrum are not as sharp as the other proxies.
The Hermitian proxy (9.27) adapted for sparse arrays has its ‘floor’ much closer to
zero. The Pseudoinverse proxy (9.28), non-uniform DFT of correlation (9.29), and
pseudo-DFT of correlation (9.30) are observed to have oscillating behavior in the
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portions where the ideal spectrum is zero. These proxies also take negative values
in their oscillating pattern. The MUSIC proxy is closest to the ideal spectrum, as
expected.

Fig. 9.11 demonstrates the different proxies obtained for a seven-source scenario,
which is considered later for testing. The number of sources is greater than the
number of sensors in this case. Note that the original proxy (9.26) has peaks that are
practically very hard to distinguish because of the non-zero ‘floor’. This deteriorates
the performance of the original proxy when more sources are present, as we will see
in the simulations next.

9.8 Simulation Results
Now we compare the performance of the original and proposed input proxy spectra
through simulation examples. We compare their training and test losses, ability to
resolve more sources than sensors, and DOA estimation errors.

9.8.1 Training Data and Methodology
With the above different proposed input proxy spectra, separate CNNs with the same
4-layer structure shown in Fig. 9.9 are trained. We follow a similar procedure to
that in [149]. 𝐾 = 256 snapshots are used. Signals in the generated dataset set have
𝐷 = 2 on-grid sources with integer angular separations between 1◦ and 40◦. All such
possible direction settings within the spatial scope Θ = [−60◦, 60◦] are considered.
For each direction setting, we generate 10 random signals with randomly chosen
SNR in the range 0 to 10 dB. The labels consist of the ideal spectrum vector, with a
value of 1 at the locations corresponding to signal directions and 0 otherwise. All
networks are trained on the same training data for 150 epochs with mean squared
error loss with Adam optimizer [77]. 80% of the data is used for training while
the remaining 20% is used for testing. Although the training data here has only 2
sources, we consider more sources later for testing.

9.8.2 Training and Test Losses
Fig. 9.12 and Fig. 9.13 show training and test losses, respectively. It is observed
that all the proposed proxy spectra, except the Hermitian proxy (9.27), provide
an improvement over the original method [149] in terms of the training and test
error. It is observed that the pseudoinverse proxy spectrum (9.28) works better
than the Hermitian proxy (9.27). Similarly, pseudo-DFT of correlation (9.30) works
better than its DFT (9.29). Note that although the MUSIC proxy is closest to the
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Figure 9.12: Training mean squared losses for different input proxy spectra

ideal spectrum, the pseudoinverse proxy provides marginally better training and test
errors.

9.8.3 Estimating More Number of Sources
To demonstrate the ability of the sparse array to detect more sources than sensors,
we next evaluate the models for the case when seven sources (≥ 𝑁 = 6) with 5 dB
SNR are present. Note that a ULA with six sensors could have detected only five
sources based on second-order statistics. Although the seven DOAs considered in the
example are well separated, they do not lie on the integer angle grid [𝜙1, . . . , 𝜙𝐿].
Also, notice that the separation between the two extreme sources is larger than
40◦, which was the maximum angular separation between sources in the training
examples. Thus, this testing scenario is challenging for the models in many aspects.
Fig. 9.14 shows the estimated spectra by CNNs trained with different input proxies.

We see from the figure that the original proxy (9.26) and the Hermitian proxy
(9.27) are not able to identify all seven sources. All the other proposed proxies
provide seven clear peaks in the output spectrum that are close to the true DOA
angles (denoted with red diamonds). This shows that the nested arrays can be used
in conjunction with neural network models for estimating more DOAs than the
number of sensors.
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Figure 9.13: Test mean squared losses for different input proxy spectra

9.8.4 Mean Squared Error Analysis
Next, we evaluate the mean squared errors in the DOA estimate obtained by different
models in two-signal scenarios. In each of the plots in Fig. 9.15, there are six
different segments. The two sources present in those segments are separated by
approximately 5.5◦, 13.5◦, 20.67◦, 50◦, 60◦, and 70◦. The sources do not necessarily
lie on the discretized angular grid. In each segment, the source locations are changed
so as to span the spatial scope from −60◦ to 60◦, keeping the separation between
the two sources approximately the same. The solid orange and green lines show
how the true DOA values are varied, and the dots represent the estimated DOAs by
different models. We see that all the models are able to track the DOAs well. Fig.
9.16 shows the plots of DOA estimation errors obtained from the above plots. It
can be seen that most estimation errors are between −1◦ and 1◦. However, there
are also some large outliers in certain cases, which are not seen here because of the
restricted Y-axis range.

Table 9.1 summarizes average absolute errors and mean squared errors from the
previous plot. We also compare the errors with the sparse Bayesian learning (SBL)
based DOA estimation method [228]. Implementation for SBL provided with [149]
was used. In terms of average absolute error, the pseudoinverse proxy has the best
performance, followed by the pseudo-DFT proxy. To calculate the mean squared
error for DOA estimates, we have excluded the outlier examples whose estimates
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Figure 9.14: Estimated spectra for a seven-source scenario, with a 6-sensor nested
array. True DOAs are denoted in red diamonds. Original proxy (9.26) and Hermitian
proxy (9.27) do not identify all the sources, whereas all other proposed proxies
correctly identify the sources.

Table 9.1: Average absolute errors and mean squared errors obtained with different
input proxies

Proxy Spectrum Avg. absolute error MSE
Original proxy 0.2501 0.1486

Hermitian proxy 0.2517 0.1356
Pseudoinverse proxy 0.2201 0.0868

DFT proxy 0.2395 0.1151
Pseudo-DFT proxy 0.2219 0.0909

MUSIC proxy 0.2421 0.0938
SBL 0.2988 0.0724

are more than 10 degrees off from the true value. We compute the MSE for the
remaining examples only. With this metric, we see that the SBL method provides
slightly better performance, followed closely by pseudoinverse and pseudo-DFT
proxy.
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Figure 9.15: Estimated DOAs (shown in dots) with all proxies track the true DOAs
(solid lines) well. The two sources present in the six segments are separated by
approximately 5.5◦, 13.5◦, 20.67◦, 50◦, 60◦, and 70◦.
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Figure 9.16: DOA estimation errors with different proxies obtained from the above
plot. Some large outliers are not seen due to the restricted Y-axis range.
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9.9 Concluding Remarks
In the first part of this chapter, we explored the role of a popular dictionary learning
algorithm, K-SVD, in the context of period estimation and periodic signal representa-
tion. The experiments demonstrated that K-SVD has the ability to learn dictionaries
for specialized applications without explicit application-specific constraints. We did
not explicitly constrain the dictionary columns to be periodic with different periods,
and still, the dictionary could be recovered under favorable circumstances. In some
situations, it was also seen that the learned dictionary not being close to the ground
truth may not imply poor representation and vice versa. The learning algorithm
may find an equally good and sparse representation of the data through some other
dictionary.

In the second part of this chapter, we demonstrated how an existing CNN-based
DOA estimation method can be adapted to sparse arrays. This augments the machine
learning methods with the capability of identifying more sources than the number
of sensors present in the array. We further showed that simple modifications of the
input proxy spectra lead to improved DOA performance. In the future, it would be
of interest to study the performance of different proxy spectra for sparse arrays in the
presence of array imperfections and non-idealities. Larger networks can be trained
with large labeled data and high compute power. This will be required to obtain
DOA estimates on a finer grid, for example, 0.5◦ or less. 2D extension of machine
learning-based methods for sparse arrays can also be investigated in the future.
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C h a p t e r 10

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we studied two applications involving line spectrum signals: di-
rection of arrival (DOA) estimation and periodic signal denoising. In Chapter 3
we developed rational arrays for DOA estimation that are suitable under aperture
constraint. In Chapter 4, we proposed new array design criteria and developed
weight-constrained arrays that can handle strong mutual coupling. In Chapter 5,
we proposed improved algorithms for DOA estimation using weight-constrained
arrays, and presented a generalized construction of weight-constrained sparse ar-
rays. In Chapter 6, we investigated the efficiency coarray-MUSIC and a Toeplitz
covariance matrix construction approach for DOA estimation. Chapter 7 focused
on developing a denoising framework for periodicity-aware signal denoising us-
ing Capon-optimized Ramanujan filter banks and pruned Ramanujan dictionaries.
Chapter 8 developed theoretical results regarding Ramanujan filters. Chapter 9
explored the use of dictionary learning and machine learning for periodic signal
representation and DOA estimation.

In addition to the topics covered in this thesis, we believe there are many interesting
directions to explore in the future to expand the scope of this research:

1. Beamforming under aperture constraints and mutual coupling: In this thesis,
we focused on developing new arrays for DOA estimation. However, the chal-
lenges related to aperture constraints and high mutual coupling have a similarly
detrimental effect on beamforming with sensor arrays. Therefore, it is impor-
tant to explore the use of the proposed rational arrays and weight-constrained
arrays for beamforming applications. One of the known drawbacks of sparse
arrays in beamforming is that the sidelobes can be irregular and may even
have a higher gain than the main lobe. Consequently, the development of new
sparse and rational arrays specifically tailored for beamforming applications
will be required. Specialized beamformers, such as the Capon beamformer,
optimize filter taps to suppress interference or achieve a desired beampattern.
The application of rational arrays and weight-constrained arrays should also
be investigated for these purposes.
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2. Two-dimensional arrays under aperture constraint and mutual coupling: Al-
though this thesis focused exclusively on linear arrays for identifying the
DOAs of sources situated in a plane, in practical scenarios, sources are not
usually confined to a single plane in space, and their directions are defined
by two angles: azimuth (𝜙) and elevation (𝜃). Linear arrays are insufficient
for determining these two parameters; hence, two-dimensional (2D) arrays
such as uniform rectangular arrays (URA), uniform circular arrays (UCA),
and L-shaped arrays are usually used for this [229]. There is potential to
generalize the proposed rational arrays to 2D configurations. This would
require extending the rational number-theoretic results to rational matrices.
Previous research [230], [231] has laid the theoretical groundwork necessary
for adapting integer coprime arrays to two dimensions. Similar developments
for rational coprime arrays will be an area of future interest. Additionally,
similar to the weight-constrained arrays introduced in this thesis to mitigate
the effects of mutual coupling in one-dimensional arrays, the design of two-
dimensional sparse arrays with strategically placed ‘central holes’ in the 2D
difference coarray warrants further investigation.

3. Addressing practical challenges of real-time deployment and correlated sources:
Several applications involving sensor arrays, including the increasingly pop-
ular field of autonomous driving [232], necessitate real-time DOA estimation
and target localization. Such applications cannot depend on collecting a large
number of snapshots to construct the sample covariance matrix of the array
output. In a rapidly changing environment, the DOAs may not even remain
fixed over a long time required to collect adequate snapshots. Moreover, com-
putationally intensive DOA estimation algorithms, such as optimization-based
methods, may not be suitable for real-time identification of DOAs and tracking
targets. There has been research on DOA estimation using a single snapshot
[233]–[235], and these techniques should be further investigated in relation
to the rational arrays and weight-constrained arrays proposed in this thesis.
Another significant challenge arises when the source amplitudes are corre-
lated, a scenario commonly encountered in environments where multipath
propagation occurs. Currently, the theoretical foundation of coarray-domain
DOA estimation relies on the assumption that the sources are uncorrelated.
Therefore, sparse arrays and coarray-domain DOA estimation algorithms that
are robust against source correlations will be of great interest in the future.
Advancements in both theoretical and algorithmic approaches are necessary



284

to further this research area.

4. Aperture-aware array design and evaluation: As mentioned in Chapter 4,
to the best of our knowledge, the previous literature on sparse arrays has
considered constructing and comparing arrays with a fixed number of sensors
𝑁 . Rather than only comparing different array geometries with a fixed number
of sensors, we propose to additionally compare the array geometries under a
fixed aperture constraint. This approach can be referred to as an ‘aperture-
constrained’ evaluation of sensor arrays. To achieve optimal performance in
such an aperture-constrained setting, it is essential to employ an aperture-
aware design for sparse arrays. One method to accomplish this is to impose a
strict constraint on the array aperture during the design stage. The concept of
aperture-aware array design introduced in this work can be further explored
to systematically design sparse arrays under aperture constraints. Several
intriguing design questions arise in this context. For instance, given a fixed
aperture 𝐴 and a fixed number of sensors 𝑁 < 𝐴, it would be of interest
to determine the sensor arrangement that minimizes mutual coupling and
optimizes DOA estimation performance.

5. ‘Periodic’ signals with non-integer periods: The theory developed using Ra-
manujan subspaces, filter banks, and dictionaries is designed for discrete-time
periodic signals with integer periods. However, many signals, such as ECGs,
are continuous-time signals that are sampled and converted into discrete-time
signals. This process introduces two fundamental challenges. Firstly, the
original continuous-time signal may only be approximately periodic rather
than strictly periodic. Secondly, even if the continuous-time signal is strictly
periodic, it may not remain periodic after sampling, or its period may change
in the discrete-time representation [236]. This poses a major challenge to ap-
plying the theoretical framework developed based on Ramanujan subspaces
for representing and analyzing continuous-time approximately periodic sig-
nals. It would be of great interest in the future to further this line of research
and expand the scope of the Ramanujan-subspaces based development for
continuous-time approximately periodic signals.
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