
Low-Overhead Quantum Fault Tolerance

Thesis by
Christopher Anand Pattison

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended May 16, 2025

ii

© 2025

Christopher Anand Pattison
ORCID: 0000-0003-0118-5257

All rights reserved

iii

To my friends
near and far

iv

ACKNOWLEDGEMENTS

My time at Caltech and IQIM was an extremely special privilege. I am very grateful
to my advisor, John Preskill, for making such an amazing environment with the
freedom to explore and tackle big problems. It is only now that I realize how hard it
is to find such a place and how fleeting the time is there.

The Simons Institute has been a continual source of theoretical tools and inspiration.
I always come away from the many programs and workshops excited about something
new.

I am thankful for my many friends, the list of which would not fit on this page, and
from whom I derived the motivation to continue. I thank the many people who
provided advice and inspiration early on in my graduate career including Nicolas
Delfosse, Steve Flammia, Bailey Gu, Robert Huang, Alex Kubica, and Eugene
Tang. I thank Harry Zhou, Dolev Bluvstein, Elie Batalle, Hannah Manetsch, Gyohei
Nomura, and especially Phelan Yu for teaching me everything I know about AMO
experiments.

Finally, I thank my closest collaborators—Sunny He, Anirudh Krishna, and Quynh
Nguyen. Working together has been the highlight of graduate school.

v

ABSTRACT

Fault tolerance is an essential property of future quantum computers where a quantum
computation is mapped to a new one that is resilient to operational errors. This
resilience comes at an additional time and space overhead. In this thesis, we study
schemes that asymptotically reduce the overhead of quantum fault tolerance in
various models of computation.

In the first half, we construct a scheme for fault-tolerant quantum computation
that requires nearly-logarithmic spacetime overhead assuming access to noiseless
classical computation. This construction relies critically on the introduction of
several new ingredients: we develop new qubit resource state distillation protocols
with sub-logarithmic spacetime overhead used to perform teleported gates. We also
construct a single-shot bit-flipping decoder to decode the almost-good quantum
locally-testable codes of Dinur-Lin-Vidick where the quantum local testability is used
crucially in order to prepare input states to the distillation. Finally, to assemble the
substantial variety of gadgets, we introduce a new weight enumerator formalism that
tracks the sets of jointly uncorrectable faulty spacetime locations using polynomials.

In the second half, we construct a quantum memory which has a threshold using
a geometrically-local syndrome extraction circuit and almost-optimal parameters:
the number of encoded qubits is nearly linear in the number of physical qubits,
while the sub-threshold error suppression is nearly exponential in the number of
physical qubits. Our construction surpasses known no-go results on the parameters
of geometrically-local quantum codes by instead considering geometrically-local
quantum circuits. The syndrome extraction circuits simulate the required long-range
connectivity by performing a polynomial-depth permutation routing circuit with
each qubit replaced by logarithmically-sized surface codes to retain a threshold.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[PKP25] Christopher A Pattison, Anirudh Krishna, and John Preskill. “Hierarchi-
cal memories: Simulating quantum LDPC codes with local gates”. In:
Quantum 9 (2025). C.A.P. conceived the project and participated in de-
veloping the key ideas and writing the manuscript., p. 1728. doi:https:
//doi.org/10.22331/q-2025-05-05-1728. arXiv: 2303.04798
[quant-ph]. url: https://arxiv.org/abs/2303.04798.

[NP24] Quynh T Nguyen and Christopher A Pattison. “Quantum fault toler-
ance with constant-space and logarithmic-time overheads”. In: arXiv
preprint arXiv:2411.03632 (2024). Accepted at STOC’25. The author
list is ordered alphabetically. All authors contributed equally. C.A.P.
participated in developing the key ideas and writing the proofs and
manuscript.

https://doi.org/https://doi.org/10.22331/q-2025-05-05-1728
https://doi.org/https://doi.org/10.22331/q-2025-05-05-1728
https://arxiv.org/abs/2303.04798
https://arxiv.org/abs/2303.04798
https://arxiv.org/abs/2303.04798

vii

TABLE OF CONTENTS

Acknowledgements . iv
Abstract . v
Published Content and Contributions . vi
Table of Contents . vi
List of Illustrations . viii
Chapter I: Introduction . 1

1.1 The difficulty of quantum fault tolerance 1
1.2 The state of quantum fault tolerance 3
1.3 Contributions and outline . 8
1.4 Outlook . 11

Chapter II: Quantum fault tolerance with constant-space and almost logarithmic-
time overheads . 13
2.1 Introduction . 14
2.2 Model of computation and weight enumerator formalism 31
2.3 Proof of main result . 46
2.4 State preparation gadgets . 74
2.5 Magic state distillation with almost-constant spacetime overhead . . . 97

Chapter III: Hierarchical memories: Simulating quantum LDPC codes with
local gates . 112
3.1 Introduction . 112
3.2 Background & Notation . 123
3.3 Permutation routings on sparse graphs in two dimensions 140
3.4 Bilayer implementation of hierarchical codes 149
3.5 Overhead, threshold and asymptotics 165
3.6 Comparisons with the basic encoding 182
3.7 Conclusions . 198
3.8 Acknowledgements . 201
3.9 Appendix . 201
3.10 Constructing the ideal syndrome-extraction circuit (𝐶Q𝑛)ideal 202

viii

LIST OF ILLUSTRATIONS

Number Page
2.1 High-level organization of proof. 30
2.2 The 𝑛-qubit gate teleportation circuit. If𝑈 is in the 𝑘-th level of the

Clifford hierarchy, then the correction is in level 𝑘 − 1. We will use
this circuit and the stabilizer resource state 𝐼 ⊗𝑈 |Φ⟩⊗𝑛 to implement
Clifford gates in our construction. 33

2.3 Gate teleportation for CCZ gate using the magic state |CCZ⟩ =

CCZ |+ + +⟩. The fix-up has the form of Pauli operations and CZ
gates. The latter are in turn implemented using Figure 2.2. 33

2.4 Permutation state corresponding to 𝑘𝐿 = 8 with the permutation(
1 2 3 4 5 6 7 8
3 4 5 6 7 8 1 2

)
i.e. a cyclic shift by 2. We also refer to

this state as |ROT(2)⟩. Lines indicate Bell pairs between registers 𝐴
and 𝐵. 58

3.1 Bilayer architecture used to implement the syndrome-extraction circuit
𝐶H
𝑁

for the hierarchical codeH𝑁 . 119
3.2 Comparison of the logical failure rate for the hierarchical memory

versus the logical failure rate for the basic encoding. 121
3.3 Creation of noise-biased Level-1 qubits. 122
3.4 Syndrome extraction circuit. 126
3.5 Evolution of Pauli errors under the action of CNOT. The first qubit

is the control qubit and the second qubit is the target. The operators
X ⊗ I and I ⊗ Z double in size. The red paths show how X ‘flows down’
a CNOT gate and Z ‘flows up’ a CNOT gate. 129

3.6 Visualizing a concatenated codeH 132
3.7 A surface code of distance 𝑑ℓ = 5. 138
3.8 Example implementation of a permutation with nearest-neighbor

swaps using Algorithm 3. 142
3.9 Visualization of the routing algorithm via the space-time path of

individual qubits. 145
3.10 A square lattice with gates of range at most 𝑅 and its sparsification

using an expander graph. 148

ix

3.11 A top-down view of one layer of the physical layout and a 2 × 2 × 2
unit cell containing rotated surface code tiles. 154

3.12 Nearest-neighbor logical SWAP implemented by the walking primitive.157
3.13 Staggered SWAP operation between layers. 158
3.14 Surface code walking primitive used in the SWAP implementation. . 159
3.15 Transversal swap implementation between two stacked syndrome tiles

that avoids directly swapping data qubits. 160
3.16 Creating a biased Level-1 qubit by using a rectangular surface code. . 163
3.17 Hook errors . 190
3.18 Comparison of a hierarchical memory using a (5, 8) quantum expander

code under the decoder performance assumptions made in Section 3.6.193
3.19 Estimated resource savings over surface codes for a hierarchical

memory under the performance assumption of Section 3.6. 194
3.20 Comparison of a hierarchical memory using a (4, 8) quantum expander

code with noise-biased inner-code qubits under the modified decoder
performance assumptions made in subsection 3.6. 196

1

C h a p t e r 1

INTRODUCTION

The natural environment is extremely disordered. Thus, the ability to perform
computation is a very unnatural task that requires us to bring a high degree of order
to part of the physical world.

In addition to evidence that quantum computation is a stronger model for classical
computational problems [Sho94], perhaps the most interesting usage of a quantum
computer is to study physical systems as originally suggested by Feynman [Fey82].
Beyond simply simulating quantum systems, quantum computers could also allow us
to directly interact quantum-mechanically with systems in nature which may unlock
new experimental techniques for understanding the natural world [HKP21; Hua+22].
In this sense, a quantum computer is a novel tool to probe and understand the natural
world.

In order to realize a quantum computer, it will be necessary for computations to
be robust against errors in the fundamental operations. Quantum fault tolerance
allows us to protect and process quantum information despite only having access
to noisy quantum operations. It is the abstraction that simulates the computational
model commonly used in quantum algorithms and complexity research of a noiseless
quantum computer. Our main tool is a quantum error correcting code (or quantum
code for short) which encodes logical information into code states which are locally
indistinguishable. Error occurring on the code states are correctable with noisy
quantum operations utilizing a procedure known as an error correction gadget as
long as the error is not too “large.”1 The qubits of the quantum computation are
encoded into the quantum code and manipulated indirectly such that errors are not
spread and individual failures of circuit operations do not result in large errors.

In this thesis, we focus on low-overhead methods for quantum fault tolerance.

1.1 The difficulty of quantum fault tolerance
In classical computation, logic gates and memories are naturally robust to perturba-
tions due to the ability to amplify classical signals. A stable memory cell based on

1The precise sense in which an error must be small depends on the fault-tolerance technique. One
example is shown in Definition 2.3.1.

2

complementary metal–oxide–semiconductor (CMOS) logic can be formed simply by
connecting two CMOS inverters back-to-back. Any fluctuation in the memory state
(gate charge) is met by a restoring force that returns the system to one of the two
fixed points.

In addition to the inherent stability of classical memories, it is also straightforward to
perform fault-tolerant computation. Classical states are cloneable and distinguishable
which permits the following simple strategy: Perform the computation in parallel
on distinct processors. Then, periodically copy the computational state of each
processor to the other processors. Finally, each processor compares the copies
and replaces its own copy by the computational state held by the majority of the
processors. Variants of this procedure are common in critical applications where
failure would be disastrous [Avi67].2

Quantum fault-tolerance ends up being substantially more challenging than the
classical analogue for a few reasons. With a binary alphabet {0, 1}, the only possible
classical error taking a reference state to a fixed noisy is bit-flips. Quantumly, the set
of operations is much larger; a noise operation may create or destroy entanglement
in addition to applying bit or phase flips. The uncloneability of quantum information
also makes the previously described classical fault-tolerance strategy unavailable to
us

Due to entanglement, it is also not possible in general to compare individual parts of
a quantum computation to a reference computation: for example, the Bell state Φ+ =
1
2 (|00⟩⟨00| + |11⟩⟨11| + |00⟩⟨11| + |11⟩⟨00|) and the 2-qubit maximally mixed state
𝜌 = 1

4 (|00⟩⟨00| + |01⟩⟨01| + |10⟩⟨10| + |11⟩⟨11|) are distinct but indistinguishable
given access to only one of the two qubits. This requires the introduction of
much more burdensome and subtle definitions to prove correctness of individual
computation components (gadgets).

Finally, it is a consequence of the Eastin-Knill theorem [EK09] that a quantum
code with non-trivial distance cannot possess a universal gate set implemented by
transversal operations. Thus, we must expend much more effort to augment the
transversally-implementable gates with additional gates implemented by other means
to complete a universal gate set. This in stark contrast to the classical case where
only a single gate such as NAND is sufficient and implementable transversally.

2One should note that a simple bit-flipping description of faults in classical computer systems is
not the full story. Failures in real systems may be as extreme as physical disruption of the equipment
leading to indeterminate logic levels, short-circuits, electrical arcs, etc. We will not consider such
failures here except to mention them in passing.

3

1.2 The state of quantum fault tolerance
Here, we briefly survey the current rapidly advancing state of quantum fault-tolerance
in order to contextualize the results of this thesis.

Experimental advances
Despite being one of the oldest areas of quantum information, quantum fault tolerance
is at a major transition point. We have only recently seen evidence [Ach+24] that the
guarantees of the threshold theorems [KLZ96; Kit97; AB97] can be realized in real
devices.

Such a major shift is exciting, but care must be taken to avoid concluding that the
preconditions of the threshold theorems are satisfied exactly. As of writing, practical
considerations dictate the sharing of single points of failure between different parts
of the computation. Microwave and optical light sources, air handling, and even the
physical location give rise to weak points for which failure violates the assumptions
of the threshold theorems. A recent example is ionizing radiation [McE+22;
Ach+24] that deposits large amounts of energy into superconducting devices. One
might suspect that experiments with globally controlled gates such as neutral atom
arrays [Blu+22; Blu+24] may also have such rare events although to date this has not
been conclusively observed.

Fortunately, if the size of the error is under control, rare events may not be as
significant of a problem as one might naively think. Surface codes [TPMP24] are
naturally resilient to some limited amount of temporarily increased noise (an “error
burst”) as long as the noise strength and temporal duration are not too large. Other
approaches such as concatenation [PKP25] may also help if the spatial extent of the
error is not too large.

We are also now seeing recent advances in hardware-tailored quantum error correction.
The usage of analog measurement information, known as “soft information” can aid
the decoder in selecting an appropriate correction [PBSD21]. This soft information
is now seeing use in quantum error correction experiments [Sun+23; Bau+24;
Ali+24; Ach+24]. The rise of bosonic error correction [CMM99; GKP01; Mir+14]
in experiments [Gri+20; Les+20; Siv+23; Put+25] has also recently motivated
proposals for quantum error correction [Bon+21; Dar+21; Cha+22; Rui+25] that
rely on highly-biased noise that can be engineered for these systems. We have also
seen recent experimental proposals for superconducting and atomic platforms that
attempt to convert error processes into erasures [WKPT22; Teo+23; Kub+23].

4

Theoretical advances
On the theory front, asymptotically-optimal quantum low-density parity check
(qLDPC) codes have been constructed [PK21a] relatively recently. This concludes a
long-standing open line of work to construct qLDPC codes with constant rate and
linear distance. Given the resurgence of classical LDPC codes in the late 1990s [Gal62;
Mac99], a research direction initiated in [MMM04] asks whether constant-rate qLDPC
code families could be useful for quantum information processing tasks.

The construction of qLDPC codes with linear distance solved a major bottleneck in
the practicality of constant-rate qLDPC code families that became apparent in the
mid-2010s: the required block lengths of known constructions such as the quantum
expander codes [TZ13; LTZ15] would be absolutely enormous [GK18; GGKL21]
due to the distance scaling as the square-root of the block length. The line of
work [HHO21; PK20; PK21b; BE21] leading to the construction of good qLDPC
codes [PK21a] also led to new practically-relevant qLDPC codes3 [PK21b; Bra+24;
LP24].

However, it is still unclear whether one should use these modern qLDPC codes
for quantum computation. We lack thorough understanding of the features that
lead to good parameters, and often we only have heuristic decoders such as belief-
propagation with ordered-statistics decoding (BP+OSD) post-processing [PK21b].
While there have been initial steps towards decoders with provable guarantees for
some code families [GPT22; LZ22a; DHLV22; Gu+23], we still lack the same
degree of evidence as the surface code that a qLDPC memory can be operated with
extremely low logical error rates using a realistic amount of classical computation
resources.

Logical gates

The construction of low-overhead logical gate gadgets also remains an active direction
of research. For quantum codes possessing only one logical qubit and transversal
implementations of the full Clifford group such as the color code [BM06], only
one additional gate such as T is required to complete a universal gate set. The
situation becomes much more complicated as the number of logical qubits per block
𝑘 increases due to the “gate targeting problem.” Suppose that we are interested in
implementing a Clifford circuit and have access to only Clifford and Pauli gates at

3Such codes are not necessarily part of an asymptotic family.

5

the physical level. The canonical construction of transversal gates4 applies the same
gate to all qubits in the block (coordinate-wise), and there are only a constant number
of distinct one and two-qubit gates. How then will we obtain enough (∼ log 𝑘)
generators of the Clifford group in order to implement an arbitrary Clifford circuit?

One option is to prepare resource states and teleport gates as in [Kni05; Got13;
NP24]. This requires the least number of assumptions on the code but results in large
practical overheads that are likely unacceptable. If we are to utilize modern qLDPC
code constructions, less general approaches with lower overheads will be necessary.

The next less-general approach is a type of code switching known as lattice
surgery [HFDV12] which has recently seen a long string of progress for mod-
ern code constructions [CKBB22] and further works. 5 Lattice surgery combined
with generalizations of transversal gates that use constant-depth circuits such as
automorphism and fold-transversal gates [Mou16; QWV23; BB24; Say+24] is
potentially simple enough to yield low fault-tolerance overhead in practice.

Another promising avenue6 to solve the gate targeting problem is when the quantum
code possess a (logically) transversal CCZ that acts as

∏𝑘
𝑖=1 CCZ(𝑖, 𝑖 + 𝑘, 𝑖 + 2𝑘) in

some basis. Then, utilizing the fact that stabilizer codes have a weakly-transversal7

implementation of any logical Pauli operator, one can conjugate an arbitrary pattern
of logical X gates by CCZ in order to perform an arbitrary (coordinate-wise) pattern
of logical𝐶𝑍 gates using the identity CCZ(1, 2, 3)X1CCZ(1, 2, 3) = CZ(2, 3). Then,
all that remains is to “connect” the different coordinates and complete a universal gate
set (e.g. with Hadamard). If the code possesses symmetries such as obtained from
the lifted product or generalized bicycle construction with an Abelian group [PK21b;
KP13b; LP24], then automorphism gates that permute the logical qubits within a
block may be available. Obtaining Hadamard is somewhat more difficult. One might
attempt to obtain pairs of codes for which code switching is possible [KB15] or just
simply distill the stabilizer state |H⟩ = H ⊗ I |Φ⟩. |H⟩ can be used to teleport H and
its distillation is substantially easier than distilling magic states (see Section 2.4).

4For example, for two code blocks of length 𝑛, transversal CNOT would be
∏𝑛
𝑖=1 CNOT(𝑖, 𝑖 + 𝑛).

5[HJY23; ZL25; HJY23; Xu+24b; IGND24; WY24; CB24; SJY24; CHWY25; CHRY24;
HCWY25]

6I thank Anirudh Krishna for pointing this construction out to me in 2023.
7A code is said to have a weakly-transversal implementation of a gate if the implementation has

the form ⊗𝑛
𝑖=1𝑉𝑖 for some unitaries 𝑉𝑖 that are supported on only one qubit each of the code block.

6

Long-range connectivity

Intentionally omitted from the prior discussion is the compatibility of new fault
tolerance schemes with experimental connectivity constraints. Connectivity was a
consideration nearly as early as the first threshold results [AB97; Got00]. Fortunately,
code families [Kit97; BK98; DKLP02] naturally compatible with a 2D layout (the
surface code) were constructed very early on.

Constraints 2D layouts are very natural for hardware platforms where qubits
are fabricated on a chip such as superconducting qubits since the devices and
couplers need to be physically placed. If one restricts themselves to a 2D layout,
what constraints exist on quantum fault-tolerance schemes? The well known BPT
bound [BPT10] shows that any quantum code encoding 𝑘 logical qubits into 𝑛
qubits defined as the ground space of a 2D-geometrically-local commuting-projector
Hamiltonian8 has distance 𝑑 bounded as 𝑘𝑑2 = 𝑂 (𝑛), asymptotically no better than
the surface code. It also turns out that the BPT bound is resilient to the addition of a
limited number of non-geometrically-local stabilizer generators [BK21a; BK21b].
In fact, [BK21a] implies that the Tanner graph of a good qLDPC code family must
be an expander graph. This implies that for every subset of qubits 𝑆 of less than half
the block length, the number of stabilizer generators supported on both 𝑆 and its
complement 𝑆𝑐 is proportional to the volume |𝑆 |.

One might ask whether such results preclude the implementation of a quantum
memory, not necessarily defined by geometrically-local checks, with logical error
rate 𝑝𝐿 better than the surface code, 𝑝𝐿 = 𝑒−𝜔(

√
𝑛/𝑘) . The correct object to bound is

the error-correction gadget which measures the syndrome and applies some correction
after some classical computation. Consider a 2D-geometrically-local error-correction
gadget of width𝑊 and depth 𝐷 maintaining a quantum memory encoding 𝑘 logical
qubits. [DBT21] established a trade-off for the depth and number of ancillas required
for error-correction gadgets that measure the syndrome of a constant-rate qLDPC
code family with polynomially growing distance. In the case where the ancilla is
minimal, they find that 𝐷 = Ω(

√
𝑛). Separately, [BFS23] established that, for logical

failure rate 𝑝𝐿 per application of the error-correction gadget, the width of the circuit
is lower bounded as𝑊 = Ω

(
𝑘
𝐷

√︃
log 1

𝑝𝐿

)
. For a good qLDPC code family, one would

expect something like log 1
𝑝𝐿
∼ 𝑛, so that the bound can be interpreted as implying

8It is possible to do slightly better when the code is geometrically local on a hyperbolic
manifold [Del13].

7

the depth lower bound 𝐷 = Ω(
√
𝑛) for a very broad class of circuits.

We will show in Chapter 2 that these bounds do not preclude a memory maintainable
by geometrically-local quantum operations with nearly optimal rate and error
suppression at the cost of a time slowdown.

Hardware solutions If these more recent fault-tolerance schemes require long-
range gates, perhaps we should try to add them to the experiment? There has been
considerable interest in recent years to add long-range connectivity to platforms
that do not natively realize it. This has been made more palatable by the reduction
in qLDPC code block lengths enabled by recent constructions with better distance
scaling; in 2D, a 2D embedding of an expander graph with 𝑛 vertices has Θ(𝑛) edges
with length Θ(

√
𝑛). Thus, a reduction of the block length represents a substantial

reduction in the amount of effort required to utilize fault-tolerance schemes based on
constant-rate qLDPC code families.

In particular, suppose that one would like to implement a polynomially-sized quantum
computation on𝑊 qubits that is already 2D-geometrically local (to avoid additional
complexity from logical embedding considerations). Roughly, if the code family has
exponential error suppression in the block length, then code blocks of size at most
polylog𝑊 are required, so that the experimentalist only needs to implement gates
of length at most 𝑂 (polylog𝑊) — substantially smaller than the overall size of the
computation. For general computations, we would also like to avoid incurring a large
time-overhead from logical embedding of the circuit, but logical-level operations
have substantially more flexibility.

Thus, while it is essentially asymptotically impossible9 to embed the required
expander graph into flat 3D space with unit density of qubits and connections, we
might hope to accomplish the required amount of long-range connectivity in the
practical regime. Initial progress suggests that this may be the case although much
work needs to be done.

In superconducting qubit platforms, there have been some schemes developed to
achieve long-range connectivity [McK+15; Zha+] and notably some industrial
efforts [Bra+24]. Fortunately, it is often the case that a direct coupler does not
have to be created: many platforms have qubits that can be physically transported

9If we enforce a limit on the amount of energy per unit volume, then there is an upper bound to
the amount of quantum information that can be stored per unit volume. This also implies an upper
limit in the amount of entanglement that can be mediated per unit volume.

8

without coupling to the qubit. Photonic platforms [Ale+25; Agh+25] naturally realize
long-range connectivity due to the propagating nature of photons. In platforms
where the qubit is encoded in states of a trapped system such as ions [KMW02;
Hen+06; Pin+21], neutral atom arrays [Beu+07; Blu+22; Xu+24a], and silicon spin
qubits [Mil+19], the trapping potential can often be shifted to physically transport
the qubit on timescales shorter than the coherence time.

1.3 Contributions and outline
This thesis comprises two chapters. The first section of each chapter contains the
main results and high-level proof ideas. Here, we briefly summarize the main
challenges and context leading to the results of each chapter.

Chapter 2 In the first chapter, we will prove a threshold theorem for fault-tolerant
quantum computation with asymptotically-lower overhead than previously known to
be achievable. In our model of computation, no connectivity constraints are imposed,
and classical computation is assumed to be perfect. For convenience, the classical
computation will be assumed to run slightly faster than the quantum computation.
For a quantum circuit of size 𝑉 , we permit a polyloglog𝑉 depth classical circuit
between each quantum timestep.10 To separate the unitary synthesis cost, we assume
that the input circuit is composed of one and two-qubit Clifford gates and CCZ
gates.11

We consider a model of noise where noise channels are inserted into the circuit at
spacetime locations 𝐿 according to some distribution. Such spacetime locations are
deemed to be “faulty.” The distribution is said to be 𝜖-locally stochastic if, for all
subsets 𝑆 ⊆ 𝐿 of spacetime locations, the probability that the set of faulty locations
contains 𝑆 is at most 𝜖 |𝑆 |. This is a weakening of independent noise that permits a
limited amount of noise correlations. We will require that the set of faulty locations
is 𝜖-locally stochastic for a noise strength 𝜖 ∈ [0, 𝜖∗] that is at most some constant 𝜖∗.

Given a quantum circuit𝐶 of width𝑊 and depth 𝐷 and a desired simulation accuracy
𝜖𝐿 ∈ (0, 1), we can map 𝐶 to a new circuit 𝐶 such that 𝐶 subject to an 𝜖-locally
stochastic fault distribution with 𝜖 ∈ [0, 𝜖∗] simulates 𝐶 in the sense that the output
distributed is 𝜖𝐿-close in total-variation distance to that of 𝐶. Furthermore, when

10We note that this restriction is not fundamental and can be removed by adding rounds of a
constant-depth “idling” error correction gadget that maintains the memory while any necessary
classical computation finishes. This can be constructed using a single round of syndrome extraction
and a constant number of decoding iterations of the bit-flipping decoder.

11T gates can also be used at an additive log𝑉 cost.

9
𝑊𝐷
𝜖𝐿

is less than12 a particular function 𝑓 (𝑊) of the width growing faster than any

quasipolynomial of𝑊 , 𝐶 has depth 𝑂 (𝐷) and width 𝑂
(
𝑊 log1+𝑜(1) 𝑊𝐷

𝜖𝐿

)
.

We construct 𝐶 in two main steps. Let 𝑉 = 𝑊𝐷
𝜖𝐿

be the “spacetime volume” of
the computation. In the first step, containing the majority of the work, we encode
all qubits into the quantum-locally testable (qLTC) codes of DLV [DLV24]. We
perform distillation to make prepare resource states and then apply logical gates via
a teleportation gadget. This first circuit, the outer circuit, requires a noise that is
less than a threshold value that is slightly vanishing as 1

polyloglog𝑉 . In the second
step, we amplify the threshold to a constant value by simulating the outer circuit
with concatenated quantum Hamming codes [YK22] 13 such that the outer circuit
experiences an effective error rate 1

polyloglog𝑉 . This step retains the constant space
overhead but blows up the time overhead by a factor quasipolylogloglog(𝑉).

The origin of the two-step procedure originates from the choice of decoder for the
DLV codes [DLV24]: The usage of the DLV codes required the construction of a
decoder which is omitted from this thesis due to length considerations (see the full
paper [NP24]). Our decoder is an small-set-flip style decoder against adversarial-
noise with measurement errors that runs in parallel. This is analogous to those
previously constructed for good qLDPC code families [GPT22; LZ22a; DHLV22]
and in particular [Gu+23].

Unfortunately, the DLV code family possess distance that is slightly sub-linear in the
blocklength, so a decoder for adversarial noise is a priori insufficient for stochastic
noise. Fortunately, code concatenation and its computation analogue, recursive
simulation, allows us to reduce the stochastic noise setting to the adversarial one.
Given the features of the decoder shared with stochastic-noise decoders for quantum
expander codes [FGL18b], it is reasonable to expect that a stochastic noise decoder
is possible to construct at the cost of more involved analysis.

In order to manage the considerable complexity of the different gadgets, we introduce
a new formalism inspired by the fault path counting in the original quantum fault-
tolerance proofs [AB97; Kit97] that allows us to assemble a full circuit and prove
correctness against adversarial noise (dramatically simplifying formal statements).
This is managed by associating families of uncorrectable “bad” fault paths to
polynomials which we refer to as weight enumerators. The weight enumerator
polynomials correctly captures cases such as state injection where there are many

12This is to avoid extremely deep circuits. See the formal theorem statement Theorem 2.3.23.
13Used by itself, this scheme has constant space overhead and quasipolylog𝑉 time overhead.

10

Space Time
[AB99; Kit97; KLZ98; AGP05] polylog(𝑉) polylog(𝑉)
[Got13; FGL18a] 𝑂 (1) poly(𝑉)
[YK24] 𝑂 (1) quasipolylog(𝑉)
Chapter 2 𝑂 (1) log1+𝑜(1) (𝑉)

Table 1.1: Comparison of quantum fault-tolerance threshold theorems ignoring
differences in classical resources.

ways for the procedure to fail with different multiplicities and weights.14 The
conversion to stochastic noise then only requires the evaluation of the polynomials at
the noise rate of the error model.

We conclude with a comparison to prior threshold theorems ignoring differences in
the model of classical computation. For convenience, we assume that the computation
size 𝑉 is polynomial in the number of qubits𝑊 . Parallel work [TKY24] establishes
a threshold theorem with 𝑂 (1) space overhead and polylog𝑉 time overhead.

Chapter 3 In the second chapter, motivated by experimental constraints, we will
examine to what extent 2D-geometrically-local circuits can maintain information
stored in qLDPC codes. We find that, given a constant-rate qLDPC code family
with distance 𝑑𝑛 scaling polynomially with the block length 𝑛, we can construct a
family of codes and 2D-geometrically-local syndrome extraction circuits of width𝑊 ,
known as Hierarchical Codes, for which there is a memory threshold.

By instantiating the construction with asymptotically-good qLDPC code families,
we construct family of codes and 2D-geometrically-local syndrome extraction
circuits with a memory threshold for which the rate and distance are nearly optimal
irrespective of connectivity constraints: below the threshold, the logical error rate
per error-correction gadget falls as 𝑝𝐿,HC = 𝑒−Ω(𝑊/polylog𝑊) per syndrome extraction
cycle, and the rate goes as 1

polylog𝑊 .15

To compare with other 2D-geometrically local schemes, we can replace the distance
𝑑 by a function of the logical error rate per error-correction gadget log 1

𝑝𝐿
. These

parameters can be thought of as roughly equivalent for the surface code and
Hierarchical Code (up to log factors). The surface code saturates the BPT bound and

14In surface codes, this corresponds to the phenomenon of preparing an arbitrary encoded state
with constant error probability [DKLP02] where there are a few uncorrectable short error chains but
many uncorrectable long error chains.

15A straightforward recursive application of the construction achieves a rate vanishing as slowly as
1

𝑒𝑂 (log∗𝑊) where log∗ is the iterated logarithm.

11

the BFS bound [BFS23] with a constant depth circuit by encoding 𝑘SC logical qubits
into 𝑛SC physical qubits with a logical failure rate per round of 𝑝𝐿,SC satisfying

𝑘SC

(
log

1
𝑝𝐿,SC

)2
= Θ (𝑛SC) .

On the other hand, the Hierarchical Code uses a error-correction gadget with 𝑊
physical qubits and depth

√
𝑊 and encodes 𝑘HC = Ω (𝑊/polylog𝑊) logical qubits

with failure rate per syndrome extraction cycle 𝑝𝐿,HC satisfying

𝑘HC

(
log

1
𝑝𝐿,HC

)2
= Ω

(
𝑊3

polylog𝑊

)
.

Thus, by considering geometrically-local circuits instead of codes, one can do far
better than one might otherwise expect from the BPT bound. On account of the

√
𝑊

depth of the error-correction gadget, the Hierarchical Code saturates known bounds
on syndrome extraction circuits [DBT21; BFS23] up to polylog(𝑊) factors.

The natural next question is whether the construction possesses implications for
practical applications. Preliminary estimates [PKP25] suggest that the construction
may be practical in some regimes although much further study is required. The
concatenated structure of the code can be used to aid decoding by outputting a
so-called “soft output” [MPP24] from the inner surface code decoder. [GNBJ23]
provides strong numerical evidence that, more generally, a concatenation strategy
with an inner surface code can reduce the space overhead in the non-asymptotic
regime.

1.4 Outlook
Asymptotically, we have shown that the overhead of quantum fault-tolerance can
be quite small: The quantum fault tolerance scheme of Chapter 2 shows that the
overhead of quantum fault tolerance can be brought down to be essentially logarithmic.
Chapter 3 shows that the space savings of constant-rate qLDPC memories can nearly
survive the addition of hardware constraints at the cost of a spacetime blowup.

However, it is unclear to what extent the asymptotic resource savings can be
transferred to the practical regime. On the theory side, practical codes, decoders,
and gate schemes remain open topics of research. On the hardware side, it is still
unclear what a large-scale hardware device will look like: methods for implementing
long range connectivity are being developed and different hardware platforms have
substantially different tradeoffs and noise models.

12

Overall, constant-rate qLDPC code families are a promising avenue to reduce the
overhead of quantum fault-tolerance for interesting quantum computations but much
work remains.

13

C h a p t e r 2

QUANTUM FAULT TOLERANCE WITH CONSTANT-SPACE
AND ALMOST LOGARITHMIC-TIME OVERHEADS

[NP24] Quynh T Nguyen and Christopher A Pattison. “Quantum fault toler-
ance with constant-space and logarithmic-time overheads”. In: arXiv
preprint arXiv:2411.03632 (2024). Accepted at STOC’25. The author
list is ordered alphabetically. All authors contributed equally. C.A.P.
participated in developing the key ideas and writing the proofs and
manuscript.

The fundamental nature of fault tolerance prompts the natural question: “what is
the lowest possible overhead?” In this chapter, we show that a quantum circuit with
2-qubit Clifford gates and CCZ can be simulated using nearly logarithmically more
resources when permitted access to noiseless auxiliary classical computation.1 This
construction is unfortunately asymptotic in nature, but we hope that certain parts of
the construction will be useful for practical applications. We also expect that pieces
of our construction will find applications in quantum computational complexity
theory to answer questions such as whether noisy low-depth quantum circuits are as
powerful as their noiseless counterparts.

Our result required the introduction of several new ingredients compared to the prior
state of the art.

1. We develop a magic state distillation protocol with (log 1
𝜀
)𝛾 spacetime overhead,

where 𝛾 → 0 as 𝜀 → 0. This result differs from recent works in that we use a
simple and self-contained construction using Reed-Solomon codes to obtain
low spacetime overhead (rather than just space overhead as in recent works).
We show a similar result for stabilizer state distillation.

2. We prove that quantum codes based on the cubical complex construction of
[DLV24] admit sequential and parallel single-shot decoders against adversarial
errors of weight scaling with the code distance. In particular, our proof applies

1In this version, the classical computation is permitted to run slightly faster than the quantum
circuit. This is not a fundamental limitation, but it does make the analysis slightly simpler.

14

to a recent family of almost-good qLTCs of Dinur-Lin-Vidick and the good
qLDPC codes of Dinur-Hsieh-Lin-Vidick.2

3. Using the introduced distillation schemes, we develop fault-tolerant logical
state preparation procedures with 𝑂 (1)-spacetime overhead on qLTCs. Here,
the qLTC property is used to quickly test if a state is too far from the codespace
before proceeding.

4. We introduce the use of multiple resource states (from a small-sized set) to
obtain addressable qLDPC logic that can be easily prepared using our state
preparation schemes and transversal qLDPC gates.

We obtain the main result by combining the above results with carefully chosen
parameters. In doing so, we introduce a new weight enumerator formalism to prove
fault tolerance in a composable way, which is of independent interest. To our
knowledge, this gives the lowest spacetime overhead to date in the considered model
of quantum fault tolerance, which, for the first time, matches that of classical fault
tolerance up to sub-polylogarithmic factors.

An outline of the proof with hyperlinks is given on page 30.

2.1 Introduction
In the following section, we give the relevant background and informally summarize
the main result.

Background and main result
The optimal overhead for fault-tolerant computation is a fundamental question
in computer science and engineering. In the setting of classical computation,
this question was essentially settled in the 1990s. [PST91; GG94] showed the
existence of a Boolean function whose noiseless circuit complexity is |𝐶 | but requires
Ω(|𝐶 | log |𝐶 |) noisy gates to compute. This lower bound is met by the original fault
tolerance scheme in von Neumann’s lectures that initiated the study of fault-tolerant
computation [Von56].

In the setting of quantum computation, this question is largely open and appears to be
much more challenging. On one hand, existing rigorous proofs of fault tolerance for
quantum circuits are often very complicated. This complexity can be attributed to the

2This is deferred to the full paper [NP24]

15

inherent subtleties of quantum information that causes new technical and conceptual
challenges [Got10], such as in conditioning on a subsystem, handling entangled
ancillas, tracking propagation of quantum errors, dealing with the lack of universal
transversal gate sets [EK09], etc. As such, there has only been a handful of rigorously
proven end-to-end quantum fault tolerance protocols [AB99; AGP05; YK22]. On
the other hand, lower bounds for the fault tolerant overhead in the quantum case are
also naturally expected to be more challenging. The currently best lower bound on
quantum fault tolerance overhead is from the work of [FMS22] who derived a space
lower bound of 𝑄−1𝑛, where 𝑄 is the quantum capacity of the noise channel3. To
our knowledge, there is currently no spacetime lower bound that is better than linear.

Motivated by practical implementations of quantum computers, a commonly studied
model of fault-tolerant quantum computation is one in which a noisy quantum circuit
is executed with the help of a (small-sized) noiseless classical computation. A
metric of high interest is the space overhead, i.e., the number of physical qubits
used at any point in time of the quantum computation. In his seminal work [Got13],
Gottesman initiated the study of constant-space-overhead quantum fault-tolerance
under the assumption that a large auxiliary classical computation is free and noiseless.
The works of [FGL20] further relaxed the auxilliary classical computation time to
polylogarithmic. Here, we assume that an even smaller, polyloglog-time classical
computation is used per quantum timestep.

Definition 2.1.1 (Quantum fault tolerance model, simplified). Let𝐶 be a Clifford+CCZ
quantum circuit of depth 𝐷 and space𝑊 . For every timestep of the quantum circuit,
we run a noiseless classical circuit on the measurement history and a classical
memory of depth 𝑂 (polyloglog(𝑊𝐷)). The quantum operations in the following
timestep are permitted to be classically controlled on individual output bits of the
classical circuit.

In this work, we place no restrictions on the connectivity of the operations. Our noise
model is the commonly used locally-stochastic noise: the set of faulty gates 𝐹 satisfies
that, for any subset of gates 𝑆, the probability the 𝐹 contains 𝑆 is exponentially small
Pr(𝑆 ⊆ 𝐹) ≤ 𝑝 |𝑆 | for some 𝑝 that should be thought of as the noise rate. Faulty gates
are permitted to apply any CPTP noise channel after the gate.

The goal of the fault-tolerant circuit is to produce samples from a distribution that is
3This bound also applies for the computation model considered in this work where small-sized

noiseless classical computation is assumed.

16

𝜀-close in total-variation distance (TVD) to the output distribution of the noiseless
quantum circuit.

The question we study in this paper is: what is the lowest time overhead possible
while maintaining a constant space overhead in the above model? This question
is of both practical and theoretical interest. The model of quantum fault tolerance
considered here has been the conventional model studied in the field, stemming from
the fact that classical computation is practically perfect with current technology.
However, we believe that studying the overhead of fault tolerance in this model could
lead to ideas to answer the same question in the fully-quantum model. Previous to
the initiation of this work, the state-of-the-art result in this line of work is due to
Yamasaki and Koashi [YK24], who constructed a protocol based on concatenated
quantum Hamming codes. They achieved a quasipolylog-time overhead – which is a
function growing faster than log𝛼 (|𝐶 |) for any constant 𝛼.

The above discussion leads us to our main result. (see Theorem 2.3.23 for the full
formal statement)

Theorem 2.1.2 (Main result, informal). Given any (arbitrary-connectivity) quantum
circuit 𝐶 on 𝑊 qubits, of depth 𝐷, and composed of |𝐶 | ≤ 𝑓 (𝑊) gates from the
Clifford+CCZ gate set, where 𝑓 is a function growing faster than any quasipolynomial
function, we can efficiently construct a circuit 𝐶𝐹𝑇 with the following guarantees.
𝐶𝐹𝑇 uses at most 𝑂 (𝑊) physical qubits at any point in time. The quantum depth of
𝐶𝐹𝑇 is 𝐷 × 𝑂 (log1+𝑜(1) |𝐶 |

𝜀
), and the (noiseless) auxilliary classical computation

time used per quantum timestep is 𝑂 (polyloglog |𝐶 |
𝜀
). There exists a constant noise

threshold 𝑝∗, such that when executed under the local stochastic noise model with
noise rate 𝑝 < 𝑝∗, 𝐶𝐹𝑇 outputs a distribution which has total-variation distance 𝜀
from the output distribution of 𝐶.

Above, we assume the ideal circuit is composed of gates from a fixed local gate
set. This assumption is simply to remove a potential polylog depth overhead in
decomposing gates according to the Solovay-Kitaev theorem. Notably, the stated
time overhead holds even though we are making no other assumptions about the
gate connectivity and specific patterns of gate types in the ideal circuit. In fact,
our fault tolerance scheme simulates any logical gate in a time overhead of at most
𝑂 (log𝑜(1) |𝐶 |

𝜀
), and the extra logarithmic factor arises from potentially adversarially

selected connectivity in the simulated circuit. The 𝑜(1) exponent roughly scales as
1/logloglog(|𝐶 |/𝜀). We can also smoothly tune the overheads: the space overhead

17

can become𝑂 (log |𝐶 |
𝜀
) and the time overhead can become as low as a constant, while

keeping the spacetime overhead 𝑂 (log |𝐶 |
𝜀
) (see Section 2.1).

Overview of ideas and technical results
The result is based on multiple main ideas and new technical results which we
overview below. To keep track of less variables, in the rest of this introduction we
take the target error 𝜀 to be a constant as well as assume |𝐶 | = poly(𝑊).

Revisiting Gottesman’s protocol

Our starting point is an observation that a modification of Gottesman’s protocol using
qLDPC codes [Got13; FGL20] suffices to obtain a time overhead of polylog(|𝐶 |).
Let us recall the protocol as-instantiated by Fawzi, Grospellier, and Leverrier in
[FGL20, arXiv version section 2.5].

The protocol partitions the𝑊 qubits of the circuit into ℓ = polylog(𝑊) registers of size
𝐾FGL = 𝑊/ℓ. Each register is then encoded in a quantum expander code [LTZ15]
with parameters [[𝑁′ = Θ(𝐾FGL), 𝐾FGL, 𝐷

′ = Θ(
√
𝐾FGL)]]. The fault-tolerant

circuit 𝐶′ alternates between logical operation cycles and error correction (EC)
cycles. The EC cycle uses an efficient decoder shown to be single-shot (robust against
measurement errors), so the EC cycle can be performed in 𝑂 (1) quantum depth.

To perform logical gates, all gates in 𝐶 are serialized so that only one gate is
applied per cycle, incurring a 𝑂 (𝐾FGL) factor in the time overhead. Each logical
gate cycle fault-tolerantly simulates the corresponding logical gate using gate
teleportation [GC99]. The main challenge is to prepare the necessary resource
states required for teleportation. Fortunately, it suffices to use standard concatenated-
code fault-tolerance schemes [KLZ96; AB99; Kit97] as in [Kni05]. The idea
is that the concatenated-code protocol can serve as a general-purpose factory of
ancilla states despite the additional space cost.4 In particular, to prepare the
required 𝑂 (𝑁′)-qubit resource states to error 𝜀′ = 1/poly(|𝐶 |), concatenated-code
fault-tolerance yields 𝑁′ polylog(𝑁′/𝜀′) = 𝑁′ polylog(𝑊) spacetime cost. Hence,
choosing ℓ = polylog(𝑊) ensures that only Θ(𝑊) qubits are used at any point in the
fault-tolerant circuit. After some careful optimizations, the time overhead can be
shown to be 𝑂 (𝑊) with 𝑂 (1) space overhead.

4Strictly speaking, we were not able to find a proof of this important lemma (in particular, the
unencoding step of the concatenated-code to obtain the physical state) in the literature. Thus, we give
a proof of it in this paper. A very recent work [CFG24] also gives a proof.

18

We first observe that the choice of code block size and serialization described above
is suboptimal. In particular, it suffices to partition 𝑊 qubits into 𝑊/polylog(𝑊)
blocks of 𝐾′ = polylog(𝑊) qubits each: the logical error rate of a length-𝑁′ quantum
expander code is roughly 2−Θ(

√
𝑁 ′) per EC cycle, so a blocksize of 𝑁′ = polylog(𝑊)

suffices to maintain a low overall logical error rate of the computation.5 Next, instead
of serializing all gates in 𝐶, we only need to rearrange them such that there is at
most one gate acting on a code block in each circuit layer. This task corresponds
to an edge coloring problem on a degree-𝑂 (𝐾′) multigraph, which can be done
with 𝑂 (𝐾′) = polylog(𝑊) colors by a generalization of Vizing’s theorem [BF91].
Hence, the serialization only incurs a polylog(𝑊) time overhead.6 Logical gates
can be performed the same way as described earlier, leading to another polylog(𝑊)
spacetime overhead.

After further gate scheduling and serialization, one can obtain constant-space
and polylog(𝑊)-time overheads. This optimization will be superceded by our
construction, so we do not present the details. We expect this to be a large constant
(say, at least 4) with the dominant contributor being the concatenated-code overhead.
Hence, new ideas are required to bring this down to the optimal exponent, which we
conjecture is 1 as in the classical case.

Motivated by the fundamental question of the optimal overhead of fault-tolerant
computation, we reduce the exponent in the time overhead to 1 + 𝑜(1). In particular,
we will reduce the time overhead of all logical operations to log𝑜(1) (𝑊) while
keeping the space overhead a constant. The remaining 𝑂 (log𝑊) time overhead
factor originates from the serialization using edge coloring similar to described
above, which we conjecture is inherent – see the discussion in Section 2.1. This
leads to the claimed main result in Theorem 2.1.2.

We next overview the new ideas and technical contributions required to achieve this
goal.

5If we instead use recent good qLDPC codes [PK22; LZ22b], we can choose a code block size of
𝑂 (log |𝐶 |) = 𝑂 (log𝑊). These codes are also known to have efficient single-shot decoders [Gu+23].

6Alternatively, one could use the ability to prepare arbitrary resource states to perform all the
gates acting between qubits encoded in each pairs of blocks in parallel. For 𝑀 blocks, there are
𝑂 (𝑀2) pairs of blocks to execute gates between, so such an optimization gives a time overhead of
𝑂 (𝑀2 polylog𝑊). This is a 𝑂 (polylog𝑊) time overhead for the original block length choice in
[Got13].

19

Better overheads with distillation

The first improvement is to remove the polylog(𝑊) spacetime overhead arising from
resource state preparation using concatenated-code fault-tolerance. In particular,
this factor is polylog(𝑁′/𝜀′), where 𝑁′ is the qLDPC block size and 𝜀′ is logical
error rate of the simulated gate. As seen earlier, [FGL20] had the parameters
𝑁′ = 𝑊/polylog(𝑊) and 𝜀′ = 1/poly(𝑊), leading to the polylog(𝑊) scaling. With
our new instantiation, 𝑁′ = polylog(𝑊) (our final choice will be 𝑁′ = 𝑂 (log𝑊)).
However, the choice 𝜀′ = 1/poly(𝑊) seems unavoidable – after all, we need this
logical gate error rate in order to sustain a poly(𝑊)-sized computation. Our idea to
circumvent this obstruction is to use state distillation protocols [BK05; Kni05] in
combination with concatenated-code FT.

More specifically, we first use concatenated-code FT to prepare the resource state to
only a sufficiently small constant error rate 𝜀0. This step only incurs a polyloglog(𝑊)
spacetime overhead. The second step is to use a state distillation protocol to suppress
this error to the target 𝜀′ = 1/poly(𝑊). These protocols often employ a quantum
code, the ‘distillation code,’ with a transversal gate related to the distilled resource
state. In order to lead to an improved overhead, the protocol must have a favorable
ratio of noisy input states to good output states, and the the protocol must not have too
high of a gate depth. The second of these considerations depends on the distillation
code encoding/unencoding circuit depth and classical decoder efficiency. Towards
this, we prove the following two new results on distillation overheads that are of
independent interest:

Theorem 2.1.3 (Stabilizer state distillation, informal). Let |𝜓⟩ be a 𝑂 (1)-qubit
stabilizer state. There exists a distillation protocol SSD(𝜀) that uses noiseless CNOT,
Pauli operations, Pauli measurements and gives the following guarantees. There
exists a constant noise threshold 𝜀SSD such that, provided with 𝑁 (independent) noisy
states whose infidelity with |𝜓⟩ is 𝜀in < 𝜀SSD, where 𝑁 > 𝑁 (𝜀SSD) is a sufficiently
large number, SSD(𝜀) produces Θ(𝑁) states each of which has infidelity at most 𝜀
with |𝜓⟩. Furthermore, the quantum depth and classical depth of SSD(𝜀) are both
polyloglog(1/𝜀).

Theorem 2.1.4 (Magic state distillation, informal). Let |CCZ⟩ = CCZ |+⟩⊗3. There
exists a distillation protocol (using noiseless Clifford operations and measurements)
MSD(𝜀) and a constant noise threshold 𝜀MSD such that the following holds. Upon re-
ceiving 𝑁 (independent) noisy states whose infidelity with |CCZ⟩ is 𝜀in < 𝜀MSD, where

20

𝑁 > 𝑁 (𝜀MSD) is a sufficiently large number, MSD(𝜀) produces Θ(𝑁/log𝑜(1) (1/𝜀))
states each of which has infidelity at most 𝜀 with |CCZ⟩. Furthermore, the quantum
depth and classical depth of MSD(𝜀) are both polyloglog(1/𝜀). Here, the 𝑜(1)
exponent scales as 𝑂 (1/logloglog(1/𝜀)).

These results are proved in Section 2.4 and Section 2.5, respectively. The ‘batch
sizes’ 𝑁SSD and 𝑁MSD are roughly quasipolylog(1/𝜀). For the first result, we are not
aware of any prior results on stabilizer state distillations of this type. We suspect
that this is because previous works often consider quantum codes with transversal
Cliffords and hence do not run into this question. In our case, and generally for the
recently developed qLDPC code families, we often have a limited set of transversal
gates and thus require other fault-tolerant Clifford gate techniques such as lattice
surgery [CKBB22]. Here, we opt to gate teleportation and thus need to derive
the stated result. In fact, we will even use this distillation procedure to distill
computational basis states.

On the other hand, the magic state distillation (MSD) question has been more
intensively studied, starting from [BK05; Kni05]. Our MSD overhead result gives
a yield rate of log𝑜(1) (1/𝜀), improving over a prior work [HH18] that achieved an
exponent of ≈ 0.68.7 The time overhead (including both quantum and classical) is
only polyloglog(1/𝜀), which is crucial to obtain our main result but often disregarded
in the MSD literature. The slightly super-constant MSD space overhead is not an
issue, as appropriate gate scheduling can turn this into a time overhead. We note that
concurrent and independent works [WHY24; Ngu24; GG24] have established that
constant-space-overhead MSD is possible (see the explicit scheme in [WHY24]),
however we believe the time overhead of these protocols is at least polylog(1/𝜀),
arising from the unencoding circuit of the large distillation code. Hence, our protocol
gives a better spacetime overhead (with an arguably simpler construction) which is
necessary for the main result.

Applying the above distillation schemes on the logical level of a high-rate qLDPC
code is not necessarily straightforward, as we need to address specific logical qubits
in a large qLDPC code block with multiple logical qubits. We show how to use the
above results to distill important resource states for logical operations on high-rate
qLDPC codes in Section 2.4. Here, the key observation is that the noiseless operations
required in the SSD scheme can be implemented transversally on the computation

7Stronger exponents are known for 𝑝-dimensional qudits with 𝑝 > 2 an odd prime [KT19].

21

qLDPC CSS code. Once we have distilled qLDPC logical stabilizer states, we can
then use them to run the MSD scheme as well. To our knowledge this is the first time
this is explicitly worked out, with a rigorous fault tolerance proof.

Techniques. The SSD protocol is inspired by the concatenated-code scheme
of [YK24]. We distill the stabilizer states in multiple levels using quantum Hamming
codes [[2𝑙 − 1, 2𝑙 − 𝑙 − 1, 3]], which have transversal Clifford gates. As its rate
quickly approaches 1, the multi-level distillation protocol gives rise to a constant-
space overhead. The details of this protocol are in Section 2.4. On the other hand, the
MSD protocol is based on a new family of good qudit codes supporting transversal
CCZ gate, that we describe in Section 2.5. There, we give a simple and self-contained
construction using (punctured) Reed-Solomon codes over binary extension fields
using ideas from [KT19]. The claimed time overhead comes from efficient decoders
for these codes and that the code block sizes are at most 𝑂 (loglog(1/𝜀)).

Let us give an intuition for why distillation improves the time overhead over simply
using the concatenated-code FT scheme [AB99]: Multi-level distillation is in a sense
also using concatenation, but we unencode from the code before going to the next
level, whereas concatenated-code FT never unencodes. Note that we are running
these protocols on top of a qLDPC code, and ‘unencode’ here means unencoding from
the distillation code, not the computational qLDPC code, so we are still protected by
the qLDPC code. Therefore, the time overhead increases additively in distillation in
terms of number of levels, rather than multiplicatively as in concatenated-code FT
schemes.

Addressable logic on high-rate codes

The next question is what resource states to prepare. This question arises because the
gate connectivity in the simulated circuit 𝐶 can be arbitrary. For example, a logical
CZ gate between qubit 1 of a code block and qubit 7 of another code block needs
a different resource state than CZ between qubits 5 and 32. Likewise, a Hadamard
gate on qubit 1 needs a different resource state from Hadamard on logical qubit 2.
We say these gates are of different types. The distillation protocols, as we show,
still work to distill any of them. However, the issue is that there are too many
such elementary resource state types. For example, there are 𝑂 (𝐾′2) = polylog(𝑊)
possible CZ gates between two distinct code blocks. On the other hand, distillation
protocols produce resource states of the same type in batches of size roughly

22

𝑁SSD, 𝑁MSD = quasipolylog(1/𝜀), as seen above. Each layer in a circuit 𝐶 may
adversarially consists of gates of all types. Hence, naively, we either have to ruin
the constant-space overhead to run distillation for all of these resource states in
parallel (many of them will be left ununsed) or serialize the gates in 𝐶 so that each
layer contains gates of a single type. Either way we would incur a factor of at least
polylog(𝑊) in the overhead.

A solution to this is to design a small set of resource states that are capable of
performing addressable logic. Here we do so with a set of𝑂 (log𝐾′) = 𝑂 (loglog(𝑊))
resource states. The idea is as follows: We will only consider resource states for
logical single-qubit gates (H and S) that act on the ‘first’ logical qubit in a code
block. For the two-qubit gates (CNOT), we only care about resource states for the
gates that act on qubits 1 and 2 of the same block. Similarly, we only have resource
states for the CCZ gate that acts on qubits 1, 2, 3 of the same code block. So
far this set has 𝑂 (1) resource states. To turn them into addressable gates, we use
𝑂 (log𝐾′) = 𝑂 (loglog𝑊) special SWAP/permutation multi-qubit gates that allows
us to perform low-depth arbitrary qubit permutation. Importantly, we show that
the resource states for these multi-qubit states can also be distilled by running the
stabilizer distillation protocol on top of the computation qLDPC code. Hence, in
total we only use a set of 𝑂 (loglog𝑊) ‘primitive computation states’. Using this
primitive gateset, we can then perform a logical gate on any desired locations while
only incurring a 𝑂 (log(𝐾′)) = 𝑂 (loglog𝑊) time overhead. The details of this are
given in Section 2.3.

Quantum locally testable codes

We now move on to a subtlety that was intentionally omitted in the above discussion.
We have claimed that distillation protocols can be applied on the output of low-fidelity
resource states to boost the fidelity. However, these protocols are being performed
on top of qLDPC codestates, and their analysis only applies when the systems are
guaranteed to be in the codespace. This is not necessarily the case for noisy codestates
prepared by concatenated-code FT. Let |𝜓⟩ be the target resource state. Informally,
concatenated-code FT gives the following guarantee: with probability≥ 1−𝜀0, a state
𝜓′ = N(|𝜓⟩) is output, where N is a local stochastic noise channel with parameter
𝑂 (𝑝). However, in the remaining case, the output state of concatenated-code FT is
arbitrary. It could either be (1) a codestate with some logical error or (2) an arbitrary
non-code state. We must filter out noisy states of the latter case before running the

23

distillation protocols as quick as possible.

One idea is to measure the qLDPC code checks and declare ‘FAIL’ if the syndrome
corresponds to a state with particularly large amounts of error. However, in general,
there are non-code states that are very far from the codespace but only violate a
few checks, so that a few measurement errors could prevent a highly damaged state
from being detected.8 This challenge is exactly addressed by local testable codes
and is a motivation of classical local testability, as quoted from Spielman’s PhD
thesis [Spi95]: “The checker can instantly request a retransmission of that block,
before the decoder has wasted its time trying to decode the message.” One can also
define quantum locally testable codes (qLTC) [AE15; EH17], which are, by definition,
qLDPC codes. Roughly speaking, a qLTC with soundness 𝜌 < 1 ensures that, if 𝑚
checks are violated, then the state deviates from the codespace on at most 𝑚/𝜌 qubits.
Hence, using a constant-soundness qLTC resolves this issue without incurring any
extra time overhead: We can simply declare ‘FAIL’ if the syndrome weight is too
large which will be robust to the presence of measurement errors, see Section 2.4 for
more details. In summary, the discussion up to this point conditionally proves our
main result. Specifically,

Suppose that there exists a qLTC family9 with constant rate, constant
relative distance, and constant soundness (called c3-qLTC). Furthermore,
suppose that the qLTC family admits an efficient parallel single-shot de-
coder. Then quantum fault tolerance can be achieved with the overheads
stated in Theorem 2.1.2.

To our knowledge this work is the first time local testability is used in a fault tolerance
protocol, either classical or quantum. The only previous work that used a related
notion of locality in codes is [Rom06]. There, the author constructed a classical fault
tolerance protocol using local decodable codes, a notion much stronger than local
testability. Such notion, however, is not possible for quantum codes [AAV13].

8This is a well-known issue with toric code. A common solution to this is to perform multiple
rounds (roughly as many as the code distance) of syndrome measurements. This incurs a time
overhead and will not suffice for our main result.

9There is also a technical requirement that the family is sufficiently ‘dense’, meaning that the
code block size does not grow too fast with respect to the family index.

24

Single-shot decoders for cubical complex quantum codes

Unfortunately the c3-qLTC conjecture is still an open question. However, a recent
breakthrough [DLV24] has nearly approached this goal, providing a family of almost-
c3 qLTC. In particular, Dinur, Lin, and Vidick [DLV24] generalized the construction
of good qLDPC codes from [DHLV22] to high-dimensional cubical complexes. In
combination with Panteleev and Kalachev’s new result [KP25] on high-dimensional
product-expansion of random codes, this gives a qLTC family of constant rate,
inverse-polylog relative distance, and inverse-polylog soundness. We show that a
suitable instantiation of this construction suffices to obtain our main result. To this
end, we establish sequential and parallel single-shot decoders for general quantum
codes built on the cubical complex construction:

Theorem 2.1.5 (Single-shot decoder, informal). Let 𝑡 ≥ 2. Consider an [[𝑛, 𝑘, 𝑑]]
quantum LDPC code built from a 𝑡-dimensional cubical complex using the local
sheaf construction such as in [DHLV22; DLV24]. There exists a linear-time decoder
Dseq, and constant 𝐴, 𝐵, 𝐶 > 0 such that the following holds. If the data errors 𝑒 and
syndrome measurement errors 𝑚 have weights satisfying 𝐴|𝑒 |𝑅 + 𝐵 |𝑚 | < 𝑑 (where
| · |𝑅 denotes stabilizer-reduced weight), thenDseq proposes a correction such that the
residual error after applying the correction is upper bounded by 𝐶 · |𝑚 |. A similar
statement holds for a 𝑂 (log 𝑛)-time parallel decoder Dpar. In fact, running Dpar in
𝑂 (𝜏) time guarantees that the residual error is suppressed to 1

2−Θ(𝜏) |𝑒 |𝑅 + 𝐶 |𝑚 |.

We note that the above has been heavily simplified, see Section 2.3 and Section
6 of the full version of the paper [NP24] for precise statements. This result is a
bounded-distance decoder, i.e., it applies to all (adversarial) errors up to certain
weight. It applies to the DHLV code [DHLV22] and also the almost-c3 qLTC
in [DLV24]. In other words, the good qLDPC code family of [DHLV22] admits
a single-shot decoder up to linear-weight adversarial errors, answering an open
question raised by Gu et al. [Gu+23]. For the almost-c3 qLTC, this result holds for
adversarial errors of weight up to 𝑛/polylog(𝑛).

Techniques. The decoder is a generalization of the small-set flip decoder in [DHLV22]
to higher-dimensional cubical complexes ([DHLV22] was on a square complex, i.e.,
2-dimensional cubical complex). The main technical challenge is to come up with
appropriate high-dimensional generalizations of the procedures and proof techniques
there. Furthermore, we show that the decoder is single-shot and parallelizable. The

25

sequential version goes roughly as follows: while the syndrome is still nonzero, find
a small-set flip in the local view of some vertex that reduces the syndrome weight. In
the case when the syndrome is noiseless, we show that if no such flip is found, then
the remaining error must be either zero or very large. On the other hand, we show
that the chain complex is small-set co-boundary expanding, which roughly says that
the syndrome weight provides an upper bound on the error weight as long as the
error weight is sufficiently small10. And since the syndrome weight only reduces
throughout the algorithm by design, the error weight cannot become large. Thus
when the algorithm terminates, there is no remaining error. In the noisy syndrome
case, a similar proof strategy also works by noting that coboundary expansion-based
proof is robust to measurement errors. Naturally, the parallel version of the decoder
attempts to perform local flips in parallel. We show that, in each parallel decoding
round, such flips have large overlap with the underlying error, hence reducing the
syndome weight by a multiplicative constant factor per round.

The X-syndrome decoder is not the same due to the asymmetry in the code construc-
tion. Similar to [DHLV22], it is obtained via a reduction to a Z-syndrome decoding
on a related code. This reduction starts by having each vertex locally make a ‘guess’
about what it thinks the error should look like within its local view. The goal is
now to fix the inconsistencies between these local guesses to obtain a global guess.
The second step of the reduction involves an argument following the ideas in the
code distance proof of [DLV24]. In particular, for each edge, the opinions of the
vertices in that edge are compared, and hence this inconsistency-fixing problem can
be moved one level up in the cubical complex. This procedure is repeated until
the top level of the cubical complex is reached. Then, it turns out that we can
map this inconsistency-fixing problem into a Z-syndrome decoding problem on a
related code. So we can invoke the Z-syndrome decoder for that code to obtain a fix,
and then propagate the fix back down. Since the above inconsistency-propagation
procedure can be done locally, it turns out that the X-syndrome decoder inherits
the single-shotness and parallelizability from the Z-syndrome decoder. We refer to
Section 6 of the full paper [NP24] for more details.

Combining everything together

Intuitively, combining what we have described so far, including the almost-c3
qLTC with single-shot decoder, we can obtain an FT procotol with overheads as

10The small weight condition makes this property weaker than local testability, but it is all we
need for the decoders.

26

stated in Theorem 2.1.2 but with a sub-constant threshold of 1/polylog(𝑁′) =
1/polyloglog(𝑊). To achieve a constant threshold, the final step is to concatenate
the described protocol with the Yamasaki-Koashi protocol [YK24]. Their protocol
incurs constant-space overhead and a time overhead of exp

(
(loglog 1/𝜂)2

)
to fault-

tolerantly simulate a constant-sized operation to logical error rate 𝜂. Hence, setting
𝜂 = 1/polyloglog(𝑊) we only incur an extra factor of exp

(
(loglogloglog𝑊)2

)
in

the time overhead.

This concludes our description of the high-level ideas and new technical results
leading to Theorem 2.1.2. Making the above intuitive description rigorous is
extremely involved. To do so, we introduce a new framework to prove (classical or
quantum) fault tolerance that we call the weight enumerator formalism in Section 2.2.
It can be viewed as a generalization of the technique of Aharonov and Ben-Or [AB99]
(dating back to [Gác86]) of counting ‘bad’ faulty locations. The motivation of this
new framework is the need to combine many different types of fault-tolerant gadgets
in non-trivial ways to construct new fault-tolerant gadgets. In contrast to traditional
concatenated-code FT schemes where the same gadgets are recursively used, the
large variety of currently existing fault-tolerant gadgets and ways to combine them
cause this counting to become unwieldy. Here, we use a framework inspired by the
weight enumerator polynomial methods from coding theory. The key observation
is that we can associate polynomials to the family of bad fault sets and work
with the polynomials similar to probabilities. Multiplication and addition of these
polynomials corresponds nicely to operational meaning. We find this framework
applicable generally and expect it will be useful in proving fault tolerance in other
contexts.

Interpolating space and time overheads. We briefly describe without proofs how
the tradeoff between space and time overheads can be smoothly tuned while keeping
the overall spacetime overhead 𝑂 (log𝑊) (the auxiliary classical time per quantum
timestep is still the same as in Theorem 2.1.2). The idea is to not use all 𝐾′ = Θ(𝑁′)
logical qubits in a code block, but instead use only 𝑘′ of them and simply ignore the
other logical qubits. This reduces the main slowdown factor 𝑂 (𝐾′) = 𝑂 (log𝑊) due
to gate scheduling (see Section 2.1) to 𝑂 (𝑘′), and hence improves the time overhead
to 𝑂 (𝑘′ log𝑜(1)𝑊), while increasing the space overhead to 𝑂 (𝐾′/𝑘′). Choosing
𝑘′ = 1 gives 𝑂 (log𝑊)-space overhead and 𝑂 (log𝑜(1)𝑊)-time overhead. To obtain
𝑂 (log1+𝑜(1)𝑊)-space and 𝑂 (1)-time overheads, we simply shift the ancilla state
factories overhead completely to space by preparing ancilla states off-line, and then

27

using the single-shot decoder to preserve them until use. In addition, instead of
concatenating with the FT protocol of [YK24] in the step of improving the threshold
from 𝜂 = 1/polyloglog(𝑊) to constant, we use the constant-time overhead schemes
described in [Got13, Section 8] or [Bom15], which only incurs an extra space
overhead factor of polylog(1/𝜂) = polylogloglog(𝑊).

Related works
Classical fault tolerance. The study of fault-tolerant (FT) computation was started
in von Neumann’s lectures [Von56], where he gave a FT scheme for classical
computation with log-space and constant-time overhead. His scheme was later made
rigorous and explicit by [DO77; Pip85]. A matching lower bound on the FT overhead
was shown by [PST91; GG94]. These works settle the FT spacetime overhead
required for classical computation.

Quantum fault tolerance. The first fault-tolerant quantum computation (FTQC)
threshold theorems were shown independently by [AB99; Kit97; KLZ98], building
on [Sho96]. These works established that FTQC is possible with polylog space and
time overheads. Later works such as [AGP05; Got10] devised new proof methods
for the concatenated-code FT scheme and improved the rigorously proved threshold
value. Motivated by practical considerations, a standard model of FTQC often
considers a noisy quantum computer with auxilliary polynomial-time and noiseless
classical computation (in this work we only assume polyloglog-time). In this model,
Gottesman [Got13] initiated the study of constant-space-overhead FTQC. [FGL20]
showed that constant-space and polynomial-time overhead is possible. Very recent
work [CFG24] studies FTQC with quantum output which is required to prepare
resource states of [Got13] and [FGL20]. In 2022, [YK24] achieved a quasipolylog-
time overhead which is the state-of-the-art before initiating our work. Concurrent to
our work, we were made aware of a recent independent work initially appearing at
the AQIS’24 conference [TKY24], which gives a proof of FTQC with constant-space
and polylog(𝑊)-time overheads using substantially different techniques from ours.

Good qLDPC code decoders. Some families of good quantum LDPC codes [PK22;
LZ22b] have been recently shown to admit a single-shot decoder [Gu+23]. Other
provably efficient decoders for qLDPC codes include [FGL20; LZ23; DHLV22].
The recent breakthrough work [DLV24], using classical codes constructed in [KP25],
construct almost-good qLTC by generalizing the code from [DHLV22].

28

Magic states and non-Clifford gates. The study of magic state distillation protocols
are initiated in [BK05; Kni05]. Prior to this work, the state-of-the-art MSD (space)
overheads are due to [HH18] (qubit case) and [KT19] (qudit case). During preparation
of this work, recently posted and independent works [WHY24; Ngu24; GG24] have
established that constant-space-overhead MSD by using algebraic-geometry codes.
However, the time overhead was not studied in [Ngu24; GG24]. [WHY24] describe
an explicit protocol, although, naively, polylog(1/𝜀) time overhead is required due
to the (un)encoding depth and syndrome measurements of the distillation code
with large block size. This is insufficient to obtain our main result. See also very
recent works [Zhu+23; SPW24; GL24; BDET24] on quantum LDPC codes with a
non-Clifford gate.

Outlook
There are multiple immediate follow-up questions to our work, here we list a few:

• Can we drop the assumption of polyloglog-time noiseless classical computa-
tion? We believe that this requirement is not needed and can be removed with
careful use of classical fault tolerance along with our constant-time parallel
decoder. We leave details of this procedure and its overhead analysis to future
work.

• Can we improve FTQC overhead lower bounds? [FMS22] obtain a space lower
bound that is linear in the ideal circuit space. We conjecture that our result
in Theorem 2.1.2 is optimal up to sub-polylog factors. We suspect that the
classical functions witnessing the Ω(log𝑊) classical FT overhead lower bound
in [GG94] can be extended to the setting of FTQC without auxiliary classical
computation.

• Toward the question of an overhead lower bound, we describe here an argu-
ment for why a time overhead of 𝑂 (log𝑊) is likely required for constant-
space-overhead FTQC (even with auxiliary classical computation), suggesting
that Theorem 2.1.2 is likely optimal up to sub-polylog factors. This comes
from the potentially adversarial gate connectivity in the ideal circuit. Consider
a FTQC scheme that uses constant-rate code blocks [[𝑛, 𝑘 = Θ(𝑛), 𝑑]] to
simulate an ideal circuit 𝐶 of 𝑊 qubits and, for simplicity, size poly(𝑊).
We need the code distance to be 𝑑 = Θ(log𝑊) to maintain a poly(𝑊)-sized
computation. Consider 𝑘 +1 codeblocks B0, . . . ,B𝑘 . Suppose we can perform

29

two-qubit gates on any pairs of the 𝑘 (𝑘 + 1) logical qubits in 𝑂 (1) depth.
Now, an adversarial layer in the simulated circuit 𝐶 may consist of two-qubit
gates from each logical qubit 𝑗 ∈ [𝑘] in B0 to a logical qubit in B 𝑗 . The
implementation of each gate has to touch ≥ 𝑑 physical qubits in B0, thus
implementing all 𝑘 = Θ(𝑛) of them needs a Ω(𝑑) = Ω(log𝑊) depth by
pigeonhole principle. Choosing an initial specific grouping of logical qubits
cannot avoid this issue because the connectivity in 𝐶 may adversarially vary
across layers. Regrouping logical qubits mid-circuit with a sorting network
would also incur a Ω(log𝑊) time factor.

• Our construction is rather complicated. Is there a simpler construction that
achieves 𝑂 (log𝑊) spacetime overhead? And can we remove the sub-polylog
factors?

Organization of paper
In Section 2.2 we first provide some preliminaries. We then describe our computation
model and present the polynomial formalism and related notation used in Sections 2.3
and 2.4. In Section 2.3 we present the proof of our main result, with technical
lemmas about distillation protocols and the single-shot decoder deferred to later
sections. In Section 2.4 we construct gadgets to distill resource stabilizer and magic
states using the code constructed in Section 2.5. The construction of the single-shot
decoder is deferred to Section 6 of the full paper [NP24]. For convenience, we
provide a diagram (below) of the high-level components of the proof with hyperlinks.

Acknowledgements
This work was done in part while the authors were visiting the Simons Institute
for the Theory of Computing, supported by DOE QSA grant #FP00010905 and
NSF QLCI Grant No. 2016245. We thank Anurag Anshu, Nikolas Breuckmann,
Louis Golowich, Ting-Chun David Lin, Pedro Paredes, John Preskill, Shiro Tamiya,
Hayata Yamasaki, and Guanyu Zhu for useful discussions. We especially thank
Zhiyang (Sunny) He for insightful discussions about quantum fault tolerance proofs.
QTN acknowledges support from the NSF Award No. 2238836 and support from
the Harvard Quantum Initiative. CAP acknowledges funding from the Air Force
Office of Scientific Research (AFOSR) FA9550-19-1-0360 and U.S. Department of
Energy Office of Science, DE-SC0020290. The Institute for Quantum Information
and Matter is an NSF Physics Frontiers Center.

30

Computational QECC

Transversal Gates
Magic States

State Injection

Stabilizer States

Main Result

Single-Shot Decoder
[NP24]

almost-good qLTC
[DLV24]

qLDPC Error
Correction Gadget

Transversal Gate
Gadgets

Qubit |CCZ⟩
Distillation Scheme

(𝛾 → 0)

|CCZ⟩
Preparation Gadget

Punctured Quantum
Reed-Solomon Codes

over Fℓ2 qudits

qLTC Tester
Concatenated

Code FT
[AB99]

State Injection
Gadget

Quantum
Hamming Code

Constant Rate
Stabilizer State

Distillation

Stabilizer State
Preparation Gadget

FT Scheme
1

polyloglog 𝑊𝐷
𝜖𝐿

thresholdCompilation and
Serialization

𝑂 (1) Space
Concatatenated Code FT

[YK24]

Main Result
(const. threshold)

Figure 2.1: High-level organization of proof.

31

2.2 Model of computation and weight enumerator formalism
Aharonov and Ben-Or [AB99] prove the fault tolerance of their scheme by first
working with the set of faulty operations in an adversarial sense with no randomness.
However, the analysis is much more fine-grained than simply the weight of the set:
The set of faulty operations is required to exclude certain “bad” sets. This allows
one to prove thresholds against many types of noise including stochastic noise. In
this section, we introduce a generalization of this technique inspired by the need
to combine many different types of fault-tolerant gadgets in non-trivial ways to
construct new fault-tolerant gadgets. The key observation is that we can associate
polynomials (over R+) to the family of bad sets and work with the polynomials
similar to probabilities while remaining in the adversarial noise paradigm. These
polynomials are a special case of the weight enumerator polynomials from coding
theory, so here we also refer to them as weight enumerators.

We begin by defining our model of computation formally. This model allows a
small polyloglog-sized classically circuit between layers of the quantum circuit. This
attempts to capture that classical gates are much faster than quantum gates in practice
and slightly simplifies some of the arguments.

Definition 2.2.1 (Adaptive quantum circuit). An adaptive Clifford+CCZ quantum
circuit of depth 𝐷 and space𝑊 is described by a list of quantum operations for each
timestep 𝑡 ∈ [𝐷] such that each quantum operation has disjoint support. The valid
quantum operations are one and two-qubit Clifford gates, CCZ gates, destructive
Pauli basis measurements, and state initialization. Let 𝑀 = 𝑂 (𝑊𝐷) be the number
of measurements in the quantum circuit. To each measurement, associate a unique
index 𝑚 ∈ [𝑀]. During execution, a measurement record M of length 𝑀 bits
is maintained such thatM[𝑚] is the result of the measurement at the end of the
timestep where the measurement is executed. We also maintain a classical memory
N of size 𝑂 (𝑊𝐷 polylog(𝑊𝐷)).

To each timestep 𝑡 ∈ [𝐷], we associate a classical circuit𝐶𝑡 of depth𝑂 (polyloglog(𝑊𝐷))
that has access (random access model) to the measurement record (read only) and
memory (read/write). For each unitary quantum operation O in the quantum circuit
at timestep 𝑡, 𝐶𝑡 outputs an associated control bit 𝑎O. At time 0, the𝑊 qubits are
initialized to |0⟩, and the measurement record and memory is initialized to the all-0’s
string. To execute timestep 𝑡 ∈ [𝐷], we first run 𝐶𝑡 which reads the measurement
record, reads/writes to the memory, and produces the control bits 𝑎O for each unitary
operation O at time 𝑡. Then, all unitary operations O for which 𝑎O = 1 and all

32

measurement operations are applied to arrive at timestep 𝑡 + 1.

The output of the computation is the output of a fixed classical circuit D of depth
𝑂 (polyloglog(𝑊𝐷)) evaluated on the measurement record.

Next, we provide some preliminary definitions that will be utilized later.

Preliminaries
We will useH2 to refer to the standard two-dimensional Hilbert space of a qubit. For
a Hilbert spaceH , we use D(H) to refer to the set of density operators supported
onH .

Definition 2.2.2 (Quantum LDPC code). A quantum CSS code Q = 𝐶𝑆𝑆(𝐻𝑋 , 𝐻𝑍)
is said to be Δ-qLDPC if 𝐻𝑋 and 𝐻𝑍 have row and column weight at most Δ.

Our quantum codes will implicitly carry an encoding map from a dim 2𝑘 logical
Hilbert space to a dim 2𝑘 subspace. This choice is almost arbitrary11 with the
exception of the constant quantum depth encoding circuit for the computational code
(Lemma 2.4.2) and the magic state distillation code (Corollary 2.5.14). For this
reason we will refer to the encoding map 𝜙𝐶 of Q as the encoding map.

Definition 2.2.3. A classical code C ⊆ F𝑛2 defined by the check matrix 𝐻 ∈ F𝑟×𝑛2 is
locally testable with soundness 𝜌 and locality Δ if 𝐻 has row and column weight at
most Δ and for all 𝑥 ∈ F𝑛2,

|𝐻𝑥 |
𝑟
≥ 𝜌 𝑑 (𝑥, C)

𝑛
. (2.1)

Definition 2.2.4 (Quantum LTC [AE15; EH17]). A quantum CSS code Q =

𝐶𝑆𝑆(𝐻𝑋 , 𝐻𝑍) is said to be (𝜌,Δ)-qLTC if 𝐻𝑋 and 𝐻𝑍 are both locally testable with
soundness 𝜌 and locality Δ.

Note that a quantum code that is (𝜌,Δ)-qLTC is also Δ-qLDPC.

Definition 2.2.5 (Stabilizer-reduced weight). For a stabilizer code with stabilizer set
𝑆 and a Pauli error 𝐸 , we say that 𝐸 is stabilizer-reduced if it is minimal with respect
to the application of stabilizers. That is, for every 𝑠 ∈ 𝑆, the weight of |𝑠𝐸 | ≥ |𝐸 |.
For a general Pauli error 𝑃, the stabilizer-reduced weight |𝑃 |𝑅 is the weight of a
stabilizer-reduced error equivalent to 𝑃 under applications of stabilizers.

11As long as it takes computational basis states to computational basis states.

33|+⟩
|+⟩

|ψ⟩

CCZ(XaXbXc)CCZ CCZ |ψ⟩
|+⟩

b
c

a

|ψ⟩

U(ZbXa)U† U |ψ⟩U

a ∈ {0,1}n

|Φ⟩⊗n

b ∈ {0,1}n

X

Z

n

Figure 2.2: The 𝑛-qubit gate teleportation circuit. If 𝑈 is in the 𝑘-th level of the
Clifford hierarchy, then the correction is in level 𝑘 −1. We will use this circuit and the
stabilizer resource state 𝐼 ⊗ 𝑈 |Φ⟩⊗𝑛 to implement Clifford gates in our construction.

|+⟩
|+⟩

|ψ⟩

CCZ(XaXbXc)CCZ CCZ |ψ⟩
|+⟩

b
c

a

|ψ⟩

U(ZbXa)U† U |ψ⟩U

a ∈ {0,1}n

|Φ⟩⊗n

b ∈ {0,1}n

X

Z

n

Figure 2.3: Gate teleportation for CCZ gate using the magic state |CCZ⟩ =

CCZ |+ + +⟩. The fix-up has the form of Pauli operations and CZ gates. The
latter are in turn implemented using Figure 2.2.

Let |Φ⟩ = 1√
2
(|00⟩ + |11⟩) denote the Bell state. We recall the standard gate

teleportion scheme.

Definition 2.2.6 (Gate teleportation [GC99]). For an arbitrary 𝑛-qubit unitary𝑈,
the state |𝑈⟩ = 𝐼 ⊗ 𝑈 |Φ⟩⊗𝑛 (𝑈 acting on one qubit from each Bell pair) allows
us to perform a teleported application of 𝑈 on an input state |𝜓⟩: By applying
the standard quantum teleportation circuit (using 𝑋 and 𝑍 basis measurement and
CNOT) between a register |𝜓⟩ and |𝑈⟩, and applying a𝑈-dependent fix-up operation
(𝑈𝑋𝑖𝑈† and𝑈𝑍𝑖𝑈†) conditioned on the measurement outcomes of the teleportation
circuit, we are left with𝑈 |𝜓⟩.

In particular, if𝑈 is in the 𝑘-th level of the Clifford hierarchy, then the fix-up operation
is in the (𝑘 − 1)-th level. We will only use CCZ, a third-level gate, and Clifford gates
for which the fix-up is Pauli. For Clifford gates, the resource state is a stabilizer state
and the fix-up includes Pauli operations. In this work we use this standard scheme
to perform Clifford gates on the computation qLDPC code. To perform CCZ, we
instead use the magic state CCZ |+ + +⟩ and the circuit in Figure 2.3.

34

Remark 2.2.7 (Clifford+T). The choice to use Clifford+CCZ instead of Clifford+T
may seem unconventional, but we note that any circuit using the Clifford+T gateset
may be converted to the Clifford+CCZ gateset with 𝑂 (log(𝑊𝐷/𝜀)) additive time
cost and constant overhead, by first approximately preparing a single 𝑇 state to
1/poly(𝑊𝐷/𝜀) error and then using the (exact) catalyzed conversion |CCZ⟩+ |𝑇⟩ →
2 |𝑇⟩ to create many |𝑇⟩ states [BCHK20].

Noise model
We are now ready to define what it means for a circuit to be executed in a faulty
way. Note that we have not yet defined a distribution (or similar) over the ways that a
circuit can be faulty. A major feature is that we can separate the proof of correctness
from the distribution12 the faults are drawn from.

Definition 2.2.8 (Fault). For an adaptive quantum circuit 𝐶 = 𝐶𝐷𝐶𝐷−1 . . . 𝐶1 of
depth𝐷 and width𝑊 , a fault f is a sequence of𝑊-qubit superoperators (f1, f2, . . . , f𝐷).
We use 𝐶 [f] to denote the execution of the circuit 𝐶 subject to the fault f. That is,

𝐶 [f] = f𝐷𝐶𝐷f𝐷−1𝐶𝐷−1 . . . f1𝐶1. (2.2)

We say that a fault is physical if each superoperator is completely-positive and
trace-preserving (CPTP).

For a sub-circuit 𝐶′ of 𝐶, 𝐶′[f] should be interpreted as the restriction of f to the
locations of 𝐶′. Whenever such a restriction appears, f will always factorize such
that the restriction is well defined.

We remark that our notion of a fault (singular) approximately corresponds to many
faults (plural) in some modern works. For convenience, we extend multiplication to
faults, coordinate-wise. That is, for two faults f and g, fg = (f1g1, f2g2, . . .).

A particularly special case of a fault will be that of a Pauli fault. Pauli faults are
easier to work with for reasons that will be made clear shortly.

Definition 2.2.9 (Pauli superoperator). A superoperator is said to be a Pauli
superoperator if it is of the form 𝜌 ↦→ 𝛼𝐴𝜌𝐵 for some Pauli operators 𝐴 and 𝐵 and
complex coefficient 𝛼. We will further say it is a diagonal Pauli superoperator if it is
of the form 𝜌 ↦→ 𝛼𝐴𝜌𝐴.

12Most generally, it can be the case that the faults are not drawn from a probability distribution at
all (e.g. coherent noise), but we can still upper bound the contribution from “bad” fault paths in the
output distribution.

35

Definition 2.2.10 (Pauli faults). For a fault f = (f1, f2, . . . , f𝐷), f is said to be a
Pauli fault (diagonal Pauli fault) if every superoperator f𝑡 in the sequence is a Pauli
superoperator (diagonal Pauli superoperator).

Remark 2.2.11. Since Pauli matrices form a complete basis for the space of matrices,
it is clear that every fault can be written as a linear combination of Pauli faults. For
a circuit subject to a physical fault, we can decompose it into a sum over executions
of the circuit subject to Pauli faults. We will use this fact to reduce the case of general
faults to that of Pauli faults. Since Pauli faults are tensor products of single-qubit
operators (i.e. factorizes), this makes it convenient to prove properties of circuits in
isolation.

We now define the locations of a circuit.

Definition 2.2.12 (Location). A location of an adaptive quantum circuit is a tuple
of a timestep 𝑡 ∈ [𝐷] and a set of qubits 𝑞 ⊆ [𝑊] such that a quantum operation
(including identity) supported on the qubits 𝑞 is performed at time 𝑡. For each
𝑡 ∈ [𝐷], every qubit must be contained in exactly one location.

We are now ready to define the analog of the support of a fault.

Definition 2.2.13 (Fault path). For an adaptive quantum circuit 𝐶 and a fault f, the
fault path supp f of f = (f1, . . . , f𝐷) is the subset of locations of 𝐶 that f is supported
on. I.e. a location (𝑡 ∈ [𝐷], 𝑋 ⊆ [𝑊]) of 𝐶 is in the fault path if supp f𝑡 ∩ 𝑋 ≠ ∅.
Such a location is said to be faulty.

Definition 2.2.14 (Local stochastic noise). For an adaptive quantum circuit 𝐶 with
the set of locations 𝐿, the random physical fault f is said to be distributed according
to an 𝜖-locally stochastic faults model if, for all 𝑆 ⊆ 𝐿,

Pr(𝑆 ⊆ supp f) ≤ 𝜖 |𝑆 | . (2.3)

For a quantum circuit 𝐶 with depth 𝐷 and space𝑊 , we define |𝐶 | = 𝑊𝐷. Further-
more, we say a circuit is polynomially bounded if 𝐷 = 𝑂 (poly𝑊).

Weight enumerators
In order to combine fault tolerant gadgets using different techniques such as code
concatenation and qLDPC, it becomes convenient to define a notion of a sparse error
or fault-path that differs from [AB99]. Roughly, these are the errors that are benign

36

and do not affect the final outcome. We will define these sets by requiring that they
exclude certain “bad” subsets. Depending on how these bad subsets are defined, this
imposes structure on the error or fault path that can be used to prove correctness of
circuit gadgets in the presence of such errors / fault paths.

We now define a notion analogous to a “sparse” set of [AB99].

Definition 2.2.15 (Avoiding sets). For a set Ω and a family of subsets F ⊆ 𝑃(Ω),
referred to as the bad sets, a subset 𝑋 ⊆ Ω is said to be F -avoiding if it does not
contain an element of F . That is, 𝑋 ⊆ Ω is F -avoiding if and only if

∀𝐹 ∈ F , 𝐹 ⊈ 𝑋 .

To this family of sets we can associate a weight enumerator polynomial. This tracks
how many elements of the family of each size there are.

Definition 2.2.16 (Weight enumerators). For a finite set Ω and a family of subsets
F ⊆ 𝑃(Ω), it will be convenient to associate a polynomialW(F ; 𝑥) to F defined
as the sum

W(F ; 𝑥) =
∞∑︁
𝑤=0

𝐴𝑤𝑥
𝑤, (2.4)

where 𝐴𝑤 = | {𝐹 ∈ F | |𝐹 | = 𝑤} | is the number of elements of F of weight 𝑤.

Note that our definition is a special case of the weight enumerator polynomial from
classical coding theory. The major motivation of this definition is thatW(F ; 𝑥)
is defined such that, for a random variable 𝐸 taking values in 𝑃(Ω) that is 𝜖-local
stochastic, the probability that 𝐸 is not F -avoiding is bounded by the evaluation
W(F ; 𝑥) at 𝜖 . In other words,

∀𝑆 ⊆ Ω, Pr(𝑆 ⊆ 𝐸) ≤ 𝜖 |𝑆 | ⇒ Pr(𝑆 is not F -avoiding) ≤
∑︁
𝑓 ∈F

𝜖 | 𝑓 | =W(F ; 𝜀).

(2.5)

Having motivated the introduction of weight enumerator polynomials, a natural
question is what multiplication and addition of polynomials correspond to. We
begin by defining a sort of sum and product operations on the families of bad sets
which produce new families of bad sets with weight enumerator given by the sum or
product (Proposition 2.2.18). The addition operation is essentially the union-bound

37

from probability. The product operation is slightly more subtle: It is analogous to
the probability of simulataneous failure of independent gadgets, but recall that the
probability of failure is not entirely independent in our error model. However, we can
recover a notion of independence whenever the families of bad sets do not coincide.

Definition 2.2.17 (Ring of bad sets). For a setΩwith the decompositionΩ1∪Ω2 = Ω

and families of subsets F1 ⊆ 𝑃(Ω1) and F2 ⊆ 𝑃(Ω2), we define two operations
between F1 and F2 to arrive at a subset F ⊆ Ω. Let 𝜄1 (𝜄2) be the canonical inclusion
map from Ω1 (Ω2) to Ω.

The first operation is a sort of addition operation.

F1 ⊞ F2 := 𝜄1(F1) ∪ 𝜄2(F2), (2.6)

where by 𝜄1(F1), we mean the application of 𝜄1 to each element of the family F1.

When Ω1 and Ω2 are disjoint, that is Ω = Ω1 ⊔ Ω2, we define a multiplication
operation.

F1 ⊛ F2 := {𝜄1(𝑓1) ∪ 𝜄2(𝑓2) | 𝑓1 ∈ F1, 𝑓2 ∈ F2}. (2.7)

First note that the name addition and multiplication are deserved: Multiplication
distributes over addition. Informally, a set 𝑋 ⊆ Ω is F1 ⊞ F2-avoiding if 𝑋 |Ω1

is F1-avoiding and 𝑋 |Ω2 is F2-avoiding whereas 𝑋 is F1 ⊛ F2-avoiding if 𝑋 |Ω1 is
F1-avoiding or 𝑋 |Ω2 is F2-avoiding. Later, the addition will be used for union-bounds
while the second operation will be used for upper bounding the probability of a large
simultaneous failure.

Conveniently, the weight enumerators are well behaved under these operations

Proposition 2.2.18. It holds that

W(F1 ⊞ F2; 𝑥) =W(F1; 𝑥) +W(F2; 𝑥), (2.8)

W(F1 ⊛ F2; 𝑥) =W(F1; 𝑥)W(F2; 𝑥). (2.9)

Proof. A weight 𝑤 element of F1 ⊞ F2 is a weight 𝑤 element of F1 or of F2, so the
coefficients of the same degree add. To prove the second property, note that any
weight 𝑤 element of F1 ⊛ F2 must be the disjoint union of a weight 𝑤1 element of
F1 and a weight 𝑤2 element of F2 where 𝑤 = 𝑤1 + 𝑤2. □

38

The product operation will be indispensible when constructing new fault-tolerant
gadgets from less resilient older ones. In several places such as recursive simulations
(concatenation) and resource state distillation, we will have fault-tolerant gadgets
fail in ways that are recoverable. Because of this, we will need to analyze the fault
sets in a recursive way. Unfortunately, a large degree of generality is required for
all potential use-cases. This motivates the following definition of a composition
operation.

Definition 2.2.19 (Composition). For a proposition 𝑄 and a set 𝑋 , let I𝑄 [𝑋] denote
𝑋 when 𝑄 holds and ∅ when ¬𝑄 holds.

Fix a set Ω and F ⊆ 𝑃(Ω). For ease of notation, identify Ω ≃ [𝑛]. Also, consider
sets {𝜔𝑖}𝑖∈Ω and families of sets {S𝑖 ⊆ 𝑃(𝜔𝑖)}𝑖∈Ω that are indexed by elements of Ω.
We define an operation F • {S𝑖}𝑖 ⊆ 𝑃 (

⊔
𝑖∈Ω 𝜔𝑖) where

F • {S𝑖}𝑖 := ⊞ 𝑓 ∈F
(
I𝑛∈ 𝑓 [S𝑛] ⊛ I(𝑛−1)∈ 𝑓 [S𝑛−1] . . . I2∈ 𝑓 [S2] ⊛ I1∈ 𝑓 [S1]

)
.

Note that if S𝑖 = S ⊆ 𝑃(𝜔) for some set 𝜔, then F • {S𝑖}𝑖 ⊆ 𝑃(Ω×𝜔) corresponds
to all sets which for some element 𝑓 ∈ F are elements of S on each row of Ω × 𝜔
where 𝑓 is non-trivial. We will use the notation F • S for this special case.

Later, when defining a recursive simulation, Ω will label circuit locations to be
simulated while each 𝜔𝑖∈Ω will label locations in the simulation of the operation
associated with location 𝑖. Different gadgets may have different sets of locations
which demands the additional complexity in the definition. Readers can simply
consider code concatenation as a guide: The outer and inner code blocks have
corresponding bad sets Fouter and Finner. Informally, the family produced by the
• operation takes a bad set 𝑓 ∈ Fouter of the outer code block and expands each
element 𝑒 ∈ 𝑓 into one of the bad sets 𝑓 ′ ∈ Fin of the inner code block, so that if a
subset of qubits of the concatenated code is Fouter • Finner-avoiding, then the set is
Finner-avoiding on all inner code blocks except for an Fouter set (of inner code blocks).
More generally, the families of bad sets of the inner set may not be uniform e.g. a
gadget of a concatenated code may use different inner code gadgets (performing
different operations) with different locations and bad sets.

Remark 2.2.20. Frequently, for a weight enumeratorW(F ; 𝑥), we will only have
an upper bound onW(F ; 𝑥) on some interval [0, 𝑐] for 𝑐 ∈ (0, 1]. 𝑐 should be
thought of as a multiple (e.g. 1/2) of a threshold value.

39

Proposition 2.2.21 (Composition of weight enumerators). Using the variables as
defined in Definition 2.2.19, when there exists a polynomial 𝑝(𝑥) such that on some
interval 𝑥 ∈ 𝐼 ⊆ R+ for all 𝑖 ∈ Ω,W(S𝑖; 𝑥) ≤ 𝑝(𝑥),

W(F • {S𝑖}𝑖; 𝑥) ≤ W(F ; 𝑝(𝑥)) (2.10)

for 𝑥 ∈ 𝐼.

Proof. F • {S𝑖}𝑖 is constructed as a sum over a product for each 𝑓 ∈ F . Using
the weight enumerator sum rule, the weight enumerator is the sum of weight
enumerators for each product. Each product has | 𝑓 | terms and the corresponding
weight enumerator can be evaluated using the weight enumerator product rule.
Applying the restriction 𝑥 ∈ 𝐼 and the upper bound 𝑝(𝑥), each term in the sum has
upper bound 𝑝(𝑥) | 𝑓 |. For each 𝑑 ∈ N, the number of terms in the sum proportional
to 𝑝(𝑥)𝑑 correspond to the number of elements of F of weight 𝑑. □

Gadgets
It will be convenient to group together (physical) qubits into “blocks.” Roughly, a
block is simply a bookkeeping method to refer to collections of qubits that roughly
correspond to the physical qubits of a quantum error correcting code. To reduce the
notation, we intentionally leave implicit a choice of labeling of the qubits. Recall
that for a stabilizer code Q encoding 𝑘 qubits into 𝑛 qubits, we also leave implicit a
choice of encoding map 𝜙Q from a 𝑘-qubit Hilbert space to an 𝑛-qubit Hilbert space.

Definition 2.2.22 (Code block). For a stabilizer code Q on 𝑛 qubits and a set of
qubits [𝑀], a block of [𝑀] is an 𝑛-qubit subset of [𝑀] that will be treated as forming
an encoded state of Q. A block will be further equipped with bad sets F ⊆ 𝑃([𝑛]).
Such a block will be referred to as a (Q, F)-block. For a set of qubits 𝐴 ⊆ [𝑀], 𝐴
is said to be sparse on the (Q, F)-block 𝐵 ⊆ [𝑀] if 𝐴 ∩ 𝐵 is F -avoiding.

We would like a notion to compare if the intermediate computational state is equivalent
to the correct computational state in a sense that is robust to the presence of benign
errors. Here, we introduce a notion of deviation inspired by [AB99] and [Kit97], but
suitably generalized for our purposes.

Definition 2.2.23 (Deviation). For a set of qubits 𝐴, a family of bad sets F , and two
states 𝜌, 𝜎 on 𝐴. 𝜌 is said to be F -deviated from 𝜎 there exists an F -avoiding set
𝐵 ⊆ 𝐴 and a superoperator E𝐵 supported only on 𝐵 such that 𝜌 =

(
I𝐴\𝐵 ⊗ E𝐵

)
(𝜎).

40

For a quantum code Q, a state 𝜌 is said to be F -deviated from Q if there exists a
(possibly mixed) code state 𝜎 in Q such that 𝜌 is F -deviated from 𝜎.

We use the less general term “Pauli F -deviated” (“diagonal Pauli F -deviated”)
when the superoperator E𝐵 is a Pauli superoperator (diagonal Pauli superoperator)

Remark 2.2.24. Our notion of deviation most closely corresponds to the notion of a
“many-to-one” code of [Kit97]. A “many-to-one” code is the set of states that can be
reached from a codestate of a quantum code by application of a superoperator on at
most 𝑙 ∈ N qubits. I.e. the space of states that are damaged but not irrecoverably
so. “many-to-one” refers to the recovery map sending damaged states to a unique
codestate of a standard quantum code.

We avoid comparing the partial traces of states as in [AB99] since 1) the reference
state is required to be pure ([AB08, section 4.3.3]) in order for there to exist a
superoperator taking one state to another 2) the relation should not be symmetric.
This difference in definition does not substantially modify the argument of [AB99;
AB08].

It will be convenient to refer to a smaller unit of an adaptive quantum circuit which
we will call a gadget. A gadget may take a quantum input and outputs the final
state of the quantum and classical registers including the measurement history. The
requirement that the gadget also preserves the measurement history is a technical one
that is needed to deal with non-Pauli errors on inputs to the gadget since the presence
of only Pauli faults does not necessarily imply the output error is Pauli. At the final
step of our analysis, we will discard all measurements except for the result of the
logical measurements. In our case, the gadgets will often operate on a subset of the
classical and quantum registers and will be invoked in parallel. This will be implicit.

The gadgets in our construction will take as input an encoded state and output a
state (on the quantum register), possibly encoded in a different code. This notion
of a gadget is somewhat similar to [Kit97]. We now define a fault-tolerant gadget
and give several useful propositions related to various forms of composition. We
recommend that readers refer to the diagrams in parallel with the text.

Definition 2.2.25 (Fault-tolerant gadget). Fix stabilizer codes Q (Q′) on 𝑛 qubits (𝑛′

qubits) encoding 𝑘 qubits (𝑘′ qubits) and their respective encoding maps 𝜙Q (𝜙Q′). A
fault-tolerant gadget Gad operates on a (Q, F)-block and returns a (Q′, F ′)-block.
To reduce notation, we will suppress the dependence on Q, F , and the corresponding
primed analogs.

41

Consider a gadget Gad with a set of locations [𝐿] and a family of bad sets
G ⊆ 𝑃([𝐿]). Let f be a fault. For a quantum operation Op mapping unencoded
states from D

(
H⊗𝑘2

)
to D

(
H⊗𝑘 ′2

)
, Gad is said to be a (Op,G)-FT gadget if the

following holds when the fault path supp f ⊆ [𝐿] of f is G-avoiding: Without loss of
generality, assume the gadget operates on the first 𝑛 qubits. Then, for any 𝑚 ∈ N, and
any state13 𝜌 ∈ D

(
H⊗(𝑘+𝑚)2

)
, if the input state 𝜎 ∈ D

(
H⊗(𝑛+𝑚)2

)
is F -deviated

from 𝜙Q ⊗ I𝑚 (𝜌), then the output state 𝜎′ = Gad[f] ⊗ I𝑚 (𝜎) is F ′-deviated from
(𝜙Q′ ◦ Op) ⊗ I𝑚 (𝜌).

A gadget is further said to be friendly if, regardless of the input state, when supp f is
G-avoiding, there always exists a state 𝜌′ ∈ D

(
H⊗(𝑘+𝑚)2

)
such that the output state

is F ′-deviated from (𝜙Q′ ◦ Op) ⊗ I𝑚 (𝜌′).

Diagramatically, the following diagram commutes: It is equivalent to apply the
operation on the logical information and encode it, or to apply the gadget, and the
noisy computation is always “close” to the noiseless one.

𝜌 𝜌′

𝜌 𝜌′

𝜎 𝜎′

Op⊗I𝑚

𝜙Q⊗I𝑚 𝜙Q′⊗I𝑚
Gad⊗I𝑚

F -deviated F ′-deviated
Gad[f]⊗I𝑚

Remark 2.2.26. The friendly property may seem somewhat unusual, but it is required
in order for gadgets to be recursively simulated: In a recursive simulation, lower level
gadgets may fail, leaving no guarantees on the output state. The friendly property
allows the gadget following a failed gadget to return the (arbitrarily damaged) state
to a well defined logical state, so that the higher simulation level can correct the
resulting logical error.

A set of FT gadgets are said to be compatible if the parameters of the blocks of the
inputs and outputs are matching (or trivial). That is, for some (Q, F), the inputs and
outputs of all gadgets in the set are (Q, F)-blocks.

In some cases, it will be more convenient to restrict to gadgets that satisfy the
fault-tolerant gadget property for Pauli noise. While we will consider general noise,

13The presence of the reference system is needed in order for the gadget to be inserted in a larger
circuit which may have many more qubits.

42

the analysis of a circuit subject to general noise will be reduced to the Pauli noise
case, so that the gadgets themselves only need to be fault-tolerant to Pauli noise.

Definition 2.2.27 (Pauli fault-tolerant gadgets). A Pauli fault-tolerant gadget Gad is
a gadget satisfying a weaker version of Definition 2.2.25 with all faults restricted to
be Pauli faults and the input and output taken to be Pauli deviated.

What follows is a formalization of properties that allow us to assembly complicated
gadgets out of simple ones. The first proposition allows us to compose gadgets.
The second proposition allows us to execute two gadgets side-by-side in parallel on
separate inputs. The fault analysis in both of these cases will be a union-bound.

Proposition 2.2.28 (Composition of Pauli fault-tolerant gadgets). For a (Op1,G1)-
Pauli FT gadget Gad1 mapping a (Q1, F1)-block to a (Q2, F2)-block and a (Op2,G2)-
Pauli FT gadget Gad2 mapping a (Q2, F2)-block to a (Q3, F3)-block, the composition
is a (Op2 ◦Op1,G1 ⊞G2)-Pauli FT gadget that maps a (Q1, F1)-block to a (Q3, F3)-
block.

Proof. Let f be a fault with a G1 ⊞ G2-avoiding fault path. Let 𝜎1 be the input state
such that there exists 𝜌1 such that 𝜎1 is F1-deviated from 𝜙Q1 (𝜌1). Consider the
following diagram:

𝜌1 𝜌2 𝜌3

𝜌1 𝜌2 𝜌3

𝜎1 𝜎2 𝜎3

Op1⊗I𝑚

𝜙Q1⊗I𝑚 𝜙Q2⊗I𝑚

Op2⊗I𝑚

𝜙Q3⊗I𝑚
Gad1⊗I𝑚

F1-deviated F2-deviated

Gad2⊗I𝑚

F3-deviated
Gad1 [f]⊗I𝑚 Gad2 [f]⊗I𝑚

Using the assumption on the input, the only relations that need to be established is
that 𝜎2 is F2-deviated from 𝜌2 and 𝜎3 is F3-deviated from 𝜌3. Using the definition
of an FT gadget, the assumption that the fault path is G1-avoiding, and that 𝜎1 is
F -deviated from 𝜌1 establishes 𝜎2 is F2-deviated from 𝜌2. Applying the argument a
second time establishes that 𝜎3 is F3-deviated from 𝜌3. □

It is also the case that two Pauli FT-gadgets acting in parallel also form a new Pauli
FT-gadget. This is the reason for the 𝑚-qubit subsystem in the definition of an FT
gadget (Definition 2.2.25)

43

Proposition 2.2.29 (Parallel Pauli FT-gadgets). For a (Op1,G1)-Pauli FT gadget Gad
mapping a (Q1, F1)-block to a (Q2, F2)-block and a (Op′,G′)-Pauli FT gadget Gad′

mapping a (Q′1, F
′

1)-block to a (Q′2, F
′

2)-block, Gad⊗Gad′ is a (Q⊗Q′,G⊞G′)-Pauli
FT gadget that maps a (Q1 ⊗ Q′1, F1 ⊞ F1)-block to a (Q2 ⊗ Q′2, F

′
2 ⊞ F ′2)-block.

Proof. Recall that in the definition of a FT gadget that the properties continue to
hold when the gadget is supported on only a subsystem. If f is a Pauli-fault with a
G ⊞ G′-avoiding fault path then we can write it in terms of the restrictions f = h ⊗ h′

such that (Gad ⊗ Gad′) [f] = Gad[h] ⊗ Gad′[h′]. The claim follows after utilizing
the presence of the 𝑚-qubit subsystem in the definition to apply the Pauli-FT property
to each gadget individually. In other words, we use the definitions show that the
following diagram commutes for any 𝑚 ∈ N.

𝜌 𝜌′

𝜌 𝜌′

𝜎 𝜎′

Op⊗Op′⊗I𝑚

𝜙Q1⊗𝜙Q′1⊗I𝑚 𝜙Q2⊗𝜙Q′2⊗I𝑚
Gad⊗Gad′⊗I𝑚

F1 ⊞ F ′1 -deviated F2 ⊞ F ′2 -deviated
Gad[h]⊗Gad′ [h′]⊗I𝑚

□

We are now ready to give an example employing many of the definitions of the last
several pages.

Example 2.2.30 (Circuit correctness union bound). Consider a circuit with classical
input and output that is the composition of 𝑉 compatible FT gadgets 𝐶 := Gad𝑉 ◦
· · · ◦ Gad2 ◦ Gad1 implementing the classical input-classical output operation
Op := Op𝑉 ◦ · · · ◦ Op2 ◦ Op1 with bad sets {G𝑖}𝑖∈[𝑉] . Let f be a random Pauli fault
of 𝐺 distributed according to 𝜖-local stochastic noise.

We can apply Proposition 2.2.28 inductively in time14 to arrive at a circuit with
classical output that is correct if supp f is G := G𝑉 ⊞ · · ·⊞G2⊞G1-avoiding. Suppose
that for all 𝑖 ∈ [𝑉], 𝑓 (𝑥) is an upper bound forW(𝐺𝑖; 𝑥)) on some interval of
[0, 1] that contains 𝜖 . Then, the probability that supp f is not G-avoiding is at most

Pr(supp f is not G-avoiding) ≤
∑︁
𝑆∈G

Pr(𝑆 ⊆ 𝑃) ≤ W(G; 𝜖) =
∑︁
𝑖∈[𝑉]
W(G𝑖; 𝜖)) ≤ 𝑉 · 𝑓 (𝜖)

14If 𝐶 utilized gadgets in parallel, we would first need to apply Proposition 2.2.29 inductively on
each timestep.

44

where we have used Definition 2.2.16 to upper bound the probability that supp f
is not G-avoiding and Proposition 2.2.18 to evaluate W(G; 𝑥) as a sum over
{W(G𝑖; 𝑥)}𝑖∈[𝑉] .

For this example, much of the machinery could have been skipped and a standard
union bound applied. However, later we will need to use a similar union-bound type
argument in combination with a sort of independence utilizing the product operation.
That is, it is rare for many gadgets with disjoint locations to fail simultaneously. The
weight enumerator polynomial machinery allows us to easily analyze such a scenario
which will appear in the distillation of resource states.

Decoherence of errors
In several of our gadgets, we will need to accept states that are Pauli-deviated from the
codespace, but the analysis of our error correction (including state distillation) gadgets
only considers states that are diagonal Pauli-deviated from the codespace (differs
from a codestate by a diagonal Pauli superoperator). We show that measurement of
the checks of a quantum code reduces the former case to the latter.

Lemma 2.2.31 (Decoherence of errors). For a [[𝑛, 𝑘, 𝑑]] stabilizer code Q, letM be
the channel that measures the 𝑟 stabilizer checks of Q and outputs the measurement
outcomes. For a superoperator E𝐵 supported on a recoverable (in the sense of
erasure) subset of qubits15 𝐵 ⊆ [𝑛] and a codestate 𝜌 of Q, the application of the
noise superoperator followed by measurement of the checks can be written as

M ◦ E𝐵 (𝜌) =
∑︁
𝑥∈F𝑟2

𝛼𝑥 |𝑥⟩⟨𝑥 | ⊗ 𝐸𝑥𝜌𝐸𝑥 , (2.11)

where each 𝐸𝑥 is a Pauli operator supported on 𝐵 and the 𝛼𝑥 are complex coefficients.
When E𝐵 is a physical noise channel, they satisfy

∑
𝑥 𝛼𝑥 = 1. In other words,

measurement of the checks collapses the error into a single Pauli error as long as we
remember the measurement outcome.

Proof. Let {𝑆𝑖}𝑖∈[𝑟] be a generating set for the stabilizer group of Q such that
measurement of 𝑆𝑖 produces the 𝑖-th syndrome bit. We can write the projector into
each syndrome eigenspace 𝑥 ∈ F𝑟2 as Π𝑥 =

∏
𝑖∈[𝑟]

1
2 (1 + (−1)𝑥 [𝑖]𝑆𝑖), so that

M(𝜌) =
∑︁
𝑥∈F𝑟2

|𝑥⟩⟨𝑥 | ⊗ Π𝑥𝜌Π𝑥 .

15This can be thought of as |𝐵 | < 𝑑, but, in fact, many sets larger than 𝐵 are also recoverable. This
fact is used for robustness to stochastic noise.

45

The noise superoperator E𝐵 can be written as a linear combination of Pauli super-
operators supported only on 𝐵. Thus, for some Pauli operators {𝐾𝜇}𝜇, {𝐾′𝜈}𝜈 and
complex coefficients {𝛽𝜇𝜈}𝜇,𝜈, we can write

E𝐵 (𝜌) =
∑︁
𝜇,𝜈

𝛼𝜇𝜈𝐾𝜇𝜌𝐾
′
𝜈 .

We will decompose this representation by separating operators by syndrome. Let 𝜎
be the syndrome map from Pauli operators to their syndromes. Recall that 𝜌 is a
code-state so that Π0𝜌Π0 = 𝜌. The post-measurement state is

M ◦ E𝐵 (𝜎) =
∑︁
𝑥∈F𝑟2

|𝑥⟩⟨𝑥 | ⊗
∑︁
𝜇,𝜈

𝛼𝜇𝜈
(
Π𝑥𝐾𝜇𝜌𝐾

′
𝜈Π𝑥

)
=

∑︁
𝑥∈F𝑟2

|𝑥⟩⟨𝑥 | ⊗
∑︁
𝜇,𝜈

𝛼𝜇𝜈
(
Π𝑥𝐾𝜇Π0𝜌Π0𝐾

′
𝜈Π𝑥

)
=

∑︁
𝑥∈F𝑟2

|𝑥⟩⟨𝑥 | ⊗
∑︁

𝜇 |𝜎(𝐾𝜇)=𝑥
𝜈 |𝜎(𝐾 ′𝜈)=𝑥

𝛼𝜇𝜈
(
Π𝑥𝐾𝜇Π0𝜌Π0𝐾

′
𝜈Π𝑥

)
.

The projectors will annihilate any term in the Pauli decomposition that do not have
syndrome 𝑥, so we can restrict the summation. For any two Pauli operators 𝑎, 𝑏
supported on 𝐵 ant the same syndrome 𝑥, their product 𝑎𝑏 has no syndrome and is
also supported on 𝐵. By assumption, 𝐵 is recoverable from erasure so any Pauli
operator with trivial syndrome supported on 𝐵 must be in the stabilizer. For any
codestate of Q the action of an element of the stabilizer is trivial, so that we can write

Π𝑥𝑎Π0 = Π𝑥𝑎(𝑎𝑏)Π0 = Π𝑥𝑏Π0.

This implies that, for an arbitrary set of Pauli operators {𝐸𝑥}𝑥 supported on 𝐵

satisfying 𝜎(𝐸𝑥) = 𝑥, we can write∑︁
𝜇 |𝜎(𝐾𝜇)=𝑥
𝜈 |𝜎(𝐾 ′𝜈)=𝑥

𝛼𝜇𝜈
(
Π𝑥𝐾𝜇Π0𝜌Π0𝐾

′
𝜈Π𝑥

)
=

∑︁
𝜇 |𝜎(𝐾𝜇)=𝑥
𝜈 |𝜎(𝐾 ′𝜈)=𝑥

𝛼𝜇𝜈 (Π𝑥𝐸𝑥Π0𝜌Π0𝐸𝑥Π𝑥)

=

©«
∑︁

𝜇 |𝜎(𝐾𝜇)=𝑥
𝜈 |𝜎(𝐾 ′𝜈)=𝑥

𝛼𝜇𝜈

ª®®®®¬
(𝐸𝑥𝜌𝐸𝑥) .

The sum in parenthesis is the coefficient in the lemma statement. □

46

Remark 2.2.32. It is often said that coherent errors are “decohered” by syndrome
measurement into Pauli errors. Lemma 2.2.31 is the formal statement of this fact.
The gadgets retain the measurement record in order to “purify” the error and more
easily track it. This is also the only point where we utilize our different definition
of deviation (Definition 2.2.23) from [AB99] and [AB08]. Equivalently, one could
ensure that the logical state of the computation is pure and employ [AB08, Claim 1]
before using Lemma 2.2.31.

2.3 Proof of main result
In this section, we prove the main result. We will first define some notations. Then,
we state several lemmas in Section 2.3, most of whose proofs will be deferred to
later sections. These include the error correction gadget and the state preparation /
distillation gadgets. In Section 2.3, we describe our choice of a set of primitive logical
operations, for which the lemmas from Section 2.3 apply, and show how to compile
the circuit using these operations. In Section 2.3, we combine the fault-tolerant
gadgets and the compilation lemma to prove the main result, albeit with a slightly
vanishing threshold due to the ‘almost-goodness’ of the qLTC family [DLV24].
Finally, in Section 2.3 we obtain the main result with a constant threshold by a
concatenation step with the scheme of [YK24].

Let us start by introducing some notations. We will need to refer to sets of qubits
at the logical level that are grouped together in some way. We will refer to such
groups of qubits as a register of qubits. Later, registers will be encoded into error
correcting code blocks. With respect to registers, we will refer to an operation as
transversal if it acts on every qubit identically. When necessary, we will denote
the target register e.g. 𝐻 (𝐴) or CNOT(𝐴, 𝐵) where 𝐴 and 𝐵 should be thought
of as “unbound” variables indicated the target register unless otherwise stated.
For two-qubit gates, and two registers 𝐴 and 𝐵 with qubits coordinates {1, . . . , 𝑘}
and {𝑘 + 1, . . . , 2𝑘}, a transversal two-qubit gate such as CNOT(𝐴, 𝐵) acts as
CNOT(1, 𝑘 + 1)CNOT(2, 𝑘 + 2) . . .CNOT(𝑘, 2𝑘).

In the following definitions, for an indexed set [𝑁] separated into registers of equal
size 𝑘𝐿 , [𝑁] = 𝐴 ⊔ 𝐵 ⊔ ..., and for an index 𝑖 ∈ [𝑘𝐿], we use the following abuse
of notation 𝑖𝐴, 𝑖𝐵 ∈ [𝑁] to denote an index of the larger set specified by a choice
of one of the registers and an index into that register. E.g. if 𝐴 = {1, . . . , 𝑘𝐿} and
𝐵 = {𝑘𝐿 + 1, . . . 2𝑘𝐿}, the notation means 𝑖𝐴 = 𝑖 and 𝑖𝐵 = 𝑘𝐿 + 𝑖.

We will use qLTC code blocks of the same parameters [[𝑛𝐿 , 𝑘𝐿 , 𝑑𝐿]], referred to as

47

the computational code. Throughout, we fix an encoding map of the computational
code E mapping from 𝑘𝐿 qubits to 𝑛𝐿 qubits that is implementable by a Clifford circuit
and compatible with the constant quantum-depth encoding circuit from Lemma 2.4.2.
Let [𝑊] be the set of qubits of the simulated circuit 𝐶. We will label this Hilbert
space (with basis) byH𝑆 and refer to it as the simulated Hilbert space. We further
introduce a second Hilbert space H𝐿 with basis given by 𝑚 registers of size 𝑘𝐿
(such that 𝑚𝑘𝐿 ≥ 𝑊) that we refer to as the logical Hilbert space. We will label the
qubits ofH𝐿 by [𝑚] × [𝑘𝐿]. Much like how it is standard to decompose an 𝑁-qubit
Hilbert space intoH⊗𝑁2 , there are two relevant levels of decomposition of the logical

Hilbert spaceH𝐿: H𝐿 =

(
H⊗𝑘𝐿2

)⊗𝑚
is the tensor product of single-register Hilbert

spaces16 which is further a tensor product of single-qubit Hilbert spaces. Finally, the
application of E to each register of states inH𝐿 induces a third Hilbert spaceH𝑃,
the physical Hilbert space.

Deferred lemmas
Quantum LDPC and LTC

Definition 2.3.1 (Computational code). To save notation, we will define the compu-
tational code Q𝐿 = 𝐶𝑆𝑆(𝐻𝑋 , 𝐻𝑍) to be an element of a family of Δ-qLDPC codes.
It will have parameters [[𝑛𝐿 , 𝑘𝐿 , 𝑑𝐿]], at most 𝑟𝐿 rows in 𝐻𝑋 and 𝐻𝑍 (the subscript
‘L’ refers to ‘LDPC’), and will be (𝜌,Δ)-LTC. For two (to be determined) integers
𝑡corr, 𝑡𝐿 ∈ [𝑛] with 𝑡𝐿 ≤ 𝑡corr/3, we will further define the family of bad sets Fcorr

(F𝐿) associated with the computational code to be all subsets of [𝑛𝐿] of size 𝑡corr (𝑡𝐿).
Thus,

W(Fcorr; 𝑥) =
(
𝑛

𝑡corr

)
𝑥𝑡corr (2.12)

W(F𝐿; 𝑥) =
(
𝑛

𝑡𝐿

)
𝑥𝑡𝐿 . (2.13)

Note that, by construction any set 𝑋 ⊆ [𝑛𝐿] of size |𝑋 | ≥ 𝑡𝐿 will contain, as a subset,
at least one element of F𝐿 i.e. F𝐿 is the smallest set of witnesses for the property
|𝑋 | ≥ 𝑡𝐿 . One can define similar bad sets for the setting of sublinear-distance and a
stochastic noise decoder. However, their definition is more involved as it requires the
use of the Δ-qLDPC property (e.g. see the proof of theorem 3 of [Got13]).

16This decomposition is particularly important, because the fundamental indivisible unit of space
for our compiled circuits will be registers. E.g. quantum operations will act on registers instead of
qubits.

48

With the exception of the statement of Lemma 2.3.6 and within the proofs of some
gadgets, all codeblocks of the computational code will be (Q𝐿 , F𝐿) blocks. Note
that if a set is F𝐿-avoiding then it is also Fcorr-avoiding, so nearly all statements will
hold with F𝐿 replaced by Fcorr.

Later, 𝑡corr and 𝑡𝐿 will be picked in a way related to the maximum distance for which
our bounded-distance decoder succeeds. If we have a stochastic-error decoder, we
may also pick the sets Fcorr and F𝐿 accordingly: The majority of the arguments in the
paper do not explicitly depend on the precise choice. Our end goal will be to construct
a set of compatible gadgets where all inputs and outputs are F𝐿-deviated from the
codespace. Since some of our intermediate gadgets will create or spread errors, we
will construct an error correction gadget that (roughly) takes a state Fcorr-deviated
from the codespace to a state that is F𝐿-deviated from the codespace.17

To define our gadget, we introduce the standard definition of a single-shot de-
coder [Bom15; Gu+23] (for adversarial Pauli errors).

Definition 2.3.2 (Single-shot decoding). Let Q be a quantum CSS code specified
by the parity check matrices 𝐻𝑋 ∈ F𝑟𝑋×𝑁2 and 𝐻𝑍 ∈ F𝑟𝑍×𝑁2 . Suppose the data
state carries the Pauli errors 𝑒𝑋 , 𝑒𝑍 ∈ F𝑁2 and the syndrome measurements incur
the errors 𝑚𝑋 ∈ F𝑟𝑍2 , 𝑚𝑍 ∈ F𝑟𝑋2 , such that the associated noisy syndromes are
�̃�𝑋 = 𝐻𝑍𝑒𝑋 + 𝑚𝑋 and �̃�𝑍 = 𝐻𝑋𝑒𝑍 + 𝑚𝑍 . Let D be a decoding algorithm that
receives �̃�𝑋 , �̃�𝑍 and proposes the Pauli corrections 𝑓𝑋 , 𝑓𝑍 . The decoder is said to
be (𝛼(𝑁), 𝛽(𝑁), 𝛾(𝑁), 𝜂)-single-shot, where 𝛼, 𝛽, 𝛾 : N+ ↦→ R+ and 0 ≤ 𝜂 < 1, if
the following holds. For each 𝑃 ∈ {𝑋, 𝑍}, provided that

|𝑒𝑃 |𝑅 + 𝛼(𝑁) |𝑚𝑃 | ≤ 𝛽(𝑁)𝑁,

then the proposed Pauli correction 𝑓𝑃 satisfies

|𝑒𝑃 + 𝑓𝑃 |𝑅 ≤ 𝜂 |𝑒𝑃 |𝑅 + 𝛾(𝑁) |𝑚𝑃 |.

Here | · |𝑅 denotes the stabilizer-reduced weight. When 𝜂 = 0 we simply say
(𝛼, 𝛽, 𝛾)-single-shot.

In section 6 of the full paper [NP24] we prove the following decoder result on the
code construction from [DLV24].

17Actually, the majority of our final gadgets will only be Pauli fault-tolerant gadgets, so the states
will satisfy the stronger condition of being Pauli deviated from the code space.

49

Theorem 2.3.3 (Computational almost-good qLTC with single-shot decoding). There
exists an explicit 𝑖-indexed family of CSS quantum LDPC codes with parameters
[[𝑁𝑖, 𝐾𝑖, 𝐷𝑖]], where 𝐾𝑖 = Θ(𝑁𝑖), 𝐷𝑖 = 𝑁𝑖/polylog(𝑁𝑖). Any instance in the family
is locally testable with soundness parameter 𝜌𝑖 = 1/polylog(𝑁𝑖). Furthermore, the
code family admits

• A 𝑂 (log 𝑁𝑖)-time parallel decoder that is (𝛼, 𝛽(𝑁𝑖), 𝛾, 0)-single-shot, where
𝛼, 𝛾 are constants and 𝛽(𝑁𝑖) = 1/polylog(𝑁𝑖).

• A 𝑂 (𝑁𝑖)-time sequential decoder with similar single-shot decoding statement.

• A 𝑂 (1)-constant time parallel decoder that is (𝛼, 𝛽(𝑁𝑖), 𝛾, 𝜂)-single-shot,
where 𝛼, 𝛾 are constants, 𝛽(𝑁𝑖) = 1/polylog(𝑁𝑖), and 𝜂 < 1 is a constant.

In addition, there exists a constant 𝑐 such that for any 𝑖 ∈ N+, it holds that 𝑁𝑖+1
𝑁𝑖

< 𝑐.

Above, we introduce the extra requirement on the growth rate of the code family. This
is a useful condition to achieve constant-space overhead for fault-tolerant computation
when the required code block size is large. We refer to code families satisfying this as
‘computational code family’. In the rest of the proof we will use the logarithmic-time
decoder, although we expect the constant-time decoder may be useful to further
reduce the classical time.

Global variables

Here we introduce “global” variables and assumptions that will appear in the
remaining sections of the proof. We will pick 𝑛𝐿 and 𝑘𝐿 in the proof of the main
theorem. The remainder of the paper will assume that that 𝑘𝐿 = 2𝜈 for some
integer 𝜈. Since our codes are almost-good, we will introduce 𝑛𝐿-dependence
in a very controlled way: Let 𝜁 : R+ → R+ be a monotonic invertible function
𝜁 (𝑥) = 𝑥/polylog(𝑥) such that for all 𝑁 ∈ N+, 𝜁 (𝑁) ≤ 𝛽(𝑁)𝑁 and 𝜁 (𝑁) ≤ 𝜌(𝑁)𝑁 .
For a constant 𝜖 , we will use the notation �̂� (𝑛𝐿) to mean 𝜁 (𝑛𝐿)

𝑛𝐿
𝜖 . In all of our results,

when substituted with a good qLTC, one should think of 𝜁 (𝑛𝐿) as being proportional
to 𝑛𝐿 , e.g., 𝑛𝐿/100.

We will also set

𝑡𝐿 =

⌊
𝜁 (𝑛𝐿)

3 + (2𝛾 + 1)−1

⌋
≤ 𝛽(𝑛𝐿)𝑛𝐿

3 + (2𝛾 + 1)−1 (2.14)

𝑡corr = 3𝑡𝐿 . (2.15)

50

We take 𝑛𝐿 to be at least a large enough constant such that certain parameters within
Lemma 2.3.6 (𝑠) and Lemma 2.4.4 (𝑠, 𝑡test) and 𝑡𝐿 are large enough (at least 1 or 2).

Resource state preparation

We also require gadgets to prepare resource states. These lemmas are proved in
Section 2.4

Lemma 2.3.4 (Stabilizer resource state preparation). For a constant 𝑏 ∈ N, 𝑏 < 1018,
representing the number of blocks, let {|𝜓𝑖⟩}𝑘𝐿𝑖=1 be a set of 𝑏-qubit stabilizer states
such that |𝜓⟩ := |𝜓1⟩ ⊗ · · · ⊗

��𝜓𝑘𝐿 〉 is preparable by a constant depth unitary
Clifford circuit Opstab acting on |0⟩⊗𝑏𝑘𝐿 and 𝑏𝑘𝐿 ancillas qubits. Then, there
exists an (Opstab,G)-Pauli FT gadget Gadstab preparing 𝐾 copies of

��𝜓〉
, each

encoded in 𝑏 codeblocks of the computational code such that the 𝑖-th logical qubits
of the 𝑏 codeblocks is in the state |𝜓𝑖⟩19 andW(G; 𝑥) ≤ 𝑒−𝜁 (𝑛𝐿)+𝑂 (polylog 𝑛𝐿) for
𝑥 ∈ [0, �𝜖∗,stab(𝑛𝐿)).

In terms of a variable 𝑀 = 𝑒Θ(log 𝑛𝐿 ·loglog 𝑛𝐿) , we have the bound:

𝐾 = Θ(𝑀) (2.16)

and Gadstab has quantum depth 𝑂 (polylog 𝑛𝐿), width 𝑂 (𝑀𝑛𝐿), and classical depth
𝑂 (polylog 𝑛𝐿).

The second state preparation gadget creates a magic state for performing CCZ on the
first three qubits of a computational code block. Let Opmagic be the depth-2 circuit
that prepares the state CCZ(1, 2, 3) |+⟩⊗𝑘𝐿 .

Lemma 2.3.5 (Magic resource state preparation). There exists an (Opmagic,G)-Pauli

FT gadget Gadmagic preparing 𝐾 copies of
���CCZ(1, 2, 3)

〉
such thatW(G; 𝑥) ≤

𝑒−𝜁 (𝑛𝐿)+𝑂 (polylog 𝑛𝐿) for 𝑥 ∈ [0, �𝜖∗,magic(𝑛𝐿)).

In terms of a variable 𝑀 satisfying 𝑀 = 𝑒𝑂 (log 𝑛𝐿 ·loglog 𝑛𝐿) , 𝑀 = Ω(𝑛𝐿), we have the
bound:

𝐾 = Ω(𝑀𝑛−�̃�(𝑛𝐿)
𝐿

) (2.17)

where �̃�(𝑛𝐿) = 𝑂𝑛𝐿→∞
(

1
loglog 𝑛𝐿

)
= 𝑜𝑛𝐿→∞(1). Gadmagic has quantum depth

𝑂 (polylog 𝑛𝐿), width 𝑂 (𝑀𝑛𝐿), and classical depth 𝑂 (polylog 𝑛𝐿).
18Any absolute constant suffices.
19I.e. preparing 𝜓1 ⊗ · · · ⊗ 𝜓𝑘𝐿 “coordinate-wise.”

51

Computational code EC gadget

Lemma 2.3.6 (Computational code EC gadget). There exists a constant 𝜖∗,EC ∈ (0, 1)
and gadget GadEC for the computational code of depth 2(Δ + 3), width 𝑛𝐿 + 𝑟𝐿 , and
𝐴EC = 2(Δ + 3) (𝑛𝐿 + 𝑟𝐿) locations such that:

• GadEC takes a (Q𝐿 , Fcorr)-block to a (Q𝐿 , F𝐿)-block.

• There is family of bad fault paths GEC ⊆ 𝑃([𝐴EC]) such that GadEC is a
(Id,GEC)-Pauli fault-tolerant gadget (i.e. it performs identity).

• GEC satisfiesW(GEC; 𝑥) ≤ 𝑒−𝜁 (𝑛𝐿)/4 on 𝑥 ∈ [0,�𝜖∗,EC(𝑛𝐿)).

Proof. Our circuit and argument will be a standard construction (e.g. [Got13]) of a
syndrome extraction circuit for a qLDPC code: Introduce at most 𝑟𝐿 ancilla qubits,
one for each row of 𝐻𝑋 , initialized in |+⟩. We can efficiently find an edge coloring
𝑐 : [𝑟𝐿] × [𝑛𝐿] → [Δ] of the Tanner graph of 𝐻𝑋 using Δ colors. In each of 𝑖 ∈ [Δ]
steps, we perform CNOT controlled on the ancilla for all pairs of data and ancilla
qubits in 𝑐−1(𝑖). Finally, perform H and measure the ancilla qubits in the 𝑍 basis to
obtain a syndrome (̃𝜎)𝑍 (detecting 𝑍 errors). We repeat this procedure for the 𝑍
basis with CNOT replaced by CZ and 𝐻𝑋 by 𝐻𝑍 . In the absence of faults, this circuit
measures the syndrome of the input state by construction.

We invoke the decoder on the measurement outcomes (�̃�𝑋 , �̃�𝑍) to receive the
corrections (𝑓𝑋 , 𝑓𝑍). The final step is to apply the correction 𝐹𝑐 = 𝑋 𝑓𝑋𝑍 𝑓𝑍 (i.e. the
restriction of 𝐹𝑐 to a qubit 𝑖 is 𝐹 |𝑖 = 𝑋 𝑓𝑋 [𝑖]𝑍 𝑓𝑍 [𝑖]).

Here, we will use the code parameters defined in the statement of Theorem 2.3.3.
Let ℓ = 2 · 22Δ, and take G to be all subsets of the spacetime locations of size
𝑠 =

⌊
𝑡𝐿

ℓ(2𝛾+1)

⌋
.20 For 𝑛𝐿 larger than some constant, 𝑠 satisfies 𝑠 ≥ 2 (Section 2.3).

We now prove that this is a Pauli fault-tolerant gadget. Recall from the definition
of a Pauli fault-tolerant gadget (Definition 2.2.27), we are considering Pauli input
errors and Pauli faults. To avoid cluttering notation, let us neglect the details of the
𝑚-qubit reference system in (Definition 2.2.25): Everything that we do here extends
straightforwardly to a state entangled with a reference system.

First we restrict to the following case: Suppose that the input state �̃� is Fcorr-diagonal
Pauli deviated from an encoded state 𝜌 = 𝜙Q𝐿 (𝜌). That is, �̃� = 𝐸in𝜌𝐸in for some

20Our bound will be very loose as we are only interested in asymptotics.

52

Pauli operator 𝐸in that supported on an Fcorr-avoiding set. Further suppose that the
GadEC is subject to a diagonal Pauli fault f that is G-avoiding.

By construction of G, f is supported on at most 𝑠 − 1 locations, each with at most 2
qubits.

Since GadEC is Clifford and f is Pauli, we can “push” the Paulis to the end and write

GadEC [f] (�̃�) = GadEC [f] (�̃�) = fout GadEC [m] 𝐸in(𝜌) = fout 𝐸in GadEC [m𝜎] (𝜌),
(2.18)

where m is a Pauli fault stemming from f that is supported only on measurements
and is decomposed into a part supported only on syndrome measurements detecting
𝑋 errors and syndrome measurements detecting 𝑍 errors m = m𝑋m𝑍 . If (𝜎𝑋 , 𝜎𝑍)
is the syndrome of 𝐸in, then associating m𝑋 with a corresponding bitstring 𝑚𝑋 ,
�̃�𝑋 = 𝜎𝑋 + 𝑚𝑥 and likewise for 𝑍 . 𝜎 is also a Pauli fault,21 but it corresponds
to the flipped syndrome measurements 𝐸in i.e. to the tuple (𝜎𝑋 , 𝜎𝑍). Let us also
decompose 𝐸in = 𝑋𝑒𝑋𝑍𝑒𝑍 .

Since there are at most 2Δ entangling gates, a fault in a single location can propagate
to at most ℓ measurements or output qubits, so

|𝑚𝑋 | ≤ ℓ(𝑠 − 1)
| supp fout | ≤ ℓ(𝑠 − 1).

It follows that

|𝑚𝑋 | + |𝑒𝑋 | ≤ ℓ(𝑠 − 1) + 𝑡corr (2.19)

= ℓ

(⌊
𝑡𝐿

ℓ(2𝛾 + 1)

⌋
− 1

)
+ 𝑡corr (2.20)

≤
(
2𝛾 + 1)−1 + 3

)
𝑡𝐿 − ℓ (2.21)

≤ 𝛽(𝑛𝐿)𝑛𝐿 . (2.22)

This is the precondition required so that the decoder (Theorem 2.3.3) succeeds.
It returns a correction 𝑓𝑋 such that the reduced weight of 𝑓𝑋 + 𝑒𝑋 is at most
𝛾 |𝑚𝑋 | ≤ 𝛾ℓ(𝑠 − 1). That is, there exists an operator 𝐸out,𝑋 such that 𝐸out,𝑋𝑋

𝑓𝑋+𝑒𝑋 is
in the stabilizer of the code and | supp 𝐸out,𝑋 | ≤ 𝛾ℓ(𝑠 − 1). An identical argument
holds with the roles of 𝑍 and 𝑋 exchanged.

21It is a consequence of pushing the input error past the syndrome measurement circuit. We are
still measuring the syndrome, but it is unfortunate consequence of our notation that it is technically
called a “fault.”

53

Let 𝐹𝑐 be the correction applied by the gadget, then since codestates are left invariant
by measurement of the stabilizer generators, the output state can be written as

GadEC [f] (�̃�) = fout 𝐸in GadEC [m𝜎] (𝜌) = fout 𝐸in 𝐹𝑐 (𝜌) = fout 𝐸out,𝑋 𝐸out,𝑍 (𝜌).
(2.23)

Finally, summing the bounds on the supports, the support of fout𝐸out,𝑋𝐸out,𝑍 is at
most ��supp

(
fout𝐸out,𝑋𝐸out,𝑍

) �� ≤ (2𝛾 + 1)ℓ(𝑠 − 1)

≤ (2𝛾 + 1)
(

𝑡𝐿

2𝛾 + 1
− 1

)
≤ 𝑡𝐿 .

That is, the output is F𝐿-Pauli deviated from 𝜌.

It now remains to upper bound the weight enumerator W(G; 𝑥). Recall that
𝐴EC = Θ(𝑛𝐿) and 𝑠 = Θ(𝑡𝐿) = Θ(𝜁 (𝑛𝐿)), so we have the bounds

W(G; 𝑥) =
(
𝐴EC
𝑠

)
𝑥𝑠 (2.24)

≤
(
𝐴𝑒𝑥

𝑠

) 𝑠
(2.25)

≤
(
(const.) 𝑛𝐿

𝜁 (𝑛𝐿)
𝑥

) (const.)𝜁 (𝑛𝐿)
, (2.26)

where the terms (const.) depend on Δ and 𝛾 only. Thus, there exists a constant
𝜖∗,𝐸𝐶 ∈ (0, 1) such that for 𝑥 ∈ (0,�𝜖∗,𝐸𝐶 (𝑛𝐿)),

W(G; 𝑥) ≤
[
(const.) 𝑛𝐿

𝜁 (𝑛𝐿)
�𝜖∗,𝐸𝐶 (𝑛𝐿)] (const.)𝜁 (𝑛𝐿)

(2.27)

≤
[
(const.)𝜖∗,𝐸𝐶

] (const.)𝜁 (𝑛𝐿) (2.28)

≤ 𝑒−𝜁 (𝑛𝐿)/4. (2.29)

We now remove the assumption on the input state and the fault: Suppose that �̃� is
now only Pauli-deviated from the codestate 𝜌 i.e. �̃� = Ein(𝜌) and that f is a general
Pauli fault. If f were a diagonal Pauli fault, Lemma 2.2.31 would immediately
apply, so that either: 1) Ein can be picked to be a diagonal Pauli superoperator, or
2) the state is in the kernel of the measurement projector. In the case that f is not a
diagonal Pauli fault, 𝜎m in Eq. (2.18) still must be a diagonal Pauli superoperator

54

due to the measurement projectors. Thus, after moving Ein across the syndrome
measurement circuit, can only be non-diagonal on a portion of qubits that is in the
lightcone of some non-diagonal portion of f. In other words, the argument holds
for the general case except that fout, 𝐸out,𝑋 , and 𝐸out,𝑍 in Eq. (2.23) are non-diagonal
Pauli superoperators that resulted from the spreading of f as it was pushed through
the circuit (and so are already accounted for). □

We will use the second property in the preparation of noisy resource states to validate
that we may do further processing on them before using them in the resource state
distillation process.

Lemma 2.3.7 (Computational code transversal gates). There exists a constant
𝜖∗,OP ∈ (0, 1) such that for any

Op ∈ {CNOT(𝐴, 𝐵),SWAP(𝐴, 𝐵), 𝑀𝑍 (𝐴), 𝑀𝑋 (𝐴),PAULI, Id},

there exists a gadget GadOp for the computational code of depth 𝑂 (Δ) and 𝐴Op =

𝑂 (𝐴EC) locations such that:

• GadOp takes (Q𝐿 , F𝐿)-blocks to (Q𝐿 , F𝐿)-blocks.

• There is family of bad fault paths GOp ⊆ 𝑃([𝐴Op]) such that GadOp is a
(Op,GOp)-Pauli fault-tolerant gadget.

• GOp satisfiesW(GOp; 𝑥) ≤ 𝑒−𝜁 (𝑛𝐿) on 𝑥 ∈ [0,�𝜖∗,OP(𝑛𝐿)).

• At most polylog 𝑛𝐿 depth classical computation is required to decode any
measurements.

Proof. As in the proof of Lemma 2.3.6, we avoid cluttering the notation by neglecting
the 𝑚-qubit auxillary system in (Definition 2.2.25). However, all steps will be
compatible with its presence. We first prove the case of 2-qubit unitary gates on
two encoded registers 𝐴 and 𝐵: Our gadget will be to perform the gate transversally
on the two blocks followed by an error correction gadget (Lemma 2.3.6) on each
of the blocks. Clearly, an encoded SWAP(𝐴, 𝐵) or CNOT(𝐴, 𝐵) can be executed
transversally (recall the computational code is CSS). The input state �̃� is Pauli
deviated from 𝜌 = 𝜙Q𝐿 ⊗ 𝜙Q𝐿 (𝜌) by an error 𝐸in that is F𝐿-avoiding on each of the
two blocks. Define the output state 𝜌′ = Op(𝜌) and 𝜌′ = 𝜙Q𝐿 ⊗ 𝜙Q𝐿 (𝜌′)

55

Let Ggate be all subsets of size 𝑡𝐿 of the transversal gates layer and let GEC,𝐴, GEC,𝐵

be the families of bad fault paths associated with the error correction gadget defined
in Lemma 2.3.6 associated with the error correction gadget acting on the 𝐴 and 𝐵
blocks, respectively. Our family of bad fault paths is GOp = Ggate ⊞ GEC,𝐴 ⊞ GEC,𝐵.
Let f be a Pauli fault with a GOp-avoiding fault path. Let us decompose f into a part
supported only on the layer of transversal gates, a part supported only on the 𝐴 block
EC gadget, and a part supported only on the 𝐵 block EC gadget f = fgatefEC,𝐴fEC,𝐵.

We proceed to bound the error on the state output by the layer of gates: Since
supp fgate is Ggate-avoiding, the support of fgate on each block is strictly less than 𝑡𝐿 .
The support of 𝐸in is F𝐿-avoiding on each of the two blocks (F𝐿 ⊞ F𝐿-avoiding), so
it also has weight strictly less than 𝑡𝐿 on each of them. It follows that the state after
the layer of transversal gates is then 𝐸2𝜌

′𝐸2 where 𝐸2 has weight strictly less than
3𝑡𝐿 = 𝑡corr on each of the blocks. By construction of G, f is GEC-avoiding on each of
the two EC gadgets, so we may apply Lemma 2.3.6 to conclude that the output state
Op(�̃�) is F𝐿 ⊞ F𝐿-Pauli deviated from (𝜙Q𝐿 ⊗ 𝜙Q𝐿) ◦ Op(𝜌).

For 𝑥 ∈ [0, 𝜖∗,EC), we can now bound (using Proposition 2.2.18)

W(GOp; 𝑥) = 2W(GEC; 𝑥) +W(Ggate; 𝑥)

≤ 𝑒−𝜁 (𝑛𝐿)/2 +
(
𝑛𝐿

𝑡𝐿

)
𝑥𝑡𝐿

≤ 𝑒−𝜁 (𝑛𝐿)/2 + [(const.)𝑥] (const.)𝜁 (𝑛𝐿) .

Thus, there exists a constant 𝜖∗,OP ∈ (0, 𝜖∗,EC] such that for 𝑥 ∈ [0, 𝜖∗,OP],

W(GOp; 𝑥) ≤ 𝑒−𝜁 (𝑛𝐿) .

The argument for one-qubit unitaries is identical since any logical Pauli operation
can be implemented by a corresponding depth-1 pattern of physical Pauli operations.

For measurements, we simply transversally measure in the appropriate basis. Con-
structing GOp in the same way, we can obtain a bitstring that has Hamming distance
less than 2𝑡𝐿/3 ≤ 𝛽(𝑛𝐿)𝑛𝐿 from the codespace. This allows us to invoke the compu-
tational code decoder and perform a (classical) decoding to obtain the measurement
outcomes. □

Compilation
We will need to turn an arbitrary Clifford+CCZ circuit into one that only uses the
primitive operations that we will build gadgets for. Before we give our gate set, we
first need to define gates for permutation of qubits.

56

Register permutation

Because we will distill our resource states in bulk, we may only distill a few types.
The number of types will be far fewer than the number of distinct gates that we will
need to perform due to the need to address the targets. Thus, we will need a means
of targeting the gates our generic resource states perform. To do this, we introduce
the notion of a SWAP state. SWAP states perform teleportations of the qubits within
a block. By conditionally applying a teleportation circuit consuming a SWAP state,
we will obtain one bit of addressing capability. We will use a small sized generating
set of size 𝑂 (log 𝑘𝐿) to obtain full gate targeting.

Definition 2.3.8 (SWAP State). Given a set of qubits [𝑁] and a matching 𝑀 ⊂
[𝑁] × [𝑁], the corresponding 𝑁-qubit SWAP state is a state |𝜓𝑀⟩ where each pair
of qubits corresponding to an element of 𝑀 is a Bell state |𝜙+⟩, and each qubit that
does not appear in 𝑀 is a |0⟩ state. I.e. letting 𝑈 = [𝑁] \ (⋃𝑚∈𝑀 𝑚), |𝜓𝑀⟩ is the
state stabilized by the set of stabilizer generators

©«
⋃
(𝑢,𝑣)∈𝑀

{𝑋𝑢𝑋𝑣, 𝑍𝑢𝑍𝑣}ª®¬
⋃
{𝑍𝑢}𝑢∈𝑈 . (2.30)

Remark 2.3.9. Intuitively, before we have the SWAP states, we are only capable
of coordinate-wise fault-tolerant operations. State injection allows us to prepare
low-fidelity states that are entangled between coordinates. Fortunately, distillation
of the SWAP states we will use requires only coordinate-wise gates and targeted
PAULI operations, so we can distill these without first having a gate that generates
entanglement between coordinates.

The SWAP state is a product state of Bell states and single qubit states, so we can
use this to teleport qubits using the traditional teleportation circuit.

The main operations the SWAP states will implement we call ROT:

Definition 2.3.10 (ROT). For a register of size 𝑘𝐿 , and for any 𝑖 ∈ Z𝑘𝐿 , the operation
ROT(𝑖) implements a cyclic shift of the register by 𝑖 places. I.e. the qubit at
coordinate 𝑚 goes to the coordinate 𝑚 + 𝑖 mod 𝑘𝐿 .

When multiple register are present, we will subscript by the register that the operation
acts on e.g. ROT𝐴 (𝑖) implements a shift by 𝑖 on register 𝐴.

Definition 2.3.11 (Permutation states and implementing ROT(𝑖)). Let 𝜎 be a
permutation on [𝑘𝐿] and define two registers of 𝑘𝐿 qubits 𝐴 and 𝐵. We define the

57

corresponding permutation state on 𝐴𝐵, |Φ𝜎⟩𝐴𝐵 as the SWAP state defined by the
matching

{(𝑖𝐴, 𝜎[𝑖]𝐵)}𝑖∈[𝑘𝐿] . (2.31)

Given a 𝑘𝐿-qubit state |𝜓⟩ = ∑
𝑥∈F𝑛2 𝛼𝑥 |𝑥⟩ and a permutation state |Φ𝜎⟩𝐴𝐵, the

application of a teleportation circuit between |𝜓⟩ and the 𝐴 register will result in the
𝐵 register being left in the state

∑
𝑥∈F𝑛2 𝛼𝑥 |𝜎𝑥⟩. I.e. the permutation 𝜎 is applied to

the state. We call this operation PERM(𝜎). An example of this state is illustrated in
Figure 2.4. For 𝑖 ∈ Z𝑘𝐿 , we use |ROT(𝑖)⟩ to refer to the permutation state with 𝜎
such that consumption of the permutation state implements the operation ROT(𝑖).

Proposition 2.3.12 (Classically controlled permutation). Given a permutation state
|Φ𝜎⟩𝐴𝐵, using classically controlled Pauli operations, transversal CNOT, and
transversal SWAP, we can apply classically controlled PERM(𝜎) in quantum depth
𝑂 (log 𝑛𝐿) and using 𝑂 (1) depth auxiliary classical computation.

Proof. Let 𝐶 be the input register. We will conditionally apply the standard
teleportation circuit transversally between registers 𝐴 and𝐶: If the control bit is 1, we
perform the teleportation circuit 𝑀𝑍 (𝐶)𝑀𝑋 (𝐴)CNOT(𝐴,𝐶) to yield measurement
outcomes 𝑧, 𝑥 ∈ F𝑘𝐿2 . For each 𝑖 ∈ [𝑘𝐿], we apply the controlled Pauli operation
𝑋
𝑧[𝑖]
𝜎(𝑖)𝑍

𝑥 [𝑖]
𝜎(𝑖) to the 𝜎(𝑖)-th qubit of 𝐵. Finally, we peform SWAP(𝐵,𝐶) to swap register

B with register C. If the control bit is 0, then we do nothing for the 𝑂 (1) timesteps
required to execute the other branch of the circuit. □

Proposition 2.3.13 (Arbitrary SWAP(𝑖𝐴, 𝑗𝐵)). Using 4𝜈 classically controlled
ROT operations that are independent of 𝑖, 𝑗 and one SWAP(1𝐴, 1𝐵) operation we
can implement SWAP(𝑖𝐴, 𝑗𝐵). We can further implement SWAP(𝑖𝐴, 𝑗𝐴) using an
additional two SWAP(1𝐴, 1𝐵) operations and a second register where the state is
arbitrary and preserved.

Proof. We first show how to implement ROT(𝑠) for arbitrary 𝑠 ∈ Z𝑘𝐿 : Recall that
𝑘𝐿 = 2𝜈. Write the binary expansion of 𝑠 =

∑𝜈
𝑚=1 𝑎𝑚2𝑚−1 where 𝑎𝑚 ∈ {0, 1}.

For each 𝑚 ∈ [𝜈], implement ROT(2𝑚−1) conditioned on 𝑎𝑚. ROT(𝑎)ROT(𝑏) =
ROT(𝑎+𝑏), so the implemented operation is

∏𝜈
𝑚=1 ROT(𝑎𝑚2𝑚−1) = ROT

(∑𝜈
𝑚=1 𝑎𝑚2𝑚−1) =

ROT(𝑠).

58

A

B

Figure 2.4: Permutation state corresponding to 𝑘𝐿 = 8 with the permutation(
1 2 3 4 5 6 7 8
3 4 5 6 7 8 1 2

)
i.e. a cyclic shift by 2. We also refer to this state as

|ROT(2)⟩. Lines indicate Bell pairs between registers 𝐴 and 𝐵.

The result for SWAP(𝑖𝐴, 𝑗𝐵) follows from the decomposition:22

SWAP(𝑖𝐴, 𝑗𝐵) = ROT𝐵 (𝑗 − 1)ROT𝐴 (𝑖 − 1) SWAP(1𝐴, 1𝐵) ROT𝐵 (1 − 𝑗)ROT𝐴 (1 − 𝑖).

We rotate such that the qubits to be swapped are at the first coordinate, swap, and
then apply the inverse rotation. For SWAP(𝑖𝐴, 𝑗𝐴), we will reduce to a version of
the previous case using a scratch register 𝐶. We rotate qubit 𝑗𝐴 to the first position
and then use the register 𝐶 to hold it while we perform SWAP(1 + 𝑖 − 𝑗)𝐴, 1𝐶 .

SETUP = ROT𝐴 (𝑗 − 𝑖)SWAP(1𝐴, 1𝐶)ROT𝐴 (1 − 𝑗)
SETUP−1 = ROT𝐴 (𝑗 − 1)SWAP(1𝐴, 1𝐶)ROT𝐴 (𝑖 − 𝑗)

SWAP(𝑖𝐴, 𝑗𝐴) = SETUP−1SWAP(1𝐴, 1𝐶)SETUP.

The qubit initially at position 𝑗𝐴 follows the sequence of positions (left to right)
(𝑗𝐴, 1𝐴, 1𝐶 , 1𝐶 , 1𝐴, (1+ 𝑖 − 𝑗)𝐴, (1+ 𝑖 − 𝑗)𝐴, 𝑖𝐴), and the qubit initially at position 𝑖𝐴
follows the sequence of positions (𝑖𝐴, (1 + 𝑖 − 𝑗)𝐴, (1 + 𝑖 − 𝑗)𝐴, 1𝐴, 1𝐶 , 1𝐶 , 1𝐴, 𝑗𝐴).
Since register 𝐶 is never rotated, the qubit initially at position 1𝐶 ends at position
1𝐶 . □

Primitive operations

We now give our primitive gate set that we will construct gadgets for.

Let PAULI denote the set of 1-qubit Pauli operators. We take 𝐻, 𝑆, and CNOT as a
generating set of the Clifford group and denote this set CLIFF. When we augment
CLIFF by (projective) 𝑍-basis measurement, we will use CLIFFM. We use M̃P to

22Recall that the composition of maps should be read from right to left.

59

denote standard (“destructive") measurements in the basis P. Whereas we use M𝑍 to
denote computational basis measurements that additionally output a computational
basis state initialized to the measurement outcome (“quantum non-demolition"). As
a first step, we will decompose any circuit into the gate set PAULI + CLIFFM + CCZ.

However, we will not implement all of these operations directly. Let 𝐴 and 𝐵 be
arbitrary registers. Our primitive gateset can be split into three groups. The first
group will be used for implementing all other gadgets via teleportation:

• M̃𝑍 (𝐴)

• M̃𝑋 (𝐴)

• CNOT(𝐴, 𝐵)

• PAULI

The second group will be used for gate targeting (i.e. addressing logical qubits):

• 𝑖 ∈ [log2 𝑘𝐿] ROT(2𝑖)

• SWAP(1𝐴, 1𝐵)

The final group is used only for computation:

• 𝐻 (1𝐴)

• 𝑆(1𝐴)

• M𝑍 (1𝐴)

• CNOT(1𝐴, 2𝐴)

• CCZ(1𝐴, 2𝐴, 3𝐴)

The second and third groups of gates we call the primitive computational gates.

60

Register assignment

Definition 2.3.14 (Register assignment). For a circuit 𝐶 on the set of qubits [𝑊]
and 𝑚, 𝑘 ∈ N such that𝑊 ≤ 𝑚𝑘 , an (𝑚, 𝑘)-register assignment is an injective map
𝜙 : [𝑊] → [𝑚] × [𝑘].

Proposition 2.3.15 (Gate compatible register assignment). For 𝑘 ≥ 12, 𝑚 ≥ 4𝑊/𝑘 ,
and one layer 𝐶 of non-overlapping Clifford + CCZ gates on𝑊 qubits, there exists
a (𝑚, 𝑘)-register assignment 𝜙 : [𝑊] → [𝑚] × [𝑘] such that each gate in 𝐶 is
supported only on the qubits 𝜙−1(𝑎, [𝑘]) for some 𝑎 ∈ [𝑚]. Furthermore, this
register assignment can be found in time 𝑂 (|𝐶 |).

Proof. First note that the maximum support size of any gate in 𝐶 is at most 3. This is
an instance of the bin packing problem which requires that we assign a large number
of parcels taking different sizes to bins such that no bin exceeds its capacity. Our
case is that of high-multiplicity bin packing for which the number of distinct sizes is
𝑂 (1), and efficient approximate algorithms are known [FA05].

Here, we describe the first-fit bin packing algorithm [GGU72] with a single open
bin: Maintain pointers 𝑎 ∈ [𝑚] and 𝑏 ∈ [𝑘] initialized to 1, called the open bin and
load, respectively. For each gate 𝑐 in the gate list 𝐶:

1. If 𝛼 := | supp 𝑐 | > 𝑘 − 𝑏 + 1, set 𝑏 = 1 and increment 𝑎.

2. Assign the qubits supp 𝑐 to positions {𝑏, . . . , 𝑏 + 𝛼} of register 𝑎.

3. Set 𝑏 = 𝑏 + 𝛼.

At least ⌊ 𝑘3 ⌋ gates can be assigned to each register and there are at most𝑊 gates, so
at most 𝑊

𝑘
3−1 ≤

4𝑊
𝑘
≤ 𝑚 registers will be assigned to. □

Serialization

Definition 2.3.16 (Serialized circuits). For a circuit 𝐶 acting on 𝑚 registers of size
𝑘 , an 𝛼-serialization of 𝐶 is a new circuit 𝐶′ such that, for every timestep, there are
at most 𝑚

𝛼
gates and no two gates act on the same register.

Clearly, given a 1-serialization, it is straightforward to construct an 𝛼-serialization
𝛼 ≥ 1 by a greedy assignment when we do not need to worry about gate conflicts.

61

Proposition 2.3.17 (Serialization subdivision). Given a 1-serialized depth-1 circuit
𝐶 acting on 𝑚 registers of size 𝑘 such that no gate is supported on more than one
register and 𝛼 ∈ [1, 𝑚] we can efficiently compute an 𝛼-serialized circuit 𝐶′ of 𝐶
such that the depth of 𝐶′ is 2𝛼.

Proof. Eagerly execute the gates in 𝐶 in one of 2𝛼 timesteps such that no more than
𝑚/𝛼 gates are executed in each timestep. In each timestep, we are able to execute
⌊𝑚/𝛼⌋ gates. 𝐶 contains at most 𝑚 gates since it is 1-serialized. Thus, after 2𝛼
timesteps, there are 2𝛼⌊𝑚/𝛼⌋ ≥ 𝑚 opportunities to execute a gate.23 □

We now construct a serialization suitable for general circuits with gates supported on
multiple registers.

Lemma 2.3.18 (Serialization). Given a depth-1 circuit 𝐶 acting on 𝑚 registers of
size 𝑘 such that no gate is supported on more than two registers and 𝛼 ∈ [1, 𝑚], we
can efficiently compute an 𝛼-serialized circuit 𝐶′ of 𝐶 such that the depth of 𝐶′ is
4𝑘𝛼.

Proof. Two gates are said to be non-conflicting if they are supported on qubits in
different registers. Our procedure will divide the gates of 𝐶 into 2𝑘 sets of pair-wise
non-conflicting gates, and each set will be executed over (𝛼 + 1) timesteps.

Let 𝑈 be the set of gates in 𝐶 supported on two registers. Then, consider the
multigraph 𝐺 = ([𝑚], 𝐸) where each element (𝑢, 𝑣) ∈ 𝐸 corresponds to a gate
of 𝑈 with targets in registers (𝑤1, 𝑤2). 𝐺 has degree and multiplicity at most 𝑘 ,
so a proper edge coloring 𝑐 : 𝐸 → [2𝑘] using at most 2𝑘 colors can be efficiently
computed [BF91].

We first partition 𝐶 = 𝑄1 ⊔ 𝑄2 · · · ⊔ 𝑄2𝑘 where, for 𝑖 ∈ [2𝑘], 𝑄𝑖 contains all
gates of 𝑈 corresponding to the set of edges 𝐸𝑖 = 𝑐−1(𝑖) as well as an arbitrarily
selected subset of single register gates 𝐶 \𝑈 such that all elements of𝑄𝑖 are pairwise
non-conflicting. There are at most 𝑘 gates of 𝐶 supported on each register, and each
gate in 𝐶 \𝑈 is supported on one register. Thus, a greedy assignment of elements of
𝐶 \𝑈 to each 𝑄𝑖 will succeed.

For each 𝑖 ∈ [2𝑘], we further subdivide 𝑄𝑖 = ⊔ 𝑗∈[𝛼+1]𝑄 (𝑖, 𝑗) such that each subset
has at most 𝑚/𝛼 elements i.e. |𝑄 (𝑖, 𝑗) | ≤ 𝑚/𝛼 using an argument identical to
Proposition 2.3.17.

23Bounding the cases 𝛼 ∈ [0, 𝑚/2] and 𝛼 ∈ [𝑚/2, 𝑚] separately.

62

𝐶′ has timesteps (𝑖, 𝑗) ∈ [2𝑘] × [𝛼 + 1] where in timestep (𝑖, 𝑗), we execute the
gates in 𝑄 (𝑖, 𝑗) . The precise ordering of the timesteps is arbitrary since all gates in 𝐶
had disjoint qubit support. □

Lemma 2.3.19 (Compiling). Assume 𝑘𝐿 ≥ 12 and 𝑚 ≥ 4𝑊/𝑘𝐿 . Given a Clifford +
CCZ circuit 𝐶 acting onH𝑆 of depth 𝑇 , we can efficiently construct a new circuit 𝐶′

acting onH𝐿 of depth 𝑇 ′ where

• All operations are primitive computational operations (Section 2.3).

• Only one operation is supported on each register per timestep. (1-serialized)

• Only one type of primitive computational operation is used per timestep.24

• 𝑇 ′

𝑇
= 𝑂 (𝜈𝑘𝐿) = 𝑂 (𝑘𝐿 log 𝑘𝐿).

• 𝐶 and 𝐶′ implement the same quantum channel.

Proof. Without loss of generality, assume that𝐶 contains only operations in CLIFFM+
CCZ with only one type of gate per layer. Otherwise, we may first replace any
two-qubit gate in the Clifford group by a constant number of gates in CLIFFM, and
then replace each layer by a constant number of layers, each containing only one type
of gate per layer.

For each layer 𝐶𝑡 of 𝐶, we compute a register assignment 𝜙𝑡 using Proposition 2.3.15
such that the gates of 𝐶𝑡 have support only on one register each. Let 𝑆𝑡 = 𝑆(2)𝑡 𝑆

(1)
𝑡

be a depth-2 layer of SWAP gates acting on H𝐿 that implements the permutation
sending qubit 𝜙𝑡 (𝑤) to 𝜙𝑡+1(𝑤) for each 𝑤 ∈ [𝑊]. We will seek to implement the
circuit:

(𝐶𝐷)𝜙𝐷 𝑆𝐷−1 (𝐶𝐷−1)𝜙𝐷−1 . . . 𝑆2 (𝐶2)𝜙2 𝑆1 (𝐶1)𝜙1 . (2.32)

However, we must decompose it further.

For each 𝑣 ∈ {1, 2}, 𝑆(𝑣)𝑡 is the product of operations of the form SWAP(𝑖𝐴, 𝑗𝐵). We
can decompose 𝑆(𝑣)𝑡 into primitive computational operations by first constructing
the 1-serialization (Lemma 2.3.18) and then further decompose each SWAP(𝑖𝐴, 𝑗𝐵)
operation into power-of-two ROT and SWAP(1𝐴, 1𝐵) (Proposition 2.3.13). Let 𝑆′𝑡
refer to this decomposition of 𝑆𝑡 . The depth of 𝑆′𝑡 is 𝑂 (𝜈𝑘𝐿).

24We treat ROT with different parameters as distinct types.

63

Let 𝐶 (𝑘𝐿)𝑡 𝐶
(𝑘𝐿−1)
𝑡 . . . 𝐶

(1)
𝑡 be the composition of single layers of operations that is a

1-serialization of (𝐶𝑡)𝜙𝑡 .25 For each 𝑣 ∈ [𝑘𝐿], we (in parallel) swap the support of
each gate in 𝐶 (𝑣)𝑡 (Proposition 2.3.13) to the first coordinates of the register, perform
the corresponding primitive computational operation, and swap the support back.
Since each gate has support at most 3, this can be done in 𝑂 (𝜈) steps. Let 𝐶′𝑡 refer to
this sequence of operations (depth 𝑂 (𝜈𝑘𝐿)).

𝐶′ is now simply:

𝐶′ = 𝐶′𝐷𝑆
′
𝐷−1𝐶

′
𝐷−1 . . . 𝑆

′
2𝐶
′
2𝑆
′
1𝐶
′
1. (2.33)

By construction 𝐶′ satisfies all conditions of the lemma statement. □

Main theorem with vanishing threshold
Here we now prove the main result with a slightly sub-constant threshold due to
our use of an adversarial noise single-shot decoder. It is reasonable to expect that
a decoder capable of decoding “most” errors of linear weight exists (a stochastic
noise single-shot decoder). However, we find that it is simpler to perform a threshold
amplification step (Section 2.3) instead to amplify the threshold to constant.

Theorem 2.3.20 (Main result with vanishing threshold). There exists a function
𝑓 (𝑥) growing faster than any quasipoly(𝑥) and a value 𝜖∗ ∈ (0, 1) such that for any
𝜖𝐿 ∈ (0, 1) and (Clifford+CCZ) classical input / classical output quantum circuit 𝐶
with width𝑊 and depth 𝐷 satisfying

𝑊𝐷

𝜖𝐿
≤ 𝑓 (𝑊) (2.34)

There is a corresponding efficiently constructable classical input / classical output
quantum circuit 𝐶 with width𝑊 and depth 𝐷 satisfying

𝑊

𝑊
= 𝑂𝑊→∞(1) (2.35)

𝐷

𝐷
= 𝑂𝑊→∞

((
log

𝑊𝐷

𝜖𝐿

)1+𝑜(1)
)

(2.36)

and using auxiliary 𝑂 (polyloglog 𝑊𝐷
𝜀𝐿
)-time classical computation per quantum

timestep, such that the following guarantees hold. There is a family of bad fault paths
G such that

25Since (𝐶𝑡)𝜙𝑡 only contains gates acting on single registers, this is trivial.

64

• For any G-avoiding physical fault f, the output distribution of 𝐶 subject to f,
𝐶 [f], is equal to the output distribution of 𝐶.

• W(G; 𝑥) ≤ 𝜖𝐿 for 𝑥 ∈
[
0, 𝜖∗ · 𝑐

(
𝑊𝐷
𝜖𝐿

)]
where 𝑐

(
𝑊𝐷
𝜖𝐿

)
= Ω𝑊→∞

(
1

polyloglog 𝑊𝐷
𝜖𝐿

)
.

It is an immediate corollary of the above theorem that the output distribution of 𝐶
subject to a random fault distributed according to a 𝑝-locally stochastic faults model

is 𝜖𝐿-close in total-variation distance (TVD) for 𝑝 ≤ 𝑂
(

1
polyloglog 𝑊𝐷

𝜖𝐿

)
. However,

maintaining the weight enumerator allows us to work with the circuit further in the
next section.

Our proof is split into roughly two parts which we organize into parts for readability
that should be read as a single proof.

Proof.

Setup and compilation We use the code family from Theorem 2.3.3. If the number
of logical qubits is not a power-of-two, we ignore some fraction < 1/2 of them, such
that the remaining number of logical qubits is 𝑘𝐿 = 2𝜈. This harms our rate by at
most 1/2. There exists a minimum (constant) computational code size 𝑛min such that
all properties required in Section 2.3 hold.

Since error analysis depends on 𝑛𝐿 , we will do it for a general 𝑛𝐿 and pick 𝑛𝐿 at the
end. We will indicate the circuits that appear in the main steps with a superscript (𝑛𝐿)
to denote that 𝑛𝐿 has not yet been selected. For now, we simply require 𝑛min ≤ 𝑛𝐿 .

We use a number of registers 𝑚 = ⌈𝑊/𝑘𝐿⌉ (using the constant rate). We apply
Lemma 2.3.19 to 𝐶 to arrive at an equivalent circuit 𝐶′(𝑛𝐿) with depth overhead
𝑂 (𝑘𝐿 log 𝑘𝐿) which: 1) Only contains primitive computational operations. 2) Only
applies one type of primitive computational operation per timestep. 3) At most one
primitive computational operation is applied per register per timestep (is 1-serialized).

Fault-tolerant circuit construction 𝐶
(𝑛𝐿) will have a computational code block

for each register of 𝐶′(𝑛𝐿) . Let 𝐷′ = 𝐷 · 𝑂 (𝑘𝐿 log 𝑘𝐿) be the depth of 𝐶′(𝑛𝐿) and for
each timestep 𝑡 ∈ [𝐷′] of 𝐶′(𝑛𝐿) , let 𝐶′𝑡 be the corresponding layer of gates in 𝐶′(𝑛𝐿) .
The timesteps of 𝐶

(𝑛𝐿) will be partitioned into 𝐷′ work periods where, in each work
period, we accomplish the work of a single layer of gates of 𝐶′(𝑛𝐿) .

65

Let 𝐾 be the number of copies of the resource state prepared by a single stabilizer
state preparation gadget (Lemma 2.3.4), and define 𝛽 = ⌈𝑚/𝐾⌉ the number of
stabilizer state preparation gadgets required to 𝑚 output states.

We begin the circuit by executing 𝛽 stabilizers state preparation gadgets to prepare 𝑚���0〉⊗𝑘𝐿 states.26 This takes time 𝑂 (polylog 𝑛𝐿).

Now, consider a given work period 𝑡 ∈ [𝐷′]. By construction, only a single type of
primitive computational operation O (Section 2.3) is applied in 𝐶′𝑡 and each register
is only involved in at most one primitive computational operation. I.e. there are at
most 𝑚 operations to be performed. In the following, the Id gadget in Lemma 2.3.7 is
repeatedly applied to any of the 𝑚 computational code blocks that are not otherwise
involved in a gadget.

If O is a unitary Clifford operation or M𝑍 (1𝐴) (projective computational basis
measurement), let |O⟩ denote the corresponding stabilizer resource state (defined in
Section 2.2). This resource state is supported on at most 4 registers, so we can use the
stabilizer state preparation gadget (Lemma 2.3.4) to prepare it. We run 𝛽 = ⌈𝑚/𝐾⌉
state preparation gadgets in parallel to produce 𝑚 copies of the encoded resource
state

���O〉
and then consume it via state teleportation (Lemma 2.3.7) to perform O

(Section 2.2). If O is M𝑍 (1𝐴) we additionally store the logically decoded value. This
takes time 𝑂 (polylog 𝑛𝐿) (quantum and classical).

Otherwise, O is CCZ(1, 2, 3). We use the magic state preparation gadget (Lemma 2.3.5)
to prepare

���CCZ(1, 2, 3)
〉
. Let 𝑀magic be the variable from the statement of

Lemma 2.3.5, so that a single magic state preparation gadget produces 𝐾magic =

Ω

(
𝑀magic𝑛

−�̃�(𝑛𝐿)
𝐿

)
copies of

���CCZ(1, 2, 3)
〉

and uses space 𝑂 (𝑀magic𝑛𝐿). We
execute an 𝛼-serialized version27 of 𝐶′𝑡 (Proposition 2.3.17) over 2𝛼 steps with
𝛼 = ⌈𝑀magic/𝐾magic⌉ = 𝑂

(
𝑛
�̃�(𝑛𝐿)
𝐿

)
. In each step, we run 𝛽magic =

⌈
𝑚/𝑀magic

⌉
magic state preparation gadgets to produce the 𝑚

𝛼
magic states required to execute a

single step of the 𝛼-serialized circuit. In parallel, we also run 3 sets of 𝛽 stabilizer state
preparation gadgets, preparing 𝑚 each of the resource states:

���CZ(1, 2)
〉
,
���CZ(2, 3)

〉
,

and
���CZ(1, 3)

〉
. For each of the 𝑚

𝛼
gates in each step, we use these states and the

transversal gate gadgets from Lemma 2.3.7 to execute a teleported CCZ(1, 2, 3)
gate. Overall, this takes time 𝑂 (𝑛�̃�(𝑛𝐿)

𝐿
polylog 𝑛𝐿). Again, while waiting for state

26It is notable that our gadget does not require any input
���0〉 states to operate on, so we can use it

to initialize the computation.
27Recall that 𝐶𝑡 is already 1-serialized.

66

preparation gadgets, the Id gadget in Lemma 2.3.7 is repeatedly applied on each of
the 𝑚 computation data registers.

At the end of the last layer of gates, we output the decoded results of any M(1𝐴)
gadgets (corresponding to measurements of 𝐶) and discard the remainder of the
measurement record and classical memory. This is done as follows. On each of the
𝑚 data registers, we perform physical computational basis state measurement. On
each measurement outcome bit string, we first use the parallel Z-syndrome decoder
in 𝑂 (log 𝑛𝐿) time to remove the possible bit flip errors in the bit string, then we
compute the dot product of this bit string with the logical Pauli X strings to decode.
The latter step can also be done in 𝑂 (log 𝑛𝐿) classical time.

Thus, the overall depth of𝐶
(𝑛𝐿) is𝑂

(
𝐷′𝑛�̃�(𝑛𝐿)

𝐿
polylog 𝑛𝐿

)
= 𝑂

(
𝐷𝑛

1+�̃�(𝑛𝐿)
𝐿

polylog 𝑛𝐿
)

with at most 𝑂 (polylog 𝑛𝐿) depth classical computation to perform teleported gates.

Fault analysis and reduction to Pauli noise Having constructed the circuit 𝐶
(𝑛𝐿) ,

we proceed to the fault analysis. Following standard techniques ([AB99],[AGP05],[Got13]),
we will reduce the analysis of an arbitrary fault to that of Pauli faults. We will
define 𝑝∗ = min(𝜖∗EC, 𝜖∗,OP, 𝜖∗stateprep, 𝜖∗Mstateprep) from Lemma 2.3.6, Lemma 2.3.7,
Lemma 2.3.4, and Lemma 2.3.5, respectively.

We will denote Pauli faults with a superscript (P). All gadgets used are Pauli fault-
tolerant gadgets that accept and output (𝐶𝐿 , F𝐿)-blocks, so they are compatible.28

This allows us to inductively apply the gadget composition lemmas (Proposition 2.2.28
and Proposition 2.2.29), so the overall circuit𝐶

(𝑛𝐿) is a (𝐶,G (𝑛𝐿))-Pauli fault-tolerant
gadget where G (𝑛𝐿) is the sum (⊞) of the bad fault paths for each gadget. I.e. for a
Pauli fault f (P) , the output distribution29 of 𝐶

(𝑛𝐿) [f (P)] is proportional to the output
distribution of 𝐶 when f (P) is G (𝑛𝐿)-avoiding.

Let |input⟩ be the classical input string (as a classical register). For an arbitrary
G (𝑛𝐿)-avoiding physical fault f (not necessarily Pauli), it can be decomposed into a
sum of Pauli faults with the same fault path (operations are component-wise) and
complex coefficients 𝛼.

f =
∑︁

Pauli faults g(P)
supp g(P)⊆supp f

𝛼g(P)g(P) .

28Recall the definition of compatible FT gadgets (Definition 2.2.25).
29Distribution is a slight abuse of terminology since, in general, there is an overall complex

amplitude that will be summed over at the end. It is at this point that we discard the measurement
record of the gadgets and sum over all possible measurement outcomes (see Lemma 2.2.31).

67

We can now compute the output probability of 𝐶
(𝑛𝐿) subject to an arbitrary fault. If

𝐶
(𝑛𝐿) is subject to a Pauli fault g(P) that is G (𝑛𝐿)-avoiding, then the output distribution

is proportional to 𝐶, i.e. 𝐶
(𝑛𝐿) [g(P)] ∝ 𝐶. Using linearity, for some real constants 𝑐

and {𝑐g(P) }g(P) independent of 𝑥, we can write (recall that quantum operations are
superoperators)

Pr
(
𝐶
(𝑛𝐿) [f] outputs 𝑥

)
= ⟨𝑥 |

(
𝐶
(𝑛𝐿) [f] (|input⟩⟨input|)

)
|𝑥⟩

=
∑︁

Pauli faults g(P)
supp g(P)⊆supp f

𝛼g(P) ⟨𝑥 |
(
𝐶
(𝑛𝐿) [g(P)] (|input⟩⟨input|)

)
|𝑥⟩

=

©«
∑︁

Pauli faults g(P)
supp g(P)⊆supp f

𝛼g(P) · 𝑐g(P)

ª®®®®¬
⟨𝑥 |

(
𝐶 (𝑛𝐿) (|input⟩⟨input|)

)
|𝑥⟩

= 𝑐 ⟨𝑥 |
(
𝐶 (𝑛𝐿) (|input⟩⟨input|)

)
|𝑥⟩ .

Since f is a physical fault (i.e. the channels are CPTP) and𝐶 is composed of quantum
operations (also CPTP channels), 𝑃(𝑥) = Pr

(
𝐶
(𝑛𝐿) [f] outputs 𝑥

)
is a normalized

probability distribution over bitstrings. Therefore, it must be the case that 𝑐 = 1. We
conclude that 𝐶

(𝑛𝐿) is a (𝐶,G (𝑛𝐿))-fault-tolerant gadget (under the restriction that
the fault is a physical fault) i.e. it is fault tolerant to arbitrary physical faults with a
G (𝑛𝐿)-avoiding fault path.

𝑛𝐿 selection We now upper bound G (𝑛𝐿) and pick 𝑛𝐿 appropriately. There are at
most 𝐴 = 𝑂 (𝑊𝐷 poly(𝑛𝐿)) gadgets, each with a weight enumerator upper bounded
by 𝑝𝐿 (𝑥) ≤ 𝑒−𝜁 (𝑛𝐿)+𝑂 (polylog 𝑛𝐿) on 𝑥 ∈ [0, 𝜖∗(𝑛𝐿)]. Thus, on 𝑥 ∈ [0, 𝜖∗(𝑛𝐿)],

W(G (𝑛𝐿); 𝑥) ≤ 𝐴𝑝𝐿 (𝑥)
≤ 𝑂 (𝑊𝐷 poly(𝑛𝐿))𝑒−𝜁 (𝑛𝐿)+𝑂 (polylog 𝑛𝐿)

≤ 𝑊𝐷𝑒−𝜁 (𝑛𝐿)+𝑔(𝑛𝐿) .

for some 𝑔(𝑛𝐿) ≤ 𝑂 (polylog(𝑛𝐿)) Let 𝑦 be the smallest solution to

𝜁 (𝑦) ≥ log
𝑊𝐷

𝜖𝐿
+ 𝑔(𝑦). (2.37)

Since 𝜁 (𝑥) = 𝑥/polylog 𝑥 and 𝑔(𝑛𝐿) ≤ 𝑂 (polylog(𝑛𝐿), 𝑦 = Θ

(
log 𝑊𝐷

𝜖𝐿
· polyloglog 𝑊𝐷

𝜖𝐿

)
.

Now let 𝑛′
𝐿

to be the smallest element of the computational code 𝑁𝑖 greater than

68

min(𝑛min, 𝑦). Since our computational code satisfies 𝑁𝑖+1/𝑁𝑖 = 𝐶 for some constant
𝐶 > 1, we have the bounds

𝑛′𝐿 = Θ

(
log

𝑊𝐷

𝜖𝐿
· polyloglog

𝑊𝐷

𝜖𝐿

)
. (2.38)

We now set 𝐶 = 𝐶
(𝑛′
𝐿
)
. So that for 𝑥 ∈ [0, �̂� (𝑛𝐿)∗],

𝑊G (𝑥) ≤ 𝜖𝐿 .

𝜖∗(𝑛𝐿) = 𝜖∗
𝜁 (𝑛′

𝐿
)

𝑛′
𝐿

= 𝜖∗ · Ω
(

1
polyloglog 𝑊𝐷

𝜖𝐿

)
Using the upper bound on 𝑊𝐷

𝜖𝐿
, 𝑚 ≤ 𝑊 , and the space bounds of the gadgets, it

follows that

𝑊

𝑊
=

1
𝑊
𝑂

(
𝛽𝑀 + 𝛽magic𝑀magic + 𝑚𝑛𝐿

)
(2.39)

=
1
𝑊
𝑂

((𝑚
𝐾
+ 1

)
𝑒Θ(log 𝑛𝐿 ·loglog 𝑛𝐿) +

(
𝑊

𝑛𝐿
+ 1

)
𝑛𝐿

)
(2.40)

= 𝑂

(
𝑒Θ(log 𝑛𝐿 ·loglog 𝑛𝐿)

𝑊
+ 𝑛𝐿
𝑊
+ 1

)
(2.41)

= 𝑂

(
quasipoly 𝑛𝐿

𝑊
+ 1

)
(2.42)

= 𝑂

(
quasipolylog 𝑊𝐷

𝜖𝐿

𝑊
+ 1

)
(2.43)

We now select 𝑓 (𝑥). There exists absolute constants 𝑐 ∈ (0, 1) and 𝑐′ ≥ 0 such
that we can define 𝑓 (𝑥) = exp (exp (𝑐′(log 𝑥)𝑐)) to be a quickly growing function
such that when 𝑊𝐷

𝜖
≤ 𝑓 (𝑊), the right hand side of Eq. (2.43) is 𝑂 (1). We note that

𝑓 (𝑥) grows faster than any quasipoly(𝑥) but slower than any exp(poly(𝑥)). Using
𝑊𝐷
𝜖
≤ 𝑓 (𝑊), we have that

𝑊

𝑊
= 𝑂 (1) .

We move on to the time bound which is

𝐷

𝐷
= 𝑂

©«
(
log

𝑊𝐷

𝜖𝐿

)1+�̃�
(
Θ̃

(
log 𝑊𝐷

𝜖𝐿

))ª®¬
where Θ̃(·) suppresses doubly-logarithmic factors and �̃�(𝑛) = 𝑜(1) is defined in the
proof of Lemma 2.3.5. □

69

Main theorem
Having established that we can achieve nearly-logarithmic time overhead and constant
space overhead with a threshold that vanishes as 1

polyloglog 𝑊𝐷
𝜖𝐿

(Theorem 2.3.20),
the last task is to amplify our threshold to a constant. One (nearly trivial) option
is to use the AB concatenated code construction again (as defined in Section 2.4)
with 𝑟 ≈ log log log log 𝑊𝐷

𝜖𝐿
where gates and qubits in 𝐶 are replaced by their

concatenated code counterparts. Proposition 2.2.21 will give us an upper bound on
the weight enumerator of the bad fault paths of the resulting circuit that allows us to
establish a constant threshold. However, this introduces a space and time overhead
of 𝑂

(
polylogloglog 𝑊𝐷

𝜖

)
and we desire 𝑂 (1) space overhead.

The strategy will be to simulate our circuit with the concatenated codes of [YK24].
Intuitively, the simulated circuit will see a noise model that is not very different
from the independent noise. A precise implementation of this program will be the
subject of an upcoming work [HNP] that greatly expands the weight enumerator
formalism from Section 2.2 to include “extended rectangles” (ExRecs) and to prove
an extension of Proposition 2.2.28 that gives a direct proof of the following claim.

For now, we state the following implication of [YK24] within the framework of
our formalism. A proof of Claim 2.3.21 without ExRecs (using definitions from
Section 2.2) can be accomplished using the standard gadgets from [YK24] or [AB99]
on the code family with parameters 𝑟 ∈ N, [[(2𝑟 − 1)2 , (2𝑟 − 𝑟 − 1)2 , 9]] given by
concatenating each quantum Hamming code with itself once and then forgetting
about the concatenated structure. This is essentially standard, so we omit these
details.

We remark that [YK24] uses the gate set Clifford+T. CCZ can be exactly simulated
by Clifford+T, so this distinction is not important in our use.

For circuit on a set of qubits partitioned into registers, a register location is the
straightforward generalization of location with qubits replaced by registers. Likewise,
we generalize fault paths to register fault paths. Occasionally, we will promote a
fault path to a register fault path in the canonical way by replacing each location by
the register location that it is supported in.

Claim 2.3.21 (Modified version of [YK24]). There exists a constant value30 𝜖∗,𝑌𝐾 ∈
(0, 1), such that: for 𝑟 ∈ N and a classical input-classical output circuit 𝐶 using𝑊
qubits and depth 𝐷, and a partitioning of qubits into registers of size 𝑘YK = 𝑒Θ(𝑟

2) .
30Think of 𝜖∗,𝑌𝐾 as something like 1/2 the threshold value computed in [YK24].

70

• There is a new circuit 𝐶 with width 𝑊 and depth 𝐷 such that 𝑊/𝑊 = 𝑂 (1)
and 𝐷/𝐷 = 𝑂 (poly 𝑘YK) constructed out of gadgets of [YK24] that act only
on single and pairs of registers at a time and take a single work period of size
poly 𝑘YK.

• Let Ω be the set of register locations of 𝐶.

• This circuit is equipped with families of bad fault paths parameterized by
register fault paths {G𝑃}𝑃⊆Ω such that if a physical fault f is G𝑃-avoiding, then
the output distribution of 𝐶 [f] is equal to the output distribution of 𝐶 [g] for
some register physical fault g with a {𝑃}-avoiding register fault path.

• There is a function 𝑝YK(𝑥) that satisfies 𝑝YK(𝑥) ≤ 𝑒−𝑂 (2
𝑟) on 𝑥 ∈ [0, 𝜖∗,𝑌𝐾]

such thatW(G𝑃; 𝑥) ≤ (𝑝YK(𝑥)) |𝑃 |.

Remark 2.3.22 (Threshold amplification using qLDPC codes). A natural question
is why constant space overhead qLDPC code constructions are unsuitable for the
threshold amplification step. Conveniently, because the inner codes used for the
amplification step are very small, techniques that gave unacceptably high time-
overhead in the outer fault-tolerance scheme can be used. Instead of using the
large distillation gadgets as in Theorem 2.3.20, one could prepare resource states
using a concatenated code as in [Got13] with many small sized qLDPC codes (see
Section 2.1).

The reason this does not immediately work turns out to be somewhat subtle: In order
to simulate an outer fault-tolerance scheme, it must be the case that the behavior of the
simulating circuit is well defined with respect to failures of the inner fault-tolerance
gadgets. In order for this to be the case, the gadgets must be capable of accepting
an arbitrarily damaged state. This is the behavior the friendliness property in
Definition 2.2.25 captures and is the reason why we needed to construct the qLTC
tester in Section 2.4. One should note that standard single-shot error-correction
gadgets are not friendly. We are aware of two ways to establish friendly error
correction gadgets which we briefly outline here.

• The first method is to measure the syndrome of the qLDPC code a number of
times equal to the distance 𝑑 as in [Got13] and decode the resulting spacetime
syndrome. Then, regardless of the input state, the output state is sparsely
deviated from a code state. Unfortunately, in most cases, an efficient decoder
for the resulting spacetime code is not known (it is unknown whether a single

71

shot decoder implies a decoder for the spacetime code). A notable exception is
the minimum-weight perfect matching decoder for the surface code [DKLP02].
Alternatively, one can simply use a brute-force approach since the codes are
of extremely small size.

• The second method to obtain friendly gadgets is to utilize a qLTC. Given a
source of |0⟩ states, the error correction gadget in Lemma 2.3.6 can be made
friendly by applying the tester gadget Lemma 2.4.4 before each error correction
gadget. In the case where the tester rejects, we swap in the known-good |0⟩
state as in [AB99]. The preparation of logical |0⟩ states using a qLTC is
straightforward: Prepare a zero product state and measure the checks of the
code. Use a bit-flipping decoder for the syndrome error, and then finally
use Gaussian elimination to solve for a correction that satisfies the measured
syndrome. The resulting state has small syndrome and hence must be close to
the code space by local-testability.

We are now ready to state and prove the main result.

Theorem 2.3.23 (Main result). There exists a function 𝑓 (𝑥) growing faster than any
quasipoly(𝑥) and a value 𝜖∗ ∈ (0, 1) such that for any 𝜖𝐿 ∈ (0, 1) and (Clifford+CCZ)
classical input / classical output quantum circuit 𝐶 with width 𝑊 and depth 𝐷
satisfying

𝑊𝐷

𝜖𝐿
≤ 𝑓 (𝑊) (2.44)

There is a corresponding efficiently constructable classical input / classical output
quantum circuit 𝐶 with width𝑊 and depth 𝐷 satisfying

𝑊

𝑊
= 𝑂𝑊→∞(1) (2.45)

𝐷

𝐷
= 𝑂𝑊→∞

((
log

𝑊𝐷

𝜖𝐿

)1+𝑜(1)
)

(2.46)

and using auxiliary 𝑂 (polyloglog 𝑊𝐷
𝜀𝐿
)-time classical computation per quantum

timestep, such that the following guarantees hold. For a random physical fault f
distributed according to 𝜖-locally stochastic faults model with 𝜖 ∈ [0, 𝜖∗], the output
distribution of 𝐶 subject to f is 𝜖𝐿-close in TVD to the output distribution of 𝐶.

72

Construction Proof. First we construct a circuit 𝐶qLDPC using Theorem 2.3.20.
This has a family of bad fault paths GqLDPC such that if the physical fault f is GqLDPC-
avoiding, then the output distribution of 𝐶qLDPC [f] is equal to the output distribution

of 𝐶, andW(GqLDPC; 𝑥) ≤ 𝜖𝐿 for 𝑥 ∈ [0, 𝜖∗,LDPC · 𝑐] where 𝑐 = Ω

(
1

polyloglog 𝑊𝐷
𝜖𝐿

)
.

We will simulate this circuit using Claim 2.3.21 with 𝑟 = Θ

(
log log 1

𝜖∗,LDPC𝑐

)
in

a particular way (We will only pick 𝑟 at the end): Recall that the blocks of
Theorem 2.3.20 are of size at most 𝑂

(
log 𝑊𝐷

𝜖𝐿
· polyloglog 𝑊𝐷

𝜖𝐿

)
and the largest

gadget is of size at most 𝐽 = 𝑂

(
quasipolylog 𝑊𝐷

𝜖𝐿

)
. We will arrange the qubits of

𝐶qLDPC into registers of size 𝑘YK = exp
[
Θ(log log

(
1
𝜖∗𝑐

)2
]

such that no two qubits

participating in a gadget (of 𝐶qLDPC) are assigned to the same register.

Let𝑊qLDPC be the number of qubits in 𝐶qLDPC. To compute the register assignment,
for each timestep 𝑡 of 𝐶qLDPC, we compute a greedy vertex coloring on the graph
𝐺 𝑡 = ([𝑊qLDPC], 𝐸𝑡) where two vertices 𝑖, 𝑗 ∈ [𝑊qLDPC] share a vertex if they
participate in the same gadget. 𝐺 has degree at most 𝐽, so there is a vertex coloring
𝑐𝑡 : [𝑊qLDPC] → [𝐽 + 1] with at most 𝐽 + 1 colors.

We use 𝐽 + 1 groups of (potentially many) YK registers corresponding to the 𝐽 + 1
colors. At time 𝑡, we assign each qubit 𝑞 ∈ [𝑊] to occupy a register with color
𝑐𝑡 (𝑞). Between timesteps 𝑡 of 𝐶qLDPC, we swap qubits between registers in parallel
to maintain the coloring constraint. This adds poly(𝑘YK) time overhead. Now, we
apply Claim 2.3.21 to this circuit31 to arrive at the circuit 𝐶𝑛 which is deeper by a
factor 𝑂 (poly 𝑘YK).

Fault analysis Let G (reg)
qLDPC be a family of bad register fault paths where each fault

path in GqLDPC has been replaced by the corresponding register fault path with
respect to the register partitioning. By ensuring that no two qubits participating in a
qLDPC gadget are assigned to the same register, it is the case thatW(G (reg)

qLDPC; 𝑥) =
W(GqLDPC; 𝑥). Let {G (YK)

𝑃
}𝑃 be the parameterized families of bad fault paths from

the statement of Claim 2.3.21. Now consider the fault set

G = ⊞
𝑃∈G (reg)

qLDPC
G (YK)
𝑃

. (2.47)

A G-avoiding fault f is G (YK)
𝑃

-avoiding for every register fault path 𝑃 ∈ G (reg)
qLDPC.

Suppose that f is a G-avoiding physical fault, then (by Claim 2.3.21) there exists
31Actually, to a serialization of this circuit, but this is not important to the argument.

73

a physical fault g for which its register fault path is G (reg)
qLDPC-avoiding such that

the output distribution of 𝐶 [f] is the same as 𝐶LDPC [g]. Now, by construction of
G (reg)

qLDPC, if g has a register fault path that is G (reg)
qLDPC-avoiding, then its fault path must

be GqLDPC-avoiding, so the output distribution of 𝐶LDPC [g] is equal to the output
distribution of 𝐶.

Now let f be a random physical fault distributed according to an 𝜖-locally-stochastic
faults model. Recall that this means that for any fault path 𝑆, the probability that the
fault path of f contains 𝑆 is at most 𝜖 |𝑆 |. We would like to bound the total-variation
distance between the output distribution of Ef𝐶 [f] and that of 𝐶. We recall that the
two distributions are equal conditioned on the event f is G-avoiding, so

| Pr
(
𝐶 [f] outputs 𝑥

)
− Pr(𝐶 outputs 𝑥) | ≤ | Pr

f
(f is not G-avoiding) |

≤
∑︁
𝑆∈G

Pr(supp f ⊆ 𝑆)

≤
∑︁
𝑆∈G

𝜖 |𝑆 | =W(G; 𝜖) .

I.e. W(G; 𝜖) upper bounds the TVD between the two distributions.

Error rate It remains to upper boundW(G; 𝜖). Since 𝜖 ∈ [0, 𝜖∗,YK], we have
(using Eq. (2.47), Proposition 2.2.18, and Claim 2.3.21)

W(G; 𝜖) ≤
∑︁

𝑃∈G (reg)
qLDPC

W(G (YK)
𝑃

; 𝜖)

≤
∑︁

𝑃∈G (reg)
qLDPC

(𝑝YK(𝜖)) |𝑃 |

≤ W(G (reg)
qLDPC; 𝑝YK(𝜖))

We now select the minimum 𝑟 such that 𝑝YK(𝜖) ≤ 1
𝜖∗,LDPC𝑐

, so that

W(G; 𝜖) ≤ W(G (reg)
qLDPC; 𝑝YK(𝜖)) ≤ W(G (reg)

qLDPC;
1

𝜖∗,LDPC𝑐
) ≤ 𝜖𝐿 .

𝑝YK(𝜖) = 𝑒−𝑂 (2
−𝑟) , so 𝑟 = 𝑂

(
loglogloglog 𝑊𝐷

𝜖𝐿

)
suffices.

Circuit size Let 𝑓 ′(𝑥) be the function from the statement of Theorem 2.3.20.
If 𝑊𝐷

𝜖𝐿
≤ 𝑓 ′(𝑊) then 𝑊qLDPC

𝑊
= 𝑂 (1). Note that for our choice of 𝑟, 𝑘YK =

𝑒
𝑂

((
loglogloglog 𝑊𝐷

𝜖𝐿

)2
)
. (𝐽 + 1)𝑘YK is the minimum number of registers required to

74

assign each qubit of a gadget of𝐶qLDPC to distinct YK registers, so the space overhead
of 𝐶 relative to 𝐶qLDPC is at most

𝑂

(
1 + 𝐽𝑘YK

𝑊qLDPC

)
= 𝑂

(
1 +

quasipolylog 𝑊𝐷
𝜖𝐿

𝑊qLDPC

)
(2.48)

We now select 𝑓 (𝑥). As in Theorem 2.3.20, there exists absolute constants 𝑐 ∈ (0, 1)
and 𝑐′ ≥ 0 such that we can define 𝑓 (𝑥) = exp (exp (𝑐′(log 𝑥)𝑐)) to be a quickly
growing function such that 1) 𝑓 (𝑥) ≤ 𝑓 ′(𝑥) and 2) when 𝑊𝐷

𝜖
≤ 𝑓 (𝑊), the right hand

side of Eq. (2.48) is 𝑂 (1). 𝑓 (𝑥) again grows faster than any quasipoly(𝑥)

Finally, relative to 𝐶qLDPC, 𝐶 has depth overhead

poly 𝑘𝐿 = 𝑂

(
𝑒
𝑂

((
loglogloglog 𝑊𝐷

𝜖𝐿

)2
))

proving the theorem with 𝜖∗ = 𝜖∗,YK. □

2.4 State preparation gadgets
In this section, we develop state preparation gadgets for both logical stabilizer states
(Lemma 2.3.4) and magic states (Lemma 2.3.5) of the computational qLTC. As
described in the introduction section, the main idea is to (1) use existing concatenated-
code fault tolerance schemes to prepare the codestates to a constant logical fidelity,
and then (2) apply state distillation schemes to boost the fidelity to an arbitrary target
error. We will first review the concatenated-code fault tolerance proof of Aharonov
and Ben-Or [AB99] and describe how to use it to prepare qLTC codestates to
constant fidelity in Section 2.4. Next, in Section 2.4 we describe how to perform state
distillation protocols (whose constructions are deferred to later sections) at the logical
level of the computional qLTC code to improve the logical fidelity. In Section 2.4,
we present our stabilizer state distillation scheme with constant-space and polyloglog-
time overheads. The magic state distillation scheme with almost-constant space and
polyloglog-time overheads is deferred to Section 2.5.

Concatenated code FT scheme
We now briefly introduce the scheme of concatenated code fault-tolerance scheme of
Aharonov and Ben-Or [AB99] which uses distance-9 CSS codes and Clifford+CCZ
32 We use this scheme over the similar [AGP05] to avoid introducing the analog

32More precisely they use Clifford+Toffoli gate set, but they use self-dual quantum codes with a
transversal Hadamard and hence essentially the same scheme works for the Clifford+CCZ gate set.

75

of exRecs for the weight enumerators which makes the notation burdensome. We
remark that we are using a modified definition of deviation from [AB99], but their
argument is unmodified (e.g. [Kit97]). Nearly any concatenated code scheme suffices.
The code family will be parameterized by a parameter 𝑟 ∈ N corresponding to a
number of concatenation levels.

Claim 2.4.1 ([AB99]). There is a family of concatenated codesQAB,𝑟 with compatible
and friendly gadgets for Clifford+CCZ with the property that: There exists constants
𝑊AB, 𝐴AB, 𝐵AB, 𝑐AB > 0 such that

• Each code block holds one logical qubit.

• The size of a block is at most 𝐵𝑟AB.

• The number of locations in a gadget is at most 𝐴𝑟AB.

• The maximum number of qubits used at any point in time in a gadget is at most
𝑊𝑟

AB.

• The gadgets are compatible and friendly as in Definition 2.2.25.

• For each gadget, the corresponding bad fault sets G have weight enumerator
W(G; 𝑥) ≤ (𝑐AB𝑥)2

𝑟 on [0, 1).

we will refer to the 𝑟-th element of this family of code and gadgets as 𝑟-AB.

Noisy state preparation
We begin by describing a fault-tolerant gadget that prepares code states of qLDPC
codes. The main idea is to use the concatenated-code scheme [AB99] to prepare
the qLDPC codestate while being encoded in an outer concatenated code, and
then unencode the outer code. This idea originates from Gottesman’s seminal
work [Got13], but our goal here differs from his work. While Gottesman used this
gadget to prepare the codestates to a low error rate that is inverse polynomial in the
computation size, we only do so to a sufficiently small constant error rate. This choice
is crucial to obtain the main overhead result of this paper, as concatenated-code FT
induces a polylog(1/𝜀) overhead that prevents us from choosing 𝜀 to be too small.
Additionally, we present a fault tolerance proof of the unencoding procedure, which
was omitted in [Got13]. The main lemma proved in this subsection is Lemma 2.4.5.

76

Constant depth qLDPC encoding

We start by showing how to prepare simple qLDPC codestates (all ancilla states used
in this paper satisfy the precondition below) non-fault-tolerantly in constant depth.

Lemma 2.4.2 (Constant-depth qLDPC encoding [Got13]). Let |𝜓⟩ be a 𝑘-qubit
state that can be prepared by a (Clifford+CCZ) quantum circuit of constant depth.
Then the encoding of |𝜓⟩ into a [[𝑛, 𝑘]] CSS Δ-qLDPC code can be done by a non-
fault-tolerant procedure using 𝑂 (𝑛) qubits in quantum depth 𝑂 (Δ) and 𝑂 (log2 𝑛)
classical depth.

Proof. Let 𝑚𝑋 , 𝑚𝑍 be the number of independent X and Z checks, so that 𝑘 =

𝑛 − 𝑚𝑋 − 𝑚𝑍 . First, we observe that for any [[𝑛, 𝑘]] CSS code, up to qubit
permutations, it is possible to choose the logical Pauli operators to be of the form
𝑋 𝑖 = 𝑋𝑖 ⊗ 𝑃𝑖 ⊗ 𝑃′𝑖 and 𝑍 𝑖 = 𝑍𝑖 ⊗ 𝑄𝑖 ⊗ 𝑄′𝑖 for each 𝑖 ∈ [𝑘], where 𝑋𝑖 (𝑍𝑖) acts on the
𝑖-th physical qubit, 𝑃𝑖 and 𝑄𝑖 are Pauli X strings on 𝑚𝑍 qubits, and 𝑃′

𝑖
, 𝑄′

𝑖
are Pauli Z

strings on 𝑚𝑋 qubits33. Indeed, we can perform Gaussian elimination (and possibly
qubit permutations) to put the check matrices into the canonical form [Got97, Section
4], 𝑆𝑋 = (𝐴1 |𝐴2 | 1𝑚𝑋) where 𝐴1 ∈ F𝑚𝑋×𝑘2 , 𝐴2 ∈ F𝑚𝑋×𝑚𝑍2 , and 𝑆𝑍 = (𝐵1 | 1𝑚𝑍 |𝐵2)
where 𝐵1 ∈ F𝑚𝑍×𝑘2 , 𝐵2 ∈ F𝑚𝑍×𝑚𝑋2 . Next, we imagine applying the Hadamards 𝐻⊗𝑚𝑧

on the middle block. This sounds strange at first because it makes the code non-CSS,
but we will shortly see why the Hadamards are useful. We write the new stabilizers
in the symplectic representation [Got97](

𝐴1 |𝐴2 | 1𝑚𝑋 0
0 𝐵1 | 1𝑚𝑍 |𝐵2

)
𝐻⊗𝑚𝑧−→

(
𝐴1 0 1𝑚𝑋 0 𝐴2 0
0 1𝑚𝑍 0 𝐵1 0 𝐵2

)
. (2.49)

In this Hadamard-transformed code, given a logical Pauli X (that contains Pauli Zs
on the middle block and Pauli Xs on the first and third block) we can multiply it
with stabilizers from the first 𝑚𝑋 rows to remove the Pauli Xs from the third block.
Similarly, we can multiply with the stabilizers from the last 𝑚𝑍 rows to remove Pauli
Xs from the middle block of each logical Pauli Z. Therefore, we can choose a logical
basis for this Hadamard-transformed code such that 𝑋′𝑖 = 𝑋𝑖 ⊗ 𝑃′′𝑖 and 𝑍′𝑖 = 𝑍𝑖 ⊗ 𝑄′′𝑖
where 𝑃′′

𝑖
, 𝑄′′

𝑖
are Pauli Z strings on 𝑚𝑍 + 𝑚𝑋 qubits. Applying 𝐻⊗𝑚𝑍 to return to

the original code we obtain the stated logical basis.

Having chosen a convenient logical basis, we can encode any state |𝜓⟩ as follows. We
prepare |𝜓⟩ |+⟩𝑚𝑍 |0⟩⊗𝑚𝑋 . We then measure the qLDPC stabilizers. Importantly, we

33A similar statement can be made for general stabilizer codes.

77

measure the LDPC presentation of the stabilizers rather than the canonical generators
from the previous paragraph, so that the measurement depth is constant 𝑂 (Δ). The
resulting state will be the desired logical state encoded in some coset of the code,
and we can shift back to the correct code as detailed below.

For simplicity we start with the case when |𝜓⟩ is a product state in the Z basis,
|𝜓⟩ = |𝑎⟩ for 𝑎 ∈ F𝑘2 . The procedure starts with the state 𝜙 = |𝑎⟩ |0⟩⊗(𝑛−𝑘) , which
is stabilized by (−1)𝑎𝑖𝑍 𝑖 for 𝑖 ∈ [𝑘]. Next we perform the (LDPC) syndrome
measurements, obtaining syndromes 𝜎𝑋 ∈ F

𝑚LDPC
𝑍

2 , 𝜎𝑍 ∈ F
𝑚LDPC
𝑋

2 . Using Gaussian
elimination we solve for the Pauli corrections 𝑒𝑋 , 𝑒𝑍 ∈ F𝑛2 such that 𝐻𝑋𝑒𝑍 = 𝜎𝑍 and
𝐻𝑍𝑒𝑋 = 𝜎𝑋 , where 𝐻𝑋 , 𝐻𝑍 are matrices representing the LDPC presentation of the
stabilizers. We then multiply 𝑒𝑋 with 𝑋 𝑖 for each 𝑖 ∈ [𝑘] such that 𝑍 𝑖 anticommutes
with 𝑒𝑋 , yielding a Pauli string 𝑒′

𝑋
. Similarly, we multiply 𝑒𝑍 with 𝑍 𝑖 for each 𝑖 ∈ [𝑘]

such that 𝑋 𝑖 anticommutes with 𝑒𝑍 , yielding a Pauli string 𝑒′
𝑍
. Note that 𝑒′

𝑍
and

𝑒′
𝑋

can be of mixed Pauli types (including both X and Z), . Applying 𝑒′
𝑍

and 𝑒′
𝑋

produces the desired encoded state |𝑎⟩. The same procedure can be seen to work for
X basis product states as well. And thus it works for any general input state 𝜓 by
linearity.

The quantum depth consists of the physical circuit preparing 𝜓, the LDPC measure-
ments, and the Pauli correction. This is a 𝑂 (Δ) when 𝜓 is a constant-depth state
and uses 𝑂 (𝑛) physical qubits if 𝑚LDPC

𝑍
, 𝑚LDPC

𝑋
= 𝑂 (𝑛). The classical depth is the

time needed to compute the Pauli corrections, which can be done by, e.g., Gaussian
elimination with gate complexity 𝑂 (𝑛3). This can be parallelized to 𝑂 (log2 𝑛)
classical depth by the algorithms in [Csa75].

□

Concatenated code unencoding

Concatenated code fault tolerance allows us to simulate the encoding circuit of our
computational code in a concatenated code, but we will be left with an encoded
state of both the computational code and concatenated code. Hence, we need to
unencode this state from the concatenated code. Here, we establish a gadget for
unencoding from concatenated codes that has controlled errors34. A similar claim
was made in [Got13; FGL20] without proof. Recall that for each 𝑟 ∈ N, the set of
gadgets was compatible, i.e. each encoded concatenated code block input and output

34A very recent work [CFG24] also gives a proof of this fact.

78

a (QAB,𝑟 , F𝑟)-block for some family of bad fault sets F𝑟 (the exact definition is not
needed). Denote the trivial block corresponding to a single qubit on the set {1} and
the family of bad sets {{1}} as a (QAB,𝑟 , F0)-block.

Lemma 2.4.3 (Concatenated code unencoding). There exists a constant 𝑐unencode,AB >

0 such that for each 𝑟 ∈ N the following holds. There exists an unencoding gadget
Gadunencode,AB,r that takes a single qubit state 𝜓 encoded in a (QAB,𝑟 , F𝑟)-block of
the 𝑟-th level of AB concatenated codes, and outputs the single qubit state 𝜓 if the
input is F𝑟-deviated from 𝜙QAB,𝑟 (𝜓) and the fault set is G𝑟,unencode-avoiding where
W(G𝑟,unencode; 𝑥) ≤ 𝑐unencode,AB · 𝑥 on [0, 1/(2𝑐AB)).

Proof. Let Opunencode be the unencoding operation for the code used in the recursive
concatenation procedure. We first define Ĝadunencode,AB,𝔯 as the EC-gadget followed
by the simulation of Opunencode using (𝔯 − 1)-AB. This takes a state encoded in a
(QAB,𝔯, F𝔯)-block and outputs the same state encoded in a (QAB,𝔯−1, F𝔯−1)-block.
We will define Gadunencode,AB,𝔯 recursively as

Gadunencode,AB,𝔯 = Gadunencode,AB,𝔯−1 ◦ Ĝadunencode,AB,𝔯

with Gadunencode,AB,0 trivial.

Let 𝐴unencode = 𝑂 (1) be the number of locations in Opunencode. We use Proposi-
tion 2.2.28 and Proposition 2.2.18 to upper bound the weight enumerator polyno-
mial for the family of bad sets at each step of the recursion. For each recursion
step 𝔯 > 1, there is a set of bad fault paths H𝔯,unencode with weight enumerator
W(H𝔯,unencode; 𝑥) ≤ 𝐴unencode(𝑐AB · 𝑥)2

𝔯−𝟞 such that if the fault path isH𝔯,unencode-
avoiding then the gadget takes a (QAB,𝔯, F𝔯)-block 𝜌𝔯 that is F𝔯-deviated from
𝜙QAB,𝔯 (𝜓) to a (𝐶QAB,𝔯−1, F𝔯−1)-block 𝜌𝔯−1 that is F𝔯−1-deviated from 𝜙QAB,𝔯−1 (𝜓).
For 𝔯 = 1, there is no simulation andW(H1,unencode; 𝑥) ≤ 𝐴unencode𝑥 as any error
in one of the 𝐴encode locations will cause an error on the output. The family of
fault paths H𝔯,unencode corresponds to failure of any of the 𝐴unencode level-(𝔯 − 1)
simulation gadgets i.e. it is the sum of the bad fault paths for each of the gadgets.
Claim 2.4.1 gives an upper bound on the weight enumerator polynomial for each of
these gadgets.

The family of bad fault paths for the entire gadget G𝑟,unencode is the sum of the bad
fault paths in each step of the recursion. That is, for 𝔯 > 1,

W(G𝔯,unencode; 𝑥) ≤ W(G𝔯−1,unencode; 𝑥) +W(H𝔯,unencode; 𝑥) (2.50)

79

withW(G1,unencode; 𝑥) =W(H1,unencode; 𝑥). Suppose that 𝑥 ∈ (0, 1/(2𝑐AB)), then
evaluating the recursion gives the upper bound:

W(G𝑟,unencode; 𝑥) ≤ 𝐴unencode 𝑥 +
𝑟∑︁

𝔯=2
𝐴unencode(𝑐AB · 𝑥)2

𝔯−1
(2.51)

≤ 𝐴unencode𝑥

(
1 + 𝑐AB

∞∑︁
𝔯=2
(𝑐AB · 𝑥)2

𝔯−1−1

)
(2.52)

≤ 𝐴unencode𝑥

(
1 + 𝑐AB

∫ ∞

1
(1/2)2𝑛−1d𝑛

)
(2.53)

≤ 𝐴unencode (1 + 𝑐AB) 𝑥. (2.54)

The integral can be evaluated to be less than 0.343. Thus, the result follows with
𝑐unencode,AB = 𝐴unencode (1 + 𝑐AB). □

qLTC tester

Combining Lemma 2.4.2 and Lemma 2.4.3 allows us to prepare computational code
states to a constant error rate. However, we do not have any guarantee on the prepared
state when this procedure fails. Hence, we now construct a verification gadget to
verify that the state prepared is not too damaged. We need this verification to be fast,
and this is where the qLTC property is used.

The final ingredient will be a tester gadget that uses the qLTC property to test (in low
depth) if we have prepared a state close to the code space. We use the notations and
variables defined in Section 2.3.

Lemma 2.4.4 (Testing variant of computational code EC gadget). There exists a
constant 𝜖∗,tester ∈ (0, 1) and gadget Gadtester for the computational code of depth
2(Δ + 3), width 𝑛𝐿 + 𝑟𝐿 , and 𝐴EC = 2(Δ + 3) (𝑛𝐿 + 𝑟𝐿) locations such that there is
family of bad fault paths Gtester ⊆ 𝑃([𝐴EC]) for whichW(Gtester; 𝑥) ≤ 𝑒−𝜁 (𝑛𝐿) for
𝑥 ∈ [0, �𝜖∗,tester(𝑛𝐿)]. For a Gtester-avoiding Pauli fault f, and some pure state in the
codespace |𝜓⟩, Gadtester [f] satisfies

• Gadtester [f] outputs to the classical memory a FAIL bit 𝑦fail.

• If 𝑦fail = 0 is output, the output is Fcorr-Pauli deviated from the code space.

• There exists a family Ftest ⊆ 𝑃([𝑛𝐿]) such thatW(Ftest; 𝑥) =
(𝑛𝐿
𝑡test

)
𝑥𝑡test with

𝑡test = Θ(𝑡𝐿).

80

• If the input is Ftest-deviated from a codestate 𝜎, then 𝑦fail = 0 is always output
and the output is Fcorr-Pauli deviated from 𝜎.

Proof. We implement the same circuit as in Lemma 2.3.6, without the decoding
and correction steps. This will allow us to borrow the majority of the analysis. We
parallel the analysis by first restricting to a state that is diagonal Pauli-deviated from
some codestate 𝜎 and a diagonal Pauli fault f.

Let ℓ = 2 · 22Δ, and take Gtester to be all subsets of locations of a size 𝑠 that will be
selected later. Consider the application of Gadtester [f] for a Gtester-avoiding diagonal
Pauli fault f. For now, suppose that the input state �̃� differs from the codestate 𝜎 by
a diagonal Pauli superoperator 𝐸 . By the same argument as in Lemma 2.3.6, the
output state then differs from the codestate by a (stabilizer reduced) diagonal Pauli
superoperator 𝐸out which satisfies (note that we are defining 𝑠 to be slightly smaller)

| supp 𝐸out | ≤ | supp 𝐸 | + ℓ(𝑠 − 1). (2.55)

Let 𝑟min = min(𝑟𝑥 , 𝑟𝑧) = Ω(𝑛𝐿) be a lower bound for the number of 𝑋 and 𝑍 checks
for the computational code. Using the (𝜌,Δ)-qLTC property of the computational
code, the Hamming weight of the noisy syndrome measured |�̃�𝑋 | + |�̃�𝑍 | satisfies

𝜌𝑟min
𝑛𝐿
| supp 𝐸 | − ℓ(𝑠 − 1) ≤ |�̃�𝑋 | + |�̃�𝑍 | ≤ 2Δ| supp 𝐸 | + ℓ(𝑠 − 1). (2.56)

We reject (setting 𝑦fail = 1) when the measured syndrome weight |�̃�𝑋 | + |�̃�𝑍 | is
𝜎reject or more.

𝜎reject =
𝜌𝑟min
𝑛𝐿
(𝑡corr − 𝑠(ℓ − 1)) − 𝑠(ℓ − 1).

When 𝑦fail = 0, the measured syndrome satisfies |�̃�𝑋 | + |�̃�𝑍 | < 𝜎reject, so the output
error is at most

| supp 𝐸out | ≤ | supp 𝐸 | + ℓ(𝑠 − 1)

<
(
𝜎reject + ℓ(𝑠 − 1)

) 𝑛𝐿

𝜌𝑟min
+ ℓ(𝑠 − 1)

< 𝑡corr.

We now analyze under what conditions this test will always accept. Let 𝑡test =⌊
𝜎reject−ℓ(𝑠−1)

2Δ

⌋
and suppose that | supp 𝐸 | < 𝑡test. Then, the input state is always

accepted:

|�̃�𝑋 | + |�̃�𝑍 | ≤ 2Δ| supp 𝐸 | + ℓ(𝑠 − 1)
< 2Δ𝑡test + ℓ(𝑠 − 1) ≤ 𝜎reject.

81

Ftest will be all subsets of [𝑛𝐿] of size 𝑡test which impliesW(Ftest; 𝑥) =
(𝑛𝐿
𝑡test

)
𝑥𝑡test .

Since 𝜌(𝑛𝐿)𝑟min
𝑛𝐿

= Θ

(
𝜁 (𝑛𝐿)
𝑛𝐿

)
, for 𝑛𝐿 larger than some constant, we can always

pick a 𝑠 = Θ(𝜁 (𝑛𝐿)) = Θ(𝑡corr) such that 𝑠 ≥ 2 and 𝑡test ≥ 1. By an identical
analysis to Lemma 2.3.6 there exists an absolute constant 𝜖∗,tester ∈ (0, 1) such that
W(Gtester; 𝑥) ≤ 𝑒−𝜁 (𝑛𝐿) for 𝑥 ∈ [0, �𝜖∗,tester(𝑛𝐿)].

Finally, since 𝑡test ≤ 𝑡corr, a set that is Ftest-avoiding is also Fcorr-avoiding. We can
now release the assumption on the input state and the fault as in Lemma 2.3.6:
Apply Lemma 2.2.31 to ensure that the input and output must be diagonal-Pauli
superoperators except where there is a fault. If the input state �̃� is Ftest-Pauli deviated
from a codestate 𝜎, then it follows from the earlier argument that the output state is
Fcorr-Pauli deviated from 𝜎. Otherwise, if 𝑦fail = 0, the output state is Fcorr-Pauli
deviated from some codestate 𝜙Q𝐿 (𝜌′) where 𝜌′ is arbitrary. □

Noisy state preparation gadget

We are now ready to state and prove the main goal of this section.

Lemma 2.4.5 (Noisy state preparation gadget). For 𝜖noise ∈ (0, 1) and a pure 𝑘𝐿-
qubit state |𝜓⟩ that can be prepared by a Clifford+CCZ circuit Opprep using depth
𝐷prep and space 𝑊prep such that 𝑊prep ≥ Θ(𝑘𝐿) = Θ(𝑛𝐿), there exists a constant
𝜖∗,inject ∈ (0, 1) (independent of 𝑛𝐿) and a Pauli fault-tolerant gadget Gadnoisyprep

35

preparing
��𝜓〉

in a (Q𝐿 , F𝐿)-block with 𝐿 locations such that the following properties
hold:

• If the fault is Pauli and its fault path is Gbad-avoiding, then the output state is
F𝐿-Pauli deviated from Q𝐿 or FAIL is output.

• If the fault is Pauli and its fault path is also Gnoisy-avoiding, then the output
state is F𝐿-Pauli deviated from 𝜙Q𝐿 (𝜓).

Where, for 𝑥 ∈ [0, �𝜖∗,inject(𝑛𝐿)], Gbad, Gnoisy ⊆ 𝑃([𝐿]) satisify

W(Gbad; 𝑥) ≤ 2𝑒−𝜁 (𝑛𝐿) (2.57)

W(Gnoisy; 𝑥) ≤ 𝜖noise (2.58)

35We omit the parameters, since this is a slightly extended notion of fault-tolerant gadget.

82

Gadnoisyprep has depth 𝐷′prep and width𝑊′prep.

𝐷′prep = 𝑂

(
𝐷prep polylog

(
𝑊prep𝐷prep

𝜖noise

))
, (2.59)

𝑊′prep = 𝑂

(
𝑊prep polylog

(
𝑊prep𝐷prep

𝜖noise

))
. (2.60)

The family of fault paths Gbad should be thought of as those that cause the output to
be so bad that further computation is not possible e.g. the state is too far from the
codespace for the decoder to operate. We cannot let such fault paths to occur, so
we will perform a testing step at the end of our gadget to increase their weight to
be Ω(𝑛𝐿). In order to avoid incurring a depth overhead, we use the qLTC property
to perform the testing in constant quantum depth. The family of fault paths Gnoisy

should be thought of as those fault paths that cause the wrong logical state to be
prepared. This is not immediately fatal as we will later be performing distillation of
these states.

Proof of Lemma 2.4.5. Let EQ𝐿 be the encoding circuit of Q𝐿 from Lemma 2.4.2
which has space at most 𝑂 (𝑛𝐿) and constant (quantum depth). Let Gadprepsim be the

simulation of EQ𝐿 ◦ Opprep by 𝑟-AB with 𝑟 = ⌈log2 log2
3(|EQ𝐿 |+|Opprep |)

𝜖noise
⌉.

Our gadget Gadnoisyprep will execute Gadprepsim, run the AB concatenated code
unencoding gadgets (Lemma 2.4.3), the tester gadget (Lemma 2.4.4), and then the
error correction gadget (Lemma 2.3.6). I.e.

Gadnoisyprep = GadEC ◦ Gadtester ◦
(
Gadunencode,AB,r

)⊗𝑛𝐿 ◦ Gadprepsim

The bit produced by the tester gadget is the FAIL bit that this gadget outputs. The
depth and width of Gadnoisyprep bounds follow from the depth/width bounds on the
components. To simplify the bounds, we use the fact that𝑊 = Ω(𝑛𝐿). Recall that
an 𝑟-AB concatenated code gadget has width and depth at most exponential in 𝑟:

GadEC Gadtester
(
Gadunencode,AB,r

)⊗𝑛𝐿 Gadprepsim

Depth 𝑂 (1) 𝑂 (1) 𝑂

(
polylog

(
𝑊prep𝐷prep
𝜖noise

))
𝑂

(
𝐷prep polylog

(
𝑊prep𝐷prep
𝜖noise

))
Width 𝑂 (𝑛𝐿) 𝑂 (𝑛𝐿) 𝑂

(
𝑛𝐿 polylog

(
𝑊prep𝐷prep
𝜖noise

))
𝑂

(
𝑊prep polylog

(
𝑊prep𝐷prep
𝜖noise

))
We now perform the fault analysis beginning with (

(
Gadunencode,AB,r

)⊗𝑛𝐿◦Gadprepsim).
Let f be the Pauli fault path.

83

Using Proposition 2.2.28, we can take the sum (⊞) over the bad fault paths for
each of the (|EQ𝐿 | + |Opprep |) concatenated code gadgets comprising Gadprepsim

and construct a family of bad fault paths G1 for Gadprepsim with W(G1; 𝑥) ≤
(|EQ𝐿 | + |Opprep |) (𝑐AB𝑥)2

𝑟 ≤ 𝜖noise/3 for 𝑥 ∈ [0, 1
3𝑐AB
] such that: If supp f is

G1-avoiding, then Gadprepsim [f] outputs a state �̃�1 that is F𝑟-deviated on each
concatenated code block (recall F𝑟 are the bad sets for 𝑟-level AB concatenated
codes) from 𝜙QAB,𝑟 ◦ 𝜙Q𝐿 (|𝜓⟩).

The bad fault paths G1 cause an error in preparing the initial state (encoded in the
concatenated code), but this is not immediately fatal. Next, we must unencode the
state and verify that it is close to the codespace.

We run the unencoding gadget on each (QAB,𝑟 , F𝑟)-block of �̃�1 in parallel. Let
𝐿𝑟,unencode be the set of locations of a single unencoding gadget Gadunencode,AB,r.
Lemma 2.4.3 guarantees that the output of a single unencoding gadget is perfect
if the fault set is G𝑟,unencode-avoiding on 𝐿𝑟,unencode. In order for the output to be
Ftest-deviated from 𝜙Q𝐿 (𝜓), it must be the case that the fault path of f must be
G𝑟,unencode-avoiding on all but a Ftest-avoiding set of unencoding gadgets. That is,
supp f must be G2 := Ftest • G𝑟,unencode-avoiding on ⊔𝑖∈[𝑛𝐿]𝐿𝑟,unencode.

Proposition 2.2.28 computes the weight enumerator ofG2 in terms ofW(G𝑟,unencode; 𝑥)
andW(Ftest; 𝑥). Thus for 𝑥 ∈

[
0, 1

2𝑐unencode,AB

]
, using 𝑡test = Θ(𝜁 (𝑛𝐿)), we can then

bound

W(G2; 𝑥) =W(Fin; W(G𝔯,unencode; 𝑥))

≤
(
𝑛𝐿

𝑡test

) (
𝑐unencode,AB · 𝑥

) 𝑡test

≤
(
(const.) 𝑛𝐿

𝑡test
𝑥

) (const.)test

≤
(
(const.) 𝑛𝐿

𝜁 (𝑛𝐿)
𝑥

) (const.)𝜁 (𝑛𝐿)
.

It follows that we can pick a constant 𝜖∗,2 ∈
(
0, 1

2𝑐unencode,AB

]
such that for 𝑥 ∈

[0, 𝜖∗,2(𝑛𝐿)],

W(G2; 𝑥) ≤
(
(const.) 𝑛𝐿

𝜁 (𝑛𝐿)
𝜖∗,2(𝑛𝐿))

) (const.)𝜁 (𝑛𝐿)

≤
(
(const.)𝜖∗,2

) (const.)𝜁 (𝑛𝐿)

≤ 𝜖noise/3.

84

Let Gtester and GEC be the bad fault sets for the tester gadget Gadtester and EC
gadget GadEC, respectively, and define Gbad := Gtester ⊞ GEC. Assume that supp f is
Gbad-avoiding.

Define Gnoisy := G1 ⊞ G2. At this point, the fault analysis splits into two cases,
depending on whether (

(
Gadunencode,AB,r

)⊗𝑛𝐿 ◦ Gadprepsim) is faulty.

If supp f is Gbad ⊞ Gnoisy-avoiding we are left with a post-preparation state �̃�2 that is
Ftest-deviated from

��𝜓〉
. The test always passes, and the post-tester state is Fcorr-Pauli

deviated from
��𝜓〉

. Thus, the EC step succeeds and the output is F𝐿-Pauli deviated
from

��𝜓〉
.

If supp f is only Gnoisy-avoiding there is no guarantee on the post-preparation logical
state. However, we do have the guarantee that if the tester does not output FAIL, then
the post-tester state is Fcorr-Pauli deviated from some (possibly mixed) codestate, so
the output of GadEC is F𝐿-Pauli deviated from a codestate.

The desired fault-tolerance properties of the gadget follows for 𝑥 ∈ [0, 𝜖∗,inject] with
𝜖∗,inject = min

(
1

3𝑐AB
, 𝜖∗,tester, 𝜖∗,EC, 𝜖∗,2

)
. □

State distillation
We now proceed to define a state distillation procedure. Informally, a state distillation
procedure takes 𝑀 imperfect copies of a state 𝜓 and outputs 𝐾 perfect copies of 𝜓
subject to the condition that the subset of imperfect states is sparse in a certain sense.

Definition 2.4.6 (State distillation procedure). Let 𝑀 ∈ N and A ⊆ 𝑃([𝑀]) be a
family of sets. For an 𝑛-qubit state 𝜓, an (𝑀, 𝐾,A)-state distillation procedure for
𝜓 takes an 𝑛 · 𝑀 qubit state state 𝜌 such that there is an A-avoiding set 𝐴 ⊆ [𝑀]
for which 𝜌 | [𝑛]×([𝑀]\𝐴) = 𝜓⊗(𝑀−|𝐴|) and outputs 𝜓⊗𝐾 .

As in section Section 2.3, we use an overline to denote a register state encoded in a
computational code block.

State distillation procedures

We will construct a state distillation scheme for stabilizer states and a particular
magic state. To avoid a lengthy excursion, we will defer the proof of these lemmas to
later sections.

85

Lemma 2.4.7 (State distillation procedure for stabilizer states). For a stabilizer state
𝜓 on 𝑏 qubits, there exists constants 𝜖∗,𝑑𝑖𝑠𝑡𝑖𝑙𝑙 ∈ (0, 1), 𝛽distill > 0 and a family indexed
by 𝑙 ∈ N of (𝑀𝑙 , 𝐾𝑙 ,A𝑙)-state distillation procedure whereW(A𝑙 ; 𝑥) ≤ (𝛽distill𝑥)2

ℓ

on 𝑥 ∈ [0, 𝜖∗,𝑑𝑖𝑠𝑡𝑖𝑙𝑙], 𝐾𝑙𝑀𝑙 = Θ(1), and 𝑀𝑙 = 𝑒
Θ(𝑙 log 𝑙) .

Furthermore, the procedure satisfies:

• The quantum depth is 𝑂 (𝑙3), and the width is 𝑂 (𝑀𝑙).

• The classical computation has total depth 𝑂 (𝑙3).

• No additional input states are required beyond the 𝑀𝑙 noisy inputs.

• Only the operations CNOT, 𝑍 /𝑋 basis measurement, and classically-controlled
Pauli gates are used.

• With the exception of Pauli gates, the quantum gates applied do not depend on
the state 𝜓 to be distilled, only 𝑏 and 𝑙.

• No two-qubit gates are applied between qubits with different [𝑏] coordinates.36

The proof of the lemma utilizes the same constant-rate concatenated Quantum Ham-
ming code family as used in [YK24] as a state distillation method with modifications
to reduce the time overhead. Since the construction is mostly standard ideas from
state distillation, we defer the proof to Section 2.4.

The second state distillation procedure will be for magic states.

Theorem 2.4.8 (State distillation procedure for magic states). There exists constants
𝜖∗,𝑀𝑑𝑖𝑠𝑡𝑖𝑙𝑙 ∈ (0, 1), 𝛽Mdistill > 0 and a family indexed by 𝑙 ∈ N of (𝑀𝑙 , 𝐾𝑙 ,A𝑙)-
state distillation procedure for |CCZ⟩ where W(A𝑙 ; 𝑥) ≤ (𝛽Mdistill𝑥) (𝑙+1)! on
𝑥 ∈ [0, 𝜖∗,𝑀𝑑𝑖𝑠𝑡𝑖𝑙𝑙], 𝐾𝑙

𝑀𝑙
= Ω

(
𝑐𝑙

)
, and 𝑀𝑙 = 𝑒Θ(𝑙 log 𝑙) for some absolute constant

𝑐 > 0.

Furthermore, the procedure satisfies:

• The quantum depth is 𝑂 (𝑙4(log 𝑙)3), and the width is 𝑂 (𝑀𝑙).

• The classical computation has total depth 𝑂 (𝑙4).

• 𝑂 (𝑀𝑙) perfect |+⟩ and |0⟩ input states are required
36In other words, the gates are applied “transversally” with regard to the qubits [𝑏].

86

• 𝑂 (𝑀𝑙) classically-controlled CZ gates are required

• Otherwise, only CNOT, 𝑍/𝑋 basis measurement, and classically-controlled
Pauli gates are used.

The proof of this state distillation procedure will require the construction of new
quantum codes over qudits of prime-power dimension. The codes are constructed in
Section 2.5, and the proof of Theorem 2.4.8 is deferred until Section 2.5.

FT state distillation gadgets (proofs of Lemma 2.3.4 and Lemma 2.3.5)

We are now ready to prove the main lemmas for preparation of resource states. At
this point, we are ready to switch to asymptotic notation. The first gadget exploits
the fact that the stabilizer state distillation procedure in Lemma 2.4.7 uses the same
gates regardless of the state to be distilled. Thus, we can distill resource states that
differ on different coordinates of the computation code.

Lemma 2.3.4 (Stabilizer resource state preparation). For a constant 𝑏 ∈ N, 𝑏 < 1037,
representing the number of blocks, let {|𝜓𝑖⟩}𝑘𝐿𝑖=1 be a set of 𝑏-qubit stabilizer states
such that |𝜓⟩ := |𝜓1⟩ ⊗ · · · ⊗

��𝜓𝑘𝐿 〉 is preparable by a constant depth unitary
Clifford circuit Opstab acting on |0⟩⊗𝑏𝑘𝐿 and 𝑏𝑘𝐿 ancillas qubits. Then, there
exists an (Opstab,G)-Pauli FT gadget Gadstab preparing 𝐾 copies of

��𝜓〉
, each

encoded in 𝑏 codeblocks of the computational code such that the 𝑖-th logical qubits
of the 𝑏 codeblocks is in the state |𝜓𝑖⟩38 andW(G; 𝑥) ≤ 𝑒−𝜁 (𝑛𝐿)+𝑂 (polylog 𝑛𝐿) for
𝑥 ∈ [0, �𝜖∗,stab(𝑛𝐿)).

In terms of a variable 𝑀 = 𝑒Θ(log 𝑛𝐿 ·loglog 𝑛𝐿) , we have the bound:

𝐾 = Θ(𝑀) (2.16)

and Gadstab has quantum depth 𝑂 (polylog 𝑛𝐿), width 𝑂 (𝑀𝑛𝐿), and classical depth
𝑂 (polylog 𝑛𝐿).

Proof. The gadget will first consist of parallel repetitions of preparation of noisy
resource states. We will then collect those resource states which pass the qLTC check
for being close to the codespace and then proceed with the stabilizer state distillation
procedure.

37Any absolute constant suffices.
38I.e. preparing 𝜓1 ⊗ · · · ⊗ 𝜓𝑘𝐿 “coordinate-wise.”

87

Set 𝑙 = log2 log2
1

𝑒−𝜁 (𝑛𝐿)
= 𝑂 (log 𝑛𝐿) in Lemma 2.4.7 and 𝜖noise = min

(
1

2𝛽distill
, 1

8

)
in Lemma 2.4.5. Let 𝜖∗,stab = min

(
𝜖∗,inject, 𝜖∗,noise

)
. This choice of parameters

implies that the number of states input to the stabilizer state distillation procedure
(Lemma 2.4.7) 𝑀𝑙 = 𝑒

Θ(log 𝑛𝐿 loglog 𝑛𝐿) . Let 𝛼 = min(𝑛2
𝐿
, 𝑀𝑙) = Ω(𝑛2

𝐿
) and 𝛽 =

⌈
𝑀𝑙
𝛼

⌉
.

By assumption, Opstab is constant depth and has width 𝑂 (𝑛𝐿).

The gadget is constructed as follows:

1. Consider the noisy simulation of Opstab using the gadget Gadnoisyprep from
Lemma 2.4.5. Gadnoisyprep uses width𝑂 (𝑛𝐿𝑐(𝑛𝐿)) for some 𝑐(𝑛𝐿) = 𝑂 (polylog 𝑛𝐿)
and depth 𝑂 (polylog 𝑛𝐿). Execute Gadnoisyprep

⌈
2𝛼𝛽
𝑐(𝑛𝐿)

⌉
times in parallel 𝑐(𝑛𝐿)

times for a total of 2𝛼𝛽 states.39 Overall, this requires depth 𝑂 (polylog 𝑛𝐿)
and width 𝑂 (𝑛𝐿 polylog 𝑛𝐿), so this step has depth 𝑂 (polylog 𝑛𝐿) and width
𝑂 (𝛼𝛽𝑛𝐿) = 𝑂 (𝑀𝑛𝐿). Each of the 2𝛼𝛽 executions of Gadnoisyprep produce
a state on 𝑏 code blocks. Since the code blocks are naturally indexed by
[𝛽] × [2𝛼] × [𝑏], we will refer to each group of 𝑏 code blocks as a “row” and
each group of [𝛽] rows as a “column.”

2. Let 𝐽 ⊆ [𝛽] × [2𝛼] be the subset of state preparation gadgets for which the
FAIL bit is not set (i.e. the qLTC checks are passed). In parallel, for each
column 𝑖 ∈ [𝛽], sort the 2𝛼 rows of computation code blocks such that the
rows originally in 𝐽 are the first rows in column 𝑖. This can be done in depth
𝑂 (log𝛼) and width 𝑂 (𝛼𝛽𝑛𝐿) using a classically controlled transversal SWAP
of the computational code blocks.

3. Define the set

𝐼 = {(𝑖, 𝑗) ∈ [𝛽] × [2𝛼] | (𝑖 < 𝛽 and 𝑗 ≤ 𝛼) or (𝑖 = 𝛽 and 𝑗 ≤ 𝑀𝑙 − (𝛽 − 1)𝛼}

of size𝑀𝑙 given by taking 𝛼 rows from all but the last column and the remaining
rows from the last column. Execute the distillation in Lemma 2.4.7 on the rows
in 𝐼. Since the gates in the distillation procedure do not depend on the state and
act only coordinate-wise, this can be done using the transversal gate gadgets
of the computation code (Lemma 2.3.7). This has depth 𝑂 (polylog 𝑛𝐿), width
𝑂 (𝑀𝑙𝑛𝐿), and produces Ω(𝑀𝑙) resource states.

In the following, we restrict 𝑥 ∈ [0, �𝜖∗,stab(𝑛𝐿)] and upper bounds do not depend on
𝑥 unless indicated.

39The organization of states in groups of 𝛼 is required to avoid a log𝑀𝑙 time overhead when
collecting the outputs. The preparation over 𝑐(𝑛𝐿) steps is required to avoid incurring space overhead.

88

For (𝑖, 𝑗) ∈ 𝐼, letH (𝑖, 𝑗)bad andH (𝑖, 𝑗)noisy denote the families of bad fault paths Gbad and
Gnoisy from Lemma 2.4.5 on the (𝑖, 𝑗)-th state preparation gadget in step-1. Let [𝐿]
index the set of computational code gadgets applied in steps 2 and 3. By construction,
𝐿 = 𝑂 (𝑀𝑙 polylog(𝑛𝐿)). For each computational code gadget 𝑙 ∈ [𝐿], letH𝑙 be the
corresponding set of bad fault paths.

The output is correct as long as none of the following events occur:

1. A computational code gadget or the state verification step in Lemma 2.4.5
fails:

G1 =
(
⊞𝑙∈[𝐿]H𝑙

)
⊞

(
⊞(𝑖, 𝑗)∈𝐼H (𝑖, 𝑗)bad

)
(2.61)

W(G1; 𝑥) ≤
∑︁
𝑙∈[𝐿]
W(H𝑙 ; 𝑥) +

∑︁
(𝑖, 𝑗)∈𝐼

W(Gbad; 𝑥) ≤ (𝐿 + |𝐼 |)𝑒−𝜁 (𝑛𝐿)

(2.62)

= 𝑂

(
𝑀𝑙 polylog(𝑛𝐿)𝑒−𝜁 (𝑛𝐿)

)
. (2.63)

2. There exists a column with less than 𝛼 rows for which FAIL was not set:40

G2 = ⊞𝑖∈[𝛽] ⊞ 𝐽⊆[2𝛼]
|𝐽 |=𝛼+1

(
⊛ 𝑗∈𝐽H (𝑖, 𝑗)noisy

)
(2.64)

W(G2; 𝑥) ≤ 𝛽
(

2𝛼
𝛼 + 1

) (
W(Gnoisy; 𝑥)

)𝛼+1 (2.65)

≤ 𝛽 · 22𝛼 (𝜖noise)𝛼+1 (2.66)

≤ 𝛽 ·
(
1
2

)𝛼
(2.67)

≤ 𝛽𝑒−Ω(𝛼) ≤ 𝑀𝑙𝑒
−Ω(𝑛2

𝑙
) . (2.68)

3. The distillation output contains an error: G3,

G3 = ⊞𝐴∈A𝑙 ⊛(𝑖, 𝑗)∈𝐴 H
(𝑖, 𝑗)
noisy ≃ A𝑙 • Gnoisy (2.69)

W(G3; 𝑥) ≤ W(A𝑙 ; W(Gnoisy; 𝑥)) (2.70)

≤
(
𝛽distill

2𝛽distill

)2𝑙

(2.71)

≤ 𝑒−𝜁 (𝑛𝐿) . (2.72)
40We slightly abuse notation and consider 𝐴𝑙 ⊆ 𝐼. This detail is not important.

89

Thus, G = ⊞3
𝑖=1G𝑖 with

W(G; 𝑥) ≤ 𝑂 (𝑀𝑙 polylog(𝑛𝐿)𝑒−𝜁 (𝑛𝐿)). (2.73)

□

The construction of an analog of Lemma 2.3.4 for magic states is essentially similar
with minor differences due to the need for a conditional Clifford operation and
the preparation of the resource state only on the first coordinate instead of for all
coordinates.

Lemma 2.3.5 (Magic resource state preparation). There exists an (Opmagic,G)-Pauli

FT gadget Gadmagic preparing 𝐾 copies of
���CCZ(1, 2, 3)

〉
such thatW(G; 𝑥) ≤

𝑒−𝜁 (𝑛𝐿)+𝑂 (polylog 𝑛𝐿) for 𝑥 ∈ [0, �𝜖∗,magic(𝑛𝐿)).

In terms of a variable 𝑀 satisfying 𝑀 = 𝑒𝑂 (log 𝑛𝐿 ·loglog 𝑛𝐿) , 𝑀 = Ω(𝑛𝐿), we have the
bound:

𝐾 = Ω(𝑀𝑛−�̃�(𝑛𝐿)
𝐿

) (2.17)

where �̃�(𝑛𝐿) = 𝑂𝑛𝐿→∞
(

1
loglog 𝑛𝐿

)
= 𝑜𝑛𝐿→∞(1). Gadmagic has quantum depth

𝑂 (polylog 𝑛𝐿), width 𝑂 (𝑀𝑛𝐿), and classical depth 𝑂 (polylog 𝑛𝐿).

Proof. Let 𝑤(𝑥) be the principle branch of the Lambert𝑊 function. I.e. a solution
to 𝑤(𝑥)𝑒𝑤(𝑥) = 𝑥 for 𝑥 ≥ 0 satisfying 𝑤(𝑥) ≥ 0. We start by defining the function
𝑔(𝑥) which satisfies the following:

𝑔(𝑥) = log(𝑥)
𝑤(log

(
𝑥1/𝑒)) , (

𝑔(𝑥)
𝑒

)𝑔(𝑥)
= 𝑥. (2.74)

This allows us to obtain an upper bound for the inverse of the factorial:

⌈𝑔(𝑥)⌉! ≥
(
𝑔(𝑥)
𝑒

)𝑔(𝑥)
= 𝑥. (2.75)

We will follow the argument of Lemma 2.3.4 almost exactly. We apply the magic
state distillation procedure of Theorem 2.4.8 using the transversal gate gadget
(Lemma 2.3.7).

We use Theorem 2.4.8 with 𝑙 such that

𝑙 + 1 = ⌈𝑔 (𝜁 (𝑛𝐿))⌉ . (2.76)

90

and 𝜖noise = min
(

1
𝑒𝛽Mdistill

, 1
8

)
in Lemma 2.4.5. As in Lemma 2.3.4, we set

𝜖∗,magic = min
(
𝜖∗,inject, 𝜖∗,noise, 𝜖∗,stab

)
.

Note that 𝜖∗,inject and 𝜖∗,noise are not necessarily the same as in Lemma 2.4.5.

We first use Gadstab (Lemma 2.3.4) to prepare Θ(𝑀𝑙) copies of
���CZ(1𝐴, 1𝐵)

〉
,
��+〉,

and
���0〉. The

���CZ(1𝐴, 1𝐵)
〉

states allow us to use transversal gates (Lemma 2.3.7) to
execute a teleported CZ gate on the first coordinate in the execution of the magic
state distillation procedure Theorem 2.4.8. These are the necessary inputs to execute
the magic state distillation procedure of Theorem 2.4.8 using transversal gates
(Lemma 2.3.7) to produce 𝐾

���CCZ(1𝐴, 1𝐵, 1𝐶)
〉

states. At the end, we again use

Gadstab (Lemma 2.3.4) to prepare 𝐾 copies of
���SWAP(2𝐴, 1𝐵)

〉
and

���SWAP(3𝐴, 1𝐵)
〉

which use to execute teleported SWAP(2𝐴, 1𝐵)SWAP(3𝐴, 1𝐶) on
���CCZ(1𝐴, 1𝐵, 1𝐶)

〉
,

converting it to
���CCZ(1, 2, 3)

〉
.

The family of bad fault paths associated with these invocations of the Lemma 2.3.4
gadget is added to G1, but it does not change the asymptotic scaling with 𝑛𝐿 . The
bound forW(G2; 𝑥) is identical to that of Lemma 2.3.4. G3 is significantly modified:
For 𝑥 ∈ [0, �𝜖∗,magic(𝑛𝐿)), we have the new bound

W(G3; 𝑥) ≤
(
𝛽Mdistill
𝑒 · 𝛽Mdistill

) (𝑙+1)!
≤ 𝑒−(𝑙+1)! ≤ 𝑒−𝜁 (𝑛𝐿) . (2.77)

The depth is𝑂 (polylog 𝑛𝐿), and the width is𝑂 (𝑛𝐿𝑀𝑙). For some constant 𝑐 ∈ (0, 1),
we have produced

𝐾 = Ω(𝑀𝑙𝑐
𝑙) = Ω

(
𝑀𝑙𝑐

𝑔(𝜁 (𝑛𝐿))
)

(2.78)

= Ω
©«𝑀𝑙 exp

−𝑂
©«

log 𝑛𝐿
𝑤

(
log

(
𝑛

1/𝑒
𝐿

)) ª®®¬

ª®®¬ (2.79)

= Ω

(
𝑀𝑙𝑛

−�̃�(𝑛𝐿)
𝐿

)
(2.80)���CCZ(1𝐴, 1𝐵, 1𝐶)

〉
states where �̃�(𝑛𝐿) = 𝑂

(
1

𝑤

(
log

(
𝑛

1/𝑒
𝐿

))) = 𝑂𝑛𝐿→∞
(

1
loglog 𝑛𝐿

)
=

𝑜𝑛𝐿→∞(1). □

Constant-overhead stabilizer state distillation procedure
It remains to prove Lemma 2.4.7. We first begin by defining a procedure for a single
round of distillation of a stabilizer state.

91

We heavily use the stabilizer formalism [Got97; AG04]. For an 𝑛-qubit stabilizer
state |𝜓⟩, we use the notation Stab(𝜓) to refer to the subgroup of Pauli operators 𝑠
such that 𝑠 |𝜓⟩ = |𝜓⟩.

For an 𝑛 × 𝑚 matrix 𝐴, we use the notation 𝐴[·, 𝑗] to refer to the 𝑗-th column, and
𝐴[𝑖, ·] to refer to the 𝑖-th row. For 𝑖 ∈ [𝑛], let 𝑒𝑖 ∈ F𝑛2 be the indicator vector for the
𝑖-th coordinate. In what follows, for an 𝑏 qubit Pauli operator 𝑃 = 𝑃

(1)
1 𝑃

(2)
2 . . . 𝑃

(𝑏)
𝑏

(the operator 𝑃(𝑖) acting on the 𝑖-th qubit) and a bit string 𝑥 ∈ F𝑛2, we will use
𝑃𝑥 ∈ P𝑛×𝑏 to denote the Pauli operator supported on a set of qubits indexed by
[𝑛] × [𝑏] given by

𝑃𝑥 ≡
∏

𝑖∈[𝑛], 𝑗∈[𝑏]
(𝑃(𝑗))𝑥 [𝑖]

𝑖, 𝑗
∈ P𝑛×𝑏 . (2.81)

To reduce the amount of notation, we introduce the following abuse of notation: For
a matrix 𝐻 ∈ F𝑟×𝑛2 , and an 𝑏-qubit Pauli operator 𝑃, we use 𝑃𝐻 to denote the indexed
set

𝑃𝐻 ≡
{
𝑃𝐻 [𝑖,·]

}
𝑖∈[𝑟] ⊆ P

𝑛×𝑏 . (2.82)

I.e. every row 𝑖 ∈ [𝑟] of 𝐻 defines an operator ℎ. For every column 𝑗 ∈ [𝑛] of 𝐻,
the corresponding row has ℎ |{ 𝑗}×[𝑏] = 𝑃 iff 𝐻 [𝑖, 𝑗] = 1.

Let Qdistill be a quantum CSS code with parameters [[𝑛, 𝑘, 𝑑]] with the following
properties:

• There is a (check) matrix 𝐻 ∈ F𝑟×𝑛2 such that the set 𝑋𝐻 ∪ 𝑍𝐻 form a minimal
generating set for the stabilizer of Qdistill.

• There exists a (generator) matrix 𝐺 ∈ F𝑘×𝑛2 such that 𝐺𝐺𝑇 = 𝐼 and 𝐻𝐺𝑇 = 0.

• There exists an efficient algorithm D𝐻 : F𝑟2 → F𝑛2 to decode all errors of
weight at most 𝑡 for classical code ker𝐻. I.e. for all 𝑥 ∈ F𝑛2 such that 𝑥 ≤ 𝑡,
D𝐻 (𝐻𝑥) = 𝑥.

Such a quantum CSS code is sometimes said to be “self-dual”41 and possesses
convenient properties such as a fully transversal implementation of the Clifford group.
Quantum Hamming codes as well as color codes satisfy this property.

Let 𝑆𝜓 be a minimal generating for the stabilizer Stab(𝜓) of the 𝑏-qubit state 𝜓. I.e.
for all 𝑠 ∈ 𝑆𝜓 , 𝜓 is an eigenstate with eigenvalue +1 ∈ {±1}. In the following, we

41This notion is unrelated to the notion of the dual of a classical code.

92

will associate measurement outcomes of Pauli operators with elements of F2 in the
canonical way: (+1 ↦→ 0 ∈ F2, −1 ↦→ 1 ∈ F2).

We first compute (by Gaussian elimination) a set of operators that each anticommute
with exactly one element of 𝑆𝜓 . Concretely, we have a map 𝜙𝜓 : 𝑆𝜓 → P𝑏 such
that for 𝑠 ∈ 𝑆𝜓 , 𝜙𝜓 (𝑠)𝑠 = −𝑠𝜙𝜓 (𝑠) and for 𝑆𝜓 ∋ 𝑠′ ≠ 𝑠, 𝜙𝜓 (𝑠)𝑠′ = 𝑠′𝜙𝜓 (𝑠). This is
sometimes call the “destabilizer” of 𝑆𝜓 .

Fix an encoding map (using only CNOT) E for Qdistill such that for 𝑗 ∈ [𝑘],
E𝑍 𝑗E−1 = 𝑍𝐺 [𝑗 ,·] and E𝑋 𝑗E−1 = 𝑋𝐺 [𝑗 ,·] . This fixes a phase of Pauli 𝑌 , E𝑌 𝑗E−1 =

(𝑖) |𝐺 [𝑗 ,·] |−1𝑌𝐺 [𝑘,·] ≡ 𝜃 𝑗𝑌 𝑗 where 𝜃 𝑗 ∈ {±1}. We will need to “fix up” this phase
in order to produce the correct state on the output. For 𝑃 ∈ P𝑛, let us notate the
phase of an arbitrary Pauli under the encoding map E⊗𝑏𝑃 𝑗

(
E−1)⊗𝑏 = 𝜃𝑃, 𝑗𝑃. Define

the fix up operator Ξ ∈ P𝑘×𝑏 be a Pauli operator that corrects this phase: 𝑠 ∈ 𝑆𝜓 ,
Ξ𝑠𝑒 𝑗 = 𝜃𝑏

𝑠, 𝑗
𝑠𝑒 𝑗Ξ. Ξ can be computed by taking the product of destabilizer operators

𝜙𝜓 (𝑠) on position 𝑗 whenever the phase is incorrect
(
𝜃𝑠, 𝑗

)𝑏
= −1.

Ξ =
∏
𝑗∈[𝑘]
𝑠∈𝑆𝜓
𝜃𝑠, 𝑗=−1

(
𝜙𝜓 (𝑠)

)𝑒 𝑗 (2.83)

For 𝑑, 𝑛 ∈ N, define S𝑛
𝑑
= {𝑥 ⊆ [𝑛] | |𝑥 | = 𝑑} ⊆ 𝑃([𝑛]) to be all subsets of [𝑛] of

size 𝑑. Let Fdistill = S𝑛𝑡+1 • S
𝑏
1 be the family of subsets of [𝑛] × [𝑏] that contain one

element from each of 𝑡 + 1 rows.

Proposition 2.4.9 (Single level stabilizer state distillation). In Algorithm 1, if 𝜌 is
Fdistill-deviated from 𝜓⊗𝑛, then 𝜌′ = 𝜓⊗𝑘 .

Proof. By Lemma 2.2.31, it suffices for us to consider 𝜌 that differs from 𝜓⊗𝑛

by a Pauli operator 𝐸 supported on an Fdistill-avoiding set i.e. is Fdistill-diagonal
Pauli-deviated from 𝜓⊗𝑛. Otherwise, it is in the kernel of the measurement channel.

First, note that 𝜓⊗𝑛 is the simultaneous +1 eigenstate of the set of operators
{𝑠𝑒𝑖 }𝑖∈[𝑛],𝑠∈𝑆𝜓 . I.e. the measurement of the set of operators 𝑠𝐻 on 𝜓⊗𝑛 is 0. Thus,
measurement of 𝑠𝐻 on 𝜌 (an eigenstate) will produce a vector 𝜎 ∈ F𝑟2 such that 42

𝑠𝐻𝐸 = (−1)𝜎𝐸𝑠𝐻 . We will indirectly measure these operators.

The measurements at Algorithm 1 all commute. When a measured operator 𝑂 is not
in the stabilizer 𝑆 of the state, the subgroup 𝑆′ of 𝑆 commuting with𝑂 is retained and

42The phase should be interpreted “coordinate-wise.”

93

Algorithm 1 Stabilizer state distillation algorithm
Input: 𝑛 × 𝑏 qubit state 𝜌
Output: 𝑘 × 𝑏 qubit state 𝜌out

1: 𝑚 (𝑋) ∈ F𝑟×𝑏2
2: 𝑚 (𝑍) ∈ F𝑟×𝑏2
3: 𝜎 ∈ F𝑟2
4: 𝑈 ← 𝐼

5: for 𝑗 ∈ [𝑏] do ⊲ Measure checks of Qdistill
6: 𝑚 [·, 𝑗] (𝑋) ←Measurement of 𝑋𝐻 on 𝜌 | [𝑛]×{ 𝑗}
7: 𝑚 [·, 𝑗] (𝑍) ←Measurement of 𝑍𝐻 on 𝜌 | [𝑛]×{ 𝑗}
8: 𝜌′← Post-measurement state of 𝜌
9: for 𝑠 ∈ 𝑆𝜓 do ⊲ Correct eigenvalue of 𝑠𝐻

10: (𝑎, 𝑧, 𝑥) ← 𝑧, 𝑥 ∈ F𝑏2 , 𝑎 ∈ F2 such that 𝑠 = ±𝑖𝑎𝑍 𝑧𝑋𝑥 ⊲ Decompose
11: for 𝑖 ∈ [𝑟] do ⊲ Compute syndrome of 𝑠𝐻
12: ℎ← 𝐻 [𝑖, ·] ⊲ Inferred measurement of 𝑠ℎ
13: 𝜎𝑖 ← 𝑎 |ℎ|/2 + ⟨𝑥, 𝑚 [𝑖, ·] (𝑋)⟩ + ⟨𝑧, 𝑚 [𝑖, ·] (𝑍)⟩
14: 𝑐 ← D𝐻 (𝜎) ⊲ Compute correction
15: 𝑃← 𝜙𝜓 (𝑠)
16: 𝑈 ← 𝑈𝑃𝑐 ⊲ Update correction
17: ⊲ Apply correction and unencode. Discarding qubits in ([𝑛] \ [𝑘]) × [𝑏] ⊳

18:
𝜌decoded ←

(
E−1)⊗𝑏 ◦𝑈 (𝜌)

19: 𝜌out ← Ξ(𝜌decoded) ⊲ Fix up phases

the new stabilizer is ⟨𝑆′, (−1)𝑎𝑂⟩ for a random phase 𝑎 (the measurement outcome).
The decomposition at Algorithm 1, allows us to write 𝑠ℎ = (±𝑖𝑎) |ℎ | (𝑍 𝑧)ℎ (𝑋𝑥)ℎ

at Algorithm 1. By assumption of the code properties, 𝐻𝑇𝐻 = 0, so |ℎ | is even.
Furthermore, (𝑍 𝑧)ℎ (𝑋𝑥)ℎ is proportional to the products of a subset of ∪𝑖∈[𝑏] (𝑋𝑖)ℎ

and∪𝑖∈[𝑏] (𝑍𝑖)ℎ. These operators all pairwise commute and were previously measured.
Thus, the quantity computed at Algorithm 1 is the current eigenvalue of 𝑠ℎ on the
post-measurement state (i.e. is the variable 𝜎 from the previous paragraph). The
correction operator computed at Algorithm 1 modifies only the eigenvalues of 𝑠𝐻

(and of 𝑠𝐺). By definition of the decoding map and 𝜙𝜓 ,

𝑠𝐻𝑃𝑐𝐸 = (−1)𝐻𝑐+𝜎𝑃𝑐𝐸𝑠𝐻 = 𝑃𝑐𝐸𝑠𝐻 (2.84)

and for any 𝑠′ ∈ 𝑆𝜓 with 𝑠 ≠ 𝑠′, (𝑠′)𝐻𝑃𝑐 = 𝑃𝑐 (𝑠′)𝐻 .

It remains to analyze 𝑅 := 𝑈𝐸 . We will show that 𝑅 commutes with {𝑠𝑒𝑖 }𝑖∈[𝑛],𝑠∈𝑆𝜓 .
Since 𝐸 was supported on a Fdistill-avoiding set, there exists a subset 𝐼 ⊆ [𝑛] with
|𝐼 | ≤ 𝑡 such that supp 𝐸 ⊆ 𝐼 × [𝑏].

94

Consider an operator 𝑠 ∈ 𝑆𝜓 and let all variables take their values at the end of the
loop trip (starting at Algorithm 1) corresponding to 𝑠. Define the vectors 𝑥, 𝑦 ∈ F𝑛2
such that for 𝑖 ∈ [𝑛]

𝑠𝑒𝑖𝐸 = (−1)𝑥 [𝑖]𝐸𝑠𝑒𝑖 (2.85)

𝑠𝑒𝑖 (𝑃𝑐𝐸) = (−1)𝑦[𝑖] (𝑃𝑐𝐸)𝑠𝑒𝑖 (2.86)

Note that 𝐻𝑥 = 𝜎. Since 𝐸 is supported on at most 𝑡 columns (|𝐼 | ≤ 𝑡), |𝑥 | ≤ 𝑡
and so D𝐻 (𝜎) = D𝐻 (𝐻𝑥) = 𝑥 = 𝑐. Thus, 𝑦 = 𝑐 + 𝑥 = 0, so 𝑅 commutes with
{𝑠𝑒𝑖 }𝑖∈[𝑛],𝑠∈𝑆𝜓 , the generators of Stab(𝜓⊗𝑛).

For a Pauli operator 𝑃 and a set 𝐵 ⊆ P𝑛, denote {𝑃𝑏𝑃 | 𝑏 ∈ 𝐵} by 𝑃𝐵𝑃. Since
Stab(𝜌) = 𝐸 Stab(𝜓⊗𝑛)𝐸 , the post measurement state has stabilizer given by43

Stab(𝜌′) = ⟨{𝐸𝑠𝐺𝐸}𝑠∈𝑆𝜓 ,∪ 𝑗∈[𝑏] (−1)𝑚 (𝑋) [·, 𝑗] (𝑋 𝑗)𝐻 ,∪ 𝑗∈[𝑏] (−1)𝑚 (𝑍) [·, 𝑗] (𝑍 𝑗)𝐻⟩
(2.87)

Using the commutativity of 𝑅 with 𝑠𝐺 ⊆ Stab(𝜓⊗𝑛), the post correction state has
stabilizer

Stab(𝑈 (𝜌′)) = ⟨{𝑠𝐺}𝑠∈𝑆𝜓 ,± ∪ 𝑗∈[𝑏] (𝑋 𝑗)𝐻 ,± ∪ 𝑗∈[𝑏] (𝑍 𝑗)𝐻⟩ (2.88)

(E−1)⊗𝑏 unencodes the blocks. That is, for each row 𝑖 ∈ [𝑘] of 𝐺, each 𝑗 ∈ [𝑏], and
𝑃 ∈ {𝑋, 𝑍}, (E−1)⊗𝑏 (𝑃𝐺 [𝑖,·]

𝑗
) = 𝑃(𝑖, 𝑗) . Any operator of the form 𝑃𝐻

𝑗
is mapped to an

operator supported only on the qubits ([𝑛] \ [𝑘]) × [𝑏] which are discarded. Thus
Stab(𝜌decoded) = ⟨{𝜃𝑏𝑠,𝑖𝑠𝑒𝑖 }𝑖∈[𝑘],𝑠∈𝑆𝜓⟩. Finally, the application of Ξ fixes the phases
so that Stab(𝜌decoded) = ⟨{𝑠𝑒𝑖 }𝑖∈[𝑘],𝑠∈𝑆𝜓 = Stab(𝜓⊗𝑘). □

Proof of Lemma 2.4.7

Lemma 2.4.7 (State distillation procedure for stabilizer states). For a stabilizer state
𝜓 on 𝑏 qubits, there exists constants 𝜖∗,𝑑𝑖𝑠𝑡𝑖𝑙𝑙 ∈ (0, 1), 𝛽distill > 0 and a family indexed
by 𝑙 ∈ N of (𝑀𝑙 , 𝐾𝑙 ,A𝑙)-state distillation procedure whereW(A𝑙 ; 𝑥) ≤ (𝛽distill𝑥)2

ℓ

on 𝑥 ∈ [0, 𝜖∗,𝑑𝑖𝑠𝑡𝑖𝑙𝑙], 𝐾𝑙𝑀𝑙 = Θ(1), and 𝑀𝑙 = 𝑒
Θ(𝑙 log 𝑙) .

Furthermore, the procedure satisfies:

• The quantum depth is 𝑂 (𝑙3), and the width is 𝑂 (𝑀𝑙).

• The classical computation has total depth 𝑂 (𝑙3).
43The phase on the last two terms is not important.

95

• No additional input states are required beyond the 𝑀𝑙 noisy inputs.

• Only the operations CNOT, 𝑍 /𝑋 basis measurement, and classically-controlled
Pauli gates are used.

• With the exception of Pauli gates, the quantum gates applied do not depend on
the state 𝜓 to be distilled, only 𝑏 and 𝑙.

• No two-qubit gates are applied between qubits with different [𝑏] coordinates.44

Proof. The quantum Hamming code satisfies the conditions required of 𝐶distill

in Section 2.4 [Ste96b; YK24]. 𝐻 is the check matrix of a classical Hamming
code and t=1. For 𝑟 ≥ 3, the parameters of the quantum Hamming code are
[[𝑛 = 2𝑟 − 1, 𝑘 = 2𝑟 − 2𝑟 − 1, 3]].

We will repeatedly apply the state distillation procedure Section 2.4 with quan-
tum Hamming codes of increasing size. In particular, we will use the sequence
(𝑟1, 𝑟2, . . . , 𝑟𝑙) where 𝑟ℓ = ⌊2 log2(4ℓ)⌋. Let 𝑛ℓ = 2𝑟ℓ − 1, 𝑘𝑖 = 2𝑟ℓ − 2𝑟ℓ − 1,
𝑀𝑙 :=

∏𝑙
ℓ=1 𝑛ℓ, and 𝐾𝑙 :=

∏𝑙
ℓ=1 𝑘ℓ

We will start with blocks of 𝑏 qubits indexed by [𝑛𝑙] × · · · × [𝑛1] initialized
as 𝑀𝑙 :=

∏𝑙
ℓ=1 𝑛ℓ noisy copies of 𝜓. Iterating from ℓ = 1 to ℓ = 𝑙, for each

𝐼 ∈ [𝑛𝑙] × · · · × [𝑛ℓ+1] and 𝐽 ∈ [𝑘ℓ−1] × · · · × [𝑘1] we apply the state distillation
procedure Section 2.4 on the set of blocks {𝐼} × [𝑛ℓ] × {𝐽} to get a new set of blocks
with labels {𝐼} × [𝑘ℓ] × {𝐽}. Let S𝑛

𝑑
be the family of all subsets of [𝑛] of size 𝑑. At

step ℓ, Proposition 2.4.9 gives that the output is 𝜓⊗𝑘ℓ if the input is S𝑛ℓ2 •S
𝑏
1 -deviated

from 𝜓⊗𝑛ℓ . We use the fact that, by construction, no two outputs from a single
application of the state distillation procedure are used together in a following state
distillation procedure: If the output of a state distillation in step ℓ is not 𝜓⊗𝑘ℓ , then
the input is not S𝑛ℓ2 -deviated from 𝜓⊗𝑛ℓ . Since each input is from separate state
distillation procedures, 𝑡 + 1 distinct state distillation procedures at step ℓ − 1 must
have had inputs that are not S𝑛ℓ−1

2 -deviated from 𝜓⊗𝑛ℓ−1 . Inducting from ℓ = 1, the
output of the final iteration is 𝜓𝐾𝑙 if the input is A𝑙 := S𝑛𝑙2 • · · · • S

𝑛1
2 • S

𝑏
1 -deviated

from 𝜓⊗𝑀𝑙 .
44In other words, the gates are applied “transversally” with regard to the qubits [𝑏].

96

W(S𝑛
𝑑
; 𝑥) =

(𝑛
𝑑

)
𝑥𝑑 ≤ 𝑛𝑑𝑥𝑑 , so using Proposition 2.2.21, for 𝑥 ≥ 0, we can upper

bound

W(A𝑙 ; 𝑥) =W(S𝑛𝑙2 ; W(S𝑛𝑙−1
2 ; . . .W(S𝑛1

2 ; W(S𝑏1 ; 𝑥)))) (2.89)

≤ (𝑏𝑥)2𝑙
(
𝑙∏
𝑖=1

𝑛2(𝑙−𝑖)
𝑖

)2

(2.90)

≤ (𝑏𝑥)2𝑙
(
𝑙∏
𝑖=1
(4𝑖)2(𝑙−𝑖)

)2

(2.91)

≤ (64𝑏𝑥)2𝑙 (2.92)

Where we have used
∑∞
𝑖=1 2−𝑖 log2(4𝑖) ≤ 3. Then, 𝛽distill = 64𝑏 and 𝜖∗,𝑑𝑖𝑠𝑡𝑖𝑙𝑙 =

1/𝛽distill.

We now turn our attention to the other parameters. First, (ℓ!)242ℓ =
∏ℓ
𝑖=1 2log2 (4ℓ)2 ≤

𝑀𝑙 ≤
∏ℓ
𝑖=1

1
42log2 (4ℓ)2 = (ℓ!)24ℓ, so 𝑀𝑙 = 𝑒

Θ(𝑙 log 𝑙) . For the rate,

𝐾𝑙

𝑀𝑙

=

𝑙∏
ℓ=1

𝑘ℓ

𝑛ℓ
(2.93)

≥
∞∏
ℓ=1

(
1 − 2𝑟ℓ

𝑛ℓ

)
(2.94)

≥ 1
7

∞∏
ℓ=2

(
1 −

8 log2(4ℓ)2

(4ℓ)2

)
(2.95)

≥ 1
300

(2.96)

where we have upper bounded the first term in the product separately and numerically
evaluated

∏∞
ℓ=2

(
1 − 8 log2 (4ℓ)2

(4ℓ)2

)
≥ 1

300 .

To prove the circuit properties, first note that using a length-𝑛 CSS code, syndrome
measurement followed by unencoding can be done in depth 𝑂 (𝑛2) using only CNOT,
and 𝑋/𝑍 measurement without any ancilla qubits: For the encoding with logical
operators 𝑋𝐺 and 𝑍𝐺 used in the previous section, there exists a unitary encoding
circuit𝑈 supported on 𝑛 qubits of depth 𝑂 (𝑛2) [CG97; Got97] that uses only CNOT.
For an 𝑛-qubit state and 𝑟𝑥 , 𝑟𝑧 such that 𝑟𝑥 + 𝑟𝑧 = 𝑛 − 𝑘 , 𝑈 |𝜓⟩ |0⟩𝑟𝑧 |+⟩𝑟𝑥 =

��𝜓〉
.

𝑈−1 maps a set of stabilizer generators of the code to {𝑍𝑖}𝑛−𝑘+𝑟𝑧𝑖=𝑛−𝑘 ∪ {𝑋𝑖}
𝑛
𝑖=𝑛−𝑘+𝑟𝑧 , so

executing the circuit𝑈−1 followed by measurement of the last 𝑛 − 𝑘 qubits (in either
the 𝑋 or 𝑍 basis) will produce a measurement outcome 𝑎 ∈ F𝑛−𝑘2 and state on the
first 𝑘 qubits that is equivalent to first measuring the stabilizer generators of the code
and then applying𝑈−1.

97

Using this circuit, the overall circuit depth is 𝑂 (𝑙 · 𝑛2
𝑙
) = 𝑂 (𝑙3) and uses only CNOT,

𝑋 and 𝑍 basis measurements, and classically controlled Pauli gates. The main
classical computation includes decoding of the quantum Hamming code, which is of
similar time complexity. With the exception of the classically controlled Pauli gates,
the circuit is completely determined by 𝑙 and 𝑏. Since no ancillas are prepared, the
width is 𝑂 (𝑀𝑙). □

2.5 Magic state distillation with almost-constant spacetime overhead
We will distill the magic state |CCZ⟩. To avoid large overhead, we will require a
very efficient distillation scheme. The majority of the section will be devoted to
establishing the following theorem about punctured quantum Reed-Solomon codes
over extension fields of F2.

Theorem 2.5.1. For each 𝑞 = 2𝑙 with 𝑙 ≥ 3, there exists a CSS qudit code (punctured
quantum Reed-Solomon code) with parameters[[

3𝑞
4
,
𝑞

4
,

⌊𝑞
3

⌋
− 𝑞

4
+ 1

]]
𝑞

, (2.97)

such that CCZ⊗3𝑞/4
𝑞 acts as logical CCZ𝑞

⊗𝑞/4
on a basis of logical qudits.

The construction is similar to that of Krishna and Tillich [KT19] with the main
difference being the use of extension fields. To simplify notation, we will specialize
to characteristic 2 though this fact is used in a non-essential way. In Section 2.5 we
will employ the qudit PQRS code to construct a distillation protocol for the qubit
CCZ state with almost-constant spacetime overhead, proving Theorem 2.4.8.

Polynomials over finite fields
We begin by making some standard definitions and recalling some standard results
about polynomials over finite fields. Fix some prime power 𝑞 ∈ N.

Notate the set of polynomials in the variable 𝑥 with coefficients in F𝑞 by F𝑞 [𝑥].
For 𝑘 ∈ N, define F𝑞 [𝑋]<𝑘 = {𝑃 ∈ F𝑞 [𝑥] | deg 𝑃 < 𝑘} with degree of the zero
polynomial defined to be −∞. We use F∗𝑞 to denote the set of non-zero elements of
F𝑞.

For a classical code 𝐶, the star product is given by coordinate-wise multiplication.
I.e. for 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ 𝐶, 𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑛) ∈ 𝐶,

𝑎 ∗ 𝑏 := (𝑎1𝑏1, 𝑎2𝑏2, . . . 𝑎𝑛𝑏𝑛).

98

We use 𝐶∗2 to denote the set {𝑎 ∗ 𝑏 | 𝑎, 𝑏 ∈ 𝐶}.

For some 𝑘 ∈ N, fix a set of coordinates 𝐴 = {𝛼𝑖}𝑘𝑖=1 ⊆ F𝑞 that will later be used for
a systematic encoding for a Reed-Solomon code. Recall that a Reed-Solomon code
is evaluations of the set F𝑞 [𝑋]<𝑘 on F𝑞. In order to obtain a systematic encoding, we
will parameterize F𝑞 [𝑥]<𝑘 in terms of the evaluations on points of 𝐴.

Definition 2.5.2. The Lagrange interpolation polynomials for the set 𝐴 are

ℓ
(𝐴)
𝑖
(𝑥) =

∏
𝑗∈[𝑘]\{𝑖}

𝑥 − 𝛼 𝑗
𝛼𝑖 − 𝛼 𝑗

.

One can see that the interpolation polynomial ℓ(𝐴)
𝑖
(𝑥) is zero on 𝐴 \ {𝛼𝑖} and one on

𝛼1.

Definition 2.5.3 (Message polynomial). For a message (𝑚1, 𝑚2, . . . 𝑚𝑘) ∈ F𝑘𝑞 , the
message polynomial 𝑝 (𝐴)𝑚 (𝑥) corresponding to 𝑚 is

𝑝
(𝐴)
𝑚 (𝑥) =

∑︁
𝑖∈[𝑘]

𝑚𝑖ℓ
(𝐴)
𝑖
(𝑥).

A message polynomial uniquely specifies a codeword of the code and also gives
a handle on coordinate-wise multiplication of codewords. It follows from Defini-
tion 2.5.2 that 𝑝 (𝐴)𝑚 (𝛼𝑖) = 𝑚𝑖. Our Reed-Solomon codes are evaluations of these
message polynomials, so we will find it useful to convert between codewords and the
corresponding message polynomials.

Definition 2.5.4 (Evaluation map). For an evaluation set 𝑀 = {𝛼𝑖}𝑛𝑖=1 ⊆ F𝑞, we
define the evaluation map 𝜙𝑀 : F𝑞 [𝑥] → F𝑛𝑞

𝑃 ↦→ (𝑃(𝛼1), 𝑃(𝛼2), . . . , 𝑃(𝛼𝑛)).

We will occasionally write 𝜙−1
𝑀

to denote the map that returns the unique lowest
degree polynomial with the given evaluation set. I.e. for any 𝑐 ∈ F𝑛𝑞, 𝑃 = 𝜙−1

𝑀
(𝑐)

satisfies deg 𝑃 ≤ 𝑛 − 1 and 𝜙𝑀 (𝑃) = 𝑐.

Our main tool to get a handle on products of polynomials will be Proposition 2.5.6,
which states that the average over all field elements of low-degree polynomials is
zero.

Proposition 2.5.5. For any non-zero element of 𝑎 ∈ F𝑞,

𝑎𝑞−1 = 1.

99

Proof. The product over all non-zero field elements is non-zero and invariant under
shifts by 𝑎, so it must be the case that 𝑎𝑞−1 = 1.∏

𝑥∈F∗𝑞

𝑥 =
∏
𝑥∈F∗𝑞

𝑎𝑥 = 𝑎𝑞−1
∏
𝑥∈F∗𝑞

𝑥 ∈ F∗𝑞 . □

Proposition 2.5.6. For a polynomial 𝑝 ∈ F𝑞 [𝑥] with leading coefficient 𝛽∑︁
𝑥∈F𝑞

𝑝(𝑥) =

0 0 ≤ deg 𝑝 < 𝑞 − 1

−𝛽 deg 𝑝 = 𝑞 − 1
.

Proof. Let 𝛼 ∈ F𝑞 be a primitive element for F𝑞 (which always exists). Consider a
monomial of degree 𝑘 summed over the field F𝑞. This sum is invariant under shifts
by 𝛼, ∑︁

𝑥∈F𝑞
𝑥𝑘 =

∑︁
𝑥∈F𝑞
(𝛼𝑥)𝑘 = 𝛼𝑘

∑︁
𝑥∈F𝑞

𝑥𝑘 .

When 𝑘 = 0, the summand is constant and the number of terms in the sum is a
multiple of the characteristic. For 𝑘 ∈ (0, 𝑞 − 1), 𝛼𝑘 ≠ 1, so it must be the case that
the sum is zero.

When 𝑘 = 𝑞 − 1, Proposition 2.5.5 gives that there are 𝑞 − 1 non-zero terms in the
sum, each equal to 1. The sum is then equal to 𝑞 − 1, the additive inverse of 1. □

Extension fields and qudits
Later, in order to perform distillation, we will need to represent our qudits over the
alphabet F𝑝𝑙 in terms of qudits over F𝑝. For the remainder of the section fix 𝑞 = 𝑝𝑙

for some prime 𝑝. To do this, we will need to introduce a basis. This will not enter
in any essential way until Section 2.5.

Bases

For an extension field F𝑝𝑙 of degree-𝑙 over F𝑝, a basis for F𝑝𝑙 is a set {𝛼𝑖}𝑖∈[𝑙] such
that every element 𝑥 ∈ F𝑝𝑙 has a unique decomposition 𝑥1𝛼1 + 𝑥2𝛼2 + · · · + 𝑥𝑙𝛼𝑙 with
{𝑥𝑖}𝑖∈[𝑙] ⊆ F𝑝. We will also make use of the trace map tr : F𝑝𝑙 → F𝑝 given by

tr(𝑥) =
𝑙∑︁
𝑖=1

𝑥𝑝
𝑖−1
. (2.98)

The trace map is F𝑝-linear.

In this section, we will use two different bases which simplifies different operations.

100

Fact 2.5.7 (Polynomial basis [MP13]). Let 𝛼 be a root of a degree 𝑙 polynomial
irreducible over F𝑝. Then {1, 𝛼, 𝛼2, . . . , 𝛼𝑙} forms a basis, known as a polynomial
basis for F𝑝𝑙 over F𝑝.

This fact arises from the standard construction of F𝑝𝑙 as the quotient of F𝑝 [𝑋] by an
irreducible polynomial. It will lend itself to easy multiplication of elements of F𝑝𝑙
using operations in F𝑝.

The second basis we will use is known as a self-dual basis.

Fact 2.5.8 (Existence of self-dual bases [SL80]). Let 𝑞 = 𝑝𝑙 for some prime 𝑝. For
𝑞 even or 𝑞 and 𝑙 odd, there exists an self-dual basis {𝜎𝑖}𝑖∈[𝑙] ⊂ F𝑞 for F𝑞 over F𝑝
This basis satisfies

tr
(
𝛼𝑖𝛼 𝑗

)
=

1 𝑖 = 𝑗

0 𝑖 ≠ 𝑗
. (2.99)

For an element 𝑥 ∈ F𝑝𝑙 and a basis 𝑁 = {𝛼𝑖}𝑖∈[𝑙] of F𝑝𝑙 over F𝑝, we use 𝑥 (𝑁)
𝑖
∈ F𝑝,

𝑖 ∈ [𝑙] to denote the expansion of 𝑥 in the basis 𝑁 i.e. 𝑥 =
∑
𝑖∈[𝑙] 𝛼𝑖𝑥

(𝑁)
𝑖

. When clear
from context, we will drop the superscript 𝑁 to avoid cluttering the notation.

F𝑞-Qudits and CSS codes over F𝑞

We will define CSS codes over qudits of dimension 𝑞. Let 𝜔 be a 𝑝-th roof of
unity. For an element 𝑎 ∈ F𝑝, we will use the abuse of notation 𝜔𝑎 to indicate
exponentiation after taking the canonical inclusion F𝑝 → Z.

For 𝑎, 𝑏, 𝑥 ∈ F𝑞, define the generalized Pauli operators (where addition is taken in
F𝑞)

𝑋 (𝑞) (𝑎) |𝑥⟩ = |𝑥 + 𝑎⟩ , 𝑍 (𝑞) (𝑏) |𝑥⟩ = 𝜔tr(𝑏𝑥) |𝑥⟩ .

So that

𝜔tr(𝑎𝑏)𝑋 (𝑞) (𝑎)𝑍 (𝑞) (𝑏) = 𝑍 (𝑞) (𝑏)𝑋 (𝑞) (𝑎).

For 𝑥, 𝑦, 𝑧 ∈ F𝑞, define

CNOT(𝑞) |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑥 + 𝑦⟩ ,

101

CZ(𝑞) |𝑥⟩ |𝑦⟩ = 𝜔tr(𝑥𝑦) |𝑥⟩ |𝑦⟩ , CCZ(𝑞) |𝑥⟩ |𝑦⟩ |𝑧⟩ = 𝜔tr(𝑥𝑦𝑧) |𝑥⟩ |𝑦⟩ |𝑧⟩ .

For linear codes 𝐶1, 𝐶2 ⊆ F𝑞 such that 𝐶⊥2 ⊆ 𝐶1, the CSS code CSS(𝐶1, 𝐶2) is the
span of the states

𝑐 ∈ 𝐶1
��𝑐 + 𝐶⊥2 〉

=
1√︃
|𝐶⊥2 |

∑︁
𝛼∈𝐶⊥2

|𝑐 + 𝛼⟩ . (2.100)

F𝑞-Qudits using F𝑝-qudits

We would like to construct our qudits out of smaller qudits over the base field. We
will use |𝜓⟩𝑞 to denote a qudit state with local dimension 𝑞 (when different from 2).
For a basis 𝑁 , we will use the following representation of the qudit state

|𝑥⟩ (𝑁)𝑞 =

���𝑥 (𝑁)1

〉 ���𝑥 (𝑁)2

〉
. . .

���𝑥 (𝑁)
𝑙

〉
. (2.101)

When 𝑁 is self-dual, we have that tr(𝑥𝑦) = ∑
𝑖∈[𝑙] 𝑥

(𝑁)
𝑖
𝑦
(𝑁)
𝑖

. This simplifies certain
Clifford gates. In particular,

𝑋 (𝑞) (𝑎) = 𝑋 (𝑝) (𝑎1) ⊗ 𝑋 (𝑝) (𝑎2) ⊗ · · · ⊗ 𝑋 (𝑝) (𝑎𝑚), (2.102)

𝑍 (𝑞) (𝑎) = 𝑍 (𝑝) (𝑎1) ⊗ 𝑍 (𝑝) (𝑎2) ⊗ · · · ⊗ 𝑍 (𝑝) (𝑎𝑚), (2.103)

CZ(𝑞) (𝑎) = CZ(𝑝) ⊗ CZ(𝑝) ⊗ · · · ⊗ CZ(𝑝) , (2.104)

CNOT(𝑞) (𝑎) = CNOT(𝑝) ⊗ CNOT(𝑝) ⊗ · · · ⊗ CNOT(𝑝) . (2.105)

We will leave the construction of CCZ(𝑞) using CCZ(𝑝) to a later section. For the
case 𝑞 = 2, we omit the subscript/superscript.

Punctured quantum Reed-Solomon code
Fix 𝑞 = 2𝑙 and parameters 𝑘, 𝑚, 𝑠 ∈ N such that 𝑞/3 ≥ 𝑘 ≥ 𝑚 ≥ 𝑠 > 0 and 2𝑘 ≤ 𝑞−𝑚.
Fix an set of coordinates 𝐴 ⊆ F𝑞 of size 𝑘 . We further will introduce a new set of
coordinates 𝐵 ⊆ 𝐴 such that |𝐵 | = 𝑠. Fix an evaluation set 𝑀 = {𝛼𝑖}𝑞−𝑠𝑖=1 = F𝑞 \ 𝐵.

Definition 2.5.9 (Punctured quantum Reed-Solomon Code). We begin by defining
two sets of polynomials

P1 = F𝑞 [𝑥]<𝑘 , (2.106)

P⊥2 = {𝑃 ∈ F𝑞 [𝑥]<𝑚 | 𝑃(𝐵) = 0}. (2.107)

Define 𝐶1 = 𝜙𝑀 (P1) to be the evaluations of P1 on 𝑀 and 𝐶⊥2 = 𝜙𝑀 (P⊥2) to be the
evaluations of P⊥2 on 𝑀 . The punctured quantum Reed-Solomon code is defined to
be C = CSS(𝐶1, 𝐶2).

102

We will pick a basis parameterized by 𝑚 = (𝑚1, 𝑚2, . . . , 𝑚 |𝐴|) ∈ F|𝐴|𝑞 defined in
the following way: For any 𝑚, the corresponding codeword 𝑐𝑚 is 𝜙𝑀 (𝑝 (𝐴)𝑚), the
evaluation of the corresponding message polynomial with systematic encoding
positions 𝐴. The code state |𝑚⟩ is then defined to be

|𝑚⟩ = 1√︃
|𝐶⊥2 |

∑︁
𝛼∈𝐶⊥2

|𝑐𝑚 + 𝛼⟩ =
��𝑐𝑚 + 𝐶⊥2 〉

. (2.108)

Before proving properties of this code, it is helpful to first compute 𝐶2:

Lemma 2.5.10. 𝐶2 is the evaluations of P2 = F𝑞 [𝑥]<𝑞−𝑚 on 𝑀 .

Proof. We first write the orthogonal complement of 𝐶⊥2 as the evaluations of the set
of polynomials:

P′2 = {𝑃 ∈ F𝑞 [𝑥]<𝑞 | ∀𝑄 ∈ P⊥2
∑︁
𝛼∈𝑀

𝑃(𝛼)𝑄(𝛼) = 0}. (2.109)

Clearly, 𝐶2 = 𝜙𝑀 (P′2). We will show that this set is F𝑞 [𝑥]<𝑞−𝑚. First note that for
any non-zero 𝑄 ∈ P⊥2 , it is divisible by the polynomial 𝑅 =

∏
𝑏∈𝐵 (𝑥 − 𝑏), so there is

a unique polynomial 𝑄′ ∈ F𝑞 [𝑥] such that 𝑄 = 𝑄′𝑅 and deg𝑄′ = deg𝑄 − 𝑠. 𝑅 is
zero on 𝐵, so we may extend the sum to write P′2 as

P′2 = {𝑃 ∈ F𝑞 [𝑥]<𝑞 | ∀𝑄′ ∈ F𝑞 [𝑥]<𝑚−𝑠
∑︁
𝛼∈F𝑞

𝑃(𝛼)𝑄′(𝛼)𝑅(𝛼) = 0}. (2.110)

In the condition, if deg 𝑃 ≥ 𝑞 − 𝑚, then there exists some 𝑄′ ∈ F𝑞 [𝑥]<𝑚−𝑠 such that
deg 𝑃+deg𝑄′+ 𝑠 = 𝑞−1, making the sum nonzero by Proposition 2.5.6. Otherwise,
the sum is zero, so

P′2 = F𝑞 [𝑥]<𝑞−𝑚 ≡ P2. (2.111)

□

Proposition 2.5.11. C is a quantum CSS code with parameters

[[𝑞 − 𝑠, 𝑘 − 𝑚 + 𝑠,min(𝑞 − 𝑘, 𝑚) − 𝑠 + 1]]𝑞 .

Proof. We have the degree bounds 𝑘 ≤ 𝑚 so P⊥2 ⊆ P1 implying 𝐶⊥2 ⊆ 𝐶1. Thus C
is a valid quantum CSS code. By dimension counting, C encodes 𝑘 − 𝑚 − 𝑠 qubits.

For the distance, recall that the distance of CSS(𝐶1, 𝐶2) is lower bounded by the
minimum of the distances of 𝐶1 and 𝐶2. 𝐶1 is the puncturing of RS(𝑞, 𝑘) on 𝑠
coordinates and so has distance at least (𝑞 − 𝑘 + 1) − 𝑠. Likewise, by Lemma 2.5.10,
𝐶2 is the puncturing of RS(𝑞, 𝑞 − 𝑚) and has distance at least (𝑚 + 1) − 𝑠. □

103

CCZ for punctured quantum Reed-Solomon codes

CCZ requires us to analyze the coordinate-wise product of codewords. In particular,
we will encounter products of the form ⟨𝐶1 ∗ 𝐶1, 𝐶

⊥
2 ⟩ that may cause the action of

CCZ⊗𝑛 to be non-constant on cosets of 𝐶⊥2 . A sufficient condition for these products
to vanish is given by the following lemma.

Lemma 2.5.12. 𝐶∗21 ⊆ 𝐶2.

Proof. Fix two codewords 𝑐1, 𝑐2 ∈ 𝐶1, and let 𝑝1, 𝑝2 ∈ P1 be the corresponding
polynomials such that 𝑝1 = 𝜙−1

𝑀
(𝑐1) and 𝑝2 = 𝜙−1

𝑀
(𝑐2). Then, 𝑐1 ∗ 𝑐2 = 𝜙𝑀 (𝑝1𝑝2) is

the evaluation of 𝑝1𝑝2 on𝑀 , and deg(𝑝1𝑝2) ≤ deg 𝑝1+deg 𝑝2 < 2𝑘 . By assumption
on the parameters, 2𝑘 ≤ 𝑞 − 𝑚. It follows that 𝑝1𝑝2 ∈ P2, so 𝑐1 ∗ 𝑐2 is an element
of 𝐶2 by Lemma 2.5.10. □

Before proceeding to multiplication of codewords of 𝐶1, it is convenient to first start
with multiplication of the interpolation polynomials.

Lemma 2.5.13. For three interpolation polynomials

∑︁
𝑥∈𝑀

ℓ
(𝐴)
𝑎 (𝑥)ℓ(𝐴)𝑏

(𝑥)ℓ(𝐴)𝑐 (𝑥) =

−1 𝑎 = 𝑏 = 𝑐 ∈ 𝐵

0 otherwise
. (2.112)

Proof. By construction, the product has degree strictly less than 𝑞 − 1, so it follows
from Proposition 2.5.6 that∑︁

𝑥∈F𝑞
ℓ
(𝐴)
𝑎 (𝑥)ℓ(𝐴)𝑏

(𝑥)ℓ(𝐴)𝑐 (𝑥) = 0 . (2.113)

This allows us to break up the sum into the evaluated coordinates and the removed
coordinates for which we have good control over the values of the interpolation
polynomials:∑︁

𝑥∈𝑀
ℓ
(𝐴)
𝑎 (𝑥)ℓ(𝐴)𝑏

(𝑥)ℓ(𝐴)𝑐 (𝑥) = −
∑︁
𝑥∈𝐵

ℓ
(𝐴)
𝑎 (𝑥)ℓ(𝐴)𝑏

(𝑥)ℓ(𝐴)𝑐 (𝑥). (2.114)

By construction of the interpolation polynomials, if 𝑎 = 𝑏 = 𝑐 ∈ 𝐵, the summand
vanishes on all elements of 𝐵 except for one element where it takes the value 1. In
any other case, the product is identically zero on 𝐵. □

This straightforwardly allows us to multiply codewords.

104

Corollary 2.5.14. Let 𝑝 (𝐴)𝑚1 (𝑥), 𝑝
(𝐴)
𝑚2 (𝑥), and 𝑝 (𝐴)𝑚3 (𝑥) be three message polynomials

with the corresponding codewords of 𝐶1 denoted by 𝑐1, 𝑐2, and 𝑐3. Then∑︁
𝑖∈𝑀
(𝑐1)𝑖 (𝑐2)𝑖 (𝑐3)𝑖 = −

∑︁
𝑖∈𝐵
(𝑚1)𝑖 (𝑚2)𝑖 (𝑚3)𝑖 . (2.115)

Proof. We write ∑︁
𝑖∈𝑀
(𝑐1)𝑖 (𝑐2)𝑖 (𝑐3)𝑖 =

∑︁
𝑥∈𝑀

𝑝
(𝐴)
𝑚1 (𝑥)𝑝

(𝐴)
𝑚2 (𝑥)𝑝

(𝐴)
𝑚3 (𝑥), (2.116)

and then use Definition 2.5.3 to expand the message polynomials in terms of the
interpolation polynomials. The result follows after application of Lemma 2.5.13. □

Proposition 2.5.15. For three codestates |𝑚1⟩, |𝑚2⟩, and |𝑚3⟩,

CCZ⊗𝑛 |𝑚1⟩ |𝑚2⟩ |𝑚3⟩ = (−1)tr⟨𝑚
(𝐵)
1 ∗𝑚

(𝐵)
2 ,𝑚

(𝐵)
3 ⟩ |𝑚1⟩ |𝑚2⟩ |𝑚3⟩

≡ CCZ
(𝐵) |𝑚1⟩ |𝑚2⟩ |𝑚3⟩ .

Where, 𝑖 ∈ 1, 2, 3, 𝑚 (𝐵)
𝑖

refers to the restriction of 𝑚𝑖 to the coordinates in 𝐵, and
CCZ

(𝐵)
refers to a logical CCZ acting coordinate-wise on the logical qubits labeled

by coordinates of 𝐵.

Proof. First we expand the definition of codestates (Eq. (2.108)) into a sum over
elements of 𝐶⊥2 . Writing 𝑐𝑖 for the codeword of 𝐶1 corresponding to the evaluations
of 𝑝𝑚𝑖 (𝑥), we have

CCZ⊗𝑛 |𝑚1⟩ |𝑚2⟩ |𝑚3⟩ ∝
∑︁

𝛼,𝛽,𝛾∈𝐶⊥2

(−1)tr⟨(𝑐1+𝛼)∗(𝑐2+𝛽),(𝑐3+𝛾)⟩ |𝑐1 + 𝛼⟩ |𝑐2 + 𝛽⟩ |𝑐3 + 𝛾⟩ .

(2.117)

After distributing star product, using linearity of the inner product, and Lemma 2.5.12,
we find that the phase does not depend on 𝛼, 𝛽, or 𝛾; it is constant on cosets of 𝐶⊥2 .
We can then invoke Corollary 2.5.14.

tr⟨(𝑐1 + 𝛼) ∗ (𝑐2 + 𝛽), (𝑐3 + 𝛾)⟩ = tr⟨𝑐1 ∗ 𝑐2, 𝑐3⟩ (2.118)

= − tr⟨𝑚 (𝐵)1 ∗ 𝑚 (𝐵)2 , 𝑚
(𝐵)
3 ⟩. (2.119)

The result follows after using the field characteristic. □

105

Proof of Theorem 2.5.1

We are now ready to assembly the previous results.

Theorem 2.5.1. For each 𝑞 = 2𝑙 with 𝑙 ≥ 3, there exists a CSS qudit code (punctured
quantum Reed-Solomon code) with parameters[[

3𝑞
4
,
𝑞

4
,

⌊𝑞
3

⌋
− 𝑞

4
+ 1

]]
𝑞

, (2.97)

such that CCZ⊗3𝑞/4
𝑞 acts as logical CCZ𝑞

⊗𝑞/4
on a basis of logical qudits.

Proof. The code is as defined in Definition 2.5.9 with

𝑘 = 𝑚 = ⌊𝑞/3⌋,
𝑠 = 𝑞/4.

These choices satisfy 𝑞/3 ≥ 𝑘 ≥ 𝑚 ≥ 𝑠 > 0 and 2𝑘 ≤ 𝑞 − 𝑚 when 𝑞 = 2𝑙 with 𝑙 ≥ 2.
The code parameters are proven in Proposition 2.5.11 and the logical CCZ is proven
in Proposition 2.5.15. □

Distillation of qubit |CCZ⟩
Having established Theorem 2.5.1, we will use this to construct extremely efficient
magic state distillation for qubits. The magic state we would like to distill is
|CCZ⟩ = CCZ |+⟩ |+⟩ |+⟩. As in the previous section, let 𝑞 = 2𝑙 . Fix a self-dual
basis 𝑁 = {𝛼𝑖}𝑖∈[𝑙] for F𝑞 over F2.

Qubits as F𝑞-qudits

Our codes have only transversal CCZ(𝑞) , so we will need a means to implement the
operation using |CCZ⟩ and to convert the final output states to |CCZ⟩.

Define the states

|+⟩𝑞 =
1
√
𝑞

∑︁
𝑥∈F𝑞
|𝑥⟩𝑞 ,

���CCZ(𝑞)
〉
𝑞
= CCZ(𝑞) |+⟩𝑞 |+⟩𝑞 |+⟩𝑞 . (2.120)

The conversion of
���CCZ(𝑞)

〉
𝑞

to |CCZ⟩ is straightforward in the appropriate basis.
We first begin by constructing a circuit to change the basis of the field extension.
This will give us greater flexibility when implementing operations later.

106

Proposition 2.5.16 (Change of basis). For two bases 𝑁 = {𝛼𝑖}𝑖∈[𝑙] and 𝑀 = {𝛽𝑖}𝑖∈[𝑙]
for F𝑞 over F2, there is a unitary that maps

|𝑥⟩ (𝑁) ↦→ |𝑥⟩ (𝑀) (2.121)

for all 𝑥 ∈ F𝑞 using depth 𝑂 (𝑙), 𝑂 (𝑙2) CNOT gates, and 𝑙 input ancilla qubits
initialized to |0⟩.

Proof. 𝑁 and 𝑀 are bases for F𝑞 over F2, so there exists an invertible matrix 𝐴 ∈ F𝑙×𝑙2
such that for 𝑥 ∈ F𝑞,

𝑥
(𝑀)
𝑗

=
∑︁
𝑖∈[𝑙]

𝐴𝑖 𝑗𝑥
(𝑁)
𝑖
.

The initial state is |𝑥⟩ (𝑁) |0⟩⊗𝑙 . For every non-zero entry (𝑖, 𝑗) ∈ [𝑙] × [𝑙] of 𝐴
perform a CNOT controlled on the 𝑗-th qubit of the first register and targeted on
the 𝑖-th qubit of the second register. This maps |𝑥⟩ |0⟩⊗𝑙 ↦→ |𝑥⟩ |𝑦⟩. Then, for every
non-zero entry (𝑖, 𝑗) ∈ [𝑙] × [𝑙] of 𝐴−1 perform a CNOT controlled on the 𝑗-th qubit
of the second register and targeted on the 𝑖-th qubit of the first register. This maps
|𝑥⟩ |𝑦⟩ ↦→

��𝑥 + 𝐴−1𝑦
〉
|𝑦⟩ = |0⟩⊗𝑙 |𝑦⟩. □

Lemma 2.5.17. Let 𝑀 = {𝛼𝑖}𝑖∈[𝑙] be a basis for F𝑞 over F2 such that 𝛼1 = 1. Then,

there exists a circuit to convert
���CCZ(𝑞)

〉 (𝑀)
𝑞

to |CCZ⟩ using 3(𝑙 − 1) measurements
and 3 classically controlled CZ and 𝑍 gates.

Proof. Since {𝛼𝑖}𝑖∈[𝑙] form a basis, there exists a 𝑗 such that tr
(
𝛼 𝑗

)
= 1 (if 𝑙 is odd

then 𝛼1 = 1 works). Using F2-linearity of the trace, for 𝑥, 𝑦, 𝑧 ∈ F𝑞, we can separate
the product into

tr(𝑥𝑦𝑧) = 𝑥1𝑦1𝑧 𝑗 + tr(. . .), (2.122)

where the omitted terms on the right are at most quadratic in 𝑥1,𝑦1, and 𝑧 𝑗 . Then,
starting with the state���CCZ(𝑞)

〉 (𝑀)
𝑞

=
∑︁

𝑥,𝑦,𝑧∈F𝑞
(−1)tr(𝑥𝑦𝑧) |𝑥⟩ (𝑀) |𝑦⟩ (𝑀) |𝑧⟩ (𝑀) , (2.123)

the computational basis measurement of the last 𝑙 − 1 qubits in each of the first
two registers and of the qubits [𝑙]\{ 𝑗} in the third register gives the measurement
outcomes {𝑥𝑖}𝑙𝑖=2, {𝑦𝑖}𝑙𝑖=2, and {𝑧𝑖}𝑖≠ 𝑗 . The post measurement state is

1
23/2

∑︁
𝑥1,𝑦1,𝑧 𝑗∈F2

(−1)𝑥1𝑦1𝑧 𝑗+𝑝(𝑥1,𝑦1,𝑧 𝑗) |𝑥1⟩ |𝑦1⟩
��𝑧 𝑗 〉 , (2.124)

107

where 𝑝(𝑥1, 𝑦1, 𝑧 𝑗) is a polynomial over F2 that is at most quadratic in 𝑥1,𝑦1, and 𝑧 𝑗 .
The coefficients can be classically computed from the measurement outcomes, so the
phases can be fixed by application of CZ and 𝑍 such that the final state is |CCZ⟩. □

We can also implement CCZ(𝑞) using qubit CCZ gates.

Lemma 2.5.18. CCZ(𝑞) has an implementation using at most 𝑙3 CCZ gates.

Proof. For 𝑥, 𝑦, 𝑧 ∈ F𝑞 consider

CCZ(𝑞) |𝑥⟩ (𝑁) |𝑦⟩ (𝑁) |𝑧⟩ (𝑁) = (−1)tr(𝑥𝑦𝑧) |𝑥⟩ (𝑁) |𝑦⟩ (𝑁) |𝑧⟩ (𝑁) . (2.125)

tr(𝑥𝑦𝑧) is a degree-3 polynomial in the coefficients of the basis expansion. Let
𝑁 = {𝛼𝑖}𝑖∈[𝑙] . Then we may expand tr(𝑥𝑦𝑧) as

tr(𝑥𝑦𝑧) =
∑︁

𝑖, 𝑗 ,𝑘∈[𝑙]
𝑥
(𝑁)
𝑖
𝑦
(𝑁)
𝑗
𝑧
(𝑁)
𝑘

tr
(
𝛼𝑖𝛼 𝑗𝛼𝑘

)
. (2.126)

For every triple (𝑖, 𝑗 , 𝑘) for which tr
(
𝛼𝑖𝛼 𝑗𝛼𝑘

)
is non-zero, we perform CCZ between

the 𝑖-th qubit of the 𝑥 register, the 𝑗-th qubit of the 𝑦 register, and the 𝑘-th qubits of
the 𝑧 register. □

Single-step state distillation

We begin by giving the construction for a single round of magic state distillation.
Let 𝑁 be a self-dual basis, and 𝑀 be a polynomial basis. Fix a field size 𝑞 = 2𝑙 and
a quantum code C with parameters [[𝑛, 𝑘, 𝑑]]𝑞 from Theorem 2.5.1. Let E be the
encoding map for C.

For 𝑑, 𝑛 ∈ N, define S𝑛
𝑑
= {𝑥 ⊆ [𝑛] | |𝑥 | = 𝑑} ⊆ 𝑃([𝑛]) to be all subsets of [𝑛] of

size 𝑑.

Proposition 2.5.19. If C is a 𝑡-error correcting code, then the output of Algorithm 2
is |CCZ⟩⊗𝑘 if the input is𝑊𝑛

𝑡+1 •𝑊
𝑙3

1 •𝑊
3
1 deviated from |𝐶𝐶𝑍⟩⊗𝑛𝑙3 .

Proof. In the self-dual basis 𝑁 , qudit CNOT can be applied using transversal qubit

CNOT. The procedure first prepares the logical code state E
((
|+⟩ (𝑁)𝑞

)⊗𝑘)⊗3
. For

each of the 𝑛 positions, we consume 𝑙3 |𝐶𝐶𝑍⟩ states to perform CCZ(𝑞) using
Lemma 2.5.18. If any one of these states is faulty, then an error is incurred
on the position. However, the code is 𝑡-error correcting, so as long as at most

108

Algorithm 2 Magic state distillation algorithm
Input: 𝑛 · 𝑙3 |CCZ⟩, 3𝑛 · 𝑙 |+⟩, and 3𝑛 · 𝑙 |0⟩
Data: 3𝑛 qubit register 𝐴
Output: 𝑘 |CCZ⟩

1:
Initialize register 𝐴 with input state 𝐴←

(
|+⟩ (𝑁)𝑞

)⊗3𝑛
= |+⟩⊗3𝑛𝑙

2: 𝜎1 ← measurements of checks (sequentially) of the 3 blocks of register 𝐴
3: 𝑈𝑐𝑜𝑟𝑟,1 ← operator𝑈𝑐𝑜𝑟𝑟,1 such that𝑈𝑐𝑜𝑟𝑟,1 corrects 𝜎1
4: Apply𝑈𝑐𝑜𝑟𝑟,1 to register 𝐴
5:

Consume |CCZ⟩⊗𝑛·𝑙3 to apply
(
CCZ(𝑞)

)⊗𝑛
to register 𝐴

6: 𝜎2 ← measurements of checks of 𝐶 on the 3 blocks of register 𝐴
7: 𝑈𝑐𝑜𝑟𝑟,2 ← operator𝑈𝑐𝑜𝑟𝑟,2 such that𝑈𝑐𝑜𝑟𝑟,2 corrects 𝜎2
8: Apply𝑈𝑐𝑜𝑟𝑟,2 to register 𝐴
9: Apply E−1 to register 𝐴

10: Use 3𝑛 · 𝑙 |0⟩ as space to apply change of basis |CCZ⟩ (𝑁)𝑞 → |CCZ⟩ (𝑀)𝑞 to 𝐴
11: Apply |CCZ⟩ (𝑀)𝑞 to |CCZ⟩ conversion to 𝐴
12: Output 𝐴

𝑡 positions are faulty, the state is successfully corrected to the encoded logical

E⊗3

((���CCZ(𝑞)
〉 (𝑁)
𝑞

)⊗𝑘)
. We apply (E−1)⊗3 to get

(���CCZ(𝑞)
〉 (𝑁)
𝑞

)⊗𝑘
We then can

then use the |0⟩ ancillas to convert this state to
(���CCZ(𝑞)

〉 (𝑀)
𝑞

)⊗𝑘
(Proposition 2.5.16).

This basis allows us to use Lemma 2.5.17 to obtain |CCZ⟩⊗𝑘 . □

Remark 2.5.20. This is a magic state distillation method for qubits for which the
magic state distillation exponent

𝛾 ≡ log(𝑛/𝑘)
log 𝑑

=

log
(
3 log3

2 𝑞
)

log(𝑞/12) = 𝑂

(
log 𝑙
𝑙

)
(2.127)

can be made arbitrarily small.

Lemma 2.5.21. Fix two functions 𝑓 , 𝑔 : N ↦→ R such that and consider the family of
functions defined as

𝑊𝑖 (𝑥) = (𝑓 (𝑖)𝑊𝑖−1(𝑥))𝑔(𝑖) ,
𝑊0(𝑥) = 𝑥

if 𝑓 and 𝑔 satisfy the asymptotic bound
log(𝑓 (𝑖))∏𝑖−1
𝑗=1 𝑔(𝑗)

= 𝑂𝑖→∞(𝑖−2) (2.128)

109

then there exists a constant 𝛽 > 0 such that

𝑊𝑖 (𝑥) ≤ (𝛽𝑥)
∏𝑖
𝑗=1 𝑔(𝑗) (2.129)

for 𝑥 ∈ [0, 1).

Proof. For 𝐿 ∈ N, define ℎ(𝑖) = ∏𝐿
𝑗=𝑖 𝑔(𝑗), so that𝑊𝐿 (𝑥) has the closed form

𝑊𝐿 (𝑥) =
(
𝐿∏
𝑖=1
(𝑓 (𝑖))ℎ(𝑖)

)
𝑥ℎ(1) . (2.130)

(2.131)

Define ℎ̄(𝑖) = ℎ(1)/ℎ(𝑖) = ∏𝑖−1
𝑗=1 𝑔(𝑗). Then, we bound

𝑊𝐿 (𝑥) = 𝑥ℎ(1) exp

[
ℎ(1)

𝐿∑︁
𝑖=1

log(𝑓 (𝑖))
ℎ̄(𝑖)

]
(2.132)

≤ 𝑥ℎ(1) exp

[
ℎ(1)

∞∑︁
𝑖=1

log(𝑓 (𝑖))
ℎ̄(𝑖)

]
(2.133)

≤ 𝑥ℎ(1) exp [ℎ(1) (const.)] (2.134)

= (𝑥 · (const.))ℎ(𝐿) , (2.135)

where the last line follows for a constant independent of 𝐿 due to the assumption
log(𝑓 (𝑖))∏𝑖−1
𝑗=1 𝑔(𝑗)

= 𝑂𝑖→∞(𝑖−2). □

Proof of Theorem 2.4.8

Theorem 2.4.8 (State distillation procedure for magic states). There exists constants
𝜖∗,𝑀𝑑𝑖𝑠𝑡𝑖𝑙𝑙 ∈ (0, 1), 𝛽Mdistill > 0 and a family indexed by 𝑙 ∈ N of (𝑀𝑙 , 𝐾𝑙 ,A𝑙)-
state distillation procedure for |CCZ⟩ where W(A𝑙 ; 𝑥) ≤ (𝛽Mdistill𝑥) (𝑙+1)! on
𝑥 ∈ [0, 𝜖∗,𝑀𝑑𝑖𝑠𝑡𝑖𝑙𝑙], 𝐾𝑙

𝑀𝑙
= Ω

(
𝑐𝑙

)
, and 𝑀𝑙 = 𝑒Θ(𝑙 log 𝑙) for some absolute constant

𝑐 > 0.

Furthermore, the procedure satisfies:

• The quantum depth is 𝑂 (𝑙4(log 𝑙)3), and the width is 𝑂 (𝑀𝑙).

• The classical computation has total depth 𝑂 (𝑙4).

• 𝑂 (𝑀𝑙) perfect |+⟩ and |0⟩ input states are required

110

• 𝑂 (𝑀𝑙) classically-controlled CZ gates are required

• Otherwise, only CNOT, 𝑍/𝑋 basis measurement, and classically-controlled
Pauli gates are used.

Proof. The proof proceeds nearly identically to the case of distillation of stabilizer
states. For each extension field F𝑞, we pick a self-dual basis over F2. We will
pick a sequence of codes from Theorem 2.5.1 with 𝑞𝑖 = 64 · 2⌈log2 𝑖⌉ , so that
64𝑖 ≤ 𝑞𝑖 ≤ 128𝑖. The 𝑖-th code from the sequence has 𝑛𝑖 = 3𝑞𝑖/4 ≤ 96𝑖, 𝑘𝑖 ≥ 16𝑖,
and is a 𝑡𝑖 = ⌊ 𝑑𝑖−1

2 ⌋ ≥ 𝑖-error correcting code. We parallel the argument from
Lemma 2.4.7: Let �̃�𝑖 = 𝑛𝑖 (log2(𝑞𝑖))3 = 𝑂 (𝑖(log 𝑖)3).

Let 𝑀𝑙 :=
∏𝑙
ℓ=1 �̃�ℓ, and 𝐾𝑙 :=

∏𝑙
ℓ=1 𝑘ℓ.

We start with a set of |CCZ⟩ states indexed by [�̃�𝑙] × · · · × [�̃�1] ≃ [𝑀𝑙]. Iterating
from ℓ = 1 to ℓ = 𝑙, for each 𝐼 ∈ [�̃�𝑙] × · · · × [�̃�ℓ+1] and 𝐽 ∈ [𝑘ℓ−1] × · · · × [𝑘1] we
apply the state distillation procedure Algorithm 2 on the set of states {𝐼} × [�̃�ℓ] × {𝐽}
to get a new set of states with labels {𝐼} × [𝑘ℓ] × {𝐽} (Consuming input ancilla states
and applying CZ). Let S𝑛

𝑑
be the family of all subsets of [𝑛] of size 𝑑. At step ℓ,

Proposition 2.5.19 gives that the output is |CCZ⟩⊗𝑘ℓ if the input is S�̃�ℓ2 • S
3
1 -deviated

from |CCZ⟩⊗�̃�ℓ . We use the fact that, by construction, no two outputs from a single
application of the state distillation procedure are used together in a following state
distillation procedure: If the output of a state distillation in step ℓ is not |CCZ⟩⊗𝑘ℓ ,
then the input is not S�̃�ℓ

𝑡ℓ+1-deviated from |CCZ⟩⊗�̃�ℓ . Since each input is from separate
state distillation procedures, 𝑡 + 1 distinct state distillation procedures at step ℓ − 1
must have had inputs that are not S�̃�ℓ−1

𝑡ℓ−1+1-deviated from |CCZ⟩⊗�̃�ℓ−1 .

Inducting from ℓ = 1, the output of the final iteration is |CCZ⟩⊗𝐾𝑙 if the input is
A𝑙 := S�̃�𝑙

𝑡𝑙+1 • · · · • S
�̃�1
𝑡1+1 • S

3
1 -deviated from |CCZ⟩⊗𝑀𝑙 .

Let 𝑆𝑖 (𝑥) =
(
96 · 73𝑖 log(𝑖)3𝑥

) 𝑖+1
which satisfiesW(S�̃�𝑖

𝑡𝑖+1; 𝑥) ≤ (�̃�𝑖𝑥)𝑡𝑖+1 ≤ 𝑆𝑖 (𝑥)
when 𝑥 ∈ [0, 1/�̃�𝑖]. WhenW(A𝑙−1; 𝑥) ≤ 1/�̃�𝑙 , we can boundW(A𝑙 ; 𝑥) as

W(A𝑙 ; 𝑥) ≤ 𝑆𝑙 ◦ 𝑆𝑙−1 ◦ · · · ◦ 𝑆2 ◦ 𝑆1(3𝑥). (2.136)

This recursion satisfies the preconditions of Lemma 2.5.21,45 so there exists a
constant 𝛽Mdistill (independent of 𝑙) such that

W(A𝑙 ; 𝑥) ≤ (𝛽Mdistill𝑥)
∏𝑙
𝑖=1 (𝑖+1) = (𝛽Mdistill𝑥) (𝑙+1)!. (2.137)

45Lemma 2.5.21 gives a superexponential error suppression at every step of the recursion, so we
do not need to be worried about the polynomially small preconditionW(A𝑙−1; 𝑥) ≤ 1/�̃�𝑙 . It suffices
to take 𝛽Mdistill to be 1/2 the constant promised by Lemma 2.5.21.

111

The three operations with depth 𝜔(1) are the application of E, E−1, and CCZ(𝑞) .
Using a self-dual basis, in step 𝑖, the encoding and unencoding unitiaries have depth
𝑂 (𝑞3

𝑖
) = 𝑂 (𝑖3) while the CCZ(𝑞) has depth 𝑂

(
(log(𝑞𝑖))3

)
= 𝑂

(
(log 𝑖)3

)
, so the

overall depth is at most 𝑂 (𝑙4(log 𝑙)3). A number of ancilla qubits 𝑂 (𝑀𝑙) is needed
to sequentially measure the syndrome, so the total space required is 𝑂 (𝑀𝑙) qubits.

Finally, 𝑀𝑙 ≤
∏𝑙
𝑖=1 𝛼𝑖(log 𝑖)3 = 𝑂

(
𝛼𝑙 𝑙! · 𝑙 (log 𝑙)3

)
for some 𝛼 > 0 and 𝐾𝑙 ≥∏𝑙

𝑖=1 16𝑖 = 16𝑙 𝑙!, so for some 𝑐 > 0,

𝐾𝑙

𝑀𝑙

≥ 16𝑙 𝑙!
𝛼𝑙 𝑙! · 𝑙 (log 𝑙)3

= Ω

(
𝑐𝑙

)
. (2.138)

Classical depth. We now describe a time-efficient decoder for the PQRS code,
which implies to the claimed classical depth. Recall that the X checks correspond
to the code 𝐶⊥2 . According to Lemma 2.5.10, 𝐶2 consists of the evaluations of
F𝑞 [𝑥]<𝑞−𝑚 on a set 𝑀 , where in the proof of Theorem 2.5.1 we set 𝑚 = ⌊𝑞/3⌋ and
𝑀 ⊂ F𝑞 is an evaluation set of size |𝑀 | = 3𝑞/4. Hence, we can apply standard
RS decoders. Here we use the Berlekamp-Welch algorithm (see Theorem 12.1.6
in [GRS22]) which decodes𝐶2 up to error weight ⌊(3𝑞/4−(𝑞−𝑚)+1)/2⌋ = ⌊𝑞/12⌋
in time 𝑂 (𝑞3) (if no codeword is found the decoder outputs FAIL). Similarly, the
Z checks correspond to the code 𝐶⊥1 , where 𝐶1 is F𝑞 [𝑥]<𝑘 evaluated on 𝑀, and
𝑘 = ⌊𝑞/3⌋ is chosen in Theorem 2.5.1’s proof. So X errors can be corrected
with the Berlekamp-Welch algorithm up to error weight ⌊(3𝑞/4 − 𝑘 + 1)/2⌋ =
⌊5𝑞/24⌋.46 It follows that the total classical depth in the 𝑙-level distillation procedure
is

∑𝑙
𝑖=1𝑂 (𝑞3

𝑖
) = ∑𝑙

𝑖=1 𝑖
3 = 𝑂 (𝑙4). □

46Alternatively, we can also use the standard twirling argument in the MSD literature [BK05],
applying the Clifford CCZ(𝑞) (𝑋 (𝑞) (𝑎1)𝑋 (𝑞) (𝑎2)𝑋 (𝑞) (𝑎3)) (CCZ(𝑞))† for randomly chosen 𝑎 ∈ F3

𝑞 ,
to restrict our decoding problem to only Z-type errors.

112

C h a p t e r 3

HIERARCHICAL MEMORIES: SIMULATING QUANTUM LDPC
CODES WITH LOCAL GATES

[PKP25] Christopher A Pattison, Anirudh Krishna, and John Preskill. “Hierarchi-
cal memories: Simulating quantum LDPC codes with local gates”. In:
Quantum 9 (2025). C.A.P. conceived the project and participated in de-
veloping the key ideas and writing the manuscript., p. 1728. doi:https:
//doi.org/10.22331/q-2025-05-05-1728. arXiv: 2303.04798
[quant-ph]. url: https://arxiv.org/abs/2303.04798.

3.1 Introduction
Quantum error-correcting codes encode quantum information in entangled states
over many qubits. They are defined by a set of operators called stabilizer generators.
Errors can accumulate in the state due to imperfect control and interactions with
the environment. Stabilizer generators can be measured using syndrome-extraction
circuits; the outcome of these measurements are called syndromes, classical infor-
mation used to infer corrections to these errors. To minimize the probability of
corrupting information beyond recovery, it is imperative to minimize the points of
failure in the syndrome-extraction circuit. This can be realized by restricting the
number of gates that each qubit interacts with and minimizing the total space-time
volume of this circuit. The extent to which this can be done depends on the choice of
error-correcting code and physical constraints.

Syndrome-extraction circuits are the workhorse of quantum memories, devices that
can reliably store qubits for some fixed duration. In this paper, we are concerned with
designing memories that can encode a growing number of qubits and simultaneously
have a low probability of failure.1 We focus on their design when qubits are embedded
in a two-dimensional lattice and gates are subject to constraints on geometric locality.

Quantum low-density parity-check (LDPC) codes are natural candidates for con-
structing quantum memories. A quantum LDPC code refers to a family {Q𝑡}𝑡 of
{J𝑛(𝑡), 𝑘 (𝑡), 𝑑 (𝑡),Δ𝑞,Δ𝑔K} codes. This notation means that the 𝑡th element in the
family uses 𝑛(𝑡) data qubits to encode 𝑘 (𝑡) logical qubits and has distance 𝑑 (𝑡), i.e. it
is robust to ⌊(𝑑 (𝑡) − 1)/2⌋ Pauli errors. We assume that for all 𝑡, 𝑛(𝑡) > 𝑛(𝑡 − 1). In

1We leave fault-tolerant computation for future work.

https://doi.org/https://doi.org/10.22331/q-2025-05-05-1728
https://doi.org/https://doi.org/10.22331/q-2025-05-05-1728
https://arxiv.org/abs/2303.04798
https://arxiv.org/abs/2303.04798
https://arxiv.org/abs/2303.04798

113

what follows, we wish to focus on the dependence of 𝑘 and 𝑑 as functions of 𝑛. In this
case, we implicitly parameterize the family using the size 𝑛 of the code, i.e. we use
the notation {Q𝑛}𝑛, and we say that we are working with a J𝑛, 𝑘 (𝑛), 𝑑 (𝑛),Δ𝑞,Δ𝑔K
code family.

A quantum LDPC code is one where, for all codes in the code family, every stabilizer
generator only involves at most a constant number Δ𝑔 of qubits, and each qubit is
supported within at most a constant number Δ𝑞 of stabilizer generators. Such codes
can encode a number of qubits that increases with the code size; simultaneously,
the probability of any error on the encoded level is suppressed exponentially in the
distance 𝑑 (𝑛).

Furthermore, the syndrome-extraction circuit 𝐶𝑛 can be efficient as measured by
two figures of merit. The depth of the syndrome-extraction circuit is the number of
timesteps T(𝐶𝑛) it takes to implement. The width of the syndrome-extraction circuit
is the total number of qubits W(𝐶𝑛) it uses (including ancilla qubits in addition to
data qubits). The size or volume of the circuit is the product of the depth and the
width. Building on a result by Kovalev and Pryadko [KP13a], Gottesman [Got14]
constructed fault-tolerant syndrome-extraction circuits that have volume which is
a constant times the volume of the noise-free syndrome-extraction circuit — there
exists a threshold 𝑞 such that if gates fail with fixed probability 𝑝 < 𝑞, the probability
of the circuit failing falls exponentially in the distance 𝑑 (𝑛).

However, realizing this architecture in a 2-dimensional layout is challenging. It
requires high-fidelity gates acting on qubits that may be far apart. Some architectures
might not support such interactions.

It is known that geometric locality severely constrains quantum error-correcting codes
in 2 and 3 (Euclidean) dimensions. The most famous codes that are implemented
using only geometrically-local gates are surface codes [Kit03; BK98] and color codes
[BM06; KB15]. Seminal results by Bravyi and Terhal [BT09], and later by Bravyi,
Poulin and Terhal [BPT10] showed that these codes are optimal for quantum LDPC
codes defined using geometrically-local stabilizers. Subsequently, it was shown that
to implement LDPC codes where the parameters 𝑘 and 𝑑 are both strictly better than
the surface code, we require a growing amount of long-range connectivity [BK21a;
BK21b].

When restricted to using only nearest-neighbor gates in 2 dimensions, Delfosse
et al. [DBT21] proved the following tradeoff for syndrome-extraction circuits for

114

constant-rate LDPC codes: 2

T(𝐶𝑛) = Ω

(
𝑛√︁

W(𝐶𝑛)

)
, (3.1)

where T(𝐶𝑛) is the depth of the syndrome-extraction circuit and W(𝐶𝑛) is the total
number of qubits, data and ancilla, used in the circuit 3. In words, this shows
that given only nearest-neighbor gates to build a syndrome-extraction circuit for
constant-rate LDPC codes, we can choose to minimize either the depth or the width
of 𝐶𝑛, but cannot do both.

This sets the stage for presenting the main questions we address in this paper: does
the family of circuits saturating Equation (3.1) still have a threshold? If not, how
do we modify the code and associated circuit to achieve a threshold as efficiently as
possible? How do we construct the most efficient syndrome-extraction circuits given
access to gates whose range is more than merely nearest neighbor? Can we improve
on the bound in Equation (3.1)?

Our contributions
This paper is centered around the theme of implementing efficient quantum memories.
Our main result is that our proposal, called a hierarchical code, has a threshold and
that it achieves asymptotically better error suppression than the surface code. As it
brings together a few different ideas, we present a short summary of each section
and how to navigate the paper. Although these results build on each other, our
presentation is modular — readers ought to be able to proceed to their section of
choice after reading this overview and Section 3.2 where we define all the concepts
required to formally state our results. (The statements of the main theorems of each
section are only presented informally below.)

Section 3.3 : Permutation routing on graphs Connectivity beyond nearest-
neighbor interactions is being explored in many architectures. There is evidence
that some architectures can support gates of range 𝑅 where 𝑅 can be large [Leu+19;
Per+21]. Motivated by these developments, we ask: given nearest-neighbor Clifford
gates and SWAP gates of range 𝑅, can we reduce the depth of the syndrome-extraction

2The bound applies to classes of codes that are called locally expanding. The exact definition of
locally-expanding codes is not relevant; the interested reader is pointed to the paper by Delfosse et al.
[DBT21]. For our purposes, it includes some important classes of quantum LDPC codes such as
hypergraph product codes [TZ14] and good quantum LDPC codes [BE21; PK21a; LZ22b; LH22].

3For an explanation of 𝑂 (·), Θ(·) and Ω(·) notation, please refer to Appendix 3.9.

115

circuit for constant-rate LDPC codes? To this end, we will permute qubits to bring
them within range to apply an entangling gate. This is expressed as a permutation
routing, a task on a graph 𝐺 = (𝑉, 𝐸) specified by a permutation 𝛼 : 𝑉 → 𝑉 . In this
task, two vertices labeled 𝑢 and 𝑣 connected by an edge (𝑢, 𝑣) are allowed to exchange
labels within each step. The objective is to ensure that all labels match destinations
𝛼(𝑢) while minimizing the total time required. Permuting vertices in parallel is
non-trivial—the paths along which one permutes different pairs can overlap and
thereby require more time. Section 3.3 reviews a permutation routing algorithm due
to Annexstein and Baumslag [AB90]. This algorithm yields a permutation routing
on a product of two graphs given permutation routings on each of the input graphs.
In Section 3.3, we build on this algorithm to permute vertices on an 𝐿 × 𝐿 lattice
where two vertices separated by a distance 𝑅 are connected by an edge using a sparse
subgraph. The main technical result of this section is the following existence result.

Theorem 3.1.1 (Permutation routing). For 𝑅 even, there is an efficient construction
of a degree-12 graph𝐺 = (𝑉, 𝐸) whose vertex set𝑉 is identified with an 𝐿× 𝐿 lattice
with edges of length at most 𝑅. Given a permutation 𝛼 : 𝑉 → 𝑉 , a permutation
routing implementing 𝛼 can be performed in depth 3𝐿/𝑅 +𝑂 (log2 𝑅).

While it is itself not the main result of our paper, it will be used in service of proving
Theorem 3.1.2 which demonstrates the existence of efficient syndrome-extraction
circuits given SWAP gates of range up to 𝑅 (but not all gates need to have length
equal to 𝑅). This section is entirely technical and only discusses graph properties
and permutation routings.

Section 3.4 and Section 3.5: Hierarchical codes & the bilayer architecture
Given access to only nearest-neighbor gates, Delfosse et al. present some evidence
against the existence of a threshold if one were to permute qubits to bring them within
range to perform a CNOT (see Figure 2 of [DBT21]). In particular, in the setting
where W(𝐶𝑛) = Θ(𝑛) and T(𝐶𝑛) = Θ(

√
𝑛), it appears too many errors accumulate

before we can complete executing the syndrome-extraction circuit.

We circumvent this problem using code concatenation. We concatenate a constant-
rate J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K LDPC code {Q𝑛} with a J𝑑2

ℓ
, 1, 𝑑ℓK rotated surface code RSℓ to

obtain the hierarchical code {H𝑁 } with parameters denoted J𝑁, 𝐾, 𝐷K. This means
that each qubit of the syndrome-extraction circuit for the LDPC code Q𝑛, henceforth
referred to as the “outer code”, is itself the logical qubit of a rotated surface code RSℓ,
which we refer to as the “inner code” or sometimes as a “tile.” As a rotated surface

116

code can suppress errors exponentially in 𝑑ℓ, we can suppress errors long enough to
complete syndrome measurements of the outer quantum LDPC code using relatively
small inner codes. The lattice length 𝑑ℓ of the inner code only scales logarithmically
in the size of the outer LDPC code, i.e. 𝑑ℓ = Θ(log(𝑛)). Here ℓ indexes the qubits in
the rotated surface code, ℓ2 = 2𝑑2

ℓ
− 1. Section 3.4 is dedicated to the construction

of syndrome-extraction circuits 𝐶H
𝑁

corresponding to H𝑁 . The hierarchical code
family {H𝑁 } is not LDPC: The stabilizer generators for the outer code act on a
number of physical qubits that scales with the size 𝑑ℓ of the inner code. However,
local operations are sufficient to implement the corresponding syndrome-extraction
circuit 𝐶H

𝑁
. The main result of this section is summarized in the following theorem.

Theorem 3.1.2. The J𝑁, 𝐾, 𝐷K hierarchical codeH𝑁 is constructed by concatenating
an outer code, a constant-rate J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K quantum LDPC code Q𝑛, and an
inner code, a rotated surface code RSℓ where 𝑑ℓ = Θ(log(𝑛)). Let 𝜌 > 0 and
𝛿 ≥ 1/2, such that 𝑘 = 𝜌 · 𝑛 and 𝑑 = Θ(𝑛𝛿). The codeH𝑁 has parameters

𝐾 (𝑁) = Ω

(
𝑁

log2(𝑁)

)
, 𝐷 (𝑁) = Ω

(
𝑁𝛿

log2𝛿−1 [𝑁/log(𝑁)]

)
.

There exists an explicit and efficient construction of an associated family of syndrome-
extraction circuits 𝐶H

𝑁
constructed using only local Clifford operations and SWAP

gates of range 𝑅 such that

W(𝐶H𝑁) = 𝑂 (𝑁) , T(𝐶H𝑁) = 𝑂
(√
𝑁

𝑅

)
.

Our construction works for all values of 𝛿 > 0; we choose 𝛿 ≥ 1/2 to make theorem
statements simpler. Before describing how the circuit𝐶H

𝑁
is constructed, we motivate

why it is interesting—it has a threshold.

We work in a model where errors occur in a stochastic manner. We declare a logical
failure if any of the 𝐾 encoded qubits fail. More generally, we declare failure if
any logical error occurs on the code space. The main result of Section 3.5 is the
following theorem.

Theorem 3.1.3 (Informal). Consider the J𝑁, 𝐾, 𝐷K family of hierarchical codes
H𝑁 and the associated family of syndrome-extraction circuits 𝐶H

𝑁
. Suppose the

outer code Q𝑛 has constant rate 𝑘 = 𝜌𝑛 and distance 𝑑 (𝑛) = Θ(𝑛𝛿). If we repeat
the syndrome-extraction circuit 𝐶H

𝑁
for 𝑑 (𝑛) rounds, then there exists a threshold

𝑞 ∈ (0, 1] corresponding to 𝐶H
𝑁

such that, if each gate fails with fixed probability

117

0 < 𝑝 < 𝑞, then the probability of logical failure under minimum-weight decoding,
𝑝H (𝑁), obeys

𝑝H (𝑁) ≤ exp
(
−𝑐H ·

𝑁𝛿

log2𝛿 (𝑁)

)
,

for some positive number 𝑐H independent of 𝑁 .

The theorem is only stated informally here because we have not yet defined the
noise model with respect to which this result holds. We will consider a locally
decaying error model to account for correlated errors that may occur in a circuit.
This error model is defined in Section 3.2. Section 3.5 is dedicated to a proof of
the existence of a threshold. We build on Gottesman’s proof of the existence of a
threshold for syndrome-extraction circuits (Theorem 4 of [Got14]). The central idea
is the requirement that the probability of failure for a qubit per round of syndrome
extraction, denoted 𝑝round, remains a sufficiently small constant. This is reviewed in
Section 3.2. Gottesman’s result was based on syndrome-extraction circuits for LDPC
codes that have constant depth. As Equation (3.1) highlights, this is not possible
when subject to locality constraints. We study the dependence of 𝑝round on the circuit
depth in Section 3.5. In Section 3.5, we show that ℓ = Θ(log(𝑛)) is sufficient for
𝐶H
𝑁

to have a threshold.

As we ask to minimize circuit width W(𝐶H
𝑁
) and subject the circuit to locality

constraints, we pay a price — in addition to the growing depth, the number of
encoded qubits 𝐾 (𝑁) and distance 𝐷 (𝑁) are suppressed by polylogarithmic factors
in 𝑛 relative to the outer code Q𝑛 which has constant rate and distance 𝑑 (𝑛) = Θ(𝑛𝛿).
Furthermore, for fixed gate error rates 𝑝 ∈ [0, 1], the sub-threshold scaling of the
logical error rate 𝑝H (𝑁) of {H𝑁 } is subexponential, but superpolynomial, in the
distance 𝐷 (𝑁); for any positive constants 𝛼, 𝛽, the logical failure probability 𝑝H (𝑁)
vanishes faster than any polynomial function 𝑁−𝛽 but slower than any exponential
function exp(−𝛼 · 𝑁):

𝑝H (𝑁)
𝑁−𝛽

𝑁→∞−−−−→ 0 ,
𝑝H (𝑁)

exp(−𝛼 · 𝑁)
𝑁→∞−−−−→ ∞ .

Having motivated why we are interested inH𝑁 , we return to the construction of 𝐶H
𝑁

.
In Section 3.4, we propose a novel bilayer architecture to implement it. We begin
the section by presenting the syndrome-extraction circuit 𝐶𝑛 for the constant-rate
J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K LDPC code. Physical qubits are arranged in two parallel layers, each

118

a lattice of side length approximately 𝐿 = Θ(
√
𝑛). To obtain the syndrome-extraction

circuit 𝐶H
𝑁

for the concatenated code, each of the W qubits in 𝐶Q𝑛 is replaced by a
rotated surface code.

In Section 3.4, we describe how to arrange W = W(𝐶Q𝑛) surface codes RSℓ in
a bilayer architecture. Each layer now has side length approximately 2𝐿ℓ qubits
to accommodate the tiles. An instance of a single layer is shown in Figure 3.1
(a). We assume access to nearest-neighbor physical Clifford operations and SWAP
gates of range 𝑅 within a layer and Clifford operations between adjacent qubits in
different layers. These physical qubits are aggregated into J𝑑2

ℓ
, 1, 𝑑ℓK codes RSℓ. See

Figure 3.1 (b). There are 2𝐿2 tiles in total. Even though we are only implementing a
quantum memory, we still need to understand how to perform a limited set of logical
operations on tiles to implement the syndrome-extraction circuit for the outer code.
The advantage of the bilayer architecture is that it allows for transversal CNOT to
implement logical CNOT. We propose a new technique to perform logical SWAP
operations between tiles. This yields all required logical Clifford operations between
tiles to perform syndrome-extraction for the outer code.

We note that the existence of a threshold does not depend on using the bilayer
architecture. For example, tiles can be arranged in a single layer and Clifford
gates can be implemented via lattice surgery [Lit19; HFDV12]. For an alternative
implementation in the context of measurement-based quantum computation, see
[Bom+21]. Although we do not prove it here, it is possible to show that a threshold
exists also in this setting using similar techniques.

The circuits𝐶H
𝑁

are constructed such that each lattice position remains connected to a
fixed and constant-sized set of other lattice positions for any 𝑅 = 𝜔(1). Furthermore,
the connectivity does not change dynamically over the course of the circuit. This
way, the wiring can be decided ahead of time.

Section 3.6 : Comparisons to surface code Finally, we compare the hierarchical
memoryH𝑁 with a simple memory that only uses rotated surface codes. At the outset,
it may seem unclear whether the use of extra resources to execute the constant-rate
LDPC code’s syndrome-extraction circuit can be better spent simply building better
surface codes which are ideally suited for 2-dimensional local interactions. We let
{B𝑀} refer to the basic encoding where each logical qubit is encoded in a separate
surface code; for some distance 𝑑𝑀 , we let B𝑀 be the 𝐾-fold product of the surface
code, i.e. B𝑀 = RS⊗𝐾

ℓ𝑀
. The index 𝑀 represents the total number of qubits in this

119

(a) (b)

Figure 3.1: The bilayer architecture used to implement the syndrome-extraction
circuit 𝐶H

𝑁
for the hierarchical codeH𝑁 . (a) represents a single layer of the bilayer

architecture. Colored dots represent syndrome qubits and gray dots represent data
qubits. Transparent dots represent inactive qubits. At any given timestep, the qubits
that participate in the circuit are depicted as opaque dots and form a lattice of side
length 𝐿ℓ; its location within the larger lattice can shift relative to the second layer.
This is used to facilitate logical Clifford operations. (b) represents parallel tiles of
distance 𝑑ℓ. Each tile represents an outer qubit of the hierarchical code construction.
Light gray dots will be used to facilitate Clifford operations but are not used in the
syndrome-extraction circuit for RSℓ.

encoding, i.e. 𝑀 = Θ(𝐾𝑑2
𝑀
). To contrastH𝑁 andB𝑀 , we present both an asymptotic

comparison as well as numerical estimates based on some conservative assumptions.

Theorem 3.1.4 (Informal). LetH𝑁 be a specific J𝑁, 𝐾, 𝐷K hierarchical code family
such that the (outer) constant-rate LDPC code Q𝑛 has distance 𝑑 = Θ(𝑛𝛿). Let B𝑀
be the basic encoding RS⊗𝐾

ℓ𝑀
that encodes 𝐾 qubits in separate rotated surface codes

of distance 𝑑𝑀 . Let 𝐶B
𝑀

be the corresponding family of syndrome-extraction circuits
for B𝑀 . Let 𝑝B (𝑀) denote the logical failure probability under minimum-weight
decoding for B𝑀 where we declare failure if any logical qubit fails. Suppose the gate
error rate 𝑝 is below the thresholds for both the basic encoding and the hierarchical
code. To achieve 𝑝B (𝑀) < 𝑝H (𝑁), we require

W(𝐶B𝑀) = Ω

[(
𝑁

log(𝑁)

)1+2𝛿
]
, T(𝐶B𝑀) = Ω

[(
𝑁

log2(𝑁)

)𝛿]
.

We can compare this with parameters for 𝐶H
𝑁

from Theorem 3.1.2. For all 𝛿 > 0,
the width W of 𝐶H

𝑁
is less than that of 𝐶B

𝑀
. Furthermore, if the outer code has a

single-shot decoder, i.e. if a constant number of applications of 𝐶H
𝑁

are sufficient to

120

achieve a threshold, then the depth T of 𝐶H
𝑁

is also less than that of 𝐶B
𝑀

. Efficient
single-shot decoders are known to exist for constant-rate LDPC codes [LTZ15;
FGL18a; FGL18b].

Having said this, it is unclear whether this advantage manifests for practically-relevant
code sizes and error rates. To make such a comparison, we use numerical estimates.
We choose the size 𝑀 = 𝑀 (𝑁) such that the syndrome-extraction circuits for the
hierarchical schemeH𝑁 and the basic encoding B𝑀 use the same number of physical
qubits. Fixing the total number of qubits in this manner, we look for a crossover
point, the gate error rate 𝑞0 at which the hierarchical code achieves a lower logical
failure rate than the basic encoding.

We estimate the circuit-level failure rate using some assumptions about the sub-
threshold scaling of the logical failure rate for LDPC codes. We assume the threshold
of the surface code is 10−2 and the threshold for constant-rate LDPC codes under
circuit-level noise is 10−3. Our model takes into consideration how the logical failure
rate depends on the depth of the circuit 𝐶H

𝑁
, and how hook errors could reduce the

effective distance. Hook errors are harmful errors that spread from the ancilla qubits
to the data qubits during syndrome extraction. These are explained in Section 3.6.

We offer evidence that against circuit-level depolarizing noise, the crossover happens
at a gate error rate as high as 5 × 10−3 depending on the choice of outer code family
and inner/outer code sizes. See the left-most plot in Figure 3.2. These numbers are
merely a proof-of-concept and depend on the aforementioned assumptions which are
discussed in Section 3.6.

We arrive at these estimates assuming all gates fail with the same probability.
While such an assumption is convenient for proofs, in some architectures, it may
be possible to perform SWAP operations with higher fidelity than CNOT or CZ
[End+16; Bar+16; Blu+22; Hen+06; Kau+17]. For example, in ion trap and neutral
atom trap architectures, SWAP gates can be performed by moving the traps. The
mechanism is entirely different than that used to perform other two-qubit gates and,
in principle, could have much better fidelity. These considerations are especially
important to us as the main source of noise in the hierarchical scheme stems from
SWAP gates. We present variations of our numerical estimates when the SWAP
gates have better fidelity than the CNOT gates. The middle plot and right-most plot
in Figure 3.2 represent estimates for the failure rate when the SWAP gates are 10×
and 100× better than entangling gates respectively.

121

10 5 10 4 10 3

Gate Error Rate

10 25

10 20

10 15

10 10

10 5

100

W
ER

10 5 10 4 10 3

Gate Error Rate
10 5 10 4 10 3

Gate Error Rate

dM = 12
d = 3

dM = 19
d = 5

dM = 35
d = 9

dM = 57
d = 15

dM = 80
d = 21

dM = 103
d = 27

Figure 3.2: Comparing the logical failure rate for the hierarchical memory versus
the logical failure rate for the basic encoding. The outer LDPC code has parameters
J1 116 416, 112 896, 119K. Each color represents an inner code of distance 𝑑ℓ. The
solid and dashed lines are estimates for the WER for the hierarchical memory and
basic encoding respectively. The legend shows the size of the surface codes in each
setting. For example, the solid blue line represents a hierarchical code with inner
code lattice length 𝑑ℓ = 3. The dashed blue line represents a basic encoding that
uses surface codes of lattice length 12. The three panels correspond to three different
assumptions about the error rate in SWAP gates, as described in the text. In the
left-most plot, SWAP gates are assumed to fail at the same rate as entangling gates.
In contrast, in the middle and right plots, SWAP gates have a fidelity 10× and 100×
better than entangling gates respectively.

As mentioned, our estimates are predicated on some assumptions. We re-examine
these assumptions in Section 3.6 and propose ways to improve the failure rate
for hierarchical codes. We show how we can reduce the effect of hook errors by
designing noise-biased qubits. A qubit is said to have a noise bias if X and Y errors
are suppressed with respect to Z errors. We can introduce a bias on Level-1 qubits
using unbiased Level-0 (physical) qubits. As the inner code is a surface code, we
can engineer a bias simply by making the surface code longer in one direction of
our choosing. See Figure 3.3 (a). Based on our estimates, we expect this can reduce
the size of the code considerably. Figure 3.3 (b) shows the crossover points for the
hierarchical code and the basic encoding with the assumption that SWAP gates are
10× better than entangling gates using a much smaller outer code.

Secondly, we believe that decoders for the hierarchical code can take advantage of
their concatenated structure. To achieve this, we propose using message-passing
decoders between the outer and inner codes. These ideas can be used in soft decoders

122

(a)

dX = dZ + 4

dZ

(b)

10 5 10 4 10 3

Gate Error Rate

10 25

10 19

10 13

10 7

10 1

W
ER

dM = 13
d = 3
dM = 20
d = 5

dM = 35
d = 9
dM = 58
d = 15

dM = 80
d = 21
dM = 103
d = 27

Figure 3.3: (a) Creating Level-1 qubits such that the probability of logical X failure
is less than the probability of Z failure. This is accomplished by changing the aspect
ratio of the tiles. (b) Estimating crossover points when SWAP gates are 10× better
than entangling gates.

for the outer code to partially overcome the problems of degeneracy [PC08]. Similar
ideas have proved useful in the context of concatenating GKP codes and LDPC codes
[Rav+22].

Lastly, we expect the hierarchical scheme to be resistant to burst errors. Unlike
typical errors which affect only one or two qubits at a time, burst errors can wipe
out entire patches of qubits. This can happen when there exists poorly localized
error mechanisms such as the absorption of cosmic rays in superconducting circuits
[Vep+20; McE+22; Tho+22; Ach+22; Car+23] or blackbody radiation mediated
transitions to other Rydberg states in neutral atom platforms [Fes+22; Zei+16].
Large deviations may also occur in single points of failure in the control hardware
such as power supplies, local oscillators, lasers, etc [Aru+19; Kra+19; Mad+20;
Eba+21; Ma+22]. Protection of surface codes from burst errors was initially studied
in [Xu+22] by concatenating a small constant-sized stabilizer code with surface
codes. The hierarchical scheme is robust to these errors because each inner surface
code represents a qubit of the outer code which we know is resistant to some number
of erasure errors.

Related work: Gottesman [Got00] demonstrated that it is possible to find a threshold
using only local gates and concatenation. Svore, Divincenzo and Terhal [STD05;
SDT06] studied this issue further and established a numerical lower bound on the
threshold in a scheme with many layers of concatenation. Yamasaki and Koashi

123

[YK22] show that concatenated codes can be used to achieve constant overhead
quantum computation that is also time efficient.

In contrast to these approaches, we consider a qualitatively different setting. In our
hierarchical model, the concatenated code has only two layers. The outer LDPC code
grows quickly to improve the error rate, while the inner code grows slowly to achieve
a threshold. The number of encoded logical qubits in the code therefore increases
(sublinearly) with the size of the code. Consequently, the rate of error suppression is
significantly better.

Finally, Baspin et al. [BFS23] have recently generalized the result of Delfosse et al. in
another direction. In contrast to the constructive approach in this paper, they approach
this problem top-down — given access to arbitrary local operations and classical
communication (not merely Clifford operations), they study syndrome-extraction
circuits for LDPC codes and their ability to suppress stochastic errors. They prove the
existence of a tradeoff between the parameters of the syndrome-extraction circuit and
the sub-threshold error scaling (See Theorem 28 of [BFS23]). For fixed gate error
rate 𝑝, suppose we use an J𝑁, 𝐾, 𝐷K codeH𝑁 and desire a sub-threshold scaling of
the logical failure rate 𝑝H (𝑁) = exp(− 𝑓 (𝑁)) for some function 𝑓 (𝑁). Let 𝐶𝑁 be
the corresponding family of syndrome-extraction circuits. Assuming 𝑓 (𝑁) = 𝑂 (𝑁),
we express Theorem 28 of [BFS23] in our notation

W(𝐶𝑁)
𝐾

= Ω

(√︁
𝑓 (𝑁)

T(𝐶𝑁)

)
. (3.2)

To compare with our result, suppose we only use SWAP gates of constant range,
i.e. 𝑅 = 𝑂 (1). From Theorem 3.1.2, the syndrome-extraction circuit 𝐶H

𝑁
achieves

𝑝H (𝑁) = exp
(
−Θ(𝑁𝛿/log2𝛿 (𝑁))

)
with W(𝐶H

𝑁
) = Θ(𝑁) and T(𝐶H

𝑁
) = 𝑂 (

√
𝑁).

W(𝐶H
𝑁
)

𝐾
= 𝑂 (log(𝑁)) ,

√︁
𝑓 (𝑁)

T(𝐶H
𝑁
)
= 𝑂

(
𝑁 (𝛿−1)/2

log𝛿 (𝑁)

)
. (3.3)

Comparing with Equation (3.2), we can see that the bound is satisfied for any
constant 𝛿 > 0. Note that such a low logical error rate is only feasible because our
syndrome-extraction circuit 𝐶H

𝑁
has polynomially growing depth.

3.2 Background & Notation
In this section, we begin by formally defining concepts needed to state our results.
Section 3.2 defines syndrome-extraction circuits. We review gadgets used to construct
them and how to use these gadgets to obtain a syndrome-extraction circuit given

124

an error correcting code. Section 3.2 reviews locally decaying distributions that
describe errors on states and faults on circuits. These are general error models that
can describe the types of correlated errors that we might witness in a circuit. A noise
model is parameterized by a failure rate which quantifies the probability of errors.
We described how error correcting codes and their associated syndrome-extraction
circuits are robust to some amount of errors occurring below a threshold failure
rate. Section 3.2 reviews syndrome-extraction circuits for concatenated codes. The
hierarchical code is constructed by concatenating a constant-rate quantum LDPC code
and the surface code. These are defined in Section 3.2 and Section 3.2 respectively.
We review Gottesman’s requirements [Got14] for the existence of a threshold. This
will be an important idea in the proof of the existence of a threshold for hierarchical
codes.

Basic definitions
Let P = ⟨X, Z⟩/{±𝑖,±1} denote the (projective) single-qubit Pauli group (where
we ignore phases); for 𝑛 ∈ N, let P𝑛 denote the 𝑛-fold tensor product P⊗𝑛. For
P ∈ P𝑛, supp(P) ⊆ [𝑛] denotes the support of P, i.e. the set of qubits on which P
acts non-trivially. The weight of a Pauli operator P is | supp(P) |, the number of
qubits in its support. For brevity, we denote this as |P|.

For a, b ∈ {0, 1}𝑛, let X(a) = ⊗𝑖X𝑎𝑖 , and Z(b) = ⊗ 𝑗Z𝑏 𝑗 . Any Pauli operator
P ∈ P𝑛 can be expressed uniquely as P = X(a)Z(b) for a, b ∈ {0, 1}𝑛. We use
P|X,P|Z ∈ {0, 1}𝑛 to denote the X and Z components of P respectively, i.e. P|X := a
and P|Z := b.

Stabilizer codes: An 𝑛-qubit quantum error correcting code is the simultaneous
+1-eigenspace of a set of commuting Pauli operators. These Pauli operators form a
subgroup S of the Pauli group called the stabilizer group. The stabilizer group S is
generated by elements S1, ...,S𝑚. The codespace Q is then defined as

Q = {|𝜓⟩ ∈ (C2)⊗𝑛 | S𝑖 |𝜓⟩ = |𝜓⟩ ∀𝑖 ∈ [𝑚]} .

The number of encoded qubits 𝑘 is the base 2 logarithm of the number of linearly-
independent vectors in Q. Equivalently, given S, it is simply 𝑘 = 𝑛 − 𝑚 (where we
assume the stabilizer generators are independent).

Intuitively, the minimum distance 𝑑 of the code is the minimum weight Pauli operator
such that we can map one element of Q to a distinct element of Q. Formally, we

125

write

𝑑 = min
P∈P𝑛\S
[P,S𝑖]=0

|P| .

We say such a code is an J𝑛, 𝑘, 𝑑K (stabilizer) code.

The code is said to be a CSS code if every generator can be chosen such that it is a
tensor product of only X or Z Pauli operators [CS96; Ste96a]. We can define the X-
and Z-distances 𝑑X and 𝑑Z of a CSS code as

𝑑X = min
P∈{I,Z}⊗𝑛\S
[P,S𝑖]=0

|P| 𝑑Z = min
P∈{I,X}⊗𝑛\S
[P,S𝑖]=0

|P| .

Let 1 ≤ 𝑏 ≤ 𝑚X and 1 ≤ 𝑐 ≤ 𝑚Z index the X-type and Z-type stabilizer generators
{SX

𝑏
} and {SZ

𝑐 }.

Syndrome-extraction circuits & measurement gadgets: A syndrome-extraction
circuit 𝐶 for a code Q can be composed of the following elements that are allowed to
be classically controlled.

Definition 3.2.1 (Clifford operations). Consider a set of qubits arranged in a lattice
in 2 dimensions. We define the set K of elementary Clifford operations as follows:

1. Initialization of new qubits in state |0⟩ or |+⟩,

2. Single-qubit Pauli gates,

3. Two-qubit Clifford gates CNOT between nearest-neighbor qubits,

4. Single-qubit Pauli X and Z measurements,

5. Physical SWAP operation with range up to 𝑅.

At any given timestep, a qubit in 𝐶 can be involved in at most one of these operations.
In addition, we assume instantaneous classical communication and access to classical
computation for processing measurement data.

To obtain the syndrome, we use gadgets to measure Pauli operators which are
described as follows. Consider a CSS code Q with 𝑚X X-type stabilizer generators
SX = {SX

𝑏
}𝑚X
𝑏=1 and 𝑚Z Z-type stabilizer generators SZ = {SZ

𝑏
}𝑚Z
𝑐=1. The entire set of

stabilizer generators is S = SX ∪ SZ.

126

1. For 1 ≤ 𝑏 ≤ 𝑚X, measure a product of X operators:

a) Initialize the 𝑏th ancilla qubit in |+⟩𝑏.

b) Perform a CNOT gate controlled on the 𝑏th ancilla qubit and targeted on
each qubit in the support of SX

𝑏
.

c) Perform a measurement of the 𝑏th ancilla in the X basis.

2. For 1 ≤ 𝑐 ≤ 𝑚Z, measure a product of Z operators:

a) Initialize the 𝑐th ancilla qubit in |0⟩𝑐.

b) Perform a CNOT gate targeted on the 𝑐th ancilla qubit and controlled on
each data qubit in the support of SZ

𝑐 .

c) Perform a measurement of the 𝑐th ancilla in the Z basis.

Figure 3.4 illustrates gadgets for measuring an X operator of weight 5 and a Z operator
of weight 4. Given a circuit 𝐶, we use two figures-of-merit to quantify its size:

X Z
|+⟩ |0⟩
𝑖1 𝑗1

𝑖2 𝑗2

𝑖3 𝑗3

𝑖4 𝑗4

𝑖5 𝑗5

Figure 3.4: Performing the syndrome extraction corresponding to the operator
X𝑖1X𝑖2X𝑖3X𝑖4X𝑖5 on the left and Z 𝑗1Z 𝑗2Z 𝑗3Z 𝑗4Z 𝑗5 on the right. The measurements are
performed on some qubits {𝑖1, ..., 𝑖5, 𝑗1, ..., 𝑗5} ⊆ [𝑛].

1. W(𝐶): the width of the circuit, i.e. the total number of physical qubits, data
and ancilla, used in the circuit.

2. T(𝐶): the depth of the circuit, i.e. the number of timesteps required to measure
all syndromes.

We assume operations in K can be performed in parallel (subject to the constraint
that each qubit is only involved in one operation at a time). We shall present one
way of using parallel operations to build efficient syndrome-extraction circuits for
quantum LDPC codes in Section 3.3.

127

Noise & imperfect syndrome-extraction circuits
In practice, 𝐶 is imperfect. In general, errors on multiple locations with complicated
correlations can arise at the end of a syndrome-extraction circuit. Under the action
of a two-qubit gate for instance, single-qubit errors which occur with probability
𝑝 can transform into two-qubit correlated errors which occur with probability 𝑝.
Two-qubit gates themselves can fail and introduce errors on both qubits where there
were none before. As yet another example, small clusters of qubits that are near each
other can also fail together, for example, due to crosstalk, stray magnetic fields, etc.
These errors are outside the scope of an i.i.d. errors model and hence, we consider a
generalization.

Definition 3.2.2. Let 𝑛 ∈ N and Pow(𝑛) = {𝐸 : 𝐸 ⊆ [𝑛]}. Consider a probability
distribution P̂r : Pow(𝑛) → [0, 1] and for 𝐸 ⊆ [𝑛], let Pr(𝐸) be the total probability

Pr(𝐸) =
∑︁
𝐸 ′⊇𝐸

P̂r(𝐸′) .

We say the distribution Pr is locally decaying with rate 𝑝 ∈ [0, 1] if for all 𝐸 ⊆ [𝑛],

Pr(𝐸) ≤ 𝑝 |𝐸 | .

We first consider general errors on an 𝑛-qubit state. We assume every set of qubits
has some probability of being corrupted by an arbitrary Pauli error. Consider a
Pauli operator E′ ∈ P𝑛 such that E′ = X(x′)Z(z′). Let Ê (x′, z′) be the probability of
the error E′. By definition, Ê is itself a map from Pow(𝑛) × Pow(𝑛) to [0, 1]. Let
X(x) : Pow(𝑛) → R andZ(z) : Pow(𝑛) → R denote

X(x) =
∑︁
x′⊇x

∑︁
z′
Ê (x′, z′) , Z(z) =

∑︁
x′

∑︁
z′⊇z
Ê (x′, z′) . (3.4)

In other words, X and Z denote the probability that a random error E distributed
according to Ê has X and Z components that contain x and z respectively. For brevity,
we have used x′ ⊇ x and z′ ⊇ z to mean that the supports of x, z are contained in x′,
z′ respectively. TreatingX andZ separately in this way does not prevent correlations
between X and Z errors.

Definition 3.2.3 (Locally decaying errors on qubits). Given an 𝑛-qubit state with
Pauli errors distributed according to Ê. We say that errors are described by a locally
decaying errors model to mean that X andZ are both locally decaying distributions
with failure rate 𝑝.

128

We want to extend this idea to describe errors caused by faulty circuits. A location
in a circuit 𝐶 refers to a one- or two-qubit gate (including identity), single-qubit
preparation or single-qubit measurement operation at some timestep 1 ≤ 𝑡 ≤ T(𝐶).
A fault location is a location which performs a random Pauli operation following
the desired Clifford operation. We assume that a fault location introduces a Pauli
operator on the qubits in its support chosen according to some distribution F̂ . Given
a set 𝐹 of fault locations in 𝐶, the support of 𝐹 is the set supp(𝐹) ⊆ [W(𝐶)] of
qubits that are in some location in 𝐹.

For a set 𝐹′ of locations, let F̂ (𝐹′) denote the probability of the set of locations 𝐹′

being faulty. For a set 𝐹 of fault locations, the total probability F (𝐹) is

F (𝐹) =
∑︁
𝐹′⊇𝐹
F̂ (𝐹′) . (3.5)

Definition 3.2.4 (Locally decaying faults on circuits). Let 𝐶 be a depth 1 circuit
with faults distributed according to F̂ . We say that the faults are described by a
locally decaying faults model if F is a locally decaying distribution with failure rate
𝑝phys—for all sets of locations 𝐹,

F (𝐹) ≤ 𝑝 |𝐹 |phys .

Note that the probability of failure falls with the number of locations |𝐹 | and not the
number of qubits | supp(𝐹) |.

In practice, different locations may have different failure rates. To prove the existence
of a threshold, we assume that 𝑝phys is the maximum failure probability across all
gates. We return to this assumption in Section 3.6, where we discuss how the logical
failure rate behaves if gates have different failure rates.

Definition 3.2.4 pertains to circuits of depth 1—we assume faults in successive
timesteps are independent. In a more general model for faults, we could include
arbitrary fault patterns for a circuit of growing depth so long as the probability of a
particular fault path falls exponentially with the size of the fault path.

As a state undergoes circuit operations, errors can spread and accumulate. Consider
a CNOT gate acting on two qubits. Figure 3.5 illustrates how a generating set of
2-qubit Pauli operators {XI, IZ, IX, ZI} on these two qubits evolve under ideal CNOT.
The error doubles in size in the worst-case scenario. As shorthand, we say that Pauli
operators ‘flow’ within circuits to refer to this spreading. X operators flow down a
CNOT and Z operators flow up.

129

(𝑎) X

I

X

X

(𝑏)

Z

I Z

Z

(𝑐)

X

I I

X

(𝑑)

I

Z Z

I

Figure 3.5: Evolution of Pauli errors under the action of CNOT. The first qubit is
the control qubit and the second qubit is the target. The operators X ⊗ I and I ⊗ Z
double in size. The red paths show how X ‘flows down’ a CNOT gate and Z ‘flows
up’ a CNOT gate.

The structure of syndrome-extraction circuits is special. For P ∈ {X, Z}, a controlled-
P gate within the syndrome-extraction circuit uses ancilla qubits as control qubits
and data qubits as target qubits (See Figure 3.4). This means that errors only flow in
limited ways—for example, X errors always flow from ancilla qubits to data qubits,
and Z errors flow from data qubits to ancilla qubits when CNOT gates are applied.

Implementing the imperfect circuit 𝐶, we obtain an imperfect syndrome. To
overcome this problem, we repeat the syndrome-measurement circuit for 𝑟 rounds.
Let 𝜎𝜎𝜎 = (𝜎𝜎𝜎 (1)X , 𝜎𝜎𝜎

(1)
Z , ..., 𝜎𝜎𝜎

(𝑟)
X , 𝜎𝜎𝜎

(𝑟)
Z) be the 𝑟 faulty syndromes.

Failure rate per round:

Consider a corrupted code state E |𝜓⟩ where 𝜓 is a code state and E = X(e𝑥)Z(e𝑧) is
some Pauli operator. If the syndrome-extraction circuit 𝐶 has no faults, the joint state
of the data and ancilla qubits after one round of syndrome extraction is described by

E |𝜓⟩ ⊗ Z(𝜎𝜎𝜎) |+⟩⊗𝑚 , (3.6)

where 𝜎𝜎𝜎 represent the ideal syndromes for X- and Z-type stabilizer generators.

However, because of faults in the circuit, the state after the circuit is

(D ⊗ A) (E |𝜓⟩ ⊗ Z(𝜎𝜎𝜎) |+⟩⊗𝑚) , (3.7)

where D and A represent errors on the data and ancilla qubits respectively caused by
faults in 𝐶 that then spread.

Let Ê′(D ⊗ A) denote the probability of errors per round on the qubits. Let X′,Z′

denote the induced distributions for errors on data and ancilla qubits of X and Z type
respectively.

130

Definition 3.2.5 (Probability of errors per round). We say that the probability of
errors per round is locally decaying with failure rate 𝑝round ∈ [0, 1] such that X′,
Z′ are locally decaying distributions with failure rates 𝑝round respectively.

Definition 3.2.5 thus considers one round of syndrome extraction not as individual
operations, but in aggregate; it then associates a failure probability 𝑝round with the
entire round associated with the probability of witnessing X and Z errors. Thus, 𝑝round

can be a function of the code size 𝑁 , as well as other details of the implementation
such as the specific syndrome-extraction circuit used.

A priori, Ê′ can depend on 𝑟 and the input error E. However, as entangling gates
restrict the direction of error propagation, errors do not propagate from one data qubit
to another or from one ancilla qubit to another. In Section 3.5, we use this to show
that 𝑝round does not depend on how many prior rounds of the syndrome-extraction
circuit have already been applied. We show that 𝑝round is a function of 𝑝phys of the
form 𝑎 · 𝑝𝑏phys, where 𝑎 is a function of the depth T(𝐶) and 𝑏 is a function of the
degrees Δ𝑞 and Δ𝑔.

Recovering the state: After performing 𝑟 rounds of syndrome extraction, a
decoding algorithm dec : (F𝑚2)

×𝑟 → P𝑛 maps the observed syndrome 𝜎𝜎𝜎 to a
deduced error.

The applied correction may not completely correct all errors due to faults in the
syndrome extraction circuit. We declare success if, after applying the correction, the
final state is ‘not too far’ from the desired output of the ideal circuit 𝐶. To this end,
we consider the ideal recovery map R [AGP05]—a fictitious quantum channel that is
not subject to geometric constraints or noise. We gauge the accuracy of the circuit 𝐶
using the logical failure probability 𝑝Q , which is the probability that the residual
error is correctable by the ideal recovery map. To be precise, 𝑝Q is the probability
that any logical qubit fails in one round of error correction. The probability 𝑝Q also
referred to as the Word Error Rate (WER).

Ideal recovery map & Thresholds: To understand whether a scheme is scalable,
we are interested in properties of a family of codes {Q𝑛} to process an ever increasing
number 𝑛 of qubits. Consider a code family {Q𝑛} and suppose errors are described by
a locally decaying distribution E with failure rate 𝑝in. Let {𝐶𝑛} be the corresponding
set of syndrome-extraction circuits to {Q𝑛}, where faults are described by F , a

131

locally decaying distribution with failure rate 𝑝phys ∈ [0, 1]. We can compute 𝑝round

as a function of 𝑝phys as shown in Section 3.5.

For our purposes, we say that the family has a threshold with respect to the noise
model and decoding algorithm if there exists a pair 𝑞in, 𝑞round ∈ (0, 1] such that if

𝑝in < 𝑞in , 𝑝round < 𝑞round , (3.8)

the probability of logical failure 𝑝Q → 0 as the size of the code 𝑛→∞. The logical
probability of failure is defined with respect to family of ideal recovery maps. It
depends on 𝑝in and 𝑝phys and the thresholds.

Whether a threshold exists with respect to a given noise model, the exact value
of the threshold, as well as how quickly the logical failure probability decreases
as a function of 𝑛 (e.g. polynomially or exponentially), depend not only on the
choice of quantum error-correcting code Q𝑛, but also the implementation of the
syndrome-extraction circuit 𝐶𝑛 and the decoding algorithm. In our construction, the
code family is a concatenated code where the syndrome-extraction circuit is subject
to constraints on geometric locality.

While the state after error correction is ‘close enough’ to the codespace, undoing
the deduced error may not correct all errors. The remaining errors on the state are
described by Eres that is a locally decaying distribution with failure rate 𝑝res. We
can perform another round of error correction and thereby keep the state alive for
arbitrary duration if 𝑝res < 𝑝in. For this reason, we will specify the residual failure
rate after error correction in addition to the logical failure probability 𝑝Q .

Concatenated codes
A concatenated code is a quantum code obtained via the composition of two codes,
an inner code Q0 and an outer code Q. We consider the simple case of a J𝑛0, 1, 𝑑0K
code Q0 that only encodes 1 qubit and a suitable J𝑛, 𝑘, 𝑑K code Q.

Code parameters: The concatenated code, denotedH with parameters J𝑁, 𝐾, 𝐷K,
is constructed by replacing each qubit of the code Q by a copy of Q0, resulting in 𝑛
copies of the inner code Q0. The benefit of this construction is that the distance 𝐷 of
the codeH is amplified with respect to the constituent codes. To be precise,

𝑁 = 𝑛 · 𝑛0 , 𝐾 = 𝑘 , 𝐷 = 𝑑 · 𝑑0 .

132

Level-2
qubits

Level-1
qubits

Level-0
qubits

Figure 3.6: Visualizing a concatenated codeH .

The physical qubits are referred to as Level-0 qubits, the logical qubits of Q0 which
form the block Q are referred to as Level-1 qubits, and the logical qubits ofH are
referred to as Level-2 qubits. See the schematic in Figure 3.6.

When errors on qubits are distributed in an i.i.d. manner, the advantage of concate-
nation becomes apparent when we “coarse grain” details of the concatenated code.
Consider a simple setting where qubits are subject to independent X and Z errors.
Suppose we use the code Q without concatenation. By assumption, the probability
of failure of each of the physical qubits is 𝑝. However, after concatenation, the
probability of failure of the Level-1 qubits is suppressed—it fails with probability
proportional to 𝑝𝑑0/2. This is because at least 𝑑0/2 errors are required to cause
a logical error for Q0. The inner code thus adds an extra layer of protection and
consequently, the logical failure rate for the outer code is that much lower. As we
shall see, we have to be more careful when making this sort of argument in the
context of circuits.

Syndrome-extraction circuit: Let 𝐶Q0 and 𝐶Q denote the syndrome-extraction
circuits for Q0 and Q respectively such that both can be implemented in 2 dimensions
using K , the set of local Clifford operations and 𝑅-local SWAP gates. To implement
a CNOT between distant qubits, we may need to permute qubits using SWAP gates
to bring them within range of a two-qubit gate. We discuss to how to design such a
permutation in Section 3.3.

A syndrome-extraction circuit 𝐶H for the concatenated codeH can be expressed in
terms of the syndrome-extraction circuits 𝐶Q0 and 𝐶Q . Each data and ancilla qubit

133

in the syndrome-extraction circuit for 𝐶Q is now replaced with a copy of Q0. Each
gate in 𝐶Q is replaced by the corresponding logical Clifford gate between Level-1
qubits. Thus, even for constructing a quantum memory, we need to understand how
to perform a restricted set of inner code logical operations in a fault-tolerant manner.
We perform error correction either after the logical gate or in an interleaved manner.
We discuss this in the context of our explicit architecture in Section 3.4.

The ideal recovery map RH for H is obtained by first decoding the 𝑛 copies of
the inner code Q0 using R0 and then decoding the outer code using RQ . Here
RQ0 and RQ refer to the ideal recovery maps for Q0 and Q respectively. Thus
RH = RQ ◦ (RQ0)⊗𝑛.

We generalize the notion of location in the context of circuits. A Level-1 location
refers to a Level-1 gate, including the error correction rounds. The location is faulty
if it implements the incorrect logical operation on the Level-1 qubits in its support.
In the context of 𝐶Q , a single Level-1 location in the circuit could refer to a SWAP
gate or an entangling gate or a preparation or measurement of a logical qubit of Q0.

When “coarse graining” circuits for concatenated codes, more care is needed than
the i.i.d. errors setting. We illustrate using the following examples.

Problem # 1: Level-1 failure rates are not additive

Consider a 𝑛0-qubit code state of the inner code 𝜌(0)in with Level-0 errors Ein. The
error Ein is not catastrophic—the ideal decoder R0 can correct it. The state is
therefore correctable.

Consider the syndrome-extraction circuit 𝐶Q0 with Level-0 faulty locations 𝐹.
Suppose there is some error supported on supp(𝐹) but that this error is not a logical
error. We may then be tempted to extend the notion of correctability to include
circuits and declare the circuit 𝐶Q0 correctable. However, this is misleading as a
correctable circuit acting on a correctable input state need not produce a correctable
output state.

Let 𝜌(0)out denote the output state and E(0)out denote the errors on this state. Suppose
the faulty locations 𝐹 result in an error E𝐹 . The product Ein · E𝐹 might not be
correctable. In addition, the errors Ein and E𝐹 can spread in unpredictable ways
within the circuit. We therefore cannot calculate the Level-1 output failure probability
by merely knowing the input state and the faults individually resulted in correctable
errors. We need additional structure.

134

Problem # 2: Level-0 failure rate is not always sustainable

Secondly, the thresholds are decoder dependent. By definition, the ideal decoder R0

has no faults; if the errors on the state 𝜌(0)out are correctable, then RQ0 is successful.
On the other hand, 𝐶Q0 can contain faults and may be unable to deal with as many
errors as the ideal decoder RQ0 . This can result in instances where the output
state 𝜌(0)out will be correctable by R0; by our criteria for success, the output state is
decodable. However, the number of residual errors may be above the threshold for
error correction. In other words, as error correction is itself faulty, these faults can
combine with existing errors to cause a logical failure.

In our construction, we address these problems in Section 3.5. We shall show that
for sufficiently low failure rates, we can indeed ignore dealing with the syndrome-
extraction circuit for the outer code assuming a failure rate that depends on the inner
code. This statement relies on the structure of LDPC codes and surface codes. We
now proceed to review these codes.

Constant-rate LDPC codes
An J𝑛, 𝑘, 𝑑K code family {Q𝑛} is said to be a low-density parity-check code if

1. each stabilizer generator S𝑖, 𝑖 ∈ [𝑚], only acts non-trivially on at most a
constant number Δ𝑔 of qubits for all elements in {Q𝑛}.

2. each qubit only participates in at most a constant number Δ𝑞 of stabilizer
generators for all elements in {Q𝑛}.

To include the degree of stabilizer generators and qubits, we shall say that a code
family {Q𝑛} is an J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K LDPC family.

We will choose the outer code to be a code with constant rate, i.e. 𝑘 = Θ(𝑛).
Constructing a constant-rate LDPC code is a non-trivial task because there is a
conflict between the constraints on stabilizer generators. On one hand, all stabilizer
generators need to commute with each other to form a well-defined stabilizer code;
on the other hand, the stabilizer generators need to have weight at most Δ𝑔. Despite
these difficulties, there exists constant-rate quantum LDPC codes, i.e. 𝑘 (𝑛) = Θ(𝑛),
with distance 𝑑 (𝑛) = Θ(𝑛𝛿) for 0 < 𝛿 ≤ 1.

LDPC codes have a threshold [KP13a; Got14] if operations in K are not subject
to any locality constraints. In this setting, we can construct syndrome-extraction
circuits where each qubit is involved in a constant number of two-qubit gates.

135

Consider a family of J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K quantum LDPC codes {Q𝑛} where 𝑘 = 𝜌 · 𝑛
for some constant 𝜌 > 0 and distance 𝑑 = Θ(𝑛𝛿) for some 𝛿 > 0. Suppose qubits are
subject to the following errors:

1. the input state is subject to locally decaying errors with failure rate per qubit
𝑝in.

2. the syndrome-extraction circuit is subject to locally decaying faults with failure
rate per gate 𝑝phys.

We restate a result from Gottesman [Got14] (Theorem 4) which guarantees the
existence of a threshold for arbitrary LDPC codes. In this construction, we require
𝑟 = 𝑑 (𝑛) rounds of syndrome extraction. After syndrome extraction, the (imperfect)
syndromes are processed by a minimum-weight decoder dec. We do not describe
the decoder in detail here and merely note that it exists. For generic LDPC codes,
the minimum-weight decoder is not necessarily efficient.

There exist 𝑞in, 𝑞round in the interval (0, 1] such that when

𝑝in ≤ 𝑞in , 𝑝round ≤ 𝑞round , (3.9)

the following is true.

The minimum-weight decoder dec yields a correction such that:

1. the final state is recoverable by an ideal recovery operator RQ with probability
at least to 1 − 𝑝Q (𝑛) where 𝑝Q (𝑛) := exp[−Θ(𝑑 (𝑛))]. To be precise, 𝑝Q (𝑛)
is the probability of failure per round of syndrome extraction.

2. the physical qubits have residual errors that are described by a locally decaying
error model with failure rate at most 𝑝round.

The first condition guarantees that the probability of logical failure falls exponentially
with the distance of the code. It is worth noting that we declare a logical failure if
any logical qubit fails. This is qualitatively different from codes that only encode a
constant number of qubits.

The second condition on the residual error is not what is in the theorem statement
of Theorem 4 of [Got14]; however, the proof implies it. For sufficiently low
values of 𝑝phys, it guarantees that we can continue to perform error correction for

136

arbitrarily many rounds (conditioned on no logical errors). In other words, we require
𝑝round < 𝑝in.

We highlight that this result applies to arbitrary LDPC codes, i.e. it is independent of
the rate of the code. In particular, it applies to the surface code.

We note that the threshold is stated in terms of 𝑝round, and not directly in terms
of 𝑝phys. This is for two reasons: (1) this is how Theorem 4 of [Got14] is itself
stated, and (2) in our construction, the dependence of 𝑝round on 𝑝phys can change
depending on the depth of the syndrome-extraction circuit. Stating the thresholds in
this manner will allow us to derive the functional dependence between 𝑝round and the
depth of the syndrome-extraction circuit. In Gottesman’s construction [Got14], the
syndrome-extraction circuit is constant depth and therefore 𝑝round is also a constant.
In contrast, our construction is more complicated because of constraints on geometric
locality.

It is known that codes defined by geometrically-local stabilizer generators in 2
dimensions cannot achieve both constant rate and growing distance [BT09; BPT10].
To achieve a constant rate and distance 𝑑 = Θ(𝑛𝛿) with fixed degrees Δ𝑞 and Δ𝑔, the
amount of non-locality scales with the parameters 𝑘 and 𝑑 [BK21a; BK21b]. In
other words, there exist Θ(𝑛) stabilizer generators such that qubits in their support
cannot be close to each other in the 2-dimensional lattice. In the context of syndrome-
extraction circuits, the result by Delfosse et al. [DBT21] states that the depth of the
syndrome-extraction circuit will grow when we only have geometrically-local gates
and a limited number of ancilla qubits. (Recall Equation (3.1).)

In Section 3.5, we show that 𝑝round grows if the syndrome-extraction circuit 𝐶 is
constrained by geometric locality. In other words, it is not constant and we need
an approach different than Gottesman’s to prove the existence of a threshold. In
our alternative approach using the hierarchical code, the growth of the inner code
suppresses Level-1 logical errors sufficiently to ensure that the Level-2 logical failure
rate drops rapidly as the outer LDPC code scales up.

Finally, we discuss the choice of quantum LDPC code. While the result above
applies to generic quantum LDPC codes, more is known about specific constructions.
Quantum expander codes are one family of constant-rate quantum LDPC codes
for which 𝑑 = Θ(

√
𝑛) [TZ14; LTZ15]. It has been rigorously proven that these

codes can be equipped with an efficient decoder called small-set-flip [FGL18a;
FGL18b]. Furthermore, it was shown that the decoder is single shot meaning that it

137

only requires a constant number of rounds of syndrome measurements for the decoder
to function even when the syndrome is noisy. Similar to Gottesman’s requirements
for the existence of a threshold, all that is needed in Fawzi et al. [FGL18a] is for
𝑝round to remain constant. However, unlike Gottesman’s construction, it was shown
that these codes have an efficient decoding algorithm that only require a constant
number of rounds of syndrome measurement. Thus, if we wish to implement a
quantum expander code, we can use the same machinery presented in this paper to
justify an efficient single-shot decoder for the outer code.

We refer to LDPC codes with distance scaling as 𝑑 = Θ(𝑛) as good codes. For nearly
2 decades, it was unclear whether good codes even existed. Following a series of
breakthroughs, [PK20; EKZ20; KT21; HHO21; BE21], this impasse was famously
crossed first by Panteleev & Kalachev [PK21a] and later by Leverrier & Zémor
[LZ22b]. Furthermore, these codes have the single-shot property (albeit with an
inefficient decoder) as guaranteed by Quintavalle et al. [QVRC21].

In this paper, we do not place any constraints on the outer LDPC code other than it
have constant rate 𝜌 > 0 and distance 𝑑 = Θ(𝑛𝛿) for 1/2 ≤ 𝛿 ≤ 1. Our construction
works for all 𝛿, but we choose 𝛿 ≥ 1/2 to simplify some theorem statements.

Surface codes
We consider the rotated surface code [BK98; HFDV12], arguably the simplest code
that can be laid out on a 2-dimensional lattice. The surface code is an LDPC code,
albeit with vanishing asymptotic rate.

An example is shown in Figure 3.7. The code is implemented on a rotated lattice, i.e.
the points of the lattice correspond to the vertices of squares that run in 45 degree
angles relative to the 𝑥 and 𝑦 axes. The points of the lattice are labeled (𝑎, 𝑏) where
𝑎, 𝑏 ∈ Z/2. Each black dot represents a data qubit; these are located on integer points,
i.e. on points (𝑎, 𝑏) where (𝑎, 𝑏) ∈ Z. Each colored dot represents a syndrome
qubit; these are located on half-integer points, i.e. on points (𝑎 + 1/2, 𝑏 + 1/2)
where (𝑎, 𝑏) ∈ Z. Corresponding to each blue face, we define an X-type stabilizer
generator that jointly measures X⊗4 on adjacent data qubits. Similarly, corresponding
to each red face, we define a Z-type stabilizer generator that jointly measures Z⊗4 on
adjacent qubits. The semi-circles represent stabilizers that only act on two qubits in
their support, i.e. they measure X⊗2 or Z⊗2 jointly.

The rotated surface code RSℓ encodes exactly one qubit and has distance 𝑑ℓ. It
uses 𝑑2

ℓ
data qubits and 𝑑2

ℓ
− 1 syndrome qubits. The total number of qubits is thus

138

ℓ2 = 2𝑑2
ℓ
− 1. We use ℓ to parameterize the code family. We also refer to each code

as a tile.

Figure 3.7: A surface code of distance 𝑑ℓ = 5. Each dark gray dot represents a data
qubit. Light faces correspond to X checks and dark faces correspond to Z checks.
They are measured using the qubit represented as a blue or orange dot respectively in
the center of each face. Note that data qubits reside at integer points Z2 and ancilla
qubits reside at the points of this lattice shifted by (1/2, 1/2).

Using operationsK , the syndrome-extraction circuit for the surface code has depth 6.

Thresholds for error correction: To motivate our noise model, we consider a
simple setting where 𝑛 = 1, i.e. we have a single tile RSℓ. Suppose we are given
physical qubits, each qubit in some fixed computational-basis state, and use the
syndrome-measurement circuit to project this state onto a (fixed) code state of the
surface code. If the physical qubits are subject to locally decaying errors at failure
rate 𝑝 (0)phys, we can derive the Level-1 probability of failure 𝑝 (1)RS (ℓ) for the surface
code. The superscripts denote the noise on Level-1 and Level-0 qubits respectively.

Contrast this with the scenario where we obtain the surface code from another party.
Upon receipt, we are only informed that the tile has already failed with failure rate
𝑝
(1)
in ; we do not have additional information, such as syndrome histories from prior

rounds of error correction. If the code has not already failed, then we are guaranteed
that the physical failure rate is 𝑝 (0)phys. Failure after error correction can thus result in
two ways: either the tile fails prior to us receiving the state with probability 𝑝 (1)in or
conditioned on it being correct, it fails because of error correction with probability

139

𝑝
(1)
RS (ℓ) = exp(−𝑐EC · ℓ) for some positive number 𝑐EC that does not depend on ℓ.

The Level-1 failure rate after error correction is thus 𝑝 (1)in + 𝑝
(1)
RS (ℓ).

When performing repeated rounds of error correction, we require the Level-1 failure
rate 𝑝 (1)in to bound the probability that the code has already failed in prior rounds.

Surface codes will form the inner code in our concatenated construction. Consider
the syndrome-extraction circuit 𝐶 for the constant-rate LDPC code Q𝑛. Suppose
W = W(𝐶) is the width of the circuit. We require an arrangement of RS⊗W

ℓ
in two

dimensions. In Section 3.4, we introduce a bilayer architecture for arranging tiles in
two parallel layers. We return to the explicit description of this layout in Section 3.4.

Consider an input state of the code RS⊗W
ℓ

. The errors are distributed in the following
manner:

1. Level-1 errors are described by E (1) , a locally decaying distribution with
failure rate 𝑝 (1)in .

2. Level-0 errors are described by E (0) , a locally decaying distribution with
failure rate 𝑝 (0)in .

Faults in the syndrome-extraction circuit are described by F (0) , a Level-0 locally
decaying distribution with failure rate 𝑝 (0)phys.

The code RS⊗W
ℓ

is itself an LDPC code (with vanishing rate asymptotically), and
therefore, we can apply Theorem 4 from [Got14]. We note that although the original
theorem is itself is not stated in this way, the proof implies the following.

There exist thresholds 𝑞 (0)in , 𝑞 (0)round on Level-0 failure rates such that, below threshold,
the probability of logical failure after error correction is described by a locally
decaying Level-1 error 𝑝 (1)in + 𝑝

(1)
RS (ℓ) where 𝑝

(1)
RS (ℓ) = exp(−𝑐EC · ℓ) for some

positive number 𝑐EC that is independent of ℓ.

In addition, the state after error correction is described by locally decaying errors
with failure rate proportional to 𝑝 (0)round. This guarantees that if we are sufficiently
below threshold, then the number of residual errors is low enough such that we can
apply another round of error correction.

Unlike the case for general LDPC codes, surface codes possess a minimum weight
decoder that runs in poly(𝑛) time by mapping the decoding problem to a minimum-
weight perfect matching problem.

140

Logical Clifford operations: As highlighted in the subsection on concatenated
codes, we need to implement logical Clifford operations for the surface code to
be able to use it within a concatenated construction. Extending our notation from
Definition 3.2.1, we letK0 denote the physical geometrically-local Clifford gates and
𝑅-local SWAP operation on the physical qubits. Let 𝐶0 be the syndrome-extraction
circuit for RSℓ constructed using K0.

Let K1 denote the corresponding logical operations on the surface code. Single-
tile operations in K1 — state preparation in a fixed stabilizer state, (destructive)
measurement of logical Pauli operators and applying Pauli corrections — can be
performed using operations in K0 regardless of how two-tile gates are implemented.
The only Clifford operations we require are two-tile operations: CNOT and 𝑅-local
SWAP. These are discussed in Section 3.4.

3.3 Permutation routings on sparse graphs in two dimensions
In this section, we prove Theorem 3.1.1, restated here for convenience.

Theorem. For 𝑅 even, there is an efficient construction of a degree-12 graph
𝐺 = (𝑉, 𝐸) whose vertex set 𝑉 is identified with an 𝐿 × 𝐿 lattice with edges of length
at most 𝑅. Any permutation 𝛼 : 𝑉 → 𝑉 can be performed in depth 3𝐿/𝑅+𝑂 (log2 𝑅).

We use this result in the next section to construct syndrome-extraction circuits for
quantum LDPC codes. We shall study permutation routings on graphs and focus on
NN2(𝐿, 𝑅), the 𝐿 × 𝐿 lattice in 2 dimensions where two vertices share an edge if they
are separated by a distance of at most 𝑅. Based on the idea of a permutation routing
on product graphs, we demonstrate that we can implement an arbitrary permutation
in depth 𝑂 (𝐿/𝑅). For the special case of the 2D lattice, we can make heavy use of
sorting networks to find implementations of target permutations.

Using sorting networks to implement long-range connectivity is itself not a new
idea [Bea+13]. For instance, it was used in Delfosse et al. [DBT21] to construct
syndrome-extraction circuits for quantum expander codes to match the bound in
Equation (3.1). The results in this section generalize this idea to arbitrary syndrome-
extraction circuits with constant spatial overhead. To the best of our knowledge, this
is the first work to construct sparse syndrome-extraction circuits when 𝑅 can scale as
a function of 𝐿.

141

Permutation Routing on product graphs
A permutation routing is sometimes explained in terms of a pebble-exchange
game, where pebbles are placed on the vertices of an (undirected) connected graph
𝐺 = (𝑉, 𝐸). The pebble on vertex 𝑢 ∈ 𝑉 has an address 𝛼(𝑢). The addresses of all
the pebbles together specify a permutation 𝛼 on the vertices of 𝐺. We are allowed to
swap any two pebbles along an edge of 𝐺. Formally, every vertex has a label and
for every edge (𝑢, 𝑣) =: 𝑒 ∈ 𝐸 , we are equipped with an edge permutation 𝜋(𝑒) that
exchanges the labels of 𝑢 and 𝑣. Edge permutations can be performed in parallel as
long as every pebble is involved in at most one edge permutation in one timestep. We
say 𝛽 is a simple permutation on 𝐺 if it is the product of edge permutations {𝜋(𝑒)}𝑒
that commute. The objective of the pebble-exchange game is to find a minimum
sequence of simple permutations so that the pebble that began at 𝑢 is located on the
vertex 𝛼(𝑢) afterwards. In other words, we wish to find the smallest sequence of
simple permutations 𝛽1, ..., 𝛽T(𝛼) such that 𝛼 = 𝛽T(𝛼) ◦ · · · ◦ 𝛽1. Here T(𝛼) denotes
the minimum number of simple permutations required to perform 𝛼. We represent
permutations using the one-line notation [Wik22] where 𝛼 =

(
𝛼1 𝛼2 · · · 𝛼𝑛

)
means 1 is mapped to 𝛼1, 2 is mapped to 𝛼2 and so on. Given any permutation 𝛼,
the permutation 𝛼−1 can be computed efficiently by applying the permutation to a
list of consecutive integers [𝑛].

The 𝑅-nearest-neighbor graph: The 𝑅-nearest-neighbor graph in 1 dimension of
length 𝐿 is denoted NN1(𝐿, 𝑅) = (𝑉, 𝐸) where

𝑉 = {1, ..., 𝐿}, 𝐸 = {(𝑢, 𝑣) : |𝑢 − 𝑣 |2 ≤ 𝑅} , (3.10)

where | · |2 represents the standard 2-norm. This is the graph for which the vertices
are simply the positive integers up to 𝐿 and two vertices are connected by an edge if
their difference is less than 𝑅. In particular, consider the graph NN1(𝐿, 1) which
corresponds to the path graph.

Fact: We can perform an arbitrary permutation 𝛼 of pebbles placed on the vertices of
the path graph NN1(𝐿, 1) in depth 𝐿 − 1 [Knu97]. The explicit permutation routing
algorithm Path-Routing is presented in Algorithm 3.

To illustrate, we consider a permutation 𝛼 on the path graph on 8 vertices in Figure 3.8.
Here, 𝛼 =

(
6 7 2 5 3 4 8 1

)
.

We can generalize this concept and define the 𝑅-nearest-neighbor graph in 2
dimensions which we denote by NN2(𝐿, 𝑅). It has vertices {u : u = (𝑢𝑥 , 𝑢𝑦) ∈

142

Algorithm 3 Path-Routing(𝛼)
Input: Permutation 𝛼.
Output: simple permutations 𝛽1, ..., 𝛽𝐿−1 such that 𝛼 = 𝛽𝐿−1 ◦ · · · ◦ 𝛽1.

1: labels← {𝛼−1(1), ..., 𝛼−1(𝐿)}
2: 𝑡 = 1.
3: while 𝑡 ≤ 𝐿 − 1 do
4: 𝛽𝑡 ← {1, . . . , 𝐿}
5: for 𝑖 ∈ {1, ..., ⌊𝐿/2⌋} do
6: 𝑎 ← 2𝑖 − 1 if 𝑡 is even else 2𝑖
7: 𝑏 ← 2𝑖 if 𝑡 is even else 2𝑖 + 1
8: if label(𝑎) < label(𝑏) then ⊲ Swap
9: 𝛽𝑡 (𝑎) ← 𝑏

10: 𝛽𝑡 (𝑏) ← 𝑎

11: Exchange label(𝑎) and label(𝑏).
12: 𝑡 ← 𝑡 + 1.
13: return 𝛽1, ..., 𝛽𝐿−1.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

6

7

2

5

3

4

8

1

6

7

2

5

3

4

1

8

6

2

7

3

5

1

4

8

2

6

3

7

1

5

4

8

2

3

6

1

7

4

5

8

2

3

1

6

4

7

5

8

2

1

3

4

6

5

7

8

1

2

3

4

5

6

7

8

Time

Figure 3.8: Example: implementing the permutation 𝛼 =(
6 7 2 5 3 4 8 1

)
with nearest-neighbor swaps using Algorithm 3.

[𝐿] × [𝐿]}; two vertices u, u′ share an edge if |u − u′|2 ≤ 𝑅. Our objective is to
build up to a routing algorithm on this graph. Before considering this general case,
we study the case where 𝑅 = 1. The idea used there will be used again for general 𝑅
in the next subsection.

143

Routing on graph products: The main idea we present in this subsection are
techniques due to Annexstein and Baumslag [AB90] to route on Cartesian products of
graphs. They showed that we can derive routing algorithms for the Cartesian product
𝐺1 × 𝐺2 using routing algorithms for graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2).

The general routing algorithm Product-Routing presented in Algorithm 4 below
applies to any two graphs 𝐺1 and 𝐺2 for which routing routines are known. Each
𝑣1 ∈ 𝑉1, defines a “row” R𝑣1 = {𝑣1} × 𝑉2, and each 𝑢2 ∈ 𝑉2 defines a “column”
C𝑢2 = 𝑉1 × {𝑢2} 4. We call a permutation 𝛼 of the vertices of 𝐺1 × 𝐺2 a row
permutation if the permutation respects a decomposition into rows i.e. for all 𝑣1 ∈ 𝑉1,
𝛼 : R𝑣1 → R𝑣1 . Likewise, for a column permutation, we have that for all 𝑢2 ∈ 𝑉2,
𝛼 : C𝑢2 → C𝑢2 . A row or column permutation can be implemented using routing
routines for 𝐺2 or 𝐺1 by applying the routine to each copy in the Cartesian product.

Lemma 3.3.1 (Annexstein & Baumslag [AB90]). For any routing 𝛼12 on 𝐺1 × 𝐺2,
there exist column permutations 𝛼1, 𝛼

′
1 and row permutations 𝛼2 on 𝐺2 such that:

𝛼12 = 𝛼1 ◦ 𝛼2 ◦ 𝛼′1. These permutations can all be computed in polynomial time. If
the permutations 𝛼1 and 𝛼′1 require depth at most T1 and 𝛼2 requires depth at most
T2. Then 𝛼12 requires depth at most 2T1 + T2.

We provide some intuition for this lemma. At first glance, one might expect that a
row permutation 𝛼1 followed by a column permutation 𝛼2 ought to suffice. However,
this will not always work—if two pebbles in a row share the same destination column,
then no row permutation will be able to send both the pebbles to the correct column.

To avoid collisions, we start the procedure with an additional step. We first send
pebbles to rows in which no other pebbles shares the same destination column, so
that the routing procedure performs a column permutation, a row permutation, and
finally a column permutation. This problem will be rephrased as an edge-coloring
problem where each color corresponds to the intermediate row that qubits will be
routed through.

We first construct a bipartite multigraph 𝐵 over the vertices (𝑉2 ⊔𝑉 ′2) with left and
right vertex sets both copies of 𝑉2

5. To each pebble, we associate an edge between
the initial column on the left and the destination column on the right. 𝐵 is bipartite

4This notation is inspired by thinking about the vertices arranged as a matrix of size 𝑉1 ×𝑉2.
5A multigraph is a generalization of a graph where two vertices are allowed to share multiple

edges

144

and has degree at most |𝑉1 |, so there exists an efficiently computable edge coloring
with |𝑉1 | colors [Sch+03] i.e. a decomposition into |R| disjoint matchings.

To each color, 𝜏 ∈ [𝑉1], we will assign an arbitrary row. For each pebble (edge), we
will first pre-route it to the assigned row (color) before completing a final routing
along the rows then columns. In a valid coloring, no two edges (pebbles) of the same
color (intermediate row) are incident to the same vertex (column). In the first step,
this means that, for every column, each pebble has a unique intermediate destination
row. Further, in the row permutation step, for every row, each pebble has a unique
destination column. Finally, in the last column permutation step, each pebble is in its
destination column, so, for each column, each pebble has a unique destination row.

We assume we are given blackbox access to an efficient edge coloring algorithm for
bipartite graphs [Sch+03] and call it via a subroutine Edge-Coloring in Algorithm
4.

Algorithm 4 Product-Routing(𝛼)
Input: Permutation 𝛼 : 𝑉1 ×𝑉2 → 𝑉1 ×𝑉2
Output: Row permutations 𝛼1, 𝛼′1 and a column permutation 𝛼2 such that
𝛼 = 𝛼1 ◦ 𝛼2 ◦ 𝛼′1.

1: Initialize bipartite graph 𝐵← (𝑉2 ⊔𝑉 ′2,∅) with no edges.
2: for Every (𝑣1, 𝑢2) ∈ 𝑉1 ×𝑉2 do
3: Draw an edge between 𝑢2 ∈ 𝑉2 and 𝑢′2 ∈ 𝑉

′
2 if 𝛼(𝑣1, 𝑢2) = (𝑣′1, 𝑢

′
2).

4: 𝜏 ← Edge-Coloring(𝐵)
5: for (𝑣1, 𝑢2) ∈ 𝐸 do
6: 𝛼′1(𝑣1, 𝑢2) ← (𝜏(𝑒), 𝑢2)
7: 𝛼2(𝜏(𝑒), 𝑢2) ← (𝜏(𝑒), 𝑢′2)
8: 𝛼1(𝜏(𝑒), 𝑢′2) ← (𝑣

′
1, 𝑢
′
2)

To illustrate Algorithm 4, we describe how to obtain the permutation routing on
the nearest-neighbor graph in 2-dimensions NN2(𝐿, 1). Noting that NN2(𝐿, 1) �
NN1(𝐿, 1) × NN1(𝐿, 1), Lemma 3.3.1 implies that an arbitrary permutation on
NN2(𝐿, 1) can be implemented using a product of permutations on the components
NN1(𝐿, 1). Recalling that any permutation on the path graph NN1(𝐿, 1) can be done
in depth 𝐿 − 1 implies the following corollary.

Corollary 3.3.2. Any permutation 𝛼 on NN2(𝐿, 1) can be performed in depth 3𝐿−3.

Proof. NN2(𝐿, 1) � NN1(𝐿, 1) ×NN1(𝐿, 1), and we can route on NN1(𝐿, 1) using
an even-odd sorting network (Algorithm 3). Using Algorithm 4, we have that the
total number of steps is 3(𝐿 − 1). ■

145

In a different context, the above claim was also made Thompson & Kung [TK77].

Figure 3.9 shows an example of a permutation of such a lattice using Algorithm 4.

Figure 3.9: Visualizing the routing algorithm via the space-time path of individual
qubits. For each swap location, a gray rectangle indicated the plane of the swap is
drawn for visualization purposes. Note that in the intervals (𝑡0, 𝑡1) and (𝑡2, 𝑡3) there
are only row swaps, and in the interval (𝑡1, 𝑡2) there are only column swaps. Each of
the swaps within a single row or column we obtain by a 1D even-odd sorting network
(Figure 3.8).

Permutation routing given long-range gates
In this subsection, we show how to route on NN2(𝐿, 𝑅). We do this by finding graph
approximations – subgraphs of our original graph that we can route on nearly as
well. We will approximate NN2(𝐿, 𝑅) using a two-step approach—first we show
that the complete graph times a 2-dimensional nearest-neighbor graph approximates
NN2(𝐿, 𝑅) well; we then show that a sparse graph approximates the complete graph
well. Together, this will result in a circuit with sparse connectivity that exploits
long-range connectivity of range 𝑅.

The complete graph & sparse approximations: The complete graph 𝐾𝑚 is a
graph on 𝑚 vertices with edges between every pair of vertices. Any permutation
𝛼 on 𝐾𝑚 can trivially be accomplished in depth 2. Using a complete graph will
simplify some of the analysis in this section. However, 𝐾𝑚 is a dense graph; in turn,
the corresponding syndrome-extraction circuit we construct from it will require that
qubits are involved in a super constant number of two-qubit gates. To avoid this
problem, we replace 𝐾𝑚 by a sparse graph in exchange for a modest increasing in

146

the depth of permutations. We state some facts about sparse approximations to the
complete graph 𝐾𝑚.

Definition 3.3.3 (Spectral Expander). Let 𝐺 be a 𝑑-regular graph on 𝑚 vertices
where all eigenvalues of the adjacency matrix except for the largest {𝜆𝑖}𝑚𝑖=2 satisfy
|𝜆𝑖 | ≤ 𝜆 < 𝑑. 𝐺 is said to be an (𝑚, 𝑑, 𝜆)-spectral expander.

Fact 3.3.4 ([Fri08]). For even 𝑑 ≥ 4 and any 𝜖 > 0, there is an efficient randomized6

algorithm that returns a random 𝑑-regular graph such that it is an (𝑚, 𝑑, 𝜆)-spectral
expander for 𝜆 = 2

√
𝑑 − 1 + 𝜖 .

This fact establishes that a random regular graph is a good spectral expander with
high probability. For 𝑑 = 4, such a graph can be defined on any even number of
vertices, so this family is extremely flexible. For convenience, we will set 𝑑 = 4 and
𝑚 even. We will call a random 4-regular graph picked in this way on 𝑚 vertices E𝑚.

The next fact concerns routing on spectral expanders in an efficiently computable
manner.

Fact 3.3.5 ([ACG93]). Let 𝐺 be an (𝑚, 𝑑, 𝜆)-spectral expander. Then, any permuta-
tion 𝜎 : [𝑚] → [𝑚] can be performed in depth 𝑂

(
𝑑2

(𝑑−𝜆)2 log2(𝑚)
)
.

Take together, we can replace 𝐾𝑚 by a random 4-regular subgraph E𝑚 on which
we can route in depth 𝑂 (log2(𝑚)). For our purposes, we assume that the routing
algorithm for these sparse graphs can be accessed in a black-box manner.

Now we are prepared to move on to implementing permutations on NN2(𝐿, 𝑅). The
depth we will find is nearly optimal, even when 𝑅 > 1. For convenience, let us
assume that 𝐿/𝑅 is an integer. First, note that at distances shorter than 𝑅, NN2(𝐿, 𝑅)
locally “looks” like a complete graph on 𝑅-vertices. We can leverage this to find a
spanning subgraph7 of NN2(𝐿, 𝑅) that is a product of graphs that we know how to
route on: 𝐾𝑅 and NN2(𝐿/𝑅, 1).

Lemma 3.3.6. If 𝑅 divides 𝐿, NN1(𝐿/𝑅, 1) × 𝐾𝑅 is a spanning subgraph of
NN1(𝐿, 𝑅).

6We note that the result in [Fri08] only shows that a regular random graph will be an expander
with high probability. However, spectral expansion is efficiently checkable, so this process may be
repeated until success.

7A subgraph 𝐻 of a graph 𝐺 is said to be a spanning subgraph if all vertices of 𝐺 are contained
in 𝐻.

147

Proof. Using the coordinates [𝐿/𝑅] × [𝑅] for NN1(𝐿/𝑅, 1) × 𝐾𝑅 and [𝐿] for
NN1(𝐿, 𝑅), we can map the vertices of NN1(𝐿/𝑅, 1) × 𝐾𝑅 to those of NN1(𝐿, 𝑅)
using the bijection 𝜂 : [𝐿/𝑅] × [𝑅] → [𝐿]

(𝑎, 𝑏)
𝜂
−→ (𝑎 − 1)𝑅 + 𝑏 .

Away from the boundary, the neighbors of an arbitrary vertex (𝑎, 𝑏) of NN1(𝐿/𝑅, 1)×
𝐾𝑅 are (𝑎 ± 1, 𝑏) and (𝑎, [𝑅] \ {𝑏}). A vertex (𝑎, 𝑏) at a boundary is adjacent to
the vertices (𝑎, [𝑅] \ {𝑏}) and one of (𝑎 − 1, 𝑏) or (𝑎 + 1, 𝑏); whichever is in the
graph. All elements of these sets are at most a distance 𝑅 from (𝑎, 𝑏) under 𝜂, so it
is a valid edge in NN1(𝐿, 𝑅). ■

Clearly, NN1(𝐿, 𝑅) × NN1(𝐿, 𝑅) is a spanning subgraph of NN2(𝐿, 𝑅) given by
retaining only those edges connecting vertices within a single row or column.

Corollary 3.3.7. Any permutation on NN2(𝐿, 𝑅) can be performed in depth 3𝐿/𝑅+9.

Proof. Denote NN1(𝐿/𝑅, 1) ×𝐾𝑅 by 𝐻. By Lemma 3.3.6, 𝐻 is a spanning subgraph
of NN1(𝐿, 𝑅), and NN1(𝐿, 𝑅) ×NN1(𝐿, 𝑅) is a spanning subgraph of NN2(𝐿, 𝑅). It
follows that 𝐻 × 𝐻 is a spanning subgraph of NN2(𝐿, 𝑅), so any simple permutation
for 𝐻 × 𝐻 is a simple permutation for NN2(𝐿, 𝑅).

Permutations on 𝐾𝑅 and 𝐺2 = NN1(𝐿/𝑅, 1) can be implemented in depth 2 and
𝐿/𝑅−1, respectively. Setting𝐺1 = 𝐾𝑅 and𝐺2 = NN1(𝐿/𝑅, 1) in Lemma 3.3.1, any
permutation on 𝐻 can therefore be implemented in depth (𝐿/𝑅−1) +2 ·2 = 𝐿/𝑅+3.
Invoking Lemma 3.3.1 again with 𝐺1 = 𝐺2 = 𝐻, we can implement any permutation
on 𝐻 × 𝐻 and hence, NN2(𝐿, 𝑅) in depth 3𝐿/𝑅 + 9. ■

Note even though there are many edges that we do not use, the lowest depth routing can
be no better than the graph diameter of NN2(𝐿, 𝑅) which is roughly

√
2𝐿/𝑅, so this

is nearly optimal. Furthermore, owing to the translation invariance of NN2(𝐿/𝑅, 1),
the embedding of 𝐾𝑅 × 𝐾𝑅 × NN2(𝐿/𝑅, 1) is also translation invariant—far from
the boundaries, the graph remains the same locally under translation of 𝑅 units in
the vertical and horizontal directions.

Now, NN2(𝐿, 𝑅) is not sparse: the degree of each vertex grows as 𝑅2. For practical
purposes, it would be convenient if only a sparse subgraph of NN2(𝐿, 𝑅) were used
in the routing routine. In Corollary 3.3.7, we used only the edges contained in a
subgraph NN1(𝐿/𝑅, 1) × 𝐾𝑅 × NN1(𝐿/𝑅, 1) × 𝐾𝑅. NN1(𝐿/𝑅, 1) is sparse, but 𝐾𝑅

148

is not. However, we can replace 𝐾𝑅 by a sparse expander graph so that the subgraph
we use is sparse. Fact 3.3.5 supplies such a family of graphs and a depth 𝑂 (log2 𝑅)
routing subroutine.

R

(a) (b)

Figure 3.10: (a) A square lattice NN2(𝐿, 𝑅) with a qubit on each lattice point. The
blue circle of radius 𝑅 denotes the interaction radius for a qubit in the lattice. Such a
circle exists around each qubit; we only draw one for clarity. (b) Approximating the
lattice using the sparse product graph E𝑅 × E𝑅 × NN2(𝐿/𝑅, 1). Different colored
edges come from different factors in the product.

We now bring these ideas together formally in the following corollary.

Corollary 3.3.8. For 𝑅 even, there is an efficiently constructable degree-12 spanning
subgraph of 2-dimensional 𝑅-nearest-neighbor lattice NN2(𝐿, 𝑅) on which any
permutation can be performed in depth 3𝐿/𝑅 +𝑂 (log2 𝑅).

Proof. We will use replace the use of the fully connected graph in Corollary 3.3.7
with a sparse expander. Consider a 4-regular random graph E𝑅 generated according
to fact 3.3.4. By fact 3.3.5, we can route on E𝑅 in depth 𝑂 (log2 𝑅).

Now consider the graph 𝐻 = E𝑅 × NN1(𝐿/𝑅, 1). E𝑅 is a spanning subgraph of
𝐾𝑅, so it follows by lemma 3.3.6 that 𝐻 is a spanning subgraph of NN1(𝐿/𝑅, 1).
Further, using Lemma 3.3.1, we can implement any permutation on 𝐻 in depth
𝐿/𝑅 + 𝑂 (log2 𝑅), so we can also implement any permutation on 𝐻 × 𝐻 in depth
3𝐿/𝑅 +𝑂 (log2 𝑅).

149

By an identical argument to Corollary 3.3.7, we have that 𝐻 × 𝐻 is a spanning
subgraph of NN2(𝐿, 𝑅). Further, 𝐻 × 𝐻 has vertex degree 128 since the max vertex
degree of the product of graphs is the sum of the max vertex degrees of the factors. ■

This subgraph is illustrated in figure 3.10 (b). Later, we will use the contents of the
corollary to construct syndrome-extraction circuits with two-qubit gates of range at
most 𝑅 and where each qubit only needs to interact with a constant number of other
qubits.

3.4 Bilayer implementation of hierarchical codes
In this section, we will prove Theorem 3.1.2. Note that 𝑅 can be taken to be
any number (such as 1) and the required connectivity is always sparse. We state
Theorem 3.1.2 here in two parts and present the proof for each part in turn.

Theorem 3.4.1 (Theorem 3.1.2, Part 1). The J𝑁, 𝐾, 𝐷K hierarchical code H𝑁

is constructed by concatenating an outer code, a constant-rate J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K
quantum LDPC code Q𝑛 and an inner code, a rotated surface code RSℓ where
𝑑ℓ = Θ(log(𝑛)). Let 𝜌 > 0 and 𝛿 ≥ 1/2, such that 𝑘 = 𝜌 · 𝑛 and 𝑑 = Θ(𝑛𝛿). The
codeH𝑁 has parameters

𝐾 (𝑁) = Θ

(
𝑁

log(𝑁)2

)
, 𝐷 (𝑁) = Ω

(
𝑁𝛿/log2𝛿−1

[
𝑁

log(𝑁)

])
.

Proof. We first define the hierarchical code family {H𝑁 } and corresponding
syndrome-extraction circuits {𝐶H

𝑁
}. The element of this family indexed by 𝑁 =

𝑁 (𝑛) = 𝑛 · 𝑑2
ℓ

is created by concatenating an outer LDPC code Q𝑛 with an inner
surface code RSℓ, where ℓ = Θ(log(𝑛)). Recall ℓ = 2𝑑2

ℓ
− 1 is the total number

of qubits used to construct the rotated surface code RSℓ. The justification for this
choice of ℓ will follow in the next section.

To express 𝑛 in terms of 𝑁 , the following bounds will be useful:

𝑛 = 𝑂

(
𝑁

log(𝑁)

)
, 𝑛 = Ω

(
𝑁

log2(𝑁)

)
. (3.11)

It follows from the definition of a concatenated code that the number of encoded
qubits is 𝐾 = 𝑘 (𝑛), the code distance is 𝐷 = 𝑑 (𝑛) · 𝑑ℓ (See Section 3.2). As 𝛿 ≥ 1/2,

8Degree-8 can be achieved by replacing the E𝑅 × E𝑅 factor in the decomposition with a single
expander graph after some modification of parameters.

150

1 − 2𝛿 ≤ 0. Using Equation (3.11), we can write

𝐾 = Ω

(
𝑁

log2(𝑁)

)
, 𝐷 (𝑁) = Ω

(
𝑁𝛿 log1−2𝛿

[
𝑁

log(𝑁)

])
. (3.12)

This completes the proof. ■

The second portion of Theorem 3.1.2, stated below, guarantees the existence of a
syndrome-extraction circuit for the hierarchical code constructed in Theorem 3.4.1.

Theorem 3.4.2 (Theorem 3.1.2, Part 2). There exists an explicit and efficient
construction of an associated family of syndrome-extraction circuits 𝐶H

𝑁
using only

local Clifford operations and SWAP gates of range 𝑅 such that

W(𝐶H𝑁) = Θ(𝑁) , T(𝐶H𝑁) = 𝑂
(√
𝑁

𝑅

)
.

The rest of this section is dedicated to the proof of Theorem 3.4.2. We construct the
syndrome-extraction circuit 𝐶H

𝑁
for the concatenated code with the stated parameters.

This circuit is constructed in a bilayer architecture and is described in detail below. A
bilayer construction of the syndrome-extraction circuit𝐶Q𝑛 is described in Section 3.4.
To obtain 𝐶H

𝑁
, each outer qubit in the syndrome-extraction circuit 𝐶Q𝑛 is replaced by

a copy of the inner code RSℓ as described in Section 3.2.

If 𝐶Q𝑛 requires W = W(𝐶Q𝑛) qubits, then we need a layout for W surface codes in 2
dimensions. In Section 3.4, we propose an implementation of RS⊗W

ℓ
using a bilayer

2-dimensional architecture. The advantage of this architecture is that entangling gates
between codes can be performed in a transversal manner which reduces the number
of extra ancilla qubits. In Section 3.4, we describe a novel implementation of SWAP
gates for this architecture. This completes the set of logical Clifford operations K1.
We will bring these elements together to construct the syndrome-extraction circuit
𝐶H
𝑁

in Section 3.4.

Before doing so, we take a brief detour in Section 3.4 to design Level-1 qubits with
noise bias. We will return to this construction in Section 3.6 to deal with hook errors.

Syndrome-extraction circuit 𝐶Q𝑛 for the outer code
In this section, we design a family of syndrome-extraction circuits {𝐶Q𝑛 } for a
constant-rate J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K LDPC code {Q𝑛}. We assume 𝑘 = 𝜌 · 𝑛 for 𝜌 > 0 and
that 𝑚 = 𝑛 − 𝑘 is the number of stabilizer generators. In Section 3.2, we described

151

measurement gadgets to measure each stabilizer generator. We now describe how
these gadgets can be implemented in parallel subject to constraints on geometric
locality. We first state the existence of an ideal circuit (𝐶Q𝑛)ideal which is not
constrained by geometric locality. While we include the proof of this construction
for the sake of completeness, we note that the idea and the proof itself have been
used before—for example, see [DBT21]. For this reason, the proof is relegated to
Appendix 3.10.

Define constants Δ and 𝑚0 such that

Δ := max(Δ𝑞,Δ𝑔) , 𝑚0 := max(𝑚X, 𝑚Z) .

The circuit (𝐶Q𝑛)ideal is divided into two phases, where in each phase we measure
either X or Z syndromes. Each phase requires at most (Δ + 2) stages. It satisfies

W := W[(𝐶Q𝑛)ideal] = 𝑛 + 𝑚0 , 𝑠 := T [(𝐶Q𝑛)ideal] = 2(Δ + 2) . (3.13)

The first phase proceeds as follows:

1. All 𝑚X ancilla qubits are prepared in the state |+⟩.

2. In each intermediate step 1 < 𝑡 ≤ Δ + 1, there is a subset 𝑃𝑡 of all W qubits
such that 𝑃𝑡 is a disjoint union of 𝑚X pairs of qubits, where each pair contains
one ancilla and one data qubit respectively. These pairs correspond to control
and target qubits, respectively, for CNOT.

3. All 𝑚X ancilla qubits are measured in the X basis.

The second phase is structurally similar with minor modifications:

1. All 𝑚Z ancilla qubits are prepared in the state |0⟩.

2. In each intermediate step 1 < 𝑡 ≤ Δ + 1, there is a subset 𝑃𝑡 of all W qubits
such that 𝑃𝑡 is a disjoint union of 𝑚Z pairs of qubits, where each pair contains
one ancilla and one data qubit respectively. These pairs correspond to target
and control qubits, respectively, for CNOT.

3. All 𝑚Z ancilla qubits are measured in the Z basis.

152

We now use this circuit to construct the syndrome-extraction circuit 𝐶Q𝑛 that is
constrained by geometric locality. It will have the same space footprint W, but its
depth will be different.

Setup: Qubits are arranged in two parallel layers where each layer is a grid of
dimensions 𝐿 × 𝐿. We assume we have access to Clifford operations K where, in
addition to nearest-neighbor gates between two qubits in the same layer, we can
perform nearest-neighbor gates between two qubits that are adjacent but in different
layers. We also assume that SWAP gates of range 𝑅 > 1 are restricted to a single
layer.

Initialization: To accommodate all W qubits required for (𝐶Q𝑛)ideal, it is sufficient
to choose the smallest integer 𝐿 that satisfies 2𝐿2 ≥ W. Initially, data qubits and
syndrome qubits are distributed arbitrarily. While further optimization is likely
possible, this will not affect the asymptotics, and certainly results in an upper bound
on the circuit volume.

Partition 𝐶Q𝑛 into stages: The circuit 𝐶Q𝑛 will be partitioned into 𝑠 stages, where in
each stage, we prepare and measure ancilla qubits or simulate long-range entangling
gates between pairs of qubits specified by 𝑃𝑡 . To simulate a long-range entangling
gate, we use a series of SWAP gates which bring each pair specified by 𝑃𝑡 close
together, followed by the desired entangling gate when they are sufficiently close.
The preparation and measurement stages are straightforward. We now describe how
to perform the long-range entangling gate.

Simulating long-range: In each simulation stage, qubits are arranged such that each
pair of 𝑃𝑡 are adjacent but in different layers. In the first step of each stage, we apply a
permutation to the ancilla qubit in each pair of 𝑃𝑡 to ensure that both qubits in the pair
are not in the same layer. Qubits that are not in 𝑃𝑡 remain stationary. For simplicity,
we only permute qubits in the top layer and keep the bottom layer stationary. This
specifies a permutation 𝛼𝑡 on the top layer. As this layer is an 𝐿×𝐿 lattice, we can use
Algorithm 4 to design a circuit so that SWAP operations can be performed in parallel.
Using Theorem 3.1.1, we can construct a sparse spanning subgraph of NN2(𝐿, 𝑅)
with vertex degree 12 such that any permutation 𝛼𝑡 can be accomplished in depth at
most 3𝐿/𝑅 +𝑂 (log2(𝑅)). This is followed by nearest-neighbor entangling gates as
specified by 𝑃𝑡 . The simulation stages have depth

3
𝐿

𝑅
+𝑂 (log2(𝑅)) + 1 . (3.14)

153

Accounting for preparation and measurement steps in each phase, the circuit 𝐶Q𝑛 has
parameters

W(𝐶Q𝑛) = W = 𝑛 + 𝑚0 , T(𝐶Q𝑛) ≤ 2Δ
(
3
𝐿

𝑅
+𝑂 (log2(𝑅)) + 1

)
+ 4 . (3.15)

We note that if 𝑅 = 𝑜(𝐿), then the depth is 𝑂 (
√
𝑛/𝑅) (as 𝐿 = 𝑂 (

√
𝑛). We shall

assume that this is the case for the rest of the paper. We include the bound in
Equation (3.15) with constants (ex. the 3 preceding 𝐿/𝑅) and the dependence on the
degree Δ to highlight that, for 𝑅 = 1, this is not merely an asymptotic result and can
actually be executed in practice.

The bounds in Equation (3.15) represent an achievability result—any quantum LDPC
code can be simulated in depth 𝑂 (

√
𝑛/𝑅) as stated in the theorem above. However,

it is not asymptotically tight for all code families (for example, consider the surface
code). We expect future versions of this bound to depend on 𝑘 and 𝑑, and how they
scale as functions of 𝑛.

Circuit connectivity: In addition to providing a bound on the depth of permutations,
Theorem 3.1.1 guarantees that each lattice position interacts with at most 12 other
locations all within a range 𝑅. This implies that the connectivity of the circuit 𝐶Q𝑛
we have constructed can be ‘static’—once qubits have been connected by wires of
length at most 𝑅, we do not change it afterwards.

Implementation of the inner code
We have shown that 𝐶Q𝑛 is constructed using two parallel layers of qubits, where
each layer is a lattice of dimensions 𝐿 × 𝐿. Here 𝐿 is the smallest integer such
that 2𝐿2 ≥ W, where W is the number of qubits used by 𝐶Q𝑛 . To construct the
syndrome-extraction circuit 𝐶H

𝑁
, we use two parallel rotated lattices. Each qubit in

𝐶Q𝑛 is replaced by a rotated surface code RSℓ where ℓ = Θ(log(𝑛)). As each tile
uses ℓ2 = 2𝑑2

ℓ
− 1 physical qubits, the circuit 𝐶H

𝑁
requires at least 2𝐿2 · ℓ2 physical

qubits. We also use additional physical qubits which we refer to as buffer qubits to
facilitate logical Clifford operations between tiles. See Figure 3.11.

Buffer qubits are either placed along the periphery of each lattice or between tiles:

1. First, we include a thin band of “buffer” qubits along the perimeter of each
layer for reasons that we will explain shortly. The band has thickness (ℓ + 1)/2
and therefore this adds at most 2𝐿 (ℓ + 1)2 ancilla qubits per layer. These are
denoted as transparent dots in Figure 3.11 (a).

154

2. Second, for each surface code, we have 𝑑2
ℓ

data qubits, 𝑑2
ℓ
− 1 ancilla qubits,

and 1 extra buffer qubit (light gray) for later convenience. These are denoted
using dark gray, orange/blue and light gray respectively in Figure 3.11 (b).

In total, accounting for both qubits used in tiles as well as buffer qubits, we use at
most 2(ℓ + 1)2(𝐿 + 1)2 physical qubits. These are arranged in two parallel (rotated)
lattices of side length (𝐿 + 1) · (ℓ + 1)9.

(a) (b)

Figure 3.11: (a) A top-down view of one layer of the physical layout. At any given
time, only some of the qubits are active; these are denoted using dots with solid
color. In contrast, there are qubits that are inactive that can be used for performing
logical operations; these are denoted using dots that are transparent. (b) A small
2 × 2 × 2 unit cell of the physical layout containing 8 distance-3 rotated surface code
tiles. Physical qubits are drawn as dark gray dots. X- and Z-type stabilizer generators
within a tile are indicated by a light or dark gray region with the colored dot used
as an ancilla. Thin lines indicate gate connectivity: Each qubit has 5 neighbors, 4
in-plane and 1 out-of-plane. The light gray qubit in the center is unused when the
tiles are idle. Note that this layout does not contain additional ancilla qubits between
tiles for lattice surgery: all operations will be performed transversally.

Physical gates can act either on two neighboring qubits in the same layer, or on
adjacent qubits in different layers. Using only K0 operations, we construct the
necessary primitives to implement the syndrome-extraction circuits 𝐶H

𝑁
.

As described in Section 3.4, the circuit 𝐶Q𝑛 is divided into 𝑠 stages. Implementing the
syndrome-extraction circuit for the outer code requires logical Clifford operations
K1.

At the outset, both data and ancilla tiles are arranged arbitrarily. Syndromes are
measured in two phases—first we measure the X-type syndromes and then the Z-type

9Note that there are
√

2𝐿ℓ qubits to a side due to the rotated lattice.

155

syndromes. The first and last stages of each phase correspond to single-tile logical
state preparation and single-tile logical measurements. Single-tile logical operations
of state preparation and measurements can be done using only nearest-neighbor gates.
If Level-0 qubits can be prepared in |0⟩ or |+⟩, then we can prepare Level-1

���0〉 and��+〉 simply by performing the syndrome-extraction circuit which projects the state
into the code space. Similarly, we can perform destructive measurements of logical
Pauli operators X and Z using single-qubit measurements of X and Z.

For each stage where we simulate long-range entangling gates, there exists a partition
of outer qubits 𝑃𝑡; Here, 𝑃𝑡 is the set of 𝑚0 = max(𝑚X, 𝑚Z) pairs, where each pair
has one outer ancilla qubit and one outer data qubit respectively. Depending on
whether we are measuring X or Z syndromes, we perform the logical CNOT gate
using the outer data qubit as target or the outer ancilla qubit as target. Data and
syndrome tiles that are involved in entangling gates are always arranged such that the
tiles are adjacent but in different layers. As the rotated surface code is a CSS code,
we can perform CNOT gates between surface code blocks corresponding to data and
ancilla qubits using transversal operations. For all these operations — single-tile
preparation, single-tile measurement, and transversal CNOT — we perform surface
code error correction after the operation.

To complete the description of the Level-1 syndrome extraction circuit, it only
remains to explain how the logical SWAP operation is implemented. We propose a
novel way to perform this gate when 𝑅 < ℓ; this is the focus of Section 3.4. We show
that an arbitrary permutation requires 𝑂 (𝐿 · 𝑑ℓ) steps. Error correction for SWAP
gates is performed in an interleaved manner—we perform a single round of error
correction after each step as described below.

We conclude Section 3.4 by discussing connectivity requirements. As mentioned
in the introduction, we construct syndrome-extraction circuits such that once two
lattice positions have been connected, this does not need to change dynamically over
the course of the circuit. Furthermore, each lattice position only ever interacts with a
constant-sized set of other lattice locations. For both error correction and logical
operations, lattice positions (that store a physical qubit) will be involved in CNOT
gates. It would be preferable if the pairs of lattice positions that need to interact did
not change dynamically over the course of the circuit, and instead could be chosen
ahead of time.

If the circuit 𝐶Q𝑛 is implemented such that each lattice position requires only
connectivity to a constant sized set of other lattice positions, then the entire syndrome-

156

extraction circuit 𝐶H
𝑁

for the hierarchical codeH𝑁 will only use sparse connectivity
of two-qubit physical gates. The proof of this claim is straightforward for single-
tile logical state preparation and measurement — these are accomplished using
local physical operations. Secondly, by construction, logical entangling gates are
implemented transversally and therefore the connectivity does not change. Finally,
we will show in Section 3.4 that for a given 𝐿 and 𝑅, the connectivity required to
implement an arbitrary permutation of tiles will be chosen ahead of time and will
not change dynamically.

SWAP Gate
As discussed above, we can perform logical CNOT transversally. To complete
K1, the final ingredient we need are SWAP gates. We first focus on the special
case 𝑅 = 1, and then generalize the construction to arbitrary 𝑅. To implement
the permutation returned by Algorithm 4, it suffices to perform SWAP gates only
along one orientation of the lattice at a time, either vertically or horizontally. This
restriction is utilized to create a resource efficient SWAP operation that requires
no additional ancilla qubits. The key insight is that movement of individual tiles
may be accomplished by moving all the tiles within a single layer. By performing
the transversal SWAP after movement and then moving back, we can accomplish a
SWAP operation between two surface codes that are not directly on top of each other.

Nearest-neighbor logical SWAP gates

High-level overview: We first provide a high-level overview of the SWAP operation
and refer to Figure 3.12. Consider a two parallel rows of tiles in the bilayer architecture
as shown in Figure 3.12 (a). The tiles in the top row are labeled 𝑎1,..., 𝑎4 and the
tiles in the bottom row are labeled 𝑏1,...,𝑏4. The tiles labeled ∅ are buffer qubits
along the periphery. For ease of visualization, the picture depicts a single-tile width
of buffer qubits along the top layer. In practice, we use two half-tile width of buffer
qubits in both layers. In this example, we swap tiles 𝑎2 and 𝑎3; however, this process
can be generalized to swap tiles in parallel. This is accomplished in 5 steps:

1. The logical SWAP operation begins by exchanging alternate tiles between two
rows. In the bilayer architecture, this exchange is performed in a checkerboard
pattern, i.e. we swap alternate tiles along both rows and columns. This can be
accomplished using what we call the staggered SWAP primitive.

157

2. We can then slide the entire top layer one tile width to the left. In the bilayer
architecture, this will be accomplished using what we call the walking primitive
that we describe below. The top layer will shift a half-tile width in one direction
while the bottom layer will move a half-tile width in the other. This is the
reason we use buffer qubits along the periphery—to accommodate tiles after
the walk step.

3. Pairs of tiles that we wish to exchange are now adjacent in different layers.
For each pair that we wish to swap, we perform a swap operation using
nearest-neighbor SWAP gates between adjacent layers.

4. The last two steps are the inverse of the first two steps—we apply the walk
primitive and then perform a swap operation between layers on alternate tiles.

(a) ∅ 𝑎1

𝑏1

𝑎2

𝑏2

𝑎3

𝑏3

𝑎4

𝑏4

∅ (b) ∅ 𝑎1

𝑏1

𝑏2

𝑎2

𝑎3

𝑏3

𝑏4

𝑎4

∅

(c) ∅𝑎1 𝑏2

𝑏1

𝑎3

𝑎2

𝑏4

𝑏3

∅

𝑎4

(d)
𝑎1 𝑏2

𝑏1

𝑎2

𝑎3

𝑏4

𝑏3

∅

𝑎4

∅

(e) ∅ 𝑎1

𝑏1

𝑏2

𝑎3

𝑎2

𝑏3

𝑏4

𝑎4

∅ (f) ∅ 𝑎1

𝑏1

𝑎3

𝑏2

𝑎2

𝑏3

𝑎4

𝑏4

∅

Figure 3.12: Consider two parallel rows of tiles 𝑎1, ..., 𝑎4 and 𝑏1, ..., 𝑏4 in different
layers, one on top of another. Tiles are depicted as squares. The tiles with the label ∅
represent a tile width of buffer qubits on the periphery of the top layer. This example
demonstrates how to swap two tiles 𝑎2 and 𝑎3. To begin, we swap alternate tiles in
each row as shown in (a). We then use the walk operation to move tiles one unit as
shown in (b). For every pair of tiles we wish to exchange, we perform a inter-layer
SWAP as shown in (c). In this example, we only wish to swap tiles 𝑎2 and 𝑎3 so the
other tiles remain stationary. We then undo the transformation by reversing the walk
in (d) and undoing the alternate exchange in (e). The final panel (f) is the desired
state.

Walking primitive: By placing a 1/2-tile wide strip of buffer qubits on the periphery
of the lattice, we can “walk” the entire memory by swapping the physical-level

158

ancilla qubits and surface code data qubits (Figure 3.14).10 Using this walking
primitive, we can move an entire layer an entire tile width in depth 2𝑑ℓ using only
SWAP-gates. This is a global operation. We will use this primitive in two ways: First,
we implement a transversal SWAP between two tiles that are in different layers in the
staggered-SWAP primitive (explained below). Second, we will use this repeatedly to
move an entire layer half-a-tile width in some direction.

Staggered SWAP primitive: When possible, we would like to avoid applying
gates directly between data qubits of surface code blocks as this would introduce
(small) extra correlations in the logical failure probability of tiles. Instead of a direct
transversal swap between data blocks, the vertical SWAP can instead be performed
between data qubits in one layer and syndrome qubits in the other layer. This is
accomplished via the staggered SWAP primitive. See Figure 3.13.

Figure 3.13: Performing a staggered SWAP operation between layers. Physical
qubits are arranged such that data (ancilla) qubits in the top layer are adjacent to
ancilla (data) qubits in the bottom layer. Each qubit in the top layer is swapped with
the qubit immediately below it. This allows us to exchange tiles between layers
without two data qubits directly interacting with each other.

By default, the qubits in the two layers are positioned such that a data qubit in
the top layer is above a data qubit in the bottom layer. This facilitates performing
logical CNOT gates via transversal physical CNOT gates. We can perform a stagger
operation using the walking primitive. This positions data qubits in the top layer
above ancilla qubits in the bottom layer. We can then apply a transversal SWAP
between layers, and undo the stagger operation if need be. Over the course of the

10Not to be confused with the extra buffer qubit per tile.

159

Level-1 logical SWAP, however, we only need to undo the stagger operation at
the very end. Throughout the logical SWAP, the two layers remain staggered. If
syndrome qubits are reset before use in a syndrome-extraction round, the surface code
blocks have undergone a somewhat complicated idle operation with no correlated
errors generated between the two surface code blocks.

Figure 3.14: Walking primitive used in the SWAP implementation with qubits
outside of the 2 × 2 unit cell not drawn. Swaps of Level-0 qubits are drawn as black
lines with crosses. Data qubits become ancilla qubits and ancilla qubits become data
qubits, so that syndrome extraction is possible at every step. A full 1-unit step to the
right of the data qubits can be accomplished following this 1/2 unit step by swapping
each (initially) syndrome qubit with the data qubit up and to the right. Later, we will
increase the speed at which the top and the bottom layers are shifted relative to each
other by shifting the top layer in one direction and the bottom layer in the other.

Level-1 logical SWAP: We are ready to describe the logical SWAP operation.

We begin by exchanging every other tile. This procedure is illustrated in Figure 3.15;
this can be compared to Figure 3.12. Steps 1 and 3 (half step shifts) are performed
globally with step 2A (vertical swap) or 2B (half step shifts) performed whether or
not a logical swap or logical identity is scheduled for a given tile. The step 2B is
necessary for the logical identity gate, because step 2A would otherwise lead to data
qubits of adjacent tiles directly next to each other instead of separated by an ancilla
qubit. In this way, syndrome extraction can optionally be performed after every layer
of SWAP gates.

To summarize, our SWAP-gate is implemented as follows where we account for the
depth of each operation:

160

Figure 3.15: 3-step transversal swap implementation between two stacked syndrome
tiles that avoids directly swapping data qubits. The pair of tiles on the right undergoes
an identity operation while the pair of tiles on the left are swapped. In step 1, the
top layer is shifted by a half-unit using SWAP gates on the top layer. In step 2, the
pairs of tiles are either swapped using vertical SWAP gates (2A) or shifted using
horizontal SWAP gates to keep alignment (2B). Finally, in step 3, the lower layer is
shifted back by a half-unit using SWAP gates in the bottom layer. This operation has
the property that syndrome extraction can be performed in all three timesteps. The
perspective is inclined slightly to show both layers.

161

1. Use the staggered SWAP on every other tile in a checkerboard pattern to put
them in different layers (depth-3).

2. Use the walking primitive to translate the top and bottom layers 𝑑ℓ lattice
sites in opposite directions so that originally adjacent tiles are now stacked
(depth-𝑑ℓ).

3. Optionally perform a staggered SWAP (depth-3).

4. Translate the top and bottom layers 𝑑ℓ lattice sites back (depth-𝑑ℓ)

5. Bring the tiles back to the same layer by undoing a staggered SWAP (depth-3).

At every step, we have the necessary ancilla qubits to perform surface code syndrome
extraction. At first, we might think to perform 𝑑ℓ rounds of error correction after
each of the 5 steps above. However, because we are working with transversal SWAP
operations, we only perform a single round of error correction after each step. Ideal
SWAP gates do not spread errors, and therefore, the SWAP operation can be seen as a
syndrome-extraction circuit on each tile with a higher failure rate. While performing
just a single round of error correction may reduce the threshold, we expect this change
to be minimal. Furthermore, it reduces the depth of the logical SWAP operation, so
our tile SWAP-gate takes 2𝑑ℓ + 9 steps of physical SWAP-gates.

Recall from Section 3.4 that the syndrome-extraction circuit𝐶Q𝑛 is split into 𝑠 = 2Δ+4
stages. Besides the preparation and measurement stages, we simulate a long-range
CNOT between pairs of data and ancilla qubits in each stage. The stage begins by
picking an element of each pair and ensuring that they are in different layers. We can
then use the logical SWAP described here to permute tiles.

Note that the SWAP operations can be performed in parallel between tiles on the
same layer; the SWAP operations exchange tiles in the same row or column as
required by the routing algorithm presented in Algorithm 4. We can use Lemma
3.3.1 to show that any permutation of tiles on an 𝐿 × 𝐿 lattice can be accomplished
in 3𝐿 − 3 steps. This allows any desired permutation on the 𝐿 × 𝐿 × 2 lattice of tiles
to be accomplished in depth (2𝑑ℓ + 9) (3𝐿 − 3).

In fact, we can optimize this further to avoid repeating redundant operations. For all
but the first and last swap operations: 1) Steps 1 and 5 can be omitted. 2) Within
step 3, we may omit the walking step that offsets the upper and lower layers by a half
lattice site, so the staggered SWAP becomes a simple transversal swap. Using these

162

optimizations, any permutation on the 𝐿 × 𝐿 × 2 lattice of tiles can be accomplished
in depth 𝑡route where

𝑡route := (2𝑑ℓ + 1) (3𝐿 − 3) + 8 . (3.16)

Logical permutation routings

We restrict our attention to range 𝑅 SWAP gates in a single layer. Interlayer
operations are strictly nearest-neighbor gates, and can be accomplished using the
primitives discussed in Section 3.4. In the following lemma, we show that an arbitrary
permutation routing of tiles can be accomplished in depth 𝑂 (𝐿ℓ/𝑅).

Lemma 3.4.3. Consider access to physical SWAP operations with range 𝑅 = 𝑜(𝐿 ·ℓ).
We can implement any arbitrary permutation of Level-1 qubits in the bilayer
architecture in depth

𝑂 (𝐿ℓ/𝑅) .

Proof. We proceed in two cases, 𝑅 ≥ ℓ and 𝑅 < ℓ.

Case 1: 𝑅 ≥ ℓ

Level-0 SWAP gates of range 𝑅 can be used to implement Level-1 transversal
gates of range 𝑅1 = ⌊𝑅/ℓ⌋. We can route on the Level-1 lattice NN2(𝐿, 𝑅1) using
Corollary 3.3.8 with Level-1 tiles swapped transversally. This guarantees that the
depth of any permutation routing of tiles is 𝑂 (𝐿/𝑅1). Each transversal SWAP is
followed by a single round of syndrome extraction of the rotated surface code; this
requires constant depth and does not affect the depth of permutation routing.

Case 2: 𝑅 < ℓ

The range 𝑅 Level-0 SWAP gate can be used to speed up the walking primitive
presented in Section 3.4. Parallelized Level-1 nearest-neighbor SWAP gates imple-
mented in this way take time Θ(ℓ/𝑅). Combined with the Corollary 3.3.2, we have
that routing takes time 𝑂 (𝐿ℓ/𝑅). ■

Biased-noise qubits
In Section 3.6, we will be interested in suppressing certain kinds of Pauli errors.
When a qubit experiences X or Z errors with an asymmetric rate, it is said to be
noise-biased. In this section, we will explain how to introduce such a noise bias on
Level-1 qubits by modifying the bilayer architecture.

163

Let 𝜂 ≥ 1 be the desired noise bias of the Level-1 qubits, and suppose Z errors occur
with a probability 𝑝 and are 𝜂-times more likely to occur than X or Y errors. We can
introduce a noise bias 𝜂 > 1 on Level-1 qubits by elongating the surface code into
rectangular regions where the minimum-weight X logical operator is longer than the
minimum weight Z logical operator. See Figure 3.16. Suppose we have a rectangular
surface code patch of dimensions 𝑑X by 𝑑Z such that the minimum weight X logical
operator has weight 𝑑X and the minimum weight Z logical operator has weight 𝑑Z.
Considering the minimum weight logical operators, we expect a failure rate ∝ 𝑝 ⌈𝑑X/2⌉

in the X basis and ∝ 𝑝 ⌈𝑑Z/2⌉ in the Z basis. By taking 𝑑X > 𝑑Z, we can introduce a
noise bias.

dX = dZ + 4

dZ

Figure 3.16: Creating a biased Level-1 qubit by using a rectangular surface code. In
this picture 𝑑X = 7 and 𝑑Z = 3. The bias is therefore 𝜂 = 𝑂 (𝑝−2).

For simplicity, we assume 𝑑X = 𝑑Z+ ⌈log(𝜂)/log(𝑝)⌉ to guarantee a bias of at least 𝜂.
We also assume that all Level-1 qubits, data and ancilla both, have been biased. We
update the bilayer architecture to use two 𝐿X × 𝐿Z grids of rotated surface code tiles
with X and Z distances 𝑑X and 𝑑Z respectively. Consider a constant-rate LDPC code
Q𝑛 with rate 𝜌. To accommodate W outer qubits, we let 𝐿 be defined by 2𝐿2 = W.
We then define 𝐿Z and 𝐿X to be the smallest integers satisfying 𝐿Z ≥ 𝐿 ·

√︁
𝑑X/𝑑Z

and 𝐿X ≥ 𝐿 ·
√︁
𝑑Z/𝑑X.

It is not sufficient that the qubits themselves are noise biased. In addition, we also
require that all gates preserve this bias. We consider each Clifford operation in turn:

1. Preparation & Measurement: Within the syndrome-extraction circuit for the
outer code where all measurement ancilla qubits are prepared in the

��+〉 state
(Section 3.2), X errors on the ancilla qubits are suppressed by a factor of 𝜂.

2. Entangling gates: In the bilayer architecture, entangling gates are performed
transversally. Transversal gates are naturally bias preserving.

164

3. SWAP gates: The way we perform SWAP operations does not change as all
tiles have the same dimensions. The buffer region on the periphery of the
lattice must be slightly increased to accommodate the elongated surface code
tiles during the walking operation. SWAP operations themselves do not spread
errors and are also bias preserving. 11

Together, this completes the requirements for implementing logical Clifford operations
K1.

Syndrome-extraction circuits for hierarchical codes
The syndrome-extraction circuit 𝐶H

𝑁
for H𝑁 is the circuit 𝐶Q𝑛 where we replace

each outer qubit by a tile RSℓ. In the circuit 𝐶H
𝑁

, each gate of 𝐶Q𝑛 from the set
K is replaced by the corresponding element in K1 followed by surface code error
correction on each outer qubit. Recall that in Section 3.4, we discussed how to
perform preparation, measurement and logical entangling gates. In Section 3.4, we
discussed how to perform SWAP gates.

Theorem 3.4.4. Each element H𝑁 has an associated 2-dimensional syndrome-
extraction circuit 𝐶H

𝑁
with the following properties:

W(𝐶H𝑁) = Θ(𝑁) , T(𝐶H𝑁) = 𝑂
(√
𝑁

𝑅

)
.

Further, each lattice position in 𝐶H
𝑁

only interacts with a fixed set of other lattice
positions whose size is independent of 𝑁 .

Proof. Consider the family of J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K quantum LDPC codes {Q𝑛} of
constant rate 𝜌 > 0.

From Section 3.4, W(𝐶Q𝑛) = Θ(𝑛). To construct 𝐶H
𝑁

, each qubit in 𝐶Q𝑛 is replaced
by a surface code RSℓ. It follows that

W(𝐶H𝑁) = Θ(ℓ)2 · Θ(𝑛) = Θ(𝑁) . (3.17)

Secondly, each K1 operation in 𝐶H
𝑁

requires depth Θ(ℓ) for error correction. This is
because entangling gates are implemented transversally followed by 𝑑ℓ rounds of
error correction and, per Lemma 3.4.3, the Level-1 logical SWAP operation requires
depth 𝑂 (𝐿 · ℓ/𝑅) = 𝑂 (

√
𝑁/𝑅).

11Recall that for two single qubit operators 𝐴 and 𝐵, SWAP(𝐴 ⊗ 𝐵) = (𝐵 ⊗ 𝐴)SWAP.

165

This implies that

T(𝐶H𝑁) = 𝑂
(√
𝑁

𝑅

)
. (3.18)

By assumption, logical two-tile operations in K1 can be implemented such that the
set of lattice positions that interact with each other remain fixed. Furthermore, the
construction of Section 3.4 guarantees that each of the outer positions in 𝐶H

𝑁
only

interact with a fixed and constant-sized set of other outer positions. Therefore, all of
the physical positions of 𝐶H

𝑁
need only interact with a fixed and constant-sized set of

positions in 𝐶H
𝑁

.

This completes the proof. ■

3.5 Overhead, threshold and asymptotics
In this section, we prove that the hierarchical code has a threshold if we use the
syndrome-extraction circuits 𝐶H

𝑁
presented in Section 3.4. We present a formal

version of Theorem 3.1.3.

We recall the bound by Delfosse et al. in Equation (3.1)

T(𝐶Q𝑛) = Ω
©«

𝑛√︃
W(𝐶Q𝑛)

ª®®¬ . (3.1)

According to this bound, the physical circuit 𝐶Q𝑛 cannot have constant depth and
space footprints simultaneously. This blowup in the volume of the circuit introduces
additional failure modes. Consequently, saturating these bounds by no means ensures
the existence of a threshold. This then seems to have defeated the purpose of
simulating a non-local circuit using local operations.

In this section, we present a geometrically-local construction of a circuit 𝐶H
𝑁

that
encodes a growing number of encoded qubits and guarantees that a threshold exists.
We use code concatenation to define a family {H𝑁 } that we call hierarchical codes.
The 𝑁 th element of this family is obtained by concatenating an LDPC code Q𝑛 and a
rotated surface code RSℓ of size Θ(ℓ2). Here 𝑁 = Θ(𝑛 · ℓ2).

In Section 3.5, we study the failure rate per round 𝑝round and establish its dependence
on 𝑝phys for a syndrome-extraction circuit for any J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K quantum LDPC
code. The circuits are themselves faulty and are described by a locally decaying faults
model. We show in Section 3.5 that logical gates in the bilayer architecture guarantee

166

that Level-1 logical errors in surface code blocks are suppressed exponentially
following logical Clifford operations. This allows us to deal with the Level-1
syndrome-extraction circuit for the outer code directly without having to keep track
of Level-0 failure probabilities. Permuting tiles can introduce Level-1 correlated
errors among the tiles. In Section 3.5, we show that there exists a choice of ℓ such
that the 𝑝 (1)round is an arbitrarily small constant. We can then invoke Gottesman’s
threshold theorem which we discussed in Section 3.2 to prove the existence of a
threshold.

We conclude this overview by highlighting some features of this construction.

1. We show that ℓ = Θ(log(𝑛)) is sufficient to achieve a threshold for the
outer code. If the code Q𝑛 has constant rate, then the code H𝑁 has rate
𝑂 (log(𝑛)−2) → 0 as 𝑛→∞.

2. Although outer and inner codes are both LDPC codes,H𝑁 is itself no longer
an LDPC code—it uses stabilizer measurements that have weight log(𝑛) as
the side length of the inner surface codes is ℓ = Θ(log(𝑛)). However, the
logical operators of the surface code can be measured (destructively) using
only single-qubit measurements.

3. There is a cost to locality—the sub-threshold scaling of the logical failure rate
is qualitatively different from the typical exponential error suppression as a
function of the distance. Instead, we see a strictly sub-exponential, but still
superpolynomial, suppression of the logical failure rate with the distance.

Evolution of errors in syndrome-extraction circuit 𝐶Q𝑛
Consider an J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K LDPC code family {Q𝑛} with constant rate, i.e. 𝑘 = 𝜌 ·𝑛
for some constant 𝜌 ∈ (0, 1) and distance 𝑑 = Θ(𝑛𝛿) for some constant 𝛿 ∈ (0, 1].
In Section 3.2, we discussed how Gottesman’s proof for the existence of a threshold
for LDPC codes depends on the number of errors per round of syndrome extraction
on both data and ancilla qubits. In this section, we shall study how the probability of
errors per round depends on the circuit 𝐶Q𝑛 .

Recall the circuit 𝐶Q𝑛 described in Section 3.4. Qubits are arranged on two parallel
lattices where each lattice has dimensions 𝐿 × 𝐿. Here, 𝐿 is the smallest natural
number that satisfies 2𝐿2 ≥W. In total the circuit has 𝑠 = 2Δ+4 stages which can be
broken down as follows. The syndrome-measurement circuit 𝐶Q𝑛 is divided into two
phases, one for each of X- and Z-type syndrome measurements. Each phase is further

167

divided into Δ + 2 stages, where Δ = max(Δ𝑞,Δ𝑔). In addition to one stage each
to prepare and measure ancillas, there are Δ stages where we simulate long-range
entangling gates. In each such stage, we permute qubits in the lattice using SWAP
gates. Given access to SWAP operations of range 𝑅, the permutation has bounded
depth Tperm = 𝑂 (𝐿/𝑅). This is then followed by nearest-neighbor entangling gates.

Our first result is technical and allows one to compose locally decaying distributions.

Lemma 3.5.1. Let Pr1 and Pr2 be two independent and locally decaying distributions
on [𝑛] with rates 𝑝1 and 𝑝2. Consider the distribution P̂r : Pow(𝑛) → R defined as

P̂r(𝐸) =
∑︁

𝐸1,𝐸2⊆[𝑛]
𝐸⊆𝐸1∪𝐸2

P̂r2(𝐸1) · P̂r1(𝐸2) . (3.19)

Then Pr is a locally decaying distribution with rate 𝑝 = 𝑝1 + 𝑝2, i.e. for all 𝐸 ⊆ [𝑛],

Pr(𝐸) ≤ (𝑝1 + 𝑝2) |𝐸 | . (3.20)

Proof. For 𝐸 ⊆ [𝑛], we can write

Pr(𝐸) =
∑︁

𝐸1,𝐸2⊆[𝑛]
𝐸⊆𝐸1∪𝐸2

P̂r1(𝐸1)P̂r2(𝐸2) (3.21)

≤
∑︁

𝐸1,𝐸2⊆𝐸
𝐸=𝐸1⊔𝐸2

Pr1(𝐸1)Pr2(𝐸2) (3.22)

≤
|𝐸 |∑︁
𝑤=0

(
|𝐸 |
𝑤

)
𝑝𝑤1 𝑝

|𝐸 |−𝑤
2 (3.23)

= (𝑝1 + 𝑝2) |𝐸 | (3.24)

The result follows. ■

Lemma 3.5.2. Let e ∈ F𝑛2 be a random binary vector such that 𝐸 = supp(e) is
distributed according to a locally decaying distribution with rate 𝑝. Let M ∈ F𝑚×𝑛2
with row and column weight at most Δ and f = M · e be a random variable induced
from e. Then 𝐹 = supp(f) is distributed according to a 2Δ𝑝1/Δ locally decaying
distribution.

Proof. For a set of bits 𝐴 ⊆ [𝑛], denote its image under M by M(𝐴) defined as the
union of columns M𝑖 of M in 𝐴. I.e. M(𝐴) :=

⋃
𝑖∈𝐴 supp M𝑖. The probability that

168

an error set 𝐹 ⊆ [𝑚] on the output occurs

Pr(𝐹) =
∑︁
𝐸⊆[𝑛]
𝐹⊆M(𝐸)

P̂r(𝐸) , (3.25)

i.e. in order for 𝐹 to have occurred, there must be a set of errors on the input such
that 𝐹 is in the image. We can rewrite this sum in terms of the largest subset of the
powerset I ⊆ Pow(𝑛) such that for any single set 𝐸 ∈ I:

1. We have that 𝐹 ⊆ M(𝐸).

2. For all non-empty subsets 𝐺 ⊂ 𝐸 , 𝐹 ⊈ M(𝐸 \ 𝐺).

Each element of I is minimal in the sense that it is a subset of no other element of
I (Assumption 2) while still having 𝐹 in its image (Assumption 1). The second
condition will allow us to replace the P̂r(·) with Pr(·) in the sum without loosening
the upper bound. Additionally, the column weight of M is at most Δ, so the size
of each element 𝐸 ∈ I is at least |𝐹 |/Δ. Using the locally decaying distribution
assumption yields

Pr(𝐹) ≤
∑︁
𝐸∈I

Pr(𝐸) (3.26)

≤ |I| · 𝑝 |𝐹 |/Δ . (3.27)

It now remains to count the number of elements of I: Let 𝐽 ⊆ [𝑚] be the preimage
of 𝐹 in the sense that for every element 𝑒 in 𝐽, the intersection of M({𝑒}) with 𝐹 is
not empty. The row weight of M is at most Δ, so 𝐽 is no larger than |𝐹 |Δ. Every
set 𝐸 in I must satisfy 𝐸 ⊆ 𝐽 or else there would be some element 𝑎 ∈ 𝐸 such that
𝐹 ⊆ M(𝐸 \ {𝑎}) (contradicting Assumption 2 on I). Finally, there are 2|𝐽 | subsets
of 𝐽, so |I| ≤ 2|𝐽 | ≤ 2|𝐹 |Δ. Continuing with the bound, we have that

Pr(𝐹) ≤ |I| · 𝑝 |𝐹 |/Δ (3.28)

≤ 2|𝐹 |Δ · 𝑝 |𝐹 |/Δ (3.29)

=

(
2Δ · 𝑝1/Δ

) |𝐹 |
. (3.30)

The result follows. ■

The syndrome-extraction circuit 𝐶Q𝑛 has a special structure—errors do not spread
from one data qubit to another or from one ancilla qubit to another. We show that

169

this implies that D and A are distributed according to a locally decaying distribution.
Before doing so, we review the symplectic representation formalism which we use in
the following proofs.

The symplectic representation: For W ∈ N, consider any Pauli operator P ∈ PW
and suppose it is expressed as P = X(p𝑥)Z(p𝑧) for p𝑥 , p𝑧 ∈ FW×1

2 . Clifford unitary
operators𝑈 map Pauli operators to Pauli operators under conjugation, i.e.𝑈P𝑈† is a
Pauli operator. Equivalently, this can be represented as a linear map on p𝑥 and p𝑧.
Corresponding to𝑈, there exists a matrix M ∈ F2W×2W

2
12 such that the action of𝑈

on P can equivalently can be expressed as(
p𝑥
p𝑧

)
→M ·

(
p𝑥
p𝑧

)
(mod 2) . (3.31)

All arithmetic on symplectic vectors is performed modulo 2; we drop the ‘mod 2’
suffix in the equations that follow.

Recall that the W = W(𝐶Q𝑛) qubits in 𝐶Q𝑛 are partitioned into data qubits and ancilla
qubits respectively. Controlled-P gates for P ∈ P only use the ancilla qubits as
control and data qubits as target. Let d𝑥 , d𝑧 ∈ F𝑛×1

2 and a𝑥 , a𝑧 ∈ F𝑚0×1
2 represent the

Pauli operators D and A on data and ancilla qubits respectively. For the purposes of
understanding how errors accumulate over one round of syndrome measurements,
we are not interested in the physical locations of the qubits. As far as their action on
D and A are concerned, we treat SWAP gates as (noisy) idle gates 13.

In any given timestep of 𝐶Q𝑛 where we apply entangling gates, all qubits interact with
the same type of gate (CNOT or CZ) or remain idle. The corresponding symplectic
matrices have a very special form. We can write the joint evolution of D and A under
the Clifford transformation acting on the X- and Z-components separately:

1. If qubits are only involved in CNOT operations that use ancilla qubits as control
qubits and data qubits as target qubits, then there exists a matrix M ∈ F𝑚X×𝑛

2
such that(

d𝑥
a𝑥

)
→

(
(M)𝑇 · a𝑥 + d𝑥

a𝑥

)
,

(
d𝑧
a𝑧

)
→

(
d𝑧

a𝑧 +M · d𝑧

)
. (3.32)

12The matrix M has additional structure—it is symplectic [Got97], but this is not relevant for this
proof.

13Colloquially, SWAP gates change the locations of qubits in physical space, not in ‘math’ space.
For instance, suppose each qubit has a label 1, ..., 𝑛 and we choose to represent the vector p𝑥 as
(p𝑥 (1), ..., p𝑥 (𝑛)), where p𝑥 (𝑖) represents the Pauli operator on the 𝑖th qubit. Then moving qubits
around in physical space using SWAP gates does not affect the 𝑖th component p𝑥 (𝑖). For this reason,
we ignore the action of SWAP on p𝑥 and p𝑧 .

170

For every pair of qubits indexed by 𝑖 ∈ [𝑚0] and 𝑗 ∈ [𝑛] that are the control
and target of a CNOT, the (𝑖, 𝑗) entry of M is 1. The other entries are 0. In
this setting, we note that a𝑥 and d𝑧 remain invariant.

2. If qubits are only involved in CZ operations that use ancilla qubits as control
qubits and data qubits as target qubits, then there exists a matrix N ∈ F𝑚Z×𝑛

2
such that (

d𝑥
a𝑥

)
→

(
d𝑥
a𝑥

)
,

(
d𝑧
a𝑧

)
→

(
d𝑧 + N𝑇 · a𝑥
a𝑧 + N · d𝑥

)
. (3.33)

For every pair of qubits indexed by 𝑖 ∈ [𝑚Z] and 𝑗 ∈ [𝑛] that are the control
and target of a CZ, the (𝑖, 𝑗) entry of N is 1. The other entries are 0. In this
setting, we note that d𝑥 and a𝑥 remain invariant.

In the symplectic representation, we can see that the structure of a syndrome-
extraction circuit is special because in each phase where we measure either X or
Z syndromes, there is always an invariant subspace (for example, d𝑥 , a𝑧 when
measuring X-type syndromes).

The induced error model: In the symplectic representation, a faulty Clifford
operation can be expressed as an affine map—there exists random variables b𝑥 ,
b𝑧 ∈ FW×1

2 such that the noisy operation can be expressed as(
q𝑥
q𝑧

)
= M ·

(
p𝑥
p𝑧

)
+

(
b𝑥
b𝑧

)
. (3.34)

The errors b𝑥 , b𝑧 are caused by faults. The faults are themselves are distributed
according to the locally decaying distribution F with failure rate 𝑝phys. Let X,
Z be the induced distributions over b𝑥 and b𝑧. For example, X(b𝑥) represents
the sum of the probabilities over all events where the error is (b′𝑥 , b′𝑧) such that
supp(b𝑥) ⊆ supp(b′𝑥). In other words, it represents the total probability that the error
has a non-trivial X component on supp(b𝑥).

When the circuit 𝐶 is composed of elements from K, we can say more about the
induced distributions X andZ.

Lemma 3.5.3. Consider a Clifford circuit of depth 1 composed of elements from K.
The induced total probabilities X,Z are locally decaying distributions with failure
rate √𝑝phys.

171

Proof. We shall prove this statement for the distribution X; the proof for the
distributionZ is identical. Fix an arbitrary vector b𝑥 ∈ {0, 1}W.

Suppose a fault 𝐹 results in some error b′𝑥 such that supp(b′𝑥) ⊇ supp(b𝑥). This
implies that 𝐹 must obey supp(𝐹) ⊇ supp(b𝑥). Let 𝐹 be the smallest set of fault
locations such that supp(𝐹) ⊇ supp(b𝑥). Because the circuit 𝐶 has depth 1 and is
composed entirely of only 1- and 2-qubit gates, this implies that |𝐹 | ≤ |b𝑥 | ≤ 2|𝐹 |.

By definition, the total probability of the fault 𝐹 is F (𝐹) a locally decaying
distribution with failure rate 𝑝phys.

X(b𝑥) ≤ F (𝐹) ≤ (𝑝phys) |𝐹 | (3.35)

≤ (√𝑝phys) |b𝑥 | . (3.36)

The result follows. ■

We are now ready to study 𝑝round and its dependence on 𝐶Q𝑛 . To set the stage, we
first consider ideal syndrome extraction in the absence of circuit faults. We focus our
attention on the extraction of X-type syndromes and note that the analysis for the
Z-type syndromes is identical.

Consider a corrupted code state E |𝜓⟩ where 𝜓 is a code state and E = X(e𝑥)Z(e𝑧) is
some Pauli operator. If the syndrome-extraction circuit 𝐶Q𝑛 has no faults, the joint
state of the data and ancilla qubits after the circuit is described by14

E |𝜓⟩ ⊗ Z(𝜎𝜎𝜎X) |+⟩⊗𝑚X , (3.37)

where 𝜎𝜎𝜎X represent the ideal syndromes for X-type stabilizer generators.

In this setting, we can use Equation (3.32) to update X- and Z-components of Pauli
operators under the action of CNOT. Initially, the X and Z components of the state
E |𝜓⟩ ⊗ |+⟩⊗𝑚X can be expressed as (e𝑥 |0), (e𝑧 |0), where 0 is the all zeros vector of
length 𝑚X. The vector 0 means that we assume that the input to the circuit is the
state E |𝜓⟩ ⊗ |+⟩⊗𝑚X ; preparation faults on the ancilla occur in the first timestep. For
1 < 𝑡 < Δ + 2, we apply CNOT gates specified by a matrix M(𝑡) ∈ F𝑚X×𝑛

2 . If we do
not apply an entangling gate (i.e. when we SWAP qubits), then M(𝑡) is a matrix of
zeros. Otherwise, the (𝑖, 𝑗) entry of M(𝑡) is 1 if and only if the 𝑖th syndrome qubit
and the 𝑗 th data qubit are involved in a CNOT gate in the 𝑡th timestep. In the absence
of circuit faults, the X components of the error (e𝑥 |0) are left unaffected during the

14The ancillas are disentangled from the data block by measurement.

172

phase where we measure X-type syndromes. On the other hand, the Z-components
transform as (

e𝑧
0

)
↦→

(
e𝑧∑

𝑡 M(𝑡) · e𝑧

)
. (3.38)

The vector
∑
𝑡 M(𝑡) · e𝑧 is the X-type syndrome𝜎𝜎𝜎X. In other words,

∑
𝑡 M(𝑡) =: HX is

the symplectic representation of the X-type stabilizer generators. Note that HX is a
sparse matrix with at most Δ𝑞 ones per row and Δ𝑔 ones per column.

Next, we move on to the setting where circuit components are faulty. The final state
of the data and ancilla qubits is different from Equation (3.37) because of circuit
faults. We express it as

(D ⊗ A)
(
E |𝜓⟩ ⊗ Z(𝜎𝜎𝜎X) |+⟩⊗𝑚X

)
, (3.39)

where, D and A represent errors due to faults in the circuit 𝐶Q𝑛 on the data qubits and
ancilla qubits respectively. The symplectic representation of the final Pauli operator
on the data and ancilla qubits is(

e𝑥 + d𝑥
a𝑥

)
,

(
e𝑧 + d𝑧
𝜎𝜎𝜎X + a𝑧

)
. (3.40)

The probability of errors per round, 𝑝round, is the maximum failure rate for the
distributions describing d𝑥 , d𝑧, a𝑥 , and a𝑧.

Theorem 3.5.4. The induced distributions X andZ that govern the errors D ⊗ A
are locally decaying distributions with failure rate 𝑝round, where

𝑝round ≤ 2Δ+1 · T(𝐶Q𝑛) · (𝑝phys)1/(2Δ+2) ,

where Δ = max(Δ𝑞,Δ𝑔) is the number of stages in the circuit 𝐶Q𝑛 .

Proof. Recall that the circuit 𝐶Q𝑛 proceeds in two phases, with the first phase used to
measure X-type syndromes and the second phase used to measure Z-type syndromes.
For brevity, we allow TX and TZ to be the depth of the circuit 𝐶Q𝑛 corresponding to
each phase; this means T(𝐶Q𝑛) = TX + TZ. Here, we focus on the first phase of 𝐶Q𝑛
which is used to measure X-type syndromes and study the evolution of Z-type errors;
the proof of the remaining three cases is identical and for this reason we omit them.

Let b(𝑡)𝑥 , b(𝑡)𝑧 ∈ {0, 1}𝑛 and c(𝑡)𝑥 , c(𝑡)𝑧 ∈ {0, 1}𝑚X be the errors on data and ancilla
qubits induced by faults caused at time 𝑡. In turn, these errors can spread to other

173

qubits and interact with errors at later times. Using Equation (3.32) repeatedly, we
can write the final error e𝑧 + d𝑧,𝜎𝜎𝜎X + a𝑧 in terms of the errors at each step as follows:

©«
e𝑧 + d𝑧

𝜎𝜎𝜎X + a𝑧

ª®¬ =
©«

e𝑧 +
∑
𝑡 b
(𝑡)
𝑧∑

𝑡 M(𝑡) · e𝑧 +
∑
𝑡 M(𝑡) ·

∑
𝑡′<𝑡 b

(𝑡′)
𝑧 +

∑
𝑡 c
(𝑡)
𝑧

ª®¬ . (3.41)

As we are only measuring X-type syndromes, all sums are over timesteps 𝑡 in the
first phase of the circuit. For timesteps 𝑡 where we do not apply a CNOT, all entries
of M(𝑡) are 0.

We can simplify Equation (3.41) by eliminating e𝑧 and 𝜎𝜎𝜎X =
∑
𝑡 M(𝑡) · e𝑧:

©«
d𝑧

a𝑧

ª®¬ =
©«

∑
𝑡 b
(𝑡)
𝑧∑

𝑡 M(𝑡) ·
∑
𝑡′<𝑡 b

(𝑡′)
𝑧 +

∑
𝑡 c
(𝑡)
𝑧

ª®¬ . (3.42)

While it is a straightforward consequence of the linear evolution under symplectic
transformations, being able to write d𝑧 and a𝑧 without e𝑥 and e𝑧 means that the
Z-components of the errors d𝑧 and a𝑧 do not depend on the input error E.

Furthermore, the special structure of the syndrome-extraction circuit is reflected here
— d𝑧 is simply the sum of the errors b(𝑡)𝑧 caused by faulty gates at each step. In other
words, Z errors on data qubits are not affected by Z errors on ancilla qubits.

We simplify this further using two observations. First, we will find it useful to reorder
the sums within this equation as follows:∑︁

𝑡

M(𝑡) ·
∑︁
𝑡′<𝑡

b(𝑡
′)

𝑧 =
∑︁
𝑡

∑︁
𝑡′
1[𝑡′ < 𝑡] M(𝑡) · b(𝑡

′)
𝑧 =

∑︁
𝑡′

(∑︁
𝑡>𝑡′

M(𝑡)
)
· b(𝑡

′)
𝑧 . (3.43)

where 1[𝑡′ < 𝑡] is the indicator function, i.e. it is 1 when 𝑡′ < 𝑡 and 0 otherwise. The
terms on the right-hand sides of these equations have a natural interpretation — for
example, the error b(𝑡

′)
𝑧 that occurs on data qubits at time 𝑡′ can propagate to ancilla

qubits at times 𝑡 > 𝑡′.

Second, it is difficult to directly deal with sums of random vectors modulo 2 that
appear in Equation (3.42). Instead, we re-write Equation (3.42) in terms of the
support of the vectors. To this end, we note that

supp

(∑︁
𝑡′>𝑡

M(𝑡
′)
)
⊆ supp

(∑︁
𝑡

M(𝑡)
)
= supp(HX) . (3.44)

174

Together, these observations mean we can rewrite Equation (3.42) as

supp ©«
d𝑧

a𝑧

ª®¬ ⊆ supp ©«
∑
𝑡 b
(𝑡)
𝑧

HX ·
∑
𝑡 b
(𝑡)
𝑧 +

∑
𝑡 c
(𝑡)
𝑧

ª®¬ (3.45)

⊆
⋃
𝑡

supp ©«
b(𝑡)𝑧

HX · b(𝑡)𝑧 + c(𝑡)𝑧

ª®¬ (3.46)

⊆
⋃
𝑡

supp

[(
I𝑛 0
HX I𝑚X

) (
b(𝑡)𝑧
c(𝑡)𝑧

)]
. (3.47)

where I𝑛 and I𝑚X are identity matrices of dimensions 𝑛 and 𝑚X respectively. We
pause to explain the two simplifications in words. Substituting

∑
𝑡′>𝑡 M(𝑡

′) with HX

corresponds to a worst-case setting—an error on an ancilla qubit can propagate to all
data qubits in its support regardless of when the error on the ancilla qubit occurs.
Second, by dealing with the union of the supports of the vectors instead of the vectors
themselves, we upper bound the maximum size of the final error. Evaluating the
probability of this event allows us to upper bound the probability of a final error
D ⊗ A.

We can bound the probabilities of the terms in Equation (3.47). The errors at time 𝑡,(
b(𝑡)𝑧
c(𝑡)𝑧

)
,

are independent of errors occurring at 𝑡′ ≠ 𝑡 — induced errors at different timesteps
are independent because faults occurring at different timesteps are independent. As
shown in Lemma 3.5.3, the induced distributions over errors at each timestep are
locally decaying distributions with failure rate √𝑝phys.

Next, Lemma 3.5.2 describes how the distribution is transformed when errors undergo
linear transformations. Consider the terms in Equation (3.47):(

I𝑛 0
HX I𝑚X

) (
b(𝑡)𝑧
c(𝑡)𝑧

)
, (3.48)

HX has row and column weight at most Δ, so the block matrix that appears in
Equation (3.48) has column weight at most Δ + 1. By Lemma 3.5.2, each term in

175

the union is distributed according to a locally decaying distribution with failure rate
2Δ+1(𝑝phys)1/2(Δ+1) .

Finally, Lemma 3.5.1 allows us to bound the failure rate of the compositions of
independent locally decaying distributions. This, in turn, is an upper bound on the
rate of the locally decaying distributionZ over d𝑧, a𝑧. The union extends over the
depth TX of the circuit required to measure X-type syndromes terms. Applying
Lemma 3.5.1 repeatedly, we findZ is a locally decaying distribution with failure rate

2Δ+1 · TX · (𝑝phys)1/2(Δ+1) . (3.49)

By an identical argument, the X errors are distributed according to a 2Δ+1 ·TX ·𝑝1/2(Δ+1)
phys

locally decaying distribution. In turn, this means that the induced distributions X
andZ are locally decaying distributions with failure rate 2Δ+1 · TX · (𝑝phys)1/2(Δ+1) .

Repeating the same analysis for the Z-type syndrome measurements, we find that the
X andZ distributions describing induced errors are locally decaying distributions
with failure rate

2Δ+1 · TZ · (𝑝phys)1/2(Δ+1) . (3.50)

We can use Lemma 3.5.1 again to bound the failure rate per for the entire circuit
𝐶Q𝑛 . As T(𝐶Q𝑛) = TX + TZ, we arrive at the result that X andZ are locally decaying
distributions with failure rate 𝑝round where

𝑝round = 2Δ+1 · T(𝐶Q𝑛) · (𝑝phys)1/2(Δ+1) . (3.51)

■

When qubits are arranged on an 𝐿 × 𝐿 lattice, the circuit depth T(𝐶Q𝑛) is 𝑂 (
√
𝑛/𝑅).

If gates are constrained by geometric locality, i.e. 𝑅 = 𝜔(𝐿), then the depth of the
circuit 𝐶Q𝑛 grows with the code size 𝑛. However, for the existence of a threshold, we
require 𝑝round to be some fixed constant. We therefore only achieve a threshold if the
physical failure probability vanishes as the size of the code increases:

𝑝phys = 𝑂

[(
1

T(𝐶Q𝑛)

)2(Δ+1)
]
. (3.52)

However, if we were to use a concatenated construction, where the outer code is the
constant-rate LDPC code Q𝑛 and the inner code is a surface code RSℓ, then we can
choose 𝑝phys to decrease exponentially with the size of the inner code. We study this
in the next section.

176

Finally, we comment that the factor 2Δ+1 that appears in Theorem 3.5.4 can very
likely be reduced. However, this particular version of the theorem is sufficient for our
purposes, namely to prove the existence of a threshold for the hierarchical scheme.
For readers interested in applying the hierarchical scheme to the real world, we shall
estimate the logical failure rate of the hierarchical scheme numerically in Section 3.6.

Coarse graining concatenated circuits
In the next two sections, we will analyze the concatenated code by applying
Gottesman’s theorem described in Section 3.2 to both the inner code and the outer
code. In this section, we apply it to the inner code; for W = W(𝐶Q𝑛), the inner code
RS⊗W

ℓ
is itself an LDPC code. In Section 3.5, we will apply Gottesman’s theorem

to the outer code.

In Section 3.2, we described how we cannot ignore the details of the Level-0
syndrome-extraction circuit in a concatenated code. In this section, we show that
if logical gates on surface codes are performed as described in Section 3.4, then
they are fault tolerant. We show the existence of a threshold 𝑞 (0)phys such that if the
failure rate per round is below 𝑞

(0)
phys, then we can directly study Level-1 operations

and ignore Level-0 operations.

Consider an input state 𝜌in ∈ (RSℓ)⊗W in the bilayer architecture. Let Level-0 faults
on the syndrome-extraction circuit be distributed according to a locally decaying
distribution with failure rate 𝑝 (0)phys.

The failure rate per round on the data qubits and the syndrome qubits is the same
because data and syndrome qubits both interact with 4 other qubits. Let 𝑞 (0)in ,
𝑞
(0)
round be the thresholds for surface code error correction as defined in Section 3.2.

Suppose we are below threshold. Then after error correction, tiles that have not
failed are described by a locally decaying Level-0 error model with failure rate
𝑝
(0)
round. Theorem 3.5.4 guarantees that the failure rate per round grows with the depth

of the syndrome-extraction circuit; it also relies on the degree of the qubits and
stabilizer generators. If we measure X and Z syndromes separately, the depth of the
syndrome-extraction circuit is at most 12. The degree of the qubits and stabilizers is
4. Using Theorem 3.5.4, we can bound the failure rate per round of surface code
syndrome extraction:15

𝑝
(0)
round < 384

(
𝑝
(0)
phys

)1/10
. (3.53)

15The constant 2Δ+1 = 32 and 32 × 12 = 384.

177

This bound can be much better—for example X and Z syndromes can be measured
in parallel which, in turn, can reduce the depth of the circuit; we can also likely
reduce the constant 384 in front of 𝑝round. However, we continue to use the bound in
Equation (3.53) for simplicity.

We can use Theorem 3.5.4 to show that the logical operations for the bilayer
architecture are fault tolerant. We argue that both the Level-0 and Level-1 failure
rates after the operation are constant.

Theorem 3.5.5. Let 𝐶 be the circuit on a state 𝜌in ∈ RS⊗Wℓ such that each tile is
involved in at most one logical gate in K1. Tiles that have not suffered a logical
error are described by a locally decaying error with Level-0 input failure rate 𝑝 (0)round.

There exists a threshold 𝑞 (0)phys such that, if 𝑝 (0)phys ≤ 𝑞
(0)
phys, then

1. the circuit 𝐶 is described by a Level-1 locally decaying faults model with
Level-1 failure rate 𝑝 (1)phys := exp(−𝑐EC · ℓ).

2. the output is described by a Level-0 locally decaying errors model with failure
rate less than 𝑝 (0)round.

Proof. Let 𝜌in ∈ RS⊗Wℓ be a noisy code state with Level-0 errors described by a
locally decaying distribution with failure rate 𝑝 (0)round.

For sufficiently low logical failure rate, we can use Gottesman’s result presented
in Section 3.2 to bound the failure rate for error correction and to show that after
error correction, the Level-0 errors are locally decaying distributions with failure
rate 𝑝 (0)round.

State preparation: Suppose we wished to prepare the state
���0〉⊗𝑚 for the codeRS⊗𝑚

ℓ
.

Each Level-0 qubit is prepared in |0⟩ and we then perform the syndrome-extraction
circuit for the surface code on all 𝑚 copies. The Level-0 errors are described by
a locally decaying error model with failure rate 𝑝 (0)in = 𝑝

(0)
phys. The faults in the

syndrome-extraction circuit 𝐶 are also described by a locally decaying faults model
with failure rate 𝑝 (0)phys. Error correction is successful if

𝑝
(0)
phys < 𝑞

(0)
in , 𝑝

(0)
round < 𝑞

(0)
round . (3.54)

Entangling gates: Entangling gates between data and ancilla blocks are performed
in a transversal manner. Errors due to faults in the transversal gate are distributed

178

according to a locally decaying distribution with failure rate 𝑝 (0)phys. Lemma 3.5.1
shows that the input to error correction is a state with Level-0 errors described by a
locally decaying distribution with failure rate 𝑝 (0)round + 𝑝

(0)
phys.

Error correction is successful if

𝑝
(0)
round + 𝑝

(0)
phys < 𝑞

(0)
in , 𝑝

(0)
round < 𝑞

(0)
round . (3.55)

SWAP gates: Assume that the Level-0 failure rate is 𝑝 (0)round. The logical SWAP
operation is decomposed entirely in terms of physical SWAP operations. As these
are non-entangling operations, the error distribution is a locally decaying distribution
with failure rate

√︃
𝑝
(0)
phys. We can use Lemma 3.5.1 to find the effective failure rate per

round. This is equal to the sum of the failure rate per round of syndrome extraction
and the failure rate of the SWAP gate itself. Note that because the SWAP gate has
larger depth, we perform more than 𝑑ℓ rounds of syndrome extraction.

Therefore, the failure rate per round on both data and ancilla qubits is 𝑝 (0)round+
√︃
𝑝
(0)
phys.

Error correction is successful if

𝑝
(0)
round < 𝑞

(0)
in , 𝑝

(0)
round +

√︃
𝑝
(0)
phys < 𝑞

(0)
round . (3.56)

Logical measurement of Pauli operators:

We will wish to measure logical operators on tiles that represent Level-1 ancilla qubits.
Consider a state with Level-0 errors distributed according to a locally decaying
distribution with failure rate 𝑝 (0)round. We first study the logical measurement of a
single tile.

To destructively measure the logical X (Z) operator on a single tile, we can measure
each of the physical qubits in the X (Z) basis. This is permitted by our available
operations in K0. Faults on measurements are distributed according to a locally
decaying distribution with rate 𝑝

(0)
phys. The resulting distribution on the output

bits is a locally decaying distribution with rate 𝑝 (0)round + 𝑝
(0)
phys. We can use each

of the individual Level-0 qubit outputs to infer the values of each of the X-type
(Z-type) stabilizer generators and correct Z (X) errors. This fails with probability
exp(−𝑐E𝐶 · ℓ).

We can now study all tiles that undergo measurement. As measurements on each tile
are performed separately, this induces a Level-1 measurement error with probability
exp(−𝑐E𝐶 · ℓ).

179

In the mean time, tiles that represent data qubits remain idle for 1 timestep. As
we assume idle errors are distributed according to a locally decaying distribution
with failure rate 𝑝 (0)phys, the Level-0 error rates on these tiles are 𝑝 (0)round + 𝑝

(0)
phys. Error

correction is successful if

𝑝
(0)
round + 𝑝

(0)
phys < 𝑞

(0)
in . (3.57)

Combining requirements for all operations: We can use Equation (3.53) to state
𝑝
(0)
round < 384(𝑝 (0)phys)

1/10 and note that both 𝑝 (0)phys and
√︃
𝑝
(0)
phys are less than (𝑝 (0)phys)

1/10.

Therefore, we can define the threshold 𝑞 (0)phys using the bounds in Equations (3.54),
Equation (3.55), Equation (3.56) and Equation (3.57):

𝑞
(0)
phys = min

(
𝑞
(0)
in

385

)10

,

(
𝑞
(0)
round
385

)10 . (3.58)

Below threshold, we can invoke Gottesman’s result to guarantee error suppression;
we obtain a logical failure rate 𝑝 (1)phys = exp(−𝑐E𝐶 · ℓ).

■

The syndrome-extraction circuit 𝐶H
𝑁

has a threshold
In this section, we prove that the hierarchical code H𝑁 has a threshold if we
measure syndromes using the circuit 𝐶H

𝑁
. We review the construction first and

the corresponding assumptions on failure rates. Thus far, we have simply stated
the relationship between ℓ and 𝑛, i.e. that ℓ = Θ(log(𝑛)), without justification.
We show in Lemma 3.5.6 that letting the inner code have size ℓ = Θ(log(𝑛)) is
indeed sufficient to achieve arbitrarily small, but constant, Level-1 failure rate per
round 𝑝 (1)round. We bring these elements together in Theorem 3.5.7 to show that the
hierarchical construction has a threshold.

Recall that the hierarchical code H𝑁 is constructed by concatenating an outer
J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K constant-rate LDPC code {Q𝑛} and inner J𝑑2

ℓ
, 1, 𝑑ℓK code RSℓ. The

family Q𝑛 has parameters 𝑘 = 𝜌 · 𝑛 for 𝜌 > 0 and distance 𝑑 = Θ(𝑛𝛿) for 𝛿 > 0.

Suppose we are given an input state of the concatenated code H𝑁 subject to the
following error model:

1. Errors on the state are distributed according to locally decaying distributions:

a) on Level-0 with failure rate 𝑝 (0)in , and

180

b) on Level-1 with failure rate 𝑝 (1)in .

2. Level-0 faults in the circuit are distributed according to a locally decaying
distribution with failure rate 𝑝 (0)phys.

Let 𝑝 (0)round denote the failure rate per round of syndrome extraction for the rotated
surface code. As the depth of the syndrome-extraction circuit for the rotated
surface code is constant, for fixed values of 𝑝 (0)phys, 𝑝

(0)
round is also a constant (See

Equation (3.53)). We assume 𝑝 (0)in ≤ 𝑝
(0)
round because it will make the following

statements easier.

Qubits are laid out on a bilayer architecture as described in Section 3.4. Physical
qubits are aggregated to form W(𝐶Q𝑛) rotated surface codes RSℓ; these form 2𝐿2

tiles where 𝐿 is the smallest integer satisfying 2𝐿2 ≥W(𝐶Q𝑛).

The product code RS⊗W
ℓ

is itself an LDPC code. The tiles will be used to simulate
long-range entangling gates required to perform the syndrome-extraction circuit 𝐶Q𝑛
for the outer code. Single-tile preparation and measurement, and two-tile entangling
gates are described in Section 3.4; Level-1 SWAP gates and permutations of tiles
were described in Section 3.4. Recall that 𝑞 (0)phys ∈ (0, 1] was defined in Section 3.5.
Per Theorem 3.5.5, if the input state has Level-0 errors described by a locally
decaying distribution with failure rate 𝑝 (0)round and 𝑝 (0)phys < 𝑞

(0)
phys, Level-1 circuit faults

are distributed according to a locally decaying distribution with failure rate 𝑝 (1)phys
and Level-0 residual errors are described by a locally decaying distribution with
failure rate 𝑝 (0)round on tiles that have not failed. This result allows us to coarse grain
the Level-0 circuit and study Level-1 errors and faults directly.

For the outer code to have a threshold, we require that the J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K LDPC code
family {Q𝑛} has a syndrome-extraction circuit such that 𝑝 (1)round remains a sufficiently
small constant as discussed in Section 3.2. In the following lemma, we show that
ℓ = Θ(log(𝑛)) is sufficient to achieve this.

Lemma 3.5.6. Suppose Level-1 faults on the syndrome-extraction circuit 𝐶H
𝑁

are
distributed according to a locally decaying distribution with failure rate 𝑝 (1)phys. Then,
for arbitarily small constant 𝜖 > 0, 𝑝 (1)round < 𝜖 can be achieved using ℓ = Θ(log(𝑛)).

Proof. From Theorem 3.5.4, the failure rate per round scales as

𝑝
(1)
round = 2Δ+1 · T(𝐶Q𝑛) ·

(
𝑝
(1)
phys

)1/2(Δ+1)
, (3.59)

181

where Δ = max(Δ𝑞,Δ𝑔) is some constant for a fixed family Q𝑛. We want 𝑝 (1)round
to be an arbitrarily small constant 𝜖 > 0. Per Theorem 3.5.5, Level-1 faults are
distributed according to a locally decaying distribution with failure rate which implies
that 𝑝 (1)phys = exp(−𝑐EC · ℓ). From Section 3.4, T(𝐶Q𝑛) = 𝑂 (𝐿/𝑅) = 𝑂 (

√
𝑛/𝑅).

Therefore, the upper bound on 𝑝 (1)phys can be satisfied by choosing ℓ = Θ(log(𝑛)). ■

In particular, there exists a threshold 𝑞 (1)round for the outer code Q𝑛 for the syndrome-
extraction circuit 𝐶Q𝑛 . This can be achieved for some ℓ such that ℓ = Θ(log(𝑛)).

Theorem 3.5.7. There exists a choice of ℓ such that ℓ = Θ(log(𝑛)) and thresholds
𝑞
(0)
in , 𝑞 (0)phys and 𝑞 (1)in such that if

max
(
𝑝
(0)
in , 𝑝

(0)
round

)
< 𝑞

(0)
in , 𝑝

(0)
phys < 𝑞

(0)
phys , 𝑝

(1)
in < 𝑞

(1)
in ,

then the following is true. With probability at least 1 − 𝑝H (𝑁), the state after error
correction is correctable by an ideal decoder where, for some positive number 𝑐H
that is independent of 𝑁 ,

𝑝H (𝑁) < exp
(
−𝑐H ·

𝑁𝛿

log2𝛿 (𝑁)

)
.

Furthermore, the residual errors are distributed according to a locally decaying
distribution with failure rates 𝑝 (1)round and 𝑝 (0)round on Level-1 and Level-0 respectively.

Proof. Suppose 𝑝 (0)in < 𝑞
(0)
in and 𝑝 (0)phys < 𝑞

(0)
phys. By definition, this is sufficient to

perform Level-1 logical gates and surface code error correction as per Theorem 3.5.5.

Next, the LDPC code has thresholds 𝑞 (1)in and 𝑞 (1)round (See Section 3.2). The input
state has Level-1 errors described by a locally decaying distribution with failure rate
𝑝
(1)
in . For the syndrome-extraction circuit on the outer LDPC code to be successful,

we require 𝑝 (1)in < 𝑞
(1)
in .

Finally, we require that the Level-1 failure rate per round is below the corresponding
threshold

𝑝
(1)
round < 𝑞

(1)
round . (3.60)

From Lemma 3.5.6, this can be achieved using ℓ = Θ(log(𝑛)).

By definition, syndrome-extraction is successful if the ideal decoder RH is able to
recover the final state. The codeH𝑁 fails if the outer LDPC code Q𝑛 fails, i.e. the
probability of failure is 𝑝H (𝑁) = 𝑝Q (𝑛) = exp(−𝑐Q · 𝑑 (𝑛)) = exp

(
−𝑐Q · Θ(𝑛𝛿)

)
.

182

Using Equation (3.11), we can express the probability of failure 𝑝H (𝑁) in terms of
𝑁:

𝑝H (𝑁) < exp
(
−𝑐H ·

𝑁𝛿

log2𝛿 (𝑁)

)
. (3.61)

for some positive number 𝑐H that is independent of 𝑁 .

Residual errors are distributed according to locally decaying distribution:

1. on Level-1 with failure rate 𝑝 (1)round; this is guaranteed by Gottesman’s result
applied to the outer code.

2. on Level-0 errors failure rate 𝑝 (0)round; This is guaranteed by Theorem 3.5.5.

The result follows. ■

We reiterate that 𝑝H (𝑁) is an upper bound on the failure rate for the Level-2 error
probability distribution.

This analysis depends crucially on the failure rate of the SWAP gates; 𝑝 (1)round, and
therefore the size of the inner code, scales with the depth of the circuit because
of noisy SWAP operations. In proving Theorem 3.5.7, we were agnostic to the
failure modes in the circuit and assumed that all Level-1 two-qubit gates fail with
probability 𝑝 (1)phys. However, if the fidelity of physical SWAP gates can be improved
over the fidelity of entangling gates, this can reduce the overhead for the hierarchical
scheme significantly. We provide evidence for this in Section 3.6 where we estimate
the logical failure rate for the hierarchical scheme. In certain architectures such
as trapped neutral atoms, SWAP gates can be performed by physically moving the
trap [Blu+22]. In this case, the failure rate for the SWAP gates may have no direct
connection to the failure rate for CNOT operations.

3.6 Comparisons with the basic encoding
We have shown that the hierarchical code {H𝑁 } has a syndrome-extraction circuit
that can be constructed using gates restricted by geometric locality such that it
has a threshold. Below threshold, the WER is suppressed superpolynomially, but
subexponentially in 𝑁 . It is natural to ask whether the resources spent in performing
SWAP gates can be better spent simply building a more robust surface code. In
this section, we consider the basic encoding B𝑀 which encodes 𝐾 logical qubits in
surface codes RSℓ𝑀 . We compare the hierarchical scheme and the basic enconding
in different ways.

183

We show in Section 3.6 that for a target WER, the syndrome-extraction circuit for the
hierarchical memory is more efficient than the syndrome-extraction circuit for the
basic encoding. This is measured by the depth and width of the corresponding circuits.
We will state and prove a formal version of Theorem 3.1.4. Depending on the value
of the threshold for the outer LDPC codes however, it is not immediately obvious
that this scaling manifests for practical block lengths. In the rest of this section, we
present numerical estimates for the WER 𝑝H (𝑁) of the hierarchical memory and
contrast it with the WER 𝑝B (𝑀) for the basic encoding. We do this by demanding
a fixed total number of qubits for both schemes and compare 𝑝H (𝑁) and 𝑝B (𝑀).
We demonstrate that there is a crossover point, i.e. a value of the physical error rate
where, for fixed total number of qubits, the hierarchical memory outperforms the
basic encoding, i.e. 𝑝H (𝑁) < 𝑝B (𝑀). In our estimates, this happens at gate error
rates roughly between 10−3 and 10−4. While these are preliminary estimates, they
are promising nonetheless as they are in the realm of possibility.

In Section 3.6, we briefly discuss the codes we use as outer and inner codes. To
estimate the crossover point, we make some assumptions about the noise model,
gates, and decoder. Owing to these assumptions, our estimates should only be
interpreted as a proof-of-principle that the overhead of the hierarchical scheme pays
off in a reasonable parameter regime. In Section 3.6, we present the results of our
simulations. All together we believe these assumptions, especially those related to
the decoder, code, and noise model, are conservative. We return to these assumptions
in Section 3.6 and for each assumption, we outline how one might expect it to change
(1) in the future, and (2) in a more realistic setting. In general, we expect that
with careful engineering (e.g. high-rate linear-distance codes, architecture-specific
considerations, improved decoding algorithms) and more realistic noise modeling
(e.g. including significant error correlations), the cross-over to when hierarchical
memories outperform surface codes will occur at smaller numbers of logical qubits,
higher physical error rates, and higher target WERs than in our estimates.

Asymptotic comparison with surface code
We have proved the existence of a threshold when we simulate an LDPC code using
local gates. However, the existence of a threshold alone might not warrant switching
over to a different scheme when there already exists an excellent local scheme — the
surface code. We recall that we are only constructing a quantum memory, and not a
scheme for universal, fault-tolerant quantum computation. In this section, we ask
how the surface code would perform if we used the same total number of qubits used

184

in the concatenated scheme above to plainly encode all logical qubits. We find that
there is a space-time tradeoff to implementing a hierarchical scheme.

The hierarchical scheme {H𝑁 }with corresponding fault tolerant syndrome-extraction
circuits {𝐶H

𝑁
} achieves the following costs:

W(𝐶H𝑁) = Θ(𝑁) T(𝐶H𝑁) = 𝑂
(√
𝑁

𝑅

)
. (3.62)

This family encodes 𝑘 (𝑛) = 𝜌 · 𝑛 qubits. Note that the depth is for a single round of
syndrome extraction. We will return to this point shortly.

Consider the basic encoding defined by the family {B𝑀} where 𝑀 = Θ(𝑘 · ℓ2
𝑀
), and

B𝑀 =
⊗𝑘

𝑖=1 RSℓ𝑀 is a 𝑘-fold product of rotated surface codes RSℓ𝑀 . Each code
RSℓ𝑀 has distance 𝑑𝑀 = Θ(ℓ𝑀). Let the corresponding circuits be denoted {𝐶B

𝑀
}.

To compare withH𝑁 , we probe the parameters of 𝐶B
𝑀

required to guarantee the same
logical error suppression. Let 𝑝B (𝑀) denote the failure rate for the Level-1 logical
probability of failure for B𝑀—we declare failure if any of the 𝑘 logical qubits fail.

We assume that the Level-0 physical failure rates are sufficiently below threshold
to perform surface code error correction, i.e. 𝑝 (0)phys < 𝑞

(0)
phys. Furthermore, we also

assume that the code state B𝑀 is prepared such that there are no input errors, i.e.
𝑝
(1)
in = 𝑝

(0)
in = 0. This allows us to isolate the rate of error suppression because of

error correction.

Lemma 3.6.1. Let {B𝑀} be the basic encoding such that 𝑝B (𝑀) < exp
(
−𝑐H · 𝑁𝛿/log(𝑁)2𝛿

)
where 𝑐H is a positive constant. Then

W(𝐶B𝑀) = Ω

[(
𝑁

log(𝑁)

)1+2𝛿
]
, T(𝐶B𝑀) = Ω

[(
𝑁

log2(𝑁)

)𝛿]
.

Proof. By assumption, 𝑝 (1)in = 𝑝
(0)
in = 0 and 𝑝

(0)
phys < 𝑞

(0)
phys and therefore we can

perform error correction. The Level-1 logical failure probability for the code RS⊗𝑘
ℓ𝑀

is
described by a locally-decaying error model with failure rate 𝑝RS (ℓ𝑀) (See Section
3.2), where

𝑝RS (ℓ𝑀) = exp(−𝑐EC · ℓ𝑀) . (3.63)

We declare failure if any of the 𝑘 tiles of B𝑀 fails, which implies that

𝑝RS (ℓ) ≤ 𝑝B (𝑀) ≤ 1 − (1 − 𝑝RS (ℓ))𝑘

exp(−𝑐EC · ℓ𝑀) ≤ 𝑝B (𝑀) ≤ 𝑛 · exp(−𝑐EC · ℓ𝑀)
. (3.64)

185

To guarantee that the error rate 𝑝B (𝑀) is lower than 𝑝H (𝑁), we at least require that

exp(−𝑐EC · ℓ𝑀) ≤ exp
(
−𝑐H ·

𝑁𝛿

log(𝑁)2𝛿

)
. (3.65)

This implies that ℓ𝑀 = Ω(𝑁𝛿/log(𝑁)2𝛿).

We can now compute the space and depth requirements for 𝐶B
𝑀

. The space
cost W(𝐶B

𝑀
) is Θ(𝑘 · ℓ2

𝑀
). The hierarchical memory H𝑁 uses a constant-rate

J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K quantum LDPC code Q𝑛 where 𝑘 (𝑛) = 𝜌 · 𝑛 and 𝑑 (𝑛) = Θ(𝑛𝛿).
This implies that

W(𝐶B𝑀) = Ω

[(
𝑁

log(𝑁)

)1+2𝛿
]
. (3.66)

Furthermore, each tile requires ℓ𝑀 rounds of error correction; syndrome-extraction
circuits on separate tiles can be run in parallel. Therefore

T(𝐶B𝑀) = Θ(ℓ𝑀) = Ω(𝑁𝛿/log2𝛿 (𝑁)) . (3.67)

This completes the proof. ■

Comparing with Equation (3.62), the basic encoding requires a larger space overhead
for all 𝛿 > 0:

W(𝐶B
𝑀
)

W(𝐶H
𝑁
)
= Ω

[
𝑁2𝛿

log1+2𝛿 (𝑁)

]
. (3.68)

As stated, however, the time overhead is worse. Although the depth of the syndrome-
extraction circuit𝐶H

𝑁
is𝑂 (
√
𝑁/𝑅), we will need to perform 𝑑 (𝑛) rounds of syndrome

extraction to be fault tolerant. However, this is not a fundamental requirement; it
is due to the nature of Gottesman’s proposal in [Got14] which uses an inefficient
minimum-weight decoder. There exist constant-rate LDPC codes that possess
efficient, single-shot decoding algorithms, i.e. syndrome extraction only needs to be
performed a constant number of times for the decoding algorithm to work [LTZ15;
FGL18a; FGL18b]; furthermore the algorithm requires 𝑂 (𝑁) time. For such codes,
we can compare the depth of the syndrome-extraction circuit T(𝐶H

𝑁
) and that of

the basic encoding 𝐶B
𝑀

. In addition to the width blowup, the basic encoding also
requires a larger time overhead when 𝛿 > 1/2.

T(𝐶B
𝑀
)

T(𝐶H
𝑁
)
= Ω

[
𝑁𝛿−1/2

𝑅 · log2𝛿 (𝑁)

]
. (3.69)

186

Using LDPC codes with single-shot decoding algorithms, the hierarchical memory
is a more efficient way to achieve a low logical error rate in terms of both circuit
depth and width.

Having said this, it is not clear if this advantage manifests for practical block lengths.

For small codes and high error rates, it may well be that it is still optimal to use the
basic encoding. We expect to see a crossover point—a value of physical error rate
where the hierarchical scheme {H𝑁 } has a lower logical failure rate than the basic
encoding {B𝑀} with the same overhead. Where exactly this crossover happens will
depend on a number of parameters that are specific to the implementation, including
the choice of the outer code, its threshold and our choice of decoders. In the rest of
this section, we attempt to estimate where this happens.

Setup for numerical estimates
Outer code: We choose a quantum expander code as our outer code [TZ14; LTZ15].
We do not utilize any of the structure of the code, so any LDPC code with constant
rate and polynomially scaling distance will suffice. For these reasons, we only briefly
discuss the code construction. We pick a classical code by sampling the check matrix
from the ensemble of 𝑚 × 𝑛 matrices with 5 ones in each column and 8 ones in each
row.

In particular, we pick a classical code with length 896 and 336 encoded bits. Work
by Litsyn and Shevelev [LS02] computes the asymptotic weight distribution of
codewords — with high probability, this code has distance 119. The resulting
quantum code has parameters

𝑁 = 1 116 416, 𝐾 = 112 896, 𝐷 = 119, Δ𝑞 = 16, Δ𝑔 = 13 . (3.70)

We choose this code as it has a high rate which is necessary to reduce the amount of
overhead in the scheme. The large block length we consider here is a consequence of
using code families with sub-linear distance scaling. However, the full trade-off for
rate, distance, check weight, etc for linear-distance codes has not yet been explored.
We note that even at a relative distance 𝑑/𝑛 of 10−3, a linear-distance code of such
large block length would achieve a distance of roughly 103.

While the hierarchical memory construction has good asymptotic performance
guarantees, if the overhead is too high then the hierarchical memory wins only at an
extremely low WER.16

161 year is ≈ 1016 nanoseconds, 1 Hubble time is ≈ 1010 years or ≈ 1026 nanoseconds. For any

187

Inner code: As in the earlier sections, we consider the square rotated surface codes
RSℓ for the inner code. In our estimates, we allow for 𝑑ℓ = 3, 5, 9, 15, 21, 27.

We make some assumptions about errors on both the logical and physical levels.
We present these assumptions together below and discuss justifications for some
assumptions in what follows.

Level-0 noise model: We assume circuit-level Pauli noise on each physical qubit.
We treat SWAP gates and other Clifford operations separately.

1. Each 𝑡-qubit gate (except SWAP gates) at the physical level fails with a
probability 𝑝 and leaves behind one of the 4𝑡 − 1 non-trivial 𝑡-qubit Pauli
operators picked uniformly at random. We assume that qubit reset completely
removes all traces of the original state. However, it may reset to the wrong
computational basis state with probability 𝑝.

2. The failure probability of the physical SWAP-gate is 𝑟SWAP · 𝑝, where 𝑟SWAP =

1, 10−1, 10−2. In this setting, the surface code syndrome-extraction circuit
is performed every 1/𝑟SWAP SWAP-gates, so that at the physical level the
circuit-level noise model remains relatively unchanged for different values of
𝑟SWAP. This assumption will be discussed in detail in Section 3.6.

Level-1 noise model: We assume that the surface code fails at a probability 𝑝 (1)RS (𝑑ℓ),
and that the effective noise witnessed by the outer code because of all the SWAP
gates is 𝑝 (1) .

1. The logical error rate 𝑝
(1)
phys(𝑑ℓ) of each ℓ × ℓ rotated surface code tile is

[WFH11; FMMC12]

𝑝
(1)
phys(𝑑ℓ) ≈ 0.1

(𝑝

10−2

) ⌈𝑑ℓ/2⌉
(3.71)

per 𝑑ℓ physical level timesteps where one physical level timestep is one round
of syndrome extraction plus one (optional) transversal gate which totals roughly
6 gates. This assumption is discussed in Section 3.6.

2. The effective error rate per long-range CNOT gate is 𝑝 (1) = 1 − (1 −
𝑝
(1)
phys(𝑑ℓ))

𝑡route+1. It is analogous to the two-qubit gate error rate in the
model with long-range gates. 𝑡route is the time required for permutation routing
presented in Equation (3.16).

practical purpose a WER of 10−25 per gate time should suffice.

188

Level-2 noise model: Finally, we assume that the logical failure rate for the LDPC
code, 𝑝Q (𝑛), is consistent with a minimum-weight decoder.

1. For our LDPC code, we assume that the WER under circuit-level Pauli noise
using long-range gates is

𝑝Q =

(
𝑝 (1)

10−3

)10

(3.72)

per cycle of syndrome extraction. The threshold of the code is assumed to
be about 10−3 under circuit noise. The exponent is 10 rather than half the
distance which is ∼ 55 because of hook errors. This assumption is discussed
in Section 3.6.

If desired, readers can skip ahead to the numerical estimates in Section 3.6 and return
to the justification of the noise model later.

Decoder performance for the inner code

Consider Equation (3.71) for the scaling of the logical failure rate for a surface code
of distance 𝑑ℓ. We assumed a surface code threshold of 10−2.

This equation neglects:

1. finite-size effects present at very small code distances.

2. the slight reduction in threshold from inserting a layer of gates failing with
rate 𝑝 between syndrome extraction cycles17. Recall that this is necessary to
implement a logical SWAP operation in the bilayer architecture as discussed
in Section 3.4.

3. the distinction between rotated and standard surface codes. Owing to this, the
expression for the logical error rate is an order of magnitude estimate. We
expect our conclusions should be somewhat insensitive to the precise form of
the logical error rate and also apply to more general locally decaying error
models. For calculational convenience, we assume that the failure rate 𝑞 after

𝑇 syndrome extraction rounds is given by 1 − 𝑞 =

(
1 − 𝑝 (1)phys(𝑑ℓ)

)𝑇/𝑑
.

17In general, the precise value of the circuit-level threshold already requires some assumptions
about what gates are native in the device: The optimal syndrome extraction circuit with our physical
layer layout requires 5 to 8 gates depending on these assumptions, so the insertion of an additional
gate is relatively unimportant.

189

Physical SWAP fidelity

Recall that simulating a long-range CNOT via SWAP gates results in a CNOT failure
rate of 𝑝 (1) . We assume that the effective failure rate witnessed by the outer code is

𝑝 (1) = 1 − (1 − 𝑝 (1)phys(𝑑ℓ))
𝑟SWAP𝑡route

𝑑ℓ
+1
. (3.73)

The parameter 𝑡route is the time required to perform a permutation routing in the
bilayer architecture as specified in Equation (3.16). For convenience, we restate it
here

𝑡route = (2𝑑ℓ + 1) (3𝐿 − 3) + 8 . (3.16)

The parameter 𝑟SWAP bounds the (in)fidelity of the SWAP operation in terms of the
CNOT gate (in)fidelity as we now explain.

In the previous sections, we assumed that all gates failed at the same rate. As noted
in Section 3.5, the main source of noise in the hierarchical model stems from the
SWAP gates. This worst-case model was convenient for a proof of the existence of
a threshold. Furthermore, in many devices the SWAP gate is implemented using
the same mechanism as the two-qubit entangling gates and so the noise rates are
comparable. However, this is not the only way to implement SWAP gates.

In platforms where the qubits can be physically moved, we can effectively “rewire”
the connectivity of the device at runtime. Physically swapping qubits does not
require the qubit degree of freedom to be coupled to, and so one might expect
that it is an easier task to perform with higher fidelity or speed. Such techniques
have been demonstrated in some experimental platforms: Rearrangable tweezers
in Rydberg platforms [End+16; Bar+16; Blu+22] and ion shuttling in trapped ion
platforms [Hen+06; Kau+17]. In this setting, it is possible that the SWAP gate has
much higher fidelity than CNOT gates.

Accordingly, in our model, we assign a constant 𝑟SWAP which specifies the ratio
of SWAP-gate and idle noise to CNOT-gate noise. With a less noisy 𝑟SWAP, we
perform 1/𝑟SWAP level-0 SWAP operations per round of surface code syndrome
extraction such that the physical error rate in the surface code syndrome extraction
circuit remains constant with respect to 𝑟SWAP. Utilizing this optimization, an entire
permutation takes 𝑟SWAP𝑡route rounds of syndrome extraction. Equation (3.73) is in
terms of the surface code cycle (𝑑ℓ rounds of syndrome extraction), and the total
number of surface code cycles is 𝑟SWAP𝑡route

𝑑ℓ
for a permutation and 1 for an entangling

gate. We have omitted floor and ceiling functions in this discussion for simplicity.

190

For example, in a neutral atom system [Blu+22], an array of qubits with a coherence
time of seconds was rearranged with an average rearrangement speed of several
microseconds per lattice site moved. If the dominant source of errors in rearrangement
is due to idle errors, then we should assign an infidelity to the SWAP gate of
roughly 10−5 whereas the two-qubit gate possessed an infidelity of about 10−2 i.e.
𝑟SWAP ≈ 10−3 − 10−2. Routing does not require generating entanglement, so the
qubit can remain encoded in well-isolated degrees of freedom. Owing to this, we
consider three scenarios: where 𝑟SWAP is 100, 10−1, or 10−2.

We note that it is a simplification to consider the rearrangement primitive in each
platform (tweezers, ion shuttling, etc.) as simply SWAP-gates: Frequently there are
effects like accumulated motional heating, recooling, acceleration speed limits, etc,
but we expect the basic routing ideas and qualitative conclusions remain the same
even in the more complicated setting.

Hook errors

|+⟩

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4

X
X X

X

X

X

X

Figure 3.17: Hook errors: errors flowing onto data qubits. In this case, an X error
appears in the midst of a syndrome-extraction circuit. This then propagates to the
data qubits.

Current decoder technology for LDPC codes is relatively immature, so we assume a
WER scaling consistent with a minimum-weight decoder. At physical failure rate 𝑝,
we assume that the logical failure rate of an J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K LDPC code Q𝑛 below
threshold is dominated by a term proportional to 𝑝𝑡 where 𝑡 is the smallest number
of fault locations that is uncorrectable. If our intuition is informed by an i.i.d. error
model on qubits, we may expect 𝑡 ≈ 𝑑/2. However, this is not true in the context

191

of syndrome-extraction circuits as corrupted syndrome qubits can spread errors to
many data qubits.

These errors, called hook errors [DKLP02], are harmful errors that can dominate the
lower error rate performance of the quantum code. By a rough estimate, they can
reduce the distance of a J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K LDPC code by a factor of Δ𝑔/2. To explain
how they work, consider the example measurement circuit for an X-type stabilizer
generator as shown in Figure 3.4. An X error on the ancilla can propagate to a much
larger data error.

In theory, the hook error is 𝑂 (1)-sized and the syndrome extraction circuit is fault-
tolerant. However, addressing these errors can significantly reduce the size of the
LDPC code required to achieve a target logical failure rate.

Suppose ancilla qubits fail with probability 𝑝. A measurement circuit for a weight 𝑤
operator can create hook errors with weight ranging from 1 up to 𝑤. If the circuit is
measuring the checks of a code, the weight of the hook error can be reduced by using
the measured stabilizer generator giving a maximum reduced weight of ⌊𝑤/2⌋. An
error is uncorrectable if it has weight at least ⌈𝑑/2⌉. If we assume that each ancilla
failure results in an error of weight ⌈Δ𝑔/2⌉, then we only need 𝑡 failures to cause an
uncorrectable error, where 𝑡 satisfies

𝑡 · ⌊Δ𝑔/2⌋ ≥ ⌈𝑑/2⌉ . (3.74)

Then the probability of logical failure is 𝑝𝑡 where 𝑡 ≈ 𝑑/Δ𝑔.

This assumption is conservative — hook errors depend on the choice of syndrome-
extraction circuit and may be minimized by particular choices of gate scheduling.
For example, in the rotated surface code, there is a two-qubit gate schedule for
the syndrome-extraction circuit such that the hook error has intersection-1 with a
logical operator [TS14; CB18]. Using such a schedule, the below-threshold scaling
is ∝ 𝑝 ⌈𝑑/2⌉ as one would expect from a depolarizing noise model. For general LDPC
codes, the existence of measurement schedules that reduce the effects of hook errors
is not yet clear.

While there exist many methods for suppressing hook errors such as Shor, Steane or
Knill error correction [NC02], nearly all require more ancilla qubits. This presents a
trade-off where, for a given number of qubits, either a larger block length code with
correspondingly better parameters or a more resource-intensive syndrome-extraction
circuit could be used. In the setting of a constant-rate LDPC code, larger distances

192

come with more logical qubits, so the lowest overhead solution is to use the naive
syndrome-extraction circuit with as large a code as possible18. Later, in Section 3.6,
we will propose a method to mitigate the effects of hook errors outside of the
asymptotic regime.

Decoder performance for the outer code

Hook errors discussed in the previous section need to be considered in the context of
the concatenated scheme — the probability that an ancilla qubit fails is 𝑝 (1) .

Following the discussion in Section 3.6 on hook errors, ⌈⌈𝑑/2⌉/⌊Δ𝑔/2⌋⌉ = 10 for
the code selected in Section 3.6. Assuming a threshold of about 10−3 under circuit
noise, the WER under circuit-level Pauli noise using long-range gates goes as(

𝑝 (1)

10−3

)10

. (3.75)

per cycle of syndrome extraction.

For context, a slightly better threshold of about 3× 10−3 has been observed for (3, 4)
hypergraph product codes using efficient decoders [TDB21] under circuit-level noise
for syndrome-extraction circuits with long-range gates.

In practice, more information is available to the decoder owing to the concatenated
structure: A decoder using this extra information about individual qubit reliability is
likely to have a better threshold. We return to this subject in Section 3.6.

Results
Using the duration of the hierarchical code syndrome extraction cycle as the unit
of time that defines the WER, the results of the estimates are shown in Figure 3.18
for 𝑟SWAP = 100, 10−1, or 10−2 and several sizes of inner rotated surface code.
We can see the better scaling with gate error rate that the hierarchical memory
achieves. While the LDPC code distance is fairly large, the “effective” distance has
been reduced immensely by the weight-6 hook errors (potentially arising from the
measurement of weight-13 check operators); because the outer code has distance
𝑑 = 119, under our pessimistic assumptions just 10 fault locations are sufficient to
cause an uncorrectable error. We expect future LDPC codes with better distance and
better understanding of hook errors in syndrome extraction circuit gate scheduling
will improve the WER scaling.

18For very resource-constrained settings, it may still be worthwhile to use more sophisticated
syndrome extraction circuits for a better effective relative distance.

193

10 5 10 4 10 3

Gate Error Rate

10 25

10 20

10 15

10 10

10 5

100

W
ER

10 5 10 4 10 3

Gate Error Rate
10 5 10 4 10 3

Gate Error Rate

dM = 12
d = 3

dM = 19
d = 5

dM = 35
d = 9

dM = 57
d = 15

dM = 80
d = 21

dM = 103
d = 27

Figure 3.18: Comparison of a hierarchical memory (solid line) using a (5, 8)
quantum expander code with parameters J1 116 416, 112 896, 119K and inner code
distance 𝑑ℓ, and a surface code (dashed line) with distance 𝑑𝑀 . Lines of the same
color use roughly the same number of physical qubits including all necessary ancilla
qubits. All memories store 112 896 logical qubits. The 3 plots correspond to
different values of 𝑟SWAP equal to 100, 10−1, and 10−2 (left to right) under the decoder
performance assumptions made in Section 3.6. The surface code distance is rounded
up, so it always uses slightly more qubits. The WER is with respect to the hierarchical
memory syndrome extraction cycle.

Under a standard circuit-level noise model, below a gate error rate of around 10−3, and
for a target WER of 10−20 to 10−10, the hierarchical scheme may realize significant
resource savings. Especially so if SWAP gates have much lower gate error rates than
CNOT gates. We plot such a comparison in Figure 3.19 with a gate error rate of
3 × 10−3 (99.7% gate fidelity) and 𝑟SWAP = 0.1 With further engineering and more
careful modeling, we believe the overhead of the hierarchical scheme can be reduced
much more, so that the crossover point occurs at a practically relevant gate error rate
and target WER. In the next section we will outline two ideas that will improve the
performance of the hierarchical scheme: The decoder for the outer code is given far
more information about the level-1 qubit reliabilities than in a circuit level noise
model, and in the presence of noise bias, the syndrome extraction circuit can be
tailored to reduce the effects of hook errors.

Another reason we expect this estimate is conservative is that we have assumed that
the noise model is independent circuit noise which creates only 2-body correlated
errors in the underling surface codes. In the setting of large, long-lived quantum
memories, we expect it will become necessary to address noise sources that affect
large patches of the system. Sources of such noise could include cosmic rays

194

10 2510 2210 1910 1610 1310 1010 7

Target WER

1

2

3

4

5

Re
so

ur
ce

 S
av

in
gs k = 7 104

k = 3 105

k = 1 106

k = 4 106

k = 2 107

k = 7 107

Figure 3.19: Estimated resource savings over surface codes for a hierarchical
memory for 𝑟SWAP = 10−1 and a gate error rate of 3 · 10−3 under the performance
assumption of Section 3.6. The resource here refers to the total space footprint of
the circuits; the 𝑦-axis represents the ratio W(𝐶B

𝑀
)/W(𝐶H

𝑁
). We plot the resource

savings for the (4, 8) family of quantum expander codes with input code block
lengths 512 · 2𝑚 for 𝑚 ∈ {0, 1, 2, 3, 4, 5}. The number of logical qubits is indicated
in the legend. Discontinuities in the plot are due to discretization of the surface
code distance. Rare noise sources that create high weight errors may provide further
resources savings over surface codes.

(superconducting qubits), large deviations in global control devices such as lasers
(AMO systems), lightning strikes, power supply ripples, etc. For large memories,
different parts of the memory may rely on systems operating independently (ex.
lasers, fridges, power supplies, etc) which would make such “global” noise large
on the scale of any reasonable surface code patch, but small on the scale of the full
hierarchical memory. Concatenation of surface codes with constant length outer
codes [Xu+22] has previously been considered in order to address such issues. It
may be practical19 to protect against such noise sources with a hierarchical scheme
without additional overhead.

Future Performance Improvements
Having concluded a rough estimate of what the performance of the hierarchical
memory might look like, we outline some ideas that could further improve the
performance of the hierarchical memory relative to surface codes. In this section, we
re-examine the WER for LDPC codes using biased-noise qubits and message-passing

19Physics is local, so a very large surface code is likely sufficient, but it may be impractically large.

195

decoders.

Noise-Bias Tailored Syndrome Extraction

As discussed in Section 3.6, hook errors can be very damaging for general LDPC
codes. In this section, we estimate the failure rate for hierarchical codes by making
further assumptions on the dependence of logical failure given 𝜂-biased qubits.
In particular, Equation (3.76) presented below is an ansatz for the logical failure
probability 𝑝Q of the outer code. However, we expect that this estimate can be
considerably improved in the future by investigating in more detail how 𝑝Q and
depends on the bias 𝜂.

X errors on the ancilla qubit will propagate to an X or Z error on the data while
Z errors on the ancilla qubit will simply flip the measurement outcome without
propagating to a higher weight data error. If X errors can be suppressed on the ancilla
qubits, then hook errors become much less likely. In many platforms, such noise
is common or can be engineered into the experiment [Gri+20; Les+20; Con+22].
Noise bias has been exploited in the past by tailoring the quantum error correction
scheme [AP08; WBP15; Pur+20; Bon+21; Rof+22] to the noise.

In Section 3.4, we introduced a technique to modify the bilayer architecture such that
Level-1 qubits are noise biased. We can use this noise bias to suppress errors on the
ancilla (X) that propagate to higher weight data errors. We modify the assumptions
of Subsection 3.6 and Equation (3.75) in a way that attempts to capture this behavior.
Further study will be needed to make more precise estimates of logical error rates in
this modified architecture.

The modified bilayer architecture uses elongated Level-1 qubits. If we choose the X
distance to be larger than the Z distance according to 𝑑X = 𝑑Z+ ⌈2 log(𝜂)/log(1/𝑝)⌉,
then the logical X error rate of the inner code is suppressed relative to the logical Z
error rate by the bias factor 1/𝜂. If the accuracy threshold of the outer code is still
10−3 as we assumed for the case without noise bias, then for the modified architecture
our estimate for the Level-2 WER becomes

𝑝Q =

(
𝑝 (1)

10−3

) ⌈𝑑/2⌉
+

(
𝑝 (1)/𝜂
10−3

) ⌈⌈𝑑/2⌉/⌊Δ𝑔/2⌋⌉
. (3.76)

The first term is the contribution from Level-1 logical Z errors; these do not propagate
from ancilla to data, so that ⌈𝑑/2⌉ Level-1 errors are needed to cause a logical error
at level 2. The second term arises from Level-1 logical X errors. These can propagate
from ancilla to data, but they occur at a rate suppressed by the bias factor 1/𝜂.

196

Since surface codes are CSS codes, the X and Z noise can be corrected independently,
so the X and Z logical failure rates can be examined independently up to small
correlations introduced by Y-errors. Ignoring these correlations and assuming that
Equation (3.71) still holds with 𝑑 replaced by 𝑑X or 𝑑Z,

10 5 10 4 10 3

Gate Error Rate

10 25

10 20

10 15

10 10

10 5

100

W
ER

10 5 10 4 10 3

Gate Error Rate
10 5 10 4 10 3

Gate Error Rate

dM = 13
d = 3

dM = 20
d = 5

dM = 35
d = 9

dM = 58
d = 15

dM = 80
d = 21

dM = 103
d = 27

Figure 3.20: Comparison of a hierarchical memory (solid line) using a (4, 8) quantum
expander code with parameters J327 680, 65 536, 32K and inner code distance 𝑑Z = 𝑑ℓ,
and a surface code (dashed line) with distance ℓ𝑀 . Lines of the same color use roughly
the same number of physical qubits including all necessary ancilla qubits. The noise
bias permits a smaller block length, so all memories store 65 536 logical qubits. The 3
plots correspond to different values of 𝑟SWAP equal to 100, 10−1, and 10−2 (left to right)
under the modified decoder performance assumptions made in subsection 3.6. The
surface codes underlying the hierarchical memory are rectangular with 𝑑X = 2𝑑ℓ + 1
The WER is for one round of the hierarchical memory’s syndrome-extraction cycle.

We plot a similar comparison to Figure 3.18 with 𝑑X = 2𝑑Z + 1, so that ⌈𝑑X/2⌉ =
2⌈𝑑Z/2⌉20 (Figure 3.20). Using the greater resilience to hook errors, we also pick
a smaller code with higher rate with parameters J327 680, 65 536, 32K. Notice the
effect of the bias is to increase the rate at which the WER falls with the level-0 gate
error rate. The increased slope only persists until the two terms in Equation (3.76)
become equal. One can see that using the bias, the hook errors are greatly suppressed
leading to a better logical failure rate scaling in practically relevant regimes and a
crossover point at a larger physical gate error rate.

20This choice is somewhat arbitrary. For a given WER target and gate error rate, the optimal
aspect ratio is likely to be such that the target is at the “kink” of the WER in Figure 3.20.

197

Decoders that use the concatenated structure

Our asymptotic analysis used the underlying surface codes in a black-box manner—
when decoding the outer LDPC code {Q𝑛}, the tiles had either failed or succeeded.
In contrast to this “hard information”, much more information is available to the
decoder for the outer code in the hierarchical setting. We may have access to “soft
information”, i.e. information about how reliable individual surface code patches
are, which can then be passed to the outer code decoder. It is known that maximum-
likelihood decoding on each level of a concatenated code, together with message
passing between levels is an optimal decoding algorithm [Pou06].

Choice of outer code decoder: Soft information can be used in the quantum
setting using Belief Propagation (BP), a class of iterative algorithms. Broadly, in
each iteration, BP makes a series of graph-local decisions—qubits that are in the
support of a stabilizer generator exchange information and update their beliefs about
whether they have been corrupted. As there are only a constant number of qubits
in the support of each stabilizer generator, the decision requires a constant-sized
computation. Although it is very successful in the classical setting, BP faces
difficulties when applied to quantum codes. In the classical setting, BP converges to
an distribution over bits that corresponds to the most likely error. In the quantum
setting, it was pointed out early on [PC08] that degeneracy is a major issue for
BP—there are many errors that are equivalent as they differ only by a stabilizer
generator. However, BP is unable to tell the difference and gets stuck in a local
minimum. One simple way to get around this issue would be if more information
were available about the qubits. If each qubit were known to fail with a different
probability – even if that difference is small — it can help BP avoid local minima.

Since then, many ideas have been developed to use soft information in the quan-
tum setting that overcome the shortcomings of BP [PK21b; RWBC20; QVRC21;
GGKL21; KL22; LP19; DMS22]. We now discuss ways to obtain soft information
from the surface code.

Choice of inner code decoder: The tensor network decoders [BSV14; Chu21;
TBF18; Bon+21; Tuc+19] are one class of surface code decoders that yield such soft
information. The decoder outputs the probability of different (coset) logical failures
for each tile. Unfortunately, it is unclear how to implement these algorithms in the
fault-tolerant setting where syndrome information is unreliable. This setting requires
growing bond dimension which makes implementing the decoder quite challenging.

198

More recently, BP decoders have been implemented for surface codes [RWBC20;
OR22; Ach+22]. It is conceivable that such an algorithm could serve as a soft
decoder for the surface codes as well.

A natural question is whether standard decoders such as Min-Weight Perfect Matching
(MWPM) [DKLP02] or the Union-Find Decoder (UFD) [DN17] could be modified
to yield soft information. For simplicity, consider bit flip noise at a rate of 𝑝. We
define the decoding graph given by associating a vertex with each measured stabilizer
generator. We add a special boundary vertex to which we associate the total parity of
all measured stabilizer generators. Including the boundary vertex, each single qubit
error is detected in exactly two places. For each error, an edge is added between the
vertices where it is detected. To each edge, assign the weight − log

(
𝑝

1−𝑝

)
which is the

log-likelihood of an error. The most likely error given the syndrome is then a subset
of edges with minimal weight that produces the syndrome and can be computed
efficiently by mapping onto the minimum-weight perfect matching problem.

On average, the expected weight of an error (and correction) will be linear in the
block length. This is asymptotically larger than the distance of a surface code, so
the most important feature of the correction is its shape. The Union-Find Decoder
operates in two steps: First, it identifies clusters such that a valid correction is
contained within the support of the clusters. Then, it treats the identified clusters as
an erasure and runs an erasure correction decoder which produces a valid correction
contained within the erasure.

One such way to obtain soft information from this process is to compute the log-
likelihood of the minimum weight error that would lead to a logical fault when
combined with the erasure. This can be computed efficiently by setting the edge
weights within the erasure to 0 and computing the minimal weight path between
inequivalent boundaries. Call this quantity 𝜙. We note that when no errors are
detected, 𝜙 = −𝑑 log

(
𝑝

1−𝑝

)
, and when the cluster spans the system, 𝜙 = 0. In the

first case, it is extremely unlikely (∝ 𝑝𝑑) for a logical fault to have occurred while in
the latter case, there is a 50% probability for a logical fault to have occurred. When
passed to an outer-level decoder, 𝜙 or a monotonic function of 𝜙 may yield sufficient
information to improve the logical failure rate dramatically.

3.7 Conclusions
We have constructed a quantum memory with a threshold using geometrically local
gates to simulate long-range connectivity. We did so by constructing a code family

199

{H𝑁 } that we refer to as the hierarchical code. 𝑁 indexes the size of the code; the 𝑁 th

elementH𝑁 of this code is obtained by concatenating a constant-rate quantum LDPC
code Q𝑛 (the 𝑛-qubit outer code) and the surface code RSℓ (the inner code). The
outer code has a number of encoded qubits 𝑘 (𝑛) = 𝜌 · 𝑛 and distance 𝑑 (𝑛) = Θ(𝑛𝛿)
for positive constants 𝜌, 𝛿. Our construction builds on Gottesman’s proof of the
existence of a threshold using quantum LDPC codes (Theorem 4 from [Got14]).
The central idea in Gottesman’s construction is that if the failure rate per round of
syndrome extraction, denoted 𝑝round, is a sufficiently small constant, then logical
errors can be suppressed exponentially in the distance of the code. We showed that
the requisite constant error rate per round can be achieved using geometrically-local
gates if the inner code has suitable properties.

Although H𝑁 is no longer an LDPC code, local operations suffice for extracting
the error syndrome. In Section 3.4, we presented an explicit family of syndrome-
extraction circuits {𝐶H

𝑁
} for H𝑁 . This circuit has width W(𝐶H

𝑁
) = Θ(𝑁) and

depth T(𝐶H
𝑁
) = 𝑂 (

√
𝑁/𝑅), where 𝑅 denotes the range of physical SWAP gates. To

describe this circuit for the hierarchical code, we first presented a construction of
the syndrome-extraction circuit 𝐶𝑛 for the outer LDPC code Q𝑛 in Section 3.4. This
circuit is based on a bilayer architecture — physical qubits are laid out in two layers in
2 dimensions. In our concatenated construction, the outer qubits of Q𝑛 are replaced
by rotated surface codes referred to as tiles. In Section 3.4, we demonstrated how to
perform Level-1 logical Clifford operations on tiles using physical nearest-neighbor
gates, including a novel technique for performing nearest-neighbor logical SWAP
gates. We also discussed how to perform logical SWAP operations on tiles with
range 𝑅1 using physical SWAP operations with range 𝑅0.

In Section 3.5, we showed that for fixed values of the physical failure rate 𝑝phys, the
error rate per round of syndrome-extraction, 𝑝round, is a polynomial function of the
depth T(𝐶H

𝑁
). Using an inner surface code with linear size ℓ, which can suppress

errors exponentially in ℓ, we can guarantee that the Level-1 error rate per round is a
constant by choosing ℓ = Θ(log(𝑛)). The resulting concatenated codeH𝑁 encodes
a number of encoded qubits 𝐾 = Ω(𝑁/log(𝑁)2). Furthermore, if the distance of the
LDPC code Q𝑛 is 𝑑 (𝑛) = Θ(𝑛𝛿), thenH𝑁 can suppress errors superpolynomially;
the Word Error Rate (WER) satisfies 𝑝H (𝑁) < exp

(
−Θ[𝑁𝛿/log2𝛿 (𝑁)]

)
. Given

access to physical SWAP operations of range 𝑅, the syndrome-extraction circuit 𝐶H
𝑁

has depth 𝑂 (
√
𝑁/𝑅).

Using this architecture we made numerical estimates of the WER 𝑝H (𝑁) in Sec-

200

tion 3.6. We contrasted this with the WER 𝑝B (𝑀) of the basic encoding B𝑀 , where
all logical qubits are encoded using only the surface code. We first made comparisons
in the asymptotic regime, showing in Section 3.6 that if the outer constant-rate
LDPC code has an efficient single-shot decoder, then a target logical error rate can
be achieved more efficiently using the hierarchical encoding rather than the basic
encoding.

We then proceeded with numerical estimates probing whether this advantage holds
for practical code sizes and noise parameters. For this purpose, we compared the
WERs of the basic encoding and hierarchical encoding when both schemes use the
same total number of physical qubits. We found that the physical error rate has a
crossover point; when the physical error rate is below this value, the hierarchical code
outperforms the basic encoding. To perform these estimates, we made assumptions
about the noise model and about the WER for surface codes and LDPC codes,
and we assessed the impact of these assumptions on our conclusions. We also
discussed some ways to reduce the WER of hierarchical codes by modifying the
syndrome-extraction circuit, improving the fidelity of SWAP operations, and using
more sophisticated decoding algorithms.

1. We made the conservative assumption that propagation of error from Level-1
ancilla qubits to Level-1 data qubits reduces the effective distance of the outer
code by a factor of Δ𝑔, the degree of the outer-code stabilizer generators. This
error propagation can be mitigated if the noise in Level-1 qubits is highly
biased, with X errors occurring much less frequently than Z errors. Even if
the noise afflicting the physical qubits is unbiased, this Level-1 noise bias can
be enforced by using an asymmetric surface code as the inner code of the
hierarchical scheme.

2. The failure rate of the outer code grows in proportion to the depth of the
permutation routing, and hence is sensitive to the error rate of Level-1 SWAP
operations. By improving the error rate of physical SWAP gates we can
improve the performance of the hierarchical code significantly.

3. We assumed that the decoding algorithm for the outer code makes no use of
the syndrome information from the inner code blocks. We expect that a much
better decoding scheme for the hierarchical code can be achieved by exploiting
such information from the inner code when decoding the outer code.

201

Finally, we also highlighted that a hierarchical architecture might deal effectively
with “burst” errors that damage a large cluster of physical qubits simultaneously.
A severe burst error could corrupt several of the inner-code tiles, but the resulting
Level-1 erasure errors can be adequately addressed by the decoder for the outer code.

3.8 Acknowledgements
AK is supported by the Bloch Postdoctoral Fellowship from Stanford University.
AK acknowledges funding from NSF award CCF-1844628. CAP acknowledges
funding from the Air Force Office of Scientific Research (AFOSR), FA9550-19-
1-0360. JP acknowledges funding from the U.S. Department of Energy Office of
Science, Office of Advanced Scientific Computing Research, (DE-NA0003525, DE-
SC0020290), the U.S. Department of Energy QuantISED program (DE-SC0018407),
the U.S. Department of Energy Quantum Systems Accelerator, the Air Force Office
of Scientific Research (FA9550-19-1-0360), and the National Science Foundation
(PHY-1733907). The Institute for Quantum Information and Matter is an NSF
Physics Frontiers Center. We thank Nicolas Delfosse, Mary Wootters, Anthony
Leverrier, Nouédyn Baspin, Bailey Gu, Alex Kubica, David Schuster, Manuel Endres,
Michael Vasmer, and Pavel Panteleev for helpful conversations.

3.9 Appendix
1. Set notation: for natural numbers 𝑛 ∈ N, [𝑛] = {1, ..., 𝑛}.

2. Sums over sets: For a set 𝑆 and a subset 𝐴 ⊆ 𝑆, the sum
∑
𝐵⊇𝐴 𝑓 (𝐵) is taken

over all subsets 𝐵 ⊆ 𝑆 such that 𝐴 ⊆ 𝐵.

3. Asymptotics: for functions 𝑓 , 𝑔 : N→ R, we say

a) 𝑓 (𝑛) = 𝑂 (𝑔(𝑛)) if there exists an 𝑛0 ∈ N and a positive number 𝑐
independent of 𝑛 such that for all 𝑛 > 𝑛0, 𝑓 (𝑛) ≤ 𝑔(𝑛).

b) 𝑓 (𝑛) = Ω(𝑔(𝑛)) if 𝑔(𝑛) = 𝑂 (𝑓 (𝑔)).

c) 𝑓 (𝑛) = Θ(𝑔(𝑛)) if there exists an 𝑛0 ∈ N and positive numbers 𝑎, 𝑏
independent of 𝑛 such that 𝑎 · 𝑔(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑏 · 𝑔(𝑛).

We may use 𝑂𝑝 (·), Ω𝑝 (·) and Θ𝑝 (·) to indicate that the numbers 𝑎, 𝑏 and 𝑐
may depend on some parameter 𝑝 pertinent to the problem at hand.

4. (Circuit) Step: A single timestep in which each qubit may participate in only
one gate.

202

5. (Circuit) Stage: This refers to the time interval in the circuit 𝐶Q𝑛 required to
simulate one entangling gate. One stage has at most Tperm steps.

6. (Measurement) Round: A complete measurement of all the stabilizer generators
of the code producing one outcome for each stabilizer generator.

7. K is the set of Clifford operations we use to construct syndrome-extraction
circuits in 2 dimensions. It includes the following elements.

a) Initialization of new qubits in state |0⟩ or |+⟩,

b) Single-qubit Pauli gates,

c) Two-qubit Clifford gates CNOT and CZ between nearest-neighbor qubits,

d) Single-qubit Pauli X and Z measurements,

e) Physical SWAP operation with range 𝑅.

8. In the context of concatenated codes, K carries subscripts K0, K1 to refer to
Level-0 (physical) and Level-1 (logical) Clifford operations.

3.10 Constructing the ideal syndrome-extraction circuit (𝐶Q𝑛)ideal

In this section, we return to the claim in Section 3.4. We prove that the syndrome-
extraction circuit (𝐶Q𝑛)ideal for a J𝑛, 𝑘, 𝑑,Δ𝑞,Δ𝑔K code can be constructed such that
its depth is at most 𝑠 := 2Δ + 4, where Δ = 2 max(Δ𝑞,Δ𝑔).

Proof. By definition, each qubit participates in at most Δ𝑞 stabilizer generators and
each stabilizer generator contains at most Δ𝑔 qubits in its support. We use the Tanner
graph T (Q𝑛) = (𝑉 ∪ 𝐶X ∪ 𝐶Z, 𝐸), a tripartite graph corresponding to the code Q𝑛
where:

1. There is a vertex 𝑣 ∈ 𝑉 for each qubit in the code. |𝑉 | = 𝑛.

2. There is a vertex 𝑢X
𝑖
∈ for each X-type generator SX

𝑖
. |𝐶X | = 𝑚X.

3. There is a vertex 𝑤Z
𝑗

for each Z-type generator SZ
𝑗
. |𝐶Z | = 𝑚Z.

Consider the bipartite Tanner graph T X = (𝑉 ∪𝐶X, 𝐸) that corresponds to the X-type
generators of the code Q.

In each step, each qubit can be involved in at most one gate. This can be phrased as a
graph coloring problem: we color the edges of T X such that no two edges incident

203

to a vertex have the same color. Since T X is bipartite, such an edge coloring can be
computed efficiently using max(Δ𝑞,Δ𝑔) colors [Sch+03].

To measure the X-type syndromes, the first phase of the circuit (𝐶Q𝑛)ideal is partitioned
into max(Δ𝑞,Δ𝑔) steps. In the 𝑡th step, we perform the two-qubit gates corresponding
to the edge color 𝑡.

Once completed, the same process is repeated for the Z-type syndromes. Following
a similar line of reasoning, this requires Δ = max(Δ𝑞,Δ𝑔) applications of two-qubit
gates.

The circuit thus has two phases: first the X-type syndromes are measured followed by
the Z-type syndromes 21 which completes a measurement of all stabilizer generators.

The total number of entangling stages is therefore 2Δ, where Δ = max(Δ𝑞,Δ𝑔).
Accounting for one stage for preparing and measuring ancilla qubits in each phase,
we have a total of 𝑠 = 2Δ + 4 stages to measure syndromes. ■

21This is unlike the surface code where both types of syndromes are measured at once.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	Introduction
	The difficulty of quantum fault tolerance
	The state of quantum fault tolerance
	Contributions and outline
	Outlook

	Quantum fault tolerance with constant-space and almost logarithmic-time overheads
	Introduction
	Model of computation and weight enumerator formalism
	Proof of main result
	State preparation gadgets
	Magic state distillation with almost-constant spacetime overhead

	Hierarchical memories: Simulating quantum LDPC codes with local gates
	Introduction
	Background & Notation
	Permutation routings on sparse graphs in two dimensions
	Bilayer implementation of hierarchical codes
	Overhead, threshold and asymptotics
	Comparisons with the basic encoding
	Conclusions
	Acknowledgements
	Appendix
	Constructing the ideal syndrome-extraction circuit (CnQ)ideal

