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ABSTRACT

This thesis investigates novel directions for harnessing the potential of quantum

computers in future applications. It is structured into three sections.

Quantum Simulation. We address two key questions: what systems exhibit quan-
tum advantage in predicting ground state properties, and how can we reduce the cost
of quantum simulations? For the former, we find that strongly interacting fermionic
systems have promising characteristics for quantum advantage. For the latter, we
develop an improved method for compiling block encodings using sum-of-squares

optimization.

Learning with Entangled Measurements. We explore the benefits of leveraging
entangled measurements on quantum states stored in quantum memory. These
learning algorithms can be applied to the readout stage of quantum simulations, or

to learn from quantum data from nature.

Topological Data Analysis. Using complexity-theoretic insights, we demonstrate
that certain problems in topological data analysis possess a quantum mechanical

structure, suggesting opportunities for quantum algorithms in this area.
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Chapter 1

OVERVIEW

Quantum computing represents the most powerful form of computation according to
our current understanding of physics, with quantum technologies offering unprece-
dented control over fundamental reality—the storage and manipulation of quantum
information itself. While significant progress is being made toward error-corrected
quantum computers [23; Blu+24], a clear understanding of their most concrete and
impactful future applications remains elusive [Dal+23al]. If quantum computers are
not widespread within the next few decades, the reason may well be due to lack
of incentive rather than an engineering obstacle. That said, there are reasons to
be optimistic. Quantum computing holds the potential to unlock groundbreaking
discoveries in physics and chemistry, ultimately leading to transformative technolo-
gies in fields such as drug development and material science. Quantum computing
also has the potential to provide exponential computational speedups for certain

problems, which could revolutionize processes at the industrial scale.

Simulation of quantum chemistry is one of the most widely heralded applications
of quantum computing. This is because quantum chemistry governs the properties
of drugs and materials, yet is hard to accurately model using classical algorithms.
Two outstanding challenges remain for quantum algorithms in quantum chemistry.
Firstly, we would like a better understanding of which systems are expected to exhibit
the largest quantum advantages, for example in predicting groundstate properties.
Can we characterize such systems, and understand why they are classically hard
yet quantumly easy? Secondly, quantum algorithms for quantum chemistry remain

expensive, and it is important to reduce the costs as much as possible.

We tackle the first problem in Chapter [2 where we study the SYK model as a
model for strongly interacting fermions. Here we were able to establish two new
results [Kin+24]. Firstly, low energy states of the SYK model must have large
polynomial circuit depth; that is, they are very entangled. Secondly, the SYK model
has an annealed free energy at inverse polynomial temperatures, and there is no
glassy phase. The first result suggests that low energy physics of SYK is classically
hard, whilst the second result suggests that it is quantumly easy, since there is no

obstruction to quantum thermalization. Remarkably, both results follow from the



Fermionic optimization and learning

Chapter I Chapter II ) '
Quantum Strongly Interacting Fermions Sum of Squares Spectral Amplification
simulation — Strongly interacting fermionic systems | — Order of magnitude improvement over

have promising properties for quantum ad-
vantage.

— Figenstates are highly complex.

— Annealed and non-glassy at low temper-
atures.

state of art quantum chemistry algorithms.
— Preprocess Hamiltonian using sum of
squares optimization and amplify low en-
ergy spectrum.

— Asymptotic improvements in SYK toy
model.

. . Chapter II1 Chapter IV
Lear?mgl“é‘th Learning Fermionic Observables Learning Bosonic Observables
entangle ] . )
measurements | —Aim to measure fermionic k-RDM. — Aim to measure expectation values of

— Necessary in readout stage of quantum
chemistry algorithms.

— Exponential sample complexity im-
provements using entangled measure-
ments on two copies of the state.

bosonic displacement operators.

— Exponential sample complexity im-

provements using measurements on p ®
*

— Proof that p ® p™ is necessary.

Table 1.1: An illustration of the themes in Chapters I-IV

same quantity which we call the commutation index, which measures the extent to
which the terms in the Hamiltonian are non-commuting. For quantum spin glasses
the commutation index is constant, whilst for random fermionic interactions it
decays polynomially with system size. This provides a hint that strongly interacting
fermionic systems behave more like random matrices than like spin glasses and are

a better target for quantum algorithms.

Next in Chapter [3| we develop a new method for compiling more efficient block
encodings of quantum chemistry Hamiltonians for use in quantum algorithms. We
refer to our method as sum of squares spectrum amplification (SOSSA), and it has al-
ready been used in Ref. [Low+25] to achieve an order of magnitude improvement in
the total runtime over state of art quantum chemistry algorithms for large molecules
of industrial interest, such as FeMo-co. The key innovation lies in performing spec-
tral amplification on the low-energy spectrum of the Hamiltonian. This approach
typically works only when the Hamiltonian is frustration-free. However, by harness-
ing sum-of-squares optimization, we can classically preprocess the Hamiltonian to

express it in a low-frustration form.

In applications of quantum simulation, after preparing a low energy state or simulat-
ing some dynamics on the quantum computer, we would like to extract meaningful
physical information from the final quantum state. This readout stage of the quantum
algorithm can be casted as a learning problem. In Chapterd] we continue the theme
of fermionic systems from Chapter [2] and study learning algorithms for fermionic

observables which exploit entanglement measurements on multiple copies of the
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unknown state. Specifically, we resolve a key bottleneck in shadow tomography
for fermionic operators by reducing the quantum memory requirement from many
copies to just two copies [Kin+25]. We do this by relating measurement strategies

to colorings of a certain graph which we call the commutation graph.

In Chapter [5 we apply similar learning techniques from Chapter [ to bosonic
observables. In the bosonic setting, we uncover a new type of advantage where
entangled measurements involving the complex conjugate of an unknown state
provides exponential sample complexity advantages [KWM24]]. We proved that the
learning task is information-theoretically impossible without access to the complex

conjugate state.

Chapter [0] is a final standalone chapter which looks at an application of quantum
computers outside of quantum simulation. Can Hamiltonian simulation algorithms
be applied to domains outside of the simulation of quantum systems themselves?
One example is provided by the task of topological data analysis (TDA), for which
quantum algorithms have been developed. The primary feature of TDA enabling
quantum speedups is the ability to encode topological invariants in the ground
space of an exponentially large sparse matrix, known as the combinatorial Laplacian
[LGZ16} Ber+24al]. In Chapter|6|we show that deciding whether a topological space
has a high-dimensional hole is QMA 1-hard and contained in QMA [KK?24]. This
tells us that there is quantum structure in the TDA problem and provides evidence
that the quantum TDA algorithm cannot be dequantized. Our proof technique
crucially used a tool from algebraic topology known as spectral sequences, which

allowed us to perform a version of perturbation theory on the Laplacian.



Chapter 2

STRONGLY INTERACTING FERMIONS

Simulating ground and thermal state properties of quantum systems is a key appli-
cation of future quantum computers [Fey82; L1096; McA+20; Lee+21a; Bur+21a;
Bab+18bj; |(Cha+20]. Nevertheless, the search for particular, favorable instances that
are quantumly easy and classically hard is not clear-cut [Lee+22]. A challenge is that
current quantum computers are limited in quality and size, requiring the community
to rely on theoretical arguments to give computational separations. However, the
ground states for standard few-body quantum spin models can be QMA-hard (as
classical spin models are NP-hard) in the worst case [Kit+02; |Aha+09; |GI09]; in
the average case, random classical and quantum spin models exhibit glassy physics
where computational hardness may arise [Gam21; BS20]]. To give an efficient quan-

tum algorithm for low-temperature states, one must carefully avoid these instances.

Most chemical and condensed matter systems involve fermionic degrees of freedom,
not only spins. Of particular importance in quantum chemistry is the strongly
interacting regime, where Gaussian states do not give good approximations to the
ground state and the Hartree—Fock method fails [SO12]. This has been proposed
as a promising regime in which to apply quantum computers to achieve quantum
advantage [McA+20]. The Sachdev—Ye—Kitaev (SYK) Hamiltonian provides a
natural model for strongly interacting fermions [SY93; Kitl5b; Kitl5a]. As a
counterpart to random spins, it is a random Hamiltonian consisting of all-to-all

g-body Majorana fermions:

-1/2

HSYK = iq/z(Z) Z EirejaYir -+ Vi 2.1
J1<<jg

where g is assumed to be even, and the g, ;. are i.i.d. standard Gaussian random

variables. The y; are the Majorana operators, which satisfy commutation relations

Yivj+v;vi = 26;;. They arise from the fermionic creation and annihilation operators

aj, a; by

Y2j-1= a; +a; , vy = i(aj —aj) (2.2)

While the 4-body fermionic ground state problem can be just as hard as spin models

in the worst case (NP-hard) [LCVO7], average-case fermionic systems appear to
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have qualitatively different physics and perhaps computational complexity than
spin systems [HO22; MS16; BS20]. Extensive heuristic calculations (such as
large-N expansions) together with numerical evidence indicate that the SYK model
resembles a thermalizing chaotic system, not a frozen spin-glass as occurs with
few-body quantum spin systems [[BS20; Fac+19]. However, rigorous proofs that go

beyond the physical arguments have been very limited [HO22; FTW19].

In this chapter, we study the strongly interacting SYK model and give quantita-
tive evidence that random, all-to-all connected fermionic systems have a classically
non-trivial yet non-glassy thermal state at constant temperatures. In contrast, these
two properties are false for disordered spin systems [BS20; Bra+19]. Remark-
ably, the proofs of both main results rely on the same quantity, the commutation
index [Kin+25[]. To bound the commutation index of fermionic operators, we an-
alyze the Lovasz theta-function [Knu93| of a certain graph encoding the fermionic

commutation relations.

This quantity pinpoints a crucial and often overlooked distinction between fermionic
and spin Hamiltonians: low-degree fermionic monomials have a very different
commutation structure than low-weight Pauli operators. The commutation index
captures this difference, quantifying the fundamental distinction in the physics of
local spin systems and local fermionic systems. This disparity, we argue, is the
origin of a potential quantum advantage in simulating strongly interacting fermionic
systems. Although the SYK model is our primary example, we also show that
versions of our results—depending only on the commutation index—apply to all
models with i.i.d. Gaussian couplings. This highlights the surprising importance
of quantum uncertainty in governing both glassiness and the entanglement of low-

energy states in disordered many-body systems.

More precisely, we first show that all low-energy states (including constant-temperature
thermal states) of the SYK model have high circuit complexity (‘classically non-
trivial’ﬂ The following theorem is phrased in terms of states that maximize the
energy Tr( pHgYK). This is equivalent to states that minimize the energy, since the
distribution of H"¥ is the same as that of —H "X,

Theorem 2.1 (Low energy states are classically nontrivial). Consider the degree-q
SYK model HgYK. With high probability, the maximum energy is /lmaX(H;;YK) >

I'We here consider disordered models where the distribution of H is identical to that of —H, so
the ground state energy is equivalent to the maximal energy.



Q,(«\/n), yet any state p such that

Tr (pHS™X) = 1y (2.3)

has circuit complexity
Q, (nlP+142), (2.4)

The Q, notations assume a fixed q and growing n.

That is, low-energy states of the SYK model are highly entangled and require many
parameters to describe; simple classical ansatzes, such as Gaussian states, must fail.
In comparison, local quantum spin systems are known to have efficiently computable
product state approximations to the ground state [Bra+19|] and thus, in this sense,
have ‘trivial’ states that achieve a constant-factor approximation of the ground state

energy.

Second, we show that the quenched free energy of the SYK model agrees with
the annealed free energy even at very low temperatures (‘non-glassy’), formalizing
and strengthening previous results of this nature [Gurl7; BS20; Fac+19; GPSOO]
Here, the free energy is normalized such that 8 = O(1) corresponds to constant

physical temperature.

Theorem 2.2 (Annealed at low temperatures). Consider the partition function of
the degree-q SYK model Zg := Tr exp(—ﬁ\/ﬁHgYK). Then, we have:

ElogZs; logEZ; ElogZ
08T 2 2O 0,80, (2.5)
n

n n

The O, notations assume a fixed q and growing n.

The quantitative agreement of the two free energies at (inverse-polynomially) low
temperatures strikes a stark contrast with disordered spin systems: the SYK model
does not experience a ‘glass’ phase transition in the sense of quenched-vs.-annealed
free energy. For classical spin Hamiltonians, it is known that the annealed free
energy n~'Elog Zp fails to agree with the quenched free energy n~!'log EZg at
constant temperatures where the Hamiltonian is in its glassy phase and algorithmic
hardness arises; disordered quantum spin systems undergo a similar transition at

constant temperature [BS20]. The lack of a glass transition for the SYK model

%In particular, Ref. [BS20] showed that the SYK model is consistent with an annealed approxi-
mation, and here we prove that the annealed approximation holds.
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suggests that there may be no algorithmic obstructions to preparing low-temperature
states of the model on a quantum computer, but we do not prove this claim. We

leave finding such an efficient quantum algorithm for future work.

Although the SYK model is our primary example, our results apply more generally
to a wider range of models. We will see shortly that the circuit lower bound in
Theorem [2.1] and the bound on the quenched free energy in Theorem [2.2] depend
only on the value of a single quantity which we call the commutation index. This
quantity characterizes the quantum uncertainty in the model and provides a new tool

to probe the chaotic properties of many-body systems.

Background and related work. The SYK model is a canonical instance of a
chaotic Hamiltonian [[SY93}; [Kit15bj; Kit15al] with related models studied as far back
as [FW70; BF71]]. For even g = o(+/n), the SYK model has a Gaussian spectrum
[FTW19]] and heuristics from physics indicate that the expected maximum energy of
the SYK model scales as @ for even ¢ [GIJV18; GV16; HO22]. However, the only
rigorous result we are aware of with explicit constants is an upper bound of \/(logT)n
[FTW19]]. Though Gaussian state approximation algorithms exist for fermionic
systems [Bra+19; Her+23bj, it is known that for the SYK model with ¢ > 4,
Gaussian states cannot achieve constant factor approximations to the maximum
energy [HTS21al]. Separate from the SYK model, so-called no low-energy trivial
states (NLTS) theorems rule out constant factor approximations to ground energies
with low depth circuits in worst-case settings [ABN23; |[Her+23a]. For random
nonlocal Hamiltonians, [Che+23|] shows a circuit lower bound for sparse, sampled
Pauli models using a similar technique as in the proof of Theorem [2.1] where the

commutation index is much more straightforward to calculate.

The commutation index has connections to other areas of quantum information
theory and Hamiltonian complexity. In [GHG23; XSW?23|], the commutation in-
dex (there termed the generalized radius) is used to study generalized Heisenberg
uncertainty relations. Related to our work, [HO22] use the commutation index to
analyze the performance of sum-of-squares relaxations of the SYK model and prove
the ¢ = 4 instance of Theorem giving as well an algorithm verifying Q(+/n)
energy for g = 4. [AGK?24] demonstrates that product states maximize the energy
variance for random quantum spin Hamiltonians. Finally, the commutation index
appears in quantum learning theory, where it provides a sample-complexity lower
bound on how many copies of the state are required to learn the expectation values
of a set of operators via shadow tomography [Che+22; |Kin+25].



Commutation index
We define the commutation index A(S) of a given set of operators S = {Ay,..., Ay}
as follows.

Definition 2.1. For a set S of Hermitian operators, define their commutation index
by

A(S) = sup Eges(¥|Al). (2.6)

)
When all ||A;]| < 1 the commutation index takes values 0 < A(S) < 1. Roughly, a
more ‘commuting’ set of observables S gives a larger value of A (S). For example,
if the operators are all mutually commuting and satisfy Ai2 = 1, choosing |¢) to be
a simultaneous eigenstate gives A(S) = 1. The commutation index is related to the
minimum uncertainty of the operators A;, assuming they satisfy Al.2 =1:
Lo

. 2_ 4
ﬁrwl{E; (A Al =1-A(S), 2.7)

where (AW,)Ai)Z is the variance of A; in the state |/):

(AyAd)? = Wl A2 1) — (Wl A )2 = 1= (] A [)? 2.8)

The commutation index has already been used in the context of quantum learning
and state tomography [Kin+25]]. In this paper, we will see that the commutation
index has strong implications for the physics of the model H = m~/? 2ty &iA; with
Gaussian coeflicients g;, and it will be the key quantity in our two main results. When
the commutation index is small and the operators have high quantum uncertainty,
two properties follow: the model has highly entangled low energy states, and the

model is annealed at low temperatures.

Crucially, the commutation index controls the sensitivity of many physical properties
when varying the couplings of the model. For instance, the norm of the energy

gradient of a given state with respect to the disorder is bounded by:

1 m
Veolrio]; = — 2 PIAI9) < AGS), 29)

Our key observation is that the commutation index of the set Sy of (Z) degree-g
Majorana operators is very small:



Set S Commutation index A(S)
Commuting 1

k-local Paulis 37% (Theorem |
Degree-g Majoranas ~ ©,(n™9/%) (Theorem [2.3)
All Paulis 27" [[Che+22|, Lemma 5.8]

Table 2.1: The commutation index A(S) characterizes how non-commuting a set S
of operators is. The commutation index reveals a key distinction between local spin
operators and local fermionic operators: in the fermionic case, the commutation
index decays polynomially with system size, while it is constant in the case of spins.
The ©, notation assumes a fixed g and growing n.

Theorem 2.3. Let S7 be the set of degree-q Majorana operators on n fermionic

modes. Then for any constant, even q:

A(S)) = 0,4(n™47?). (2.10)

The decay with system size n is unique to the fermionic setting—for local Pauli
operators, A(S) is constant with respect to n (see Table [2.1)). This behaviour was
first conjectured in [HO22|] to our knowledge, and we establish the conjecture—

including the setting when ¢ scales with n—in Section[2.1]

The proof of Theorem involves constructing the commutation graph G(S)
whose vertices correspond to operators A; € S with edges between operators if
and only if they anti-commute. The commutation index can be upper bounded by
A < 9(G(8S))/|G|, where #(G(S)) is the so-called Lovdsz theta function of the
commutation graph. The Lovdsz theta function can be efficiently computed via a
semi-definite program [Knu93|]. For the SYK Hamiltonian, G(Sy) is the graph of

a certain Johnson association scheme [Del73]].

In the course of writing our results we became aware of Ref. [Lin24|], which also
establishes the necessary results on the Lovasz theta function of Johnson association
schemes. Our results use different proof techniques and determine the explicit g-
dependence of the constant in Equation (2.10)), which was not derived in [Lin24].

Circuit lower bound
An almost direct consequence of a decaying commutation index is a lower bound
on the complexity of any ansatz in constructing near-ground states, including the

ansatz of quantum circuits.

Theorem 2.4 (Low energy states are classically non-trivial). Consider the random
Hamiltonian H = m~'/? 2t 8&iAi with i.i.d. Gaussian coefficients g;. Let A be the
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Ansatz Circuit complexity™
Quantum circuit with G gates G > Qq(nq/ 212y
MPS with bond dimension y X = Q,(nd/41/2p)

Neural network with W parameters W > Q,(n9/2*112)

*min. complexity to achieve energy rAmax (H>YX) w.h.p.
Table 2.2: To achieve energy scaling as fAyax (H, gY[k) for the SYK Hamiltonian with
high probability, ansatz complexity (e.g., circuit depth) must scale polynomially
with n. See Section[2.2)for proofs. The €, notations assume a fixed g and growing
n.

commutation index of S = {A1, ..., Ay} and let C be a set of fixed quantum states.

Then the probability that C contains a low-energy state is exponentially small:

P Hly) >t
ﬁlﬁ)é W Hy) A

2
< exp (log |C| - t—) . (2.11)

This theorem follows from a concentration argument and a union bound. The
commutation index A({A;}!,) characterizes the maximum variance of the energy
(W |H |y ) for an arbitrary fixed state |¢). Standard concentration bounds then imply
that the probability a state |) has energy ¢ is bounded as exp(—Q(#>/A)). This
concentration is so strong that one can bound the maximum energy over extremely
large sets of states (or e-nets of infinite sets) S via a simple union bound argument
with high probability over the disorder. In particular, we obtain a lower bound
|S| = exp(Q(#2/A)) on the cardinality of the class of ansatzes needed to achieve a

given energy .

Specializing to the SYK model via Theorem [2.3] we summarize the implications of
this result for various classes of states S in Table For instance, we show that
all states that achieve a constant (i.e., t = ® (1)) approximation ratio with the SYK
ground state energy have a quantum circuit depth of Q, (n? /2). In contrast, product
states give constant factor approximations to the ground state energy for any local
spin Hamiltonian (see Section [2.2] for a short proof). Our argument also extends to
classical ansatzes. For instance, tensor network methods require a bond dimension
that grows polynomially with n to construct near-ground states [Schllj |Ban23|.
Similarly, popular methods based on neural quantum states [CT17; SH20; Sha+20;
SSC22; NI21]| need at least Q(n®) parameters to construct near-ground states for
the standard g = 4 SYK model, implying a bounded depth fully connected network
must have layer width that grows as Q(n3/?).

Our circuit lower bound is related to the study of ‘no low-energy trivial states’

(NLTS) Hamiltonians, whose existence was conjectured in [FH13|] and resolved
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in [ABN23; Her+23a]. However, the settings are not strictly comparable: our
instances are random (average-case), whereas NLTS is formalized for worst-case
bounded interaction instances of Hamiltonians. The randomness allows us to prove
stronger statements in two ways. First, our circuit lower bounds hold for states at any
constant temperature, rather than for states below some energy threshold. Second,
we can achieve arbitrary polynomial circuit depth lower bounds, whereas current
constructions of NLTS only give a logarithmic depth lower bound. See Section[2.2]

for more discussion.

Annealed approximation
The commutation index also has direct implications for the concentration of various
physical properties of interest around their disordered expectation. One manifesta-

tion of this is in the relation between the quenched and annealed free energies:

1 1
—ElogZs < —logEZg, (2.12)
n n
N, [
quenched annealed

where Zg is the partition function of the model v/nH at an inverse temperature f3.
The quenched free energy is physical but hard to calculate while the annealed free
energy is much easier to calculate but nonphysical. The inequality above always
holds due to Jensen’s inequality, and the disagreement stems from fluctuations in

log Zg due to the disorder.

The quenched free energy assumes the disorder induced by the random couplings is
fixed when averaging over thermal fluctuations; the annealed free energy treats these
fluctuations on an equal footing. While the two quantities agree at high temperature,
at low temperature the latter is incapable of accounting for frustration induced by
the disorder of the random couplings which can induce a spin glass phase [Tal00;
Par79]. Their disagreement is thus indicative of the presence of a spin glass phase.
Motivated by this, our second main result bounds the difference in quenched and
annealed free energies as a function of the temperature and the commutation index
of the model.

Theorem 2.5 (Annealed at low temperatures). Consider the partition function
Zg := Trexp(—B+nH) of the random Hamiltonian H = m~1/2 2ty 8iA; with i.i.d.
Gaussian coefficients g;. Let A be the commutation index of S = {Ay,...,Apn}.
Then the quenched and annealed free energies are bounded by:

1 1 1
~Elog Zg < —logEZg < ~Elog Zp + 45%A. (2.13)
n n n
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Quantity f Rate K
Tr (Xpg) Q, (29>

Tr (HSYKpﬁ) Q, (min (1,872n72) nq/z)

*for t order of ||H3YK|| =0(vn)
Table 2.3: Concentration bounds for functions f of the Hamiltonian around its
mean, i.e., P[|f —E [f]| > t] < 4exp (—Kt?). Amax denotes the largest eigenvalue
and X is an arbitrary bounded operator. pg is the thermal state of \/nH at an inverse
temperature f3.

For the SYK model this directly implies Theorem [2.2] Informally, this bound is
due to controlling the growth of the moment generating function of log (Zs) —
E [log (Zﬁ)] using the commutation index A. We formally prove Equation in
Section [2.3] We there also prove concentration bounds for observable expectations
as well as two-point correlators, again following from bounding how sensitive these
quantities are when varying the disorder. We summarize some of these results when
applied to the SYK model in Table[2.3] We also emphasize that this general theorem
applies to any model for which the commutation index is known. In the case of the
k-body Pauli models, this indicates that the annealed approximation remains valid

for B growing exponentially with the locality k as previously predicted [SW24|].

2.1 Commutation index and Lovasz theta function

Commutation index

In this section we introduce the commutation index, which quantifies the commuta-
tion structure of a set of operators. This allows us to study the commutation structure

of local Majorana operators and how they differ from local Paulis.

The following result represents a kind of uncertainty principle, generalizing the
familiar Bloch sphere constraint (X)? + (Y)? + (Z)*> < 1.

Lemma 2.6. Let Ay, ..., A, be Hermitian operators which square to identity. If
Ay, ..., Ay pairwise anticommute, then for any state p
D Tr(Ajp)* < 1. (2.14)
J

Versions of Lemma [2.6] appear in various papers, for example [Asa+16, Theorem

1]. Since the proof is simple, we reproduce it here.
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Proof. Given p, let a; = Tr(A;p). We aim to show };; a? < 1. Consider the

observable

Q=) ajA;. (2.15)
:

We will use the inequality Tr(Q%p) — Tr(Qp)? = Var,(Q) > 0. Formally, this
holds since p is positive semi-definite so Tr(Op) > 0 for any positive semi-definite

operator O and

Tr ((Q _Tr (Qp) ]l)zp) >0 = Tr(Qp)? <Tr (sz) . (2.16)
Due to anticommutativity of Ay, ..., A,,, we have
1
0*= > ala+) aja1A;A = aj- T+ Daja{An A=) @31 (2.17)
7 j#l 7 7 7

Note A? = 1 since they are Hermitian unitaries. Thus Tr(Q%p) = 3. i a?. On the
other hand Tr(Qp) = X; a?, thus

Tr (Qp)2 <Tr (sz) SN (Za?)z < Za% - Za? <l1. (2.18)

J J J O

Lemma [2.6] tells us that pairwise anticommuting operators cannot all have large

expected values on a quantum state: the sum of their squared expected values

cannot exceed 1. This reminiscent of Heisenberg’s uncertainty principle. More

generally, in Definition [2.1) we defined the maximum sum of squares of a set of

operators S to be its commutation index. For example, Lemma [2.6{shows that if all
the operators in S anticommute, then A(S) < 1/|S]|.

We will see in Section[2.2] and Section 2.3 that the commutation index of the set S
of operators has strong implications for the physics of the model consisting of the

operators in § with Gaussian coefficients:

1
H=——= ) gaA, ga~N(0,1). (2.19)

\/E AeS

We will also see in Section 4.1 that the commutation index has connections to
learning tasks on the set of operators S [Che+22].

Commutation graph and Lovasz theta function
Our computation of the commutation index will follow from studying the commu-
tation structure of spin and fermionic operators, summarized by their commutation

graphs.
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Definition 2.2. (Commutation graph.) The commutation graph G(S) of a set S of

Pauli or Majorana operators is defined as follows.

® The vertices of G(S) correspond to operators A € S.

e We include an edge between any two vertices whose operators anticommute.
We now introduce a key graph property which reveals the anticommutativity of the
operators S through their commutation graph G (S).

Definition 2.3. (Lovasz theta function.) Let G be a graph on m vertices. The Lovasz
theta function ¢(G) is defined by the following semidefinite program of dimension
m. Let E denote the edges in the graph G, and J the all-ones matrix.

max { Tr(JX) , X € R™"
stX20,Tr(X)=1, X; =0V(j.l) € E }, (2.20)

where E denote the edges in the graph G, J the all-ones matrix; A = B denotes that
A — B is positive semidefinite; Tr(X) denotes the trace of X; and X denotes entry
(7, 1) of X. It has dual

min {1 € R
st.AY €R™™ Y =1V, Y =0V(,)¢E, A¥ =1} (221

For any graph G, the following chain of inequalities is known:
1(G) < 9(G) < chrom(G), (2.22)

where G is the complement graph, chrom(G) is the chromatic number of G, and

I(G) is the independence number of G. For example, see [Knu93|.

The key reason for introducing the Lovasz theta function is that the Lovasz theta
function of the commutation graph G(S) upper bounds the commutation index

A(S). This bound can be seen as a generalization of Lemma 2.6

Lemma 2.7. Let S be a set of Pauli operators

A(S) < éﬁ(G(S)). (2.23)

All together,

1(G(S)) < |S] - A(S) < (G (S)) < chrom(G(S)). (2.24)
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Lemma [2.7] has appeared before in [GHG23; XSW23; HO22[; we reproduce a
simplified proof here for the benefit of the reader.

Proof. The inequalities 1(G) < 9(G) < chrom(G) always hold for any graph G
[Knu93|]. A(S) > I(G(S8))/|S| holds since we can choose p in the definition of

A(S) to be in the simultaneous eigenbasis of the independent set of operators. It
remains to establish A(S) < 3(G(S))/|S|.

Denote S = {Ay,...,A,}. Given p, let
aj = Tr (A]p) . (225)

We aim to show 2’ ; a? < HG(S)).

Consider the observable

0= Z ajA;. (2.26)
:
We have 1
Q> =) ajalAjA; = 3 D aja{A;, Al (2.27)
Jil ol

Note A7 = 1 since they are Paulis.

Now take the trace with p. We get

T (sz) = ajaiB < Amax(B) Y a2, (2.28)
J

Jil

where we defined the matrix

1
le = ETI‘ ({Aj,Al}p) . (229)

By positivity of the state p, we have Tr((Q — Tr (Qp) ]1)2p) > 0 and therefore

Tr (Qp)* < Tr (sz) (2.30)
— (Z a§)2 < dnax(B) Y 2.31)
J J
— Z a2 < Amax(B). (2.32)
J

B satisfies B;; = 1 Vj and Bj; = 0 for all edges (j,!). The latter holds since (j, /)
is an edge precisely when {A;, A;} = 0. Positivity of the state p implies that B is
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positive semidefinite, since for any vector v € R™

2
VTBy = Tr ((ZvjAj) p) >0, (2.33)
J

Let’s now take the supremum of the right-hand-side over all such B to get

Z a3 < §(G(S)), (2.34)
i
where
9(G) = max {Amax (B), B € R™™"

st., Bj;=1Vj, B;;=0V(j,]) € E, B = 0}. (2.35)
Lemma [2.8 completes the proof. o

Lemma 2.8. ([Knu93|) The function 9(G) from Equation (2.35) satisfies 9(G) <
HG).

Proof. We will use the dual description Equation (2.21). Let (1, A) achieve the
optimal dual value A = ¥#(G). Define the m X (m + 1) matrix

U=(1,V1A-7), (2.36)

where we padded with the all-ones column vector 1 on the left. (Recall J denotes

the all-ones matrix.) Let B be any matrix feasible for #(G). Decompose
B=0"Do=V'v |, v=+Do, (2.37)

where Q is orthogonal and D is diagonal with D{| = Apax(B). (The entries of D
are the eigenvalues of B.) Now consider the collection of m matrices {Y )} of size
m X (m + 1) given by

YD =V, Up. (2.38)
We have

T (v )Ty ) = (Z VaiVa) ( Z UppUnp) = ABjiAj.  (2.39)

If j # [, this is zero, since if (j,[) is an edge in G then Bj; = 0, and if not then
Aj;=0.If j =1, we get Tr ((Y(j))TY(j)) = A. Thus {Y))/+/2} are orthonormal
when viewed as vectors of dimension m(m + 1), and

D D
1>Z (Y¥/Va)* = ”ZQU—J — Dy <A (2.40)

O

It is in fact true that 9(G) = 9(G), but we only need #(G) < 9(G) for our purposes.
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Commutation index of local operators

The commutation index of the set of k-local Paulis is independent of system size n.

Theorem 2.9. Let P} be the set of k-local n-qubit Paulis. When 2n + 1 > 3%, it
holds:
AP}y =375, (2.41)

Moreover, the maximum is achieved by any product state.

Proof. First we aim to show Epepn (W|P|y)?* = 37* for any product state of single-
qubit states [y) = [¢1) ® - - - ® |¥,,). Denoting by Pks the set of Paulis on subsystem

S C [n], we have

Epepp (WIPIW)? = Bsclul isikEpeps (WIPI¥)*. (2.42)

By tracing out [n] \ S, it is sufficient to show

Epept (WIPlY)* =37 (2.43)

for any product state [¢) = |¢1) ® - - - @ |y ). Since |SD,’§| = 3K, this is equivalent to

D wlPly)? =1. (2.44)
Pepf
But this holds since
k
Swlp?=[1( >, wilpwp?) =1 (2.45)
PePf Jj=1  Pe{ox,0v,0z}

using that the single-qubit states [y ;) are pure.

For the upper bound, we will invoke Lemma Recalling that G (%)) is the
commutation graph of k-local Paulis, it suffices to show that #(G (#})) < 37k. [P
For this purpose, we import a fact from [Knu93] using a proof technique similarly
applied in [AGK24]]. A graph G is vertex-symmetric if for any two vertices u, v,

there is an automorphism of G taking u to v.

Fact 2.1 ([Knu93|)). If graph G is vertex-symmetric, then
3(G) - 9(G) = |G|. (2.46)

where G is the complement graph and |G| denotes the number of vertices in G.
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The commutation graph G(#}!) of k-local Paulis is vertex-symmetric. Thus to
establish the upper bound #(G(P})) < 37k |9/, it suffices to show 19(5(?’]?)) >
3%, Using the independence number inequality of Lemma it suffices to find
an independent set in E(PI’:) of size at least 3k, This is equivalent to a clique
in G(PZ) of size at least 3*. In other words, we must exhibit a set of 3* mutually
anticommuting k-local Paulis. This can be done using the ternary tree embedding of
[V1a19; Jia+20a]. Let 2n+ 1 = 3%, The ternary tree construction at depth k embeds
2n + 1 mutually anticommuting operators into n qubits where each anticommuting

operator has locality k. O

On the other hand, the commutation index of the set of degree-g Majorana operators

decays polynomially with system size.

Definition 2.4. The Majorana operators on n fermionic modes are defined abstractly

as n operators {y1, . . ., yn} which satisfy the relations

Ya¥b + ¥bYa = 20ap1. (2.47)

A degree-q Majorana operator is a degree-q monomial in the Majorana operators.

The following theorem is the key result which enables Theorem [2.1] Theorem [2.2]
and Theorem 4.2

Theorem 2.10. Let S} be the set of degree-q Majorana operators on n fermionic

modes with q even. Then
A(Sy)
() /(;)

for all n sufficiently large, for each q.

—1|l<o@™ (2.48)

Proof. Let g and n be even. First we show the lower bound in Theorem [2.10] We
can find a set § € Sy of mutually commuting degree-g Majoranas of size (Zﬁ) by
taking (q/2)-wise products of {iy1v2,iy3V4,...,i¥Yn—1Vn}. Let p be the state which
is maximally mixed within the simultaneous +1-eigenspace of the operators in S.
2 2

Then ¥ sesn(WIAlY) = |S] = (ZZ) and A(S]) > (Z;z)/(Z) (Note the number of
degree-g monomials on n Majoranas is |Sy| = (Z ).) The remainder of this section
is devoted to showing the upper bound via the Lovész theta function. We aim to
establish the following theorem.
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Theorem 2.11. Let S; be the set of degree-q Majorana operators on n modes. Then

n/2
q/2

for all n sufficiently large, for each q.

9(G(S))) < ( ) +0(ePlaloedpal2-1) (2.49)

Noting that |Sy| = (Z), the upper bound in Theorem m follows from combining
Theorem and Lemma Thus it suffices to establish Theorem After
completing our work, we became aware of Ref. [Lin24]], in which they establish
HG(S))) < ("/2) + ¢(q)n?'*>7! for some function c(g). Theorem [2.11|is stronger,

since it specifies the asymptotic dependence c(q) = O(e9412?))  We give a
self-contained proof of Theorem [2.11]

The Johnson association scheme J;(n, q) is the graph whose vertices correspond
to subsets S C [n] of size |S| = ¢, and (S,T) forms anedge if g — |SNT| = d. Write
AZ’q for the adjacency matrix of the Johnson scheme Ju(n, ). The graph G(Sy)

has adjacency matrix A equal to

— A4 n.q n.q
A=A+ AL s AT (2.50)

We are interested in the Lovasz theta function of G(SZ). The following three
results advertised in [HO22] reduce #(G(Sy)) to a linear program involving Hahn
polynomials.

Lemma 2.12. ([Del73, p. 48]) The matrices Ag’q, e ,A;’q are simultaneously

diagonalizable, with eigenvalues given by the dual Hahn polynomials:

spec(A”’q) = {I:In’q(x) :x=0,...,q9} (2.51)

nq — d—j q—J\[|lqd—~* n—q+]—x) 252
R e

In particular, for all d > 0 the all-1’s vector is an eigenvector of AZ’q of multiplicity
1 with eigenvalue H;(0) = ("7)(%).

Lemma 2.13 ([HO21|], Lemma 4.25). In the dual formulation of the Lovasz theta
function in Definition 2.3|for the graph G(S;) it suffices to minimize over matrices
Y whose entries Y (S, T) depend only on dist(S,T). Thus we can write

HG(Sy)) =
min{d : Jay,a3,...,a4-1 5.1 A(L+ai AT +azA77 +- -+ aq_lAZ’_ql) = J}.
(2.53)
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Corollary 2.14. (J[HO21]], Corollary 4.26)

ap,as,...,dqg-1

HG(Sy)) = min {(Z)/(1+P(O)) : P(1),...,P(q) = -1

where P(x) = alﬁ?’q (x) + a3f~]§’q(x) +--+ aq_lﬁgﬂ (x)}. (2.59)

Our strategy to prove Theorem [2.11] will follow by finding a feasible polynomial
P* for the linear program (LP) in Corollary 2.14] and showing that P*(0) has the

correct scaling in the large n limit:

(q)/(1+P (0)) = 7 /2)'(n/2)q/2+0(rﬂ/2 h. (2.55)

Then all that remains is to control the error term for finite n. This will follow from

an application of the polynomial method.

We first state and prove a lemma which finds an appropriate feasible polynomial P*.

Lemma 2.15. We can choose a feasible polynomial P* for the LP in Corollary

that simultaneously satisfies:

e P*(0) = &3/2)' 412 — ¢(q)n?*7! for some c(q).

e P*(0)/n?'? is a polynomial in n~" of degree 2q — 2.

o |P*(0)/n9/?| < €21¢% for all n.
Proof. For constant ¢, x = 1, ..., q and large n, the leading order term in the Hahn
polynomial is

~ 0(n?) + 0(n?! d<qg-x
A (x) = (1) + 0" 1 (2.56)
(=D (n4=~) + O™ d>q-x.
It will be useful later to be more specific about the coefficients in the cases d = g—x—1

and d = ¢ — x + 1. To leading order in n with ¢ constant we have

A () = KO (@)t 40mI™2) L B (1) = g9 (1) O (n ),
(2.57)
where
h(Q)(X) __4=* , g(q)(x) — X (2.58)

(g—x—-1)! (g—x)!"
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Now let us examine the LP in Corollary [2.14]in the large-n limit. Our strategy is
to sequentially go through x = ¢, ..., 1 and ensure that P(x) > —1 for sufficiently
large n for each x. If we choose ay,as, ..., a,-1 to all be eventually positive, then
automatically P(x) > 0 eventually for odd x. This is because the leading order term
for large n in Equation is always positive if x is odd (recall that g is even
and d is always odd). Ensuring that P(x) > —1 eventually for even x will require

choosing a,_,4+1 as a function of a,_,_1.

Let us first consider P(g). It can be seen from the definition Equation (2.52) that
H%(q) = (%) is negative for all odd d and independent of n. If we set

1-Cin!
a|= ———
gD (q)

for some sufficiently large constant C;, and all other a; = O(n~!) for d > 1, then
the constraint P(q) > —1 is satisfied.

(2.59)

Now consider P(q — 2). If we set
h(q-2)
— n .
g (q-2)

Y B et L C Bl B B
8§D (q-2) g9(q)

for some sufficiently large constant C3, and all other a; = O(n~3) for d > 3, then
the constraint P(g — 2) > —1 is satisfied.

az=(1-Csn™) ai

(2.60)

Continue like this for P(¢ — 4),...,P(2). Foreachof x = ¢,q - 2,...,2, we will
set

h(D (x)
= — _1 . . _1 .
Ag—x+1 = (1 Cq—x+ln ) g(q) (x) n Ag—x-1
=(1=Cyopsin™) ... (1 =Cin7h) (2.61)
. hD(x)-hD(x+2)----- hD (g -2) . 1 /)
for some sufficiently large constants Cy, C3, . .., C,—1. Notice that

h(D (1 —1)?
g (1) t

and g9 (¢q) = ¢, so defining

. (g—-x)*(g-x-2)>...2% 1
—x+ = c = 2.63
e P T R R (269
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independent of n, we can write

dgoxe1 = (1= Cyxrin™) ... (1= Cru7Y) - gy - 012D, (2.64)

Finally, let us look at P(0). For large n, we have
P(0) =ay_1 - h'P0) - n" + ...

=(1=Cppun™...(1—Cn7y - —2

(g-1)!

dg-1- 19 = c(q)ntl*,

(2.65)
where ¢(g) is some function of g (note 29 (0) = g/(g — 1)!). The product in Ag-1
telescopes to give

dg-1 = é(q -2)(g—4)...2, (2.66)
so we get
(1= Cyoyran™) ... (1= Cin7Y)
(g—-D(g=-3)...1

This establishes the first point of Lemma [2.15]

P(0) = n1? — c(q)n?*1. (2.67)

Let us now examine P(0)/n?/? in order to establish the second point of Lemma

1 - - i
P(0)/n?/* = m(alH’f’q(o) +a3Hy7(0) +-- - + aq-lH;’_ql(o))

A

+ 43 (‘;) (” ; q) (=i HY(1 = G

(2.68)

N q n—gq —g+1 -1 -1
- . (1-C (1 =Cye ,
v 0 )(0Z9) - ey G

recalling H7,7(0) = (4)(",7). Recall that the coefficients d, are independent of n.
From this expression, we can readily see that P(0)/n4/? is a polynomial in n~! of

degree 2¢q — 2, establishing the desired degree bound.

It remains to establish the third point of Lemma[2.15] Foralld = 1,3,...,4 - 1,
(1-CinY...(1 -Cyn"") <1 eventually and d, < d4-1. Further, for all d =
1,3,...,g -1

n- q(n—q)\* _

(fz)( J q) < ("(TQ)) < (e*q)"'n?, (2.69)

using the general bound (’f) < (em/r)". Using these facts, we can bound
|P(0)/n??] < @yey - ()T - (9P 4079/ 4 1 1)

(2.70)
< 1?72 (2q)7" - (q)2) < ¥g™,



23

using d,-1 < g?/*>72 in the final step. O

The first bullet point in Lemma [2.T5] gives the correct large-n limit for the Lovdsz
theta function for constant g:

-1

(Z)/(l +P*(0)) = (L -n4 +O(nq_1)) . (M#]/Z _ O(Hq/Z—I)

(g9)! (9)!
@2.71)
- /2 0 1)

We are almost done. It remains to show that c(g) < ¢?(@1°¢9) We will do this using
the second and third bullet points, combined with Markov’s “other inequality” for
bounded degree polynomials [BE9S, Theorem 5.1.8]. We will need the following
adaptation for functions defined on inverse-integer points 1/1,1/2,--- ,1/n,---
Lemma 2.16 (Markov’s other inequality [BE9S, Theorem 5.1.8], [Che+24a], [Che+24b]]).
For any polynomial f of degree ¢, there is an absolute constant ¢ such that
ct? ,
F(1/m) = F(O)] < = sup | £(1/n)] 2.73)

n’>1

for each integer n.

Proof.
nlf(1/n) = f(0)] < sup |f' (x)] (Fundamental theorem of calculus.)
x€[0,1/n]
(2.74)
202
< — sup |f(x)] ([Che+244, Lemma 4.1])
x€[0,a]
(2.75)
4¢? , 1
< — sup |f(n")] ([Che+24a, Lemma 4.2]), a = —)
n'>1/a 4q
(2.76)

where the final line considers the supremum over inverse integer points, which

concludes the proof. m|

Let us view P*(0)/n?/? as a polynomial in 1/n (note that we are fixing the input

to the polynomial P* to zero, and that we are concerned with the n-dependence of
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P*(0)). Using Lemma2.15| we can apply ?? with £ (1/n) = P*(0)/n4/?, € = 2q -2,
and

sup | £(1/n)] < e*g* = 0111084, 2.77)
n’'x1
This completes the proof of Theorem 2.11] m|

Numerics on Lovasz theta function of local Majorana operators
In this section we present some numerics on the Lovdsz theta function of the

commutation graph of degree-g Majorana operators #(G(Sy)).

n/2

(G (S])) ()
n qg=2 gq=4 q=6 q=238 q=10 | g=2 gq=4 qg=6 qg=8 ¢q=10
2 1 1
4 2 1 2 1
6 3 3 1 3 3 1
8 4 14 4 1 4 6 4 1
10 5 14.57 14.57 5 1 5 10 10 5 1
12 6 15 52 15 6 6 15 20 15 6
14 7 21 57.34 57.34 21 7 21 35 35 21
16 8 28 64 198 64 8 28 56 70 56
18 9 36 100.13 21834  218.34 9 36 84 126 126
20 10 45 153.11  251.22  787.17 10 45 120 210 252
22 11 55 195.13 42991  885.15 11 55 165 330 462
24 12 66 236.42 759 982.84 12 66 220 495 792
26 13 78 286 990.80  1757.0 13 78 286 715 1287
28 14 91 364 1217.2  3260.2 14 91 364 1001 2002
30 15 105 455 14442 46439 15 105 455 1365 3003
32 16 120 560 1820.0  6040.7 16 120 560 1820 4368
34 17 136 680 24233 72400 17 136 680 2380 6188
36 18 153 816 3327.1  9269.4 18 153 816 3060 8568
38 19 171 969 4512.8 12552 19 171 969 3876 11628
40 20 190 1140 6022.1 17230 20 190 1140 4845 15504

Table 2.4: Numerical comparison of the Lovész theta function #(G(Sy)) versus

(Zﬁ) They are exactly equal for very small values of n, and also appear to be

exactly equal for sufficiently large values of n for each g. For example at g = 4,
which corresponds to the standard SYK-4 model, it appears that #(G(S})) = (”42)
for all even values of n apart from n = 8 and n = 10.
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Comparison of Lovasz Theta and Binomial
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Figure 2.1: Log-log plot of 9(G(S})) versus (Zﬁ) #(G(S})) fluctuates for small

n/Z).

n, but for sufficiently large » it behaves the same as (q 1

2.2 Circuit lower bound

In this section we show that low-energy states of random Hamiltonians with small
commutation index require ansatzes with high complexity. As a consequence, we
get a circuit lower bound on the low energy states of the the SYK model. Our proof

resembles the circuit lower bound of [Dal+23b, Appendix D].

Consider the random Hamiltonian

1
H = —— gAA ) gA ~i.i.d. N(O’ 1)5 (278)

‘/E AeS

where S consists of Hermitian operators A; satisfying Al.2 = 1. Recall from Def-
inition [2.1] that A(S) denotes the commutation index of S. We first establish a

concentration bound for the energy of a fixed state |i/).

Lemma 2.17. Fix any state |v). The energy (W |H|y) sharply concentrates:

2
P((WIHS™|y) > 1) < exp (_2;(3)) . (2.79)
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Proof. Since a sum of Gaussians is Gaussian, we have

12
B(WIHIW) = 1) < exp 53], 2.50)
o
The variance is upper bounded by the commutation index:
1
0% = = D WA < AS). 2.81)
|51 AeS
]

The main result of this section now follows from a union bound.

Theorem 2.18 (Low energy states are classically non-trivial). Let C be a set of
fixed quantum states. Then the probability that C contains a low-energy state is

exponentially small.

12
P H >t| < log||C|| — =—]. 2.82
Lgl)gym ) eXp(OgII | 2A) (2.82)
Proof. Applying a union bound to Lemma[2.17]
2 )
P H >t < - = 1 -—1. 2.83
[m@(tﬂl = _ICleXp( 2A(S)) eXp(OgIICII ZA) (2.83)

O

We now apply this to the circuit complexity of low temperature states of the SYK
model. The SYK model was previously described in Equation (2.1)), but we repeat

its definition here for convenience.

Definition 2.5. Ler S; denote the set of degree-q Majorana operators on n fermionic

modes. The SYK, model is a random ensemble of Hamiltonians defined by

1
HY™ = —— 3" gad , ga~iza N(O,1). (2.84)

Theorem 2.19. (SYK model low-energy states have high circuit complexity.) Let
circ(G) denote the set of unitaries generated by quantum circuits with at most G
gates each taken from a finite universal set of 2-local unitary gates. Fix an arbitrary
initial state |¢). With high probability, for any even q > 2, it holds that the minimum

. . . . . SYK .
circuit complexity to construct a state achieving at least t\/n on H. g isatleast

min {G : 3U € circ(G), ($|UH KU |¢) > t\n} = Q,(n'9/2*11%). (2.85)
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Proof. Theorem tells us that

A(SD) = Qq(n™1?). (2.86)

Let M be the number of gates in the universal gate set. Then the number of circuits

in circ(G) is at most

G
lcire(G)| < (M(Z)) = exp(O(G log(n))). (2.87)
Now apply Theorem with C = circ(G) to complete the proof. ]

The proof above can be extended to gates with continuous parameters by forming
an e-net over the gates. This comes at the cost of additional log(1/€) factors in the
bound of Theorem

Other notions of non-triviality

Though our focus so far has been on quantum circuit lower bounds, our results
readily generalize to lower bounds for other classes of ansatzes via the construction
of covering nets. For example, our argument shows that any state from the set
of Gaussian states cannot be a near ground state for the SYK Hamiltonian for
g > 4, since an e-net over the set of Gaussian states has cardinality exp(O(n* +

polylog(1/€))). This reproduces results from prior works [HTS21bj; Her+23b].

Another popular classical ansatz are tensor network states, or matrix product states
(MPSs) in particular. Implemented at any finite precision the number of config-
urations of a matrix product state on n sites grows with the bond dimension y as
I{ly;)}|| = exp (® (x* +logn)). Itis thus apparent from the same argument that

the minimum bond dimension such that there is an MPS achieving an energy t+/n is
X =0y (n 4112 (2.88)

with high probability. Similarly, a classical neural network representation of the state
with W weights has a number of configurations growing as || { |y j>}|| =exp (®(W)),
yielding the growth condition to achieve an energy t+/n with high probability:

W =0, (n17). (2.89)

Relation to NLT'S results

Our circuit lower bound is closely related to the study of ‘no low-energy trivial
states’ (NLTS) Hamiltonians. Introduced in [FH13], a Hamiltonian H = }}; g;A;
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has the NLTS property if there is no constant-depth circuit preparing a state whose
energy is above the ground energy by less than some constant fraction of the £; norm
2. lgil- Such Hamiltonians were first proven to exist in [ABN23] using quantum
LDPC codes.

The circuit lower bounds we give are not quite comparable to the traditional notion
of NLTS. This is because we compare the energy of our low-energy states to the
Hamiltonian’s maximum eigenvalue rather than the £; norm of the coefficients.
Unlike the quantum code Hamiltonian studied in [ABN23; Her+23al], the SYK
model is highly frustrated and thus the operator norm and ¢; norms have vastly

different scalings: ®(n?) and ®(+/n), respectively.

Despite these differences from the standard NLTS setting, the circuit lower bounds
we can establish are much stronger in two ways when compared to current progress
on NLTS [EH17; [AB22; [AGK?23} Her+23a; [ABN23||. First, our circuit lower
bounds hold for states at any energy which is a constant fraction of the ground
state energy, rather than for states below some constant-fraction energy threshold.
Second, we can achieve arbitrary polynomial circuit depth lower bounds, whereas

current constructions of NLTS only give a logarithmic depth lower bound.

Product state approximations for spin Hamiltonians

It is worth pointing out that there cannot be a k-local spin Hamiltonian with the
property in Theorem [2.190 For any traceless k-local spin Hamiltonian H, there is
a product state achieving energy at least Ayma(H)/3%. The argument is imported
from [Bra+19, proof of Theorem 2], and the proof technique bears a remarkable
resemblence to the classical shadows protocol [HKP20], which provides a learning

algorithm for k-local spin operators.

Proposition 2.20. For any k-local Hamiltonian H on n qubits, there is a product

state |y) achieving energy
1
(¢|H|¢> 2 3_k/lmax(H)- (290)

Proof. Let |¢) be the true (possibly entangled) maximum-energy state achieving

(p|H|¢) = Amax- (2.91)

For each qubit, pick a random basis out of {ox, oy, 0z}, and measure in this basis.

This gives a product state of single-qubit stabilizer states. Let p be the resulting
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ensemble of pure product states. We will analyze Tr (Hp). Measuring each qubit

in arandom {0y, oy, 0z} basis implements the depolarizing channel with p = 1/3:

1 2
p=E5Ue)eD) . Eip(r) = 373l (2.92)

Using that the depolarizing channel is self-adjoint, we get

Te (Hp) = Tr (HEF(19)(@0D)) = Te (EZ5 (HDI@)l) . (293)

By assumption, the Hamiltonian H is a sum of k-local Paulis. If P is a Pauli string

of weight k, then the depolarizing channel acts as

8®n

1
TA(P) = ¢ P. (2.94)

Thus we get

Te (HET (16)(@D)) = Tr (&5 (H)19)(6) = (9l (%H) 6) = 35 ().
(2.95)
O

2.3 Annealed approximation

We here prove Theorem [2.5] as well as the variety of concentration results stated in
Table Recall that we are interested in models of the form:

1 m
H=— ) g, (2.96)

where g; ~;.;.a. N (0, 1) are standard independent Gaussians and A; are deterministic

matrices. The Gibbs state pg at inverse temperature (3 is defined by

e_ﬁ‘/ﬁH
Zp

g = L Zy=Te (e, 2.97)
where Zg is called the partition function at inverse temperature 8. The factor v/n

ensures that the free energy is extensive and scales proportionally to n.

In this section we show that the commutation index of the terms A; has an im-
portant effect on the concentration properties of the random model H. Denote the
commutation index by

A= A{A}L). (2.98)
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Recall that this quantity characterizes the variance of the energy with respect to a

fixed state p:

1
sup Ey| Tr(Hp)|* = sup —
p o m

Z(Tr(A,-p))2 = A. (2.99)

i=1

The value of A has implications for relations between the normalized quenched and

annealed free energies.

1 1
—ElogZs vs. —logEZg. (2.100)
n n
N—— —
quenched annealed

The first result is that this variance quantity controls the difference between the two.

Theorem 2.21. (Quenched and annealed free energy)

n'ElogZs < n"'logEZs < n”'Elog Zg + 48%A. (2.101)

The first inequality always holds by Jensen’s inequality; the non-trivial part is the
second inequality, which is proved in Section This theorem states that a small
variance A < B2 implies that that the annealed free energy well-approximates the
quenched free energy, which indicates the absence of spin glass order [BS20]]. The
next three results give concentration of expectation values, energy, and two-point
correlators of the thermal state of H. Two-point correlators are of special interest in
the study of the SYK model [BS20; GMV18; |[KS18; MS16]]. Concentration results
for Lipschitz bounded functions of the spectrum of the SYK model have also been

established in [FTW20]. In here and what follows, ||-|| denotes the operator norm.

Theorem 2.22. (Concentration of expectation values) For any fixed bounded Her-

mitian operator X,
P(| Tr (Xpg) — ETr (Xpg)| > 1) < 2¢7/USFIXIPA) (2.102)

Theorem 2.23. (Concentration of energy)

f 2
P(| Tr (Hpg) —ETr (Hpp)| > t) < dexp —i 12?8% +a?-al|, (2.103)

where @ = %(1/(4ﬁ2n) +E[/lmax(H)]2).
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Theorem 2.24 (Concentration of two-point correlators). For any fixed bounded

operators X and Y, denoting
Y (1) = exp (iVnH7) Y exp (-iVnHT) (2.104)
forany T € R, we have
1
P(§| Tr (XY (7) pg) — ETr (XY (1) pg) £ h.c| > 1) < 2™t/ (On(SEHIGT)IXIPIIYIA)
(2.105)
Recall the upper bound on the commutation index of the SYK model given in
Theorem , as well as the ©, (vn)-scaling of the expected maximal energy
of the SYK model in this normalization [HO21|]. Instantiating Theorem [2.21]

Theorem [2.22] Theorem [2.23] and Theorem [2.24] with these parameters thus yields
the following results for the SYK model.

Corollary 2.25. (SYK model is annealed.) For the SYK model H;"® where q is

even,

I 1 1
~Elog Zg < —logEZg < ~Elog Zg + O, (B*n™ /%), (2.106)
n n n
P(|Tr (Xpg) — ETr (Xpp)| = 1) < 2e™ 2B, (2.107)

B(|Tr (HS" pg) - BTr (H5 % pg)| 2 1)

Qo= (B 1n12712) t=Q(1+pn)

4e~Qa(min(1E72n=2)n22)  p o pise

) (2.108)

1 o -
P(§| Tr (XY (1) pg) — ETr (XY (1) pp) £ hc| > 1) < D¢ (min(B72772)n?271e%),
(2.109)
X and Y are any fixed bounded operators.

Importantly, the above result shows that for the standard SYK model with g = 4, the
quenched free energy in the limit of n — oo always equal its annealed approximation
for physical temperatures where 8 = ©(+/n). This stands in stark contrast with spin
glasses where a transition occurs for some critical temperature 3, into a clustered

or ‘glassy’ phase.

The remainder of this appendix is concerned with establishing Theorems [2.21]
[2.22] [2.23] [2.24] for concentration of various observables and free energies. Our

general strategy takes advantage of the fact that Lipschitz continuous functions of

Gaussian random variables exponentially concentrate. We begin by reviewing this

concentration property in more detail.
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Preliminaries

A function f : R™ — R is said to be Lipschitz (continuous) with constant L > 0
(referred to as the Lipschitz constant) if for all x, y € R™, the following inequality
holds:

1f(x) = fODI < Lilx = yll2, (2.110)

where ||x — y||2 is the Euclidean distance between x and y. Intuitively, this means
that the function f does not change too rapidly: the change in f’s value is bounded
by a linear multiple of the distance between x and y. It can also be seen from the
mean-value theorem that the Lipschitz constant is bounded by the maximal gradient:
|f () = f)] < sup VS @IHx =yl (2.111)

ZER™

a fact that we will later use.

It is known that a Lipschitz bound for a function f implies concentration when

inputs to the function f are Gaussian.

Fact 2.2 (Gaussian concentration of Lipschitz functions, Theorem 2.26 of [Wai19b]).
Let g = (g1,...,8m) be i.id. standard Gaussian variables, and f : R" — R L-
Lipschitz. Then for any t > O:

P(f(3) —Bf(3)] = 1) < 2e7/CLY, 2.112)

We also state a useful fact on the concentration of the operator norm of random

matrices of the form of H.

Fact 2.3. (Concentration of the maximal eigenvalue [BBH21, Corollary 4.14]) Let
Amax(H) be the maximal eigenvalue of H = m~1/2 2ty 8iAj, where g; ~ N (0, 1).
We have:

2
P (A (H) = By (H) > 1) < exp (_ZI_A) . 2.113)

In the course of proving our results we will also use an equivalent formulation of
Fact[2.2] that follows from its sub-Gaussianity [RH23}; [Ver18; Wail9al.

Lemma 2.26 (Sub-Gaussian MGF bound, Lemma 1.5 of Ref. [RH23|]). Given a

random variable X with sub-Gaussian concentration bound
P(IX —EX| > 1) < 2¢7/27), (2.114)

it holds that
E[exp ( (X — EX))] < exp (40%2) . (2.115)
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Finally, in what follows we use || - || to denote the operator norm:
|X]| = max v'Xv, (2.116)
vi[vl=1
where the maximum is taken over vectors v, and |||, to denote the trace norm:

Xl = Tr (\/XTX) . 2.117)

Proof of Theorem 2.21

We directly compute the derivatives of log Zg with respect to each Gaussian g;

1
Oy log Zs = — Tr[8, P V] (2.118)

B
1 n ! |
= — Tr |:ﬁ _/ eﬁ\/zH( —S)Aieﬁ\/szs
Z,B m Jo

(Derivative of matrix exponential [Wil67])
= B /2 Tr[A;pgp]. (Cyclic property of trace)
m

Therefore, the Lipschitz constant L of log Zg with respect to the disorder has the

gradient bound

2 m
2<hn > Te[Aips]® < finA. (2.119)
m o3
Now we can bound
- [ZB] =E [exp(log Zp — E[log Zﬁ])] < exp(48°nA). (2.120)
exp(E[log Zg])

The inequality uses Fact[2.2] and Lemma [2.26] with = 1. Taking logarithms and

rearrange to obtain

1 1
—log E[Zs] < —E[log Zs] + 48%A, (2.121)
n n

as stated.

Proof of Theorem 2.22]

The result once again follows from a Lipschitz bound. We use the well-known
expression for the derivative of a matrix exponential [W1l67]:

1
0g, exp (H) = / exp (tH) (9o, H) exp ((1 —t) H) dt. (2.122)
0
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From the chain rule we then have
g, Tr (pﬁ X )

_Byn
m

1

ZﬁlTr(X / exp (tBVnH) A;exp ((1 1) BynH) dt) (2.123)

0

—Tr (Xpp) Tr (A J-pﬁ)). (2.124)

Consider now the operator:

1

op =27 exp (t8VnH) X exp ((1 —t) BVnH) dt. (2.125)

O\M

We can check that og has trace norm bounded by ||X||. Denoting by X; (-) the ith
singular value of - in nonincreasing order, we have by the majorization inequality
[Bha97]:
D %i(AB) < ) % (A)% (B) (2.126)
i i

nd the product inequality (for Hermitian B) [HJ91]:

%, (AB) < ||BI| Zi (A) (2.127)
that
Z % (exp (tBVnH) X exp ((1 - 1) BVnH)) (2.128)
sl "% (exp (1pVIH) X) i (exp (1 = 1) fVnH)) (2.129)
< ||;(|| Z %, (exp (tpvnH)) % (exp ((1 — 1) BVnH)) . (2.130)

Finally, as exp (18ynH) andexp ((1 — ) B/nH) are Hermitian and positive semidef-
inite, their singular values are just their eigenvalues. As they are mutually diagonal-

izable,
X Z % (exp (1pVnH)) Z; (exp ((1 = 1) BVnH)) < [ X|| Tr (exp (1VnH) exp ((1 - t) fVnH))

= 11X Zg.
(2.131)
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This implies that o has trace norm bounded by ||X||. However, while op is
Hermitian, it is not necessarily positive semidefinite. We proceed by writing the

eigenvalue decomposition:

og :Zaw QA —Zw ) (A =2 o - o, (2.132)

>0 <0
where 0';—“ are Hermitian and positive semidefinite by construction, and each has
trace norm bounded by || X|| as >}, || = ||0'ﬁ||1 < |IX]|. By the cyclic property of

the trace we can then write:

Jg, Tr (ppX) = % (T (A7) = T (4,) = T (Xpg) Tr (Aspg) ). 2:133)

We thus have

V5 Tr (pX) || = '% (T (opas) = Tr (07 4;) = Tr (Xpp) Tr (Ajpﬂ))2

J

(2.134)

< IS (Trogas)+ (Trog Ay + (T Xpg) (e A o))
"

(2.135)

< 98%n||X||?A. (2.136)

The result then follows from Fact[2.2]

Proof of Theorem
We would like an analog of Equation (2.133) where the observable is H. Notice this
is g;-dependent and commutes with pg. We get

A

05, T (ppH) = <= Tr () + £ (T opHA,) =T (Hipg) T (4;).

(2.137)
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Let Amax (H) denote the maximal eigenenergy of H, and let G, be the set of coeffi-
cients g where Ay (H) < s+ Edpax (H). For g € G,

V5 Tr (o) |1
1
= — > (Tr(ppdy) + BV Tr (opHA,) = BV 'Tr (Hpg) Tr (A;pg))”
J
(2.138)

3 )2 2 32 3 2 \2

J

(2.139)
< 3A(1+28%n||H|]%) (2.140)
< 3A(1+28%n (s + Edpax (H))?). (2.141)

That is, the function 7 (g) := Tr (pgH) defined on the set G, has a Lipschitz constant
bounded by
Lg, = 3A(1 +28%n (s + Edmax (H))?). (2.142)

We now use the Kirszbraun theorem.

Theorem 2.27 (Kirszbraun theorem, Ref. [Val45]). Ler U c R4, and assume
f : U — R% is Lipschitz with Lipschitz constant L. Then, there exists f : RY — R%
with Lipschitz constant L such that f (x) = f (x) for all x € U.

In particular, there exists 7 (g) with Lipschitz constant given by Equation (2.142)
such that 7 (g) agrees with Tr (ogH) on G;. Furthermore, by Fact2.3| P [g ¢ G,] <
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2 exp ( ) We use these two properties to calculate:

P [||Tr (Hpp) — E [Tr (Hpg)]|| = ¢ (2.143)
2

<infP [||Tr (Hpg) - E [Tr (Hpp)]|| > t A g € G| +2exp( ;A) (2.144)

2
=infP[lI7(g) ~E[7 ()]l 27 Ag €G] +2exp (—;—A) (2.145)
2
< irslfP[llf'(g) —E[T(g)]ll =] +2exp (_2S_A) (2.146)
£2 i 2 £ 2.14

<i - S 147

TP oA 1+ 2820 (s + B [ (D7) | eXp( ZA) (2.147)
. 12 52

< 1I}f2exp - +2exp (_ﬁ) (2.148)

6A(1 +45%n (s2 +E [Amax (H)]z) )
2

2
24B2An(s2 + 1/ (4p7n) + E[/lmax(H)]Z)) +2exp (—2—) (2.149)

< inf2exp (—

Setting s = 12/(128%n) + a% — @ where @ = § (1/(48%n) + E[Amax (H)]?) gives

the desired result.

Proof of Theorem 2.24]
Completely analogously to the proof of Theorem [2.22] we have

3¢, Tr (ppXY (7))
_Byn (

m

Tr (0pA;) = Tr (XY (7) pp) Tr (Ajpp)) + Tr (ppX8g,Y (7)),
(2.150)

where

1

op =25 /exp(tﬁ\/_H) XY (7)exp ((1 - 1) BVnH) dt (2.151)

0
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We now focus on the final term of Equation (2.150). We have

0g,Y (1)
1
iT\n . . .
= 7 / exp (itVntH) Ajexp (itvn (1 — 1) H) dt |Y exp (—itVnH)
m
0
(2.152)
+h.c. (2.153)
iT\n -
_ \/\%_ [Ajien¥ ()], (2.154)
where A j|= 1s the Hermitian, time-averaged operator:
1
Ajr = / exp (itvVntH) Ajexp (—itVntH) dt (2.155)
0
1 T
= ;/exp (itNnH) A; exp (—it\nH) dt. (2.156)
0
We have

1 2

Z”V§ Tr (0pXY (7)) £ h.c ||, (2.157)

= S IBTr (0pAs) ~ BTE (XY (7) o) Tr (4;5)
J
+itTrppX [Ajjr, Y (7)] £ he|? (2.158)

> (11BTe (04) = he P + 18 Te (XY (1) pp) Tr (A;pg) = bl

J

3
<
T 4m

+117Tr (ppX [Aj1e. Y (1)]) ih.c.llz). (2.159)

The first two terms are conceptually identical to Equation (2.134). To bound the

final term, we define

Hp. =Y (1) ppX £hec, (2.160)
VET ;= pgXY (1) £ h.c, (2.161)

such that
Tr (ppX [Ajje, Y (D]) £ hoe. = Tr (5 Aye) = Tr (v Aje) . 2162)

Note that ﬂE,T’ VE’T, ifg ., 1vg . are all Hermitian by construction, and each has trace
norm bounded by 2 || X|| ||Y|| by Holder’s inequality. Just as in Equation (2.132)),
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each can be considered as the difference of two positive semidefinite matrices with

trace norm bounded by 2 || X|| ||Y||. Putting everything together yields

1 2
Z”V§ Tr (0pXY (7)) £ he||; (2.163)
3n
< - 2 (IBTr (04)) + h.c.||* +||BTr (XY (7) pg) Tr (A, pp) = hoc.|?
J
+1TTr (0pX [0, Y (7)]) £ hec|]?) (2.164)
3n
< = (16871XIPIYIPA + 47X PIIYIPA + 647 IXIPIIYIPA)  (2165)

= 3n (5[32 + 1672) X1 1211Y [ 2A. (2.166)
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Chapter 3

SUM OF SQUARES SPECTRAL AMPLIFICATION

Simulating quantum many-body systems is one of the most heralded and valuable
applications of quantum computing. Although efficient quantum algorithms ex-
ist for numerous quantum simulation problems [Kit95; [KOSO07; [L1096; Wie+10;
Ber+15; [LC17b]], further improvements are essential to fully realize robust large-
scale quantum simulation when accounting for the considerable constant factor
overhead associated with fault-tolerant quantum computation [Ber+24b; Rub+23;
Bab+21]]. Quantum algorithm improvements are expected to arise from exploiting
specific structures of the simulation instance, thus mitigating worst-case computa-
tional costs. Examples of such are exploiting symmetries in chemistry problems or
locality in lattice models [LI23; |Haa+23|]. Here, we introduce a strategy that ex-
ploits the low-energy properties of quantum states to improve quantum simulation
algorithms. Our framework relies on two distinct algorithmic ideas: sum-of-squares

(SOS) representations of Hamiltonians and spectral amplification (SA).

The low-energy setting is one of the most promising areas in quantum simulation.
This setting is relevant in the study of matter at low temperatures, including quantum
phase transitions and the computation of ground-state properties. In this setting,
some of the most important simulation tasks are: i) Estimating the energy of a
quantum system with respect to certain quantum state [KOSO7], i1) Estimating the
ground state energy of a quantum system by phase estimation [Kit95]], and iii)
Simulating the time evolution of a quantum state under a Hamiltonian [L1096].
We will show how SOSSA significantly improves the gate complexity of generic
methods for all these problems. To this end, SOSSA combines two key ideas: first,
it produces a suitable SOS representation of the given Hamiltonian H plus an energy
shift 5 to make the Hamiltonian positive semidefinite and with a small ground state
energy, and then it uses SA to amplify the low eigenvalues and the corresponding
energy gaps of H + 8 [SB13}; [LC17a;[£S24].

During the SOS step, H + 8 is processed classically and represented as a sum
of positive terms. This can modify properties of H that have an impact on the
complexity of the simulation algorithm, such as an ¢j-norm that depends on its

presentation and the ground state energy. Ideally, the SOS representation is such
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Termwise SA SOSSA
ECU A =A4Lcu A = Asos
A=Aicu A=Acu | A=Asos
Energy estima- | ©(1/¢e) [KOSO7] ©(VA1/e) Theorem [3.12
tion
Phase estimation | O((1/(y/pe)) log5) | O((VA/(v/pe)) log ) Theorem 3.15
[Ber+24bl|]

Time evolution | O(1r + log %) O (VAL ++/1/Alog %)) (Z2S24]
[LC17b; LC19]

SYK model ALcu ~ N? VArLcudLcu ~ | VAsosdsos ~

3

N2 Nz

Table 3.1: (a) Simulation tasks on Hamiltonian H to precision € using LCU, termwise SA,
and SOSSA. Presented are the query complexities assuming access to the Hamiltonian

only via the block-encodings H /Ay cu, Hsa/VALcu, and Hsossa /VAsos, respectively. The
gate complexities can be determined from the gate complexities of each block-encoding,

which can be different, and the additional arbitrary gates in the algorithm. We show: 1)
estimation of the energy E = (y/|H i), ii) phase estimation of the ground state energy E
with initial state |¢) and ground-state o) satisfying p = |(¥ [o) |? > 0, and iii)
time-evolution to implement e =" on a state of energy at most E. We assume

—-Aicu £ E £ —A1cu + ALy for termwise SA and —B < E < —B+Asos for SOSSA. The
lower bound on the ground state energy —f is obtained in the SOS step and implies

Asos < Arcy. We also provide adaptive algorithms with improved complexities that do
not require knowledge of A cy or Agps. (b) Normalization factors for the SYK model
demonstrate an asymptotic speedup in system size N using an appropriate SOS. The gate
complexities for all block-encodings is similar in this example.

that —f is a tight lower bound on the ground state energy and that the square roots
of the positive terms are not too difficult to simulate. This step relates to the
well-known optimization task of finding the best SOS lower bound on the ground
state energy, which can be solved efficiently in classical preprocessing using semi-
definite programming. During the SA step we produce a different Hamiltonian
whose eigenvalues are the square roots of those of H + 1. Since the low-lying
eigenvalues like the ground state energy are now ‘amplified’, this can alleviate some
resources due to, for example, having less stringent requirements in the precision
of an estimate. While the SOS step might introduce additional overheads from the
complexity of the terms, the SA step has the potential to reduce it, and the method is
useful if the overall combination still provides an improvement in gate complexities.

Notably, we show this occurs in interesting systems.

In this article we provide the theory of SOSSA and then use it to construct quantum
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algorithms that improve over prior art. Our approach is to first improve the query
complexities of simulation methods based on SA, which will ultimately improve
the gate complexities when the SOS representation is considered. Specifically,
for: 1) energy estimation, where in contrast with Ref. [Sim+24]] our algorithm
does not require an upper bound on the expectation to be estimated and works for
arbitrary (block-encoded) operators, and ii) ground-state phase estimation, where
we generalize results in Ref. [Low+235] in that we do not need an upper bound on
the energy and our method works even if the overlap between the trial state and
ground state is p < 1. The results are summarized in Table [3.1f where we also
include those on time-evolution from Ref. [ZS24]] for reference. These SA-based
algorithms improve the linear query complexities of generic methods on A to VAA,
where A is a parameter related to the norm of the Hamiltonian—the largest possible
energy—and A is a parameter related to the low energy of the initial state. The

relevant low-energy instances arise then when A < A.

While attaining improved query complexities is key to our approach, we are ulti-
mately concerned with gate complexities. These can be determined from the costs
of implementing the corresponding queries, which depend on the SOS representa-
tion and the difficulty of simulating its terms. Then, to demonstrate the power of
SOSSA, we analyze its performance in applications. In the context of ground state
energy estimation of quantum chemistry, recent findings demonstrate that SOSSA
provides the best gate complexities currently known [Low+25]. We corroborate
these findings further by applying SOSSA to ground state energy estimation of the
Sachdev-Ye-Kitaev (SYK) model, where it provides an asymptotic speedup over
generic methods by a factor of square root of system size (see Table[3.1). Given that
the SYK model exemplifies a strongly correlated condensed matter system, these
results suggest the general applicability of SOSSA to many quantum simulation

problems.

We conclude that SOSSA provides a useful framework for several quantum simula-
tion tasks, and expect it to be applied to other systems. Furthermore, we complement
these findings by providing tight lower bounds for energy and phase estimation that
show our quantum algorithms are query optimal in the low-energy setting, and pro-
vide a low-depth version for expectation estimation, which scales with the standard

quantum limit, that might be of independent interest for near-term applications.

Last, we remark that while SOSSA concerns the combination of SOS representations

and SA, each has been extensively studied in prior work. SOS is used in the context of
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Figure 3.1: Uncertainty propagation through the square root function. By construct-
ing the square root of a positive semidefinite Hamiltonian, we are able to amplify
the small eigenvalues due to the divergent behavior of the derivative of y/x near zero.
Here x > 0 denotes a rescaled eigenvalue and the relevant low-energy regime occurs
for x < 1. The error bars illustrate that an estimate of an eigenvalue E to precision
e can be obtained through an estimate of VE to precision O (e¢/VE), which becomes
coarser as E decreases, thereby reducing the resources needed for phase estimation.
The approach can be generalized to other functions f(x) whose derivatives are large
or divergent as x — 0 and that could arise from other related constructions, such
as the quantum-walk in Ref. [Low+25]], where f(x) = arccos(x — 1) resulted in a
similar quadratic amplification.

approximation algorithms [GW95; PNA10], lower bounds on ground-state energies
in quantum chemistry [Maz06; Nak+01], and characterizing quantum correlations
[NPAOS]. These methods often appear in the pseudomoment picture, which is dual
to the SOS optimization that we consider here. SA was used to achieve a quadratic
quantum speedup within the context of adiabatic quantum computation [SB13]] and
was more recently used to obtain improved quantum algorithms for simulating time

evolution and phase estimation on low-energy states [LC17aj;|[ZS24} |[Low+235].

SOSSA The goal of SOSSA is to improve the gate complexity of simulation
tasks in the low-energy sector. To this end, SOSSA uses SA for reducing query
complexities first. Quantum signal processing and the related quantum singular
value transform provide the modern machinery for quantum simulation tasks, relying
on access to a block-encoding of a Hamiltonian H [LC19; Gil+19; Mar+21]]. This
is a unitary acting on an enlarged space that contains the matrix H/A in one of
its blocks, where A > ||H|| is needed for normalization. In quantum simulation

algorithms we are often interested in both, the query and gate complexities. We
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define the query complexity to be the number of times the block-encodings are
used (including their inverses), and the gate complexity to be the total number of
two-qubit gates to implement the algorithm, which includes the number of gates to

implement the block-encodings in applications.

A standard approach to construct the block-encoding uses an efficient presentation
of H as a linear combination of unitaries (LCU) [CW12; Ber+15]. Suppose a
Hamiltonian H acts on a system of N qubits and is presented as a sum of terms as

R-1
H=) g0y, 3.1)
=0

where g; € R are coefficients and o; are (tensor) products of N Pauli matrices
(i.e. Pauli strings). The query complexity of various quantum simulation tasks

through this LCU scales linearly in the so-called ¢1-norm of the Hamiltonian:

R-1
dicu =) 1gil - (3.2)
Jj=0

The LCU column of Table 3.T| presents some known results.

SA allows one to get around the linear cost in Apcy in simulation tasks involving
states of low energy. SA can only be applied to Hamiltonians that are positive
semidefinite. One way to achieve SA is to produce a square root of the Hamiltonian,
so that the low-energy spectrum is amplified. Intuitively, this amplification arises
because the square root function is steep near zero, i.e. Yx > x for x < 1, where
x denotes a rescaled eigenvalue. See Figure for an illustration. For phase
estimation, a precise estimate of a small eigenvalue of the original Hamiltonian can
then be obtained by squaring a coarser estimate of an eigenvalue of its square root.
For time evolution, the amplified low-energy spectrum allows for a more efficient
approximation to the evolution operator using lower degree polynomials in quantum
signal processing. In both cases, SA can lead to a lower query complexity than in

the worst case. See Appendix [3.2]for results on SA.

The easiest way to apply SA to a Hamiltonian presented as in Eq. is to add a
shift to each Pauli string o7; so that it becomes positive semidefinite; for example,
I + 0 = 0, where 1 is the identity matrix. We call this approach termwise
SA, but also anticipate that this approach is not generally effective. During this

preprocessing, the shift produces
R-1
H+Acul =2 ) g1, (3.3)
J=0
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where I1; := %(]l +sign(g;)o;) are simple orthogonal projectors since the Pauli

strings o; have eigenvalues +1. We can define the spectral amplified operator for

this specific example to be

1
R—1 |g1|7H1
1. .
HSA=‘/§Z|gj|2|J>®Hj:‘/§ : : (3.4)
ry 1
lgr|2TIg

This is a rectangular matrix that acts as a square root of H + Ay cyl since

H{ Hg, = H+ A1 cul. (3.5)

Consider now a simulation problem where the corresponding quantum states are
supported in the low-energy subspace. We can introduce a parameter Ajcy that
quantifies the low-energy assumption. In particular, for energy estimation we will
assume our states of interest ) to satisfy E = (Y| H |¢) < —Apcu+ALcuy. For phase
estimation we will assume (£|¢) = O for every eigenstate |£) of H of eigenvalue
(| H |€) > —Arcu + Arcu. For these problems, by using the block-encoding of
Hsa /VALcy instead of that of H/Apcy, SA allows us to achieve an improvement
in the query complexity. See the termwise SA results in Table [3.1] proven in
Thms. [3.12] and The net effect is an improved query complexity linear in
VAL cuAdLcu rather than Ap cy. (We can think of VA cudLcu as the new effective ;-
norm when considering the low-energy subspace.) The improvement occurs when
ArLcu < Arcu, which is possible in specific instances where the Hamiltonian H is

close to ‘frustration-free’ [[SB13]].

For this example, an improvement in query complexity ultimately gives an im-
provement in gate complexity, because the corresponding block-encodings can be
implemented with similar gate costs (Lemma [3.6). This would readily achieve the
goal of SOSSA, however, for general and frustrated H, the termwise preprocessing
outlined might result in a Arcy that is comparable to Ay cy. This severely limits
the general applicability of termwise SA, and a different kind of preprocessing is

desirable to have a significant reduction in gate costs.

Our strategy is then to use a different representation of the Hamiltonian plus a shift,

as an SOS of more general operators B;:

R-1
H+Bl=) BB, . (3.6)
Jj=0
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Using this representation, which implies H + 8 = 0, gives also a path to applying SA
to general Hamiltonians. Indeed, the previous termwise SA is an example of SOS
where 8 = A1 cu and B = |g j|%H ;. However, we can now consider the B;’s to be
linear combinations of Pauli strings ¢; or more general operators. It is important,
however, to constrain the B;’s so that they can be efficiently block-encoded; see
Chapter 3]

SOSSA then reduces the overall gate complexity by first reducing the query complex-
ity via SA as much as possible. We do this by finding ‘good” SOS representations
that have the following properties. Let

R-1 B
Hsossa = ). 1/)® B =| : (3.7)
J=0 BR
be such that H§OSSAHSOSSA = H + B1. Then, we wish to block-encode of

Hsossa/VAsos efficiently, for some normalization factor Asos > ||H + S1]|, which
is often very different from Ay cy. Additionally, we wish for the lower bound —f to
be as close to the ground state energy of H as possible. For energy estimation, we
will assume (| H |¢) < —fB + Asos and for phase estimation the low-energy state
is supported on the subspace of energies in [—f5, -8 + Asos]. These parameters
give VAsosAsos, which determines the query complexity when using SA with the
Hamiltonian H + B1; see the SOSSA results in Table [3.1f The goal of the good
SOS representation is to satisfy Agosdsos < Arcudrcu and hence improve upon

the query complexity of termwise SA.

After obtaining improved query complexities from the SOS representation, we wish
to determine the resulting gate complexities, and we need to account for the gate
cost of implementing the block-encoding of Hsossa/VAsos. Unfortunately, this gate
cost might be higher than that of implementing the block-encoding of Hsa/VAsa,
since the operators B; are more general and possibly more difficult to simulate.
Nevertheless, we find that these two competing effects —the improvement in query
complexity versus the increase in the gate complexity of each query— can still give

a significant improvement overall, as demonstrated by the examples we studied.

Hence, to obtain improved gate complexities, SOSSA uses SA in combination with
good SOS representations to reduce the query complexity as much as possible, even

when the gate cost per query can increase.
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SOS optimization for SOSSA To achieve greater SA, we would like Agps to be
as small as possible, so we would like —f3 to be a tight lower bound on the ground
state energy. In this section, we show that optimizing the lower bound —f can
be achieved efficiently in classical preprocessing using semi-definite programming.
Optimization of —f alone does not directly optimize the total gate cost but can
instead improve the query complexity. However, it can be a useful starting point as
demonstrated in Ref. [Low+25]. We will see in Chapter [3] that this optimization is

sufficient to achieve asymptotic speedups in the total gate cost for the SYK model.

We can start by selecting an ansatz for the B;’s as low-degree polynomials of
some natural operator set B, the ‘SOS algebra’, of size L. For example, given
the Hamiltonian on N qubits, we can choose a constant £ > 1 and let B be the
set of L = O(N*) monomials, each being a product of k Pauli operators. Then,
B j(l; ;) € B denotes a polynomial of Pauli strings of weight or degree k, where
b j € CL are the coefficients of the polynomial. For a fermionic Hamiltonian, we
could let B be the set of degree-k products of fermionic creation and annihilation
operators instead, or equivalently in the Majorana operators. Often, we may not
want to include all degree-k terms in 8, but only a subset like nearest-neighbor

products when considering a system in a lattice.

Having selected the set 8, we can optimize the lower bound on the ground state
energy while constraining the coefficients b ; so that Eq. (3.6) is satisfied. This

defines the following program:

R-1
min 8 st. H+pl=> B;(b;) B;(b)).
bjeClL —0

This optimization problem can be directly translated into an SDP whose dimension
is polynomial in the operator basis size L and whose linear constraints are derived
from the algebra of the polynomials; see Section [3.3] Mathematical problems of
this form can be solved in polynomial time with respect to the number of variables
and constraints [BV04; BMO03; [PRWO06]. The resulting number of terms R is related
to the rank of the primal variable of the SDP and is also polynomial in L.

The dual problem of this SDP is the pseudomoment problem [PNA10; Erd78|] where
it is well understood that increasing the complexity of B; by for example allowing a
larger set of monomials in B, and thus the size of the SDP, —f can be made arbitrarily

close to the true ground state energy, implying a smaller energy gap Asos.
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Nevertheless, for the quantum algorithm, we note that the savings in complexity
from a smaller Agps might be obscured by the higher complexity of simulating
the terms B;. Additionally, the cost of preprocessing from solving the SDP also
increases with L, and this classical complexity can also be a factor of consideration

in the overall optimization for a specific application.

Application to SYK We can now display our primary example application of the
SOSSA framework to the SYK model. We observe an asymptotic speedup in phase
estimation of the ground state energy over the standard approach that uses the block-
encoding of the full Hamiltonian, which is constructed from an LCU presentation
in terms of Pauli strings. The speedup reduces the gate complexity by a factor VN,
where N is the number of modes. Let {1, ..., Yy} be Majorana operators satisfying

anticommutation relations:

Ya¥b +YbYa = 20ap1 . (3.8)

The SYK model is described by a fermionic Hamiltonian containing all degree-4

Majorana terms whose coefficients are random Gaussians; that is,

1

Hgsyk = Z 8abcdYaYbYeVd » (3.9)
(IX) a,b,c,d
8abea ~ N(0,1) i.id. . (3.10)

We will apply SOSSA to the SYK model using degree-2 Majorana operators for
the SOS representation, which is described in detail in Section[3.4] That is, the set
B used for the SOS representation are quadratic in the y,’s Using random matrix
theory, in Lemma [3.18] we show that this readily achieves a lower bound where
B = O(N). Furthermore, the spectrum of Hsyk is known to be contained in the
interval [—cVN, cVN] for some constant ¢ > 0, and hence the energy gap obeys
Asos = O(N).

To compare the performance of SOSSA with standard approaches or termwise SA,
we first note Hgyk has number of terms scales like ~ N*. Hence, the asymptotic
gate complexities to construct the necessary block-encodings for the LCU, termwise
SA, and SOSSA approaches is @(N*) in all casesE] We can thus focus on compar-
ing the query complexities only, which are determined by A1 cy, VALcudLcyu and

'We can achieve block encodings with gate complexities O(N*), and Q(N*) is a lower bound
since this is number of parameters in the Hamiltonian.
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v Asos/lsos . We have

1
ALy = — Z |8abcal (3.11)

A / (]X) a,b,c,d

for Eq. (3.9), and hence A cy = ©(N?) with high probability. Termwise SA does not
provide any asymptotic improvement, since the scaling of the ground state energy
E is dominated by Apcy and so Apcy will asymptotically scale linearly with Ay cy.
Nevertheless, in Section |3.4) we show that we can implement a block encoding of
Hsossa With squared normalization factor Asos = O(N?). Our approach involves
the double factorization technique described in Section [3.4] [Bur+21b]]. Since the
energy gap is Asos = O(N), we have VAsosdsos = @(N3) for SOSSA, giving an
asymptotic speedup by a factor of ~ VN over LCU and termwise SA.

Higher-degree SOS algebras. In Ref. [HO22] it was demonstrated that degree-
2 Majorana SOS is unable to recover this scaling, and is limited to a lower bound
scaling like 8 = O(N) with high probability. Reference [HO22] introduces a degree-
3 SOS, where the B;’s in the SOS representation are cubic in the y,’s, and which is
able to achieve a tighter lower bound to the ground state energy where 8 = Q(VN).
Their SOS algebra B does not contain all degree-3 Majorana monomials, but rather

uses only a particular fragment of the degree-3 terms of size L = O(N).

We can consider applying SOSSA with the degree-3 SOS from Ref. [HO22]. The
energy gap will improve to Agos = O(VN). However, the block-encoding normal-
ization factor scales now as Agos ~ N %; see the bound on Agps in Section We
obtain VAgosdsos = O(N?), recovering the query complexity scaling of LCU and
termwise SA. Not considering gate cost of block-encoding, which is likely higher
than the termwise LCU method, we recover the termwise SA query cost suggesting

higher gate complexities.

This further illustrates that optimization of —f alone does not guarantee that we will
ultimately obtain improved gate complexities. The example analyzed here, which
regarded a more involved optimization, readily provided a factor VAgosAsos that
is asymptotically comparable to vVAsosdsos. This is a consequence of considering
more complex generators for the SOS representations. In addition to the complexity
scalings due to these factors, we often expect the block-encodings of the SOS
representations to be less efficient to implement. These effects are important when

comparing the overall gate complexity of SOSSA to that of termwise SA.
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Discussion We described a framework for fast quantum simulation of low-energy
states based on SA and SOS representations. To this end, we developed quantum
algorithms for energy and phase estimation that improve over prior art and showed
that SOSSA gives asymptotic improvements in gate costs with respect to traditional
methods when applied to the SYK Hamiltonian. With the addition of Ref. [Low+235],
where SOSSA already provided the state of the art for ground state energy estimation
in chemical systems, we expect this framework to be generally useful and applicable

to other quantum systems.

3.1 Quantum simulation using block-encodings and linear combination of
unitaries
In this section we discuss the LCU results in Table [3.1] for energy estimation,
phase estimation, and time evolution. To this end, we introduce the notion of
a block-encoding of an operator O € CM*M_ This block-encoding is a unitary
BE[0/A] € CM™*M" acting on an enlarged space (M’ > M) that has O/ in the first
block, for some normalization constant A > ||O],
(0 /2

BE[0/1] = (3.12)

(We use ||.|| for the spectral norm.) When acting on systems of qubits, the first block
is specified by the all-zero state of some ancilla register. More explicitly, we can
write (0|, BE[O/1] |0), = O/A, where ‘a’ denotes an ancillary or ‘clock’ register.
The definition can be naturally extended to rectangular operators O € C¥*N _ In this
case we need to invoke one projector for the M-dimensional space and one projector
for the N-dimensional space. Again, associating these projectors with qubit states,
we might write (O], BE[O /1] |0),, = O/A, where a and a’ are distinct for M # N.

Block-encodings provide a natural access model for several quantum simulation
algorithms. In this case we often assume access to BE[H /1], the block-encoding
of a Hamiltonian H that models certain quantum system. The query complexity of
such algorithms is determined by the number of uses to this block-encoding and, to
make this complexity optimal, we would like A to be as small as possible (e.g., as
close to ||H|| as possible). This is because various quantum simulation tasks that
assume access to BE[H/A] have (optimal) cost depending linearly on A, as shown

by the following known results.

Theorem 3.1 (Energy estimation from block-encoding [KOSO07])). Let H € CM*M

be a Hermitian operator, A > ||H|| be a normalization factor, and U and unitary
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preparing state | = U |0). With O(A/¢€) calls to U, BE[H /2], and their inverses,

we can measure the energy (expectation) (/| H &) to additive precision € > 0.

Theorem 3.2 (Phase estimation from block-encoding [Ber+18]]). Let H € CMXM pe
a Hermitian operator and A > ||H|| be a normalization factor. With O(1/¢€) calls
to BE[H /] and its inverse, we can perform phase (eigenvalue) estimation on H to

additive precision € > 0.

Theorem 3.3 (Time evolution from block-encoding [LC19; LC17b]). Let H €
CM*M be g Hermitian operator and A > ||H|| be a normalization factor. With
O (At +log %) calls to BE[ H/A] and its inverse, we can implement the time evolution

operator e ' to additive precision € > 0.

We briefly comment on these results. Theorem [3.1|results for performing amplitude
estimation, a problem that also reduces to quantum phase estimation as shown in
Ref. [KOSO7]]. The Hamiltonian H is not unitary but the amplitude estimation is
done with the block-encoding, to estimate an expectation of BE[ H/A]. For additive
precision €’ this can be done with O(1/€’) uses of BE[H/A] and the inverse. The
result follows from choosing €’ = €/A. Theorem results from the standard
use of the quantum phase estimation algorithm [Kit95] but, instead of running
phase estimation on the unitary e *#/4
in qubitization [LC19]. We describe this operator below in Lemma [3.4, The

, it is ran using the walk operator appearing

benefit of doing this is that the approach does not necessitate of another routine that

~H/4 and the encoding can be done exactly and with less overhead.

—iHt

approximates e
Theorem follows from approximating the action of the evolution e with a
finite series that uses BE[H/A] and the inverse. The series can be implemented
using quantum signal processing and the cost O (At + log %) is essentially the largest

degree appearing in the series.

Lemma 3.4 (Qubitization [LC19]). Let H € CM*M be a Hermitian operator and A >
||H|| be a normalization factor. Let the quantum walk operator W = Rer,-BE[H [ 1],
where the reflection Rer, = 2|0) (0|,—1 and assume the block-encoding BE[H /1] is
self-inverse. If BE[H [ ] is not self-inverse, one can always construct a self-inverse
version using one query to controlled-Be|H /1] and its inverse, and two Hadamard
gates. Then for any eigenstate |y ;) of H with eigenvalue E;, W has eigenstates
W j+) with eigenvalues exiarccos(Ej /) gp i) 10y, = %(lt//ju,) + o).
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We also comment on the optimality of these approaches. When given access to
the block-encoding, a general method for phase estimation is known to necessitate
Q(A/¢€) uses of the block-encoding and the inverse. Reference [MW?23| proves a
similar lower bound. The lower bound naturally extends to Theorem[3.T|or otherwise
we would be able to perform faster quantum phase estimation via energy estimation,
contradicting the previous result. For time evolution, the lower bound Q(z1 + log %)
is given in Ref. [Ber+14]. Since these results are tight, we present them using ©(.)
notation in Table We note, however, that these refer to the query complexities.
For specific instances where more structure is known and can be used, the upper

bounds might be improved.

Block-encodings from linear combination of unitaries

We discussed quantum simulation when having access to BE[H/A] but in ap-
plications the block-encoding must be constructed from some presentation of the
Hamiltonian. A standard approach is based on the linear combination of unitaries
(LCU) method [CW12}; Ber+15]]. Suppose the Hamiltonian is presented as

R-1
H=) goj, (3.13)
j=0

where the o7;’s are unitaries, for example Pauli strings, and g; € C are coeflicients.

When applying LCU, A is equal to the £;-norm of the linear combination.

Definition 3.1 (¢;-norm in LCU). Define A;cy to be the {1-norm
R-1
dicu =) 18l (3.14)
=0

Lemma 3.5. (Compilation of LCU [Chi+18]) Let H be as in Equation (3.13) and
Arcu = ||H|| be as in Equation (3.14). Then, it is possible to construct a block-
encoding of H, BE[H /A1 cy], using O(RCy) quantum gates, where C is the gate
complexity of the o;’s. The construction generalizes to arbitrary operators o,
which are not necessarily unitary, as long as ||o|| < 1 and quantum circuits for the

BE[o]’s are given.

Proof. The proof can be found in Ref.[Chi+18]] and here we present a version that
uses the notation of this work for completeness. First, we attach a ‘clock register’
of dimension R. Define the conditional unitary operator

R-1

SBLECT = > |ju}(jal ® 07 , (3.15)
j=0
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where the |j), € CR are basis states of log,(R) qubits. Also, define the state
preparation unitary PREPARE that performs

R-1
1 :
PREPARE|0), 1 [a), = > V&) - (3.16)
LCU 7=0

Then, PREPARE™! - SELECT - PREPARE gives the block-encoding:

R-1
1
(0], PREPARE"!-SELECT-PREPARE |0), = (a|, SELECT |a), = — > g0 = (0|, BE[H/ALcu] [0)
LCU ~
j=0

(3.17)
Note that |0), specifies the first block of the matrix. Implementing PREPARE re-
quires accessing the coefficients g; and needs O (R) quantum gates in the worst case.
Implementing SELECT can be done with O(RC,) gates, and this step dominates
the cost. O

Often, we will be interested in instances where the o; refer to Pauli strings acting
on N qubits involving a constant number of local Pauli operators, in which case
C, = O(1) is constant, or where the o refer to a product of a constant number of
fermionic operators acting on N sites, in which case, C, = O(log N) for an optimal
fermion-to-qubit ternary-tree mapping [Jia+20b]. Alternatively, more specialized
constructions [Bab+18a] for SELECT in the Jordan-Wigner representation have gate
complexity O(N), and when R = Q(N), the cost of block-encoding is dominated
by PREPARE with cost O(R log(N)), i.e. C, = O(log(N)).

3.2 Quantum simulation by spectral amplification

In this section we introduce the basic idea of spectral amplification (SA) and provide
the results that give Termwise SA and SOSSA in Table[3.1] The first version of SA
was put forward in Ref. [SB13]] under the name spectral gap amplification, in which
the goal was to amplify the spectral gap for faster adiabatic quantum computing of
frustration-free Hamiltonians rather than amplifying the whole low-energy spectrum
for arbitrary Hamiltonians as we consider here. More recently, Ref. [£S24]] used
SA to speedup time evolution for the low-energy subspace, in the block-encoding
framework, which gives the third row in Table We refer to the approach as SA
because it amplifies all the small eigenvalues of eigenvectors in the low part of the

spectrum of a positive semidefinite Hamiltonian.

We give the basic results of SA using block-encodings since this is a natural

framework for this approach. Later, we will discuss how to construct these block-
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encodings. In SA we consider first a Hamiltonian of the form

R—
H =) hjec!M (3.18)
j=0

>_.

where /; > 0 are positive semidefinite Hermitian operators satisfying ||h;|| < g;.
We consider a factorization of the /;’s so that ; = A;A ;j for some operators A;. In
the following we assume A ; € CM*M 1o simplify the exposition. Next we define the
corresponding ‘spectral amplified’ operator Hgs by

R-1

Hsp = Z 1/)a ® A; € CMRXM (3.19)

Jj=0
Note that we have enlarged the space and attached an R-dimensional clock register
‘a’. Also note that | j), can be replaced by any set of R mutually orthogonal quantum
states and does not necessarily have to be a computational basis state. As a block
matrix, Hgp is given by

Ao
Hspa =| . (3.20)
AR

We will see that the main property that makes SA useful is
Z ATA, = H{,H (3.21)

That is, Hsa acts as a square root of H and now we can use it to produce other
operators where the eigenvalues are changed. SA will then use access to Hga and,
to this end, we will assume access to unitaries BE[A;/a;], a; > ||A}||, which are
the block-encodings of the individual A;/a;’s. To this end, it is useful to introduce

the following block-encoding normalization factor.

Definition 3.2. Define A to be
A= la;|*. (3.22)

We can efficiently implement an appropriate block-encoding of Hga as follows.

Lemma 3.6 (Block-encoding of Hsa ). Let H' = 0 be a Hamiltonian of the form given
in Equation (3.18). Assume access to the individual block-encodings BE[A/a;]
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and their inverses. Then, we can implement a block-encoding BE[Hga /] with
O(R) calls to the (controlled) BE[A ;| a ] ’s and additional O (R) arbitrary two-qubit

gates.

Proof. Define the unitary

R-1

o Aj Aj A
SELECT := > |jo)(jol @ BE| =2 |, (0|,BE|=L||0),==L,  (3.23)
=0 aj aj aj

and also the unitary PREPARE that prepares the state of the clock register
1 :
PREPARE |0), — |a), := 7 Z ailiy - (3.24)

Then,

(0], SELECT - PREPARE |0),, |0),

R-1 A
—<0|aSELECT|a>b|0>a—Z \F|J>b®<0|aBE[ ]|0>a (3.25)

-1

Aj H
=Z| Ny ® =% = (0|, BE | —=
J=

Vi

10} 10}, - (3.26)
~——
|O>a’

\/_

This shows that SELECT-PREPARE gives the desired block encoding. For SELECT
we used the individual controlled BE[ A /a ;] once and for PREPARE we used O(R)
arbitrary two-qubit gates. O

Equipped with access to BE[Hy, / V], we will see in Section and Section
that various simulation tasks can be performed with a cost depending on VAA, if
the state is supported on the subspace of energy at most A > 0 of H. In order to
construct the walk operator Lemma[3.4Junderlying these tasks, it suffices to consider

a block-encoding of the Hamiltonian

(3.27)

Hg, 0

0 H
Hsy = ( SA) ;
which has eigenvalues that coincide with the square roots of those of H. (This Hga
was used in Ref. [ZS24] for time evolution in the low-energy subspace of H.) Since
vx > x as x — 0 this readily provides the desired amplification. However, for

obtaining improved query and gate complexities, we can instead use BE[H, / Va]
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to block-encode a shifted version of H'. More precisely, in Lemma|3.7| we construct

the following, self-inverse block-encoding:

’

BE -1f. (3.28)

1,
54

By construction, any low-energy state of H” = 0 with energy 0 < E <« A will
correspond to an eigenvalue close to —1 of the block-encoded operator H'/(1/2) —1.
Since the quantum walk operator has now eigenphases arccos(E;/(4/2)—1), similar
to the square root function, the non-linearity of arccos is what allows us to achieve
SA.

Hgp — A1). Let H' = 0 be a Hamiltonian and

where Hgy € CM*N_ Lot BE HSA/\/_
H HSA

Lemma 3.7 (Block-encoding of 1 5 s N

’ T
consider the factorization H' = Hg, H,,

CP*P pe a block-encoding of Hsa. Then we may block-encode either BE[ =4—2 —1]

2
using one query to BE[Hsa/VA] and its inverse, O(Qlog(D/M)) arbitrary two-
qubit gates, and one ancillary qubit, or its controlled version using two ancillary

qubits.

Proof. By the definition of block-encodings, given the all-zero state |0),, € CP/V,
|0y, € CP/M and any state |y/)g € CV,

Hsa Hsa

I Vi

where | ((0],®15s) |0+) | = 0. Using quantum singular value transformations [Gil+19]

BE 10)a W) =10)a —= l¥)s +---100), (3.29)

with the polynomial 2x% — 1, we can block-encode

H;AHSA

1

2

H H
A a{ Fa ® 1)BE | —2

Va
where the reflection Rer, := 2 |0) (0|,—1,. Thisreflection can be implemented using
a multi-controlled-CNOT gate which costs one ancillary qubit and O(log(D/M))
two-qubit gates [He+17]. The controlled reflection can be implemented using a

BE ~ 1| =BE : (3.30)

multi-controlled-CNOT gate with one additional control, and so uses two additional
qubits in total over that of BE[Hsa /V2]. O

Expectation estimation by spectral amplification
In this section, we present new quantum algorithms summarized in Table [3.2] that

exploit SA to improve expectation estimation. Given a block-encoding BE[H /1] of
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an arbitrary Hamiltonian H and a unitary preparing the state |y), the expectation
estimation problem is to estimate E = (¥/| H |/) € [—-A, 4] to additive error € > 0
and confidence at least 1 — g < 1. To simplify the presentation, we assume in the
following that E < 0, though we emphasize that our results are symmetric about
E = 0, meaning that they depend on —|E|. In contrast to the traditional approaches
that give O(A1/€) query complexity, we show that SA leads to explicit scaling with
the improved factor \/m < A, which offer greatest advantage in the limit
E /A — —1, the ‘low-energy sector’, and our generalized routines naturally recover
previously known results without SA, which concern a different limit in which
|E/A| < 1. In the special case of amplitude estimation [Bra+02] corresponding
to the case where H/A = II is a projection, prior work on ‘amplified amplitude
estimation’ [Sim+24] already gives the improved query complexity in this setting.
Nevertheless, our algorithms improve on this previous work in these key areas (Row
2 of Table[3.2):

* Given an a priori known upper bound A > A + E, the query complexity
of our non-adaptive algorithm in Theorem readily scales as O(VAQ1/e),

improving prior work by a factor which means that our results do not

A
A—(+E)’
need the known upper bound A to be at least a constant multiplicative factor

worse than the a priori unknown actual value of 1 + E.

* Even without any prior knowledge of E, such as through the upper bound A,
the query complexity of our adaptive algorithm in Theorem [3.12] scales like
O(+/(max{e, 1 + E}1/€). The dependence on A + E rather than A is a signifi-

cant improvement as A+ E could be arbitrarily smaller than A. Moreover, this

result also naturally recovers the ‘super-Heisenberg’ scaling of O(1/+/€) when
€ = O(A+E) without prior knowledge on E, which in previous work [Sim+24]]
required the specific condition that € = @(1 + E) = O(A).

* QOur results are general and apply to arbitrary H that can be block-encoded,
instead of only reflections or sums of reflections as in [Sim+24]. Moreover,
when we instantiate with H = 2H g AHsa—A1n Lemma this generalizes the
case where H is a reflection and Hgp is a projector to arbitrary block-encoded
rectangular operators Hsa. The low-energy sector is equivalent to assuming
small % W H; AHga |¢), and we give Corollary as an example of how
our general results expressed in the block-encoding framework easily recover

these special cases.
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Year Reference Query complexity O(-) | Needs A Comments

2002 | [Bra+02] dlog (}1) No | Equivalent to Hga o< TI,
2024 [Sim+24] @ log (é) (m) Yes where I1 is a projector.
2025 | Theorem|3.9 @ log (é) Yes Non-adaptive algorithm
2025 | Theorem [3.12 M log (é) No Adaptive algorithm

Table 3.2: Cost of estimating an expectation E = (| H |¢) € [—-A, 4], to additive
error € and failure probability ¢, given query access to the block-encoding of
BE[H/A] and a state preparation unitary for the state ). In some cases, a known
upper bound A > A — |E| is needed a priori.

In the previous section we considered H' = H; A Hsa in Equation and also
|[H'|]| < A. Using Lemma we can shift this to H = 2H’ — A so that the
relevant eigenvalues of H are in [—4, A]. To ease the exposition and the comparison
with other methods, in the following we will assume access to BE[H/A] where
H is arbitrary like Equation (3.13) with eigenvalues are in [-A, 4], and the low-
energy sector, is that of energies at or near —A. At a high level, our non-adaptive
algorithm Theorem [3.9) works by performing quantum phase estimation on the walk
operator Lemma In expectation estimation, this is a walk-operator essentially
on the block-encoding of a trivial 1 X 1 operator E = (/| H |). Due to the arccos
non-linearity, any error € in the estimate of phase becomes a smaller square-root
error € in the estimate of £ when it is near —A. As the upper bound A is known
beforehand, we know how to choose € in phase estimation to achieve the desired
VEA, scaling.

Achieving the optimal scaling of our Theorem [3.12] without prior knowledge of A
is significantly more challenging. Without the upper bound A, we cannot make a
naive choice of € beforehand. For instance, the conservative choice of € = ®(e/1)
is guaranteed to achieve the desired accuracy, but this is basically the worst-case
scaling. The next idea is to perform a binary search for E using multiple i =
1, -+, imax iterations of phase estimation to accuracy e; that decreases geometrically
and confidence 1 — ¢;. By learning an estimate £ of E on the fly and computing e
based on arccos(E), we can terminate the algorithm when the desired e is achieved.
Early termination leads to almost the desired (j(\/m /€) scaling, but this is
still be suboptimal by a logarithmic factor as the failure probability g; accumulates
over multiple steps, and without knowing E beforehand, one has to make a worst-

case choice of ¢; that assumes the number of iterations iy, = ©(log(1/€)), which
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leads to O(log %) scaling. Our solution is to perform the binary search in
two steps. First, given €, we perform phase estimation to error €' = G)(\/e/_/l). We
prove that this is guaranteed to give us either an estimate A + E of 1 + E to constant
multiplicative error, or that 0 < 1 + E < €, and so we terminate the algorithm and
return —A as the estimate of E that is correct to additive error €. Second, using
this estimate E, we now know how many iterations of phase estimation ip,x are
required, up to a constant additive factor. This information is sufficient for us to
make a judicious choice of ¢; that by a union bound, achieves the final desired

confidence with the desired O(log(é)) scaling.

To prove our first result, we require the following known result on phase estimation.

Lemma 3.8. (Phase estimation with confidence intervals [KOSO07; Ber+24b;|Gil+19])
Let U be a unitary operator with eigenstates |\ ;) and corresponding eigenvalues
ei. Let |y) = 2 \Pj ;) be an arbitrary superposition. Then with O(é log é)
calls to controlled-U, its inverse, and one copy of |y), with probability p; we
estimate éj such that |(éj —60;) mod 2r| < € with confidence 1 — q.

Next, we use the high-confidence quantum phase estimation to obtain our first

version of improved expectation or energy estimation.

Theorem 3.9 (Energy estimation by spectral amplification). Let H € CNN pe a
Hamiltonian and assume access to the block-encoding BE[H/A] € CP*P.  Let
|y € CN be prepared by the state preparation unitary P, such that P |0)g = |¢) and
assume it satisfies (Y| H |y) < —A+ A, for some known A > 0. Then E = (/| H |¥)
can be estimated to additive error € and confidence 1 — q using Q = O(@ log é)
queries to the block-encoding, state preparation unitary, and their inverses, two
ancillary qubits, and O(Q log(D/N)) arbitrary two-qubit gates.

Proof. Observe that the following quantum circuit is a block-encoding of the 1 x 1
matrix (E/A):

U :=BE[E/A] = (13®PT)BE[§] (1, ® P). (3.31)

By Qubitization in Lemma [3.4] the quantum walk operator W = Rergrs - BE[E /1]
has eigenvectors |+) := %UO)s,a + |0+)) with eigenphases + arccos(E /).

We now apply high-confidence quantum phase estimation in Lemma [3.§] to this

quantum walk operator with input state |0)g ,. For additive error epga and confidence
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at least 1 — ¢, this requires O($ log é) queries to W. Note that we will obtain a
phase with the + or — sign with probability 1/2 as the input state |0)g , is a uniform
superposition of |+). However, this sign does not impact our estimate and can be
ignored. An error epga in the phase translates to a smaller error € in the expectation
due to the arccos function. Indeed, using the derivative to propagate errors, it is

possible to show
€ < V2AA €pga, (3.32)

and hence choosing epgs = €/(V2AAQ) suffices. This gives the desired complexity.
i

We now show that the same scaling is achieved even without prior knowledge on
the upper bound for (| H| ). This requires a decision version of phase estimation
called gapped phase estimation. Given a unitary U and and an eigenstate |y;) with
eigenvalue /%, the task is to decide with high probability whether 6 ; 1s either in the
interval 7 or 1, where these intervals are disjoint and separated by some angular
gap 2¢. Searching for 6; like in Lemma 3.8]can be reduced to a binary search using
gapped phase estimation with optimal query complexity. The following version
of gapped phase estimation in particular uses no ancillary qubits beyond the one

needed for controlled-U.

Lemma 3.10 (Gapped phase estimation; Appendix D of [LS24]). Let U be a unitary
operator and ) be an eigenstate satisfying U |¢) = € |¢). For any eigenstate
Uly) = e |¢) and any 0y and € satisfying 0 < € < 0y < € + 0y < 5, q > 0, there

is a unitary GPEc g, 4 that prepares the state

GPEegoq |1) 1) = (2(0) 10) + BO) 1) ), la(®)*+|BO)* =1, (3.33)
where

VI6] € [0, 60 — €], (O <29, 1BO)-1<q, (334

V|0 — 7| € [0,60 — €], (0> <2q, |BO)+1]<q, (3.35)

VIO € [6p+e,m—60—€], |BO) <2g, |a@)-1<gq, (3.36)

using Q = O(%log é) queries to controlled-U and its inverse, O(Q) arbitrary
two-qubit gates, and no ancillary qubits.

This version of gapped phase estimation produces measurement probabilities that are

symmetric about § = /2. In situations where it is necessary to distinguish between
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the 6 or r — 6 branches, one may always perform another round of phase estimation
on, say, ¢”*/>U, using Equation . However in the application to quantum walk
operations, a subtlety is that every eigenstate |y;) of the block-encoded operator
maps to a equal superposition of two eigenstate |i);.) of the walk operator with

+iarccos 6;

eigenvalues e . Hence distinguishing between the + branches requires the

following approach of controlled gapped phase estimation.

Corollary 3.11 (Controlled gapped phase estimation). Let U be a unitary operator.
For any eigenstate U ) = €' |y) and any 0y, € satisfying 0 < € < 0y < e+0y < 5
q > 0, there is a unitary CGPE, g, 4 that prepares the state

CGrEegyq |+) 11) I¥) = (0(6) [01) + @1 (6) [11) +¥(6) [-0)) |¥) ,

lao(0)* + a1 (0)1> + |y(0)* = 1, (3.37)

where
v|6] € [0, 60 — €], 1 —|ao(0))* < g, (3.38)
V|6 — x| € [0, 60 — €], 1 -l (0) < q. (3.39)

using Q = O(%log é) queries to controlled-U and its inverse, O(Q) arbitrary
two-qubit gates, and no ancillary qubits.

Proof. LetCGPEc g, o = |0) (0|®1+|1) (1|®GPEc g, ,» Where GPE, g, 4 is from Lemma(3.10)
Then

cGPEf,go,q/%um 1) 1) ) = [W] 1) 19) + %a(e) 110) 1)
Now apply the Hadamard gate to obtain the state
@) = [Z 2 0+ 2O |11+ Za@ 1 01). G40

If |6| € [0, 8p— €], then from Equation (3.34)), the probability that we do not measure

|01) is at most

1-BOF  la@®) _ ¢~ 5
1- 0% = + < —+4¢ <=q¢ <gq, 3.41
o (6)] 1 S ST te =794 (3.41)
where we choose ¢’ = %q. Similarly, using Equation li if |0 — | € [0,00 — €],
the probability that we do not measure |11) is also at most g. O

We are now ready to prove the general result of this section, giving the first row of
Table 3.1l
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Theorem 3.12 (Energy estimation by spectral amplification with no prior). Let H €
CN*N be a Hamiltonian and assume access to the block-encoding BE[H [A] € CP*P .
Let |y € CN be prepared by the state preparation unitary P, such that P |0) = |yr).
Then E = (Y| H |¢) can be estimated to any additive error € and confidence 1 — g

using Q _ O(\/max{ee,/l—|E|}/l

unitary, and their inverses, two ancillary qubits and O(Qlog(D/N)) arbitrary

log é) queries to the block-encoding, state preparation
two-qubit gates.

Proof. In Theorem[3.9] we constructed a unitary walk operator W. Our discussion is
made clearer by instead considering the walk operator —W, which has eigenvectors
|+) and eigenphases 6. := & F arccos(a@), where a := % € [-1,1]. We find
it convenient to define 0 := a+1 = E/A1+1 € [0,2]. We can choose the
principle range of 6. to be symmetric about 0. Hence 6. = +6 € [0, ], that
is, 8 := |0+] = |0-|, and 6 — /2 is symmetric around @ = 0. We search for 6 using
gapped phase estimation Lemma [3.10]in two steps. In the first step, we assume that

€ [-1,0] = 8 € [0,7/2] and estimate 6 to additive error €. As the bounds
on the probabilities |a(6)|%, |3(0)|* of gapped phase estimation are also symmetric
about /2, gapped phase estimation on —W cannot distinguish between cases 6 or
m — 6. However, the sign of S(8) ~ —B(x — 6) is sensitive to these cases. In the
second step, we therefore distinguish between cases using controlled-gapped phase

estimation Corollary [3.11]

Let the iterations of the search be indexed by i = 0, - - - , ijax — 1, for some ipax > 0.
At each iteration, 6 is known to be contained in an interval Z; := [1;), Z; ;] with high
probability p;. Hence, 6 € 1, = [0, n/2] with probability py = 1. At each iteration
i > 0, we split Z; into thirds

Ly =

1
I+ glj;'l’];‘,r], 1| = [Il, i~ |f|] (3.42)
and we will assign J;; to be either 7; 1 or Z; |. Note that the width |7;| = %ri, where
r=2/3.

We determine this assignment using gapped phase estimation GPE, ¢, 4, With 6; =
I 1+Iz r

at the midpoint of Z; and ¢; = |I,~|. From Lemma [3.10, this prepares a state

|+>+| Lo LS a0 0+ pE0 ). (43

GPEy, 6,.4; |0) ———
i \/EXe
{+a_}
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We measure the {|0), |1)} register to obtain outcome |m). Then we set

Zi), m=0,
La={" (3.44)

L,T’ m=1.
The estimate of @ in Z; converts to an estimate of

@ € —0s(L) = [-0s(ZLi1), -0s(1ip)] = [-0s(6; = |4i]/2), -Os(6; + | 11| /2)],

(3.45)
€ = |0s(Z)| = 2sin(6;) sin(|Z;]/2), (3.46)
EeH =[H;, Hi], H =-20s1;, (3.47)
€ = |H;| = A€, (3.48)

where €; and €/ is the additive error to which & and E is known respectively.

The probability that this assignment is incorrect, that is 8 ¢ 7;,; is given by the

maximum of the probabilities

|2 (6) +|a(=6)*

Prim=1|6 € L]\ 1] = 5 < gis (3.49)
2 2
Prim = 016 € 7\ 7] = PO +2|ﬁ( O _ .. (3.50)

6 g9
72 (imax—i+1)2 "

amplitude estimation after all i, steps is at most

We choose ¢g; = Then by a union bound, the failure probability of

Imax

L= Pipy < Z 2;7 =q. (3.51)

The query complexity of all the GPE steps is then

imax—1 imax=1 [ o\ i i
max l 1 max 3 1 3 max 1
Q:O(Z(; r_Iqu,) O(ZO: (5) ((imax—i+1)+log5)):0((§) loga).
(3.52)

When the search is complete, there are two cases of interest.

1. 7;

Imax>

0<e6,, = 2sin2(|IimaX|/2) < %42 Note further that o < 2ssin?(|7;
and only if Z; ;1 =0.

maxs

1 = 0: This implies that @ € [-1,-Os|Z;_ . |], and that o is small, that is
|/2) if

max
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2. 1;

Imax;

1 > 0: This implies that « > —OsJ; | and we have an estimate of

Imax;

o > 1 - 0Os1;, 1 that is bounded away from zero. Let it be the first iteration
where 7;,; > 0. Then 7;;; = | .| and
1 3 1 3|n;
0 ~ 'Z; s~ J; =55 A7 lf, .
¢ [2| A3l fl] [2 2] 5" (3.53)
€ [l - OS( | Z; |) ( | Z; |)] (3.54)
: | 2 Ml _ 2| 2|
€, = 2 sin (|Z;,]) sin 2” < 4si - - 0s® 2“ <8(1-0s 2“ <8
(3.55)

As €; decreases monotonically with 7, this implies that we obtain a estimate of

o to constant multiplicative error. For any later iteration i > if > 0, observe
| if|ri_if

[ —1 2 3 2
that |7;| < g% Hence sin —5— < Zr'™ smlz—f| sin |2‘| < 2 sin |Z;;|, and
|| | Zlr' 3G | |Gl
= 2sin (6;) sin — = 2 sin (6;) sin ———— < 2sin sin
(6:) sin = (6:) sin — > >
—i || i—if i—if
< nr i =nr e, < 8nr'Mo. (3.56)

We now evaluate the final error Ei/max of the estimate of E for some choice of iax.

We now evaluate the final error el.’ma of the estimate of E for some choice of i,x.

1. Letimax,1 = [% logl/r(%)'l. Choose imax = imax.1+d, Where d = [logl/r(167r)'|,
and ¢ = A;. The query complexity is

01 = O(\/Z i), (3.57)

\/?

and we show that we either obtain an estimate of E to error at most €', or
obtain an estimate of (1 — |E|) € [0, 4] to at most a constant multiplicative

error of % as follows.

a) Case 4; .1 =0:
.
€ < A—pHmxl < ¢ (3.58)
Imax,1 8
b) Case ;.1 > 0:
’ d+i —i d+i i d 1
€ < A8ar@Hima 1T g = BupdTimax T < 8rrt(A — |E|) £ =(A - |E]).
Imax, 1+d 2

(3.59)



65

Hence
, 3 3
A= Bl € A= [Hp il < A= |E|+ €, < S(A=IE]) £ 5= [H ).
(3.60)
. V(A= Higyax 1) . .
2. Let imax2 = [log,;,(—————)1, where ¢ = é Choose imax = Imax.2

and g = A,. The query complexity is

V- IH,, DA 1 )
log —|1,
134 AY)

0,=0 (3.61)

and we obtain an estimate of E to error at most €’ as follows.
T T
= 2sin(0;) sin(|L;|/2) < sin(@i)zr’m‘”‘ < sin(arccos (—(o0 + €, — 1)))5#‘“ax

=J2-0-¢,)(0+ Eimax)%rim‘”‘ <+2(0+ emax)%ri‘“ax. (3.62)
€ = A€, <A4J2(0+ Eimax)grima" < \/ﬁ\/(/l —-|E|) + elfmaxgrimax

r [(A-|E]) +¢€ V3n
< max _/ < / < /. .
_c—\/z\/ Y e_c—2 € <e€ (3.63)

Eimax

max,/ |

If 7; ..,1 = 1 —€'/2, the estimate for E in the full range [-A, 4] is already correct
to error € and we terminate the algorithm. Otherwise, we now have to determine
which of h € [-A,—€'/2) or h € (€'/2,4] is true. This is accomplished using
controlled gapped phase estimation from Corollary@using CGPEr2-1, 11/2.05
With failure probability at most Az, we measure and obtain |01) if 0 € [0, Z; ],
and obtain |11) if 0 € [ — 7; _ , 7]. Using the inequality

s /s ) |Hi, ]| E
5 - ‘Z;.ma)(sr = 5 N arccos(l%maerl//l) = arCSln(lq‘{lmaX’r|//1) 2 Tr Z |/l_| '
(3.64)
This has query complexity
1 | O(log 1-), |E| > 1/2,
0;=0l——— 1o —) = 3 (3.65)
maX(G/,lEl) gA:; O(\/IV/}_|E| IOgAL) |E| </l/2
€ 377 :

We then set A} = Ay = Az = ¢’/3. Then the overall query complexity to estimate E
to additive error € and failure probability at most ¢’ is

1 1
Q=Q1+Q2+Q3:O(§ (\/?+\//l—|E|)logZ). (3.66)
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The gate complexities and qubit overhead follow from the construction of the walk
operator and gapped phase estimation procedure. Finally, observe that VAy/A — |[E| <
VA + EVA - E, and also that x + y = O(max{x, y}).

O

As a bonus, we now give a proof of amplified amplitude amplification, which
is a special case of Theorem instantiated with the spectral amplified block-
encoding Lemma This improves on recent work, e.g. [Sim+24, Lemma 2],

which required a known upper A > | (| IT|¢)|, and had poorer query complexity
0 (¢ 10g(}) i)

Corollary 3.13 (Amplified Amplitude Estimation). Let the projector TI> = II be

block-encoded by BE[I1]. Let the state preparation orcale P|0) = |¢). Then
\/max{e,<w|n|f><1—<w|n|w>)} log 1
q

(Y| I |y) can be estimated to additive error € with confidence 1—q using O

queries to BE[I1], P and their inverse.

Proof. Let H = 2I1/A — 1, where A = 1. Using Lemma we block-encode
BE[H] using one query to BE[I1] and its inverse. As E = (Y| H |¢) =2 (Y| I |¢) —
1, Theorem states that the query complexity to estimate (| H |) to additive

error € and confidence 1 — g is

Amax{e, A — |E 1
o[YAmale A-IED 1
€ q

(vmax{e, (| I |y) (1 - (| |y))} log 1

€ q
(3.67)

=0

O

Phase estimation by spectral amplification

In this section, we present new quantum algorithms summarized in Table that
exploit SA to improve phase estimation of the energy of quantum ground states.
Given a block-encoding BE[H /1] and a unitary P preparing the state |), such
that the overlap p > 0 with the ground state |y() is known a priori, the goal is
to estimate the corresponding ground state energy E, where H |¢o) = E |¢p), to
additive error € and confidence 1 —¢. In contrast to the typical approach that scale like
O(A/€) queries, we show that SA leads to explicit scaling with the improved factor
m < A. Our generalized routines naturally recover previously known results
without SA, which is the | E| < A limit, in addition to achieving better qubit or query

complexities. Our results in terms of queries to BE[H /4] is most general: If there
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is an operator H' = Hg A Hsa and we are provided the block-encoding Be[Hsa / Val,
then Lemma informs us that we may identify H/1 « (2H§ AHsa —4)/A. If the
ground state energy of Hg AHsa 1s small, we automatically realize SA as the factor
Eo = (Yol Hy, Hsa |po) — A is close to —4. We note that the expectation estimation
results of Section could be reduced to the specific p = 1 case of this section.
Out algorithms improve on previous work (Row 3 of Table[3.3) in a few key areas:

* In the case where |y) is supported on the eigenstates with energy less than
an a priori known upper bound A > A + E, our non-adaptive algorithm The-
orem [3.14] returns an estimate of the energy of one of these eigenstates to
additive error € using O(VAA/€) queries.

* In the case where we specifically want the ground state energy, for which, like
previous work, we have no a priori known upper bound, our adaptive algo-

rithm Theorem [3.15| matches the scaling of previous results in the parameters

p. ¢, and scale with the improved factor \/A max{e, 1+ E}/e. This factor
is upper bounded by previous results, e.g. the |E| < A case. Moreover, it
exhibits novel super-Heisenberg scaling like O(4/1/€) when e = ®(1+ E), a

result which was previously unknown.

* Through the use of improved gapped phase estimation techniques Lemma[3.10}
we reduce qubit overhead from a logarithimic factor to just a constant 2. This

could be relevant in practical implementations of the algorithm.

At a high-level, the proof our non-adaptive algorithm Theorem [3.14]is very similar
to that of Theorem — perform phase estimation to accuracy € = A/e, and
propagate the arccos nonlinearity with the a priori known upper bound A. The
proof of the adaptive algorithm Theorem [3.15] also mirrors that of Theorem [3.12]
in that it uses binary search by multiple iterations of gapped phase estimation, and
also performs gapped phase estimation in two steps: First to a phase estimation
accuracy of € = \/e/_/l which is guaranteed to either tell us that E is —A to error €
and so we terminate the algorithm, or give us an estimate A + E of A + E to constant
multiplicative error. Second, use the estimate E to choose the number of additional

phase estimation and their accuracy and confidence parameters.
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Query complexity O(+) Extra

Year Reference Block-encoding State preparation qubits Comments

2017 | [GTCIS) ,{/3/2 10g®) (ﬁ) %\/glogw (ﬁ) 0(1og(g))

2020 | [LT20] . log(g)log(%) ‘/%mg(g)log(%) O(log(%))

log (12241

2024 | [Bere2ab) | A tog (L]10g (L) & log (4) tog (2] | 0 (log (22 ))

2025 | [Low+23), | Yl1og (L) 1 0 (log(1/¢€)) (( +
Theo- E) of |¢y)) <
rem[3.14] Ap=1.

2025 Theorern W log (1%) % log (%) log (%) 2

log (é)

Table 3.3: Cost of estimating an a priori unknown ground state energy E of H to
additive error € and failure probability g, given query access to the block-encoding
of BE[H/A] and a state preparation unitary for a trial state with overlap +/p with the
ground state.

First we consider phase estimation, the result in the first line of Table [3.1] This
is the key result which enabled the improved quantum chemistry compilations in
Ref. [Low+25]. The following proof is based on Hga for simplicity; a similar proof
follows using Hsa combined with Lemma[3.7]

Theorem 3.14 (Phase estimation with SA). Let H = 0 be a Hamiltonian of the
form given in Equation (3.18). Let |y) be a low-energy eigenstate supported on the
subspace of energy of H at most A > 0. We can perform phase estimation of H
on the state y) to additive precision € with O(NAA/€) calls to BE[Hgsa/VA], the

block-encoding of Hgsa, and its inverse.

Proof. Consider the related problem of performing quantum phase estimation on
the Hamiltonian Hgx of Eq. within additive precision € > 0. This can be done
by using the block-encoding BE[Hga /VA], and this block encoding can be easily
implemented with one call to (controlled) BE[Hsa/VA] and one call to its inverse.
(An explicit construction of this block-encoding is in Ref. [[£S24].) Quantum phase
estimation necessitates O(VA/¢€) uses of these block-encodings for this precision,

which is known as the ‘Heisenberg limit’ [Ber+18; KOSO7]. Next we note that

H 0

T
0 HSAHSA

(Hsp)? = ( : (3.68)

implying that, if E > 0 is the desired eigenvalue of H (i.e., H [¢) = E |¢)), +VE are

also eigenvalues of Hga. Indeed, the (at most) two dimensional subspace spanned
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by {|¥) |0),Hga |¥) |0)} is invariant under the action of Hga and is the one that
gives rise to the +VE. Hence, phase estimation using Hga with initial state ) |0)
will produce an estimate of VE or —VE.

Let ¢ be such an estimate; for example consider VE in which case we have | —VE| <
€. (The analysis can be applied to the case of —VE.) If we take the square we obtain

E-3VEe< (VE-¢€)? <* < (VE+¢€)> <E+3VEe, (3.69)
where we assumed the precision to satisfy e < VE. Hence, if we set € < €/ (3VE)
we can obtain E within additive precision €, which is the desired goal.

To this end, we run quantum phase estimation with Hgp, initial state i) |0), and
additive precision € < €/(3VE). The number of calls to (controlled) BE[ Hsa /VA]
and its inverse will be O(VEA/e). The result follows from the assumption £ <
A. |

Previous work [Ber+24b] summarized in Table [3.3]solves this problem with a query

complexity of

) H A 1 1
Queries to BE [z] =0 (ﬁ log (1—7) log (5)) , (3.70)
1 