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Abstract

This thesis is composed of a brief preface followed by six chapters addressing various
aspects of homogeneous nucleation theory. In the preface, I motivate the need for
improved theoretical approaches to resolve the discrepancies between current theory
and experiment. The remaining chapters are collected research papers which are in
print, in press, or to be submitted as of the writing of the thesis. They were written
in collaboration with one or both of my advisors. In Chapter 2, we review current
nucleation theories in a statistical mechanical framework. This framework allows us
to identify the errors of the various models and to point out internal inconsistencies
in some of them. In Chapters 3 and 4, we develop methods to calculate the partition
function and thermodynamic properties for noble gas clusters. The methods allow us
to describe the asymptotic approach of cluster properties toward the bulk limit with
increasing cluster size and to calculate the nucleation rate for supersaturated noble
gas vapors. We then apply the methods to the homogeneous nucleation of condensed
mercury from a supersaturated vapor in Chapter 5. Chapters 6 and 7 contain por-
tions of the theoretical groundwork needed to extend atomistic nucleation theories to
molecular systems. Chapter 6 is a development of a one-dimensional hindered rotor
partition function. It sets the stage for the two and three-dimensional hindered ro-
tor partition functions needed to model molecular solids. In Chapter 7 we construct
a model for the charge distribution of Cgy. We chose this icosahedral molecule as
an ideal plastic crystalline substances. The plastic crystals are solids with transla-
tional symmetry, but having weak orientational symmetry due largely to their highly
symmetric molecular charge distributions. Thus, plastic crystals are ideal hindered
rotors in multiple dimensions. I conclude the thesis with some brief comments on my
assertion that molecules which form plastic crystals will provide a fruitful common
ground for theoretical and experimental investigations of homogeneous nucleation

phenomena.
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Chapter 1 Preface



1.1 Definitions

Homogenous nucleation refers to the spontaneous creation of a new phase from a
metastable phase. The phase change can be from the vapor to a condensed phase
(condensation), from a condensed phase to the vapor (cavitation), or from a solution

phase to a solid phase (crystallization), for example. The main restrictions are:

1. The parent phase should be metastable. This requires that fluctuations of the
order of several kT are required to nucleate the new phase. If this requirement is

not met, then the theory of spinodal decomposition may be more appropriate.t

2. The creation of the new phase should be unassisted. Phase changes which occur

due to impurities and/or surfaces are called heterogeneous nucleation events.?

The nucleation rate is the number of events in which a new phase is formed per unit

volume and time. It is denoted J.

1.2 Context

The first theory of homogeneous nucleation is attributed to Gibbs and dates back
to 1877.% His theory, which is discussed in the Introduction, explains qualitatively
the nucleation process. It correctly predicts that the rate of nucleation vanishes at
the equilibrium conditions and increases rapidly with increasing supersaturation for
condensation or with increasing superheating for vaporization. This explanation was
commonly accepted until the the first half of this century when a formalism was de-
veloped to calculate nucleation rates.”® It was not until the 1950’s however, when
experimental measurements of nucleation rates showed that the theory and experi-
ment often differ by many orders of magnitude.” The discrepancy between predicted
and measured nucleation rates motivated quite a bit of theoretical effort aimed at
predicting the properties of clusters of a few to a few tens of atoms or molecules.
Today, the situation is not significantly different. The major stumbling block to
progress is that the systems chosen by experimentalists and theorists are quite differ-

ent. For ease of handling and construction of experimental apparatus, experiments
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FIGURE 1 Normal boiling point of substances whose homogeneous nucleation rates have
been studied by experimentalists and theorists. The two sets do not overlap because the
criteria used by each group to select systems are very different. Also shown are normal
boiling points for several plastic crystalline substances which may bridge this gap.

are generally performed on liquid substances with boiling points between room tem-
perature and a few hundred degrees Celcius. This is illustrated in Fig. 1 where the
ﬁormal boiling point of the substances listed in a recent review of nucleation experi-
ments are plotted.®>? Also shown are the normal boiling points of several noble gases,
which have been the systems of choice for theorists. Each of the various atomistic
or molecular approaches to nucleation calculations are ultimately offshoots of the
statistical-mechanical theory of polyatomic gases. The methods, which are discussed
briefly in the Introduction, are essentially integrations over 3n positions and 3n mo-
menta to produce a partition function. Here, n is the number of atoms in the nucleus
(cluster, bubble, etc.) as it grows. Obviously, this is easiest when the nucleus is made
up of hard atoms which interact only weakly and most difficult when the nucleus is
made up of irregularly shaped, soft molecules. This is why the noble gases have been

the system of choice for theorists.



1.3 Scope

If progress is to be made in resolving the discrepancies between theory and exper-
iment in homogeneous nucleation, then some substances that are accessible to the
experimentalists and tractable for the theorists need to be explored. In this thesis,
I lay part of the groundwork for the predictions of nucleation rates for condensation
of molecules from the vapor. My hypothesis is that the plastic crystals will be the
common ground. Plastic crystals are molecular solids with translational order, but
with no orientational order.!® There is a range of temperatures, below the melting
temperature but above a lower limit, in which the molecules pack as if they were spin-
ning and/or tumbling rapidly but the center of mass librates about an equilibrium
position within the crystal. By considering rapidly tumbling molecules, the theorist
can maintain much of the advantage of working with spheres. Even if perturbations
to the sphere are necessary, this is to be preferred over irregularly shaped or flexible
molecules. By working with molecules rather than noble gases, it is also possible
to find systems with reasonable properties. See Fig. 1. Plastic crystals are admit-
tedly very special molecules and much of the practical interest in this field involves

“messier” systems, but they hold the promise of shedding light on the process.

1.4 Outline

Each of the chapters of this thesis is designed to stand alone. Indeed, several have
already been published and/or submitted for publication. It is my hope that the small
amount of duplication that this requires will be warranted by the improved ease of
reading.

Chapter 2 reviews nucleation theory and the various models of growing clusters.

Chapter 3 develops methods to extrapolate the various contributions to the free
energy of a cluster toward the bulk limit. For simplicity, this chapter is limited to
atomic (as opposed to molecular) clusters at temperatures below the surface melting

temperature. This is the first of several chapters which makes reference to icosahe-



)
drons and/or icosahedral symmetry. Appendix A gathers together information about
the icosahedron and its relationship to a cube which serves as background to these
chapters. The FORTRAN code used to construct the structures used in this chapter
is reproduced in Appendix C. This chapter has appeared in print as J. Chem. Phys.
102, 3322 (1995).

Chapter 4 extends Chapter 3 to temperatures above the surface melting temper-
ature. This chapter makes use of the information in Appendices A, B, and C. It has
appeared in print as J. Chem. Phys. 105, 7648 (1996). The FORTRAN code used
in this work is too lengthy to include in an Appendix to this thesis. Instead, both
Professor Richard C. Flagan and I maintain copies on CD ROM disks.

Chapter 5 is an application of Chapters 3 and 4 to the calculation of nucleation
rates for supersaturated mercury vapor. As of the writing of this thesis, it is currently
in press in NanoStructured Materials.

Chapter 6 develops a method for computing the partition function and thermo-
dynamic functions for hindered rotors in one dimension. This is useful in its own
right as a tool for computing the properties of molecules with hindered torsions, such
as ethane. It is included in this thesis because it is the starting point for discussing
hindered rotors in two and three dimensions. Plastic crystals in their orientation-
ally disordered phase are multidimensional hindered rotors. This chapter has been
submitted to J. Chem. Phys.

Chapter 7 develops a model for calculating the multipole moments for Cgy. This
molecule is a plastic crystal. Its icosahedral symmetry makes it particularly attractive
for theorists. The multipole moments of Cgy are largely responsible for the hindering
potential for three-dimensional rotation. Estimating this potential is, in turn, the first
step in calculating the librational partition function and thermodynamic functions.

This chapter makes extensive use of Appendix A. It is to be submitted for publication.

1.5 References
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Comment on Droplet Models in Homogeneous Nucleation Theory
Richard B. McClurg and Richard C. Flagan

Spalding Laboratory (210-41)
Division of Chemistry and Chemical Engineering

California Institute of Technology, Pasadena, California 91125

Abstract

We review the droplet models commonly used in calculations of the rate of homoge-
neous nucleation from the vapor. A statistical mechanical framework is used to form
a common basis for comparison of the models. The asymptotic models (Capillarity,
Tolman, and higher order models) and the semiphenomenological models introduced
by Dillman and Meier are shown to be consistent with the statistical mechanical ap-
proach. The Lothe/Pound formalism over counts the degrees of freedom for a cluster
and is therefore inconsistent. The Self Consistency Correction is shown to be an

arbitrary method to handle a truncation error.

To be submitted for publication.



2.1 Introduction

There are currently a wide variety of droplet models used to calculate homogeneous
nucleation rates.!™ This paper compares these models in the framework of the statis-
tical mechanics of an ideal gas mixture of polyatomic gases. The common comparison
reveals the assumptions behind each model and suggests that some have a more solid
physical basis than others.

The outline of the balance of this paper is as follows. In Sec. 2.2, we briefly review
classical nucleation theory to motivate Sec. 2.3 in which we compute the partition
function of a cluster as an asymptotic series in the cluster size, n. This series is the
common framework for comparing the various classes of cluster models in Secs. 2.4,

2.5, and 2.6. Finally, we draw several conclusions in Sec. 2.7.

2.2 Classical Nucleation Theory

According to classical theory,®” homogeneous nucleation is a Markov process. Clus-
ters grow by addition of single monomers or evaporate by elimination of single

monomers. Under this assumption, the flux (J,) of clusters through a size (n) is
Jn = anﬁAnCn - En+lcn+1 (]-)

where a,, is the accommodation coefficient (commonly assumed to be unity), 5 is the
flux of monomers through a unit area, A, is the surface area of the cluster, C, is the
number concentration, and E, is the frequency of monomer evaporation from an n-
mer. To determine E,,, we follow the approach of Katz.” Applying detailed balancing

at full thermodynamic equilibrium yields

JE = 0 = 0, f9A,CE1 — B2 C%5,. (2)
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Assuming that the evaporation rate is independent of the saturation ratio, i.e. E,i 1 =

E:?% ., leads to the following estimate for E,;:
Ep= anﬂqunciq/Cf;‘il- (3)

Substituting Eq. (3) into Eq. (1),

eg | Cn  BC,
J’n = O‘nﬂAnqu !: gq - /Bceijljl (4)

multiplying and dividing by (8°¢/3)", and rearranging gives

T _ G (5_) _Con (ﬂ) (5)

anBACRI(B/pe)r  Caf \ B Coiai\ 8
For steady state nucleation, J; = J; = .... = J, = J. Summing Eq. (5) over n yields
Iy 1 G (éﬁ) Gy (@)bﬂ (6)
n=1 anﬁAncﬁq(ﬂ/ﬁeq)n Cleq ﬂ Cbe_?_l ﬂ ‘

From the kinetic theory of gases,
B = P/(2nmkT)"? (7)

B/ = P/P**® =C,/C{"= S (8)

where P is the monomer pressure and S is the saturation ratio. Finally, using Eqs.

(8) and allowing b to become large gives the desired form for the nucleation rate,

J =8/ [anA.Ce18™ 7 . (9)

n=1
Equation (9) differs by a factor of 1/S from the original expression developed by
Volmer and Weber,® Becker and Doring,? and Zeldovich.!® The 1/S factor was origi-
nally proposed by Courtney.!! It is now commonly accepted that Eq. (9) is the correct

form.”™ The various formalisms for calculating the homogeneous nucleation rate (J)
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share Eq. (9) but differ in their methods for estimating the equilibrium cluster dis-
tribution (C29).

2.3 Statistical Mechanics

One rigorous way to determine the equilibrium cluster distribution (C#?) is through
statistical mechanics. We begin with the partition function for an ideal gas mixture.

The canonical partition function for an ideal gas mixture of clusters is!?
m .
Qmiz = H g /(in)! (10)
n=1
where ¢, is the partition function for an n-mer and i, is the number of n-mers in the

mixture. This leads directly to the chemical potential for each component.

fn = —kT (M’L—)) = ~kT In(¢n/in) (11)
I T\Viiqsn

Thus, at full thermodynamic equilibrium (nu = u,), the ratio of equilibrium cluster

concentrations can be written as

O i _ (aufit)
Cr' iy (qu/i)™ 12)

This is the law of mass-action. In its more familiar form, the cluster concentrations

are related through a free energy of formation (AG).

eq

C’Tflq = exp(—AG/kT) (13)
AG = nkT1n C’—l) —kTIn (3—”) = —np+ G, (14)
1 1

Note that the free energy of formation of a cluster of size one from one monomer is
precisely zero. This is the self-consistency requirement as defined by Girshick and

Chiu.®
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Molecular Dynamics (MD) and Monte Carlo (MC) simulations can be used to
calculate the free energy of clusters (G,,).% The computational cost of creating a table
of free energy versus n and T makes this approach impractical for routine use, however.
Density functional methods have also been used.® Although these methods are less
computationally intensive, it is not clear if the assumed monotonic density profile is
appropriate for clusters of a few atoms or molecules, particularly below the melting
temperature. The balance of this report is dedicated to another approach, droplet
models, in which one uses properties of the vapor and/or bulk liquid to estimate
cluster free energies (G,). We motivate the functional form for those models using
the statistical mechanics of an ideal polyatomic gas.

The partition function for a cluster of n monomers (g,) can be separated into
terms for translation (g ), rotation (g, ), libration of monomers about their equilib-
rium positions (g), vibration within the monomers (g, ), degeneracy (d;), and the

Boltzmann factor.

Gn = Z diGer GrotQiinuis exp (— E;/RT) (15)

J
The degeneracy and Boltzmann factor account for the contributions from multiple
isomers!®!* that are important above the melting temperature of the cluster. In
writing Eq. (15), we have assumed that the cluster rotation, monomer libration, and
internal vibrations are decoupled. This is justified since the characteristic frequencies
for these modes are very different. (The frequencies are roughly 0.1 cm™!, 10 cm™?,
and 10° cm™!, respectively.) For an ideal polyatomic gas, the translational degrees
of freedom (q.) factor out exactly. This is a direct consequence of conservation of
momentum. Some methods (i.e. MC simulation) are easier to perform if the center of
mass is allowed to fluctuate,!® but such fluctuations can lead to modifications to the
nucleation rate expression,'® Eq. (9). These issues are due to unphysical fluctuations

in the simulation method and are not fundamental to nucleation theory, however.

Assuming that the cluster rotates rigidly and vibrates harmonically, the partition
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function becomes

ornmkT \*? 712\ (82T %
o5 Y ) ()
J

y {Zﬁz exp (;k:ﬂh) } exp (—Ej/RT) (16)

where m is the mass of each particle, ¢ is the rotation symmetry number, {14,18,1c}
are the principal moments of inertia, V' is the volume per cluster, k is the Boltzmann
constant, R is the gas constant, and A is Planck’s constant. We assume that various
isomers differ mainly in their degeneracies, binding energies, and symmetry numbers.
This is reasonable since the cluster mass (nm) for each isomer is conserved and the
product of the principal moments of inertia (I4I/plc) is nearly constant for these
roughly spherical isomers. This assumption will be bourn out by what follows. We
further assume that the vibrational frequency distribution {v;} is barely changed by
the small number of defects defining the differences between isomers.!” In particular,
we have assumed that the internal vibrations (g, ) are unchanged by the condensation
“process and they will be ignored hereafter. This is equivalent to treating the molecules
as rigid bodies. The limits on 7 are 1 to 3n — 6 for atomic condensation and 1 to
6 — 6 for molecular condensation. Also, Eq. (16) assumes fixed volume, restricting
these results to the low pressure limit.

To simplify Eq. (16), we introduce the Einstein temperature (©p)

imar 1/7«mam
=1

and the average zero-point energy per mode

Er=3% %”/zm (18)
i=1
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TABLE I Material Property Scalings

Property p Expansion
Mass M 1 mn
Moments of Inertia I4Iglc 5/3 ) a;n(5=9/3
Minimum Potential Energy Ermin 1 v ayn(3=9/3
Zero Point Energy E&p 1 ) a;nB3-9/3
Einstein Temperature O 1 5 ayn i3

Then, from Eqgs. (14) and (16), the free energy can be written as

3/2
Gn=E™ +ipeE? — RTIn {v (%ﬂ) }

2 3/2
- RTln{wl/2<8ﬁth> (IAIBIc)”Q}

— RT%me ln{ - }
1 —exp( k:,’,’)
d; E; — Emin
- ik S/ R 1
RTln{%: <0j)exp< =T )} (19)

where E™™ denotes the global minimum potential energy of the cluster. Thus, Eq.

(19) shows that the free energy is a sum of contributions from the binding energy,
zero-point energy, translation, rotation, vibration, and multiple configurations.
In order to express the free energy as a function of cluster size (n), we first express

the material properties in Eq. (19) as a Taylor series in n'/3
Y/nP =3 a;/n'l (20)
=0

Here, Y stands for any of the material properties in Eq. (19) and o; is an expansion
coefficient. The 1/3 power is expected for three-dimensional clusters. The highest

powers (p) for each property (V') are determined by scaling analysis.!® See Table I.
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Gathering terms of the same order in n yields

Gn = arn + aan®® + azn'® + a4 In{n) + Z a;n=/3, (21)
1=5

It has previously been recognized that many droplet models are of the form of the
first five terms in Eq. (21),'° but we believe this is the first derivation of the infinite
expansion. The o; term has contributions from 3n vibrational degrees of freedom
for atoms or 6n degrees of freedom for molecules. The proper values (4max = 30— 6
for atoms or 6n — 6 for molecules) is recovered by the as term. Translations and
rotations of the cluster as a whole lead to contributions to the ay and as terms.
These assignments of the parentage of the various o’s are important for understanding

several of the cluster models discussed below.

2.4 Asymptotic Models

Capillarity Approximation

The oldest cluster model uses the capillarity approximation and is attributed to
Gibbs.! He proposed that the free energy of a droplet is characterized by volume

and surface terms,

G = un + dA,. (22)

In Eq. (22), p is the bulk chemical potential, o is the surface free energy, and A,
is the surface area of an n-mer. Since the surface area scales as n?/3, Eq. (22) is
equivalent to using the first two terms of Eq. (21). For use in nucleation calculations,
it is useful to introduce nomenclature that makes this scaling more transparent.?°

Using the following definition,
0= AlU/kT, (23)

Eq. (22) becomes
G = n + kTOn*3, (24)



16

TABLE II Cluster Models

Model an +  an?? o+ asnt/3 +  agln(n) + as

Capillarity pn 4+ kTOn?3

Tolman un 4+  kTOn?*3 - ETOBn!/3

Lothe/Pound un 4+ kTOn?3 + 0 - 4kTIn(n)

SCC pn 4+  kTOn*3 4+ 0 + 0 - ET©

Fisher fooh 4+ Coosin®? + aiosesin!’® + kT In(n) + Q9200051
—kT ln((jo)

Here, © is a non-dimensional surface tension which is not to be confused with the
Einstein temperature (©), and A; is the apparent surface area of a monomer which

is generally approximated using the bulk molar volume (v)

Ay = (36m)/302/3, (25)

Tolman Correction

A paper by Tolman? was published posthumously in 1949 that extended Eq. (22) to
include the first size corrections to the surface tension. He introduced what is now
called the Tolman length (§) which is the radial distance between the Gibbs surface

of tension and the equimolar dividing surface. It leads to the following cluster model:
s 26 -2
G, =pun+ oA, 1——;——|—O(7’ )] - (26)

Once again, it is useful to introduce notation that makes the scaling more trans-

parent.?! Using Eq. (23) and the following definition,

471')1/3 (27)

B:(S/Tl: (g;
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Eq. (26) becomes
GS = un + kTOn*? — kTOBR/, (28)

Therefore, Eq. (26) is equivalent to using the first three terms of Eq. (21). Several

methods have been developed to estimate §.142272* Equation (26) has been applied

to homogeneous nucleation rate calculations.?!

2.5 Semiphenomenological Droplet Models

Using an approach similar to Sec. 2.3, but different notation, Fisher* derived the

following droplet model:
FFisher — if 4 vs518%® + kT Ini — kT In(g,). (29)

Except for obvious differences in notation, this is the same as the first, second, forth,
and fifth terms in Eq. (21). The microscopic surface tension () is an unspecified
quantity in this model.

Dillmann and Meier?® later extended the Fisher model by specifying a functional

form for ~.

T = Yook (30)
ke = 1+09i7 3 a3 (31)

Using this assumed functional form [Eq. (30)] in Fisher’s model [Eq. (29)] yields a

functional form equivalent to the first five terms in Eq. (21).
FPM —if  + Yoo $182% + 10 oo818Y® + TKT In(i) + ay00081 — kT In(g,) (32)

DM determined oy and s by comparing the power series for the vapor density as
a function of vapor pressure implied by Eq. (32) with the virial equation of state.

The predicted rates were in good agreement with experimental values for several
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substances. Later, it was noted that the DM theory has an inconsistency in its
treatment of the chemical potential.>” ?° The corrected version of the DM theory does
not agree as well with experimental results. There is continued effort at finding new

ways to determine the parameters in Eq. (32) which lead to better rate predictions.30:3!

2.6 Other Models

Lothe and Pound Correction

Lothe and Pound® noted that the capillarity approximation [Eq. (22)] does not contain
any explicit contributions from translation or rotation of the cluster. They noted that
the highest order terms contributed by these degrees of freedom are O(Inn) and they
simply added this term to the capillarity model.

Gp = pun + kTOn*3 — 4kT In(n) (33)

This is equivalent to setting the third term of Eq. (21) equal to zero. Unfortunately,
this term is needed to have the proper number of vibrational degrees of freedom (3n—6
for atoms or 6n — 6 for molecules). Neglecting it is equivalent to double counting six

degrees of freedom and is, therefore, inconsistent.

Self-Consistent Cluster (SCC) Correction

Girshick and Chiu® noted that the capillarity approximation [Eq. (22)] leads to a non-
zero free energy of formation for a cluster of one monomer. They proposed subtracting

a constant to recover self-consistency.
GO0 = Ge — G5 = un + 0 A, — 0 A, (34)

Their model is equivalent to setting the coefficients of the n'/3, the In(n), and all of
the n=%/% (i > 0) terms to zero. We have already noted in discussing the Lothe and

Pound Correction that the first of these is needed to ensure that the model contains
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the proper number of degrees of freedom. The second neglected term contains the
temperature dependent contributions of the translations and rotations. Setting this
term to zero is equivalent to assuming that the mass and moment of inertia of the
cluster are zero. Finally, this solution is not in keeping with the asymptotic nature
of the capillarity approximation. As noted above, the capillarity approximation is
simply the first two terms in an infinite series of terms for the cluster free energy. The
self-consistency problem is simply a truncation error. Subtracting a constant from
an asymptotic series to make the shifted series give a correct result at a particular
size does not have any theoretical basis. If this ad hoc adjustment leads to improved
predictions for nucleation rates for some systems, then this should be regarded as

fortuitous.®

2.7 Conclusions

All of the cluster models reviewed in this paper can be viewed as special cases of the
general expansion, Eq. (21). The capillarity model, Eq. (22); the Tolman model, Eq.
(26); and the Dillman and Meier extension of the Fisher model, Eq. (32) are consistent
with Eq. (21) in that they include lower order terms only after including all higher
order terms. Therefore, these models can be expected to be asymptotically correct
for large cluster size, n. The Lothe and Pound model, Eq. (33); and the SCC model,
Eq. (34), include less significant terms before more significant terms and are therefore
not asymptotically correct except for the infinite cluster (n = oo). The empirical
success of these two models should be regarded as fortuitous, especially since both

overcount the number of vibrational degrees of freedom.

2.8 References
1 The Scientific Papers of J. Willard Gibbs (Dover, New York, 1961), p 105.

R. C. Tolman, J. Chem. Phys. 17, 333 (1949).



20
3J. Lothe and G. M. Pound, J. Chem. Phys. 36, 2080 (1962).

“M. E. Fisher, Physics 3, 255 (1967).

5S. Girshick and C-P. Chiu, J. Chem. Phys. 93, 1273 (1990).

°D. W. Oxtoby, J. Phys. Condens. Matter. 4, 7627 (1992).

J. L. Katz, Pure Appl. Chem. 64, 1661 (1992).

8M. Volmer and A. Weber, Z. Phys. Chem. (Leipzig) 199, 277 (1926).

R. Becker and W. Doring, Ann. Phys. 24, 719 (1935).

103, Zeldovich, J. Exp. Theor. Phys. 12, 525‘(1942).

HW. G. Courtney, J. Chem. Phys. 35, 2249 (1961).

12T, L. Hill, Statistical Thermodynamics (Dover, New York, 1986), pp104, 161-167.
13M. R. Hoare, Adv. Chem. Phys. 40, 49 (1979), and references therein.

14R. B. McClurg, R. C. Flagan, and W. A. Goddard, J. Chem. Phys. 105, 7648 (1996).
15H, Reiss, J. L. Katz, and E. R. Cohen, J. Chem. Phys. 48, 5553 (1968).

16C. L. Weakliem and H. Reiss, J. Phys. Chem. 98, 6408 (1994).

I7F. H. Stillinger and T. A. Weber, J. Chem. Phys. 81, 5095 (1984).

¥R. B. McClurg, R. C. Flagan, and W. A. Goddard, J. Chem. Phys. 102, 3322 (1995).

19C. S. Kiang, D. Stauffer, G. H. Walker, O. P. Puri, J. D. Wise, Jr., and E. M. Patterson,
J. Atmos. Sci. 28, 1222 (1971).

20D. R. Warren and J. H. Seinfeld, Aero. Sci. and Tech. 3, 135 (1984).

2IN. P. Rao and P. H. McMurry, Aero. Sci. and Tech. 13,183 (1990).

22]. G. Kirkwood and F. P. Buff, J. Chem. Phys. 17, 338 (1949).



21
23E. M. Blokhuis and D. Bedequx, J. Chem. Phys. 97, 3576 (1992).

24W. K. Kegel, J. Chem. Phys. 102, 1094 (1995).

%5D. W. Heerman, J. Stat. Phys. 29, 631 (1982).

26 A. Dillmann and G. E. A. Meier, J. Chem. Phys. 94, 3872 (1991).

27C. F. Delale and G. E. A. Meier, J. Chem. Phys. 98, 9850 (1993).

281, J. Ford, A. Laaksonen, and M. Kumala, J. Chem. Phys. 99, 764 (1993).
29A. Laaksonen, I. J. Ford, and M. Kumala, Phys. Rev. E 49, 5517 (1994).
30V, 1. Kalikmanov and M. E. H. van Dongen, Phys. Rev. E 47, 3532 (1993).

31y, I. Kalikmanov and M. E. H. van Dongen, J. Chem. Phys. 103, 4250 (1995).



22

Chapter 3 Mackay Icosahedral Clusters
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Abstract

We present a model for predicting the free energy of arbitrarily large Mackay icosahe-
dral clusters. van der Waals clusters are experimentally observed to be particularly
stable at magic numbers corresponding to these structures. Explicit calculations on
the vibrational states were used to determine the spectrum of fundamental frequencies
for smaller (<561) icosahedral clusters. The scaled cumulative frequency distribution
function rapidly approaches a limiting function for large clusters. This function was
used to predict zero-point energies and vibrational free energies for larger clusters
(>561 atoms). Combining these predictions with correlations for the moment of in-
ertia and for the minimum potential energy of large clusters leads to free energies of
arbitrary large clusters. The free energies are used to predict the chémical potential
and surface tension as a function of size and temperature. This connects macroscopic

properties to the microscopic atomic parameters.

Reprinted with permission from Journal of Chemical Physics 102, 3322 (1995). Copy-
right 1995 American Institute of Physics.
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3.1 Introduction

Mass spectroscopic studies on clusters of atoms (Ar, Kr, Xe) and molecules (CO, CHy)
have shown special stability at magic numbers 13, 55, 147, and 309 corresponding to
Mackay icosahedral structures.! Extensive progress has been made in determining the
minimum potential energy configuration of such clusters? and it has been shown? that
Mackay clusters are the minimum potential energy structures for up to about 1600
atoms where decahedral structures become most stable. The bulk (fcc) structure
becomes most stable for still larger clusters® (n ~ 10%).

Herein we build on such results to predict the free energy of arbitrarily large
Mackay icosahedra. This allows us to predict chemical potential p(n) for arbitrarily
large clusters. Sinée the slope of u with respect to x = n~'/% gives the surface
tension and the curvature of p with respect to 2 = n=1/3 gives the Tolman length,
this provides a connection between the microscopic parameters (two-body interaction
potentials) and macroscopic properties. The predicted values seem consistent with
current experimental data. Although the Mackay clusters are not strictly the lowest
energy for clusters larger than 1600 atoms, we believe that the resulting surface
tension and Tolman length are accurate.

In Sec. 2 we develop procedures for predicting the free energy as a function of
temperature for various Mackay clusters. Free energy calculations for van der Waals
clusters have been presented by other authors. The most commonly used atomistic
methods fall under two broad categories. Molecular dynamics and Monte Carlo meth-
ods confound the various degrees of freedom and hide their functional dependencies
which makes extrapolations to larger sizes difficult. Freeman and Doll* have reviewed
these methods, which will not be discussed further in this paper. In the normal-mode
method, several approximations (enumerated below) are used to separate the de-
grees of freedom into translational, rotational, and vibrational contributions which
(as we will show) can each be rationally extrapolated to arbitrarily large sized clus-
ters. Hodgson® has summarized much of the previous work using the normal-mode

calculation method. The cluster sizes considered previously were limited by the de-
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termination of the (3n — 6) vibrational frequencies for a cluster containing n atoms.
This requires diagonalizing the 3n by 3n Hessian matrix, which is unwieldy for large
clusters. Thus, previous vibrational analyses of physical clusters were limited to Ein-
stein models® or to clusters having fewer than 250 atoms.® From explicit calculations
on up to 561 atoms, we show that the scaled cumulative frequency distributions for
progressively larger clusters approach an asymptotic limit. This asymptotic limit per-
mits the rational extrapolation of the vibrational free energy without calculation of
the entire set of normal frequencies. The remaining contributions to the free energy
will be addressed briefly.

In Sec. 3 these results are used to predict the surface energy and Tolman length

for Ne, Ar, Kr, and Xe.

3.2 The Free Energy Function

Structures

The Mackay icosahedral structures” are constructed by surrounding a central atom
with successively larger icosahedral shells. Each shell maintains icosahedral symmetry
with the same orientation of its vertices. The first shell contains 12 atoms at the
vertices of the icosahedron. The second shell contains 12 atoms at the vertices plus
atoms on each of the 30 edges of the icosahedron for a total of 42 atoms in the second
shell and a grand total of 55 atoms. Higher-order shells have additional atoms along
the edges and in the faces of the icosahedral shell. In general, the number of atoms

n in a Mackay structure with IV shells is

n=1+§j(10x2+2)=

z=1

(10N®+15N? + 11N +3). (1)

W

Thus, the first 8 Mackay icosahedral structures contain 13, 55, 147, 309, 561, 923,
1415, and 2057 atoms, respectively. Clusters containing these numbers of atoms are

called magic numbered clusters.®
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The Free Energy

The free energy for an ideal polyatomic gas

F=-RTn (ﬁ—) 2)

is calculated® from the single-cluster partition function, q, which can be separated
into terms for translation (g ), rotation (g..:), vibration (g.»), degeneracy (d;), and

a Boltzmann weight.

—E
= d; r4rotYui ]>' 3
q ;thQtQ beXp(RT (3)

The degeneracy and Boltzmann weights account for contributions from multiple iso-
mers and are important above the melting temperature of the cluster. They are not
needed for the present study which focuses on the solidlike limit.

The partition function is evaluated assuming that the cluster has harmonic vibra-

tions and rotates as a spherically symmetric rigid rotor. Thus

3/2 1/2 2 3/2
‘= Z 0 v 2mnmkT T &r2kTI
7 J h2 O'j h2

y {3ﬁ6 exp (57) )}exp (=5, n

i=1 1 —exp (_k—}gfl RT

where m is the mass of each particle, o is the rotation symmetry number, 7 is the
moment of inertia, V' is the volume, & is the Boltzmann constant, R is the gas constant,
and A is Planck’s constant. We assume that various isomers differ mainly in their
degeneracies, binding energies, and symmetry numbers. We assume fixed volume in
Eq. (4), thus these results pertain to the low pressure limit.

From Egs. (2) and (4), the free energy can be written as

. 3n—6 7 T 3/2
F = Emin 4 %” - RTln{V(%)

8n2kT 1\
- RTln{w1/2< th; )

1=1
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3n—6 1
— RT ; ln{1 - (—hui)}

kT

— RTIn {Zj: (%) exp (_ﬂ%ﬁj) } , (5)

where E™™ denotes the global minimum potential energy of the cluster.

The Cumulative Frequency Function

The interactions among atoms or molecules in the clusters are assumed to involve only

two-body interactions. The explicit calculations use the Lennard-Jones potential

e=p Tt —2p7" (6)
E
€= 5;7 (7)
T
=— 8
P=Tg (8)

where r is the distance between the particles. (For molecular clusters multipole
electrostatic interactions would also be included.) Energies, temperatures, and vibra-
tional frequencies are nondimensionalized in order for the analysis to be most general.
In addition to D, and R, the atomic mass (m) is used to nondimensionalize the data,

leading to a characteristic vibrational frequency of

1 /D,
char = . 9
Veh 2rR. Y\ m (9)

Some typical Lennard-Jones parameters (R., D.) are tabulated!? in Table I.

Calculated fundamental vibrational modes and their frequencies are shown in Fig-
ure 1 for icosahedral clusters having 13, 55, 147, 309, and 561 atoms.'"'? Figure 2
represents this data as the Cumulative Frequency Function, Gy (v), for each clus-
ter. The maximum frequency for the cluster (Vq,) was used to scale the frequency

coordinate and the total number of vibrational modes (3n — 6) was used to scale
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TABLE I Parameters and characteristic quantities for sample systems.!® There are two
energy scales, D, and veper. De determines the potential energy at the optimal structure
while vepq, determines the zero-point energy and vibrational contributions.

Quantity Units Ne Ar Kr Xe
m amu 20.179 39.948 83.80 131.30
D, kcal/mol 0.0726 0.237 0.325 0.446
R, A 3.249 3.867 4.109 4.465
Vehar = g1/ 22 GHz 60.12 64.86 49.35 42.50
cm ™! 2.004 2.162 1.645 1.417
Eorar = Wehar cal/mol 5.729 6.181 4.704 4.051
Tepar = Mehar K 2.883 3.111 2.367 2.039
Ihar = mR2 amu A? 213.0 597.4 1415 2618

the cumulative modes coordinate. G (v) appears to approach a smooth, continuous
limiting function as N — oo.

This observed asymptotic approach to a limiting function for G (v) is the basis
for estimating properties of larger Mackay icosahedral structures. The zero-point
energy and heat capacities approach limits as a direct result of Gn(v) approaching a
limit,.

Rather than using G y(v) more typically the vibrational frequencies are expressed
in terms of the frequency distribution function, gy(v), defined as the number of

normal vibrational frequencies per unit frequency interval,

/0 " gn(2)de = Gy (). (10)

"Topological considerations show that for infinite three-dimensional crystals, gy (v) is
continuous but with discontinuous slopes (van Hove singularities) arising from long
range translational symmetry (the Brillouin zone).!® The frequency distributions for

finite systems differs from the bulk and is sensitive to cluster geometry.



30
Zero-Point Energy

The zero-point energy for a set of 3n — 6 harmonic oscillators is

w» h 3n—6

which can be written in terms of the frequency distribution function, g(v),’

E® = g/ymw vg(v)dy, (12)

where gn(v) is zero for v > Ve, We find that v, is dominated by the motion of
the central atom of the cluster moving in the potential of the first (12 atom) shell.
The change with /V is caused by the compression of this first shell as /N is increased.

Scaling the frequencies by vepqr from (9) leads to

h char Umaz R R R
B = 22 [T ()b, (13)
0
where
p=—2 (14)
Vehar
Further scaling gn(v) by the total number of frequencies leads to
ﬁmaw 1 ~~ o~ N N
E*® = (3n— 6)hvchar/ iygN(u)dy, (15)
0
where
v = (16)
(3n — 6)

The integral in Eq. (15) is the dimensionless zero-point energy per mode, which we
denote as
E#P

3= 6 v (17)

1 l)maz
Iy = 5/0 D (D)dy =

Jn can be calculated from Eq. (17) and the frequency information in Figure 1. Values

for Jy are given in Table II
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TABLEII Calculated and extrapolated maximum frequencies (Vmqe) and zero-point ener-
gies (E*P) for Mackay icosahedral clusters. Frequencies are scaled by the characteristic value
Vehary EQ. (9). Zero-point energies are scaled by the characteristic value Espar = hvenar-
The function Jy is defined in Eq. (17) and fitted by Eq. (18).

Shells Atoms Frequency Zero Point Energy
pmaz. o JIn JIN £
Vehar Echar Eehar
(N) (n) Cale Calc Calc Extrap Extrap
1 13 27.3 217.5 6.591 6.591 217.5
2 55 36.8 1212 7.623 7.623 1212
3 147 42.0 3600 8.276 8.276 3600
4 309 454 7998 8.684 8.684 7998
5 561 48.1 15020 8.956 8.957 15020
6 923 9.151 25280
7 1415 9.296 39410
00 00 10.287

Figure 3 shows that the dependence of Jy on the number of filled shells N is quite

smooth and well described by the function

7.679 5422 1.439
_l,. -

e~ (18)

Jn = 10.287 —

A Laurent-type expansion is used for fitting throughout this work to avoid non-
physical singularities in the extrapolations to larger clusters. In each case, the order

of the fit was chosen to minimize the variance.

Vibrational Heat Capacity

The heat capacity can be written as the sum of contributions from translation, rota-

tion, and vibration.

C, = CY +C7%t + O, (19)
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FIGURE 3 The five characteristic variables as a function of the number of shells (N) in
a cluster: (a) the dimensionless zero-point energy per mode, Jy [see Eq. (17)]; (b) the
softening temperature, o [see Eq. (29)]; (c¢) the characteristic Einstein temperature, fg
[see Eq. (25)]; (d) the softest mode characteristic temperature, 0,,;, [see Eq. (27)]; and
(e) the dimensionless incremental moment of inertia, Iy [see Eq. (35)]. All five quantities
vary slowly with 1/, leading to accurate extrapolations. Zero-point energy is scaled by

Echar = 5 7523 \/%. o, Og, and 0,,;, are scaled by a characteristic value Ty pqr = h—”Q,fﬂ The

moments are scaled by I.pq = ng.
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Except for very light clusters at very low temperatures, the translational and rota-

tional contributions are fully classical, leading to
C, =3R+C"® (20)

(R is the ideal gas constant). We now focus on C¥®.
The vibrational contribution can be written in terms of a summation over the

normal modes as follows:?

Cvib — R37‘L—6 (%)QGXP (%) (21)
v pat [exp (;},:%) _ 1]2 :

This leads to a temperature-dependent contribution to the free energy.’

) 3n—6 hl/'
F”b-—-RTZIH 1 —exp (— Z) : (22)
=1 kT
We want to obtain a simple form for F*® containing a small number of independent
variables so that the free energy can be estimated without calculating all (3n — 6)
frequencies.

In the high temperature limit, Eq. (22) can be written as:

. 3026 /hy, e
Jim F"* = RT(3n — 6)In [:Il ( kT) . (23)
This is the same limiting behavior as (3n —6) oscillators having an Einstein frequency

of

%4ﬁgﬁ 24)

=1

or an Einstein temperature of

h 3n—6 3n1—6
s = (11 %) (25)

=1
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Consequently, we fit Eq. (22) with a function

F*% = ¢RT(3n — 6)In [1 — exp (—%)] , (26)

where the function £(7") has the following characteristics:

E~1lfor T — o0

§~exp[9E—Tﬂ] for T —0

thin
in = . 2
emm JA ( 7)

This accounts for the presence of soft modes which “freeze out” at temperatures lower

than 0p. A Padé form consistent with the limiting behavior for £ is

8+ Ot(eE;f?mm) 1
)

We find that Eq. (28) with [ set to zero is sufficient to accurately fit the full summation
in Eq. (22),

(28)

@0 = bmin) 9””'")} . (29)

f”eXp[ T(T + o)

The above analysis reduces the calculation of the vibrational free energy to de-
termining three effective temperatures «, 0g, and 6,,;,,. Figure 3 shows that all three

vary slowly with 1/N, leading to accurate extrapolations

1.97 188 047

—1.05 30
T TN TN TN (30)
0p 16.95 1542  5.40
—19.97 — _ 31
T N TN T N (31)
o . 716 1449 4.
o, 17161449 467 )

Tow TN TN TN

The parameters «, 0g, and 0,,;, are listed in Table III for several values of V.
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TABLE III Calculated and extrapolated parameters for fitting the vibrational partition
function. Here 6,;, corresponds to the minimum vibrational frequency, 6z corresponds to
the effective Einstein frequency, and « corresponds to the softening frequency. 8z is defined
in Eq. (25) and fitted with Eq. (31). « is defined in Eq. (29) and fitted by Eq. (30). Omin
is defined in Eq. (27) and fitted with Eq. (32).

Shells Atoms o T Fuin

(N) (n) Fit Extrap. Calc. Extrap. Calec. Extrap.
1 13 1.61 1.61 12.35 12.35 7.35 7.35
2 55 1.63 1.63 13.98 13.98 5.53 5.54
3 147 1.52 1.52 15.14 15.14 4.29 4.28
4 309 1.44 1.44 15.91 15.92 3.47 3.46
5 561 1.38 1.38 16.46 16.46 2.88 2.89

6 923 1.33 16.85 2.48
7 1415 1.30 17.15 2.17
00 00 1.05 19.27 0

Moment of Inertia

Due to the high symmetry of Mackay clusters, the moment of inertia tensor
Ig = m; (8apR?2 — RajRs;) (33)
j=1

is isotropic, Io3 = 6agf. The scalar I can be decomposed into contributions from

each shell using
10y%+2

Jj=1

I =

[SL R )

The average distance R; is written as R; = p;yR. where p; ~ 1. Therefore, Eq. (34)

becomes
I 9 N 210y2+2 N , ) A
RZ =§Z v X el =X v (10y +2) 1, (35)
mivg y=1 j=1

y=1

where the function Iy is slowly varying and of order one.
The structures for N=1 through 9 (n = 13 to 2869 atoms) were minimized using

POLYGRAF,! leading to the results in Table IV and Figure 3. The following fit to
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TABLE IV Moments of inertia for Mackay icosahedral clusters. The moments are scaled
by the characteristic value I.po, = mR2. Iy is the scaled incremental moment of inertia

given by Eq. (35) and fitted by Eq. (36).

N n I/mR? Iy

1 13 7.4319 0.6193
2 55 89.431 0.4881
3 147 468.76 0.4581
4 309 1626.6 0.4467
5 561 4406.2 0.4412
6 923 10115 0.4381
7 1415 20627 0.4360
8 2057 38489 0.4347
9 2869 67035 0.4340
00 o0 0.4257

the data is used for extrapolating to larger clusters

0.0104 N 0.2457  0.0666

Iy =0.4298 + e g

(36)

Minimum Potential Energy

From explicit calculations on the optimum structures of icosahedral clusters for N =
2 - 14 (n = 55 - 10179 atoms), Xie et al.!® found that the minimum potential energies
can be fitted to the function

. 1 2
— = - =D+Cn 3+ Bn~3+ An~"
N nD,

(N >1) (37)

with an accuracy of £0.1D,. The expansion coefficients are A = 9.8248958, B =
1.5534957, C' = —14.217539, and D = 8.5326356.
This data can be reexpressed by an expansion in the number of filled shells,

—emin = o) =D+CN'+BN?+AN?
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(N > 1), (38)

using A = — 1.753665, B = 6.295212, C' = — 9.629845, and D = 8.537573. Equation
(38) is more useful in the current context since it expresses the minimum potential
energy as an expansion in the same independent variable as for the other functions.

For the single shell case (n = 13)

—€™ = 3.410. (39)

Symmetry Numbers, Degeneracies, and Isomers

For icosahedral clusters, the rotational symmetry number (o) is 60 and the degener-
acy (d) is 1. Other isomers will tend to have symmetry numbers of order one, but
higher degeneracies. Although these factors would tend to favor other isomers in the
partition function, the Boltzmann weighting ensures that the icosahedral structure
is dominant until the temperature is comparable'® to 0.3 D./R. Above this temper-
ature, the cluster surface melts and multiple inherent structures become significant.

We consider this melting temperature as the upper limit for application of our model.

Summary

The correlations presented in Egs. (18), (30)-(32), (36) and (38) can now be used
to predict the free energies of arbitrarily large magic-numbered Mackay icosahedral

clusters

F = nDeR™ 4 (3n — 6)hignar Iy
3/2
— RTI {v <—2”"$M> }

3/2
— RTIln< sz (10y +2)Iy

y=1
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+ RT(3n—6 In |1 —ex —_—— ex —_——
( ){ [ p( T ’ T(1+1)

+ RTn60. (40)

3.3 Discussion

The above derivation assumes that the atoms or molecules vibrate around some equi-
librium position. That is, the clusters are solid-like. In addition the vibrational
partition function was analyzed aésuming all vibrational states are harmonic oscil-
lators. The anharmonicity will influence the heat capacity, particularly at higher
temperatures.

Above the melting temperature, multiple isomeric structures become significant.
Calculations by Honeycutt and Andersen!® on 13 and 55 atom clusters suggest that
melting occurs at a temperature between 0.3D./R and 0.4D./R. Thus, the vibra-
tional contribution to the free energy in Eq. (26) is a low temperature approximation,
with large deviations expected as the melting point is reached.

Our predictions for N — oo are restricted to Mackay icosahedra. For sufficiently
large IV the most stable structure is the face centered cubic (fce) crystalline form.
Indeed for Lennard-Jones clusters, a decahedral structure becomes stable above 1600
atoms.® Even so, it is of interest to examine the properties predicted for infinite
systems from these calculations because this allows a connection between macroscopic

properties and microscopic parameters (R, D., m).

Bulk Properties - Classical Analysis

We will use several equations from macroscopic thermodynamics to relate cluster-
free energies to bulk chemical potentials and surface tensions. The free energy of a
macroscopic liquid drop (F) can be written in terms of the number of particles in the

drop (n), the chemical potential of a particle in the bulk (u), the surface area of the
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drop (a), and the surface tension (o)
F=np+ao. (41)

Tolman showed!” that the surface tension of a spherical drop is related to the radius

of curvature (r) as in

o(r) = o,(1 — 275) +0(r™?). (42)

Although Eq. (42) is only the lowest-order correction, we will use the Tolman length
(6) as a fitting parameter down to the smallest Mackay clusters. For spherical drops,
the surface area, radius of curvature, and number of particles are related through the

molecular volume (v)

a = 4mr?, (43)
4
nv = §7r7“3. (44)

Using Eqgs. (41) - (44), the free energy of the drop can be written as a power series
in n~1/3

F
= + 0,(4m)3(30) 2013 — 20,6(47) 3 (3v)3n~Y3, (45)

Figure 4 shows a plot of the free energy per particle (F/n) for argon clusters
versus n~/% for three temperatures. Quadratic fits to the data yield estimates of
three of the four material properties in Eq. (45). Assuming the bulk density of the
solid!® as the fourth parameter allows the bulk chemical potential, surface tension,
and Tolman length to be calculated. The results of these calculations are in Table V.

Figure 5 shows that the predicted surface energies at low temperature are in good
qualitative agreement with published measurements for higher temperatures.’®'° In
addition, Figure 6 shows good agreement of the predicted Tolman lengths with the
results of recent molecular dynamics simulations of a liquid/vapor interface for a
Lennard-Jones fluid.?® Such agreement lends support for using the extrapolations on

Mackay icosahedral clusters even though they are not the lowest energy structures for

clusters containing more than 1600 particles. The close relationship between Mackay
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—561
—309
147

| 55 B
13

F/n [kcal/mol/particle]

-1.9 | ! ] |

0.0 0.1 0.2 0.3 0.4 0.5
n-l /3

FIGURE 4 Calculated free energy per particle vs n~1/3 for Argon as motivated by Eq.
(45). The intercept is the bulk chemical potential, the slope at the origin is related to the
surface tension, and the curvature is related to the Tolman length. Unfilled circles are from
explicit calculations, while filled ones are from extrapolations.
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TABLE V  The bulk chemical potential (u), surface tension (o), and Tolman length (6)
for the solid form of four noble gases, estimated using Eq. (45). For the 0 K evaluations,
the temperature-dependent contributions to the free energy were set to zero.

T o o 6
Solid (K) (Lestlmet) (dame) (4)
Ne 0 -0.443 15.9 0.44
10 -0.444 16.0 0.60
Ar 0 -1.834 42.1 0.46
10 -1.834 42.2 0.52
20 -1.843 42.0 0.59
30 -1.866 415 0.66
Kr 0 -2.631 52.5 0.48
10 -2.633 52.6 0.53
20 -2.648 52.3 0.58
30 -2.681 51.8 0.64
40 -2.730 51.2 0.70
Xe 0 -3.684 61.8 0.51
10 -3.687 61.9 0.55
20 -3.707 61.6 0.60
30 -3.746 61.2 0.65
40 -3.803 60.7 , 0.69
50 -3.873 60.1 0.74

60 -3.954 ’ 59.5 0.78
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FIGURE 5 Calculated and experimental!®!® surface tension for four noble gases. The
calculated values (open symbols) are for the solid while the experimental values (filled
symbols) are for the liquid.
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FIGURE 6 Calculated (present work) and simulated?® (using molecular dynamics) Tolman
length for Argon. The error bars on the simulation results are +1o.
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icosahedral structures and fcc structures” may aid in the extrapolation. Nevertheless,
these predictions are seen as confirmation of the extrapolation procedure presented
herein.
Figure 7 shows the size dependence of the bulk chemical potential and surface
tension for argon. Table VI gives expressions for the bulk chemical potential and
surface tension for Ne, Ar, Kr, and Xe at several temperatures. It is inherent in the

classical approach that the chemical potential is independent of size.

Bulk Properties - Differential Analysis

An alternative to the above analysis is to use a size-dependent bulk chemical potential
(rather than a constant). Thus from Figure 4, the slope [f'(x)] and intercept [f(z)]
of the tangent line at a given z = n~'/3 are used to define the effective bulk chemical

potential (1) and surface tension (o), respectively

p=f(z), (46)
o(4m)3(3v)% = f'(z), (47)
where
x=n"% (48)
and
f=1. (49)

Figure 7 shows the size dependence of the effective bulk chemical potential and
surface tension using the differential analysis for argon. Table VII gives expressions
for the bulk chemical potential and surface tension for Ne, Ar, Kr, and Xe at several
temperatures.

Since the classical and differential methods use the same quadratic fits to the
free energy data, they contain the same information. The classical approach has

the advantage of being simpler, but the differential approach provides additional
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FIGURE 7 a. The bulk chemical potential for solid argon using the classical analysis
(dashed lines) and the differential analysis (solid lines). The classical approach assumes
that the bulk chemical potential is size independent. b. The surface tension for solid argon
using the classical analysis (dashed lines) and the differential analysis (solid lines).
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physical insight. Due to the proximity of the surface, none of the atoms in nanoscale
clusters are in a bulk environment. In the classical analysis, these surface effects are
“lumped” in with the size dependence of the surface tension while the bulk chemical
potential is fixed. In the differential analysis, the chemical potential of the interior
atoms approaches the bulk value as the surface becomes sufficiently distant. Future
analyses may benefit from explicitly handling the size dependence of the bulk chemical

potential in this manner.
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Abstract

We predict the free energy of van der Waals clusters (F,,) in the surface-melted tem-
perature regime. These free energies are used to predict the bulk chemical potential,
surface tension, Tolman length, and vapor pressure of noble gas crystals. Together,
these estimates allow us to make definitive tests of the capillarity approximation in
classical homogeneous nucleation theory. We find that the capillarity approximation
underestimates the nucleation rate by thirty orders of magnitude for argon. The best
available experiments are consistent with our calculation of nucleation rate as a func-
tion of temperature and pressure. We suggest experimental conditions appropriate
for determining quantitative nucleation rates which would be invaluable in guiding
further development of the theory. To make the predictions of F,, we develop the
Shellwise Lattice Search (SLS) algorithm to identify isomer fragments and the Linear
Group Contribution (LGC) method to estimate the energy of isomers composed of
those fragments. Together, SLS/LGC approximates the distribution of isomers which

contribute to the configurational partition function (for up to 147-atom clusters). Es-
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4.1 Introduction

The structure and dynamics of neutral, physically bound clusters containing 10 to
a few hundred particles are critical to understanding homogeneous nucleation. To
date, the only direct experimental probe of homogeneous nucleation is the so-called
nucleation theorem.! It can be used to determine the size and composition of the
critical nucleus, but does not provide information on cluster properties. Since exper-
imental study of clusters in this size range has proved difficult, it is useful to develop
theoretical methods.

Noble gas clusters with a broad size distribution can be readily produced using an
adiabatic expansion jet.? Electron diffraction experiments®~> show that small argon
clusters formed in a jet adopt 5-fold symmetry. This contrasts with the bulk (fcc)
structure that is observed for clusters larger than Ny..(7T). At 32 K this limit is,
Nieo(T) &~ 750 atoms® and at 10 K, 1500 < N.(T) < 3500 atoms.*® Calculations
suggest that Nj..(0K) = 10° atoms.® Experiments are somewhat restricted by the
distribution of cluster sizes produced in jets. In addition, it is difficult to obtain size-
selected neutral clusters since few experimental methods successfully separate neutral
clusters beams.” Mass spectrometry has sufficient resolution to separate cluster beams
into its components, but ionization of the clusters leads to structural changes in the
clusters being studied.® Neutralization of size-selected ionic clusters produces a narrow
size distribution of clusters, but the vibrational energy of the neutralized clusters
exceeds that of thermalized clusters at the temperature of the incoming cluster beam.’
Deflection of a neutral cluster beam with an atomic beam has been used to separate a
cluster beam with atomic resolution for small clusters (less than 10 rare gas atoms'®
or up to 13 molecules!). Many applications require knowledge of the properties of
larger clusters. The deficiencies in the available experimental techniques necessitate
theoretical approaches to study the energetics of neutral thermalized clusters.

Most cluster modeling and simulation studies use pairwise additive potentials to
simplify the analysis. Even so, the 3n degrees of freedom for a cluster of n particles

makes determining even the optimum structure challenging. Reviews by Hoare'? and



54

Farges et al.'® summarize much of the work in finding candidates for minimum energy
structures. More recently, structures have been proposed for each cluster size from
13 to 147 particles,** and selected clusters with as many as several thousand particles
have been studied.®!> Since none of these studies involved exhaustive searches for the
global minimum energy, each provides only an upper bound on the minimum potential
energy. However, the consensus is that the low energy structures are well understood,
making it reasonable to consider the dynamics of clusters using the (3n)-dimensional
surfaces based on these potentials.

Cluster thermodynamics have been studied using molecular dynamics
(MD)31216-19 and Monte Carlo (MC)!*19-24 simulations, and statistical-mechanical
modeling.?'® All three approaches face a formidable challenge: sampling of the poten-
tial surface in sufficient detail to faithfully represent the thermodynamically accessible
regions. Most approaches waste most of the effort on sampling unimportant regions.
The number of local minima for a cluster of a given number of particles (n) indicates
the difficulty of this task. Tsai and Jordan identified 1328 minima for the 13-particle
cluster,?> and Berry has suggested that the number of geometrically distinct minima
grows exponentially with n.26 With far too many minima for exhaustive sampling,
simulations can become trapped in local potential wells. In this paper, we present an
approach for simplifying this endeavor using insights gained from smaller systems to
guide the modeling of larger systems.

In Sec. II we review pertinent insights (from simulations) concerning the structure
of atomic clusters. In Sec. III, we lay out the statistical-mechanical basis for the
Shellwise Lattice Search (SLS) algorithm described in Secs. IV and V. In Sec. VI we
present the Linear Group Contribution (LGC) method used to estimate shell energies.
Finally, we apply the results of SLS/LGC to the analysis of homogeneous nucleation

experiments in Sec. VII.
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4.2 Structures

The lowest energy minima of small atomic clusters have icosahedral structures. These
structures were first studied by Mackay who characterized them as “a dense non-
crystallographic packing of equal spheres.”?” The Mackay icosahedral structures are
constructed by surrounding a central atom with successively larger icosahedral shells
having the same orientation of their vertices. Shell number one has twelve atoms
at the vertices of the icosahedron. The second shell contains twelve atoms at these
vertices plus atoms on each of the 30 edges of the icosahedron for a total of 42 atoms
in the second shell (a grand total of 55 atoms). Higher-order shells have additional
atoms along the edges and in the faces of the icosahedral shell. In general, the number

of atoms n in a Mackay structure with NV shells is

n=1+%(10x2+2):

=1

(10N® +15N? + 11N + 3). (1)

Lot

Thus, the first 8 Mackay icosahedral structures contain 13, 55, 147, 309, 561, 923,
1415, and 2057 atoms. These are called Magic Numbered Clusters.?® For clusters
intermediate in size between the magic numbers, the excess particles reside on the
surface of a dense icosahedral cluster.

Dense icosahedral clusters are solidlike at low temperatures because the atoms
vibrate about a single minimum on the potential surface. Of course, these structures
are not crystalline solids since they lack translational invariance. Honeycutt and
Andersen'® and Berry et al.'”~!® showed that slightly above the minimum energy,
there are minima having icosahedral cores with one or more atoms “promoted” onto
the surface. Such clusters with incomplete outer layers are called surface melted
clusters because the surface atoms diffuse much more rapidly than core atoms.!® At
still higher energies, the cluster samples liquidlike amorphous structures.

We have adopted the concept of inherent structures as proposed by Stillinger and
Weber.2® In this approach, the (3n)-dimensional potential surface is divided concep-

tually into regions corresponding to the potential wells of each of the geometrically
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FIGURE 1 Schematic potential surface illustrating the definitions of inherent structures
(also called isomers) and potential wells around each isomer. For a cluster of n particles,
the 3n-dimensional potential surface can similarly be divided into potential wells, each with
an inherent structure of a different structure. Structures that differ only by a permutation
of the atoms are indistinguishable and therefore belong to the same isomer.

distinguishable local minima on the potential surface. Geometrically distinguishable
configurations cannot be made coincident by a combination of translation and/or
rotation of the cluster and permutation of the atoms in the cluster. The structure
at the bottom of the well is called the inherent structure for the well. Other con-
figurations within a well are considered as vibrationally excited states of that well’s
inherent structure. For brevity we refer to the inherent structures as isomers. See
Figure 1 for an illustration of these definitions. This framework allows us to express

the equilibrium thermodynamic functions for clusters as summations over isomers.
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4.3 Configurational Partition Function

The molar free energy for an ideal polyatomic gas,

F=—RTn (Ni) , (2)

is calculated®® from the single-cluster partition function, (¢) which can be separated
into terms for translation (g, ), rotation (g.o;), vibration (gy;), degeneracy (d;), and

the Boltzmann factor,

7= Z detrQrotqmb €xXp (—EJ/RT) . (3)

J

The degeneracy and Boltzmann factor account for the contributions from multiple
isomers'® that are important above the melting temperature of the cluster.
Assuming that the cluster rotates rigidly and vibrates harmonically, the partition

function becomes

ornmkT \ > 72\ (8r2kT\ 3>
-5 o () () ()
j

y {3ﬁ6 exp (ngi) ) } exp (—E;/RT), (4)

—hy;

where m is the mass of each particle, o is the rotation symmetry number, {4, I, Ic}
are the principal moments of inertia, V' is the volume per cluster, £ is the Boltzmann
constant, R is the gas constant, and h is Planck’s constant. We assume that various
isomers differ mainly in their degeneracies, binding energies, and symmetry numbers.
This is reasonable since the cluster mass (nm) for each isomer is conserved and the
product of the principal moments of inertia (I4/plc) is nearly constant for these
roughly spherical isomers. This assumption will be bourne out by what follows. We
further assume that the vibrational frequency distribution {v;} is barely changed
by the small number of defects defining the differences between isomers.?! Also, Eq.

(4) assumes fixed volume, restricting these results to the low pressure limit. For a
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Lennard-Jones gas, the low pressure limit applies for total pressures much less than
the characteristic pressure (D./R?) which is about 300 atm for argon.?* The Lennard-
Jones energy parameter (D.) and distance parameter (R,) are discussed further in
Sec. VL

From Egs. (2) and (4), the free energy can be written as

3n—6 7 3/2
F=pm 1+ ™ _ pri {v (-—2”””;[“T> }
1=1 2 h

2 3/2
- RTm{wl/? <8thT> (IAIBIc)l/z}

3n—6 1
— RT 1
.Z n 1 —hVi) }

=1 —_ eXp ( kT

— RTIn {Z; (j—j) exp (—Ej;%—fm> } , (5)

where E™™ denotes the global minimum potential energy of the cluster.

The last term in Eq. (5), called the configurational free energy, is used to define a

configurational partition function.

d; Ej — Emin
Qeonfig = Z <0__]> exp (_]T> . (6>

7 J

This definition differs from previous definitions'? because of the inclusion of the sym-
metry number (o;). We feel that its inclusion is justified since ¢; is much more
isomer-dependent than the remainder of ¢,,;. This inclusion greatly simplifies the ac-
counting for rotationally equivalent isomers and estimating the rotational symmetry
of individual isomers. The details appear in the appendix.

Cheng and Berry!® (CB) published an analytic model for estimating the con-
figurational partition function in which atoms of the outer layer of the cluster are
“promoted” to the surface as “floaters” to form the various isomers. In CB, the
floaters populate equivalent and noninteracting lattice sites on the cluster surface.

The degeneracy d; is estimated as Cij , the binomial coefficient for 7 items selected
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from j, where j is the capacity of the shell.

While quite simple, the CB model has several serious deficiencies, several of which

were acknowledged by CB.'®
1. Holes are arbitrarily restricted to the outermost layer of the cluster.

2. Rotationally equivalent configurations are counted incorrectly as distinct

isomers.

3. No allowance is made for the reduction in rotational states by the point

symmetry of the isomers.
4. The number of accessible sites changes as the shell is populated.*

5. The distinct binding sites on the cluster surface do not have the same

energies. 4

6. Intrashell interactions among the promoted atoms (neglected in CB) become

progressively more important as the shell becomes more densely filled.

Deficiencies 1-3 are satisfied through our method for constructing isomers and
estimating degeneracies from fragments (Sec. IV and the appendix), deficiency 4 is
addressed using our Shellwise Lattice Search algorithm (SLS) to identify acceptable
fragments (Sec. V), and deficiencies 5-6 are handled via our Linear Group Contribu-
tion method (LGC) to estimate the binding energy of each isomer (Sec. VI). Together,
SLS/LGC generates the data needed to more accurately estimate geon iy [Eq. (6)].

4.4 The Core Plus Shell Model

Since the interaction potential is considered as pairwise additive, we will partition
the cluster into a central core and an outer shell and then evaluate their degeneracies

and energetics separately,

Ej — Eshell 4 Eeore 1 Eshell/holes. (7)
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The core may contain holes due to promoted atoms, but we assume that it retains
much of the structure of a Mackay icosahedral cluster. This assumption is supported
by simulation results.!®~1% The shell contains the promoted atoms and the atoms that
would be left over after constructing the largest Mackay icosahedral cluster with all
of the given atoms. In Sec. VI we describe a method for calculating the energy of
interactions among shell atoms and with a dense core. We use a mean-field estimate
to account for the energetics of holes in the core which is also described in Sec. VI.

The degeneracy associated with Eq. (7) is written as
rot __ hell T
dj = shell . geo e, (8)

where the superscript “rot” is a reminder that Eq. (8) overestimates the number of
distinct isomers due to rotational equivalence. Rotational equivalence is a special case
of permutation of equivalent atoms. No such permutation can produce distinguishable
isomers. Two tasks remain: to calculate the degeneracy and energy of the core itself,
and to avoid overcounting of rotationally equivalent configurations.

The core, in turn, can be viewed as composed of an inner core and a full or nearly-
filled outer shell. Thus, the method described in Egs. (7) and (8) can also be applied
to the core of the full cluster. This procedure can be applied recursively until the
remaining atoms form a cluster for which the energy is known. (In practice, this is
either a complete Mackay icosahedral cluster or a cluster with fewer than 13 atoms.)

Mathematically, the procedure is as follows:

N
E; — E™" = AE™M* + % AEY, (9)
a=1
AES" = By — EJ™, (10)
Eholes _ Z Z Eshell/holes (11)
a=1 f=a+1

drot H dthcellv (12)
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where N is the largest shell containing particles, o and 3 are shell indices, and ¢
specifies the configuration of shell a. Specifying a set of shell configuration indices
{c1,¢2,...,cy} implies the number of filled sites { f1, fs, - - -, fa} and thus the number
of holes {hy, ha, ..., Ay} in each shell. Together, these sets are equivalent to specifying
a unique isomer index (j) since the inter-shell interactions are estimated using a mean-
field approach (through AES™! and AE"!es),

In the appendix we demonstrate that

(13)

where

120, for the 19-atom PIC cluster,
g =
60, otherwise.

Polyicosahedral clusters (PIC) are rare special cases. See the appendix for further
details. The simplicity of Eq. (13) relies on the inclusion of ¢; in the definition of
Qeonfig |[EQ. (6)]. Thus, the 2™ and 3" deficiencies listed in Section IIT are much easier

to address simultaneously than separately.

Equations (6), (9), (12), and (13) provide a systematic form for calculating geon g,

AEholes N _AE;hcell
(B e () o

a=1

In Sec. V we present methods to estimate the degeneracies (dq ) of the various shells.
In Sec. VI we present methods to estimate the energetics of the shells (AEZ*!) and

of the holes (A Eholes),

4.5 Degeneracies

Lattices and Site Filling Rules (SFR)

Northby!* used a lattice-based method to identify candidates for the minimum poten-

tial energy of clusters with partially filled outer shells and dense Mackay icosahedral



62

TABLEI Types of lattice sites for the first four shells. Z is the coordination number with
atoms in the underlying shell.

Shell Type of Sites Z Sublattice Quantity Shell Capacity
(fmaa:)
0 central - - 1
1
1 vertex 1 1C 12
12
2 faces 3 FC 20
edge 2 IC 30
vertex 1 IC/FC 12
42
3 centered face 3 IC 20
off-center face 3 FC 60
edge 2 1C 60
vertex 1 IC/FC 12
92
4 type 1 face 3 FC 60
type 2 face 3 FC 60
type 3 face 3 IC 60
edge 2 1C 90
vertex 1 IC/FC 12
162

cores. He used projections of the cluster surface similar to the ones in Figure 2. Table

1 categorizes the lattice sites for the first four shells:

1. Face sites with three underlying neighbors
2. Edge sites balanced on two underlying neighbors

3. Vertex sites perched atop one underlying neighbor
Northby also defined sublattices which can be completely filled:

IC. The icosahedral sublattice is filled in the Mackay Icosahedral structures. IC

sites are shaded white in Figure 2.

FC. The face-centered sublattice contains those sites which are not part of the
IC sublattice and the vertex sites (which are part of both sublattices). In Figure
2, the FC sites are either shaded black or stars.



2" Shell

3" Shell

4™ Shell

FIGURE 2 Projection of the 274, 3" and 4" shells showing the lattice sites: face (A ),
edge ( [ ), and vertex (). Higher order shells have additional edge and face sites. White
symbols belong to the IC sublattice, black symbols to the FC sublattice, and stars to both
lattices.
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From an analysis of the global minimum potential energy structures by Northby,

we obtain the following generalized Site Filling Rules (SFR):

SFR 1. FC sites can be filled if the adjacent IC sites are empty.

SFR 2. Edge sites can be filled if the adjacent face sites are empty and at least
two of the adjacent IC sites are filled.

SFR 3. Vertex sites can be filled if at least four of the five adjacent edge sites

or all five adjacent face sites are filled.

Rule 1 is due to hard core repulsions between neighboring sites. Rules 2 and 3 arise
because edge and vertex sites are not at local minima with respect to the core and
must therefore be stabilized by other atoms in the shell.

We use the site filling rules (SFRs) to screen proposed isomers in a Monte Carlo
sampling algorithm. First, configurations are generated by filling randomly selected
lattice sites. Then the rules are applied to determine if the configuration is valid. If
it is valid, the configuration is recorded so that its energy can be estimated. (See Sec.
VI for the estimation procedure.) The ratio of the number of accepted configurations
to the number of trial configurations estimates the proportion of valid configurations
among the configurations in the sample space. Standard binomial statistics are used
to place error estimates on that ratio.? The balance of Sec. V describes two sample
spaces and corresponding sampling procedures (BSA and TBSA) which are applied
to the 2"¢ and 3" shells.

The Building Shell Algorithm (BSA)

The simplest procedure for identifying acceptable isomers is to start with the empty
lattice described above and fill some of the sites. Configurations with more filled sites
than the shell capacity need not be considered. Table II gives the size of the sample
space for applying this method to the 2"¢ through the 4** shell. Clearly, there are too

many configurations to enumerate them all.
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TABLE II  Shell capacity (f™), number of lattice sites (L), and sample space size (S)
for enumerating all lattice fillings (up to their capacity) for three shells.

Shell 2 3 4
fraz 42 92 162
L 62 152 282
42 92 162
S Z 0?2 Z 0}52 Z Cj2c82
~ 4.6 x 1018 ~ 5.7 x 104 ~ 7.7 x 1084

We use a Monte Carlo sampling procedure to estimate the total number of ac-
ceptable configurations and to identify particular configurations representative of the
isomer distribution. Conceptually, we partition the sample space into sections with
each section having the same number of filled sites (f) in shell o and then sample
from each section separately. (In practice, all sections were done concurrently, but
each section was analyzed separately.) Let x, be the number of configurations of type
c out of X randomly selected configurations. Configuration ¢ has f filled lattice sites
in a shell having L lattice sites. Then the estimated degeneracy of configuration ¢
is the product of the fraction of acceptable configurations (P.) and the size of the

sample space (Sf).

" = P, - S, (15)
Le

P, == 16

X (16)

The size of the sample space (Sf) is the number of combinations of L lattice sites
taken f at a time. '

S;=Ck = (T?L}‘W (17)
We report a 95% confidence interval for the composite acceptance ratio (P) based on
the Gaussian approximation to the binomial distribution (appropriate if min[z, X —
z] > 5),%

T=> =zl (18)
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TABLE III Number of iterations (X) and computation time for implementation of two
sampling algorithms applied to two shells.

Shell Algorithm X Computer Computation Time
2 BSA 10° IBM RISC 6000 3 wks elapsed time
2 TBSA 1.024 x 108 Intel Touchstone Delta 1.5h elapsed time

770h cpu time
3 BSA 10° Intel Touchstone Delta 4.5h elapsed time

2300h cpu time
3 TBSA 2.00192 x 107 Intel Touchstone Delta 12h elapsed time

6200h cpu time

P:ZPCIF%iL%,/—X%@—%). (19)

Table IIT gives the number of trial configurations X and the computation time for

investigations of the 2"¢ and 3" shells using this building shell algorithm (BSA). An
IBM RISC 6000 was used to investigate the 27¢ shell. The Intel Touchstone Delta®?
computer was used for the balance of the sampling runs.

Figure 3 gives the acceptance ratio (P) for the 2" and 3¢ shells as a function
of the number of filled sites (f) using BSA. This figure illustrates the deficiency of
BSA. The acceptance ratio is too small (P < 107°) to get a statistically meaningful
sample for all but the most dilute (f < 20) sections. BSA is useful, however, as a
check on the more practical (but more complicated) algorithm presented below and

as a subroutine in that algorithm.

The Tearing then Building Shell Algorithm (TBSA)

Hard core repulsions between neighboring FC and IC sites (SFR 1) are the most
common cause for rejecting conformations in the BSA. This suggests using a sampling
algorithm which uses these repulsions to reduce the sample size (S) rather than to
reject conformations. We describe this Tearing then Building Shell Algorithm (TBSA)

next.

Whereas BSA began with an empty shell, each of the X iterations of the TBSA
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FIGURE 3 Acceptance ratio (P) as a function of the number of filled lattice sites (f) for
two sampling algorithms (BSA and TBSA) applied to the 2" and 37 shells. For TBSA,
filling of the FC sublattice leads to a decrease in (P) beyond f=32 for the 2" shell and
f=72 for the 3" shell.

begins with a filled IC shell. First, some of the IC atoms are randomly selected for
removal from the IC shell. Next, the FC sites are investigated to determine which
would be free of hard-core repulsions if they were filled. Subshells with IC filled sites
and FC available sites are tabulated in 2(IC, FC). Then, Y iterations of the BSA
~are used to sample the available FC sites. Finally, SFR 2 and 3 are used to screen
the composite (IC U FC) shell conformations. Acceptable conformations of type ¢
are tabulated in y.. As with the BSA, the estimated number of configurations is the

product of an acceptance ratio (P,) and a sample space size (S.)

dzhe” =F.-5, (20)
1(1 - pl
P.=pl+1.96 ;’CTSM rt) (21)
Y5 2(IC0)

i=FC
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Ye
pl: F(Cmaz * (22)
Y ¥ z2(IC)9)
i=FC

The major improvement over the BSA is the reduced sample size; however, that
advantage comes at the cost of a more complicated analysis. Since the number of
available FC sites is not known a priori, TBSA requires that the size of the sample

space (S.) be estimated along with the acceptance ratios (pl, p2),

¢ — (IC’”‘””) Fci““pz i!
© T ({ICme= - I0)! = P\ G=FoO)(FO)
FCmez
2 p2(l—p2) ((z—F—C_)'(F—C)') /X
+1.96 e , (23)
2 (=rdirey)
e ZFC P=\G=Foyrey
= 2(IC,4)/X. (24)

The factor in front of the braces in Eq. (23) is the number of ways of removing IC
of the icosahedral atoms in the first stage of the TBSA. The term within the braces
represents the number of ways of filling in FC of the available face-centered sites.
We used the same approximation® to the binomial distribution as in Eq. (19) and
standard rules for error propagation® in deriving the 95% confidence limits on P,
and S.. Figure 4 shows that SLS identifies far fewer valid shell configurations than
the CB estimate.’® This demonstrates that properly treating the internal structure
of the shells reduces the number of acceptable configurations, particularly for shells
that are roughly half filled.

Table III gives the number of trial configurations X and the computation time
on the Intel Touchstone Delta®® computer for investigations of the 2" and 3™ shells
using TBSA.

Figure 3 gives the composite acceptance ratio,
P=% pl-p2;=> y/fXY];, (25)

for the 2" and 3" shells as a function of the number of filled sites (f) using TBSA.
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FIGURE 4 The number of geometrically distinguishable shell isomers (3 d%°%) (including
rotationally equivalent isomers) as a function of the number of filled lattice sites (f). Solid
lines represent the results of this study. For clarity, the 95% confidence limits have been
omitted for cases where the error is less than 2% of the total. Dashed lines (CB) are the
estimates of Cheng and Berry'® which do not account for the internal structure of the shells.
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The worst acceptance ratios are P = 1075 for the 2" shell and P = 10~ for the 3¢

shell, justifying the added complexity of TBSA.

4.6 Energetics

Interaction Potential

To this point, we have not specified an interaction potential between particles. The
discussion and results of Sec. V are purely geometric. We have merely assumed
that the particles pack like spheres and that their interactions are pairwise addi-
tive. Therefore, any two-body radial interaction potential could be used to estimate
the energetics of the isomers fragments identified using BSA or TBSA. We use the
Lennard-Jones potential to take advantage of previously published minimum energy

structures'* and correlations for the temperature-dependent contributions to the free

energy,®
e=p?=2p7" (26)
¢e=FE/D,, (27)
p=r1/R.. (28)

Some typical Lennard-Jones parameters (R,, D.) are tabulated® in Table IV.

Linear Group Contribution (LGC) Method for Estimating
the Shell Energy

The lattice method described in Section V provides information which can be used to
estimate the difference in energy between various configurations. In principle, each of
the accepted configurations could be used as a starting point for an off-lattice energy
minimization and the resulting energy could be recorded. However, Figure 4 shows
that there are far too many configurations for that approach to be practical. Instead

we use a Linear Group Contribution (LGC) method which efficiently estimates shell
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TABLE IV Parameters and characteristic quantities for sample systems.?® There are two
energy scales, D, and hvgpqr. D, determines the potential energy at the optimal structure
while Avepe, determines the zero-point energy and vibrational contributions. Boiling point
data is from Ref. 41.

Quantity Units Ne Ar Kr Xe
m (amu) 20.179 39.948 83.80 131.30
D, (keal/mol) 0.0726 0.237 0.325 0.446
R. (&) 3.249 3.867 4.109 4.465
Vehar = 5o/ 2 (GHz) 60.12 64.86 49.35 42.50
(em™1) 2.004 2.162 1.645 1.417
Eehar = Wehar (cal/mol) 5.729 6.181 4.704 4.051
Tepar = 2ebar (K) 2.883 3.111 2.367 2.039
Ihar = mR2 (amu A?) 213.0 597.4 1415 2618
Thoil (K) 27.1 87.3 119.8 165.0
kToi1/ De ) 0.742 0.732 0.732 0.735

energies by explicitly including the main interactions, but only indirectly including

more distant pairs,
Ee = —> NiE;. (29)

In Eq. (29), NV, is the number of occurrences of the i group and E; is the energy
contribution of that group. LGC places isomers having similar energies into the same
bin. Each bin is defined to contain isomers with the same set {N;}. This is efficient
since a small number of bins suffice to represent a huge number of total isomers.
Each of the group contributions in the model were fitted to differences in energy
between previously published minimum potential energy configurations.'* By fitting
to minimum energy configurations, we expect the energy parameters (E;) to implicitly
include contributions from non-first neighbor pairs that are not explicitly counted in
the LGC model. The groups and their energy contributions are given in Table V for
two potentials.

Figure 5 shows that the LGC model reproduces the binding energy of Northby’s
structurest® to within 1% or 0.5D,. The accuracy of this fit justifies the use of the
LGC method to estimate the energy of other structures. There are slight systematic

trends in the residuals due to the effect of 2"¢ and more distant neighbors. Thus,
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FIGURE 5 Cluster energy (Epy) as determined from off-lattice minimization'# versus the
LGC prediction (Ey;). The line y=x represents perfect agreement. Since the LGC method
faithfully reproduces the published results, we use it to estimate binding energies of other
structures. The residual Erge — Epmin is shown separately; it remains smaller than 0.5D,.
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TABLE V Linear Group Contribution (LGC) parameters (g—:) for two potentials. The
parameters based on the Lennard-Jones potential are similar to those based on the
square-well potential, indicating that the Lennard-Jones-based parameters are dominated
by first-neighbor interactions.

Potential Square Well Lennard-Jones
Shell (all) gnd 3rd 4th

Inter-Shell Interactions

Centered face 3 3.518 4.217 N/A
Off-center face 3 N/A 4.213 4.612
Edge 2 2.184 2.690
Vertex supported by FC particles® 6 5.968 6.279
Vertex supported by IC particles 1 0.588 1.195
IntraShell Interactions
FC / FC 1 1.015 0.994 1.004
Ic/1I1C 1 1.522 1.241
Edge / vertex 1 1.276 1.200
5-member ring of face particles 0 -0.470 -0.148
5-member ring of edge particles 0 -0.460 0.383

* This group contribution includes five face/vertex interactions since they are implied by
SFR 3. (See Sec. V.)

the precision of the shell energy estimates can be improved through the use of the

(published) minimum energy configurations,

AEShell = Eshell _ Eshell ~ (Eshell _ Eshell (30)

min min )LGC .

For this reason, the LGC method is used to estimate energy differences between
clusters with different surface shells. Recall that E**! is the energy of interaction
among the shell atoms and with a dense core. Hole effects are covered below.
Although the LGC parameters are fitted to Eq. (30), they have physical interpre-
tations. The intershell interaction terms reflect the interactions between shell atoms
and a dense core. The FC/FC, IC/IC, and edge/vertex terms reflect intrashell inter-
actions. There is no edge/face interaction term since configurations containing such
interactions have high energies due to hard-core repulsions. (E.;; would be very large
and positive, which is the basis for SFR 1.) There is no separate face/vertex interac-

tion term since its energetics are confounded by the requirement that a vertex atom
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be surrounded by all five face atoms. The corresponding edge/vertex interaction is
not confounded since four edge atoms are sufficient to support a vertex atom. (SFR
3)

Two subtle effects lead to contributions from five-membered rings. The first effect
involves the loss of one easy degree of freedom for the relaxation of atoms within
the shell. For five atoms in a ring, there are five pairs of which any four pairs can
relax across the saddles between lattice sites. Simultaneous relaxation of the 5% pair
would shorten the circumference of the ring causing all five atoms to “climb” the
hard core of the vertex particle’s potential. This implies that all five pairs cannot
simultaneously reduce the cluster energy by relaxing across a saddle. Therefore, the
first effect tends to make the five-membered ring contribution negative. The second
effect involves 2" neighbors. Since the number of five-membered rings correlates with
the number of distant pairs (which are not explicitly included in the LGC method),
the five-membered ring contributions include this positive effect. Therefore, the five-

membered ring group contributions are a balance between these competing effects.

Hole Energy

We use a mean-field approach to calculate the interaction energy between holes in

shell & and the atoms in shell 3 (E;{‘gll/ holes)

. For each of the h, holes in shell «,
we use the average energy of interaction (€) between particles at the L, lattice sites
in shell o and particles at all of the Lg lattice sites in shell 3. The distances (r¢,)
between the hole sites (¢) and particle sites (u) are estimated using the corresponding

distances between particles in minimized dense clusters.?”

Lo Lg

B = fhe S e(rin) [ (LaLs). (31)

t=1u=1

Conceptually useful subsets of the isomer distribution can be characterized by the

total number of holes (h),

h=>" R, (32)
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TABLE VI Mean-field estimate of the hole interaction energy for a single hole interacting
shell/holes

with a single occupied lattice site, Ea’ﬁ /(Dehang). See Eq. 31.
Hole Shell Hole Interaction Cluster
Index Index Energy Sizes
Eshell/holes 37
(@) (8) (W) Used
1 2 0.2212 14,55
1 3 0.02374 56,147
1 4 0.002823 148,309
2 3 0.07861 56,147
2 4 0.008270 148,309
3 4 0.04034 148,309
and the total number of particles (n),
N
n="> fs (33)
B=1
Since the relative orientations of shells @ and £ do not appear in Eq. (31), this is a
mean-field estimate. Values for E;’f;ll/ 79l¢* are summarized in Table 6.

Distribution of Inherent Structures

The LGC method along with the mean field estimate for the hole interaction energy
can be used to generate the distribution of cluster inherent structures from the purely
geometric data in Section V. We will illustrate using the 55-atom cluster because we
can compare with other detailed studies.!®?%3%3% With zero holes (h = 0), there is
only one unique minimal structure, with a rotational symmetry number of 60. With
one hole (h = 1), the hole can reside at a vertex site in the first shell or at an edge
or vertex in the second shell. Furthermore, the promoted atom can occupy one of 20
centered local minima or 60 off-center local minima in the third shell. This gives rise
to six additional groups of structures. (See Table VII.) The off-lattice energies for four
of these isomers have been calculated explicitly by Doye and Wales.3® Their values

are reproduced in Table VII and are consistent with the previously stated accuracy
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TABLE VII Isomer energies for the 55-atom cluster.

j Structure E]39 E]LGC d;/o;
(De) (De)
0 Mackay Icosahedron -279.248 -279.248 1/60
1 274 Shell vertex vac.,
face-centered cap -276.597 -276.418 4
2 27? Shell vertex vac.,
off-center cap -276.199 -276.415 12
3 274 Shell edge vac.,
face-centered cap -274.090 -273.482 10
4 24 Shell edge vac.,
off-center cap -273.479 30
5 1% Shell vacancy,
face-centered cap -267.791 4
6 1%t Shell vacancy,
off-center cap -267.788 12
7+ Many others ...

of the LGC method. (£0.5D,) Allowing additional holes leads to a huge number of
inherent structures with higher energies.

Figure 6 shows the convergence of the SLS/LGC method for the 55-atom cluster
as a function of the maximum number of holes. To interpret Figure 6, note that (E —
Emn < nkT,/2 ~ 21D,) corresponds to the normal boiling point. Thus a maximum
of six holes is sufficient to generate the classically accessible structures at the normal
boiling point. Our results are similar to Ref. 38 (based on simulated quenching)
with the differences arising from our inclusion of the rotational symmetry number
and from the finite sample generated by quenching. Also shown is the prediction of
the CB model.’® By ignoring the structure of the various shells, this model tends to
over-estimate the number of inherent structures, particularly for non-magic-numbered
clusters. It should be noted that Cheng and Berry chose to apply their model only
to magic number clusters. Subsequent modeling studies should be tested on magic
number and non-magic number clusters to avoid this bias.

Figure 7 shows the cumulative distribution of structures as a function of binding

energy for clusters having 15 to 140 atoms. (For clarity, only every fifth cluster size is
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FIGURE 6 Cumulative number of isomers ( ) d;"t) as a function of binding energy
E;<FE

(E) for a cluster of 55 particles. The curves demonstrate the effect of limiting the total
number of holes (h). We find that six holes are sufficient to generate most cluster isomers
contributing significantly to the partition function at temperatures up to the normal boiling
point. (E— Ep;n = 21D, or E = —258D,). The prediction of the Cheng and Berry model'®
and results based on simulations by Doye and Wales®® are also shown for comparison.
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FIGURE 7 Cumulative number of isomers ( d;f"t) as a function of binding energy (F)
and number of particles (n). The summa,tionE\;'/isE carried out for up to 6 holes (h < 6).
shown.) Up to six holes (7 < 6) were used in generating these structures. Although a
huge number of isomers are observed, the total falls far short of a simple extrapolation
of the Tsai and Jordan results for n < 13.2° As pointed out by Doye and Wales,?3®
this observation suggests that there are additional isomers at higher energies but that
these structures are not thermally accessible at reasonable temperatures.

In Sec. V, we argued that there are too many shell configurations to enumerate
them all; however, it is conceivable that, in some cases, all of the bins of configurations
were identified. This is possible since configurations with similar energies were binned
together. Our sampling was sufficient to contain the minimum energy structures as
reported by Northby!* for the following ranges: 13 < n < 30, 41 < n < 63, and
140 < n < 147. This suggests that most of the structures in these size ranges have
been identified. In the intermediate ranges, there are simply too many structures to
expect an undirected search to find most of the structures in the time available. Still,
sampling is sufficient to represent the distribution of structures. Since only a small
fraction of low energy structures seem to contribute to the configurational partition
function, improved estimates for geonfiy could be obtained using the LGC method and

an acceptance sampling Monte Carlo algorithm.
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4.7 Discussion and Applications

Extrapolation to Bulk Properties

In a previous paper,®® we showed that a quadratic fit to a plot of free energy per
particle (F/n) versus n~/3 yields estimates for the bulk chemical potential (u,), bulk

surface tension (o,), and Tolman length (6).
F 1/3(2,12/3, ~1/3 2/3(q,\1/3, —2/3
=t 0o(4m) 2 (3v)* P70 — 20,6(4m)?(3v)on 47, (34)

The Tolman length gives the first correction to the surface tension (o) due to the

radius of curvature (r),

o(r) =o,(1 — 2T—6) +O(r™). (35)

The molecular volume (v) is assumed to be constant to be consistent with the assumed
form for the partition function (4).
We calculated cluster free energies (F') using Eq. (5) and the following estimates

(from a previous paper in this series®®) for the binding energy (E™"),
E™"/(nD,) = —8.610 +15.744n~ /% — 11.894n~%/3 4 17.194n~" — 20.387n %/, (36)

the zero point energy (E*P),
h 3n—6

LS (37)

z _ 7.679  5.422 1.439
E® =~ (3n = 6)hvehar [10.287 - + CRE ] , (38)

the product of the principal moments of inertia (Ialglc),
N
0.0104 0.2457 0.0666

1/3 . 2 2 _

(LTI % L Y- 0 (1042 +2) [0.4298 + o T - T ] . (39)

y=1
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and the vibrational free energy (Fi).

. 3n—6 hl/'
FY® = RT ; In [1 — exp (‘/TT)] , (40)
vib 75
F" =~ ¢RT(3n —6)In [1 — exp (——7—;” , (41)
= _—— 42
= enp (272 Ton)), (42)
1.97 1.88 047
=1.05 — 43
Toner TN Mt (43)
Og 16.95 1542 5.40
7 =192T -~ o+ o — (44)
O min 17.16 1449 4.67
- - : 4
Tchar 0t N N? * N3 ( 5)

Planck’s constant (k) in Eqgs. (37), (38), and (40) should not be confused with the
number of holes in a cluster. The binding energy estimate Eq. (36) is based on
minimum energy structures for large clusters.“® We use it to estimate bulk properties.
For smaller clusters, (n < 147) tabulated values were used.'* The characteristic values
Vehary lehar, and Toper are defined and tabulated for four noble gases in Table IV.
Although Eqgs. (38), (39), and (43)-(45) were based on magic-numbered clusters,®® we
have used Egs. (38) and (43)-(45) as interpolating functions by inverting (1) to give
values for N for clusters containing arbitrary numbers of particles (n) and have used
a linear interpolation in Eq. (39).

Figure 8 shows polynomial fits to the free energy of argon clusters at several
temperatures as motivated by Eq. (34). Also shown are the asymptotic polynomials
which were used to determine bulk properties. Note that translation and rotation
contribute terms of order In(n)/n, which are negligible in the large n limit. Table
VIII summarizes the estimated bulk properties of four noble gases and Table IX gives
polynomial fits to the cluster free energies for use by the reader. (Tables of cluster

free energy as a function of temperature and cluster size are too extensive to publish.)
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TABLE VIII The bulk chemical potential (u), surface tension (¢), and Tolman length (§)
for the solid form of four noble gases, estimated using Eq. (34) and asymptotic analysis on
Egs. (36)-(45). For the 0 K evaluations, the temperature-dependent contributions to the

free energy were set to zero.

Solid T U o 6

(K) (Gersie (&) (4)

Ne 0 -0.448 17.2 0.74
10 -0.449 17.0 0.74

Ar 0 -1.852 45.2 0.81
10 -1.853 45.1 0.81

20 -1.861 44.5 0.82

30 -1.884 43.8 0.83

40 -1.920 42.8 0.84

50 -1.967 41.7 0.85

Kr 0 -2.653 56.3 0.85
10 -2.655 56.1 0.85

20 -2.670 55.5 0.85

30 -2.703 54.7 0.86

40 -2.751 53.9 0.87

50 -2.813 52.9 0.89

60 -2.886 51.9 0.90

70 -2.967 50.8 0.90

Xe 0 -3.695 66.3 0.92
10 -3.697 66.1 0.92

20 -3.717 65.5 0.92

30 -3.756 64.8 0.93

40 -3.813 64.1 0.94

50 -3.882 63.3 0.94

60 -3.962 62.5 0.95

70 -4.054 61.7 0.96

80 -4.152 60.8 0.97

90 -4.258 59.8 0.98

100 -4.371 58.7 0.99
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TABLE IX Free energy per particle based on quadratic fits as in Figure 8. This data is
provided as a concise summary of the cluster free energies which are used in Sec. VII, but
are too exhaustive to reproduce.

Solid T F/n
(K) (Beatfmet)
Ne 0 —0.448 4+ 0.951n~1/3 — 0.546n2/3
10 —0.449 + 0.961n~1/3 — 0.751n—2/3
Ar 0 —1.850 + 3.529n~1/3 — 1.804n2/3
10 —1.850 + 3.544n~1/3 — 2.037n2/3
20 —1.859 + 3.534n~1/3 — 2.295n,72/3
30 —1.882 + 3.503n~1/3 — 2.548n,72/3
40 —1.917 + 3.461n~1/3 — 2.800n2/3
50 ~1.965 + 3.412n~1/3 — 3.053n2/3
Kr 0 —2.653 + 4.967Tn~1/3 — 2.480n2/3
10 —2.655 + 4.982n~1/3 — 2.735n2/3
20 —~2.670 + 4.961n~1/3 — 3.000n2/3
30 ~2.703 + 4.922n,~1/3 — 3.254n2/3
40 —2.751 + 4.874n~1/3 — 3.502n2/3
50 —2.813 + 4.824n~1/3 — 3.753n2/3
60 —2.885 + 4.770n"1/3 — 4.005n~2/3
70 —2.967 + 4.712n~Y/3 — 4.255n~2/3
Xe 0 —~3.715 + 6.898n~1/3 — 3.408n2/3
10 ~3.717 + 6.911n"1/3 — 3.677Tn"2/3
20 —3.737 + 6.886n"1/3 — 3.948n,~2/3
30 —3.776 + 6.844n~1/3 — 4.206n"2/3
40 —3.833 + 6.794n~1/3 — 4.458n~2/3
50 —3.902 + 6.742n~1/3 — 4.707n~%/3
60 —3.983 + 6.688n~1/3 — 4.954n2/3
70 —4.074 + 6.632n~1/3 — 5.200n"2/3
80 —4.172 + 6.575n~1/3 — 5.450n=2/3
90 ~4.278 + 6.516n"1/3 — 5.698n2/3

100 —4.391 + 6.455n~1/3 — 5.950n2/3
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FIGURE 8 Calculated free energy per particle vs n~1/3 for argon as motivated by Eq.
(34). The intercept is the bulk chemical potential, the slope at the origin is proportional to
the surface tension, and the curvature is related to the Tolman length.

Since the bulk properties listed in Table VIII were not used to determine the
parameters in the atomic potential,®® they can be used to check the potential. The
chemical potential relative to the ideal gas at 0 K and zero pressure is related to the

vapor pressure as follows:3°

(2rm)3/2(kT)%/?
73

prap exp (u/kT). (46)

We compare vapor pressures calculated using the estimated bulk chemical potential
(Table VIII) with experimental data?'*? in Figure 9. The agreement is excellent up
to about 60% of the normal boiling point. We overestimate the vapor pressure at the
boiling point by about 30%, probably due to the harmonic approximation that tends
to underestimate the entropy of the solid at elevated temperatures.

Figures 10 and 11 compare the calculated surface tension and Tolman length with
the available data.?>=%5 Based on these comparisons with experimental data, we are

confident in applying SLS/LGC to noble gas clusters up to 60% of the normal boiling
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FIGURE 9 Calculated vapor pressure for four noble gases. Also shown are the normal
boiling points! and the experimental vapor pressure for Argon.*? The slight deviations near
the boiling points are the result of anharmonicity of the vibrational modes.
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FIGURE 10 Calculated and experimental*®* surface tension for four noble gases.
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point.

Homogeneous Nucleation Rates

As a further application of SLS/LGC, we will use the thermodynamic data in Table
VII and the cluster free energies calculated using Eq. (5) to predict the flux of nuclei
J from a super-saturated vapor. According to classical theory,*4” the flux (J,) of

clusters through a size (n) is
Jn = 0y fACp — En—}—lcn-{-l, (47)

where a,, is the accommodation coefficient (commonly assumed to be unity), § is
the flux of monomers through a unit area, A, is the surface area of the cluster, C,
is the number concentration, and E, is the frequency of monomer evaporation from

an n-mer. To determine E,, we follow the approach of Katz.*" Applying detailed
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balancing at full thermodynamic equilibrium yields
J:Lq = 0 = Ofn,Bquanq - E;z_lczz_l- (48)

Assuming that the evaporation rate is independent of the vapor conditions leads to

the following estimate for E, ;.
Enp = anﬂqunCﬁq/CZZ-r (49)

Substituting Eq. (49) into Eq. (47),

Cn ﬁeqcn-l-l
_— eq —
In = anfA,CF [ e BCeT } (50)

multiplying and dividing by (8°¢/3)", and rearranging gives

TS (ﬂEQ>”“_ (51)

anfA,CRl (8/Be)  Ca? \ B Cola \ B
For steady state nucleation, J; = J; = .... = J, = J. Summing Eq. (51) over n yields
5 1 - <ﬁ> e (fyﬂ (52)
n=1 anﬂAncﬁq(ﬂ/ﬁeq)n qu 5 le—(il—l ﬂ .

From the kinetic theory of gases,
B = P/(2nmkT)"?, (53)

B/B% = P/P**® = C,/C{! =S, (54)

where P is the monomer pressure and S is the saturation ratio. By the law of mass

action,
Cet = CTlexp(—AG,/kT), (55)

AGy, = Fy — npipuk- (56)
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Finally, using Eqs. (54) and (55) and allowing b to become large gives the desired

form for the nucleation rate.

J=p3/ i [0, A,Ci%exp (nln S — AG,/ET)] ™. (57)

n=1

We use the molar volume (v) to estimate the cluster surface area,

wlre

A, = (47)3 (3nv)3. (58)

When evaluating AG,, it is common to assume that the bulk surface tension

applies to the cluster. This is the capillarity approximation,
AGY? = 0,4, (59)

Previous workers*®%? have compared nucleation rates for argon based on cluster calcu-
lations with rates based on the capillarity approximation. Hoare, Pal, and Wegener*?
performed calculations using only the minimum energy structure for each cluster
which limits the results to the purely solidlike (low temperature) limit. Garcia and
Torroja®® used a purely classical calculation scheme which neglects zero-point energy
contributions to the cluster energy. In both studies, it was unclear whether the com-
parison tested the capillarity approximation, the model potential used for the cluster
calculations, or the simplifying assumptions employed.

We use the extrapolations discussed above to make an internally consistent test of
the effect of the capillarity approximation since both our cluster calculations and our
estimated bulk properties are based on the same model potential. Furthermore, we
verified the model potential using vapor pressure, surface tension, and Tolman length
predictions. (See Sec. VII A.) The most limiting assumption used in our calculation
of the free energy (5) is the harmonic approximation for the vibrational modes. As
stated earlier, this approximation is justified up to about 0.67,. Therefore, we are
able to make definitive tests of the capillarity approximation.

Figure 12 shows that the nucleation rate of argon as estimated using cluster calcu-
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FIGURE 12 Nucleation rate (J) as a function of saturation ratio (S = P/P¥%) for ar-
gon. The dotted lines are based on the capillarity approximation using the surface tension
extrapolated from the clusters calculations. Therefore, this is an internally consistent test
of the capillarity approximation. We find that the capillarity approximation leads to an
underestimate of the nucleation rate by O(10%°) at 50 K and by O(10%%) at 40 K.

[



89

1000:IIIIIIIIIIIIIIIIIIIIIIILIIII||IIII|IIII:

100 5 3

= : f
—

2 103

ol ] -

1+ -

01 l<>'<>''I""l""l""l""l‘"'I""I""

10 20 30 40 50 60 70 80 90

T [K]

FIGURE 13 Nucleation rate (J) as a function of temperature and pressure for argon. The
lines are loci of constant nucleation rate (events/cm3/s) based on the current work. The
symbols are experimental determinations of the onset of nucleation >°~34 as determined by:
( @) Pierce et al. (1971), ( ¢ ) Lewis and Williams (1974), ( A ) Stein (1974), (o ) Wu et
al. (1978), and ( O ) Steinwandel and Buchholz (1984).

lations is 30 orders of magnitude faster than the capillarity estimate. The discrepancy
decreases somewhat with increased temperature.

Despite the discontinuities in the free energy as a function of cluster size (Figure 8),
the nucleation rate is a smooth function of saturation ratio (S). (See Figure 12.) This
is because the nucleation rate is determined by a summation of terms along a path
through cluster space. Although the individual terms are not smooth with respect to
their neighbors, each varies smoothly with S. Therefore, the path sum (nucleation
rate) is a smooth function of S even though the path is a discontinuous function of
cluster size. Since the details of the cluster free energy function are not reﬂeéted in
the nucleation rate, subsequent modeling studies will be able to concentrate on a few
cluster sizes and interpolate the data. This will be a huge savings in effort compared
to the exhaustive work presented here.

Figures 13 and 14 depict loci of constant nucleation rate as a function of temper-

ature and partial pressure for four noble gases. These curves are bounded due to the
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FIGURE 14 Nucleation rate (J) as a function of temperature and pressure for three noble

gases as in Figure 13.
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limit of applicability of the model (T < 0.67;) and the range of cluster sizes studied.
In order to avoid truncation errors, we only report nucleation rates based on (57) if
the summation is dominated by clusters of 17 to 135 atoms. The equilibrium vapor
pressure curve calculated using Eq. (46) is also shown in Figures 13 and 14. The
nucleation rate vanishes at the equilibrium curve.

Previous calculations for argon*®*® yielded somewhat higher rates. Most of the
discrepancy is due to the use of a formula that is larger than Eq. (57) by a factor of
S. It is now commonly accepted that Eq. (57) is the correct form.4

The available data for argon nucleation, reproduced in Figure 13, is based on onset
determinations.’®~5% Several researchers determined a locus of points that mark the
detection limit of nucleation for their apparatus. A given researcher’s detection limit
should be relatively insensitive to operating conditions, so each data set in Figure 13
should follow one of our curves of constant nucleation rate. Since none of them report
estimates of their detection limit, only qualitative comparisons are possible. The data
by Pierce et al.® and Wu et al.5® are generally consistent with our calculations. Error
bars on Pierce’s data are the author’s. Wu’s data center on our curve for 10710
cm3s7! with a scatter of £3K, suggesting the experimental uncertainty in those
trials. Calculated nucleation rates in this temperature range differ by 10 orders of
magnitude. Realistic detection limits for nucleation in jets are O(10'°). The data
by Stein®? and by Steinwandel and Buchholz®* is too near the saturation curve to be
consistent with the current results. (This would imply a sensitivity of roughly 10740
cm™®s71.) The error bars on the latter data set are estimated from Figure 5 in Ref.
54. Lewis and William’s data® imply enormous saturation ratios which seem unlikely
in light of this work.

Detailed comparisons with experiments awaits quantitative nucleation rate mea-
surements for noble gas vapors. Previous experiments have used argon because it is
inexpensive and available in very high purity. However, argon has the disadvantage of
requiring extremely low temperatures to initiate nucleation. Figures 14(a) and 14(b)
show that neon and krypton also require extreme conditions. Future experiments

may benefit from the more accessible range of pressures and temperatures appropri-
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ate for xenon as depicted in Figure 14(c). We predict reasonable nucleation rates for
xenon vapor at a few tens of torr at liquid nitrogen temperature (77 K). At these
conditions, it should be possible to use a fixed volume apparatus rather than the
continuous flow methods used previously for argon. (See Ref. 55 for brief descriptions
of various nucleation apparatus.) Using a fixed volume would offset the higher cost
of xenon. Quantitative nucleation rate measurements for xenon would be invaluable

in guiding theoretical work in nucleation theory.
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4.9 Appendix

As noted above, Eq. (12) overestimates the number of distinct isomers due to the
inclusion of rotationally equivalent configurations. Similarly, the number of distin-
guishable rotational states (¢,,:) should be reduced to account for the rotational
symmetry of the isomers. Both issues can be addressed simultaneously with the aid

of group theory.



93
We follow the notation of Wigner.’® Script capital letters represent groups of
symmetry operations and lowercase letters are integers. Let .4 be the group of proper
rotations of a dense icosahedral core and let B be the group of proper rotations of
a shell built around that core. By definition,* the symmetry numbers of the dense

core and shell (o, and o) are the orders of A and B, respectively.

CASE 1: Dense core, coincident centers of symmetry

For a dense core, the group of proper rotations is I and o. = 60. The center
of symmetry of the core coincides with the atom at the center of the core. In the
vast majority of clusters, this atom is unique and must therefore lie at the center of
symmetry of the full cluster. (The exceptions are addressed below.) For coincident
centers of symmetry, it can be shown® that B and its (I — 1) distinct cosets each
have the same order (o,) and together span the o, elements of A without repeated

elements. Simple accounting of elements leads to
0. = 0sl. (A1)

Once an orientation for the shell is chosen, the (I — 1) rotationally equivalent
configurations can be identified in a one-to-one manner with the (I — 1) distinct

cosets. Therefore, { can be replaced by d"

1 dr ot

. A2
O 60 (42)

The degeneracies (d"*) calculated in Sec. 4 are for one or more isomers of similar
energies. Due to the distributive property of division over addition, binning of isomers

does not change the result of Eq. (A2).

1 Tot
50 j ;" exp(

) =5 (%) e (43)

ﬁ B d;ot

. 4
O'j 60 (A )
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CASE 2: Dense core, non-coincident centers of symmetry

In polyicosahedral (PIC) clusters,®” the structure consists of two or more interpen-
etrating icosahedra. For PIC clusters with an even number of icosahedra, the center
of symmetry does not necessarily coincide with the center of symmetry of any of the
icosahedra considered separately. Therefore, for a few very special structures, there
is no unambiguous choice for the core of the cluster. Then, the analysis of Case 1
does not hold because A and B are not groups of symmetry operations with respect
to the same center.

An example will help illustrate the situation. The 19-atom PIC structure, which
has Ds;, symmetry, consists of two interpenetrating icosahedra. The center of one
icosahedron is a vertex of the other (and vice versa) and they share five other vertex
atoms. The center of symmetry of the cluster is midway between the centers of sym-
metry of the icosahedra considered separately. Therefore, neither of the icosahedra
can be unambiguously labeled the core. For this structure, Eq. (A2) underestimates
os by a factor of two.

Fortunately, the 19-atom PIC structure is the only structure which has both an
ambiguous core assignment and a favorable binding energy. The other PIC structures
presented by Farges et al.5” have centers of symmetry which are coincident with the
center of symmetry of one of its constituent icosahedra. One can construct other PIC
structures with ambiguous core assignments, but none of them have large enough
binding energies to contribute significantly to geonfig due to the Boltzmann weighting
in Eq. (6). Therefore, we consider the 19-atom PIC structure as a special case and
neglect the error in the estimates of the symmetry numbers of other PIC structures

with ambiguous core assignments.

CASE 3: Cores containing holes

For clusters containing holes, two (or more) shells lack some of the symmetry of
the core before the promoted atoms left the core. The same argument used in Case
1 can be used here if A is defined as the group of proper rotations of the core before
the promoted atoms left the core and B is defined as the group of proper rotations

of the composite shell composed of all incomplete shells. Therefore, Eq. (A2) also
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applies for clusters containing holes.
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Chapter 5 Mercury Vapor Nucleation
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Abstract

Nucleation rates from supersaturated vapor are calculated for mercury. Previous
measurements of nucleation rates using an upward thermal diffusion chamber demon-
strated that critical supersaturations for Hg vapor are roughly three orders of mag-
nitude lower than the predictions of the classical Becker-Doring-Zeldovich theory. [J.
Martens, H. Uchtmann, and F. Hensel, J. Phys. Chem. 91, 2489 (1987)] This discrep-
ancy was attributed to a metal-nonmetal transition in Hg clusters that occurs near
the critical cluster size. [H. Uchtmann, K. Rademann, and F. Hensel, Annalen der
Physik. 48, 207 (1991)] That view is supported by the similarity of cohesive energies
and optical spectra for Hg clusters and rare gas clusters. [H. Haberland et al., Z.
Phys. D 26, 8 (1993)] Using this analogy and the framework of the classical theory,
we calculate nucleation rates that agree with the experiments within experimental

uncertainties without any adjustable parameters.

Reprinted with permission from NanoStructured Materials, in press. Copyright 1997

Elsevier Publishing.
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5.1 Introduction

Syntheses of nanostructured materials often involve spontaneous nucleation from a
supersaturated phase followed by growth, agglomeration, coarsening, and/or ripening.
The relative rates of these processes determine the product morphology and size
distribution. Since unique properties of nanostructured materials derive from their
structure, quantitative predictions of the kinetics of these processes are essential for
a design and understanding of processing/structure/property/performance relations.
In this paper, we illustrate the application of simple models to make quantitative rate
predictions. -

Although mercury is not a standard in nanomaterials circles, it will serve to il-
lustrate our techniques and there is a wealth of literature describing its properties.
Small mercury clusters (n < 13) are largely bound by van der Waals interactions
while larger clusters (n > 13) are dominated by covalent interactions.'™ Evidence
for this transition comes from photoionization,! 5d — 6p auto-ionizing spectroscopy,?
and electron-impact ionization.® Bennemann et al. * published a theory for this bond
character transition that agrees well with experimental cohesive energies up ton = 19.
The cohesive energy is the potential energy of the cluster at 0K. It is a large contribu-
tor to the cluster free energy up to the boiling point. At n = 13, their theory predicts
a discontinuous first derivative of cohesive energy versus cluster size. Experimental
values demonstrating that discontinuity are reproduced in Fig. 1. In this paper, we
explore the implications of this discontinuity on the rate of nucleation of a condensed
phase from a supersaturated vapor.

We will treat clusters on each side of this transition as if they were different
“phases.” Then we can write the free energy of each phase as an expansion about its

bulk properties. We will truncate the series after three terms.?

Gr, = nup+ Anoyp <1 _ 2 + O(rf)) (1)

Tn
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FIGURE 1 Cohesive energy E°" versus cluster size n plot showing the discontinuous first
derivative near n = 13.

vdW forn <13
p = covalent forn > 13

metallic forn — oo

Thus, the chemical potential p,, surface tension o,, and Tolman length 6, are (piece-
wise continuous) functions of the number of atoms in the cluster n or equivalently, the
radius of the cluster r,. This differential approach allows for a size-dependent “bulk”
chemical potential unlike the typical analysis which lumps all of the size dependence
in the surface energy terms.5

The outline of the balance of our paper is as follows. We review the classical theory
of nucleation in Section 5.2. In Section 5.3, we use that framework 'to show that, over
a broad range of conditions, the rate-limiting step in nucleation is the formation of 13
atom clusters. The available experimental data is consistent with this interpretation.
In Section 5.5, we make quantitative predictions based on the classical nucleation

theory and a simple model for Hg cluster properties, which is detailed in Section 5.4.

The agreement with experimental results is excellent.
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5.2 Classical Nucleation Theory

According to classical theory,”® the flux (J,,) of clusters through a size (n) is
Jn - a{n/@AnCn - En+1cn+1 (2)

where a,, is the accommodation coefficient (commonly assumed to be unity), 5 is the
flux of monomers through a unit area, A, is the surface area of the cluster, C,, is the
number concentration, and E, is the frequency of monomer evaporation from an n-
mer. To determine E,,, we follow the approach of Katz.® Applying detailed balancing

at full thermodynamic equilibrium yields
Jl=0=0,p"A,C.7 — EZLCZil- (3)

Assuming that the evaporation rate is independent of the saturation ratio, i.e. E,+1 =

E;% 1, leads to the following estimate for E,4q.
En1 = a8 4,011/ CRly (4)

Substituting Eq. (4) into Eq. (2),

eq
Jn = anSAC [C" _ M] (5)

eq eq
n /Bcn—l—l

multiplying and dividing by (8°?/3)", and rearranging gives

Jn _ Co (8" G (Be0\" )
anBACRH(B/Fe — COI\ B ) i\ B)

For steady state nucleation, J; = J; = .... = J, = J. Summing Eq. (6) over n yields

b 1 __Ci ﬁ _C’b+1 (ﬁ)bﬂ
J; anBALCE (3] Feayn = ce ( 3 ) lej—l 3 . . (7)
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From the kinetic theory of gases,
B = P/(2rmkT)"? (8)

p/8% = P/P* = C,/Cy* =S (9)

where P is the monomer pressure and S is the saturation ratio. By the law of mass

action
Cel = Cilexp(—AG,/kT) (10)

AGn - Gn — Nlbulk (11)

where G, is the free energy of a cluster of » atoms and 4 is the bulk chemical
potential for the equilibrium phase of the bulk material, i.e. metallic mercury. Finally,
using Eqgs. (9) and (10) and allowing b to become large gives the desired form for the

nucleation rate.

00 . AGn -1
J=8/> [anAnClqexp <nln5 ~ =7 )J (12)
n=1

5.3 Critical Size Determination

Substituting Eqs. (11) into Eq. (12) gives the nucleation rate (J) in terms of the

cluster free energy (G,,).

_ eq > (n,ufbulk - Gn) -t
J=pBC1)>" |andsexp (nlnS + — (13)

n=1

Since the product («, A, ) changes slowly with n, the relative magnitude of each term
of the summation is determined largely by the argument of the exponential. The value
of n that minimizes the argument is called the critical cluster size (n*). Because G,
is not a smooth function of n, some care must be taken in determining n*. For
sufficiently low(high) saturation ratios, the critical cluster size will be larger(smaller)

than 13 atoms and one can differentiate the argument with respect to n to find the
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FIGURE 2 For a wide range of S, the critical size is 13 atoms due to the kink in E°"
(and G,) at that size.

critical size. For a range of intermediate saturation ratios, the argument is minimized
at the kink in G,, at n = 13. This is shown graphically in Fig. 2.

We define S;(S5) as the lower(higher) saturation ratio such that the critical cluster
size 1s 13 atoms. The size of the window defined by S;,/S; can be estimated assuming

that the other contributions to the free energy are smooth at n = 13.

— (dE*°* /dn + (dE*"/dn
Sh/Sl A exp ( )13— ( / >l3+ (14)
kT
Fitting functions to the cohesive energy leads to
Sh/Sl ~ exp (9631(/T) (15)

Therefore, at room temperature we expect a critical size of 13 atoms over a factor of

25 in saturation ratios. According to the nucleation theorem,'®!! the nucleation rate

is of the form
J = JoS+Y), (16)
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Therefore, on a log-log plot, loci of nucleation rates (at a given temperature) as a
function of the saturation ratio (S) should fall on a straight line of slope 14 over this
range of S values. This is qualitatively consistent with experimental data.!? We will

make the comparison quantitative in the following sections.

5.4 Nucleation Rate Calculation

Since clusters in the covalent size range (n > 13) are much more strongly bound
than in the van der Waals size range (n < 13), the terms in the summation of Eq.
(13) after the 13th contribute negligibly to the sum for sufficiently large S values.
We will truncate the sum after the 13th term. For the conditions discussed below,
we estimate that this introduces an error of less than 1%. For ideal monatomic gas

vapors, the chemical potential can be related to the vapor pressure as follows.!?

PvaphS
u/kT =1n <(2m)3/2(kT)5/2) (17)
Using this result in Eq. (13) gives
13 vap \ ™ _ -1
J=pCi Y [anAnS" (P ik ) oxp <M(1 — 2Svaw /rn)> (18)

where @ and C7? are vapor properties, Pl doaw, and 6,4 are the bulk properties
that mercury would have if it remained a van der Waals fluid up to bulk sizes, and P,..;
is the vapor pressure of bulk (metallic) mercury. Next, we summarize our estimates

of these material properties.

Vapor Properties

We will treat the vapor as an ideal gas. Then the equilibrium monomer concentration
(C1?) and the monomer flux () can be calculated from the ideal gas law and the

kinetic theory of gases.

C%1 = pUer JkT (19)
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B = P/(2rmkT)Y? = SP*? /(2xmkT)"/? (20)

van der Waals Properties

To model the vdW phase of Hg, we have used an effective Lennard-Jones potential.

e = p—2p7° (21)
e = E/D,
p = 1/R.

Here E is the pairwise interaction energy and r is the distance between pairs of
atoms in clusters of up to 13 atoms. The most recent experimental determination
and ab instio calculation of the equilibrium distance for the dimer are 3.63 and 3.73A,
respectively.'*15 Similarly, the dimer cohesive energy has been estimated at 0.043 and
0.047eV by experiment and theory.'®!® The energy parameter D, is larger than the

cohesive energy due to the zero-point energy.
D, = E" + wh/2 (22)

Here, w is the dimer vibrational frequency which is approximately 19cm™! for mer-

cury.*71¢ To be consistent, we use the calculated values.

R, = 3.73A+3% (23)
D, = 0.047¢V + 3%

m = 200.5%amu

We use correlations from the literature to estimate Py, 0yaw, and S,qw given the

Lennard-Jones potential.!” ' In addition, we estimate the sublimation pressure using
the Classius-Clapeyron equation, and we assume that the solid surface tension is

constant at its triple point value.



108
Metallic Properties

The only metallic Hg property that appears in Eq. 18 is the bulk vapor pressure. We

should point out that this can be eliminated since

n(Poute \ _  Prg \"
S prep = vap . (24)
vdW vdW

This is consistent with our assumption that the nucleation event involves only non-

metallic mercury clusters. Although this relation can be used to simplify the nucle-
ation rate calculation, we have chosen to leave Eq. 18 in its present form to emphasize
the influence of the binding character transition and to facilitate comparisons with
other calculations of nucleation rate (.J) as a function of saturation ratio (S). DeKruif,
VanGinkel, and Langenberg 2° critically reviewed the low temperature vapor pressure
data for Hg and present a correlation that agrees within 3% from the triple point
(234K) to at least 1050K.2! We will also make use of a correlation of the bulk surface

tension.2?

5.5 Results and Discussion

In Fig. 3, we show experimental measurements of mercury vapor nucleation rates
and two estimates of that rate. The estimate from the current work is within the
error bars (imposed primarily by the uncertainty in the Lennard-Jones energy pa-
rameter). (D.) The other estimate is based on the capillarity approximation. In
the capillarity approximation, the free energy difference (AG) is estimated using Eq.
2 and the bulk chemical potential and surface energy. The asymptotic expansion
about the bulk equilibrium phase is truncated after the second term. For further
discussion, see Refs.”®. The capillarity approximation leads to large errors due to
the metal/nonmetal transition that occurs around 13 mercury atoms. This is the
hallmark of nanoscale materials: they have properties unlike single atoms or bulk.
The simple model that we have used to estimate the nucleation rate for mercury

suggests that other systems are tractable, but that the unique character of nanoscale
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FIGURE 3 Nucleation rates (J) as a function of saturation ratio (S).

clusters must be incorporated in those estimates. Simple methods based on bulk

properties are likely to give wildly erroneous results.

We are currently refining our model using ab initio calculations to obtain effective

Lennard-Jones parameters appropriate for the 13-mer.?3
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Chapter 6 Hindered Rotors in 1 Dimension
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Abstract

We construct an approximation to the partition function for hindered rotors based
entirely on their asymptotic behavior and no fitting parameters. The approximant
is shown to be quite accurate in all temperature ranges. Explicit auxiliary functions
are derived for the Helmholtz free energy, internal energy, heat capacity, and entropy.
We apply this function to estimating the heat capacity and unimolecular dissociation
rate for ethane.
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6.1 Introduction

Since the pioneering work of Pitzer"? which showed that torsions about single bonds
are not freely rotating, there have been many books®*™ and reviews® ' on hindered
rotation. The quantum mechanics of hindered rotors is well known, but the theory
has been too cumbersome for many applications. Calculating the values from first
principles requires evaluating and diagonalizing a large matrix. This is practical
with modern computers, but this is often an unwelcomed diversion in the context
of a larger problem. Pitzer’s published tables for the thermodynamic functions of
hindered rotors' are also inconvenient for use in computer programs. We would like
to have a function that estimates the thermodynamic functions for hindered rotors
without having to start from first principles for each application. One such function
was proposed by Truhlar.'? We will refer to this function as T91 hereafter. Herein we
present an improvement, the Hindered Rotor Density-of-States (HRDS) interpolation
function, which is asymptotically correct at low and high temperatures and accurate
at intermediate temperatures.

In Sections 6.2 and 6.3, we derive asymptotic forms for the low-temperature (quan-
tum) and high-temperature (classical) canonical partition functions (). The reader
interested in applying the methods may skip to Sec. 6.4 which presents the HRDS
interpolation function based on the asymptotic behavior of the partition function.
There are no fitting parameters in determining this function. Instead, we construct
a product of terms determined such that the function has the correct asymptotic
behavior at both low and high temperature. By comparing with numerical values,
we show that the function is accurate over the entire temperature range, much better
than the previous function.'? In Sec. 6.5, we compute thermodynamic functions based
on the HRDS function. Finally, Sec. 6.6 gives two applications: calculation of the gas
phase heat capacity of ethane and the dissociation rate constant of ethane. These

examples serve to illustrate the benefits of the new function.
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6.2 Low-Temperature (Quantum) Limit

In the low-temperature limit, the partition function must be calculated using the
discrete energy levels computed using quantum mechanics. The time-independent

Schrédinger Equation for rotation about a single axis is'®

R? d*0

~ 57 qp T VY= BY (1)

0<¢<2nm.

Here, I is the reduced moment of inertia about the axis parametrized by ¢. In many
cases, I changes only slightly with ¢ and can be treated as a constant. Also, the

potential (V') can be approximated using
|14
V= 7(1 — cosng) (2)

where W is the height of the potential barrier, n is the number of equivalent minima,

and ¢ = 0 corresponds to a minimum.

With the following definitions,

2 = no (3)

&7
o= _h2n2(E_W/2) (4)

81
2t = ome (W/2) (5)
Eq. (1) transforms into Mathieu’s equation:1413 a
d*U ) B .
W_*_(CH_QT cos 2z)¥ = 0. (6)
0<z<nm

As discussed by Nielsen,' the periodicity of n7 in the potential requires solutions to
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Eq. (6) having period nm, which have been studied primarily for n = 1,2. Equation

(6) has solutions only for characteristic values () which depend on 7 and .

Large Barrier Limit (Harmonic Oscillator)

For barrier heights (W) which are large compared to both E and fiw, 7 is large and
only the region of z near 0 is significant. Expanding Eq. (6) for small = leads to a

perturbed harmonic oscillator (HO) with characteristic values ()
1
a=-2r"+(2+4m)r — Z(1+2m+2m2)+0(m3/r) (7)

m=20,1,2,...

that are n-fold degenerate, but otherwise independent of the periodicity (n).'° Here,
m is an integer index for the characteristic values. Solving Egs. (4), (5), and (7) for

E yields

h2n?r 1 9 3, 9
E, = i (1/2+m)——r(1+2m+2m)+0(m/r) . (8)
Defining the HO frequency (w) as
w
= 4| — 9
w=mn/3p (9)

we see that Eq. (8) reduces to the energy levels of a harmonic oscillator'® as r ap-

proaches oo,
K
B = B0 — (14 2m +2m?) + O(m*/r?) (10)
EH9 = hw(1/2 + m). (11)

The first effect of finite 7 is to lower the allowed energies relative to the corresponding

HO values.
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Eliminating I from Egs. (5) and (9) yields

r=W/hw. (12)

Therefore, 7 is the ratio of the barrier height to the harmonic oscillator frequency
(which is based on the curvature at the bottom of the potential well). Equivalently,
r is a rough estimate of the number of quantum levels classically confined within a
single well.

Using the limiting form for E at small m, we can calculate a limiting form for the

canonical partition function (Q) at low temperature,
Q =) exp[—En/kT). (13)

At sufficiently low temperature, @ is dominated by the first few terms of the summa-

tion in Eq. (13), for which the harmonic oscillator limit [Eq. (10)] holds,

: > —EHO 4 Mo (1 4 2m + 2m?)

lim Q = n;; ex.p[ T (14)
s h 2kT

QHO — Z exp [_Eﬁo/kT] _ CSC [h;‘)/ k ] (15)
m=0

Taking the first two terms of each summation and expanding yields:

. Q hw hw
— — | - 1
hr% Qo = exp [167’/-31“} (1 + exp [A + rkT} exp [A]) (16)

A = (B9 - Bf') /KT = —hw/kT.

Defining a non-dimensional temperature (©),

© = kT/hw, (17)
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simplifies Eq. (16) and helps quantify “sufficiently low temperature.”

) w

Thus, for any finite value of r, the actual partition function exceeds Qro at low

1 -1 1
-——exp[ ](1+exp[—+———]—exp

I —
6<1 QHO 1670 © 40

temperature. This follows directly from Eq. (11) since the first effects of finite r are
to lower the allowed energies relative to the corresponding harmonic oscillator levels.
The second term in Eq. (18) cannot be expanded about © = 0. (The origin is an
essential singular point!” of exp[+a/©].) Therefore, we use the high-temperature

asymptote.

Small Barrier Limit (Free Rotor)

If the barrier height (W) is small compared to E, then solutions to Eq. (6) are sums

of slightly distorted sines and cosines with characteristic values'*!®

2m\ 2 ré 6, 4
a:(7> + ST =] Ot m (19)

Solving Eqs. (4) and (19) for E yields

B = w L m2h? r*h2n?

T+ o I —g O™ (20)

m=0,+1,%2,...

The first two terms in Eq. (20) correspond to the energy levels of a 1-dimensional
free rotor!® displaced by the average potential energy (1/2). This series is accurate
as m approaches co, but is not uniformly convergent. The second term in Eq. (19) is
correct for |m| > n/2. For smaller values of m, there are expansions analogous to Eq.
(19), but those expansions must be derived individually for each (small) value of m.
Higher-order terms in Eq. (19) are also correct for large |m/, but they similarly break
down for small values of m. The truncated series is not accurate for |m| < rn/2. For

these reasons, we use a different approach for the high-temperature limit in Sec. 6.3.
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6.3 High-Temperature (Classical) Limit

At high temperatures, the canonical partition function (Q) has significant contribu-
tions from a large number of quantum states. See Eq. (13). In this limit, it is useful to
use classical statistical mechanics in which the summation over states is approximated
as an integral over phase space.!
o B
1 —H
lim =—//ex [—]dd 21
Jim Q RSP lar] e (21)

Here, o and (8 are limits on the spatial coordinate (¢), H is the Hamiltonian, and p

is the momentum. For a rigid rotor with hindering potential V'(¢), this reduces to

, 1 _J _V
A Q= EE_ZO °xp [21/ch dJ 0/ exp [ﬁ] a¢ (22)

where J is the angular momentum. The factor 1/n eliminates over-counting of states
due to the n equivalent wells. For the cosine potential in Eq. (2), the second integral

can be simplified.

_ _ 2exp[-W/2kT] T —J? T 14 ]
Th_r)xgoQ— — _Zo exXp | o dJ 0/exp [2chos¢ d¢o (23)

Both of these integrals are in standard forms,'® which can be integrated to give

im0 ={ = Yo ] 7] 24

The first term in Eq. (24) is the classical partition function for a one-dimensional
free rotor (Q¥%).}3 The second term is a Boltzmann factor for the average potential
energy. The third term, I, is a zeroth-order modified Bessel function,'®!® which
accounts for the rotor preferentially residing in the potential wells (as opposed to the

potential maxima) at finite temperature. An equivalent function was used by Pitzer
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FIGURE 1 Asymptotes for © < 1 (Eq. 18) and © > 1 (Eq. 25). For © =~ 2r/3, the
hindered rotor is intermediate between a harmonic oscillator and a free rotor, requiring the
use of an interpolation function.

and Gwinn.? Using the notation of Sec. 6.2, Eq. (24) can be simplified.

Sl 8

lim Q = (7©r)/2exp 50 26

o1

This asymptote is depicted in Fig. 1 along with numerical results, both for r = 3.
The numerical results were obtained by solving Eq. (6) for the first 400 characteristic
values (o) using an eigenfunction expansion.!®?* The numerical results agree with
tabulated values.!* We then calculated Q using Eq. (13) directly. In Fig. 1, we see
that Q approaches the low temperature limit for © < 1 and the high temperature
limit for © > 1.

Since Eq. (15) is the partition function for a harmonic oscillator at any tempera-
ture, it can be expanded in the limit of high temperature to give the classical limit
for QH°,

: HO _. -1
lim Q" =0 +0(67). (26)

We use this result in Sec. 6.4.
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6.4 The Hindered Rotor Density-of-States

(HRDS) Function

In this section, we construct an interpolation function having the asymptotic forms
determined in Sections 6.2 and 6.3. For this purpose, it is convenient to define f as

follows:

f =Q/Q". (27)

Then Eqgs. (18), (25), and (26) provide limiting values for f

lim f = exp [ 7o | (1-+ Ofexpl—a/@)) (28)
= (3) "o [55]0 5] g

The first term in Eq. (28) comes from the zero-point energy which is a quantum-
mechanical effect. The remainder of Eq. (28) and all of Eq. (29) are from density of

states considerations. Therefore, we write Eq. (27) in the following form:
f = Pexp[AE?/ET]. (30)
We use the following Padé approximant for AE?P

AR = (31)

24167

and approximate P using its high-temperature limit

= ()" en 551 5] ®

The Padé approximant corrects for the over-estimate of the zero-point energy in the
HO reference function. For large 7, the over-estimate is iw/16r. See Eq. (10). For

7 = 0, there is no hindering potential, so E? = 0 and the over-estimate is fiw/2.
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FIGURE 2 Accuracy of the HRDS interpolation function for various values of r. This
shows that HRDS is accurate for both mildly hindered rotors (r ~ 1) and strongly hindered
rotors (r > 1). On the scale of this plot, the curves are indistinguishable for r greater that
about two.

Using the following expansion for Iy [2] where z can be complex'®!®

lim Tols] = exp 2] /(2n2)", (33)

it is simple to confirm that P approaches unity at low temperatures. We refer to P
as the Hindered Rotor Density-of-States (HRDS) interpolation function. In Fig. 2,
we show that the HRDS function is accurate for both mildly hindered rotors (r ~ 1)
and strongly hindered rotors (r > 1). This is significantly more accurate than the
previous interpolating function, T91, as shown in Fig. 3. The greatest improvement is
in the neighborhood of © = 27/3 where the hindered rotator is intermediate between

a harmonic oscillator and a free rotor.
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FIGURE 3 Accuracy of the current work (HRDS) and an alternative interpolation scheme

by Truhlar (T91).12 The current work better represents the numerical results, especially near
© = 2r/3 where the hindered rotor is intermediate between the harmonic oscillator limit

and the free rotor limit.

6.5 Thermodynamic Functions

Using our estimate for f [Eqs. (30) and (32)], we calculate'® deviations from the

harmonic oscillator value for the Helmholtz free energy (AA),

AA/KT = ~Inf
_ ﬁ@Jﬁ%—m{(%)Wh [7“/2@]}; (34)

internal energy (AU),

_ d )
AUKT = T~

-1 1 r L [r/20]
N _2'—(2+16r)@+2_é{1+10[r/2@]}’ (35)
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heat capacity (AC,),

AC,/k = T‘P(Z’—Thjfl
-1 L[r/20]\* L[r/20]|
B 7+@{1‘2(10 [r/?@]) +Io{r/2@]}’ (36)
and entropy (AS),
AS/k = AU/kET — AA/KT. (37)

There are widely available routines for calculating I, [#] where x is real and v is an

integer.2! Alternatively, the following expressions can be used.!>'®

x (1 v+2k

Ll = 3 %;7 )
_ exple —DFC v+ k+1/2]

L [z] = (2r2) 1/2 Z (2¢)*kIT [v — k4 1/2]

(39)

The first expression is recommended®® for |z| < 3.75 and the second for |x| > 3.75.

6.6 Applications

The only input parameters to HRDS are the periodicity (n), the ratio of barrier height
to harmonic frequency (r), and the scaled temperature (©). Before applying HRDS
to calculate the heat capacity and rate constant for dissociation of ethane, we briefly
discuss how to estimate these values.

For simple cases, n can be determined by symmetry. Following the notation of
Wolfe,?? consider a torsion between atoms M and N with ligands a, b, ¢, @, y, and z.
The ligands can be atoms, groups of atoms, or lone pairs of electrons.

(i.) abeM — Nzyz: If a, b, and ¢ (and/or z, y, and z) are identical, then there
are three equivalent minima. (n = 3) (e.g. Ethane {H3C — CHs}, Methyl amine
{H,N — CH3}, and Methanol {HO — CHj3})

(ii.) abcM — Nzy: If a, b, and c are identical and z and y are identical, then there
are six equivalent minima. (n = 6) (e.g. Methyldifluoroborane {CHs — BFy} and
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Toluene { H3C — Ph} where N, z, and y are all part of the phenyl ring)

(iii.) abcM — Nzyz: For particular choices of ligands, there may be two equivalent
minima. (n = 2) (e.g. HSSH has two minima at ¢ = %90 deg.)

For torsions that do not meet the restrictions of the above three cases, the potential
may not be well-represented by Eq. (2) and this method may not be appropriate. For
example, Hydrogen peroxide (HO —OH ) has two equivalent minima separated by one
large and one small barrier.?? Diphenyl (Ph — Ph) has four minima with alternating
large and small barriers to rotation. These potentials cannot be represented using a
single Fourier component as in Eq. (2).

The harmonic oscillator frequency (w) and the height of the potential barrier (W)
can be measured experimentally or calculated using quantum mechanics or empirical
force fields. See Berg!! for a recent survey of the various methods. Also, see Lowe®
for an extensive tabulation of experimental data. Once w and W are known and the
temperature of interest (T') is chosen, r and © are calculated using Eqgs. (12) and

(17).

Ethane Heat Capacity

As a sample application of the HRDS function, we calculate the heat capacity of
ethane. Heat capacity provides a stringent test of the shape of the partition function
since it requires second derivatives. See Eq. (36). We have used spectroscopic data
recommended by Chao® (w=289cm™, W = 2.96 kcal/mol, n = 3). For comparison
with experimental data, we use an equation of state for ethane based on a critical
review of the available spectroscopic and thermodynamic experiments.?*

Figure 4 shows that the HRDS interpolation function provides a good approxi-
mation to the experimental data in the temperature range where data is available.
Both HRDS and T91 utilize the harmonic oscillator and rigid rotor limiting behavior,
but HRDS puts greater emphasis on accurately reflecting how those asymptotes are
reached. This is particularly evident in the neighborhood of the peak in AC, where

the hindered rotor is far from either limiting case. For ethane, this occurs near room
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FIGURE 4 Comparison of the deviations from the harmonic oscillator heat capacity for
ethane as calculated using linear interpolation from Pitzer’s tables (Tabular),? the T91
interpolation function,'? and the current work (HRDS). The equation of state curve (EOS)
is the result of fitting a partition function to a critically analyzed set of experimental data.?!
Also shown is the rigid rotor (high-temperature) asymptote. HRDS agrees well with the
tabulated results and the EOS.

temperature.

Ethane Dissociation Rate Constant

Our second illustration is estimating the high-pressure, unimolecular rate constant
for ethane dissociation into methyl radicals. We use canonical transition state the-
ory as discussed by Benson.? This is not the most accurate theory available, but it
serves to illustrate the contribution of hindered rotation without unnecessary compli-
cation. See Marcus? for a discussion of microcanonical methods applied to methyl
radical recombination. In transition state theory, the rate constant for unimolecular

dissociation (kg) can be expressed as

ke = (KT/R)KY (40)
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where K7 is the equilibrium constant for formation of the activated complex with the
reaction coordinate vibration factored out. An equilibrium constant can always be

expressed as a ratio of partition functions. In the present case, this leads to

( rot 37ﬁ7 m'b)i
B qi B q M q;

r = e 3n6 N\ P
q <q7'ot 1:-[1 q;)zb>

Szl (a1
In Eq. (41), AE is the potential energy of the transition state relative to the reactant,
g™ is the partition function for rigid rotation of the molecule as a whole, ¢"® is the
vibrational partition function for each of the internal degrees of freedom, r refers to
the reactant molecule, and I refers to the transition state. Since K ¥ is the ratio
of partition functions, this application serves to test the magnitude of the partition
function. We assume that the transition state and equilibrium ethane are singly
degenerate (g = 1) with D3y symmetry (ai = ¢"). This simplifies the equilibrium

constant.

not o\
e (ﬁfﬁfﬁ)m (I qg’“’)r oxp [22Z] )

Ilple

Here, I4, I, and I¢ are the principle moments of inertia of the molecule as a whole.

We use a published parametrization of the potential energy surface along the mini-
mum energy path for dissociation.?” It gives the vibrational frequencies, the barrier to
internal rotation, and the molecular geometry as a function of the separation between
carbon atoms. This distance is identified as the reaction coordinate. The transition
state is the point along the reaction coordinate that minimizes K 13

Figure 5 shows that using the HRDS function leads to slightly better agreement
with the experimental results than using T91 over the entire temperature range cov-
ered. The largest difference between the approximations occurs when © = 2r /3. At
this point, ethane is intermediate between the harmonic oscillator and the free rotor
limit and the ratio between HRDS and T91 is about 1.2. The transition state for

ethane dissociation is “loose.” This means that the carbon-carbon bond is nearly bro-
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FIGURE 5 High-pressure, unimolecular rate constant for dissociation of ethane into
methyl radicals. The calculated values are based on Robertson’s potential energy
parametrization®” and two approximations for the hindered rotor. The experimental curve
is a correlation from a critical analysis of kinetic and thermodynamic data.?® Calculations
based on the current work (HRDS) are closer to the experimental values than T91, but the
maximum ratio between them is within the uncertainty of the experimental values. (The
author estimates this uncertainty at a factor of two, which is 0.7 on this scale.)

ken and the hindering potential is very small at the transition state. In the free rotor
limit, HRDS and T91 agree, so their ratio approaches one. Therefore, the largest
difference between the estimates for reaction rates is about 20%, which is well within
the error bounds for kinetics experiments. Since the HRDS function is just as easy
to use and more accurate, it can still be recommended over T91 even though kinetics

experiments are unlikely to confirm one over the other.

6.7 Conclusions

We developed the HRDS interpolation function for readily estimating the partition
function and thermodynamic functions for hindered rotors. The function is consider-
ably easier to use than recalculation from first principles or interpolating from existing

tables.1'? Our approximant to the partition function (HRDS) is based entirely on the
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asymptotic behavior of the quantum-mechanical partition function at low tempera-
ture and the classical partition function at high temperature. There are no fitting
parameters in this function. We have shown this function to be accurate in the tem-
perature range intermediate between the harmonic oscillator and free rotor limits. We
expect that this interpolation function will be useful in estimating thermodynamic

and kinetic data for molecules and solids with hindered rotation about one axis.
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Abstract

We estimate the multipole moments of Cgy using the distributed multipole approach
of Stone. (A. J. Stone, Chem. Phys. Lett. 83, 233 (1981).) We find that by placing
small dipoles on carbon centers and bond centers we fit the first four symmetry
allowed multipoles to within about 15%. In addition, the fifth multipole, which was
not fit, is in error by only 25%, indicating that this model captures the essence of the
electron distribution in Cge. We interpret the fit dipoles in terms of modifications of
atomic orbitals. The model qualitatively explains the observed interaction potential

in solid CGO .

To be submitted for publication.
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7.1 Introduction

For the past several years, Cgo has attracted attention as an ideal plastic crystalline
substance.!® Plastic crystals are molecular solids with translational order, but with
no orientational order.” There is a range of temperatures, below the melting temper-
ature but above a lower limit, in which the molecules pack as if they were spinning
and/or tumbling rapidly but the center of mass librates about an equilibrium posi-
tion within the crystal. James and Keenan developed the theory which is used to
describe the phase transitions in plastic crystalline substances based on the multipole
interactions between molecules.®

Existing models for the charge distribution of Cgp have been based on distributed
point charges.>!%*2 In this paper, we fit the multipoles of Cgy determined by ab initio
calculation'? using the distributed multipole approach of Stone.'> He proposed that
the molecular charge distribution of a molecule should be represented as a collection
of charges and multipoles on atoms and bond centers, rather than a single center for
the entire molecule. For quantum-mechanical calculations with basis sets composed of
linear combinations of atomic orbitals, the expansions about atoms and bond centers
are finite. Expansions about other points are infinite and tend to have rapidly growing
coefficients.!® This property leads to sizable truncation errors when a finite number
of terms are used. A drawback to this approach is that the computed multipoles are

basis set dependent, particularly for high order multipoles.

7.2 Symmetry Adapted Functions

We make use of functions which contain the icosahedral symmetry of the Cgo molecule
to ensure that the results are consistent. First, we define regular solid harmonics (R;")

in terms of the spherical surface harmonics (¥;™)

Rp = (52) i) 0
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Here, r is the vector from the origin to a point in space and w is the direction of that
vector in terms of the angles # and ¢ relative to a fixed set of coordinates. Linear
combinations of regular solid harmonics (RJ") which transform like the irreducible

representations (T') of a point group are called symmetry adapted functions (SAFs)

!
Siri= Y. CirimBR" (2)

m=-—l

In Eq. (2), 7 is an index for the A(I") members in the I' representation. The values of
the coefficients (Cyrm) depend upon the orientation of the molecule with respect to
the coordinate system for the surface harmonics. Tabulated values for the icosahedral
point group (I;) are available for the x-z plane coincident with a mirror plane and
a five-fold axis oriented along the z-axis'* '® and for the x-z plane coincident with
a mirror plane and a two-fold axis oriented along the z-axis.»'® Coefficient values
for other orientations can be determined from the tabulated values using standard
methods.?® In this paper, we make extensive use of the one dimensional, even parity
functions (I' = Aj,, 4 = 1) which have the full symmetry of the molecule. Any
observable property of the molecule, including its multipoles, can be expanded in
terms of these functions. From here on, we will drop the second and third indices
from the S functions and the coefficients (C') with the understanding that we are

working with the fully symmetric functions only.

7.3 Form Factors

We use the SAFs to define form factors (f;) for the various centers (s = ¢, ph, hh)

= Z Si(ri). (3)

The index 7 identifies each of the 60 carbon centers, 60 bonds between pentagonal and
hexagonal faces (ph bonds), or 30 bonds between two hexagonal faces (hh bonds).

Due to symmetry, there are non-zero SAFs only for certain values of [.16 The first
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allowed Is are 0, 6, 10, 12, 16, and 18. For [ > 30, there can be more than one
independent SAF, but this will not concern us. The form factors for the hh bonds are
fixed by the icosahedral symmetry. They are {30/(47)"/?, —6.325, —13.746, 17.539,
—4.823, —9.942}. The vectors r; which point to the carbon centers and ph bonds are
not imposed by symmetry. To determine them, we need to specify the locations of the
carbon atoms. We use the experimentally determined average bond lengths (1.391A,
1.455A) for hh and ph bonds, respectively.** These values and icosahedral symmetry
are sufficient to determine the needed vectors rj. Using these vectors leads to the
form factors for the carbon centers {60/(47)Y/2, 2.384, —19.482, —7.607, —17.782,
38.383} and for the hp bond centers {60/(47)"/?, 11.218, —4.420, —24.193, 4.541,
—20.577}. Michel uses a slightly different definition for the form factor and reports
the absolute value of our definition.? His values differ from ours mainly because he
used experimental values for the position vectors (rj) which deviate slightly from full

icosahedral symmetry.

7.4 Charges

Since multipole moments (Q7*) are defined in terms of spherical surface harmonics

(Y;™), it is trivial to determine the multipoles which result from charges on the carbon

centers (¢°), hp bond centers (¢"?), and hh bond centers (¢"*),

QA =daR/C" (4)
Electrical neutrality ensures that
0 = 60¢° + 60¢" + 30¢"". (5)

It has been determined from ab initio calculations that the charge distribution on the

hp and hh bonds are nearly identical.'? Thus, we will require that

¢" = ¢". (6)
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We find that relaxing this restriction does not significantly change the results of our
calculations. Combining Egs. (3) - (6) gives the molecular multipoles due to charge

redistribution

Qr = q(B3ff/2— f* - fM/Cr (7)
Q) = ¢{0, —0.439, —5.210, —3.851, —11.823, 41.208}. (8)

The parameter g is the absolute value of the charge on each bond. We have used
the SAF coefficients (C?) for the icosahedron oriented with a five-fold axis along the
z-axis and a mirror plane in the x-z plane. This is the orientation used by Yildirim.'?

Multipoles with other values of m are readily computed using Eq. (7) and tables of

m 14—18
cm.

7.5 Dipoles

Dipoles of magnitude x can be imagined as being composed of two charges of magni-
tude pe/2¢ and opposite sign, separated by a distance €, where ¢ is small. By conven-
tion, the direction of the dipole is parallel to the vector pointing from the negative
charge to the positive charge. The molecular multipoles which result from distributed
dipoles at center s follows directly from this construction and the definition of the

gradient

Qr=u- VG (9)

Direct application of Egs. (1) and (9) shows that the molecular multipole moments
due to the radial component of the distributed dipoles are simply [ times the multipole

moments due to charges at the same location.
Q= fr/o (10)

Here, 2 stands for the radial component of the dipole at center s. The molecular

multipole moments due to the tangential component of the distributed dipole are zero
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by symmetry for the hh bond centers. As for the bond charges, we assume that the

dipoles at the hh and ph bond centers are equal,

ur =t (11)

ut? = pft=o0. (12)

Using Eq. (10) leads to the following values for the molecular multipole moments due
to the tangential component of dipoles at carbon centers (oriented along hh bonds

by symmetry),
QY = uc{0, —135.998, —98.652, —217.467, 125.413, 125.752}; (13)
the radial component of dipoles at carbon centers,
QY = p£{0, 9.490, —70.710, —53.442, —127.569, 362.478}; (14)
and the radial dipoles at bond centers,
Q0 = ;b{0, 16.866, —53.960, —33.949, —2.188, —198.026}. (15)

We use b to stand for the hh and ph bond centers.

7.6 Multipole Moments

There are four undetermined parameters in Egs. (7) and (13) - (15). They are the
magnitudes of the bond charge and the various dipoles. We fit these values to the
first four non-zero molecular multipole moments from ab nitio calculations.!? The
fifth will serve as a check on our method. We find the best agreement for ¢ = 0,
pé = —0.00891, pé = 0.0144, and pb = —0.0610. Our fit multipoles along with the
calculated values and two point charge models are given in Table I and illustrated in

Figs. 1 and 2.
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TABLE I Molecular Multipole Moments

Source qg q?o q(1)2 q(1)6 q(1)8
Distributed Multipoles (Current Work) 0.319 3.154 -0.635 -2.819 16.180
ab initiot? Method 1 0.295 3.550 -0.751 -2.614 22.895
ab initio'? Method 2 0.285 3.626 -0.793 -2.431 19.997
LLM Model® 3.781 1.865 -7.339 1.243 -0.001
SCK Model!? 1.582 0.198 -3.620 -0.842 4.807
GG Modellt 1.184 0.880 -2.018 1.082 -2.445
YHE Model!? 0.29 " 3.6 -0.77 -2.5 21.5
- * §§
16800°0
+
A
D
' \ 0.00891 @?Q \*
§ x
168000 Vel
{ %
% £
+ %%0_ >

FIGURE 1 Distributed dipoles for Csp pentagonal and hexagonal faces. For clarity, ounly
the tangential components are shown and they are labeled with the dipole magnitude, not
the projected component in the plane of the face.
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FIGURE 2 Distributed dipoles for Cg ph and hh bonds. For clarity, only the dipoles
in the plane defined by the bond and the molecule center are shown. The tangential and
radial components of the dipole on the carbon center have been combined in the hh bond

diagram.
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7.7 Discussion

Figure 1 shows the tangential distributed dipoles surrounding pentagonal and hexag-
onal faces of the Cgp molecule. A simple explanation serves to rationalize each of the
dipoles. The tangential dipoles contribute a small positive charge to the center of the
pentagonal face and a slight negative charge to the hh bonds of the hexagonal face.
This is qualitatively what is observed.! The attraction between pentagonal faces and
hh bonds explains the observed low temperature phase of Cg. We attribute both
of these effects to the m-bonds in Cgo. In sp? hybridized carbon, as in graphite, the
p, orbitals are symmetric about the x-y plane and therefore directed normal to that
plane. For Cgg, the p, orbital is not completely decoupled from the py and p, orbitals
due to the curvature of the molecular surface. This tends to polarize the p, orbital
such that its electron density is greater outside of the molecule rather than inside.
See Fig. 2. Once the bonds are polarized in this way, their overlap can be improved
by canting them towards one another pairwise. This canting explains the tangential
components of the dipoles.

In Table II we compare the various models based on the statistical variance using
the ab initio values as the “correct” values.!? Three of the point charge models did
not explicitly fit the molecular multipole moments and, not surprisingly, do not fit
them well.9 ! The final point charge model contains more fitting parameters than
there are data.'? These extra degrees of freedom allow the multipoles to be fit exactly
but it is impossible to infer which of the infinite set of such models best represents
the molecule. Our current work contains fewer fitting parameters than there are data
points. Therefore the fit is imperfect but the values of the fitting parameters can
be interpreted physically. The variance is the statistical quantity used to evaluate
the quality of a fit to a set of data. By this measure, the distributed multipoles
model developed here is by far the best fit to the data. It is also encouraging that
the multipole model makes a reasonable estimate (within 25fit set of data. This
suggests that the multipole model captures the physics of the actual electronic density

distribution.
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TABLE II Error Analysis

Sum-of-Squares Variance Prediction

S gi—e* ) ss_ ab

ource np ng S <?L> . q18/4%s
Distributed Multipoles 3 4 0.072 0.072 0.75
LLM Model® 0 4 220.1 55.0 —2.3%107°
SCK Model!? 0 4 34.9 8.72 0.22
GG Model't 0 4 14.7 3.68 -0.11
YHE Model'? 10 5 0.0 00

The superscript ‘ab’ refers to the ab initio values.!? The prediction column is a test of the
current model’s ability to estimate multipoles that were not fit.

Our distributed dipole model contains 60 dipoles on the carbon centers and 90
dipoles on the bond centers. This makes it considerably more complicated than the
point charge models." 12 This model has the advantage, however, of being having
relatively few free parameters which can all be explained in terms of polarization of
atomic orbitals. The other models put positive charges in unphysical locations,!?
do not match calculated molecular multipole moments,” '* and/or contain more free
parameters than data values.!> This model could be improved by calculating the

distributed multipoles from ab initio calculations rather than fitting them, as Stone

intended.!3
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Chapter 8 Concluding Remarks
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Nucleation theory has been a rich field of inquiry for over a century and I suspect that
it will continue to be for the foreseeable future. If progress in our understanding is to
be made, then it will likely be a result of both theory and experiment. In this thesis,
I have presented pieces of the foundation needed to extend current nucleation theory
to cover experimentally accessible systems. Without this common ground of inquiry,
theorists will lack the observations needed to guide their models and experimentalists
will lack a framework for understanding and critiquing their results.

It is my contention that the plastically crystalline substances will provide the
needed common ground. These molecular systems have high point symmetries, which
make them tractable for theorists, and at least some of them have moderate boiling
points, which make them accessible to experimentalists. Even so, calculating nucle-
ation rates for these substances from molecular models will take considerable effort.
The more desirable physical properties come at the expense of the complexity in-
herent in their orientational disorder. This thesis, particularly Chapters 6 and 7, is
intended to begin to propose the techniques needed to handle this complexity.

Clearly, more work is needed. The hindered rotor partition function for multidi-
mensional rotors will need to be estimated in an efficient manner. Improved methods
for estimating the hindering potential in a variety of geometries are needed. Once
these problems are addressed, we will be in a position to make predictions of the
nucleation rates for these molecular systems and to learn through direct comparison
with experiments. This will be a major step toward the day when accurate nucleation

rate calculations become routine.
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Appendix A Icosahedra
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A.1 Properties

Since the icosahedron plays an important role in several chapters of this thesis, this
Appendix is included as a reference to some of the properties of the icosahedron
and its relationship to a cube. Both the cube and icosahedron are Platonic solids.?
Platonic solids are three-dimensional figures such that all of the vertices, edges, and
faces are equivalent to one another. By equivalent, we mean that a rotation and/or
inversion can map the parts of the object onto each other, leaving the solid in an
indistinguishable orientation. The five Platonic solids are the tetrahedron, cube,
octahedron, dodecahedron, and icosahedron.

We will use the standard orientations as described by David.? Consider a cube
with vertices at cartesian coordinates (&L, +L,=+L). Next, bisect each face parallel
to two of its edges such that no two bisectors meet at an edge. There are two ways to
do this. Once the first face is bisected, however, the orientations of the other bisectors
is fixed. A cube decorated with these bisectors has T, symmetry.! The 24 symmetry
elements of the T}, point group are a subgroup of the cubic (Op) and the icosahedral
(I,) groups. An icosahedron can be inscribed in this cube such that its twelve vertices
lie on the bisectors of the faces. This is illustrated in Fig. 1. Since there were two
choices as to how to bisect the faces, there is an equivalent, but distinguishable way
to inscribe an icosahedron in a cube as illustrated in Fig. 2. The two orientations are
related by a rotation of 7/2 radians about any of the (1,0,0) axes. Table I gives the

coordinates of the vertices for both standard orientations.

TABLE I Coordinates
Orientation Coordinates

A (L, £Lt, 0)
(0, £L, L)
(xLr, 0, £L)
B (£L, 0, £L7)
(+L7, L, 0)
(0, £L7, +£L)

7 = (/5 —1)/2 is the golden mean.
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FIGURE 1 Standard Orientation A. An icosahedron can be inscribed in a cube such that
its twelve vertices (black stars) lie on the bisectors of the cube faces. The (1,1, 1) directions
are shared 3-fold axes and the (1,0,0) directions are shared 2-fold axes.

FIGURE 2 Standard Orientation B. Alternative way to inscribe an icosahedron in a cube.
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TABLE II Icosahedron Properties

Property Value
Point Group Iy
Number of 5-fold (S10) Axes 6
Number of 3-fold (Ss) Axes 15
Number of 2-fold (Cy) Axes 10
Number of Mirror Planes 10
Number of Inversion Centers 1
Number of Vertices 12
Number of Edges 30
Number of Faces 20

Edge Length 2Lt

Total Area L%(30v/3 — 10y/15)
Volume L34.1202

7 = (/5 —1)/2 is the golden mean.

Table I lists some useful properties of the icosahedron. They are simple to derive

given the coordinates in Table I and the point group of the icosahedron (Ip).!

A.2 References

1F. A. Cotton, Chemical Applications of Group Theory (Wiley, New York, 1990), pp45-

50, 54-56, and 426-436.

2W. 1. F. David, R. M. Ibberson, J. C. Matthewman, et al., Nature 353, 147 (1991).
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Appendix B Mackay Icosahedra
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B.1 Properties

The Mackay icosahedra are collections of spheres arranged in icosahedral shells. Due
to the symmetry of the underlying icosahedron, it is sufficient to specify the locations
of the spheres in a given face. Figure 1 shows the lattice points for the first four
Mackay icosahedra relative to a representative face.

The number of spheres in a Mackay icosahedron with NN shells can be determined
by summing over the number of spheres (n) in each of the shells. The central sphere

is a special case.

The Nt shell has spheres located at the twelve vertices, along the thirty edges, and
in the twenty faces. As shown in Fig. 1, in each representative face, the spheres are
arranged in a hexagonal lattice with N + 1 sites from point to point along one edge.
Tt follows directly that there is one sphere at each vertex and N — 1 spheres along the
edges. The number of spheres in the faces can be calculated using the well-known

formula for the sum of consecutive integers,?

>oi=N(N +1)/2. (2)

=1

Using these relationships leads to the following relationship for the number of spheres

in the 7** shell of a Mackay icosahedron:
n; =12 +30(i — 1) +20(i — 1)(i — 2)/2 = 10¢* + 2. (3)

Summing the contril;utions from the first IV shells gives the number of spheres in the

Nth Mackay icosaheclron.

‘ N
=0
Again, the requisite sums are tabulated.? Substituting algebraic relationships for the

summations gives

n = (10N? + 15N? + 11N + 3)/3. (5)
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1* Shell
2" Shell
3
3" Shell
A
| B
4™ Shell

FIGURE 1 Representative faces for the first four Mackay icosahedra. Spheres at vertices
(stars) are shared among five faces, spheres along edges (rectangles) are shared between two
faces, and spheres in the faces (triangles) are unshared.
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TABLE I Enumeration of Spheres in a Mackay Icosahedron

Group Subgroup Spheres
Shell 0 Center 1
Shell N Each Vertex 1
Each Edge N -1
Each Face (N —1)(N —-2)/2
Total 10N? + 2
Shells 0,1,...,N Total (10N3 + 15N% + 11N +3)/3

This relationship was originally given by Mackay.!
It is occasionally useful to calculate the number of shells (V) needed to construct

a Mackay icosahedron with n spheres. This can be calculated by inverting Eq. 5 using

standard techniques for cubic equations.’

n | s 343 3 343 1
N == 4|1 14+ — — 41 1 - = 6
20 \] Tyt 4860n? J Tyt 4360n2 2 (6)
The following asymptotic approximation to Eq. 6 is quite accurate for n > 13 and is

much easier to use.

N= \/% - % +0(1/n3) (7)

B.2 References
1A. L. Mackay, Acta Cryst. 15, 916 (1962).

21, S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 5th ed.
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38, 1. Heisler, The Wiley Engineer’s Desk Reference (Wiley, New York, 1984) pp4-5.
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Appendix C Code to Produce Mackay

Icosahedral Structures
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C.1 Description

The following FORTRAN code produces BIOGRAF! format input files for arbitrarily
large Mackay icosahedral clusters of argon atoms. The clusters produced are near a
local minimum, but a few iterations with a congugate-gradient or similar minimization
routine are needed to locate the local minimum structure under a given interaction

potential. These are the structures used in Chapter 3.

C.2 References

IBIOGRAF is a trademark of Molecular Simulations Inc. (Burlington, Mass).

C.3 Code

PROGRAM MAC
C
C This program produces BIOGRAF-format input files fdr Mackay
C icosahedral clusters of argon atoms.
C
INTEGER NSHELL,CNT,CNT2
REAL B, Y(3,0:11), N, PI, De
COMMON /EF/ E(3,100), F(3,5000)

C Write coordinates of atoms.
OPEN (11, FILE = ’TRIPLETS.DAT’)
WRITE (11, =) 0.0, 0.0, 0.0
PRINT *, ’Enter the number of Mackay icosahedrons to comsider.’
READ *, NSHELL
PRINT *, ’Enter the characteristic distance in Angstoms.’

READ *, De
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CNT = 1.
B = AC0S(1./(5.0%%0.5))

PI = ACOS(-1.0)
SA = SIN(B)
CA = COS(B)
B = 2.xPI/5.

DO 10, N = 1,NSHELL

C Vertices

¥Y(1,0) = 0.0
¥Y(2,0) = 0.0
Y(3,0) =N

DO 3, R =1.,5.

Y(1,R) = N*SA*COS(R*B)
Y(2,R) = N*#SA*SIN(R*B)
Y(3,R) = N*CA

3 CONTINUE

DO 4, I =6.,10.

Y(1,I) = -Y(1,I-5)
Y(2,I) = -Y(2,I-5)
Y(3,I) = -Y(3,I-5)
4 CONTINUE
Y(1,11) = 0.0
Y(2,11) = 0.0
¥(3,11) = -¥(3,0)

C Edges
DO 6, J=1,15
IF (J.EQ.1) THEN
CALL NSECT( Y(1,0),Y(2,0),Y(3,0) ,
+ Y(1,1),Y(2,1),Y(3,1) , N )
ELSE IF (J.EQ.2) THEN



ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

CALL NSECT(

IF (J.EQ.3)
CALL NSECT(

IF (J.EQ.4)
CALL NSECT(

IF (J.EQ.5)
CALL NSECT(

IF (J.EQ.6)
CALL NSECT(

IF (J.EQ.7)
CALL NSECT(

IF (J.EQ.8)
CALL NSECT(

IF (J.EQ.9)
CALL NSECT(
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¥(1,0),Y(2,0),Y(3,0)
¥(1,2),Y(2,2),Y(3,2)
THEN
¥(1,0),Y(2,0),Y(3,0)
Y(1,3),Y(2,3),Y(3,3)
THEN
¥(1,0),Y(2,0),Y(3,0)
¥(1,4),Y(2,4),Y(3,4)
THEN
¥(1,0),Y(2,0),Y(3,0)
Y(1,5),Y(2,5),Y(3,5)
THEN
Y(1,1),Y(2,1),Y(3,1)
¥(1,2),Y(2,2),Y(3,2)
THEN
¥(1,2),Y(2,2),Y(3,2)
Y(1,3),Y(2,3),Y(3,3)
THEN
Y(1,3),Y(2,3),Y(3,3)
Y(1,4),Y(2,4),Y(3,4)
THEN
Y(1,4),Y(2,4),Y(3,4)
Y(1,5),Y(2,5),Y(3,5)

IF (J.EQ.10) THEN

CALL NSECT(

Y(1,5),Y(2,5),Y(3,5)
Y(1,1),Y(2,1),Y(3,1)

IF (J.EQ.11) THEN

CALL NSECT(

Y(1,1),Y(2,1),Y(3,1)
¥(1,9),Y(2,9),Y(3,9)

IF (J.EQ.12) THEN
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CALL NSECT( Y(1,9),Y(2,9),Y(3,9) ,

Y(1,2),¥(2,2),Y(3,2) , N )

ELSE IF (J.EQ.13) THEN

CALL NSECT( Y(1,2),Y(2,2),Y(3,2) ,

Y(1,10),Y(2,10),Y(3,10) , N )

ELSE IF (J.EQ.14) THEN

CALL NSECT( Y(1,10),Y(2,10),Y(3,10) ,
¥(1,3),¥(2,3),Y(3,3) , N )

ELSE IF (J.EQ.15) THEN

CALL NSECT( Y¥(1,3),Y(2,3),Y(3,3) ,

Y(1,6),Y(2,6),Y(3,6) , N )

END IF
po 5, I =1.,N-0.5
CNT = CNT + 2

WRITE (11,%) E(1,I), E(2,I), E(3,I)
WRITE (11,*) -E(1,I), -E(2,I), -E(3,I)

CONTINUE
CONTINUE

DO 8, J = 1,10
IF (J.EQ.1) THEN
CALL FACE( Y(1,0),Y(2,0),Y(3,0)
Y(1,1),Y(2,1),Y(3,1)
Y(1,2),Y(2,2),Y(3,2)
ELSE IF (J.EQ.2) THEN
CALL FACE( Y(1,0),Y(2,0),Y(3,0)
Y(1,2),Y(2,2),Y(3,2)
Y(1,3),Y(2,3),Y(3,3)
ELSE IF (J.EQ.3) THEN
CALL FACE( Y(1,0),Y(2,0),Y(3,0)

2

3

3

N , CNT2)

N , CNT2)
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ELSE

ELSE

ELSE

ELSE

ELSE

ELSE

160
Y(1,3),Y(2,3),Y(3,3)
Y(1,4),Y(2,4),Y(3,4)

IF (J.EQ.4) THEN

CALL FACE( Y(1,0),Y(2,0),Y(3,0)
Y(1,4),Y(2,4),Y(3,4)
Y(1,5),Y(2,5),Y(3,5)

IF (J.EQ.5) THEN

CALL FACE( Y(1,0),Y(2,0),Y(3,0)
Y(1,5),Y(2,5),Y(3,5)
Y(1,1),Y(2,1),Y(3,1)

IF (J.EQ.6) THEN

CALL FACE( Y(1,1),Y(2,1),Y(3,1)
Y(1,9),Y(2,9),Y(3,9)
¥(1,2),7(2,2),Y(3,2)

IF (J.EQ.7) THEN

CALL FACE( Y(l,?),Y(Q,Q),Y(S,Q)

¥(1,10),Y(2,10),Y(3,10) ,
¥(1,3),Y(2,3),Y(3,3) , N

IF (J.EQ.8) THEN

CALL FACE( Y(1,3),Y(2,3),Y(3,3)
Y(1,6),Y(2,6),Y(3,6)
Y(1,4),Y(2,4),Y(3,4)

IF (J.EQ.9) THEN

CALL FACE( Y(1,4),Y(2,4),Y(3,4)
Y(1,7),Y(2,7),Y(3,7)
Y(1,5),Y(2,5),Y(3,5)

IF (J.EQ.10) THEN

CALL FACE( Y(1,5),Y(2,5),Y(3,5)
Y(1,8),Y(2,8),Y(3,8)
¥Y(1,1),Y(2,1),Y(3,D)

b

3

b

CNT2)

CNT2)

CNT2)

CNT2)

CNT2)

CNT2)

CNT2)

CNT2)
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END IF

DO 7, I =1, CNT2
CNT = CNT + 2
WRITE (11,%) F(1,I), F(2,I), F(3,D)
WRITE (11,%) -F(1,I), -F(2,I), -F(3,D
7 CONTINUE
8 CONTINUE
C Vertices
D0 9, I =0,11
CNT = CNT + 1
WRITE (11,%) Y(1,I), Y(2,I), Y(3,I)
9 CONTINUE
10 CONTINUE
CLOSE (11)

C Write BIOGRAF file.
DO 14, I =1, CNT
M =1
DO 13, J = 1, NSHELL
NM = NM + J*x2%x10+2
IF (I.EQ.NM) THEN
CALL Ec1(I,J,De)
END IF
13 CONTINUE
14 CONTINUE

END

3k ok ok ok ok ok ok ok ok sk sk ok ok ok ok %k ok %k k ok Kk K

SUBRQUTINE Ecl(I,N,De)
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CHARACTER*8 NAME
CHARACTER*5 NC
REAL X1, X2, X3

NAME = °MAC’ // NC(N)

PRINT *, ’Writing Biograf file for ’,NAME
PRINT =*, ’ (n =°,I,’ atoms)’
>TRIPLETS.DAT’)

OPEN (16, FILE
NAME)

OPEN (18, FILE
WRITE (18,2)
WRITE (18,3)
WRITE (18,4) NC(W)
WRITE (18,5)
WRITE (18,6)
WRITE (18,7)
WRITE (18,8)
D01, J=1,1

READ (16,*) X1, X2, X3

WRITE (18,9) J, Dex*X1, De*xX2, De*X3
CONTINUE
WRITE (18,10)
WRITE (18,11)

CLOSE (16)
CLOSE (18)

FORMAT (’BIOGRF 325°)

FORMAT (’DESCRP Cluster’)

FORMAT (’REMARK of ’, A5, ’shells of argon atoms’)
FORMAT (’REMARK arranged in a Mackay icosahedron’)
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6 FORMAT (’REMARK Created by rbm @ home.’)
7 FORMAT (’FORCEFIELD DREIDING’)
8 FORMAT (’FORMAT ATOM ’,

+’(a6,1x,1i5,1x,a5,1x,a3,1x,al,1x,a5,3f10.5,’,
+’1x,ab5,13,i2,1x,£8.5,12,14,f10.5) )
9 FORMAT (’HETATM’, I6, ’ Ar ORG A 1, 3F10.5,
+ > Ar 40 0.00000 0 0)
10 FORMAT (’FORMAT CONECT (a6,14i6)’)
11 FORMAT (’END’)
END
Kok kKoK oK ok ok ok ok ok sk o ke ok ok sk sk sk ok ok ok
FUNCTION NC(I)
CHARACTER*5 NC
INTEGER I, J, K, N, D(5), E

K=1

N = L0OG10(I)

po 1, J=0,N
E = 10xx(N-J)
D(J+1) =K / E
K = K - D(J+1)*E
1 CONTINUE
DO 2, J = N+2,5

D(J) = 32-48
2 CONTINUE
NC = CHAR(D(1)+48) // CHAR(D(2)+48) //
+ CHAR(D(3)+48) // CHAR(D(4)+48) // CHAR(D(5)+48)

END

3k ok ok ok 3k ok ok sk ok ok sk ok ok ko ok 3k ok ok ok K ok kok
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SUBROUTINE NSECT( X1, Y1, Z1, X2, Y2, Z2, N )
REAL X1, Yi, 21, X2, Y2, Z2, N, R, E
COMMON /EF/ E(3,100), F(3,5000)

DO 1, R =1, N-1

E(1,R) = R/N*X1 + (N-R)/N*X2

E(2,R) = R/N*Y1 + (N-R)/N*Y2

E(3,R) = R/N*Z1 + (N-R)/N*Z2
1 CONTINUE

END
Kok skok Kok ok ok kR skok o ok kKK ok ok ok
SUBROUTINE FACE ( X1, Yi, Zi, X2, Y2, Z2, X3, Y3, Z3, N, CNT2)
INTEGER CNT2
REAL X1, Y1, Zi, X2, Y2, Z2, X3, Y3, 23, N, F, A, B, C
COMMON /EF/ E(3,100), F(3,5000)

CNT2 = 0
IF (N.LT.3) GOTO 3
DO 2, A = 1,N-2
DO 1, B = 1,N-1-A
C = N-A-B
IF (C.GT.0) THEN
CNT2 = CNT2 + 1
F(1,CNT2) = ( A*X1 + B#X2 + C*xX3 ) / N

F(2,CNT2) = ( A%Y1 + B#Y2 + CxY3 ) / N
F(3,CNT2) = ( A%*Z1 + B*Z2 + C*Z3 ) / N
END IF

1 CONTINUE
2 CONTINUE
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3 CONTINUE

END



