
Advancing Applications of Quantum Computers in
Quantum Simulation, Optimization, Learning, and

Topological Data Analysis

Thesis by
Robbie King

In Partial Fulfillment of the Requirements for the
Degree of

PhD

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended April 29, 2025



ii

© 2025

Robbie King
ORCID: 0000-0002-4174-0801

All rights reserved



iii

ACKNOWLEDGEMENTS

I am deeply grateful to my advisor, Thomas Vidick, for his kindness, patience, and
unwavering belief in me. At Caltech, Leonard Schulman has been a constant source
of support, always making me feel at home. I am grateful to John Preskill for his
visionary leadership and for fostering an environment at Caltech where students can
truly realize their potential. I owe a special thanks to Ryan Babbush, who has given
me invaluable guidance and opportunities which significantly shaped my research
goals.

I draw continuous inspiration from my colleagues. Many of them have left a lasting
impact on me: Amira Abbas, Atul Arora, Eric Anschuetz, Joao Basso, Thiago
Bergamaschi, Matthias Caro, Ulysse Chabaud, Anthony Chen, Chris Chen, Andrea
Coladangelo, Abhinav Deshpande, Matthew Ding, Dar Gilboa, Jonathan Gross,
Bailey Gu, Casper Gyurik, Dominik Hangleiter, Matt Harrigan, Oscar Higgott,
Robert Huang, Bill Huggins, Alex Jahn, Jiaqing Jiang, Bobak Kiani, Tanuj Khattar,
Tamara Kohler, Laura Lewis, Saeed Mehraban, Tony Metger, Chinmay Nirkhe,
Quynh Nguyen, Chris Pattison, Alex Poremba, Daniel Ranard, Chaithanya Rayudu,
Sascha Schmidhuber, Tommy Schuster, Noah Shutty, Joe Slote, Jun Takahashi,
Eugene Tang, Kevin Thompson, Yu Tong, Ben Villalonga, Agi Villanyi, James
Watson, Tina Zhang, Leo Zhou, and Alex Zlokapa.

My journey into this field began thanks to Richard Jozsa and Sergii Strelchuk, who
introduced me to quantum computing as an undergraduate at Cambridge. Since
then, I have been fortunate to learn from many more exceptional senior researchers:
Sergio Boixo, Toby Cubitt, Vedran Dunjko, Eddie Farhi, David Gosset, Zhang Jiang,
Stephen Jordan, Robin Kothari, Guang Hao Low, Jarrod McClean, Tom O’Brien,
Ojas Parekh, Pedram Roushan, Nick Rubin, Rolando Somma, Nathan Wiebe, and
John Wright.

Finally, I am endlessly grateful for my parents Chieko and Marshall, whose love and
sacrifices gave me the best possible start in life. I have also had incredible support
from my brother Alex, my old friends back home in the UK, and the new friends I
have made in California.



iv

ABSTRACT

This thesis investigates novel directions for harnessing the potential of quantum
computers in future applications. It is structured into three sections.

Quantum Simulation. We address two key questions: what systems exhibit quan-
tum advantage in predicting ground state properties, and how can we reduce the cost
of quantum simulations? For the former, we find that strongly interacting fermionic
systems have promising characteristics for quantum advantage. For the latter, we
develop an improved method for compiling block encodings using sum-of-squares
optimization.

Learning with Entangled Measurements. We explore the benefits of leveraging
entangled measurements on quantum states stored in quantum memory. These
learning algorithms can be applied to the readout stage of quantum simulations, or
to learn from quantum data from nature.

Topological Data Analysis. Using complexity-theoretic insights, we demonstrate
that certain problems in topological data analysis possess a quantum mechanical
structure, suggesting opportunities for quantum algorithms in this area.
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C h a p t e r 1

OVERVIEW

Quantum computing represents the most powerful form of computation according to
our current understanding of physics, with quantum technologies offering unprece-
dented control over fundamental reality—the storage and manipulation of quantum
information itself. While significant progress is being made toward error-corrected
quantum computers [23; Blu+24], a clear understanding of their most concrete and
impactful future applications remains elusive [Dal+23a]. If quantum computers are
not widespread within the next few decades, the reason may well be due to lack
of incentive rather than an engineering obstacle. That said, there are reasons to
be optimistic. Quantum computing holds the potential to unlock groundbreaking
discoveries in physics and chemistry, ultimately leading to transformative technolo-
gies in fields such as drug development and material science. Quantum computing
also has the potential to provide exponential computational speedups for certain
problems, which could revolutionize processes at the industrial scale.

Simulation of quantum chemistry is one of the most widely heralded applications
of quantum computing. This is because quantum chemistry governs the properties
of drugs and materials, yet is hard to accurately model using classical algorithms.
Two outstanding challenges remain for quantum algorithms in quantum chemistry.
Firstly, we would like a better understanding of which systems are expected to exhibit
the largest quantum advantages, for example in predicting groundstate properties.
Can we characterize such systems, and understand why they are classically hard
yet quantumly easy? Secondly, quantum algorithms for quantum chemistry remain
expensive, and it is important to reduce the costs as much as possible.

We tackle the first problem in Chapter 2, where we study the SYK model as a
model for strongly interacting fermions. Here we were able to establish two new
results [Kin+24]. Firstly, low energy states of the SYK model must have large
polynomial circuit depth; that is, they are very entangled. Secondly, the SYK model
has an annealed free energy at inverse polynomial temperatures, and there is no
glassy phase. The first result suggests that low energy physics of SYK is classically
hard, whilst the second result suggests that it is quantumly easy, since there is no
obstruction to quantum thermalization. Remarkably, both results follow from the



2
Fermionic optimization and learning

Quantum
simulation

Chapter I
Strongly Interacting Fermions

– Strongly interacting fermionic systems
have promising properties for quantum ad-
vantage.
– Eigenstates are highly complex.
– Annealed and non-glassy at low temper-
atures.

Chapter II
Sum of Squares Spectral Amplification
– Order of magnitude improvement over
state of art quantum chemistry algorithms.
– Preprocess Hamiltonian using sum of
squares optimization and amplify low en-
ergy spectrum.
– Asymptotic improvements in SYK toy
model.

Learning with
entangled

measurements

Chapter III
Learning Fermionic Observables

– Aim to measure fermionic 𝑘-RDM.
– Necessary in readout stage of quantum
chemistry algorithms.
– Exponential sample complexity im-
provements using entangled measure-
ments on two copies of the state.

Chapter IV
Learning Bosonic Observables

– Aim to measure expectation values of
bosonic displacement operators.
– Exponential sample complexity im-
provements using measurements on 𝜌 ⊗
𝜌∗.
– Proof that 𝜌 ⊗ 𝜌∗ is necessary.

Table 1.1: An illustration of the themes in Chapters I-IV

same quantity which we call the commutation index, which measures the extent to
which the terms in the Hamiltonian are non-commuting. For quantum spin glasses
the commutation index is constant, whilst for random fermionic interactions it
decays polynomially with system size. This provides a hint that strongly interacting
fermionic systems behave more like random matrices than like spin glasses and are
a better target for quantum algorithms.

Next in Chapter 3 we develop a new method for compiling more efficient block
encodings of quantum chemistry Hamiltonians for use in quantum algorithms. We
refer to our method as sum of squares spectrum amplification (SOSSA), and it has al-
ready been used in Ref. [Low+25] to achieve an order of magnitude improvement in
the total runtime over state of art quantum chemistry algorithms for large molecules
of industrial interest, such as FeMo-co. The key innovation lies in performing spec-
tral amplification on the low-energy spectrum of the Hamiltonian. This approach
typically works only when the Hamiltonian is frustration-free. However, by harness-
ing sum-of-squares optimization, we can classically preprocess the Hamiltonian to
express it in a low-frustration form.

In applications of quantum simulation, after preparing a low energy state or simulat-
ing some dynamics on the quantum computer, we would like to extract meaningful
physical information from the final quantum state. This readout stage of the quantum
algorithm can be casted as a learning problem. In Chapter 4, we continue the theme
of fermionic systems from Chapter 2 and study learning algorithms for fermionic
observables which exploit entanglement measurements on multiple copies of the
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unknown state. Specifically, we resolve a key bottleneck in shadow tomography
for fermionic operators by reducing the quantum memory requirement from many
copies to just two copies [Kin+25]. We do this by relating measurement strategies
to colorings of a certain graph which we call the commutation graph.

In Chapter 5, we apply similar learning techniques from Chapter 4 to bosonic
observables. In the bosonic setting, we uncover a new type of advantage where
entangled measurements involving the complex conjugate of an unknown state
provides exponential sample complexity advantages [KWM24]. We proved that the
learning task is information-theoretically impossible without access to the complex
conjugate state.

Chapter 6 is a final standalone chapter which looks at an application of quantum
computers outside of quantum simulation. Can Hamiltonian simulation algorithms
be applied to domains outside of the simulation of quantum systems themselves?
One example is provided by the task of topological data analysis (TDA), for which
quantum algorithms have been developed. The primary feature of TDA enabling
quantum speedups is the ability to encode topological invariants in the ground
space of an exponentially large sparse matrix, known as the combinatorial Laplacian
[LGZ16; Ber+24a]. In Chapter 6 we show that deciding whether a topological space
has a high-dimensional hole is QMA1-hard and contained in QMA [KK24]. This
tells us that there is quantum structure in the TDA problem and provides evidence
that the quantum TDA algorithm cannot be dequantized. Our proof technique
crucially used a tool from algebraic topology known as spectral sequences, which
allowed us to perform a version of perturbation theory on the Laplacian.
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C h a p t e r 2

STRONGLY INTERACTING FERMIONS

Simulating ground and thermal state properties of quantum systems is a key appli-
cation of future quantum computers [Fey82; Llo96; McA+20; Lee+21a; Bur+21a;
Bab+18b; Cha+20]. Nevertheless, the search for particular, favorable instances that
are quantumly easy and classically hard is not clear-cut [Lee+22]. A challenge is that
current quantum computers are limited in quality and size, requiring the community
to rely on theoretical arguments to give computational separations. However, the
ground states for standard few-body quantum spin models can be QMA-hard (as
classical spin models are NP-hard) in the worst case [Kit+02; Aha+09; GI09]; in
the average case, random classical and quantum spin models exhibit glassy physics
where computational hardness may arise [Gam21; BS20]. To give an efficient quan-
tum algorithm for low-temperature states, one must carefully avoid these instances.

Most chemical and condensed matter systems involve fermionic degrees of freedom,
not only spins. Of particular importance in quantum chemistry is the strongly
interacting regime, where Gaussian states do not give good approximations to the
ground state and the Hartree–Fock method fails [SO12]. This has been proposed
as a promising regime in which to apply quantum computers to achieve quantum
advantage [McA+20]. The Sachdev–Ye–Kitaev (SYK) Hamiltonian provides a
natural model for strongly interacting fermions [SY93; Kit15b; Kit15a]. As a
counterpart to random spins, it is a random Hamiltonian consisting of all-to-all
𝑞-body Majorana fermions:

𝐻SYK
𝑞 := 𝑖𝑞/2

(
𝑛

𝑞

)−1/2 ∑︁
𝑗1<···< 𝑗𝑞

𝑔 𝑗1... 𝑗𝑞𝛾 𝑗1 . . . 𝛾 𝑗𝑞 , (2.1)

where 𝑞 is assumed to be even, and the 𝑔 𝑗1... 𝑗𝑞 are i.i.d. standard Gaussian random
variables. The 𝛾 𝑗 are the Majorana operators, which satisfy commutation relations
𝛾𝑖𝛾 𝑗 +𝛾 𝑗𝛾𝑖 = 2𝛿𝑖 𝑗 . They arise from the fermionic creation and annihilation operators
𝑎 𝑗 , 𝑎

†
𝑗

by
𝛾2 𝑗−1 = 𝑎

†
𝑗
+ 𝑎 𝑗 , 𝛾2 𝑗 = 𝑖(𝑎†𝑗 − 𝑎 𝑗 ) (2.2)

While the 4-body fermionic ground state problem can be just as hard as spin models
in the worst case (NP-hard) [LCV07], average-case fermionic systems appear to
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have qualitatively different physics and perhaps computational complexity than
spin systems [HO22; MS16; BS20]. Extensive heuristic calculations (such as
large-N expansions) together with numerical evidence indicate that the SYK model
resembles a thermalizing chaotic system, not a frozen spin-glass as occurs with
few-body quantum spin systems [BS20; Fac+19]. However, rigorous proofs that go
beyond the physical arguments have been very limited [HO22; FTW19].

In this chapter, we study the strongly interacting SYK model and give quantita-
tive evidence that random, all-to-all connected fermionic systems have a classically
non-trivial yet non-glassy thermal state at constant temperatures. In contrast, these
two properties are false for disordered spin systems [BS20; Bra+19]. Remark-
ably, the proofs of both main results rely on the same quantity, the commutation
index [Kin+25]. To bound the commutation index of fermionic operators, we an-
alyze the Lovasz theta-function [Knu93] of a certain graph encoding the fermionic
commutation relations.

This quantity pinpoints a crucial and often overlooked distinction between fermionic
and spin Hamiltonians: low-degree fermionic monomials have a very different
commutation structure than low-weight Pauli operators. The commutation index
captures this difference, quantifying the fundamental distinction in the physics of
local spin systems and local fermionic systems. This disparity, we argue, is the
origin of a potential quantum advantage in simulating strongly interacting fermionic
systems. Although the SYK model is our primary example, we also show that
versions of our results—depending only on the commutation index—apply to all
models with i.i.d. Gaussian couplings. This highlights the surprising importance
of quantum uncertainty in governing both glassiness and the entanglement of low-
energy states in disordered many-body systems.

More precisely, we first show that all low-energy states (including constant-temperature
thermal states) of the SYK model have high circuit complexity (‘classically non-
trivial’)1. The following theorem is phrased in terms of states that maximize the
energy Tr(𝜌𝐻SYK

𝑞 ). This is equivalent to states that minimize the energy, since the
distribution of 𝐻SYK

𝑞 is the same as that of −𝐻SYK
𝑞 .

Theorem 2.1 (Low energy states are classically nontrivial). Consider the degree-𝑞
SYK model 𝐻SYK

𝑞 . With high probability, the maximum energy is 𝜆max(𝐻SYK
𝑞 ) ≥

1We here consider disordered models where the distribution of 𝐻 is identical to that of −𝐻, so
the ground state energy is equivalent to the maximal energy.
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Ω𝑞 (
√
𝑛), yet any state 𝜌 such that

Tr
(
𝜌𝐻SYK

𝑞

)
≥ 𝑡
√
𝑛 (2.3)

has circuit complexity
Ω̃𝑞 (𝑛(𝑞/2)+1𝑡2). (2.4)

The Ω𝑞 notations assume a fixed 𝑞 and growing 𝑛.

That is, low-energy states of the SYK model are highly entangled and require many
parameters to describe; simple classical ansatzes, such as Gaussian states, must fail.
In comparison, local quantum spin systems are known to have efficiently computable
product state approximations to the ground state [Bra+19] and thus, in this sense,
have ‘trivial’ states that achieve a constant-factor approximation of the ground state
energy.

Second, we show that the quenched free energy of the SYK model agrees with
the annealed free energy even at very low temperatures (‘non-glassy’), formalizing
and strengthening previous results of this nature [Gur17; BS20; Fac+19; GPS00].2

Here, the free energy is normalized such that 𝛽 = O(1) corresponds to constant
physical temperature.

Theorem 2.2 (Annealed at low temperatures). Consider the partition function of
the degree-𝑞 SYK model 𝑍𝛽 := Tr exp(−𝛽

√
𝑛𝐻SYK

𝑞 ). Then, we have:

E log 𝑍𝛽
𝑛

≤
logE𝑍𝛽
𝑛

≤
E log 𝑍𝛽

𝑛
+ O𝑞 (𝛽2𝑛−𝑞/2). (2.5)

The O𝑞 notations assume a fixed 𝑞 and growing 𝑛.

The quantitative agreement of the two free energies at (inverse-polynomially) low
temperatures strikes a stark contrast with disordered spin systems: the SYK model
does not experience a ‘glass’ phase transition in the sense of quenched-vs.-annealed
free energy. For classical spin Hamiltonians, it is known that the annealed free
energy 𝑛−1E log 𝑍𝛽 fails to agree with the quenched free energy 𝑛−1 logE𝑍𝛽 at
constant temperatures where the Hamiltonian is in its glassy phase and algorithmic
hardness arises; disordered quantum spin systems undergo a similar transition at
constant temperature [BS20]. The lack of a glass transition for the SYK model

2In particular, Ref. [BS20] showed that the SYK model is consistent with an annealed approxi-
mation, and here we prove that the annealed approximation holds.
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suggests that there may be no algorithmic obstructions to preparing low-temperature
states of the model on a quantum computer, but we do not prove this claim. We
leave finding such an efficient quantum algorithm for future work.

Although the SYK model is our primary example, our results apply more generally
to a wider range of models. We will see shortly that the circuit lower bound in
Theorem 2.1 and the bound on the quenched free energy in Theorem 2.2 depend
only on the value of a single quantity which we call the commutation index. This
quantity characterizes the quantum uncertainty in the model and provides a new tool
to probe the chaotic properties of many-body systems.

Background and related work. The SYK model is a canonical instance of a
chaotic Hamiltonian [SY93; Kit15b; Kit15a] with related models studied as far back
as [FW70; BF71]. For even 𝑞 = 𝑜(

√
𝑛), the SYK model has a Gaussian spectrum

[FTW19] and heuristics from physics indicate that the expected maximum energy of
the SYK model scales as

√
2𝑛
𝑞

for even 𝑞 [GJV18; GV16; HO22]. However, the only
rigorous result we are aware of with explicit constants is an upper bound of

√︁
(log 2)𝑛

[FTW19]. Though Gaussian state approximation algorithms exist for fermionic
systems [Bra+19; Her+23b], it is known that for the SYK model with 𝑞 ≥ 4,
Gaussian states cannot achieve constant factor approximations to the maximum
energy [HTS21a]. Separate from the SYK model, so-called no low-energy trivial
states (NLTS) theorems rule out constant factor approximations to ground energies
with low depth circuits in worst-case settings [ABN23; Her+23a]. For random
nonlocal Hamiltonians, [Che+23] shows a circuit lower bound for sparse, sampled
Pauli models using a similar technique as in the proof of Theorem 2.1, where the
commutation index is much more straightforward to calculate.

The commutation index has connections to other areas of quantum information
theory and Hamiltonian complexity. In [GHG23; XSW23], the commutation in-
dex (there termed the generalized radius) is used to study generalized Heisenberg
uncertainty relations. Related to our work, [HO22] use the commutation index to
analyze the performance of sum-of-squares relaxations of the SYK model and prove
the 𝑞 = 4 instance of Theorem 2.3, giving as well an algorithm verifying Ω(

√
𝑛)

energy for 𝑞 = 4. [AGK24] demonstrates that product states maximize the energy
variance for random quantum spin Hamiltonians. Finally, the commutation index
appears in quantum learning theory, where it provides a sample-complexity lower
bound on how many copies of the state are required to learn the expectation values
of a set of operators via shadow tomography [Che+22; Kin+25].
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Commutation index
We define the commutation indexΔ(S) of a given set of operatorsS = {𝐴1, . . . , 𝐴𝑚}
as follows.

Definition 2.1. For a set S of Hermitian operators, define their commutation index
by

Δ(S) = sup
|𝜓⟩

E𝐴∈S ⟨𝜓 |𝐴|𝜓⟩2. (2.6)

When all ∥𝐴𝑖∥ ≤ 1 the commutation index takes values 0 < Δ(S) ≤ 1. Roughly, a
more ‘commuting’ set of observables S gives a larger value of Δ (S). For example,
if the operators are all mutually commuting and satisfy 𝐴2

𝑖
= 1, choosing |𝜓⟩ to be

a simultaneous eigenstate gives Δ(S) = 1. The commutation index is related to the
minimum uncertainty of the operators 𝐴𝑖, assuming they satisfy 𝐴2

𝑖
= 1:

inf
|𝜓⟩

1
𝑚

𝑚∑︁
𝑖=1

(
Δ|𝜓⟩𝐴𝑖

)2
= 1 − Δ(S), (2.7)

where
(
Δ|𝜓⟩𝐴𝑖

)2 is the variance of 𝐴𝑖 in the state |𝜓⟩:(
Δ|𝜓⟩𝐴𝑖

)2
= ⟨𝜓 | 𝐴2

𝑖 |𝜓⟩ − ⟨𝜓 | 𝐴𝑖 |𝜓⟩2 = 1 − ⟨𝜓 | 𝐴𝑖 |𝜓⟩2 . (2.8)

The commutation index has already been used in the context of quantum learning
and state tomography [Kin+25]. In this paper, we will see that the commutation
index has strong implications for the physics of the model 𝐻 = 𝑚−1/2 ∑𝑚

𝑖=1 𝑔𝑖𝐴𝑖 with
Gaussian coefficients 𝑔𝑖, and it will be the key quantity in our two main results. When
the commutation index is small and the operators have high quantum uncertainty,
two properties follow: the model has highly entangled low energy states, and the
model is annealed at low temperatures.

Crucially, the commutation index controls the sensitivity of many physical properties
when varying the couplings of the model. For instance, the norm of the energy
gradient of a given state with respect to the disorder is bounded by:����∇®𝑔⟨𝜙 |𝐻 |𝜙⟩����22 =

1
𝑚

𝑚∑︁
𝑖=1
⟨𝜙|𝐴𝑖 |𝜙⟩2 ≤ Δ(S). (2.9)

Our key observation is that the commutation index of the set S𝑛𝑞 of
(𝑛
𝑞

)
degree-𝑞

Majorana operators is very small:
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Set S Commutation index Δ(S)
Commuting 1
𝑘-local Paulis 3−𝑘 (Theorem 2.9)
Degree-𝑞 Majoranas Θ𝑞 (𝑛−𝑞/2) (Theorem 2.3)
All Paulis 2−𝑛 [Che+22, Lemma 5.8]

Table 2.1: The commutation index Δ(S) characterizes how non-commuting a set S
of operators is. The commutation index reveals a key distinction between local spin
operators and local fermionic operators: in the fermionic case, the commutation
index decays polynomially with system size, while it is constant in the case of spins.
The Θ𝑞 notation assumes a fixed 𝑞 and growing 𝑛.

Theorem 2.3. Let S𝑛𝑞 be the set of degree-𝑞 Majorana operators on 𝑛 fermionic
modes. Then for any constant, even 𝑞:

Δ(S𝑛𝑞 ) = Θ𝑞 (𝑛−𝑞/2). (2.10)

The decay with system size 𝑛 is unique to the fermionic setting—for local Pauli
operators, Δ(S) is constant with respect to 𝑛 (see Table 2.1). This behaviour was
first conjectured in [HO22] to our knowledge, and we establish the conjecture—
including the setting when 𝑞 scales with 𝑛—in Section 2.1.

The proof of Theorem 2.3 involves constructing the commutation graph 𝐺 (S)
whose vertices correspond to operators 𝐴𝑖 ∈ S with edges between operators if
and only if they anti-commute. The commutation index can be upper bounded by
Δ ≤ 𝜗(𝐺 (S))/|𝐺 |, where 𝜗(𝐺 (S)) is the so-called Lovász theta function of the
commutation graph. The Lovász theta function can be efficiently computed via a
semi-definite program [Knu93]. For the SYK Hamiltonian, 𝐺 (S𝑛𝑞 ) is the graph of
a certain Johnson association scheme [Del73].

In the course of writing our results we became aware of Ref. [Lin24], which also
establishes the necessary results on the Lovász theta function of Johnson association
schemes. Our results use different proof techniques and determine the explicit 𝑞-
dependence of the constant in Equation (2.10), which was not derived in [Lin24].

Circuit lower bound
An almost direct consequence of a decaying commutation index is a lower bound
on the complexity of any ansatz in constructing near-ground states, including the
ansatz of quantum circuits.

Theorem 2.4 (Low energy states are classically non-trivial). Consider the random
Hamiltonian 𝐻 = 𝑚−1/2 ∑𝑚

𝑖=1 𝑔𝑖𝐴𝑖 with i.i.d. Gaussian coefficients 𝑔𝑖. Let Δ be the
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Ansatz Circuit complexity∗
Quantum circuit with 𝐺 gates 𝐺 ≥ Ω̃𝑞 (𝑛𝑞/2+1𝑡2)
MPS with bond dimension 𝜒 𝜒 ≥ Ω𝑞 (𝑛𝑞/4+1/2𝑡)
Neural network with𝑊 parameters 𝑊 ≥ Ω𝑞 (𝑛𝑞/2+1𝑡2)
∗min. complexity to achieve energy 𝑡𝜆max (𝐻SYK

𝑞 ) w.h.p.
Table 2.2: To achieve energy scaling as 𝑡𝜆max(𝐻SYK

𝑞 ) for the SYK Hamiltonian with
high probability, ansatz complexity (e.g., circuit depth) must scale polynomially
with 𝑛. See Section 2.2 for proofs. The Ω𝑞 notations assume a fixed 𝑞 and growing
𝑛.

commutation index of S = {𝐴1, . . . , 𝐴𝑚} and let C be a set of fixed quantum states.
Then the probability that C contains a low-energy state is exponentially small:

P
[
max
|𝜓⟩∈C

⟨𝜓 | 𝐻 |𝜓⟩ ≥ 𝑡
]
≤ exp

(
log |C| − 𝑡2

2Δ

)
. (2.11)

This theorem follows from a concentration argument and a union bound. The
commutation index Δ({𝐴𝑖}𝑚𝑖=1) characterizes the maximum variance of the energy
⟨𝜓 |𝐻 |𝜓⟩ for an arbitrary fixed state |𝜓⟩. Standard concentration bounds then imply
that the probability a state |𝜓⟩ has energy 𝑡 is bounded as exp(−Ω(𝑡2/Δ)). This
concentration is so strong that one can bound the maximum energy over extremely
large sets of states (or 𝜖-nets of infinite sets) S via a simple union bound argument
with high probability over the disorder. In particular, we obtain a lower bound
|S| = exp(Ω(𝑡2/Δ)) on the cardinality of the class of ansatzes needed to achieve a
given energy 𝑡.

Specializing to the SYK model via Theorem 2.3, we summarize the implications of
this result for various classes of states S in Table 2.2. For instance, we show that
all states that achieve a constant (i.e., 𝑡 = Θ (1)) approximation ratio with the SYK
ground state energy have a quantum circuit depth of Ω𝑞 (𝑛𝑞/2). In contrast, product
states give constant factor approximations to the ground state energy for any local
spin Hamiltonian (see Section 2.2 for a short proof). Our argument also extends to
classical ansatzes. For instance, tensor network methods require a bond dimension
that grows polynomially with 𝑛 to construct near-ground states [Sch11; Bañ23].
Similarly, popular methods based on neural quantum states [CT17; SH20; Sha+20;
SSC22; NI21] need at least Ω(𝑛3) parameters to construct near-ground states for
the standard 𝑞 = 4 SYK model, implying a bounded depth fully connected network
must have layer width that grows as Ω(𝑛3/2).

Our circuit lower bound is related to the study of ‘no low-energy trivial states’
(NLTS) Hamiltonians, whose existence was conjectured in [FH13] and resolved
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in [ABN23; Her+23a]. However, the settings are not strictly comparable: our
instances are random (average-case), whereas NLTS is formalized for worst-case
bounded interaction instances of Hamiltonians. The randomness allows us to prove
stronger statements in two ways. First, our circuit lower bounds hold for states at any
constant temperature, rather than for states below some energy threshold. Second,
we can achieve arbitrary polynomial circuit depth lower bounds, whereas current
constructions of NLTS only give a logarithmic depth lower bound. See Section 2.2
for more discussion.

Annealed approximation
The commutation index also has direct implications for the concentration of various
physical properties of interest around their disordered expectation. One manifesta-
tion of this is in the relation between the quenched and annealed free energies:

1
𝑛
E log 𝑍𝛽︸      ︷︷      ︸
quenched

≤ 1
𝑛

logE𝑍𝛽︸      ︷︷      ︸
annealed

, (2.12)

where 𝑍𝛽 is the partition function of the model
√
𝑛𝐻 at an inverse temperature 𝛽.

The quenched free energy is physical but hard to calculate while the annealed free
energy is much easier to calculate but nonphysical. The inequality above always
holds due to Jensen’s inequality, and the disagreement stems from fluctuations in
log 𝑍𝛽 due to the disorder.

The quenched free energy assumes the disorder induced by the random couplings is
fixed when averaging over thermal fluctuations; the annealed free energy treats these
fluctuations on an equal footing. While the two quantities agree at high temperature,
at low temperature the latter is incapable of accounting for frustration induced by
the disorder of the random couplings which can induce a spin glass phase [Tal00;
Par79]. Their disagreement is thus indicative of the presence of a spin glass phase.
Motivated by this, our second main result bounds the difference in quenched and
annealed free energies as a function of the temperature and the commutation index
of the model.

Theorem 2.5 (Annealed at low temperatures). Consider the partition function
𝑍𝛽 := Tr exp(−𝛽

√
𝑛𝐻) of the random Hamiltonian 𝐻 = 𝑚−1/2 ∑𝑚

𝑖=1 𝑔𝑖𝐴𝑖 with i.i.d.
Gaussian coefficients 𝑔𝑖. Let Δ be the commutation index of S = {𝐴1, . . . , 𝐴𝑚}.
Then the quenched and annealed free energies are bounded by:

1
𝑛
E log 𝑍𝛽 ≤

1
𝑛

logE𝑍𝛽 ≤
1
𝑛
E log 𝑍𝛽 + 4𝛽2Δ. (2.13)
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Quantity 𝑓 Rate 𝐾
𝜆max

(
𝐻SYK
𝑞

)
Ω𝑞

(
𝑛𝑞/2

)
Tr

(
𝑋𝜌𝛽

)
Ω𝑞

(
𝛽−2𝑛𝑞/2−1

)
Tr

(
𝐻SYK
𝑞 𝜌𝛽

)
Ω𝑞

(
min

(
1, 𝛽−2𝑛−2) 𝑛𝑞/2)∗

∗for 𝑡 order of ∥𝐻SYK
𝑞 ∥ = O(

√
𝑛)

Table 2.3: Concentration bounds for functions 𝑓 of the Hamiltonian around its
mean, i.e., P [| 𝑓 − E [ 𝑓 ] | ≥ 𝑡] ≤ 4 exp

(
−𝐾𝑡2

)
. 𝜆max denotes the largest eigenvalue

and 𝑋 is an arbitrary bounded operator. 𝜌𝛽 is the thermal state of
√
𝑛𝐻 at an inverse

temperature 𝛽.

For the SYK model this directly implies Theorem 2.2. Informally, this bound is
due to controlling the growth of the moment generating function of log

(
𝑍𝛽

)
−

E
[
log

(
𝑍𝛽

) ]
using the commutation index Δ. We formally prove Equation (2.13) in

Section 2.3. We there also prove concentration bounds for observable expectations
as well as two-point correlators, again following from bounding how sensitive these
quantities are when varying the disorder. We summarize some of these results when
applied to the SYK model in Table 2.3. We also emphasize that this general theorem
applies to any model for which the commutation index is known. In the case of the
𝑘-body Pauli models, this indicates that the annealed approximation remains valid
for 𝛽 growing exponentially with the locality 𝑘 as previously predicted [SW24].

2.1 Commutation index and Lovász theta function
Commutation index
In this section we introduce the commutation index, which quantifies the commuta-
tion structure of a set of operators. This allows us to study the commutation structure
of local Majorana operators and how they differ from local Paulis.

The following result represents a kind of uncertainty principle, generalizing the
familiar Bloch sphere constraint ⟨𝑋⟩2 + ⟨𝑌⟩2 + ⟨𝑍⟩2 ≤ 1.

Lemma 2.6. Let 𝐴1, . . . , 𝐴𝑚 be Hermitian operators which square to identity. If
𝐴1, . . . , 𝐴𝑚 pairwise anticommute, then for any state 𝜌∑︁

𝑗

Tr
(
𝐴 𝑗 𝜌

)2 ≤ 1. (2.14)

Versions of Lemma 2.6 appear in various papers, for example [Asa+16, Theorem
1]. Since the proof is simple, we reproduce it here.
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Proof. Given 𝜌, let 𝑎 𝑗 = Tr
(
𝐴 𝑗 𝜌

)
. We aim to show

∑
𝑗 𝑎

2
𝑗
≤ 1. Consider the

observable
𝑄 =

∑︁
𝑗

𝑎 𝑗 𝐴 𝑗 . (2.15)

We will use the inequality Tr(𝑄2𝜌) − Tr(𝑄𝜌)2 = Var𝜌 (𝑄) ≥ 0. Formally, this
holds since 𝜌 is positive semi-definite so Tr(𝑂𝜌) ≥ 0 for any positive semi-definite
operator 𝑂 and

Tr
( (
𝑄 − Tr (𝑄𝜌) 1

)2
𝜌

)
≥ 0 =⇒ Tr (𝑄𝜌)2 ≤ Tr

(
𝑄2𝜌

)
. (2.16)

Due to anticommutativity of 𝐴1, . . . , 𝐴𝑚, we have

𝑄2 =
∑︁
𝑗

𝑎2
𝑗 𝐴

2
𝑗 +

∑︁
𝑗≠𝑙

𝑎 𝑗𝑎𝑙𝐴 𝑗 𝐴𝑙 =
∑︁
𝑗

𝑎2
𝑗 ·1+

1
2

∑︁
𝑗≠𝑙

𝑎 𝑗𝑎𝑙{𝐴 𝑗 , 𝐴𝑙} =
∑︁
𝑗

𝑎2
𝑗 ·1. (2.17)

Note 𝐴2
𝑗
= 1 since they are Hermitian unitaries. Thus Tr(𝑄2𝜌) = ∑

𝑗 𝑎
2
𝑗
. On the

other hand Tr(𝑄𝜌) = ∑
𝑗 𝑎

2
𝑗
, thus

Tr (𝑄𝜌)2 ≤ Tr
(
𝑄2𝜌

)
=⇒

(∑︁
𝑗

𝑎2
𝑗

)2
≤

∑︁
𝑗

𝑎2
𝑗 =⇒

∑︁
𝑗

𝑎2
𝑗 ≤ 1. (2.18)

□

Lemma 2.6 tells us that pairwise anticommuting operators cannot all have large
expected values on a quantum state: the sum of their squared expected values
cannot exceed 1. This reminiscent of Heisenberg’s uncertainty principle. More
generally, in Definition 2.1 we defined the maximum sum of squares of a set of
operators S to be its commutation index. For example, Lemma 2.6 shows that if all
the operators in S anticommute, then Δ(S) ≤ 1/|S|.

We will see in Section 2.2 and Section 2.3 that the commutation index of the set S
of operators has strong implications for the physics of the model consisting of the
operators in S with Gaussian coefficients:

𝐻 =
1√︁
|S|

∑︁
𝐴∈S

𝑔𝐴𝐴, 𝑔𝐴 ∼ N(0, 1). (2.19)

We will also see in Section 4.1 that the commutation index has connections to
learning tasks on the set of operators S [Che+22].

Commutation graph and Lovasz theta function
Our computation of the commutation index will follow from studying the commu-
tation structure of spin and fermionic operators, summarized by their commutation
graphs.
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Definition 2.2. (Commutation graph.) The commutation graph 𝐺 (S) of a set S of
Pauli or Majorana operators is defined as follows.

• The vertices of 𝐺 (S) correspond to operators 𝐴 ∈ S.

• We include an edge between any two vertices whose operators anticommute.

We now introduce a key graph property which reveals the anticommutativity of the
operators S through their commutation graph 𝐺 (S).

Definition 2.3. (Lovász theta function.) Let𝐺 be a graph on𝑚 vertices. The Lovász
theta function 𝜗(𝐺) is defined by the following semidefinite program of dimension
𝑚. Let 𝐸 denote the edges in the graph 𝐺, and J the all-ones matrix.

max { Tr (J𝑋) , 𝑋 ∈ R𝑚×𝑚

s.t. 𝑋 ⪰ 0 , Tr (𝑋) = 1 , 𝑋 𝑗 𝑙 = 0 ∀( 𝑗 , 𝑙) ∈ 𝐸 }, (2.20)

where 𝐸 denote the edges in the graph 𝐺; J the all-ones matrix; 𝐴 ⪰ 𝐵 denotes that
𝐴 − 𝐵 is positive semidefinite; Tr(𝑋) denotes the trace of 𝑋; and 𝑋 𝑗 𝑙 denotes entry
( 𝑗 , 𝑙) of 𝑋 . It has dual

min { 𝜆 ∈ R
s.t. ∃ 𝑌 ∈ R𝑚×𝑚 , 𝑌 𝑗 𝑗 = 1 ∀ 𝑗 , 𝑌 𝑗 𝑙 = 0 ∀( 𝑗 , 𝑙) ∉ 𝐸 , 𝜆𝑌 ⪰ J }. (2.21)

For any graph 𝐺, the following chain of inequalities is known:

𝐼 (𝐺) ≤ 𝜗(𝐺) ≤ chrom(𝐺), (2.22)

where 𝐺 is the complement graph, chrom(𝐺) is the chromatic number of 𝐺, and
𝐼 (𝐺) is the independence number of 𝐺. For example, see [Knu93].

The key reason for introducing the Lovasz theta function is that the Lovasz theta
function of the commutation graph 𝐺 (S) upper bounds the commutation index
Δ(S). This bound can be seen as a generalization of Lemma 2.6.

Lemma 2.7. Let S be a set of Pauli operators

Δ(S) ≤ 1
|S|𝜗(𝐺 (S)). (2.23)

All together,

𝐼 (𝐺 (S)) ≤ |S| · Δ(S) ≤ 𝜗(𝐺 (S)) ≤ chrom(𝐺 (S)). (2.24)
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Lemma 2.7 has appeared before in [GHG23; XSW23; HO22]; we reproduce a
simplified proof here for the benefit of the reader.

Proof. The inequalities 𝐼 (𝐺) ≤ 𝜗(𝐺) ≤ chrom(𝐺) always hold for any graph 𝐺
[Knu93]. Δ(S) ≥ 𝐼 (𝐺 (S))/|S| holds since we can choose 𝜌 in the definition of
Δ(S) to be in the simultaneous eigenbasis of the independent set of operators. It
remains to establish Δ(S) ≤ 𝜗(𝐺 (S))/|S|.

Denote S = {𝐴1, . . . , 𝐴𝑚}. Given 𝜌, let

𝑎 𝑗 = Tr
(
𝐴 𝑗 𝜌

)
. (2.25)

We aim to show
∑
𝑗 𝑎

2
𝑗
≤ 𝜗(𝐺 (S)).

Consider the observable
𝑄 =

∑︁
𝑗

𝑎 𝑗 𝐴 𝑗 . (2.26)

We have
𝑄2 =

∑︁
𝑗 ,𝑙

𝑎 𝑗𝑎𝑙𝐴 𝑗 𝐴𝑙 =
1
2

∑︁
𝑗 ,𝑙

𝑎 𝑗𝑎𝑙{𝐴 𝑗 , 𝐴𝑙}. (2.27)

Note 𝐴2
𝑗
= 1 since they are Paulis.

Now take the trace with 𝜌. We get

Tr
(
𝑄2𝜌

)
=

∑︁
𝑗 ,𝑙

𝑎 𝑗𝑎𝑙𝐵 𝑗 𝑙 ≤ 𝜆max(𝐵)
∑︁
𝑗

𝑎2
𝑗 , (2.28)

where we defined the matrix

𝐵 𝑗 𝑙 =
1
2

Tr
(
{𝐴 𝑗 , 𝐴𝑙}𝜌

)
. (2.29)

By positivity of the state 𝜌, we have Tr
( (
𝑄 − Tr (𝑄𝜌) 1

)2
𝜌
)
≥ 0 and therefore

Tr (𝑄𝜌)2 ≤ Tr
(
𝑄2𝜌

)
(2.30)

=⇒
(∑︁

𝑗

𝑎2
𝑗

)2
≤ 𝜆max(𝐵)

∑︁
𝑗

𝑎2
𝑗 (2.31)

=⇒
∑︁
𝑗

𝑎2
𝑗 ≤ 𝜆max(𝐵). (2.32)

𝐵 satisfies 𝐵 𝑗 𝑗 = 1 ∀ 𝑗 and 𝐵 𝑗 𝑙 = 0 for all edges ( 𝑗 , 𝑙). The latter holds since ( 𝑗 , 𝑙)
is an edge precisely when {𝐴 𝑗 , 𝐴𝑙} = 0. Positivity of the state 𝜌 implies that 𝐵 is
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positive semidefinite, since for any vector 𝑣 ∈ R𝑚

𝑣𝑇𝐵𝑣 = Tr

((∑︁
𝑗

𝑣 𝑗 𝐴 𝑗

)2
𝜌

)
≥ 0. (2.33)

Let’s now take the supremum of the right-hand-side over all such 𝐵 to get∑︁
𝑗

𝑎2
𝑗 ≤ 𝜗̃(𝐺 (S)), (2.34)

where

𝜗̃(𝐺) = max {𝜆max(𝐵), 𝐵 ∈ R𝑚×𝑚

s.t., 𝐵 𝑗 𝑗 = 1 ∀ 𝑗 , 𝐵 𝑗 𝑙 = 0 ∀( 𝑗 , 𝑙) ∈ 𝐸, 𝐵 ⪰ 0}. (2.35)

Lemma 2.8 completes the proof. □

Lemma 2.8. ([Knu93]) The function 𝜗̃(𝐺) from Equation (2.35) satisfies 𝜗̃(𝐺) ≤
𝜗(𝐺).

Proof. We will use the dual description Equation (2.21). Let (𝜆, 𝐴) achieve the
optimal dual value 𝜆 = 𝜗(𝐺). Define the 𝑚 × (𝑚 + 1) matrix

𝑈 = (®1,
√
𝜆𝐴 − J), (2.36)

where we padded with the all-ones column vector ®1 on the left. (Recall J denotes
the all-ones matrix.) Let 𝐵 be any matrix feasible for 𝜗̃(𝐺). Decompose

𝐵 = 𝑄𝑇𝐷𝑄 = 𝑉𝑇𝑉 , 𝑉 =
√
𝐷𝑄, (2.37)

where 𝑄 is orthogonal and 𝐷 is diagonal with 𝐷11 = 𝜆max(𝐵). (The entries of 𝐷
are the eigenvalues of 𝐵.) Now consider the collection of 𝑚 matrices {𝑌 ( 𝑗)} of size
𝑚 × (𝑚 + 1) given by

𝑌
( 𝑗)
𝑎𝑏

= 𝑉𝑎 𝑗𝑈 𝑗 𝑏 . (2.38)

We have

Tr
(
(𝑌 ( 𝑗))𝑇𝑌 (𝑙)

)
=

(∑︁
𝑎

𝑉𝑎 𝑗𝑉𝑎𝑙

) (∑︁
𝑏

𝑈 𝑗 𝑏𝑈𝑙𝑏

)
= 𝜆𝐵 𝑗 𝑙𝐴 𝑗 𝑙 . (2.39)

If 𝑗 ≠ 𝑙, this is zero, since if ( 𝑗 , 𝑙) is an edge in 𝐺 then 𝐵 𝑗 𝑙 = 0, and if not then
𝐴 𝑗 𝑙 = 0. If 𝑗 = 𝑙, we get Tr

(
(𝑌 ( 𝑗))𝑇𝑌 ( 𝑗)

)
= 𝜆. Thus {𝑌 ( 𝑗)/

√
𝜆} are orthonormal

when viewed as vectors of dimension 𝑚(𝑚 + 1), and

1 ≥
∑︁
𝑗

(
𝑌
( 𝑗)
11 /
√
𝜆
)2

=
𝐷11
𝜆

∑︁
𝑗

𝑄2
1 𝑗 =

𝐷11
𝜆

=⇒ 𝐷11 ≤ 𝜆. (2.40)
□

It is in fact true that 𝜗̃(𝐺) = 𝜗(𝐺), but we only need 𝜗̃(𝐺) ≤ 𝜗(𝐺) for our purposes.
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Commutation index of local operators
The commutation index of the set of 𝑘-local Paulis is independent of system size 𝑛.

Theorem 2.9. Let P𝑛
𝑘

be the set of 𝑘-local 𝑛-qubit Paulis. When 2𝑛 + 1 ≥ 3𝑘 , it
holds:

Δ(P𝑛𝑘 ) = 3−𝑘 . (2.41)

Moreover, the maximum is achieved by any product state.

Proof. First we aim to show E𝑃∈P𝑛
𝑘
⟨𝜓 |𝑃 |𝜓⟩2 = 3−𝑘 for any product state of single-

qubit states |𝜓⟩ = |𝜓1⟩ ⊗ · · · ⊗ |𝜓𝑛⟩. Denoting by P𝑆
𝑘

the set of Paulis on subsystem
𝑆 ⊆ [𝑛], we have

E𝑃∈P𝑛
𝑘
⟨𝜓 |𝑃 |𝜓⟩2 = E𝑆⊆[𝑛],|𝑆 |=𝑘E𝑃∈P𝑆

𝑘
⟨𝜓 |𝑃 |𝜓⟩2. (2.42)

By tracing out [𝑛] \ 𝑆, it is sufficient to show

E𝑃∈P𝑘
𝑘
⟨𝜓 |𝑃 |𝜓⟩2 = 3−𝑘 (2.43)

for any product state |𝜓⟩ = |𝜓1⟩ ⊗ · · · ⊗ |𝜓𝑘⟩. Since |P𝑘
𝑘
| = 3𝑘 , this is equivalent to∑︁

𝑃∈P𝑘
𝑘

⟨𝜓 |𝑃 |𝜓⟩2 = 1. (2.44)

But this holds since∑︁
𝑃∈P𝑘

𝑘

⟨𝜓 |𝑃 |𝜓⟩2 =

𝑘∏
𝑗=1

( ∑︁
𝑃∈{𝜎𝑋 ,𝜎𝑌 ,𝜎𝑍 }

⟨𝜓 𝑗 |𝑃 |𝜓 𝑗 ⟩2
)
= 1 (2.45)

using that the single-qubit states |𝜓 𝑗 ⟩ are pure.

For the upper bound, we will invoke Lemma 2.7. Recalling that 𝐺 (P𝑛
𝑘
) is the

commutation graph of 𝑘-local Paulis, it suffices to show that 𝜗(𝐺 (P𝑛
𝑘
)) ≤ 3−𝑘 · |P𝑛

𝑘
|.

For this purpose, we import a fact from [Knu93] using a proof technique similarly
applied in [AGK24]. A graph 𝐺 is vertex-symmetric if for any two vertices 𝑢, 𝑣,
there is an automorphism of 𝐺 taking 𝑢 to 𝑣.

Fact 2.1 ([Knu93]). If graph 𝐺 is vertex-symmetric, then

𝜗(𝐺) · 𝜗(𝐺) = |𝐺 |. (2.46)

where 𝐺 is the complement graph and |𝐺 | denotes the number of vertices in 𝐺.
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The commutation graph 𝐺 (P𝑛
𝑘
) of 𝑘-local Paulis is vertex-symmetric. Thus to

establish the upper bound 𝜗(𝐺 (P𝑛
𝑘
)) ≤ 3−𝑘 · |P𝑛

𝑘
|, it suffices to show 𝜗(𝐺 (P𝑛

𝑘
)) ≥

3𝑘 . Using the independence number inequality of Lemma 2.7, it suffices to find
an independent set in 𝐺 (P𝑛

𝑘
) of size at least 3𝑘 . This is equivalent to a clique

in 𝐺 (P𝑛
𝑘
) of size at least 3𝑘 . In other words, we must exhibit a set of 3𝑘 mutually

anticommuting 𝑘-local Paulis. This can be done using the ternary tree embedding of
[Vla19; Jia+20a]. Let 2𝑛 + 1 = 3𝑘 . The ternary tree construction at depth 𝑘 embeds
2𝑛 + 1 mutually anticommuting operators into 𝑛 qubits where each anticommuting
operator has locality 𝑘 . □

On the other hand, the commutation index of the set of degree-𝑞 Majorana operators
decays polynomially with system size.

Definition 2.4. The Majorana operators on 𝑛 fermionic modes are defined abstractly
as 𝑛 operators {𝛾1, . . . , 𝛾𝑛} which satisfy the relations

𝛾𝑎𝛾𝑏 + 𝛾𝑏𝛾𝑎 = 2𝛿𝑎𝑏1. (2.47)

A degree-𝑞 Majorana operator is a degree-𝑞 monomial in the Majorana operators.

The following theorem is the key result which enables Theorem 2.1, Theorem 2.2,
and Theorem 4.2.

Theorem 2.10. Let S𝑛𝑞 be the set of degree-𝑞 Majorana operators on 𝑛 fermionic
modes with 𝑞 even. Then ������ Δ(S𝑛𝑞 )(𝑛/2

𝑞/2
) / (𝑛

𝑞

) − 1

������ ≤ O(𝑛−1) (2.48)

for all 𝑛 sufficiently large, for each 𝑞.

Proof. Let 𝑞 and 𝑛 be even. First we show the lower bound in Theorem 2.10. We
can find a set 𝑆 ⊆ S𝑛𝑞 of mutually commuting degree-𝑞 Majoranas of size

(𝑛/2
𝑞/2

)
by

taking (𝑞/2)-wise products of {𝑖𝛾1𝛾2, 𝑖𝛾3𝛾4, . . . , 𝑖𝛾𝑛−1𝛾𝑛}. Let 𝜌 be the state which
is maximally mixed within the simultaneous +1-eigenspace of the operators in 𝑆.
Then

∑
𝐴∈S𝑛

𝑞
⟨𝜓 |𝐴|𝜓⟩ = |𝑆 | =

(𝑛/2
𝑞/2

)
and Δ(S𝑛𝑞 ) ≥

(𝑛/2
𝑞/2

) / (𝑛
𝑞

)
. (Note the number of

degree-𝑞 monomials on 𝑛 Majoranas is |S𝑛𝑞 | =
(𝑛
𝑞

)
.) The remainder of this section

is devoted to showing the upper bound via the Lovász theta function. We aim to
establish the following theorem.
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Theorem 2.11. LetS𝑛𝑞 be the set of degree-𝑞 Majorana operators on 𝑛modes. Then

𝜗(𝐺 (S𝑛𝑞 )) ≤
(
𝑛/2
𝑞/2

)
+ O(𝑒O(𝑞 log 𝑞)𝑛𝑞/2−1) (2.49)

for all 𝑛 sufficiently large, for each 𝑞.

Noting that |S𝑛𝑞 | =
(𝑛
𝑞

)
, the upper bound in Theorem 2.10 follows from combining

Theorem 2.11 and Lemma 2.7. Thus it suffices to establish Theorem 2.11. After
completing our work, we became aware of Ref. [Lin24], in which they establish
𝜗(𝐺 (S𝑛𝑞 )) ≤

(𝑛/2
𝑞/2

)
+ 𝑐(𝑞)𝑛𝑞/2−1 for some function 𝑐(𝑞). Theorem 2.11 is stronger,

since it specifies the asymptotic dependence 𝑐(𝑞) = O(𝑒O(𝑞 log 𝑞)). We give a
self-contained proof of Theorem 2.11.

The Johnson association scheme J𝑑 (𝑛, 𝑞) is the graph whose vertices correspond
to subsets 𝑆 ⊆ [𝑛] of size |𝑆 | = 𝑞, and (𝑆, 𝑇) forms an edge if 𝑞− |𝑆∩𝑇 | = 𝑑. Write
𝐴
𝑛,𝑞

𝑑
for the adjacency matrix of the Johnson scheme J𝑑 (𝑛, 𝑞). The graph 𝐺 (S𝑛𝑞 )

has adjacency matrix 𝐴 equal to

𝐴 = 𝐴
𝑛,𝑞

1 + 𝐴
𝑛,𝑞

3 + · · · + 𝐴
𝑛,𝑞

𝑞−1. (2.50)

We are interested in the Lovász theta function of 𝐺 (S𝑛𝑞 ). The following three
results advertised in [HO22] reduce 𝜗(𝐺 (S𝑛𝑞 )) to a linear program involving Hahn
polynomials.

Lemma 2.12. ([Del73, p. 48]) The matrices 𝐴𝑛,𝑞0 , . . . , 𝐴
𝑛,𝑞
𝑞 are simultaneously

diagonalizable, with eigenvalues given by the dual Hahn polynomials:

spec(𝐴𝑛,𝑞
𝑑
) = {𝐻̃𝑛,𝑞

𝑑
(𝑥) : 𝑥 = 0, . . . , 𝑞} (2.51)

𝐻̃
𝑛,𝑞

𝑑
(𝑥) =

𝑑∑︁
𝑗=0
(−1)𝑑− 𝑗

(
𝑞 − 𝑗
𝑑 − 𝑗

) (
𝑞 − 𝑥
𝑗

) (
𝑛 − 𝑞 + 𝑗 − 𝑥

𝑗

)
. (2.52)

In particular, for all 𝑑 > 0 the all-1’s vector is an eigenvector of 𝐴𝑛,𝑞
𝑑

of multiplicity
1 with eigenvalue 𝐻̃𝑛,𝑞

𝑑
(0) =

(𝑛−𝑞
𝑑

) (𝑞
𝑑

)
.

Lemma 2.13 ([HO21], Lemma 4.25). In the dual formulation of the Lovász theta
function in Definition 2.3 for the graph 𝐺 (S𝑛𝑞 ) it suffices to minimize over matrices
𝑌 whose entries 𝑌 (𝑆, 𝑇) depend only on dist(𝑆, 𝑇). Thus we can write

𝜗(𝐺 (S𝑛𝑞 )) =
min{𝜆 : ∃ 𝑎1, 𝑎3, . . . , 𝑎𝑞−1 s.t. 𝜆

(
1 + 𝑎1𝐴

𝑛,𝑞

1 + 𝑎3𝐴
𝑛,𝑞

3 + · · · + 𝑎𝑞−1𝐴
𝑛,𝑞

𝑞−1
)
⪰ J}.
(2.53)
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Corollary 2.14. ([HO21], Corollary 4.26)

𝜗(𝐺 (S𝑛𝑞 )) = min
𝑎1,𝑎3,...,𝑎𝑞−1

{
(
𝑛

𝑞

)/ (
1 + 𝑃(0)

)
: 𝑃(1), . . . , 𝑃(𝑞) ≥ −1

where 𝑃(𝑥) = 𝑎1𝐻̃
𝑛,𝑞

1 (𝑥) + 𝑎3𝐻̃
𝑛,𝑞

3 (𝑥) + · · · + 𝑎𝑞−1𝐻̃
𝑛,𝑞

𝑞−1(𝑥)}. (2.54)

Our strategy to prove Theorem 2.11 will follow by finding a feasible polynomial
𝑃∗ for the linear program (LP) in Corollary 2.14, and showing that 𝑃∗(0) has the
correct scaling in the large 𝑛 limit:(

𝑛

𝑞

)/ (
1 + 𝑃∗(0)

)
=

1
(𝑞/2)! (𝑛/2)

𝑞/2 + O(𝑛𝑞/2−1). (2.55)

Then all that remains is to control the error term for finite 𝑛. This will follow from
an application of the polynomial method.

We first state and prove a lemma which finds an appropriate feasible polynomial 𝑃∗.

Lemma 2.15. We can choose a feasible polynomial 𝑃∗ for the LP in Corollary 2.14
that simultaneously satisfies:

• 𝑃∗(0) = 2𝑞/2 (𝑞/2)!
(𝑞)! 𝑛𝑞/2 − 𝑐(𝑞)𝑛𝑞/2−1 for some 𝑐(𝑞).

• 𝑃∗(0)/𝑛𝑞/2 is a polynomial in 𝑛−1 of degree 2𝑞 − 2.

• |𝑃∗(0)/𝑛𝑞/2 | ≤ 𝑒2𝑞𝑞2𝑞 for all 𝑛.

Proof. For constant 𝑞, 𝑥 = 1, . . . , 𝑞 and large 𝑛, the leading order term in the Hahn
polynomial is

𝐻̃
𝑛,𝑞

𝑑
(𝑥) =


Θ(𝑛𝑑) + O(𝑛𝑑−1) 𝑑 ≤ 𝑞 − 𝑥

(−1)𝑑+𝑥−𝑞Θ(𝑛𝑞−𝑥) + O(𝑛𝑞−𝑥−1) 𝑑 > 𝑞 − 𝑥.
(2.56)

It will be useful later to be more specific about the coefficients in the cases 𝑑 = 𝑞−𝑥−1
and 𝑑 = 𝑞 − 𝑥 + 1. To leading order in 𝑛 with 𝑞 constant we have

𝐻̃
𝑛,𝑞

𝑞−𝑥−1(𝑥) = ℎ
(𝑞) (𝑥)·𝑛𝑞−𝑥−1+O(𝑛𝑞−𝑥−2) , 𝐻̃

𝑛,𝑞

𝑞−𝑥+1(𝑥) = −𝑔
(𝑞) (𝑥)·𝑛𝑞−𝑥+O(𝑛𝑞−𝑥−1),

(2.57)
where

ℎ(𝑞) (𝑥) = 𝑞 − 𝑥
(𝑞 − 𝑥 − 1)! , 𝑔(𝑞) (𝑥) = 𝑥

(𝑞 − 𝑥)! . (2.58)
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Now let us examine the LP in Corollary 2.14 in the large-𝑛 limit. Our strategy is
to sequentially go through 𝑥 = 𝑞, . . . , 1 and ensure that 𝑃(𝑥) ≥ −1 for sufficiently
large 𝑛 for each 𝑥. If we choose 𝑎1, 𝑎3, . . . , 𝑎𝑞−1 to all be eventually positive, then
automatically 𝑃(𝑥) ≥ 0 eventually for odd 𝑥. This is because the leading order term
for large 𝑛 in Equation (2.56) is always positive if 𝑥 is odd (recall that 𝑞 is even
and 𝑑 is always odd). Ensuring that 𝑃(𝑥) ≥ −1 eventually for even 𝑥 will require
choosing 𝑎𝑞−𝑥+1 as a function of 𝑎𝑞−𝑥−1.

Let us first consider 𝑃(𝑞). It can be seen from the definition Equation (2.52) that
𝐻̃
𝑛,𝑞

𝑑
(𝑞) = −

(𝑞
𝑑

)
is negative for all odd 𝑑 and independent of 𝑛. If we set

𝑎1 =
1 − 𝐶1𝑛

−1

𝑔(𝑞) (𝑞)
(2.59)

for some sufficiently large constant 𝐶1, and all other 𝑎𝑑 = O(𝑛−1) for 𝑑 > 1, then
the constraint 𝑃(𝑞) ≥ −1 is satisfied.

Now consider 𝑃(𝑞 − 2). If we set

𝑎3 = (1 − 𝐶3𝑛
−1) · ℎ

(𝑞) (𝑞 − 2)
𝑔(𝑞) (𝑞 − 2)

· 𝑛−1 · 𝑎1

= (1 − 𝐶3𝑛
−1) (1 − 𝐶1𝑛

−1) · ℎ
(𝑞) (𝑞 − 2)
𝑔(𝑞) (𝑞 − 2)

· 1
𝑔(𝑞) (𝑞)

· 𝑛−1
(2.60)

for some sufficiently large constant 𝐶3, and all other 𝑎𝑑 = O(𝑛−3) for 𝑑 > 3, then
the constraint 𝑃(𝑞 − 2) ≥ −1 is satisfied.

Continue like this for 𝑃(𝑞 − 4), . . . , 𝑃(2). For each of 𝑥 = 𝑞, 𝑞 − 2, . . . , 2, we will
set

𝑎𝑞−𝑥+1 = (1 − 𝐶𝑞−𝑥+1𝑛−1) · ℎ
(𝑞) (𝑥)
𝑔(𝑞) (𝑥)

· 𝑛−1 · 𝑎𝑞−𝑥−1

= (1 − 𝐶𝑞−𝑥+1𝑛−1) . . . (1 − 𝐶1𝑛
−1)

· ℎ
(𝑞) (𝑥) · ℎ(𝑞) (𝑥 + 2) · · · · · ℎ(𝑞) (𝑞 − 2)
𝑔(𝑞) (𝑥) · 𝑔(𝑞) (𝑥 + 2) · · · · · 𝑔(𝑞) (𝑞 − 2)

· 1
𝑔(𝑞) (𝑞)

· 𝑛−𝑞/2+(𝑥/2)

(2.61)

for some sufficiently large constants 𝐶1, 𝐶3, . . . , 𝐶𝑞−1. Notice that

ℎ(𝑞) (𝑡)
𝑔(𝑞) (𝑡)

=
(𝑞 − 𝑡)2

𝑡
(2.62)

and 𝑔(𝑞) (𝑞) = 𝑞, so defining

𝑎̂𝑞−𝑥+1 :=
(𝑞 − 𝑥)2(𝑞 − 𝑥 − 2)2 . . . 22

(𝑞 − 2) (𝑞 − 4) . . . 𝑥 · 1
𝑞

(2.63)
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independent of 𝑛, we can write

𝑎𝑞−𝑥+1 = (1 − 𝐶𝑞−𝑥+1𝑛−1) . . . (1 − 𝐶1𝑛
−1) · 𝑎̂𝑞−𝑥+1 · 𝑛−𝑞/2+(𝑥/2) . (2.64)

Finally, let us look at 𝑃(0). For large 𝑛, we have

𝑃(0) = 𝑎𝑞−1 · ℎ(𝑞) (0) · 𝑛𝑞−1 + . . .

= (1 − 𝐶𝑞−𝑥+1𝑛−1) . . . (1 − 𝐶1𝑛
−1) · 𝑞

(𝑞 − 1)! · 𝑎̂𝑞−1 · 𝑛𝑞/2 − 𝑐(𝑞)𝑛𝑞/2−1,

(2.65)
where 𝑐(𝑞) is some function of 𝑞 (note ℎ(𝑞) (0) = 𝑞/(𝑞 − 1)!). The product in 𝑎̂𝑞−1

telescopes to give
𝑎̂𝑞−1 =

1
𝑞
(𝑞 − 2) (𝑞 − 4) . . . 2, (2.66)

so we get

𝑃(0) =
(1 − 𝐶𝑞−𝑥+1𝑛−1) . . . (1 − 𝐶1𝑛

−1)
(𝑞 − 1) (𝑞 − 3) . . . 1 · 𝑛𝑞/2 − 𝑐(𝑞)𝑛𝑞/2−1. (2.67)

This establishes the first point of Lemma 2.15.

Let us now examine 𝑃(0)/𝑛𝑞/2 in order to establish the second point of Lemma 2.15:

𝑃(0)/𝑛𝑞/2 =
1
𝑛𝑞/2

(
𝑎1𝐻̃

𝑛,𝑞

1 (0) + 𝑎3𝐻̃
𝑛,𝑞

3 (0) + · · · + 𝑎𝑞−1𝐻̃
𝑛,𝑞

𝑞−1(0)
)

= 𝑎̂1

(
𝑞

1

) (
𝑛 − 𝑞

1

)
· 𝑛−𝑞/2 · (1 − 𝐶1𝑛

−1)

+ 𝑎̂3

(
𝑞

3

) (
𝑛 − 𝑞

3

)
· 𝑛−𝑞/2−1 · (1 − 𝐶1𝑛

−1) (1 − 𝐶3𝑛
−1)

· · · + 𝑎̂𝑞−1

(
𝑞

𝑞 − 1

) (
𝑛 − 𝑞
𝑞 − 1

)
· 𝑛−𝑞+1 · (1 − 𝐶1𝑛

−1) . . . (1 − 𝐶𝑞−1𝑛
−1),

(2.68)

recalling 𝐻̃𝑛,𝑞

𝑑
(0) =

(𝑞
𝑑

) (𝑛−𝑞
𝑑

)
. Recall that the coefficients 𝑎̂𝑑 are independent of 𝑛.

From this expression, we can readily see that 𝑃(0)/𝑛𝑞/2 is a polynomial in 𝑛−1 of
degree 2𝑞 − 2, establishing the desired degree bound.

It remains to establish the third point of Lemma 2.15. For all 𝑑 = 1, 3, . . . , 𝑞 − 1,
(1 − 𝐶1𝑛

−1) . . . (1 − 𝐶𝑑𝑛−1) ≤ 1 eventually and 𝑎̂𝑑 ≤ 𝑎̂𝑞−1. Further, for all 𝑑 =

1, 3, . . . , 𝑞 − 1 (
𝑞

𝑑

) (
𝑛 − 𝑞
𝑑

)
≤

(
𝑒2𝑞(𝑛 − 𝑞)

𝑑2

)𝑑
≤ (𝑒2𝑞)𝑞−1𝑛𝑑 , (2.69)

using the general bound
(𝑚
𝑟

)
≤ (𝑒𝑚/𝑟)𝑟 . Using these facts, we can bound��𝑃(0)/𝑛𝑞/2�� ≤ 𝑎̂𝑞−1 · (𝑒2𝑞)𝑞−1 ·

(
𝑛−𝑞/2+1 + 𝑛−𝑞/2+2 + · · · + 1

)
≤ 𝑞𝑞/2−2 · (𝑒2𝑞)𝑞−1 · (𝑞/2) ≤ 𝑒2𝑞𝑞2𝑞,

(2.70)
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using 𝑎̂𝑞−1 ≤ 𝑞𝑞/2−2 in the final step. □

The first bullet point in Lemma 2.15 gives the correct large-𝑛 limit for the Lovász
theta function for constant 𝑞:(

𝑛

𝑞

)/ (
1 + 𝑃∗(0)

)
=

(
1
(𝑞)! · 𝑛

𝑞 + O(𝑛𝑞−1)
)
·
(
2𝑞/2(𝑞/2)!
(𝑞)! 𝑛𝑞/2 − O(𝑛𝑞/2−1)

)−1

(2.71)

=
1

(𝑞/2)! (𝑛/2)
𝑞/2 + O(𝑛𝑞/2−1). (2.72)

We are almost done. It remains to show that 𝑐(𝑞) ≤ 𝑒O(𝑞 log 𝑞) . We will do this using
the second and third bullet points, combined with Markov’s “other inequality” for
bounded degree polynomials [BE95, Theorem 5.1.8]. We will need the following
adaptation for functions defined on inverse-integer points 1/1, 1/2, · · · , 1/𝑛, · · · .

Lemma 2.16 (Markov’s other inequality [BE95, Theorem 5.1.8], [Che+24a], [Che+24b]).
For any polynomial 𝑓 of degree ℓ, there is an absolute constant 𝑐 such that

| 𝑓 (1/𝑛) − 𝑓 (0) | ≤ 𝑐ℓ
4

𝑛
sup
𝑛′≥1
| 𝑓 (1/𝑛′) | (2.73)

for each integer 𝑛.

Proof.

𝑛| 𝑓 (1/𝑛) − 𝑓 (0) | ≤ sup
𝑥∈[0,1/𝑛]

| 𝑓 ′(𝑥) | (Fundamental theorem of calculus.)

(2.74)

≤ 2ℓ2

𝑎
sup
𝑥∈[0,𝑎]

| 𝑓 (𝑥) | ([Che+24a, Lemma 4.1])

(2.75)

≤ 4ℓ2

𝑎
sup
𝑛′≥1/𝑎

| 𝑓 (𝑛′) | ([Che+24a, Lemma 4.2]), 𝑎 =
1

4𝑞2 )

(2.76)

where the final line considers the supremum over inverse integer points, which
concludes the proof. □

Let us view 𝑃∗(0)/𝑛𝑞/2 as a polynomial in 1/𝑛 (note that we are fixing the input
to the polynomial 𝑃∗ to zero, and that we are concerned with the 𝑛-dependence of
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𝑃∗(0)). Using Lemma 2.15, we can apply ?? with 𝑓 (1/𝑛) = 𝑃∗(0)/𝑛𝑞/2, ℓ = 2𝑞−2,
and

sup
𝑛′≥1
| 𝑓 (1/𝑛′) | ≤ 𝑒2𝑞𝑞2𝑞 = 𝑒O(𝑞 log 𝑞) . (2.77)

This completes the proof of Theorem 2.11. □

Numerics on Lovász theta function of local Majorana operators
In this section we present some numerics on the Lovász theta function of the
commutation graph of degree-𝑞 Majorana operators 𝜗(𝐺 (S𝑛𝑞 )).

𝜗 (𝐺 (S𝑛
𝑞 ) )

(𝑛/2
𝑞/2

)
𝑛 𝑞 = 2 𝑞 = 4 𝑞 = 6 𝑞 = 8 𝑞 = 10 𝑞 = 2 𝑞 = 4 𝑞 = 6 𝑞 = 8 𝑞 = 10
2 1 1
4 2 1 2 1
6 3 3 1 3 3 1
8 4 14 4 1 4 6 4 1
10 5 14.57 14.57 5 1 5 10 10 5 1
12 6 15 52 15 6 6 15 20 15 6
14 7 21 57.34 57.34 21 7 21 35 35 21
16 8 28 64 198 64 8 28 56 70 56
18 9 36 100.13 218.34 218.34 9 36 84 126 126
20 10 45 153.11 251.22 787.17 10 45 120 210 252
22 11 55 195.13 429.91 885.15 11 55 165 330 462
24 12 66 236.42 759 982.84 12 66 220 495 792
26 13 78 286 990.80 1757.0 13 78 286 715 1287
28 14 91 364 1217.2 3260.2 14 91 364 1001 2002
30 15 105 455 1444.2 4643.9 15 105 455 1365 3003
32 16 120 560 1820.0 6040.7 16 120 560 1820 4368
34 17 136 680 2423.3 7240.0 17 136 680 2380 6188
36 18 153 816 3327.1 9269.4 18 153 816 3060 8568
38 19 171 969 4512.8 12552 19 171 969 3876 11628
40 20 190 1140 6022.1 17230 20 190 1140 4845 15504

Table 2.4: Numerical comparison of the Lovász theta function 𝜗(𝐺 (S𝑛𝑞 )) versus(𝑛/2
𝑞/2

)
. They are exactly equal for very small values of 𝑛, and also appear to be

exactly equal for sufficiently large values of 𝑛 for each 𝑞. For example at 𝑞 = 4,
which corresponds to the standard SYK-4 model, it appears that 𝜗(𝐺 (S𝑛4 )) =

(𝑛/2
2
)

for all even values of 𝑛 apart from 𝑛 = 8 and 𝑛 = 10.
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Figure 2.1: Log-log plot of 𝜗(𝐺 (S𝑛𝑞 )) versus
(𝑛/2
𝑞/2

)
. 𝜗(𝐺 (S𝑛𝑞 )) fluctuates for small

𝑛, but for sufficiently large 𝑛 it behaves the same as
(𝑛/2
𝑞/2

)
.

2.2 Circuit lower bound
In this section we show that low-energy states of random Hamiltonians with small
commutation index require ansatzes with high complexity. As a consequence, we
get a circuit lower bound on the low energy states of the the SYK model. Our proof
resembles the circuit lower bound of [Dal+23b, Appendix D].

Consider the random Hamiltonian

𝐻 =
1√︁
|S|

∑︁
𝐴∈S

𝑔𝐴𝐴 , 𝑔𝐴 ∼𝑖.𝑖.𝑑. N(0, 1), (2.78)

where S consists of Hermitian operators 𝐴𝑖 satisfying 𝐴2
𝑖
= 1. Recall from Def-

inition 2.1 that Δ(S) denotes the commutation index of S. We first establish a
concentration bound for the energy of a fixed state |𝜓⟩.

Lemma 2.17. Fix any state |𝜓⟩. The energy ⟨𝜓 |𝐻 |𝜓⟩ sharply concentrates:

P
(
⟨𝜓 |𝐻SYK

𝑞 |𝜓⟩ ≥ 𝑡
)
≤ exp

(
− 𝑡2

2Δ(S)

)
. (2.79)
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Proof. Since a sum of Gaussians is Gaussian, we have

P
(
⟨𝜓 |𝐻 |𝜓⟩ ≥ 𝑡

)
≤ exp

(
− 𝑡2

2𝜎2

)
. (2.80)

The variance is upper bounded by the commutation index:

𝜎2 =
1
|S|

∑︁
𝐴∈S
⟨𝜓 |𝐴|𝜓⟩2 ≤ Δ(S). (2.81)

□

The main result of this section now follows from a union bound.

Theorem 2.18 (Low energy states are classically non-trivial). Let C be a set of
fixed quantum states. Then the probability that C contains a low-energy state is
exponentially small.

P
[
max
|𝜓⟩∈C

⟨𝜓 | 𝐻 |𝜓⟩ ≥ 𝑡
]
≤ exp

(
log ∥C∥ − 𝑡2

2Δ

)
. (2.82)

Proof. Applying a union bound to Lemma 2.17,

P
[
max
|𝜓⟩∈C

⟨𝜓 | 𝐻 |𝜓⟩ ≥ 𝑡
]
≤ |C| exp

(
− 𝑡2

2Δ(S)

)
= exp

(
log ∥C∥ − 𝑡2

2Δ

)
. (2.83)

□

We now apply this to the circuit complexity of low temperature states of the SYK
model. The SYK model was previously described in Equation (2.1), but we repeat
its definition here for convenience.

Definition 2.5. LetS𝑛𝑞 denote the set of degree-𝑞Majorana operators on 𝑛 fermionic
modes. The SYK𝑞 model is a random ensemble of Hamiltonians defined by

𝐻SYK
𝑞 =

1√︃(𝑛
𝑞

) ∑︁
𝐴∈S𝑛

𝑞

𝑔𝐴𝐴 , 𝑔𝐴 ∼𝑖.𝑖.𝑑. N(0, 1). (2.84)

Theorem 2.19. (SYK model low-energy states have high circuit complexity.) Let
circ(𝐺) denote the set of unitaries generated by quantum circuits with at most 𝐺
gates each taken from a finite universal set of 2-local unitary gates. Fix an arbitrary
initial state |𝜙⟩. With high probability, for any even 𝑞 ≥ 2, it holds that the minimum
circuit complexity to construct a state achieving at least 𝑡

√
𝑛 on 𝐻SYK

𝑞 is at least

min
{
𝐺 : ∃𝑈 ∈ circ(𝐺), ⟨𝜙 |𝑈†𝐻SYK

𝑞 𝑈 |𝜙⟩ ≥ 𝑡
√
𝑛
}
= Ω̃𝑞 (𝑛(𝑞/2)+1𝑡2). (2.85)
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Proof. Theorem 2.10 tells us that

Δ(S𝑛𝑞 ) = Ω𝑞 (𝑛−𝑞/2). (2.86)

Let 𝑀 be the number of gates in the universal gate set. Then the number of circuits
in circ(𝐺) is at most

|circ(𝐺) | ≤
(
𝑀

(
𝑛

2

))𝐺
= exp(O(𝐺 log(𝑛))). (2.87)

Now apply Theorem 2.18 with C = circ(𝐺) to complete the proof. □

The proof above can be extended to gates with continuous parameters by forming
an 𝜖-net over the gates. This comes at the cost of additional log(1/𝜖) factors in the
bound of Theorem 2.19.

Other notions of non-triviality
Though our focus so far has been on quantum circuit lower bounds, our results
readily generalize to lower bounds for other classes of ansatzes via the construction
of covering nets. For example, our argument shows that any state from the set
of Gaussian states cannot be a near ground state for the SYK Hamiltonian for
𝑞 ≥ 4, since an 𝜖-net over the set of Gaussian states has cardinality exp(Õ(𝑛2 +
poly log(1/𝜖))). This reproduces results from prior works [HTS21b; Her+23b].

Another popular classical ansatz are tensor network states, or matrix product states
(MPSs) in particular. Implemented at any finite precision the number of config-
urations of a matrix product state on 𝑛 sites grows with the bond dimension 𝜒 as

{ |𝜓 𝑗 ⟩}

 = exp

(
Θ

(
𝜒2 + log 𝑛

) )
. It is thus apparent from the same argument that

the minimum bond dimension such that there is an MPS achieving an energy 𝑡
√
𝑛 is

𝜒 = Ω𝑞

(
𝑛𝑞/4+1/2𝑡

)
(2.88)

with high probability. Similarly, a classical neural network representation of the state
with𝑊 weights has a number of configurations growing as



{ |𝜓 𝑗 ⟩}

 = exp (Θ (𝑊)),
yielding the growth condition to achieve an energy 𝑡

√
𝑛 with high probability:

𝑊 = Ω𝑞

(
𝑛𝑞/2+1𝑡2

)
. (2.89)

Relation to NLTS results
Our circuit lower bound is closely related to the study of ‘no low-energy trivial
states’ (NLTS) Hamiltonians. Introduced in [FH13], a Hamiltonian 𝐻 =

∑
𝑖 𝑔𝑖𝐴𝑖
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has the NLTS property if there is no constant-depth circuit preparing a state whose
energy is above the ground energy by less than some constant fraction of the ℓ1 norm∑
𝑖 |𝑔𝑖 |. Such Hamiltonians were first proven to exist in [ABN23] using quantum

LDPC codes.

The circuit lower bounds we give are not quite comparable to the traditional notion
of NLTS. This is because we compare the energy of our low-energy states to the
Hamiltonian’s maximum eigenvalue rather than the ℓ1 norm of the coefficients.
Unlike the quantum code Hamiltonian studied in [ABN23; Her+23a], the SYK
model is highly frustrated and thus the operator norm and ℓ1 norms have vastly
different scalings: Θ(𝑛2) and Θ(

√
𝑛), respectively.

Despite these differences from the standard NLTS setting, the circuit lower bounds
we can establish are much stronger in two ways when compared to current progress
on NLTS [EH17; AB22; AGK23; Her+23a; ABN23]. First, our circuit lower
bounds hold for states at any energy which is a constant fraction of the ground
state energy, rather than for states below some constant-fraction energy threshold.
Second, we can achieve arbitrary polynomial circuit depth lower bounds, whereas
current constructions of NLTS only give a logarithmic depth lower bound.

Product state approximations for spin Hamiltonians
It is worth pointing out that there cannot be a 𝑘-local spin Hamiltonian with the
property in Theorem 2.19. For any traceless 𝑘-local spin Hamiltonian 𝐻, there is
a product state achieving energy at least 𝜆max(𝐻)/3𝑘 . The argument is imported
from [Bra+19, proof of Theorem 2], and the proof technique bears a remarkable
resemblence to the classical shadows protocol [HKP20], which provides a learning
algorithm for 𝑘-local spin operators.

Proposition 2.20. For any 𝑘-local Hamiltonian 𝐻 on 𝑛 qubits, there is a product
state |𝜓⟩ achieving energy

⟨𝜓 |𝐻 |𝜓⟩ ≥ 1
3𝑘
𝜆max(𝐻). (2.90)

Proof. Let |𝜙⟩ be the true (possibly entangled) maximum-energy state achieving

⟨𝜙|𝐻 |𝜙⟩ = 𝜆max. (2.91)

For each qubit, pick a random basis out of {𝜎𝑋 , 𝜎𝑌 , 𝜎𝑍 }, and measure in this basis.
This gives a product state of single-qubit stabilizer states. Let 𝜌 be the resulting
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ensemble of pure product states. We will analyze Tr (𝐻𝜌). Measuring each qubit
in a random {𝜎𝑋 , 𝜎𝑌 , 𝜎𝑍 } basis implements the depolarizing channel with 𝑝 = 1/3:

𝜌 = E⊗𝑛1/3( |𝜙⟩⟨𝜙 |) , E1/3(𝜏) =
1
3
𝜏 + 2

3
1. (2.92)

Using that the depolarizing channel is self-adjoint, we get

Tr (𝐻𝜌) = Tr
(
𝐻E⊗𝑛1/3( |𝜙⟩⟨𝜙|)

)
= Tr

(
E⊗𝑛1/3(𝐻) |𝜙⟩⟨𝜙 |

)
. (2.93)

By assumption, the Hamiltonian 𝐻 is a sum of 𝑘-local Paulis. If 𝑃 is a Pauli string
of weight 𝑘 , then the depolarizing channel acts as

E⊗𝑛1/3(𝑃) =
1
3𝑘
𝑃. (2.94)

Thus we get

Tr
(
𝐻E⊗𝑛1/3( |𝜙⟩⟨𝜙 |)

)
= Tr

(
E⊗𝑛1/3(𝐻) |𝜙⟩⟨𝜙 |

)
= ⟨𝜙 |

(
1
3𝑘
𝐻

)
|𝜙⟩ = 1

3𝑘
𝜆max(𝐻).

(2.95)
□

2.3 Annealed approximation
We here prove Theorem 2.5, as well as the variety of concentration results stated in
Table 2.3. Recall that we are interested in models of the form:

𝐻 =
1
√
𝑚

𝑚∑︁
𝑖=1

𝑔𝑖𝐴𝑖, (2.96)

where 𝑔𝑖 ∼𝑖.𝑖.𝑑. N(0, 1) are standard independent Gaussians and 𝐴𝑖 are deterministic
matrices. The Gibbs state 𝜌𝛽 at inverse temperature 𝛽 is defined by

𝜌𝛽 =
𝑒−𝛽
√
𝑛𝐻

𝑍𝛽
, 𝑍𝛽 = Tr

(
𝑒−𝛽
√
𝑛𝐻

)
, (2.97)

where 𝑍𝛽 is called the partition function at inverse temperature 𝛽. The factor
√
𝑛

ensures that the free energy is extensive and scales proportionally to 𝑛.

In this section we show that the commutation index of the terms 𝐴𝑖 has an im-
portant effect on the concentration properties of the random model 𝐻. Denote the
commutation index by

Δ := Δ({𝐴𝑖}𝑚𝑖=1). (2.98)
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Recall that this quantity characterizes the variance of the energy with respect to a
fixed state 𝜌:

sup
𝜌

E𝐻 | Tr(𝐻𝜌) |2 = sup
𝜌

1
𝑚

𝑚∑︁
𝑖=1
(Tr(𝐴𝑖𝜌))2 = Δ. (2.99)

The value of Δ has implications for relations between the normalized quenched and
annealed free energies.

1
𝑛
E log 𝑍𝛽︸      ︷︷      ︸
quenched

𝑣𝑠.
1
𝑛

logE𝑍𝛽︸      ︷︷      ︸
annealed

. (2.100)

The first result is that this variance quantity controls the difference between the two.

Theorem 2.21. (Quenched and annealed free energy)

𝑛−1E log 𝑍𝛽 ≤ 𝑛−1 logE𝑍𝛽 ≤ 𝑛−1E log 𝑍𝛽 + 4𝛽2Δ. (2.101)

The first inequality always holds by Jensen’s inequality; the non-trivial part is the
second inequality, which is proved in Section 2.3. This theorem states that a small
variance Δ ≪ 𝛽−2 implies that that the annealed free energy well-approximates the
quenched free energy, which indicates the absence of spin glass order [BS20]. The
next three results give concentration of expectation values, energy, and two-point
correlators of the thermal state of 𝐻. Two-point correlators are of special interest in
the study of the SYK model [BS20; GMV18; KS18; MS16]. Concentration results
for Lipschitz bounded functions of the spectrum of the SYK model have also been
established in [FTW20]. In here and what follows, ∥·∥ denotes the operator norm.

Theorem 2.22. (Concentration of expectation values) For any fixed bounded Her-
mitian operator 𝑋 ,

P
(�� Tr

(
𝑋𝜌𝛽

)
− ETr

(
𝑋𝜌𝛽

) �� ≥ 𝑡) ≤ 2𝑒−𝑡
2/(18𝛽2 | |𝑋 | |2Δ) . (2.102)

Theorem 2.23. (Concentration of energy)

P
(�� Tr

(
𝐻𝜌𝛽

)
− ETr

(
𝐻𝜌𝛽

) �� ≥ 𝑡) ≤ 4 exp ©­«− 1
2Δ

©­«
√︄

𝑡2

12𝛽2𝑛
+ 𝛼2 − 𝛼ª®¬ª®¬ , (2.103)

where 𝛼 = 1
2
(
1/(4𝛽2𝑛) + E[𝜆max(𝐻)]2

)
.
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Theorem 2.24 (Concentration of two-point correlators). For any fixed bounded
operators 𝑋 and 𝑌 , denoting

𝑌 (𝜏) = exp
(
𝑖
√
𝑛𝐻𝜏

)
𝑌 exp

(
−𝑖
√
𝑛𝐻𝜏

)
(2.104)

for any 𝜏 ∈ R, we have

P
(1
2
�� Tr

(
𝑋𝑌 (𝜏) 𝜌𝛽

)
− ETr

(
𝑋𝑌 (𝜏) 𝜌𝛽

)
± h.c.

�� ≥ 𝑡) ≤ 2𝑒−𝑡
2/(6𝑛(5𝛽2+16𝜏2) | |𝑋 | |2 | |𝑌 | |2Δ) .

(2.105)

Recall the upper bound on the commutation index of the SYK model given in
Theorem 2.10, as well as the Θ𝑞

(√
𝑛
)
-scaling of the expected maximal energy

of the SYK model in this normalization [HO21]. Instantiating Theorem 2.21,
Theorem 2.22, Theorem 2.23, and Theorem 2.24 with these parameters thus yields
the following results for the SYK model.

Corollary 2.25. (SYK model is annealed.) For the SYK model 𝐻SYK
𝑞 where 𝑞 is

even,
1
𝑛
E log 𝑍𝛽 ≤

1
𝑛

logE𝑍𝛽 ≤
1
𝑛
E log 𝑍𝛽 + O𝑞 (𝛽2𝑛−𝑞/2), (2.106)

P
(�� Tr

(
𝑋𝜌𝛽

)
− ETr

(
𝑋𝜌𝛽

) �� ≥ 𝑡) ≤ 2𝑒−Ω𝑞 (𝛽−2𝑛𝑞/2−1𝑡2) , (2.107)

P
(�� Tr

(
𝐻SYK
𝑞 𝜌𝛽

)
− ETr

(
𝐻SYK
𝑞 𝜌𝛽

)�� ≥ 𝑡)
≤


4𝑒−Ω𝑞 (𝛽−1𝑛𝑞/2−1/2𝑡) 𝑡 = Ω (1 + 𝛽𝑛)

4𝑒−Ω𝑞 (min(1,𝛽−2𝑛−2)𝑛𝑞/2𝑡2) otherwise
, (2.108)

P
(1
2
�� Tr

(
𝑋𝑌 (𝜏) 𝜌𝛽

)
− ETr

(
𝑋𝑌 (𝜏) 𝜌𝛽

)
± h.c.

�� ≥ 𝑡) ≤ 2𝑒−Ω𝑞 (min(𝛽−2,𝜏−2)𝑛𝑞/2−1𝑡2) .

(2.109)
𝑋 and 𝑌 are any fixed bounded operators.

Importantly, the above result shows that for the standard SYK model with 𝑞 = 4, the
quenched free energy in the limit of 𝑛→∞ always equal its annealed approximation
for physical temperatures where 𝛽 = Θ(

√
𝑛). This stands in stark contrast with spin

glasses where a transition occurs for some critical temperature 𝛽𝑝 into a clustered
or ‘glassy’ phase.

The remainder of this appendix is concerned with establishing Theorems 2.21,
2.22, 2.23, 2.24 for concentration of various observables and free energies. Our
general strategy takes advantage of the fact that Lipschitz continuous functions of
Gaussian random variables exponentially concentrate. We begin by reviewing this
concentration property in more detail.
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Preliminaries
A function 𝑓 : R𝑚 → R is said to be Lipschitz (continuous) with constant 𝐿 ≥ 0
(referred to as the Lipschitz constant) if for all 𝑥, 𝑦 ∈ R𝑚, the following inequality
holds:

| 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿∥𝑥 − 𝑦∥2, (2.110)

where ∥𝑥 − 𝑦∥2 is the Euclidean distance between 𝑥 and 𝑦. Intuitively, this means
that the function 𝑓 does not change too rapidly: the change in 𝑓 ’s value is bounded
by a linear multiple of the distance between 𝑥 and 𝑦. It can also be seen from the
mean-value theorem that the Lipschitz constant is bounded by the maximal gradient:

| 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ sup
𝑧∈R𝑚

∥∇ 𝑓 (𝑧)∥ ∥𝑥 − 𝑦∥2 , (2.111)

a fact that we will later use.

It is known that a Lipschitz bound for a function 𝑓 implies concentration when
inputs to the function 𝑓 are Gaussian.

Fact 2.2 (Gaussian concentration of Lipschitz functions, Theorem 2.26 of [Wai19b]).
Let ®𝑔 = (𝑔1, . . . , 𝑔𝑚) be i.i.d. standard Gaussian variables, and 𝑓 : R𝑚 → R 𝐿-
Lipschitz. Then for any 𝑡 ≥ 0:

P
(
| 𝑓 ( ®𝑔) − E 𝑓 ( ®𝑔) | ≥ 𝑡

)
≤ 2𝑒−𝑡

2/(2𝐿2) . (2.112)

We also state a useful fact on the concentration of the operator norm of random
matrices of the form of 𝐻.

Fact 2.3. (Concentration of the maximal eigenvalue [BBH21, Corollary 4.14]) Let
𝜆max(𝐻) be the maximal eigenvalue of 𝐻 = 𝑚−1/2 ∑𝑚

𝑖=1 𝑔𝑖𝐴𝑖, where 𝑔𝑖 ∼ N (0, 1).
We have:

P (𝜆max(𝐻) − E𝜆max(𝐻) ≥ 𝑡) ≤ exp
(
− 𝑡

2

2Δ

)
. (2.113)

In the course of proving our results we will also use an equivalent formulation of
Fact 2.2 that follows from its sub-Gaussianity [RH23; Ver18; Wai19a].

Lemma 2.26 (Sub-Gaussian MGF bound, Lemma 1.5 of Ref. [RH23]). Given a
random variable 𝑋 with sub-Gaussian concentration bound

P
(
|𝑋 − E𝑋 | ≥ 𝑡

)
≤ 2𝑒−𝑡

2/(2𝜎2) , (2.114)

it holds that
E[exp (𝑡 (𝑋 − E𝑋))] ≤ exp

(
4𝜎2𝑡2

)
. (2.115)
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Finally, in what follows we use ∥ · ∥ to denote the operator norm:

∥𝑋 ∥ = max
𝑣:∥𝑣∥2=1

𝑣†𝑋𝑣, (2.116)

where the maximum is taken over vectors 𝑣, and ∥·∥1 to denote the trace norm:

∥𝑋 ∥1 = Tr
(√︁
𝑋†𝑋

)
. (2.117)

Proof of Theorem 2.21
We directly compute the derivatives of log 𝑍𝛽 with respect to each Gaussian 𝑔𝑖

𝜕𝑔𝑖 log 𝑍𝛽 =
1
𝑍𝛽

Tr[𝜕𝑔𝑖𝑒𝛽
√
𝑛𝐻] (2.118)

=
1
𝑍𝛽

Tr
[
𝛽

√︂
𝑛

𝑚

∫ 1

0
𝑒𝛽
√
𝑛𝐻 (1−𝑠)𝐴𝑖𝑒

𝛽
√
𝑛𝐻𝑑𝑠

]
(Derivative of matrix exponential [Wil67])

= 𝛽

√︂
𝑛

𝑚
Tr[𝐴𝑖𝜌𝛽] . (Cyclic property of trace)

Therefore, the Lipschitz constant 𝐿 of log 𝑍𝛽 with respect to the disorder has the
gradient bound

𝐿2 ≤ 𝛽2𝑛

𝑚

𝑚∑︁
𝑖=1

Tr[𝐴𝑖𝜌𝛽]2 ≤ 𝛽2𝑛Δ. (2.119)

Now we can bound

E
[
𝑍𝛽

]
exp(E[log 𝑍𝛽])

= E
[
exp(log 𝑍𝛽 − E[log 𝑍𝛽])

]
≤ exp(4𝛽2𝑛Δ). (2.120)

The inequality uses Fact 2.2 and Lemma 2.26 with 𝑡 = 1. Taking logarithms and
rearrange to obtain

1
𝑛

logE[𝑍𝛽] ≤
1
𝑛
E[log 𝑍𝛽] + 4𝛽2Δ, (2.121)

as stated.

Proof of Theorem 2.22
The result once again follows from a Lipschitz bound. We use the well-known
expression for the derivative of a matrix exponential [Wil67]:

𝜕𝑔𝑖 exp (𝐻) =
1∫

0

exp (𝑡𝐻)
(
𝜕𝑔𝑖𝐻

)
exp ((1 − 𝑡) 𝐻) 𝑑𝑡. (2.122)
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From the chain rule we then have

𝜕𝑔𝑖 Tr
(
𝜌𝛽𝑋

)
=
𝛽
√
𝑛

√
𝑚

(
𝑍−1
𝛽 Tr ©­«𝑋

1∫
0

exp
(
𝑡𝛽
√
𝑛𝐻

)
𝐴 𝑗 exp

(
(1 − 𝑡) 𝛽

√
𝑛𝐻

)
𝑑𝑡

ª®¬ (2.123)

− Tr
(
𝑋𝜌𝛽

)
Tr

(
𝐴 𝑗 𝜌𝛽

))
. (2.124)

Consider now the operator:

𝜎𝛽 ≡ 𝑍−1
𝛽

1∫
0

exp
(
𝑡𝛽
√
𝑛𝐻

)
𝑋 exp

(
(1 − 𝑡) 𝛽

√
𝑛𝐻

)
𝑑𝑡. (2.125)

We can check that 𝜎𝛽 has trace norm bounded by | |𝑋 | |. Denoting by Σ𝑖 (·) the 𝑖th
singular value of · in nonincreasing order, we have by the majorization inequality
[Bha97]: ∑︁

𝑖

Σ𝑖 (𝐴𝐵) ≤
∑︁
𝑖

Σ𝑖 (𝐴) Σ𝑖 (𝐵) (2.126)

nd the product inequality (for Hermitian 𝐵) [HJ91]:

Σ𝑖 (𝐴𝐵) ≤ ∥𝐵∥ Σ𝑖 (𝐴) (2.127)

that ∑︁
𝑖

Σ𝑖
(
exp

(
𝑡𝛽
√
𝑛𝐻

)
𝑋 exp

(
(1 − 𝑡) 𝛽

√
𝑛𝐻

) )
(2.128)

≤
∑︁
𝑖

Σ𝑖
(
exp

(
𝑡𝛽
√
𝑛𝐻

)
𝑋
)
Σ𝑖

(
exp

(
(1 − 𝑡) 𝛽

√
𝑛𝐻

) )
(2.129)

≤ ∥𝑋 ∥
∑︁
𝑖

Σ𝑖
(
exp

(
𝑡𝛽
√
𝑛𝐻

) )
Σ𝑖

(
exp

(
(1 − 𝑡) 𝛽

√
𝑛𝐻

) )
. (2.130)

Finally, as exp
(
𝑡𝛽
√
𝑛𝐻

)
and exp

(
(1 − 𝑡) 𝛽

√
𝑛𝐻

)
are Hermitian and positive semidef-

inite, their singular values are just their eigenvalues. As they are mutually diagonal-
izable,

∥𝑋 ∥
∑︁
𝑖

Σ𝑖
(
exp

(
𝑡𝛽
√
𝑛𝐻

) )
Σ𝑖

(
exp

(
(1 − 𝑡) 𝛽

√
𝑛𝐻

) )
≤ ∥𝑋 ∥ Tr

(
exp

(
𝑡𝛽
√
𝑛𝐻

)
exp

(
(1 − 𝑡) 𝛽

√
𝑛𝐻

) )
= ∥𝑋 ∥ 𝑍𝛽.

(2.131)
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This implies that 𝜎𝛽 has trace norm bounded by | |𝑋 | |. However, while 𝜎𝛽 is
Hermitian, it is not necessarily positive semidefinite. We proceed by writing the
eigenvalue decomposition:

𝜎𝛽 =
∑︁
𝜆>0

𝜆 |𝜆⟩ ⟨𝜆 | −
∑︁
𝜆<0
|𝜆 | |𝜆⟩ ⟨𝜆 | =: 𝜎+𝛽 − 𝜎−𝛽 , (2.132)

where 𝜎±
𝛽

are Hermitian and positive semidefinite by construction, and each has
trace norm bounded by ∥𝑋 ∥ as

∑
𝜆 |𝜆 | =



𝜎𝛽

1 ≤ ∥𝑋 ∥. By the cyclic property of
the trace we can then write:

𝜕𝑔𝑖 Tr
(
𝜌𝛽𝑋

)
=
𝛽
√
𝑛

√
𝑚

(
Tr

(
𝜎+𝛽 𝐴 𝑗

)
− Tr

(
𝜎−𝛽 𝐴 𝑗

)
− Tr

(
𝑋𝜌𝛽

)
Tr

(
𝐴 𝑗 𝜌𝛽

) )
. (2.133)

We thus have����∇®𝑔 Tr
(
𝜌𝛽𝑋

) ����2
2 =

𝛽2𝑛

𝑚

∑︁
𝑗

(
Tr

(
𝜎+𝛽 𝐴 𝑗

)
− Tr

(
𝜎−𝛽 𝐴 𝑗

)
− Tr

(
𝑋𝜌𝛽

)
Tr

(
𝐴 𝑗 𝜌𝛽

) )2

(2.134)

≤ 3𝛽2𝑛

𝑚

∑︁
𝑗

( (
Tr𝜎+𝛽 𝐴 𝑗

)2 +
(
Tr𝜎−𝛽 𝐴 𝑗

)2 +
(
Tr 𝑋𝜌𝛽

)2 ( Tr 𝐴 𝑗 𝜌𝛽
)2

)
(2.135)

≤ 9𝛽2𝑛| |𝑋 | |2Δ. (2.136)

The result then follows from Fact 2.2.

Proof of Theorem 2.23
We would like an analog of Equation (2.133) where the observable is 𝐻. Notice this
is 𝑔𝑖-dependent and commutes with 𝜌𝛽. We get

𝜕𝑔𝑖 Tr
(
𝜌𝛽𝐻

)
=

1
√
𝑚

Tr
(
𝜌𝛽𝐴 𝑗

)
+ 𝛽
√
𝑛

√
𝑚

(
Tr

(
𝜌𝛽𝐻𝐴 𝑗

)
− Tr

(
𝐻𝜌𝛽

)
Tr

(
𝐴 𝑗 𝜌𝛽

) )
.

(2.137)
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Let 𝜆max(𝐻) denote the maximal eigenenergy of 𝐻, and let G𝑠 be the set of coeffi-
cients ®𝑔 where 𝜆max (𝐻) ≤ 𝑠 + E𝜆max (𝐻). For ®𝑔 ∈ G𝑠����∇®𝑔 Tr

(
𝜌𝛽𝐻

) ����2
2

=
1
𝑚

∑︁
𝑗

(
Tr

(
𝜌𝛽𝐴 𝑗

)
+ 𝛽
√
𝑛Tr

(
𝜌𝛽𝐻𝐴 𝑗

)
− 𝛽
√
𝑛Tr

(
𝐻𝜌𝛽

)
Tr

(
𝐴 𝑗 𝜌𝛽

) )2

(2.138)

≤ 3
𝑚

∑︁
𝑗

( (
Tr 𝜌𝛽𝐴𝑖

)2 + 𝛽2𝑛
(
Tr 𝜌𝛽𝐻𝐴𝑖

)2 + 𝛽2𝑛
(
Tr 𝜌𝛽𝐻

)2 ( Tr 𝜌𝛽𝐴𝑖
)2

)
(2.139)

≤ 3Δ
(
1 + 2𝛽2𝑛| |𝐻 | |2

)
(2.140)

≤ 3Δ
(
1 + 2𝛽2𝑛 (𝑠 + E𝜆max (𝐻))2

)
. (2.141)

That is, the function 𝜏 (𝑔) := Tr
(
𝜌𝛽𝐻

)
defined on the set G𝑠 has a Lipschitz constant

bounded by
𝐿G𝑠 := 3Δ

(
1 + 2𝛽2𝑛 (𝑠 + E𝜆max (𝐻))2

)
. (2.142)

We now use the Kirszbraun theorem.

Theorem 2.27 (Kirszbraun theorem, Ref. [Val45]). Let 𝑈 ⊂ R𝑑1 , and assume
𝑓 : 𝑈 → R𝑑2 is Lipschitz with Lipschitz constant 𝐿. Then, there exists 𝑓 : R𝑑1 → R𝑑2

with Lipschitz constant 𝐿 such that 𝑓 (𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ 𝑈.

In particular, there exists 𝜏 (𝑔) with Lipschitz constant given by Equation (2.142)
such that 𝜏 (𝑔) agrees with Tr

(
𝜌𝛽𝐻

)
on G𝑠. Furthermore, by Fact 2.3, P [𝑔 ∉ G𝑠] ≤
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2 exp
(
− 𝑠2

2Δ

)
. We use these two properties to calculate:

P
[

Tr

(
𝐻𝜌𝛽

)
− E

[
Tr

(
𝐻𝜌𝛽

) ]

 ≥ 𝑡] (2.143)

≤ inf
𝑠
P

[

Tr
(
𝐻𝜌𝛽

)
− E

[
Tr

(
𝐻𝜌𝛽

) ]

 ≥ 𝑡 ∧ 𝑔 ∈ G𝑠] + 2 exp
(
− 𝑠

2

2Δ

)
(2.144)

= inf
𝑠
P [∥𝜏 (𝑔) − E [𝜏 (𝑔)] ∥ ≥ 𝑡 ∧ 𝑔 ∈ G𝑠] + 2 exp

(
− 𝑠

2

2Δ

)
(2.145)

≤ inf
𝑠
P [∥𝜏 (𝑔) − E [𝜏 (𝑔)] ∥ ≥ 𝑡] + 2 exp

(
− 𝑠

2

2Δ

)
(2.146)

≤ inf
𝑠

2 exp

(
− 𝑡2

6Δ
(
1 + 2𝛽2𝑛 (𝑠 + E [𝜆max (𝐻)])2

) ) + 2 exp
(
− 𝑠

2

2Δ

)
(2.147)

≤ inf
𝑠

2 exp
©­­«−

𝑡2

6Δ
(
1 + 4𝛽2𝑛

(
𝑠2 + E [𝜆max (𝐻)]2

) ) ª®®¬ + 2 exp
(
− 𝑠

2

2Δ

)
(2.148)

≤ inf
𝑠

2 exp
(
− 𝑡2

24𝛽2Δ𝑛
(
𝑠2 + 1/(4𝛽2𝑛) + E[𝜆max(𝐻)]2

) ) + 2 exp
(
− 𝑠

2

2Δ

)
. (2.149)

Setting 𝑠2 =
√︁
𝑡2/(12𝛽2𝑛) + 𝛼2 − 𝛼 where 𝛼 = 1

2
(
1/(4𝛽2𝑛) + E[𝜆max(𝐻)]2

)
gives

the desired result.

Proof of Theorem 2.24
Completely analogously to the proof of Theorem 2.22 we have

𝜕𝑔𝑖 Tr
(
𝜌𝛽𝑋𝑌 (𝜏)

)
=
𝛽
√
𝑛

√
𝑚

(
Tr

(
𝜎𝛽𝐴 𝑗

)
− Tr

(
𝑋𝑌 (𝜏) 𝜌𝛽

)
Tr

(
𝐴 𝑗 𝜌𝛽

) )
+ Tr

(
𝜌𝛽𝑋𝜕𝑔𝑖𝑌 (𝜏)

)
,

(2.150)

where

𝜎𝛽 = 𝑍
−1
𝛽

1∫
0

exp
(
𝑡𝛽
√
𝑛𝐻

)
𝑋𝑌 (𝜏) exp

(
(1 − 𝑡) 𝛽

√
𝑛𝐻

)
𝑑𝑡. (2.151)
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We now focus on the final term of Equation (2.150). We have

𝜕𝑔𝑖𝑌 (𝜏)

=
𝑖𝜏
√
𝑛

√
𝑚

©­«
1∫

0

exp
(
𝑖𝜏
√
𝑛𝑡𝐻

)
𝐴 𝑗 exp

(
𝑖𝜏
√
𝑛 (1 − 𝑡) 𝐻

)
𝑑𝑡

ª®¬𝑌 exp
(
−𝑖𝜏
√
𝑛𝐻

)
(2.152)

+ h.c. (2.153)

=
𝑖𝜏
√
𝑛

√
𝑚

[
𝐴̃ 𝑗 |𝜏, 𝑌 (𝜏)

]
, (2.154)

where 𝐴̃ 𝑗 |𝜏 is the Hermitian, time-averaged operator:

𝐴̃ 𝑗 |𝜏 =

1∫
0

exp
(
𝑖𝜏
√
𝑛𝑡𝐻

)
𝐴 𝑗 exp

(
−𝑖𝜏
√
𝑛𝑡𝐻

)
𝑑𝑡 (2.155)

=
1
𝜏

𝜏∫
0

exp
(
𝑖𝑡
√
𝑛𝐻

)
𝐴 𝑗 exp

(
−𝑖𝑡
√
𝑛𝐻

)
𝑑𝑡. (2.156)

We have
1
4
����∇®𝑔 Tr

(
𝜌𝛽𝑋𝑌 (𝜏)

)
± h.c.

����2
2 (2.157)

=
𝑛

4𝑚

∑︁
𝑗

| |𝛽 Tr
(
𝜎𝛽𝐴 𝑗

)
− 𝛽 Tr

(
𝑋𝑌 (𝜏) 𝜌𝛽

)
Tr

(
𝐴 𝑗 𝜌𝛽

)
+ 𝑖𝜏 Tr 𝜌𝛽𝑋

[
𝐴̃ 𝑗 |𝜏, 𝑌 (𝜏)

]
± h.c.| |2 (2.158)

≤ 3𝑛
4𝑚

∑︁
𝑗

(
| |𝛽 Tr

(
𝜎𝛽𝐴 𝑗

)
± h.c.| |2 + ||𝛽 Tr

(
𝑋𝑌 (𝜏) 𝜌𝛽

)
Tr

(
𝐴 𝑗 𝜌𝛽

)
± h.c.| |2

+ ||𝜏 Tr
(
𝜌𝛽𝑋

[
𝐴̃ 𝑗 |𝜏, 𝑌 (𝜏)

] )
± h.c.| |2

)
. (2.159)

The first two terms are conceptually identical to Equation (2.134). To bound the
final term, we define

𝜇±𝛽,𝜏 := 𝑌 (𝜏) 𝜌𝛽𝑋 ± h.c., (2.160)

𝜈±𝛽,𝜏 := 𝜌𝛽𝑋𝑌 (𝜏) ± h.c., (2.161)

such that

Tr
(
𝜌𝛽𝑋

[
𝐴̃ 𝑗 |𝜏, 𝑌 (𝜏)

] )
± h.c. = Tr

(
𝜇±𝛽,𝜏 𝐴̃ 𝑗 |𝜏

)
− Tr

(
𝜈±𝛽,𝜏 𝐴̃ 𝑗 |𝜏

)
. (2.162)

Note that 𝜇+
𝛽,𝜏
, 𝜈+
𝛽,𝜏
, 𝑖𝜇−

𝛽,𝜏
, 𝑖𝜈−

𝛽,𝜏
are all Hermitian by construction, and each has trace

norm bounded by 2 ∥𝑋 ∥ ∥𝑌 ∥ by Hölder’s inequality. Just as in Equation (2.132),
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each can be considered as the difference of two positive semidefinite matrices with
trace norm bounded by 2 ∥𝑋 ∥ ∥𝑌 ∥. Putting everything together yields

1
4
����∇®𝑔 Tr

(
𝜌𝛽𝑋𝑌 (𝜏)

)
± h.c.

����2
2 (2.163)

≤ 3𝑛
4𝑚

∑︁
𝑗

(
| |𝛽 Tr

(
𝜎𝛽𝐴 𝑗

)
± h.c.| |2 + ||𝛽 Tr

(
𝑋𝑌 (𝜏) 𝜌𝛽

)
Tr

(
𝐴 𝑗 𝜌𝛽

)
± h.c.| |2

+ ||𝜏 Tr
(
𝜌𝛽𝑋

[
𝐴̃ 𝑗 |𝜏, 𝑌 (𝜏)

] )
± h.c.| |2

)
(2.164)

≤ 3𝑛
4

(
16𝛽2 | |𝑋 | |2 | |𝑌 | |2Δ + 4𝛽2 | |𝑋 | |2 | |𝑌 | |2Δ + 64𝜏2 | |𝑋 | |2 | |𝑌 | |2Δ

)
(2.165)

= 3𝑛
(
5𝛽2 + 16𝜏2

)
| |𝑋 | |2 | |𝑌 | |2Δ. (2.166)
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C h a p t e r 3

SUM OF SQUARES SPECTRAL AMPLIFICATION

Simulating quantum many-body systems is one of the most heralded and valuable
applications of quantum computing. Although efficient quantum algorithms ex-
ist for numerous quantum simulation problems [Kit95; KOS07; Llo96; Wie+10;
Ber+15; LC17b], further improvements are essential to fully realize robust large-
scale quantum simulation when accounting for the considerable constant factor
overhead associated with fault-tolerant quantum computation [Ber+24b; Rub+23;
Bab+21]. Quantum algorithm improvements are expected to arise from exploiting
specific structures of the simulation instance, thus mitigating worst-case computa-
tional costs. Examples of such are exploiting symmetries in chemistry problems or
locality in lattice models [LI23; Haa+23]. Here, we introduce a strategy that ex-
ploits the low-energy properties of quantum states to improve quantum simulation
algorithms. Our framework relies on two distinct algorithmic ideas: sum-of-squares
(SOS) representations of Hamiltonians and spectral amplification (SA).

The low-energy setting is one of the most promising areas in quantum simulation.
This setting is relevant in the study of matter at low temperatures, including quantum
phase transitions and the computation of ground-state properties. In this setting,
some of the most important simulation tasks are: i) Estimating the energy of a
quantum system with respect to certain quantum state [KOS07], ii) Estimating the
ground state energy of a quantum system by phase estimation [Kit95], and iii)
Simulating the time evolution of a quantum state under a Hamiltonian [Llo96].
We will show how SOSSA significantly improves the gate complexity of generic
methods for all these problems. To this end, SOSSA combines two key ideas: first,
it produces a suitable SOS representation of the given Hamiltonian 𝐻 plus an energy
shift 𝛽 to make the Hamiltonian positive semidefinite and with a small ground state
energy, and then it uses SA to amplify the low eigenvalues and the corresponding
energy gaps of 𝐻 + 𝛽 [SB13; LC17a; ZS24].

During the SOS step, 𝐻 + 𝛽 is processed classically and represented as a sum
of positive terms. This can modify properties of 𝐻 that have an impact on the
complexity of the simulation algorithm, such as an ℓ1-norm that depends on its
presentation and the ground state energy. Ideally, the SOS representation is such
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LCU
𝜆 = 𝜆LCU

Termwise SA
𝜆 = 𝜆LCU
Δ = ΔLCU

SOSSA
𝜆 = 𝜆SOS
Δ = ΔSOS

Energy estima-
tion

Θ(𝜆/𝜖) [KOS07] Θ
(√

Δ𝜆/𝜖
)

Theorem 3.12

Phase estimation O
(
(𝜆/(√𝑝𝜖)) log 1

𝑝

)
[Ber+24b]

O
( (√

Δ𝜆/(√𝑝𝜖)
)

log 1
𝑝

)
Theorem 3.15

Time evolution Θ(𝜆𝑡 + log 1
𝜖
)

[LC17b; LC19]
Θ

(√
Δ𝜆𝑡 +

√︁
𝜆/Δ log 1

𝜖
)
)

[ZS24]

SYK model 𝜆LCU ∼ 𝑁2 √
ΔLCU𝜆LCU ∼
𝑁2

√
ΔSOS𝜆SOS ∼
𝑁

3
2

Table 3.1: (a) Simulation tasks on Hamiltonian 𝐻 to precision 𝜖 using LCU, termwise SA,
and SOSSA. Presented are the query complexities assuming access to the Hamiltonian
only via the block-encodings 𝐻/𝜆LCU, 𝐻SA/

√
𝜆LCU, and 𝐻SOSSA/

√
𝜆SOS, respectively. The

gate complexities can be determined from the gate complexities of each block-encoding,
which can be different, and the additional arbitrary gates in the algorithm. We show: i)
estimation of the energy 𝐸 = ⟨𝜓 |𝐻 |𝜓⟩, ii) phase estimation of the ground state energy 𝐸
with initial state |𝜓⟩ and ground-state |𝜓0⟩ satisfying 𝑝 = |⟨𝜓 |𝜓0⟩ |2 > 0, and iii)
time-evolution to implement 𝑒−𝑖𝑡𝐻 on a state of energy at most 𝐸 . We assume
−𝜆LCU ≤ 𝐸 ≤ −𝜆LCU + ΔLCU for termwise SA and −𝛽 ≤ 𝐸 ≤ −𝛽 + ΔSOS for SOSSA. The
lower bound on the ground state energy −𝛽 is obtained in the SOS step and implies
ΔSOS ≪ ΔLCU. We also provide adaptive algorithms with improved complexities that do
not require knowledge of ΔLCU or ΔSOS. (b) Normalization factors for the SYK model
demonstrate an asymptotic speedup in system size 𝑁 using an appropriate SOS. The gate
complexities for all block-encodings is similar in this example.

that −𝛽 is a tight lower bound on the ground state energy and that the square roots
of the positive terms are not too difficult to simulate. This step relates to the
well-known optimization task of finding the best SOS lower bound on the ground
state energy, which can be solved efficiently in classical preprocessing using semi-
definite programming. During the SA step we produce a different Hamiltonian
whose eigenvalues are the square roots of those of 𝐻 + 𝛽1. Since the low-lying
eigenvalues like the ground state energy are now ‘amplified’, this can alleviate some
resources due to, for example, having less stringent requirements in the precision
of an estimate. While the SOS step might introduce additional overheads from the
complexity of the terms, the SA step has the potential to reduce it, and the method is
useful if the overall combination still provides an improvement in gate complexities.
Notably, we show this occurs in interesting systems.

In this article we provide the theory of SOSSA and then use it to construct quantum
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algorithms that improve over prior art. Our approach is to first improve the query
complexities of simulation methods based on SA, which will ultimately improve
the gate complexities when the SOS representation is considered. Specifically,
for: i) energy estimation, where in contrast with Ref. [Sim+24] our algorithm
does not require an upper bound on the expectation to be estimated and works for
arbitrary (block-encoded) operators, and ii) ground-state phase estimation, where
we generalize results in Ref. [Low+25] in that we do not need an upper bound on
the energy and our method works even if the overlap between the trial state and
ground state is 𝑝 < 1. The results are summarized in Table 3.1, where we also
include those on time-evolution from Ref. [ZS24] for reference. These SA-based
algorithms improve the linear query complexities of generic methods on 𝜆 to

√
Δ𝜆,

where 𝜆 is a parameter related to the norm of the Hamiltonian—the largest possible
energy—and Δ is a parameter related to the low energy of the initial state. The
relevant low-energy instances arise then when Δ ≪ 𝜆.

While attaining improved query complexities is key to our approach, we are ulti-
mately concerned with gate complexities. These can be determined from the costs
of implementing the corresponding queries, which depend on the SOS representa-
tion and the difficulty of simulating its terms. Then, to demonstrate the power of
SOSSA, we analyze its performance in applications. In the context of ground state
energy estimation of quantum chemistry, recent findings demonstrate that SOSSA
provides the best gate complexities currently known [Low+25]. We corroborate
these findings further by applying SOSSA to ground state energy estimation of the
Sachdev-Ye-Kitaev (SYK) model, where it provides an asymptotic speedup over
generic methods by a factor of square root of system size (see Table 3.1). Given that
the SYK model exemplifies a strongly correlated condensed matter system, these
results suggest the general applicability of SOSSA to many quantum simulation
problems.

We conclude that SOSSA provides a useful framework for several quantum simula-
tion tasks, and expect it to be applied to other systems. Furthermore, we complement
these findings by providing tight lower bounds for energy and phase estimation that
show our quantum algorithms are query optimal in the low-energy setting, and pro-
vide a low-depth version for expectation estimation, which scales with the standard
quantum limit, that might be of independent interest for near-term applications.

Last, we remark that while SOSSA concerns the combination of SOS representations
and SA, each has been extensively studied in prior work. SOS is used in the context of
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Figure 3.1: Uncertainty propagation through the square root function. By construct-
ing the square root of a positive semidefinite Hamiltonian, we are able to amplify
the small eigenvalues due to the divergent behavior of the derivative of

√
𝑥 near zero.

Here 𝑥 ≥ 0 denotes a rescaled eigenvalue and the relevant low-energy regime occurs
for 𝑥 ≪ 1. The error bars illustrate that an estimate of an eigenvalue 𝐸 to precision
𝜖 can be obtained through an estimate of

√
𝐸 to precision O(𝜖/

√
𝐸), which becomes

coarser as 𝐸 decreases, thereby reducing the resources needed for phase estimation.
The approach can be generalized to other functions 𝑓 (𝑥) whose derivatives are large
or divergent as 𝑥 → 0 and that could arise from other related constructions, such
as the quantum-walk in Ref. [Low+25], where 𝑓 (𝑥) = arccos(𝑥 − 1) resulted in a
similar quadratic amplification.

approximation algorithms [GW95; PNA10], lower bounds on ground-state energies
in quantum chemistry [Maz06; Nak+01], and characterizing quantum correlations
[NPA08]. These methods often appear in the pseudomoment picture, which is dual
to the SOS optimization that we consider here. SA was used to achieve a quadratic
quantum speedup within the context of adiabatic quantum computation [SB13] and
was more recently used to obtain improved quantum algorithms for simulating time
evolution and phase estimation on low-energy states [LC17a; ZS24; Low+25].

SOSSA The goal of SOSSA is to improve the gate complexity of simulation
tasks in the low-energy sector. To this end, SOSSA uses SA for reducing query
complexities first. Quantum signal processing and the related quantum singular
value transform provide the modern machinery for quantum simulation tasks, relying
on access to a block-encoding of a Hamiltonian 𝐻 [LC19; Gil+19; Mar+21]. This
is a unitary acting on an enlarged space that contains the matrix 𝐻/𝜆 in one of
its blocks, where 𝜆 ≥ ∥𝐻∥ is needed for normalization. In quantum simulation
algorithms we are often interested in both, the query and gate complexities. We
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define the query complexity to be the number of times the block-encodings are
used (including their inverses), and the gate complexity to be the total number of
two-qubit gates to implement the algorithm, which includes the number of gates to
implement the block-encodings in applications.

A standard approach to construct the block-encoding uses an efficient presentation
of 𝐻 as a linear combination of unitaries (LCU) [CW12; Ber+15]. Suppose a
Hamiltonian 𝐻 acts on a system of 𝑁 qubits and is presented as a sum of terms as

𝐻 =

𝑅−1∑︁
𝑗=0
𝑔 𝑗𝜎𝑗 , (3.1)

where 𝑔 𝑗 ∈ R are coefficients and 𝜎𝑗 are (tensor) products of 𝑁 Pauli matrices
(i.e. Pauli strings). The query complexity of various quantum simulation tasks
through this LCU scales linearly in the so-called ℓ1-norm of the Hamiltonian:

𝜆LCU :=
𝑅−1∑︁
𝑗=0
|𝑔 𝑗 | . (3.2)

The LCU column of Table 3.1 presents some known results.

SA allows one to get around the linear cost in 𝜆LCU in simulation tasks involving
states of low energy. SA can only be applied to Hamiltonians that are positive
semidefinite. One way to achieve SA is to produce a square root of the Hamiltonian,
so that the low-energy spectrum is amplified. Intuitively, this amplification arises
because the square root function is steep near zero, i.e.

√
𝑥 ≫ 𝑥 for 𝑥 ≪ 1, where

𝑥 denotes a rescaled eigenvalue. See Figure 3.1 for an illustration. For phase
estimation, a precise estimate of a small eigenvalue of the original Hamiltonian can
then be obtained by squaring a coarser estimate of an eigenvalue of its square root.
For time evolution, the amplified low-energy spectrum allows for a more efficient
approximation to the evolution operator using lower degree polynomials in quantum
signal processing. In both cases, SA can lead to a lower query complexity than in
the worst case. See Appendix 3.2 for results on SA.

The easiest way to apply SA to a Hamiltonian presented as in Eq. (3.1) is to add a
shift to each Pauli string 𝜎𝑗 so that it becomes positive semidefinite; for example,
1 ± 𝜎𝑗 ⪰ 0, where 1 is the identity matrix. We call this approach termwise
SA, but also anticipate that this approach is not generally effective. During this
preprocessing, the shift produces

𝐻 + 𝜆LCU1 = 2
𝑅−1∑︁
𝑗=0
|𝑔 𝑗 |Π 𝑗 , (3.3)
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where Π 𝑗 := 1
2 (1 + sign(𝑔 𝑗 )𝜎𝑗 ) are simple orthogonal projectors since the Pauli

strings 𝜎𝑗 have eigenvalues ±1. We can define the spectral amplified operator for
this specific example to be

𝐻SA =
√

2
𝑅−1∑︁
𝑗=0
|𝑔 𝑗 |

1
2 | 𝑗⟩ ⊗ Π 𝑗 =

√
2
©­­­«
|𝑔1 |

1
2Π1
...

|𝑔𝑅 |
1
2Π𝑅

ª®®®¬ . (3.4)

This is a rectangular matrix that acts as a square root of 𝐻 + 𝜆LCU1 since

𝐻
†
SA𝐻SA = 𝐻 + 𝜆LCU1. (3.5)

Consider now a simulation problem where the corresponding quantum states are
supported in the low-energy subspace. We can introduce a parameter ΔLCU that
quantifies the low-energy assumption. In particular, for energy estimation we will
assume our states of interest |𝜓⟩ to satisfy 𝐸 = ⟨𝜓 | 𝐻 |𝜓⟩ ≤ −𝜆LCU+ΔLCU. For phase
estimation we will assume ⟨𝜉 |𝜓⟩ = 0 for every eigenstate |𝜉⟩ of 𝐻 of eigenvalue
⟨𝜉 | 𝐻 |𝜉⟩ > −𝜆LCU + ΔLCU. For these problems, by using the block-encoding of
𝐻SA/

√
𝜆LCU instead of that of 𝐻/𝜆LCU, SA allows us to achieve an improvement

in the query complexity. See the termwise SA results in Table 3.1, proven in
Thms. 3.12 and 3.15. The net effect is an improved query complexity linear in
√
ΔLCU𝜆LCU rather than 𝜆LCU. (We can think of

√
ΔLCU𝜆LCU as the new effective ℓ1-

norm when considering the low-energy subspace.) The improvement occurs when
ΔLCU ≪ 𝜆LCU, which is possible in specific instances where the Hamiltonian 𝐻 is
close to ‘frustration-free’ [SB13].

For this example, an improvement in query complexity ultimately gives an im-
provement in gate complexity, because the corresponding block-encodings can be
implemented with similar gate costs (Lemma 3.6). This would readily achieve the
goal of SOSSA, however, for general and frustrated 𝐻, the termwise preprocessing
outlined might result in a ΔLCU that is comparable to 𝜆LCU. This severely limits
the general applicability of termwise SA, and a different kind of preprocessing is
desirable to have a significant reduction in gate costs.

Our strategy is then to use a different representation of the Hamiltonian plus a shift,
as an SOS of more general operators 𝐵 𝑗 :

𝐻 + 𝛽1 =

𝑅−1∑︁
𝑗=0

𝐵
†
𝑗
𝐵 𝑗 . (3.6)
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Using this representation, which implies 𝐻 + 𝛽 ⪰ 0, gives also a path to applying SA
to general Hamiltonians. Indeed, the previous termwise SA is an example of SOS
where 𝛽 = 𝜆LCU and 𝐵 𝑗 = |𝑔 𝑗 |

1
2Π 𝑗 . However, we can now consider the 𝐵 𝑗 ’s to be

linear combinations of Pauli strings 𝜎𝑗 or more general operators. It is important,
however, to constrain the 𝐵 𝑗 ’s so that they can be efficiently block-encoded; see
Chapter 3.

SOSSA then reduces the overall gate complexity by first reducing the query complex-
ity via SA as much as possible. We do this by finding ‘good’ SOS representations
that have the following properties. Let

𝐻SOSSA :=
𝑅−1∑︁
𝑗=0
| 𝑗⟩ ⊗ 𝐵 𝑗 =

©­­­«
𝐵1
...

𝐵𝑅

ª®®®¬ (3.7)

be such that 𝐻†SOSSA𝐻SOSSA = 𝐻 + 𝛽1. Then, we wish to block-encode of
𝐻SOSSA/

√
𝜆SOS efficiently, for some normalization factor 𝜆SOS ≥ ∥𝐻 + 𝛽1∥, which

is often very different from 𝜆LCU. Additionally, we wish for the lower bound −𝛽 to
be as close to the ground state energy of 𝐻 as possible. For energy estimation, we
will assume ⟨𝜓 | 𝐻 |𝜓⟩ ≤ −𝛽 + ΔSOS and for phase estimation the low-energy state
is supported on the subspace of energies in [−𝛽,−𝛽 + ΔSOS]. These parameters
give
√
ΔSOS𝜆SOS, which determines the query complexity when using SA with the

Hamiltonian 𝐻 + 𝛽1; see the SOSSA results in Table 3.1. The goal of the good
SOS representation is to satisfy ΔSOS𝜆SOS ≪ ΔLCU𝜆LCU and hence improve upon
the query complexity of termwise SA.

After obtaining improved query complexities from the SOS representation, we wish
to determine the resulting gate complexities, and we need to account for the gate
cost of implementing the block-encoding of𝐻SOSSA/

√
𝜆SOS. Unfortunately, this gate

cost might be higher than that of implementing the block-encoding of 𝐻SA/
√
𝜆SA,

since the operators 𝐵 𝑗 are more general and possibly more difficult to simulate.
Nevertheless, we find that these two competing effects –the improvement in query
complexity versus the increase in the gate complexity of each query– can still give
a significant improvement overall, as demonstrated by the examples we studied.

Hence, to obtain improved gate complexities, SOSSA uses SA in combination with
good SOS representations to reduce the query complexity as much as possible, even
when the gate cost per query can increase.
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SOS optimization for SOSSA To achieve greater SA, we would like ΔSOS to be
as small as possible, so we would like −𝛽 to be a tight lower bound on the ground
state energy. In this section, we show that optimizing the lower bound −𝛽 can
be achieved efficiently in classical preprocessing using semi-definite programming.
Optimization of −𝛽 alone does not directly optimize the total gate cost but can
instead improve the query complexity. However, it can be a useful starting point as
demonstrated in Ref. [Low+25]. We will see in Chapter 3 that this optimization is
sufficient to achieve asymptotic speedups in the total gate cost for the SYK model.

We can start by selecting an ansatz for the 𝐵 𝑗 ’s as low-degree polynomials of
some natural operator set B, the ‘SOS algebra’, of size 𝐿. For example, given
the Hamiltonian on 𝑁 qubits, we can choose a constant 𝑘 ≥ 1 and let B be the
set of 𝐿 = O(𝑁 𝑘 ) monomials, each being a product of 𝑘 Pauli operators. Then,
𝐵 𝑗 (®𝑏 𝑗 ) ∈ B denotes a polynomial of Pauli strings of weight or degree 𝑘 , where
®𝑏 𝑗 ∈ C𝐿 are the coefficients of the polynomial. For a fermionic Hamiltonian, we
could let B be the set of degree-𝑘 products of fermionic creation and annihilation
operators instead, or equivalently in the Majorana operators. Often, we may not
want to include all degree-𝑘 terms in B, but only a subset like nearest-neighbor
products when considering a system in a lattice.

Having selected the set B, we can optimize the lower bound on the ground state
energy while constraining the coefficients ®𝑏 𝑗 so that Eq. (3.6) is satisfied. This
defines the following program:

min
®𝑏 𝑗∈C𝐿

𝛽 s.t. 𝐻 + 𝛽1 =

𝑅−1∑︁
𝑗=0

𝐵 𝑗 (®𝑏 𝑗 )†𝐵 𝑗 (®𝑏 𝑗 ).

This optimization problem can be directly translated into an SDP whose dimension
is polynomial in the operator basis size 𝐿 and whose linear constraints are derived
from the algebra of the polynomials; see Section 3.3. Mathematical problems of
this form can be solved in polynomial time with respect to the number of variables
and constraints [BV04; BM03; PRW06]. The resulting number of terms 𝑅 is related
to the rank of the primal variable of the SDP and is also polynomial in 𝐿.

The dual problem of this SDP is the pseudomoment problem [PNA10; Erd78] where
it is well understood that increasing the complexity of 𝐵 𝑗 by for example allowing a
larger set of monomials inB, and thus the size of the SDP,−𝛽 can be made arbitrarily
close to the true ground state energy, implying a smaller energy gap ΔSOS.
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Nevertheless, for the quantum algorithm, we note that the savings in complexity
from a smaller ΔSOS might be obscured by the higher complexity of simulating
the terms 𝐵 𝑗 . Additionally, the cost of preprocessing from solving the SDP also
increases with 𝐿, and this classical complexity can also be a factor of consideration
in the overall optimization for a specific application.

Application to SYK We can now display our primary example application of the
SOSSA framework to the SYK model. We observe an asymptotic speedup in phase
estimation of the ground state energy over the standard approach that uses the block-
encoding of the full Hamiltonian, which is constructed from an LCU presentation
in terms of Pauli strings. The speedup reduces the gate complexity by a factor

√
𝑁 ,

where 𝑁 is the number of modes. Let {𝛾1, . . . , 𝛾𝑁 } be Majorana operators satisfying
anticommutation relations:

𝛾𝑎𝛾𝑏 + 𝛾𝑏𝛾𝑎 = 2𝛿𝑎𝑏1 . (3.8)

The SYK model is described by a fermionic Hamiltonian containing all degree-4
Majorana terms whose coefficients are random Gaussians; that is,

𝐻SYK =
1√︃(𝑁

4
) ∑︁
𝑎,𝑏,𝑐,𝑑

𝑔𝑎𝑏𝑐𝑑𝛾𝑎𝛾𝑏𝛾𝑐𝛾𝑑 , (3.9)

𝑔𝑎𝑏𝑐𝑑 ∼ N(0, 1) i.i.d. . (3.10)

We will apply SOSSA to the SYK model using degree-2 Majorana operators for
the SOS representation, which is described in detail in Section 3.4. That is, the set
B used for the SOS representation are quadratic in the 𝛾𝑎’s Using random matrix
theory, in Lemma 3.18 we show that this readily achieves a lower bound where
𝛽 = O(𝑁). Furthermore, the spectrum of 𝐻SYK is known to be contained in the
interval [−𝑐

√
𝑁, 𝑐
√
𝑁] for some constant 𝑐 > 0, and hence the energy gap obeys

ΔSOS = O(𝑁).

To compare the performance of SOSSA with standard approaches or termwise SA,
we first note 𝐻SYK has number of terms scales like ∼ 𝑁4. Hence, the asymptotic
gate complexities to construct the necessary block-encodings for the LCU, termwise
SA, and SOSSA approaches is Θ(𝑁4) in all cases.1 We can thus focus on compar-
ing the query complexities only, which are determined by 𝜆LCU,

√
ΔLCU𝜆LCU and

1We can achieve block encodings with gate complexities O(𝑁4), and Ω(𝑁4) is a lower bound
since this is number of parameters in the Hamiltonian.
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√
ΔSOS𝜆SOS. We have

𝜆LCU =
1√︃(𝑁

4
) ∑︁
𝑎,𝑏,𝑐,𝑑

|𝑔𝑎𝑏𝑐𝑑 | (3.11)

for Eq. (3.9), and hence 𝜆LCU = Θ(𝑁2) with high probability. Termwise SA does not
provide any asymptotic improvement, since the scaling of the ground state energy
𝐸 is dominated by 𝜆LCU and so ΔLCU will asymptotically scale linearly with 𝜆LCU.
Nevertheless, in Section 3.4 we show that we can implement a block encoding of
𝐻SOSSA with squared normalization factor 𝜆SOS = O(𝑁2). Our approach involves
the double factorization technique described in Section 3.4 [Bur+21b]. Since the
energy gap is ΔSOS = O(𝑁), we have

√
ΔSOS𝜆SOS = Θ(𝑁 3

2 ) for SOSSA, giving an
asymptotic speedup by a factor of ∼

√
𝑁 over LCU and termwise SA.

Higher-degree SOS algebras. In Ref. [HO22] it was demonstrated that degree-
2 Majorana SOS is unable to recover this scaling, and is limited to a lower bound
scaling like 𝛽 = O(𝑁) with high probability. Reference [HO22] introduces a degree-
3 SOS, where the 𝐵 𝑗 ’s in the SOS representation are cubic in the 𝛾𝑎’s, and which is
able to achieve a tighter lower bound to the ground state energy where 𝛽 = Ω(

√
𝑁).

Their SOS algebra B does not contain all degree-3 Majorana monomials, but rather
uses only a particular fragment of the degree-3 terms of size 𝐿 = O(𝑁).

We can consider applying SOSSA with the degree-3 SOS from Ref. [HO22]. The
energy gap will improve to ΔSOS = O(

√
𝑁). However, the block-encoding normal-

ization factor scales now as 𝜆SOS ∼ 𝑁
7
2 ; see the bound on 𝜆SOS in Section 3.3. We

obtain
√
ΔSOS𝜆SOS = Θ(𝑁2), recovering the query complexity scaling of LCU and

termwise SA. Not considering gate cost of block-encoding, which is likely higher
than the termwise LCU method, we recover the termwise SA query cost suggesting
higher gate complexities.

This further illustrates that optimization of −𝛽 alone does not guarantee that we will
ultimately obtain improved gate complexities. The example analyzed here, which
regarded a more involved optimization, readily provided a factor

√
ΔSOS𝜆SOS that

is asymptotically comparable to
√
ΔSOS𝜆SOS. This is a consequence of considering

more complex generators for the SOS representations. In addition to the complexity
scalings due to these factors, we often expect the block-encodings of the SOS
representations to be less efficient to implement. These effects are important when
comparing the overall gate complexity of SOSSA to that of termwise SA.
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Discussion We described a framework for fast quantum simulation of low-energy
states based on SA and SOS representations. To this end, we developed quantum
algorithms for energy and phase estimation that improve over prior art and showed
that SOSSA gives asymptotic improvements in gate costs with respect to traditional
methods when applied to the SYK Hamiltonian. With the addition of Ref. [Low+25],
where SOSSA already provided the state of the art for ground state energy estimation
in chemical systems, we expect this framework to be generally useful and applicable
to other quantum systems.

3.1 Quantum simulation using block-encodings and linear combination of
unitaries

In this section we discuss the LCU results in Table 3.1 for energy estimation,
phase estimation, and time evolution. To this end, we introduce the notion of
a block-encoding of an operator 𝑂 ∈ C𝑀×𝑀 . This block-encoding is a unitary
BE[𝑂/𝜆] ∈ C𝑀 ′×𝑀 ′ acting on an enlarged space (𝑀′ ≥ 𝑀) that has 𝑂/𝜆 in the first
block, for some normalization constant 𝜆 ≥ ∥𝑂∥,

BE[𝑂/𝜆] :=

(
𝑂/𝜆 ·
· ·

)
. (3.12)

(We use ∥.∥ for the spectral norm.) When acting on systems of qubits, the first block
is specified by the all-zero state of some ancilla register. More explicitly, we can
write ⟨0|a BE[𝑂/𝜆] |0⟩a = 𝑂/𝜆, where ‘a’ denotes an ancillary or ‘clock’ register.
The definition can be naturally extended to rectangular operators𝑂 ∈ C𝑀×𝑁 . In this
case we need to invoke one projector for the 𝑀-dimensional space and one projector
for the 𝑁-dimensional space. Again, associating these projectors with qubit states,
we might write ⟨0|a BE[𝑂/𝜆] |0⟩a′ = 𝑂/𝜆, where a and a′ are distinct for 𝑀 ≠ 𝑁 .

Block-encodings provide a natural access model for several quantum simulation
algorithms. In this case we often assume access to BE[𝐻/𝜆], the block-encoding
of a Hamiltonian 𝐻 that models certain quantum system. The query complexity of
such algorithms is determined by the number of uses to this block-encoding and, to
make this complexity optimal, we would like 𝜆 to be as small as possible (e.g., as
close to ∥𝐻∥ as possible). This is because various quantum simulation tasks that
assume access to BE[𝐻/𝜆] have (optimal) cost depending linearly on 𝜆, as shown
by the following known results.

Theorem 3.1 (Energy estimation from block-encoding [KOS07]). Let 𝐻 ∈ C𝑀×𝑀

be a Hermitian operator, 𝜆 ≥ ∥𝐻∥ be a normalization factor, and 𝑈 and unitary
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preparing state |𝜓⟩ = 𝑈 |0⟩. With O(𝜆/𝜖) calls to 𝑈, BE[𝐻/𝜆], and their inverses,
we can measure the energy (expectation) ⟨𝜓 | 𝐻 |𝜓⟩ to additive precision 𝜖 > 0.

Theorem 3.2 (Phase estimation from block-encoding [Ber+18]). Let 𝐻 ∈ C𝑀×𝑀 be
a Hermitian operator and 𝜆 ≥ ∥𝐻∥ be a normalization factor. With O(𝜆/𝜖) calls
to BE[𝐻/𝜆] and its inverse, we can perform phase (eigenvalue) estimation on 𝐻 to
additive precision 𝜖 > 0.

Theorem 3.3 (Time evolution from block-encoding [LC19; LC17b]). Let 𝐻 ∈
C𝑀×𝑀 be a Hermitian operator and 𝜆 ≥ ∥𝐻∥ be a normalization factor. With
O(𝜆𝑡 + log 1

𝜖
) calls to BE[𝐻/𝜆] and its inverse, we can implement the time evolution

operator 𝑒−𝑖𝐻𝑡 to additive precision 𝜖 > 0.

We briefly comment on these results. Theorem 3.1 results for performing amplitude
estimation, a problem that also reduces to quantum phase estimation as shown in
Ref. [KOS07]. The Hamiltonian 𝐻 is not unitary but the amplitude estimation is
done with the block-encoding, to estimate an expectation of BE[𝐻/𝜆]. For additive
precision 𝜖′ this can be done with O(1/𝜖′) uses of BE[𝐻/𝜆] and the inverse. The
result follows from choosing 𝜖′ = 𝜖/𝜆. Theorem 3.2 results from the standard
use of the quantum phase estimation algorithm [Kit95] but, instead of running
phase estimation on the unitary 𝑒−𝑖𝐻/𝜆, it is ran using the walk operator appearing
in qubitization [LC19]. We describe this operator below in Lemma 3.4. The
benefit of doing this is that the approach does not necessitate of another routine that
approximates 𝑒−𝑖𝐻/𝜆 and the encoding can be done exactly and with less overhead.
Theorem 3.3 follows from approximating the action of the evolution 𝑒−𝑖𝐻𝑡 with a
finite series that uses BE[𝐻/𝜆] and the inverse. The series can be implemented
using quantum signal processing and the cost O(𝜆𝑡 + log 1

𝜖
) is essentially the largest

degree appearing in the series.

Lemma 3.4 (Qubitization [LC19]). Let𝐻 ∈ C𝑀×𝑀 be a Hermitian operator and𝜆 ≥
∥𝐻∥ be a normalization factor. Let the quantum walk operator𝑊 := Refa ·Be[𝐻/𝜆],
where the reflection Refa = 2 |0⟩ ⟨0|a−1 and assume the block-encoding Be[𝐻/𝜆] is
self-inverse. If Be[𝐻/𝜆] is not self-inverse, one can always construct a self-inverse
version using one query to controlled-Be[𝐻/𝜆] and its inverse, and two Hadamard
gates. Then for any eigenstate |𝜓 𝑗 ⟩ of 𝐻 with eigenvalue 𝐸 𝑗 , 𝑊 has eigenstates
|𝜓 𝑗±⟩ with eigenvalues 𝑒±𝑖 arccos(𝐸 𝑗/𝜆) , and |𝜓 𝑗 ⟩ |0⟩a = 1√

2
( |𝜓 𝑗+⟩ + |𝜓 𝑗−⟩).
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We also comment on the optimality of these approaches. When given access to
the block-encoding, a general method for phase estimation is known to necessitate
Ω(𝜆/𝜖) uses of the block-encoding and the inverse. Reference [MW23] proves a
similar lower bound. The lower bound naturally extends to Theorem 3.1 or otherwise
we would be able to perform faster quantum phase estimation via energy estimation,
contradicting the previous result. For time evolution, the lower bound Ω̃(𝑡𝜆 + log 1

𝜖
)

is given in Ref. [Ber+14]. Since these results are tight, we present them using Θ(.)
notation in Table 3.1. We note, however, that these refer to the query complexities.
For specific instances where more structure is known and can be used, the upper
bounds might be improved.

Block-encodings from linear combination of unitaries
We discussed quantum simulation when having access to BE[𝐻/𝜆] but in ap-
plications the block-encoding must be constructed from some presentation of the
Hamiltonian. A standard approach is based on the linear combination of unitaries
(LCU) method [CW12; Ber+15]. Suppose the Hamiltonian is presented as

𝐻 =

𝑅−1∑︁
𝑗=0
𝑔 𝑗𝜎𝑗 , (3.13)

where the 𝜎𝑗 ’s are unitaries, for example Pauli strings, and 𝑔 𝑗 ∈ C are coefficients.
When applying LCU, 𝜆 is equal to the ℓ1-norm of the linear combination.

Definition 3.1 (ℓ1-norm in LCU). Define 𝜆LCU to be the ℓ1-norm

𝜆LCU =

𝑅−1∑︁
𝑗=0
|𝑔 𝑗 | . (3.14)

Lemma 3.5. (Compilation of LCU [Chi+18]) Let 𝐻 be as in Equation (3.13) and
𝜆LCU ≥ ∥𝐻∥ be as in Equation (3.14). Then, it is possible to construct a block-
encoding of 𝐻, BE[𝐻/𝜆LCU], using O(𝑅𝐶𝜎) quantum gates, where 𝐶𝜎 is the gate
complexity of the 𝜎𝑗 ’s. The construction generalizes to arbitrary operators 𝜎𝑗 ,
which are not necessarily unitary, as long as ∥𝜎∥ ≤ 1 and quantum circuits for the
BE[𝜎𝑗 ]’s are given.

Proof. The proof can be found in Ref.[Chi+18] and here we present a version that
uses the notation of this work for completeness. First, we attach a ‘clock register’
of dimension 𝑅. Define the conditional unitary operator

SELECT =

𝑅−1∑︁
𝑗=0
| 𝑗a⟩⟨ 𝑗a | ⊗ 𝜎𝑗 , (3.15)
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where the | 𝑗⟩a ∈ C𝑅 are basis states of log2(𝑅) qubits. Also, define the state
preparation unitary PREPARE that performs

PREPARE |0⟩a ↦→ |𝛼⟩a :=
1

√
𝜆LCU

𝑅−1∑︁
𝑗=0

√
𝑔 𝑗 | 𝑗⟩a . (3.16)

Then, PREPARE−1 · SELECT · PREPARE gives the block-encoding:

⟨0|a PREPARE−1·SELECT·PREPARE |0⟩a = ⟨𝑎 |a SELECT |𝛼⟩a =
1

𝜆LCU

𝑅−1∑︁
𝑗=0
𝑔 𝑗𝜎𝑗 = ⟨0|a BE[𝐻/𝜆LCU] |0⟩a .

(3.17)
Note that |0⟩a specifies the first block of the matrix. Implementing PREPARE re-
quires accessing the coefficients 𝑔 𝑗 and needs O(𝑅) quantum gates in the worst case.
Implementing SELECT can be done with O(𝑅𝐶𝜎) gates, and this step dominates
the cost. □

Often, we will be interested in instances where the 𝜎𝑗 refer to Pauli strings acting
on 𝑁 qubits involving a constant number of local Pauli operators, in which case
𝐶𝜎 = O(1) is constant, or where the 𝜎𝑗 refer to a product of a constant number of
fermionic operators acting on 𝑁 sites, in which case, 𝐶𝜎 = O(log 𝑁) for an optimal
fermion-to-qubit ternary-tree mapping [Jia+20b]. Alternatively, more specialized
constructions [Bab+18a] for SELECT in the Jordan-Wigner representation have gate
complexity O(𝑁), and when 𝑅 = Ω(𝑁), the cost of block-encoding is dominated
by PREPARE with cost O(𝑅 log(𝑁)), i.e. 𝐶𝜎 = O(log(𝑁)).

3.2 Quantum simulation by spectral amplification
In this section we introduce the basic idea of spectral amplification (SA) and provide
the results that give Termwise SA and SOSSA in Table 3.1. The first version of SA
was put forward in Ref. [SB13] under the name spectral gap amplification, in which
the goal was to amplify the spectral gap for faster adiabatic quantum computing of
frustration-free Hamiltonians rather than amplifying the whole low-energy spectrum
for arbitrary Hamiltonians as we consider here. More recently, Ref. [ZS24] used
SA to speedup time evolution for the low-energy subspace, in the block-encoding
framework, which gives the third row in Table 3.1. We refer to the approach as SA
because it amplifies all the small eigenvalues of eigenvectors in the low part of the
spectrum of a positive semidefinite Hamiltonian.

We give the basic results of SA using block-encodings since this is a natural
framework for this approach. Later, we will discuss how to construct these block-
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encodings. In SA we consider first a Hamiltonian of the form

𝐻′ =
𝑅−1∑︁
𝑗=0

ℎ 𝑗 ∈ C𝑀×𝑀 , (3.18)

where ℎ 𝑗 ⪰ 0 are positive semidefinite Hermitian operators satisfying ∥ℎ 𝑗 ∥ ≤ 𝑔 𝑗 .
We consider a factorization of the ℎ 𝑗 ’s so that ℎ 𝑗 = 𝐴†𝑗 𝐴 𝑗 for some operators 𝐴 𝑗 . In
the following we assume 𝐴 𝑗 ∈ C𝑀×𝑀 to simplify the exposition. Next we define the
corresponding ‘spectral amplified’ operator 𝐻SA by

𝐻SA :=
𝑅−1∑︁
𝑗=0
| 𝑗⟩a ⊗ 𝐴 𝑗 ∈ C𝑀𝑅×𝑀 . (3.19)

Note that we have enlarged the space and attached an 𝑅-dimensional clock register
‘a’. Also note that | 𝑗⟩a can be replaced by any set of 𝑅mutually orthogonal quantum
states and does not necessarily have to be a computational basis state. As a block
matrix, 𝐻SA is given by

𝐻SA =

©­­­«
𝐴0
...

𝐴𝑅−1

ª®®®¬ . (3.20)

We will see that the main property that makes SA useful is

𝐻′ =
𝑅−1∑︁
𝑗=0

𝐴
†
𝑗
𝐴 𝑗 = 𝐻

†
SA𝐻SA . (3.21)

That is, 𝐻SA acts as a square root of 𝐻′ and now we can use it to produce other
operators where the eigenvalues are changed. SA will then use access to 𝐻SA and,
to this end, we will assume access to unitaries BE[𝐴 𝑗/𝑎 𝑗 ], 𝑎 𝑗 ≥ ∥𝐴 𝑗 ∥, which are
the block-encodings of the individual 𝐴 𝑗/𝑎 𝑗 ’s. To this end, it is useful to introduce
the following block-encoding normalization factor.

Definition 3.2. Define 𝜆 to be

𝜆 :=
𝑅−1∑︁
𝑗=0
|𝑎 𝑗 |2 . (3.22)

We can efficiently implement an appropriate block-encoding of 𝐻SA as follows.

Lemma 3.6 (Block-encoding of𝐻SA). Let𝐻′ ⪰ 0 be a Hamiltonian of the form given
in Equation (3.18). Assume access to the individual block-encodings BE[𝐴 𝑗/𝑎 𝑗 ]
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and their inverses. Then, we can implement a block-encoding BE[𝐻SA/
√
𝜆] with

O(𝑅) calls to the (controlled) BE[𝐴 𝑗/𝑎 𝑗 ]’s and additionalO(𝑅) arbitrary two-qubit
gates.

Proof. Define the unitary

SELECT :=
𝑅−1∑︁
𝑗=0
| 𝑗b⟩⟨ 𝑗b | ⊗ BE

[
𝐴 𝑗

𝑎 𝑗

]
, ⟨0|a BE

[
𝐴 𝑗

𝑎 𝑗

]
|0⟩a =

𝐴 𝑗

𝑎 𝑗
, (3.23)

and also the unitary PREPARE that prepares the state of the clock register

PREPARE |0⟩b ↦→ |𝛼⟩b :=
1
√
𝜆

𝑅−1∑︁
𝑗=0

𝑎 𝑗 | 𝑗⟩b . (3.24)

Then,

⟨0|a SELECT · PREPARE |0⟩b |0⟩a

= ⟨0|a SELECT |𝛼⟩b |0⟩a =
𝑅−1∑︁
𝑗=0

𝑎 𝑗√
𝜆
| 𝑗⟩b ⊗ ⟨0|a BE

[
𝐴 𝑗

𝑎 𝑗

]
|0⟩a (3.25)

=

𝑅−1∑︁
𝑗=0
| 𝑗⟩b ⊗

𝐴 𝑗√
𝜆
= ⟨0|a BE

[
𝐻SA√
𝜆

]
|0⟩b |0⟩a︸   ︷︷   ︸
|0⟩a′

. (3.26)

This shows that SELECT·PREPARE gives the desired block encoding. For SELECT
we used the individual controlled BE[𝐴 𝑗/𝑎 𝑗 ] once and for PREPARE we usedO(𝑅)
arbitrary two-qubit gates. □

Equipped with access to BE[𝐻SA/
√
𝜆], we will see in Section 3.2 and Section 3.2

that various simulation tasks can be performed with a cost depending on
√
Δ𝜆, if

the state is supported on the subspace of energy at most Δ > 0 of 𝐻. In order to
construct the walk operator Lemma 3.4 underlying these tasks, it suffices to consider
a block-encoding of the Hamiltonian

HSA :=

(
0 𝐻

†
SA

𝐻SA 0

)
, (3.27)

which has eigenvalues that coincide with the square roots of those of 𝐻. (This HSA

was used in Ref. [ZS24] for time evolution in the low-energy subspace of 𝐻.) Since
√
𝑥 ≫ 𝑥 as 𝑥 → 0 this readily provides the desired amplification. However, for

obtaining improved query and gate complexities, we can instead use BE[𝐻SA/
√
𝜆]
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to block-encode a shifted version of 𝐻′. More precisely, in Lemma 3.7 we construct
the following, self-inverse block-encoding:

BE

[
𝐻′

1
2𝜆
− 1

]
. (3.28)

By construction, any low-energy state of 𝐻′ ⪰ 0 with energy 0 ≤ 𝐸 ≪ 𝜆 will
correspond to an eigenvalue close to−1 of the block-encoded operator𝐻′/(𝜆/2)−1.
Since the quantum walk operator has now eigenphases arccos(𝐸 𝑗/(𝜆/2)−1), similar
to the square root function, the non-linearity of arccos is what allows us to achieve
SA.

Lemma 3.7 (Block-encoding of 1
2𝐻
†
SA𝐻SA −𝜆1). Let 𝐻′ ⪰ 0 be a Hamiltonian and

consider the factorization 𝐻′ = 𝐻†SA𝐻SA, where 𝐻SA ∈ C𝑀×𝑁 . Let BE[𝐻SA/
√
𝜆] ∈

C𝐷×𝐷 be a block-encoding of𝐻SA. Then we may block-encode either BE[𝐻
†
SA𝐻SA

1
2𝜆
−1]

using one query to BE[𝐻SA/
√
𝜆] and its inverse, O(𝑄 log(𝐷/𝑀)) arbitrary two-

qubit gates, and one ancillary qubit, or its controlled version using two ancillary
qubits.

Proof. By the definition of block-encodings, given the all-zero state |0⟩a′ ∈ C𝐷/𝑁 ,
|0⟩a ∈ C𝐷/𝑀 and any state |𝜓⟩S ∈ C𝑁 ,

BE
[
𝐻SA√
𝜆

]
|0⟩a′ |𝜓⟩S = |0⟩a

𝐻SA√
𝜆
|𝜓⟩S + · · · |0⊥⟩ , (3.29)

where | (⟨0|a⊗1S) |0⊥⟩ | = 0. Using quantum singular value transformations [Gil+19]
with the polynomial 2𝑥2 − 1, we can block-encode

BE

[
𝐻
†
SA𝐻SA

1
2𝜆

− 1
]
= BE

[
𝐻SA√
𝜆

]†
(Refa ⊗ 1)BE

[
𝐻SA√
𝜆

]
, (3.30)

where the reflection Refa := 2 |0⟩ ⟨0|a−1a. This reflection can be implemented using
a multi-controlled-CNOT gate which costs one ancillary qubit and O(log(𝐷/𝑀))
two-qubit gates [He+17]. The controlled reflection can be implemented using a
multi-controlled-CNOT gate with one additional control, and so uses two additional
qubits in total over that of BE[𝐻SA/

√
𝜆]. □

Expectation estimation by spectral amplification
In this section, we present new quantum algorithms summarized in Table 3.2 that
exploit SA to improve expectation estimation. Given a block-encoding Be[𝐻/𝜆] of
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an arbitrary Hamiltonian 𝐻 and a unitary preparing the state |𝜓⟩, the expectation
estimation problem is to estimate 𝐸 = ⟨𝜓 | 𝐻 |𝜓⟩ ∈ [−𝜆, 𝜆] to additive error 𝜖 ≥ 0
and confidence at least 1 − 𝑞 ≤ 1. To simplify the presentation, we assume in the
following that 𝐸 ≤ 0, though we emphasize that our results are symmetric about
𝐸 = 0, meaning that they depend on −|𝐸 |. In contrast to the traditional approaches
that give O(𝜆/𝜖) query complexity, we show that SA leads to explicit scaling with
the improved factor

√︁
𝜆(𝜆 + 𝐸) ≤ 𝜆, which offer greatest advantage in the limit

𝐸/𝜆 → −1, the ‘low-energy sector’, and our generalized routines naturally recover
previously known results without SA, which concern a different limit in which
|𝐸/𝜆 | ≪ 1. In the special case of amplitude estimation [Bra+02] corresponding
to the case where 𝐻/𝜆 = Π is a projection, prior work on ‘amplified amplitude
estimation’ [Sim+24] already gives the improved query complexity in this setting.
Nevertheless, our algorithms improve on this previous work in these key areas (Row
2 of Table 3.2):

• Given an a priori known upper bound Δ ≥ 𝜆 + 𝐸 , the query complexity
of our non-adaptive algorithm in Theorem 3.9 readily scales as O(

√
Δ𝜆/𝜖),

improving prior work by a factor Δ
Δ−(𝜆+𝐸) , which means that our results do not

need the known upper bound Δ to be at least a constant multiplicative factor
worse than the a priori unknown actual value of 𝜆 + 𝐸 .

• Even without any prior knowledge of 𝐸 , such as through the upper bound Δ,
the query complexity of our adaptive algorithm in Theorem 3.12 scales like
O(

√︁
(max{𝜖, 𝜆 + 𝐸}𝜆/𝜖). The dependence on 𝜆 +𝐸 rather than Δ is a signifi-

cant improvement as 𝜆 +𝐸 could be arbitrarily smaller than Δ. Moreover, this
result also naturally recovers the ‘super-Heisenberg’ scaling ofO(1/

√
𝜖) when

𝜖 = Θ(𝜆+𝐸) without prior knowledge on 𝐸 , which in previous work [Sim+24]
required the specific condition that 𝜖 = Θ(𝜆 + 𝐸) = Θ(Δ).

• Our results are general and apply to arbitrary 𝐻 that can be block-encoded,
instead of only reflections or sums of reflections as in [Sim+24]. Moreover,
when we instantiate with𝐻 = 2𝐻†SA𝐻SA−𝜆 in Lemma 3.7, this generalizes the
case where 𝐻 is a reflection and 𝐻SA is a projector to arbitrary block-encoded
rectangular operators 𝐻SA. The low-energy sector is equivalent to assuming
small 1

𝜆
⟨𝜓 | 𝐻†SA𝐻SA |𝜓⟩, and we give Corollary 3.13 as an example of how

our general results expressed in the block-encoding framework easily recover
these special cases.
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Year Reference Query complexity O(·) Needs Δ Comments
2002 [Bra+02] 𝜆

𝜖
log

(
1
𝑞

)
No Equivalent to 𝐻SA ∝ Π,

2024 [Sim+24]
√
Δ𝜆
𝜖

log
(

1
𝑞

) (
Δ

Δ−(𝜆+𝐸)

)
Yes where Π is a projector.

2025 Theorem 3.9
√
Δ𝜆
𝜖

log
(

1
𝑞

)
Yes Non-adaptive algorithm

2025 Theorem 3.12
√

max{𝜖,𝜆−|𝐸 |}𝜆
𝜖

log
(

1
𝑞

)
No Adaptive algorithm

Table 3.2: Cost of estimating an expectation 𝐸 = ⟨𝜓 | 𝐻 |𝜓⟩ ∈ [−𝜆, 𝜆], to additive
error 𝜖 and failure probability 𝑞, given query access to the block-encoding of
Be[𝐻/𝜆] and a state preparation unitary for the state |𝜓⟩. In some cases, a known
upper bound Δ ≥ 𝜆 − |𝐸 | is needed a priori.

In the previous section we considered 𝐻′ = 𝐻
†
SA𝐻SA in Equation (3.18) and also

∥𝐻′∥ ≤ 𝜆. Using Lemma 3.7, we can shift this to 𝐻 = 2𝐻′ − 𝜆 so that the
relevant eigenvalues of 𝐻 are in [−𝜆, 𝜆]. To ease the exposition and the comparison
with other methods, in the following we will assume access to Be[𝐻/𝜆] where
𝐻 is arbitrary like Equation (3.13) with eigenvalues are in [−𝜆, 𝜆], and the low-
energy sector, is that of energies at or near −𝜆. At a high level, our non-adaptive
algorithm Theorem 3.9 works by performing quantum phase estimation on the walk
operator Lemma 3.4. In expectation estimation, this is a walk-operator essentially
on the block-encoding of a trivial 1 × 1 operator 𝐸 = ⟨𝜓 | 𝐻 |𝜓⟩. Due to the arccos
non-linearity, any error 𝜖′ in the estimate of phase becomes a smaller square-root
error 𝜖 in the estimate of 𝐸 when it is near −𝜆. As the upper bound Δ is known
beforehand, we know how to choose 𝜖′ in phase estimation to achieve the desired√
𝐸Δ, scaling.

Achieving the optimal scaling of our Theorem 3.12 without prior knowledge of Δ
is significantly more challenging. Without the upper bound Δ, we cannot make a
naive choice of 𝜖′ beforehand. For instance, the conservative choice of 𝜖′ = Θ(𝜖/𝜆)
is guaranteed to achieve the desired accuracy, but this is basically the worst-case
scaling. The next idea is to perform a binary search for 𝐸 using multiple 𝑖 =

1, · · · , 𝑖max iterations of phase estimation to accuracy 𝜖′
𝑖
that decreases geometrically

and confidence 1 − 𝑞𝑖. By learning an estimate 𝐸̂ of 𝐸 on the fly and computing 𝜖
based on arccos(𝐸̂), we can terminate the algorithm when the desired 𝜖 is achieved.
Early termination leads to almost the desired Õ(

√︁
(𝐸 + 𝜆)𝜆/𝜖) scaling, but this is

still be suboptimal by a logarithmic factor as the failure probability 𝑞𝑖 accumulates
over multiple steps, and without knowing 𝐸 beforehand, one has to make a worst-
case choice of 𝑞𝑖 that assumes the number of iterations 𝑖max = Θ(log(𝜆/𝜖)), which
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leads to O(log log(𝜆/𝜖)
𝑞
) scaling. Our solution is to perform the binary search in

two steps. First, given 𝜖 , we perform phase estimation to error 𝜖′ = Θ(
√︁
𝜖/𝜆). We

prove that this is guaranteed to give us either an estimate 𝜆 + 𝐸̂ of 𝜆 + 𝐸 to constant
multiplicative error, or that 0 ≤ 𝜆 + 𝐸 ≤ 𝜖 , and so we terminate the algorithm and
return −𝜆 as the estimate of 𝐸 that is correct to additive error 𝜖 . Second, using
this estimate 𝐸̂ , we now know how many iterations of phase estimation 𝑖max are
required, up to a constant additive factor. This information is sufficient for us to
make a judicious choice of 𝑞𝑖 that by a union bound, achieves the final desired
confidence with the desired O(log( 1

𝑞
)) scaling.

To prove our first result, we require the following known result on phase estimation.

Lemma 3.8. (Phase estimation with confidence intervals [KOS07; Ber+24b; Gil+19])
Let 𝑈 be a unitary operator with eigenstates |𝜓 𝑗 ⟩ and corresponding eigenvalues
𝑒𝑖𝜃 𝑗 . Let |𝜓⟩ = ∑

𝑗
√
𝑝 𝑗 |𝜓 𝑗 ⟩ be an arbitrary superposition. Then with O( 1

𝜖
log 1

𝑞
)

calls to controlled-𝑈, its inverse, and one copy of |𝜓⟩, with probability 𝑝 𝑗 we
estimate 𝜃 𝑗 such that | (𝜃 𝑗 − 𝜃 𝑗 ) mod 2𝜋 | ≤ 𝜖 with confidence 1 − 𝑞.

Next, we use the high-confidence quantum phase estimation to obtain our first
version of improved expectation or energy estimation.

Theorem 3.9 (Energy estimation by spectral amplification). Let 𝐻 ∈ C𝑁×𝑁 be a
Hamiltonian and assume access to the block-encoding BE[𝐻/𝜆] ∈ C𝐷×𝐷 . Let
|𝜓⟩ ∈ C𝑁 be prepared by the state preparation unitary 𝑃, such that 𝑃 |0⟩S = |𝜓⟩ and
assume it satisfies ⟨𝜓 | 𝐻 |𝜓⟩ ≤ −𝜆 +Δ, for some known Δ > 0. Then 𝐸 = ⟨𝜓 | 𝐻 |𝜓⟩
can be estimated to additive error 𝜖 and confidence 1 − 𝑞 using 𝑄 = O(

√
𝜆Δ
𝜖

log 1
𝑞
)

queries to the block-encoding, state preparation unitary, and their inverses, two
ancillary qubits, and O(𝑄 log(𝐷/𝑁)) arbitrary two-qubit gates.

Proof. Observe that the following quantum circuit is a block-encoding of the 1 × 1
matrix (𝐸/𝜆):

𝑈 := Be[𝐸/𝜆] = (1a ⊗ 𝑃†)BE
[
𝐻

𝜆

]
(1a ⊗ 𝑃). (3.31)

By Qubitization in Lemma 3.4, the quantum walk operator 𝑊 = RefRS · BE[𝐸/𝜆]
has eigenvectors |±⟩ := 1√

2
( |0⟩S,a ± |0⊥⟩) with eigenphases ± arccos(𝐸/𝜆).

We now apply high-confidence quantum phase estimation in Lemma 3.8 to this
quantum walk operator with input state |0⟩S,a. For additive error 𝜖PEA and confidence
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at least 1 − 𝑞, this requires O( 1
𝜖PEA

log 1
𝑞
) queries to 𝑊 . Note that we will obtain a

phase with the + or − sign with probability 1/2 as the input state |0⟩S,a is a uniform
superposition of |±⟩. However, this sign does not impact our estimate and can be
ignored. An error 𝜖PEA in the phase translates to a smaller error 𝜖 in the expectation
due to the arccos function. Indeed, using the derivative to propagate errors, it is
possible to show

𝜖 ≤
√

2Δ𝜆 𝜖PEA, (3.32)

and hence choosing 𝜖PEA = 𝜖/(
√

2Δ𝜆) suffices. This gives the desired complexity.
□

We now show that the same scaling is achieved even without prior knowledge on
the upper bound for ⟨𝜓 | 𝐻 |𝜓⟩. This requires a decision version of phase estimation
called gapped phase estimation. Given a unitary 𝑈 and and an eigenstate |𝜓 𝑗 ⟩ with
eigenvalue 𝑒𝑖𝜃 𝑗 , the task is to decide with high probability whether 𝜃 𝑗 is either in the
interval I1 or I2, where these intervals are disjoint and separated by some angular
gap 2𝜖 . Searching for 𝜃 𝑗 like in Lemma 3.8 can be reduced to a binary search using
gapped phase estimation with optimal query complexity. The following version
of gapped phase estimation in particular uses no ancillary qubits beyond the one
needed for controlled-𝑈.

Lemma 3.10 (Gapped phase estimation; Appendix D of [LS24]). Let𝑈 be a unitary
operator and |𝜓⟩ be an eigenstate satisfying 𝑈 |𝜓⟩ = 𝑒𝑖𝜃 |𝜓⟩. For any eigenstate
𝑈 |𝜓⟩ = 𝑒𝑖𝜃 |𝜓⟩ and any 𝜃0 and 𝜖 satisfying 0 < 𝜖 ≤ 𝜃0 ≤ 𝜖 + 𝜃0 ≤ 𝜋

2 , 𝑞 > 0, there
is a unitary Gpe𝜖,𝜃0,𝑞 that prepares the state

Gpe𝜖,𝜃0,𝑞 |1⟩ |𝜓⟩ = (𝛼(𝜃) |0⟩ + 𝛽(𝜃) |1⟩) |𝜓⟩ , |𝛼(𝜃) |2 + |𝛽(𝜃) |2 = 1, (3.33)

where

∀|𝜃 | ∈ [0, 𝜃0 − 𝜖], |𝛼(𝜃) |2 ≤ 2𝑞, |𝛽(𝜃) − 1| ≤ 𝑞, (3.34)

∀|𝜃 − 𝜋 | ∈ [0, 𝜃0 − 𝜖], |𝛼(𝜃) |2 ≤ 2𝑞, |𝛽(𝜃) + 1| ≤ 𝑞, (3.35)

∀|𝜃 | ∈ [𝜃0 + 𝜖, 𝜋 − 𝜃0 − 𝜖], |𝛽(𝜃) |2 ≤ 2𝑞, |𝛼(𝜃) − 1| ≤ 𝑞, (3.36)

using 𝑄 = O( 1
𝜖

log 1
𝑞
) queries to controlled-𝑈 and its inverse, O(𝑄) arbitrary

two-qubit gates, and no ancillary qubits.

This version of gapped phase estimation produces measurement probabilities that are
symmetric about 𝜃 = 𝜋/2. In situations where it is necessary to distinguish between
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the 𝜃 or 𝜋 − 𝜃 branches, one may always perform another round of phase estimation
on, say, 𝑒𝑖𝜋/2𝑈, using Equation (3.34). However in the application to quantum walk
operations, a subtlety is that every eigenstate |𝜓 𝑗 ⟩ of the block-encoded operator
maps to a equal superposition of two eigenstate |𝜓 𝑗 ,±⟩ of the walk operator with
eigenvalues 𝑒±𝑖 arccos 𝜃 𝑗 . Hence distinguishing between the ± branches requires the
following approach of controlled gapped phase estimation.

Corollary 3.11 (Controlled gapped phase estimation). Let𝑈 be a unitary operator.
For any eigenstate𝑈 |𝜓⟩ = 𝑒𝑖𝜃 |𝜓⟩ and any 𝜃0, 𝜖 satisfying 0 < 𝜖 ≤ 𝜃0 ≤ 𝜖 + 𝜃0 ≤ 𝜋

2 ,
𝑞 > 0, there is a unitary CGpe𝜖,𝜃0,𝑞 that prepares the state

CGpe𝜖,𝜃0,𝑞 |+⟩ |1⟩ |𝜓⟩ = (𝛼0(𝜃) |01⟩ + 𝛼1(𝜃) |11⟩ + 𝛾(𝜃) |−0⟩) |𝜓⟩ ,
|𝛼0(𝜃) |2 + |𝛼1(𝜃) |2 + |𝛾(𝜃) |2 = 1, (3.37)

where

∀|𝜃 | ∈ [0, 𝜃0 − 𝜖], 1 − |𝛼0(𝜃) |2 ≤ 𝑞, (3.38)

∀|𝜃 − 𝜋 | ∈ [0, 𝜃0 − 𝜖], 1 − |𝛼1(𝜃) |2 ≤ 𝑞. (3.39)

using 𝑄 = O( 1
𝜖

log 1
𝑞
) queries to controlled-𝑈 and its inverse, O(𝑄) arbitrary

two-qubit gates, and no ancillary qubits.

Proof. Let CGpe𝜖,𝜃0,𝑞′ := |0⟩ ⟨0|⊗1+|1⟩ ⟨1|⊗Gpe𝜖,𝜃0,𝑞′ where Gpe𝜖,𝜃0,𝑞 is from Lemma 3.10.
Then

Cgpe𝜖,𝜃0,𝑞′
1
√

2
( |0⟩ + |1⟩) |1⟩ |𝜓⟩ =

[
|0⟩ + 𝛽(𝜃) |1⟩

√
2

]
|1⟩ |𝜓⟩ + 1

√
2
𝛼(𝜃) |1⟩ |0⟩ |𝜓⟩ .

Now apply the Hadamard gate to obtain the state

|𝜒(𝜃)⟩ =
[
1 + 𝛽(𝜃)

2
|0⟩ + 1 − 𝛽(𝜃)

2
|1⟩

]
|1⟩ |𝜓⟩ + 1

√
2
𝛼(𝜃) |−⟩ |0⟩ |𝜓⟩ . (3.40)

If |𝜃 | ∈ [0, 𝜃0−𝜖], then from Equation (3.34), the probability that we do not measure
|01⟩ is at most

1 − |𝛼0(𝜃) |2 =
|1 − 𝛽(𝜃) |2

4
+ |𝛼(𝜃) |

2

2
≤ 𝑞

′2

4
+ 𝑞′ ≤ 5

4
𝑞′ ≤ 𝑞, (3.41)

where we choose 𝑞′ = 4
5𝑞. Similarly, using Equation (3.36) if |𝜃 − 𝜋 | ∈ [0, 𝜃0 − 𝜖],

the probability that we do not measure |11⟩ is also at most 𝑞. □

We are now ready to prove the general result of this section, giving the first row of
Table 3.1.
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Theorem 3.12 (Energy estimation by spectral amplification with no prior). Let 𝐻 ∈
C𝑁×𝑁 be a Hamiltonian and assume access to the block-encoding BE[𝐻/𝜆] ∈ C𝐷×𝐷 .
Let |𝜓⟩ ∈ C𝑁 be prepared by the state preparation unitary 𝑃, such that 𝑃 |0⟩ = |𝜓⟩.
Then 𝐸 = ⟨𝜓 | 𝐻 |𝜓⟩ can be estimated to any additive error 𝜖 and confidence 1 − 𝑞
using 𝑄 = O(

√
max{𝜖,𝜆−|𝐸 |}𝜆

𝜖
log 1

𝑞
) queries to the block-encoding, state preparation

unitary, and their inverses, two ancillary qubits and O(𝑄 log(𝐷/𝑁)) arbitrary
two-qubit gates.

Proof. In Theorem 3.9, we constructed a unitary walk operator𝑊 . Our discussion is
made clearer by instead considering the walk operator −𝑊 , which has eigenvectors
|±⟩ and eigenphases 𝜃± := 𝜋 ∓ arccos(𝛼), where 𝛼 := 𝐸

𝜆
∈ [−1, 1]. We find

it convenient to define 𝑜 := 𝛼 + 1 = 𝐸/𝜆 + 1 ∈ [0, 2]. We can choose the
principle range of 𝜃± to be symmetric about 0. Hence 𝜃± = ±𝜃 ∈ ±[0, 𝜋], that
is, 𝜃 := |𝜃+ | = |𝜃− |, and 𝜃 − 𝜋/2 is symmetric around 𝛼 = 0. We search for 𝜃 using
gapped phase estimation Lemma 3.10 in two steps. In the first step, we assume that
𝛼 ∈ [−1, 0] ⇒ 𝜃 ∈ [0, 𝜋/2] and estimate 𝜃 to additive error 𝜖′. As the bounds
on the probabilities |𝛼(𝜃) |2, |𝛽(𝜃) |2 of gapped phase estimation are also symmetric
about 𝜋/2, gapped phase estimation on −𝑊 cannot distinguish between cases 𝜃 or
𝜋 − 𝜃. However, the sign of 𝛽(𝜃) ≈ −𝛽(𝜋 − 𝜃) is sensitive to these cases. In the
second step, we therefore distinguish between cases using controlled-gapped phase
estimation Corollary 3.11.

Let the iterations of the search be indexed by 𝑖 = 0, · · · , 𝑖max − 1, for some 𝑖max > 0.
At each iteration, 𝜃 is known to be contained in an interval I𝑖 := [I𝑖,l,I𝑖,r] with high
probability 𝑝𝑖. Hence, 𝜃 ∈ I0 = [0, 𝜋/2] with probability 𝑝0 = 1. At each iteration
𝑖 ≥ 0, we split I𝑖 into thirds

I𝑖,↑ :=
[
I𝑖,l +

1
3
|I𝑖 |,I𝑖,r

]
, I𝑖,↓ :=

[
I𝑖,l,I𝑖,r −

1
3
|I𝑖 |

]
, (3.42)

and we will assign I𝑖+1 to be either I𝑖,↑ or I𝑖,↓. Note that the width |I𝑖 | = 𝜋
2𝑟
𝑖, where

𝑟 = 2/3.

We determine this assignment using gapped phase estimation Gpe𝜑𝑖 ,𝜃𝑖 ,𝑞𝑖 , with 𝜃𝑖 =
I𝑖,l+I𝑖,r

2 at the midpoint of I𝑖 and 𝜑𝑖 = 1
6 |I𝑖 |. From Lemma 3.10, this prepares a state

Gpe𝜑𝑖 ,𝜃𝑖 ,𝑞𝑖 |0⟩
|+⟩ + |−⟩

2
=

1
√

2

∑︁
𝑥∈{+,−}

(𝛼(±𝜃) |0⟩ + 𝛽(±𝜃) |1⟩) |𝑥⟩ . (3.43)
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We measure the {|0⟩ , |1⟩} register to obtain outcome |𝑚⟩. Then we set

I𝑖+1 =


I𝑖,↓, 𝑚 = 0,

I𝑖,↑, 𝑚 = 1.
(3.44)

The estimate of 𝜃 in I𝑖 converts to an estimate of

𝛼 ∈ −O𝑠(I𝑖) = [−O𝑠(I𝑖,l),−O𝑠(I𝑖,r)] = [−O𝑠(𝜃𝑖 − |I𝑖 |/2),−O𝑠(𝜃𝑖 + |I𝑖 |/2)],
(3.45)

𝜖𝑖 = |O𝑠(I𝑖) | = 2 sin(𝜃𝑖) sin( |I𝑖 |/2), (3.46)

𝐸 ∈ H𝑖 = [H𝑖,l,H𝑖,r], H𝑖 := −𝜆O𝑠I𝑖, (3.47)

𝜖′𝑖 := |H𝑖 | = 𝜆𝜖𝑖, (3.48)

where 𝜖𝑖 and 𝜖′
𝑖

is the additive error to which 𝛼 and 𝐸 is known respectively.

The probability that this assignment is incorrect, that is 𝜃 ∉ I𝑖+1 is given by the
maximum of the probabilities

Pr[𝑚 = 1|𝜃 ∈ I𝑖,↑\I𝑖,↓] =
|𝛼(𝜃) |2 + |𝛼(−𝜃) |2

2
≤ 𝑞𝑖, (3.49)

Pr[𝑚 = 0|𝜃 ∈ I𝑖,↓\I𝑖,↑] =
|𝛽(𝜃) |2 + |𝛽(−𝜃) |2

2
≤ 𝑞𝑖 . (3.50)

We choose 𝑞𝑖 = 6
𝜋2

𝑞

(𝑖max−𝑖+1)2
. Then by a union bound, the failure probability of

amplitude estimation after all 𝑖max steps is at most

1 − 𝑝𝑖max ≤
𝑖max∑︁
𝑖=1

𝑞𝑖 ≤
∞∑︁
𝑙=1

6
𝜋2
𝑞

𝑖2
= 𝑞. (3.51)

The query complexity of all the GPE steps is then

𝑄 = O
(
𝑖max−1∑︁
𝑖=0

1
𝑟𝑖

log
1
𝑞𝑖

)
= O

(
𝑖max−1∑︁
𝑖=0

(
3
2

) 𝑖 (
(𝑖max − 𝑖 + 1) + log

1
𝑞

))
= O

((
3
2

) 𝑖max

log
1
𝑞

)
.

(3.52)

When the search is complete, there are two cases of interest.

1. I𝑖max,l = 0: This implies that 𝛼 ∈ [−1,−O𝑠 |I𝑖max |], and that 𝑜 is small, that is
𝑜 ≤ 𝜖𝑖max = 2 sin2( |I𝑖max |/2) ≤ 𝜋2

8 𝑟
2𝑖. Note further that 𝑜 ≤ 2 sin2( |I𝑖max |/2) if

and only if I𝑖max,l = 0.
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2. I𝑖max,l > 0: This implies that 𝛼 ≥ −O𝑠I𝑖max,l and we have an estimate of
𝑜 ≥ 1 − O𝑠I𝑖max,l that is bounded away from zero. Let 𝑖f be the first iteration
where I𝑖f,𝑙 > 0. Then I𝑖f,l = 1

2 |I𝑖f | and

𝜃 ∈
[
1
2
|I𝑖f |,

3
2
|I𝑖f |

]
=

[
1
2
,

3
2

]
𝜋

2
𝑟𝑖f , (3.53)

𝑜 ∈
[
1 − O𝑠

(
1
2
|I𝑖f |

)
, 1 − O𝑠

(
3
2
|I𝑖f |

)]
, (3.54)

𝜖𝑖f = 2 sin
(
|I𝑖f |

)
sin
|I𝑖f |
2
≤ 4 sin2 |I𝑖f |

2
= 4

(
1 − O𝑠2 |I𝑖f |

2

)
≤ 8

(
1 − O𝑠

|I𝑖f |
2

)
≤ 8𝑜.

(3.55)

As 𝜖𝑖 decreases monotonically with 𝑖, this implies that we obtain a estimate of
𝑜 to constant multiplicative error. For any later iteration 𝑖 > 𝑖f ≥ 0, observe
that |I𝑖f | ≤ 𝜋

2
2
3 . Hence sin |I𝑖f |𝑟

𝑖−𝑖f

2 ≤ 𝜋
3𝑟
𝑖−𝑖f sin |I𝑖f |2 , sin 3|I𝑖f |

2 ≤ 3
2 sin |I𝑖f |, and

𝜖𝑖 = 2 sin (𝜃𝑖) sin
|I𝑖 |
2

= 2 sin (𝜃𝑖) sin
|I𝑖f |𝑟𝑖−𝑖f

2
≤ 2 sin

3|I𝑖f |
2

sin
|I𝑖f |𝑟𝑖−𝑖f

2

≤ 𝜋𝑟𝑖−𝑖f sin |I𝑖f | sin
|I𝑖f |
2

= 𝜋𝑟𝑖−𝑖f𝜖𝑖f ≤ 8𝜋𝑟𝑖−𝑖f𝑜. (3.56)

We now evaluate the final error 𝜖′
𝑖max

of the estimate of 𝐸 for some choice of 𝑖max.
We now evaluate the final error 𝜖′

𝑖max
of the estimate of 𝐸 for some choice of 𝑖max.

1. Let 𝑖max,1 := ⌈12 log1/𝑟 ( 𝜋
2𝜆

8𝜖 ′ )⌉. Choose 𝑖max = 𝑖max,1+𝑑, where 𝑑 = ⌈log1/𝑟 (16𝜋)⌉,
and 𝑞 = Δ1. The query complexity is

𝑄1 = O
( √
𝜆
√
𝜖′

log
1
Δ1

)
, (3.57)

and we show that we either obtain an estimate of 𝐸 to error at most 𝜖′, or
obtain an estimate of (𝜆 − |𝐸 |) ∈ [0, 𝜆] to at most a constant multiplicative
error of 1

2 as follows.

a) Case I𝑖max,1,𝑙 = 0:

𝜖′𝑖max,1
≤ 𝜆𝜋

2

8
𝑟2𝑖max,1 ≤ 𝜖′. (3.58)

b) Case I𝑖max,1,𝑙 > 0:

𝜖′𝑖max,1+𝑑 ≤ 𝜆8𝜋𝑟𝑑+𝑖max,1−𝑖f𝑜 = 8𝜋𝑟𝑑+𝑖max,1−𝑖fℎ ≤ 8𝜋𝑟𝑑 (𝜆 − |𝐸 |) ≤ 1
2
(𝜆 − |𝐸 |).

(3.59)
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Hence

𝜆 − |𝐸 | ≤ 𝜆 − |H𝑖max,r | ≤ 𝜆 − |𝐸 | + 𝜖 ′𝑖max
≤ 3

2
(𝜆 − |𝐸 |) ≤ 3

2
(𝜆 − |H𝑖max,r |).

(3.60)

2. Let 𝑖max,2 := ⌈log1/𝑟 (
√
(𝜆−|H𝑖max ,r |)𝜆

𝑐𝜖 ′ )⌉, where 𝑐 = 2√
3𝜋

. Choose 𝑖max = 𝑖max,2,
and 𝑞 = Δ2. The query complexity is

𝑄2 = O
(√︁
(𝜆 − |H𝑖max,r |)𝜆

𝜖′
log

1
Δ2

)
, (3.61)

and we obtain an estimate of 𝐸 to error at most 𝜖′ as follows.

𝜖𝑖max = 2 sin(𝜃𝑖) sin( |I𝑖 |/2) ≤ sin(𝜃𝑖)
𝜋

2
𝑟𝑖max ≤ sin(arccos (−(𝑜 + 𝜖𝑖max − 1))) 𝜋

2
𝑟𝑖max

=
√︁
(2 − 𝑜 − 𝜖𝑖max) (𝑜 + 𝜖𝑖max)

𝜋

2
𝑟𝑖max ≤

√︁
2 (𝑜 + 𝜖max)

𝜋

2
𝑟𝑖max . (3.62)

𝜖′𝑖max
= 𝜆𝜖𝑖max ≤ 𝜆

√︃
2
(
𝑜 + 𝜖𝑖max

) 𝜋
2
𝑟𝑖max ≤

√
2𝜆

√︃
(𝜆 − |𝐸 |) + 𝜖′

𝑖max

𝜋

2
𝑟𝑖max

≤ 𝑐 𝜋√
2

√︄
(𝜆 − |𝐸 |) + 𝜖′

𝑖max

𝜆 − |H𝑖max,𝑟 |
𝜖′ ≤ 𝑐

√
3𝜋
2
𝜖′ ≤ 𝜖′. (3.63)

If I𝑖max,2,l ≥ 1 − 𝜖′/2, the estimate for 𝐸 in the full range [−𝜆, 𝜆] is already correct
to error 𝜖′ and we terminate the algorithm. Otherwise, we now have to determine
which of ℎ ∈ [−𝜆,−𝜖′/2) or ℎ ∈ (𝜖′/2, 𝜆] is true. This is accomplished using
controlled gapped phase estimation from Corollary 3.11 using CGpe𝜋/2−I𝑖max ,r,𝜋/2,Δ3 .
With failure probability at most Δ3, we measure and obtain |01⟩ if 𝜃 ∈ [0,I𝑖max,r],
and obtain |11⟩ if 𝜃 ∈ [𝜋 − I𝑖max,r, 𝜋]. Using the inequality

𝜋

2
− I𝑖max,r =

𝜋

2
− arccos( |H𝑖max,r |/𝜆) = arcsin( |H𝑖max,r |/𝜆) ≥

|H𝑖max,r |
𝜆

≥ |𝐸 |
𝜆
.

(3.64)

This has query complexity

𝑄3 = O
(

𝜆

max(𝜖′, |𝐸 |) log
1
Δ3

)
=


O(log 1

Δ3
), |𝐸 | ≥ 𝜆/2,

O(
√
𝜆
√
𝜆−|𝐸 |
𝜖 ′ log 1

Δ3
), |𝐸 | < 𝜆/2.

(3.65)

We then set Δ1 = Δ2 = Δ3 = 𝑞′/3. Then the overall query complexity to estimate 𝐸
to additive error 𝜖′ and failure probability at most 𝑞′ is

𝑄 = 𝑄1 +𝑄2 +𝑄3 = O
(√
𝜆

𝜖′

(√
𝜖′ +

√︁
𝜆 − |𝐸 |

)
log

1
𝑞′

)
. (3.66)
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The gate complexities and qubit overhead follow from the construction of the walk
operator and gapped phase estimation procedure. Finally, observe that

√
𝜆
√︁
𝜆 − |𝐸 | ≤√

𝜆 + 𝐸
√
𝜆 − 𝐸 , and also that 𝑥 + 𝑦 = O(max{𝑥, 𝑦}).

□

As a bonus, we now give a proof of amplified amplitude amplification, which
is a special case of Theorem 3.12 instantiated with the spectral amplified block-
encoding Lemma 3.7. This improves on recent work, e.g. [Sim+24, Lemma 2],
which required a known upper Δ ≥ | ⟨𝜓 | Π |𝜓⟩|, and had poorer query complexity
O(
√
Δ
𝜖

log( 1
𝑞
) Δ
Δ−|⟨𝜓 |Π |𝜓⟩| ).

Corollary 3.13 (Amplified Amplitude Estimation). Let the projector Π2 = Π be
block-encoded by BE[Π]. Let the state preparation orcale 𝑃 |0⟩ = |𝜓⟩. Then

⟨𝜓 | Π |𝜓⟩ can be estimated to additive error 𝜖 with confidence 1−𝑞 usingO
(√

max{𝜖,⟨𝜓 |Π |𝜓⟩(1−⟨𝜓 |Π |𝜓⟩)}
𝜖

log 1
𝑞

)
queries to BE[Π], 𝑃 and their inverse.

Proof. Let 𝐻 = 2Π/𝜆 − 1, where 𝜆 = 1. Using Lemma 3.7, we block-encode
BE[𝐻] using one query to BE[Π] and its inverse. As 𝐸 = ⟨𝜓 | 𝐻 |𝜓⟩ = 2 ⟨𝜓 | Π |𝜓⟩−
1, Theorem 3.12 states that the query complexity to estimate ⟨𝜓 | 𝐻 |𝜓⟩ to additive
error 𝜖 and confidence 1 − 𝑞 is

O
(√︁
𝜆max{𝜖, 𝜆 − |𝐸 |}

𝜖
log

1
𝑞

)
= O

(
(
√︁

max{𝜖, ⟨𝜓 | Π |𝜓⟩ (1 − ⟨𝜓 | Π |𝜓⟩)}
𝜖

log
1
𝑞

)
.

(3.67)

□

Phase estimation by spectral amplification
In this section, we present new quantum algorithms summarized in Table 3.3 that
exploit SA to improve phase estimation of the energy of quantum ground states.
Given a block-encoding Be[𝐻/𝜆] and a unitary 𝑃 preparing the state |𝜓⟩, such
that the overlap 𝑝 > 0 with the ground state |𝜓0⟩ is known a priori, the goal is
to estimate the corresponding ground state energy 𝐸 , where 𝐻 |𝜓0⟩ = 𝐸 |𝜓0⟩, to
additive error 𝜖 and confidence 1−𝑞. In contrast to the typical approach that scale like
O(𝜆/𝜖) queries, we show that SA leads to explicit scaling with the improved factor√︁
𝜆(𝜆 + 𝐸) ≤ 𝜆. Our generalized routines naturally recover previously known results

without SA, which is the |𝐸 | ≪ 𝜆 limit, in addition to achieving better qubit or query
complexities. Our results in terms of queries to Be[𝐻/𝜆] is most general: If there



67

is an operator 𝐻′ = 𝐻†SA𝐻SA and we are provided the block-encoding Be[𝐻SA/
√
𝜆],

then Lemma 3.7 informs us that we may identify 𝐻/𝜆← (2𝐻†SA𝐻SA − 𝜆)/𝜆. If the
ground state energy of 𝐻†SA𝐻SA is small, we automatically realize SA as the factor
𝐸0 = ⟨𝜓0 | 𝐻†SA𝐻SA |𝜓0⟩ − 𝜆 is close to −𝜆. We note that the expectation estimation
results of Section 3.2 could be reduced to the specific 𝑝 = 1 case of this section.
Out algorithms improve on previous work (Row 3 of Table 3.3) in a few key areas:

• In the case where |𝜓⟩ is supported on the eigenstates with energy less than
an a priori known upper bound Δ ≥ 𝜆 + 𝐸 , our non-adaptive algorithm The-
orem 3.14 returns an estimate of the energy of one of these eigenstates to
additive error 𝜖 using O(

√
𝜆Δ/𝜖) queries.

• In the case where we specifically want the ground state energy, for which, like
previous work, we have no a priori known upper bound, our adaptive algo-
rithm Theorem 3.15 matches the scaling of previous results in the parameters
𝑝, 𝑞, and scale with the improved factor

√︁
𝜆max{𝜖, 𝜆 + 𝐸}/𝜖 . This factor

is upper bounded by previous results, e.g. the |𝐸 | ≪ 𝜆 case. Moreover, it
exhibits novel super-Heisenberg scaling like O(

√︁
𝜆/𝜖) when 𝜖 = Θ(𝜆 + 𝐸), a

result which was previously unknown.

• Through the use of improved gapped phase estimation techniques Lemma 3.10,
we reduce qubit overhead from a logarithimic factor to just a constant 2. This
could be relevant in practical implementations of the algorithm.

At a high-level, the proof our non-adaptive algorithm Theorem 3.14 is very similar
to that of Theorem 3.9 – perform phase estimation to accuracy 𝜖′ = 𝜆/𝜖 , and
propagate the arccos nonlinearity with the a priori known upper bound Δ. The
proof of the adaptive algorithm Theorem 3.15 also mirrors that of Theorem 3.12
in that it uses binary search by multiple iterations of gapped phase estimation, and
also performs gapped phase estimation in two steps: First to a phase estimation
accuracy of 𝜖′ =

√︁
𝜖/𝜆, which is guaranteed to either tell us that 𝐸 is −𝜆 to error 𝜖

and so we terminate the algorithm, or give us an estimate 𝜆 + 𝐸̂ of 𝜆 + 𝐸 to constant
multiplicative error. Second, use the estimate 𝐸̂ to choose the number of additional
phase estimation and their accuracy and confidence parameters.
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Year Reference Query complexity O(·) Extra
Block-encoding State preparation qubits Comments

2017 [GTC18] 𝜆3/2
√
𝑝𝜖 3/2 logΘ(1)

(
𝜆

𝑝𝜖 𝑞

)
1√
𝑝

√︃
𝜆
𝜖

logΘ(1)
(

𝜆
𝑝𝜖 𝑞

)
O

(
log

(
1
𝜖

))
2020 [LT20] 𝜆√

𝑝𝜖
log

(
𝜆
𝜖

)
log

(
1
𝑝

)
log

(
log(𝜆/𝜖 )

𝑞

) 1√
𝑝

log
(
𝜆
𝜖

)
log

(
log(𝜆/𝜖 )

𝑞

)
O

(
log

(
1
𝑝

))
2024 [Ber+24b] 𝜆√

𝑝𝜖
log

(
1
𝑝

)
log

(
1
𝑞

)
1√
𝑝

log
(
𝜆
𝜖

)
log

(
log(𝜆/𝜖 )

𝑞

)
O

(
log

(
𝜆 log(1/𝑞)

𝜖 𝑝

))
2025 [Low+25],

Theo-
rem 3.14

√
Δ𝜆
𝜖

log
(

1
𝑞

)
1 O (log(1/𝜖 ) ) ( (𝜆 +

𝐸 ) of |𝜓⟩) ≤
Δ, 𝑝 = 1.

2025 Theorem 3.15
√

max{𝜖 ,𝜆+𝐸}𝜆√
𝑝𝜖

log
(

1
𝑝

)
log

(
1
𝑞

) 1√
𝑝

log
(
𝜆
𝜖

)
log

(
log(𝜆/𝜖 )

𝑞

)
2

Table 3.3: Cost of estimating an a priori unknown ground state energy 𝐸 of 𝐻 to
additive error 𝜖 and failure probability 𝑞, given query access to the block-encoding
of Be[𝐻/𝜆] and a state preparation unitary for a trial state with overlap √𝑝 with the
ground state.

First we consider phase estimation, the result in the first line of Table 3.1. This
is the key result which enabled the improved quantum chemistry compilations in
Ref. [Low+25]. The following proof is based on HSA for simplicity; a similar proof
follows using 𝐻SA combined with Lemma 3.7.

Theorem 3.14 (Phase estimation with SA). Let 𝐻 ⪰ 0 be a Hamiltonian of the
form given in Equation (3.18). Let |𝜓⟩ be a low-energy eigenstate supported on the
subspace of energy of 𝐻 at most Δ > 0. We can perform phase estimation of 𝐻
on the state |𝜓⟩ to additive precision 𝜖 with O(

√
Δ𝜆/𝜖) calls to BE[𝐻SA/

√
𝜆], the

block-encoding of 𝐻SA, and its inverse.

Proof. Consider the related problem of performing quantum phase estimation on
the Hamiltonian HSA of Eq. (3.27) within additive precision 𝜖 > 0. This can be done
by using the block-encoding BE[HSA/

√
𝜆], and this block encoding can be easily

implemented with one call to (controlled) BE[𝐻SA/
√
𝜆] and one call to its inverse.

(An explicit construction of this block-encoding is in Ref. [ZS24].) Quantum phase
estimation necessitates O(

√
𝜆/𝜖) uses of these block-encodings for this precision,

which is known as the ‘Heisenberg limit’ [Ber+18; KOS07]. Next we note that

(HSA)2 =

(
𝐻 0
0 𝐻SA𝐻

†
SA

)
, (3.68)

implying that, if 𝐸 ≥ 0 is the desired eigenvalue of 𝐻 (i.e., 𝐻 |𝜓⟩ = 𝐸 |𝜓⟩), ±
√
𝐸 are

also eigenvalues of HSA. Indeed, the (at most) two dimensional subspace spanned
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by {|𝜓⟩ |0⟩ ,HSA |𝜓⟩ |0⟩} is invariant under the action of HSA and is the one that
gives rise to the ±

√
𝐸 . Hence, phase estimation using HSA with initial state |𝜓⟩ |0⟩

will produce an estimate of
√
𝐸 or −

√
𝐸 .

Let 𝜁 be such an estimate; for example consider
√
𝐸 in which case we have |𝜁−

√
𝐸 | ≤

𝜖 . (The analysis can be applied to the case of −
√
𝐸 .) If we take the square we obtain

𝐸 − 3
√
𝐸𝜖 ≤ (

√
𝐸 − 𝜖)2 ≤ 𝜁2 ≤ (

√
𝐸 + 𝜖)2 ≤ 𝐸 + 3

√
𝐸𝜖 , (3.69)

where we assumed the precision to satisfy 𝜖 ≤
√
𝐸 . Hence, if we set 𝜖 ≤ 𝜖/(3

√
𝐸)

we can obtain 𝐸 within additive precision 𝜖 , which is the desired goal.

To this end, we run quantum phase estimation with HSA, initial state |𝜓⟩ |0⟩, and
additive precision 𝜖 ≤ 𝜖/(3

√
𝐸). The number of calls to (controlled) BE[𝐻SA/

√
𝜆]

and its inverse will be O(
√
𝐸𝜆/𝜖). The result follows from the assumption 𝐸 ≤

Δ. □

Previous work [Ber+24b] summarized in Table 3.3 solves this problem with a query
complexity of

Queries to BE
[
𝐻

𝜆

]
= O

(
𝜆
√
𝑝𝜖

log
(

1
𝑝

)
log

(
1
𝑞

))
, (3.70)

Queries to 𝑃 = O
(

1
√
𝑝

ln
(
𝜆

𝜖

)
ln

(
ln (𝜆/𝜖)
√
𝑞

))
. (3.71)

The key idea is reducing the estimation of 𝐸 to a fuzzy binary search problem.
Roughly speaking, at each iteration 𝑖 = 0, · · · , 𝑖max − 1, an interval I𝑖 containing 𝐸
with high confidence 1 − 𝑞𝑖 is found with query complexity O( 1

|I𝑖 | log( 1
𝑞𝑖
)). As 𝑖

increases, the width |I𝑖 | is chosen to decrease geometrically. Then by a union bound
over, the final iteration estimates 𝐸SOS with additive error |I𝑖 |/2, failure probability
𝑞 =

∑𝑖max−1
𝑖=0 𝑞𝑖. Now suppose that 𝐸 is close to −𝜆, such as by a appropriate 𝐻SA

construction. Then a modification of exploiting the arccos walk nonlinearity in
the original proof of Equation (3.70) leads to an improved spectral amplified query
complexity.

Theorem 3.15 (Fast ground state energy estimation by spectral amplification with
no prior). Let any Hermitian 𝐻 ∈ C𝑁×𝑁 have ground state |𝜓0⟩ with unknown
energy 𝐸 . Let |𝜓⟩ be prepared by the state preparation unitary 𝑃 |0⟩S = |𝜓⟩ such
that the overlap |⟨𝜓 |𝜓0⟩| ≥

√
𝑝. Let BE[𝐻/𝜆] ∈ C𝐷×𝐷 be a block-encoding of 𝐻SA.

Then if 𝐸 ∈ [−𝜆, 0], it can be estimated to any additive error 𝜖 and confidence 1− 𝑞
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using

Queries to BE
[
𝐻

𝜆

]
= O

(√︁
max{𝜖, 𝜆 − |𝐸 |}𝜆

√
𝑝𝜖

log
(

1
𝑝

)
log

(
1
𝑞

))
, (3.72)

Queries to 𝑃 = O
(

1
√
𝑝

log
(
𝜆

𝜖

)
log

(
log(𝜆/𝜖)

𝑞

))
, (3.73)

and their inverses, and two ancillary qubits andO(𝑄 log(𝐷/𝑁)) arbitrary two-qubit
gates.

Proof of Equation (3.72). We find it convenient to work in units of phase. Then
using qubitization Lemma 3.4 on Be[𝐻/𝜆], we form a quantum walk 𝑊 . For each
eigenstate |𝜓 𝑗 ⟩ of 𝐻 |𝜓 𝑗 ⟩ = 𝐸 𝑗 |𝜓 𝑗 ⟩, let |𝜓 𝑗 ⟩ = 1√

2
( |𝜓+

𝑗
⟩ + |𝜓−

𝑗
⟩), where |𝜓±

𝑗
⟩ are all

mutually orthogonal. Then the eigenphases of the quantum walk are

−𝑊 |𝜓±𝑗 ⟩ = exp (𝑖Θ±) , Θ 𝑗 ,± = 𝜋 ∓ 𝑖 arccos
(
𝛼 𝑗

)
, 𝛼 𝑗 = 𝑜 𝑗 − 1, 𝑜 𝑗 =

𝐸 𝑗 + 𝜆
𝜆

,

(3.74)

where the minimum energy is 𝐸 := 𝐸0. Let 𝛼 := 𝛼0, 𝑜 := 𝑜0 ∈ [0, 2], and
𝜃 := |Θ0,± | ∈ [0, 𝜋], where we choose the principal range of Θ 𝑗 ,± ∈ [−𝜋/2, 𝜋/2].
Let us further assume that 𝑜 ∈ [0, 1], hence 𝜃 ∈ I0 := [0, 𝜋/2].

Let us now perform a search for 𝜃. Let the iterations of the search be indexed by
𝑖 = 0, · · · , 𝑖max − 1, for some 𝑖max > 0 At each iteration, 𝜃 is known to be contained
in an interval I𝑖 := [I𝑖,l,I𝑖,r] with high probability 𝑝𝑖. At each iteration 𝑖 ≥ 0, we
split I𝑖 into thirds

I𝑖,↑ :=
[
I𝑖,l +

1
3
|I𝑖 |,I𝑖,r

]
, I𝑖,↓ :=

[
I𝑖,l,I𝑖,r −

1
3
|I𝑖 |

]
, (3.75)

and we will assign I𝑖+1 to be either I𝑖,↑ or I𝑖,↓. Note that the width |I𝑖 | = 𝜋
2𝑟
𝑖, where

𝑟 = 2/3.

We determine this assignment using gapped phase estimation Gpe𝜑𝑖 ,𝜃𝑖 ,𝛿𝑖 Lemma 3.10,
with 𝜃𝑖 =

I𝑖,l+I𝑖,r
2 at the midpoint of I𝑖 and 𝜑𝑖 = 1

6 |I𝑖 |. This prepares a state

Gpe𝜑𝑖 ,𝜃𝑖 ,𝛿𝑖 |0⟩ |0⟩ |𝜓𝑡⟩

= Gpe𝜑𝑖 ,𝜃𝑖 ,𝛿𝑖 |0⟩
©­«
√︂
𝑝

2
( |𝜓0,+⟩ + |𝜓0,−⟩) +

∑︁
𝑗>0
· · ·

∑︁
±
|𝜓 𝑗 ,±⟩ª®¬

=

√︂
𝑝

2

∑︁
±
(𝛼(±𝜃) |0⟩ + 𝛽(±𝜃) |1⟩) |𝜓0,±⟩) +

∑︁
𝑗>0
· · ·

∑︁
±
(𝛼(Θ 𝑗 ,±) |0⟩ + 𝛽(Θ 𝑗 ,±) |1⟩) |𝜓 𝑗 ,±⟩ .

(3.76)
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Let us measure the {|0⟩ , |1⟩} register to obtain outcome |𝑚⟩. Let 𝜅 = | ( |0⟩ ⟨0| ⊗
𝐼)Gpe𝜑𝑖 ,𝜃𝑖 ,𝛿𝑖 |0⟩ |0⟩ |𝜓𝑡⟩ |2 be the probability that we obtain outcome 𝑚 = 1. Assum-
ing that 𝜃 is promised to be one of the two following cases:

1. 𝜃 > 𝜃𝑖 + 𝜑𝑖: The probability that we obtain outcome 𝑚 = 1 is

𝜅 =
∑︁
𝑗

|⟨𝜓 𝑗 |𝜓𝑡⟩|2
1
2

∑︁
±
|𝛽(Θ 𝑗 ,±) |2

≤
∑︁
𝑗

|⟨𝜓 𝑗 |𝜓𝑡⟩|2 max
𝑗 ,±
|𝛽(Θ 𝑗 ,±) |2 = max

𝑗 ,±
|𝛽(Θ 𝑗 ,±) |2 ≤ 𝛿𝑖 . (3.77)

2. 𝜃 ≤ 𝜃𝑖 − 𝜑𝑖: The probability that we obtain outcome 𝑚 = 1 is

𝜅 =
∑︁
𝑗

|⟨𝜓 𝑗 |𝜓𝑡⟩|2
1
2

∑︁
±
|𝛼(Θ 𝑗 ,±) |2

=
𝑝

2

∑︁
±
(1 − |𝛼(±𝜃) |2) +

∑︁
𝑗>0
|⟨𝜓 𝑗 |𝜓𝑡⟩|2

1
2

∑︁
±
|𝛼(Θ 𝑗 ,±) |2

≥ 𝑝(1 − 𝛿𝑖). (3.78)

Let us choose 𝛿𝑖 = 𝑝/4. Hence, we can determine which of the two cases hold by
deciding whether 𝜅 ≤ 𝛿𝑖 = 𝑝/4 or 𝜅 ≥ 𝑝(1− 𝛿𝑖) ≥ 𝑝(1− 𝑝/4) ≥ 3𝑝/4. Now define
the operator 𝑂 and state |𝜓⟩ to be

𝑂 := ( |0⟩ ⟨0| ⊗ 𝐼)Gpe𝜑𝑖 ,𝜃𝑖 ,𝛿𝑖 , |𝜓⟩ = |0⟩ |0⟩ |𝜓𝑡⟩ , ⇒ 𝜅 = ⟨𝜓 |𝑂†𝑂 |𝜓⟩ .
(3.79)

As we can block-encode BE[𝑂/1] using a single controlled-Not gate and 1 query
to Gpe𝜑𝑖 ,𝜃𝑖 ,𝛿𝑖 , we can solve this decision problem by applying either Theorem 3.9
or Theorem 3.12 to find an estimate 𝜅 of 𝜅 ≤ 3𝑝/4 to additive error 𝑝/2 and
failure probability 𝑞𝑖 using 𝑄𝑃,𝑖 = O

(
1√
𝑝

log 1
𝑞𝑖

)
queries to 𝑃 and its inverse, and

𝑄𝐻,𝑖 = O
(

1√
𝑝𝑟 𝑖

log 1
𝑝

log 1
𝑞𝑖

)
queries to BE[𝐻/𝜆].

Hence, we make the assignment

I𝑖+1 =


I𝑖,↓, 𝜅 > 𝑝/4,

I𝑖,↑, 𝜅 ≤ 𝑝/4.
(3.80)
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The estimate of 𝜃 in I𝑖 converts to an estimate of

𝛼 ∈ −O𝑠(I𝑖) = [−O𝑠(I𝑖,l),−O𝑠(I𝑖,r)] = [−O𝑠(𝜃𝑖 − |I𝑖 |/2),−O𝑠(𝜃𝑖 + |I𝑖 |/2)],
(3.81)

𝜖𝑖 = |O𝑠(I𝑖) | = 2 sin(𝜃𝑖) sin( |I𝑖 |/2),
𝐸 + 𝜆 ∈ H𝑖 = [H𝑖,l,H𝑖,r], H𝑖 := 𝜆(1 − O𝑠I𝑖),

𝜖′𝑖 := |H𝑖 | = 𝜆𝜖𝑖,

where 𝜖𝑖 and 𝜖′
𝑖

is the additive error to which 𝛼 and 𝐸 is known respectively.

The remainder of the proof mirrors that of Theorem 3.12 starting from Equa-
tion (3.82). We choose 𝑞𝑖 = 6

𝜋2
𝑞/2

(𝑖max−𝑖+1)2
. Then by a union bound, the failure

probability after all 𝑖max steps is at most 𝑞/2 and we have identified with at least
probability 1 − 𝑞/2 that 𝜃 ∈ I𝑖max with additive error at most |I𝑖max | = 𝜋

2𝑟
𝑖max . The

total query complexity is then

𝑄𝐻 =

𝑖max−1∑︁
𝑖=0
O

(
1
√
𝑝𝑟𝑖

log
1
𝑝

log
1
𝑞𝑖

)
= O

((
2
3

) 𝑖max 1
√
𝑝

log
1
𝑝

log
1
𝑞

)
, (3.82)

𝑄𝑃 =

𝑖max−1∑︁
𝑖=0
O

(
1
√
𝑝

log
1
𝑞𝑖

)
= O

(
𝑖max√
𝑝

log
𝑖max
𝑞

)
. (3.83)

We now make two choices of 𝑖max:

1. Let 𝑖max = 𝑖max,1 +Θ(1), where 𝑖max,1 = 1
2 log1/𝑟

𝜆
𝜖 ′ . Then we either determine

that 𝐸 + 𝜆 ≤ 𝜖′ and terminate the algorithm, or obtain an estimate 𝐸̂ = Θ(𝐸)
to constant multiplicative error.

2. Let 𝑖max = 𝑖max,2 + Θ(1), where 𝑖max,2 = log1/𝑟

√
𝐸̂𝜆

𝜖 ′ . Then we estimate 𝐸 to
additive error at most 𝜖′.

The overall query complexity for these two loops over different 𝑖max is

𝑄𝐻 = O
( √

𝜆
√
𝑝𝜖 ′
(
√
𝜖′ +
√
𝐸 + 𝜆) log

1
𝑝

log
1
𝑞

)
, (3.84)

𝑄𝑃 = O
(
log(𝜆/𝜖′)
√
𝑝

log
log(𝜆/𝜖′)

𝑞

)
. (3.85)

□



73

Spectral amplification and linear combination of unitaries
Thus far we provided the query complexities for various simulation tasks using
spectral amplification. These results required access to BE[𝐻SA/

√
𝜆], which can

be constructed from the BE[𝐴 𝑗/𝑎 𝑗 ] as explained in Lemma 3.6. In applications
we will need to construct these block-encodings from some presentation of the
Hamiltonian terms and here we discuss the LCU presentation within the context of
SA. To this end, we will assume that the terms ℎ 𝑗 ⪰ 0 in Eq. (3.18) can be expressed
as ℎ 𝑗 = 𝐴†𝑗 𝐴 𝑗 , for some operators 𝐴 𝑗 that are expressed as

𝐴 𝑗 =

𝐿−1∑︁
𝑙=0

𝑎 𝑗 𝑙𝜎𝑗 𝑙 , (3.86)

where the coefficients 𝑎 𝑗 𝑙 ≥ 0 without loss of generality and the 𝜎𝑗 𝑙’s are unitary,
e.g., Pauli strings. We seek to construct a block-encoding for 𝐻SA from accessing
these unitaries. We can obtain the following result.

Lemma 3.16. Let 𝐻SA =
∑𝑅−1
𝑗=0 | 𝑗⟩a ⊗ 𝐴 𝑗 be as in Eq. (3.19), where 𝐴 𝑗 is presented

in Eq. (3.86). Then, we can implement a block-encoding BE[𝐻SA/
√
𝜆], where

𝜆 :=
𝑅−1∑︁
𝑗=0
(∥ ®𝑎 𝑗 ∥1)2 , ∥ ®𝑎 𝑗 ∥1 :=

𝐿−1∑︁
𝑙=0

𝑎 𝑗 𝑙 . (3.87)

This requires O(𝑅 × 𝐿 × 𝐶) gates, where 𝐶 is the gate cost of the 𝜎𝑗 𝑙’s.

Proof. The proof follows the steps of Lemma 3.6. To implement SELECT, we need
to replace BE[𝐴 𝑗/𝑎 𝑗 ] in that proof by

BE

[
𝐴 𝑗∑𝐿−1
𝑙=0 𝑎 𝑗 𝑙

]
= BE

[∑𝐿−1
𝑙=0 𝑎 𝑗 𝑙𝜎𝑗 𝑙∑𝐿−1
𝑙=0 𝑎 𝑗 𝑙

]
. (3.88)

Note that we have effectively replaced 𝑎 𝑗 in Lemma 3.6 by
∑𝐿−1
𝑙=0 𝑎 𝑗 𝑙 ≡ ∥ ®𝑎 𝑗 ∥1 and 𝐴 𝑗

by the LCU. In that proof, 𝜆 =
∑
𝑗 𝑎 𝑗 and this would give the normalization factor

𝜆 =
∑
𝑗 (∥ ®𝑎 𝑗 ∥1)2 in this case.

The block-encoding can be constructed using standard techniques since it involves
an LCU. We can define

SELECT 𝑗 :=
𝐿−1∑︁
𝑙=0
|𝑙c⟩⟨𝑙c | ⊗ 𝜎𝑗 𝑙 (3.89)
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and

PREPARE 𝑗 |0⟩c ↦→
1√︃∑𝐿−1
𝑙=0 𝑎 𝑗 𝑙

𝐿−1∑︁
𝑙=0

√
𝑎 𝑗 𝑙 |𝑙⟩c , (3.90)

so that

⟨0|c (PREPARE 𝑗 )† · SELECT · PREPARE 𝑗 |0⟩c =
∑𝐿−1
𝑙=0 𝑎 𝑗 𝑙𝜎𝑗 𝑙∑𝐿−1
𝑙=0 𝑎 𝑗 𝑙

. (3.91)

That is, (PREPARE 𝑗 )† ·SELECT·PREPARE 𝑗 gives the desired BE[𝐴 𝑗/
∑𝐿−1
𝑙=0 𝑎 𝑗 𝑙] =

BE[𝐴 𝑗/∥ ®𝑎 𝑗 ∥1]. The total gate cost is then dominated by the query cost of Lemma 3.6,
which is O(𝑅), times the gate cost of this block-encoding BE[𝐴 𝑗/∥ ®𝑎 𝑗 ∥1], which is
O(𝐿 × 𝐶), where 𝐶 is the gate cost of the 𝜎𝑗 𝑙 . □

3.3 SOS optimization and example SOSSA block-encoding
In this section we provide necessary details for constructing the mathematical pro-
gram that determines an SOS representation of a Hamiltonian given an operator
basis for the SOS generators such that the lower bound energy is maximized. Recall
that maximizing the lower bound is an important algorithmic component in the
SOSSA protocol that can lower the query complexity and end-to-end gate com-
plexity if balanced with the cost of the block-encoding implementation. We also
provide an example block-encoding for 𝐻SOSSA expressed as a polynomial of Pauli
operators.

SOS optimization
Section 3 advocates for an SOS representation with increased complexity beyond
termwise SA, which resulted in a loose lower bound that potentially negates an
advantage through SA. In the following, we will restrict our exposition to Hamilto-
nians composed of Pauli strings but the construction can be applied more generally.
We will also start with the formulation of the SOS optimization as a mathematical
program and return later to the motivation of this form. Termwise SA uses a re-
stricted algebra to form an SOS operator (in that case a projector) made from the
linear combination of an identity operator and the Pauli operator of the Hamilto-
nian (Eq. (3.3)). The lower bound −𝛽 on the ground state energy can be improved
by providing more variational freedom in the SOS generators, the 𝐵 𝑗 operators of
Eq. (3.6). The variational protocol can be formulated as a semidefinite program
(SDP). As an illustrative example, consider the set of operators constituting the span
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of one and two-qubit Pauli operators over 𝑁-qubits organized into a column vector

®𝑋 (2) =
(
1, 𝑋1, . . . , 𝑍𝑁 , 𝑋1𝑋2, . . . , 𝑍𝑁−1𝑍𝑁

)𝑇
. (3.92)

If our Hamiltonian is 2-local, then this algebra is sufficient to represent the Hamilto-
nian. In the following, we consider ®𝑋 (𝑘) which involves operators involving degree-𝑘
products of Pauli operators. A particular SOS generator is defined as 𝐵 𝑗 := ®𝑏 𝑗 ®𝑋 (𝑘)

for a row vector, ®𝑏 𝑗 ∈ C(𝑁𝑘 ) , of complex coefficients to be optimized in order to
satisfy Eq. (3.6). To show the optimization protocol is an SDP, we form the SOS
representation of the Hamiltonian from a set of operators {𝐵 𝑗 }:

𝑅−1∑︁
𝑗=0

𝐵
†
𝑗
𝐵 𝑗 =

𝑅−1∑︁
𝑗=0

(
®𝑏 𝑗 ®𝑋 (𝑘)

)† (®𝑏 𝑗 ®𝑋 (𝑘)) (3.93)

=

(
®𝑋 (𝑘)†

)𝑇 (∑︁
𝑗

®𝑏†
𝑗
®𝑏 𝑗

)
®𝑋 (𝑘) (3.94)

=

(
®𝑋 (𝑘)†

)𝑇
𝐺 ®𝑋 (𝑘) , (3.95)

which can be used to construct the program

min
𝐺

𝛽 (3.96)

s.t. 𝐻 + 𝛽1 =

(
®𝑋 (𝑘)†

)𝑇
𝐺 ®𝑋 (𝑘)

𝐺 ⪰ 0.

The above SDP equality constraints are short-hand for relating the coefficients of the
operators obtained by expanding the right-hand side of the equality to the left-hand
side (the Hamiltonian and the shift). This computationally the equality constraint is
represented by letting the Hamiltonian coefficients in matrix form, H ∈ C𝐿×𝐿 where
𝐿 = | ®𝑋 (𝑘) | provide the constants resulting from the Hilbert-Schmidt inner products,
⟨A|𝐺⟩, between constraint matrix A and 𝐺 that encodes the coefficient relationship
of the equality constraint. Similarly, the cost function corresponds to minimizing
the coefficient associated with the identity operators, which in this case corresponds
to the diagonal elements of the Gram matrix 𝐺. The SDP of Eq. (3.96) can be
solved in polynomial time with respect to the linear dimension of 𝐺. Once the SDP
is solved an SOS representation can be recovered by expressing 𝐺 in its eigenbasis
𝐺 =

∑
𝑗 𝜇 𝑗 ®𝑎 𝑗 ®𝑎†𝑗 , where { ®𝑎 𝑗 } which yields a definition for each 𝐵 𝑗

®𝑋 (𝑘)†𝐺 ®𝑋 (𝑘) =
𝑅−1∑︁
𝑗=0
(√𝜇 𝑗 ®𝑎†𝑗 ®𝑋

(𝑘))†(√𝜇 𝑗 ®𝑎†𝑗 ®𝑋
(𝑘)) =

𝑅−1∑︁
𝑗=0

𝐵
†
𝑗
𝐵 𝑗 . (3.97)
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The number of 𝐵 𝑗 ’s in the generating polynomials is equal to the rank 𝑅 of the Gram
matrix 𝐺.

The intuition behind providing more variational freedom through the form of the
SOS generator is that for any −𝛽 that is less than the ground state energy 𝐸 of some
Hamiltonian 𝐻 we can define their sum 𝐻̃ = 𝐻 + 𝛽1 to be a positive semidefinite
operator whose square root 𝐻̃ =

√
𝐻̃
√
𝐻̃ which is potentially a different, and poten-

tially more complicated, many-body body operator. Thus if the equality of Eq. (3.6)
is satisfied then the SOS Hamiltonian serves as a certificate that the energy is lower
bounded by −𝛽. The certificate perspective is the primary method for constructing
constraints on pseudomoment matrices in ‘outer’ approximation methods that seek
to minimize representations of marginals and approximately constrain them through
the sum-of-square construction [Hal07; Wit15; Erd78; Nak+01]. In fact, it can
be shown that the SOS Hamiltonians can be determined from the primal problem
directly [Low+25].

SOSSA block-encoding for Pauli operators
Utilizing the solution of the SDP to construct the SOS generators 𝐵 𝑗 , we can
now replace these in the spectral amplified Hamiltonian; that is, we can replace
𝐴 𝑗 → 𝐵 𝑗 in Eqs. (3.19), (3.21). Expanding Eq. (3.97), each SOS generator is a
linear combination of Pauli operators

𝐵 𝑗 =

𝐿−1∑︁
𝑙=0

𝑏 𝑗 𝑙𝜎𝑙 , (3.98)

where {𝜎𝑙} is the monomial basis and 𝐿 is the number of monomials in the SOS
optimization. To block encode 𝐻SOSSA of Eq. (3.7), which is essentially 𝐻SA

in Eq. (3.19) after replacing 𝐴 𝑗 → 𝐵 𝑗 , gives us the following block-encoding
normalization factor.

Definition 3.3 (SOS 𝜆). Define 𝜆SOS to be

𝜆SOS :=
𝑅−1∑︁
𝑗=0
∥®𝑏 𝑗 ∥21 , ∥®𝑏 𝑗 ∥1 =

𝐿−1∑︁
𝑙=0

𝑏 𝑗 𝑙 . (3.99)

This is the normalization factor in Lemma 3.16 for this choice of operators 𝐵 𝑗 ,
which readily implies the following.

Corollary 3.17 (Compilation of SOSSA with Pauli strings). Let𝐻SOSSA =
∑𝑅−1
𝑗=0 | 𝑗⟩⊗

𝐵 𝑗 , where the 𝐵 𝑗 ’s are in Eq. (3.98). Then, we can construct the block-encoding
BE[𝐻SOSSA/

√
𝜆SOS] with O(𝑅 × 𝐿) gates.
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Since the Pauli strings are of constant weight, 𝐶 is a constant in Lemma 3.16.

In Section 3.4 we rely on upper and lower bounds on 𝜆SOS. To derive these,
consider a general Hamiltonian 𝐻 ∈ C𝑀×𝑀 such that after the shift it produces
𝐻 + 𝛽1 =

∑𝑅−1
𝑗=0 𝐵

†
𝑗
𝐵
𝑗

as in Eq. (3.6). Pauli strings are orthogonal and their trace is
zero, implying

𝑅−1∑︁
𝑗=0
∥®𝑏 𝑗 ∥22 =

1
𝑀

Tr𝐻 + 𝛽 . (3.100)

This gives us bounds of 𝜆SOS via Cauchy-Schwarz:

1
𝑀

Tr𝐻 + 𝛽 ≤ 𝜆SOS ≤ 𝐿

(
1
𝑀

Tr𝐻 + 𝛽
)
. (3.101)

3.4 Application to SYK model
In this section we describe the application of the SOSSA framework to the SYK
model. We will see a factor of

√
𝑁 speedup in both query and gate complexities

when compared to the standard LCU compilation. This is accomplished by show-
ing that ΔSOS scales linearly in system size with high probability and 𝜆SOS scales
quadratically.

Let {𝛾1, . . . , 𝛾𝑁 } be Majorana operators satisfying anticommutation relations:

𝛾𝑎𝛾𝑏 + 𝛾𝑏𝛾𝑎 = 2𝛿𝑎𝑏1 . (3.102)

The SYK model is described by a fermionic Hamiltonian containing all degree-4
Majorana terms whose coefficients are random Gaussians where

𝐻SYK =
1√︃(𝑁

4
) ∑︁
𝑎,𝑏,𝑐,𝑑

𝑔𝑎𝑏𝑐𝑑𝛾𝑎𝛾𝑏𝛾𝑐𝛾𝑑 , (3.103)

𝑔𝑎𝑏𝑐𝑑 ∼ N(0, 1) i.i.d. . (3.104)

To implement SOSSA, we will use the degree-2 Majorana SOS, which we describe
in Section 3.4. We will then compile the resulting SOSSA Hamiltonian using the
double factorization technique, which we recap in Section 3.4. In Section 3.4, we
use random matrix theory to analyze the energy gap ΔSOS of the degree-2 Majorana
SOS on the SYK model, and we also analyze the normalization factor 𝜆SOS resulting
from the double factorization block encoding. Putting these together demonstrate
our asymptotic improvements.
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Degree-2 Majorana SOS
For fermionic systems, a natural SOS ansatz is the degree-2 Majorana SOS, which
we will use for the SYK model. In this section we describe how to implement
degree-2 Majorana SOS for a general fermionic Hamiltonians of the form

𝐻 = 𝑖

𝑁∑︁
𝑎,𝑏=1

𝐾𝑎𝑏𝛾𝑎𝛾𝑏 −
𝑁∑︁

𝑎,𝑏,𝑐,𝑑=1
𝐽𝑎𝑏𝑐𝑑𝛾𝑎𝛾𝑏𝛾𝑐𝛾𝑑 . (3.105)

Our SOS is defined by the basis {1, 𝛾𝑎, 𝛾𝑎𝛾𝑏}. Using Section 3.3, we can write the
SOS relaxation as (𝛽 ∈ R)

SOS(𝐻) = min 𝛽 (3.106)

s.t. 𝐻 + 𝛽1 = ®𝑋†𝐺 ®𝑋,
𝐺 ⪰ 0,

where
®𝑋 =

(
1, 𝛾1, . . . , 𝛾𝑁 , 𝑖𝛾1𝛾2, . . . , 𝑖𝛾𝑁−1𝛾𝑁

)
(3.107)

and 𝐺 is the Gram matrix with dimension 1 + 𝑁 +
(𝑁

2
)
. Comparing the coefficients

of 1 in the polynomial constraint equation reveals that 𝛽 = Tr𝐺, since all other
operators in the generating set are traceless. Comparing coefficients of the other
monomials gives us the linear constraints on the SDP. Thus we can explicitly write
the SDP

min Tr𝐺 (3.108)

s.t. 0 = 𝐺 (1, 𝛾𝑎) + 𝐺 (𝛾𝑎, 1) + 𝑖
∑︁
𝑐

𝐺 (𝑖𝛾𝑎𝛾𝑐, 𝛾𝑐) − 𝑖
∑︁
𝑐

𝐺 (𝛾𝑐, 𝑖𝛾𝑎𝛾𝑐) ∀𝑎

𝐾𝑎𝑏 = 𝐺 (1, 𝑖𝛾𝑎𝛾𝑏) + 𝐺 (𝑖𝛾𝑎𝛾𝑏, 1) − 𝑖𝐺 (𝛾𝑎, 𝛾𝑏) + 𝑖𝐺 (𝛾𝑏, 𝛾𝑎)
− 𝑖

∑︁
𝑐

𝐺 (𝑖𝛾𝑎𝛾𝑐, 𝑖𝛾𝑏𝛾𝑐) + 𝑖
∑︁
𝑐

𝐺 (𝑖𝛾𝑏𝛾𝑐, 𝑖𝛾𝑎𝛾𝑐) ∀𝑎, 𝑏

0 = 𝐺 (𝛾𝑎, 𝑖𝛾𝑏𝛾𝑐) + 𝐺 (𝛾𝑏, 𝑖𝛾𝑐𝛾𝑎) + 𝐺 (𝛾𝑐, 𝑖𝛾𝑎𝛾𝑏)
+ 𝐺 (𝑖𝛾𝑏𝛾𝑐, 𝛾𝑎) + 𝐺 (𝑖𝛾𝑐𝛾𝑎, 𝛾𝑏) + 𝐺 (𝑖𝛾𝑎𝛾𝑏, 𝛾𝑐) ∀𝑎, 𝑏, 𝑐

𝐽𝑎𝑏𝑐𝑑 = 𝐺 (𝑖𝛾𝑎𝛾𝑏, 𝑖𝛾𝑐𝛾𝑑) + 𝐺 (𝑖𝛾𝑐𝛾𝑑 , 𝑖𝛾𝑎𝛾𝑏)
− 𝐺 (𝑖𝛾𝑎𝛾𝑐, 𝑖𝛾𝑏𝛾𝑑) − 𝐺 (𝑖𝛾𝑏𝛾𝑑 , 𝑖𝛾𝑎𝛾𝑐)
+ 𝐺 (𝑖𝛾𝑎𝛾𝑑 , 𝑖𝛾𝑏𝛾𝑐) + 𝐺 (𝑖𝛾𝑏𝛾𝑐, 𝑖𝛾𝑎𝛾𝑑) ∀𝑎, 𝑏, 𝑐, 𝑑

𝐺 ⪰ 0.
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Double factorization
The degree-2 Majorana SOS leads to a representation of the Hamiltonian that takes
the form

𝐻 + 𝛽1 =
∑︁
𝑗

𝐵
†
𝑗
𝐵 𝑗 , (3.109)

𝐵 𝑗 = 𝑒 𝑗1 +
∑︁
𝑎

𝑓 𝑗 ,𝑎𝛾𝑎 +
∑︁
𝑎𝑏

𝑔 𝑗 ,𝑎𝑏𝛾𝑎𝛾𝑏 . (3.110)

A similar factorization occurs in the 2-body term of quantum chemistry Hamilto-
nians. Using the direct block encoding strategy, Definition 3.3 gives for this SOS
representation a SOS 𝜆 of

𝜆SOS =

𝑅−1∑︁
𝑗=0

(
|𝑒 𝑗 | + ∥ 𝑓 𝑗 ∥1 +

∑︁
𝑎𝑏

|𝑔 𝑗 ,𝑎𝑏 |
)2
, (3.111)

where 𝑅 is the rank of the Gram matrix 𝐺.

We can achieve a much better 𝜆SOS using the concept of double factorization from
quantum chemistry [Bur+21b], which we now describe. See [Lee+21b] for a com-
prehensive discussion of quantum algorithms techniques for quantum chemistry.
Given a quadratic polynomial in the Majorana operators

∑
𝑎𝑏 𝑔𝑎𝑏𝛾𝑎𝛾𝑏, let’s first

decompose 𝑔𝑎𝑏 into its real and imaginary parts 𝑔𝑎𝑏 = 𝑔(𝑅)𝑎𝑏
+ 𝑖𝑔(𝐼)

𝑎𝑏
. Without loss of

generality, 𝑔(𝑅)
𝑎𝑏

and 𝑔(𝐼)
𝑎𝑏

are real antisymmetric, since 𝛾𝑎 and 𝛾𝑏 always anticommute.
There are Gaussian unitaries𝑈 (𝑅) ,𝑈 (𝐼) which rotate the quadratic polynomials into
the block-diagonal forms(∑︁

𝑎𝑏

𝑔
(𝑅)
𝑎𝑏
𝛾𝑎𝛾𝑏

)
= 𝑈 (𝑅)

†∑︁
𝑎

𝑔̃
(𝑅)
𝑎 𝛾2𝑎−1𝛾2𝑎𝑈

(𝑅) (3.112)(∑︁
𝑎𝑏

𝑔
(𝐼)
𝑎𝑏
𝛾𝑎𝛾𝑏

)
= 𝑈 (𝐼)

†∑︁
𝑎

𝑔̃
(𝐼)
𝑎 𝛾2𝑎−1𝛾2𝑎𝑈

(𝐼) . (3.113)

This is because a Gaussian unitary 𝑈 acts on the 𝑁-vector of Majorana operators
(𝛾1, . . . , 𝛾𝑁 ) via a real orthogonal matrix 𝑂, and we can always design𝑈 so that 𝑂
block diagonalizes a given antisymmetric matrix 𝑔𝑎𝑏:

©­­­­­­«
𝑔11 𝑔12 . . . 𝑔1,𝑁

𝑔21 𝑔22
...

...
. . .

𝑔𝑁,1 . . . 𝑔𝑁,𝑁

ª®®®®®®¬
= 𝑂𝑇

©­­­­­­­­«

0 𝑔1

−𝑔1 0
. . .

0 𝑔𝑁

−𝑔𝑁 0

ª®®®®®®®®¬
𝑂. (3.114)
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Let’s find such Gaussian unitaries𝑈 (𝑅)
𝑗
,𝑈
(𝐼)
𝑗

for each 𝑔 𝑗 ,𝑎𝑏. This lets us write 𝐵 𝑗 as

𝐵 𝑗 = 𝑒 𝑗1+
∑︁
𝑎

𝑓 𝑗 ,𝑎𝛾𝑎+𝑈 (𝑅)
†∑︁

𝑎

𝑔̃
(𝑅)
( 𝑗 ,𝑎)𝛾2𝑎−1𝛾2𝑎𝑈

(𝑅) +𝑈 (𝐼)†
∑︁
𝑎

𝑖𝑔̃
(𝐼)
( 𝑗 ,𝑎)𝛾2𝑎−1𝛾2𝑎𝑈

(𝐼) .

(3.115)
We can efficiently implement the Gaussian unitaries 𝑈 𝑗 on the quantum computer.
Thus we can follow Definition 3.3 to derive 𝜆SOS for the double factorized SOS
representation, and the proof of Corollary 3.17 will go through. We get

𝜆SOS =

𝑅−1∑︁
𝑗=0

(
|𝑒 𝑗 | + ∥ 𝑓 𝑗 ∥1 + ∥𝑔̃(𝑅)𝑗 ∥1 + ∥𝑔̃

(𝐼)
𝑗
∥1

)2
. (3.116)

This could be significantly cheaper than directly block encoding 𝐵 𝑗 , which would
have 𝜆SOS as give in Equation (3.111).

Application to SYK model
We can now bring all of these ingredients together to analyze the performance of
degree-2 Majorana SOSSA with double factorization on the SYK model, when
compared to the standard LCU approach.

The asymptotic gate complexities to construct the necessary block-encodings for
LCU and SOSSA are both Θ(𝑁4). First, notice that the number of terms in
𝐻SYK is ∼ 𝑁4, with each coefficient independently random. This creates a Ω(𝑁4)
information-theoretic lower bound on the gate cost of any faithful block encoding.
LCU can be implemented with gate cost proportional to the number of terms. Dou-
ble factorization too allows for a O(𝑁4) gate cost: the cost of the 𝐵 𝑗 are dominated
by the costs of the Gaussian unitaries, which are O(𝑁2), and the number of 𝐵 𝑗 is at
most O(𝑁2). The asymptotic equivalence of the block encoding gate costs means
that we can focus on comparing the query complexities 𝜆LCU and

√
ΔSOS𝜆SOS.

For the SYK model,

𝜆LCU =
1√︃(𝑁

4
) ∑︁
𝑎,𝑏,𝑐,𝑑

|𝑔𝑎𝑏𝑐𝑑 | (3.117)

which scales like 𝜆LCU ∼ 𝑁2. We will see that
√
ΔSOS𝜆SOS ∼ 𝑁

3
2 , giving a factor of√

𝑁 improvement in the query complexity.

We begin by analyzing the scaling of ΔSOS. This will depend on the quality of
the SOS lower bound −𝛽 arising from the degree-2 Majorana SOS described in
Section 3.4. The SYK Hamiltonian is traceless, Tr(𝐻SYK) = 0, implying that
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the ground state energy is negative, and it is known that with high probability the
minimum and maximum eigenvalues are proportional to

√
𝑁 [HO22]. The following

lemma shows that applying degree-2 Majorana SOS to the SYK models gives a lower
bound −𝛽, where 𝛽 = O(𝑁), giving an energy gap of ΔSOS = O(𝑁).

Lemma 3.18. Degree-2 Majorana SOS achieves a lower bound of −𝛽 on the ground
energy of 𝐻SYK, for 𝛽 = O(𝑁), with high probability.

Proof. Our proof strategy is to use the dual problem to the SOS optimization. The
SOS optimization obeys Slater’s condition and thus exhibits strong duality—see
Section 5.2.3 of [BV04]. Thus, in order to show the lower bound where 𝛽 = O(𝑁),
it is sufficient to show that the lowest achievable energy in the dual problem is at
least −𝑐𝑁 for some constant 𝑐 > 0. That is, no solution to the dual problem can
take a value lower than −𝑐𝑁 .

Appendix B of [PNA10] allows us to express the dual optimization problem to
the SOS. Define a degree-2 pseudoexpectation to be a matrix 𝜌̃ whose rows and
columns are indexed by quadratic Majorana operators, and where we impose that 𝜌̃
is positive semi-definite and obeys algebraic constraints

𝜌̃(𝑖𝛾𝑎𝛾𝑏, 𝑖𝛾𝑐𝛾𝑑) = −𝜌̃(𝑖𝛾𝑎𝛾𝑐, 𝑖𝛾𝑏𝛾𝑑) = 𝜌̃(𝑖𝛾𝑎𝛾𝑑 , 𝑖𝛾𝑏𝛾𝑐) (3.118)

=𝜌̃(𝑖𝛾𝑏𝛾𝑐, 𝑖𝛾𝑎𝛾𝑑) = −𝜌̃(𝑖𝛾𝑏𝛾𝑑 , 𝑖𝛾𝑎𝛾𝑐) = 𝜌̃(𝑖𝛾𝑐𝛾𝑑 , 𝑖𝛾𝑎𝛾𝑏). (3.119)

Let 𝐽 be the matrix with rows/columns indexed by subsets of {1, . . . , 𝑁} of size 2,
with entries

𝐽 (𝑎𝑏, 𝑐𝑑) = 1√︃(𝑁
4
) 𝑔𝑎𝑏𝑐𝑑 , (3.120)

where 𝑔𝑎𝑏𝑐𝑑 are the SYK coefficients. The dual problem is to minimize Tr(𝐽 𝜌̃) over
degree-2 pseudoexpectations 𝜌̃.

To complete the proof, we show that any degree-2 pseudoexpectation 𝜌̃ obeys
Tr(𝐽 𝜌̃) ≥ −𝑐𝑁 with high probability. We have

Tr(𝐽 𝜌̃) ≥ −∥𝐽∥ · ∥ 𝜌̃∥1 = −∥𝐽∥ · Tr( 𝜌̃) = −
(
𝑁

2

)
∥𝐽∥ , (3.121)

where ∥.∥ is the operator norm. The first inequality was an application of matrix
Holder’s inequality [Bau11]. Random matrix theory tells us that ∥𝐽∥ = O(𝑁−1)
with high probability. For example, see Theorem 4.4.5 in Ref. [Ver18]. Thus
Tr(𝐽 𝜌̃) ≥ −𝑐𝑁 for any degree-2 pseudoexpectation 𝜌̃ with high probability over the
SYK disorder. □
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Next we analyze 𝜆SOS, which will involve the double factorization block encoding
technique described in Section 3.4. The degree-2 Majorana SOS with double
factorization writes the SYK Hamiltonian as

𝐻SYK + 𝛽1 =
∑︁
𝑗

𝐵
†
𝑗
𝐵 𝑗 (3.122)

𝐵 𝑗 = 𝑒 𝑗1 +
∑︁
𝑎

𝑓 𝑗 ,𝑎𝛾𝑎 +𝑈 (𝑅)
†∑︁

𝑎

𝑔̃
(𝑅)
( 𝑗 ,𝑎)𝛾2𝑎−1𝛾2𝑎𝑈

(𝑅) +𝑈 (𝐼)†
∑︁
𝑎

𝑖𝑔̃
(𝐼)
( 𝑗 ,𝑎)𝛾2𝑎−1𝛾2𝑎𝑈

(𝐼) ,

(3.123)

where the𝑈 𝑗 are Gaussian unitaries. From Equation (3.116), we can calculate

𝜆SOS =
∑︁
𝑗

(
|𝑒 𝑗 | + ∥ 𝑓 𝑗 ∥1 + ∥𝑔̃(𝑅)𝑗 ∥1 + ∥𝑔̃

(𝐼)
𝑗
∥1

)2 (3.124)

≤ 4𝑁
(∑︁

𝑗

|𝑒 𝑗 |2 +
∑︁
𝑗

∥ 𝑓 𝑗 ∥22 +
∑︁
𝑗

∥𝑔̃(𝑅)
𝑗
∥22 +

∑︁
𝑗

∥𝑔̃(𝐼)
𝑗
∥22

)
(Cauchy-Schwarz)

(3.125)

≤ 4𝑁 · Tr
(∑︁

𝑗

𝐵
†
𝑗
𝐵 𝑗

)
(3.126)

= 4𝑁 · Tr
(
𝐻SYK + 𝛽1

)
(3.127)

= 4𝑁𝛽 (3.128)

= O(𝑁2), (Lemma 3.18)
(3.129)

where Tr denotes the normalized trace so that Tr(1) = 1. Putting this together with
the above analysis showing ΔSOS = O(𝑁) gives

√
ΔSOS𝜆SOS = O(𝑁 3

2 ).
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C h a p t e r 4

LEARNING FERMIONIC OBSERVABLES

In many quantum experiments, the key objective is to prepare a target quantum state,
which can be a large many-body state and may exhibit significant entanglement. As
quantum computers become more powerful, such experiments can increasingly be
carried out through quantum simulations, where a quantum algorithm prepares the
desired state. The next challenge is to measure and extract physically relevant
properties from this prepared state, which typically involves preparing many copies
of the same unknown quantum state and performing measurements on those copies.
Here, sample complexity—the number of state copies needed—can be a major
bottleneck, especially since generating each copy might be expensive. In particular,
full state tomography quickly becomes intractable for large many-body systems, as
its sample complexity scales polynomially with the (exponentially large) dimension
of the Hilbert space.

Physical properties are often given by expectation values of observables. An im-
portant example is the 𝑘-RDM (reduced density matrix) in quantum chemistry,
which consists of the expectation values of local fermionic operators. One can
efficiently compute most physically relevant local observables of a fermionic system
(e.g., dipole moment, charge density, and importantly—energy) from just the 1-
and 2-RDMs as a consequence of fermions being identical particles that interact
pairwise. A number of important methods for post-processing the output of quan-
tum simulations require 𝑘-RDMs with larger 𝑘 . For example, subspace expansion
techniques for approximating excited states from ground states via linear response
typically require the 4-RDM [McC+17; Yos+22]. Perturbation theory [Guo+16;
Sha+17] and multi-reference configuration interaction methods [Tak+20] for relax-
ing ground state calculations in small basis sets towards their continuum (large basis)
limit often require the 4-RDM but converge even faster given access to higher order
RDMs. There are popular impurity model schemes for extrapolating finite simu-
lations of condensed phase fermionic systems towards their thermodynamic limits
(e.g., density matrix embedding theory [Wou+16]) and hybrid quantum-classical
schemes for quantum Monte Carlo [Hug+22b], which require the full 1-RDM.

A large body of literature exists on methods for computing the fermionic 2-RDM
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matrix elements as a means of estimating the energy of chemical systems during
the course of a quantum variational algorithm (see e.g., [VYI20; PZC23; BBO20;
ZRM21]). The sample complexity of these schemes scale like ∼ 𝑛𝑘 for the 𝑘-
RDM. This could be a large polynomial in the system size which becomes highly
expensive for large systems, and poses a large bottleneck which limits the utility of
VQE algorithms. In this work we will see that we can exponentially improve this
sample complexity to ∼ 𝑘 log 𝑛 through use of entangled measurements.

The task of extracting many expectation values from copies of an unknown quantum
state has been studied in quantum computing under the name shadow tomography.
In this chapter we discuss protocols for shadow tomography, as introduced by
Aaronson [Aar18], specialized to the case of local fermionic observables. Let F (𝑛)

𝑘

denote the set of 𝑘-body fermionic operators on 𝑛 fermionic modes, where 𝑘 = 𝑂 (1),
and let 𝜌 be an unknown 𝑛-qubit quantum state. Given copies of 𝜌, we would like
to learn the expectation values Tr(Γ𝜌) to precision 𝜀 for every Γ ∈ F (𝑛)

𝑘
.

Definition 4.1 (Fermionic shadow tomography). The shadow tomography task for
the 𝑘-body fermionic operators F (𝑛)

𝑘
is as follows. We are given copies of an

unknown 𝑛-qubit state 𝜌, and our goal is to output estimates 𝑦Γ such that with high
probability1 we have |𝑦Γ − Tr(Γ𝜌) | ≤ 𝜖 for all Γ ∈ F (𝑛)

𝑘
.

In applications of shadow tomography, samples are often expensive and are the main
criterion for efficiency. For example, suppose one applies shadow tomography in the
readout stage of a quantum simulation algorithm. The sample complexity directly
translates to the number of shots one must run of the quantum computation. Alter-
natively, if one is using shadow tomography to learn from a physical experiment,
the sample complexity represents the number of repeats of the experiment.

One can use a very naive tomography protocol to perform this task. Suppose we
are performing shadow tomography on a set S of operators. For a given operator
Γ ∈ S, if we measure its value 𝑂 ((log |S|)/𝜖2) times (using one copy of 𝜌 for
each measurement), then we can ensure that the sample mean is within 𝜖 of Tr(𝜌Γ)
with probability at least 1 − 0.01/|S|. If we follow this procedure for each of the
operators in S, the union bound guarantees that with high probability they will all
be 𝜖-close to their true values. This algorithm uses 𝑂 (( |S| log |S|)/𝜖2) copies of
the unknown state 𝜌 and is computationally efficient.

1Throughout this chapter, we use “with high probability” to mean with probability at least 99%,
say.
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Remarkably, Aaronson described a protocol for shadow tomography of any set
of bounded observables (such as Pauli operators) that uses exponentially fewer
copies of the unknown state than the naive algorithm [Aar18; AR19; Bra+17]. The
best known scaling of the number of samples for learning 𝑚 general observables
is 𝑂 (𝑛(log2 𝑚)/𝜀4) [BO21]. However, the general shadow tomography schemes
suffer from two major caveats: they are explicitly exponential in computational
runtime (even when the number of observables 𝑚 scales polynomially with 𝑛), and
they require entangled measurements on many copies of the unknown state 𝜌 at a
time.

These caveats can be avoided for certain restricted sets of observables such as
low-weight Pauli operators. For 𝑘-local Paulis with 𝑘 = 𝑂 (1), there are simple
and computationally efficient protocols to learn 𝑚 observables with 𝑂 ((log𝑚)/𝜖2)
single-copy measurements [CW20; EHF19; BBO20; Jia+20a; HKP20]. The classi-
cal shadows framework [HKP20] provides a broader family of learning protocols that
can also handle other sets of non-Pauli observables with single-copy measurements,
notably including rank-1 observables which are relevant to fidelity estimation. How-
ever, classical shadows and other single-copy learning strategies become inefficient
for higher weight Pauli operators.

To go beyond low-weight Paulis one can use a shadow tomography protocol devel-
oped in [HKP21] which learns any subsetS of Pauli operators using𝑂 ((log |S|)/𝜖4)
copies of 𝜌, and poly( |S|, 𝑛, 1/𝜖) runtime. The protocol proceeds in two stages. In
the first stage—learning magnitudes—one computes estimates of the magnitudes
|Tr(𝜌𝑃) | to within 𝜖/4 error (say), for all Paulis 𝑃 ∈ S. Remarkably, this can be
achieved efficiently using only 𝑂 ((log |S|)/𝜖4) two-copy measurements using the
well-known Bell sampling procedure [Mon17]. It is based on measuring copies
of 𝜌 ⊗ 𝜌 in the basis which simultaneously diagonalizes the operators 𝑃 ⊗ 𝑃 for
all Paulis 𝑃. In the second stage—learning signs—one computes the signs of all
Paulis 𝑃 ∈ S that were estimated to have nonnegligible magnitude in the first stage.
The learning signs protocol from Ref. [HKP21] proceeds by a sequence of gentle
measurements which requires entangling 𝑂 ((log |S|)/𝜖2) copies of 𝜌.

The requirement to perform joint entangled measurements on many copies of the
unknown state 𝜌 prohibits the use of shadow tomography techniques in a practical
setting. Suppose we are interested in a 100-qubit quantum state 𝜌; for example,
perhaps it is the groundstate of a chemical molecule. Using a quantum computer
with 200 logical qubits, we can perform entangling measurements on two copies
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𝜌 ⊗ 𝜌. However, suppose we are interested in precision 𝜖 = 0.001, and S is the set
of 2-body fermionic operators (so |S| ≃

(200
4
)
). In order to perform an entangling

measurement on 𝑂 ((log |S|)/𝜖2) copies of 𝜌, we would need over a billion logical
qubits in our quantum computer.

This motivates us to define a notion of triply efficient shadow tomography.

Definition 4.2 (Triply efficient shadow tomography). A shadow tomography proto-
col on set S of operators is triply efficient if:

Sample efficiency: The number of samples scales as poly(log |S|, 1/𝜖).

Computational efficiency: The classical and quantum computation is poly( |S|, 𝑛, 1/𝜖).

Few-copy measurements: The algorithm uses joint measurements on a constant
number of copies of 𝜌 (ideally 1 or 2).

Is there a triply efficient shadow tomography protocol? While this question is well-
posed for arbitrary subsets of observablesS, we restrict our attention to three subsets
that are practically motivated and representative of the complexity of the problem:

P (𝑛)
𝑘

: The set of 𝑘-local Pauli operators on 𝑛 qubits, where 𝑘 = 𝑂 (1).

F (𝑛)
𝑘

: The set of 𝑘-body fermionic operators on 𝑛 fermionic modes, where 𝑘 =

𝑂 (1).

P (𝑛): The set of all Pauli operators on 𝑛 qubits.

As we describe below, 𝑘-local Pauli operators and 𝑘-body fermionic operators arise
in a variety of applications in many-body physics and quantum chemistry and are
one of the most common algorithmic applications of shadow tomography. The set of
all Pauli operators is of exponential size in 𝑛, and perhaps not as practically relevant,
but seems important to study nonetheless since it represents a general Pauli learning
task. Surprising tomography algorithms are possible in this case, including an
algorithm we describe that, for any constant error 𝜖 , compresses the output (of size
4𝑛) into a polynomial-sized description from which an 𝜖-estimate of the expected
value of any Pauli observable can be extracted efficiently.

This brings us to the main question that guided this chapter: Do there exist triply
efficient shadow tomography protocols for these observables?
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In fact, the schemes based on random single-copy measurements described in
Refs. [HKP20; CW20; BBO20; Jia+20a; EHF19] already achieve triply efficient
shadow tomography for the set P (𝑛)

𝑘
of 𝑘-local Pauli operators with 𝑘 = 𝑂 (1). In

this chapter we present triply efficient shadow tomography algorithms for the set
F (𝑛)
𝑘

of 𝑘-body fermionic operators for 𝑘 = 𝑂 (1). Furthermore, our algorithms
only use Clifford measurements on two copies of 𝜌 at a time.

We will see that it is impossible to perform sample-efficient shadow tomography
using only single-copy measurements for the set of 𝑘-body fermionic operators
(Theorem 4.2). Taken together, our protocols and the single-copy lower bounds
demonstrate that two-copy measurements are necessary and sufficient for Pauli and
fermionic shadow tomography. Further, we see a striking difference between local
Paulis, for which single-copy measurements suffice, and local fermionic operators
where entangled measurements are necessary.

Local observables
In order to describe our results, let us now define the sets of local observables that
are relevant to qubit and fermionic systems. Let |𝑃 | denote the Pauli-weight of an
operator 𝑃 ∈ P (𝑛) , i.e., the number of qubits on which it acts nontrivially. For
example, |𝑋 ⊗ 1 ⊗ 𝑌 ⊗ 1 ⊗ 𝑍 | = 3.

A broad class of quantum many-body systems that arise in condensed matter physics
are described by systems of spins with 𝑘 = 𝑂 (1) particle interactions. Such systems
are described by a Hamiltonian operator which can be expressed as a sum of operators
from the set

P (𝑛)
𝑘

= {𝑃 ∈ P (𝑛) : |𝑃 | = 𝑘} (𝑘-local Pauli operators) (4.1)

of all weight-𝑘 Pauli observables. Note that |P (𝑛)
𝑘
| = 3𝑘

(𝑛
𝑘

)
and log |P (𝑛)

𝑘
| =

𝑂 (𝑘 log 𝑛). Learning all Paulis in the set P (𝑛)
𝑘

is quite useful—it allows one to
reconstruct all the 𝑘-qubit reduced density matrices of the state 𝜌 and compute for
example the expected value of any 𝑘-local Hamiltonian operator. So shadow to-
mography with the set P (𝑛)

𝑘
is particularly relevant for characterizing ground states

of quantum spin systems with few-body interactions.

A different subset of Pauli operators describes few-body interactions between
fermionic particles, such as the electronic structure of molecules. Just as before,
there is a fermionic locality parameter 𝑘 but it is fundamentally different from the one
defined by Pauli weight. To describe it, one fixes any subset of 2𝑛 anticommuting
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𝑛-qubit Pauli operators:

𝛾1, 𝛾2, . . . , 𝛾2𝑛 ∈ P (𝑛) ∀𝑎, 𝑏 : 𝛾𝑎𝛾𝑏 + 𝛾𝑏𝛾𝑎 = 2𝛿𝑎𝑏1, (4.2)

where 𝛿𝑎𝑏 is 1 if 𝑎 = 𝑏 and 0 otherwise. Note that since 𝛾𝑎 ∈ P (𝑛) we also have
𝛾
†
𝑎 = 𝛾𝑎 for each 1 ≤ 𝑖 ≤ 2𝑛. These are known as the Majorana fermion operators

associated with a fermionic system with 𝑛 modes (a fermionic mode is a state that
can either be occupied or unoccupied by a fermionic particle). Note that there is
a freedom here—a particular choice of operators in Equation (4.2) is a fermion-
to-qubit mapping that describes how we associate the degrees of freedom of the
𝑛-mode fermionic system with those of the 𝑛-qubit Hilbert space. Such mappings
have a long history and there are several choices that are used in practice to design
algorithms for fermionic systems on a quantum computer (see, e.g., Refs [JW28;
BK02; SRL12; Jia+20a; Der+21], and Section 4.3). However, our discussion and
the results described below apply to any choice of fermion-to-qubit mapping.

With our Majoranas (Equation (4.2)) in hand, let us now define the Majorana
monomials as

Γ(𝑥) = 𝑖 |𝑥 |·( |𝑥 |−1)/2𝛾𝑥1
1 𝛾

𝑥2
2 . . . 𝛾

𝑥2𝑛
2𝑛 ∀𝑥 ∈ {0, 1}2𝑛. (4.3)

The overall phase factor 𝑖 |𝑥 |·( |𝑥 |−1)/2 ensures that Γ(𝑥) is Hermitian for all 𝑥 ∈
{0, 1}2𝑛. In fact, the 4𝑛 operators

{Γ(𝑥) : 𝑥 ∈ {0, 1}2𝑛} (4.4)

coincide with the 4𝑛 𝑛-qubit Pauli operators in P (𝑛) , up to (efficiently computable)
signs. Now let us define the 𝑘-body fermionic operators

F (𝑛)
𝑘

= {Γ(𝑥) : |𝑥 | = 2𝑘}, (𝑘-body fermionic operators) (4.5)

which should be compared with Equation (4.1). Note that |F (𝑛)
𝑘
| =

(2𝑛
2𝑘

)
and

log |F (𝑛)
𝑘
| = 𝑂 (𝑘 log 𝑛). A system of 𝑛 fermionic modes with 𝑘-particle inter-

actions is described by a Hamiltonian operator that is a sum of terms from F (𝑛)
𝑘

.
Note that F (𝑛)

𝑘
consists of the Majorana monomials in Equation (4.4) of degree 2𝑘;

typically only these even-degree monomials are relevant to physics and chemistry
due to conservation of fermionic parity.

The notion of 𝑘-locality for fermions is fundamentally more expressive than that
of of 𝑘-locality for spin systems; the former subsumes the latter in the sense that
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compact qubit-to-fermion mappings exist which embed the 𝑘-local 𝑛-qubit Pauli op-
erators within a subset of the 𝑘-body fermionic operators on 𝑂 (𝑛) fermionic modes
(see for example Ref. [Bra+19]), whereas fermion-to-qubit mappings necessarily
represent the Majorana fermion operators Equation (4.2) using Pauli operators of
average weight at leastΩ(log(𝑛)) [Jia+20a]. The expectation values of the fermionic
operators F (𝑛)

𝑘
comprise the matrix elements of what physicists and chemists refer

to as the 𝑘-body reduced density matrix, or 𝑘-RDM.

Single-copy measurements.
It would be very practical if we could achieve triply efficient Pauli shadow to-
mography using only measurements on one copy of 𝜌 at a time—and for 𝑘-
local Paulis, it can be done. The shadow tomography task for P (𝑛)

𝑘
can be per-

formed, using a time-efficient algorithm, using only single-copy measurements on
𝑂 (3𝑘 (log |P (𝑛)

𝑘
|)/𝜖2) = 𝑂 (3𝑘 (𝑘 log 𝑛)/𝜖2) copies of 𝜌 [HKP20; CW20; BBO20;

Jia+20a; EHF19].

One might hope that we can similarly achieve triply efficient Pauli shadow tomog-
raphy for F (𝑛)

𝑘
and P (𝑛) as well. Unfortunately, this is not possible in either case,

even if we only care about sample efficiency and allow unbounded computation
time. It was shown in Ref [Che+22] that sample-efficient shadow tomography with
single-copy measurements is impossible for the set of all Paulis.

Theorem 4.1 ([Che+22]). There is no sample-efficient shadow tomography protocol
with single-copy measurements for the set S = P (𝑛) of all Paulis. In particular, any
protocol based on single-copy measurements must consume Ω(2𝑛/𝜀2) copies of 𝜌.

For 𝑘-body fermionic operators, one can also establish a lower bound, see Sec-
tion 4.1.2

Theorem 4.2. There is no sample-efficient single-copy shadow tomography protocol
for the set F (𝑛)

𝑘
of 𝑘-body fermionic operators. In particular, for 𝑘 = 𝑂 (1), any

protocol based on single-copy measurements must consume Ω(𝑛𝑘/𝜀2) copies of 𝜌.

Several efficient shadow tomography algorithms based on single-copy measurements
are known which achieve the Ω(𝑛𝑘/𝜖2) lower bound, up to a log factor [BBO20;
ZRM21; Wan+22; Hug+22a] (see also Ref. [Low22] which describes how this

2Theorem 1 of [BBO20] contains a lower bound for single-copy non-adaptive Clifford mea-
surements; on the other hand, Theorem 4.2 applies to arbitrary and even adaptive single-copy
measurements.
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scaling can be improved if the particle number is asymptotically smaller than the
number of fermionic modes).

The lower bound in Theorem 4.2 demonstrates a significant difference between
learning local fermionic observables and local Pauli observables; for local Paulis
there are sample-efficient single-copy protocols, whereas this is impossible for local
fermionic observables.

In order to achieve triply efficient shadow tomography for F (𝑛)
𝑘

and P (𝑛) , we will
need to measure two or more copies of 𝜌 at a time. Before jumping into two-copy
measurements, we review the single-copy algorithm for 𝑘-local Pauli operators and
offer a new interpretation in terms of fractional graph colorings that will be used in
our algorithms.

The classical shadows single-copy protocol for 𝑘-local Paulis is very simple: it is
based on measuring each qubit of 𝜌 (in each copy of 𝜌) in a random single-qubit
Pauli basis 𝑋 , 𝑌 , or 𝑍 uniformly at random [HKP20]. The postprocessing of the
measurement data to compute expected values is equally simple.

The high-level format of this protocol is as follows: one selects a Clifford basis
at random according to some probability distribution 𝑝, and then measures in that
basis. The distribution has the property that each of the Paulis 𝑃 in the set S of
observables of interest (in the above, S = P (𝑛)

𝑘
) has a high chance (at least 3−𝑘 ) of

being diagonal in a basis sampled from 𝑝. Every time we pick a basis in which a
Pauli is diagonal, we learn some information about its expected value and hence the
sample complexity of the protocol is inversely related to the probability of being
diagonal in a randomly sampled basis.

We reinterpret this measurement strategy, and other protocols based on random
single-copy Clifford measurements, as arising from fractional colorings of the com-
mutation graph of the observables S, defined as follows:

Definition 4.3. The commutation graph 𝐺 (S) of a set S ⊆ P (𝑛) of Pauli operators
is the graph with vertex set S and an edge between every pair of anticommuting
operators.

An independent set in 𝐺 (S) corresponds to a set of commuting observables that
can be measured simultaneously via a Clifford measurement. Similarly, a coloring
of this graph with 𝜒 colors describes a learning strategy with deterministic single-
copy Clifford measurements, based on measuring 𝜒 disjoint sets of commuting
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Pauli observables. Such deterministic graph coloring strategies for learning Pauli
observables have been explored previously, see for example Ref. [JGM19; VYI20].
But the protocol for local Pauli observables described above is not based on a
coloring of the commutation graph 𝐺 (S): the measurement bases are associated
with overlapping sets of commuting Pauli observables, and are chosen randomly
rather than deterministically. As we will see, a probabilistic Clifford measurement
strategy can be viewed as defining a fractional coloring of 𝐺 (S). A fractional
coloring is a well-studied relaxation of the notion of graph coloring; see Section 4.1
for details. We show that the sample complexity of single-copy learning with
Clifford measurements is upper bounded by the fractional chromatic number of
𝐺 (S), which is the size of the smallest fractional coloring of 𝐺 (S). In Section 4.1,
we prove the following theorem.

Theorem 4.3. Let S ⊆ P (𝑛) . Suppose the commutation graph 𝐺 (S) admits a
fractional coloring of size 𝜒 that can be sampled by a classical randomized algo-
rithm with runtime 𝑇 . Then there is an algorithm using only single-copy Clifford
measurements of 𝜌 which can estimate Tr(𝑃𝜌) within error 𝜖 for all 𝑃 ∈ S with
high probability using

𝑂 (𝜒(log |S|)/𝜖2) (4.6)

copies of 𝜌. The runtime of the algorithm is 𝑂 ((𝑇 + 𝑛3) · 𝜒(log |S|)/𝜖2).

The single-copy measurement strategies based on fractional colorings from Theo-
rem 4.3 have the special feature that they only use Clifford measurements, which
have efficient classical descriptions. Such protocols learn a compressed classical
representation of 𝜌 that can be used to compute Pauli observables; see Section 4.1
for details.

It is worth noting that the fractional chromatic number of any graph with 𝑁 vertices is
at most a factor of 1+log(𝑁) smaller than its chromatic number [Lov75], so we could
in principle work exclusively with standard colorings and only lose this log factor.
While true, this neglects the fact that protocols are often more naturally phrased using
fractional coloring, just as classical algorithms are often more naturally phrased
using randomness, even if they can ultimately be derandomized.

The power of two copies.
In light of Theorem 4.1 and Theorem 4.2 we see that there exist sets of Pauli
observables for which sample-efficient shadow tomography cannot be achieved
with one-copy measurements. Are two-copy measurements enough?



92

Our starting point here is a new algorithm that shows that sample-efficient shadow
tomography is indeed possible in the general case with two-copy measurements.
The protocol has three steps.

The first step is the learning magnitudes subroutine from Ref. [HKP21], which we
now review. In this step we perform Bell sampling to measure copies of 𝜌 ⊗ 𝜌 in
the Clifford basis that diagonalizes the commuting Pauli observables 𝑃 ⊗ 𝑃 for all
𝑃 ∈ P (𝑛) . Since these operators commute, we can learn the all observables Tr((𝑃 ⊗
𝑃) (𝜌⊗𝜌)) = Tr(𝜌𝑃)2 for 𝑃 ∈ S to error 𝛿 using𝑂 ((log |S|)/𝛿2)measurements. By
choosing 𝛿 = Θ(𝜖2), we see that 𝑂 ((log |S|)/𝜖4) two-copy measurements suffices
to compute estimates {𝑢𝑃}𝑃∈S such that

|𝑢𝑃 − |Tr(𝜌𝑃) | | ≤ 𝜖/4 for all 𝑃 ∈ S, (4.7)

with high probability. After we have learned the magnitudes in this way, we may
find that some of our estimates are negligible; if our estimate 𝑢𝑃 from the first stage
is less than 3𝜖/4 then 0 is an 𝜖-approximation to the expected value Tr(𝜌𝑃) and we
can forget about this Pauli 𝑃 going forward. So in the second stage of the algorithm
we are only concerned with observables in the set

S𝜖 = {𝑃 ∈ S : |𝑢𝑃 | ≥ 3𝜖/4}. (4.8)

This set S𝜖 is a random variable determined by the output of Bell sampling, but the
condition in Equation (4.7) implies that with high probability we have

| Tr(𝜌𝑃) | ≥ 𝜖/2 for all 𝑃 ∈ S𝜖 . (4.9)

To complete the learning task it suffices to then compute the sign of Tr(𝜌𝑃) for all
Paulis 𝑃 ∈ S𝜖 .

Improved algorithms using graph theory.
In order to resolve the signs, we employ a general framework for two-copy shadow
tomography which is based on fractional graph coloring. Our framework can be
viewed as an extension of a heuristic learning algorithm proposed in Appendix
E.2.d of Ref. [HKP21]; in this work we use it to obtain algorithms with rigorous
performance guarantees.

We have already seen that single-copy tomography for any set of observables S
reduces to fractional graph coloring for the commutation graph 𝐺 (S). Likewise,
via Bell sampling, two-copy tomography reduces to fractional graph coloring for
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the commutation graph𝐺 (S𝜖 ). That is, we propose to use the single-copy algorithm
to learn all observables in S𝜖 , once we have already determined S𝜖 using an initial
stage of Bell sampling. But how do the two-copy measurements help us?

A key insight is that the Paulis in S𝜖 cannot be very anticommuting. Intuition
from the Heisenberg uncertainty principle tells us that anticommuting (traceless)
observables cannot simultaneously be large on a quantum state, since the quantum
state cannot simultaneously be an eigenvector of anticommuting observables. But
the high probability event in Equation (4.9) implies that the Paulis in S𝜖 are simul-
taneously large on the state 𝜌, and thus cannot anticommute with each other too
often. This can be formalized as an upper bound on the clique number of their
commutation graph. In Section 4.1 we show the following:

Lemma 4.4. The largest clique in the commutation graph 𝐺 (S𝜖 ) has size at most
4/𝜖2 with high probability.

Going forward, our aim is to exploit this upper bound on the clique number to
compute good (fractional) colorings.

Unfortunately, it is well known that the chromatic (or fractional chromatic) number
is not upper bounded by any function of the clique number in general 3. However,
such upper bounds can be established for certain families of graphs, a research
direction pioneered by Gyárfás [Gyá87]. A family of graphs for which this is
possible is called chi-bounded and the upper bound on chromatic number is said to
be expressed in terms of a chi-binding function (see Refs. [SR19; SS20] for recent
surveys). Our shadow tomography learning task for a set of observables S thus
reduces to establishing a suitable chi-binding function for the family of induced
subgraphs of the commutation graph 𝐺 (S); see Section 4.1 for details.

We show that the family of induced subgraphs of the commutation graph of 𝑘-
body fermionic observables admits a polynomial chi-binding function (that does not
depend on 𝑛).

Lemma 4.5. Let 𝑘 ≥ 1, and let 𝐺′ be any induced subgraph of the commutation
graph 𝐺 (F (𝑛)

𝑘
) of 𝑘-body fermionic observables, and let 𝜔 be the size of the largest

clique in 𝐺′. Then the fractional chromatic number of 𝐺′ satisfies

𝜒 𝑓 (𝐺′) ≤ 𝑝𝑘 (𝜔), (4.10)
3For example, there exists a family of triangle-free graphs with chromatic number Ω(

√︁
𝑚/log𝑚)

where 𝑚 is the number of vertices [Kim95].
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where 𝑝𝑘 is a polynomial. Moreover, for any 𝑘 = 𝑂 (1) we can sample from a
fractional coloring of 𝐺′ with size 𝑝𝑘 (𝜔) using a classical algorithm with runtime
poly(𝑛). The polynomials for 𝑘 = 1, 2 are 𝑝1(𝜔) = 𝜔 + 1 and 𝑝2(𝜔) = 𝑂 (𝜔8).

The proof of Lemma 4.5 is provided in Section 4.3. As discussed above, the com-
mutation graph 𝐺 (S𝜖 ) is an induced subgraph of 𝐺 (S) with clique number at most
𝑂 (1/𝜖2). For 𝑘-body fermionic observables S = F (𝑛)

𝑘
, Lemma 4.5 tells us there is

an efficiently computable fractional coloring of 𝐺 (S𝜖 ) with at most poly(1/𝜖2) col-
ors. We can then use the single-copy learning protocol from Theorem 4.3 to learn all
observables in S𝜖 . This reduction, which describes how to convert Lemma 4.5 into
a two-copy learning protocol, is formalized in Lemma 4.13. Putting it all together
gives the following theorem.

Theorem 4.6. Let 𝑘 = 𝑂 (1). There exists a triply efficient shadow tomography
protocol for the set S = F (𝑛)

𝑘
of 𝑘-body fermionic observables that uses only two-

copy Clifford measurements.

This triply efficient protocol has sample complexity

𝑂

( log |F (𝑛)
𝑘
|

𝜖4 +
𝑝𝑘 (4/𝜖2) log |F (𝑛)

𝑘
|

𝜖2

)
= 𝑂 ((𝑘 log 𝑛)𝑝𝑘 (4/𝜖2)/𝜖2), (4.11)

where 𝑝𝑘 is the polynomial from Lemma 4.5 that depends on the locality 𝑘 , and
we also used the fact that 𝑝𝑘 (𝜔) = Ω(𝜔) for all 𝑘 ≥ 1. For each 𝑘 ≥ 1 we obtain
an exponential improvement over single-copy learning protocols in terms of the
sample complexity as a function of system size 𝑛. For 𝑘 = 1 our learning algorithm
has sample complexity 𝑂 ((log 𝑛)/𝜖4), and the measurements and postprocesssing
are simple to implement. We anticipate that this learning algorithm could find
applications in quantum simulations of chemistry and fermionic physics. With
our current analysis, the degree of the polynomial 𝑝𝑘 increases very rapidly as a
function of 𝑘 rendering the scheme less practical for 𝑘 ≥ 2. We hope this could
be improved in future work. An upper bound on the 𝜖-dependence of the sample
complexity is ∼ 𝜖−𝑂 ((2𝑘)𝑘+1) . For 𝑘 = 2, 3 the sample complexity is ∼ 𝜖−18 and
∼ 𝜖−110 respectively.

It is natural to ask how far we can push this two-copy framework based on Bell
sampling and fractional coloring. Below, we show that it provides a nontrivial
shadow tomography protocol for any subset of Pauli observables S ⊆ P (𝑛) . This
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gives hope that our framework could lead to triply efficient shadow tomography in
the general case.

We shall exploit the fact that the longest induced path in the commutation graph
𝐺 (P (𝑛)) contains at most 2𝑛 + 1 vertices; see Section 4.2 for details. The fol-
lowing upper bound on chromatic number then follows from a seminal result in
chi-boundedness due to Gyárfás [Gyá87]; see Section 4.2.

Lemma 4.7. Let 𝐺′ be any induced subgraph of the commutation graph 𝐺 (P (𝑛)),
and let 𝜔 be the size of the largest clique in 𝐺′. The chromatic number of 𝐺′ is
upper bounded as

𝜒(𝐺′) ≤ (2𝑛 + 1)𝜔−1. (4.12)

Moreover, a coloring with this many colors can be computed by a classical algorithm
with runtime poly( |𝐺′|, 𝑛𝜔).

To get a shadow tomography algorithm for any set of Pauli observables S ⊆ 𝑃(𝑛) ,
we follow the strategy outlined above and formalized in Lemma 4.13. That is, we
apply Lemma 4.7 to the subgraph 𝐺′ = 𝐺 (S𝜖 ) induced by the set S𝜖 computed
via Bell sampling. From Lemma 4.4 we have that with high probability the largest
clique in 𝐺′ has size 𝜔 = 𝑂 (1/𝜖2). So we get an coloring of 𝐺 (S𝜖 ) with at most
𝑛𝑂 (1/𝜖

2) colors, that can be computed with runtime poly( |S|, 𝑛1/𝜖2). When 𝜖 = Ω(1)
is a small constant, this protocol is time-efficient, has sample complexity poly(𝑛),
and only uses two-copy measurements, for any subset of Pauli observables S. This
gives a sample-efficient protocol only when |S| is exponentially large as a function
of 𝑛. At a technical level this is a consequence of the factor of 𝑛 appearing in
Equation (4.12), and we do not know if this can be avoided.

This leaves open the question of triply efficient shadow tomography for arbitrary
subsets of Pauli observables. However, we will see that it provides insight into a
related question concerning compressed classical representations of quantum states.

Rapid-retrieval Pauli compression.
Can we compress an 𝑛-qubit quantum state into a small amount of classical in-
formation, so that the compressed classical description is sufficient to extract the
expectation values of any bounded observable to within a small constant error?
This question has been studied using tools from communication complexity and it
is known that an exponential classical description size is necessary if one wishes to
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recover bounded observables in the general case; a representation size Θ̃(
√

2𝑛) is
necessary and sufficient for 𝑛-qubit pure states [Raz99; Gav+07; GS18].

On the other hand, if we restrict our attention to the set of 𝑛-qubit Pauli observables
(or other sets of observables with only singly exponential size), a classical description
of size poly(𝑛) exists and can be computed using the matrix multiplicative weights
algorithm [Aar04; Aar+18]. However, a significant drawback of known methods
for this task is that they require exponential classical runtime to extract the expected
value of a given Pauli observable from the compressed classical representation.

A consequence of Lemma 4.7 is that this exponential cost can be avoided, at least for
any small constant precision 𝜖 = Ω(1). That is, one can compress an 𝑛-qubit state
𝜌 into poly(𝑛) classical bits. Given this classical data and an 𝑛-qubit Pauli 𝑃, there
is an efficient classical algorithm to estimate Tr(𝜌𝑃) to within 𝜖-error. Moreover,
such a representation can be learned from poly(𝑛) samples of 𝜌.

Corollary 4.8 (Rapid-retrieval Pauli compression). Let 𝜌 be an 𝑛-qubit quantum
state. Let 𝜖 ∈ (0, 1) be a constant independent of 𝑛. Using two-copy Clifford
measurements on poly(𝑛) copies of 𝜌, along with 2𝑂 (𝑛) runtime, we can (with high
probability) learn a compressed classical representation of 𝜌, call it 𝐷 (𝜌, 𝜖), that
consists of poly(𝑛) bits. An 𝜖-approximation to the expected value Tr(𝜌𝑃) of any
Pauli observable 𝑃 ∈ P (𝑛) can be extracted from𝐷 (𝜌, 𝜖) using a classical algorithm
with poly(𝑛) runtime.

The classical description 𝐷 (𝜌, 𝜖) consists of a list of all the Clifford measurement
bases and measurement outcomes used in the two-copy learning algorithm discussed
above; see Section 4.1 for details. In particular, Corollary 4.8 is obtained by
combining Lemma 4.7 and Lemma 4.14.

Discussion and open questions
In this chapter we have provided the first triply efficient shadow tomography pro-
tocols for the set of 𝑘-body fermionic observables. We have also provided a route
to strengthening and generalizing our results via a connection between two-copy
tomography and graph theory techniques related to chi-boundedness.

There are many questions left open by our work. Is it possible to improve the upper
bounds from Equation (4.10) and Equation (4.12)—e.g., can we establish better
chi-binding functions for the (families of) commutation graphs of interest? Is rapid-
retrieval compression possible for smaller error parameters, e.g., 𝜖 = 1/poly(𝑛)?
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Can we devise triply efficient learning algorithms for any subset of Pauli observ-
ables?

One route towards resolving these questions would be via improved algorithms
for coloring the commutation graph 𝐺 (S𝜖 ). The following conjecture asserts an
efficient fractional coloring of the commutation graph of any subset of Paulis that
has simultaneously large expected values in a quantum state.

Conjecture 4.9. Let 𝜌 be an 𝑛-qubit state, 𝛿 ∈ (0, 1), and let 𝐵 ⊆ P (𝑛) be the
set of all Paulis 𝑃 such that | Tr(𝜌𝑃) | ≥ 𝛿. There is a fractional coloring of the
commutation graph 𝐺 (𝐵) of size 𝑂 (1/𝛿2).

If this conjecture holds, and in addition the fractional coloring is suitably efficient,4

then we would obtain a triply efficient Pauli shadow tomography algorithm for any
subsetS of Pauli observables. Moreover, the learning algorithm would also output a
rapid-retrieval Pauli compression of all observables inS, of size𝑂 (𝑛2(log |S|)/𝜖4);
see Section 4.1.

To address Conjecture 4.9, it is natural to ask if Lemma 4.4 can be strengthened by
showing that 𝑂 (1/𝜖2) is in fact an upper bound on the fractional clique number—
a well-known linear programming relaxation of the clique number [SU11]. The
existence of a suitable fractional coloring stated in Conjecture 4.9 would then follow
from linear programming duality, which asserts that the fractional clique number of
any graph equals its fractional chromatic number.

4.1 Commutation, learning, and coloring
In this section we describe properties of the commutation graph 𝐺 (S) of a set
of Pauli observables S ⊆ P (𝑛) , and the connection between these properties and
shadow tomography algorithms.

Lower bounds from commutation index
We begin by discussing lower bounds on learning arising from anticommutativity
of a set of observables. This is quantified by the commutation index introduced in
Section 2.1. Ref. [Che+22] shows that the inverse of the commutation index is a
lower bound on the sample complexity of single-copy shadow tomography forS5. It

4In particular, we require that a fractional coloring of size 𝑂 (1/𝛿2) for any subset 𝑅 ⊆ 𝐵 can be
sampled in time poly( |𝑅 |, 𝑛, 1/𝛿).

5Maximization over states as stated in [Che+22, Equation 79] can be replaced by maximization
over density matrices via convexity.
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can be interpreted as describing a tension between anticommutation and learnability.

Theorem 4.10 (Theorem 5.5, [Che+22]). Shadow tomography to precision 𝜖 for a
set S of Pauli observables with single-copy measurements requires at least

Ω

(
1

𝜖2Δ(S)

)
(4.13)

copies of 𝜌. This holds even for adaptive measurement strategies.6

Using results on the commutation index from Section 2.1 we get the following
lower bounds on the sample complexity of learning local operators with single-copy
measurements.

Theorem 4.11. Let 1 ≤ 𝑘 ≤ log3(2𝑛 + 1). Any (possibly adaptive) single-copy
protocol which learns Tr (𝑃𝜌) to precision 𝜖 for all 𝑘-local 𝑛-qubit Paulis 𝑃 ∈ P (𝑛)

𝑘

with constant probability requires Ω(3𝑘/𝜖2) copies of 𝜌.

Proof. Follows from Theorem 2.9 and Theorem 4.10. □

The lower bound in Theorem 4.11 matches the sample complexity of known single-
copy protocols such as classical shadows, up to a factor of 𝑘 log 𝑛 [HKP20].

For local fermionic observables, one can obtain a much stronger single-copy sample
complexity lower bound which scales polynomially in the system size 𝑛. This
is telling us that local fermionic observables are much harder to learn than local
Pauli observables. The following theorem implies that there is no sample efficient
single-copy protocol for 𝑘-body fermionic observables, as stated in Theorem 4.2.

Theorem 4.12. Any (possibly adaptive) single-copy protocol which learns Tr (Γ𝜌)
to precision 𝜖 for all 𝑘-body Majorana operators Γ on 𝑛 fermionic modes with
constant probability requires number of copies scaling as Ω(𝑛𝑘/𝜖2), for any fixed
𝑘 ≥ 1.

Proof. Follows from Theorem 2.10 and Theorem 4.10. □

TheΩ(𝑛𝑘/𝜖2) single-copy sample complexity lower bound in Theorem 4.12 matches
what is achieved by the single-copy protocols in [BBO20; Jia+20a; Wan+22;
Hug+22a], up to a factor of 𝑘 log(𝑛).

6The lower bound holds even if the shadow tomography scheme is only able to output the
absolute values of the expectation values to precision 𝜖 .
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Fractional coloring and single-copy Clifford learning
Here we describe the connection between shadow tomography algorithms that learn
Pauli observables S ⊆ P (𝑛) using probabilistic Clifford measurements, and frac-
tional colorings of the commutation graph 𝐺 (S). A fractional coloring is a relax-
ation of the usual notion of graph coloring [SU11].

Definition 4.4. Let 𝐺 = (𝑉, 𝐸) be a graph. A fractional coloring of 𝐺 of size 𝜒 is
a probability distribution 𝑞 over independent sets 𝐼 ⊆ 𝑉 with the property that

∀𝑣 ∈ 𝑉 : Pr𝐼∼𝑞 (𝑣 ∈ 𝐼) ≥ 1/𝜒. (4.14)

The fractional chromatic number 𝜒 𝑓 (𝐺) of 𝐺 is the size of the smallest fractional
coloring of 𝐺.

Note that the size 𝜒 of a fractional coloring need not be an integer. Also note that a
(standard, non-fractional) coloring of𝐺 with 𝜒 colors can be regarded as a fractional
coloring of size 𝜒, corresponding to a uniform distribution over color classes, so the
fractional chromatic number of a graph is upper bounded by its chromatic number.

Theorem 4.3, restated below, asserts that if we have a fractional coloring of the
commutation graph 𝐺 (S) of small size, then we can learn the expectation values
of all observables in S with few single-copy Clifford measurements. In particular,
the sample complexity of the algorithm scales linearly with the size of the fractional
coloring.

In the following, samples from the fractional coloring are represented as binary
vectors of length |S| whose support is an independent set in 𝐺 (S). In this setting,
the runtime to produce a single sample from a fractional coloring always satisfies
𝑇 ≥ |S|.

Theorem 4.3. Let S ⊆ P (𝑛) . Suppose the commutation graph 𝐺 (S) admits a
fractional coloring of size 𝜒 that can be sampled by a classical randomized algo-
rithm with runtime 𝑇 . Then there is an algorithm using only single-copy Clifford
measurements of 𝜌 which can estimate Tr(𝑃𝜌) within error 𝜖 for all 𝑃 ∈ S with
high probability using

𝑂 (𝜒(log |S|)/𝜖2) (4.6)

copies of 𝜌. The runtime of the algorithm is 𝑂 ((𝑇 + 𝑛3) · 𝜒(log |S|)/𝜖2).

Proof. An independent set 𝐼 in the commutation graph 𝐺 (S) consists of a set
of mutually commuting Pauli operators, which can be simultaneously measured
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by applying a Clifford circuit and measuring in the computational basis. Such a
Clifford circuit can be computed using a classical algorithm with 𝑂 (𝑛3) runtime,
via standard techniques in the stabilizer formalism [AG04].

If we draw an independent set 𝐼 from a fractional coloring 𝑞 with size 𝜒 and then
measure 𝜌 in the corresponding Clifford basis, the result gives us a measurement of
Pauli 𝑃 ∈ S whenever 𝑃 ∈ 𝐼. Note that it is also possible that we get more useful
measurements than this—the Clifford unitary may diagonalize some Paulis 𝑃 that
are not in 𝐼.

Suppose we repeat this process independently 𝑁 times, sampling independent sets
𝐼1, 𝐼2, . . . , 𝐼𝑁 and measuring 𝑁 independent identical copies of 𝜌 in the correspond-
ing Clifford bases 𝐶1, 𝐶2, . . . , 𝐶𝑁 . For each 𝑃 ∈ S, let 𝑥 𝑗

𝑃
∈ {−1, 0, 1} be the

random variable that is equal to the measured outcome of 𝑃 if it is diagonalized by
𝐶 𝑗 , and zero otherwise.

We have

Pr[𝑥 𝑗
𝑃
∈ {−1, 1}] ≥ Pr[𝑃 ∈ 𝐼 𝑗 ] ≥

1
𝜒

𝑗 ∈ [𝑁] 𝑃 ∈ S, (4.15)

where we used the fact that 𝑞 is a fractional coloring of size 𝜒.

For each Pauli 𝑃 ∈ S, let

𝑅𝑃 = { 𝑗 : 𝑥 𝑗
𝑃
∈ {−1, 1}} and 𝑁𝑃 = |𝑅𝑃 |. (4.16)

Consider the sample mean
𝑃̃ =

1
𝑁𝑃

∑︁
𝑗∈𝑅𝑃

𝑥
𝑗

𝑃
. (4.17)

Conditioned on a fixed value 𝑁𝑃 ≥ 1, this sample mean 𝑃̃ is an average of 𝑁𝑃
independent ±1-valued random variables. It satisfies

E(𝑃̃) = Tr(𝜌𝑃) and Var(𝑃̃) ≤ 1
𝑁𝑃
. (4.18)

By Chebyshev’s inequality we have

Pr
[
|𝑃̃ − Tr(𝜌𝑃) | ≥ 𝜖

�� 𝑁𝑃 ≥ 100/𝜖2] ≤ 0.01. (4.19)

From Equation (4.15) we see that by taking 𝑁 = 𝑂 (𝜒/𝜖2) we can ensure that, for a
given Pauli 𝑃, we have 𝑁𝑃 ≥ 100/𝜖2 with probability at least 0.99 (say). Therefore,

Pr
[
|𝑃̃ − Tr(𝜌𝑃) | ≤ 𝜖

]
≥ Pr

[
𝑁𝑃 ≥ 100/𝜖2] · Pr

[
|𝑃̃ − Tr(𝜌𝑃) | ≤ 𝜖

�� 𝑁𝑃 ≥ 100/𝜖2]
(4.20)

≥ 0.992 (4.21)
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for each Pauli 𝑃 ∈ S.

Now repeat the above process 𝐿 times, generating sample means 𝑃̃1, . . . , 𝑃̃𝐿 for
each 𝑃 ∈ S, and consider the median-of-means estimator

𝜆𝑃 = median(𝑃̃1, 𝑃̃2, . . . , 𝑃̃𝐿). (4.22)

By choosing 𝐿 = 𝑂 (log |S|) we can ensure that, for each 𝑃 ∈ S we have |𝜆𝑃 −
Tr(𝜌𝑃) | ≤ 𝜖 with probability at least 0.01/|S|. By a union bound we get all the
expected values in S to within 𝜖 with probability at least 0.99. The total number of
samples of 𝜌 and the total number of samples from the fractional coloring 𝑞 used in
the algorithm are both at most 𝐿𝑁 = 𝑂 (𝜒(log |S|)/𝜖2).

Now consider the runtime of the protocol. The independent sets 𝐼 in the fractional
coloring are specified explicitly as subsets of S, so the median-of-means estimator
𝜆𝑃 can be computed for all 𝑃 ∈ S with a runtime 𝑂 (𝐿𝑁 |S|) once we have already
obtained all the measurement data {𝑥 𝑗

𝑃
}. The total runtime is therefore upper

bounded as 𝑂 ((𝑇 + 𝑛3 + |S|)𝐿𝑁), where the first term is the cost of sampling the
fractional colorings, the second term is the cost of computing a Clifford circuit for
each sample (and applying this circuit to measure the state), and the third term is the
cost of postprocessing. Since 𝑇 ≥ |S| the runtime simplifies to𝑂 ((𝑇 +𝑛3)𝐿𝑁). □

Finally, let us show that single-copy measurement strategies from Theorem 4.3
learn a compressed classical representation of 𝜌 that encodes the expected values
of all Pauli observables from S (to within error 𝜖). Indeed, each Clifford measure-
ment basis has an efficient classical description consisting of 𝑂 (𝑛2) bits. We can
imagine a version of the learning algorithm described in Theorem 4.3 where, after
the measurements are performed using Equation (4.6) copies of 𝜌, the resulting
measurement outcomes and measurement bases are packaged up into a classical
description 𝐷 (𝜌,S, 𝜖) of size

𝑂 (𝑛2𝜒(log |S|)/𝜖2). (4.23)

Here there is a factor of 𝑛2 for each measurement basis (each measurement outcome
only requires 𝑛 bits to describe and so describing the outcomes requires asymptot-
ically fewer bits than describing the bases). The efficient protocol for extracting
expected values Tr(𝜌𝑃) with 𝑃 ∈ S (up to 𝜖 error) can be performed using only the
compressed classical description 𝐷 (𝜌,S, 𝜖).
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Cliques and two-copy Clifford learning
As discussed in the introduction, we propose a framework for two-copy learning
that uses an initial stage of Bell sampling (as in Ref. [HKP21]) to determine a set
S𝜖 ⊆ S that with high probability satisfies Equation (4.9), which we restate:

| Tr(𝜌𝑃) | ≥ 𝜖/2 for all 𝑃 ∈ S𝜖 . (4.24)

This step uses 𝑂 ((log |S|)/𝜖4) Clifford measurements on copies of 𝜌 ⊗ 𝜌. Then we
aim to learn all observables in S𝜖 using the fractional coloring approach described
in the previous section. In particular, we aim to find an (efficiently sampleable)
fractional coloring of the commutation graph 𝐺 (S𝜖 ).

Lemma 4.13 (Template for two-copy Clifford shadow tomography). Suppose that
𝐺 (S𝜖 ) admits a fractional coloring of size 𝜒 that can be sampled by a randomized
algorithm with runtime 𝑇 . Then there is an algorithm which performs shadow
tomography for S using

𝑂 ((log |S|)/𝜖4 + 𝜒(log |S|)/𝜖2) (4.25)

two-copy Clifford measurements and runtime𝑂 ( |S|(log |S|)/𝜖4+(𝑇+𝑛3)𝜒(log |S|)/𝜖2).

Proof. The first step uses 𝑂 ((log |S|)/𝜖4) two-copy Bell measurements and clas-
sical runtime 𝑂 ( |S|(log |S|)/𝜖4) to compute the set S𝜖 . We output zero as our
estimate for the expected value of any Pauli in S \ S𝜖 . Then we use the single-copy
learning protocol from Theorem 4.3 to compute estimates of Tr(𝜌𝑃) for all 𝑃 ∈ S𝜖 .
This second step uses runtime 𝑂 ((𝑇 + 𝑛3)𝜒(log |S|)/𝜖2). □

The protocol from Lemma 4.13 is based on Clifford measurements, which have an
efficient classical description. Because of this, and the fact that the classical post-
processing is simple, we obtain the following classical compressed representation
of 𝜌.

Lemma 4.14 (Rapid-retrieval compression). The shadow tomography protocol de-
scribed in Lemma 4.13 learns a compressed classical representation of 𝜌 consisting
of 𝐵 bits, where

𝐵 = 𝑂 (𝑛(log |S|)/𝜖4 + 𝑛2𝜒(log |S|)/𝜖2). (4.26)

With high probability, this compressed representation has the following rapid-
retrieval property. There is a classical algorithm which, given this classical data
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and any Pauli 𝑃 ∈ S, outputs an estimate of Tr(𝜌𝑃) to within 𝜖 error. The runtime
of the algorithm is 𝑂 (𝐵).

Proof. The compressed representation consists of the𝑂 ((log |S|)/𝜖4) Bell samples
(each one is 2𝑛 bits) as well as a classical description of each Clifford measurement
basis and measurement outcome used in the second stage of the learning protocol.
That is, 𝑁 = 𝑂 (𝜒(log |S|)/𝜖2) Clifford measurement bases 𝐶1, 𝐶2, . . . , 𝐶𝑁 (each
described by a circuit with 𝑂 (𝑛2) one- and two-qubit Clifford gates) and corre-
sponding measurement outcomes 𝑧1, 𝑧2, . . . , 𝑧𝑁 ∈ {0, 1}𝑛. Given a Pauli 𝑃 ∈ S and
this classical data, we can compute an 𝜖-error estimate of Tr(𝜌𝑃) in the following
way. First, using the Bell samples, we determine if 𝑃 ∈ S𝜖 . This step requires us
to compute a sample mean over the Bell samples, using runtime 𝑂 (𝑛(log |S|)/𝜖4).
If 𝑃 ∉ S𝜖 , we output 0 as our estimate. If 𝑃 ∈ S𝜖 then we compute the median-
of-means estimator from Equation (4.22). To do this we have to compute indicator
functions 𝑥 𝑗

𝑃
∈ {1, 0,−1} that describe the measured outcome of Pauli 𝑃 for each

Clifford measurement basis 𝑗 , which is given by

𝑥
𝑗

𝑃
= ⟨𝑧 𝑗 |𝐶†

𝑗
𝑃𝐶 𝑗 |𝑧 𝑗 ⟩. (4.27)

The RHS is computed using the stabilizer formalism: we update the Pauli 𝑃 by
conjugating each gate in the circuit 𝐶 𝑗 one-by-one, and this process takes a total
runtime𝑂 (𝑛2) since there are𝑂 (𝑛2) one- and two-qubit Clifford gates in the circuit.
The total runtime to extract the estimate of Tr(𝜌𝑃) is therefore

𝑂 (𝑛(log |S|)/𝜖4 + 𝑛2𝜒(log |S|)/𝜖2). (4.28)
□

Lemma 4.13 forms the basis of several of the two-copy protocols that we present
in this work. To use this framework one needs to find an efficiently sampleable
fractional coloring of 𝐺 (S𝜖 ).

A challenge here is that the setS𝜖 and its commutation graph depend in a potentially
complicated way on the unknown state 𝜌. Ideally, we would like to understand any
structural properties of this graph that can be leveraged to compute good fractional
colorings. In this paper we we will only exploit two simple properties: (A) 𝐺 (S𝜖 )
is an induced subgraph of𝐺 (S) and (B) with high probability, 𝐺 (S𝜖 ) does not have
large cliques, as described in Lemma 4.4, which we restate and prove below.

Lemma 4.4. The largest clique in the commutation graph 𝐺 (S𝜖 ) has size at most
4/𝜖2 with high probability.
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Proof. Recall that S𝜖 satisfies Equation (4.24) with high probability. We show that
in this case the largest clique in 𝐺 (S𝜖 ) has size at most 4/𝜖2.

Suppose there is a clique in 𝐺 (S𝜖 ) of size 𝜔. The vertices of the clique are a set of
pairwise anticommuting Pauli operators 𝑃1, 𝑃2, . . . , 𝑃𝜔. Applying Lemma 2.6 with
these operators and the state 𝜌 gives

𝜔∑︁
𝑗=1

Tr(𝑃 𝑗 𝜌)2 ≤ 1. (4.29)

On the other hand from Equation (4.24) we have Tr(𝑃 𝑗 𝜌)2 ≥ 𝜖2/4 for each 1 ≤ 𝑗 ≤
𝜔. Plugging into the above gives 𝜔𝜖2/4 ≤ 1, and therefore the size of the maximal
clique is upper bounded as 𝜔 ≤ 4/𝜖2. □

To use our framework to learn Pauli observables S ⊆ P (𝑛) , it suffices to establish a
so-called chi-binding function for the family of induced subgraphs of 𝐺 (S). That
is, we seek a function 𝑔(𝜔) such that for any induced subgraph 𝐺′ of 𝐺 (S) with
largest clique of size 𝜔, there is a fractional coloring of 𝐺′ with size 𝜒 ≤ 𝑔(𝜔).
A statement of this form implies—via Lemma 4.13 and Lemma 4.4—a shadow
tomography algorithm that uses two-copy Clifford measurements and has sample
complexity

𝑂 ((log |S|)/𝜖4 + 𝑔(4/𝜖2) (log |S|)/𝜖2). (4.30)

Lemma 4.13 also gives an upper bound on the runtime of the protocol in terms of
the time required to sample from the fractional coloring.

4.2 Coloring commutation graphs with bounded clique number
In this section we prove Lemma 4.7, restated below.

Lemma 4.7. Let 𝐺′ be any induced subgraph of the commutation graph 𝐺 (P (𝑛)),
and let 𝜔 be the size of the largest clique in 𝐺′. The chromatic number of 𝐺′ is
upper bounded as

𝜒(𝐺′) ≤ (2𝑛 + 1)𝜔−1. (4.12)

Moreover, a coloring with this many colors can be computed by a classical algorithm
with runtime poly( |𝐺′|, 𝑛𝜔).

We shall use the following algorithmic version of a result of Gyárfás, which we
prove below.
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Lemma 4.15 (Algorithmic version of Thm. 2.4 of [Gyá87]). Suppose 𝐺 is a graph
on 𝑚 vertices whose longest induced path has ℓ vertices, with ℓ ≥ 1, and clique
number 𝜔. Then there is a classical algorithm which colors 𝐺 using ℓ𝜔−1 colors
and runtime 𝑂 (𝑚2𝜔).

Proof of Lemma 4.7. Let 𝐺′ be an induced subgraph of 𝐺 (P (𝑛)). Below we show
that 𝐺 (P (𝑛)), and therefore also 𝐺′, does not contain any induced paths with more
than 2𝑛 + 1 vertices. The claim then follows by applying Lemma 4.15.

Suppose 𝑃1, 𝑃2, . . . , 𝑃𝑠 is an induced path in 𝐺 (P (𝑛)), i.e.,

𝑃𝑖𝑃𝑖+1 = −𝑃𝑖+1𝑃𝑖 for 1 ≤ 𝑖 ≤ 𝑠 − 1 and [𝑃𝑖, 𝑃 𝑗 ] = 0 |𝑖 − 𝑗 | ≥ 2. (4.31)

Define Pauli operators

𝑄𝑟 = 𝑃1𝑃2 . . . 𝑃𝑟 1 ≤ 𝑟 ≤ 𝑠. (4.32)

We now use Equation (4.31) to show that these operators are pairwise anticommut-
ing. To see this note that

𝑄𝑟+𝑎 = (𝑃1𝑃2 . . . 𝑃𝑟) (𝑃𝑟+1𝑃𝑟+2 . . . 𝑃𝑟+𝑎) = − (𝑃𝑟+1𝑃𝑟+2 . . . 𝑃𝑟+𝑎) (𝑃1𝑃2 . . . 𝑃𝑟) ,
(4.33)

where we used 𝑃𝑟𝑃𝑟+1 = −𝑃𝑟+1𝑃𝑟 and the fact that [𝑃𝑖, 𝑃 𝑗 ] = 0 whenever 𝑖 ≤ 𝑟 − 1
and 𝑗 ≥ 𝑟 + 1. Therefore

𝑄𝑟𝑄𝑟+𝑎 = −𝑄𝑟 (𝑃𝑟+1𝑃𝑟+2 . . . 𝑃𝑟+𝑎) (𝑃1𝑃2 . . . 𝑃𝑟) = −𝑄𝑟+𝑎𝑄𝑟 , (4.34)

which shows that {𝑄 𝑗 } 𝑗∈[𝑠] are pairwise anticommuting Pauli operators.

It is a well known fact that the 𝑛 qubit Hilbert space does not contain any set
of pairwise anticommuting Pauli operators with size greater than 2𝑛 + 1 (see for
example Appendix G of Ref. [BBO20]). Thus 𝑠 ≤ 2𝑛 + 1. □

The algorithm of Lemma 4.15 relies on a non-standard graph traversal algorithm,
which can be interpreted as a combination of depth-first-search and breadth-first-
search. The graph search algorithm begins with an arbitrary seed vertex 𝑣 in 𝐺, and
generates a spanning tree of 𝐺 with root 𝑣. We call it neighbour-first search.
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Figure 4.1: An example showing the spanning trees generated by breadth-first search
(BFS), depth-first search (DFS), and our algorithm neighbour-first search (NFS) for
the cycle on 5 vertices.

Algorithm 1 Neighbour-first search (NFS)
Input: Connected graph 𝐺, seed vertex 𝑣.
Output: Spanning tree 𝑇 of 𝐺 with root 𝑣.

NFS(𝐺, 𝑣):

1. If 𝑇 is empty, initialize 𝑇 = {𝑣}.

2. For each neighbour 𝑤 of 𝑣 which is not yet in 𝑇 , add 𝑤 to 𝑇 as a child of 𝑣.

3. For each child 𝑤 of 𝑣:

a) Do NFS(𝐺, 𝑤).

The spanning tree 𝑇 output by Algorithm 1 is associated with a partition of the
vertex set of 𝐺 into levels, which are the vertices at a fixed distance from the root of
𝑇 . (The number of levels is the depth of the 𝑇 plus one.)

Lemma 4.16. Let graph 𝐺 = (𝑉, 𝐸) have 𝑚 vertices, clique number 𝜔, and longest
induced path with ℓ vertices. Algorithm 1 has runtime 𝑂 ( |𝑉 | + |𝐸 |) = 𝑂 (𝑚2) and
outputs a spanning tree 𝑇 of 𝐺 with the following properties:

• The depth of 𝑇 is no larger than ℓ − 1.

• The vertices in any level of 𝑇 induce a subgraph of 𝐺 with clique number at
most 𝜔 − 1.
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Proof. No vertex can share an edge with any ancestors in 𝑇 other than its parent,
since if it shared an edge with an ancestor higher than its parent then it would have
appeared at a higher level as a neighbour of the ancestor. This means a path from
the root down 𝑇 forms an induced path, and the depth of 𝑇 cannot be longer than
the longest induced path in 𝐺.

Consider two vertices 𝑤1 and 𝑤2 in the same level 𝑡 of the spanning tree 𝑇 . Then the
children of 𝑤1 cannot share any edges in 𝐺 with the children of 𝑤2. This is because
the children of 𝑤1 constitute a connected component of the subgraph of 𝐺 induced
by all vertices that are not in the first 𝑡 levels of 𝑇 . Armed with this observation,
consider a clique of size 𝜔 within a level of 𝑇 . When combined with the common
parent, this would form a clique of size 𝜔 + 1 in 𝐺, a contradiction. Thus the clique
number of any level of 𝑇 is at most 𝜔 − 1.

Finally, similar to breadth-first search or depth-first search, since each edge is
examined at most twice, the time complexity is 𝑂 ( |𝑉 | + |𝐸 |) = 𝑂 (𝑚2). □

Proof of Lemma 4.15. We can prove the theorem by induction on𝜔. LetA𝜔 denote
the coloring algorithm which applies to graphs of clique number 𝜔. When 𝜔 = 1,
there are no edges and there is an algorithm A1 which can color the graph using
a single color in 𝑂 (𝑚2) time. For the inductive step, assume there is a coloring
algorithm A𝜔−1 using ℓ𝜔−2 colors and runtime 𝑂 (𝑚2𝜔) for any graph of clique
number 𝜔 − 1 and longest induced path ℓ.

The coloring algorithmA𝜔 for graphs of clique number 𝜔 is as follows. First apply
the neighbour-first search algorithm to find spanning tree 𝑇 of 𝐺. Then for each
level of 𝑇 , apply A𝜔−1. For each level, we use a disjoint set of colors. Since there
are at most ℓ levels in the 𝑇 , the number of colors used by A𝜔 is at most ℓ𝜔−1 by
the induction hypothesis.

It remains to analyze the runtime of A𝜔. Say the neighbour-first search step has
runtime at most 𝐶𝑚2 in the worst case for some constant 𝐶. We will show that the
runtime of A𝜔 is at most 𝐶𝑚2𝜔. From the induction hypothesis, the applications
ofA𝜔−1 have total runtime

∑
𝑖 𝐶𝑚

2
𝑖
(𝜔 − 1) ≤ 𝐶𝑚2(𝜔 − 1), where 𝑚𝑖 is the number

of vertices in the 𝑖th layer. Here we used
∑
𝑖 𝑚

2
𝑖
≤

( ∑
𝑖 𝑚𝑖

)2
= 𝑚2. Thus the runtime

of A𝜔 is 𝐶𝑚2 + 𝐶𝑚2(𝜔 − 1) ≤ 𝐶𝑚2𝜔. □

4.3 Learning local fermionic operators
In this section we consider shadow tomography for local fermionic observables.
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A system of 𝑛 fermionic modes is associated with a set of 2𝑛 Majorana fermion
operators, which are mutually anticommuting Hermitian observables {𝛾𝑎}𝑎∈[2𝑛]
that act on a Hilbert space of dimension 2𝑛. We can represent them by a set of Pauli
operators satisfying

𝛾1, 𝛾2, . . . , 𝛾2𝑛 ∈ P (𝑛) 𝛾𝑎𝛾𝑏 + 𝛾𝑏𝛾𝑎 = 2𝛿𝑎𝑏1. (4.35)

There are a variety of specific choices (fermion-to-qubit mappings) that satisfy the
above, including the Jordan-Wigner mapping [JW28], the Bravyi-Kitaev mapping
[BK02], and the ternary tree mapping [Vla19; Jia+20a]. The latter two mappings
have the desirable property that each Majorana fermion operator is represented by a
Pauli operator of low weight 𝑂 (log 𝑛).

We are interested in 𝑘-body fermionic observables as defined in Chapter 4. We
write

Γ(𝑥) = 𝑖 |𝑥 |·( |𝑥 |−1)/2𝛾𝑥1
1 𝛾

𝑥2
2 . . . 𝛾

𝑥2𝑛
2𝑛 𝑥 ∈ {0, 1}2𝑛 (4.36)

for the Majorana monomials, and

F (𝑛)
𝑘

= {Γ(𝑥) : |𝑥 | = 2𝑘} (4.37)

for the set of 𝑘-body Majorana operators on 𝑛 fermionic modes.

In the case of 1-body observables there is a simple and practical algorithm for
coloring induced subgraphs of 𝐺 (F (𝑛)1 ) with bounded clique number.

Lemma 4.17. Let 𝐺′ be any induced subgraph of the commutation graph 𝐺 (F (𝑛)1 )
of 1-body fermionic observables, and let 𝜔 be the size of the largest clique in 𝐺′.
There is a classical algorithm with runtime 𝑂 (𝑛2𝜔) that computes a coloring of 𝐺′

with at most 𝜔 + 1 colors.

Proof. Let 𝐺′ = 𝐺 (S) be the subgraph of 𝐺 (F (𝑛)1 ) induced by some subset S ⊆
F (𝑛)1 of 1-body fermionic observables. Let 𝜔 be the maximum size of a clique in
𝐺′.

Consider an auxiliary graph 𝐻 (S) defined as follows. This graph 𝐻 (S) has 2𝑛
vertices labeled by the Majorana fermion operators {𝛾1, 𝛾2, . . . , 𝛾2𝑛}. For each
observable 𝑖𝛾𝑎𝛾𝑏 ∈ S, we include an edge {𝛾𝑎, 𝛾𝑏} in 𝐻 (S). Two elements
of S commute if and only if they do not share any Majorana fermion operators.
For example, 𝑖𝛾1𝛾2 anticommutes with 𝑖𝛾2𝛾3 but commutes with 𝑖𝛾3𝛾4. Thus
a commuting set of 1-body fermionic observables corresponds to a matching in
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𝐻 (S), and partitioning S into commuting sets corresponds to an edge coloring of
𝐻 (S).

Now observe that our graph of interest 𝐺′ is the line graph of 𝐻 (S). An edge
coloring of 𝐻 (S) gives a vertex coloring of 𝐺′. The edge coloring algorithm of
Misra and Gries [MG92] computes an edge-coloring of a graph 𝐻 using no more
than deg(𝐻) + 1 colors, where deg(𝐻) is the maximum degree of any vertex in 𝐻.
But the edges connecting to a single vertex in our graph 𝐻 (S) form a clique in 𝐺′,
so the degree of 𝐻 (S) is at most 𝜔. The runtime of the edge coloring algorithm is
asymptotically upper bounded by the number of vertices times the number of edges,
which in our case is 𝑂 (𝑛 · 𝑛𝜔). □

It is also possible to directly vertex color the given graph𝐺′ using Brooks’ theorem,
which states that the chromatic number of a graph is at most its maximum degree
+1, since a high degree vertex also yields a large clique. This argument yields a
slightly looser bound of 2𝜔.

We now prove Lemma 4.5, restated below.

Lemma 4.5. Let 𝑘 ≥ 1, and let 𝐺′ be any induced subgraph of the commutation
graph 𝐺 (F (𝑛)

𝑘
) of 𝑘-body fermionic observables, and let 𝜔 be the size of the largest

clique in 𝐺′. Then the fractional chromatic number of 𝐺′ satisfies

𝜒 𝑓 (𝐺′) ≤ 𝑝𝑘 (𝜔), (4.10)

where 𝑝𝑘 is a polynomial. Moreover, for any 𝑘 = 𝑂 (1) we can sample from a
fractional coloring of 𝐺′ with size 𝑝𝑘 (𝜔) using a classical algorithm with runtime
poly(𝑛). The polynomials for 𝑘 = 1, 2 are 𝑝1(𝜔) = 𝜔 + 1 and 𝑝2(𝜔) = 𝑂 (𝜔8).

Recall the definition of Majorana monomials from Equation (4.36). In the following
we shall use the commutation relations of these operators which we now derive.
Using Equation (4.2) we get

𝛾 𝑗Γ(𝑦) = (−1) |𝑦 |+𝑦 𝑗Γ(𝑦)𝛾 𝑗 𝑦 ∈ {0, 1}2𝑛 𝑗 ∈ [2𝑛] . (4.38)

Applying the above for all indices 𝑗 in the support of 𝑥 ∈ {0, 1}2𝑛 gives

Γ(𝑥)Γ(𝑦) = (−1) |𝑥 | |𝑦 |+𝑦·𝑥Γ(𝑦)Γ(𝑥) 𝑥, 𝑦 ∈ {0, 1}2𝑛. (4.39)
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Claim 4.1. Suppose 𝑥, 𝑦 ∈ {0, 1}2𝑛 are such that |𝑥 |, |𝑦 | are either both even, or
both odd. If 𝑥 𝑗 = 𝑦 𝑗 = 0 for some 𝑗 ∈ [2𝑛] then

[𝛾 𝑗Γ(𝑥), 𝛾 𝑗Γ(𝑦)] = 0 if and only if [Γ(𝑥), Γ(𝑦)] = 0. (4.40)

Proof. Follows directly from Equation (4.39). □

In our proof, it will be helpful to consider Majorana monomials of both odd and
even degree. Write

M (𝑛)𝑟 = {Γ(𝑥) : |𝑥 | = 𝑟, 𝑥 ∈ {0, 1}2𝑛} (4.41)

for the set of degree-𝑟 Majorana monomials, so thatM (𝑛)2𝑘 = F (𝑛)
𝑘

are the 𝑘-body
fermionic observables of interest.

Proof. The proof is by induction in 𝑟. Our inductive hypothesis is that, for any
induced subgraph 𝐻 of the commutation graph 𝐺 (M (𝑛)𝑟 ) of degree-𝑟 Majorana
monomials with largest clique of size at most 𝜔, we can sample from a fractional
coloring of 𝐻 with 𝑓𝑟 (𝜔) colors using a classical algorithm with runtime 𝑡𝑟 (𝑛) such
that 𝑡𝑟 (𝑛) = poly(𝑛) for any constant 𝑟 = 𝑂 (1). Here 𝑓𝑟 (𝜔) is a polynomial that we
determine below. Ultimately we are interested in the even values of 𝑟 and we have
𝑝𝑘 (𝜔) = 𝑓2𝑘 (𝜔) where 𝑝𝑘 is the polynomial in the statement of Lemma 4.5.

The base case is 𝑟 = 2. We saw in Lemma 4.17 that ifS ⊆ M (𝑛)2 and its commutation
graph𝐺 (S) has no cliques larger than𝜔, then𝐺 (S) can be colored with𝜔+1 colors
using a classical algorithm with runtime𝑂 (𝑛2𝜔) = 𝑂 (poly(𝑛)) since 𝜔 ≤ |M (𝑛)2 | =
𝑂 (𝑛2). Thus 𝑓2(𝜔) = 𝜔 + 1 and we can efficiently sample from the coloring by
selecting a color uniformly at random.

In the following two claims we handle the induction step separately for the odd and
even values of 𝑟.

Claim 4.2. Suppose 𝑟 ≥ 3 is odd. Then

𝑓𝑟 (𝜔) = 𝑟𝜔 𝑓𝑟−1(𝜔). (4.42)

Proof. Let 𝑟 ≥ 3 be odd, let 𝐺′ be an induced subgraph of 𝐺 (M (𝑛)𝑟 ), and suppose
the largest clique in𝐺′ has size at most𝜔. Let𝑉 ⊆ M (𝑛)𝑟 be the vertex set of𝐺′. Let
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Γ(𝑥1), Γ(𝑥2), . . . , Γ(𝑥𝐿) ∈ 𝑉 be a maximal set of pairwise anticommuting operators
in𝑉 . We can construct such a set by starting at any vertex of𝐺′ and greedily adding
vertices until this is no longer possible. By definition, this set is a clique in 𝐺′ and
therefore 𝐿 ≤ 𝜔.

Let 𝐼 ⊆ [2𝑛] be the set of all indices of Majoranas that appear in these operators.
Since each has weight 𝑟 , we have

|𝐼 | ≤ 𝑟𝜔. (4.43)

For convenience let us relabel the Majorana fermion operators so that 𝐼 = {1, 2, . . . , 𝑇}
where 𝑇 ≤ 𝑟𝜔. Then define

S𝑖 = {Γ(𝑧) ∈ 𝑉 : 𝑧𝑖 = 1, and 𝑧 𝑗 = 0 for all 1 ≤ 𝑗 ≤ 𝑖 − 1}. (4.44)

We now show that 𝑉 can be partitioned as

𝑉 = S1 ⊔ S2 ⊔ . . . ⊔ S𝑇 . (4.45)

By definition, the sets on the RHS are disjoint and each contained in 𝑉 so all we
need to show is that for any Γ(𝑦) ∈ 𝑉 there is some 𝑖 ∈ 𝑇 such that Γ(𝑦) ∈ S𝑖. So
let Γ(𝑦) ∈ 𝑉 be given. Since the set Γ(𝑥1), Γ(𝑥2), . . . , Γ(𝑥𝐿) ∈ 𝑉 is a maximal set
of pairwise anticommuting operators, we must have

[Γ(𝑦), Γ(𝑥 𝑗 )] = 0 for some 𝑗 ∈ [𝐿] . (4.46)

Since |𝑦 | = |𝑥 | = 𝑟 are both odd we see from Equation (4.39) that this implies
𝑦 · 𝑥 𝑗 ≠ 0. Therefore 𝑦𝑖 = 1 for some index 𝑖 ∈ {1, 2, . . . , 𝑇}. Let ℓ ∈ [𝑇] be the
smallest index such that 𝑦ℓ = 1. Then Γ(𝑦) ∈ Sℓ and we have shown 𝑉 can be
partitioned as in Equation (4.45).

Now for each 1 ≤ 𝑖 ≤ 𝑇 consider the commutation graph 𝐺 (S𝑖). Each operator
Γ(𝑧) ∈ S𝑖 has 𝑧𝑖 = 1. From Claim 4.1, the commutation graph of S𝑖 is therefore
unchanged if we flip 𝑧𝑖 ← 0 for all Γ(𝑧) ∈ S𝑖. Define

S′𝑖 = {Γ(𝑧 ⊕ 𝑒𝑖) : Γ(𝑧) ∈ S𝑖}. (4.47)

We have shown that the commutation graph 𝐺 (S𝑖) coincides with the commutation
graph 𝐺 (S′

𝑖
), where the set S′

𝑖
⊆ M (𝑛)

𝑟−1 only contains degree-(𝑟 − 1) Majorana
monomials. Moreover, 𝐺 (𝑉) does not contain any clique larger than 𝜔, so neither
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does its induced subgraph 𝐺 (S𝑖). Therefore 𝐺 (S′
𝑖
) does not contain any clique of

size greater than 𝜔.

By our inductive hypothesis, for each 1 ≤ 𝑖 ≤ 𝑇 , we can sample efficiently from a
fractional coloring of 𝐺 (S′

𝑖
) = 𝐺 (S𝑖) with size at most 𝑓𝑟−1(𝜔). Now let us define

a fractional coloring of 𝑉 in which we choose an index 𝑖 ∈ [𝑇] uniformly at random
and then sample an independent set in S𝑖 according to the fractional coloring of
𝐺 (S𝑖). Note that any independent set in 𝐺 (S𝑖) is also an independent set in 𝐺 (𝑉),
so this defines a valid fractional coloring. Moreover, the probability of any vertex
𝑢 ∈ 𝐺 (𝑉) being sampled is equal to the probability that we choose 𝑖 such that 𝑢 ∈ S𝑖
(this probability is 1/𝑇) times the probability that the sampled independent set of S𝑖
contains 𝑢 (this is at least 1/ 𝑓𝑟−1(𝜔) by our inductive hypothesis). This procedure
samples a fractional coloring of size

𝑇 · 𝑓𝑟−1(𝜔) ≤ 𝑟𝜔 · 𝑓𝑟−1(𝜔) (4.48)

as claimed. To sample from the fractional coloring, we need to first construct a
maximal set of pairwise anticommuting operators Γ(𝑥1), . . . , Γ(𝑥𝐿), from which
we can define the set 𝐼 and the partition Equation (4.45). As noted above, this step
can be performed by starting at an arbitrary vertex Γ(𝑥1) of 𝐺′ and then growing
the set one operator at a time until this is no longer possible. This step has poly(𝑛)
runtime because the graph has at most |M (𝑛)𝑟 | =

(2𝑛
𝑟

)
= poly(𝑛) vertices. The next

step is to choose an index 1 ≤ 𝑖 ≤ 𝑇 at random and sample an independent set of
S𝑖 uniformly at random using a fractional coloring of 𝐺 (S𝑖) which by our inductive
hypothesis can be done in poly(𝑛) time. □

Claim 4.3. Suppose 𝑟 ≥ 4 is even. Then

𝑓𝑟 (𝜔) = ( 𝑓𝑟−1(𝜔))𝑟 . (4.49)

Proof. Let 𝑟 ≥ 4 be even, let 𝐺′ be an induced subgraph of 𝐺 (M (𝑛)𝑟 ), and let 𝜔 be
the size of the largest clique in 𝐺′. Let 𝑉 ⊆ M (𝑛)𝑟 be the vertex set of 𝐺′. For each
1 ≤ 𝑖 ≤ 2𝑛, define

𝑊𝑖 = {Γ(𝑥) ∈ 𝑉 : 𝑥𝑖 = 1}. (4.50)

Note any clique in 𝐺 (𝑊𝑖) has size at most 𝜔. From Claim 4.1, the commutation
graph of𝑊𝑖 is unchanged if we flip 𝑧𝑖 ← 0 for all Γ(𝑧) ∈ 𝑊𝑖. Define

𝑊′𝑖 = {Γ(𝑧 ⊕ 𝑒𝑖) : Γ(𝑧) ∈ 𝑊𝑖}. (4.51)



113

Then 𝐺 (𝑊𝑖) = 𝐺 (𝑊′𝑖 ) and any clique in 𝐺 (𝑊′
𝑖
) has size at most 𝜔. Moreover, 𝑊′

𝑖

is a set of degree-(𝑟 − 1) Majorana monomials, and by our inductive hypothesis we
can efficiently sample a coloring of 𝐺 (𝑊′

𝑖
) with size at most 𝑓𝑟−1(𝜔). Let 𝑞𝑖 be the

corresponding fractional coloring of𝑊𝑖, for each 1 ≤ 𝑖 ≤ 2𝑛.

Now let us randomly sample a set Ω ⊆ 𝑉 as follows. First, select independent
sets 𝐼1 ∼ 𝑞1, 𝐼2 ∼ 𝑞2, . . . , 𝐼2𝑛 ∼ 𝑞2𝑛 according to the fractional colorings described
above. Then let

Ω = {Γ(𝑥) ∈ 𝑉 : Γ(𝑥) ∈ 𝐼 𝑗 for all 𝑗 ∈ [2𝑛] such that 𝑥 𝑗 = 1}. (4.52)

Since |𝑥 | = 𝑟 for all Γ(𝑥) ∈ 𝑉 , we have

Pr(Γ(𝑥) ∈ Ω) ≥
(

1
𝑓𝑟−1(𝜔)

)𝑟
Γ(𝑥) ∈ 𝑉. (4.53)

Now let us show that Ω is an independent set in 𝑉 ; this implies that the above
procedure samples from a fractional coloring of V with ( 𝑓𝑟−1(𝜔))𝑟 colors. So
suppose Γ(𝑥), Γ(𝑦) ∈ Ω. We will show that Γ(𝑥), Γ(𝑦) commute; equivalently,
there is no edge between the corresponding vertices in 𝐺′. First suppose 𝑥 ∩ 𝑦 = ∅.
In this case, since |𝑥 | = |𝑦 | = 𝑟 are both even, it follows directly that [Γ(𝑥), Γ(𝑦)] = 0.
If on the other hand 𝑥 𝑗 = 𝑦 𝑗 = 1 for some 𝑗 ∈ [2𝑛], Then Γ(𝑥), Γ(𝑦) ∈ 𝑊 𝑗 ∩Ω. But
𝑊 𝑗 ∩ Ω ⊆ 𝐼 𝑗 is an independent set in the commutation graph of 𝑊 𝑗 , and therefore
[Γ(𝑥), Γ(𝑦)] = 0.

The algorithm we have described above only involves identifying the subsets of
vertices 𝑊𝑖 for 1 ≤ 𝑖 ≤ 2𝑛 (which can be done in linear time in the number of
vertices of 𝐺′, which is upper bounded polynomially in 𝑛), and then using 𝑂 (𝑛)
calls to the subroutine for sampling fractional colorings of commutation graphs
of degree-(𝑟 − 1) Majorana monomials with clique number at most 𝜔. Since this
subroutine has poly(𝑛) runtime by our inductive hypothesis, so does the algorithm
described above. □

Putting together Claim 4.2 and Claim 4.3 and Lemma 4.17 we see that the sizes
𝑓𝑟 (𝜔) of the fractional colorings are polynomial functions of 𝜔 with degree that
depends only on 𝑟. For even values of 𝑟 the polynomials 𝑝𝑘 (𝜔) = 𝑓2𝑘 (𝜔) satisfy
the recurrence

𝑝1(𝜔) = 𝜔 + 1 and 𝑝𝑘 (𝜔) = ((2𝑘 − 1)𝜔𝑝𝑘−1(𝜔))2𝑘 𝑘 ≥ 2. (4.54)

For the 2-body and 3-body fermionic observables we get

𝑝2(𝜔) = 𝑂 (𝜔8) , 𝑝3(𝜔) = 𝑂 (𝜔54). (4.55)
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In general, we have the upper bound

𝑝𝑘 (𝜔) ≤ (2𝑘𝜔) (2𝑘)
𝑘+1
. (4.56)

□
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C h a p t e r 5

LEARNING BOSONIC OBSERVABLES

Efficiently extracting information from quantum states is a central task in quantum
information science. It is crucial in physical experiments and will be critical in
simulations run on future quantum computers. Often learning the details of an entire
quantum state is not required, but rather we would like to extract the expectation
values of a set of interesting observables.

Naively, measurements of many properties of quantum states are constrained by
the uncertainty principle for non-commuting operators. Additionally, tomographic
techniques for exactly learning a quantum state up to a stringent standard like
worst case observable error (or trace distance) are known to scale exponentially
in the number of qubits or polynomially in the size of the Hilbert space [OW16;
AA23]. Surprisingly however, the development of shadow tomography techniques
demonstrated that one can learn a set of expectation values of even non-commuting
observables with high probability with a shockingly small number of samples,
scaling only polylogarithmically in the number of observables [Aar18; Aar+18;
AR19; BO21]. While powerful, the general schemes suffer from two large caveats:
they are computationally inefficient, and they require immense quantum memories,
sometimes millions of times the size of the original state, to enable huge entangled
measurements. Classical shadows [HKP20] were developed to circumvent both of
these limitations—they are computationally efficient, and require only single-copy
measurements for a wide class of useful observables. However, classical shadows
place limitations on the sets of observables that are available, for example some
schemes are only able to learn observables which are either local or low rank.

It is now known that many of the limitations of classical shadows performed only
on single copies at a time are fundamental. For general quantum states, certain
collections of observables can only be learned with a logarithmic number of samples
by exploiting entangled measurements across multiple copies of a state [Che+22;
ACQ22; Hua+22]. This was shown to be true even for some of the simplest large
sets of observables, namely Pauli operators on 𝑛 qubits. Phrased a different way,
the ability to make entangled measurements on copies of a quantum state can
grant exponentially more power in learning tasks. Since such schemes require a
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• Large quantum memory
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• Exponentially many samples

Figure 5.1: A cartoon of the techniques and novel resources in this work. Here we
quantify the advantage endowed by minimal quantum memories containing 𝜌 ⊗ 𝜌∗
in learning about natural properties of quantum states coming from quantum sensors
or digital quantum simulations. (Left) The resources 𝜌 and 𝜌∗ are available from
both computational sources such as a known quantum circuit or natural sources
like certain quantum sensor setups. (Right) This resource provides an exponential
advantage in queries and computation for some learning tasks when only a minimal
quantum memory (or constant number of copies) is available, as in most devices in
the foreseeable future. Without 𝜌∗, one needs either a large quantum memory or
exponentially many samples. Several applications of this technique are introduced
and we believe this will motivate the development of further applications of minimal
quantum memories.

quantum memory to store simultaneous copies of an unknown state and this type of
advantage cannot be overcome even by an arbitrary amount of classical computation
when samples are limited, this constitutes a promising future application of quantum
computers. It was demonstrated experimentally in Ref. [Hua+22] that the advantage
persists even for small numbers of qubits and in the presence of noise. Importantly,
Ref. [Hua+22] showed that exponential advantages are available using only 2 copies
at a time of the state in quantum memory, or an example of a minimal quantum
memory for which the number of copies required is independent of the learning
task. This demonstrated the existence of learning tasks for which extremely limited
quantum resources could provide huge advantages, in contrast to the need of general
shadow tomography to have memories that could be millions of times larger than
the system of interest even when tasked with estimating observables to a precision
of only 10−3.

In this chapter, we explore a novel resource for learning which is able to grant
exponential advantages using only a minimal quantum memory (space for only 2
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copies)—the ability to make joint measurements on an unknown quantum state with
its complex conjugate, denoted 𝜌 ⊗ 𝜌∗. We give a learning task that can be achieved
with low sample complexity using measurements on 𝜌 ⊗ 𝜌∗. In contrast, without
access to 𝜌∗, the same learning task requires exponentially more measurements,
unless the size of the quantum memory is allowed to expand to practically unrealistic
sizes as a function of the learning task. It is known that quantum memory access to 𝜌
and 𝜌∗ can provide large advantages for learning tasks [Mon17; GNW21; Gre+23;
WCL23; HBK23; HLK23; MM22; MA23]. However, to the knowledge of the
authors this is the first time such an advantage has been demonstrated for a shadow
tomography task. We prove a lower bound showing that that copies of 𝜌∗ and 𝜌
without quantum memory are also insufficient for the learning task.

Our exponential separation holds for a natural and physically motivated set of ob-
servables. The setting is a 𝑑-dimensional Hilbert space that discretizes position and
momentum space with a natural limit of a continuous bosonic mode, and the opera-
tors we learn if we take the infinite dimensional limit are the bosonic displacement
operators [Bra+23]. These operators more naturally correspond to real-space arrays
of quantum sensors. Recent developments in reconfigurable atom arrays [Blu+24]
may provide a fruitful test bed for applications in a sensing context for example,
especially given their wide bandwidth and sensitivity in other applications [OM99;
Sed+12; Hol+17; Wad+17; Sim+21]. In addition to the learning algorithm using
𝜌 ⊗ 𝜌∗, we develop a version of classical shadows tailored to the 𝑑-dimensional
bosonic setting. It uses a uniform distribution over the generalized 𝑑-dimensional
Clifford group to make single-copy measurements with good predictive power. De-
spite the more limited power of single copies, we identify a wide class of quantities
that are efficiently learnable.

Let’s begin with some background on the operators and states that we aim to learn,
and then state our main theorems showing the exponential power of access to the
complex conjugate resource in a minimal quantum memory. Shifts in discrete
position and momentum space are given by the 𝑑-dimensional clock and shift
operators, 𝑍 and 𝑋 , which are generalizations of the qubit Pauli operators to 𝑑
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dimensions.

𝑋 =

©­­­­­«
0 0 . . . 0 1
1 0 . . . 0 0
...
...
. . .

...
...

0 0 . . . 1 0

ª®®®®®¬
, (5.1)

𝑍 =

©­­­­­«
1 0 . . . 0
0 𝜔 . . . 0
...

...
. . .

...

0 0 . . . 𝜔𝑑−1

ª®®®®®¬
, (5.2)

where 𝜔 := 𝑒𝑖2𝜋/𝑑 . The operators map naturally to a 1D discrete line in real
space, and can be interchanged via the 𝑑-dimensional quantum Fourier transform.
Combined position and momentum shifts may be lumped together into displacement
operators 𝐷𝑞,𝑝, defined briefly as

𝐷𝑞,𝑝 = 𝑒
𝑖𝜋𝑞𝑝/𝑑𝑋𝑞𝑍 𝑝 (5.3)

and in more detail in Section 5.1.

Definition 5.1. The displacement amplitudes of a 𝑑-dimensional state 𝜌 are

𝑦𝑞,𝑝 = Tr
(
𝐷𝑞,𝑝𝜌

)
. (5.4)

The displacement operators may be used to form a basis for quantum states, and
there are 𝑑2 displacement amplitudes.

The central task we consider in this chapter is to estimate all 𝑦𝑞,𝑝 to precision 𝜀
given copies of an unknown quantum state 𝜌.

Task 5.2. (Informal) Given access to a quantum state 𝜌, estimate all the displace-
ment amplitudes {𝑦𝑞,𝑝} to precision 𝜀 with high probability.

Our first result is a sample complexity lower bound showing the minimal size of
a conventional quantum memory required to efficiently perform this task without
access to the resource 𝜌∗. We assume we can measure 𝐾 copies 𝜌⊗𝐾 at a time,
possibly in entangled bases, but allow no access to 𝜌∗.

Theorem 5.1. Let 𝑑 be the dimension of the Hilbert space. Assume 𝑑 is prime. Any
protocol which learns the magnitudes of all displacement amplitudes to precision
𝜀 with probability 2/3 by measuring copies of 𝜌⊗𝐾 for 𝐾 ≤ 1/(12𝜀) requires
Ω(
√
𝑑/(𝐾2𝜀2)) measurements.
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The full proof of this is given in Section 5.3. Using a quantum memory with 𝜌⊗𝐾 ,
performing the learning task whilst consuming a number of copies scaling only as
polylog(𝑑) is impossible, even if𝐾 grows as large as 1/(12𝜀). Hence it is impossible
to efficiently perform the task with a minimal quantum memory. Our lower bound
techniques do not strictly cover the case when 𝑑 is not prime. However, one would
hope that a successful learning protocol would function equally well for any 𝑑;
Theorem 5.1 is sufficient to rule out protocols which work for all 𝑑.

This negative result may lead one to conclude that quantum memories are not as
powerful as one might hope for physical learning tasks, but there is a resolution
to this challenge which reveals an interesting subtlety in the power of quantum
computing in analyzing quantum data. While a quantum memory containing 𝐾
states 𝜌⊗𝐾 is insufficient, measurements on the state 𝜌 ⊗ 𝜌∗ are able to learn the
displacement amplitudes of 𝜌 up to a sign. Not only does the learning algorithm
using 𝜌 ⊗ 𝜌∗ have logarithmic sample complexity, but the algorithm is very simple
and computationally efficient. Note that we use the term “up to a sign” to convey
that because these are unitary but not always Hermitian operators, they are complex
valued and we are able to learn some, but not all, phase information about that value
with this procedure. With the detailed proof and algorithm given in Section 5.2, we
show

Theorem 5.2. There is an algorithm which can learn all displacement amplitudes
up to a possible minus sign, with precision 𝜀, using O(log 𝑑/𝜀4) samples. The
algorithm makes measurements only on copies of 𝜌 ⊗ 𝜌∗ contained in a minimal
quantum memory. Moreover, the algorithm is computationally efficient.

When viewed together, these theorems highlight the exponential advantage of using
𝜌∗ as a resource in learning tasks. This naturally leads one to wonder whether the
state 𝜌∗ has this power in the single copy setting, but indeed lower bounds rule this
out and show that entangled measurements are also a necessary component of the
learning algorithm in Theorem 5.2. Our following theorem articulates this more
precisely.

Theorem 5.3. Let 𝑑 be the dimension of the Hilbert space. Any single-copy protocol
which learns the magnitudes of all displacement amplitudes to precision 𝜀 with
probability 2/3 requires a number of copies scaling as Ω(𝑑/𝜀2). This holds even if
the protocol has access to single-copy measurements of both 𝜌 and 𝜌∗.



120

With the detailed proof given in Section 5.3, this result reiterates the conclusion that
entangled measurements using quantum memories have dramatically more power
than those that can process only a single copy at a time, and indeed that 𝜌∗ inside a
minimal quantum memory is a powerful and novel resource.

Our algorithm to learn the displacement amplitudes up to a sign using 𝜌 ⊗ 𝜌∗ is
inspired by the Pauli shadow tomography algorithm in [HKP21]. The difficulty
of measuring many Paulis with single-copy measurements arises because they are
highly non-commuting, and so any particular measurement basis will only give
information about a small subset of Paulis. The insight to get around this using
two-copy measurements is as follows. When two Paulis 𝑃 and 𝑄 do not commute,
they anticommute 𝑃𝑄 = −𝑄𝑃. Thus 𝑃 ⊗ 𝑃 always commutes with 𝑄 ⊗ 𝑄, and the
set of operators of the form 𝑃 ⊗ 𝑃 on two registers mutually commute for all Paulis
𝑃. This means there is a simultaneous eigenbasis of all 𝑃 ⊗ 𝑃 which is entangled
across the two registers; it turns out that this eigenbasis is the Bell basis on each pair
of qubits. Measuring 𝜌 ⊗ 𝜌 in the Bell basis then allows simultaneous estimation of
all Tr (𝑃 ⊗ 𝑃) (𝜌 ⊗ 𝜌) = (Tr 𝑃𝜌)2, which gives estimates of all magnitudes | Tr 𝑃𝜌 |.

Applying this trick to the displacement operators requires some care, and reveals
why the complex conjugate state 𝜌∗ is important. Displacement operators 𝐷𝑞,𝑝 obey
the commutation relation

𝐷𝑞′,𝑝′𝐷𝑞,𝑝 = 𝑒
𝑖2𝜋(𝑞𝑝′−𝑞′𝑝)/𝑑𝐷𝑞,𝑝𝐷𝑞′,𝑝′ . (5.5)

Unlike the Pauli case, it is not true that 𝐷𝑞,𝑝 ⊗ 𝐷𝑞,𝑝 mutually commute for all 𝑞, 𝑝,
since the complex phase acquired from braiding the operators does not square to 1
in general. However, the operators 𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,𝑝 do mutually commute, since the
complex phase in the commutation relation will cancel with its complex conjugate.
As in the Pauli case, this implies there is an entangled simultaneous eigenbasis of
all 𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,𝑝. This turns out to be the generalized Bell basis, which can be
accessed via the mod-𝑑 quantum fourier transform and a controlled shift. If we
measure 𝜌 ⊗ 𝜌 in the generalized Bell basis, we can derive estimates of all quantities
of the form Tr (𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,𝑝) (𝜌 ⊗ 𝜌). However, this does not give us information
about Tr𝐷𝑞,𝑝𝜌. Rather, if we measure 𝜌 ⊗ 𝜌∗ in the generalized Bell basis, we get
estimates of the quantities

Tr
(
(𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,𝑝) (𝜌 ⊗ 𝜌∗)

)
= Tr

(
𝐷𝑞,𝑝𝜌

)
Tr

(
𝐷𝑇𝑞,𝑝𝜌

∗
)

= Tr
(
𝐷𝑞,𝑝𝜌

)2
= 𝑦2

𝑞,𝑝 (5.6)
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from which we can learn all displacement amplitudes 𝑦𝑞,𝑝 up to a ± sign.

Finally, we highlight two potential applications of this chapter. As a first application,
we consider cases where an explicit quantum circuit is known for a state we wish to
study. When conducting a physical experiment, we are often preparing some natural
quantum state and subsequently performing measurements. In quantum simulation,
we aim to design quantum algorithms that simulate Nature, so that the quantum
algorithm prepares the physical quantum state of interest. One may wonder, is there
any advantage to having a quantum algorithm which prepares state 𝜌, rather than
accessing copies of 𝜌 through an experimental setup? In particular, are there natural
learning tasks where performing quantum simulation gives a big benefit?

Task 5.2 answers this question in the affirmative. While other polynomial advan-
tages to having access to the source code are known [KO23], the learning task here
demonstrates an exponential advantage over black box access. In general experi-
mental setups, it can sometimes be unclear how to access the complex conjugate 𝜌∗

of the state of interest 𝜌. However, if we have a quantum algorithm which prepares
𝜌 we can easily access 𝜌∗ on our quantum computer—we simply complex conjugate
the quantum algorithm itself.

More concretely, suppose unitary𝑈 prepares state 𝜌 via 𝜌 = Tr𝑆
(
𝑈 |0...0⟩⟨0...0|𝑈†

)
,

and we have an efficient quantum circuit for𝑈. Then by complex conjugating every
gate in the circuit we can implement unitary 𝑈∗, which will prepare state 𝜌∗ via
𝜌∗ = Tr𝑆

(
𝑈∗ |0...0⟩⟨0...0|𝑈𝑇

)
. Theorem 5.1 and Theorem 5.2 then exhibit an

exponential cost saving for Task 5.2 from having a description of a quantum circuit
which prepares a quantum state of interest 𝜌.

As a second category of applications, we consider unknown quantum states collected
from nature. For example, these states could be gathered via quantum sensors or
transduced from other quantum systems. The ability to learn about unknown states 𝜌
with exponentially fewer samples using a minimal quantum memory with only𝐾 = 2
prompted experimental demonstrations of this idea showing they were robust even
with noisy operations today [Hua+22]. Despite these promising results, connecting
these advantages to existing quantum sensor states today has been challenging, as
many quantum sensors today are single qubit, ensembles of single qubits, stretched
single qubits like GHZ states, or cavity modes [DRC17].

In contrast to the collection of qubit case, the operators considered in 𝑑-dimensions
here connect naturally with quantum sensor arrays in regular spatial arrangements
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with connections to applications like very long baseline interferometry enabled
by quantum communication [GJC12]. The displacement operators are a natural
description of discrete position and momentum for real-space arrays, especially in a
quantum regime where few excitations are expected and background thermal noise
is high. For these scenarios, we argue that one way to view the results here is
as a specialized form of mixedness testing, where for a natural class of signals,
exponentially fewer samples are required to detect the presence of the signal when
combined with a sea of background noise. For applications like detection of radio
signals as in NMR, it is common for an infinite temperature background to be
quite strong, and this may find applications in that area. These results provide a
compelling setting for which exponential advantage in signal detection is possible
with quantum memory.

5.1 Background on bosonic systems
Displacement operators
Given a 𝑑-dimensional quantum system C𝑑 with basis {|0⟩, . . . , |𝑑 − 1⟩}, we define
the operators 𝑋 and 𝑍 by

𝑋 : | 𝑗⟩ → | 𝑗 + 1⟩ (5.7)

𝑍 : | 𝑗⟩ → 𝜔 𝑗 | 𝑗⟩. (5.8)

Here and throughout, the addition inside the ket is modulo 𝑑, and

𝜔 := 𝑒𝑖2𝜋/𝑑 . (5.9)

The matrix representations of 𝑋 and 𝑍 are

𝑋 =

©­­­­­­­­­­«

0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . 1 0

ª®®®®®®®®®®¬
, (5.10)

𝑍 =

©­­­­­­­­«

1 0 0 . . . 0
0 𝜔 0 . . . 0
0 0 𝜔2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 𝜔𝑑−1

ª®®®®®®®®¬
. (5.11)
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𝑋, 𝑍 are traceless and unitary but not Hermitian in general. 𝑋 is a shift rotation,
generated by the discrete momentum operator, and 𝑍 is a phase rotation, generated
by the discrete position operator. For 𝑑 = 2, 𝑋 and 𝑍 coincide with the usual Pauli
matrices, and in this case they are in fact Hermitian. 𝑋, 𝑍 obey the commutation
relation

𝑍𝑋 = 𝜔𝑋𝑍

=⇒ 𝑍 𝑝𝑋𝑞 = 𝜔𝑞𝑝𝑋𝑞𝑍 𝑝 . (5.12)

Define the displacement operator 𝐷𝑞,𝑝 by

𝐷𝑞,𝑝 = 𝑒
𝑖𝜋𝑞𝑝/𝑑𝑋𝑞𝑍 𝑝 . (5.13)

𝐷𝑞,𝑝 acts on basis vectors by

𝐷𝑞,𝑝 : | 𝑗⟩ → 𝑒𝑖𝜋(𝑞+2 𝑗)𝑝/𝑑 | 𝑗 + 𝑞⟩. (5.14)

𝐷𝑞,𝑝 is a unitary which can be interpreted as shifting by the vector (𝑞, 𝑝) in discrete
position-momentum phase space.

Proposition 5.4. The displacement operators have properties

𝐷−1
𝑞,𝑝 = 𝐷

†
𝑞,𝑝 = 𝐷−𝑞,−𝑝 (5.15)

𝐷∗𝑞,𝑝 = 𝐷𝑞,−𝑝 (5.16)

𝐷𝑇𝑞,𝑝 = 𝐷−𝑞,𝑝 (5.17)

𝐷𝑞′,𝑝′𝐷𝑞,𝑝 = 𝑒
𝑖2𝜋(𝑞𝑝′−𝑞′𝑝)/𝑑𝐷𝑞,𝑝𝐷𝑞′,𝑝′ (5.18)

𝐷𝑘
𝑞,𝑝 = 𝐷𝑘𝑞,𝑘 𝑝 (5.19)

Proposition 5.5. {𝐷𝑞,𝑝} form a basis of the (𝑑× 𝑑)-dimensional space of operators
on C𝑑 . Moreover, they are orthogonal in the Hilbert-Schmidt inner product.

Tr
(
𝐷†𝑞,𝑝𝐷𝑞′,𝑝′

)
= 𝑑 · 𝛿𝑞,𝑞′𝛿𝑝,𝑝′ . (5.20)

Proposition 5.5 lets us decompose any 𝑑-dimensional density matrix 𝜌 as

𝜌 =
1
𝑑

∑︁
𝑞,𝑝

Tr
(
𝐷𝑞,𝑝𝜌

)
𝐷†𝑞,𝑝 . (5.21)

This can be viewed as the 𝑑-dimensional analog of the Bloch vector representation

𝜌 =
1
𝑑

(
1 +

∑︁
(𝑞,𝑝)≠(0,0)

𝑦𝑞,𝑝𝐷
†
𝑞,𝑝

)
, 𝑦𝑞,𝑝 = Tr

(
𝐷𝑞,𝑝𝜌

)
. (5.22)
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Bosonic limit 𝑑 →∞
For an overview of continuous bosonic modes, see [Bra+23].

As 𝑑 increases, the 𝑑-dimensional system described above forms an increasingly
good discrete approximation to an infinite-dimensional continuous bosonic mode.
To formalize this, let’s set

𝑥 =

√︂
𝜋

𝑑
(𝑞, 𝑝). (5.23)

𝑥 lives on a lattice with spacing ∼ 1/
√
𝑑 and size ∼

√
𝑑 with periodic boundary

conditions. As 𝑑 goes to infinity, 𝑥 becomes a continuous phase space variable in
the plane.

For the quantum harmonic oscillator with frequency𝜔 and mass𝑚, the characteristic
length and momentum scales are

√︁
ℏ/𝑚𝜔 and

√
ℏ𝑚𝜔 respectively. Thus if we can

measure the position to precision 𝛿, this is effectively measuring the particle on a
discrete lattice with

𝑑 ∼ ℏ

𝑚𝜔𝛿2 . (5.24)

The analog of Proposition 5.5 in the continuous limit is

Tr𝐷𝑥𝐷𝑥′ = 𝜋𝛿
2(𝑥 − 𝑥′) (5.25)

which leads to the infinite-dimensional Bloch representation

𝜌 =
1
𝜋

∫
[𝑑2𝑥]𝑦𝑥𝐷†𝑥 , 𝑦𝑥 = Tr (𝐷𝑥𝜌) . (5.26)

𝐷𝑥 represents a shift in phase plane by 𝑥. The commutation relation Equation (5.18)
becomes

𝐷𝑥′𝐷𝑥 = 𝑒
𝑖2𝑥𝑇 𝐽𝑥′𝐷𝑥𝐷𝑥′ , (5.27)

where 𝐽 is the symplectic form, defined by

𝐽 =

(
0 1
−1 0

)
. (5.28)

If we have 𝑛 bosonic modes, the phase space variable becomes

®𝑥 = ( ®𝑞, ®𝑝) = (𝑞1, . . . , 𝑞𝑛, 𝑝1, . . . , 𝑝𝑛). (5.29)
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Gaussian operations
Gaussian unitaries can be defined in three equivalent ways:

• They are the normalizer of the Heisenberg-Weyl group. That is, they conjugate
displacement operators to themselves.

• They are symplectic transformations of phase space. (See Equation (5.31).)

• They are generated by Hamiltonians quadratic in position and momentum
operators.

A matrix 𝑆 ∈ R2𝑛×2𝑛 is symplectic if

𝑆𝐽𝑆𝑇 = 𝐽 , 𝐽 =

(
0 𝐼𝑛

−𝐼𝑛 0

)
. (5.30)

𝐽 is the symplectic form. Denote the set of symplectic matrices Sp(2𝑛).

For every symplectic 𝑆 ∈ Sp(2𝑛), there is a corresponding Gaussian unitary 𝑈𝑆 on
𝑛 bosonic modes. This acts on the position and momentum operators via

𝑈
†
𝑆
®𝑥𝑈𝑆 = 𝑆®𝑥. (5.31)

The adjoint action of a Gaussian unitary on the displacement operators is

𝑈
†
𝑆
𝐷 (®𝑥)𝑈𝑆 = 𝐷 (𝑆−1®𝑥). (5.32)

Note that for a single mode, the symplectic condition 𝑆𝐽𝑆𝑇 = 𝐽 simply becomes
det 𝑆 = 1. Gaussian unitaries are the infinite-dimensional version of Clifford oper-
ations.

5.2 Learning displacement amplitudes
Definition 5.3. The displacement amplitudes of a 𝑑-dimensional state 𝜌 are

𝑦𝑞,𝑝 = Tr
(
𝐷𝑞,𝑝𝜌

)
. (5.33)

Note however that the coefficients 𝑦𝑞,𝑝 are now complex in general, since 𝐷𝑞,𝑝 are
not always Hermitian. The Hermiticity of 𝜌 is reflected in the relation

𝑦∗𝑞,𝑝 = 𝑦−𝑞,−𝑝 . (5.34)

Given copies of a 𝑑-dimensional state and its conjugate 𝜌 ⊗ 𝜌∗, the first phase of
our learning algorithm will aim to learn the displacement amplitudes {±𝑦𝑞,𝑝} up to
a sign ±. The second phase will use entangled measurements across a few more
copies to resolve the signs.
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Estimating displacement amplitudes up to a sign
Using commutation relation Equation (5.18), it can be checked that the following
operators mutually commute when acting on two systems C𝑑 ⊗ C𝑑:

{𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,𝑝}. (5.35)

This suggests that we can measure two systems in the joint eigenbasis of these
operators. If we placed 𝜌 ⊗ 𝜌∗ in the two systems for some 𝑑-dimensional state 𝜌,
we would have

Tr
(
(𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,𝑝) (𝜌 ⊗ 𝜌∗)

)
= Tr

(
𝐷𝑞,𝑝𝜌

)
Tr

(
𝐷𝑇𝑞,𝑝𝜌

∗
)

= Tr
(
𝐷𝑞,𝑝𝜌

)2
= 𝑦2

𝑞,𝑝 . (5.36)

Here we used Proposition 5.4.

We now construct the desired eigenbasis. It will form a 𝑑-dimensional generalization
of the Bell basis on 2 qubits. Define

|Φ0,0⟩ =
1
√
𝑑

∑︁
𝑗

| 𝑗⟩| − 𝑗⟩ (5.37)

|Φ𝑎,𝑏⟩ = (𝑋𝑎𝑍𝑏 ⊗ 1) |Φ0,0⟩

=
1
√
𝑑

∑︁
𝑗

𝑒𝑖2𝜋𝑏 𝑗/𝑑 | 𝑗 + 𝑎⟩| − 𝑗⟩. (5.38)

It can be checked that {|Φ𝑎,𝑏⟩} forms an orthonormal basis ofC𝑑⊗C𝑑 . Furthermore,
we can calculate

(𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,𝑝) |Φ𝑎,𝑏⟩ = 𝑒𝑖2𝜋(𝑎𝑝−𝑏𝑞)/𝑑 |Φ𝑎,𝑏⟩. (5.39)
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Algorithm 2 Learning displacement amplitudes up to a sign.
Input:

• A list of 𝑀 displacement indices S ∈ Z2
𝑑
, |S| = 𝑀 .

• Precision 𝜀.

• 𝑁 copies of 𝜌 ⊗ 𝜌∗, where 𝜌 is an unknown quantum state in 𝑑 dimensions.

Output: Estimates 𝑢̂𝑞,𝑝 for each (𝑞, 𝑝) ∈ S satisfying | ± 𝑢̂𝑞,𝑝 − 𝑦𝑞,𝑝 | ≤ 𝜀 for one
of the choices of sign ±.

Algorithm:

1. Measure each copy of 𝜌 ⊗ 𝜌∗ in the basis {|Φ𝑎,𝑏⟩}, receiving outcomes
{(𝑎 (𝑘) , 𝑏 (𝑘))}𝑁

𝑘=1.

2. Now given (𝑞, 𝑝) ∈ S, compute

𝑣̂𝑞,𝑝 =
1
𝑁

𝑁∑︁
𝑘=1

exp
(
𝑖2𝜋(𝑎 (𝑘) 𝑝 − 𝑏 (𝑘)𝑞)/𝑑

)
. (5.40)

3. If |𝑣̂𝑞,𝑝 | ≤ 2
3𝜀

2, output 𝑢̂𝑞,𝑝 = 0.

4. Else output 𝑢̂𝑞,𝑝 =
√︁
𝑣̂𝑞,𝑝, choosing the primary square root without loss of

generality.

Theorem 5.6. Algorithm 2 succeeds with high probability using 𝑁 = O(log𝑀/𝜀4)
copies of 𝜌 ⊗ 𝜌∗.

Proof. Suppose we measure 𝜌 ⊗ 𝜌∗ in the basis {|Φ𝑎,𝑏⟩}, and get the distribution
(𝑎, 𝑏) ∼ P. From Equation (5.36) and Equation (5.39), we can construct an
estimator for 𝑦2

𝑞,𝑝.

𝑦2
𝑞,𝑝 = Tr

(
(𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,𝑝) (𝜌 ⊗ 𝜌∗)

)
= E(𝑎,𝑏)∼P Tr

(
(𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,𝑝) |Φ𝑎,𝑏⟩⟨Φ𝑎,𝑏 |

)
= E(𝑎,𝑏)∼P exp (𝑖2𝜋(𝑎𝑝 − 𝑏𝑞)/𝑑) . (5.41)

Applying Hoeffding’s inequality in the complex plane tells us that with 𝑁 =

O(log𝑀/𝜀4) copies, ��𝑣̂𝑞,𝑝 − 𝑦2
𝑞,𝑝

�� ≤ 1
3
𝜀2 (5.42)

for any 𝑀 displacement operators 𝐷𝑞,𝑝 with high probability.
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Case 1: |𝑣̂𝑞,𝑝 | ≤ 2
3𝜀

2. Then with high probability

|𝑦2
𝑞,𝑝 | ≤ |𝑣̂𝑞,𝑝 | + |𝑣̂𝑞,𝑝 − 𝑦2

𝑞,𝑝 | ≤
2
3
𝜀2 + 1

3
𝜀2 = 𝜀2 =⇒ |𝑦𝑞,𝑝 | ≤ 𝜀 (5.43)

and the estimate 𝑢̂𝑞,𝑝 = 0 satisfies |𝑢̂𝑞,𝑝 − 𝑦𝑞,𝑝 | ≤ 𝜀.

Case 2: |𝑣̂𝑞,𝑝 | > 2
3𝜀

2. Then |𝑢̂𝑞,𝑝 | >
√

2√
3
𝜀. Negating 𝑢̂𝑞,𝑝 if necessary, suppose we

choose the correct hemisphere for 𝑢̂𝑞,𝑝. This guarantees that

|𝑢̂𝑞,𝑝 + 𝑦𝑞,𝑝 | ≥ |𝑢̂𝑞,𝑝 | >
√

2
√

3
𝜀. (5.44)

Now

1
3
𝜀2 ≥ |𝑣̂𝑞,𝑝 − 𝑦2

𝑞,𝑝 | (5.45)

= |𝑢̂2
𝑞,𝑝 − 𝑦2

𝑞,𝑝 | = |𝑢̂𝑞,𝑝 + 𝑦𝑞,𝑝 | · |𝑢̂𝑞,𝑝 − 𝑦𝑞,𝑝 | (5.46)

≥
√

2
√

3
𝜀 · |𝑢̂𝑞,𝑝 − 𝑦𝑞,𝑝 | (5.47)

=⇒ |𝑢̂𝑞,𝑝 − 𝑦𝑞,𝑝 | ≤
√

2
2
√

3
𝜀 (5.48)

finishing the proof. □

Implementing the measurements

Proposition 5.7. If we encode the 𝑑-dimensional system in O(log 𝑑) qubits on a
quantum computer, then we can measure in the basis {|Φ𝑎,𝑏⟩} in time polylog 𝑑.

Proof. The quantum Fourier transform𝑊 in 𝑑 dimensions is the map

𝑊 : |𝑏⟩ → 1
√
𝑑

∑︁
𝑗

𝑒−𝑖2𝜋𝑏 𝑗/𝑑 | 𝑗⟩ (5.49)

with matrix representation

𝑊 =
1
√
𝑑

©­­­­­­­­«

1 1 1 . . . 1
1 𝜔−1 𝜔−2 . . . 𝜔−(𝑑−1)

1 𝜔−2 𝜔−4 . . . 𝜔−2(𝑑−1)

...
...

...
. . .

...

1 𝜔−(𝑑−1) 𝜔−2(𝑑−1) . . . 𝜔−(𝑑−1)2

ª®®®®®®®®¬
(5.50)
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𝑊 is a unitary. In relation to 𝑋, 𝑍 , it has the properties

𝑊𝑋𝑊† = 𝑍 (5.51)

𝑊𝑍𝑊† = 𝑋†. (5.52)

If we encode the 𝑑-dimensional system in O(log 𝑑) qubits, then 𝑊 can be imple-
mented in time polylog 𝑑.

Define the controlled shift operator 𝐶𝑋 on two 𝑑-dimensional systems to act by

𝐶𝑋 : | 𝑗⟩|𝑙⟩ → | 𝑗 + 𝑙⟩|𝑙⟩. (5.53)

𝑊 and 𝐶𝑋 together can be used to transform the standard product basis on two
𝑑-dimensional systems to the entangled {|Φ𝑎,𝑏⟩} basis.

(𝐶𝑋)−1 · (1 ⊗𝑊) · |𝑎⟩|𝑏⟩ = |Φ𝑎,𝑏⟩ (5.54)

This lets us implement a measurement in the basis {|Φ𝑎,𝑏⟩} by first inverting this
transformation and then measuring in the standard product basis. □

!"#!

−

| ⟩'

| ⟩(
| ⟩Φ"#

(a) Transforming between bases

+

+∗

+

!"#!%& '

(

(b) Algorithm 2

Figure 5.2

𝑛 subsystems
Suppose now we have 𝑛 𝑑-dimensional subsystems, with Hilbert space (C𝑑)⊗𝑛. We
can promote 𝑞, 𝑝, 𝑎, 𝑏 to vectors ®𝑞, ®𝑝, ®𝑎, ®𝑏 ∈ Z𝑛

𝑑
and define

𝐷 ®𝑞, ®𝑝 = 𝐷𝑞1,𝑝1 ⊗ · · · ⊗ 𝐷𝑞𝑛,𝑝𝑛 (5.55)

|Φ®𝑎,®𝑏
〉
= |Φ𝑎1,𝑏1⟩ ⊗ · · · ⊗ |Φ𝑎𝑛,𝑏𝑛⟩. (5.56)

All statements in Proposition 5.4 hold with 𝑞, 𝑝 replaced with the vectors ®𝑞, ®𝑝. In
the commutation relation Equation (5.18), the products 𝑞𝑝′, 𝑞′𝑝 are to be replaced
with dot products ®𝑞 · ®𝑝′, ®𝑞′ · ®𝑝.
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Following Proposition 5.5, {𝐷 ®𝑞, ®𝑝} form a basis of the (𝑑𝑛 × 𝑑𝑛)-dimensional space
of operators on (C𝑑)⊗𝑛, orthogonal in the Hilbert-Schmidt inner product.

Tr
(
𝐷 ®𝑞, ®𝑝𝐷 ®𝑞′, ®𝑝′

)
= 𝑑 · 𝛿𝑞1,𝑞

′
1
𝛿𝑝1,𝑝

′
1
. . . 𝛿𝑞𝑛,𝑞′𝑛𝛿𝑝𝑛,𝑝′𝑛 . (5.57)

We have the Bloch vector decomposition

𝜌 =
1
𝑑𝑛

(
1 +

∑︁
®𝑞, ®𝑝
𝑦 ®𝑞, ®𝑝𝐷

†
®𝑞, ®𝑝

)
, 𝑦 ®𝑞, ®𝑝 = Tr (𝐷 ( ®𝑞, ®𝑝)𝜌) . (5.58)

The analog of Equation (5.41) is

𝑦2
®𝑞, ®𝑝 = E( ®𝑎,®𝑏) exp

(
𝑖2𝜋( ®𝑎 · ®𝑝 − ®𝑏 · ®𝑞)/𝑑

)
. (5.59)

Theorem 5.8. The natural generalization of Algorithm 2 to 𝑛 qudits has the same
guarantee as in Theorem 5.6, and likewise the measurements can be implemented
in time polylog 𝑑.

Learning algorithm in infinite dimensions
Using Gaussian unitaries, we can phrase Algorithm 2 in the infinite-dimensional
setting. Step 1 of Algorithm 2 is to measure 𝜌 ⊗ 𝜌∗ in the generalized Bell basis
{|Φ𝑎,𝑏⟩}. This is achieved by applying a controlled shift Gaussian operation, fol-
lowed by homodyne measurements along certain quadratures. Let the position and
momentum variables of the first and second register be 𝑞1, 𝑝1, 𝑞2, 𝑝2.

+∗

+
exp(34&5')

Measure in 5-quadrature
Outcome = (

Measure in 4-quadrature
Outcome = '

Figure 5.3: Algorithm 2 in infinite dimensions

On two modes, the controlled shift corresponds to the Gaussian unitary

𝐶𝑋 = exp 𝑖𝑝1𝑞2. (5.60)

It has symplectic matrix

𝐶𝑋 = 𝑈𝑆 , 𝑆 =

©­­­­­«
1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 1

ª®®®®®¬
. (5.61)
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In the Heisenberg picture, the procedure shown in Figure 5.3 transforms the variables
𝑞1, 𝑝2 to the observables

𝑎 = 𝑞1 + 𝑞2 , 𝑏 = −𝑝1 + 𝑝2. (5.62)

We finish the procedure by measuring the first register in the 𝑞 quadrature, and
the second register in the 𝑝 quadrature. Note measuring in the 𝑝 quadrature is
equivalent to doing a quantum Fourier transform, or phase shift, before measuring
in the 𝑞 quadrature.

Define
𝛼 = (𝑎, 𝑏). (5.63)

The estimator for the learning algorithm has a nice expression in terms of the
symplectic product. The analogue of Equation (5.41) is

𝑦2
𝑥 = E𝛼 exp

(
𝑖2𝛼𝑇 𝐽𝑥

)
. (5.64)

An example of a class of states where the displacement amplitudes are non-trivial are
the GKP codestates. These are the states stabilized by two displacement operators
𝐷𝑥 and 𝐷𝑥′ for some 𝑥 and 𝑥′ satisfying 𝑥𝑇 𝐽𝑥′ = 𝜋.

5.3 Sample complexity lower bounds
The aim of this section is to show that the use of entangled measurements across
𝜌 ⊗ 𝜌∗ are essential to our learning task. Any strategy which uses only single-copy
measurements on 𝜌 and 𝜌∗, even an adaptive one, necessarily requires exponentially
many copies. On the other hand, any strategy which uses only 𝜌, and does not have
access to 𝜌∗, must necessarily make entangled measurements across Ω(1/𝜀) copies
at a time.

The proofs will follow the techniques introduced in [Che+22; Che+21]. The proof
idea is as follows. First we identify an ensemble of states {𝜌𝑥} indexed by 𝑥 such
that performing the learning task on 𝜌𝑥 allows one to identify the label 𝑥, and in
particular distinguish 𝜌𝑥 from the maximally mixed state. We then aim to show
that single-copy measurements, or alternatively measurements without 𝜌∗, cannot
sufficiently distinguish 𝜌𝑥 from the maximally mixed state. More specifically, the
expected distribution of measurement outcomes on 𝜌𝑥 for a uniformly random 𝑥

differs only by an exponentially small amount from the distribution of outcomes on
the maximally mixed state. Via Le Cam’s two-point method [YAL97], this implies
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that such measurements require exponential sample complexity in order to perform
the distinguishing task. This in turn gives a sample complexity lower bound on the
original learning task.

Here we state two lemmas adapted from [Che+22] which will be useful to us.

Lemma 5.9. ([Che+22] Lemma 4.8) When we only consider the classical outcome
of the POVM measurement and neglect the post-measurement quantum state, then
any POVM can be simulated by a rank-1 POVM with some postprocessing. A rank-1
POVM is defined by {𝑤𝑠, |𝜓𝑠⟩}𝑠 where 𝑤𝑠 > 0 and∑︁

𝑠

𝑤𝑠 |𝜓𝑠⟩⟨𝜓𝑠 | = 1. (5.65)

The outcomes probabilities are

P𝜌 (𝑠) = 𝑤𝑠⟨𝜓𝑠 |𝜌 |𝜓𝑠⟩. (5.66)

This lemma lets us consider only rank-1 POVMs without loss of generality.

Lemma 5.10. ([Che+22] Lemma 5.4) Suppose we have a many vs one distinguishing
task

• (YES) 𝜌 = 𝜌𝑥 for some random 𝑥 and some family of states {𝜌𝑥}.

• (NO) 𝜌 = 1
𝑑
1 maximally mixed.

If all outcomes 𝑙 of a protocol satisfy
E𝑥P𝜌𝑥 (𝑙)
P1/𝑑 (𝑙)

≥ 1 − 𝛿 (5.67)

then the probability of success is at most (1 + 𝛿)/2. Note that the outcome 𝑙 refers
to the entire history of many measurements, which are possibly adaptive.

We will also use a set of operators defined in [Asa+16]. These are given by

𝐸𝑞,𝑝 = 𝜒𝐷𝑞,𝑝 + 𝜒∗𝐷−𝑞,−𝑝 , 𝜒 =
1 + 𝑖

2
(5.68)

and are known as displacement observables.

Proposition 5.11. [Asa+16] The displacement observables are Hermitian and have
properties

𝐸∗𝑞,𝑝 = 𝐸
𝑇
𝑞,𝑝 = 𝐸−𝑞,𝑝 (5.69)

∥𝐸𝑞,𝑝 ∥op ≤
√

2 (5.70)

Tr
(
𝐸𝑞,𝑝𝐸𝑞′,𝑝′

)
= 𝑑 · 𝛿𝑞,𝑞′𝛿𝑝,𝑝′ . (5.71)
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Single copies of 𝜌 and 𝜌∗

Theorem 5.12. Let 𝑑 be the dimension of the Hilbert space. Any single-copy
protocol which learns | Tr

(
𝐷𝑞,𝑝𝜌

)
| to precision 𝜀 for all (𝑞, 𝑝) ∈ Z2

𝑑
with probability

2/3 requires Ω(𝑑/𝜀2) copies. This holds even if the protocol has access to single-
copy measurements of both 𝜌 and 𝜌∗.

Proof. Suppose protocol A is able to learn | Tr
(
𝐷𝑞,𝑝𝜌

)
| to precision 𝜀 for all

(𝑞, 𝑝) ∈ Z2
𝑑
\ {(0, 0)} with probability 2/3. Consider the task in Proposition 5.13

below with 𝜀 replaced by 3
√

2𝜀. We will argue thatA is able to succeed at this task
with probability 2/3.

Tr
(
𝐷𝑞,𝑝𝜌𝑞,𝑝,𝑟

)
=

3
√

2𝑟𝜀
𝑑

Tr
(
𝐷𝑞,𝑝𝐸𝑞,𝑝

)
(5.72)

=


3
√

2𝑟𝜀 𝑑 even, 𝑞 = 𝑝 = 𝑑/2

3
√

2𝜒∗𝑟𝜀 otherwise
(5.73)

=⇒ | Tr
(
𝐷𝑞,𝑝𝜌𝑞,𝑝,𝑟

)
| ≥ 3𝜀 (5.74)

using Proposition 5.5. ThusA can distinguish any 𝜌𝑞,𝑝,𝑟 from the maximally mixed
state, which has

Tr
(
𝐷𝑞,𝑝

1

𝑑

)
= 0 ∀𝑞, 𝑝. (5.75)

In this case, Proposition 5.13 gives us a sample complexity lower bound ofΩ(𝑑/𝜀2).
□

Proposition 5.13. Let 𝑑 be the dimension of the Hilbert space. Consider the task
of distinguishing between the following two scenarios:

• (YES) 𝜌 = 𝜌𝑞,𝑝,𝑟 =
1
𝑑

(
1 + 𝑟𝜀𝐸𝑞,𝑝

)
for some uniformly random (𝑞, 𝑝) ∈ Z2

𝑑
\

{(0, 0)} and some uniformly random sign 𝑟 ∈ {±1}. (We assume 0 < 𝜀 < 1.)

• (NO) 𝜌 = 1
𝑑
1 maximally mixed.

Any single-copy protocol requires Ω(𝑑/𝜀2) copies in order to succeed with proba-
bility 2/3. This holds even if the protocol has access to single-copy measurements
of both 𝜌 and 𝜌∗.
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Proof of Theorem 5.12 using Proposition 5.13.

Tr
(
𝐷𝑞,𝑝𝜌𝑞,𝑝,𝑟

)
=

3
√

2𝑟𝜀
𝑑

Tr
(
𝐷𝑞,𝑝𝐸𝑞,𝑝

)
(5.76)

=


3
√

2𝑟𝜀 𝑑 even, 𝑞 = 𝑝 = 𝑑/2

3
√

2𝜒∗𝑟𝜀 otherwise
(5.77)

=⇒ | Tr
(
𝐷𝑞,𝑝𝜌𝑞,𝑝,𝑟

)
| ≥ 3𝜀 (5.78)

Tr
(
𝐷𝑞,𝑝

1

𝑑

)
= 0 ∀𝑞, 𝑝. (5.79)

□

Proof. Suppose single-copy protocolA uses𝑇 copies of 𝜌 or 𝜌∗, and at step 𝑡 applies
the rank-1 POVM {𝑤𝑡𝑠, |𝜓𝑡𝑠⟩}𝑠. By Lemma 5.9, this is without loss of generality.
Note the slight abuse of notation, since the POVM of later steps are allowed to
depend on the outcomes of earlier measurements. Suppose the outcome of the
measurements are 𝑙 = (𝑠1, . . . , 𝑠𝑇 ). We have

P𝜌 (𝑙) =
𝑇∏
𝑡=1

𝑤𝑡𝑠𝑡 ⟨𝜓
𝑡
𝑠𝑡
|𝜌𝑡 |𝜓𝑡𝑠𝑡 ⟩, (5.80)

where 𝜌𝑡 is either 𝜌 or 𝜌∗ for each 𝑡. Note that

𝜌∗𝑞,𝑝,𝑟 =
1
𝑑

(
1 + 𝑟𝜀𝐸−𝑞,𝑝

)
(5.81)

using Equation (5.69). Let

𝛾𝑡 =


+1 𝜌𝑡 = 𝜌

−1 𝜌𝑡 = 𝜌∗
. (5.82)

The aim is to establish an inequality like Equation (5.67), so that we can invoke
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Lemma 5.10

E(𝑞,𝑝)≠(0,0)E𝑟P𝜌𝑞,𝑝,𝑟 (𝑙)
P1/𝑑 (𝑙)

= E(𝑞,𝑝)≠(0,0)E𝑟
𝑇∏
𝑡=1

𝑤𝑡𝑠𝑡 + 𝑟𝜀𝑤
𝑡
𝑠𝑡
⟨𝜓𝑡𝑠𝑡 |𝐸𝛾𝑡𝑞,𝑝 |𝜓

𝑡
𝑠𝑡
⟩

𝑤𝑡𝑠𝑡
(5.83)

= E(𝑞,𝑝)≠(0,0)E𝑟 exp
( 𝑇∑︁
𝑡=1

log
(
1 + 𝑟𝜀⟨𝜓𝑡𝑠𝑡 |𝐸𝛾𝑡𝑞,𝑝 |𝜓

𝑡
𝑠𝑡
⟩
) )

(5.84)

≥ exp
( 𝑇∑︁
𝑡=1

E(𝑞,𝑝)≠(0,0)E𝑟 log
(
1 + 𝑟𝜀⟨𝜓𝑡𝑠𝑡 |𝐸𝛾𝑡𝑞,𝑝 |𝜓

𝑡
𝑠𝑡
⟩
) )

(5.85)

= exp
( 𝑇∑︁
𝑡=1

1
2
E(𝑞,𝑝)≠(0,0) log

(
1 − 𝜀2⟨𝜓𝑡𝑠𝑡 |𝐸𝛾𝑡𝑞,𝑝 |𝜓

𝑡
𝑠𝑡
⟩2

) )
(5.86)

≥ exp
(
−

𝑇∑︁
𝑡=1

𝜀2E(𝑞,𝑝)≠(0,0) ⟨𝜓𝑡𝑠𝑡 |𝐸𝛾𝑡𝑞,𝑝 |𝜓
𝑡
𝑠𝑡
⟩2

)
(5.87)

≥ exp(−𝑇𝜀2Γ) (5.88)

≥ 1 − 𝑇𝜀2Γ, (5.89)

where
Γ = sup

|𝜓⟩
E(𝑞,𝑝)≠(0,0) ⟨𝜓 |𝐸±𝑞,𝑝 |𝜓⟩2. (5.90)

In Equation (5.85) we used Jensen’s inequality. In Equation (5.87) we used
log 1 − 𝑥 ≥ −2𝑥 ∀𝑥 ∈ [0, 0.79], which is valid as long as 𝜀 ≤ 0.62 by Equa-
tion (5.70).

It remains to upper bound Γ. At this point, it is clear that we can drop the ± coming
from the use of the conjugate state, since it is averaged over all 𝑞, 𝑝. We can express
Γ as

Γ = sup
|𝜓⟩
⟨𝜓 |⟨𝜓 |E(𝑞,𝑝)≠(0,0) (𝐸𝑞,𝑝 ⊗ 𝐸𝑞,𝑝) |𝜓⟩|𝜓⟩. (5.91)

It can be checked using Equation (5.68) that

𝐸𝑞,𝑝 ⊗ 𝐸𝑞,𝑝 + 𝐸−𝑞,−𝑝 ⊗ 𝐸−𝑞,−𝑝 = 𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,−𝑝 + 𝐷−𝑞,−𝑝 ⊗ 𝐷𝑞,𝑝 (5.92)

and thus we can write

E(𝑞,𝑝)≠(0,0) (𝐸𝑞,𝑝 ⊗ 𝐸𝑞,𝑝) = E(𝑞,𝑝)≠(0,0) (𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,−𝑝). (5.93)
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It can be checked that ∑︁
𝑞,𝑝

(𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,−𝑝) = 𝑑 · SWAP (5.94)

and so

E(𝑞,𝑝)≠(0,0) (𝐷𝑞,𝑝 ⊗ 𝐷−𝑞,−𝑝) =
𝑑

𝑑2 − 1
· SWAP − 1

𝑑2 − 1
· 1. (5.95)

Putting this all together, we get

Γ =
1

𝑑2 − 1
sup
|𝜓⟩
⟨𝜓 |⟨𝜓 | (𝑑 · SWAP − 1) |𝜓⟩|𝜓⟩ = 𝑑 − 1

𝑑2 − 1
=

1
𝑑 + 1

. (5.96)

Returning to Equation (5.89), we have

E(𝑞,𝑝)≠(0,0)E𝑟P𝜌𝑞,𝑝,𝑟 (𝑙)
P1/𝑑 (𝑙)

≥ 1 − 𝑇𝜀2

𝑑 + 1
. (5.97)

By Lemma 5.10, our single-copy protocol A succeeds with probability at most
(1+𝑇𝜀2/(𝑑 + 1))/2. This completes the proof of Proposition 5.13: to succeed with
probability 2/3, A requires 𝑇 = Ω(𝑑/𝜀2). □

Entangled measurements without 𝜌∗

Theorem 5.14. Let 𝑑 be the dimension of the Hilbert space. Assume 𝑑 is prime.
Any protocol which learns | Tr

(
𝐷𝑞,𝑝𝜌

)
| to precision 𝜀 for all (𝑞, 𝑝) ∈ Z2

𝑑
with prob-

ability 2/3 by measuring copies of 𝜌⊗𝐾 for 𝐾 ≤ 1/(12𝜀) requires Ω(
√
𝑑/(𝐾2𝜀2))

measurements.

Proof. Suppose protocol A is able to learn | Tr
(
𝐷𝑞,𝑝𝜌

)
| to precision 𝜀 for all

(𝑞, 𝑝) ∈ Z2
𝑑
\ {(0, 0)} with probability 2/3. Consider the task in Proposition 5.15

below with 𝜀 replaced by 3
√

2𝜀. We will argue thatA is able to succeed at this task
with probability 2/3.

Tr
(
𝐷𝑞,𝑝𝜌𝑞,𝑝,𝑟

)
=

3
√

2𝑟𝜀
𝑑

Tr
(
𝐷𝑞,𝑝𝐸𝑞,𝑝

)
(5.98)

=


3
√

2𝑟𝜀 𝑑 even, 𝑞 = 𝑝 = 𝑑/2

3
√

2𝜒∗𝑟𝜀 otherwise
(5.99)

=⇒ | Tr
(
𝐷𝑞,𝑝𝜌𝑞,𝑝,𝑟

)
| ≥ 3𝜀 (5.100)

using Proposition 5.5. ThusA can distinguish any 𝜌𝑞,𝑝,𝑟 from the maximally mixed
state, which has

Tr
(
𝐷𝑞,𝑝

1

𝑑

)
= 0 ∀𝑞, 𝑝. (5.101)
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In this case, Proposition 5.15 says that A requires either entangled measurements
across at least 1/2

√
2 · (3

√
2𝜀) = 1/(12𝜀) copies of 𝜌 at a time, or Ω(

√
𝑑/(𝐾2𝜀2))

total copies. □

Proposition 5.15. Let 𝑑 be the dimension of the Hilbert space. Assume 𝑑 is prime.
Consider the task of distinguishing between the following two scenarios:

• (YES) 𝜌 = 𝜌𝑞,𝑝,𝑟 =
1
𝑑

(
1 + 𝑟𝜀𝐸𝑞,𝑝

)
for some uniformly random (𝑞, 𝑝) ∈ Z2

𝑑
\

{(0, 0)} and some uniformly random sign 𝑟 ∈ {±1}. (We assume 0 < 𝜀 < 1.)

• (NO) 𝜌 = 1
𝑑
1 maximally mixed.

Any protocol succeeding with probability 2/3 which measures copies of 𝜌⊗𝐾 for
𝐾 ≤ 1/(2

√
2𝜀) requires Ω(

√
𝑑/(𝐾2𝜀2)) measurements.

Proof of Theorem 5.14 using Proposition 5.15.

Tr
(
𝐷𝑞,𝑝𝜌𝑞,𝑝,𝑟

)
=

3
√

2𝑟𝜀
𝑑

Tr
(
𝐷𝑞,𝑝𝐸𝑞,𝑝

)
(5.102)

=


3
√

2𝑟𝜀 𝑑 even, 𝑞 = 𝑝 = 𝑑/2

3
√

2𝜒∗𝑟𝜀 otherwise
(5.103)

=⇒ | Tr
(
𝐷𝑞,𝑝𝜌𝑞,𝑝,𝑟

)
| ≥ 3𝜀 (5.104)

Tr
(
𝐷𝑞,𝑝

1

𝑑

)
= 0 ∀𝑞, 𝑝 (5.105)

□

Proof. Suppose protocolAmeasures𝐾 copies of 𝜌 at a time, where𝐾 ≤ 1/(2
√

2𝜀).
At step 𝑡, A applies the rank-1 POVM {𝑤𝑡𝑠, |𝜓𝑡𝑠⟩}𝑠, where 𝑡 goes from 1 up to 𝑇 .
By Lemma 5.9, this is without loss of generality. Note the slight abuse of notation,
since the POVM of later steps are allowed to depend on the outcomes of earlier
measurements. Suppose the outcome of the measurements are 𝑙 = (𝑠1, . . . , 𝑠𝑇 ). We
have

P𝜌 (𝑙) =
𝑇∏
𝑡=1

𝑤𝑡𝑠𝑡 ⟨𝜓
𝑡
𝑠𝑡
|𝜌⊗𝐾 |𝜓𝑡𝑠𝑡 ⟩. (5.106)
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The aim is to establish an inequality like Equation (5.67), so that we can invoke
Lemma 5.10

E(𝑞,𝑝)≠(0,0)E𝑟P𝜌𝑞,𝑝,𝑟 (𝑙)
P1/𝑑 (𝑙)

= E(𝑞,𝑝)≠(0,0)E𝑟
𝑇∏
𝑡=1
⟨𝜓𝑡𝑠𝑡 |

(
1 + 𝑟𝜀𝐸𝑞,𝑝

)⊗𝐾 |𝜓𝑡𝑠𝑡 ⟩ (5.107)

= E(𝑞,𝑝)≠(0,0)E𝑟
𝑇∏
𝑡=1

𝐹 𝑡𝑞,𝑝,𝑟 (5.108)

= E(𝑞,𝑝)≠(0,0)E𝑟 exp
( 𝑇∑︁
𝑡=1

log 𝐹 𝑡𝑞,𝑝,𝑟
)

(5.109)

≥ exp
( 𝑇∑︁
𝑡=1

E(𝑞,𝑝)≠(0,0)E𝑟 log 𝐹 𝑡𝑞,𝑝,𝑟
)

(5.110)

= exp
( 𝑇∑︁
𝑡=1

1
2
E(𝑞,𝑝)≠(0,0) log

(
𝐹 𝑡𝑞,𝑝,+1 · 𝐹

𝑡
𝑞,𝑝,−1

) )
(5.111)

= exp
( 𝑇∑︁
𝑡=1

1
2
E(𝑞,𝑝)≠(0,0) log

(
1 − 𝐺 𝑡

𝑞,𝑝

) )
(5.112)

≥ exp
( 𝑇∑︁
𝑡=1

1
2
E(𝑞,𝑝)≠(0,0) log

(
1 −max(0, 𝐺 𝑡

𝑞,𝑝)
) )

(5.113)

≥ exp
(
−

𝑇∑︁
𝑡=1

E(𝑞,𝑝)≠(0,0) max(0, 𝐺 𝑡
𝑞,𝑝)

)
(5.114)

≥ 1 −
𝑇∑︁
𝑡=1

E(𝑞,𝑝)≠(0,0) max(0, 𝐺 𝑡
𝑞,𝑝), (5.115)

where

𝐹 𝑡𝑞,𝑝,𝑟 := ⟨𝜓𝑡𝑠𝑡 |
(
1 + 𝑟𝜀𝐸𝑞,𝑝

)⊗𝐾 |𝜓𝑡𝑠𝑡 ⟩ (5.116)

𝐺 𝑡
𝑞,𝑝 := 1 − 𝐹 𝑡𝑞,𝑝,+1 · 𝐹

𝑡
𝑞,𝑝,−1. (5.117)

In Equation (5.110) we used Jensen’s inequality. In Equation (5.114) we used
log 1 − 𝑥 ≥ −2𝑥 ∀𝑥 ∈ [0, 0.79], which is valid as long as 𝐺 𝑡

𝑞,𝑝 ≤ 0.79. This is
guaranteed by the assumption 𝐾 ≤ 1/(2

√
2𝜀), since

𝐹 𝑡𝑞,𝑝,𝑟 = ⟨𝜓 | (𝐼 + 𝑟𝜀𝐸𝑞,𝑝)⊗𝐾 |𝜓⟩ (5.118)

≥ (1 − 𝜀
√

2)𝐾 (5.119)

≥ 1 −
√

2𝐾𝜀 (provided 𝜀 ≤ 1/
√

2) (5.120)

≥ 1/2 for the choice of 𝐾, (5.121)
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so
𝐺 𝑡
𝑞,𝑝 = 1 − 𝐹 𝑡𝑞,𝑝,+1 · 𝐹

𝑡
𝑞,𝑝,−1 ≤ 3/4. (5.122)

We would like to upper bound E(𝑞,𝑝)≠(0,0) max(0, 𝐺 𝑡
𝑞,𝑝). Let’s calculate

𝐺 𝑡
𝑞,𝑝 = 1 − ⟨𝜓𝑡𝑠𝑡 |

(
1 + 𝜀𝐸𝑞,𝑝

)⊗𝐾 |𝜓𝑡𝑠𝑡 ⟩⟨𝜓𝑡𝑠𝑡 | (1 − 𝜀𝐸𝑞,𝑝 )⊗𝐾 |𝜓𝑡𝑠𝑡 ⟩ (5.123)

= 1 −
∑︁

𝑆,𝑆′⊂[𝐾]
(−1) |𝑆′ |𝜀 |𝑆 |+|𝑆′ | ⟨𝜓𝑡𝑠𝑡 |𝐸

⊗𝑆
𝑞,𝑝 |𝜓𝑡𝑠𝑡 ⟩⟨𝜓

𝑡
𝑠𝑡
|𝐸⊗𝑆′𝑞,𝑝 |𝜓𝑡𝑠𝑡 ⟩ (5.124)

= 1 − ⟨𝜓𝑡𝑠𝑡 |
(
1 + 𝐻0

𝑞,𝑝

)
|𝜓𝑡𝑠𝑡 ⟩

2 + ⟨𝜓𝑡𝑠𝑡 |𝐻
1
𝑞,𝑝 |𝜓𝑡𝑠𝑡 ⟩

2 (5.125)

= −2⟨𝜓𝑡𝑠𝑡 |𝐻
0
𝑞,𝑝 |𝜓𝑡𝑠𝑡 ⟩ − ⟨𝜓

𝑡
𝑠𝑡
|𝐻0

𝑞,𝑝 |𝜓𝑡𝑠𝑡 ⟩
2 + ⟨𝜓𝑡𝑠𝑡 |𝐻

1
𝑞,𝑝 |𝜓𝑡𝑠𝑡 ⟩

2 (5.126)

≤ −2⟨𝜓𝑡𝑠𝑡 |𝐻
0
𝑞,𝑝 |𝜓𝑡𝑠𝑡 ⟩ + ⟨𝜓

𝑡
𝑠𝑡
|𝐻1

𝑞,𝑝 |𝜓𝑡𝑠𝑡 ⟩
2 (5.127)

=⇒ E(𝑞,𝑝)≠(0,0) max(0, 𝐺 𝑡
𝑞,𝑝) (5.128)

≤ 2 max
|𝜓⟩

E(𝑞,𝑝)≠(0,0) |⟨𝜓 |𝐻0
𝑞,𝑝 |𝜓⟩| +max

|𝜓⟩
E(𝑞,𝑝)≠(0,0) ⟨𝜓 |𝐻1

𝑞,𝑝 |𝜓⟩2 (5.129)

≤ 2
√︁
Γ0 + Γ1, (5.130)

where

𝐻0
𝑞,𝑝 =

∑︁
𝑆⊂[𝐾],|𝑆 |even,𝑆≠∅

𝜀 |𝑆 |𝐸⊗𝑆𝑞,𝑝 (5.131)

𝐻1
𝑞,𝑝 =

∑︁
𝑆⊂[𝐾],|𝑆 |odd

𝜀 |𝑆 |𝐸⊗𝑆𝑞,𝑝 (5.132)

Γ0 = max
|𝜓⟩

E(𝑞,𝑝)≠(0,0) ⟨𝜓 |𝐻0
𝑞,𝑝 |𝜓⟩2 (5.133)

Γ1 = max
|𝜓⟩

E(𝑞,𝑝)≠(0,0) ⟨𝜓 |𝐻1
𝑞,𝑝 |𝜓⟩2 (5.134)

and we used Cauchy-Schwarz in the final step. Returning to Equation (5.115), we
have

E(𝑞,𝑝)≠(0,0)E𝑟P𝜌𝑞,𝑝,𝑟 (𝑙)
P1/𝑑 (𝑙)

≥ 1 − 𝑇
(
2
√︁
Γ0 + Γ1) . (5.135)

It remains to upper bound Γ0 and Γ1. Let’s first deal with Γ0.

Γ0 = max
|𝜓⟩

E(𝑞,𝑝)≠(0,0) ⟨𝜓 |⟨𝜓 |𝐻0
𝑞,𝑝 ⊗ 𝐻0

𝑞,𝑝 |𝜓⟩|𝜓⟩ (5.136)

≤
����E(𝑞,𝑝)≠(0,0)𝐻0

𝑞,𝑝 ⊗ 𝐻0
𝑞,𝑝

����
op (5.137)

≤
∑︁

𝑆,𝑆′⊂[𝐾],|𝑆 |,|𝑆′ |even,𝑆,𝑆′≠∅
𝜀 |𝑆 |+|𝑆

′ |
������E(𝑞,𝑝)≠(0,0)𝐸⊗𝑆∪𝑆′𝑞,𝑝

������
op

(5.138)

≤
∑︁

4≤𝑘≤2𝐾,𝑘 even
(2𝐾)𝑘𝜀𝑘

����E(𝑞,𝑝)≠(0,0)𝐸⊗𝑘𝑞,𝑝 ����op . (5.139)
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Lemma 5.17, which is stated and proved at the end of the section, tells us that�����
�����∑︁
𝑞,𝑝

𝐸⊗𝑘𝑞,𝑝

�����
�����
op

≤ 2𝑘/2𝑑 (5.140)

=⇒
����E(𝑞,𝑝)≠(0,0)𝐸⊗𝑘𝑞,𝑝 ����op ≤

2𝑘/2𝑑
𝑑2 − 1

+ 1
𝑑2 − 1

≤ 2𝑘/2

𝑑 − 1
. (5.141)

Plugging this into Equation (5.139) gives

Γ0 ≤ 1
𝑑 − 1

∑︁
4≤𝑘≤2𝐾,𝑘 even

(
2
√

2𝐾𝜀
) 𝑘
. (5.142)

This is a geometric series, which is dominated by its first term since by assumption
𝐾 ≤ 1/(2

√
2𝜀). We get

Γ0 = O(𝐾4𝜀4/𝑑). (5.143)

The calculation for Γ1 is similar.

Γ1 ≤
∑︁

2≤𝑘≤2𝐾,𝑘 even
(2𝐾)𝑘𝜀𝑘

����E(𝑞,𝑝)≠(0,0)𝐸⊗𝑘𝑞,𝑝 ����op (5.144)

= O(𝐾2𝜀2/𝑑). (5.145)

Returning to Equation (5.135), we have

E(𝑞,𝑝)≠(0,0)E𝑟P𝜌𝑞,𝑝,𝑟 (𝑙)
P1/𝑑 (𝑙)

≥ 1 − O
(
𝑇𝐾2𝜀2/

√
𝑑
)
. (5.146)

By Lemma 5.10, our protocolA succeeds with probability at most (1+O(𝑇𝐾2𝜀2/
√
𝑑))/2.

To succeed with probability 2/3, A requires 𝑇 = Ω(
√
𝑑/(𝐾2𝜀2)). This completes

the proof of Proposition 5.15, modulo Lemma 5.17. □

Lemma 5.16. Let the Hilbert space dimension 𝑑 be prime. For any 1 ≤ 𝑚 ≤ 𝑘 with
𝑘 even, �����

�����∑︁
𝑞,𝑝

𝐷⊗𝑚𝑞,𝑝 ⊗ 𝐷
⊗(𝑘−𝑚)
−𝑞,−𝑝

�����
�����
op

= 𝑑 (5.147)

Proof. Denote
D(𝑚, 𝑘) =

∑︁
𝑞,𝑝

𝐷⊗𝑚𝑞,𝑝 ⊗ 𝐷
⊗(𝑘−𝑚)
−𝑞,−𝑝 (5.148)
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Consider the action on a basis state |𝑎1⟩ . . . |𝑎𝑘⟩.

D(𝑚, 𝑘) |𝑎1⟩ . . . |𝑎𝑘⟩ (5.149)

=
∑︁
𝑞,𝑝

𝑒𝑖𝜋𝑘𝑞𝑝/𝑑
(
(𝑋𝑞)⊗𝑚 ⊗ (𝑋−𝑞)⊗(𝑘−𝑚)

) (
(𝑍 𝑝)⊗𝑚 ⊗ (𝑍−𝑝)⊗(𝑘−𝑚)

)
|𝑎1⟩ . . . |𝑎𝑘⟩

(5.150)

=
∑︁
𝑞,𝑝

𝑒𝑖(2𝜋/𝑑)𝑝( 𝑘2 𝑞+𝑎1+···+𝑎𝑚−𝑎𝑚+1−···−𝑎𝑘) |𝑎1 + 𝑞⟩ . . . |𝑎𝑚 + 𝑞⟩|𝑎𝑚+1 − 𝑞⟩ . . . |𝑎𝑘 + 𝑞⟩

(5.151)

= 𝑑 |𝑎1 + 𝑞⟩ . . . |𝑎𝑚 + 𝑞⟩|𝑎𝑚+1 − 𝑞⟩ . . . |𝑎𝑘 − 𝑞⟩, (5.152)

where 𝑞 is the unique solution to

𝑘

2
𝑞 + 𝑎1 + · · · + 𝑎𝑚 − 𝑎𝑚+1 − · · · − 𝑎𝑘 = 0 mod 𝑑. (5.153)

Here we used that 𝑑 is prime, so that Z𝑑 is a field.

Let 𝑔 be the multiplicative inverse of 𝑘/2 mod 𝑑. The operator D(𝑚, 𝑘)/𝑑 imple-
ments a linear map on basis vectors over Z𝑘

𝑑
given by the matrix

𝐼𝑘 +
©­­­«
𝑔 . . . 𝑔 −𝑔 . . . −𝑔
...

...
...

...

𝑔 . . . 𝑔 −𝑔 . . . −𝑔

ª®®®¬ . (5.154)

This matrix is invertible over Z𝑘
𝑑

with inverse

𝐼𝑘 +
©­­­«
ℎ . . . ℎ −ℎ . . . −ℎ
...

...
...

...

ℎ . . . ℎ −ℎ . . . −ℎ

ª®®®¬ , (5.155)

where ℎ solves
𝑔 + ℎ + (2𝑚 − 𝑘)𝑔ℎ = 0. (5.156)

We have shown that D(𝑚, 𝑘)/𝑑 is in fact a permutation matrix. In particular,

| |D(𝑚, 𝑘) | |op = 𝑑. (5.157)

□

Lemma 5.17. Let the Hilbert space dimension 𝑑 be prime. For any even 𝑘 ,�����
�����∑︁
𝑞,𝑝

𝐸⊗𝑘𝑞,𝑝

�����
�����
op

≤ 2𝑘/2𝑑 (5.158)
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Proof. First expand

𝐸⊗𝑘𝑞,𝑝 =
(
𝜒𝐷𝑞,𝑝 + 𝜒∗𝐷−𝑞,−𝑝

)⊗𝑘 (5.159)

=
∑︁
𝑆⊂[𝑘]

𝜒 |𝑆 | (𝜒∗)𝑘−|𝑆 |𝐷⊗𝑆𝑞,𝑝 ⊗ 𝐷
⊗[𝑘]\𝑆
−𝑞,−𝑝 (5.160)

Now sum over 𝑞, 𝑝 and take the operator norm.�����
�����∑︁
𝑞,𝑝

𝐸⊗𝑘𝑞,𝑝

�����
�����
op

≤ 1
2𝑘/2

∑︁
𝑆⊂[𝑘]

�����
�����∑︁
𝑞,𝑝

𝐷⊗𝑆𝑞,𝑝 ⊗ 𝐷
⊗[𝑘]\𝑆
−𝑞,−𝑝

�����
�����
op

(5.161)

= 2𝑘/2𝑑 (5.162)

using Lemma 5.16. □

We suspect Lemma 5.17 is not tight, and the correct bound is 2𝑑 independent of 𝑘 ,
but it is sufficient for our purposes.
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C h a p t e r 6

TOPOLOGICAL DATA ANALYSIS

In quantum complexity theory, the goal is to characterize the capacity of quantum
computers for solving computational problems. There is no requirement that the
problems considered be quantum mechanical in nature, but most of the key results
in the field do consider such problems. See [Osb12; Gha+15] for reviews. The
field has been important both for understanding the potential of quantum computers
and for giving insight into fundamental physics. However, the capacity of quantum
computers to solve problems that do not appear inherently quantum mechanical is
less well understood.

In this chapter, we examine a classic problem in computational topology and find that
it can be characterized by quantum complexity classes. Topology studies properties
of spaces that only depend on the continuity and connectivity between points and
do not depend on distances between points. In particular, we are concerned with
homology, a branch of topology that describes 𝑘-dimensional holes in a topological
space. For example, a circle constitutes a 1-dimensional hole, a hollow sphere a
2-dimensional hole, and so on. The types of spaces we consider are motivated
by the practical application of topological data analysis (TDA). Our result thus
has implications for quantum advantage in TDA and the quantum TDA algorithm
introduced in [LGZ16]. In TDA, one applies techniques from topology to extract
global information from data in a way that is resistant to local noise. For background
on TDA and its applications, see [Was18; Pet+14; GGB16; Rei+17].

Results
The computational problem we consider is perhaps the simplest question in homology—
given some space, does it have a 𝑘-dimensional hole or not? Our main result is that,
for certain types of input spaces and a suitable promise on the gap, this problem is
QMA1-hard and contained in QMA. The complexity class QMA is the quantum
analogue of the class MA, and QMA1 is a one-sided error version of QMA. (See
Chapter 6 for full definitions.)

A problem of interest in TDA is to compute the number of holes in the clique
complex of a graph—the clique complex of a graph is the simplicial complex
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formed by mapping every 𝑘 + 1-clique in the graph to a 𝑘-simplex. (See Chapter 6
for formal definition.) We consider the problem of deciding whether a weighted
graph’s clique complex has a 𝑘-dimensional hole or not. The decision version of the
clique homology problem was shown to be QMA1-hard in [CK22]. However, the
problem is only believed to be inside QMA when the combinatorial Laplacian has
a promise gap. Our key contribution is showing that the clique homology problem
remains QMA1-hard when the gap is imposed. Thus we can provide upper and lower
bounds on the complexity of this classical problem in terms of quantum complexity
classes.

Problem 6.1. (Gapped clique homology) Fix functions 𝑘 : N → N and 𝑔 : N →
[0,∞), with 𝑔(𝑛) ≥ 1/poly𝑛, 𝑘 (𝑛) ≤ 𝑛. The input to the problem is a vertex-
weighted graph G on 𝑛 vertices. The task is to decide whether:

• YES The 𝑘 (𝑛)th homology group of Cl(G) is non-trivial 𝐻𝑘 (G) ≠ 0.

• NO The 𝑘 (𝑛)th homology group of Cl(G) is trivial 𝐻𝑘 (G) = 0 and the
weighted combinatorial Laplacian Δ𝑘 has minimum eigenvalue 𝜆min(Δ𝑘 ) ≥
𝑔(𝑛).

The condition on the minimum eigenvalue 𝜆min(Δ𝑘 ) can be interpreted as a promise
that the graph is far from having a hole in the NO case; see below.

Theorem 6.1. Problem 6.1 is QMA1-hard and contained in QMA.

At this point, we would like to make two clarifying remarks on our main result.
First of all, one may wonder why we cannot get tight bounds on the complexity
of Problem 6.1; for example, could it be QMA-hard, or contained in QMA1? We
suspect that the true complexity of Problem 6.1 is QMA1. However, this is a
somewhat fragile argument to make since containment in QMA1 depends on the
specific choice of universal gate set for the verifier quantum circuit. Secondly, we
would like to clarify the comparison to the previous results of [CK22]. The best
known upper bound on the complexity of the decision version of the clique homology
problem, as considered in [CK22], is PSPACE; we can draw an analogy to the local
Hamiltonian problem without a promise gap, which is PSPACE-complete [FL16a].
Since PSPACE contains QMA and QMA1, the statement that the decision version
is QMA1-hard does not provide compelling evidence that the clique homology
problem has a quantum structure. On the other hand, our results study a related
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problem for which the complexity can be upper and lower bounded by quantum
complexity classes.

Techniques
The main technical contribution is the development of tools which allow us to lower
bound the eigenvalues of the Laplacian operator from Hodge theory. With this
purpose, we introduce a new technique to the field—a powerful tool from algebraic
topology known as spectral sequences. In particular, we exploit a connection
between spectral sequences and Hodge theory presented in [For94]. In homology,
spectral sequences can play a powerful role analogous to perturbation theory in the
analysis of perturbative gadgets [KKR06]. The use of spectral sequences to perform
a kind of perturbation theory on the Laplacians of simplicial complexes is novel
to quantum information theory. Further, the ability to lower bound the Laplacian
eigenvalues may be of independent interest. In addition, our work extends the
simplicial surgery technique used in prior quantum complexity work [CK22].

Our hardness proof will proceed by reducing from a particular local Hamiltonian
problem. We would like to encode the Hamiltonian problem into the gapped clique
homology problem. For this purpose, our main focus will be to establish the
following theorem.

Theorem 6.2. (Main theorem) Given a local Hamiltonian* 𝐻 on 𝑛 qubits, we
can construct a vertex-weighted graph G on poly𝑛 vertices and a 𝑘 such that the
combinatorial Laplacian Δ𝑘 (Cl(G)) satisfies

𝜆min(𝐻) = 0 =⇒ 𝜆min(Δ𝑘 (Cl(G))) = 0 (6.1)

𝜆min(𝐻) ≥
1

poly𝑛
=⇒ 𝜆min(Δ𝑘 (Cl(G))) ≥ 1

poly𝑛
(6.2)

* There are some conditions on the form of 𝐻, but the class is sufficiently expressive
to be QMA1-hard.

In the language of the theorem, the bulk of the work is to establish𝜆min(Δ𝑘 (Cl(G))) ≥
1/poly𝑛 in the case 𝜆min(𝐻) ≥ 1/poly𝑛. Here, spectral sequences will be essential.

Spectral gap of Laplacian
How can we interpret the gap at the bottom of the spectrum of the combinatorial
Laplacian 𝜆min(Δ𝑘 ) ≥ 1/poly𝑛? At 𝑘 = 0, the combinatorial Laplacian Δ0 is equal
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to the usual graph Laplacian 𝐿 plus the projector onto the constant vector:

Δ0 = 𝐿 +
©­­­«
1 . . . 1
...

...

1 . . . 1

ª®®®¬ (6.3)

Thus the smallest eigenvalue of Δ0 corresponds to the first non-zero eigenvalue of
the graph Laplacian 𝐿. This is precisely the eigenvalue which controls graph expan-
sion; it appears in the well-known Cheeger inequality which relates the Laplacian
spectrum to geometric connectivity of the graph [LP17]. This provides a geometric
interpretation of the minimum eigenvalue of Δ0—it measures how far the graph
is from being disconnected. A similar geometric interpretation holds for higher
dimensional combinatorial Laplacians Δ𝑘 . Indeed, higher-dimensional Cheeger in-
equalities have been studied [GS14; SKM14; PRT16], with connections to the field
of high-dimensional expanders [Lub18]. A large minimum eigenvalue 𝜆min(Δ𝑘 )
means that the graph is far from having a 𝑘-dimensional hole.

This leads us to an exciting future direction: Can we use graph operations and
gadgets to perform gap amplification on the combinatorial Laplacian? In light of
our QMA1-hardness result, this may have connections to the yet elusive quantum
PCP conjecture [AAV13].

Implications
Related to deciding the existence of a hole is the problem of computing the nor-
malized number of holes. For this problem there is an efficient quantum algorithm,
known as the quantum TDA algorithm. (For a discussion of how this algorithm
works, and what precisely we mean by ‘normalized number of holes’ we refer read-
ers to Chapter 6.) A significant motivation for our work was understanding the
complexity of the problem solved by this quantum TDA algorithm and its speedup
over classical algorithms [LGZ16; GK19; GCD22; Uba+21; Hay22; MGB22;
Ber+24a; Akh+22; SL22; ASS22]. Unlike many other quantum computing appli-
cations in machine learning [Tan19; GLT18; Chi+22], the quantum TDA algorithm
has resisted dequantization, and researchers still debate the presence of a speedup
over the best possible classical algorithm.

Our result can be seen as providing some suggestion that the quantum TDA cannot
be dequantized. We have shown that deciding whether clique complexes have holes
is just as hard as deciding if a generic local Hamiltonian is frustration-free. We can
likewise translate the problem solved by the quantum TDA algorithm into a problem
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phrased in local Hamiltonians. It is known that for generic local Hamiltonians this
problem is very unlikely to be tractable on a classical computer. More precisely, it
was shown in [GCD22] that this problem is DQC1-hard (see Chapter 6). However,
the DQC1-hardness for generic Hamiltonians is inconclusive since some classical
algorithms may exist that could exploit some unique structure in clique complexes
to outperform algorithms for generic quantum Hamiltonians. Our work suggests
that problems involving clique complexes do not possess exploitable structure, and
are just as hard as the corresponding problem on a general Hamiltonian.

The results in this chapter do not answer these questions conclusively – our reduction
does not immediately imply that all problems regarding clique complexes are just
as hard as the corresponding problem translated into the language of quantum
Hamiltonians. Nevertheless, we have developed techniques which are able to lower
bound the eigenvalues of the Laplacian operator when reducing from a quantum
Hamiltonian. We anticipate this could open up new possibilities in searching for
quantum advantage in topological data analysis.

Discussion
The problem of deciding whether or not a space contains a hole makes no explicit
reference to quantum mechanics, so it is surprising that its complexity turns out
to be characterised by quantum complexity classes. Other examples of this kind
are rare. One story to compare to is that of the Jones polynomial. Estimating the
Jones polynomial, an invariant from knot theory, was shown to be BQP-complete in
[AJL06]. That result is an aspect of a deep connection between topological quantum
field theory and knot theory. Similarly, our result is an aspect of a deep connection
between supersymmetry and homology, which was previously explored in [CC21;
Cri20; CK22]. Incidentally, both of these connections were explored in the 1980s
by Witten [Wit82; Wit89].

These results in quantum complexity suggest that a fruitful avenue for studying
the possibility of quantum advantage in seemingly classical problems is to look for
‘hidden quantumness’—mathematical problems that, at first glance, do not appear
quantum, but can be mapped to specific families of quantum systems. One of
the critical areas where quantum computers will offer practical advantanges over
their classical counterparts is in studying quantum systems. By looking for such
examples of ‘hidden quantumness’, we may be able to extend the utility of quantum
computation into more fields.
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Prior work
Understanding the possiblity of quantum advantage in TDA has inspired a number
of works in this area in recent years.

The first key result in the field was the quantum TDA algorithm of [LGZ16]. It
gives an approximation to the normalized 𝑘 th-Betti number of a simplicial complex.
The 𝑘 th-Betti number 𝛽𝑘 is the number of 𝑘 dimensional holes in the complex, and
the normalized Betti number is given by 𝛽𝑘/|𝑆𝑘 | where 𝑆𝑘 is the set of 𝑘-simplices.
We can understand the quantum TDA algorithm as running phase estimation on the
Laplacian Δ𝑘 . The input state for the phase estimation is the maximally mixed state
over 𝑘-simplices:

1
|𝑆𝑘 |

∑︁
𝑥∈𝑆𝑘
|𝑥⟩⟨𝑥 |. (6.4)

The algorithm effectively samples the eigenvalues of the Laplacian Δ𝑘 , to any
1/poly(𝑛) precision. By counting the fraction of times a zero eigenvalue is observed,
we get an estimate of 𝛽𝑘/|𝑆𝑘 | to any 1/poly(𝑛) additive error. In order for the input
state to be prepared efficiently for a clique complex, the graph must be clique dense
(see [GCD22]).

In [GCD22], the authors initiated the investigation into the complexity of the problem
solved by the quantum TDA algorithm. They showed that if one applies the quantum
TDA algorithm with a generic local Hamiltionian in the place of Δ𝑘 , then it is able
to solve a DQC1-hard problem. 1

Inspired by the connection between homology and supersymmetry, in [CC21] it
was shown that the problem of deciding whether a general chain complex (a gen-
eralisation of simplicial complexes) has an 𝑘-dimensional hole is QMA1-hard and
contained in QMA (given a suitable promise gap). Moreover, it was shown in the
same paper that estimating the normalized Betti numbers of a general chain complex
is DQC1-hard and contained in BQP.

Other papers have considered the decision version of Problem 6.1:

Problem 6.2. (Decision clique homology) Let G be a graph on 𝑛 vertices, given by
its adjacency matrix. We are also given an integer 𝑘 . The task is to decide

• YES The 𝑘 th homology group of Cl(G) is non-trivial 𝐻𝑘 (G) ≠ 0.
1DQC1 is the ‘one clean qubit’ model of quantum computation where the initial state is limited

to a single qubit in the state |0⟩, along with a supply of maximally mixed qubits. (See [Bra08,
Section 6.3] for a formal definition.) It does not capture the full power of quantum computation, but
is thought to be impossible to simulate efficiently with classical computation.
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• NO The 𝑘 th homology group of Cl(G) is trivial 𝐻𝑘 (G) = 0.

In [AS16] it was shown that Problem 6.2 is NP-hard, and in [SL22] it was shown that
Problem 6.2 remains NP-hard when restricted to clique dense graphs. These results
culminated in [CK22] where it was shown that Problem 6.2 is QMA1-hard, including
when restricted to clique-dense graphs. However, Problem 6.2 is not believed to be
inside QMA. Moreover, the constructions used for the reductions in previous works
do not satisfy the necessary gap to guarantee containment in QMA. It should be
noted the previous result holds for both weighted and unweighted graphs, whereas
our results hold for weighted graphs only.

On the more applied side of the field, a number of recent papers have looked more
closely at the quantum TDA algorithm. In [Uba+21; Hay22; MGB22; Ber+24a;
Akh+22] improvements were made to the algorithm in [LGZ16] which make it more
practical to run.

Simplicial homology
The building blocks of simplicial complexes are simplices. Simplices can be thought
of as the generalisation of triangles and tetrahedron to arbitrary dimensions. A
0-simplex is a point, a 1-simplex is a line, 2- and 3-simplices are triangles and tetra-
hedra respectively. In higher dimensions a 𝑘-simplex is defined as a 𝑘-dimensional
polytope which is the convex hull of 𝑘 + 1-vertices. We can denote a 𝑘-simplex by
its vertices:

𝜎 = [𝑥0 . . . 𝑥𝑘 ], (6.5)

where the 𝑥𝑖 are the vertices of the simplex. Simplices are oriented, with the
orientation induced by the ordering of the vertices. So permuting the vertices in a
simplex leads to an equivalent simplex, possibly up to an overall sign:

[𝑥𝜋(0) . . . 𝑥𝜋(𝑘)] = sgn(𝜋) [𝑥0 . . . 𝑥𝑘 ] . (6.6)

A simplicial complex K is a collection of simplices satisfying two requirements:
(A) if a simplex is in K then all its faces are also in K and (B) the intersection of
any two simplices in K is a face of both the simplices. Intuitively we can think of
constructing a simplicial complex by gluing simplices together along faces.

In general, we can consider linear combinations of 𝑘-simplices, known as 𝑘-chains.
The space of 𝑘-chains forms a vector space. To define the notion of a hole in a
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Figure 6.1: The boundary operators action on a 2-simplex (i.e. a triangle).

simplicial complex we need to introduce the boundary operator 𝜕𝑘 . The boundary
operator acts on 𝑘-simplices as

𝜕𝑘 [𝑥0 . . . 𝑥𝑘 ] =
𝑘∑︁
𝑗=0
(−1) 𝑗 [𝑥0 . . . 𝑥 𝑗 . . . 𝑥𝑘 ], (6.7)

where the notation [𝑥0 · · · 𝑥 𝑗 · · · 𝑥𝑘 ]means that the 𝑗 th vertex is deleted. In Figure 6.1
we demonstrate the action of the boundary map on a 2-simplex. As the name
suggests, the boundary map acting on a simplex gives the boundary of that simplex.
The action of 𝜕𝑘 can be extended by linearity to collections of simplices.

We define any object that does not have a boundary as a cycle. So a cycle 𝑐 satisfies
𝑐 ∈ Ker 𝜕𝑘 . All boundaries are cycles, because boundaries don’t themselves have a
boundary. In other words, the boundary operator is nilpotent:

𝜕𝑘 ◦ 𝜕𝑘+1 = 0. (6.8)

How should we define what is a hole in a simplicial complex? Intuitively a hole is
a cycle which is not the boundary of anything. So a hole ℎ satisfies ℎ ∈ Ker 𝜕𝑘 , but
there does not exist any 𝑣 such that ℎ = 𝜕𝑘+1𝑣. Formally this means that holes are
elements of the homology group:

𝐻𝑘 =
Ker 𝜕𝑘
Im𝜕𝑘+1

. (6.9)

Note that the homology group is a quotient group, meaning that its elements are
equivalence classes. We can think of these equivalence classes as being sets of cycles
that can be continuously deformed into each other. Cycles which are boundaries
can be continuously deformed to a single point, so these are trivial elements in
homology. If two non-trivial cycles cannot be continuously deformed into one
another then they are the boundaries of different holes, and so are different elements
of homology.
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It is possible to define a coboundary operator:

𝑑𝑘 = (𝜕𝑘+1)† (6.10)

which can in turn be used to define the Laplacian:

Δ𝑘 = 𝑑
𝑘−1𝜕𝑘 + 𝜕𝑘+1𝑑𝑘 (6.11)

which is a positive semi-definite operator.

There is a close relationship between the Laplacian and the homology, which is
described by Hodge theory. The most basic proposition of Hodge theory is the
following.

Proposition 6.3. KerΔ𝑘 is canonically isomorphic to 𝐻𝑘 .

Proof. Suppose Δ𝑘 |𝜓⟩ = 0. This means that

0 = ⟨𝜓 |Δ𝑘 |𝜓⟩ (6.12)

= | |𝜕𝑘 |𝜓⟩| |2 + ||𝑑𝑘 |𝜓⟩| |2, (6.13)

where we used that 𝑑𝑘−1 = (𝜕𝑘 )† and 𝜕𝑘+1 = (𝑑𝑘 )†. Thus

| |𝜕𝑘 |𝜓⟩| |2 = | |𝑑𝑘 |𝜓⟩| |2 = 0 (6.14)

=⇒ 𝜕𝑘 |𝜓⟩ = 𝑑𝑘 |𝜓⟩ = 0. (6.15)

Thus
|𝜓⟩ ∈ Ker 𝜕𝑘 (6.16)

and
|𝜓⟩ ∈ Ker 𝑑𝑘 = (Im(𝑑𝑘 )†)⊥ = (Im𝜕𝑘+1)⊥. (6.17)

Each homology class [|𝜓⟩] ∈ 𝐻𝑘 = Ker 𝜕𝑘/Im𝜕𝑘+1 will have a unique representative
orthogonal to Im𝜕𝑘+1. □

The proposition tells us that each homology class has a unique harmonic represen-
tative, where harmonic means that it is in the kernel of the Laplacian. The equation
Δ𝑘 |𝜓⟩ = 0 is a high-dimensional generalization of Laplace’s equation, and KerΔ𝑘
is sometimes referred to as the harmonic subspace.
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Clique complexes
The computational complexity of determining whether or not a simplicial complex
has a trivial homology group depends, of course, on how the simplicial complex
is provided as input. If we are given the simplicial complex as a list of simplices,
the problem of deciding the homology is in ¶. This is because we are doing
linear algebra over a space whose dimension is equal to the number of 𝑘-simplices
[DC91]. To make the question more interesting, we would like a succinct description
of the simplicial complex. This is the purpose of this section. Motivated from the
practical task of topological data analysis, we will study clique complexes—a class
of simplicial complexes that can be represented by a graph G.2

Definition 6.3. The clique complex of a graph G, denoted Cl(G), is the simplicial
complex consisting of the cliques of G. A 𝑘 + 1-clique becomes a 𝑘-simplex.

Now the input size is the 𝑛 × 𝑛 adjacency matrix of G, where 𝑛 is the number of
vertices. Yet there could be up to

( 𝑛
𝑘+1

)
𝑘-simplices. If 𝑘 is growing with 𝑛, the

number of 𝑘-simplices and hence the dimension of C𝑘 (G) could be exponential in
𝑛. Combined with the relevance of the self-adjoint operator Δ𝑘 , we can start to
see the emergence of quantum mechanical concepts in these homological objects.
Hiding in this succinct graph is an exponential-dimensional Hilbert space C𝑘 (G)
with a Hamiltonian Δ𝑘 !

It should be noted that not all simplicial complexes arise as clique complexes. For
example, the ‘hollow triangle’ {[𝑥0𝑥1], [𝑥1𝑥2], [𝑥2𝑥0]} cannot be the clique complex
of any graph.

Quantum complexity theory
There are two complexity classes we will be interested in throughout this chapter.
The first, QMA is often referred to as the quantum analogue of the classical com-
plexity class, NP. It is the set of problems where a proof (in the form of a quantum
state) can be checked efficiently by a quantum computer. The second complexity
class we deal with is a slight modification of QMA known as QMA1. This is the
‘perfect completeness’ version of QMA. This means that in YES cases we require
the verifier to accept on valid witnesses with probability 1, while we still allow some
probability of error in NO cases.

2We note there do exist succinct descriptions of general simplicial complexes, e.g. by providing
a list of vertices and maximal faces, or a list of vertices and minimal non-faces. We do not consider
these input representations in this work.
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The question of whether QMA1 is strictly contained within QMA is open. The
complexity classes are known to be distinct relative to a particular quantum oracle
[Aar08]. However, the versions of QMA and QMA1 where the proofs are restricted
to be classical bit strings are equal, for certain choices of universal gate sets in the
perfect completeness case [Jor+12]. Equivalence of the classes for certain choices of
universal gate set is also known to be true in the setting where there is exponentially
small completeness-soundness gap [FL16b].

Containment in QMA
We stated Problem 6.1 without any reference to quantum mechanics, and Theo-
rem 6.1 may appear surprising. However, this classical problem does exhibit some
characteristic properties of quantum mechanics. Note first that the basis of the
vector space C𝑘 (G) are the 𝑘-simplices of Cl(G). There could be as many as

( 𝑛
𝑘+1

)
of these. So if 𝑘 is growing linearly with 𝑛, the chainspace could have dimension
exponential in 𝑛. The emergence of an exponential-dimensional Hilbert space from
a small object is a characteristic property of quantum mechanics. Moreover, we
can see the combinatorial Laplacian as playing the role of a quantum Hamiltonian,
strengthening the link to quantum mechanics.

We can demonstrate containment of Problem 6.1 in QMA as follows [CC21]. The
Laplacian Δ𝑘 of Cl(G) is a sparse Hermitian operator. If Cl(G) has a hole then Δ𝑘

has a zero eigenvalue, and if it has no hole then via the promise every eigenvalue of
Δ𝑘 is bounded away from zero by 𝑔. Our QMA verification protocol is simply to run
quantum phase estimation [Kit95] on the witness state. We accept if the measured
energy is smaller than 𝑔/2, and reject otherwise. In YES cases a valid witness will
be an eigenstate of Δ𝑘 with eigenvalue zero, and in NO cases all possible witnesses
will fail with high probability.

Hardness construction
The challenging aspect of our work is to demonstrate QMA1-hardness of Prob-
lem 6.1. Containment tells us we can frame the topological problem in quantum
mechanical terms. Hardness gives us a converse: we can convert a quantum Hamil-
tonian to a topological object whose topology reflects the minimum eigenvalue of
the Hamiltonian.

We will establish hardness by reducing from Quantum-4-SAT. In [Bra11] the au-
thors show QMA1-hardness of Quantum-4-SAT by constructing a family of local
Hamiltonians 𝐻 which encode the computational histories of a QMA1-verification
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circuits, such that

a. If there is an accepting witness to the QMA1-verification circuit then 𝐻 has a
zero energy eigenstate.

b. If there is no accepting witness then the minimum eigenvalue of 𝐻 is bounded
away from zero.

We will encode 𝐻 into some graph G such that

i. If 𝐻 has a zero energy groundstate there is a hole in Cl(G).

ii. If the minimum eigenvalue of 𝐻 is bounded away from zero then the minimum
eigenvalue of the Laplacian is bounded away from zero.

This is the content of Theorem 6.2, which completes the hardness argument.

First we would like to develop a notion of tensor products for clique complexes.
This will be provided by the join operation, which we now describe.

Definition 6.4. Given two simplicial complexes K,L, we define their join to be the
simplicial complex consisting of simplices 𝜎 ⊗ 𝜏 := 𝜎 ∪ 𝜏 for all 𝜎 ∈ K, 𝜏 ∈ L.

The chain spaces and homology of the join are the tensor products of the constituents,
which is often referred to as the Kunneth formula.

Fact 6.1. There are canonical isomorphisms

C𝑘 (K ∗ L) �
⊕

𝑖+ 𝑗=𝑘−1
C𝑖 (K) ⊗ C𝑗 (L) (6.18)

𝐻𝑘 (K ∗ L) �
⊕

𝑖+ 𝑗=𝑘−1
𝐻𝑖 (K) ⊗ 𝐻 𝑗 (L). (6.19)

Moreover, if |𝜓⟩ ∈ C𝑖 (K) and |𝜑⟩ ∈ C 𝑗 (L) where 𝑖 + 𝑗 = 𝑘 − 1, then the Laplacian
acts as

Δ𝑘 ( |𝜓⟩ ⊗ |𝜑⟩) = (Δ𝑖 |𝜓⟩) ⊗ |𝜑⟩ + |𝜓⟩ ⊗ (Δ 𝑗 |𝜑⟩). (6.20)

Since we are building our simplicial complexes as the clique complexes of graphs,
we must be able to implement the join at the level of the graphs. This is achieved
by taking the two constituent graphs G and G′ and including all edges between G
and G′.
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Definition 6.5. The join of two graphs G = (𝑉, 𝐸) and G′ = (𝑉 ′, 𝐸′) is the graph
G ∗ G′ with vertices 𝑉 ∪𝑉 ′ and edges 𝐸 ∪ 𝐸′ ∪ {(𝑢, 𝑣) : 𝑢 ∈ 𝑉, 𝑣 ∈ 𝑉 ′}.

Crucially, the clique complex of the join of two graphs is the join of the clique
complexes of the graphs.

The first step is to construct a graph G1 such that Cl(G1) has two holes.3 This
means that the homology of Cl(G1) can encode the Hilbert space of one qubit. We
then form our base qubit graph G𝑛 by taking the 𝑛-fold join of G1. That is, we
take 𝑛 copies of G1 where vertices are connected all-to-all between the different
copies. Constructed in this way, G𝑛 has 2𝑛 2𝑛 − 1-dimensional holes, one for each
computational basis state. Moreover, G𝑛 has a tensor-product-like structure—each
copy of G1 in the join can be identified with a qubit. At this stage, the kernel of
the Laplacian is isomorphic to the entire encoded Hilbert space of 𝑛 qubits—G𝑛 by
itself corresponds to the empty zero Hamiltonian.

The next step is to design gadgets which implement terms in the 𝐻. First we decom-
pose 𝐻 into a sum of local rank-1 projectors. Then for each 𝑚-local term |𝜙⟩⟨𝜙| we
take the graph G𝑚 (the 𝑚-fold join of the single qubit graph) and design a gadget
which ‘fills in the hole’ in Cl(G𝑚) corresponding to the state |𝜙⟩. Constructively,
this involves adding extra gadget vertices to the graph, and adding edges between
these new vertices and the original vertices from G𝑚. This serves to lift the cycle
corresponding to |𝜙⟩ out of the homology by rendering it a boundary. The clique
complex of the resulting 𝑚-qubit graph has 2𝑚 − 1 holes of dimension 2𝑚 − 1,
encoding a 𝑚-local projector acting on a system of 𝑚 qubits.

To construct a graph Ĝ𝑛 which implements the Hamiltonian 𝐻 =
∑
𝑖 |𝜙𝑖⟩⟨𝜙𝑖 | the

procedure is as follows:

1. Start with the graph G𝑛.

2. For each term |𝜙𝑖⟩⟨𝜙𝑖 | in 𝐻, insert the gadget implementing that term onto
the copies of G1 corresponding to qubits in the support of |𝜙𝑖⟩⟨𝜙𝑖 |.

3. For each term |𝜙𝑖⟩⟨𝜙𝑖 |, connect its gadget vertices all to all with the vertices
of G𝑛 corresponding to qubits outside the support of |𝜙𝑖⟩⟨𝜙𝑖 |.

3This was also the first step in [CK22]; however, the graph we choose here is a different one. In
order to show hardness of the gapped problem, we need that the natural inner product on simplices
respects that encoded computational basis states should be orthogonal. This feature was not present
in the encoding of [CK22].
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Hardness construction: 1 qubit

1-qubit graph !"

⟩0 ⟨0

| ⟩0 | ⟩1

#! $! ≅ ℂ"

(a) Our one-qubit graph is the ‘bowtie’
graph pictured here. It has two 1D
holes, which encode the qubit in the 1-
homology.

Hardness construction: 1 qubit

1-qubit graph !"

⟩0 ⟨0

| ⟩0 | ⟩1

#! $! ≅ ℂ"

(b) The gadget to implement the projector
onto |0⟩⟨0| is simply to add an additional
vertex and connect it to the hole repre-
senting the |0⟩ state. This fills in the |0⟩
hole and removes it from the homology,
providing it some energy on the Lapla-
cian.

| ⟩0 | ⟩1

*

*

*

(c) The gadget to implement the projector
onto |−⟩⟨−| is more involved. We must
fill in the cycle given by |−⟩ ∝ |0⟩ − |1⟩.

Hardness construction: tensor products
• Join: connect graphs all-to-all

• 0-qubit graph !' = !" ∗ ⋯ ∗ !" (0 times)

• !(:

�min(H) = 0 �⇒ Hk ≠ 0

�min(H) ≥ 1�polyn �⇒ �min(�k) ≥ 1�polyn

H = �
i

��i���i�
��i� = �

z∈{0,1}n

az �z� , az ∈ Z

K ∗L ∶= {‘� ⊗ ⌧ ’ = � ∪ ⌧ ∶ � ∈ K, ⌧ ∈ L}

Ck(K ∗ L) = �
i+j=k−1Ci(K) ⊗Cj(L)

Hk(K ∗ L) = �
i+j=k−1Hi(K) ⊗Hj(L)

‘�K∗L =�K ⊗ + ⊗�L’

�K∗Lk � � ⊗ �'� = (�Ki � �) ⊗ �'� + � � ⊗ (�Lj �'�)
for � � ∈ Ci(K) , �'� ∈ Cj(L) , i + j = k − 1

2

& '

| ⟩00 | ⟩11| ⟩01 | ⟩10

(d) This is a depiction of the two-qubit
graph, which consists of the join of two
bowtie graphs. The vertices in the distinct
bowties are connected all-to-all by edges.

Figure 6.2: Some illustrations of the hardness construction.

4. Do not connect any gadget vertices coming from different Hamiltonian terms.

With this candidate reduction in hand we then need to show that it satisfies the
necessary properties. Demonstrating that the resulting graph satisfies Item i is
straightforward—our construction of the gadgets fills in the holes in Cl(Ĝ𝑛) cor-
responding to states that are lifted in 𝐻. If the Hamiltonian 𝐻 has a zero energy
groundstate then there is a state |𝜓⟩ in the Hilbert space of 𝑛-qubits that satisfies
every projector in 𝐻. This state corresponds to a hole in Cl(G𝑛) that has not been
filled in by any gadget, and thus the hole remains in Cl(Ĝ𝑛) has non-trivial homol-
ogy. If, on the other hand, 𝐻 is not satisfiable, there is no state in the Hilbert space
of 𝑛 qubits that satisfies every projector in 𝐻. Therefore, the process of ‘filling in
holes’ via gadgets has removed 2𝑛 holes from the homology of Cl(G𝑛) to construct
Cl(Ĝ𝑛). We demonstrate when constructing the gadgets that the method of con-
structing gadgets does not introduce any new ‘spurious’ homology classes into the
complex. Therefore, since all 2𝑛 holes have been removed, and no holes have been
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introduced, the resulting complex Cl(Ĝ𝑛) has trivial homology.4

Demonstrating that the graph satisfies Item ii is more challenging, and constitutes
the main technical contribution of this work. At first glance there is no reason why
Item ii should hold. We have encoded the ground space of 𝐻 into the homology of
Cl(Ĝ𝑛). But the Laplacian of Cl(Ĝ𝑛) has many more excited states than the spectrum
of 𝐻, and it is plausible that the excited spectrum of the Laplacian includes very low
energy states.

Proof of gap
Our construction consists of weighted simplicial complexes. We should clarify that
the weighting will not affect the homology of the simplicial complex; rather, it will
only affect the Laplacian operator. In order to define the Laplacian, we implicitly
chose an inner product on the chain spaces C𝑘 , which consisted of the most basic
choice of declaring the simplices themselves to form an orthonormal basis. We will
now relax this so that the simplices are orthogonal with weights. The more general
inner product is

⟨𝜎 |𝜏⟩ =

𝑤(𝜎)2 𝜎 = 𝜏

0 otherwise
(6.21)

for 𝜎, 𝜏 ∈ K 𝑘 .

This involves assigning a weight 𝑤(𝜎) ≥ 0 to each simplex 𝜎 in the simplicial
complex K. There are two issues associated with the generality of this definition.
Firstly, recall that we introduced the clique complex to provide a more succinct
description of a simplicial complex. We likewise need the inner product to be
succinctly describable, so listing the weights of all simplices is not possible. The
second is that we would like the inner product to respect the join operation. That
is, after taking the join of two simplicial complexes K ∗ L, we would like the inner
product on

⊕
𝑖+ 𝑗=𝑘−1 C𝑖 (K)⊗C𝑗 (L) to be induced from those on C𝑖 (K) and C𝑗 (L).

To solve these issues, we add more structure to the definition. Each vertex 𝑣 in
the simplicial complex is assigned a weight 𝑤(𝑣), and the weights of the higher
simplices are induced via

𝑤(𝜎) =
∏
𝑣∈𝜎

𝑤(𝑣). (6.22)

4This same argument was used in [CK22] with a different graph construction to show that the
decision version of the clique homology problem is QMA1-hard—see Chapter 6 for details.
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This allows a graph G with weighted vertices to induce a weighted clique complex.
Note that the edges of G are still binary (present or not present). This also ensures
that, in the join construction, the weight of the tensor product of two simplices 𝜎, 𝜏
is the product of the individual weights 𝑤(𝜎 ⊗ 𝜏) = 𝑤(𝜎)𝑤(𝜏).

In order to get a handle on the excited spectrum of a single gadget, we need to ensure
that the states we lift out of homology do not mix with the rest of the spectrum.
In order to do this we weight the gadget vertices by some polynomially small
parameter 𝜆 ≪ 1. This ensures that the gadgets can be viewed as perturbations of
the original qubit complex. We then want to analyze the spectrum and eigenspaces,
which sounds similar to the domain of perturbation theory and perturbative gadgets
[KKR06]. However, perturbation theory is not able to provide the level of generality
and control we require for our purposes.5

Here, the main innovation of our work enters. We use an advanced tool from
algebraic topology known as spectral sequences [For94; Cho06; McC01] to analyze
the spectrum of each gadget. We will now elaborate on this key technique.

Our complex has some vertices weighted by 𝜆, which is a small perturbative pa-
rameter 𝜆 ≪ 1. In order to understand the low-energy spectrum of the Laplacian,
we would like to expand the kernel of the Laplacian perturbatively in 𝜆. This gives
us a sequence of vector spaces 𝐸 𝑘0 , 𝐸

𝑘
1 , 𝐸

𝑘
2 , . . . which provide increasingly close

approximations to KerΔ𝑘 .

𝐸 𝑘𝑗 → KerΔ𝑘 as 𝑗 →∞. (6.23)

Taking all orders of 𝜆 into account gives the true kernel of the Laplacian, which is
isomorphic to the homology.

KerΔ𝑘 � 𝐻𝑘 . (6.24)

From the weighting of the complex we can obtain a filtration on the chain complex,
and a filtered chain complex has an associated spectral sequence, which consists of
vector spaces 𝑒𝑘

𝑗 ,𝑙
. At 𝑗 = 0, our spectral sequence 𝑒𝑘0,𝑙 consists of the 𝑘-simplices

that are weighted by 𝜆𝑙 . For each ‘page’ 𝑗 there are coboundary maps

𝑑𝑘𝑗 ,𝑙 : 𝑒𝑘𝑗 ,𝑙 → 𝑒𝑘+1𝑗 ,𝑙+ 𝑗 (6.25)
5The difficulty is that we would like to go to arbitrarily high orders of perturbation theory. Using

generic perturbation theory tools, this would be close to impossible.



159Spectral sequences

• Zeroth page

• First page

• In general

• Page 7 + 1

���⌧� = �������
w(�)2 � = ⌧
0 � ≠ ⌧

w(�) = �
v∈� w(v)

w(� ⊗ ⌧) = w(�)w(⌧)

Ek
j = {� � ∈ Ck ∶∃ � �� = � � + �� 1� + �2� 2� + . . .

s.t. � ���k � �� = O(�2j)}

Ck = Uk
0 ⊇ Uk

1 ⊇ Uk
2 ⊇ . . .

s.t. dk(Uk
j ) ⊆ Uk+1

j

Uk
j = span{��� ∶ w(�) ∈ {�j , �j+1, . . .}}
= span{��� ∶ � involves at least j gadget vertices}

ek
0,l = Uk

l �Uk
l+1

dk
0,l ∶ ek

0,l → ek+1
0,l

3

���⌧� = �������
w(�)2 � = ⌧
0 � ≠ ⌧

w(�) = �
v∈� w(v)

w(� ⊗ ⌧) = w(�)w(⌧)

Ek
j = {� � ∈ Ck ∶∃ � �� = � � + �� 1� + �2� 2� + . . .

s.t. � ���k � �� = O(�2j)}

Ck = Uk
0 ⊇ Uk

1 ⊇ Uk
2 ⊇ . . .

s.t. dk(Uk
j ) ⊆ Uk+1

j

Uk
j = span{��� ∶ w(�) ∈ {�j , �j+1, . . .}}
= span{��� ∶ � involves at least j gadget vertices}

ek
0,l = Uk

l �Uk
l+1

dk
0,l ∶ ek

0,l → ek+1
0,l

3

ek
1,l = Kerdk

0,l� Imdk−1
0,l

dk
1,l ∶ ek

1,l → ek+1
1,l+1

dk
j,l ∶ ek

j,l → ek+1
j,l+j

ek
j+1,l = Kerdk

j,l� Imdk−1
j,l−j

4

ek
1,l = Kerdk

0,l� Imdk−1
0,l

dk
1,l ∶ ek

1,l → ek+1
1,l+1

dk
j,l ∶ ek

j,l → ek+1
j,l+j

ek
j+1,l = Kerdk

j,l� Imdk−1
j,l−j

4

ek
1,l = Kerdk

0,l� Imdk−1
0,l

dk
1,l ∶ ek

1,l → ek+1
1,l+1

dk
j,l ∶ ek

j,l → ek+1
j,l+j

ek
j+1,l = Kerdk

j,l� Imdk−1
j,l−j

4

ek
1,l = Kerdk

0,l� Imdk−1
0,l

dk
1,l ∶ ek

1,l → ek+1
1,l+1

dk
j,l ∶ ek

j,l → ek+1
j,l+j

ek
j+1,l = Kerdk

j,l� Imdk−1
j,l−j

4

,

-

.$,&" .$,#" .$,"" .$,'"

.$,&# .$,## .$,"#

.$,&& .$,#&

.$,&(#
/& /# /"

Figure 6.3: One can visualize the pages of the spectral sequence as a 2D array
of vector spaces for each 𝑗 . To move to the next page, we take the cohomology
everywhere with respect to the coboundary map 𝑑 ·

𝑗 ,·.

and to obtain the page 𝑒𝑘
𝑗+1,𝑙 we take the coboundary of the previous page 𝑒𝑘

𝑗 ,𝑙
. Now

consider the direct sums
𝑒𝑘𝑗 :=

⊕
𝑙

𝑒𝑘𝑗 ,𝑙 . (6.26)

The vector spaces 𝑒𝑘
𝑗

provides a sequence of approximations to the true homology
group 𝐻𝑘 as 𝑗 increases.

𝑒𝑘𝑗 → 𝐻𝑘 as 𝑗 →∞. (6.27)

Intuitively, subsequent pages of the spectral sequence take into account more terms
in the filtration, which in our case corresponds to including terms of higher order in
𝜆.

A result from algebraic topology tells us that these two sequences are in fact iso-
morphic [For94].

𝐸 𝑘𝑗 � 𝑒
𝑘
𝑗 (6.28)

That is, the perturbative expansion of the Laplacian groundspace is isomorphic to
the spectral sequence of the filtration. This provides a connection between Hodge
theory and spectral sequences. Our strategy from here is clear: We compute the
spectral sequence 𝑒𝑘

𝑗
algebraically and use the isomorphism of Ref. [For94] to

deduce the perturbative expansion 𝐸 𝑘
𝑗

of the Laplacian kernel and hence the low-
energy spectrum of the Laplacian. Our use of this isomorphism is reminiscent
of many methods in algebraic topology, where one converts difficult questions in
analysis and topology into the easier language of algebra.

Once we have completed the analysis of the spectrum and eigenspace of the Lapla-
cian corresponding to a single gadget using spectral sequences, we must still analyze
what happens when we put all the gadgets together. The argument that the lowest
eigenvalue of the Laplacian is bounded away from zero in NO cases proceeds in two
steps:
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1. In a NO case, any state must have large overlap with the excited subspace of
at least one of the gadgets.

2. States with low energy must have small overlap with the excited subspace of
all the gadgets. Hence, by Step 1, such low energy states do not exist.

The first point is straightforward—in NO cases the Hamiltonian 𝐻 is not satisfiable,
so it is not possible to construct a global state which is in the ground state of every
projector. Therefore the overlap of any global state with the zero energy groundstate
of each gadget must be bounded away from one for at least one of the gadgets. The
second point is technically challenging—it involves detailed understanding of the
structure of the combined Laplacian and its eigenspaces.

6.1 Preliminaries
QMA1 and Quantum 𝑚-SAT
Let’s begin by formally defining QMA and QMA1.

Definition 6.6 (QMA [Kit+02]). A problem 𝐴 = (𝐴yes, 𝐴no) is in QMA if there is a
𝑃-uniform family of polynomial-time quantum circuits (the “verifier”) 𝑉𝑛, one for
each input size 𝑛, such that

• If 𝑥 ∈ 𝐴yes, there exists a poly(𝑛)-qubit witness state |𝑤⟩ such that
P[𝑉𝑛 (𝑥, |𝑤⟩) = 1] ≥ 2

3 ,

• If 𝑥 ∈ 𝐴no, then for any poly(𝑛)-qubit witness state |𝑤⟩,
P[𝑉𝑛 (𝑥, |𝑤⟩) = 1] ≤ 1

3 .

The constants 1
3 , 2

3 in the definition of QMA are conventional. The definition of
QMA is equivalent as long as the acceptance and failure probabilities are separated
by some inverse polynomial in the problem size [Kit+02].

Definition 6.7 (QMA1 [Bra11; GN16]). A problem 𝐴 = (𝐴yes, 𝐴no) is in QMA1 if
there is a 𝑃-uniform family of polynomial-time quantum circuits (the “verifier”)𝑉𝑛,
one for each input size 𝑛, such that

• If 𝑥 ∈ 𝐴yes, there exists a poly(𝑛)-qubit witness state |𝑤⟩ such that
P[𝑉𝑛 (𝑥, |𝑤⟩) = 1] = 1,

• If 𝑥 ∈ 𝐴no, then for any poly(𝑛)-qubit witness state |𝑤⟩,
P[𝑉𝑛 (𝑥, |𝑤⟩) = 1] ≤ 1

3 .
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The canonical QMA1-complete problem is Quantum 𝑚-SAT, in which you are
asked to decide whether a local Hamiltonian composed of positive semi-definite
local terms has an exactly zero eigenvalue, given a suitable promise gap. In this
work we will reduce from Quantum 4-SAT to the problem of deciding whether or
not a particular homology group of a clique complex is non-trivial.

Problem 6.8. (Quantum 𝑚-SAT[Bra11]) Fix function 𝑔 : N→ [0,∞) with 𝑔(𝑛) ≥
1/poly𝑛. The input to the problem is a a list of 𝑚-local projectors Π 𝑗 ∈ P. P are a
set of projectors obeying certain constraints.6 Let

𝐻 =
∑︁
𝑗

Π 𝑗 . (6.29)

The task is to decide whether:

• YES 𝐻 is satisfiable i.e. there exists a state |𝜓⟩ with 𝐻 |𝜓⟩ = 0.

• NO The minimum eigenvalue of 𝐻 is at least 𝑔.

Quantum 𝑚-SAT is known to be QMA1-complete for 𝑚 ≥ 3 [Bra11; GN16].
Quantum 2-SAT is known to be in 𝑃 [Bra11].

In [Bra11] a history state construction was used to reduce from a general problem
in QMA1 to Quantum 4-SAT. Computational history states are of the form

|Φ⟩𝐶𝑄 =

𝑇∑︁
𝑡=0
|𝑡⟩ |𝜓𝑡⟩ , (6.30)

where {|𝑡⟩} is an orthonormal basis forH𝐶 , the clock register, and the
|𝜓𝑡⟩ = Π𝑡

𝑖=0𝑈𝑖 |𝜓0⟩ for some initial state |𝜓0⟩ and some set of unitaries {𝑈𝑖}. The first
register of |Φ⟩𝑄𝐶 encodes the time, while the second register (the ‘computational’
register) encodes the state of the quantum circuit at time 𝑡.

The idea in [Bra11] is to construct a local Hamiltonian (composed of projectors),
whose zero energy ground states are history states, this Hamiltonian is given by:

𝐻hs = 𝐻in + 𝐻clock + 𝐻prop, (6.31)
6We have been deliberately vague in defining the constraints that the set of projectors must

satisfy. That is because the constraints depend on the gate set, and there is not a standard definition.
However, this is only an issue for showing containment in QMA1. For showing QMA1-hardness
there is no need to include any constraints on the form of the projectors in Problem 6.8. Since we are
interested in showing QMA1-hardness and containment in QMA (where we only need to constrain
the locality of the projectors), we will not impose any constraints on the allowable projectors (beyond
their locality) throughout this work.
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where 𝐻in constrains the starting state |𝜓0⟩ of the circuit, 𝐻clock penalises any states
in the clock register which don’t encode valid times, and 𝐻prop penalises any states
where |𝜓𝑡⟩ ≠ 𝑈𝑡 |𝜓𝑡−1⟩. 𝐻hs has a degenerate zero energy ground state, where all
computations which start in a valid state |𝜓0⟩ satisfy every constraint. To break this
degeneracy, and encode QMA1-verification circuits it is necessary to add one extra
term to the Hamiltonian:

𝐻Bravyi = 𝐻hs + 𝐻out, (6.32)

where 𝐻out penalises any computation which outputs NO, and gives zero energy to
any computation which outputs YES.

In Table 6.1 we give an overview of the rank-1 projectors that we need to be able to
implement in order to reduce from the construction in [Bra11]. In Section 6.2 we
will construct gadgets to implement each of these states.

Note on gateset for QMA1: It is important to note that the definition of QMA1 (see
Definition 6.7) implicitly depends on a choice of universal gate set. In standard QMA
(see Definition 6.6) the definition is independent of gate set, since all universal gate
sets can approximate any unitary evolution. However, the requirement of perfect
completeness in QMA1 means that it may be necessary to implement a given unitary
evolution exactly.

When choosing a universal gate set for our construction we require that every gate
in the set should have only rational coefficients. This ensures that the only states
we need to lift are integer states—see Section 6.2. Based on this requirement, we
choose the universal gate set: G = {CNOT,𝑈} where 𝑈 is the ‘Pythagorean gate’
[CK22]:

𝑈 =
1
5

(
3 4
−4 3

)
. (6.33)

This choice of gate set is shown to be universal in [ADH97, Theorem 3.3] and
[Shi03, Theorem 1.2].

Simplicial homology
We will re-introduce the subject of homology more formally and from a ‘cohomology-
first’ perspective, since this will play nicely with the weighting introduced in Sec-
tion 6.1, and later spectral sequences in Section 6.3.

Definition 6.9. A simplicial complexK is a collection of subsetsK = K0∪K1∪ . . .
such that
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Term in 𝐻Bravyi Penalizes state |𝜓𝑆⟩
𝐻prop𝑡

′ 1√
2
( |1011⟩ − |1000⟩)

𝐻prop𝑡 (CNOT) 1√
2
( |0110⟩ − |0101⟩)

𝐻prop𝑡 (CNOT) 1√
2
( |0010⟩ − |0001⟩)

𝐻prop𝑡 (𝑈Pyth.) 1
5
√

2
(−5 |011⟩ + 4 |100⟩ + 3 |101⟩)

𝐻prop𝑡 (𝑈Pyth.) 1
5
√

2
(−5 |010⟩ + 3 |100⟩ − 4 |101⟩)

𝐻prop𝑡 (CNOT) 1√
2
( |1101⟩ − |1010⟩)

𝐻prop𝑡 (CNOT) 1√
2
( |1011⟩ − |1100⟩)

𝐻
(1)
clock |00⟩

𝐻
(2)
clock |11⟩

𝐻in, 𝐻out |011⟩
𝐻
(6)
clock, 𝐻 (4)clock, 𝐻 (5)clock, 𝐻 (3)clock |1100⟩

𝐻
(4)
clock |0111⟩

𝐻
(5)
clock |0001⟩

Table 6.1: Projectors needed for quantum 4-SAT with universal gate set G. Note
we collated projectors which are the same up to re-ordering the qubits involved.

• 𝜎 ∈ K 𝑘 have |𝜎 | = 𝑘 + 1.

• If 𝜎 ∈ K, then 𝜏 ∈ K for all 𝜏 ⊂ 𝜎.

Intuitively, a simplicial complex is a higher dimensional generalization of a graph.
It has vertices K0, edges K1, triangles K2, tetrahedra K3, et cetera.

From a simplicial complex we can derive a chain complex. Let C𝑘 (K) be the
complex vector space formally spanned byK 𝑘 . This involves picking a conventional
ordering for each simplex 𝜎 = [𝑣0, . . . , 𝑣𝑘 ] and identifying | [𝜋(𝑣0), . . . , 𝜋(𝑣𝑘 )]⟩ =
sgn(𝜋) |𝜎⟩ for any permutation 𝜋 ∈ 𝑆𝑘+1. Here sgn(𝜋) denotes the sign of the
permutation, and it is known as the orientation of the simplex. C𝑘 (K) is known as
a chain space.

For a 𝑘-simplex 𝜎 ∈ K 𝑘 , let up(𝜎) ⊂ K0 be the subset of vertices 𝑣 such that
𝜎 ∪ {𝑣} ∈ K 𝑘+1 is a 𝑘 + 1-simplex.

Define the coboundary map 𝑑𝑘 : C𝑘 (K) → C𝑘+1(K) to act as

𝑑𝑘 |𝜎⟩ =
∑︁

𝑣∈up(𝜎)
|𝜎 ∪ {𝑣}⟩ (6.34)

for a 𝑘-simplex 𝜎 ∈ K 𝑘—see Figure 6.4.
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d d
0

Figure 6.4: The action of the coboundary map. In each step the coboundary map is
acting on the parts of the complex shown in red. The third figure is empty because
the lines that are acted on by the coboundary map in the second figure all have
coboundaries composed of two triangles, and these coboundaries cancel out with
those of the lines on either side as they have opposite orientation.

This gives a chain of vector spaces with linear maps between them.

C−1(K) C0(K) C1(K) C2(K) . . .
𝑑−1 𝑑0 𝑑1 𝑑2

(6.35)

Here we define C−1(K) = span{∅} � C the 1-dimensional vector space, and 𝑑0

maps the empty set |∅⟩ to the uniform superposition
∑
𝑣∈K0 |𝑣⟩ ∈ C0(K). With this

convention, we are working with the reduced cohomology.

It can be checked that 𝑑𝑘 ◦ 𝑑𝑘−1 = 0 for each 𝑘 . This gives a chain complex.

Definition 6.10. A chain complex is a chain of complex vector spaces C𝑘 with linear
maps 𝑑𝑘 : C𝑘 → C𝑘+1 which satisfy 𝑑𝑘 ◦ 𝑑𝑘−1 = 0 for all 𝑘 .

C−1 C0 C1 C2 . . .
𝑑−1 𝑑0 𝑑1 𝑑2

(6.36)

𝑑𝑘 ◦ 𝑑𝑘−1 = 0 means that Im 𝑑𝑘−1 ⊆ Ker 𝑑𝑘 for each 𝑘 . This allows us to define the
cohomology groups as

𝐻𝑘 =
Ker 𝑑𝑘

Im 𝑑𝑘−1 . (6.37)

Let (C𝑘 )∗ be the dual space of C𝑘 . Formally, this is the space of linear functionals
𝑓 : C𝑘 → C. Let 𝜕𝑘 = (𝑑𝑘−1)∗ : (C𝑘 )∗ → (C𝑘−1)∗ the dual map of 𝑑𝑘−1. 𝜕𝑘 are
known as boundary maps, as introduced in Chapter 6. As noted before, these act as

𝜕𝑘 |𝜎⟩ =
∑︁
𝑣∈𝜎
|𝜎 \ {𝑣}⟩ (6.38)

for a 𝑘-simplex 𝜎 ∈ K 𝑘 . (Here, by |𝜎⟩ and |𝜎 \ {𝑣}⟩, we technically mean
the indicator functions of these simplices, which are members of the dual spaces
(C𝑘 )∗, (C𝑘−1)∗.) See Figure 6.1 for a diagrammatic representation.



165

We get the chain complex

(C−1)∗ (C0)∗ (C1)∗ (C2)∗ . . .
𝜕0 𝜕1 𝜕2 𝜕3

(6.39)

From 𝑑𝑘 ◦ 𝑑𝑘−1 = 0 ∀𝑘 we get that 𝜕𝑘 ◦ 𝜕𝑘+1 = 0 ∀𝑘 . This allows us to define the
homology groups as

𝐻𝑘∗ =
Ker 𝜕𝑘

Im 𝜕𝑘+1
. (6.40)

The homology groups 𝐻𝑘∗ are the dual spaces of the cohomology groups 𝐻𝑘 .

Hodge theory
Our next move will be to choose an inner product on C𝑘 , thus rendering it a Hilbert
space. This is equivalent to choosing an isomorphism between the space and its
dual C𝑘 ↔ C𝑘∗. The most basic choice is to declare the simplices themselves to
form an orthonormal basis. That is, for 𝜎, 𝜏 ∈ K 𝑘

⟨𝜎 |𝜏⟩ =


1 𝜎 = 𝜏

0 otherwise.
(6.41)

We will modify this choice later, but for now let’s consider this case. We can now
drop the asterisks in the notation and identify C𝑘∗ = C𝑘 . The 𝑘-boundary map is
now the adjoint of the 𝑘 − 1-coboundary map

𝜕𝑘 = (𝑑𝑘−1)†. (6.42)

The inner product allows us to define the Laplacian as

Δ𝑘 : C𝑘 → C𝑘 (6.43)

Δ𝑘 = 𝑑𝑘−1𝜕𝑘 + 𝜕𝑘+1𝑑𝑘 . (6.44)

This is a positive semi-definite self-adjoint operator on the Hilbert space C𝑘 . In
fact, we can split up the definition and write

Δ↓𝑘 = 𝑑𝑘−1𝜕𝑘 (6.45)

Δ↑𝑘 = 𝜕𝑘+1𝑑𝑘 (6.46)

Δ𝑘 = Δ↓𝑘 + Δ↑𝑘 (6.47)

and now both Δ↓𝑘 and Δ↑𝑘 are individually positive semi-definite.
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Fact 6.2.

⟨𝜓 |Δ↓𝑘 |𝜓⟩ = | |𝜕𝑘 |𝜓⟩| |2 (6.48)

⟨𝜓 |Δ↑𝑘 |𝜓⟩ = | |𝑑𝑘 |𝜓⟩| |2 (6.49)

⟨𝜓 |Δ𝑘 |𝜓⟩ = | |𝜕𝑘 |𝜓⟩| |2 + ||𝑑𝑘 |𝜓⟩| |2 (6.50)

(6.51)

Recall the basic theorem of Hodge theory Proposition 6.3, restated here:

Proposition 6.3. KerΔ𝑘 is canonically isomorphic to 𝐻𝑘 .

The proposition tells us that each homology class has a unique harmonic represen-
tative, where harmonic means that it is in the kernel of the Laplacian. The equation
Δ𝑘 |𝜓⟩ = 0 is a high-dimensional generalization of Laplace’s equation, and KerΔ𝑘

is sometimes referred to as the harmonic subspace.

Pairing of Laplacian eigenstates
From the chain complex

C−1 C0 C1 C2 . . .
𝜕0 𝜕1 𝜕2 𝜕3

(6.52)

we can build the graded vector space

C = C−1 ⊕ C0 ⊕ C1 ⊕ . . . (6.53)

We will refer to this as the Fock space, where this terminology comes from a
connection to supersymmetric quantum systems. 𝜕𝑘 and 𝑑𝑘 give maps

𝜕, 𝑑 : C → C (6.54)

by acting blockwise. The Laplacian becomes

Δ = 𝑑𝜕 + 𝜕𝑑 : C → C (6.55)

Δ↓ = 𝑑𝜕 : C → C (6.56)

Δ↑ = 𝜕𝑑 : C → C (6.57)

{𝜕, 𝑑} generate a𝐶∗-algebra representation on Fock space. Moreover, the Laplacian
Δ commutes with 𝜕 and 𝑑, and hence commutes with this representation. Thus we
can write each Δ-eigenspace as a sum of irreducible {𝜕, 𝑑}-subrepresentations.
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Proposition 6.4. The kernel of the Laplacian KerΔ consists of states that are
annihilated by both 𝜕 and 𝑑. These are one-dimensional {𝜕, 𝑑}-irreps, or singlets.
Let 𝐸 > 0 be an eigenvalue of the Laplacian Δ. The 𝐸-eigenspace is a direct sum of
2-dimensional subspaces {|𝜓↑⟩, |𝜓↓⟩} with |𝜓↑⟩ ∈ C𝑘 for some 𝑘 and |𝜓↓⟩ ∈ C𝑘+1

such that

𝜕 |𝜓↑⟩ = 0 , 𝑑 |𝜓↑⟩ ∝ |𝜓↓⟩ (6.58)

𝜕 |𝜓↓⟩ ∝ |𝜓↑⟩ , 𝑑 |𝜓↓⟩ = 0 (6.59)

which implies

Δ↓ |𝜓↑⟩ = 0 , Δ↑ |𝜓↑⟩ = 𝐸 |𝜓↑⟩ (6.60)

Δ↓ |𝜓↓⟩ = 𝐸 |𝜓↓⟩ , Δ↑ |𝜓↓⟩ = 0. (6.61)

These 2-dimensional subspaces are likewise {𝜕, 𝑑}-irreps, or doublets. We refer to
the states |𝜓↑⟩ as ‘paired up’, and the states |𝜓↓⟩ as ‘paired down’.

Proof. (Sketch.) ⟨𝜓 |Δ|𝜓⟩ = 0 if and only if 𝜕 |𝜓⟩ = 𝑑 |𝜓⟩ = 0 by Fact 6.2, and the
states in the kernel of the Laplacian are precisely the singlets in this representation.

Now recall that 𝜕 : C𝑘+1 → C𝑘 , 𝑑 : C𝑘 → C𝑘+1 and 𝜕2 = 𝑑2 = 0. These proper-
ties imply that all non-singlet irreducible {𝜕, 𝑑}-subrepresentations are necessarily
doublets supported on neighboring blocks C𝑘 ⊕ C𝑘+1 for some 𝑘 . □

Joins
The join will be an important operation for us on simplicial complexes.

Definition 6.11. Given two simplicial complexes K and L, define their join K ∗ L
to be the simplicial complex consisting of simplices 𝜎 ⊗ 𝜏 := 𝜎 ∪ 𝜏 for all 𝜎 ∈ K,
𝜏 ∈ L.

The chain spaces and homology of the join are given by the Kunneth formula.

Fact 6.3. (Kunneth formula) There are canonical isomorphisms

C𝑘 (K ∗ L) �
⊕

𝑖+ 𝑗=𝑘−1
C𝑖 (K) ⊗ C 𝑗 (L) (6.62)

𝐻𝑘 (K ∗ L) �
⊕

𝑖+ 𝑗=𝑘−1
𝐻𝑖 (K) ⊗ 𝐻 𝑗 (L) (6.63)

We would also like to relate the Laplacian of K ∗ L to the Laplacians of K and L.
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Lemma 6.5. If |𝜓⟩ ∈ C𝑖 (K) and |𝜑⟩ ∈ C 𝑗 (L) where 𝑖 + 𝑗 = 𝑘 − 1, then

Δ𝑘 ( |𝜓⟩ ⊗ |𝜑⟩) = (Δ𝑖 |𝜓⟩) ⊗ |𝜑⟩ + |𝜓⟩ ⊗ (Δ 𝑗 |𝜑⟩). (6.64)

Proof. If 𝜎 is an 𝑖-simplex of K and 𝜏 is a 𝑗-simplex of L, and 𝑖 + 𝑗 = 𝑘 − 1, it can
be checked that

𝜕𝑘 ( |𝜎⟩ ⊗ |𝜏⟩) = (𝜕𝑖 |𝜎⟩) ⊗ |𝜏⟩ + (−1) |𝜎 | |𝜎⟩ ⊗ (𝜕 𝑗 |𝜏⟩) (6.65)

and
𝑑𝑘 ( |𝜎⟩ ⊗ |𝜏⟩) = (𝑑𝑖 |𝜎⟩) ⊗ |𝜏⟩ + (−1) |𝜎 | |𝜎⟩ ⊗ (𝑑 𝑗 |𝜏⟩). (6.66)

Now
Δ𝑘 = 𝑑𝑘−1𝜕𝑘 + 𝜕𝑘+1𝑑𝑘 (6.67)

so
Δ𝑘 ( |𝜎⟩ ⊗ |𝜏⟩) = (Δ𝑖 |𝜎⟩) ⊗ |𝜏⟩ + |𝜎⟩ ⊗ (Δ 𝑗 |𝜏⟩). (6.68)

By linearity, this extends to chains |𝜓⟩ ∈ C𝑖 (K), |𝜑⟩ ∈ C 𝑗 (L). □

Since we are building our simplicial complexes as the clique complexes of graphs,
we must be able to implement the join at the level of the graphs. This is achieved
by taking the two constituent graphs G and G′ and including all edges between G
and G′.

Definition 6.12. The join of two graphs G = (𝑉, 𝐸) and G′ = (𝑉 ′, 𝐸′) is the graph
G ∗ G′ with vertices 𝑉 ∪𝑉 ′ and edges 𝐸 ∪ 𝐸′ ∪ {(𝑢, 𝑣) : 𝑢 ∈ 𝑉, 𝑣 ∈ 𝑉 ′}.

Fact 6.4. The clique complex of the join of two graphs is the join of the clique
complexes of the graphs.

Generalized octrahedra
Let 𝔤1 denote the graph consisting of two disjoint points (with no edges), and let 𝔤𝑛
be the 𝑛-fold join of 𝔤1.7

𝔤𝑛 = 𝔤1 ∗ · · · ∗ 𝔤1 (𝑛 times) (6.69)
7By Fact 6.4, it is equivalent to think of the join as acting at the level of graphs or at the level of

simplicial complexes.
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It will be useful to develop an intuitive interpretation for the complex 𝔤𝑛. The
Kunneth formula tells us that it should have

dim𝐻𝑘 =


1 𝑘 = 𝑛 − 1

0 otherwise.
(6.70)

In fact, 𝔤𝑛 is topologically homeomorphic to the (𝑛 − 1)-sphere 𝑆𝑛−1. But which
triangulation of 𝑆𝑛−1 does it form in particular?

We can interpret 𝔤𝑛 as a “generalized octahedron”. 𝔤2 is the square loop, and 𝔤3 is the
standard octahedron. The (𝑛−1)-simplices of 𝔤𝑛 are the 𝑛-cliques of the 1-skeleton.
There are 2𝑛 of these, corresponding to choosing one vertex from each copy of
𝔤1. Notice how the number of simplices which make up the higher dimensional
octahedron is exponential in the number of vertices. These generalized octahedron
are sometimes referred to as cross-polytopes.

Weighting
In our construction, we would like to consider weighted simplicial complexes. The
purpose of this section is to define a natural notion of weighting. We should clarify
that the weighting will not affect the homology of the simplicial complex; rather, it
will only affect the Laplacian operator.

Recall that, in order to define the Laplacian, we had to choose an inner product
on the chain spaces C𝑘 . We went with the most basic choice of declaring the
simplices themselves to form an orthonormal basis. We will now relax this so that
the simplices are orthogonal with weights. The more general inner product is

⟨𝜎 |𝜏⟩ =

𝑤(𝜎)2 𝜎 = 𝜏

0 otherwise
(6.71)

for 𝜎, 𝜏 ∈ K 𝑘 .

This involves assigning a weight 𝑤(𝜎) ≥ 0 to each simplex 𝜎 in the simplicial
complex K. There are two issues associated with the generality of this definition.
Firstly, recall that we introduced the clique complex to provide a more succinct
description of a simplicial complex. We likewise need the inner product to be
succinctly describable, so listing the weights of all simplices is not possible. The
second is that we would like the inner product to respect the join operation. That
is, after taking the join of two simplicial complexes K ∗ L, we would like the
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inner product on
⊕

𝑖+ 𝑗=𝑘−1 C𝑖 (K) ⊗ C 𝑗 (L) to be induced from those on C𝑖 (K) and
C 𝑗 (L).

To solve these issues, we add more structure to the definition. Each vertex 𝑣 in
the simplicial complex is assigned a weight 𝑤(𝑣), and the weights of the higher
simplices are induced via

𝑤(𝜎) =
∏
𝑣∈𝜎

𝑤(𝑣). (6.72)

This allows a graph G with weighted vertices to induce a weighted clique complex.
Note that the edges of G are still binary (present or not present). This also ensures
that, in the join construction, the weight of the tensor product of two simplices 𝜎, 𝜏
is the product of the individual weights 𝑤(𝜎 ⊗ 𝜏) = 𝑤(𝜎)𝑤(𝜏).

How do the coboundary and boundary operators now act on the weighted complex?
Let’s first consider the coboundary operator. We would like to transform to bases
which are orthonormal in the new inner products. Our new basis for C𝑘 (K) will be
{|𝜎′⟩ : 𝜎 ∈ K 𝑘 }, where

|𝜎′⟩ = 1
𝑤(𝜎) |𝜎⟩ (6.73)

is the unit vector of |𝜎⟩. 𝑑𝑘 originally acted as

𝑑𝑘 |𝜎⟩ =
∑︁

𝑣∈up(𝜎)
|𝜎 ∪ {𝑣}⟩. (6.74)

Written in the new orthonormal basis, this becomes

𝑑𝑘 |𝜎′⟩ =
∑︁

𝑣∈up(𝜎)

𝑤(𝜎 ∪ {𝑣})
𝑤(𝜎) | (𝜎 ∪ {𝑣})′⟩

=
∑︁

𝑣∈up(𝜎)
𝑤(𝑣) | (𝜎 ∪ {𝑣})′⟩ (6.75)

𝜕𝑘 is defined by
𝜕𝑘 = (𝑑𝑘−1)† (6.76)

which thus acts by
𝜕𝑘 |𝜎′⟩ =

∑︁
𝑣∈𝜎

𝑤(𝑣) | (𝜎 \ {𝑣})′⟩. (6.77)

From here onwards, we drop the primes on the standard orthonormal basis.

We anticipate it will be useful to the reader to explicitly describe the action of the
Laplacian Δ𝑘 of a weighted clique complex G. Let 𝜎, 𝜏 be two 𝑘-simplices. Let’s
say that 𝜎 and 𝜏 have a similar common lower simplex if we can remove a vertex
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𝑣𝜎 from 𝜎 and a vertex 𝑣𝜏 from 𝜏 such that we get the same 𝑘 − 1-simplex, with
the same orientation. Let’s say that they have a dissimilar common lower simplex
if the same holds but with opposite orientation. Let’s say that 𝜎 and 𝜏 are upper
adjacent if they are lower adjacent and their union forms a 𝑘 + 1-simplex. 𝜎 and 𝜏
being upper adjacent means that they are the faces of a common 𝑘 + 1-simplex.

Fact 6.5. (Similar to [Gol02, Theorem 3.3.4])

⟨𝜎 |Δ𝑘 |𝜏⟩ =



(∑
𝑢∈up(𝜎) 𝑤(𝑢)2

)
+(∑

𝑣∈𝜎 𝑤(𝑣)2
)
+ 1 If 𝜎 = 𝜏.

𝑤(𝑣𝜎)𝑤(𝑣𝜏)

If 𝜎 and 𝜏 have a similar common lower simplex
and are not upper adjacent. 𝑣𝜎 and 𝑣𝜏 are the
vertices removed from 𝜎 and 𝜏 respectively to get
the common lower simplex.

−𝑤(𝑣𝜎)𝑤(𝑣𝜏)
If𝜎 and 𝜏 have a dissimilar common lower simplex
and are not upper adjacent. 𝑣𝜎 and 𝑣𝜏 are the
vertices removed from 𝜎 and 𝜏 respectively.

0
Otherwise. This includes the case that 𝜎 and 𝜏
have no common lower simplex, and the case that
they are upper adjacent.

(6.78)

As a corollary, we can see that the Laplacian Δ𝑘 is a poly(𝑛)-sparse matrix.

Thickening
Given a graph whose clique complex, K, is a triangulation of 𝑆𝑛. We would like to
find a graph whose clique complex is topologically K × 𝐼 where 𝐼 = [0, 1]. Here,
we describe a construction which we call thickening which achieves this.

First, the following lemma tells us how to triangulate K × 𝐼.

Lemma 6.6. Let K be a simplicial complex. Order the vertices K0. Let L be the
simplicial complex with vertices L0 = K0 × {0, 1} and simplices

[(𝑢1, 0) (𝑢2, 0) . . . (𝑢𝑎, 0)] (6.79)

whenever [𝑢1𝑢2 . . . 𝑢𝑎] ∈ K,

[(𝑢1, 1) (𝑢2, 1) . . . (𝑢𝑎, 1)] (6.80)
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whenever [𝑢1𝑢2 . . . 𝑢𝑎] ∈ K and finally,

[(𝑢1, 0) (𝑢2, 0) . . . (𝑢𝑎, 0) (𝑣1, 1) . . . (𝑣𝑏, 1)] (6.81)

whenever

• 𝑢1 < · · · < 𝑢𝑎 ≤ 𝑣1 < · · · < 𝑣𝑏

• [𝑢1 . . . 𝑢𝑎] ∈ K

• [𝑣1 . . . 𝑣𝑏] ∈ K

• if 𝑢𝑎 = 𝑣1 then [𝑢1 . . . 𝑢𝑎𝑣2 . . . 𝑣𝑏] ∈ K

• if 𝑢𝑎 ≠ 𝑣1 then [𝑢1 . . . 𝑢𝑎𝑣1 . . . 𝑣𝑏] ∈ K .

Then L is a triangulation of K × 𝐼.

Proof. To demonstrate that L is a triangulation of K × 𝐼 we must show that L
subdividesK× 𝐼, i.e. thatK× 𝐼 is filled by simplices, and no two simplices overlap.

Consider the first point. It is immediate from the definition of L that if the maximal
simplices inK are 𝑛-simplices than the maximal simplices in L are 𝑛+1-simplices.
The maximal simplices in L are of the form

[(𝑢1, 0) (𝑢2, 0) . . . (𝑢𝑎, 0) (𝑢𝑎, 1) (𝑣2, 1) . . . (𝑣𝑏, 1)], (6.82)

where 𝑎 + 𝑏 = 𝑛 Note that every facet of a maximal simplex in L is either:

• of the form [(𝑢1, 0) (𝑢2, 0) . . . (𝑢𝑎, 0)] – i.e. lies on the boundary K × {0} of
the triangulation

• of the form [(𝑢1, 1) (𝑢2, 1) . . . (𝑢𝑎, 1)] – i.e. lies on the boundary K × {1} of
the triangulation

• shared between at least two maximal simplices

The first two claims are trivial. To see that the third claim is true note that K is a
closed manifold. Therefore consider a maximal simplex 𝑠 ∈ L. By the definition
of L, there exists a corresponding maximal simplex 𝑠′ ∈ K, such that for any vertex
𝑣 we remove from 𝑠 to construct a facet there is a corresponding vertex 𝑣′ we can
remove from 𝑠′. Since K is closed we can always add a different vertex 𝑤′ to 𝑠′ \ 𝑣′
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to give a different maximal simplex 𝑡′ ∈ K. There will be a corresponding vertex
𝑤 we can add to the facet of 𝑠 to give a different maximal facet 𝑡 ∈ L, such that 𝑡
and 𝑠 share the facet obtained from 𝑠 by removing 𝑣. Therefore there are no ‘gaps’
in L, it completely fills K × 𝐼.

Consider now the second point—the simplices of L must not overlap. Assume
for contradiction that they do overlap. Then two simplices 𝑠, 𝑡 ∈ L must share an
intersection which is not a simplex. But it is straightforward to check that any two
maximal simplices of L either do not intersect, or intersect on a simplex. Therefore
the simplices of L do not overlap. □

Finally, we can implement this triangulation with a clique complex using the fol-
lowing lemma.

Lemma 6.7. LetK be a clique complex. Order the verticesK0. Let G be the graph
with vertices K0 × {0, 1} and edges

{((𝑢, 0), (𝑣, 0)) : (𝑢, 𝑣) ∈ K1} (6.83)

∪ {((𝑢, 1), (𝑣, 1)) : (𝑢, 𝑣) ∈ K1} (6.84)

∪ {((𝑣, 0), (𝑣, 1)) : 𝑣 ∈ K0} (6.85)

∪ {((𝑢, 0), (𝑣, 1)) : (𝑢, 𝑣) ∈ K1, 𝑢 < 𝑣} (6.86)

The clique complex of G isL from Lemma 6.6, and in particular has clique complex
triangulating K × 𝐼.

Proof. It is straightforward to check that the cliques in G are precisely those listed
in Lemma 6.6. □

Perturbation of subspaces
In this section, we introduce a notion of a perturbation of a subspace. This will be
useful in stating a central lemma in the argument, Lemma 6.9, and investigating its
consequences.

Definition 6.13. Consider a subspace U ⊆ V of a complex vector space V. Let
U𝜆 ⊆ V be a family of subspaces indexed by the continuous parameter 𝜆 ∈ [0, 1].
We say thatU𝜆 is a O(𝜆)-perturbation ofU if there exists orthonormal bases {|𝑢⟩}𝑢
forU and {|𝑢, 𝜆⟩}𝑢 for eachU𝜆 such that

| | |𝑢, 𝜆⟩ − |𝑢⟩| | = O(𝜆) ∀𝑢. (6.87)
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Using this definition, we prove a two-part lemma which will be useful later.

Lemma 6.8. Suppose U𝜆 is a O(𝜆)-perturbation of subspace U ⊆ V. Let Π be
the orthogonal projection onto U and Π𝜆 orthogonal projection onto U𝜆 for each
𝜆. Then

1. | |Π𝜆 − Π | |op ≤ O(𝜆) in operator norm.

2. If |𝜓𝜆⟩ is a parametrized family of states such that ⟨𝜓𝜆 |Π |𝜓𝜆⟩ = O(𝜆2), then
⟨𝜓𝜆 |Π𝜆 |𝜓𝜆⟩ = O(𝜆2).

Proof. Using the condition Equation (6.87), we can write

|𝑢, 𝜆⟩ = |𝑢⟩ + O(𝜆) |𝑢̃𝜆⟩ (6.88)

for some normalized vector |𝑢̃𝜆⟩. Then

Π𝜆 =
∑︁
𝑢

|𝑢, 𝜆⟩⟨𝑢, 𝜆 | (6.89)

=
∑︁
𝑢

(
|𝑢⟩ + O(𝜆) |𝑢̃𝜆⟩

) (
⟨𝑢 | + O(𝜆)⟨𝑢̃𝜆 |

)
(6.90)

=

(∑︁
𝑢

|𝑢⟩⟨𝑢 |
)
+ O(𝜆)

∑︁
𝑢

|𝑢⟩⟨𝑢̃𝜆 | + O(𝜆)
∑︁
𝑢

|𝑢̃𝜆⟩⟨𝑢 | + O(𝜆2) (6.91)

= Π + O(𝜆)
∑︁
𝑢

|𝑢⟩⟨𝑢̃𝜆 | + O(𝜆)
∑︁
𝑢

|𝑢̃𝜆⟩⟨𝑢 | + O(𝜆2). (6.92)

We can immediately read off Part 1, that | |Π𝜆 − Π | | ≤ O(𝜆) in operator norm. As
for Part 2,

⟨𝜓𝜆 |Π𝜆 |𝜓𝜆⟩ = ⟨𝜓𝜆 |Π |𝜓𝜆⟩ + O(𝜆)
∑︁
𝑢

⟨𝜓𝜆 |𝑢⟩⟨𝑢̃𝜆 |𝜓𝜆⟩ + O(𝜆)
∑︁
𝑢

⟨𝜓𝜆 |𝑢̃𝜆⟩⟨𝑢 |𝜓𝜆⟩ + O(𝜆2)

(6.93)

= O(𝜆2) + O(𝜆)
∑︁
𝑢

⟨𝜓𝜆 |𝑢⟩⟨𝑢̃𝜆 |𝜓𝜆⟩ + O(𝜆)
∑︁
𝑢

⟨𝜓𝜆 |𝑢̃𝜆⟩⟨𝑢 |𝜓𝜆⟩ (6.94)

≤ O(𝜆2) + O(𝜆)
(∑︁

𝑢

|⟨𝑢 |𝜓𝜆⟩|2
) 1

2
(∑︁

𝑢

|⟨𝑢̃𝜆 |𝜓𝜆⟩|2
) 1

2 (6.95)

≤ O(𝜆2) + O(𝜆)
(
⟨𝜓𝜆 |Π |𝜓𝜆⟩

) 1
2 (6.96)

≤ O(𝜆2). (6.97)

We used the assumption ⟨𝜓𝜆 |Π |𝜓𝜆⟩ = O(𝜆2), and then Cauchy-Schwarz, and finally
the assumption again. □
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6.2 Hamiltonian to homology gadgets
Given an instance of quantum𝑚-SAT𝐻 on 𝑛 qubits, we are aiming to find a weighted
graph G and some 𝑘 such that the ground energy of the 𝑘 th-order Laplacian Δ𝑘 is
related to the ground energy of 𝐻. We will do this by first constructing a qubit graph
G𝑛 whose harmonic states can be identified with qubit states |𝜓⟩ ∈ (C2)⊗𝑛.8 This
means the 𝑘-homology of G𝑛 will be 2𝑛-dimensional. The clique complex of this
graph will have no 𝑘 + 1-simplices, so Δ↑𝑘 = 0.

The 𝑚-local Hamiltonian 𝐻 is a sum of rank-1 projectors

𝐻 =

𝑡∑︁
𝑖=1

𝜙𝑖, (6.98)

where each 𝜙𝑖 = |𝜙𝑖⟩⟨𝜙𝑖 | for a state |𝜙𝑖⟩ on at most 𝑚 qubits.

Definition 6.14. |𝜙⟩ is an integer state if it can be written as

|𝜙⟩ = 1
Z

∑︁
𝑧∈{0,1}𝑚

𝑎𝑧 |𝑧⟩, (6.99)

where 𝑎𝑧 ∈ Z are integers, andZ = (∑𝑧 |𝑎𝑧 |2)
1
2 is a normalization factor.

We will assume {|𝜙𝑖⟩} are integer states. For each term 𝜙𝑖 we will add a gadget T𝑖
to the graph which aims to implement the effect of this term on the groundspace of
harmonic states. T𝑖 will consist of additional vertices and edges which add 𝑘 + 1-
simplices to the clique complex so that Δ↑𝑘 implements 𝜙𝑖. Topologically, this is
achieved by designing T𝑖 to be a triangulation of a 𝑘 + 1-manifold whose boundary
is the cycle corresponding to |𝜙𝑖⟩.

In our construction, the clique complex will be weighted as described in Section 6.1.
Recall that this is done by assigning weights to the vertices of the underlying graph.
The vertices of the original qubit graph G𝑛 will all have weight 1. The vertices of
the gadgets T𝑖 will have weight 1

poly𝑛 ≤ 𝜆 ≪ 1. The weights are much smaller than
1, although only polynomially so.

Qubit graph
Let G1 be the bowtie graph (see Figure 6.5). The clique complex has no 2-simplices,
and the 1-homology is isomorphic to C2, spanned by equivalence classes of the

8Here we do not use the same graph as in [CK22] because in order to maintaing a link between
the spectrum of the Laplacian and the spectrum of the Quantum 4-SAT Hamiltonian we are reducing
from we need our basis states to correspond to orthogonal holes in the clique complex, not just
distinct homology classes.
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left and right loops. Further, the loops themselves form an orthonormal basis
of the harmonic states KerΔ1 ⊆ C1. Identify |0⟩ with the left loop, (i.e. the
cycle [𝑥𝑎3] + [𝑎3𝑎2] + [𝑎2𝑎4] + [𝑎4𝑥]) and |1⟩ with the right loop (i.e. the cycle
[𝑥𝑏3] + [𝑏3𝑏2] + [𝑏2𝑏4] + [𝑏4𝑥]). Note that C1 � C8 since there are 8 1-simplices
(edges). The other 6 states have some higher energies on Δ1.

To construct G𝑛, we employ the join operation.

G𝑛 = G1 ∗ · · · ∗ G1 (𝑛 times). (6.100)

Using the Kunneth formula Fact 6.3, we see that 𝐻2𝑛−1 � (C2)⊗𝑛. Moreover,
the computational qubit states |𝑧1⟩ ⊗ · · · ⊗ |𝑧𝑛⟩ for 𝑧𝑖 ∈ {0, 1} form a natural
orthonormal basis for the groundspace KerΔ2𝑛−1 ⊆ C2𝑛−1. Note this means that we
take 𝑘 = 2𝑛 − 1. Denote

H𝑛 := KerΔ2𝑛−1 � (C2)⊗𝑛. (6.101)

What is the cycle corresponding to a computational basis state |𝑧⟩, 𝑧 ∈ {0, 1}𝑛? |𝑧⟩ is
the join of 𝑛 copies of the square loop. The square loop is a two-fold join 𝔤2 = 𝔤1∗𝔤1

from Section 6.1. Thus |𝑧⟩ is a copy of the (2𝑛 − 1)-dimensional octahedron 𝔤2𝑛.
|𝑧⟩ is topologically homeomoprhic to 𝑆2𝑛−1.

x
a2

a3

b2

b3

|0〉 |1〉
a4 b4

Figure 6.5: The clique-complex that encodes a single-qubit.

Single gadget
We now describe the gadget for a single term 𝜙 where 𝜙 = |𝜙⟩⟨𝜙 |. For this section
we drop the subscript 𝑖 labelling the terms.

Let’s first work on implementing the Hamiltonian term 𝜙 on the harmonic subspace
H𝑚 ⊆ C2𝑚−1(G𝑚), H𝑚 � (C2)⊗𝑚 of the 𝑚-qubit graph. This will involve adding
vertices and edges toG𝑚, and these additional vertices and edges make up the gadget.
Let the final graph be denoted Ĝ𝑚. Eventually we can then add the remaining 𝑛−𝑚
qubits and find the relevant gadget for G𝑛 by joining G𝑛−𝑚

Ĝ𝑛 = Ĝ𝑚 ∗ G𝑛−𝑚 . (6.102)
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Motivated by the equation ⟨𝜓 |Δ↑𝑘 |𝜓⟩ = | |𝑑𝑘 |𝜓⟩| |2, we would like the gadget to be a
triangulation of a manifold whose boundary is precisely the cycle |𝜙⟩. This can be
viewed topologically as filling in the cycle |𝜙⟩. Throughout this section J refers to
the cycle we want to fill in with the gadget (i.e. if we are constructing a gadget for
the projector |𝜙⟩⟨𝜙| then J is the cycle that corresponds to the state |𝜙⟩), and J 0

refers to the vertices in J . The procedure is as follows.

1. Construct a clique complexK which is a triangulation of 𝑆2𝑚−1 and a relation:

𝑅 ⊆ {(𝑧𝑖, 𝑧 𝑗 ) |𝑧𝑖, 𝑧 𝑗 ∈ K0} (6.103)

such that the map

𝑓 : K0 → J 0

𝑓 (𝑧𝑖) = 𝑧 𝑗 where (𝑧𝑖, 𝑧 𝑗 ) ∈ 𝑅
(6.104)

is a surjective function, and the simplicial complex given by

{ 𝑓 (𝜎) ∩ J 0 |𝜎 ∈ K} (6.105)

is a copy J of the cycle |𝜙⟩.9

2. Let L be the thickening ofK described by Lemma 6.6. The vertices of L are
L0 = K0 × {0, 1}. By Lemma 6.7, L is the clique complex of some graph.
This creates a thickened 𝑆2𝑚−1 shell with outside layer K0 × {0} and inside
layer K0 × {1}.

3. Add a central vertex 𝑣0 which connects to all vertices of the inside layer
K0×{1}. By the definition of clique complexes (Chapter 6), this automatically
introduces into the complex all the simplices which contain these new edges.
We will refer to this process as coning off the cycle.10 Denote the simplicial
complex at this step by K̂.

4. Let V = {J 0 ∪ K0 × {1} ∪ 𝑣0}. Apply 𝑓 (·) to K0 × {0} and construct the
cycle:

K̃ = { 𝑓 (𝜎) ∩ V|𝜎 ∈ K̂} (6.106)

as set out in eq. (6.105) to get J , a copy of the cycle |𝜙⟩.
9See the end of this section for a an example of how the function 𝑓 is applied and conditions on

𝑅 for 𝑓 to be a surjective function.
10The terminology arises from the concept of constructing a mapping cone—the cycle L can be

represented as a map of a sphere onto the complex the process of adding this central vertex and the
associated simplices can be seen as constructing the mapping cone.
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5. The weights of the vertices in the outer layer J 0, which will be identified with
vertices in the qubit graph G𝑚, remain set to 1.

6. The weights of the inside layerK0 × {1} and the central vertex 𝑣0 are set to 𝜆
where 1

poly𝑛 ≤ 𝜆 ≪ 1.

7. The above forms the gadget. It remains to simply glue J onto the cycle
|𝜙⟩ ∈ Cl(G𝑚) by identifying the vertices in J 0 with the equivalent vertices
in Cl(G𝑚). The resulting complex is the clique complex of some new graph.
Let the new graph with the gadget glued in be denoted Ĝ𝑚.

The above procedure provides a method to fill-in any cycle, provided it is possible
to complete Item 1. For basis states Item 1 is trivial—the cycles themselves are
already triangulations of 𝑆2𝑚−1 and clique complexes. For arbitrary states we do not
have a general method for carrying out the procedure. However, for integer states
(see Definition 6.14) we can construct a general method for Item 1. The method
relies on the simplicial surgery techniques, first introduced in [CK22].

Note on the function 𝑓 (·): The function 𝑓 (·) acts on the vertices of a simplicial
complex. We then construct a new simplicial complex out of the new set of vertices,
according to the method set out in eq. (6.105). To see how this works explicitly we
consider a simple example. Take a simplicial complex, specified by its maximal
faces:

𝐾 = {[𝑥0𝑥1𝑥2𝑥3], [𝑥′0𝑥
′
1𝑥
′
2𝑥3], [𝑥2𝑥3𝑥4𝑥5], [𝑥0𝑥

′
1𝑥
′
2, 𝑥3], [𝑥′0𝑥

′
1𝑥1𝑥

′
2𝑥2𝑥3𝑥4𝑥5]}

(6.107)
Define a relation:

𝑅 = {(𝑥′𝑖 , 𝑥𝑖) |𝑖 ∈ [0, 2]} ∪ {(𝑥𝑖, 𝑥𝑖) |𝑖 ∈ [0, 5]} (6.108)

Acting with 𝑓 (·) on 𝐾 then gives a simplicial complex defined by maximal faces:

𝑓 (𝐾) = {[𝑥0𝑥1𝑥2𝑥3], [𝑥2𝑥3𝑥4𝑥5], [𝑥0𝑥1𝑥2, 𝑥3], [𝑥0𝑥1𝑥2𝑥3𝑥4𝑥5]} (6.109)

Note that any simplices 𝜎 ∈ 𝐾 which do not contain any pairs from the relation
𝑅 map to simplices of the same dimension under 𝑓 (·) (the vertices may have
changed, but the number of vertices in the simplex is unchanged). Simplices 𝜎 ∈ 𝐾
which contain one or more pairs of vertices from 𝑅 will map under 𝑓 (·) to lower
dimensional simplices, because simplices cannot contain two of the same vertex, so
the number of vertices remaining in the simplex has decreased.
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Note on the relation R: In order for 𝑓 (·) to be a surjective function 𝑓 : K0 → 𝐽0

as required the relation 𝑅 must satisfy:

• 𝑅 must be functional, i.e. for all 𝑥, 𝑦, 𝑧 ∈ K0, (𝑥, 𝑦) ∈ 𝑅 and (𝑥, 𝑧) ∈ 𝑅
implies 𝑦 = 𝑧

• for all 𝑦 ∈ J 0 there must exist 𝑥 ∈ K0 such that (𝑥, 𝑦) ∈ 𝑅

6.3 Spectral sequences
The purpose of this section is to prove the following lemma, which concerns the
spectrum of the Laplacian of a single gadget Ĝ𝑚 from Section 6.2.

Lemma 6.9. (Single gadget lemma) Let Ĝ𝑚 be the weighted graph described in
Section 6.2, implementing the projector onto the integer state |𝜙⟩ on 𝑚 qubits. Let
Δ̂𝑘 be the Laplacian of this graph. Recall the definition of a subspace perturbation
from Section 6.1.

• Δ̂2𝑚−1 has a (2𝑚 − 1)-dimensional kernel, which is a O(𝜆)-perturbation of
the subspace {|𝜓⟩ ∈ H𝑚 : ⟨𝜙 |𝜓⟩ = 0}. Note H𝑚 is embedded as H𝑚 ⊆
C2𝑚−1(G𝑚) ⊆ C2𝑚−1(Ĝ𝑚).

• The first excited state |𝜙⟩ of Δ̂2𝑚−1 above the kernel is a O(𝜆)-perturbation of
|𝜙⟩ ∈ H𝑚, and it has energy Θ(𝜆4𝑚+2).

• The next lowest eigenvectors have eigenvalues Θ(𝜆2), and they are O(𝜆)-
perturbations of sums of (2𝑚 − 1)-simplices touching the central vertex 𝑣0.

• The rest of the eigenvalues are Θ(1).

Spectral sequences are a tool from algebraic topology which (among other things)
analyze the homology of filtered chain complexes. It turns out that weighting a subset
of vertices by 𝜆 ≪ 1, as we do in our construction, naturally gives rise to a certain
filtration. In this setting, Ref. [For94] showed a beautiful relationship between the
spectral sequence and the perturbative eigenspaces of the Hodge theoretic Laplacian.
It is this relationship which we exploit in this section to prove Lemma 6.9. For a
light introduction to spectral sequences, see [Cho06]; for a comprehensive textbook,
see [McC01].
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Spectral sequence of a filtration
Spectral sequences will work best for us in the cohomology picture. First we define
a filtration.

Definition 6.15. Suppose we have a cohomological chain complex

C−1 C0 C1 C2 . . .
𝑑−1 𝑑0 𝑑1 𝑑2

(6.110)

A filtration on this chain complex is a nested sequence of subspaces

C𝑘 = U𝑘
0 ⊇ U

𝑘
1 ⊇ U

𝑘
2 ⊇ . . . (6.111)

for each 𝑛 such that
𝑑𝑘 (U𝑘

𝑙 ) ⊆ U
𝑘+1
𝑙 ∀ 𝑘, 𝑙. (6.112)

Our filtrations will be bounded, in the sense that 𝑈𝑘
𝑗
= {0} for sufficiently large 𝑗 ,

for each 𝑘 .

We can now develop the spectral sequence of such a filtration. The spectral sequences
will consist of pages indexed by 𝑗 . Each page is an array of vector spaces 𝑒𝑘

𝑗 ,𝑙
, one

for each dimension 𝑘 and filtration level 𝑙.

The zeroth page is simply
𝑒𝑘0,𝑙 = U

𝑘
𝑙 /U

𝑘
𝑙+1. (6.113)

The chain complex coboundary map 𝑑𝑘 induces coboundary maps

𝑑𝑘0,𝑙 : 𝑒𝑘0,𝑙 → 𝑒𝑘+10,𝑙 (6.114)

since if two chains differ by an element ofU𝑘
𝑙+1, then their coboundaries will differ

by an element ofU𝑘+1
𝑙+1 .

Define the first page of the spectral sequence to be the cohomology of the zeroth
page with respect to 𝑑𝑘0,𝑙 , entrywise for each 𝑘, 𝑙.

𝑒𝑘1,𝑙 = Ker 𝑑𝑘0,𝑙/Im 𝑑𝑘−1
0,𝑙 (6.115)

Now the coboundary map 𝑑𝑘 induces coboundary maps

𝑑𝑘1,𝑙 : 𝑒𝑘1,𝑙 → 𝑒𝑘+11,𝑙+1 (6.116)

This is because (a) the coboundary of any representative of an element in Ker 𝑑𝑘0,𝑙
is a cocycle in U𝑘+1

𝑙+1 , and thus is the representative of some element of Ker 𝑑𝑘+10,𝑙+1;
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(b) if we chose a different representative of the element in Ker 𝑑𝑘0,𝑙 , the resulting
element of Ker 𝑑𝑘+10,𝑙+1 would differ by an element of Im 𝑑𝑘0,𝑙+1, so we end up with the
same element of 𝑒𝑘+11,𝑙+1; and (c) if our element of Ker 𝑑𝑘+10,𝑙+1 differed by an element
of Im 𝑑𝑘−1

0,𝑙 , we get the exact same element of Ker 𝑑𝑘+10,𝑙+1.

In general, at page 𝑗 there are induced coboundary maps

𝑑𝑘𝑗 ,𝑙 : 𝑒𝑘𝑗 ,𝑙 → 𝑒𝑘+1𝑗 ,𝑙+ 𝑗 (6.117)

and page 𝑗 + 1 is defined to be the cohomology of page 𝑗 entrywise with respect to
these coboundary maps

𝑒𝑘𝑗+1,𝑙 = Ker 𝑑𝑘𝑗 ,𝑙/Im 𝑑𝑘−1
𝑗 ,𝑙− 𝑗 . (6.118)

One should have in mind the entries of a single page 𝑗 laid out in an array as follows.
On this array, 𝑑𝑘

𝑗 ,𝑙
will map from a space to the one which is one step upwards and

𝑗 steps to the right.

𝑘 :

1 𝑒1
𝑗 ,0 𝑒1

𝑗 ,1 𝑒1
𝑗 ,2

0 𝑒0
𝑗 ,0 𝑒0

𝑗 ,1 𝑒0
𝑗 ,2

−1 𝑒−1
𝑗 ,0 𝑒−1

𝑗 ,1 𝑒−1
𝑗 ,2 . . .

0 1 2 𝑙

We can express the spaces 𝑒𝑘
𝑗 ,𝑙

more explicitly.

Definition 6.16. Let C𝑘 = U𝑘
0 ⊇ U

𝑘
1 ⊇ U

𝑘
2 ⊇ . . . be a filtered chain complex with

coboundary 𝑑. Define

𝑍 𝑘𝑗 ,𝑙 = U
𝑘
𝑙 ∩ (𝑑

𝑘 )−1(U𝑘+1
𝑙+ 𝑗 ) (6.119)

𝐵𝑘𝑗 ,𝑙 = U
𝑘
𝑙 ∩ 𝑑

𝑘−1(U𝑘−1
𝑙− 𝑗 ). (6.120)

With these definitions in place, it turns out that the terms 𝑒𝑘
𝑗 ,𝑙

of the spectral sequence
are equal to

𝑒𝑘𝑗 ,𝑙 = 𝑍
𝑘
𝑗 ,𝑙/(𝐵

𝑘
𝑗−1,𝑙 + 𝑍

𝑘
𝑗−1,𝑙+1). (6.121)
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Let 𝑒𝑘
𝑗
=

⊕
𝑙 𝑒

𝑘
𝑗 ,𝑙

. The point of spectral sequences is that, for sufficiently large 𝑗 , 𝑒𝑘
𝑗

is isomorphic to the cohomology of the complex

𝑒𝑘∞ � 𝐻
𝑘 = Ker 𝑑𝑘/Im 𝑑𝑘−1. (6.122)

The 𝑒𝑘
𝑗
spaces form an algebraic sequence of approximations to the true cohomology.

Relationship to Hodge theory
From our construction we have a clique complex G where a subset of the vertices
are weighted by 𝜆 ≪ 1, and the rest by 1. The weight of a simplex is defined to be
the product of the weights of the vertices involved in the simplex. In this context,
there is a natural filtration on the chain complex C. Let

U𝑘
𝑙 = span{𝜎 ∈ G𝑘 : 𝑤(𝜎) ∈ {𝜆𝑙 , 𝜆𝑙+1, . . . }}. (6.123)

This is the span of the 𝑘-simplices which involve at least 𝑙 ‘gadget’ vertices. These
spaces are nested

C𝑘 = U𝑘
0 ⊇ U

𝑘
1 ⊇ U

𝑘
2 ⊇ . . . (6.124)

and it can also be checked that

𝑑𝑘 (U𝑘
𝑙 ) ⊆ U

𝑘+1
𝑙 . (6.125)

Thus we have a filtration.

We are interested in the low energy eigenstates of the Laplacian Δ𝑘 of G. In
particular, we would like to examine the eigenvalues which are zero to first order
in 𝜆, and then second order, and so on. This is reminiscent of perturbation theory
from quantum mechanics. Recall that

⟨𝜓 |Δ𝑘 |𝜓⟩ = | |𝜕𝑘 |𝜓⟩| |2 + ||𝑑𝑘 |𝜓⟩| |2. (6.126)

Motivated by this, define the isomorphism

𝜌𝑘𝜆 : C𝑘 → C𝑘 (6.127)

|𝜎⟩ → 𝑤(𝜎) |𝜎⟩, (6.128)

where 𝜎 ∈ G𝑘 is a 𝑘-simplex which has weight 𝑤(𝜎). Morally, 𝜌𝑘
𝜆

maps from the
weighted chainspace to the unweighted chainspace. From this, construct the maps

𝜕𝑘𝜆 = 𝜌𝑘𝜆 ◦ 𝜕
𝑘 ◦ (𝜌𝑘𝜆)

−1 (6.129)

𝑑𝑘𝜆 = 𝜌𝑘𝜆 ◦ 𝑑
𝑘 ◦ (𝜌𝑘𝜆)

−1. (6.130)
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Define the spaces

𝐸 𝑘𝑗 = {|𝜓⟩ ∈ C𝑘 : ∃ |𝜓𝜆⟩ = |𝜓⟩ + 𝜆 |𝜓1⟩ + 𝜆2 |𝜓2⟩ + · · · + 𝜆 𝑗 |𝜓 𝑗 ⟩ ∈ C𝑘 [𝜆]
(6.131)

s.t. 𝜕𝑘𝜆 |𝜓𝜆⟩ ∈ 𝜆
𝑗C𝑘−1 [𝜆], 𝑑𝑘𝜆 |𝜓𝜆⟩ ∈ 𝜆

𝑗C𝑘+1 [𝜆]}, (6.132)

where C𝑘 [𝜆] is the space of polynomials in 𝜆 with coefficients in C𝑘 . Further define

𝐸 𝑘𝑗 ,𝑙 = 𝐸
𝑘
𝑗 ∩U𝑘

𝑙 ∩ (U
𝑘
𝑙+1)
⊥ (6.133)

so that
𝐸 𝑘𝑗 = ⊕𝑙𝐸 𝑘𝑗 ,𝑙 . (6.134)

𝐸 𝑘
𝑗

is the space of vectors which have perturbations in 𝜆 which give energies of size
O(𝜆2 𝑗 ) on the Laplacian Δ𝑘 . Here and throughout this section, O(𝜆𝑙) is used as
shorthand for polynomials in 𝜆 which contain no terms of degree less than 𝑙. Taking
𝑗 → ∞ should give 𝐸 𝑘∞ = 𝐻𝑘 (C), and these spaces 𝐸 𝑘

𝑗
form a Hodge-theoretic

sequence of approximations to the true homology.

Proposition 6.10. The space

{|𝜓⟩ ∈ C𝑘 : |𝜓⟩ is an eigenvector of Δ𝑘 with eigenvalue O(𝜆2 𝑗 )} (6.135)

is a O(𝜆)-perturbation of 𝐸 𝑘
𝑗
, in the sense of Section 6.1.

Proof. This follows from Theorem 2 of [For94], combined with Rellich’s theorem
stated at the end of the introduction of [For94]. □

Theorem 7 from [For94] tells us remarkably that these 𝐸 𝑘
𝑗

spaces are isomorphic to
the 𝑒𝑘

𝑗
spaces of the filtration. The 𝐸 𝑘

𝑗
spaces are our real objects of interest, but the

𝑒𝑘
𝑗

spaces are tractable to calculate. This is reminiscent of a standard methodology
in algebraic topology where we prove difficult topological and analytic statements
by turning them into algebraic statements. This will become our strategy to prove
Lemma 6.9. The rest of this section is devoted to describing the isomorphism.
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Recall Definition 6.16. 𝜆−𝑙𝜌𝑘
𝜆

creates isomorphisms

𝑍 𝑘𝑗 ,𝑙 → 𝑍 𝑘𝑗 ,𝑙 (6.136)

:= {|𝜓𝜆⟩ = |𝜓0⟩ + 𝜆 |𝜓1⟩ + 𝜆2 |𝜓2⟩ + . . . : |𝜓𝑖⟩ ∈ U𝑘
𝑙+𝑖, 𝑑𝜆 |𝜓𝜆⟩ ∈ 𝜆

𝑗C[𝜆]}
(6.137)

𝑍 𝑘𝑗−1,𝑙+1 → 𝜆𝑍 𝑘𝑗−1,𝑙+1 (6.138)

:= {|𝜓𝜆⟩ = 𝜆 |𝜓1⟩ + 𝜆2 |𝜓2⟩ + . . . : |𝜓𝑖⟩ ∈ U𝑘
𝑙+𝑖, 𝑑𝜆 |𝜓𝜆⟩ ∈ 𝜆

𝑗C[𝜆]}
(6.139)

𝐵𝑘𝑗−1,𝑙 → 𝐵𝑘𝑗−1,𝑙 (6.140)

:= 𝜆− 𝑗+1𝑑𝜆{|𝜓𝜆⟩ = |𝜓0⟩ + 𝜆 |𝜓1⟩ + 𝜆2 |𝜓2⟩ + . . . : |𝜓𝑖⟩ (6.141)

∈ U𝑘−1
𝑙− 𝑗+1+𝑖, 𝑑𝜆 |𝜓𝜆⟩ ∈ 𝜆

𝑗−1C[𝜆]} (6.142)

= 𝜆− 𝑗+1𝑑𝜆𝑍
𝑘
𝑗−1,𝑙− 𝑗+1. (6.143)

Let |𝜓⟩ ∈ 𝐸 𝑘
𝑗 ,𝑙

. Let
|𝜓𝜆⟩ = |𝜓⟩ + 𝜆 |𝜓1⟩ + 𝜆2 |𝜓2⟩ + . . . (6.144)

be the polynomial from the definition of 𝐸 𝑘
𝑗
. Let |𝜓𝑖,𝑙⟩ denote the projection of |𝜓𝑖⟩

ontoU𝑘
𝑙
, and write

|𝜓𝜆⟩ =
[
|𝜓⟩ +

∑︁
𝑖>0

𝜆𝑖 |𝜓𝑖,𝑙+𝑖⟩
]
+

[∑︁
𝑖>0

∑︁
𝑐≠𝑖

𝜆𝑖 |𝜓𝑖,𝑙+𝑐⟩
]

(6.145)

= |𝜓 (0)
𝜆
⟩ + |𝜓 (1)

𝜆
⟩. (6.146)

Proposition 6.11. (Theorem 7 from [For94])

|𝜓 (0)
𝜆
⟩ ∈ 𝑍 𝑘

𝑗 ,𝑙
and the map

𝐸 𝑘𝑗 ,𝑙 → 𝑍 𝑘𝑗 ,𝑙/(𝜆𝑍
𝑘
𝑗−1,𝑙+1 + 𝐵

𝑘
𝑗−1,𝑙) � 𝑒

𝑘
𝑗 ,𝑙 (6.147)

|𝜓⟩ → [|𝜓 (0)
𝜆
⟩] (6.148)

is an isomorphism. The corresponding map from [|𝜓⟩] ∈ 𝑒𝑘
𝑗 ,𝑙

to 𝐸 𝑘
𝑗 ,𝑙

is to project
the representative |𝜓⟩ ontoU𝑘

𝑙
.

Example spectral sequence
In this section, we get some practice with spectral sequences by calculating the
spectral sequence of the weighted complex shown below. The vertices on the
perimeter have weight 1, and the vertices in the interior have weight 𝜆 ≪ 1. This
is a filling in of a hexagon, and we are concerned with the 𝑘 = 1 homology. This
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complex does not correspond to any Hamiltonian on any number of qubits, but rather
it is like a rank-1 projector on a 1-dimensional Hilbert space. Regardless, let’s refer
to the weight 1 vertices on the boundary as qubit vertices, and the weight 𝜆 vertices
in the bulk as gadget vertices. It will serve as a simple example which highlights
some key features which will be present in the general gadget construction.

Figure 6.6: The complex for the example spectral sequence. 2-simplices are shown
darker and bolder if they are more heavily weighted.

The relevant chainspaces are

C2 = U2
0 ⊇ U

2
1 ⊇ U

2
2 ⊇ U

2
3 (6.149)

C1 = U1
0 ⊇ U

1
1 ⊇ U

1
2 (6.150)

C0 = U0
0 ⊇ U

0
1 . (6.151)

The chain C2 is truncated atU2
3 since there are no triangles with more than 3-gadget

vertices, and similarly for edges C1 and vertices C0.

The zeroth page of the spectral sequence is 𝑒𝑘0,𝑙 for 𝑘 = −1, 0, 1, 2, 𝑙 = 0, . . . , 𝑘 + 1.
𝑒𝑘0,𝑙 can be thought of as the space spanned by the 𝑘-simplices of weight 𝜆𝑙 . There
are no triangles consisting only of qubit vertices, so 𝑒2

0,0 = {0}. Below we see
pictorial representations of Page 0.
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Page 0

𝑘

2

1

0

−1 ∅

0 1 2 3 𝑙

The coboundary map of the zeroth page maps

𝑑𝑘0,𝑙 : 𝑒𝑘0,𝑙 → 𝑒𝑘+10,𝑙 . (6.152)

It maps upwards one step in the diagram, and it can be thought of as a qubit vertex
coboundary map, which adds a qubit vertex to the simplex. If no qubit vertex can
be added to the 𝑘-simplex 𝜎, then 𝑑𝑘0,𝑙 |𝜎⟩ = 0.

We are now in a position to compute the first page 𝑒𝑘1,𝑙 of the spectral sequence,
which is defined as

𝑒𝑘1,𝑙 = Ker 𝑑𝑘0,𝑙/Im 𝑑𝑘−1
0,𝑙 . (6.153)

It may be more intuitive to bear in mind that this is the same as

𝑒𝑘1,𝑙 = Ker 𝜕𝑘0,𝑙/Im 𝜕𝑘+10,𝑙 , (6.154)

where
𝜕𝑘0,𝑙 : 𝑒𝑘0,𝑙 → 𝑒𝑘−1

0,𝑙 (6.155)

is the qubit boundary map, which removes qubit vertices. (Formally, we can define
𝜕𝑘0,𝑙 = (𝑑

𝑘−1
0,𝑙 )

†.)

The first column 𝑙 = 0, we simply get the homology of the qubit complex, which is
topologically a single loop 𝑆1. Thus 𝑒0

1,0 = 𝑒2
1,0 = {0}, but 𝑒1

1,0 is the 1-dimensional
space spanned by the loop of qubit vertices. For the purposes of this section, denote
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this state by |loop⟩. The 𝑒1
0,1 looks like it also has a loop—that is, a 1-chain without

boundary. However, this 1-chain is in fact the boundary of the uniform superposition
of triangles in 𝑒2

0,1, so the homology at this position is zero 𝑒1
1,1 = {0}. The triangle

chainspaces 𝑒2
0,1, 𝑒2

0,2 have no cycles, so their homologies are zero 𝑒2
1,1 = 𝑒2

1,2 = {0}.
In 𝑒0

0,1, the only gadget vertex which is not the boundary of an edge in 𝑒1
0,1 is the

central vertex, so 𝑒0
1,1 is the 1-dimensional space spanned by this vertex. Similarly,

the edges on the ‘outside’ of 𝑒1
0,2 are the boundaries of triangles in 𝑒2

0,2, so the ones
which survive in the homology 𝑒2

1,2 are the spokes of the ‘star’ touching the central
vertex. For 𝑒2

1,3, both boundary maps involved are zero, so 𝑒2
1,3 = 𝑒2

0,3 i.e. all the
central triangles. See the below pictorial representations of the first page.

Page 1

𝑘

2

d1 d1

1

d1 d1

0

d1

−1

0 1 2 3 𝑙

The coboundary map of the first page maps

𝑑𝑘1,𝑙 : 𝑒𝑘1,𝑙 → 𝑒𝑘+11,𝑙+1. (6.156)

It maps ‘diagonally’ one step up and one step to the right in the diagram. It can be
thought of as a gadget vertex coboundary map, which adds a gadget vertex to the
simplex. If no gadget vertex can be added to the 𝑘-simplex 𝜎, then 𝑑𝑘1,𝑙 |𝜎⟩ = 0.
As before, it may be more intuitive to visualize the gadget vertex boundary map
𝜕𝑘1,𝑙 = (𝑑

𝑘−1
1,𝑙−1)

†.
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Using this, we aim to compute the second page 𝑒𝑘2,𝑙 of the spectral sequence, which
is defined as

𝑒𝑘2,𝑙 = Ker 𝑑𝑘1,𝑙/Im 𝑑𝑘−1
1,𝑙−1 = Ker 𝜕𝑘1,𝑙/Im 𝜕𝑘+11,𝑙+1. (6.157)

Both boundary maps acting on 𝑒1
1,0 are zero, so 𝑒1

2,0 = 𝑒1
1,0, which recall is the span

of the state |loop⟩. Apart from 𝑒1
1,0, we have a 3-chain

𝑑0
1,1 𝑑1

1,2 (6.158)

𝑒0
1,1 contains only the central vertex 𝑣0, which is not in the kernel of 𝑑0

1,1, so
𝑒0

2,1 = {0}. 𝑒1
1,2 consists of the star of edges touching 𝑣0. The coboundaries of

these edges has support on the triangles wedged in between them. The only way
for a superposition of these edges to have coboundaries cancelling on each of these
triangles is to be proportional to the uniform superposition. But this state is precisely
the coboundary of the central vertex 𝑑0

1,1 |𝑣0⟩. Thus the middle term has no homology
and 𝑒1

2,2 = {0}. It remains to calculate the space 𝑒2
2,3. By counting dimensions, there

should be a single state in the homology of 𝑒2
1,3. This is because there are the same

number of edges spanning 𝑒1
1,2 as triangles spanning 𝑒2

1,3, and precisely one state
in 𝑒1

1,2 was killed by 𝑑1
1,2, namely the uniform superposition 𝑑0

1,1 |𝑣0⟩. Thus there
is a unique state in 𝑒2

2,3, which is the state in 𝑒2
1,3 orthogonal to the image of 𝑑1

1,2.
But (Im 𝑑1

1,2)
⊥ = Ker 𝜕2

1,3, so we are looking for the unique state in the kernel of
the gadget vertex boundary map 𝜕2

1,3. We can now see that this state is the uniform
superposition over the triangles, with matching orientations. Denote this state by
|core⟩.

Page 2

𝑘

2 =d2 dg
dg

∂q

1 =d2 dg
dg

∂q

0

−1

0 1 2 3 𝑙
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We have seen that page 2 contains only two states: |loop⟩ ∈ 𝑒1
2,0 and |core⟩ ∈ 𝑒2

2,3.
It turns out that page 3 of the spectral sequence must be identical to page 2. To see
why this is the case, consider the coboundary map of page 2 𝑑𝑘2,𝑙 . This maps via the
‘knight move’ one step up and two steps to the right; see Figure 6.7.

𝑑𝑘2,𝑙 : 𝑒𝑘2,𝑙 → 𝑒𝑘+12,𝑙+2 (6.159)

Thus |loop⟩ is mapped into 𝑒2
2,2 = {0}, and there is nothing in 𝑒1

2,1 = {0} to map
to |core⟩. Since all relevant coboundary maps are zero, taking the homology leaves
the page unchanged.

=d2 dg
dg

∂q

Figure 6.7: The coboundary map of page 2, 𝑑2 = 𝑑𝑔 · 𝜕𝑞 · 𝑑𝑔. This acts as a ‘knight
move’ as shown above.

Page 3

𝑘

2

=d3 dg
∂q ∂q

dg dg

1

0

−1

0 1 2 3 𝑙

This argument no longer applies when we look at page 4. Now, the coboundary map
of page 3 𝑑𝑘3,𝑙 maps one step up and three steps to the right. In particular, 𝑑1

3,0 maps

𝑑1
3,0 : 𝑒1

3,0 → 𝑒2
3,3 (6.160)

We will argue that in fact (ignoring normalizations)

𝑑1
3,0 |loop⟩ = |core⟩ (6.161)
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and these two states cancel each other out when we take the homology, leaving page
4 completely empty. To see this, we need to examine the coboundary map 𝑑1

3,0
more closely. Returning to the zeroth page 𝑒𝑘0,𝑙 , denote by 𝜕𝑘qubit,𝑙 = 𝜕

𝑘
0,𝑙 the ‘qubit

boundary map’
𝜕𝑘qubit,𝑙 : 𝑒𝑘0,𝑙 → 𝑒𝑘−1

0,𝑙 (6.162)

which acts by removing qubit vertices. Further, denote by 𝑑𝑘gadget,𝑙 the ‘gadget
coboundary map’

𝑑𝑘gadget,𝑙 : 𝑒𝑘0,𝑙 → 𝑒𝑘+10,𝑙+1 (6.163)

which acts by adding gadget vertices. Now we can think of the map 𝑑1
3,0 as acting

by
𝑑1

3,0 = 𝑑1
gadget,2 ◦ 𝜕

2
qubit,2 ◦ 𝑑

1
gadget,1 ◦ 𝜕

2
qubit,1 ◦ 𝑑

1
gadget,0 (6.164)

as shown in Figure 6.8 With this new understanding, let’s examine 𝑑1
3,0 |loop⟩. From

Figure 6.9, we can see that indeed 𝑑1
3,0 |loop⟩ = |core⟩.

=d3 dg
∂q ∂q

dg dg

Figure 6.8: The coboundary map of page 2, 𝑑3 = 𝑑𝑔 · 𝜕𝑞 · 𝑑𝑔 · 𝜕𝑞 · 𝑑𝑔. This acts by
moving one step up and three to the right as shown.

dg

∂q

∂q

dg

dg

Figure 6.9: Applying the 𝑑3 map to the |loop⟩ gives the |core⟩ state as claimed.
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Page 4

𝑘

2

1

0

−1

0 1 2 3 𝑙

Proof of Lemma 6.9
We will apply the machinery of spectral sequences to the construction Ĝ𝑚 described
in Section 6.2. Our real objects of interest for Lemma 6.9 are the spaces 𝐸 𝑘

𝑗
. Our

plan is to calculate the spaces 𝑒𝑘
𝑗 ,𝑙

and use the isomorphism in Proposition 6.11
to analyze 𝐸 𝑘

𝑗
. The isomorphism in Proposition 6.11 allows us to learn about the

analytical spaces 𝐸 𝑘
𝑗

using easier algebraic techniques.

In Section 6.2, we were concerned with the (2𝑚 − 1)-homology, and we were filling
in a (2𝑚 − 1)-cycle |𝜙⟩ ∈ 𝐻2𝑚−1(G𝑚) by adding a gadget of 2𝑚-simplices. Recall
G𝑘𝑚 ⊆ Ĝ𝑘𝑚 is the original qubit complex before adding the gadget. Equivalently, G𝑘𝑚
is the simplicial subcomplex consisting of simplices of weight 1. For this section,
we will drop the 𝑚 subscripts G𝑘 ⊆ Ĝ𝑘 . The original vertices G0 have weight 1,
and will be referred to as qubit vertices. The added vertices Ĝ0 \ G0 have weight
𝜆, and will be referred to as gadget vertices. The weight of a simplex is defined to
be the product of the weights of the vertices involved in the simplex. Recalling the
construction of the gadgets from Section 6.2, introduce the following notations:

• Let [bulk] denote the set of simplices which involve the central vertex 𝑣0,
and let [non-bulk] be the complement of this set. It can be checked that
[non-bulk] ⊆ Ĝ is in fact a simplicial subcomplex, but [bulk] is not.

• Let Ω𝑘
𝑗
⊆ Ĝ𝑘 be the 𝑘-simplices of weights {1, 𝜆, . . . , 𝜆 𝑗 }. It can be checked

that Ω 𝑗 ⊆ Ĝ is a simplicial subcomplex for each 𝑗 , and C𝑘 (Ω 𝑗 ) = (U𝑘
𝑗+1)
⊥.

Tautologically, Ω𝑘
0 = G𝑘 is the qubit complex.



192

Spectral sequence of general gadget

We now calculate the spectral sequence of the general gadget construction from
Section 6.2. The following lemma, stated in generality, will prove useful.

Lemma 6.12. Let P be a simplicial complex and Q ⊆ P a simplicial subcomplex.
If Q has no (𝑘 − 1)-cohomology, then

C𝑘 (Q)⊥ ∩ 𝑑𝑘−1(C𝑘−1(Q)⊥) = C𝑘 (Q)⊥ ∩ Im 𝑑𝑘−1. (6.165)

Proof. It is clear that

C𝑘 (Q)⊥ ∩ 𝑑𝑘−1(C𝑘−1(Q)⊥) ⊆ C𝑘 (Q)⊥ ∩ Im 𝑑𝑘−1. (6.166)

It remains to show the opposite inclusion.

Let |𝛼⟩ ∈ C𝑘 (Q)⊥∩Im 𝑑𝑘−1. We must show that |𝛼⟩ ∈ C𝑘 (Q)⊥∩𝑑𝑘−1(C𝑘−1(Q)⊥).
We know there is a |𝛽⟩ ∈ C𝑘−1(P) with |𝛼⟩ = 𝑑𝑘−1 |𝛽⟩. Now

𝑑𝑘−1( |𝛽⟩C𝑘−1 (Q))C𝑘 (Q) = 0, (6.167)

where the subscript denotes restriction. Here comes the key step: Q has no (𝑘 − 1)-
cohomology, which implies that there exists a |𝛾⟩ ∈ C𝑘−2(Q) with

|𝛽⟩C𝑘−1 (Q) = (𝑑𝑘−2 |𝛾⟩)C𝑘−1 (Q) . (6.168)

Now (𝑑𝑘−1 ◦ 𝑑𝑘−2) |𝛾⟩ = 0, so

𝑑𝑘−1(𝑑𝑘−2 |𝛾⟩)C𝑘−1 (Q) + 𝑑𝑘−1(𝑑𝑘−2 |𝛾⟩)C𝑘−1 (Q)⊥ = 0. (6.169)

Consider
|𝛽⟩C𝑘−1 (Q)⊥ − (𝑑𝑘−2 |𝛾⟩)C𝑘−1 (Q)⊥ ∈ C𝑘−1(Q)⊥. (6.170)

This has
𝑑𝑘−1

(
|𝛽⟩C𝑘−1 (Q)⊥ − (𝑑𝑘−2 |𝛾⟩)C𝑘−1 (Q)⊥

)
= |𝛼⟩. (6.171)

□

Lemma 6.12 is telling us that, if Q ⊆ P is a simplicial subcomplex with no (𝑘 − 1)-
homology, then all 𝑘-coboundaries in C𝑘 (Q)⊥ are in fact the coboundaries of chains
in C𝑘−1(Q)⊥.

The zeroth page of the spectral sequence is simply 𝑒𝑘0,𝑙 = U
𝑘
𝑙
/U𝑘

𝑙+1. By choosing
the representative orthogonal toU𝑘

𝑙+1 in each equivalence class, we can think of 𝑒𝑘0,𝑙
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asU𝑘
𝑙
∩ (U𝑘

𝑙+1)
⊥, which are the simplices of weight 𝜆𝑙 . This will be a general trick

in this section, to replace a quotient by an intersection with the orthogonal space.
There are no simplices of dimension higher than 2𝑚, so there is nothing above the
row 𝑘 = 2𝑚; that is, 𝑒𝑘0,𝑙 = {0} ∀ 𝑘 > 2𝑚. There are no 𝑘-simplices with more
than 𝑘 + 1 gadget vertices, so there is nothing below the diagonal 𝑙 = 𝑘 + 1; that
is, 𝑒𝑘0,𝑙 = {0} ∀ 𝑙 > 𝑘 + 1. There are no 2𝑚-simplices consisting only of qubit
vertices, so 𝑒2𝑚

0,0 = {0}. The first column 𝑙 = 0 is simply the chainspaces of the qubit
complex C𝑘 (G). The diagonal 𝑙 = 𝑘 + 1 consists simply of 𝑒𝑘0,𝑘+1 = U𝑘

𝑘+1, which
are the simplices involving no qubit vertices. Note these are not the same as the
bulk chainspaces C𝑘 ( [bulk]). The spaces 𝑒𝑘0,𝑙 for 0 < 𝑙 < 𝑘 + 1 consist of simplices
which are a mixture of qubit and gadget vertices, which make up the thickening of
the gadget construction.

Page 0

𝑘

2𝑚 {0} . . . . . . 𝑒2𝑚
0,2𝑚−1 𝑒2𝑚

0,2𝑚 U2𝑚
2𝑚+1

2𝑚 − 1 C2𝑚−1(G) . . . . . . 𝑒2𝑚−1
0,2𝑚−1 U2𝑚−1

2𝑚

2𝑚 − 2 C2𝑚−2(G) . . . . . . U2𝑚−2
2𝑚−1

...
... . .

.

...
... . .

.

0 . . . . . . 2𝑚 − 1 2𝑚 2𝑚 + 1 𝑙

The coboundary map 𝑑𝑘0,𝑙 of the zeroth page maps upwards one step from 𝑒𝑘0,𝑙 to
𝑒𝑘+10,𝑙 . When acting on the representative inU𝑘

𝑙
∩ (U𝑘

𝑙+1)
⊥, it can be thought of as a

qubit vertex coboundary map, which adds a qubit vertex to the simplex.

We are now in a position to compute the first page 𝑒𝑘1,𝑙 of the spectral sequence, which
is defined as 𝑒𝑘1,𝑙 = Ker 𝑑𝑘0,𝑙/Im 𝑑𝑘−1

0,𝑙 . For the first column 𝑙 = 0, this simply gives
us the cohomology of the qubit complex 𝑒𝑘1,0 = 𝐻𝑘 (G). These cohomology groups
are zero except for 𝐻2𝑚−1(G). Next let’s look at the diagonal 𝑙 = 𝑘 + 1. The claim
is that these spaces are isomorphic to the bulk chainspaces 𝑒𝑘1,𝑘+1 = C𝑘 ( [bulk]).
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The spaces 𝑒𝑘−1
1,𝑘+1 are zero, so Im 𝑑𝑘−1

0,𝑘+1 = {0}, and 𝑒𝑘1,𝑘+1 are simply the cocycles
𝑒𝑘1,𝑘+1 = Ker 𝑑𝑘0,𝑘+1. The simplices inU𝑘

𝑘+1 which are not inC𝑘 ( [bulk]) do not vanish
under 𝑑𝑘0,𝑘+1, and thus are not cocycles. It remains to look at 𝑒𝑘1,𝑙 for 1 < 𝑙 < 𝑘 + 1.
It turns out that these spaces are all zero.

Claim 6.6. 𝑒𝑘1,𝑙 = {0} for 1 ≤ 𝑙 ≤ 𝑘 , 𝑘 = 1, . . . , 2𝑚.

Proof. We will split this up into two cases: 𝑘 ≠ 2𝑚 − 1 and 𝑘 = 2𝑚 − 1. The first
case 𝑘 ≠ 2𝑚 − 1 will be easier, and the case 𝑘 = 2𝑚 − 1 will require an extra idea.
Note the first case 𝑘 ≠ 2𝑚 − 1 includes 𝑘 < 2𝑚 − 1 and 𝑘 = 2𝑚. The strategy
in this proof is to apply Lemma 6.12 to show that all states in the kernel of the
relevant outgoing coboundary map are also in the image of the relevant incoming
coboundary map.

Let’s begin with the rows 𝑘 ≠ 2𝑚 − 1. Recalling the interpretation 𝑒𝑘0,𝑙 = U
𝑘
𝑙
∩

(U𝑘
𝑙+1)
⊥, let |𝛼⟩ ∈ U𝑘

𝑙
∩ (U𝑘

𝑙+1)
⊥ with |𝛼⟩ ∈ Ker 𝑑𝑘0,𝑙 . This tells us that 𝑑𝑘 |𝛼⟩ ∈

U𝑘+1
𝑙+1 . Restricted to the subcomplex Ω𝑙 , this says that (𝑑𝑘 |𝛼⟩)C𝑘+1 (Ω𝑙) = 0. That is,
|𝛼⟩ is a cocycle in Ω𝑙 . (Here and throughout, the subscript refers to restriction or
orthogonal projection onto this subspace.) By considering the gadget construction
from Section 6.2, Ω𝑙 has no 𝑘-homology for 𝑘 ≠ 2𝑚 − 1. (Ω𝑙 does in fact have
(2𝑚 − 1)-homology, so for this case we will need an extra trick. But for now,
𝑘 ≠ 2𝑚 − 1 and Ω𝑙 has no 𝑘-homology.) This means that |𝛼⟩ is not only a
cocycle in Ω𝑙 but necessarily also a coboundary. Now apply Lemma 6.12 with
P = Ω𝑙 and Q = Ω𝑙−1. Note |𝛼⟩ ∈ U𝑘

𝑙
so indeed |𝛼⟩ ⊥ C𝑘 (Ω𝑙−1). We get that

|𝛼⟩ = (𝑑𝑘−1 |𝛽⟩)C𝑘 (Ω𝑙) for some |𝛽⟩ ∈ C𝑘−1(Ω𝑙) ∩ C𝑘−1(Ω𝑙−1)⊥. But C𝑘−1(Ω𝑙) ∩
C𝑘−1(Ω𝑙−1)⊥ = U𝑘−1

𝑙
∩ (U𝑘−1

𝑙−1 )
⊥, so |𝛽⟩ ∈ 𝑒𝑘−1

0,𝑙 . Noting that (𝑑𝑘−1 |𝛽⟩)C𝑘 (Ω𝑙) is
precisely (𝑑𝑘−1 |𝛽⟩)(U𝑘

𝑙+1)⊥
= 𝑑𝑘−1

0,𝑙 |𝛽⟩, we get that |𝛼⟩ ∈ Im 𝑑𝑘−1
0,𝑙 . The conclusion is

that Ker 𝑑𝑘0,𝑙 = Im 𝑑𝑘0,𝑙 and 𝑒𝑘0,𝑙 has no homology, so 𝑒𝑘1,𝑙 = {0}.

Now we move onto the case 𝑘 = 2𝑚−1. As before, suppose |𝛼⟩ ∈ U2𝑚−1
𝑙
∩(U2𝑚−1

𝑙+1 )
⊥

with |𝛼⟩ ∈ Ker 𝑑2𝑚−1
0,𝑙 . Here, it is not true that Ω𝑙 has no (2𝑚 − 1)-homology.

However, since |𝛼⟩ has no support on the qubit complex G, the idea is that it cannot
tell that the complex has homology. We are able to imagine closing all the (2𝑚−1)-
cycles with fictitious auxiliary vertices, and Lemma 6.12 will tell us that this move
is not detected by |𝛼⟩.

Let’s formalize this. Recalling Section 6.2, G ⊆ Ĝ consists of 2𝑚 copies of 𝑆2𝑚−1

corresponding to the 𝑚-bit strings. For each copy of 𝑆2𝑚−1 introduce an extra
‘auxiliary’ vertex (of weight 1) and connecting it with all vertices in this 𝑆2𝑚−1, thus



195

‘filling in the hole’. Denote the new objects after this operation with a star such as
Ĝ∗. The effect of the auxiliary vertices is that Ĝ∗ has no (2𝑚−1)-cohomology. This
includesΩ∗

𝑙
for each 𝑙: these subcomplexes no longer have any (2𝑚−1)-cohomology.

Continuing the argument, |𝛼⟩ ∈ U2𝑚−1
𝑙

∩ (U2𝑚−1
𝑙+1 )

⊥ with |𝛼⟩ ∈ Ker 𝑑2𝑚−1
0,𝑙 , which

tells us that 𝑑2𝑚−1 |𝛼⟩ ∈ U2𝑚
𝑙+1 and, restricting to the subcomplexΩ𝑙 , (𝑑2𝑚−1 |𝛼⟩)C2𝑚 (Ω𝑙) =

0. That is, |𝛼⟩ is a cocycle in Ω𝑙 . Now |𝛼⟩ ∈ U2𝑚−1
𝑙

so |𝛼⟩ has no support on the
qubit complex G, |𝛼⟩G = 0. Thus |𝛼⟩ is likewise a cocycle in Ω∗

𝑙
. But Ω∗

𝑙
has no

(2𝑚 −1)-homology, so |𝛼⟩ is in fact a coboundary in Ω∗
𝑙
. Now apply a Lemma 6.12

with P = Ω∗
𝑙

and Q = Ω∗
𝑙−1. We get that |𝛼⟩ = (𝑑2𝑚−2 |𝛽⟩)C2𝑚−1 (Ω∗

𝑙
) for some |𝛽⟩ ∈

C2𝑚−2(Ω∗
𝑙
)∩C2𝑚−2(Ω∗

𝑙−1)
⊥. ButC2𝑚−2(Ω∗

𝑙
)∩C2𝑚−2(Ω∗

𝑙−1)
⊥ = U2𝑚−2

𝑙
∩(U2𝑚−2

𝑙−1 )
⊥,

so |𝛽⟩ ∈ 𝑒2𝑚−2
0,𝑙 . Noting that (𝑑2𝑚−2 |𝛽⟩)C𝑘 (Ω∗

𝑙
) = (𝑑2𝑚−2 |𝛽⟩)C𝑘 (Ω𝑙) is precisely

𝑑2𝑚−2
0,𝑙 |𝛽⟩, we get that |𝛼⟩ ∈ Im 𝑑2𝑚−2

0,𝑙 . The conclusion is that Ker 𝑑2𝑚−1
0,𝑙 = Im 𝑑2𝑚−1

0,𝑙
and 𝑒2𝑚−1

0,𝑙 has no homology, so 𝑒2𝑚−1
1,𝑙 = {0}. □

Page 1

𝑘

2𝑚 C2𝑚 ( [bulk])

2𝑚 − 1 𝐻2𝑚−1(G) C2𝑚−1( [bulk])

2𝑚 − 2 C2𝑚−2( [bulk])

... . .
.

... . .
.

0 . . . . . . 2𝑚 − 1 2𝑚 2𝑚 + 1
𝑙

The page 1 coboundary map 𝑑𝑘1,𝑙 maps diagonally upwards and to the right one step
from 𝑒𝑘0,𝑙 to 𝑒𝑘+10,𝑙 . It can be thought of as a gadget vertex coboundary map, which
adds a gadget vertex to the simplex. Acting on C𝑘 ( [bulk]), this has the same action
as the regular coboundary map 𝑑𝑘 of Ĝ𝑘 .

Let’s now calculate the second page of the spectral sequence, defined as 𝑒𝑘2,𝑙 =

Ker 𝑑𝑘1,𝑙/Im 𝑑𝑘−1
1,𝑙−1. 𝐻2𝑚−1(G) remains unchanged, since both the relevant cobound-



196

ary maps are zero. Next we show that all terms on the diagonal 𝑙 = 𝑘 + 1 vanish,
except for 𝑒2𝑚

2,2𝑚+1.

Claim 6.7. 𝑒𝑘2,𝑘+1 = {0} ∀ 𝑘 = 0, . . . , 2𝑚 − 1

Proof. This proof will be very similar to that of Claim 6.6, except that we will apply
Lemma 6.12 with P being the entire complex and Q being [non-bulk]. We will
again split up into the two cases 𝑘 < 2𝑚−1 and 𝑘 = 2𝑚−1, with the case 𝑘 = 2𝑚−1
requiring the same extra idea. The relevant coboundary maps are now those of the
first page 𝑑𝑘1,𝑘+1, and recall 𝑒𝑘2,𝑘+1 is defined to be the homology of the chain:

C𝑘−1( [bulk]) C𝑘 ( [bulk]) C𝑘+1( [bulk])
𝑑𝑘−1

1,𝑘 𝑑𝑘1,𝑘+1 (6.172)

Let’s again begin with 𝑘 < 2𝑚 − 1. Let |𝛼⟩ ∈ C𝑘 ( [bulk]) with |𝛼⟩ ∈ Ker 𝑑𝑘1,𝑘+1.
Acting on C𝑘 ( [bulk]), 𝑑𝑘1,𝑘+1 simply acts as the original coboundary map 𝑑𝑘 , so in
fact |𝛼⟩ ∈ Ker 𝑑𝑘 is a cocycle. But the complex has no 𝑘-homology for 𝑘 ≠ 2𝑚 − 1,
so |𝛼⟩ must also be a coboundary. Now apply Lemma 6.12 with P = Ĝ and Q =

[non-bulk]. We get that |𝛼⟩ ∈ 𝑑𝑘−1(C𝑘−1( [non-bulk])⊥) = 𝑑𝑘−1
1,𝑘 (C

𝑘−1( [bulk])).
We conclude that Ker 𝑑𝑘1,𝑘+1 = Im 𝑑𝑘−1

1,𝑘 and 𝑒𝑘2,𝑘+1 = {0}.

Now we move onto the case 𝑘 = 2𝑚 − 1. Recalling Section 6.2, G ⊆ Ĝ consists
of 2𝑚 copies of 𝑆2𝑚−1 corresponding to the 𝑚-bit strings. For each copy of 𝑆2𝑚−1

introduce an extra auxiliary vertex (of weight 1) and connecting it with all vertices
in this 𝑆2𝑚−1, thus filling in the hole. Denote the new objects after this operation
with a star such as Ĝ∗. The effect of the auxiliary vertices is that Ĝ∗ has no
(2𝑚 − 1)-homology.

As before, suppose |𝛼⟩ ∈ C2𝑚−1( [bulk]) with |𝛼⟩ ∈ Ker 𝑑2𝑚−1
1,2𝑚 = Ker 𝑑2𝑚−1. Now

|𝛼⟩ has no support on the qubit complex G, thus |𝛼⟩ is likewise a cocycle in
Ĝ∗. But Ĝ∗ has no (2𝑚 − 1)-homology, so |𝛼⟩ is in fact a coboundary in Ĝ∗.
Now apply Lemma 6.12 with P = Ĝ∗ and Q = [non-bulk]∗. We get that |𝛼⟩ ∈
𝑑2𝑚−2(C2𝑚−2( [non-bulk]∗)⊥). But C2𝑚−2( [non-bulk]∗)⊥ is simply C2𝑚−2( [bulk]),
so |𝛼⟩ ∈ 𝑑2𝑚−2(C2𝑚−2( [bulk])) = 𝑑2𝑚−2

1,2𝑚−1(C
2𝑚−2( [bulk])). We conclude that

Ker 𝑑2𝑚−1
1,2𝑚 = Im 𝑑2𝑚−2

1,2𝑚−1 and 𝑒2𝑚−1
2,2𝑚 = {0}.

The interpretation of this move is the same as in the proof of Claim 6.6. Since |𝛼⟩
has no support on the qubit complex G, it cannot tell that the complex has some
(2𝑚 − 1)-homology. We are able to imagine closing all the (2𝑚 − 1)-cycles with
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fictitious auxiliary vertices, and Lemma 6.12 will tell us that this is not detected by
|𝛼⟩. □

Finally let’s investigate 𝑒2𝑚
2,2𝑚+1. The entire space C2𝑚 ( [bulk]) is in Ker 𝑑2𝑚

1,2𝑚+1
since 𝑒2𝑚+1

1,2𝑚+2 = {0}, so we have 𝑒2𝑚
2,2𝑚+1 = C2𝑚 ( [bulk])/Im 𝑑2𝑚−1

1,2𝑚 . As usual, we
can pick the representative orthogonal to the space we are quotienting and write
𝑒2𝑚

2,2𝑚+1 = C2𝑚 ( [bulk]) ∩ (Im 𝑑2𝑚−1
1,2𝑚 )

⊥. But (Im 𝑑2𝑚−1
1,2𝑚 )

⊥ = Ker 𝜕2𝑚
1,2𝑚+1 where 𝜕𝑘1,𝑙 =

(𝑑𝑘−1
1,𝑙−1)

† can be interpreted as a gadget vertex boundary map which removes a gadget
vertex from the simplex. So 𝑒2𝑚

2,2𝑚+1 = C2𝑚 ( [bulk]) ∩ Ker 𝜕2𝑚
1,2𝑚+1. Since [bulk] is

isomorphic to the interior of a 2𝑚-ball, the only state in C2𝑚 ( [bulk]) which has no
𝜕2𝑚

1,2𝑚+1-boundary is the uniform superposition over all the 2𝑚 simplices in [bulk]2𝑚,
with appropriate orientations. Let’s denote this state by |core⟩ ∈ C2𝑚 ( [bulk]).

Page 2

𝑘

2𝑚 {|core⟩}

2𝑚 − 1 𝐻2𝑚−1(G)

...

...

0 . . . . . . . . . 2𝑚 + 1 𝑙

Pages 3 to 2𝑚+1 will remain unchanged. This can be seen purely from the direction
in which the coboundaries 𝑑𝑘

𝑗 ,𝑙
map. 𝑑𝑘

𝑗 ,𝑙
moves one step up and 𝑗 steps to the right,

so these must necessarily be zero maps.

𝑑𝑘𝑗 ,𝑙 : 𝑒𝑘𝑗 ,𝑙 → 𝑒𝑘+1𝑗 ,𝑙+ 𝑗 (6.173)

Since all relevant coboundary maps are zero, taking the homology leaves the page
unchanged.

This argument no longer applies when we look at page 2𝑚+2. Now, the coboundary
map of page 2𝑚+1 𝑑𝑘2𝑚+1,𝑙 maps one step up and 2𝑚+1 steps to the right. In particular,
𝑑1

2𝑚+1,0 maps
𝑑1

2𝑚+1,0 : 𝐻2𝑚−1(G) → {|core⟩}. (6.174)
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We will argue that in fact (ignoring normalizations)

𝑑1
2𝑚+1,0 |𝜙⟩ = |core⟩, (6.175)

where |𝜙⟩ ∈ 𝐻2𝑚−1(G) is the cycle being filled by the gadget Ĝ. Thus |𝜙⟩ is lifted
out of the homology at this page. To see this, we need to examine the coboundary
map 𝑑1

2𝑚+1,0 more closely. Returning to the zeroth page 𝑒𝑘0,𝑙 , denote by 𝜕𝑘qubit,𝑙 = 𝜕
𝑘
0,𝑙

the ‘qubit boundary map’
𝜕𝑘qubit,𝑙 : 𝑒𝑘0,𝑙 → 𝑒𝑘−1

0,𝑙 (6.176)

which acts by removing qubit vertices. Further, denote by 𝑑𝑘gadget,𝑙 the ‘gadget
coboundary map’

𝑑𝑘gadget,𝑙 : 𝑒𝑘0,𝑙 → 𝑒𝑘+10,𝑙+1 (6.177)

which acts by adding gadget vertices. Now we can think of the map 𝑑1
2𝑚+1,0 as acting

by

𝑑1
2𝑚+1,0 = 𝑑2𝑚−1

gadget,2𝑚 ◦ 𝜕
2𝑚
qubit,2𝑚 ◦ · · · ◦ 𝑑

1
gadget,1 ◦ 𝜕

2
qubit,1 ◦ 𝑑

1
gadget,0. (6.178)

With this new understanding, we can see that 𝑑1
2𝑚+1,0 |𝜙⟩ = |core⟩. Recalling

Section 6.2, the cycle |𝜙⟩ on the outside layer gets transported through the thickening
of the gadget to the inside layer, at which point it gets sent to |core⟩ by the final
gadget vertex coboundary map 𝑑2𝑚−1

gadget,2𝑚.

Page 2

𝑘

2𝑚

2𝑚 − 1 {|𝜓⟩ ∈ 𝐻2𝑚−1(G) : ⟨𝜙 |𝜓⟩ = 0}

...

...

0 . . . . . . . . . 2𝑚 + 1 𝑙

Finishing the proof

By Theorem 4 of [For94], the eigenvalues of the Laplacian decay like Θ(𝜆2 𝑗 ) for
some 𝑗 . Thus if we take the eigenspace of eigenvalues O(𝜆2 𝑗 ) and intersect it with
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the orthogonal complement of the eigenspace of eigenvalues O(𝜆2 𝑗+2), we get the
eigenspace of eigenvalues that are exactly Θ(𝜆2 𝑗 ).

Proposition 6.10 tells us that the Laplacian eigenspace of eigenvalues O(𝜆2 𝑗 ) is
a O(𝜆)-perturbation of 𝐸2𝑚−1

𝑗
, in the sense of Section 6.1. Thus the Laplacian

eigenspace of eigenvalues Θ(𝜆2 𝑗 ) is a O(𝜆)-perturbation of 𝐸2𝑚−1
𝑗
∩ (𝐸2𝑚−1

𝑗+1 )
⊥.

Thus to complete the proof of Lemma 6.9, we use the isomorphism in Proposi-
tion 6.11 to derive the spaces 𝐸 𝑘

𝑗
. Recall

𝐸 𝑘𝑗 =
⊕
𝑙

𝐸 𝑘𝑗 ,𝑙 (6.179)

and by Proposition 6.11 we can get 𝐸 𝑘
𝑗 ,𝑙

by taking 𝑒𝑘
𝑗 ,𝑙

and projecting a representative
from each equivalence class ontoU𝑘

𝑙
. This gives:

• 𝐸2𝑚−1
0 = C2𝑚−1(Ĝ), with 𝐸2𝑚−1

0,𝑙 = U2𝑚−1
𝑙

∩ (U2𝑚−1
𝑙
)⊥ for each 𝑙. (These are

tautological.)

• 𝐸2𝑚−1
1 = 𝐻2𝑚−1(G) ⊕ C2𝑚−1( [bulk]), with 𝐸2𝑚−1

1,0 = 𝐻2𝑚−1(G) and 𝐸2𝑚−1
1,2𝑚 =

C2𝑚−1( [bulk]).

• 𝐸2𝑚−1
𝑗

= 𝐸2𝑚−1
𝑗 ,0 = 𝐻2𝑚−1(G) for all 𝑗 = 2, . . . , 2𝑚 + 1.

• 𝐸2𝑚−1
𝑗

= 𝐸2𝑚−1
𝑗 ,0 = {|𝜓⟩ ∈ 𝐻2𝑚−1(G) : ⟨𝜙|𝜓⟩ = 0} for all 𝑗 ≥ 2𝑚 + 2.

(Recall that 𝐻2𝑚−1(G) � KerΔ2𝑚−1 where Δ𝑘 is the Laplacian of the qubit complex
G𝑘 . When the space 𝐻2𝑚−1(G) appears above, it is the harmonic representative
from KerΔ𝑘 ⊆ C𝑘 (G) ⊆ C𝑘 (Ĝ) which is present.)

6.4 Combining gadgets
In this section, we describe how to combine many gadgets together to simulate a
local Hamiltonian. We prove our main theorem, Theorem 6.14.

Recall from Section 6.2 Ĝ𝑚 denotes the complex of a single gadget. We must be
careful to keep track of what we think of as the original qubit complex and the
additional gadget complex. The vertices Ĝ0

𝑚 can be partitioned into the vertices of
the original qubit graph G0

𝑚, which have weight 1, and the added gadget vertices,
which have weight 𝜆. Let these added gadget vertices be denoted T 0. The 𝑘-
simplices Ĝ𝑘𝑚 can be partitioned into the 𝑘-simplices of the original qubit complex
G𝑘𝑚, and the 𝑘-simplices which contain at least one vertex from T 0. Let these extra
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𝑘-simplices be denoted T 𝑘 . Note, however, that T is not a simplicial complex in its
own right, since T 𝑘 involve vertices outside of T 0. We can decompose the chain
space of Ĝ𝑚 as a direct sum

C𝑘 (Ĝ𝑚) = C𝑘 (G𝑚) ⊕ C𝑘 (T ). (6.180)

In Section 6.3 we used the powerful tool of spectral sequences to understand the
spectrum of the Laplacian of a single gadget Ĝ𝑚, captured by Lemma 6.9. This
lemma will be an essential ingredient later when we come to analyze the spectrum
of many gadgets combined.

Padding with identity
In order to add the remaining 𝑛 − 𝑚 qubits, we join the graph G𝑛−𝑚 to get Ĝ𝑛 =

Ĝ𝑚 ∗ G𝑛−𝑚. This is analogous to tensoring a Hamiltonian term with identity on all
the qubits outside of its support.

There is another way to look at the final complex Ĝ𝑛. To get Ĝ𝑛, we implement the
gadget T described in Section 6.2 on the copies of G1 corresponding to the qubits
on which 𝜙 is supported, and then connecting the vertices of the gadget T 0 all to
all with the qubit vertices in the copies of G1 corresponding to qubits outside the
support of 𝜙.

Lemma 6.13. Let Δ̂′𝑘 be the Laplacian of 𝐺̂𝑛.

• Δ̂′2𝑛−1 has a (2𝑚−1) ·2𝑛−𝑚-dimensional kernel, which is a O(𝜆)-perturbation
of the subspace {|𝜓⟩ ∈ H𝑚 : ⟨𝜙|𝜓⟩ = 0} tensored withH𝑛−𝑚.

• The first excited eigenspace of Δ̂′2𝑛−1 above the kernel is the 2𝑛−𝑚-dimensional
space |𝜙⟩ ⊗ H𝑛−𝑚, where |𝜙⟩ is a O(𝜆)-perturbation of |𝜙⟩ ∈ H𝑚, and it has
energy Θ(𝜆4𝑚+2).

• The next lowest eigenvectors have eigenvalues Θ(𝜆2), and they are O(𝜆)-
perturbations of sums of (2𝑚 − 1)-simplices touching the central vertex 𝑣0,
tensored withH𝑛−𝑚.

• The rest of the eigenvalues are Θ(1).

Proof. By Fact 6.3, the new chainspace is

C2𝑛−1(Ĝ𝑛) = C2𝑚−1(Ĝ𝑚) ⊗ C2(𝑛−𝑚)+1(G𝑛−𝑚). (6.181)
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By Lemma 6.5, the new Laplacian on Ĝ𝑛 is

Δ̂′2𝑛−1 = Δ̂2𝑚−1 ⊗ 1 + 1 ⊗ Δ2(𝑛−𝑚)+1, (6.182)

where Δ2(𝑛−𝑚)+1 here is the Laplacian on C2(𝑛−𝑚)+1(G𝑛−𝑚). Notice that the two
terms on the right-hand-side commute. Δ2(𝑛−𝑚)+1 has kernel H𝑛−𝑚 and its first
excited eigenvalue is Θ(1). The conclusions follow from Lemma 6.9. □

Define the new gadget simplices of Ĝ𝑛 to be T ′ = T ∗ G𝑛−𝑚, and we have

C2𝑛−1(T ′) = C2𝑚−1(T ) ⊗ C2(𝑛−𝑚)−1(G𝑛−𝑚). (6.183)

Some facts about a single gadget
We now take the opportunity to prove some useful facts about the complex with a
single gadget added. Suppose we implement the gadget corresponding to integer
state |𝜙⟩, and let |𝜙⟩ be as in Lemma 6.13. First we show that states in the subspace
|𝜙⟩ ⊗ H𝑛−𝑚 are cycles. In other words, these states are paired up in the language of
Section 6.1.

Claim 6.8. 𝜕2𝑛−1( |𝜙⟩ ⊗ H𝑛−𝑚) = 0

Proof. H𝑛−𝑚 consists of cycles, so it is sufficient to show 𝜕2𝑚−1 |𝜙⟩ = 0. |𝜙⟩ is
an eigenstate of Δ̂2𝑚−1, thus by Proposition 6.4 it must be paired up |𝜙⟩ ∈ Im 𝜕2𝑚

or paired down |𝜙⟩ ∈ Im 𝑑2𝑚−2. By Lemma 6.9, |𝜙⟩ is a O(𝜆) perturbation of
|𝜙⟩ ∈ H𝑚. |𝜙⟩ is a cycle 𝜕2𝑚−1 |𝜙⟩ = 0, so |𝜙⟩ is orthogonal to Im 𝑑2𝑚−2. This
guarantees that the O(𝜆)-perturbation |𝜙⟩ = |𝜙⟩+O(𝜆) is not contained in Im 𝑑2𝑚−2.
Thus |𝜙⟩ is paired up and 𝜕2𝑚−1 |𝜙⟩ = 0. □

Next we will state some facts about the bulk of the gadget. Let [bulk] denote
the simplices touching the central vertex 𝑣0 of gadget T (see Section 6.2), with
chainspaces C𝑘 ( [bulk]), and let Π [𝑘] be the projection onto C𝑘 ( [bulk]).

Claim 6.9. All states |𝜓⟩ have | |Π [2𝑛−2]𝜕2𝑛−1 |𝜓⟩| | = O(𝜆) | | |𝜓⟩| | and
| |Π [2𝑛]𝑑2𝑛−1 |𝜓⟩| | = O(𝜆) | | |𝜓⟩| |.

Proof. All vertices touching [bulk] have weight 𝜆. Equations 6.75, 6.77 then give
the conclusion. □

The proof of the following claim relies on a fact from Section 6.3.
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Claim 6.10. A normalized state |𝜓⟩ ∈ C2𝑛−1( [bulk]) has
| |Π [2𝑛−2]𝜕2𝑛−1 |𝜓⟩| | = Ω(𝜆) or | |Π [2𝑛]𝑑2𝑛−1 |𝜓⟩| | = Ω(𝜆).

Proof. Since all vertices relevant to these claims are weighted by 𝜆, we can consider
the unweighted complex. Then it is sufficient to show that either
| |Π [2𝑛−2]𝜕2𝑛−1 |𝜓⟩| | ≠ 0 or | |Π [2𝑛]𝑑2𝑛−1 |𝜓⟩| | ≠ 0. Returning to the weighted com-
plex simply introduces a factor of 𝜆.

Suppose | |Π [2𝑛]𝑑2𝑛−1 |𝜓⟩| | = 0. That is, Π [2𝑛]𝑑2𝑛−1 |𝜓⟩ = 0. This in fact tells us that
𝑑2𝑛−1 |𝜓⟩ = 0, since 𝑑2𝑛−1 maps C2𝑛−1( [bulk]) into C2𝑛 ( [bulk]).

Claim 6.7 from Section 6.3 is telling us that
C2𝑛−1( [bulk]) ∩ Ker 𝑑2𝑛−1 = 𝑑2𝑛−2(C2𝑛−2( [bulk])). Note the proof of Claim 6.7
does not rely on any spectral sequence machinery, but only Lemma 6.12 and the
argument in the proof of Claim 6.7 where we close the homology with auxiliary
vertices.

The result is that, from | |Π [2𝑛]𝑑2𝑛−1 |𝜓⟩| | = 0, we can deduce that
|𝜓⟩ ∈ 𝑑2𝑛−2(C2𝑛−2( [bulk])). Remembering 𝜕2𝑛−1 = (𝑑2𝑛−2)†, this guarantees that
𝜕2𝑛−1 |𝜓⟩ has some component in C2𝑛−2( [bulk]) and | |Π [2𝑛−2]𝜕2𝑛−1 |𝜓⟩| | ≠ 0. □

Combining gadgets
We have seen how to construct a gadget T to implement a single local rank-1
projector 𝜙 = |𝜙⟩⟨𝜙 | where |𝜙⟩ is an integer state. We would now like to implement
a Hamiltonian

𝐻 =

𝑡∑︁
𝑖=1

𝜙𝑖 (6.184)

which is a sum of such terms. This will involve adding a gadget T𝑖 for each term 𝜙𝑖.
We would like to add these gadgets in an independent way. From Section 6.4, we
have a way of gluing in a gadget T ′

𝑖
onto G𝑛 which corresponds to 𝜙𝑖. To implement

multiple terms 𝜙𝑖, we simply glue in the gadgets separately. One may wonder if we
should include any edges between the gadget vertices if different gadgets; we do not
include any of these edges.

The full procedure is described as follows, which includes the padding-with-identity
step from Section 6.4:

1. For each 𝑖, add gadget T𝑖 to the copies of G1 corresponding to qubits in the
support of |𝜙𝑖⟩.
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2. For each 𝑖, connect gadget vertices T 0
𝑖

all to all with the qubit vertices in the
copies of G1 corresponding to qubits outside the support of |𝜙𝑖⟩ to get T ′

𝑖
.

3. Do not connect any gadget vertices from different gadgets T 0
𝑖
↔ T 0

𝑗
.

From now on, we drop the primes on T ′
𝑖

, Δ̂′𝑘
𝑖

. Let the final weighted graph after
adding many gadgets in this way be denoted Ĝ𝑛, with Laplacian Δ̂𝑘 .

Fact 6.11. After adding many gadgets with this procedure, the total chain space can
be decomposed as

C2𝑛−1(Ĝ𝑛) = C2𝑛−1(G𝑛) ⊕ C2𝑛−1(T1) ⊕ · · · ⊕ C2𝑛−1(T𝑡). (6.185)

The following claim says that the up Laplacian respects this decomposition.

Claim 6.12. When acting on the entire chainspace C2𝑛−1(Ĝ𝑛), we can write the up
Laplacian Δ̂↑2𝑛−1 of the entire complex Ĝ𝑛 as the sum of the up Laplacians Δ̂↑2𝑛−1

𝑖

of the individual gadgets C2𝑛−1(G𝑛) ⊕ C2𝑛−1(T𝑖).

Δ̂↑2𝑛−1 = Δ̂
↑2𝑛−1
1 + · · · + Δ̂↑2𝑛−1

𝑡 (6.186)

Proof. It is sufficient to check

⟨𝜓 |Δ̂↑2𝑛−1 |𝜓⟩ = ⟨𝜓1 |Δ̂↑2𝑛−1
1 |𝜓1⟩ + · · · + ⟨𝜓𝑡 |Δ̂↑2𝑛−1

𝑡 |𝜓𝑡⟩ (6.187)

for all states |𝜓⟩ ∈ C2𝑛−1(Ĝ𝑛), where |𝜓𝑖⟩ is the component inC2𝑛−1(G𝑛)⊕C2𝑛−1(T𝑖).
But

⟨𝜓 |Δ̂↑2𝑛−1 |𝜓⟩ = | |𝑑2𝑛−1 |𝜓⟩| |2 (6.188)

= | |𝑑2𝑛−1
1 |𝜓1⟩| |2 + · · · + | |𝑑2𝑛−1

𝑡 |𝜓𝑡⟩| |2 (6.189)

= ⟨𝜓1 |Δ̂↑2𝑛−1
1 |𝜓1⟩ + · · · + ⟨𝜓𝑡 |Δ̂↑2𝑛−1

𝑡 |𝜓𝑡⟩, (6.190)

where in the second line, we used that the different gadgets do not share any 2𝑛-
simplices. That is, there are no 2𝑛-simplices which contain vertices from more than
one gadget. □

The hope is that, after this procedure to combine the gadgets, they will implement
a version of the Hamiltonian 𝐻 on the simulated qubit subspace H𝑛. This will be
reflected in our main theorem Theorem 6.14, which states that a 1/poly(𝑛) lower
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bound on the spectrum of 𝐻 results in a 1/poly(𝑛) lower bound on the spectrum of
the Laplacian Δ̂2𝑛−1.

The high level overview of the proof of Theorem 6.14 is as follows. Assume that
𝜆min(𝐻) ≥ 1/poly(𝑛). We will argue by contradiction. Suppose there is a state |𝜑⟩
of extremely low energy on Δ̂2𝑛−1. Consider a single gadget T𝑖. |𝜑⟩ is forced to have
small overlap with the excited eigenspaces of the single-gadget Laplacian Δ̂2𝑛−1

𝑖
.

Thus the restriction of |𝜑⟩ to C2𝑛−1(Ĝ𝑛) ⊕ C2𝑛−1(T𝑖) must lie close to Ker Δ̂2𝑛−1
𝑖

.
Lemma 6.13 tells us that Ker Δ̂2𝑛−1

𝑖
is close to the space in the simulated qubit

subspaceH𝑛 which is orthogonal to the state |𝜙𝑖⟩ which is being filled in by gadget
T𝑖. Thus the restriction of |𝜑⟩ to C2𝑛−1(Ĝ𝑛) is close to the subspace ofH𝑛 orthogonal
to |𝜙𝑖⟩. This must hold for each gadget T𝑖, so the restriction of |𝜑⟩ to C2𝑛−1(Ĝ𝑛)
must be inH𝑛 and simultaneously orthogonal to all states {|𝜙𝑖⟩}. But the 1/poly(𝑛)
spectrum lower bound on 𝐻 =

∑
𝑖 𝜙𝑖 forbids this.

Theorem 6.14. (Main theorem, formal) Suppose 𝐻 is a 𝑚-local Hamiltonian on
𝑛 qubits with 𝑡 terms, where each term is a rank-1 projector onto an integer state.
Starting from 𝐻, let Ĝ𝑛 be the weighted graph described above, with Laplacian Δ̂𝑘 .
For any 𝑔 > 0, there is a constant 𝑐 > 0 sufficiently small such that setting

𝜆 = 𝑐𝑡−1𝑔 (6.191)

𝐸 = 𝑐𝜆4𝑚+2𝑡−1𝑔 (6.192)

gives

𝜆min(𝐻) = 0 =⇒ 𝜆min(Δ̂2𝑛−1) = 0 (6.193)

𝜆min(𝐻) ≥ 𝑔 =⇒ 𝜆min(Δ̂2𝑛−1) ≥ 𝐸 (6.194)

Proof. First we show that 𝜆min(𝐻) = 0 =⇒ 𝜆min(Δ̂2𝑛−1) = 0. We first argue that
the complex Ĝ𝑛 has some (2𝑛 − 1)-homology, and then we invoke Proposition 6.3.

Recall that the clique complex of the graph G𝑛 (which is the 𝑛-fold join of the initial
qubit graph G1) has a homology group with rank 2𝑛. This graph corresponds to
the zero Hamiltonian—every state in the Hilbert space of 𝑛 qubits is a zero-energy
ground state. When we add the gadget for the term |𝜙𝑖⟩⟨𝜙𝑖 | to the graph G𝑛, we fill in
the cycles |𝜙𝑖⟩ ⊗C⊗(𝑛−𝑚) by rendering them the boundaries of some 2𝑛-dimensional
objects. Crucially, we do not fill in any cycles other than |𝜙𝑖⟩ ⊗ C⊗(𝑛−𝑚) by adding
this gadget. Thus any state |𝜓⟩ which is orthogonal to span{|𝜙𝑖⟩} will still give an
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element of homology. The state |𝜓⟩ satisfying 𝐻 |𝜓⟩ = 0 corresponds to a cycle
|𝜓⟩ ∈ H𝑛 which is orthogonal to span{|𝜙𝑖⟩}. Thus Ĝ𝑛 has non-trivial (2𝑛 − 1)-
homology𝐻2𝑛−1(Ĝ𝑛) ≠ {0}. Invoking Proposition 6.3 tells us that Ker Δ̂2𝑛−1 ≠ {0}.
That is, 𝜆min(Δ̂2𝑛−1) = 0.

It remains to tackle the case 𝜆min(𝐻) ≥ 𝑔. We begin with some notation.

Definition 6.17. • Let 𝜕𝑘 , 𝑑𝑘 , Δ̂𝑘 be the boundary, coboundary maps and
Laplacian on the entire complex with all gadgets C𝑘 (Ĝ𝑛), with 𝜕𝑘 , 𝑑𝑘 , Δ𝑘 still
reserved for the original qubit complex C𝑘 (G𝑛).

• Let 𝜕𝑘
𝑖

, 𝑑𝑘
𝑖
, Δ̂𝑘

𝑖
be the boundary, coboundary maps and Laplacian on the single

gadget complex C𝑘 (G𝑛) ⊕ C𝑘 (T𝑖).

• We can decompose the chainspaces of the entire complex as

C𝑘 (Ĝ𝑛) = C𝑘 (G𝑛) ⊕ C𝑘 (T1) ⊕ · · · ⊕ C𝑘 (T𝑡). (6.195)

Let Π𝑘
0 be projection onto C𝑘 (G𝑛) and Π𝑘

𝑖
projection onto C𝑘 (T𝑖). These are

a complete set of projectors on C𝑘 (Ĝ):

Π𝑘
0 +

∑︁
𝑖

Π𝑘
𝑖 = id. (6.196)

• Let [bulk]𝑖 denote the simplices touching the central vertex 𝑣0 of gadget T𝑖
(see Section 6.2), with chainspaces C𝑘 ( [bulk]). Let [bulk] = ⊔𝑖 [bulk]𝑖, so
C𝑘 ( [bulk]) =

⊕
𝑖 C𝑘 ( [bulk]𝑖). Let Π [𝑘]

𝑖
be the projection onto C𝑘 ( [bulk]𝑖),

and Π [𝑘] =
⊕

𝑖 Π
[𝑘]
𝑖

projection onto C𝑘 ( [bulk]).

• Lemma 6.13 gives us an orthogonal decomposition of C2𝑛−1(G𝑛) ⊕ C2𝑛−1(T𝑖)
into four spaces, for each gadget T𝑖.

1. The space of eigenvectors of eigenvalues Θ(1) - call it A𝑖. Let Π (A)
𝑖

be
the projection onto A𝑖.

2. The space of eigenvectors of eigenvalues Θ(𝜆2) - call it B𝑖. Let Π (B)
𝑖

be
the projection onto B𝑖. B𝑖 is a O(𝜆)-perturbation of C2𝑛−1( [bulk]𝑖).

3. The eigenspace with eigenvalue Θ(𝜆4𝑚𝑖+2). Let Φ̂𝑖 project onto this
space. Im Φ̂𝑖 is a O(𝜆)-perturbation of |𝜙𝑖⟩ ⊗ H𝑛−𝑚 ⊆ H𝑛. Let Φ𝑖

project onto |𝜙𝑖⟩ ⊗ H𝑛−𝑚.
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4. The kernel of Δ̂2𝑛−1
𝑖

. Let Φ̂⊥
𝑖

project onto Ker Δ̂2𝑛−1
𝑖

. Im Φ̂⊥
𝑖

is a O(𝜆)-
perturbation of |𝜙𝑖⟩⊥ ⊗H𝑛−𝑚 ⊆ H𝑛. Let Φ⊥

𝑖
project onto |𝜙𝑖⟩⊥ ⊗H𝑛−𝑚.

We have a complete set of projectors

Π
(A)
𝑖
+ Π (B)

𝑖
+ Φ̂𝑖 + Φ̂⊥𝑖 = Π2𝑛−1

0 + Π2𝑛−1
𝑖 . (6.197)

• Finally, let Π (H)𝑛 be the projection ontoH𝑛, with image in C2𝑛−1(G𝑛).

Now for the proof. Assume 𝜆min(𝐻) ≥ 𝑔, and assume for contradiction that the
normalized state |𝜑⟩ ∈ C2𝑛−1(Ĝ𝑛) has

⟨𝜑|Δ̂2𝑛−1 |𝜑⟩ < 𝐸, (6.198)

where 𝐸 is defined in the theorem statement. We will show a contradiction by
deriving ⟨𝜑 |𝜑⟩ < 1.

Consider the following calculation.

⟨𝜑 |𝜑⟩ = ⟨𝜑 |
(
Π2𝑛−1

0 +
∑︁
𝑖

Π2𝑛−1
𝑖

)
|𝜑⟩ (6.199)

=
∑︁
𝑖

⟨𝜑|
(
Π2𝑛−1

0 + Π2𝑛−1
𝑖

)
|𝜑⟩ − (𝑡 − 1)⟨𝜑|Π2𝑛−1

0 |𝜑⟩ (6.200)

=
∑︁
𝑖

⟨𝜑|
(
Φ̂⊥𝑖 + Φ̂𝑖 + Π (A)𝑖

+ Π (B)
𝑖

)
|𝜑⟩ − (𝑡 − 1)⟨𝜑 |Π2𝑛−1

0 |𝜑⟩ (6.201)

=

(
⟨𝜑 |

∑︁
𝑖

Φ̂⊥𝑖 |𝜑⟩ − (𝑡 − 1)⟨𝜑|Π2𝑛−1
0 |𝜑⟩

)
+ ⟨𝜑 |

∑︁
𝑖

Φ̂𝑖 |𝜑⟩ (6.202)

+ ⟨𝜑 |
∑︁
𝑖

Π
(A)
𝑖
|𝜑⟩ + ⟨𝜑 |

∑︁
𝑖

Π
(B)
𝑖
|𝜑⟩. (6.203)

Here we used Equations 6.197 and 6.196.

Examining the term in brackets, we have

⟨𝜑 |
∑︁
𝑖

Φ̂⊥𝑖 |𝜑⟩ − (𝑡 − 1)⟨𝜑 |Π2𝑛−1
0 |𝜑⟩ (6.204)

= ⟨𝜑 |
∑︁
𝑖

(
Φ⊥𝑖 + O(𝜆)

)
|𝜑⟩ − (𝑡 − 1)⟨𝜑 |Π2𝑛−1

0 |𝜑⟩ (6.205)

= ⟨𝜑 |
∑︁
𝑖

Φ⊥𝑖 |𝜑⟩ − (𝑡 − 1)⟨𝜑 |Π2𝑛−1
0 |𝜑⟩ + O(𝜆𝑡) (6.206)

= ⟨𝜑 |
∑︁
𝑖

(
Π
(H)
𝑛 −Φ𝑖

)
|𝜑⟩ − (𝑡 − 1)⟨𝜑 |Π2𝑛−1

0 |𝜑⟩ + O(𝜆𝑡) (6.207)

= ⟨𝜑 |Π (H)𝑛 |𝜑⟩ − ⟨𝜑|
∑︁
𝑖

Φ𝑖 |𝜑⟩ − (𝑡 − 1)⟨𝜑 |
(
Π2𝑛−1

0 − Π (H)𝑛

)
|𝜑⟩ + O(𝜆𝑡).

(6.208)
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In the second line we used a consequence of Lemma 6.13, combined with Part 1 of
Lemma 6.8: Φ̂⊥

𝑖
= Φ⊥

𝑖
+ O(𝜆).

Consider the term ⟨𝜑 |∑𝑖 Φ𝑖 |𝜑⟩.
∑
𝑖 Φ𝑖 is precisely the implementation of the Hamil-

tonian𝐻 on the simulated 𝑛-qubit subspaceH𝑛. This is where we use the assumption
on the minimum eigenvalue of 𝐻.

⟨𝜑 |
∑︁
𝑖

Φ𝑖 |𝜑⟩ =
(
⟨𝜑|Π (H)𝑛

) ∑︁
𝑖

Φ𝑖

(
Π
(H)
𝑛 |𝜑⟩

)
(6.209)

≥ 𝑔 | |Π (H)𝑛 |𝜑⟩| |2 (6.210)

= 𝑔 ⟨𝜑 |Π (H)𝑛 |𝜑⟩. (6.211)

Putting this all together, we have

⟨𝜑 |𝜑⟩ ≤ ⟨𝜑 |Π (H)𝑛 |𝜑⟩ · (1 − 𝑔) − (𝑡 − 1)⟨𝜑 |
(
Π2𝑛−1

0 − Π (H)𝑛

)
|𝜑⟩ + O(𝜆𝑡) (6.212)

+ ⟨𝜑 |
∑︁
𝑖

Φ̂𝑖 |𝜑⟩ + ⟨𝜑 |
∑︁
𝑖

Π
(A)
𝑖
|𝜑⟩ + ⟨𝜑 |

∑︁
𝑖

Π
(B)
𝑖
|𝜑⟩. (6.213)

The first term is strictly less than 1, and the second term is non-positive since
Π2𝑛−1

0 − Π
(H)
𝑛 ⪰ 0. If we can somehow show that the final three terms are small,

then this will give the contradiction ⟨𝜑 |𝜑⟩ < 1. And indeed, it is true that the
low-energy assumption ⟨𝜑|Δ̂2𝑛−1 |𝜑⟩ < 𝐸 forces the terms involving {Φ̂𝑖}, {Π (A)

𝑖
},

{Π (B)
𝑖
} to be small. This forms the content of Lemmas 6.15, 6.16, 6.17, whose

proofs are postponed to Section 6.5.

Lemma 6.15. For 𝑚-local Hamiltonian 𝐻 with 𝑡 terms, recall Δ̂𝑘 is the Laplacian
of the corresponding graph Ĝ𝑛. Let {Φ̂𝑖} be as defined in Definition 6.17. If
|𝜑⟩ ∈ C2𝑛−1(Ĝ𝑛) is a state with ⟨𝜑 |Δ̂2𝑛−1 |𝜑⟩ < 𝐸 , then

⟨𝜑 |
∑︁
𝑖

Φ̂𝑖 |𝜑⟩ = O(𝜆−(4𝑚+2)𝐸𝑡) (6.214)

Lemma 6.16. For 𝑚-local Hamiltonian 𝐻 with 𝑡 terms, recall Δ̂𝑘 is the Laplacian
of the corresponding graph Ĝ𝑛. Let {Π (A)

𝑖
} be as defined in Definition 6.17. If

|𝜑⟩ ∈ C2𝑛−1(Ĝ𝑛) is a state with ⟨𝜑 |Δ̂2𝑛−1 |𝜑⟩ < O(𝜆2), then

⟨𝜑|
∑︁
𝑖

Π
(A)
𝑖
|𝜑⟩ = O(𝜆2𝑡) (6.215)

Lemma 6.17. For 𝑚-local Hamiltonian 𝐻 with 𝑡 terms, recall Δ̂𝑘 is the Laplacian
of the corresponding graph Ĝ𝑛. Let {Π (B)

𝑖
} be as defined in Definition 6.17. If

|𝜑⟩ ∈ C2𝑛−1(Ĝ𝑛) is a state with ⟨𝜑 |Δ̂2𝑛−1 |𝜑⟩ < O(𝜆4), then

⟨𝜑 |
∑︁
𝑖

Π
(B)
𝑖
|𝜑⟩ = O(𝜆2𝑡) (6.216)



208

Note that we set 𝐸 = 𝑜(𝜆4𝑚+2) in the statement of Theorem 6.14, so ⟨𝜑 |Δ̂2𝑛−1 |𝜑⟩ < 𝐸
implies the conditions of Lemmas 6.16, 6.17. Returning to the calculation armed
with Lemmas 6.15, 6.16, 6.17, we get

⟨𝜑 |𝜑⟩ = ⟨𝜑 |Π (H)𝑛 |𝜑⟩ · (1 − 𝑔) − (𝑡 − 1)⟨𝜑|
(
Π2𝑛−1

0 − Π (H)𝑛

)
|𝜑⟩ + O(𝜆𝑡) (6.217)

+ O(𝜆−(4𝑚+2)𝐸𝑡) + O(𝜆2𝑡) + O(𝜆2𝑡) (6.218)

Choosing

𝜆 = 𝑐𝑡−1𝑔 (6.219)

𝐸 = 𝑐𝜆4𝑚+2𝑡−1𝑔 (6.220)

for a constant 𝑐 sufficiently small, this becomes

1 = ⟨𝜑 |𝜑⟩ (6.221)

≤ ⟨𝜑 |Π (H)𝑛 |𝜑⟩ · (1 − 𝑔) − (𝑡 − 1)⟨𝜑 |
(
Π2𝑛−1

0 − Π (H)𝑛

)
|𝜑⟩ + 1

10
𝑔 (6.222)

≤ 1 − 𝑔 + 1
10
𝑔 (6.223)

< 1. (6.224)

a contradiction. This concludes the proof of Theorem 6.14. □

6.5 Postponed proofs
In this section, we prove Lemmas 6.15, 6.16, 6.17 one at a time. The proof of
Lemma 6.15 is comparatively simple, since we need only use that the energy of
|𝜑⟩ on the up Laplacian is small ⟨𝜑 |Δ̂↑2𝑛−1 |𝜑⟩ < 𝐸 . Claim 6.12 tells us that the up
Laplacians play nicely with the decomposition into separate gadgets, and there is
no interference between gadgets. Unfortunately, we start running into more trouble
when we must consider also down Laplacians, which can interfere between different
gadgets. For this reason, the proofs of Lemmas 6.16, 6.17 are more involved.

Here is some notation which will be useful in the proof of Lemmas 6.16, 6.17.

Definition 6.18. Recall the block decomposition

C2𝑛−1(Ĝ𝑛) = C2𝑛−1(G𝑛) ⊕ C2𝑛−1(T1) ⊕ · · · ⊕ C2𝑛−1(T𝑡) (6.225)

Write
|𝜑⟩ = |𝜔0⟩ + |𝜔1⟩ + · · · + |𝜔𝑡⟩ (6.226)

where |𝜔0⟩ ∈ C2𝑛−1(G𝑛), |𝜔𝑖⟩ ∈ C2𝑛−1(T𝑖). Further, introduce the notation

|𝜑𝑖⟩ = (Π2𝑛−1
0 + Π2𝑛−1

𝑖 ) |𝜑⟩ = |𝜔0⟩ + |𝜔𝑖⟩ (6.227)
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Proof of Lemma 6.15

Proof. Recall the definition of |𝜙𝑖⟩ from Lemma 6.13. Lemma 6.13 tells us that
|𝜙𝑖⟩ ⊗ H𝑛−𝑚 is a Δ̂2𝑛−1

𝑖
-eigenspace with eigenvalue 𝜆4𝑚𝑖+2. Combined with Claim

6.8, we can see that these states are in fact Δ̂↑2𝑛−1
𝑖

-eigenstates with eigenvalue 𝜆4𝑚𝑖+2.
Thus Δ̂

↑2𝑛−1
𝑖

⪰ 𝜆4𝑚𝑖+2 · Φ̂𝑖; states in Im Φ̂𝑖 have energy at least 𝜆4𝑚𝑖+2 on Δ̂
↑2𝑛−1
𝑖

,
and states orthogonal to Im Φ̂𝑖 have energy at least zero. Now Δ̂2𝑛−1 ⪰ Δ̂↑2𝑛−1 =

Δ̂
↑2𝑛−1
1 + · · · + Δ̂↑2𝑛−1

𝑡 ⪰ Δ̂
↑2𝑛−1
𝑖

using Claim 6.12, so in fact Δ̂2𝑛−1 ⪰ 𝜆4𝑚𝑖+2 · Φ̂𝑖. But
our state |𝜑⟩ only has energy ⟨𝜑 |Δ̂2𝑛−1 |𝜑⟩ < 𝐸 on Δ̂2𝑛−1. Thus

⟨𝜑|Φ̂𝑖 |𝜑⟩ ≤ 𝜆−(4𝑚𝑖+2) · ⟨𝜑 |Δ̂2𝑛−1 |𝜑⟩ (6.228)

= O(𝜆−(4𝑚+2)𝐸) (6.229)

=⇒ ⟨𝜑 |
∑︁
𝑖

Φ̂𝑖 |𝜑⟩ = O(𝜆−(4𝑚+2)𝐸𝑡) (6.230)

□

Proof of Lemma 6.16

Proof. Our strategy is to first show that |𝜑𝑖⟩ is low energy on Δ̂2𝑛−1
𝑖

.

⟨𝜑|Δ̂2𝑛−1 |𝜑⟩ < O(𝜆2) =⇒

⟨𝜑|Δ̂↓2𝑛−1 |𝜑⟩ < O(𝜆2) =⇒ ||𝜕2𝑛−1 |𝜑⟩| |2 < O(𝜆2)

⟨𝜑 |Δ̂↑2𝑛−1 |𝜑⟩ < O(𝜆2) =⇒ ||𝑑2𝑛−1 |𝜑⟩| |2 < O(𝜆2)
(6.231)

Now

| |𝑑2𝑛−1 |𝜑⟩| |2 < O(𝜆2) (6.232)

=⇒ ||𝑑2𝑛−1
1 |𝜑1⟩| |2 + · · · + | |𝑑2𝑛−1

𝑡 |𝜑1⟩| |2 < O(𝜆2) (6.233)

=⇒
����𝑑2𝑛−1

𝑖 |𝜑𝑖⟩
����2 < O(𝜆2) ∀𝑖 (6.234)

using Claim 6.12. It is not so simple for the boundaries. Write����𝜕2𝑛−1
𝑖 |𝜑𝑖⟩

����2 =
����Π2𝑛−2

0 𝜕2𝑛−1
𝑖 |𝜑𝑖⟩

����2 + ����Π2𝑛−2
𝑖 𝜕2𝑛−1

𝑖 |𝜑𝑖⟩
����2 (6.235)

For the restriction to the gadget chainspace C2𝑛−2(T𝑖), we indeed have����Π2𝑛−2
𝑖 𝜕2𝑛−1

𝑖 |𝜑𝑖⟩
����2 < O(𝜆2) (6.236)

since the (2𝑛−2)-simplices in gadget T𝑖 are not shared with any other gadgets. (This
is a similar reasoning to the proof of Claim 6.12.) However, the (2𝑛 − 2)-simplices
in the qubit complex G2𝑛−2

𝑛 touches (2𝑛−1)-simplices from many gadgets, and thus
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the boundaries of multiple {|𝜑 𝑗 ⟩} 𝑗 could contribute to Π2𝑛−2
0 𝜕2𝑛−1 |𝜑⟩ and possibly

cancel out. Here we need a different argument. (To go from the first line to the
second line in what follows, note that 𝜕2𝑛−1 and 𝜕2𝑛−1

𝑖
have identical actions when

acting on C2𝑛−1(G) ⊕ C2𝑛−1(T𝑖).)

Π2𝑛−2
0 𝜕2𝑛−1 |𝜑⟩ = Π2𝑛−2

0 𝜕2𝑛−1 (|𝜔0⟩ + |𝜔𝑖⟩
)
+ Π2𝑛−2

0 𝜕2𝑛−1
∑︁
𝑗≠𝑖

|𝜔 𝑗 ⟩

(6.237)

= Π2𝑛−2
0 𝜕2𝑛−1

𝑖 |𝜑𝑖⟩ + Π2𝑛−2
0 𝜕2𝑛−1

∑︁
𝑗≠𝑖

|𝜔 𝑗 ⟩ (6.238)

=⇒ Π2𝑛−2
0 𝜕2𝑛−1

𝑖 |𝜑𝑖⟩ = Π2𝑛−2
0 𝜕2𝑛−1 |𝜑⟩ − Π2𝑛−2

0 𝜕2𝑛−1
∑︁
𝑗≠𝑖

|𝜔 𝑗 ⟩ (6.239)

=⇒
����Π2𝑛−2

0 𝜕2𝑛−1
𝑖 |𝜑𝑖⟩

���� ≤ ����Π2𝑛−2
0 𝜕2𝑛−1 |𝜑⟩

���� + �����
�����Π2𝑛−2

0 𝜕2𝑛−1
∑︁
𝑗≠𝑖

|𝜔 𝑗 ⟩
�����
����� (6.240)

< O(𝜆) +
�����
�����Π2𝑛−2

0 𝜕2𝑛−1
∑︁
𝑗≠𝑖

|𝜔 𝑗 ⟩
�����
����� (6.241)

Here we used triangle inequality. But,�����
�����Π2𝑛−2

0 𝜕2𝑛−1
∑︁
𝑗≠𝑖

|𝜔 𝑗 ⟩
�����
����� = O(𝜆) (6.242)

since the vertices T 0
𝑗

have weight 𝜆, recalling Equation 6.77. Thus����Π2𝑛−2
0 𝜕2𝑛−1

𝑖 |𝜑𝑖⟩
���� < O(𝜆) + O(𝜆) = O(𝜆) (6.243)

=⇒ ⟨𝜑𝑖 |Δ̂2𝑛−1
𝑖 |𝜑𝑖⟩ =

����𝑑2𝑛−1
𝑖 |𝜑𝑖⟩

����2 + ����Π2𝑛−2
𝑖 𝜕2𝑛−1

𝑖 |𝜑𝑖⟩
����2 + ����Π2𝑛−2

0 𝜕2𝑛−1
𝑖 |𝜑𝑖⟩

����2
(6.244)

= O(𝜆2) + O(𝜆2) = O(𝜆2) (6.245)

A𝑖 is a Δ̂2𝑛−1
𝑖

-eigenspace with eigenvalues Θ(1), so Δ̂2𝑛−1
𝑖
⪰ Θ(1) · Π (A)

𝑖
. Thus

⟨𝜑𝑖 |Π (A)𝑖
|𝜑𝑖⟩ ≤ Θ(1) · ⟨𝜑𝑖 |Δ̂2𝑛−1

𝑖 |𝜑𝑖⟩ = O(𝜆2) (6.246)

=⇒ ⟨𝜑 |
∑︁
𝑖

Π
(A)
𝑖
|𝜑⟩ = O(𝜆2𝑡) (6.247)

□

Proof of Lemma 6.17

Proof. We will use what we are told by Lemma 6.13 about the form of B𝑖. Namely,
B𝑖 is aO(𝜆)-perturbation of the space C2𝑛−1( [bulk]𝑖) of (2𝑛−1)-simplices touching
the central vertex of gadget T𝑖.
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We must rule out the possibility that, when we combine many gadgets, new states
of very low energy emerge with high overlap on the {B𝑖} subspaces. What is the
situation we are fighting against? We know states with high overlap on a single
B𝑖 subspace must have energy at least Ω(𝜆2). But this state could be a cocycle,
and perhaps the Ω(𝜆) boundary lives in the qubit complex C2𝑛−2(G). If this could
happen, then perhaps many such states from different gadgets could be superposed
in such a way that their boundaries destructively interfere on the qubit complex,
leading to a state of very low energy.

However, Claim 6.10 will let us show that not only must the states in an individualB𝑖
have coboundaries or boundaries of size Ω(𝜆), but further these Ω(𝜆) coboundaries
and boundaries must be supported on [bulk]𝑖.

We will show that, if ⟨𝜑 |Δ̂2𝑛−1 |𝜑⟩ < O(𝜆4), then ⟨𝜑𝑖 |Π (B)𝑖
|𝜑𝑖⟩ = O(𝜆2) for each 𝑖.

Lemma 6.13 and Part 2 of Lemma 6.8 tell us that it is enough to show
⟨𝜑𝑖 |Π [2𝑛−1]

𝑖
|𝜑𝑖⟩ = O(𝜆2) for each 𝑖. We will show the contrapositive. That is, we

will assume
⟨𝜑𝑖 |Π [2𝑛−1]

𝑖
|𝜑𝑖⟩ ∉ O(𝜆2) (6.248)

and aim to derive a contradiction with ⟨𝜑|Δ̂2𝑛−1 |𝜑⟩ ≤ O(𝜆4). Our strategy to do this
is to use Claim 6.10 to first derive that either | |Π [2𝑛−2]

𝑖
𝜕2𝑛−1
𝑖
|𝜑𝑖⟩| | or | |Π [2𝑛]

𝑖
𝑑2𝑛−1
𝑖
|𝜑𝑖⟩| |

must be big. That is, the components of the boundary and coboundary on [bulk]𝑖
cannot both be small. Then since {[bulk𝑖]} are separated from each other and ‘cannot
interfere’, this will necessitate that ⟨𝜑 |Δ̂2𝑛−1 |𝜑⟩ is big, providing the contradiction.

We will use the subspace decomposition

Π2𝑛−1
0 + Π2𝑛−1

𝑖 = Π
[2𝑛−1]
𝑖

+ Π [2𝑛−1]⊥
𝑖

= Π
[2𝑛−1]
𝑖

+ Π [2𝑛−1]⊥
𝑖

(
Π
(A)
𝑖
+ Π (B)

𝑖
+ Φ̂𝑖 + Φ̂⊥𝑖

)
= Π

[2𝑛−1]
𝑖

+ Π [2𝑛−1]⊥
𝑖

Π
(A)
𝑖
+ Π [2𝑛−1]⊥

𝑖
Π
(B)
𝑖

(6.249)

+
(
Φ̂𝑖 + Φ̂⊥𝑖

)
− Π [2𝑛−1]

𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
, (6.250)

where Π
[2𝑛−1]⊥
𝑖

:= Π2𝑛−1
0 + Π2𝑛−1

𝑖
− Π [2𝑛−1]

𝑖
.

Let’s apply Claim 6.10 to the state Π
[2𝑛−1]
𝑖

|𝜑𝑖⟩ ∈ C2𝑛−1( [bulk]𝑖). Equation 6.248
gives | |Π [2𝑛−1]

𝑖
|𝜑𝑖⟩| | ∉ O(𝜆). From this, the two cases from Claim 6.10 are

| |Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖

Π
[2𝑛−1]
𝑖

|𝜑𝑖⟩| | ∉ O(𝜆2) and | |Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖

Π
[2𝑛−1]
𝑖

|𝜑𝑖⟩| | ∉ O(𝜆2).

Case 1. | |Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖

Π
[2𝑛−1]
𝑖

|𝜑𝑖⟩| | ∉ O(𝜆2)
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In this case, we will show | |Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖
|𝜑𝑖⟩| | cannot be small. Using Equation

6.250,

Π
[2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 |𝜑𝑖⟩ = Π

[2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 Π

[2𝑛−1]
𝑖

|𝜑𝑖⟩ (6.251)

+ Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 Π

[2𝑛−1]⊥
𝑖

Π
(A)
𝑖
|𝜑𝑖⟩ (6.252)

+ Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 Π

[2𝑛−1]⊥
𝑖

Π
(B)
𝑖
|𝜑𝑖⟩ (6.253)

+ Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
|𝜑𝑖⟩ (6.254)

− Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 Π

[2𝑛−1]
𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
|𝜑𝑖⟩ (6.255)

=⇒ ||Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 |𝜑𝑖⟩| | ≥ | |Π [2𝑛−2]

𝑖
𝜕2𝑛−1
𝑖 Π

[2𝑛−1]
𝑖

|𝜑𝑖⟩| | (6.256)

− ||Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 Π

[2𝑛−1]⊥
𝑖

Π
(A)
𝑖
|𝜑𝑖⟩| | (6.257)

− ||Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 Π

[2𝑛−1]⊥
𝑖

Π
(B)
𝑖
|𝜑𝑖⟩| | (6.258)

− ||Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
|𝜑𝑖⟩| | (6.259)

− ||Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 Π

[2𝑛−1]
𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
|𝜑𝑖⟩| | (6.260)

by triangle inequality. We have | |Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖

Π
[2𝑛−1]
𝑖

|𝜑𝑖⟩| | ∉ O(𝜆2) by assumption.
To conclude that | |Π [2𝑛−2]

𝑖
𝜕2𝑛−1
𝑖
|𝜑𝑖⟩| | is big, we will argue that the remaining terms

on the right hand side are small.

We know from before that | |Π (A)
𝑖
|𝜑𝑖⟩| | = O(𝜆), thus by Claim 6.9

| |Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖

Π
[2𝑛−1]⊥
𝑖

Π
(A)
𝑖
|𝜑𝑖⟩| | = O(𝜆2). From Lemma 6.13,

| |Π [2𝑛−1]⊥
𝑖

Π
(B)
𝑖
| | = | |Π [2𝑛−1]⊥

𝑖

(
Π
[2𝑛−1]
𝑖

+ O(𝜆)
)
| | = O(𝜆) and

| |Π [2𝑛−1]
𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
| | = | |Π [2𝑛−1]

𝑖

(
Φ𝑖 +Φ⊥𝑖 + O(𝜆)

)
| | = O(𝜆). Thus by Claim 6.9

| |Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖

Π
[2𝑛−1]⊥
𝑖

Π
(B)
𝑖
|𝜑𝑖⟩| | = O(𝜆2) and | |Π [2𝑛−2]

𝑖
𝜕2𝑛−1
𝑖

Π
[2𝑛−1]
𝑖

(
Φ̂𝑖+Φ̂⊥𝑖

)
|𝜑𝑖⟩| | =

O(𝜆2). Finally, | |𝜕2𝑛−1
𝑖

(
Φ̂𝑖+Φ̂⊥𝑖

)
|𝜑𝑖⟩| | = O(𝜆2𝑚𝑖+1) = O(𝜆2) so | |Π [2𝑛−2]

𝑖
𝜕2𝑛−1
𝑖

(
Φ̂𝑖+

Φ̂⊥
𝑖

)
|𝜑𝑖⟩| | = O(𝜆2). Altogether, we get

| |Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 |𝜑𝑖⟩| | ∉ O(𝜆2) (6.261)

Case 2. | |Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖

Π
[2𝑛−1]
𝑖

|𝜑𝑖⟩| | ∉ O(𝜆2)
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This will be similar to Case 1. Again using Equation 6.250,

Π
[2𝑛]
𝑖

𝑑2𝑛−1
𝑖 |𝜑𝑖⟩ = Π

[2𝑛]
𝑖

𝑑2𝑛−1
𝑖 Π

[2𝑛−1]
𝑖

|𝜑𝑖⟩ (6.262)

+ Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖 Π

[2𝑛−1]⊥
𝑖

Π
(A)
𝑖
|𝜑𝑖⟩ (6.263)

+ Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖 Π

[2𝑛−1]⊥
𝑖

Π
(B)
𝑖
|𝜑𝑖⟩ (6.264)

+ Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
|𝜑𝑖⟩ (6.265)

− Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖 Π

[2𝑛−1]
𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
|𝜑𝑖⟩ (6.266)

=⇒ ||Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖 |𝜑𝑖⟩| | ≥ | |Π [2𝑛]𝑖

𝑑2𝑛−1
𝑖 Π

[2𝑛−1]
𝑖

|𝜑𝑖⟩| | (6.267)

− ||Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖 Π

[2𝑛−1]⊥
𝑖

Π
(A)
𝑖
|𝜑𝑖⟩| | (6.268)

− ||Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖 Π

[2𝑛−1]⊥
𝑖

Π
(B)
𝑖
|𝜑𝑖⟩| | (6.269)

− ||Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
|𝜑𝑖⟩| | (6.270)

− ||Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖 Π

[2𝑛−1]
𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
|𝜑𝑖⟩| | (6.271)

By assumption, | |Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖

Π
[2𝑛−1]
𝑖

|𝜑𝑖⟩| | ∉ O(𝜆2). We know from before that
| |Π (A)

𝑖
|𝜑𝑖⟩| | = O(𝜆), thus by Claim 6.9 | |Π [2𝑛]

𝑖
𝑑2𝑛−1
𝑖

Π
[2𝑛−1]⊥
𝑖

Π
(A)
𝑖
|𝜑𝑖⟩| | = O(𝜆2).

From Lemma 6.13, | |Π [2𝑛−1]⊥
𝑖

Π
(B)
𝑖
| | = | |Π [2𝑛−1]⊥

𝑖

(
Π
[2𝑛−1]
𝑖

+ O(𝜆)
)
| | = O(𝜆) and

| |Π [2𝑛−1]
𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
| | = | |Π [2𝑛−1]

𝑖

(
Φ𝑖 +Φ⊥𝑖 + O(𝜆)

)
| | = O(𝜆). Thus by Claim 6.9

| |Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖

Π
[2𝑛−1]⊥
𝑖

Π
(B)
𝑖
|𝜑𝑖⟩| | = O(𝜆2) and | |Π [2𝑛]

𝑖
𝑑2𝑛−1
𝑖

Π
[2𝑛−1]
𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
|𝜑𝑖⟩| | =

O(𝜆2). Finally, | |𝑑2𝑛−1
𝑖

(
Φ̂𝑖 + Φ̂⊥𝑖

)
|𝜑𝑖⟩| | = O(𝜆2𝑚𝑖+1) = O(𝜆2) so | |Π [2𝑛]

𝑖
𝑑2𝑛−1
𝑖

(
Φ̂𝑖 +

Φ̂⊥
𝑖

)
|𝜑𝑖⟩| | = O(𝜆2). Altogether, we get

| |Π [2𝑛]
𝑖

𝑑2𝑛−1
𝑖 |𝜑𝑖⟩| | ∉ O(𝜆2) (6.272)

We have concluded that either | |Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖
|𝜑𝑖⟩| | ∉ O(𝜆2) or | |Π [2𝑛]

𝑖
𝑑2𝑛−1
𝑖
|𝜑𝑖⟩| | ∉

O(𝜆2), so

| |Π [2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 |𝜑𝑖⟩| |2 + ||Π [2𝑛]𝑖

𝑑2𝑛−1
𝑖 |𝜑𝑖⟩| |2 ∉ O(𝜆4) (6.273)

=⇒ ⟨𝜑𝑖 |𝑑2𝑛−2
𝑖 Π

[2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 |𝜑𝑖⟩ + ⟨𝜑𝑖 |𝜕2𝑛

𝑖 Π
[2𝑛]
𝑖

𝑑2𝑛−1
𝑖 |𝜑𝑖⟩ ∉ O(𝜆4) (6.274)

Now consider the operators 𝑑2𝑛−2
𝑖

Π
[2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖

, 𝜕2𝑛
𝑖
Π
[2𝑛]
𝑖

𝑑2𝑛−1
𝑖

. On [bulk]𝑖, 𝜕𝑘𝑖 and
𝑑𝑘
𝑖

are the same as 𝜕𝑘 and 𝑑𝑘 , thus

𝑑2𝑛−2
𝑖 Π

[2𝑛−2]
𝑖

𝜕2𝑛−1
𝑖 = 𝑑2𝑛−2Π

[2𝑛−2]
𝑖

𝜕2𝑛−1 (6.275)

𝜕2𝑛
𝑖 Π

[2𝑛]
𝑖

𝑑2𝑛−1
𝑖 = 𝜕2𝑛Π

[2𝑛]
𝑖

𝑑2𝑛−1 (6.276)
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So now we can deduce

⟨𝜑|Δ̂2𝑛−1 |𝜑⟩ = ⟨𝜑 |𝑑2𝑛−2𝜕2𝑛−1 |𝜑⟩ + ⟨𝜑 |𝜕2𝑛𝑑2𝑛−1 |𝜑⟩ (6.277)

≥ ⟨𝜑 |𝑑2𝑛−2Π
[2𝑛−2]
𝑖

𝜕2𝑛−1 |𝜑⟩ + ⟨𝜑 |𝜕2𝑛Π
[2𝑛]
𝑖

𝑑2𝑛−1 |𝜑⟩ (6.278)

∉ O(𝜆4) (6.279)

a contradiction to ⟨𝜑 |Δ̂2𝑛−1 |𝜑⟩ ≤ O(𝜆4).

We have concluded that ⟨𝜑𝑖 |Π (B)𝑖
|𝜑𝑖⟩ = O(𝜆2). This tells us

⟨𝜑 |
∑︁
𝑖

Π
(B)
𝑖
|𝜑⟩ = O(𝜆2𝑡) (6.280)

□
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