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People have stars, but they aren’t the same. For travelers, the stars are guides. For other
people, they’re nothing but tiny lights. And for still others, for scholars, they’re problems.
For my businessman, they were gold. But all those stars are silent stars. You, though, you’ll

have stars like nobody else.

When you look up at the sky at night, since I'll be living on one of them, since I'll be
laughing on one of them, for you it’ll be as if all the stars are laughing. You’ll have stars

that can laugh!

And when you’re consoled (everyone eventually is consoled), you’ll be glad you’ve known
me. You’ll always be my friend. You'll feel like laughing with me. And you’ll open your
window sometimes just for the fun of it... And your friends will be amazed to see you
laughing while you’re looking up at the sky. Then you’ll tell them, “Yes, it’s the stars, they
always make me laugh!” And they’ll think you’re crazy. It’ll be a nasty trick I played on

you. ..

And it’ll be as if I had given you, instead of stars, a lot of tiny bells that know how to
laugh. . .

Antoine de Saint-Exupéry, The Little Prince
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ABSTRACT

Stellar pulsations can do what most other astrophysical observables cannot: directly probe
internal stellar properties. This thesis consolidates work investigating how stellar oscillation
modes are affected by two ubiquitous but “noncanonical” pieces of stellar physics: mergers

and magnetism.

The earlier chapters develop “seismic stellar merger genealogy,” the application of seis-
mology to the discovery of stellar merger remnants. In Chapter II, I show that red giants
which have engulfed close, main-sequence companions possess unusual gravity-mode pe-
riod spacings, indicating their binary origin. [identify two dozen promising merger remnant
candidates in archival Kepler data, roughly consistent with expected stellar merger rates.
In Chapter III, I study the evolution and properties of the red-giant-like stars which result
from coalescences of accreting helium-core white dwarf systems. These merger remnants
display distinctive seismic and chemical properties, particularly during the core helium-

burning phase as the result of an especially violent helium flash.

The later chapters develop “seismic stellar magnetometry,” the application of seismology to
the measurement of stellar magnetic fields. In Chapter IV, I calculate the morphology of
high-radial-order gravity modes under the influence of strong magnetic fields. The eigen-
functions exhibit two morphological features at which energy dissipation may be strong, in
agreement with the suppressed dipole modes observed in many red giants. In Chapter V, I
apply the same method to calculate the gravity-mode period spacing pattern under a strong
magnetic field. The perturbative theory developed for weak fields underestimates the true
frequency shifts to gravity modes caused by strong magnetic fields. In Chapter VI, I model
the behavior of stochastic pulsators whose magnetic fields are strong enough to misalign
their pulsations from the rotation axis. Even in the presence of stochasticity, the light curves
of such oblique pulsators indefinitely retain some phase information in a way that can be
used to identify them. In Chapter VII, I place upper bounds on the near-surface magnetic
fields of a sample of white dwarfs based on the non-detection of magnetic features in their
pulsation spectra. Although these constraints vary significantly with white dwarf structure
and mode periods, they are consistently much stronger than the megagauss-scale magnetic

fields to which spectroscopy is sensitive.
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Chapter 1

INTRODUCTION

A star is a fluid body which has relaxed into hydrostatic equilibrium, a state in which
pressure forces exactly balance out gravity. In the absence of complicating effects such as
rapid rotation or tidal effects from a close companion, this condition forces the star into a

spherical shape obeying

d
d—p = —pg. (1.1)
r

where p, p, and g respectively denote the pressure, density, and gravitational acceleration.
It is also customary to assert that the star’s interior sustain a significant amount of nuclear
fusion. Defined this way, stars are a central subject of fascination in astronomy and
astrophysics (the root astro- originates from the Ancient Greek aotrjp, for star). Stars are
also the hosts of planets, the luminous components of galaxies, and the progenitors of
compact objects. Even in stories in which stars are not the protagonists, they are still central

characters whose personalities must be understood.

Nature is known to create fusing fluid spheres satisfying Equation[I.T|within the mass range
102 g < M < 10% 1] In defiance of the simplicity of the problem statement, the structure
and evolution of stars are extremely complicated and depend sensitively on the details of
hydrodynamics, radiative transfer, and nuclear reactions evaluated at extreme pressures,
temperatures, and densities. Since the collection of this amount of mass in a laboratory is
infeasible?] studying the stars that already exist is the only way to empirically probe most
of this physics. Moreover, because examining stars up close is also infeasible’ we must

observe them from afar.

Troublingly, stars are opaque to all wavelengths of electromagnetic radiation. Although
photons propagate through stellar interiors, they scatter at such a high rate that their transport
is diffusive. A photon only remembers information about its most recent interaction or so.
The upshot is that an observer on earth effectively only measures blackbody radiation. This
sort of radiation only depends on a single scalar, the temperature of the photosphere, the
surface at which a photon is most likely to have last interacted before free-streaming through

space. Departures from perfect blackbody behavior may be caused by, e.g., the influence

10.1 < M/My < 100 when normalized to the mass My of the most well-known and well-understood
such sphere.

2due to what can technically be described as financial constraints.

3travel restrictions.
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of atomic transitions on the opacity, or emission from optically thin coronal regions, and
these departures may encode finer details about the stellar environment. However, in any
case, photons are incapable of directly communicating any information to us from stellar
interiors. This apparently curses our knowledge about the physics that goes in on these

places to be forever model-dependent.

1.1 Waves in stars

This thesis concerns asteroseismology, the measurement of hydrodynamical waves in stars.
Waves are evolving disturbances which result when a star is perturbed from hydrostatic
equilibrium. When these perturbations are of low-enough amplitude, waves can be treated
in linear theory. In this linear regime (assumed hereafter), waves obey superposition and
evolve according to the linearized equations of stellar structure (e.g., Unno, Osaki, Ando,
Saio, et al., [1989)). When they reach the surface, waves perturb the surface flux and fluid

displacement pattern to which photometry and spectroscopy are respectively sensitive.

In a maximally broad interpretation, hydrodynamical waves are carriers of information with
unique characteristics. To drive home this point: the last decade preceding the time of writ-
ing has seen the rapid rise and high fashion of “multimessenger astronomy,” a phrase which
describes observations of the same astrophysical source delivered by multiple “messengers”
(e.g., gravitational waves, neutrinos, and different categories of electromagnetic radiation).
Physically, each messenger probes different substructures within the source (possibly at
different times), owing to the unique conditions governing the messenger’s production
and propagation. In what follows, I summarize hydrodynamical waves’ characteristics as

“messengers” with respect to these two fronts, and describe further essential physics.

1.1.1 Production

In order to exist, hydrodynamical waves must be produced. Fortunately, many things can
excite them. The most well-observed pulsating star is the Sun, which possesses solar-
like oscillations (whose nomenclature is self-evident). Solar-like oscillations are both
turbulently excited and turbulently damped by near-surface convection (see, e.g., Houdek,
Balmforth, et al., [1999) and occur in stars with deep outer convective zones (e.g., Sun-
like stars, subgiants, red giants). Other excitation mechanisms include the k- (opacity,
e.g., J. Cox, |1963) and e- (nuclear burning, e.g., Kawaler, |1988) mechanisms, convective
flux blocking (Guzik, Kaye, Bradley, A. Cox, and Neuforge, 2000), and strange-mode
instabilities (Glatzel, 1994). These processes often (but do not always) involve a heat-
engine-like process which operates when the partial ionization zone of a certain species (e.g.,

helium) produces a thin convective zone sufficiently close to the stellar surface. Affected
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modes are sometimes called self-excited, unstable, or overstable, since they possess positive
growth rates which cause them to spontaneously reach saturation amplitudes. Modes can
also be excited by tides raised by the gravitational fields of close companions (e.g., Fuller,
2017).

The diversity of stellar pulsations is worth emphasis—pulsators occur in the main-sequence,
giant, and compact phases, and sample the heterogeneity of stars themselves. To visualize
this, it is a traditional pastime of aficionados of stellar oscillations (and other variability)
to plot various species of pulsator on a Hertzsprung—Russell diagram. A diagram showing
the variability across such variable diagrams is shown in Figure While excitation of
oscillation modes is prerequisite to performing asteroseismology, nature often provides such

means.

1.1.2 Propagation

Although stellar interiors are opaque to light, they are often transparent (or at least translu-
cent) to hydrodynamical waves. The latter are therefore capable of delivering information
from a star’s interior to its surface, at which point light can transmit the information the
rest of the way to the observer. This is the real power of asteroseismology: it allows us to

directly see into the stellar interior in a way that traditional methods cannot?]

It is mathematically convenient to decompose a given wave into components whose shape
does not evolve in time. Components obeying this condition are eigenfunctions of the time
derivative operator:

0/0; ~ iw, (1.2)

where w is the angular frequency. It is also common to also make the identification
V ~ —ik, (1.3)

where the components of the wavenumber k can be interpreted as inverse reduced wave-
lengths: k; = 27 /A;. This substitution is particularly justified when the eigenfunction
varies rapidly enough in space to closely resemble a plane wave (Deubner and Gough,
1984). Heuristically, the linearized equations of stellar structure then relate d/9; to the spa-
tial derivative V, relative to their action on the fluid variables. These equations fix the local
relationship between w and k—the dispersion relation—which determine the propagative

behavior of the wave.

“As we have now uncontroversially established asteroseismology to be a category of multimessenger
astronomy ipso facto, it is of the author’s present opinion that this field should receive a proportionate amount
of attention and funding.
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1.1.3 Oscillation modes

In stars, hydrodynamical waves often propagate across the star faster than they can be
damped. When this occurs, waves “feel” the global stellar structure in which they propagate.
In particular, the boundary conditions of the eigenvalue problem overdetermine w and force
it to take one of only a discrete set of values. The resulting eigenfunctions take the
form of standing waves, called modes. Due to this quantization of w, modes manifest in
time series data as sinusoidal signals with sharply defined frequencies whose measurement
enables the detailed extraction of stellar properties. In short, asteroseismology is a precision
science—modern surveys can measure mode frequencies with minuscule uncertainties down
to 6v ~ 1/T ~ 1072 uHz (set by the time baseline, e.g., T = 4 yr for the main mission of
Kepler; Borucki et al.,|2010)).

The quantization introduced by boundary conditions allows modes to be indexed by three
integer quantum numbers, one for each spatial dimension. In the simple, spherically
symmetric case, the horizontal wavenumber kj, is quantized according to the appearance of

the Laplacian operator in the linearized equations:

r2sin6 06

2 : 2
v sin §— Ry ~ 5= —k=, (1.4)

1 0 ) .\ 19> e+
El

ie., ky = \/{m /r, where £ = 0, 1,2, ... is the angular degree, familiar from quantum
mechanics. Here, 6 and ¢ are spherical coordinates with respect to a (so far arbitrarily
chosen) polar axis. It is convenient to further enforce 9/0¢ ~ im where —¢ < m < (.
The angular dependence of the eigenfunctions are therefore given by the complex spherical

harmonics Y,,,, quantized by the periodic domain of the unit sphere.

It remains to understand the dependence of the eigenfunction on radius. We hereafter
work in the asymptotic approximation, which truncates the Jeffreys—Wentzel-Kramers—
Brillouin (JWKB) expansion and heuristically amounts to assuming that the eigenfunction
varies quickly in radius (e.g., Section 7.2 of Christensen-Dalsgaard, 2008). The radial

quantization on the mode frequencies then imposes

/krdr:ﬂ'(l’l+6), (1.5)

where the integral is over the mode cavity. By writing Equation [I.5] we assume that the
wave is trapped underneath the stellar surface so that an outer boundary condition is indeed
imposed, eliding a nuance related to the acoustic cutoff frequency (but see Deubner and
Gough, [1934).



The spacing between successive modes can be found by taking a derivative:

-1 -1
Aw = 2P Ay = (‘9_”) - (/ Ok, dr) , (1.6)
ow

which can be rewritten as
T

- /dr/vg,r’

where v, ., = dw/0k, is the radial component of the group velocity. The spacing between

Aw (1.7)

mode frequencies is therefore comparable to the inverse wave crossing time across the

cavity.

1.1.4 Taxonomy of stellar waves

Multiple different species of waves propagate through stellar interiors, classified primarily
by the force which is responsible for restoring fluid parcels back to the equilibrium. Further
in the spirit of simplicity, we neglect spatial derivatives of the equilibrium stellar structure
as well as perturbations to the gravitational potential (the Cowling approximation). The
linearized hydrodynamical equations become

’

al; +poV i =0 (1.82)

o .
PO = —-Vp' —p'gr (1.8b)
00" = poN°# - iifg + d,p/c3, (1.8¢)

where p’, p’, and u are perturbed variables, p is the unperturbed density profile, c; is the

speed of sound, and N is the Brunt—Visila (buoyancy) frequency.

The dispersion relation produced by Equations [1.8|is approximately

k2= a)2102 (0? - M) (0? - 53). (1.9)
s

where S¢ = kjc; is the Lamb frequency of degree £. Equation[I.9]admits three qualitatively

different behaviors.

When both w? > S? and w? > N2, the dispersion relation is approximately
w? = k*c? ~ k22 (1.10)

This is the regime of pressure waves, whose restoring force is the pressure backreaction
caused by fluid compression, i.e., the tendency of a fluid to resist being squeezed. Equation

1.10f asserts that, for high-radial-order pressure waves, c; (with dimensions L/T) defines
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the natural scale for converting between w and k,. A standing pressure wave is called a

pressure mode, or p mode. By Equation p modes are approximately spaced evenly in

-1
Ay = A_w = (2/dr/cs) , (1.11)

frequency by

2r
called the large frequency separation (in contrast to the small frequency separation, e.g.,
Chaplin and Miglio, 2013)).

In the opposite regime in which both w? < S? and w? < N2, the dispersion relation instead
takes on a very different form, approximately

2 2
_ kK, k

= ﬁNZ ~ k—’;NZ. (1.12)

wz

This is the regime of gravity waves, whose restoring force is buoyancy, i.e., the tendency
of dense fluid to sink. Equation[I.12]asserts that, for high-radial-order gravity waves, Nk,
(with dimensions L - T) defines the natural scale for converting between w and k,. Moreover,
Equation|l.12|implies that gravity waves must be nonradial (£ # 0) and can only propagate
in stably stratified regions (N2 > 0). A standing gravity wave is called a gravity mode, or g

mode. By Equation[.7] g modes are approximately spaced evenly in period (not frequency)

by ,
27A 2
AT = 29 AT (/Edr), (1.13)
w i+ \J T

called the period spacing. Algebraically, the spacing is even in period and not frequency

due to the different dimensions of Nk and c;.

Finally, when w? lies between S? and N2 in either order, k% < 0, 1.e., k, is imaginary. Under
these conditions, the eigenfunction grows or decays exponentially in space and is called

evanescent.

The dispersion relation in Equation [1.9] describes most behaviors relevant to high-radial-
order waves in stellar interiors. However, the introduction of additional forces can both
modify the propagation of existing branches of waves as well as introduce new types. For
example, in rotating stars, the Coriolis force modifies gravity waves to gravito-inertial waves
(e.g., Dintrans, Rieutord, and Valdettaro, 1999)). It also introduces inertial waves, for which
the Coriolis force is the main restoring force (e.g., Rieutord and Valdettaro, 1997)). Stars
can also sustain modes which arise out of sharp discontinuities in the stellar profile, e.g.,

fundamental and interfacial modes, which are also not captured by Equation [I.9]

Red giants (RGs) are a central focus of this work. Like the Sun itself, RGs are solar-like

oscillators whose pulsations are both excited and damped by turbulent processes associated
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with near-surface convection. This stochastic driving is broadband and can excite up to
dozens of modes to visible amplitudes, producing asteroseismic treasure troves. Unlike the
Sun, however, RGs exhibit extreme density contrasts owing to their core—envelope structure.
In particular, the high densities in the core push the allowed range of g-mode frequencies up
to those which are driven by convection. RGs which are on the lower red giant branch or in
the red clump display dipole modes which behave as p modes in the envelope and p modes
in the core, with significant amplitude in each region, i.e., the cavities are significantly
coupled. The resulting mixed modes constitute valuable seismic windows into the deep
interior of the star. This combination of nice properties makes RGs excellent asteroseismic

laboratories on which to push the frontier of our understanding.

1.2 Seismology as a hammer

This thesis investigates the observational properties of stars with histories of stellar merg-
ers (Chapters II-I1I) and magnetic fields (Chapters IV-VII). Both topics are considered
“noncanonical” components of stellar physics—they are traditionally ignored in the “stan-
dard model” of isolated, non-magnetic stellar evolution. This is not because stellar mergers
or magnetic fields are rare but rather because each individually introduces additional, ex-

tremely complex phenomenologies which are often wise to ignore on a first pass.

In what follows, I treat stellar mergers and magnetism as nails for which seismology is the
hammer. To organize the workspace, I summarize the recent literature in application of
seismology to each of these pieces of physics, and place the core chapters of this thesis in

their appropriate context.

1.2.1 Seismic stellar merger genealogy

For the most part, all of the properties of a single star are determined by two parameters:
its initial mass M and current age ¢. In this simplified picture, a population of single stars
thus populates a two-dimensional manifold in any parameter space within which they are
placed. In contrast, the space of post-interaction stars is very high-dimensional. Mass
transfer events and stellar mergers are messy maps from extremely diverse initial conditions
(the progenitors’ structures and pre-interaction binary configuration) to the remnant star’s
structure. Therefore, stellar merger remnants usually have combinations of stellar properties
which position them off of the “single-star manifold.” This basic observation about the
dimensionality of a stellar population generalizes when adding secondary (but deterministic)

effects due to, e.g., metallicity.

Star clusters are an instructive example. It is common to assume that stars within the same

cluster were born at the same time, and thus that the resulting population is coeval (i.e.,
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t 1s a constant within the population). Single stars within a star cluster must therefore
lie on a one-dimensional sequence within any parameter space. This is the basic reason
why stars in any star cluster form an approximately one-dimensional sequence (isochrone)
when plotted on a Hertzsprung—Russell diagram (luminosity L versus effective temperature
T.). However, observed star clusters also possess objects which lie off of the isochrone
in the Hertzsprung—Russell. Their “outlier” status flag them as prima facie unusual, even
without necessarily identifying them as post-interaction stars such as blue stragglers or
hot subdwarfs (or photometric binaries, which are not post-interaction but nevertheless not

captured by models of isolated stars).

Of course, it is still possible for a post-interaction star to closely resemble a single star.
For instance, the remnant of a merger between two main-sequence stars is expected to
closely resemble another isolated (but more massive) main-sequence star. This is be-
cause main-sequence stars (especially young ones) are made of more-or-less unprocessed
hydrogen-rich material, as are the remnants of the mergers between them. Merger remnants
may be particularly hard to discern if only their surface properties have been observed.
Observational placement on an Hertzsprung—Russell, for example, only directly constrains
the outer boundary condition satisfied by a solution of the stellar structure equations. Many

different such solutions may exist.

In contrast, adding seismic observables allows stars to be placed in a space in which those
with exclusively unusual inferiors are also outliers. For example, even though post-accretion
main-sequence stars may appear superficially normal, subtle internal features such as their
near-core composition gradients may reveal their binary origin to seismology (Wagg et
al., [2024). Framed this way, the seismic identification of stellar merger remnants can be
framed as internal structure-informed anomaly detection, where the “anomalies” occur at

the few-percent level in stars with Sun-like masses (e.g., Price-Whelan et al., [2020).

The initial chapters of this thesis focus on the seismic properties of two classes of RG-
like merger remnants. For such merger remnants, the tools and intuition developed for
the seismology of normal RGs can be straightforwardly adapted. Chapter II (Rui and
Fuller, 202 1a)) considers RGs which have ingested close main-sequence companions during
their ascension up the red giant branch. This engulfment endows the merger remnant with
unusually overmassive envelopes to which seismology is sensitive. Chapter III (Rui and
Fuller, |[2024) considers the remnants of coalescences of accreting helium-core white dwarf
systems. The resulting object possesses an abnormally low-entropy core which affects the

remnant’s seismic properties and subsequent evolution.

In recent years, seismology has rapidly gained recognition a probe of stellar interaction
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histories. Closely following Rui and Fuller (2021a), Deheuvels, Ballot, Gehan, et al. (2022)

discovered roughly four dozen red giant branch stars in the scatter below the degenerate
sequence in the seismic Av—AIl diagram (see also G. Li, Deheuvels, and Ballot, 2024).
Their positions on the seismic spacing diagram indicate that their total masses and degrees
of core degeneracy are inconsistent with isolated stellar evolution, implying that they likely

gained mass from a stellar interaction.

In the red clump (core helium-burning phase), Y. Li et al. (2022)) identify two classes of
unusual stars in the seismic mass—radius plane. The “very low-mass” stars have masses
< 0.8M implying main-sequence lifetimes longer than the age of the universe, and the
“underluminous” stars have unusually low radii but otherwise normal masses. These two
classes of stars can be respectively identified as primary and secondary red clump stars
which have lost an unusually large amount of mass, likely due to a companion. Matteuzzi
et al. (2023) further investigate three members within the very low-mass class of RGs
(termed in that work as “red horizontal branch” stars), finding extremely high degrees of

mixed-mode coupling consistent with model predictions for their evanescent wave regions.

Seismology can also effectively synergize with other observational techniques to identify
systems of likely binary origin. By measuring AIl, Hon, Huber, Rui, et al. (2023) seismically
identified the star 8 UMi (Baekdu) as a core helium-burning star. However, 8 UMi is also
the host of a close (a = 0.5 AU) giant planet which, in the single-star scenario, should have
been engulfed during 8 UMi’s preceding red giant branch phase. The system can, however,
be explained as the outcome of a merger between a RG and a helium-core white dwarf.
Such a merger could have ignited 8 UMi’s helium without requiring it to ascend all the way
to the tip of the red giant branch (e.g., Zhang and Jeffery, 2013)). The lithium-richness of 8

UMi seems to lend credence to this binary hypothesis.

Rapid rotation in RGs is also a strong indicator for past stellar interactions. This is because
the envelopes of isolated RGs spin extremely slowly, owing to angular momentum conser-
vation on the red giant branch. In consequence, any detection of a substantial rotation rate in
the envelope implies some kind of spin-up due to a stellar or tidal interaction (e.g., Carlberg,
Majewski, et al., 2011} Tayar, Ceillier, et al., 20135; Ceillier et al., 2017). While surface
rotation rates can be measured by other methods (e.g., photometric modulation, rotational
broadening), rapid envelope rotation can also be corroborated by envelope rotational split-
tings (see, e.g., Tayar, Moyano, et al., 2022; Ong, Hon, et al., 2024). Furthermore, unlike
those other methods, seismology is also capable of measuring the rotation rates of the
cores of RGs. Leveraging this sensitivity to differential rotation, (Ong,[2025) show that the

envelope and core of Kepler-56 rotate around different axes, consistent with either the past
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engulfment of or ongoing tidal realignment by a planet.

Finally, it has also been recently suggested that asteroseismology may reveal the mysterious,
possible binary origin of blue supergiants (L. Ma et al., 2024; Bellinger, Mink, et al., 2024;
Henneco, Schneider, Hekker, et al.,[2024; Henneco, Schneider, Heller, et al., [2025)). Since
the majority of massive stars are likely to interact with companions during their lives (Sana
et al., 2012)), stellar merger seismology will likely involve the decryption of broad scatter

within the stellar population, rather than the mere identification of rare outliers.

1.2.2 Seismic stellar magnetometry

Stellar magnetic fields are largely a consequence of the fact that electrically conductive
fluids, common throughout the universe, conserve magnetic flux as they deform. In con-
sequence, when a progenitor molecular cloud collapses and contracts manyfold into stars,
even tiny magnetic fields can translate to large magnetic fields. Flux freezing also allows
stars with complex motions (e.g., differential rotation, instabilities) to amplify small seed
magnetic fields into large ones by “stretching” them out (the realm of dynamo theory, e.g.,
Elsasser, 1956). These processes offer a compelling post hoc explanation not only for the
basic existence of stellar magnetic fields in general but also their observed diversity. Mag-
netic fields are also crucial actors in the rotational evolution of stars via magnetic braking

(Mestel, [1968) and angular momentum transport (Aerts, Mathis, et al.,[2019).

Magnetic fields influence the propagation of hydrodynamical waves as an additional restora-
tive force and a damping effect. In high-radial-order g modes (such as those in the radiative
cores of RGs), the wavenumber is primarily radial and the fluid motions are primarily
horizontal. These properties make such modes primarily sensitive to the magnetic tension
associated with the radial component of the magnetic field. The degree to which a magnetic
field affects the propagation of a g mode is given by its strength relative to a critical field

strength:
By erit o< \pw’r /N, (1.14)

typically hundreds of kilogauss in RG cores (Fuller, Cantiello, et al., [2015). At this field
strength, the Alfvén frequency becomes comparable to the frequency of a g mode with
angular frequency w (e.g., Cantiello et al., 2016). Gravity waves propagating in regions

with B, > B, i are predicted to be strongly damped.

Magnetic g-mode suppression was first invoked by Fuller, Cantiello, et al. (2015)) to explain
the depressed amplitudes of dipole modes in ~ 20% of observed RGs (Garcia, Pérez
Hernandez, et al., |2014; Stello, Cantiello, Fuller, Huber, et al., 2016). The implication

from Equation [I.14] that low-frequency modes are preferentially suppressed appears to be
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validated by the suppression of only the low-frequency g modes in a RG (KIC 6975038;

Deheuvels, G. Li, et al.,[2023)) as well as in a B-type star with a strong surface magnetic field
(HD 43317; Lecoanet, Bowman, et al., 2022). In this basic picture, observation of g-mode
suppression places a lower bound on the magnetic field, and non-observation places an
upper bound. However, an analysis by Mosser, Belkacem, et al. (2017) argues that dipole
modes in affected RGs still retain some g-mode-like character (see also Arentoft et al.,
2017). This observation seems to contradict the supposition by Fuller, Cantiello, et al.

(2015)) that magnetic fields > B, crj; result in near-total suppression of g-mode energy.

Recent studies have greatly advanced our theoretical understanding of magnetogravity
wave propagation. In a original schematic calculation, Fuller, Cantiello, et al. (2015)
show that magnetogravity waves become spatially evanescent (k% < 0) when B, > B, i,
and speculate that the resulting wave contain higher-¢ content which is both efficiently
damped and difficult to see due to geometric cancellation. Performing a deeper analysis of
zonal magnetogravity waves under a realistic multipolar field geometry, Lecoanet, Vasil,
et al. (2017) show that refracted magnetogravity waves approach zero wavelength at a
finite “cutoff” height, suggesting a natural avenue for wave dissipation. Motivated by
this progress, Chapter IV (Rui and Fuller, |2023) introduces a formalism for calculating
the morphology of a g mode under the influence of a strong gravitational field. The
radial-horizontal decomposition applied in this study is justified by the high radial orders
characterizing g modes in typical RGs and intermediate-mass main-sequence stars. I find
that, for B, > B, i, non-zonal modes develop sharp features at critical latitudes where the
mode satisfies a resonance condition with the Alfvén frequency. These sharp features were
also observed in the numerical calculations of Lecoanet, Bowman, et al. (2022), and provide
an additional mechanism for g-mode dissipation. However, ray-tracing calculations by Loi
(2020c) and Miiller et al. (2025) show that some wave power may yet escape magnetic
suppression and be observed, at least for high-£ modes. Analyses such as these are likely
to help reconcile our theoretical picture of magnetic suppression with the residual g-mode
character of suppressed-dipole modes reported by Mosser, Belkacem, et al. (2017) and
Arentoft et al. (2017)).

Magnetic fields weaker than B, . can still measurably influence g-mode frequencies, even
if they are too weak to suppress g modes. When included as an additional restorative force,
the Lorentz force always has the effect of increasing their frequencies (“‘stiffening” them).
Most theoretical analyses calculate magnetic shifts to g-mode frequencies by performing
perturbation theory with B,/ B, i as the small quantity (Gomes and Lopes, [2020; Bugnet,
2022; G. Li, Deheuvels, Ballot, and Lignieres, 2022; Mathis and Bugnet, [2023; Das et al.,
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2024). It is usually further assumed that the magnetic field is still subdominant compared

to the Coriolis force, such that the pulsations are aligned with the rotation axis.

Magnetic g-mode shifts were first discovered several years ago by G. Li, Deheuvels, Ballot,
and Lignieres (2022) in the dipole modes of three RGs. In particular, the study made use of
the fact that magnetic shifts generally depend on m. This dependence causes the rotational
triplets of RGs to depart from uniform spacing in frequency (the frequency shift due to
rotation is proportional to m), producing measurable “asymmetries.” Of particular intrigue
has been the sensitivity of the precise shape of the triplet to the geometry of the magnetic
field. Later studies have expanded the sample of RGs with measured magnetic asymmetries
to several dozen (G. Li, Deheuvels, T. Li, et al., 2023; Hatt et al., 2024). In RGs with
stronger core magnetic fields (but still less than B, ., so that suppression does not occur),
magnetic frequency shifts can even be high enough to produce a measurable departure from

the period-uniformity of g modes (Deheuvels, G. Li, et al., 2023).

Two chapters of these thesis address the calculation of magnetic g-mode frequency shifts
when certain conventional assumptions are relaxed. Chapter V (Rui, Ong, et al., 2024)
generalizes the method developed in Chapter IV to include rotation and uses it to predict
g-mode frequency shifts under strong magnetic fields for which perturbation theory is
inapplicable (B, ~ B, cit). I emphasize a strong analogy to the traditional approximation
of rotation, the standard approach for computing the effects of a strong Coriolis force (e.g.,
Hough, 1898a; Bildsten, Ushomirsky, et al., |1996; Lee and Saio, |1997). This traditional
approximation of rotation and magnetism may help bridge the observational gap between
RGs with dipole-suppression and those with magnetic asymmetries (interpreted with the
perturbative theory). Chapter VI (Rui, Fuller, and Ong, 2025), in contrast, works in the
perturbative weak-field limit, but allows the magnetic field to exceed the Coriolis force in
strength. When this occurs, the g modes become oblique, and the one-to-one mapping
between modes and power spectral peaks is broken. This is a well-known phenomenon
afflicting the spectra of roAp stars, which are known to harbor strong surface magnetic
fields (e.g., Kurtz, |1982; Dziembowski and Goode, 1996)). I show that stochastic oblique
pulsators (such as magnetic RGs or Sun-like stars) should possess frequency components
whose relative phases and amplitudes are fixed, even as stochasticity erases absolute phase
information. This perfect relative coherence may be the key to detecting oblique magnetic

pulsators in RGs and Sun-like stars for the first time.

Finally, though most of the discussion about magnetogravity waves in this thesis occurs in
the context of RGs, the vast majority of the formalism assumes little more than high-radial-

order g-mode pulsation. In fact, although seismic magnetometry in RGs is recent, the idea
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of seismic magnetometry in white dwarfs dates back to a calculation by (P. Jones et al.,
1989) showing that even weak magnetic fields (< 1 MG) can produce measurable frequency
shifts. This was soon followed by the putative detection of asymmetric rotational triplets
in the prototype DBV pulsator GD 358 (D. Winget, Nather, et al., |1994). Chapter VII
(Rui, Fuller, and Hermes, 2025)) uses non-detections of magnetic g-mode suppression and
asymmetries in rotational triplets/quintuplets to place order-of-magnitude upper bounds on
the magnetic fields in white dwarfs. It is found that seismology can place strong upper
bounds on the near-surface magnetic fields of white dwarfs. These upper bounds are

typically ~ 1-10 kG, but occasionally much stronger (~ 1-100 G).

Chapter VIII concludes with my current perspective on possible future directions. In sum:
most of what we know about stars comes from looking at them—I argue that we should

also listen.
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Chapter 2

ASTEROSEISMIC FINGERPRINTS OF STELLAR MERGERS

Rui, NZ and J Fuller (2021). “Asteroseismic fingerprints of stellar mergers”. In: Monthly
Notices of the Royal Astronomical Society 508.2, pp. 1618-1631. po1: 10. 1093 /mnras/
stab2528.

Abstract

Stellar mergers are important processes in stellar evolution, dynamics, and transient science.
However, it is difficult to identify merger remnant stars because they cannot easily be
distinguished from single stars based on their surface properties. We demonstrate that
merger remnants can potentially be identified through asteroseismology of red giant stars
using measurements of the gravity mode period spacing together with the asteroseismic
mass. For mergers that occur after the formation of a degenerate core, remnant stars have
over-massive envelopes relative to their cores, which is manifested asteroseismically by a
g mode period spacing smaller than expected for the star’s mass. Remnants of mergers which
occur when the primary is still on the main sequence or whose total mass is less than ~2 M,
are much harder to distinguish from single stars. Using the red giant asteroseismic catalogs
of Vrard, Mosser, et al. (2016) and Yu et al. (2018])), we identify 24 promising candidates for
merger remnant stars. In some cases, merger remnants could also be detectable using only
their temperature, luminosity, and asteroseismic mass, a technique that could be applied to

a larger population of red giants without a reliable period spacing measurement.

2.1 Introduction

Stellar mergers are physically complex processes with broad implications across astro-
physics. Kochanek et al. (2014) find that galactic mergers occur at a high rate of ~0.2 yr~!,
and Mink et al. (2014) further show that merger products comprise ~ 30% of high-mass
main sequence stars. Mergers are a common endpoint of binary stellar evolution (Paczynski,
1976)), and they are believed to be the origin of astrophysical transients such as luminous red
novae (Tylenda and Soker, 2006; Soker and Tylenda, 2006; Ivanova, Justham, Nandez, et al.,
2013; Pejcha et al., 2016; Metzger and Pejcha, 2017). Collisions between stars are also
expected to occur at high rates in dense stellar environments such as globular clusters, where
they are believed to be an important formation channel for blue stragglers (Bailyn, |1995),

some of which have exotic properties suggestive of this origin (e.g., Schneider, Ohlmann,
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Figure 2.1: A cartoon comparing a 2.5 M RG formed as an isolated, single star with one
formed in a merger where the primary has already entered the RG phase and the secondary
remains on the MS. If the RG primary is in the mass range where it forms a degenerate core
(e.g., M = 1.5 M), the merger product will generally retain it, even if a single star of the
same mass would have been expected to produce a more massive, non-degenerate core on
the RGB.

Podsiadlowski, Ropke, Balbus, Pakmor, and Springel, 2019). In these environments, they
have been recently proposed as one possible explanation for multiple stellar populations
(Mastrobuono-Battisti et al.,2019; L. Wang et al., 2020).

While millions of merger remnants are expected to exist in the Galaxy, identifying the
surviving stars in the field is challenging. Detailed asteroseismic characterization of red
giant (RG) stars offers a new hope, because the oscillations of RGs are particularly rich
in information for two reasons. First, the close values of the Brunt—Viisdld and Lamb
frequencies create a narrow evanescent region within the star, coupling the observable
p modes at their surfaces to the g modes within their radiative cores. Second, the frequencies
occupied by these “mixed modes” are serendipitously excited by stochastic driving from
convective motions in their envelopes. The intimate coupling between interior and surface
oscillations allow for detailed asteroseismic constraints on their core structures, allowing
for the determination of evolutionary states (Bedding et al., Bildsten, Paxton, et al.,
2011; Mosser, Benomar, et al., 2014, M. Cunha, Stello, et al., 2015 Elsworth et al.,2017),
internal rotation rates (Beck et al., Mosser, M. Goupil, Belkacem, Marques, Beck,
Bloemen, De Ridder, Barban, Deheuvels, Elsworth, et al., Klion and Quataert,
Gehan et al., 2018}, Ahlborn et al.,2020; Deheuvels, Ballot, Eggenberger, et al.,2020), and
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core magnetic fields (Fuller, Cantiello, et al., 2015} Stello, Cantiello, Fuller, Garcia, et al.,
20165 Cantiello et al.,[2016; Mosser, Belkacem, et al., 2017; Loi, [2020a)).

Therefore, in addition to encoding stellar masses and radii in the large frequency spacing
Av and the frequency of maximum power v, (Kallinger, W. Weiss, et al., |2010), aster-
oseismology is also a probe of the core structures of RGs through the mixed mode period
spacing AP, in the dipole (¢ = 1) mode peaks of approximately

r

-1
AP, = V2r? ( / Edr) : Q2.1)
R

Here, N is the Brunt—Viisild frequency and R denotes the portion of the star’s central
radiative region where v, < N (Chaplin and Miglio, [2013). Intuitively, this dipole
splitting results from the coupling of a given p mode to multiple, distinct g modes, hence
the sensitive dependence of AP, on the Brunt—Viisila frequency in the central regions of
the star. For a typical RG, AP, is typically on the order of minutes, large enough to be
measured by prominent surveys such as CoRoT (Mosser, Barban, et al., 2011) and Kepler
(Stello, Huber, et al., 2013; Vrard, Mosser, et al., [2016). The value of AP is primarily
determined by the mass and evolutionary state of the star’s helium core, and comparison of

measured values to models provides an excellent test of stellar evolution theories.

In this work, we demonstrate that RGs which have a merger in their histories can be
identified via asteroseismology, provided that the merger occurs after the primary has left
the main sequence (MS) and the secondary remains a MS star. Asteroseismology will be
effective at identifying a merger when the original RG develops a small, degenerate core
that the final RG would not otherwise be expected to have. The difference in core structure
between such a merger product and an equal-mass RG forming via single star evolution
manifests in a different gravity mode structure and, in turn, different period spacings of their
dipole modes. We sketch this picture heuristically in Figure [2.1, which shows our fiducial
comparison between a single 2.5 My RG and the product of a 1.5+ 1.0 My RG+MS merger.

2.2 Stellar Models

In order to obtain physically realistic stellar models, we employ Modules for Experiments in
Stellar Astrophysics (MEsA, version r12778; Paxton, Bildsten, et al., 2010; Paxton, Cantiello,
et al., [2013; Paxton, Marchant, et al., [2015; Paxton, Schwab, et al., 2018} Paxton, Smolec,
et al., 2019), an open-source one-dimensional stellar evolution code. We first initialize a
grid of single star models from 0.75 Mg from 2.75 M, which are integrated through the
MS and RGB, for the purpose of (1) providing initial conditions for binary merger models

and (2) computing asteroseismic observables in single stars. The stellar models are taken
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Figure 2.2: Left: Hertzsprung-Russell diagram of a single 1.5 M, star (blue dotted line), a
1.5 + 1.0 My RG+MS merger product (solid green line), and a single 2.5 Mg, star (dashed
red line). Circular points indicate merger remnant candidates discussed in Section [2.4.1]
with black points showing the best candidates. Right: Propagation diagrams at L = 60 L,
for these three models. We also show the the gravity mode region (green), as well as the
acoustic mode region (gray) and vimax (purple), for the merger model, although the latter
two are similar between all three models. Despite the merger, the Brunt—Viiséla frequency
of the merger product most closely resembles that of a non-merged star of the original mass,
rather than that of a non-merged star of the present-day mass.

to be non-rotating and solar-metallicity, with reasonable values for convective overshoot.
Model details and inlists are provided in Appendix [2.A]

We then model mergers as rapid accretion events with a rate M = 107> Mg yr~! at the
surface of the star. The original star starts off on the main sequence with solar composition,
and at a specified age, it accretes material with the same composition as its surface (which
is also close to solar composition). While this cannot be expected to capture the transient
structure of the star immediately after the merger, it should provide a reasonable model of
the star after thermal relaxation, i.e., a few thermal times after merger. While the adopted
accretion rate is less than what is expected during a real merger, it should approximate a
real merger event well because the accretion time scale f,c = M /M ~ 10° yr is much shorter
than a thermal time scale, hence the accretion is still in the rapid (adiabatic) regime. We
run a number of “merger” models, beginning with a fine grid of 1.5+ 1.0 Mg models where
we vary the time of merger (Section[2.3.2)). Next, we run a pair of grids where we vary the

initial and final stellar masses, one in which the merger occurs when the primary is on the
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RGB, and the second when it is on the MS (Section [2.3.3). We then relax the convergence
conditions required to run a 1.5 + 1.0 Mg model through helium burning, and we examine

the behavior of the period spacing on the red clump (Section [2.3.4)).

While in reality the secondary star may be expected to penetrate deeply into the star’s
envelope before being disrupted and mixed into the star, modeling an RG+MS merger as a
surface mass injection is sensible as long as the secondary mixes into the envelope before
reaching the core. We can use the approximation of Eggleton (1983) to compute an effective
Roche lobe radius for a secondary during a common envelope phase, taking as the mass
ratio ¢ = My /M enc(r), the ratio of the mass of the secondary to the mass of the primary
enclosed by the orbit. For the 1.5+ 1.0 Mg merger shown in Figure we find that the MS
secondary is expected to disrupt and mix into the primary’s convective envelope at r = 2.8
R in our models, very close to the surface of the primary and far outside of the helium
core (7eore = 0.04 R on the lower RGB).

2.2.1 Detailed oscillation mode calculations

While the period spacing between modes of the same gravity mode degree generally lie
quite close to the asymptotic period spacing APg, they may deviate somewhat from this
value, particularly when the mode has a large mixed character. Since mixed modes are
the most easily detected, it is critical to correct for this phenomenon when extracting the

asymptotic period spacing from observations (e.g., Vrard, Mosser, et al., 2016).

In order to confirm that the asymptotic period spacing AP, as defined by Equation
lies close to the actual gravity mode spacing of our stellar profiles, we employ GYRE,
a shooting code which computes stellar oscillation modes given one-dimensional stellar
profiles (Townsend and Teitler, 2013). Working in the adiabatic limit, we first calculate
all oscillation modes with ¢ = 0 or 1 lying within a factor of 2 of vy« (computed from
our MEsA models using the scaling relation in Equation for single 1.5 Mg and 2.5 Mo
RGs. We next compute these modes for the product of a 1.5 + 1.0 My merger that occurs
soon after the main sequence when the primary’s radius reaches R = 1.25Rtams. Here,
Rtams 1s the radius of the star at the terminal age main sequence (TAMS), defined to be
the earliest time that X = O in the core. Within each acoustic mode order, we calculate the
difference in period between adjacent £ = 1 modes (which differ in gravity mode order),
finding them to be very close to AP, in almost all cases except when the character of the
mode was very mixed. Therefore, moving forwards, we center our discussion around AP,
(as defined in Equation [2.1)), with the knowledge that (1) it is a good approximation to
the actual, generally frequency-dependent period spacing, and (2) is typically reported in
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observations after accounting for this frequency dependence.

2.3 Results

2.3.1 Heuristic description

RGs comprise a large convective envelope surrounding a compact, high density core which
primarily governs the star’s evolution. With the premise that a stellar merger between a RG
with a degenerate core and a MS star mainly increases the RG’s envelope mass while leaving
its core intact, the core mass and structure of the RG is nearly unaffected by the merger.
Already compact and degenerate cores have higher Brunt—Viisila frequencies in the core
and thus a smaller AP, relative to the less compact and less degenerate cores arising from
more massive stars. This gives rise to a robust observational signature of mergers of this
type, provided that the core structure of the post-merger star is significantly different than

that of a single RG star with the same mass as the merger product.

Figure [2.2] shows the Brunt—Viisild frequency profiles of our fiducial models, where it is
apparent that the RG merger product largely retains the core gravity mode structure of its RG
progenitor. Whereas the 1.5 M, single star model has a more compact gravity mode region
characterized by a larger value of N in its degenerate core, the 2.5 M, single star model has
a more radially extended gravity mode region in its non-degenerate core whose N peaks at
a lower frequency. Importantly, for an 1.5 + 1.0 My RG+MS merger, the Brunt—Viisila
frequency profile more closely resembles that of the original 1.5 My RG. As vpax and Ay
(together with Tef) provide an independent asteroseismic measurement of the mass, AP,
can be used to distinguish a merger product from a single star via their different gravity
mode regions. Specifically, merger remnants are expected to have a smaller AP, (similar to
that of the progenitor) relative to single stars of the same mass, when evaluated at the same
luminosity. In the model in Figure2.2]at L = 60 Lo, the merger remnant has AP, = 61.9s,
very close to that of the original 1.5 My star (AP, = 57.7s) but very far from that of a
single star 2.5 Mo (AP, = 164.09).

The following sections elaborate on the point that AP, reveals the fingerprint of a stellar
merger, but only when the merger occurs after the primary has already left the MS (Section
[2.3.2), and only when the merger brings an RG with a degenerate core into a mass regime

where single star evolution does not produce degenerate cores (Section [2.3.3)).

2.3.2 AP, is sensitive to mergers on the RGB
We run a series of 1.5 + 1.0 My merger models where we vary the time of merger from
the main sequence to the lower RGB. When the merger product reaches 60 Ly during its

ascent up the RGB, we calculate AP,—this luminosity is chosen because RGs at L = 60
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Figure 2.3: The frequency of maximum power v« (fop left), large frequency spacing Av
(bottom left), asymptotic period spacing AP, (fop right), and helium core mass (bottom
right) of the merger product of a 1.5 M, primary with a 1.0 M secondary. The x-axis is the
radius of the merging primary relative to its radius at the TAMS, so post-MS mergers occur
when Ryccrete/RTaMs > 1. The asteroseismic quantities are evaluated when the merger
remnant reaches L = 60 L on the RGB. The red and blue lines show the analogous values
for single 1.5 Mg and 2.5 M5 RG models of the same luminosity.

Ly lie just below the bump at a value of Ay where mixed modes are still observable, but

well above the base of the RGB where the merger occurs.

We also calculate the large acoustic frequency spacing Av and peak oscillation frequency
vmax (T. Brown et al., [1991)):

R -1
Av:(z /0 ?) 22)

2 1/2
M\ (Ro\* (T
V’““X:3100“HZ(M_) (—G) ( eﬁ’@) (2.3)

© R Teﬂ

When combined with the surface temperature, these two quantities trace the total mass
and radius of the star. Independent of the time of merger, vimax and Ay are unsurprisingly
very close to their values for an equal-mass single RG, as the total mass and radius of the
resulting RG will be almost identical to a non-merged analogy, when measured at the same

luminosity.

Even though Av and v, are only sensitive to the total mass and radius, AP, traces the core
structure and retains information about the star’s evolutionary history which can be used
to identify merger remnants. Figure [2.3] demonstrates that for mergers occurring after the

TAMS, AP, of the merger product more closely resembles that of the 1.5 My progenitor
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Figure 2.4: Left: Propagation diagrams at L = 60 L, for a single 1.5 M, star (blue dotted
line), a 1.5 + 1.0 Mg MS+MS merger product (green solid line), and a single 2.5 M, star
(red dashed line). When the merger occurs while the primary is still on the MS, the merger
product will be nearly indistinguishable via AP, from an equal-mass single star. Right:
Propagation diagrams at L = 60 L, for a single 1.0 M, star (blue dotted line), a 1.0 + 0.5
Mo RG+MS merger product (green solid line), and a single 1.5 Mg, star (red dashed line).
As single stars below M < 2 Mg, all share similar degenerate core structures, AP, cannot
distinguish between a lower mass merger product and equal-mass single star.

as if it had never merged. Physically, this is due to the pre-merger core already being high
density and degenerate, such that its structure is insensitive to the overlying layers. In other
words, mergers which occur after the TAMS barely affect the underlying core structure of

the progenitor.

For mergers which occur when the primary is still on the MS, Figure [2.3shows that AP, is
essentially the same as that for a single star of the same total mass. The reason for this is
revealed in Figure[2.4] whose left-hand panel shows the propagation diagrams of an “early”
1.5 + 1.0 Mg merger which occurs at t = 0.5 ttams, when the primary is on the MS. We
see that, in contrast to the “late merger” case (right panel, Figure [2.2)), the Brunt—Viisild
frequency profile of the “early" merger model is indistinguishable from a single star of the
same mass. This occurs because the main sequence core is not degenerate and is sensitive
to the mass of the overlying material, so the core readjusts to be nearly identical to that of a
star that was born at 2.5 M. As an additional note, we find that, if the merger occurs very
close to the TAMS, AP, plateaus to an intermediate value between what is expected for 1.5
Mg and 2.5 My, single stars (Figure [2.3). However, due to the short time window for this

merger occur, it is unlikely that this case will be frequently observed.

In principle, a MS merger model may require more sophisticated simulations of the hydro-
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Figure 2.5: The difference between the period spacings of a single star and an RG+MS
merger product of the same total mass, for a merger which occurs when the primary is on
the lower RGB (/eft) or on the MS (right). In each panel, the period spacing difference is
evaluated at a luminosity of L = 60 Le. The side panels show the central density o single
and central degeneracy parameter 7. for single stars at L = 60 Ly. Mergers resulting in
stars with M > 2 M, are distinguishable from their non-merged counterparts via AP,, but
only when the primary has already left the MS by the time the merger occurs. The hatching
covers unphysical mergers where Mproduct > 2Mprimary-

dynamical mixing associated with such a traumatic event. In such mergers, there may be
a greater degree of mixing between the two stars, with material from both stars extending
throughout the remnant in general. However, as the evolution of a MS star of a given
composition is essentially determined by its mass, we expect our simple surface accretion
approximation to capture the most important effect. To confirm this, we use MESA’s native
entropy sorting procedure (accessible as create_merger_model) to model a 1.5 + 1.0
MS+MS merger, and confirm that the resulting gravity mode structure at L = 60 Lg is

virtually identical to the surface accretion merger model.

2.3.3 Pre-merger core degeneracy is key to merger identification

To understand the parameter space where merger products can be asteroseimically identified,
we run two grids of merger models. The grids have primary mass in the range Mpimary €
[0.75,2.50] My and post-merger mass in the range Mproquee € [1.00,2.75] Mg, spaced by

0.25 Mg in each dimension. We consider both the case where the merger occurs on the lower
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RGB (when the primary’s radius reaches 1.25 times its value at TAMS) as well as the case
where the merger occurs on the MS (when the primary reaches half of its TAMS age). Figure
compares the period spacings of merger products at 60 L to non-merged stars of equal
masses. It is clear that the period spacing is substantially different for high enough product
masses when the merger occurs on the RGB, but it is practically indistinguishable when the
merger occurs on the MS. While AP, could conceivably be reasonably discriminating for
Mproduct as low as = 1.75 M, in the RG+MS case, the effect is especially pronounced for
> 2 Mg, corresponding approximately to the mass below which a star would be expected

to develop a degenerate core.

In RGs with high core degeneracy, core properties such as the temperature, density, and
Brunt—Viisild frequency are primarily functions of the core mass, and they are largely
independent of the properties of the surrounding envelope. This is the origin of the famous
luminosity-core mass relation for RGs (Kippenhahn, 1981). Hence, AP, can be seen as
a tracer for the core mass. Late-stage MS stars will develop helium cores which grow
as hydrogen-shell burning progresses, developing into proper RGs when the core mass
reaches the star’s Schonberg—Chandrasekhar limit (Schonberg and Chandrasekhar, [1942).
For a star with M < 2 M, the core becomes degenerate before this limit is reached, and
the star enters the RGB with a degenerate core (J. Cox and Giuli, [1968)). In this case, a
merger which occurs after a degenerate core has already been formed will leave AP, nearly
unchanged—such mergers will simply add mass to the envelope, and the small increased
pressure will leave the core unaffected. The merger product will be distinguishable from a
single star in the case that the latter would otherwise be expected to form a more massive

non-degenerate core, which would have a larger AP,.

We note, however, that AP, is insensitive to a merger in the case that a single star with the
same mass as the product would have developed a degenerate core anyway—this can be
seen in our models for Mproducet < 2 M in Figure@ This is also demonstrated in the right
panel of Figure[2.4] which shows a propagation diagram for the result of a 1.0+ 0.5 RG+MS
merger. Since both 1.0 and 1.5 M, single stars would be expected to develop degenerate
cores through normal stellar evolution, their gravity mode structures are very similar when
they evolve to the same point on the RGB, and AP, cannot be used to distinguish them (or
a merger bringing a 1.0 Mgy RG to a 1.5 Mg RG).

2.3.4 Mergers on the red clump are difficult to distinguish
We have so far focused on first ascent giants, which manifest observationally as a roughly

horizontal track at low AP, tracing the star’s evolution through Av. However, many, more
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evolved RGs have already exhausted their hydrogen supplies available for off-center burning
and have entered the helium core burning phase, with most such stars having accumulated
on the red clump. Red clump stars are also very apparent on a spacing diagram as a large
cloud of points at low Ay and high AP,, which makes them straightforwardly distinguishable
from RGB stars (Figure [2.6). It is natural to wonder whether measurements of AP, can
be used to distinguish red clump merger remnants from single stars, similar to the process
described above for RGB stars.

In practice, identifying merger remnants on the clump will be difficult due to the very similar
values of AP, between low-mass and high-mass clump stars. The evolution of AP, over
time is similar for the single 1.5 Mg and merger 1.5+ 1.0 Mg models. However, because the
merger model has a larger total mass relative to the single star model, it has a systematically
larger Ay =~ \/G_ﬁ This manifests as a slight horizontal offset between the two models’
evolutionary tracks on a spacing diagram. While this effect also applies to first ascent RGs,
it is less obvious since the trajectory of such RGs through a spacing diagram is shallower,
i.e., Av evolves much more quickly for first ascent giants than clump stars, relative to AP,.
This small offset between the single 1.5 Mg and merger 1.5 + 1.0 Mg evolutionary tracks
is comparable to both models’ offsets from the track of a single 2.5 Mg, star. In general,
the three models all coincide with each other at some point in their evolution, making them
difficult to distinguish using asteroseismology. Therefore, although constraining the merger
history using AP, may be possible in some cases, we anticipate that it will be difficult for

most clump stars.

2.4 Merger Candidates

2.4.1 Promising candidates from AP,

The evolutionary stage of RGs can be tracked on an asteroseismic period vs. frequency
spacing diagram like that shown in Figure [2.6] where merger remnants will appear as
outliers relative to the paths taken by single stars. When ascending the RGB, RGs first
evolve from larger AP, and Av to smaller AP, and Av, later accumulating at high AP, and
low Av once they reach the red clump. Stars of different mass take different paths through
the diagram, and merger remnants take different paths from single stars of the same mass.
Hence, combined with an asteroseismic mass estimate (which can be deduced via viyax, Av,
and T.g), mergers that occur after the primary has left the MS can readily be apparent from
AP,. For stars with M > 2 M, merger remnants will manifest as stars with a significantly
lower AP, than expected from their mass. In other words, merger remnants will lie near

tracks corresponding to lower mass single stars.
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Figure [2.6|also shows the measured AP, versus Av for a sample of 6111 RGs in the Kepler
field from the catalog of Vrard, Mosser, et al.,2016. Of these RGs, we coarsely classify these
stars as first ascent giants (1995; AP, < 125s) and red clump stars (4116; AP, > 1255).
We identify 24 stars in this sample on the first ascent RGB with M > 2 M, which, despite
their ostensibly larger masses, appear to lie on the sequence of a less massive (= 1.5 M) star
through this space. Of these, 9 are flagged as having aliases, although Deheuvels, Ballot,
Gehan, et al. (2022) find that the extracted period spacings of “high-mass” (M > 1.6 M)
RGs within this sample are usually unaffected by these. Note that one of these stars (KIC
8517859) has been classified as a ¢ Scuti star in some catalogs Barcel6 Forteza et al. (e.g.,
2018) which, if correct, would exclude it as a merger remnant candidate. The possibility
that it is a 6 Scuti-RGB binary system (similar to, e.g., the system reported by Murphy,
T. Li, et al., 2021)) is also intriguing.

However, Yuetal. (2018)), who later revisited these asteroseismic mass measurements, found
that 17 of these candidates have masses < 2 Mg, after applying a correction assuming that
these stars are first ascent giants (with one candidate absent in their catalog). Nonetheless,
6 of these stars (KIC 12254159, KIC 2972876, KIC 7778197, KIC 8708536, KIC 9907511,
and KIC 11465942) have M > 2 M, in both catalogs, and should be considered the strongest
merger remnant candidates in the sample. These merger candidates are listed in Table [2.1]
For some of these candidates, it is possible that their true masses lie a few o below their
reported values, in which case they are consistent with single stars with M ~ 1.8 M, without
any need to invoke a merger scenario. Another possible source of false positives is that the
extracted period spacings underestimate the true value—such errors may be exacerbated
by suppressed dipole modes in some RGs (Mosser, Elsworth, et al., 2012; Garcia, Pérez
Hernandez, et al., 2014} Fuller, Cantiello, et al., 2015}, Stello, Cantiello, Fuller, Garcia,
et al., 2016; Mosser, Belkacem, et al., 2017)).

Note that our 1.5 M, single star model track appears to run at slightly lower AP, than the
observed sample. Lower mass models come closer to the data points due to their smaller
frequency spacings, as expected since a mass of ~ 1.2 M, is most common amongst Kepler
RGs. It may also be possible that the models predict slightly too small AP, (or conversely,
slightly too large Av) or that this difference is related to a correction applied in the Vrard,
Mosser, et al. (2016) sample in the conversion between the uncorrected period spacing

(which depends complexly on coupling to acoustic modes) and the asymptotic value.

Because RG evolution is primarily governed by core physics, we expect that the product
of a 1.5+ 1.0 My merger after the TAMS to ascend the RGB at a rate similar to a single

1.5 Mg, star, i.e., much more slowly than a single 2.5 Mg, star. In our models, a 1.5 + 1.0
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M merger remnant spends 37.8 Myr in the range 4 uHz < Ay < 10 uHz versus the much
shorter 2.8 Myr for a single 2.5 M, star. Hence, even though the single star evolutionary
route is more common, merger products will be over-represented relative to single stars of

the same mass within this range of frequency spacing.

Just before this paper was finalized, Deheuvels, Ballot, Gehan, et al. (2022) performed a
similar study investigating the asteroseismic signatures of mass transfer. They also found
that RGs which lie below the main RGB sequence in Av—AP, space can be explained by
stars that have accreted mass after developing a degenerate core. They propose that stars
that lie below the main RGB sequence (especially those with M > 1.8 M) have likely
accreted mass, which increases their Ay without modifying AP, substantially. Indeed, our
models predict the same behavior, which is why the merger model in Figure [2.6] lies to
the right of the single star model. Using this asteroseismic signature, they identify ~ 30
RGs which may have experienced mass transfer in the past. Several of their mass transfer
candidates do not appear in our list of candidates because they either have M < 2 M, or
do not appear in the catalog of Vrard, Mosser, et al. (2016) but have separately measured
period spacings. In turn, our candidate list contains stars which do not lie below the RGB

period spacing sequence and therefore are not selected by their method.

2.4.2 Recognizing merger remnants in the absence of AP,

While AP, is a robust way to identify certain merger remnants on the basis of an apparently
under-massive core, it may be possible to identify merger remnants without AP,. Specifi-
cally, by using measurements of Av, viax, and Teg, one can in principle constrain the stellar
mass M, radius R, and luminosity L. The latter quantities can also be determined using
Gaia parallax measurements, given a reliable 7T.g. A merger remnant would then manifest
as a giant which is less luminous and/or cooler than possible for a single star of mass M

which is just beginning its ascent up the RGB.

For example, one could distinguish a 1.5 + 1.0 My merger remnant from a single 2.5 Mg
star based on their location on the Hertzsprung-Russell diagram (HRD) in Figure[2.2] This
is likely only possible if the remnant giant is young enough to be located at the base of the
RGB such that its luminosity is smaller than that of a single 2.5 My model at the bottom of
the RGB. In other words, at a given T and mass M, merger remnants would be expected to
have smaller luminosity (i.e., smaller R and larger Av and vp,,x) than expected to be possible
from the model track of a single star. As an example, four of our merger candidates from
above lie below the 2.5 M, track in Figure|2.2]and could potentially be identified using this
method, if they were to have asteroseismic masses greater than 2.5 M.
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This method of identification is limited because it can only identify remnants young enough
that they lie near the base of the RGB, and with masses where the minimum RGB luminosity
is somewhat sensitive to mass. Additionally, the stellar track on a HRD is model-dependent
and can vary with metallicity, further complicating this method (Basu et al.,2012). Nonethe-
less, this method does not require measurements of APy, so it may be applicable to a much
larger number of stars for which only Av and v« can be measured, as expected for the bulk
of red giants observed by TESS. We encourage follow-up work to investigate this technique

in more detail.

2.5 Discussion

2.5.1 Merger dynamics

The RG+MS mergers described in this work may naturally be formed by binary coalescences
when the primary in a close binary expands along the RGB and initiates unstable mass
transfer (for a review, see Ivanova, Justham, X. Chen, et al.,2013)). For conservative mass
transfer, a mass ratio ¢ < 2/3 (where ¢ is the ratio of the donor to accretor mass) is
required for stable mass transfer from a n = 3/2 polytrope. Hence mass transfer in standard
coeval binaries (where an RG primary accretes onto a less massive secondary such that
g > 1) is typically expected to be unstable, though we note a radiative core does enhance
mass transfer stability (Soberman et al., [1997). In these unstable cases, stars are expected to
eventually merge in a bright transient (“luminous red nova”; e.g., Ivanova, Justham, Nandez,
et al., 2013). Moreover, on the lower RGB where the envelope binding energy is still large,

mergers will occur more frequently relative to successful envelope ejections.

Hydrodynamical simulations (MacLeod et al., 2018)) have shown that stellar coalescences
are expected to produce a bipolar outflow structure which has been observed in follow-up
radio observations of a number of luminous red novae (Kaminski, Steffen, et al., 2018)).
With observations taken using the Atacama Large Millimeter Array, Kaminski, Steffen,
et al. (2018]) estimate the ejecta mass of three red novae (V4332 Sgr, V1309 Sco, and V838
Mon) as varying dramatically between events, but characteristically on the level of a few
percent of the total mass of the system. This is comparable to the prediction of Metzger and
Pejcha, 2017|that the ejecta mass Me; ~ 0.1M is a relatively small fraction of the total mass
of the system, such that the merger results in a single star with nearly the same total mass.
The detection of similar outflow material around stars identified as merger products using
asteroseismology could validate this method. In may cases, however, the merger ejecta
may have already been expelled from the system. The lifetime of protoplanetary disks has
been estimated to be on the order of 1 Myr (Mamajek, 2009; Cieza, 2015} M. Li and Xiao,

2016), whereas AP, should be able to discern a merger remnant for approximately ~ 40
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Myr throughout its ascent up the lower RGB. Hence, circumstellar disks have most likely

already been expelled from most asteroseismically detectable merger remnants.

Interestingly, V1309 Sco (Tylenda, Hajduk, et al., [2011) is thought to have arisen from a
merger involving a primary of mass M; ~ 1.5 My and radius Ry ~ 3.5 Ry (Metzger and
Pejcha, 2017). The primary was thus on the sub-giant branch at the time of merger, at a time
favorable for asteroseismic identification of the merger product. For a secondary of mass
M, > 0.25 M, the merger product would lie in the mass range favorable for asteroseismic
identification, so V1309 Sco may be a perfect example of the type of stellar merger whose
remnant can later be identified through asteroseismic techniques. Along similar lines,
the SPIRITS survey recently identified a class of “eSPecially Red Intermediate-luminosity
Transient Events” (“SPRITEs”; Kasliwal et al., 2017)), characterized by luminosities between
those of novae and supernovae, relatively red colors, and lack of any optical counterparts.
(Metzger and Pejcha, 2017) suggest that these dustier SPRITE events may in fact be giant

star mergers, in contrast to luminous red novae, which are more likely to be MS mergers.

2.5.2 Additional merger signals

To corroborate the merger candidates asteroseismically identified above, additional evidence
for a previous merger event would be useful. Merger remnants are expected to initially be
rapidly rotating, though they may spin down rapidly on a time scale of less than 1 Myr
(Casey, Ho, Ness, Hogg, Rix, Angelou, Hekker, Tout, Lattanzio, Karakas, et al., 2019b).
Some remnants may be expected to exhibit large magnetic fields generated during the
merger (Schneider, Podsiadlowski, et al., 2016}, Schneider, Ohlmann, Podsiadlowski, Ropke,
Balbus, Pakmor, and Springel, |2019)) or sustained by a dynamo in the convective envelope
due to the high post-merger rotation rate. The fields may be detected via spectropolarimetry
(Auriere et al., 2015) or they may manifest in Ca Il H&K emission (Medeiros and Mayor,
1999)) or X-ray emission (Soker and Tylenda, |[2007). A class of lithium-enriched giants has
also emerged in the last few decades, some of which are also rapidly rotating (Charbonnel
and Balachandran, 2000; Drake et al., 2002; Rebull et al., 2015; Martell et al., 2021a).
Evidence has suggested tidal spin-up (Casey, Ho, Ness, Hogg, Rix, Angelou, Hekker, Tout,
Lattanzio, Karakas, et al., 2019b), stellar mergers (Siess and Livio, 1999; Jura, 2003; Melis,
2020) and/or giant planet accretion (Denissenkov and A. Weiss, 2000; Sandquist et al.,
2002; Reddy et al., 2002; Carlberg, K. Cunha, et al., 2012; Punzi et al., 2017; Soares-
Furtado et al., 2021) as explanations for these lithium-enhanced, sometimes rapidly rotating
stars. Asteroseismic merger candidates should be examined for these other signatures of a

prior stellar merger.
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While there have been many surveys that have searched for lithium enhancement in RGs,
many of them have were directed at a different field of view than the Kepler data set (Buder
et al., 2018; Kumar, Reddy, S. Campbell, et al., |2020), not sufficiently photometrically
deep (e.g., Kumar, Reddy, and Lambert, 2011), or restricted only to clump stars (e.g.,
Singh et al., 2021)). The studies of Deepak and Lambert, 2021 and Yan et al., 2021| cross-
referenced asteroseismic classifications with high lithium abundances via LAMOST data,
but none of our merger candidates appear in their publicly available samples, suggesting
they are likely not strongly lithium enhanced. While the catalog of Casey, Ho, Ness, Hogg,
Rix, Angelou, Hekker, Tout, Lattanzio, Karakas, et al. (2019b) contains 23 lithium-rich
giants which have also been asteroseismically observed by Kepler, only 2 of them have
been identified to be on the RGB, and none of them coincide with any of our 24 merger
remnant candidates. Additional spectroscopic study of our candidates may reveal more

subtle, unusual compositional features which may be associated with a previous merger.

In addition, examining the light curves of Kepler RGs (and performing limited spectroscopic
follow-up), Gaulme, Jackiewicz, Spada, et al. (2020) find a correspondence between surface
activity, close binarity, and suppressed oscillations, consistent with previous work (Garcia,
Mathur, et al., 2010; Chaplin, Bedding, et al., 2011; Gaulme, Jackiewicz, Appourchaux,
et al., 2014; Mathur et al., 2019). As discussed in Section @ merger remnants may
have elevated rotational rates and magnetic fields, suggesting that their oscillations may
be preferentially suppressed. This may prevent a measurement of AP, in some cases and
may partially account for our relatively low fraction of remnant candidates (see Section
@). Of our 24 remnant candidates, 16 appear within the catalog of Gaulme, Jackiewicz,
Spada, et al. (2020), who search for surface activity via rotational modulation in RG’s light
curves. However, they do not report surface activity in any of these candidates. In addition,
none of our candidates appear in the rotational catalog of Ceillier et al. (2017). While these
non-detections do not provide additional support for the merger hypothesis, they may reflect
an asteroseismic candidate selection bias due to the suppression of oscillations associated

with stronger magnetic activity.

2.5.3 Rates of stellar mergers

For a circular orbit and mass ratio ¢ = 3/2, Roche overflow will occur when a = 2.4R;
(Eggleton, [1983). We calculate that a 1.5 Mg in a circular binary with a 1.0 M star
will undergo Roche overflow on the lower RGB (a < 30 Ry) when the period P < 12 d,
with weak dependence on the mass ratio. Such close binaries should account for = 4% of
solar-type binaries (Raghavan et al., 2010). Price-Whelan et al. (2020) demonstrate a deficit

of “close” binaries in red clump and asymptotic giant stars suggestive of stellar mergers on
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the RGB. Their observed decrease of close binaries approaching the red clump implies that
~ 8% of systems (singles and binaries) merge on the RGB, with ~ 3% of stars merging on
the lower RGB where log g is higher than that of the clump but lower than that of the MS.
Tracking transient events, Kochanek et al. (2014)) additionally find that the rate of mergers in
the Milky Way between an MS star and an evolved star is ~ 0.045 yr~!. Together with their
star formation model (3.5 M yr~! and the initial mass function of Kroupa and Weidner
2003)) this merger rate implies that ~ 7% of red giants are merger remnants (although many
of these mergers may occur higher up on the RGB). These observations consistently suggest
that the fraction of lower RGB stars that are merger remnants (and which merged after the

MS) is on the order of a few percent.

Within the Vrard, Mosser, et al. (2016) data set, we identify 24 candidate remnants (see
Section [2.4.1)), representing ~ 1.2% of the total number of RGB stars in their sample.
A total of 6 (= 0.3%) are found to be strong candidates using the asterosemismic mass
measurements of both Vrard, Mosser, et al. (2016) and Yu et al. (2018]). These fractions
appear to fall somewhat short of our estimates above, but this is not unexpected. Our
method is most sensitive to the subset of RG remnants with M > 2 M (corresponding to
the identification criteria for candidate remnants), and also those which merge low enough
on the RGB to produce a remnant which can still be probed effectively by asteroseismology.
More detailed population synthesis would be needed to confirm whether our candidate
fraction of ~ 1% is consistent with expectations of merger rates fulfilling the asteroseismic

selection criteria.

2.5.4 Mergers in dense stellar environments

Dense stellar populations are clearly a natural setting for frequent stellar collisions as well
as stellar-evolution mediated mergers in binaries hardened by scattering events. The high
stellar densities associated with the core of globular clusters make them hotbeds for such
mergers. Hills and Day (1976)) estimate that as many as tens of percent of stars in some
globular clusters may have suffered from at least one collision in their history, and Liu and
D. Jiang (2021) find (assuming an initial binary fraction f; = 0.5) that as many as 50%
of RGs in a globular cluster may have undergone a binary interaction, with evolved blue
straggler stars making up ~ 10% of RGs. Unfortunately, owing to limited observing fields
and stellar crowding, asteroseismic measurements of stars in star clusters is sparse—only
four open clusters appear in the Kepler field, and only two of those have measured period
spacings for non-clump giants (NGC 6791 and NGC 6819; Corsaro et al., [2012). Using
these data, Brogaard et al. (2021]) recently demonstrated the presence of overmassive giants

in NGC 6791—these stars likely originate from mass transfer events or mergers which could
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potentially be encoded in the period spacing. In addition, while limited asteroseismology
has been conducted on globular clusters (e.g., Stello and Gilliland, 2009; Miglio, Chaplin,
et al., 2016), measurements of the period spacing for stars in these clusters still remain

elusive.

Ultimately, future observational asteroseismology campaigns, especially those directed
towards dense stellar regions (e.g., Miglio, Girardi, et al., [2019), appear lucrative for
identifying a large sample of merger products as well as providing a direct measurement
of the merger rate in these populations. Optimal observing targets for this type of merger
remnant identification would have turn-off masses ~ 1-2 M, where stars with masses < 2
Mg have entered the RGB but M > 2 Mg merger remnants can still form (although this
threshold mass may decrease somewhat at lower metallicity). Such populations would place

detectable merger remnants below the RG bump, where asteroseismology is most effective.

2.6 Conclusion

In this work, we investigated the asteroseismic signatures of stellar mergers, focusing on
observable diagnostics in red giant merger remnants. Our main finding is that merger
remnants can often be identified by the presence of an over-massive envelope relative to
their cores, compared to what is expected for a single star. Merger remnants can be found
amongst red giants, provided an asteroseismic measurement of the mass (via viax, Av, and
Terr), in addition to a measurement of the mixed mode period spacing AP,. Since the latter
traces the core structure, it can be used to distinguish merger products from single stars

under the following conditions:

* The merger occurs when the primary is on the RGB, so that it has already developed

a dense core and the merger essentially only adds to the envelope of the star (Section

2.3.2).

* The additional mass contributed by the secondary brings the mass of the giant from
M <2 MgtoM > 2 Mg. This threshold corresponds roughly to the mass below
which an RG would form a degenerate core, which would be distinguishable from the

non-degenerate core of a more massive star formed via single star evolution (Section

2.3.3).

Mergers that occur when the primary is on the main sequence are difficult to identify because
the merger remnant structure is nearly indistinguishable from a single star of the same mass.

The same is true for a merger that does not bring the total mass above ~2 M.
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In other words, AP, can be used to identify a merger remnant in the situation where
the primary in a RG+MS merger has already developed a dense and degenerate core that
withstands the merger, which would not otherwise be produced by a single star with the
mass of the merger product. At the same point on the HRD (or alternatively, at the same
Vmax O Av), a merger product is distinguished by a smaller period spacing relative to the
expectations of a single star (Figure 2.6). Even without a AP, measurement, mergers
remnants can also potentially be identified as stars having a luminosity that is too low for
their asteroseismically measured mass (see Section , and future work should examine

this possibility in more detail.

Fortunately, the RG mass range where merger remnants can be identified is well-sampled
in existing asteroseismic catalogs built primarily from Kepler data. Using the catalog of
Vrard, Mosser, et al., 2016, we have identified 24 promising candidates in Section
and we encourage follow-up observations to search for additional hints of a prior merger
such as rapid rotation, magnetic fields, unusual chemical abundances, or circumstellar gas
and dust. These stars are a natural endpoint of close binary stellar evolution, and they are
expected to be even more common in dense stellar environments. A further examination
of the data and future observational surveys will provide illuminating constraints on the

occurrence rates and outcomes of stellar mergers in the Milky Way.
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2.A MESA Simulation Controls

The input inlist_project files for all of our MEsA runs are very similar, with variations
in specific parameters which control the initial mass of the star, as well as the mass ac-
creted during the rapid merger period. Here, the parameters x_ctrl (1) and x_ctrl(2)
represent the mass accretion rate during the merger period (fixed at M = 107> My yr™!)
and the star age at which the merger occurs, respectively. We have also used the parameter

x_integer_ctrl(1l) to control profile write-out. This work is accompanied by a Zenodo
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repository containing inlists and selected output files associated with the simulations used
in this work (Rui and Fuller, 2021b). We have included as a representative example the
inlist_project file for the 1.5 + 1.0 My merger run, where the merger occurs when the
radius of the primary reaches 125% of its value at TAMS:

&star_job
pgstar_flag = .true.
/ ! end of star_job namelist

&controls
et Write GYRE
write_pulse_data_with_profile = .true.
pulse_data_format = ’GYRE’
x_integer_ctrl (1) = 10 ! Force write-out at log L close to integer values

< divided by this number

e Manages accretion

x_ctrl(l) = le-5 ! mass accretion rate

x_ctrl(2) = 2614839409.7825627 ! time (yr) at which to start accretion (if
<~ @0, no accretion)

mass_change = 0 ! initial accretion rate (modified dynamically)
max_star_mass_for_gain = 2.50

et e T MAIN
initial_mass = 1.50

initial_z = 0.02

use_Type2_opacities = .true.

Zbase = 2.d-2

predictive_mix (1) = .true.
predictive_superad_thresh(l) = 0.005
predictive_avoid_reversal(l) = ’he4’
predictive_zone_type(l) = ’any’
predictive_zone_loc(l) = ’core’
predictive_bdy_loc(1l) = ’top’
dX_div_X_limit_min_X = 3d-5

dX_div_X_limit = 3d-1

dX_nuc_drop_min_X_limit = 3d-5
dX_nuc_drop_limit = 3d-2
et e T T WIND
cool_wind_RGB_scheme = ’Reimers’
cool_wind_AGB_scheme = ’Blocker’

RGB_to_AGB_wind_switch = 1d-4
Reimers_scaling_factor = 0.2
Blocker_scaling_factor = 0.5

use_accreted_material_j = .true.



accreted_material_j = 0

_I ______________________________________
overshoot_scheme (1) = ’exponential’
overshoot_zone_type (1) = ’'nonburn’
overshoot_zone_loc(l) = ’core’
overshoot_bdy_loc(1l) = ’'top’

overshoot_£f(1) = 0.015
overshoot_f0 (1) = 0.005

overshoot_scheme (2) = ’exponential’
overshoot_zone_type(2) = ’nonburn’
overshoot_zone_loc(2) = ’shell’
overshoot_bdy_loc(2) = ’any’

overshoot_£(2) = 0.015
overshoot_f0(2) = 0.005

overshoot_scheme(3) = ’exponential’
overshoot_zone_type(3) = ’'burn_H’
overshoot_zone_loc(3) = ’core’
overshoot_bdy_loc(3) = ’top’

overshoot_f(3) = 0.015
overshoot_f0(3) = 0.005

overshoot_scheme(4) = ’exponential’
overshoot_zone_type(4) = ’'burn_H’
overshoot_zone_loc(4) = ’shell’
overshoot_bdy_loc(4) = ’any’

overshoot_£f(4) = 0.015
overshoot_f0(4) = 0.005

overshoot_scheme (5) = ’exponential’
overshoot_zone_type(5) = ’burn_He’
overshoot_zone_loc(5) = ’core’
overshoot_bdy_loc(5) = ’top’

overshoot_f(5) = 0.015
overshoot_f0(5) = 0.005

overshoot_scheme (6) = ’exponential’
overshoot_zone_type(6) = ’'burn_He’
overshoot_zone_loc(6) = ’shell’
overshoot_bdy_loc(6) = ’any’

overshoot_f(6) = 0.015
overshoot_f0(6) = 0.005

set_min_D_mix = .true.
min_D_mix = 1d0O

photo_interval = 25
profile_interval = 50
max_num_profile_models = 3000

OVERSHOOTING
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history_interval = 10
terminal_interval = 10
write_header_frequency = 10
max_number_backups = 500
max_number_retries = 3000
max_timestep = 3d15

e e e MISC
photo_interval = 25

profile_interval = 50

max_num_profile_models = 3000

history_interval = 10

terminal_interval = 10

write_header_frequency = 10

max_number_backups = 500

max_number_retries = 3000

max_timestep = 3d15
T T MESH

mesh_delta_coeff =1
varcontrol_target = 0.7d-3

/ ! end of controls namelist

&pgstar

The run_star_extras.f file accompanying this run takes the form of the default
standard_run_star_extras.inc file, slightly modified to handle the merger and profile
write-out. In particular, in the extras_check_model function, we add the following lines
to initiate accretion at the proper time specified in the inlist_project file:

if (s% star_age >= s% x_ctrl(2) .and. s% x_ctrl(2) /= 0) then
s% mass_change = s% x_ctrl(l)
end if

Additionally, in the function extras_finish_step, we add the following lines to force a
write-out of the stellar profile at values of log L close to multiples of 0.1.
f = s% x_integer_ctrl(1l)

s% xtra(l) = s% log_surface_luminosity

if ((floor(f * s% xtra_old(1)) - floor(f * s% xtra(l)) .ne. 0)) then

s% need_to_update_history_now = .true.
s% need_to_save_profiles_now = .true.
endif

In Section [2.3.2 we briefly discuss the usage of the create_merger_model fea-
ture to confirm the validity of modeling a MS+MS merger as a surface accretion

event onto the primary. Specifically, we have included in inlist_project the op-
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tion write_model_with_profile = .true. for the M = 1.50 Mgy and M = 1.00
M models, and have passed the saved model files at the desired time of accretion to

saved_model_for_merger_1 and saved_model_for_merger_2.

In Section[2.3.4] we examine the period spacing for stars undergoing helium core burning on
the red clump. As the helium flash is a very difficult stage of evolution to model numerically,
we include the following two lines in the &controls section of inlist_project in order
to prevent the timestep from becoming prohibitively small:

use_dedt_form_of_energy_eqn = .true.
convergence_ignore_equl_residuals = .true.
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Chapter 3

FINDING THE UNUSUAL RED GIANT REMNANTS OF
CATACLYSMIC VARIABLE MERGERS

Rui, NZ and J Fuller (2024). “Finding the unusual red giant remnants of cataclysmic variable
mergers”. In: Open Journal of Astrophysics. por:|10.33232/001c.123878.

Abstract

Mergers between helium white dwarfs and main-sequence stars are likely common, produc-
ing red giant-like remnants making up roughly a few percent of all low-mass (< 2M) red
giants. Through detailed modeling, we show that these merger remnants possess distinctive
photometric, asteroseismic, and surface abundance signatures through which they may be
identified. During hydrogen shell burning, merger remnants reach higher luminosities and
possess pulsations which depart from the usual degenerate sequence on the asteroseismic
Ay-AlIl diagram for red giant branch stars. For sufficiently massive helium white dwarfs,
merger remnants undergo especially violent helium flashes which can dredge up a large
amount of core material (up to ~ 0.1Mg) into the envelope. Such post-dredge-up rem-
nants are more luminous than normal red clump stars, are surface carbon-, helium-, and
possibly lithium-rich, and possess a wider range of asteroseismic g-mode period spacings
and mixed-mode couplings. Recent asteroseismically determined low-mass (< 0.8M) red
clump stars may be core helium-burning remnants of mergers involving lower-mass helium

white dwarfs.

3.1 Introduction

Growing evidence suggests that mergers between main-sequence (MS) stars and low-mass
white dwarfs should be fairly common (Schreiber, Zorotovic, et al., [2015). The likely out-
come of such a merger is to accrete the MS star onto the white dwarf, igniting hydrogen shell
burning and creating an unusual red giant (RG) star. These RG remnants of those mergers
should exist within the stellar population, and may be identifiable through a combination of

their photometry, pulsations, and surface abundances.

Cataclysmic variables, or CVs, are stably mass-transferring systems with white dwarf (WD)
accretors and MS donors. Typically, the progenitor binaries of CVs are post-common-
envelope systems (Paczynski et al., 1976 Belczynski et al., [2005; Toonen and Nelemans,
2013 Camacho et al., [2014; Ablimit et al., 2016; Zorotovic and Schreiber, [2022)) which
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have been tightened by magnetic braking and gravitational waves until the onset of Roche

lobe overflow (Knigge, 2011).

For a while, the research field has been dogged by a WD mass problem (e.g., Zorotovic and
Schreiber, [2020):

1. the typical accretor mass in CVs is =~ 0.8 M, greater than the typical observed mass
of carbon—oxygen white dwarfs (CO WDs) ~ 0.6M, and

2. only a small handful of helium(-core) white dwarf (hereafter He WD) accretors have
ever been discovered in accreting systems, even though they should be frequent,
observable outcomes of conventional binary stellar evolution (Zorotovic, Schreiber,
and Génsicke, [2011; Zorotovic and Schreiber, [2020; Pala et al., 2022).

Where are all of the low-mass CV accretors?

In the past decade, it was realized that the WD mass problem can naturally be solved by an
extra, accretor mass-dependent angular momentum loss mechanism (Schreiber, Zorotovic,
et al., 2015). This so-called consequential angular momentum loss would preferentially
destabilize the mass transfer of CV-like systems with lower-mass white dwarfs, causing
them to quickly merge before they can be observed (Belloni et al., 2018). Physically,
this mechanism may be a frictional effect associated with nova events (Shen, 2015; Shen
and Quataert, [2022), which are expected to be much longer-duration for lower-mass white
dwarfs (Shara, Prialnik, et al., [1993) and may cause mergers to occur on the timescale of

hours (Shen, 2015), although the subsequent analysis is agnostic to the details.

If CVs with low accretor masses are missing because they merge, it is obvious to ask whether
their remnants can be observed and identified. In the case where the progenitor system is
a close He WD-MS binary (the scenario of focus in this study), the remnant is expected
to evolve along highly modified versions of the red giant branch (RGB) and possibly core
helium burning (CHeB, or the red clump) phases of isolated, low-mass (M < 2M,) stars.

More recently, in only the last few years, the community has realized that stellar interactions
may produce RGs with conspicuous and lasting asteroseismic signatures. Rui and Fuller
(2021a) and Deheuvels, Ballot, Gehan, et al. (2022) show that many first-ascent RGs
which gain hydrogen mass from companions (either through merger or stable mass transfer)
possess unusually low gravity-mode period spacings. Y. Li et al. (2022) and Matteuzzi et al.
(2023) similarly identify anomalously undermassive CHeB stars through asteroseismology.

Because asteroseismology probes internal structures, it constrains separate information
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from traditional techniques which probe the surface properties of the star. It may thus play

a critical role in identifying the remnants of cataclysmic variable mergers.

In this work, we investigate observable signatures of He WD-MS merger remnants. The
physical picture we advance is shown schematically in Figure We construct and evolve
merger remnant models (described in Section @), and demonstrate a significant number of
telltale signs (photometric, asteroseismic, and surface compositional) which are complex
downstream consequences of a highly cold and degenerate core during hydrogen shell
burning. Sections [3.3] and [3.4] discuss merger remnants during hydrogen shell burning
(RGB) and helium core burning (CHeB), respectively. In Section [2.4.1] we identify some
merger remnant candidates in existing observations. Section [3.6] discusses other possible
signatures, and contextualizes this work in the broader nascent field of binary interaction

asteroseismology. Section [3.7]summarizes our key findings.

3.2 Stellar models

By the time of merger, the He WD component of a close He WD-MS binary has undergone
an extended phase of radiative cooling lasting potentially up to gigayears. When the binary
subsequently merges, the MS component (now the remnant’s envelope) quickly ignites
hydrogen in a burning shell around the He WD (now the remnant’s core) and sets up

thermal equilibrium on a short envelope thermal timescale:

GM?
RL

cotmyrx (M) (LB (L)
FUYER ML) \Torg) 3oL

In contrast, the degenerate core only thermalizes (via electron-mediated conduction) with

Tth,env =

3.1

the hydrogen burning shell on a much longer timescale ~ 10—100 Myr comparable to the
duration of the RGB phase (see Appendix [3.B]). Therefore, as previously noticed by Zhang,
Hall, et al. (2017), the low-entropy core can persist for long enough to influence the long-

term evolution of the remnant.

Using Modules for Experiments in Stellar Astrophysics (MESA, version r10398; Paxton,
Bildsten, et al.,|[2010; Paxton, Cantiello, et al.,|2013; Paxton, Marchant, et al.,[2015} Paxton,
Schwab, et al., [2018), we create and evolve evolutionary models of merger remnants,

consisting of cold helium cores surrounded by hydrogen envelope]

We do this in the following stages (summarized in Figure [3.2)):

Inlists and other files required to reproduce our results can be found at the following Zenodo link:
https://zenodo.org/records/10828187


https://zenodo.org/records/10828187
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reality model

< a binary system evolves until one of the stars evolves into a RG
a single star model is evolved through the MS
into a RG of the desired core mass >

‘ < the RG initiates a common envelope event with its companion

the envelope of the RG model is stripped off,
leaving a hot He WD with a hydrogen atmosphere »

< the resulting close He WD-MS binary hardens
. . as the He WD radiatively cools
the He WD model is evolved along a cooling track
until it reaches the desired luminosity >

< the MS star disrupts around the He WD and accretes onto it
the RG model core is replaced by the He WD model >

< the accreted hydrogen starts to shell burn
and inflates a convective envelope
the model is evolved without burning for 2 kyr
and then subsequently evolved normally >

Figure 3.2: A summary of the evolution of one possible progenitor system of a He WD-MS
merger remnant (left), juxtaposed against our procedure for constructing the stellar model
of a merger remnant in MESA (right).

1. An isolated star with M = 1.2M,, is evolved through the MS and part of the RGB
until it attains the desired initial core mass of the remnant, Mwp. This initial mass is
chosen to be close to typical RG masses from Kepler (e.g., Yu et al.,[2018). Because
single RGs with M < 2M,, all obey the same core mass—luminosity relation, the

subsequent analysis is insensitive to this choice.

2. The hydrogen envelope is removed by applying a high mass-loss rate (using
relax_initial_mass with |M| = 103Myyr~!). To simulate a realistic white
dwarf atmosphere, we retain an additional My, = 10~*M,, of material from the base

of the envelope, on top of the core mass Mwp.

3. The resulting object (which quickly relaxes into a He WD) is evolved through a
cooling track to log(Lwp/Lg) = —4.0.

4. To stellar-engineer the merger remnant, we start with a scaffold RG model with
core mass Mwp. To build the scaffold model, we start with the original RG model
from above, and remove envelope mass from the scaffold model via relaxation with
|M| = 1073Mg yr~! with nuclear burning disabled, until the RG attains the desired
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final envelope mass Myis (physically equal to the mass of the MS star participating

in the merger, assuming no mass lost).

Next, we replace shells with mass coordinates m < Mwp with the He WD model,
excluding the He WD’s atmosphere (shells where X > 107#). Because the modified
RG model’s core is now more compact, we recalculate the radial coordinate grid to
be consistent with dm = 47r2p dr. This produces a merger remnant with total mass
Mo = Mys + Mwp.

For most merger remnant models in this work, we somewhat arbitrarily fix Mg such
that M = 0.8 M, to resemble fairly typical low-mass RGs which may result from CV

mergers.

5. To ensure numerical convergence, the resulting remnant is evolved for 2 kyr without
burning and gold tolerances disabled. Nuclear reactions and gold tolerances are re-
enabled at 2 kyr and 4 kyr, respectively. Although not initially so, the merger remnant
model quickly reaches hydrostatic equilibrium. Evolution through the helium flash
involves disabling gold tolerances again, and the models are terminated after helium-

burning when the central helium fraction drops to ¥, < 1073.

In post-processing, we truncate the first 1 Myr (a few envelope thermal times) of our merger
remnant models in order to avoid possibly unphysical transient behavior closely following

the merger, which is not modelled accurately.

The relatively low He WD luminosity Lwp = 107*L, is chosen to highlight the effects of
a highly degenerate core in the limiting case. In Appendix[3.A] we show that, once the core
has thermalized sufficiently long on the RGB, the effect of increasing Lwp is very similar
to that of decreasing Mwp. This is because these changes ultimately affect the entropy of
the merger remnants’ cores in the same direction, and subtler differences in the remnants’

core temperature profiles are erased by thermal conduction on the core’s thermal time (see
Appendix [3.BJ).

Our models include the predictive mixing scheme described in Section 2.1 of Paxton,
Schwab, et al. (2018) to account for near-core mixing, and to suppress numerical instability
associated with definition of the convective core boundary, especially during the CHeB
phase. We omit winds in order to avoid sensitivity to the wind prescription, which is highly
uncertain. The effect of winds at the tip of the RGB (or mass loss during the merger itself)
is primarily to increase the value of Mys required for a given merger remnant mass during

CHeB. Stellar models are initialized to solar metallicity, using the metal mass fractions
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given by Grevesse and Sauval (1998)). We use the built-in pp_cno_extras_ol8_ne22

network for nuclear reactions.

When evolving the non-merged and merger remnant models, we run MESA in the hydrody-
namical mode (evolving the radial velocity variable v, explicitly), in order to stably evolve
our models through the helium flash. We find that this is particularly necessary in the
merger remnant models, where the helium flash is abnormally violent (see Section[3.4). We
are able to model merger remnants involving He WD masses as high as Mwp = 0.38M,.

Higher He WD masses cause numerical problems during the He flash.

This scheme for producing He WD-MS merger remnants produces very similar models to
those of Zhang, Hall, et al. (2017), who instead manually add the hydrogen envelope back
onto the He WD using a large, time-dependent mass gain rate. We find that our method
more reliably produces a model which MESA can evolve without case-by-case human
intervention, and allows for the successful evolution of remnants with more degenerate

cores.

In order to demonstrate the effects of the enhanced core degeneracy in our merger remnant
models, we also run a model (hereafter the non-merged model) of a RG whose envelope has
only partially been removed on the RGB (so that it has a total mass M =0.80M). Besides
having possibly a low-mass envelope, this model otherwise behaves like a normal RG and

should be thought of as representing standard stellar evolution.

3.3 Red giant branch

Soon after merger, a merger remnant quickly relaxes into a RG which behaves similarly to
a normal star on the RGB. Specifically, it is composed of an inert degenerate helium core
surrounded by a tenuous hydrogen envelope which is inflated to a large radius by hydrogen
burning in a thin shell at its base. However, merger remnants differ from single RGs because
their cores are cold (owing to the potentially long cooling phase of the progenitor He WD),

rather than being almost isothermal with the burning shell.

Soon after their formation, merger remnants, especially those involving lower-mass He
WDs, are out of thermal equilibrium and temporarily shrink in radius. The duration of
this phase is a decreasing function with Mwp, lasting ~ 10 Myr for Mwp = 0.20M
and dropping to < 1Myr by Mwp = 0.27Mg. The degree of this secular dimming also
drops off strongly with Mwp. However, after this short-lived period, the remnant evolves

monotonically up a modified version of the RGB.

Overall, this cold core has three consequences on the RGB:
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Figure 3.3: The trajectories on the Hertzsprung—Russell diagram of merger remnant models
with varying He WD mass Mwp and total mass My, = Mys + Mwp = 0.80Mg. The red
dashed line indicates a non-merged model with M = 0.80M. The top-left and bottom-left
panels zoom into the tRGB and CHeB stages, respectively. The red-outlined star symbols
on the top-left panel indicate the location of the helium flash. On the bottom-left panel, only
evolution > 5 Myr following the helium flash is shown, and points are distributed 10 Myr
apart. We have excised times near the helium flash, when the envelope sometimes becomes
hydrodynamical.

1. At fixed helium core mass, the star is brighter and has a larger radius (Section [3.3.T).
Because the helium core of a remnant is colder and thus slightly more compact, the

overlying hydrogen-burning shell has a significantly higher luminosity.

2. The degenerate core alters the structure of the gravity-mode (g-mode) cavity (Section
[3.3.2)), modifying the propagation of g modes in an observable way.

3. The helium flash, which occurs when some shell in the core reaches a sufficient
temperature T =~ 108K, is slightly delayed (Section . This allows merger
remnants to exceed the maximum luminosity attainable by a single RG at the tip of the
RGB. Additionally, the more violent helium flash can have significant consequences
for the CHeB stage (Section [3.4).
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3.3.1 More compact cores inflate the radius

In a typical RG, the total luminosity L is essentially entirely determined by its core mass
M, (Refsdal and Weigert, 1970), with very little sensitivity to the mass of the envelope.
This correspondence is called the core mass—luminosity relation. Photometrically, this
means that single RGs with similar core masses will appear essentially indistinguishable
on a Hertzsprung—Russell diagram, even if their envelopes differ significantly in mass.
Asteroseismically, it results in a tight relationship between the large frequency spacing Ay
and the g-mode period spacing AII (defined and interpreted below) for degenerate-core RGs
with M < 2M (e.g., Deheuvels, Ballot, Gehan, et al., 2022]).

Crucial to this relation is that the radius of the burning shell (which is similar to the radius
of the core, R,) is a strict function of M, (for a degenerate core, roughly R, oc M, 1/ 3). In
merger remnants, the core is cooler than the hydrogen-burning shell and therefore slightly
more compact (Althaus et al., 2005). In this case, the luminosity is no longer fixed by M,

alone, although it is still determined by the environment around the burning shell.

In addition to modifying its placement on the Hertzsprung—Russell diagram (Figure [3.3),
the inflated radius significantly modifies the observable pressure (p) modes in the envelope.
Asteroseismically, RGs are solar-like oscillators (Chaplin and Miglio, [2013)), for which
a frequency of maximum power v, and large (p-mode) frequency spacing Av can be
measured. These observables are approximately related to the mass M and radius R of the
RG as

Vmax < g/Telﬂ{2 o« MR T;ﬂ}/z 3.2)
and
Av ~\[Gp o« M2 R73/? (3.3)

(Ulrich, [1986; T. Brown et al., [1991).

In the absence of additional information, M, and R, are not known. While L, vy.x, and
Av are all significantly different in merger remnants, this is only a direct consequence of
their inflated radii. Therefore, these observables alone cannot distinguish merger remnants
except near the tip of the RGB (Section [3.3.3). However, independent probes of the core,
most notably the asteroseismic g-mode period spacing (Section [3.3.2) can help distinguish

merger remnants from normal stars.

3.3.2 Asteroseismic signatures on the red giant branch
Asteroseismically, RGs which are sufficiently low on the RGB (roughly before the red bump;
Pingon, M. Goupil, et al., |2020) have strong enough mixed-mode coupling such that the
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g-mode period spacing AIT can be measured:

V2n?

Iy ———, 3.4
Jo(N/r)dr G

defined here specifically for the dipole (¢ = 1) modes. This quantity probes the radiative
core of the star. The integral in Equation [3.4] is taken over R, the g-mode cavity of the
RG, i.e., the region where 2nvp.x < N, where N is the Brunt—Viisilad frequency. At
present, AIl has been measured for a few thousand RGs (e.g., Vrard, Mosser, et al., 2016),

observationally constraining the structures of their radiative cores.

By Equation (3.4, more stratified radiative zones with larger integrals over N dInr have
lower period spacings. In Appendix [3.C|, we show that the Brunt—Viisild frequency in the
degenerate part of the radiative core is given by

kg1 5 1 5
2 2 "B
~ 1 1 . .

N” =~ Nj . ( 2V) oc . ( 2V) (3.5)

where Ef is the Fermi energy of the core, V = dInT/d In P, and the normalization Ng is

comparable to the dynamical frequency of the core, and is given by

2
N2=EE oM, /R?. (3.6)
p

Both a typical RG core and cooling WD are approximately isothermal (V <« 1). Then, ig-
noring the temperature dependence of the stellar structure for the moment, we approximately
expect

N o« VT, (3.7)

A “cold,” highly degenerate isothermal core will have a significantly smaller N, and therefore
significantly larger AII, than a “warm” one (Bildsten and Cutler, [1995). However, if there

is a temperature gradient, it may significantly affect AIl.

The evolution of the buoyancy profile of a merger remnant with Mwp = 0.25My and
Mys = 0.55M (together with a non-merged model of equal mass) is shown in the top
panels of Figure 3.4 In He WD-MS merger remnants, the period spacing is modified by

two effects which act roughly in opposite directions with comparable magnitudes.

First, at early times (left panels of Figure [3.4), the core of a merger remnant is roughly
isothermal at its initial temperature 7" < Tghey. In comparison, the core of a single RG is

roughly isothermal with the hydrogen-burning shell (7" = Tynep). During this time period,
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Figure 3.4: The Brunt—Viisild frequency N (top) and temperature T (bottom) shown for
the Mys = 0.55Mgy, Mwp = 0.25M merger remnant (solid gray-blue) and non-merged
model of M = 0.80M¢, (red dashed), at various stages of evolution. The two models are
compared at equal core masses M.. The shaded region denotes helium deposited onto the
helium core of the merger remnant model by hydrogen burning during its evolution.

the Brunt—Viisila frequency profile in the core is suppressed from that of a single star by a
factor v/Tsnen /7. This effect tends to increase the period spacing.

However, in a short time < T core, €lectronic thermal conduction (approximately obeying
the nonlinear law in Equation[3.18]) sets up a temperature gradient V. Curiously, we find that
this temperature gradient happens to mostly cancel out the factor m (see Equation
[3.5) to cause the N profiles of the single and merger remnant models to be similar (fop
center panels of Figure[3.4)). Equality between the Brunt—Viisilé frequency profiles occurs
long before the interior of the core has thermalized to the shell temperature. Therefore,
in the relatively short time that it takes heat conduction to set up a temperature gradient
throughout the core, the lower temperature of the merger remnant core no longer works
to increase AIl. The reason for this “coincidental” cancellation remains mysterious, but
may be related to some properties of long-lived pre-thermalized solutions of nonlinear heat
diffusion. These solutions (called “intermediate asymptotics”; Barenblatt, |1996) exhibit
self-similar behavior in many nonlinear heat diffusion problems (often in the context of
diffusion in a porous medium), and have been studied extensively in applied mathematics
(by, e.g., Witelski and Bernoff, |1998; Galaktionov et al., 2004; Hayek, 2014).

The second effect is that, because N scales with the dynamical frequency of the core, it is
higher in a more compact core, and is therefore larger in a merger remnant’s core than in
a single star’s core. In contrast with the first effect, the increased Brunt—Viisild frequency

due to this effect persists until the core heats up enough for the difference in R. between
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the merger remnant and single stars to be erased (which occurs on the thermal timescale

Tih.core)- Lhis effect tends to reduce AII in the merger remnant compared to a single RG.

As a merger remnant evolves, Al typically evolves from being larger than that of a single
star (at fixed M) to smaller (Figure [3.5)), although it may not achieve the latter regime by
the helium flash if the merger involves a sufficiently massive WD. In our models, departures
of AII from the non-merged case can reach up to ~ 10 s at a given core mass. However, we
again caution that M, is not directly known, and diagnosis of a past merger requires another

observable, such as the radius or Av.

Asteroseismic measurements Ay and AIl of RGs are typically represented on a spacing
diagram as shown in Figure [3.5] Most stars on the RGB (zoomed in on the bottom panel)
cluster around a tight sequence which ultimately arises from the core mass—luminosity
relation (e.g., Deheuvels, Ballot, Gehan, et al., 2022). This is also essentially the path
followed by our M = 0.8 M non-merged model, modulo a small order-unity factor owing
to a weak dependence on total mass (Av oc M'/?). In this space, it is clear merger remnants
usually lie above the degenerate sequence, before slowly evolving back towards it. The
position of merger remnants above that of normal RGB stars is dominated by the larger radii
of these objects at the same core mass. Since Av o«c R™3/2, this shifts their positions on the
diagram to the left. Merger remnants may also pass slightly below the degenerate sequence
during their evolution (due to sufficiently small values of AIT). This effect is however subtle.
Stars in this region of Av—All space may more naturally be explained by RG-MS mergers
(Deheuvels, Ballot, Gehan, et al., 2022), particularly if they lie far below the degenerate

sequence.

The g-mode period spacing All is only observable for remnants sufficiently low on the
RGB (i.e., below the RGB bump, which is the “hook” feature in Figure [3.5). For merger
remnants in this regime, departure from the degenerate sequence is most prominent during
the initial contraction phase after the formation of the remnant, although RGs which have
passed this phase still lie above the degenerate sequence for an additional ~ 20 Myr. Hence,
this particular asteroseismic diagnosis may only be possible for sufficiently recent mergers

involving sufficiently low-mass He WDs.

3.3.3 Overbright tip of the RGB
During the RGB phase of a single star, the helium core grows in mass and contracts over time,
as the envelope expands. Simultaneously, the core heats up gradually until the temperature

is high enough for helium burning through the triple-a process (~ 10® K), at which time the
star has reached the tip of the RGB (tRGB).
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Figure 3.5: An asteroseismic spacing diagram (AIl versus Av) showing merger remnant
evolutionary sequences and a non-merged model (red dashed) all with M = 0.80M. The
top-right panel shows the entire parameter space, and the left and bottom panels zoom in
on CHeB stars and the RGB, respectively. Roughly speaking, both RGB and CHeB stars
evolve from right to left on this diagram (i.e., towards decreasing Av, or increasing R). The
black points are observations taken from the catalog of Vrard, Mosser, et al. (2016)) with
stars flagged for possible aliases removed. In the fop-left panel, colored triangles denote
the last 5 Myr of the CHeB phase. The blue squares denote 8 stars from the very low-mass
sample of Y. Li et al. (2022) which appear in the Vrard catalog.

In our most extreme model with Mwp = 0.38M, the tRGB surface luminosity exceeds
that of a single star by a factor of 2 (Figure[3.3). This factor is likely to be even larger for
more massive values of Mwp than we can run (but which are still physical). At the tRGB,
our merger remnant models outshine the tRGB of the single star model for between 140 kyr
(Mwp = 0.20Mg) and 1.8 Myr (Mwp = 0.38M). Since RG luminosities are essentially
totally determined by near-core properties, even merger remnants of low mass (involving

small values of Mys) are still expected to outshine single RGs at the tRGB.

The ostensibly well-known luminosity of the tRGB is often leveraged to measure cosmolog-
ical distances (Bellazzini, Ferraro, and Pancino, 2001; Bellazzini, Ferraro, Sollima, et al.,
2004). We point out that overbright merger remnants near the tRGB may affect the tRGB
of a stellar population’s role as a standard candle. However, this effect is probably minor,

since merger remnants of this type likely make up no more than a few percent of all RGs.
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Figure 3.6: Top: The maximum helium-burning luminosities Lye fiash attained during the
helium flash in our merger remnant models with total mass Mo, = Mys + Mwp = 0.80M.
Bottom: For the merger remnant models, we show core masses M @fash at the helium flash
(purple circles), mass coordinates Myg,sn, Where the helium flash begins (magenta stars), and
initial (turquoise triangles) and final (green squares) core masses McHeB,ci and McHeB cf
during the CHeB phase. In both panels, dashed lines denote values for the M = 0.80M
non-merged model.

3.4 Core helium-burning phase

When the core reaches a sufficient temperature, helium burning begins. In single RGes, it
is well known that helium ignites off-center due to a slight temperature inversion caused
by neutrino cooling (Thomas, 1967). The peak burning rate reached during the subsequent
helium flash depends sensitively on the density where helium ignites (Salpeter, |1957), and
therefore on the mass of the helium core. Subsequent intermittent burning events occur in
a series of subflashes (Thomas, 1967). In a normal RG, these subflashes propagate inwards
over the course of a few megayears until they reach the core, fully lifting the degeneracy of
the helium core and burning ~ 4% of its mass into carbon. Once this occurs, RGs quickly
contract on a thermal time until they have radii = 11Ry (the CHeB phase), after which
they are supported by a combination of helium core- and hydrogen shell burning, which

generally contribute in comparable amounts to the stellar luminosity.
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Figure 3.7: Kippenhahn diagrams for the non-merged M = 0.80M¢ and selected merger
remnant models, during the helium flash (left) and CHeB phase (right). Convective (radia-
tive) zones are shown in blue (yellow), and burning regions fusing more vigorously than
e = 103 ergg~! s7! are shown in red (at this scale, the CHeB region is highly localized to
the center of the star and cannot be seen). The black dashed line indicates the helium core
mass M.. Merger remnant models with Mwp > 0.27M, experience core dredge-up events
during the helium flash, and subsequently develop thinner convective envelopes by mass
during CHeB. If Mg is small enough, the convective envelope disappears entirely, and the
star enters the horizontal branch.

In merger remnants, the helium flash occurs similarly, although, as previously pointed out
by Zhang, Hall, et al. (2017), the flash occurs farther off-center (Figure @, since the core
temperature inversion is now dominated by the low temperature of the WD progenitor rather
than the weaker effect of neutrino cooling (compare the dashed red and solid blue curves
of the lower-right panel of Figure 3.4). Additionally, the subflashes occur closer together

in time, and are more energetic in general.

In our models, the maximum helium-burning luminosity attained by a merger remnant is
roughly a linear function of Mwp, with the most extreme model attaining a factor of ~ 5
higher helium-burning luminosity than attained by a non-merged star (see the fop panel of
Figure . The energy production rate can be a whopping ~ 10'°L, at the peak of the

helium flash. Since mergers involving more massive WDs than those on our model grid are
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possible, even larger helium-burning luminosities may occur in nature. The most vigorous
helium flash in our merger models also burns a larger fraction of the core into carbon, up
to =~ 7% by mass. We present the post-helium flash composition profiles of several of our
models in Appendix [3.D}

We verify in our models that the helium flash, though abnormally energetic in merger
remnants, still does not result in hydrodynamical burning (which might result in detonation).
Specifically, following Shen, Kasen, et al. (2010), we verify that convection is always
efficient enough to flatten temperature gradients created by helium burning, and also that
the hierarchy |v,| < veony << ¢ 1s maintained throughout the helium core (though not
necessarily in the hydrogen envelope). The properties of this dredge-up concern physics
in the helium core only, and is essentially independent of the envelope mass. Similar core
dredge-up events during the helium flash have also been predicted in low-metallicity stars

which have undergone extreme mass loss (Sweigart, [1997; Cassisi, Schlattl, et al.,[2002).

The CHeB-phase evolution of our merger remnant models fits into two regimes, sorted by
MWDi

1. For Mwp < 0.26 M, the flash is delayed slightly, and occurs when the core is slightly
more massive. As a result, the CHeB phase of these remnants begins with a slightly
higher helium core mass. Specifically, our single non-merged model ignites helium
at a core mass M, = 0.46 M, and our merger remnant model with Mwp = 0.26 M,

undergoes its flash at a slightly higher core mass M, ~ 0.50M.

2. For Mwp > 0.27M, the flash produces so much heat that it causes the convective
envelope to deepen significantly, dredging up both the hydrogen-burning shell and
the outer layers of the helium core (see Figure [3.7). For our most extreme model
(Mwp = 0.38M;), =~ 20% of the core (= 0.1My of helium) is dredged up into the
envelope, significantly modifying its mean molecular weight.

As a result of this, merger remnants involving lower-mass He WDs Mwp < 0.26M,
evolve very similarly to normal red clump stars, appearing almost identical to them in both
photometric (bottom-left panel of Figure [3.3) and asteroseismic (fop-left panel of Figure
[3.5] and left panel of Figure [3.10) observables. One minor difference is that the merger

remnants have systematically shorter CHeB lifetimes, by up to < 20%.

In contrast, merger remnants involving more massive He WDs Mwp > 0.27Mg evolve
and appear very differently from their single counterparts. The following sections focus

on observational signatures in this latter case (hereafter post-dredge-up merger remnants).
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Figure 3.8: Time evolution of the CHeB-phase luminosity L, hydrogen- and helium-burning
luminosities Ly and Ly, effective temperature T.¢, radius R, and helium core mass M,
for merger remnant models and a non-merged model (red dashed) all with M = 0.80M,.
The left and right panels show merger remnant models with Mwp < 0.26 Mg and Mwp >
0.27Mg, respectively. The latter models have helium flashes which are vigorous enough to
dredge up some of the helium core into the envelope.

The dredge-up event ultimately affects the luminosity (Section [3.4.1), asteroseismology
(Sections [3.4.2]and [3.4.3)), and surface abundances (Section [3.4.4) significantly.

3.4.1 Over-luminous red clump stars
During the CHeB phase, post-dredge-up remnants have significantly modified photometric

properties:

1. They are brighter and slightly cooler, with the effect being stronger for higher values
of Mwp (bottom-left panel of Figure [3.3| and rop-right panel of Figure [3.8)). For our

most extreme model (Mwp = 0.38My,), the luminosity is roughly tripled.

2. Their luminosities evolve much more significantly over the CHeB phase. Again, this

effect is stronger for higher values of Mwp. In comparison, normal CHeB stars have
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essentially fixed luminosities for almost the entirety of the helium-burning phase.
As in normal CHeB stars, nuclear energy production has two main contributions:

1. Core helium burning. The now non-degenerate helium core burns helium through
the triple-a process in a convective core. Structurally, the core is similar to normal,
intermediate-mass MS stars in that they have convective core burning surrounded by
a radiative envelope. Analogously, the helium-burning luminosity is essentially set

by the helium core mass.

2. Hydrogen shell burning. Hydrogen continues to burn in a shell around the helium
core through the CNO cycle. The luminosity of the hydrogen burning is a sensitive

function of the environment around the burning shell.

The luminosities of these burning regions are highly coupled to each other. For example,
the mass of the helium core determines the helium-burning luminosity and, thus, the radius
of the core. This in turn strongly affects the hydrogen-burning luminosity and thus the total
luminosity of the star. In turn, the luminosity of the hydrogen-burning shell determines the
growth rate of the helium core, therefore feeding back onto the time dependence of both

contributions to the luminosity.

As can be seen in the right panels of Figure post-dredge-up merger remnants can
have significantly larger hydrogen-burning luminosities Ly. While normal clump stars
have comparable hydrogen- and helium-burning luminosities (= 20L¢ in both cases), our
most extreme merger remnant model with Mwp = 0.38Mg has Ly ~ 100Lg (compared to
Lye < 40L¢).

The dominant factor setting Ly in a post-dredge-up remnant is the mean molecular weight
u at the hydrogen-burning shell, which is significantly enhanced by the helium dredge-up
event. Single star models have a near-solar helium mass fraction ¥ ~ 30%. In contrast,
the Mwp = 0.38M; remnant model (with total mass M = 0.80My) has a much larger
value Y = 46% owing to the ~0.1M of helium added to a pre-existing, solar-composition
envelope with mass ~ 0.3M. These values of Y correspond approximately to mean
molecular weights ¢ ~ 0.62 and u = 0.70, respectively. Refsdal and Weigert (1970)
show that the hydrogen-burning luminosity exhibits a steep scaling with u: L oc u’-® for
CNO-cycle burning, corresponding to increases in Ly by a factor =~ 2.5, which is roughly

consistent with the behavior of Ly in our models.
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Because Ly is very sensitive to u, the appearance and evolution of the remnant is now
acutely sensitive to the initial envelope mass of the remnant. This is contrary to single
stars, in which L and T.¢ during the CHeB phase are nearly independent of the envelope
mass. Since yu is set by the final mass fraction of the envelope after the dredge-up event,
larger pre-existing envelopes dilute the added helium and reduce the mean molecular weight
enhancement. We note in passing that structurally important increases in u during a core
dredge-up event also appear in some RG—-He WD merger models of Zhang and Jeffery
(2013).

As can be seen in Figure [3.8] the helium-burning luminosity Ly is also different in post-
dredge-up models. Ly essentially tracks the helium core mass M, until significant core
helium depletion at the end of the CHeB phase. The high value of Ly translates to a
fast-growing helium core, and, in turn, an up to a factor of a few increase in Ly, over the
CHeB phase. In sum, the higher Ly and Ly naturally translate to an overbright CHeB

phase with significant time evolution in luminosity.

The increased luminosity causes merger remnants to have abnormally large radii, up to
R =~ 20Ry in our models (for Mywp = 0.38M). In addition to affecting the photometry,
these large radii can also be directly measured asteroseismically via vpax and Av, together
with the scaling relations in Equations [3.2]and [3.3] However, in order to distinguish merger
remnants from ordinary stars beginning to ascend the asymptotic giant branch, it may also

be necessary to measure mixed mode period spacings or surface abundances.

3.4.2 Wider range of asteroseismic g-mode period spacings

During the CHeB phase, post-dredge-up mergers remnant models have substantially dif-
ferent structures which directly modify asteroseismic observables such as AIl. This can
be seen by comparing the left and right panels of Figure [3.9] which show the propagation
diagrams of the non-merged and Mwp = 0.38My merger remnant models at two selected
times. On the other hand, merger remnants which do not experience significant dredge-up
of the helium core (Mwp < 0.26M,) have essentially identical structures (compare the left

and center panels of Figure [3.9).

Because the nuclear burning luminosities are substantially modified in post-dredge-up
models, the g-mode period spacing AIl of merger remnants spans a wider range of values
over the CHeB phase (see the rop-right panel of Figure [3.10] as well as the top-left panel
of Figure [3.5)). While AIT (Equation [3.4)) depends on the integral of N within the radiative
core, its value is dominated by the regions with the largest N. As can be seen in Figure (3.9

N is maximal underneath the hydrogen-burning shell (i.e., below the compositional spike
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Figure 3.9: CHeB-phase asteroseismic propagation diagrams for a non-merged model
(left) and merger remnants with Mwp = 0.26 M (center) and Mwp = 0.38Mg, (right).
The Brunt—Viisila (N), dipole Lamb (L), and maximum power (2vpnax) frequencies are
shown as the dashed blue, dotted red, and solid purple curves, respectively. Color coding
of areas denotes the p-mode propagating regions (pink), g-mode propagating regions (light
blue), evanescent regions (white), and the exterior of the star (yellow). Top panels show
propagation diagrams near the beginning of the CHeB phase, and botfom panels show the
same farther along the CHeB phase, when the models attain maxima in the asteroseismic
g-mode period spacing AIl. All models have total mass M = 0.80M.
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Figure 3.10: Time evolution of the CHeB-phase asteroseismic g-mode period spacing AIT
(top), and e~ (bottom), which is a simple proxy for the dipole mixed-mode coupling
factor. We plot merger remnant models and a non-merged model (red dashed) all with
M = 0.80Mq. As in Figure[3.8] the left and right panels show merger remnant models with
Mwp < 0.26 My and Mwp > 0.27 M, respectively.
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in N atradii < 0.1Rp).

At the beginning of the CHeB phase (the fop panels of Figure [3.9), post-dredge-up merger
remnants have smaller helium core masses, resulting in smaller Ly.. This results in a
smaller convective core (slightly extending the bottom boundary of the g-mode cavity) as
well as a slightly higher core dynamical frequency (resulting in slightly higher values of N
overall). Both of these effects tend to decrease AII.

In contrast, near the end of CHeB (the bottom panels of Figure [3.9), the helium core of
merger remnants has grown substantially due to the large hydrogen burning rate. They
therefore evolve to have larger Ly, which ultimately results in an increased convective core
size and overall lower N profile, and therefore larger AIl. Because they also have inflated
radii (Section [3.4.T)), they have smaller values of Av, and will occupy a region to the left of
normal clump stars on a Av—AII spacing diagram (fop panels of Figure 3.5).

3.4.3 Asteroseismic mixed-mode coupling

In RGs, pulsations can probe not only the g-mode cavity (through AIT) but also the evanes-
cent zone between the p- and g-mode cavities. The extent of coupling between the two
cavities is usually described by a coupling factor g (Unno, Osaki, Ando, Saio, et al.,|1989).
In addition to determining the visibility of mixed modes, ¢ itself is an independent ob-
servable which probes a different internal structural feature than does AIl (Mosser, Pingon,
et al., 2017; Dhanpal et al., [2023)). The recent discovery that low-mass or low-metallicity
RGs have preferentially high g (Matteuzzi et al.,|[2023; Kuszlewicz et al., 2023) has created
revitalized demand for physical interpretations of g.

Computing g is mathematically nontrivial and involves detailed solution of a wave transmis-
sion problem (e.g., Takata, 2016aj; Takata,|2016bj Takata, 2018)) or fitting a model spectrum
directly (e.g., C. Jiang and Christensen-Dalsgaard, 2014). Takata (2016a) show that the
coupling factor is related to the transmission coefficient 7' by

1-VI-T2

g=—"—7—¥—7——. (3.8)
1+V1-T2
Takata (2016b)) further write the transmission coefficient as
T = ¢ " X1+¥r), (3.9)

Here, X; is defined as an integral over the evanescent zone & of the radial wavenumber with
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respect to the asymptotic dispersion relation, i.e., for dipole modes,

Il E7TX1: / |k,~|dl"
&

:/gc%\/(l - N2/w?) (L3 /w2 = 1) dr

where, for simplicity, we have applied the Cowling approximation. Xg is a remainder term

(3.10)

which can be specified analytically in the limit of a thin evanescent zone (Takata, 2016b),

where it is most important.

We focus on the value of e~%! as a rough proxy for the mixed-mode coupling. Although
CHeB stars typically have strong coupling such that X is likely to be important, calculation
of this contribution requires more care (see, e.g., Rossem, 2023), and we therefore defer a

detailed calculation of ¢ in these merger remnants to a potential future investigation.

From the propagation diagrams (Figure[3.9), it can be seen that the evanescent zone evaluated
at vmax 18 initially substantially wider in the Mwp = 0.38 M post-dredge-up merger remnant
than in the non-merged model. This decreases the value of e~/! and, in turn, the g-mode

coupling factor ¢ at early phases of CHeB evolution.

However, late in the CHeB phase of post-dredge-up merger remnants involving especially
massive He WDs with Mwp > 0.33M,, the evanescent region becomes exceedingly small
because of a larger radiative core. This temporarily causes e~?' and the mixed-mode
coupling to become larger than in typical CHeB stars, giving their mixed modes high
visibility.

In the last < 20 Myr, both AIT and e~?! dive sharply as the CHeB star begins to enter the
asymptotic giant branch phase. During this time, the star expands especially quickly, and
it will lie even farther to the left of most merger remnants on the asteroseismic spacing

diagram in Figure [3.5]

3.4.4 Abundance anomalies

Merger remnants that experience a core dredge-up at the flash naturally display unusual
surface abundances. While dredge-up of the helium core most obviously produces an en-
hancement in “He, direct spectroscopic measurement of helium abundance in late-type stars
is likely infeasible. Fortunately, dredge-up probably enriches the surface with other ele-
ments that can be directly probed spectroscopically. Figure shows surface abundances
for selected species in terms of the index A(X), defined for a given species X as

A(X) = log(nx/ny) + 12 (3.11)
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where nx and ny are the surface number densities of X and hydrogen, respectively.

We find that post-dredge-up remnants exhibit significant '>C surface enrichment, up to
~ ] dex relative to hydrogen. This enhancement arises from dredge-up of core material
which has been partially fused during the helium flash into carbon. Post-dredge-up remnants
thus possess increased values of C/Fe and decreased values of '°C/!2C. Additionally,
our post-dredge-up remnant models also possess significant surface enhancements (up to
~ 1.5 dex relative to hydrogen) in 30 and ?*Ne, which are created by successive @ captures
of N (e.g., D. Clayton, 2003) during the helium flash. As the surface abundance of '°0
in all of our merger remnant models is almost identical to that of our non-merged model,
the surface abundance ratio '°0/'30 is also decreased by up to ~ 1.5 dex in post-dredge-up
remnants. While not included in our reaction network, it is also probable that a significant
amount of 2Mg is formed through a capture of 2*Ne in the abnormally hot helium flash (as
in Shen, Blouin, et al.,[2023)). The surface abundance of 26Mg is therefore also likely to be

enhanced.

The lithium abundance is also important, because it can be created by the burning of *He or
destroyed by burning at temperatures comparable to those required for hydrogen burning.
Lithium-rich giants make up about 3% of all CHeB stars (Kumar, Reddy, S. Campbell,
et al.,[2020), and have previously been suggested to have formed via binary interactions or
mergers (e.g., Zhang and Jeffery, 2013} Casey, Ho, Ness, Hogg, Rix, Angelou, Hekker, Tout,
Lattanzio, Karakas, et al., 2019a). Our merger remnant models with high Mwp become
highly lithium-rich very soon after merger, owing to a brief dredge-up event which occurs
when hydrogen burning is first turned on (similar to the Cameron—Fowler mechanism; A.
Cameron and Fowler, 1971). While such a merger-era lithium enhancement seems plausible
(see, e.g., observations of lithium enrichment in luminous red novae; Kamiriski, M. Schmidt,
et al.,[2023)), our treatment of the merger process itself is highly artificial, and the evolution
of the remnant is unreliable for post-merger ages younger than a thermal time, 7 eny.
Modification to the surface abundances of other species during this (possibly artificial)
dredge-up event are minor, since they primordially occur in much higher abundance than

lithium.

If lithium is not enhanced during the merger, we investigate whether core dredge-up during
the helium flash may be able to create lithium-rich giants anyway. To test this, we remove
all of the lithium from our merger remnant models (with total M = 0.8 M) just prior to the
tRGB, and evolve them through the helium flash and CHeB phase. As shown in Figure[3.11]
most models do not become lithium-rich according to the standard criterion A(Li) > 1.5
(e.g., Deepak and Lambert, [2021), with the exception of the Mwp = 0.38Mg model. It
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is possible that merger remnants with higher values of Mwp or lower values of My;s may
attain stronger lithium enhancements. Moreover, extra mixing during the helium flash
suggested by recent evidence may increase the amount of lithium surfaced (Kumar, Reddy,
S. Campbell, et al., 2020; Martell et al., [2021b; Schwab, 2020). Overall, we conclude
that, unless lithium enrichment occurs at merger or non-canonical mixing processes operate

during the helium flash, He WD-MS merger remnants are unlikely to become lithium-rich.

3.4.5 Populating the horizontal branch with merger remnants

Neglecting mass loss during merger or through winds, Mys sets the envelope mass of the
merger remnant. In the preceding discussion, we have focused on varying Mwp and fixed
Ms so that the total mass of the merger remnant models is My = Mwp + Muvs = 0.80M.
However, in principle, Mys could span a wide range of masses, including very small ones
(if the hydrogen-rich component is a brown dwarf or if there is significant mass loss, e.g.,
Metzger, Zenati, et al. 2021), up to a few solar masses for mergers with intermediate-mass

MS stars. In this section, we explore the behavior of merger remnants under varying Mys.

Variation of My;s may significantly change the behavior of the remnant in the following

ways:

1. If My is sufficiently small, merger remnants may only ignite helium with scant
hydrogen envelopes (starting CHeB as subdwarf B-type stars; sdBs), or may fail to
ignite helium altogether (fizzling out into He WDs). For reasons of scope, we do not
investigate the He WD or sdB outcomes (but see the detailed modeling of Zhang,
Hall, et al. 2017 and Zhang, Jeffery, Su, et al. [2023). Alternatively, if the envelope
mass drops below M,y =~ 0.1M during CHeB but can still sustain hydrogen shell

burning, the remnant can evolve onto the horizontal branch (Catelan, 2009).

2. Inpost-dredge-up remnants (where a helium flash mixes a fixed amount of core helium
into the envelope), the helium fraction of the envelope during the CHeB phase is set
by Mys (larger hydrogen-rich envelopes during this stage more effectively dilute this
additional helium). For merger remnants massive enough to enter a CHeB phase with
a hydrogen-burning shell, this significantly affects their hydrogen-burning (and, thus,
total) luminosity (as in Section [3.4)).

Fixing Mwp = 0.30My, we present in Figure [3.12] the CHeB-phase evolution of merger
remnants with Myis/ Mg € [0.30,0.35,0.40,0.50,0.70]. All of these models are massive
enough to reach the tRGB and undergo a helium flash, which in this case is energetic enough

to dredge up = 0.06M¢ of helium. However, the envelopes of models with lower My



65

possess much more helium-enriched envelopes: envelope helium mass fractions during the
CHeB phase for these models range from Y = 0.36 (for Mys = 0.70M) to Y = 0.48 (for
Mys = 0.30M).

At the zero-age CHeB, all of these models possess a convective envelope. As expected,
models with lower Mys (and higher envelope Y) have higher hydrogen shell-burning lumi-
nosities at the beginning of the CHeB phase (as can be seen in the Ly panel in Figure[3.12).
Models with higher Myis = 0.40, 0.50, and 0.70M, retain these convective envelopes and

behave similarly to the remnants discussed in Section [3.4]

The lower-mass Mys = 0.30 and 0.35M models display significantly different behavior.
These models burn most of their remaining hydrogen during the CHeB phase such that their
envelope mass drops below 0.1 M. The outer layers of these models become completely
radiative (at # — fgasn & 25 Myr and 55 Myr, respectively), and the remnants behave like
horizontal branch stars. When this occurs, the stars become very blue, roughly reaching
respective effective temperatures Toqg ~ 20000K and ~ 12000 K. While these models
continue to sustain hydrogen-shell burning to some extent, Ly significantly drops during
this horizontal branch stage (decreasing by factors ~ 10 and > 2 for the Mys = 0.30M and
Myis = 0.35M models). Inthe Mys = 0.30Mg model, this extreme drop in Ly precipitates
a significantly lower total luminosity, which is readily apparent on a Hertzsprung—Russell
diagram (top-left panel of Figure[3.12). We confirm for these two cases that the inclusion
of gravitational settling does not change the results. A Reimers wind (Reimers, 1975;
Reimers, 1977) scaled as in Reimers (1977) suggests that winds in these objects are small

(M < 10719 Mg yr~!) and may be ignored.

3.5 Candidate merger remnants

3.5.1 Undermassive red clump stars may be merger remnants

Using asteroseismology, Y. Li et al. (2022) discovered a population of undermassive CHeB
stars with masses < 0.8Mg (their “very low-mass” sample). Since single stars of these
masses could not have evolved off of the MS in the age of the universe, these undermassive
stars must have undergone non-standard evolution, such as stripping by a companion or
binary assembly. Although Y. Li et al. (2022)) argue that these undermassive giants are
the product of partial envelope stripping by close companions, most of these objects do
not exhibit the expected radial velocity variability between APOGEE and Gaia (Kareem
El-Badry, private communication), disfavoring this formation channel. Matteuzzi et al.
(2023)) 1dentify several more such objects (referred to as “red horizontal branch” stars),

further demonstrating their extremely strong mixed-mode coupling. Figure [3.5] shows 8
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Figure 3.12: Evolution during the CHeB phase for merger remnants with Mwp = 0.30M
but varying Mys (Section [3.4.3). We plot a Hertzsprung—Russell diagram (left, with
zoomed-in inset on the top right) and the time evolution of the hydrogen-rich mass M,y =
M — M, and hydrogen shell-burning luminosity Ly (bottom right). A non-merged model
with M = 0.80Mg, is also shown for comparison (red dashed line).

members of the very low-mass sample of Y. Li et al. (2022)) for which Vrard, Mosser, et al.
(2016) reports g-mode period spacings. Despite their small masses, these very low-mass
CHeB stars have typical values of AIl and, therefore, likely possess similar core structures

to those of normal CHeB stars.

Observed undermassive clump stars likely have typical helium core masses and only stand
out due to their low envelope masses. He WD—-MS mergers naturally explain these objects:
as long as Mwp is small enough that no dredge-up occurs at the helium flash, merger
remnants have core masses which are basically normal. Furthermore, a merger remnant’s
envelope mass is simply set by Mys (modulo merger or tRGB mass loss), which can
be arbitrarily low. Finally, this binary scenario does not leave any companion behind,
explaining why most undermassive CHeB stars are consistent with being single at present.
While other mechanisms may exist for forming single undermassive CHeB stars (e.g., mass

loss during failed common-envelope events), He WD-MS mergers appear to be highly
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Figure 3.13: Measured masses and radii of observed CHeB stars, measured using aster-
oseismology. Blue and green squares denote the very low-mass (VLM) sample of Y. Li
et al. (2022) and red horizontal branch (rHB) stars of Matteuzzi et al. (2023). Gray data
points are taken from the catalog of Yu et al. (2018). Orange stars denote CHeB-phase
merger remnant models with Mwp = 0.20M¢ and varying Mys. Red triangles denote a
CHeB-phase non-merged model with M = 0.8M,, for comparison. Model track points are
sampled 10 Myr apart.

promising.

To demonstrate this possibility, we run additional merger remnant models, fixing Mwp =
0.20M; and varying Myis between 0.35M and 0.60M, (total masses M between 0.55M,
and 0.80M). Lower-mass merger remnant models have masses and radii which are consis-
tent with the observed very low-mass sample of Y. Li et al. (2022) (Figure [3.13). Because
the He WD-MS merger channel produces CHeB stars with essentially normal cores, our
models behave almost identically to models performed by Y. Li et al. (2022) of normal
CHeB stars with artificial envelope stripping to mimic mass loss from an initially standard
RG.
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3.5.2 Zvrk: a possible post-dredge-up merger remnant?
Using asteroseismology, Ong, Hon, et al. (2024) recently discovered a peculiar RG (“Zvrk™)
with the following features:

1. The oscillation spectrum is complex, superficially resembling typical spectra of CHeB
giants (which are dense due to their strong mixed-mode coupling, e.g., Mosser,
Pingon, et al., 2017; Dhanpal et al., 2023).

2. The asteroseismic scaling relations imply a radius R ~ 24R, a factor of two larger
than that of a typical CHeB star.

3. The star is highly lithium-rich (A(Li) > 3), and also has a somewhat high [C/N]
ratio relative to typical first-ascent RGs of the same mass, or indeed CHeB stars (e.g.,
Bufanda et al., [2023)).

4. Photometric modulation and asteroseismic rotational splittings (assuming a pure p-

mode spectrum) are consistent with a fast-spinning envelope with period P ~ 100 d.

Mainly on the basis of its radius, Ong, Hon, et al. (2024) conclude that Zvrk cannot be in
the CHeB phase and must instead be a first-ascent RG. Because the expected mixed-mode
coupling for an RG of this size would be weak, they argue that the spectrum is actually
composed of pure p modes (rather than mixed modes), with the complexity of the spectrum

instead coming from large rotational splittings from its fast rotation rate.

We suggest instead the possibility that Zvrk is a post-dredge-up He WD—-MS merger remnant
which is on the CHeB phase, not the RGB. This addresses the aforementioned observations

in the following ways:

1. If Zvrk were a CHeB star, it would naturally have a large mixed-mode coupling and,
thus, a CHeB-like spectrum (see also Section [3.4.3).

2. Our models of post-dredge-up CHeB remnants (Section [3.4.1), like Zvrk, have radii

approximately twice as large as those of typical CHeB stars.

3. Asdemonstrated in Section[3.4.4] post-dredge-up remnants are expected to be carbon-
rich, similar to Zvrk. While the core dredge-up event at the helium flash is unlikely
to match the measured value of A(Li), lithium enrichment may occur at merger
(Kaminski, M. Schmidt, et al., 2023} as suggested by observations of luminous red

novae). Although some of our merger remnant models become very lithium-rich soon
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after merger (as we describe in Section [3.4.4)), future work should address whether

this enhancement persists under more careful modeling.

4. As discussed in Section [3.6.3] merger remnants are likely rapidly rotating.

It is unclear at present whether He WD-MS mergers can reproduce these effects in the
correct combination to match observations. The mass M ~ 1.2Mg inferred by scaling
relations is larger than those of our fiducial models (M = 0.8Mg), possibly requiring even
stronger core dredge-ups which probably occur for larger values of Mywp than we can model.
We point out that an extreme dredge-up event of this type probably modifies vpax (in a still-
contested manner; Viani et al., 2017; Y. Zhou et al.,[2024) and, thus, the accuracy of scaling
relation-based values of M and R. The similarly behaving remnants of RG-He WD mergers

(e.g., Zhang and Jeffery, 2013) may also possibly reproduce the properties of Zvrk.

Further complicating the picture, Ong, Hon, et al. (2024) point out that a naive identification
of the double-ridged feature in Zvrk’s échelle diagram with the usual £ = 0 and 2 degrees
implies an unusually small p-mode offset €, ~ 0.25. This is too low to be consistent with
a low-mass RG of any canonical evolutionary state: none of the observed stars in Figure
10 of Kallinger, Hekker, et al. (2012)) have €, < 0.4 (though CHeB stars do have lower
values of €, than do first-ascent RGs with comparable Av). Of course, if Zvrk is a post-
dredge-up remnant, it may well be possible that it attains an unusual value of €,. While
not theoretically characterized in this work, €, may turn out to be another observational

diagnostic for He WD-MS remnants.

While it is beyond the scope of the present work, we encourage a more detailed investigation
to determine whether this hypothesis can explain Zvrk’s large radius, oscillation spectrum,

surface abundances, and rapid rotation in a quantitative and self-consistent way.

3.5.3 Other potential post-dredge-up merger remnants

On the Av—AIl diagram, Mosser, Benomar, et al. (2014)) identify several RGs which lie
near, but slightly leftward, of the red clump (see their Figure 1). While Mosser, Benomar,
et al. (2014) argue that these stars have recently undergone helium subflashes, we suggest
that they might be post-dredge-up remnants. As we show in Section [3.4.2] post-dredge-up
remnants are also expected to have values of AIl comparable to those of normal CHeB

stars, but smaller values of Ay on account of their larger radii.

Recently, a small number of highly carbon-deficient red giants has been discovered and
characterized as a distinct class with a few common properties (Bidelman and MacConnell,
1973} Bond, [2019; Maben et al., 2023). These objects are almost all in the CHeB phase (as
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implied by their g-mode period spacings), and many are also lithium-rich and overluminous
compared to the usual red clump (Maben et al., [2023). However, the He WD-MS merger
scenario predicts a carbon enrichment and thus fails to explain the abnormally low carbon

abundances in these stars.

3.6 Discussion and future prospects

3.6.1 Progenitors and rates

While very few CVs with He WD accretors have been discovered (to our knowledge), CV
progenitors (known as pre-CVs) have been, some shown in Figure [3.14] As their name
suggests, such systems are expected to eventually initiate (possibly unstable) mass transfer
after a combination of magnetic braking and gravitational radiation tighten their orbits

sufficiently.

Zorotovic, Schreiber, and Génsicke (2011) compile a catalog of post-common envelope
binaries (PCEBs), WD-MS binary systems, some of which may contain He WD compo-
nents, identified in this work as those with Mwp < 0.5M, (see Figure [3.14). Most of the
MS components are of relatively low mass, with Mys =~ 0.3My. However, many of these
systems contain fairly massive He WDs and could, upon merging, display fairly extreme

versions of the asteroseismic and photometric merger remnant signatures we propose.

In later years, Maxted, Bloemen, et al. (2014)) identified a separate class of close detached
binaries involving AF-type MS stars orbiting low-mass (=~ 0.2Mg) proto-He WDs, with
Roestel et al. (2018) later measuring Mwp and Mys for 36 such systems (see Figure .
Due to the low masses of the proto-WD components, EL. CVns are likely formed via stable
mass transfer rather than common-envelope events (which would likely result in merger; X.
Chenetal.,[2017). The EL CVns in Figure[3.14]will likely merge when the stellar component
is either a MS star or a subgiant (Lagos et al.,|2020). In the He WD-subgiant case, the He
WD is expected to merge with the subgiant core and produce a similar, low-entropy-core
remnant as in the He WD-MS case explored in this work. However, He WD—subgiant
mergers may also have their own distinctive signatures, and a detailed investigation of the

associated remnants is probably warranted.

Based on MESA models of merger remnants (Zhang, Hall, et al.,|2017), Zhang, Hall, et al.
(2018)) perform a population synthesis calculation to determine how much these sorts of
merger remnants contribute to the population of single He WDs, which are not a natural
outcome of isolated stellar evolution (see also Zorotovic and Schreiber, 2017). Assuming
a star-formation rate of SMg yr~!, their calculation implies a Galactic formation rate of

merger remnants ~ 0.02yr~! (about half of which fizzle out into He WDs before starting
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Figure 3.14: Parameters for a collection of known pre-CVs which may contain He WDs
(Mwp < 0.5M;) taken from Zorotovic, Schreiber, and Géansicke (2011) for PCEBs and

Roestel et al. (2018) for EL CVns. Color indicates the orbital periods of each system.

helium burning), with a factor-of-a-few uncertainty when the Reimers wind parameter is
varied (Reimers, 1975}, Reimers, 1977). If merger remnants continue to appear as RGs for
1007;,8 Myr, the Milky Way should contain ~ 27, x 10° remnants at a given time. Put
another way, for a Kroupa initial mass function (Kroupa, 2001), single low-mass RGs in
the range 0.8My to 2.0My form at a rate ~ 0.3Mg yr~!. If isolated RGs have lifetimes
1007g Myr, He WD-MS merger remnants should make up roughly ~ 7% X (Ty,g/Tsg) of

all low-mass RGs.

The present work has focused on the case where the compact component is a He WD.
However, in principle, lower-mass CO WDs may also participate in mergers with MS stars
for the same reasons. In such cases, the MS component is expected to disrupt around and
accrete onto the carbon—oxygen core and initiate shell burning, and the merger remnant is
therefore likely to resemble an asymptotic giant branch star with an unusually cold core.

We defer a detailed investigation of this interesting possibility to a future work.

3.6.2 Merger transients and mass retention
The observable signatures of He WD-MS merger remnants described in this paper are
applicable long (at least a thermal time) after the merger. However, the merger itself as well

as any preceding novae events should produce observable transients and other emission,
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whose rates should be consistent with the population of merger remnants.

Metzger, Zenati, et al. (2021) show that the merger itself likely produces a dusty transient
similar to a luminous red nova (e.g., Kulkarni, Ofek, et al.,2007) powered by recombination
of the ejected material, and roughly estimate a Galactic rate ~ 0.1 yr~!. This is larger than
the rate predicted by Zhang, Hall, et al. (2018) by a factor ~ 5, although both estimates
are subject to significant uncertainties. From this rate, they estimate that the Milky Way
contains 10°~10* remnants at the present day, which is much smaller than the ~ 10° we
estimate in Section [3.6.1] The reason is that their models predict the merger remnant only
retains a small fraction ~ 10% of the hydrogen supplied by an already low-mass MS star,

rather than all of it. This implies a much shorter post-merger lifetime ~ 10-100 kyr.

However, Metzger, Zenati, et al., |2021] investigates cases where the MS star has a low
mass, Mys < 0.5Mwp. As they point out, higher-mass MS stars will likely produce
gravitationally unstable disks that accrete much more efficiently onto the WD, closer to
our assumption of conservative mass accretion. Ignition of hydrogen burning on the WD
during the merger (not included in their simulations) may also cause the remnant to swell
up and gain more mass from the disk. An independent constraint on the population of He

WD-MS merger remnants in the Milky Way may help distinguish these scenarios.

3.6.3 Rapid rotation

While most RG envelopes rotate very slowly, spectroscopic (Carlberg, Majewski, et al.,
2011) and photometric (Ceillier et al., 2017) studies have indicated that ~ 2% of RGs
are rapidly rotating (vsini > 10kms™!, or v/veie = 7% for typical values M ~ Mg, and
R ~ 10R), likely as aresult of stellar interactions such as mergers. The He WD-MS merger
remnants discussed in this work may also rotate rapidly enough for rotation measurements

to serve as an orthogonal diagnosis for their binary origin.

The merger occurs when the MS component of the close binary overflows its Roche lobe.
Very roughly, this occurs at a semimajor axis a ~3 Rys ~ 3Ro(Mus/Mg)?8, according
to the traditional mass—radius scaling formula for the MS. At the time of merger, the total

binary has an orbital angular momentum

|Ga
L= MMSMWD V (312)

where Mo = Mys + Mwp (and we have assumed a circular orbit). Then, assuming that no
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mass is lost during the merger, the final envelope spin rate of the resulting RG remnant is

0.4
k "1 Mwus Mwp
Qe ~ 3.8 uHz x (=5 )
I At (O.SM@) (O.3M@)

3 M o\Y2 R 2
0.8M, 20R,

where we have scaled the moment of inertia of the merger remnant’s envelope to k =
I/MysR? = 0.2 (as in, e.g., Bear and Soker, 2010).

(3.13)

This corresponds to rotation periods ~ 20 days, more than half the surface breakup frequency
Qg = m ~ 6.2 uHz, depending on the inflated radius of the remnant. This is much
faster than the rotation rate of typical RG stars at similar radii: rapid rotation (without
associated radial velocity variability) and associated magnetic activity can therefore help

distinguish merger remnants.

However, Equation[3.13] gives an estimate of the envelope rotation rate very soon (roughly a
thermal time) after the merger. The subsequent evolution of the rotation profile is strongly
dependent on the physics of magnetic braking (which saps angular momentum from the
system) and angular momentum transport (which couples the core and envelope rotation
rates). Both of these pieces of physics are not particularly well understood (especially
in the context of fast-rotating RGs), and models which incorporate both of these effects
are necessary for predicting the long-term evolution of core and envelope rotation rates of

merger remnants (Qian et al., in preparation).

Throughout this work, we have neglected rotation-induced mixing processes (Zahn, 1994;
Talon et al.,|1997; Mathis and Zahn, 2004; Zahn, [2010; J. Park et al.,|2020) which may be
important in a rapidly rotating merger remnant. Our predictions for the amount of helium
and other species mixed into the envelope and brought to the surface during a core dredge-up

event should thus be considered lower limits.

3.6.4 Non-asymptotic effects on pulsations

Both Equations and for Av and AII rely on the asymptotic approximation for stellar
oscillations, i.e., that the radial wavelength of the oscillation is much smaller than the scale
height of any structural variable. While the asymptotic approximation is well-justified for
most RGs (see, e.g., the introductory discussion of Ong and Basu, 2020), merger remnants
may possess sharp features in their profiles (glitches) which may cause departures from the
asymptotic formulae. Indeed, such glitches are observed in a small fraction of CHeB red
giants (Vrard, M. Cunha, et al.,[2022a).
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Although we eschew a comprehensive analysis of non-asymptotic effects in this work, we

point out three possible glitches which may occur in He WD-MS merger remnants:

1. Soon after merger, the Brunt—Viisidld frequency rises sharply with radius at the
interface between the He WD and hydrogen-burning shell. In intermediate-mass MS
stars, a similar spike in N near the convective core can produce variations in AlIl
versus P whose “period” in this space is a function of the buoyancy coordinate of
the glitch (Miglio, Montalbédn, Noels, et al., [2008; Pedersen et al., 2018)). Given the
low-entropy state of the core and the short-lived nature of the entropy discontinuity,

it remains to be seen whether this buoyancy feature is detectable.

2. In merger remnants, more intense helium flashes quickly burn larger fractions of
helium into carbon. This enhances the composition gradient between helium flash-
processed material and outer layers of the helium core. This may produce an abnor-
mally strong compositional peak in N during the CHeB phase, which may manifest

as an observable buoyancy glitch.

3. At the He 1 and He 11 ionization zones, the first adiabatic exponent dips abruptly,
producing sharp features in the sound speed (e.g., Miglio, Montalban, Carrier, et al.,
2010). Notably, the amplitudes of these acoustic glitches increase with higher helium
mass fraction Y (Houdek and Gough,|[2007). During the CHeB phase of our models,
Y can be enhanced to extreme degrees (Section [3.4)), and it is possible that the effect

of these acoustic glitches may be very strong.

Detailed mode calculations are likely required to determine whether these glitches are
observable, what their characteristics are in the oscillation spectrum, and to what extent

they can be used to identify and characterize merger remnants.

Our predictions for the large frequency spacing Av relies on the scaling relations in Equation
[3.3] which is known to require corrections when the outer layers deviate from homology to
a calibration standard (Belkacem et al., 2013; Ong and Basu, [2019). This may be slightly
modified in merger remnants by changes in surface composition or rapid rotation, and

should be investigated in the future.

3.6.5 Broader progress in binary interaction asteroseismology
Due to the diversity of stellar interactions expected to occur in the field, other post-merger
stellar structures and their asteroseismic signatures deserve future investigation, in particu-

lar:
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* RG-He WD mergers likely produce unusual CHeB giants, which have been previously
explored as a possible channel for producing certain classes of carbon stars (Izzard
et al., 2007; Zhang and Jeffery, 2013; Zhang, Jeffery, Y. Li, et al., 2020) and as
possible progenitors of the 8 UMi planetary system (Hon, Huber, Rui, et al., [2023))
and CK Vulpeculae, a historical transient observed in the year 1670 which is now a
bipolar nebula (Tylenda, Kaminski, et al., |[2024). The models of Zhang and Jeffery
(2013) suggest that these merger remnants behave like overluminous CHeB stars,
similar to those described in Section for the He WD-MS scenario (compare
their Figure 4 to our Figure[3.3).

* CO WD-MS mergers are likely to result from consequential angular momentum loss,
particularly for lower-mass CO WDs. While existing modeling literature typically
focuses on progenitor systems’ nova eruptions (Iben and Tutukov, 1996; Shara, Yaron,
et al.,[2010; Kato et al., 2017) or their role in producing Type la supernovae (Kovetz
and Prialnik, (1994} Cassisi, Iben, et al., [1998; Newsham et al., [2014; Hillman et al.,
2016; B. Wang, 2018), mergers of such remnants should become unusual asymptotic
giant branch stars with highly degenerate cores (Cassisi, Iben, et al., [1998; Piersanti

et al., 2000; Wolf et al., 2013)), with possibly observable consequences.

* CO WD-He WD mergers are the likely progenitors of R Coronae Borealis stars (R
Cor Bor stars), which are yellow supergiants consisting of a carbon—oxygen core
surrounded by a helium envelope inflated by shell burning (G. Clayton et al., 2007}
Menon et al., 2013). R Cor Bor stars are known to pulsate at periods between 40
and 100d (Lawson and Kilkenny, 1996; Karambelkar et al., 2021)), making astero-
seismology a promising tool for probing their internal structures (Wong and Bildsten,
2024).

» Lastyear, Bellinger, Mink, et al. (2024) identified asteroseismology as a tool for testing
the post-MS merger channel for producing blue supergiants, finding that the g-mode
period spacing AIl constrains their formation channels. In a parallel observational
study using TESS, L. Ma et al. (2024) discovered a peculiar but universal low-
frequency (f < 2d~') photometric power excess, although the physical nature of
these oscillations remains unclear, and the authors were unable to observe individual

modes or measure Al

Binary interaction asteroseismology is a technique at its infancy, with likely many more

fruitful directions.



76

3.7 Summary

In this work, we presented detailed models of merger remnants of He WD-MS mergers.
Merger remnants quickly initiate hydrogen shell burning and become unusual giant stars
which may hide inside the RG population. However, they exhibit a number of unique
signatures which may be used to distinguish them. In summary, during hydrogen shell-

burning (RGB), merger remnants:

1. are over-inflated at a given core mass.

2. depart from the standard degenerate sequence on the asteroseismic Av—AIl diagram.
Asteroseismology can thus identify remnants whose mixed-mode coupling is suffi-

ciently strong.
3. undergo delayed helium flashes, and attain higher luminosities at the tRGB than do

single RGs.

During helium core burning (CHeB), remnants of mergers involving lower-mass He WDs:

1. attain core masses which are essentially typical for single CHeB stars.

2. are strong candidates for the undermassive red clump stars discovered by Y. Li et al.
(2022) and Matteuzzi et al. (2023)).

Remnants of mergers involving higher-mass He WDs dredge up a significant fraction (up to
~ 0.1My) of helium into the envelope. During core helium burning, these post-dredge-up

merger remnants:

1. have significantly larger radii and luminosities than single stars on the red clump.

2. exhibit a wider range of asteroseismic g-mode period spacings AIl than do typical

stars on the red clump.

3. attain abnormally strong degrees of asteroseismic mixed-mode coupling towards the
end of CHeB.

4. are enriched in '2C, as well as 130 and 2Ne.

5. may already have been discovered. The rapidly rotating RG discovered by Ong, Hon,
et al. (2024) (“Zvrk”) has many of the predicted properties of this type of merger

remnant.
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Observational probes of these merger remnants can constrain the He WD-MS merger
process at the population level. In turn, this may provide additional confirmation of the

consequential angular momentum loss hypothesis and white dwarf mass problem for CVs.
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3.A Dependence on the cooling age of the white dwarf

Pre-merger, all of the merger models discussed in the main text use a He WD which has
been cooled until it achieves a luminosity Lwp = 10™+Ly. This relatively low luminosity
is chosen to explore the limiting case of a very degenerate helium core. In our models, this
luminosity corresponds to relatively long He WD cooling ages 5 Gyr < tc.001 < 7 Gyr, with
a fixed Lwp corresponding to longer 7., for He WDs with higher masses Mwp or more
substantial atmospheres. For comparison, note that the merger remnant models of Zhang,
Hall, et al. (2017) use Lwp = 107>L,.

In this Appendix, we discuss the effect of varying log(Lwp/Le). Figure shows the
evolution of some selected selected quantities for four models (the first three of which also

appear in the main text):

1. A non-merged model, which has a “normal” helium core on the RGB which is close
to isothermal with the hydrogen-burning shell.
2. A merger remnant with log(Lwp/Lg) = —4.0 and Mwp = 0.30M,.

3. A merger remnant with log(Lwp/Lg) = —4.0 and a lower-mass Mwp = 0.27M,.

4. A merger remnant with a higher pre-merger He WD luminosity log(Lwp/Lg) = —2.5
and Mwp = 0.30M. This value of log(Lwp/Lg) corresponds to a He WD cooling
age tcool & 550 Myr.
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All models have total masses of M = 0.80M and WD atmospheres of mass 10*M, and

respectively.

As described in Section [3.3] merger remnants during the RGB will start with initially low-
entropy cores, but their entropies will gradually grow due to heat diffusion and deposition
of higher-entropy helium resulting from hydrogen burning. The degree of entropy deficit in
the core therefore results from a combination of the entropy of the original He WD as well
as its mass, which determines its total heat capacity). Because increasing log(Lwp/Le) and
decreasing Mwp affect this core entropy deficit in the same way, merger remnants should

be affected by increases in log(Lwp/Lg) and decreases in Mwp in similar ways.

Figure [3.15] shows the evolution of the models listed above. They all have comparable
radii on the RGB, but AII (reflecting the internal thermal structure of the core) varies
somewhat between them. As can be seen on the bottom left panel of Figure the
core temperature T, of the Mywp = 0.27M, log(Lwp/Le) = —4.0 model initially behaves
very similarly to the Mwp = 0.30M, log(Lwp/Le) = —4.0 model, since not enough
time has yet elapsed for conduction to significantly modify its temperature. Later on, 7,
in the Mwp = 0.27M model takes a sharp upturn to more closely resemble the warmer
Mwp = 0.30Mg, log(Lwp/Le) = —2.5 model. By the helium flash, these two models have

very similar AIT and temperature profiles.

Once the helium flash occurs, variations in the temperature profile due to a finite thermal
conductivity in the core are erased entirely. During the CHeB phase, the Mwp = 0.27M¢,
log(Lwp/Le) = —4.0 and Mwp = 0.30M, log(Lwp/Le) = —2.5 models are essentially
identical (right panels of Figure [3.15). Both models evolve significantly differently than
the Mwp = 0.3M¢, log(Lwp/Le) = —4.0 model (which had a larger entropy deficit on the
RGB).

In summary, decreasing the cooling age of the merging He WD has a very similar effect
to slightly decreasing its mass. Hence, the merger models in the main text are expected to

behave similarly to merger models with younger and slightly more massive WDs.

3.B Thermal timescale of the core
In this Appendix, we estimate the timescale Ty core fOr a cold, highly degenerate remnant
core to thermalize with a hot burning shell. In this environment, electron-mediated heat

conduction is the dominant heat transport mechanism.

The resulting heat flux g takes the form

g = —eonapTVT (3.14)
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Figure 3.15: The total luminosity L, radius R, asteroseismic g-mode period spacing All,
and central temperature 7, for selected models during the RGB (left) and CHeB (right)
phases. A model with Mwp = 0.30M but a brighter He WD (log(Lwp/Le) = —2.5) is
included.

where
Qeond ~ 2.44 X 1034272 ecm* s> K2, (3.15)

see Mestel (1950). The heat capacity per unit volume is dominated by the non-degenerate

ions:
_ & _ 3pkg

= T 2Am,

(3.16)

In the absence of heat sources, the continuity equation for energy density & within the
interior of the WD is thus given by
oe
i

1

V.- (3.17)
Substituting Equations[3.14]and [3.16]into Equation yields the following nonlinear heat

diffusion equation:
oT « 0 ( ,. 0T
— =—=—|rr—|, 3.18

ot r2or (r ar) G-18)
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cf. Mestel (1952)). In writing Equation [3.18] we have assumed spherical symmetry, and

that p does not vary with temperature. The diffusion coefficient « is given by

2Am,acond
= 3.19
K 3k (3.19)

Atearly times, the core is essentially isothermal at a low temperature Ty << Tghepp = 3X 107 K.
Thermal contact with the hot hydrogen-burning shell at the outer boundary sets up a
temperature gradient 0T /0r ~ Tshenn/R.. The natural length scale of the problem is R.. By
Equation the core therefore thermalizes on a timescale i core glven roughly by

1 KTghenl
- (3.20)
Tth,core R%
or
3kg  R? R V[ Twa \ ' (Z)* (A7
. ~ 80 Myr X ‘ > 7] G21
Tth,core 2Am ,@eond Teell yr 0.035R 3x 107K 2 4 ( :

A similar timescale to T core has been previously derived by Shen, Idan, et al. (2009).
The scaling relation in Equation [3.21]is normalized to a typical He WD in thermal contact
with a typical hydrogen-burning shell. This timescale is comparable to the length of the
remnant’s RGB phase—the longest RGB phase leading to helium ignition in our merger
remnant models lasts ~ 180 Myr (for a He WD mass Mwp = 0.20M). Heat conduction
thus cannot completely destroy the low-entropy state of the core quickly enough to erase
its long-term effects on the appearance and evolution of the remnant, especially for higher

values of Mwp.

3.C Brunt-Viisila frequency in degenerate helium cores

In this Appendix, we derive the Brunt—Viisila frequency N in the part of the g-mode cavity
which lies within the helium core of a star on the RGB. This region is characterized by
degenerate electrons which dominate the pressure support and non-degenerate ions which

dominate the heat capacity.

Following Brassard, Fontaine, Wesemael, Kawaler, et al. (1991), in the absence of compo-

sition gradients, N can be written as

N? = Ng)f (Vg - V) (3.22)
o



where

and we have defined

(alnp
XT

olnT
Olnp
dlnp),
dInT
V.q =
ad (dlnp ad
V:dlnT
dInp

Xp

2
N2 =P8
p
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(3.23a)

(3.23b)

(3.23¢c)

(3.23d)

(3.24)

where roughly No~+/GM,./R}? is comparable to the dynamical frequency of the core.

In degeneracy-supported matter, y, ~5/3 and V,q = 0.4 are basically constant. In WDs,

the pressure has two contributions from the degenerate electrons (which dominate the total

pressure) and non-degenerate ions (which carry the temperature dependence):

2
p= gl’leEF +n;kgT

(3.25)

where n, = Zp/Am,, and n; = p/Am,, are the electron and ion number densities, respec-

tively, and EF is the electronic Fermi energy. Roughly

Then

ZZpEF

ngAmp

[57), = 5
oT o Am,,

T(ap) 5 kT
xr==\7| =55+
p p

T ) ~— 27 Er

Therefore, for mostly degenerate matter,

kpT
N*~ N2 22— 1-2v).
ZEp \ 2

(3.26a)

(3.26b)

(3.27)

(3.28)
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Figure 3.16: Composition profiles for the non-merged M = 0.80M and selected merger
remnant models at the beginning of CHeB (a few megayear after the helium flash).

3.D Post-helium flash composition profiles

Figure[3.16/compares the composition profiles for various merger remnants at the beginning
of CHeB, soon after the helium flash. As explained in Section [3.4] merger remnants
involving more massive He WDs (higher Mwp) convert a larger fraction of their core
helium into carbon during the helium flash. Moreover, our merger remnant models with
Mwp > 0.27M, (e.g., the bottom two panels of Figure[3.16]) undergo core dredge-up events
which mix some of the helium core into the envelope. Such merger remnants therefore begin
CHeB with lower core masses and possess envelopes which are dramatically enhanced in

species such as helium and carbon (see Section [3.4.4).
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Chapter 4

GRAVITY WAVES IN STRONG MAGNETIC FIELDS

Rui, NZ and J Fuller (2023). “Gravity waves in strong magnetic fields”. In: Monthly Notices
of the Royal Astronomical Society 523.1, pp. 582—602. por: 10. 1093 /mnras/stad1424.

Abstract

Strong magnetic fields in the cores of stars are expected to significantly modify the behavior
of gravity waves: this is likely the origin of suppressed dipole modes observed in many red
giants. However, a detailed understanding of how such fields alter the spectrum and spatial
structure of magnetogravity waves has been elusive. For a dipole field, we analytically
characterize the horizontal eigenfunctions of magnetogravity modes, assuming that the
wavevector is primarily radial. For axisymmetric modes (m = 0), the magnetogravity wave
eigenfunctions become Hough functions, and they have a radial turning point for sufficiently
strong magnetic fields. For non-axisymmetric modes (m # 0), the interaction between the
discrete g mode spectrum and a continuum of Alfvén waves produces nearly discontinuous
features in the fluid displacements at critical latitudes associated with a singularity in the fluid
equations. We find that magnetogravity modes cannot propagate in regions with sufficiently
strong magnetic fields, instead becoming evanescent. When encountering strong magnetic
fields, ingoing gravity waves are likely refracted into outgoing slow magnetic waves. These
outgoing waves approach infinite radial wavenumbers, which are likely to be damped
efficiently. However, it may be possible for a small fraction of the wave power to escape
the stellar core as pure Alfvén waves or magnetogravity waves confined to a very narrow
equatorial band. The artificially sharp features in the WKB-separated solutions suggest the

need for global mode solutions which include small terms neglected in our analysis.

4.1 Introduction

Stellar magnetism is a highly impactful, but often neglected, property of many main se-
quence stars (Ferrario, Pringle, et al., |2009; Vidotto et al., 2014)), red giants (Garcia, F.
Hernandez, et al., [2014; Stello, Cantiello, Fuller, Garcia, et al., [2016; Stello, Cantiello,
Fuller, Huber, et al., 2016; Fuller, Cantiello, et al., [2015), white dwarfs (Angel, [1977;
Wickramasinghe and Ferrario, 2000; Liebert et al., 2003), and neutron stars (Thompson
and Duncan, [1993; Kulkarni and Thompson, 1998; Levin, 2006) alike. In stars, such
magnetic fields are expected to originate from dynamo mechanisms (Baliunas et al., 1996;


https://doi.org/10.1093/mnras/stad1424
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Spruit, 2002; Maeder and Meynet, 2005; Brun and Browning, 2017), as fossils leftover from
the star’s formation (Braithwaite and Spruit, [2004; Dudorov and Khaibrakhmanov, 2015;
Ferrario, Melatos, et al., [2015), or from stellar mergers (Ferrario, Pringle, et al., 2009;
Tutukov and Fedorova, 2010; Wickramasinghe, Tout, et al., 2014; Schneider, Ohlmann,
Podsiadlowski, Ropke, Balbus, Pakmor, and Springel, 2019). Despite the importance
and ubiquity of strong stellar magnetism, our understanding of oscillations in such highly

magnetized stars remains incomplete, even at the qualitative level.

Interest in the influence of magnetic fields on nonradial stellar oscillations has been reignited
in the past few years by the discovery of suppressed dipole (£ = 1) and quadrupole (¢ = 2)
oscillation modes in a family of red giants (Mosser, Elsworth, et al., 2012; Garcia, F.
Hernandez, et al., 2014} Stello, Cantiello, Fuller, Garcia, et al., 2016; Stello, Cantiello,
Fuller, Huber, et al., [2016; Mosser, Belkacem, et al., [2017). It is largely believed that the
origin of this phenomenon is magnetic in nature, with recent work suggesting that ingoing
gravity waves can damp out after either being trapped inside the core (the “magnetic green-
house effect,” Fuller, Cantiello, et al., 20135)), refracted into high-wavenumber oscillations
(Lecoanet, Vasil, et al.,[2017), or dissipated by Alfvén waves (Loi and Papaloizou, 2017). In
parallel, G. Li, Deheuvels, Ballot, and Lignieres (2022) have made the first-ever constraints
on the interior magnetic field topology—the recent development of such new powerful ob-
servational tools further demands proportionate advances in our theoretical understanding

of internal magnetogravity waves.

Efforts to understand the impact of magnetic fields on stellar oscillation modes have taken
many forms, but have been limited due to the difficulty of the problem. For example, early
attempts to understand magnetic effects on non-radial oscillations involved introducing
a magnetic field as a small perturbation (e.g., Goossens, [1972; Goossens et al., [1976;
Goossens, (1976; Mathis, Bugnet, et al., 2021). Some of these perturbative calculations
have promisingly suggested that core magnetic fields may leave imprints on the mixed-mode
period spacing (Prat, Mathis, Buysschaert, et al., 2019; Prat, Mathis, Neiner, et al., 2020a;
Bugnet et al., 2021; Bugnet, 2022)), in addition to their impact on dipole mode visibilities.
However, magnetic mode splittings are often small except for fields large enough to strongly
couple with Alfvén waves, where a perturbative treatment is largely inappropriate (Cantiello
et al., 2016). While other analyses have assumed a purely horizontal field (Rogers and
MacGregor, 2010; Mathis and De Brye, 2011; MacGregor and Rogers, 2011; Dhouib,
Mathis, et al., [2022), such studies are not applicable to the general case where the radial

component of the field dominates the interaction with the gravity waves.

Fuller, Cantiello, et al. (2015]) used a Wentzel-Kramers—Brillouin (WKB) approximation
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in both components of the wavenumber to show that magnetogravity waves are forced to be

evanescent when the mode frequency lies below a characteristic frequency given by

ee + 1) B2N2\
wp = (#) . 4.1)
Tpor

where €, By, N, po, and r are the angular degree, radial magnetic field, Brunt—Viisald
frequency, density, and radius, respectively. This result can also be recovered exactly when
considering the coupling of gravity waves to an exactly uniform radial field geometry (see
Section .62). However, while setting a useful scale for strong coupling between gravity
waves and the magnetic field, this analysis relies on the assumption that the radial magnetic

field is uniform at a given radius (which is not physical).

Other studies have probed the behavior of magnetogravity waves under arbitrarily compli-
cated magnetic field geometries using a flexible ray-tracing method (Loi and Papaloizou,
2018} Loi, 2020c; Loi, [2020b). However, crucially, this method relies heavily upon the
(WKB) approximation that both the radial and horizontal components of the wavenumber
are large compared to the variation scales of the magnetic field and stellar structure. In
reality, the horizontal wavenumber k; = \/m /r of the observable ¢ <3 modes likely
has a comparable length scale to that of the magnetic field gradient. It is clear that a fuller
understanding of magnetogravity waves must account for a magnetic field which is allowed
to vary with latitude and longitude, without assuming an unrealistically large horizontal

wavenumber.

Some progress on this front was made by Lecoanet, Vasil, et al. (2017)), who solve for
the eigenmodes of a two-dimensional Cartesian analogue of a multipole magnetic field
geometry, demonstrating that modes in their model cannot propagate in regions whose
magnetic field exceeds a critical strength (see Sectionf.A.2)) close to the estimate of Equation
M.1l However, since their analysis cannot capture modes which propagate horizontally
relative to the field (i.e., non-axisymmetric modes), the possibility is left open that such
non-axisymmetric modes may propagate deeper into a star. Later, Lecoanet, Bowman, et al.
(2022) extended this analysis numerically to more general tesseral/sectoral (m # 0) modes
using the pEDALUS code in order to probe the interior field of a main sequence B-type star
HD 43317. However, explanations for many qualitative properties of the solution have

heretofore remained elusive.

In this work, we analyze the horizontal structure of ¢ modes under a strong magnetic
field. We assume that the wavevector is primarily radial, and the radial wavelengths of

the perturbations are much smaller than the stellar structure length scale (the radial WKB
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Figure 4.1: A meridional slice of the 6 displacement &y for a magnetogravity mode with
(¢, |m|) = (5,2), with the left half showing an ingoing gravity wave and the right half
showing an outgoing (slow) magnetic wave (calculated in Section[4.5.2)), which approaches
an infinite wavenumber at a cutoff radius (where it is dissipated). The eigenfunctions
become large at the Alfven resonance w = w4 (bcosf = =1; red dashed line), and they
become evanescent past the turning point w = wp (a ~ 1; blue dotted line), where the
solutions are given in Section .5.1] This diagram is not to scale, as the stellar profile has
been modified to better show the spatial structure of the magnetic wave.

approximation), and numerically solve for the magnetogravity mode eigenfunctions. We
find that such g modes contain sharp features in the fluid displacements at the locations of
resonances with Alfvén waves (so-called “critical latitudes™), and that the general structure
of their branches and eigenfunctions are sensitive to even vanishingly small amounts of
dissipation. We also discuss the importance of the horizontal component of the field near
these critical latitudes, as well as near the equator. Nevertheless, we still find that g modes
cannot propagate arbitrarily deep in sufficiently magnetized stars, and are likely converted
into outgoing slow magnetic waves that dissipate inside of the star. An outline of the

solution described in this work is shown in Figure #.1]

We organize this paper as follows. In Section 4.2] we describe the problem setup: a sta-

bly stratified, magnetized star obeying the incompressible MHD equations (Section 4.2.T)),
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whose essential physics are governed by the relationship between the mode, Alfvén, and
magnetogravity frequencies w, w4, and wp (Section d.2.2)). For the majority of this work,
we specialize to a dipole magnetic field (Section 4.2.3). In the WKB limit, the result-
ing differential eigenproblem contains singularities at critical latitudes corresponding to
resonances with the Alfvén spectrum. We point out a close analogy with the rotational
problem (Section #.3.1)), then comment on previous work on internally singular eigenprob-
lems (Section [4.3.2)), and lastly investigate the behavior of eigenfunctions around those
critical latitudes (Section 4.3.3). In Section 4.4} we present zonal (m = 0; Section 4.4.1))
and sectoral/tesseral (m # 0, Section@[) solutions to the problem. We then comment on
the origin and behavior of the continuous Alfvén wave spectrum (Section4.4.3)). However,
since vanishingly small dissipation can qualitatively affect the mode spectrum, we present
numerical solutions of dissipative solutions in Section 4.5 first allowing for evanescent
solutions (Section [4.5.1)) and then constraining the radial phase velocity (Section 4.5.2).
Finally, in Section 4.6 we discuss the importance of horizontal field terms near the critical
latitudes and equator (Section {.6.1)), nonharmonic solutions of singular differential equa-
tions (Section4.6.2), the effects of more general magnetic field geometries (Section {.6.3),
and the possibility of magnetically stabilized g modes in convective zones (Section 4.6.4).
Section 4.7l concludes.

4.2 Problem statement

In this work, we consider a spherically symmetric star in hydrostatic equilibrium, with
a possibly large equilibrium magnetic field (which is not spherically symmetric). It is
assumed that the magnetic field does not act on the background structure, i.e., it is not strong
enough to introduce substantial departures from a spherically symmetric stellar profile. For
simplicity, we ignore rotation and use the incompressible and Cowling approximations,
such that buoyancy and magnetic forces dominate the dynamics. These forces are likely to

dominate in, e.g., the slowly rotating radiative cores of red giants.

Throughout this work, we use the term ‘“magnetogravity wave” to refer to the general
phenomenon of a gravity wave propagating through a highly conductive, magnetized fluid.
In sufficiently magnetized stars, ingoing magnetogravity waves are refracted outwards, and
(as we will show in Sections [4.4.1] 4.4.2] and [4.5.2)) approach infinite radial wavenumber
at a finite height—we refer to such waves as “slow magnetic waves.” Such branches are

“slow” in the sense that their phase and group velocities approach zero as waves propagate
outwards. This medium also sustains “Alfvén waves,” which are confined to magnetic field
lines and appear as highly localized, linearly independent toroidal solutions to the fluid
equations (see Section 4.4.3).
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In this Section, we first introduce the linearized fluid equations (Section i.2.T). We then
identify the most important dimensionless parameters governing the physics (Section4.2.2)).
Finally, we specialize to the case of a dipole magnetic field (Section #.2.3)), to which the

majority of this work is dedicated.

4.2.1 Linearized fluid equations

The linearized incompressible MHD equations are

V-E=0 (4.2a)
pod2E = -V (p’ + By B’) _ g — (Bo : V) B (4.2b)
dr dr
, N?
p =" (4.20)
g
B = (EO : v) g (4.2d)

where SZ is the perturbed fluid displacement, while p’, p’, and B’ are the Eulerian density,
pressure, and magnetic field perturbations, and 0 subscripts indicate non-perturbed quanti-
ties (Proctor and N. Weiss, 1982). Here, N is the Brunt—Viisila frequency, and g = g(r) is
the inward gravitational acceleration. Here, we have assumed the WKB approximation in
the radial direction only, and have made the Cowling approximation (g’ ~ 0). Additionally,
as implied by Equation we only consider adiabatic oscillations. Equation d.2d]is sim-
ply the induction equation in ideal magnetohydrodynamics, written in the WKB limit (for
By varying radially on a length scale ~ r). Throughout this paper, we will focus on solving
for oscillation modes with harmonic time dependence, i.e., those with o elw! (although this

assumption is discussed in Section 4.6.2).

Describing an incompressible fluid under ideal magnetohydrodynamics, these equations
admit modes which are restored by buoyancy and magnetism (i.e., there are no acoustic
waves). Gravity waves are expected to have large radial wavenumbers which are much
larger than both their horizontal wavenumbers (k,/k, ~ N/w ~ 107 in typical red giant
cores) and the star’s structural variation scale 1/H. However, the horizontal wavenumber
kp =~ \/m /r, so low-¢{ magnetogravity modes vary horizontally on similar length
scales to large-scale magnetic fields. Therefore, we have adopted a WKB approximation in
the radial direction only (i.e., /dr ~ —ik,) such that k, is assumed to be larger than any

structural gradients.

We define the Alfvén frequency wa = k -9 4, where ¥4 = B /47 pg is the Alfvén velocity.
Then the assumption that k, > kj, entails that wg o« (E . l_c)) = B,k, + Bk, ~ B,k,, such
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that the horizontal component of the magnetic field is unimportant as long as B, and By,
are comparable. This approximation is made by Fuller, Cantiello, et al. (2015)), and is very
analogous to the “traditional approximation of rotation” (see Section[4.3.1). We discuss the

importance of B, terms in Section[4.6.1]

When a WKB approximation is made in both the vertical and horizontal directions (or if a
monopolar field is considered; Appendix [4.A]), the dispersion relation is given by

2
w* - Z—;’NZ — k3% =0 (4.3)
where v4 = |v4,,| is the radial component of the Alfvén velocity (Unno, Osaki, Ando, Saio,
et al., 1989). If both buoyancy and magnetism are important, all three terms in Equation
[.3]are of the same order. This defines a hierarchy of variables: letting € be a small quantity
around which we implicitly expand, we see that, if w, k, ~ O(1), then N, k, ~ O(e7 ") are
“large” and v4 ~ O(e) is “small.” Hereafter, we only retain terms leading-order in €, which

is realistic as long as k, > ky,.

4.2.2 Important frequency scales

To understand the nature of this magnetogravity problem, we can non-dimensionalize the
relevant physics equations. All formulations of the magnetogravity problem (see, e.g.,
Appendix {.A)) that make similar assumptions to ours can be formulated as the following

horizontal eigenproblem at a given radius (see Section 4.6.3):

2
Lhalop 4 (w—rzkz) p'=0 (4.4)
where L5774/ is some geometry-dependent differential operator that depends on the ratio
of the Alfvén frequency ws ~ k,v4 to the mode frequency w. In Equation 4.4 v, is a
measure of the the Alfvén velocity at a given radius. Although the magnetic field strength
clearly varies as a function of 6 and ¢, hereafter we use v4 to denote its maximum value at

a given radius.

The Buckingham 7 theorem (Vaschy, 1892; Federman, |1911; Riabouchinsky, |1911; Buck-
ingham, 1914) states that, for some equations depending on p dimensionful quantities in g
independent dimensions, those equations can be written in terms of p — ¢ dimensionless
quantities which completely determine their behavior. In this particular problem, Equa-
tion depends on the p = 5 dimensionful quantities w, N, k,, and r, and v4 over the
g = 2 independent dimensions, length and time. Therefore, the essential behavior of the
magnetogravity problem can be understood by understanding the interaction of p — g = 3

dimensionless quantities.
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One natural dimensionless quantity to construct is rk,, the radial wavenumber rescaled
to the characteristic length scale of the star. Fortuitously, because rk, > 1 according to
the radial WKB approximation, the non-dimensionalized version of Equation {.4] will not
actually depend on this quantity. Next, because £V4/® depends only on the combination
k,v4/w (which describes the presence/location of resonances between modes and Alfvén

waves), it is natural to choose this to be another dimensionless quantity:

krVA WA
= ~ 2 4.5
” 5 (4.5)

b

Finally, if one seeks to non-dimensionalize Equation 4.4 using a third quantity which does
not depend on the spatial structure of the mode itself (i.e., independent of k), the remaining

dimensionless quantity must depend solely on some “depth parameter” a, given by

a= (ﬂ) (VA/F) (4.6)

We refer to a as a depth parameter because N and v4 often increase with depth in stars

such as red giants, so we expect a to increase with depth. It is possible that a could reach
a maximum at some finite radius which would admit a weakly magnetized inner region. In
practice, this inner region will be nearly decoupled from the rest of the star by an evanescent
region and will be effectively unobservable, except for finely tuned frequencies. In a red

giant, N? peaks near the H-burning shell, where the value of a will likely peak as well.

In the terminology of Fuller, Cantiello, et al. (2015), a ~ w%, / w? where

wp ~ \Nvy/r “4.7)

is the magnetogravity frequency, below which modes cannot be spatially propagating. We
thus argue that the frequency scale wp defining strong magnetogravity waves (identified by
Fuller, Cantiello, et al. 2015/ under some specific assumptions) arises as the most natural

mode-independent frequency scale in the problem.

Adopting b and a as our dimensionless parameters, Equation 4.4] can be rewritten as

b2

Ly +=p =0 (4.8)

a
For the hierarchy of variables adopted in Section 4.2.1] we see that both a and b are of
order unity within the domain of interest, where magnetic forces and buoyancy forces are
comparable. Consequently, when non-dimensionalizing the fluid equations, specifying
a (which is independent of k,) determines the spectrum of allowed b. For a fixed mode

frequency w, the resulting dispersion relation will therefore relate wp to the allowed w4 o< k..
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For the remainder of this, we will study the magnetogravity problem in terms of these two
dimensionless quantities, which relate the mode (w), Alfvén (w4 ), and magnetogravity (wp)

frequencies to each other.

4.2.3 Dipole geometry

We give special attention to the case of a magnetic field whose radial component is dipolar,
Bo = Bo(r) cos 07 + By(r, 6, ¢) 6+ By(r,0,¢) ¢ ~ Bo(r) cos 6 7 (4.9)

Because the wavenumbers of gravity waves are predominantly radial, the radial component
of the field couples most efficiently to them (Fuller, Cantiello, et al., 2015), and the
horizontal field components can be neglected at lowest order. This generic dipole angular
dependence encompasses as special cases the force-free dipole (Bo(7) o« r~3) and uniform
BoZ (Bo(r) = const.) field geometries, as well as the mixed poloidal-toroidal field solution
of Prendergast (1956).

For this special case, and adopting a radial WKB approximation, Equations [4.2] can be

written in spherical polar coordinates as

) 1d [ 5 im B
lkrgr + ;a (é:g 1- MU ) — \/1—_7§¢ =0 (4.10a)

r
poN?¢. = ik,p’ (4.10b)
V1I=—u2dp’ 1

pow’és = - L k2Bl (4.10¢)

r du 4n
im , 1
pow’éy = ———p' + —ﬂka(z)p2§¢ (4.10d)

where we have substituted Equation into the radial component of Equation [4.2a]
Equation4.2dinto the horizontal components of Equation[4.2a] and kept only leading-order
terms. Here, u = cos 6, and the axisymmetry of this geometry entails eigenfunctions with

0/d0¢ — im for an integer m.

In terms of the pressure perturbation p’, the other perturbations become

ik, i (w b ,
= - “)2 4.11
2 posz pwrr N) a? (4.11a)
V1= p? dp’
£ = (4.11b)
pow?r (1 —b?p?) du
im
&y = P’ (4.11c)
pow?ry/1 — % (1 — b2u?)
%
o =y (4.11d)
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and B’ = —iBO,ukrg?.

When Equations 4.11a] 4.11bl and |.11¢| for the displacements are substituted into the

continuity equation (Equation {.10a), we obtain

m ’ b2 ’
Liaep () + —p' (1) =0 (4.12)

where ) 5
1 —p” dp'(p)

=2 -
Liep'(m d,u(l—bzﬂz du ) (1= w?) (1= b%2)

p'(p) (4.13)

Equation m can be viewed as an eigenvalue equation for the unusual operator .Emag
Letting A be the (conventionally negative) eigenvalues of Lmag, Equation is

Ly +ap’ =0 (4.14)

with
A=0b%/d* (4.15)

constitutes the dispersion relation for magnetogravity waves.

In the limit of zero magnetic field, .Eg;@ approaches the usual generalized Legendre op-
erator (whose eigenfunctions are associated Legendre polynomials). Here, while a and b
individually approach zero, the combination A = b?/a? (= r*k?w?/N?) approaches £(£+1),
matching the zero-field result that k;, = \/m /r). Inthis case, Equationapproaches

the unusual internal gravity wave dispersion relation w/N = kj/k,.

In this work, we index mode branches using £ and |m|, corresponding to the angular degree
and order of the branch at zero field (note that modes of +m and —m have identical spectra).
Hereafter, we refer to mode branches as an ordered pair (¢, |m|), e.g., the (2, 1) branch
corresponds to the branch which, at zero field, has a horizontal dependence of a spherical
harmonic with ¢ = 2 and m = +1. However, note that the eigenvalue of Lﬁ;@ does not equal
A ={€(£ + 1) except precisely in the b = 0 (zero-field) case, and the index ¢ is just used for

indexing purposes.

4.3 Important features of the magnetogravity eigenproblem

4.3.1 Close analogy to the rotational problem

In the study of nonradial pulsations under uniform rotation, it is common to consider
only the influence of the Coriolis force, which dominates the rotational effect for small €.

Specializing further to the case where k, > ky, it is common also to ignore the horizontal
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component of the rotational vector fl, since the product k-Q= k Q) + kpQp = k,Q, will
be dominated by the radial term (see, e.g., Lee and Saio, 1997} Z.-Y. Chen and Lii, [2009; H.
Wang et al.,|2016). Under this approximation (the “traditional approximation of rotation”),
the radial and horizontal fluid equations become separable, and the following eigenproblem

appears:
L p" () +Ap'(n) = (4.16)

where LV (called the “Laplace tidal operator”) is given by

rot

my ,( _d 1_/12 dp,(,u) _ }’n2 /( )
Loip i) (1 u2v?  du ) (1—#2)(1_ﬂ2y2)l’ M
4.17)
_mv ()
(1w

where v = 2Q/w describes the influence of rotation.

Comparing Lr'ﬁalé and L suggests a close analogy—the latter is identical to the former
(with v playing the role of b) except for the presence of an extra term (the second term
in Equation which distinguishes prograde (mv < 0) and retrograde (mv > 0) modes
(Lee and Saio, [1997). Because a dipole magnetic field does not privilege either clockwise
or counterclockwise-propagating oscillations, the symmetries of the problem do not permit

this term to exist in the magnetogravity problem.

The eigenfunctions of £;" (whose eigenvalues we denote by Ay, are called Hough func-
tions (Hough, 1898a; Hough, [ 1898b), and their properties have been widely studied, both
analytically (Homer, |1990; Townsend, 2003} Townsend, 2020) and numerically (Bildsten,
Ushomirsky, et al., [1996; Lee and Saio, [1997; Z.-Y. Chen and Lii, 2009; Fuller and Lai,
2014; H. Wang et al., 2016). In Section @], we show that the exact correspondence
between Lﬁa[; and L

eigensolutions of the magnetogravity problem.

. in the zonal (m = 0) case allows us to identify Hough functions as

We note that, for |[v| > 1, the coefficients in the Laplace tidal operator L " (Equation
switch signs on the domain, and Sturm—Liouville theory no longer guarantees that its
eigenvalues are positive-definite (see Section[4.3.2), and indeed there are an infinite number
of 4; < 0 branches occupying the range |v| > 1 which diverge to negative infinity as
|v|] = 1 is approached (e.g., Lee and Saio, 1997). In the rotation problem, these negative
Ay, branches correspond physically to oscillatory convective modes (e.g., Section 4.6.4).
Notably, in the retrograde case for |m| # 0, some of these branches of eigenvalues actually

rise above 0 and physically correspond to Rossby waves (Lee and Saio, [1997). In the
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magnetogravity problem, these negative eigenvalue branches are not directly relevant in
radiative regions (see Section 4.4.1] for a discussion of this), although their existence may

imply magnetically stabilized g modes in convective regions (see Section 4.6.4).

In the general m case (Section , Lﬁ;f; and LW no longer coincide. However, the
Laplace tidal equation can at least provide some basic expectations about the behavior of

the magnetogravity eigenfunctions, although the latter are significantly more pathological.

4.3.2 Sturm-Liouville problems with internal singularities

The magnetogravity problem is dependent on the behavior of the eigenvalue problem stated
in Equation4.12] which contains a differential operator whose coefficients have singularities
on the interior of the domain, at least, when w and k, are real (at u = +1/b). To inform our
procedure, we summarize in this Section the previous body of work on such Sturm-Liouville

problems with internal singularities.

Consider the following general eigenvalue problem
(P(x)y'(x))" = Q(x)y(x) + Ay(x) = Ly(x) + Ay(x) =0 (4.18)

where P(x) and Q(x) are real functions of x on the open range x € (a, b), and primes
denote derivatives in x. If the value of f(x)*P(x)g’(x) matches at the endpoints x = a and
x = b for any two functions f(x) and g(x) satisfying some boundary conditions, then the

operator £ is Hermitian with respect to the inner product
b
oo = [ fwr Lot ax (@.19)

for those boundary conditions. Standard Sturm-Liouville theory then implies that £ has a
large number of “nice” properties such as an orthonormal basis of eigenfunctions with real
eigenvalues (e.g., Al-Gwaiz, 2008). Specific properties held by P(x) and Q(x) often imply
bounds on those eigenvalues. An important example is that, if P(x),Q(x) > 0 on (a, b),
then all of the eigenvalues A must be positive. This can be seen by multiplying Equation
4.18|by y(x)*, integrating over the domain, and solving for A

=L y@ Py () dr+ [ Q)y () y(x) dx
) 7300y (x) dx

[T P@IY 0P e+ [ 0@y @) dr

) J7 v (0P dx

2
(4.20)
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where in the second equality we have integrated by parts, applying our boundary condition
to discard the boundary term. Equation [4.20]is called the Rayleigh quotient, and the fact
that all of the integrands that appear are positive-definite implies that A must be positive.

We will apply this result in later sections.

While the differential operator Lfﬁ;é (for real b) appears superficially similar to £ as written
in Equation {.18] the comparison is thwarted by the interior singularities which appear in
P and Q at u = +1/b (for |b| < 1, Sturm—Liouville theory indeed applies). Although
we show in Section [4.4.1] that solutions in the m = 0 case are Hough functions which are
second-differentiable everywhere, solutions with m # 0 do not generally have this property,
and have a number of unusual attributes (physically reflecting resonant interaction of gravity

modes with Alfvén waves).

Motivated by problems in atmospheric physics (Boyd, |1976; Boyd, |1982), Boyd (1981)

wrote down a prototypical eigenvalue problem with an interior singularity,

d? 1
dyx(f) - =y(x) +Ay(x) = 0 4.21)

Equation [4.21]is called the Boyd problem, and its interesting mathematical properties have
been the subject of some study (Boyd, 1981} Everitt et al., [1987; Gunson, 1987; Atkinson
et al.,|1988). The most interesting case is when it is considered over the domain x € (a, b)
where a < 0 < b, so that there is an interior, non-integrable singularity at x = 0. It is
common to consider this problem over the direct sum domain x € (a,0) U (0, b), over
which Everitt et al. (1987) show that Equation possesses an orthonormal basis of
discrete eigenfunctions with real A. These eigenfunctions are continuous over the entire

range x € (a, b) (including over the singularity), but not necessarily differentiable.

Boyd (1981) and Everitt et al. (1987) note that, for a given real A, y(x) has two lin-
early independent solutions defined in terms of the Whittaker functions, M_, 1/2(—x/k)
and W_, 1/2(=x/«) (with 1/k = 2+/2), themselves defined via confluent hypergeometric
functions (Whittaker, 1903). While the former is analytic, the latter has a logarithmic diver-
gence whose coefficient is proportional to M_, 1 2(—x/«). As we will show, these properties
are shared by the magnetogravity wave (analogous to M_, 1/2(—x/k); Section and
Alfvén wave (analogous to W_, 1 2(—x/k); Section parts of the eigenfunctions of

lﬁgfé. Notably, the former solution M_, | »(—x/«) vanishes at x = 0.

The Boyd problem shares many properties with the magnetogravity problem (Equation
M.12)). In particular, the singularity in the Boyd problem appears in Q, and the singularity

in Q in the magnetogravity is responsible for the unusual behavior of its eigenfunctions
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(as shown in Section4.4.1] the magnetogravity problem is numerically well-behaved when
0 = 0). We will see in Section that p’ eigenfunctions of the m # 0 eigenproblem
also vanish at the critical latitudes. However, we shall also see that the displacements .;? are

discontinuous for m # 0, even though p’ is continuous, making the solutions unphysical.

4.3.3 Power series expansion around singularity
When |b| > 1 for real b, Equation develops a singularity at the critical latitudes
u = +1/b where the mode frequency exactly matches the Alfvén frequency, and in this case

naively trying to numerically solve for these modes produces erratic behavior.

In order to characterize the behavior of Equation in the |b| > 1 case, we can perform

a Frobenius power series expansion of the form

(o)

() = (u=1/b)" ) calp=1/b)" (4.22)

n=0
The leading-order term is the indicial equation, and can be solved to yield @ = 0 and
a = 2, implying either that the leading-order dependence of the eigenfunctions around the
singularity must either be constant or quadratic. Enforcing equality at the next two lowest
orders for @ = 0 (the constant case) yields
(b2 - 1)’
b3

1

[(b* = 6b* +5)c1 + b m*cy] (4.23b)

0= cq (4.23a)

b* -

0= e

indicating that ¢y = O (the first derivative vanishes) and also m?co = 0 (the value of the
function also vanishes when m # 0). Therefore, the pressure perturbation of eigenfunctions
which can be expanded in this way must vanish at the critical latitudes, as must their first
derivatives. Note that, while the first derivative at u = +1/b must also vanish in the
m = 0 case (consistent with numerical solutions in Section @]}, the value of the pressure

perturbation need not vanish.

This result may also be seen in a more straightforward fashion from Equation [4.12] by

multiplying the singular factor to the numerator. One thereby obtains

&p’(w) dp'()
(1= ( _52”2) T’ZM”Z b (4.24)

()25 0=

If the pressure perturbation p’ is everywhere finite, then Equation implies thatdp’/du =
0 when y = +1/b (for any value of m).
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To show that the value of the function must also vanish for m = 0, we require not just that
the horizontal gradient of p’ vanish in the direction across the critical latitude but the more
general result that it vanish in all directions on this curve, i.e., that p” must be a constant on
connected curves of |b| = 1. We will show this in Section for magnetic fields which
are more general functions of 6 and ¢). Then the only way to enforce both that p’ oc ¢'™¢
and p’ = const. on a critical latitude is for p’ itself to vanish. This result can be compared to
the vanishing of the finite eigenfunctions of the Boyd equation around x = 0 (Section{4.3.2).
In Section 4.4.2] we will demonstrate that this fact requires that the m # 0 solutions must
be exactly confined to an equatorial band with width Au = 2/|b|, in the sense of having

exactly zero amplitude outside of it.

4.4 Oscillation modes without dissipation

In this Section, we give solutions for the zonal (m = 0; Section f.4.1)), tesseral/sectoral
(m # 0; Section {.4.2), and Alfvén continuum (Section #.4.3) modes for the singular
eigenvalue problem discussed in Section 4.3 The inclusion of viscous terms neutralizes
the singularity and is discussed in Section [4.5] This is similar to the treatment given by
authors such as Boyd (1981) and similar authors investigating internally singular eigenvalue
problems (Section [4.3.2)). We refer to the solutions obtained in this way as dissipationless
solutions, and caution that this is distinct from the /imit as the dissipation is taken to zero
(dissipative solutions; Section 4.5). The m = 0 modes in the dissipationless solutions do
not contain any discontinuous behavior at the critical latitude, and are exactly approached
in the low-dissipation limit. However, as we show in Section .5] any nonzero dissipation
implies important qualitative differences in the m # 0 modes, even in the very high Reynolds

number, near-ideal magnetohydrodynamic flows in real stars.

4.4.1 Zonal (m = 0) solutions

In Section , we noted the correspondence between Lfﬁ;f; and the £ ;" operator which
appears in the rotational problem. The latter’s eigenfunctions are the Hough functions
0, (u) witheigenvalues A, where ¢ denotes the degree of associated Legendre polynomial
obtained by following a given Hough function branch to v = 0. When m = 0, the

correspondence becomes exact, and

(4.25)

d ( 1-u% dp’(p)
m,b s _ pm,b _ M 2RV
Linagp' (1) = Ly p' () = a (1 b2 du
It can therefore be seen that the Hough functions G)?m (u) are also horizontal pressure p’(u)
eigenfunctions of the m = 0 case of the magnetic problem. Known properties of Hough

functions thus greatly inform the behavior of these eigenfunctions. In particular, because
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Figure 4.2: The inverse depth parameter a~' plotted against b for zonal (m = 0) modes
(Section . The quantities a~' and b have been roughly translated to  and k, using
constant values w = 27 x 102 uHz, N = 102w, v4 =0.1kms™!, and R = 10R, reasonable
parameters near the hydrogen burning shell in a first-ascent red giant. Ingoing gravity waves
of different ¢ follow the tracks to the right, such that they never propagate back towards the
surface of the star, and are converted to slow magnetic waves with high radial wavenumber.

(a real value of) b sets 1/|b| as a length scale with respect to uyin Lr’ﬁ;fé, Hough functions

become approximately confined to an equatorial band of width Au ~ 2/|b]|.

Additionally, it is known that the Hough function eigenvalue /1?0 ~ (2¢ = 1)2b? when |b| is
large, where the degree ¢ is equal to the number of latitudinal nodes for the m = 0 case. A
heuristic argument for this behavior was given by Bildsten, Ushomirsky, et al. (1996), who
argue that the quadratic scaling with b arises from requiring that the eigenfunctions’ zero
crossings be localized to the aforementioned equatorial band. The asymptotic behavior of
the eigenvalues of the Hough functions was later derived more rigorously by Townsend

(2003) (and more recently, to higher orders, by Townsend, 2020).
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Figure 4.3: Fluid perturbations for the zonal (¢, |m|) = (5,0) (top; Section and
tesseral (5,4) modes (bottom:; Section as a function of the latitude u = cos 6, for
b = k,va/w = 0.5. The left, center, and right columns are the non-dimensionalized p’,
&g, and &, perturbations, respectively, with black solid lines representing the real part and
red dashed lines representing the imaginary part. For low b, the eigenfunctions are close to
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Figure 4.4: Fluid perturbations for the same mode branches as in Figure 4.3 but for
b = k,va/w = 1.3. The vertical arrows on the bottom right panel indicate the locations
and phases of delta functions. For » > 1 (when parts of the mode are resonant with Alfvén
waves), both the m = 0 and m # 0 modes become localized to the equator, but only the
m # 0 modes gain sharp latitudinal features in £ and &4 (owing to their vanishing outside
of the critical latitudes).
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By setting /11{30 equal to b?/a’ (as required by the dispersion relation, Equation , one
obtains for the zonal modes that b diverges to infinity at some finite cutoff height a = a®0

defined by

1
0

= 4.26
Ao =577 (4.26)

In other words, the “cutoff height” for these modes occurs at a radial magnetic field strength

4rpowr

B = ——
O (¢-1)N

(4.27)
This is approximately equal to the critical magnetic field strength derived in Fuller, Cantiello,
et al., 2015, although conceptually different. For £ = 1, we find numerically that the in-
coming wave approaches the cutoff height from above, and approaches infinite wavenumber
before reaching a turning point (as can be seen in Figure[d.2). However, for all other values
of ¢, we find that the incoming wave first refracts outwards before approaching the cutoff

height from below.

In addition, for each mode, there is some critical field B, such that, for By > B. (ora > a.),
there is no solution for a real value of 4. Only complex values of b allow for solutions,
implying (for real w) complex wavenumbers k, and evanescent waves similar to those
discussed in Fuller, Cantiello, et al., 2015| and Lecoanet, Vasil, et al., 2017. Physically,
this means that m = 0 modes will refract off of strong magnetic fields as discussed in the
works above. This is different from the rotation problem where gravito-inertial waves can

propagate at all radii where N > w, regardless of the rotation rate.

Using a relaxation method (see Appendix [4.B.T)), we solve for the m = 0 eigenvalues and

shown in Figure 4.2] and the eigenfunctions shown in the top panels of Figljg@ and 4.4
b

Because /1? approaches a constant £(£+ 1) when b approaches zero, a~! = /1?0 diverges

0
as b vanishes. In most cases, an internal gravity wave branch increases in |b| (e |k,|) as it
is followed to higher a (< Nv4/r), until it connects to a slow magnetic branch. The wave
then reaches a turning point at a maximum value of a = a. (the “critical depth”), and it
is then forced to propagate back out to smaller values of a (i.e., larger radii within a star)
although |b| continues to increase. The value of |b| and the radial wavenumber then diverge
at the cutoff height defined in Equation .26l This behavior is consistent with Lecoanet,
Vasil, et al. (2017) (see Appendix who discovered the same behavior in Cartesian

geometry.

The one exception is the £ = 1 case, where the wavenumber of the internal gravity wave
branch directly diverges when approaching a from below—there is no turning point, and

no distinct slow magnetic branch. In both cases there is a maximum a (minimum radius) to



101

Section AN N
(1,0) o al)
dissipationless EZ,O) 1.46 2.92 gl =21
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(2,1)  0.93 3.45
(3,1)  0.92 4.93
(4,1)  0.92 6.42
(5,1) 0.92 7.91
(2,2) 1.31 2.66
dissipative  (3,2) 1.09 4.33 _
real-v,,  (4,2) 1.02 5.90 laco |~ 2(¢ _4|ﬂ)+3
(Section (5.2)  0.99 7.44 (Equation4.44)
(3,3) 1.73 2.95
(4,3) 138 4.81
(5,3) 1.21 6.53
(4,4) 2.24 3.09
(5,4) 1.74 5.07
(5,5) oo law|™!

Table 4.1: For the mode branches computed in Sections 4.4.1], 4.4.2] and [4.5.2] values of
b = b, and |ac|‘1 at the critical depth (the wave turning point), as well as values of the

cutoff height |a|~'. Rows with b, = co and |a,

|71 = |ae| ™! denote cases where the mode

branch approaches |a.,|~' from above. Because our calculations only extend to b = 2.5, it
is possible that some branches reported as having b, = co have turning points at b, > 2.5.
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Figure 4.5: The group velocities vg, for 1 < ¢ < 5 zonal (m = 0) magnetogravity wave
branches. For most branches, ingoing magnetogravity waves refract back to larger radii at a
critical depth a. before approaching infinite radial wavenumber (as slow magnetic waves) at
some cutoff depth a.. For the £ = 1 branch, the ingoing magnetogravity wave approaches
the cutoff depth from above, without refracting outwards. The inverse depth parameter a~!
has been roughly translated to a physical radius r in the same manner as in Figure §.2]

which the wave can propagate, and the wavenumber k, diverges at a cutoff height within the
star. We thus find that the conclusions of Fuller, Cantiello, et al. (2015)) and Lecoanet, Vasil,
et al. (2017) that zonal modes cannot propagate arbitrarily deep in a sufficiently magnetized
star to be robust for a dipole field geometry. In Table @.1} we report values of the critical

depth a;! and cutoff depths az! for these mode branches.

Assuming that |l_c)| ~ k;, the radial components of the phase and group velocities vy, and

v, can be specified in terms of a and b as

Vpor 1 w 1

_tw 1 428
va vak, b (4.282)

Ve, 1 1 (dw)\ (dk,\" da/db

gr_ 10w 1 (do ___ ajdb (4.28b)

va vaOk, va\db|\db 2a — bda/db

where we have used w = \/Nv4/ra='/? and k, = \/N/varba~'/* (from Equations and

4.6).
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While vy, follows the motion of the wave pattern, v, tracks the transport of wave energy.
Figure shows v, as a function of a~!. Ingoing gravity waves (whose Vvp,r and v, are
in opposite directions) refract at the critical depth a. where vy, = 0. They then propagate
outwards as slow magnetic waves with v;, . and v, - in the same direction, with progressively
slower group velocities as they approach the cutoff height. The group velocities for m # 0
modes (Sections 4.4.2]and [4.5.2)) have similar behavior.

In Section we pointed out that the Laplace tidal operator £” (defined in Equation
M.17) has branches of mostly negative eigenvalues for v > 1, which manifest as Rossby
waves on the segments of the branches which are positive. However, in the magnetic
problem, these branches are irrelevant when w and N are real, since the eigenvalues on

these branches are always negative. When /120 < 0, this implies that b (« k) is imaginary

(i.e., that the wave is evanescent). However, if b is imaginary, then b? = —|b|2, and Lfﬁ;f;
becomes
mb d ((1-p> dp'(p) m’ ,
Linagp' (1) = G \Te P2 d | =) (1+|b|2/12)p (1) (4.29)

Equation clearly has a positive P, Q on the domain of the eigenproblem, with no
internal singularities at all. Sturm-Liouville theory thus implies (contrary to our initial
assumption) that /l?o must be positive (see Section . This contradiction implies not
only that these /léfo < 0 branches are irrelevant to the magnetogravity problem but also that
the magnetogravity problem does not admit purely spatially evanescent solutions (for real

w).

4.4.2 Tesseral and sectoral (m # 0) solutions

When |b| < 1, the m # 0 horizontal eigenfunctions (representing tesseral and sectoral
modes) are simply solutions of a standard Sturm—Liouville problem with no internal singu-
larities, and can be solved numerically using standard techniques. However, in the |b| > 1
case, the mode and Alfvén frequencies are resonant at a critical latitude, where Equation
develops an internal singularity (Section 4.3.2). We discuss the implications of this
critical latitude in the succeeding paragraphs.

In Section {.3.3] it is argued (vis-a-vis power series expansion) that both the pressure
perturbation p’ and its first derivative dp’/du must vanish in the vicinity of the critical
latitudes u = +1/b. We first consider an eigenfunction with eigenvalue A, and form a
“Rayleigh quotient” (cf. Equation #.20)), but only over the portion of the domain bounded
between u € (—=1/b,+1/b) with b > 0:
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+1/b 1,u
/l/b -2

dp’ () +1/b 2
£ #) de+ [, Wlp ()]° dx

+1/b )
Ly P17 du

(4.30)

where the vanishing pressure perturbation and gradient justify discarding the boundary
term. It is easily seen that each of the integrands above is positive-definite over the entire

subdomain, and therefore 4 > 0.
However, one may write a similar Rayleigh quotient over the range u € (1/b, 1),

/1 142 dp (u)
1/b 1-b2u2

) dx+//b WW (k)| dx

/l/b P’ (1)]? d

(4.31)

where it can be verified that the integrands in the numerator are now negative-definite. In
Equation [4.31] we have similarly discarded the boundary terms—this can be done at the
outer boundary u = 1 so long as p’ and its derivative are finite there. This, in turn, implies
that 4 < 0.

Of course, by definition, an eigenfunction must have just a single eigenvalue across the
entire domain. There are two ways to rectify these apparently contradictory conclusions.
One possibility is that the 4 > 0 eigenfunctions vanish outside of the critical latitudes,
i.e., they are localized to a band of width Ay = 2/|b|, bounded by the critical latitudes on
each side (as demonstrated in Section .4.1] the 2 < 0 eigenvalues are not physical in this
problem). A second possibility is that only complex values of b (and hence evanescent

waves) exist when the real part of b is greater than unity.

In the first case, because the eigenfunction is confined to the range u € (—1/b,+1/b), we can
restate the problem as a standard Sturm—Liouville problem (with no internal singularities)

over this subinterval. In particular, Equation d.12] can be rewritten using x = by as

d b? —x? dp’(x) B m? '(x)+l () =
e \p2(1-22) dx ) (1-22) (1-p22)l 7@l =

(4.32)

over therange x € (-1, +1). We solve for both the eigenvalues and eigenfunctions by solving
Equation{.12)lwhen b < 1 and Equation#.32)when b > 1, again using the relaxation method
(Appendix [4.B.1I). The eigenvalues for ¢, |m| < 5 are shown in Figure and example
eigenfunctions are shown in the bottom panels of Figures (for b < 1) and 4.4 (for
b > 1), respectively. While the eigenfunctions are close to spherical harmonics for low

b (Figure [4.3)), they become formally confined between the critical latitudes when b > 1,



105

corresponding to resonances with Alfvén waves. This is in contrast to the m = 0 solutions
which, although also experiencing some degree of equatorial confinement, are not forced

to vanish outside of the resonant latitudes.
When b is large (compared to |m|), Equation approaches

d( 1 dp'(x)

de\1-x2 dx

) + izp'(x) =0 (4.33)
a

Equation is a generalized eigenvalue problem with eigenvalues 1/a>. Therefore, we
see that a approaches a constant cutoff value ¢/ in the large b limit—in other words, when
approaching some cutoff value a = a’* from either above or below, b diverges. Moreover,
since Equation does not depend on m, a’™ only depends on the specific solution of
Equation which is approached by a given branch. Therefore, a = a{" is a function of
¢ —|m|, which defines the number of nodes possessed by the generalized Legendre operator.
The cutoff values roughly lie between the m = 0 cutoff values a0 (defined in Equation,
which do not follow the same pattern (see Figure 4.6). Table d.T|reports the eigenvalues of
Equation which give the cutoff depths az! for these m # 0 mode branches (as well as
the critical depths a_!).

Another very important implication of Equation {.32] is that the m # 0 branches cannot
extend to arbitrarily large a, i.e., in a sufficiently magnetized star, propagating modes cannot
extend arbitrarily deeply. When compared to Equation[4.18] the differential operator which
appears in Equationhas P, Q > 0 everywhere on the domain, implying that 1/a> > 0,
1.e., a cannot be infinity for any finite . Furthermore, because the differential operator
in Equation (the large-b limit of Equation has P > 0 and Q = 0 everywhere
on the domain, the Rayleigh quotient (Equation still implies that 1/a®> > 0 (in the
large-b limit) strictly, so long as dp’(x)/dx # O somewhere on the domain. As this is
guaranteed to be the case for any perturbation for which p’(x) # 0 (since it must vary from
its boundary values p’(£1) = 0), a may not approach infinity even in the limit that b does.
If we consider the second possibility discussed above, that b becomes complex, the waves
become evanescent at large values of a, meaning they no longer propagate. This extends
the conclusions of Fuller, Cantiello, et al. (2015) and Lecoanet, Vasil, et al. (2017)) to the
general m # 0 case that propagating magnetogravity waves cannot exist arbitrarily deeply

in a magnetized-enough star.

However, the localized nature of the pressure perturbations of the m # 0 modes has
important implications for the other perturbations (which also vanish outside of the critical

latitudes, by Equations 4.11). For example, since the leading-order dependence of the p’
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Figure 4.6: The inverse depth parameter a~! plotted against b for tesseral/sectoral (m # 0)
modes for the singular eigenvalue problem described in Section Both a! and b have
been translated to r and k, as in Figure[d.2] As in Figure[4.2] ingoing gravity waves follow
the lines to the right, and are converted to slow magnetic waves that do not propagate back
to the surface.

eigenfunction near the singularity is quadratic (Section , the discontinuity of d?p’/du?
across the critical latitudes implies via Equation 4. 11b|that the value of & is discontinuous.
The fact that &y behaves as a step function near the singularity further implies (by the
continuity equation) that £ contains a delta function at the critical latitude. This behavior
is discussed in depth in Goedbloed and Poedts, 2004, and we comment further on this
behavior in Section

Because of the singular denominator factors in Lﬁ;f; and implied discontinuous eigenfunc-
tions, it is important to consider that even infinitesimally little viscosity/Ohmic diffusivity
can induce finite damping as well as global changes to the eigenfunctions. We further

discuss these effects in Section [4.5] Nevertheless, the dissipationless solutions provide
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some analytic insight to qualitative features that they share with dissipative solutions to the

magnetogravity wave problem.

4.4.3 Alfvén wave solutions

In Sections 4.3.3| and 4.4.2] we performed a power series expansion to probe the behavior

of the perturbations around the critical latitude ¢ = 1/b and solved for the m # 0 solutions.
However, as a second-order differential equation, one naively expects there to be two linearly
independent solutions. More formally, when performing a Frobenius expansion, one obtains
an indicial equation which can be solved to yield two solutions for the power law dependence
of the solution very near the singularity (as in Sectiond.3.3). When these two values are not

separated by an integer, one immediately obtains these two linearly independent solutions.

However, the values of the indicial root @ found in Section[#.3.3|are separated by an integer,

so a Frobenius expansion in p’ is not particularly helpful in the search for the other solution.

Instead, by substituting Equations 4.11a) and 4.11c| into the continuity equation (Equation

4.10a)), solving for p’ in terms of &y, and then substituting the result into the # momentum
equation (Equation [4.10c]), one obtains

(b_2 _ m’ )‘1 4Zo(p)
@ (1-p2) (1-b2p2))  dp

d

1_b2 2
du

D=0 @3

where £0()
_ AV
Zo(p) =41 - ﬂZT (4.35)

A power series expansion of the form

(o)

Zo(p) = (u=1/b)" 3 ealp = 1/b)" (4.36)

n=0

gives an indicial equation which has a double root at @ = 0, consistent with the results of
Goedbloed and Poedts 2004 on a similar magnetohydrodynamic problem (see their Section
7.4).

Hereafter, for illustrative purposes, we focus on the restricted problem over the interval
u € (0,1) in order to focus on the critical latitude at u = 1/b (this is justified in Section
M.B.1). The choice of @ = 0 gives a single everywhere-finite solution which can be called
Zo(u) = Z1(u) = u(w). In this case, a second linearly independent solution is given by

Zo(p) = u(p)In|u = 1/b[ +v(p) (4.37)
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which contains a logarithmic divergence at the critical latitude. Goedbloed and Poedts
2004{ show that, while the coefficient Z; may differ on either side of the singularity, the
coefficient in front of Z» may not. The general solution for Zy is thus given by

Zo(p) = [A1O(u = 1/b) + A20(1/b — w)] Z1 (1) + A3 Z> (1) (4.38)

where O is the Heaviside step function. Note that that the presence of three undetermined co-
efficients A, A,, and A3 constrained by only two boundary conditions implies a continuous
spectrum of modes. This is a well-established consequence of singularities in differential
equations, especially those corresponding to Alfvén resonances in plasma physics (Appert
et al.,|1974; Poedts et al., 1985} Rauf and Tataronis, |1995; Appert et al., 1998; Widdowson
et al., [1998; Rincon and Rieutord, 2003; Goedbloed and Poedts, 2004} Reese et al., 2004
Pintér et al.,|2007; Loi and Papaloizou, 2017). Physically, the continuous Alfvén spectrum
arises out of a lack of discretization in the 8 direction, associated with mode localization in

geometries with field/plasma inhomogeneity.

In the treatment in this work, we do not explicitly impose boundary conditions in the radial
direction. However, doing so would discretize the allowed values of k, both for the global
modes and the Alfvén waves (see, e.g., Loi and Papaloizou, 2017)). Alfvén resonances can
exist whenever w = k,val|ul, i.e., b = 1/|u|. The continuum Alfvén spectrum therefore
occupies all frequencies w with |b| > 1 (i.e., every point to the right of » = 1 in Figure
M4.6). In practice, because each field line has a discrete spectrum of Alfvén waves (which are
analogous to oscillations on a closed loop), a real global mode resonates with the Alfvén

spectrum at only a finite (but large) number of locations (Loi and Papaloizou, |2017)).

In problems possessing even vanishingly small amounts of dissipation, the Alfvén contin-
uum has important implications both for the global forms of the eigenfunctions and wave
damping. Hoven and Levin (2011) note that any dissipation couples fluid displacements
across flux surfaces, destroying the continuum nature of the Alfvén spectrum (see Section
4.6.1). In Section[4.5] we find that including dissipation produces discrete spectra for which

only a specific linear combination of u(u) and v(u) are truly eigenfunctions.

Because Alfvén waves are not associated with a pressure perturbation, the Lagrangian tem-
perature perturbation vanishes and therefore does not produce bulk brightness fluctuations
which would be asteroseismically detectable in the light curve (Houdek and Dupret,|[2015).1t
may be possible to observe their signature in surface velocity fluctuations, if the waves do

not damp before reaching the surface.
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4.5 Oscillation modes with dissipation
So far, we have considered the mathematical problem where we have formally set all
dissipation to zero. In this Section, we consider the important role played by even small

amounts of dissipation in shaping the horizontal structure of magnetogravity modes.

As discussed in Section[d.4.3] the magnetogravity problem possesses a continuum of Alfvén
modes, each localized to a magnetic field line. Adjacent Alfvén modes will oscillate at
slightly different frequencies, corresponding to the slightly different Alfvén frequencies of
their field lines. This quickly leads to a dephasing process called “phase mixing,” a kind of
quasi-damping which, while formally reversible in ideal magnetohydrodynamics, leads to
finite energy damping under any (arbitrarily small) amount of dissipation. Interestingly, this
energy damping approaches a finite value in the limit of even a vanishingly small dissipation,
meaning that its role cannot be ignored even in stars where dissipative processes are usually
considered to be negligible. For further discussion of phase mixing and its associated

energy dissipation, see Goedbloed and Poedts (2004)).
If dissipation, in the form of fluid viscosity and Ohmic diffusion, are included, the linearized
horizontal momentum and induction equations are modified to
- 1 - - -
—pow?Ey =~V + - (BO : V) B +iwppyV2E, (4.39a)
v

B = (50 - v) E—i(n/w)V2B' (4.39D)

where we continue to assume the hierarchy of variables described in Section[4.2.1|(including
taking V2 ~ —k?). In Equations 4.39} v and 7 denote the kinematic viscosity and magnetic
diffusivity, respectively. We note in passing that the latter is expected to dominate the

overall dissipation, but that both terms have a similar impact on the solutions.

Equations [4.39a] and [4.39b| can be combined to obtain

Vi’ = pow? (1= b2 = ic) &, (4.40)
where c is given by
¢ =c,b? +c,b*u? (4.41)
where
¢y = 2 (4.422)
Va
ey =22 (4.42b)
Va
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In deriving Equations and4.41, we have assumed that k25/w < 1. Note that, because
the effect of ¢ < 1 is to shift the poles slightly off of the real line into the complex plane,
the exact form of ¢ does not matter, and it suffices to take it to be a small, real constant.
Moreover, since dissipation is most important near the critical latitudes u = +1/b, both

terms scale roughly as o b? in the most affected regions.

Overall, the operator .Ll'ﬁ;l;then takes the new form

, d 1-p>  dp'(p)
Linep () = 3\ T e
) (4.43)
- i ()
(1-2) (1= b22—ic)”

where ¢ encodes the dissipative processes in the problem, and “softens” the singularity.

We note in passing that terms dependent on the horizontal field B; may be significant at
the critical latitudes where dissipation is expected to be most important. The inclusion of
such terms introduces higher-order horizontal derivatives to the linearized equations and
greatly increases their complexity. Nevertheless, we expect that the parameterization above
in terms of ¢ will still physically select the right branch of solutions, in the limit of small
dissipation. In Section we comment further on the importance of such terms near the

critical latitudes.

In the following subsections, we present numerical solutions for the dissipative magne-
togravity eigenproblem (details in Appendix 4.B.2)). Section §.5.1] considers modes with
real w but complex k,, i.e., possibly spatially evanescent modes, and Sectiond.5.2]considers
modes with real radial phase velocity v, , = w/k, (approximating the case of propagating
waves). We will show that, while the analysis of Section @.4.2] provides insights into re-
alistic modes, the presence of dissipation introduces notable deviations from the idealized

behavior.

4.5.1 Numerical solutions of the evanescent branch

We first consider the case where w is real but &, is allowed to be complex (i.e., allowing
solutions to be spatially evanescent). This corresponds to fixing a o« w2 to be real but
allowing b « k,/w to be complex. As described in Appendix we solve for the
eigenfunctions of the operator in Equation up to £, |m| = 5 (using ¢ = 107%) while
allowing the complex argument of b to vary. For consistency, we search for only solutions
with Im(b) > 0, although each such evanescent branch is accompanied by a conjugate

branch of solutions.
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Figure 4.7: The inverse depth parameter a~! plotted against b for non-axisymmetric m # 0
modes, with finite dissipation and real w (Section[d.5.1)). The color represents the complex
argument of k,, with the lower branches representing spatially evanescent solutions. Both
a~! and b have been translated to 7 and k, as in Figure Unlike previous figures, gravity
waves do not propagate into the colored portions of the lines, where they become strongly

evanescent. Instead, they are refracted upwards onto a slow magnetic wave branch not
shown here (see Figure §.10).

The eigenvalues are shown in Figure as a function of |»|. When |b| < 1 (i.e., weak
magnetic fields), the singularity does not lie on the domain and dissipation does not play a
major role. For decreasing values of ¢, b approaches a real number, as expected, and the
solutions are nearly identical to those discussed in Section 4.4.2]

However, for |b| > 1, there are significant qualitative differences between the discontinous
solutions of Section @ and the dissipative solutions. Even in the limit of ¢ — 0, the
imaginary part of b does not correspondingly vanish, although (as we discuss below) its
limiting value is sometimes quite small. This implies that the corresponding eigenfunctions

are still “smoothed” with respect to the discontinuous solutions even in the ¢ — 0 limit.

For some branches of modes, there is a range extending from |b| = 1 to some intermediate
value of |b| where Im(b) is small when ¢ ~ 0. In these intermediate ranges, the real

parts of p’, &, and &4 strongly resemble smoothed versions of the discontinuous solutions
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Figure 4.8: Fluid perturbations for the tesseral (¢, |m|) = (5,4) modes for y/Re(b2) = 1.3
calculated numerically in the dissipative case where either w is real (fop; Section4.5.1)), or
Vp,r = w/k, is real (bottom; Section . These eigenfunctions should be compared to
those shown in the bottom panels of Figure 4.3] for the discontinuous case.

described in Section #.4.2] (e.g., the top panel of Figure 4.8). In particular, & has a
smoothed step-like jump across the singularity, and &, retains a smoothed, but narrow, peak
there. Interestingly, the imaginary part of & approaches the logarithmic Alfvén “spike”
solutions described in Section 4.4.3}—the numerical solution is thus a close approximation
of a superposition of these two solutions predicted in Section f.4.3] These solutions can
be visualized as equatorially focused magnetogravity modes which oscillate /2 out of
phase with an Alfvén mode. This closely resembles the example shown in Figure 11.2 by
Goedbloed and Poedts (2004) (in a similar magnetohydrodynamic problem), as well as the
numerical results of Lecoanet, Bowman, et al. (2022). We emphasize that, because the
imaginary part of b does not approach zero in the ¢ — 0 limit, the “smoothing” does not
go away even in this limit. It appears that the size of the intermediate range of |b| for which
Im(b) is small appears to increase with |m| for fixed €. However, the origin of this trend is

so far unclear.

In all branches, for large enough |b| > few, the imaginary part of b found by the solver
becomes large, and a~! dips as the solver follows an evanescent branch deeper into the star.
At large b, all of the evanescent mode branches we solve for approach Im(k,)/Re(k,) = 1
(i.e., arg(k,) — +m/4) such that waves radially decay in the same direction as they travel.
In this regime, the eigenfunctions approach horizontally traveling waves which propagate
away from the equator (e.g., top panel of Figure {.9)), as shown by the relative phases of

the real and imaginary eigenfunctions. The conjugate branches are expected to have the
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Figure 4.9: Fluid perturbations for the same mode branches as in Figure 4.8] but for

VRe(b2) = 2.5.

opposite behavior, with the eigenfunctions approaching horizontally traveling waves which
propagate toward the equator. Note that, because the values of b (and therefore k,) for
these equator-ward and pole-ward traveling solutions are complex conjugates of each other,
they exponentially decay in radius in opposite directions, and it is generally not possible to

superpose them to form a wavefunction which is a horizontal standing wave at all radii.

Overall, the behavior at |b| > 1 is very complex and difficult to characterize from first
principles. Branches often have multiple “kinks” in addition to the initial one at |b| = 1
characterizing the transition from propagation to evanescence. We suspect these kinks
are related to avoided crossings between different evanescent branches of magnetogravity

waves.

However, these branches represent modes that are evanescent on short length scales, im-
plying very little wave energy propagates to larger depths. Hence, it seems clear that in
the dissipative case, there are no propagating mode branches which extend arbitrarily deep
into the star. This extends the two-dimensional results of Lecoanet, Vasil, et al. (2017)
to non-axisymmetric modes. Physically, evanescent waves indicate the presence of either
total internal reflection or (in this case) refraction. Unless the radial extent of the core is
< 1/Im(k,), the wave power transmitted by these evanescent waves through the core is
vanishingly small, and conservation of energy thereby enforces that the rest of the energy

(which is the vast majority) be converted into some kind of outgoing propagating wave

(Section4.5.2).
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4.5.2 Numerical solutions of the propagating branch

It is natural to search for solutions where waves are purely propagating (real k,) but w is
complex (corresponding to decay). However, we find that our relaxation approach is unable
to solve this particular problem formulation. Instead, we consider the case where the radial
phase velocity vy, = w/k, is real, which is equivalent to taking b = v4/v,, to be real
(placing the singularity as close to the real line as possible), but allowing a « w~! to be
complex (i.e., so that arg(k,) = arg(w) # 0). The eigenvalues for these calculations are
shown in Figure 4.10]

Interestingly, in this formulation, the eigenvalues have similar qualitative behavior to dis-
continuous case in Figure They reach some maximum |a| at b ~ 1, at which point
the waves turn and propagate outwards onto a slow magnetic branch which asymptotes
to a finite cutoff height at infinite wavenumber. This corroborates the basic picture that
propagating modes with real (or nearly real) k, and w cannot exist in a strongly magnetized
star, and that gravity waves are converted to slow magnetic waves by strong magnetic fields.
Table reports the critical and cutoff depths |a.|™' and |a.|~! for these solutions.

However, there are some interesting features unique to this problem, which were unantici-
pated by the discontinuous solutions. First, the “cutoff” values of |a| where the wavenumbers

diverge are approximately
1

2(€—|m|)+3"
This deviates from the expected cutoff heights for m # 0 modes, which are the solutions to

(4.44)

laco| ~

Equation 4.33| and lie close to even numbers rather than odd numbers. The m = 0 modes
have az! = 2¢ — 1 (Figure , offset by 4 (in inverse depth) for the same values of £ — |m|.
This should not be too surprising because, at b > 1, the mode eigenfunctions are very
different in each case. The modes described here gain substantial complex parts (unlike the
m = 0 modes), and logarithmic “spike” features appear in the real part of p’, as shown in
the bottom panel of Figure 4.9

Figure[4.10]also shows that the imaginary components of k, and w are largest for b slightly
larger than unity, reaching up to ~ Re(w)/12 in the (1,1) case. For larger values of
b, the complex arguments of k, and w appear to decrease to roughly constant values of
arg(w) = arg(k,) ~ 1072, However, due to numerical difficulty, we are unable to confirm

this behavior for b > 2.5 or much lower values of c.

At values of b just above unity, the eigenfunctions behave similarly to the discontinous
solutions, with a sharp peak in &4 and a discontinuity in &g at the critical latitude (Figure

[A.8)). In the dissipationless solutions (Section {.4.2)), we assumed that a given mode oscil-
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Figure 4.10: The inverse depth parameter a~! plotted against b for tesseral/sectoral (m # 0)
modes, with finite dissipation and real v, , = w/k, (Section[4.5.2)). The color represents the
complex argument of w, which is enforced to be equal to the complex argument of k,. Both
a~! and b have been translated to r and k, as in Figure As in previous figures, waves
follow these tracks to the right as they are converted from gravity waves to slow magnetic
waves.

lates entirely in phase (i.e., each perturbation was either totally real or totally imaginary).
For dissipative modes with b only slightly larger than 1, this is still true—for example, for
the (5,4) mode at b = 1.3 (lower panels of Figure , the delta function feature in &
oscillates in phase with the bulk oscillation between the critical latitudes (both are imagi-
nary). However, at higher values of b (lower panels of Figure d.9), the sharp/discontinuous
features oscillate /2 out of phase with the bulk oscillation (e.g., the delta function in &4
becomes real). The spike in Im(w) (which occurs on the slow magnetic branch) coincides
with a transition between these two regimes. This latter behavior is not captured by the
non-dissipative solution, which assumes that £ and & are purely real. It is thus unsurpris-
ing that the cutoff depths aZ! predicted by the non-dissipative solution (Section [4.4.2) do
not coincide with those predicted by Equation 4.44]

For increasingly small values of ¢, the spike features of the eigenfunctions at the critical

latitudes become increasingly sharp and narrow. This makes calculating the eigenfunctions
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increasingly numerically challenging for smaller viscosities (we have chosen ¢ = 1072
here). Decreasing ¢ from this value appears to steadily decrease Im(w) for small values of
b, but only marginally for large values of 5. We suspect this is due to the finite damping
rates that persist at vanishing viscosities/diffusivities for waves with these sorts of internal
singularities, as discussed earlier. If true, the upward-propagating branch would also be
radially evanescent: this complicates the energetic argument that all initially ingoing wave
power must be carried by out by the upward-propagating branch rather than the ingoing
evanescent one described in Section However, since in this case the damping rate
Im(w) remains finite, we believe it is most likely that the wave energy be dissipated on the
upward-propagating branch, rather than transmitting through the core. Moreover, as k, — 0
on this branch, upward-propagating waves will eventually attain high enough wavenumbers
that they should be efficiently damped by even arbitrarily small dissipation c¢: the argument
that the wave energy is dissipated in the upward-propagating branch would then be the same

as previous.

4.6 Further remarks

4.6.1 Behavior of the wavefunctions near the equator and critical latitudes

A primary assumption of our analysis is that perturbations vary much faster in the radial
direction than the horizontal direction. This allowed us to effectively decouple the radial
dependence of the mode from the horizontal dependence, and solve the latter independently
as a two-dimensional problem over the sphere. The problem then reduces to a more
tractable one-dimensional eigenproblem by making an assumption that the equilibrium
field is axisymmetric (although some analytical insight is still available if this assumption
is relaxed; see Section . For gravity modes at zero field, the ratio of k,/k;, = N/w is
large, and this assumption is very reasonable. This assumption has also been instrumental
in defining a hierarchy of variables whereby buoyancy and magnetism contribute at similar
strengths to mode restoration (via Equation |4.3)), and that k., dominates the magnetic

interaction. However, this hierarchy can be subverted in a few ways.

First, in regions where the magnetic field is nearly horizontal, v4, ~ 0, and the magnetic
interaction (l_c) . \7A)2 = k%vir + 2k, kpvavan + k%v%h is no longer dominated by the radial
part. The other magnetic terms become comparable when k,v4, < kjvap, which is when
Var/van S kn/k, ~ w/N. For a dipole field, this occurs in a very narrow band around
the equator with angular extent 66 ~ w/N < 1. It is possible that mode confinement
between the critical latitudes found in our work may “funnel” refracted magnetogravity
waves into radially propagating solutions which may produce detectable surface power

in outgoing magnetogravity waves. We further investigate such equatorially confined
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magnetogravity waves in Appendix 4.C| While such waves may exist, they have large
horizontal wavenumbers and very large radial wavenumbers, so they may be difficult to

observe.

The usual hierarchy can also be subverted very near the critical latitudes, where the solutions
described in this work attain very sharp horizontal features. More specifically, our solutions
predict that & has a discontinuity and & is a delta function according to the solutions in
Section [4.4.2] While the presence of dissipation (Section [4.5) may smooth these sharp
features somewhat, the sharpness of the features is still cause for concern in realistic stars
where these effects are small. As in the example above, the kj,v,4j; terms will become

important near the critical latitude and can regulate the singularity in our equations.

Now assuming a WKB approximation in both the radial and horizontal directions and a

purely poloidal field (B4 = 0), the horizontal momentum equations become
2 - N 2 -
Wy = (k-74) &,
= (K23, + 2k kgvarvao + k3%, ) & (4.45)

where we have ignored the pressure term (note that the Alfvén waves which cause the sharp

features at the critical latitudes cannot be restored by pressure).
Keeping the dominant terms (and still assuming k, > kj, B, ~ By),
w* = kv, = 2k kgvasvae (4.46)

Because the left-hand side of Equation@]is close to zero near the critical latitude, we can

perform a Taylor expansion in the horizontal direction:

o2 2k
k2060 ~ 2kykgvarvao ~ % (4.47)

where 66 is the horizontal angular distance from the resonance point where |w| = |k, v 4,|.
Here we have assumed that the displacements vary on an angular length scale 66 such that

kg ~ 1/(r66). Appendix solves for the “wavefunction” 5;, more precisely.

From Equation 4.47) we then see that the horizontal field terms terms become important

when

-1
aVAr

06

166] < |24

(4.48)

r

However, since v 4, ~ v g typically,

1 avA, 0ln VA
— ~ ~1 4.49
VAQ 06 06 ( )




118

for a large-scale (e.g., dipole) magnetic field. Therefore, near the critical latitudes, we

expect that the wavefunction 5 » will vary over an angular scale

1
k.r

|66 ~ (4.50)
This angular scale also naturally appears in Appendix 4.D] where it describes the angular
wavenumber of Alfvén waves near the critical latitude. Note that, because magnetogravity
waves with m = 0 have {4 = 0, they cannot couple to m = 0 Alfvén waves, which are
purely toroidal (i.e., &g = 0; Lot and Papaloizou, |2017). This physically explains why sharp
fluid features near critical latitudes do not appear in our m = 0 solutions (Section4.4.1)), or

earlier two-dimensional solutions (Lecoanet, Vasil, et al.,[2017).

Physically, the Alfvén and magnetogravity waves, which are decoupled in the dispersion
relation of Equation may become strongly coupled in a narrow band due to additional
small terms left out of Equation[4.3] Because the Alfvén waves are expected to have angular
scales 66 ~ 1/vk,r due to the effect of the horizontal field, coupling between Alfvén and
magnetogravity waves should also occur within ~§6 of a critical latitude (due to geometric
overlap). This coupling may allow a small amount of gravity wave power to be converted
into outgoing Alfvén waves. These Alfvén waves would then propagate along a closed field
line, eventually curving back inwards to the critical latitude on the opposite hemisphere
of the star. Here, they could be converted back into outgoing gravity waves, potentially
allowing for some wave power to escape the core. This possibility could be investigated

with numerical simulations.

Additionally, the presence of shear stress would also cause quantifiable departures from
the horizontal mode structure derived in this work. While plasmas do not generally have
shear restorative forces, Hoven and Levin (2011) argue that tangling in the equilibrium
magnetic field at small scales can produce a small effective shear modulus. We investigate
this possibility further in Appendix finding that it causes the wave function to have an
Airy function horizontal dependence near the critical latitude.

Out of these effects, it is most likely that the horizontal field terms have the largest impact
on the mode structure (i.e., 66 as given by Equation .50 most accurately characterizes
when our solutions break down). Both dissipation and shear stress (due to, e.g., tangling)
are likely to be small in real stars, but any physical equilibrium fields must have horizontal

magnetic fields B;, ~ B,.

In general, the importance of horizontal-field terms near the equator and critical latitudes

strongly suggests that a search for global solutions with those terms included is the natural
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next step for accurately characterizing strong-field g modes. However, the solutions become
non-separable in the radial and horizontal directions, and a solution of the full, coupled
partial differential equations would be necessary. A global treatment of magnetogravity
modes dramatically increases the complexity of any numerical mode calculations, but is
likely to reveal important (and hard to predict) departures from a separable treatment (as it
has in eigenmode problems in differentially rotating planets, e.g., Takata and Saio, 2013;
Dewberry et al., 2021). While we believe our solutions to capture the basic behavior of
the waves, the effects of horizontal magnetic fields discussed here are likely to be the more

important effect in real stars, and should be examined more thoroughly in future work.

4.6.2 The continuum spectrum and nonharmonic solutions

In this work, we have focused on harmonic solutions with time dependence o« e'“’, for
some global oscillation frequency w. However, the unusual nuances introduced by the
internal singularity suggest more general approaches may be appropriate. For example,
standard Sturm-Liouville theory only ensures that the eigenfunctions of Lr’ﬁ;f; form a basis
for a real b oc k, in the absence of internal singularities. Thus, while we have mostly
discussed the discrete spectrum of eigenfunctions of Lr'ﬁ;é, it is not guaranteed that an
arbitrary perturbation can be decomposed into them, both because b is not necessarily real
and because different modes at the same radius are eigenfunctions of different differential
operators (i.e., Lgﬁ;f; for different b). In general, the continuous spectrum of Alfvén waves

(i.e., Section 4.4.3) plays a major role.

Similar frequency-dependent internal singularities often appear in problems related to
differentially-rotating fluids. In such problems, authors such as Burger (1966) and Bal-
binski (1984)) apply more general Laplace transform techniques involving contour integrals
to solve for the time dependence of possible solutions. Specifically, Balbinski (1984)
find that the continuum spectrum in a differentially-rotating cylinder corresponds to per-
turbations which oscillate periodically and also decay as a power law in time. In those
“quasi-modal” solutions, the oscillation frequency depends on position, and hence the

solutions are not separable in space and time.

Levin (2007) and Hoven and Levin (2011) intuitively explain the origin of such non-
exponential time dependence in the context of the coupling of a magnetar crust mode to
an Alfvén continuum in the magnetar bulk. In a toy model analogous to this problem, a
“large” oscillator (the crust mode) couples to a dense collection of “small” oscillators (the
Alfvén modes). In our case, the “large" oscillator would be an ingoing gravity wave. At

early times, the large oscillator’s amplitude exponentially decays as energy is distributed
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among the small oscillators. However, the time dependence transitions to algebraic decay
to a finite, nonzero amplitude driven by coherent driving from small oscillators at the edges
of the continuum. In the presence of dissipation, such edge modes retain energy for much
longer than modes in the interior of the continuum. It is unclear how these edge modes

manifest in the simplified model of magnetogravity waves presented in this work.

Interestingly, Boyd (1981) note in their Appendix B that the decomposition of perturbations
into either real-eigenvalue continuum modes or complex-eigenvalue discrete modes are
equivalent and complementary approaches. The eigenfunctions of the modes may diverge
at some points, similar to an Alfvén wave confined to a single field line. However, a
superposition of a continuous spectrum of modes can produce a finite-valued function.
Hence, examining single continuum modes can be misleading, but they can be superposed
to produce unusual decay behavior as in Balbinski (1984). In future work, application of
these insights to the magnetogravity wave problem may shed more light on what to expect

in real stars, including the possibility of quasi-modes with non-harmonic time dependence.

4.6.3 Magnetogravity waves in general geometries

In this work, we have focused on dipolar magnetic field configurations whose radial com-
ponents have angular dependence o cos 6 (Equation 4.9). However, many real stars have
more complex field morphologies (Maxted, Ferrario, et al., 2000; Tout, Wickramasinghe,
and Ferrario, 2004; Donati and Landstreet, 2009; Kochukhov, Lundin, et al., 2010; Szary,
2013; Kochukhov and Wade, 2016)). In this Section, we generalize some of the arguments

made in Section [4.4]to more general magnetic fields of the form

B, = Bo(r)y (6, ¢) (4.51)

where ¢ is a dimensionless function describing the horizontal dependence of the field. As
in Section[d.2.3] we use a WKB approximation such that terms dependent on the horizontal
component of the field are small and can be dropped. Without loss of generality, we can

rescale ¥ and By so that the maximum of || on the sphere is 1.

The general problem can be non-dimensionalized in the same way as described in Section
M.2.2] In particular, we still define b and a as in Equations 4.5|and [4.6] but interpreting v 4

as the maximum Alfvén speed at a given radius (which no longer necessarily occurs at the
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poles). Via Equations [4.2] the perturbations are given by

ik,
= ! 4.52
& 0 Yeld (4.52a)
> 1
= vViup' 4.52b
O (- 0.0 (320
%,
o = l—p’ (4.52¢)
8
where we have defined the horizontal gradient,
~d .1 0
Vi=0—=+¢—— 4.53
h 00 sinf ¢ (4.53)

with the factor of 1/r excluded.

Substituting Equations [4.52]into the continuity equation (Equation #.2a)), we obtain

b2 ’ 1 ’
0= Zp + Vh . 1——WVhp (454)

We see that Equation [4.54]can be viewed as a partial differential equation to be solved over
a sphere of radius a~! (i.e., Equation can be rewritten without a after defining some
V. = aV). In other words, the depth parameter a parameterizes the effective “curvature” of
the spherical domain over which the horizontal equations are to be solved. Since we have not
assumed a specific magnetic field geometry here, the form of the differential eigenproblem
in Equation4.4]is generic. In the case of an axisymmetric field, the two-dimensional angular
differential operator in Equation 4.54] can be reduced to a differential operator in 6 only

(recovering, e.g., Equation [4.12] for a dipole field).

Equation 4.52b| can be rearranged to
Vip' = po?r (1-0%2) &, (4.55)

We therefore see that, so long as é?h is finite, V;,p’ = 0 along any critical surface (/| =

+1/|b]) as long as b is real.

The vanishing directional derivative of p’ across the critical surface generalizes an analogous
result in Section 4.3 3] for the dipole geometry. Physically, this result simply reflects that, at
the site of an Alfvén resonance, magnetic tension completely accounts for the (horizontal)
restoring force of the mode, and the pressure perturbation makes no contribution. This fact
was also used in Section [4.4.2] to show that dissipationless m # 0 solutions must vanish

outside of the critical latitudes.



122
We can perform a similar analysis as in Section by multiplying Equation by p”™*

and integrating over the region of the sphere where |by/| < 1 (i.e., where w < w,), denoted
by S<:

b? 1
0=— 12dQ + "o | ————V,p | dQ 4.56
az'/s<|p| /S<p h (l—bzz/ﬂ hp) (4.56)

The second term becomes

1
"V, | ———V,;,p" | dQ
/Sf’ " (1—b2w2 "p)

1 1 ’ 1 ’
1 r AN 1 ’
:/(95 —1_bzl//2p Vip .nd)(—/s —l—bzt//2|Vhp 1?dQ

where we have first integrated by parts, and then applied the divergence theorem to the first
term (0S< denotes the boundary of S., dy is an angular line element, and 7 points out of
S.). If the first (boundary) term in Equation vanishes, then

p>  Js. T Vap' 1P dQ
a2 /S< |p'|2 dQ

(4.58)

generalizes Equation [4.30] However, this process can be repeated for S, the region where
|by/| > 1, to obtain
2 [ | Vap I dQ
b s> 1-b2g2 | V1P

Z = (4.59)
a? s P2 dQ

Since b?/a* may only have one sign or another for a given global mode, we see that modes
for which k, and w are both real (i.e., propagating and non-decaying) will be localized to the
region where w < w4 in the case when the boundary term in Equation vanishes. This
condition will be satisfied when the complex winding number enclosed by dS< is nonzero,
since p’ = const. on dS<. This argument generalizes the result described in Section 4.4.2
that propagating, non-decaying m # O modes in the dipole geometry must be localized

between the critical latitudes.

4.6.4 Stable g modes in convective regions

Standard mixing-length theory assumes a slight superadiabatic temperature gradient such
that N> < 0 in convective zones. While g modes in non-rotating, non-magnetized stars are
only present in stably stratified (radiative) regions, Lee and Saio (1997) show that buoyancy-

restored oscillatory modes (real w) can be stabilized even in convective regions (N 2<0) by
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sufficiently high rotation. In particular, when |Q| > |w|/2, the coefficient functions which
appear in the Laplace tidal operator L ;" (Equation are no longer strictly positive,
and it will possess negative eigenvalues A < 0. In this case, k;, = VA/r becomes imaginary,
and there exist solutions to k;/k, = w/N when N is also imaginary. While standard g
modes under strong rotation tend to be localized to the equator, these rotationally stabilized

convective modes are instead localized near the poles (Lee and Saio, |[1997).

However, the same argument can be applied to the magnetogravity problem, and gives
meaning to the negative branches of eigenvalues A implied by Equation 4.12] In particular,
like £L", the operator Lr’ﬁ’al; (Equation ) also contains coefficients which switch signs

over the domain. In this formalism, for oscillatory solutions with real w, a becomes

imaginary, and one instead must solve

where now the (negative) eigenvalues A of .Lr"ﬁ;é must satisfy

A=-b*/|al?. (4.61)

In the case of no buoyancy (N? = 0) and relaxing the Boussinesq assumption, convective
regions are expected to sustain standard magnetohydrodynamic waves (Shu, |1991). On
top of these modes, the aforementioned negative eigenvalue branches hint at the existence
of buoyancy-restored oscillations in convective regions which are stabilized by magnetic
forces. By a similar argument as made in Section #.4.2] Equation .60 implies that such
A < 0 modes would be exactly localized outside (rather than inside) the critical latitudes.
Moreover, while they require || > 1, there is no formal upper limit on the magnetic fields at
which they can exist, meaning they may exist in the convective cores of strongly magnetized

stars.

While the analogy to rotationally stabilized convective modes seems obvious, we note the
magnitude of the Brunt—Viisila frequency |N| is typically extremely close to 0 in convective
zones, owing to the extremely efficient mixing caused by the convective instability. Note
that this feature is not unique to the magnetogravity problem, and would also be true
for the rotational problem considered by Lee and Saio (1997). This appears to violate a
fundamental assumption of our analysis that k,/k, ~ N/w is large, or at least implies that
stable convective oscillations which can accurately be described by our formalism must be
of very low frequency. Therefore, we strongly caution against using the formalism in this

work to make quantitative (or even strong qualitative) predictions about the properties of
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these modes. More detailed analyses relaxing this assumption are necessary to characterize

these modes accurately (if indeed they exist).

4.7 Summary

In this work, we have characterized the pulsation modes of a spherically symmetric, stratified

stellar structure with a strong dipole magnetic field. We focus on radiative zones with large

Brunt—Viisila frequencies such that magnetogravity waves have short radial wavelengths.

We have assumed that

the radial wavelength is everywhere much smaller than both the stellar structure length
(the radial WKB approximation) and the horizontal wavelength (i.e., the wavevector

is primarily radial),
oscillations are incompressible and adiabatic,
perturbations to the gravitational potential can be ignored (Cowling), and

dissipative processes are either formally absent (Section {.4)) or small (Section [4.5).

Our chief conclusions are as follows:

1.

Propagating zonal (m = 0) magnetogravity modes merge at a finite field with a branch
of slow magnetic waves whose wavenumbers diverge at a finite cutoff radius. Their
horizontal eigenfunctions are Hough functions for a dipolar magnetic field. Hence,
ingoing gravity waves are converted into slow magnetic waves at a critical magnetic
field strength similar to that derived in Fuller, Cantiello, et al., 2015, Above this field
strength, the modes become evanescent and cannot propagate. This is in agreement

with the results of Lecoanet, Vasil, et al. 2017|in a similar geometry.

Propagating sectoral and tesseral (m # 0) modes also merge with branches of slow
magnetic waves whose wavenumbers diverge at a cutoff radius within the star. Like
m = 0 modes, ingoing gravity waves cannot propagate above a critical magnetic field
strength, and are instead converted to outgoing slow magnetic waves. For strong
fields and large wavenumbers, the modes are closely confined to the equator, and are
bounded by sharp features in the fluid displacement profile at critical latitudes where

the wave frequency is resonant with Alfvén waves.

Even vanishingly small dissipation can cause qualitative deviations from the problem

where dissipation is formally set to zero. This can be heuristically understood because
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viscosity allows for interaction between magnetogravity waves and the continuous
Alfvén wave spectrum. However, even for finite dissipation, the conclusion that
sufficiently high magnetic fields will destroy all propagating magnetogravity modes

is robust.

4. Near the critical latitudes and equator, magnetic tension terms associated with the
horizontal field are likely to affect the mode structure significantly. Thus, a global
solution which includes such terms is necessary to confidently characterize the mode
structure very near these regions. We speculate that such an analysis might reveal that
an observable amount of wave power may be able to escape a strongly magnetized
stellar core through coupling with Alfvén waves (at critical latitudes) or extremely

localized magnetogravity waves (near the equator).

Our analysis reinforces conclusions from earlier studies that strong magnetic fields should
convert gravity waves into slow magnetic waves that damp within stellar interiors, causing
magnetic fields to suppress the amplitudes of gravity modes in red giant stars (Fuller,
Cantiello, et al., 2015; Stello, Cantiello, Fuller, Huber, et al., 2016). However, it may
remain possible that higher-order WKB terms (neglected in our analysis) or modes with
non-harmonic time dependence (Section 4.6.2) could allow for some signatures of mixed
modes in observed power spectra as claimed by Mosser, Belkacem, et al. (2017). More
effort accounting for these effects will be required to robustly predict the magnetogravity

pulsation spectra of stars with strong magnetic fields.

4.A Magnetogravity eigenproblems in other geometries
In this Appendix, we non-dimensionalize the fluid equations for the geometries considered
by Fuller, Cantiello, et al. (2015) and Lecoanet, Vasil, et al. (2017), and show that they can

be interpreted as similar eigenvalue problems as considered in our work.

4.A.1 Fuller, Cantiello, et al. (2015): Uniform radial field model
The model presented by Fuller, Cantiello, et al. (2015) can be precisely reproduced by

adopting a purely uniform radial magnetic field,

By = Bo(r) 7 (4.62)
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Adopting a WKB approximation in the radial direction, we can define

bp = k’(j A (4.632)
ap = (g) (V:‘U/ r) (4.63b)

where v4 = By(r)/+/47po.

While such a monopolar field is clearly unphysical, it is also a useful toy model because
it retains the spherical symmetry of the zero-field problem. Therefore, its horizontal

eigenfunctions are simply spherical harmonics, and its dispersion relation is

0(L+1)

= b%/a} (4.64)
1- b3

Equation [4.64] can be analytically solved for bF to yield

1
[ 5\/ 1—4a20(0+1) (4.65)

1
2
where it can be seen that there are no real solutions for bg for some critical ap > a’ given
by
1
¢
a, = ———— (4.66)

NI ES)
This is equivalent to the result originally presented by Fuller, Cantiello, et al. (2015)) that
there are no propagating solutions when the magnetogravity frequency (defined in Equation
M.1) rises above the mode frequency. At small buoyancy or Alfvén frequencies, the two
solutions for b% in Equation approach the usual internal gravity wave and Alfvén wave
dispersion relations, and remain finite. Equations 4.62] 4.63] and 4.64] are analogous to

Equations .9} 4.5|and 4.6} and in the main text.

4.A.2 Lecoanet, Vasil, et al. (2017): Multipole Cartesian geometry
Lecoanet, Vasil, et al. (2017) consider a Cartesian geometry with the equilibrium magnetic
field configuration

Bo = Boe 5% [sin(kpx) £ + cos(kpx) 2] (4.67)

where the oscillatory dependence in x is chosen to closely mimic the € dependence of a

multipole magnetic field.



127

Define kp to the wavenumber which defines the periodicity of the domain, i.e., the solution
is periodic in x with a period 27 /kp (kp is analogous to 1/r in the spherical problem). We

can first define

by = kzav) A (4.682)
N\ [k
ap = (5) ( ’;)VA) (4.68b)

where vy = Boe‘kBZ/\ano.

Then, following a very similar procedure to the spherical dipole problem described in the
main text, the three-dimensional Cartesian problem corresponding to the field in Equation

can be reduced to )

m,by, ./ i / _
LM p"(p) + P (W) =0 (4.69)
L

where u = cos(kpx).
In the special case that kg = kp (i.e., a dipole field), the differential operator Li" bL s given

by
m ’ [ d Vl_ > dp’ ’ ’
L

du 1—bi#2 du

where m = ky/kp. Letting A1, be a given (negative) eigenvalue of LK’ UL the dispersion
relation takes the form
A = bi Jaf (4.71)

Lecoanet, Vasil, et al. (2017) solve the problem described above in the two-dimensional
zonal case (i.e., m = 0), taking advantage of the fact that two-dimensional incompressibility
defines a “vector potential” whose direction is everywhere orthogonal to the fluid motions.
They find the eigenfunctions to be Mathieu functions (Mathieu, 1868|), with a branch of
inward-traveling internal gravity waves refracting up into a branch of slow magnetic waves
which diverge to infinite wavenumber at a finite “cutoff” radius. We reproduce this behavior
in the dipole geometry for the m = 0 modes (see Section #.4.T]).

Equations 4.67] [4.68| [4.69] [4.70] and[4.7T|are analogous to Equations and{4.6]
|4.13[, and |4.15[, in the main text. We see that, aside from geometrical factors oc /1 — p?

(which become irrelevant in the large by, limit), Lr";;fé and L] L are identical.
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4.B Numerically solving Lg;@

We use a relaxation scheme to numerically solve Equations and[.73] following closely
the procedure used by Lee and Saio (1997) and Fuller and Lai (2014)) to diagonalize the
Laplace tidal equation, using the C++ implementation given by Numerical Recipes (Press
et al.,|2007)).

However, the procedures which we adopt vary somewhat for the dissipative and dissipation-

less cases. The numerical solution procedure for Sections 4.4.1/and [4.4.2]is summarized in
Section and the procedure for Section[4.5]is summarized in Section4.B.2]

4.B.1 Numerical solution without dissipation

In the m = 0 (Section[4.4.1)) and m # 0, |b| < 1 (Section [4.4.2) cases without dissipation,
little special care is required to solve the requisite two first-order differential equations.
In the former case, the solutions (Hough functions) are known to be second-differentiable
across the singularity. In the latter case, the problem is a standard Sturm-Liouville problem
with no internal singularities. Moreover, because Lﬁ;bg (Equation is even with respect
to u, its eigenfunctions can be partitioned into even and odd parity, which is given by
(=)™ for p” and (—1)""*! for &. This known parity greatly simplifies the problem,
allowing us to solve for the eigenfunctions for only u € [0, +1) rather than over the full

domain.

Then, defining P = p’/pow?r? and Zy = /1 — u2&,/r as (assumed real) non-dimensionalized
versions of  and Zy, our equations become

dp 1 — b%u?
R 4.72
i = Zy (4.72a)
dZy b2 m?

= - P 4.72b
du a?  (1-p2) (1-b%2) ( )
where the first equation follows from the 8 component of the momentum equation (Equation
and the second equation follows from the continuity equation (Equation §.10a).

Starting from Legendre polynomials as initial guess, we gradually increase b (> 0) from
0, retaining lower b solutions as initial guesses for higher b relaxations. Note that, in
the numerical implementation, we promote a = a(u) to a function of u, and additionally
enforce da/du = O (this is the standard technique for solving such eigenproblems in, e.g.,
Press et al., 2007). We impose boundary conditions on # and Zy at u = 0 depending on
parity, setting one of these variables to 0 and the other to 1 for normalization. Additionally,
at the right boundary u = 1 — €, we enforce that Zy must vanish (which can be seen in its

definition).
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Inthem # 0, |b| < 1 case, we demonstrate in Section4.4.2]that eigenfunctions in the formal
zero-dissipation limit are exactly localized to the band between the internal singularities at
u = +1/b (where we have taken b > 0 without loss of generality). Then we can rescale
Equations 4.72] via x = by to

deP 1-x% ,

I = T3 x2b Zo (4.73a)
dzZs (1 m? 3
— =|=- b>P 4.73b
dx a? (b2 -x2) (1-x2) ( )

over the range x € [0,+1) (i.e., u € [0,+1/b)), enforcing ¥ = 0 at x = 1 — € (see Section

.4.2).

4.B.2 Numerical solution with dissipation

When dissipation is considered, the internal singularities are “softened” in the sense that
they are shifted off of the real line. Therefore, a case-wise treatment of the singularity (as
in Section is not necessary. However, in general, both the perturbations and at least

one of the quantities k, and w are complex, doubling the number of equations to be solved.

Moreover, in the dissipative case (even for arbitrarily small viscosities/diffusivities), the
delta function which appears in £, becomes softened to a sharp peak with a finite width.
Therefore, instead of solving for £ ~ (1 — bz,uz)§¢ as a perturbation, we probe this peak by
solving the complex versions of the following equations,

dZ, 2b%u 1
= - 474
di 1= b2 = Z_C-qu 1 ’uzZe ( a)
dZy 2 92 . m?
_ /1(1—19 _ )_ 4.74b
" ( u-—ic = Zy ( )

where Zy = \/1 — u2&4/imr. In Section we pick ¢ = 1073 and take A = |1]¢¢! and
b = |b|e’®1/? and solve for |1| and ¢;, while varying |b|. In Section we pick ¢ = 1072
and take A = |1|e’?> and b = |b| (real) and solve for |A| and >, while again varying |b]|.
As in Section the first equation follows from the 6 component of the momentum
equation, and the second equation follows from the continuity equation (but in terms of

different perturbations).

The evenness and oddness conditions can be applied as in Section to Re (Zy) (which
has the same parity as ) and Re (Zp) at the left boundary p = 0. At this same boundary,
we enforce (due to overall phase invariance) Im (Z¢) =1Im (Zy) =0. Finally,at u = 1 — ¢,
we enforce Re (Zy) = Im (Zy) = 0. Equations 4.74] are then solved for increasingly large

values of |b|, using associated Legendre polynomials as the initial |b| = O guesses.
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4.C Tightly confined equatorial magnetogravity waves

In this Appendix, we investigate the behavior of magnetogravity waves very close to the
equator (for a dipole field), where v4, = 0. In the following, we demonstrate in this narrow
equatorial band the existence of self-consistent, propagating solutions with wavenumbers
enhanced in magnitude by a factor N /w. These solutions are not captured by the analysis in
the main text, which assumed that the vertical component of the Alfvén velocity dominates
the mode structure. However, the dynamics of these modes may play an important role in

understanding the observable, asteroseismic consequences of strong core magnetic fields.

In this region, the assumption (used throughout this work) that the Alfvén frequency w4 =
kv 4 1s dominated by the radial component is violated. We expect this violation to be
important when

var/van S kn/ky ~ /N (4.75)
or in a narrow band around the equator with angular extent 66 ~ w/N.
Assuming a WKB approximation in all directions, the dispersion relation for magnetogravity

waves near the equator becomes

WP - EN2 k22 =0, (4.76)

where now wy ~ kpv4p 1s dominated by the horizontal component. Then, solving for &,

we have
k7 N?
k2= —n | (4.77)
2.2
w? = kyvy,
where the criterion for radial propagation is
w* > ki, (4.78)

Because these solutions are only accurate in an equatorial band 66 < w/N, it follows that

N 4.79)

b
wr

kp,

1%

1.e., at least one horizontal wavelength fits within this band. The criteria in Equation
and can be combined to obtain

W = \Nvap/r ~ wp (4.80)

where wp is the critical magnetic field strength from Equation but now applied to the

horizontal field rather than the radial field. Therefore, such confined magnetogravity waves
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would remain radially propagating in roughly the same regions that magnetogravity waves

throughout the rest of the star would (within a small, order-unity factor in radius).

Interestingly, when Equation [4.78] (for the minimum k) is combined with Equation 4.77|

for propagating waves, we obtain

2
ol 2 N . (5) ! (4.81)
\/wz/k%z min vih @ '

where we have examined the limit where v4j, < rw? /N (i.e., at fields much lower than the
critical field, or where w > wp). This radial wavenumber is larger than the radial wavenum-
ber of normal, low-¢{ gravity waves by a large factor ~ N/w, implying that magnetogravity
waves near the equator will develop very small radial wavelengths. This increased radial
wavenumber appears to be qualitatively consistent with numerical simulations conducted
by Lecoanet, Vasil, et al. (2017), which seem to exhibit such waves at locations where the
radial magnetic field vanishes (see their Figure 6). However, their simulation also seems to
show outgoing equatorially confined evanescent waves, whose driving we cannot explain.
Moreover, due to their small spatial scale, it is unclear to us whether these modes are
numerically resolved. Future work will be required to further elucidate the nature of these
highly confined modes.

Note that the dispersion relation in Equation[4.77|implies that the group and phase velocities
of these confined magnetogravity waves are in opposite directions (similar to normal,
zero-field gravity waves). Because the refracted, outgoing magnetogravity wave solutions
at b > 1 (described in the rest of this work) have aligned group and phase velocities,
this implies that such outgoing magnetogravity waves couple most efficiently to ingoing,
equatorially confined magnetogravity waves (described above). This poses a challenge for
equatorially confined magnetogravity waves as a vehicle for bringing wave power out of the
core. Moreover, the very short wavelengths of the equatorially confined waves make them
much more susceptible to damping processes. Further work may elucidate the nature of

these waves, and their role in wave power transport and dissipation.

4.D Structure of Alfvén resonances including horizontal-field contributions to the
magnetic tension

In the solutions throughout the main text, it has been assumed that the magnetic tension terms

which appear in the momentum equations are dominated by the radial component (in, e.g.,

Equations . However, very near to w? = kfvf‘r (i.e., very near to a critical latitude),

the horizontal components of the magnetic tension may become relevant. As described
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throughout the text (e.g., Section 4.6.1)), sharp horizontal fluid features may appear in the
vicinity of Alfvén resonances. To estimate the impact of such terms, we will make a WKB
approximation in both the radial and horizontal directions (i.e., k,, k;, > 1/r). We further
hypothesize that it still remains true that k, < k, (this will set a condition for validity). For

Alfvén waves, we examine the horizontal momentum equation:

Qikvarvag d Vi d? ) = .
kpvi, + = = s | G = 0, (4.82)

where we have assumed a poloidal field (B = 0) for simplicity. Because we are interested
in the solution in the vicinity of w? — k?v4 =~ 0, we can perform a Taylor expansion:

2

dv
w® — kWA~ k2 dg’ 50 (4.83)

where 66 = 6 — 6., and 6. is the critical latitude. Then Equation 4.82becomes

dIn VAr
do

2ik,vArvA9 dgh ZdVir - 2 9
AT AR 2 Ars0 8 = —2k
F a0 g 204 rVar

50 &, (4.84)

where kj > k, allowed us to drop the term oc d2§ n/ d#?. This becomes

dé, . vardlnva, -

- = jk,r———=66 4.85

ik rrVAe 7 En (4.85)
Then, since v4, ~ vag and dInvy,/df =~ 1 (since v4, varies horizontally roughly on the
order of a radian), the prefactors involving v4, and v4j are order-unity. Doing this more

carefully for a dipole field (where v 4, o 2 cos 8 and v 4, o sin 8) yields

-

Eh ko0, (4.86)

Equation 4.86]is straightforwardly solved by

-

&y = el (4.87)
This complex Gaussian describes a wave whose wavelength decreases away from the critical
latitude #.. The first wavelength occurs where rk,60> = 2r, yielding a characteristic
angular scale of 660 ~ 1/vk,r, or characteristic angular wavenumber of rky ~ Vk,r

(compare Equation 4.50). Note that this horizontal wavenumber satisfies our assumption
that 1/r < kg < k,.
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4.F Magnetic tangling-induced shear stress

While realistic stars do not have shear-restorative forces, Hoven and Levin (201 1)) argue that
small-scale disordered magnetic fields (“tangling”) may introduce an effective shear stress,
with characteristic wave speed ¢2 = B2, /4mpo. To characterize the effect that this shear
modulus term has on the Alfvén waves, we can focus on the magnetic tension term in the
horizontal momentum equation, which is the only other term capable of restoring torsional

mode components (Loi and Papaloizou, 2017):

W&y = —2rV2E, + W) € (4.88)

We see that Equation [4.88] is mathematically identical to a two-dimensional Schrodinger
equation, where E = w? plays the role of the total energy, V = wir plays the role of the
potential, and the small shear speed c; plays the role of 7. As noted by Hoven and Levin
(2011), the effect of a small shear modulus is to transform the continuous spectrum of Alfvén
waves into a discrete one (as in standard bound-state spectra of the Schrodinger equation),
whose mode spacings decrease to zero in the limit where ¢y, — 0. If a WKB approximation
is adopted for Equationd4.88]in the horizontal direction, the coupling of these discrete waves
to a mode is similar to that of the continuum waves in the c¢; = 0 case. In the region where
w? > wf‘r, the discrete Alfvén wave oscillates spatially very rapidly, and its overlap with a

global-scale g mode averages to zero. Similarly, in the region where w?

< w3, the wave
decays very rapidly, and therefore is very close to zero. However, the solution very close to

w? = wir (the “classical turning point”) is known to be an Airy function of angular width

(4.89)

which sets the scale at which an interaction with a mode and Alfvén wave will be “smeared”
in the angular direction, due to shear stress. Physically, the shear modulus-induced dis-

cretization of the Alfvén waves occurs because shear adds an isotropic contribution to the
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wave speed (so that it is not exactly zero perpendicular to the field lines), and thus couples
fluid motions across field lines. This effect is likely to be small relative to similar effects

associated with the horizontal component of the mean magnetic field (Section {.6.1).



135
Chapter 5

ASTEROSEISMIC G-MODE PERIOD SPACINGS IN STRONGLY
MAGNETIC ROTATING STARS

Rui, NZ, JMJ Ong, and S Mathis (2024). “Asteroseismic g-mode period spacings in strongly
magnetic rotating stars”. In: Monthly Notices of the Royal Astronomical Society 527.3,
pp. 6346-6362. por: 10.1093/mnras/stad3461.

Abstract

Strong magnetic fields are expected to significantly modify the pulsation frequencies of
waves propagating in the cores of red giants or in the radiative envelopes of intermediate-
and high-mass main-sequence stars. We calculate the g-mode frequencies of stars with
magnetic dipole fields which are aligned with their rotational axes, treating both the Lorentz
and Coriolis forces non-perturbatively. We provide a compact asymptotic formula for
the g-mode period spacing, and universally find that strong magnetism decreases this
period spacing substantially more than is predicted by perturbation theory. These results
are validated with explicit numerical mode calculations for realistic stellar models. The
approach we present is highly versatile: once the eigenvalues A of a certain differential
operator are precomputed as a function of the magnetogravity and rotational frequencies
(in units of the mode frequency), the non-perturbative impact of the Coriolis and Lorentz
forces is understood under a broad domain of validity, and is readily incorporated into

asteroseismic modeling.

5.1 Introduction

Because stellar oscillations extend throughout the stars in which they propagate, they contain
a wealth of information about stellar interiors. Asteroseismology is thus a sensitive probe of
interior structure (Gough and Kosovichev, 1993; Christensen-Dalsgaard, 2012; Bellinger,
Basu, Hekker, and Ball, [2017; Mombarg, Dotter, Van Reeth, et al., 2020; Bellinger, Basu,
Hekker, Christensen-Dalsgaard, et al., 2021; Mombarg, Dotter, Rieutord, et al., 2022;
Buldgen et al., [2022), rotation (Beck et al., 2012; Mosser, M. Goupil, Belkacem, Marques,
Beck, Bloemen, De Ridder, Barban, Deheuvels, Elsworth, et al., 2012a; Deheuvels, Garcia,
et al., 2012; Deheuvels, Dogan, et al., 2014} Kurtz et al., |2014; Van Reeth, Tkachenko,
and Aerts, 2016; Aerts, Van Reeth, et al., 2017; Papics et al., |2017; Deheuvels, Ballot,
Eggenberger, et al., 2020; Burssens et al., [2023; Mombarg, Rieutord, et al.,|2023), mixing
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(Constantino et al., 2015 T. Li et al., 2018} Pedersen et al., 2018; Michielsen, Pedersen, et
al.,|2019; Lindsay et al., 2023), evolution (Miglio, Montalban, Noels, et al., 2008, Mosser,
Benomar, et al., |[2014), and binary interaction history (Rui and Fuller, 2021a; Deheuvels,
Ballot, Gehan, et al., 2022; Y. Li et al., 2022; Tayar, Moyano, et al., [2022; Hekker et al.,
2023).

Inrecent years, there has been a large amount of progress in developing asteroseismology as
a probe of strong internal magnetic fields, particularly through their effects on the gravity (g)
modes which propagate in radiative regions. Such fields likely have important consequences
for the transport of angular momentum within evolved stars (Mathis and Brye, 2012; Fuller,
Piro, et al.,|2019; Aerts, Mathis, et al.,[2019). On the red giant branch, g modes propagate
in the radiative core, which may possess strong magnetic fields left over from efficient core
convective dynamos on the main sequence (Fuller, Cantiello, et al.,[2015}; Stello, Cantiello,
Fuller, Huber, et al.,|2016). In these cases, magnetism may have a significant effect on the
frequency spectrum: by measuring these frequency patterns, G. Li, Deheuvels, Ballot, and
Lignieres (2022) strongly constrain both the rotational periods and field strengths (> 30 kG)
as well as their geometries for a modest sample of red giants. Even stronger magnetic fields
> 100kG are commonly invoked to explain the observed suppression of dipole (£ = 1)
and quadrupole (£ = 2) oscillation modes in red giants (e.g., Garcia, F. Hernandez, et al.,
2014 Stello, Cantiello, Fuller, Garcia, et al., 2016} Stello, Cantiello, Fuller, Huber, et al.,
2016)). Specifically, mode suppression is expected to occur in the non-perturbative “strong
magnetogravity” regime (Fuller, Cantiello, et al., |2015; Lecoanet, Vasil, et al., [2017; Rui

and Fuller, 2023)), when a mode’s frequency w is sufficiently close to the critical frequency
W S Werit ~ W = VNVAr/r- (51)

In Equation var = By/{/4mp is the radial component of the Alfvén velocity, r is the

radial coordinate, and N is the Brunt—Viisild (buoyancy) frequency, given by

-1 dlnpo _ dlnp()
dr dr )’

where vy is the adiabatic index.

Equivalently, mode suppression occurs at some frequency wci; when the magnetic field is

at least comparable to some critical field (Fuller, Cantiello, et al., 2015):

Complementarily, main-sequence pulsators of intermediate mass (21.3M) have radiative,

rather than convective, envelopes, and their g modes extend to their surfaces where they
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can be observed directly (Aerts, 2021). Examining the slowly pulsating B-type (SPB)
star HD 43317, Lecoanet, Bowman, et al. (2022)) demonstrate that observations of mode
suppression in main sequence (MS) pulsators may place meaningful constraints on their
internal magnetism. The detection of g¢ modes in the vicinity of magnetic suppression
suggests MS pulsators as a separate platform for testing the effect of strong magnetic fields

on propagating gravity waves.

In the absence of effects such as magnetic fields or rotation, successive g modes are evenly

spaced in period by a constant g-mode period spacing 6 P,, which can be estimated as

272 N -1
6P, = —— [ Zar| 5.4
NIy (/r r) CH

where the integral is over the part of the radial cavity within which g modes propagate
(w < N).

However, both rotation and magnetism leave distinctive signatures on the period spacing,
both by lifting the degeneracy between modes of different m (by breaking the spherical
symmetry of the system) and by introducing period dependence (Bouabid et al., 2013;
Van Reeth, Tkachenko, and Aerts, 2016; Dhouib, Mathis, et al., 2022). The period spacing
as a function of period 6P, = §P,(P) is therefore a valuable measure for rotational and
magnetic effects (Van Beeck et al.,|[2020; Henneco, Van Reeth, et al.,2021]). Characterizing

this observable non-perturbatively is the primary focus of this work.

Our paper proceeds as follows. Section presents the problem statement and motivates
the asymptotic treatment of magnetism and rotation. Section [5.3] derives the differential
operator which governs the horizontal structure of magnetic gravito-inertial modes. In
Section we numerically calculate this operator’s eigenvalues, which enter directly
into an asymptotic formula for the period spacing. In Section [5.5] we solve the radial
oscillation problem directly, including both magnetism and rotation while partially relaxing
the asymptotic assumption. Section[5.6|presents the results of such calculations for models
of red giants, v Doradus (y Dor), and SPB pulsators. Finally, Section concludes. The
reader seeking our observational predictions is guided to Equations [5.33] and [5.40) (for the

asymptotic period spacing) and the discussion in Section[5.6]

5.2 Problem statement
The effect of magnetism on the asteroseismic period spacing has been previously explored by

various authors. So far, this work has typically either restricted its attention to toroidal fields
(B, = By =0; Rogers and MacGregor, [2010; Mathis and De Brye, 2011; MacGregor and
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Rogers, 2011; Dhouib, Mathis, et al., 2022), treated magnetism perturbatively (B < Bit;
Cantiello et al., [2016; Prat, Mathis, Buysschaert, et al., [2019; Prat, Mathis, Neiner, et al.,
2020a; Prat, Mathis, Neiner, et al., 2020b; Mathis, Bugnet, et al., 2021; Bugnet et al., 2021}
Bugnet, 2022; G. Li, Deheuvels, Ballot, and Lignieres, |2022), or worked in the ray-tracing
limit (k,, k;>1/r; Loi and Papaloizou, [2018; Loi, 2020c; Loi, 2020b). However, in realistic
situations, gravity waves couple most strongly to the radial component of the field B, (see
Section[5.2.1)), which may be very strong (B~B,i; Fuller, Cantiello, et al.,2015). Moreover,

due to geometric cancellation, observable modes are typically of low degree (k; ~1/r).

The central goal of this work is to calculate the period spacing pattern in the simultaneous
presence of rotation and an axisymmetric radial magnetic field in a non-perturbative way.
The work proceeds under the “traditional approximation of rotation and magnetism” defined
in Section (which restricts attention purely to the radial field).

5.2.1 The traditional approximation of rotation and magnetism (TARM)

Pure, low-frequency gravity waves follow the dispersion relation

k
w= ifzv (5.5)

when N > w. Therefore, their wavenumbers are primarily radial, with their radial wavenum-

bers exceeding their horizontal wavenumbers by ratios

— o~ —, 5.6
o o (5.6)
In the presence of restoring forces other than buoyancy or pressure (e.g., Coriolis forces,
magnetic tension), the dispersion relation will be modified from Equation [5.5 However,
for modes which still have g mode character (i.e., buoyancy is still a significant restorative
force), k, /ky, will still be comparable to N/w > 1. Throughout, we restrict our attention to

modes whose wavenumbers are primarily radial: this is a crucial assumption of our work.

This approximation underlies the standard analytic treatment of gravity waves in rotating
stars. The qualitative behavior of low-frequency gravito-inertial waves can be seen in the

dispersion relation in the fully Jeffreys—Wentzel-Kramers—Brillouin (JWKB) limit:

k2 -
w? - k—ZNZ —(k-Q)? =0, (5.7)

see, e.g., Bildsten, Ushomirsky, et al. (1996) and Lee and Saio (1997). Because low-

frequency g modes have primarily radial wavenumbers, k ~ k, ~ (N /w)kj, > kj, the radial
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part of the rotation vector Q dominates in Equation It is thus both convenient and
accurate for many purposes to assume Q ~ Qcosé 7, i.e., to neglect the horizontal part
of Q. Given its usefulness, this assumption is appropriately known as the “traditional

approximation of rotation” (TAR).

We emphasize that the TAR is only valid when k,>k;,. Itis therefore applicable when w<N
and 2Q<N, with the interpretation that stratification is the dominant restorative force in the
radial direction (such that the Coriolis force is only important in the horizontal directions).
The utility of this approximation is that it allows the (buoyancy-driven) vertical dynamics
to be decoupled from the (Coriolis-driven) horizontal dynamics. Because of this useful
feature, the TAR has also found extensive use in geophysics (e.g., Eckart, |1960; Longuet-
Higgins, |1968)). However, if either of the hypotheses of the TAR above are not satisfied,
the traditional approximation should be abandoned (Dintrans, Rieutord, and Valdettaro,
1999; Dintrans and Rieutord, 2000; Gerkema and Shrira, 2005; Ballot et al., 2010; Mathis,
Neiner, et al., 2014).

When assumed, the TAR implies that the pressure perturbation varies in the horizontal

directions according to the Laplace tidal equation:

, d (1-p> dp m?
0= 1p(u) + p dp’ (W)
du \1

) e
_mq (1+ qzﬂz) (1) 69
(1- quz)z P (H).

In the non-rotating limit (¢ — 0), the Laplace tidal equation approaches the usual generalized
Legendre equation, for which A =¢(¢ + 1) and the eigenfunctions are associated Legendre
polynomials. Here, u = cos @ is the colatitude and ¢ = 2Q/w is the spin parameter. When
computing mode frequencies the TAR, the effect of rotation is thus simply to replace £(£+1)
with A.

To handle the effect of a strong dipole magnetic field, Rui and Fuller (2023) borrow intuition
from the TAR. The full JWKB dispersion relation for magnetogravity waves is

k2 .
w? - k—’;NZ —(k-¥4)2=0, (5.9)

where V4 = Eo [A/4mpg is the Alfvén velocity, e.g., Unno, Osaki, Ando, Saio, et al. (1989)
and Fuller, Cantiello, et al. (2015). Analogously with the rotational argument, we see

that the radial part of B dominates, and it suffices for a dipole magnetic field to assume



140
B ~ Bycos6 7. The pressure perturbation then follows

d ( 1—p? dp’(p)
1

0= p'(u) + — -
p(ﬂ)+d,u - b2u? du ) (1—p?) (1-b2u?

2

)p’(u), (5.10)

where b = k,v4,/w. The interpretation of this approximation is that the fluid is sufficiently
stratified that buoyancy is the only important restorative force in the radial direction (i.e., the
Lorentz force need only be included in the horizontal directions). As in the TAR, including
magnetism in a calculation of mode frequencies under this approximation simply involves

replacing £(¢ + 1) with a suitably computed A when solving the radial problem.

We note the similar forms of Equation[5.8](for rotation) and Equation [5.10](for magnetism).
However, unlike the singularities in Equation [5.8] (around which the eigenfunctions are
smooth), the singularities in Equation[5.10]are of significantly different character, and imply
sharp fluid features corresponding to resonances with Alfvén waves (Rui and Fuller, 2023).
For the frequency-shift analysis conducted in this work, this property of the singularities
in Equation [5.10| motivates restriction to solutions for which b < 1 (so that the Alfvén

resonances are not on the domain).

In this work, we generalize both the traditional approximation of rotation and its magnetic
analogue to incorporate both effects: in other words, we consider only the effects of the
radial components of both the rotation vector and magnetic field. Equivalently, we include
only the horizontal components of the Coriolis and Lorentz forces. Hereafter, we refer to this

joint approximation as the traditional approximation of rotation and magnetism (TARM).

5.2.2 Assumptions, conventions, and scope

In addition to assuming that k, > kj, we adopt the JWKB approximation in the radial
direction only, i.e., we assume that the equilibrium structure and field of the star vary on
length scales much larger than the radial wavelength (the “asymptotic” regime). Because
such length scales are typically ~ r, this assumption is usually justified, although it may
be violated in the presence of sharp compositional gradients which are known to produce
mode-trapping phenomena (e.g., Miglio, Montalbédn, Noels, et al., 2008 Pedersen et al.,
2018} Michielsen, Pedersen, et al., 2019). In Section [5.5] we solve for the full radial
dependence of the wavefunction without directly assuming that the radial wavenumber is
large. However, under the TARM, we perform this calculation using a precomputed grid of
horizontal eigenvalues A (see Section[5.4) which does make this assumption. Therefore, the
calculation described in Section|[5.3]is expected to partially, but not fully, capture non-JWKB

effects in the radial direction.
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We index branches by the angular degree £ and order m. In particular, a mode is said to have
some value of ¢ and m when the horizontal dependence becomes the spherical harmonic
Yr when both the field and rotation are smoothly taken to zero. We caution that, while
we may refer to some mode as having some degree ¢ in a rotating and/or magnetized star,
Y 1s not the correct horizontal dependence, and the eigenvalues are no longer £(¢ + 1).
For the angular order m, we adopt the sign convention used by Lee and Saio (1997) and
Rui and Fuller (2023)) that mg > 0 (mg < 0) corresponds to retrograde (prograde) modes.
Additionally, without loss of generality, we consider throughout the case where g > 0 and
b > 0(which appear in, e.g., Equations [5.8] and [5.10] respectively), i.e., positive (negative)
azimuthal order m corresponds to retrograde (prograde) modes. In this problem, the sign
of b is irrelevant, and the effect of a sign change in g can be fully compensated by changing

the sign convention of m.

In the presence of (solid-body) rotation, it is important to distinguish the mode frequency in
the inertial frame (which is observable) from the mode frequency in the frame co-rotating
with the star (in which the effect of rotation appears as a Coriolis force). Hereafter, we use
w (w) to denote the mode frequency in the inertial (co-rotating) frame. Hence, we calculate

the oscillation modes directly with respect to @, but convert to w for observational purposes.

We restrict our attention to a magnetic field whose radial part has a dipolar horizontal
dependence. However, our results are not sensitive to the radial dependence of the field (as
long as it is not very steep), or the geometry of the horizontal field components (as long
as they are not much larger than the radial component). While Section [5.3.2] makes no
additional assumptions about the field than those listed above, Section [5.5|requires a radial
magnetic field profile By, = By, (r). For this work, we adopt the Prendergast magnetic field
geometry (Prendergast, 1956). For our purposes, it suffices to specify the radial component

of the magnetic field:

By, = B.—— — — —=———]cosb, (5.11)

2R?> B (r* r ji(Ar/R)
2 A2\R2 R ji(A)

where jj (x) = sinx/x? — cos x/x is the first spherical Bessel function and R is the radius of
the star. Although Kaufman et al. (2022) have recently shown that the Prendergast geometry
is likely unstable over timescales relevant to stellar evolution, we adopt it simply as a closed-
form model for a large-scale, dipole-like field, and we expect our findings to be insensitive
to the exact radial dependence of the field. Following, e.g., Kaufman et al. (2022), we
take A = 5.76346 and B ~ 1.31765, corresponding to the normalized, lowest-energy field
solution with a vanishing surface field. Hereafter, B, should be understood to refer to the

radial component of the core magnetic field amplitude, although it is typically expected that
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the radial and horizontal components of the field are comparable. We expect all of the chief
results of this work to be robust to magnetic field geometry, as long as By /Bo, < N/w and
k, > dIn By, /dr.

We specialize to the case where magnetism is not strong enough to suppress the modes
(although we explore the mode frequencies right up to this limit). While the suppression
mechanism of magnetogravity waves is not fully understood, suppression may occur when
magnetogravity waves refract upwards at some critical w = wp to infinite wavenumber
(Lecoanet, Vasil, et al., 2017; Lecoanet, Bowman, et al., 2022; Rui and Fuller, 2023)) or
are damped out by phase-mixing processes once resonant with Alfvén waves (b > 1) in
a manner similar to that described by Loi and Papaloizou (2017). Therefore, we restrict
the scope of our calculations to the case where b =k,v4,/w <1 and w < wp. Under these

circumstances, the effects of magnetism on g modes should be well-modeled by our method.

For demonstrative purposes, we restrict most of our attention in this work to the dipole (£=1)
and quadrupole (¢ =2) modes, although our calculations do not assume this, and it is not
more complicated to extend this analysis to higher £. Low-degree g modes suffer the least
from geometric cancellation and are thus the easiest g modes to observe (there are no radial
g modes). For simplicity, we assume modes are adiabatic, and neglect perturbations to the
gravitational potential (i.e., we adopt the Cowling approximation). The general result that
the perturbative theory underestimates the impact of magnetism on the period spacings for
the dipole modes (Section[5.6) is also expected to hold for the quadrupole modes, although
the asymmetry in the frequency shifts of different multiplets is known to behave differently
(cf. Section[5.6.1]of Bugnet et al., 2021).

5.3 Analytic formulation

In this Section, we derive an expression for the horizontal equation obeyed by low-frequency
g modes under the simultaneous influence of uniform (or weak differential) rotation and a
dipolar magnetic field (Section [5.3.1). Under the TARM, the eigenvalues associated with

these normal modes can be easily translated to an asymptotic expression for the period
spacing (Section [5.3.2).

5.3.1 Fluid equations for gravity modes
In the presence of gravity, magnetic tension and pressure, and Coriolis forces, the linearized
momentum equation is

POOJE +2poQ X B

I P S B (5.12)
- _V|p+—By B —pgf+—(Bo-V)B
4r 4r
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where 5 is the fluid displacement, subscript 0 and primes denote equilibrium and perturbed

quantities respectively, g is the gravitational acceleration, and

B = (EO - V) £ (5.13)

is the magnetic field perturbation. Equations [5.12]ignore the centrifugal force, and apply a
Cowling approximation to neglect perturbations in g. Under the TARM, 0, — —ik, when
acting on a perturbation, and the magnetic tension term in Equation [5.12] thus becomes

1 . k?BS

— (B -V)B':—
47r(0 ar

5 = pokzvir cos’ 95 (5.14)

where |v 4, cos 6| is the radial component of the Alfvén velocity, with the angular dependence

explicitly factored out.

In spherical coordinates and applying the traditional approximation, the momentum equation

becomes
—p0@°é, = ik,p’ = p'g = pok; v, cos® 04, (5.152)
—po@*Ep — 2ipe@Qcos O &y = —%i—’;’ — pok2v?, cos? 0& (5.15b)
—poa')2§¢ + 2ipowcos O &y = — . ;in gp' - pokfvir cos” 0&, (5.15¢)

where we have assumed harmonic time dependence, 0; — i, and used axisymmetry to take
0y — im. Magnetic tension dominates over magnetic pressure in the asymptotic regime,
and so the latter is ignored in Equations

For adiabatic oscillations, the pressure and density p and p are related by

Dinp  Dlnp
Dr Y D’

(5.16)

where D/Dt = 0/t +1i -V denotes the advective derivative. Equation can be linearized

to
o’ =poN?&/g+p'/ch (5.17)

where ¢y = \/ypo/po is the sound speed. For gravity waves, the first term dominates, so
that

p' = poN*ér[g. (5.18)
Finally, the fluid perturbation must satisfy the equation of continuity, so that

V-E=0, (5.19)
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where we have applied the Boussinesq approximation (Proctor and N. Weiss, |1982).

Now, the horizontal momentum equations give a linear system of equations for £y and &4 in
terms of p’:
1 dp’
pow?r a6
im

(1 - b%cos? )& +igcosb Ep = (5.20a)

—iqcos 6 &+ (1 — b cos? 0)éy = ’ (5.20b)

po@?r sin o
where b=k, v 4, /@ (Rui and Fuller, 2023) and again ¢ =2/ (Lee and Saio, |1997) are the
dimensionless parameters governing the effects of magnetism and rotation on the horizontal
eigenfunctions. Equations[5.20|can be solved to obtain
V1—pu? (mq;t 22 dp’)
= "—(1-b — 5.21a
o po@?r [(1 = b2u2)? - ¢?u?| -2’ ( a )du 21

i1 — u? m dp’
&= ——= — ((1—[92#2)—2]) —qp p) (5.21b)
po@?r [(1 - b2u?)? - g2 1-u dp

where u = cos 6. Likewise, the radial component of the momentum equation (Equation
[5.154) can be solved to yield

ik
o (5.22)

é:r = posz .

Substituting Equations [5.17} [5.21] and [5.22] into the continuity equation (Equation [5.19),

we obtain

Ly =0, (5.23)

where the differential operator £ is given by

m d [((1—p)(1-b22) df (u)
L ’b’q[f(:u)] = a ((1 _ b2’u2)2 — q2/12 d,u )

m? 1 — b%u?
T2 (-2 - qzluzf('“) (5.24)
4p212 (1 — b2 12 2,2
g b (1 - b°p) +2q°" 1 .
[(1 - b2u?)? - qzﬂz]z (1 -02u?)? - g2u?

The operator £™?4 further reduces to the standard Laplace tidal operator (e.g., Lee and
Saio,[1997) when b = 0 (no magnetism), and to the magnetic operator discussed by Rui and
Fuller (2023) when ¢ = 0 (no rotation). Hereafter, we define the “eigenvalues” A of £+

as constants admitting solutions f(u) to

LPf ()] +Af (p) =0, (5.25)
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i.e., the eigenvalues of £ in the “standard” sign convention are —A.

When b =g =0 (i.e., no magnetism or rotation), £"™?4[ f(u)] reduces further still to the

standard Laplacian operator on a sphere, where solutions to the associated boundary value

problem are the spherical harmonics, indexed by integers £, m with eigenvalues £(¢ + 1).
Equation [5.23| becomes

A/r? k;

@ = /—;NZ = hN?, (5.26)

k; kz

where k, = VA/r is an effective horizontal wavenumber, which incorporates the effects of

rotation and magnetism. By analogy with the spherically symmetric case, we may define

6, =~A+1/4-1)2, (5.27)

such that A = £, (£, + 1). In the TARM, oscillation modes are calculated by replacing ¢ with

an effective degree

¢, throughout the entire star, in the same manner as is done in the standard TAR.

5.3.2 Asymptotic period spacing

In the absence of rotation and magnetism, gravity modes obey the dispersion relation
W = +*kyN/k, o« kr‘l. In the asymptotic regime (where k,r — o0), this implies that
adjacent g modes (with relative radial orders on, = 1, and k, ~ n,/r) are spaced uniformly
in the mode period P. In this Section, we derive an expression for the asymptotic period
spacing 0P, for g modes. We note that further departures from the asymptotic formula are
expected when the stellar structure varies over a comparable radial scale to the wavefunction,

or when there is mode mixing.

Before proceeding, we review a fundamental difference between the inclusion of uniform
rotation and magnetism. For rotation, the fluid equations are solved by eigenfunctions
whose shapes are solely parameterized by the spin parameter g = 2Q/@, which can be
calculated using stellar model parameters and the mode frequency, i.e., without knowledge
of k,. Observed spin parameters for intermediate-mass g-mode pulsations range from
q =~ 0.1 to g =~ 30 (Aerts, Van Reeth, et al.,[2017). However, for magnetism, the parameter
which controls the shapes of the eigenfunctions, b = k,v4,/®, does depend on k, (which
varies mode-to-mode and with r in a complicated way). Fortunately, Equation can
also be rewritten

A=0b%/d?, (5.28)

where the parameter a (described by Rui and Fuller, 2023) is given by
N VAr

(5.29)

ra?
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This parameter is the squared ratio of the magnetogravity frequency wp (Equation [5.1)) to
the mode frequency (a ~ w% /@&?) and, conveniently, can be computed in terms of the stellar
model and @ alone. By computing the horizontal eigenfunctions A as a function of b and

then inverting Equation[5.28] A can be found as a function of a.

To compute the period spacing in the co-rotating frame, we first observe that the radial

phase ¢, across the gravity mode cavity is
P N
0o = m(ng +€) = / kydr = 2—/ Va—dr, (5.30)
Vs r

where we have used Equation [5.26] and the integral is over the region of the star where
w <N and w < kjcg. In Equation ng is the radial order, and ¢, is a (here unimportant)
phase offset. Adjacent modes (with 6ng = 1) will thus have

§P N P [ 6AN
ﬂéng:ﬂ:—g/\ﬁ—dr+ﬂ— L, (5.31)
2n r 4 Var

where we have neglected the frequency dependence of the bounds of the buoyancy integral.

Because g x @ ! o« Pand a o« @72 < P2,

di__- Adlna_- A(10lnd JlnAa\ _-
ol =—0P, = = — 0P, == |- + oP,. 5.32
dP~ ¢ PdmpP ¢ p(zalnq alna) ¢ (5-32)
Combining Equations and and solving for 6P, gives
_ 192 dlma\N ™'
6P, = 2n* A1+ + —dr| . 5.33
g =1 (/\/_( 20Ing Glna) r r) (533)

This approaches the well-known, zero-field, zero-rotation asymptotic formula in the relevant
limit (Equation [5.4)), as well as Equation 4 of Bouabid et al. (2013) which was derived for

the purely rotational case.

Equation requires the calculation of (d1n4/d1ngq), and (dIn4/d1na),, where sub-
scripts denote fixed variables with respect to the partial derivative. In Section[5.4.1] we com-
pute A and its derivatives on a discrete, rectangular grid of b and g. While (dIn1/d1na),
is easy to calculate numerically via a finite difference formula (since fixing ¢ is straight-

forward), computing (d1n1/d1ngq), is slightly trickier because it is harder to fix a. Via

Equation [5.28] we see that

o1 2b (0b

(—) :—2(—) . (5.34)
dq), a*\dq),
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Using the identity that

ob da 0
1= (aa), (3, (52, 539
we obtain o _ -
a a
(52), =% 5, 5, 0
so that e " -
n a a
[5mg), =5 (52), 30), @3

We use Equation [5.37]in our numerical calculation of 6 P,.

In the inertial frame, the observed frequencies w are related to & under our sign convention
by
w=o0—mL, (5.38)

so that the periods P and P in the inertial and co-rotating frames are related by

P

P=——m——, (5.39)
1- mP/PrOt

where P is the rotation period. The (asymptotic) period spacing measured by an observer
is thus given by _
B 0P,

(1 - mP_/Prot)z'

0P, (5.40)
Thus, the inclusion of either rotation or magnetism will also leave distinct imprints on 6P,
as a function of mode period: understanding these signatures is crucial for extracting these

properties from 6 P,.

5.4 Numerical solutions of the horizontal problem

In preceding sections, we have introduced an analytic formulation of the magnetorotational
pulsation problem. However, applying the TARM to concrete predictions of oscillation
spectra requires robust numerical solutions for the horizontal eigenvalues 4. We describe

our numerical procedure for this calculation in this Section.

5.4.1 Numerical collocation scheme
Rui and Fuller (2023) calculate numerical solutions to the horizontal problem (Equation
in the nonrotating case (¢ =0) by introducing a small artificial dissipation and using a

relaxation scheme. While this method satisfactorily treats numerical pathologies associated
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with a singularity at critical latitudes p. = +1/b for large fields, it is computationally
inefficient. Relatedly, because the coefficients of Equation [5.24] vary quickly across p.,
unreasonably large dissipation coefficients must be assumed to avoid needing prohibitively

high resolution near those latitudes.

The more general form of Equation[5.25|that we consider here is still of the Boyd type (e.g.,
Boyd, [1981), but now has solutions, and singular points, indexed by two parameters, b and
g. In particular, Equation [5.25| produces four additional singular points, obeying

5 2b% + g% £ 4b%g* + ¢*

K= 25

(5.41)

two of which may lie within the solution domain even for fields too weak to resonate with

a given oscillation mode (i.e., b < 1).

We therefore seek an alternative solution strategy that is robust to the presence of such
regular singular points. For ¢ < 1 — b2, no singularities lie on the domain, and it suffices
to perform standard Chebyshev collocation on the real line (e.g., H. Wang et al., [2016).
However, the collocation procedure must be modified somewhat to work for ¢ > 1 —b%. We
note that since the Sturm—Liouville linear operator in Equation [5.24]is analytic, it may be
treated as defining an ordinary differential equation on the complex plane. Solutions to the
standard Sturm—Liouville problem on the real line coincide with those of this analytically
continued problem, restricted to the real line. Thus, we may construct numerical solutions
to the analytically continued problem on a contour on the complex plane, chosen to match
the boundary conditions of the real problem on the interval € [—1, +1]. Eigenvalues of the
analytically continued problem will not depend on this choice of contour. Thus, the contour
may be chosen to avoid the singular points that we have described above, and therefore to
improve the numerical conditioning (e.g. stiffness) of the problem. We refer the reader
to, e.g., Boyd (1985) for a more detailed examination of this procedure, and nature of the

resulting solutions.

We find the standard collocation procedure to be sufficient for m =0 and m = 2 for any
values of g € [0,2] and b € [0,1). However, solutions for the m = +1 modes under this
procedure are numerically badly behaved for ¢ > 1 — b%. In these cases, we perform a

complex coordinate transformation from u to £ given by
2 2\
p=¢(2-2)+2(1-8) 4, (5.42)

and then solve the resulting problem using Chebyshev collocation on the interval £ € [—1, 1].
This contour is chosen to share endpoints with the original real interval, while being tangent

with the real line from the |u| > 1 (rather than |u| < 1) direction.
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The eigenvalue A depends on the relationship between the mode frequency @, rotational
frequency Q (via g =2€Q /@), and magnetogravity frequency wp (viaa= a)é /@?%). Therefore,
once A is computed for a given pair of b and ¢, we retroactively compute a = b/VA),
and regard A as being a function of a and g. Because this procedure only produces
values of a below some critical acri; = derit(q) (corresponding to the maximum field which
permits propagating magnetogravity waves), we excise two families of solutions: the Alfvén
resonant ones for which b > 1 (which are expected to experience phase mixing, e.g., Loi
and Papaloizou, [2017), and those which lie on the “slow” branch described by Rui and
Fuller (2023) (which are expected to approach infinite wavenumber). Within this work, we
consider both such solutions to be “suppressed”: we do not otherwise make claims about

the degree of suppression or the mode frequencies of suppressed modes.

Figure shows values of A computed for all dipole (£ = 1) and quadrupole (¢ = 2)
modes. In particular, for the zonal (m =0) and retrograde (m > 0) modes calculated here,
the critical magnetic field needed to cause mode suppression decreases with increasing
rotation rate. This is because, for these branches, A increases relatively strongly with ¢
(for b = 0, 1 « qz; Bildsten, Ushomirsky, et al., 1996; Townsend, 2003 Townsend,
2020). Therefore, acrit = berit/ VA decreases with q. However, since larger rotation rates
cause the prograde Kelvin modes (which have m = —{) to attain larger horizontal scales
(4 decreases to a smaller constant value with ¢, when b = 0), the critical field increases
with increasing rotation rate. For the (£, m) = (2, —1) case, the dependence of A on ¢ and
b is slightly more complicated, hence the non-monotonic behavior of the corresponding
critical field with rotation rate. In any case, a straightforward prediction of this formalism
is thus that different branches of modes should undergo suppression at different mode
frequencies. Observational measurements of these critical periods may therefore impose

strong constraints on the magnetic and rotational properties of the star.

5.5 Numerical solutions of the radial problem

5.5.1 Non-asymptotic numerical scheme

In the asymptotic regime, the perturbations vary with radius as ~ e'#¢, where ¢, is given
by Equation [5.30] (using the appropriate bounds). In other words, in this regime, the

wavefunctions in the g-mode cavity are expected to be sinusoidal with respect to a modified

T
e

which we define over the entire main radiative cavity (with respective inner and outer

buoyancy radius II given by

M(r) = (5.43)
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boundaries r; and ). This quantity is normalized such that IT ranges from O to 1.

However, the asymptotic assumption is violated in the proximity of sharp features in N
(i.e., buoyancy glitches) when their characteristic widths are < k-!. In such cases, the
period spacing is expected to be modified from the asymptotic estimate in Equation [5.33]
Sharp peaks in N are known to develop at the lower boundaries of the radiative envelopes
of evolved MS stars (in which they cause periodic “dips” in the 6 P, pattern with P; Miglio,
Montalbén, Noels, et al.,|[2008; Pedersen et al.,|2018), and similar buoyancy glitches have
recently been observed asteroseismically in red giants (M. Cunha, Stello, et al., 2015;
Vrard, M. Cunha, et al., [2022b), although their structure is very sensitive to the details of
convective boundary mixing (e.g., Michielsen, Aerts, et al., 2021} Lindsay et al., [2023).
The asymptotic assumption is also strongly violated for g modes with low radial order,

which may be observable in subgiants or some pulsators on the MS.

To model some of the non-asymptotic effects, we use a shooting method to solve the stellar
pulsation equations under the assumption of adiabaticity, cast in the dimensionless form of
Dziembowski (1971)). This form of the pulsation equations is also employed by commonly
used mode-solving codes such as GYRE (Townsend and Teitler, |2013). Rotation and
magnetism are implemented only by replacing the angular degree £ in the equations with
an effective degree ¢,, defined in Equation Thus, we account only for the dynamical
effects of rotation and magnetism, and neglect their indirect effects on stellar structure
itself. Additionally, we emphasize that this “1.5D” approach still includes both rotation and
magnetism asymptotically (similarly to the treatment of rotation in GYRE), and thus relies
on the rotation and magnetic field profiles varying slowly in r compared to the wavefunctions
themselves. In other words, while this procedure captures phenomena like wave-trapping
due to peaks in N, it does not accurately model the effects of sharp radial gradients in the

magnetic field or rotation profiles, or coupling to, e.g., inertial modes.

In what follows, M and R denote the total mass and radius of the star, and m denotes the

mass interior to radius r. We solve the radial problem for

v = xz_fi% (5.44a)
yy = x> —pfgr (5.44b)

where x = r/R, and ¢; = {,(ry) is evaluated at the inner boundary. In buoyancy coordinates,

the perturbed time-independent oscillation equations then become

g .
Mm-—==A 4
S(I) o = A (5:45)
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where
S(I) = —— (5.46)
xfr2 N gy’ '
r r
y=(y1,y2), 0 =0VR}/GM,
Viy-1-4¢, A 2
A= far™ ), (5.47)
cio”—A" 3-U+A"-¢
and
V = porg/po (5.482)
c1=x>M/m (5.48b)
A*=N’r/g (5.48¢)
U=4nrip/m. (5.48d)

Equations [5.45| reflect the y-mode localization scheme of Ong and Basu (2020) as well as
the Cowling approximation (neglecting perturbations to the gravitational potential). These
approximations are made to restrict our attention to the effect of magnetism and rotation
on pure g modes, and to avoid boundary condition-related numerical artifacts (see Section
2.2 of Ong and Basu, 2020). Because the Cowling approximation is well-justified at high
radial orders (where the TARM is valid), this approach should capture all of the robust
predictions of our formalism. For the red giant model (Section [5.5.2)), the resulting modes
should be compared to the output of the stretching procedure typically used to extract 6 P,

from solar-like oscillators (Mosser, Vrard, et al., 2015).

For our numerical shooting, we first integrate Equation[5.45|outwards from the stellar centre
as an initial value problem to produce inner basis solutions which are consistent with the
boundary conditions imposed there. In this work, we impose the boundary condition y; = 0
(x» = 0) on both boundaries. The solution vector evaluated at any intermediate point (here
taken to be IT =1/2) should thus be equivalent (up to linear dependence) when obtained
by integrating from either boundary (starting from y = (0, 1)). These two solution vectors
(obtained using a Radau integration scheme; Wanner and Hairer, 1996) can then be formed

into a 2 X 2 matrix whose determinant 9 (&) must vanish at a normal mode @ = &*.

The adiabatic prescription of Equation[5.45|produces strictly real eigenvalues. To search for
modes, we evaluate D (@) over some frequency grid. Between frequency grid points where
D changes sign, we use a bisection algorithm to locate the roots of 9. These oscillation
modes @ are then converted to their values w in the inertial frame via Equation [5.39] (when

there is rotation).
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5.5.2 Stellar models

We find the oscillation modes of stellar models produced using version r22.11.1 of the
Modules for Stellar Experiments (MESA) code (Paxton, Bildsten, et al., 2010; Paxton,
Cantiello, et al., 2013, Paxton, Marchant, et al., 2015, Paxton, Schwab, et al., 2018 Paxton,
Smolec, et al., 2019). We incorporate realistic convective overshoot using exponential
overmixing with scale height fo H, = 0.015H, (where H, is the local pressure scale
height), with the overshooting region starting a distance 0.005H,, inside the convective

zone.

The stellar profiles as well as the rotation periods and magnetic fields we assume for them
are summarized in Table In particular, we choose three snapshots from a 1.5M
model to assess the behavior of the period spacing on the early-MS (MS-1.5-young),
late-MS (MS-1.5-evolved), and lower RG (RG-1.5), and two snapshots from a 6.0M
star on the early-MS (MS-6.0-young) and late-MS (MS-6.0-evolved). These models are
chosen to be representative of y Dor (MS-1.5-young, MS-1.5-evolved), slowly pulsating B-
type (SPB; MS-6.0-young, MS-6.0-evolved), and red giant solar-like (RG-1.5) oscillators.
We solve for the dipole (¢ = 1) oscillation modes over a realistic range of frequencies.
For RG-1.5, we compute these frequencies with both rotation and magnetism, as well
as in the absence of either, in order to benchmark the prediction of perturbation theory
(Equation[5.6.1). For the main-sequence models, the mode frequencies are computed three
times, including the effects of magnetism and rotation both separately and simultaneously
(Equation[5.6.2). The magnetic field is chosen to be strong enough to exhibit the effects of
strong magnetic modification and suppression of some branch of oscillation modes. The
mode period/frequency ranges shown in Table [5.1] are given in the inertial frame. When
relevant, we solve only for co-rotating frequencies @w > 0 to avoid the pile-up of g modes

close to @ = 0.

Our models do not take into account distortions of the stellar structure due to centrifugal
forces and magnetic pressure. While these effects are unlikely to matter in most observed
v Dor and SPB stars (Henneco, Van Reeth, et al., 2021), they are likely to be important in
rapidly rotating p-mode pulsators (such as ¢ Sct stars, e.g., Lignieres et al., 20006).

5.6 Results and discussion
5.6.1 Strong fields in red giant cores

Strong magnetic fields in red giant cores have two main asteroseismic manifestations. First,
they may produce frequency shifts on the nonradial modes which tend to shift modes of

all m in the same direction (as opposed to rotation, which creates a frequency multiplet).
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Measurements of such frequency shifts have recently been used to make inferences about
the field strength and, in one case, even geometry (G. Li, Deheuvels, Ballot, and Lignieres,
2022; G. Li, Deheuvels, T. Li, et al.,[2023). Second, if the magnetic field is extraordinarily
strong, the magnetic field is expected to suppress the amplitudes of dipole modes whose
frequencies lie below some w¢it ~ wp (Fuller, Cantiello, et al.,[2015; Lecoanet, Vasil, et al.,
2017; Rui and Fuller, 2023).

Our red giant model (RG-1.5; described in Section [5.5.2) is chosen to mimic a star on
the lower red giant branch (for which mixed modes are easiest to observe) with a typical
rotation rate (Pyo;=30d). For a frequency of maximum power vy, ~ 300 uHz, we calculate
all dipole modes within the frequency range vmax/2 and 3vpax/2 in the simultaneous
presence of magnetism and rotation, using the scheme described in Section [5.5.1] The
width of the adopted frequency range is comparable to the full width at half maximum
value dveny ~ 100 uHz =~ vyax /3 calculated using the scaling relation of Mosser, Elsworth,
et al. (2012). The large central magnetic field B, ~ 820kG is chosen such that the m = +1
sectoral modes are suppressed at the lower frequency range, to show the effect of a strong
field. Note that B, refers to the maximum value of the radial component of the field at the

center of the star, rather than some horizontally averaged version of this quantity. Therefore,

this value of B, corresponds to a horizontally averaged field B_%l/zz B./\3~470kG when
normalized in the same way as the values reported by G. Li, Deheuvels, Ballot, and Lignieres
(2022) (30-100kG), Deheuvels, G. Li, et al. (2023) (40-610kG), and G. Li, Deheuvels,
T. Li, et al. (2023) (20-150kG). The middle panels of Figure|5.2|show mock period echelle

diagrams corresponding to these calculations.

We additionally calculate the mode frequencies for the same stellar model in the absence
of either rotation and magnetism, in order to test the perturbative formalism. At high
frequencies (where both rotation and magnetism are perturbative), the mode frequencies are
closely consistent with the perturbative frequency shifts derived by G. Li, Deheuvels, Ballot,
and Lignieres (2022) (the unfilled symbols in the middle panels of Figure [5.2). However,
at low frequencies close to suppression (v < 220 uHz), the TARM and perturbative results
deviate substantially, with the TARM results tending to predict much larger frequency
shifts than the perturbative formulae. This effect becomes increasingly dramatic until,
at v & 170 uHz, the sectoral modes are totally suppressed (although the zonal m = 0
mode remains propagating, and is suppressed at a frequency below the chosen observed
frequency range). Disagreement between the perturbative and TARM frequency shifts is
fully expected: at or near suppression, the effects of magnetism are, by definition, highly

non-perturbative.
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To formally demonstrate consistency with the perturbative formulae at high mode frequen-
cies, we can expand the operator in Equation [5.24]in » and ¢ and perform a perturbation
analysis. Corrections to the subsequent analysis enter at O(q>, ga®, a*) ~ O(Q3, Qw‘}g, w%).

We obtain the following eigenvalue equation:

0=ap" (1) + LI ()] + Lo 1’ ()] (5.49)

where
bap ,
Loe 1P ()] = —mqp’ (n)

’ 2,2 (5.50)
+(b2+q2)[ (u (1- )fii) - “Zp'(m].
du m) 1-p

To find the effect of Lg;ﬁ ! on the eigenvalues, we perform first-order perturbation theory.

If the dipole eigenvalues are given by

A=C(C+1) + M09 =2 4 Jmba, (5.51)

where

+1
0= "0+ / 1 P () Ly 13 ()] du (5.52)

and p’d(u) are the unperturbed eigenfunctions (of Ly). We emphasize that this is a
perturbative expansion on the space of latitudinal functions all of the same m (for the
generalized Legendre operators), and not on the full space of spherical harmonics (as done
by G. Li, Deheuvels, Ballot, and Lignieres, |2022). Degenerate perturbation theory is thus
not necessary here, since the eigenvalues of the generalized Legendre operator for a given
m do not repeat. Furthermore, while in principle corrections may enter in an expression at
second-order in perturbation theory, the only relevant term occ—mgq in .ngrt Y shifts all of the

eigenvalues of a given m equally, and thus does not induce a second-order perturbation in
A.

The unperturbed pressure perturbations are the associated Legendre polynomials,

3 =0
P () = ‘ﬁﬂ " (5.53)
\/gvl -y m==l1

where we have normalized the functions to square-integrate to unity and ignored the overall
(Condon-Shortley) phase. The integral in Equation[5.52]can therefore be evaluated to give
2+2(b% +4°) m=0

A= (5.54)
2+q+2(b*+q?) m==l
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so that

Vi V2+ (b7 + ¢P) m=0 555,
V2 + 2—ﬁq+ 80\/_(32b2+27q2) m=+1

To transform the independent variable b to a (which can directly be specified given a field
and stellar profile), we note that

b=aVl~a\2 (5.56)
up to the relevant order. Then
V2 + —(2a +42) m=0
Va = (5.57)
V2 + -1 54 80\/_(6461 +274%) m=+1

The mode frequencies in the co-rotating frame are given by

1
o=— \/_ dr (5.58)
Pg

in the asymptotic regime, where ¢, = n(n, + £;) (Tassoul, [1980) is the total radial phase
(note that A depends implicitly on @ in a complicated way). We again proceed in ignoring
the frequency dependence of the bounds of the integral in Equation (which should

formally only enclose the part of the main radiative cavity where w < N).
We define the “buoyant average’:
JrC)Edr

e
Assuming that @ < @ (sufficient for the desired order of the expansion), we may expand
Equation [5.58]as

()= (5.59)

Wl 2 2wple 2R 60
56 = ( B§g+ <_>g 5 ( B3>g+ <_>g __a) (5.60)
5wy Swo 5wy 3@ | do
for m=0, and
), 2w? 2
5@ = L (Whs » 2
2 5a7 4000
\ , i (5.61)
@ 8w 2700\ 50
-4 5@(3) 400 | wo
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for m==+1. Equations[5.60|and [5.61] can be solved to yield the following frequency shifts:

1 <w%>g 4 %<92>g

S@Dm— = = 5.62
_ Q) 2(wh), 27(Q%), — 10(Q)2
Sbp=s1 = £ $ 4 S @% £ joao g (5.62b)

We keep one higher order of the rotation rate than do G. Li, Deheuvels, Ballot, and
Lignieres (2022). We distinguish between (Qz)g and (Q); in the above to allow for the
possibility of weak differential rotation (e.g., Beck et al., 2012)), which may distinguish
between the two. However, in the case of uniform rotation (assumed throughout this work),

(Q%), = (Q)7 = Q. In the inertial frame, these frequency shifts become

1 <U)Alt;>g 4 %<92>g

SWmep = — 5.63a
0=73 wg 5 w0 ( )

Q 2 {w? 27(Q2), — 10(Q)?
@il = ¢< ) +—< B + (20 s (5.63b)

2 5 wg 40wq

where W = wy for the unperturbed modes. We have full consistency with the perturbation
formulae of G. Li, Deheuvels, Ballot, and Lignieres (2022)) (their Equations 61 and 62, with
{ =1). Note that the star-averaged quantity which they define to be wp (= wp122) is equal

to wp L2 = (w‘l‘g)g/%')g.

We caution that both the direct role of the centrifugal force as a restorative force and its
indirect impact on the stellar structure (e.g., Ballot et al., 2010) also enter at o Q2. Inclusion

of these effects is likely necessary to accurately capture the second-order effects of rotation.

Our non-perturbative mode calculations imply a few straightforward predictions. First, as
mentioned previously, the magnetic frequency shifts become substantially stronger than
implied by a perturbative estimate. While the relative change in the period spacing is still
small (6 P, decreases by ~ 10% before suppression), the frequency shifts still substantially
modify the period echelle diagram. Conversely, if the period spacing pattern of a strongly
magnetic red giant is fit using the perturbative formulae, the inferred magnetic field is
likely to be a significant overestimate. For example, Deheuvels, G. Li, et al. (2023)) claim
the detection of a red giant (KIC 6975038) whose magnetic field (= 286 kG) significantly
exceeds the critical field B by a factor ~ 1.7. Under our formalism, a field near or

exceeding B should efficiently damp magnetogravity waves, either through phase mixing
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or refraction to infinite wavenumbers. Indeed, Deheuvels, G. Li, et al. (2023) observe nearly
total dipole suppression in the same star for only low-frequency modes < vpax, consistent
with wcrit lying on their observed frequency range. Their results could potentially be brought
into accord with ours if non-perturbative effects have caused an observational overestimate
of the field by a factor of a few.

To characterize the severity of such systematic overestimates, we compute the dipole fre-
quency shifts in the red giant model for a range of internal magnetic fields (by numerically
solving Equation [5.58). For each order m, we then calculate the internal magnetic field
which would be needed to produce the same frequency shift in perturbation theory. Figure
shows that the magnetic field (B%}l/ 2 implied by perturbation theory can exceed the
“true” value for fields which are almost strong enough to cause suppression. Specifically, we
use (B?) 172 to denote the field averaged over all angles and over the radial kernel (following
G. Li, Deheuvels, Ballot, and Lignieres, 2022):

1

(B%) = 3 / ’ K(r)B*dr. (5.64)

where K (r) is given by Equation in the asymptotic limit.

While the errors accrued by the perturbative formulae in Figure [5.3] are relatively small
and do not rise to a factor ~ 1.7, the degree to which perturbation theory overestimates
the field likely depends on the field geometry adopted and the exact structure of the star
(via, e.g., how far up the red giant branch the star is). Moreover, it likely depends on the
exact procedure used to extract the field. For example, Figure [5.3] shows magnetic field
values inferred using only one azimuthal order at one frequency, but an inference using
the whole oscillation spectrum may yield a different answer. In the future, the manner in
which perturbation theory misestimates the field should be characterized in more detail as
a function of these factors. Large relative errors in the inferred magnetic field may also

appear at low fields end if second-order rotational effects are mistaken for magnetic shifts
(top panel of Figure[5.3).

Second, G. Li, Deheuvels, Ballot, and Lignieres (2022)) and G. Li, Deheuvels, T. Li, et al.
(2023) measure the dipole asymmetry parameter, defined by

0Wm=t1 + OWy=_1 — 20W=0
= . 5.65
Gasym OWp=y1 + OWi=—1 + dWy=0 ( )

This should not be confused with the parameter a = w% /w? defined in this work and by Rui
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and Fuller (2023)). In the perturbative regime, they show that
/ 1 *dr K(r) [[ sin6d6 d¢ B2 P>(cos )
r . 2
[rl dr K(r) [[ sinodod¢ B2,

, (5.66)

Aasym =

where P> (u) = (3% — 1)/2 is the second-order Legendre polynomial and K (r) is a radial

kernel function given by
p~ (N/r)?
r1r2 p Y (N/r)3dr

K(r) = (5.67)

In particular, when the horizontal dependence of By, is given by ¢/ (6, ¢) (i.e., the horizontal
geometry is radius-independent), the radial integral in Equation [5.66| can be eliminated,
yielding

/f sin 6 dg de v (6, ¢)>P(cos 6)

asym — . 5.68
asy [ sin0.d0.de y (6, $)> (:08)

In the special case of a dipole magnetic field whose axis is aligned with the rotational axis

(¥ (0, ¢) = cos ), it can be seen that a,sym = 2/5 = 0.4 in this expression.

In the bottom panel of Figure[5.2] we see that this expectation holds at high frequencies, but
increases slightly to ~ 0.5 at lower frequencies (near w.j). While likely difficult to measure,
a value of a,sym that varies towards lower frequencies (coinciding with the inference of a
large magnetic field from the frequency shifts) may be an independent signature of a near-
critical field. This non-perturbative asymmetry effect is related to the different magnetic
fields implied by perturbation theory’s predictions for the frequency shifts of different
azimuthal orders (Figure[5.3).

In stars with especially weak magnetic fields, it is in principle possible for the dipole
asymmetry to be dominated by rotation, even if it is slow enough for perturbation theory to
be applicable. From Equation [5.63] and Equations [5.65] we have

B(wi)e/@f + 11{Q%), — 10(Q)7

_ 5.69
B T 0wk @2+ 35(Q) — 10(Q2)2 (569)

such that, for a uniform rotation rate €, (Qz)g = (Q)§ = Q?), Equation W possesses the

limiting behavior

-202
2 _ 9 W 4 -202
57 20 (wh), (wp)g > W< 570
Basym =1 | 36 Wi (5.70)

3+ 1550

4 -202
(Wp)e < W
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Figure 5.2: Top: The Brunt—Viisdld (N) and magnetogravity (wpg) frequencies for the
red giant model (RG-1.5), plotted in relation to the range over which we solve for mode
frequencies. The rotational frequency Q ~ 2.4 uHz (P, = 30 d) is below the bottom bound
of this plot. Center: Period echelle diagram for the red giant’s core g modes. The right
panel zooms into the low frequency modes of the left panel, and folds on a different period
for clarity. Solid symbols denote mode frequencies calculated using the TARM, whereas
hollow symbols denote the lowest-order prediction of perturbation theory. Bottom: The
dipole asymmetry parameter (Equation [5.65)) plotted against unperturbed mode frequency.
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Figure 5.3: For the red giant model (RG-1.5): Top: The relative error on the inferred
magnetic field (B2)!/? associated with perturbation theory. (B?)!/? refers to an angle-
and radial kernel-averaged field, following the notation of G. Li, Deheuvels, Ballot, and
Ligniéres (2022) (see Equation[5.64). Bottom: The internal magnetic field (B2)'/? implied
by perturbation theory using the frequency shift for some angular degree m, plotted against
the “real” value (given by our non-perturbative TARM formalism). The frequency shift is
evaluated using ¢, ~ mn, for a physically realistic radial order ng = 70 (viax = 150 uHz),
roughly the bottom of the frequency range shown in the period echelle diagram in Figure
5.2
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When the magnetic asymmetry dominates ((w‘pg / a')(z) > (Q); ~ Q?), Aasym ~2/5=0.40.
However, when the Coriolis-induced rotational asymmetry dominates (Q* > (wjf})g / a')(z)),
we instead have aasym ~ 1/25 = 0.04. We stress that this is a fully perturbative effect: it
only deviates from the result of G. Li, Deheuvels, Ballot, and Lignieres (2022) because it
includes a single higher-order effect of rotation. The upshot is that, even when both rotation
and magnetism are individually small, aasym # 2/5 for aligned rotational/magnetic axes if
the effect of rotation is relatively at least comparable to that of magnetism. We again caution
that the centrifugal force (which is also relevant at this order in ) has been neglected—
this likely implies that the rotation-dominated asymmetry does not exactly approach 1/25
but some other value. Inclusion of such effects (as done by, e.g., Mathis and Prat, 2019;
Dhouib, Prat, et al., [2021b; Dhouib, Prat, et al., 2021a)) is needed to properly predict the
true rotation-dominated asymmetry value. Nevertheless, we expect the qualitative ability

for rotation to dominate over magnetism in determining the dipole asymmetry to be robust.

G. Li, Deheuvels, Ballot, and Lignieres (2022) and G. Li, Deheuvels, T. Li, et al. (2023
neglect the rotational asymmetry effect on the basis that the core rotation rates in the
stars in their sample are typical (i.e., low): we hereafter check this explicitly. As a crude

estimate, the magnetic asymmetry dominates the rotational asymmetry in a red giant core
2

max

when (w‘é)g Jw?, Q% > 1. In the three stars investigated by G. Li, Deheuvels, Ballot,
and Lignieres (2022), (w})e/wha Q% 2 10% and their asymmetries are thus indeed very
magnetically dominated. Most of the stars reported by G. Li, Deheuvels, T. Li, et al.
(2023) have values of <a)‘}9)g / a)fnax in the tens or hundreds. However, this parameter reaches
a minimum for KIC 8540034, for which (w}),/w?%.Q* ~ 9. In this star, rotation may
affect the asymmetry parameter for low-frequency modes (note the frequency dependence
of (w‘é)g /w?Q?) In general, magnetic domination of the dipole asymmetry may not be the
case for giants with either fast core rotation rates or weak fields, and we caution against
using dsym alone to make an inference of the field geometry without checking this criterion

explicitly.

5.6.2 Strong fields threading the envelopes of main-sequence pulsators

Stars with masses > 1.3M have radiative envelopes and convective cores on the main
sequence. Therefore, such stars may pulsate in g modes which are directly detectable,
without needing to be disentangled from p modes as in solar-like oscillators. Such oscillators
are ubiquitous: as discussed previously, they include y Dor (AF-type) and SPB (B-type)
variables. The pulsations are driven by coherent mechanisms such as convective flux
blocking (in y Dors; Guzik, Kaye, Bradley, A. Cox, Neuforge-Verheecke, et al., 2002;
Dupret, Grigahcene, et al.,|2004)) and the x mechanism (in B-type pulsators; Gautschy and
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Figure 5.4: Characteristic frequency profiles and mode frequencies for a young y Dor
analogue (MS-1.5-young). Top: The Brunt—Viisild (N), rotational (€2), and magnetogravity
(wp) frequencies, plotted in relation to the range over which we solve for mode frequencies.
Bottom: The period spacing 6 P, versus period P in the inertial frame for the dipole modes,
in the magnetic, rotating, and magnetic and rotating cases. Predictions for the asymptotic
period spacing for the m =1 branch (using Equation [5.33) are shown in solid red. We also
show predictions for the asymptotic period spacing handling rotation non-perturbatively
but magnetism only perturbatively (using Equation [5.71} dashed blue curves).
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Figure 5.5: Same as Figure[5.4] but for an evolved y Dor analogue (MS-1.5-evolved).

Saio, [1993; Dziembowski, Moskalik, et al., [1993)). This is in contrast to the broadband,
stochastic driving present in solar-like oscillators (Samadi et al., 2015). Crucially, in these
pulsators, there is no guarantee that the measurable modes are complete over some observed
frequency range. The selection mechanism for mode excitation is poorly understood, and
the asteroseismic power spectra are often sparse. Observational studies of such pulsators
thus typically apply a forward-modeling approach based on the identified modes (e.g., Aerts,
Molenberghs, et al., 2018), which rely on good models for predicting observed oscillation

spectra.

In this Section, we primarily focus on the period spacing pattern 6P, = §P4(P) for modes
of a given m. This is a standard observable in the study of main-sequence pulsators. The

period spacing pattern is known to encode the rotation rate of the star (through an overall
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Figure 5.6: Same as Figure [5.4] but for a young SPB analogue (MS-6.0-young).

slope; Bouabid et al., 2013 Ouazzani, Salmon, et al., 2017), as well as the presence of

buoyancy glitches (e.g., Miglio, Montalbén, Noels, et al., 2008).

We first calculate the dipole oscillation modes for two y Dor-like models, one near the
zero-age main sequence (MS-1.5-young) and one near the terminal-age main sequence
(MS-1.5-evolved), shown respectively in Figures[5.4Jand[5.5] The chief difference between
these models is that the convective core in the latter model has had time to develop a large
compositional gradient at the base of its radiative envelope: this produces a jump in N (see
the top panel of Figure [5.5). Qualitatively, this sharp feature in N results in a trapping
phenomenon which results in a period spacing 6P, which oscillates as a function of mode
period P (Miglio, Montalbdn, Noels, et al., 2008} Pedersen et al., [2018; Vanlaer et al.,
2023). We adopt a fairly typical core rotation rate of 1.5d to accentuate the effects of
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Figure 5.7: Same as Figure [5.4] but for a evolved SPB analogue (MS-6.0-evolved).

rotation (Van Reeth, Tkachenko, and Aerts, 2016; G. Li, Van Reeth, et al.,[2020). Unlike in
the red giant model described in Section[5.6.1|(where realistic rotation rates are small, such
that ¢ < 1), rotation in the MS models is fast enough to cause frequency splittings/shifts
which are nonlinear with respect to €.

The lower panels of Figures@and@show 0P, versus P, for the young and evolved 1.5M
models, under the effects of magnetism and rotation individually as well as simultaneously.
First, since rotation distinguishes between prograde and retrograde modes, the slope it
imparts onto the period spacing pattern is different for the m =+1 and m = —1 modes. In
contrast, the oscillation modes are not sensitive to the overall sign of the magnetic field,
and thus magnetism affects the m ==+1 modes identically (but still differently than the m=0
mode).
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Moreover, while rotation produces values of P, which vary fairly linearly with P, magnetism
produces a curvature in the pattern, especially near suppression. This effect is similar to
what was demonstrated by Dhouib, Mathis, et al. (2022) in the case of a purely toroidal field.
In particular, when the maximum allowed value of a = a; is determined by connection to
the evanescent region (rather than the presence of a critical Alfvén latitude), the asymptotic
expression (in Equation [5.33) predicts that 6P, sharply approaches zero at w ~ wp. This
is because the term o dlnA/dIna in Equation [5.33] diverges at radii where the main
magnetogravity wave branch connects to the slow branch described by Lecoanet, Vasil,
etal. (2017) and Rui and Fuller (2023)). In reality, there is not likely to be an infinitely dense
forest of modes, since the asymptotic formula is based on a linear approximation which
is likely to break down close to suppression. Nevertheless, the curvature is conspicuous,
especially for the young model, where the period spacing drops from its high-frequency
value by ~ 50% near the critical frequency. Moreover, this curvature is apparent even
when rotation is included alongside magnetism, with the added feature that fast rotation can
cause the m =+1 and m = —1 modes to become magnetically suppressed at very different
frequencies. This curvature effect on the period spacing pattern is very different than those
caused by inertial-mode coupling in main-sequence convective cores (which manifest as
isolated “dips”; Tokuno and Takata, 2022)) and mode-trapping near strong compositional
gradients outside of those cores (which manifests as “oscillations”; Miglio, Montalban,
Noels, et al., |2008]).

This sharp curvature feature is not adequately captured by any low-order perturbative
treatment of magnetism. To make comparison to the perturbative prediction generous, we
expand Equation[5.33|around a = 0, while treating rotation non-perturbatively (through the

traditional approximation of rotation, cf. Van Beeck et al.,[2020)). The effect of magnetism

2

then enters the period spacing earliest through a” o a)j_f3 Jw* o« B?/ B

(as predicted by
Cantiello et al., 2016)). Specifically, defining Ay to be the eigenvalue calculated including

rotation only, we have
_ ox? ldlnag\N |\
0P, x —— 1+ = —d
s~ (/( 2 dIng ) " r)

16750 -, A ldlnag\ N\
— /13/2 P (/wB(l-i_E dlnq 7dr ,

H

(5.71)

where we have used

dinA
=0. 5.72
(dlna)azo ( )
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In addition to lacking the suppression phenomenon entirely, the perturbative prediction
(shown for the m =+1 mode as the blue-dashed lines in Figures [5.4] and [5.5)) dramatically
underestimates the magnetic curvature predicted by the full TARM-based formalism. To
further demonstrate this point, in Figure [5.I] we show contours where the perturbative
estimate misestimates the integrand of the integral in the asymptotic formula (Equation[5.33))
by 10% and 50%, respectively. As expected, departure from the full TARM calculation
becomes increasingly severe close to suppression. Non-perturbative effects must therefore
be taken into account predicting the frequency spectrum close to w¢ii. For example, the
magnetic “sawtooth” pattern in the period spacing pattern predicted by some authors (Prat,
Mathis, Buysschaert, et al., 2019; Prat, Mathis, Neiner, et al., 2020a; Van Beeck et al.,
2020) was derived using perturbation theory at low frequencies, and preliminary results
suggest that this feature does not appear once magnetism is incorporated non-perturbatively

(Dhouib et al., in prep.).

An important observation is that the magnetically induced curvature in the period spacing
pattern is more conspicuous in the young model than in the evolved one. This is because
the relative magnetic frequency shifts are primarily determined by the quantity (w‘é) ;/ 4 /o
(as shown in Section [5.6.1), which is maximized when as many layers of the star have
wp ~ o as possible. However, within our physical picture, the entire oscillation mode
becomes suppressed when even a small layer of the star has @y < weit ~ wp. Because
N accounts for most of the variation of wg o« VN (the Prendergast field we adopt varies
comparatively more slowly with radius), wp is a much broader function of r in the young
model versus in the evolved one, where it is peaked at the composition gradient at the lower
boundary of the radiative envelope. Therefore, the young model reaches a larger maximum
value of (w‘lg);/ 4 /@ than the evolved one, and furthermore in general attains large values
of (wdl;, ) é/ 4 /o over a wider frequency range. This heuristic explanation is even stronger for
higher-order terms in the perturbative expansion, which involve buoyant integrals of higher

powers of w‘g / @3.

The magnetic curvature is in principle detectable even in evolved main-sequence pulsators,
as long as it can be deconvolved from other effects. It should be noted that the typical
uncertainties in y Dor period spacings in Kepler are small, comparable to the marker sizes
of Figures 5.4 and [5.5] (Van Reeth, Tkachenko, Aerts, et al., 2015} G. Li, Van Reeth, et al.,
2020). Moreover, because of the sensitivity of the magnetic curvature in the period spacing
pattern to the compositional profile, strongly magnetized main-sequence pulsators may be
a promising avenue for constraining mixing processes. However, in nonasymptotic cases

where sharp features in the buoyancy profile are expected, the limitations of the TARM
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Figure 5.8: The critical period P against the rotation period Py for a young SPB-like
model (MS-6.0-young), for fixed values of the field near the compositional gradient at the
base of the radiative envelope (which most easily experiences magnetic suppression). Prit
is given in the inertial frame.

must carefully be considered.

For completeness, we also examine young (MS-6.0-young) and evolved (MS-6.0-evolved)
SPB analogues, with masses 6M,, (Figures [5.6) and respectively). The qualitative
features of the period spacing pattern are similar, except that the peak in wp at the base
of the radiative region in the young model (due to the peak in N) exceeds the value of wp
throughout the rest of the cavity. Therefore, for similar reasons as in the evolved y Dor
model, the curvature in the period spacing pattern due to magnetism is not as prominent as

in the young y Dor model.

For illustrative purposes, we calculate the critical mode frequencies for a variety of internal
magnetic fields and rotation rates, using the MS-6.0-young model. Figure [5.8| shows
the critical mode period P = 27/ wcri¢ for the dipole and quadrupole prograde sectoral
modes. Interestingly, although rotation is expected to make prograde modes suppress at
higher frequencies in the co-rotating frame (see Figure [5.1)), higher rotation rates actually
cause modes to suppress at lower frequencies in the inertial frame. Simultaneous knowledge
of the suppression frequency for one identified mode branch together with the rotation rate
should be sufficient to make a model-dependent estimate of the magnetic field at the interior
of the star. Alternatively, while potentially challenging, simultaneous measurement of the
suppression frequencies for two identified mode branches may be able to put a constraint on

both the internal magnetic field as well as rotation rate. Because the shapes of the contours
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in Figure [5.§] are largely determined by change-of-frame effects (vis-a-vis Equation [5.39),
the latter method is most viable when the two mode branches have different azimuthal order

m.

Roughly ~10% of massive dwarf stars possess significant (inclined dipolar) fossil fields
up to tens of kilogauss at their surfaces (Grunhut et al., 2016; Shultz et al., 2019). Such
fields may be strong enough in the interiors of such stars to suppress low-frequency g-mode
oscillations. Recently, Lecoanet, Bowman, et al. (2022)) attributed missing low-frequency
modes in the magnetic SPB star HD 43317 (observed with CoRoT; Buysschaert, Neiner,
et al.,2017; Buysschaert, Aerts, et al., 2018)) to magnetic suppression caused by a near-core
radial field B, ~500kG. As in our MS-6.0-early model, suppression in their model occurs
when wqir > w in the compositional peak in N at the base of the radiative cavity (see
their Figure 2). Moreover, Aerts, Van Reeth, et al. (2017) predict that core dynamos in B-
type (AF-type) pulsators may produce strong magnetic fields 20400 kG (0.1-3kG) where
non-perturbative magnetic effects may be realized. Magnetic g-mode main-sequence stars
thus appear to be natural environments to observe g¢ modes which are non-perturbatively

modified by magnetism.

Pulsators in the y Dor mass range may also possess influential magnetic fields (Aerts,
Augustson, et al., 2021). Surface fields of hundreds to thousands of gauss are typical of the
enigmatic family of rapidly oscillating Ap-type (roAp) stars (Hubrig et al., 2004), and the
magnetic field is believed to play an important role in the (still not fully understood) driving
mechanism of their high-overtone p-mode oscillations (Gautschy, Saio, and Harzenmoser,
1998}, Balmforth et al.,2001). It has been speculated (e.g., by Handler, [2012) and claimed
(Balonaetal., 201 1)) that some roAp stars may also pulsate in g modes (on the basis of overlap
between roAp and y Dor stars on the Hertzsprung—Russell diagram). However, this is far
from certain. On the basis of non-adiabatic mode calculations, Murphy, Saio, et al. (2020)
argue that high-order g modes are likely to be very efficiently damped, possibly explaining
the current lack of observed hybrid y Dor/roAp pulsators. However, if roAp stars containing
high-order g modes do turn out to exist, they would serve as ideal laboratories for strong
magnetogravity waves. Moreover, the understanding of high-order magnetogravity waves
presented in this work may extend some insight into the behavior of low-order magnetic g

modes (for which the asymptotic limit is not appropriate).

5.6.3 Future prospects
This work presents a non-perturbative formalism for calculating the g-mode oscillation

frequencies of a magnetized and rotating star, including both effects asymptotically (i.e.,
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applying the TARM). We have considered only with the case where the magnetic field is
dipolar and aligned with the rotational axis. As test examples we have only applied it to red
giant cores and g-mode pulsators on the main sequence. Here, we describe future possible

directions of study in relation to the TARM formalism, and potential extensions.

This work represents a joint generalization of the traditional approximation of rotation (Lee
and Saio,|1997) and an analogous approximation for a purely dipolar magnetic field (Rui and
Fuller, 2023)), in order to non-perturbatively incorporate the effects of both. Generalizations
of the traditional approximation have, in the past, also incorporated centrifugal distortion
(Mathis and Prat, 2019; Dhouib, Prat, et al.,[2021b; Dhouib, Prat, et al., 2021al)), differential
rotation (Ogilvie and D. Lin, 2004; Mathis, 2009; Van Reeth, Mombarg, et al., 2018}
Dhouib, Prat, et al., 2021al), and axisymmetric toroidal fields, both with constant Alfvén
and rotation frequencies (Mathis and De Brye, 2011) as well as with more general field
geometries together with differential rotation (Dhouib, Mathis, et al., 2022). Based on
observational demands (or theoretical intrigue), it is likely possible to add any combination
of these effects to the operator £ defined in Equation Although A would then
be a function of more than two dimensionless parameters, such an approach would retain
much of the advantage of non-perturbatively capturing complex rotational/magnetic effects

while only interpolating over a precomputed eigenvalue grid.

Unlike Rui and Fuller (2023)), this work has focused on the regime where suppression is not
likely to occur, i.e., when there are no Alfvén resonances on the domain and where the slow
magnetic branch has been ignored. We have ignored modes with these effects because their
observational implications are unclear, but the behavior of the operator £?*¢ in this regime
is an extremely rich mathematical problem with so far unexplored structure. Rui and Fuller
(2023) find that solutions with b > 1 develop sharp fluid features at the Alfvén-resonant
critical latitudes, where processes such as phase-mixing are likely to efficiently damp the
waves. In this regime, the magnetic operator in Equation [5.10] is of Boyd-type (Boyd,
1981), and the interior singularities give dissipation an important role in determining the
physically appropriate branch cut. The eigenvalues A for the b > 1 are thus not guaranteed
to be real even in the formal limit where dissipation is taken to zero (and the numerical
results of Rui and Fuller (2023) suggest that they are not). For reasons of scope, we have
also ignored magneto-Rossby waves and magnetically stabilized gravity waves (Rui and
Fuller, 2023), which do not connect to any spherical harmonic in the limits a,g — 0.
These, too, may conceal detectable predictions which are implied by the breakdown of

positive-(semi)definiteness of L%+,

As such, our calculations also do not capture the coupling between magnetic g modes
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and magneto-inertial modes which propagate in the convective core of intermediate-mass
main-sequence stars (within which dynamo-generated magnetic fields are expected; Brun,
Browning, and Toomre, 2005, Featherstone et al., 2009). Coupling with inertial modes is
known to result in isolated dips in the 6 P,—P diagram at frequencies corresponding to those
of inertial modes. This effect provides a seismic probe of the core rotation rates of such stars
(Ouazzani, Lignieres, et al., 2020; Saio, Takata, et al., 2021; Tokuno and Takata, [2022).
In the future, it may be interesting to explore how this picture is modified by magnetism,
and whether similar inference of the magnetic field in these convective cores is possible.
We emphasize that coupling to (magneto-)inertial waves produces localized dip features
in the period spacing pattern, and is very different than the global curvature in the pattern

predicted by this work.

While we have only explicitly modeled analogues of ¥y Dor and SPB stars, our analysis
applies to any magnetized pulsator with pulsations of high radial order. This includes
compact pulsators such as white dwarfs and hot subdwarfs. Since both of these species
result from red giants whose envelopes have been lost (either in isolation or through binary
evolution), it is natural to expect that they will retain the strong fields believed to cause
dipole suppression in red giants. While a small handful of magnetized hot subdwarfs (100s
of kG) are known (Pelisoli, Dorsch, et al.,2022), white dwarfs with kilogauss surface fields
are believed to make up a fourth of all white dwarfs (Cuadrado et al.,[2004; Valyavin et al.,
2006)), and a number of magnetized white dwarfs with fields up to hundreds of megagauss
have been discovered (Kepler et al., 2013; Bagnulo and Landstreet, 2021). The latter
fields are likely to be so strong that they outright suppress g mode oscillations altogether
(Lecoanet, Vasil, et al., 2017). However, it may be possible for a white dwarf to have a
field strong enough to significantly shift the frequencies of the g modes, without being not

strong enough to suppress them outright.

While a dipolar field is expected at the surfaces of stars with fossil fields (Braithwaite and
Nordlund, [2006; Duez and Mathis, 2010), that field need not be aligned with the rotation
axis (Duez, 2011; Keszthelyi, [2023), and is unlikely to be dipolar at all if the field is
generated by a dynamo. In the perturbative regime, Mathis and Bugnet (2023) recently
characterized the frequency shifts associated to an inclined dipole field. Extending the
TARM formalism to describe a non-axisymmetric horizontal field dependence requires
solving for the eigenvalues of families of two-dimensional differential operators over the
sphere, rather than a one-dimensional one (as in Lmb4) and this analysis would need
to be repeated for every different horizontal field dependence desired. Nevertheless, near

suppression, departures in the frequency shifts from the perturbative theory are likely, and
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may be required for accurate magnetic field inference in this regime.

Finally, low-frequency propagating gravity waves are one of the best candidates for the
strong angular momentum transport needed in stellar radiative zones to reproduce the
observed internal rotation revealed in all types of stars by helio- and asteroseismology (e.g.,
Schatzman, [1993; Zahn, |1997; Charbonnel and Talon, [2005; Aerts, 2015; Rogers, 2015;
Pin¢on, Belkacem, et al., 2017; Neiner et al., |2020). The manner in which this wave-
mediated angular momentum transport occurs can be significantly modified by the presence
of a magnetic field. In general, the net angular momentum flux implied by this mechanism
is given by the sum of the wave-induced Reynolds and Maxwell contributions to the stress
tensor. The relevant gravity waves are precisely those which are most strongly affected by
the combined action of rotation and magnetism (see, e.g., Mathis and Brye, 2012, in the
case of weak, shellular differential rotation and a purely toroidal field with constant Alfvén
frequency). Because our TARM-based formalism is relevant to exactly this kind of wave,
its application to this problem is likely to yield insights into the rotational state and internal

chemical mixing of rotating, magnetic stars.

5.7 Conclusion

Rapidly evolving progress in observational magnetoasteroseismology demands refinements
in our theoretical understanding of magnetic effects on stellar pulsations. In this work, we
develop a formalism for incorporating the effects of an aligned dipole magnetic field into
g mode calculations, valid for rapidly rotating stars. This method relies on an asymptotic
treatment of magnetism and rotation (under a “traditional approximation of rotation and

magnetism”), and can be partitioned into two main steps:

1. Calculate the eigenvalues A of the horizontal differential operator £”->¢ (Equation
[5.24) as a function of the dimensionless magnetic and rotational parameters a =
w%/a’)z and g = 2Q/ .

2. In either an asymptotic mode formula (Equation[5.58)) or a non-asymptotic numerical
scheme (e.g., shooting; Section[5.5.1)), include the effects of magnetism and rotation
by replacing £(¢ + 1) throughout the star with a suitably interpolated A, calculated

using the magnetic and rotational profiles.

These steps are done relatively independently of each other: once the eigenvalues A are
computed once over a sufficiently large grid of a and ¢ (for the desired ¢ and m), they do

not need to be calculated again for any individual stellar model. Moreover, modifications
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to existing mode solving procedures are “minimal” in the sense of being localized to the

interpolation of A and its substitution into the relevant equations.

As proofs of concept, we have computed the g modes in the cores of red giants as well
as in the radiative envelopes of high-mass main-sequence stars. In both cases, strong
magnetic fields tend to decrease the period spacing significantly more than is suggested
by the perturbative theory, especially for low frequencies close to the critical frequency
Werit ~ \/m. This results in a curvature in the period spacing pattern which can
in some cases be very conspicuous (e.g., Figure [5.4). Non-perturbative effects may also
introduce asymmetry in the dipole frequency shifts which is not predicted by perturbation

theory.

This regime is expected to be directly realized in the SPB star described by Lecoanet,
Bowman, et al. (2022) and some of the red giants described by Deheuvels, G. Li, et al.
(2023). Refined understanding of these effects is therefore prerequisite to perform accurate

magnetic field inference using asteroseismology.
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Chapter 6

IT’S NOT JUST A PHASE: OBLIQUE PULSATIONS IN MAGNETIC
RED GIANTS AND OTHER STOCHASTIC OSCILLATORS

Rui, NZ, J Fuller, and JMJ Ong (2025). “It’s not just a phase: oblique pulsations in mag-
netic red giants and other stochastic oscillators”. In: The Astrophysical Journal Letters
(submitted).

Abstract

Magnetic fields play a significant role in stellar evolution. In the last few years, asteroseis-
mology has enabled the measurement of strong magnetic fields 10*~10° G in the cores of
dozens of red giants, and is the only known way to directly measure internal stellar magnetic
fields. However, current data are still interpreted assuming that these fields are too weak
to affect the orientation of the pulsations (i.e., make the pulsations “oblique”), rendering
stronger field strengths beyond the reach of existing asteroseismic searches. We show that,
even when an oblique pulsator is also stochastic (such as in a strongly magnetic red giant),
geometric effects will cause the signal to contain frequency components which remain in
perfect relative phase with each other. This perfect phase relationship persists even over
timescales in which stochasticity erases absolute phase information. This perfect relative
coherence is a distinctive observational signature of oblique pulsation that does not require
a model for mode frequencies to search for. However, due to its dependence on phase, this
effect will not be evident in the power spectral density alone, and phase information should
be retained in order to detect it. Coherence-based searches for oblique pulsations may pave
the way to measurements of magnetic fields of currently inaccessible strengths in red giants,

as well as some main-sequence and compact pulsators.

6.1 Introduction

Although stellar magnetic fields are common, their formation, evolution, diversity, and
role in angular momentum transport in stars and compact objects form a tangled web of
open problems across astrophysics (Donati and Landstreet, 2009} Ferrario, Martino, et al.,
2015; Aerts, Mathis, et al., [2019). Our understanding of stellar magnetism is tethered to
the uncertain strengths and structures of subsurface magnetic fields, which are invisible to

standard observational techniques.

Asteroseismology—the measurement and interpretation of stellar oscillations—exploits the
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translucency of stars to hydrodynamical waves to constrain internal stellar properties, such
as stellar mixing processes, internal rotation profiles, and evolutionary states (Aerts, [2021).
Magnetic fields with strengths ~ 20—600 kG have recently been asteroseismically measured
in the cores of several dozen lower red giant branch stars (G. Li, Deheuvels, Ballot, and
Lignieres, 2022; Deheuvels, G. Li, et al., 2023} G. Li, Deheuvels, T. Li, et al., 2023; Hatt
et al., 2024). These measurements make use of the sensitivity of gravity-mode (g-mode)
frequencies to the magnetic tension. “Seismic magnetometry,” which is still in its infancy,

remains the only direct way to probe internal stellar magnetic fields.

When incorporating magnetic fields, present data analyses assume the pulsations to be
aligned with the rotation axis. This occurs when the magnetic field is weak enough that its
effects are subdominant to those of the Coriolis and centrifugal forces. In the opposite case,
the magnetic field is strong enough to misalign the pulsations from the rotation axis, i.e.,
make the pulsations oblique. In this regime, individual oscillation modes appear as multiple,
Doppler-shifted periodicities to the observer. This breaks the one-to-one mapping between
oscillation modes and frequency components in the light curve (hereafter “periodicities”),
and produces complicated pulsation spectra which can be difficult to interpret (Kurtz, 1982;
Shibahashi and Takata, |1993; Dziembowski and Goode, |1996; Bigot and Dziembowski,
2002; Saio and Gautschy, 2004; Loi, [2021). In some pulsators such as red giants, the
oscillations are additionally stochastic: each mode decoheres on a characteristic mode
lifetime 7 (between tens of days to several years in red giants; Dupret, Belkacem, et al.,
2009; Grosjean et al.,2014).

In this Letter, we show that oblique, stochastically driven pulsators (such as strongly mag-
netic red giants) display some coherent properties which can be used to identify them in
a general, model-independent way. Because ordinary stochastic pulsations lack a mech-
anism for “remembering” phase information for times > 7, this long-lived coherence is
a smoking-gun signature of oblique pulsations. Since this signature involves phase infor-
mation, usual analyses based on the power spectral density (PSD) will be insensitive to
it.

6.2 Pulsation model
We construct a simple toy model which exhibits the essential behavior of stochastic, oblique
pulsations. The key observable is the intensity perturbation §1(¢), which has contributions

from each oscillation mode:

SI(t) = %Zalj(r), 6.1)
J
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where we have indexed the modes by j and allowed the intensity ¢6/;(¢) of each individual

mode to be complex.

The individual mode intensities are given by integrals of the surface flux perturbation
OF;(t;0',¢") over the visible disk of the star:

2r 1
61 (1) o / / SFi(1;6',¢")W(0') cos 8’ d(cos 8') d¢’. (6.2)
o Jo

where W(6’) is an arbitrary limb-darkening function on which the details of this analysis
do not depend. The primed variables (6’, ¢") denote spherical coordinates in the inertial
(observer) frame, with the north pole (68’ = 0) fixed to the line-of-sight (direction pointing
to the observer). This is the frame in which integrals over the disk are most natural to

compute.

Assuming surface flux perturbations trace scalar fluid perturbations (e.g., Gizon and Solanki,
2003)), the flux perturbation due to a single mode can be decomposed into time- and angle-
dependent factors:

6F;(1;0,8) o< Aj ()¢ (0, 9), (6.3)
where the unprimed spherical coordinates (6, ¢) are in the frame corotating with the star,
with the north pole (8 = 0) fixed to the rotation axis. This is the frame in which the

oscillation modes of the star are most natural to compute.

The angular dependence of a mode pattern can, in turn, be decomposed into spherical

harmonics:

Ui (0.) = ) Citm¥em (6, 9), (6:4)
tm

where ¢ .z, is the contribution of each spherical harmonic to the flux perturbation of mode
J. We show in Appendix [6.A]that, upon changing coordinates from the corotating frame to

the observer’s frame, these spherical harmonics transform as

Yon(0,9) = ) €™ dl,, ()Y em (6, 9), (6.5)

m’

where the Wigner matrix d’ captures the effect of inclination on visibilities.

Combining Equations[6.2] [6.3] [6.4] and [6.5] gives
S1;(1) o A;(t) Z Vi cjmds (e ™, (6.6)
tm

where we have used the fact that spherical harmonics with m # 0 have vanishing disk

integrals, and defined

2r +1
Ve = / / Yo (6, ¢ YW (6') cos 0 d(cos 6”) d¢’ (6.7)
0 J-1
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to be the mode visibilities, which only depend on ¢.

The time dependence of a stochastically excited mode is well-described by a damped

harmonic oscillator driven by noise. As we show in Appendix A; is well-modeled as
Ai(t) = A;(1)e' ", (6.8)

where o; is the corotating mode frequency and the complex prefactor A ; (1) stays roughly
constant for short times ¢ < 7 while varying randomly for long times ¢ > 7. We illustratively
define A; = H;e'%s, so that

Aj(1) = Hj(1)e! i) (6.9)

where the mode amplitude H; = H,;(t) and phase ¢; = ¢;(¢) are real-valued functions

which, like A j» vary substantially only on timescales > 7.

Our final expression for the total intensity perturbation follows from Equations|[6.1]and [6.6}

SI(t) o R >~ Aj(1) D Vec.omd, ())e ™. (6.10)
J tm

6.2.1 Rotationally aligned pulsations

It is common to assume that pulsations are aligned along the rotation axis (i.e., ¢,/ m =
OeerOmm’ ), Which, for g modes, occurs when the Coriolis effect supplies the strongest non-
spherically symmetric restoring force. Via Equations[6.6]and[6.8] the intensity perturbation

due to such a mode is
Slom (1) o< VeAgy (1)dS, (i) Tem=med" (6.11)
Equation [6.11] shows that the observer measures a Doppler-shifted mode frequency
Wem = Ogm — ML, (6.12)

under the convention that positive-frequency modes with m€2 > 0 are retrograde.

Rotation also produces a Coriolis force which contributes to the restoration of fluid motions,

causing an additional frequency shift
otm =0 Q
tm =0y +mCe, (6.13)

where 0'{50) is the mode frequency in the absence of rotation, and the Ledoux coefficient

C; ~ 1/€(€ + 1) for high-radial order g modes (Ledoux, |1951).

These effects taken together, the observer measures an apparent rotational frequency shift

ow = Wey — 0'650) =-m(1 - Cp)Q. (6.14)
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While éw resembles a single shift proportional to m, it is actually caused by a combination
of effects due to the Doppler shift (which is purely geometric) and the Coriolis force (which
is physical). These two very different effects become unnatural to group together when

analyzing stochastic, oblique pulsators.

6.2.2 Do two periodicities mean one mode or two?

When a pulsation is oblique (i.e., not rotationally aligned), a single oscillation mode is no
longer a traveling wave of fixed /m around the rotation axis. Instead, the morphology (6, ¢)
of the mode has multiple components with different values of m which Doppler shift into
multiple periodicities via Equation Because of this, a single oblique oscillation mode
can therefore be misinterpreted as multiple (rotationally aligned) oscillation modes. The
so-called “oblique pulsator model” successfully describes the magnetically tilted pressure-

mode (p-mode) pulsations of rapidly oscillating Ap stars (Dziembowski and Goode, 1996).

Fortunately, if the modes are observed for long enough to resolve their stochasticity (i.e.,
for baselines T > 7), it is possible to tell whether two periodicities are caused by two
distinct modes or a single mode which is oblique without any model for their amplitudes
and frequencies. To illustrate this, we consider two toy scenarios which produce almost
indistinguishable empirical PSDs peaked at two close frequencies (w; = @ — dw/2 and
wy = @ + dw/2) despite their corresponding time series’ obviously different properties
(Figure[6.1], in which w; = 0.9 and w;, = 1.1®). The two periodicities can be resolved as
long as 6w = 1/7.

In the first scenario, we consider two rotationally aligned modes with frequencies o = w;
and 0» = wy with quantum numbers (¢,m) = (1,+1) and (1, —1), respectively. The star
is assumed to be non-rotating (or, for self-consistency, rotating at a negligible rate Q ~ 0).

By Equation[6.10] the intensity perturbation due to these two modes is

ol <« R [A1 +A2]

= ‘R [eiu_)l (Hlei(_(swt/z-HPI) _ Hzei(+6w[/2+¢2)):| , (615)

where we have used the fact that d, (i) = —d,,, (i) (Rose, 1995) and omitted overall
constant prefactors. Defining H = (H| + Hy)/2, ¢ = (@1 + ¢2)/2, SH = H, — Hy, and
5¢ = @2 — @1, Equation[6.15] simplifies to

61 oc 2H sin (6wt /2 + 6¢/2) sin (&t + @)

beat carrier

—O0H cos (0wt /2 + 8¢/2) cos (wt + @) .

(6.16)

beat carrier
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The intensity pattern consists of a high-frequency oscillation with a carrier frequency @
modulated by a beating envelope with a lower frequency dw (a factor of two arises because
the envelope refers to the absolute value of the beat sinusoid). On short timescales (f < 1),
the quantities H, @, 6H, and §¢ are all approximately constant, and the oscillation is
roughly coherent. However, for longer observation baselines 7 > 7, both the carrier and

beat oscillations dephase, i.e., ¢ and §¢ vary randomly (fop middle panel of Figure [6.1)).

In the second scenario, we consider a single oblique mode with corotating frequency
o = @ with two equal spherical harmonic components with m = +1 (i.e., ¢1 41 = ¢1.-1).
Additionally, the star itself rotates with a rate Q = dw/2. By Equation [6.10} the resulting

intensity perturbation due to this single mode is

ST o R [A (e—iéwt/Z _ eiawt/z)]

o (6.17)
- R [—ZiHe’(‘””"") sin ((5a)t/2)] .
Upon taking the real part, Equation [6.17 becomes
01 o« 2H sin (6wt /2) sin (&t + ¢) . (6.18)

beat carrier

Similarly to the first scenario, the two periodicities generated by the oblique mode oscillate
with a carrier frequency @ modulated by an envelope with a beat frequency dw. On
short timescales (¢ < 7), the intensity perturbation is indistinguishable from that of the
first scenario, or, indeed, a purely coherent beat pattern. However, while the overall
amplitude H and carrier phase offset ¢ vary randomly as before, the beating envelope is
perfectly coherent and never dephases. In the corresponding time series (bottom middle
panel of Figure [6.1)), the beating envelope vanishes on exact multiples of the beat period
theat = 27m/0w. Intuitively, the non-axisymmetric magnetic field misaligning the oblique
pulsation serves as a “clock hand” which perfectly tracks the rotational phase. In contrast,
stars with no magnetic fields (or other non-axisymmetric features) have no mechanism by

which to keep track of their absolute rotational phases over timescales > 7.

Attempting to interpret the intensity perturbation generated by the single oblique mode
as two separate rotationally aligned modes would imply the bizarre conclusion that the
amplitude ratio H,/H; and phase offset difference d¢ between the two stochastic modes are
exactly constant in time. Despite this, both the average amplitude H — H and phase offset

¢ — ¢ would be observed to vary stochastically in the expected way.

By construction, the periodicities in both scenarios have identical frequencies and linewidths.

The two scenarios thus produce very similar-looking PSDs, each consisting of an envelope
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of two broad Lorentzians multiplied by noise (the left panels of Figure cf. M. Cunha,

Avelino, et al.[2020). Nevertheless, since the time-domain intensities 6/ in the two scenarios
are fundamentally different, the Fourier transforms 67 (which encode identical information)

must also be different in some distinctive way.

The frequency-domain manifestation of oblique stochastic pulsation becomes apparent when

comparing the Fourier transforms of Equations [6.16and [6.18] which are
. 1= ~
ol o 3 [Al(w—wl)—Az(w—wz)] + sym. (6.19)
for two aligned modes, and
. 1= =
ol « 3 [A(w—a)l) —A(w—wz)] + sym. (6.20)

for one oblique mode, where “sym.” denotes the frequency-flipped, complex conjugate of
the first term (which arises from taking the real part). In the case of two aligned modes, the
Fourier profiles of the two periodicities (Zl and Zz) are different, i.e., the noise multiplying
the square-root Lorentzians in the Fourier transform are different from each other. In
contrast, in the case of one oblique mode, the Fourier profiles of the two periodicities are
identical, i.e., the noise multiplying the square-root Lorentzians are the same across the two

Fourier peaks.

Although frequency resolution, noise floor, and nonuniform sampling effects will cause
non-ideal behavior, oblique pulsation will still generally produce spectral correlation which
cannot be caused by separate, rotationally aligned, stochastic modes. We note that spec-
tral correlation describes correlation between frequency components, and is conceptually
distinct from temporal correlation, which describes the time-domain correlations which are
characteristic of colored (but stationary) noise. Fourier peaks with identical noise profiles
are smoking-gun signals of oblique pulsation and, thus, the likely presence of a strong mag-
netic field. Since the PSD (|/?]) discards all of the phase information in 67, data analyses

which start from the PSD are likely to overlook oblique pulsations. It’s not just a phase.

6.2.3 Magnetic red giants: a theoretical case study

Seismically, red giants are especially rich: near-surface convection drives information-
dense pulsations containing up to dozens of independent oscillation modes (Chaplin and
Miglio, 2013). In lower red giant branch (R < 10R) and red clump stars, dipole (£ = 1) p
modes are also well-coupled to g modes, which propagate exclusively in the stars’ radiative
cores. Strong core magnetic fields appreciably modify internal restorative forces, shifting

mode frequencies in distinctive ways. Measurement of these frequency shifts has recently
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Figure 6.2: Linear g-mode frequency shifts v = dw/2x relative to the power-weighted
average shift of the triplet 6V, plotted against the strength of the magnetic perturbation
OVmag = 0Wmag/2m. The magnetic field strengths corresponding to 6vyag are also shown
for the M = 1.5M, R = 5.2R;, red giant model described in Section Line colors
indicate the underlying mode, and line thicknesses are proportional to the spectral power.
Low field strengths leave the rotational triplet symmetrically split, moderate field strengths
introduce asymmetry in the triplet, and higher field strengths induce oblique pulsations in
which each mode individually appears as a triplet.

enabled the precise extraction of core magnetic field strengths in dozens of red giants (G. Li,
Deheuvels, Ballot, and Lignieres, 2022; Deheuvels, G. Li, et al., 2023; G. Li, Deheuvels,

T. Li, et al., 2023}, Hatt et al., 2024).

We briefly summarize known theoretical predictions of magnetic effects on red giant mixed
modes (G. Li, Deheuvels, Ballot, and Ligniéres, Mathis and Bugnet, 2023} Das
et al., [2024), deferring many details to Appendix [6.C] Although red giant g modes can
only be observed when coupled to p modes, the non-axisymmetric nature of the problem
suggests that mixed-mode coupling may affect the spectrum in a complicated way. Thus,

for simplicity, we hereafter consider only pure g modes.

The seismic effects of rotation and magnetism are calculated by solving the eigenvalue

problem
oo ¢ = (Rg + Mg) Ce (6.21)

for the corotating frequency shifts o~ and the spherical harmonic expansion coefficient
vectors ¢, (see Equation @) The matrices Ry, and M, describe the effects of the Coriolis

and Lorentz forces.
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The ¢ = 1 Coriolis matrix Ry is given by
Ry=1 = dwrot diag(—l, 0, +1) (6.22)

where dwyo o< Q. Because Ry is purely diagonal (for any ¢), the off-diagonal elements of
R, + My are totally set by magnetic effects. The elements of the Lorentz matrix M, are, in
turn, highly dependent on the geometry of the magnetic field. For illustrative purposes, we
subsequently adopt a dipolar magnetic field misaligned with the rotation axis by an angle

B, for which the ¢ = 1 Lorentz matrix is

3 7+Cs —V2S5 1-Cg
Mezi = 250wmg | —V2Sp 6-2C5 V2Sp |, (6.23)
1-Cs V253 7+Cg

where Cg = cos2f, Sg = sin2p, and 6w, depends on some stellar interior-averaged
magnetic field (6wmag o (B?)). While this form of M-, only describes a specific magnetic
field configuration, the qualitative results of this analysis generalize to other large-scale

non-axisymmetric magnetic fields.

Figure [6.2] shows the observed frequency structure of the rotational triplet as a function of
O0wmag, Where we have fixed 2roy = 180 uHz, dwror =~ 1.2 uHz, i = 60°, and g = 70°.
When the Coriolis force dominates (6wmag S dwror; the blue region in Figure @, the off-
diagonal elements of Ry, + M are negligible, and magnetism shifts the mode frequencies
without creating extra observed periodicities. This is the familiar limit assumed by most
observational (G. Li, Deheuvels, Ballot, and Lignieres, |2022; Deheuvels, G. Li, et al., 2023;
G. Li, Deheuvels, T. Li, et al., 2023} Hatt et al., 2024) and many theoretical (Bugnet et al.,
2021} Bugnet, 2022; G. Li, Deheuvels, Ballot, and Lignieres, [2022; Mathis and Bugnet,
2023; Das et al.,[2024) studies (although see Loi, 2021)). In this regime, magnetism causes
rotational multiplets to be asymmetric, but does not introduce extra periodicities to the

signal.

In contrast, when the Lorentz force dominates (6Wmag X dwror; the yellow region in Figure
[6.2), the off-diagonal elements of R, + M, cause the eigenvectors ¢; to mix across m:
the pulsations are oblique. The rotationally aligned and magnetically oblique regimes
are respectively indicated by the blue and yellow regions in Figure [6.3] for a standard
M = 15Ms, R = 5.2Ry red giant stellar model generated using version r24.08.1 of
Modules for Experiments in Stellar Astrophysics (MESA; Paxton, Bildsten, et al., 2010;
Paxton, Cantiello, et al., 2013 Paxton, Marchant, et al.,[2015 Paxton, Schwab, et al., 2018;
Paxton, Smolec, et al., 2019; Jermyn et al., [2023). Magnetic fields detected thus far lie
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Figure 6.3: “Phase diagram” of pulsation regimes in the space of magnetic field versus
rotation rate, for the stellar model described in Section [6.2.3] and the stellar parameters
described in Section @ Regions of rotational alignment (6wmag < dwror) and magnetic
obliquity (6wmag > Owro) are shown for the case of pure g¢ modes. The condition for
magnetic g-mode suppression (B > Bg;; Equation [6.24)) is also shown. Points indicate
known magnetic red giants with observed rotational triplets.

primarily in the rotationally aligned regime, as expected. However, magnetically oblique

pulsators should exist at slightly larger field strengths, especially for low core rotation rates.

There is a different (but overlapping) condition under which the magnetic field significantly
alters the propagation of gravity waves, such that the weak-field theory breaks down. This
occurs for magnetic fields near a critical field strength which Fuller, Cantiello, et al. (2015))

gives as
s \/ﬁwzr
((+1) N

Magnetic fields stronger than B, . (the red region in Figure[6.3)) are expected to suppress

(6.24)

B r.crit =

g-mode propagation (Fuller, Cantiello, et al.,[2015; Rui and Fuller, 2023}; Stello, Cantiello,
Fuller, Huber, et al.,|2016). The magnetically oblique and suppressed regions would shift

to smaller field strengths for stars farther up the red giant branch.
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6.2.4 Simulated observations of oblique pulsations

We simulate observations of a single g-mode triplet under the effects of a strong magnetic
field by numerically solving Equation [6.21] for the frequencies in the observer’s inertial
frame. We choose parameters which produce the rotational triplet structure at the maximum
value of §wmag = 1.7 uHz shown in Figure [6.2] In addition to the parameters described in
Section [6.2.3] this corresponds for our red giant model to the realistic (though optimistic)
rotation period Py, = 27/Q = 30d and a field strength B, ~ 292 kG (for a flat magnetic

field profile). We also assume a typical mode lifetime 7 = 2 months.

Our mock observations are evenly sampled in time with a cadence Ar = 30min and a
baseline To,s = 8 yr (twice that of the main Kepler mission; Borucki, |2016). We also
inject a white noise background to mimic a realistic height-to-background ratio (cf. G. Li,
Deheuvels, Ballot, and Lignieres, 2022). The empirical PSD derived from these mock
observations is shown in the fop panel of Figure[6.4] Figure[6.4]also shows the theoretically
expected value of the PSD (orange curve). However, since the statistics of the process
now explicitly modulate with time, the process is not stationary and is therefore not fully

described by the PSD like in the usual case of a stationary process (see, e.g., Gardner, |[2003).

We mock-analyze our simulated observations by calculating a windowed, complex-valued
version of a normalized cross correlation (NCC; Kirch, 2008) of 6/ (w). The NCC measures
the overlap between two arrays, and is extensively applied to image comparison. Specifically,

we compute
50 (W1, W2)

NCC&me (wl, a)z) = . (6.25)
VEswyn (@1, 01) L (W2, w2)
where we have defined the windowed inner product
1 +0Wyin _ -
Lsw i (W1, w2) = / oI (w1 +&)61 (w2 + &) d&, (6.26)
25ahmn —0Wwin

for some choice of window width dwyin. Intuitively, NCCs,, . (w1, w2) quantifies the
degree of spectral correlation between two segments of the Fourier transform centered at
w1 and wy with widths dwyi,. The absolute value of NCC is 1 when the segments are
exactly identical, up to a constant scaling factor, and tends to O when the segments are

totally spectrally uncorrelated.

In practice, owing to the finite baseline, we compute a discrete version of the windowed
NCC by taking

+0Nwin

Hwnw)~ Y I 6l (6.27)

k=—6nyin
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where 51, denotes elements of the discrete Fourier transform, dnyin & wwin/Aw (Where
Aw is the frequency resolution), and n,, (n,,) refers to the index whose corresponding
frequency is closest to w; (w2). To mitigate non-ideal frequency-resolution effects, we also
sinc-interpolate the discrete Fourier transform by zero-padding the time series by a factor
of ten (Schanze, [1995)).

Each of the bottom panels of Figure [6.4] shows the windowed NCC of our mock triplet,
with w; fixed to the frequency of a different power spectral peak and the window width
t0 dWwin/2m = 0.05 uHz. When w is chosen this way, the NCC measures how spectrally
correlated segments of the Fourier transform are with the windowed peak. Itis thus expected
to spike when w; coincides with the frequency of another periodicity arising from the same
mode (i.e., another peak with the same shading in Figure [6.4). Indeed, Figure [6.4] shows
that the NCC peaks substantially in absolute value at these other periodicities, which are
often lower in amplitude (but still significant). In contrast, the magnitude of the windowed
NCC does not peak significantly at periodicities corresponding to other modes, since their
different noise profiles destructively interfere with the window within the inner product in
Equation This proof-of-concept mock analysis demonstrates the ability to perform
model-independent searches for oblique, stochastic pulsations in the frequency domain.

6.3 Summary and prospects

Sufficiently strong magnetic fields can misalign stellar pulsations from the rotation axis, i.e.,
cause the pulsations to be oblique. The oblique pulsator model is the standard framework
for interpreting the pulsations of rapidly oscillating Ap stars, which are known to harbor
strong surface magnetic fields (Kurtz,|1982; Dziembowski and Goode,|1996). Additionally,
oblique pulsations appear to have been detected in the prototype DBV white dwarf pulsator
(GD 358; Montgomery, Provencal, et al., 2010), and have been suggested to produce the
quintuplet of periodicities observed in the main-sequence pulsator 8 Cephei (Telting, Aerts,
etal.,|1997; Shibahashi and Aerts, 2000). More recently, two blue large-amplitude pulsators
(BLAPs) were also suggested to exhibit oblique pulsations (Pigulski et al., 2024).

In this work, we show that time series observations of oblique pulsators with stochasticity
share generic signatures which can be used to identify them. These signatures take the form
of a permanent periodic mode amplitude modulation (in the time domain) or, equivalently,
spectrally correlated line profiles in the Fourier transform (in the frequency domain). Due
to their dependence on stochasticity, these signatures are easiest to detect for modes with
shorter lifetimes (i.e., larger linewidths). Promisingly, searches for these signatures can be

agnostic to the precise pattern of mode frequencies predicted by models. Data analyses
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looking for spectrally correlated signals may identify magnetic red giants in the yellow

region in Figure[6.3] within which current analyses are inapplicable.

While magnetic red giants are the motivating use case for this work, our results apply
to oblique pulsations in any pulsator with detectable stochasticity. Outside of red giants,
stochasticity is a prominent characteristic of main-sequence solar-like oscillators (such as
the Sun itself; Chaplin and Miglio, 2013), and has also been observed in some modes
in classical pulsators (such as ¢ Scuti stars; Breger and Pamyatnykh, |1998) and compact
pulsators (such as white dwarfs and hot subdwarfs; D. Winget, Nather, et al.,|1994; Hermes,
Gansicke, Kawaler, et al., 2017; Reed et al., 2007; @Ostensen et al., [2014).

A similar analysis is likely also applicable to tidally tilted pulsations (TTPs), which are
misaligned from the rotation axis by tidal forces from a companion rather than a strong
magnetic field (Handler et al., 2020; Fuller, Kurtz, et al., |2020; Fuller, Rappaport, et al.,
2025). As such, TTPs are also oblique pulsations, and are similarly characterized by
multiple periodicities with fixed relative phase and amplitude relationships (e.g., Fuller,
Rappaport, et al., [2025). While TTPs have been discovered in coherent pulsators such as
0 Scuti (Handler et al., 2020) and subdwarf B (Jayaraman et al., 2022) stars, searches for

anomalous long-term coherence may enable the discovery of TTPs in stochastic pulsators.

Magnetic fields produce oblique pulsations when they are strong enough to overwhelm
rotational effects such as the Coriolis force (i.e., for parameters within the yellow region in
Figure @ Magnetic fields which are close in strength to B, ¢y mix modes across values
of ¢ (Lecoanet, Vasil, et al.,[2017; Loi, 2020b; Dhouib, Mathis, et al.,[2022; Rui and Fuller,
2023; Rui, Ong, et al., 2024; Lecoanet, Bowman, et al., 2022), not just m as in this work.
This will produce additional peaks (e.g., more than three for £ = 1) spaced by the stellar
spin frequency in the PSD, which can likely be detected by the same method outlined here.
In future work, we plan to extend our analysis of magnetic obliquity to stronger magnetic
field strengths B, ~ By it
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6.A Transforming between the observer and corotating frames
Performing the disk integral in Equation [0.2] requires a change of coordinates from the
corotating frame (unprimed; 6, ¢) to the observer’s frame (primed; ¢’, ¢’). In this Appendix,

we describe how spherical harmonics transform under this change of coordinates.

These two coordinate systems differ in relative rotation (by the stellar rotation rate ) and
choice of polar axis (by the inclination angle /). The transformation between the two frames
is characterized by the Euler angles (a., 8., y.) = (0, i, Qt) (in an intrinsic z-y-z convention,

following Rose, [1995). Under rotation, spherical harmonics transform as

Yon(6,9) = D Di (s Bes Yo Yo (0, ¢, (6.28)

where D! is the Wigner D matrix, whose elements are

DL, (@, Berye) = e M @emimregl  (8,), (6.29)

where d is a matrix which only depends on £. For our particular transformation,

Yen(0,9) = D ™" dl,, () Yo (0, ¢), (6.30)

m’

reproducing Equation [6.5]in the main text.

6.B Amplitude Evolution under Stochastic driving

A stochastic mode is oscillatory (with a corotating frequency oy) on short timescales (f < )
but decoheres on longer timescales (¢ > 7). To mimic this behavior, we model the complex
amplitude A(¢) as an underdamped harmonic oscillator with frequency wo and damping

rate n = 1/7 > 0 driven by noise f (7). The time dependence of the amplitudes follow

01 A1) = (ioo —mA@) +nf (1), (6.31)

which is the stochastically driven amplitude equation (Buchler et al., 1993) evaluated in the
linear regime. We have included an extra prefactor 7 multiplying f to normalize the height

of the power spectral peak to be independent of 7.

In the frequency domain, the Fourier transform of A(t) is given by

1

Alo) = 1+i(oc—00)/n

f(o), (6.32)
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i.e., the product of a square-root of a Lorentzian function and the spectrum f of the stochastic
driving. Although the square-root-Lorentzian factor has a complex phase profile (reflecting
the phase lag of a damped driven harmonic oscillator), this phase is irrelevant as long as

the stochastic driving is spectrally uncorrelated.

For simplicity, we assume the driving to be white noise, although our results are not sensitive
to this choice and extend to colored (but wide-sense stationary) noise. This entails that the
values of the discrete Fourier transform of the driving f (o), when sampled on a discrete
frequency grid, are uncorrelated with each other but are drawn from identical distributions
as each other. We assume a given statistical realization of the PSD of the driving | f(c)|?
to obey a y? distribution with two degrees of freedom. This is a standard assumption in
the study of solar-like oscillations (Woodard, 1985; Duvall and Harvey, 1986; Anderson
et al.,|1990), and results from the real and imaginary parts of f (o) being separately drawn
from identical Gaussian distributions. To numerically generate f (o) for each frequency on
a discrete grid of both positive and negative frequencies, we independently draw a value
from a y? distribution with two degrees of freedom, take its square root, and multiply it by

a random complex phase.

In the time domain, A(¢) is given by the inverse Fourier transform

A(r) = /_ R {Co R (6.33)

w L+i(oc—00)/n

Applying the change of variables o’ = o~ — 0y allows us to rewrite Equation as

+o00 £ ’
oo+ o ;
f( 0 )elo"t dO'/.

A(t) = &' 6.34
(1) =e ' 1xic/n (6.34)
Defining
+oo £ ’ +oo .
A(r) = S0+ it g = / A(o")e'"  do” (6.35)
o 1 +ioc’/n oo

recovers Equation [6.8]in the main text.

As a complex function, A(t) stores the departure in amplitude and phase of A(z) from a
perfect sinusoid. Equation represents A(z) as the Fourier transform of a square-root
Lorentzian multiplied by noise. Since Ais very roughly localized to frequencies |o”’| < 7,
A(t) remains roughly constant on short timescales < 7 while varying randomly on longer

timescales > .

6.C Rotating and magnetic g-mode frequencies and eigenfunctions
At lowest order, the simultaneous effects of rotation and magnetism can be calculated using

degenerate perturbation theory. In this Appendix, we quote the main results of this type of
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analysis for pure dipole (¢ = 1) g modes (in particular, those of Gomes and Lopes, 2020;
Bugnet, [2022; G. Li, Deheuvels, Ballot, and Lignieres, 2022; Mathis and Bugnet, 2023;
Das et al.,|[2024)) in the asymptotic limit. These conditions reasonably describe observable

g modes in red giants.

The scale dwyq of the Coriolis frequency shift is given by

1 1
OWrot = §<Q>g = EQ’ (6.36)
where (2), is the average rotation rate of the g-mode cavity (core). Similarly, the scale of

magnetic frequency shifts dwm,g 18 given by

5
SWmag = 47T—3<B§>. (6.37)

w
0
The value of dwmae depends on a particular average of the squared radial component of the

magnetic field over the g-mode cavity:
mn
(B?) = / dr K (r) / dQ, B2, (6.38)
r1 S2

where 7| and r, are the boundaries of the g-mode cavity (demarcated by w? < min (S %, N 2)
where S; and N are the € = 1 Lamb and Brunt—Visila frequencies) and dQ; = d(cos 6) d¢
is an infinitesimal solid angle element. This average is weighted in radius by a function

N3/pr3
———— 11 <r<nm
K(r) = | Je, (Vi priydr 6.39)
0 otherwise,

which peaks near the hydrogen-burning shell in red giants. Finally, the sensitivity factor

(N3 /pr?) dr
= = (6.40)
fr ] (N/r)dr
depends on the stellar structure.
For general magnetic configurations, the £ = 1 Lorentz force matrix M- is
Ji2drK(r) [, dQ Me=1(6, ¢)B;
Mf:] = 6a)mag 7 5 (6.41)
jr1 drK(r) [, dQ; B
where . .
; 3+ Cy —V2ei%S, ¥¢(1 - Cy)
Me=1(0,¢) = = | —V2e7#Sy  2-2C5 V265, (6.42)

e29(1-Cy) V278, 3+Cy
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is a matrix-valued horizontal weighting function, with Sy = sin 26 and Cy = cos 26.
In this work, we illustratively assume an inclined dipolar magnetic field such that B,

cos B cos 6 + sin B sin 6 cos ¢, where (8 is the misalignment angle between the rotation and
magnetic axes. Combining Equations[6.37}[6.41] and [6.42] yields

3 7+cos2B —V2sin2B8 1 -cos2B
M-t = 550Wmag —V2sin2B8 6—2cos2B8 V2sin28 |, (6.43)
1-cos2B V2sin2B 7+cos2p

reproducing Equation [6.23]in the text.

While this particular field geometry keeps the off-diagonal elements of M,-; real, the off-
diagonal elements can be complex in general. Complex off-diagonal elements can cause
phase shifts between periodicities associated with the same mode, but do not otherwise

modify our general conclusions.
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SUPERSENSITIVE SEISMIC MAGNETOMETRY OF WHITE DWARFS
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Dwarfs”. In: The Astrophysical Journal 981.1, p. 72. por: 10 . 3847 /1538 - 4357 /
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Abstract

The origin of magnetic fields in white dwarfs (WDs) remains mysterious. Magnetic WDs
are traditionally associated with field strengths > 1 MG, set by the sensitivity of typical
spectroscopic magnetic field measurements. Informed by recent developments in red giant
magnetoasteroseismology, we revisit the use of WD pulsations as a seismic magnetometer.
WD pulsations primarily probe near-surface magnetic fields, whose effect on oscillation
mode frequencies is to asymmetrize rotational multiplets and, if strong enough, suppress
gravity-mode propagation altogether. The sensitivity of seismology to magnetic fields
increases strongly with mode period and decreases quickly with the depth of the partial
ionization-driven surface convective zone. We place upper limits for magnetic fields in
24 pulsating WDs: 20 hydrogen-atmosphere (DAV) and three helium-atmosphere (DBV)
carbon—-oxygen WDs, and one extremely low-mass (helium-core) pulsator. These bounds
are typically ~ 1-10 kG, although they can reach down to ~ 10—100 G for DAVs and helium-
core WDs in which lower-frequency modes are excited. Seismic magnetometry may enable

new insights into the formation and evolution of WD magnetism.

7.1 Introduction
White dwarfs (WDs) are the compact remnants of low- and intermediate-mass (< 8Mg)
stars. Although a large fraction of WDs are now known to be magnetic (= 20%; Bagnulo

and Landstreet, 2021)), the origins of their magnetic fields are still largely mysterious.

Magnetic fields in WDs are typically measured using Zeeman splitting of spectral absorption
or emission lines (Landstreet, 2014; Ferrario, Martino, et al., 2015). Recent volume-
limited surveys have revealed that magnetism in typical WDs (with masses M < 0.75M)
experience a delayed onset, with both the incidence and strength of magnetism increa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>