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ABSTRACT

The CDC has identified vision loss as a growing public health concern, with eye
disease prevalence on the rise. Three of the most common and vision-threatening eye
diseases, wet age-related macular degeneration, proliferative diabetic retinopathy,
and diabetic macular edema, are typically managed through periodic intravitreal
injections. However, treatment effectiveness varies. Given that the half-life of the
drug is limited, one possible cause of the ineffective treatment is inefficient delivery
to the target region. This thesis investigates heat-induced convective flow in an
in-vitro eye model as a method for enhancing drug delivery by accelerating fluid
transport.

First, an optical distortion study was conducted to identify a vitreous model that
matches both the viscosity of the human vitreous and the refractive index of the eye
model. Next planar two-component and volumetric three-component flow
visualization and measurement experiments capture the impact of thermal pad size
on the resulting flow fields, with consideration given to particle trajectories for
targeted delivery. Finally, a physics-informed neural network, trained on planar
velocity data and tested against additional planes from volumetric measurements,
demonstrates the potential for data-driven modeling to simplify future flow
visualization experiments. The outcomes of this work further our fundamental
understanding of fluid dynamics in the eye and encourage continued investigation
into interdisciplinary approaches for improving drug delivery, and ultimately,
patient outcomes.
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C h a p t e r 1

INTRODUCTION

1.1 Background and Motivation
Eye Anatomy
The eye is a delicate, complex structure, and the precise fluid systems in the eye are
critical to maintaining its health. At a fundamental level, the human eye is organized
into three primary layers, each with specialized functions. The outer fibrous layer,
which includes the tough sclera and the transparent cornea, provides structural
support. Beneath this is the middle vascular layer, comprising the iris, ciliary body,
and choroid, which delivers essential nutrients while removing metabolic waste.
The innermost layer, the retina, is a sophisticated neural tissue that converts light
into electrical signals, which are sent to the brain for processing. Within the retina
lies the macula, a specialized region that is critical for sharp, detailed central vision
due to its high concentration of photoreceptors [2], [3].

Figure 1.1: Schematic diagram of the human eye, illustrating key anatomical
components including the choroid, retina, optic nerve, vitreous humor, and macula
(adapted from [1]).
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In addition to these layers, the eye contains three chambers that are critical for
maintaining intraocular pressure and ensuring proper metabolic exchange. The
anterior chamber, located between the cornea and the iris, is filled with aqueous
humor, which nourishes the cornea and lens. Aqueous humor is continuously
produced in the narrow posterior chamber, situated between the iris and the lens,
where it flows forward through the pupil [2]. Behind the lens, the vitreous chamber,
the largest of the three chambers, is filled with vitreous humor, a gel-like substance
that ensures stable intraocular metabolism and function [4]. Together, these layers
and chambers enable the eye to perform complex visual tasks while safeguarding its
delicate structures.

Eye Diseases
The CDC has identified vision loss as a growing public health concern [5], [6]. In
2015 in the US, 1.02 million people were blind, 3.22 million people had visual
impairment, and 8.2 million people had vision problems due to uncorrected
refractive error [7]. These figures are projected to double by 2050, driven largely
by a rapidly aging population and the growing epidemic of diabetes [7]. Among
the most common and severe ocular diseases are age-related macular degeneration
(AMD) and diabetic retinopathy (DR). AMD predominantly affects older adults,
while DR—particularly in its most damaging forms, proliferative diabetic
retinopathy (PDR) and diabetic macular edema (DME)—has surged due to the
rising prevalence of diabetes. These conditions impact millions globally (Table
1.1) and represent critical targets for further research and intervention.

Global Prevalence (2020) Global Projection
AMD 196 million 288 million (2040)

Diabetic Retinopathy 103.12 million 160.50 million (2045)
Blindness 43.3 million 61.0 million (2050)

Moderate and Severe
Vision Impairment 295 million 474 million (2050)

Table 1.1: Global prevalence and projections for age-related macular degeneration
and diabetic retinopathy, as well as blindness and vision impairment more generally,
highlighting the anticipated rise in cases over the coming decades and the growing
public health burden associated with these vision-threatening conditions. Sources
for AMD and diabetic retinopathy data are [8] and [9], respectively. Data on
blindness and vision impairment is from [10].

.
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Figure 1.2: Anatomy of the human eye, highlighting the Bruch’s membrane and its
relationship to surrounding structures, including the choroid blood vessels, retinal
pigment epithelium, and photoreceptor cells (adapted from [11]).

Age-related macular degeneration is the third leading cause of visual impairment
worldwide [12]. Projections estimate that 288 million people will have AMD by
2040 [8]. There are two forms of AMD, wet and dry, where wet AMD is more severe
and accounts for about 20% of all AMD patients [13]. Dry AMD is characterized
by a thickening of the Bruch’s membrane, due to lipid and protein accumulation,
leading to the formation of subretinal pigment epithelium deposits [14]. These
deposits can impede the exchange of nutrients and waste products between the
retina and the choroid, leading to retinal damage [14], [15]. Visual loss from dry
AMD occurs slowly over years [16]. Patients with dry AMD are monitored for
progression to wet AMD. In wet AMD, abnormal, fragile blood vessels from the
choroid grow through defects in the Bruch’s membrane into the subretinal space.
These neovessels are prone to leaking fluid and blood, leading to fluid accumulation,
swelling, and localized hemorrhages, which can damage the macula. Vision loss
occurs rapidly, over the course of days or weeks [16].

Diabetic retinopathy is a vision-threatening complication of diabetes. The elevated
glucose levels, or hyperglycemia, in patients with diabetes damages blood vessels
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throughout the body, including in the eye. Like AMD, there are two stages of disease
progression. Non-proliferative diabetic retinopathy is the early stage, characterized
by weakened blood vessels in the retina. Proliferative diabetic retinopathy is the
advanced stage, characterized by neovascularization in response to reduced blood
flow. Like wet AMD, these neovessels are prone to leakage and bleeding, and often
originate around the optic disk at the back of the eye [17]. This can result in vitreous
hemorrhage and retinal detachment, leading to severe vision loss.

Diabetic macular edema is a major complication of diabetic retinopathy and can
occur at any stage of DR. In DME, chronic hyperglycemia damages the retinal blood
vessels, leading to leakage of fluid into the macula. This accumulation of fluid
causes the macula to swell and thicken. DME can cause distortion of visual images
and a decrease in visual acuity. Untreated, it can lead to total loss of vision [17].

Intravitreal Injections
Periodic intravitreal injections of anti-vascular endothelial growth factor
(anti-VEGF) have become a cornerstone in managing wet AMD, PDR, and DME.
Anti-VEGF injections work by blocking vascular endothelial growth factor, a
protein that promotes the growth of abnormal blood vessels and increases vascular
permeability. In wet AMD and PDR, these injections inhibit the abnormal growth
of fragile, leaky blood vessels. Similarly, in DME, these injections help prevent the
leakage of fluid from damaged vessels. Anti-VEGF injections can be effective at
stabilizing (9 in 10) and improving visual acuity (1 in 3) in patients [18].

For the treatment, an ophthalmologist injects 50 microliters of anti-VEGF into
the patient’s vitreous chamber using a 30-gauge needle [19]. Approximately four
weeks after the injection, the ophthalmologist assesses the patient’s visual acuity
to determine the treatment’s effectiveness and to decide if additional injections are
necessary or if a follow-up can be scheduled for a later date [20]. This periodic
assessment is crucial for monitoring disease progression and optimizing therapeutic
outcomes.

While intravitreal injections are generally well-tolerated, there are potential
complications. Mild side effects may include transient increases in intraocular
pressure and ocular inflammation. Examples of more serious, albeit rare,
complications include retinal detachment, ocular hemorrhage, and
endophthalmitis, a vision-threatening infection [21]. Many patients cease
anti-VEGF treatments [22], despite the risk for severe vision loss, due to a number
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Figure 1.3: The safe region for intravitreal injection spans between ± 80° from the
horizontal with a radial distance of 3.5mm to 4mm from the limbus [24].

of factors, including cost, inconvenience, discomfort/pain, and poor response to
treatment [23].

While wet AMD, PDR, and DME can usually be managed through periodic
intravitreal injections of anti-VEGF, the treatment effectiveness varies, and drug
delivery across the vitreous chamber remains difficult. One contributing factor is
the significant variation in ocular anatomy among patients and the differences in
injection techniques among ophthalmologists. The diameter of the human eye
typically ranges from 2.1 to 2.7cm, with an average of 2.42cm [25]. The standard
injection site, 3.5 to 4mm posterior to the limbus, spans a wide area [19], as
illustrated in Figure 1.3. These variables can result in inconsistencies in treatment.

Delivering anti-VEGF agents is further complicated by the need for the drug to
traverse the vitreous chamber and penetrate multiple cellular layers. The outer and
inner blood–retinal barriers are formed by tight junctions between retinal pigment
epithelial cells and retinal endothelial cells, respectively [26]–[28]. Together, these
barriers hinder drug penetration to the damaged blood vessels within the retina.

Another challenge is that the half-life of the anti-VEGF agents is limited, and the
timescale to cross the vitreous chamber by pure diffusion varies greatly, depending
on patient anatomy and size of the anti-VEGF molecules.

The three most popular anti-VEGF agents are bevacizumab (brand name: Avastin),
aflibercept (brand name: Eylea), and ranibizumab (brand name: Lucentis) [29].
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The diffusion coefficients for ranibizumab and bevacizumab are estimated to be
1.34 × 10−6 cm2/s in a physiological saline and (1.2 ± 0.6) × 10−6 cm2/s in a
rabbit vitreous, respectively [30], [31]. The hydrodynamic radii for ranibizumab,
aflibercept, and bevacizumab were measured to be 2.76 ± 0.04, 3.70 ± 0.03, and
4.58±0.01nm, respectively [32]; therefore, we estimate that the diffusion coefficient
for aflibercept is within the range of ranibizumab and bevacizumab.

To estimate the timescale to cross the vitreous chamber, we look to Fick’s second
law of diffusion, which states that the time rate of change in concentration (at x and
t) is proportional to the curvature of the concentration function (at x and t), scaled
by the diffusion coefficient [33]:

𝜕𝜑

𝜕𝑡
= 𝐷

𝜕2𝜑

𝜕𝑥2 (1.1)

where:

• 𝜑 = Concentration

• 𝑡 = Time

• 𝐷 = Diffusion coefficient

• 𝑥 = Position.

For an order-of-magnitude estimate, we can approximate the timescale for diffusion
as:

𝑡 ≈ 𝐿2

𝐷
(1.2)

where:

• 𝑡 = Timescale for diffusion (s)

• 𝐷 = Diffusion coefficient (cm2/s)

• 𝐿 = Diameter of the eye (cm).

While the intravitreal injection may occur some depth into the vitreous chamber, we
use the average eye diameter as a representative length scale to estimate the average
upper bound on the timescale for diffusion. Using Equation 1.2, the timescale for
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diffusion across the vitreous is approximately 50 days. In human eyes, the aqueous
half-life of intravitreally injected ranibizumab, bevacizumab, and aflibercept is 7.19,
9.82, and 11 days, respectively [34]–[36]. Therefore, for patients who are not
improving with intravitreal anti-VEGF injections, inefficient drug delivery could be
one cause. Consequently, innovative strategies are needed to enhance drug transport,
ensuring that the drug reaches the target area more quickly.

One possible solution is to induce advective mass transport, which could accelerate
the movement of the injected drug within the eye. Enhancing fluid mixing in the
vitreous and optimizing drug delivery could potentially improve treatment outcomes
for patients.

Furthermore, if treatment effectiveness is improved, it may allow for longer-lasting
treatment effects, potentially reducing the frequency of injections needed. This
would have considerable benefits, including lowering total treatment costs, reducing
patient inconvenience, and minimizing risks and complications associated with
repeated intravitreal injections.

Previous Research Efforts
It is worth noting that there have not been many studies on the role of convection
in promoting drug distribution in the eye [37]. Groups have examined how eye
rotations induce convection for drug transport both experimentally [38]–[41] and
computationally [42]–[45]. However, rapid eye movements may be unpleasant after
an injection, and the overall circulation effects induced by lateral movements do not
sustain for long enough to ensure thorough drug distribution [39].

Another strategy for inducing advective mass transport is applying heat to the
eye. [46] performed dye visualization experiments with injections into a glass eye
model to compare the dye concentration by pure diffusion and convection-assisted
transport. For the convection-assisted case, they mimicked laser irradiation on the
retinal surface by embedding a heater on the retinal surface of the glass eye. The
desired concentration (12.95 g/mL at the target region) was reached in 12 minutes
compared to 12 hours by pure diffusion. [47] showed, through dye visualization
and two-component planar particle image velocimetry experiments, that applying a
thermal load induces strong circulation in an eye model. They also investigated how
different heating positions and heater temperatures affect mixing. This study was
the first to demonstrate that heat addition can induce circulation in an eye model;
however, the limited two-component PIV measurements, taken only at the center
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plane, do not capture the full flow behavior throughout the entire eye model.

Filling this gap in the literature, this thesis investigates the two and three-dimensional
fluid dynamics of heat-assisted convection within an in-vitro eye model, focusing
on its application to intravitreal drug delivery.

1.2 Organization of this Thesis
The second chapter of the thesis focuses on the vitreous humor and the technique
we employed to identify a vitreous model that matched both the viscosity in the
human vitreous and the refractive index of the eye model. The third chapter details
the experimental setups and software used for planar two-component particle image
velocimetry and volumetric three-component particle tracking velocimetry. In the
fourth chapter, we examine the effects of thermal pad size variation on the resulting
flow field and particle trajectories. In the sixth chapter, we investigate, using our
experimental data, whether a physics-informed neural network, trained on data
acquired through planar experimental techniques, can predict additional planes
from a volumetric flow field. Finally, the seventh chapter concludes this study
and discusses avenues for future work.
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C h a p t e r 2

VITREOUS MODEL AND REFRACTIVE INDEX MATCHING

2.1 Introduction
This chapter discusses the composition of the human vitreous and presents a
procedure for optimizing the working fluid in a vitreous model. Our methodology
was designed to identify a working fluid that met the dual constraints of 1)
matching the refractive index of the glass eye model to minimize optical distortion
and 2) matching the viscosity of a human vitreous to preserve physiologically
relevant flow behavior.

2.2 Vitreous Humor
The vitreous humor is a complex, heterogeneous, viscoelastic hydrogel tissue. It
is 98-99.7% water and contains hyaluronic acid, glucose, collagen, and ions [1].
Collagen fibers provide the strength and structural integrity to support the gel-state
while hyaluronic acid fills the space between the collagen fibers and maintains the
pressure that inflates the vitreous chamber [1]. The hyaluronic acid and collagen
fibers are not uniformly distributed in the vitreous chamber (Figure 2.1). The central
area of the vitreous is more liquid than the vitreous cortex by the retina [2]. For a
drug to reach the macula at the back of the eye, it must pass through both regions.

Another complexity of the vitreous humor is that the rheological properties change
with age. The vitreous is a gel-like substance at birth and liquefies in heterogeneous
patches with age [3]. Liquid vitreous begins to appear after the age of 4, and by the

Figure 2.1: Zones of hyaluronic acid concentrations in the vitreous [2].
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Figure 2.2: Age-related vitreous liquefaction: random patches of liquid appear in
the central vitreous and gradually merge (adapted from [1]).

time a person reaches 14–18 years old, approximately 20% of the vitreous volume is
liquid. By ages 80–90, more than half of the vitreous has liquefied. This liquefaction
process is not uniform across the vitreous cavity. Instead, liquid pockets tend to
form in the central vitreous, where they grow and merge (Figure 2.2) [1].

Despite the intricate composition of the vitreous, studies have shown that even in
its non-liquefied state, the vitreous is not a tight barrier for diffusion. The mesh
size in a bovine vitreous was estimated to be 500nm [4]. As mentioned previously,
the hydrodynamic radius of anti-VEGF agents is approximately 4nm [5]. Thus, the
stage of liquefaction may not have a significant effect on drug movement [2]. Since
regional distributions of liquid and gel components vary between individuals, and
drug movement does not appear to be greatly affected by liquefaction, a vitreous
model of uniform viscosity is used in this thesis.

The viscosity of the human vitreous ranges from two to four times greater than water
[6]. This conclusion is derived from a study by [7]. In the two-component planar
heating study by [8], a 20.2% glycerol solution, which matches the viscosity found
in the human vitreous, was used. However, our volumetric three-component particle
tracking velocimetry experiments necessitate reducing the optical distortion caused
by refractive index mismatching. While commercial optical fluids with index of
refraction perfectly matched to common transparent materials have been utilized in
some studies (e.g. [9]), their high viscosity limits their utility in this work. Given
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these considerations, we conducted a study to identify a suitable working fluid for
our in-vitro vitreous model.

2.3 Vitreous Model
The working fluid of an in-vitro vitreous model is subject to several physical and
optical constraints. Firstly, to reduce the distortion and more accurately visualize
and measure the flow dynamics, the refractive index of the working fluid must match
the eye model. The eye model used in this experiment is nominally made of Pyrex
glass but is custom blown, so the refractive index may not match the literature
exactly (n=1.474 at 588nm for Pyrex [10], [11]). Secondly, the viscosity of the
working fluid must be representative of the human vitreous. Thirdly, a thermal load
(ΔT = +3°C) is applied in our two and three-component flow analysis experiments.
The refractive index of the working fluid must not change significantly with this
temperature change. Lastly, the fluid must be safe to use. A review of the literature
(e.g., [10], among others) revealed a promising candidate that largely satisfies the
above constraints: sodium iodide.

At 20°C, the viscosity of 55% NaI solution is 2.155 mPas [12], within the range of
viscosity of the human vitreous. The National Fire Protection Association rates NaI
as 1, 0, 1 for health, flammability, and reactivity, respectively [10]; NaI is stable and
poses minimal safety risks. To calculate the refractive index of 55% NaI solution,
we look to a study by [13]. In this study, an Abbe refractometer was used to measure
the refractive index of NaI solutions for 𝑇 = 20 − 35°C, 𝑐 = 55 − 58.5%, and 𝜆 =

589.3nm and 632.8nm. The data was fit to the following equation with a standard
deviation of 8 ×10−4 and regression coefficient of 𝑅2 = 0.996:

𝑛NaI(𝑇, 𝑐, 𝜆) = 1.252 −
(
2.91 × 10−4 ◦C−1

)
𝑇 + 0.365𝑐 + 5542 nm2

𝜆2 (2.1)

where:

• 𝑛NaI = Refractive index

• 𝑇 = Temperature (C)

• 𝑐 = Concentration (%)

• 𝜆 = Wavelength (nm).
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As described later in Chapter 3: Experimental Setups and Methods, for our
experiments, the laser wavelength is 445nm, the ambient temperature is 20°C, and
the heater temperature is 23°C. Using Equation 2.1, the refractive index of 55%
NaI is 1.4702 and 1.4686 at 20°C and 23°C, respectively. This 0.0016 refractive
index decrease is negligible. To prevent the NaI solution from discoloring over
time due to 𝐼−3 formation, 0.1% (w/w) sodium thiosulfate (𝑁𝑎2𝑆2𝑂3) is added, and
Equation 2.1 is inclusive of sodium thiosulfate. Given that NaI appears to meet our
constraints, we moved forward with assessing the refractive index matching of
different solution concentrations and the eye model.

2.4 Refractive Index Matching Methodology

Figure 2.3: Photograph of the eye model used in the refractive index matching
experiment.

The eye model used in this refractive index matching experiment was a custom
blown glass globe of 25.2mm nominal outside diameter. The eye model has a stem
at the base to secure it in place and a hole on the top to fill with fluid, as shown in
Figure 2.3. Since the refractive index of the eye model was not known, we analyzed
three solutions with physiologically relevant viscosities, 54% NaI solution, 55% NaI
solution, and the original 20.2% glycerol solution (Table 2.1). All working solutions
were prepared and placed for at least 24 hours at room temperature. To quantify the
effect of refractive index mismatch, a homemade grid with 1mm dot spacing and
0.3mm dot diameter was attached to the outside of a 15x15x20cm glass tank, facing
inward. The eye model and tank were filled with the working solution, and the eye
model was placed in a holder in the tank. A camera (1440 x 1080 pixel resolution,
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Flir model: BFS-U3-16S2M-CS) aligned directly in front of the eye model captured
the image of a back-illuminated calibration grid with and without the eye model in
the tank (Figure 2.4). A diagram of the experimental setup is shown in Figure 2.5.

Dynamic
Viscosity (mPas) Source

Human Vitreous 2-4
[6]

derived from
[7]

54% NaI solution 2.069 Interpolated from
[12]

55% NaI solution 2.155 [12]
Glycerol/Water Mixture (1:5) 1.7 [8]

Table 2.1: The dynamic viscosities of the human vitreous and potential vitreous
models, with respective citations.

(a) (b)

Figure 2.4: Photographs from the 54% NaI refractive index matching experiment,
showing the grid with (a) and without (b) the eye model in the tank.
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Figure 2.5: Experimental setup: camera on the left faces the eye model, which is
placed in a glass tank. Both the eye model and tank are filled with working fluid.
The grid is attached to the outside of the glass tank.

PIVlab was used to measure the apparent movement of the grid dots with and
without the eye model. Images were imported into PIVlab and analyzed using
PIVlab’s direct cross-correlation function. The interrogation area, 39 pixels, was
carefully chosen to encompass each grid dot. PIV data was split into the undistorted
area outside of the eye model on the far left and right sides of the grid, and the area
within the glass eye model, which was further divided into 95% radius, 90% radius,
and 80% radius. Plots of the grid dot displacement showing the undistorted area and
the distorted area subdivision for 54% NaI, 55% NaI, and 20.2% glycerol solutions
are shown in Figures 2.6, 2.7, and 2.8, respectively.

The grid dot x-displacement was primarily analyzed, due to the vertical distortion
caused by the stem at the base of the eye model and the hole at the top. The grid
dot x-displacement data in the undistorted region provided the baseline reference
information for perfect index matching; any non-zero value being the combined
effect of other optical/imaging artifacts caused by slight vibrations, or movement
of components with and without the eye model, and the subpixel accuracy of the
software in determining dot displacement. The root mean square for the grid dot x-
displacement for the undistorted area was calculated to be 0.39, 0.43 and 0.67 pixels
for 54% NaI, 55% NaI, and 20.2% glycerol solutions, respectively. A histogram of
the grid dot x-displacement for the undistorted area for all three solutions is shown
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in Figure 2.9, highlighting the similar baseline displacement values. The RMS
values within the eye model are above these thresholds, and represent the additional
contribution by the refractive index mismatch of the eye model and working fluid.
As expected, the magnitude of the RMS values rises with the increasing size of
the region within the eye model due to the larger influence of index mismatch in
the region closest to the edges of the eye model. Histograms of the grid dot x-
displacement for all three solutions are overlaid for 80% radius in Figure 2.10, 90%
radius in Figure 2.11, and 95% radius in Figure 2.12. Comparing RMS values
within the eye model for 54% NaI, 55% NaI, and 20.2% glycerol solutions for all
radius sizes, shown in Table 2.2, the 54% and 55% NaI solutions have markedly less
distortion than the 20.2% glycerol solution. For all radius sizes, the 55% solution has
the lowest RMS values, and we note that within 90% radius, the 55% NaI solution
has sub-pixel RMS values. Upon comparing results from the different solutions,
we concluded that the low RMS values noted here for the 55% NaI solution were
sufficient for volumetric three-component particle tracking velocimetry experiments.
Further improvement is possible by finer adjustment in the NaI concentration than
was considered in this study.

Figure 2.6: Plot of grid dot displacement for 54% NaI solution.
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Figure 2.7: Plot of grid dot displacement for 55% NaI solution.

Figure 2.8: Plot of grid dot displacement for 20.2% glycerol solution.
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Figure 2.9: Histograms of the grid dot x-displacement for the undistorted area for
all solutions are overlaid.

Figure 2.10: Histograms of the grid dot x-displacement for 80% radius for all
solutions are overlaid.
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Figure 2.11: Histograms of the grid dot x-displacement for 90% radius for all
solutions are overlaid.

Figure 2.12: Histograms of the grid dot x-displacement for 95% radius for all
solutions are overlaid.
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Working Fluid Undistorted 80% radius 90% radius 95% radius
54% NaI 0.39 0.70 1.41 2.04
55% NaI 0.43 0.63 0.96 1.74

20.2% Glycerol 0.67 3.32 5.42 6.05

Table 2.2: Root mean square values for grid dot x-displacement for the undistorted
area and different radius sizes for 54% NaI, 55% NaI, and 20.2% glycerol solutions.

2.5 Conclusion
This chapter demonstrates a refractive index matching technique that can be used
to improve flow visualization and measurement experiments. Using a simple grid
and PIVlab, we were able to quickly and systematically find a solution, 55% NaI,
that sufficiently matched the refractive index of the eye model, as well as the unique
constraints of our experiments. This refractive index matching technique can be
applied more broadly and proves especially useful when the exact refractive index
of the model or the solution is not known. If closer index matching is needed,
the process described here could be repeated with different solution concentrations
until the desired refractive index matching is achieved. Furthermore, the grid dot
displacement values from the refractive index matching analysis, which quantify the
optical distortion, could potentially be used to correct the velocity values calculated
from flow measurement experiments. This would allow for more accurate velocity
calculations, particularly near the edges of the eye model, which would be valuable
for assessing wall shear stress and other related parameters.

In the subsequent chapters, we used this vitreous model, 55% NaI solution, to
perform both planar and volumetric flow measurement and visualization experiments
with reduced optical distortion.
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C h a p t e r 3

EXPERIMENTAL SETUPS AND METHODS

3.1 Introduction
The experimental setups in this thesis were designed for both planar two-component
and volumetric three-component flow measurement and visualization in an in-vitro
vitreous model. The planar two-component experiments utilized particle image
velocimetry (PIV) to measure the flow field on a thin plane at the center of the
eye model. The volumetric three-component experiments employed Tomographic
Aperture-encoded Particle Tracking Velocimetry (TAPTV) to capture the flow field
throughout the eye model. This chapter details the imaging techniques, software,
and materials used, along with their preparation.

3.2 Materials
Eye Model
The vitreous chamber is a slightly deformed sphere [1], [2], and the eye model
used for flow measurement and visualization experiments, shown in Figure 3.1,
is a custom-blown Pyrex globe with nominal outside diameter of 25mm. The eye
model has a hole at the top to fill with 55% NaI solution mixed with neutrally buoyant
particles (model: Cospheric LLC: Conductive Silver-Coated PMMA Microparticles
1.7g/cc 38-45um). To ensure the particles are neutrally buoyant, the particles are
mixed with the 55% NaI solution in a beaker and left untouched for 20 minutes.

Figure 3.1: Eye model used for planar and volumetric flow measurement and
visualization experiments.
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After 20 minutes, the solution is pipetted from the center of the beaker into the
eye model. Greater particle density is used for planar experiments compared to
volumetric experiments.

Heat Source
The experiments in this thesis focus on heating from below the eye model, against
gravity. In a human subject, heating from below would be equivalent to applying
a heat source to the eye while laying face-down. In the two-dimensional PIV
study by [3], the strongest fluid mixing was observed when heating was applied
against gravity, either in the inferior position for an upright person or in a face-
down orientation (Figure 3.2 (a)). Since the face-down position reached the highest
absolute circulation value (Figure 3.2 (b)), we chose to focus this thesis on face-
down heating, with the bottom of the eye model representing the front of the eye and
the top of the eye model representing the macula, as illustrated in Figure 3.3 (b).

3/6/25, 1:42 PM 10439_2020_2534_Fig2_HTML.png (1773×612)
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(b)

Figure 3.2: Figures from [3]. (a) Select heating positions, where the heater location
is marked in black, and the position of the target tissue is marked by a hollow
gray square. Left and right images show upright and face-down heating positions,
respectively. (b) Plot of the absolute value of circulation, calculated from planar
PIV data for each heating case.

Our heat source, shown in Figure 3.3 (a), was composed of a custom 3D-printed part,
small Peltier thermoelectric heater (model: TEC1-12706), and two thermal pads.
The 3D-printed part holds the eye model and heater in place and provides a black
background for flow imaging. A base thermal pad (model: Kritical Thermal Pads
– 20 W/mk conductivity – 3.0mm thickness) was cut to size and applied directly
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(a)

Macula

Heater

(b)

Figure 3.3: "Face-down" heating configuration. (a) Photograph of the eye model on
top of the heat source, consisting of the 3D-printed part, heater, and thermal pads.
(b) Diagram of the face-down heating orientation.

to the Peltier heater. On top of this thermal pad, a thin black graphite thermal pad
(model: ADWITS graphite thermal pad – 0.07mm thickness) was applied. The
black thermal pad was used to reduce glare from the laser. The Peltier heater was
connected to a power source which was set to 2.3 volts, equivalent to a 3°C thermal
load.

A 3°C thermal load was chosen given safety and thermal conductivity
considerations. There are two FDA-approved ocular heating devices, Lipiflow and
Tearcare, designed for the treatment of dry eye. For Lipiflow, a temperature of
42.5°C is applied directly to the inner eyelid, while Tearcare delivers 45°C to the
outer surface of the eyelid [4]. Heat exceeding 45°C at the outer eyelid can begin to
present safety risks [5]–[9]. The human body is 37°C, so a 3°C thermal load is
below both the safety threshold and these FDA-approved ocular devices.
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Figure 3.4: Plot showing the temperature versus time of the heat source when the
power source is turned on and off.

Another consideration, 55% NaI solution is less thermally conductive (𝑘 = 0.464
[10]) compared to ocular tissue (𝑘 = 0.58 and 0.594 for cornea and vitreous humor,
respectively [11]), which would allow the liquid in our eye model to heat up more
easily than a human eye. This indicates that for real eye applications, a higher
temperature difference is likely to be preferred. The 3°C thermal load being well-
below the safety threshold offers more flexibility for applications on human eyes.

To get the temperature profile of our heat source, a thermocouple was attached to the
top of the outer thermal pad. The heat source was submerged, and the power source
was turned on. The temperature was recorded every 10 seconds for 2 minutes. The
power source was then turned off, and the recording process was repeated. The
profile for the temperature of the heat source over time is shown in Figure 3.4.
When turned on, the heater reaches 80% of its final temperature in approximately
30 seconds. The heater cools approximately 70% in 30 seconds. The constant 2.3V
power source ensures there are minimal temperature fluctuations once the maximum
temperature is achieved.

3.3 Volumetric Three-Component Imaging Technique
For three-dimensional flow visualization and measurement, volumetric
Tomographic Aperture-encoded Particle Tracking Velocimetry (TAPTV)
experiments are performed.

TAPTV is a three-dimensional particle tracking technique designed for
high-resolution flow measurements. It integrates the principles of tomographic
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Figure 3.5: Diagram of the volumetric flow visualization and measurement
experimental setup, with three cameras, heat source, two convex lenses, tank, and
laser.

imaging, aperture encoding, and particle tracking velocimetry to reconstruct the
full three-dimensional motion of particles suspended in a fluid. Unlike
conventional PIV, which cross-correlates between particle patterns within
interrogation windows, or standard PTV, which suffers from occlusions at high
seeding densities, TAPTV utilizes multiple camera views and optical encoding to
extract depth information. Once a particle is identified and matched across
multiple cameras, it is tracked across successive frames.

The three-dimensional experimental setup described here was custom-made.
Images taken were adapted for use with the commercially available software,
"Insight V3V 4G Software for Volumetric 3-Component Velocimetry Flow
Measurement Systems."

Experimental Setup
The experimental setup captures synchronized images of illuminated tracer particles
from different angles, allowing for the reconstruction of a volumetric measurement
domain. The three-component experimental setup, shown in Figures 3.5 and 3.6,
consisted of a laser, heat source, eye model, three cameras, two cylindrical lenses,
and a 15x15x20cm tank filled with 55% NaI solution. The heat source was placed
at the center of the tank, with the eye model on top of the thermal pad. A 1W 445nm
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Figure 3.6: Photograph of the actual volumetric flow visualization and measurement
experimental setup, with three cameras, heat source, two convex lenses, tank, and
laser.

blue CW laser (model: SKY 1912067902) was used for illumination. The laser is
connected to a power source set to 4.9V. This ensures the brightness of the laser is
consistent over the course of the experiment and between experimental runs. The
first cylindrical lens was used to spread the laser beam vertically into a thin sheet,
and the second cylindrical lens expands the laser sheet into a block of laser light that
illuminates the entire eye model, allowing the cameras to capture the tracer particles
throughout the volumetric flow field.

Three compact cameras are set up in front of the tank; one directly in front of
the eye model and two angled 20° on either side of the middle camera. The
cameras (1440x1080 pixel resolution, camera model: Flir BFS-U3-16S2M-CS)
were soldered together, and the Spinnaker SDK software was used to trigger all
three cameras simultaneously. Example experiment images are shown in Figure
3.7. During each visualization session, a total of 60,000 images were taken by each
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Figure 3.7: Example photographs from a three-component volumetric PTV
experiment. Images from left to right are taken by the left, center, and right cameras,
respectively. Photographs here are enhanced using ImageJ.

camera, for a total of 180,000 images. Each experiment was 10 minutes long, and
the camera frame rate was set to 100 FPS.

Calibration Setup
The calibration process in TAPTV serves as a crucial reference for establishing an
accurate mapping between the 2D camera images and the real-world 3D coordinate
system.

The calibration setup is shown in Figure 3.8. The calibration target, shown in Figure
3.9, features grid points spaced 2mm apart, each with a diameter of 0.3mm. Three
missing grid points serve as a fiducial mark. The calibration target was printed
on soda lime glass and purchased from HTA Photomask. A custom 3D-printed
part attached the calibration target to a traverse (model: Zaber X-LSM200A-E03, a
motorized linear stage with an integrated encoder, controller, and 60µm accuracy).
The calibration target was lowered into the tank filled with 55% NaI solution and
positioned towards the back of the tank. To illuminate the grid pattern on the
calibration target, a light tracing pad (model: LitEnergy A4 LED Copy Board Light
Tracing Box) was placed behind the tank. The traverse was marched forward 2mm
at a time, with the three cameras capturing the image of the calibration target at each
step, until the traverse passed through the entirety of the measurement volume.



34

Figure 3.8: Photograph of the actual calibration setup, with three cameras, tank,
traverse, calibration target, and backlight.

Figure 3.9: Calibration target with center of fiducial mark circled in red.
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Analyzing the Calibration Images
A custom MATLAB script renamed images from the calibration setup to match
the V3V software’s required naming convention. The renamed images were then
imported into the V3V software and assigned "Tiff tags" using the Image Tools tab.

Once the calibration images were loaded and tagged, they underwent pre-processing
to aid in grid point and fiducial mark identification. The "Tiff tags" and settings for
pre-processing can be found in Appendix: Experimental Setup.

After pre-processing, calibration processing begins with particle identification to
detect and analyze fiducial markers. The intensity threshold is set to distinguish
calibration particle images from background noise. Pixels with intensity values
above this threshold are grouped into support sets, which are contiguous regions of
pixels likely to belong to the same particle. Each support set is expected to contain
only one calibration particle image. Local mean subtraction is applied to remove
non-uniform illumination effects and enhance contrast for improved detection. Once
the support sets are identified, the algorithm determines the size and location of the
calibration points using gaussian intensity profile fitting.

Using these detected markers, a calibration mapping function is computed for each
camera, correcting for lens distortions, misalignments, and perspective errors. A
mapping function relates three-dimensional (world) coordinates to two-dimensional
(image) coordinates. We found the calibration process achieved the best results
when the mapping function was set to automatic. For an automatic selection of
mapping function polynomial order, Insight V3V 4G software will compute second,
third, and fourth order polynomials and choose that which resulted in the lowest
error. The full processing settings that we used for the calibration are in Appendix:
Experimental Setup.

To ensure the accuracy of the calibration prior to conducting three-component
velocity measurement experiments, we verified the calibration results. We examined
the calibration plots for obvious errors; for example, the nominal magnification
should smoothly increase as the calibration target advances toward the cameras.
Additionally, the grid points identified at each z-position were cross-verified by
inspecting corresponding raw images.

Over the course of running the three-component experiments, a traverse
malfunctioned. The issue was not immediately apparent, as the physical calibration
process appeared to be successful, and the calibration plots did not reveal any
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obvious anomalies. To further validate the calibration, we performed both
pre-processing and processing steps using the set of calibration images. These
same images were then imported as experiment image sets to confirm that the
software was correctly mapping the grid points within the measurement volume.
Through this approach, we discovered that the traverse was not moving exactly
2mm per step as programmed, but instead deviated slightly above or below the
target displacement. This discrepancy introduced significant errors in the
experiment image processing.

Once the calibration images were processed and verified, the experiment images
were analyzed.

Analyzing the Experiment Images
The experiment images were copied, to allow for A/B image pairing. Like the
calibration images, a custom MATLAB script renamed the experiment images
according to the V3V software’s naming convention. The renamed experiment
images were then loaded simultaneously into the software using the Image Tools
tab, and "Tiff tags" were assigned to the images.

After the images were loaded and tagged, a mask was carefully drawn around
the edge of the eye model for all three camera images. Pre-processing followed,
to remove noise and improve the accuracy of particle detection and tracking. A
minimum intensity image was generated and subtracted from each raw image to
improve the signal-to-noise ratio. A gaussian image filter was used to improve
particle detection. The "Tiff tags" and full pre-processing settings are shown in
order in Appendix: Experimental Setup.

The V3V software has three core processors for the experiment images: particle
identification, particle matching, and particle tracking. Particle identification is the
first step in the processing pipeline and is responsible for identifying (i.e., locates,
sizes, and determines intensity of) particle images.

After particle identification, the particle matching processor takes the lists of two-
dimensional particle images. First, it attempts to match each particle image by
using each camera’s calibration, drawing epipolar lines in each camera, and locating
particle images that are within a user-set tolerance of pixels of each line. If a match
is successful, it reconstructs the particle with three-dimensional coordinates.

Once the particles are reconstructed in three-dimensional space, the particle tracking
processor tracks their motion across successive frames. The tracking algorithm that
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yielded the best results for our experiment images was the relaxation method [12].
Additionally, outlier detection filters, like the Universal Median Filter and Global
Range Filter, were used to remove invalid vectors.

Since the tracer particles were randomly distributed throughout the eye model,
particle vectors were also randomly distributed. Interpolation was required to map
velocity data onto a Cartesian grid. This process used gaussian weighting, where
vectors closer to the center of a grid node contribute more significantly to the
interpolation than those farther away. The weighting is determined by a gaussian
kernel. Furthermore, the vector interpolation processor smooths the resulting
vector fields by incorporating contributions from neighboring vectors. The custom
settings for processing our three-component experiments can be found in
Appendix: Experimental Setup.

The grid velocity fields for all frames were exported from the software. A final
post-processing step was then applied, consisting of ensemble averaging and further
outlier correction. The grid velocity data was averaged over 100-frame intervals,
yielding one time-averaged grid velocity field per second, resulting in a total of 600
velocity fields per 10-minute experiment. Outlier correction was performed using
a moving median filter, wherein outliers are identified based on deviations from
the local median computed within a sliding spatial window. Outliers were replaced
using linear interpolation, which estimates missing or extreme values based on
neighboring data points.

The number of particles in the eye model that were successfully tracked between
frames varied but was typically in the range of 1500-2500 particles. This is
equivalent to a spatial density of approximately 0.2 vectors per cubic millimeter.
These vectors were then interpolated onto a volumetric grid with 1mm spacing for
a total of about 16000 gridded vectors.

3.4 Planar Two-Component Imaging Technique
Experimental Setup
For planar two-component experiments, the volumetric three-component
experimental setup was adjusted. The planar experimental setup, shown in Figure
3.10, consisted of a camera, cylindrical lens, laser, heat source, eye model, and
tank filled with 55% NaI solution. The single cylindrical lens was used to spread
the laser beam vertically into a thin sheet. The sheet of light was carefully aligned
through the center of the eye model, allowing for a camera to capture the planar
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Figure 3.10: Two-dimensional flow measurement and visualization experimental
setup, including eye model, heat source, tank, camera, lens, and laser.

flow profile. The flow images were captured by the center camera in the volumetric
experimental setup. The camera was controlled using the free Spinnaker SDK
software. During each visualization session, a total of 6,000 images were taken.
Each experiment was 10 minutes long, and the camera frame rate was set to 10
FPS.

Obtaining the Velocity Field
For quantitative measurements, flow images were cross-correlated using PIVlab
[13]. The images were imported into PIVlab, and the "region of interest" was
defined as a square encompassing the eye model. A mask was then carefully drawn
along the edge of the eye model, so that the software analyzed only the area within the
eye model (Figure 3.11). Images were analyzed using the direct Fourier transform
correlation with multiple passes and deforming windows. With this algorithm, the
first pass uses larger interrogation areas to ensure reliable displacement calculations
with a high signal-to-noise ratio. However, since larger interrogation areas result
in low vector resolution, limiting the number of velocity vectors per frame, the
interrogation window in the second pass is reduced, in order to improve resolution
[14]. The PIVlab settings used in this thesis are available in Appendix: Experimental
Setup.

After the vectors are calculated, a calibration is completed to convert the units from
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(a) (b)

Figure 3.11: Example image from a planar flow experiment. (a) Raw photograph.
(b) Same image processed in PIVlab. The white square indicates the region of
interest where the velocity field is analyzed. The red mask excludes areas outside
the eye model from analysis. Orange vectors represent interpolated values; green
vectors represent valid measurements.

pixels/seconds to meters/second. The reference length, the diameter of the eye
model, is drawn on the flow image and set to 25mm. A standard deviation filter
threshold is set to 8 to remove outliers after processing. The spatial density for the
PIVlab data is approximately 3 grid points per millimeter.

3.5 Particle Pathline Analysis
Particle pathlines track the trajectory of individual fluid particles over time. Particle
pathlines provided valuable insight into how a heating condition may affect an
injection reaching the target area.

Using the planar or volumetric velocity field data, the Lagrangian path of a fluid
element can be tracked to generate a pathline visualization in MATLAB. Forward
Euler integration is used. The process begins by defining the initial positions of
selected particles and plotting them. Then, at each time step, the corresponding
velocity field data is referenced to calculate and plot the subsequent positions.
This procedure is repeated over a defined time period, generating the pathline
corresponding to each particle’s initial position. Table 3.1 outlines the procedure
for pathline progression.
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x progression y progression point coordinate
𝑥0 = 𝑥0 𝑦0 = 𝑦0 (𝑥0, 𝑦0)

𝑥1 = 𝑥0 + 𝑢(𝑥0, 𝑡0) · 𝑑𝑡 𝑦1 = 𝑦0 + 𝑣(𝑦0, 𝑡0) · 𝑑𝑡 (𝑥1, 𝑦1)
𝑥2 = 𝑥1 + 𝑢(𝑥1, 𝑡1) · 𝑑𝑡 𝑦2 = 𝑦1 + 𝑣(𝑦1, 𝑡1) · 𝑑𝑡 (𝑥2, 𝑦2)

Table 3.1: Progression of particle positions using two-component velocity data.

Qualitative Two-Dimensional Pathlines
For qualitative flow mapping, planar experiment images were loaded into the open-
source, Java-based image processing software, ImageJ [15]. The plugin "Grouped
ZProjector" was used to overlay images, with the projection method set to maximum
intensity. The flow images were segmented into groups of 10 consecutive frames,
corresponding to a 1-second time interval. Z-projection allows for a visualization of
short flow pathlines, which is especially helpful in video format to observe changes
over time. Key characteristics of the flow field can be seen, such as vortices and
point sources.
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C h a p t e r 4

THERMAL PAD SIZE VARIATION

4.1 Introduction
In this chapter, we investigate how variations in thermal pad size influence the
resulting flow field. The base thermal pad (3.0mm thickness) is cut to size and
applied directly to the Peltier heater. On top of this thermal pad, a thin black
graphite thermal pad (0.07mm thickness) is applied. The base thermal pads were
chosen to be 6x6mm and 12x12mm in size. The 6x6mm thermal pad acts as the
smallest, physically-realistic point source for a heated eye mask, while the 12x12mm
thermal pad encapsulates the entire bottom area of the eye model, as illustrated in
Figure 4.1. We performed planar two-component and volumetric three-component
flow visualization and measurement experiments, as described in the Experimental
Setups and Methods chapter, for each thermal pad size.

The experiment images and data were used to analyze the evolution of the flow field.
Additionally, particle pathlines derived from measured two- and three-component
velocity fields served to evaluate the effectiveness of each thermal pad in facilitating
targeted particle delivery. Finally, a dimensional analysis was conducted to provide
a generalized characterization of the flow field.
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Figure 4.1: Diagram of thermal pad sizes relative to the eye model.

4.2 Unsteady Flow Analysis
Planar Two-Component Experiments
As an initial assessment of the effects of thermal pad size variation on the flow field,
we examined the flow fields qualitatively. Short pathlines were created by overlaying
the planar experiment images taken at the center of the eye model, as described in
the subsection "Qualitative Two-Dimensional Pathlines" in the Experimental Setups
and Methods chapter. For each pathline image in this chapter, the accompanying
velocity plot is available in Appendix: Thermal Pad Size Variation.

For both thermal pads, just after the heater is turned on, the fluid through the center
moves upward slowly, while the fluid on the left and right sides move downward
toward the heat source. This creates two vortices in the upper region of the eye
model, which can be faintly seen in the first row of images in Figure 4.2. After 15
seconds, two vortices emerge at the bottom of the eye model, by the heater, seen in
the second row of images in Figure 4.2. The vortices by the heater grow until they
reach the upper vortices. After 20 seconds, four vortices can be seen in the 6x6mm
thermal pad pathline image (third row, right image in Figure 4.2). After 40 seconds
of heating, the lower counter-rotating vortices have become dominant and cover the
entire center plane of the model (fourth row of images in Figure 4.2). The flow has
switched direction and moves primarily downward through the center and upward
on the left and right sides.
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Figure 4.2: Flow pathline images created from 12×12mm (left) and 6×6mm (right)
thermal pad experiment images. Rows 1–4 correspond to times of 10s, 15s, 20s,
and 40s, respectively.
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Volumetric Three-Component Experiments
For a comprehensive picture of the startup stage of the flow field, the volumetric
three-component experiments were analyzed. To capture the three-dimensional
dynamics in a two-dimensional image, two-dimensional planes were color-coded
for velocity magnitude and plotted with the streamlines from the instantaneous three-
dimensional velocity field (Figures 4.3 and 4.4). The z-plane located at the center
of the eye model (𝑧 = 16.5) is color coded for 𝑣, the vertical velocity component.
The two y-planes (𝑦 = 3.5, 𝑦 = −9.5) are color coded for 𝑤, the depth-wise velocity
component. The heater is located at approximately 𝑦 = −15, with gravity pointing
in the negative y-direction, as shown in Figure 4.3 (a).

For both experiments, shortly after the heater is turned on (1s-10s), the 𝑣 velocity
through the center is positive as the fluid slowly rises while the𝑤 velocity component
remains weak (Figure 4.3 (a) and (b) and Figure 4.4 (a) and (b)). As the system
progresses into the intermediate startup stage (15-20s), the velocity field becomes
more structured and intense. After 15 seconds for the 6x6mm thermal pad, and 20
seconds for the 12x12mm thermal pad, the vertical flow through the center switches
direction (Figures 4.3 (c) and 4.4 (d)). Two counter-rotating vortices are visible,
moving upward along the edges of the eye model and downward through the center.
This mirrors observations from the two-dimensional experiments. The streamlines
indicate well-defined circulatory motion, while the depth-wise velocity component
begins to show more pronounced variations, suggesting enhanced lateral mixing.
By the end of the startup phase (40-60s), the velocity fields are fully developed,
revealing more complex flow interactions (Figure 4.3 (e) and (f) and Figure 4.4 (e)
and (f)). The streamlines and depth-wise velocity components indicate intensified
lateral motion, and stronger velocity gradients emerge, particularly in the 12x12mm
thermal pad experimental data.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Selected planes from the 6x6mm thermal pad three-component
volumetric velocity field show the complexity and three-dimensionality of the flow
after heating for 1s, 10s, 15s, 20s, 40s, and 60s, corresponding to (a)-(f), respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Selected planes from the 12x12mm thermal pad three-component
volumetric velocity field show the complexity and three-dimensionality of the flow
after heating for 1s, 10s, 15s, 20s, 40s, and 60s, corresponding to (a)-(f), respectively.
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4.3 Injection Accuracy: Particle Pathline Assessment
After examining the topology and development of the flow fields in two and three
dimensions, we evaluated the suitability of each thermal pad size for enhancing
particle delivery to the target region. To assess how the thermal pad sizes affect
particle trajectories, particle pathlines were examined.

Three-Dimensional Analysis
For the three-dimensional pathline analysis, we "injected" simulated particles into
the velocity field obtained from volumetric three-component PTV experiments.
Using the velocity field at each time point, we tracked the simulated particles’
movement over time.

Ophthalmologists inject relatively close to the front of the eye, 3.5-4mm behind the
limbus, angling to the center, and targeting a depth of 7mm. This ensures injection
into the vitreous chamber while minimizing the risk of retinal injury [1], [2]. A
plane towards the bottom of the eye model, 𝑦 = −10, was chosen accordingly to
represent a typical injection plane (Figure 4.5 (b)). The initial positions of the
simulated particles are shown in Figure 4.5 (a) and span from 𝑥 = [−14 : 7] and
𝑧 = [10 : 20]. Sixty-six particles were tracked over the first 300 seconds of heating.
A particle was classified as having reached the target area, near the macula, if its
position exceeded 𝑦 = 1.5.

(a) (b)

Figure 4.5: Initial particle positions. (a) Initial positions of the tracked particles in
the three-component velocity data, with the left side in purple and the right side in
yellow. (b) Diagram of the injection sites relative to the eye.
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For the 6x6mm thermal pad experiment, the dominant flow structure is one large
vortex (Figure 4.6 (a)), which matches the volumetric velocity plots in the later
startup stage (Figure 4.3 (e) and (f)). Most of the particles on the right half of
the injection plane reached the target area by 300 seconds of heating (Figure 4.6
(b)). However, examining the pathlines over shorter time periods reveals more
complicated flow structures. The pathlines created from 0-30 seconds, illustrated
in Figure 4.7 (a), show the particles on the left (𝑥 = −14) and right (𝑥 = 7) sides of
the injection plane moving in the positive y-direction at the edges of the eye model.
The particles in the center (𝑥 = −3.5) are pushed forward toward 𝑧 = 0 at the front
of the eye model. The pathlines from 0-60 seconds show this trend continuing.
However, the particles pushed forward in the center begin to split left (negative
x-direction) and right (positive x-direction) (Figure 4.7 (b)). The pathlines from
0-120 seconds, displayed in Figure 4.7 (c), show the particles on the right reaching
the top of the vortex, then moving back down in the negative y-direction through
the center. The particles on the left are pushed forward toward 𝑧 = 0 and downward
in the negative y-direction, having never reached the target area. This explains how
the initial particles on the left never reach the target area; the center region is split;
and all the particles on the right reach the target area.

For the 12x12mm thermal pad experiment, the dominant flow structure, shown in
Figure 4.8 (a), is two counter-rotating vortices. Initial particles on both the left
(𝑥 = −14) and right (𝑥 = 7) sides of the injection plane reached the target area after
300 seconds (Figure 4.8 (b)). The particle pathlines from 0-30s, seen in Figure 4.9
(a), show the particles on the left and right sides moving upward in the positive
y-direction. The particles through the center (𝑥 = −3.5) also move upward but only
slightly, before being pushed forward toward 𝑧 = 0. The particle pathlines from
0-60s in Figure 4.9 (b) show, like the 6x6mm thermal pad experiment, the center
particles splitting left (negative x-direction) and right (positive x-direction). The
particles initially on the left and right sides continue to move upward, reaching the
top of their respective vortices, before moving toward the center in the positive and
negative x-directions, respectively. The particle pathlines from 0-120s show fully
two formed vortices (Figure 4.9 (c)). By 180 seconds, several particles have made
multiple rotations around the left vortex, and two particles initially on the right side
have become entrained in the left vortex, indicating enhanced mixing (Figure 4.9
(d)).



51

(a) (b)

Figure 4.6: Using three-component data from the volumetric 6x6mm thermal
pad experiment, three-dimensional pathlines follow simulated particles from 0-300
seconds. (a) Three-dimensional view of the particle pathlines. (b) Two-dimensional
(x-y plane) view of the particle pathlines. Particles that reached the target area are
circled in red.

(a) (b)

(c) (d)

Figure 4.7: Using three-component data from the volumetric 6x6mm thermal pad
experiment, three-dimensional pathlines follow simulated particles from (a) 0-30s,
(b) 0-60s, (c) 0-120s, and (d) 0-180s.
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(a) (b)

Figure 4.8: Using three-component data from the volumetric 12x12mm thermal
pad experiment, three-dimensional pathlines follow simulated particles from 0-300
seconds. (a) Three-dimensional view of the particle pathlines. (b) Two-dimensional
(x-y plane) view of the particle pathlines. Particles that reached the target area are
circled in red.

(a) (b)

(c) (d)

Figure 4.9: Using three-component data from the volumetric 12x12mm thermal pad
experiment, three-dimensional pathlines follow simulated particles from (a) 0-30s,
(b) 0-60s, (c) 0-120s, and (d) 0-180s.
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Two-Dimensional Analysis
For a more statistical analysis, we "injected" simulated particles into the velocity
field obtained from the planar two-component PIV experiments. Using the velocity
field at each time point, the simulated particle movement was tracked over time.

Five areas were identified for the simulated injections. The anti-VEGF injection is
0.05-0.07 ml, while the vitreous is 4.5 ml [3]. Accordingly, each simulated injection
site corresponded to about 2% of the total eye area. Like the three-component
pathline assessment, the initial positions for the simulated injection sites are located
towards the bottom of the eye model. The target area, the macula, is located at the
top of the eye model. The simulated injection sites and target area are shown in
Figure 4.10.

In order to calculate statistics from the injection sites, each location is seeded
with approximately 100 simulated particles. The percentage of particles reaching
the target area from each injection site is summarized in Tables 4.1 and 4.2. The
column, titled "Percentage of Particles to Reach Target Area," denotes the percentage
of particles that reached the target area by the end of the heating experiment, at 540
seconds.
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Injection Sites and Target Area
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Figure 4.10: Diagram of the target area and injection sites. In this bottom heating
configuration, the front of the eye is along 𝑦 = 0, which is also the location of the
heater. The top of the eye model, 𝑦 = [70 : 85] represents the target area, where
the macula is located. Injection sites are located towards the front of the eye, along
𝑦 = 18. The x and y-axis dimensions correspond to the grid used in PIVlab.

The two-component particle pathline assessment reveals how thermal pad size affects
delivery to the target region. For both the 6x6mm and 12x12mm thermal pads,
success delivery to the target region was highly dependent on the initial position of
the injection. The injection site at the center of the eye model performed poorly for

Area Percentage of Particles
to Reach Target Area

Left 65
Center Left 4

Center 0
Center Right 35

Right 82.8

Table 4.1: Results from the pathline analysis for the planar two-component 6x6mm
thermal pad experiment.
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Area Percentage of Particles
to Reach Target Area

Left 52.8
Center Left 74.4

Center 10.7
Center Right 9.92

Right 21

Table 4.2: Results from the pathline analysis for the planar two-component
12x12mm thermal pad experiment.

both thermal pads. This is likely due to the downward flow through the center and
upward flow at the outer edges of the eye model, as discussed earlier and shown in
Figures 4.3 (c) and 4.4 (d). For the 12x12mm thermal pad, the average percentage
of particles reaching the target area across all injection sites is 33.8%, whereas
for the smaller 6x6mm thermal pad, the average is slightly higher at 37.4%. The
results from the 6x6mm thermal pad, Table 4.1, show a more uneven distribution
in percentages, with significant concentrations on the left (65%) and right (82.8%)
most injection sites and minimal or no particles reaching in the center (0%) and
center-left (4%) regions. This implies that the smaller thermal pad produced a more
targeted flow pattern. In contrast, the results from the 12x12mm thermal pad, Table
4.2, show a broader spread of particle delivery across all injection sites, albeit with
a notable concentration reaching the target area from the center-left region (74.4%).
This suggests that the larger heating surface produced a well-distributed flow pattern
throughout the eye model, and ultimately, a more balanced dispersion of particles
across the injection sites.

If one could ensure exact injection placement, the 6x6mm thermal pad could be
considered more desirable for promoting drug delivery to the macula since a high
percentage of particles from the right and left most injection sites reached the
target area. However, precise control over the injection site is challenging due to
variations between individual patients and the differing technique employed by each
ophthalmologist. For this reason, we concluded that the 12x12mm thermal pad,
which showed the greatest distribution across all injection sites, may be better suited
for promoting particle movement to the target area.

4.4 Dimensional Analysis
To characterize the flow field more broadly, a dimensional analysis was conducted.
Dimensional analysis simplifies complex physical problems by reducing the
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number of independent variables into dimensionless groups that capture the
system’s essential physics, enabling results to be generalized across scales and
conditions. For our experiment, there are nine key physical variables:

𝑓 (𝐿,𝑈, 𝜌, 𝜇, 𝛽, 𝑔,Δ𝑇, 𝑘, 𝐶𝑝) = 0

where:

• 𝐿 = Characteristic length (m) [𝐿]

• 𝑈 = Characteristic velocity (m/s) [𝐿] [𝑇]−1

• 𝜌 = Density (kg/m3) [𝑀] [𝐿]−3

• 𝜇 = Dynamic viscosity (Pa·s or kg/(m·s)) [𝑀] [𝐿]−1[𝑇]−1

• 𝛽 = Thermal expansion coefficient (1/K) [Θ]−1

• 𝑔 = Gravitational acceleration (m/s2) [𝐿] [𝑇]−2

• Δ𝑇 = Temperature difference (K) [Θ]

• 𝑘 = Thermal conductivity (W/(m·K)) [𝑀] [𝐿] [𝑇]−3[Θ]−1

• 𝐶𝑝 = Specific heat capacity (J/(kg·K)) [𝐿]2 [𝑇]−2[Θ]−1.

There are four fundamental dimensions: length, time, temperature difference, and
mass noted by [𝐿],[𝑇],[Θ], and [𝑀], respectively. The Buckingham Pi theorem
states that a physically meaningful equation involving 𝑛 physical variables and 𝑘

fundamental dimensions can be reduced to a set of 𝑛 − 𝑘 dimensionless groups. In
our case, 𝑛 = 9 and 𝑘 = 4, therefore, five dimensionless groups are predicted. They
are as follows:

The Prandtl number describes the ratio of momentum diffusivity (viscous effects) to
thermal diffusivity (heat conduction) in a fluid. A low Prandtl number indicates that
thermal diffusion is faster than momentum diffusion, while a higher Prandtl number
denotes momentum diffusion dominates. The Prandtl number (Pr) is defined as:

Π1 : Pr =
𝜇

𝛼𝜌
=
𝐶𝑝𝜇

𝑘
. (4.1)
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The Prandtl number introduces a new variable, thermal diffusivity (𝛼). Thermal
diffusivity is a material property that describes how quickly heat spreads through a
material. The following relation is used as a substitution for 𝛼:

𝛼 =
𝑘

𝜌𝑐𝑝
. (4.2)

The Péclet number describes the relative importance of advection (transport by
fluid motion) versus diffusion (spread by molecular conduction) in heat and mass
transport. A high Péclet number indicates that convection dominates, and a low
Péclet number denotes that diffusion is the dominate transport. The Péclet number
(Pe) is defined as:

Π2 : Pe =
𝑈𝐿

𝛼
=

𝐿𝜌𝐶𝑝𝑈

𝑘
. (4.3)

The Rayleigh number is often used in buoyancy-driven flows. The Rayleigh number
characterizes the flow regime; above a certain value signifies turbulent flow, below
that value denotes laminar flow. A very low Rayleigh number signifies that there
is no fluid motion, and heat transfer is by conduction rather than convection. The
Rayleigh number (Ra) is defined as:

Π3 : Ra =
𝑔 𝛽Δ𝑇 𝐿3 𝜌2 𝑐𝑝

𝜇 𝑘
. (4.4)

The Reynolds number describes the flow regime. A low Reynolds number indicates
laminar flow while a high Reynolds number denotes turbulent flow. The Reynolds
number represents the ratio of inertial forces to viscous forces. The Reynolds
number (Re) is defined as:

Π4 : 𝑅𝑒 =
𝜌𝑈𝐿

𝜇
. (4.5)

The Nusselt number is the ratio of convective heat transfer to conductive heat transfer
at a boundary in a fluid. It characterizes the efficiency of heat transfer. A Nusselt
number of one indicates heat transfers by pure conduction. A Nusselt number
greater than one signifies that conductive heat transfer is aided by convection, and a
high Nusselt number corresponds to active convection. The Nusselt number (Nu) is
defined as:
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Π5 : 𝑁𝑢 =
ℎ𝐿

𝑘
. (4.6)

The convective heat transfer coefficient (ℎ) is not a fixed physical property of a
material. It depends on the conditions of the experimental setup, such as fluid
velocity and surface geometry. Due to this dependence on external factors, ℎ is
often solved for empirically. Previous studies have developed correlations for the
Nusselt number for specific conditions [4]–[7]. For our experiment, we consider the
correlation developed by [8]. Their experimental study was on the convective heat
transfer in liquids confined between two horizontal plates and heated from below.
The tested fluids, water, mercury, and silicone oils of varying viscosities, covered
Rayleigh numbers from 1.51 × 105 to 6.76 × 108 and Prandtl numbers from 0.02 to
8750. The results indicated that all tested liquids follow a common correlation based
on Prandtl and Rayleigh number. We use this correlation to estimate the Nusselt
number of our system:

Π5 : 𝑁𝑢 = 0.069 · (𝑅𝑎)1/3 · (𝑃𝑟)0.074. (4.7)

In calculating the dimensionless numbers, it is important to note that some physical
properties of 55% NaI solution are not readily available in the literature. The
viscosity, thermal conductivity, and density are interpolated values from [9]. The
specific heat value is extrapolated from lower concentrations of NaI solutions, such
as 44% and 46% NaI, from [9].

In the absence of published values, the coefficient of volumetric thermal expansion
is estimated using the density of 55% NaI solution at different temperatures. The
coefficient of volumetric thermal expansion (𝛽) describes how the volume of a
substance changes with temperature at a constant pressure:

𝛽 =
1
𝑉

(
𝜕𝑉

𝜕𝑇

)
𝑃

. (4.8)

Starting with the relation between density (𝜌) and volume (𝑉):

𝑉 =
1
𝜌
. (4.9)

Taking the derivative with respect to temperature:
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𝜕𝑉

𝜕𝑇
= − 1

𝜌2
𝜕𝜌

𝜕𝑇
. (4.10)

Substituting Equation 4.10 into Equation 4.8 to get the relation between density and
the coefficient of thermal expansion:

𝛽 = −1
𝜌

(
𝜕𝜌

𝜕𝑇

)
𝑃

. (4.11)

Using discrete values for temperature and density:

𝛽 ≈ − 1
𝜌1

· 𝜌2 − 𝜌1

𝑇2 − 𝑇1
. (4.12)

Finally, 𝛽 can be determined by substituting the density values of 55% NaI solution
at two temperatures. The values for the physical properties of 55% NaI solution
can be found in Table 4.3. For the characteristic velocity, 𝑈, we calculated the
mean of the vertical velocity component, 𝑣, over the course of the 12x12mm planar
two-component experiment. For the characteristic length scale, 𝐿, when calculating
the Rayleigh and Péclet numbers, we use the radius, as is often used in the literature
[10], [11]. This choice reflects the distance over which temperature-induced density
variations drive convective currents within the sphere as well as the scale over which
heat is transported by fluid motion relative to the rate of thermal diffusion. For the
Reynolds number, the eye model’s diameter is used. The diameter accounts for the
largest flow structures that develop as fluid circulates within the entire volume of
the sphere. The physical variables that are characteristic of the experimental setup
can be found in Table 4.4.

𝐶𝑝 (KJ/kg·K) 2135

𝜇 (mPa·s) 2.155

𝑘 (W/m·K) 0.464

𝜌 (kg/m³) 1654

𝛽 (10−4/K) 4.67

Table 4.3: Physical properties for 55% NaI solution at 20°C.
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𝐿 (10−3 m) [Rayleigh, Péclet] 12.5
𝐿 (10−3 m) [Reynolds] 25
𝑈 (10−4 m/s) 3.85
𝜃 (K) 3
𝑔 (m/s2) 9.81

Table 4.4: Physical variables of the experiment.

Pr Pe Ra Re Nu
9.9 36.6 1.57 ×105 7.4 4.4

Table 4.5: Calculated dimensionless numbers for our system.

The calculated dimensionless numbers are shown in Table 4.5. The Rayleigh number
of our system is 1.57×105. This value exceeds the critical threshold of approximately
1708 for the classical Rayleigh–Bénard convection, where a layer of viscous fluid
between two smooth horizontal plates is heated at the bottom wall and cooled at
the top [12]. The Rayleigh number of our system indicates the presence of natural
convection. It remains below the range typically associated with turbulent flow
(106), indicating that the system operates within a laminar convection regime [12].

The Prandtl number of our system is 9.9, representing the ratio of momentum
diffusivity to thermal diffusivity. This value, greater than one, implies that the
momentum boundary layer is larger than the thermal boundary layer. For liquids
composed of simple molecules (as opposed to liquid metals or complex molecules
like oils made of long-chain hydrocarbons), the Prandtl number is typically on the
order of 1 to 10 [13].

The Reynolds number was calculated to be 7.4, indicating that the flow is laminar.
In this regime, viscous forces are dominant over inertial forces.

The Péclet number of our system is 36.6, signifying the relative importance of
convective to conductive heat transfer. Values greater than one indicate that
convection plays a stronger role in heat transport within the system.

Finally, the Nusselt number was determined to be 4.4. This dimensionless number
indicates the efficiency of heat transfer through convection relative to pure
conduction. A Nusselt number greater than one confirms that convective heat
transfer is present.

In summary, the calculated dimensionless numbers collectively indicate that the



61

system operates within a laminar natural convection regime. Momentum
diffusivity exceeds thermal diffusivity, resulting in a thicker momentum boundary
layer compared to the thermal boundary layer. The Rayleigh number confirms the
presence of natural convection, where the thermal instabilities induce oscillations,
vortices, and an unsteady flow pattern, without reaching turbulent conditions.
Additionally, the dominance of convective heat transfer over conduction, as
indicated by the Péclet and Nusselt numbers, highlights the efficient thermal
transport. These findings signify that convection significantly enhances heat and
mass transfer while maintaining laminar flow.

4.5 Conclusion
This chapter investigated how variations in thermal pad size influence the flow
field. Planar two-component and volumetric three-component flow measurements
enabled a comprehensive spatial and temporal characterization of the evolving flow
structures.

Pathline-based injection simulations were conducted to evaluate the effectiveness of
each thermal pad size for targeted delivery. Both thermal pads induced fluid mixing,
as evidenced by successful particle transport from the left and right injection sites.
However, the 12x12mm thermal pad enabled particle delivery to the target area from
all injection sites, suggesting it may be better suited for drug delivery applications.
Dimensional analysis provided a broader context for interpreting the flow behavior,
confirming that the system operates within a laminar natural convection regime.
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C h a p t e r 5

[INTENTIONALLY REDACTED FOR PROPRIETARY
REASONS]
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C h a p t e r 6

PHYSICS-INFORMED NEURAL NETWORK: EXTRACTIONS
FROM PLANAR DATA

6.1 Introduction
As described in the previous chapters, volumetric three-component particle
tracking velocimetry is an advanced experimental technique that requires minimal
optical distortion, precise camera calibration and alignment, and high
computational power for image processing and three-dimensional particle
reconstruction and tracking. From our complex experimental setup, we acquired
volumetric three-component flow measurements for different heating
configurations, capturing the unsteady buoyancy-driven flow throughout the eye
model.

In this chapter, we investigated whether a Physics-Informed Neural Network
(PINN), trained on data acquired through simpler planar experimental techniques,
can predict a volumetric flow field. PINNs propose a unique use-case for
environments where data may be limited but can be extrapolated with the aid of
governing equations. We developed a PINN that trains on three spatially-sparse
planes of three-component data, extracted from the volumetric 12x12mm thermal
pad particle tracking velocimetry experimental data. The training planes for our
PINN could alternatively be acquired through stereoscopic particle image
velocimetry (stereo-PIV), a more accessible experimental method that is easier to
set up and less computationally expensive. We test the capabilities of the PINN to
predict and reconstruct additional planes of velocity data, comparing the PINN
output to planes from our volumetric three-component experimental velocity field.
A successful reconstruction using PINNs could break ground in novel, inexpensive
flow visualization and measurement methods.

6.2 PINN Architecture Overview
In line with the original paper conceptualizing PINNs [1], the Deep Neural Network
(DNN) takes the following form as a Multi-Layer Perceptron:

(U, 𝑝, 𝑇) = 𝑓𝑁𝑁 (X, 𝑡;Θ) (6.1)
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where:

• U = 𝑢, 𝑣, 𝑤 (horizontal, vertical, and depth-wise) velocity components

• 𝑝 = Pressure

• 𝑇 = Temperature

• 𝑓𝑁𝑁 = Neural network

• X = 𝑥,𝑦,𝑧 spatial input coordinates

• 𝑡 = Temporal coordinates

• Θ = All trainable parameters.

Figure 6.1 displays a schematic of the PINN architecture. The network used in
this study has 12 layers and 32 nodes. A tanh activation function was selected
for all layers, due to its simplicity and continuous differentiability. Additionally,
the learning rate is updated over specific epochs, beginning with 𝜆0 = 5 · 10−3,
and following a exponential decay schedule. The values for the learning rate 𝜆,
and the epochs at which they are updated, were chosen empirically based on the
progression of the loss over training. Finally, based on contemporary practices, the
Adam optimizer [2] was chosen for the model, and the neural network weights were
initialized with a Xavier Uniform initialization [3].

1

∈1= ∇ ⋅ 𝐔

∈2,3,4=
𝜕𝑼

𝜕𝑡
+ 𝐔 ⋅ ∇ 𝐔 +

1

ρ0
∇P − ν∇2𝐔 + β 𝑇 − 𝑇0 𝒈

Figure 6.1: Schematic diagram depicting the PINN architecture used in this study.
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By courtesy of [4] and [5], some additional implementations have been included
in this PINN architecture. The input parameters X are non-dimensionalized to
(X,U) ∈ [0, 1], which has been shown to improve convergence and diminish
discrepancies across multiple scales. Furthermore, the same authors recommended
the implementation of random Fourier features, using the following encoding before
being passed through the DNN:

𝛾(𝑋) =
[
cos(BX)
sin(BX)

]
(6.2)

where B is a gaussian sampling following the distribution N(0, 𝜎2) and 𝜎 is an
additional hyperparameter 𝜎 ∈ [1, 10]. This implementation improved
representation of larger gradients as well as convergence. The propensity for neural
networks to suffer from spectral bias is well studied, and the inclusion of random
Fourier features significantly mitigates this [6]. The value of 𝜎 is user-defined and
in this study a value of 𝜎 = 2 has been shown to produce optimal results [5].

6.3 PINN Loss Function
The total loss function of our PINN model combines the loss calculated from the
experimental data (L𝑑𝑎𝑡𝑎), boundary conditions (L𝐵𝐶), and governing equations
(L𝑃𝐷𝐸 ), to train the neural network by minimization of the loss landscape during
backpropagation. The loss contributions are defined as:

L𝑑𝑎𝑡𝑎 =

𝑁𝑑𝑎𝑡𝑎∑︁
𝑖=1

|U𝑑𝑎𝑡𝑎 (X𝑖) − U𝑝𝑟𝑒𝑑 (X𝑖) |2 (6.3)

L𝐵𝐶 =

𝑁𝐵𝐶∑︁
𝑖=1

|U𝐵𝐶 (X𝑖) − U𝑝𝑟𝑒𝑑 (X𝑖) |2 (6.4)

L𝑃𝐷𝐸 =

𝑁𝑃𝐷𝐸∑︁
𝑖=1

|L𝑖 (X𝑖) |2 (6.5)

where U𝑑𝑎𝑡𝑎 and U𝑝𝑟𝑒𝑑 are the measured and predicted velocity fields, respectively.
𝑁𝑑𝑎𝑡𝑎, 𝑁𝐵𝐶 , and 𝑁𝑃𝐷𝐸 are the number of experimental data measurements, boundary
conditions, and PDEs, respectively. L𝑑𝑎𝑡𝑎, L𝐵𝐶 , and L𝑃𝐷𝐸 are calculated using the
mean-squared error function. For L𝐵𝐶 , a no-slip condition was prescribed at the
boundaries of the glass eye model to represent the viscous effects at the surface.
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For the governing equations, the unsteady Navier-Stokes equations with
Boussinesq approximation model the flow. The central assumption of the
Boussinesq approximation is that density variations are sufficiently small to be
neglected, except in the buoyancy term of the momentum equation, where they
drive natural convection. The derivation of the Boussinesq approximation and a
discussion of its validity in this study is available in Appendix: Physics-Informed
Neural Network. The governing equations for our system, the incompressible
continuity equation and unsteady momentum equation with Boussinesq
approximation are defined as:

𝜖1 = ∇ · U (6.6)

𝜖2, 𝜖3, 𝜖4 =
𝜕U
𝜕𝑡

+ (U · ∇)U + 1
𝜌0

∇𝑝 − 𝜈∇2U + g𝛽(𝑇 − 𝑇0) (6.7)

where:

• 𝜌0 = Initial density

• 𝑝 = Pressure

• 𝑇 = Temperature

• 𝑇0 = Initial temperature

• 𝜈 = Kinematic viscosity

• 𝛽 = Coefficient of thermal expansion.

Differentiation is performed using PyTorch’s automatic differentiation function [7],
which is capable of efficiently obtaining the necessary partial derivatives for every
parameter at every iteration. 𝜖1, 𝜖2, 𝜖3, and 𝜖4 are the PDE residuals that contribute
to L𝑃𝐷𝐸 , where the momentum equation is calculated in the x, y, and z-directions.

The total loss function of the neural network is defined as:

L = (1 − 𝛼) · (L𝑑𝑎𝑡𝑎 + L𝐵𝐶) + 𝛼 · L𝑃𝐷𝐸 (6.8)

where 𝛼 denotes a weighting factor that monitors the contribution of each loss. In
this study, a value of 𝛼 = 0.1 was used, based on findings in literature as well as
trial and error showing this to produce the most accurate results [5], [8]–[11].
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6.4 Collocation Points and Training
The collocation points where the PDE residuals are evaluated are shown in Figure
6.2 (a), alongside the surface of the reconstructed eye-model, where the boundary
conditions are prescribed (Figure 6.2 (b)). The number of points used for enforcing
the boundary conditions and to a greater extent the governing equations (collocation
points) greatly affect the outcome of the training cycle. A sufficient concentration
of collocation points is required to obtain an accurate approximation of the partial
derivatives through the autograd function. In this investigation, 100,000 collocation
points were utilized, and one-tenth were dedicated to the fulfillment of boundary
conditions. The need to retain the gradients of each variable at each collocation
point greatly impacts the computational requirement (GPU), and delivers a trade-off
between remaining NN parameters, such as the size and depth of the PINN.

(a) (b)

Figure 6.2: Collocation and boundary condition points are shown in (a) and (b),
respectively. Collocation points are where PDE residuals are calculated, and
boundary points are where the no-slip condition is enforced.

The PINN is trained on three planes of three-component PTV data, extracted from
the volumetric 12x12mm thermal pad experimental data. The training planes are
shown in Figure 6.3. The training planes are located at 𝑧 = [10.5, 16.5, 22.5]. The
time duration for the training data spans from 25 to 35 seconds after the heater was
turned on. This was chosen as a particularly unsteady period in the flow field. These
z-planes were selected for their experimental accessibility; velocity measurements
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could be acquired using a stereo-PIV setup with a traverse set to move the eye model
6mm in the depth-wise direction after each run, for a total of three runs.

Figure 6.3: Experimental two-dimensional three-component PTV data used for
training the PINN is located at three distinct planes along the z-axis. The planes are
color-coded according to the magnitude of 𝑣, the vertical velocity component. The
velocity field at 25 seconds after the heater was turned on is shown in this plot.

The total loss function is calculated and recorded while training. Figure 6.4 shows
the loss function plotted over epochs. Given our 𝛼 value, the L𝑑𝑎𝑡𝑎 is weighted
heavily in the total loss function and its large contribution is illustrated in Figure 6.4.
Residual equations 1-4 are calculated from continuity, x-momentum, y-momentum,
and z-momentum equations, respectively. The boundary loss, while important in
establishing the effects of viscous surfaces and boundary layer development, must
be limited in its contribution to the total loss function due to the propensity of the
PINN to optimize towards a trivial solution, where all velocities are zero.
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Figure 6.4: Plot showing the loss function over epochs. Residual equations 1-4
correspond to continuity, x-momentum, y-momentum, and z-momentum.

6.5 Results
Two planes were chosen for testing, as shown in Figure 6.5. The testing planes were
located at 𝑧 = 13.5, positioned between two training planes, and at 𝑦 = −3.5. For
comparison, the experimental data is shown alongside the PINN output in Figures
6.6 and 6.7. The z-plane is color-coded for the magnitude of 𝑣, the vertical velocity
component (Figure 6.6), while the y-plane is color-coded for the magnitude of 𝑤,
the depth-wise velocity component (Figure 6.7).

For the z-plane, the velocity plot from the experimental data reveals two dominant
counter-rotating vortices, with positive vertical velocity concentrated on the left and
right, and negative vertical velocity through the center (Figure 6.6 (a)). The PINN
prediction captures the overall structure and symmetry of the flow field, successfully
reproducing the dual vortex pattern (Figure 6.6 (b)). The PINN output appears more
continuous. In the experimental velocity field, the contour plot showing the velocity
magnitude appears patchy, particularly on the right (𝑥 = [0 : 8], 𝑦 = [0 : 6]),
whereas the PINN output displays a smooth and connected velocity field. Several
outliers appear in the experimental velocity field, especially on the bottom right of
the field of view (𝑥 = [4 : 6], 𝑦 = [−14 : −12]), which are smoothed out in the
PINN output. Overall, the PINN accurately captures the large-scale flow dynamics
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Figure 6.5: Plot showing the training planes in blue and testing planes in orange.

and demonstrates strong agreement with the experimental data.

For comparison to the PINN output, we performed a linear interpolation of the
experimental data, interpolating between the 𝑧 = [10.5, 16.5] planes to get the
interpolated velocity field at 𝑧 = 13.5 (Figure 6.6 (c)). The contour plot for the
interpolated velocity field is patchier than the experimental and PINN plots.
Significant outliers are visible on the right (𝑥 = [7 : 8], 𝑦 = [0 : 3]). Minor outliers
appear on the bottom left (𝑥 = [−17 : −13], 𝑦 = [−14 : −12]). This interpolated
velocity field, with its outliers, highlights the PINN’s ability to both predict and
smooth the velocity field.

For the y-plane, the experimental data (Figure 6.7 (a)) exhibits a distinctive flow
pattern. The plot shows a negative depth-wise velocity component through the
center, indicating that the flow moves from the back of the eye model forward through
the center of this plane. This matches observations from the three-dimensional
particle pathline assessment in the Thermal Pad Size Variation Chapter, where the
particles in the center were pushed forward (Figure 4.9 (a)). The contour plot for
the experimental data is patchy and fragmented. The PINN prediction captures
the overall structure and complexity of the flow field, successfully reproducing the
broader back to front pattern through the center (Figure 6.7 (b)). The contour plot for
the PINN output is smoother than the experimental data, with some errors where the
velocity gradients are especially pronounced, for example 𝑥 = [3 : 7], 𝑧 = [25 : 27].
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(a) (b)

(c)

Figure 6.6: Velocity plots for the 𝑧 = 13.5 plane, showing (a) the experimental data,
(b) the PINN output, and (c) the interpolated velocity field at 25 seconds after the
heater is turned on.

(a) (b)

Figure 6.7: Velocity plots for the 𝑦 = −3.5 plane, showing (a) the experimental data
and (b) the PINN output at 25 seconds after the heater is turned on.
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6.6 Conclusion
In this chapter, we developed a PINN that trains on three separate planes of three-
component velocity data. The training data was chosen for its ability to be acquired
through simpler experimental methods, like stereo-PIV. The loss function for the
model combines the loss from data, boundary conditions, and physical relations,
with the data loss being weighted heavily. The unsteady Navier-Stokes equations
with Boussinesq approximation were used for the system’s governing equations, and
a no-slip condition was enforced at the boundaries of the eye model.

The outputs from the PINN closely matched the experimental data for the x-y plane
at 𝑧 = [13.5]. This result highlights the potential for a PINN to reduce the number of
runs of stereo-PIV experiments needed to capture z-plane velocity profiles. While
the output from the PINN did not match the experimental data as closely for the
𝑦 = −3.5 plane, the results are noteworthy. The y-plane data would be difficult to
measure experimentally, requiring either a second stereo-PIV setup, with cameras
located above the eye model facing downward towards it, or a complete volumetric
three-component experimental setup. The results from the y-plane suggest that a
PINN could potentially be used in place of complex flow visualization techniques,
particularly when the goal is to capture broader flow dynamics. Further PINN
development strategies are discussed in the subsequent chapter.
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C h a p t e r 7

CONCLUSION AND FUTURE WORKS

In this study, we examined buoyancy-driven flow within a spherical geometry, with a
focus on its relevance to intravitreal drug delivery. In the first chapter, we discussed
relevant eye diseases, intravitreal injections, and previous studies on convective
transport for drug delivery in the eye. Chapter 2 focused on the vitreous humor and
the technique we employed to identify a representative vitreous model that matched
both the viscosity in the human vitreous and the refractive index of the eye model.
For our refractive index matching analysis, we imaged a calibration grid through
the eye model submerged in various candidate fluids. By measuring the apparent
displacement of the grid dots, we determined 55% NaI solution to be a well-matched
and representative vitreous model.

The third chapter detailed the experimental setup and software used for
two-component PIV and three-component PTV measurements. Chapter 4 explored
the impact of thermal pad size on the resulting flow field and particle trajectories.
While both thermal pad sizes induced convective flow, through a particle pathline
assessment, we determined that the larger thermal pad (12x12mm) may be better
suited for drug delivery, due to its broader particle distribution to the target area.

In the sixth chapter, we investigated, using our experimental data, whether a PINN,
trained on data acquired through planar experimental techniques, can predict a
volumetric flow field. Outputs from the PINN, trained on three planes of three-
component velocity data, matched the broader flow dynamics of the experimental
data at additional testing planes.

Looking forward, there are several avenues to expand upon the work presented in
this thesis.

In regards to the PINN, further development and testing is possible. One notable
feature of PINNs is their ability to denoise experimental data [1], [2], a capability
also observed in the smooth PINN outputs of Chapter 6. A direction for future
work is using the PINN as a replacement for the outlier-filling step described in
the Experimental Setups and Methods chapter. Additionally, further fine-tuning
of the neural network hyperparameters may produce more accurate velocity field
predictions. Lastly, we are currently testing the PINN’s ability to handle unsteady
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flows. In Chapter 6, we demonstrated the PINN’s ability to accurately predict the
velocity field when trained on sparse spatial data. Ongoing work involves training
the PINN on temporally sparse data, such as velocity fields at 20 seconds and 30
seconds, and evaluating its ability to predict flow fields at intermediate time points
(e.g., at 25 seconds). If successful, this could potentially reduce the computational
load of the experiments. For example, if the PINN accurately predicts the velocity
field when trained on data taken at every other second, a lower camera frame rate
could possibly be used, which would also reduce image processing times.

A promising next step following the particle pathline assessments presented in the
Thermal Pad Size Variation Chapter is to perform a fluid mixing analysis using
the finite-time Lyapunov exponent (FTLE). Time-dependent flows often exhibit
emergent patterns that strongly influence tracer transport. From a trajectory-based
perspective, these patterns are known as Lagrangian coherent structures (LCS),
which act as transport barriers separating regions of distinct flow behavior. Unlike
Eulerian descriptions that provide velocity at fixed spatial points, LCS identify
material surfaces that persist over time, offering insight into the organization of
unsteady flows [3]–[5]. The FTLE field is a fundamental tool for detecting LCS.
The FTLE measures the rate of separation between nearby fluid particles over a finite
time interval. Ridges in the FTLE field correspond to regions of maximal stretching,
indicating the presence of LCS. Calculating FTLE fields from the experimental data
would complement the particle pathline assessments: while pathlines reveal which
initial positions reach the target area, the FTLE field, by highlighting transport
barriers, can help explain why.

A direction for future work that would help guide experimental design is
developing numerical simulations that model the experimental buoyancy-driven
flow system. A computational framework would enable rapid testing of alternative
heating configurations, such as variations in heater placement. Simulations could
help identify optimal configurations for targeted delivery, which could then be
tested experimentally.

Future investigations could also refine the physical eye model used in this study to
more closely replicate the anatomy of the human vitreous. Adjustments to the model
geometry and the inclusion of non-liquefied regions would allow for more a realistic
characterization of drug transport. However, developing accurate experimental
models of the vitreous is an active area of research [6]–[8]. A more practical next
step would be performing these heating experiments on animal eyes. This would
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be critical to determining the efficacy of using heat to improve drug delivery in
the vitreous. The subsequent step, after safety and efficacy are verified, would be
clinical trials with patients suffering from AMD, DME, or PDR.

To conclude, this study demonstrated, using an in-vitro vitreous model, that heat
could potentially be used to induce convective flow, accelerate drug delivery, and
ultimately, improve patient outcomes. We hope this conclusion inspires researchers
to consider other minimally-invasive techniques to improve drug delivery.
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Appendix: Experimental Setup
To ensure the reproducibility of our results and to support future research efforts,
we have provided the complete processing settings for two-component planar PIV
using PIVlab and volumetric three-component PTV using Insight V3V 4G Software
for Volumetric 3-Component Velocimetry Flow Measurement Systems.

PIVlab Settings
PIV algorithm Multipass FFT window deformation

Correlation robustness Standard (recommended)
Sub-pixel estimator Gauss 2x3-point

Interrogation area [px] 52
Step [px] 26

Table .1: PIV settings used with PIVlab.

Insight V3V Settings for Calibration Images
For the calibration images, the images were loaded using the Image Tools tab, one
camera at a time, and the traverse position, position step size, and Pixel X and Y
were assigned 0, 2, 3.45, and 3.45, respectively.

Step Processing Type Settings
1 Image Calculator Subtraction: 5
2 Image Filter Kernel type: Gaussian Filter Size: 21 Filter parameter: 0.5

Table .2: Settings used for pre-processing calibration images with the V3V software.

Particle Identification
Feedback Level 1

Intensity Threshold 20
Origin Type 1

Approximate Point Radius 5
Local Mean Subtraction Size 21

Calibration Point Fitting Method 1
Calibration Configuration
Feedback Level 1

Calibration Point Spacing (mm) 2
X-Y Axes Definition 3,-1,1
Z Axes Definition negative

Calibration Target Distances (mm) unused
Degree of Mapping Functions auto

Table .3: Settings used for processing calibration images with the V3V software.
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Insight V3V Settings for Experiment Images
The experiment images from all three cameras were loaded simultaneously into the
software using the Image Tools tab, and "Tiff tags" were assigned to the images.
The Delta T was set to 10,000 microseconds, and Pixel X and Y were both set to
3.45 micrometers.

Step Processing Type Settings
1 Image Generator Minimum Intensity
2 Image Calculator Subtraction of generator image
3 Image Filter Kernel type: Gaussian Filter Size: 5 Filter parameter: 0.5
4 Image Calculator Subtraction: 10
5 Image Calculator Multiplication: 1.1

Table .4: Settings used for pre-processing experiment images with the V3V software.
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DPIR Processing
Feedback Level 1

Number of Passes 1
Initial Matching Tolerance (pix) 0.5

Utilize Time-Resolved Data 0
Advanced Settings default

Particle Identification
Feedback Level 1

Intensity Threshold 8
Particle Image Settings 1,6,1.5

Large Object Segmentation Settings off
Particle Matching

Feedback Level 1
Final Match Tolerance (pix) 2

Smart Matching disabled
Volume Depth Bounds (mm) default

Camera Exclusion none
Particle Tracking

Feedback Level 1
Particle Tracking Algorithm 1

Algorithm Settings 0.3, 8, 6, 0.3, 3, 1, 10
Filter: Universal Median Thesholds 2,5

Filter: Global Range -0.1,0.1,-0.1,0.1,-0.1,0.1
Volume Size (mm) 30,30,30

User-defined Origin (mm) 0,0,0
Time Specifications (milliseconds) default

Time-Resolved Paths 2,2,0.05
Create Paths with Existing Vectors 0

Output invalid vectors 0
Velocity Interpolation

Feedback Level 1
Node Volume Dimensions (mm) 2,2,2

Node Volume Overlap (%) 50
Minimum Grid Coordinates (mm) -15,-15,1
Maximum Grid Coordinates (mm) 9.5,9.5,32.5

Minimum Number of Particles 1
Adaptive Grid 0

Filter: Universal Median Thresholds 3
Smoothing Factor 2

Use Ensemble Interpolation 0
Use Path Interpolation 0
Gridded Hole Filling 0

Gridded Hole Filling Neighborhood Size 0

Table .5: Settings used for processing experiment images with the V3V software.
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Appendix: Thermal Pad Size Variation

Velocity over Time
The velocity plots included here aim to supplement the particle pathline images in
Chapter 4: Thermal Pad Size Variation. The velocity field was calculated using
PIVlab. The contour plots are color-coded according to the magnitude of the vertical
velocity component, 𝑣.

In the earlier stages (10s-20s), the vertical velocity through the center is positive for
both the 12x12mm and 6x6mm thermal pad experiments. After about 40 seconds
of heating, the vertical velocity through the center changes direction, with negative
vertical velocity through the center and positive vertical velocity on the left and
right, as discussed in the Thermal Pad Size Variation chapter.

(a) (b)

(c) (d)

Figure .1: Velocity plots from the 12x12mm thermal pad heating experiment. (a)–(f)
correspond to times 10s, 15s, 20s, and 40s, respectively.
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(a) (b)

(c) (d)

Figure .2: Velocity plots from the 6x6mm thermal pad heating experiment. (a)-(f)
correspond to times 10s, 15s, 20s, and 40s, respectively.
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Appendix: Physics-Informed Neural Network
Boussinesq Approximation
The Boussinesq approximation is often used for modeling buoyancy-driven flows
due to its reduced computational cost compared to solving the full compressible
Navier-Stokes equations. The central assumption of the Boussinesq approximation
is that density variations are sufficiently small to be neglected, except in the buoyancy
term of the momentum equation, where they drive natural convection.

To derive the Boussinesq approximation, start with the compressible continuity
equation:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 0. (1)

Since density is treated as constant in temporal and convection terms, continuity
reduces to:

∇ · u = 0. (2)

Moving to the conservation of momentum, we start with the full compressible form:

𝜕 (𝜌u)
𝜕𝑡

+ ∇ · (𝜌u ⊗ u) = −∇𝑝 + ∇ ·
[
𝜇

(
∇u + (∇u)𝑇

)
− 2

3
𝜇(∇ · u)I

]
+ 𝜌g. (3)

After assuming viscosity, 𝜇, is constant, plugging in 2, and treating density as
constant (𝜌0) except for the gravity term:

𝜌0

(
𝜕u
𝜕𝑡

+ u · ∇u
)
= −∇𝑝 + 𝜇∇2u + 𝜌g. (4)

Introducing the coefficient of thermal expansion, 𝛽, which is defined as the relative
change in density with respect to temperature at constant pressure:

𝛽 = −1
𝜌

(
𝜕𝜌

𝜕𝑇

)
𝑃

. (5)

Making a linear approximation for 𝛽:

𝛽 ≈ − 1
𝜌0

𝜌 − 𝜌0

𝑇 − 𝑇0
(6)
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where 𝜌0 and 𝑇0 are the reference density and temperature. Solving for 𝜌:

𝜌 ≈ 𝜌0 (1 − 𝛽(𝑇 − 𝑇0)) . (7)

Dividing Equation 4 by 𝜌0 and plugging in Equation 7, we get the momentum
equation with Boussinesq approximation:

𝜕u
𝜕𝑡

+ (u · ∇)u = − 1
𝜌0

∇ (𝑝 − 𝜌0g · z) + 𝜈∇2u − g𝛽(𝑇 − 𝑇0). (8)

We can check the validity of using the Boussinesq approximation for our system.
This approximation is valid when density variations are small and can be linearly
related to temperature changes:

Δ𝜌

𝜌0
= 𝛽(𝑇 − 𝑇0) ≪ 1. (9)

Plugging in our 𝛽 and Δ𝑇 values, we get 0.0014. The Boussinesq approximation is
valid for our laminar natural convection system.


