
Operator Learning for Scientific Computing

Thesis by
Margaret K. Trautner

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended May 23, 2025

ii

© 2025

Margaret K. Trautner
ORCID: 0000-0001-9937-8393

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

My Ph.D. would not have been possible without many individuals. First,
thank you to my advisor Andrew Stuart for his endless support, patience,
kindness, and mentorship. There have been many moments during the past
five years when I have been struck by how lucky I was to be his student. I
cannot imagine having had a better advisor.

Thank you to my thesis committee members Kaushik Bhattacharya, Franca
Hoffmann, and Houman Owhadi for their insights and support of my re-
search. Discussions with Kaushik Bhattacharya in the first few years of my
Ph.D. greatly shaped my research interests.

I am grateful to have been supported by the Department of Energy Com-
putational Graduate Fellowship for four years. This fellowship allowed me
flexibility as a researcher and served to broaden my view of applied and com-
putational mathematics.

I thank all of my excellent collaborators and mentors, especially Nicholas
Nelsen and Samuel Lanthaler, both of whom have influenced me greatly.
Thank you to Dr. Metcalfe and Dr. Raulston, who introduced me to applied
mathematics nine years ago.

Research is all the more enjoyable when surrounded by great friends, and I have
had wonderful friend/colleagues in CMS. Pau, Eitan, Lauren, Chris, Laure,
and Matthieu; thanks for being great colleagues, conference companions, and
friends. The support of current and former CMS staff, especially Jolene Brink,
Diana Bohler, and Bonnie Leung has been vital.

To my family for supporting me in my interests from the beginning, especially
my parents and grandparents. To my husband John; I’m grateful every day
that Caltech brought us together, and the stress tensor that you used as a
conversation starter back in 2021 may be found in Chapter 2. Finally, to my
daughter Laura; as a teething infant, you weren’t exactly helpful while writing
this thesis, but I wouldn’t have it any other way. It’s all for you now.

iv

ABSTRACT

This thesis develops operator learning theory and methods for use in scientific
computing. Operator learning uses data to approximate maps between infi-
nite dimensional function spaces. As such, operator learning provides a natural
framework for using machine learning in applications with partial differential
equations (PDEs). While operator learning architectures have successfully
modeled a variety of physical phenomena in practice, the theoretical founda-
tions underpinning these successes remain in early stages of development.

The present work takes a step towards a complete understanding of opera-
tor learning and its potential use in scientific applications. The thesis begins
by studying multiscale constitutive modeling, where operator learning models
can serve as surrogates to accelerate simulation and aid in model discovery of
physical laws. The work proposes, and theoretically and numerically analyzes,
an operator learning architecture for modeling history dependence in homog-
enized constitutive equations. The thesis then addresses learning solutions to
an elliptic PDE in the presence of discontinuities and corner interfaces in two-
dimensional materials. By proving a key continuity result for the underlying
PDE, a universal approximation result is obtained. In its second half, the thesis
moves on from the setting of homogenized constitutive laws and gives insight
to operator learning from a broader perspective. First, error analysis bounds a
form of discretization error that arises in implementations of the Fourier Neu-
ral Operator (FNO). Next, a modified form of the FNO, the Fourier Neural
Mapping, accommodates finite-dimensional data while retaining the under-
lying function space structure. This modification allows applications where
the map of interest is governed by an infinite-dimensional operator with data,
such as parameters or summary statistics, in the form of finite vectors. Finally,
the thesis extends a theory-to-practice gap result in finite dimensions to the
infinite-dimensional operator learning setting, asserting that even for classes
of architectures whose model expressivity scales well with model size, their
error convergence with respect to data size scales poorly. In summary, this
thesis builds understanding of operator learning from several perspectives and
contributes both theoretical advancements and practical methodologies that
improve the applicability of operator learning models to scientific problems.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Kaushik Bhattacharya, Burigede Liu, Andrew M. Stuart, and Margaret
Trautner. “Learning Markovian homogenized models in viscoelasticity”.
In: Multiscale Modeling & Simulation 21.2 (2023), pp. 641–679. doi:
10.1137/22M149920.

M.T. was the lead author on this work. M.T. proved the results in
this work except for the limit obtained in Appendix B.1 of the publi-
cation, which was proved by A.S. M.T. wrote the code and performed
all numerical experiments and wrote the manuscript except for the me-
chanics portion of the literature review, which was written by K.B. The
work in this paper makes up the bulk of Chapter 2.

[2] Burigede Liu, Eric Ocegueda, Margaret Trautner, Andrew M. Stuart,
and Kaushik Bhattacharya. “Learning macroscopic internal variables
and history dependence from microscopic models”. In: Journal of the
Mechanics and Physics of Solids 178 (2023), p. 105329. doi: 10.1016/
j.jmps.2023.105329.

This work was led by B.L., and E.O. performed the internal variable
experiments of Figure 3. This publication and the prior one on vis-
coelasticity originated as one collaboration, which split into the prior
work as the theoretical justification and this work as the numerical
experiments in more complex applications. M.T. contributed to the
computational methodology underpinning this work. A result from the
one-dimensional elasto-viscoplastic experiment in this publication is in-
cluded in Chapter 2 to demonstrate applicability of the theory devel-
oped there in more complex settings.

[3] Kaushik Bhattacharya, Nikola B. Kovachki, Aakila Rajan, Andrew M.
Stuart, and Margaret Trautner. “Learning homogenization for ellip-
tic operators”. In: SIAM Journal on Numerical Analysis 62.4 (2024),
pp. 1844–1873. doi: 10.1137/23M1585015.

M.T. was the lead author on this work. M.T. proved the theoretical
results apart from Proposition 1.2 and its contributing lemmas, which
were proved by N.B.K. M.T. designed and performed all numerical ex-
periments and wrote the manuscript aside from the appendix content
supporting Proposition 1.2, which N.B.K. wrote. This publication forms
Chapter 3.

[4] Samuel Lanthaler, Andrew M. Stuart, and Margaret Trautner. Dis-
cretization error of Fourier neural operators. 2024. arXiv: 2405.02221
[math.NA].

https://doi.org/10.1137/22M149920
https://doi.org/10.1016/j.jmps.2023.105329
https://doi.org/10.1016/j.jmps.2023.105329
https://doi.org/10.1137/23M1585015
https://arxiv.org/abs/2405.02221
https://arxiv.org/abs/2405.02221

vi

M.T. was the lead author on this work. A.S. conceptualized this project.
M.T. proved all results except Theorem 3.3. and Appendix A, which
were proved and written by S.L. M.T. wrote the code and performed
all numerical experiments except the adaptive subampling algorithm,
which was written and done by S.L. M.T. wrote the remainder of the
manuscript. This work is adapted for Chapter 4.

[5] Kaushik Bhattacharya, Lianghao Cao, George Stepaniants, Andrew
Stuart, and Margaret Trautner. Learning Memory and Material De-
pendent Constitutive Laws. 2025. arXiv: 2502.05463 [math.NA].

This work was led by G.S. and L.C. M.T. participated in the concep-
tualization of this work and discussions of both theory and numerical
experiments. The theory component was led by G.S., and the numerical
experiments and code were done and written by L.C. M.T. contributed
to the analysis and design of the RNO-FNM architecture. Some results
from this paper are included in Chapter 2 as they are natural extentions
of the prior work on operator learning constitutive modeling.

[6] Philipp Grohs, Samuel Lanthaler, and Margaret Trautner. Theory to
Practice Gap for Neural Networks and Neural Operators. 2025. arXiv:
2503.18219 [cs.LG].

S.L. conceptualized this project and wrote and proved results in Section
2. S.L and M.T. jointly wrote and proved results in Section 3 and the
associated results in the appendix except for Lemma 3.14, proved by
P.G. S.L. wrote the introduction and conclusion. This work is adapted
for Chapter 6.

[7] Daniel Zhengyu Huang, Nicholas H. Nelsen, and Margaret Trautner.
“An operator learning perspective on parameter-to-observable maps”.
In: Foundations of Data Science 7.1 (2025), pp. 163–225. doi: 10.3934/
fods.2024037.

N.H.N. conceptualized the project. M.T. wrote Sections 1 and 2 and
performed the homogenization experiment. M.T. and N.H.N both con-
tributed to Section 3 and the universal approximation theory proofs.
N.H.N. wrote Section 4 and proved the results therein. N.H.N. also im-
plemented the Fourier Neural Mapping architecture. D.Z.H. performed
the airfoil experiment. All authors edited the manuscript. This work
is adapted for Chapter 5, excluding the theoretical results on linear
functional regression in Section 4 of the publication.

https://arxiv.org/abs/2502.05463
https://arxiv.org/abs/2503.18219
https://doi.org/10.3934/fods.2024037
https://doi.org/10.3934/fods.2024037

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions v
Table of Contents . vi
List of Illustrations . ix
List of Tables . xiv
Chapter I: Introduction . 1

1.1 Learning Homogenized Constitutive Models 3
1.2 Error Bounds in Operator Learning 6
1.3 FNO Definition . 9
1.4 Thesis Outline . 9

Chapter II: Learning Homogenized Constitutive Models with Memory . 11
2.1 Introduction . 12
2.2 One-Dimensional Kelvin-Voigt Viscoelasticity 24
2.3 Main Theorems: Statement and Interpretation 27
2.4 Learning material dependence 34
2.5 Numerical experiments: data and optimization 35
2.6 Numerical Results . 36
2.7 Conclusions . 46

Chapter III: Learning Homogenization for Elliptic Operators 47
3.1 Introduction . 48
3.2 Microstructures . 56
3.3 Universal Approximation Results 57
3.4 Numerical Experiments . 60
3.5 Conclusions . 67

Chapter IV: Discretization Error of Fourier Neural Operators 69
4.1 Introduction . 69
4.2 Notation . 73
4.3 Main Results . 75
4.4 Numerical Experiments . 77
4.5 Conclusions . 83

Chapter V: An operator learning perspective on parameter-to-observable
maps . 84
5.1 Introduction . 84
5.2 Neural mappings for finite-dimensional vector data 89
5.3 Universal approximation theory for Fourier Neural Mappings . 92
5.4 Summary of Linear Functional Regression Theory 94
5.5 Numerical experiments . 95
5.6 Conclusion . 107

viii

Chapter VI: Theory-to-Practice Gap in Operator Learning 109
6.1 Introduction . 109
6.2 A generalized gap in finite dimension 114
6.3 Extension to operator Learning 125
6.4 Conclusion . 147

Bibliography . 148
Appendix A: Appendix to Chapter 2 165

A.1 Proofs . 165
A.2 Special Case Solutions . 176
A.3 Surrogate Model Experiments in Viscoelasticity 178
A.4 One-Dimensional Standard Linear Solid 182
A.5 Fourier Neural Mapping Definition 185

Appendix B: Appendix to Chapter 3 187
B.1 Proofs of Stability Estimates 187
B.2 Proofs of Approximation Theorems 202
B.3 Proofs for Microstructure Examples 203
B.4 Numerical Implementation Details 203

Appendix C: Appendix to Chapter 4 205
C.1 Trigonometric interpolation and aliasing 205
C.2 Discretization error derivation 211
C.3 Proofs of approximation theory lemmas 213
C.4 Proofs of regularity theory lemmas 215
C.5 Proof of Theorem 4.3.2 . 218
C.6 Proof of Theorem 4.3.3 . 220
C.7 Additional numerical results 221
C.8 Additional implementation details for error analysis experiments 223
C.9 Implementation details for adaptive subsampling 223

Appendix D: Appendix to Chapter 5 224
D.1 Proofs for Section 5.3: Universal approximation theory for Fourier

Neural Mappings . 224
Appendix E: Appendix to Chapter 6 229

E.1 A result on neural network approximation 229
E.2 Proofs for Section 6.3 . 232

ix

LIST OF ILLUSTRATIONS

Number Page
2.1 Representative data: input strain trajectories and output stress

trajectories for three randomly chosen test data samples. The
RNO approximation shown was generated with RNO C. 39

2.2 Analytic cell and RNO relative error versus FEM solution using
sinusoidal forcing; this supports Numerical Experiments, conclu-
sion I. 40

2.3 Relative error of continuous-material RNOs D with different num-
bers of hidden variables when used as a surrogate model in the
macroscale system; this supports Numerical Experiments, con-
clusion I. 41

2.4 Time discretization error for RNOs A, B, and C. 42
2.5 Absolute L2 error of RNOs trained with different numbers of

hidden variables on different piecewise-constant materials. . . . 43
2.6 RNO trained on elasto-viscoplastic data; a comparison between

the true solution and the RNO-predicted solution for three ran-
dom test samples. Top row: stress trajectories in time. Bottom
row: stress-strain trajectories for the same samples. 44

2.7 Discretiztion-invariance experiment for one-dimensional elasto-
viscoplasticity. In the “VE” model, strain rate is given as an
input, while it is not given in the “E-VP” model. 45

2.8 The distributions of the relative L2 error on 2,500 testing samples
from the PC dataset (left). We visualize the errors in FNM–
RNOs predictions where the trained FNM–RNOs have a varying
number of internal variables. We also visualize the distribution of
error given by the linear stress response without memory effects,
where the response function is obtained using (2.2.7) with κ ≡ 0.
The mean relative L2 error for the same dataset is on the right
for different testing resolutions with five internal variables. . . . 45

3.1 Microstructure Examples . 56

x

3.2 Visualization of the trained models evaluated on test samples
that gave median relative H1 error for each microstructure. The
microstructure inputs of each row correspond to those of Figure
3.1. The first shows the true χ1, the second shows the FNO
predicted χ1, and the third shows the absolute value of the error
between the true and predicted χ1. The fourth column shows
the 2-norm of the gradient of the true χ1, and the fifth shows
the 2-norm of the gradient of the predicted χ1. The last column
shows the 2-norm of the difference between the two gradients. . 64

3.3 Errors for each each numerical experiment; five sample mod-
els are trained for each microstructure. The expressions for the
RHE (Relative H1 Error), RWE (Relative W 1,10 Error) and RAE
(Relative A Error) may be found in equations (3.4.2) and (3.4.3).
The errors are evaluated over a test set of size 500. All examples
have varying geometry except the second Voronoi example. . . 65

3.4 Five sample models trained on Smooth and Voronoi data at 128×
128 grid resolution evaluated at different resolutions. 65

3.5 A comparison of test error for different amounts of training data
for models trained on Voronoi and Smooth data. Five sample
models are used for each data point. 65

3.6 Relative H1 error versus model size for the smooth and Voronoi
examples with varying geometry. The number of Fourier modes
in each direction and the model width were varied. Each line
indicates a constant product of modes×width. Training data
size was fixed at 9500 samples, and five samples were used for
each data point. 65

4.1 Relative error versus N and s for an FNO with default weight
initialization. 79

4.2 Relative error versus N and s for a default FNO with a ReLU
activation. 79

4.3 Relative error versus N and s for a default FNO with non-
periodic position encoding appended to the input. 80

4.4 Visualization of the input and output data for the trained model
examples. 80

4.5 Error versus discretization for inputs of varying regularity for the
FNO trained on data corresponding to a PDE solution. 81

xi

4.6 Error versus discretization for inputs of varying regularity for the
FNO trained on data corresponding to a gradient map. 81

4.7 Adaptive grid refinement leads to greater training efficiency. . . 82
5.1 Illustration of the factorization of an underlying PtO map into

a QoI and an operator between function spaces. Also shown are
the four variants of input and output representations considered
in this work. Here, U is an input function space and Y is an
intermediate function space. 85

5.2 End-to-end vs. full-field convergence rate exponents as a func-
tion of QoI regularity exponent r. Larger exponents imply faster
convergence rates. As the curves gets lighter, the smoothness
of the problem increases. The vertical dashed line corresponds
to r = −1/2, which is the transition point where end-to-end
learning and full-field learning have the same rate. 95

5.3 Visualization of the velocity-to-state map for the advection–diffusion
model. Rows denote the dimension of the KL expansion of the
velocity profile and columns display representative input and
output fields. 99

5.4 Empirical sample complexity of FNM and NN architectures for
the advection–diffusion PtO map (note that Figure 5.4a has a
different vertical axis range). The shaded regions denote two
standard deviations away from the mean of the test error over
five realizations of the random training dataset indices, batch
indices during SGD, and model parameter initializations. . . . 100

5.5 Flow over an airfoil. From left to right: visualization of the cubic
design element and different airfoil configurations, guided by the
displacement field of the control nodes; a close-up view of the
C-grid surrounding the airfoil; the physical domain discretized
by the C-grid. 102

5.6 Flow over an airfoil. The 1D (bottom) and 2D (top) latent spaces
are illustrated at the center; the input functions ϕa encoding the
irregular physical domains, are shown on the left; and the output
functions p ◦ ϕa representing the pressure field on the irregular
physical domains, are depicted on the right. 103

xii

5.7 Flow over an airfoil. Comparative analysis of relative test error
versus data size for the FNM and NN approaches. The shaded
regions denote two standard deviations away from the mean of
the test error over five realizations of the batch indices during
SGD and model parameter initializations. 104

5.8 Diagram showing the homogenization experiment ground truth
maps. The function A is parametrized by a finite vector z. The
quantity of interest A (3.1.3) is computed from both the material
function A and the solution χ to the cell problem (3.1.4). Note
that both A and χ are functions on the torus T2. 105

5.9 Elliptic homogenization problem. Absolute A error in the Frobe-
nius norm versus data size for the FNM and NN architectures.
The shaded regions denote two standard deviations away from
the mean of the test error over five realizations of batch indices
during SGD and model parameter initializations. 107

A.1 Train and test error for the three RNOs. 179
A.2 RNO outputs versus the truth (dashed) for each of the three

candidate RNOs. The columns correspond to RNOS A, B, and
C respectively. The first row shows the strain-stress dependence
for five fixed strain rate inputs. The second row shows the strain
rate-stress dependence for five fixed strain inputs. The third row
shows the ξ, stress relationships for hidden variable ξ for five fixed
strain inputs. The fourth row shows the strain, ξ̇ relationship for
five different fixed values of ξ. Finally, the fifth row shows the
ξ, ξ̇ relationship for five fixed strain inputs. 180

A.3 Analytic cell and RNO relative error versus FEM solution us-
ing integrated Brownian motion forcing; this supports Numerical
Experiments, conclusion I. 181

A.4 Relative error of RNO trained on material parameters with higher
inertial effects in response to sinusoidal and integrated Brown-
ian motion forcing; this demonstrates Numerical Experiments,
conclusion I. 181

A.5 Error evaluations of all train and test data points for the elasto-
viscoplastic experiments. Solid lines indicate mean error values,
which are computed separately for the train and test sets. . . . 182

xiii

C.1 Relative error versusN and s for an FNO with default ×10 initial
weights. 222

C.2 Relative error versus N and s for an FNO with all weights equals
to 1. 222

C.3 State norm versus layer for various untrained model initializations.222

xiv

LIST OF TABLES

Number Page
2.1 RNO Descriptions . 38

1

C h a p t e r 1

INTRODUCTION

Before the advent of computers, scientific data were useful for building models
only to the extent that they could inform scientific theory or contribute to
statistics. While limited by human computational ability, these use cases had
the advantage of complete interpretability. As computers emerged and became
increasingly more efficient at data processing, additional types of data-driven
scientific models were made realistic, including ensemble methods [1], vari-
ous classification algorithms [2], and additional statistical methods like the
expectation-maximization algorithm [3]. These methods retained significant
interpretability while allowing large amounts of data to inform models. How-
ever, they also tended to be problem specific and required some knowledge of
the underlying problem to form an accurate model. Neural networks changed
this paradigm; superpositions of nonlinear activations and affine maps could
approximate any continuous map [4] between finite spaces at the cost of in-
terpretability of the model. Although finding the optimal parameterization
of such a network for a particular map is NP-hard, gradient descent methods
turned out to be effective at finding network parameters that achieve good
approximations of the optimal map despite dramatic non-convexity of the op-
timization landscape. Machine learning methods proved to be extremely suc-
cessful at completing tasks that no prior models could, including image clas-
sification [5], speech recognition [6], and superhuman performance in games
[7].

Scientific computing developed independently from machine learning as a body
of computational tools to model phenomena in physics, chemistry, biology, and
engineering. A large share of these phenomena are described by partial differ-
ential equations (PDEs) that specify the time and space evolution of functions
in infinite-dimensional function space. The first attempts to use machine learn-
ing to approximate the behavior of PDEs did so by first discretizing functions
to bring them down to the native finite-dimensional space of neural networks
[8, 9]. However, this approach leads to significant drawbacks. In addition
to making it more difficult to apply existing knowledge of PDE theory to
machine learned models of PDEs, discretizing before learning fixes a single

2

discretization into the model itself, and new data of a different discretization
becomes incompatible with the model. Furthermore, the model can overfit
to a particular discretization. Operator learning addresses this problem by
building architectures that map between infinite dimensional function spaces.
Operator learning models are discretization-independent in the sense that no
discretization size is built into the model, and any discretization of the underly-
ing functions may be used with the model. Thus, operator learning models are
natural for approximating maps that arise from partial differential equations.

Although machine learning methods are proving successful at modeling scien-
tific phenomena, theory lags behind effective application. Efforts to interpret
the effectiveness of machine learning models include universal approximation
results [10], error bounds in terms of the model size or number of data points
[11], and characterizations of the optimization landscape [12]. Other efforts
have built in interpretable features to models such as additional constraints
in the objective function [9], extraction of latent variables via autoencoder
compression [13], or symmetry-enforcing components [14]. In scientific com-
puting applications, there is opportunity both for existing scientific knowledge
to help understand machine learning models and for the models to inform sci-
entific knowledge. One way the latter occurs is through model discovery, where
training a model can help identify interpretable theory for the underlying phe-
nomena. Another application is surrogate modeling, where a learned model
can perform one aspect of simulation very quickly, thus accelerating large-scale
computations. As these approaches continue to evolve, the interplay between
machine learning and science promises to accelerate discovery while simulta-
neously improving model interpretability and rigorous theoretical foundations.

This thesis makes a contribution towards understanding machine learning for
scientific phenomena described by PDEs. The work exhibited here falls into
two categories. The first category spotlights the application area of surrogate
modeling for constitutive laws in multiscale materials. The second category
investigates operator learning theory more generally and includes error bounds
in terms of discretization, data size, and model size in various settings. The
remainder of this introduction details each of these categories separately before
giving an outline of the thesis.

3

1.1 Learning Homogenized Constitutive Models

Many materials in solid mechanics have dynamics governed by complex in-
teractions across multiple scales. For instance, a material may have rapidly
varying material properties on a small scale, but the dynamics of interest
take place on a much larger scale. Multiscale modeling is a framework that
has emerged to understand this complexity by assuming a hierarchy of scales
with sufficient separation between adjacent pairs of scales. Dynamics may be
computed iteratively by resolving force balance laws on each scale separately
and exchanging the result between scales. Homogenization theory provides
one method to exchange such information. Homogenization assumes a pe-
riodic or statistically regular microstructure and first analyzes the behavior
within a characteristic piece of the material called a representative volume
element. Homogenization then yields a map from the average material strain,
or displacement gradient, to the average stress over a representative volume
element. The map from averaged strain to averaged stress is called the homog-
enized constitutive law. This approach avoids having to resolve physical laws
on the microscale by averaging out the dependence on the fine scale material
properties. The drawback of this approach is that the homogenized map is
often difficult to obtain in practice. In the case that both the material mi-
crostructure and the multiscale constitutive law are known, the homogenized
map may not have a known explicit form and may require numerically solving
a cell problem PDE each time microscale dynamics need to be resolved. In
the case that the material microstructure of the multiscale constitutive law
are not known, the homogenized behavior may only be approximated from
experimental data. Both of these settings are ripe for the application of ma-
chine learning. In the first setting, machine learning can deliver surrogate
models for the homogenized map. By training on data from a number of nu-
merically solved cell problems on the microstructure, a surrogate model can
approximate the homogenized map in a computationally efficient manner and
facilitate efficient macroscale simulations. In the second setting, a surrogate
model can also be obtained from experimental data, and this model can con-
tribute to model discovery for the underlying physics. With these use cases
in mind, this thesis explores novel operator learning architectures for learning
homogenized constitutive laws, establishes rigorous theory underpinning their
use, and shows their effectiveness in a multitude of numerical experiments.

Chapter 2 focuses on learning homogenized constitutive models that have his-

4

tory dependence. In some settings, such as in plastic materials, history depen-
dence is present in the multiscale constitutive laws even before the equations
are homogenized. In order to predict the stress this material will experience,
one needs to know the entire material strain history. Other materials acquire
history dependence through homogenization: Kelvin-Voigt (KV) viscoelastic
materials are an example. The bulk of Chapter 2 is based on [15], published in
Multiscale Modeling & Simulation, Vol. 21, Iss. 2 (2023), that explores learning
homogenized models in this KV viscoelastic setting. This work and the com-
panion paper [16], published in Journal of the Mechanics and Physics of Solids,
Vol. 178 (2023), present a recurrent neural operator (RNO) architecture as a
proposed surrogate model to capture history dependence in a Markovian man-
ner, thereby avoiding the computational expense of accounting for the entire
strain history at every time step in a simulation. The RNO model incorpo-
rates history dependence through a fixed number of internal variables that
are updated via a numerical time stepping method. The linear setting of one-
dimensional KV viscoelasticity allows for a complete analysis. In particular,
it is proven that the RNO architecture can exactly capture the constitutive
law in the case of a piecewise-constant material, and the architecture can ap-
proximate the law for piecewise-continuous materials to an arbitrary degree
of accuracy. Numerical experiments demonstrate the empirical ability to find
such an approximating model in practice. Although the theory only applies
in the setting of one-dimensional KV viscoelasticity, the companion paper [16]
shows that it is effective at modeling more complex materials including elasto-
viscoplastic composites in two dimensions and elasto-viscoplastic polycrystals
in three dimensions. The chapter includes an elasto-viscoplastic experiment in
one dimension to support the use of the model outside the setting where the
theory applies directly. Indeed, the motivation for developing the method is to
deploy it in complex constitutive settings that are difficult to solve numerically
and analyze. In these experiments, the RNO also facilitates model discovery
by giving insight into how many internal variables are needed for a good ap-
proximation. Internal variable theory is well established in computational
mechanics independent from data-driven methods [17]. For each experiment,
the discretization-invariance properties of the model are tested, and it is found
that by giving the RNO inputs consistent with the true equations, the model
is more robust to changes in discretization; thus, this analysis also contributes
to model discovery. Finally, Chapter 2 includes an extension of the method

5

to include material dependence as a model input, which is developed fully in
the paper [18], available as a preprint at arXiv: 2502.05463 [math.NA] . The
architecture for this extension combines the RNO with an architecture devel-
oped in Chapter 5 called Fourier Neural Mappings (FNMs). Similar theory
justifies the use of this extended architecture, and a numerical example from
this extension is included in Chapter 2 to show that the material-dependent
model is accurate in practice. Altogether, Chapter 2 synthesizes knowledge
from three papers to present a thorough investigation of operator learning for
constitutive models with history dependence.

Originally published in SIAM Journal on Numerical Analysis, Vol. 62, Iss. 4
(2024), Chapter 3 addresses learning homogenized constitutive laws for ellip-
tic operators in the presence of discontinuous materials. This research was
prompted in part by an attempt to extend the theory developed in Chap-
ter 2 for one-dimensional viscoelasticity to higher dimensions. The analysis
immediately runs into a challenge: the one-dimensional theory relies on an
intermediate approximation of a piecewise-constant material, and the two-
dimensional analog of piecewise-constant materials are checkerboards which
contain discontinuities and corner interfaces. In addition to the theoretical
motivation to address this problem, practical motivation is present as well.
Discontinuous microstructures are a common application setting in constitu-
tive modeling since material microstructures often take the form of grains that
are modeled by Voronoi tessellations. These microstructure complexities affect
the smoothness of the underlying equations, and many applications of scien-
tific machine learning confine themselves to smooth coefficients and materials
to avoid addressing this issue. In particular, universal approximation, often
the starting point for theory, is threatened by a lack of regularity. Universal
approximation results for operator learning require the map of interest to be
continuous between separable input and output spaces. In the case of the
cell problem for linear elasticity with discontinuous materials, only continu-
ity results with an input space of L∞ are obvious, and L∞ is not separable.
Nevertheless, Chapter 3 proves two such continuity results: one continuity
result with an input space of L2 and one Lipschitz continuity result with an
input space of Lp for some p such that 2 < p < ∞. These results are used
to establish universal approximation in this setting. Furthermore, numerous
experiments are done to compare learning with discontinuous microstructures
to smooth microstructures, and it is found that, although the error for dis-

https://arxiv.org/abs/2502.05463

6

continuous microstructures is an order of magnitude higher in practice that
for smooth microstructures, the operator learning model is still an accurate
approximator. In summary, Chapter 3 addresses the challenge of learning in
the presence of discontinuities for the setting of a linear elliptic PDE.

1.2 Error Bounds in Operator Learning

The second half of the thesis moves away from constitutive modeling to answer
broader theoretical questions that go beyond specific applications. Chapters
4, 5, and 6 each address different sources of error in operator learning and are
introduced separately in this subsection.

Available as a preprint at arXiv: 2405.02221 [math.NA] , Chapter 4 analyzes
discretization error of a common operator learning architecture, namely, the
Fourier Neural Operator (FNO). The FNO maps between function spaces by
combining traditional neural network components of affine transformations
and nonlinear activations with a kernel integral operator parameterized in the
Fourier domain that allows for nonlocality in the model. The FNO as defined
[19] includes an inner product taken over a continuum that is used to compute
the Fourier transform. In both the definition and in theory developed for
the model [20], it is assumed that this inner product is computed exactly.
However, the FNO used in practice must approximate this inner product since
functions on a continuum are discretized in numerical computations. Thus, the
implemented FNO is a different operator than the one defined and analyzed
in prior work. The aliasing error that originates from approximations of the
Fourier transform then propagates through the nonlinear layers of the model.
This work bounds this error in terms of the sizeN of the discretization used and
finds that despite the nonlinear error propagation, the output error behaves
like N−s where s governs the Sobolev regularity of the input. This error
behavior is also observed experimentally in both random and trained models.
Some implications of this result are that smooth activations like GeLU should
be used in the FNO instead of ReLU, and if positional information is encoded
in the input, as is standard in FNO usage, the positional encoding should be
periodic to maintain regularity. Knowledge of this error inspires an adaptive
subsampling algorithm that refines the data discretization during training to
speed up computation time. This algorithm is also explored in the chapter.
The discretization error that arises in FNO implementation is bounded and
analyzed, filling a gap in existing theory for the FNO.

https://arxiv.org/abs/2405.02221

7

Chapter 5 contains portions of work originally published in Foundations of
Data Science, Vol. 7, Iss. 1, (2025) that propose and analyze an operator
learning architecture called Fourier Neural Mappings (FNMs) that can ac-
commodate both finite and infinite dimensional inputs and outputs. In many
cases the map of interest involves a finite-dimensional parameter input or
observable output, but the underlying map is defined implicitly through an
infinite-dimensional operator like a PDE. For example, the map from a ma-
terial microstructure to the effective coefficient in linear elasticity is a map
from a function input to a finite vector output, but the effective coefficient is
obtained via the solution to a cell problem PDE. Thus, the underlying map
involves an infinite-dimensional operator, but the object of interest is the finite-
dimensional effective coefficient. The FNM modifies the FNO by appending
linear functional and linear decoder layers to map functions to finite vectors
and finite vectors to functions, respectively. The architecture preserves desir-
able properties of the FNO such as universal approximation and discretization
invariance. In the setting where both a full-field solution, such as the cell
problem solution function, and the finite vector observable, such as the effec-
tive coefficient, are obtainable, a natural question is whether it is more data
efficient to learn the observable directly or to learn the full-field solution and
then compute the observable using known equations. Although the original
publication [21] includes an analysis of this question from a statistical learning
perspective in a linear Bayesian setting, in this thesis the presentation is con-
fined to numerical exploration of this question in nonlinear settings. The accu-
racy of the learned approximation versus the number of training data is shown
for three nonlinear application problems of advection-diffusion, aerodynamics,
and constitutive modeling. In these experiments, the FNM architecture out-
performs finite dimensional neural networks that do not take advantage of the
continuum perspective. The model error versus the number of training data
is explored and resulting error rates are computed.

Available as a preprint at arXiv:2503.18219 [cs.LG] , Chapter 6 examines sam-
pling complexity of ReLU neural networks and neural operators. Error of a
neural network model may be decomposed into an approximation error com-
ponent and a generalization error component. The approximation error de-
scribes the error of the best possible parameterization of a fixed architec-
ture when compared to the true map. The approximation error is closely
related to model expressivity and parametric complexity. The generalization

https://arxiv.org/abs/2503.18219

8

error quantifies the difference between this best possible error and the er-
ror achieved in practice by optimizing some objective function over a finite
number of data samples. Thus, the generalization error is closely related
to the sampling complexity of the model. The theory-to-practice gap refers
to the fact that despite having “good” parametric convergence rates for the
approximation error, neural networks have “bad” sampling convergence rates
for the generalization error. In order words, neural network models may be
highly expressive for their size, but their generalization error converges slowly
with the number of data samples, independent of the reconstruction algo-
rithm used. To make this more precise, let Uα([0, 1]d) be the set of func-
tions on [0, 1]d which, for any n ∈ N, can be approximated by a neural
network ψn with at most n nonzero weights and with approximation error
∥f − ψn∥L∞ ≤ n−α. In this expression, α is the parametric convergence rate.
Reconstruction algorithms attempt to attain a neural network approximation
to f ∈ Uα([0, 1]d) from point samples f(x1), . . . , f(xN). The optimal sampling
convergence rate β∗ is the largest β such that there exists a reconstruction al-
gorithm A : f 7→ Q(f(x1), . . . , f(xN)) for some mapping Q : RN → Lp([0, 1]d)

with a guarantee of the form supf∈Uα ∥f −A(f)∥Lp ≤ CN−β. The parametric
convergence rate α describes the rate in terms of the number of model param-
eters n, but the sampling convergence rate β∗ describes the rate in terms of
the number of samples N . In several classical reconstruction methods, such
as polynomial reconstruction and some kernel methods, β∗ = α. Prior work
proved in that for finite-dimensional neural networks, β∗ remains uniformly
bounded even in the limit α → ∞ [22]. This discrepancy between α and β∗ is
the theory-to-practice gap. Chapter 6 first improves the bound on β∗ obtained
in the prior work to show that in an Lp setting, β∗ ≤ 1

p
+ 1

d
. As a second con-

tribution, the chapter extends the theory-to-practice gap result for operator
learning, showing that in the infinite-dimensional setting, the optimal conver-
gence rate in a Bochner Lp norm is controlled by β∗ ≤ 1

p
, for p ∈ [1,∞). These

results are shown to apply both to kernel integral neural operators, including
the FNO, and to Deep Operator Networks (DeepONets) [23]. In light of the
empirical ability of modern neural network optimization to find good param-
eterizations with limited data, these hardness results are somewhat surprising
and invite further investigation.

9

1.3 FNO Definition

The FNO is referred to by several different chapters, and its definition is stated
here to avoid repetition. This definition is referred to in Chapters 2, 3, 4, and 6.
Note that Chapter 5 retains its own definition with slightly adjusted notation
as a substantial contribution of that chapter is modifying the architecture in
detail.

Definition 1.3.1 (Fourier Neural Operator). Let A and U be two Banach
spaces of real vector-valued functions over domain Td. Assume input functions
a ∈ A are Rda-valued while the output functions u ∈ U are Rdu-valued. The
neural operator architecture Ψθ : A → U is

Ψθ = Q ◦ LT−1 ◦ · · · ◦ L0 ◦ P ,
vt+1 = Ltvt = σt(Wtvt +Ktvt + bt), t = 0, 1, . . . , T − 1,

with v0 = P(a). Here, P : Rda → Rd0 and Q : RdT → Rdu are shallow neural
networks with globally Lipschitz and C∞ activations σp and σq, and the σt
are fixed nonlinear activation functions acting locally as maps Rdt+1 → Rdt+1

in each layer. P , Q, and the σt are viewed as operators acting pointwise, or
pointwise almost everywhere, over the domain Td), Wt ∈ Rdt+1×dt are matrices,
Kt : {vt : Td → Rdt} → {vt+1 : Td → Rdt+1} are integral kernel operators and
bt : Td → Rdt+1 are constant bias functions. The activation functions σt are
restricted to the set of globally Lipschitz, non-polynomial, C∞ functions. The
integral kernel operators Kt are parameterized in the Fourier domain in the
following manner. Let i =

√
−1 denote the imaginary unit. Then, for each t,

the kernel operator Kt is parameterized by

(Ktvt)(x) =
∑

k∈[[K]]d

(
dt∑
j=1

(P
(k)
t)j⟨e2πi⟨k,·⟩, (vt)j⟩L2(Td;C)

)
e2πi⟨k,x⟩ ∈ Rdt+1 .

(1.3.1)
Here, each P (k)

t ∈ Cdt+1×dt constitutes the learnable parameters of the integral
operator, with (Pt)

(k)
j the jth column, and K ∈ Z+ is a mode truncation

parameter. Kt is well-defined for vt ∈ L2(Td). We denote by θ the collection
of parameters that specify Ψθ, which include the weights Wt, biases bt, kernel
weights Pt, and the parameters describing P and Q. ♢

1.4 Thesis Outline

The remainder of the thesis is structured as follows. Chapter 2 introduces the
RNO as a method to model history-dependence homogenized constitutive laws

10

and provides underpinning theory for the model. Chapter 3 addresses learning
the homogenized cell problem solution in the technical setting of discontinuous
materials with corner interfaces in two spatial dimensions. Chapter 4 departs
from constitutive modeling and bounds the discretization error produced by
implementations of the FNO. Chapter 5 proposes a modification of the FNO
that can account for finite-dimensional inputs and outputs while taking ad-
vantage of the operator learning perspective and investigates the error as a
function of the number of data using this model. Chapter 6 establishes hard-
ness results in the form of a theory-to-practice gap for operator learning that
points out a fundamental limit in the ability of neural operators to converge
quickly with respect to the number of data samples.

As each chapter is adapted from different publications geared towards different
audiences, the chapters are self-contained and establish separate notation.

11

C h a p t e r 2

LEARNING HOMOGENIZED CONSTITUTIVE MODELS
WITH MEMORY

This chapter synthesizes several papers on the topic of data-driven learning of
multiscale constitutive laws in solid mechanics:

[1] Kaushik Bhattacharya, Burigede Liu, Andrew M. Stuart, and Margaret
Trautner. “Learning Markovian homogenized models in viscoelasticity”.
In: Multiscale Modeling & Simulation 21.2 (2023), pp. 641–679. doi:
10.1137/22M149920.

[2] Burigede Liu, Eric Ocegueda, Margaret Trautner, Andrew M. Stuart,
and Kaushik Bhattacharya. “Learning macroscopic internal variables
and history dependence from microscopic models”. In: Journal of the
Mechanics and Physics of Solids 178 (2023), p. 105329. doi: 10.1016/
j.jmps.2023.105329.

[3] Kaushik Bhattacharya, Lianghao Cao, George Stepaniants, Andrew
Stuart, and Margaret Trautner. Learning Memory and Material De-
pendent Constitutive Laws. 2025. arXiv: 2502.05463 [math.NA].

Fully resolving dynamics of materials with rapidly varying features involves
expensive fine-scale computations which need to be conducted on macroscopic
scales. The theory of homogenization provides an approach to derive effec-
tive macroscopic equations that eliminate the small scales by exploiting scale
separation. An accurate homogenized model avoids the computationally ex-
pensive task of numerically solving the underlying balance laws at a fine scale,
thereby rendering a numerical solution of the balance laws more computation-
ally tractable.

In complex settings, homogenization only defines the constitutive model im-
plicitly, and machine learning can be used to learn the constitutive model
explicitly from localized fine-scale simulations. This chapter presents work
on this topic, combining results from three different papers, and a fourth pa-
per under the same umbrella forms Chapter 3. The first paper addressed by
this chapter [15] covers the case of one-dimensional viscoelasticity, where the
linearity of the model allows for a complete analysis. This paper forms the

https://doi.org/10.1137/22M149920
https://doi.org/10.1016/j.jmps.2023.105329
https://doi.org/10.1016/j.jmps.2023.105329
https://arxiv.org/abs/2502.05463

12

bulk of the chapter, although the exposition is altered significantly. In this
work, it is established that a homogenized constitutive model may be approx-
imated by a recurrent neural operator (RNO) architecture. The memory is
encapsulated in the evolution of an appropriate finite set of hidden variables,
which are discovered through the learning process and dependent on the his-
tory of the strain. The architecture is developed in a discretization-invariant
manner, where the same model may be used on strain histories with differing
time discretizations. Theory is developed for this model, and simulations for
one-dimensional viscoelasticity and one-dimensional elasto-viscoplasticity are
presented. A companion paper to [15], namely, [16], tests the method empir-
ically and shows that it is an accurate and computationally efficient model
for more complex constitutive laws as well, including two-dimensional elasto-
viscoplastic laminates and three-dimensional elasto-viscoplastic polycrystals.
Both these works seek to approximate the map from homogenized strain to
homogenized stress for a fixed material using the RNO architecture, and the
theory developed is confined to one dimension. In the final paper addressed
by this chapter, [18], we unite knowledge from prior work to build data driven
models of multiscale materials that incorporate both memory and material
dependence. This paper combines the RNO architecture presented in [15] and
[16] with the Fourier Neural Mapping (FNM) architecture developed and an-
alyzed in Chapter 5 to allow the neural networks in the RNO to take both
function-valued and finite vector-valued inputs. In this chapter, we include
the merged RNO-FNM architecture used in [18] to add material dependence
as well as a numerical experiment demonstrating the ability of the model ar-
chitecture to learn both memory and material dependence in one-dimensional
viscoelasticity. Altogether, this chapter gives a thorough narrative of our work
on data-driven operator learning for multiscale constitutive models.

2.1 Introduction

The dynamics of materials are governed by complex interactions between dif-
ferent time and length scales. Multiscale modeling addresses this challenge
by assuming a hierarchy of scales with sufficient scale separation, identifying
behavior within each scale, and resolving the dynamics by pairwise interac-
tion between adjacent scales. One method of this type is homogenization,
which averages the smaller scale to achieve the relevant behavior on the larger
scale. This chapter leverages homogenization to model multiscale materials in

13

continuum mechanics. Here, a two scale separation is of interest, where the
physical constitutive laws are known only on the smaller scale, but the goal
is to model macroscale behavior. Homogenization theory assumes a periodic
microstructure so that the nature of the averaged dynamics found via homog-
enization apply to the entire macroscale material. By averaging the smaller
scales in this way, macroscale dynamics may be computed more efficiently.

As an additional challenge, many materials in continuum mechanics lead to
constitutive laws which are history dependent. This property may be inherent
to physics beneath the continuum scale (for example in plasticity [24, 25]) or
may arise from homogenization of rapidly varying continua [26, 27] (for ex-
ample in the Kelvin-Voigt (KV) model of viscoelasticity [28]). In the latter,
case, history dependence is not present in the underlying microscale physics
but emerges as a consequence of homogenization. History dependence intro-
duces computational barriers because the state of the material at every past
time step may impact the current dynamics, growing in complexity with time.
Thus, Markovian homogenized models are desirable for both interpretability
and computability. In some cases theory may be used to justify Markovian
models which capture this history dependence, but in many cases data plays a
central role in finding such models. In this chapter, we assume a data-driven
Markovian model for history dependence. We justify this assumption with the-
oretical underpinnings in the case of one-dimensional KV viscoelasticity and
apply the method to more complex materials to show its effectiveness outside
the setting where theory applies directly.

The paper [29] preceding the work of this chapter adopted a data-driven learn-
ing approach to uncovering history-dependent homogenized models arising in
crystal plasticity. However, the resulting constitutive model is not causal and
instead learns causality approximately from computations performed at the
level of the cell problem. Instead, we introduce a different approach, learn-
ing causal constitutive models with a discretization-invariant model, which we
call the RNO. In order to give rigorous underpinnings to our approach, we
first study the methodology in the setting of linear one-dimensional viscoelas-
ticity. Here we can use theoretical understanding to justify and validate the
methodology; we show that machine-learned homogenized models can accu-
rately approximate the dynamics of multiscale models at much cheaper eval-
uation cost. We obtain insight into desirable choice of training data to learn

14

the homogenized constitutive model, and we study the effect of the multiple
local minimizers which appear in the underlying optimization problem. Fur-
thermore, the rigorous underpinnings enable us to gain insight into how to
test model hypotheses. We demonstrate that hypothesizing the correct model
leads to robustness with respect to changes in time discretization in the causal
model: the model can be trained at one time step and used at others, and
the model can be trained with one time-integration method and used with
others. In contrast, hypothesizing an incorrect model leads to intolerable sen-
sitivity with respect to the time step. Thus training at one time step and
testing at other levels of resolution provides a method for testing model form
hypotheses. For viscoelasticity, we work primarily with the one-dimensional
KV model for which the constitutive model depends only on strain and strain
rate. We also touch on the standard linear solid (SLS) model for which the
constitutive relation depends only on the strain and the strain history and
perform numerical experiments in a one-dimensional elasto-viscoplastic mate-
rial; in so doing we show that the ideas presented extend beyond the specifics
of the one-dimensional KV setting. Although not contained in this chap-
ter, the experiments of [16] demonstrate that the methodology is effective in
modeling a variety of more complex materials, including a two-dimensional
elasto-viscoplastic laminated composite with and without exponential strain
hardening and two-dimensional and three-dimensional elasto-viscoplastic poly-
crystals. There, the method is also used to accelerate macroscale experiments
in three dimensions with the elastic-viscoplastic polycrystalline material.

In addition to modeling memory effectively, the RNO architecture may be
extended to include dependence on the material itself; we refer to this ex-
tended architecture as the Recurrent Neural Operator-Fourier Neural Mapping
(RNO-FNM), where the FNM is a variant of the Fourier Neural Operator and
is developed in Chapter 5. This modification of the architecture allows the
neural networks that model the time derivatives of the state to take both
function-valued and finite vector-valued inputs. We present this architecture
and a material-dependent one-dimensional viscoelasticity experiment; addi-
tional material-dependent experiments are performed in [18].

We first describe the overarching mathematical framework adopted and present
a literature review. This is followed by a statement of our contributions and
an overview of the chapter. Finally, we summarize notation used throughout

15

the remainder of the chapter.

Literature Review

The continuum assumption for physical materials approximates the inherently
particulate nature of matter by a continuous medium and thus allows the use
of partial differential equations to describe response dynamics. We refer the
reader to [30, 31, 32] for a general background. In continuum mechanics,
the governing equations are derived by combining universal balance laws of
physics (balance of mass, momenta, and energy) with a constitutive relation
that describes the properties of the material being studied. This is typically
specified as the relation between a dynamic quantity like stress or energy and
kinematic quantities like strain and its history. The constitutive relation of
many materials are history dependent, i.e., the state of stress at an instant
depends on the history of deformation. It is common in continuum mechanics
to incorporate this history dependence through the introduction of internal
variables, which are referred to as hidden variables in computer science. We
refer the reader to [17] for a systematic formulation of internal variable theories.

Of particular interest in this chapter are viscoelastic materials, as we develop
theory for our method in this setting. We refer the reader to [33, 34] for a
general background. In viscoelastic materials, the state of stress at any instant
depends on the strain and its history. There are various models where the
stress depends only on strain and strain rate (Kelvin-Voigt), internal variables
(standard linear solids), convolution kernels, and fractional time derivatives.

While constitutive laws were traditionally determined empirically, more re-
cently there has been a systematic attempt to understand them from more
fundamental solids, and this has given rise to a rich activity in multiscale mod-
eling of materials [35, 36, 37]. Materials are heterogeneous on various length
(and time) scales, and it is common to use different theories to describe the
behavior at different scales [38]. The goal of multiscale modeling of materials
is to use this hierarchy of scales to understand the overall constitutive behavior
at the scale of applications. The hierarchy of scales includes a number of con-
tinuum scales. For example, a composite material is made of various distinct
materials arranged at a scale that is small compared to the scale of application
but large enough compared to an atomistic/discrete scale, so the behavior is
adequately described by continuum mechanics. Or, for example, a polycrystal

16

is made of a large collection of grains (regions of identical anisotropic mate-
rial but with differing orientation) that are small compared to the scale of
application but large enough for a continuum theory. Homogenization theory
leverages the assumption of the separation of scales to average out the effects
of fine-scale material variations. To estimate macroscopic response of hetero-
geneous materials, asymptotic expansion of the displacement field yields a set
of boundary value problems whose solution produces an approximation that
does not depend on the microscale [26, 39]. The fundamentals of asymptotic
homogenization theory are well-established [27, 40, 41]. Milton [42] provides
a comprehensive survey of the effective or homogenized properties.

Homogenization in the context of viscoelasticity was initiated by Sanchez-
Palencia ([39] Chapter 6), who pointed out that the homogenization of a
Kelvin-Voigt model leads to a model with fading memory. Further discussion
of homogenization theory in (thermo-)viscoelasticity can be found in Franc-
fort and Suquet [28], and a detailed discussion of the overall behavior including
memory in Brenner and Suquet [43]. A broader discussion of homogenization
and memory effects can be found in Tartar [44]. It is now understood that
homogenization of various constitutive models gives rise to memory.

As noted above, according to homogenization theory, the macroscopic behavior
depends on the solution of a boundary value problem at the microscale. Eval-
uating the macroscopic behavior by the solution of a boundary value problem
computationally leads to what has been called computational micromechan-
ics [45]. These often involve periodic boundary conditions, and fast Fourier
transform-based methods are widely used since Moulinec and Suquet [46] (see
[47, 48] for recent summaries). While these enable us to compute the macro-
scopic response for a particular deformation history, one needs to repeat the
calculation for all possible deformation histories.

Therefore, recent work in the mechanics literature addresses the issue of learn-
ing homogenized constitutive models from computational data [49, 50, 29, 16]
or experimental data [51]. This learning problem requires determination of
maps that take as inputs functions describing microstructural properties and
leads in to the topic of operator learning. Operator learning is a branch of
machine learning designed to approximate maps between infinite dimensional
function spaces [52]. In the case of constitutive models, the data come in the
form of pairs of input functions: the time trajectories of average strain and the

17

time trajectories of average stress. Causal architectures have been developed
for finite-dimensional maps, namely, recurrent neural networks (RNNs) with
LSTM units and GRU networks, both of which have been used for constitu-
tive models [53, 49]. Here we present a causal neural operator architecture,
the RNO. The RNO architecture is modeled after internal variable theories of
history-dependent materials [17, 30]. These theories maintain that the effect
of history may be summarized by a fixed number of state variables that are
updated at each point in time. Accordingly, the RNO assumes a Markovian
model by maintaining a fixed number of hidden variables that also change over
time. Furthermore, unlike the finite-dimensional architectures, the RNO is
time-discretization invariant; when the correct model hypothesis is assumed,
the RNO maintains accuracy when the input time discretization is altered.
This idea is explored in numerical experiments in this work.

Use of the data-driven RNO model has two aims. First, we may gain insight
into the internal variables and facilitate model discovery. Indeed, we show
empirically that hypothesizing the correct model form in the RNO inputs leads
to greater time-discretization invariance. Second, the learned model may be
used to accelerate computations of macroscale behavior as a surrogate model.
Recalling the separation of scales, the RNO serves to resolve the microscale
dynamics efficiently so that the resulting averaged dynamics may be used
in computations on the macroscale. In this chapter we use an RNO as a
surrogate model for the constitutive relation on the microscale. Our RNO
architecture takes the form of two feed-forward neural networks: one which
computes the time derivative of hidden variables, and one which outputs the
stress pointwise in space and time. In this manner, the history dependence is
contained entirely in the hidden variables rather than directly in the neural
network. This leads to an interpretable model. The RNO can then be used to
evaluate the forward dynamic response on the microscale cells, whose results
are combined with traditional numerical approximation methods to yield the
macroscale response. Furthermore, the RNO that we train at a particular time
discretization is also accurate when used at other time discretizations if the
correct model form is proposed.

Without additional modification, the RNO may only be used on a partic-
ular material microstructure, and data-driven constitutive models must be
retrained for new microstructures. In an extension paper [18], we develop a

18

method to consider material microstructure as a model input. Some alternate
architectures have been proposed that take in summary statistics of the ma-
terial to sidestep this issue [54, 49, 55]. Our extended method recognizes that
the material microstructure takes the form of a function input on a domain.
This approach has been taken in [56] using the Fourier Neural Operator (FNO)
architecture on an elastic material to map the material microstructure to the
solution of the cell problem PDE. However, in the case of elasticity, there is no
history dependence. Here, we encode the material as a function as input to the
neural networks in our RNO architecture, thereby addressing both material
and history dependence simultaneously. This extension is summarized in this
chapter and a numerical experiment with material dependence is presented as
well.

Our Contributions and Chapter Overview

Our contributions are as follows:

1. We propose a data-driven Markovian model to learn homogenized con-
stitutive laws in viscoelasticity and plasticity in the form of the RNO.
We provide theoretical underpinnings for this model in the case of one-
dimensional viscoelasticity.

2. We prove that in the one-dimensional Kelvin-Voigt (KV) setting, any
solution of the multiscale problem can be approximated by the solu-
tion of a homogenized problem with Markovian structure and that the
constitutive model for this Markovian homogenized system can be ap-
proximated by the RNO learned from data generated by solving the
appropriate cell problem.

3. We provide simulations which numerically demonstrate the accuracy of
the learned Markovian model in several application materials, including
elasto-viscoplasticity.

4. We extend the methodology to the case of material dependence as well,
introducing the RNO-FNM architecture which models history depen-
dence and material dependence simultaneously.

In Section 2.2, we formulate the KV viscoelastic problem and its homogenized
solution. In Section 2.3, we present our main theoretical results, addressing

19

contributions 1 and 2; these are in the setting of one-dimensional KV viscoelas-
ticity. We prove that the solution of the multiscale problem can be approxi-
mated by solution of a homogenized Markovian memory-dependent model that
does not depend on small scales, and we prove that an RNO can approximate
the constitutive law for this homogenized problem. Section 2.4 summarizes the
extension to material dependence, addressing contribution 3. Finally, Sections
2.5 and 2.6 contains numerical experiments which make contribution 4.

Notation

Let D ⊂ Rd be a bounded open set and T = (0, T) to be the bounded time
domain of interest. We denote by Td the d-dimensional torus [0, 1]d. Let ⟨·, ·⟩
and ∥ · ∥ denote the standard inner product and induced norm operations on
the Hilbert space L2(D;R). Additionally, let ∥·∥∞ denote the L∞(D;R) norm.
The space W k,p(T ;Rd) denotes the Sobolev space of functions defined on T
with weak derivatives up to order k which are all in Lp(T ;Rd), 1 ≤ p ≤ ∞.

It is convenient to define the ξ−dependent quadratic form

qξ(u,w) :=

ˆ
D
ξ(x)

∂u(x)

∂x

∂w(x)

∂x
dx (2.1.1)

for arbitrary ξ ∈ L∞(D; (0,∞)
)
; furthermore we define

ξ+ := ess sup
x∈D

ξ(x) <∞ (2.1.2)

and
ξ− := ess inf

x∈D
ξ(x) ≥ 0. (2.1.3)

In this chapter we always work with ξ such that ξ− > 0. Under these as-
sumptions qξ(·, ·) defines an inner product, and we can define the following
norm

∥u∥2H1
0 ,ξ

:= qξ(u, u)

from it; note also that we may define a norm on H1
0 (D;R) by

∥u∥2H1
0
:= q1(u, u),

where 1(·) is the function in L∞(D; (0,∞)
)

taking value 1 in D a.e. . The
resulting norms are all equivalent on the space H1

0 (D;R); this is a consequence
of the following lemma:

20

Lemma 2.1.1. For any ξ1, ξ2 ∈ L∞(D; (0,∞)
)

satisfying properties (2.1.2)
and (2.1.3), the norms ∥u∥H1

0 ,ξ1
and ∥u∥H1

0 ,ξ2
are equivalent in the sense that

ξ−2
ξ+1

∥u∥2H1
0 ,ξ1

≤ ∥u∥2H1
0 ,ξ2

≤ ξ+2
ξ−1

∥u∥2H1
0 ,ξ1

.

♢

Proof. For i = 1, 2 :

ξ−i

ˆ 1

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx ≤

ˆ 1

0

ξi(x)

∣∣∣∣∂u∂x
∣∣∣∣2 dx ≤ ξ+i

ˆ 1

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx.

The result follows.

As a consequence of the preceding lemma, we may use qξ(u,w) as the inner
product on the space H1

0 (D;R) for any ξ satisfying (2.1.2) and (2.1.3). We
also define

Z = L∞(T ;L2(D;Rm)), Z2 = L2(T ;L2(D;Rm))

with norms

∥r∥Z = ess sup
t∈T

(∥r(·, t)∥), ∥r∥Z2 =
(ˆ T

0

∥r(·, t)∥2 dt
) 1

2
.

We note that Z is continuously embedded into Z2.

For any time-dependent function g we denote by {g(t)}t∈T the set that includes
pointwise evaluation of g(t) and its time-derivative for all t ∈ T . When it is
clear in the appropriate context, we write g as shorthand for {g(t)}t∈T . We
use ġ to indicate a time derivative of the trajectory g. In particular ϵ̇ is a time
derivative of ϵ. Note however that, in the context of elasto-viscoplasticity, we
use the commonly adopted convention that ϵ̇p0 denotes the rate constant; in
particular it is not the derivative of a time-dependent function.

We denote the variation of a function u ∈ L1
loc(D) by

V (u,D) = sup
{ d∑

i=1

ˆ
D

∂Φi

∂xi
u dx : Φ ∈ C∞

0 (D;Rd), ∥Φ∥L∞(D;Rd) ≤ 1
}

and the set of functions of bounded variation on Td as

BV = {u ∈ L1(Td) : V (u,Td) <∞}.

21

For further information on BV, we refer to [57].

Denote by MB
fmin,fmax

the set of functions f ∈ BV(D) satisfying

|f |BV ≤ B, ess sup
y∈D

f(y) ≤ fmax, ess inf
y∈D

f(y) ≥ fmin (2.1.4)

for some 0 < fmin ≤ fmax <∞ and B > 0.

Setting

Consider the problem of material response on an arbitrary spatial domain
D ⊂ Rd where the material properties vary rapidly within the domain. We
denote by uε ∈ Rd the displacement, where ε : 0 < ε ≪ 1 denotes the scale
of the material fluctuations. We consider multiscale continuum models which
satisfy dynamical equations of the form

ρ∂2t uε(x, t) = ∇x · σε(x, t) + f(x, t), x ∈ D, t ∈ T , (2.1.5a)

σε(x, t) = Ψ†
ε({∇xuε(x, s)}s∈T ;M,x)(t), x ∈ D, t ∈ T , (2.1.5b)

uε(x, 0) = ∂tuε(x, 0) = 0, x ∈ D, (2.1.5c)

uε(x, t) = 0, x ∈ ∂D, t ∈ T . (2.1.5d)

From these equations we seek the displacement uε : D × T 7→ Rd. Equation
(2.1.5a) is the balance equation with inertia term ρ∂2t uε for known parameter
ρ ∈ R+, resultant stress term ∇ · (σε) where σε ∈ Rd×d is the internal stress
tensor, and known external forcing f ∈ Rd; equations (2.1.5c,2.1.5d) specify
the initial and boundary data for the displacement. M represents the depen-
dence on the parameters describing the material. Equation (2.1.5b) is the
constitutive law relating properties of the the strain ∇xuε to the stress σε via
map Ψ†

ε. The dependence on {∇xuε(x, s)}s∈T indicates that Ψ†
ε may depend

on the entire strain history up to time t as well as the time derivatives of the
strain up to that point. Additionally Ψ†

ε depends on x to allow for material
properties which depend on the rapidly varying x

ε
; it is also possible to al-

low for material properties which exhibit additional dependence on the slowly
varying x, but this case is beyond the scope of our work. In this chapter we
will consider this model with inertia (ρ > 0) and without inertia (ρ ≡ 0). The
form of the multiscale constitutive model in 2.1.5 includes a variety of plastic,
viscoelastic, and viscoplastic materials.

The goal of homogenization is to find constitutive models which eliminate the
small-scale dependence on ε and obtain a homogenized constitutive law Ψ0

22

and homogenized displacement u0 that satisfy equations

ρ∂2t u0(x, t) = ∇x · σ0(x, t) + f(x, t), x ∈ D, t ∈ T , (2.1.6a)

σ0(x, t) = Ψ†
0({∇xu0(x, s)}s∈T ;M)(t), x ∈ D, t ∈ T , (2.1.6b)

u0(x, 0) = ∂tu0(x, 0) = 0, x ∈ D, (2.1.6c)

u0(x, t) = 0, x ∈ ∂D, t ∈ T . (2.1.6d)

Throughout this work, we denote by ϵ the homogenized strain that appears
in equations (2.1.6); ϵ(x, t) := ∇xu0(x, t) for all x ∈ D and t ∈ T . The key
property of this homogenized model is that parameter ε no longer appears.
Furthermore, since we assumed that the multiscale model material properties
depend only on the rapidly varying scale x/ε and not on x, we have that
Ψ†

0 does not depend explicitly on x; it does, however, still have spatial de-
pendence through the local values of strain, strain rate, and strain history.
Furthermore, for appropriate Ψ†

0, for small enough ε, this model has the prop-
erty that (u0, σ0) ≈ (uε, σε). If the homogenized model is identified correctly,
then dynamics under the multiscale model Ψ†

ε, i.e. uε, can be approximated by
dynamics under the homogenized model Ψ†

0, i.e. u0. This potentially facilitates
cheaper computations since length-scales of size ε need not be resolved. Often,
an explicit expression for Ψ†

0 is unattainable, and Ψ†
0 is instead approximated

numerically. In this chapter we first examine a case where we can express
Ψ†

0 exactly, namely, the case of one-dimensional KV viscoelasticity where the
underlying material is piecewise constant. In this case, we may do a complete
analysis.

We observe, however, that for KV viscoelasticity, the homogenized model con-
tains non-Markovian history dependence (memory) even though the multiscale
model does not. Markovian history dependence is desirable for two reasons:
first, Markovian models encode conceptual understanding, representing the
history dependence in a compact, interpretable form; second, Markovian ex-
pression reduces computational cost from O(|T |2) in the general memory case
to O(|T |) in the Markovian case. In the general media setting, for a multitude
of models in viscoelasticity, viscoplasticity, and plasticity, the homogenized
model will depend on the memory in a non-Markovian manner. However, it is
interesting to determine situations in which accurate Markovian approxima-
tions can be found. In fact, the one-dimensional piecewise-constant KV case
delivers a Markovian form for the history dependence. The analysis of this

23

case supports the use of a data-driven Markovian model for approximating Ψ†
0

and forms the basis of the theory developed in this chapter.

We now define the RNO model used to create the Markovian approximation
to Ψ†

0.

Definition 2.1.2 (RNO Architecture). Define ΨRNO : C1(T ;Rd×d) → C(T ;Rd×d),
{ϵ(t)}t∈T 7→ {σ(t)}t∈T through

σ(t) = F(ϵ(t), ϵ̇(t), ξ(t)), t ∈ T , (2.1.7a)

ξ̇(t) = G(ϵ(t), ξ(t)), t ∈ T , (2.1.7b)

ξ(0) = 0, (2.1.7c)

where F and G are feed-forward neural networks, and ξ ∈ RL for some L ∈
Z+. ♢

In the above definition, ξ is a vector of hidden variables, closely related to
the internal variables used in the mechanics literature. The hidden variables
vector ξ carries the history dependence on ϵ through its Markovian evolution.
In dimension d > 1 there are further symmetries that should be built into
the model, but as the concrete analysis in this chapter is in dimension d = 1

we do not detail these symmetries here [58]. Since the RNO only applies
to a single material microstructure, we have dropped the explicit parametric
dependence on the materialM , as any dependence on the material itself will be
encoded in the trainable parameters of F and G. Dependence on the material
is reintroduced in Section 2.4.

In general such a Markovian model can only approximate the true model, and
the nature of the physics leading to a good approximation will depend on the
specific continuum mechanics problem. To determine F and G in practice
we parameterize them as neural networks, which enables us to use general
purpose optimization software to determine suitable values of the parameters.
Within computational implementations of the learned homogenized models,
the neural networks F and G act pointwise in time to generate the stress and
time derivatives of the hidden variables at each time step. In doing so we
identify an operator class Ψ0(· ; θ) and parameter space Θ such that, for some
judiciously chosen θ∗ ∈ Θ, Ψ0(· ; θ∗) ≈ Ψ†

0.

In this chapter we concentrate on justifying a Markovian homogenized ap-
proximation in the context of one-dimensional KV viscoelasticity. Our justi-

24

fication uses theory that is specific to one-dimensional linear viscoelasticity,
and we demonstrate that the approach also works for the general SLS, which
includes the KV model as a particular limit. We also include results from
one-dimensional elasto-viscoplasticity. Furthermore, the paper [16] contains
evidence that the ideas we develop apply beyond one dimension and into non-
linear plasticity in higher spatial dimensions.

The specific property of one-dimensional viscoelasticity that we exploit to un-
derpin our analysis is that, for piecewise-constant media, the homogenized
model has a memory term which can be represented in a Markovian way.
Therefore, to justify our strategy of approximating by Markovian models we:
first, approximate the rapidly varying medium by a piecewise-constant rapidly
varying medium; second, homogenize this model to find a Markovian descrip-
tion; and finally, demonstrate how the Markovian description can be learned
from data at the level of the unit cell problem. For more general problems we
anticipate a similar justification holding, but with different specifics leading
to the existence of good approximate Markovian homogenized models. The
benefit of the one-dimensional viscoelastic setting is that, through theory, we
obtain underpinning insight into the conceptual approach more generally. This
theory underpins the numerical experiments which follow.

2.2 One-Dimensional Kelvin-Voigt Viscoelasticity

The theory of this chapter is focused on one-dimensional KV viscoelasticity
because the model is amenable to rigorous analysis. The resulting analysis
sheds light on the learning of constitutive models more generally.

Governing Equations and Weak Form

The one-dimensional KV model for viscoelasticity postulates that stress is
affine in the strain and strain rate, with affine transformation dependent on
the spatially varying material properties. For a multiscale material varying
with respect to x/ε we thus have the following definition of Ψ†

ε from (2.1.5),
in the one-dimensional KV model:

σε = Eε∂xuε + νε∂
2
xtuε,

where Eε(x) = E
(
x
ε

)
and νε(x) = ν

(
x
ε

)
are rapidly varying material elasticity

and viscosity, respectively. Both E and ν are assumed to be 1-periodic. Then
equations (2.1.5) without inertia (ρ ≡ 0) on spatial domain D = [0, D] become

25

−∂x
(
Eε(x)∂xuε(x, t) + νε(x)∂

2
xtuε(x, t)

)
= f(x, t), x ∈ D, t ∈ T , (2.2.1a)

uε(x, 0) = ∂tuε(x, 0) = 0, x ∈ D, (2.2.1b)

uε(0, t) = uε(D, t) = 0, t ∈ T . (2.2.1c)

Any classical solution to equations (2.2.1) will also solve the corresponding
weak form: find uε ∈ C1(T ;H1

0 (D;R)) such that

qνε(∂tuε, φ) + qEε(uε, φ) = ⟨f, φ⟩ (2.2.2)

for all test functions φ ∈ H1
0 (T ;H1

0 (D;R)).

Homogenization

In the inertia-free setting ρ = 0 we perform homogenization to eliminate the
dependence on the small scale ε in (2.2.1). First, we take the Laplace transform
of (2.2.1), which gives, for Laplace parameter s and with the hat symbol
denoting Laplace transform,

−∂x((Eε(x) + νε(x)s)∂xûε(x, s)) = f̂(x, s), x ∈ D,
ûε(0, s) = ûε(D, s) = 0.

The initial condition is applied upon Laplace inversion. Since ϵ ≪ 1, we may
apply standard techniques from multiscale analysis [26, 27] and seek a solution
in the form

ûε = û0 + εû1 + ε2û2 +

Let Eε(x) = E(x
ε
) and νε(x) = ν(x

ε
) for E, ν : T → R. For convenience, define

â(y, s) = E(y) + ν(y)s. Note that â(·, s) is 1-periodic. The leading order term
in our approximation, û0, solves the following uniformly elliptic PDE with
Dirichlet boundary conditions:

−∂x(â0(s)∂xû0(x, s)) = f̂(x, s) x ∈ D, (2.2.3a)

û0(0, s) = û0(D, s) = 0. (2.2.3b)

Here the coefficient â0 is given by

â0(s) =

ˆ 1

0

(â(y, s) + â(y, s)∂yχ(y)) dy

26

and χ(y) : Ω → R for Ω = [0, 1] satisfies the cell problem

−∂y(â(y, s)∂yχ(y)) = ∂yâ(y, s), y ∈ Ω, (2.2.4a)ˆ 1

0

χ(y) dy = 0, χ is 1-periodic. (2.2.4b)

Using this, the coefficient â0 can be computed explicitly as the harmonic av-
erage of the original coefficient â [27]:

â0(s) =
〈
â(y, s)−1

〉−1
=

(ˆ 1

0

dy

sν(y) + E(y)

)−1

, (2.2.5)

where ⟨·⟩ denotes spatial averaging over the unit cell Ω.

Equations (2.2.3a) indicate that the homogenized map Ψ†
0 appearing in (2.1.6)

is, for one-dimensional linear viscoelasticity, defined from

Ψ†
0

(
{∂xu0(x, τ)}τ∈T

)
(t) = L−1

(
â0(s)∂xû0

)
(t); (2.2.6)

here L−1 denotes the inverse Laplace transform. Note that (2.2.5) shows that
â0 grows linearly in s → ∞ and computing the constant term in a regular
power series expansion at s = ∞ shows that we may write

â0(s) = ν ′s+ E ′ + κ̂(s),

where κ̂(s) decays to 0 as s→ ∞. Here

ν ′ =
(ˆ 1

0

1

ν(y)
dy
)−1

, E ′ =
(ˆ 1

0

E(y)

ν(y)2
dy
)/(ˆ 1

0

1

ν(y)
dy
)2
.

Details are presented in Appendix A.2. Laplace inversion of â0(s)∂xû0 then
yields the conclusion that

Ψ†
0

(
{ϵ(x, τ)}τ∈T

)
(t) = E ′ϵ(x, t) + ν ′ϵ̇(x, t)−

ˆ t

0

κ(t− τ)ϵ(x, τ) dτ, (2.2.7)

where we define ϵ = ∂xu0 to indicate the homogenized strain.

Remark 2.2.1. When ρ = 0, the homogenized solution provably approxi-
mates uε in the ε→ 0 limit; see Theorem 2.3.7. However, although we derived
it with inertia set to zero, the homogenized solution given by equation (2.2.8)
is also valid when the inertia term ρ∂2t uε generates contributions which are
O(1) with respect to ε. ♢

27

The homogenized PDE for one-dimensional viscoelasticity follows by combin-
ing equations (2.1.6) with equation (2.2.7) to give

ρ∂2t u0(x, t) = ∇x · σ0(x, t) + f(x, t), ∂xu0(x, t) = ϵ(x, t), x ∈ D, t ∈ T ,

(2.2.8a)

σ0(x, t) = E ′ϵ(x, t) + ν ′ϵ̇(x, t)−
ˆ t

0

κ(t− τ)ϵ(x, τ) dτ, x ∈ D, t ∈ T ,

(2.2.8b)

u0(x, 0) = ∂tu0(x, 0) = 0, x ∈ D, (2.2.8c)

u0(0, t) = u0(D, t) = 0, t ∈ T . (2.2.8d)

The price paid for homogenization is dependence on the strain history. We
show in the next section, however, that we can approximate the general ho-
mogenized map with one in which the history dependence is expressed in a
Markovian manner.

2.3 Main Theorems: Statement and Interpretation

In this section we present results of three types. First, we show that the so-
lution uε to equation (2.2.1) is Lipschitz when viewed as a map from the unit
cell material properties E(·), ν(·) in L∞ into Z; hence, an O(δ) approxima-
tion of E, ν by piecewise-constant functions leads to an O(δ) approximation of
uε. Second, we demonstrate that the homogenized model based on piecewise-
constant material properties can be represented in a Markovian fashion by
introducing hidden variables ; hence, combining with the first point, we have
a mechanism to approximate uε by solving a Markovian homogenized model.
Third, we show the existence of neural networks which provide arbitrarily good
approximation of the constitutive law arising in the Markovian homogenized
model; this suggests a model class within which to learn homogenized, Marko-
vian constitutive models from data. We then establish our framework for the
optimization methods used to learn such constitutive models; this framework
is employed in the subsequent Section 2.6.

Assumption 2.3.1. We make the following assumptions on E, ν, and f

throughout:

1. f ∈ L2(D;R) for all t ∈ T ; thus ∥f∥Z <∞;

28

2. E+, ν+ <∞, and E−, ν− > 0.

♢

Note that E+ = E+
ε and ν+ = ν+ε , so we drop the ε subscript in this notation.

Approximation by Piecewise Constant Material

Consider (2.2.1) with continuous material properties E and ν. We show in
Theorem 2.3.4 that we can approximate the solution uε to this system by
a solution uPC

ε which solves (2.2.1) with suitable piecewise-constant material
properties EPC and νPC, in such a way that uε and uPC

ε are close. To this end
we make precise the definition of piecewise-constant material properties.

Definition 2.3.2 (Piecewise Constant). A material is piecewise constant on
the unit cell with L pieces if the elasticity function E(y) and the viscosity func-
tion ν(y) both take constant values on L intervals [0, a1), [a1, a2), . . . , [aL−1, 1].
In particular, E(y) and ν(y) have discontinuities only at the same L−1 points
in the unit cell. We use the terminology L−piecewise constant to specify the
number of pieces. ♢

Remark 2.3.3. The situation in which E(y) and ν(y) have discontinuities at
different values of y ∈ (0, 1) can be reduced to the case in Definition 2.3.2 by
increasing the value of L. ♢

Theorem 2.3.4 (Piecewise-Constant Approximation). Let E and ν be piecewise-
continuous functions, with a finite number of discontinuities, satisfying As-
sumptions 2.3.1; let uε be the corresponding solution to (2.2.1). Then, for any
δ > 0, there exist piecewise-constant EPC and νPC such that solution uPC

ε of
equations (2.2.1) with these material properties satisfies

∥uPC
ε − uε∥Z < δ.

♢

Note that Theorem 2.3.4 is stated in the setting of no inertia. The proof
depends on the following lemma; proof of both the theorem and the lemma
may be found in Appendix A.1. We observe that, since the Lipschitz result is
in the L∞−norm with respect to the material properties, it holds with constant

29

C independent of ε, in the case of interest where the material properties vary
rapidly on scale ε.

Lemma 2.3.5 (Lipschitz Solution). Let ui be the solution to

−∂x
(
Ei(x)∂xui(x, t) + νi(x)∂

2
xtui(x, t)

)
= f(x, t), x ∈ D, t ∈ T , (2.3.1)

ui(x, 0) = ∂tui(x, 0) = 0, x ∈ D, (2.3.2)

ui(0, t) = ui(D, t) = 0, t ∈ T , (2.3.3)

associated with material properties Ei, νi, for i ∈ {1, 2}, and forcing f , all
satisfying the Assumptions 2.3.1. Then

∥u1 − u2∥Z ≤ C(∥ν1 − ν2∥∞ + ∥E1 − E2∥∞)

for some constant C ∈ R+ dependent on f, E+
i , E

−
i , ν

+
i , ν−i , and L and inde-

pendent of ε. ♢

Homogenization for Piecewise Constant Material

We show in Theorem 2.3.6 that for piecewise-constant material properties E(·)
and ν(·), the homogenized map Ψ†

0 given in (2.2.7) can be written explicitly
with a finite number of parameters, and in particular the memory is expressible
in a Markovian form. This Markovian form implicitly defines a finite number
of hidden variables.

Theorem 2.3.6 (Existence of Exact Parametrization). Let Ψ†
0 be the map

from strain history to stress in the homogenized model, as defined by equation
(2.2.7), in a piecewise-constant material with L + 1 pieces. Define ΨPC

0 :

R2 × C1(T ;R)× T ×Θ → R by

ΨPC
0 (ϵ(t), ϵ̇(t), {ϵ(τ)}τ∈T , t; θ) = E ′ϵ(t) + ν ′ϵ̇(t)−

L∑
ℓ=1

ξℓ(t), (2.3.4a)

∂tξℓ(t) = βℓϵ(t)− αℓξℓ(t), ξℓ(0) = 0, ℓ ∈ {1, . . . , L}. (2.3.4b)

Then, under Assumptions 2.3.1, there exists a choice of parameters θ∗ =

(E ′, ν ′, α, β, L) such that

Ψ†
0(ϵ(t), ϵ̇(t), {ϵ(τ)}τ∈T , t) = ΨPC

0 (ϵ(t), ϵ̇(t), {ϵ(τ)}τ∈T , t; θ∗)

for all u0 ∈ C2(D × T ;R) and t ∈ T . ♢

30

The proof of the above theorem may be found in Appendix A.1. The pa-
rameters E ′, ν ′, α, and β are determined via an appropriate decomposition
of â0 in equation (2.2.5); details are in the proof. In particular, E ′ and ν ′

are homogenized elasticity and viscosity coefficients, respectively, α are decay
rates for the hidden variables ξ, and β are coefficients for each decay term.
Note that the model in equations (2.3.4) is Markovian. Furthermore, although
the model in (2.3.4) requires an input of t for evaluation, the spatial variable
x only enters implicitly through the local values of ϵ and ϵ̇; the model acts
pointwise in space. In what follows it is useful to define uPC

0 to be the solution
to the following system defined with constitutive model ΨPC

0 from Theorem
2.3.6.

ρ∂2t u
PC
0 (x, t)− ∂xσ0(x, t) = f(x, t), ∂xu

PC
0 (x, t) = ϵPC(x, t), x ∈ D, t ∈ T ,

(2.3.5a)

σ0(x, t) = ΨPC
0

(
ϵPC(x, t), ϵ̇

PC
(x, t),

{
ϵPC(x, τ)

}
τ∈T , t

)
, x ∈ D, t ∈ T ,

(2.3.5b)

uPC
0 (x, 0) = ∂tu

PC
0 (x, 0) = 0, x ∈ D,

(2.3.5c)

uPC
0 (0, t) = uPC

0 (D, t) = 0, t ∈ T .
(2.3.5d)

Using a homogenization theorem, together with approximation by piecewise-
constant material properties, we now show that uε can be approximated by
uPC
0 ; this will follow from the inequality

∥uε − uPC
0 ∥Z2 ≤ ∥uε − uPC

ε ∥Z2 + ∥uPC
ε − uPC

0 ∥Z2 .

The first term on the right-hand side may be controlled using Theorem 2.3.4.
The fact that dynamics under constitutive law Ψ†

ε converge to those under Ψ†
0

as ϵ → 0 may be used to control the second term; this fact is a consequence
of the following theorem:

Theorem 2.3.7. Under Assumptions 2.3.1, the solution uε to equations (2.2.1)
converges weakly to u0, the solution to equations (2.2.8) with ρ = 0, in
W 1,2(T ;H1

0 (D;R)). Thus, for any η > 0 there exists εcrit > 0 such that
for all ε ∈ (0, εcrit),

∥uε − u0∥Z2 < η. (2.3.6)

♢

31

Proof. Since f ∈ Z, continuous embedding gives f ∈ Z2. Applying Theorem
3.1[28] (noting that the work in that paper is set in dimension d = 3, but is
readily extended to dimension d = 1) establishes weak convergence of uε to
u0 in W 1,2(T , H1

0 (D;R)). Hence strong convergence in Z2 follows, by compact
embedding of W 1,2(T ;H1

0 (D;R)) into Z2.

The following corollary is a consequence of Theorem 2.3.7.

Corollary 2.3.8. Under Assumptions 2.3.1 and assuming E, ν are piecewise
constant, the solution uPC

ε to equations (2.2.1) converges weakly to uPC
0 , the

solution to equations (2.3.5) with ρ = 0, in W 1,2(T ;V). Thus, for any η > 0

there exists εcrit > 0 such that for all ε ∈ (0, εcrit),

∥uPC
ε − uPC

0 ∥Z2 < η. (2.3.7)

♢

Combining this result with that of Theorem 2.3.4, noting continuous embed-
ding of Z into Z2, allows us to approximate uε by uPC

0 :

Corollary 2.3.9. Let E and ν be piecewise-continuous functions, with a finite
number of discontinuities satisfying, along with f , Assumptions 2.3.1; let uε
be the corresponding solution to (2.2.1). Then for any η > 0, there exists
Lcrit and εcrit with the property that for all L ≥ Lcrit there are L−piecewise-
constant EPC and νPC such that for all ε ∈ (0, εcrit), the solution to uPC

0 to
(2.3.5) with ρ = 0 satisfies

∥uε − uPC
0 ∥Z2 < η. (2.3.8)

♢

Neural Network Approximation of the Constitutive Model

For the specific KV model in one dimension we know the postulated form of
ΨPC

0 and can in principle use this directly as a constitutive model. However,
in more complex problems we do not know the constitutive model analyti-
cally, and it is then desirable to learn it from data from within an expressive
model class. To this end we demonstrate that ΨPC

0 can be approximated
by an operator ΨRNO

0 which has a similar form to that defined by equations
(2.3.4) but in which the right-hand sides of those equations are represented

32

by neural networks, leading to a recurrent neural network structure. With
this structure, the neural network outputs the stress at a single point in space
and time; in practice, repeated evaluation generates output stress trajectories
from the spatio-temporal dynamics. As such, the architecture is not the same
as standard LSTM RNN models. Instead, the feed-forward neural network
G produces time derivatives of the hidden variables ξ, which are used in a
forward Euler step to generate the updated hidden variable value. In this
manner, the model acts pointwise but incorporates memory through a hidden
variable. The feed-forward networks F and G are the same at every time step,
justifying the “recurrent” terminology.

Let θ∗ = (E ′, ν ′, α, β, L), be those chosen in Theorem 2.3.6 to achieve the
equivalence

Ψ†
0(ϵ(t), ϵ̇(t), {ϵ(τ)}τ∈T , t) = ΨPC

0 (ϵ(t), ϵ̇(t), {ϵ(τ)}τ∈T , t; θ∗).

We first define the linear functions FPC : R×R×RL → R and GPC : RL×R →
R by

FPC(b, c, r) = E ′b+ ν ′c− ⟨1, r⟩ (2.3.9a)

GPC(r, b) = −Ar + βb, (2.3.9b)

where A = diag(α) ∈ RL×L, β ∈ RL, and 1 is the all-ones vector of length L.
We then have

ΨPC
0 (ϵ(t), ϵ̇(t), {ϵ(τ)}τ∈T , t; θ∗) = FPC(ϵ(t), ϵ̇(t), ξ(t)), (2.3.10a)

ξ̇(t) = GPC(ξ(t), ϵ(t)), ξ(0) = 0, (2.3.10b)

as in Theorem 2.3.6.

We seek to approximate this map by ΨRNO
0 defined by replacing the linear

functions FPC and GPC by neural networks FRNO : R × R × RL → R and
GRNO : RL × R → R to obtain

ΨRNO
0 (ϵ(t), ϵ̇(t), {ϵ(τ)}τ∈T , t) = FRNO(ϵ(t), ϵ̇(t), ξ(t)), (2.3.11a)

ξ̇(t) = GRNO(ξ(t), ϵ(t)), ξ(0) = 0. (2.3.11b)

Let R > 0 and define the bounded set ZR = {w : R+ → R | supt∈T |w(t)| ≤
R}.

33

Theorem 2.3.10 (RNO Approximation). Consider ΨPC
0 as defined by equa-

tions (2.3.9), (2.3.10). Assume that there exist a0 > 0 and 0 ≤ B < ∞ such
that a0 < minℓ |αℓ| and maxℓ |βℓ| ≤ B. Then, under Assumptions 2.3.1, for
every η > 0 there exists ΨRNO

0 of the form (2.3.11) such that

sup
t∈T ,b,c∈ZR

∣∣ΨPC
0

(
b(t), c(t), {b(τ)}τ∈T , t; θ∗

)
−ΨRNO

0

(
b(t), c(t), {b(τ)}τ∈T , t

)∣∣ < η.

♢

The proof of Theorem 2.3.10 can be found in Appendix A.1.

Note that ΨRNO
0 both avoids dependence on the fine-scale ε and is Markovian.

The non-homogenized map Ψ†
ε is local in time while the homogenized map

ΨRNO
0 is nonlocal in time and depends on the strain history. Let uRNO

0 be the
solution to the following system with constitutive model ΨRNO

0 :

ρ∂2t u
RNO
0 (x, t)− ∂xσ0(x, t) = f(x, t), ∂xu

RNO
0 (x, t) = ϵRNO(x, t), x ∈ D, t ∈ T ,

(2.3.12a)

σ0(x, t) = ΨRNO
0

(
ϵRNO(x, t), ϵ̇

RNO
(x, t),

{
ϵRNO(x, τ)

}
τ∈T , t

)
, x ∈ D, t ∈ T ,

(2.3.12b)

uRNO
0 (x, 0) = ∂tu

RNO
0 (x, 0) = 0, x ∈ D,

(2.3.12c)

uRNO
0 (0, t) = uRNO

0 (D, t) = 0, t ∈ T .
(2.3.12d)

Ideally we would like an approximation result bounding ∥uε − uRNO
0 ∥Z2 , the

difference between solution of the multiscale problem (2.2.1) and the Marko-
vian RNO model (2.3.12), in the case ρ = 0. Using Corollary 2.3.9 shows that
this would follow from a bound on ∥uPC

0 − uRNO
0 ∥Z , where uPC

0 solves (2.3.5),
in the case ρ = 0. We note, however, that although Theorem 2.3.10 gives us
an approximation result between ΨPC

0 and ΨRNO
0 , proving that uPC

0 and uRNO
0

are close requires developing new theory for the fully nonlinear PDE for uRNO
0 ;

developing such a theory is beyond the scope of this work. Developing such
a theory is difficult for two primary reasons: (i) the monotonicity property of
ΨRNO

0 with respect to strain rate is hard to establish globally, for a trained
model; (ii) the functions FRNO,GRNO may not be differentiable. As a result,
existence and uniqueness of uRNO

0 remain unproven; however, numerical ex-

34

periments in Section 2.6 indicate that in practice, uRNO
0 does approximate uε

well.

Remark 2.3.11. Monotonicity of ΨRNO
0 with respect to strain rate is a par-

ticular issue when ρ = 0 (no inertia) as in this case it is needed to define an
(implicit) equation for ∂tu0 to determine the dynamics. It is for this reason
that our experiments will all be conducted with ρ > 0, obviating the need for
the determination of an (implicit) equation for ∂tu0. However this leads to
the issue that the homogenized equation is only valid for a subset of initial
conditions, in the inertial setting ρ > 0; see Remark 2.2.1. ♢

2.4 Learning material dependence

Up to this point, our model architecture and supporting theory have assumed
a single material microstructure. In this subsection, we describe an architec-
ture that allows the model to take varying material microstructures as input.
Material dependence is the main contribution of our work in [18], and more
details and analysis may be found in that work. To include the material mi-
crostructure as an input to the model, we modify FRNO and GRNO of equations
2.3.11 to be neural operators themselves rather than finite-dimensional neural
networks. In particular, FRNO and GRNO take a form similar to the FNO in
definition 1.3.1 where the function inputs are the material properties E and
ν defined on Td. However, the architecture is modified to also allow the finite
vector inputs of ϵ(x, t), ϵ̇(x, t), and ξ(t) and finite vector outputs of ξ̇(t) and
σ(t), which are not functions over Td. The modified architecture is called a
Fourier Neural Mapping and is developed in Chapter 5. We present a diagram
below and include the detailed definition in Appendix A.5. In combination, the
architecture used to model material and history dependence simultaneously is
referred to as an RNO-FNM.

M

vin

Sf

Sv D

L1 LT

G Qv vout

Function
Input

Vector
Input

Function
Lifting

Vector
Lifting

Vector to
Function

Fourier Layers

Function to
Vector

Vector
Projection

Vector
Output

35

This modified architecture inherits the universal approximation property of
Theorem 2.3.10 with varying material inputs over compact sets in MB

Emin,Emax

and MB
νmin,νmax

, respectively. We do not include the formal statement or proof
in this thesis, but it may be found in [18]. A material-dependent experiment
is included in Section 2.6 to demonstrate success of this extension.

2.5 Numerical experiments: data and optimization

In this section, we present numerical results using a trained RNO as a surrogate
model : an efficient approximation of the complex microscale dynamics. First,
we discuss the problem of finding such an RNO. To learn the RNO operator
approximation, we are given data{

ϵn, ϵ̇n,
(
σ0
)
n
}Nn=1, (2.5.1)

where the suffix n denotes the nth strain, strain rate, and stress trajectories
over the entire time interval T . Each strain trajectory ϵn is drawn i.i.d. from
a measure µ on C(T ;R).

The data for the homogenized constitutive model is given by

σ0(t) = Ψ†
0

(
ϵ(t), ϵ̇(t), {ϵ(τ)}τ∈T , t

)
,

defined via solution of the cell-problem (2.2.4); but it may also be obtained as
the solution to a forced boundary problem on the microscale, as stated in the
following lemma.

Lemma 2.5.1. Let Ω = (0, 1), and let σ be determined by the following
equations, where E, ν, and b are given:

∂yσ(y, t) = 0, y ∈ Ω, t ∈ T , (2.5.2a)

σ(y, t) = E(y)∂yu(y, t) + ν(y)∂2ytu(y, t), y ∈ Ω, t ∈ T , (2.5.2b)

u(0, t) = 0, u(1, t) = b(t), t ∈ T , (2.5.2c)

u(y, 0) = 0, y ∈ Ω. (2.5.2d)

Then
{σ(t)}t∈T = Ψ†

0(b(t), ∂tb(t), {b(t)}t∈T , t),

where Ψ†
0 is the map defined in (2.2.6). ♢

The proof can be found in Appendix A.2 and justifies the application of data
resulting from this problem to the homogenized model. In the following, we

36

denote by (σ̂0)n and ̂̇ξn the output of FRNO and GRNO on data point n over
t ∈ T :

(σ̂0)n(t) = FRNO
(
ϵn(t), ϵ̇n(t), ξ̂n(t)

)
̂̇ξn(t) = GRNO

(
ϵn(t), ξ̂n(t)

)
, ξ̂n(0) = 0.

To train the RNO, we use the following relative L2 loss function, which should
be viewed as a function of the parameters defining the neural networks FRNO

and GRNO.

Accessible Loss Function:

Loss({σ0}Nn=1, {σ̂0}Nn=1) =
1

N

N∑
n=1

∥(σ0)n − (σ̂0)n∥L2(T ;R)

∥(σ0)n∥L2(T ;R)
. (2.5.3)

Remark 2.5.2. To test robustness of our conclusions, we also employed rel-
ative and absolute L2 squared loss functions. In doing so we did not observe
significant differences in the predictive accuracy of the resulting models. ♢

In the case of a material that is 2-piecewise constant on the microscale, we
can explicitly write down the analytic form of the solution, and thus can also
know the values of the hidden variable {ξn}Nn=1 and its derivative {ξ̇n}Nn=1,
for each data trajectory as expressed in equation (2.3.10). It is intuitive that
training an RNO on an extended data set which includes the hidden variable
should be easier than using the original data set (2.5.1). In order to deepen our
understanding of the training process we will include training on a 2-piecewise-
constant material which uses this hidden data, motivating the following loss
function. Since, in general, the hidden variable is inaccessible in the data, we
refer to the resulting loss as the inaccessible relative loss function.

Inaccessible Loss Function:

Loss({(σ0)n}Nn=1, {(σ̂0)n}Nn=1, {ξ̇n}Nn=1, {̂̇ξn}Nn=1)

=
1

N

N∑
n=1

∥(σ0)n − (σ̂0)n∥L2(T ;R)

∥(σ0)n∥L2(T ;R)
+

∥ξ̇n − ̂̇ξn∥L2(T ;R)

∥ξ̇n∥L2(T ;R)

.
2.6 Numerical Results

The numerical results make the following contributions:

37

I. Machine-Learned Constitutive Models. We can find RNOs that
yield low-error simulations when used as a surrogate model in the
macroscopic system (2.1.6) to approximate the multiscale system (2.1.5),
in the one-dimensional KV setting with inertia. We also discuss how in
some material parameter settings, inertial effects lead to higher error
in the homogenized approximation.

II. Effect of Non-Convex Optimization. When the inaccessible loss
function is used for training, the trained RNO exhibits desirable prop-
erties of (approximate) linearity in its arguments in the domain of in-
terest, as is proved for the homogenized constitutive model (2.3.9) for
piecewise-constant materials. When using the accessible loss function,
the trained RNO may perform well as a surrogate model without ex-
hibiting linearity in the equation for evolution of the hidden variables.
This is attributable to the existence of local minimizers of the loss func-
tion and highlights the need for caution in training constitutive models.

III. Elasto-viscoplasticity. We demonstrate success of the RNO model in
approximating the homogenized constitutive law for a one-dimensional
elasto-viscoplastic material as well. The discretization invariance figure
for this example is taken from our work in [16], where the method is
tested in two-dimensional elasto-viscoplastic materials and two- and
three-dimensional elasto-viscoplastic polycrystalline materials.

IV. Model Choice. The correct choice of architecture for the RNO leads
to discretization robustness in time: a model learned with one choice
of time discretization dt performs well when tested on another dt; this
is not true for poor model choices. Discretization robustness can thus
be used as a guide to model choice. This observation holds for both
the one-dimensional viscoelasticity example and the one-dimensional
elasto-viscoplasticity example.

V. Material dependence. We include an experiment from [18] that
shows accuracy of the RNO-FNM method in modeling the effects of
both history dependence and material dependence simultaneously. We
also include the result of a macroscale simulation with material depen-
dence.

38

In the remainder of the section, we demonstrate that in appropriate settings
the solution uRNO

0 obtained under the dynamics of a trained RNO approximates
the true solution uε well when used in the macroscopic setting; furthermore,
this RNO is shown to exhibit linearity in its arguments in the domain of
interest. We also discuss the error arising from inertial effects. We then
discuss the performance of an RNO learned using the accessible loss function,
the discretization-robustness property of the RNO, and the choice of data
sampling distribution µ. We also perform experiments on media with more
piecewise-constant pieces and analyze the number of hidden variables required
to capture the behavior. We then apply the methodology to the case of elasto-
viscoplasticity. Finally, we include a material-dependent experiment using the
modified RNO-FNM model architecture.

RNO as a Surrogate Model

In this subsection we discuss two RNOs: RNO A trained using only the inac-
cessible loss function in equation (2.5) and RNO B trained with the standard
loss function in equation (2.5.3), but initialized at parameters obtained via
training with the inaccessible loss function. Descriptions of these RNOs, and
others we introduce in subsequent subsections, may be found in Table 2.1. A
visualization of typical input and output trajectories from the data used for
training and testing may be found in Figure 2.1. For details on RNO training,
see Appendix A.3.

In the first surrogate model experiment, we subject the material to sinusoidal
boundary forcing of b(t) = 0.1 sin(2πt) starting from 0 initial displacement
and velocity. As a ground-truth comparison, we use a traditional finite ele-
ment solver with periodic domain of width 0.04, spatial resolution of h = 0.005,

Table 2.1: RNO Descriptions

RNO Description
A Trained on 2-piecewise-constant media only with inaccessible loss

function (2.5)
B Trained on 2-piecewise-constant media; initialized at solution found

with inaccessible loss function then trained with accessible loss func-
tion (2.5.3)

C Trained on 2-piecewise-constant media only with accessible loss
function

D Trained on continuous media with accessible loss function

39

and time discretization dt = 0.1h2; we refer to this solution as uε and name
it FEM. In contrast, the RNO-based macroscale computation employs spa-
tial resolution of hcell = 0.04, with a time discretization of dt = 0.4h2cell; for
economy of notation; this solution is denoted uRNO

0 and named RNO. We also
compare the results to the displacement obtained using as macroscale consti-
tutive model the analytic solution to the cell problem. To make comparisons
we use the relative error given by

e(uRNO
0 , uε)(t) =

∥uε(t)− uRNO
0 (t)∥L2(Ω;R)

∥uε(t)∥L2(Ω;R) + 0.01
. (2.6.1)

The relative error plots for RNOs A and B are shown in Figures 2.2a and
2.2b. In a second experiment, we subject the material to integrated Brownian
motion forcing starting from null initial conditions. The FEM solver uses the
same discretizations as in the sinusoidal forcing experiment, and the RNO
spatial discretization was hcell = 0.05 with time discretization of dt = 0.4h2cell.
The results for RNOs A and B are shown in the Appendix in Figures A.3a
and A.3b.

Both sets of experiments show that the RNO-based macroscopic models ac-
curately reproduce the microscale FEM simulation at far lower computational
cost. The RNO-based results have some errors in comparison with the mi-
croscale simulation, but the errors are of the same order of magnitude as the
errors arising when the exact homogenized constitutive model is used. The
initial error between the analytic solution and the FEM solution is due to
inertial effects discussed in Remark 2.2.1. The inertial errors become more
significant with the ratio between E and ν varies more across the interval.

Figure 2.1: Representative data: input strain trajectories and output stress
trajectories for three randomly chosen test data samples. The RNO approxi-
mation shown was generated with RNO C.

40

(a) RNO A (b) RNO B (c) RNO C

Figure 2.2: Analytic cell and RNO relative error versus FEM solution using
sinusoidal forcing; this supports Numerical Experiments, conclusion I.

RNO Trained with Standard Loss

We also train a third RNO, denoted RNO C, using only the accessible loss
function. Details of training may be found in Appendix A.3. While this RNO
performs well as a surrogate model, indeed is comparable in errors to those
of RNOs A and B, it does not exhibit a close linear match to the known
analytic expression for G. A figure illustrating this behavior may be found in
the appendix as Figure A.2. All three RNOs approximate the linear structure
of F well; the difficulty is in obtaining the correct linear dependence in the
hidden variable rate, ξ̇. Interestingly, by changing the material parameter ν2
from 0.2 to 2, training via the method of RNO C with only the accessible loss
function yields an RNO that matches the true linear dependence in G very well.
However, in this parameter regime, inertial effects perturb the simulations on
the macroscale to an unacceptable degree, meaning that the homogenization
theory that we use as benchmark is not valid, and so we avoid this regime. The
inability of RNO C to capture the exact linear dependence in G is unsurprising;
indeed, had we guaranteed convergence to the optimal function for any choice
of material parameters, we would have entirely sidestepped the problem of
high-dimensional optimization inherent to machine learning.

In the case of continuous material properties, we do not have a known analytic
solution to the microscale problem and thus do not have access to the hidden
variable ξ in the train and test data; in this case, we may only use the accessible
loss function. We RNO type D on continuous media with different numbers
of hidden variables and use the trained RNOs as surrogate models in the
macroscale system subjected to boundary forcing. Training details may be
found in Appendix A.3. The relative error of RNO D for the sinusoidal and
Brownian motion forcing experiments described previously is shown in Figure

41

2.3. In this figure, the ground truth is obtained via an FEM simulation; details
are in Appendix A.3. We note that similar error is found with all dimensions of
the hidden variable, suggesting that 1 hidden variable suffices in this case; the
fact that the error does not decrease suggests that the error we see is primarily
from the effects of homogenization in the macroscale simulation rather than
piecewise-constant approximation. This conclusion agrees with the result of
Figure 2.2 that the RNO surrogate model error is the same magnitude as that
of the exact homogenized solution.

Time Discretization and RNO Training

Discretization-robustness is a desirable feature of an RNO surrogate model.
To test robustness to changes in time discretization we work in the piecewise-
constant media setting. We evaluate the test error when using RNOs A, B,
and C using values of time step dt different from those used in the training.
Additionally, to demonstrate the value of postulating the correct model form,
we train three additional RNOs via the same methods as described earlier
in this section but without giving them strain rate as an input, leading to an
incorrect model form. Figure 2.4 shows that all three RNOs trained with strain
rate as an input parameter were more robust to changes in time discretization
than their non-strain-rate counterparts, supporting the conclusion that this
approach can aid model discovery.

To generate the training strain, we sampled trajectories as follows: first, we
randomly partitioned the time interval T into 10 pieces; second, at each point

(a) Sinusoidal forcing (b) Integrated Brownian motion forcing

Figure 2.3: Relative error of continuous-material RNOs D with different num-
bers of hidden variables when used as a surrogate model in the macroscale
system; this supports Numerical Experiments, conclusion I.

42

(a) RNO A (b) RNO B (c) RNO C

Figure 2.4: Time discretization error for RNOs A, B, and C.

between these time intervals, we generated a value of strain via a balanced
random walk from the previous value scaled by the length of the time interval;
third, we used a piecewise cubic Hermite interpolating polynomial (pchips)
function to interpolate between these values of strain. This choice of dis-
tribution has the desirable property that it generates data with a variety of
strain/strain-rate pairings evenly dispersed throughout the domain of interest
rather than introducing large correlations between the two.

Additional Piecewise-Constant Experiments

We claim that to approximate an N -piecewise-constant material, the RNO
ought to have at least N − 1 hidden variables to achieve the best accuracy.
Therefore, we train RNOs with different numbers of hidden variables on data
from piecewise-constant materials with 3, 5, and 10 pieces. The results are
shown in Figure 2.5.

For the 3 and 5-piecewise-constant cases, the error flattens out after 2 and
4 hidden variables, respectively, as expected. For the 10-piecewise constant
case, the error plateaus first at 4 hidden variables and then again at 9 hidden
variables, and this can be explained by examining the analytic solution. For
the choices of E and ν used, the constitutive law takes the approximate form
of

σ0(t) = E ′∂xu0(t) + ν ′∂t∂xu0(t)−
ˆ t

0

∂xu0(τ)
(
0.09e−1.83(t−τ) + 0.16e−2.92(t−τ)

+ 0.02e−4.44(t−τ) + 0.20e−5.13(t−τ) + 0.12e−8.18(t−τ) + 0.08e−9.29(t−τ)

+ 0.39e−11.3(t−τ) + 0.67e−15.30(t−τ) + 0.06e−18.41(t−τ)
)
dτ.

Note that the exponential decay terms each correspond to one of the nine
hidden variables ξℓ, and they are written in order of decreasing exponential

43

Figure 2.5: Absolute L2 error of RNOs trained with different numbers of
hidden variables on different piecewise-constant materials.

term −αℓ. From this we can see that terms with higher magnitudes of |αℓ| will
be negligible compared to the terms with smaller magnitude. The experimental
results align with these values; there is a large jump from the fourth exponent
(−5.13) to the fifth exponent (−8.18), so the behavior is well-captured with
only four hidden variables. However, with nine hidden variables, the model can
completely capture the decay terms. This result further justifies the practical
use of the piecewise-constant approximation for smooth materials.

Elasto-viscoplasticity

The purpose of this example is to demonstrate that the ideas developed in
this work have implications beyond linear viscoelasticity. The same RNO
architecture is able to learn elastic-viscoplastic dynamics. We present the
results of a simple experiment with isotropic rate hardening in one spatial
dimension.

Consider the following equations:

∂xσε(x, t) = 0, σε(x, t) = Eε(x)(∂xuε(x, t)− ϵp(x, t)), (x, t) ∈ D × T ,

(2.6.2a)

ϵ̇p(x, t) = ϵ̇p0 sign(σε(x, t))
(|σε(x, t)|n

σh

)
, (x, t) ∈ D × T ,

(2.6.2b)

uε(0, t) = 0, uε(1, t) = b(t), t ∈ T , (2.6.2c)

uε(x, 0) = 0, ϵp(x, 0) = 0 x ∈ D, (2.6.2d)

where uϵ is the displacement, ϵp is the plastic strain, σϵ is the stress, and ϵ̇p0,
σh, and n are constants. We seek to learn the map from average strain to
average stress (⟨∂xuε(t)⟩)t∈T → (⟨σε(t)⟩)t∈T , where we recall that ⟨·⟩ indicates
spatial averaging over the cell. In this setting, the homogenized constitutive

44

map does not depend on the strain rate. Development of the homogenization
theory for these equations can be found in [16].

Figure 2.6: RNO trained on elasto-viscoplastic data; a comparison between the
true solution and the RNO-predicted solution for three random test samples.
Top row: stress trajectories in time. Bottom row: stress-strain trajectories for
the same samples.

We train an RNO with one hidden variable and the same architecture as
prescribed for the viscoelastic case but without strain rate dependence, and we
use data generated via a numerical solution of equations (2.6.2). As shown in
Figure 2.6, the RNO is able to learn plastic behavior. Specifically, the strain-
stress trajectories exhibit plastic transition. The mean relative L2 error is
≈ 7%, which is reasonable for plasticity experiments. When a discretization-
robustness test is done on this example, greater discretization-invariance is
again seen with the correct model hypothesis. In Figure 2.7, the “VE” model
includes strain rate as an input variable, while the “E-VP” model does not.
The “E-VP” is the correct model form in this setting, and it exhibits greater
robustness to changes in test discretization.

Material dependence

As a final discussion, we include an experiment from [18] to show that the
material-dependent extension described in Section 2.4 is effective in practice.
First, a dataset of piecewise-constant material properties (E, ν) are randomly
generated in the following manner. A number of constant pieces L are selected
uniformly at random from 5−20. Locations of the discontinuities are randomly
selected from the set {0.02k}50k=0 with replacement. Finally, the values of E

45

Figure 2.7: Discretiztion-invariance experiment for one-dimensional elasto-
viscoplasticity. In the “VE” model, strain rate is given as an input, while
it is not given in the “E-VP” model.

and ν on each segment are sampled from U([0.1, 1]). Piecewise-cubic Hermite
interpolating polynomials are again used to generate random averaged strain
trajectories. Figure 2.8 shows the relative L2 error of the RNO-FNM model
for different choices of hidden variable count. The error varies between 0.7%−
1.2%, indicating accuracy of the model despite the variation in material input.
A discretization-robustness test is also shown in Figure 2.8, and the model
exhibits discretization-invariance in both the space and the time discretization.
We refer to [18] for additional material-dependent experiments.

Relative L2 testing error
on the PC dataset

Mean relative L2 testing error
on the PC dataset

at different testing resolutions

50%

10%

3%

1%

0.3%

0.1%

0.01%

R
el

at
iv

e
er

ro
r

1 3 5 10 15 20 25

FNM–RNO with increasing
of internal variables

Stress response
without memory

2e-3 3.6e-3 6.3e-3 1.1e-2 2e-2
Spatial grid size

2e-4

5.3e-4

1.4e-3

3.8e-3

1e-2

T
em

p
or

al
gr

id
si

ze

Training resolution

0.8% 1.0% 1.2% 1.5% 1.9%

Figure 2.8: The distributions of the relative L2 error on 2,500 testing samples
from the PC dataset (left). We visualize the errors in FNM–RNOs predictions
where the trained FNM–RNOs have a varying number of internal variables.
We also visualize the distribution of error given by the linear stress response
without memory effects, where the response function is obtained using (2.2.7)
with κ ≡ 0. The mean relative L2 error for the same dataset is on the right
for different testing resolutions with five internal variables.

46

2.7 Conclusions

In this chapter, we develop theory to support learning Markovian models for
history-dependent constitutive laws. The theory presented applies to the one-
dimensional KV case, but the underlying ideas extend to more complex sys-
tems, as demonstrated with an experiment with elasto-viscoplasticity. Further-
more, an extension of the method to include material dependence is shown to
be empirically accurate in the one-dimensional viscoelastic setting. In [16],
numerical experiments suggest that the methodology can be useful in higher
dimensions as well. Conclusions drawn from our numerical experiments, un-
derpinned by the theory of this chapter, provide useful guidance for these more
complex nonlinear models in higher spatial dimensions.

47

C h a p t e r 3

LEARNING HOMOGENIZATION FOR ELLIPTIC
OPERATORS

This chapter is adapted from the following publication:

[1] Kaushik Bhattacharya, Nikola B. Kovachki, Aakila Rajan, Andrew M.
Stuart, and Margaret Trautner. “Learning homogenization for ellip-
tic operators”. In: SIAM Journal on Numerical Analysis 62.4 (2024),
pp. 1844–1873. doi: 10.1137/23M1585015.

Multiscale partial differential equations (PDEs) arise in various applications,
and several schemes have been developed to solve them efficiently. Homoge-
nization theory is a powerful methodology that eliminates the small-scale de-
pendence, resulting in simplified equations that are computationally tractable
while accurately predicting the macroscopic response. In the field of con-
tinuum mechanics, homogenization is crucial for deriving constitutive laws
that incorporate microscale physics in order to formulate balance laws for the
macroscopic quantities of interest. However, obtaining homogenized consti-
tutive laws is often challenging as they do not in general have an analytic
form and can exhibit phenomena not present on the microscale. In response,
data-driven learning of the constitutive law has been proposed as appropriate
for this task. However, a major challenge in data-driven learning approaches
for this problem has remained unexplored: the impact of discontinuities and
corner interfaces in the underlying material. These discontinuities in the co-
efficients affect the smoothness of the solutions of the underlying equations.
Given the prevalence of discontinuous materials in continuum mechanics ap-
plications, it is important to address the challenge of learning in this context;
in particular, to develop underpinning theory that establishes the reliability
of data-driven methods in this scientific domain. The chapter addresses this
unexplored challenge by investigating the learnability of homogenized consti-
tutive laws for elliptic operators in the presence of such complexities. Approx-
imation theory is presented, and numerical experiments are performed which
validate the theory in the context of learning the solution operator defined by
the cell problem arising in homogenization for elliptic PDEs.

https://doi.org/10.1137/23M1585015

48

3.1 Introduction

Homogenization theory is a well-established methodology that aims to elimi-
nate fast-scale dependence in partial differential equations (PDEs) to obtain
homogenized PDEs which produce a good approximate solution of the problem
with small scales while being more computationally tractable. In continuum
mechanics, this methodology is of great practical importance as the constitu-
tive laws derived from physical principles are governed by material behavior at
small scales, but the quantities of interest are often relevant on larger scales.
These homogenized constitutive laws often do not have a closed analytic form
and may have new features not present in the microscale laws. Consequently,
there has been a recent surge of interest in employing data-driven methods to
learn homogenized constitutive laws.

The goal of this chapter is to study the learnability of homogenized constitutive
laws in the context of one of the canonical model problems of homogenization:
the divergence form elliptic PDE. One significant challenge in applications
of homogenization in material science arises from the presence of discontinu-
ities and corner interfaces in the underlying material. This leads to a lack
of smoothness in the coefficients and solutions of the associated equations, a
phenomenon extensively studied in numerical methods for PDEs. Addressing
this challenge in the context of learning remains largely unexplored and is the
focus of our work. We develop underlying theory and provide accompanying
numerical studies to address learnability in this context.

Problem Formulation

Consider the following linear multiscale elliptic equation on a bounded domain
Ω ⊂ Rd:

−∇x · (Aϵ∇xu
ϵ) = f x ∈ Ω, (3.1.1a)

uϵ = 0 x ∈ ∂Ω. (3.1.1b)

Here Aϵ(x) = A
(
x
ϵ

)
for A(·) which is 1-periodic and positive definite: A : Td →

Rd×d
sym,≻0, a condition which holds throughout this work. Assume further that

f ∈ L2(Ω;R) and has no microscale variation with respect to x/ϵ.

Our focus is on linking this multiscale problem to the homogenized form of

49

equation (3.1.1), which is

−∇x ·
(
A∇xu

)
= f x ∈ Ω, (3.1.2a)

u = 0 x ∈ ∂Ω, (3.1.2b)

where A is given by

A =

ˆ
Td

(
A(y) + A(y)∇χ(y)T

)
dy, (3.1.3)

and χ : Td → Rd solves the cell problem

−∇ · (∇χA) = ∇ · A, χ is 1-periodic. (3.1.4)

All of the preceding PDEs are to be interpreted as holding in the weak sense.
For 0 < ϵ≪ 1, the solution uϵ of (3.1.1) is approximated by the solution u of
(3.1.2), and the error converges to zero as ϵ→ 0 in various topologies [26, 59,
27].

We assume that
∥A∥L∞ := sup

y∈Td

|A(y)|F <∞,

where | · |F is the Frobenius norm. Hence A ∈ L∞(Td;Rd×d
)

and Aϵ ∈
L∞(Ω;Rd×d

)
. Similarly, for A ∈ L2(Td;Rd×d), we define

∥A∥2L2 :=

ˆ
Td

|A(y)|2F dy.

Also, for given β ≥ α > 0, we define the following subset of 1-periodic, positive-
definite, symmetric matrix fields in L∞(Td;Rd×d

)
by

PDα,β = {A ∈ L∞(Td;Rd×d) : ∀(y, ξ) ∈ Td × Rd, α|ξ|2 ≤ ⟨ξ, A(y)ξ⟩ ≤ β|ξ|2}.

For open set Ω ⊂ Rd, we denote the variation of a function u ∈ L1
loc(Ω) by

V (u,Ω) = sup
{ d∑

i=1

ˆ
Ω

∂Φi

∂xi
u dx : Φ ∈ C∞

0 (Ω;Rd), ∥Φ∥L∞(Ω;Rd) ≤ 1
}

and the set of functions of bounded variation on Td as

BV = {u ∈ L1(Td) : V (u,Td) <∞}.

For further information on BV, we refer to [57]. Finally, we often work in the
Sobolev space H1 restricted to spatially mean-zero periodic functions, denoted

Ḣ1 :=
{
v ∈ W 1,2(Td)

∣∣∣ v is 1-periodic,
ˆ
Td

v dy = 0
}
;

50

the norm on this space is defined by

∥g∥Ḣ1 := ∥∇g∥L2 . (3.1.5)

Numerically solving (3.1.1) is far more computationally expensive than solving
the homogenized equation (3.1.2), motivating the wish to find the homogenized
coefficient A defining equation (3.1.2). The difficult part of obtaining the
equation (3.1.2) is solving the cell problem (3.1.4). Although explicit solutions
exist in the one-dimensional setting for piecewise constant A [56] and in the
two-dimensional setting where A is a layered material [27], in general a closed
form solution is not available and the cell problem must be solved numerically.
Note that in general the action of the divergence ∇· on terms involving A in
the cell problem necessitates the use of weak solutions for A /∈ C1(Td,Rd×d);

this is a commonly occurring situation in applications such as those arising
from porous medium flow, or to vector-valued generalizations of the setting
here to elasticity, rendering the numerical solution non-trivial. For this reason,
it is potentially valuable to approximate the solution map

G : A 7→ χ, (3.1.6)

defined by the cell problem, using a map defined by a neural operator. More
generally it is foundational to the broader program of learning homogenized
constitutive models from data to thoroughly study this issue for the divergence
form elliptic equation as the insights gained will be important for understand-
ing the learning of more complex parameterized homogenized models, such as
those arising in nonlinear elasticity, viscoelasticity, and plasticity.

The full map from A to the homogenized tensor A is expressed by A 7→
(χ,A) 7→ A, and one could instead learn the map

F : A 7→ A. (3.1.7)

Since the map (χ,A) 7→ A is is defined by a quadrature, we focus on the
approximation of A 7→ χ and state equivalent results for the map A 7→ A that
emerge as consequences of the approximation of χ. Direct learning of A is
addressed in Chapter 5. In this work we make the following contributions:

1. We state and prove universal approximation theorems for the map G

defined by (3.1.4) and (3.1.6), and map F defined by (3.1.3), (3.1.4),
and (3.1.7).

51

2. We provide explicit examples of microstructures which satisfy the hy-
potheses of our theorems; these include microstructures generated by
probability measures which generate discontinuous functions in BV.

3. We provide numerical experiments to demonstrate the ability of neural
operators to approximate the solution map on four different classes of
material parameters A, all covered by our theoretical setting.

We provide an overview of the literature followed by a discussion of stability
estimates for (3.1.4), with respect to variations in A; these are at the heart
of the analysis of universal approximation. The main body of the text then
commences with Section 3.2, which characterizes the microstructures of inter-
est to us in the context of continuum mechanics. Section 3.3 states universal
approximation theorems for G(·) and F (·), using the Fourier neural operator.
In Section 3.4 we give numerical experiments illustrating the approximation
of the map G defined by (3.1.6) on microstructures of interest in continuum
mechanics. Details of the stability estimates, the proofs of universal approx-
imation theorems, properties of the microstructures, and details of numerical
experiments are given in Appendices B.1, B.2, B.3, and B.4 respectively.

Literature Review

Homogenization aims to derive macroscopic equations that describe the effec-
tive properties and behavior of solutions to problems at larger scales given a
system that exhibits behavior at one or more smaller scales. Although it is de-
veloped for the various cases of random, statistically stationary, and periodic
small-scale structures, we work here entirely in the periodic setting. The un-
derlying assumption of periodic homogenization theory is that the coefficient
is periodic in the small-scale variable, and that the scale separation is large
compared to the macroscopic scales of interest. Convergence of the solution
of the multiscale problem to the homogenized solution is well studied; see [41,
40]. We refer to the texts [26, 59, 27] for more comprehensive citations to
the literature. Homogenization has found extensive application in the setting
of continuum mechanics [60] where, for many multiscale materials, the scale-
separation assumption is natural. In this work, we are motivated in part by
learning constitutive models for solid materials, where crystalline microstruc-
ture renders the material parameters discontinuous and may include corner
interfaces. This difficulty has been explored extensively in the context of nu-

52

merical methods for PDEs, particularly with adaptive finite element methods
[61, 62, 63, 64].

There is a significant body of work on the approximation theory associated
with parametrically dependent solutions of PDEs, including viewing these so-
lution as a map between the function space of the parameter and the function
space of the solution, especially for problems possessing holomorphic regularity
[65, 66, 67]. This work could potentially be used to study the cell problem for
homogenization that is our focus here. However, there has been recent interest
in taking a data-driven approach to solving PDEs via machine learning because
of its flexibility and ease of implementation. A particular approach to learn-
ing solutions to PDEs is operator learning, a machine learning methodology
where the map to be learned is viewed as an operator acting between infinite-
dimensional function spaces rather than between finite-dimensional spaces [68,
19, 23, 69, 52]. Determining whether, and then when, operator learning models
have advantages over classical numerical methods in solving PDEs remains an
active area of research [70]. The paper [71] makes a contribution to this area,
in the context of the divergence form elliptic PDE and the map from coefficient
to solution when the coefficient is analytic over its domain; the authors prove
that ϵ error is achievable for a DeepONet [23] of size only polylogarithmic
in ϵ, leveraging the exponential convergence of spectral collocation methods
for boundary value problems with analytic solutions. However, in the setting
of learning homogenized constitutive laws in material science, discontinuous
coefficients form a natural focus and indeed form the focus of this work. A
few characteristics make operator learning a promising option in this context.
First, machine learning has been groundbreaking in application settings with
no clear underlying equations, such as computer vision and language models
[72, 73]. In constitutive modeling, though the microscale constitutive laws are
known, the homogenized equations are generally unknown and can incorporate
dependencies that are not present on the microscale, such as history depen-
dence, anisotropy, and slip-stick behavior [38, 74]. Thus, constitutive models
lie in a partially equation-free setting where data-driven methods could be
useful. Second, machine learned models as surrogates for expensive computa-
tion can be valuable when the cost of producing data and training the model
can be amortized over many forward uses of the trained model. Since the
same materials are often used for fabrication over long time periods, this can
be a setting where the upfront cost of data production and model training is

53

justified.

Other work has already begun to explore the use of data-driven methods for
constitutive modeling; a general review of the problem and its challenges, in
the context of constitutive modeling of composite materials, may be found in
[75]. Several works use the popular framework of physics-informed machine
learning to approach the problem [76, 77, 78, 79]. In [51], physical constraints
are enforced on the network architecture while learning nonlinear elastic con-
stitutive laws. In [80], the model is given access to additional problem-specific
physical knowledge. Similarly, the work of [81] predicts the Cholesky factor
of the tangent stiffness matrix from which the stress may be calculated; this
method enforces certain physical criteria. The paper [82] studies approxima-
tion error and uncertainty quantification for this learning problem. In [83],
a derivative-free approach is taken to learning homogenized solutions where
regularity of the material coefficient is assumed. The work of [29] illustrates
the potential of operator learning methodology to model constitutive laws
with history dependence, such as those that arise in crystal plasticity. Finally,
a number of further works demonstrate empirically the potential of learning
constitutive models, including [49, 84, 85, 86].

However, the underlying theory behind operator learning for constitutive mod-
els lags behind its empirical application. In [56], approximation theories are
developed to justify the use of a recurrent Markovian architecture that per-
forms well in application settings with history dependence. This architecture
is further explored in [16] with more complex microstructures. Universal ap-
proximation results are a first step in developing theory for learning because
they guarantee that there exists an ϵ-approximate operator within the operator
approximation class, which is consistent with an assumed true model under-
lying the data [4, 87, 52, 20]. In addition to universal approximation, further
insight may be gained by seeking to quantify the data or model size required
to obtain a given level of accuracy; the papers [87, 20, 88] also contain work in
this direction, as do the papers [89, 90], which build on the analysis developed
in [65, 66, 67] referred to above. In our work we leverage an existing univer-
sal approximation theorem for Fourier neural operators (FNOs), a particular
practically useful architecture from within the neural operator (NO) class [20].
We take two different approaches to proving approximation theorems based
on separate PDE solution stability results in pursuit of a more robust under-

54

standing of the learning problem. Since the state of the field is in its infancy,
it is valuable to have different approaches to these analysis problems. Finally,
we perform numerical experiments on various microstructures to understand
the practical effects of non-smooth PDE coefficients in learning solutions. We
highlight the fact that in this chapter we do not tackle issues related to the
non-convex optimization problem at the heart of training neural networks; we
simply use state of the art stochastic gradient descent for training, noting that
theory explaining its excellent empirical behaviour is lacking.

Throughout this chapter we focus on equation (3.1.1), which describes a con-
ductivity equation in a heterogeneous medium; a natural generalization of
interest is to the constitutive law of linear elasticity, in which the solution
is vector-valued and the coefficient is a fourth order tensor. Though it is a
linear elliptic equation, we echo the sentiment of Blanc and Le Bris [59] with
their warning “do not underestimate the difficulty of equation (3.1.1).” There
are many effects to be understood in this setting, and resolving learning chal-
lenges is a key step towards understanding similar questions for the learning of
parametric dependence in more complex homogenized constitutive laws where
machine learning may prove particularly useful.

Stability Estimates

At the heart of universal approximation theorems is stability of the solution
map (3.1.6); in particular continuity of the map for certain classes of A. In this
subsection, we present three key stability results that are used to prove the
approximation theorems in Section 3.3. The proofs of the following stability
estimates may all be found in Appendix B.1.

A first strike at the stability of the solution map (3.1.6) is a modification of
the classic L∞/H1 Lipschitz continuity result for dependence of the solution
of elliptic PDEs on the coefficient; here generalization is necessary because the
coefficient also appears on the right-hand side of the equation defining G(·).

Proposition 3.1.1. Consider the cell problem defined by equation (3.1.4).
The following hold:

1. If A ∈ PDα,β, then (3.1.4) has a unique solution χ ∈ Ḣ1(Td;Rd) and

∥χ∥Ḣ1(Td;Rd) ≤
√
dβ

α
.

55

2. For χ(1) and χ(2) solutions to the cell problem in equation (3.1.4) asso-
ciated with coefficients A(1), A(2) ∈ PDα,β, respectively, it follows that

∥χ(2) − χ(1)∥Ḣ1(Td;Rd) ≤
√
d

α

(
1 +

β

α

)
∥A(1) − A(2)∥L∞(Td;Rd×d). (3.1.8)

♢

However, this perturbation result is insufficient for approximation theory be-
cause the space L∞ is not separable and it is not natural to develop approx-
imation theory in such spaces [91, Chapter 9]. While it is possible to define
the problem on a separable subspace of L∞ (see Lemma B.1.1) such spaces
are not particularly useful in applications to micromechanics. Many natural
models for realistic microstructures work with classes of discontinuous func-
tions in which the boundary of material discontinuity can occur anywhere in
the domain. Such functions cannot be contained in any separable subspace
of L∞; see Lemma B.1.2. To deal with this issue it is desirable to establish
continuity from Lq to Ḣ1 for some q ∈ [2,∞). To this end, we provide two
additional stability results. The first stability result gives continuity, but not
Lipschitz continuity, from L2 to Ḣ1. The second stability result gives Lipschitz
continuity from Lq to Ḣ1, some q ∈ (2,∞).

Proposition 3.1.2. Endow PDα,β with the L2(Td;Rd×d) induced topology and
let K ⊂ PDα,β be a closed set. Define the mapping G : K → Ḣ1(Td;Rd) by
A 7→ χ as given by (3.1.4). Then there exists a bounded continuous mapping

G ∈ C(L2(Td; Rd×d); Ḣ1(Td;Rd))

such that G(A) = G(A) for any A ∈ K. ♢

The preceding L2 continuity proposition is used to prove the approximation
results for the FNO in Theorems 3.3.2 and 3.3.3. While not necessary for the
approximation theory proofs, the following proposition on Lipschitz continuity
from Lq to Ḣ1 establishes a more concrete bound on the approximation error,
which allows for additional analysis such as providing rough bounds on grid
error as discussed in Section 3.4.

Proposition 3.1.3. There exists q0 ∈ (2,∞) such that, for all q satisfying
q ∈ (q0,∞], the following holds. Endow PDα,β with the Lq(Td;Rd×d) topology

56

and letK ⊂ PDα,β be a closed set. Define the mappingG : K → Ḣ1(Td;Rd) by
A 7→ χ as given by (3.1.4). Then there exists a bounded Lipschitz-continuous
mapping

G : Lq(Td;Rd×d) → Ḣ1(Td;Rd)

such that G(A) = G(A) for any A ∈ K. ♢

Remark 3.1.4. Explicit upper bounds for q0 in Proposition 3.1.3 exist and
are discussed in Remark B.1.14. ♢

3.2 Microstructures

The main application area of this work is constitutive modeling. In this sec-
tion we describe various classes of microstructures that our theory covers. In
particular, we describe four classes of microstructures in two dimensions:

1. Smooth microstructures generated via truncated, rescaled log-normal
random fields.

2. Discontinuous microstructures with smooth interfaces generated by Lip-
schitz star-shaped inclusions.

3. Discontinuous microstructures with square inclusions.

4. Voronoi crystal microstructures.

Visualizations of examples of these microstructures may be found in Figure
3.1. We emphasize that all four examples lead to functions in BV, a fact that
we exploit in Section 3.4 when showing that our abstract analysis from Section
3.3 applies to them all.

Smooth Star Square Voronoi

Figure 3.1: Microstructure Examples

Smooth Microstructures The smooth microstructures are generated by
exponentiating a rescaled Gaussian random field. A is symmetric and coercive
everywhere in the domain with a bounded eigenvalue ratio. Furthermore, the

57

smooth function A and its derivatives are Lipschitz. Our theory is developed
specifically to analyze non-smooth microstructures, so this example is used
mainly as a point of comparison.

Star Inclusions For the star inclusion microstructure, A is taken to be
constant inside and outside the star-shaped boundary. The boundary function
is smooth and Lipschitz in each of its derivatives. A is positive and coercive in
both regions with a bounded eigenvalue ratio. This microstructure introduces
discontinuities, but the boundary remains smooth.

Square Inclusions For the square inclusion microstructure, A is taken to be
constant inside and outside the square boundary. Since we assume periodicity,
without loss of generality the square inclusion is centered. The size of the
square inclusion within the cell is varied between samples as are the constant
values of A. This microstructure builds on the complexity of the star inclusion
microstructure by adding corners to the inclusion boundary.

Voronoi Interfaces The Voronoi crystal microstructures are generated by
assuming a random Voronoi tessellation and letting A be piecewise constant
taking a single value on each Voronoi cell. The values of A on the cells and
locations of the cell centers may be varied. This is the most complex mi-
crostructure among our examples and is a primary motivation for this work as
Voronoi tessellations are a common model for crystal structure in materials.

3.3 Universal Approximation Results

In this section we state the two approximation theorems for learning solution
operators to the cell problem. Theorem 3.3.2 concerns learning the map A→ χ

in equation (3.1.4), and Theorem 3.3.3 concerns learning the map A → A

described by the combination of equations (3.1.4) and (3.1.3). Theorems 3.3.2
and 3.3.3 are specific to learning a Fourier neural operator (FNO), which is
a subclass of the general neural operator. The proofs of the theorems in this
section may be found in Appendix B.2.

Definitions of Neural Operators

First, we define a general neural operator (NO). The definition of the NO and
the FNO are largely taken from [52], and we refer to this work for a more in-

58

depth understanding of these operators. In this work, we restrict the domain
to the torus.

Definition 3.3.1 (General Neural Operator). Let A and U be two Banach
spaces of real vector-valued functions over domain Td. Assume input functions
a ∈ A are Rda-valued while the output functions u ∈ U are Rdu-valued. The
neural operator architecture Gθ : A → U is

Gθ = Q ◦ LT−1 ◦ · · · ◦ L0 ◦ P ,
vt+1 = Ltvt = σt(Wtvt +Ktvt + bt), t = 0, 1, . . . , T − 1

with v0 = P(a), u = Q(vT), and Gθ(a) = u. Here, P : Rda → Rdv0 is a
local lifting map, Q : RdvT → Rdu is a local projection map and the σt are
fixed nonlinear activation functions acting locally as maps Rdvt+1 → Rdvt+1 in
each layer (with all of P , Q, and the σt viewed as operators acting pointwise,
or pointwise almost everywhere, over the domain Td), Wt ∈ Rdvt+1×dvt are
matrices, Kt : {vt : Td → Rdvt} → {vt+1 : Td → Rdvt+1} are integral kernel
operators and bt : Td → Rdvt+1 are bias functions. For any m ∈ N0, the
activation functions σt are restricted to the set of continuous R → R maps
which make real-valued, feed-forward neural networks dense in Cm(Rd) on
compact sets for any fixed network depth.1 The integral kernel operators Kt

are defined as
(Ktvt)(x) =

ˆ
Td

κt(x, y)vt(y) dy

with standard multi-layered perceptrons (MLP) κt : Td × Td → Rdvt+1×dvt .
We denote by θ the collection of parameters that specify Gθ, which include
the weights Wt, biases bt, parameters of the kernels κt, and the parameters
describing the lifting and projection maps P and Q (usually also MLPs). ♢

The FNO is a subclass of the NO. Recall its definition in the introduction of
this thesis in 1.3.1.

From the definition of the FNO, we note that parameterizing the kernels in
the Fourier domain allows for efficient computation using the FFT. We refer
to [52, 19] for additional details.

Finally we observe that in numerous applications, an example being learning
of the map A 7→ A (3.1.3), (3.1.4), it is desirable to modify the FNO so

1We note that all globally Lipschitz, non-polynomial, Cm(R) functions belong to this
class.

59

that the output space is simply a Euclidean space, and not a function space;
this generalization is explored in [21]. An alternative approach, exemplified
by Theorem 3.3.3 in the next subsection, is to allow the FNO output to be
a function that may be evaluated at any point in the domain to yield an
approximation of the point in Euclidean space.

Main Theorems

These two theorems guarantee the existence of an FNO approximating the
maps A 7→ χ and A 7→ A and are based on the stability estimate for continuity
from L2 → Ḣ1 obtained in Proposition 3.1.2. Both theorems are proved in
Appendix B.2.

Theorem 3.3.2. Let K ⊂ PDα,β and define the mapping G : K → Ḣ1(Td;Rd)

by A 7→ χ as given by (3.1.4). Assume in addition that K is compact in
L2(Td;Rd×d). Then, for any ϵ > 0, there exists an FNO Ψ : K → Ḣ1(Td;Rd)

such that
sup
A∈K

∥G(A)−Ψ(A)∥Ḣ1 < ϵ.

♢

Theorem 3.3.3. Let K ⊂ PDα,β and define the mapping F : K → Rd×d by
A 7→ A as given by (3.1.3), (3.1.4). Assume in addition that K is compact in
L2(Td;Rd×d). Then, for any ϵ > 0, there exists an FNO Φ : K → L∞(Td;Rd×d)

such that
sup
A∈K

sup
x∈Td

|F (A)− Φ(A)(x)|F < ϵ.

♢

The above approximation results can also be formulated to hold, on average,
over any probability measure with a finite second moment that is supported
on PDα,β. In particular, if we let µ be such a probability measure then there
exists an FNO or a neural operator Ψ such that

EA∼µ∥G(A)−Ψ(A)∥Ḣ1 < ϵ. (3.3.1)

This follows by applying Theorem 18 from [20] in the respective proofs instead
of Theorem 5 from the same work. We do not carry out the full details here.
While this allows approximation over the non-compact set PDα,β, the error can
only be controlled on average instead of uniformly. In Section 3.4, inputs are

60

generated via probability measures supported on compact subsets of L2; thus
both the approximation Theorem 3.3.2, and its analog in the form (3.3.1), are
relevant.

3.4 Numerical Experiments

In this section, we show that it is possible to find good operator approximations
of the homogenization map (3.1.6), defined by (3.1.4), in practice. We focus
on use of the FNO and note that, while Theorems 3.3.2 and 3.3.3 assert the
existence of desirable operator approximations, they are not constructive and
do not come equipped with error estimates. We find approximations using
standard empirical loss minimization techniques and, by means of numerical
experiments, quantify the complexity with respect to volume of data and with
respect to size of parametric approximation.

We work with the microstructures from Section 3.2. In this context we note
that Theorems 3.3.2 and 3.3.3 apply. To demonstrate this it is necessary to
establish that the subsets of coefficient functions employed are compact in L2.
We achieve this by noting that all our sets of coefficient functions are con-
tained in PDα,β ∩ BV. Then we use Lemma B.3.1 to establish compactness
of these subsets of coefficient functions in L2. The smooth microstructure
example serves as a comparison case for examining the impact of discontin-
uous coefficients on the learning accuracy. The remaining three examples
present different approximation theoretic challenges including curved bound-
aries (star inclusions), corners (square inclusions), and junctions of several
domains (Voronoi).

The experiments are all conducted using an FNO with a fixed number T = 4

of hidden layers. The two remaining parameters to vary are the channel width
dv and the number of Fourier modes kmax. For implementation details, see
Appendix B.4. We make the following observations based on the numerical
experiments.

1. The effective A tensors computed from the model predicted solutions
exhibit relative error under 1% for all examples; the effective A is com-
puted from the learned cell problem solution χ using equation (3.1.3).

2. The error in the learned χ is significantly higher along discontinuous
material boundaries and corner interfaces, as expected. However, the

61

FNO operator approximation is able to approximate the solution with
reasonable relative error even for the most complex case; this most
complex case concerns the set of input functions with varying Voronoi
geometry and varying microstructural properties within the domain.

3. In comparison with the smooth microstructure case, learning the map
for the Voronoi microstructure requires substantially more data to avoid
training a model which plateaus at a poor level of accuracy.

4. When compared with the smooth microstructure case, the error for the
Voronoi microstructure decreases more slowly with respect to increasing
model width, but shows more favourable response with respect to in-
creasing the number of Fourier modes.

5. Models trained at one discretization may be evaluated at different dis-
cretizations for both the smooth and Voronoi microstructures as is char-
acteristic of the FNO. The Voronoi microstructure exhibits, empirically,
greater robustness to changes in discretization.

We first describe implementation details of each of the microstructures, and
then we show and discuss results of numerical experiments.

Microstructure Implementation

baFor each microstructure, two positive eigenvalues and three components of
the two eigenvectors are randomly generated, and the final eigenvector com-
ponent is chosen to enforce symmetry. All eigenvalue ratios are at most e2 by
construction. In this manner, A is symmetric and coercive and has a bounded
eigenvalue ratio.

Smooth Microstructures The smooth microstructures are generated by
exponentiating a rescaled approximation of a Gaussian random field. The
random field used to generate the eigenvalues and three eigenvector compo-
nents of A(x) is as follows:

λ̂i(x) =
4∑

k1,k2=1

ξ
(1)
k1,k2

sin(2πk1x1) cos(2πk2x2) + ξ
(2)
k1,k2

cos(2πk1x1) sin(2πk2x2),

λi(x) = exp

(
λ̂i(x)

maxx′∈[0,1]2 |λ̂i(x′)|

)
,

62

where ξ(j)k1,k2
are i.i.d. normal Gaussian random variables.

Star-Shaped Inclusions The star-shaped inclusions are generated by defin-
ing a random Lipschitz polar boundary function as

r(θ) = a+ b
5∑

k=1

ξk sin(kθ),

where ξk are i.i.d. uniform random variables U [−1, 1], and a and b are con-
stants that guarantee 0 < ϵ < r < 0.5 − ϵ for some fixed ϵ > 0. Then A(x)

is constant inside and outside the boundary. We randomly sample eigenval-
ues for A on each domain via λi ∼ U [e−1, e]. The three components of the
eigenvectors are i.i.d. normal random variables.

Square Inclusions The radius of the square is randomly generated via

r = a+ bζ,

where ζ is a uniform random variable on [0, 1] and a and b are positive constants
that guarantee 0 < ϵ < r < 0.5 − ϵ for some fixed ϵ > 0. The values of A
on each of the constant domains are chosen in the same manner as in the
star-shaped inclusion case.

Voronoi Interfaces The Voronoi crystal microstructure has constant A on
each Voronoi cell and is chosen uniformly at random in the same manner as
for the star inclusions. Voronoi tessellations are a common model for crystal
structure in materials. In one Voronoi example, we fix the geometry for all
data, and in a second Voronoi example we vary the geometry by randomly
sampling five cell centers from a uniform distribution on the unit square.

Results

Each FNO model is trained using the empirical estimate of the mean squared
H1 norm:

Loss(θ) =
1

N

N∑
n=1

(
∥χ(n) − χ̂(n)∥2L2 + ∥∇χ(n) −∇χ̂(n)∥2L2

)
, (3.4.1)

where n is the sample index, χ is the true solution, and χ̂ is the FNO approxi-
mation of the solution parameterized by θ. In the analysis, we examine several

63

different measures of error, including the following relative H1 and relative
W 1,10 errors:

Relative H1 Error (RHE) =
1

N

N∑
n=1

(∥χ(n) − χ̂(n)∥2L2 + ∥∇χ(n) −∇χ̂(n)∥2L2

∥χ(n)∥2L2 + ∥∇χ(n)∥2L2

) 1
2

(3.4.2a)

Relative W 1,10 Error (RWE) =
1

N

N∑
n=1

(∥χ(n) − χ̂(n)∥10L10 + ∥∇χ(n) −∇χ̂(n)∥10L10

∥χ(n)∥10L10 + ∥∇χ(n)∥10L10

) 1
10

.

(3.4.2b)

The W 1,10 norm gives a sense of the higher errors that occur at interfaces,
corners, and functions. We could have used W 1,p for any p large enough.

Finally, we also look at error in A, which we scale by the difference between
the arithmetic and harmonic mean of A. Any effective A should have a norm
in this range; these are known in mechanics as Voigt-Reuss bounds and have
a physical interpretation as bounds obtained via energy principles by ignoring
equilibrium for the upper bound (arithmetic mean) and ignoring compatibility
for the lower bound (harmonic mean) [92]. The resulting error measure is given
by

Relative A Error (RAE) =
∥A− Â∥F
am − ah

, (3.4.3)

where the arithmetic mean am and harmonic mean ah are given by

am =

∥∥∥∥ˆ
T2

A(x) dx

∥∥∥∥
F

ah =

∥∥∥∥∥
(ˆ

T2

A−1(x) dx

)−1
∥∥∥∥∥
F

.

We note that using am − ah rather than ∥A∥F as a scaling factor in equation
(3.4.3) leads to a larger error value, so achieving low error in this measure of
distance is harder.

We train models on five different datasets. Visualizations of the median-error
test samples for each example may be viewed in Figure 3.2, and the numerical
errors are shown in Figure 3.3. Each of these models is trained on 9500 data
samples generated using an FE solver on a triangular mesh with the solution
interpolated to a 128 × 128 grid. Additional model details may be found in
Appendix B.4.

64

S
m

oo
th

True χ1 FNO χ1 Error χ1 True ∇χ1 FNO ∇χ1 Error ∇χ1

S
ta

r
S

qu
ar

e
V

or
on

oi

−2

0

2

×10−2

−2

0

2

×10−2

1

2

3

4
×10−4

1

2

3

4

×10−1

1

2

3

4

×10−1

2

4

6

8

×10−3

−4

−2

0

2

4
×10−2

−4

−2

0

2

4
×10−2

2

4

6

8

×10−4

1

2

3
×10−1

1

2

3
×10−1

2

4

6

×10−2

−2

−1

0

1

2

×10−2

−2

−1

0

1

2

×10−2

0.5

1.0

1.5

×10−3

1

2

3

×10−1

1

2

3

×10−1

0.25

0.50

0.75

1.00
×10−1

−7.5

−5.0

−2.5

0.0

2.5
×10−2

−7.5

−5.0

−2.5

0.0

2.5
×10−2

0.5

1.0

1.5
×10−3

2

4

×10−1

2

4

×10−1

0.5

1.0

×10−1

Figure 3.2: Visualization of the trained models evaluated on test samples that
gave median relative H1 error for each microstructure. The microstructure
inputs of each row correspond to those of Figure 3.1. The first shows the true
χ1, the second shows the FNO predicted χ1, and the third shows the absolute
value of the error between the true and predicted χ1. The fourth column shows
the 2-norm of the gradient of the true χ1, and the fifth shows the 2-norm of
the gradient of the predicted χ1. The last column shows the 2-norm of the
difference between the two gradients.

We perform an experiment to test the discretization robustness of the FNO
model, results of which are shown in Figure 3.4. The models are trained with
data from the resolution 128 × 128 and evaluated on test data with different
resolution. We emphasize that evaluating the FNO on different resolutions is
trivial in implementation by design.

We also investigate the effects of the number of training data and the model
size on the error for the smooth and Voronoi microstructures; similar experi-
ments, for different operator learning problems, are presented in [93]. A plot
of error versus training data may be found in Figure 3.5, and plots of error
versus the number of Fourier modes for fixed total model size, as measured by
(model width) × (number Fourier modes), may be found in Figure 3.6. Fig-
ure 3.6 addresses the question of how to optimally distribute computational
budget through different parameterizations to achieve minimum error at given
cost as measured by number of parameters; it should be compared to similar
experiments in [94].

65

Microstructure Mean RHE Mean RWE Median RAE
Smooth 0.0062± 1 · 10−4 0.0091± 1 · 10−4 0.0007± 1 · 10−5

Star 0.0313± 1 · 10−4 0.1318± 5 · 10−4 0.0014± 3 · 10−5

Square 0.1012± 5 · 10−4 0.2741± 2 · 10−3 0.0047± 1 · 10−4

Voronoi 0.0565± 4 · 10−4 0.2129± 3 · 10−3 0.0027± 8 · 10−5

Voronoi
(Fixed Geometry) 0.0073± 3 · 10−5 0.0140± 3 · 10−4 0.0007± 2 · 10−5

Figure 3.3: Errors for each each numerical experi-
ment; five sample models are trained for each mi-
crostructure. The expressions for the RHE (Rela-
tive H1 Error), RWE (Relative W 1,10 Error) and
RAE (Relative A Error) may be found in equa-
tions (3.4.2) and (3.4.3). The errors are evaluated
over a test set of size 500. All examples have vary-
ing geometry except the second Voronoi example.

3264128256512
Grid Size

10−2

10−1

100

M
ea

n
R

el
at

iv
e
H

1
E

rr
or

QQQ

Voronoi

Smooth

Training Resolution

Figure 3.4: Five sam-
ple models trained on
Smooth and Voronoi data
at 128 × 128 grid resolu-
tion evaluated at different
resolutions.

1042× 103 3× 103 4× 103 6× 103

Number of Training Samples

10−2

M
ea

n
H

1
E

rr
or

Smooth slope: -0.65

Voronoi slope: -0.25

O(N−1/2)

QQQ

Voronoi

Smooth

Figure 3.5: A com-
parison of test error
for different amounts of
training data for models
trained on Voronoi and
Smooth data. Five sam-
ple models are used for
each data point.

6 12 18 24 36 48
Modes

10−2

10−1

M
ea

n
R

el
at

iv
e
H

1
E

rr
or

Smooth Microstructure

Size = 144

Size = 288

Size = 576

Size = 1152

6 12 18 24 36 48
Modes

10−2

10−1

M
ea

n
R

el
at

iv
e
H

1
E

rr
or

Voronoi Microstructure

Size = 144

Size = 288

Size = 576

Size = 1152

Figure 3.6: Relative H1 error versus model size
for the smooth and Voronoi examples with varying
geometry. The number of Fourier modes in each
direction and the model width were varied. Each
line indicates a constant product of modes×width.
Training data size was fixed at 9500 samples, and
five samples were used for each data point.

Discussion

As can be seen from the data in Figure 3.3, the microstructures exhibiting dis-
continuities lead to higher model error than the smooth microstructure, and
the introduction of corner interfaces leads to further increase in error. The
visualizations of the median-error test samples in Figure 3.2 give some intu-
ition; error is an order of magnitude higher along discontinuous boundaries;
this is most apparent in the gradient. The true solution gradient often takes
its most extreme values along the discontinuities, and the RWE gives an indi-
cation of how well the model captures the most extreme values in the solution.
Unsurprisingly, this error is much higher than the RHE, but we note that it

66

is confined to a small area of the domain along discontinuous boundaries and
corner interfaces.

In the discretization-robustness experiment described in Figure 3.4, we observe
that the Voronoi model exhibits greater robustness to changes in discretization.
We hypothesize that, in the direction of decreasing resolution, the smaller error
increase for the Voronoi model, in comparison with the smooth model, could be
due to the piecewise-constant nature of the Voronoi microstructure on faces;
improved resolution here does not help. On the other hand, for larger grid
sizes, increased resolution on corners and discontinuities can help, which could
explain the decrease in error from grid edge size of 128 to 256 for the Voronoi
model while the smooth model increases in error. One could fine-tune the
trained models with small amounts of data from different resolutions, but we
leave this transfer learning exploration to future work.

We also examine the effect of the number of training data samples and the
FNO size on model accuracy for the smooth and Voronoi microstructures. For
data size dependence, we observe in Figure 3.5 that for these two microstruc-
tures, the test error scales ≈ N−0.65 and ≈ N−0.25, respectively, where N is
the number of training data. In theory, we do not expect to beat the Monte
Carlo error decay of 1√

N
[95]. We note that this is comparable to the behavior

during training over 400 epochs; the test error for the smooth microstructure
continues to decrease over the entire training periodic, but the test error for the
Voronoi microstructure plateaus by around 100 epochs. The model size also
presents a qualitatively different effect on error for the smooth and Voronoi
microstructures. In Figure 3.6, we see the tradeoff between the number of
Fourier modes and the model width for approximately constant model size,
measured as the product of the width and number of modes. The Voronoi
example benefits from additional Fourier modes, whereas the smooth exam-
ple worsens. On the other hand, the smooth model benefits more from an
increase in model width. We refer to [93, 94] for in-depth numerical studies of
errors, choice of hyperparameters, and parameter distributions for FNO; here
we highlight only the qualitative differences between the model behavior for
different microstructures.

We also note that a significant portion of the model error may be attributed to
grid ambiguity; with a 128× 128 grid, the FNO does not know where between
gridpoints a discontinuity may fall. This may be quantified empirically in the

67

case of the square microstructure. We perform an experiment in which we
create data of square microstructure inclusions whose boundary falls exactly
on the gridpoints. One dataset treats the boundary as open, and the other
treats the boundary as closed; the input grid points that fall on the boundary
differ between the two datasets. We quantify grid ambiguity error by the
difference in the outputs of a model given both the open square data and
the closed square data. We find that the absolute H1 norm of the difference
between these two outputs is 0.041, which is slightly under twice the absolute
H1 norm of the output compared to the true solution, which has a value of
0.025. We hypothesize that the model learns to assume the boundary falls
near the middle of the grid square, which explains why the output difference
between the two datasets is roughly twice the true error. From a theory
standpoint, one could bound the Lipschitz constant of the FNO and compare
it to the Lipschitz constant of the true map described by Proposition 3.1.3.
However, we leave the theoretical estimates of error rates to future work.

Finally, we compare the error in the effective A defined in (3.1.3). This error
is scaled by a difference between the Frobenius norms of the arithmetic and
harmonic means of the true A because the Frobenius norm of the true A should
fall within that range. For this reason, in the case where the arithmetic and
harmonic means are very close, as is frequently the case for the square and
star inclusions, it is not valuable to learn the true A. On the other hand, the
varying-geometry Voronoi microstructure example on average has about 100
times greater difference between the arithmetic and harmonic means, in com-
parison with the star and square microstructure examples. This characteristic
of the Voronoi microstructure further underscores the value of learning in this
setting.

3.5 Conclusions

In this work, we establish approximation theory for learning the solution op-
erator arising from the elliptic homogenization cell problem (3.1.4), viewed
as a mapping from the coefficient to the solution; the theory allows for dis-
continuous coefficients. We also perform numerical experiments that validate
the theory, explore qualitative differences between various microstructures,
and quantify error/cost trade-offs in the approximation. We provide two dif-
ferent stability results for the underlying solutions that build understanding
of the underlying map. These stability results, when combined with existing

68

universal approximation results for neural operators, result in rigorous approx-
imation theory for learning in this problem setting. On the empirical side we
provide, and then study numerically, examples of various microstructures that
satisfy the conditions of the approximation theory. We observe that model
error is dominated by error along discontinuous and corner interfaces, and
that discontinuous microstructures give rise to qualitatively different learning
behavior. Finally, we remark that the learned effective properties are highly
accurate, especially in the case of the Voronoi microstructure that we regard
as the most complex. Since discontinuous microstructures arise naturally in
solid mechanics, understanding learning behavior in this context is an impor-
tant prerequisite for using machine learning for applications. In this area and
others, numerous questions remain which address the rigor necessary for use
of machine learning in scientific applications.

We have confined our studies to one of the canonical model problems of homog-
enization theory, the divergence form elliptic setting with periodic microstruc-
ture, to obtain deeper understanding of the learning constitutive laws. One
interesting potential extension of this work is the setting in which the mate-
rial coefficient A is not periodic but random with respect to the microstruc-
ture. Another is where it is only locally periodic and has dependence on the
macroscale variable as well; thus Aϵ = A(x, x

ϵ
). In this case, the form of the

cell problem (3.1.4) and homogenized coefficient (3.1.3) remain the same, but
A and χ both have parametric dependence on x. The approximation theory
and the empirical learning problem would grow in complexity in comparison
to what is developed here, but the resulting methodology could be useful and
foundational for understanding more complex constitutive models in which the
force balance equation couples to other variables. Indeed, the need for efficient
learning of constitutive models is particularly pressing in complex settings such
as crystal plasticity. We anticipate that the potential use of machine learning
to determine parametric dependence of constitutive models defined by homog-
enization will be for these more complex problems. The work described in this
chapter provides an underpinning conceptual approach, foundational analysis,
and set of numerical experiments that serve to underpin more applied work in
this field.

69

C h a p t e r 4

DISCRETIZATION ERROR OF FOURIER NEURAL
OPERATORS

This chapter is adapted from the following preprint:

[1] Samuel Lanthaler, Andrew M. Stuart, and Margaret Trautner. Dis-
cretization error of Fourier neural operators. 2024. arXiv: 2405.02221
[math.NA].

Operator learning is a variant of machine learning that is designed to approx-
imate maps between function spaces from data. The Fourier Neural Operator
(FNO) is one of the main model architectures used for operator learning. The
FNO combines linear and nonlinear operations in physical space with linear
operations in Fourier space, leading to a parameterized map acting between
function spaces. Although in definition, FNOs are objects in continuous space
and perform convolutions on a continuum, their implementation is a discretized
object performing computations on a grid, allowing efficient implementation
via the FFT. Thus, there is a discretization error between the continuum FNO
definition and the discretized object used in practice that is separate from
other previously analyzed sources of model error. We examine this discretiza-
tion error here and obtain algebraic rates of convergence in terms of the grid
resolution as a function of the input regularity. Numerical experiments that
validate the theory and describe model stability are performed. In addition,
an algorithm is presented that leverages the discretization error and model
error decomposition to optimize computational training time.

4.1 Introduction

Overview

While most learning architectures are designed to approximate maps between
finite-dimensional spaces, operator learning is a method that approximates
maps between infinite-dimensional function spaces. These maps appear com-
monly in scientific machine learning applications such as surrogate modeling
of partial differential equations (PDEs) or model discovery from data. Fourier
Neural Operators (FNOs) [19] are a type of operator learning architecture

https://arxiv.org/abs/2405.02221
https://arxiv.org/abs/2405.02221

70

that parameterize the model directly in function space, naturally generalizing
deep neural networks (DNNs). In particular, each hidden layer of an FNO
assigns a trainable integral kernel that acts on the hidden states by convolu-
tion in addition to the usual affine weights and biases of a DNN. Taking ad-
vantage of the duality between convolution and multiplication under Fourier
transforms, these convolutional kernels are represented by Fourier multiplier
matrices, whose components are optimized during training alongside the reg-
ular weights and biases acting in physical space. FNOs have proven to be
an effective and popular operator learning method in several PDE application
areas including weather forecasting [96], biomedical shape optimization [97],
and constitutive modeling [56]. It is thus of interest to study their theoretical
properties.

Although FNOs approximate maps between function spaces, in practice, these
functions must be discretized. In particular, kernel integral operators, includ-
ing the FNO, perform convolution via an integration that must be computed
numerically. The error arising from this difference is called aliasing error, and
during a forward pass of the FNO, the aliasing error propagates through the
subsequent model layers and may be amplified by nonlinearities. Thus, the
continuum FNO object differs from the implemented model due to discretiza-
tion error. This may be summarized by the following decomposition:

Ψ† −ΨN
FNO =

[
Ψ† −ΨFNO

]︸ ︷︷ ︸
model discrepancy

+
[
ΨFNO −ΨN

FNO

]︸ ︷︷ ︸
discretization error

. (4.1.1)

Here, Ψ† is the true map to be approximated by a data-driven model, ΨFNO

is the continuum FNO map, and ΨN
FNO is the discretized version of the FNO.

In previous analyses of the universal approximation properties of the FNO
[20, 52], the discretization error component is ignored completely; only the
continuum definition of the FNO is used. While this approach to universal
approximation is mathematically sound, it leaves the discretization compo-
nents of the error unquantified in practice. Understanding and controlling
this discretization error is as important for this model as bounding the model
discrepancy error arising from sources such as limited data, optimization, and
model capacity. In this chapter, we analyze the discretization error both in
theory and experimentally.

Aliasing error depends on the regularity, or smoothness, of the input function
in the Sobolev sense; this is well known in Fourier analysis. Thus, to bound the

71

error for an entire FNO implementation, regularity must be maintained as the
state passes through the layers of the network, including the nonlinear activa-
tion function. In particular, regularity-preserving properties of compositions
of nonlinear functions are required. Bounds of this type are given by Moser
[98] and form a key component of the proofs in this work. Because the smooth
GeLU (Gaussian Error Linear Unit) [99] activation preserve regularity, while
the non-differentiable ReLU activations do not, the analysis in this chapter is
confined to the former and extends to other smooth activation functions.

Contributions

In this chapter, we make the following contributions.

(C1) We bound the discretization error that results from implementing the
continuum FNO on a grid.

(C2) We validate this theory concerning the discretization error of the FNO
with numerical experiments.

(C3) We propose an adaptive subsampling algorithm for faster operator
learning training.

In Section 4.2 we set up the framework for our theoretical results. Section
4.3 studies the discretization error of the FNO in theory, making contribution
(C1). In Section 4.4 we present numerical experiments that illustrate the the-
ory and propose an algorithm for adaptively refining the discretization during
training, making contributions (C2, C3). We conclude in Section 4.5. The
appendices include a self-contained background on aliasing error as well as
additional proofs and technical details.

Related Work

Neural networks have been very successful in approximating solutions of partial
differential equations using data. Several approaches are used for such models,
including physics-informed neural networks (PINNs), constructive networks,
and operator learning models. In the case of PINNs, a standard feed-forward
machine learning architecture is trained with a loss function involving a con-
straint of satisfying the underlying PDE [9]. Another approach to applying
machine learning to PDEs is to construct approximating networks from clas-
sical PDE-solver methods. For example, in [100, 101, 102, 103], ReLU neural

72

networks are shown to replicate polynomial approximations and continuous,
piecewise-linear elements used in finite element methods exactly. Both of these
two approaches to approximating PDE solution maps require a choice of dis-
cretization within the model to approximate an infinite-dimensional operator.

Operator learning is a branch of machine learning that aims to approximate
maps between function spaces, which include solution maps defined by partial
differential equations (PDEs) [52]. Several operator learning architectures ex-
ist, including DeepONet [23], Fourier Neural Operators (FNO) [19], PCA-Net
[68], and random features models [69]. Our work focuses on FNOs, which di-
rectly parameterize the model in Fourier space through an integral kernel and
allow for changes in discretization in both the input and the output functions,
potentially allowing for non-uniform grids [104]. In addition, FNO takes ad-
vantage of the computational speedup of the FFT to gain additional model
capacity with less evaluation time. A key advantage of the FNO is that it
is a discretization-invariant operator in the sense that its definition involves
no discretization and its implementation can be trivially used on various dis-
cretizations with no change of parameter values.

Error analysis for operator learning begins with establishing universal approx-
imation: results which guarantee that, for a class of possible maps, a partic-
ular choice of model architecture, and a desired maximum error, there exists
a parameterization of the model that gives at most that error. Universal
approximation results are established for a variety of architectures including
ReLU neural networks in [4], DeepONet in [87], FNO in [20], and a general
class of neural operators in [52]. Following universal approximation, model
size bounds give a worst-case bound on the model parameter sizes required to
achieve a certain error threshold for particular classes of problems. These have
been established for FNO [20, 105], but the analysis uses only the continuum
definition of the FNO and ignores the fact that in practice the FNO imple-
mentation must work with a discretized version. In this work, we close the
error gap by quantifying and bounding the error that results from discretizing
the continuum FNO.

Perhaps the most conceptually similar work to ours is [106], which addresses
the fact that discretizations of neural operators deviate from their continuum
counterparts. The authors of [106] introduce an “alias-free” neural operator
that bypasses inconsistencies resulting from discretization. In practice, this

73

research direction has led to operator learning frameworks such as Convolu-
tional Neural Operators (CNO) [107], which are not strictly alias-free, but
reduce aliasing errors via spatial upsampling. These prior works have empiri-
cally shown the benefits and importance of carefully controlling discretization
errors in operator learning. Prior work has also examined the effects of chang-
ing the number of spectral modes in the implemented FNO and an algorithm
to optimize training with variable modes [108]. In this work, we also propose
an adaptive subsampling algorithm that varies the resolution of the data used
in training in a manner designed to minimize training time.

FNOs remain a widespread neural operator architecture, and an analysis of
errors resulting from numerical discretization have so far been missing from
the literature. To fill this gap, in this work we bound the discretization error of
FNOs and perform experiments that provide greater insight into the behavior
of this error.

4.2 Notation

Fix integer m. Let | · | denote the Euclidean norm on Rm, ∥ · ∥ the L2(Td,Rm)

norm, and ∥ · ∥∞ the L∞(Td) = L∞(Td,Rm) norm. Here, Td denotes the
d-dimensional torus, which we identify with [0, 1]d with periodic boundary
conditions; we simply write L2(Td) when no confusion will arise. Let ∥ · ∥2 be
the induced matrix 2-norm and ∥ · ∥F be the Frobenius norm. For a shallow
neural network ϕ(u) = A2σ(A1u + b) with matrices A1 and A2 and vector b,
we denote by ∥ϕ∥2NN := ∥A1∥2F + ∥A2∥2F + ∥b∥2F . For nonnegative integer s,
define the Sobolev space Hs(Td) = Hs(Td,Rm) as

Hs(Td) =

{
f : Td → Rm

∣∣∣ ∑
k∈Zd

(1 + |k|2s)|f̂(k)|2 <∞
}
, (4.2.1)

where f̂ denotes the Fourier transform of f . Define the semi-norm

|v|2s :=
ˆ
Td

v(−∆)sv dx

for functions v : Td → Rm. It is useful to consider the following equivalent
definition of the space Hs(Td) for integer s > d/2 in terms of this seminorm:

Hs(Td) = {f : Td → Rm | ∥f∥Hs <∞}
∥f∥Hs =

(
(2π)−2s|f |2s + ∥f∥2

)1/2
.

74

We say an element f ∈ Hs− if f ∈ Hs−ϵ for any ϵ > 0. Further, let X(N)

denote the d-dimensional grid 1
N
[N]d where

[N]d := {n ∈ Zd
≥0 | ni < N, i ∈ {1, . . . , d}}.

Here, ni is the ith entry of vector n. We assume N > 1 throughout this
work. We also introduce the following symmetric index set for the Fourier
coefficients: [[N]]d = [[N]]× · · · × [[N]], where

[[N]] :=

{−K, . . . ,K}, (N = 2K + 1 is odd),

{−K, . . . ,K − 1}, (N = 2K is even).

Irrespective of whether N is odd or even, [[N]]d contains Nd elements. For
functions u : Td → Rm, we abuse notation slightly and use ∥u∥ℓ2(n∈[N]d) to
indicate the quantity,

∥u∥ℓ2(n∈[N]d) :=
(∑

n∈[N]d

|u(xn)|2
)1/2

.

This is a norm for the vector found by evaluating u at grid points. Note that
for xn = 1

N
n where n ∈ [N]d, it holds that xn ∈ Td, and if u ∈ L2(Td) is

Riemann integrable,

lim
N→∞

1

Nd/2
∥u∥ℓ2(n∈[N]d) = ∥u∥L2(Td). (4.2.2)

Finally, we define the FNO. We remark that this constitutes the standard
definition of the FNO with the exception that we ask for smooth activation
functions. At a high level, the FNO is a composition of layers, where the first
and final layers are lifting and projection maps, and the internal layers are
an activation function acting on the sum of an affine term, a nonlocal integral
term, and a bias term. We emphasize that this FNO definition does not involve
a discretization; it is a map between function spaces on a continuum. Recall
the definition of the FNO in the introduction of this thesis in 1.3.1.

In the error analysis in the following section, we are interested in the discrep-
ancy between taking the inner product in equation (1.3.1) on a grid instead
of on a continuum — the errors due to aliasing. The above continuum defi-
nition is assumed in learning theory analysis of the FNO, but in practice, a
discretized approximation is used. We consider the other parameters, includ-
ing the mode count K, to be fixed and intrinsic to the FNO model considered,
irrespective of which grid it is approximated on.

75

4.3 Main Results

Let A and U be the input and output Banach spaces in the FNO definition
1.3.1, and let the FNO model hyperparameters be fixed. Given a setting of
the trainable FNO parameters θ, let ΨFNO : A 7→ U be the FNO obtained
using the definition. This definition does not involve a discretization. Thus,
any implementation of the FNO with the same hyperparameters and trainable
θ must be some other map, denoted ΨN

FNO : A 7→ U that evaluates the L2

inner product in equation (1.3.1) numerically on some grid points X(N) rather
than at every point x ∈ Td as ΨFNO does. In particular, ΨN

FNO exchanges the
operator Kt defined in (1.3.1) for KN

t such that

(KN
t v

N
t)(xn) =

∑
k∈[[K]]d

dt∑
j=1

(P
(k)
t)jDFT(v

N
t)(k)e2πi⟨k,xn⟩ ∈ Rdt+1 , (4.3.1)

where DFT is the discrete Fourier transform; see Appendix C.1 for background.
We refer to the output of each internal layer L as a state value. Starting from
the same input a ∈ A, ΨFNO(a) and ΨN

FNO(a) will have different state values,
denoted vt and vNt , respectively, as outputs of internal layer Lt−1 for t > 0

despite having the exact same model parameters. This difference is important
because in proofs concerning the FNO, only ΨFNO is considered, but ΨFNO

is an unimplementable object in practice. If Ψ† is the map of interest to be
approximated using an FNO model, the overall approximation error of the
implemented ΨN

FNO can be split into a contribution due to the numerical dis-
cretization and another contribution due to model discrepancy, as shown in
(4.1.1). Theorem 4.3.2 bounds the discretization error component. The result
takes into account both the initial errors that occur with each approximated
inner product and their magnified effects as they propagate through the layers
of the model. Despite this nonlinear propagation, we show that the approxi-
mate L2 norm of the error after any number of layers decreases like N−s, where
s describes the Sobolev regularity of the input.

To prove Theorem 4.3.2, we assume the following.

Assumption 4.3.1. For a fixed FNO with T layers:

(A1) There exists some B ≥ 1 such that σt, σp, and σq possess continuous
derivatives up to order s which are bounded by B.

(A2) Input set A ⊂ Hs(Td).

76

(A3) 1 ≤ K < N
2
.

(A4) s > d
2
.

(A5) There exists some M ≥ 1 such that FNO parameters Pt, Wt, and bt

are each bounded above by M in the following norms: ∥Pt∥F ≤ M ,
∥Wt∥2 ≤ M , and |bt| ≤ M for all t ∈ [0, . . . , T − 1]. Furthermore, P
and Q are bounded and smooth with ∥P∥NN ≤M , and ∥Q∥NN ≤M .

♢

The main result is the following theorem concerning the behavior of the er-
ror with respect to the size of the discretization. To interpret the theorem
statement in terms of norm-scaling on the left-hand side, recall (4.2.2).

Theorem 4.3.2. Let Assumptions 4.3.1 hold. Let Ac be a compact set in
A. Let vt(a) := Lt ◦ Lt−1 · · · ◦ L0 ◦ P(a) with P and each L as defined in
Definition 1.3.1. Similarly, let vNt (a) := LNt ◦LNt−1 · · · ◦LN0 ◦P(a) where LNj v

N
j =

σj(Wjv
N
j +KN

j vj + bj) for KN
j defined in (4.3.1) for each 0 ≤ j ≤ t. Then

sup
a∈Ac

1

Nd/2
∥vt(a)− vNt (a)∥ℓ2(n∈[N]d) ≤ CN−s, (4.3.2)

where the constant C depends on B,M, d, s, t, and Ac. ♢

The proof and exact form of the constant C in the above theorem are detailed
in Appendix C.5.

We can also state the following variant of Theorem 4.3.2, which shows that
the same convergence rate is obtained at the continuous level, when vNt (xn) is
replaced by a trigonometric polynomial interpolant:

Theorem 4.3.3. Let pNt (x) =
∑

k∈[[N]]d DFT(v
N
t)(k)e2πi⟨k,x⟩ denote the inter-

polating trigonometric polynomial of {vNt (xn)}n∈[N]d . Let the assumptions of
Theorem 4.3.2 hold. Then,

sup
a∈Ac

∥vt(a)− pNt (a)∥L2(Td) ≤ C ′N−s. (4.3.3)

Here, C ′ depends on B,M, d, s, t, and A. ♢

Remark 4.3.4. A consequence of Theorem 4.3.3 is that supa∈Ac
∥ΨFNO(a)−

ΨN
FNO(a)∥L2(Td) also has a convergence rate of N−s since Q is Lipschitz under

Assumptions 4.3.1. ♢

77

The exact form of the constant C ′ may be found in the proof in Appendix
C.6. A key element in the proof of Theorem 4.3.2 is to provide a bound
on the Sobolev norm of the ground truth state ∥vt∥Hs at each layer. The
following lemma accomplishes this for a single layer. The proof may be found
in Appendix C.4. Under Assumptions 4.3.1, the following bounds hold:

• ∥vt+1∥∞ ≤ σ0 +BM(1 + ∥vt∥∞ +Kd/2∥vt∥L2(Td))

• |vt+1|s ≤ BcM sKds/2(1 + ∥vt∥∞)s(1 + |vt|s)

for some constant c dependent on d and s, where σ0 := max{max0≤t≤T σt(0), 1}.

The result of Theorem 4.3.2 guarantees that the discretization error converges
as grid resolution increases. The algebraic decay rate in a discrete L2 norm is
determined by the regularity of the input; this in turn builds on Lemma 4.3
which ensures that the regularity of the state is preserved through each layer
of the FNO.

4.4 Numerical Experiments

In this section we present and discuss results from numerical experiments that
empirically validate the results of Theorem 4.3.2. The L2 error at each layer
decreases like N−s where s governs the input regularity and N is the discretiza-
tion used to perform convolutions in the FNO implementation. For each FNO
model in this section, we use a computation of a discrete FNO on a high
resolution grid as the “ground truth;” this is standard practice in numerical
analysis when the true solution is unobtainable. We compare states at each
layer resulting from inputs of lower resolution with the state resulting from
the ground truth. To obtain evaluations of vℓ at higher discretizations than
N , the inverse Fourier transform operation is interpolated to additional grid
points using trigonometric polynomial interpolation; Theorem 4.3.3 justifies
this practice.

We perform experiments for inputs of varying regularity by generating Gaus-
sian random field (GRF) inputs with prescribed smoothness Hs− for s ∈
{0.5, 1, 1.5, 2}. The GRF inputs are discretized for values of
N ∈ {32, 64, 128, 256, 512, 1024, 2048} and d = 2. Grid size 2048 is used as the
ground truth, and the relative error at layer ℓ for vℓ compared with the truth

78

v†ℓ is computed with

Relative Error =
∥v†ℓ − vℓ∥ℓ2(n∈[2048]d)

∥v†ℓ∥ℓ2(n∈[2048]d)
.

Finally, in FNO training, it is common practice to append positional informa-
tion about the domain at each evaluation point in the form of Euclidean grid
points; i.e. (x1, x2) ∈ [0, 1]2 for two dimensions. However, this grid informa-
tion is not periodic, and an alternative is to append periodic grid information;
i.e.(sin(x1), cos(x1), sin(x2), cos(x2)) for two dimensions. In these experiments,
we also compare the error of models with these two different positional encod-
ings.

We first discuss experiments on FNOs with random weights, and then dis-
cuss experiments on trained FNOs. In the random weights experiments, we
present a few interesting experimental findings, namely, using ReLU activa-
tions or non-periodic position encodings negatively affects the discretization
error decay as the theory predicts. In the trained network experiments, we
explore the example of learning a gradient map to show that the model cannot
learn a map with less regularity than the model allows. Finally, we propose
an application of discretization subsampling to speed up operator learning
training by leveraging adaptive grid sizes.

Experiments with random weights

In this subsection, we consider FNOs with random weights and study their
discretization error and model stability with respect to perturbations of the
inputs. All models are defined in spatial dimension d = 2, with K = 12 modes
in each dimension, a width of 64, and 5 layers.

The default model has randomly initialized iid U(− 1√
dt
, 1√

dt
) weights (uni-

formly distributed) for the affine and bias terms, where dt is the layer width,
and iid U(0, 1

d2t
) spectral weights. Initializing the weights this way is the stan-

dard default for FNO. This model uses the GeLU activation function standard
in FNO. Next we examine the use of ReLU activation instead of GeLU. Finally,
we investigate non-periodic positional encoding.

Discretization error for random weights models The relative error of
the state at each layer versus the discretization for inputs of varying regularity
may be seen for the default model, the ReLU model, and the non-periodic

79

64 128 256 512 1024
N

10 7

10 6

10 5

10 4

10 3

10 2

10 1

R
el

at
iv

e
E

rr
or

s = 0.5, Average Slope = -0.61

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

64 128 256 512 1024
N

10 7

10 6

10 5

10 4

10 3

10 2

10 1

s = 1.0, Average Slope = -1.05

64 128 256 512 1024
N

10 7

10 6

10 5

10 4

10 3

10 2

10 1

s = 1.5, Average Slope = -1.52

64 128 256 512 1024
N

10 7

10 6

10 5

10 4

10 3

10 2

10 1

s = 2.0, Average Slope = -2.00

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Figure 4.1: Relative error versus N and s for an FNO with default weight
initialization.

position encoding model in Figures 4.1,4.2, and 4.3 respectively. In these
figures, from left to right, s ∈ {0.5, 1, 1.5, 2} where v0 ∈ Hs−. The uncertainty
shading indicates two standard deviations from the mean over five inputs to
the FNO.

As can be seen in Figure 4.1 for the model with the default weight initialization,
the empirical behavior of the error matches the behavior expected from Theo-
rem 4.3.2. One question that arises from Figure 4.1 is why the error decreases
as the number of layers increases; this is an effect of the magnitude of the
weights. When the model weights are multiplied by 10, then the error begins
to increase with the number of layers. A figure illustrating this phenomenon
may be found in Appendix C.7, where additional weight initializations are
explored as well.

64 128 256 512 1024
N

10 5

10 4

10 3

10 2

10 1

R
el

at
iv

e
E

rr
or

s = 0.5, Average Slope = -0.59

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

64 128 256 512 1024
N

10 5

10 4

10 3

10 2

10 1

s = 1.0, Average Slope = -1.05

64 128 256 512 1024
N

10 5

10 4

10 3

10 2

10 1

s = 1.5, Average Slope = -1.52

64 128 256 512 1024
N

10 5

10 4

10 3

10 2

10 1

s = 2.0, Average Slope = -1.64

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Figure 4.2: Relative error versus N and s for a default FNO with a ReLU
activation.

The results shown in Figure 4.2 justify the use of the GeLU activation func-
tion, which belongs to C∞, over the ReLU activation function, which is only
Lipschitz. The figure shows that the benefit of having sufficiently smooth in-
puts is negated by the ReLU activation: the error decay is limited. Note that
this effect does not occur for the first layer since at that point ReLU has been
applied once, and the Fourier transform is not applied to the output of an
activation function until the second layer. Additionally, we do not observe the
effect of ReLU until the input has regularity greater than s = 1.5 since the

80

ReLU activation function has regularity of s = 1.5

A similar effect to the ReLU model occurs when non-periodic positional en-
coding information is appended to the input, as is standard in practical FNO
usage; see Figure 4.3. Since this grid data has a jump discontinuity across the
boundary of [0, 1]d, it has regularity of s = 0.5, so the convergence rate never
achieves N−1. These results suggest caution when using positional encoding
information with smooth input data; periodic positional encodings may be
preferred.

64 128 256 512 1024
N

10 4

10 3

10 2

10 1

R
el

at
iv

e
E

rr
or

s = 0.5, Average Slope = -0.61

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

64 128 256 512 1024
N

10 4

10 3

10 2

10 1

s = 1.0, Average Slope = -0.81

64 128 256 512 1024
N

10 4

10 3

10 2

10 1

s = 1.5, Average Slope = -0.55

64 128 256 512 1024
N

10 4

10 3

10 2

10 1

s = 2.0, Average Slope = -0.54

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Figure 4.3: Relative error versus N and s for a default FNO with non-periodic
position encoding appended to the input.

Experiments with trained networks

In this subsection, we consider two different maps and train FNOs on data
from each map. The first map is a PDE solution map in two dimensions
whose solution is at least as regular as the input function. The second map
is a simple gradient, but in this setting the output data of the gradient is
naturally less regular by one Sobolev smoothness exponent than that of the
input function. In both experiments, periodic positional encoding information
is appended to the inputs.

Input Output Predicted Output

(a) Data for the PDE Solution FNO.

Input Output Predicted Output

(b) Data for the Gradient FNO.

Figure 4.4: Visualization of the input and output data for the trained model
examples.

81

64 128 256 512 1024
N

10 6

10 5

10 4

10 3

10 2

10 1

R
el

at
iv

e
E

rr
or

s = 0.5, Average Slope = -0.84

Layer 1
Layer 2
Layer 3

64 128 256 512 1024
N

10 6

10 5

10 4

10 3

10 2

10 1

s = 1.0, Average Slope = -1.23

64 128 256 512 1024
N

10 6

10 5

10 4

10 3

10 2

10 1

s = 1.5, Average Slope = -1.68

64 128 256 512 1024
N

10 6

10 5

10 4

10 3

10 2

10 1

s = 2.0, Average Slope = -2.12

Layer 1
Layer 2
Layer 3

Figure 4.5: Error versus discretization for inputs of varying regularity for the
FNO trained on data corresponding to a PDE solution.

64 128 256 512 1024
N

10 5

10 4

10 3

10 2

10 1

R
el

at
iv

e
E

rr
or

s = 0.5, Average Slope = -0.81

Layer 1
Layer 2
Layer 3

64 128 256 512 1024
N

10 5

10 4

10 3

10 2

10 1

s = 1.0, Average Slope = -1.25

64 128 256 512 1024
N

10 5

10 4

10 3

10 2

10 1

s = 1.5, Average Slope = -1.71

64 128 256 512 1024
N

10 5

10 4

10 3

10 2

10 1

s = 2.0, Average Slope = -2.17

Layer 1
Layer 2
Layer 3

Figure 4.6: Error versus discretization for inputs of varying regularity for the
FNO trained on data corresponding to a gradient map.
Example 1: PDE solution model In this example, we train an FNO to
approximate the solution map of the following PDE:

∇ · (∇χA) = ∇ · A, y ∈ T2 (4.4.1)

χ is 1− periodic,
ˆ
T2

χ dy = 0. (4.4.2)

Here, the input A : T2 7→ R2×2 is symmetric positive definite at every point in
the domain T2 and is bounded and coercive. For the output data we take the
first component of χ : T2 7→ R2. In our experiments the model is trained to
< 5% relative L2 test error. A visualization of the data is in Figure 4.4a.

The error versus discretization analysis can be seen in Figure 4.5. The error
decreases slightly faster than predicted by the theory; a potential explanation
is that the trained model itself has a smoothing effect that is not exploited in
our analysis.

Example 2: gradient map In the final example, we train an FNO to
approximate a simple gradient map u 7→ ∇u.

The training data consists of iid Gaussian random field inputs with regularity
s = 2. Since a gradient reduces regularity, we expect the model outputs
to approximate functions with regularity s = 1, which is at odds with the
smoothness-preserving properties of the FNO described by theory.

82

The error versus discretization for inputs of various smoothness is shown in
Figure 4.6. The error decreases according the the smoothness of the input
despite the smoothness-decreasing properties of the data. Indeed, the model
does produce more regular predicted outputs than the true gradient, as can be
seen in Figure 4.4b where the predicted output is visibly smoother than the
true output.

Speeding Up Training via Adaptive Subsampling

0 50 100 150 200 250
Minutes

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Te
st

 E
rr

or

Original
Subsampling

Figure 4.7: Adaptive grid
refinement leads to greater
training efficiency.

The fact that the FNO architecture and its
parametrization are independent of the numer-
ical discretization allows for increased flexibility.
Specifically, it is possible to adaptively choose an
optimal discretization for a given objective. Fur-
thermore, the error decomposition (4.1.1) invites
an exploitation to optimize computational train-
ing time.

The basic idea of the proposed approach is that,
during training, it is not necessary to compute
model outputs to a numerical accuracy that is substantially better than the
model discrepancy. This suggests an adaptive choice of the numerical dis-
cretization, where we employ a coarser grid during the early phase of training
and refine the grid in later stages. In practice, we realize this idea by introduc-
ing a subsampling scheduler. The subsampling scheduler tracks a validation
error on held out data and adaptively changes the numerical resolution via
suitable subsampling of the training data. Starting from a coarse resolution,
we iteratively double the grid size once the validation error plateaus.

We train FNO for the elliptic PDE (4.4.1) with and without the subsam-
pling scheduler; details are contained in Appendix C.9. Compared to training
without subsampling, training with a subsampling scheduler requires the same
number of forward and backward passes over the network for the training and
test set, plus an additional overhead due to the validation set. Since we are
mainly interested in the training time, our choice of adding validation sam-
ples, rather than performing a training/validation split of the original training
samples, ensures that computational timings are not skewed in favor of sub-
sampling. Over the course of training, we iterate through the following grid

83

sizes: 32x32, 64x64, and 128x128. Our criterion for a plateau is that the vali-
dation error has not improved for 40 training epochs. The results of training
with and without subsampling scheduler for the PDE solution model (4.4.1)
are shown in Figure 4.7. We observe that training time can be substantially
reduced with subsampling. This points to the potential benefits of developing
adaptive numerical methods for model evaluation within operator learning.

4.5 Conclusions

In this chapter, we analyze the discretization error that results from imple-
mentation of Fourier Neural Operators (FNOs). We bound the L2 norm of
the error in Theorem 4.3.2, proving an upper bound that decreases asymp-
totically as N−s, where N is the discretization in each dimension, and s is
the input regularity. We show empirically that FNOs with random weights
chosen as the default FNO weights for training behave almost exactly as the
theory predicts. Furthermore, our theory and experiments justify the use of
the GeLU activation function in FNO over ReLU, as the former preserves reg-
ularity. Additional analyses on trained models show that the error behaves less
predictably in relation to our theory in the low-discretization regime. Finally,
we use the decomposition of model error and discretization error to propose
an adaptive subsampling algorithm for decreasing training time with operator
learning. As FNOs become a more common tool in scientific machine learning,
understanding the various sources of error is critical. By bounding FNO dis-
cretization error and demonstrating its behavior in numerical experiments, we
understand its effect on learning and the potential to minimize computational
costs by an adaptive choice of numerical resolution.

84

C h a p t e r 5

AN OPERATOR LEARNING PERSPECTIVE ON
PARAMETER-TO-OBSERVABLE MAPS

This chapter is adapted from the following publication:

[1] Daniel Zhengyu Huang, Nicholas H. Nelsen, and Margaret Trautner.
“An operator learning perspective on parameter-to-observable maps”.
In: Foundations of Data Science 7.1 (2025), pp. 163–225. doi: 10.3934/
fods.2024037.

Computationally efficient surrogates for parametrized physical models play
a crucial role in science and engineering. Operator learning provides data-
driven surrogates that map between function spaces. However, instead of
full-field measurements, often the available data are only finite-dimensional
parametrizations of model inputs or finite observables of model outputs. Build-
ing on Fourier Neural Operators, this chapter introduces the Fourier Neu-
ral Mappings (FNMs) framework that is able to accommodate such finite-
dimensional vector inputs or outputs. The chapter develops universal ap-
proximation theorems for the method. Moreover, in many applications the
underlying parameter-to-observable (PtO) map is defined implicitly through
an infinite-dimensional operator, such as the solution operator of a partial dif-
ferential equation. A natural question is whether it is more data-efficient to
learn the PtO map end-to-end or first learn the solution operator and subse-
quently compute the observable from the full-field solution. We explore this
question numerically using the FNM framework via three nonlinear PtO maps
and demonstrate the benefits of the operator learning perspective that this
chapter adopts.

5.1 Introduction

Operator learning has emerged as a methodology that enables the machine
learning of maps between spaces of functions. Many surrogate modeling tasks
in areas such as uncertainty quantification, inverse problems, and design opti-
mization involve a map between function spaces, such as the solution operator
of a partial differential equation (PDE). However, the primary quantities of

https://doi.org/10.3934/fods.2024037
https://doi.org/10.3934/fods.2024037

85

Finite Vector U Y Observable

Operator QoI

V2V

V2F

F2V

F2F

Figure 5.1: Illustration of the factorization of an underlying PtO map into
a QoI and an operator between function spaces. Also shown are the four
variants of input and output representations considered in this work. Here, U
is an input function space and Y is an intermediate function space.

interest (QoI) in these tasks are usually just a finite number of design parame-
ters or output observables. This may be because full-field data, such as initial
conditions, boundary conditions, and solutions of PDEs, are not accessible
from measurements or are too expensive to acquire. The prevailing approach
then involves emulating the parameter-to-observable (PtO) map instead of the
underlying solution map between function spaces. Yet, it is natural to wonder
if the success of operator learning in the function-to-function setting can be
brought to bear in this more realistic setting where inputs or outputs may nec-
essarily be finite-dimensional vectors. To this end, the present chapter intro-
duces Fourier Neural Mappings (FNMs) as a way to extend operator learning
architectures such as the Fourier Neural Operator (FNO) to finite-dimensional
input and output spaces in a manner compatible with the underlying opera-
tor between infinite-dimensional spaces. The admissible types of FNM models
considered in this work are visualized in Figure 5.1.

Nevertheless, it is possible to accommodate finite-dimensional inputs or out-
puts through other means. For instance, one could lift a finite-dimensional
input vector to a function by expanding in predetermined basis functions, ap-
ply traditional operator learning architectures to the full-field function space
data, and then directly compute a known finite-dimensional QoI from the out-
put function. In contrast, the end-to-end FNM approach in this work is fully
data-driven and operates directly on finite-dimensional vector data without the
need for pre- and postprocessing. A natural question is whether one of these
two approaches achieves better accuracy than the other when the goal is to
predict certain QoIs. In this chapter, we address this important question from

86

a numerical perspective. The theoretical perspective is addressed in [21], in
the simplified setting of Bayesian linear functionals. Indeed, it has been empir-
ically observed in various nonlinear problems ranging from electronic structure
calculations [109] to metamaterial design [110] that data-driven methods that
predict the full-field response of a system are superior to end-to-end approaches
for the same downstream tasks or QoIs.

Throughout the chapter, we refer to learning a function-valued map as full-
field learning. Given such a learned map, various known QoIs may be directly
computed from the output of the map. On the other hand, we refer to the
direct estimation of the map from an input to the observed QoI as end-to-end
learning. This terminology distinguishes between output spaces. When either
the input or output is a finite vector and the other is infinite-dimensional,
we label the learning approach as “vector-to-function” (V2F) or “function-to-
vector” (F2V), respectively, to avoid ambiguity. The abbreviations V2V and
F2F for “vector-to-vector” and “function-to-function” are analogous.

Contributions

In this chapter, we make the following contributions.

(C1) We introduce FNMs as a function space architecture that is able to
accommodate finite-dimensional vector inputs, outputs, or both.

(C2) We prove universal approximation theorems for FNMs.

(C3) We perform numerical experiments with FNMs in three different ex-
amples — an advection–diffusion equation, flow over an airfoil, and an
elliptic homogenization problem — that show empirical evidence that
the theoretical linear insight from [21] remain valid for nonlinear maps.

Related work

Several works have established neural operators as a viable tool for scientific
machine learning. The general neural operator formalism is described in [52]
and contains several subclasses including DeepONet [23], graph neural oper-
ator [111, 112], and FNO [19]. These architectures allow for function data
evaluated at different grid points or resolutions to all be used with the same
model. In particular, the FNO is primarily parametrized in Fourier space.
It exploits the fact that the Fourier basis spans L2 and uses the efficient Fast

87

Fourier Transform (FFT) algorithm for computations. The idea of parametriz-
ing operators in Fourier space is explored in earlier works as well [69, 113].
The FNO has been shown to be applicable both to domains other than the
torus and to nonuniform meshes [114, 115]. These neural operators have been
used in various areas of application, including climate modeling [116], fracture
mechanics [117], and catheter design [97]. In several of these applications,
neural operators have been implemented with finite-dimensional vector inputs
or outputs by using constant functions as substitutes for finite vectors, which
is theoretically justified by statements of universal approximation [56], or by
using other hand-designed maps. However, learning a constant function as
a representation for a constant is unnatural and computationally wasteful; it
is desirable to substitute a more suitable architecture. The present chapter
develops FNMs that extend neural operators to this important setting while
retaining desirable universal approximation properties.

The theory of scientific machine learning falls broadly into three tiers. In
the first tier, universal approximation results [118, 4, 119, 120] use classical
approximation theory to guarantee that the architecture is capable of repre-
senting maps from within a class of interest to any desired accuracy. Some
of the proofs of these results contain constructive arguments, but the corre-
sponding architectures are usually not as empirically effective as those that
solely come with existence results. Examples of constructive arguments for
operator approximation are contained in [100], which constructs ReLU neural
networks, and [121], which uses randomized numerical linear algebra to sketch
Green’s functions for linear elliptic PDEs. Each of these works also comes
equipped with convergence rates with respect to model size and data size, re-
spectively; these rates form the second tier of operator learning theory. Many
papers in this tier prove bounds on the required model size, i.e., parameter
complexity [122, 89, 20, 123, 124, 125, 126, 127]. Some are able to obtain
sample complexity bounds, although most results are restricted to linear or
kernelized settings [128, 129, 130, 131, 132, 133, 134, 135, 136]. The third tier
of theory describes the likelihood of actually obtaining an accurate approxi-
mation through optimization. While some results along these lines exist for
linear models, linear maps, and constructive operators [131, 137, 138], they are
absent for the class of neural operators optimized through variants of stochas-
tic gradient descent (SGD). This is the class that has proven empirically most
effective in applications thus far and is the class used in this work.

88

Recent work proposes and analyzes a kernelized deep learning method for non-
linear functionals [139]. The idea of such neural functionals, a subclass of the
FNMs proposed in this work, is not new. One appearance is in the context of
a function space discriminator for generative adversarial networks [140]. How-
ever, that work uses only a single bounded linear functional that is appended
to the output of a FNO and is parametrized by a standard neural network.
This is a special case of our FNMs for F2V maps. Another paper that shares
similar ideas to ours is [141]. There, the authors also formulate a V2V neural
network approach that maps through a latent 1D function space. However,
their encoder and decoder maps are prescribed by hand-picked basis functions,
while for FNMs the encoder and decoder maps are learned from data.

In this work, three potential applications are highlighted. The first applica-
tion is an advection–diffusion model where the input is a velocity field and
the output is the state at a fixed future time. This problem is considered a
benchmark for scientific machine learning [142]. Some theoretical approxima-
tion rates for it have been developed for DeepONet in the F2F setting [122].
The second application centers on the compressible flow over an airfoil, i.e., a
wing cross section. This experiment is explored for FNO in [114] and used as a
shape optimization example in the F2F setting for DeepONet in [143] and for
reduced basis networks in [144]. Several other related works devise V2V-based
neural network approaches and novel training strategies for this aerodynamics
problem [145, 146, 147, 148]. The third application involves learning the ho-
mogenized elasticity coefficient for a multiscale elliptic PDE. This example is
explored in detail for FNO in [56] and for other constitutive laws in [29]. For
the Darcy flow — or scalar coefficient — setting of this equation, other work
adopts the F2F setting to efficiently compute QoIs [149]. For each of these
applications, we compare the generalization error performance of all four F2F,
F2V, V2F, and V2V variants of FNMs as well as standard fully-connected
neural networks.

Outline

The remainder of this chapter is organized as follows. We define the archi-
tecture of FNMs as a slight adjustment of FNOs in Section 5.2 (Contribu-
tion (C1)) and confirm that FNMs retain desirable properties of FNOs such
as universal approximation in Section 5.3 (Contribution (C2)). Section 5.5
provides numerical experiments that compare end-to-end and full-field learn-

89

ing with FNMs with both finite- and infinite-dimensional input space rep-
resentations for predicting QoIs in several nonlinear PDE problems (Contri-
bution (C3)). Concluding remarks are given in Section 5.6. All proofs are
provided in Appendix D.1.

5.2 Neural mappings for finite-dimensional vector data

In this section, we recall the FNO architecture (Subsection 5.2) and describe
modifications of it to form FNMs (Subsection 5.2).

A review of neural operators

Let U = U(D;Rdu) and Y = Y(D;Rdy) be Banach function spaces over Eu-
clidean domain D ⊂ Rd. Finite-dimensional fully-connected neural networks
are repeated compositions of affine mappings alternating with pointwise non-
linearities. To extend this framework to the infinite-dimensional function space
setting, depth T neural operators from U to Y take the form

Ψ(NO)(u) :=
(
Q ◦ LT ◦ LT−1 ◦ · · · ◦ L1 ◦ S

)
(u) for all u ∈ U , (5.2.1)

where S is a pointwise-defined local lifting operator, Q is a pointwise-defined
local projection operator, and for each t ∈ [T], the layer Lt : Bt−1 → Bt is a
nonlinear map between appropriate Banach function spaces Bt−1(D;Rdt−1) ⊂
L2(D;Rdt−1) and Bt(D;Rdt) ⊂ L2(D;Rdt). The map Lt is the composition of
a local (and usually nonlinear) operator with a nonlocal affine kernel integral
operator [52].

The FNO is a specific instance of the class of neural operators (5.2.1). Let D =

Td. Then for FNO, the form of the layer Lt : Bt−1(Td;Rdt−1) → Bt(Td;Rdt) is
given by v 7→ Lt(v), where for any x ∈ Td, it holds that(

Lt(v)
)
(x) = σt

(
Wtv(x) + (Ktv)(x) + bt(x)

)
. (5.2.2)

In (5.2.2), Wt ∈ Rdt×dt−1 is a weight matrix, bt : Td → Rdt is a bias function,
and Kt is a convolution operator given, for v : Td → Rdt−1 and any x ∈ Td, by
the expression

(Ktv)(x) =

{∑
k∈Zd

(
dt−1∑
j=1

(P
(k)
t)ℓj⟨ψk, vj⟩L2(Td;C)

)
ψk(x)

}
ℓ∈[dt]

∈ Rdt . (5.2.3)

In the preceding display, the ψk = e2πi⟨k, · ⟩Rd are the complex Fourier basis
elements of L2(Td;C) and P (k)

t ∈ Cdt×dt−1 are the learnable parameters of the

90

integral operator Kt for each k ∈ Zd. The functions σt : R → R are nonlinear
activations that act pointwise when applied to vectors. Additional details of
more general versions and computational implementations of the FNO may be
found in [20, 52, 114].

Though the internal FNO layers {Lt} in (5.2.2) and (5.2.3) are defined on the
periodic domain Td, it is possible to apply the FNO to other d-dimensional
domains D ≠ Td. Define Banach spaces Bin(D;Rd0) and Bout(D;RdT) and
introduce an operator E : Bin → B0. Then, replace S in (5.2.1) with E ◦ S.
Similarly, let R : BT → Bout be an operator that maps back to functions on the
desired domain D and replace Q in (5.2.1) with Q ◦ R. These modifications
to the lifting and projecting components yield the final FNO architecture

Ψ(FNO) = Q ◦R ◦ LT ◦ LT−1 ◦ · · · ◦ L1 ◦ E ◦ S . (5.2.4)

In practice, the map E is usually represented by zero padding the input domain
and R by restricting to the output domain of interest.

The neural mappings framework

The neural operator architecture described in Section 5.2 only accepts inputs,
outputs, and intermediate states that are elements of function spaces. Finite-
dimensional vector inputs, outputs, and states are not directly compatible
with neural operators. We propose neural mappings, which lift this restriction
through two fundamental building blocks. The first, linear functional layers,
map from function space to finite dimensions. The second, linear decoder
layers, map from finite dimensions to function space. We combine these two
building blocks with standard iterative neural operator layers to form several
classes of nonlinear and function space consistent architectures.

Instating the neural operator notation from Section 5.2, we define a linear
functional layer G : BT−1 → RdT and a linear decoder layer D : Rd0 → B1 to
be maps of the form

h 7→ G h :=

ˆ
D
κ(x)h(x) dx , where κ : D → RdT×dT−1 , and

z 7→ Dz := κ(·)z , where κ : D → Rd1×d0 ,

(5.2.5)

respectively. The linear functional layer G takes a vector-valued function h

and integrates it against a fixed matrix-valued function κ to produce a finite
vector output. In duality to G , the linear decoder layer D takes as input a

91

finite vector z and multiplies it by a fixed matrix-valued function κ to produce
an output function. The functions κ are the sole learnable parameters of these
two layers.

Although G and D may be incorporated into general neural operators (5.2.1),
we will specialize our method to the FNO. In anticipation of this periodic
setting, we view G as a Fourier linear functional layer by replacing D in (5.2.5)
by the torus Td and using Fourier series to expand G as

h 7→ G h =

{∑
k∈Zd

(
dT−1∑
j=1

P
(k)
ℓj ⟨ψk, hj⟩L2(Td;C)

)}
ℓ∈[dT]

∈ RdT , (5.2.6)

where we recall that {ψk} is the Fourier basis of L2(Td;C). In (5.2.6), the
entries of the matrices {P (k)} ⊂ CdT×dT−1 correspond to the Fourier coefficients
of the function κ in (5.2.5). The calculation leading to the convergent series
formula (5.2.6) uses Parseval’s theorem to equate the L2 (5.2.5) and ℓ2 (5.2.6)
inner products. Similar calculations show that, on the torus Td, the map D

takes the form

z 7→ Dz =

{∑
k∈Zd

(
P (k)z

)
j
ψk

}
j∈[d1]

, where P (k) ∈ Cd1×d0 . (5.2.7)

Just like for the FNO kernel integral layers (5.2.3), the expressions (5.2.6) and
(5.2.7) are efficiently implemented and learned in Fourier space.

We are now in a position to define the general FNMs architecture.

Definition 5.2.1 (Fourier Neural Mappings). LetQ : RdT → Rdy and S : Rdu →
Rd0 be finite-dimensional maps. For {Lt} defined as in (5.2.4) and G and D

defined as in (5.2.6) and (5.2.7), let

Ψ(FNM) := Q ◦ G ◦ LT−1 ◦ · · · ◦ L2 ◦ D ◦ S (5.2.8)

be the base level map. The Fourier Neural Mappings architecture is composed
of the following four main models that are obtained by modifying the base map:

(M-V2V) vector-to-vector (V2V): Ψ(FNM) in (5.2.8) as written, thus mapping fi-
nite vector inputs to finite vector outputs;

(M-V2F) vector-to-function (V2F): Ψ(FNM) with operator G in (5.2.8) replaced by
R ◦ LT , where R and LT are as in (5.2.4) and (5.2.2), respectively,

92

and Q in (5.2.8) now viewed as a pointwise-defined operator acting
on vector-valued functions;

(M-F2V) function-to-vector (F2V): Ψ(FNM) with operator D in (5.2.8) replaced
by L1 ◦E , where L1 and E are as in (5.2.2) and (5.2.4), respectively,
and S in (5.2.8) now viewed as a pointwise-defined operator acting
on vector-valued functions;

(M-F2F) function-to-function (F2F): Ψ(FNM) with modifications (M-V2F) and
(M-F2V), thus the resulting architecture is the standard FNO
Ψ(FNO) (5.2.4).1

♢

When the (M-F2V) FNM is of primary interest, we sometimes call this archi-
tecture Fourier Neural Functionals. Similarly, we may also call the (M-V2F)
FNM a Fourier Neural Decoder.

5.3 Universal approximation theory for Fourier Neural Mappings

In this section, we establish universal approximation theorems for FNMs; this
is a confirmation that the architectures maintain this desirable property of
neural operators. The results are stated for the cases of the F2V and V2F
architectures; the case of V2V trivially follows. Similar results also hold for
general neural mappings by invoking the appropriate universal approximation
theorems for general neural operators from [20, Section 9.3] and for the topol-
ogy induced by Lebesgue–Bochner norms, i.e., average error with respect to a
probability measure supported on the input space. For more details regarding
these extensions, see [52, Theorems 11–14, Section 9.3, pp. 55–57] and [20, pp.
12–14 and Theorem 18]. Our proofs, which are collected in Appendix D.1, use
arguments based on constant functions that are similar to those used to prove
universal approximation theorems at the level of operators.

The approximation theory in this section relies on the following assumption.

Assumption 5.3.1 (activation function). All nonlinear layers {Lt}Tt=1 from
(5.2.2) have the same non-polynomial and globally Lipschitz activation func-
tion σ ∈ C∞(R;R). ♢

1Notice that yet another function-to-function FNM architecture is possible by exchang-
ing the roles of G and D in (5.2.8); this is a nonlinear Fourier neural autoencoder.

93

We note that in practice, the final Fourier layer activation function is often
set to be the identity. Moreover, the bias functions bt in Lt are typically
chosen to be constant functions. The universal approximation theory does not
distinguish these differences. Additionally, to align with the existing theory
developed in [20], our existence proofs rely on a reduction to the setting that

(i) the channel dimension dt is constant across all layers, say dt = dv ∈ N
for all t ∈ [T], and

(ii) the maps S and Q in (5.2.8) are linear and act pointwise on functions.

These conditions are certainly special cases of nonconstant channel dimension
and nonlinear lifting and projection maps, respectively. Hence, the forthcom-
ing universality properties still hold for more sophisticated architectures that
deviate from conditions (i) and (ii), such as those used in Section 5.5 in this
work.

Our first result delivers a universal approximation result for Fourier Neural
Functionals, i.e., the F2V setting. Appendix D.1 contains the proof.

Theorem 5.3.2 (universal approximation: function-to-vector mappings). Let
s ≥ 0, D ⊂ Rd be an open Lipschitz domain such that D ⊂ (0, 1)d, and
U = Hs(D;Rdu). Let Ψ† : U → Rdy be a continuous mapping. Let K ⊂ U
be compact in U . Under Assumption 5.3.1, for any ε > 0, there exist Fourier
Neural Functionals Ψ: U → Rdy of the form (5.2.8) with modification (M-F2V)
such that

sup
u∈K

∥∥Ψ†(u)−Ψ(u)
∥∥
Rdy < ε . (5.3.1)

♢

The approximation theorem for the Fourier Neural Decoder, i.e., the V2F case,
is analogous.

Theorem 5.3.3 (universal approximation: vector-to-function mappings). Let
t ≥ 0, D ⊂ Rd be an open Lipschitz domain such that D ⊂ (0, 1)d, and
Y = H t(D;Rdy). Let Ψ† : Rdu → Y be a continuous mapping. Let Z ⊂ Rdu

be compact. Under Assumption 5.3.1, for any ε > 0, there exists a Fourier

94

Neural Decoder Ψ: Rdu → Y of the form (5.2.8) with modification (M-V2F)
such that

sup
z∈Z

∥∥Ψ†(z)−Ψ(z)
∥∥
Y < ε . (5.3.2)

♢

The proof may also be found in Appendix D.1. While perhaps not surpris-
ing, the results in Theorems 5.3.2 and 5.3.3 nonetheless show that the pro-
posed FNM architectures are sensible for the tasks of approximating continu-
ous function-to-vector or vector-to-function mappings.

5.4 Summary of Linear Functional Regression Theory

In this section, we give an informal summmary of the theoretical findings of the
paper this chapter is based on ([21]) on data efficiency of learning parameter-
to-observable maps in the setting of Bayesian nonparametric linear functional
regression. In the analysis, the input space is always infinite dimensional, and
the comparison is done between learning a function-valued output (full-field
learning) and learning a finite vector-valued output (end-to-end learning). Let
H be an infinite-dimensional real separable Hilbert space and consider the
linear functional map f † = q† ◦ L† : H → R for linear functional f †, the
quantity of interest (QoI) map and self-adjoint linear operator L†, the forward
map. The theory compares error convergence rates in terms of the number of
data when obtaining a Bayesian posterior estimator of f † (end-to-end learning)
versus for L† (full-field learning). The question at hand is whether it is more
data efficient to learn an estimator of f † directly or to learn an estimator of
L† and then apply a known QoI map q†.

The result in a simplified setting is visualized in Figure 5.2. The convergence
rate exponent describes how the upper bound on expected error behaves with
respect to the number of data samples N ; for an exponent of −1, the upper
bound on the expected error of the estimator behaves like ≲ N−1. The smooth-
ness of the problem is governed by the eigenvalue decay of operator L† and
the covariance operator of the input data distribution. This figure shows that
for more regular QoI maps q†, full-field learning has a better convergence rate
exponent than end-to-end learning. The situation is reversed for less regular
QoI maps. The crossover point where both approaches have the same bound
on their convergence rates occurs for a QoI regularity exponent of r = −1

2
;

95

−4 −2 0 2 4
r, QoI Decay Exponent

0.0

0.2

0.4

0.6

0.8

1.0

C
on

ve
rg

en
ce

R
at

e
E

x
p

on
en

t

EE

FF

Figure 5.2: End-to-end vs. full-field convergence rate exponents as a function
of QoI regularity exponent r. Larger exponents imply faster convergence rates.
As the curves gets lighter, the smoothness of the problem increases. The
vertical dashed line corresponds to r = −1/2, which is the transition point
where end-to-end learning and full-field learning have the same rate.

this corresponds to the regularity of point evaluation. While these results give
some intuition, we note that they are developed for the linear setting and only
describe upper bounds on the expected error. We refer to [21] for the precise
statements and proofs, but we reference the intuition summarized here in the
following section containing numerical experiments.

5.5 Numerical experiments

We now perform numerical experiments with the proposed FNM architectures.
These experiments have two main purposes. The first is to numerically imple-
ment and compare the various FNM models on several PtO maps of practical
interest; the second is to qualitatively validate the theory described in 5.4 for
such maps. We focus on nontrivial nonlinear problems with finite-dimensional
observables that define the QoI maps. Although our linear theory from Sec-
tion 5.4 does not apply to such nonlinear problems, we still observe qualitative
validation of the main implications of the linear analysis. That is, for smooth
enough QoIs, full-field learning is at least as data-efficient as end-to-end learn-
ing. Unlike the theory, however, our numerical results distinguish the two
approaches only by constant factors and not by the actual convergence rates.

The continuum FNM architectures from Section 5.2 are implemented numeri-

96

cally by replacing all forward and inverse Fourier series calculations with their
Discrete Fourier Transform counterparts. This enables fast summation of the
series (5.2.3), (5.2.6), and (5.2.7) with the FFT. The inner products in these
formulas are also computed with the FFT. In particular, the FFT performs
Fourier space operations in the set {k ∈ Zd : ∥k∥ℓ∞([d];Z) ≤ K} rather than
over all k ∈ Zd. 2 The error that is produced by this approximation is an-
alyzed in Chapter 4. In this case, we say that the FNM architecture has K
modes. This is analogous to the mode truncation used in standard FNO layers
(see, e.g., [19]). Additionally, since we work with real vector-valued functions,
conjugate symmetry of the Fourier coefficients may be exploited to write the
Fourier linear functional (5.2.6) and decoder (5.2.7) layers only in terms of the
real part of the coefficients appearing in the summands. We also make a minor
modification to the F2V and V2V FNMs. Since the discrete implementation
of G in (5.2.6) requires discarding the higher frequencies in the input function,
we define an auxiliary map W : h 7→

´
Td NN(h(x)) dx that makes use of all

frequencies. Here NN(·) is a one hidden layer fully-connected neural network
(NN). Then we replace G in Definition 5.2.1 by the concatenated operator
(G ,W)⊤.

Given a dataset of input–output pairs {(un, ỹn)}Nn=1, we train a FNM Ψθ tak-
ing one of the forms given in Definition 5.2.1 (with the modifications from
the preceding discussion) in a supervised manner by minimizing the average
relative error

1

N

N∑
n=1

∥ỹn −Ψθ(un)∥
∥ỹn∥

(5.5.1)

or the average absolute squared error

1

N

N∑
n=1

∥ỹn −Ψθ(un)∥2 (5.5.2)

over the FNM’s tunable parameters θ using mini-batch SGD with the ADAM
optimizer. The choice of the loss function is dependent on the underlying
problem. Moreover, the norm in the preceding displays are inferred from the
space that the ỹn takes values in (i.e., finite-dimensional vector or infinite-
dimensional function output spaces). To avoid numerical instability in our
actual computations, we add 10−6 to the denominator of the ratio in (5.5.1).

2In all numerical experiments to follow, d = 1 or d = 2.

97

Remark 5.5.1 (data discretization error). In addition to the discretization
error introduced by the discrete and implementable realizations of the contin-
uum FNM architectures [150], there is another source of discretization error
due to our choice of data generation procedure. Specifically, the training and
test data in this section are generated from numerical solvers that discretely
approximate an underlying continuum operator at a fixed resolution. The
weights of the resulting trained FNMs have a complicated dependence on this
discretization error. Although simpler operator learning architectures are sta-
ble to such errors [131, Example 3.9, pp. 5–6], no such results exist yet for
neural operators. Furthermore, in line with most of the literature, the empir-
ical convergence results that we numerically report in this section are for the
test error with respect to the discretized operator or PtO map. Thus, there is
an implicit assumption that this discretized operator is sufficiently resolved so
that the computable but discrete test error is an accurate surrogate for the true
but inaccessible test error with respect to the continuum operator. Alternative
data acquisition strategies may mitigate these effects to some extent [151]. ♢

The numerical experiments are organized as follows. In Subsection 5.5, we
extract the first four polynomial moments from the solution of a velocity-
parametrized 2D advection–diffusion equation. Next, Subsection 5.5 considers
the flow over an airfoil modeled by the steady compressible Euler equation.
The PtO map sends the shape of the airfoil to the resultant drag and lift force
vector. Last, we study an elliptic homogenization problem parametrized by
material microstructure in Subsection 5.5. Here, the QoI returns the effective
tensor of the material.

Moments of an advection–diffusion model

Our first model problem concerns a canonical advection–diffusion PDE in two
spatial dimensions. This equation often arises in the environmental sciences
and is useful for modeling the spread of passive tracers (e.g., contaminants,
pollutants, aerosols), especially when the driving velocity field is coupled to
another PDE such as the Navier–Stokes equation. Our setup is as follows. Let
D = (0, 1)2 be the spatial domain and n denote the unit inward normal vector
to D. For a prescribed time-independent velocity field v : D → R2, the state

98

ϕ : D × R>0 → R solves

∂tϕ+∇ · (vϕ)− 0.05∆ϕ = g in D × R>0 ,

n · ∇ϕ = 0 on ∂D × R>0 ,

ϕ = 0 on D × {0} .
(5.5.3)

The time-independent source term g is a smoothed impulse located at x0 :=

(0.2, 0.5)⊤ and is defined for x ∈ D by

g(x) :=
5

2π(50)−2
exp

(
−∥x− x0∥2R2

2(50)−2

)
.

We associate our input parameter with the velocity field v appearing in (5.5.3).
Our parametrization takes the form

v = (u, 0)⊤ , where u(x1, x2) = 3 +

dKL∑
j=1

√
τjzjej(x1) (5.5.4)

for all x = (x1, x2) ∈ D. Note that u is constant in the vertical x2 direction.
The eigenvalues {τj}j∈N and eigenfunctions {ej}j∈N correspond to the Mercer
decomposition of a kernel obtained by restricting a Matérn covariance function
over R to (0, 1) ⊂ R. The covariance function has smoothness exponent 1.5

and lengthscale 0.25 [152]. We choose

zj
i.i.d.∼ Uniform([−1, 1]) for all j ∈ [dKL] .

Thus, up to normalization constants, the velocity field (5.5.4) is the (trun-
cated) KL expansion of a subgaussian stochastic process. We take the input
to either be the full x1-velocity field u : D → R or the i.i.d. realizations
z := (z1, . . . , zdKL

)⊤ of the random variables that affinely parametrize u.

Define the nonlinear QoI map q† : L4(D;R) → R4 as follows. First, for any
h ∈ L2(D;R), let

m(h) :=

ˆ
D
h(x) dx and s(h) :=

(ˆ
D
|h(x)−m(h)|2 dx

)1/2

(5.5.5)

denote the mean and variance of the push-forward of the uniform distribution
on D = (0, 1)2 under h, respectively. Then q† = (q†1, q

†
2, q

†
3, q

†
4)

⊤ is given by

h 7→ q†(h) :=

m(h)

s(h)

s(h)−3
´
D

(
h(x)−m(h)

)3
dx

−3 + s(h)−4
´
D

∣∣h(x)−m(h)
∣∣4 dx

 . (5.5.6)

99

Velocity
Input State Output

(a) dKL = 2

(b) dKL = 20

(c) dKL = 1000

Figure 5.3: Visualization of the velocity-to-state map for the advection–
diffusion model. Rows denote the dimension of the KL expansion of the ve-
locity profile and columns display representative input and output fields.

Hence, q†1 is the mean, q†2 the standard deviation, q†3 the skewness, and q†4 the
excess kurtosis. Our goal is to build FNM surrogates for the PtO map that
sends the input representation (either the full velocity field or its finite number
of i.i.d. coefficients) to the QoI values of the state ϕ at final time t = 3/4 (see
Figure 5.3). Therefore, we train FNMs to approximate each of the following
ground truth maps:

Ψ†
F2F : u 7→ ϕ

∣∣
t=3/4

,

Ψ†
F2V : u 7→ q†

(
ϕ
∣∣
t=3/4

)
,

Ψ†
V2F : z 7→ ϕ

∣∣
t=3/4

, and

Ψ†
V2V : z 7→ q†

(
ϕ
∣∣
t=3/4

)
.

The training data is obtained by solving (5.5.3) with a second-order Lagrange
finite element method on a mesh of size 32× 32 and Euler time step 0.01. For
each dKL ∈ {2, 20, 1000}, we generate 104 i.i.d. data pairs for training, 1500
pairs for computing the test error (which is (5.5.1) over the 1500 test pairs
instead of over the N training pairs), and 500 pairs for validation. All FNM

100

101 102 103 104

N

10−4

10−3

10−2

10−1

100

A
ve

ra
ge

R
el

at
iv

e
E

rr
or

F2F

F2V

V2F

V2V

NN

N−1/2

(a) dKL = 2

101 102 103 104

N

10−3

10−2

10−1

100

(b) dKL = 20

101 102 103 104

N

10−3

10−2

10−1

100

(c) dKL = 1000

Figure 5.4: Empirical sample complexity of FNM and NN architectures for the
advection–diffusion PtO map (note that Figure 5.4a has a different vertical
axis range). The shaded regions denote two standard deviations away from
the mean of the test error over five realizations of the random training dataset
indices, batch indices during SGD, and model parameter initializations.

models with 2D spatial input or output functions use 12 modes per dimension
and a channel width of 32. For the V2V-FNM, we use a 1D latent function
space with 12 modes and channel width of 96. We compare all FNM models
to a standard fully-connected NN with 3 layers and constant hidden width
2048. These architecture settings were selected based on a hyperparameter
search over the validation dataset for dKL = 1000 that mimics the parameter
complexity experiments in [56, 94]. The models are trained on the relative
loss (5.5.1) for 500 epochs in L2 output space norm for functions and Euclidean
norm for vectors. The optimizer settings include a minibatch size of 20, weight
decay of 10−4, and an initial learning rate of 10−3 which is halved every 100

epochs. We train 5 i.i.d. realizations of the models for various values of N and
dKL and report the results in Figure 5.4.

Figure 5.4 reveals several interesting trends. In general, training models to em-
ulate the advection–diffusion PtO map with finite-dimensional vectors as input
is more difficult than adopting function space input variants of the problem.
The difficulty is further exacerbated as the dimension of the input vector (here,
dKL) increases. We hypothesis that this gap in performance would reduce if
the vector input models received the weighted KL coefficients {√τjzj} as in-
put instead of the i.i.d. sequence {zj}. This way the model would have access
to decay information and hence an ordering of the coefficients. The standard
finite-dimensional NN performs poorly across all KL expansion dimensions.
The training of the NN is also quite erratic, as evidenced by the large green

101

shaded regions indicating large variance over multiple training runs. The out-
put space seems to play less of a role than the input space. Indeed, the F2F and
F2V FNMs with function space inputs generally achieve the lowest test error
regardless of N and dKL. The full-field F2F method slightly outperforms the
end-to-end F2V method by a small constant factor (except for when dKL = 2).
Since q† is a smoothing QoI due to its integral definition, this observation
aligns with the theoretical insights from Section 5.4. The fast convergence of
some of the FNM models, especially for the low-dimensional cases dKL = 2

and dKL = 20, could potentially be explained by the lack of noise in the data,
the smoothness of the QoIs, and the nonconvexity of the training procedure.
When dKL = 1000, the problem is essentially infinite-dimensional. The func-
tion space input FNMs (F2F and F2V) exhibit a nonparametric decay of test
error as expected.

Aerodynamic force exerted on an airfoil

Consider the following steady compressible Euler equation applied to an airfoil
problem (see Figure 5.5), as introduced in [114]:

∇ · (ρv) = 0 ,

∇ · (ρvv⊤ + p IdR2) = 0 ,

∇ ·
(
(E + p)v

)
= 0 .

(5.5.7)

Here ρ is the fluid density, v is the velocity vector, p is the pressure, and E

is the total energy. Equation (5.5.7) is equipped with the following far-field
boundary conditions: ρ∞ = 1, p∞ = 1, M∞ = 0.8, and AoA = 0, where M∞

is the Mach number and AoA is the angle of attack. This setup indicates that
the flow condition is in the transonic regime. Additionally, the no-penetration
condition v · n = 0 is imposed at the airfoil, where n represents the inward-
pointing normal vector to the airfoil. Additional mathematical details about
the setup may be found in [145, 146, 147, 148].

In this context, we are interested in solving the aforementioned 2D Euler
equation to predict the drag and lift performance of different airfoil shapes.
Building fast yet accurate surrogates for this task facilities aerodynamic shape
optimization [144, 143] for various design goals, such as maximizing the lift to
drag ratio [114]. The drag and lift QoIs, which only depend on the pressure

102

Figure 5.5: Flow over an airfoil. From left to right: visualization of the cubic
design element and different airfoil configurations, guided by the displacement
field of the control nodes; a close-up view of the C-grid surrounding the airfoil;
the physical domain discretized by the C-grid.

on the airfoil, are given by the force vector

(Drag, Lift)⊤ =

˛
A
pn ds ∈ R2 . (5.5.8)

Here A denotes the closed curve defined by the union of the upper and lower
surfaces of the airfoil. Different airfoil shapes are generated following the
design element approach [153] (Figure 5.5). The initial NACA-0012 shape is
embedded into a “cubic” design element featuring 8 control nodes, and the
initial shape is morphed into a different one following the displacement field of
the control nodes of the design element. The displacements of control nodes are
restricted to the vertical direction only. Consequently, the intrinsic dimension
of the input is 7, as displacing all nodes in the vertical direction by a constant
value does not change the shape of the airfoil.

To generate the training data, we used the traditional second-order finite vol-
ume method with the implicit backward Euler time integrator. The process
begins by generating a new airfoil shape. Subsequently, a C-grid mesh [154]
consisting of 221× 51 quadrilateral elements is created around the airfoil with
adaptation near the airfoil. In total, we generated 2000 training data and 400

test data with the vertical displacements of each control node being sampled
from a uniform distribution Uniform([−0.05, 0.05]).

Next, we will define the operator learning problem (see Figure 5.6). In the 2D
setting, we aim to learn the entire pressure field. Let Da represent the irregular
physical domain parametrized by a, indicating the shape of the airfoil. The
domain Da is discretized by a structured C-grid [154]. We introduce a latent
space D = [0, 1]2 and the deformation map ϕa : ξ → x(ξ) between D and Da.
Here the deformation map has an analytical format and maps the uniform grid

103

𝒟
𝑢 = 𝜙!: 			𝜉 → 𝑥(𝜉) Ψ"#"

$ 𝑢 = 𝑝 ∘ 𝜙!: 			𝜉 → 𝑝(𝜙! 𝜉)

Figure 5.6: Flow over an airfoil. The 1D (bottom) and 2D (top) latent spaces
are illustrated at the center; the input functions ϕa encoding the irregular
physical domains, are shown on the left; and the output functions p ◦ ϕa

representing the pressure field on the irregular physical domains, are depicted
on the right.

in D to the C-grid in Da. Subsequently, we formulate the operator learning
problem in the latent space as

Ψ†
F2F : ϕa → p ◦ ϕa . (5.5.9)

In this equation, the deformation map ϕa is a function defined in D, and p◦ϕa

represents the pressure function defined in D. As mentioned previously, both
lift and drag depend solely on the pressure distribution over the airfoil. Hence,
we can alternatively formulate the learning problem in the 1D setting by focus-
ing solely on learning the pressure distribution over the airfoil. We construct a
one-dimensional latent space D = [0, 1] and also denote the deformation map
as ϕa : ξ → x(ξ) mapping from D to the shape of the airfoil. The correspond-
ing operator learning problem in this 1D setting has the same form as (5.5.9).
The ground truth maps Ψ†

F2V, Ψ†
V2F, and Ψ†

V2V are defined similarly, mapping
either the deformation function ϕa or the 7-dimensional control node vector
input to the pressure function or the QoI (5.5.8) itself. We use all four variants
of the FNM architectures and a finite-dimensional NN to approximate these
maps from data.

For each sample size N , five i.i.d. realizations of the models are trained on the
relative loss (5.5.1) for 2000 epochs in L2 output space norm for functions and
Euclidean norm for vectors. All FNM models use 4 hidden layers, 12 modes
per dimension, and a channel width of 128. We compare these models to a

104

125 250 500 1000 2000
N

10−2

10−1

100

A
ve

ra
ge

R
el

at
iv

e
E

rr
or

F2F

F2V

V2F

V2V

NN

N−1/2

Figure 5.7: Flow over an airfoil. Comparative analysis of relative test error
versus data size for the FNM and NN approaches. The shaded regions denote
two standard deviations away from the mean of the test error over five real-
izations of the batch indices during SGD and model parameter initializations.

standard fully-connected NN with four layers and a hidden width of 128. In the
case of FNM models, we observe that learning in the 1D setting consistently
outperforms the 2D setting across all sizes of training data. Therefore, we
only present results for the 1D setting. Moreover, this set of architectural
hyperparameters with a large channel width of 128 in general outperforms
other hyperparameter settings.

Figure 5.7 contains the results and reveals several trends. As the data volume
N increases, all error curves decay at an algebraic rate that is slightly faster
than N−1/2. This may be due to the small sample sizes considered (under
2000 data pairs) or, especially since the training data is noise-free, could be
evidence of a data-driven “superconvergence” effect similar to that observed
for QoI computations in adjoint methods for PDEs [155]. Overall, emulating
PtO maps by training models with finite-dimensional vectors as both input
and output (V2V and NN) is more challenging for this problem than adopting
function space variants (F2F, F2V, V2F). The standard finite-dimensional NN
performs similarly to V2V.

Effective tensor for a multiscale elliptic equation

This example considers an equation that arises in elasticity in computational
solid mechanics and relates the material properties on small scales to the ef-

105

25 Parameters:
• 5 Voronoi cell
centers

• 3 A DoF per
cell

Vector z Function A Function χ

A ∈ R2×2
sym,≻0

Vector A
Cell Problem Eqn. (3.1.3)

Figure 5.8: Diagram showing the homogenization experiment ground truth
maps. The function A is parametrized by a finite vector z. The quantity
of interest A (3.1.3) is computed from both the material function A and the
solution χ to the cell problem (3.1.4). Note that both A and χ are functions
on the torus T2.

fective property on a larger scale. Formally, we consider the following linear
multiscale elliptic equation on a bounded domain D ⊂ R2:

−∇ · (Aϵ∇uϵ) = g in D ,

uϵ = 0 on ∂D .

Here Aϵ is given by x 7→ Aϵ(x) = A
(
x
ϵ

)
for some A : T2 → R2×2

sym,≻0 which is
1-periodic and positive definite. The source term is g. This equation contains
fine-scale dependence through Aϵ, which may be computationally expensive to
evaluate without taking advantage of periodicity. The method of homogeniza-
tion allows for elimination of the small scales in this manner and yields the
homogenized equation

−∇ ·
(
A∇u

)
= g in D ,

u = 0 on ∂D ,

where A is given by

A =

ˆ
T2

(
A(y) + A(y)∇χ(y)⊤

)
dy

and χ : T2 → R2 solves the cell problem

−∇ ·
(
(∇χ)A

)
= ∇ · A in T2 ,ˆ

T2

χ(y) dy = 0 and χ is 1-periodic .

For 0 < ϵ≪ 1, the solution uϵ of (3.1.1) is approximated by the solution u of
(3.1.2). The error between the solutions converges to zero as ϵ→ 0 [26, 27].

The bottleneck step in obtaining the effective tensor A, which is our QoI, is
solving the cell problem (3.1.4). Learning the solution map A 7→ χ in (3.1.4)

106

corresponds to the F2F setting and is explored in detail in Chapter 3. Al-
ternately, one could learn the effective tensor A directly using the F2V-FNM
architecture to approximate A 7→ A. Furthermore, though A is a function from
T2 to R2×2

sym,≻0, in certain cases it may have an exact finite vector parametriza-
tion. One example of this case is finite piecewise-constant Voronoi tessellations;
A takes constant values on a fixed number of cells, and the cell centers uniquely
determine the Voronoi geometry. Denoting these parameters as z ∈ Rdu for
appropriate du ∈ N, one could also learn the V2F map z → χ or the V2V map
z → A. In this experiment, we compare the error in the QoI A using all four
methods. A visualization of the possible maps is shown in Figure 5.8. Since
our example is in two spatial dimensions, the five Voronoi cell centers have two
components each. The symmetry of A yields three degrees of freedom (DoF)
on each Voronoi cell. Altogether, this yields 25 parameters that comprise the
finite vector input.

For training, we use the absolute squared loss in (5.5.2) with the H1 norm
for function output and Frobenius norm for vector output. Test error is also
evaluated using this metric. Data are generated with a finite element solver
using the method described in [56]; both A and χ are interpolated to a 128×128

grid, and the Voronoi geometry is randomly generated for each sample. The
test set size is 500. Each map uses hyperparameters obtained via a grid search.
For F2F, F2V, V2F, and V2V, the number of modes are 18, 12, 12, and 18, and
the channel widths are 64, 96, 96, and 64, respectively. The fully-connected
NN used as a comparison has a channel width of 576 and 2 hidden layers.
As a consequence, all methods have a fixed model size of modes times width
equaling 1152.

The results for the homogenization experiment in Figure 5.9 reinforce the
theoretical intuition from Section 5.4 that learning with vector data results
in higher error than learning with function data. Both the F2F and the F2V
models approximately track the N−1/2 rate, where N is the number of training
data. On the other hand, the V2V model and NN model fail to attain this rate
and saturate at the same level of roughly 10% error. The V2F map does achieve
a slightly faster error decay rate than the V2V architecture for large enough
sample sizes N , but it does not approach the N−1/2 rate obtained by the F2F
and F2V models. These rate differences occur when there is a difference in
input dimension. On the other hand, for a difference in output dimension,

107

101 102 103 104

N

10−4

10−3

10−2

10−1

100

A
ve

ra
ge

A
b

so
lu

te
E

rr
or

F2F

F2V

V2F

V2V

NN

N−1/2

Figure 5.9: Elliptic homogenization problem. Absolute A error in the Frobe-
nius norm versus data size for the FNM and NN architectures. The shaded
regions denote two standard deviations away from the mean of the test error
over five realizations of batch indices during SGD and model parameter ini-
tializations.

while both the F2F and F2V models reach roughly the same convergence rate,
the F2V error remains an order of magnitude higher than the F2F error. We
note that when measuring performance with relative test error instead, the
qualitative behavior of Figure 5.9 remains the same.

5.6 Conclusion

This chapter proposes the Fourier Neural Mappings (FNMs) framework as an
operator learning method for approximating parameter-to-observable (PtO)
maps with finite-dimensional vector inputs or outputs, or both. Universal ap-
proximation theorems demonstrate that FNMs are well-suited for this task. Of
central interest is the setting in which the PtO map factorizes into a vector-
valued quantity of interest (QoI) map composed with a forward operator map-
ping between two function spaces. For this setting, the work introduces the
end-to-end and full-field learning approaches. The end-to-end approach di-
rectly estimates the PtO map from its own input–output pairs, while the full-
field approach estimates the forward map first and then plugs this estimator
into the QoI. The chapter implements the FNM architectures for three nonlin-
ear problems arising from environmental science, aerodynamics, and materials
modeling. The numerical results support the linear theory and extend beyond

108

it by revealing the supremacy of function space representations of the input
space over analogous finite-dimensional vector parametrizations.

109

C h a p t e r 6

THEORY-TO-PRACTICE GAP IN OPERATOR LEARNING

This chapter is adapted from the following preprint:

[1] Philipp Grohs, Samuel Lanthaler, and Margaret Trautner. Theory to
Practice Gap for Neural Networks and Neural Operators. 2025. arXiv:
2503.18219 [cs.LG].

This work studies the sampling complexity of learning with ReLU neural net-
works and neural operators. For mappings belonging to relevant approxima-
tion spaces, we derive upper bounds on the best-possible convergence rate
of any learning algorithm, with respect to the number of samples. In the
finite-dimensional case, these bounds imply a gap between the parametric and
sampling complexities of learning, known as the theory-to-practice gap. In
this work, a unified treatment of the theory-to-practice gap is achieved in a
general Lp-setting, while at the same time improving available bounds in the
literature. Furthermore, based on these results the theory-to-practice gap is
extended to the infinite-dimensional setting of operator learning. Our results
apply to Deep Operator Networks and integral kernel-based neural operators,
including the Fourier neural operator. We show that the best-possible conver-
gence rate in a Bochner Lp-norm is bounded by Monte-Carlo rates of order
1/p.

6.1 Introduction

Deep learning has had remarkable success in a wide range of tasks such as
speech recognition, computer vision, or natural language processing [156]. In-
creasingly this methodology is also used in the scientific domain, with appli-
cations to protein folding [157], plasma physics, [158] and numerical weather
prediction [116, 159, 160]. However, the theoretical underpinnings of this field
remain incomplete, and significant advances are still required to understand
the empirical success of neural networks in these diverse applications. In many
of these tasks, the goal is to approximate an unknown mapping based on a
dataset consisting of input- and output-pairs, so-called supervised learning.

https://arxiv.org/abs/2503.18219

110

This has motivated a surge of theoretical work aimed at deepening our under-
standing of supervised learning with neural networks.

Theoretical error estimates for supervised learning are usually obtained by
splitting the overall error into two contributions [161]: the approximation
error and the generalization error. The approximation error measures the
best-possible error that can be achieved by a given architecture. The gen-
eralization error bounds the difference between this best-possible error and
the error achieved by empirical risk minimization, i.e. optimization based on a
finite number of empirical data samples. This decomposition captures a trade-
off between model expressivity (or parametric complexity), and generalization
from a finite amount of data, i.e. the sampling complexity.

The study of the expressivity of neural networks dates back several decades to
foundational work such as that of Cybenko [4] and Hornik, Stinchcombe and
White [162], which focused on qualitative universality theorems. Motivated by
the need to better explain the empirical efficiency of deep neural networks in
applications, there has recently been increased interest in deriving quantita-
tive approximation guarantees. These relate achievable approximation errors
to key factors, such as the depth, width or choice of activation function [163,
164, 165, 166, 22]. What is striking about these results is that the derived
approximation rates are generally far superior to the rates that are achievable
by classical numerical representations. This fact makes deep learning meth-
ods potentially appealing for applications in numerical analysis where a high
convergence rate is often desired.

The Theory-to-Practice Gap. Despite these encouraging results, any
actual numerical approximation algorithm must operate with limited informa-
tion on the function to be approximated — typically in the form of a finite
number of samples of the function itself, or samples of a local (differential)
operator applied to the function. It is therefore a key question whether the
theoretically established approximation rates can be retained under such lim-
ited information.

For this reason, the sampling complexity of deep learning has also been of
recent focus. Of particular relevance to the present work are the articles [22,
167, 168]. An informal summary of their results is as follows. First, define
by Uα([0, 1]d) the set of functions on [0, 1]d which, for any n ∈ N, can be

111

approximated by a neural network ψn with at most n non-zero weights, and
with approximation error ∥f − ψn∥L∞ ≤ n−α. We refer to the approximation
rate α as the parametric convergence rate, since this rate holds with respect
to the number of neural network parameters n.

Second, to address the sampling complexity of computing such an approxima-
tion, [22] considers (optimal) reconstruction methods aiming to reconstruct
f ∈ Uα([0, 1]d) from point samples f(x1), . . . , f(xN), and examines limits on
the best possible guaranteed convergence rate — not in terms of the number
of parameters but in the number of samples N .

More formally, [22] asks for the optimal convergence rate β∗ > 0 for which
there exists a reconstruction method A : f 7→ Q(f(x1), . . . , f(xN)) defined in
terms of a reconstruction mapping Q : RN → Lp([0, 1]d), with a convergence
guarantee of the form supf∈Uα ∥f − A(f)∥Lp ≤ CN−β∗ . Compared to the
parametric convergence rate α, which describes the optimal convergence rate in
terms of the number of parameters, the rate β∗ is now in terms of the available
information — the N function samples. This is of practical relevance, since a
single function evaluation requires a certain minimal computational time, any
upper bound on β∗ yields a corresponding lower bound on the time to compute
an accurate approximation for f ∈ Uα.

A naive counting argument based on the number of degrees of freedom would
suggest that β∗ = α coincides with the optimal parametric convergence rate
α. Indeed, it might be hoped that the determination of n parameters of the
approximating neural network ψn requires N = n point evaluations, implying
that for A(f) := ψn, we have ∥f −A(f)∥L∞ ≤ n−α = N−α. As is well-known,
this intuition is indeed correct for reconstruction by several popular methods,
including polynomials, trigonometric polynomials, and certain kernel methods
[169]. However, the results of [22] show that this intuition does not carry over
to the sampling complexity of neural network approximation spaces: in this
case, there is a gap between β∗ and α. In fact, even in the limit α → ∞,
the optimal sampling convergence rate β∗ remains uniformly bounded and, for
p = ∞ it even holds that β∗ ≲ 1

d
which implies the existence of a curse of

dimension. The gap between α and β∗ is termed the theory-to-practice gap as
it describes the discrepancy between the complexity of a theoretically possible
approximation and one that can actually be computed from the information
at hand.

112

A first contribution of this work is Theorem 6.2.2 which further extends and
sharpens the bounds from [22] in the setting of finite-dimensional function
approximation. Roughly speaking, we show that in a general Lp-setting, β∗ ≤
1
p
+ 1

d
which means that for high input dimensions (i.e., large d), no actual

algorithm is capable of beating the standard Monte-Carlo rate 1
p

– irrespective
of the parametric convergence rate α. Compared to results in [22] which,
roughly speaking, established bounds of the form β∗ ≤ 1

p
+ 1, this constitutes

a significant improvement if the input dimension d is large.

Operator Learning. In addition to the aforementioned works on neural
networks in finite-dimensions, there has also been increasing interest in oper-
ator learning [170]. The aim of operator learning is to approximate non-linear
operators G : X → Y , mapping between infinite-dimensional function spaces X
and Y . In applications, such operators often arise as solution operators associ-
ated with a partial differential equation, but more general classes of operators
can be considered. To approximate such G, operator learning frameworks gen-
eralize neural networks to this infinite-dimensional setting. Empirically, the
most successful approach is usually based on supervised learning from train-
ing data, and hence the same questions as discussed above also arise in this
context.

Early work on operator learning dates back to a foundational paper by Chen
and Chen [118]. Without any claim of completeness, we mention a number of
works studying the parametric complexity of operator learning which aim to
relate the model size to the achieved approximation accuracy, including both
upper bounds on the required number of parameters, e.g. [102, 171, 172, 173],
as well as lower bounds, e.g. [174, 175, 176, 177]. The data (or sampling)
complexity of operator learning has been studied in [178, 133, 179]. In con-
nection with the present work, we also highlight [180], where approximation
spaces for the Fourier neural operator are introduced, and upper bounds on
the sampling complexity of learning on these spaces are discussed. Closely
related spaces will be discussed in this work. These spaces, which are an
infinite-dimensional generalization of the approximation spaces Uα introduced
in [22] (and described above), represent classes of Deep Operator Networks
and kernel-integral based neural operators with a parametric approximation
rate α. They will be introduced and studied in Sections 6.3 and 6.3.

113

In the context we are able to generalize the theory-to-practice gap to the
infinite-dimensional setting: assuming access to an optimal algorithm for the
reconstruction of the underlying mapping from N samples, we show that the
best achievable convergence rate N−β∗ on the relevant approximation spaces
is upper bounded by 1/p, if the reconstruction error is measured in a Bochner
Lp-norm. These results are provided in Theorems 6.3.12 and 6.3.14 (Deep Op-
erator Networks) and Theorems 6.3.20 and 6.3.22 (kernel-integral based neural
operators) and they uncover fundamental limits on the convergence guaran-
tees that are possible in the context of operator learning: one cannot improve
on the standard Monte-Carlo rate, irrespective of how high the parametric
convergence rate may be.

In summary, this work makes the following contributions:

• We give a unified treatment of the theory-to-practice gap in a general
Lp-setting, valid for arbitrary p ∈ [1,∞], sharpening available bounds
in the literature.

• We extend the theory-to-practice gap to the infinite-dimensional setting
of operator learning. Our results apply to Deep Operator Networks
and integral kernel-based neural operators, including the Fourier neural
operator.

• For these architectures, we show that the optimal convergence rate in
a Bochner Lp-norm is bounded by β∗ ≤ 1/p, for any p ∈ [1,∞).

• We furthermore show that β∗ = 0 for uniform approximation over a
compact set of input functions, i.e. no algebraic convergence rates are
possible.

Overview

In Section 6.2 we first review neural network approximation spaces and rele-
vant notions from sampling complexity theory. In Section 6.2, we then state
and prove our main result in the finite dimensional setting (Theorem 6.2.2.) In
Section 6.3, we extend the finite-dimensional result to operator learning. After
a brief review of relevant concepts, we discuss the approximation-theoretic set-
ting in Section 6.3. In Section 6.3 we state an abstract result, Proposition 6.3.6,
which establishes a connection between the finite- and infinite-dimensional set-
tings. Finally, based on this abstract result, we derive an infinite-dimensional

114

theory-to-practice gap for approximation in Lp- and sup-norms. Section 6.3
discusses Deep Operator Networks, resulting in Theorems 6.3.12 and 6.3.14,
respectively. Section 6.3 discusses kernel-integral based neural operators, re-
sulting in Theorems 6.3.20 and 6.3.22. We end with conclusions and further
discussion in Section 6.4.

Notation

For a vector v ∈ Rd, we indicate by |v| the Euclidean norm, and for a matrix
A ∈ Rm×d, we denote by ∥A∥ = sup|v|=1 |Av| its operator norm. Given a
domain D ⊂ Rd, we denote by W 1,∞(D;Rm) the set of measurable functions
u : D → Rm with uniformly bounded values and uniformly bounded weak
derivatives (Lebesgue almost everywhere). The corresponding norm is defined
as

∥u∥W 1,∞(D;Rm) = ∥u∥L∞(D;Rm) + |u|W 1,∞(D;Rm),

where |u|W 1,∞(D;Rm) = ess supx∈Ω ∥Du(x)∥ denotes the W 1,∞ seminorm. Given
a topological space X , we will denote by P(X) the set of all probability mea-
sures on X under the Borel σ-algebra. For two measures µ and ν, on a measure
space (Ω,Σ), we will write µ ≥ ν to indicate that µ(B) ≥ ν(B) for any element
B ∈ Σ.

6.2 A generalized gap in finite dimension

The goal of this section is to derive new lower bounds on the sampling com-
plexity of ReLU neural network approximation spaces, in a finite-dimensional
setting. To describe the mathematical setting, we recall relevant notions from
[22, Sect. 2.1 and 2.2], below.

ReLU neural networks

Following [22], a neural network is defined as a tuple ψ = ((A1, b1), . . . , (AL, bL)),
consisting of matrices Aj ∈ Rdj×dj−1 and bias vectors bj ∈ Rdj . The number
of layers L(ψ) := L is the depth of ψ, and W (ψ) :=

∑L
j=1(∥Aj∥ℓ0 + ∥bj∥ℓ0)

is used to denote the number of (nonzero) weights of ψ. Here, the nota-
tion ∥A∥ℓ0 refers to the number of nonzero entries of a matrix (or vector) A.
Finally, we write din(ψ) := d0 and dout(ψ) := dL for the input and output
dimension of ψ, and we set ∥ψ∥NN := maxj=1,...,L max{∥Aj∥∞, ∥bj∥∞}, where
∥A∥∞ := maxi,j |Ai,j|.

115

The function Rσψ computed by ψ, is defined via an activation function σ. In
this work, we restrict attention to ReLU networks, corresponding to σ : R →
R, x 7→ max{0, x}, and acting componentwise on vectors. The realization
Rσψ : Rd0 → RdL is then given by

Rσψ := TL ◦ (σ ◦ TL−1) ◦ · · · ◦ (σ ◦ T1) where Tj :

{
Rdj−1 → Rdj

x 7→ Ajx+ bj
.

With slight abuse of notation, we usually do not distinguish notationally
between ψ and its ReLU-realization Rσψ. Thus, we simply say that ψ :

Rd0 → RdL is a (ReLU) neural network, when referring to the realization
associated with a specific setting of the weights matrices and biases ψ =

((A1, b1), . . . , (AL, bL)).

Neural network approximation spaces

We next summarize the relevant approximation spaces Aα,∞
ℓ (D) for a domain

D ⊂ Rd; they depend on a generalized ‘smoothness’ parameter α > 0 and
a depth-growth function ℓ = ℓ(n). In short, Aα,∞

ℓ (D) contains all functions
f : D → R that can be uniformly approximated at rate n−α, by ReLU neural
networks with at most n non-zero weights and biases, depth at most ℓ(n), and
weight magnitude at most 1.

More precisely, given an input dimension d ∈ N and a non-decreasing depth-
growth function ℓ : N → N ∪ {∞}, we define

Σℓ
d,n :=

{
ψ : Rd → R

∣∣∣∣∣ ψ NN with din(ψ) = d, dout(ψ) = 1,

W (ψ) ≤ n, L(ψ) ≤ ℓ(n), ∥ψ∥NN ≤ 1

}
.

Then, given a measurable subset D ⊂ Rd, p ∈ [1,∞], and α ∈ (0,∞), for each
measurable f : D → R, we define

Γα,p(f) := max

{
∥f∥Lp(D), sup

n∈N

[
nα · dp,D

(
f,Σℓ

d,n

)]}
∈ [0,∞],

where dp,D(f,Σ) := infg∈Σ ∥f − g∥Lp(D).

As pointed out in [22], Γα,p is not a (quasi-)norm. However, one can define a
neural network approximation space quasi-norm ∥ · ∥Aα,p

ℓ
by

∥f∥Aα,p
ℓ

:= inf{θ > 0 : Γα,p(f/θ) ≤ 1} ∈ [0,∞],

giving rise to the approximation space

Aα,p
ℓ := Aα,p

ℓ (D) :=
{
f ∈ Lp(D) : ∥f∥Aα,p

ℓ
<∞

}
.

116

We denote by Uα,p
ℓ (D) ⊂ Aα,p

ℓ (D) the unit ball,

Uα,p
ℓ := Uα,p

ℓ (D) :=
{
f ∈ Lp(D) : ∥f∥Aα,p

ℓ
≤ 1
}
.

As shown in [22], Uα,p
ℓ (D) consists precisely of those f for which dp,D(f,Σℓ

d,n) ≤
n−α for all n ∈ N. We will focus on the special case p = ∞, in the following.

The following quantity is crucial in characterizing the sampling complexity of
neural network approximation spaces [22]:

ℓ∗ := sup
n∈N

ℓ(n) ∈ N ∪ {∞}. (6.2.1)

It describes the maximal depth that is allowed for a neural network approxi-
mant of a given function.

Remark 6.2.1. We will later extend the definition of the approximation
spaces Aα,∞

ℓ to the infinite-dimensional operator learning setting. Specifically,
in Section 6.3 we define Aα,∞

ℓ,DON for a class of DeepONets and in Section 6.3,
we define Aα,∞

ℓ,NO for (integral-kernel based) Neural Operators. ♢

Sampling complexity

By definition, the approximation of a function f ∈ Aα,∞
ℓ (D) by neural net-

works can be achieved at a rate n−α, in terms of the required number of
neural network parameters. This rate is fast, when α ≫ 1, thus allowing for
efficient approximation in principle. Despite this fact, it has been shown in
[22] that such high rates, in terms of the parameter count n, do not imply
correspondingly high convergence rates when considering the required number
of samples to train such neural networks. This phenomenon is referred to as
the theory-to-practice gap.

Below, we recall mathematical notions from [22], which quantify the sampling
complexity of a set of continuous functions U ⊂ C(D), where D ⊂ Rd is a
subdomain. We are mostly interested in the setting where U = Uα,∞

ℓ (D) is
the unit ball in the relevant neural network approximation space.

The Deterministic Setting

Given U ⊂ C(D), we now consider the approximation of f ∈ U with respect
to the Lp(D)-norm.

117

A map A : U → Lp(D) is called a deterministic method using N ∈ N point
measurements, if there exists x = (x1, . . . , xN) ∈ DN and a map Q : RN →
Lp(D) such that

A(f) = Q(f(x1), . . . , f(xN)) ∀ f ∈ U.

The set of all deterministic methods using N point measurements will be
denoted by AlgN(U,L

p(D)).

We define the error of A for approximation in Lp as

e(A,U, Lp(D)) := sup
f∈U

∥f − A(f)∥Lp(D).

The optimal error for (deterministic) approximation in Lp using N point
samples is then

edet
N (U,Lp(D)) := inf

A∈AlgN (U,Lp(D))
e(A,U, Lp(D)).

Finally, the optimal order of convergence for (deterministic) approxima-
tion in Lp using N point samples is

βdet
∗ (U,Lp(D)) := sup

{
β ≥ 0 :

∃C > 0 s.t. ∀N ∈ N,
edet
N (U,Lp(D)) ≤ C ·N−β

}
. (6.2.2)

The Randomized Setting

Generalizing the deterministic setting above, we consider randomized algo-
rithms. A randomized method using N ∈ N point measurements (in ex-
pectation) is a tuple (A,N) consisting of a family A = (Aω)ω∈Ω of maps
Aω : U → Lp(D) indexed by a probability space (Ω,F ,P) and a measurable
function N : Ω → N with the following properties:

1. for each f ∈ U , the map Ω → Lp(D), ω 7→ Aω(f) is measurable with
respect to the Borel σ-algebra on D,

2. for each ω ∈ Ω, we have Aω ∈ AlgN(ω)(U,L
p(D)),

3. Eω[N(ω)] ≤ N .

118

We say that (A,N) is strongly measurable if the map Ω×U → Lp(D), (ω, f) 7→
Aω(f) is measurable, where U ⊂ C(D) is equipped with the Borel σ-algebra
induced by the uniform norm. We denote the set of all strongly measurable
(A,N) satisfying the above properties by Alg∗N(U,L

p(D)).

The expected error of a randomized algorithm (A,N) for approximation in
Lp is defined as

e((A,N), U, Lp(D)) := sup
f∈U

Eω

[
∥f − Aω(f)∥Lp(D)

]
. (6.2.3)

The optimal randomized error for approximation in Lp using N point
samples (in expectation) is

eran
N (U,Lp(D)) := inf

(A,N)∈Alg∗N (U,Lp(D))
e((A,N), U, Lp(D)). (6.2.4)

Finally, the optimal randomized order for approximation in Lp using point
samples is

β∗(U,L
p(D)) := sup

{
β ≥ 0 :

∃C > 0 s.t. ∀N ∈ N,
eran
N (U,Lp(D)) ≤ C ·N−β

}
. (6.2.5)

We point out that a deterministic method is a special case of a randomized
method, and hence

βdet
∗ (U,Lp(D)) ≤ β∗(U,L

p(D)). (6.2.6)

Since our aim is to derive upper bounds on these convergence rates, we may
restrict attention to β∗(U,L

p(D)), implying corresponding bounds also for
βdet
∗ (U,Lp(D)).

In the following, we in particular derive upper bounds for the exponents
β∗(U

α,∞
ℓ , Lp), where Uα,∞

ℓ = Uα,∞
ℓ ([0, 1]d) and Lp = Lp([0, 1]d) with 1 ≤ p ≤

∞.

Theory-to-practice gap

It was shown in [22, Theorem 1.1 and 1.2], that the best possible conver-
gence rate of any reconstruction method on Uα,∞

ℓ := Uα,∞
ℓ ([0, 1]d) based on

point samples is upper bounded as follows. When the reconstruction error is
measured with respect to the L∞([0, 1]d) norm, the rate is upper bounded by

β∗(U
α,∞
ℓ , L∞) ≤ 1

d
· α

α + ⌊ℓ∗/2⌋ . (6.2.7)

119

When measuring the reconstruction error with respect to the L2([0, 1]d) norm,
the bound becomes

β∗(U
α,∞
ℓ , L2) ≤ 1

2
+

α

α + ⌊ℓ∗/2⌋ . (6.2.8)

These are the tightest known upper bounds on the convergence rates for the
most relevant range α ≥ max(2, ⌊ℓ∗/2⌋); for smaller values of α refined esti-
mates are given in [22, Theorems 5.1 and 7.1]. Astonishingly, even in the limit
α → ∞, the best possible reconstruction rates are upper bounded by 1/d and
3/2, respectively.

Our first goal in the next subsection is to extend and sharpen the bounds in
(6.2.7) and (6.2.8) for arbitrary d ∈ N and p ∈ [1,∞], with a unified proof.

Main result in finite dimension We prove the following theorem:

Theorem 6.2.2. Let p ∈ [1,∞]. Let ℓ : N → N∪{∞} be non-decreasing with
ℓ∗ ≥ 3. Given d ∈ N and α ∈ (0,∞), consider

U := Uα,∞
ℓ (Rd)|[0,1]d :=

{
f |[0,1]d

∣∣ f ∈ Uα,∞
ℓ (Rd)

}
,

such that U ⊂ C([0, 1]d). Then

β∗(U,L
p([0, 1]d)) ≤ 1

p
+

1

d
· α

α + ⌊ℓ∗/2⌋ . (6.2.9)

♢

Since the restriction U = Uα,∞
ℓ (Rd)|[0,1]d is a subset of Uα,∞

ℓ ([0, 1]d), Theorem
6.2.2 implies the following corollary:

Corollary 6.2.3. Denote Uα,∞
ℓ = Uα,∞

ℓ ([0, 1]d). Under the assumptions of
Theorem 6.2.2, we have

β∗(U
α,∞
ℓ , Lp([0, 1]d)) ≤ 1

p
+

1

d
· α

α + ⌊ℓ∗/2⌋ .

♢

Remark 6.2.4. The upper bound (6.2.9) implies in particular, that the best
possible convergence rate of any randomized or deterministic reconstruction
method is upper bounded by β ≤ 1

p
+ 1

d
. In high-dimensional applications, this

upper bound is approximately 1
p
, implying that algorithms cannot be expected

to converge at substantially faster than Monte-Carlo rates. ♢

120

Proof of Theorem 6.2.2

Our proof of Theorem 6.2.2 is based on several technical lemmas and ideas from
[22]. The main novelty here is a different approach to combining these ingredi-
ents: while the derivation in [22] relies on a linear combination of (many) hat
functions and combinatorial arguments, our proof will be instead be based on
a random placement of a single hat function, and a probabilistic argument.

Outline Before detailing the proof of Theorem 6.2.2, we first outline the
general idea on the domain [0, 1]d. Our first observation is that, for any choice
of evaluation points x1, . . . , xN ∈ [0, 1]d, there exists a void with inner diameter
of order N−1/d; more precisely, we show that, independently of the choice of
x1, . . . , xN , for a randomly drawn y ∼ Unif([0, 1]d), we have

min
j=1,...,N

|y − xj| ≥
1

4
N−1/d, (6.2.10)

with probability at least 1/2.

Given the inevitable presence of such a void, we are then tempted to place a
function g with support inside this void. If we assume that ∥g∥L∞ ≤ 1, or
indeed that g is the characteristic function of a cube in this void, then such g
can have an Lp-norm as large as ∥g∥Lp ∼ N−1/p. Given only point values at
x1, . . . , xN , such g will be indistinguishable from the zero-function. Thus, if A
is a reconstruction method relying only on the point values at x1, . . . , xN , then
A(g) = A(0). It follows that ∥g∥Lp ≤ ∥g−A(g)∥Lp+∥0−A(0)∥Lp and hence at
least one of ∥g−A(g)∥Lp or ∥0−A(0)∥Lp must be on the order of magnitude of
∥g∥Lp([0,1]d) ∼ N−1/p. As a consequence, the achievable convergence rate β of
a reconstruction method on characteristic functions is fundamentally limited
to β ≤ 1

p
.

To link the above observation with reconstruction methods on neural network
approximation spaces, we will recall (cp. Lemma 6.2.6, below) that ReLU
neural networks can efficiently approximate certain localized functions ϑM,y.
These functions are locally supported inside a cube of side-length r := 1/M

with center y ∈ [0, 1]d. In our proof, the ϑM,y with M ∼ N1/d will act as a
replacement of the characteristic function g of the outline, above. The main
difference with the characteristic function is that the gradient of ϑM,y cannot
be arbitrarily large, if we constrain it to belong to the unit ball Uα,∞

ℓ in the
approximation space. This limit on the gradient introduces an additional

121

correction in our upper bound, which finally will take the form β∗ ≤ 1
p
+

(correction depending on α, ℓ).

Details We now proceed with the detailed proof of Theorem 6.2.2. For any
placement of evaluation points x1, . . . , xN ∈ [0, 1]d, we first show that a point
y ∈ [0, 1]d picked uniformly at random has a positive chance of sitting in a
“void” with interior diameter ∼ N−1/d.

Lemma 6.2.5 (Existence of a void). Let d,N ∈ N. Let x1, . . . , xN ∈ [0, 1]d

be given. Consider y ∼ Unif([0, 1]d) drawn uniformly at random. Then

Proby

[
min

j=1,...,N
|y − xj|∞ >

1

4
N−1/d

]
≥ 1

2
. (6.2.11)

♢

Proof. Let us fix r > 0 for the moment. Applying a union bound, we note
that

Proby

[
min

j=1,...,N
|y − xj|∞ ≤ r

]
= Proby

[
y ∈ ⋃N

j=1

(
xj + [−r, r]d

)]
≤

N∑
j=1

Vol
(
xj + [−r, r]d

)
= N(2r)d.

It thus follows that, if r := 1
4
N−1/d ≤ 1

2
(2N)−1/d, then

Proby

[
min

j=1,...,N
|y − xj| ≤ r

]
≤ 1

2
.

Hence, we must have Proby[minj=1,...,N |y − xj| > r] ≥ 1
2
, as claimed.

We now state the following fundamental result, which follows from [22, Lemma
3.4]. The main insight of this lemma is that ReLU neural networks can effi-
ciently approximate a localized function ϑM,y : Rd → [0, 1], which is supported
in a cube of side-length 2/M around y, and which “fills in” a significant fraction
of this cube.

Lemma 6.2.6 (Localized networks). Given d ∈ N, M ≥ 1 and y ∈ [0, 1]d,
there exists a function ϑM,y : Rd → [0, 1] with the following properties:

• ϑM,y(x) depends continuously on x and y; in fact, we have that ϑM,y(x) =

ϑM(x− y) is a shift of a neural network ϑM .

122

• ϑM,y(x) = 0 whenever |x− y|∞ ≥ 1/M .

• For any p ∈ [1,∞], there exists C = C(d, p) > 0 satisfying,

∥ϑM,y∥Lp([0,1]d) ≥ CM−d/p,

• There exists a constant κ = κ(γ, α, d, ℓ, c) > 0, such that

gM,y := κM−α/(α+⌊ℓ∗/2⌋)ϑM,y ∈ Uα,∞
ℓ (Rd).

♢

Proof. The existence of ϑM,y and the other properties are shown in [22], see in
particular [22, Lemma 3.4].

We also state the following result, which is a minor variant of [22, Lemma 2.3].

Lemma 6.2.7. Let D ⊂ Rd and ∅ ≠ U ⊂ C(D) be bounded, and let 1 ≤ p ≤
∞. Assume that there exists λ ∈ [0,∞), κ > 0, such that for every N ∈ N,
there exists a probability space (Ξ,P) and a random variable ψ : Ξ → U ,
ξ 7→ ψξ, such that

Eξ

[
∥ψξ − A(ψξ)∥Lp(D)

]
≥ κN−λ, ∀A ∈ AlgdetN (U,Lp(D)).

Then β∗(U,Lp(D)) ≤ λ. ♢

Proof. This follows by the same reasoning as [22, Lemma 2.3].

Our main interest in this result is when U = Uα,∞
ℓ (Rd)|[0,1]d . Combining the

results from Lemmas 6.2.5, 6.2.6, and 6.2.7, we now come to the proof of
Theorem 6.2.2.

Proof of Theorem 6.2.2. Let d,N ∈ N be given. Recall that U := Uα,∞
ℓ (Rd)|[0,1]d .

Our goal is to apply Lemma 6.2.7 to deterministic reconstruction methods
based on N point-values,

A ∈ AlgdetN (U,Lp([0, 1]d)).

To construct a suitable probability space (Ξ,P) and random function Ξ → U ,
we first define a probability space as Ξ := [0, 1]d × {−1,+1} endowed with

123

the Borel σ-algebra and define P := Unif([0, 1]d) ⊗ Unif({−1,+1}). We will
denote elements of Ξ as ξ = (y, σ). This defines our probability space.

We next fix

M := 4N1/d. (6.2.12)

With this choice of M , we then define ψξ := ψ(y,σ) := σgM,y ∈ U , where gM,y

is the function of Lemma 6.2.6. Thus, ψξ = ψ(y,σ) is a random function, given
by a random shift of a localized neural network ϑM by y ∼ Unif([0, 1]d) and a
random choice of sign σ ∼ Unif({−1,+1}). This defines our random variable

ψ : Ξ → U. (6.2.13)

Invoking Lemma 6.2.7, it will suffice to prove the following claim, formulated
as a lemma for later reference:

Lemma 6.2.8. Let ψ : Ξ → U , ξ 7→ ψξ be the random variable defined above
(6.2.13), where U := Uα,∞

ℓ (Rd)|[0,1]d . There exists a constant κ, independent
of N , such that

Eξ

[
∥ψξ − A(ψξ)∥Lp([0,1]d)

]
≥ κN−λ, (6.2.14)

for all A ∈ Algdet(U,Lp([0, 1]d)) and where λ := 1
p
+ 1

d
· α
α+⌊ℓ∗/2⌋ . ♢

The claim of Theorem 6.2.2 is then immediate from Lemma 6.2.7 and 6.2.8.

Proof of Lemma 6.2.8. Let A ∈ Algdet(Uα,∞
ℓ (Rd), Lp([0, 1]d)) be given. Let

Q : RN → Lp([0, 1]d) be the reconstruction mapping associated with A and
let x1, . . . , xN ∈ Rd denote the associated evaluation points, such that A(f) =
Q(f(x1), . . . , f(xN)). We first observe that, whatever the choice of x1, . . . , xN ,
we have, by Lemma 6.2.5 and our choice of M = 4N1/d in (6.2.12),

Proby

[
min

j=1,...,N
|y − xj| > 1/M

]
≥ 1

2
.

Now consider the random event

E =
{
(y, σ) ∈ Ξ

∣∣ψ(y,σ)(x1) = · · · = ψ(y,σ)(xN) = 0
}

= {(y, σ) ∈ Ξ |σgM,y(x1) = · · · = σgM,y(xN) = 0},

124

where the randomness is introduced by y ∼ Unif([0, 1]d) and σ ∼ Unif{−1,+1}.
Since gM,y is supported in the shifted cube (y + [−1/M, 1/M]d) (cp. Lemma
6.2.6), it follows that

Proby,σ[E] ≥ Proby

[
min

j=1,...,N
|y − xj| > 1/M

]
≥ 1

2
.

We can now finish the proof. To this end, we first observe that

Eξ

[
∥ψξ − A(ψξ)∥Lp([0,1]d)

]
≥ Eξ

[
∥ψξ − A(ψξ)∥Lp([0,1]d) | E

]
Probξ[E]

≥ 1

2
Eξ

[
∥ψξ − A(ψξ)∥Lp([0,1]d) | E

]
=

1

2
Eξ

[
∥ψξ − A(0)∥Lp([0,1]d) | E

]
. (6.2.15)

We next note that the random variable ψξ = σgM,y, conditioned on E, has the
same distribution as −ψξ = −σgM,y conditioned on E; this follows from the
fact that E and P are invariant under replacement σ → −σ. Furthermore, it
follows from Lemma 6.2.6 that there exists a constant C = C(α, d, p, ℓ) > 0,
such that

∥ψξ∥Lp([0,1]d) = ∥gM,y∥Lp([0,1]d) ≥ CM−d/p−α/(α+⌊ℓ∗/2⌋), (6.2.16)

for all M ≥ 1 and y ∈ [0, 1]d. Hence, it follows with

λ :=
1

p
+

1

d
· α

α + ⌊ℓ∗/2⌋ ,

that

2CM−dλ ≤ 2Eξ

[
∥ψξ∥Lp([0,1]d) | E

]
(by (6.2.16))

= Eξ

[
∥ψξ − (−ψξ)∥Lp([0,1]d) | E

]
≤ Eξ

[
∥ψξ − A(0)∥Lp([0,1]d) | E

]
+ Eξ

[
∥ − ψξ − A(0)∥Lp([0,1]d) | E

]
(triangle ineq.)

= 2Eξ

[
∥ψξ − A(0)∥Lp([0,1]d) | E

]
(invar. σ → −σ)

≤ 4Eξ

[
∥ψξ − A(ψξ)∥Lp([0,1]d)

]
. (by (6.2.15))

Thus, we have shown that

Eξ

[
∥ψξ − A(ψξ)∥Lp([0,1]d)

]
≥ C

2
M−dλ.

125

This implies a bound of the desired form (6.2.14), since

C

2
M−dλ =

C

2

(
4N1/d

)−dλ
=: κN−λ,

where we recall λ = −1
p
− 1

d
· α
α+⌊ℓ∗/2⌋ , and where the constant κ depends on

α, d, p, ℓ, but is independent of N . This is (6.2.14) and concludes our proof.

6.3 Extension to operator Learning

We now consider the extension of the theory-to-practice gap to operator learn-
ing, i.e. the data-driven approximation of operators mapping between infinite-
dimensional function spaces. The finite-dimensional upper bound (6.2.9) sug-
gests that in the infinite-dimensional limit, d→ ∞, the best convergence rate
in Lp should be upper bounded by 1

p
, independently of α and ⌊ℓ∗/2⌋.

Our goal in this second half of the chapter is to rigorously state and prove
such a theory-to-practice gap for two prototypical classes of neural opera-
tors: deep operator networks, as discussed in [23, 87], and a class of integral-
kernel based neural operators [52, 181]. Before stating our main results in the
operator-learning setting, we will first summarize the overall objective of op-
erator learning, and discuss suitable infinite-dimensional replacements of the
spaces Lp([0, 1]d), for 1 ≤ p ≤ ∞ in this context. This is followed by a def-
inition of the aforementioned prototypical neural operator frameworks, their
associated operator approximation spaces, and the statement of our main re-
sults, establishing a theory-to-practice gap in infinite dimensions.

Operator Learning

In the following, we will be interested in the sampling complexity of operator
learning. To simplify our discussion, we will only consider the special case Y =

R, i.e. we consider the data-driven approximation of non-linear functionals G :

X → R. Since our analysis concerns lower bounds on the sampling complexity
(or upper bounds on the optimal convergence rates), the results continue to
hold if the output space is replaced by a more general Y (finite-dimensional
or infinite-dimensional). Thus, this reduction can be made without loss of
generality. For our analysis, only the fact that the input space X is infinite-
dimensional will be relevant.

126

Sampling complexity of Operator Learning

With this operator learning setting in mind, we first point out that the dis-
cussion of the sampling complexity of Section 6.2 carries over with only minor
changes. For convenience, we repeat the main elements here.

We now consider a set of continuous operators U ⊂ C(X) = C(X ;R) on a
separable Banach space X . We fix a Banach space of operators V, equipped
with a norm ∥ · ∥V. In analogy with the finite-dimensional setting, a map
A : U → V will be called a deterministic method using N ∈ N point measure-
ments, if there exists u = (u1, . . . , uN) ∈ XN , and a map Q : RN → V, such
that

A(G) = Q(G(u1), . . . ,G(uN)), ∀G ∈ U.

We recall that each G ∈ U is a continuous operator G : X → R, and hence the
above expression is well-defined. Consistent with our earlier discussion, the
set of all deterministic methods using N point measurements will be denoted
by AlgN(U,V). It will be assumed that U ⊂ V with a canonical embedding.

The approximation error of A in V is defined as

e(A,U,V) = sup
G∈U

∥A(G)− G∥V,

and the optimal error is edetN (U,V) = infA∈AlgdetN (U,V) e(A,U,V). The opti-
mal order of convergence for deterministic approximation in V using N point
samples is defined as in (6.2.2).

Randomized methods for operator learning, as well as the corresponding errors
and the optimal randomized order (6.2.5) are similarly defined, in analogy
with Section 6.2; we here only recall that a randomized method using N point
measurement (in expectation) is a tuple (A,N) consisting of a family A =

(Aω), ω ∈ Ω of maps Aω : U → V indexed by a probability space (Ω,F ,P)
and a measurable function N : Ω → N with the same properties as described
there, and with Aω ∈ AlgN(ω)(U,V). We continue to denote by AlgN(U,V)

the set of all strongly measurable randomized methods with Eω[N(ω)] ≤ N

expected point evaluations.

In the following, we will derive upper bounds on β∗(U,V), where U is the
unit ball in an operator learning approximation space, and V is a space of
operators with distance measured by either an Lp-norm with 1 ≤ p < ∞, or
by a sup-norm. We describe the relevant setting in the next section.

127

Input functions in infinite dimensions

In the finite-dimensional case, the domain [0, 1]d is widely considered as a
canonical prototype, and results obtained for [0, 1]d usually extend to more
general bounded domains D ⊂ Rd, under mild assumptions. In the infinite-
dimensional setting, there is no longer such a canonical choice. Therefore, we
preface our discussion of the infinite-dimensional theory-to-practice gap with
the introduction of suitable alternatives to the spaces Lp([0, 1]d) and C([0, 1]d)
(the latter corresponding to the limit case p = ∞) to be considered in this
work.

Approximation in V = Lp(µ) When the approximation error is measured
in an Lp-norm for 1 ≤ p < ∞, we consider the following prototypical setting:
We are given a probability measure µ on the input function space X . We then
consider the Banach space of p-integrable (real-valued) operators V = Lp(µ),
with the following Lp-norm:

∥G∥Lp(µ) := Eu∼µ[|G(u)|p]1/p.

Thus, in the infinite-dimensional setting, the probability measure µ replaces
the Lebesgue measure on [0, 1]d. To ensure that µ is “truly infinite-dimensional”,
we will make the following assumption.

Assumption 6.3.1. There exist bi-orthogonal sequences {ej}j∈N ⊂ X and
{e∗j}j∈N ⊂ X ∗, such that e∗j(ek) = δjk for all j, k ∈ N, and such that the
probability measure µ ∈ P(X) can be written as the law of

u =
∞∑
j=1

Zjej, with (Z1, Z2, . . .) ∼
∏∞

j=1 ρj(zj) dzj, (6.3.1)

Here, the components Zj are independent, real-valued random variables, and
the law of Zj has probability density ρj ∈ L1(R; [0,∞)). For each j ∈ N, we as-
sume that there exists a non-empty interval Ij ⊂ R such that ess infzj∈Ij ρj(zj) >
0. We assume that the series (6.3.1) converges with probability 1, i.e. that the
essential supports of the ρj decay suitably fast. ♢

A decomposition of µ Let µ ∈ P(X) be a probability measure satisfying
Assumption 6.3.1. In the following, it will be useful to consider u ∼ µ as being
parametrized by the coefficients in the expansion (6.3.1). Let d ∈ N be fixed

128

for the following discussion. With a slight abuse of notation, we will then
write, for y = (y1, . . . , yd) ∈ Rd and ξ =

∑
j>d ξjej ∈ X ,

u(y; ξ) = ξ +
d∑

j=1

yjej,
(
y ∈ Rd, ξ ∈ Ωd

)
, (6.3.2)

where we have introduced

Ωd := {ξ ∈ X | e∗1(ξ) = · · · = e∗d(ξ) = 0} ⊂ X . (6.3.3)

Associated with y, ξ are the following probability measures µd ∈ P(Rd) and
µ⊥
d ∈ P(Ωd), respectively: first, µd is defined by

µd :=
d∏

j=1

ρj(zj) dzj. (6.3.4)

Second, µ⊥
d is defined as the law of the random variable,

ξ =
∑
j>d

ξjej, where (ξd+1, ξd+2, . . .) ∼
∏
j>d

ρj(zj) dzj. (6.3.5)

By assumption on µ, the random variable (6.3.1) is equal in law to (6.3.2),
when y ∼ µd and ξ ∼ µ⊥

d are sampled independently. We can thus think of
µ as essentially equivalent to the product measure µd ⊗ µ⊥

d for any d ∈ N.
This structure will be convenient for our derivation of the infinite-dimensional
theory-to-practice gap.

Technically, our analysis only requires that the following d-dependent assump-
tion holds for any d ∈ N.

Assumption 6.3.1(d). There exist linearly independent {e1, . . . , ed} ⊂ X
with bi-orthogonal {e∗1, . . . , e∗d} ⊂ X ∗, such that µ ∈ P(X) is the law of

u = ξ +
d∑

j=1

yjej, (y1, . . . , yd) ∼ µd, ξ ∼ µ⊥
d ,

where for µd ∈ P(Rd) and µ⊥
d ∈ P(Ωd):

(a) the law of (y1, . . . yd) is of the form µd =
∏d

j=1 ρj(zj) dzj, for ρj ∈ L1(R),

(b) there exist intervals Ij ⊂ R such that ess infzj∈Ij ρj(zj) > 0 for j =

1, . . . , d,

129

(c) ξ satisfies e∗1(ξ) = · · · = e∗d(ξ) = 0 almost surely.

♢

Defining ξ by (6.3.5), one readily observes that Assumption 6.3.1(d) is implied
by Assumption 6.3.1. For later reference, we also note the following lemma.

Lemma 6.3.2. Let d ∈ N be given. Let µ ∈ P(X) satisfy Assumption 6.3.1
or Assumption 6.3.1(d). There exists B > 0, such that µ⊥

d (∥ξ∥X ≤ B) > 0. ♢

Proof. Note that if u ∼ µ, then ξ ≡ u−∑d
j=1 e

∗
j(u)ej is a well-defined random

variable, with law µ⊥
d ∈ P(Ωd) (by definition). In particular, we have ∥ξ∥X <

∞ almost surely. Since µ⊥
d (∥ξ∥X <∞) = limB→∞ µ⊥

d (∥ξ∥X ≤ B), the claim is
immediate.

This concludes our discussion of the Lp(µ)-setting considered in this work.

Approximation in V = C(K) When the goal is to approximate G ∈ U

uniformly, i.e. with respect to the L∞-norm, we restrict attention to a compact
set K ⊂ X . In this case, we consider the Banach space of continuous operators
V = C(K), endowed with the sup-norm:

∥G∥C(K) := sup
u∈K

|G(u)|.

Thus, in the infinite-dimensional setting, the compact set K replaces the unit
cube [0, 1]d. To ensure that K is truly infinite-dimensional, and we make the
following assumption.

Assumption 6.3.3. We assume that the set K is (i) convex and (ii) there
does not exist a finite-dimensional subspace X0 ⊂ X containing K. ♢

We can relate this uniform setting to the Lp(µ)-setting described above:

Proposition 6.3.4. Let K satisfy Assumption 6.3.3. Then for any d ∈ N,
there exists a probability measure µ ∈ P(X), with supp(µ) ⊂ K, satisfying
Assumption 6.3.1(d); more specifically, µ is the law of

u = e0 +
d∑

j=1

yjej, (y1, . . . , yd) ∼
d∏

j=1

Unif([0, 1]).

130

Here e1, . . . , ed ∈ X are linearly independent elements for which there exist
bi-orthogonal elements e∗1, . . . , e∗d ∈ X ∗, and e0 ∈ K is such that e∗1(e0) = · · · =
e∗d(e0) = 0. ♢

Proof. Let d ∈ N be given. Our aim is to construct µ ∈ P(X) as in the claim
of Proposition 6.3.4. By assumption, K is infinite-dimensional. It follows
that there exist v0, . . . , vd ∈ K which are linearly independent. Given such a
choice, we set e0 := v0, and ej := 1

d
(vj−v0) for j = 1, . . . , d. Since v0, . . . , vd are

linearly independent, it follows that also e0, . . . , ed are linearly independent.
Furthermore, for any finite set of linearly independent vectors, we can find
bi-orthogonal elements e∗0, . . . , e∗d ∈ X ∗, such that e∗j(ek) = δjk, j, k = 0, . . . , d.
In particular, for this choice we then have e∗1(e0) = · · · = e∗d(e0) = 0.

We now define µ ∈ P(X) as the law of u := e0 +
∑d

j=1 yjej, with y1, . . . , yd
iid∼

Unif([0, 1]). This µ trivially satisfies Assumption 6.3.1(d). To prove Proposition
6.3.4, it thus only remains to show that supp(µ) ⊂ K. To see this, we observe
that

u = e0 +
d∑

j=1

yjej = v0 +
1

d

d∑
j=1

yj(vj − v0)

=

(
1− 1

d

d∑
j=1

yj

)
v0 +

d∑
j=1

yj
d
vj =:

d∑
j=0

λjvj,

where λ0 := 1− 1
d

∑d
j=1 yj, λj :=

1
d
yj for j = 1, . . . , d. The last sum identifies

u as a convex combination of v0, . . . , vd ∈ K: Indeed, since yj ∈ [0, 1], for
j = 1, . . . , d, it follows that λ0, . . . , λd ≥ 0 and we also have

∑d
j=0 λj = 1

by definition of λ0. It now follows from the convexity of K that u ∈ K for
any choice of y1, . . . , yd ∈ [0, 1], and hence supp(µ) ⊂ K. This concludes the
proof.

A consequence of Proposition 6.3.4 is that approximation of a continuous op-
erator G : K → Y with respect to the C(K)-norm is at least as difficult
as approximation with respect to the Lp(µ)-norm, for any p ∈ [1,∞), and
where µ satisfies Assumption 6.3.1(d). Indeed, for any reconstruction method
A : U → C(K), we have

∥G − A(G)∥Lp(µ) ≤ ∥G −A(G)∥L∞(µ) ≤ ∥G −A(G)∥C(K),

131

where the last inequality follows from supp(µ) ⊂ K. This implies that the
optimal convergence rate with respect to C(K) can be at most as large as the
optimal convergence rate with respect to Lp(µ):

Lemma 6.3.5. Let K ⊂ X be compact. If µ ∈ P(X) is a probability measure
such that supp(µ) ⊂ K, then

β∗(U, C(K)) ≤ β∗(U, L
p(µ)). (6.3.6)

♢

This simple observation will allow us to deduce results about the uniform
setting from corresponding results in the Lp(µ) setting, and derive estimates
on β∗(U, C(K)) by passing to the limit p→ ∞.

From Finite to Infinite Dimensions

Neural operators Ψ : X → R, approximating G : X → R, can often be
interpreted as a composition of two mappings, Ψ(u) = ψ ◦ E(u). Here, E :

X → Rd is an encoder, which maps the infinite-dimensional input into a
finite-dimensional latent space, and ψ : Rd → R is the realization of a finite-
dimensional neural network. The latent dimension d ∈ N is a hyperparameter
of the architecture.

The general idea behind our proof of the infinite-dimensional theory-to-practice
gap is the following: If the relevant approximation space U ⊂ C(X) contains
compositions of the form f ◦ E : X → R where f ∈ Uα,∞

ℓ belongs to the
d-dimensional neural network approximation space, then the mapping

Uα,∞
ℓ → U, f 7→ f ◦ E ,

defines an embedding of Uα,∞
ℓ into U. Thus, the sampling complexity of

U should be at least as large as that of Uα,∞
ℓ . As a consequence, any d-

dimensional upper bound on convergence rate implies a corresponding bound
in the infinite-dimensional case. This general intuition is confirmed and made
precise by the following proposition:

Proposition 6.3.6 (Lp setting). Let X be a separable Banach space, let µ ∈
P(X) be a probability measure on X , and let U ⊂ C(X) be a set of continuous
operators. Assume that there is an encoder E : X → Rd and a constant c > 0,

132

such that

E#µ ≥ c · Unif([0, 1]d). (6.3.7)

If for some α > 0 and ℓ : N → N, we have{
f ◦ E : X → R

∣∣ f ∈ Uα,∞
ℓ (Rd)

}
⊂ U, (6.3.8)

then

β∗(U, L
p(µ)) ≤ 1

p
+

1

d
· α

α + ⌊ℓ∗/2⌋ . (6.3.9)

♢

Our proof of Proposition 6.3.6 will be based on the following two lemmas.
The first lemma shows that, under the assumptions of Proposition 6.3.6 any
deterministic reconstruction method A ∈ Algdet(U, Lp(µ)) in infinite dimen-
sions induces an associated finite-dimensional reconstruction method A ∈
Algdet(Uα,∞

ℓ , Lp([0, 1]d)).

Lemma 6.3.7. With the notation and under assumptions (6.3.7) and (6.3.8)
of Proposition 6.3.6, the following holds: For any A ∈ Algdet(U, Lp(µ)), there
exists A ∈ Algdet(Uα,∞

ℓ , Lp([0, 1]d)), such that

∥f ◦ E − A(f ◦ E)∥Lp(µ) ≥ c∥f − A(f)∥Lp([0,1]d), ∀ f ∈ Uα,∞
ℓ . (6.3.10)

Here c > 0 is the constant of (6.3.7). ♢

Proof Sketch. The detailed proof of Lemma 6.3.7 is included in Appendix E.2.
The basic idea of the proof is the following: By definition, A is of the form
A(G) = Q(G(u1), . . . ,G(uN)) for some sampling points u1, . . . , uN ∈ X and
Q : RN → Lp(µ). We want to construct A : Uα,∞

ℓ → Lp([0, 1]d), of the form
A(f) = Q(f(x1), . . . , f(xN)), where Q : RN → Lp([0, 1]d). The canonical
choice of the sampling points x1, . . . , xN ∈ Rd is via composition with the
encoder, xj := E(uj). The main remaining question is then how to construct
the mapping Q : RN → Lp([0, 1]d) from Q : RN → Lp(µ). A first idea is that
this reconstruction could satisfy

Q(y1, . . . , yN)(E(u)) := Q(y1, . . . , yN)(u), ∀u ∈ X , ∀ (y1, . . . , yN) ∈ RN .

However, this is not well-defined, since different u will generally map to the
same x = E(u). The improved guess is the following: Fix x ∈ Rd and consider

133

a random variable u ∼ µ. We now condition on the event that E(u) = x. This
gives a conditional distribution on the input function space. We then average
the reconstruction Q(y1, . . . , yN)(u) in u over this conditional distribution, i.e.
define

Q(y1, . . . , yN)(x) := Eu∼µ[Q(y1, . . . , yN)(u) | E(u) = x].

This is well-defined, and due to Jensen’s inequality the conditional averag-
ing on the right-hand side turns out to reduce the reconstruction error of A
compared to A. The detailed calculations are provided in Appendix E.2.

The last lemma is in anticipation of our next result, Lemma 6.3.8. The final
result Proposition 6.3.6 will then be an immediate consequence.

Lemma 6.3.8. With the notation and under assumptions (6.3.7) and (6.3.8)
of Proposition 6.3.6, the following holds. There exists κ > 0, such that for
every N ∈ N, there exists a probability space (Ξ,P) and a random variable
Ψ : Ξ → U, ξ 7→ Ψξ, such that

Eξ

[
∥Ψξ −A(Ψξ)∥Lp(µ)

]
≥ κN−λ, ∀A ∈ Algdet(U, Lp(µ)), (6.3.11)

where λ = 1
p
+ 1

d
· α
α+⌊ℓ∗/2⌋ . ♢

Proof. By Lemma 6.2.8, there exists a constant κ > 0, such that for any N ∈
N, there exists a probability space (Ξ,P) and random variable ψ : Ξ → Uα,∞

ℓ ,
ξ 7→ ψξ, such that

Eξ

[
∥ψξ − A(ψξ)∥Lp([0,1]d)

]
≥ κN−λ, ∀A ∈ Algdet(Uα,∞

ℓ , Lp([0, 1]d)),

and where λ := 1
p
+ 1

d
· α
α+⌊ℓ∗/2⌋ . We use ψξ to define a new random variable

Ψ : Ξ → U, Ψξ := ψξ ◦ E . We claim that (6.3.11) holds for this Ψξ.

To see this, let A ∈ Algdet(U, Lp(µ)) be given. By Lemma 6.3.7, there exists
A ∈ Algdet(U, Lp([0, 1]d)), such that

∥ψξ ◦ E − A(ψξ ◦ E)∥Lp(µ) ≥ c∥ψξ − A(ψξ)∥Lp([0,1]d), ∀ ξ ∈ Ξ.

Here c > 0 is the constant appearing in (6.3.7) (and is independent of N).
Taking expectations over ξ, it follows that

Eξ

[
∥Ψξ −A(Ψξ)∥Lp(µ)

]
≥ cEξ

[
∥ψξ − A(ψξ)∥Lp([0,1]d)

]
.

134

By construction of ψξ, the right hand side is lower bounded by cκN−λ, with
κ > 0 independent of N and λ = 1

p
+ 1

d
· α
α+⌊ℓ∗/2⌋ . Thus it follows that

Eξ

[
∥Ψξ −A(Ψξ)∥Lp(µ)

]
≥ cκN−λ,

where c, κ > 0 are independent of N . Replacing cκ by κ, the claimed bound
(6.3.11) follows.

The proof of Proposition 6.3.6 is now immediate.

Proof of Proposition 6.3.6. Proposition 6.3.6 follows from Lemma 6.3.8 and
Lemma 6.2.8.

Deep Operator Networks (DeepONet)

In this section, we state and prove a theory-to-practice gap for a general family
of “DeepONet” architectures. We recall that we are interested in the approxi-
mation of operators G : X → R. In this setting, we define these DeepONet ar-
chitectures to be of the form Ψ = ψ◦L, combining a linear encoder L : X → Rd

with a feedforward neural network ψ : Rd → R. The next three paragraphs
provide a precise description of the considered architecture, define relevant ap-
proximation spaces, and prove an infinite-dimensional theory-to-practice gap
for these architectures.

Architecture Fix a sequence of continuous linear functionals ℓ1, ℓ2, · · · :

X → R. For d0 ∈ N, we denote by Ld0 the linear encoder Ld0 : X → Rd0 ,
Ld0(u) := (ℓ1(u), . . . , ℓd0(u)). The encoder-net Ψ : X → R associated with a
neural network ψ : Rd0 → R is a mapping of the form Ψ(u) = ψ ◦ Ld0(u).

To ensure universality of the resulting operator learning architecture, we will
make the (minimal) assumption that

span{ℓj : X → R | j ∈ N} ⊂ X ∗ is dense, (6.3.12)

where we recall that X ∗ denotes the continuous dual of X . Throughout the
following discussion, we will consider the sequence (ℓj)j∈N ⊂ X ∗ fixed, and it
will be assumed that (6.3.12) holds without further mention.

135

DeepONet Approximation Space We can now define spaces Aα,∞
ℓ,DON for

DeepONets. To this end, we introduce

Σℓ
n,DON :=

{
Ψ = ψ ◦ Ld0 :

ψ NN with din(ψ) = d0, dout(ψ) = 1,

max{W (ψ), d0} ≤ n, L(ψ) ≤ ℓ(n), ∥ψ∥NN ≤ 1

}
.

Then, given α ∈ (0,∞), for each continuous (non-linear) operator G : X → R,
we define

Γα,∞
DON(G) := max

{
sup
u∈X

∥G(u)∥, sup
n∈N

[
nα · d∞

(
G,Σℓ

n,DON

)]}
∈ [0,∞],

where d∞(G,Σ) := infΨ∈Σ supu∈X ∥G(u) − Ψ(u)∥. We can define a DeepONet
approximation space quasi-norm ∥ · ∥Aα,∞

ℓ,DON
by

∥G∥Aα,∞
ℓ,DON

:= inf{θ > 0 : Γα,∞
DON(G/θ) ≤ 1} ∈ [0,∞],

giving rise to the DeepONet approximation space

Aα,∞
ℓ,DON :=

{
G ∈ C(X) : ∥G∥Aα,∞

ℓ,DON
<∞

}
.

Encoder Construction The following is a useful technical lemma, which
will be applied to construct suitable encoders E : X → Rd. It shows that if a
finite-dimensional map F : V ⊂ Rd → Rd is sufficiently close to the identity,
then the image of V must “fill out” a non-empty open set V0 ⊂ Rd.

Lemma 6.3.9. Let V ⊂ Rd be a non-empty domain. There exist constants
ϵ0, c0 > 0 and a non-empty open subset V0 ⊂ V with the following property:
For any Lipschitz-continuous function F : V → Rd, satisfying

∥F − id∥W 1,∞(V) ≤ ϵ0,

where id : V → Rd, id(y) = y denotes the identity mapping, it follows that
F (V) ⊃ V0, and

F#Unif(V) ≥ c0Unif(V0).

♢

The result of Lemma 6.3.9 follows as a consequence of the contraction mapping
theorem; we provide a detailed proof in Appendix E.2. Our goal in this section
is to construct encoders E : X → Rd which “fill out” the set [0, 1]d. The
link with the finite-dimensional setting of Lemma 6.3.9 is made by identifying

136

X ≃ Rd × Ωd, as in the decomposition of µ in (6.3.2), and by considering the
second factor as a parameter. This leads us to study parametrized mappings,
F : V × Ωd → Rd, (y, ξ) 7→ Fξ(y) = F (y; ξ), with the parameter ξ ∈ Ωd a
random variable. The following result derives a similar result as Lemma 6.3.9
in this parametrized setting:

Lemma 6.3.10. Let V ⊂ Rd be a non-empty domain, and let ϵ0, c0 > 0 and
V0 ⊂ V denote the constants and set of Lemma 6.3.9, respectively. Let (Ω,P)
be a probability space, and assume that F : V × Ω → Rd, (y, ξ) 7→ F (y; ξ)

is measurable. Assume furthermore, that there exists K ⊂ Ω, such that the
mapping Fξ : V → Rd, y 7→ Fξ(y) := F (y; ξ) is Lipschitz for each ξ ∈ K, and

∥Fξ − id∥W 1,∞(V) ≤ ϵ0, ∀ ξ ∈ K. (6.3.13)

Then the push-forward under F of the product measure Unif(V)⊗P on V ×Ω

satisfies
F#(Unif(V)⊗ P) ≥ c0P(K)Unif(V0).

♢

A detailed proof of Lemma 6.3.10 is given in Appendix E.2. Let now {ℓk} ⊂ X ∗

be a set of encoding functionals, such that span{ℓk} ⊂ X ∗ is dense. Our
first goal is to use the {ℓk} to construct an encoder E : X → Rd, such that
E#µ ≥ cUnif([0, 1]d).

To this end, let us momentarily fix δ > 0. Then by density, there exists d0 ∈ N
and coefficients cjk for j ∈ [d], k ∈ [d0], such that∥∥∥∥∥e∗j −

d0∑
k=1

cjkℓk

∥∥∥∥∥
X ∗

≤ δ, ∀ j = 1, . . . , d. (6.3.14)

Since e∗j(u(y; ξ)) = yj, (6.3.14) allows us to approximate a “projection” onto
yj. Motivated by this, we now define the encoder E : X → Rd, E(u) :=

(E1(u), . . . , Ed(u)), via

Ej(u) = bj +

d0∑
k=1

ajkℓk(u), (6.3.15)

for coefficients ajk and bias bj, for j ∈ [d] and k ∈ [d0], to be determined.

137

Proposition 6.3.11. Assume that µ ∈ P(X) satisfies Assumption 6.3.1(d) for
d ∈ N. Then there exists an encoder E : X → Rd of the form (6.3.15) and
constant c > 0, such that

E#µ ≥ cUnif([0, 1]d). (6.3.16)

♢

The proof of Proposition 6.3.11 is a straight-forward, albeit somewhat tedious,
consequence of Lemma 6.3.10 and the fact that encoders of the form (6.3.15)
are dense in the space of all affine encoders with d-dimensional range. The
proof relies on the assumption that the linear functionals {ℓk}k∈N are dense in
X ∗. We include the detailed argument in Appendix E.2.

Theory-to-Practice Gap We can now state a theory-to-practice gap for
the unit ball Uα,∞

ℓ,DON in the DeepONet approximation space Aα,∞
ℓ,DON:

Theorem 6.3.12 (DeepONet theory-to-practice gap). Let p ∈ [1,∞]. Let
ℓ : N → N ∪ {∞} be non-decreasing with ℓ∗ ≥ 4. Assume that µ ∈ P(X)

satisfies Assumption 6.3.1. Then for any α > 0, we have

β∗(U
α,∞
ℓ,DON, L

p(µ)) ≤ 1

p
. (6.3.17)

♢

We recall that the typical Monte-Carlo (MC) approximation rate in the Lp-
norm is βMC = 1/p, reducing to the well-known 1/2-rate with respect to the
L2-norm. Theorem 6.3.12 shows that, independently of α > 0 and the depth
ℓ∗ ≥ 4, it is not possible to achieve better-than-MC rates by any approximation
method on the relevant approximation spaces Aα,∞

ℓ,DON.

Proof. Fix d ∈ N, and let ℓ : N → N∪ {∞} be a non-decreasing function with
ℓ∗ ≥ 4. We denote ℓ̃ := ℓ−3, so that ℓ̃∗ ≥ 3, as in the assumptions of the finite
dimensional theory-to-practice gap, Theorem 6.2.2. Let E : X → Rd be the
encoder of Proposition 6.3.11, such that E#µ ≥ cUnif([0, 1]d). Let γd ·Uα,∞

ℓ,DON

denote re-scaling of Uα,∞
ℓ,DON by a constant scaling factor γd. By Lemma 6.3.13,

which we state below after the proof, there exists a constant γd ≥ 1, such that
we have {

f ◦ E
∣∣∣ f ∈ Uα,∞

ℓ̃
(Rd)

}
⊂ γd ·Uα,∞

ℓ,DON. (6.3.18)

138

Assuming (6.3.18), the claim of Theorem 6.3.12 then follows immediately from
Proposition 6.3.6. Indeed, defining U := γd ·Uα,∞

ℓ,DON, that proposition implies
that

β∗(γd ·Uα,∞
ℓ,DON, L

p(µ)) ≤ 1

p
+

1

d
· α

α + ⌊ℓ̃∗/2⌋
.

However, it follows from the definition that β∗ is invariant under re-scaling,

β∗(γd ·Uα,∞
ℓ,DON, L

p(µ)) = β∗(U
α,∞
ℓ,DON, L

p(µ)).

Thus, recalling also ℓ̃∗ = ℓ∗ − 1, we have

β∗(U
α,∞
ℓ,DON, L

p(µ)) ≤ 1

p
+

1

d
· α

α + ⌊(ℓ∗ − 1)/2⌋ . (6.3.19)

Since d ∈ N was arbitrary and the left-hand side is independent of d, we can
take the infimum over all d ∈ N on the right to conclude that

β∗(U
α,∞
ℓ,DON, L

p(µ)) ≤ 1

p
.

This is (6.3.17).

Lemma 6.3.13. Let D ⊂ Rd, ℓ : N → N ∪ {∞} non-decreasing and f ∈
Uα,∞
ℓ (D). Then for every e ∈ N, C ∈ Rd×e and b ∈ Rd there is R ∈ (0,∞)

with f(C ·+b) ∈ R · Uα,∞
ℓ (E), where E := {x ∈ Re : Cx+ b ∈ D} ⊂ Re. ♢

The detailed proof of Lemma 6.3.13 is given in Appendix E.2. We also state
the following theory-to-practice gap for uniform approximation over compact
K:

Theorem 6.3.14 (DeepONet; uniform theory-to-practice gap). Let ℓ : N →
N ∪ {∞} be non-decreasing with ℓ∗ ≥ 4. Assume that K ⊂ X is a compact
set satisfying Assumption 6.3.3. Then for any α > 0, we have

β∗(U
α,∞
ℓ,DON, C(K)) = 0.

♢

Proof. By Proposition 6.3.4, for any d ∈ N, there exists a probability mea-
sure µ ∈ P(X), with supp(µ) ⊂ K, and µ satisfies Assumption 6.3.1(d). By

139

Proposition 6.3.11, there exists a DeepONet encoder E : X → Rd and constant
c > 0, such that

E#µ ≥ cUnif([0, 1]d).

Following the steps in the proof of Theorem 6.3.12, leading up to (6.3.19), it
follows that for any p ∈ [1,∞], we have

β∗(U
α,∞
ℓ,DON, L

p(µ)) ≤ 1

p
+

1

d
· α

α + ⌊(ℓ∗ − 1)/2⌋ .

We now recall that

β∗(U
α,∞
ℓ,DON, C(K)) ≤ β∗(U

α,∞
ℓ,DON, L

p(µ)).

This inequality is (6.3.6) and follows from the fact that uniform approximation
over K is a more stringent criterion than Lp(µ) approximation with respect to
µ, owing to the fact that supp(µ) ⊂ K. Thus, we have

β∗(U
α,∞
ℓ,DON, C(K)) ≤ 1

p
+

1

d
· α

α + ⌊(ℓ∗ − 1)/2⌋ .

This holds for any d ∈ N and p ∈ [1,∞). The convergence rate β∗(Uα,∞
ℓ,DON, C(K))

on the left depends on α and ℓ, but is independent of p and d. Thus, upon
letting d, p→ ∞, the claim follows.

Integral-kernel Neural Operators

In this section, we state and prove a theory-to-practice gap for a general family
of integral-kernel neural operator (NO) architectures [52, 19]. Again, we are
interested in the approximation of operators G : X → R. In this setting, we de-
fine integral-kernel NO architectures to be of the form Ψ = Q◦LL ◦ . . .L1 ◦R,
combining a lifting layer R, hidden layers L1, . . . ,LL and an output layer
Q. The next three paragraphs provide a precise description of the consid-
ered architecture, define relevant approximation spaces, and prove an infinite-
dimensional theory-to-practice gap.

Architecture The following is a minimal architecture shared by all/most
variants of integral kernel-based neural operators [181]. For notational sim-
plicity, we focus on real-valued input and output functions. All results extend
readily to the more general vector-valued case.

140

Definition 6.3.15 (Averaging Neural Operator). Let X (D;R), Y(D;R), and
V(D;Rdc) be spaces of functions on Lipschitz domain D ⊂ RdD . An averaging
neural operator (ANO) Ψ : X (D;R) → Y(D;R) of depth L takes the form

Ψ(u) = Q ◦ LL ◦ . . .L1 ◦ R(u), (6.3.20)

where u ∈ X (D;R) and x ∈ Rd. In addition, the pointwise lifting operators
R and Q are obtained by composition with shallow ReLU neural networks;
i.e. there exist neural networks R : R× Rd → Rdc and Q : Rdc → R, of depth
L(R) = L(Q) = 2, such that

R(u)(x) = R(u(x), x), Q(v)(x) = Q(v(x)). (6.3.21)

Finally, the hidden layers Lj : V(D;Rdc) → V(D;Rdc) take the form

Lj(v)(x) = σ

(
Wjv(x) + bj +

D

v(y) dy

)
, (6.3.22)

where Wj ∈ Rdc×dc is a matrix and bj ∈ Rdc a bias. ♢

Generalizing our definitions of quantities of interest from Section 6.2, we will
denote by L(Ψ) := L the depth (number of hidden layers) of an ANO, and we
denote by W (Ψ) = W (R) +

∑L
j=1(∥Wj∥ℓ0 + ∥bj∥ℓ0) +W (Q) the total number

of non-zero parameters of the architecture. Furthermore, we define ∥Ψ∥NN :=

max{∥Wj∥∞, ∥bj∥∞, ∥R∥NN, ∥Q∥NN} as the maximal weight magnitude.

Remark 6.3.16. The ANO introduced above is a special case of a more gen-
eral family of kernel-based neural operators introduced in [52]. Its theoretical
significance is that most instantiations of such neural operators contain the
ANO as a special case, with a specific tuning of the weights. For example,
the FNO defined in 1.3.1 uses the same general structure, but employs hidden
layers of the form

L(v)(x) = σ

(
Wv(x) + b+

ˆ
κ(x− y)v(y) dy

)
,

where the integral kernel κ is convolutional, and

κ(x) =
∑

|k|≤kmax

κ̂ke
ik·x

is parametrized by the coefficients κ̂k ∈ Cdc×dc in its (truncated) Fourier ex-
pansion. Thus, the ANO can be obtained from the FNO upon setting κ̂k ≡ 0

for k ̸= 0 and κ̂0 = Idc×dc/vol(D). ♢

141

NO Approximation Space We now define the relevant approximation
spaces Aα,∞

ℓ,NO for (averaging) neural operators. Assume we are given func-
tion spaces X (D) = X (D;R) and Y(D) = Y(D;R). In our discussion, we will
assume that X (D) ⊂ L∞(D) is an infinite-dimensional Banach space on Lip-
schitz domain D ⊂ RdD , and we will assume that Y(D) contains all constant
functions. We now introduce

Σℓ
n,NO :=

{
Ψ : X → Y :

Ψ is an ANO with W (Ψ) ≤ n,

L(Ψ) ≤ ℓ(n), ∥Ψ∥NN ≤ 1

}
.

Remark 6.3.17. Part of the definition of Σℓ
n,NO is that for any Ψ ∈ Σℓ

n,NO,
we must have Ψ(X) ⊂ Y . Non-trivial Ψ exist, since we can readily construct
averaging neural operators Ψ of the form (6.3.20), for which the output Ψ(u)

is a constant-valued function, for any input u ∈ X . Since Y contains constant
functions by assumption, this implies that such Ψ defines a map Ψ : X → Y .
In our proofs, we will only ever consider Ψ of this form, thus our results hold
even when Y = R. ♢

Given α ∈ (0,∞), for each continuous (non-linear) operator G : X → Y , we
define

Γα,∞
NO (G) := max

{
sup
u∈X

∥G(u)∥, sup
n∈N

[
nα · d∞

(
G,Σℓ

n,NO

)]}
∈ [0,∞],

where d∞(G,Σ) := infΨ∈Σ supu∈X ∥G(u)− Ψ(u)∥Y . We define a NO approxi-
mation space quasi-norm ∥ · ∥Aα,∞

ℓ,NO
by

∥G∥Aα,∞
ℓ,NO

:= inf{θ > 0 : Γα,∞
DON(G/θ) ≤ 1} ∈ [0,∞],

giving rise to the NO approximation space

Aα,∞
ℓ,NO :=

{
G ∈ C(X ;Y) : ∥G∥Aα,∞

ℓ,NO
<∞

}
.

We again denote by Uα,∞
ℓ,NO the unit ball in Aα,∞

ℓ,NO.

Remark 6.3.18. As pointed out in Remark 6.3.16, the ANO can be obtained
by a special setting of the weights in the FNO. As a consequence, it can be
shown that Aα,∞

ℓ,NO ⊂ Aα,∞
ℓ,FNO, where Aα,∞

ℓ,FNO denotes the relevant approximation
space for FNO, which can be defined in analogy to Aα,∞

ℓ,NO. Based on this
relationship, it could be shown that

β∗(U
α,∞
ℓ,FNO, L

p(µ)) ≤ β∗(U
α,∞
ℓ,NO, L

p(µ)),

142

and hence any upper bound on β∗(Uα,∞
ℓ,NO, L

p(µ)) implies a corresponding upper
bound for the FNO. ♢

Encoder Construction Let µ ∈ P(X) be a probability measure on X . We
recall that L1(D) is a subset of the dual of L∞(D) under the natural pairing,

⟨u, e∗⟩ =
ˆ
D

u(x)e∗(x) dx, ∀u ∈ L∞(D), e∗ ∈ L1(D).

The following proposition constructs an encoder E : X → Rd, whose existence
will imply a theory-to-practice gap for the averaging neural operator.

Proposition 6.3.19. Let µ satisfy Assumption 6.3.1(d) for d ∈ N, with bi-
orthogonal elements e∗j ∈ L1(D). Then there exists an encoder E : X (D) →
Rd,

E(u) =

D

R(u(x), x) dx, (6.3.23)

with R : R × RdD → Rd a shallow ReLU neural network, and constant c > 0

dependent on d, such that

E#µ ≥ c · Unif([0, 1]d). (6.3.24)

♢

Proof. It will suffice to show that there exists a neural network R : R×RdD →
Rd and encoder of the form (6.3.23), such that for some non-empty open set
V0 ⊂ Rd and constant c > 0, we have

E#µ ≥ c · Unif(V0). (6.3.25)

Indeed, given such V0, there exists a scaling factor γ > 0 and shift b ∈ Rd, such
that [0, 1]d ⊂ γ · V0 + b. Replacing the neural network R(η, x) by R̃(η, x) :=

γ · R(η, x) + b, it is then immediate that the encoder Ẽ : X (D) → Rd defined
by Ẽ(u) =

ffl
D
R̃(u(x), x) dx satisfies a lower bound of the form (6.3.24).

To prove the existence of an encoder E satisfying (6.3.25), we recall that, by
Assumption 6.3.1(d), u ∼ P(X) is of the form

u(x; y, ξ) = ξ(x) +
d∑

j=1

yjej(x),

143

where e1, . . . , ed are linearly independent with bi-orthogonal elements e∗1, . . . , e∗d,
and the coefficients yj ∼ ρj(y) dy are independent. Furthermore, ξ ∼ µ⊥

d is
a random function such that e∗1(ξ) = · · · = e∗d(ξ) = 0. In the following we
consider ξ a random “parameter” and denote the law of ξ by P := µ⊥

d . By
assumption the dual elements e∗j are represented by a function in L1.

Under our assumptions, there exist non-empty intervals Ij ⊂ R and constant
cρ > 0, such that ess infIj ρj(z) ≥ cρ for all j = 1, . . . , d. We may assume
without loss of generality that Ij is a bounded interval, and fix a constant
cV > 0 such that Ij ⊂ [−cV , cV] for all j = 1, . . . , d. Let V =

∏d
j=1 Ij ⊂ Rd.

We now choose B > 0, such that Prob(∥ξ∥L∞ ≤ B) > 0. This is possible
because of the assumed inclusion X ⊂ L∞ and Lemma 6.3.2. For this choice
of B > 0, we define the random event

K := {∥ξ∥L∞ ≤ B},

so that P(K) > 0. Note that this bound on B implies that for all y ∈ V and
ξ ∈ K, we have

∥u(· ; y, ξ)∥L∞(D) ≤ B + dcV max
j=1,...,d

∥ej∥L∞(D) =: B′.

For fixed ξ ∈ K, define the maps F †
ξ , Fξ : Rd → Rd, as follows:

F †
ξ (y) :=

{
D

u(x; y, ξ) e∗k(x) dx

}d

k=1

= y

Fξ(y) :=

D

R(u(x; y, ξ), x) dx,

(6.3.26)

where R is a ReLU neural network mapping R×RdD to Rd. Let R† be defined
by R†(η, x) = {η e∗k(x)}dk=1. Then by Corollary E.1.2, for any ϵ > 0, there
exists a ReLU neural network R such that

D

∥R(·, x)−R†(·, x)∥W 1,∞([−B′,B′];Rd) dx ≤ ϵ. (6.3.27)

Identify R with a ReLU neural network achieving this bound. Note that
F †
ξ ≡ id is exactly the identity on Rd for all ξ ∈ K. Given the constant ϵ0 > 0

of Lemma 6.3.10, We seek to show that for sufficiently small ϵ > 0 in (6.3.27),
we can ensure that

∥Fξ − F †
ξ ∥W 1,∞(V) = ∥Fξ − id∥W 1,∞(V) ≤ ϵ0, ∀ ξ ∈ K. (6.3.28)

144

By Lemma 6.3.10, this entails that there exist V0 ⊂ V and c0 > 0, such that

F#(Unif(Y)⊗ P) ≥ c0P(K)Unif(V0),

where P denotes the law of ξ and F (y, ξ) := Fξ(y). The claim then follows by
observing that

E#µ = F#(µd ⊗ P) ≥ cdρ F#(Unif(Y)⊗ P) ≥ cdρc0P(K)Unif(V0).

Since P(K) > 0 by construction, the claim then follows with constant c :=

cdρc0P(K). It therefore remains to show that (6.3.27) for sufficiently small
ϵ > 0 implies (6.3.28).

In the remainder of this proof, we show that this holds for ϵ := ϵ0/2d. By
(6.3.27), we have ∥∂η(R − R†)(·, x)∥L∞([−B′,B′]) < ϵ, where η refers to the first
argument of R and R†. Then for ξ ∈ K and y, y′ ∈ V , we have

∥u(· ; y, ξ)∥L∞(D), ∥u(· ; y, ξ)∥L∞(D) ≤ B′,

and hence

∥Fξ − F †
ξ ∥L∞(V) ≤

D

∥R(· , x)−R†(· , x)∥L∞([−B′,B′]) dx ≤ ϵ = ϵ0/2d.

To estimate ∥DFξ − DF †
ξ ∥L∞(V), we recall that, due to the convexity of the

d-dimensional cube V , the W 1,∞(V) seminorm is equal to the Lipschitz semi-
norm:

∥DFξ∥L∞(V) = sup
y,y′∈V

|Fξ(y)− Fξ(y
′)|

|y − y′| .

We now bound, for y, y′ ∈ V :

|(Fξ − F †
ξ)(y)− (Fξ − F †

ξ)(y
′)|

=

∣∣∣∣
D

(R−R†)(u(x; y, ξ), x)− (R−R†)(u(x; y′, ξ), x) dx

∣∣∣∣
≤

D

∣∣(R−R†)(u(x; y, ξ), x)− (R−R†)(u(x; y′, ξ), x)
∣∣ dx

≤

D

|u(x; y, ξ)− u(x; y′, ξ)|∥∂η(R−R†)(·, x)∥L∞([−B′,B′]) dx

=

D

∣∣∣∣∣
d∑

j=1

(yj − y′j)ej(x)

∣∣∣∣∣∥∂η(R−R†)(·, x)∥L∞([−B′,B′]) dx

≤

D

d∑
j=1

|yj − y′j|∥∂η(R−R†)(·, x)∥L∞([−B′,B′]) dx

≤
√
d|y − y′|ϵ.

145

With our choice of ϵ = ϵ0/2d, this implies that

∥DFξ −DF †
ξ ∥L∞(V) = sup

y,y′∈V

|(Fξ − F †
ξ)(y)− (Fξ − F †

ξ)(y
′)|

|y − y′| ≤ ϵ
√
d ≤ ϵ0/2.

Combining both estimates, we have shown that

D

∥R(· , x)−R†(· ;x)∥W 1,∞([−B′,B′]) dx ≤ ϵ,

for ϵ = ϵ0/2d, implies
∥Fξ − F †

ξ ∥W 1,∞(V) ≤ ϵ0.

This is what we set out to show, and concludes our proof of Proposition 6.3.19.

Theory-to-Practice Gap We can now state a theory-to-practice gap for
the unit ball Uα,∞

ℓ,NO in the NO approximation space Aα,∞
ℓ,NO:

Theorem 6.3.20 (NO theory-to-practice gap). Let p ∈ [1,∞]. Let ℓ : N →
N∪{∞} be non-decreasing with ℓ∗ ≥ 4. Let X (D) ⊂ L∞(D) be a Banach space
on Lipschitz domain D ⊂ RdD . Assume that µ ∈ P(X) satisfies Assumption
6.3.1 with bi-orthogonal elements {e∗j}j∈N ⊂ L1(D). Then for any α > 0, we
have

β∗(U
α,∞
ℓ,NO, L

p(µ)) ≤ 1

p
. (6.3.29)

♢

The proof of Theorem 6.3.20 relies on the following lemma:

Lemma 6.3.21. Let X (D) ⊂ L∞(D) be a Banach space on Lipschitz domain
D ⊂ RdD , and let µ ∈ P(X) be a probability measure on X . Assume that
Y(D) contains all constant functions and µ satisfies Assumption 6.3.1(d) for
d ∈ N, with bi-orthogonal elements e∗1, . . . , e∗d ∈ L1(D). Let E : X (D) → Rd

be the encoder of Proposition 6.3.19. Fix a (finite) constant ℓ0 ≤ ℓ∗+2. There
exists a constant γ = γ(d, E , α, ℓ0) > 0, such that{

f ◦ E
∣∣ f ∈ Uα,∞

ℓ0
(Rd)

}
⊂ γ ·Uα,∞

ℓ,NO. (6.3.30)

♢

146

A proof of this lemma is given in Appendix E.2. We now come to the proof
of Theorem 6.3.20.

Proof of Theorem 6.3.20. Fix d ∈ N, and let ℓ : N → N ∪ {∞} be a non-
decreasing function. Clearly, we have ℓ∗ ≥ 1. We define ℓ0 := 3, so that the
finite dimensional theory-to-practice gap, Theorem 6.2.2 applies to Uα,∞

ℓ0
(Rd).

Let E : X → Rd be an encoder as in Proposition 6.3.19, with E#µ ≥ cUnif([0, 1]d).
By (6.3.30), there exists a constant γ > 0, such that{

f ◦ E
∣∣ f ∈ Uα,∞

ℓ0
(Rd)

}
⊂ γ ·Uα,∞

ℓ,NO.

The claim of Theorem 6.3.20 then follows again from Proposition 6.3.6, as
in the proof of Theorem 6.3.12. Indeed, Proposition 6.3.6, and the fact that
β∗(γ ·Uα,∞

ℓ,NO, L
p(µ)) = β∗(U

α,∞
ℓ,NO, L

p(µ)), imply that

β∗(U
α,∞
ℓ,NO, L

p(µ)) ≤ 1

p
+

1

d
· α

α + ⌊ℓ0/2⌋
.

Since the left-hand side is independent of d, we let d→ ∞, to obtain (6.3.29).

We also state the following theory-to-practice gap for uniform approximation
over compact K.

Theorem 6.3.22 (NO; uniform theory-to-practice gap). Let ℓ : N → N∪{∞}
be non-decreasing with ℓ∗ ≥ 4. Let X (D) ⊂ L∞(D) be a Banach space on
Lipschitz domain D ⊂ RdD . Assume that K ⊂ X is a compact set satisfying
Assumption 6.3.3. Then for any α > 0, we have

β∗(U
α,∞
ℓ,NO, C(K)) = 0.

♢

Proof. The proof is analogous to the argument for the uniform theory-to-
practice gap for DeepONet, except that the DeepONet encoder construction,
Proposition 6.3.11, is replaced by the NO encoder construction in 6.3.19, and
the relevant inclusion is the one identified in Lemma 6.3.21.

147

6.4 Conclusion

In conclusion, this work has rigorously examined the theory-to-practice gap in
both finite-dimensional and infinite-dimensional settings, resulting in rigorous
bounds on achievable convergence rates for general reconstruction methods
based on point-values. By deriving upper bounds on the optimal rate β∗, we
have uncovered the inherent constraints of learning on relevant neural network
and neural operator approximation spaces. In the finite-dimensional case, our
contributions include a unified treatment of the theory-to-practice gap for
approximation errors measured in general Lp-spaces for arbitrary p ∈ [1,∞]

and dimension d ∈ N. Furthermore, we extend the theory-to-practice gap
to infinite-dimensional operator learning frameworks, and derive results for
prominent architectures such as Deep Operator Networks and integral kernel-
based neural operators, such as the Fourier neural operator (FNO). Notably,
for operator learning we establish that the optimal convergence rate in a
Bochner Lp-norm satisfies β∗ ≤ 1/p, while no algebraic convergence is possi-
ble (β∗ = 0) for uniform approximation on infinite-dimensional compact input
sets. These findings highlight some intrinsic limitations of these data-driven
methodologies and provide a clearer understanding of the theoretical bounds
shaping practical applications.

There are several interesting avenues for future work, two of which we briefly
mention in closing. One open problem is to study the theory-to-practice gap
under additional constraints, e.g. on spaces of the form Aα,∞

ℓ ∩ Lip. We
expect that the theory-to-practice gap will persist essentially unchanged even
when introducing additional regularity constraints. Another open problem is
to extend this gap beyond ReLU activations. This is specifically relevant for
operator learning, where popular implementations of e.g. FNO usually use a
smooth variant of ReLU, such as GeLU. To date, even in finite dimensions, no
theory-to-practice gap is known for such smooth activation functions. Since
our proofs rely on the homogeneity of ReLU, the path to such an extension is
not immediately obvious.

148

BIBLIOGRAPHY

[1] Thomas G Dietterich. “Ensemble methods in machine learning”. In:
International workshop on multiple classifier systems. Springer. 2000,
pp. 1–15.

[2] Allan David Gordon. Classification. CRC Press, 1999.

[3] Todd K Moon. “The expectation-maximization algorithm”. In: IEEE
Signal processing magazine 13.6 (1996), pp. 47–60.

[4] George Cybenko. “Approximation by superpositions of a sigmoidal func-
tion”. In: Mathematics of control, signals and systems 2.4 (1989), pp. 303–
314.

[5] Waseem Rawat and Zenghui Wang. “Deep convolutional neural net-
works for image classification: A comprehensive review”. In: Neural
computation 29.9 (2017), pp. 2352–2449.

[6] Li Deng, Geoffrey Hinton, and Brian Kingsbury. “New types of deep
neural network learning for speech recognition and related applications:
An overview”. In: 2013 IEEE international conference on acoustics,
speech and signal processing. IEEE. 2013, pp. 8599–8603.

[7] Gerald Tesauro et al. “Temporal difference learning and TD-Gammon”.
In: Communications of the ACM 38.3 (1995), pp. 58–68.

[8] Maziar Raissi. “Deep hidden physics models: Deep learning of non-
linear partial differential equations”. In: Journal of Machine Learning
Research 19.25 (2018), pp. 1–24.

[9] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-
informed neural networks: A deep learning framework for solving for-
ward and inverse problems involving nonlinear partial differential equa-
tions”. In: Journal of Computational physics 378 (2019), pp. 686–707.

[10] Franco Scarselli and Ah Chung Tsoi. “Universal approximation using
feedforward neural networks: A survey of some existing methods, and
some new results”. In: Neural networks 11.1 (1998), pp. 15–37.

[11] Andrew R Barron. “Approximation and estimation bounds for artificial
neural networks”. In: Machine learning 14 (1994), pp. 115–133.

[12] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein.
“Visualizing the loss landscape of neural nets”. In: Advances in neural
information processing systems 31 (2018).

[13] William D Fries, Xiaolong He, and Youngsoo Choi. “Lasdi: Parametric
latent space dynamics identification”. In: Computer Methods in Applied
Mechanics and Engineering 399 (2022), p. 115436.

149

[14] Kévin Garanger, Julie Kraus, and Julian J Rimoli. “Symmetry-enforcing
neural networks with applications to constitutive modeling”. In: Ex-
treme Mechanics Letters 71 (2024), p. 102188.

[15] Kaushik Bhattacharya, Burigede Liu, Andrew M. Stuart, and Margaret
Trautner. “Learning Markovian homogenized models in viscoelasticity”.
In: Multiscale Modeling & Simulation 21.2 (2023), pp. 641–679. doi:
10.1137/22M149920.

[16] Burigede Liu, Eric Ocegueda, Margaret Trautner, Andrew M. Stuart,
and Kaushik Bhattacharya. “Learning macroscopic internal variables
and history dependence from microscopic models”. In: Journal of the
Mechanics and Physics of Solids 178 (2023), p. 105329. doi: 10.1016/
j.jmps.2023.105329.

[17] James R Rice. “Inelastic constitutive relations for solids: an internal-
variable theory and its application to metal plasticity”. In: Journal of
the Mechanics and Physics of Solids 19.6 (1971), pp. 433–455.

[18] Kaushik Bhattacharya, Lianghao Cao, George Stepaniants, Andrew
Stuart, and Margaret Trautner. Learning Memory and Material De-
pendent Constitutive Laws. 2025. arXiv: 2502.05463 [math.NA].

[19] Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu,
Kaushik Bhattacharya, Andrew M. Stuart, and Anima Anandkumar.
“Fourier neural operator for parametric partial differential equations”.
In: International Conference on Learning Representations (2021).

[20] Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. “On uni-
versal approximation and error bounds for Fourier neural operators”.
In: The Journal of Machine Learning Research 22.1 (2021), pp. 13237–
13312.

[21] Daniel Zhengyu Huang, Nicholas H. Nelsen, and Margaret Trautner.
“An operator learning perspective on parameter-to-observable maps”.
In: Foundations of Data Science 7.1 (2025), pp. 163–225. doi: 10.3934/
fods.2024037.

[22] Philipp Grohs and Felix Voigtlaender. “Proof of the theory-to-practice
gap in deep learning via sampling complexity bounds for neural network
approximation spaces”. In: Foundations of Computational Mathematics
(2023), pp. 1–59.

[23] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George
Em Karniadakis. “Learning nonlinear operators via DeepONet based on
the universal approximation theorem of operators”. In: Nature machine
intelligence 3.3 (2021), pp. 218–229.

[24] Juan C Simo. “Numerical analysis and simulation of plasticity”. In:
Handbook of numerical analysis 6 (1998), pp. 183–499.

https://doi.org/10.1137/22M149920
https://doi.org/10.1016/j.jmps.2023.105329
https://doi.org/10.1016/j.jmps.2023.105329
https://arxiv.org/abs/2502.05463
https://doi.org/10.3934/fods.2024037
https://doi.org/10.3934/fods.2024037

150

[25] Juan C Simo and Thomas JR Hughes. Computational inelasticity. Vol. 7.
Springer Science & Business Media, 2006.

[26] Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou. Asymp-
totic analysis for periodic structures. Vol. 374. American Mathematical
Society, 2011.

[27] Grigoris Pavliotis and Andrew M. Stuart. Multiscale methods: averaging
and homogenization. Springer Science & Business Media, 2008.

[28] Gilles A Francfort and Pierre M Suquet. “Homogenization and me-
chanical dissipation in thermoviscoelasticity”. In: Archive for Rational
Mechanics and Analysis 96.3 (1986), pp. 265–293.

[29] Burigede Liu, Nikola B. Kovachki, Zongyi Li, Kamyar Azizzadenesheli,
Anima Anandkumar, Andrew M. Stuart, and Kaushik Bhattacharya.
“A learning-based multiscale method and its application to inelastic
impact problems”. In: Journal of the Mechanics and Physics of Solids
158, 104668 (2022).

[30] Morton E Gurtin, Eliot Fried, and Lallit" Anand. The Mechanics and
Thermodynamics of Continua. Cambridge University Press, 2010.

[31] A.J.M. Spencer. Continuum Mechanics. Essex: Longman Group U.K.,
1980.

[32] Oscar Gonzalez and Andrew M. Stuart. A first course in continuum
mechanics. Vol. 42. Cambridge University Press, 2008.

[33] Richard C. Christensen. Theory of Viscoelasticity. Academic Press,
1982.

[34] Roderic S. Lakes. Viscoelastic Solids. C.R.C Press, 1998.

[35] Jacob Fish. Multiscale methods: bridging the scales in science and en-
gineering. Oxford University Press on Demand, 2010.

[36] Ellad B. Tadmor. Modeling Materials: Continuum, Atomistic and Mul-
tiscale Techniques. Cambridge University Press, 2012.

[37] Erik Van Der Giessen, Peter A Schultz, Nicolas Bertin, Vasily V Bula-
tov, Wei Cai, Gábor Csányi, Stephen M Foiles, Marc GD Geers, Car-
los González, Markus Hütter, et al. “Roadmap on multiscale materials
modeling”. In: Modelling and Simulation in Materials Science and En-
gineering 28.4 (2020), p. 043001.

[38] Rob Phillips. Crystals, defects and microstructures: modeling across
scales. Cambridge University Press, 2001.

[39] Enrique Sánchez-Palencia. “Non-homogeneous media and vibration the-
ory”. In: Lecture notes in physics 127 (1980).

151

[40] Doina Cioranescu and Patrizia Donato. An Introduction To Homoge-
nization. Vol. 17. Oxford university press Oxford, 1999.

[41] Grégoire Allaire. “Homogenization and two-scale convergence”. In: SIAM
Journal on Mathematical Analysis 23.6 (1992), pp. 1482–1518.

[42] Graeme W. Milton. The Theory of Composites. Cambridge University
Press, 2002.

[43] Renald Brenner and Pierre Suquet. “Overall response of viscoelastic
composites and polycrystals: exact asymptotic relations and approx-
imate estimates”. In: International Journal of Solids and Structures
50.10 (2013), pp. 1824–1838.

[44] Luc Tartar. “Memory effects and homogenization”. In: Archive for Ra-
tional Mechanics and Analysis 111 (1990), pp. 121–133.

[45] T I Zohdi and P Wriggers. Introduction to computational micromechan-
ics. Springer Verlag, 2005.

[46] Hervé Moulinec and Pierre Suquet. “A numerical method for computing
the overall response of nonlinear composites with complex microstruc-
ture”. In: Computer methods in Applied Mechanics and Engineering
157.1-2 (1998), pp. 69–94.

[47] N. Mishra, J. Vondřejc, and J. Zeman. “A comparative study on low-
memory iterative solvers for FFT-based homogenization of periodic me-
dia”. In: Journal of Computational Physics 321 (2016), pp. 151–168.

[48] H. Moulinec, P. Suqeut, and G. Milton. “Convergence of iterative meth-
ods based on Neumann series for composite materials: Theory and prac-
tice”. In: International Journal of Numerical Methods in Engineering
114 (2018), pp. 1103–1130.

[49] M Mozaffar, R Bostanabad, W Chen, K Ehmann, Jian Cao, and MA
Bessa. “Deep learning predicts path-dependent plasticity”. In: Proceed-
ings of the National Academy of Sciences 116.52 (2019), pp. 26414–
26420.

[50] L. Wu, N.G. Kilingar, and L. Noels. “A recurrent neural network-
accelerated multi-scale model for elasto-plastic heterogeneous materi-
als subjected to random cyclic and non-proportional loading paths”. In:
Computer Methods in Applied Mechanics and Engineering 369 (2020),
p. 113234.

[51] Faisal As’ ad, Philip Avery, and Charbel Farhat. “A mechanics-informed
artificial neural network approach in data-driven constitutive model-
ing”. In: International Journal for Numerical Methods in Engineering
123.12 (2022), pp. 2738–2759.

152

[52] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli,
Kaushik Bhattacharya, Andrew M. Stuart, and Anima Anandkumar.
“Neural operator: Learning maps between function spaces with applica-
tions to pdes”. In: Journal of Machine Learning Research 24.89 (2023),
pp. 1–97.

[53] F Ghavamian and A Simone. “Accelerating multiscale finite element
simulations of history-dependent materials using a recurrent neural net-
work”. In: Computer Methods in Applied Mechanics and Engineering
357 (2019), p. 112594.

[54] Zeliang Liu, CT Wu, and M391298807188754 Koishi. “A deep mate-
rial network for multiscale topology learning and accelerated nonlinear
modeling of heterogeneous materials”. In: Computer Methods in Applied
Mechanics and Engineering 345 (2019), pp. 1138–1168.

[55] Dana Bishara, Yuxi Xie, Wing Kam Liu, and Shaofan Li. “A state-of-
the-art review on machine learning-based multiscale modeling, simula-
tion, homogenization and design of materials”. In: Archives of compu-
tational methods in engineering 30.1 (2023), pp. 191–222.

[56] Kaushik Bhattacharya, Nikola B. Kovachki, Aakila Rajan, Andrew M.
Stuart, and Margaret Trautner. “Learning homogenization for ellip-
tic operators”. In: SIAM Journal on Numerical Analysis 62.4 (2024),
pp. 1844–1873. doi: 10.1137/23M1585015.

[57] Giovanni Leoni. A first course in Sobolev spaces. American Mathemat-
ical Soc., 2017.

[58] Enrique Sanchez-Palencia and André Zaoui. “Homogenization techniques
for composite media”. In: Homogenization techniques for composite me-
dia 272 (1987).

[59] Xavier Blanc and Claude Le Bris. Homogenization Theory for Multi-
scale Problems: An Introduction. Vol. 21. Springer Nature, 2023.

[60] Morton E Gurtin. An Introduction To Continuum Mechanics. Academic
press, 1982.

[61] Thomas Y Hou and Xiao-Hui Wu. “A multiscale finite element method
for elliptic problems in composite materials and porous media”. In:
Journal of computational physics 134.1 (1997), pp. 169–189.

[62] Andrea Bonito, Ronald A DeVore, and Ricardo H Nochetto. “Adaptive
finite element methods for elliptic problems with discontinuous coeffi-
cients”. In: SIAM Journal on Numerical Analysis 51.6 (2013), pp. 3106–
3134.

https://doi.org/10.1137/23M1585015

153

[63] Ricardo H Nochetto, Kunibert G Siebert, and Andreas Veeser. “Theory
of adaptive finite element methods: an introduction”. In: Multiscale,
Nonlinear and Adaptive Approximation: Dedicated to Wolfgang Dahmen
on the Occasion of his 60th Birthday. Springer. 2009, pp. 409–542.

[64] Houman Owhadi and Lei Zhang. “Numerical homogenization of the
acoustic wave equations with a continuum of scales”. In: Computer
Methods in Applied Mechanics and Engineering 198.3-4 (2008), pp. 397–
406.

[65] Albert Cohen, Ronald DeVore, and Christoph Schwab. “Convergence
rates of best N-term Galerkin approximations for a class of elliptic
sPDEs”. In: Foundations of Computational Mathematics 10.6 (2010),
pp. 615–646.

[66] Albert Cohen, Ronald Devore, and Christoph Schwab. “Analytic reg-
ularity and polynomial approximation of parametric and stochastic el-
liptic PDE’s”. In: Analysis and Applications 9.01 (2011), pp. 11–47.

[67] Abdellah Chkifa, Albert Cohen, Ronald DeVore, and Christoph Schwab.
“Sparse adaptive Taylor approximation algorithms for parametric and
stochastic elliptic PDEs”. In: ESAIM: Mathematical Modelling and Nu-
merical Analysis 47.1 (2013), pp. 253–280.

[68] Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and An-
drew M. Stuart. “Model reduction and neural networks for parametric
PDEs”. In: The SMAI journal of computational mathematics 7 (2021),
pp. 121–157.

[69] Nicholas H Nelsen and Andrew M. Stuart. “The random feature model
for input-output maps between Banach spaces”. In: SIAM Journal on
Scientific Computing 43.5 (2021), A3212–A3243.

[70] Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi.
“Kernel methods are competitive for operator learning”. In: Journal of
Computational Physics 496 (2024), p. 112549.

[71] Carlo Marcati and Christoph Schwab. “Exponential convergence of deep
operator networks for elliptic partial differential equations”. In: SIAM
Journal on Numerical Analysis 61.3 (2023), pp. 1513–1545.

[72] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep resid-
ual learning for image recognition”. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2016, pp. 770–778.

[73] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. “Language models are few-shot learn-
ers”. In: Advances in neural information processing systems 33 (2020),
pp. 1877–1901.

154

[74] Kaushik Bhattacharya. “Phase boundary propagation in a heteroge-
neous body”. In: Proceedings of the Royal Society of London. Series
A: Mathematical, Physical and Engineering Sciences 455.1982 (1999),
pp. 757–766.

[75] Xin Liu, Su Tian, Fei Tao, and Wenbin Yu. “A review of artificial
neural networks in the constitutive modeling of composite materials”.
In: Composites Part B: Engineering 224 (2021), p. 109152.

[76] Jan N Fuhg and Nikolaos Bouklas. “On physics-informed data-driven
isotropic and anisotropic constitutive models through probabilistic ma-
chine learning and space-filling sampling”. In: Computer Methods in
Applied Mechanics and Engineering 394 (2022).

[77] Alexandre M Tartakovsky, C Ortiz Marrero, Paris Perdikaris, Guzel D
Tartakovsky, and David Barajas-Solano. “Physics-informed deep neu-
ral networks for learning parameters and constitutive relationships in
subsurface flow problems”. In: Water Resources Research 56.5 (2020),
e2019WR026731.

[78] Pingchuan Ma, Peter Yichen Chen, Bolei Deng, Joshua B Tenenbaum,
Tao Du, Chuang Gan, and Wojciech Matusik. “Learning neural con-
stitutive laws from motion observations for generalizable pde dynam-
ics”. In: International Conference on Machine Learning. PMLR. 2023,
pp. 23279–23300.

[79] Ehsan Haghighat, Sahar Abouali, and Reza Vaziri. “Constitutive model
characterization and discovery using physics-informed deep learning”.
In: Engineering Applications of Artificial Intelligence 120 (2023), p. 105828.

[80] Kevin Linka, Markus Hillgärtner, Kian P Abdolazizi, Roland C Aydin,
Mikhail Itskov, and Christian J Cyron. “Constitutive artificial neu-
ral networks: A fast and general approach to predictive data-driven
constitutive modeling by deep learning”. In: Journal of Computational
Physics 429 (2021), p. 110010.

[81] Kailai Xu, Daniel Z Huang, and Eric Darve. “Learning constitutive
relations using symmetric positive definite neural networks”. In: Journal
of Computational Physics 428 (2021), p. 110072.

[82] Daniel Z Huang, Kailai Xu, Charbel Farhat, and Eric Darve. “Learn-
ing constitutive relations from indirect observations using deep neural
networks”. In: Journal of Computational Physics 416 (2020), p. 109491.

[83] Jihun Han and Yoonsang Lee. “A neural network approach for homoge-
nization of multiscale problems”. In: Multiscale Modeling & Simulation
21.2 (2023), pp. 716–734.

155

[84] Hernan J Logarzo, German Capuano, and Julian J Rimoli. “Smart con-
stitutive laws: Inelastic homogenization through machine learning”. In:
Computer methods in applied mechanics and engineering 373 (2021),
p. 113482.

[85] Huaiqian You, Yue Yu, Stewart Silling, and Marta D’Elia. “Data-driven
learning of nonlocal models: from high-fidelity simulations to constitu-
tive laws”. In: CEUR-WS 2964.177 (2021).

[86] Xin Liu, Fei Tao, and Wenbin Yu. “A neural network enhanced system
for learning nonlinear constitutive law and failure initiation criterion of
composites using indirectly measurable data”. In: Composite Structures
252 (2020), p. 112658.

[87] Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. “Er-
ror estimates for DeepONets: A deep learning framework in infinite
dimensions”. In: Transactions of Mathematics and Its Applications 6.1
(2022), tnac001. eprint: 2102.09618.

[88] Carlo Marcati, Joost AA Opschoor, Philipp C Petersen, and Christoph
Schwab. “Exponential relu neural network approximation rates for point
and edge singularities”. In: Foundations of Computational Mathematics
(2022), pp. 1–85.

[89] Lukas Herrmann, Christoph Schwab, and Jakob Zech. Neural and GPC
operator surrogates: construction and expression rate bounds. 2022. arXiv:
2207.04950 [math.NA].

[90] Joost AA Opschoor, Ch Schwab, and Jakob Zech. “Exponential ReLU
DNN expression of holomorphic maps in high dimension”. In: Construc-
tive Approximation 55.1 (2022), pp. 537–582.

[91] R.A. DeVore and G.G. Lorentz. Constructive Approximation. Grundlehren
der mathematischen Wissenschaften. Springer Berlin Heidelberg, 1993.

[92] Richard Hill. “The elastic behaviour of a crystalline aggregate”. In: Pro-
ceedings of the Physical Society. Section A 65.5 (1952), p. 349.

[93] Maarten V de Hoop, Daniel Zhengyu Huang, Elizabeth Qian, and An-
drew M. Stuart. “The cost-accuracy trade-off in operator learning with
neural networks”. In: Journal of Machine Learning 1.3 (2022), pp. 299–
341.

[94] Samuel Lanthaler, Zongyi Li, and Andrew M. Stuart. The nonlocal
neural operator: universal approximation. 2023. arXiv: 2304 . 13221
[cs.LG].

[95] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

2102.09618
https://arxiv.org/abs/2207.04950
https://arxiv.org/abs/2304.13221
https://arxiv.org/abs/2304.13221

156

[96] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev
Raja, Ashesh Chattopadhyay, Morteza Mardani, Thorsten Kurth, David
Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcastnet: A global
data-driven high-resolution weather model using adaptive fourier neural
operators. 2022. arXiv: 2202.11214 [cs.LG].

[97] Tingtao Zhou, Xuan Wan, Daniel Zhengyu Huang, Zongyi Li, Zhiwei
Peng, Anima Anandkumar, John F. Brady, Paul W. Sternberg, and
Chiara Daraio. “AI-aided geometric design of anti-infection catheters”.
In: Science Advances 10.1, eadj1741 (2024).

[98] Jürgen Moser. “A rapidly convergent iteration method and non-linear
partial differential equations-I”. In: Annali della Scuola Normale Supe-
riore di Pisa-Scienze Fisiche e Matematiche 20.2 (1966), pp. 265–315.

[99] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus).
2016. arXiv: 1606.08415 [cs.LG].

[100] Lukas Herrmann, Joost A. A. Opschoor, and Christoph Schwab. “Con-
structive deep ReLU neural network approximation”. In: Journal of
Scientific Computing 90.2, 75 (2022).

[101] Lukas Herrmann, Christoph Schwab, and Jakob Zech. “Deep neural net-
work expression of posterior expectations in Bayesian PDE inversion”.
In: Inverse Problems 36.12 (2020), p. 125011.

[102] Lukas Herrmann, Christoph Schwab, and Jakob Zech. “Neural and
spectral operator surrogates: unified construction and expression rate
bounds”. In: Advances in Computational Mathematics 50.4 (2024), p. 72.

[103] Marcello Longo, Joost AA Opschoor, Nico Disch, Christoph Schwab,
and Jakob Zech. “De Rham compatible deep neural network FEM”. In:
Neural Networks 165 (2023), pp. 721–739.

[104] Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anand-
kumar. “Fourier neural operator with learned deformations for pdes on
general geometries”. In: Journal of Machine Learning Research 24.388
(2023), pp. 1–26.

[105] Nikola B Kovachki, Samuel Lanthaler, and Andrew M. Stuart. Operator
Learning: Algorithms and Analysis. 2024. arXiv: 2402.15715 [cs.LG].

[106] Francesca Bartolucci, Emmanuel de Bezenac, Bogdan Raonic, Roberto
Molinaro, Siddhartha Mishra, and Rima Alaifari. “Representation equiv-
alent neural operators: a framework for alias-free operator learning”. In:
Advances in Neural Information Processing Systems 36 (2023), pp. 69661–
69672.

https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2402.15715

157

[107] Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca
Bartolucci, Rima Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac.
“Convolutional neural operators for robust and accurate learning of
PDEs”. In: Advances in Neural Information Processing Systems 36 (2024).

[108] Robert Joseph George, Jiawei Zhao, Jean Kossaifi, Zongyi Li, and An-
ima Anandkumar. Incremental Spatial and Spectral Learning of Neu-
ral Operators for Solving Large-Scale PDEs. 2022. arXiv: 2211.15188
[cs.LG].

[109] Ying Shi Teh, Swarnava Ghosh, and Kaushik Bhattacharya. “Machine-
learned prediction of the electronic fields in a crystal”. In: Mechanics of
Materials 163, 104070 (2021).

[110] Jan-Hendrik Bastek and Dennis M Kochmann. “Inverse-design of non-
linear mechanical metamaterials via video denoising diffusion models”.
In: Nature Machine Intelligence 5 (2023), pp. 1466–1475.

[111] Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Nikola Kovachki, Zongyi Li, Burigede Liu, and Andrew Stuart. “Neural
Operator: Graph Kernel Network for Partial Differential Equations”.
In: ICLR 2020 Workshop on Integration of Deep Neural Models and
Differential Equations. 2019.

[112] Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu,
Andrew M. Stuart, Kaushik Bhattacharya, and Anima Anandkumar.
“Multipole graph neural operator for parametric partial differential
equations”. In: Advances in Neural Information Processing Systems.
Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H.
Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 6755–6766.

[113] Ravi G Patel, Nathaniel A Trask, Mitchell A Wood, and Eric C Cyr.
“A physics-informed operator regression framework for extracting data-
driven continuum models”. In: Computer Methods in Applied Mechanics
and Engineering 373, 113500 (2021).

[114] Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandku-
mar. “Fourier neural operator with learned deformations for PDEs on
general geometries”. In: Journal of Machine Learning Research 24.388
(2023), pp. 1–26.

[115] Levi Lingsch, Mike Y. Michelis, Emmanuel De Bézenac, Sirani M. Per-
era, Robert K. Katzschmann, and Siddhartha Mishra. “Beyond regular
grids: Fourier-based neural operators on arbitrary domains”. In: Pro-
ceedings of the 41st International Conference on Machine Learning.
ICML’24. JMLR.org, 2024.

[116] Thorsten Kurth, Shashank Subramanian, Peter Harrington, Jaideep
Pathak, Morteza Mardani, David Hall, Andrea Miele, Karthik Kashinath,
and Anima Anandkumar. “Fourcastnet: Accelerating global high-resolution

https://arxiv.org/abs/2211.15188
https://arxiv.org/abs/2211.15188

158

weather forecasting using adaptive fourier neural operators”. In: Pro-
ceedings of the platform for advanced scientific computing conference.
2023, pp. 1–11.

[117] Somdatta Goswami, Minglang Yin, Yue Yu, and George Em Karni-
adakis. “A physics-informed variational DeepONet for predicting crack
path in quasi-brittle materials”. In: Computer Methods in Applied Me-
chanics and Engineering 391, 114587 (2022).

[118] Tianping Chen and Hong Chen. “Universal approximation to nonlinear
operators by neural networks with arbitrary activation functions and
its application to dynamical systems”. In: IEEE transactions on neural
networks 6.4 (1995), pp. 911–917.

[119] Kurt Hornik. “Approximation capabilities of multilayer feedforward
networks”. In: Neural Networks 4.2 (1991), pp. 251–257.

[120] Weinan E, Chao Ma, and Lei Wu. “The Barron space and the flow-
induced function spaces for neural network models”. In: Constructive
Approximation 55.1 (2022), pp. 369–406.

[121] Nicolas Boullé, Diana Halikias, and Alex Townsend. “Elliptic PDE
learning is provably data-efficient”. In: Proceedings of the National Academy
of Sciences 120.39, e2303904120 (2023).

[122] Beichuan Deng, Yeonjong Shin, Lu Lu, Zhongqiang Zhang, and George
Em Karniadakis. “Approximation rates of DeepONets for learning oper-
ators arising from advection–diffusion equations”. In: Neural Networks
153 (2022), pp. 411–426.

[123] Samuel Lanthaler. “Operator learning with PCA-Net: upper and lower
complexity bounds”. In: Journal of Machine Learning Research 24.318
(2023), pp. 1–67.

[124] Samuel Lanthaler, Roberto Molinaro, Patrik Hadorn, and Siddhartha
Mishra. “Nonlinear reconstruction for operator learning of PDEs with
discontinuities”. In: The Eleventh International Conference on Learning
Representations. 2022.

[125] Samuel Lanthaler and Andrew M. Stuart. The parametric complexity
of operator learning. 2023. arXiv: 2306.15924 [cs.LG].

[126] Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. “Deep
network approximation for smooth functions”. In: SIAM Journal on
Mathematical Analysis 53.5 (2021), pp. 5465–5506.

[127] Zuowei Shen, Haizhao Yang, and Shijun Zhang. “Deep network approx-
imation characterized by number of neurons”. In: Communications in
Computational Physics 28.5 (2020), pp. 1768–1811.

https://arxiv.org/abs/2306.15924

159

[128] Andrea Caponnetto and Ernesto De Vito. “Optimal rates for the reg-
ularized least-squares algorithm”. In: Foundations of Computational
Mathematics 7 (2007), pp. 331–368.

[129] Maarten V de Hoop, Nikola B Kovachki, Nicholas H Nelsen, and An-
drew M. Stuart. “Convergence rates for learning linear operators from
noisy data”. In: SIAM/ASA Journal on Uncertainty Quantification 11.2
(2023), pp. 480–513.

[130] Jikai Jin, Yiping Lu, Jose Blanchet, and Lexing Ying. “Minimax opti-
mal kernel operator learning via multilevel training”. In: The Eleventh
International Conference on Learning Representations. 2022.

[131] Samuel Lanthaler and Nicholas H. Nelsen. “Error bounds for learning
with vector-valued random features”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by A. Oh, T. Neumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine. Vol. 36. Curran Associates, Inc.,
2023, pp. 71834–71861.

[132] Zhu Li, Dimitri Meunier, Mattes Mollenhauer, and Arthur Gretton.
“Towards optimal Sobolev norm rates for the vector-valued regularized
least-squares algorithm”. In: Journal of Machine Learning Research 25
(2024), pp. 1–51.

[133] Hao Liu, Haizhao Yang, Minshuo Chen, Tuo Zhao, and Wenjing Liao.
“Deep nonparametric estimation of operators between infinite dimen-
sional spaces”. In: Journal of Machine Learning Research 25.24 (2024),
pp. 1–67.

[134] Mattes Mollenhauer, Nicole Mücke, and T. J. Sullivan. Learning lin-
ear operators: Infinite-dimensional regression as a well-behaved non-
compact inverse problem. 2022. arXiv: 2211.08875 [math.ST].

[135] Florian Schäfer and Houman Owhadi. “Sparse recovery of elliptic solvers
from matrix-vector products”. In: SIAM Journal on Scientific Comput-
ing 46.2 (2024), A998–A1025.

[136] George Stepaniants. “Learning partial differential equations in repro-
ducing kernel Hilbert spaces”. In: Journal of Machine Learning Research
24.86 (2023), pp. 1–72.

[137] Thomas Laurent and James Brecht. “Deep linear networks with arbi-
trary loss: All local minima are global”. In: International Conference on
Machine Learning. PMLR. 2018, pp. 2902–2907.

[138] Nicholas H. Nelsen and Andrew M. Stuart. “Operator learning using
random features: a tool for scientific computing”. In: SIAM Review 66.3
(2024).

https://arxiv.org/abs/2211.08875

160

[139] Zhongjie Shi, Jun Fan, Linhao Song, Ding-Xuan Zhou, and Johan A. K.
Suykens. Nonlinear functional regression by functional deep neural net-
work with kernel embedding. 2024. arXiv: 2401.02890 [stat.ML].

[140] Md Ashiqur Rahman, Manuel A. Florez, Anima Anandkumar, Zachary
E. Ross, and Kamyar Azizzadenesheli. “Generative adversarial neural
operators”. In: Transactions on Machine Learning Research (2022).

[141] Zezhong Zhang, Feng Bao, and Guannan Zhang. “Improving the expres-
sive power of deep neural networks through integral activation trans-
form”. In: International Journal of Numerical Analysis and Modeling
21.5 (2024), pp. 739–763.

[142] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKin-
lay, Francesco Alesiani, Dirk Pflüger, and Mathias Niepert. “PDEBench:
An extensive benchmark for scientific machine learning”. In: Advances
in Neural Information Processing Systems. Ed. by S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh. Vol. 35. Curran
Associates, Inc., 2022, pp. 1596–1611.

[143] Khemraj Shukla, Vivek Oommen, Ahmad Peyvan, Michael Penwarden,
Nicholas Plewacki, Luis Bravo, Anindya Ghoshal, Robert M. Kirby, and
George Em Karniadakis. “Deep neural operators as accurate surrogates
for shape optimization”. In: Engineering Applications of Artificial In-
telligence 129, 107615 (2024).

[144] Thomas O’Leary-Roseberry, Xiaosong Du, Anirban Chaudhuri, Joaquim
R. R. A. Martins, Karen Willcox, and Omar Ghattas. “Learning high-
dimensional parametric maps via reduced basis adaptive residual net-
works”. In: Computer Methods in Applied Mechanics and Engineering
402, 115730 (2022).

[145] Kjetil O Lye, Siddhartha Mishra, and Roberto Molinaro. “A multi-level
procedure for enhancing accuracy of machine learning algorithms”. In:
European Journal of Applied Mathematics 32.3 (2021), pp. 436–469.

[146] Kjetil O. Lye, Siddhartha Mishra, and Deep Ray. “Deep learning ob-
servables in computational fluid dynamics”. In: Journal of Computa-
tional Physics 410, 109339 (2020).

[147] Kjetil O. Lye, Siddhartha Mishra, Deep Ray, and Praveen Chandrashekar.
“Iterative surrogate model optimization (ISMO): An active learning
algorithm for PDE constrained optimization with deep neural net-
works”. In: Computer Methods in Applied Mechanics and Engineering
374, 113575 (2021).

[148] Siddhartha Mishra and T. Konstantin Rusch. “Enhancing accuracy of
deep learning algorithms by training with low-discrepancy sequences”.
In: SIAM Journal on Numerical Analysis 59.3 (2021), pp. 1811–1834.

https://arxiv.org/abs/2401.02890

161

[149] Huaiqian You, Quinn Zhang, Colton J. Ross, Chung-Hao Lee, and Yue
Yu. “Learning deep implicit Fourier neural operators (IFNOs) with ap-
plications to heterogeneous material modeling”. In: Computer Methods
in Applied Mechanics and Engineering 398, 115296 (2022).

[150] Samuel Lanthaler, Andrew M. Stuart, and Margaret Trautner. Dis-
cretization error of Fourier neural operators. 2024. arXiv: 2405.02221
[math.NA].

[151] Erisa Hasani and Rachel A Ward. Generating synthetic data for neural
operators. 2024. arXiv: 2401.02398 [cs.LG].

[152] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian pro-
cesses for machine learning. Vol. 1. Springer, 2006.

[153] Gerald Farin. Curves and surfaces for computer-aided geometric design:
a practical guide. Elsevier, 2014.

[154] Joseph L. Steger and Denny S. Chaussee. “Generation of body-fitted
coordinates using hyperbolic partial differential equations”. In: SIAM
Journal on Scientific and Statistical Computing 1.4 (1980), pp. 431–
437.

[155] Michael B Giles and Endre Süli. “Adjoint methods for PDEs: a poste-
riori error analysis and postprocessing by duality”. In: Acta Numerica
11 (2002), pp. 145–236.

[156] Ian Goodfellow. Deep learning. 2016.

[157] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael
Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates,
Augustin Žídek, Anna Potapenko, et al. “Highly accurate protein struc-
ture prediction with AlphaFold”. In: nature 596.7873 (2021), pp. 583–
589.

[158] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan
Tracey, Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Ab-
dolmaleki, Diego de Las Casas, et al. “Magnetic control of tokamak plas-
mas through deep reinforcement learning”. In: Nature 602.7897 (2022),
pp. 414–419.

[159] Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson,
Andrew El-Kadi, Dominic Masters, Timo Ewalds, Jacklynn Stott, Shakir
Mohamed, Peter Battaglia, et al. “Probabilistic weather forecasting
with machine learning”. In: Nature (2024), pp. 1–7.

[160] Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Anna
Allen, Johannes Brandstetter, Patrick Garvan, Maik Riechert, Jonathan
A Weyn, Haiyu Dong, et al. “A foundation model for the earth system”.
In: Nature (2025), pp. 1–8.

https://arxiv.org/abs/2405.02221
https://arxiv.org/abs/2405.02221
https://arxiv.org/abs/2401.02398

162

[161] Felipe Cucker and Steve Smale. “On the mathematical foundations
of learning”. In: Bulletin of the American mathematical society 39.1
(2002), pp. 1–49.

[162] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer
feedforward networks are universal approximators”. In: Neural networks
2.5 (1989), pp. 359–366.

[163] Helmut Bolcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen.
“Optimal approximation with sparsely connected deep neural networks”.
In: SIAM Journal on Mathematics of Data Science 1.1 (2019), pp. 8–
45.

[164] Dmitry Yarotsky. “Error bounds for approximations with deep ReLU
networks”. In: Neural Networks 94 (2017), pp. 103–114. issn: 0893-6080.

[165] Ronald DeVore, Boris Hanin, and Guergana Petrova. “Neural network
approximation”. In: Acta Numerica 30 (2021), pp. 327–444.

[166] Dennis Elbrächter, Dmytro Perekrestenko, Philipp Grohs, and Helmut
Bölcskei. “Deep neural network approximation theory”. In: IEEE Trans-
actions on Information Theory 67.5 (2021), pp. 2581–2623.

[167] Julius Berner, Philipp Grohs, and Felix Voigtlaender. “Learning ReLU
networks to high uniform accuracy is intractable”. English. In: The
Eleventh International Conference on Learning Representations: ICLR
2023 ; Conference date: 01-05-2023 Through 05-05-2023. 2023.

[168] Ahmed Abdeljawad and Philipp Grohs. Sampling Complexity of Deep
Approximation Spaces. 2023. arXiv: 2312.13379 [cs.LG].

[169] Kateryna Pozharska and Tino Ullrich. “A Note on Sampling Recovery
of Multivariate Functions in the Uniform Norm”. In: SIAM Journal
on Numerical Analysis 60.3 (2022), pp. 1363–1384. doi: 10 . 1137 /
21M1410580.

[170] Nikola B. Kovachki, Samuel Lanthaler, and Andrew M. Stuart. “Op-
erator learning: Algorithms and analysis”. In: Handbook of Numerical
Analysis. Elsevier, 2024. eprint: 2402.15715.

[171] Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. “On Uni-
versal Approximation and Error Bounds for Fourier Neural Operators”.
In: Journal of Machine Learning Research 22.290 (2021), pp. 1–76.
eprint: 2107.07562.

[172] Nicola Rares Franco, Stefania Fresca, Andrea Manzoni, and Paolo Zunino.
“Approximation bounds for convolutional neural networks in operator
learning”. In: Neural Networks 161 (2023), pp. 129–141.

https://arxiv.org/abs/2312.13379
https://doi.org/10.1137/21M1410580
https://doi.org/10.1137/21M1410580
2402.15715
2107.07562

163

[173] Carlo Marcati and Christoph Schwab. “Exponential Convergence of
Deep Operator Networks for Elliptic Partial Differential Equations”.
In: SIAM Journal on Numerical Analysis 61.3 (2023), pp. 1513–1545.
doi: 10.1137/21M1465718.

[174] Hrushikesh Narhar Mhaskar and Nahmwoo Hahm. “Neural networks for
functional approximation and system identification”. In: Neural Com-
putation 9.1 (1997), pp. 143–159.

[175] Samuel Lanthaler. “Operator learning with PCA-Net: upper and lower
complexity bounds”. In: Journal of Machine Learning Research 24.318
(2023), pp. 1–67.

[176] Samuel Lanthaler and Andrew M. Stuart. The parametric complexity
of operator learning. 2023. arXiv: 2306.15924 [cs.LG].

[177] Samuel Lanthaler. Operator Learning of Lipschitz Operators: An Information-
Theoretic Perspective. 2024. arXiv: 2406.18794 [cs.LG].

[178] Ben Adcock, Nick Dexter, and Sebastian Moraga. “Optimal approxi-
mation of infinite-dimensional holomorphic functions”. In: Calcolo 61.1
(2024), p. 12.

[179] Ben Adcock, Michael Griebel, and Gregor Maier. Learning Lipschitz
Operators with respect to Gaussian Measures with Near-Optimal Sample
Complexity. 2024. arXiv: 2410.23440 [cs.LG].

[180] Nikola B. Kovachki, Samuel Lanthaler, and Hrushikesh Mhaskar. Data
Complexity Estimates for Operator Learning. 2024. arXiv: 2405.15992
[cs.LG].

[181] Samuel Lanthaler, Zongyi Li, and Andrew M. Stuart. Nonlocality and
Nonlinearity Implies Universality in Operator Learning. 2024. arXiv:
2304.13221 [math.NA].

[182] James Dugundji. “An extension of Tietze’s theorem”. In: Pacific Journal
of Mathematics 1.3 (1951), pp. 353–367.

[183] Hans-J urgen Schmeisser and Hans Triebel. Topics in Fourier Analysis
and Function Spaces. Vol. 1. Wiley, 1987.

[184] Elias M Stein and Guido Weiss. Introduction to Fourier analysis on
Euclidean spaces. Vol. 1. Princeton University Press, 1971.

[185] Robert A Adams and John JF Fournier. Sobolev Spaces. Elsevier, 2003.

[186] J-L Guermond. “The LBB condition in fractional Sobolev spaces and
applications”. In: IMA journal of numerical analysis 29.3 (2009), pp. 790–
805.

[187] Jöran Bergh and Jörgen Löfström. Interpolation Spaces: An Introduc-
tion. Vol. 223. Springer Science & Business Media, 2012.

https://doi.org/10.1137/21M1465718
https://arxiv.org/abs/2306.15924
https://arxiv.org/abs/2406.18794
https://arxiv.org/abs/2410.23440
https://arxiv.org/abs/2405.15992
https://arxiv.org/abs/2405.15992
https://arxiv.org/abs/2304.13221

164

[188] Kösaku Yosida. Functional analysis. Springer Science & Business Me-
dia, 2012.

[189] Allan Pinkus. “Approximation theory of the MLP model in neural
networks”. In: Acta Numerica 8 (1999), pp. 143–195. doi: 10.1017/
S0962492900002919.

[190] Terence Tao. Analysis ii. Third. Vol. 1. Springer, 2016.

https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1017/S0962492900002919

165

A p p e n d i x A

APPENDIX TO CHAPTER 2

Links code used to produce the numerical results and figures in this chapter
are available at

https://github.com/mtrautner/ViscoML

except for the material-dependence experiment, which is produced from code
written by Lianghao Cao at

https://github.com/lcao11/multiscale_viscoelastic .

A.1 Proofs

Proof of Theorem 2.3.4

The proof of Lemma 2.3.5, which underlies the proof of Theorem 2.3.4, uses
the following two propositions

Proposition A.1.1. Under Assumptions 2.3.1, for all solutions u of equation
(2.2.2) the following bounds hold for some constant C1:

1. supt∈T ∥u∥2
H1

0 ,ν
≤ ∥u|t=0∥2H1

0 ,ν
+
(

ν+

E−

)2
1
ν−
C2

1∥f∥2Z

2. supt∈T ∥u∥2
H1

0 ,E
≤ E+

ν−
∥u|t=0∥2H1

0 ,ν
+
(

ν+

E−

)2
E+

(ν−)2
C2

1∥f∥2Z

3. ∥∂tu∥H1
0 ,ν

≤ C1∥f∥Z
ν−

+ E+

ν−
∥u∥H1

0 ,E
, for all t ∈ T .

♢

Proof. To show the first bound, let φ = u in equation (2.2.2). We have

qν(∂tu, u) + qE(u, u) = ⟨f, u⟩

so that
1

2

d

dt
∥u∥2H1

0 ,ν
+ ∥u∥2H1

0 ,E
≤ ∥f∥H−1∥u∥H1

0

≤ C1∥f∥∥u∥H1
0

https://github.com/mtrautner/ViscoML
https://github.com/lcao11/multiscale_viscoelastic

166

for some constant C1, by compact embedding. Then, using Lemma 2.1.1,

1

2

d

dt
∥u∥2H1

0 ,ν
+
E−

ν+
∥u∥2H1

0 ,ν
≤ C1

2δ2
∥f∥2 + δ2

2ν−
∥u∥2H1

0 ,ν

for any δ > 0 by Young’s Inequality. Letting δ2 = E−ν−

ν+
, we have

d

dt
∥u∥2H1

0 ,ν
+
E−

ν+
∥u∥2H1

0 ,ν
≤ C2

1ν
+

E−ν−
∥f∥2Z .

Finally, Gronwall’s inequality yields

sup
t∈T

∥u∥2H1
0 ,ν

≤ ∥u|t=0∥2H1
0 ,ν

+

(
ν+

E−

)2
C2

1

ν−
∥f∥2.

The second bound follows from Lemma 2.1.1. For the third bound, let φ = ∂tu

in equation (2.2.2). Then

qν(∂tu, ∂tu) + qE(u, ∂tu) = ⟨f, ∂tu⟩

so that, again using Lemma 2.1.1, and using the Poincaré inequality,

∥∂tu∥2H1
0 ,ν

≤ C1

ν−
∥f∥∥∂tu∥H1

0 ,ν
+
E+

ν−
∥u∥H1

0 ,E
∥∂tu∥H1

0 ,ν

and
∥∂tu∥H1

0 ,ν
≤ C1

ν−
∥f∥Z +

E+

ν−
∥u∥H1

0 ,E
.

Additionally, we need to bound the difference between two solutions u1 and
u2 of the PDE in Lemma 2.3.5 with different material properties. Notice that
u1 and u2 satisfy

∂

∂x

(
E1

(
∂

∂x
u1

)
+ ν1

(
∂2

∂t∂x
u1

))
= −f

∂

∂x

(
E1

(
∂

∂x
u2

)
+ ν1

(
∂2

∂t∂x
u2

))
= −f +

∂

∂x

[
(E1 − E2)

∂

∂x
u2 + (ν1 − ν2)

∂2

∂t∂x
u2

]
,

Subtracting yields

∂x
[
E1∂xγ + ν1∂

2
xtγ
]
= −∂x

[
(∆E)∂xu2 + (∆ν)∂2xtu

]
,

where γ = u1 − u2, ∆E = E1 −E2, and ∆ν = ν1 − ν2. We can rewrite this as
an equation for γ in weak form: for all test functions φ ∈ V := H1

0

qν1(∂tγ, φ) + qE1(γ, φ) = ⟨g, ∂xφ⟩, γ|t=0 = 0, (A.1.1)

where g = ∆E∂xu2 + ∆ν∂2xtu2. For the following discussion of bounds in-
cluding both u1 and u2, let E+ = max{E+

1 , E
+
2 }, ν+ = max{ν+1 , ν+2 }, E− =

min{E−
1 , E

−
2 }, and ν− = min{ν−1 , ν−2 }.

167

Proposition A.1.2. Under Assumptions 2.3.1, for all solutions γ of equation
(A.1.1), the following bounds hold:

1. supt∈T ∥γ∥2
H1

0 ,ν1
≤
(

ν+

E−

)2
1
ν−

∥g∥2Z

2. supt∈T ∥γ∥2
H1

0 ,E1
≤
(

ν+

E−

)2
E+

(ν−)2
∥g∥2Z

3. supt∈T ∥∂tγ∥H1
0 ,ν1

≤ ∥g∥Z
ν−

+ E+

ν−
∥γ∥H1

0 ,E

♢

Proof. To show the first bound, let φ = γ in equation (A.1.1). We have

qν(∂tγ, γ) + qE(γ, γ) = ⟨g, ∂xγ⟩

so that
1

2

d

dt
∥γ∥2H1

0 ,ν
+ ∥u∥2H1

0 ,E
≤ ∥g∥∥γ∥H1

0
.

Then
1

2

d

dt
∥γ∥2H1

0 ,ν
+
E−

ν+
∥γ∥2H1

0 ,ν
≤ 1

2δ2
∥g∥2 + δ2

2ν−
∥γ∥2H1

0 ,ν

for any δ > 0 by Young’s Inequality. Letting δ2 = E−ν−

ν+
, we have

d

dt
∥γ∥2H1

0 ,ν
+
E−

ν+
∥γ∥2H1

0 ,ν
≤ ν+

E−ν−
∥g∥2Z .

Finally, since γ(0) = 0, Gronwall’s inequality yields

sup
t∈T

∥γ∥2H1
0 ,ν

≤
(
ν+

E−

)2
1

ν−
∥g∥2.

The second bound follows from Lemma 2.1.1. For the third bound, let φ = ∂tγ

in equation (A.1.1). Then

qν(∂tγ, ∂tγ) + qE(γ, ∂tγ) = ⟨g, ∂2xtγ⟩

so that, again using Lemma 2.1.1,

∥∂tγ∥2H1
0 ,ν

≤ 1

ν−
∥g∥∥∂tγ∥H1

0 ,ν
+
E+

ν−
∥γ∥H1

0 ,E
∥∂tγ∥H1

0 ,ν

and
∥∂tγ∥H1

0 ,ν
≤ 1

ν−
∥g∥Z +

E+

ν−
∥γ∥H1

0 ,E
.

168

To prove the Lipschitz property of the solution in Theorem 2.3.4, we will need
the following lemma.

Lemma 2.3.5 (Lipschitz Solution). Let ui be the solution to

−∂x
(
Ei(x)∂xui(x, t) + νi(x)∂

2
xtui(x, t)

)
= f(x, t), x ∈ D, t ∈ T , (2.3.1)

ui(x, 0) = ∂tui(x, 0) = 0, x ∈ D, (2.3.2)

ui(0, t) = ui(D, t) = 0, t ∈ T , (2.3.3)

associated with material properties Ei, νi, for i ∈ {1, 2}, and forcing f , all
satisfying the Assumptions 2.3.1. Then

∥u1 − u2∥Z ≤ C(∥ν1 − ν2∥∞ + ∥E1 − E2∥∞)

for some constant C ∈ R+ dependent on f, E+
i , E

−
i , ν

+
i , ν−i , and L and inde-

pendent of ε. ♢

Proof. Let γ and g be as defined before and after equation A.1.1. Then, by
the result of Proposition A.1.2,

sup
t∈T

∥γ∥2H1
0
≤ 1

ν−
sup
t∈T

∥γ∥2H1
0 ,ν1

≤
(

ν+

E−ν−

)2

∥g∥2Z .

To bound the RHS:

∥g∥Z = ∥(∆E)∂xu2 + (∆ν)∂2xtu2∥Z
≤ ∥(∆E)∂xu2∥Z + ∥(∆ν)∂2xtu2∥Z
≤ ∥∆E∥∞∥∂xu2∥Z + ∥∆ν∥∞∥∂2xtu2∥Z
≤ sup

t∈T
∥u2∥H1

0
∥∆E∥∞ + sup

t∈T
∥∂tu2∥H1

0
∥∆ν∥∞

≤ 1

(ν−)
1
2

(
sup
t∈T

∥u2∥H1
0 ,ν2

∥∆E∥∞ + sup
t∈T

∥∂tu2∥H1
0 ,ν2

∥∆ν∥∞
)
.

To bound ∥∂xu2∥Z and ∥∂2xtu2∥, note that any solution u2 will satisfy equation
(2.2.2) for (u,E, ν) 7→ (u2, E2, ν2). The analysis of Proposition A.1.1 yields

sup
t∈T

∥u2∥H1
0 ,ν2

≤ ∥u|t=0∥H1
0 ,ν

+

(
ν+

E−

)
C1

(ν−)1/2
∥f∥Z

169

and

sup
t∈T

∥∂tu2∥H1
0 ,ν2

≤ C1∥f∥Z
ν−

+
E+

ν−
∥u2∥H1

0 ,E

≤ C1

ν−
∥f∥Z +

(
E+

ν−

)3/2

∥u|t=0∥H1
0 ,ν

+
(E+)3/2

(ν−)2
ν+

E−C1∥f∥Z .

By the Poincaré inequality, ∥γ∥Z ≤ Cp supt∈T ∥γ∥H1
0

for some constant Cp and
setting

C = Cp

(
ν+

E−(ν−)
3
2

)
max

{
∥u|t=0∥H1

0 ,ν
+

(
ν+

E−

)
C1

(ν−)1/2
∥f∥Z ,

C1

ν−
∥f∥Z +

(
E+

ν−

)3/2

∥u|t=0∥H1
0 ,ν

+
(E+)3/2

(ν−)2
ν+

E−C1∥f∥Z
}

gives the result.

Now we can prove the piecewise constant approximation theorem.

Theorem 2.3.4 (Piecewise-Constant Approximation). Let E and ν be piecewise-
continuous functions, with a finite number of discontinuities, satisfying As-
sumptions 2.3.1; let uε be the corresponding solution to (2.2.1). Then, for any
δ > 0, there exist piecewise-constant EPC and νPC such that solution uPC

ε of
equations (2.2.1) with these material properties satisfies

∥uPC
ε − uε∥Z < δ.

♢

Proof. Let AE and Aν be the finite sets of discontinuities of Eϵ and νϵ re-
spectively, and let A = AE ∪ Aν with elements a1, a2, . . . , aK . Partition the
interval Ω into intervals D1 = (a0, a1), D2 = [a1, a2), . . . DK = [aK−1, aK) such
that

⋃K
k=1Dk = Ω and

⋂K
k=1Dk = 0. Let Bk,δ = {bk0, bk1, . . . , bkN(δ)} be a uni-

form partition of Dk such that bki − bki−1 = δ. Furthermore, define EPC
ϵ and

νPC
ϵ via

EPC
ϵ (x) =

K∑
k=1

N∑
n=1

1x∈(bkn−1,b
k
n]
E

(
1

2
bkn−1 +

1

2
bkn

)

νPC
ϵ (x) =

K∑
k=1

N∑
n=1

1x∈(bkn−1,b
k
n]
ν

(
1

2
bkn−1 +

1

2
bkn

)

170

for x ∈ Ω, noting that EPC
ϵ and νPC

ϵ are piecewise constant with KN(δ) pieces.

Eϵ and νϵ are continuous on each interval Dk, so for each δ′ > 0, there exists
a mesh width δ such that with partitions {Bk,δ}Kk=1

sup
x∈(bkn−1,b

k
n]

∥Eϵ

(
1

2
bkn−1 +

1

2
bkn

)
− Eϵ(x)∥ < δ′

sup
x∈(bkn−1,b

k
n]

∥νϵ
(
1

2
bkn−1 +

1

2
bkn

)
− νϵ(x)∥ < δ′

for all n ∈ {1, . . . , N(δ)}. Thus, ∥EPC−E∥∞ < δ′ and ∥νPC−ν∥∞ < δ′. Since
δ′ was arbitrary, we can pick δ′ < η

C1
where C1 is as in Lemma 2.3.5, and the

theorem follows by use of the same lemma.

Proof of Theorem 2.3.6

We will need the following lemma:

Lemma A.1.3 (Existence of Exact Parametrization). For a piecewise con-
stant material with L′ +1 pieces and under Assumptions 2.3.1, a0 in equation
(2.2.5) can be written exactly as

â0(s) = E ′ + ν ′s−
L′∑
ℓ=1

βℓ
s+ αℓ

,

where E ′, ν ′, βℓ ∈ R and αℓ ∈ R+ for all ℓ ∈ [L′]. ♢

Proof. Let E(y) and ν(y) have L′+1 constant pieces of lengths {dℓ}L
′+1

ℓ=1 , each
associated to values {Eℓ}L

′+1
ℓ=1 and {νℓ}L

′+1
ℓ=1 of E and ν. Then equation (2.2.5),

rewritten here for convenience

â0(s) =

(ˆ 1

0

dy

sν(y) + E(y)

)−1

,

becomes

â0(s) =

[
L′+1∑
ℓ=1

dℓ
Eℓ + νℓs

]−1

(A.1.2)

=

∏L′+1
ℓ=1 (Eℓ + νℓs)∑L′+1

ℓ=1 dℓ
∏

j ̸=ℓ(Ej + νjs)
(A.1.3)

=
P (s)

Q(s)
, (A.1.4)

171

where P (s) is a polynomial of degree L′ + 1 and Q(s) a polynomial of degree
L′. Therefore, there exists a decomposition

P (s)

Q(s)
= E ′ + ν ′s− C(s)

Q(s)
(A.1.5)

for some constants E ′ and ν ′ and polynomial C(s) of degree L′ − 1.

Let −α1, . . . ,−αL′ be the roots of Q(s). Then C(s)
Q(s)

=
∑L′

ℓ=1
βℓ

s+αℓ
for some

constants βℓ ∈ C by partial fraction decomposition. We wish to show that
Re(αℓ) > 0 for all roots −αℓ of Q(s) so that we can take the inverse Laplace
transform. Furthermore, we wish to show that, in fact, −αℓ ∈ R for all roots
−αℓ so that βℓ ∈ R as well. Since Ej and vj are positive for all j ∈ [L′ + 1],
it is clear that if a root −αℓ is real, then it cannot be positive since Q(s) =∑L′+1

ℓ=1 dℓ
∏

j ̸=ℓ(Ej + νjs) has all positive coefficients. We now show that all
roots of Q(s) are real. Suppose a+ bi is a root of Q(s). Then

Q(a+ bi) =
L′+1∑
ℓ=1

dℓ
∏
j ̸=ℓ

(Ej + νj(a+ bi))

=

[
L′+1∏
j=1

(Ej + νj(a+ bi))

]
·
L′+1∑
ℓ=1

dℓ
Eℓ + νℓ(a+ bi)

=

[
L′+1∏
j=1

(Ej + νj(a+ bi))

]
·
L′+1∑
ℓ=1

(
dℓ(Eℓ + νℓa)

(Eℓ + νℓa)2 + (νℓb)2
− dℓ(νℓb)

(Eℓ + νℓa)2 + (νℓb)2
i

)
.

The term
∏L′+1

j=1 (Ej + νj(a+ bi)) is a nonzero constant for b ̸= 0 since Ej, νj ∈
R+. Therefore, for Q(a+ bi) = 0, both the real and imaginary components of
the sum on the right must total 0. However, since dℓ, νℓ, and the denominator
term (Eℓ + νℓa)

2 + (νℓb)
2 are all positive as well, b must equal 0 to make

Im[Q(a + bi)] = 0. Therefore, all roots of Q(s) are in R−. Returning to the
decomposition, we now have

â0(s) = E ′ + ν ′s−
L′∑
ℓ=1

βℓ
s+ αℓ

, (A.1.6)

where βℓ ∈ R and αℓ ∈ R+ for all ℓ ∈ [L′].

Now we may prove the theorem.

Theorem 2.3.6 (Existence of Exact Parametrization). Let Ψ†
0 be the map

from strain history to stress in the homogenized model, as defined by equation

172

(2.2.7), in a piecewise-constant material with L + 1 pieces. Define ΨPC
0 :

R2 × C1(T ;R)× T ×Θ → R by

ΨPC
0 (ϵ(t), ϵ̇(t), {ϵ(τ)}τ∈T , t; θ) = E ′ϵ(t) + ν ′ϵ̇(t)−

L∑
ℓ=1

ξℓ(t), (2.3.4a)

∂tξℓ(t) = βℓϵ(t)− αℓξℓ(t), ξℓ(0) = 0, ℓ ∈ {1, . . . , L}. (2.3.4b)

Then, under Assumptions 2.3.1, there exists a choice of parameters θ∗ =

(E ′, ν ′, α, β, L) such that

Ψ†
0(ϵ(t), ϵ̇(t), {ϵ(τ)}τ∈T , t) = ΨPC

0 (ϵ(t), ϵ̇(t), {ϵ(τ)}τ∈T , t; θ∗)

for all u0 ∈ C2(D × T ;R) and t ∈ T . ♢

Proof. By Lemma A.1.3, we have that

σ̂0 = â0(s)∂xû0

=

(
E ′ + ν ′s−

L′∑
ℓ=1

βℓ
s+ αℓ

)
∂xû0,

where βℓ ∈ R and αℓ ∈ R+ for all ℓ ∈ [L]. Taking an inverse Laplace transform,
we get

σ0(t) = E ′∂xu0(t)+ν
′∂t∂xu0(t)−

L∑
ℓ=1

βℓ

ˆ t

0

∂xu0(τ) exp[−αℓ(t−τ)] dτ. (A.1.7)

The above may be reexpressed as equations (2.3.4) with a choice of parameters
θ = (E ′, ν ′, L′, α, β), auxiliary variable ξ, and ϵ := ∂xu0.

RNO Approximation Theorem 2.3.10 Proof

In this subsection we use | · |, ∥ · ∥ to denote modulus and Euclidean norm,
respectively, and ⟨·, ·⟩ to denote Euclidean inner product. This overlap with
the notation from the main body of the work should not lead to any confusion
as it is confined to this subsection.

To prove Theorem 2.3.10 we first study the simple case where FPC,GPC are
uniformly approximated across all inputs; subsequently we will use this to
establish Theorem 2.3.10 as stated.

173

Assumption 1.1.4. For any δ > 0, there exist FRNO and GRNO such that

sup
z∈R2+L

∣∣FPC(z)−FRNO(z)
∣∣ ≤ δ

sup
z∈R1+L

∥∥GPC(z)− GRNO(z)
∥∥ ≤ δ.

♢

Proposition A.1.5. Under Assumptions 1.1.4, if {αℓ} in equations (2.3.9)
are bounded such that 0 < a0 < αℓ for some a0 for all ℓ ∈ [L], then for any
η > 0, there exists a map ΨRNO

0 defined as in equations (2.3.11) such that for
ΨPC

0 defined in equations (2.3.10), for any t ∈ R+ and functions b, c : R+ → R,∣∣ΨPC
0 (b(t), c(t), {b(τ)}τ∈T , t; θ∗)−ΨRNO

0 (b(t), c(t), {b(τ)}τ∈T , t)
∣∣ ≤ η.

♢

Proof. Note that the main difficulty in this proof results from the fact that
FRNO and FPC act on different hidden variables ξ, which we will denote ξRNO

and ξPC, and whose first order time derivatives are given by GRNO and GPC

respectively. We write∣∣ΨPC
0 (b(t), c(t), {b(τ)}τ∈T , t; θ∗)−ΨRNO

0 (b(t), c(t), {b(τ)}τ∈T , t)
∣∣

= |FPC(b(t), c(t), ξPC(t))−FRNO(b(t), c(t), ξRNO(t))|
≤ |FPC(b(t), c(t), ξRNO(t))−FRNO(b(t), c(t), ξRNO(t))|
+ |FPC(b(t), c(t), ξPC(t))−FPC(b(t), c(t), ξRNO(t))|
≤ δ + |FPC(b(t), c(t), ξPC(t))−FPC(b(t), c(t), ξRNO(t))|

by Assumptions 1.1.4 since FPC and FRNO share arguments in the first term.
To bound the second term,

|FPC(b(t), c(t), ξPC(t))−FPC(b(t), c(t), ξRNO(t))| = |⟨1, ξPC(t)− ξRNO(t)⟩| ≤
√
L∥ξPC(t)− ξRNO(t)∥

using the known form of FPC where ∥ · ∥ is the Euclidean norm in RL.

Let eξ(t) = ξPC(t) − ξRNO(t). Note that ξPC(0) = ξRNO(0) = 0, so eξ(0) = 0.
We wish to bound ∥eξ(t)∥. To do so, we first bound ∥ėξ(t)∥, where ėξ(t) =
d
dt
eξ(t):

ėξ(t) = ξ̇PC(t)− ξ̇RNO(t)

= GPC(ξPC(t), b(t))− GPC(ξRNO(t), b(t))− GRNO(ξRNO(t), b(t)) + GPC(ξRNO(t), b(t))

= GPC(ξPC(t), b(t))− GPC(ξRNO(t), b(t)) + q(t),

174

where we have defined q(t) = GPC(ξRNO(t), b(t)) − GRNO(ξRNO(t), b(t)) and
∥q(t)∥ ≤ δ by Assumptions 1.1.4. Now note that ėξ(t) = −Aeξ(t) + q(t) by
the form of GPC, so we can bound

1

2

d

dt
∥eξ(t)∥2 = ⟨eξ(t), ėξ(t)⟩ = −⟨eξ(t), Aeξ(t)⟩+ ⟨q(t), eξ(t)⟩

≤ −αmin∥eξ(t)∥2 +
〈

1

α
1/2
min

q(t), α
1/2
mineξ(t)

〉
≤ −αmin∥eξ(t)∥2 +

1

2αmin

∥q(t)∥2 + αmin

2
∥eξ(t)∥2

d

dt
∥eξ(t)∥2 ≤ −αmin∥eξ(t)∥2 +

δ2

αmin

by Young’s inequality. Then by Gronwall’s inequality

∥eξ(t)∥2 ≤
δ2

α2
min

(
1− e−αmint

)
(A.1.8)

so ∥eξ(t)∥ < δ
a0

for all time. Returning to the main proof narrative,∣∣ΨPC
0 (b(t), c(t), {b(τ)}τ∈T , t; θ∗)−ΨRNO

0 (b(t), c(t), {b(τ)}τ∈T , t)
∣∣

≤ δ +
√
L∥ξPC(t)− ξRNO(t)∥ ≤ δ +

√
Lδ

a0
.

Since by Assumptions 1.1.4, δ is arbitrarily small, the theorem result is shown.

Although we did not need to restrict the inputs t, b, and c in Proposition A.1.5
to compact sets in order to prove it, we will argue that the statement holds
under weaker assumptions if the inputs are also bounded. The following weaker
assumptions follow from the Universal Approximation Theorem for RNNs[4].

Assumption 1.1.6. If D1 ∈ R2+L and D2 ∈ R1+L are compact sets, then for
any δ > 0, there exist FRNO and GRNO such that

sup
z∈D1

∣∣FPC(z)−FRNO(z)
∣∣ ≤ δ

sup
z∈D2

∥∥GPC(z)− GRNO(z)
∥∥ ≤ δ.

♢

Theorem 2.3.10 (RNO Approximation). Consider ΨPC
0 as defined by equa-

tions (2.3.9), (2.3.10). Assume that there exist a0 > 0 and 0 ≤ B < ∞ such

175

that a0 < minℓ |αℓ| and maxℓ |βℓ| ≤ B. Then, under Assumptions 2.3.1, for
every η > 0 there exists ΨRNO

0 of the form (2.3.11) such that

sup
t∈T ,b,c∈ZR

∣∣ΨPC
0

(
b(t), c(t), {b(τ)}τ∈T , t; θ∗

)
−ΨRNO

0

(
b(t), c(t), {b(τ)}τ∈T , t

)∣∣ < η.

♢

Proof. Notice first that Assumptions 1.1.6 are a weaker version of Assumptions
1.1.4. We will prove the theorem by showing that, for inputs bounded via
t ∈ T and b, c ∈ ZR, we never need the stronger assumption in the proof
of Proposition A.1.5 because the function arguments of FPC,FRNO,GPC, and
GRNO never leave a compact set. First we show that supt∈T ∥ξPC(t)∥ ≤ R3 for
some R3 > 0. For any ℓ ∈ {1, . . . , L}, we have

ξ̇PC
ℓ (t) = βℓb(t)− αℓξ

PC
ℓ (t)

|ξPC
ℓ (t)| ≤ e−αℓtβℓ

(
sup
t∈T

|b(t)|
) ˆ t

0

eαℓt
′
dt′

≤ e−αℓtβℓ

(
sup
t∈T

|b(t)|
)

1

αℓ

eαℓt

sup
t∈T

|ξPC
ℓ (t)| ≤ B

ρ
R,

so that supt∈T ∥ξPC(t)∥ ≤
√
LBR
ρ

. Let R3 =
√
LBR
ρ

. Define R4 = max{R3+
δ
ρ
, R}

for δ in Assumptions 1.1.6. We will show that supt∈T ∥ξRNO(t)∥ ≤ R4 for ξRNO

defined by ξRNO in equations (2.3.11). Then the proof of Proposition A.1.5
will apply for bounded t, b and c with the weaker assumptions since all inputs
to FPC,FRNO,GPC, and GRNO: b(t), c(t), ξPC(t), and ξRNO(t), will remain in
a compact set for t ∈ T .

Suppose for the sake of contradiction that there exists a time t′ ∈ T at which
∥ξRNO(t′)∥ > R4. Then there exists a time T ′ < t′ < T and ϵ > 0 such that
for t ∈ [0, T ′], ∥ξRNO(t)∥ ≤ R4, for t ∈ (T ′, T ′ + ϵ), ∥ξRNO(t)∥ > R4, and
∥ξRNO(T ′)∥ = R4 by continuity. In other words, T ′ is the time at which ξRNO

first crosses the R4 radius. Then

∥eξ(T ′)∥ := ∥ξRNO(T ′)− ξPC(T ′)∥ ≥ R4 −R3 ≥
δ

ρ

by triangle inequality. Since ∥ξRNO(t)∥ ≤ R4 for t ∈ [0, T ′], the bound on
∥eξ(t)∥ in equation (A.1.8) in the proof of Proposition A.1.5 applies on the

176

interval t ∈ [0, T ′] under the weaker assumptions 1.1.6, and ∥eξ(T ′)∥ < δ
ρ
.

This is a contradiction. Therefore, supt∈T ∥ξRNO(t)∥ ≤ R4, and the proof of
Proposition A.1.5 holds with the weaker Assumptions 1.1.6 for bounded inputs
t ∈ T and b, c ∈ ZR.

The bounds on α and β required in Theorem 2.3.10 are justified because
for known material properties E and ν, α and β are determined and finite-
dimensional, so they have maximum and minimum values.

A.2 Special Case Solutions

Laplace Transform Limit

Here we derive the form of Ψ†
0 in equation (2.2.7) via a power series expansion

of the Laplace transform at s = ∞. Starting from the definition in equation
(2.2.6):

Ψ†
0 = L−1

((ˆ 1

0

dy

sν(y) + E(y)

)−1

∂xû0

)
.

For s≫ 1, we have that(ˆ 1

0

dy

sν(y) + E(y)

)−1

≈
(ˆ 1

0

dy

sν(y)

)−1

= s

(
dy

ν(y)

)−1

.

Setting ν ′ =
(

dy
ν(y)

)−1

, we now subtract out the linear dependence on s and let
z = 1

s
. We define

F (z) = â0(s)− ν ′s
∣∣∣
s=z−1

to obtain

F (z) = â0
(
z−1
)
− ν ′z−1

=

(ˆ 1

0

z dy

ν(y) + zE(y)

)−1

−
(ˆ 1

0

z dy

ν(y)

)−1

=

´ 1

0

(
z

ν(y)
− z

ν(y)+zE(y)

)
dy(´ 1

0
z dy

ν(y)+zE(y)

)(´ 1

0
z dy
ν(y)

)
=

z2
´ 1

0
E(y)

ν(y)(ν(y)+zE(y))
dy

z2
(´ 1

0
dy

ν(y)+zE(y)

)(´ 1

0
dy
ν(y)

)
=

´ 1

0
E(y)

ν(y)(ν(y)+zE(y))
dy(´ 1

0
dy

ν(y)+zE(y)

)(´ 1

0
dy
ν(y)

) .

177

Since infy∈(0,1) ν(y) > 0,

lim
z→0

F (z) =

´ 1

0
E(y)
ν2(y)

dy(´ 1

0
dy
ν(y)

)2 =: E ′.

From this same computation, we see that for â0(s) = sν ′+E ′+κ(s), the contri-
bution κ(s) consists of lower order terms in s and is such that lims→∞ κ(s) = 0.
Using the fact that the inverse Laplace transform of a product (if it exists) is
a convolution, we justify the form of the integral term in equation (2.2.7).

Forced Boundary Problem

Lemma 2.5.1. Let Ω = (0, 1), and let σ be determined by the following
equations, where E, ν, and b are given:

∂yσ(y, t) = 0, y ∈ Ω, t ∈ T , (2.5.2a)

σ(y, t) = E(y)∂yu(y, t) + ν(y)∂2ytu(y, t), y ∈ Ω, t ∈ T , (2.5.2b)

u(0, t) = 0, u(1, t) = b(t), t ∈ T , (2.5.2c)

u(y, 0) = 0, y ∈ Ω. (2.5.2d)

Then
{σ(t)}t∈T = Ψ†

0(b(t), ∂tb(t), {b(t)}t∈T , t),

where Ψ†
0 is the map defined in (2.2.6). ♢

Proof. Taking the Laplace transform of (2.5.2) yields

σ̂(s) = (E(y) + ν(y)s)∂yû(y, s).

Spatially averaging and noting that b(t) = ⟨∂yu(y, t)⟩, we have

b̂(s) =

ˆ 1

0

dy

(E + sν)(y)
σ̂(s). (A.2.1)

Then σ̂(s) =
(´ 1

0
dy

(E+sν)(y)

)−1

b̂(s), which is equivalent to σ̂(s) = â0(s)̂b(s)

using equation (2.2.5). The definition of Ψ†
0 in equation (2.2.6) completes the

proof.

Lemma 2.5.1 justifies the use of data arising from the system (2.5.2) to train
the map Ψ0.

178

A.3 Surrogate Model Experiments in Viscoelasticity

RNO Training and Testing: Piecewise-Constant Case

We trained three RNOs using the same dataset for the setting of a 2-piecewise
constant material with material parameters E1 = 1, E2 = 3, ν1 = 0.1, and
ν2 = 0.2. The data was generated using a forward Euler method with time
discretization dt = 0.001 up to time T = 4 on the known analytic solution for
the 2-piecewise-constant cell problem. Denote the data by {(∂xu0)n, (σ0)n}Nn=1

as discussed in Section 2.5. We repeat the two loss functions here.

Accessible Loss Function:

L1({σ0}Nn=1, {σ̂0}Nn=1) =
1

N

N∑
n=1

∥(σ0)n − (σ̂0)n∥
∥(σ0)n∥

Inaccessible Loss Function:

L2({σ0}Nn=1, {σ̂0}Nn=1, {ξ}Nn=1, {ξ̂0}Nn=1) =
1

N

N∑
n=1

(
∥(σ0)n − (σ̂0)n∥

∥(σ0)n∥
+

∥(ξ)n − (ξ̂)n∥
∥(ξ)n∥L2(Ω,R)

)

For each of the following RNOs, the architecture for FRNO and GRNO consists
of three internal layers of SeLU units of 100 nodes separated by linear layers,
all followed by a final linear layer. The SELU function is applied element-wise
as

SELU(x) = s(max(0, x) + min(0, α(exp(x)− 1)))

where α = 1.67326 and s = 1.050701. We trained three different RNOs on the
same piecewise-constant dataset in the following manner:

• RNO A: Using only the inaccessible loss function L2, we trained on
N = 400 data points with subsampled time discretization of dt = 0.004

up to T = 4 for 1500 epochs with a batch size of 50.

• RNO B: first we used the inaccessible loss function L2 to train on N =

200 data points with subsampled time discretization of dt = 0.004 up to
T = 2 for 1500 epochs with a batch size of 40. Then we initialized a new
RNO at the parameters of this RNO and trained with the accessible
loss function L1 for 1000 epochs on 200 data with batch size of 40.

1https://pytorch.org/docs/stable/generated/torch.nn.SELU.html

https://pytorch.org/docs/stable/generated/torch.nn.SELU.html

179

• RNO C: Using only the accessible loss function L1, we trained on
N = 500 data points with subsampled time discretization of dt = 0.004

up to T = 4 for 3000 epochs with a batch size of 50.

The train and test errors are shown for the three RNOs in Figure A.1.

(a) RNO A trained using
inaccessible loss function

(b) RNO B initialized at
inaccessible loss solution

(c) RNO C trained using
only standard loss func-
tion

Figure A.1: Train and test error for the three RNOs.

The piecewise constant data was generated by solving the cell problem using
a finite difference method with 300 spatial nodes and dt = 0.005 over a time
length of T = 10 for the trajectories. In the training, we sliced the data
trajectories by a slice of 2. For the 3-piecewise constant model, we trained
on 500 data points for 3000 epochs with the squared relative loss function.
For the 5 and 10-piecewise constant models, we trained on 600 data points for
4000 epochs with the squared relative loss function. The piecewise constant
values were: E1 = 2, E2 = 8, E3 = 1, E4 = 3, E5 = 7, E6 = 3, E7 = 5, E8 = 6,
E9 = 9, E10 = 4, ν1 = 0.1, ν2 = 0.9, ν3 = 0.7, ν4 = 0.4, ν5 = 1.5, ν6 = 1.2,
ν7 = 0.5, ν8 = 1.4, ν9 = 0.5, and ν10 = 0.3. (first three for 3-piecewise, first
five for 5-piecewise constant, all ten for 10-piecewise constant).

RNO Training and Testing: Continuous Case

We trained several RNOs on data {(∂xu0)n, (σ0)n}Nn=1 for continuous material
parameters given by E(y) = 2+ tanh

(
y−0.5
0.2

)
and ν(y) = 0.5+ 0.1 tanh

(
y−0.5
0.2

)
.

Each of the four RNOs had 1, 2, 5, and 10 hidden variables (L, or the dimension
of ξ) respectively. The data was generated by solving the cell problem using
a finite difference method with 200 spatial nodes and dt = h2 where h is the
spatial discretization. The RNO was trained for 3000 epochs on 500 data.
The macroscale simulations were performed with a spacial discretization of
hcell = 0.05 and a time discretization of dt = 0.4h2cell. They were compared to

180

Figure A.2: RNO outputs versus the truth (dashed) for each of the three candi-
date RNOs. The columns correspond to RNOS A, B, and C respectively. The
first row shows the strain-stress dependence for five fixed strain rate inputs.
The second row shows the strain rate-stress dependence for five fixed strain
inputs. The third row shows the ξ, stress relationships for hidden variable ξ
for five fixed strain inputs. The fourth row shows the strain, ξ̇ relationship for
five different fixed values of ξ. Finally, the fifth row shows the ξ, ξ̇ relationship
for five fixed strain inputs.

an FEM solution computed with a spacial discretization of h = 0.004 with a
material period of 0.04 and time discretization of dt = 0.1h2.

Additional numerical experiments for viscoelasticity

In Figure A.2 we investigate whether the learned models exhibit linearity in
the inputs, as is the case for the true equations. The first two columns are
models trained with the inaccessible loss function, and the rightmost column
is a model trained only on the accessible loss function. All three models
exhibit linearity in FRNO, but only the model trained on the inaccessible loss
function exhibits linearity in the learned model for GRNO. Despite this lack
of adherence to the true behavior, the third model achieves comparable test
error and performance as a surrogate model.

In Figure A.3 we display the result of using RNOs A, B, and C as surrogate
models with integrated Brownian motion forcing. Both the analytic homog-
enized equations and the RNO predicted stress are compared to the stress
computed via an FEM simulation as the ground truth. Once more, the mag-

181

nitudes of the error are similar, implying that the main contributor of the error
is homogenization itself.

Finally, in Figure A.4 we train another RNO on piecewise-constant material
parameters exhibiting higher inertial effects and test them in macroscale sim-
ulations with the same sinusoidal and Brownian motion forcing as before.

(a) RNO A (b) RNO B (c) RNO C

Figure A.3: Analytic cell and RNO relative error versus FEM solution using
integrated Brownian motion forcing; this supports Numerical Experiments,
conclusion I.

(a) Sinusoidal forcing (b) Integrated Brownian motion forcing

Figure A.4: Relative error of RNO trained on material parameters with higher
inertial effects in response to sinusoidal and integrated Brownian motion forc-
ing; this demonstrates Numerical Experiments, conclusion I.

RNO Training and Testing: Elasto-viscoplasticity Experiments

The data for the elasto-viscoplasticity case was generated using a fixed-point
iteration scheme with dt = 0.0001, 100 spatial elements, and a termination
threshold of 0.001. The constant values used were n = 10, E1 = 5, E2 = 1,
E3 = 3, E4 = 2, E5 = 4, E6 = 6, E7 = 1, E8 = 3, E9 = 4, ϵ̇p0,1 = 0.05,
ϵ̇p0,2 = 0.1, ϵ̇p0,3 = 0.15, ϵ̇p0,4 = 0.07, ϵ̇p0,5 = 0.02, ϵ̇p0,6 = 0.08, ϵ̇p0,7 = 0.04,

182

ϵ̇p0,0.12, ϵ̇p0,0.03, and each σ0,i = Eiϵ̇p0,i. The RNO was trained without the
strain rate variable on 400 data trajectories with a time slice of 8. The model
trained for 3000 epochs with absolute error. The samples shown in Figure 2.6
were chosen using a random number generator. Figure A.5 shows the error for
the train and test data points for this elasto-viscoplastic experiment.

Figure A.5: Error evaluations of all train and test data points for the elasto-
viscoplastic experiments. Solid lines indicate mean error values, which are
computed separately for the train and test sets.

A.4 One-Dimensional Standard Linear Solid

In this section we address the model of the one-dimensional Maxwell version of
the SLS, whose constitutive law depends only on the strain and strain history.
The analysis for the SLS model demonstrates that the ideas presented for the
KV model extend beyond that particular setting. In Section A.4, we present
the governing equations, and in Section A.4 we homogenize the system.

Governing Equations

In the setting without inertia, the displacement uε, strain ϵε, and inelastic
strain ϵpε are related by

−∂xσε = f, (A.4.1a)

ϵε = ∂xu, (A.4.1b)

σε = E1,εϵε + E2,ε(ϵε − ϵpε), (A.4.1c)

∂tϵ
p
ε =

E2,ε

νε
(ϵε − ϵpε), (A.4.1d)

where f : Ω × T 7→ R is a known forcing, and we impose initial condition
u(x, 0) = 0 and boundary conditions u(x, t) = 0 for x ∈ ∂Ω. We seek a
solution uε : Ω × T 7→ R. Once more we have small scale dependence in
the material properties through ε: we have Ei,ε(x) = Ei

(
x
ε

)
for i = 1, 2 and

νε(x) = ν
(
x
ε

)
for 0 < ε≪ 1.

183

Homogenization

First, we take the Laplace transform of equation (A.4.1) and combine the
transformed expressions of equations (A.4.1c) and (A.4.1d) to arrive at

σ̂ε = E1,εϵ̂ε + E2,εs

(
s+

E2,ε

νε

)−1

ϵ̂ε. (A.4.2)

Letting â(s) = E1,ε+E2,εs
(
s+ E2,ε

νε

)−1

, the homogenization theory of Section
2.3 applies, and we can use the harmonic averaging expression in equation
(2.2.5) to write

â0(s) =
〈
(a(s))−1

〉−1
=

(ˆ 1

0

s+ E2

ν

(E1 + E2)s+
E1E2

ν

dy

)−1

, (A.4.3)

where the homogenized solution u0 solves system 2.1.6 with Ψ†
0 is defined as

Ψ†
0 = L−1[â0(s)∂xû0], (A.4.4)

analogous to the KV case. However, in the case of piecewise-constant E1, E2

and ν the inverse Laplace transform yields a different form in the SLS case:

ΨPC
0 (∂xu0, t; θ) = E ′∂xu0(t)−

L∑
ℓ=1

ξℓ(t) (A.4.5a)

∂tξℓ(t) = βℓ∂xu0(t)− αℓξℓ(t), ℓ ∈ {1, . . . , L} (A.4.5b)

for a material with L pieces. Note that this model does not have dependence
on the strain rate, but it has one more hidden variable than the piecewise-
constant case for the KV model. The value of E ′ follows from taking the limit
s→ ∞ and is given by

E ′ =

(ˆ 1

0

1

(E1 + E2)
dy

)−1

.

SLS Derivation

Here we show that the SLS model has one more hidden variable in the piecewise-
constant case than the KV model does. This is the analog of Theorem 2.3.6
for the SLS model. Starting from equation (A.4.3) for â0(s):

â0(s) = ⟨â(s)−1⟩−1

=

(ˆ 1

0

s+ E2(y)
ν

(E1(y) + E2(y))s+
E1(y)E2(y)

ν(y)

dy

)−1

(
L∑
i=1

(s+
E2,i

νi
)di

(E1,i + E2,i)s+
E1,iE2,i

νi

)−1

184

for L-piecewise-constant E1, E2, and ν with pieces of length di. Let ci =
E2,i

νi
,

ki = E1,i + E2,i and pi =
E1,iE2,i

νi
. Continuing,

=

(
L∑
i=1

(s+ ci)di
kis+ pi

)−1

=

∏L
i=1(kis+ pi)∑L

i=1 di(s+ ci)
∏

j ̸=i(kjs+ pj)
:=

P (s)

Q(s)
.

Note that both P (s) and Q(s) have degree L. There is a unique constant E ′

such that
P (s)

Q(s)
= E ′ +

C(s)

Q(s)
,

where C(s) has degree L. Then C(s)
Q(s)

decomposes uniquely as
∑L

ℓ=1
βℓ

s+αℓ
. Note

that this is one more pole than the decomposition for the KV model in Theorem
2.3.6 has. We will now show that roots of Q are real and negative, which will
lead to the expression in equation (A.4.5). First notice that if the roots of
Q(s) are real, then they must be negative since ki, ci, di, and pi are strictly
positive for all i ∈ [L]. Suppose for the sake of contradiction that Q(s) has a
root with a nonzero imaginary component: s = a+ bi where b ̸= 0. Then

Q(a+ bi) =
L∑

ℓ=1

di(a+ bi+ cℓ)
∏
j ̸=ℓ

(kj(a+ bi) + pj)

=

(∏
j

(kj(a+ bi) + pj)

)
L∑

ℓ=1

dℓ(a+ bi+ cℓ)

kℓ(a+ bi) + pℓ

=

(∏
j

(kj(a+ bi) + pj)

)
L∑

ℓ=1

(
dℓa+ dℓcℓ + dℓbi

kℓa+ pℓ + kℓbi

)(
kℓa+ pℓ − kℓbi

kℓa+ pℓ − kℓbi

)

=

(∏
j

(kj(a+ bi) + pj)

)
×

L∑
ℓ=1

dℓ
(kℓa+ pℓ)2 + (kℓb)2

[(
(a+ cℓ)(kℓa+ pℓ) + kℓb

2
)
+ (−kℓbcℓ + bpℓ)i

]
.

If a + bi is a root of Q, then we need b
∑L

ℓ=1
dℓ

(kℓa+pℓ)2+(kℓb)2
(−kℓcℓ + pℓ) = 0.

Notice that −kℓcℓ + pℓ = −E2
2,ℓ

νℓ
, which is strictly negative, so for b ̸= 0,

Im(Q(a + bi)) < 0, which is a contradiction. Therefore, b = 0, and all the
roots of Q are real and negative. Inverting the Laplace transform, we arrive
at equation (A.4.5).

185

A.5 Fourier Neural Mapping Definition

Here we include the definition of the FNM used in the extension RNO-FNM to
include material dependence in the model. This architecture is fully developed
and explored in Chapter 5.

Definition A.5.1 (Fourier Neural Mapping (FNM)). Let the function input
M ∈ L2(Td;RdM). Define the vector input vin ∈ Rdvin and vector output
vout ∈ Rdvout . Let x ∈ Td. Now we define the following layers:

(Vector Lifting) Sv : Rdvin → Rdvlift

(Vector to Function) D : Rdvlift → L2(Td;Rdvflift)

z 7→ Dz = κv(·)z
z 7→ Dz =

{∑
k∈Zd

(
P

(k)
v z

)
j
ψk

}
j∈[dvflift]

(Function Lifting) Sf : L2(Td;RdM+dvflift) → L2(Td;Rd0)

(Fourier) Lt : L
2(Td;Rdt−1) → L2(Td;Rdt), t ∈ [T],(

Lt(u)
)
(x) = σ

(
Wtu(x) + (Ktu)(x) + bt

)
,

(Function to Vector) G : L2(Td;RdT) → Rdfvproj

h 7→ G h =
´
Td κf (x)h(x) dx

h 7→ G h =
{∑

k∈Zd

(∑dT
j=1(P

(k)
f)ℓj⟨ψk, hj⟩L2(Td;C)

)}
ℓ∈[dfvproj]

(Vector Projection) Qv : Rdfvproj → Rdvout .

The convolution operator is given, for u : Td → Rdt−1 and x ∈ Td, by

(Ktu)(x) =

{∑
k∈Zd

(
dt−1∑
j=1

(P
(k)
t)ℓj⟨ψk, uj⟩L2(Td;C)

)
ψk(x)

}
ℓ∈[dt]

∈ Rdt . (A.5.1)

For given layer index t and wave vector k ∈ Zd, the matrix P
(k)
t ∈ Cdt×dt−1

comprises learnable parameters of the integral operator Kt; furthermore, Wt ∈
Rdt×dt−1 is a weights matrix, bt ∈ Rdt is a bias vector, both learnable. And, for
given wave vector k ∈ Zd, P (k)

v ∈ Cdvflift×dvlift are the learnable parameters of the
vector to function map D , and P (k)

f ∈ Cdfvproj×dT are the learnable parameters of
the function to vector map G . The vector lifting and projection layers, Sv and
Qv, are either shallow neural networks or linear maps, and hence also contain
learnable parameters. Finally the function lifting layer Sf is applied pointwise

186

in Td−a.e. and is also defined by either a shallow neural network or a linear
map containing learnable parameters. ♢

187

A p p e n d i x B

APPENDIX TO CHAPTER 3

Links to datasets and all code used to produce the numerical results and figures
in this chapter are available at

https://github.com/mtrautner/LearningHomogenization/ .

B.1 Proofs of Stability Estimates

In this section, we prove the stability estimates stated in Propositions 3.1.2
and 3.1.3. The following lemma is a modification of the standard estimate for
parametric dependence of elliptic equations on their coefficient. We include it
here for completeness.

Proposition 3.1.1. Consider the cell problem defined by equation (3.1.4).
The following hold:

1. If A ∈ PDα,β, then (3.1.4) has a unique solution χ ∈ Ḣ1(Td;Rd) and

∥χ∥Ḣ1(Td;Rd) ≤
√
dβ

α
.

2. For χ(1) and χ(2) solutions to the cell problem in equation (3.1.4) asso-
ciated with coefficients A(1), A(2) ∈ PDα,β, respectively, it follows that

∥χ(2) − χ(1)∥Ḣ1(Td;Rd) ≤
√
d

α

(
1 +

β

α

)
∥A(1) − A(2)∥L∞(Td;Rd×d). (3.1.8)

♢

Proof. For existence and uniqueness of the solution to the cell problem using
Lax-Milgram, we refer to the texts [59, 27]; we simply derive the bounds and
stability estimate. First, note that (3.1.4) decouples, in particular,

−∇ · (∇χℓA) = ∇ · (Aeℓ), y ∈ Td (B.1.1)

https://github.com/mtrautner/LearningHomogenization/

188

for l = 1, . . . , d where eℓ is the ℓ-th standard basis vector of Rd and each
χℓ ∈ Ḣ1(Td;R). Multiplying by χℓ and integrating by parts shows

α∥∇χℓ∥2L2 ≤
ˆ
Td

⟨A∇χℓ,∇χℓ⟩ dy

= −
ˆ
Td

⟨Aeℓ,∇χℓ⟩ dy

≤
ˆ
Td

|Aeℓ||∇χℓ| dy

≤
(ˆ

Td

|Aeℓ|2 dy
) 1

2
(ˆ

Td

|∇χℓ|2 dy
) 1

2

≤ ∥A∥L∞∥∇χℓ∥L2 .

Therefore

∥∇χ∥2L2 =
d∑

l=1

∥∇χℓ∥2L2 ≤ d∥A∥2L∞

α2
≤ dβ2

α2
,

which implies the first result.

To prove the second result, we denote the right hand side of B.1.1 by f
(i)
ℓ =

∇ · A(i)eℓ in what follows. For any v ∈ Ḣ1(Td;R), we have that

−
ˆ
Td

∇ · (A(1)∇χ(1)
ℓ)v dy =

ˆ
Td

f
(1)
ℓ v dy

−
ˆ
∂Td

vA(1)∇χ(1)
ℓ · n̂ dy +

ˆ
Td

∇v · A(1)∇χ(1)
ℓ dy =

ˆ
Td

f
(1)
ℓ v dy.

Since v, A(1), and the solution χ
(1)
ℓ are all periodic on Td, the first term is 0.

Combining with the equation for χ(2)
ℓ , we get

ˆ
Td

∇v ·
(
A(1) − A(2)

)
∇χ(1)

ℓ dy =

=

ˆ
Td

(f
(1)
ℓ − f

(2)
ℓ)v +∇v ·

(
A(2)

(
∇χ(2)

ℓ −∇χ(1)
ℓ

))
dy.

Setting v = χ
(2)
ℓ − χ

(1)
ℓ , we have

ˆ
Td

(
∇χ(2)

ℓ −∇χ(1)
ℓ

)
·
((
A(1) − A(2)

)
∇χ(1)

ℓ

)
dy =

ˆ
Td

(f
(1)
ℓ − f

(2)
ℓ)
(
χ
(2)
ℓ − χ

(1)
ℓ

)
dy

+

ˆ
Td

(
∇χ(2)

ℓ −∇χ(1)
ℓ

)
·
(
A(2)

(
∇χ(2)

ℓ −∇χ(1)
ℓ

))
dy,

α∥∇χ(2)
ℓ −∇χ(1)

ℓ ∥2L2 ≤ ∥A(1) − A(2)∥L∞∥∇χ(1)
ℓ ∥L2∥∇χ(2)

ℓ −∇χ(1)
ℓ ∥L2

+ ∥f (1)
ℓ − f

(2)
ℓ ∥Ḣ−1∥∇χ(2)

ℓ −∇χ(1)
ℓ ∥L2 ,

189

∥χ(2)
ℓ − χ

(1)
ℓ ∥Ḣ1 ≤ 1

α

(
∥A(1) − A(2)∥L∞∥∇χ(1)

ℓ ∥L2 + ∥f (1)
ℓ − f

(2)
ℓ ∥Ḣ−1

)
. (B.1.2)

Evaluating,

∥f (1)
ℓ − f

(2)
ℓ ∥Ḣ−1 = ∥∇ · A(1)eℓ −∇ · A(2)eℓ∥Ḣ−1 , (B.1.3)

= sup
∥ξ∥Ḣ1=1

ˆ
Td

∇ · (A(1) − A(2))eℓξ dy, (B.1.4)

≤ sup
∥ξ∥Ḣ1=1

∥(A(1) − A(2))eℓ∥L2∥∇ξ∥L2 , (B.1.5)

≤ ∥A(1) − A(2)∥L2 ≤ ∥A(1) − A(2)∥L∞ (B.1.6)

since our domain is Td. Combining this with (B.1.2) and the bound of ∥∇χℓ∥L2 ≤
β
α

obtained in the first part of this proposition, we have

∥χ(2)
ℓ − χ

(1)
ℓ ∥Ḣ1 ≤ 1

α

(
1 +

β

α

)
∥A(1) − A(2)∥L∞ . (B.1.7)

Returning to d vector components yields the result.

The following result shows that the mapping A 7→ A is continuous on separable
subspaces of L∞(Td;Rd×d).

Lemma B.1.1. Let A ⊂ L∞(Td;Rd×d) be a separable subspace and K ⊂
A ∩ PDα,β a closed set in L∞. Define the mapping F : K → Rd×d by A 7→ A

as given by (3.1.3). Then there exists a continuous mapping F ∈ C(A;Rd×d)

such that F(A) = F (A) for any A ∈ K. ♢

Proof. Let A(1), A(2) ∈ K then, by Proposition 3.1.1,∣∣F(A(1)
)
− F

(
A(2)

)∣∣
F
≤
ˆ
Td

|A(1) − A(2)|F
(
1 + |∇χ(1)|F

)
dy

+

ˆ
Td

|A(2)|F |∇χ(1) −∇χ(2)|F dy

≤ ∥A(1) − A(2)∥L∞
(
1 + ∥∇χ(1)∥L2

)
+ ∥A(2)∥L∞∥∇χ(1) −∇χ(2)∥L2

≤
(
1 +

√
d

α

(
∥A(1)∥L∞ + ∥A(2)∥L∞

(
min

(
∥A(1)∥L∞ , ∥A(2)∥L∞

)
α

+ 1

)))
· ∥A(1) − A(2)∥L∞ ,

and hence F ∈ C(K;Rd×d). Applying the Tietze extension theorem [182] to
F implies the existence of F .

190

The following lemma shows that, unfortunately, separable subspaces of

L∞(Td;Rd×d) are not very useful. Indeed, in the desired area of application
of continuum mechanics, we ought to be able to place a boundary of material
discontinuity anywhere in the domain. The following result shows that doing
so is impossible for a subset of PDα,β which lies only in a separable subspace
of L∞(Td;Rd×d).

Lemma B.1.2. For any t ∈ [0, 1] define ct : [0, 1] → R by

ct(x) =

1, x ≤ t

0, x > t
, ∀ x ∈ [0, 1].

Define E = {ct : t ∈ [0, 1]} ⊂ L∞([0, 1]). There exists no separable subspace
A ⊂ L∞([0, 1]) such that E ⊆ A. ♢

Proof. Suppose otherwise. Since (A, ∥·∥L∞) is a separable metric space, (E, ∥·
∥L∞) must be separable since E ⊆ A; this is a contradiction since (E, ∥ · ∥L∞)

is not separable. To see this, let {ctj}∞j=1 be an arbitrary countable susbset of
E. Then for any t ̸∈ {tj}∞j=1, we have

inf
{tj}∞j=1

∥ct − ctj∥L∞ = 1.

Hence no countable subset can be dense.

Instead of working on a compact subset of a separable subspace of L∞(Td;Rd×d),
we may instead try to find a suitable probability measure which contains the
discontinous functions of interest. The following remarks makes clear why such
an approch would still be problematic for the purposes of approximation.

Remark B.1.3 (Gaussian Threshholding). Let µ be a Gaussian measure on

L2([0, 1]). Define

T (x) =

1, x ≥ 0

0, x < 0
, ∀ x ∈ [0, 1]

and consider the corresponding Nemytskii operatorNT : L2([0, 1]) → L∞([0, 1]).
Then, working with the definitions in Lemma B.1.2, it is easy to see that

E ⊂ suppNT
♯µ. Therefore there exists no separable subspace of L∞([0, 1])

which contains suppNT
♯µ. ♢

191

We therefore abandon L∞ and instead show continuity and Lipschitz continu-
ity for some Lq with q < ∞ to Ḣ1. The following lemma is a general result
for convergence of sequences in metric spaces which is used in a more specific
context in the next lemma.

Lemma B.1.4. Let (M,d) be a metric space and (an) ⊂ M a sequence. If
every subsequence (ank

) ⊂ (an) contains a subsequence (ankl
) ⊂ (ank

) such
that (ankl

) → a ∈M then (an) → a. ♢

Proof. Suppose otherwise. Then, there exists some ϵ > 0 such that, for every
N ∈ Z+, there exists some n = n(N) > N such that

d(an, a) ≥ ϵ.

Then we can construct a subsequence (anj
) ⊂ (an) such that d(anj

, a) ≥
ϵ ∀nj. Therefore anj

does not have a subsequence converging to a, which is a
contradiction.

The following lemma proves existence of a limit in L2(D;Rd) of a sequence of
outputs of operators in L∞(D;Rd×d).

Lemma B.1.5. Let D ⊆ Rd be an open set and (An) ⊂ L∞(D;Rd×d) a
sequence satisfying the following.

1. An ∈ PDα,β for all n.

2. There exists A ∈ L∞(D;Rd×d) such that (An) → A in L2(D;Rd×d).

Then, for any g ∈ L2(D;Rd), we have that (Ang) → Ag in L2(D;Rd). ♢

Proof. We have
∥Ang∥L2 ≤ β∥g∥L2 ,

and hence (Ang) ⊂ L2(D;Rd) and, similarly, by finite-dimensional norm equiv-
alence, there is a constant C1 > 0 such that

∥Ag∥L2 ≤ C1∥A∥L∞∥g∥L2 ,

192

and hence Ag ∈ L2(D;Rd). Again, by finite-dimensional norm equivalence,
we have that there exists a constant C2 > 0 such that, for j ∈ {1, . . . , d} and
almost every y ∈ D, we have

(Ang)j(y)
2 ≤ |A(j)

n (y)|2|g(y)|2 ≤ C2β
2|g(y)|2,

where A(j)
n (y) denotes the j-th row of A(j)

n (y). In particular,

|(Ang)j(y)| ≤
√
C2β|g(y)|.

Let (Ank
) ⊂ (An) be an arbitrary subsequence. Since (An) → A, we have that

(Ank
) → A in L2(D;Rd×d). Therefore, there exists a subsequence (Ankl

) ⊂
(Ank

) such that Ankl
(y) → A(y) for almost every y ∈ D. Then Ankl

(y)g(y) →
A(y)g(y) for almost every y ∈ D. Since |g| ∈ L2(Rd), we have, by the
dominated convergence theorem, that (Ankl

g)j → (Ag)j in L2(D) for every
j ∈ {1, . . . , d}. Therefore (Ankl

g) → Ag in L2(D;Rd). Since the subsequence
(Ank

) was arbitrary, Lemma B.1.4 implies the result.

Finally, we may prove Proposition 3.1.2.

Proposition 3.1.2. Endow PDα,β with the L2(Td;Rd×d) induced topology and
let K ⊂ PDα,β be a closed set. Define the mapping G : K → Ḣ1(Td;Rd) by
A 7→ χ as given by (3.1.4). Then there exists a bounded continuous mapping

G ∈ C(L2(Td; Rd×d); Ḣ1(Td;Rd))

such that G(A) = G(A) for any A ∈ K. ♢

Proof. Consider the PDE

−∇ · (A∇u) = ∇ · Ae, y ∈ Td, (B.1.8)

where e is some standard basis vector of Rd. Let (An) ⊂ K be a sequence
such that (An) → A ∈ K in L2(Td;Rd×d). Denote by un ∈ Ḣ1(Td) the
solution to (B.1.8) corresponding to each An and by u ∈ Ḣ1(Td) the solution
corresponding to the limiting A. A similar calculation as in the proof of
Proposition 3.1.1 shows

α∥un − u∥2
Ḣ1 ≤

ˆ
Td

⟨(A− An)(∇u+ e),∇un −∇u⟩ dy

≤ ∥un − u∥Ḣ1∥(An − A)(∇u+ e)∥L2 .

193

Since ∇u + e ∈ L2(Td;Rd), by Lemma B.1.5,
(
An(∇u + e)

)
→ A(∇u + e)

in L2(Td;Rd) hence (un) → u in Ḣ1(Td). In particular, the mapping A 7→ u

defined by (B.1.8) is continuous. Since the problem (3.1.4) decouples as shown
by (B.1.1), we have that each component mapping Gl : K → Ḣ1(Td) defined
by A 7→ χℓ is continuous thus G is continuous. Applying the Tietze extension
theorem [182] to G implies the existence of G.

The following is a straightforward consequence of Proposition 3.1.2 that es-
tablishes continuity of the map A 7→ A defined in (3.1.3) as well.

Lemma B.1.6. Endow PDα,β with the L2(Td;Rd×d) induced topology and
let K ⊂ PDα,β be a closed set. Define the mapping F : K → Rd×d by
A 7→ A as given by (3.1.3). Then there exists a bounded continuous mapping
F ∈ C

(
L2(Td;Rd×d);Rd×d

)
such that F(A) = F (A) for any A ∈ K. ♢

Proof. Since ∇ : Ḣ1(Td;Rd) → L2(Td;Rd×d) is a bounded operator, Lemma 3.1.2
implies that the mapping A 7→ A+A∇χT is continuous as compositions, sums,
and products of continuous functions are continuous. Now let A ∈ PDα,β then
A ∈ L1(Td;Rd×d) since A ∈ L∞(Td;Rd×d). Thus∣∣∣∣ˆ

Td

A dy

∣∣∣∣
F

≤
ˆ
Td

|A|F dy ≤ ∥A∥L2

by Hölder’s inequality and the fact that
´
Td dy = 1. Hence F ∈ C(K;Rd×d)

as a composition of continuous maps. Again applying the Tietze extension
theorem [182] to F implies the existence of F .

To prove Proposition 3.1.3, we need to establish Lipschitz continuity. We
first establish the following result, which is similar to the one proved in [62]
in Theorem 2.1. We show it again here both for completeness and because
we specialize to the case of the cell problem (3.1.4) with periodic boundary
conditions rather than the system (3.1.1) with Dirichlet boundary conditions.

Lemma B.1.7. Let A(1), A(2) ∈ PDα,β and let χ(1), χ(2) be the corresponding
solutions to (3.1.4). Then

∥χ(1) − χ(2)∥Ḣ1 ≤
√
d

α

(
∥A(2) − A(1)∥L2 + ∥∇χ(2)∥Lp∥A(2) − A(1)∥Lq

)
(B.1.9)

for p ≥ 2 and q = 2p
p−2

. ♢

194

Proof. As in the proof of Proposition 3.1.1, we denote f (i) = ∇ · A(i) for
i ∈ {1, 2} for simplicity of notation and to be easily comparable to the proof
of Theorem 2.1 in [62]. Since both sides of the cell problem equation (3.1.4)
depend on A(i), we introduce χ̃ as the solution of

−∇ ·
(
∇χ̃A(2)

)
= ∇ · A(1), χ̃ ∈ Ḣ1(Td;Rd) (B.1.10)

as an intermediate function. We obtain bounds using χ̃ and apply the triangle
inequality to

∥(χ(1) − χ̃) + (χ̃− χ(2))∥Ḣ1

to obtain a bound on ∥χ(1) − χ(2)∥Ḣ1 . From the naïve perturbation bound in
(B.1.2) we have

∥χ̃ℓ − χ
(2)
ℓ ∥Ḣ1 ≤ 1

α
∥f (1)

ℓ − f
(2)
ℓ ∥Ḣ−1 ,

so we are left to bound ∥χ(1)
ℓ − χ̃ℓ∥Ḣ1 . We note that

∇ ·
(
A(2)∇χ̃ℓ

)
= ∇ ·

(
A(1)∇χ(1)

ℓ

)
ˆ
Td

A(2)∇χ̃ℓ · ∇v dy =

ˆ
Td

A(1)∇χ(1)
ℓ · ∇v dy ∀v ∈ Ḣ1(Td;R).

Letting v = χ
(1)
ℓ − χ̃ℓ,

ˆ
Td

A(2)∇χ̃ℓ ·
(
∇χ(1)

ℓ −∇χ̃ℓ

)
dy =

ˆ
Td

A(1)∇χ(1)
ℓ ·

(
∇χ(1)

ℓ −∇χ̃ℓ

)
dy

ˆ
Td

A(2)
(
∇χ̃ℓ −∇χ(1)

ℓ

)
·
(
∇χ̃ℓ −∇χ(1)

ℓ

)
dy

=

ˆ
Td

(
A(2) − A(1)

)
∇χ(1)

ℓ ·
(
∇χ(1)

ℓ −∇χ̃ℓ

)
dy

α∥χ̃ℓ − χ
(1)
ℓ ∥Ḣ1 ≤ ∥(A(2) − A(1))(∇χ(1)

ℓ)∥L2 .

Applying Hölder for L2, we get

∥χ̃ℓ − χ
(1)
ℓ ∥Ḣ1 ≤ 1

α
∥∇χ(1)

ℓ ∥Lp∥A(2) − A(1)∥Lq (B.1.11)

for q = 2p
p−2

where p ∈ [2,∞]. Putting the two parts together, we have that

∥χ(2)
ℓ − χ

(1)
ℓ ∥Ḣ1 ≤ 1

α
∥∇ · A(2)eℓ −∇ · A(1)eℓ∥Ḣ−1 +

1

α
∥∇χ(1)

ℓ ∥Lp∥A(2) − A(1)∥Lq

≤ 1

α
∥A(2) − A(1)∥L2 +

1

α
∥∇χ(1)

ℓ ∥Lp∥A(2) − A(1)∥Lq .

Combining bounds for all d dimensions yields the result.

195

Remark B.1.8. Since Lq(Ω) ↪→ L2(Ω) for bounded Ω ⊂ Rd and q ≥ 2, we
could also write the bound of Lemma B.1.7 as

∥χ(2)
ℓ − χ

(1)
ℓ ∥Ḣ1 ≤ 1

α

(
C + ∥∇χ(1)

ℓ ∥Lp

)
∥A(2) − A(1)∥Lq

for some C dependent only on q and Ω. ♢

The result of Lemma B.1.7 is unhelpful if ∥∇χ∥Lp is unbounded. In this
setting, it is not possible for Lemma B.1.7 to result in Lipschitz continuity as
a map from L2 to Ḣ1. Instead, we seek to bound ∥∇χ∥Lp for some p satisfying
2 < p <∞.

Before continuing, we establish a bound on the gradient of the solution to
the Poisson equation on the torus. This follows the strategy of [62] for the
Dirichlet problem. In order to avoid extra factors of 2π in all formulae, we
work on the rescaled torus denoted Yd = [0, 2π]d with opposite faces identified
for the following result of Lemma B.1.9. As we work on the torus, it is useful
to first set up notation for the function spaces of interest. Let

D(Yd) = C∞
c (Yd) = C∞(Yd)

be the space of test functions where the last equality follows from compactness
of the torus. Functions can be either R or C valued hence we do not explicitly
specify the range. We equip D(Yd) with a locally convex topology generated
by an appropriate family of semi-norms, see, for example, [183, Section 3.2.1].
Any function g ∈ D(Yd) can be represented by its Fourier series

g(x) =
∑
k∈Zd

ĝ(k)eix·k,

where ĝ denotes the Fourier transform of g and convergence of the right-hand
side sum is with respect to the topology of D(Yd), and i denotes the imagi-
nary unit. It holds that ĝ ∈ S(Zd), the Schwartz space of rapidly decreasing
functions on the integer lattice, so we have

|ĝ(k)| ≤ cm(1 + |k|)−m, m = 0, 1, . . .

for some constants cm. We may then define the topological (continuous) dual
space of D(Yd), the space of distributions, denoted D′(Yd), which can be
described as follows: the condition that f ∈ D′(Yd) is characterized by the
property

|f̂(k)| ≤ bm(1 + |k|)m, m = 0, 1, . . .

196

for some constants bm. We take the weak-∗ topology on D′(Yd) and generally
use the prime notation for any such dual space. For any −∞ < s < ∞, we
define the fractional Laplacian as

(−∆)sf =
∑

k∈Zd\{0}

|k|2sf̂(k)eik·x, (B.1.12)

where the right-hand side sum converges in the topology of D′(Yd). It is
easy to see that (−∆)s : D′(Yd) → D′(Yd) is continuous. Furthermore, for
any j ∈ {1, . . . , d}, we define the family of operators R̃j : D′(Yd) → D′(Yd),
defining periodic Riesz transforms, by

R̃jf =
∑
k∈Zd

−ikj|k| f̂(k)e
ik·x, (B.1.13)

where we identify kj
|k| |k=0 = lim|k|→0

kj
|k| = 0. Again, we stress that convergence

of the right-hand side sum is in the topology of D′(Yd). Lastly, we denote by
S(Rd) and S ′(Rd) the Schwartz space and the space of tempered distributions
on Rd respectively; see, for example, [184, Chapter 1] for the precise definitions.

The following lemma establishes boundedness of the periodic Riesz transform
on Lp(Yd). It is essential in proving boundedness of the gradient to the solution
of the Poisson equation on the torus. The result is essentially proven in [184].
We include it here, in our specific torus setting, giving the full argument for
completeness.

Lemma B.1.9. There exists a constant c = c(d, p) > 0 such that, for any
j ∈ {1, . . . , d} and any f ∈ Lp(Yd) for some 2 ≤ p <∞, we have

∥R̃jf∥Lp(Yd) ≤ c∥f∥Lp(Yd).

♢

Proof. Let g ∈ L2(Rd) ∩ Lp(Rd) for some 1 < p < ∞. For any j ∈ {1, . . . , d},
define the family of operators Rj by

(Rjg)(x) = lim
δ−1,ϵ→0+

ˆ
δ≥|t|≥ϵ

g(x− t)Kj(t) dt,

where

Kj(t) =
Γ
(
(d+ 1)/2

)
tj

π(d+1)/2|t|d+1

197

and Γ denotes the Euler-Gamma function. By [184, Chapter 4, Theorem 4.5],
Kj ∈ S ′(Rd) and its Fourier transform satisfies

K̂j(t) = −itj|t| .

Therefore, for any ϕ ∈ S(Rd), we have

(Kj ∗ ϕ)̂ (t) = −itj|t| ϕ̂(t),

where ∗ denotes convolution, see, for example, [184, Chapter 1, Theorem 3.18].
Since g ∈ L2(Rd), we therefore find that, by [184, Chapter 6, Theorem 2.6],

(Rjg)̂ (x) = −ixj|x| ĝ(x) (B.1.14)

for Lebesgue almost every x ∈ Rd. The result [184, Chapter 6, Theorem 2.6]
further shows that there exists a constant c = c(d, p) > 0 such that

∥Rjg∥Lp(Rd) ≤ c∥g∥Lp(Rd).

We note from (B.1.14) and the definition (B.1.13) that R̃j may be viewed as
Rj with the restriction of the Fourier multiplier − ixj

|x| to the lattice Zd. We can
therefore use the transference theory of [184] to establish boundedness of R̃j

from the boundedness of Rj. In particular, note that the mapping x 7→ − ixj

|x|

is continuous at all x ∈ Rd except x = 0. However, by symmetry, we have
that, for all ϵ > 0 ˆ

|x|≤ϵ

−ixj|x| dx = 0.

Therefore we can apply [184, Chapter 7, Theorem 3.8, Corollary 3.16] to con-
clude that, since Rj is bounded from Lp(Rd) to Lp(Rd), R̃j is bounded from
Lp(Yd) to Lp(Yd) with

∥R̃j∥Lp(Yd)→Lp(Yd) ≤ ∥Rj∥Lp(Rd)→Lp(Rd).

This implies the desired result.

We define the Bessel potential spaces by

Ls,p(Yd) = {u ∈ D′(Yd) | ∥u∥Ls,p(Yd) := ∥(I −∆)s/2u∥Lp(Yd) <∞}

198

for any −∞ < s < ∞ and 1 < p < ∞. We also define the homogeneous
version of these spaces, sometimes called the Riesz potential spaces, by

L̇s,p(Yd) = {u ∈ D′(Yd) | ∥u∥L̇s,p(Yd) := ∥(−∆)s/2u∥Lp(Yd) <∞,

ˆ
Yd

u dy = 0}.

It is clear that L̇s,p(Yd) ⊂ Ls,p(Yd) is closed subspace. We then have the
following result for the Poisson equation.

Lemma B.1.10. For each f ∈ Ls,p(Yd), for −∞ < s < ∞ and 2 ≤ p < ∞,
the solution u of the equation

−∆u = f, u 1-periodic,
ˆ
Yd

u dy = 0 (B.1.15)

satisfies
∥∇u∥L̇s+1,p(Yd) ≤ K∥f∥L̇s,p(Yd) (B.1.16)

for some finite K > 0 depending only on p and d. ♢

Proof. From the definitions (B.1.12) and (B.1.13), it is easy to see that the
Riesz transform can be written as

R̃j = −∂xj
(−∆)−1/2

in the sense of distributions. Consider now equation (B.1.15) with f ∈ Ls,p(Yd)

for 2 ≤ p <∞. We have that

∥∂xj
u∥L̇s+1,p(Yd) = ∥∂xj

(−∆)−1f∥L̇s+1,p(Yd)

= ∥∂xj
(−∆)−1/2(−∆)s/2f∥Lp(Yd)

= ∥R̃j(−∆)s/2f∥Lp(Yd).

It is clear that
∥(−∆)s/2f∥Lp(Yd) = ∥f∥L̇s,p(Yd) <∞,

and hence (−∆)s/2f ∈ Lp(Yd). We can thus apply Lemma B.1.9 to find a
constant c = c(d, p) > 0 such that

∥∂xj
u∥L̇s+1,p(Yd) ≤ c∥(−∆)s/2f∥Lp(Yd) = c∥f∥L̇s,p(Yd).

The result follows by finite-dimensional norm equivalence.

199

Next we define the homogeneous Sobolev spaces on the torus as

Ẇ k,p(Td) = {u ∈ W k,p(Td) | u is 1-periodic,
ˆ
Td

u dy = 0} (B.1.17)

for k = 0, 1, . . . , and 1 ≤ p ≤ ∞ with the standard norm on W k,p, see, for
example [185].

Remark B.1.11. By [183, Section 3.5.4], we have that, for any k = 0, 1, . . .

and 1 < p <∞,

Lk,p(Td) = W k,p(Td), L̇k,p(Td) = Ẇ k,p(Td).

Furthermore, by [183, Section 3.5.6],

W−k,p′(Td) =
(
W k,p(Td)

)′
=
(
Lk,p(Td)

)′
= L−k,p′(Td),

Ẇ−k,p′(Td) =
(
Ẇ k,p(Td)

)′
=
(
L̇k,p(Td)

)′
= L̇−k,p′(Td),

where p′ is the Hölder conjugate of p i.e. 1/p+ 1/p′ = 1. ♢

In the following, we use the notation

[K0, K1]θ,q (B.1.18)

to denote the real interpolation between two Banach spaces continuously em-
bedded in the same Hausdorff topological space, as described in [185]. We also
need Lemma A1 from [186], which we have copied below as Lemma B.1.12 to
ease readability. Although this lemma was written only for q = 2, the result
still holds for our q > 2 with a very similar proof.

Lemma B.1.12. Let E1 ⊂ E0 be two Banach spaces with E1 continuously
embedded in E0. Let T : Ej → Ej be a bounded operator with closed range
and assume that T is a projection, j ∈ {0, 1}. Denote by K0 and K1 the
ranges of T |E0 and T |E1 respectively. Then the following two spaces coincide
with equivalent norms:

[K0, K1]θ,q = [E0, E1]θ,q ∩K0 ∀θ ∈ (0, 1).

♢

We now state the result for the bound on ∥∇χ∥Lp with a proof largely devel-
oped in [62].

200

Lemma B.1.13. Let χ solve (3.1.4) for A ∈ PDα,β. Then

∥∇χ∥Lp ≤ Kη(p)

1−Kη(p)
(
1− α

β

) (B.1.19)

for 2 ≤ p < p∗
(

α
β

)
where

p∗(t) := max
{
p | K−η(p) ≥ 1− t, 2 < p < Q

}
(B.1.20)

for η(p) = 1/2−1/p
1/2−1/Q

and K = K(d,Q) is the constant in Lemma B.1.10, for any
choice of Q > p. ♢

Proof. The operator T = −∆ is invertible fromH−1 to Ḣ1, and the inverse T−1

is bounded with norm 1 since the Poisson equation with periodic boundary
conditions has a unique solution in Ḣ1 for f ∈ H−1 with bound ∥u∥Ḣ1 ≤
∥f∥H−1 . From Lemma B.1.10 it is also bounded with norm K = K(d,Q) from
W−1,Q to Ẇ 1,Q for any Q > 2. By the real method of interpolation [185], for
2 < p < Q we have that

W 1,p =
[
H1,W 1,Q

]
η(p),p

(B.1.21)

using the notation of [185] where η(p) = 1/2−1/p
1/2−1/Q

. From the duality theorem
(Theorem 3.7.1. of [187]), we have that

[
H−1,W−1,Q

]
η(p),p

=

([
H1,W 1,Q′

]
η(p),p′

)′

. (B.1.22)

From real interpolation, the right hand side equals (W 1,p′)′ = W−1,p in our
notation. Therefore, we have the necessary dual statement that parallels
(B.1.21):

W−1,p =
[
H−1,W−1,Q

]
η(p),p

. (B.1.23)

Next we restrict these spaces to functions with periodic boundary conditions.
Using the projection onto the space of continuous, periodic functions on Td

and noticing that W 1,Q ↪→ H1, we apply Lemma B.1.12 with K0 = Ḣ1 and
have

Ẇ 1,p = [Ḣ1, Ẇ 1,Q]η(p),p. (B.1.24)

Using the exact interpolation theorem, Theorem 7.23 of [185], T−1 is also a
bounded map from W−1,p to Ẇ 1,p with norm Kη(p):

∥T−1f∥Ẇ 1,p ≤ Kη(p)∥f∥W−1,p . (B.1.25)

201

The remainder of the proof is identical to that of the proof of Proposition
1 in [62], but we state it here in our notation for completeness. Define S:
Ẇ 1,p → W−1,p as the operator Su = −∇·

(
1
β
A∇u

)
. Let V be the perturbation

operator V := T − S. Since A ∈ PDα,β, S and V are bounded operators from
Ẇ 1,p to W−1,p, with the operator norms ∥S∥ ≤ 1 and ∥V ∥ ≤ 1− α

β
. Therefore,

∥T−1V ∥Ẇ 1,p→Ẇ 1,p ≤ ∥T−1∥W−1,p→Ẇ 1,p∥V ∥Ẇ 1,p→W−1,p ≤ Kη(p)

(
1− α

β

)
,

(B.1.26)
where the input and output spaces defining the operator norms are included
for clarity. Since T is invertible, S = T (I − T−1V) is invertible provided
Kη(p)

(
1− α

β

)
< 1. Moreover, for S−1 as a mapping from W−1,p to Ẇ 1,p,

∥S−1∥ ≤ ∥(I − T−1V)−1∥Ẇ 1,p→Ẇ 1,p∥T−1∥W−1,p→Ẇ 1,p ≤ Kη(p)

1−Kη(p)
(
1− α

β

) .
(B.1.27)

Therefore,

∥∇χ∥Lp = ∥χ∥Ẇ 1,p ≤ 1

β
∥S−1∥∥∇ · A∥ ≤ Kη(p)

1−Kη(p)
(
1− α

β

) (B.1.28)

provided Kη(p)
(
1− α

β

)
< 1. The bound and specified range of p follow.

Finally, we may prove Proposition 3.1.3

Proposition 3.1.3. There exists q0 ∈ (2,∞) such that, for all q satisfying
q ∈ (q0,∞], the following holds. Endow PDα,β with the Lq(Td;Rd×d) topology
and letK ⊂ PDα,β be a closed set. Define the mappingG : K → Ḣ1(Td;Rd) by
A 7→ χ as given by (3.1.4). Then there exists a bounded Lipschitz-continuous
mapping

G : Lq(Td;Rd×d) → Ḣ1(Td;Rd)

such that G(A) = G(A) for any A ∈ K. ♢

Proof. Lemma B.1.13 guarantees a p0 > 2 such that ∥∇χ(2)∥Lp in Lemma
B.1.7 is bounded above by a constant for 2 < p < p0. Then Lemma B.1.7
gives Lipschitz continuity of the solution map from Lq(Td) 7→ Ḣ1(Td) for q
satisfying q0 < q <∞ for some q0 > 2.

202

Remark B.1.14. From the results of Lemma B.1.13 and Lemma B.1.7, we
have that we can take q0 = 2p0

p0−2
where

p0 = max{p | K−η(p) ≥ 1− t, 2 < p < Q}.

Therefore, bounds on p0 may be inherited from bounds on K that appears in
Lemma B.1.10. ♢

B.2 Proofs of Approximation Theorems

In this section we prove the approximation theorems stated in Section 3.3.

Theorem 3.3.2. Let K ⊂ PDα,β and define the mapping G : K → Ḣ1(Td;Rd)

by A 7→ χ as given by (3.1.4). Assume in addition that K is compact in
L2(Td;Rd×d). Then, for any ϵ > 0, there exists an FNO Ψ : K → Ḣ1(Td;Rd)

such that
sup
A∈K

∥G(A)−Ψ(A)∥Ḣ1 < ϵ.

♢

Proof. By Proposition 3.1.2, there exists a continuous map

G ∈ C(L2(Td;Rd×d); Ḣ1(Td;Rd)) such that G(A) = G(A) for any A ∈ K. By
[20, Theorem 5], there exists a FNO Ψ : L2(Td;Rd×d) → Ḣ1(Td;Rd) such that

sup
A∈K

∥G(A)−Ψ(A)∥Ḣ1 < ϵ.

Therefore

sup
A∈K

∥G(A)−Ψ(A)∥Ḣ1 = sup
A∈K

∥G(A)−Ψ(A)∥Ḣ1 < ϵ

as desired.

Theorem 3.3.3. Let K ⊂ PDα,β and define the mapping F : K → Rd×d by
A 7→ A as given by (3.1.3), (3.1.4). Assume in addition that K is compact in
L2(Td;Rd×d). Then, for any ϵ > 0, there exists an FNO Φ : K → L∞(Td;Rd×d)

such that
sup
A∈K

sup
x∈Td

|F (A)− Φ(A)(x)|F < ϵ.

♢

Proof. The result follows as in Theorem 3.3.2 by applying Lemma B.1.6 instead
of Proposition 3.1.2.

203

B.3 Proofs for Microstructure Examples

The following lemma establishes the compactness of subsets of PDα,β generated
by the probability measures from Section 3.4. As we are unaware of a proof in
the literature, we have provided one below. The proof uses the L1-Lipschitz
spaces, which are defined as

Lipα(L
1) = {u ∈ L1 : ∃M(u) > 0 : ω(u, t)1 ≤Mtα},

where ω(u, t)1 is the 1-modulus of continuity, defined via

ω(u, t)1 = sup
0≤|h|≤t

∥τhu− u∥L1(Td).

Lemma B.3.1. BV(Td) ∩ L∞(Td) is compactly embedded in L2(Td). ♢

Proof. Let u ∈ B, where B is a bounded subset of BV(Td)∩L∞(Td) with L∞

norm and BV seminorm bounded by M , and let τhf denote the translation of
f by h, i.e. τhf(x) = f(x− h). Then

∥τhu− u∥L2 ≤ ∥τhu− u∥1/2L1 ∥τhu− u∥1/2L∞ . (B.3.1)

Since BV(Td) ≡ Lip1(L
1(Td)), ∥τhu− u∥L1 ≤ ∥u∥BV|h|. We have then

∥τhu− u∥L2 ≤ ∥u∥1/2BV|h|1/2(2M)1/2.

By the Fréchet-Kolmogorov theorem [188], this equicontinuity result is suffi-
cient for compactness of B in L2(Td).

Using the result of Lemma B.3.1, we see that any set of microstructure co-
efficients bounded in L∞(Td) ∩ BV (Td) satisfies the compactness assumption
of the Approximation Theorems in Section 3.3. It is clear that the method
of construction of the microstructure examples used in the main body of the
work leads to such sets.

B.4 Numerical Implementation Details

All FNO models are implemented in pytorch using python 3.9.7. Unless oth-
erwise specified, the models have 18 modes in each dimension, a width of 64,
and 4 hidden layers. The lifting layer is a linear transformation with trainable
parameters, and the projecting layer is a pointwise multilayer perceptron with

204

trainable parameters. The batch size is 20, the learning rate is 0.001, and the
number of epochs is 400. These hyperparameters are chosen with a small grid
search, but we emphasize that the FNO does not drastically change in perfor-
mance unless these parameters are changed by an order of magnitude. For a
model trained on 9500 data using these hyperparameters and accelerated with
an Nvidia P100 GPU, the training time is approximately 7 hours. In Figures
3.4, 3.5, and 3.6, the error bars shown correspond to two standard deviations
in each direction over the five samples.

205

A p p e n d i x C

APPENDIX TO CHAPTER 4

Links to datasets and all code used to produce the numerical results and figures
in this chapter are available at

https://github.com/mtrautner/BoundFNO/ .

C.1 Trigonometric interpolation and aliasing

In this section, we present a self-contained analysis of aliasing errors for v ∈
Hs(Td). These results are straightforward and well known in numerical anal-
ysis, but we give a clear exposition here as background as it is difficult to
find a succinct and widely-available reference. The primary goal is to state
and prove Proposition C.1.6, which controls the difference between a function
defined over Td and the trigonometric interpolation of a function defined on a
grid. In the following, N ∈ Z>0. We recall that X(N) is a set of equidistant
grid points on the torus Td,

X(N) = {xn ∈ Td |x = n/N, n ∈ [N]d}.

We note that the discrete Fourier transform gives rise to a natural correspon-
dence between grid values and Fourier modes,

{v(xn)}n∈[N]d ↔ {v̂k}k∈[[N]]d , (C.1.1)

where
v̂k =

1

Nd

∑
n∈[N]d

v(xn)e
−2πi⟨k,xn⟩ =: DFT(v)(k). (C.1.2)

We begin with the following observation:

Lemma C.1.1. Let N be given. Then,

1

Nd

∑
k∈[[N]]d

e2πi⟨k,xm−xn⟩ = δmn, ∀m,n ∈ [N]d, (C.1.3)

1

Nd

∑
n∈[N]d

e2πi⟨k−k′,xn⟩ = δkk′ , ∀ k, k′ ∈ [[N]]d. (C.1.4)

♢

https://github.com/mtrautner/BoundFNO/

206

Proof. This follows from an elementary calculation, which we briefly recall
here. For d = 1, the claim follows by noting that xn = n/N , and using the
identity

N−1∑
ℓ=0

qℓ =

qN−1
q−1

, (q ̸= 1),

N, (q = 1),
(C.1.5)

with q = e2πi(m−n)/N and q = e2πi(k−k′)/N , respectively. Indeed, assuming d = 1

and denoting −K := min[[N]], then the above identity implies, for example,

∑
k∈[[N]]

e2πik(xm−xn) =
∑

k∈[[N]]

[
e2πi(m−n)/N︸ ︷︷ ︸

=:q

]k
=
∑

k∈[[N]]

qk = q−K

N−1∑
ℓ=0

qℓ.

If q ̸= 1, then qN = e2πi(m−n) = 1. By (C.1.5), this implies that the last sum is
0. On the other hand, if q = 1, then the last sum is trivially = N . We finally
note that, for m,n ∈ [N], we have q = 1 if and only if m = n, implying that

q−K

N∑
ℓ=0

qℓ = Nδmn.

Thus, ∑
k∈[[N]]

e2πik(xm−xn) = Nδmn,

and (C.1.3) follows. The argument for (C.1.4) is analogous. For d > 1, the
sum over [[N]]d = [[N]] × · · · × [[N]] is split into sums along each dimension,
and the same argument is applied for each of the d components, yielding the
claim also for d > 1.

A trigonometric polynomial p : Td 7→ Rm is a function of the form

p(x) =
∑

k∈[[N]]d

cke
2πi⟨k,x⟩ (C.1.6)

with ck ∈ Cm chosen to make p(x) Rm-valued at each x ∈ Td. We note that the
discrete and continuous L2-norms are equivalent for trigonometric polynomials:

Lemma C.1.2. Let N be a positive integer. If p(x) is a trigonometric poly-
nomial, then

1

Nd/2
∥p∥ℓ2(n∈[N]d) = ∥p∥L2(Td).

♢

207

Proof. We have

∥p∥2L2(Td) =

ˆ
Td

|p(x)|2 dx =
∑

k,k′∈[[N]]d

ckck′

ˆ
Td

e2πi⟨k−k′,x⟩ dx︸ ︷︷ ︸
=δkk′

=
∑

k∈[[N]]d

|ck|2,

and
1

Nd
∥p∥2ℓ2(n∈[N]d) =

1

Nd

∑
n∈[N]d

|p(xn)|2

=
∑

k,k′∈[[N]]d

ckck′
1

Nd

∑
n∈[N]d

e2πi⟨k−k′,xn⟩

︸ ︷︷ ︸
=δkk′

=
∑

k∈[[N]]d

|ck|2.

This proves the claim.

Let v : Td → R be a function with grid values {v(xn)}n∈[N]d . Let DFT(v)(k)

denote the coefficients of the discrete Fourier transform defined by (C.1.1).
Then

p(x) :=
∑

k∈[[N]]d

DFT(v)(k)e2πi⟨k,x⟩, (C.1.7)

is the trigonometric polynomial associated to v. The next lemma shows that
p(x) interpolates v(x).

Lemma C.1.3. The trigonometric polynomial p(x) defined by (C.1.7) inter-
polates v(x) at the grid points, i.e., we have p(xn) = v(xn) for all n ∈ [N]d. ♢

Proof. Fix n ∈ [N]d. Then

p(xn) =
∑

k∈[[N]]d

DFT(v)(k)e2πi⟨k,xn⟩

=
∑

k∈[[N]]d

 1

Nd

∑
m∈[N]d

v(xm)e
−2πi⟨k,xm⟩

e2πi⟨k,xn⟩

=
∑

m∈[N]d

v(xm)

 1

Nd

∑
k∈[[N]]d

e2πi⟨k,xn−xm⟩

=
∑

m∈[N]d

v(xm)δmn

= v(xn),

208

where we have made use of (C.1.3) to pass to the fourth line.

The following trigonometric polynomial interpolation estimate for functions in
Sobolev spaces Hs(Td) will be useful in stating our main proposition.

Lemma C.1.4. Let v ∈ Hs(Td) for s > d/2. Let p denote the interpolating
trigonometric polynomial given by (C.1.7). Then

v(x)− p(x) =
∑

k∈Zd\[[N]]d

v̂(k)e2πi⟨k,x⟩ −
∑

k∈[[N]]d

 ∑
ℓ∈Zd\{0}

v̂(k + ℓN)

e2πi⟨k,x⟩.
(C.1.8)

Furthermore, there exists a constant cs,d > 0, such that

∥v − p∥L2(Td) ≤ cs,d∥v∥Hs(Td)N
−s. (C.1.9)

♢

Remark C.1.5. The first sum on the right-hand side of (C.1.8) is the L2-
orthogonal Fourier projection of v onto the complement of span{e2πi⟨k,x⟩ | k ∈
[[N]]d}. The second sum in (C.1.8) is known as an “aliasing” error; it arises
because two Fourier modes are indistinguishable on the discrete grid whenever
k − k′ ∈ NZd, i.e. e2πi⟨k,xn⟩ = e2πi⟨k

′,xn⟩ for all n ∈ [N]d. ♢

Proof. Since v ∈ Hs(Td) has Sobolev smoothness s for s > d/2, it can be
shown that the Fourier series of v is uniformly convergent. In particular, we
may write

v(x) =
∑
k′∈Zd

v̂(k′)e2πi⟨k
′,x⟩

for
v̂(k′) =

ˆ
Td

v(x)e−2πi⟨k′,x⟩ dx.

First, substitution of v(xn) =
∑

k′∈Zd v̂(k′)e2πi⟨k
′,xn⟩ into DFT(v)(k) yields

DFT(v)(k) =
1

Nd

∑
n∈[N]d

{∑
k′∈Zd

v̂(k′)e2πi⟨k
′,xn⟩

}
e−2πi⟨k,xn⟩

=
∑
k′∈Zd

v̂(k′)

 1

Nd

∑
n∈[N]d

e2πi⟨k
′−k,xn⟩

.

209

We now note that

1

Nd

∑
n∈[N]d

e2πi⟨k
′−k,xn⟩ =

0, (k′ ̸≡ k mod N),

1, (k′ ≡ k mod N),

as a consequence of the trigonometric identity (C.1.4). Letting k′ = k + ℓN ,
i.e. k′ for which the sum inside the braces does not vanish, it follows that

DFT(v)(k) =
∑
ℓ∈Zd

v̂(k + ℓN).

Thus,

v(x)− p(x) =
∑
k∈Zd

v̂(k)e2πi⟨k,x⟩ −
∑

k∈[[N]]d

DFT(v)(k)e2πi⟨k,x⟩

=
∑

k∈Zd\[[N]]d

v̂(k)e2πi⟨k,x⟩ +
∑

k∈[[N]]d

{v̂(k)− DFT(v)(k)}e2πi⟨k,x⟩

=
∑

k∈Zd\[[N]]d

v̂(k)e2πi⟨k,x⟩ −
∑

k∈[[N]]d

 ∑
ℓ∈Zd\{0}

v̂(k + ℓN)

e2πi⟨k,x⟩.
We proceed to bound the last two terms. For the first term, we have by
Parseval’s theorem,∥∥∥ ∑

k∈Zd\[[N]]d

v̂(k)e2πi⟨k,x⟩
∥∥∥2
L2(Td)

=
∑

k∈Zd\[[N]]d

|v̂(k)|2

≤ 1

(1 + (N/2)2s)

∑
k∈Zd

(1 + |k|2s)|v̂(k)|2

≤ 4sN−2s∥v∥2Hs(Td),

where ∥v∥2
Hs(Td)

=
∑

k∈Zd(1 + |k|2s)|v̂(k)|2, and for the second term∥∥∥ ∑
k∈[[N]]d

{ ∑
ℓ∈Zd\{0}

v̂(k + ℓN)
}
e2πi⟨k,x⟩

∥∥∥2
L2(Td)

=
∑

k∈[[N]]d

∣∣∣ ∑
ℓ∈Zd\{0}

v̂(k + ℓN)
∣∣∣2

≤
∑

k∈[[N]]d

(∑
ℓ∈Zd\{0}

(1 + |k + ℓN |2s)−1
)

×
(∑

ℓ∈Zd\{0}

(1 + |k + ℓN |2s)|v̂(k + ℓN)|2
)
.

210

The final inequality is obtained via Cauchy-Schwarz. We note that for k ∈
[[N]]d, we have |k|∞ ≤ N/2, and hence, for any integer vector ℓ ̸= 0, we obtain

|k + ℓN | ≥ |k + ℓN |∞ ≥ |ℓ|∞N − |k|∞ ≥ |ℓ|∞N − N

2
≥ N

2
|ℓ|∞ ≥ N

2
√
d
|ℓ|.

(C.1.10)
We can now bound∑

ℓ∈Zd\{0}

(1 + |k + ℓN |2s)−1 ≤
∑

ℓ∈Zd\{0}

(
N

2
√
d

)−2s

|ℓ|−2s (C.1.11a)

≤ cd,sN
−2s, (C.1.11b)

where cd,s := (4d)s
∑

ℓ∈Zd\{0} |ℓ|−2s < ∞ is finite, since s > d/2 implies that
the last series converges. Substitution of this bound in the estimate above
implies∥∥∥∥∥ ∑

k∈[[N]]d

{ ∑
ℓ∈Zd\{0}

v̂(k + ℓN)
}
e2πi⟨k,x⟩

∥∥∥∥∥
2

L2(Td)

≤ cd,sN
−2s

∑
k∈[[N]]d

 ∑
ℓ∈Zd\{0}

(1 + |k + ℓN |2s)|v̂(k + ℓN)|2

≤ cd,sN
−2s∥v∥2Hs(Td).

Combining the above estimates, we conclude that

∥v − p∥L2 ≤ cd,s∥v∥Hs(Td)N
−s,

where we have re-defined cd,s := 2s + (4d)s/2
∑

ℓ∈Zd\{0} |ℓ|−2s.

We can now state the main outcome of this section.

Proposition C.1.6. Let v ∈ Hs(Td) be given for s > d/2 and let {vN(xn)}n∈[N]d

be any grid values. Let pN(x) =
∑

k∈[[N]]d DFT(v
N)(k)e2πi⟨k,x⟩ be the interpo-

lating trigonometric polynomial of vN . Then,

∥v − pN∥L2(Td) ≤
1

Nd/2
∥v − vN∥ℓ2(n∈[N]d) + cd,s∥v∥Hs(Td)N

−s.

♢

Proof. Let p(x) =
∑

k∈[[N]]d DFT(v)(k)e
2πi⟨k,x⟩ be the interpolating trigonomet-

ric polynomial given the point-values {v(xn)}n∈[N]d . Then,

∥v − pN∥L2(Td) ≤ ∥v − p∥L2(Td) + ∥p− pN∥L2(Td). (C.1.12)

211

By Lemma C.1.4, we have

∥v − p∥L2(Td) ≤ cd,s∥v∥Hs(Td)N
−s.

By Lemma C.1.2, and since p(xn) = v(xn), pN(xn) = vN(xn) by Lemma C.1.3,
we have

∥p− pN∥L2(Td) =
1

Nd/2
∥p(xn)− pN(xn)∥ℓ2(n∈[N]d)

=
1

Nd/2
∥v(xn)− vN(xn)∥ℓ2(n∈[N]d).

Substitution in (C.1.12) gives the claimed bound.

C.2 Discretization error derivation

In this section, we derive the error breakdown within each FNO layer. This
error breakdown is used in the proofs of subsequent sections. Within a single
layer, we define the following quantities to track the error origin and propaga-
tion, noting that, for values ofmt that will vary with layer t, E (j)

t : X(N) → Rmt ,
j = 0, 3 and E (j)

t : [[K]]d → Cmt , j = 1, 2.

0. E (0)
t (xn) = vNt (xn)− vt(xn), xn ∈ X(N).

1. E (1)
t (k) = 1

Nd

∑
n∈[N]d vt(xn)e

−2πi⟨k,xn⟩ −
´
Td vt(x)e

−2πi⟨k,x⟩ dx, k ∈
[[K]]d.

2. E (2)
t (k) = 1

Nd

∑
n∈[N]d E

(0)
t (xn)e

−2πi⟨k,xn⟩, k ∈ [[K]]d.

3. E (3)
t (xn) =

∑
k∈[[K]]d P

(k)
t

(
E (1)(k) + E (2)(k)

)
e2πi⟨k,xn⟩, xn ∈ X(N).

4. E (0)
t+1(xn) = σ

(
Wtvt(xn) +Ktvt(xn) + bt +WtE (0)

t (xn) + E (3)
t (xn)

)
− σ(Wtvt(xn) +Ktvt(xn) + bt) = vNt+1(xn)− vt+1(xn), xn ∈ X(N).

Here, E (0)
t is the initial error in the inputs to FNO layer t, E (1) is the aliasing

error, E (2)
t is the initial error E (0)

t after the discrete Fourier transform, and E (3)
t

is the error after the operation of the kernel Kt. Finally, the initial error for the
next layer is given by E (0)

t+1 in terms of the error quantities of the previous layer.
Intuitively, the quantity E (1) is the source of the error within each layer since it
depends only on the ground truth vt. All other error quantities are propagation
of existing error from previous layers. We provide an exact derivation of these
quantities in the following.

212

Let E (0)
t be the error in the inputs to FNO layer t such that

E (0)
t (xn) = vNt (xn)− vt(xn), xn ∈ X(N).

Let F(vt)(k) =
´
Td vt(x)e

−2πi⟨k,x⟩ dx denote the Fourier transform and DFT as
in equation (C.1.2). Then for k ∈ [[K]]d,

DFT(vNt)(k) =
1

Nd

∑
n∈[N]d

vt(xn)e
−2πi⟨k,xn⟩ +

1

Nd

∑
n∈[N]d

E (0)
t (xn)e

−2πi⟨k,xn⟩

= F(vt)(k) + E (1)
t (k) + E (2)

t (k),

where E (1)
t is the error resulting from computing the Fourier transform of vt

on a discrete grid rather than all of Td, i.e.

E (1)
t (k) =

1

Nd

∑
n∈[N]d

vt(xn)e
−2πi⟨k,xn⟩ −

ˆ
Td

vt(x)e
−2πi⟨k,x⟩ dx

and E (2)
t is the error E (0)

t after the discrete Fourier transform, i.e.

E (2)
t (k) =

1

Nd

∑
n∈[N]d

E (0)
t (xn)e

−2πi⟨k,xn⟩.

For xn ∈ X(N), the output of the discrete kernel integral operator acting on
vNt is given by

(KN
t v

N
t)(xn) =

∑
k∈[[K]]d

P
(k)
t

(
F(vt)(k) + E (1)

t (k) + E (2)
t (k)

)
e2πi⟨k,xn⟩

= (Ktvt)(xn) + E (3)
t (xn),

where
E (3)
t (xn) =

∑
k∈[[K]]d

P
(k)
t

(
E (1)(k) + E (2)(k)

)
e2πi⟨k,xn⟩.

Finally, the output of layer t is given by

vNt+1(xn) = σ
(
Wt

(
vt(xn) + E (0)

t (xn)
)
+ (KN

t v
N
t)(xn) + bt

)
= σ

(
Wtvt(xn) +Ktvt(xn) + bt +WtE (0)

t (xn) + E (3)
t (xn)

)
.

Therefore, the initial error for the next layer is given by

E (0)
t+1(xn) = σ

(
Wtvt(xn) +Ktvt(xn) + bt +WtE (0)

t (xn) + E (3)
t (xn)

)
− σ(Wtvt(xn) +Ktvt(xn) + bt).

213

C.3 Proofs of approximation theory lemmas

We bound the components described in Appendix C.2 in the following propo-
sition.

Proposition C.3.1. Under Assumptions 4.3.1, it holds that

1. ∥E (1)
t ∥ℓ2(k∈[[K]]d) ≤ αd,sN

−s∥vt∥Hs where αd,s is independent of N, vt;

2. ∥E (2)
t ∥ℓ2(k∈[[N]]d) = N−d/2∥E (0)

t ∥ℓ2(n∈[N]d);

3. ∥E (3)
t ∥ℓ2(n∈[N]d) ≤ Nd/2∥Pt∥F

(
∥E (1)

t ∥ℓ2(k∈[[K]]d) + ∥E (2)
t ∥ℓ2(k∈[[K]]d)

)
;

4. ∥E (0)
t+1∥ℓ2(n∈[N]d) ≤ B

(
∥Wt∥2∥E (0)

t ∥ℓ2(n∈[N]d) + ∥E (3)
t ∥ℓ2(n∈[N]d)

)
.

♢

Proof. Beginning with the definition of E (1)
t (k), we have

∥E (1)
t ∥2ℓ2(k∈[[K]]d) =

∥∥∥ 1

Nd

∑
n∈[N]d

vt(xn)e
−2πi⟨k,xn⟩ −

ˆ
Td

e−2πi⟨k,x⟩vt(x) dx
∥∥∥2
ℓ2(k∈[[K]]d)

.

Denote the terms in the above expression v̂Nt (k) and v̂t(k), respectively. Since
s > d

2
,

vt(xn) =
∑
k∈Zd

v̂t(k)e
2πi⟨k,xn⟩,

and it follows that

v̂Nt (k′) =
1

Nd

∑
n∈[N]d

(∑
k∈Zd

v̂t(k)e
2πi⟨k,xn⟩

)
e−2πi⟨k′,xn⟩

=
∑
k∈Zd

v̂t(k)
1

Nd

∑
n∈[N]d

e2πi⟨k−k′,xn⟩

=
∑
ℓ∈Zd

v̂t(k
′ + ℓN).

Therefore,

∥E (1)
t ∥2ℓ2(k∈[[K]]d) = ∥v̂Nt − v̂t∥2ℓ2(k∈[[K]]d)

=
∑

k∈[[K]]d

∣∣∣∣∣∣
∑

ℓ∈Zd\{0}

v̂t(k + ℓN)

∣∣∣∣∣∣
2

≤
∑

k∈[[K]]d

 ∑
ℓ∈Zd\{0}

1

|k + ℓN |2s

 ∑
ℓ∈Zd\{0}

|k + ℓN |2s|v̂t(k + ℓN)|2

214

by Cauchy-Schwarz. We bound each component separately. It is clear from
Definition 4.2.1 that∑

k∈[[K]]d

∑
ℓ∈Zd\{0}

|k + ℓN |2s|v̂t(k + ℓN)|2 ≤ ∥vt∥2Hs . (C.3.1)

To bound the first component independently of k, we note from K ≤ N
2

and
equation (C.1.10) that

∑
ℓ∈Zd\{0}

1

|k + ℓN |2s ≤
∑

ℓ∈Zd\{0}

(
N

2
√
d
|ℓ|
)−2s

≤ α2
d,sN

−2s

by equation (C.1.11), where α2
d,s = (4d)s

∑
ℓ∈Zd\{0} |ℓ|−2s is finite since s ≥ d

2
.

We express the final bound as

∥E (1)
t ∥k∈[[K]]d ≤ αd,sN

−s∥vt∥Hs .

For E (2)
t (k) we have the definition

E (2)
t (k) =

1

Nd

∑
n∈[N]d

E (0)
t (xn)e

−2πi⟨k,xn⟩.

By Parseval’s Theorem, we have

∥E (2)
t ∥2ℓ2(k∈[[N]]d) =

1

Nd
∥E (0)

t ∥2ℓ2(n∈[N]d). (C.3.2)

For Pt ∈ Rdvt+1×Kd×dvt we define the tensor Frobenius norm
∥Pt∥2F =

∑
k∈[[K]]d ∥P

(k)
t ∥2F .

∥E (3)
t ∥2ℓ2(n∈[N]d) =

∑
n∈[N]d

∣∣∣∣∣∣
∑

k∈[[K]]d

P
(k)
t

(
E (1)
t (k) + E (2)

t (k)
)
e2πi⟨k,xn⟩

∣∣∣∣∣∣
2

≤ Nd

∣∣∣∣∣∣
∑

k∈[[K]]2

|P (k)
t (E (1)

t (k) + E (2)
t (k))|

∣∣∣∣∣∣
2

≤ Nd
∑

k∈[[K]]d

∥P (k)
t ∥2F

∑
k∈[[K]]d

|E (1)
t (k) + E (2)

t (k)|2

= Nd∥Pt∥2F∥E (1)
t + E (2)

t ∥2ℓ2(k∈[[K]]d)

∥E (3)
t ∥ℓ2(n∈[N]d) ≤ Nd/2∥Pt∥F

(
∥E (1)

t ∥ℓ2(k∈[[K]]d) + ∥E (2)
t ∥ℓ2(k∈[[K]]d)

)
.

215

Finally, we have

∥E (0)
t+1∥2ℓ2(n∈[N]d) =

∑
n∈[N]d

∣∣∣σ(Wtvt +Ktvt + bt +WtE (0)
t (xn) + E (3)

t (xn))− σ(Wtvt +Ktvt + bt)
∣∣∣2

≤
∑

n∈[N]d

B2
∣∣∣WtE (0)

t (xn) + E (3)
t (xn)

∣∣∣2
∥E (0)

t+1∥ℓ2(n∈[N]d) ≤ B
(
∥Wt∥2∥E (0)

t ∥ℓ2(n∈[N]d) + ∥E (3)
t ∥ℓ2(n∈[N]d)

)
,

where ∥ · ∥2 is the matrix-2 norm. Recall B bounds derivatives of σ in As-
sumptions 4.3.1.

The results of Proposition C.3.1 allow us to easily prove the following lemma.
Under Assumptions 4.3.1, the following bound holds:

1

Nd/2
∥E (0)

t+1∥ℓ2(n∈[N]d) ≤ BM

(
2

Nd/2
∥E (0)

t ∥ℓ2(n∈[N]d) + αd,sN
−s∥vt∥Hs

)
, (C.3.3)

where αd,s is a constant dependent only on d and s.

Proof. From Proposition C.3.1, and shortening the notation ℓ2(n ∈ [N]d) to
ℓ2,

∥E (0)
t+1∥ℓ2 ≤ B

(
∥Wt∥2∥E (0)

t ∥ℓ2 +Nd/2∥Pt∥F
(
αd,sN

−s∥vt∥Hs +N−d/2∥E (0)
t ∥ℓ2

))
.

Combining terms gives

∥E (0)
t+1∥ℓ2 ≤ B

((
∥Wt∥2 + ∥Pt∥F

)
∥E (0)

t ∥ℓ2 + αd,sN
d/2−s∥Pt∥F∥vt∥Hs

)
. (C.3.4)

Replacing ∥Wt∥2 and ∥Pt∥F with M and rescaling gives

1

Nd/2
∥E (0)

t+1∥ℓ2(n∈[N]d) ≤ BM

(
2

Nd/2
∥E (0)

t ∥ℓ2(n∈[N]d) + αd,sN
−s∥vt∥Hs

)
.

C.4 Proofs of regularity theory lemmas

The proof of Lemma 4.3 relies on another result for bounding the Hs norm
of compositions of functions, which is largely taken from the lemma of Moser
[98, sec. 2 , p. 273] without assuming an L∞ norm of v less than 1. We state
a proof here for completeness.

216

Lemma C.4.1. Assume φ : Td → Td possesses continuous derivatives up to
order r which are bounded by B. Then

|φ ◦ v|r ≤ Bc
(
1 + ∥v∥r−1

∞
)
∥v∥Hr

provided v ∈ Hr(Td), where c is a constant dependent on r and d. ♢

Proof. By Faà di Bruno’s formula, we have

Dr
x(φ ◦ v(x)) =

∑
Cα,r

dρφ

dxρ
(v(x))

r∏
j=1

(Dj
xv(x))

αj , (C.4.1)

where the sum is over all nonnegative integers α1, . . . , αr such that α1+2α2+

· · ·+rαr = r, the constant Cα,r =
r!

α1!α2!2!α2 ...αr!r!αr , and ρ := α1+α2+ · · ·+αr.

We seek a bound on square integrals of (C.4.1). Setting v0 = dρφ
dxρ v, vλ = Dλ

xv,
α0 = 1, p0 = ∞, and pλ = r

λαλ
and noting that

∑r
λ=0

1
2pλ

= 1
2
, we have by

Hölder’s inequality for multiple products that
ˆ
Td

∣∣∣∣∣dρφdxρ (v(x))
r∏

j=1

(Dj
xv(x))

αj

∣∣∣∣∣
2

dx ≤
ˆ
Td

r∏
λ=0

|vλ|2αλ dx ≤
r∏

λ=0

(ˆ
Td

|vλ|2αλpλ dx

)1/pλ

= ∥v0∥2∞
r∏

λ=1

(ˆ
Td

|vλ|2αλpλ dx

)1/pλ

.

The first factor is bounded above by B2 by assumption. By application of
Gagliardo-Nirenberg, the second factor may be bounded by

r∏
λ=1

(ˆ
Td

|Dλ
xv|2r/λ dx

)λαλ/r

≤ Cr

r∏
λ=1

∥v∥2αλ(1−λ/r)
∞

(
∥Dr

xv∥2 + ∥v∥2
)αλλ/r

≤ Cr∥v∥2ρ−2
∞ ∥v∥2Hr

since
∑

λ λαλ = r, and
∑

λ αλ = ρ. Combining the bounds,
ˆ
Td

r∏
λ=0

|vλ|2αλ dx ≤ B2Cr∥v∥2ρ−2
∞ ∥v∥2Hr .

If ∥v∥∞ < 1, we have the bound
ˆ
Td

r∏
λ=0

|vλ|2αλ dx ≤ B2Cr∥v∥2Hr , (C.4.2)

and otherwise since ρ ≤ r,
ˆ
Td

r∏
λ=0

|vλ|2αλ dx ≤ B2Cr∥v∥2r−2
∞ ∥v∥2Hr . (C.4.3)

217

Since these bounds hold for any term in the sum C.4.1, we obtain

|φ ◦ v|r ≤ Bc
(
1 + ∥v∥r−1

∞
)
∥v∥Hr (C.4.4)

for a different constant c depending on r and d.

Now we may prove Lemma 4.3. Under Assumptions 4.3.1, the following
bounds hold:

• ∥vt+1∥∞ ≤ σ0 +BM(1 + ∥vt∥∞ +Kd/2∥vt∥L2(Td))

• |vt+1|s ≤ BcM sKds/2(1 + ∥vt∥∞)s(1 + |vt|s)

for some constant c dependent on d and s, where σ0 := max{max0≤t≤T σt(0), 1}.

Proof. First we bound ∥Ktvt∥∞. Recall v̂t(k) :=
´
Td vt(x)e

−2πi⟨k,x⟩ dx.

∥Ktvt∥∞ = ∥
∑

k∈[[K]]d

P
(k)
t v̂t(k)e

2πi⟨k,x⟩∥∞

≤
∑

k∈[[K]]d

∥P (k)
t ∥|v̂t(k)|

≤

 ∑
k∈[[K]]d

∥P (k)
t ∥2

1/2

∥v̂t∥ℓ2(k∈[[K]]d)

≤ ∥Pt∥FKd/2∥v̂t∥ℓ2(k∈[[K]]d)

≤ ∥Pt∥FKd/2∥vt∥L2(Td).

Then

∥Wtvt +Ktvt + bt∥∞ ≤ ∥Wt∥2∥vt∥∞ + |bt|+ ∥Pt∥FKd/2∥vt∥L2(Td),

and by Lipschitzness of σ we have

∥vt+1∥∞ ≤ σ∗ +BM
(
1 + ∥vt∥∞ +Kd/2∥vt∥L2(Td)

)
.

Next we bound |vt+1|s. Letting ft = Wtvt + Ktvt + bt, we see from Lemma
C.4.1 that bounding ∥ft∥Hs will give the result.

Ds
x(ft) = Wt(D

s
xvt) +Kt(D

s
xvt).ˆ

Td

|Ds
x(ft)|2 dx ≤ 2

(ˆ
Td

|Wt(D
s
xvt)|2 dx+

ˆ
Td

|Kt(D
s
xvt)|2 dx

)
.

218

The first integral on the right may be bounded by ∥Wt∥22|vt|2s. To bound the
second integral,

ˆ
Td

|Kt(D
s
xvt)|2 dx =

ˆ
Td

∣∣∣∣∣∣
∑

k∈[[K]]d

P
(k)
t ĝt(k)e

2πi⟨k,x⟩

∣∣∣∣∣∣
2

dx,

where ĝt(k) are the Fourier coefficients of Ds
xvt. Continuing,

ˆ
Td

|Kt(D
s
xvt)|2 dx ≤

ˆ
Td

∥Pt∥2F
∑

k∈[[K]]d

|ĝt(k)|2 dx

≤ ∥Pt∥2F∥Ds
xvt∥2L2 ,

giving a bound of
|ft|s ≤ 2M |vt|s.

In the following, ≲ denotes inequality up to a constant multiple that does not
depend on any of the variables involved. Combining Lemma C.4.1 and the
above bounds, we have

|σ ◦ ft|s ≤ Bc(1 + ∥ft∥s−1
∞)∥ft∥Hs

≤ Bc(1 + (M(1 + ∥vt∥∞ +Kd/2∥vt∥∞))s−1)(M(1 + ∥vt∥∞ +Kd/2∥vt∥∞) + 2M |vt|s)
≲ BcM sKds/2(1 + (1 + ∥vt∥∞)s−1)(1 + ∥vt∥∞ + |vt|s)
≲ BcM sKds/2(1 + ∥vt∥∞)s−1(1 + ∥vt∥∞)(1 + |vt|s)
≲ BcM sKds/2(1 + ∥vt∥∞)s(1 + |vt|s).

C.5 Proof of Theorem 4.3.2

Theorem 4.3.2. Let Assumptions 4.3.1 hold. Let Ac be a compact set in
A. Let vt(a) := Lt ◦ Lt−1 · · · ◦ L0 ◦ P(a) with P and each L as defined in
Definition 1.3.1. Similarly, let vNt (a) := LNt ◦LNt−1 · · · ◦LN0 ◦P(a) where LNj v

N
j =

σj(Wjv
N
j +KN

j vj + bj) for KN
j defined in (4.3.1) for each 0 ≤ j ≤ t. Then

sup
a∈Ac

1

Nd/2
∥vt(a)− vNt (a)∥ℓ2(n∈[N]d) ≤ CN−s, (4.3.2)

where the constant C depends on B,M, d, s, t, and Ac. ♢

219

Proof. Temporarily dropping the notational dependence of vt and v0 on a,
from Lemma 4.3 we have for t ≥ 1,

∥vt∥∞ ≲ σ∗
t−1∑
j=0

(BMKd/2)j +
t∑

j=1

(BMKd/2)j + (BMKd/2)t∥v0∥∞

|vt|s ≲
(

t∑
j=1

(BcM sKds/2)j
t−1∏

ℓ=t−j

(1 + ∥vℓ∥∞)s

)
+ (BcM sKds/2)t

(
t−1∏
ℓ=0

(1 + ∥vℓ∥∞)s

)
|v0|s.

Denote max{BMKd/2, B1/sc1/sMKd/2, 1} by C0. Since σ∗ ≥ 1, the bound on
∥vt∥∞ simplifies to

∥vt∥∞ ≲ σ∗
t∑

j=1

Cj
0 + Ct

0∥v0∥∞

≤ σ∗tCt
0 + Ct

0∥v0∥∞.

Plugging in this bound to the product in the bound on |vt|s, we have
t−1∏

ℓ=t−j

(1 + ∥vℓ∥∞)s ≲
t−1∏

ℓ=t−j

(1 + ℓσ∗Cℓ
0 + Cℓ

0∥v0∥∞)s

≲ Ctsj
0 (t)sj(σ∗ + ∥v0∥∞)sj.

Combining these two bounds, we attain the following bound on |vt|s for t ≥ 1.

|vt|s ≲
(

t∑
j=1

(C0)
sjCtsj

0 (t)sj(σ∗ + ∥v0∥∞)sj

)
+ Cts

0

(
Ct2s

0 (t)st(σ∗ + ∥v0∥∞)st
)
|v0|s

≲

(
t∑

j=1

C2tsj
0 (t)sj(σ∗ + ∥v0∥∞)sj

)
+ C2t2s

0 (t)st(σ∗ + ∥v0∥∞)st|v0|s

≲ (C2t2s
0 tst+1 + C2t2s

0 tst|v0|s)(σ∗ + ∥v0∥∞)st

and the following bound on ∥vt∥Hs

∥vt∥Hs ≲ (C2t2s
0 tst+1|v0|s)(σ∗ + ∥v0∥∞)st + σ∗tCt

0 + Ct
0∥v0∥∞. (C.5.1)

Recall that v0 = P(a), and P is a shallow neural network, which is a special
case of a Fourier layer where the coefficients P (k)

t are set to 0. Assumptions
4.3.1 include boundedness of the coefficients of P by M . Thus we may incre-
ment t by 1 in the bound and write

sup
a∈Ac

∥vt(a)∥Hs (C.5.2a)

≲ sup
a∈Ac

(C
2(t+1)2s
0 (t+ 1)s(t+1)+1|a|s)(σ∗ + ∥a∥∞)s(t+1) + σ∗(t+ 1)Ct+1

0 + Ct+1
0 ∥a∥∞.

(C.5.2b)

220

Since A is a compact set in Hs, and s > d
2
, both ∥a∥∞ and |a|s are bounded

uniformly over A by a constant depending on A since Hs is continuously
embedded in L∞. Thus, we may denote this upper bound by C1, which does
not depend on N . Let E (0)

t+1(a) = vNt (a) − vt(a). Then from Lemma C.3, we
have

sup
a∈Ac

1

Nd/2
∥E (0)

t+1(a)∥ℓ2(n∈[N]d) ≲ BM

(
2

Nd/2
sup
a∈Ac

∥E (0)
t (a)∥ℓ2(n∈[N]d) + αd,sN

−sC1

)
.

By the discrete Gronwall lemma,

sup
a∈Ac

1

Nd/2
∥E (0)

t (a)∥ℓ2(n∈[N]d)

≲
BMαd,sN

−sC1

1− 2BM
(1− (2BM)t) +

1

Nd/2
sup
a∈Ac

∥E (0)
0 (a)∥ℓ2(n∈[N]d)(2BM)t.

Since we assume we begin with no error, ∥E (0)
0 (a)∥ℓ2(n∈[N]d) = 0, this simplifies

to

sup
a∈Ac

1

Nd/2
∥E (0)

t (a)∥ℓ2(n∈[N]d) ≲
BMαd,sC1

1− 2BM
(1− (2BM)t)N−s.

Denoting the factor in front of N−s by C and absorbing the effects of ≲ into
C, we have the result that

sup
a∈Ac

1

Nd/2
∥vt(a)− vNt (a)∥ℓ2(n∈[N]d) ≤ CN−s.

Remark C.5.1. A trivial consequence of the above theorem is that under
Assumptions 4.3.1,

lim
N→∞

sup
a∈Ac

1

Nd/2
∥vNt (a)− vt(a)∥ℓ2(n∈[N]d) = 0.

Indeed, a stronger result holds that the discrete ℓ∞ norm converges at a rate
N−s+d/2 by a straightforward inverse inequality. ♢

C.6 Proof of Theorem 4.3.3

Theorem 4.3.3. Let pNt (x) =
∑

k∈[[N]]d DFT(v
N
t)(k)e2πi⟨k,x⟩ denote the inter-

polating trigonometric polynomial of {vNt (xn)}n∈[N]d . Let the assumptions of
Theorem 4.3.2 hold. Then,

sup
a∈Ac

∥vt(a)− pNt (a)∥L2(Td) ≤ C ′N−s. (4.3.3)

Here, C ′ depends on B,M, d, s, t, and A. ♢

221

Proof. We temporarily drop the dependence of pNt and vNt on a. Let pNt (x) be
the interpolating trigonometric polynomial associated with the data {vNt (xn)}n∈[N]d .
By Proposition C.1.6, we have

∥vt − pNt ∥L2(Td) ≤
1

Nd/2
∥vt − vNt ∥ℓ2(n∈[N]d) + cd,s∥v∥Hs(Td)N

−s.

By (C.5.2), we have supa∈Ac
∥vt(a)∥Hs(Td) ≤ C1. Furthermore, it follows from

Theorem 4.3.2, that

sup
a∈Ac

1

Nd/2
∥vt(a)− vNt (a)∥ℓ2(n∈[N]d) ≤ CN−s.

We conclude that

sup
a∈Ac

∥vt(a)− pNt (a)∥L2(Td) ≤ (C + cd,sC1)N
−s.

Thus, the claimed bound holds with C ′ = C + cd,sC1.

C.7 Additional numerical results

Figure C.1 addresses the question of error decreasing or increasing with layer
count. The figure shows that when the FNO weights are randomly initialized
with the default initialization and then multiplied by 10, the error increases
with the number of layers instead of decreases. Additionally, in this model,
the large weights mean that the GeLU activation acts like a ReLU activation
for smaller discretizations. This phenomenon is apparent for inputs with reg-
ularity s = 2, where the first layer has the appropriate slope, but the other
layers only begin to approach that rate at higher discretizations. Earlier layers
achieve this rate first because of the smaller magnitude state norm in earlier
layers for this model.

As an alternative setting of the weights, Figure C.2 shows the discretization
error when all the weights are set to 1. In this case, the error is more erratic.
The error decreases faster than expected and with less consistency than the
Gaussian weight models, and the decay rate increases with each layer. In this
sense, the all-ones model has a smoothing effect on the state at each layer. We
note that this generally occurs with any initialization that sets the spectral
weights on the same order of magnitude as the affine weights; for instance, the
same super-convergence effect occurs when all weights are initialized U(0, 1).

222

64 128 256 512 1024
N

10 5

10 4

10 3

10 2

10 1

R
el

at
iv

e
E

rr
or

s = 0.5, Average Slope = -0.60

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

64 128 256 512 1024
N

10 5

10 4

10 3

10 2

10 1

s = 1.0, Average Slope = -1.05

64 128 256 512 1024
N

10 5

10 4

10 3

10 2

10 1

s = 1.5, Average Slope = -1.53

64 128 256 512 1024
N

10 5

10 4

10 3

10 2

10 1

s = 2.0, Average Slope = -1.80

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Figure C.1: Relative error versus N and s for an FNO with default ×10 initial
weights.

64 128 256 512 1024
N

10 6

10 5

10 4

10 3

10 2

10 1

R
el

at
iv

e
E

rr
or

s = 0.5, Average Slope = -0.91

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

64 128 256 512 1024
N

10 6

10 5

10 4

10 3

10 2

10 1

s = 1.0, Average Slope = -1.32

64 128 256 512 1024
N

10 6

10 5

10 4

10 3

10 2

10 1

s = 1.5, Average Slope = -1.74

64 128 256 512 1024
N

10 6

10 5

10 4

10 3

10 2

10 1

s = 2.0, Average Slope = -2.07

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Figure C.2: Relative error versus N and s for an FNO with all weights equals
to 1.

1 2 3 4 5
Layer

102

104

106

108

1010

1012

St
at

e
N

or
m

Weights
All 1s
Uniform [0,1]
10x Default
Default

Figure C.3: State norm versus layer for various untrained model initializations.

We hypothesize that this is because when the spectral weights are of equal
magnitude to the affine weights, the function is progressively smoothed as it
passes through the model.

We can also observe the state norm as the state passes through the layers for
various settings of the weights. Indeed, for all choices of initialization that
we explored except the default setting, the state norm increases exponentially
through the layers, while for the default initialization the magnitude stays
roughly constant. This phenomenon is illustrated in Figure C.3.

223

C.8 Additional implementation details for error analysis experi-
ments

All the trained models were trained on an Nvidia P100 GPU for approxi-
mately 6 hours. The evaluation scripts were run on a Mac laptop with an M2
processor.

C.9 Implementation details for adaptive subsampling

Our model has 4 hidden layers, channel width 64, and Fourier cut-off 12.
Our results are based on 9000 training samples and 500 test samples. For
training with a subsampling scheduler, we include an additional 500 samples
for validation. Models are trained for 300 epochs on an Nvidia P100 GPU.

224

A p p e n d i x D

APPENDIX TO CHAPTER 5

Data and code availability

Links to datasets and all code used to produce the numerical results and figures
in this chapter are available at

https://github.com/nickhnelsen/fourier-neural-mappings .

D.1 Proofs for Section 5.3: Universal approximation theory for
Fourier Neural Mappings

This appendix begins with some universal approximation results for neural
operators before establishing similar universal approximation results for neural
mappings (i.e., neural functionals and decoders).

Supporting approximation results for neural operators

We need the following two lemmas that are simple generalizations of the uni-
versal approximation theorem for FNOs [20, Theorem 9, p. 9] to the setting
where only one of the input or output domain is the torus. These results may
be extracted from the proof of [20, Theorem 9, p. 9].

Lemma D.1.1 (universal approximation for FNO: periodic output domain).
Let Assumption 5.3.1 hold. Let s ≥ 0 and s′ ≥ 0, D ⊂ Rd be an open Lipschitz
domain such that D ⊂ (0, 1)d, and U = Hs(D;Rdu). Let Y = Hs′(Td;Rdy) and
G : U → Y be a continuous operator. There exists a continuous linear extension
operator E : U → Hs(Td;Rdu) such that (Eu)|D = u for all u ∈ U . Moreover,
let K ⊂ U be compact in U . For any ε > 0, there exists a Fourier Neural
Operator Ψ: Hs(Td;Rdu) → Y of the form (5.2.4) (with E = Id, R = Id, and
items (i) and (ii) both holding true) such that

sup
u∈K

∥G(u)−Ψ(Eu)∥Y < ε . (D.1.1)

♢

The next lemma is analogous to the previous one and deals with periodic input
domains.

https://github.com/nickhnelsen/fourier-neural-mappings

225

Lemma D.1.2 (universal approximation for FNO: periodic input domain).
Let Assumption 5.3.1 hold. Let s ≥ 0 and s′ ≥ 0, D ⊂ Rd be an open Lipschitz
domain such that D ⊂ (0, 1)d, and U = Hs(Td;Rdu). Let Y = Hs′(D;Rdy)

and G : U → Y be a continuous operator. Denote by R ∈ L(Hs′(Td;Rdy);Y)

the restriction operator y 7→ y|D. Let K ⊂ U be compact in U . For any
ε > 0, there exists a Fourier Neural Operator Ψ: U → Hs′(Td;Rdy) of the
form (5.2.4) (with E = Id, R = Id, and items (i) and (ii) both holding true)
such that

sup
u∈K

∥G(u)−RΨ(u)∥Y < ε . (D.1.2)

♢

Universal approximation proofs

The remainder of this appendix provides proofs of the main universal approx-
imation theorems found in Section 5.3 for the proposed FNM family of ar-
chitectures. We begin with the function-to-vector Fourier Neural Functionals
(FNF) architecture.

Theorem 5.3.2 (universal approximation: function-to-vector mappings). Let
s ≥ 0, D ⊂ Rd be an open Lipschitz domain such that D ⊂ (0, 1)d, and
U = Hs(D;Rdu). Let Ψ† : U → Rdy be a continuous mapping. Let K ⊂ U
be compact in U . Under Assumption 5.3.1, for any ε > 0, there exist Fourier
Neural Functionals Ψ: U → Rdy of the form (5.2.8) with modification (M-F2V)
such that

sup
u∈K

∥∥Ψ†(u)−Ψ(u)
∥∥
Rdy < ε . (5.3.1)

♢

Proof. Let Y := L2(Td;Rdy) and 1 : x 7→ 1 be the constant function on Td.
We first convert the function-to-vector mapping Ψ† to the function-to-function
operator G† : U → Y defined by u 7→ Ψ†(u)1. We then establish the existence
of a FNO that approximates G†. Finally, from this FNO we construct a FNF
that approximates Ψ†. To this end, fix ε′ > 0. By the continuity of Ψ†, there

226

exists δ > 0 such that ∥u1−u2∥U < δ implies ∥Ψ†(u1)−Ψ†(u2)∥Rdy < ε′. Then

∥G†(u1)− G†(u2)∥2Y =

ˆ
Td

∥Ψ†(u1)1(x)−Ψ†(u2)1(x)∥2Rdy dx

= |Td|∥Ψ†(u1)−Ψ†(u2)∥2Rdy

< (ε′)2 .

We used the fact that |Td| = 1 for the identification Td ≡ (0, 1)dper. This
shows the continuity of G† : U → Y . By the universal approximation theorem
for FNOs (Lemma D.1.1, applied with s = s, s′ = 0, dy = dy, and G =

G†), there exists a continuous linear operator E : U → Hs(Td;Rdu) and a
FNO G : Hs(Td;Rdu) → Y of the form (5.2.4) (with R = Id, E = Id, and
items (i) and (ii) both holding true) such that

sup
u∈K

∥G†(u)− G(Eu)∥Y < ε .

To complete the proof, we construct a FNF by appending a specific linear layer
to the output of G ◦E. To this end, let P : Y → Rdy be the averaging operator

u 7→ Pu :=

ˆ
Td

u(x) dx .

Clearly P is linear. It is continuous on Y because

∥Pu∥Rdy ≤
ˆ
Td

∥u(x)∥Rdy1(x) dx ≤ ∥u∥Y

by the triangle and Cauchy–Schwarz inequalities. Now define Ψ := (P ◦ G ◦
E) : U → Rdy . This map has the representation

Ψ = P ◦ Q̃ ◦ F ◦ S̃ ◦ E

for some local linear operators Q̃ (identified with Q̃ ∈ Rdy×dv for channel
dimension dv) and S̃ (identified with S̃ ∈ Rdv×du), and where F denotes the
repeated composition of all nonlinear FNO layers of the form Lt as in (5.2.2).
We claim that Ψ belongs to the FNF class, i.e., (5.2.8) with modification (M-
F2V). To see this, choose Q = IRdy ∈ Rdy×dy and S = IRdu ∈ Rdu×du (which
we identify with IdU ∈ L(U)). Let E := (S̃ ◦E) : U → Hs(Td;Rdv). Define the
linear functional layer G := (P ◦ Q̃) : L2(Td;Rdv) → Rdy which has the kernel
linear functional representation

u 7→ G u =

ˆ
Td

κ(x)u(x) dx , where x 7→ κ(x) := 1(x)Q̃ ∈ Rdy×dv

227

as in (5.2.5). Thus,

Ψ = P ◦ Q̃ ◦ F ◦ S̃ ◦ E
= IRdy ◦ (P ◦ Q̃) ◦ F ◦ (S̃ ◦ E) ◦ IdU

= Q ◦ G ◦ F ◦ E ◦ S

as claimed. Finally, using the fact that P (z1) = z for any z ∈ Rdy , it holds
that

sup
u∈K

∥Ψ†(u)−Ψ(u)∥Rdy = sup
u∈K

∥PG†(u)− PG(Eu)∥Rdy ≤ sup
u∈K

∥G†(u)− G(Eu)∥Y .

The rightmost expression is less than ε and hence (5.3.1) holds.

The universality proof for the vector-to-function Fourier Neural Decoder (FND)
architecture follows similar arguments.

Theorem 5.3.3 (universal approximation: vector-to-function mappings). Let
t ≥ 0, D ⊂ Rd be an open Lipschitz domain such that D ⊂ (0, 1)d, and
Y = H t(D;Rdy). Let Ψ† : Rdu → Y be a continuous mapping. Let Z ⊂ Rdu

be compact. Under Assumption 5.3.1, for any ε > 0, there exists a Fourier
Neural Decoder Ψ: Rdu → Y of the form (5.2.8) with modification (M-V2F)
such that

sup
z∈Z

∥∥Ψ†(z)−Ψ(z)
∥∥
Y < ε . (5.3.2)

♢

Proof. Let U := L2(Td;Rdu) and 1 : Td → R be the constant function x 7→ 1.
Define the map L : Rdu → U by z 7→ z1. Clearly L is linear. To see that it is
continuous, we compute

∥Lz∥2U =

ˆ
Td

∥z1(x)∥2Rdu dx = |Td|∥z∥2Rdu = ∥z∥2Rdu . (D.1.3)

Thus, L is injective with ∥L∥L(Rdu ;U) = 1. Choose K := LZ = {Lz : z ∈ Z} ⊂
U , which is compact in U because continuous functions map compact sets to
compact sets. Define G† : K → Y by Lz 7→ Ψ†(z). First, we show that G† is
continuous. Fix ε′ > 0. By the continuity of Ψ†, there exists δ > 0 such that
if ∥Lz1 − Lz2∥U = ∥z1 − z2∥Rdu < δ, then ∥Ψ†(z1) − Ψ†(z2)∥Y < ε′. Thus for
any u1 = Lz1 ∈ K and u2 = Lz2 ∈ K with ∥u1 − u2∥U < δ, we have

∥G†(u1)− G†(u2)∥Y = ∥Ψ†(z1)−Ψ†(z2)∥Y < ε′ .

228

It follows that G† : K → Y is continuous. By the Dugundji extension theo-
rem [182], there exists a continuous operator G̃† : U → Y such that G̃†(u) =

G†(u) for every u ∈ K. By the universal approximation theorem for FNOs
(Lemma D.1.2, applied with s = 0, s′ = t, du = du, and G = G̃†), there exists
a FNO G : U → H t(Td;Rdy) of the form (5.2.4) (with R = Id, E = Id, and
items (i) and (ii) both holding true) such that

sup
u∈K

∥G̃†(u)−RG(u)∥Y = sup
u∈K

∥G†(u)−RG(u)∥Y < ε .

In the preceding display, R ∈ L(H t(Td;Rdy);Y) denotes the restriction oper-
ator y 7→ y|D. Now define the map Ψ := (R ◦ G ◦ L) : Rdu → Y . This map has
the representation

Ψ = R ◦ Q̃ ◦ F ◦ S̃ ◦ L

for some local linear operators Q̃ (identified with Q̃ ∈ Rdy×dv for channel
dimension dv) and S̃ (identified with S̃ ∈ Rdv×du), and where F denotes the
repeated composition of all nonlinear FNO layers of the form Lt as in (5.2.2).
We claim that Ψ is of the FND form, i.e., (5.2.8) with modification (M-V2F).
To see this, choose Q = IRdy ∈ Rdy×dy (which we identify with IdY ∈ L(Y))
and S = IRdu ∈ Rdu×du . Let R := (R◦Q̃) : H t(Td;Rdv) → Y . Define the linear
decoder layer D := (S̃ ◦ L) : Rdu → L2(Td;Rdv) which has the kernel function
product representation

z 7→ Dz = κ(·)z , where x 7→ κ(x) := 1(x)S̃ ∈ Rdv×du

as in (5.2.5). Thus,

ψ = R ◦ Q̃ ◦ F ◦ S̃ ◦ L
= IdY ◦(R ◦ Q̃) ◦ F ◦ (S̃ ◦ L) ◦ IRdu

= Q ◦ R ◦ F ◦ D ◦ S

as claimed. Finally, by the injectivity of L implied by (D.1.3), any u′ ∈ K has
the representation u′ = Lz′ for some unique z′ ∈ Z ⊂ Rdu . It follows that

sup
u∈K

∥G†(u)−RG(u)∥Y ≥ ∥G†(u′)−RG(u′)∥Y = ∥Ψ†(z′)−Ψ(z′)∥Y .

This implies the asserted result (5.3.2).

229

A p p e n d i x E

APPENDIX TO CHAPTER 6

E.1 A result on neural network approximation

We here derive a technical result, which shows that ReLU neural networks
can approximate C1 functions in the W 1,∞-norm over compact subsets. This
result follows from well-known techniques, but we couldn’t find a reference.
We hence include a statement and proof (sketch), below.

Lemma E.1.1. Let σ(x) = max(x, 0) denote the ReLU activation. Let D ⊂
Rd be a bounded Lipschitz domain. For any f ∈ C1(D) and ϵ > 0, there exists
a shallow ReLU-neural network ψ : Rd → R, of the form,

ψ(x) =
N∑
j=1

ajσ(w
T
j x+ bj), with aj, bj ∈ R, wj ∈ Rd, for j = 1, . . . , N,

(E.1.1)
such that ∥ψ − f∥W 1,∞(D) ≤ ϵ. ♢

Proof. Step 1: Fix a compactly supported smooth function ρ : R → R, with
supp(ρ) ⊂ (−1, 1), ρ ≥ 0, and such that ρ is even, i.e. ρ(x) = ρ(−x) for
all x ∈ R. Let σρ(x) := (σ ∗ ρ)(x) denote the convolution. We note that
σρ ∈ C∞(R) is smooth and monotonically increasing and that σρ is equal to
ReLU on R \ (−1, 1), i.e.

σρ(x) =

0, (x ≤ −1),

x, (x ≥ 1).

We first note that for any ϵ > 0, we can find N ∈ N and coefficients αj, βj, ωj ∈
R, for j = 1, . . . , N , such that∥∥∥σρ(x)−∑N

j=1 αjσ(ωjx+ βj)
∥∥∥
W 1,∞(R)

≤ ϵ.

To see this, we temporarily fix M ∈ N, introduce an equidistant partition
xm := −1 + 2m/M of [−1, 1], for m = 0, . . . ,M , denote cm := σ′

ρ(xm) −

230

σ′
ρ(xm−1) and note that

∣∣∣∣∣σ′
ρ(x)−

M∑
m=1

cm1[xm,∞)(x)

∣∣∣∣∣ =

|σ′

ρ(x)|, x ∈ (−∞,−1),

|σ′
ρ(x)− σ′

ρ(xm0)|, x ∈ [xm0 , xm0+1),

|σ′
ρ(x)− σ′

ρ(xM)|, x ∈ [1,∞).

(E.1.2)

Since σ′
ρ(x) ≡ 0 for x ≤ −1 and σ′

ρ(x) ≡ 1 for x ≥ xM = 1, it follows that∣∣∣∣∣σ′
ρ(x)−

M∑
m=1

cm1[xm,∞)(x)

∣∣∣∣∣ = 0, ∀x ∈ R \ [−1, 1).

On the other hand, we also have

∥σ′′
ρ∥L∞(R) = ∥σ′ ∗ ρ′∥L∞(R) ≤ ∥σ′∥L∞(R)∥ρ′∥L1(R) ≤ ∥ρ′∥L1(R).

For any x ∈ [−1, 1), we can find m0 ∈ {0, . . . ,M − 1}, such that x ∈
[xm0 , xm0+1), and from (E.1.2), we obtain∣∣∣∣∣σ′

ρ(x)−
M∑

m=1

cm1[xm,∞)(x)

∣∣∣∣∣ ≤ |σ′
ρ(x)− σ′

ρ(xm0)|

≤ ∥σ′′∥L∞|x− xm0|

≤ 2∥ρ′∥L1(R)

M
.

Given ϵ > 0, choose M sufficiently large so that 2∥ρ′∥L1(R)/M ≤ ϵ/2. Then,
noting that σ′(x− xm) = 1[xm,∞)(x) pointwise a.e., it follows that∥∥∥∥∥σ′

ρ(x)−
M∑

m=1

cmσ
′(x− xm)

∥∥∥∥∥
L∞(R)

≤ ϵ/2.

Taking into account that σρ(x) ≡ 0 ≡ ∑M
m=1 cmσ(x − xm) for x < −1 and

σρ(x) ≡ x ≡∑M
m=1 cmσ(x− xm) for x > 1, this in turn implies that∥∥∥∥∥σρ(x)−

M∑
m=1

cmσ(x− xm)

∥∥∥∥∥
L∞(R)

≤
ˆ 1

−1

∥∥∥∥∥σ′
ρ(x)−

M∑
m=1

cmσ
′(x− xm)

∥∥∥∥∥
L∞(R)

dx′ ≤ ϵ.

Since ϵ was arbitrary, we have shown that σρ belongs to the W 1,∞(R)-closure of
the set of shallow σ-neural networks, in one spatial dimension. In turn, this im-
plies that any shallow σρ-neural network in d dimensions can be approximated
by a shallow σ-neural network to any desired accuracy in the W 1,∞(Rd)-norm.

231

Step 2: Given a compact domain D ⊂ Rd, it follows from [189, Theorem 4.1]
and the fact that σρ is smooth and non-polynomial, that the set of shallow
σρ-neural networks is dense in C1(D). Thus, for any f ∈ C1(D) and given
ϵ > 0, we can first find a shallow σρ-neural network ψρ, such that

∥f − ψρ∥W 1,∞(D) = ∥f − ψρ∥C1(D) ≤ ϵ/2.

Second, as a result of Step 1 we can find a σ-neural network ψ, such that

∥ψρ − ψ∥W 1,∞(D) ≤ ϵ/2.

By the triangle inequality, we conclude that, for this ψ, we have

∥f − ψ∥W 1,∞(D) ≤ ∥f − ψρ∥W 1,∞(D) + ∥ψρ − ψ∥W 1,∞(D) ≤ ϵ.

In the following corollary, we weaken the C1 requirements for Lemma E.1.1
for chosen inputs.

Corollary E.1.2. Let D1 ⊂ Rd1 and D2 ⊂ Rd2 be compact domains. Let
f : D1 ×D2 → R, (η, x) 7→ f(η, x) be a measurable function such that f is C1

in η and integrable in x, such that
ˆ
D2

∥f(· , x)∥C1(D1) dx <∞.

The for any ϵ > 0, there exists a shallow ReLU-neural network ψ : Rd1+d2 → R
of the form E.1.1 such that

ˆ
D2

∥ψ(·, x)− f(·, x)∥W 1,∞(D1) dx ≤ ϵ. (E.1.3)

♢

Proof. The assumption says that f belongs to L1
x(D2;C

1
η(D1)). Clearly, we

have C1(D1 × D2) ⊂ L1
x(D2;C

1
η(D1)). Upon mollifying f(η, x) in the second

variable, one checks that C1(D1 × D2) is in fact dense in L1
x(D2;C

1
η(D1)).

Thus, there exists fϵ ∈ C1(D1 ×D2), such that
ˆ
D2

∥f(· , x)− fϵ(· , x)∥C1(D1) dx ≤ ϵ/2.

232

From Lemma E.1.1, there exists a shallow ReLU-neural network ψ : Rd1+d2 →
R such that

∥ψ − fϵ∥W 1,∞(D1×D2) ≤ ϵ/(2|D2|).

This in turn implies that
ˆ
D2

∥ψ(·, x)− fϵ(·, x)∥W 1,∞(D1) dx ≤ ϵ/2.

Combining the above estimates, and using the triangle inequality, we conclude
that ˆ

D2

∥ψ(· , x)− f(· , x)∥W 1,∞(D1) dx ≤ ϵ/2 + ϵ/2 = ϵ.

E.2 Proofs for Section 6.3

Proof of Lemma 6.3.9

Our proof of Lemma 6.3.9 will make use of the following version of the con-
traction mapping theorem.

Lemma E.2.1 (Lemma 6.6.6. of [190]). Let B(0, r) be a ball in Rn centered
at the origin and let g : B(0, r) → Rn be a map such that g(0) = 0 and

|g(x)− g(y)| ≤ 1

2
|x− y| for all x, y ∈ B(0, r).

Then the function F : B(0, r) → Rn defined by F (x) = x+ g(x) is one-to-one,
and the image F (B(0, r)) of this map contains the ball B(0, r

2
). ♢

We now come to the proof of Lemma 6.3.9 in the main text.

Proof of Lemma 6.3.9. Since V ⊂ Rd is open, we may pick r > 0 and y0 ∈ V

such that B(y0, r) ⊂ V . We will show that the claim holds with

ϵ0 := min
(
1
2
, r
4

)
, V0 := B(y0,

r
4
).

Our proof relies on the contraction mapping theorem, formulated as Lemma
E.2.1. To this end, we first define F̃ : B(0, r) → Rd, by

F̃ (y) = F (y + y0)− F (y0).

We have that F̃ (0) = 0 and, by assumption, the spectral norm of the Jacobian
satisfies ∥DF̃ (y) − Id∥2 ≤ ∥F − id∥W 1,∞(V) ≤ ϵ0 for all y ∈ B(0, r). Defining

233

g = F̃ − id, this implies that ∥Dg(y)∥2 ≤ ϵ0 for all y ∈ B(0, r). We assume
that 0 < ϵ0 ≤ 1/2. Since,

g(y)− g(y′) =

ˆ 1

0

d

dt
g(y′ + t(y − y′)) dt

=

ˆ 1

0

Dg(y′ + t(y − y′)) dt · (y − y′),

this implies that,

|g(y)− g(y′)| ≤
ˆ 1

0

∥Dg(y′ + t(y − y′))∥2 dt|y − y′|

≤ 1

2
|y − y′|

for y, y′ ∈ B(0, r) by our assumption on ϵ0. As a consequence of the contraction
mapping theorem (cp. Lemma E.2.1), f̃ is injective on B(0, r), and B(0, r

2
) ⊂

F̃ (B(0, r)). The next step is to return to B(y0, r). As

F (y + y0) = F̃ (y) + F (y0),

and since F (y0) is a constant shift, F is injective onB(y0, r), andB(F (y0),
r
2
) ⊂

F (B(y0, r)). The center of ball B(F (y0),
r
2
) clearly depends on the value of

F (y0). However, we argue that B(y0,
r
4
) ⊂ B(F (y0),

r
2
): this follows from the

fact that, by assumption on F , we have

|F (y0)− y0| ≤ ∥F − id∥W 1,∞(V) ≤ ϵ0 ≤
r

4
.

Thus, B(F (y0),
r
2
) contains a ball B(y0, r0) of radius r0 = r

2
−ϵ0 ≥ r

4
. It follows

that
B(y0,

r
4
) ⊂ B(F (y0),

r
2
) ⊂ F (B(y0, r)).

This shows that the image of F : V → Rd contains V0 := B(y0,
r
4
). We finally

verify that there exists a constant c0 > 0 such that

F#Unif(V) ≥ c0Unif(V0).

To this end, we recall that Unif(V) = |V |−1 1V (y) dy is just a rescaling of
the Lebesgue measure 1V (y) dy. Since F : F−1(V0) → V0 is bijective, the
push-forward of the Lebesgue measure under F satisfies

F#(1V (y) dy) ≥ F#(1F−1(V0)(y) dy) = |detDF (F−1(z))|−11V0(z) dz.

234

The spectral norm bound ∥DF (y)− Id∥2 ≤ ϵ0 ≤ 1
2
, which holds for almost all

y ∈ V , now implies that(
1

2

)d

≤ |det(DF (F−1(z)))| ≤
(
3

2

)d

, dz-almost everywhere.

Thus,

F#Unif(V) = |V |−1F#(1V (y) dy)

≥ |V |−1|detDF (F−1(z))|−11V0(z) dz

≥ |V |−1

(
2

3

)d

1V0(z) dz

=
|V0|
|V |

(
2

3

)d

Unif(V0).

The claim thus follows with c0 := |V0|
|V |

(
2
3

)d
> 0.

Proof of Lemma 6.3.7

Proof of Lemma 6.3.7. Before discussing our construction of A, we recall that,
by definition, A : U → Lp(µ) is of the form

A(Ψ) = Q(Ψ(u1), . . . ,Ψ(uN)),

where u1, . . . , uN are fixed and Q : RN → Lp(µ) is a reconstruction from point-
values. Given ψ ∈ Uα,∞

ℓ , we now define A(ψ) ∈ Lp([0, 1]d) by the conditional
expectation,

A(ψ)(x) := Eu∼µ[A(ψ ◦ E)(u) | E(u) = x], ∀x ∈ [0, 1]d.

This conditional expectation is well-defined for E#µ almost every x. By as-
sumption (6.3.7), we have E#µ ≥ c · Unif([0, 1]d), and hence A(ψ)(x) is well-
defined for (Lebesgue-) almost every x ∈ [0, 1]d.

We also note that A(ψ)(x) is of the form A(ψ) = Q(ψ(x1), . . . , ψ(xN)): indeed,
by definition, we have A(ψ ◦ E)(u) = Q(ψ(E(u1)), . . . , ψ(E(uN)))(u). Hence,
upon defining xj := E(uj) ∈ RN , and

Q(y1, . . . , yN)(x) := Eu∼µ[Q(y1, . . . , yN)(u) | E(u) = x],

we then have A(ψ) = Q(ψ(x1), . . . , ψ(xn)) for all ψ ∈ Uα,∞
ℓ .

235

To simplify notation for the following calculations, we define ΨA := A(Ψ) with
Ψ := ψ ◦ E . We can then write

A(ψ)(x) = Eu[ΨA(u) | E(u) = x].

Here Eu[. . . | E(u) = x] is the conditional expectation over a random variable
u ∼ µ, with conditioning on E(u) = x.

For p ∈ [1,∞), we then have

|A(ψ)(x)|p =
∣∣Eu[ΨA(u) | E(u) = x]

∣∣p ≤ Eu[|ΨA(u)|p | E(u) = x], (E.2.1)

by conditional Jensen’s inequality. It follows that
ˆ
[0,1]d

|A(ψ)(x)|p dx ≤ c−1

ˆ
Rd

|A(ψ)(x)|p E#µ(dx)

= c−1 Ex∼E#µ

[
|A(ψ)(x)|p

]
≤ c−1 Ex∼E#µ

[
Eu

[
|ΨA(u)|p

∣∣∣ E(u) = x
]]

= c−1 Eu∼µ

[
|ΨA(u)|p

]
.

The first inequality is by assumption E#µ ≥ c·Unif([0, 1]d), the second inequal-
ity on the third row is (E.2.1) above. The final equality follows from basic prop-
erties of the conditional expectation. Thus, recalling that ΨA = A(Ψ) ∈ Lp(µ),
it follows that

ˆ
[0,1]d

|A(ψ)(x)|p dx ≤ c−1 ∥A(Ψ)∥pLp(µ) <∞.

This shows that A : Uα,∞
ℓ → Lp([0, 1]d) is well-defined.

It remains to show that A satisfies the claimed lower bound (6.3.10). To see
this, we once more apply conditional Jensen’s inequality, to obtain

∥Ψ−A(Ψ)∥pLp(µ) = ∥Ψ−ΨA∥pLp(µ)

= Eu∼µ[|ψ(E(u))−ΨA(u)|p]

= Ex∼E#µEu

[∣∣∣ψ(E(u))−ΨA(u)
∣∣∣p | E(u) = x

]
≥ Ex∼E#µ

[∣∣∣ψ(x)− Eu[ΨA(u) | E(u) = x]
∣∣∣p]

= Ex∼E#µ[|ψ(x)− A(ψ)(x)|p]
= ∥ψ − A(ψ)∥pLp(E#µ).

236

Recalling (6.3.7), this implies that

∥Ψ−A(Ψ)∥pLp(µ) ≥ c∥ψ − A(ψ)∥p
Lp([0,1]d)

.

Since ψ ∈ Uα,∞
ℓ was arbitrary and Ψ = ψ ◦E , the proof of (6.3.10) is complete.

Proof of Lemma 6.3.10

Proof of Lemma 6.3.10. By assumption on Fξ = F (· ; ξ), we have

∥Fξ − id∥W 1,∞(V) ≤ ϵ0, ∀ ξ ∈ K.

By Lemma 6.3.9, there exists V0 ⊂ V and a constant c0 > 0, such that

(Fξ)#Unif(V) ≥ c0Unif(V0), ∀ ξ ∈ K. (E.2.2)

We want to show that the push-forward under F of the product measure
Unif(V)⊗ P ∈ P(V × Ω) satisfies

F#(Unif(V)⊗ P) ≥ c0P(K)Unif(V0).

Given a non-negative, bounded measurable function ϕ : Rd → [0,∞), we have

Ez∼F#(Unif(V)⊗P)[ϕ(z)] = E(y,ξ)∼Unif(V)⊗P[ϕ(F (y; ξ))]

= Eξ∼P
[
Ey∼Unif(V)[ϕ(Fξ(y))]

]
By (E.2.2), we have

Ey∼Unif(V)[ϕ(Fξ(y))] ≥ c0 Ez∼Unif(V0)[ϕ(z)], ∀ ξ ∈ K,

and hence

Ez∼F#(Unif(V)⊗P)[ϕ(z)] ≥ Eξ∼P
[
1K(ξ)Ey∼Unif(V)[ϕ(Fξ(y))]

]
≥ c0 Eξ∼P

[
1K(ξ)Ez∼Unif(V0)[ϕ(z)]

]
= c0P(K)Ez∼Unif(V0)[ϕ(z)].

Since ϕ ≥ 0 was arbitrary, the claim follows.

Proof of Proposition 6.3.11

Proof of Proposition 6.3.11. Let I1, . . . , Id denote the open intervals in As-
sumption 6.3.1. Define V := I1 × · · · × Id ⊂ Rd. Instead of proving (6.3.16)

237

directly, we will consider the simplified encoder E : X → Rd, with components
of the form

Ej(u) =
d0∑
k=1

cjkℓk(u), (E.2.3)

and where the coefficient cjk are chosen to ensure (6.3.14) for a δ > 0 to be
determined. Our goal is to show that there exists an open set V0 ⊂ V and
constant c > 0, such that

E#µ ≥ cUnif(V0). (E.2.4)

The general claim (6.3.16) then follows by introducing a scaling factor γ > 0

and bias b ∈ Rd, such that

[0, 1]d ⊂ γ · V0 + b,

and replacing the simple encoder E (E.2.3) by

Ẽj(u) := bj +

d0∑
k=1

ajkℓk(u),

where ajk := γ cjk. Thus, it only remains to show (E.2.4).

Fix δ > 0 for the moment. We will determine conditions on δ which imply
that (E.2.4) holds for the encoder (E.2.3), where cjk are chosen according to
(6.3.14). With this specific choice of cjk, we can then write (6.3.14) in the form∥∥e∗j − Ej

∥∥
X ∗ ≤ δ, ∀ j = 1, . . . , d. (E.2.5)

Our goal is to apply Lemma 6.3.10. To this end, we recall the decomposition
u = u(y; ξ) = ξ +

∑d
j=1 yjej of (6.3.2) and the probability measures µd ∈

P(Rd), µ⊥
d ∈ P(Ωd) of (6.3.4), (6.3.5). Given this decomposition, we let F :

V ×Ωd → Rd be defined by F (y; ξ) := E(u(y; ξ)), and denote Fξ(y) := F (y; ξ).
We will apply Lemma 6.3.10 with this choice of Fξ and with P := µ⊥

d . As our
final ingredient, we recall from Lemma 6.3.2 that there exists a set B > 0,
such that P(K) > 0 for K := {ξ ∈ Ωd | ∥ξ∥X ≤ B}. Given these preparatory
remarks, our goal now is to show that (6.3.13) holds, provided that δ > 0 in
(6.3.14) is sufficiently small.

To this end, we first note that (y, ξ) 7→ F (y; ξ) is linear, and hence y 7→ Fξ(y)

is affine for fixed ξ, and

Fξ(y) = F (y; ξ) = F (y; 0) + F (0, ξ) = F0(y) + Fξ(0).

238

Thus, we can write

∥Fξ(y)− y∥W 1,∞(V) ≤ ∥F0(y)− y∥W 1,∞(V) + ∥Fξ(0)∥W 1,∞(V). (E.2.6)

We will bound both terms on the right, individually.

The last term is constant in y, and hence ∥Fξ(0)∥W 1,∞(V) = |Fξ(0)|. By (E.2.3),
the j-th component of Fξ(0) = E(u(0; ξ)) = E(ξ) is given by

Ej(ξ) :=
d0∑
k=1

cjkℓk(ξ).

Since j ≤ d, it follows that e∗j(ξ) = 0. From (E.2.5), we conclude that

|Ej(ξ)| =
∣∣Ej(ξ)− e∗j(ξ)

∣∣
≤
∥∥Ej − e∗j

∥∥
X ∗∥ξ∥X

≤ δ∥ξ∥X .

For ξ ∈ K = {ξ | ∥ξ∥X ≤ B}, then it follows that

|Fξ(0)| ≤ dmax
j∈[d]

|Ej(ξ)| ≤ dB δ.

Thus, for δ ≤ ϵ0/(3dB), we obtain

∥Fξ(0)∥W 1,∞(V) ≡ |Fξ(0)| ≤ ϵ0/3, ∀ ξ ∈ K. (E.2.7)

This provides our estimate for the second term in (E.2.6). To bound the first
term, we note that F0(y) = E(u(y; 0)), and hence

|F0(y)j − yj| = |Ej(u(y; 0))− e∗j(u(y; 0))|
≤ ∥Ej − e∗j∥X ∗∥u(y; 0)∥X .

Since y ∈ V is from a bounded set, we can assume without loss of generality
that B > 0 is chosen sufficiently large such that ∥u(y; 0)∥X ≤ B for all y ∈ V ,
and hence, we obtain,

∥F0(y)− y∥L∞(V) ≤ ϵ0/3, (E.2.8)

whenever δ ≤ ϵ0/(3dB). It remains to derive a similar bound on

∥DyF0(y)−Dyy∥L∞(V) = ∥DyF0(y)− I∥L∞(V).

239

To this end, we recall that y 7→ F0(y) is linear, and hence is represented by a
matrix A ∈ Rd×d, i.e. F0(y) = Ay. It follows that

∥DyF0(y)−Dyy∥L∞(V) = ∥A− I∥2,

where ∥ · ∥2 is the operator norm. Retracing the argument above, it follows
that any y ∈ Rd, we have

|Ay − y|ℓ2 ≤ dmax
j∈[d]

|Ej(u(y; 0))− e∗j(u(y; 0))|

≤ d∥Ej − e∗j∥X ∗∥u(y; 0)∥X
≤ dδ∥u(y; 0)∥X .

We can furthermore find a constant C > 0, depending only on d and e1, . . . , ed,
such that

∥u(y; 0)∥X ≤ C|y|ℓ2 , ∀ y ∈ Rd.

Thus,
|Ay − y|ℓ2 ≤ dCδ |y|ℓ2 ,

which, upon taking the supremum over all |y|ℓ2 = 1, implies that

∥A− I∥op ≤ (dC) δ.

Hence, for δ ≤ min(ϵ0/(3dC), ϵ0/(3dB)), we conclude that

∥DyF0(y)−Dyy∥L∞(V) ≤ ϵ0/3,

and by (E.2.8),

∥F0(y)− y∥W 1,∞(V) = ∥DyF0(y)−Dyy∥L∞(V) + ∥F0(y)− y∥L∞(V)

≤ 2ϵ0/3.

Combining the last estimate, (E.2.7) and (E.2.6), we conclude that

∥Fξ(y)− y∥W 1,∞(V) ≤ ϵ0, ∀ ξ ∈ K.

Thus, by Lemma 6.3.10, there exists V0 ⊂ V and c0 > 0, such that

E#µ = F#(µd ⊗ P)

≥ cρF#(Unif(V)⊗ P)

≥ cρc0P(K)︸ ︷︷ ︸
=:c

Unif(V0).

240

Proof of Lemma 6.3.13

Proof of Lemma 6.3.13. By the assumption that f ∈ Uα,∞
ℓ (D) it follows that

for each n ∈ N there is ψn ∈ Σℓ
n with

∥f −Rσ(ψn)∥L∞(D) ≤ n−α. (E.2.9)

Recall that, by definition, ψn = ((A1, b1), . . . , (AL, bl)) ∈×L

l=1
(Rdl×dl−1 × Rdl)

with some (d0, d1, . . . , dL) ∈ NL+1, where d0 = d, L ≤ ℓ(n), W (ψn) ≤ n and
∥ψn∥NN ≤ 1.

Consider the functions

hn :

{
Re → R,

x 7→ Rσ(ψn)(Cx+ b),
(E.2.10)

which clearly satisfy that
hn = Rσ(φn), (E.2.11)

where

φn =
((
Ãl, b̃l

))L
l=1

∈
(
Re×d1 × Rd1

)
×
(

L×
l=2

(
Rdl×dl−1 × Rdl

))
,

and

Ã1 = A1C, b̃1 = A1b+ b1 and Ãl = Al, b̃l = bl for l = 2, . . . , L.

This, and the fact that W (ψn) ≤ n and ∥ψn∥NN ≤ 1 readily yields that

W (φn) ≤ W (ψn) · (∥C∥ℓ0 + ∥b∥ℓ0) = n · (∥C∥ℓ0 + ∥b∥ℓ0). (E.2.12)

and

∥φn∥NN ≤ max

(
{1} ∪

e⋃
k=1

{
d∑

j=1

|Cj,k|
}

∪
{
1 +

d∑
j=1

|bj|
})

=: T. (E.2.13)

Note that T is independent of n. Now pick R ≥ T to be determined later and
denote

τn :=

((
1

R
Ã1,

1

R
b̃1

)
,

(
A2,

1

R
b2

)
, . . . ,

(
AL,

1

R
bL

))
.

By the homogeinity of the ReLU activation function σ it holds that

Rσ(τn) =
1

R
hn. (E.2.14)

241

Moreover, due to (E.2.13), the fact that R ≥ max{1, T} and (E.2.12) it holds
that

∥τn∥NN ≤ 1 and W (τn) ≤ n · (∥C∥ℓ0 + ∥b∥ℓ0), (E.2.15)

which implies that

τn ∈ Σ
ℓ(·/(∥C∥ℓ0+∥b∥ℓ0))
n·(∥C∥ℓ0+∥b∥ℓ0)

⊂ Σℓ
n·(∥C∥ℓ0+∥b∥ℓ0)

, (E.2.16)

where the last inclusion follows from the fact that ℓ is non-decreasing.

Moreover, by (E.2.9), (E.2.10), (E.2.14) and the definition of E it holds that∥∥∥∥ 1Rf(C ·+b)−Rσ(τn)(·)
∥∥∥∥
L∞(E)

≤ 1

R
· n−α (E.2.17)

for all n ∈ N.

Let m ∈ N be arbitrary and define µm := τ⌊m/(∥C∥ℓ0+∥b∥ℓ0)⌋. Equations (E.2.16)
and (E.2.17) now readily yield that µm ∈ Σℓ

m and∥∥∥∥ 1Rf(C ·+b)−Rσ(µm)(·)
∥∥∥∥
L∞(E)

≤ 2α · (∥C∥ℓ0 + ∥b∥ℓ0)α
R

m−α.

By choosing R sufficiently large this implies that

dL∞(E)

(
1

R
f(C ·+b),Σℓ

m

)
≤ m−α for all m ∈ N,

which implies that f(C ·+b) ∈ R · Uα,∞
ℓ (E), as claimed.

Proof of Lemma 6.3.21

Proof. By construction, the encoder E is of the form

E(u) =

D

R(u(x), x) dx,

whereR : R×RdD → Rd is a shallow neural network. Let ψ = ((A1, b1), . . . , (AL, bL))

be a neural network with L ≤ ℓ0 layers. We define a shallow neural network,

R̃(η, x) := A1R(η, x) + b1,

and R̃(u)(x) := R̃(u(x), x). We next define the first hidden ANO layer as,

L1(v)(x) = σ

(
D

v(x) dx

)
,

242

i.e. a hidden layer with weight matrix and bias W1 = 0, b1 = 0. For j =

2, . . . , L− 2, we define

Lj(v) = σ

(
(Aj − I)v(x) + bj +

D

v(x) dx

)
,

where I denotes the unit matrix and finally,

Q(v) = ALσ(AL−1v + bL−1) + bL.

Let ψ1(ξ) = σ(A1ξ + b1) denote the first layer of ψ. Then we have

ψ1(E(u)) = σ

(
A1

D

R(u(x), x) dx+ b1

)
= σ

(
D

R̃(u(x), x) dx

)
= L1(R̃(u)).

Since the output v(x) := ψ1(E(u)) = L1(R̃(u)) is a constant function, it follows
that

L2(v) = σ

(
(A2 − I)v(x) + b2 +

D

v(x) dx

)
= σ(A2v + b2).

Thus, L2(L1(R̃(u))) = σ(A2ψ1(E(u)) + b2) agrees with the output of the sec-
ond hidden layer of ψ. Continuing recursively, it follows that

Ψ(u) := Q ◦ LL−2 ◦ · · · ◦ L1 ◦ R̃(u) = ψ ◦ E(u), ∀u ∈ X (D).

Thus, ψ◦E is equal to an ANO of depth L−2 ≤ ℓ0−2, with input layer R̃ and
output layer Q. Employing a rescaling argument similar to the proof of Lemma
6.3.13, relying on the homogeneity of ReLU as well as the fact that the total
number of layers is bounded by ℓ0 < ∞, it follows that for sufficiently large
γ > 0, depending only on E , ℓ0 and α, we have 1

γ
Ψ ∈ Uα

ℓ,NO, i.e. Ψ ∈ γ ·Uα
ℓ,NO.

Here we have also made use of the fact that ℓ0 − 2 ≤ ℓ∗.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Learning Homogenized Constitutive Models
	Error Bounds in Operator Learning
	FNO Definition
	Thesis Outline

	Learning Homogenized Constitutive Models with Memory
	Introduction
	One-Dimensional Kelvin-Voigt Viscoelasticity
	Main Theorems: Statement and Interpretation
	Learning material dependence
	Numerical experiments: data and optimization
	Numerical Results
	Conclusions

	Learning Homogenization for Elliptic Operators
	Introduction
	Microstructures
	Universal Approximation Results
	Numerical Experiments
	Conclusions

	Discretization Error of Fourier Neural Operators
	Introduction
	Notation
	Main Results
	Numerical Experiments
	Conclusions

	An operator learning perspective on parameter-to-observable maps
	Introduction
	Neural mappings for finite-dimensional vector data
	Universal approximation theory for Fourier Neural Mappings
	Summary of Linear Functional Regression Theory
	Numerical experiments
	Conclusion

	Theory-to-Practice Gap in Operator Learning
	Introduction
	A generalized gap in finite dimension
	Extension to operator Learning
	Conclusion

	Bibliography
	Appendix to Chapter 2
	Proofs
	Special Case Solutions
	Surrogate Model Experiments in Viscoelasticity
	One-Dimensional Standard Linear Solid
	Fourier Neural Mapping Definition

	Appendix to Chapter 3
	Proofs of Stability Estimates
	Proofs of Approximation Theorems
	Proofs for Microstructure Examples
	Numerical Implementation Details

	Appendix to Chapter 4
	Trigonometric interpolation and aliasing
	Discretization error derivation
	Proofs of approximation theory lemmas
	Proofs of regularity theory lemmas
	Proof of Theorem 4.3.2
	Proof of Theorem 4.3.3
	Additional numerical results
	Additional implementation details for error analysis experiments
	Implementation details for adaptive subsampling

	Appendix to Chapter 5
	Proofs for Section 5.3: Universal approximation theory for Fourier Neural Mappings

	Appendix to Chapter 6
	A result on neural network approximation
	Proofs for Section 6.3

