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ABSTRACT

~This thesis consists essentially of two distinct parts. The
first part deals with the development of the theory and the second
part deals with experimental verification of the theory.

The theory developed in this paper applies to the analysis of
prismatic shells, also called hipped-plate structures or '"Faltwerke',
and uses only techniques commonly employed in structural engineer-
ing analysis., A cylindrical shell is approximatcd by a prismatic
shell and analysed as such. In the analysis, extensive use is made
of a relaxation or distribution method. Both simply supported and
continuous shells are treated.

For the purpose of verifying the theory several test models
were built, both prismatic and cylindrical. Stresses were measured
with electric strain gages, and close agreement was found hetween

theory and experiments.,
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I. INTRODUCTION

The cylindrical and prismatic shells treated in this paper have

a wide application as reinforced concrete roofs for hangars, industrial
buildings, auditoriums and similar structures where large floor areas
are needed. Construction of this kind is not a new development as the
first such structures were erected in Europe as early as 1920; how-
ever they were hardly kno@ in this country until the early forties.
The number of concrete shell structures built in recent years has in-
creased some, since no other structural system makes such an econ-
omical use of materials, but the lack of a fairly simple design theory
has retarded the general use of these structures.

The majority of shell roofs used are cylindrical barrels. The
prismatic shells, which are similar to the cylindrical shells, consist
of several thin plates intersecting at parallel edges. Compared with
cylindrical shells, prismatic shells require simpler formwork and
are less likely to buckle, but, due to their greater bending moments
on an axial section, they are heavier and thus less adaptable to ex-
tremely large spans.

Both types of shells are supported by two or' more diaphragms
normal to the surface as shown in Figure 1. These structures can
therefore be considered as a special kind of simply supported or con-
tinuous beam. The shell can be analysed as an ordinary beam only if
it is rigid enough to maintain the shape of the cross-section under load.
However, since the thickness normal to the surface of the shell is gen-
erally small, the cross-section will deform and a moré elaborate theory

is needed in analysing the shell.



Figure 1

Prismatic Shell
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The first analyﬁcal solution of cylindrical shell stresses was
published by Liame and Clapeyron(lg)* in the early parts of the nine-
teenth century. They neglected the moments and transverse shearing
force.s and supposed that. only membrane forces (i. e. normal forces
and tangential shearing forces) act on the shell. In this case the
stresses in the shell are calculated according to the membrane the-
ory, which will give an approximate analysis for shells whose lengths
are of the same order of magnitude as their widths.

In 1892 Love(lg) presented the first general mathematical
theory of elasticity for cylindrical shells. This has afforded a basis
for the subsequent development in this field. Using this theory the
problem reduces in each particular case to the solution of a system
of three partial differential equations of second order. The solution
of these equations, however, is very complicated and is not practical
for engineering design. The first practical solution available for shell
roof design was developed by Finsterwalder(zn who gave an approxi-
mate solution of the problem. In this, the solution furnished by the
membrane theory is taken as a first approximation and the general
bending theory used only to satisfy the boundary conditions. The cyl-
indrical shells used in engineering practice are supported in such a
manner that the tangential and transverse displacements at the ends
vanish, For such shells experiments have shown that the twisting
moments, the bending moment and shearing force normal to the shell
surface on a section perpendicular to the axis of the shell are small
and can be neglected. In doing so the system of three simultaneous
partial differential equations can be reduced to the following single

*The numbers refer to the bibliography.
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partial differential equation of eighth order(39)

8 8
oM 2 M,
—21 (2iv) a® 5 4’6 ‘1’ + (1420) 4_4_?_4
9¢ 9x 0¢ ¢ ox Bcp
, 85M a4M . 2 4
+Z(2+V)a > ‘1’ + 4 tya ——J'L + (1+#) 'Tiz (1)
8x a¢ 96 <P 8¢?
R , 6 8*M
+(2+) a -——i+1z(1 - )"'i — =0
axZap> he  ax
where,
M, = bending moment per unit length of an axial section
¢ (cross-bending)
h =  thickness of shell
¥ = Poissons ratio
a, ¢, x as shown in Figure 2.
Yy

Figure 2

The solution of the eighth order differential equation is ob-

tained by use of Fourier series and the results obtained by this method

are quite satisfactory.
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The first attempt to give a solution of the stress analysis of
prismatic shells was by W, Ehlers(4). He considered that each plate
acts as a beam having large resistance to bending in its plane. Ehlers
also assumed the plates were hinged along the common edges so that
only shear could be transmitted from one plate to another. This cor-
responds to the membrane theory of the cylindrical shell.

Later E. Gruber(5)(8) considered the effect of the cross-bending
moment (the moment on an axial section) and found that the deflection
of the hinged shell may be 3-4 times that of the rigidly connected shell
and that the axial stresses on a cross-section differed as much as
100°%0. In developing the theory Gruber.neglected the twisting moments,
bending moment and shearing force normal to the shell surface on a sec-
tion perpendicular to the axis of the shell, as was done in the case of
the cylindrical shell., The membrane solution is taken as the basic so-
lution; however, the cross-bending moments are accounted for by ap-
plying statically equivalent correction loads at the joints. Using this
theory the problem reduces in each particular case to the solution of
the following r simultaneous differential equations of the fourth order,

where r is the number of sides of the she11(5).

a*m_ | a*m_ a*m_
- . .
S‘n-l,n — 4 + 2(S'n-],n+ S'n,n+1) 4 +85 n,n+l 4
dx dx dx
- = 4 4 2
p=r-1 ¥=r a*N a*N (2)
-1 +1

- 6E[ & P + g/ M,J = LRl g LR

¥ =0 yar tl =0 dX4 dX4

where :

pv,w 1= load in direction of the plate
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Mn-l = cross-bending moment (moment on an axial section)
at joint n-1
N a°= Normal force on section of plate n,n-1 perpendicular
o to axis of the shell
E,J,s = constants

By introducing Fourier series the above system of differen-
tial equations are reduced to the same number of simultaneous linear
algebraic equations. By solving these equations the solution of the

problem is obtained.

”/ Joint

Section of Prismatic Shell

Figure 3

The development of the analytical methods of calculating
stresses in cylindrical and prismatic shell has been outlincd above.
The results obtained by these methods are satisfactory for engineer-
ing purposes. The ;1nherent drawback of these methods, aside from
their being intricate and requiring very lengthy calculations, is that

the mathematical processes they utilize are such that they do not
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afford any insight into the physical processes involved. Also, even
if the calculations are systematized and use is made of tables com-
puted in advance, the designer must have more mathematical facility
than is customarily pussessed.

In developing the theory described in this pap‘er the following
restrictions are imposed on the problem:

1) The croee-section of the shell is constant along the axis.

2) The shell is restrained so that there is no tangential dis-
placement in the cross-section of the shell at the ends.

3) Displacements of the shell are sufficiently small so that
stresses produced by twisting can be neglected.

4) Displacements of the shell are sufficiently small so that
stresses produced by axial plate-bending can be neglected.

5) Displacements due to shear are sufficiently small so that
shear strain can be neglected.

The restrictions listed above are the same as those Finster-
walder and Gruber imposed in the development of their theories for
cylindrical and prismatic shells. The purpose of this paper is, there-
fore, to present a new method of analysis, that an engineer can handle
by making use only of the ordinary techniques employed in structural
analysis, The procedure used in the following analysis will apply to
such cases where the loading is of the form f(x)h (y), where x is the
axial coordinate and y is the transverse coordinate, and where the
variation of loading along the span is continuous. It will be seen that
if the loading is not continuous some small inaccuracies will be intro-

duced,
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In the case of prismatic shells the side plates are very
flexible in bending perpendicular to their planes, but are extremely
rigid and act as beams between the end diaphragms as regards de-
flecfion in their planes., An externally applied joint load P will
therefore resolve itself into components parallel to the two adjoin-
ing plates. These load components will be defined as plate loads.
In accordance with this all the external load will be reduced to plate
loads.

If the stréss distribution is independent of the distortion of
the cross-section from its original form, the shell is said to be a
membrane. The computation of the stresses is thena relatively
simple matter. For the shell considered here the stress distribu-
tion is strongly dependent upon the distortion of the cross-section.
First, the external load applied to the surface of the shell is dis-
tributed to the joints by bending in the shell. During distortion of
the cross-section a cross-bending is developed that has the effect
of redistributing the plate loads. From this point of view it is seen
that the distribution of axial stresses is identical with that of a pris-
matic membrane with appropriately adjusted panel point or joint
loads. The appropriate load at each joint is (Pn + APn' + APn"'),
where Pn is the tributary joint load from externally applied forces,
AP' is obtained by replacing the cross-bending moments due to the
distribution of the load by statically equivalent joint loads, and
API;‘ is obtained by replacing the cross-bending moments due to the
relative displacement of the joints by statically equivalent joint loads.

P and APﬁ' can be computed from the external loads. The APn”
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must be computed from the deflections of the plates. When APn”

is known for each joint the axial stresses and the cross-bending mo-
ments can be computed easily, The APn” will be called the correction
loads and it is their determination that is assential to the solution of
the problem,.

Consider now a cylindrical shell., The curved cross-section
is the limiting case of an inscribed polygon as the number of sides
increases. In principle the same method of analysis can be used for
the cylindrical shell as for the polygonal shell. In fact, as the length
of sides approaches zero the mathematical formulation of the pris-
matic shell goes into the partial differential equations of the cylin-
drical shell, If this convergence is rapid, the stresses in a polygonal
shell with a relatively small number of sides will give an adequate rep-
resentation of the stresses in the cylindrical shell. It will be shown
that this is the case and that a cylindrical shell can be approximated
adequately by a prismatic shell with a small number of sides. How-
ever, in obtaining the cross-bending moments a somewhat different
train of thought has to be followed. Since the characteristic feature
of a cylindrical shell is that it transmits the loads primarily by direct
stresses, no cross-bending moments are produced due to the distri-
bution of the load, as was the case for the prismatic shell, but there
are cross-bending moments induced by the distortion of the cross-
section, Consequently, the resultant cross-bending moment can be

calculated from APn“ .
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II. METHOD OF ANALYSIS

The nomenclature used in the analysis is shown in Figure 4
where each joint and plate is given a number. The direction of the
plates is given by the angle a with the following sign convention:
Draw a horizontal line through the joint n extending to the right.
Angle a is then measured from this line to the plate n + 1, counter-
clockwise being considered positive and clockwise negative. The

following terminology is used;

hn = width of plate n
tn = thickness of plate n

span of shell

total number of side plates

2:1 External loading

Given a shell and loading, the first step is to resolve all ex-
ternal loads into their components perpendicular (qn) and parallel

(p'n,n-l) to the respective surfaces on which they act. The shell is
then loaded with perpendicular load components q, as shown in Fig-
ure 5 (the tangential load components not being shown). Considering,
then, a transverse slice of unit width as a continuous framework

with pin supported joints, the end moments at each joint are com-
puted by the method of moment distribution. The number of slices
for which this must be done depends upon how rapidly the loading var-
ies along the span of the shell. The following expusition is fur a lvad-
ing uniform along the span in which case the analysis of a single slice

is sufficient. The actual moment distribution is the same as for the

continuous beam shown in Figure 6 and from the computed bending
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moments at the supports and the loads qa, the end reactions R, = etc.,

1,2

are computed. The following sign convention is adopted for the bend-
ing moments at the supports. A clockwise moment acting on the end

of a member is considered to be negative and a counterclockwise mo-
ment is considered to be positive. With this convention the fixed-end
moment -Y—‘n-l,n at the (n-1) end of member (n-1,n) is positive for a

positive load q_, and the fixed-end moment ¥'_ ._q1 18 negative. The

iy 4=

bar over the letter indicates a fixed-end moment and the prime indi-
cates that the moment is associated with the distribution of the 9, to
the joints. The distributed end moments are designated by the same
letter but with the bar omitted.

The reactions R1 Vi etc., are carried by the pin supports at
L4

the joints. If the pin supports are removed, the forces R1 3 etc. ,

with directions reversed must be considered to be acting on the joints
of the gehell. These loads act on the shell as shown in Figurc 7. De-

note the plate loads due to the reactions Rn 1.3 etee by p" The
T3

n,n-1

tangential forces P3 s P are considered positive when directed
3

n,n-1

from joint n to n-1, hence PLin= Py o1 The forces p'n ) n+p,::1 ol
Tt 3 A =i, s -

are then the plate loads corresponding to the Pn + AP’n.

2:2 Plate loads due to forces at the joints,

a) Joint loads perpendicular to plates
A portion of the shell to be considered is shown in Figure 8
with the joint loads acting. From Figure 8 it is seen that the plate

loads p " due to the R loads are:
n+l,n

1,
n,n Rn, n+l Rn+1, n+l Rn+l, n+2

p" = - — — - + = +
ntl,n sm(o,n_1 o.n) tan(a } tan(an

a .
n+l) sm(an-an

5 (3)
n-1 n +1)
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b) Vertical joint loads
If concentrated vertical loads act at the joints, the plate loads
can be found from Figure 9. The plate loads in terms of the vertical

loads are:

. cos a cos a

n+l n-1
n+l,n 51n(un+1 an) ntl  sinfa_ B‘n-l) n

where Fn = vertical joint load, considered positive when directed in-
ward, as shown, and pmn+1 o a%e plate loads due to the F-loads con-
3

sidered positive when directed from joint n+l to n.

2:3 Correction loads

Each plate in the shell is now loaded with a uniform plate load
along the span. Because of these plate loads the shell will deflect ap-
proximately as shown in Figure 10. Since the joints at a particular
cross-section do not deflect the same amounts the side plates will ro-
tate and induce cross-bending moments. These have a variation along
the span proportional to the deflections of the side plates. The reversed
end reactions corresponding to these moments are the joint loads
Qn-l,?i shown in Figure 10c,

The Q-loads in terms of the cross-bending moments are:

o i
Yn Yn-l

Q1,5 " o =-Q) 3 (5)

n

Q -, Qn a etc. are considered positive when directed inward. Y"
3

n-1,n n

is the moment at joint n at the center of the span due to deflection of
the shell, positive when producing compression on the outside surface.

The plate loads, W a1 at the center of the span, due to the
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{a)

(b)

Figure 10
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correction loads are given by Equation (3).
The problem now is to analyse a shell, hinged at the joints
but capable of resisting shear and loaded with the following plate

loads:

tn,n-l(x) = Pn,n—l * W1'1,n--1 F(x) (6)

where P, 1 is the total uniformly distributed plate load:
3

n-

(7)

—_ ] 3] LR [ ——
Pn,n-1"Pq,n-1 TP n,n-1 tp n,n-1 +

The axial stresses computed thus will be those of the continuous shell

under the externally applied loads.

2:4 Shear Equations (Membrane solution)

It the plates of the prismatic shell were not joined along their
common edges they would deflect as ordinary beams under their re-
spective plate loads, and sliding would occur along the joints. How-
ever the continuity at the joint prevents relative shift along the edges,
and consequently shear forces will be induced along the common edges.

Consider a portion of the shell, Figure lla, where internal
forces and moments produced by the arbitrary plate loads are indi-
cated. Figure llc shows positive shear and normal forces. Figure
11b shows the free body diagram of two adjoining plates.

The stress distribution over the cross-section of the plate can

be written,

N M_(x)y
Gl = 22, n o (8)

n n
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where a_ s 15 and Y, aTe; respectively, the area, moment of inertia,
and distance to the fiber where stress is desired, of the cross-section
of the nth plate.

From Figure llc,

M_(x) = J‘ T ndx - ofx’z’n_l dx

) X . X
Set T (x) = J’Z'ndx , T _(x)_ KTn—l dx
0 0
Then N {x} = T (x) - Tn-l,(x) . (9)
M (x) = MO(x) - To(x)e, =T (x)e (10)

Mno(x) is the moment that would exist at the section x of the nth plate
if the plate were to act as a beam under the plate loads only. Depend-
ing on the end conditions (simply supported, fixed at the ends, contin-
uous etc.) this moment would of coursc vary for the same load.

Along the common edge the stresses in two adjoining plates

must be equal for reasons of continuity, therefore,

(G, &) - = { ) e (11)
n, X Yn = ena n G’n+1’ x yn+l = bﬂ‘t’l,n
In the case of a rectangular cross-section of the plates,
h 3 2 hn .
= = =B = = = e
€n,n = Sn,n-1- 200 I 1/12 t h 1/12 ah’'=2 > (12)
6Z
or a_ =-—0 Z_ = section modulus
n g n
n

Substituting Equations (9) and (10) into Equation (8') and making

use of condition equation (11) one obtains
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h h
0 n n
Tn(x)-Tn-l(x) ) Mn(x)_Tn(x)_Z_— 'Tn—l(x)_z— hn _
2n Z -23 2
n 2

h h
; 0 n n
Ton(®) - T (x) N Mo -T (x5 - T y(x)5= by
a Hpn 2
n+l Z e
n 2

Rearranging the terms the equation becomes

0 0
h h h h M (x) M_ . {x)
n n n+l n+l _ n'" n+l
Tn_l(x) A + ZTn(x) (Z-—- + Z—-—)+Tn+1(x)z =3( > + > ) (13)
n n n+l n+l n n+l

It is seen that as many equations of this type can be written as there
are common joints in the structure or unknown shear forces. The

numerical solutions of these equations can be obtained by a distribu-
tion method as pointed out by Winter and Pei(m‘).

¥or a continuous beam with uniform loads of various magni-

tude on the spans the Three Moment Equation is

; L'n L'n Ln+l Ln-i-l
Mn-—l T + ZMn(—-—I + T ) + Mn+1 T
n n n+l n
3 3
w L W L
_ n n n+l " n+l -
RS s (14)
n n+l

It is seen that the form of Equation (14) is identical with that
of Equation (13) and that the following correspondence of terms can

be established:

n
h ~ L
Z ~ 1
n n 3
0 WnL
3Mn ~ . i
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The value of the shear forces at any section x can be obtained
readily by loading a conjugate continuous beam of spans hn and mo-

ment of inertia equal to 1/6 tn- hzn with the uniform loads

By performing a moment distribution the end moments obtained will
be equal in magnitude and sign to the shear forces at the respective

joints at section x.

12M9 12M2
y 12M]  w, = 31.1;_& wy = 3 12M],
1 _H'l_— 3 WN = hN
A A 4 y
¢ —) ¢ —) & ) ¢ —)
01 o Ty L1 Tos T,, TN—l,N TNt

Figure 12

Figure 12 shows the conjugate continuous beam with the uni-
form load (MOn assumed positive) and the fixed end conjugate mo-

——

ments T, ,» T (ive. T the fixed end moments at the end
n-l,n n,n-1 n,n-1

n of member n-1,n) due to these loads.
With the sign convention adopted for moment distribution,

counterclockwise positive, the fixed end moments will be (the bar

over Tn -1 indicates fixed end moment):
,n-
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12 MO M 0

..T = T = _1_. h 2 n = hil (15)
n-1,n n,n-1 12 "n h h
n n
The stiffness factor for the nth span is
t h
K =-2™n

n 6 (16)

When the load is of the form f(x) h(y) only one distribution process
need be carried out in order to determine the variation of the joint
shear force along the span. This is easily seen since for each plate
the moment Mon(x) = Crg(x) where g(x) is the same function of x for

each plate depending on the magnitudes of the plate loads. For in-

t for unifor late loads ()-4x-4x2andC = LZ
sgnce, or u m pla oa Z2ix i i —I:‘—Z—' n-—pn,n_l—g-.
The fixed end moments will be:

— — Cn

Tan1,nt® = Ty nale) =5 &) (17)

Since g(x) is a common factor for the fixed end moments for

each span of the conjugate beam, all that is necessary is to distribute

C

—B—I}- and multiply the result with g(x) and the variation of the shear is
n

known. The shear forces are then maximum at the same place Mg(x)

is maximum.

2:5 Deformation of the shell

Consider now the deformation of the shell and assume that
the hinged shell is cut along the joint so that each plate n can deflect
in its plane. Let the deflection of the nthplate at the center be Y,
As shown in Figure 13 the joint n will move to n' as a point on the

late n, and to n'' as a point on plate n+l. The plates n and n+l
b 1% P 1Y
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Figure 13

can be rotated and translated until n' and n'' coincide at n'''. From

Figure 13 the deflections perpendicular to the plates are:

y

- n - -
T, nfl ~ (cos(a -a ) Yn+1)(mt g o, 4 O'n) (18)
n-1 "n
Yy .
n+l
0,5~ Un ~ Sosla, e yeotglay ;- ay) (19)
n-1 "mn

and — are considered positive when joint n moves inward,
nn, n+i nn, n p J

The total relative deflection perpendicular to plate n is then:

n,n

9% = "m,n " Mn-1,7 (20)
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Substituting Equations (18) and (19) into Egquation (20)

d = -Y,.1 cosec(an_z-an_l) + yn{cot(an_l-an) + cot (an_z—an_l)}

cosec(anal-a (21)

—Yn-i-l n)

As was shown in Section 2:3 the fixed end moments due to relative dis-

placement of the joints are:

- 6EJ_ Et >
" =3 = —m—d F——— d_; (22)
n-i,n n,n-1 h2 (1-?2) n th(l- VZ) n
n n
where J_=1/121 3 and Y and Y' are positive counterclock-
n n n-l1,n n,n-1

wise when dr1 is positive,
Substituting Equation (21) into (22) the fixed end moment at the

center of the span is obtained
< 1
" = i . -
?n-l,n Yn,n—l A [ Yn-1 €08€C (O‘n-Z an—l)

+ Y, {cot(an_l—an) + cot (un-Z_o‘n-l)} - Yp41€08€c (o.n_l-an):l (23)

Et3
n

[ 705 9

B

Equation (23) shows that the fixed end moments at the joints
due to relative displacement of the joints can be exbressed as a func-
tion of Yy the beam deflection of the side plates. The beam deflec-
tions are produced by the uniform plate load Py, n-1 plus the correction
l6ad W, n-1" The variation of W on-1 along the span is proportional
to the deflections of the side plates; however, it will be assumed that

the corrcection loads (wn n 1) have the same variation along the span
,n-

as the beam deflection of the side plates due to a uniform load. For
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finding the deflection this amounts to replacing the actual correction
load with an equivalent uniformly distributed load that will give the

'same deflection at the center of the span. It is therefore necessary

to know the deflection at the center of the span due to the actual cor-
rection load. Let F(x) be the variation of the deflection of the side

plate due to uniform load; then the correction load will be:

o, n~1(x) = Wn,n—lF(X) (25)

Since the true correction loads are to be replaced by
wn’n_lF(x), the deflection at the center of the span can be obtained
by using this load. For uniform load F(x) is a polynomial of fourth
order and the deflection frorﬁ this load is an eighth order polynomial.
However, since the deflection of a beam is relatively insensitive to
small variations of the load distribution, in what follows F (x) is taken
to be a sine curve for convenience. This simplification introduces
negligible errors.

Thus, two approximations have been made. The first, which

takes

¥n,0-1%) = Wy, q 1 FX)

is essential in this method of analysis., The second, that F(x) can

be approximated by a sine curve, is not a necessity, but it simpli-
fies the algebra considerably. Hereafter M, Y, T,N,y or G with single
prime (') refer to external loads and with a double prime (") refer to
correction loads. Without any prime they refer to the total effect of
external and correction loads. (Note: p without a prime is the total
plate load due to the external loads, whereas w is the plate correction

load at the center).
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1II. ANALYSIS OF PRISMATIC SHELLS WITH

DIFFERENT END CONDITIONS

To demonstrate how this analysis is applied, three particu-
lar cases with different end conditions will be considered. A numer-
ical example is given at the end of the chapter for the case of simply
-supported ends.

As shown in the preceding discussion, only one conjugate
moment distribution is necessary for calculating the shear forces.
These forces will be determined at the center of the span and the

following notation will be used for convenience:

2
M - Pn,n-lL
n 8
0 w LZ (26)
M = n,n-1
n 2

The shear forces corresponding to Mg' and Mg" will be denoted by
TI’1 and T;‘l respectively. The wvalue of any quantity such as Mg' at

a point x will be denoted by Mg' {x).

3:1 Simply supported

a) Uniform plate load
Figure l4a shows the nth plate loaded with uniform plate load

P and Figure 14b the corresponding moment curve Mg; (x)e Fig-

n,n-1
ure 14c and 14d show the shear force and shear intensity distribution.
First the bending moments at the center of each plate produced

by p, ,, ; must be found. For simply supported ends, these are

MO‘ _ pn,n-lL (x) _ L
L 8§ [gl XJ x 2 (27)
n, X=5-
= MO'



27

n

-1

z

y!

§

-

n-1 Figure 14

W (x)=w
n,n—li) n,n-1

0,/ _ Wn, n-1
MOx) = 2Bl
w

T (%) = T gy(x)

WT”
[} - g8
T' n(X) = -L——COE

™
L

where

n-1

"X

Sin-——

L

L2

gl'(x)

{a)

(b)

{c)

(d)

{e)

{a)

(k)

{c)

(e)

Pow {constant)
2
’ L
Oy, _ P}fx,n-l o
M =) = —g—— gyix

T ! 8
T1x) =2 (4 - 52)
whexre
g {x) = ﬁi:. - .‘.%}.i_é
1 2 LZ
,,,/Wn, n-1
: n
~
Myl
M0

/

LT

T ‘?Wn s+l

Figure 15
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where

2
4 4
glx) = 7 - —E‘z— (28)

Hence, the corresponding fixed end conjugate moments for

determining the shears at the center of the span are:
MO‘ LZ

P
_ = -._.n _ “n,n-l -
Tn-l, n Tn, n-1 hn - 8hn (29)

From the results of the conjugate moment distribution, the

shear force at the nth joint can then be written:
T, (x) = T}, g)(x) (30)

where g(x) is defined by Equation (28).
1
The moment Mn(x) due to the uniform load Py on-1 and the

shear forces T;l(x) and T;l_l(x) is from Figure 15e:

' LZ - 4T1"l hn 4T;1_111n
M=) =5 [Pn,n—l B L2 B L2 :I g(x)
or
An,n-l 2
M} (x) = g gy(x) (31)
where

Al nc1Ph a1 - (32)
n,n-1 n, n-1 LZ LZ
The deflection of the nth plate is:
5An n-1 §
Yl = 3grEr— F1 ) (33)
where 3
16x 2x x
Fix) = (g7 NM1- — + =),
1 5L LZ L3 (34)

3

and In =1/12 t hn
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The moment and deflection at any section x due to the uniform
plate load Ph,n-1 plus the shear forces at the edges are thus equal to
the moment and deflection in the same beam loaded with an equivalent

uniform load A only.
n,n-1

H

'b) Correction loads

Figures 15a and b show the sine distributed plate load and the
corresponding moment curve M?l”(x) respectively, Figure 15¢ and
Figure 15d show the shear force and shear inlensily respectlively,

For the purpose of finding the bending moment and the deflec-
tion of the plates approximate Fl(x) (Equation 34)) with a sine curve.

The correction load may then be written as:

Fl(x) : w sinl)s

wn,n—l(x) - Wn,n—l n,n-1 L.

The bending moments at the center of the span produced by the Woono1
3

L TX
sin —-— are:

L
2
W L
0 n,n-1
MY L= ——— g(x)| _ L (35)
n,x=> 1‘_2 [ 2 ]X =5
where gz(x) - sin _T’__;‘ (36)

Hence, the fixed end conjugatec moments at the center of the span cor-

responding to M(il" are

_ _ 0, wn’n_le (37)
- TH = TH = =
nrl,n n,n-1 hn 11'2 hn

The shear force at the nth plate will be:

it -— 1 38
T_"(x) = T!! g,(x) (38)
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The moment MH (%) due to the sine distributed W on 1(x) load
,n-

and the shear forces T;_l(x) and T; (x) is then from Figure 15e

2 T wzh T 1r2h
M (x) = 2 (w conl n BBy ()
n'" 1r2 n,n-1 ZLZ 21..2 2
LZ
°r hﬂﬁx):'—i Bn,n-l' g (=) (39)
m
where
™ 11r2hn ! -rrzhn
B = (w - - - ) (40)
n,n-1 n,n-1 ZLZ ZLZ

The moment and deflection at any section x produced by a sine distributed
plate correction load and the corresponding joint shears are then equal
to the moment and deflection in the same beam loaded with an equivalent

sine distributed plate load Bn n-

H

1 only. The deflection of the nth plate

is: 4
' Bn n-lL
v (%) = ——— F,(x) (41)
n 'rr4EI 2
n
where
. TX
Fz(x) = sin 5~
1 3 - (42)
In =1z tnhn

The total deflection due to both the uniform plate load and the
correction load will then be:

5A L4 B L4

n,n-1 n,n-1
y = Fy(x) + =3 F,(x) (43)
384 EI_ 1 TE] 2

It is now necessary to approximate Fz(x) by Fl(x). This amounts to re-
placing the correction load with an equivalent uniform load, as discussed

in the previous chapter.
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Then

4
_ 5 L
Yo = 35T BT B, 1 ¥ 0- 7885 B, ) RGO (44)
4
4 L'E
5 L 5 n,n-1
=2 “_E F.(x) = ——F,(x) (45)
384 EIn n,n-1"1 32 Et h 3 1
nn
where En,n—l = An,n—l + 0.7885 Bn,n-l (46)

Substituting Equation (45) into Equation (23} the general expression

for the fixed end cross-bending moments is

— 1 :
t - ] -
Y —1,n(x) - Yn,n 1(x) "B Hn,n-—l Fl(x) (47)
where
E
H = n-1,n-2 sec (a_ - a_ )
n,n-1 ¢ 3 n-2 n-1
n-1" n-1
(48)
En n-} En+1 n
+ -——’—-3— cot (an_l-an) + cot(an_z—un_l) - —-—-—-——-’-3—-———cosec(an_1~an)
t h t h
nn nil n+l
and
. sL% 3
= A (49)

B tan 2(1-v%
n
Fl(x) is defined by Equation (34).

3:2 One end fixed, the other simply supported

The method of solving this problem is the same as for the

case of simply supported ends. As before the shear forces and the

deflection of the plates at the center of the span will be found.
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a) Uniform plate load (See Figure 16)

Moments at the center of the span are:

2
MO, L= n,n-lL (x) L
n,x== 8 [glx]x=- (50)
2 2
where
2
3 4
g(x) =% - =5 (51)

L
Hence, the fixed end conjugate moments at the center of the span cor-
responding to M%‘ are given by Equation (29). The shear force at the

nth joint will be:

T;l(x) = Tx"x gl(x) (52)

where gl(x) is defined by Equation (51).
The moment M;’x(x) due to the uniform load Py op-1 and the shear forces
,n-
! )
Tn(x) and Tn-l(x) are then

2 4 T!' h 4T h

_L n-1n nn
M) =gy -7 ~—z )& (53)
L L
L2
H -
or Mn(x) = An,n-—l 5 gl(x) (54)
4T |h  4T!h
where Ann-1~Pon-1” 2 ) 2 (55)

L L

The deflection of the nth plate will then be:

. An,n—l *
7o¥) =gz Er — B (56)
n
2 3
where 4x 3x 2x
Fx) = ()1 - S5+ —3)

1 3
In 12z 1:nhn
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b) Correction loads (See Figure 17)

Yn, n-l(x) = ¥n,n-1 Fl(x) = wn, n-1

where Fl(x) is defined by Equation (57).

The bending moments at the center of the span produced by

. si nx
Wn’n'l n L
2
MO p = Smimil ( L 58
n,x= 3 2 [gz %) (L (58)
2 ™ 2
_ mx _ 3x ;
where gz(x) = sin 3= - (59)

The fixed end conjugate moments at the center of the span cor-
responding to Mgl” are then given by Equation (37).

The shear forces will be:
Th(x) = T g,(%) (60)

where gz(x) is defined by Equation (59).
The moment Mg(x) due to the sine distributed w n_1(x) and
3

the shear forces Tg(x) and T;_l(x) are then,

2 2
2 T TH h T TH h
L ‘n-1"n nn
M (X) - 2= (W - - g (x) (61)
n T,TZ n ZLZ ZLZ /122
2
B 1
or M’x'x(x) = ___J_Z_____ gz(x) (62)
™
2 2
T TH h Tr TH h
where B 17 (Wn n-1"~ 1'1;1 - - nZ - ) (63)
w R S 2L 2L

The deflection of the nth plate is,



Jrx) = o ner’ F(x) (64)
n' 1r4Eln \ 2 | 04
where 3
0 = glprten B 4 2 2 -

Now, take Fz(x) = ,Fl(x); then the total deflection due to both the uni-

form plate load and the correction load will be:

L4

Yn = THZEL, Pa,n1t 0810 By ) Fylx) (661

E L4
n,n-1

" psEr_ Fil® (67)

where

E A + 0.810 Bn

n,n-1" ‘n,n-1 ,n-1

(68)

Substituting Equation (67) into Equation (23) the general expression

for the fixed end cross-bending moments is,

] - T - 2
Yooy, nl®) = ¥y pqx) = B Hy na F13) (69)
where H _ _; and Fl(x') are defined by Equation (48) and (57), respec-
tively and
4.3 ,
1_ = b tn, (70)

B3 h_2(1-v?)
3:3 Continuous Shells

The case with moments applied at both ends of a span will be

treated in this section. Let the moment at the left end be M'n a and
]

at the right end be M’n,b'
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a) Uniform plate load (See Figure 18).

The moments at the center of the span are:

0, L _Pn n—lLZ (71)
SN R g
where
: 4x 4x2 X X
g(x) = - ~z tefl-3)+by (72)
M! 8 .
c= M2 b= Mnn? (73)
pn, n"‘].L Pn, n"l

The fixed end conjugate moments at the center of the span correspond-
ing to M?'; are given by Equation (29). The shear force at the nth

joint will be:
T (x) =T gx) (74)

where g(x) is defined by Equation (72).
The mement M;l(x) due to the uniform load Py -1 the end
1
moments Mna and Ml,lb and the shear forces Tl’l(x) and Tx'a-l(x) is then

2

_ L
My(x) = A 177 &® , (75)
whezre
4 T;I 1 hn 4 Tln hn
A = p _ - N _ ! (76)
n,n-1 n,n-1 LZ LZ

The deflection of the nth plate will then be:

4 4
A L A oL GLI2)

Vol*¥) = gt gr— G®) =~

Fy(x) (77)
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where
: 3 2 3 3
2x 4x 3x X bx
Gi(x) = - - ¢ (7= - 25) - 2 + 2(l4ctb/2) 3
1 e 78
L4 L3 L% L3 L3 L (78)
Gy()

and Fl(x) = —_T—ml 173 (79)

b) Correction loads (See Figure 19)

. X
S1in ——

wn,n-l(x) =W n,n-1 L

n,n-1 F1(%) = w

where

The bending moments at the center of the span produced by

W, oo Sin F_g. is: (where Fy(x) is defined by Equation (57)
Mon L = Wn, n-le ] L 80
n, x= =7 2 [gz(x) K= ( )
2 2
where
— ai.. AX X X
gp(x) = sin4= +s(l -g) +uyg (81)
My My, T
§=—7 > U= (82)
w_ L w_L
n n

The fixed end conjugate moments at the center of the span correspond-
ing to Molfl' are then given by Equation (37).

The shear forces will be:
T (x) = T} g,(x) ‘ (83)

where g,(x) is defined by Equation (81).
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The moment M’l‘q(x) due to the sine distributed load W n-l(x)’

the end ifnoments M;a and Mgb and the shear forces are then,

2

L
11 —-—
M=) =B o1 = g,(x)

"where
2 1 2 5t
Ty, W Tnhn)
n,n-l 5,2 2L.°

- (w

Bn,n~1 -

The deflection of the nth plate will then be:

4 4 :
B L B L G, (L/2)
i1 (X) - n’ Il-]. G (X) - 1’1, n"'l Z F (X)
Yal¥ = =7 4,l v £ 2
T EI 7 EI
n n
where
L TX s-n-2 xz x3 uwzx 1 2 VX
Golx) = sin Fr-S— (12 - —3)- 5 —3 * 37 (stu/2) ¢

3L L

G,(x)
Fz(x =
GZ(L/Z)
Approximaling FZ(X) by Fl(x), Equation (86) becomes:
4
B’n, n—lL GZ(L/Z) A
v (x) = .3 : Fl(x)
n m EI
n
The total deflection will then bc,
| L* Gy(L/2) | 48G,(L/2)

V%) = e A
n 48 K1 n,n-l G (L/2)

L*G(L/2) |
T EEEL En,n-1 Fix)

Bn, n-1 Fl(x)

(84)

(85)

(86)

(87)

(88)

(89)

(90)
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where

= 1

n,n-1" An,n-l Y Bn,n-] (91)
48G,(L/2)

= : 92

VEg—— (92)

7" G(L/2)

Substituting Equation (90) into Equation (23), the general equa-

tion for the fixed end cross-bending moments is
— . _ _ 1 93
Tl =T 00 =g H L Fii) (93)

where H n-1 and Fl(x) are defined by Equations (48) and (79) respec-
tively, and
4.3 '
1 _ LG (L/2) (94)
B~ a2 Z,
8h%, (1-v)

Summary of Formulas

Plate bending moments:

2 2
A L B L :
n,n-1 n, n-1 95
Mn(x) = — gl(x) + ——?——— gz(x) (95)
Joint shear forces:
—- 1) . ; ’ (9())
Tn(X) - T]‘.’l gl(x) + Tn gz(x)
Since Nn = Tn - Tn-l
NL() = N} gylx) + N g, (x) (97)
Longitudinal stress:
N M
. __n n (98)
Since 61 = A _j-_—-——Z ,
n n

Gl = oy gi{x) + o g,(x) (99)
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Cross bending moment:

Yo=Y+ Y Fi(x) (100)

n-1n n n
A L 15P 1" - (101a)
n,n-1 n,n-1 LZ L2 )
2 i3] 1¢
- nOTh jh 4T h
B =W - - (101b)
n, n-1 n,n~1 ZLZ ZL2

The fixed end bending moments at the center of the span due to rotation

of the plates are:

] - 7 - |
'n-,n~ "n,n-1" B “n,n-1 (102)
L4 36 (L2
1. n 1 103
B 8n_2(1- v%) (1032)
n
_ _n-1,n-2
Hn,n-l = ¢ b - cosec (an-1 - °‘n-1) : (103b)
n,n-1 ' 1,
+ —— {cot (an_l-an) + cot (an_z—an_l)} -1:—9—%—13- cosec (an_l-qn)
t, By n+l n+l
where
En, n-17 An, n-1 Y Bn,n-l
) 48 GZ(L/Z) ’ (104)
™ Gy(L/2)

Gy(x) and Gz(x) are defined by Equations (78) and (87) respectively.

3:4 Procedure in solving a problem

First, a moment distribution must be performed on the fixed
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end cross-bending moments, -Y-n, n-1° caused by the rotation of the
plates, as given by Equation (102). Since Equation (102) contains the
unknown En, n-1° the distributed moments Y‘r; will also depend on the
unknown En. n-1' Thus it is necessary to distribute the coefficients

of En 1 and this is most conveniently done by performing separate

distributions for the coefficients of each unknown En _] occurring

2

in the set of Equations for _Y:'; (See example in Section 3:5, Fig-

,n-1°
ure 21'). From the superposition of the results of the moment dis-
tributions one can now write the expressions for the moments Y;;
at the joints and the correction loads Q — in terms of the E
n-i,n n,n-1

by Equation (5).

Let C-lzo be the moment at joint 2 from the distribution of the
coefficients of the EIO's. In general, let Cnm,m-l be the moment at
n due to the distribution of the coefficients of the Em,m-l' Then,
from Equation (102)
v=clE +ci B, +cPE,, - c™ IR +10s)

From Equation (5)

1E;,

_ _r~10 10 21 21
hn pQn—l,; - Y'l"l - Yg—l_ - [Cn - Cn-l + [Cn - Cn-l]EZI t--

(106)

m,m-l ,m,m- L
---t [Cn -Cn-l ﬂ’Em, rr-1'-1

where B is defined by Equation (103a) En,n-len,n-1+ YBn’ n-1

where Y is defined by Equation (104).
The next step is to determine the A:r1 n-1 from the actual loading

2

on the shell. This requires one distribution process to determine the
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plate loads, and one to determine the shear forces.
After determining the An n-1 it is necessary to determine

the B This is done by applying the correction loads Ql— =1

n,n-1°
and QZ_Z_ = -1 (if the cross-section is symmetrical, also apply the
loads symmetrical to these), and finding the shear forces produced
by these loads. This is done by the conjugate moment distributions.
From the plate load w and the shear due to le =1 and Q = = -1

only the equivalent correction plate loads, Bn,n-l’ are determined
by Equation (106b), Then applying Q,3 =l and Qg = -1, their cquiva-
lent correction plate loads are determined, and so forth for the other
Q's. Let the equivalent correction plate loads produced by le =1

12 m-l,m

and Q,~ = -1 be Bn’n__1 etc. In general, let B . n-1 be the equiva-

lent correction plate load of the Q 1, and Q . m = -1, Then the

actual correction load is expressed by

12 2.3 m-l,m

Bhn-178n,n-1? Dzt By nor 3t - B 00 Qo mt o (107)

and it follows then that

12 23 m-1l,m
Qiz+B, 1 Q3+ --+B,

n,n-

E =A

n,n-1 “"n,n-1 +¥(B n,n-1

Q +--)(108)

m-1,m
Substituting Equations (108) into Equations (106) a set of simultaneous
equations in Qn 1.5 are obtained. The solution of these equations
Rt
gives the actual correction loads. Knowing the correction loads, the
cross-bending moments, the loads Bn n-1 and the shear T;; can be
,n-

computed and these determine the longitudinal stresses. The values

for Qn-—l 5 B n,n-1’ Tg and q‘-l'l‘ are determined at the center of the
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span and the variation along the span is found by multiplying with
the appropriate function of x. (See page 54 ).

The same procedure also applies for any different end con-
ditions. In fact, if the solution for the simply supported shell is
known, a shell of any span and end condition with the same type of
loading and cross-section can be solved readily since all the mo-
ment distributions over the cross-section are unchanged.

For the continuous shell, the end moments M;la’ leb, M::;a
and M'I'lb shown in Figures 18 and 19, may be obtained by perform-

ing a moment distribution in the longitudinal direction, over the

total length of the structure. The fixed end moments are:

. _ 2

Uniform load MFixed = -1/12 pL
. _ YA 2

Sine load MFixed = - ;—5 wlL

Since the value of the Q's (correction loads) is quite sensi-
tive to small changes in the coefficients of Equations (106) and (108)
it is necessary to carry out the calculations using a calculating
machine. For the same reason, when approximating the cylindri-
cal shell with a prismatic shell, the angles between the side plates

(a,-a _;) should not be less than 10 degrees.

3:5 Example, simply supported shell

To illustrate the applications of the method the stresses will
be investigated for a simply supported shell having the cross-sec-
tion shown in Figure 20. Poisson's ratio is taken to be zero and the

loading on the shell is as follows.
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s

Span L = 60 {t.

Figure 20
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2 2
Dead lL.oad per ft° of plate 1: 90 1b. /ft.
Dead Load per ft. % of plates 2, 3 and 4: 52 1b. /ft.

The cross-section and loading are symmetrical about the centerline.

TABLE 1
Joint No. (1) (2) (3) {4) (5) (6)
n a cosa sing a -a cot cosec
n n n n-1 "n (u.n_l-an) (un_l'an)

0 90 0 1

1 30 0. 8660 0. 5000 60 0.5774 1.1547
2 15 0.9659 0. 2588 15 3.7321 3.8637
3 0 1 0 15 3.7321 3.8637
4 -15 0.9659 -0. 2588 15 3.7321 3.8637

From Equation (3) and Table 1 the equations for the plate loads in terms

of the joint loads (R-loads or Q-loads) are:

pyp = 1.1547 Ry

Py, = -0.5774 R 5 + 3.7321 Ry5 + 3.8637 R,= (109)

py, = -3.8637 R,> - 3.7321 R,z + 3.7321 Rz + 3.8637 Rz

From Equation (47) and Table 1 the fixed end moments due to deflection

in terms of the loads E are:
n,n-1

i = N
Y12 - YZl

+ 16,2258 E,, - 14.5474 E

(110)

XFri - XFi1
Y3 = Y3,

-14.5474 E_,. +28.1040 E

21 32
Equations (109) and (110) are the basic equations in the solution of this

problem.




-47-

Dy distributing the cocificient of each En term the moment ¥')

sn-1

at the joints are determined as functions of the En a-1 loads as shown
3

below.

Distribution of coefficient of ElO

1 2 3 4

1 1/2 |1/2 1/211/2 1/211/2

-9.9860 -9.9860 |0 00 oo

0 -2.6319 |+2.6319 0.5193}-0.5193 0.5193]-0.5193
(a)

Distribution of coefficient of E21

1 2 3 4

1 1/211/2 1/211/2 1/211/2

16.2258 16.2258|-14,5474 -14.5474 |0 0|14.5474

0 8.8668 | -8.8668 -4.6780 |+4.6780 -4.6780[+4.6780
(b)

Distribution of coefficients of E32

1 2 3 4

1 1/2(1/2 1/211/2 1/2(1/2

~14, 5474 -14.5474(28.1040 28.1040 |0 0| -28.1040

0 -12.7022| 12.7022 8.1633|-8,1633 8.1633(8.1633
(c)

From the result of the moment distribution Y"I'1 is obtained.

Yy =0
Y'Y = -2.6319 B +8.8668 E,) - 12.7022 E,, (111)
Yy = 0.5193 E;( - 4.6780 E,; + 8.1633 E5,



The correction loads are

1

-_2 _
Ql-z-—— = ~-0.3750 E

7 1

Wi

QZ'S' = — 0.4502 EIO - 1.9350 E21+ 2.9808 E

Where E = A
n

,n-1 n,n-1

The next step is to determine the An
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ot 1.2667 E

+ 0.7885 B
n

Load perpendicular to plates:

52 cos 30° = 45.0 1b. /ft. 2

21

ER

- 1.8146 E3

sh-1

2

] @8 follows.

32

Load parallel to plates:

(112)

—_ 1 — .

a, = Plg = 90 x 4 = 360 b, /ft.
q; = 52 cos 15° = 50,2 1b. /ft. 2 pl = 52 x 7 sin 30° = 182 1b. /ft.
q = 52 cos 0° = 52.0 Ib. /ft. 2 Py, = 52 x 7 sin 15° = 94. 2 Ib. /it.
The fixed end moments are
- 2 - - - -

1 — 1 — — . 1 - 1 — . _ ]
Y}, = -"'?m =1/12 q,7" =183.9; ¥, =-Y}, =205.1; Y}, = -V}

The result of the moment distribution is shown below:

1 2 3 4

1 1/201/2 1/211/2 1/2

183.9 -183.9 |205.1 -205.1(212.3 -212.3

0 -241.1 |241.1 -202.2}202.2 -202.2
q, 93 dy

1&1&&11[)(1

Ryz R,z

Figure

x

)
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Thus,
t R— ! - - o -
Y1 =0, 'Y2 241.1, Yg,’ 202, 2 ft. -1bs.
‘R17= 123.2, R, ,==192.1, RZ§= 181.4 1bs.

22
R3-3- = 170. 2, R3Z = 182. 0, R4'Z = 182.0 1lbs,

From Equation (109)

p"lo = 142.2, p‘él = 1346. 6, p'éz = -80.7 lbs.
: = n! 1]
Then, since Phn-1. pn,n—l + P, n-1
Pyg = 502.2, p,; = 1528.5, Py, = 13.7 lbs.
It is now necessary to determine the shear produced by Py -1 28
follows:
The fixed end conj t ts gi by T = M r
e fixed end jugate moments givenby T) ., = Shn are
T = T, = T! =
T10 56, 500, ’I‘21 98, 258, T32 - 884

The result of distributing the fixed end ''shears' and the equivalent

loads are shown below

0 1 2 3
1 0.5712] 0. 4286 1/2{1/2 1/211/2
-56, 500 56,500| -98, 258 98, 258 | -884 884 |0
0 105, 446|-105,446 52,080 |-52, 080 -16,456 |16, 456
T 105, 446 52, 080 -16, 456
4T!'h )
‘;n 0 468.6 |820.1 405.1 -128
L

Figure 23
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Then from Equation (32) and Figure 23

Ajg =502.2 - 468.6 = 33.6
A, =1528.5 - 820.1 - 405.1 = 303.3
A, =13.7 - 405.1 +128.0 = -263.4
Since T} = 105, 446, T}, = 52,080, T} = -16,456 lbs.
N| = 105,446, N}, = -53,366, N} = -68, 536, N} = 32,912 lbs.
LZ |
(M! S mn-lt 215,200, MY = 136, 500
,,nmax——g’— 1"’ 3 b 3 2-, 3 ]

M} = -118, 500 ft. /Ibs.

Then axial stresses are:

where
Nn Mn
- On-1= e iz: ) a =336 in. a,=aj=a,= 252 in.
Z1 = 2688 in. Z2 = 3528 in,
For plate 1
. _ 105,466 , 15,200x 12 _ _ .. 2
Gy = 33% + ’2688 = 314 + 68 = 382 1bs, /in.
0‘|' = 314 - 68 = 246
For plate 2
, _ -53,366 136,500x 12 _ -
Q—-‘Z = -212 - 464 = -676
For plate 3
G‘E = -272 - 403 = -675

gL = -272 + 403 = 131
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For plate 4
32,912
P =22 2 =
g3~ 252 131

The stress at the extreme fiber of each individual plate is now cal-
culated. Compéring the stress at a joint calculated for two adjacent
plates will give a check on the accuracy of the moment distribution
performed in obtaining the shear forces.

The above stresses are plotted in Figure 26 as the broken line
labeled “"hinged''.

To determine the Bn n-1 the procedure is as follows:

L

a} Apply correction loads Q,5 =1, Q,5 = -1 (also Q,+=1,Q 7 = -1).
12 22 66 56

From Equation (109)

= 1.1547, Woy = -4.3095, w,, = 3.8637

Y10 1 32
From these loads the following shears are computed and a moment

distribution performed.

2
T - LXWn.n-l1 = _
= cndiai A £ ST 2 S 3 = - -
T, n-1 5 JT}, = 105.3, Ty, = -224.57, Ty, = 201.34
w xh
0 1 2 3
1 0.5714 |0.4286 1/2|1/2 - 1/2|1/z2

-105.30 105.30 }224.57 -224.57(-201.34 201.34(0

0 -112.73 |112.73  -42.74| 42.74 215.15]-215.15
T';x -112.73 -42.74 215,15
WZT';lhn
— -0.6210{ -1.0817 -0.4101 2.0644
2L

Figure 24
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b) Apply correction loads Q=1 Q3= -1 (also Q— = 1, Qz = -1)
From Equation (109)

= 3.8637, W3o

From these loads the following shears are computed and a moment

distribution performed,.

‘T"l'o =0, Tgl = 201.34, T, = -388.97
0 1 2 3
1 0.5714 |0.4286 1/2|1/2 1/211/2
0 0 -201.34 201.34|388.97 -388.97( 0
0 201,96 [-201.96 -102,92|102.92 -354, 26| 354.26

T" 201.96 -102.96 -354,26
T,

—s 1.1073 | 1.9378 -0.9875 -3.3991
- Figure 25

Equation (40) and Figures 24 and 25 give the following expressions

for the correction loads and shears.

B

B, = (1.1547 + 0.6210) Qz - 1.1073 Q,3=1.7757 Q)5 - 1.10730,3
_'1321 = -2,2094 Q5 + 2.9134 Q,z | (113)
32 = 2.2094 Q5 - 3.0776 Q %
T = -112.73 Q5 +201.96 Q.=
"= -42.74 Q5 - 102.92 Qx (114)
T4 = 215.20 Q7 - 354.86 Q,=
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Since En,n-l = An,nd + 0.7885 Bn, n.] the expressions for En, n-1
in terms of Ql-z- and QZ—?; are
E21 =303.3 - 1.9470 le-t- 2.1223 Qz-g- (115)
Ejp = -263.4 +1.4378 Qli - 1.6187 Q7
Substituting the above equations into Equations (112) gives
(116)
ng = -1356.90 +10.1073 Ql-z- - 12.0719 QZ-3-
or
7.4892 Qli - 7.6393 Qz-?;- = 849. 56
(117)

10,1073 QI—Z' =13.1719 Q2§ = 1356.90

Solving these two equations for Qli and Q2§ gives

Ql-z— = 35.72, = -76.19

Q3
These are the forces of two couples which determine the moments

YH

2 and Y

1
»

3

Yg = 250 ft. ~lbs., Yg = - 283 ft.-1bs.

From Equations (113) and (114), which are the general expressions

for the T"s and B s these are obtained:

T' = -19,400, T% =6,320, T'% = 34,800 lbs.

1 3

Big~= 147.8, BZl = -322. 2, B32 = 313.40 lbs. -ft.
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These values determine the forces N' and moments M" to be

NH

1= -19,400, N‘é = 25,720, N”3 = 28,480, N’;l = -69, 600 1bs.

M‘i = 53,910, M“Z = -117, 550, M':',’ = 114,320 ft.- 1bs.

From these values for the forces and moments the longitudinal

stresses are computed as follows:

Plate 1:

b = "193:34600 + 53’92128}; 12 _ _ 58+ 241 = 183 Ibs. /in. 2
’1'=-58—241=—299

Plate 2:

O—‘i - 25;,57220 _ 117,3555208x 12 _ 102 - 400 = - 298

G-”Z = 102 + 400 = 502

Plate 3:

Q—-“Z =113 + 389 = 502

gy =113 - 389 = -276

Plate 4:

n _ -69,600 _

a'3T 257 = - 276

The general expressions for the longitudinal stresses along the span

are obtained by combining the ¢' and the ¢'' and are: (See Egn. 99)

Gp = 382 gl(x) + 183 gz(x) 2
gl(x) = 4(% -X
G =24 glx) - 299 gy(x) ¢ LA
(118)
= -675 + 502
G2 g,(x) gx(x) g,(x) = sin T

]
1

G3 = 131 gi(x) 276 gz(x)
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At the center of the span the longitudinal stresses are

.2
G‘-O = 565, G"i = -55, 6—2 = -173, 6‘3 = -145 1lbs. -in.

The corresponding general expressions for the shears are (see Eqn. 96)

T, = 105,466 gl(x) - 19,400 g,(x)
T, = 52,080 gi(x) + 6,320 g,(x) (119)
T, = -16,456 gl(x) + 34,800 g,(x)

At the center of the span the shears are

T, = 86, 066, T, = 58,400, T, = 18, 344 lbs.

The resultant cross-bending moments are given by Equation (100)

Y, =0
5 = -241.1 + 250.0 sinlgi ft. -1bs. | (120)
5 = -202.2 - 283.0 sinEE’ift. -1bs.

At the center of the span the moments are

9 ft.-lbs. = 108 in. -bs.

Y,
Y

3 -485 ft. ~-1bs. = - 5820 in,-1bs.

. The longitudinal strcsscs, thc shcar force and the cross-bending mo-

ments are plotted in Figure 26.
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-IV. DESCRIPTION OF TEST FACILITIES AND PROCEDURE

4:1 Test models

Three models were built for use in the tests described in
this paper. Two of them, model A and model B were prismatic and
‘the other, model C, was a cylindrical shell. The dimensions of the

shells are shown in Figures 27 and 28.

2-1/2"

ﬁ Span 48"

23.32% |
Prismatic Shell
Cross-section of Model A and B

T

Figure 27

i
2-1/2"
| /

23.32" |

le
ke

Cylindrical Shell ,\

Cross-section of "Model C

Figure 28



Model A, Prismatic Shell Simply Supported
Figure 29 '

Model B, Prismatic ShellOne End Fixed,
The Other Simply Supported
Figure 30

Model C, Cylindrical Shell Simply Supported
Figure 31
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The shell in all models was made of a 24S-T Alclad alumi-
num sheet With an thickness of 0. 04 inches. A thickness of three times
.tﬁis would have been desirable to avoid relatively large deflections of
thé side plates; however, the thickness of the plates was limited to
0.04 inches so that the angles of the prismatic shell could be turned
.with a relatively small radius. |

The end frames in all models were made of 3/4 inch plywood
and fastened to the shell with screws.

Meodel A, Figure 29, is a prismatic shell simply supported
with a span of 48 inches. This model was built to check the longitud-
inal stress and cross-bending moment at the center of the span.

Model B, Figure 30, is a prismatic shell simply supported
at one end and fixed at the other. To produce the fixed end the shell
was continued over three supports with two equal spans, and when
tested the load was placed symmetrically about the center support.
The purpose of this model was to check the variation of the longitud-
inal stress and the cross-bending moment along the span.

Model C, Figure 31, is a cylindrical shell simply supported
with a centerline radius such that the curve would pass through the
joints of the prismatic shells, Model A and Model B. This model
was built in order to determine if a cylindrical shell could be approxi-
- mated satisfactorily by a prismatic shell for the purpose of stress
énalysis. Longitudinal stress and cross-bending moment were checked

at the center of the span.

4:2 Loading of models and end supports

a) Lbading

Two types of loading were used for all models. In one case
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uniform load was placed along the top of the shell, extending 2-1/2"
on eithrer side of the centerline as shown in Figures 39, 47 and 55.
Leadbags, weighing 25 p;)unds, with the approximate dimensions of
12" x 5'", were used for this type of loading which will be referred
to as "Uniform Load on Top". During the tests it was found that the
‘test results were very sensitive to the variation of the loading. Ex-
treme care had to be taken in placing the bags along the centerline
"~ and in leveling the bags off in both directions. Smaller bags than
the ones mentioned above were tried, but were discarded since they
introdug:ed too much local bending,

In the second case, uniform load was placed over the entire
top part of the shell as shown in Figures 43, 52 and 58. This load-
ing will be called "Uniform Load'". Leadbags, weighing 10 pounds
with the approximate dimensions of 16" x 6-1/4" were used. As seen
from the photographs the loading is not absolutely uniform, and it is
difficult to duplicate each time the shell is loaded. Consequently a
spread in the test results and a deviation from the theoretical re-
sults can be expecled,

In order to increase the friction coefficient of the surface of
the side plates fine sandpaper was glued to the lower 5" of the shell.
b) Supports

When testing the shell the end frames were supported on roll-
ers, one end '"pin-ended' and the other end free to roll, as shown in

Figure 32.
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\\ o < End Frames

T\
,/ 1" x 1" Channels §
é_:' / Ro}lers \Q\ Scrcws
Groove
"Pin-ended" ' Roller

End Supports

Figure 32

4:3 Strain gages
a) Type of gages

The Baldwin-Lima-Hamilton Corp. SR-4 strain gages, type
A-T7 and A-8, were used in determining the stress in the shell. At
each particular point, where the stress was desired, four gages were
mounted. Two on the top surface of the plate, one in longitudinal di-
rection and one in crosswise direction, and two gages on the under
surface of the plate in the same directions. On Meodel A, type A-7
gages were mounted in the longitudinal direction and type A-8 in the
crosswise direction. On Model B and C only type A-7 gages were
used.

All strain gages labeled with odd numbers measure strain in
the longitudinal direction, gages labeled with even numbers measure
strain in crosswise direction. Gages mounted on the under side of

the metal are designated with the same numbers but primed.
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Strain Gage Constants: Type A-7 Res. in ohms 120 +. 3%
Gage Factor 1.95 + 2°%/o
Type A-8 Res. in ohms 120 +.3%0

Gage Factor 1.81 + 2%/0

b) Location of strain gages

The location of the gages on the three models are as shown in
Figures 33, 34 and 35. In addition to the gages shown, check gages
were mounted symmétrically to (1) and (6,7) on Model A (see Figure
29) and symmetrically to gage (1) on Model C (see Figure 31). These
gages were only read to check the symmetry of the loading. No check

gages were mounted on Model B.
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Model A :

2-1/2" . | 0.3"
i I0 - 111
. 7
5t 8 |"":"“’ 9 —
2-1/2"
5 771
\ lo. 3
S ¢ 1. i
" 0. 2n 2.9
f—174 " 2 l=3 -—%—
{' r 2. 5" 0. 2"
0.15" .
19 _i_ i 1} 0.15"
Quarter Point Center

Location of Strain Gages on Model A

All even numbers are Type A-8 gages, all odd numbers Type A-7

F'igure 33

S



S

B

it

pud parzoddng Ard

¢ nandi g

w7 ad£

LV adA 3IE B mﬂo v
g 12PON ue saden urex}g Jo UOIIRION

wZ°0_ b ST __§9IL

H

A_

pud pex

}
Y4 .O|||4|.m.m -t ¥1

119

1zt




-§5-

2, 50"
10}—11 - —

Yoo 2 500
8 9 T

2. 50"

T —+

Q _, 2. 50"

2, 57"

2 Jomm 3 —L—O,&”
F

T

— 1 4+ 0,15"

L
Location of Strain Gages on Model C
All Gages are Type A-7

Figure 35
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4:4 Instrumentation

Instrument Panel

Figure 36
a) Variac Rectifier, range 0-15 volts D.C.
b) Brown Potentiometer Pyrometer, rangec 0-5 mv,
c) Selector switch panel with variable balancing resistors
d) Selector switch panel
e) Switch for calibration resistance

f) Double throw double pole switch

The instruments used in the experiments are shown in Figure
36. Two selector switch panels were used and are shown on the right-
hand side of the figure. The lower panel has a capacity of 20 different
Wheatstone bridge circuits and is equipped with a balancing resistor

for each circuit. The upper panel has a capacity of 24 different bridge



Selecior Switch

"

_—

67 -

Brown

Balancing Resistor

AANNAANNA

Gage

?

i

Active Gage

Balancing Resistor

L A VWANMNAANMAANA————

Dummy Gage

100 ohms

LA MAAASA—

Calibrating Resistor

100 chms

Battery

* ANANNMNA—

’r

Schematic wiring diagram of the switch panel

Figure 37
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circuits, but is not equipped with any balancing resistors. Figure 37
shows a schematic wiring diagram of the switch panels. The bridge
output was measured with a Brown potentiometer with a range from
0-5 mv and with smallest scale division 0.01 mv. Any bridge that
would balance within the range of the Brown was hooked up on the
upper panel, all others were hooked up on the lower panel and bal-
anced with the \;ariable resistors until a reading could be otained on
the Brown.

The strain gages on two models were connected at the same
time. The gages on one model were connected as active gages while
the gages on the other model were connected as dummy gages. One
model coul with the gages on the other serving as
dummy gages and vice versa. Changing the load from one model to
the other would, of course, produce a reading of opposite sign on the
Brown potentiometer for the same stress,

During the test an automotive battery was used for input volf-

age, but between runs the gages were kept warm by use of a Variac

Rectifier.
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4:5 Calculation of Gage Output and Stresses

L:————-—V —t

4 V =
VvV =
o]

AV =
o)

Wheatstone Bridge Circuit

Figure 38 R -

AR . =

AR =

From the circuit shown in Figure 38:
av ZR AR “FR

o =78 [Ra -
G
AV, =% LR IRoAR-(R-AR)] =
Then dividing the two equations gives:
AR

G:
Rg

AV, AR
AV_ R

(RGfARGﬂzz

\'4
_ﬁR

Symbols used:
voltage or potential

bridge output voltage

change in bridge output
voltage as a result of
change in strain

change in bridge output
voltage as a result of
connecting the calibra-
ting resistor in parallel
with the built in 100
ohms resistor

gage resistance
built in resistance (100 ohms)
calibrating resistance

change in gage resistance
as a result of change in
strain

change in built in resis-
tance (100 ohms) as a re-
sult of shunting in the
calibrating resistance

Vv
I8 4Rg
C

(121)

(122)
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But by definition of gage factor

AR
K== +€
G
Hence
AR
KE = o= (123)
G

Substituting this value in Equation (122) gives:

AV
€ = =° %% in. /in. (124)
C

with a calibrating resistance of 83,233 ohms, AR = 0,12 ohms.
Knowing the input voltage the strain can also be found as follows.

From the circuit in Figure 38:

G, R,
vV = V{ - )
o R Rl - RZ

Assuming R1 and R2 constant, differentiating gives

- v .
4V = mg R 12 Ra, *Rg” Ra*Ra)!
1 G2

Assume that the change in the gage resistance due to temperature is

the same in both active and dummy gages and that RG = RG . Then
AR 4AV 1 2
AV, = gg— ARgor g2 =g
G G

Substituting this value in Equation (123} gives:

4 AV
'E'VQ_ micro in. /in. (125)

V volts, AVO millivolts
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Let
€x = strain in longitudinal direction on the top surface
£ )‘( = strain in longitudinal direction on the bottom surface
€ y = strain in crosswise direction on the top surface
bé "] = strain in crosswise direction on the bottom surface

Gy = stress in longitudinal direction

Y = cross bending moment K, = gage factor for
2 gage in longitud-

Z =1/61° section modulus inal direction
= Poisson's ratio K_ = gage factor for
gage in cross-

E = modulus of elasticity wise direction

i '
__E £x'ex Eytey (126)
CxT oz z )

EZ (Ey'éy' N €x‘és'<-)
-2 2 2

Y positive when it produces compression in top surface.

Y= - (127)

Substitution of Equation (124) or (125) into Equations (126) and (127)

gives:
KX
- 1 . '
Cx=Cy (AV _+aV L)+ gV (Vi tav 1) (128)
KY
3 - - ] - 7
Y = C (avyy AV )t KXV(AVc;x'AVox) (129)
where
‘ AV E 4 E
C = or G, = SK Vo 2 (130)
1 2RK_AV 1-v2 ! ZKX 1-V2 '
ZCiK K
1 ,
C,="K i Cs= 'KKE 3 Cy = 'KY
y "y X
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Sample Calculation

Constants: AR =0.12 6hms, R = 100 ohms, RG = 120 ohms

K, = 1.81, K_=1.95, E =10.4 x 10° psi

VY =0.33

Then using (124)

6

C, = ZR;iAs(l_Vz) = ZATO0AT. 95059 A}JC y %9% (131)
or using (125)

e - AT R aw

2V KX(I-V ) ‘

AV _ in millivolts, V in’volts
Z=1/6t=1/60.04%=2.66x10%
C,=2.66x10% 195 3§Q,‘l = 1.033/ AV,
C3 = 0. 356, C4 = 0.306

A sample calculatipri of the reducing of data is shown in Table
2. The sample is taken from a test conducted on the prismatic shell
simply supported with a uniform load on top. The total load was 100
Ibs. or 0.416 1bs. /sq.in. The stress and bending moment shown in
Table 2, columns 9 and 12 respectively are due to a load of 1 1b. /sq. in.

which is obtained by dividing C, and C, by 0.41 6.
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For this particular run AV = 1.785 mv and V = 5.952 volts.

Then, from Equation (131),

3600 _ , . _ 12,000 _
Cl = ﬁ—BT-—- 2018 H from Equatlon (132), C]. = -m—— 2015

The constant C1 obtained by introducing the calibration resistance in
the switch panel ¢ was then used in reducing the readings of the gages

hooked up on both switch pancls. Dividing by 0. 416,

4850, CJ =C 0.416 = 1.394

L A
C —C1/0.416 2

1

In Table 2, o Ci x col. (8), Y = C'2 x col. (11)

The test showed that AV(')X - Avox is very small and can be neglected
in the calculation of Y. The gages on top and bottom in the longitud-
inal direction were then connected in series to limit the number of

readings to be taken during the test.
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V. EXPERIMENTAL RESULTS

5:1 Prismatic Shell Simply Supported, Model A, Uniform Load on Top

Total load 100 1bs., 0.416 Ibs, -in. °

Figure 39

Four 25-pound leadbags were used in loading the model as
shown in Figure 39 above. Readings of the strain gage output were
taken at zero load, full load and again at zero load. The results of
10 differeﬁt loading cycles are shown in Tables 3, 4 and 5, and the
average of these readings are plotted in Figures 40, 41 and 42.

The theoretical calculations for this type of shell and loading are

found in the Appendix.



Prismatic Shell Simply Supported
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TABLE 3

Uniform Load on Top of Shell

Longitudinal Stress in a Section at Center of Span (psi.)

Test No.

10

Average

Strain Gage Numbers

1 3 5 7 9 11 13
-1050 515 2040 3220 -138 -2840 -3120
- 980 386 2020 3330 -170 -2950 -3080
-1000 393 1960 3380 - 14 -3080 -2960
-1000 415 2020 3340 - 14 -3140 -3000
- 965 363 2080 3320 28 -3030 -2930
- 976 335 2050 3280 - 10 -3130 -2900
- 990 300 2020 3300 - 14 -3050 -2920
-1050 320 1970 3360 62 -3060 -2930
-1000 394 1980 3350 98 -3050 -2880
-1000 342 1990 3550 136 -3060 -2800
-1000 376 2013 3343 -4 -3039

-2957
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TABLE 4

Prismatic Shell Simply Supported

Uniform Load on the Top

Cross-bending Moment at the Center of Span (in.-1lbs.)

Test No.

R )

L) ~D ool -3 o 5]

Average

Strain Gage Number

2 4 6 8 10 12
-0.027 -.0860 -1.870 -1.750 -0.945 5.420
-0.026 -0.850 -1.860 -1.700 -0.874 5.220
-0.031 -0.847 -1.845 -1,770 -1.040 5.330
-0.033 -0.840 -1.825 -1.680 -0.945 5,100
-0.026 -0.866 -1.840 -1.660 -0.736 5,330
-0.032 -0.850 -1.,860 -1.680 -0.890 5,170
-0.026 -0.835 -1.835 -1.625 -0.835 5.420
-0.018 -0,583 -1.710 -1.600 -0.866 4.750

0.009 -0.790 -1.680 -1.620 -1,050 4,820
-0.009 -0.805 -1.,710 -1.780 -1.180 5.400
-0.021 -0.836 -1.803 -1.687 -0.936 5.196
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TABLE 5
Prismatic Shell Simply Supported
Uniform Load on the Top

Longitudinal Stress at the Quarter Point (psi.)

Test No. Strain Gage No.
19 17 15
1 -703 123 -2370
2 -770 147 -2450
3 -780 180 -2890
4 -713 153 -2460
5 -770 110 -2400
6 -760 90 -2410
7 -800 100 -2450
8 -740 85 -2290
9 -740 71 -2410
10 -780 180 -2770
Average -756 124 -2490
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5:2 Prismatic Shell Simply Supported, Model A, Uniform Load

Total load 240 1bs., 0.200 lbs. /in,

Figure 43

Twenty-four 10-pound leadbags were used in the loading of
the model as shown in Figure 43 above. Readings of the strain gage
output were taken at zero, full load and again at zero load. The re-
sults of 5 different loading cycles are shown in Tables 6, 7 and 8,
and the average of these readings is plotted in Figures 44, 45 and
46. The theoretical calculation for this type of shell and loading

is found in the Appendix.
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TABLE 6

Prismatic Shell Simply Supported

Uniforin Livad

Longitudinal Stress in a Section at Center of Span (psi.)

Test No.

Average

Strain Gage Number

1 3 5 7 9 11 13
5000 6160 830 -4730 -3120 -1800 -1550
4900 6900 290 -5100 -3500 -1690 -1690
5150 5830 690 -4680 -3040 -1640 -1710
5240 6470 730 -4810 -3130 -1710 -1710
4900 6670 805 -4660 -2850 -1740 -1750
5040 6408 769 -4796 -3128 -1716 -1682
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TABLE 7

Uniform Load

Cross-bending Moment at the Center of Span (in.- lbs.)

Test No.

Average

Strain Gage Number

2 4 6 8 10 12
0.053 3.620 1.860 1.540 -2.900 -1.020
-0.096 3.350 1.520 1.590 -3.250 -0.635
-0. 067 3.900 1.670 1.350 -3.200 -0.560
-0.030 3.370 1.430 2.050 -3.500 -0.734
-0.070 3.400 1.400 1.580 -3.850 -0.576
-0. 040 3.520 1.580 1.620 -3,340 -0.705




~56 -

S¥% sandi g

W21z

ol I e

ih

| : _
sxsquunp 28en urteaig
ot 3 9 ¥

saIno pandwror) —
jurod tejuswraadryg o
NVdS 4O ¥ LNID HHL LV ILNIWOW ONIONJAL SSOUD
AvOT WHOJIIND
dd190dd0S ATAWIS TTHHS JDILVNSTYd

spunod-your ‘JuswWIoN




-87-

TABLE 8
Prismatic Shell Simply Supported
Uniform Load

Longitudinal Stress at the Quarter Point (psi.)

Test No. Strain Gage No.
19 17 15
1 3840 4590 -1045
2 3760 4650 - 820
3 3810 4820 - 780
4 3750 4800 - 965
5 3630 4640 - 976
Average 3758 4700 - 917
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5:3 Prismatic Shell, Oue End Fixed, the Other Simply Supported,
Model B, Uniform Load on Top

Total load in each span 100 1bs,, 0.416 lbs. /in. 2

Figure 47

Eight 25-pound leadbags, four on each span, were used in
loading the model as shown in Figure 47 above. Réadings of the
strain gage output were taken at zero.load, full load and again at
zero load. The results of 10 different loading cycles are shown in
Tables 9, 10, 1l and 12, and the average of the 10 readings is plot-
ted in Figures 48, 49, 50 and 51. The theoretical calculation for

this type of shell and loading is found in the Appendix.



Prismatic Shell, One End Fixed, the Other Simply Supported

Uniform Load on the Top
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TABLE 9

Variation of Longitudinal Stress Along Span at the Crown (psi.)

Test No.

Average

Strain Gage Number

1 3 9 11
-1270 -2520 1320 3600
-1200 -2580 1300 3730
-1220 -2560 1260 3760
-1180 -2650 1260 3730
-1380 -2570 1330 3720
-1150 -2410 1340 3800
~-1170 -2440 1530 3820
-1140 -2360 1560 3860
-1070 -2330 1490 3800
-1210 -2420 1510 3860
~1200 -2480 1390 3768
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TABLE 10

Prismatic Shell, One End Fixed, the Other Simply Supported

Variation of Cross Bending Moment Along the Span at

Uniform Load on the Top

the Crown (in.-1bs.)

Test No.

Average

Strain Gage Number

2 4 6 8 10 12
3.680 3.900 4,260 3.600 2.870 0. 585
3.930 3.400 4,270 3. 680 2. 650 0. 558
3.870 3. 620 4,030 3.630 2.720 0.573
3,780 3.900 4,160 3.810 2.680 0. 558
3.730 4,150 4,090 3. 640 2,880 0.572
3.800 4, 240 3.960 3. 640 3.200 0. 530
3.850 4.050 3.770 3.560 3.160 0. 536
3.960 4,230 4.020 3.740 3.250 0. 534
3. 860 4, 060 3.810 3.780 3.080 0. 546
4. 040 4.230 3.790 3.800 3.040 0. 550
3.850 3.980 4,020 3.690 2.950 0. 550
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TABLE 11
Prismatic Shell, One End Fixed, the Other Simply Supported
Uniform Load on the Top

Longitudinal Stress in a Section at the Third Point (psi,)

Test No. Strain Gage No.
3 13 15
1 -2520 2490 -542
2 -2580 2470 -625
3 -2560 2460 -635
4 -2650 2430 -606
5 -2570 2440 -695
6 -2410 2460 -625
7 -2440 2480 -690
8 -2360 2520 -600
9 -2330 2500 -583
10 -2420 2670 -616
Average -2480 2492 -622
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PRISMATIC SHELL ONE END FIXED, THE OTHER SIMPLY
SUPPORTED

UNIFORM LOAD ON THE TOP
LONGITUDINAL STRESS IN A SECTION AT THE THIRD POINT
——Computed stresses
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TABLE 12

Prismatic Shell, One End Fixed, the Other Simply Supported

Uniform Load on the Top

Cross Bending Moment at the Third Point (in. -1bs.)

Test No.

10

Average

F

Strain Gage No.

4 14 16
3.900 -1.210 0.028
3.400 ~-1.070 0.031
3.620 -1.170 0.035
3.900 -1.180 -0.032
4.150 -1.120 0.027
4, 240 -1, 060 0.025
4.050 -1.100 0.024
4.230 1.190 0.021
4,060 -1.160 0.025
4,230 -1.110 0. 027
3.980 -1.140 0.028
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5:4 Prismatic Shell, One End Fixed, the Other Simply Supported,
Model B, Uniform Load

Total load on each span 240 lbs., 0.200 lbs. /in.

Figure 52

Forty-eight 10-pound leadbags, twenty-four on each span,
were used in loading the models as shown in Figure 52 above. Read-
ings of the strain gage output were taken at zero load, full load and
again at zero load. The results of 10 different loading cycles are
shown in Tables 13, 14 and 16, and the average of the 10 readings is
plotted in Figures 53 and 54. The theoretical calculation for this

type of shell and loading is found in the Appendix.



-99-

TABLE 13
Prismatic Shell, One End Fixed, the Other Simply Supported
Uniform l.ocad

Variation of Longitudinal Stress along the Span at the Crown (psi.)

Test No. Strain Gage Numbers
1 3 5 1 9 11

1 | - 69 - 60 -109 198 -307 -990
2 248 50 -258 - 50 376 -840
3 -396 - 89 .~ 99 -139 - 60 -585
4 -315 123 -288 50 -163 -615
5 -188 278 139 198 -168 -515
6 50 - 40 -168 129 - 60 -645
7 - 60 198 89 99 -178  -625
8 - 10 160 - 20 110 -170  -763
9 35 77 -250 - 19 - 45 -340
10 -346 - b -260 - 5 -105 -765

Average -161 69 -122 - 57 -163 -688

Note: Results not shown graphically



Prismatic Shell, One End Fixed, the Other Simply Supported
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TABLE 14

Uniform Load

Variation of Cross Bending Moment Along the Span at the Crown (in.-1bs.)

Test No.

Average

Strain Gage Number

2 4 6 8 10 12
0.600 -0.179 -0.045 -0.090 0.414 0.302
0.317 -0.565 -0.013 -0.264 1.0 0 0.275
0.830 -0.230 -0.410 0. 260 0.910 0.435
0. 550 -0. 466 -0.243 0. 260 0.940 0,347
0.522 -0. 685 -0.486 -0.013 1.140 0.341
0.940 -0.174 -0.105 -0.139 1.060 0,300
0.179 ~-0.592 -0.740 0.139 1.010 0.437
0.290 -0.490 -0.096 0.230 0.975 0.360
0. 267 -0.398 . 0.069 0.020 ’1,. 050 0.450
0.540 -0,427 -0.021 -0.140 0.780 0.330
0.500 -0.415 -0.210 0.026 0.929 0.358
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TABLE 15
Prismatic Shell, One End Fixed, the Other Simply Supported
Uniform Liocad

Liongitudinal Stress in a Section at the Third Point {psi.)

Test No., Strain Gage No.
3 13 15
1 - 60 -4150 4760
2 50 -4030 4920
3 - 89 -3810 4820
4 123 -3810 4760
5 278 -3880 4760
6 - 40 -3720 4720
7 198 -3760 4760
8 160 -3940 4700
9 77 -3640 4700
10 - 6 -3650 4660
Average 69 -3839 4665
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5:5 Cylindrical Shell Simply Supported, Model C, Uniform Load on Top

Total load 100 lbs., 0.416 lbs. /in.

Figure 55

Four 25-pound leadbags were used in loading the model as
shown in Figure 55 above. Readings of the strain gage output were
taken at zero load, full load and again at zero load. The results of
10 different loading cycles are shown in Tables 16 and 17 and the aver-
age of the 10 readings is plotted in Figures 56 and 57. The theoreti-

cal calculation for this type of shell and loading is found in the Ap-

pendix.



Cylindrical Shell Simply Supported
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TABLE 16

Uniform L.oad on Top

Longitudinal Stress in a Section at the Center of Span (psi.)

Test No.

Average

Strain Gage Number

1 3 5 7 9 11 13

-870 - 53 2440 3000 287 -3020  -4100
-662 -200 2440 2940 400 -3050  -4230
-810 - 78 2410 2920 151 -3200  -4070
-640 - 55 2410 2920 270 -3020  -4060
-660 - 28 2360 2850 300 -3010  -4150
-716 -130 2340 2920 290 -3050  -4200
-680 - 23 2470 2920 386 -2990  -4070
-670 - 37 2480 2970 206 -3150  -4150
-654 - 41 2360 2900 358 -2920  -3980
-670 - 46 2350 2860 430 -2780  -3980
-703 - 69 2406 2920 308 -3020  -4100
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TABLE 17

Cylindrical Shell Simply Supported

Uniform Load on Top

Cross Bending Moment at the Center of Span (in. -1bs,)

Test No.

Average

Strain Gage Number

2 4 6 8 10 12
-0.013 -0.885 -2.170 -2.240 1.100 4.500
0.017 -0.830 -2.120 -2.305 0.851 4.550
-0.011 -0.845 -2.170 -2.300 1.255 4.400
-0.011 -0.836 -2.140 -2,260 1.080 4.390
-0.021 -0.852 -2.110 -2.220 0.900 4.480
-0.013 -0.832 -2.125 -2.270 0.955 4,520
-0.018 -0.855 -2.130 -2.230 1.065 4.420
-0.016 -0.865 -2.200 -2.280 1.290 4,450
-0.018 -0.820 -2.050 -2.180 1.015 4.250
-0.011 -0.825 -2.040 -2.150 0.870 4.370
-0.012 -0. 845 -2.126 -2.244 1.038 4,433
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5:6 Cylindrical Shell Simply Supported, Model C, Uniform Load

Total load 240 1bs., 0.200 1bs. /in.

Figure 58

Twenty-four 10-pound leadbags were used in loading the
model as shown in Figure 58 above., Readings of the strain gage
output were taken at zero, full load and again at zero load. The
results of 5 different loading cycles are shown in Tables 18 and 19
and the average of the 10 readings plotted in Figures 59 and 60.

The theoretical calculation for this type of shell and loading is

found in the Appendix,
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TABLE 18
Cylindrical Shell Simply Supported
Uniform Load

Longitudinal Stress in a Section at the Center of Span (psi.)

Tést No. Strain Gage Numbex
1 3 5 7 9 1 13
1 4430 7560 - 48 -4600 -4630 -2500  -1380
2 5060 7530 210 -4230 -3940 -1560 - 735
3 4980 7640 160 -4400 -4470 -1535 - 316
4 5330 7760 530 -3890 -4170 -1470 - 290
5 5630 6600 -212 -4150 -4220 -1930 - 895
Average | %080 7418 130 -4254 -4286 -1799 - 723
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TABLE 19
Cylindrical Shell Simply Supported
Uniform Load

Cross Bending Moment at the Center of Span (in. ~1bs.)

Test No. Strain Gage Number
2 4 6 8 10 12
1 -0.023 3.620 3.880 0.950 -2.135 -2.850
2 0.036 3.900 3.580 0.875 -2.290 -2.640
3 0.053 3.840 4.000 1.060 -2.420 -2.770
4 0.138 3.440 3.580 1.092 -1.900 -2.670
5 0.131 3.380 3.270 0.886 -1.940 -2.520
Average 0. 067 3.636 3.662 0.973  -2.137 -2.690
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5:7 Discussion of experimental results

In performing an experiment as described in this paper there
are several factors which influence the accuracy of the test results.
First, it. is difficult to build a model with a cross-section exactly the
same as assumed in the calculations. For instance, in the case of
Médel A, the angles were turned with an accuracy of +1/2 degree.
Since the longitudinal stresses and cross-bending moment are sensi-
tive to a change in the angles a, this would introduce some error in
the result, Secondly, the stresses are calculated for a uniform load
and this is virtually impossible to produce with lead bags. This is
especially true in the case of a uniform load over the entire shell.

As expected, a large spread is therefore obtained in the test results
for the different runs. It was noticed that the cross-bending calcu-
lated from the test data was especially sensitive to the position of

the loads on the model. Utmost care had to be taken in placing the load
on the model in order to get as symmetrical a loading as possible.
Thirdly, the slight change in voltage during the test introduced some
error in the results. This effect shows up mostly in the case of small
readings.

Since the thickness of the plate is small, the deflection perpen-
dicular to the plates is relatively large. The transverse forces there-
fore produce an added cross-bending moment in the side plates between
the joints which is not accounted for in the theory. However this effect
would not show up in a prototype structure since the relative deflection
would be about 1/10 of that in the models. It is difficult to calculate

these effects in the case of the models, because it is not known how

freely the joints can move toward each other.
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MODEL A

The agreement is very good between the experimental results
and the computed axial stresses in a section at the center of span
and quarter point, both for uniform load on top and uniform load.

See Figures 40, 42, 44, and 46.

In the case of uniform load on top, the cross-bending moment
at the center of side plate (4) was adjusted to take into account the mo-
ment produced by the direct compression. It was assumed that the
joints 3 and 4 were free to move toward each other. See Figure 41
and calculations in the Appendix. The fairly good check indicates
that the joints are not free to move toward each other and thereby
produce added bending moments. No modification was made in the
case of the uniform load.

The fact that the longitudinal stresses on a cross-section

check with the theory implies that the cross-bending must also check.

MODEL B

The reaction at the simply supported end was checked by lift-
ing up at that end with a regular spring scale. When a sheet of paper
placed under the support could be pulled free, the reading on the scale
was taken. Several readings were taken for a uniform load on top
(100 1bs.), and the average reading was 38 lbs. Computing the reac-
tion with a moment of 1/8w/~2 at the support gives 37.5 lbs. This in-
dicates that the moment at the support is the same as for an ordinary
beam.

The experimental results for variation of longitudinal stress
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on an axial section at the center of the cross-section and in a cross-
section at the third point show good agreement with the computed
stresses, for both uniform load on top and uniform load. See Fig-
\ures 48, 50 and 54,

In the case of uniform load on top, the cross-bending moment
at the center of side plate (4) was adjusted to take into account the
moment produced by direct compression., See Figure 49 and the cal-
culation in the Appendix. No adjustment in bending moment due to
direct force in the side plates was made in case of uniform load even
though Figure 53 shows a fairly large disagreement between experi-
mental and computed points. Using the computed compression forces
in plate (4) and following the same procedure as shown on page 127
in calculating the added moment it is found that the correction is in
the right direction, but overshoots quite a bit. This indicates that
the joints (3 and 4) are not free to move toward each other and there-

fore has the effect of reducing the compression forces in the top plate.

MODEL C

For a uniform load on top, the longitudinal stresses in a sec-
tion at the center of the spah of the cylindrical shell, computed from
the prismatic shell, show good agreement with the experimental stres-
ses, except at the edge beam (Figure 5,6). For this type of loading
the edge beam is in compression and the discrepancy is attributed to
buckling, which was observed during testing. In the case of uniform
load the agreement between computed and experimental axial stresses

is better. (Figure 59).
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The cross-bending moment computed from the prismatic
shell due to relative displacement of the side plates, checks well
with the experimental results, The discrepancy between computed
and experimental results in case of uniform load is attributed to
the difficulty in obtaining the uniform loading. (See Figures 57
and 60'). Most of the experimental points are within 100/0 of the

computed points.
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SUMMARY AND CONCLUSIONS

Cylindrical and prismatic shells may be used very econom-
ically for roof structures covering large floor areas. However,
the lack of a simple design theory has retarded the general use of
these structures. The previous design theories were based on the
solutions of complicated differential equations involving the use of
infinite series, the cylindrical shell being analysed by solving an
eighth order partial differential equation, and the prismatic shell
being analysed by solving "n'" simultaneous differential equations
of the fourth order, where "“"n' is the number of sides of the shell.
A new method of analysis, not requiring the use of higher mathe-
matics, is presented in this paper. The theory applies specifically
to the analysis of prismatic shells, however, it is shown that cyl-
indrical shells can also be analysed in the same manner. The
method involves a certain amount of numerical calculation, but
most of this consists of moment distributions which may be per-
formed by persons without engineering training. The results of
the different moment distribution processes depend only upon the
geometry of the cross-section (except possibly for a constant) and
are independent of the span, magnitude of loading and end condi-
tions. The results from the distribution processes obtained in
analysing one shell can thus be used in analysing other shells hav-
ing geometrically similar cross sections.

The theory was vefiﬁed by measuring the stresses in three
different models. The difference between computed and measured

stresses was well within the range of experimental error.



-119-

APPENDIX

Theoretical Calculations for Test Models

MODEL A, Uniform Load on Top

TABLE A-1
Joint No.| (1) (2) (3) (4) (5) (6)
n e, [cosa, sinqn o 17%, cot(gn_l-@,nv) cosec(an_lan)
0 90 0 1 60
1 30 | 0.8660/| 0.5000 15 0.5774 1.1547
2 15 | 0.9659| 0, 2588 15 3,.7321 3.8637
3 0 1 0 15 3.7321 3.8637
4 -15 | 0,9659| 0, 2588 15 3.7321 3.8637
‘From Equation (47) and Table A-1:
I v § R v ] R, l - 5 K -
le = Y. 1° B (-9.2376 ElO + 4, .5095]1721 3. 8637E32)
(A-1)
N |
T‘Z'3 = Ygz =B (-3.8637 E,21 + 7.4642 E32)

Distributing the coefficients of these equations as shown in the ex-

ample Section 3:5 gives,

Y =0
' : A -
Y =5 (-2.434T E + 2.3550 E,; - 3.3736 E,) (A-2)

1 L
Y'Y = 5 (+Q.4803 E;g - 1.2424 E,, + 2.1681 E,;)
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Hence the correction loads at the center of the span are:

YU oo yHn
_ T2 1 1
Qz = —Sg— =g (-2.4347 Ej + 2.3550 B, - 3.3736 )
. (A-3)
¥3-Y2 1
QZ':? = g =5 (2.9150 ElO - 3.5974 E21 - 5,5417 E32)
where
Lotk 1 L
From Equation (3):
p’l'o = 1.1547 le
pgl = -0.5774 le + 3.7321 Rz-z- + 3.8637 RZ§ (A-5)
T — — _—
Pz, = 3.8637 RZZ 3.7321 R2—§ + 3.7321 R33 + 3,8637 R34

From the external loading
- - _ . 2
qz-q3—0, q4—11b/1n s
the fixed end bending moments are obtained.

T, =Ty, =1/12 52 = 2

L
12

The moment distribution is shown in Figure A-1

1 2 3 4
1 1/2|1/2 1/211/2 1/2
0 0|0 0/ 2.083 -2.083
0 0.3287|-0,3287 -1.3152| 1.3152 -1.3152

Figure A-1
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Then, Y‘Z = 0.329, Y! = -1.315

1
3
Rl-z- = 0. 0657, RZ—Z- = -0. 0657, Rz? = -0.3288, R3-3- = 0.3288,

R3Z = 2. 500, Ryz= 2.500

Since pio = P.t?.l = p’32 = 0, Equation (A-5) gives

Pig = p‘l'o = 0, 0759, Py = pgl = -1.5535, P3p = pgz =12.3573
The fixed end "shears" T =1 L% are:
n,n-1 8 1:)n, n-1 :
T10 = 8,744 T21 = -89.482 Téz = 712.356
The distribution is shown in Figure A-2.
o 1 2 : 3
1 1/312/3 1/2)1/2 1/211/2
-8.74 874 |89.48 -89.48|-712.36 712.36|0
0 -93.01 493,01 341,22 -341,22 598.03| -598.03
T!
n -93.01 341.22 +598. 03
4'.Iiil‘hn
5 -0.4037| -0.8074 +2.9620 +5,1912
L
Figure A-2

Hence, from Figure A-2 and Equation (101a)

AlO = 0,0759 + 0.4037 = 0.4796
A21 = -1.5535 + 0.8074 - 2.962 = -3.7081 (A-6)
A, , =-12,3673 - 2.9620 - 5,1912 = 4.2141

32
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The shear forces and bending moment at the center of the span are

then obtained from Figure A-2 and Equation (A-6), respectively:

]

Ti'=,—93.0, T’2 341.2, T! = 598.0, N} = -93,0, N}

3 1 5= 434. 2,

: Ng = 256, 8, Nl} 118.6, Mi = 138.1, M} = -1067.9, Mg= 1213.7

2

Then since G = N/A * M/Z, the longitudinal stresses at the center

of the span are:
Plate 1: -

Gl =-93x 10 +138.1 x 24 = - 930 + 3314 = 2384

q—i = -930 - 3314 = - 4244

Plate 2:
Gl =434 x5 - 1067.9 x 6 = 2170 - 6407 = - 4237
g = 2170 + 6407 = 8577
(A-7)
Plate3:

GIZ = 256,8 x 5 +1213.7 x 6 = 1284 + 7282 = 8566

G = 1284 - 7282 = - 5998,

Plate 4:

G—'3=-Zx598.0x5=-5980

Next, determine Bn, n-1 Py applying unit correction loads.
Apply correction loads Ql.z =1, QZ'Z = -1

Then from Equation (3):

Wi = 1.1547, Wy = -4,3095, Wi, = 3.8637
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The fixed end '"shears' at the center of the span are:

2
T 48 = ey — T
0= =3 =% 1,1547 = 107,83, TZl = -201, 22, T32 = 180,40
T 2.5
The distribution is shown in Figure A-3:
0 1 , 2 3
1 1/312/3 1/211/2 1/2(1/2
-107.83 107.83|201.22 -201.22 1 -180.40 180.40
0 18.93-18.93 -70.94 | - 70.94 203,57
T‘]'rl 13.93 -70.94 203,57
TR,
> 1.1014|0, 2028 -0.7597 . 2.1800
2L 1
Figure A-3
Apply correction loads QZ3 =1 Q3§ = -1
Then from Equation (3):
Wig = 0 Wop = 3.8637 Wiy = -7.4642
The fixed end shears are:
'1‘0 =0 ’1‘2'1 = 180,40 T"Z = -348,52
The distribution is shown in Figure A-4:
0 1 2 3
1 1/2|1/2 1/2
0 0|-180.40 180.40 |348.52 -348,52
0 102.09 | -102.09 -70.73 | 70,73 -342.51
T 102.09 70,73 -324.51
w2Th |
_._22__11 0.5466 |1.0932 -0,7597 2,.1800
2L

Figure A-4
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From Figures A-3, A-4 and Equation (10lb) the expressions for

the actual correction loads are:
B10 = (1.1547 - 0.1014) Ql-z - 0.5466 ng

= 1.0533 Qlf - 0.5466 Qz-g

(A-8)
B32 = 2.4434 Q5 - 3.2318 Q3
The expressions for shear at the center of the span are obtained
from Figures A-3 and A-4:
T‘i = 18.9338 Ql-z- + 102.0928 sz
5 = -70.9427 ;21-2- - 70,7277 Qz‘3‘ (A-9)
T3 = 203.7512 Q7 - 324.5056 ng
From Equations (A-8) and (46):
Eo-= 0.4796 + 0.8305 Q= - 0.4310 Q,
E21 = -3,7-81 - 2.9590 Q5 + 2.7817 ng | (A-10)

E32 =4.2141 +1.9267 Qlf - 2.5483 Q2§

Substituting Equations (A -10) into Equations (A-3) the following simul-

taneous equations are obtained:

20.9854 Q5 = - 15.4903 Q5 + 16,1972 Q= - 24.1170
(A-11)

20.9854 Q5 = 23,7428 Ql—z— - 25,3852 Q,= + 38.0908

23
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or

36.4757 Ql-z -16.1972 ng = -24.1170

(A-12)
-23.7428 Qli + 46,3706 ng- = 38.0908
The solution of thésé equations gives,
Ql-é- = -0.3836 Qz-g- = 0. 6250, then Y"Z = -1.918, Y'2'=1. 207 in-1bs., (A-12a)
From Equation (A-8) and (A-9):
T']" = 56,6, T':Z = -17.0, T”3 = 281.0 1bs.
BlO = -0, 7456, 321 = 3, 6444, B32 = -2,9572 1bs.

Then,

N'j = 56,6, N'} = -73.6, N'y = 264.0, N} = 562,0 lbs.
M = 174.1, M', = 850.8, M'y = -690.4

The longitudinal stresses at the center of the span produced by the
correction loads are:

. Plate 1: Gg =56.6 x10 -174,1 x 24 = 566 - 4178 = 3612 psi,

Q,—’l‘ = 566 + 4178 = 4744

Plate 2: G} = -73.6 x 5 + 850.8 x 6 = =368 + 5105 = 4737
G5 = -368 - 5105 = -5473
(A-13)
Plate 3: G% = -264 x 5 - 690.4 x 6 = -1320 - 4142 = - 5462
g% = -1320 + 4142 = 2822
Plate 4: G = 562 x 5 = 2810
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Using the average of the stresses at a joint calculated from
two adjacent side plates the longitudinal stresses along the span are:

(See Equations (A-7), (A-13), and (99)).
G, = 2384 g(x) - 3612 g,(x)

G‘l = -4240 gl(x) + 4740 gz(x)

(A-14)
Gy = 8572 gl(x) - 5467 gz(x)
G5 = -5989 g;(x) + 2816 gz(x)
where
_ I
g(x) = 4 (f - =3)
1 L LZ
(A-15)

{x) = sin T*
gplx) = e

At center of the span the longitudinal stresses are:

G, = -1228 G =500 G =3105 g3 = -3173 Ibs. /in.
At quarter span the longitudinal stresses are:

G, = -740, Gj =140 G = 2580 G = -2515 lbs. /in. ?

From Figure A-l and Equation (A-12a) the cross-bending moments

are
Yo=Y, + Y Filx)
Y. = 0.329 - 1.918 F,(x)
2 1 (A-16)
Y, = -1.315 + 1,207 Fy(x)

R

where Fy(x) = sin T
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At center of the span the cross-bending moments are

Y2 = -1. 589, Y3 = -0,108 in. -1bs.

Cross-bending moment due fo transverse forces in side plate 4

in center of the span,

Consider a unit strip with compression forces and moments

~ at the ends and loaded uniformly, as shown in Figure A-5:

s_\(:imquugs

Figure A-5

The deflection at the center of the side plate (4) will then be:

S8 Tty -
S cos-z-‘
3
D :____E%_- uZ :§.
12(1-v%) b

The calculations for the deflection at the center of plate 4 produced

by R3Z = R4'4_: = 2.5 are shown below:

2

Y3=0.108, §=2.5x3.732=9.33, 8" =87, D =62.3
pz = 0.1495, p = 0. 387, 221_’1_ = 0.967

cos }-1213 = 0. 568

_,62.3 0.108 - 25
O = (g7 - gag ) (176 - 1) - g
§ =0.535 -0.335= 0,200 in.
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Then the moment at the center of the side plate (4) is:

Y

1]

-0.108 + 1/8.q L% + 9.33 x 0.20

Y

-0.108 + 3,125 + 1.866 = 4,883 in, -lbs.

- This moment is plotted in Figure 41.

MODEL A, Uniform Load

The external loadings are:

B L~ 1lb _ 1b _ b .

q, = 0. 8660 — 5 Q3 = 0.9659 — 0 Q4 = 1.0000-_——-2
in in in

1b 1b

t - 1 = o ! = —_—

in

From the q's the fixed bending moments are calculated as shown

below:

2
— 5
1 - . f = =

— — 5
1 o= . = -
Y23 = Y32 —1-23: 0. 9659 +2, 010

2
- < 5
!oo= - Y = =
Y34 = Y43 5 X 1.. 000 = +2.080

The distribution is shown in Figure A-6:

1 2 3 4
1 1/2(1/2 1/2|1/2 1/2
+1,810 -1,810 2,010 -2.010)2.080 -2.080
0 -2.371}-2,371 -1.985}-1.985

Figure A-6
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From 1_:he above results the values for the Rfs and Y's are:

Rl-z— =1.691, RZ—Z- = 2,639, RZ—S- = 2.492, R3-§ = 2.338, R3Z=R4Z=Z. 500

1 - YL = T o= _
Y1 =0, YZ— 2.371, Y3 1.985

Substituting the values foxr Rn l.n etc. inte Equation (A -5) the plate
. it

loads are:

plp = 1.953, pYy; = 18.501, pY, = -1.112

3 = nl "
Then since Pn,n-l = pn’ n-1 + pn,n—l

Pip = 1.953, Py = 21, 001, Py, = 0.182
The fixed end shears are:

—— = _ — _

T10 = 224.95, TZl_ 1209. 63, T32 = 10.48

The distribution is shown in Figure A-7:

0 | 1 2 3

1 1/3|2/3 1/2)1/2 1/2 (1/2
-225.0 225.01].1209.6 1209.6|-10.5 10.5(|256.7
695.9 | -695.9 804,6 | -804.6 -256.7 |256.7
T'x‘1 695.9 804.6 256.7
4T'xl1hn
S 3.020 | 6.040 6.984 -2.228
L |
Figure A-7

Hence, from Equation (10la) and Figure A-7

Alo = 1.953 - 3. 020 - "'1' 067
A

21,001 - 6,040 - 6,984

7.977 (A-18)
0.182 - 6.9840 + 2,228 = -4.574

21

Azp
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Then, ;
- - ' = .2
T] = 695.9, T}, =804.6, T} =-256.7

The longitudinal stresses due to P, ,.1 are:
] -4

Plate 1:

¢! = 695.9 % 10 - 307.4 x 24 = 6959 - 7378 = -419
G 1= 6959 + 7378 = 14337

Plate 2:

Q—i =108.7x 5+ 2297.3 x 6 = 543 + 13,783 = 14326

G b = 543 - 13,783 = - 13, 240
(A-20)
Plate 3: _
qu = -1061.3 x5 - 1317.3x 6 = 5306 - 7904 = -13,210
G4 = -5306 + 7904 = 2598
Plate 4:

G% = 2x256.7 x5 = 2567

Using the "A's' calculated abéve and the same "B' as in the calcu-

lation for "uniform load on top" the equations for E a1 become:
, -

Ep = -1.067 +0.8305 Q5 - 0.4310 Q=

E, = 7.977 - 2.950 Q5 + 2.7817 Q,% : (A-21)

Eg, = -4, 574 + 1.9267 Ql-z- - 2.5483 ng
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Substituting into Equation (A-3) gives:

36.4757 Ql—z- - 1641972 QZ? = 36.815

-23.7428 Q5 + 46.3706 Q,3 = -57.153

"The solution of these equations are;

Ql"z- = Do 598) ng' = "0- 926: Qz':—); = 'O. 926, Ql'z = 0. 598

Then

Y‘é =2.990 Y'é = -1,640

Substituting le- and ng_, into Equations (A-8) and (A-9) gives:
23,10, T'3 =422.44

1

TY = -83.26, T

Bl =1.1362, BZl 5,5119, B32=4.4548

0

Then
"o
N 4 844, SS

Ni = -83,3, N"Z = 106, 4:, N"3 = 399, 3;
MY = 265.3, M', = -1286.8, MY =1040.0

The longitudinal stresses are,

Plate 1:
G, =-83.3x10+ 265.3 x 24 = -833 + 6367 = 5534
G| = -833 - 6367 = -7200
Plate 2:
G '] =106.4 x 5=1286.8 x 6 = 532 - 7721 = 7189
G’y = 532 + 7721 = 8253
Plate 3: ' ‘ .
G '5 =399.3x5+1040 x 4 = 1996 + 6240 = 8236
G'é = 1996 - 6240 = - 4244

Plate 4: g‘é = -2 x422.4x5=-4224

(A-22)

(A-23)
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Combine the effects due to the external loading and the correction

loads and the longitudinal stresses are:

Go = -419 gl(x) +-5534 gz(x)

@ =‘14,33,2 g (x) - 7195 gz(x)_
G = 13,225 gl(x) + 8245 gz(x)
G5 = 2582 gy(x) - 4234 g (x)  (A-24)
T; =695.9 g(x) - 83.3 gz(x)
T, =804.6 g (x) +23.1 g,(x)
T, =-256.7 gl(x) +422.4 gz(x)

The cross-bending moments are:

Y, =Y +¥% = -2,371 + 2.990 FZ(X)

27127 13 A
| (A-25)
Y3 = Y‘3 + Y’é = -1.985 - 2.652 Fz(x)
y=4(F - X)), ) = sin &=
where gl(x) = 4‘L 2 ) gz(x) sin + |
(A-26)

2
16x ex X
. -7 +3)

Fz(x) =

The longitudinal stresses at center of the span and at the quarter

point will then be:

Center of the span: G~ = 5115, = 7137, = -4980, = -1652 psi
P o 1 AP (3
(A-27)

Quarter point:G. = 3600, = 5640,G, = 0-4110, (S, = -1050 psi
‘ o 1 2 3

The cross-bending moment at the center of the span will be:

Y, = 0.620 Y3 = -3,630 in, -1lbs,
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MODEL B, Uniform Load on Top

From the calculation shown for the simply supported pris-

matic shell the longitudinal stresses due to P, pn-1 2%€:
Gl = 2384 gi(x)

Gl = -4240 gl(x)

Y
i

where g (x) = %—ff- (—ZITX)Z

8572 gl(x')

q
| SV P
i

G} = -5989 g(x)

Furthermore, from Equations (A-10) and (68) the equations for

n,n—l are:
0.8101 |
Eo . 0.4796 + 9-o101 (0.8305 Q5 - 0.3965 Q,7)
E, = -3.7081 - 28L0L (29500 > + 2.7817 Q=)
21 = ~3. 7081 - 5y (2. izt 2 3
o 0.8101
E,, = 4.2140 + g1ozds (1.9267 Q5 - 2.5483 Q)

Substituting these equations into Equation (A-3) and remembering

that
1 142

, |
=Lt 1.y/s2.4580
5B (19F)3zm° 5

the following simultaneous equations are obtained:

(52,5480 +15.9146) Q) - 16,6409 Q, = -24.1170 |
(A-29)
-24.3932 Q)5 + (52.4580 + 26, 0806) Q,7 = 38,0908

The solution of these equations are

le- = -0,2539, ng- = 0.4061
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From Equations (A-8) and (A-9)
T = 36. 65, T = -10.72, T' = - 183.49

BlO = -0.4894, B,. = 2.3856, B = -1.9330

21 32

Then, from Equations (95) and (97)

N'i = 36.65, N"2 = -47,.37, N"3 = -172.717, N"‘l = 366.98

M'i = -114,25, M“2 = 556.94, M‘é = -45], 27

The longitudinal stresses at the center of the span are:

Plate 1:

G = 367 - 2742 = - 2375
G Y = 367 + 2742 = 3109

Plate 2:

G} = -237 + 3342 = 3105

G “2 = =237 - 3342 = -3579
Plate 3:
an = -864 - 2708 = -3572
= 1844

"n o= _
Gl = 864 + 2708

Plate 4:

G'y=2x183.5x5 1835

The general expressions for longitudinal stresses are:
Go = 2384 gl(x) - 2375 gz(x)
(A-30)
Gl = -4240 g1 (%) + 3107 g,(x)
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G, = 8572 gl(x) - 3575 gz(x)
G3 = -5989 gl(x) + 1839 gz(x) (A-30) Cont'd.
. 3x

The stresses at x = -Iz"- will be: (the third point nearest to the simple

support)
G—b = -25, G‘l = -650, GZ = 2800, G3 = -2325 psi, (A-31)

The variation of the longitudinal stresses along the centerline on

the top are as shown in Table A-2:

TABLE A-2
D x/L 1/6 /3 1/2 2/3 5/6 1
' 2330 -3330  -2995 -1335 1665 5989
y 628 1010 962 422  -548  -1760
5 21702 -2320  -2033 -913 1117 4229

These values are plotted in Figure (48).

The cross-bending moments are:

Y, = 0.329 - 1.270 Fl(x)
(A-32)
Y3 = -1.315 %+ 0.760 Fl(x)
, 2 3
where Fl(x) =%—}£ (1 - §—)f-2- + E%— )
L L

The cross-bending moment due to the transverse forces in the side
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plate (4) are determined by using equation (A-17) and performing
a calculation similar to the one shown on page 127. The moments

S& are shown in Table A-3.

TABLE A-3
x/L - 1/6 1/3 1/2 2/3 5/6
Y -0,845 -0,563 -0.555 -0,790 -1,125
1/8 qh2 3.125 3.125 3.125 3,125 3.125
S& - 1.300 1.510 1.510 1.330 1.070
Moment at the
center of side 4. 3.580 4,072 4.075 3,665 3.070

These values for cross-bending moment are plotted in Figure 49,

MODEL B, Uniform ILoad

Equations (A-29) will also apply in this case except that the
right-hand side of the equations will be the same as in Equations

(A-22). Then,

68.3726 QI_Z - 16,6409 Q,= = 36.815

23
(A-33)
-24.3932 Q;5 + 78, 5386 Q,5 = -57.153

The solution of these equations is:
le‘ = 0. 3909: Qz? = "0- 6063

From Egquations (A-8) and (A-9')

T, = -54,50, T, =15.15, T, =276.33

1 2 3

B.,=0,7431, B,, = -3.6058, B,, = 2.9147

10 21 32



-137-

Then, from Equations (95) and (97)

69.65, N = 261.17, N = 552. 66

1 - I ¥
N’l - 549 503 N‘ 3

2

M} =173.48, M, = -841.80, M', = 680.46

'~ The longitudinal stresses at the center of the span are:

Plate 1:
(T':) = ~545 + 4164 = 3619

_q'l' = -545 - 4164 = - 4709
Plate 2:

C" = 348 - 5051 = -4703

Q-”Z = 348 + 5051 = 5399
Plate 3:

G, = 1306 + 4083 = 5389
¢y = 1306 - 4083 = - 2777

Plate 4:

G'y=-2x276.3x5 - 2763

Combining with Equations (A-20), the total stresses are obtained.

Go = -%19 gl(x) + 3619 gz(x)

1l

G = 14,332 gy(x) - 4706 gz(x)‘

Gy = -13,225 g(x) + 5394 g,(x)

G3 = 2582g(x)= 2770 g,(x)
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3 2x .2 . 3
where g(x) = - (£)° g,(x) =sinF - =

The longitudinal stresses at x = L are:

5 {the third point nearest

to the simple support) ‘

Go = 1747, 61 = 5410, G2 = -4470, 3 = -80 psi. (A-35)

The variation of the longitudinal stress along the center line of the

shell is:

TABLE A-4

x/L 1/6 1/3 1/2 2/3  5/6 1
G4 1005 1437 1291 575 -717 -2582
G -930 ~1495 -1435 -626 808 2610
G3 75 -58 -144 -51  -91 28

Since the value of the stresses are small, they are not shown

graphically.

The cross-bending moment will be

Y,

-2.371 + 1,954 F (x)

(A-36)
Y

5 = -1.985 - 1.077 Fy(x)

where

| 2 3
Fo(x) = (32) - 2+ 2
L L
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NOTATION
n = an integer
a = inclination of side plate to horizontal
hn = width of side plate n
t = thickness of side plate n
L = length of shell between supports
a, = area of cross-section of side plate
In = moment of inertia of plate n about the neutral axis peré
pendicular to plate
21
. . _ n-
Zn = section modulus of side plate nj Z, = —-—-—nn
én n-l = distance from neutral axis of nth plate to joint n-1
sil™a
J, = moment of inertia of cross-section of unit strip
q, = intensity of external load component perpendicular to
plate n on a unit area
p;I n-l = external load component parallel to plate n on a unit
: length of shell. (Plate load).
?'n—l = fixed end cross-bending moment at joint n-1 of member
'™ n-1,n of the unit strip
Y;1 = joint cross-bending moment due to the external load on
the plate
Rn T = joint reaction at joint n perpendicular to plate n due to
? external load
1] - _
Phn-1° plate load due to the R-loads

= p! "
Pp,n-1 =P'n,n-1 +p n,n-1 + {any other plate loads)

The following notation refers to the center of the span regardless
of the end conditions:

Y 5" fixed end cross-bending moment at joint n-1 of member
n-1,n of the unit strip due to relative displacement of the
joints

Y = cross-bhending moment at joint n due to rotation of the
side plates
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NOTATION (Cont'd)

Q = = correction load at joint n perpendicular to side plate n
Woa-1 = plate load due to the correction loads Q
n.n-1 = equivalent plate load (uniform along span)
2
Bn, n-1 = equivalent plate load
T;l = shear force at joint n due to p-loads
T; = shear force at joint n due to the w-loads
Tn = shear force at joint n
N'=T!' -T N'=T' -T" ., N=T -T
n n n-1 "'n n n-1 n n n-l
MQ’ ' = bending moment due to p of side plate acting as a
n beam n,n-1
M0 = bending moment due to w
n n,n-1
1 - 3 1 1
Mo = bending moment due to Py, n-1’ Tn and T 1
Mr = bending moment due to w » T'" and T
n n,n-1 n n-1
—T—£-1 n = fixed end moment of the conjugate beam at joint n-1
’ of the member n-1,n
K = stiffness factor
1 - 3 4 ! ]
Yn = deflection of side plate n due to pn,n-l’ Tn and Tn—l
y' = deflection of side plate n due to w » T'" and T"
n n,n-1 n n-1
Y = total deflection of plate n
n
o, F = deflection of joint n perpendicular to plate n+l
dn = relative displacement = /]n’ﬁ- . 71’1-1,;1_
G = longitudinal unit stress
—
4 = shear per unit length



