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ABSTRACT

This dissertation explores the integration of cognitive and behavioral sciences in-
sights into policy-relevant domains, focusing on labor market discrimination, online
teaching habits, and digital math education. The research comprises three studies:

1. An application of reinforcement learning models to analyze teachers’ decision-
making processes on the Zearn online math-teaching platform. This study
demonstrates how computational models derived from computational psy-
chology can capture complex, adaptive teaching behaviors and their impact
on student outcomes.

2. A two-phase study combining data exploration with a large-scale field exper-
iment to design and evaluate behavioral interventions for improving student
learning outcomes on the Zearn platform. This research showcases the poten-
tial of data-driven approaches in developing effective educational interven-
tions.

3. A meta-analysis of experimental correspondence studies investigating dis-
crimination in North American labor markets. This study examines how
perceptions of warmth and competence impact callback rates, providing in-
sights into the mechanisms underlying discrimination.

This work demonstrates the feasibility and value of bridging cognitive and behav-
ioral sciences with policy-making through innovative models and methodologies.
The findings presented in this dissertation contribute to a more comprehensive un-
derstanding of how these fields can collaboratively tackle complex challenges in
discrimination, education, and digital learning environments. Additionally, this re-
search establishes a groundwork for future studies at the intersection of cognition,
behavior, and public policy.
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NOMENCLATURE

Boosts. Hints or further explanations provided by Zearn when students struggle
with a problem.

Callbacks. Any response from an employer expressing interest in a particular can-
didate..

Competence. How capable a person is of acting on their intentions.

ICA. Independent Component Analysis.

Intersectionality. The interconnected nature of social categorizations such as race,
class, and gender, creating overlapping systems of discrimination or disad-
vantage.

Learning rate. A parameter that determines how much new information overrides
old information in reinforcement learning models.

MDP. Markov Decision Process.

Megastudy. A large-scale study involving multiple interventions tested simultane-
ously.

NMF. Non-negative Matrix Factorization.

PCS. Predicting Context Sensitivity.

Q-value. The expected cumulative future reward for taking an action in a given
state.

SCM. Stereotype Content Model.

Tower Alerts. Notifications sent to teachers when a student struggles with a specific
concept on the Zearn platform.

Tower of Power. An assessment feature in Zearn that presents students with chal-
lenging problems at the end of each lesson.

Warmth. The perception of how good or bad another person’s intentions are.

Zearn. A digital platform for mathematics education used by approximately 25%
of elementary school students in the United States.
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C h a p t e r 1

INTRODUCTION

Governments worldwide grapple with discrimination and educational challenges.
This dissertation presents research that offers examples of harnessing the power
of cognitive and behavioral sciences to create data-driven solutions and positively
influence behavior. The studies included in this thesis explore how insights from
these disciplines can be applied to policy-relevant domains, focusing on labor market
discrimination, online teaching habits, and digital math education.

In this introduction, I provide a brief background to the studies, explaining the
context and importance of the research. Next, I outline the problem statements,
followed by the research questions that guide this investigation. I then provide an
overview of the methodology used across the three studies. Finally, I discuss the
expected results and set out the structure of the subsequent chapters.

1.1 Background to the Studies
Social science research in the 21st century is experiencing an unprecedented trans-
formation, marking its “Golden Age” (Buyalskaya et al., 2021). This era has brought
forth interdisciplinary groups that break traditional academic boundaries, recogniz-
ing the importance of diverse perspectives in tackling complex social issues. Such
dynamics propel social science toward tackling some of our time’s most intricate and
pressing challenges (Buyalskaya et al., 2021). The growth in interdisciplinary re-
search within social science is also demonstrated by the increase in multi-investigator
grants funded by agencies such as the NSF (National Academy of Sciences Staff
et al., 2005), which underscores a systematic shift towards valuing collaborative
approaches to address the increasing complexity of social phenomena.

The growing emphasis on interdisciplinary research in the social sciences provides
a fertile ground for integrating cognitive and behavioral science into public policy.
This integration has seen significant developments in recent years. The cognitive
revolution in psychology, emphasizing mentalistic explanations for behavior (Miller,
2003), marked a paradigm shift in understanding human decision-making. This was
followed by the emergence of behavioral economics, which challenged traditional
economic models by incorporating psychological insights into economic decision-
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making (see Buyalskaya et al., 2021). More recently, the concept of nudges has
gained traction in policy circles, demonstrating how subtle changes in choice ar-
chitecture can influence behavior without restricting freedom of choice (Thaler &
Sunstein, 2003, 2009). The establishment of nudge units in governments, such as the
UK’s Behavioural Insights Team in 2010 further exemplifies the growing influence
of behavioral science in policy-making (Halpern, 2015). These developments have
paved the way for more evidence-based policy interventions that take into account
the complexities of human behavior and decision-making processes.

The field of education has seen rapid shifts towards online and digital learning plat-
forms, a trend accelerated by the COVID-19 pandemic (Di Pietro, 2023; Meeter,
2021). This transition has presented both opportunities and challenges for teachers
and students alike (Alabdulaziz, 2021; Morrison et al., 2019). Adaptive online
learning platforms have emerged as a promising strategy to mitigate adverse ef-
fects on learning, particularly in mathematics (Meeter, 2021; Ran et al., 2020).
The Organisation for Economic Co-operation and Development’s 2017 Report on
Behavioural Insights and Public Policy highlighted how behavioral interventions,
such as text message reminders, have been used to improve educational outcomes
(OECD, 2017, p. 95-104).

Furthermore, platforms like Zearn have emerged as powerful tools for personalized
learning. These platforms generate vast amounts of data on teacher and student
behaviors, offering unprecedented opportunities for understanding and optimizing
the learning process (Hershcovits et al., 2020; Salazar et al., 2007). However,
effectively leveraging this data to improve educational outcomes remains an ongoing
challenge (Al-Shabandar et al., 2018; Qiu et al., 2022; Shin & Shim, 2020).

In the realm of labor market discrimination, despite legal protections, subtle biases
continue to influence hiring decisions (Bertrand & Duflo, 2017). Correspondence
studies have been a primary tool for investigating this phenomenon, revealing per-
sistent disparities in callback rates based on factors such as race, gender, and age
(Lippens et al., 2023; Quillian & Lee, 2023). These studies have documented com-
mon patterns of discrimination across different social categories, with race often
emerging as the strongest factor (Lippens et al., 2023). The Stereotype Content
Model, proposed by Fiske et al. (2007), offers a framework for understanding these
biases through the dimensions of warmth and competence.

The potential of interdisciplinary approaches in addressing these challenges is sub-
stantial. By combining insights from various fields, researchers can develop more
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comprehensive solutions that account for the underlying cognitive and social factors
at play (Buyalskaya et al., 2021; Pernu & Elzein, 2020). This approach allows for
a more nuanced understanding of complex social phenomena and can lead to more
effective policy interventions (Haushofer & Fehr, 2014; Stiglitz et al., 2019).

1.2 Statement of the Problem
Despite the growing integration of behavioral science into public policy, significant
challenges remain in effectively applying these insights to complex societal issues.
Specifically, this dissertation raises the key problem areas: a) In online education,
vast amounts of data are available, but effective methodologies for translating these
data into actionable insights and effective interventions are still lacking. Two of
the studies included here aim to develop such methods; b) As previously noted,
despite being well-documented, the underlying mechanisms driving labor market
discrimination are not yet fully understood (Lippens et al., 2023). One of the studies
in this dissertation aims to deepen our understanding of these mechanisms.

1.3 Research Questions
These studies aimed to address the following overarching question: In what ways
can insights from behavioral and cognitive sciences be effectively applied in policy-
relevant domains? This broad question was explored through three specific studies,
each addressing a distinct aspect of the problem:

1. To what extent can reinforcement learning models capture and predict complex
teaching behaviors in online math education platforms, and in what ways can
these insights inform the design of digital learning environments and teacher
support systems?

2. In what ways can unsupervised machine learning techniques be combined
with field experimentation to develop and evaluate effective behavioral inter-
ventions for improving student learning outcomes in digital math education?

3. In what ways do perceptions of warmth and competence influence callback
rates in labor market discrimination, and can this understanding inform more
effective anti-discrimination policies?

These research questions were designed to address gaps in current studies and
provide actionable insights for policy-makers and practitioners in the fields of labor
market regulation, teacher education, and educational technology design.
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1.4 Methodology Overview
The methodology employed in this dissertation flowed from an interdisciplinary
approach that integrates methods and insights from behavioral science and public
policy. The research combined various techniques to provide a comprehensive
understanding of the complex phenomena under study. More precisely, each of the
three distinct studies employed a unique methodological framework:

Study 1 applied reinforcement learning models, adapted from cognitive neuroscience
and computational psychology, to analyze teachers’ decision-making processes on
the Zearn online math-teaching platform. This innovative approach combined com-
putational modeling with analysis of large-scale behavioral data to capture the
complex, adaptive nature of teaching strategies in digital environments.

Study 2 utilized a two-phase approach, combining unsupervised machine learning
techniques with a large-scale field experiment. In the first phase, Independent Com-
ponent Analysis was used to identify key dimensions of teacher behavior associated
with student success. These insights then informed the design of behavioral inter-
ventions, which were evaluated through a randomized controlled trial involving over
140,000 teachers.

Study 3 employed a meta-analysis of experimental correspondence studies to inves-
tigate the role of perceived warmth and competence in labor market discrimination.
This quantitative approach allowed for the synthesis of findings across multiple
studies, providing a robust understanding of the mechanisms underlying hiring dis-
crimination.

Data collection methods included surveys, meta-analysis of published studies, and
extraction of user activity data from the Zearn platform. Analysis techniques ranged
from traditional statistical methods to machine learning algorithms and computa-
tional modeling.

1.5 Hypotheses
Based on the existing literature and preliminary analyses, the following results were
anticipated:

For Study 1, it was hypothesized that reinforcement learning models would effec-
tively capture and predict complex teaching behaviors on the Zearn platform. These
models were expected to outperform traditional methods in explaining teachers’
adaptive strategies in digital learning environments.
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In Study 2, it was anticipated that data-driven behavioral interventions, designed
based on insights from unsupervised machine learning, would lead to significant
improvements in student learning outcomes. Specifically, interventions focusing
on teacher empathy and strategic engagement patterns were expected to increase
student lesson completion rates.

For Study 3, it was expected that perceptions of warmth and competence will signif-
icantly predict callback rates in labor market experiments. Specifically, applicants
perceived as high in both warmth and competence were expected to receive more
callbacks, while those perceived as low in either dimension were assumed to be
likely to face greater discrimination.

These expected results, if confirmed, were anticipated to provide strong support for
the value of integrating behavioral science insights into policy-relevant domains.

1.6 Structure of the Thesis
The remainder of this dissertation is organized as follows:

Chapter 2 details the application of reinforcement learning models to analyze teach-
ers’ decision-making processes on the Zearn platform.

Chapter 3 describes the two-phase study combining unsupervised machine learn-
ing and field experimentation to develop and evaluate behavioral interventions for
improving student learning outcomes.

Chapter 4 presents the meta-analysis of correspondence studies, examining the role
of perceived warmth and competence in labor market discrimination.

Chapter 5 synthesizes the findings from all three studies, discusses their implications
for policy and practice, and outlines directions for future research in the integration
of cognitive and behavioral science into public policy.
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C h a p t e r 2

UNVEILING ADAPTIVE PEDAGOGY: REINFORCEMENT
LEARNING MODELS ILLUMINATE TEACHER

DECISION-MAKING IN AN ONLINE MATH-TEACHING
PLATFORM

2.1 Abstract
Reinforcement learning (RL) models are widely used in computational psychol-
ogy and neuroscience to understand decision-making processes in lab-controlled
contexts. In this study, we offer a novel application of the Q-learning model on
a large-scale digital mathematics education dataset. Analyzing data from 1,832
classrooms across an academic year, we demonstrate that Q-learning outperforms
traditional logistic regression in capturing teachers’ adapti ve behaviors. We fur-
ther use estimated parameters from our computational models to identify teacher
behavioral profiles. Our findings reveal that those with higher learning rates achieve
superior student outcomes. We also observe that soci oeconomic factors corre-
late with model parameters, indicating potential systemic disparities in educational
approaches. This approach provides new paths for understanding pedagogical strate-
gies and generating potential interventions to enhance student educational outcomes.
By demonstrating the relevance of an RL model in a digital educational environ-
ment, our study introduces a new framework for applying models traditionally used
in lab settings to complex, real-world data.

2.2 Introduction
Predicting repeated behavior has been a long-standing goal of the behavioral sci-
ences, including economics, psychology, and neuroscience (Hagger et al., 2023;
Venkatesh et al., 2023; Verplanken & Orbell, 2022). Reinforcement learning (RL)
algorithms have emerged as a prominent way of quantifying these relationships,
assigning a mathematical relationship between contextual cues (states), behavior
(actions), and reward (Kaelbling et al., 1996; Sutton & Barto, 2018). These al-
gorithms have found wide application in neuroscience and cognitive psychology,
where they are used in data sets to model agents in specific environments (Zhang
et al., 2020). Researchers have also attempted to bridge this computational approach
and clinical applications.
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For example, Brown et al. (2021) investigated whether depression symptoms are
related to features of reinforcement learning, fitting a state-free q-learning algorithm
to participants’ behavior in a reward and loss learning task (i.e., learning a stimulus’s
expected monetary gains or losses, respectively). The researchers then regressed
depression symptoms on the model-derived parameters and found that depression
symptoms may selectively disrupt specific components of the reinforcement learning
process. Notably, the Brown et al. study bridges computational neuroscience and
clinical applications, offering a novel way of characterizing depression, typifying
patients, and opening new avenues for personalized treatment. The study resonates
with using estimated parameters as markers of individual differences, hinting at
the potential for personalized interventions based on these models. Similarly, our
current study examines the variation in estimated learning rate parameters and their
association with overall student outcomes.

Moreover, Niv et al. (2022) proposed a perspective on cognitive behavioral therapy
(CBT) by framing it within reinforcement learning (RL) theory. Highlighting the
similarities between these two domains offers a promising avenue for advancing
our understanding of CBT and refining its clinical applications. Specifically, the
researchers propose that CBT’s cognitive aspect may correspond to the model-
based learning system, while its behavioral component relates to the model-free
system. There are two examples of RL applications. First, prolonged exposure
therapy (i.e., vividly recounting a traumatic experience in a safe environment) is
akin to updating the value of a traumatic state. One novel insight from RL is
that moderate prediction errors (i.e., gradual extinction) are more effective than
high prediction errors, which can lead to new values being assigned to an entirely
different state. Second, RL theory can explain how CBT treatments for obsessive-
compulsive disorder work. Patients are asked to imagine and write down the worst-
case outcomes of not performing their obsessions. In RL terms, this activity forces
patients to create a model of the world with low transition probabilities for worst-
case scenarios, effectively reducing the perceived probability of feared outcomes.
While this theoretical framework is compelling, future research must substantiate
these novel insights with concrete empirical evidence.

More pragmatically, Park et al. (2019) explored the benefits of using a personalized
social robot learning companion to improve engagement and learning outcomes
among young English language learners. Their approach employed a model-free
Q-learning strategy, incorporating affective elements such as level of engagement
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and emotional states, to train a customized storytelling approach for each child. The
experiment included 67 children between the ages of 4-6 divided into one of three
groups: personalized robot, non-personalization robot, and a no-robot baseline.
Throughout 6-8 sessions, the children participated in storytelling activities with the
robots: the personalized robot used this reinforcement learning approach to predict
the complexity levels of the activities to maximize a child’s future engagement
and learning gains. Specifically, a) the reward was a combination of engagement
and learning progress (assessed through the child’s use of new words and syntax
structures), b) states were the users’ engagement (measured by verbal and nonverbal
cues) and affective arousal levels (measured by facial expressions), and c) actions
were the complexity level of the activities. Results indicated that the personalized
robot effectively adapted to each child’s needs, leading to better engagement and
learning outcomes than non-personalized and no-robot conditions. The positive
results suggest that this Q-learning strategy can offer tailored and improved teaching
methods. However, Park et al. made several arbitrary modeling choices without clear
empirical or theoretical justification (e.g., the decreasing learning rate had a lower
bound of 0.125), rather than exploring whether other parameter values yielded
better outcomes. Therefore, future models could enhance the robot’s outcomes
through parameter optimization. Additionally, the generalizability of these findings
to other educational settings and populations is needed. This approach effectively
operationalizes states, actions, and rewards in an educational space, resulting in
adaptive, engaging learning experiences for students.

The focus on neuroscience and cognitive psychology applications presents an op-
portunity to use methods from one set of disciplines to conduct research on data
traditionally used in another. In this paper, we aim to further this integration by
applying RL algorithms to model the decision-making process of teachers in the
math-teaching platform Zearn. RL provides a system of rewards and punishments
where the agent (in this case, the teacher) learns to make optimal decisions by
maximizing the rewards and minimizing the punishments (Kaelbling et al., 1996;
Sutton & Barto, 2018). By modeling teachers as agents in an RL framework, we
assume they make decisions to maximize their cumulative rewards over time. For
instance, the teacher chooses which pedagogical actions to employ, such as assign-
ing homework, checking student progress, or reviewing content, in anticipation of
enhancing student achievement. Applying RL algorithms allows for flexibility in
learning the best strategy given certain contextual information. We provide a model
of how teachers adapt their strategies in response to student performance and other
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Figure 2.1: Student lesson on Zearn.
The image displays an example of an online lesson with visual models on the
platform (Zearn, 2024c).

contextual factors. This approach offers a flexible model for our available data and
opens new avenues for understanding and enhancing human behavior in complex,
real-world settings.

The Zearn Platform
Zearn is a digital platform for mathematics education designed to facilitate the
teaching and learning of mathematics. About 25% of elementary school students
and over 1 million middle school students across the United States use Zearn (Zearn,
2024b). Its unique blend of hands-on teaching and immersive digital learning, paired
with its widespread adoption, provides a promising setting for understanding how
teachers adapt their strategies to optimize student achievement.

Zearn’s pedagogical approach includes interactive digital lessons using visual aids
(see Figure 2.1) and real-time student feedback. Students go through a series of
representations — concrete, pictorial, and abstract — each designed to scaffold
their understanding, i.e., “breaking down” problems (Jumaat & Tasir, 2014; Reiser
& Tabak, 2014, see) and prepare them for subsequent levels.
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Figure 2.2: Sample classroom report.
The image displays a summary dashboard where teachers can follow their students’
progress as indicated by the number of lessons completed (Zearn, 2024d).

The platform’s structure provides students with a personalized learning experience
(see Figure A.2 for a screenshot of the student portal) and teachers with resources
to track student progress and make informed decisions (see Figure 2.2 for a sample
class report). Zearn follows a rotation model of learning—that is, a blend of
traditional face-to-face learning (i.e., small group instruction) with online learning
(i.e., self-paced online lessons). With this approach, students can learn new grade-
level content in two distinct ways: independently, by engaging in digital lessons,
and in small groups with their teacher and peers (Zearn, 2024e, 2024g).

A key feature of Zearn is its badge system, which tracks student progress and
motivates continued learning (see Figure 2.3). Students earn badges upon mastery
of specific skills, providing a tangible representation of their achievement. This
system motivates students and provides teachers with valuable data on student
performance, informing their decision-making process (Knudsen et al., 2020). Zearn
also incorporates notifications, known as Tower Alerts, sent to teachers when a
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Figure 2.3: Student badges page.
The image displays a summary dashboard where students can see their total badges
earned (i.e., lessons completed) for a given mission (i.e., course module). Faded
badges on the image signify open lessons to be completed, unfaded badges represent
earned badges, and the locked icons correspond to future digital lessons that will
open once all activities in the current lesson are completed (Zearn, 2024h).

student struggles with a specific concept. This feature allows teachers to provide
timely support and address learning gaps, enhancing the platform’s capacity for
personalized learning (Zearn, 2024i).

Morrison et al. (2019) evaluated the effectiveness of Zearn Math in a large ur-
ban school district, employing a mixed-methods approach. The study revealed
mixed results. Quantitatively, no statistically significant differences in mathematics
achievement gains were found between treatment and comparison students on either
the Northwest Evaluation Association Measurement of Academic Progress (NWEA
MAP) or state assessments. However, usage data analysis showed positive correla-
tions between Zearn Math engagement and student outcomes. For instance, each
additional hour per year using Zearn was associated with a 0.0375 point increase in
NWEA MAP scores (p < .001), or a 0.02% increase. On the state assessment, each
additional lesson completed correlated with a 0.004 standard deviation improvement
(p < .001). Qualitatively, 83.6% of teachers agreed that Zearn Math engaged students
in mathematics education. Approximately 70% of teachers reported that both digital
lessons and small-group lessons promoted higher-order thinking skills. However,
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only 63.3% of teachers agreed that the curriculum was effective for increasing stu-
dent achievement. Notably, just under 50% of teachers felt adequately prepared to
implement Zearn Math, highlighting a key challenge. The study identified specific
strengths and weaknesses. The half-class rotational model was cited as a major
strength, allowing for differentiated instruction and independent learning. However,
this model also presented initial challenges, with teachers and administrators report-
ing a period of adjustment to the new instructional approach. Additionally, while
89.2% of students agreed that Zearn Math was good for learning mathematics, com-
parison group students showed significantly higher mathematics self-efficacy and
interest. These findings underscore both the potential of digital math platforms like
Zearn Math and the importance of comprehensive teacher preparation and support
for effective implementation.

Another noteworthy feature is the platform’s comprehensive professional develop-
ment component, which is accessible to schools with a paid account (see Figure A.3
for a sample training schedule). In this program, teachers within a school collab-
orate to explore each unit or mission through word problems, fluencies, and small
group lessons. They also analyze student work and problem-solving strategies.
This professional development prioritizes (1) each mission’s primary mathematical
concept, (2) visual representations to scaffold learning, and (3) strategies to address
unfinished learning from prior grades while preparing for future learning (Morrison
et al., 2019).

Researchers have also examined the Zearn approach for teachers’ professional de-
velopment. For example, Knudsen et al. (2020) focused on the effectiveness of the
Curriculum Study Professional Development (CS PD) program developed by Zearn
to enhance elementary school teachers’ Pedagogical Content Knowledge (PCK) in
teaching mathematics. The researchers used a case study approach, examining
eight teachers across various schools and districts who had undergone the CS PD
program. Data collection methods included think-aloud interviews, classroom and
CS PD session observations, and interviews with teachers and administrators, and
the researchers found that 75% of the teachers experienced growth in their PCK.
Knudsen et al. (2020) found that the key strengths of the CS PD program included
its relevance to practice, encouragement of collaboration among teachers, and its
effectiveness in developing big ideas. However, challenges in responding to stu-
dents’ in-the-moment problem-solving and varied teacher engagement were noted.
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The findings underscore the importance of enhancing teachers’ pedagogical content
knowledge, especially in mathematics.

One of the measures we developed in our study specifically captures pedagogical
content knowledge (see section 2.4). These insights can inform the development
of similar professional development programs in the current project, ensuring they
are effectively tailored to teachers’ instructional needs and students’ diverse back-
grounds. Further, we are able to model teacher behavior at the individual level.

Zearn’s integrated framework provides a rich repository of data for our analysis. The
variables delineated for investigation by Zearn encompass: (1) teacher engagement,
quantified through a diverse set of actions (see Materials and Methods and Table A.1;
(2) student achievement, denoted by variables such as lesson completion (i.e., badges
earned after each lesson is finished with full proficiency); and (3) student struggles,
monitored through variables such as tower alerts (see Table A.1 for a full glossary
of available variables).

Research Questions
We proposed the following research questions:

1. Characterizing Teacher Behavior: How can we best explain teachers’ action
choices? How does the explanatory power of reinforcement learning compare
to simpler baseline models? Which specific reinforcement learning model best
captures the empirical data on teacher behavior?

2. Impact of Estimated RL Parameters: How do individual differences in teachers’
decision-making patterns, as inferred from the parameters of the best-fitting rein-
forcement learning model, relate to heterogeneity in student achievement gains? Can
we identify specific teacher behavioral profiles that predict better student learning
outcomes?

3. Influence of Teacher and School Background: To what extent do school contextual
factors (e.g., socioeconomic status) account for variation in teachers’ instructional
choices, as quantified by the parameters of the reinforcement learning model?

Hypotheses
The hypotheses are:

1. The Q-learning model will effectively capture key behavioral signatures of
teacher learning and decision-making, specifically: (a) teachers will more likely
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select actions with higher Q-values, (b) average prediction errors will decrease over
time, and (c) Q-values will converge toward empirical reward rates over time.

2. The Q-learning model will outperform traditional methods (such as logistic
regression) in explaining teachers’ adaptive strategies, as measured by the Akaike
information criterion (AIC).

3. Individual Q-learning model parameters (e.g., learning rate) will be significantly
associated with measures of student performance and contextual factors.

2.3 Theory
Reinforcement Learning to Capture Patterns in Repeated Behavior
In RL, an agent learns to make decisions over time. Formally, an RL task is a tuple
⟨𝑆, 𝐴, 𝑅, 𝑃, 𝛾⟩, where:

• 𝑆 is a set of states, that is, the possible configurations or situations in which
the agent can find itself. The agent must be able to perceive the state of its
environment to some extent. In cases with multiple states, it must also be able
to take actions that affect, or change, the state (Sutton & Barto, 2018, p. 2).

• 𝐴 is a set of actions, that is, choices available to the agent.

• 𝑅𝑡 = E[𝑅𝑡+1 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] is a reward function (Sutton & Barto, 2018, p.
xx). This is a signal from the environment to the agent and corresponds to the
purpose or goal of the agent (Sutton & Barto, 2018, p. 53).

• 𝑃 = Pr[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] is a state transition probability, a function
that describes the probability of moving to state 𝑠′, given the current state 𝑠
and action 𝑎.

• 𝛾 ∈ [0, 1] is a discount factor, a value that determines how much the agent
values future rewards compared to immediate ones.

We also define the agent’s decisions as a probability distribution over actions,
namely, the policy 𝜋(𝑎 |𝑠) = Pr[𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠], which maps "perceived states of the
environment to actions to be taken when in those states" (Sutton & Barto, 2018, p.
6).

RL models have been used to explain learning and reward association (Rescorla
& Wagner, 1972; Thorndike, 1931). One common approach in human studies is
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to apply the multi-armed bandit task (Daw et al., 2006; Dennison et al., 2022).
In this type of experiment, participants are presented with multiple actions, each
with an unknown payoff. The subject’s goal is to learn the best outcome through
trial and error. In the beginning, the reward-action relationships are unknown, so
the participant must explore or sample each action (Sutton & Barto, 2018, p. 3).
This exploration-exploitation trade-off (i.e., trying new actions to learn about their
associated rewards versus sticking with actions known to yield good rewards) is a
central theme in RL (Daw et al., 2006; Wyatt et al., 2024) and has the potential to
provide valuable insights into how individuals learn and make decisions over time.

In the context of education and teaching, RL has been present as early as 1960,
with Ronald Howard applying this mathematical framework to instruction theory
(Howard, 1960). Later, in 1972, Richard Atkinson proposed a theory of instruction
that encapsulates the key components of a Markov decision process, including states,
actions, transition probabilities, reward functions, and a time horizon (Atkinson,
1972). In Atkinson’s framework, actions are instructional activities (e.g., assigning
problem sets) that can change a given state (e.g., student learning level). These
changes in states can yield rewards minus the associated cost of the action. For
example, a teacher may be rewarded with an increase in the knowledge or skill of
a student, but such reward must be balanced with its associated effort (e.g., labor
cost). Atkinson and colleagues continued to test many parameterizations of this
idea, contributing significantly to the development of RL theory in the context of
education (see Doroudi et al., 2019; Memarian & Doleck, 2024, for full reviews.).

While RL has been applied in educational settings, our work represents a significant
departure from the existing literature. For instance, Memarian and Doleck (2024)
highlight that the vast majority of RL application in education focus on automated
systems and artificial agents, with little work on improving teaching and learning
processes. This work addresses this gap by applying RL principles to human
teacher decision-making. We aim to demonstrate ways in which RL can inform and
optimize instructional choices by Zearn teachers. Furthermore, unlike the much of
the literature, with models that seek to maximize student outcomes, we also aim to
ensure our findings uncover meaningful behavioral patterns already present in the
data (i.e., through model falsification, see Palminteri et al., 2017, and section 2.4).

In the Zearn context, we define the decision process as follows:

1. Agents are the teachers.
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2. Actions include the teachers’ choices of specific pedagogical strategies.

3. The reward is a function of the average student performance or activity within
a classroom.

Note that the models presented here do not use a set of states 𝑆. Further, we only
consider model-free RL algorithms, which are so called because they do not require
the agent to learn 𝑃 (i.e., state transition probabilities) to approximate expected
rewards (Watkins & Dayan, 1992). In the following sections, we describe the
Q-learning model we use to capture teacher behavior in the Zearn platform.

Q-Learning Model
Consider a teacher using the Zearn platform. Each week, they must decide between
assigning additional homework (action 1) or not assigning additional homework but
spending their time on another task (the outside option, or action 0). At first, the
teacher is uncertain about the best action to take. They start with initial beliefs about
each action’s long-term value (Q-value). However, they know that these beliefs may
not be accurate and that they need to learn from experience.

Each week, the teacher chooses an action based on the current Q-value estimates.
For example, in week 1 the teacher believes that assigning homework (action 1) has
a slightly higher Q-value than other available activities (action 0). So, they assign
homework and observe the outcome.

Then, the teacher receives a reward signal (e.g., the students’ performance after the
homework assignment). They use this reward to update their estimate of the Q-value
for assigning homework, following the Q-learning update rule. This rule adjusts
the Q-value estimate based on the difference between the observed reward and the
previous estimate multiplied by a learning rate parameter.

Over the following weeks, the teacher continues to make decisions and update their
estimates based on the outcomes observed. Sometimes, they explore new actions
to gather more information, even if these actions do not seem optimal based on the
current estimates. Other times, the teacher exploits their experience by choosing
the action with the highest estimated Q-value. The degree of exploration (vs.
exploitation) is controlled by a temperature parameter (i.e., 𝜏).

As the teacher learns from experience, the Q-value estimates gradually converge
toward the true values for each action. We outline sample values for this teacher in
table 2.1.
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Week Q-value
Difference

Policy Choice Reward Prediction
Error

Updated
Q-value
Difference

𝑡 Δ𝑄𝑡 Pr𝑡 (𝑎 = 1) 𝑎 𝑅𝑡 𝛿𝑡 Δ𝑄𝑡+1

1 1.533 0 0 0.052 -2.891 0.815
2 0.815 0 0 0.163 -2.122 0.288
3 0.288 0.045 0 0.047 -1.649 -0.121
4 -0.121 0.782 1 0.039 -0.018 -0.125
5 -0.125 0.790 1 0.064 -0.030 -0.133
. . .

Table 2.1: Example of a Q-learning algorithm for a teacher on the Zearn platform.
Each week (𝑡), the teacher decides between Choice = 1 (assigning homework) and
Choice = 0 (not assigning homework) based on the difference in Q-values (𝑄𝑡) for
each action. The teacher’s choice (𝑎) is determined by the policy (Pr𝑡 (𝑎 = 1) =

1/(1 + 𝑒−𝜏Δ𝑈𝑡 (𝑎)), where Δ𝑈𝑡 = Δ𝑄𝑡 − cost(𝑎 = 1)). After observing the reward
(𝑅𝑡) associated with the chosen action, the teacher computes the prediction error (𝛿𝑡)
using 2.4. The Q-value difference is then updated using byΔ𝑄𝑡 (𝑎) = Δ𝑄𝑡−1(𝑎)+𝛼𝛿𝑡 .
As the teacher learns from experience, the Q-value difference converges toward the
highest reward. The values used here were drawn from the estimate of an actual
Zearn account (𝛼 = 0.25, 𝜏 = 10.57, 𝛾 = 0.46, cost = 1.38).

This model frames decision-making as a result of accumulated experience and the
anticipation of future rewards. In other words, Q-learning involves the iterative re-
finement of Q-value functions, which map an agent’s actions to evolving expectations
of future rewards (analogous to subjective value or utility). This methodological
approach is closely related to the classic multi-armed bandit problem, wherein the
agent faces a finite set of choices (e.g., slot machines), each linked to a specific re-
ward schedule, and aims to learn the action that yields the highest returns. Learning
in this model depends on adjusting expectations to reduce the impact of predic-
tion errors (the “surprise level,” or the difference between expected and realized
outcomes).

In this study, we opt for a state-independent version of Q-learning. That is, the
Q-values do not vary with a contextual variable but are learned for each action only.
This assumption is useful in scenarios where the state exerts minimal influence on
the outcome of the action or when the state is difficult to define or observe (Sutton
& Barto, 2018). As such, the Q-function represents the expected return or future
reward for taking action 𝑎 ∈ 𝐴 = {𝑎1, 𝑎2, ...} following a certain policy 𝜋 = Pr(𝑎).
The updating rule uses the equation:
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𝑄𝑡 (𝑎) = 𝑄𝑡−1(𝑎) + 𝛼𝛿𝑡 (2.1)

where 𝛼 is the learning rate, which determines how much the Q-value is updated
based on 𝛿, the reward prediction error. The reward prediction error is the difference
between the estimated Q-value and the observed discounted reward. This error is
used to update the Q-value of the chosen action in the direction of the observed
reward, scaled by the learning rate 𝛼, as follows:

𝛿𝑡 = 𝛾𝑅𝑡 (𝑎) −𝑄𝑡−1(𝑎) (2.2)

where:

• 𝑎 is the chosen action,

• 𝑅𝑡 (𝑎) is the immediate reward received after taking action 𝑎,

• 𝛾 is the discount factor1,

• 𝑄𝑡−1(𝑎) is the estimate of the Q-value for action 𝑎 in the previous period.

In other words, 𝛼 is the extent to which the newly acquired information will override
the old information. A value of 0 means the agent does not learn anything. The
agent starts with an initial Q-value and then updates the Q-values based on the
experiences it gathers from interactions with the environment. The update rule is
applied every time the agent takes action 𝑎 and receives a reward 𝑅. The agent
selects actions based on a policy function of the Q-values. A common choice is the
softmax action selection method, which chooses actions probabilistically based on
their Q-values, as follows:

Pr𝑡 (𝑎) =
𝑒𝜏𝑈𝑡 (𝑎)∑
𝑎′ 𝑒

𝜏𝑈𝑡 (𝑎′)
(2.3)

where:

• Pr𝑡 (𝑎) is the probability of choosing action 𝑎 at time 𝑡,
1Commonly, this parameter captures the degree to which future rewards are discounted compared

to immediate rewards. In this example, it could also act as a scaling factor of net reward.
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• 𝑈𝑡 (𝑎) = 𝑄𝑡 (𝑎) − cost(𝑎) is the utility of action 𝑎 at time 𝑡, which is the
difference between the Q-value of action 𝑎 (𝑄𝑡 (𝑎)) and the cost associated
with taking that action,

• 𝜏 is a parameter known as the inverse temperature, or the degree of randomness
in the choice behavior,2

• cost(𝑎) is the perceived effort or inconvenience associated with action 𝑎,

• The denominator is the sum over all possible actions 𝑎′ ∈ 𝐴 of the exponential
of their Q-values multiplied by the inverse temperature, and it functions as a
normalizing value.

Binary Actions

For cases in which actions are binary (i.e., only two options 𝑎 = 0 and 𝑎 = 1),
we can simplify the general Q-learning framework by tracking the value of one
action relative to an outside option with a Q-value and cost of zero (i.e., base
value 𝑄(𝑎 = 0) = 0 and cost(𝑎 = 0) = 0). Throughout our analyses, the action
represents engaging with the platform (see Results for details), while the outside
option represents not engaging.

Rather than tracking separate Q-values for each action, we track their difference
Δ𝑄𝑡 = 𝑄𝑡 (𝑎 = 1) − 𝑄𝑡 (𝑎 = 0). When action 𝑎 = 1 is chosen, we update this
difference based on its reward relative to the baseline Q-value difference. When
action 𝑎 = 0 is chosen and yields a reward, we need to decrease Δ𝑄𝑡 to indicate that
the outside option is more valuable than previously estimated. We start from the
update equations for each action and our definition of Δ𝑄𝑡 :

𝑄𝑡 (𝑎 = 1) = 𝑄𝑡−1(𝑎 = 1) + 𝛼(𝛾𝑅𝑡 −𝑄𝑡−1(𝑎 = 1))
𝑄𝑡 (𝑎 = 0) = 𝑄𝑡−1(𝑎 = 0) + 𝛼(𝛾𝑅𝑡 −𝑄𝑡−1(𝑎 = 0))

Δ𝑄𝑡 = 𝑄𝑡 (𝑎 = 1) −𝑄𝑡 (𝑎 = 0).

2One possible interpretation of the inverse temperature parameter 𝜏 is the agent’s confidence
in its Q-values, which controls the trade-off between exploration and exploitation. When 𝜏 is high,
the agent explores more because the action probabilities are more uniform. When 𝜏 is low, the
agent exploits more because the action with the highest Q-value is more likely to be chosen than the
others. Some models may also allow for agents to start with a high inverse temperature to encourage
exploration and then gradually decrease it to favor the exploitation of the learned policy.
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Then we derive the update rule for the difference in Q-values. When 𝑎𝑡−1 = 1, we
update only 𝑄𝑡−1(𝑎 = 1):

Δ𝑄𝑡 = 𝑄𝑡−1(𝑎 = 1) + 𝛼(𝛾𝑅𝑡 −𝑄𝑡−1(𝑎 = 1)) −𝑄𝑡−1(𝑎 = 0)
= Δ𝑄𝑡−1 + 𝛼(𝛾𝑅𝑡 −𝑄𝑡−1(𝑎 = 1))
= Δ𝑄𝑡−1 + 𝛼(𝛾𝑅𝑡 − Δ𝑄𝑡−1) since 𝑄(𝑎 = 0) = 0,

and vice versa when 𝑎𝑡−1 = 0:

Δ𝑄𝑡 = 𝑄𝑡−1(𝑎 = 1) − (𝑄𝑡−1(𝑎 = 0) + 𝛼(𝛾𝑅𝑡 −𝑄𝑡−1(𝑎 = 0)))
= Δ𝑄𝑡−1 − 𝛼(𝛾𝑅𝑡 −𝑄𝑡−1(𝑎 = 0))
= Δ𝑄𝑡−1 − 𝛼(𝛾𝑅𝑡) since 𝑄(𝑎 = 0) = 0

= Δ𝑄𝑡−1 + 𝛼(−𝛾𝑅𝑡).

Thus, 𝛿𝑡 , the prediction error for Δ𝑄𝑡 , can be written as:

𝛿𝑡 =


𝛾𝑅𝑡 − Δ𝑄𝑡−1 if 𝑎 = 1

−𝛾𝑅𝑡 if 𝑎 = 0
(2.4)

where:

• Δ𝑄𝑡 = 𝑄𝑡 (𝑎 = 1) −𝑄𝑡 (𝑎 = 0) is the estimate of the difference in Q-values for
the two actions,

• 𝛼 is the learning rate,

• 𝑅𝑡 is the immediate reward received after taking the chosen action.

Furthermore, the probability of choosing a particular action is determined by the
logistic function as follows:

Pr𝑡 (𝑎 = 1) = 1
1 + 𝑒−𝜏Δ𝑈𝑡

Pr𝑡 (𝑎 = 0) = 1 − Pr𝑡 (𝑎 = 1)

with utility difference:

Δ𝑈𝑡 = 𝑄𝑡 (𝑎 = 1) − cost(𝑎 = 1) − (𝑄𝑡 (𝑎 = 0) − cost(𝑎 = 0))
= Δ𝑄𝑡 − cost(𝑎 = 1) since cost(𝑎 = 0) = 0.
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Why Reinforcement Learning?
Reinforcement Learning (RL) presents a few advantages over models that employ
a static approach to link teacher efforts with student outcomes. It embodies the
flexibility to adapt and evolve strategies over time. This dynamic framework re-
flects the continuous learning process seen in biological systems and offers a way
to model the ongoing adaptations that occur in teacher-student interactions in the
classroom. Beyond our immediate study goals, RL models hold the potential for au-
tomating instructional decisions based on identified patterns, potentially alleviating
the workload on teachers and optimizing the educational process.

In this study, we treat teachers as agents who navigate their environment (i.e., the
classroom) by taking actions based on their observations and the feedback they
receive. RL algorithms can characterize individual profiles for teachers, providing
insights into how they adapt and respond to various states and rewards within the
educational setting. By estimating individual teacher parameters, RL provides
insights into valuable aspects for policymakers to design targeted interventions
aimed at enhancing educational outcomes.

Further, the flexibility of RL makes it an ideal tool to model how teachers address
changing classroom needs. By incorporating a wide range of variables (e.g., actions
and rewards), RL models are customizable to diverse educational contexts and
objectives. Given this flexibility in mathematically mapping the agent-environment
interaction (i.e., many models potentially satisfy our initial assumptions), our first
step is a competition of models, selecting a set of models applicable to our setting,
fitting them to the data, and comparing their performances.

2.4 Results
Selecting a model specification
To analyze Zearn data spanning an entire academic year, we first establish a frame-
work for actions and rewards. In this framework, teacher activities drive the educa-
tional process, and student achievements result from these efforts. Instead of relying
solely on one analytical approach, our strategy involves a large set of candidate
models, as shown in Table 2.6. Our overarching goal was to strengthen the reliabil-
ity of our findings and offer a detailed understanding of the underlying behavioral
patterns.
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Dimensionality Reduction
We first conducted a dimensionality reduction with Non-negative Matrix Factor-
ization (NMF) and four components (see Figures A.7 and A.8 for a comparison
of different methods by balancing reconstruction accuracy, i.e., R-squared, with
clustering clarity, i.e., Silhouette Scores). While our dataset offers many potential
action and reward variables, the direct use of these variables presents significant
challenges:

1. Complexity: The sheer number of available variables complicates the identi-
fication of meaningful patterns and relationships.

2. Dimensionality: The high-dimensional nature of the data risks diluting im-
portant signals due to the “curse of dimensionality.”3

3. Interpretability: Directly interpreting the impact of specific actions or be-
haviors on outcomes can be complicated by the intertwined nature of the
data.

By reducing the data to a manageable number of components, we can more readily
identify underlying patterns of behavior and interaction. To achieve this, we applied
Nonnegative Matrix Factorization (NMF) and used the results to define action and
reward variables rather than using individual metrics. One desirable feature of
NMF is that it produces sparse components, providing a distilled representation
of the data, where each one reflects a combination of behaviors or activities with
a potential thematic linkage. Given that our chosen RL models require discrete
action variables, we choose to split teacher actions into binary variables, following
a median split. In our case, a median split is equivalent to giving a value of 1 to any
positive value.

Interpreting Components After analyzing the NMF data, we identified four sig-
nificant components for teachers and students. Figure 2.4 displays these components
as heatmaps, offering insight into the underlying behavioral structures. Given the
loadings, we interpret the components as follows:

3Richard Bellman coined this phrase to describe the challenge of optimizing a control process
by searching over a discrete multidimensional grid, where the number of grid points increases
exponentially with the number of dimensions. He wrote: “In view of all that we have said in the
foregoing sections, the many obstacles we appear to have surmounted, what casts the pall over our
victory celebration? It is the curse of dimensionality, a malediction that has plagued the scientist
from the earliest days” (Bellman, 2015).
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Teachers Components

• Component 1 (Assessments): This component has substantial weights on
supplemental assessment materials, such as “Optional Problem Sets Down-
load,” “Optional Homework Download,” and “Student Notes and Exit Tickets
Download,” indicating a proactive approach to evaluating and supporting stu-
dent learning progress. It could also reflect a proactive approach to monitoring
student understanding and providing feedback.

• Component 2 (Pedagogical Knowledge): The high weights on “Guided
Practice Completed,” “Tower Completed,” “Tower Stage Failed,” and “Flu-
ency Completed” suggest that this component reflects when teachers are en-
gaged in acquiring subject-matter-specific pedagogy, learning to scaffold and
explain concepts in various ways.

• Component 3 (Group Instruction): This component, with prominent weights
on “Small Group Lesson Download,” “Whole Group Word Problems Down-
load,” and “Whole Group Fluency Download,” suggests a pedagogical ap-
proach focused on fostering interactive and comprehensive classroom instruc-
tion. It implies engagement in activities that promote group learning dynamics
and collective problem-solving skills.

• Component 4 (Curriculum Planning): The dominance of “Mission Overview
Download” and “Grade Level Overview Download” in this component sug-
gests that teachers are highly involved in strategic planning and curriculum
mapping. It involves organizing the curriculum content and structuring lesson
plans to align with grade-level objectives and mission overviews.

Student Components

• Component 1 (Badges): This component emphasizes “On-grade Badges”
and “Badges,” indicating that it measures students’ overall engagement and
advancement through the curriculum.

• Component 2 (Struggles): This component, which heavily weights “Boosts”
and “Tower Alerts,” seems to capture the frequency of occasions when students
require additional scaffolding and assistance.
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• Component 3 (Number of Students): This component mainly consists of
“Active Students,” which provides insight into what proportion of students
regularly log in to complete Digital Lessons.

• Component 4 (Activity): Dominated by “Student Minutes” and “Student
Logins,” this component highlights the amount of time students invest in
Zearn and the frequency of their interactions with it.
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(a) Teacher data. Total reconstruction R-squared: 0.387.
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(b) Student data. Total reconstruction R-squared: 0.952.

Figure 2.4: Heatmap of Non-negative Matrix Factorization (NMF) components for
teacher and student data.
The rows represent the original variables, and the columns correspond to the components.
The color gradient indicates the relative importance of each variable within a component
based on the proportion of the component’s total weight attributed to that variable. These
proportions were calculated by normalizing each variable weight within a component so
that they all sum to 1. The heatmaps label examples of low, moderate, and high proportion
values. (a) Component 1 (Assessments) focuses on using supplemental materials for student
evaluation; Component 2 (Pedagogical Knowledge) emphasizes developing subject-specific
teaching strategies; Component 3 (Group Instruction) centers on collaborative and whole-
class teaching methods; Component 4 (Curriculum Planning) highlights planning and lesson
preparation. (b) Component 1 (Badges) measures curriculum engagement and progression;
Component 2 (Struggles) indicates the need for additional academic support; Component
3 (Number of Students) tracks student participation within the platform; Component 4
(Activity) reflects the overall time spent and frequency of platform usage. The percentages
in parentheses below each component label represent that component’s contribution to the
overall reconstruction of the data, indicating its relative importance in the NMF.
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Feature Selection
In order to pre-select the most appropriate action and reward variables, we estimated
the Q-learning models alongside a) a baseline model (constant-only regression), b)
a logistic regression model inspired by dynamic analysis (Lau & Glimcher, 2005),
and c) a Q-learning model, and d) a simplified Q-learning model with no cost pa-
rameter and a starting Q-value of 0. This approach acted as a filter to capture the
action-reward configurations displaying the best fit. More specifically, we applied
reward structures extracted from classroom data via non-negative matrix factoriza-
tion (NMF) with the Frobenius Non-negative Double Singular Value Decomposition
(NNDSVD) and actions derived similarly from teacher data. Then, we selected one
teacher component as the action and one student component as the reward, yielding
16 configurations (4 possible actions and 4 possible rewards).

To account for temporal dynamics of actions influenced by lagged rewards, the
logistic regression models incorporated lagged variables. We tested lags ranging
from one to six weeks, accounting for temporal autocorrelation and potential delayed
effects. The results suggest a preference for a lag of two periods as optimal (based on
the “elbow” in the Area Under the Receiver Operating Characteristic curve (AUC)
and the minima in the Bayesian Information Criterion (BIC) curves, see Figure A.9).

We evaluated the performance of each model configuration using log-likelihood
values. Table 2.2 provides the log-likelihood scores for the four models across
all 16 action-reward configurations. Our analysis revealed that, across all model
types, the “Pedagogical Knowledge” action consistently showed the best fit, as
evidenced by the highest (least negative) log-likelihood values. Further, the full
Q-learning model consistently outperformed the others. Within Q-learning, models
incorporating “Badges” and “Activity” as rewards generally outperformed others,
although differences were small.

Model Performance and Behavioral Signatures
Given these findings, we focus our subsequent analyses on the models featuring
“Pedagogical Knowledge” as the action and “Badges” as reward (see Appendix for
similar analyses with “Activity” as reward). In the next stage of our analyses, we
used the Akaike Information Criterion (AIC) to further compare the performance of
our models, while adjusting for model complexity. Table 2.3 presents the number of
parameters and mean AIC values for each model (see figure A.10 for an empirical
cumulative distribution function). The scores were computed using individual
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model-fitting with Matlab’s cbm toolbox, with lower AIC values indicating better
model fit. The baseline model, with its advantage in parsimony, achieved the
lowest AIC, followed by the full Q-learning model. While the Q-learning model
shows higher log-likelihood than the baseline in non-hierarchical estimation (see
Tables 2.2 and A.4), this advantage is overwhelmed by the complexity penalty in the
AIC calculation. With an average of 25.7 weeks of data per teacher, the additional
parameters in the Q-learning model incur a substantial penalty relative to the log-
likelihood values. Interestingly, hierarchical estimation narrows this gap, with the
Q-learning model achieving a Leave-One-Out Information Criterion (LOOIC) 90.2
(SE = 34.0) points lower, suggesting improved out-of-sample prediction accuracy
when parameter information is shared across teachers. (see Table 2.3).

Furthermore, the baseline model does not provide insights into the decision-making
process of teachers, which is a key goal of this study. Further, Palminteri et al. (2017)
stresses the importance of verifying a model’s ability to produce a behavioral effect
of interest. As such, we proceed with a more detailed examination of the behavioral
signatures in our data and investigate which models best capture them, excluding
the simplified Q-learning model, which underperformed in both measures of model
fit.

Model Non-Hierarchical Hierarchical
Npar (per teacher) LL AIC LL LOOIC

Q-learning 5 −20, 900 60, 121 −23, 827 50, 380
Q-learning (cost-free) 3 −25, 291 61, 575
Lau & Glimcher 5 −21, 190 60, 700
Baseline 1 −23, 605 50, 875 −24, 478 50, 561
Mean number of weeks: 25.7 (SD = 5.9)
Number of classrooms: 1,832

Table 2.3: Summary of model fits for Pedagogical Knowledge as actions and Badges
as rewards.

Non-hierarchical estimates were obtained by fitting models independently for each classroom
using Matlab’s cbm toolbox. Hierarchical estimates were obtained through Hamiltonian
Monte Carlo sampling in Stan. In non-hierarchical fits, the Akaike Information Criterion
(AIC) is calculated from the Log-Likelihood (LL) and sum of parameters across all class-
rooms (−2LL + 2 · 1832 · 𝑁par), with lower values indicating better fit. For hierarchical
fits, the Leave-One-Out Information Criterion (LOOIC) estimates out-of-sample prediction
accuracy following Silva and Zanella (2024), with lower values indicating better fit. The
cost-free Q-learning and Lau & Glimcher models were not estimated hierarchically due to
their inferior non-hierarchical performance.
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Reward Seeking We first examine whether teachers display a preference for
choices with higher relative expected values, as measured by the estimated Q-
value difference. Figure 2.5a demonstrates this reward-seeking behavior in the data
(𝑏 = 1.02, 95% CI [0.947, 1.09]). It also shows that the non-hierarchical Q-learning
model most closely fits the observed data (𝑏 = 1.34, 95% CI [1.29, 1.39]). The
logit model underestimates the probability of choices with higher expected values
and overestimates choices with lower ones (𝑏 = 0.371, 95% CI [0.333, 0.409]). The
baseline model, as expected, does not capture the reward-seeking behavior and es-
timates a fixed choice probability (𝑏 = 0.005, 95% CI [0.002, 0.007]). Meanwhile,
Figure 2.6a shows the hierarchical Bayesian model presents weaker but still present
reward-seeking behavior (𝑏 = 0.482, 95% CI [0.453, 0.511]).

Uncertainty Aversion Next, we examine whether teachers are averse to choices
with a more uncertain reward relationship. For each action, we calculated the
cumulative standard deviation of rewards received when that action was chosen.
The action with the higher standard deviation of rewards was designated as the
uncertain option. Figure 2.5b provides insights into this behavioral signature. The
x-axis represents the percentile rank of the difference in expected value (EV) be-
tween uncertain and certain options, while the y-axis shows the proportion of times
teachers chose the uncertain option. The key measure in this plot is the location
at which the teacher is indifferent between uncertain and certain choices. The data
show uncertainty indifference at the 50.6 percentile (95% CI [40.7, 60.6]), and the
models estimate similar indifference points (Q-learning: 56.5, 95% CI [44.9, 68.2];
logit: 50.2, 95% CI [39.1, 61.3]; baseline: 53.2, 95% CI [40.0, 66.5]). The hi-
erarchical models also estimate similar indifference points (Q-learning: 52.7, 95%
CI [40.4, 65.1], see Figure 2.6b). Thus, this analysis cannot differentiate the three
models in their ability to capture this signature.

Evidence for Learning Given the Q-learning model best captures reward-seeking
behavior, we also examine its performance in capturing learning processes in teach-
ers’ decision-making. Figures 2.5c and 2.6c illustrate the prediction error over the
course of the academic year, averaged across classrooms. This measure is an in-
dicator of how well teachers are able to anticipate the outcomes of their actions.
In the nonhierarchical model, teachers demonstrate initially large prediction errors
that gradually decrease in magnitude throughout the year. On the other hand, the
hierarchical estimates are comparatively smaller but still trend toward zero with
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time. This consistent decrease in prediction errors suggests that teachers may be
progressively improving their ability to predict the rewards associated with their
choices.

Furthermore, Figures 2.5d and 2.6d provide additional insight into the learning
process by showing the evolution of Q-values and reward differences over the aca-
demic year, averaged across classrooms. Here, the two estimation approaches reveal
distinct patterns. The non-hierarchical model demonstrates a gradual convergence
between initially high Q-value differences and the relatively stable empirical dif-
ference in mean rewards (from the previous four weeks). The hierarchical model,
however, shows Q-values and reward differences tracking much more closely for a
large part of the school year.

Top Model Selection

These findings collectively suggest that teachers exhibit important reinforcement
learning characteristics: they seek to maximize rewards and learn from experience
over time. While the baseline model achieves better AIC scores in non-hierarchical
estimation due to its parsimony, the hierarchical Q-learning model achieves superior
out-of-sample prediction through LOOIC scores. Importantly, only the Q-learning
models captures meaningful behavioral signatures that the baseline cannot explain.
Thus, Q-learning provides the best fit among the theoretically informative models
while also offering interpretable parameters related to learning and decision-making
processes.

Heterogeneity and Optimality
We analyzed teacher-specific parameters to capture individual differences in learn-
ing and the relationship between model parameters, classroom characteristics, and
student performance metrics.

In the non-hierarchical estimation, we found that the cost parameter showed signif-
icant negative association with income level (𝑏 = −0.260, 𝑝 < .001) and positive
association with poverty level (𝑏 = 0.218, 𝑝 < .001). The learning rate (𝛼) also
showed a negative association with income level (𝑏 = −0.119, 𝑝 = .0156), whereas
the initial Q-value difference showed a positive association (𝑏 = 0.232, 𝑝 < .001).
Inverse temperature (𝜏) and the discount factor (𝛾) did not show significant associ-
ations with classroom or school characteristics (see Table A.2).
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Figure 2.5: Behavioral signatures of reinforcement learning in teacher decision-
making using non-hierarchical estimation.
The graphs compare three models (Q-learning, Logit, and Baseline) in their ability
to capture various aspects of teachers’ behavior. (a) Reward-seeking behavior:
The x-axis represents the percentile of the difference in Q-values between action
and inaction. The y-axis shows the proportion of times teachers chose to act.
(b) Uncertainty aversion: The x-axis represents the percentile of the difference in
expected value (EV) between uncertain and certain options, calculated from the
cumulative means and standard deviations of rewards associated with each action.
The y-axis shows the proportion of times teachers chose the uncertain option. (c)
Prediction Errors: The plot shows the mean reward prediction errors across teachers
over time. (d) Q-value and reward differences: The graph shows the difference in
Q-values or mean rewards between action and inaction over time. In all plots, black
points or dashed lines represent observed teacher behavior, while colored lines and
shaded areas show model predictions with 95% confidence intervals.

To understand how these parameter differences relate to student outcomes, we
examined their relationship with average weekly badges earned (indicating lesson
completion). Tables 2.4 and 2.5 both show that the learning rate (𝛼) is positively
associated with badges (non-hierarchical: 𝑏 = 0.072, 𝑝 < .001; hierarchical:
𝑏 = 0.063, 𝑝 < .001). However, the results diverge for inverse temperature (𝜏) (non-
hierarchical: 𝑏 = 0.064, 𝑝 < .05; hierarchical: 𝑏 = −0.090, 𝑝 < .001). Further, we
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Figure 2.6: Behavioral signatures of reinforcement learning in teacher decision-
making using hierarchical estimation.
The graphs compare two hierarchical models (Q-learning and Baseline) in their
ability to capture various aspects of teachers’ behavior. (a) Reward-seeking behavior:
The x-axis represents the percentile of the difference in Q-values between action
and inaction. The y-axis shows the proportion of times teachers chose to act.
(b) Uncertainty aversion: The x-axis represents the percentile of the difference in
expected value (EV) between uncertain and certain options, calculated from the
cumulative means and standard deviations of rewards associated with each action.
The y-axis shows the proportion of times teachers chose the uncertain option. (c)
Prediction Errors: The plot shows the mean reward prediction errors across teachers
over time. (d) Q-value and reward differences: The graph shows the difference in
Q-values or mean rewards between action and inaction over time. In all plots, black
points or dashed lines represent observed teacher behavior, while colored lines and
shaded areas show model predictions with 95% confidence intervals.

found differences in the strength of association with the discount factor (𝛾), which
shows a strong negative relationship in the non-hierarchical model (𝑏 = −0.082,
𝑝 < .001) but a weaker effect in the hierarchical case (𝑏 = −0.044, 𝑝 < .05). Both
models also show associations between badges and the starting Q-value difference
(non-hierarchical: 𝑏 = −0.075, 𝑝 =< .001; hierarchical: 𝑏 = −0.089, 𝑝 =< .001).
The cost parameter showed no consistent relationship with badges across models.
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These associations remained robust when controlling for classroom characteristics
(Models 2 and 3).

2.5 Discussion
Our study aimed to unravel the complex and adaptive nature of teacher behavior
within the Zearn Math online platform. By leveraging reinforcement learning (RL)
models, particularly the Q-learning approach, we sought to understand whether
teachers demonstrate learning patterns that could be captured by these models.

Characterizing Teacher Behavior
The Q-learning model demonstrated the best fit among hierarchical models, under-
scoring the importance of accounting for learning behaviors in this type of decision-
making process. At a group level, the hierarchical Q-learning model’s parameters
may serve as a window into the diverse ways teachers generally navigate the digital
learning environment. On the other hand, the non-hierarchical version of Q-learning
seemed to overfit the data, highlighting a key limitation of our approach: the rela-
tively sparse nature of our data (average 25.7 weekly observations per classroom)
does not allow for robust fitting of non-hierarchical Q-learning models.

Our behavioral signature analysis also support reinforcement learning processes.
The observed reward-seeking behavior, in which teachers show a preference for
choices with higher relative expected values, aligned closely with the predictions
of the Q-learning model. Another piece of evidence for learning was the consis-
tent decrease in prediction error magnitudes over the academic year. This finding
suggests that teachers were progressively improving their ability to anticipate the
outcomes of their choices. However, when analyzing uncertainty aversion, we did
not find significant differences between models, rendering this measure unsuccessful
in falsifying any models.

Impact of Estimated RL Parameters
Our analysis revealed a complex relationship between RL parameters and teacher
or school characteristics. First, the positive association between the learning rate
(𝛼) and student performance (badges) underscores the potential value of teacher
adaptability. However, further research is needed to establish a causal relation-
ship between educators who more readily update their expectations based on new
information (including classroom performance) and their students’ performance.
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Dependent Variable: Badges

(1) (2) (3)

𝛼 0.064∗∗∗ 0.083∗∗∗ 0.072∗∗∗
(0.015) (0.015) (0.015)

𝛾 -0.072∗∗∗ -0.077∗∗∗ -0.082∗∗∗
(0.018) (0.017) (0.018)

𝜏 0.035∗ 0.052 0.064∗
(0.017) (0.027) (0.027)

Cost 0.004 0.021 0.027
(0.017) (0.021) (0.022)

Starting Q-value -0.098∗∗∗ -0.073∗∗∗ -0.075∗∗∗
(0.019) (0.020) (0.020)

No. of Weeks 0.024∗∗∗ 0.022∗∗∗
(0.002) (0.003)

No. of Students 0.001 0.001
(0.002) (0.002)

No. of Classes -0.127∗∗∗ -0.126∗∗∗
(0.013) (0.016)

Charter School -0.086
(0.053)

Paid Zearn Account 0.228∗∗∗
(0.039)

Goodness of Fit (AIC) 0.169∗∗ 0.204∗∗
(0.064) (0.066)

Constant 1.558∗∗∗ 0.966∗∗∗ 1.357∗∗∗
(0.013) (0.140) (0.210)

Control for Grade Level Yes
Control for Poverty Level Yes

Observations 1,782 1,782 1,668
R2 0.067 0.154 0.210
Adjusted R2 0.064 0.149 0.202
RSE (df) 0.544 (1776) 0.519 (1772) 0.509 (1649)
F Statistic (df) 25.514∗∗∗ 35.756∗∗∗ 24.404∗∗∗

(5; 1776) (9; 1772) (18; 1649)
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 2.4: Impact of Non-Hierarchical Q-learning Model Parameters on Average
Weekly Badges Earned per Student.

Three linear regression models examine the associations between teacher-specific reinforce-
ment learning (RL) parameters and student engagement, measured by average weekly badges
earned per student. RL models were fit independently for each individual through maxi-
mum likelihood estimation. Model 1 includes only RL parameters. Model 2 controls for
the goodness of fit of the Q-learning model for each teacher (AIC), the number of weeks,
total students, and number of classes. Model 3 further incorporates controls for grade
level, poverty level, charter school status, and whether the school has a paid Zearn account.
Coefficients and standard errors (in parentheses) are provided for each parameter. RSE =
Residual Standard Error.
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Dependent Variable: Badges

(1) (2) (3)

𝛼 0.062∗∗∗ 0.060∗∗∗ 0.063∗∗∗
(0.015) (0.015) (0.015)

𝛾 -0.032 -0.045∗∗ -0.044∗
(0.017) (0.017) (0.017)

𝜏 -0.039∗ -0.098∗∗∗ -0.090∗∗∗
(0.016) (0.025) (0.026)

Cost -0.018 -0.024 -0.007
(0.021) (0.021) (0.021)

Starting Q-value -0.149∗∗∗ -0.106∗∗∗ -0.089∗∗∗
(0.021) (0.024) (0.025)

No. of Weeks 0.021∗∗∗ 0.018∗∗∗
(0.002) (0.002)

No. of Students 0.002 0.001
(0.002) (0.002)

No. of Classes -0.125∗∗∗ -0.123∗∗∗
(0.013) (0.016)

Charter School -0.098
(0.052)

Paid Zearn Account 0.220∗∗∗
(0.039)

Goodness of Fit (LOOIC) 0.233 0.170
(0.192) (0.196)

Constant 1.558∗∗∗ 1.446∗∗∗ 1.861∗∗∗
(0.013) (0.131) (0.204)

Control for Grade Level Yes
Control for Poverty Level Yes

Observations 1,782 1,782 1,668
R2 0.086 0.171 0.226
Adjusted R2 0.083 0.167 0.217
RSE (df) 0.538 (1776) 0.513 (1772) 0.504 (1649)
F Statistic (df) 33.449∗∗∗ 40.660∗∗∗ 26.685∗∗∗

(5; 1776) (9; 1772) (18; 1649)
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 2.5: Impact of Hierarchical Q-learning Model Parameters on Average Weekly
Badges Earned per Student.

Three linear regression models examine the associations between teacher-specific reinforce-
ment learning (RL) parameters and student engagement, measured by average weekly badges
earned per student. RL models were fit through hierarchical Bayes, where individual pa-
rameters are assumed to be drawn from population-level distributions. Model 1 includes
only RL parameters. Model 2 adds controls for the goodness of fit of the Q-learning model
for each teacher (LOOIC), number of weeks, total students, and number of classes. Model
3 further incorporates controls for grade level, poverty level, charter school status, and
whether the school has a paid Zearn account. Coefficients and standard errors (in parenthe-
ses) are provided for each parameter. LOOIC = Leave-One-Out Information Criterion, RSE
= Residual Standard Error.
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Other findings showed less stability between hierarchical and non-hierarchical mod-
els and after controlling for school characteristics. The discrepancy in these results
highlight the challenge of reliably estimating individual differences with limited ob-
servations. These results warrant further study to a) determine a direct relationship
between RL parameters and teacher behavior, and b) understand why teachers with
certain parameter values may have difference average student lesson completion.

Influence of Teacher and School Background
Our investigation also revealed associations between socioeconomic factors and
teachers’ interactions with Zearn Math. We found higher estimated cost parameters
for teachers in schools with two different markers of low socioeconomic status
(i.e., lower-income and high-poverty schools). This finding suggests a potential
relationship between school socioeconomic status and teachers’ perceived costs
of implementing new teaching strategies. However, further research is needed
to understand any mechanisms behind this association, such as whether resource
constraints or differences in training adequacy affect the estimated cost parameter.

Further, we observed a negative correlation between school income levels and teach-
ers’ learning rates in our RL models. This relationship indicates that teachers in less
affluent areas may demonstrate greater adaptability in adjusting their pedagogical
approaches. While this finding is statistically significant, the relationship between
resources and teaching adaptability is likely complex and influenced by many factors
not captured in our model.

These findings point to a complex interplay between socioeconomic factors, school
characteristics, and teachers’ decision-making processes in the context of online
learning platforms. Given the correlational nature of our study, future research could
explore these relationships more deeply, potentially informing targeted interventions
and support strategies. Such research might investigate how to ensure that all
teachers, regardless of their school’s socioeconomic status, have access to resources
and training that could help them effectively adapt their teaching strategies and
promote student success.

Implications and Future Directions
Our study represents an initial attempt to apply reinforcement learning models to
complex field choice data. It paves the way for further understanding learning in
real-world contexts, using frameworks derived from laboratory work. In general,



39

our Q-learning model highlights the dynamic, adaptive nature of teaching on the
Zearn platform.

For educational practice, our results highlight the heterogeneity in optimal teaching
strategies across educators, as revealed by our model parameters. This finding
suggests that teachers may benefit from differentiated approaches to improving their
teaching efforts.

From a policy perspective, the variations in model parameters across different
school contexts highlight potential systemic educational disparities. While our
study cannot establish causality, these findings raise important questions about the
factors influencing teachers’ decision-making and adaptability in various educational
environments.

While our study provides valuable insights, it is not without limitations. A notable
methodological challenged emerged in our model implementation, where data spar-
sity limited the non-hierarchical model estimates. Future work would benefit from
longer observation periods and higher-frequency measurements for more robust
estimation of individual differences.

Another significant limitation is the interpretability of our models. Eckstein et al.
(2021) reviewed the interpretability and generalizability of reinforcement learning
(RL) models in neuroscience and cognitive science, raising concerns on the widely
adopted assumption that estimated RL parameters explain specific (neuro)cognitive
functions across contexts. Methodological differences among RL studies yield
a considerable variation in interpretation; for instance, learning rates have been
linked to incremental updating, reward sensitivity, and approximate inference. This
variability suggests caution in generalizing our findings across different contexts
or populations. Future research should explore the applicability of our RL-based
approach across different platforms, subject areas, and cultural contexts.

Our study also opens new avenues for exploring other RL models and methodologies
to uncover deeper insights into the dynamics of educational technologies. These
models, if applied correctly, could enhance our understanding of effective teaching
strategies in digital contexts.

Additionally, while our model captures important aspects of teacher behavior, it
does not account for all factors influencing the decision process. Future research
could integrate a broader spectrum of variables, including teacher background and
training, to provide a more comprehensive understanding of teaching and learning.
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In conclusion, our study demonstrates the power of reinforcement learning models
in uncovering the dynamic nature of teacher decision-making in a digital learning
platform. By providing a new perspective on teacher behavior in online learning
environments, we provide a foundation for future research and practice based on
computational insights.

2.6 Materials and Methods

Step Methods Software/Tools

Data Processing Cleaning, Normalization R (Team, 2024) (tidyverse, Wick-
ham et al. (2019); data.table, Bar-
rett et al. (2024))

Dimensionality Reduction Principal Component Analysis
(PCA), Non-negative Matrix Factor-
ization (NMF)

Python (scikit-learn, scikit-learn
developers (n.d.)), R (reticulate,
Ushey et al. (2024))

Feature Selection, Analyti-
cal Methods

Q-learning Model Estimation R (cmdstanr for Bayesian estima-
tion, Gabry et al. (2024); R.matlab,
Bengtsson (2022)), Matlab (CBM
package for Laplace approximation,
Piray et al. (2019))

Model Evaluation Heterogeneity analyses of model per-
formance across teachers

R (lmtest, Zeileis and Hothorn
(2002); sandwich, Zeileis (2006)
and Zeileis et al. (2020))

Visualization Graphs and Tables R (ggplot2, Wickham (2016); gt,
Iannone et al. (2024); stargazer,
Hlavac (2022))

Table 2.6: Analytical steps employed in the study.

Data
Zearn provided administrative data for teachers and students, spanning across the
2020-2021 academic year. Teacher activity is time-stamped to the second and
includes the time spent on the platform and specific actions taken. On the other
hand, student data is aggregated at the classroom-week level due to data privacy
considerations. As such, we aggregated the teacher data to the classroom-week
unit of analysis. This level of granularity still enabled us to capture the temporal
dynamics of teacher-student interactions and their subsequent influence on student
achievement.
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Mean Median SD Min Max

Teachers 12.09 9 11.86 1 72
Students 268.69 207 279.57 1 3,289
Weeks 24.10 27 12.54 1 51

Table 2.7: Summary statistics by school.
The table presents the mean, median, standard deviation (SD), minimum, and max-
imum values for the number of teachers, total students, and average weeks of active
engagement (across all classrooms within a school).

The dataset includes 31,046 classrooms and 19,689 educators, with an average of
17.6 students per classroom. Classrooms and teachers are also linked to a school,
and Table 2.7 provides a summary of the number of students, teachers, and weeks
per school (see also Figures A.4a and A.4b for the distributions of school median
poverty and income levels).

Preprocessing and Exclusion criteria

We focused our analysis on the teachers who most likely take advantage of a wide
range of resources on the platform. Thus, we selected teachers who consistently
use the platform and work in traditional school settings. First, we selected virtual
classrooms with at least five active students weekly, filtering out parents or tutors
who may use Zearn outside the classroom setting. We also removed teachers
with more than four classrooms and those who logged in for less than 16 weeks
(Figure 2.7a reveals that a non-negligible number of classrooms has less than three
to four months of data). Finally, we excluded classrooms in the 6th to 8th grades,
as they represent only a small proportion of the data. Table 2.8 summarizes the
refined dataset, providing a snapshot of the key variables of interest. Their means
and standard deviations (SD) are computed for each grade level and overall (across
all grades).
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Figure 2.7: Histograms of number of weeks of data per classroom.

Panel (a) shows the raw distribution of the number of weeks per classroom. Most
classrooms include a full year (52 weeks) of data. A smaller but significant subset of
classrooms has less than 18 weeks of data. The dashed line represents the exclusion
threshold. Some classrooms consistently use the platform throughout the academic
year, while others show sporadic engagement, possibly reflecting trial periods or
intermittent usage. Panel (b) displays the distribution of the number of weeks per
classroom after data cleaning.
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Minutes Badges Tower Alerts Teacher Minutes

Overall, N = 135,784 81 (56) 2.43 (1.91) 0.47 (0.81) 84 (149)
Kindergarten, N = 7,486 41 (34) 4.44 (3.59) 0.05 (0.35) 21 (46)
1st, N = 21,126 80 (51) 2.50 (1.64) 0.40 (0.45) 65 (107)
2nd, N = 26,424 84 (55) 2.46 (1.67) 0.36 (0.59) 70 (122)
3rd, N = 26,316 84 (55) 2.42 (1.71) 0.44 (0.60) 100 (175)
4th, N = 27,048 84 (59) 2.13 (1.74) 0.56 (0.81) 100 (169)
5th, N = 27,384 84 (59) 2.10 (1.66) 0.71 (1.28) 101 (165)

Table 2.8: Summary statistics by grade level.
Classroom engagement metrics by grade level. The table presents the means and
standard deviations (in parentheses) of the following averages: minutes spent on the
platform per student per week, badges earned per student per week (indicating lesson
completion), Tower Alerts per lesson completion (indicating student struggle), and
minutes spent on the platform per teacher per week.

Operationalizing Actions, Rewards, and States
Teacher Actions

Teacher actions encompass a broad spectrum, from platform log-ins to resource
downloads and specific instructional activities. Table A.1 provides a list of the
actions available in the data.

Rewards (Student Actions)

In reinforcement learning (RL) models, reward variables capture the dynamics of
the environment in which learning and decision-making occur. The Zearn platform
provides a rich set of student activity and performance data that can be used to
define these variables, offering a quantifiable snapshot of classroom engagement
and learning challenges. Reward variables quantify the desirability of the outcomes
resulting from the agent’s actions, serving as feedback signals that guide the learning
process.

In this study, we take an agnostic approach, allowing the following student variables
to be treated as reward variables depending on our RL model specification:

1. “Active Students”: This variable represents the number of students actively
logging in to complete digital lessons within a given week (Zearn, 2022).
A high number of active students could be considered a positive outcome,
indicating successful student engagement.
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2. “Student Logins”: This variable tallies the frequency of students entering the
platform, potentially serving as an engagement metric (Zearn, 2024a).A high
frequency of student logins could be viewed as a positive outcome, reflecting
consistent student engagement.

3. “Badges (on grade)” and “Badges”: These metrics reflect the number of
new lessons completed weekly at students’ grade level and in general (Zearn,
2024e). Accumulating badges can serve as a positive signal, indicating stu-
dents’ mastery of the curriculum.

4. “Minutes per active student”: This variable measures students’ time on the
platform, potentially correlating with their focus and learning progress (Zearn,
2022). Achieving or exceeding the expected minutes can be considered a
positive outcome, while falling short may be viewed as a negative outcome.

5. “Tower Alerts”: These alerts signal instances when students repeatedly en-
counter difficulties within the same lesson (Zearn, 2024f). Tower Alerts could
be viewed as a negative signal, indicating that the current teaching strategies
may not be effective in addressing student difficulties.

Dimensionality Reduction

First, we standardized the dataset by z-scoring the variables of interest at the school
level (using school-wide means and standard deviations). We performed NMF and
evaluated the data’s reconstruction accuracy and cluster separation using, respec-
tively, the sum of squared residuals (a measure of the difference between the original
data and the reconstructed data) and silhouette scores—a measure of how similar
an object is to its cluster compared to other clusters (Rousseeuw, 1987).

We calculate the silhouette score with the formula (𝑏 − 𝑎)/max(𝑎, 𝑏), where 𝑎 is
the average distance within a cluster and 𝑏 is the average distance to the nearest
neighboring cluster. This score ranges from -1 to 1, with higher values indicating a
data point is well-matched to its cluster and poorly matched to neighboring clusters.

Nonnegative Matrix Factorization (NMF) Methodology

Let the original matrix (X) be a detailed description of all the teachers’ (or students’)
behaviors. Each row in the matrix represents a unique teacher-week (or classroom-
week), and each column represents a specific behavior or action. The entry in
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a specific row and column corresponds to the frequency of that behavior for that
particular teacher-week (or classroom-week). We then estimate X ≃ WH, such that
we minimize the following:

∥X − WH∥ ,W ≥ 0,H ≥ 0.

We used two different loss functions (Frobenius norm and Kullback-Leibler diver-
gence) and two different initialization methods (nonnegative double singular value
decomposition (NNDSVD) and NNDSVD with zeros filled with the average of the
input matrix (NNDSVDA)). The resulting matrices are:

1. Basis Matrix (W): This matrix represents underlying behavior patterns. Each
column is a meta-behavior or a group of behaviors occurring together.

2. Mixture Matrix (H): This matrix shows the extent to which each meta-
behavior is present in each teacher-week (or classroom-week). Each entry
in this matrix represents the contribution of a meta-behavior to a particular
behavior present in the data.

These matrices can reveal underlying patterns of behaviors (from the basis matrix)
and how these patterns are mixed and matched in different teachers (from the mixture
matrix). It allows us to assess the method’s performance under varying configura-
tions, with the sum of squared residuals and silhouette scores for comparison.

Model Performance and Feature Selection
To identify the most appropriate action and reward variables, we employed a multiple
model types:

1. Baseline Model:

Action𝑡 = 𝛽0 + 𝜖𝑡

where 𝛽0 is the intercept and 𝜖𝑡 is the error term.

2. Logistic Regression Model: Inspired by dynamic analysis (Lau & Glimcher,
2005), incorporating lagged variables to capture temporal dynamics:
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logit(𝑃(Action𝑡 = 1)) = 𝛽0 +
𝐿∑︁
𝑖=1

(𝛽𝑖𝑅𝑡−𝑖 + 𝛾𝑖Action𝑡−𝑖)

where 𝐿 is the number of lags, 𝑅𝑡 is the reward at time 𝑡, and 𝛽𝑖, and 𝛾𝑖 are
coefficients.

3. Q-learning Model: A reinforcement learning model capturing adaptive decision-
making processes, as explained in the theory section.

4. Simplified Q-learning Model: A version of the Q-learning model with no cost
parameter and a starting Q-value of 0.

We applied reward structures extracted from classroom data via Non-negative Ma-
trix Factorization (NMF) with the Frobenius Non-negative Double Singular Value
Decomposition (NNDSVD). Actions were derived similarly from teacher data. We
selected one teacher component as the action and one student component as the
reward, resulting in 16 possible configurations (4 possible actions and 4 possible
rewards).

Model Estimation

In our analysis, we adopt two estimation approaches. First, we use individual
maximum likelihood estimation, as described by Piray et al. (2019), to assess the
fitness of our RL models and estimate individual parameters across teachers.

Secondly, we implement hierarchical Bayesian inference in Stan using Hamiltonian
Monte Carlo sampling. Within this framework, we assume that for any given model
𝑚 and teacher 𝑛, the individual parameters (ℎ𝑚,𝑛) are normally distributed across
the population with ℎ𝑚,𝑛 ∼ 𝑁 (𝜇𝑚, 𝜎𝑚), where 𝜇𝑚 and 𝜎𝑚 represent the vectors of
means and standard deviation of the distribution over ℎ𝑚,𝑛, respectively. We use half-
Cauchy priors for population standard deviations and non-centered parameterization
(see Betancourt and Girolami (2015)).

For both hierarchical and non-hierarchical models, we transform the initial estimates
to generate constrained model parameters (e.g., the learning rate and discount factor
in the Q-learning model). For parameters within a (0, 1) interval, we use the inverse
logit function transform, Logit−1(𝑥) = 1/(1+𝑒−𝑥), and for intrinsically non-negative
parameters, we use an exponential transformation. Consequently, we estimate the
following unconstrained parameters:
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1. Q-learning:

• Learning Rate: Logit(𝛼) = log( 𝛼
1−𝛼 )

• Discount Rate: Logit(𝛾) = log( 𝛾

1−𝛾 )
• Inverse Temperature: log(𝜏)
• Cost: log(cost)
• Initial Q-value: Δ𝑄𝑡=0

2. Logistic and Baseline Regression Models:

• Parameters: 𝛽

Top Model Selection

Similar to Charpentier et al. (2024), we determined the best-fit model from our
set of non-hierarchical candidates by considering each model’s Akaike Information
Criterion (AIC). We computed the AIC using the maximum likelihood parameter
estimates:

AIC =

𝑁∑︁
𝑖=1

(
2𝑝 − 2 ln(𝐿𝑖)

)
where 𝑁 is the number of teachers, 𝑝 is the number of model parameters, and 𝐿𝑖
is the maximum likelihood estimate for teacher 𝑖 given their individual parameter
estimates.

For the hierarchical Bayesian estimation, we used the Leave-One-Out Information
Criterion (LOOIC) with mixture importance sampling (MixIS), following Silva
and Zanella (2024). This approach estimates out-of-sample prediction accuracy by
sampling from a mixture of leave-one-out posteriors:

𝑞𝑚𝑖𝑥 (𝜃) =
∑𝑛
𝑖=1 𝑝(𝑦−𝑖 |𝜃)𝑝(𝜃)∑𝑛

𝑖=1 𝑝(𝑦−𝑖)
∝ 𝑝(𝜃 |𝑦) ·

(
𝑛∑︁
𝑖=1

𝑝(𝑦𝑖 |𝜃)−1

)
where 𝑝(𝑦−𝑖 |𝜃) is the likelihood excluding observation 𝑖. The LOOIC is then
computed from the resulting estimates of LOO predictives, that is, LOOIC =

−2
∑𝑛
𝑖=1 𝑝(𝑦𝑖 |𝑦−𝑖).
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Behavioral Signatures

We examined three key behavioral signatures, similar to Charpentier et al. (2024)
and Cockburn et al. (2022):

1. Reward Seeking: We calculated the probability of choosing an action as a
function of its Q-value difference (percentile rank of Q-values). For each
model (Q-learning, Lau & Glimcher, and Baseline), we fitted a generalized
linear model (GLM) with a binomial family. The model took the form:

logit(𝑃(Action)) = 𝛽0 + 𝛽1𝑄percentile

where 𝑄percentile is the percentile rank of Q-values. We extracted the slope (𝛽1) and
its 95% confidence interval using clustered standard errors at the classroom level to
account for within-classroom correlations.

2. Uncertainty Aversion: We examined the probability of choosing the uncertain
option as a function of the difference in expected value (EV) between uncertain
and certain options. Uncertainty was defined based on the cumulative standard
deviation of rewards associated with each action. We fitted a GLM with a
binomial family:

logit(𝑃(Uncertain Choice)) = 𝛽0 + 𝛽1Δ𝐸𝑉percentile

where Δ𝐸𝑉percentile is the percentile rank of the difference in expected value be-
tween uncertain and certain options. We calculated the indifference point (where
𝑃(Uncertain Choice) = 0.5) and its 95% confidence interval for each model.

3. Learning Dynamics: We evaluated learning over time by examining two
aspects. First, we computed mean prediction errors across teachers as:

𝑃𝐸𝑡 = 𝛾𝑅𝑡 −𝑄𝑡−1(𝑎)

where 𝛾 is the discount factor, 𝑅𝑡 is the reward at time 𝑡, and 𝑄𝑡−1(𝑎) is the Q-value
of the chosen action at the previous time step. We then evaluated the evolution of
Q-value differences and the difference in mean rewards between action and inaction
over time. The reward difference was calculated using a rolling mean with a window
size of 4 weeks.
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All statistical analyses were performed using thelmtestpackage (Zeileis & Hothorn,
2002) for clustered standard errors and the sandwich package (Zeileis, 2004) for ro-
bust covariance matrix estimation.

Heterogeneity Analysis
After selecting the top-performing model (Q-learning), we explored heterogeneity
through:

1. Parameter-Classroom Characteristic Associations: For each Q-learning pa-
rameter (learning rate 𝛼, discount factor 𝛾, inverse temperature 𝜏, initial
Q-value, and cost), we fitted separate models with the following specifica-
tions:

a) For ordinal outcomes (income and poverty levels), we used ordered
logistic regression:

logit(𝑃(𝑌 ≤ 𝑗)) = 𝜃 𝑗 − (𝛽1𝑋1 + ... + 𝛽𝑝𝑋𝑝)

b) For count outcomes (total students and number of classes), we employed
Poisson regression:

log(𝐸 (𝑌 )) = 𝛽0 + 𝛽1𝑋1 + ... + 𝛽𝑝𝑋𝑝

c) For binary outcomes (paid account status), we used logistic regression:

logit(𝑃(𝑌 = 1)) = 𝛽0 + 𝛽1𝑋1 + ... + 𝛽𝑝𝑋𝑝

where 𝑋1, ..., 𝑋𝑝 represent the standardized Q-learning parameters.

2. Parameter-Student Outcome Associations: We examined how model param-
eters relate to student outcomes using multiple linear regression models. Two
key outcomes were analyzed:

a) Average weekly badges earned per student (indicating lesson comple-
tion)

b) Average weekly tower alerts per tower completion (indicating student
struggles)

The regression model took the form:

𝑌 = 𝛽0 + 𝛽1𝛼 + 𝛽2𝛾 + 𝛽3𝜏 + 𝛽4𝑄0 + 𝛽5cost + 𝐶𝑖Γ + 𝜖
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where 𝑌 is the outcome variable, 𝛼, 𝛾, 𝜏, 𝑄0, and cost are the Q-learning
parameters, and 𝐶𝑖 is a matrix of control variables including AIC, number of
weeks, total students, number of classes, grade level, poverty level, charter
school status, and paid account status.
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C h a p t e r 3

DISCOVERING DATA-DRIVEN NUDGES TO HELP STUDENTS
LEARN MORE MATH

3.1 Abstract
The COVID-19 pandemic has exacerbated learning deficits, particularly in math-
ematics (Di Pietro, 2023). Adaptive online learning platforms offer a promising
strategy to mitigate these adverse effects (Meeter, 2021), but designing effective
interventions to improve student outcomes via such platforms remains a challenge.
Here, we present a two-phase study that uses granular teacher and student engage-
ment data from a large online Math platform in the United States. First, using
unsupervised learning techniques (Independent Component Analysis, ICA; and a
modified Predicting Context Sensitivity (PCS) approach, drawn from Buyalskaya
et al. (2023), we identified critical teacher behaviors associated with improved stu-
dent performance, namely empathy-focused engagement and strategic weekly login
patterns. Building on these insights and in consultation with instructors, we devel-
oped two behaviorally-informed interventions: an empathy intervention encouraging
teachers to view math problems from the student’s perspective, and a habit-building
intervention emphasizing the importance of Friday logins for reflective analysis
and proactive planning. In a large-scale randomized controlled trial (N = 140,461
teachers across 22,281 schools), we demonstrated that the empathy intervention
significantly increased student lesson completion by 4.09%. The habit condition
also showed promise, increasing lesson completion by 1.81%, although this effect
was not significantly different from the active control. Our approach demonstrates
the potential of data-driven behavioral interventions to inform the development of
more effective digital learning interventions, ultimately improving math education
outcomes for students across diverse educational settings. Furthermore, we provide
a generalizable framework for designing targeted interventions in various contexts
where granular behavioral data are available.

3.2 Introduction
The decline in math performance among American students has been a critical issue
exacerbated by the COVID-19 pandemic, with some reporting an alarming half-year
lag in math achievement among U.S. public school students in grades 3-8 (Fahle et al.,
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2023). Learning losses and disparities, particularly among younger students, have
been significant due to reduced instructional time and remote learning challenges
(Di Pietro, 2023; Zierer, 2021). Moreover, Ewing and Green (2021) note that
repeated school closures compounded these issues, emphasizing that the pandemic
is not the only problem affecting math performance.

Emphasizing quality math instruction, particularly in pedagogical strategies, guid-
ance, and teacher-student relations, is crucial for improving math performance,
especially for students who have lost interest in mathematics or lack a sufficient
foundation (Battey et al., 2016; Wang et al., 2023). Furthermore, teachers’ deep
mathematical knowledge is also important, enabling them to understand students’
challenges better and provide adequate support (Battey et al., 2016; Hill et al., 2008).
This combination of empathy and subject expertise highlights the importance of spe-
cialized training focusing on pedagogical skills and content knowledge.

The pandemic also accelerated the adoption of digital platforms for math education.
Meeter (2021) found that adaptive practice software effectively mitigated the adverse
effects of school closures. This result is consistent with the qualitative evidence from
Alabdulaziz (2021), who reported that teachers found digital platforms beneficial
in addressing the challenges of remote learning during the pandemic. Recent meta-
analyses demonstrate that integrating digital tools and blended learning approaches
improves student outcomes significantly (Ran et al., 2020, 2021; Sadaf et al., 2021).
Leveraging these tools and insights gained during the pandemic should help address
longstanding educational challenges (Ewing & Green, 2021). In particular, inte-
grating technology, pedagogy, and content knowledge is essential, and professional
development programs are most effective when they focus on using technology to
foster a more engaging and effective learning environment (Blanchard et al., 2016;
Young, 2016).

The increased use of digital platforms has provided more data to support the im-
portance of student engagement in online learning. Blending online and in-person
teaching methods can effectively enhance engagement and understanding, depend-
ing on the implementation (Chiang et al., 2016; Q. Li & Ma, 2010; S. Li & Wang,
2022; Mawardi et al., 2023; Sadaf et al., 2021; Yu et al., 2023). Teachers play
a crucial role in helping students develop meta-cognitive skills to foster student
engagement (Haleva et al., 2020). Furthermore, teachers’ beliefs and self-efficacy
toward technology integration influence their willingness to adopt innovative teach-
ing practices (Ertmer et al., 2012; Liljedahl & Oesterle, 2020). This relationship
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between student engagement and teacher attitudes suggests the importance of cre-
ating solutions that can be implemented across diverse educational settings. Our
current study aims to address this need by developing and evaluating cost-effective,
high-quality interventions designed to improve student outcomes through enhanced
teacher engagement with the Zearn platform.

In this study, we partner with Zearn to address these topics. This math educa-
tion platform reaches approximately 25% of elementary schools and over a million
middle-school students in the United States. Zearn’s approach integrates interac-
tive digital lessons with hands-on teaching, aligning with the Common Core State
Standards and providing a comprehensive educational experience (“Zearn Math:
Top-Rated Math Learning Platform”, 2023).

Our study leverages this rich resource to offer an innovative approach to educational
interventions using behavioral science principles. Focusing on quality of teaching,
we align with Hanushek (2020), who maintains that the efficacy of resource utiliza-
tion supersedes quantity. We also follow current trends in providing cost-effective,
easy-to-implement interventions (i.e., nudges) that offer engagement incentives for
both teachers and students (Koch et al., 2015; Lavecchia et al., 2016; Lynch et al.,
2019).

Our two-step approach initially employs unsupervised learning techniques to analyze
behavioral patterns in teacher activity on Zearn, aligning with the data mining value
in educational research (Al-Shabandar et al., 2018; Hershcovits et al., 2020; Qiu et
al., 2022; Salazar et al., 2007; Shin & Shim, 2020). Subsequently, we aim to establish
the causality of our interventions through a large-scale field experiment guided by
recommendations from Greene (2022) for holistic, transparent, and reproducible
research. Our unique integration of behavioral science with digital education seeks
to provide impactful insights into math education and offer a blueprint for similar
studies in other fields.

Hypothesis
We hypothesized that interventions designed based on insights from our data analysis
would lead to significant improvements in student learning outcomes.
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3.3 Results
Study 1: Data-Driven Nudge Design
Our study used a comprehensive dataset from Zearn’s educational platform, encom-
passing the 2019-2020 academic year and spanning multiple schools in Louisiana.
Zearn’s content is designed to promote intuitive understanding by progressing from
concrete to pictorial to abstract examples. The platform offers a personalized ex-
perience, providing targeted remediation when a student encounters difficulties.
Teachers can monitor individual student progress by tracking activities such as
Badges and Tower of Power. Badges track student lesson completion, and the Tower
of Power is an assessment that presents students with challenging problems at the
end of each lesson. When students struggle or fail to answer correctly during a
Tower of Power, the platform provides Boosts (i.e., hints or further explanations)
and notifies teachers with a Tower Alert. These features aim to motivate students
and provide valuable information for educators to support learning.

Other important variables from the dataset included teacher logins, file downloads,
and specific interactions with educational content. Additionally, we accessed stu-
dent data at the classroom-week level, encompassing metrics such as lesson com-
pletion (i.e., Badges) and instances of learning difficulties (i.e., Tower Alerts). This
granularity allowed for an in-depth analysis of both teacher behaviors and student
performance.

The data revealed diverse engagement patterns. Teachers logged in multiple times
per week, exhibiting variations in the frequency and duration of their interactions.
The student data, aggregated at the classroom-week level, showed a wide range of
performance levels across various classrooms and schools. The standard deviations
of key variables underscored this diversity, as detailed in the summary statistics
of Table 3.1. This rich combination of teacher behaviors and student performance
metrics, carefully matched with a weekly frequency for each classroom, allowed for
an in-depth analysis while upholding privacy standards. Note that the analyses in
Study 1 underwent post hoc modifications to rectify some subsequently identified
errors. These changes, while adjusting the coefficients slightly, did not significantly
alter the overall results or patterns observed (refer to the SI for the original analyses).
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Table 3.1: Key educational metrics

N Aggregated Statistics per Teacher Mean Standard
Mean SD 1st Quartile Median 3rd Quartile

No. of teachers 2,506 - - - - -
No. of classes 4,228 1.69 0.97 1.0 1.0 2.0
No. of badges 5,230,607 2,087.23 1,627.26 1,035.2 1,682.8 2,643.2
Total minutes on Zearn 3,909,007 161.24 675.21 3.7 19.3 93.5

The table summarizes key educational metrics for Zearn teachers from July 2019 to
June 2020.

Study 1a: Identifying Key Teacher Behaviors Associated with Student
Performance Using Independent Component Analysis

Zearn offers a variety of activities for students and teachers, resulting in a large num-
ber of usage variables. We chose to summarize this large set of online activities into
more easily interpretable variables through a dimensionality reduction technique.
We employed Independent Component Analysis (ICA) on these teacher behavioral
variables, given the non-Gaussian nature of the data (Hyvärinen & Oja, 2000). This
statistical approach allowed us to uncover latent variables that might have been ob-
scured with traditional methods. The resulting components were weighted vectors of
specific teacher activities and were estimated to maximize statistical independence
in the data-generating process (Hyvärinen & Oja, 2000).

By examining the explained variance of each added component, we concluded that
three independent components best portray the underlying dimensions of teacher
behavior. (For more details, please refer to the SI section and Figure B.1). It is
important to note that the results presented here reflect a revised version of our
pre-experimental analysis. Although we maintained the same analytical framework,
we addressed several inaccuracies identified in a post hoc review (for detailed
information, please refer to the Supplementary Information). These corrections
yielded more precise and robust results.

The significant finding from the ICA was the prominence of the first Independent
Component (IC1), accounting for 15.39% of the variance in teacher Zearn activity, as
indicated in Figure 3.1. This result is significant in nudge engineering, highlighting
the need to focus interventions on elements encapsulated by IC1. Conversely, IC2
and IC3, with 12.56% and 6.3% variance explained, play lesser but still noteworthy
roles.



61

0.89

0.64

0.28

IC1 
 (15.4%)

IC2 
 (12.6%)

IC3 
 (6.3%)

Tower Struggled
Tower Stage Failed
Fluency Completed
Guided Practice Completed
Number Gym Activity Completed
Tower Completed
Small Group Lesson RD
Whole Group Word Problems RD
Optional Problem Sets RD
Whole Group Fluency RD
Optional Homework RD
Assessments RD
PD Course Guide RD
PD Course Notes RD
Grade Level Overview RD
Teaching and Learning Approach RD
Curriculum Map RD
Elementary Schedule RD
Mission Overview RD
Student Notes and Exit Tickets RD
Kindergarten Activity Completed
Kindergarten Mission RD
Kindergarten Schedule RD
Assessments Answer Key RD

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Independent Component Analysis (ICA) results.

The heatmap displays teacher actions in each row, while the columns represent the
three independent components (IC1, IC2, IC3) that explained the most variance in
the teacher behavioral data, with their respective percentage of variance explained
in parentheses. The color gradient on the heatmap indicates the relative importance
of each activity within these components. Note that these metrics pertain to teacher
activity on the platform, not student actions. RD = Resource Download.

The activities with the highest weighting in IC1 included metrics associated with
the Tower of Power (Struggled, Failed, and Completed) and other problem-solving
exercises (i.e., Fluency exercises, Guided Practice, and Number Gym Activity) .
Notably, the top two variables in this component involved an interactive feature of the
Tower of Power when students struggle to understand a concept (i.e., Tower Struggled
or Failed). The platform offers tailored support through Boosts, which break down
questions into smaller steps, helping students understand and correct their mistakes.
Given that the metrics in the ICs pertain to teacher activity, IC1 suggests that teachers
proactively engage with these problem-solving activities, sometimes deliberately
making mistakes, to better understand the student experience. This interaction may
help teachers devise strategies to break down complex problems into simpler steps,
known as instructional scaffolding (Beed et al., 1991; Cai et al., 2022).

After consulting with Zearn educators and administrators (see SI for details), it
was that teachers with high levels of IC1 apply an empathy-driven pedagogy. In
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this context, empathy refers to teachers’ ability to comprehend and engage with
students’ challenges, as demonstrated by their focused attention on areas where
students struggled or succeeded. The weightings in IC1 for activities like Tower
Struggles (0.895), Fluency Completed (0.838), Guided Practice Completed (0.706),
and Number Gym Activity Completed (0.661) were significantly higher compared
to other activities. This pattern underlines this empathy-driven process in teaching,
where teachers’ engagement with the platform is focused on understanding student
challenges.

The second component, IC2, showed substantial weightings on a variety of Resource
Downloads (RD), particularly Small Group Lessons (0.717) and Whole Group (i.e.,
entire class) Word Problems (0.669). We labeled this component as “Classroom
Activities.” IC3, with strong weights on Resource Download (RD) for the Profes-
sional Development (PD) course guide (0.663) and course notes (0.657), was labeled
“Professional Development.” This component, accounting for a smaller variance
(6.296%), was harder to interpret due to more diverse activities.

Table 3.2: Regression of log badges on the independent components.

ln(Badges + 1)
All Schools Zearn Curriculum

IC 1 0.010* 0.070***
(0.0043) (0.0070)

IC 2 0.056*** 0.056***
(0.0037) (0.0040)

IC 3 -0.006*** -0.006**
(0.0017) (0.0023)

No. of Classes -0.067*** -0.038***
(0.0079) (0.0100)

Average Intercept 1.276 1.133
R-Squared 0.012 0.027
Teachers 2506 1413
Classes 4094 2389
Weeks 39 39
Total 115532 67549

Note: * p<0.05; ** p<0.01; *** p<0.001

The table displays the results of a panel regression model with clustered standard
errors at the teacher level in parentheses.
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Building upon these findings, we advanced to a fixed-effects panel regression model
that accounted for various temporal and subject-specific variables and the potential
impact of teachers handling multiple classes. The regression formula incorporated
changes in independent components (IC1, IC2, IC3) as predictors for the change
in the logarithm of badges (+1), accounting for individual teachers, classes, and
weeks. As presented in Table 3.2, the regression highlighted a strong positive
contemporaneous correlation between IC1 and badges, with a coefficient of 0.0101
(p = 0.0186), suggesting a significant impact on student achievement. Upon the
recommendation of Zearn administrators, a supplementary analysis was conducted,
focused exclusively on schools using Zearn either as their core curriculum or a key
supplementary resource, effectively excluding teachers who independently chose
Zearn despite the absence of school-wide implementation. This subset analysis
revealed an effect of 0.07 (p < .001), indicating that IC1 is especially significant for
those schools.

This correlation also has practical significance. It indicates that an increase in
activities associated with IC1, such as increasing the encounters of “Tower Struggle”
by one standard deviation, is associated with an approximate 1.1 percent increase in
student badges. Although this increase may seem small, it may be substantial in the
context of nudges, where even modest changes often lead to far-reaching effects.

Study 1b: Identifying Teacher Calendar Predictability Associated with
Student Performance

Prompted by Buyalskaya et al. (2023), we sought to uncover the subtleties of pre-
dictable behaviors within an educational setting. Our primary goal was to understand
how regular teacher interactions with the Zearn platform impacted student learning
outcomes. To measure this, we used the log-transformed average weekly badges per
student over the entire school year as our dependent variable. We constructed our
explanatory variables with careful consideration of the patterns that could identify
predictable engagement and their relationship to student performance:

1. Login Percentages across months and days of the week: The frequency of
logins across different time periods. For example, among all the logins for a
teacher, we assess how many are from January or Tuesdays, compared to all
other months and days of the week, respectively.
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2. Average Minutes: Teachers’ weekly average time spent on the platform, mea-
sured in minutes.

3. Average Streak: Average number of consecutive days in which the teacher
logs in, excluding weekends.

4. Average Weekday Streak: Average number of consecutive weekdays in which
the teacher logs in (e.g., three Tuesday in a row).

5. Average Days Between Logins: Average number of days between two login
instances.

6. Total Logins: Total number of teacher logins over the entire school year.

To account for any school-specific factors that may have influenced the relationship
between teacher behavior and student achievement, we estimated a linear regression
model. Unlike Study 1, this regression did not follow each teacher or class across
weeks, as our unit of analysis was a teacher summed across classrooms and averaged
across all weeks. Note that our regression omitted the login percentages from July
and Sunday, periods with low login incidence, to avoid multicollinearity.

The regression results, as detailed in Table 3.3, revealed that all weekday login
percentages positively affected student badges. However, Friday logins stood out
significantly, suggesting that specific days of the week have more influence on
habitual engagement.

In particular, our analysis indicates that shifting 10% of logins from other weekdays
to Fridays, without increasing overall platform usage, could boost student lesson
completion by around 9.68%. For the typical teacher, this means switching from
one Friday login per month to two while reducing one login from another weekday
during that month, resulting in an increase of 13.78% in average weekly lesson
completion. This outcome suggests an importance of strategic engagement rather
than just login frequency.
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Table 3.3: Regression of log average badges on calendar predictability variables.

Avg. Weekly Badges
Estimate (SE) P-value

(Intercept) 4.513 (2.759) .102
%Monday 0.859 (0.567) .13
%Tuesday 0.725 (0.449) .107
%Wednesday 0.866 (0.628) .168
%Thursday 0.831 (0.515) .107
%Friday 1.788 (0.507) <.001
%Saturday 0.938 (1.167) .421
%January -4.118 (2.742) .133
%February -2.803 (2.843) .324
%March -3.818 (2.764) .167
%April -3.858 (2.789) .167
%May -3.193 (2.790) .252
%June -2.662 (2.965) .369
%August -4.008 (2.796) .152
%September -4.117 (2.783) .139
%October -3.757 (2.864) .19
%November -3.989 (2.785) .152
%December -3.185 (2.904) .273
Avg. Minutes 0.011 (0.002) <.001
Avg. Streak 0.061 (0.108) .573
Avg. Days Between Logins 0.002 (0.003) .435
Avg. Weekday Streak -0.132 (0.185) .475
Total Logins 0.011 (0.002) <.001
R-squared 0.133
N 4273

The table displays the results of the regression model with standard errors clustered
at the school level in parentheses. Coefficients on months and days measure the
difference between the effects of login percentage relative to the July percentage (for
months) and the Sunday percentage (for days).

Based on our data analysis and focus group discussions with teachers and adminis-
trators, we hypothesized that this pronounced effect may be due to two key factors.
First, Friday logins could facilitate “Reflective Catch-Up,” enabling teachers to re-
view and analyze the previous week’s activities and make necessary adjustments.
Second, “Foresighted Planning” may occur on Fridays as teachers proactively plan
for the upcoming week, a practice less common on weekends.
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Study 2: Nudge Engineering—From Data to Intervention Design
In Study 1, we discovered that specific psychopedagogical strategies, habits, and
timing of teacher interactions were associated with promoting student success on
digital platforms. With this foundation, we could craft effective educational inter-
ventions and strategies. By leveraging the insights from the first study, we aimed to
develop targeted interventions to increase student learning outcomes.

Study 2a: Using ICA Insights to Design an Empathy-Driven Teacher
Intervention

We used the first component from the ICA in Study 1a to design an empathy nudge.
Our analysis in Study 1a indicated that this process was linked to the highest weighted
behaviors in IC1 (note that the original analysis yielded an empathy coefficient
of 0.0255 for the whole sample and 0.1434 for the curriculum-only subsample,
versus 0.0101 and 0.07, respectively, in the revised analysis; refer to SI for details).
This intervention involved sending emails to teachers, encouraging them to adopt
a more student-centered teaching approach by viewing math problems from their
students’ perspective. The emails contained key related messages that mentioned the
general findings of a “recent analysis” (i.e., Study 1a), emphasized the importance
of empathy in teaching math, and included advice from other teachers and helpful
tips for assisting students who struggle with a lesson. The emails also suggested
specific actions, including using Zearn’s features to view lessons from a student’s
perspective and checking the Tower Alerts Report (see SI for the complete emails).
We hypothesized that this empathy approach would significantly enhance student
performance.

Study 2b: Using Calendar Predictability Insights to Design a Friday Login
Intervention

In Study 2b, we aimed to test whether nudging teachers to log in on Fridays, as
opposed to an unspecified day, would improve student performance. Our approach
involved sending emails to teachers, reminding them to log in on Fridays and sug-
gesting reflective and planning behaviors to engage in during those sessions. These
emails included testimonials from other teachers, research insights, and motiva-
tional messages to encourage habit formation. Teachers were also encouraged to
review student progress and identify areas where students needed additional support
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(see SI for the complete emails). Our rationale was that Friday logins would aid in
reflecting on the week’s activities and proactive planning for the following week.

In addition, we designed a control email tailored to this treatment. These emails
were sent every Wednesday to remind Zearn teachers to review their Zearn Pace
Report without the personalized behavioral prompts or motivational materials in the
Friday treatment group emails. Although the control emails prompted participation
with Zearn, they did not provide information on Friday logins, introspection, or
strategic preparation.

We hypothesized that the Friday approach to teacher engagement with the platform
would yield a greater impact on student achievement than the Wednesday control or
our study-wide control.

Intervention Impact Evaluation

In collaboration with Zearn, Study 2 became part of a large multi-arm megastudy,
set in motion during a critical four-week period in 2021, involving over 140,000
teachers and nearly 3 million students. Teachers in our study taught a median of 20
students (mean = 21.30, SD = 15.31) in a median of 1 classroom (mean = 1.15, SD
= 0.59). Before the intervention, teachers in our study had, on average, logged into
Zearn a total of 3.61 times between July 1, 2021, and September 14, 2021 (SD =
8.80) (see SI for a complete description of the sample).

Table 3.4: Efficacy of different teacher engagement interventions on student learning
outcomes.

Total Badges
Treatment Estimate (SE) P-value

Empathy 0.063 (0.029) .0333
Friday 0.067 (0.029) .0213
Friday Control 0.090 (0.029) .00194
Intercept (Study Control) 0.097 (0.015) <.001
R-Squared 0.685
N 140461

The table showcases the marginal effects of the “Empathy” and “Friday Login”
interventions compared to the study-wide control as a baseline. It also includes the
results from the Friday-specific control group. We measure student achievement by
the number of badges students earned.
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As stated in our pre-registration, we evaluated the impact of intervention messages on
the number of math lessons completed by students during the four-week intervention
period (Gallo et al., 2022a, 2022b). Students in the megastudy control condition
completed a regression-estimated 1.780 lessons during the 4-week intervention
period. Table 3.4 shows that our interventions increased the number of math lessons
completed by students during the intervention period by a regression-estimated
average of 0.0547 lessons, which is a 3.07% increase over the megastudy control
condition. Specifically, the empathy treatment increased the number of lessons
completed by students by 0.0628 lessons, or a 3.53% increase over the megastudy
control condition (d = 0.0147, p = .018). The Friday treatment increased the number
of lessons completed by students by 0.0550 lessons, or a 3.09% increase over the
megastudy control condition (d = 0.0250, p = .068). The Friday treatment was
not significantly different from the Friday-specific control (F(1,118137) = 0.39, p =
.733).

Table S3 presents unstandardized coefficients from our primary regression analysis
and unadjusted, robust SEs and CIs. Additionally, we used the Benjamini-Hochberg
(BH) procedure to compute adjusted p-values, which help to control for false discov-
ery rates when conducting multiple comparisons (Benjamini & Hochberg, 1995).
Before adjusting for multiple hypothesis testing, all treatments exhibited significant
benefits. However, only our treatment-specific control had a BH-adjusted p-value
of less than 0.05. This intervention involved encouraging teachers to log in to Zearn
weekly to receive updated student performance reports. Although reliable, the effect
of this intervention was small, resulting in an estimated 0.0900 extra lessons com-
pleted in four weeks, or a 5.06% increase over the megastudy control (d = 0.0252,
p = .002). Even after applying the James-Stein shrinkage procedure to adjust for
the winner’s curse (i.e., the maximum of 15 estimated effects is upward biased), we
estimated that this intervention still produced 0.059 extra lessons completed, or a
3.30% increase over the control condition (James & Stein, 1992).

3.4 Discussion
This study aimed to improve student math learning on the Zearn platform by in-
tegrating data analysis into educational intervention. We identified critical teacher
behaviors influencing student performance and evaluated two novel interventions:
empathy and Friday logins.
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Our first study revealed subtle but significant patterns in teacher engagement that
traditional analyses might overlook. Study 1a identified a significant independent
component strongly associated with metrics related to struggles and achievements,
suggesting teachers’ empathy-driven engagement, focusing on areas where students
faced challenges or succeeded. This pattern also correlated with a significant in-
crease in student achievement, aligning with findings emphasizing the importance
of teacher empathy in educational outcomes (Battey et al., 2016; Hill et al., 2008).
In Study 1b, we discovered that teachers who logged into Zearn on Fridays had a
notable impact on student math performance. This behavior suggested a commit-
ment to continuous planning and support, echoing the findings of Blanchard et al.
(2016) that technology integration does not need large-scale changes in practices to
enhance student learning. Overall, our research highlights the importance of teacher
engagement and personalized instruction and feedback in improving student perfor-
mance on the Zearn platform. As Ertmer et al. (2012) have emphasized, aligning
student-centered beliefs and practices is vital to success, regardless of technological,
administrative, or assessment barriers.

In Study 2a, the success of the empathy intervention can be attributed to its alignment
with psychological principles that emphasize the importance of emotional connec-
tivity between teachers and students. This intervention appears to have fostered a
more engaging and supportive learning environment, a feature essential for the suc-
cess of digital platforms (Koch et al., 2015; Lavecchia et al., 2016). In contrast, our
initial hypothesis suggested that Friday logins might have a special effect on student
outcomes. Study 2b’s results highlighted that there were no statistically significant
differences between the Friday treatment and its control (Wednesday). It is likely
that the initial correlation between Friday and student achievement was spurious, or
that no causal relationship exists between Friday logins and student achievement.

Notably, our study-specific control outperformed all other megastudy interventions.
Initial analyses from Duckworth et al. (2024) suggest that this effect is due to the
higher salience of personalization present, such as the suggestion of classroom-
specific actions (e.g., “CLICK HERE to see which of your students are struggling”).
The lack of additional content in this control highlighted actionable steps to engage
with students, an effect which, in retrospect, aligns with previous literature.

Our study’s insights transcend the immediate context. It showcases the potential
of data-driven interventions to create strategies that cater to the unique needs of
teachers and students. This approach paves the way for personalized and responsive
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pedagogy. In the realm of digital learning, our findings underscore the pivotal role
of teacher engagement and tailored content, which are crucial for replicating and
enhancing the benefits of traditional classrooms. In essence, our research provides a
roadmap for designing online educational tools that are more effective and engaging.

This innovative approach, while promising, is not without limitations. Our study
identified behavioral patterns that resulted in both effective (i.e., the empathy treat-
ment) and ineffective (i.e., the Friday treatment) interventions. This inconsistency
highlights the inherent challenges in applying big data analysis and machine learning
to complex contexts. These methods can occasionally identify spurious correlations
that fail to translate into effective interventions. Further, the methods may not cap-
ture all of the complexities of behavior change: in our case, it is conceivable that an
undetected confounding factor influenced both Friday logins and student achieve-
ment, which our treatment did not differentially modulate between Wednesday and
Friday. Future studies are needed to develop more sophisticated approaches for
pre-selecting and validating patterns from big data analyses to filter out potentially
spurious correlations.

Our study is also limited by its focus on a specific demographic and educational
context within Zearn. The data provide teacher and classroom interactions only
within the online platform, which may reflect or influence in-class dynamics but does
not directly measure in-class interactions. Consequently, generalizing our results
to other educational settings, cultures, or age groups may be challenging. Future
research could explore the relationship between online engagement patterns and
in-class teaching practices. Further, we could not examine variation in performance
among individual students within each classroom because of data aggregation, and
future research could examine the variation in treatment effects among students
within each classroom.

Additionally, while our approach was more cost-effective and less time-intensive, it
achieved a more modest impact than the substantial effects seen in more intensive
programs (Banerjee et al., 2007; Di Pietro, 2023). The simplicity of our email
interventions and the short duration of the study likely contributed to these results,
although their magnitude aligns with other reports from educational technology
applications (Cheung & Slavin, 2013). Future research could explore more engaging
and intensive intervention methods over extended periods to potentially yield greater
impacts on learning outcomes.
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While rooted in education data, our research introduces a paradigm with significant
implications beyond its primary focus. By combining data-driven analysis with
targeted behavioral interventions, our approach offers a flexible framework that can
be adapted to various fields. Whether in healthcare, environmental behavior, or
organizational management, our methodology demonstrates the potential to harness
data insights for effective behavioral change. Hence, our study also serves as a
catalyst for innovative approaches in diverse fields where behavior modification is
crucial.

3.5 Materials and Methods
Study 1
Data Collection

The dataset used in this study was automatically collected by Zearn’s servers during
the 2019-2020 academic year (September 2019 to May 2020). The platform tracked
user interactions, such as teacher and student logins, completed lessons by students,
and professional development modules completed by teachers. Teacher actions were
timestamped to the second, providing granular data on their behavior. To protect
student privacy, student data was aggregated at the classroom-week level, including
measures of student achievement and indicators of student struggles. We merged
these data with a version of teacher data aggregated to the weekly level.

This study was conducted in accordance with ethical standards and received exempt
status from the Institutional Review Board (IRB) at the University of Pennsylva-
nia. The study’s methodologies were designed to ensure the confidentiality and
anonymity of all participants involved, adhering strictly to ethical guidelines for
educational research.

To promote transparency and replicability of our study, we deposited the de-
identified dataset and code used in our analyses in a publicly accessible database,
available at the GitHub repository: https://github.com/SeanHu0727/zearn_nudge.
git

Inclusion Criteria

The dataset included various schools across Louisiana (see Fig S1 for geographic
distribution). We also excluded inactive teachers (those with no recorded activity
for over two months) from the dataset. We defined the following inclusion criteria
for classrooms:
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1. Classrooms linked to a single teacher

2. Classrooms with no more than seven months of inactivity during the academic
year

3. Classrooms with an average of no less than five actively engaged students

In study 1a, we further categorized Zearn usage into curriculum and non-curriculum
cases. Curriculum refers to scenarios where Zearn is integrated as a core component
of the school’s daily schedule. Non-curriculum cases, meanwhile, involve Zearn
being used alongside different core curricula, resulting in varied consistency in
usage.

Analysis of Study 1a
Independent Component Analysis (ICA)

We extracted all teacher behavioral variables from the dataset that displayed non-
zero variance and standardized them to have a zero mean and unit variance. To
determine the ideal number of independent components, we performed ICA using
a range of components from 1 to 10. Our decision on the optimal number was
informed by recognizing the “elbow” on the scree plot (i.e., the point at which
adding more components yields diminishing increases in total explained variance),
yielding three independent components. We used the icafast function from the R
ica package for all ICAs conducted (Helwig, 2022).

Panel Regression

We estimated a fixed-effects panel regression model with the plm package (Croissant
& Millo, 2008) in R. The dependent variable was defined as:

ln(Badges𝑖𝑡𝑐 + 1) = 𝛽1IC1𝑖𝑡 + 𝛽2IC2𝑖𝑡 + 𝛽3IC3𝑖𝑡
+ FETeacher,𝑖 + FEWeek,𝑡 + FEClass,𝑐 + 𝜖𝑖𝑡𝑐

where 𝑖, 𝑐, and 𝑡 index the teacher, class, and week, respectively. The model includes
fixed effects for teacher (FETeacher,𝑖), week (FEWeek,𝑡), and class (FEClass,𝑐). Standard
errors were clustered at the teacher level, calculated using the vcovHC function
(Millo, 2017) in R.
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Study 1b
Linear Regression

We estimated a linear model using the lm function (Team, 2023) in R:

𝐶𝑖∑︁
𝑐=1

(Avg. Badges)𝑐 = 𝛽0 +
12∑︁

𝑚=1,𝑚≠7
𝛽𝑚Login%𝑚,𝑖 +

7∑︁
𝑑=1,𝑑≠7

𝛽12+𝑑Login%𝑑,𝑖

+ 𝛽19(Avg. Minutes)𝑖 + 𝛽20(Avg. Streak)𝑖
+ 𝛽21(Avg. Days Between Logins)𝑖 + FESchool + 𝜖𝑖

for teacher 𝑖 with 𝐶𝑖 classes. Login% represents the percentage of logins by teacher
𝑖 during each month 𝑚 and on each day of the week 𝑑 relative to other months
and days, respectively. We exclude July and Sunday to prevent multicollinearity.
Standard errors are clustered by school with the vcovCL function (Zeileis, 2004;
Zeileis et al., 2020) in R.

Study 2
We used the findings from Study 1 to inform the creation of two interventions as
part of a larger multi-arm megastudy that involved 15 sets of nudges.

Implementation

Study 2 was conducted in collaboration with Zearn (“Zearn Math: Top-Rated Math
Learning Platform”, 2023) and was pre-registered for the fall of 2021. To incentivize
teacher participation during our intervention period from September 15, 2021, to
October 12, 2021, all teachers on the platform received two messages on September
1 and 8, 2021. These messages informed them they had been enrolled in the “Zearn
Math Giveaway” and that every email opened until October 12, 2021, would earn
them tickets. These tickets were used to enter drawings for various prizes, such as
autographed children’s books, stickers, and gift cards.

Data Preprocessing

Following the megastudy’s pre-registered analysis plan (https://osf.io/dgpkn), we
restricted analyses to Zearn Math teachers who were assigned to one of the megas-
tudy’s conditions and who taught in at least one classroom with at least one student.
However, our analyses excluded teachers who: (1) did not receive any emails because
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they had inactive accounts, invalid email addresses, or had opted out of receiving
messages (n = 133,722 teachers), (2) neither logged onto the Zearn Math platform
nor had an associated student who logged on the platform between March 1, 2021
and September 14, 2021 (n = 126,856 teachers), (3) had more than 150 students
associated with their Zearn Math account as of October 18, 2021 (n = 6,766 teach-
ers), or (4) had more than 6 classes associated with their Zearn Math account as of
October 18, 2021 (n = 6,675 teachers). Among Zearn Math classrooms associated
with the remaining 149,097 teachers, we further excluded: (5) 9,143 classrooms
associated with more than one Zearn Math teacher (n = 12,012 teachers) and (6)
346 classrooms with grade levels corresponding to high school or post-high school
(n = 141 teachers).

After exclusions, we randomized 𝑁 = 140, 461 teachers across 22,281 schools
who served 2,992,077 students in 161,722 classrooms into one of the intervention
conditions or the control condition (𝑁control = 29, 513). The control condition
was larger than the interventions to account for multiple comparisons. Among
𝑛 = 16, 372, or 11.66%, of teachers, at least one of two problems occurred in
the emails sent by Zearn Math during the intervention period: an email message
that was intended but not sent (𝑛 = 13, 568, or 9.66% of teachers), or an email
message that was sent but not intended (i.e., from a different treatment condition;
𝑛 = 2, 804, or 2.00% of teachers). As these email problems were systematically
related to treatment assignment (𝜒2 = 33.01, 𝑑𝑓 = 15, 𝑝 = .005), we did not exclude
these participants and conducted intent-to-treat analyses. Refer to the SI for email
problem prevalence by condition and study analyses that exclude or adjust for email
problems, respectively.

Statistical Analysis

We followed our pre-registered analysis plan to assess the effect of each treatment
on the primary outcome of interest: math lessons completed by students during
our four-week intervention period (Gallo et al., 2022a, 2022b). We estimated a
weighted ordinary least squares (OLS) regression with the areg command in Stata
(StataCorp, 2023). Each teacher’s observations were weighted proportionally to the
total number of students in their Zearn classroom(s).

The primary predictors were indicators for each intervention, omitting the control
condition. The regression also included the following control variables: (1) school
fixed effects, (2) an indicator for the teacher’s account type (free or paid), (3) the
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number of times the teacher logged into Zearn prior to the study, from August 1 to
September 14, 2021, (4) the total number of students in the teacher’s classroom(s)
as of October 18, 2021, (5) the number of classrooms associated with the teacher
as of October 18, 2021, (6) the number of days since the teacher obtained a Zearn
account prior to the study’s launch, (7) the number of days separating the study’s
launch and the start of the teacher’s school year, (8) the average number of lessons
completed by a teacher’s students from the start of their school year to the start of
the intervention (or from July 14, 2021, if the school year start was not known), (9)
whether the teacher opened our September 1, 2021 email announcing the upcoming
Zearn Math Giveaway, (10) a similar indicator for our September 8, 2021, email
reminding them of the giveaway, and (11) the percentage of a teacher’s students in
each grade except for third grade to avoid multicollinearity, since for most teachers,
students were in a single grade.

Study 2a: Empathy Intervention Design and Implementation

We designed four emails encouraging teachers to adopt a more student-centered
perspective when engaging with the Zearn platform to gain pedagogical content
knowledge. The emails included testimonials from experienced teachers, research-
based insights on the role of empathy in math education, and specific strategies for
using Zearn’s features to understand and address student challenges. A population
of 7,443 teachers was chosen at random to receive these emails.

Study 2b: Friday Logins Intervention Design and Implementation

We designed four emails encouraging teachers to regularly log into the Zearn plat-
form on Fridays. The emails emphasized the benefits of using Fridays for reflective
review and proactive planning, highlighting how this practice could help teachers
better support student learning. Teachers were provided with specific suggestions for
activities during these Friday sessions, such as analyzing student progress data, iden-
tifying areas for improvement, and planning targeted interventions for the upcoming
week. A total of 7,476 teachers was randomly selected to receive these emails.
Additionally, to assess the unique impact of the Friday login habit, we included an
active control condition that received similar email prompts on Wednesdays with
links to specific actions on Zearn but without a focus on Fridays. A group of 7,577
teachers were randomly chosen to participate in this control group.
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C h a p t e r 4

PERCEIVED WARMTH AND COMPETENCE PREDICT
CALLBACK RATES IN META-ANALYZED NORTH

AMERICAN LABOR MARKET EXPERIMENTS

Gallo, M., Hausladen, C. I., Hsu, M., Jenkins, A. C., Ona, V., & Camerer, C. F.
(2024). Perceived warmth and competence predict callback rates in meta-
analyzed North American labor market experiments (T. Otterbring, Ed.).
PLOS ONE, 19(7), e0304723. https://doi.org/10.1371/journal.pone.0304723

4.1 Abstract
We meta-analyzed 32 experimental correspondence studies investigating discrim-
ination in the North American labor market. We collected data on 592 different
social signals to examine the impact of social perception (warmth, competence) on
callback rates. Our analysis found that social perception predicts callback rates for
studies varying race and gender, as signaled by names. However, for studies varying
other categories, such as sexuality and disability, the direction of social perception’s
impact on callback rates is less clear. These findings provide important insights
into how social perception affects labor market outcomes and highlight areas where
further research is needed.

4.2 Introduction
Discrimination is costly for organizations and detrimental to society. Labor market
discrimination occurs when individuals are treated unequally based on their ob-
servable characteristics, even when those characteristics should not impact expected
job performance. Despite increasing awareness of the advantages of diverse teams
among employers and ongoing civil rights activism leading to legal protections
against identity-based discrimination, people from marginalized groups still seem
to face disparate treatment in the labor market. However, because employer subjec-
tive expectations of productivity are rarely observed, it is difficult to conclusively
pinpoint specific instances of discrimination (Bertrand and Duflo, 2017; Bertrand
and Mullainathan, 2004).

To try to control for subjective expectations, experimental correspondence studies
(or audit studies) were developed starting in the 1960s (Daniel, 1968; Lippens et al.,
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2023; Riach and Rich, 2002). Correspondence studies strive to control expectations
by creating identical pairs of artificial resumes (with matching backgrounds, skills,
education, etc.) and sending them to potential employers. Typically, only one cate-
gorical factor—such as race, gender, or sexuality—is varied between each matched
resume pair. Everything else on the two resumes is the same. The test statistic is the
difference in callbacks for the controlled variable. A callback refers to any response
from the employer expressing interest in the candidate, in the form of a phone call or
email (earlier studies also included letter replies)1. These studies have documented
common patterns of discrimination across different social categories (although race
is the strongest in the studies we include).

Our analysis explores the extent to which stereotyped responses to social groups,
as identified in the correspondence labor market studies, are associated with social
perceptions of those groups. Perceptions are measured in a two-dimensional space of
warmth and competence based on extensive evidence that the two-variable warmth-
competence reduction robustly explains a surprising amount of variation across
perceptions and behavioral reactions to social categories. Warmth is the perception
of how is good or bad another person’s intentions are. Competence is how capable
a person is of acting on their intentions (Fiske et al., 2007).

Emerging research is suggestive that stereotypes about warmth and competence
may contribute to labor market discrimination (Agerström et al., 2012; Jenkins et
al., 2018; Lippens et al., 2023; Veit and Thĳsen, 2021); in particular, in a recent
analysis (Jenkins et al., 2018), applicants whose racial group was associated with
higher perceived warmth received significantly more callbacks based on data from
two field studies. Although suggestive, this evidence comes from a few studies in a
limited set of hiring domains.

For example, names can convey many attributes, including gender, ethnicity, and
socioeconomic status. Crucially, when averaged across raters, warmth and compe-
tence scores for different groups are highly consistent across samples, suggesting
that they reflect culturally shared stereotypes rather than idiosyncratic individual
social perceptions (Jenkins et al., 2018).

Despite their success in documenting discrimination based on single social identities,
these studies have limitations. For instance, they fail to account for intersectionality,
where multiple social identities combine in complex and non-additive ways to influ-

1While phone callbacks may be perceived differently from written ones, most studies in our
sample do not differentiate between these types.
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ence treatment within the labor market (Browne and Misra, 2003; Nicolas and Fiske,
2023; Rosette et al., 2018; Thatcher et al., 2023). People with multiple marginalized
identities are subjected to more frequent and severe workplace harassment (Hollis,
2018) and experience more obstacles to promotion (Bloch et al., 2020). Our anal-
ysis of previous studies is not able to measure intersectionality effects. To address
this core limitation, we capture stereotype-based social perceptions that underlie the
disparate treatment of different social groups.

We build on prior work with a comprehensive and comparative approach to 1) de-
termine the relationship between warmth, competence, and callback rates across
multiple studies, 2) evaluate the consistency and uniformity of the results, and 3)
compare these effects across social categories, study designs, and industries. Our
first contribution is demonstrating the effects of social perceptions on discrimination
within studies that use names as a social signal for group membership. Second, we
analyze the heterogeneity of this relationship with an extensive range of correspon-
dence studies with non-name signals. Finally, we outline potential avenues for future
investigation informed by our research findings, furthering our understanding of the
interplay of psychological factors and discrimination within the labor market.

Hypotheses
We hypothesized that:

1. Average perceptions of warmth and competence would significantly predict
callback rates in labor market experiments.

2. Both mean perceived warmth and competence would be positively correlated to
callback rates.

4.3 Data
Figure 4.1 provides an overview of the correspondence studies we use, classifying
them according to the investigated categories and the number of signals used to
convey these traits. Typically, an applicant’s group affiliation is not explicitly stated
but subtly signaled through associations with 1) names, which are indicative of race,
gender, or age, and 2) other characteristics (e.g., membership in a college LGBTQ
club). Signals are chosen to maximally distinguish groups (e.g., Sarah Davis (white,
female), Deshawn Jefferson (black, male)). Note that, unlike studies using names,
category studies usually employ a limited number of distinct signals; therefore, we
choose to analyze name and category studies separately.
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Figure 4.1: Graphical abstract

The total number of studies, categories, and signals included in our meta-analysis, along
with our statistical estimation strategy. The numbers indicate the total counts of studies,
categories, and signals. For a detailed overview of signals by category for which raw data
was obtained, refer to Table S1. Please note that the total number of studies is 21, as
some are included in more than one category. Example signals are presented in the middle
column (the resume). The data sources are shown on the right-hand side: hiring managers
made callback decisions based on resumes (in green). Separately, we collected warmth and
competence ratings on prolific, where participants (in red) only saw the respective signal
(indicated in yellow). Our estimation strategy is visualized in the gray box in the bottom
right corner: we used the averages of warmth and competence ratings to predict the callback
percentage.



86

4.4 Economic Models of Discrimination
Discrimination, particularly in the labor market, is a multifaceted phenomenon that
can be understood through various theoretical lenses. Three primary theories have
been proposed to explain the origins and mechanisms of discrimination: cultural,
economic, and institutional models (Arrow, 1973; Becker, 1971; Brinton and Nee,
1998; McPherson et al., 2001; Phelps, 1972; Tajfel, 1974).

The cultural model of discrimination, often referred to as taste-based discrimination,
was first proposed by economist Gary Becker in the 1950s. Becker argued that
employers might have a distaste for ethnic minority groups, leading to economically
inefficient hiring decisions based on their cultural preferences (Becker, 1971). This
model suggests that employers are willing to pay a price for their preferences, such
as higher wages for majority members. However, Becker’s model only provides a
framework to analyze the consequences of taste and does not explain where these
preferences originate.

To understand the origins of taste, we turn to psychological approaches that explain
the negative evaluation of others. These approaches include social identity theory
(Tajfel, 1974) and the concept of homophily (McPherson et al., 2001). Becker’s
tastes may also be explained by what Bogardus, 1925, refers to as social distance,
the perceived social distance varies across ethnic minority groups, resulting in an
ethnic hierarchy (Bessudnov and Shcherbak, 2018; Hagendoorn, 1995; Hagendoorn
and Hraba, 1989; Verkuyten et al., 1996).

The stereotype content model (SCM) argues that group stereotypes are a conse-
quence of two interpersonal impressions: warmth and competence (Fiske et al.,
2007). This model is particularly relevant to our study as it provides a comprehen-
sive analysis of racial discrimination in the hiring process. The SCM is flexible
to underlying theories of discrimination, offering a model-agnostic approach. This
flexibility allows the SCM to capture various factors that drive discrimination, such
as hostility toward foreign cultural norms and implicit discrimination.

The economic, or rational, model of discrimination, also known as statistical dis-
crimination theory, postulates that employers act out of economic self-interest. Due
to incomplete information and negative group beliefs about the skills of ethnic mi-
norities, employers prefer majority candidates (Arrow, 1973; Phelps, 1972). This
theory focuses on the individual decision-making of employers, suggesting that they
use stereotypes about the productivity of social groups to make individual hiring
decisions.
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Similarly, the institutional model of discrimination emphasizes that the behavior
of social actors is shaped by their social context (Brinton and Nee, 1998). This
perspective suggests that employers’ recruitment and reward behavior depends on
the social norms, laws, and organizational practices that influence their decisions.
In this view, the discriminatory behavior of employers is based on the systemic and
often unconscious adherence to contextually derived biases (Di Stasio et al., 2019).

In conclusion, understanding discrimination in the labor market requires a multi-
faceted approach that considers cultural, economic, and institutional factors. The
cultural model, with its focus on taste-based discrimination and social distance,
provides a framework for understanding the preferences that drive discriminatory
behavior. The economic model, or statistical discrimination theory, offers insights
into how employers’ self-interest and stereotypes about productivity influence their
hiring decisions. The institutional model emphasizes the role of social context in
shaping employers’ recruitment and reward behavior.

The Stereotype Content Model (SCM) is particularly relevant as it provides a com-
prehensive analysis of racial discrimination in the hiring process and is flexible to
underlying theories of discrimination. This flexibility allows the SCM to capture
various factors that drive discrimination, such as hostility toward foreign cultural
norms and implicit discrimination.

Our study aims to capture these interactions and provide a comprehensive under-
standing of discrimination in the labor market. By focusing on the dimensions
of warmth and competence, we hope to shed light on the stereotype-based social
perceptions that underlie the disparate treatment of different social groups.

4.5 Stereotypes and Discrimination
This section lays the foundation for the present research by examining correspon-
dence studies and their shortcomings by reviewing key studies that have examined
stereotypes and discrimination in the context of employment.

Quillian and Lee (2023) examined racial discrimination after the callback stage
and aimed to fill a gap in the literature by reviewing evidence from all available
field experimental studies of racial or ethnic discrimination in hiring that proceed
to the job offer outcome. The study’s central idea is that there is considerable
additional discrimination in hiring after the callback stage. Quillian et al. meta-
analyzed 12 studies encompassing more than 13,000 job applications. The sample
size was substantial, and the variables studied included the callback and job offer
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outcomes. Analysis of the data revealed that majority applicants in the sample
received 53% more callbacks than comparable minority applicants, but majority
applicants received 145% more job offers than comparable minority applicants
(Quillian & Lee, 2023).

Quillian and Lee (2023) concluded there is significant additional discrimination
from interview to job offer, which is weakly correlated (r = 0.21) with the level
of discrimination earlier in the hiring process. This finding highlights the extent
of racial discrimination in the hiring process, even after the callback stage. These
results suggest that statistical discrimination theory cannot adequately explain this
discrimination since employers would have to be less likely to rely on group stereo-
types as their information about an individual application increases. The study,
however, did not explicitly address the reasons behind the additional discrimina-
tion after the callback stage, leaving a gap in understanding the underlying factors
contributing to this discrimination.

Still, the Quillian and Lee (2023) study is relevant to the present study as it provides
a comprehensive analysis of racial discrimination in the hiring process, an essential
aspect of the present research. Quillian et al. also argued that economic models
of discrimination fail to capture the various factors that drive discrimination (e.g.,
hostility toward foreign cultural norms) and implicit discrimination. Our use of
social perception is immune to this effect, as it offers a model-agnostic approach
to discrimination. Further, the article also revealed significant heterogeneity in
how callback ratios differ across categories, which is an important finding in our
study. Lastly, the Quillian and Lee (2023) study shows that callbacks (the dependent
variable in our study) underestimate the total level of discrimination in the labor
market, and they are only a lower bound of a much larger effect. This finding is
consistent with our assumption that stereotypes are much more salient in person-to-
person interactions such as interviews.

Lancee (2019) also reviewed experiments on ethnic discrimination in hiring pro-
cesses across different contexts. The unifying question revolved around the extent
of discrimination faced by ethnic minorities in the labor market and how it varies
across different countries and ethnic groups. Lancee aimed to fill a gap in the liter-
ature by providing a cross-national perspective on this issue. The field experiment
was conducted in five European countries: Germany, the Netherlands, Spain, Nor-
way, and the United Kingdom. The methodology involved sending out fictitious job
applications for nine occupations, with the applicant’s ethnicity being the primary
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variable (Lancee, 2019). The sample size was 19,181 job applications, and Lancee
found that ethnic discrimination was prevalent in all countries studied, but the extent
and the groups most affected vary.

Lancee (2019) concluded that ethnic hiring discrimination results from a complex
interaction between institutions and social norms. For instance, Moroccan applicants
were discriminated against in the Netherlands more often than in Spain, despite the
latter having a high unemployment rate (Lancee, 2019). Lancee also found that
discrimination is based not only on the applicant’s country of origin but also on the
specific labor market and the job characteristics in question. Lancee, however, did
not fully explore the mechanisms behind the observed discrimination. While the
study provides valuable insights into the existence and extent of ethnic discrimination
in hiring, it does not delve deeply into why the same type of ethnic discrimination
is more pronounced in certain countries. Our study aims to fill the gaps left by this
research by examining the role of social perception in discrimination, which could
be one of the mechanisms behind the observed ethnic discrimination in hiring. Our
method is also flexible in relation to underlying theories of discrimination and could
provide further insights into differential discrimination rates across contexts.

Researchers have also examined social perception in the hiring process. For example,
Veit et al. (2021) investigated the role of social perception in hiring discrimination
across five European countries. The research question focused on how warmth and
competence influence hiring decisions. The study filled a gap in the literature on the
impact of these perceptions on a global scale rather than focusing on a single country
or region. The study was a harmonized cross-national field experiment involving
9,000 fictitious job applications sent to real job openings in nine countries. Veit et
al. randomly assigned signals of warmth and competence by adding statements to
the cover letter. Veit et al. (2021) found that manipulating competence significantly
increases callbacks, while manipulating warmth has a less consistent impact.

Veit et al. (2021) concluded that hiring discrimination based on social perception
is a global phenomenon. The study emphasizes the importance of perceived com-
petence in hiring decisions, suggesting that employers may prioritize competence
over warmth when making hiring decisions. Veit et al.’s study contributes to the
literature by providing empirical evidence of the role of social perception in hiring
discrimination on a global scale. Using fictitious applications, however, may only
partially capture the complexities of real-world hiring processes. Additionally, Veit
et al. (2021) did not delve into the potential impact of other factors that could influ-
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ence the results, such as the specific cultural context of each country or ascriptive
characteristics and group affiliation of the job candidate. The manipulated state-
ments in the cover letter are likely less salient and relevant to the hiring decision than
other information. Last, the study did not include negative warmth and competence
signals, limiting the detection of the effects of social perception.

Veit et al. (2021) study is relevant to the present study as it investigates the causal
effects of social perception in hiring decisions. It also suggests the importance of
ethnic stereotypes and group membership in hiring decisions. The present study
will help fill the gap in research by focusing on the perceptions of warmth and
competence of various categories, such as race, gender, sexuality, and disability.

Social perceptions also include stereotypes, and Pownall et al. (2022) examined the
social stereotypes about pregnant women. Specifically, these stereotypes revolve
around the idea that pregnant women have a "baby brain" that makes them less
competent. The research questions focused on how these stereotypes affect the per-
ception of pregnant women in society and are grounded in the Stereotype Content
Model. The study included two surveys, with a total sample size of 644 participants,
all UK residents. The variables include the perceived warmth and competence of
pregnant women. The findings indicate that individuals perceive pregnant women as
warm but not competent because of the so-called "baby brain" stereotype (Pownall
et al., 2022). Pownall et al. (2022) concluded that the "baby brain" stereotype sig-
nificantly impacts the perception of pregnant women’s competence, suggesting that
individuals assume that pregnancy negatively affects cognitive function; however,
perceptions of warmth are comparatively high.

Pownall et al. (2022), however, did not fully explore the implications of these
stereotypes for pregnant women in different contexts, such as the workplace. The
researchers also used a homogenous sample of white British respondents, leaving a
gap for future research to investigate how these stereotypes affect pregnant women’s
experiences in various settings. Pownall et al. (2022) also did not examine the
potential intersectionality of these stereotypes with other factors such as race, age,
or socioeconomic status. Pownall et al. (2022) study is relevant to our study as
it provides insights into how social perception, specifically stereotypes, can affect
the treatment of different groups, in this case, pregnant women. Our study aims to
complement these findings by examining the impact of social perception on callback
rates across various categories, including pregnancy.
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In another study, Lippens et al. (2023) conducted a comprehensive meta-analysis of
hiring discrimination based on recent correspondence experiments. The research
questions revolved around the extent and nature of hiring discrimination across var-
ious social categories, including race, gender, age, religion, disability, and sexual
orientation. The study filled a gap in the literature by providing a more nuanced
understanding of hiring discrimination across different social categories and geo-
graphical regions. The researchers used a meta-analytic approach to synthesize the
results of 169 correspondence studies conducted across all continents between 2005
and 2020. Lippens et al. (2023) studied the discrimination rates across different so-
cial categories and regions and found that hiring discrimination is most pronounced
against ethnic minorities and older candidates, with moderate discrimination against
women and religious minorities and relatively low discrimination against disabled
and LGBTQ+ candidates.

Lippens et al. (2023) concluded that hiring discrimination is widespread, but its
extent varies across different social categories and regions. The researchers also
found that discrimination rates have remained relatively stable, suggesting that
efforts to combat hiring discrimination have not succeeded. Lippens et al. (2023)
acknowledged, however, that the methodological differences between the included
studies may have influenced their findings. Much of the variability around the
meta-analytic estimates remained unexplained. Moreover, Lippens et al. (2023) did
not explore the underlying mechanisms of hiring discrimination, which could be
a fruitful avenue for future research. The Lippens et al. (2023) study provides a
broader context for our study, supporting our assumption that hiring discrimination
is a pervasive issue that varies across different social categories. Our study aims
to link these differential hiring effects with social perception. That is, instead of
looking at each category separately, we aim to unify categories through a single
measure.

4.6 Introduction to the Stereotype Content Model (SCM)
The Stereotype Content Model (SCM), proposed by Fiske et al., 2007, is a theoretical
framework that seeks to understand how stereotypes, prejudice, and discrimination
operate within society. The model suggests that stereotypes are not merely neg-
ative assumptions about outgroups but are instead complex social structures that
encompass two primary dimensions: competence and warmth.
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Competence is often associated with a group’s perceived status, with high-status
groups typically viewed as more competent. Warmth, on the other hand, is linked to
the perceived level of competition a group presents, with groups seen as competitors
typically viewed as less warm. This dynamic creates a space for mixed stereotypes,
where some groups may be pitied for their low competence but high warmth, while
others may be envied for their high competence but low warmth (Fiske et al., 2007).

The SCM is particularly relevant to our study as it provides a comprehensive analysis
of racial discrimination in the hiring process. The SCM is flexible to underlying
theories of discrimination, offering a model-agnostic approach to discrimination.
This flexibility allows the SCM to capture various factors that drive discrimination,
such as hostility toward foreign cultural norms and implicit discrimination.

The SCM also offers a valuable lens through which to examine the intersectionality
of social identities. Intersectionality, a concept first coined by Crenshaw, 1989,
refers to the interconnected nature of social categorizations such as race, class, and
gender, which can create overlapping and interdependent systems of discrimination
or disadvantage. In the context of the SCM, intersectionality can help us under-
stand how multiple social identities interact to influence perceptions of warmth and
competence.

For example, a study by Nicolas and Fiske, 2023, found that biased information
integration occurs when people rate intersecting categories, with ratings being more
similar to the constituent with more negative and extreme stereotypes. The study also
found that emergent properties are more prevalent for novel targets and targets with
incongruent constituent stereotypes. Emergent perceptions tend to be more negative
and less about competence or sociability. This finding suggests that intersectionality
can significantly influence the formation and content of stereotypes, which in turn
can impact discrimination in the labor market.

Halper et al. (2019) investigated gender bias in caregiving professions and how per-
ceived warmth plays a role in this bias. The study filled a gap in the literature on the
underlying process behind adverse reactions towards men in caregiving professions.
The study involved surveys with undergraduate and online participants to evaluate
perceptions of men in caregiving occupations such as preschool teaching and social
work. Participants rated the warmth, competence, likability, and hireability of men
and women in these professions. Participants rated men as neither more nor less
competent than women, but men were considered less warm, which mediated the
relationship between gender and negative hireability responses (Halper et al., 2019).
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Halper et al. (2019) concluded that stereotypes about men’s warmth contribute to
perceptions that men are less likable, suitable, and hireable for caregiving professions
than their female counterparts. The study provides insights into the gender bias in
caregiving professions and how perceived warmth plays a role in this bias and
suggests that interventions are needed to increase men’s participation in caregiving
roles. The samples, however, were primarily comprised of Western participants in a
college setting or through a low-quality online sample, limiting the generalizability
of the findings. Further, Halper et al. (2019) used one name per gender, raising the
question of whether the perceptions of warmth were related to gender or specifically
to the chosen name. Finally, the study lacked behavioral measures, such as a
firm actually calling back an applicant. Halper et al. (2019) recommend cross-
cultural research to address generalizability and potential interventions for altering
perceptions of men in caregiving fields.

The Halper et al. (2019) study provides insight into the impact of social percep-
tion on hireability. Along with Veit et al. (2021), the study suggests a significant
mediating effect of warmth and competence between group membership and hire-
ability outcomes. The findings hint at role congruity, suggesting individuals aim to
match warm candidates with warm professions. Our study expands this scope by
examining various professions and group identities.

Multiple-group membership can also influence perceptions of warmth and compe-
tence. Strinić et al. (2020) examined multiple-group membership and its impact
on warmth and competence perceptions in the workplace. The research questions
revolved around how the intersection of different social categories (e.g., gender, age,
ethnicity) influences the perception of warmth and competence. Strinić et al. (2020)
sought to fill a gap in the literature by examining the combined effect of multiple so-
cial categories on stereotype content. The study’s central idea is that the perception
of warmth and competence for individuals with multiple-group membership may be
qualitatively different than that for single groups. Strinić et al. (2020) hypothesized
that combining social categories can lead to unique stereotype content that is not
merely the sum of the stereotypes associated with each category.

The Strinić et al. (2020) empirical study employed a 2 (gender: man, woman) × 2
(age: 30, 55) × 2 (ethnicity: Swedish, Arab) factorial design. The sample consisted
of 133 job recruiters from Sweden, who rated the warmth and competence of individ-
uals belonging to different combinations of social categories. The findings revealed
that the combination of social categories could indeed lead to unique stereotype
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content; for instance, older Arab women were perceived as warmer but less compe-
tent than younger Arab women (Strinić et al., 2020). Strinić et al. (2020) concluded
that the perception of warmth and competence for individuals with multiple-group
membership is qualitatively different than that for single groups. This finding is sig-
nificant as it challenges the additive assumption of multiple categorization research
and provides a more nuanced understanding of stereotype content.

One of the main weaknesses of the Strinić et al. (2020) study was the choice of
stimuli, and the researchers acknowledged that they could not determine whether
combining groups could move the specific combination to a different quadrant in
the stereotype content model space. Strinić et al. (2020) recommended future
researchers further explore the impact of multiple-group membership on stereotype
content, using a broader range of social categories and more diverse samples.
However, the Strinić et al. (2020) study provides a deeper understanding of how
multiple-group membership influences social perception in the workplace. Our
study includes multiple intersecting categories that are not always linearly related,
which could affect our results and conclusions.

Researchers have also examined warmth and competence in relation to employ-
ment bias and homelessness. For example, Martinez et al. (2022) investigated
employment biases in service contexts, mainly focusing on the perceived warmth
and competence of individuals experiencing houselessness, the extent of these bi-
ases, and how they affect employability. The study filled a gap in the literature
by exploring the intersection of houselessness and employment in the service in-
dustry, a relatively under-researched topic. The study included two groups: one
of individuals with hotel management experience and another of a general sample
of adults. Participants rated hypothetical job applicants’ warmth, competence, and
hireability, as perceived from resumes and audio recordings of social interactions.
Martinez et al. (2022) found an effect of warmth on hireability moderated by gender
and concluded that these biases significantly affect the employment opportunities of
unhoused individuals, particularly in the service industry.

The Martinez et al. (2022) argued that these biases are deeply ingrained and are in-
fluenced by societal stereotypes about unhoused individuals. The study contributes
to the literature by providing empirical evidence of these biases and their impact
on employment opportunities for unhoused individuals. The study, however, was
limited to homelessness in the hotel industry and may not generalize to other popu-
lations or contexts. The study is particularly relevant to our research as it provides
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empirical evidence of the impact of social perception on employment outcomes.
Further, the findings of Martinez et al. (2022) suggest that competence may only
sometimes be the most crucial construct in hiring decisions, especially in customer
service jobs.

Research has shown that the stereotype content model has validity across cultures.
Strinić et al. (2021) investigated occupational stereotypes among a professional
sample of recruiters and other employees on the two fundamental dimensions of the
stereotype content model: warmth and competence. Strinić et al. (2021) surveyed
professionals’ ratings of preselected occupations and whether the two-dimensional
warmth/competence space applies to occupational stereotypes in a European con-
text, specifically Sweden. The study was unique as it includes prespecified common
occupations for representativeness, unlike previous research where participants se-
lected the included occupations (Halper et al., 2019; Veit et al., 2021). Participants
rated warmth and competence attributes in preselected occupations. Factor and
cluster analyses were employed to investigate the two-dimensional structure of the
warmth/competence space and how and whether occupations cluster as predicted by
the stereotype content model (SCM; Strinić et al. (2021)). The study included the
largest and most common occupations, using the Swedish Standard Classification
of Occupations, as a basis for selecting occupations.

The Strinić et al. (2021) found that almost all occupations had a clear two-factorial
structure corresponding to the warmth and competence dimensions. A five-cluster
solution appropriately depicted how occupations disperse on these dimensions. The
study provides valuable insights into the treatment and preferences of various social
groups and how such stereotypes might relate to hiring preferences (Strinić et al.,
2021). However, the study was limited in the scope of its representativeness, as its
participants included only about a hundred Swedish recruiters, although their finding
lends empirical support to the universality of the stereotype content model, given
that similar analyses have worked in the North American context. Further, future
research should include implicit stereotypes to better model the selection process.
That is, future studies should not rely on explicit signals of warmth and competence,
but should attempt to manipulate signals based on their warmth and competence
stereotypes that recruiters are expected to elicit before selecting candidates.

The Strinić et al. (2021) study is relevant to the present study as it provides an
understanding of occupational stereotypes, which could influence how the stereo-
types of job candidates can differentially affect their callback rates depending on the
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industry or position for which they are applying. That is, recruiters could match the
stereotype content of social groups and occupations. Understanding occupational
stereotypes in a different context could provide a comparative perspective. Further-
more, the present study is also designed to examine the impact of social perception
on callback rates, which aligns with the focus of Strinić et al. (2021) study on warmth
and competence perceptions of occupations.

Employment status also influences perceived competence, and Okoroji et al. (2023)
investigated the impact of employment status on the perceived competence of job
applicants. The researchers hypothesize that unemployed individuals are perceived
as less competent than their employed counterparts, affecting their hiring chances.
The central idea is that being unemployed can perpetuate unemployment, suggest-
ing a bias in hiring practices that could lead to overlooking potentially talented
candidates (Okoroji et al., 2023). Okoroji et al. (2023) employed an experimental
methodology where participants with hiring experience rated CVs of equally quali-
fied candidates differing only in their employment status. The researchers measured
the participants’ willingness to interview and hire the candidates and their percep-
tions of the candidates’ competence. The study has two parts: an initial study and a
high-powered follow-up replicating the initial study in a different economic context
characterized by increased job insecurity (Okoroji et al., 2023).

Okoroji et al. (2023) findings supported the hypotheses. The initial and follow-
up studies showed that unemployed candidates are perceived as less competent
than employed candidates, and this perceived lack of competence fully mediates the
relationship between employment status and employment-related outcomes. Okoroji
et al. (2023) suggested that the bias against unemployed candidates could lead to
organizations missing out on talented individuals who would have been shortlisted
if they were employed.

Okoroji et al. (2023) acknowledged, however, that their study design may only
partially replicate typical recruitment scenarios where hiring managers and HR
professionals may view dozens of CVs quickly. The decisions in the survey were
only hypothetical, unlike an actual correspondence study. Further, their CVs did not
include names, hiding gender, racial, and socioeconomic identities. These findings
suggest that researchers should explore practical changes to CVs to reduce the
perception of incompetence, such as removing dates from CVs and only including
the duration of any employment alongside a description. The findings of the study
are relevant to our research as they provide empirical evidence on the impact of
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competence perceptions on callback rates in the labor market. We aim to fill the gap
left by Okoroji et al. (2023) by analyzing the effects of warmth and competence in
real hiring decisions, not just hypothetical ones.

In conclusion, the Stereotype Content Model offers a comprehensive and flexible
framework for understanding discrimination in the labor market. By considering
the dimensions of warmth and competence, as well as the intersectionality of social
identities, the SCM can provide valuable insights into the complex dynamics of
discrimination.

4.7 Materials and Methods
Callback Data
One hundred ninety-one studies were gathered by combining those included in
Lippens et al., 2023, and our screening process (Fig. C.1 shows a PRISMA diagram).
For each study, we extracted information on the callback rates for each group, along
with study-specific characteristics. Furthermore, we searched for published raw
datasets for each study in the meta-analytic database. Raw means that data contain
observations, including names or category signals and callback rates, for each resume
sent in the experiments. We requested authors provide these raw data from their
study for unpublished datasets. Table C.1 shows the datasets gathered. Additionally,
for each category signal from the meta-analytic data and each name from the raw
datasets, Prolific participants provided ratings of warmth and competence.

Warmth and Competence Perceptions
Our research methodology involved the use of multiple surveys, which were designed
to gather data on perceptions of warmth and competence associated with different
social groups. The surveys were administered through the Prolific platform, a
popular online platform for academic research.

For the category-based studies, participants saw the signal exactly as described in
the study and rated each of them based on their perceived warmth and competence.
Respondents were instructed to base their ratings on what they believed would be the
average American’s first impression of each individual. The survey acknowledged
that these impressions could be formed based on limited information and might
not accurately reflect the individuals’ true warmth and competence. The survey for
name-based studies followed a similar format but asked participants to rate names
instead of specific lines from the resume. Again, participants were asked to provide
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ratings based on what they thought the average American’s first impression would
be.

Participants rated names and categorical signals on 100-point scales of warmth and
competence (1 = not at all, 100 = extremely), based on how the groups are viewed
by American society. They read, “We are not interested in your personal beliefs, but
in how you think they are viewed by others.” As in all our studies, this instruction
was intended to reduce social desirability concerns and to tap perceived cultural
stereotypes.

Sample Characteristics: The Prolific participants constituted a non-convenience,
compensated sample with a requisite North American cultural background. This
criterion was pivotal, as shared cultural backgrounds are known to foster similar
stereotype perceptions, ensuring the recruited sample’s stereotypes aligned with
those of the study’s hiring decision-makers. Post-rating, participants were queried
on demographics (race, gender, age) and quality controls (e.g., native language
proficiency).

Specifically, for the sample rating names: 57.52% identified as female, with an aver-
age age of 37.62 years. The predominant ethnicity was White/Caucasian (62.38%),
and the most common education level was a bachelor’s degree (33.91%). A ma-
jority were in stable employment (52.1%), with the most reported income range
being $25,000 to $49,999 (26.6%). A significant 97.5% were native speakers. For
the sample rating categories: 50.1% identified as female, with 39.1% in the 25–34
age bracket. A larger majority were White/Caucasian (77.7%), and 31.2% held
a bachelor’s degree. Employment was stable for 50.5%, with office-focused roles
accounting for 36.6%. The income range of $25,000 to $49,999 was most common
(27.2%). A notable 77.2% identified as agnostic, atheist, or non-religious. Lack of
resume review experience was reported by 66.3%, and a small fraction (4.95%) had
current or past military service.

The choice to use a Prolific sample is grounded in literature suggesting that stereo-
types are (i) influenced by cultural backgrounds and (ii) pervasively shared within
a culture. Consequently, individuals with similar cultural backgrounds are likely
to hold comparable stereotypes, regardless of their professional background. This
assumption holds even when considering participants from varied professions, as
our inquiry does not investigate industry-specific perceptions but rather aims to un-
derstand societal views on a particular social signal. While one might argue that
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recruiters, owing to their training, could be less prone to stereotypical assessments
in hiring contexts, the question we posed in the online survey transcends specific in-
dustries and focuses on broader societal perceptions. The specific wording was: “In
your opinion, what does the average American think about this person? Even if you
disagree. [signal, e.g. name]" Therefore, we do not anticipate significant variations
in responses across samples drawn from different professional backgrounds.

Furthermore, leveraging stereotypes from one sample to predict behaviors in another
offers a conservative approach to evaluating the impact of stereotypes on actions.
This method likely leads to an underestimation of the effect size compared to directly
measuring decision-makers’ stereotypes. Our primary concern is with the influence
of broad cultural stereotypes on decision-making processes. The extent to which
individuals’ actions reflect their personal stereotypes, which may not align with
societal norms, represents a separate and potentially less consequential issue. This
is because societal-level disparities arise when collective decision-making is guided
by uniform assumptions based on shared stereotypes.

Data Availability: Raw data from published studies we used is publicly available,
the authors included links to those files in their replication package. Furthermore,
the authors of this study provide their raw data and analysis code on a public GitHub
repository upon publication. Access to the currently private GitHub repository is
granted upon request.

Statistical analysis
Analysis was carried out with R version 4.2.2. Meta models were estimated with
packages metafor_3.8-1 and meta_6.2-1. For meta-analytic analyses based on
correlations, we deployed a random-effects model. Each correlation 𝑟 was trans-
formed into Fisher’s z: 𝑧 = 0.5 log𝑒

(
1+𝑟
1−𝑟

)
, to ensure that the sampling distribution

was approximately normal. The model was adjusted via the Hartung-Knapp modi-
fication (Hartung and Knapp, 2001).

To estimate the random-effects model, the variance of the distribution of true ef-
fect sizes, 𝜏2, had to be estimated, for which we deploy Maximum Likelihood
(Viechtbauer, 2005). The confidence intervals around 𝜏2 were estimated via the
Q-Profile method (Veroniki et al., 2016). Furthermore, we calculated the 𝐼2 statistic
(Thompson and Higgins, 2002) to measure between-study heterogeneity.
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Prediction intervals provide a valuable tool for estimating the likely range of effects
that future studies may have based on the current evidence. As opposed to confidence
intervals, prediction intervals consider 𝜏2 to estimate the likely range of effects of
future studies.

The meta-regressions 4.1 were specified as mixed-effects models: 𝜃𝑘 = 𝜃 + 𝛽𝑥𝑘 +
𝜖𝑘 + 𝜁𝑘 . The first error, 𝜖𝑘 , represented the sampling error through which a study’s
effect size deviates from its true effect. The second error, 𝜁𝑘 , indicated that even the
true effect size of a study is only sampled from an overarching distribution of effect
sizes.

Heterogeneity analysis
We visualized the contribution of each study to the overall heterogeneity against its
influence on the pooled effect size (Baujat plot, Fig. C.2). We also computed several
influence diagnostics (Externally Standardized Residuals, DFFITS Value, Cook’s
Distance, Covariance Ratio, Leave-One-Out 𝜏2, Hat Value, Study Weight, Fig. C.3).
A leave-one-out robustness analysis was used to point to the study whose exclusion
results in the largest decrease in the 𝐼2 statistic (Fig. C.4). Additionally, we
implemented a Graphical display of heterogeneity (GOSH) plot analysis (Fig. C.5).

Intraclass correlation (ICC)
We calculated the ICC through a two-way random-effects model (as provided by
package psych) to assess the reliability of the average of 𝑘 ratings for each signal 𝑖.
We described each rating as 𝑦𝑖 𝑗 = 𝜇 + 𝑟𝑖 + 𝑐 𝑗 + 𝑒𝑖 𝑗 , where 𝜇 was the average rating,
𝑟𝑖 ∼ 𝑁 (0, 𝜎2

𝑟 ) and 𝑐 𝑗 ∼ 𝑁 (0, 𝜎2
𝑐 ) were random effects for the signals and raters,

respectively, and 𝑒𝑖 𝑗 was the error term. Then, we computed ICC =
𝜎2
𝑟

𝜎2
𝑟 +(𝜎2

𝑐+𝜎2
𝜖 )/𝑘

(Liljequist et al., 2019).

Finite mixture models (FMMs)
We used an FMM to generate two latent classes with distinct effects of PC1 on
callback rates, with the probability of belonging to class 𝑖 defined as 𝜋𝑖 = exp(𝛾𝑖)∑𝑔

𝑗=1 exp(𝛾 𝑗) ,
where 𝛾𝑖 was a function of job characteristics (Table C.11).
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4.8 Results
Names: Social perception predicts callback in correspondence studies that vary
names
We identified studies through a systematic search of correspondence experiments in
North American labor markets (see PRISMA Flow Diagram, Fig. C.1). We further
extracted name-specific callback rates from studies that reported or made them
available through replication datasets for the following analyses. This procedure
created a sample of eight studies.

Before examining warmth and competence, we first analyzed how callback varies
by race and gender. The difference between groups was summarized by the ratio
of the callback rates of the potentially discriminated-against group compared to the
benchmark group, with a ratio of 1 indicating perfect parity, ratios < 1 indicating
negative discrimination, and those > 1 indicating privileged treatment.

In our sample, the callback ratio was 𝜃 = 0.798 for Black names, which was
significantly less than one (𝑝 = .07). The same ratio computed by Lippens et al.,
2023, is 𝜃 = 0.68 (𝑝 < .001). For the female gender compared to male, our
estimated ratios were 𝜃 = 1.02 (𝑝 = .36) in the eight studies we had, agreeing with
Lippens’ 𝜃 = 1.02 (𝑝 < .003) (Lippens et al., 2023). Together the data showed a
20−30% reduction in callbacks for Black names and no reduction for female names
(Table C.6). Our analysis did not differentiate between male and female-dominated
occupations, which may account for the lack of a significant effect observed for
females, as emphasized by Galos and Coppock, 2023.

To measure warmth and competence, lists of names from the correspondence studies
were given to participants on Prolific (787 raters total, 85.9 per name). To evaluate
the consistency of ratings across categories, we computed the intraclass correlation
(ICC, as defined in Materials and Methods). Our results reveal that the level of
agreement between raters differed across various studies, with agreement ranging
from excellent to good in most studies (Table C.2). This variation was crucial, as low
intraclass correlations of social categories create an upper bound on the reliability
of the ratings (see Discussion for details).

The callback rates were computed by averaging the decisions of multiple hiring
managers. Meanwhile, the warmth and competence scores were obtained from a
different sample. To ensure reliable social perception measurements, we specifically
recruited participants residing in North America with demographics closely resem-
bling those of the average hiring manager, and we averaged ratings across raters.
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Figure 4.2: Warmth and competence ratings across names and their association with
callback rates

(A) Each scatterplot shows warmth and competence for each name in the sample one study
(with the first author name at the top). The correlations between the two rating scales are
strongly positive in all eight studies (Table C.4). (B) Correlations between callback rates and
PC1 and PC2 components associated with specific names (aggregating all studies). Data
from different studies are identified by colors, with the legend shown in panel (C). The slope
coefficients, shown in Table 4.1 are 𝛽PC1 = 1.00(𝑝 < .001), 𝛽PC2 = .56(𝑝 = .43). (C)
Forest plot of confidence intervals for study-specific estimates of the correlation between
callback rate and the first principal component PC1, �̂�(callback, PC1). All correlations
are positive. The pooled effect is �̂� = .33. (D) Scatter plots of name-specific warmth and
competence ratings showing the structure of PC1 and PC2.

This enabled us to confidently match the social perception ratings with the callback
rates per name.

Those warmth and competence ratings, across names in different studies, are shown
in Figure 4.2A. There were only minor differences in warmth or competence ratings
between black and white candidates or males and females (between 2 and 7 points
on the 100-point scale), except for a marginally significant difference in competence
between black and white (−11.52, 𝑝 = .06, Table C.6).

Figure 4.2A shows strong, reliable positive associations between warmth and com-
petence within all eight studies, ranging from .41 − .92 (Table C.4). The pooled
correlation is �̂�𝑤,𝑐 = .78 (𝑝 < .001). We, therefore, used principal component anal-
ysis (PCA) as a proxy for social perceptions. Figure 4.2D shows how the principal
component scores (y-axis) are related to warmth and competence ratings (x-axis).
The first component (PC1) reflects the positive association; it explains 79.3% of
the variance. PC2 accounts for only 20.7% of the total variance, indicating its less
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prominent role in the overall data structure. As a result, our subsequent analyses
will focus on the PCs rather than the original ratings that generated them.

Correlation between callback and PC1 as an effect Figure 4.2C is a forest plot
of the estimated correlations �̂�(callback, PC1) and 95% confidence intervals of the
eight studies.

The effects across studies were pooled via a meta-analytic random effects model. The
pooled correlation between the callback percentage and PC1 is �̂� = .33 (𝑝 = .03),
indicating a moderate correlation (Cohen, 2013). To interpret the pooled effect size
meaningfully, we must consider the variance of the true effect sizes distribution, 𝜏2,
and the between-study heterogeneity, 𝐼2 (see Materials and Methods). As suggested
by Figure 4.2C, there is “substantial heterogeneity” (Higgins and Thompson, 2002)
among studies: 83 percent of the variation in effect sizes is due to between-study
heterogeneity (𝐼2 = .83, 95% CI [.68 − .91]). Furthermore, the variance of the
true effect sizes distribution is significantly greater than zero (𝜏2 = 0.08, 95% CI
[0.02 − 0.67]).

Given the large level of heterogeneity in our analysis, we find a wide prediction
interval (IntHout et al., 2016) (from −.40 to .81, details in Materials and Methods),
suggesting that future studies could potentially reveal negative correlations. There-
fore, caution is warranted in interpreting the results, and further research is needed
to clarify the effect of social perception on callback.

In order to ensure the robustness of our findings and account for potential outliers, we
conducted a comprehensive outlier and heterogeneity analysis. Only two out of eight
tests (details in SI) identified outliers which, when excluded, re-estimate �̂� as .22 or
.34, both values remaining close to the .33 all-study estimate in Figure 4.2C. Fur-
thermore, Egger’s regression test (Fig. C.6; intercept = 1.8, 95% CI [−0.25, 3.85],
𝑡 = 1.72, 𝑝 = .14) did not indicate bias.

As an alternative specification to the meta-analysis with �̂�, Table 4.1 reports results
of a mixed effects model of callback rates against the PCs and raw ratings. The
results are visualized in Figure 4.2B. The coefficient for PC1 is positive 𝛽PC1=1.00
and highly significant (𝑝 = .0008).

The correlations for warmth (�̂� = .34; 𝑝 = .02) and competence (�̂� = .26, 𝑝 = .09)
are similar to those observed for the first principal component (PC1). This small
warmth-competence difference is consistent with much evidence that judgments of
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warmth are faster, more reliable, and more associated with behavior than competence
judgments (e.g., Cuddy et al., 2007).

Table 4.1: Linear probability regressions of callback rates on principal components
and social perception ratings

95% CI

estimate lower upper p-value SE

Meta regression for categories1

intercept -0.32 -1.06 0.43 0.08 0.37
PC1 1.16 -0.28 2.59 0.12 0.72
PC2 -0.62 -3.58 2.35 0.69 1.49

Meta regression for names2

intercept -1.97 -2.47 -1.48 0.00 0.25
PC1 1.00 0.41 1.58 0.00 0.30
PC2 0.56 -0.83 1.96 0.43 0.71

Correlations 𝜌(callback, variable) for names3

PC1 0.33 0.03 0.66 0.03 0.13
warmth 0.34 0.08 0.64 0.02 0.12
comp 0.26 0.06 0.58 0.09 0.14

Note: 1Mixed-Effects Model (79 levels; 𝜏2 estimator: ML)
2Mixed-Effects Model (691 names; 𝜏2 estimator: ML)
3Three separate multivariate correlations; Random-Effects Model (8 studies; 725
observations); Inverse variance method, restricted maximum-likelihood estimator
for 𝜏2, Q-Profile method for the confidence interval of 𝜏2 and 𝜏, Hartung-Knapp
adjustment (df = 7), prediction interval based on t-distribution (df = 6), and Fisher’s
z transformation of correlations.

Moreover, we tested the predictive potential of our model for names. We found that
�̂�(callback, PC1) in Jacquemet and Yannelis, 2012, is closest to the pooled effect,
and we therefore used data from this study to make predictions. Specifically, we
trained a linear model on all names except one and then used this model to predict
the callback for the left-out name. Figure C.7 visually represents our findings,
with lighter shades of blue indicating lower callback rates. Our analysis reveals that
callback rates are highest in the upper quadrant of the warmth and competence scale,
while the callback rates are lowest in the lowest quadrant of this plot. Interestingly,
we also observe clusters of the race that the names would signal (Black, White, or
foreign-sounding).
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Exploratory analysis points to differential effects of social perceptions across job
types Previous studies suggest a link between the stereotype content of occupations
and group affliation (Cuddy et al., 2011; Halper et al., 2019). To investigate the
role of social perceptions in determining callbacks across job types, we analyzed
Farber et al., 2016, and Nunley et al., 2017, as those two studies provided adequate
variation for meaningful conclusions. We employed finite mixture models (FMMs)
to cluster occupations into two distinct groups for each study and examined the
relationship between callbacks and PC1. Results reveal that the relationship between
social perceptions and callbacks varies across job types. In Farber et al., 2016, the
correlation between callbacks and PC1 was higher for service-oriented and less
specialized jobs (r = .26 vs. r = .17). For Nunley et al., 2017, the correlations were
slightly higher for advanced, specialized or managerial positions (r = .80 vs. r =
.77).

An exploratory analysis using partial correlations indicated distinct relationships
between warmth, competence, and callbacks for different job categories. In Farber
et al., 2016, warmth was more strongly associated with callbacks in jobs with greater
social interaction requirements (𝑟 = .36 vs. 𝑟 = .29). Competence, conversely,
exhibited a negative association with callbacks, more pronounced in professional
or technical industries (𝑟 = −.20 vs. 𝑟 = −.16). Nunley et al., 2017, revealed a
more complex picture, with the relationship of warmth and callbacks appearing
negative only for higher cognitive and technical skill jobs (𝑟 = −.34 vs. 𝑟 = .28),
while competence displayed a positive association, stronger in entry-level or sales-
oriented roles (𝑟 = .83 vs. 𝑟 = .47).

Categories: Mixed effects of social perception on callback rates in correspon-
dence studies manipulating social identity categories
In the first section, we analyzed only correspondence studies that varied names. In
this subsection, we look at correspondence studies varying other categories, such as
religious affiliation or membership in the LGBTQ community (Fig. 4.1). Therefore,
in the following analyses, we use extracted effect sizes.

Prolific participants (787 raters total, 99.1 by level) rated each signal on a scale from
0 to 100 within a category (e.g., how warm/competent they think a “treasurer in gay
and lesbian alliance” would be, Figure 4.1, and 4.3A). The intraclass correlation
(ICC) Bartko, 1966, values vary across categories. Only two categories scored
poor, while the remaining scored either moderate or excellent (Fig. 4.3A). Note
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Figure 4.3: Warmth and competence ratings across categories and their association
with callback rates

(A) Each scatterplot shows warmth and competence for each category-signal (with the cat-
egory name at the top). The correlations between the two rating scales are strongly positive
in all nine categories (Table C.5). (B) Linear regression of PC1 on callback by category
and study. Data from different studies are identified by colors, with the legend shown in the
center of row three. (C) Scatter plots of category-specific warmth and competence ratings
showing the structure of PC1 and PC2. (D) Meta-regression of PC1 and PC2 on callback,
where each circle identifies a signal by study; the circle size indicates the assigned weight
in the meta-regression. Lines indicate fitted intercepts and 𝛽s.

that, for sexuality and wealth, the different signals yielded vastly different ICCs,
ranging from 0 to .83 (Table C.3). These findings suggest that raters’ agreement
levels varied across categories and signals.

Furthermore, we assessed the correlation between the warmth and competence
ratings and found that the Pearson correlation index (𝜌) was significant for most
studies, with a pooled correlation of �̂� = .595 (𝑝 < .001, Table C.5). The correlation
of target warmth and competence ratings across studies makes it challenging to
estimate the independent effects of these dimensions of social perception on the
callback rates. To better capture the variability in social perception of different
social categories, we conducted a PCA, revealing two principle components.

PC1 explained 80.73% of the variability in warmth and competence ratings, com-
bining the positively correlated measures onto a single dimension. PC2 represented
negative associations and accounted for 19.27% of variance. Therefore, we analyze
the principal components rather than the ratings which generated them (Fig. 4.3D).
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In the following, we conduct a meta-regression pooling all studies to explore the ex-
tent to which the principal components predict callback. To increase the robustness
of this analysis, we also perform a permutation test on our meta-regression models
(Thompson and Higgins, 2002). The resulting estimate for the coefficient of the
first principal component is .01, which is not statistically significant (𝑝 = .134).
Our model explains a small portion of the heterogeneity, accounting for only 3.31%
(Table 4.1). Figure 4.3D visualizes the meta-regression model.

The meta-regression did not yield a significant overall effect. Therefore, we explored
the relationship between PC1 and callback by category. Given the limited number
of levels across categories (Fig. 4.3B), it was not possible to calculate a meaningful
effect size directly relating ratings to callback at the study level. Thus, we present a
graphical representation in Figure 4.3B, with lines representing fitted linear models
for each study (Table C.7). For some categories, the relation between callback
and PC1 is positive (e.g., nationality, which also samples a larger number—35—of
categories). For most other categories, however, such as wealth, sexuality, and
parenthood, there are both positive and negative slopes in different studies. Under
the category of sexuality, slope signs in four studies were equally split between
positive and negative, which is especially striking given the large range of ICCs
across signals.

4.9 Discussion
Over the last few decades, many social scientists have used correspondence studies
to document the disparities in outcomes that people experience in the labor market
purely based on aspects of their social identity. Learning about these disparities
is imperative for fostering fair and inclusive labor markets. Our study examined
whether social perception predicts callback decisions in correspondence studies
targeting the US and Canadian labor markets.

Jenkins et al., 2018 found that 12 distinct subdimensions of social perception (includ-
ing friendliness, sincerity, self-control, efficiency, and others) could be effectively
condensed into the two factors of warmth and competence (Cuddy et al., 2007,
2008). Building upon this finding, we focused our investigation on participants’
perceptions of others’ warmth and competence based on attributes offered in the
relevant correspondence studies, such as name, religion, or sexual orientation. We
found that the perceived warmth and competence of individuals’ names or attributes
were highly correlated, leading us to use the first principal component (PC1) to
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measure favorable social perception. This component, reflecting both warmth and
competence, explained about 70–81% of the variance in social perception ratings
and was moderately linked to callback rates.

We found that in studies where names were varied to signal race, gender, and age,
more favorable warmth and competence perception, based on names, positively
predicted callback. However, for studies varying applicant characteristics such as
sexuality and disability status, the effects of social perception on callback rates are
ambiguous: some categories show a positive association between favorable social
perception and callback rates, such as age and nationality, while others show a
negative association. This result is unsurprising, given the small number of levels
for some of the categories, and the effects observed for these categories are more
susceptible to measurement issues like low inter-rater reliability (ICC).

The wide prediction interval for the positive correlation in our name analysis suggests
that future studies might uncover negative correlations between positive ratings and
callback rates. Our stringent selection criteria—restricting studies to those altering
names to signify race and gender, conducted in North America, and offering raw
data—resulted in a relatively small sample and excluded industry-specific variables.
We found no publication bias in this sample. Moreover, our prediction approach
adds variability, as it depends on perceptions from a group separate from the actual
decision-makers, potentially contributing to the broad prediction interval.

Despite differences in the population that rated social perception and the employers
making hiring decisions, there is a noteworthy predictive relationship between these
ratings and callback rates, suggesting common cultural biases. The accuracy of
these predictions could be even greater if the raters’ demographics more closely
matched those of the hiring decision-makers.

The reliability of categorical ratings in our study is measured by intraclass correla-
tions (ICC). Certain social information categories, like military status and age, have
shown low ICC, indicating raters’ disagreement on the warmth and competence
perceived in these groups. This disagreement suggests limitations in the predictive
ability of social perception measurements for these categories. To enhance pre-
diction, future studies could focus on gathering more ratings for categories with
traditionally low ICC.

The validity of correspondence studies hinges on the subtle resume signaling of
category membership being perceived by employers who read the resumes. Yet,
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monitoring how much attention these signals receive is challenging outside of lab-
oratory or carefully designed field settings, which can track attention more directly
(Bartoš et al., 2016; Konovalov and Krajbich, 2020). Signal effectiveness likely
varies by category, affecting study outcomes. This study aggregates results from
various studies using different signals, indicating the large variance in signaling
methods present in correspondence studies. Yet, future research is needed to deter-
mine the ways in which different signals modulate attention, and how such an effect
may impact callback rates.

The discussion of discrimination theories in our study pertains to foundational
economic models, delineating primarily into taste-based (Becker, 1971) and statis-
tical discrimination (Arrow, 1998; Phelps, 1972) theories. Contrasting with these
models, Bertrand and Mullainathan, 2004 suggest a “lexicographic search" pattern
among hiring managers. In this approach, employers stop reading a resume once
they encounter a salient signal (e.g., an African-American name). Our Prolific sur-
vey setup presents only the signals of interest (i.e., names or categories) for warmth
and competence ratings. However, since certain signals are listed later on a resume
(e.g., club membership), it is likely that the effect of warmth and competence per-
ceptions generated by less salient signals may be overwhelmed by more salient ones
(which may not always be associated with a discriminated group). This suggests
that our model may overestimate the impact of less salient signals. Furthermore,
the institutional discrimination theory posits that discrimination intensity is con-
textually determined (Brinton and Nee, 1998). Our study, however, is constrained
to the North American job market context, and does not explore these contextual
variations, presenting an opportunity for future research.

Our study’s practical implications lie in harnessing the link between social percep-
tions and callback rates to refine recruitment practices. Understanding discrimina-
tion via social perceptions facilitates generalization to underexplored stereotypes,
crucial for protecting intersectional groups from bias. Perceptions associated with
one group can inform on multiple intersecting identities (Nicolas and Fiske, 2023).
Thus, our research advocates for a predictive model to anticipate labor market out-
comes for intersectional groups, highlighting a direction for future bias mitigation
efforts. Third, our study may contribute to the development of responsible AI by
offering computer scientists insights into potential debiasing strategies proven ef-
fective in human decision-making, which can be translated into AI models. Most
studies rely on sets of examples, e.g., various professions, to detect biases, thereby
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lacking a validated collection for comprehensively assessing biases. In contrast, an
approach grounded in social perception moves beyond sets of examples, providing
a broader framework. A few authors in the representation learning literature have
seen value in this approach (Otterbacher et al., 2017).

Challenges in the Research Process
The process of conducting this research and producing the paper "Social perceptions
of warmth and competence predict experimental callback rates in North American
labor market experiments" was marked by a series of challenges that required careful
navigation and innovative solutions.

The first challenge encountered was the integration of data from a multitude of
different studies. Each of these studies, with their unique methodologies, categories,
and contexts, presented a distinct set of data. The task of harmonizing these disparate
data sources into a unified dataset for analysis was a significant undertaking. It
necessitated a profound understanding of each study’s methodology and a meticulous
approach to ensure the consistent treatment of data across all studies.

In tandem with this, the management of data from the 32 different studies posed
logistical challenges. The unique data structures inherent to each study required
the development and implementation of a robust data management system. This
was particularly challenging given the imperative to maintain the integrity of the
data from each study while simultaneously creating a unified dataset for the meta-
analysis.

The extraction of data from the studies in a consistent and reliable manner was
another hurdle that had to be overcome. The complexity of the process was such
that it required multiple iterations before a satisfactory protocol for data extraction
could be established. The challenge lay in developing a data extraction protocol that
could be uniformly applied across all studies, despite their inherent differences.

A further complication arose from the need to separate name-based studies from
category-based studies. The research encompassed studies that varied in their focus
- some were based on names, signaling race and gender, while others were based on
categories such as sexuality and disability. The task of segregating these different
types of studies and analyzing them separately demanded careful consideration of
the unique characteristics intrinsic to each type of study.

Another limitation of our study, and of correspondence studies in general, is the
lack of information about the composition of the workforce at the companies that
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received the resumes. The demographic makeup of existing employees could poten-
tially influence hiring decisions and callback rates (e.g., a minority-owned business
favoring minority applicants). Future research could benefit from incorporating this
and other contextual variables.

Identifying the appropriate techniques for the analyses presented another challenge.
The complexity of the data and the research questions necessitated the use of robust
statistical techniques capable of handling the intricacies of the data and sensitive
enough to detect the patterns of interest.

Beyond these methodological challenges, the research also demanded a deep under-
standing of the Stereotype Content Model and its application in the context of labor
market outcomes. This required a thorough review of the literature and a careful
application of the model to the data. Additionally, the ethical considerations associ-
ated with researching stereotypes and discrimination had to be navigated, ensuring
that the research was conducted in a responsible and sensitive manner.

In summary, the process of conducting this research and producing this paper
was marked by a series of challenges that required careful navigation, innovative
solutions, and a deep understanding of both the data and the theoretical frameworks
underpinning the research. The successful completion of this research, despite these
challenges, is a testament to the rigorous and meticulous approach adopted by the
research team.
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C h a p t e r 5

CONCLUSION

This dissertation has described the research that explored the potential of integrating
cognitive and behavioral science insights into policy-relevant domains, including
labor market discrimination and math education. The studies sought to answer the
following research questions: (1) In what ways can the principles of reinforcement
learning, derived from computational psychology, be applied to real-world policy
designs, including educational interventions? (2) How can insights into learning
processes inform the development and improvement of digital education platforms
and policies? (3) How can insights into cognition and behavior enhance the design
and implementation of policies to reduce discrimination?

This dissertation presented the research in three empirical chapters, each addressing
a specific aspect of psychologically informed policy research. First, the Introduction
provided a brief background for this work. Chapter 2 applied computational models,
including Q-learning, to field data from a large online math teaching platform,
providing insights into teachers’ adaptive decision-making processes. Chapter 3
analyzed field data from the same platform, using the resulting insights to design and
evaluate behavioral interventions to improve student learning outcomes. Chapter
4 investigated the effects of perceived warmth and competence on callback rates
in labor market field experiments, offering a novel perspective on the mechanisms
underlying discrimination.

While each chapter focused on a distinct research question, methodology, and policy
domain, they are interconnected by the overarching theme of leveraging cognitive
and behavioral sciences to inform policy-making. Each chapter presented unique
findings derived from its particular context and innovative approach, and further
details are provided below.

5.1 Chapter 2: Reinforcement Learning Models in Teachers’ Decision-Making
Chapter 2 introduced a new application of reinforcement learning (RL) models to
gain insight into teachers’ decision-making processes on the Zearn online math-
teaching platform. By fitting Q-learning and actor-critic models to field data, this
research demonstrated the potential of RL to capture the complex, adaptive nature of
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teachers’ pedagogical strategies. The RL approach was advantageous compared to
traditional methods, as it allowed for a more systematic understanding of teachers’
adaptive decision-making in a complex educational environment. The findings
revealed distinct patterns of teaching behavior and highlighted the importance of
individual differences in learning rates and decision-making processes for student
outcomes.

5.2 Chapter 3: Data-Driven Behavioral Interventions in Math Education
Chapter 3 combined an unsupervised learning technique (i.e., Independent Com-
ponent Analysis, ICA) and a large-scale field experiment to generate effective be-
havioral interventions for teachers on the Zearn online math-teaching platform.
The Independent Component Analysis (ICA) identified key dimensions of teacher
behavior that informed the design of targeted "empathy" and "habitization" inter-
ventions. The resulting interventions demonstrated the effectiveness of targeted
behavioral interventions in enhancing student engagement and performance. The
results showed significant improvements in student lesson completion and reduced
learning struggles.

5.3 Chapter 4: Perceived Warmth and Competence in Labor Market Dis-
crimination

Chapter 4 used the Stereotype Content Model to explain the differences in callback
rates across groups in North American labor market experiments. Using two psy-
chological measures (i.e., warmth and competence) helped to explain the varied
impact of social perception on hiring discrimination, offering a novel perspective
on the mechanisms underlying discrimination. Specifically, perceived warmth and
competence explained a substantial portion of the variation in callback rates across
different demographic groups.

5.4 Significance of the Studies
It is expected that the research findings presented in these chapters will contribute to
a more comprehensive understanding of how cognitive and behavioral sciences can
be integrated into policy-relevant domains to address complex societal challenges.
By applying innovative methodologies and computational models to real-world data,
this work demonstrated the feasibility and value of bridging the gap between these
fields and policy-making. Across the chapters, several overarching themes emerged,
including the importance of data-driven approaches, interdisciplinary collaboration,
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and behavioral analysis to drive positive change through informed interventions.
This is significant because these themes showcase the expansive scope and potential
of research and innovation at the intersection of cognition, behavior, and public
policy. This work’s concepts and methods can apply to real-world policy issues
beyond labor discrimination and education.

Furthermore, this research contributes to the growing toolkit of psychologically
informed policy research. For example, paradigms traditionally associated with lab
experiments (i.e., fitting animal behavior to a reinforcement learning model) worked
well in a real-world context.

5.5 Limitations of the Studies
While the studies presented in these chapters contribute significantly to their respec-
tive fields, they also reveal limitations. For example, Chapter 4 focuses primarily on
the North American context, which may limit the generalizability of the findings to
other cultural and societal contexts. Similarly, the sample size and exclusion criteria
used in Chapters 2 and 3 may restrict the representativeness of the results.

In addition to the topic-specific limitations, there are also some overarching limi-
tations to the research approach and methodology used in the studies. One hurdle
is the complexity and variability inherent in neural and behavioral data. Pollak and
Wolfe (2020) note that the multifaceted factors that influence brain development and
function, including genetics, environment, and social aspects, make it challenging
to derive simple, one-size-fits-all policy solutions. Additionally, the dynamic na-
ture of the brain, with critical periods of development and plasticity, adds another
layer of complexity. Pollack and Wolfe also stress that high-quality studies require
significant technical and infrastructural requirements and sustained funding, limit-
ing accessibility for some researchers and policymakers. Furthermore, transparent
communication about the limitations and uncertainties of neuroscientific research
is crucial to avoid oversimplification or misinterpretation of findings, which could
lead to misguided policies or unrealistic expectations (Farah, 2018).

5.6 Recommendations for Future Research, Practice and Policy
Nevertheless, the findings and limitations evident in each chapter point to several
promising avenues for future research in psychologically informed policy-making.
For example, future studies could explore the applicability of the Stereotype Con-
tent Model to other forms of discrimination, such as housing or education, and
investigate the effectiveness of interventions designed to mitigate the impact of so-



120

cial perceptions on decision-making in these contexts. Furthermore, future studies
might explore new policy domains and refine methodological approaches. For in-
stance, more sophisticated computational models may incorporate a broader range
of behavioral and contextual factors. Also, longitudinal studies may better assess
the long-term impacts of interventions on individual and societal outcomes. Other
research directions include the development of scalable, evidence-based interven-
tions that can be widely implemented to improve public health, education, and
social welfare. Further, integrating neuroscience and related technologies, such as
wearable devices, offers exciting opportunities for better understanding cognitive
function, tailoring interventions to individual needs, and gathering physiological
data to inform policy decisions.

Nevertheless, the findings from this research have generated interesting policy impli-
cations and recommendations. First, based on the findings on the role of perceived
warmth and competence in predicting callback rates, policymakers may consider
implementing training programs that raise awareness about the impact of social
perceptions on hiring decisions and promote more objective evaluation processes.
These results may also contribute to developing responsible, unbiased AI. Notably,
this approach provides a broader framework to analyze and compare perceptions
across diverse groups, especially within under-researched, intersectionally stereo-
typed groups.

Moreover, based on the results from the RL models and data-driven interventions
in Chapters 2 and 3, policymakers and educators might consider incorporating
data-driven insights and targeted behavioral interventions into their pedagogy, such
as those focused on empathy and habit formation, to enhance student engagement
and performance. This effort could involve the development of adaptive learning
systems that tailor content and support to individual students’ needs, as well as
implementing professional development programs that promote effective teaching
strategies and data-driven decision-making.

As evidenced by this study, fostering interdisciplinary collaboration among re-
searchers, policymakers, and practitioners and prioritizing data-driven approaches
in policy design and implementation is crucial to fully realizing the potential of
psychologically informed policy-making. This effort requires the development of
shared frameworks, methodologies, and communication strategies that facilitate the
exchange of knowledge and expertise across disciplinary boundaries. As psycholog-
ically informed policy research continues to evolve, it will be essential to maintain
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a strong focus on interdisciplinary collaboration and actively seek out opportunities
for innovation and knowledge exchange.

5.7 Summary
In conclusion, these studies have sought to contribute significantly to understanding
how cognitive and behavioral sciences can be integrated into policy-relevant domains
to address pressing societal challenges. By applying innovative methodologies and
computational models to real-world data, this work has demonstrated the feasibility
and value of bridging the gap between these fields and policy-making. The key
findings from this work include the importance of data-driven approaches, the value
of interdisciplinary collaboration, and the potential of behavioral interventions to
drive positive change in various policy contexts. These insights provide a foundation
for continued research and innovation at the intersection of cognition, behavior, and
public policy and highlight the need for more evidence-based solutions to complex
societal issues. The insights and approaches presented in this dissertation provide
a foundation for continued research and innovation in psychologically informed
policy-making. As our understanding of the brain continues to evolve, so will the
opportunities for leveraging this knowledge to create more effective, evidence-based
policies that promote the well-being of individuals and communities worldwide.
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A p p e n d i x A

APPENDIX FOR CHAPTER 2

A.1 Supplementary Methods
PCA vs. NMF
Principal Component Analysis (PCA) was our first methodological choice. It is
widely utilized but assumes data normality (Jolliffe & Cadima, 2016) and maximizes
variance explained, potentially overlooking subtle relationships between variables.
Consequently, we also employed NMF, which, by contrast, imposes a non-negativity
constraint and is more closely related to clustering algorithms, creating a more
interpretable, sparse representation of behaviors (Ding et al., 2005; Lee & Seung,
1999). This technique is particularly advantageous for data representing counts or
frequencies. By trying different techniques, we can explore the reduced-dimension
representation best suited to our specific dataset and research questions.

Temporal Dynamics
Our investigation into temporal dynamics confirmed the impact of lagged rewards
and actions on decision-making: shaping future decisions by past experiences.
Figure A.9 illustrates this relationship, showcasing the predictive accuracy and
model fit across fixed-effects models with different lags, with BIC and AUC scores
for the models with one-week lags as the baseline. The results suggest a preference
for a lag of two periods as optimal, based on the “elbow” in the AUC curves and the
minima in the BIC curves.

Correlations Between Variables
We began to unveil the intricate relationships among the variables under considera-
tion through a comprehensive correlation analysis, as depicted in Figure A.1. This
correlation matrix elucidated the magnitude and direction of associations among
variables such as badges earned, minutes spent per student, tower alerts, the number
of students, and teacher minutes. These interconnections informed the construction
of our reinforcement learning models by suggesting the influence of teacher effort on
student achievement. In this correlation matrix, each cell represents the Spearman
correlation coefficient between a pair of variables. The color and size of the circles
in each cell reflect the strength and direction of the correlation, with blue indicating
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positive correlations and red indicating negative correlations. The histograms along
the diagonal provide a visual representation of the distribution of each variable.

Figure A.1: Correlation coefficients between variables after standardization
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A.2 Supplementary Tables
Teacher Variables

Table A.1: Catalog of teacher activities.

This table presents teachers’ actions, including curriculum engagement, downloads
of pedagogical materials, and completion of various interactive components within
the Zearn educational platform.
Variable Description

PD Course Guide Down-
load (Zearn, 2023, 2024k)

Detailed agenda for Professional Development (PD) courses
focusing on classroom implementation, leadership, support-
ing diverse learners, using data to inform teaching practices,
and accelerating student learning.

PD Course Notes Down-
load (Zearn, 2023, 2024k)

Professional development session notes offering insights
into effectively using Zearn’s curriculum.

Curriculum Map Down-
load (Zearn, 2024d)

Detailed outline of learning objectives and content. Presents
a sequence of interconnected math concepts across grades,
aligning with states’ instructional requirements.

Assessments Download
(Zearn, 2024b)

Assessments to evaluate student understanding of the mate-
rial, including ongoing formative assessments, digital daily
checks, and paper-based unit assessments.

Assessments Answer Key
Download (Zearn, 2024l)

Solutions for assessments to aid in grading and feedback.
Provides detailed rubrics for mission-level assessments.

Elementary Schedule
Download (Zearn, 2024s)

A recommended schedule for elementary school-level Zearn
curriculum activities to guide daily and weekly instructional
planning, ensuring comprehensive coverage of curriculum
content.

Grade Level Overview
Download (Zearn, 2024n)

Provides a summary of learning objectives, pacing guid-
ance, key grade-level terminology, a list of required materi-
als, and details on the standards covered by each lesson.

Kindergarten Schedule
Download (Zearn, 2024r)

Recommended schedules for Kindergarten, supporting
structured instruction planning.

Continued on next page
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Table A.1 (continued)

Variable Description

Kindergarten Mission
Download (Zearn, 2024h)

Details interactive activities focused on kindergarten-level
concepts and their learning objectives.

Mission Overview Down-
load (Zearn, 2024n)

Outlines a mission’s flow of topics, lessons, and assess-
ments; highlights foundational concepts introduced earlier;
lists recently introduced terms and required materials for
teacher-led instruction.

Optional Homework
Download (Zearn, 2024q)

Assignments for additional practice, enhancing student
learning outside of class.

Optional Problem Sets
Download (Zearn, 2024m)

Exercises for extra practice, tailored to reinforce lesson con-
cepts.

Small Group Lesson
Download (Zearn, 2024i)

Lessons designed for small-group engagement.

Student Notes and Exit
Tickets Download (Zearn,
2024o, 2024t)

Student notes supplement digital lessons with paper-and-
pencil activities. Exit tickets are lesson-level assessments
for teachers to monitor daily learning.

Teaching and Learning Ap-
proach Download (Zearn,
2024p)

Resources outlining Zearn’s pedagogical methods.

Whole Group Fluency
Download (Zearn, 2024j)

Lesson-aligned practice activities to build math fluency
through whole-class engagement.

Whole Group Word Prob-
lems Download (Zearn,
2024i)

Word problem-solving activities intended for collaborative,
whole-class engagement.

Fluency Completed (Zearn,
2024j)

Indicates teacher completed a fluency activity, typically
given to students before their daily digital lessons.

Guided Practice Completed
(Zearn, 2024e)

Indicates teacher completed a guided practice segment,
where students learn new concepts. These include videos
with on-screen teachers, interactive activities, and paper-
and-pencil Student Notes.

Continued on next page
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Table A.1 (continued)

Variable Description

Kindergarten Activity
Completed (Zearn, 2024g)

Indicates teacher completed an activity within the Kinder-
garten curriculum.

Number Gym Activ-
ity Completed (Zearn,
2024a)

Indicates teacher completed a Number Gym, an individu-
ally adaptive activity that builds number sense, reinforces
previously learned skills, and addresses areas of unfinished
learning.

Tower Completed (Zearn,
2024f)

Indicates teacher completed a Tower of Power, an activ-
ity that requires full mastery of lesson objectives and that
students must complete independently.

Tower Struggled (Zearn,
2024c)

Indicates teacher made a mistake when engaging with the
Tower of Power activity in a student role, triggering a "boost"
(scaffolding remediation).

Tower Stage Failed (Zearn,
2024f)

Indicates teacher received three consecutive "boosts" due to
repeated errors when engaging with the Tower of Power in
a student role.
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Dependent Variable: Tower Alerts

Parameter (1) (2) (3)

𝛼 0.061∗∗∗ 0.059∗∗∗ 0.050∗∗∗
(0.015) (0.015) (0.015)

𝛾 0.006 0.015 0.023
(0.017) (0.017) (0.017)

𝜏 -0.019 -0.023 -0.023
(0.015) (0.016) (0.015)

Cost 0.031∗ 0.031 0.042∗
(0.016) (0.021) (0.021)

Starting Q-value -0.019 -0.013 -0.002
(0.017) (0.019) (0.018)

No. of Weeks 0.008∗∗ 0.007∗∗
(0.003) (0.003)

No. of Students -0.006∗∗ -0.008∗∗∗
(0.002) (0.002)

No. of Classes 0.066∗∗∗ -0.007
(0.013) (0.016)

Charter School -0.026
(0.052)

Paid Zearn Account 0.130∗∗∗
(0.038)

Constant 0.934∗∗∗ 0.730∗∗∗ -0.157
(0.013) (0.080) (0.172)

Control for AIC Yes Yes
Control for Grade Level Yes
Control for Poverty Level Yes

Observations 1,782 1,782 1,668
R2 0.026 0.051 0.162
Adjusted R2 0.023 0.046 0.153
RSE (df) 0.534 (1776) 0.527 (1772) 0.498 (1649)
F Statistic (df) 9.479∗∗∗ (5; 1776) 10.646∗∗∗ (9; 1772) 17.683∗∗∗ (18; 1649)
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table A.3: Impact of Q-learning model parameters on average weekly tower alerts
per tower completion.

Three linear regression models examine the correlations between a teacher’s reinforcement
learning (RL) parameters and student struggle, measured by average weekly Tower Alerts.
RL parameters were estimated through non-hierarchical maximum likelihood estimation.
Model 1 includes only RL parameters. Model 2 adds controls for AIC, number of weeks,
total students, and number of classes. Model 3 further incorporates controls for grade
level, poverty level, charter school status, and whether the school has a paid Zearn account.
Coefficients and standard errors (in parentheses) are provided for each parameter. RSE =
Residual Standard Error.
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Parameter Statistic Non-hierarchical Hierarchical
Individual Hyperparameter

𝛼

Mean 0.353 0.0550 0.0549
Median 0.423 0.0478
95% CI [0.339, 0.367] [0.0527, 0.0575] [0.0364, 0.0767]

𝛾

Mean 0.448 0.0590 0.0582
Median 0.462 0.0499
95% CI [0.442, 0.453] [0.0568, 0.0612] [0.0273, 0.1114]

𝜏

Mean 2.103 32.836 32.8356
Median 1.752 32.8304
95% CI [2.009, 2.202] [32.8340, 32.8381] [23.6889, 46.4811]

Cost
Mean 0.596 0.0131 0.0131
Median 0.638 0.0134
95% CI [0.571, 0.622] [0.0130, 0.0132] [0.0082, 0.0198]

Initial Q-value
Mean 0.651 0.0000 0.000
Median 1.021 -0.0037
95% CI [0.605, 0.696] [-0.0018, 0.0017] [-0.0080, 0.0068]

Table A.4: Comparison of Q-learning model parameters across estimation methods.

The table presents parameter estimates from non-hierarchical maximum likelihood and
hierarchical Bayesian methods. Non-hierarchical estimates represent parameters fitted in-
dependently for each teacher, where CI is the confidence interval around the mean. For the
hierarchical model, the individual column shows the means and medians of individual-level
parameters with the confidence intervals around each mean. The hyperparameter column
shows the estimated population-level means and their 95% credible intervals. All parameters
are reported in their transformed space (logit transformation for 𝛼 and 𝛾, log transformation
for 𝜏 and cost).
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A.3 Supplementary Figures

Figure A.2: Zearn student portal

Figure A.3: Professional development calendar
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Figure A.4: Distributions of school socioeconomic profiles

The first graph (a) categorizes schools into three groups based on the percentage of students
eligible for free or reduced-price lunch (FRPL): low-poverty (0-40%), mid-poverty (40-
75%), and high-poverty (over 75%). The second graph (b) presents the distribution of
median incomes for a school’s associated region.
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Figure A.5: Geographic distribution of Zearn teachers across parishes in Louisiana.

The color gradient represents the density of teachers, with darker hues indicating a higher
concentration of educators using Zearn in each parish. The map also labels the top five
cities where Zearn adoption is most prevalent.
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Figure A.6: Total number of student logins over the 2019-2020 school year.

The chart depicts the connection between academic schedules and platform engagement.
Each bar represents a week, with peaks corresponding to active school weeks and troughs
aligning with major holiday periods (e.g., Thanksgiving and Winter Break).
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Figure A.7: Teacher data
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Figure A.8: Student data
Comparison of dimensionality reduction techniques for teacher and student data.

The figures compare the performance of Principal Component Analysis (PCA) against Nonnegative Matrix
Factorization (NMF) in reducing the dimensionality of teacher and student data. The NMF variants include the
Frobenius norm with two different initialization strategies: Nonnegative Double Singular Value Decomposition
(Frobenius NNDSVD) and NNDSVD with the average of the input matrix X filled in place of zeros (Frobenius
NNDSVDA). The third NMF variant uses the Kullback-Leibler divergence as the loss function. The left
column assesses reconstruction quality using R-squared, where values closer to 1 indicate that the components
can better recover the original data. The right column evaluates the interpretability of the low-dimensional
representation using silhouette scores. Higher silhouette scores relate to better-defined clusters, values near
0 indicate overlapping clusters, and negative values generally suggest that a sample has been assigned to the
wrong cluster.



135

−0.4%

−0.2%

0.0%

0.2%

2 4 6
Lag

P
er

ce
nt

 C
ha

ng
e 

in
 B

IC

Figure A.9: BIC variations across lags for fixed-effects panel logistic regression
models.
The plots show the percent change in model fit (BIC) for different lag periods
compared to the one-week lag baseline. The thin lines represent the percent change
for each combination of reward functions and methods, while the dashed gray lines
represent their average. The shaded bands around the average lines indicate the
standard error. The optimal lag period can be determined based on the minima in the
BIC curves (lower BIC indicates better model fit when penalizing for complexity).
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Figure A.10: Empirical Cumulative Distribution Function (ECDF) of teacher-
specific Akaike Information Criteria (AIC) for different models.
Lower AIC values indicate better model fit. Models were estimated through non-
hierarchical maximum likelihood estimation.
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(d) Q-value and reward differences

Figure A.11: Behavioral signatures of reinforcement learning in teacher decision-
making for Activity as Rewards using non-hierarchical estimation.
The graphs compare three models (Q-learning, Logit, and Baseline) in their ability
to capture various aspects of teachers’ behavior. (a) Reward-seeking behavior:
The x-axis represents the percentile of the difference in Q-values between action
and inaction. The y-axis shows the proportion of times teachers chose to act.
(b) Uncertainty aversion: The x-axis represents the percentile of the difference in
expected value (EV) between uncertain and certain options, calculated from the
cumulative means and standard deviations of rewards associated with each action.
The y-axis shows the proportion of times teachers chose the uncertain option. (c)
Prediction Errors: The plot shows the mean reward prediction errors across teachers
over time. (d) Q-value and reward differences: The graph shows the difference in
Q-values or mean rewards between action and inaction over time. In all plots, black
points or dashed lines represent observed teacher behavior, while colored lines and
shaded areas show model predictions with 95% confidence intervals.
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Figure A.12: Observed teacher behavior and model predictions over the academic
year using the full, unbalanced dataset.
The graphs show the percentage of times teachers chose to engage in Pedagogical
Content activities averaged across all teachers for each biweekly period. The x-
axis represents biweekly periods throughout the school year. The black dashed
line represents observed teacher behavior, while colored lines represent predictions
from different models estimated through non-hierarchical maximum likelihood.
Shaded areas represent the 95% confidence intervals for each model’s predictions.
Note that this unbalanced dataset includes teachers with missing data, resulting in
varying numbers of teachers contributing to each time point, causing fluctuations in
the average baseline predictions.
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Figure A.13: Observed teacher behavior and model predictions over the academic
year using a balanced subset of the data.
The graphs show the percentage of times teachers chose to engage in Pedagogical
Content activities using only teachers with complete data for 16 biweekly periods
(N = 632 teachers). The x-axis represents biweekly periods throughout the school
year. The black dashed line represents observed teacher behavior, while colored
lines represent predictions from different models estimated through non-hierarchical
maximum likelihood. Shaded areas represent the 95% confidence intervals for each
model’s predictions. Note that the all teachers contribute to each time point equally,
resulting in a baseline model with constant average predictions over time.
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Figure A.14: Correlation matrix and distributions of reinforcement learning param-
eters and model fit.
The figure illustrates the pairwise Spearman correlations between key reinforcement
learning parameters and model fit (AIC) derived from Q-learning model estimated
through non-hierarchical maximum likelihood. The diagonal shows the distribution
of each parameter, with histograms for discrete variables and density plots for con-
tinuous variables. The lower triangle displays scatterplots of pairwise relationships,
with locally weighted scatterplot smoothing (LOWESS) lines in blue. The upper
triangle presents correlation coefficients, with asterisks indicating statistical signif-
icance (*p < 0.05, **p < 0.01, ***p < 0.001).
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Figure A.15: Correlations between individual parameter estimates from non-
hierarchical and hierarchical estimation approaches.
The figure illustrates the pairwise Spearman correlations between the two estimation
methods. (*p < 0.001).
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A p p e n d i x B

APPENDIX FOR CHAPTER 3

B.1 Supplementary Methods
Differences in the Original vs. Revised Analysis
As noted in the main text, we have corrected a few inaccuracies in our initial
analysis, improving the robustness of our methodology. To be fully transparent, we
have outlined below all the changes made from the original to the revised analysis.
Please refer to Tables S3 to S5 in this supplementary document for the original
results that inspired our treatments.

1. Temporal Alignment Adjustments: The original method used the standard
week and year delineation based on the Gregorian calendar. The new analysis
uses the ISO week date system to ensure correct week numbering, particularly
around the transition from one year to the next, which corrected previous week
misclassifications.

2. Duplicate Record Management: The dataset contains a small number of du-
plicate classroom-week pairs generated in classrooms with more than one
teacher linked to it. The original method removed the first duplicate occur-
rence, consequently discarding data from teachers with larger ID numbers.
The revised analysis orders and filters duplicate records by the number of
classes each teacher manages, retaining data from teachers involved in fewer
classes, thereby minimizing the inclusion of supervisory rather than direct
instructional roles.

3. Independent Component Analysis: The original ICA used the fastICA pack-
age, presenting some inconsistencies: non-deterministic component sequenc-
ing, arbitrary sign inversions, and varied loading coefficients, even with a
set seed. The updated approach adopts the ica package, ensuring orderly
component arrangement and consistent outputs. Sign orientation is now stan-
dardized, maintaining the largest loading variable as positive. Further, for
the models restricted to schools that use Zearn as a main component of their
curriculum, the ICA was estimated separately (see Table S4).
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4. Model Selection Adjustment: Initially, we estimated a random effects model.
Following a Hausman test indicating inconsistency (chi-square = 81.31, df =
4, p < .001), we transitioned to a fixed effects model. The revised approach
also incorporates robust standard errors, adjusting for heteroskedasticity and
autocorrelation (Arellano, 1987; Long & Ervin, 2000).

5. Removed User.Session: The original ICA included “User Session.” This
variable measures the frequency of a teacher’s logins to the Zearn platform.
As such, it does not offer substantive insight into the pedagogical nature of
the teachers’ interactions with the platform. We aimed to understand the edu-
cational impact of specific usage patterns rather than their frequency. Hence,
“User Session” was deemed a nuisance variable as it risked overshadow-
ing more pertinent patterns related to instructional engagement and effective
pedagogical strategies. In particular, this variable mainly loads onto the “em-
pathy” component. Its exclusion in our revised analysis has confirmed that
the identified patterns genuinely reflect empathy in teaching approaches (see
Tables S3 and S4).

Independent Component Analysis (ICA)
We implement the FastICA algorithm (Hyvärinen & Oja, 2000) to estimate indepen-
dent components from our dataset. In this model, matrix 𝑋 = {𝑥𝑖 𝑗 }𝐼×𝐽 , consisting of
𝐼 samples across 𝐽 random variables, is expressed as a linear mixture of independent
components 𝐶, represented by:

𝑋 = 𝐶′𝑀 + 𝐸.

Here, 𝐶 holds the independent components, 𝑀 is a mixing matrix, and 𝐸 denotes
the noise. The aim is to minimize mutual information between components in 𝐶,
which is achieved by maximizing their marginal negentropy, thereby rendering the
columns of 𝐶 statistically independent.

The FastICA process begins by transforming 𝑋 into a whitened matrix 𝑌 , ensuring
uncorrelated variables with unit variance. This transformation is achieved through
eigenvalue decomposition:

𝑌 = 𝑋 ·
[

v1√
𝜆1

v2√
𝜆2

v3√
𝜆3

]
,
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where (𝜆1, 𝜆2, 𝜆3) and (v1, v2, v3) are, respectively, the eigenvalues and eigenvectors
of 𝑋 ′𝑋

𝐼
.

Afterward, the algorithm approximates the negentropy with

𝜃 (𝑐𝑛) = (E[ln(cosh(𝑐𝑛))] − E[ln(cosh(𝑧))])2

where 𝑐𝑛, 𝑛 ∈ 1, 2, 3, is one of the components, and 𝑧 is a Gaussian variable with
zero mean and unit variance. FastICA iteratively maximizes this value across all
components, producing an orthogonal rotation matrix 𝑅3×3 such that 𝐶 = 𝑌𝑅.

For more details on ICA and the FastICA algorithm, see Hyvärinen and Oja (2000)
and Helwig and Hong (2013).

Focus Group Discussions
In 2021, we conducted regular meetings (once a month, on average) with Zearn
employees to discuss the interpretation of our data analyses. Additionally, on April
6th and 13th, 2021, we held “office hours” with Zearn teachers and administrators.
For these specific meeting we prepared the following questions, although due to
time limitations, we were unable to ask them systematically:

1. With what regularity do you find logging into Zearn most helpful?

2. What tasks do you typically do on Zearn?

3. Please order the tasks you mentioned in how important they are in helping
your teaching (from most important to least important).

4. Please explain why [top option from question 3] is the most important.

5. Have you done activities and exercises designed for the students on Zearn?

6. If so, with what regularity do you do activities and exercises designed for the
students on Zearn?

Below are some of the most relevant quotes from these meetings:

“We could layer in some of the insights here, [for example], prompting teachers to
go and do towers and get towers and go through mediation paths. I think that could
be something we layer into one of those A/B tests.” - B.M., Zearn administrator
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“If students are not successful in Tower of Power, they get stuck, and it is the loop
of self defeat - I know what I need to do, but I can’t do it. Teachers don’t check the
tower alerts report enough so they can defeat that cycle.” - Math coach from CA

“For everything I do, I try to look through the kid’s eyes. I look for the lightbulb
moment, and the thing that finally gets kids to understand it.” -5th grade teacher
from IL

“One thing is when kids really understand something and have that “aha” moment -
and you know you have gotten through. And that could be academically or socially.”
- Middle school teacher from CA

“It took my students 50-60 minutes to get through a lesson. I have some kids who
get fatigued by the length of the digital instruction and program. The boosts may
not help them. Need to orient them to the Zearn lesson.” - Zearn Teacher
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B.2 Supplementary Tables

Table B.1: Independent Component Analysis (ICA) Results.
This table displays the weights of each teacher activity in the three independent components
(ICs). Notably, these metrics pertain to teacher activity on the platform, not student actions.

Activity IC 1 IC 2 IC 3

Tower Struggled 0.89 -0.02 0.02
Tower Stage Failed 0.89 -0.01 0.02
Fluency Completed 0.84 0.02 0.00
Guided Practice Completed 0.71 0.04 -0.02
Number Gym Activity Completed 0.66 0.02 0.02
Tower Completed 0.65 0.09 0.02
Grade Level Overview RD 0.12 0.16 -0.35
Student Notes and Exit Tickets RD 0.10 0.06 -0.34
Kindergarten Activity Completed 0.06 -0.01 -0.01
Mission Overview RD 0.03 0.37 0.17
Kindergarten Schedule RD 0.03 -0.00 0.02
Teaching and Learning Approach RD 0.02 -0.17 0.32
Optional Problem Sets RD 0.01 0.65 0.02
Optional Homework RD 0.01 0.67 0.10
Whole Group Word Problems RD 0.01 0.67 0.10
Elementary Schedule RD 0.00 0.02 0.28
Small Group Lesson RD 0.00 0.72 0.06
Curriculum Map RD 0.00 0.00 0.31
Kindergarten Mission RD 0.00 -0.03 0.23
Assessments RD -0.01 0.55 0.08
PD Course Guide RD -0.01 -0.03 0.66
Whole Group Fluency RD -0.01 0.64 0.15
Assessments Answer Key RD -0.01 0.45 0.14
PD Course Notes RD -0.01 0.08 0.66
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Table B.2: Marginal effects of ICA components on badges.
Marginal effects are calculated by multiplying the ICA coefficients by the mean of each
component and dividing by the standard deviation of the corresponding variable.

Activity Effect of 1 SD Effect of 1 Unit

Tower Struggled 4.94 7.14
Tower Stage Failed 4.89 2.03
Fluency Completed 4.74 3.47
Guided Practice Completed 4.10 2.69
Number Gym Activity Completed 3.70 5.63
Tower Completed 3.66 2.73
Student Notes and Exit Tickets RD 0.59 0.88
Kindergarten Activity Completed 0.17 0.73
Optional Homework RD 0.04 0.06
Optional Problem Sets RD 0.02 0.02
Small Group Lesson RD -0.77 -0.81
Assessments RD -0.89 -1.76
Whole Group Word Problems RD -1.05 -1.70
Mission Overview RD -1.18 -2.03
Assessments Answer Key RD -1.24 -3.71
Whole Group Fluency RD -1.45 -2.84
Kindergarten Mission RD -1.54 -5.43
Kindergarten Schedule RD -1.71 -84.55
Grade Level Overview RD -1.79 -13.01
Elementary Schedule RD -1.87 -34.91
Teaching and Learning Approach RD -2.09 -41.00
Curriculum Map RD -2.09 -46.13
PD Course Guide RD -4.47 -67.43
PD Course Notes RD -4.51 -31.16
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B.3 Supplementary Figures
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Figure B.1: Elbow (Scree) plot for determining optimal number of components.

The plot displays the proportion of variance explained by each independent component
(IC). The optimal number of components is indicated by the “elbow” of the plot, where the
variance explained by each additional component is minimal.
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Figure B.2: Geographical distribution of teachers across various parishes in
Louisiana, and the top 5 cities with the highest number of teachers.
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Original Analysis

Table B.3: Independent Component Analysis (ICA) results without including user
sessions.

Activity IC 1 IC 2 IC 3

Tower Struggled 0.89 -0.03 0.02
Tower Stage Failed 0.88 -0.02 0.03
Fluency Completed 0.83 0.00 0.00
Guided Practice Completed 0.71 0.04 -0.02
Number Gym Activity Completed 0.66 -0.01 0.01
Tower Completed 0.65 0.09 0.00
User Session 0.54 0.38 -0.01
Grade Level Overview RD 0.11 0.16 -0.36
Student Notes and Exit Tickets RD 0.11 0.14 0.04
Kindergarten Activity Completed 0.06 -0.01 -0.01
Mission Overview RD 0.03 0.37 0.18
Kindergarten Schedule RD 0.03 -0.05 0.28
Teaching and Learning Approach RD 0.02 -0.17 0.32
Optional Problem Sets RD 0.02 -0.65 -0.05
Optional Homework RD 0.01 0.60 -0.05
Small Group Lesson RD 0.01 0.72 0.06
Elementary Schedule RD 0.00 0.02 0.28
Curriculum Map RD 0.00 0.00 0.31
Whole Group Word Problems RD 0.00 0.66 0.11
Kindergarten Mission RD 0.00 -0.03 0.23
PD Course Guide RD 0.00 -0.02 0.66
Assessments RD -0.01 0.54 0.09
PD Course Notes RD -0.01 0.07 0.65
Whole Group Fluency RD -0.02 0.63 0.17
Assessments Answer Key RD -0.02 0.44 0.15

Variance Accounted For: 15.75%, 12.49%, 6.06 %
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A p p e n d i x C

APPENDIX FOR CHAPTER 4

C.1 Statistical Definitions
The random effects model
The random-effects model accounts for between-study heterogeneity, which causes
true effect sizes of studies to differ. Specifically, the model assume that 𝜃𝑘 = 𝜃𝑘 + 𝜖𝑘 ,
where 𝜃𝑘 is the observed effect size, 𝜃𝑘 is the true effect size of study 𝑘 , and 𝜖𝑘 is the
sampling error. Furthermore, it assumes that the true effect size 𝜃𝑘 of study 𝑘 is only
part of an over-arching distribution of true effect sizes with mean 𝜇: 𝜃𝑘 = 𝜇 + 𝜁𝑘 .
Overall the random-effects model can be expressed as 𝜃𝑘 = 𝜇 + 𝜁𝑘 + 𝜖𝑘 , indicating
that the observed effect size deviates from the pooled effect 𝜇 because of two error
terms, 𝜁𝑘 and 𝜖𝑘 .

The pooled effect size is a weighted average of all studies. The weight 𝑤𝑘 for each
study 𝑘 is calculated as the inverse-variance: 𝑤∗

𝑘
= 1

𝑠2
𝑘
+𝜏2 , where 𝑠2

𝑘
is the estimated

within-study variance of the observed effect size, capturing the variability in study
outcomes due to sampling error, and 𝜏2 is the estimated between-study variance,
which accounts for the true effect sizes’ heterogeneity across different studies.

To correct for our small samples, we adjust the model via the Knapp–Hartung modi-
fication, also known as the Sidik–Jonkman modification, (Hartung & Knapp, 2001a,
2001b; Sidik & Jonkman, 2002), which, unlike the more common restricted maxi-
mum likelihood (REML) estimation, does not assume that the error distribution is
normal. This technique adjusts the standard errors of the regression coefficients (in-
cluding the intercept-only model, which calculates the meta-analytic effect size) by
multiplying their variances by 𝑞KH = �̂�P�̂�

𝐾−𝑝 , with P = W∗ −W∗X (X′W∗X)−1 X′W∗,
where W∗ = diag

(
𝑤∗

1, 𝑤
∗
2, . . . , 𝑤

∗
𝐾

)
, and X =

(
x′1, x

′
2, . . . , x

′
𝐾

)′ is the matrix of a
vector from each study 𝑘 ∈ 𝐾 of 𝑝 moderators (including the intercept). Intuitively,
this method incorporates the uncertainty of estimating 𝜏2, a factor that increases
with smaller number of studies.

Correlation as an effect size
For our analysis with names, we deploy the random-effects model to estimate the
true correlation between PC1 and callback, 𝜌, with 𝑟𝑘 (callback, PC1). The value
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𝑟𝑘 is transformed into Fisher’s 𝑧𝑘 : 𝑧𝑘 = 0.5 log𝑒
(

1+𝑟𝑘
1−𝑟𝑘

)
, to ensure that the sampling

distribution is approximately normal.

The between-study variance, 𝜏2

To estimate the random-effects model, the error 𝜁𝑘 must be considered. To do this,
the variance of the distribution of true effect sizes, 𝜏2, has to be estimated. There
are several methods to estimate 𝜏2, we deploy Maximum Likelihood (Viechtbauer,
2005).

The confidence intervals around 𝜏2 can be estimated using various methods, which
depend on the type of 𝜏2 estimator used. We deploy the Q-Profile method Veroniki
et al., 2016 which is based on the 𝑄𝑔𝑒𝑛 statistic: 𝑄𝑔𝑒𝑛 = 𝐾

∑𝑘
𝑘=1 𝑤

∗
𝑘
(𝜃𝑘 − �̂�)2. The

Q-Profile method uses an iterative process: 𝑄𝑔𝑒𝑛 (𝜏2) is calculated repeatedly while
increasing the value of 𝜏2 until the expected value of the lower and upper bound of
the confidence interval based on the 𝜒2 distribution is reached.

Unlike the standard version of Q, which uses the pooled effect based on the fixed-
effect model, Qgen is based on the random-effects model and uses the overall effect
according to this model, denoted by �̂�, to calculate the deviates. Additionally, Qgen
uses weights based on the random-effects model, denoted by 𝑤∗

𝑘
, in its calculation.

The equation for Qgen is given by 𝑄𝑔𝑒𝑛 =
∑𝐾
𝑘=1 𝑤

∗
𝑘

(
𝜃𝑘 − �̂�

)2, where 𝑤∗
𝑘

is the
random-effects weight 𝑤∗

𝑘
= 1

𝑠2
𝑘
+𝜏2 .

The hetereogeneity measure, 𝐼2

We calculate the 𝐼2 statistic Thompson and Higgins, 2002 to provide an estimate of
the magnitude of the between-study heterogeneity. 𝐼2 represents the percentage of
the total variability in the effect sizes not due to sampling error, formally expressed
as 𝐼2 =

𝑄−(𝐾−1)
𝑄

, where 𝐾 is the total number of studies. Cochran’s 𝑄 Cochran,
1954 is defined as 𝑄 =

∑𝐾
𝑘=1 𝑤𝑘 (𝜃𝑘 − 𝜃)2. It uses the deviation of each study’s

observed effect 𝜃𝑘 from the summary effect 𝜃, weighted by the inverse of the study’s
variance, 𝑤𝑘 . The test statistic for Cochran’s 𝑄 is distributed as chi-squared with
𝐾 −1 degrees of freedom under the null hypothesis of homogeneity. The value of 𝐼2

cannot be lower than 0%. If 𝑄 is smaller than 𝐾 − 1, 0 is used instead of a negative
value.

Prediction intervals
Prediction intervals provide a valuable tool for estimating the likely range of effects
that future studies may have based on the current evidence. The formula for 95%
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prediction intervals according to IntHout et al., 2016, is calculated as follows:
�̂� ± 𝑡𝐾−1,0.975

√︃
𝑆𝐸2

�̂�
+ 𝜏2

�̂� ± 𝑡𝐾−1,0.975𝑆𝐷𝑃𝐼 , where 𝐾 is the number of studies.

Mixed-effects models
The meta-regressions were specified as mixed-effects models: 𝜃𝑘 = 𝜃+𝛽𝑥𝑘 +𝜖𝑘 +𝜁𝑘 .
The first error, 𝜖𝑘 , represents the sampling error through which a study’s effect size
deviates from its true effect. The second error, 𝜁𝑘 , indicates that even the true effect
size of a study is only sampled from an overarching distribution of effect sizes.

Intraclass correlation (ICC)
We calculated the ICC through a two-way random-effects model (as provided by
package psych) to assess the reliability of the average of 𝑘 ratings for each signal
𝑖. We describe each rating as 𝑦𝑖 𝑗 = 𝜇 + 𝑟𝑖 + 𝑐 𝑗 + 𝑒𝑖 𝑗 , where 𝜇 is the average rating,
𝑟𝑖 ∼ 𝑁 (0, 𝜎2

𝑟 ) and 𝑐 𝑗 ∼ 𝑁 (0, 𝜎2
𝑐 ) are random effects for the signals and raters,

respectively, and 𝑒𝑖 𝑗 is the error term. Then, we compute ICC =
𝜎2
𝑟

𝜎2
𝑟 +(𝜎2

𝑐+𝜎2
𝜖 )/𝑘

Liljequist et al., 2019.

C.2 Supplementary Methods
Heterogeneity analysis
On our main meta-model, we computed several influence diagnostics (Externally
Standardized Residuals, DFFITS Value, Cook’s Distance, Covariance Ratio, Leave-
One-Out 𝜏2, Hat Value, Study Weight), which did not nominate any study as an
outlierFig. C.3. Additionally, we implemented a Graphical display of heterogeneity
(GOSH) plot analysis (C.5). For this analysis, we fit all possible subsets 2𝑘−1 of
our included studies. And plot the pooled effect size against the between-study
heterogeneity. Three (k-means, DBSCAN, gmm) clustering algorithms are used to
determine patterns. Two (DBSCAN, GMM) algorithms detected the same potential
outliers: Jacquemet and Yannelis, 2012; Kline et al., 2022b; Neumark et al., 2019;
Nunley et al., 2017. Excluding those yields 𝜃 = .22, 𝑝-value=.19.

Furthermore, we visualized the contribution of each study to the overall heterogene-
ity against its influence on the pooled effect size (also known as Baujat plot, C.2).
Kline et al., 2022b showed the highest contribution to heterogeneity, however, its
influence on the pooled result was small. Neumark et al., 2019 showed a moderate
contribution to the overall heterogeneity but a substantial influence on the pooled
result. A leave-one-out robustness analysis also indicated that excluding Neumark
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et al., 2019 resulted in the largest decrease in the 𝐼2 statistic, reducing it from 81%
to 63.8%. 𝜃 = .34, 𝑝-value=.026 (C.4).

Influence diagnostics
In the following, we define the measures plotted in Fig. C.3. Fig. C.3 first panel,
displays the externally standardized residual of each study, defined as follows:

𝑡𝑘 =
𝜃𝑘 − �̂�\𝑘√︃

Var( �̂�\𝑘 ) + 𝜏2
\𝑘 + 𝑠

2
𝑘

. (C.1)

These residuals are the deviation of each observed effect size 𝜃𝑘 from the pooled
effect size. The “external” pooled effect �̂�\𝑘 is obtained by calculating the overall
effect without study 𝑘 . The resulting residual is then standardized by (1) the variance
of the external effect �̂�\𝑘 ), (3) the 𝜏2 estimate of the external pooled effect, and (3)
the variance of 𝑘 .

Fig. C.3, second panel, displays the DFFITS𝑘 . The DFFITS value indicates how
much the pooled effect changes when a study 𝑘 is removed, expressed in standard
deviations. Higher values indicate that a study may be influential because its impact
on the average effect is larger.

𝐷𝐹𝐹𝐼𝑇𝑆𝑘 =
�̂� − �̂�\𝑘√︂
𝑤∗
𝑘∑𝐾

𝑘=1 𝑤
∗
𝑘

(𝑠2
𝑘
+ 𝜏2

\𝑘 )
(C.2)

where 𝑤∗
𝑘

is the (random-effects) weight of study 𝑘 .

Fig. C.3, third panel displays the Cook’s distance value 𝐷𝑘 of a study. 𝐷𝑘 only takes
positive values and is calculated as follows:

𝐷𝑘 =
( �̂� − �̂�\𝑘 )2√︃
𝑠2
𝑘
+ 𝜏2

. (C.3)

Fig. C.3, fourth panel displays CovRatio𝑘 . A value below 1 indicates that removing
study 𝑘 results in a more precise estimate of the pooled effect size �̂�.

CovRatio𝑘 =
Var( �̂�\𝑘 )
Var( �̂�) (C.4)

Fig. C.3, fifth and sixth panels display Leave-One-Out 𝜏2 and 𝑄 values. The values
display the estimated heterogeneity as measured by 𝜏2 and Cochran’s𝑄 if study 𝑘 is
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removed. Lower values of𝑄, but particularly of 𝜏2, are desirable since this indicates
lower heterogeneity.

Fig. C.3, seventh and eigth panels display the study weight and hat value of each
study. The hat value is another metric that is equivalent to the study weight.

Subgroup analysis: Social perceptions across job types
This section looks further into studies that have published their full datasets. In the
following analyses, each row corresponds to one CV sent out in the experiment.
Columns for each study vary, but in all of them, we have access to the name on
the CV and a variety of CV-specific characteristics (e.g., education level, previous
experience).

We assume that the explanatory power of social perceptions is dependent on job-
specific context. A base model (logit, no classes) would explain callbacks as such:

Pr(Callback = 1) = exp(𝛼 + 𝛽PC1)
1 + exp(𝛼 + 𝛽PC1)

where 𝛼 is the intercept and 𝛽 is the coefficient from this estimation. Thus, we
compare this model with one where we run interactions with job types. We in-
fer interactions between industries, occupations, and educational levels from six
correspondence studies by employing finite mixture models (FMMs) for cluster-
ing occupations. FMMs allow multiple latent classes to reveal a more detailed
relationship between stereotypes and callbacks across different job types.

FMMs are employed because they allow for the modeling of unobserved hetero-
geneity by identifying subgroups or clusters within the data. In this context, FMMs
are used to identify different classes of occupations that have a similar relationship
between callbacks and social perception features.

Mathematically, the FMM can be expressed as:

𝑓 (𝑦𝑖) =
𝑘∑︁
𝑗=1

𝜋 𝑗 𝑓 𝑗 (𝑦𝑖)

where is the 𝜋 𝑗 is the mixing proportion for the 𝑗-th class, 𝑓 (𝑦𝑖) the conditional
probability density function for the observed response 𝑦𝑖 (callbacks) in the 𝑖-th class
model, and 𝑘 = 2 is the number of latent classes or clusters. In other words, we
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estimate a different 𝛽 for each latent class. The softmax function determines latent
class probability:

𝜋𝑖 =
exp (𝛾𝑖)∑𝑔

𝑗=1 exp
(
𝛾 𝑗

) (C.5)

where 𝛾𝑖 is a function of job characteristics. The effect of PC1 on job characteristics
was operationalized using text data from job advertisement titles and descriptions
and other relevant variables such as industry, occupation, and education level. In-
dustry and occupation variables provided insights into specific sectors and job roles,
respectively, while the education level variable captured employers’ educational
requirements or preferences for certain positions. These additional variables were
provided in the published datasets and offered contextual information about the
jobs being studied. The dataset was preprocessed and cleaned to eliminate rare
industries and occupations, retaining only those that appeared in at least 1% of the
observations.

The job description text was parsed, and common words were extracted using the
n-gram technique with n=1 (unigrams), which allowed for identifying meaningful
patterns in the text data (Jurafsky & Martin, 2023). Unigrams are single words from
the text, which help capture the frequency of individual words and their potential
importance in characterizing jobs.

For each study, we fit a base model with no latent classes and compare it to separate
FMMs with two classes. We then evaluate the fit of these models by comparing
their Bayesian information criterion (BIC) values to determine the best model for
each study. We then use the best model to analyze the potential differences between
the two classes.

C.9 shows that, for all studies, the FMM model had lower BICs than the base model.

After fitting the finite mixture models, we obtain the predicted posterior probabilities
for each class. These probabilities indicate the likelihood of each observation (i.e.,
CV) belonging to a specific class. We choose the one with the highest predicted
posterior probability to assign a class to each observation. This approach ensures
that each CV is assigned to the class with the highest probability of belonging,
maximizing the model’s overall fit.

With the CVs assigned to their respective classes, we then compute the correlation
coefficients between PC1 and callbacks separately for each class. This allows



159

us to investigate how the relationship between social perceptions and callbacks
differs across job types or classes. By examining these correlations, we can better
understand the role of social perceptions in driving callback rates for different types
of jobs and determine if specific job characteristics are more or less sensitive to
social perceptions.

We then compare the job characteristics between classes across these studies. C.10
presents the correlation coefficients between PC1 and callbacks for each study under
three different scenarios: the base model without latent classes, within Class 1, and
Class 2. For instance, in the Bertrand study, the correlation between PC1 and
callbacks is 0.05 in the base model but increases to 0.57 within Class 1. However,
no correlation coefficient is reported for Class 2 in the Bertrand study, as indicated
by “NA” in the table. This implies that there is no variation in callbacks within this
class—either all CVs received callbacks (all 1s) or none of them did (all 0s).

Similarly, we can observe varying correlation coefficients within each class com-
pared to the base model for the other studies. These results highlight that the
relationship between social perceptions and callbacks is not uniform across dif-
ferent job types and that some jobs might exhibit stronger or weaker associations
between social perceptions and callbacks than others.

For the following analyses, we will focus only on Farber and Nunley, as these
studies produced classes with enough callback variation for us to draw meaningful
conclusions. C.11 presents the text data from job titles and descriptions and other
relevant variables with the largest difference between classes. This comparison
allows us to understand the qualitative differences between the two better.

From the table, we can observe noticeable differences between the two classes re-
garding job characteristics. In the Nunley dataset, Class 1 has a higher prevalence
of Manager, Analyst, Management, Finance, and Specialist positions, while Repre-
sentative, Insurance, Entry Level, and Sales roles dominate Class 2. This suggests
that Class 1 might comprise more advanced, specialized, or managerial positions,
whereas Class 2 consists of more entry-level or sales-oriented roles.

In the Farber dataset, Class 1 is characterized by a higher presence of Health Care
and Social Assistance, Professional, Scientific, and Technical Services, Finance and
Insurance, Retail Trade, and Manufacturing industries. In contrast, Class 2 is more
heavily represented in Arts, Entertainment, and Recreation, Educational Services,
Repair and Maintenance, and Real Estate and Rental and Leasing industries. Ad-
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ditionally, the Administrator occupation is more common in Class 1, while Class
2 shows a more diverse range of industries, focusing on non-managerial positions.
This indicates that Class 1 might be associated with more professional or technical
industries. In contrast, Class 2 is linked to a broader variety of roles, primarily in
service-oriented and less specialized sectors.

With these qualitative differences, we can analyze the differences in the correlation
between callbacks and the first principal component (PC1) for each study and class.
In the Farber study, the correlation between callbacks and PC1 (representing positive
social perceptions, including warmth and competence) is higher in Class 2 (0.26)
than in Class 1 (0.17). Class 1 contains job titles associated with more professional
and technical roles, while Class 2 comprises a more diverse range of service-oriented
and less specialized roles. This suggests that the broader variety of roles in Class
2 might benefit more from positive social perceptions, especially warmth, when it
comes to receiving callbacks.

In contrast, the Nunley study shows a slightly higher correlation between callbacks
and PC1 in Class 1 (0.80) than in Class 2 (0.77). Class 1 in this study is characterized
by advanced, specialized, or managerial positions, while Class 2 includes entry-level
or sales-oriented roles. These findings indicate that competence and warmth are
highly valued in both classes but may be slightly more important for receiving
callbacks in Class 1, which consists of more specialized positions.

However, to compare the correlation coefficients across classes, we need to use
the Fisher transformation due to the Nunley study’s highly skewed distribution of
correlation coefficients. The Fisher transformation is given by:

𝑟′ =
1
2

ln
1 + 𝑟
1 − 𝑟 .

After applying the Fisher transformation and calculating the z-values for the differ-
ence between correlation coefficients using the formula:

𝑧 =
𝑟′1 − 𝑟

′
2√︃

1
𝑛1−3 + 1

𝑛2−3

,

we find that for the Farber study, 𝑧 = 0.200, and for Nunley, 𝑧 = 0.124.

The magnitudes of the 𝑧-scores indicate the difference size between the two classes’
correlation coefficients. In this case, neither the Farber study’s 𝑧-score (0.200)
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nor the Nunley study’s 𝑧-score (0.124) exceed the critical value, indicating that
the differences in correlation coefficients between the classes are not statistically
significant at the 𝑝 < 0.05 level.

It is important to note that PC1 represents warmth and competence, and this amalga-
mation of warmth and competence makes it difficult to distinguish the specific role
each dimension plays, particularly in entry-level positions where the contribution of
warmth and competence to callbacks may differ.

We conducted an exploratory analysis using partial correlations to better understand
the interplay between warmth and competence in influencing callbacks for various
job positions. Partial correlations allow us to examine the relationship between
two variables while controlling for the influence of one or more other variables.
We assessed the relationships between warmth and competence scores separately,
controlling for the other dimension, as seen in C.12.

These results suggest that different job categories may have distinct relationships
between warmth and competence. In Farber’s study, warmth appears to be positively
related to callbacks in both job classes, while competence is negatively related.
However, the magnitude of the relationship between warmth and callbacks is greater
in Class 2, which includes jobs requiring more social interaction, aligning with our
previous qualitative analysis. The negative relationship between competence and
callbacks is stronger in Class 1, suggesting that competence may not be as crucial
for jobs that involve more routine tasks and lower technical skills.

In contrast, Nunley’s study shows a mixed relationship for warmth, with a negative
relationship in Class 1 and a positive one in Class 2 and a positive relationship be-
tween competence and callbacks in both classes. The negative relationship between
warmth and callbacks in Class 1 is larger in magnitude than the positive relationship
in Class 2, indicating that warmth may be less important or even detrimental for jobs
requiring higher cognitive and technical skills. Conversely, the positive relationship
between competence and callbacks is notably stronger in Class 1, which consists of
jobs requiring higher cognitive and technical skills, highlighting the importance of
competence in these positions.

It is important to note that this analysis is exploratory, and further research is needed
to validate these findings. However, these results do provide preliminary evidence
that the relationships between warmth, competence, and job callbacks may be more
complex than initially thought.
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Fig. C.2.– Fig. C.5. display various measures of heterogeneity of a random effects
meta-model, where the effect size is 𝜌(callback, PC1).
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C.3 Supplementary Figures

PRISMA 2020 flow diagram for updated systematic reviews which included searches of databases and registers 
only 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*This step involved the exclusion of studies outside the social sciences and those whose title or abstract clearly conveyed that it did 
not include North American data. 

 
 
 
From:  Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated 
guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71 
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Figure C.1: Prisma chart
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Figure C.2: The Baujat plot

Baujat et al., 2002 is a diagnostic plot used to identify studies that disproportionately
contribute to heterogeneity in a meta-analysis. The plot displays the contribution of each
study to the overall heterogeneity (measured by Cochran’s Q) on the 𝑥-axis and its impact
on the pooled effect size (defined as the standardized squared difference between the overall
estimate based on an equal-effects model with and without the i𝑡ℎ study included in the
model) on the 𝑦-axis. Our analysis found that Kline et al., 2022b significantly influenced
the heterogeneity but did not significantly affect the pooled effect size. On the other hand,
Neumark et al., 2019 contributed moderately to the overall heterogeneity but substantially
impacted the pooled effect size.
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Figure C.3: Different influence measures

The plot displays different influence measures for each study, which help to identify potential
outliers that do not fit well into the meta-analysis model. No study was detected as an outlier
based on these measures.
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Figure C.4: Heterogeneity effect

The plot displays the overall effect and 𝐼2 heterogeneity of all meta-analyses with 𝜌(callback,
PC1) as effect size that were conducted using the leave-one-out method. The forest plot is
sorted by the 𝐼2 value of the leave-one-out meta-analyses. The results show that excluding
Neumark et al., 2019 leads to the largest reduction in 𝐼2, reducing it from 82% to 64%.
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Figure C.5: GOSH plot

We implemented a Graphical display of heterogeneity (GOSH) plot analysis. For this
analysis, we fit all possible subsets 2𝑘−1 of our 𝑘 included studies. Each subset’s pool effect
size �̂� is plotted on the x-axis, and the between-study heterogeneity 𝐼2 on the y-axis. Three
(k-means, DBSCAN, gmm) clustering algorithms are used to determine patterns in the
above scatter plot. The three algorithms did not consistently identify clusters therefore, we
conclude that based on this analysis, no single study needs to be excluded from estimating
the meta-model.
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Figure C.6: Funnel plot

The plot shows the effect size of each study (expressed as the standardized mean difference)
on the x-axis and the standard error (from large to small) on the y-axis. An idealized funnel
shape is included in the plot to facilitate interpretation. The dotted vertical line in the middle
of the funnel represents the average effect size. The funnel plot displays three shaded regions,
focusing on the 𝑝 < 0.05 and 𝑝 < 0.01 regions, where effect sizes are considered significant.
Without small-study effects, our studies should follow the funnel shape delineated in the
plot. The funnel plot shows no asymmetrical pattern, which may indicate publication bias in
the dataset. Egger’s regression test suggests the absence of publication bias in our analysis
(intercept = 1.8, 95% CI = -0.25 – 3.85, t = 1.72, p = .14). However, it is essential to note
that our study includes only 𝑘 = 7 studies, which may limit the reliability of the test, as it
is prone to bias when 𝑘 < 10. It is important to note that our analysis does not directly
measure publication bias in the traditional sense. None of the correspondence studies we
included examined the correlation between warmth, competence perceptions, and callback
rates. Nevertheless, there is a possibility of involuntary or accidental publication bias. For
instance, a correspondence study that varies names might only sample names corresponding
to higher warmth and competence, resulting in higher callback rates.
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Figure C.7: Warmth and competence ratings

The plot displays warmth and competence ratings for names in Jacquemet and Yannelis,
2012. Each dot’s shape represents the name’s race, either black, white, or foreign-sounding.
The color of the dots corresponds to the predicted callback. The predictions were generated
using a linear model of PC1 on callback, with the training set consisting of all names except
one. The predicted callback values for each name are displayed beneath the corresponding
dot.
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C.4 Supplementary Tables

Table C.1: Published studies for which raw data was obtained. The numbers
represent the count of signals (names) per race, gender, and study.

gender black white

Bertrand and Mullainathan, 2004

female 9 9
male 9 9

Farber et al., 2016b

female NA 12

Jacquemet and Yannelis, 2012

female 5 5

Kline et al., 2022a

female 16 17
male 18 17

Neumark et al., 2016

female NA 313
male NA 218

(2017)Nunley et al., 2013

female 2 2
male 2 2

Oreopoulos, 2011

female NA 8
male NA 8

Widner and Chicoine, 2011

male NA 6
Note: Neumark, Bertrand, Farber, and Kline varied the first name only. Oreopoulos,
Flake, Leasure, Widner, and Jacquemet varied the first and the last name.



171

Table C.2: ICC values for names
Average score intraclass correlations (ICCs) were used as an index of interrater reliability
of warmth and competence ratings. A two-way model with random effects for raters and
subjects (amount of levels in category) was used. Between-rater agreement was estimated.
The unit of analysis was averages. Column “Mean” presents the average warmth and
competence ICC score.

Warmth Competence Mean

ICC score ICC score ICC score

jacquemet 0.98 excellent 0.97 excellent 0.97 excellent
kline 0.95 excellent 0.96 excellent 0.95 excellent
widner 0.97 excellent 0.99 excellent 0.98 excellent
bertrand 0.83 good 0.69 moderate 0.76 good
neumark 0.94 excellent 0.81 good 0.87 good
nunley 0.65 moderate 0.93 excellent 0.79 good
oreopoulos 0.91 excellent 0.89 good 0.90 good
farber 0.86 good 0.50 poor 0.68 moderate

Table C.3: ICC values for categories
Average score intraclass correlations (ICCs) were used as an index of interrater reliability
of warmth and competence ratings. A two-way model with random effects for raters and
subjects (amount of levels in category) was used. Between-rater agreement was estimated.
The unit of analysis was averages. Column “Mean” presents the average warmth and
competence ICC score.

Warmth Competence Mean

Category ICC Score ICC Score ICC Score

ameri health 0.96 excellent 0.93 excellent 0.95 excellent
hipes health 0.96 excellent 0.97 excellent 0.97 excellent
ishizuka parenthood 0.97 excellent 0.92 excellent 0.95 excellent
namingit unemployed 0.96 excellent 0.98 excellent 0.97 excellent
wrigth religion 0.95 excellent 0.94 excellent 0.95 excellent
yemane nationality 0.91 excellent 0.93 excellent 0.92 excellent
mishel sexuality 0.83 good 0.94 excellent 0.89 good
farber age 0.55 moderate 0.79 good 0.67 moderate
rivera wealth 0.82 good 0.63 moderate 0.72 moderate
tilcsik sexuality 0.64 moderate 0.51 moderate 0.58 moderate
bailey sexuality 0.04 poor 0.95 excellent 0.50 poor
correll parenthood 0.87 good 0.00 poor 0.43 poor
figinski military 0.00 poor 0.00 poor 0.00 poor
kline sexuality 0.00 poor 0.94 excellent 0.47 poor
neumark age 0.08 poor 0.33 poor 0.21 poor
thomas wealth 0.00 poor 0.97 excellent 0.49 poor
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Table C.4: 95% CI for 𝜌 by study
Random effects model of 10 studies with 418 observations using the inverse variance method. Re-
stricted maximum-likelihood estimator for 𝜏2 and Hartung-Knapp adjustment (df = 8). Confidence
intervals for 𝜏2 and 𝜏 were estimated using the Q-Profile method. Fisher’s z transformation was
used for correlations.

95% CI

Study ρ Lower Upper p-value SE

bertrand 0.616 0.378 1.060 0.000 0.174
farber 0.408 -0.220 1.086 0.194 0.333
flake 0.900 1.241 1.700 0.000 0.117
gorzig 0.826 0.585 1.767 0.000 0.302
jacquemet 0.845 0.715 1.763 0.000 0.267
kline 0.900 1.241 1.700 0.000 0.117
neumark 0.631 0.565 0.923 0.000 0.091
nunley 0.740 0.373 1.826 0.000 0.302
oreopoulos 0.565 0.334 0.946 0.000 0.156
widner 0.915 0.904 2.210 0.000 0.333

Pooled ρ 0.780 0.759 1.330 0.000 0.126

Table C.5: 95% CI for 𝜌 by study
Random effects model of 16 studies with 7830 observations using the inverse variance method. Re-
stricted maximum-likelihood estimator for 𝜏2 and Hartung-Knapp adjustment (df = 15). Confidence
intervals for 𝜏2 and 𝜏 were estimated using the Q-Profile method. Fisher’s z transformation was
used for correlations.

95% CI

Study ρ Lower Upper p-value SE

ameri 0.574 0.514 0.794 0.000 0.072
bailey 0.546 0.474 0.752 0.000 0.071
correll 0.645 0.626 0.907 0.000 0.072
farber 0.602 0.616 0.778 0.000 0.069
figinski 0.342 0.216 0.496 0.000 0.072
hipes 0.699 0.724 1.142 0.000 0.070
ishizuka 0.710 0.749 1.026 0.000 0.062
kline 0.416 0.304 0.582 0.000 0.071
mishel 0.456 0.304 0.582 0.000 0.072
namgnit 0.776 0.922 1.149 0.000 0.058
neumark 0.724 0.802 1.030 0.000 0.058
rivera 0.583 0.526 0.808 0.000 0.072
thomas 0.723 0.813 0.594 0.000 0.060
tilcsik 0.437 0.327 0.697 0.000 0.072
wright 0.696 0.789 1.070 0.000 0.070
yemane 0.639 0.724 0.791 0.000 0.017

Pooled ρ 0.595 0.579 0.792 0.000 0.050
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Table C.6: Pooling effect sizes competence, warmth, and callback for the categories
race and gender

95% CI

Estimate Lower Upper p-value SE

Competence1

black2 -11.52 -23.74 0.71 0.06 3.84
female3 -3.07 -9.56 3.42 0.32 2.91

Warmth1

black2 -6.72 -19.19 5.76 0.19 3.92
female3 2.88 -4.39 10.16 0.40 3.27

Callback4

black5 0.79 -0.51 0.04 0.07 0.09
female6 1.02 -0.03 0.06 0.36 0.01

1 Statistic is a warmth/competence rating expressed on a scale from 0 to 100. Models
involve the inverse variance method and a restricted maximum-likelihood estimator for
𝜏2. The Q-Profile method was used to compute the confidence interval of 𝜏2 and 𝜏, and a
Hartung-Knapp (HK) adjustment was applied for the random effects model, with degrees
of freedom set to 10.
2 k=4 studies, o=687 observations.
3 k=11 studies, o=816 observations.
4 The effect size represents a risk ratio. The Mantel-Haenszel method was used to calculate
the overall effect size, with the Paule-Mandel estimator used to estimate the between-study
variance (tau^2). A random-effects model was employed with the Hartung-Knapp (HK)
adjustment to account for potential bias due to small sample sizes. The model had 1 degree
of freedom (df = 1).
5 k=4 studies, o=89872 observations.
6 k=4 studies, o=143860 observations.
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Table C.7: Estimates of linear models of PC1 on callback by category
We used the available data points to fit a linear model for each category, although many
categories only had two data points. Empty cells indicate that the relevant statistics could
not be computed. We focus exclusively on the slope. It should be noted that the data from
published literature is limited, with only a few studies per category and a few levels per
category. Our main goal with this analysis is to provide a preliminary glimpse of the trend.
We found a positive association between PC1 and callback for some categories, but we
found mixed evidence for others. For example, the sexuality category had two studies with
a negative slope and two with a positive slope. NaN indicates that there were not enough
data points to estimate the relevant statistics.

Estimate SE Statistic p-value

wealth rivera -0.84
thomas 0.00

unemployed namgnit 0.02 0.01 1.74 0.33

sexuality

bailey -0.10
kline 0.03
mishel 0.05 0.23 0.22 0.85
tilcsik -0.82

parenthood correll -0.03
ishizuka 0.07

nationality yemane 0.04 0.02 1.52 0.14

military figinski 1.41

health ameri 0.00
hipes 0.07

age
farber 0.04 0.02 1.63 0.18
neumark 0.20 0.23 0.87 0.54
wright 0.01 0.00 1.68 0.14
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Table C.8: Mixed effects models with varying independent variables
Our findings suggest that PC1 is a positive and significant predictor of callback. The table
investigates how PC1 compares as a predictor to categorical variables that are commonly
used in correspondence studies. To this end, we fit three mixed-effects models, of different
predictors (PC1, race, PC1+race) on callback. Our analysis reveals that the 𝑅2 value
is highest for model three, as expected. However, we also observe that the 𝑅2 value is
substantially higher (4.36) for model PC1 compared to the model with race only (.95).
Notably, our results show that race is never a significant predictor of callback in either
model one or model three, whereas PC1 is a significant predictor in both models. These
findings underscore the importance of social perception as a valuable predictor of callback.

95% CI

β SE p-value Lower Upper R2

callback ∼ race
intrcpt -2.07 0.30 0.00 -2.67 -1.48 0.95
Black 0.71 0.79 0.37 -0.85 2.27 0.95

callback ∼ PC1
intrcpt -1.98 0.25 0.00 -2.48 -1.48 4.36
PC1 0.99 0.30 0.00 0.41 1.57 4.36

callback ∼ race + PC1
intrcpt -2.14 0.30 0.00 -2.73 -1.56 6.13
PC1 1.06 0.30 0.00 0.45 1.67 6.13
Black 1.19 0.79 0.13 -0.36 2.74 6.13

Note: Mixed-Effects Models (k = 644; 𝜏2 estimator: ML)
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Table C.9: Comparison of BIC values for base (logit, no classes) and FMM models
in each study

N df BIC

Farber

Base 8899 2 6227.6
FMM 8665 20 6160.1

Oreopoulos

Base 12910 2 8351.3
FMM 12910 26 8302.0

Neumark

Base 31523 2 27007.7
FMM 31523 8 26172.0

Nunley

Base 9396 2 8463.0
FMM 9396 59 7613.8

Kline

Base 74946 2 82759.8
FMM 68297 22 74504.6

Bertrand

Base 5635 2 3135.5
FMM 5635 10 3118.5

Table C.10: Correlation coefficients 𝑟(PC1, callbacks) in the base model (logit, no
classes) and within each class for each study

Base (no class) Class 1 Class 2

Study 𝑟 (base) N 𝑟 Proportion
(%)

𝑟 Proportion
(%)

farber 0.07 9,240 0.17 64.92 0.26 35.08
nunley 0.86 9,396 0.80 23.88 0.77 76.12
bertrand 0.05 5,635 0.57 98.76 NA 1.24
kline 0.60 74,946 NA 22.67 0.20 77.33
oreopoulos 0.49 12,910 -0.61 90.08 NA 9.92
neumark 0.39 31,523 NA 15.32 NA 84.68
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Table C.12: Partial correlation.
Partial Correlation coefficients between warmth, competence, and callbacks within each
class (i.e., the estimate of the correlation between warmth and callbacks, controlling for
other competence (and vice-versa).

Partial Correlation

Warmth Competence

Farber

Class 1 0.29 -0.2
Class 2 0.36 -0.16

Nunley

Class 1 -0.34 0.83
Class 2 0.28 0.47

Table C.13: Published studies from which categories were extracted

Reference Category

Ameri et al., 2018 Health
Bailey et al., 2013 Sexuality
Correll et al., 2007 Parenthood
Farber et al., 2016a Age
Figinski, 2017 Military
Hipes et al., 2016 Health
Ishizuka, 2021 Parenthood
Kline et al., 2022b Sexuality
Mishel, 2016 Sexuality
Namingit et al., 2021 Unemployed
Neumark et al., 2019 Age
Rivera and Tilcsik, 2016 Wealth
Thomas, 2018 Wealth
Tilcsik, 2011 Sexuality
Wright et al., 2013 Religion
Yemane and Fernández-Reino, 2021 Nationality
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