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ABSTRACT

This thesis consists of three projects related to enumerative geometry and mirror
symmetry, with an eye towards birational geometry.

The first project studies how certain non-archimedean Gromov-Witten invariants of
log Calabi-Yau surfaces, called infinitesimal cylinder counts, behave under blowup.
We discuss the case of primitive cylinders, and establish a formula that expresses
cylinder counts on a blow up of a toric surface in terms of counts in a simpler surface.
The proof of the formula uses non-archimedean geometry techniques in an essential
way to produce suitable degenerations of the geometric objects enumerated by the
counts.

The next two projects introduce and study the notion of F-bundle, a structure which can
be used to formulate mirror symmetry type results using the language of differential
geometry. Our spectral decomposition theorem provides a canonical decomposition
for F-bundles satisfying a condition called maximality. We develop the theory of
framing, and use it to obtain reconstruction theorems for isomorphisms between
maximal F-bundles. As an application of this theory, we prove the uniqueness
of certain decompositions of quantum cohomology related to birational geometry,
complementing the existence results found in the literature. We also extend the
framework of F-bundles to the setting of equivariant mirror symmetry, and prove
an unfolding result which can be used to strengthen mirror symmetry statements
from the small quantum cohomology to the big quantum cohomology. We apply this
unfolding theorem to the equivariant mirror symmetry of general flag varieties, for
which only the small quantum cohomology mirror symmetry was known until now.
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C h a p t e r 1

INTRODUCTION

1.1 Motivations
Enumerative geometry is concerned with counting geometric objects subject to
certain constraints. For example, in the complex plane there is a unique line passing
through two distinct points, and a unique conic passing through five points in general
position. Another, more challenging, computation shows that there are 609, 250
rational conics in a generic quintinc threefold ([Kat86]). There are many examples
of such computations using classical algebraic geometry techniques, but for a long
time no general theory was available to enumerate curves subject to certain incidence
conditions inside a given manifold.

Developed at the end of the 20th century, Gromov-Witten theory provides a general
mathematical framework which produces curve counting invariants. Although it
originated from the mathematics of quantum field theory, Gromov-Witten theory has
grown into a major field of mathematics and has led to decades of groundbreaking
research in symplectic and algebraic geometry. Early works in Gromov-Witten theory
revolved around two central themes: producing mathematically rigorous foundations
to the theory ([KM94; Kon95a; BM96; Beh97; FP97]), and studying the mirror
symmetry phenomenon observed by physicists in string theory ([Can+91; Giv95;
SYZ96; HV00]).

Mirror symmetry was originally described as a duality between physical theories, and
realized mathematically as a duality between the complex and symplectic geometry
of pairs of Calabi-Yau manifolds. Physicists’ computations suggested that certain
numerical quantities associated to each side of the mirror correspondence should
be equal, and led to conjectural formulas for certain Gromov-Witten invariants
which were unkown to mathematicians at the time ([Can+91]). The development of
Gromov-Witten theory led to a rigorous proof of these identities ([Giv96; LLY97;
LLY99]), and initiated the mathematical study of mirror symmetry.

Since those early days, mirror symmetry has grown into a vast field of geometry.
Efforts were made to provide a conceptual understanding of the numerical coincidence
observed on concrete examples, leading to two main formulations of mirror symmetry.
The Homological Mirror Symmetry conjecture is a categorical framework proposed
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by Kontsevich ([Kon95b]), which expresses mirror symmetry as an equivalence of
categories associated to each side of the mirror correspondence. Another formulation
is the Hodge-theoritic mirror symmetry, also known as D-module mirror symmetry,
which associates to each side of the mirror correspondence a system of differential
equations and conjectures that those systems are equivalent ([Dub96; Bar00]). In
this formulation, the equality of numbers is obtained by comparing coefficients of
solutions. Those two approaches are related, and in certain cases homological mirror
symmetry implies Hodge-theoritic mirror symmetry ([KKP08; GPS15]).

While the above formulations of mirror symmetry were obtained by studying concrete
examples, such as Calabi-Yau geometries and toric varieties, they are not precise and
consequently out of reach. Before proving any kind of mirror symmetry statement,
one needs to produce mirror pairs. So far, the only general mechanism to produce
mirror pairs is the Strominger-Yau-Zaslow (SYZ) conjecture ([SYZ96; Gro13]). It
conjectures that every Calabi-Yau manifold admits a fibration into special Lagrangian
tori, and that the mirror Calabi-Yau manifold can be constructed by dualizing this
fibration in a certain sense. We discuss the SYZ conjecture in more details in
Section 2.2. We note that in its modern formulation, mirror symmetry has been
generalized beyond the Calabi-Yau case, and that no construction exists in that
generality.

In recent years, methods used in Hodge-theoritic mirror symmetry were fruitfully
applied to problems at the interaction between enumerative geometry and birational
geometry ([Iri23; IK23]). Some of the results in this thesis contribute to these
developments. In particular, the main results of Chapter 4 are foundational for
the definition of new birational invariants obtained from enumerative geometry in
[Kat+24].

In this thesis, we use non-archimedean geometry and formal geometry to study
questions related to mirror symmetry. Non-archimedean geometry is a generalization
of analytic geometry, where the notion of convergence is made a lot weaker by the
use of non-archimedean absolute values. This allows us to use analytic techniques
without worrying too much about convergence, and also introduces features that are
unique to this setting (see Section 2.2.2). The relevance of non-archimedan geometry
for mirror symmetry was outlined in [KS06]. In particular, a non-archimedean
version of the SYZ conjecture was proved in [NXY19], eventually leading to a
construction of mirror to a log Calabi-Yau affine manifold ([KY23; KY24]), a
non-compact analogue of a Calabi-Yau manifold. The use of formal geometry in
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mirror symmetry is well-established, and provides a geometric language to talk about
properties of generating series associated to Gromov-Witten invariants.

1.2 Overview of the main results
We now give an overview of the results of the thesis. General background used
throughout the thesis is given in Chapter 2.

Non-archimedean cylinder counts
In Chapter 3, we study certain non-archimedean Gromov-Witten invariants involved
in the construction of a mirror to a log Calabi-Yau manifold as outlined by the
SYZ conjecture ([KY23]). The definition of those invariants, called infinitesimal
cylinder counts, involves the theory of skeleta for non-archimedean analytic spaces
which we review in Section 2.2. The counts encode the mirror manifold through a
combinatorial object called a scattering diagram. It is desirable to obtain closed-form
formulae for those invariants in order to study the mirror manifold, because the
scattering diagram can ultimately be used to produce equations for the mirror (see
[Arg23]).

The main result of the chapter provides a formula which computes infinitesimal
cylinder counts for a primitive curve class in the surface case. Specifically, the
project deals with an affine log Calabi-Yau surface U with a fixed compactification
U ⊂ Y , obtained as a blowup of a toric variety π : Y → Yt. For surfaces this setup
is in fact non-restrictive, because every log Calabi-Yau surface is a blowup of a toric
variety up to a single blowup.

We denote byN(V, β) the count of infinitesimal cylinders of type V and curve class β.
In this notation, V is a combinatorial object which encodes conditions on the skeleta
of the analytic stable maps we are counting, and β ∈ NE(Y,Z) is an effective curve
class. The count is a refinement of a 3-pointed relative Gromov-Witten invariant to
(Y,D), where D = Y \ U , with two boundary points and a generic interior point
constraint. In the toric case, those counts can be computed and are always 0 or 1.
But in the non toric case, interactions of analytic stable maps with the exceptional
locus E of the blowup morphism π : Y → Yt produce non trivial counts. The
complexity of the interaction with the exceptional locus is measured by the twig type
of V , which is a tuple w = (ws)1≤s≤t where each ws corresponds to a point of the
domain curve mapped to the exceptional locus. For example, in the toric case if
N(V, β) ̸= 0 then the twig type of V is empty as there is no exceptional locus. The
next simplest case corresponds to cylinder types V whose twig type consists of a
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single element: the associated stable maps meet the exceptional locus of π at a single
point. Consequently, those cylinder counts can be expressed in terms of counts on a
variety which is obtained by blowing up Yt at a single boundary point.

Our result deals with primitive cylinder types, which geometrically correspond to
stable maps intersecting each component of the exceptional locus E at most at a
single point, with intersection number 1. It expresses a general primitive cylinder
count in terms of counts of primitive cylinders with a single twig, which are the
simplest kind of non toric counts.

Theorem 1.2.1 (Theorem 3.1.1). Let V be a primitive infinitesimal tropical cylinder
type with twig type w = (ws)1≤t≤s, let β ∈ NE(Y,Z). Then

N(V, β) =
∑

β1+···+βt=β

t∏
s=1

N(Vs, βs),

where Vs is an infinitesimal cylinder of twig type ws.

The result is established using non-archimedean techniques. Geometrically, we
isolate intersections with the exceptional locus by swapping them for components
which avoid it via an inductive procedure. This is done by a gluing and degeneration
procedure at the level of the domain curve, reminiscent of the classical argument
by Kontsevich and Manin which computes the Gromov-Witten invariants of P2

([KM94]). However, in this case the deformation is first encoded tropically, and
lifting it to an analytic deformation uses non-archimedean geometry in an essential
way. We then relate counts at each side of the degeneration using deformation
invariance, and eventually obtain our formula.

Our approach contrasts with the typical methods used to compute Gromov-Witten
invariants, which usually rely on degeneration of the target, or take advantage of a
torus action on the target to apply localization techniques. In our setup, Y admits a
so-called degeneration to the normal cone, whose central fiber is the union of Yt and
projective bundles over components of the toric boundary. In principle, applying the
degeneration formula in this setting should provide a way to compute cylinder counts.
However, there is no clear analogue of the degeneration formula for non-archimedean
Gromov-Witten invariants. We note that such a formula is available in logarithmic
Gromov-Witten theory ([Abr+20]), and that conjecturally non-archimedean cylinder
counts should correspond to certain logarithmic Gromov-Witten invariants. We
plan to address the question of the comparison of non-archimedean and logarithmic
Gromov-Witten invariants in future works.
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Decomposition of F-bundles
In Chapter 4, we introduce the notion of formal and non-archimedean F-bundle and
establish essential theorems about them, which we call the spectral decomposition
theorem and the extension of framing theorem. We apply the extension of framing
to the study of the decomposition of quantum cohomology for a blowup and for a
projective bundle.

The notion of F-bundle emerged as the de Rham part of a non-commutative Hodge
structure. The latter appeared in [KKP08] as an attempt to provide a common
framework for homological mirror symmetry and Hodge-theoritic mirror symmetry.
We review the differential-geometric data associated to the enumerative geometry in
a variety in Section 2.3, which motivates the notion of F-bundle studied in this thesis.

Geometrically, an F-bundle (H,∇) parametrized by a base B is a vector bundle
H → B × Du, where Du is a neighborhood of u = 0 in an affine line, and a
meromorphic flat connection ∇ onH with poles at u = 0, such that∇u2∂u

and ∇uξ

are regular for any tangent vector field ξ to B. We consider the cases when B is a
formal scheme, and when B is a smooth non-archimedean analytic space.

We prove the following decomposition theorems in the formal and non-archimedean
settings, they provide a canonical decomposition for maximal F-bundles with respect
to the eigenvalues of the operator Kb := ∇u2∂u

|b,0, where b ∈ B is a closed point.
We refer to Chapter 4 for the notion of maximal F-bundle, which can be thought of
as a weaker version of Frobenius manifolds.

Theorem 1.2.2 (Formal spectral decomposition, Theorem 4.1.1). Let B be a formal
neighborhood of a rational point b in a smooth k-variety, and (H,∇) an F-bundle
over B maximal at b. Assume that we have a decompositionHb,0 ≃

⊕
i∈I Hi stable

under Kb, and that for any i ̸= j ∈ I , the spectra of Kb|Hi
and Kb|Hj

are disjoint.
Then (H,∇)/B decomposes into a product of maximal F-bundles (Hi,∇i)/Bi

extending the decomposition ofH|b,0.

Theorem 1.2.3 (Non-archimedean spectral decomposition, Theorem 4.1.2). LetB be
an admissible open neighborhood of a rational point b in a smooth k-analytic space,
and (H,∇) an F-bundle over B maximal at b. Assume that we have a decomposition
Hb,0 ≃

⊕
i∈I Hi stable underKb, and that for any i ̸= j ∈ I , the spectra ofKb|Hi

and
Kb|Hj

are disjoint. Then there exists an admissible open neighborhood U of b such
that (H|U ,∇|U)/U decomposes into a product of maximal F-bundles (Hi,∇i)/Ui
extending the decomposition ofHb,0.
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The next main result concerns the existence and uniqueness of framings for F-
bundles. Roughly, a framing is a trivialization ofH in which the connection ∇ has
no non-negative powers of u. We prove the following non-archimedean version (see
Theorem 4.1.3 for the formal version).

Theorem 1.2.4 (Theorem 4.1.4). Let B be an admissible open neighborhood of a
rational point b in a smooth k-analytic space. Let (H,∇) be a non-archimedean
F-bundle over B. Then every framing at b extends uniquely and explicitly to a
framing over an admissible open neighborhood U of b in B.

Ultimately, the extension of framing provides reconstruction results for morphisms
of F-bundles (Proposition 4.1.5). The main applications we present in this chapter
concern the A-model F-bundle associated to a blowup or a projective bundle. It
was proved in [Iri23; IK23] that in those two cases, the quantum D-module (an
incarnation of the A-model F-bundle) splits in a way that extends the classical
splitting of cohomology. In Section 4.5, we obtain uniqueness results for these
decompositions, as well as partial existence results (see Theorems 4.1.8 and 4.1.10
for the case of projective bundles).

The results obtained in Chapter 4 pave the way for the development of the theory of
atoms in [Kat+24]. The theory produces new birational invariants from enumerative
geometry, providing new ways to study birationality problems. The theory of
F-bundles also provides a clean geometric framework which can be used to express
Hodge-theoritic mirror symmetry.

Mirror symmetry of flag varieties
In Chapter 5, we use the theory of F-bundles to prove Hodge-theoritic mirror
symmetry for general flag varieties. On the A-side, we consider the enumerative
geometry of a flag variety X = G/P of general type. On the B-side, we consider a
Landau-Ginzburg model, which encodes the singularity theory of a superpotential
W : X∨ → A1 defined on the mirrorX∨ = G∨/P∨, whereG∨ andP∨ are Langlands
dual to G and P respectively.

In the recent work [Cho23], a restricted version of mirror symmetry for the pair
(X,X∨) was proved after restricting the quantum cohomology to the small locus
(i.e. allowing only divisor insertions in the quantum product). Our goal is to extend
this correspondence to the big quantum cohomology, by constructing an appropriate
unfolding of the superpotential and extending the mirror isomorphism.
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While some reconstruction results are available in the literature, none of them
applies to the situation we consider. Those results either require the small quantum
cohomology to be H2-generated, or to be semisimple. The former result is known as
the Hertling-Manin unfolding theorem ([HM04]), and generalizes the Kontsevich-
Manin reconstruction theorem for Gromov-Witten invariants ([KM94]). We observe
that a flag variety X has a natural torus action T , and that when working T -
equivariantly theH2-generation condition holds for equivariant quantum cohomology.

The structure of F-bundle studied in Chapter 4 does not exactly fit the setup
of equivariant quantum cohomology. Consequently, we introduce the notion of
equivariant F-bundle and prove the following analogue of the Hertling-Manin
unfolding theorem.

Theorem 1.2.5 (Unfolding of equivariant F-bundles, Theorem 5.1.1). Let F =
{(H,∇), (HR,∇R), α} be an equivariant F-bundle overk[[tI ]], and fix v ∈ HR|u=tI=0.

1. If v satisfies (IC), (GC) and cokerµv is free, then F admits a maximal unfolding
with a cyclic vector induced from v.

2. If v satisfies (GC’), then any two maximal unfoldings of F with cyclic vectors
induced from v are isomorphic under a unique isomorphism.

Furthermore, any framing for F induces a unique framing on a maximal unfolding.

This new unfolding theorem successfully generalizes the existing reconstruction
results for quantum cohomology to the equivariant setting. Applying our unfolding
theorem, we are able to obtain equivariant mirror symmetry for general flag varieties
(Theorem 5.1.4).

Hodge-theoritic mirror symmetry typically involves other structures, such as a
pairing and an integral structure. Some of those structures are also included in the
existing reconstruction results. It is natural to ask whether this reconstruction can be
generalized to the equivariant setting, and we plan to address this question in the
future.
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C h a p t e r 2

BACKGROUND

In this chapter, we present background material used throughout the thesis. Gromov-
Witten theory is used in each chapter and in Section 2.1 we recall the definition of the
moduli spaces and of Gromov-Witten invariants. The next sections discuss various
aspects of mirror symmetry which are at the heart of the next chapters. In Section 2.2
we discuss mirror symmetry in the context of Calabi-Yau varieties through the lense
of the SYZ conjecture, explain how certain features of non-archimedean geometry
are used to implement the SYZ conjecture in the non-archimedean setting, and define
the non-archimedean Gromov-Witten invariants which are studied in Chapter 3. In
Section 2.3, we discuss Hodge-theoritic mirror symmetry in a more general context
and relations to birational geometry, motivating Chapters 4 and 5.

2.1 Gromov-Witten theory
In this section, we present the basics of Gromov-Witten theory, which is used
throughout the thesis. The standard references are [Kon95a; FP97].

Let X be a smooth proper complex variety of dimension d. One is interested in
counting curves inX subject to various incidence conditions, and there are many ways
of doing this ([PT14]). Gromov-Witten theory provides a way to count parametrized
curves inside of X , with marked points at which incidence conditions are imposed.
The basic objects one wants to count are maps f : (C, p1, . . . , pn) → X , where C
is a smooth proper curve with marked points (p1, . . . , pn) and f is a smooth proper
map.

2.1.1 Stable maps
To extract enumerative invariants from this situation, one defines an intersection
theory on the moduli stack classifying such morphisms. There are two issues to
address.

1. Transversality: a good understanding of the deformation theory of maps f : (C, p1, . . . , pn)→
X is required in order to define an intrinsic normal cone to deal with non-transverse
intersections, in the style of [Ful98].

2. Properness: the moduli stack needs to be proper in order to define numbers. This
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requires to include degenerations of maps (C, p1, . . . , pn)→ X in the definition of
the moduli stack.

Those observations motivate Kontsevich’s definition of stable maps, which allows
nodal singularities in the domain curve and kills infinitesimal automorphisms by
imposing a stability condition. As usual in moduli theory, one needs to study families
of such objects. We give the definition over a field, but note that the theory was
developed for X a scheme locally of finite presentation over a locally noetherian
scheme S.

Definition 2.1.1 (Stable map, [Kon95a, §1.1],[Yu18, §7]). Let k be a field, X a
scheme over k and T a k-scheme. An n-pointed, genus g stable map (C → T, (si), f)
into X over T consists of a morphism C → T , a morphism f : C → X and n
morphisms si : T → C such that:

1. C → T is a proper flat family of curves,

2. the geometric fibers of C → T are reduced with at worst nodal singularities,
and have arithmetic genus g,

3. the n morphisms si : T → C are disjoint sections of C → T whose image is
in the smooth locus of C → T , and

4. (stability condition) for any geometric fiber Ct of C → T , every irreducible
component of Ct of genus 0 (resp. 1) has at least 3 (resp. 1) special points on
its normalization, where special points are the marked points and the points
coming from nodes.

We say that (C → T, (si), f) is an n-pointed, genus g pre-stable map into X over T
if it satisfies conditions 1-3.

Definition 2.1.2 (Stable curve). Let k be a field, T a k-scheme. A (pre)-stable curve
over T is a (pre)-stable map (C → T, (si), f) to a point, with f : C → Spec k being
the structure morphism.

When X is projective over k, the class of a stable map (C → Spec k, (si), f) into
X is f∗[C] ∈ NE(X,Z). For β ∈ NE(X,Z), we denote byMg,n(X, β) the moduli
stack parametrizing n-pointed, genus g stable maps to X of class β. We also denote
byM0,n (resp. Mpre

g,n) the moduli stack of stable (resp. pre-stable) curves.
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Theorem 2.1.3 ([Kon95a],[FP97]). Let k be a field of characteristic 0, X a smooth
projective k-variety. Fix g, n ≥ 0 and β ∈ NE(X,Z). The moduli stackMg,n(X, β)
is a proper Deligne-Mumford stack.

While the moduli stackMg,n(X, β) may be singular and have components of varying
dimensions, it has an expected dimension called virtual dimension which is given by
([Beh97])

vdimMg,n(X, β) = n+ (1− g)(dimX − 3) + β · TX .

The formula is obtained by counting the difference between the number of deformation
parameters of a stable map and the number of constraints a deformation must satisfy.
The standard reference for deformation theory in algebraic geometry is [Har10], we
refer to [Yu18, Lemma 7.14] for the description in the case of stable maps.

An intersection theory for Deligne-Mumford stacks was developed in [Vis89],
generalizing [Ful98]. In order to obtain invariants, a virtual fundamental class is
required. This is a cycle in [Mg,n(X, β)]vir ∈ Avdim Mg,n(X,β)(Mg,n(X, β)). The
theory of virtual fundamental classes was originally developed in [BF97] using the
notion of perfect obstruction theory, which can be seen as a precursor of the cotangent
complex for algebraic stacks. The perfect obstruction theory for Gromov-Witten
theory was then constructed in [BM96; Beh97]. We refer to [Kha19] for a modern
treatment.

Let (C → T, (si), f) be a stable map into X over T . Remembering only the data
(C → T, (si)) induces a morphism to the moduli stackMpre

g,n of n-pointed, genus g
pre-stable curves, called the domain morphism

dom: Mg,n(X, β) −→Mpre
g,n.

Composing the section si with f provides a tuple of evaluation morphisms

ev = (ev1, . . . , evn) : Mg,n(X, β) −→ Xn.

Using those morphisms and the virtual fundamental class, we obtain Gromov-Witten
invariants associated to any classes α1, . . . , αn ∈ H∗(X, k) and γ ∈ H∗(Mpre

g,n,k):∫
[Mg,n(X,β)]vir

ev∗(α1 ⊗ · · · ⊗ αn) ∪ dom∗ γ ∈ H∗(Spec k,k) ≃ k.

Two other types of operations on stable maps are used in Chapter 3. IfMpre
g,n(X, β)

denotes the moduli stack of pre-stable maps into X of class β, contracting unstable
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components defines a stabilization map

Mpre
g,n(X, β) −→Mg,n(X, β).

Forgetting a marked point and applying the stabilization morphism defines a forgetful
morphism

Mg,n+1(X, β) −→Mg,n(X, β).

2.1.2 Relative Gromov-Witten theory
In Chapter 3, we are interested in counting stable maps into an open geometryU . This
is done by fixing an snc compactification U ⊂ X , and using relative Gromov-Witten
theory for the pair (X,D := X \ U).

Relative Gromov-Witten theory for a pair (X,D), where D ⊂ X is an snc divisor, is
a way to count stable maps into X with higher tangency conditions along the divisor
D at the marked points. The theory was initially developed in [Li01; Li02] whenD is
smooth, with the goal of obtaining a degeneration formula in Gromov-Witten theory.
Given a degeneration of X to a singular variety X1

∐
DX2 with two irreducible

components meeting along a divisor D, the degeneration formula expresses the
Gromov-Witten invariants of X in terms of relative Gromov-Witten invariants of
(X1, D) and (X2, D).

Let us describe relative stable maps more precisely. Denote byD = D1+· · ·+DN the
irreducible components of D. A contact order along D is a N -tuple (p1, . . . , pN) ∈
NN , with the i-th component specifying the tangency order with Di. Fix g, n ≥ 0
and contact orders P = (Pi)1≤i≤n. We want to count n-pointed, genus g stable maps
(C, (pi), f : C → X) of class β, such that the order of f at pi along D is specified by
Pi. The moduli space of such maps is not proper, because contact orders can jump
in families, and components of C can even degenerate to components mapped into
D. It is possible to define a compactificationMg,n(X,P, β) of this moduli space.
The virtual dimension of this moduli stack is

vdimMg,n(X,P, β) = vdimMg,n(X, β)− β ·D

= n+ (1− g)(dimX − 3) + β · TX(− logD).

Constructing a suitable compactification of the moduli space and defining a virtual
fundamental class is a major difficulty of the theory. Various substacks of this moduli
space are considered in Section 3.2.2.2.

Associated to a relative stable map (C, (pi), f) ∈ Mg,n(X,P, β) is a number of
combinatorial data that can be encoded into a decorated graph (see [Li02; ACP15;
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Yu15] ). Specifically, one considers the dual graph of the domain curve C: to each
irreducible components of C one associates a vertex, to each node an edge, and
to each marked point a leg at the corresponding vertex. Each vertex is decorated
with a genus and a curve class, and each edge and leg is assigned an integral vector
encoding contact orders with D. Finally each vertex, edge and leg is assigned a
stratum of the divisor D, to which the corresponding irreducible component, node or
marked point is mapped. We loosely refer to this as the tropical data underlying a
relative stable map.

2.1.3 Variants: non-archimedean, logarithmic, derived
Gromov-Witten theory has been developed beyond the classical algebro-geometric
context. Specifically, in Chapter 3 we use non-archimedean Gromov-Witten theory
and a derived enhancement of the theory.

The tropical data associated to a relative stable map arises naturally in the non-
archimedean setting, as we explain in Section 2.2.3. This is a general feature of
non-archimedean analytic geometry, and it can be seen as a motivation for the
development of non-archimedean Gromov-Witten theory. Non-archimedean analytic
stable maps were introduced in [Yu15; Yu18], where the moduli space is constructed
and the properness of the moduli space is proved. The series of papers [PY24;
PY22] further develops the theory in the setting of derived analytic geometry and
constructs a virtual fundamental class, allowing the definition of non-archimedean
Gromov-Witten invariants in full generality.

While we do not use it in this thesis we briefly mention logarithmic Gromov-Witten
theory, which is a far-reaching generalization of relative Gromov-Witten theory. The
theory enhances stable maps with a log-structure which records contact orders. The
log-structure also encodes the tropical data underlying a relative stable map, and
allows one to analyze combinatorics of the geometric situation using piecewise linear
geometry. We refer to [GS13; Abr+25] for the theory of logarithmic stable maps, and
to [Abr+20] for a discussion of the degeneration formula in the logarithmic setting.

2.2 SYZ conjecture and non-archimedean mirror construction
Mirror symmetry, in a broad sense, is a conjectured duality between geometries, and
it underpins much of the work in this thesis. Various aspects of mirror symmetry
are discussed in Section 2.3. In this section, we discuss the SYZ conjecture and its
implementation in the non-archimedean framework. In particular, in Section 2.2.3
we define the non-archimedean cylinder counts which are studied in Chapter 3.
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2.2.1 SYZ Conjecture
The SYZ conjecture, originally formulated in [SYZ96], is a conjectural construction
that associates to a symplectic Calabi-Yau varietyX a mirror partner X̌ . It originates
from the observation that given a torus T , the Jacobian variety Ť is again a torus that
realizes various predictions of mirror symmetry, and that the correspondence T 7→ Ť

is an involution. The general conjecture is unprecise, but can be losely formulated as
follows.

Conjecture 2.2.1 (SYZ mirror symmetry). Let X be a symplectic Calabi-Yau
manifold. There exists continuous surjections f : X → B, f̌ : X̌ → B and a
codimension 2 submanifold ∆ ⊂ B such that:

1. onB \∆, the maps f and f̌ are fibrations into nonsingular special Lagrangian
tori, and for each b ∈ B \∆ the fibers f−1(b) and f̌−1(b) are dual tori, and

2. for b ∈ ∆, the fibers f−1(b) and f̌−1(b) are singular special Lagrangian tori.

Furthermore, the dual fibration f̌ : X̌ → B is obtained by counting holomorphic
disks connecting singular fibers of f .

Let us comment on some aspects on this conjecture.

• It is expected that the correct statement should involve a family version. Instead
of considering a Calabi-Yau variety X , one should consider a maximally unipotent
degeneration X → D∗ of Calabi-Yau varieties parametrized by a punctured disk.
The maximally unipotent condition states that the monodromy should have a Jordan
block of maximal rank. The total space X of the family is a non-compact Calabi-Yau
manifold, and conjecturally under the maximally degenerate assumption there exists
an snc compactification X of X such that the volume form extends to a volume form
with at worst logarithmic singularities along the divisor X \ X . Such geometries
are called log Calabi-Yau and are expected to be the correct setting for the SYZ
conjecture.

• The last part of the conjecture is a reconstruction proposal, and says that the mirror
should be determined by enumerating special kinds of open holomorphic curves in
X which we call holomorphc cylinders. It motivates the introduction of the cylinder
counts we study in Chapter 3. Roughly, locally on the smooth locus B \∆ one can
construct a dual fibration. The conjecture says that the gluing and extension data
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required to extend the dual fibration to the singular locus ∆ can be extracted from
holomorphic cylinder counts. In the family version of the SYZ conjecture, those
counts should in some way be relative to the compactification divisor.

Aspects of the reconstruction problem and its relation to the Homological Mirror
Symmetry conjecture were studied in [KS01; KS06]. Gross and Siebert formulated
an algebro-geometric version of the reconstruction problem in [GS03; GS06], leading
to what is now known as the Gross-Siebert program, whose goal is to understand
mirror symmetry through logarithmic geometry; see [Gro13] for a survey. The
program prompted the development of logarithmic Gromov-Witten theory, and
culminated in the mirror constructions in [GS19; GS22].

The idea to reconstruct the dual fibration f̌ : X̌ → B from the enumerative infor-
mation of X is as follows. The base B should be equipped with an affine structure
away from the singular locus ∆ ⊂ B. This affine structure encodes piecewise linear
geometry, also known as tropical geometry. The dual fibration can be constructed on
affine charts, but the gluing along those charts might not be consistent. To remedy
this, one encodes corrections to the gluing maps into a combinatorial object defined
on B known as a scattering diagram. It consists of a collection of codimension
1 affine subspaces, called walls, with data attached to them called wall-crossing
functions. Those wall-crossing functions are automorphisms of the coordinate charts,
whose coefficients are defined by counting holomorphic cylinders. The consistency
of the gluing can be expressed as a series of identities satisfied by wall-crossing
functions. Formulated in this way, the reconstruction problem boils down to defining
a suitable affine structure on B and wall-crossing functions in such a way that the
resulting scattering diagram satisfies the consistency condition. We refer to [KS14;
GPS10; GHS22; AB23] for a treatment of scattering diagrams in the context of
mirror symmetry.

While the SYZ conjecture is compelling, in general the existence of special tori
fibrations remains conjectural in the symplectic category. Recent works in this
direction include [Li23; Yua22]. On the other hand, in the non-archimedean category
the retraction to the skeleton provides an analogue of the SYZ fibration, motivating
the development of a non-archimedean approach to mirror symmetry [KS06; KY23].

2.2.2 Formal models and skeleta of non-archimedean analytic spaces
The most important feature of non-archimedean geometry used in this thesis is the
theory of formal models and their skeleta. We refer to [BGR84; Bos14; Ber90] for a
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general introduction to non-archimedean analytic geometry.

2.2.2.1 Formal models

We start by recalling Raynaud’s theory of formal models, which provides a link
between formal and non-archimedean analytic geometry. Fix a non-archimedean
field k of characteristic 0, letR denote the ring of integers. For simplicity, we assume
that R is a complete valuation ring of height 1, and denote by I an ideal of definition
for the topology on R. The typical case is R = C[[T ]] equipped with the T -adic
topology.

The R-algebra R⟨x1, . . . , xn⟩ of restricted power series in (x1, . . . , xn) is the com-
pletion of the polynomial ring R[x1, . . . , xn] for the I-adic topology

R⟨x1, . . . , xn⟩ := lim
k
R[x1, . . . , xn]/Ik.

It is the prototypical example of a formal model: applying ⊗Rk, we obtain the Tate
algebra in n-variables corresponding to the k-analytic closed unit disk of dimension
n. More generally, gluing together closed formal subschemes of Spf R⟨x1, . . . , xn⟩
provides formal models of k-analytic spaces. Such formal schemes are called
admissible; we give the precise definition below.

Definition 2.2.2 (Admissible formal scheme). 1. A topological R-algebra A is
admissible if it is isomorphic to a quotient R⟨x1, . . . , xn⟩/a with the I-adic
topology, a a finitely generated ideal, and if it has no I-torsion.

2. A formal R-scheme X is admissible if there exists an open affine covering
(Ui)i∈I of X with Ui = Spf Ai, where Ai is an admissible R-algebra.

We denote by fSchR the category of admissible formal schemes over R, and by fAnk

the category of k-analytic spaces. The functor ⊗Rk from admissible R-algebras to
affinoid k-algebras induces Raynaud’s rigidification functor

(·)rig : fSchR −→ Ank.

To state Raynaud’s theorem, we denote by S the class of admissible formal blowups
in fSchR, see [Bos14, §8.2].

Theorem 2.2.3 (Raynaud’s theorem, [Bos14, Theorem 8.4.3]). The rigidification
functor (·)rig : fSchR → Ank factors through the localization fSchR[S−1] of fSchR at
admissible formal blowups. Furthermore, this induces an equivalence of categories
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between fSchR[S−1] and the category Anqcqs
k of quasi-paracompact quasi-separated

k-analytic spaces.

We mention the work [Ant18], which generalizes the theory of formal models to
derived k-analytic spaces.

2.2.2.2 Skeleta of non-archimedean analytic spaces

The study of formal models leads to the notion of skeleton of k-analytic spaces, first
introduced in [Ber99; Ber04]. Kontsevich and Soibelman in [KS01; KS06] introduce
the notion of essential skeleton associated to a maximal degeneration of Calabi-Yau
varieties, and conjecture that one should be able to construct a non-archimedean
analogue of the SYZ fibration over the essential skeleton.

Roughly, associated to a good enough formal model X of a k-analytic space X is
a polyhedral complex Sk(X) ⊂ X which is a strong deformation retract of X , and
which is equipped with an affine structure. The combinatorial structure of Sk(X)
reflects the geometry of the special fiber Xs. It is used in [NXY19, §6] as the base
parametrizing the non-archimedean SYZ fibration, under some assumption on the
formal model.

As mentioned in Section 2.2.1, any implementation of the SYZ conjecture should
really be about pairs (X,D) where D ⊂ X is an snc divisor compactifying the open
Calabi-Yau variety X \D. The theory of formal models and skeleta is generalized to
strictly semistable pairs in [GRW16].

Definition 2.2.4. A formal strictly semistable pair (X, H) consists of a connected
quasi-compact admissible formal R-scheme X and a sum H = H1 + · · · + HS of
distinguished effective Cartier divisors on X such that X is covered by formal open
subset U which admit an étale morphism

ψ : U −→ Spf R⟨x0, . . . , xd⟩/(x0 · · ·xr − π),

for r ≤ d and π ∈ k× with |π| < 1. Furthermore, the generic fiber of each Hi has
irreducible support, and Hi|U is defined by ψ∗(xj) for some j > r, unless it is trivial.

Strictly semistable pairs provide the correct setting to produce formal models for an
snc compactification X , while keeping track of the boundary divisor D.
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Theorem 2.2.5 ([GRW16, Theorem 4.13]). Let (X, H) be a strictly semistable pair
and let X be the generic fiber of X. Then there is a canonical retraction map τ from
X \H onto the skeleton Sk(X, H) which extends to a proper strong deformation
retraction τ̂ from Xan onto the compactified skeleton Ŝk(X, H).

It is also proved that away from a codimension 1 locus, the fibers of the retraction
are k-affinoid tori.

While the notion of skeleton depends on a choice of formal model, a subset called
the essential skeleton is present in every skeleton. Its construction was outlined
in [KS01] for a projective Calabi-Yau variety, and made precise in full generality
in [MN15; MMS22]. If X is a smooth k-algebraic variety, not necessarily proper,
and ω ∈ H0(X,K⊗ℓ

X ), one defines a piecewise linear subset Sk(ω) ⊂ Xan as the
maximum locus of ∥ω∥ : Xan → R≥0, where ∥ω∥ is defined via Temkin’s theory of
Kähler seminorms ([Tem16, §8]).

Definition 2.2.6 ([KY23, Definition 8.13]). Let X be a smooth k-algebraic variety,
the essential skeleton of X is

Skess(X) :=
⋃

ω∈H0(Y,KY (D)⊗ℓ)\0
ℓ∈N>0

Sk(ω) ⊂ Xan,

for an snc compactification X ⊂ Y , D := Y \X . This definition is independent of
the compactification Y .

The essential skeleton Skess(X) ⊂ Xan is a birational invariant, and in the log
Calabi-Yau case it only depends on the canonical volume form. However, one only
obtains a retraction map Xan → Skess(X) and an affine structure on Skess(X) after
fixing a formal model. In general it is not known if Skess(X) arises as the skeleton
associated to a formal model, and the question is related to the existence of a minimal
model for pairs [NX16; BM19]. When it does, the retraction and the affine structure
are canonical, and the retraction Xan → Skess(X) is a non-archimedean analogue of
the SYZ fibration ([NXY19]).

2.2.3 Non-archimedean spine counts and mirror construction
In Chapter 3, we study non-archimedean analogues of the cylinder counts that appear
in the SYZ conjecture. Those counts were originally defined in the surface case in
[Yue16; Yu21]. Their construction was generalized to higher dimension for affine
log Calabi-Yau varieties containing a dense torus in [KY23], and that is the setup
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we consider. We note however that in the recent work [KY24] the construction is
generalized to any smooth affine log Calabi-Yau variety with maximal boundary.

We now outline the construction of these counts. Fix a smooth affine log Calabi-Yau
variety U and an snc compactification (X,D) with maximal boundary, i.e. such that
the boundary divisor D contains a 0-dimensional stratum. We state the toric model
assumption of [KY23].

Assumption 2.2.7 (Existence of a toric model). There exists a dense torus T ⊂ U

and a birational morphism π : X 99K Xt to a toric variety, which restricts to an
isomorphism on the tori.

Up to blowing up a subvariety of D, we assume that the map π is a blowup map,
in particular it is defined everywhere. The toric model assumption is used in two
essential ways.

• The cylinder counts considered in the SYZ conjecture are open curve counts. The
torus action is used to transform those open curves into closed curves by capping
them, through the toric tail condition ([KY23, Construction 9.3]).

• The torus has a canonical tropicalization map τ : T an →MR := M ⊗Z R, where
M is the cocharacter lattice of T , and the toric varietyXt produces an affine structure
on M ⊗Z R. Furthermore, under π the essential skeleton Skess(U) is identified
with MR. In the absence of a minimal model for (X,D), the composition τ :=
τt ◦ π : Uan →MR ≃ Skess(U) plays the role of a retraction to the essential skeleton
([KY23, §2]). Furthermore, the proper toric variety Xt induces a compactification
MR of MR, and the retraction map τ extends to a map τ : Xan →MR.

Consider the moduli space M0,n(X,P, β) of n-pointed, genus 0 relative stable
maps to (X,D) of class β ∈ NE(X,Z) with contact data along D specified
by P = (Pi)1≤i≤n. We call marked points pi associated to a 0 contact order
interior points, other points are called boundary points. Consider the open substack
Msm(U,P, β) ⊂M0,n(X,P, β) parametrizing stable maps (C, (pi), f) such that:

1. for every boundary point pi, the image f(pi) lies in an open codimension 1
stratum of D,

2. (C, (pi)) is a stable curve,
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3. f ∗(TX(− logD)) is a trivial vector bundle, i.e. (C, (pi), f) has unobstructed
deformations, and

4. the preimage of the exceptional locus of π by f is a finite set of points without
multiplicity.

Fix 1 ≤ i ≤ n corresponding to an interior point, consider the map

Φi := (dom, evi) : Msm(U,P, β)→M0,n ×X.

A key observation is the following.

Proposition 2.2.8 ([KY23, Lemma 3.6]). Under conditions 1-3, the map Φi is étale.

Condition 4 is used to control the tropicalization of stable maps in MR.

Given an analytic stable map (C, (pi), f) ∈ Msm(U,P, β)an, its image through τ
factors through a piecewise linear map h : Γ→MR, where Γ is a metric graph with
marked points and semi-infinite edges called legs, producing a tropical curve in MR.
The counts relevant for the construction of the mirror are a combinatorial refinement
of Gromov-Witten invariants, parametrized by a part of the tropical curve intrinsic to
f called the spine.

Definition 2.2.9 (Spine of a stable map). Let (C, (pi), f) ∈ Msm(U,P, β). The
spine Sp(f) of f is the restriction of the map h : Γ→MR to the convex hull Γs ⊂ Γ
of the marked points.

The spine of (C, (pi), f) is intrinsic in the following sense: for any choice of formal
model for (X,D) producing a retraction to Skess(U), the induced tropical curve in
Skess(U) contains Sp(f). The space of spines is denoted by SP(MR,P). Denoting
by M0,n the moduli space of stable n-pointed tropical curves ([ACP15]), and fixing
1 ≤ i ≤ n corresponding to an interior point, we obtain a commutative diagram

Msm(U,P, β)an Man
0,n × Uan

SP(MR,P) M0,n ×MR.

Φan
i

Sp

Φtrop
i

In short, the count associated to a spine S ∈ SP(MR,P) is obtained by intersecting
Sp−1(S) with a fiber of Φan

i at a point lying above Φtrop
i (S). It is a naive count, as
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opposed to a virtual count, in the sense that it is an integer counting unobstructed
stable maps and carrying a direct enumerative meaning. We omit many details, and
refer to [KY23, §9-10] for the precise construction of the counts.

We can now define the non-archimedean cylinder counts studied in Chapter 3. They
are counts of 3-pointed stable maps with two boundary points and a single interior
point associated to a cylinder spine S and satisfying the toric tail condition. A
cylinder spine is the simplest kind of spine: the underlying graph has two semi-infinite
edges connected at a single vertex, and a contracted leg corresponding to the interior
marked point. We refer to [KY23, §20] for the construction of the scattering diagram
using cylinder counts.

2.3 Mirror symmetry
In this section, we present some aspects of mirror symmetry that motivate Chapters 4
and 5. While in Section 2.2 we discussed mirror symmetry in the Calabi-Yau case,
here we introduce the general A-model and B-model. We focus on Hodge-theoritic
mirror symmetry and connections to birational geometry, rather than attempting an
exhaustive discussion of mirror symmetry.

2.3.1 Hodge-theoritic mirror symmetry
The notion of F-bundle studied in Chapters 4 and 5 emerges from the Hodge-theoritic
approach to mirror symmetry. This approach seeks to express mirror symmetry as a
duality which exchanges differential-geometric data associated to each side of the
correspondence. In this thesis we only work within the algebro-geometric context.
Below, we present each side of the correspondence called the A-model and B-model,
and review Hodge-theoritic mirror symmetry.

The A-model encodes the enumerative geometry of a connected compact symplectic
variety (X,ω), which in this thesis we will assume to be algebraic. The enumerative
geometry of X is captured by genus 0 Gromov-Witten theory. Given a curve class
β ∈ NE(X,Z) and cohomology classes γ1, . . . , γn ∈ H∗(X,C) we obtain n-pointed
genus 0 Gromov-Witten invariants

⟨γ1, . . . , γn⟩β0,n :=
∫

[M0,n(X,β)]vir
ev∗

1 γ1 ∪ · · · ∪ ev∗
n γn.

After fixing a homogeneous basis (T0, T1, . . . , Tk, . . . , TN) of H∗(X,C), with
(T1, . . . , Tk) a basis of H2(X,C), we can define the genus zero Gromov-Witten
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potential

Φ =
∑

n≥0,β∈NE(X,Z)

qβ

n!
∑

i1,...,in

⟨Ti1 , . . . , Tin⟩
β
0,nti1 . . . tin ,

where {t0, . . . , tN} are formal variables and q is a Novikov variable recording the
curve class. Denoting by (·, ·) the Poincaré pairing on H∗(X,C), we define the (big)
quantum product by

(Ti ⋆ Tj, Tr) = ∂3Φ
∂ti∂tj∂tr

∈ C[[NE(X,Z)]][[t0, . . . , tN ]],

where C[[NE(X,Z)]] denotes the Novikov ring obtained as the completion of the
semigroup algebra C[NE(X,Z)] with respect to the ideal (qβ, β ̸= 0). The following
fact is well-known, and proved using geometric properties of spaces of stable maps
(see [KM94]).

Proposition 2.3.1. The big quantum product defines a commutative and associative
ring structure on H∗(X,C)⊗C C[[NE(X,Z)]][[t0, . . . , tN ]] that deforms the classical
cup-product around t = 0.

Dubrovin observed that the information of the quantum product can be conve-
niently stored into a differential-geometric language by introducing a meromorphic
connection on H∗(X,C)⊗ C[[NE(X,Z)]][[t0, . . . , tN ]] defined by

∇∂ti = ∂ti + u−1Ti ⋆ ·,

where u is a formal parameter. Commutativity of the quantum product implies
that this connection is flat. One can further introduce a connection operator in the
u-direction as

∇∂u = ∂u − u−2K + u−1G,

with

K =
c1(TX) +

∑
i : deg Ti ̸=2

deg Ti − 2
2 tiTi

 ⋆,
G = 1

2(degX − dimX),

where degX is the grading on H∗(X,C). The u-extended connection is still a flat
meromorphic connection, with a pole of order 2 at u = 0 in the u-direction, and
logarithmic singularities in the t-directions at u = 0. In this thesis we refer to the
base-changed cohomology together with the connection∇ as the A-model F-bundle,
but note that it is also called the quantum D-module in the literature ([Iri20; Iri23]).



22

The B-model is attached to a pair (Y,W : Y → C), where Y is a smooth quasipro-
jective complex variety and W is a holomorphic function with compact critical
locus. It encodes information about the singularities of W . We refrain from giving a
general definition of the B-model connection, but mention that it is defined through
the twisted de Rham complex

(Ω•
Y , dW := ud+ dW∧),

where approriate formal variables need to be introduced. Much like the usual
Gauss-Manin connection, the differental dW induces a connection on the top-degree
hypercohomology which is reffered to as the twisted Gauss-Manin connection. A
concrete example is considered in Chapter 5. The whole data of the B-model together
with its connection is referred to as the Gauss-Manin system. Other names found in
the literature are Landau-Ginzburg model, Brieskorn lattice ([KKP17; Coa+15]).

In its simplest form, the Hodge-theoritic approach to mirror symmetry can be stated
as follows.

Conjecture 2.3.2. Let (X,ω) be a compact symplectic variety. There exists a pair
(Y,W : Y → C) such that the quantum D-module of X is isomorphic to the twisted
Gauss-Manin system of (Y,W ).

Using the differential-geometric language, an isomorphism of D-module consists of a
change of coordinates and a gauge-equivalence between the connections. Additionally,
the choice of function W on Y is expected to correspond to a choice of divisor
in X . Below we give the example of X = P1, equipped with the toric boundary
{0,∞} ⊂ P1.

Example 2.3.3 (Mirror symmetry for P1). The classical cohomology ring is
H∗(P1,C) = C[h]/(h2), where h is the hyperplane class. The Novikov ring is
isomorphic to C[[q]], and the big quantum cohomology ring is isomorphic to

QH(X) ≃ C[[q, t0, t1, u]][h]/(h2 − qet1).

The A-model connection is given on a cohomology class s by

∇∂t0
(s) = ∂t0s+ u−1s,

∇∂t1
(s) = ∂t1s+ u−1h ⋆ s,

∇u∂u(s) = u∂us+ u−1(2h− t0) ⋆ s+ 1
2(degX(s)− 2).



23

The corresponding B-model is the torus Y = Gm equipped with the function
W : x 7→ x + qet1

x
+ t0. The twisted de Rham complex on Y is the complex of

C[[q, y0, y1, u]]-modules

C[x, x−1][[q, t0, t1, u]] dW−−→ C[x, x−1][[q, t0, t1, u]]dx,

with
dW (η) = udη +

(
1− qet1

x2

)
ηdx.

The cokernel is a free C[[q, t0, t1, u]]-module generated by {1, x}. The differential
dW induces a connection on coker(dW ) with regular singularities at u = 0 along ∂y0

and ∂y1 , given by

∇′
∂t0

[η] = [∂t0η] + u−1[η],

∇′
∂t1

[η] = [∂t1η] + u−1
[qet1
x
η
]

= [∂t1η] + u−1
[
xη
]
,

∇′
u∂u

[η] = [u∂uη] + u−1
[
(2qe

t1

x
+ t0)η

]
+ 1

2[deg(η)− 2],

where deg(1) = 0 and deg(x) = 2. Identifying the basis {1, x} with the basis of
cohomology {1, h} produces an isomorphism betwen the A-model and the B-model
which is compatible with the connections. To see it, we use the relation qet1

x
= x in

coker(dW ), obtained from [dW (1)] = 0.

Additional structures are expected to be reflected under mirror symmetry. For
instance, the Poincaré pairing on the A-side has a counterpart on the B-side in known
examples. More interesting, there is a natural integral structure on the A-side induced
by H∗(X,Z) ⊂ H∗(X,C). It is expected to correspond to an integral structure on
the B-side. In [KKP08], this additional data is axiomatized in the notion of nc-Hodge
structure and general conjectures are made regarding the existence of nc-Hodge
structures on the A-side and B-side. The notion of F-bundle that we study in this
thesis is part of the data forming a nc-Hodge structure, known as the de Rham data.
It was previously studied under the name of (TE)-structure in [HM99; Her02].

Let us mention that known examples of Hodge-theoritic mirror symmetry include
the case of toric varieties ([Bat93; Coa+15]), as well as hypersurfaces and complete
intersections inside toric varities ([Giv98]). Partial results when restricting to the
small locus were recently proved for general flag varieties [MR20; Li+24; Cho23],
and the main result of Chapter 5 extends mirror symmetry to the big locus.
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2.3.2 Connections to birational geometry
Interactions between Gromov-Witten theory and birational geometry have been
studied since the beginning of Gromov-Witten theory [Gat01; Hu00; Bay04]. There
are two typical situations one wants to consider.

Question 1. Let X be a smooth projective algebraic variety.

1. Let X̃ → X be the blowup of X along a smooth closed subvariety Z ⊂ X . What
is the relation between the Gromov-Witten theory of X̃ and that of X and Z?

2. Let V → X be a vector bundle, let P(V )→ X be its projectivization. What is
the relation between the Gromov-Witten theory of P(V ) and that of X?

The most direct approach to this question consists in trying to express individual
Gromov-Witten invariants of the top space in terms of Gromov-Witten invariants of
the base. It is hard to obtain explicit formulas, but reconstruction results such as the
following theorem can be obtained through recursive procedures

Theorem 2.3.4 ([Fan21; FL20]). Let X be a smooth projective variety, let V → X

be a vector bundle. The Gromov-Witten theory of P(V ) is uniquely determined by
the Gromov-Witten theory of X and the total Chern class c(V ).

A fruitful approach is to try to compare the quantum D-modules directly, in the style
of Hodge-theoritic mirror symmetry. For example in the case of a projective bundle
P(V )→ X with V of rank m ≥ 2, the Leray-Hirsch theorem produces the additive
graded decomposition

H∗(P(V ),Q) ≃
m−1⊕
i=0

H∗(X,Q)[−2i],

where [·] indicates a degree shift. The main result of [IK23] extends this to an
isomorphism between the quantum D-modules.

Theorem 2.3.5 ([IK23]). The classical isomorphism deforms into an isomorphism
of quantum D-modules. In particular, the quantum D-module of P(V ) splits into m
copies of the quantum D-module of X .

A similar result for blowups is proved in [Iri23], producing a decomposition that
deforms the classical isomorphism

H∗(X̃,Q) ≃ H∗(X,Q)⊕
codimZ−1⊕

i=0
H∗(Z,Q)[−2i].
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The main application of the general theory of F-bundles developped in Chapter 4
proves a uniqueness result for the above decompositions.

Those decompositions of the quantum D-modules are a key ingredient in the
theory of atoms developped in [Kat+24]. The theory produces new birational
invariants of algebraic varieties extracted from the quantum D-module, and has
found applications in the proof of irrationality results. Our spectral decomposition
theorem (Theorem 4.3.42) is key to establishing the general framework of the theory,
by applying it to the A-model maximal F-bundle (Definition 4.2.17). The theory of
atoms investigates how the decomposition of the F-bundle varies as we move the base
point, hence requires some analytic theory of F-bundles. While the convergence of
the quantum product in the complex analytic setting is conjectural, the convergence
in the non-archimedean sense follows directly from geometric constraints on Gromov-
Witten invariants. This motivates our study of F-bundles in the non-archimedean
setting.

We conclude with a brief discussion of relations to the Homological Mirror Symmetry
conjecture, from which the idea of extracting birational invariants from enumerative
geometry stems. The conjecture associates to each side a derived category, and
expresses mirror symmetry as a derived equivalence [Kon95b; KS01; KKP08].
Various versions of homological mirror symmetry have been obtained in the toric
case ([HV00; Fan+14; HH22]). In [DKK16; DKK13], the mirror of toric varieties
is studied and semi-orthogonal decompositions of the Landau-Ginzburg model
category are constructed. It is shown that under homological symmetry, those
decompositions produce decompositions of the A-model category which are related
to the birational geometry of the A-model. Producing semiorthogonal decompositions
is hard, and homological mirror symmetry is still conjectural in general. However,
since homological mirror symmetry conjecturally implies Hodge-theoritic mirror
symmetry (see [KKP08; GPS15]), semiorthogonal decompositions are expected
to produce decompositions of the quantum D-module that contain meaningful
information about the birational geometry of the variety.
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C h a p t e r 3

CYLINDER COUNTS IN BLOWUPS OF TORIC SURFACES

3.1 Introduction
3.1.1 Main result
Some algebro-geometric implementations of the SYZ picture of mirror symme-
try consist in constructing explicitly a mirror algebra reflecting the enumerative
geometry of the initial variety. The way this enumerative data enters in the definition
of the mirror algebra is to be thought of as the instanton correction, in a broad sense.

To this day, in the log Calabi-Yau case we have at our disposal essentially two
constructions: one using punctured log-Gromov-Witten invariants [Abr+25; AG22;
GS19; GS22], and the other relying on non-archimedean enumerative geometry
[KY23; PY24; PY22; Yue16; Yu21; Yu18; Yu15]. These constructions are known
to be equivalent in restricted cases [Joh24], although a general comparison result
between punctured Gromov-Witten theory and non-archimedean Gromov-Witten
theory has not been achieved yet. In both of these constructions, instanton corrections
enter as structure constants of the mirror algebra. Structure constants can be expressed
in terms of counts of analytic cylinders in the initial variety [Gro+18; KY23]. These
analytic cylinders in the non-archimedean setting correspond to the broken lines of
[Gro+18].

In this paper, we are interested in computing the non-archimedean cylinder counts
for a log Calabi-Yau surface (Y ,D). We assume that (Y ,D) is the blow up of
a toric surface: this is not a restrictive assumption, as every log Calabi-Yau sur-
face admits a toric model [GHK15, Proposition 1.3]. The idea is then to relate
counts in the blown up variety to counts after we blow down a (−1)-curve in the
exceptional locus of the toric model. We do it using a deformation procedure
parametrized by tropical data, and use analytic geometry to cut out appropriate
connected components in the moduli space of non-archimedean stable maps. De-
formation invariant counts are then defined using the powerful formalism of virtual
fundamental class applied to derived analytic stacks of stable maps [PY22]. The
upshot is that the geometry of the derived moduli spaces reflects perfectly the axioms
of Gromov-Witten theory, so we can handle degenerations of the domain in an easy
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way. We relate these virtual counts to the naive counts of the mirror construction
[KY23] using a smoothness argument, and obtain in this way a formula involving
only cylinder counts.

The advantage of this approach is that it leads to explicit, closed-form formula
for the counts defining structure constants of the mirror. To the best of our
knowledge, this is a new result which contrasts with the scattering diagram
approach [GPS10], that gives an algorithmic way to compute the structure constants
to a finite order. Closed form formulas are of interest as they allow one to compute
the mirror algebra, give nontrivial relations between various invariants, and enter
in the coefficients of wall-crossing functions whose expressions are in most cases
conjectural [GP10].

To state the main results of the paper, let (Y ,D) be a log Calabi-Yau surface with a
toric model π : (Y ,D)→ (Yt,Dt). The map π is a blowup of non-torus fixed points
xij in the toric boundary, where the i index refers to the toric boundary component,
and the j index enumerates the points in the i component. We denote by Eij the
irreducible divisor above pij , by Ei the union of the exceptional divisors lying above
a fixed toric boundary divisor, and by E the full exceptional locus.

The formulas involve counts of primitive (infinitesimal) cylinders (Section 3.3.2). A
cylinder is a tropical curve that parametrizes non-archimedean stable maps that (i)
meet only two prescribed components of the boundaryD at a single unspecified point
with a given multiplicity, and (ii) have prescribed intersection numbers with each Ei.
We work with primitive cylinders, by which we mean cylinders parametrizing stable
maps that have intersection number at most 1 with each Ei. To a cylinder V and a
curve class β, we associate a cylinder count N(V, β). Our cylinder counts refine
the cylinder spine counts defined in [KY23], in the sense that summing our counts
over all possible prescriptions in condition (ii) above gives the cylinder spine count.
Given a primitive cylinder V , we call the part of the tropical curve parametrizing
the intersections with the exceptional divisor the twig, and encode the intersection
numbers in a tuple of weight vectors called the twig type. The length of this tuple
is the number of irreducible components of E that the associated stable maps meet.
In particular twig types of length 1, as those of the cylinders that appear on the
right-hand side of our formula, parametrize stable maps meeting E at a single point.

Theorem 3.1.1 (Theorem 3.4.1). Let V be a primitive infinitesimal tropical cylinder
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with twig type w = (ws)1≤s≤t, let β ∈ NE(Y ). Then

N(V, β) =
∑

β1+···+βt=β

t∏
s=1

N(Vs, βs),

where Vs is an infinitesimal cylinder of twig type ws (see Construction 3.4.4).

For each component of the toric boundary, let ℓi denote the number of irreducible
components of Ei. An easy inspection of the curve classes leads to the following
refined result.

Corollary 3.1.2 (Corollary 3.4.3). Let V be a primitive infinitesimal cylinder of twig
type w = (ws)1≤s≤t. For each s, let Etrop

i(s) be the direction of the corresponding
twig.

Then there are at most
∏

1≤s≤t ℓi(s) curve classes such that N(V, β) ̸= 0. Such a
curve class β is determined by the choice of an irreducible component Ei(s)j for all
s, and we then have

N(V, β) =
t∏

s=1
N(Vs, βs),

where βs is the curve class whose intersection number with each irreducible
component of E is 0 except for Ei(s)j .

This result is a first step towards expressing general cylinder counts (meeting multiple
irreducible components of the exceptional divisor) in terms of counts of cylinders
touching only one irreducible component of the exceptional divisor. In other words,
it expresses primitive cylinder counts of an arbitrary log Calabi-Yau surface in terms
of cylinder counts on a toric surface blown up at one point of the toric boundary.

Cylinder counts really depend on the interior of the log Calabi-Yau (Y ,D). In the
case of a single blowup the interior is G2

m ∪ (E \D), where E is a (−1)-curve and D
is an snc anticanonical divisor, strict transform of the toric boundary upon taking
a toric model. In practice, we can choose any snc compactification of the interior
arising from a toric model to compute these counts.

The methods of this paper only work for primitive cylinders, that parametrize stable
maps that have simple intersections with the exceptional divisor. This is because
we cannot control the virtual contributions induced by higher intersection numbers
solely by tropical means. Concretely, for higher multiplicities the domain curves
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can have “bubbles” mapped to the exceptional divisor, and these are not seen by the
tropical picture. Because of this phenomenon, our argument to select connected
components in the moduli spaces, which is key to proving deformation invariance of
the counts, does not hold anymore.

3.1.2 Organization of the paper
The paper is organized as follows: in Section 3.2 we introduce the geometric set-up,
and review non-archimedean Gromov-Witten theory. In Section 3.3 we set up
conventions for tropical curves, and define cylinder counts. Section 3.4 is the main
body of this work: first we define a tropical deformation, then lift it to a deformation
of analytic stable maps, and finally we look at the degeneration of this deformation.
We apply the deformation procedure inductively, reducing the number of blowups by
one at each step.

3.1.3 Statements and Declarations
The research leading to these results received funding from the Université Paris-
Saclay and the École Doctorale 574 (EDMH), as well as the California Institute of
Technology.

I wish to thank my advisor, Tony Yue Yu, for his help and support throughout this
project.

3.2 Notations and conventions
Let (Y ,D) be a log Calabi-Yau surface over a non-archimedean field k of characteristic
0. In this section, we fix a toric model and define the associated tropicalization map.
After that, we define the relevant moduli spaces of non-archimedean analytic stable
maps. Even though we make use of the powerful derived formalism in Section 3.4,
the important Lemma 3.2.5 allows to identify the virtual counts with the naive counts
defined in [KY23].

3.2.1 Geometric setup.
3.2.1.1 Blow-up of toric surfaces.

Up to applying a toric blowup, we assume that (Y ,D) admits a toric model [GHK15,
Proposition 1.3]. In the counting of stable maps we consider later, applying a toric
blowup does not change the counts.

By a toric model, we mean that (Y ,D) is obtained as a sequence of non-toric blow-ups
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of toric boundary points of a complete smooth toric surface Yt. We choose a cyclic
ordering of the irreducible components of the toric boundary Dt = ∑

i∈IDt
Dt,i, and

denote by π : (Y ,D)→ (Yt,Dt) the toric model. We denote by TM = Yt \ Dt the
big torus with cocharacter lattice M .

More precisely, (Y ,D) is obtained from (Yt,Dt) as follows: fix a tuple (ℓ1, . . . , ℓm)
of integers, and over each divisor Dt,i choose ℓi distinct points xij , not lying in any
0-strata of Dt. Let π : Y→Yt be the blowup at these points. We denote by Di the
strict transform of Di,t, and by Eij the exceptional divisor lying above xij . We also
set D = ∑

iDi and E = ∑
i,j Eij . We thus have the relation

c1(TY) = π∗c1(TYt)− E = D − E .

We denote by Σ the fan associated to Yt.

3.2.1.2 Tropicalization through toric model.

From now on, we work with Berkovich analytifications which we denote with straight
letters: Y = Yan, D = Dan,
Yt = Yan

t , Dt = Dan
t , and so on.

Since U = Y \D is log Calabi-Yau, we can consider its essential skeleton Sk(U),
which comes with an integral affine structure. It is constructed from the log Calabi-
Yau volume form on U using Temkin’s Kähler seminorm. Similarly, we consider the
skeleton Sk(TM) with its canonical integral affine structure. There is an isomorphism
Sk(TM) ≃MR = M ⊗ R, compatible with integral affine structures meaning that
Sk(TM ,Z) ≃M . Up to applying this isomorphism, we assume Sk(TM) = MR.

Remark 3.2.1. The skeleton Sk(U) is naturally included inside the Clemens polytope
of (Y,D), inducing an embedding Sk(U) ↪→ Rm

≥0 where m is the number of
components of D. Integral points of the skeleton have coordinates in Zm≥0 under this
inclusion, and using the identification M ≃ Sk(U,Z) the norm of a vector v ∈M
is defined as the sum of the absolute value of its coordinates under the embedding
M ↪→ Zm.

We denote by MR the natural compactification of the essential skeleton induced by
the G2

m ↪→ Yt (cf. Fig. 3.1 for G2
m ↪→ P2). We consider the tropicalization of U

through the toric model π, and extend it to the compactification Y

τ : Y π−→ Yt
τt−→MR.

We refer to τ as the tropicalization map.
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Figure 3.1: The fan of P2 drawed in Sk(G2
m), and the natural compactification

Sk(G2
m).

3.2.2 Non-archimedean stable maps
In this paper, we work with
non-archimedean stable maps, and non-archimedean Gromov-Witten invariants. We
can always recover algebraic statements using GAGA theorems for
non-archimedean analytic stacks, given that Y is proper [PY16].

We refer to [PY24; PY22] for the general theory of stable maps in non-archimedean
geometry. Below we recall the main definitions and results.

3.2.2.1 Derived non-archimedean stable maps.

Definition 3.2.2. Let S be a rigid k-analytic space, let X → S be a smooth rigid k-
analytic space over S. We denote by M(X/S, τ, β) the moduli space of (τ, β)-stable
maps.

In the special case when τ is an n-valent vertex and β has genus 0, we denote this
moduli space by M0,n(X/S, β).

Theorem 3.2.3 ([PY22, Theorems 1.1, 1.2]). Let S be a rigid k-analytic space and
let X → S be a smooth rigid k-analytic space over S. Let (τ, β) be an A-graph.
Then:

1. The moduli stack M(X, τ, β) of (τ, β)-stable maps admits a derived
enhancement RM(X/S, τ, β) that is a derived k-analytic stack, locally of
finite presentation and derived lci over S.
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2. If S is an algebraic variety and X is an algebraic variety over S, then

RM(X/S, τ, β)an ∼→ RM(Xan/San, τ, β).

3. The derived moduli stacks RM(X/S, τ, β) satisfy a list of geometric relations
reflecting the Behrend-Manin axioms of Gromov-Witten theory.

We denote by t0 the truncation functor, so that M (X, τ, β) = t0 RM(X/S, τ, β).

3.2.2.2 Relative derived non-archimedean stable maps.

Higher tangency conditions at the i-th marked point can be considered in the derived
theory, using infinitesimal thickenings of the domain curve along the sections [PY24,
§9; PY22, §8]. Given a contact order mi ∈ N>0, evaluation maps with multiplicity
are constructed

evmi
i : RM(X, τ, β)→ Xmi

i,τ .

Using this map, one can parametrize stable maps with contact order mi along a lci
closed analytic subspace ι : Zi ↪→ Y at the i-th marked point by considering the
substack given by the fiber product

RM(Y, τ, β)×Xmi
i,τ
Zmi
i,τ ,

where Zmi
i,τ is obtained from Zi using the same procedure of thickening along the

i-th section.

We use these evaluation maps with multiplicities to construct derived versions of
the moduli spaces considered in [KY23]. Let J be a finite set of cardinality n, and
let P = (Pj)j∈J be a tuple of points in Sk(U,Z). Recall that points in Sk(U,Z) are
valuations on k(U) with integral values on k0(U0). Define

B = {j ∈ J | Pj ̸= 0} and I = {j ∈ J | Pj = 0} .

For j ∈ B, we write Pj = mjνj where νj is a divisorial valuation with divisorial
center Dj ⊂ D and mj ∈ N>0. Given β ∈ NE(Y), we define a sequence of derived
moduli spaces:

RM sm(U,P, β) ⊂ RM sd(U,P, β) ⊂ RM(U,P, β) ⊂ RM(Y,P, β) ⊂ RM(Y, β).

These moduli spaces are defined as follows:
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• RM(Y,P, β) corresponds to stable maps [C, (pj)j∈J , f : C → Y ] such that
for every j ∈ B, pj is mapped to Dj with multiplicity at least mj .

• RM(U,P, β) corresponds to the substack of stable maps
[C, (pj)j∈J , f : C → Y ] such that pj is mapped to the open stratum D◦

j for all
j ∈ B, and f−1(D) = ∑

j∈Bmjpj .

• RM sd(U,P, β) corresponds to the substack of stable maps with stable domain
curve.

• RM sm(U,P, β) corresponds to the substack of stable maps
[C, (pj)j∈J , f : C → Y ] such that:

1. f ∗(TY (− logD)) is a trivial vector bundle on C.

2. f(C) ∩ (D ∩ E) = ∅.

3. f−1(E) is a finite set of points without multiplicities, disjoint from the
nodes and the marked points of C.

We also consider the underived moduli spaces

M(Y,P, β) = t0 RM(Y,P, β),

and so on, which agree with the moduli spaces defined in [KY23, §3] Note that all of
these stacks are analytification of the corresponding algebraic versions, that the three
leftmost inclusions are (Zariski) open, and that M sd(U,P, β) and M sm(U,P, β) are
varieties since we only consider rational curves.

3.2.2.3 Non-archimedean Gromov-Witten invariants.

Two conditions are needed to define numerical Gromov-Witten invariants: properness
of the moduli space, to get a pushforward to a point, and a virtual fundamental
class to cap cycles on the moduli space with. In the non-archimedean theory,
rigid motivic Borel-Moore homology is used and a virtual fundamental class
[X/S] ∈ HBM

d (X/S,QS(2d)) is associated to any derived lci morphism of derived
analytic stack φ : X → S of virtual dimension d [PY24, Definition 4.4].

Theorem 3.2.4 ([PY24, Theorem 1.1]). Let S be a rigid k-anaytic space and let
X → S be a rigid k-analytic space smooth over S. Let (τ, β) be an A-graph.
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1. There exists a virtual fundamental class

[RM(X/S, τ, β)] ∈ HBM
d (RM(X/S, τ, β)/S,QS(2d)),

where d is the virtual dimension.

2. The system of virtual fundamental classes satisfies the Behrend-Manin axioms
of Gromov-Witten theory.

Take S = Spf k and assume k has characteristic 0. Given an A-graph (τ, β),
the virtual fundamental class, lci closed subvarieties Zi ⊂ X with contact order
mi ∈ N>0 and the associated diagrams

RM(X, τ, β) Xmi
i,τ Zmi

i,τ

M τ

evmi
i

st

one can define numerical Gromov-Witten classes and associated numerical
invariants using the usual procedures [PY24, Definition 8.1]. That the subvari-
eties Zi be lci is crucial to be able to define the virtual fundamental class. These
classes satisfy the Behrend-Manin axioms of Gromov-Witten theory as a consequence
of these same axioms for the derived moduli spaces and the functoriality properties
of the virtual fundamental class.

We need the following lemma to define the relevant numerical Gromov-Witten
invariants later.

Lemma 3.2.5. The derived moduli stack RM sm(U,P, β) is underived, meaning we
have a canonical equivalence

M sm(U,P, β) ∼−→ RM sm(U,P, β).

In particular, it is smooth over M0,n.

Proof. By [KY23, Lemma 3.6], the moduli space M sm(U,P, β) is smooth over
M0,n, thus its dimension equals the virtual dimension of RM sm(U,P, β). By [PY24,
Proposition 2.14], we deduce that the canonical closed immersion

M sm(U,P, β) ↪→ RM sm(U,P, β)

is an equivalence.



35

3.3 Tropical curves
In this section, we review the notion of spines, tropical curves and twigs in the affine
manifold MR. In Construction 3.3.7, we define an explicit topology on the space of
tropical curves. Then we define the tropical cylinders, which are tropicalizations
of the analytic cylinders we want to count, and the associated counts. These refine
the spine counts defined in [KY23]. In order to keep track of the combinatorics, we
define the notion of twig type associated to a cylinder.

3.3.1 Space of tropical curves
We will consider tropical curves in the Z-affine manifold MR, which we refer to as
the tropical base. These tropical curve will be used to parametrize analytic stable
maps in M sm(U,P, β), so we require more than the usual balancing condition in
their definition. Rather than giving precise definitions, which are spelled out in
[KY23, §4], we illustrate the relevant notions in the 2-dimensional case through
concrete examples.

Example 3.3.1. We choose as our running example the log Calabi-Yau surface (Y,D)
obtained from P2 by blowing up the three toric divisors at 2 points. We denote by
D1, D2, and D3 the irreducible components of D, and by E11, E12, E21, E22, E31,
and E32 the exceptional divisors.

3.3.1.1 The canonical wall structure.

The tropical base carries a canonical wall structure denoted by Wall = ⋃
n≥0 Walln,

which is essentially a collection of codimension 1 integral cones with an attached
wall-crossing function constructed inductively in a combinatorial way. Concretely,
in the 2-dimensional case, walls are rays starting from the origin of MR. The
wall-crossing functions will not be considered in this article, so we omit them in the
following outline of the construction (see [KY23, Construction 4.16]):

• Initial walls Wall0: let Etrop
ij := τ(Eij) be the tropicalization of the

exceptional divisor Eij . It is a point in ∂MR at the end of the ray cor-
responding to Di. We also denote by Etrop the union of Etrop

ij , so Wall0

corresponds to rays of the fan of Yt that contain points of Etrop.

• Walln+1 from Walln: add to Walln the rays generated by sums of two vectors
in walls of Walln.

Example 3.3.2. For our running example (Y,D), Fig. 3.2 shows Wall3.
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Figure 3.2: The Wall3 part of the wall structure of Example 3.3.1 (obtained in three
steps). The numbers on the rays indicate at which step of the construction a ray was
added; thick rays are initial walls.

The wall structure is a necessary ingredient in our notion of tropical curves. More im-
portantly, it carries a lot of geometric information as the structure
constants of the mirror algebra can be obtained by analyzing the interaction between
tropical cylinders and walls. We note that by construction, in the toric case there are
no walls.

3.3.1.2 Nodal metric trees

A metric tree is a finite abstract tree Γ together with an identification of every edge e
with a closed interval in [0; ℓ] where ℓ ∈ (0; +∞]. We refer to [KY23] for the notions
of infinite and finite vertices, leg, node, irreducibility, and stability of metric trees.

Let J be a finite set of cardinality n, a metric tree with n legs [Γ, (vj)j∈J ] is a nodal
metric tree Γ with 1-valent vertices (vj)j∈J and no other 1-valent vertices. It is
called extended if every vj is infinite. It is called simple if there are no finite 2-valent
vertices. We denote by F ⊂ J the subset of indices corresponding to finite legs.
Given a pointed tree [Γ, (vj)j∈J ], we will frequently denote by Pij the path in Γ
connecting the marked points vi and vj for i, j ∈ J .

Nodal metric trees will be used as domains of tropical curves, spines, or twigs to
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MR, notions which we now define.

3.3.1.3 Tropical curves, spines, and twigs

We refer the reader to Fig. 3.3 for illustrations of the following notions.

Let J be an indexing set as above. We will always fix a partition I
∐
B = J and a

subset F ⊂ J . In particular, we allow F = ∅ and systematically omit it from the
notations in this case. In the following definitions, when F = ∅ we call the objects
extended.

Given a Z-affine immersion h : Γ→MR from a nodal metric tree to MR, the slope
of h at a vertex v of Γ along an edge e ∈ Γ is an integral vector which we call the
weight vector of h at v in the direction e, and denote by w(v,e). The degree of h at v
along the edge e is the norm of w(v,e), in the sense of Remark 3.2.1.

Remark 3.3.3. If v is a vector parallel to the direction of a ray of the fan Σt, then
the norm of v is the index of v in M (that is, the least common multiple of its
coordinates).

A tropical curve in MR is a Z-affine immersion T = [Γ, (vj)j∈J , h : Γ→MR] from
an extended stable simple nodal metric tree to MR that is balanced at every vertex of
valency greater than 1, constant on the vi-leg for every i ∈ I , has weight vector on
each vj-leg in the direction of a ray of the fan if j ∈ B, and such that every infinite
leg not labeled by a marked point is mapped to Etrop.
We denote by P = (Pj)j∈J the tuple of vectors given by the slope of h along the
marked legs, and say that T is a tropical curve of type P. Note that by definition Pj

is nonzero if and only if j ∈ B. These tropical curves parametrize stable maps in
M sm(U,P, β), and their space is denoted by TC(MR, P).

A spine in MR is a Z-affine immersion S = [Γ, (vj)j∈J , h : Γ→MR] from a stable
nodal metric tree to MR with legs indexed by J , whose image meets ∂MR precisely
at the marked points indexed byB and such that the sum of the weight vectors at each
vertex v of valency greater than 1 is either 0 (h is balanced at v) or is contained in a
wall (v is a bending vertex). Furthermore, marked points indexed by F correspond
to finite legs.
If we denote by P = (Pj)j∈J the tuple of weight vectors of h along the legs, we say
that S is a spine of type PF . Spines parametrize restriction of analytic stable maps
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to the convex hull of the marked points in the domain curve. In particular, fixing a
spine does not specify how the associated analytic stable maps meet the exceptional
divisor. The space of spines of type PF is denoted by SP(MR,PF ).

A twig in MR is a Z-affine immersion [Γ, (r, u1, . . . , ut), h : Γ→MR] where Γ is a
nodal metric tree, all the legs are marked and only the r-leg is finite, the image of Γ
is contained in Wall, each ui is mapped to Etrop, and h is balanced at every vertex
of valency greater than 1. We refer to r as the root of the twig, and to the ui as the
leaves.
The weight vector of h at r is the direction of the twig, and the (ordered) tuple of
weights of h at each leaves is called the combinatorial type of the twig.

Remark 3.3.4. These notions play well together, in the sense that given a tropical
curve [Γ, (vj)j∈J , h : Γ→MR] of type P, if we denote by Γs the convex hull of the
marked points in Γ then:

1. [Γs, (vj)j∈J , h|Γs ] is a spine of type P [KY23, Lemma 4.23].

2. The restriction of h to the closure of connected components of Γ \Γs are twigs.

In particular, we have spine map

Sp: TC(MR,P)→ SP(MR,P).

Example 3.3.5. In Fig. 3.3 several tropical curves are drawn in the skeleton. They
illustrate the general fact that many twigs are compatible with a given spine, and that
different twigs associated to a spine can have varying number of leaves. Furthermore,
we can very often vary the degree of the leaves in such a way that the “shape”
of the twig is invariant, but the degrees of the leaves become very large. For
example, the shape of the twig in the bottom right corner is realized by the twig
types {(2 + n, 0), (1 + n, 0),−(n, n)} for every n ∈ N, where the degrees are 2 +n,
1 + n and n.

In practice to define a spine, it is enough to specify its behaviour around vertices. We
can then recover an extended spine by extending the map using the Z-affine structure
of MR. This is made precise in the following construction, which we state mostly to
set up notations about curve classes.



39

Etrop
1

Etrop
2

Etrop
3

1

1

1

Etrop
1

Etrop
2

Etrop
3

1

1

2

1

1

Etrop
1

Etrop
2

Etrop
3

3

4

1

2
Etrop

1

Etrop
2

Etrop
3

3

4

2

3

1

Figure 3.3: Tropical curves in MR for Example 3.3.1. The spines are drawn in
blue, and the twigs in red. The numbers correspond to the degree of the Z-affine
immersion along the legs.



40

Construction 3.3.6. Given an unextended spine S = [Γ, (vj)j∈J , h] of type PF , the
associated extended spine Ŝ = [Γ̂, (v̂j)j∈J , ĥ] is the spine obtained by applying the
following procedure for each j ∈ F :

1. Glue a copy of ℓj := [0; +∞] at vj , and replace the marked point vj by v̂j =∞
the infinite endpoint of ℓj .

2. Extend h affinely on ℓj with slope Pj .

To each new leg, we can associate a curve class δj ∈ NE(Y ) using a piecewise-linear
function φ : MR → N1(Yt,R). The curve class corresponding to the extension from
S to Ŝ is then defined as δ̂ = ∑

j∈F δj . Given β ∈ NE(Y ), the associated extended
curve class is β̂ := β + δ̂.

3.3.1.4 Topology on TC(MR,P)

The last ingredient we will need to parametrize the deformation procedure at the
tropical level is a topology on TC(MR,P). We define it explicitly by giving a basis
of open neighbourhoods, that we will use in Section 3.4.3 to prove that we select
connected components in the relevant spaces of tropical curves. This topology was
considered in the first version of [KY23], where it is proved that it is Hausdorff and
that the natural tropicalization maps M sm(U,P, β)→ TC(MR,P) are continuous.
The topology is essentially given by deformations of the domain and of the image of
tropical curves.

Construction 3.3.7. Let T = [Γ, (vj)j∈J , h] ∈ TC(MR,P), let ε > 0 and let
W = (Wk)k∈K be an open covering of MR. Define a basic open neighbourhood
U (T, ε,W) of T as the set of tropical curves [Γ′, (v′

j)j∈J , h′] that satisfy:

1. There is a continuous map c : Γ′ → Γ contracting a subset of topological edges
of Γ′, sending each v′

j to vj and each node of Γ′ to a node of Γ.

2. The sum of the length of all edges contracted by c is less then ε.

3. For each edge e of Γ, let e′ be the edge of Γ′ such that c(e′) = e. If e has finite
length, then the difference between the lengths of e and e′ is less than ε. If e
has finite length, then the length of e′ is greater than 1/ε.

4. For each vertex v′ of Γ′, if h(c(v′)) ∈ Wk then h′(v′) ∈ Wk.
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5. For each edge e′ of Γ′ not contracted by c, the derivative of h on c(e′) is equal
to the derivative of h′ on e′.

3.3.2 Tropical cylinders
In this subsection, we refine the infinitesimal cylinder counts of [KY23] based on the
combinatorial structure of twigs.

Definition 3.3.8. Let P = (P1,P2) be a vector of weights, such that P1 + P2 is
parallel to the direction of a wall.

1. An (infinitesimal) cylinder spine of type P is a spine S = [[−ε; ε] , (v1, v2), h]
of type P, where 0 is the only bending vertex, and where ε > 0 is chosen so
that the image of S intersects a single wall.

2. An (infinitesimal) tropical cylinder of type P is a balanced pointed tree in MR

obtained from an infinitesimal cylinder spine of type P by adding a single
twig, and gluing an infinite constant leg to a point of the spine distinct from
the bending vertex.

By construction, infinitesimal tropical cylinders have a single twig. We refer to the
type of this twig as the twig type of the cylinder. We call a tropical cylinder primitive
if the degree of every leg of the twig is equal to 1 and all the legs have a different
direction.

Given an infinitesimal cylinder V , we define the associated extended tropical cylinder
V̂ to be the tropical curve obtained after applying the extension procedure of
Construction 3.3.6 to Sp(V ).

Example 3.3.9. All the tropical curves in Fig. 3.3 are extended tropical cylinders.
If we restrict the spine to a region of the domain such that the image only meets
Wall at the bending vertex, then we obtain infinitesimal cylinders. Only the top right
tropical cylinder is primitive.

Definition 3.3.10. Given β ∈ NE(Y ) and a spine S of type PF , the count N(S, β)
is the length of a certain subset Fw(Sw, β) ⊂M0,n(U,P, β̂), where Sw is obtained
from S by gluing an interior leg to a point of S distinct from the bending vertex. The
subset is constructed in three steps:

1. Extend the spine to Ŝw.
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2. Look at ev−1
w (h(w)) in M sm

0,n(U,P, β̂) ∩ Sp−1(Ŝw).

3. Consider the subset of stable maps that satisfy the toric tail condition [KY23,
Construction 9.3].

It is proved in [KY23, Proposition 9.5] that this count is independent of the choice
of w, by showing that it is the degree of (st, evw) restricted to some closed subset
of the target. In particular, for cylinder spines, the count is just the degree of some
restriction of the evaluation map at w.

We now define the counts associated to an infinitesimal tropical cylinder, they refine
the cylinder spine count.

Definition 3.3.11. Let V be a tropical cylinder (infinitesimal or extended), and let
β ∈ NE(Y ). Let S = Sp(V ) be the associated cylinder spine, and let Sw be as in
Definition 3.3.10. The count of tropical cylinders associated to V is

N(V, β) := length
(
Fw(Sw, β) ∩ Trop−1(V̂ )

)
.

Remark 3.3.12. If V is extended, then V̂ = V and β̂ = β. If V is not extended,
then N(V, β) = N(V̂ , β̂).

Remark 3.3.13. Given a cylinder spine S and a mark w, we have

N(S, β) =
∑

V ∈Sp−1(Sw)
N(V, β).

Alternatively, since cylinder spines only have one twig, this sum can be indexed by
twig types. Given a curve class β, only finitely many twig types are realized by stable
maps of class β.

3.4 Primitive holomorphic cylinders
In this section we prove the main Theorem 3.4.1 together with its Corollary 3.4.3.
The theorem is proved by using a deformation procedure parametrized by tropical
curves. Using ideas similar to Kontsevich’s formula for plane rational curves, we
define a subspace in a moduli space of analytic stable maps, and obtain an equality
between counts by looking at different degenerations of the domain curve in this
subspace. The subspace is defined using tropical data. To prove that the counts are
deformation invariants, we express them as the degree of a map which is proper and
flat over the analytic deformation.
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In Section 3.4.2 we set up the notations for the tropical curves that will parametrize
our deformation, and in Section 3.4.3 we define the tropical deformation. In
Section 3.4.4 we pull back the tropical deformation to the analytic moduli space. The
key results are Proposition 3.4.11, which shows that the tropical deformation cuts out
connected components in the space of tropical curves, and Proposition 3.4.15, which
shows that these connected components pull back to connected components of the
smooth locus of the analytic moduli space up to restricting the domain curve. This
properness argument relies on Proposition 3.4.13 which is a small generalization of
[KY23, Proposition 10.1].

Finally, in Section 3.4.5 we look at different degenerations of the domain curve,
and express the counts in terms of cylinder counts with one less twig together with
some toric counts, which we evaluate explicitly. The key result is Proposition 3.4.19,
relating counts before and after removing one twig to the tropical cylinder. Applying
this formula inductively, we easily deduce Theorem 3.4.1.

3.4.1 Main results

Theorem 3.4.1. Let V be a primitive infinitesimal tropical cylinder with twig type
w = (ws)1≤s≤t, let β ∈ NE(Y ). Then

N(V, β) =
∑

β1+···+βt=β

t∏
s=1

N(Vs, βs),

where Vs is an infinitesimal cylinder of twig type ws (see Construction 3.4.4).

The next lemma allows to simplify the sum, by identifying the curve classes
contributing to non zero invariants.

Lemma 3.4.2. Let V be a primitive infinitesimal cylinder of type P = (P1,P2),
whose twig has a single leaf of type w = P1 + P2 in the direction of Etrop

i . Then,
then are at most ℓi curve classes β such that N(Vs, β) ̸= 0.

Proof. Since the extension curve class is uniquely determined, the question
is equivalent to determining β such that M sm

0,3(U,P, β) ∩ Trop−1(V̂w) is non empty.

A necessary condition for M sm(U,P, β) to be non empty is that the curve class β be
compatible with P [KY23, Remark 3.5]. This determines the intersection numbers
β ·Di, so the only freedom in choosing β lies in the intersection numbers β · Eij .
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By construction, if a stable map η in M sm(U,P, β) meets the exceptional divisor
Ekj with multiplicty m, then Trop(η) has a twig in the direction Etrop

k of degree
m. Thus, elements of M sm(U,P, β) ∩ Trop−1(V̂w) only meet a single irreducible
component of Ei with multiplicty 1. There are ℓi such components, each giving
rise to a different curve class since the intersection numbers induce an isomorphism
N1(Y ) ≃ N1(Yt)⊕ ZE .

As a direct consequence, we get:

Corollary 3.4.3. Let V be a primitive infinitesimal cylinder of twig type
w = (ws)1≤s≤t. For each s, let Etrop

i(s) be the direction of the corresponding twig.

Then there are at most
∏

1≤s≤t ℓi(s) curve classes such that N(V, β) ̸= 0. Such a
curve class β is determined by the choice of an irreducible component Ei(s)j for all
s, and we then have

N(V, β) =
t∏

s=1
N(Vs, βs),

where βs is the curve class whose intersection number with each irreducible
component of E is 0 except for Ei(s)j .

3.4.2 Initial data and notations
We fix once and for all a tropical cylinder V = [Γ0, (v0

1, v
0
2, v

0
w), h0] associated to a

cylinder spine. Let V̂ denote the extended tropical cylinder associated to V . We as-
sume that V is primitive of
type w = (ws)1≤s≤t. This means that each ws is a primitive integral vector, and that
V has a single twig with t leaves.
Let r and (u1, . . . , ut) denote respectively the root and the leaves of the twig. We
denote by w0 = ∑

s ws, and let σ be the wall with direction −w0.

Our assumptions imply that the twig is a tree with a single (t+ 1)-vertex mapped to
the origin. The k-th leaf is an interval [0,+∞], with 0 mapped to the origin and h0

being a bijection to the ray R≥0wk. For each k, we fix xtk ̸= O and xgk ∈ (O;xtk)
in R≥0wk. We also fix points xw and xw′ not lying inside walls.

Construction 3.4.4. For each 1 ≤ k ≤ t, we define an infinitesimal cylinder Vk with
twig type wk, i.e. whose twig has a single leaf of degree 1 in the wk direction. We
let the bending vertex be mapped to a point in

(
0;xkg

)
, and choose the contact orders

of the two boundary legs such that Vk is balanced.
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Figure 3.4: The initial tropical cylinder V̂ , the and the families of tropical curves Lk,
Mk and Nk.

We now define the following tropical curves (Fig. 3.4):

1. L1 is obtained from V̂ by adding two interior points attached to every direction
of the twig. More precisely for the i-th leaf, we denote by vgi (resp. vti) the
unique point being mapped to xgi (resp. xti), and glue to it the constant leg
[0,+∞ = vgi ] (resp. [0,+∞ = vti ]).

2. For 2 ≤ k ≤ t+ 1, Lk is obtained from Lk−1 by forgetting the k-th leaf of the
twig, and assigning to the map the weight wk along the tk-leg.

3. Mk is the balanced spine obtained from the extended tropical cylinder V̂k by
substituting the leaf of the twig with a boundary marked point vMt′ , and adding
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an interior leg vMg′ mapped to xgk to this new leg.

4. Nk is obtained from the extended tropical cylinder V̂k by adding two interior
legs attached to the twig, the new marked point vNt′ (resp. vNg′ ) being mapped
to xtk (resp. xgk).

The curve Lk has 2t+ 3 marked points, indexed by the set

JL =
{
1, 2, w, g1, t1, . . . , gt, tt

}
.

Let BL
0 = {1, 2} and IL0 = JL \BL

0 denote the boundary and interior marked points
of L0. For 1 ≤ k ≤ t + 1, we set BL

k = BL
k−1 ∪

{
tk−1

}
and ILk = ILk−1 \

{
tk−1

}
.

These sets index the boundary and interior marked points of Lk.

The tropical curvesMk andNk have 5 marked points, indexed by the setJM = JN = {1′, 2′, w′, g′, t′}.
For the M -sequence the interior points are indexed by IM = {w′, g′} and the bound-
ary points by BM = {1′, 2′, t′}, while for the N -sequence the interior points are
indexed by IN = {w′, g′, t′} and the boundary points by BN = {1′, 2′}.

Finally, we introduce

Jg =
{
1, 2, 1′, 2′, w, w′, g1, t1 . . . , gt, tt, t′

}
= JL ∪ JM \ {g′} .

The set Jg has cardinality 2t + 7. For 0 ≤ k ≤ t we define the partition given by
boundary indices

Bg
k =

{
1, 2, 1′, 2′, t1, . . . , tk−1, t′

}
= BL

k ∪BM ,

and interior indices

Igk =
{
w,w′, g1, . . . , gk−1, gk, tk, . . . , gt, tt

}
= ILk ∪ IMk \ {g′} .

Given a set J indexing marked points and a subset of interior indices Ĩ ⊂ J ,
we denote by evĨ the map given by simultaneous evaluation at marked points
of Ĩ .

For i ∈ {L,M,N, g} and 1 ≤ k ≤ t, denote by Pi
k a tuple of weights of length

ni := |J i|. At the level of analytic moduli spaces, we define the following maps:

1. ΦL
k = (st, evIL

k
) : M(Y an,PL

k , β)→M
an
0,2t+3 × (Y an)2t−k+2.

2. ΦM
k = (st, evIM ) : M(Y an,PM

k , β)→M
an
0,5 × (Y an)2.
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3. ΦN
k = (st, evIN ) : M(Y an,PN

k , β)→M
an
0,5 × (Y an)3.

4. Φg
k = (st, evIg

k
) : M(Y an,Pg

k, β)→M
an
0,2t+7 × (Y an)2t−k+3.

These maps tropicalize to maps between the tropicalization of spaces, which we
denote by

Φi
k : TC(MR,Pi

k)→ M0,ni
×M Ii

k
R ,

where M0,ni
denotes the moduli space of pointed tropical curves [ACP15].

3.4.3 Tropical deformation
Construction 3.4.5. For 1 ≤ k ≤ t, fix a primitive vector w′

k such that the mixed
volume of (wk,w′

k) is equal to 1. We consider the line Hg
k with direction w′

k going
through xgk , and the line Ht

k with direction w′
k going through xtk. Their equations are

given by integral affine functions on MR, that we pull back to a equations defining
Cartier divisors Hg

k and H t
k on Y . By the tropical intersection formula [Kat12], we

have Hg
k ·Dk = H t

k ·Dk = 1.

Construction 3.4.6. For 1 ≤ k ≤ t+ 1, we define:

1. VL
k = st(Lk)× xw × xg1 × · · · xgk−1 × Hg

k × Ht
k × · · · × Ht

k × Hg
k,

2. VM
k = st(Mk)× xw′ × xgk ,

3. VN
k = st(Nk)× xw′ × Hg

k × Ht
k,

and set TCik = (Φi
k)

−1 (Vi
k) for i ∈ {L,M,N}.

Proposition 3.4.7. The point Lk ∈ TCLk is isolated. Similarly, Mk ∈ TCMk and
Nk ∈ TCNk are isolated.

Proof. We need to prove that Lk does not deform in TCLk . Let U = U(Lk, ε,W) be
an elementary open neighbourhood of Lk in TC(MR,PL

k ).

We first note that the only possible deformations of the domain ΓLk of Lk in
TC(MR,PL

k ) consist in changing the length of the finite edges (in particular, moving
around the roots of the twigs), and deforming the unique (t+ 1)-vertex into lower
valency vertices. Up to choosing the coverW such that twigs of Lk are mapped to
disjoint regions of MR, we can assume that twigs remain intervals throughout every
deformation in U , and that their images do not contain the origin.
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Now let K = [Γ, (vj)j∈JL
k
, h] ∈ U ∩ TCLk , by definition we have a contraction

c : Γ→ ΓLk . First we claim that the condition on the domain of K ensures that the
(t+ 1)-valent vertex does not break into several vertices of lower valency. Otherwise,
since every edge incident to this vertex lies in the spine, these multiple vertices would
show in st(K), which would then not equal st(Lk). Hence the domains of K and Lk
coincide as combinatorial trees (without metric structure). The weight of h on every
edge is fixed, so K is completely determined by the length of finite edges and the
image of a single point. Let v0 the (t+ 1)-valent vertex in K.

For i ≥ k, the root of the i-th twig in Lk is a 3-valent vertex. Thus it does not deform,
and comes from a 3-valent vertex r′

i in Γ. Since intervals with a one-valent infinite
vertex do not deform either, two of the edges incident to r′

i are fixed: one is the i-th
twig, the other is the ti-leg. Then r′

i lies in Ht
i ∩ R≥0wi = {xti}, and hence the root

of the twig does not deform. The condition on vgi fixes the length of the two finite
edges making up the path from v0 to r′

i.

For i < k, the length of the edge connecting v0 to the gi-leg is fixed by the condition
that vgi maps to xgi . Similarly, the condition on the image of vw fixes the lengths of
the edges in the path connecting vw to v0. Finally, we note that v0 is mapped to the
origin, since there are multiple edges incident to v0 that are mapped to distinct walls,
so the length of ever finite edge in Γ equals the length of the corresponding vertices
in ΓLk .

All these observations put together show that K = Lk, proving the claim. The proof
is similar, but simpler, for Mk and Nk.

We let TL
k = {Lk}, TM

k = {Mk} and TN
k = {Nk}. The proposition is saying that

Ti
k ⊂ TCik is a connected component.

Construction 3.4.8. Let r ∈ [0; +∞]. For 1 ≤ k ≤ t, consider the element Γk,r
(resp. Γk,r′) in M0,2t+7 as in Fig. 3.5, obtained by gluing the stabilization of domains
of Lk and Mk (resp. Lk+1 and Nk) along the vertices vgk and vg′ , and varying
the length of the horizontal edge, equal to the parameter r. When r = 0 the two
abstract graphs are the same, so we obtain a path ∆ ⊂ M0,n+7 parametrized by
r ∈ [−∞; +∞], whose marked points indexed by Jg and are partitioned into interior
and boundary marked points as Jg = Igk ∪B

g
k .

Construction 3.4.9. For 1 ≤ k ≤ t, we set:

Vg
k = ∆× xw × xw′ × xg1 × · · · × xgk−1 × Hg

k × Ht
k × · · · × Hg

t × Ht
t,
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Figure 3.5: The path of tropical curves in M0,2t+7, we only swap the tk-leg together
with the k-th twig with the t′-leg. The other twigs (k + 1 through t) of Lk are not
modified.

and define TCgk := (Φg
k)

−1 (Vg
k).

We will work with tropical curves in TCgk. However in TCgk there are many tropical
curves which are irrelevant to us, since we only impose conditions on the domain
tropical curve and on interior points, but not on the twigs. In the next construction,
we select the connected components in TCgk containing the relevant tropical curves
for our count.

Construction 3.4.10. For K = [Γ, (vj), h] ∈ TCgk, we denote by Pij the path in Γ
from that vertex vi to the vertex vj in the spine of K.
Let Tg

k be the subset of TCg consisting of tropical curves K = [Γ, (vj), h] ∈ TCg

such that:

1. To Pwtk ∩ Pw′tk is attached a single twig of degree 1, with direction wk.

2. For k + 1 ≤ i ≤ t, to Pwti ∩ Pgiti is attached a single twig of degree 1, with
direction wi.

Proposition 3.4.11. For 1 ≤ k ≤ t, the subset Tg
k ⊂ TCgk is a union of connected

components.

Proof. We first prove that Tg
k is open. Let K = [Γ, (vj), h] ∈ Tg

k. Let ε > 0, letW
be a finite open cover of MR and consider U = U(K, ε,W) ∩ TCgk. By definition,
if K ′ = [Γ′, (v′

j), h′] ∈ U then we have a continuous map c : Γ′ → Γ contracting a
subset of topological edges, sending v′

j to vj and nodes to nodes.
Let Pk = Pwtk ∩Pw′tk in the domain of Γ′, and for i ≥ k+ 1 let Pi = Pwti ∩Pgiti in
Γ′. For i ≥ k, the root ri of the i-th twig does not deform since it is a 3-valent vertex.
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Thus r′
i = c−1(ri) is still a 3-valent vertex in Γ′. Furthermore, as intervals with an

infinite 1-valent vertex do not deform either, two of the edges incident to r′
i are fixed.

One of them is the ti-leg and the other is the i-th twig. In particular r′
i is the root

of the i-th twig in K ′, and is also the endpoint of the ti-leg. Thus r′
i ∈ Pi, proving

conditions (1) and (2) of Construction 3.4.10.

We now prove Tg
k is closed. Let (Kλ)λ∈Λ be a net in Tg

k converging to
K∞ = [Γ∞, (v∞

j ), h∞] in TCgk. Let U be a basic neighbourhood of K∞ in TCgk
as in the proof of openness. By definition, there exists λ0 ∈ Λ such that
Kλ0 = [Γλ0 , (vλ0

j ), hλ0 ] ∈ U . Thus we have a continuous map c : Γλ0 → Γ
contracting a subset of edges. Conditions (1) and (2) of Construction 3.4.10
are still satisfied after contraction of some edges, thus K∞ ∈ Tg

k.

3.4.4 Analytic deformation
We proceed to defining the relevant spaces of
analytic curves lying above the tropical spaces. To do this, recall the commu-
tative diagram with tropicalization maps

M sm(U,Pi
k, β) M(Y,Pi

k, β) M0,ni
× Y Ii

k

TC(MR,Pi
k) M0,ni

×M Ii
k
R

Tropi

Φi
k

Tropi

Φi
k

At the level of domain curves, the tropicalization map corresponds to taking the
convex hull of the marked points. For stable maps, the tropicalization map gives
a well-defined map to TC(MR,Pi

k) on the smooth locus only due to our notion of
tropical curves.

Construction 3.4.12. Given a substack M ⊂M(Y,Pi
k, β) we denote by M sd (resp.

M sm) its restriction to M sd(U,Pi
k, β) (resp. to M sm(U,Pi

k, β)).
For i ∈ {L,M,N, g} and 1 ≤ k ≤ t+ 1, define the following substacks:

1. V i
k :=

(
Tropi

)−1
(Vi

k) in M0,ni
× Y Ii

k ,

2. M(V i
k , β) = (Φi

k)
−1 (V i

k ) in M(Y,Pi
k, β), and

3. M(T ik, β) =
(
Tropi

)−1
(Ti

k) ∩M sm(U,Pi
k, β).

By construction, we have M(T ik, β) ⊂ M(V i
k , β)sm. We continue to denote by

Φi
k : M(T ik, β)→ V i

k the restriction.
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We have natural maps induced by forgetting marked points:

V g
k −→ V i

k , i ∈ {L,M,N} , and V g
k −→ V L

k+1.

These maps are proper and flat, in particular open, since they are given by forgetting
marked points and projections Y Ig

k → Y Ii
k .

The following proposition expresses thatM(T ik, β) is not too far from being compact.

Proposition 3.4.13. Let (fλ)λ∈Λ be a net in M(T ik, β), such that (Tropi(fλ))λ∈Λ

converges in TCik. Then a subnet of (fλ)λ∈Λ converges in M(V i
k , β)sd.

Proof. By properness of M(Y,Pi
k, β), up to passing to a subnet we may assume that

(fλ) converges to some f∞ = [C∞, (pj,∞)j∈J , C∞ → Y ] ∈M(Y,Pi
k, β).

We proceed as in [KY23, Proposition 10.1] by cutting the domain curves into body
and caps. This decomposition is obtained by choosing a trivial family of closed disks
centered at each boundary point. For λ ∈ Λ ∪ {∞}, denote by Di,λ the (closed) cap
associated to the i-th boundary marked point of fλ and by Bλ the corresponding
body.

The proof goes in three steps:

1. The boundaries of caps are mapped to a compact subset inside the torus [KY23,
Claim 10.3].

2. f∞(B∞) ∩D = ∅ [KY23, Claim 10.4].

3. The limit caps D∞,i do not have bubbles [KY23, Claim 10.5].

The first two claims carry on to our situation, but the proof of the third claim fails
because of the non-transverse at infinity part of the spines we are considering. In the
surface case, we can still prove that Di,λ has no bubbles. Let i ∈ B correspond to a
non-transverse at infinity boundary point. For λ ∈ Λ ∪ {∞}, let vi,λ be the image of
the i-th marked point on the domain curve of the tropicalization, and let bi,λ denote
the image of ∂Di,λ. Let V be a compact polyhedral subset containing hλ([bi,λ; vi,λ])
for all λ ∈ Λ, so that it also contains h∞([bi,∞; vi,∞]). Let Ṽ = (π ◦ τt)−1(V ). We
can shrink V so that Ṽ \ E is affinoid and only meets the irreducible component
Di of D. In addition to this affinoid domain, Ṽ contains a union of irreducible
components of the exceptional divisor E. As fλ(Di,λ) ⊂ Ṽ for all λ ̸= ∞, this
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inclusion also holds for λ =∞ by compactness of Ṽ and continuity of the universal
stable map.

Let Ci denote the unique irreducible component in C∞ intersecting both B∞ and
Di,∞, which satisfies f∞,∗[Ci] · Di > 0. Let Cb be a connected component of
Di,∞ \ Ci, it is a tree of P1. We note that each irreducible component C ′ ⊂ Cb

not contracted by f∞ has image equal to an irreducible component of E, and thus
contributes by f∞,∗[C ′] ·D = deg f∞|C′ > 0 to the intersection number β ·Di. If
C ′ ⊂ Cb is such a component, then we have

1 = β ·Di ≥ f∞,∗[Ci] ·Di + deg f∞|C′ ≥ 2.

This is a contradiction, so every component in Cb is contracted to a point. In turn,
this contradicts the stability of f∞ so we must have Cb = ∅. Then f∞ has stable
domain.

We will use the next lemma to reduce enumerative computations to the smooth part
of the moduli space. Defining the invariants in this way allows to interprete simple
invariants as naive counts. The idea is that if families in a subspace M sm(U,P, β)
degenerate to at worst stable maps with stable domains, then we can obtain a closed
subspace in M sm(U,P, β) by removing stable maps with domain curves arising as
degenerations.

Lemma 3.4.14. Let V ⊂ M0,n × Y I , let MV = Φ−1(V ) ⊂ M(Y,P, β), where
Φ = (st, evI). Let M ′ ⊂MV , and assume that:

• M ′ is a union of connected components in M sm
V .

• M ′ has Zariski closure in MV contained in M sd
V .

Then there exists a Zariski open W ⊂ V , such that MW := Φ−1(W ) satisfies:

1. M ′
W := M ′ ∩ MW is a union of connected components in MW .

In particular M ′
W ⊂M sm

V .

2. The restriction Φ: M ′
W → W is proper.

3. W intersects every fiber of the first projection.
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Proof. Let W = V \ Φ(M ′ \M sm
V ), it is Zariski open by properness of Φ. Let

MW := Φ−1(W ).

By construction M ′ ∩MW ⊂ M sm
V , so the Zariski closure of M ′

W in MW lies in
M sm

W . Since M ′ ⊂ M sm
V is a union of connected components, M ′

W is a union of
connected components in M sm

W . In particular it equals its Zariski closure in MW ,
thus M ′

W ⊂MW is a union of connected components proving (1).

Since Φ: MV → V is proper, we deduce the properness of the restriction of Φ to
M ′

W by base change and restriction to a union of connected components, proving (2).

(3) follows from [KY23, Lemma 3.12], the lemma states that fibers over a fixed
domain curve have dense images under evaluation maps.

We apply the previous lemma to the subspaces M(T ik, β). For the degeneration
argument to work, we impose a further compatibility condition on our choice of
Zariski open susets.

Proposition 3.4.15. There exist Zariski opens W i
k ⊂ V i

k such that:

1. M(T ik, β)W i
k

is contained in M(V i
k , β)sm.

2. The restriction Φi
k : M(T ik, β)W i

k
→ W i

k is proper.

3. W i
k intersects every fiber of the first projection map.

4. The forgetful maps W g
k → W i

k and W g
k → WL

k+1 are surjective.

Proof. By Proposition 3.4.11 and Proposition 3.4.13, we can apply Lemma 3.4.14
with V = V i

k and M ′ = M(T ik, β). This gives Zariski opens W̃ g
k , W̃ i

k and W̃L
k+1 that

satisfy (1), (2), and (3).

We then let

W g
k = W̃ g

k ∩ Fgt−1 W̃L
k ∩ Fgt−1 W̃M

k ∩ Fgt−1 W̃N
k ∩ Fgt−1 W̃L

k+1.

This is an open subset, and noting that the forgetful maps are proper and flat thus
open, we define the open subsets

W i
k = Fgt(W g

k ) ⊂ W̃ i
k and WL

k+1 = Fgt(W g
k ) ⊂ W̃L

k+1.

Conditions (1) and (2) hold by pullback, condition (3) holds by [KY23, Lemma
3.12], and (4) holds by construction.
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We denote by M(T ik, β)W the fiber product M(T ik, β) ×V i
k
W i
k. The following

corollary is precisely what we need to define deformation invariant counts in the next
subsection.

Corollary 3.4.16. Let:

1. FgtLk : M0,2t+3×Y 2t−k+2 → Y 2t−k+2 denote the map forgetting every marked
point except w, gk, tk.

2. FgtMk : M0,5 × Y 2 → Y 2 denote the map forgetting every marked point except
w′, g′, t′.

3. FgtNk : M0,5 × Y 3 → Y 3 denote the map forgetting every marked point except
w′, g′, t′.

4. Fgtgk : M0,2t+7×Y 2t−k+3 →M0,5×Y 2t−k+3 denote the map forgetting every
marked point except w,w′, gk, tk, t′.

The composition Ψi
k := Fgtik ◦Φi

k restricted to M(T ik, β)W i
k

is proper and flat.

Proof. By Proposition 3.4.15, the map Φi
k is proper. It is also smooth by [KY23,

Lemma 3.6]. Forgetful maps between moduli space of stable curves correspond to
universal families. Thus they are proper and flat, so Fgtik is proper and flat. We
deduce that the composition Ψi

k is proper and flat.

3.4.5 Enumerative invariants and degeneration
We now define enumerative invariants associated to the various spaces constucted.
The definitions circumvents fundamental class because we managed to restrict to the
smooth locus of the moduli spaces.

Recall that the dimension of the moduli space M sm(U,P, β) for full-tangency n-
pointed stable maps is n− 3 + dim Y = n− 1 for the surface case. We denote by
qi : M(T ik, β)→ pt the structure morphism, which is proper.

Given a (derived) k-analytic space over a point q : X → pt, the motivic
cohomology groups H2r(X,Q(r)) are defined as the Borel-Moore homology of the
identity morphism idX : X → X . Throughout, when q is proper derived lci and
γ ∈ H∗(X,Q(∗)) we use the virtual fundamental class [X] to define∫

X
γ := q∗(γ ∩ [X]) ∈ Q.
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Denote by pt ∈ H4(Y,Q(2)) and by ptµ ∈ H2(n−3)(M0,n,Q(n− 3)) point classes,
and let δℓs = [Hℓ

s] ∈ H2(Y,Q(1)) for 1 ≤ s ≤ t and ℓ ∈ {g, t}.

Definition 3.4.17. Let β ∈ NE(Y ), we define:

1. N(T gk , β) :=
∫
M(T g

k
,β)W

(Ψg
k)

∗
(
ptµ⊠Ig

k
\{gs,ts}s≥k

pt⊠k≤s≤t(δgs ⊠ δts)
)
.

2. N(Lk, β) =
∫
M(TL

k
,β)W

(
ΨL
k

)∗ (
⊠i∈Il

k
\ {gs,ts}s≥k

pt⊠k≤s≤t(δgs ⊠ δts)
)
.

3. N(Mk, β) =
∫
M(TM

k
,β)W

(
ΨM
k

)∗
(pt⊠ pt).

4. N(Nk, β) =
∫
M(TN

k
,β)W

(
ΨN
k

)∗
(pt⊠ δgk ⊠ δtk).

We relate these invariants by computing N(T gk , β) at different degenerations of the
domain curve (Fig. 3.6). To characterize these degenerations, we only need to
remember the shape of the domain curve. This is why we introduced the forgetful
maps and defined our invariants through the maps Ψi

k.

+ · · · + · · · + +
gk

+ · · · + + · · · +

Figure 3.6: Degeneration of the domain curve. The middle component is contracted
to a point in Hg

k .

We will need to keep track of the extension curve classes, so we introduce the
following notations:

• δ̂V is the extension curve class corresponding to the extension from V

to V̂ .

• Let Vk be the infinitesimal cylinder of twig type wk of Construction 3.4.4,
whose extension is Nk. We denote by δ̂k the extension curve class.
By construction, if we truncate the 1′ and 2′ legs of Mk to finite legs whose
image intersect at most one wall, then the associated extension curve class is
precisely δ̂k.

• Consider the infinitesimal spine obtained by truncating every boundary leg of
Lt+1 to a finite leg whose image intersects at most one wall. The corresponding
extension curve class is δ̂V +∑t

s=1 δs, where δs is associated to the ts-leg.
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The next lemma computes the toric counts that appear in the inductive formula of
Proposition 3.4.19.

Lemma 3.4.18. For 1 ≤ k ≤ t and β ∈ NE(Y ), we have

N(Mk, β) =

1 if β = δ̂k,

0 else.

Proof. By construction of WM
k , the moduli space M(TMk , β) is contained in the

smooth locus M sm(U,PM
k , β). Thus the evaluation maps evw′ and evg′ are étale

[KY23, Lemma 3.6], and the invariant is the cardinality of the intersection of two
fibers of these maps over arbitrary points.

Let F denote the fiber of (evw′ , evg′) over the points (xw′ , xgk) ∈ MR ⊂ U (recall
that the essential skeleton is naturally included in Y ). Any f ∈ F is skeletal, meaning
it has image contained in MR, by [KY23, Theorem 8.18].

Let ΓMk denote st(Mk), we claim that F ⊂ st−1(ΓMk ). Indeed, for f ∈ F the
stablization st(f) is obtained by taking the convex hull of the marked points. Here,
the image of f is fixed, equal to the image of Mk, and the domain of f does not have
any nodes. This fixes the combinatorial type and the slope of f on every edge of the
domain of f . Then st(f) is completely determined by the choice of the length of the
two finite edges. These lengths can be uniquely recovered from the image of the two
interior marked points and the slopes of f .

The previous observation implies that F is contained in
(st, evw′)−1(ΓMk , xw′) ∩ Sp−1(Mk). Stable maps in this set do not meet the
exceptional locus E, so they correspond uniquely to stable map
in M sm(Ut,PM

k , π∗β). In the toric case, the map (st, evw′) is an open immer-
sion with image M0,5 × U [KY23, Proposition 6.2]. Thus F has cardinality at most
1, and it is non empty if and only if β = δ̂k, proving the lemma.

Proposition 3.4.19. Same notations as in Lemma 3.4.18. For β ∈ NE(Y ) and
1 ≤ k ≤ t, we have

N(Lk, β − δ̂k) = N(T gk , β) =
∑

β=β1+β2

N(Lk+1, β1)N(Nk, β2).

Proof. Let us prove the first equality. We fix µ ∈ M0,5 given by the partition
(w, tk|gk|w′, t′), and let M(T gk , β)W,µ denote the substack of stable maps over µ. For
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e

gk

...

1′
2′

w′
t′

τ
gk

e1...

1′
2′

w′
t′

g′

σ1
∐
σ2

(a) Cutting the edge e of τ to obtain σ.

gk

e1...

σ1

... gk

σ1

(b) Forgetting the tail e1 to obtain σ′.

Figure 3.7: Degeneration of the combinatorial type.

i ∈ Igk , we denote by γi ∈ H∗(X,Q(∗)) a cycle represented by a smooth subvariety
Zi of Y . We assume Zgk = Hg

k .

We shall use (τ, β)-marked stable maps to keep track of the combinatorics of the
degeneration [BM96; PY24; PY22]. By construction, stable maps in M(T gk , β)W,µ
have a fixed graph type τ . Fix a decomposition of β into effective curve classes
β = β1 + β2. Denote by τ = (τ, (β1, 0, β2)) the associated A-graph.

Consider the moduli space

M g(τ) := M(T gk , β)W,µ
⋂
i∈Ig

k

ev−1
i (Zi) ∩M(Y, τ).

Denote by q : M g(τ)→ pt its structure morphism. Let σ = σ1
∐
σ2 denote the new

A-graph obtained by cutting the edge connecting the middle vertex to the rightmost
vertex and forgetting the new tail (Fig. 3.7). Consider the moduli spaces

M1(σ1) := M(TLk , β1)W
⋂
i∈IL

k

ev−1
i (Zi) ∩M(Y, σ1),

M2(σ2) := M(TMk , β2)W
⋂
i∈IM

k

ev−1
i (Zi) ∩M(Y, σ2).
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Let M cut(σ) be the moduli space defined by the derived pullback diagram:

M cut(σ) M2(σ2)

M1(σ1) Zgk

pt

q′

p2

p1
q2

evg′

ev
gk

q1

Let c : M g(τ)→M1(σ1)×M2(σ2) denote the composition of the morphism cutting
the edge e and forgetting the new tail e1. Note that in this case, at the level of domain
curves the map forgetting the tail e1 is an isomorphism. From Proposition 3.4.15.(4)
we deduce that the map c induces an isomorphism M g(τ) ∼→M cut(σ).

The map c is the composition of a cutting-an-edge morphism and a forgetting-a-tail
morphism, so it is compatible with virtual fundamental classes by [PY22, Theorem
1.1]. Together with Lemma 3.4.22 this gives

q∗[M g(τ)] = q′
∗[M cut(σ)] = q1∗[M1(σ1)] · q2∗[M2(σ2)/Zgk ].

Now we specialize to Zi a smooth point for i ∈
{
w,w′, g1, · · · , gk−1

}
, Zgℓ = Hg

ℓ

and Ztℓ = H t
ℓ for k ≤ ℓ ≤ t.

By Lemma 3.4.21 and Lemma 3.4.20

q2∗[M2(σ2)/Hg
k ] = qM∗

(
(ev∗

w′ [pt] ∪ ev∗
g′ [pt] ∪ ev∗

t′ [H t
k]) ∩ [M(TMk , β2)W ]

)
= N(Mk, β2).

Similarly, Lemma 3.4.20 gives

q1∗[M1(σ1)] = N(Lk, β1).

Given that the union over all A-graph τ associated to a splitting β = β1 + 0 + β2

into effective classes equals the moduli space responsible for the count N(T gk , β),
we deduce the first eqality

N(T gk , β) =
∑

β1+β2=β
N(Lk, β1)N(Mk, β2) = N(Lk, β − δ̂k).

The last equality being obtained by Lemma 3.4.18. A similar reasoning based on the
choice of domain µ′ ∈M0,5 given by the partition (w, t′|gk|w′, tk) proves the second
equality.
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The previous proof relies on the following lemmas, which are direct computations
making use of the very good functoriality properties of the analytic Borel-Moore
motivic cohomology of derived analytic spaces. Lemma 3.4.20 expresses the
compatibility of the restriction of the virtual fundamental class to a derived lci
subspace. Lemma 3.4.21 relate the relative virtual fundamental class to an absolute
virtual fundamental class, and Lemma 3.4.22 is a splitting formula of the virtual
fundamental class of a derived fiber product.

Lemma 3.4.20. Consider a pullback square of derived k-analytic spaces over a
point

W X

Y Z

i

g f

j

Assume j is derived lci and Z is smooth. Then
(
f ∗ PD−1 j∗[Y ]

)
∩ [X] = i∗[W ],

where PD denotes the Poincaré duality.

Proof. First, we note that since Z is smooth, we have γ ∩ [Z] = PD(γ) for all cycle
γ [Kha19, Theorem 2.26]. In particular, we get PD−1 j∗[Y ] ∩ [Z] = j∗[Y ]. Then

(f ∗ PD−1 j∗[Y ]) ∩ [X] = (f ∗ PD−1 j∗[Y ]) ∩ f ![Z]

= f !(PD−1 j∗[Y ] ∩ [Z]) by [PY22, Proposition 4.10.(1)]

= f !j∗[Y ]

= i∗g
![Y ] by [PY22, Proposition 4.11]

= i∗[W ].

Lemma 3.4.21. Consider a pullback square of derived k-analytic spaces over a
point

W X

pt Z

pt

i

g f
q

j

p

Assume j is a smooth point of Z, and f and p are proper. Let γ ∈ H∗(X,F), then

g∗(i∗γ ∩ [W ]) = q∗(γ ∩ [X/Z]).
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Proof. This is a consequence of the projection formula

g∗(i∗γ ∩ [W ]) = q∗i∗(i∗γ ∩ [W ])

= q∗(γ ∩ i∗[W ]) by the projection formula

= q∗(γ ∩ i∗i∗[X/Z]) by base change [PY22, Proposition 4.7]

= q∗(γ ∩ [X/Z]) because i is an immersion.

Lemma 3.4.22. Consider a pullback square of derived k-analytic spaces over a
point

W X

Y Z

pt

k

eg f
b

h

c

d

Let a = d ◦ e. Assume d, f and h are proper and derived lci. Then in HBM
0 (pt,F)

a∗[W ] = b∗[X]c∗[Y/Z].

Proof. Recall the compatibility between pushforward and composition product
[Kha19, §2.3.4] for a proper map f : X → Y of derived k-analytic spaces over S, for
all α ∈ HBM

s (X/Y,F(r)) and β ∈ HBM
s′ (Y/S,F(r′)) we have f∗(α◦β) = f∗(α)◦β.

We also recall that for a derived k-analytic space X , in HBM
∗ (X/X,F(∗)) the

right composition product, the left composition product and the external prod-
uct ⊠ coincide. Furthermore, under the identification with motivic cohomology
HBM
s (X/X,F(r)) = H−s(X,F(−r)) these coincide with the cup-product of motivic

cohomology on Borel-Moore homology, and with the cap-product of
motivic cohomology. In particular, the composition product becomes commu-
tative in this case.
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We now compute

a∗[W ] = a∗ ([W/Z] ◦ [Z]) by [PY22, Proposition 4.6]

= d∗e∗ (([X/Z]⊠[Y/Z]) ◦ [Z]) by [PY22, Propositions 4.6, 4.7 and 4.10.(4)]

= d∗ (e∗ ([X/Z]⊠[Y/Z]) ◦ [Z]) since e∗(α ◦ β) = e∗(α) ◦ β

= d∗ ((f∗[X/Z]⊠h∗[Y/Z]) ◦ [Z]) by [PY22, Proposition 4.10.(6)]

= d∗ (f∗[X/Z] ◦ h∗[Y/Z] ◦ [Z]) since ⊠ = ◦

= d∗ (f∗[X/Z] ◦ [Z] ◦ h∗[Y/Z]) by commutativity

= d∗ (f∗ ([X/Z] ◦ [Z]) ◦ h∗[Y/Z]) since f∗(α ◦ β) = f∗(α) ◦ β

= d∗ (f∗[X] ◦ h∗[Y/Z]) by [PY22, Proposition 4.6]

= b∗[X]c∗[Y/Z] by [PY22, Proposition 4.10.(6)].

The next proposition expresses the counts that appear in the initial step and the final
steps of the inductive twig-removal procedure.

Proposition 3.4.23. Given β ∈ NE(Y ), we have:

1. N(L1, β) = N(V̂ , β), the count of the extended initial cylinder.

2. N(Lt+1, β) = 0 for β ̸= δ̂V +∑t
s=1 δs, and N(Lt+1, δ̂V +∑t

s=1 δs) = 1.

Proof. For (1), we note that the countN(L1, β) is given by imposing divisorial condi-
tions at the marked points corresponding to indices in IL1 \ {w}.
By construction, the divisors Hg

k and H t
k have intersection number 1 with β. Thus,

applying repeatedly the divisor axiom we see that N(L1, β) is given by a count of
3-pointed curves with two boundary marked points and one interior marked point
lying above the initial tropical cylinder. As we evaluate at the interior marked point,
we get the count of the initial cylinder by definition.

For (2), note that N(Lt+1, β) counts curves without any twigs – i.e. curves that do
not meet the exceptional divisor E. We can argue as in the proof of Lemma 3.4.18:
evaluate N(Lt+1, β) as the cardinality of F = ev−1

Ig
t+1

((xi)i∈Ig
t+1

) which consists of
skeletal curves, prove that the domain of an element in F is completely determined
by the image of the interior points, and use the result on toric spine counts.

We can now prove our main result.
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Proof of Theorem 3.4.1. Applying Proposition 3.4.19 inductively, and using Propo-
sition 3.4.23, for β ∈ NE(Y ) we compute

N(V, β) = N(V̂ , β + δ̂V )

= N(L1, β + δ̂V )

=
∑

γ1+···+γt+γt+1=β+δ̂V +
∑t

s=1 δs

N

(
Lt+1, γt+1 −

t∑
s=1

δ̂s

)
t∏

s=1
N(Ns, γs)

=
∑

γ1+···+γt=β+
∑t

s=1 δ̂s

t∏
s=1

N(Ns, γs)

=
∑

γ1+···+γt=β+
∑t

s=1 δ̂s

t∏
s=1

N(Vs, γs − δ̂s)

=
∑

β1+···+βt=β

t∏
s=1

N(Vs, βs).
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C h a p t e r 4

DECOMPOSITION AND FRAMING OF F-BUNDLES AND
APPLICATIONS TO QUANTUM COHOMOLOGY

This chapter is based on [Hin+24], joint work with Tony Yue Yu, Chi Zhang
and Shaowu Zhang.

4.1 Introduction
4.1.1 Motivations
Let X be a smooth projective complex variety. The enumeration of curves in X
is a classical subject in algebraic geometry, enjoying a variety of approaches (see
[PT14]). Gromov-Witten theory is one of the most widely known and the most
general (e.g. no restriction on the dimension of X) (see [KM94; LT98; Beh97]).
The Gromov-Witten invariants of X are rational numbers depending on the genus
g, number of marked points n and cohomology classes ϕ1, . . . , ϕn of X . They
satisfy a notable relation called the WDVV equation, which allows them to be
packaged into differential geometric data, such as Frobenius manifolds by Dubrovin
([Dub96]) or semi-infinite Hodge structures by Barannikov ([Bar00]). The differential
geometric framework facilitates intuitions from geometry and mirror symmetry and
contributes tremendously to the development of the subject. The framework was
further extended to incorporate the integral/rational structure via the notion of
nc-Hodge structure by Katzarkov-Kontsevich-Pantev [KKP08]. They established
a profound gluing/decomposition theorem using the Fourier-Laplace transform of
the associated D-modules (see §2.4.2 in loc. cit.). This motivated the development
of the theory of atoms for applications to birational geometry (see [Kat+24]). The
idea is to apply the decomposition to the A-model nc-Hodge structure (defined using
Gromov-Witten invariants) associated to a smooth projective variety at a generic
point of the base, and view the resulting pieces as elementary pieces of the variety
called atoms. The collection of atoms (modulo an equivalence relation induced by
blowups) is expected to serve as a powerful birational invariant.

While the notions of nc-Hodge structure and atom are natural and beautiful, it is still
conjectural that Gromov-Witten invariants actually give rise to an nc-Hodge structure
satisfying all the axioms in [KKP08, §2.1.5]. The difficulties include the convergence
of the Gromov-Witten potential ([Iri07]), the Gamma conjecture ([GGI16]) and the
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opposedness axiom ([RS17a]). This means that the theory of nc-Hodge structure
cannot yet be unconditionally employed for the study of Gromov-Witten invariants
and their applications in general. In this paper, we consider a formal/non-archimedean
distilled version of variation of nc-Hodge structures, which we call F-bundles (see
Section 4.2, and see Section 4.1.3 for related notions). We establish the spectral
decomposition theorem for F-bundles, according to the generalized eigenspaces of
the Euler vector field action, motivated by the gluing theorem for nc-Hodge structures
via Fourier-Laplace transform, see Section 4.3. The comparison of the F-bundle
decomposition and the nc-Hodge structure decompositions is studied in [YZ24, §8].

Furthermore, we study the notion of framing of F-bundles, analogous to the decoration
on variations of nc-Hodge structures, and prove the existence and uniqueness of the
extension of framing, see Section 4.4. This allows us to identify F-bundles via maps
on the base (analogous to a mirror map) together with a gauge transformation on
the bundle. As an application, we prove the uniqueness of the decomposition map
for the A-model F-bundle (hence quantum D-module and quantum cohomology)
associated to a projective bundle, as well as to a blowup of an algebraic variety. This
complements the existence result by Iritani-Koto [IK23] and Iritani [Iri23].

4.1.2 Main results
Below we give a more detailed description of our results.

Throughout the paper, we fix a field k of characteristic 0. In the non-archimedean
setting, we assume that k has a nontrivial valuation whose restriction to Q is trivial.
Let B be a smooth k-analytic space, and Du the germ at 0 in a k-analytic closed unit
disk with coordinate u.

An F-bundle (H,∇) over B consists of a vector bundle H over B × Du and a
meromorphic flat connection ∇ with poles at u = 0, such that ∇u2∂u

and ∇uξ are
regular for any tangent vector field ξ on B. We refer to Definition 4.2.2 for the
definition of logarithmic F-bundle in the formal case.

For any b ∈ B, we have a natural action

µb : TbB −→ End(Hb,0)

ξ 7−→ ∇uξ|Hb,0 .

The F-bundle is called maximal at b if the action induces an isomorphism between
TbB and Hb,0 via a cyclic vector, see Definition 4.2.6. This gives a commutative
product on TbB by the flatness of∇.
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4.1.2.1 Spectral decomposition theorems

Let Kb := ∇u2∂u
|b,0, it is the action of the Euler vector field on the fiber Hb,0. We

show that the generalized eigenspace decomposition of Kb extends locally to a
product decomposition of the F-bundle. Here are the precise statements.

Theorem 4.1.1 (Formal spectral decomposition, Theorem 4.3.32). LetB be a formal
neighborhood of a rational point b in a smooth k-variety, and (H,∇) an F-bundle
over B maximal at b. Assume that we have a decompositionHb,0 ≃

⊕
i∈I Hi stable

under Kb, and that for any i ̸= j ∈ I , the spectra of Kb|Hi
and Kb|Hj

are disjoint.
Then (H,∇)/B decomposes into a product of maximal F-bundles (Hi,∇i)/Bi

extending the decomposition ofH|b,0.

Theorem 4.1.2 (Non-archimedean spectral decomposition, Theorem 4.3.42). Let B
be an admissible open neighborhood of a rational point b in a smooth k-analytic
space, and (H,∇) an F-bundle over B maximal at b. Assume that we have a
decomposition Hb,0 ≃

⊕
i∈I Hi stable under Kb, and that for any i ̸= j ∈ I , the

spectra of Kb|Hi
and Kb|Hj

are disjoint. Then there exists an admissible open
neighborhood U of b such that (H|U ,∇|U)/U decomposes into a product of maximal
F-bundles (Hi,∇i)/Ui extending the decomposition ofHb,0.

For proving the spectral decomposition, first we establish a formal and a non-
archimedean version of the Frobenius theorem (see Theorems 4.3.7 and 4.3.10), by
solving recursively a system of partial differential equations (see Proposition 4.3.4).
By the maximality assumption, we obtain an F-manifold structure on the base
B of the F-bundle (see Definition 4.3.11 and Lemmas 4.3.24 and 4.3.35). The
eigenspaces of Kb induce a decomposition of the tangent space TbB as a k-algebra,
and we show that this decomposition extends locally around b (Theorems 4.3.13
and 4.3.20). To do so, we first prove that the algebra structure on the tangent spaces
decomposes via deformations of k-algebras (Lemmas 4.3.15 and 4.3.22). Then, using
the F-identity (4.3.12) of the F-manifold, we prove that the induced decomposition
of the tangent bundle is a decomposition into commuting integrable distributions
(Proposition 4.3.19). Finally, using the formal and non-archimedean versions of the
Frobenius theorem, we integrate those distributions and produce a decomposition of
the F-manifold B ≃ ∏i∈I Bi.

Having decomposed the base B, we use maximality again to obtain a splitting of
H|u=0. The link between the connection ∇ and the F-manifold structure implies
that this decomposition is stable under the residue endomorphisms∇u2∂u

|u=0 and
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∇uξ|u=0 for any ξ ∈ TB. Using the disjoint spectra assumption, we extend this
decomposition to a decomposition ofH stable under∇u2∂u

by a recursive procedure,
and obtain the decomposition in the formal case, see Proposition 4.3.26. In the
non-archimedean case, through a careful analysis of the recursion and the norms of the
coefficients, we show that the decomposition is convergent over an admissible open
neighborhood of b; see Proposition 4.3.36. Finally, using flatness, we prove that the
connection also decomposes according to the splitting ofH (Proposition 4.3.29), and
that each piece is the pullback of a maximal F-bundle on Bi from the decomposition
of the base B.

4.1.2.2 Extension of framing

A framing for an F-bundle (H,∇)/B is roughly a local trivialization ofH in which
the connection involves no positive powers of u (Definition 4.2.9). It is analogous to
the notion of decoration on variations of nc-Hodge structures in [KKP08, §4.1.3].
Framings do not exist in general. We prove in the following that if a framing exists
at a point b ∈ B and is strong in the logarithmic case, then it extends uniquely and
explicitly to a formal or non-archimedean analytic neighborhood.

Theorem 4.1.3 (Theorem 4.4.2). Let (H,∇)/(B,D) be a logarithmic F-bundle,
where B is a formal neighborhood of a rational point b in a smooth k-variety. A
framing at b extends to a framing over B if and only if it is strong with respect to D
(see Definition 4.4.1). In this case, the extension is unique and explicitly determined.

Theorem 4.1.4 (Theorem 4.4.26). Let B be an admissible open neighborhood of a
rational point b in a smooth k-analytic space. Let (H,∇) be a non-archimedean
F-bundle over B. Then every framing at b extends uniquely and explicitly to a
framing over an admissible open neighborhood U of b in B.

The proofs are carried out by reformulating the problem into a system of partial
differential equations ((4.4.4)-(4.4.7)), which is then solved inductively on the number
of variables. If there are no logarithmic directions and (t1, . . . , tn) are coordinates
on B centered at b, we first solve (4.4.6) in the t1-direction at t2 = · · · = tn = 0
order by order in t1, by observing that the equation provides a recursive relation.
We use this solution as an initial condition, and then solve (4.4.6) in the t2-direction
at t3 = · · · = tn = 0. Using flatness of the connection, we prove that the solution
obtained solves the equation in the t1-direction as well, for all t2. In this way, we
solve (4.4.6) for all directions, and we show that the solution also solves (4.4.4) using
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flatness again. In the non-archimedean case, we prove that the solution converges by
bounding its coefficients using (4.4.6).

The extension in the formal setting works also for logarithmic F-bundles, under the
assumption that the framing at b is strong with respect to D (see Definition 4.4.1).
This condition implies that the residues µb(v) at b along u = 0 have nilpotent
adjoint endomorphism for v ∈ TbD, a property we call the nilpotency condition (see
Definition 4.4.11). This nilpotency condition allows us to extract a recursive relation
from (4.4.5), so we can reconstruct a solution to the equation order by order. We
proceed as in the non-logarithmic case and solve the system of PDEs inductively on
the number of variables, this time starting from the logarithmic directions.

Based on the extension of framing theorem, we give a reconstruction result for
isomorphisms of logarithmic F-bundles with framing in Section 4.4.3. We can
always reconstruct the bundle isomorphism from its restriction to a point and the
framing. In the maximal case, we can also reconstruct the map on the base from
its restriction to a point, up to some multiplicative constants in the logarithmic
directions.

Proposition 4.1.5 (Proposition 4.4.31). For i = 1, 2, let (Hi,∇i)/(Bi, Di) be a loga-
rithmic F-bundle whereBi is the formal neighborhood of a rational point in a smooth
k-variety. Let (f,Φ): (H1,∇1)/(B1, D1) → (H2,∇2)/(B2, D2) be an isomor-
phism between logarithmic F-bundles with f(b1) = b2. Assume (H1,∇1)/(B1, D1)
has a framing ∇fr

1 .

1. The bundle map Φ is uniquely and explicitly determined by its restriction to
H1|b1×Spf k[[u]].

2. If (H1,∇1) and (H2,∇2) are maximal, then the base map f is also uniquely
determined by its restriction to b1, up to some multiplicative constants in the
logarithmic directions. The reconstruction is explicit after fixing compatible cyclic
vectors at b1 and b2.

Motivated by the extension of framing theorem and our applications in Section 4.5,
we prove the following classification result for framed F-bundles over a point.

Proposition 4.1.6 (Corollary 4.4.35). Let H ≃ H × k[[u]] be a trivialized rank m
vector bundle over k[[u]]. Let (H,∇) and (H,∇′) be two F-bundles framed in the



68

given trivialization, and write

∇u∂u = u∂u + u−1K + G,

∇′
u∂u

= u∂u + u−1K′ + G′.

Assume K has simple eigenvalues. Then (H,∇) is isomorphic to (H,∇′) if and only
if there exists ϕ ∈ GL(H) such that

1. K = ϕ−1 ◦K′ ◦ ϕ, and

2. in an eigenbasis of K, we have (G)ii = (ϕ−1 ◦G′ ◦ ϕ)ii for 1 ≤ i ≤ m.

Furthermore, the gauge equivalence is uniquely and explicitly determined by the
initial condition ϕ at u = 0.

Proceeding order by order in u, we reformulate the gauge equivalence of the two
connections as a system of equations (4.4.38)-(4.4.39) involving the adjoint map
[K, ·]. When the eigenvalues are not simple, the equations are hard to solve because
the map [K, ·] does not have an easy description. We provide a partial classification
in Theorem 4.4.34, under the assumption that all the generalized eigenspaces of
K have the same dimension, and by restricting the type of coefficients we allow
in the connections. The assumption on the coefficients allows us to work relative
to a universal algebra. Relative to this algebra, the endomorphism K has simple
eigenvalues, and we are able to solve the system.

We illustrate an application of these results in the next paragraph. The reconstruction
of isomorphisms also has applications in the reconstruction of mirror maps in
Hodge-theoretic mirror symmetry, which we plan to explore in a subsequent work.

4.1.2.3 Application to the decomposition of quantum cohomology

Let V → X be a rank m vector bundle on a smooth complex projective variety X ,
P := P(V ) π−→ X the associated projective bundle, and h := c1(OP (1)). We have a
natural splitting

iso :
m−1⊕
i=0

H∗(X,Q)[−2i]
∑

hi∪π∗

−−−−−→ H∗(P,Q). (4.1.7)

Fix an ample class ωX ∈ H2(X,Z), and a homogeneous basis {Tj}0≤j≤N of
H∗(X,Q) extending {1, ωX}. We obtain the A-model maximal F-bundle (H,∇)
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for P over a formal base B with closed point b given by 0 ∈ H∗(X,Q) (see
Example 4.2.25). Let X ′ := ∐

0≤i≤m−1 X , and (H′,∇′) the A-model maximal
F-bundle over a formal base B′ with closed point b′ given by ∆(a) ∈ H∗(X ′,C).
We denote by (ai,j) the coordinates of ∆(a) in the basis of H∗(X ′,C) induced from
{Tj} using (4.1.7).

Our first result shows the existence and uniqueness of a gauge equivalence over the
base points.

Theorem 4.1.8 (Theorem 4.5.16). There exists an F-bundle isomorphism

Φ(u) : (H,∇)|b → (H′,∇′)|b′ ,

whose components Φij (as power series in u) are given by the cup-product with
elements in H∗(X,C) if and only if the coordinates of the base point ∆(a) satisfy

∑
j : deg Tj ̸=2

deg Tj − 2
2 ai,jTj = c1V +mλi, (4.1.9)

where λi was defined in Lemma 4.5.8.

Furthermore, in this case Φ is uniquely determined by theH0-components of Φij|u=0,
and ∆(a) is uniquely determined by (4.1.9), up to a shift in

⊕m
i=1 H

2(X,C).

Next, we extend the uniqueness result over the bases B and B′. The existence is
shown by Iritani-Koto [IK23].

Theorem 4.1.10 (Theorem 4.5.20). Let (f,Φ): (H,∇)/B → (H′,∇′)/B′ be an
isomorphism of F-bundles. Then

1. The bundle map Φ is uniquely and explicitly determined by its restriction to b ∈ B.

2. The base map f is uniquely and explicitly determined by its restriction to b ∈ B,
up to a multiplicative constant in the q direction.

In Theorems 4.5.22 and 4.5.24, we state the analogous results in the case of blowups
of smooth complex projective varieties.

4.1.3 Related works
Various related but slightly different concepts of F-bundles have been studied in the
literature. We refer to [Dub96; Man99] for Frobenius manifolds, [Sai83; Sab07]
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for Saito structures, [Her03; DH21] for (TE)-structures and variations, [Bar00]
for semi-infinite variations of Hodge structures, [HM99; Her02] for F-manifolds,
[KKP08; KKP17] for nc-Hodge structures, and [CV91; Sim97; Moc06] for other
related works. Logarithmic variants of Frobenius manifolds and (TE)-structures
were introduced in [Rei09; RS15].

Works related to our decomposition theorems for F-bundles include [Dub96] for the
decomposition of semisimple Frobenius manifolds, [Sab07] for the decomposition
of meromorphic connections, [Her02] for the decomposition of F-manifolds, and
[YZ24] for the comparison of the spectral decomposition and the vanishing cycle
decomposition of nc-Hodge structures. Analogs of our extension of framing theorem
were studied in [Iri06; Coa+20] for the q-direction, in [DH21] for the t-direction, and
in [Iri08] under different assumptions. We refer to [Iri23; IK23] for the decomposition
of quantum D-modules for projective bundles and blowups.
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4.2 Basic definitions and examples
In this section, we give the basic definitions regarding F-bundles and give the example
of the A-model F-bundle.

4.2.1 Notion of F-bundle
Let Du denote the germ at 0 in a k-analytic closed unit disk with coordinate u.

Definition 4.2.1 (F-bundle). Let B be a smooth k-analytic space (resp. a smooth
formal scheme over k). An F-bundle (H,∇) over B consists of a vector bundleH
over B ×Du (resp. over B × Spf k[[u]]), and a meromorphic flat connection∇ onH
with poles along u = 0, such that∇u2∂u

and∇uξ are regular for any tangent vector
field ξ on B.
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For applications to Gromov-Witten theory (see Section 4.2.2), the base B, the
vector bundle H and the connection ∇ should all be understood in the context of
supergeometry (see [Man97, §4]).

Given a map f : B′ → B, the pullback f ∗(H,∇) := ((f × idu)∗H, (f × idu)∗∇) is
an F-bundle on B′.

In the formal case, we introduce the notion of logarithmic F-bundle.

Definition 4.2.2 (Logarithmic F-bundle). Let B be a smooth formal scheme over k
together with a normal crossing divisorD ⊂ B. A logarithmic F-bundle over (B,D)
consists of a vector bundleH over B × Spf k[[u]] and a meromorphic flat connection
∇ on H with poles along u = 0, such that ∇u2∂u

and ∇uξ are regular for any log
tangent vector field ξ on B.

Below we formulate several definitions for logarithmic F-bundles, which also apply to
non-archimedean F-bundles, up to replacing logarithmic tangent vectors by analytic
tangent vectors.

Remark 4.2.3 (Restriction to u = 0). Let (H,∇)/(B,D) be a logarithmic F-bundle
and ξ a logarithmic vector field on B. The failure of OB-linearity of the operator
∇uξ is given by the symbol

σ(∇uξ) : T ∗B ⊗OB×Spf k[[u]] H −→ H

df ⊗ h 7−→ [∇uξ, f ]h.

We have σ(∇uξ)(df ⊗ h) = df(uξ)h, which vanishes at u = 0. We thus obtain a
map

µ : TB(− logD) −→ EndOB
(H|u=0)

ξ 7−→ ∇uξ|u=0.
(4.2.4)

In a similar way, the restriction of∇u2∂u
toH|u=0 is OB-linear.

Let b = Speck→ B be a closed point. The map (4.2.4) induces a map

µb : TbB(− logD) −→ End(Hb,0). (4.2.5)

Let Kb denote the action of ∇u2∂u
onHb,0. The flatness of∇ implies that the image

of µb consists of commuting operators, which also commute with Kb.
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Definition 4.2.6. A logarithmic F-bundle (H,∇)/(B,D) is called maximal (resp.
over-maximal) at a closed point b = Spec k→ B if there exists a cyclic vector for
the action µb, i.e. a vector h ∈ Hb,0 such that the map

TbB(− logD) −→ Hb,0, v 7−→ µb(v)(h)

is an isomorphism (resp. epimorphism). It is called maximal (resp. over-maximal) if
it is maximal (resp. over-maximal) everywhere.

In the maximal case, the dimension of TbB(− logD) is equal to the rank ofH, and
µb induces an inclusion from TbB(− logD) to End(Hb,0). We obtain a commutative
associative product structure on TbB, given by

µb(v1 ⋆ v2)(h) = µb(v2) ◦ µb(v1)(h). (4.2.7)

Definition 4.2.8. Let (H,∇)/(B,D) be a maximal logarithmic F-bundle. The
unique logarithmic vector field Eu on B with µ(Eu) = K := ∇u2∂u

|u=0 is called
the Euler vector field.

Definition 4.2.9. For a logarithmic F-bundle (H,∇) over (B,D), a framing is
another flat connection ∇fr onH without poles, such that in the local trivializations
of H given by ∇fr, if we denote by H the vector space of local flat sections, the
original connection ∇ has the form

∇∂u = ∂u + 1
u2 K + 1

u
G, ∇ξ = ξ + 1

u
A(ξ) (4.2.10)

for any logarithmic vector field ξ on B, where K,G are End(H)-valued functions
on B, and A is an End(H)-valued 1-form on B.

We give the definition of product of logarithmic F-bundles. The definition is
analogous in the non-archimedean case.

Definition 4.2.11 (Product of F-bundles). The product of two logarithmic F-bundles
(H1,∇1)/(B1, D1) and (H2,∇2)/(B2, D2) is the F-bundle (H,∇)/(B,D) defined
over B = B1 ×B2, with divisor D = (D1 ×B2) ∪ (B1 ×D2), by

H = pr∗
1H1 ⊕ pr∗

2H2,

∇ = pr∗
1∇1 ⊕ pr∗

2∇2,

where pri : B1×B2×Spf k[[u]]→ Bi×Spf k[[u]] denotes the projection for i = 1, 2.
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4.2.2 Example of A-model F-bundle
Let X be a smooth projective variety over C. The rational Gromov-Witten invariants
of X can be encoded in an F-bundle, called the A-model F-bundle associated to X ,
also known as the quantum D-module (see [Giv95]). Here we will give a logarithmic
version and a non-archimedean version of the A-model F-bundle.

4.2.2.1 Gromov-Witten potential and quantum product

Fix a homogeneous basis (Ti)0≤i≤N of H∗(X,Q), such that T0 = 1 is the unit,
and (T1, . . . , Tk) is a basis of H2(X,Q). Let (T i)0≤i≤N denote the dual basis with
respect to the cup product pairing.

Let Q[[NE(X,Z)]] denote the completion of Q[NE(X,Z)] = Q[qβ | β ∈ NE(X,Z)]
with respect to the maximal ideal (qβ, β ̸= 0). We write k[[NE(X,Z)]] :=
Q[[NE(X,Z)]]⊗Q k.

The genus 0 Gromov-Witten potential is

Φ =
∑
n≥0,β

qβ

n!
∑

i1,...,in

⟨Ti1 · · ·Tin⟩
β
0,n ti1 · · · tin ∈ Q[[NE(X,Z)]][[t0, . . . , tN ]],

(4.2.12)
where ⟨· · · ⟩β0,n denotes the Gromov-Witten invariants of X of genus 0, class β and
observables Ti1 , . . . , Tin .

The (big) quantum product is given by

⋆ : H∗(X,Q)⊗H∗(X,Q) −→ H∗(X,Q)⊗Q[[NE(X,Z)]][[t0, . . . , tN ]]

Ti ⋆ Tj 7−→
∑
r

∂3Φ
∂ti∂tj∂tr

T r,
(4.2.13)

where

∂3Φ
∂ti∂tj∂tr

=
∑
n≥0,β

qβ

n!
∑

i1,...,in

⟨TiTjTrTi1 · · ·Tin⟩
β
0,n+3 ti1 · · · tin . (4.2.14)

In Section 4.5, we will use a quantum product at a shifted origin, which we explain
in the following lemma.

Lemma 4.2.15. Let ∆(a) = ∑
0≤i≤N aiTi ∈ H∗(X, k). Assume ∆(a) has no terms

of degree 1 or 2. Then applying the shift t = (t0, . . . , tN) 7→ t+a = (t0+a0, . . . , tN+
aN) to Φ produces a well-defined element Φ(t+ a) ∈ k[[NE(X,Z)]][[t0, . . . , tN ]].
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Proof. Before the shift, for α = (α0, . . . , αN) ∈ NN+1, the coefficient of the
monomial qβtα0

0 · · · tαN
N in Φ is 1

α0!···αN !⟨T
α0
0 · · ·TαN

N ⟩
β
0,|α|. The coefficient of the

monomial tα0
0 · · · tαN

N of Φ(t+ a) is given by evaluating

1
α0! · · ·αN !

∂|α|Φ(t+ a)
∂α0t0 · · · ∂αN tN

at t = 0. By the chain rule, this is the same as evaluating the derivative of the
unshifted potential Φ at t = a. So, it is enough to check that this evaluation makes
sense, i.e. that it gives an element in k[[NE(X,Z)]]. The coefficient of qβ in the
derivative of Φ is

∑
γ∈NN+1

1
γ0! · · · γN !⟨T

α0+γ0
0 · · ·TαN +γN

N ⟩β0,|α|+|γ|t
γ0
0 · · · t

γN
N . (4.2.16)

We claim that the above sum is finite when evaluated at a. By the unit axiom of
Gromov-Witten invariants, the part of the sum with γ0 > 0 is finite: if T0 appears
in a nonzero n-pointed Gromov-Witten invariant, then n = 3 and β = 0. We now
prove that there are finitely many terms with γ0 = 0. If a nonzero Gromov-Witten
invariant ⟨Tα0

0 Tα1+γ1
1 · · ·TαN +γN

N ⟩β0,|α|+|γ| contributes to the sum, the formula for the
virtual dimension gives
∑

0≤i≤N
αi codimTi +

∑
1≤i≤N

γi codimTi = 2(dimX − 3 + |α|+ |γ|+ β · c1TX).

Since we assume that there is no shift in the H1 and H2-directions, the monomial
tγ0
0 · · · t

γN
N evaluated at t = a is 0, unless γi = 0 for codimTi ∈ {1, 2}. Then, when

evaluating the γ0 = 0 part of (4.2.16) at t = a, nonzero terms satisfy codimTi ≥ 3
for γi ̸= 0. We deduce

3|γ| ≤
∑

1≤i≤N
γi codimTi = 2|γ|+ constant.

It follows that the sum (4.2.16) is finite at t = a, completing the proof.

By Lemma 4.2.15, the quantum product is also well-defined on a formal neighborhood
of the shifted point ∆(a) ∈ H∗(X, k).

4.2.2.2 Logarithmic A-model F-bundle

Let U be the formal neighborhood of a cohomology class ∆(a) ∈ H∗(X, k) at
which the quantum potential is well-defined. Using the basis (Ti)0≤i≤N , we write
U = Spf k[[t0, . . . , tN ]].
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For ξ ∈ H2(X, k), we define a derivation ξq∂q of k[[NE(X,Z)]] by

ξq∂q(qβ) := (β · ξ)qβ.

Definition 4.2.17. The logarithmic A-model F-bundle of X at base point ∆(a) is the
logarithmic F-bundle (H,∇) over Spf k[[NE(X,Z)]]× U defined as follows:

1. The bundleH is trivial with fiber H∗(X, k).

2. Let

K :=
[
c1(TX) +

∑
i:deg Ti ̸=2

deg Ti − 2
2 tiTi

]
⋆,

G := 1
2(degX − dimX),

A(τ) := τ⋆ , τ ∈ H∗(X, k),

A(ξ) := ξ⋆ , ξ ∈ H2(X, k),

where degX(α) = iα for α ∈ H i(X, k), and ⋆ is the quantum product shifted at
∆(a). The connection ∇ is given by

∇∂u = ∂u −
1
u2 K + 1

u
G,

∇∂τ = ∂τ + 1
u

A(τ),

∇ξq∂q = ξq∂q + 1
u

A(ξ).

4.2.2.3 Non-archimedean A-model F-bundle

In the non-archimedean setting, k is a complete non-archimedean field of character-
istic 0 with a nontrivial valuation whose restriction to Q is trivial.

LetN1(X)/Tor denote the Néron-Severi group ofX modulo torsion. The valuation
of k induces a map

v : (N1(X)/Tor)⊗Z Gm/k → (N1(X)/Tor)⊗Z R. (4.2.18)

Since the ample cone Amp(X) is open inN1(X)R, its preimageBq := v−1(Amp(X))
is a k-analytic space. Let Beven

t be the product of a k-analytic affine line and an
open polyunit disk, where the affine line has coordinate t0 and the polyunit disk has
coordinates ti for deg Ti ∈ {2, 4, 6, . . . }. Let Bodd

t be the purely odd vector space
with coordinates ti for deg Ti ∈ {1, 3, 5, . . . }. Let B := Bq ×Beven

t ×Bodd
t .
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Lemma 4.2.19. The genus 0 Gromov-Witten potential

Φ =
∑
n≥0,β

qβ

n!
∑

i1,··· ,in
⟨Ti1 · · ·Tin⟩βti1 · · · tin ∈ Q[[NE(X,Z)]][[{ti}]],

defines an analytic function over B.

Proof. Let σ ⊂ N1(X)R be any simplicial cone generated by ample classes
ω1, · · · , ωm. Let B′

q be the preimage of σ under the valuation map (4.2.18), and
B′ = B′

q × Beven
t × Bodd

t . Then Φ is analytic over B′, since the restriction of Φ to
B′ is given by the power series with rational coefficients

Φ =
∑
n≥0,β

1
n!q

β·ω1
1 · · · qβ·ωm

m

∑
i1,··· ,in

⟨Ti1 · · ·Tin⟩βti1 · · · tin ∈ Q[[{qj}, {ti}]],

which is polynomial in t0 by the unit axiom. Since the union of all such σ covers the
ample cone, the proof is complete.

Lemma 4.2.19 implies that the quantum product is convergent over the non-
archimedean base space B.

Definition 4.2.20. The non-archimedean A-model F-bundle of X is the F-bundle
(H,∇) over B defined by the same formulas as in Definition 4.2.17.

4.2.2.4 Maximal logarithmic F-bundle

The F-bundles defined above are not maximal because the base has larger dimension
than the fibers. We can cut down the base dimension by choosing one q-variable and
eliminating one t-variable as follows.

Fix a nef class ω ∈ N1(X). It induces a projection

k[NE(X,Z)]→ k[q], qβ 7→ qβ·ω. (4.2.21)

Assumption 4.2.22. Assume that for any i1, . . . , in and d, there are finitely many β
such that β · ω = d and ⟨Ti1 · · ·Tin⟩

β
0,n ̸= 0.

Lemma 4.2.23. Assumption 4.2.22 holds if there exists ϵ ∈ Q such that ω + ϵc1(TX)
is ample. In particular, it holds if ω is ample, or if X is Fano.

Proof. Recall that the virtual dimension ofM0,n(X, β) is equal to dimX − 3 + β ·
c1(TX) + n. If ⟨Ti1 · · ·Tin⟩

β
0,n ̸= 0, we have dimvirM0,n(X, β) = ∑n

j=1 codimTij .
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So β ·c1(TX) is fixed given Ti1 , . . . , Tin . If β ·ω is also given, then β ·
(
ω+ ϵ c1(TX)

)
is fixed too. This is only possible for finitely many β, since ω + ϵc1(TX) is assumed
ample.

Lemma 4.2.24. Under Assumption 4.2.22, the Gromov-Witten potential Φ ∈
Q[[NE(X,Z)]][[t0, . . . , tN ]] as in (4.2.12) induces an element Φω ∈ Q[[q]][[t0, . . . , tN ]],
via the projection (4.2.21). Conversely, Φ is uniquely determined by Φω.

Proof. Assumption 4.2.22 guarantees that Φω is well-defined. Let us prove the other
direction. Fix i1, . . . , in and d. Knowing Φω, we can form the following series:

Ψ =
∑

r1,...,rk

1
r1! · · · rk!

∑
β·ω=d

⟨Ti1 · · ·TinT r1
1 · · ·T

rk
k ⟩

β
0,n+r1+···+rk

sr1
1 · · · s

rk
k ∈ Q[[s1, . . . , sk]],

where T1, . . . , Tk constitute a basis of H2(X,Q). By the divisor axiom, we have

Ψ =
∑

r1,...,rk

1
r1! · · · rk!

∑
β·ω=d

⟨Ti1 · · ·Tin⟩
β
0,n (β·T1)r1sr1

1 · · · (β·Tk)rksrk
k ∈ Q[[s1, . . . , sk]].

Comparing the coefficients, we conclude that every ⟨Ti1 · · ·Tin⟩
β
0,n is uniquely

determined by Ψ, and therefore by Φω.

Example 4.2.25 (Maximal A-model F-bundle). Assume ω = T1 satisfies Assump-
tion 4.2.22. Let ∆(a) ∈ H∗(X, k) be a cohomology class at which the quantum
potential is well-defined. Let U = Spf k[[t0, · · · , tN ]] be the formal neighbor-
hood of ∆(a) in H∗(X, k), U ′ ⊂ U the closed subspace given by t1 = 0, and
B′ = Spf k[[q]]× U ′. Then the potential Φω in Lemma 4.2.24 produces a maximal
logarithmic F-bundle over B′ by the same formulas as in Definition 4.2.17. Indeed,
the multiplicative unit 1 is a cyclic vector at 0 by the unit axiom.

4.3 Spectral decomposition of maximal F-bundles
In this section, we establish the spectral decomposition theorem for maximal F-
bundles in the formal and non-archimedean settings, see Theorems 4.3.32 and 4.3.42.
We first prove in §4.3.1 formal and non-archimedean analogs of the Frobenius theorem
in differential geometry using an argument that we call “generalized flatness”. We
study the decomposition of the base as F-manifolds in Section 4.3.2. The spectral
decomposition theorems are presented and proved in Section 4.3.3.

Recall that k is a field of characteristic 0. In the non-archimedean setting, we equip
k with a complete nontrivial valuation whose restriction to Q is trivial.
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4.3.1 Frobenius theorem
4.3.1.1 Generalized flatness for systems of PDEs

We prove a criterion ensuring the existence of a unique formal solution to some
systems of quasi-linear PDEs in Proposition 4.3.4. We also prove a non-archimedean
version in a special case in Lemma 4.3.6. Throughout, we set M0 := km. We denote
by m the maximal ideal (t1, . . . , tn) in k[[t1, . . . , tn]].

Notation 4.3.1. We use the following notations for tuples of integers:

1. Let ⪯ denote the partial order on Nn defined by

(ri)1≤i≤n ⪯ (si)1≤i≤n ⇐⇒ ∀1 ≤ i ≤ n, ri ≤ si.

2. For r = (ri) ∈ Nn, let |r| := ∑
1≤i≤n ri.

3. For r = (ri)1≤i≤n ∈ Nn and 1 ≤ j ≤ n, we set

τj(r) := (r1, . . . , rj−1, rj + 1, rj+1, . . . , rn) ∈ Nn.

Definition 4.3.2. Let D = (Di : M0 ⊗k m → M0 ⊗k k[[t1, . . . , tn]])1≤i≤n be a
system of differential operators of the form Di = ∂ti − fi, with fi : M0 ⊗k m →
M0 ⊗k k[[t1, . . . , tn]] an arbitrary map. We say that the system D is generalized flat
if the two following conditions are satisfied:

1. For every d ∈ N and every 1 ≤ i ≤ n, the composition

M0 ⊗k m
fi−→M0 ⊗k k[[t1, . . . , tn]] −→M0 ⊗k

(
k[[t1, . . . , tn]]/md

)
factors through M0 ⊗k

(
m/md

)
.

2. If φ ∈ M0 ⊗k m satisfies Di(φ) = 0 mod md for all 1 ≤ i ≤ n, then
∂ti(fj(φ)) = ∂tj (fi(φ)) mod md for all 1 ≤ i, j ≤ n.

Remark 4.3.3. Condition (1) means that for φ ∈M0⊗km, the total t-degree d terms
of fi(φ) depend on terms in φ of total t-degree at most d. This assumption allows to
solve the associated system of PDEs recursively. It is automatically satisfied if the
components of f(φ) are power series in the components of φ.

Our notion of generalized flat systems of PDEs allows us to prove the following
existence and uniqueness result.
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Proposition 4.3.4. Let (Di : M0⊗km→M0⊗kk[[t1, . . . , tn]])1≤i≤n be a generalized
flat system of differential operators. Then there exists a uniqueφ ∈M0⊗km satisfying
Di(φ) = 0 for all 1 ≤ i ≤ n.

Proof. In this proof, for φ ∈ M0 ⊗k m and ℓ ∈ Nn, we denote by [fi(φ)]ℓ the
coefficient of tℓ in fi(φ).

For the uniqueness, if φ = ∑
ℓ∈Nn φℓt

ℓ is a solution of the differential system, then φ
satisfies the recursive relations with respect to t-monomials

(ℓi + 1)φτi(ℓ) = [fi(φ)]ℓ. (4.3.5)

This uniquely determines the coefficients of φ from the initial condition φ0 = 0.

For the existence, we construct inductively on d ∈ N an element φ(d) ∈ M0 ⊗k m

such that

1. φ(d) has terms of degree at most d+ 1,

2. if d ≥ 1, then φ(d) = φ(d−1) mod md+1,

3. Di(φ(d)) = 0 mod md+1 for all 1 ≤ i ≤ n.

Set φ(0) := ∑n
i=1[fi(0)]0ti, it satisfies (1), (2), and (3) for d = 0.

For the inductive step, fix d ∈ N and assume φ(d) is constructed. Given ℓ ∈ Nn

with |ℓ| = d + 2, there exists a minimal index i0 and a unique ℓ′ ∈ Nn such that
ℓ = τi0(ℓ′). The index i0 corresponds to the first nonzero component of ℓ. We set
φℓ := 1

ℓi0
[fi0(φ(d))]ℓ′ , and define

φ(d+1) := φ(d) +
∑
ℓ∈Nn

|ℓ|=d+2

φℓt
ℓ.

By construction φ(d+1) satisfies (1) and (2), it remains to check (3). By the inductive
assumption (2) and Condition (1) of generalized flatness, we have [fi(φ(d+1))]ℓ =
[fi(φ(d))]ℓ for all ℓ ∈ Nn such that |ℓ| ≤ d+ 1. Thus we only need to check that the
added coefficients φℓ with |ℓ| = d+ 2 satisfy the recursive relations (4.3.5) for all
1 ≤ i ≤ n.

Fix ℓ ∈ Nn with |ℓ| = d+ 2, and an index i. Let i0 be as in the definition of φℓ, then
there exists a unique ℓ0 ∈ Nn with |ℓ0| = d such that ℓ = τiτi0(ℓ0) = τi0τi(ℓ0). By
the construction of φℓ, the recursive relation (4.3.5) in the ti-direction is equivalent to

ℓi[fi0(φ(d+1))]τi(ℓ0) = ℓi0 [fi(φ(d+1))]τi0 (ℓ0).
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Since |τi(ℓ0)| = |τi0(ℓ0)| = d+ 1, the induction hypothesis (2) and Condition (1) of
generalized flatness imply [fi0(φ(d+1))]τi(ℓ0) = [fi0(φ(d))]τi(ℓ0), and similarly for the
right hand side. Then the recursion relation for ℓ is equivalent to

[∂ti0
fi(φ(d))]ℓ0 = [∂tifi0(φ(d))]ℓ0 ,

which follows from Condition (2) of generalized flatness. We conclude that φ(d+1)

satisfies (3), proving the inductive step.

Condition (2) of the construction implies that {φ(d) mod md}d≥0 is an inductive
system producing a well-defined element φ̃ ∈M0⊗kk[[t1, . . . , tn]] such that φ̃ = φ(d)

mod md+2 for all d ≥ 0. Condition (3) of the construction implies that φ̃ satisfies
the recursive relations (4.3.5) for all ℓ ∈ Nn, hence it is a solution of Di(φ) = 0.
Thus φ̃ satisfies Di(φ̃) = 0 for 1 ≤ i ≤ n, completing the proof.

We denote by Tn the Tate k-algebra in n variables. For ρ ∈
√
|k×|, we denote

by Tn(ρ) the k-affinoid algebra associated to the closed polydisk of radius ρ and
dimension n ([BGR84, §6.1.5]), consider the norm∣∣∣∣∣ ∑

α∈Nn

aαt
α

∣∣∣∣∣
ρ

:= max
α
|aα|ρ|α|.

Lemma 4.3.6. For 1 ≤ i ≤ n and 1 ≤ k ≤ m, let Y k
i ∈ Tm = k⟨x1, . . . , xm⟩. Let

|Y | := max1≤i,k≤n |Y k
i |, assume |Y | > 0. Let f = (fk)1≤k≤m ∈M0⊗k m satisfying

(1 ≤ i ≤ n, 1 ≤ k ≤ m)

∂tifk = Y k
i (f1, . . . , fm).

Then the components of f are convergent on the open polydisk of radius |Y |−1 and
have norms bounded by 1. Equivalently, f induces a map SpTn(ρ)→ SpTn for all
ρ ∈

√
|k×| with 0 < ρ < |Y |−1.

Proof. Write fi = ∑
α∈Nn fi,αt

α and Y k
i = ∑

r∈Nm y(i,k)
r xr. We have |Y | =

sup |y(i,k)
r |. By assumption we have fi,0 = 0, which ensures that the composi-

tion Y k
i (f1, . . . , fm) is well-defined.

For d ∈ N, we set vd := max1≤i≤m,|α|=d |fi,α|. We will prove vd ≤ |Y |d by induction
on d. We have v0 = 0 ≤ 1 = |Y |0. Next, fix d > 0 and assume we have proved
ve ≤ |Y |e for all e < d. Let α ∈ Nn with |α| = d − 1. Then for 1 ≤ k ≤ n, as in
(4.3.5), we have the recursion

fi,τk(α) = 1
αk + 1[Y k

i (f1, . . . , fm)]α,
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where the right hand side is the coefficient of tα in Y k
i (f1, . . . , fm). We now express

this coefficient. For r ∈ Nm, let P(r, α) denote the set of partitions of α into
|r|-tuples. We write an element of P(r, α) as {α(1)

1 , . . . , α(1)
r1 , α

(2)
1 , . . . , α(m)

rm
}, where

α(q)
p ∈ Nn for each p, q. The coefficient can then be expressed as the finite sum

[Y k
i (f1, . . . , fm)]α =

∑
r∈Nm

y(i,k)
r

∑
{α(q)

p }∈P(r,α)

∏
1≤q≤m

∏
1≤p≤rq

f
q,α

(q)
p
.

We deduce

|fi,τk(α)| ≤ |Y | max
{α(q)

p }∈P(r,α)

∏
1≤q≤m

∏
1≤p≤rq

|f
q,α

(q)
p
|

≤ |Y | max
{α(q)

p }∈P(r,α)

∏
1≤q≤m

∏
1≤p≤rq

|Y ||α
(q)
p |

≤ |Y | × |Y ||α| = |Y |d.

Let 0 < ρ < |Y |−1 in
√
|k×|, we then have |fi,α|ρ|α| ≤ (ρ|Y |)|α| ≤ 1. This implies

that fi ∈ Tn(ρ), since ρ|Y | < 1, and that |fi|ρ ≤ 1, and the lemma follows.

4.3.1.2 Frobenius theorem

We prove the formal and non-archimedean analogs of the Frobenius theorem in
differential geometry, which states that a local basis of commuting vector fields
comes from coordinates.

Theorem 4.3.7. Let B = Spf k[[t1, . . . , tn]] and let (Yi)1≤i≤n be a commuting basis
of vector fields on B. Then there exists a unique automorphism φ : B → B such that
dφ(∂ti) = φ∗Yi for all 1 ≤ i ≤ n.

Proof. Let b be the closed point of B, given by t1 = · · · = tn = 0. Let m =
(t1, . . . , tn) denote the maximal ideal of k[[t1, . . . , tn]]. We write Yi = ∑

k Y
k
i ∂tk ,

with Y k
i ∈ k[[t1, . . . , tn]]. Working in coordinates, giving φ : B → B is equivalent to

giving φ1, . . . , φn ∈ k[[t1, . . . , tn]] such that φi(0) = 0. Furthemore, φ is invertible if
and only if the differential at b is invertible, i.e. if and only if the matrix

(
∂φi

∂tj

)
1≤i,j≤n

is invertible at t = 0. The condition dφ(∂ti) = φ∗Yi is equivalent to

∑
1≤k≤n

∂φi
∂tk

(t)∂tk =
∑

1≤k≤n
Y k
i (φ1(t), . . . , φn(t))∂tk . (4.3.8)

Since φi(0) = 0, the composition on the right hand side is well-defined.
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For 1 ≤ i ≤ n, consider the first-order quasi-linear differential operator

Di : kn ⊗k m −→ kn ⊗k k[[t1, . . . , tn]]

(φ1, . . . , φn) 7−→
(
∂φk
∂ti
− Y k

i (φ1, . . . , φn)
)

1≤k≤n
.

Equation (4.3.8) is equivalent to Di(φ1, . . . , φn) = 0 for 1 ≤ i ≤ n. We will prove
that the system {Di = 0} is generalized flat, and apply Proposition 4.3.4. Condition
(1) of Definition 4.3.2 is satisfied because the components of Yi are power series
in the argument. We now check Condition (2). Assume (φ1, . . . , φn) ∈ kn ⊗k m

satisfies Di(φ1, . . . , φn) = 0 mod md for all 1 ≤ i ≤ n. Then, since [Yi, Yj] = 0,
we have (1 ≤ i, k ≤ n)

∂(Y k
j (φ1, . . . , φn))

∂ti
=
∑
s

∂φs
∂ti

∂Y k
j

∂ts
(φ1, . . . , φn) mod md

=
∑
s

Y s
i (φ1, . . . , φn)

∂Y k
j

∂ts
(φ1, . . . , φn) mod md

=
∑
s

Y s
j (φ1, . . . , φn)∂Y

k
i

∂ts
(φ1, . . . , φn) mod md

= ∂(Y k
i (φ1, . . . , φn))

∂tj
mod md.

We deduce from Proposition 4.3.4 that the components (φ1, . . . , φn) ofφ are uniquely
determined and that they can be constructed inductively. The associated morphism
φ : B → B is automatically an automorphism, because its differential at b is given
by the matrix (Y i

j (0))1≤i,j≤n, which is invertible by assumption.

Lemma 4.3.9. Let X be a k-analytic space, and x ∈ X a smooth k-rational point.
There exists an admissible open neighborhood U ⊂ X of x and an open immersion
U ↪→ SpTn, where n = dimxX .

Proof. Since x is a smooth rigid point, there exists an admissible affinoid neighbor-
hoodU ⊂ X ofx and an étale mapU → Y := SpTn, withn = dimxX . Up to shrink-
ingU , we may assume that f−1(f(x)) = {x}. We will show that f ∗

x : OY,f(x) → OX,x
is an isomorphism, then f restricts to an open immersion on an affinoid open neigh-
borhood of x by [BGR84, 7.3.3/Corollary 6]. By [BGR84, 7.3.3/Proposition 5], it is
enough to check that the induced morphism f̂ ∗

x : ÔY,f(x) → ÔX,x on the completed
local rings is an isomorphism.

Since f is étale, we have f ∗
x(mf(x)) = mx, in particular ÔX,x is a complete ÔY,f(x)-

module. Since x is a k-rational, the map f̂ ∗
x is an isomorphism modulo mf(x), and



83

hence f̂ ∗
x is surjective by [Stacks, Tag 0315]. The Krull dimension of noetherian

local rings is invariant under completion. Since dimxX = dimf(x) Y , necessarily
f̂ ∗
x is injective using [Stacks, Tag 00KW]. This concludes the proof.

Theorem 4.3.10. Let B be a smooth k-analytic space, and (Y1, . . . , Yn) be a
commuting basis of local vector fields around a rational point b ∈ B. Then, there
exists admissible open neighborhoods V ⊂ B of b and U ⊂ SpTn of 0 and an
isomorphism φ : U → V such that φ(b) = 0 and dφ(∂ti |U) = φ∗(Yi|V ).

Proof. By Lemma 4.3.9, we may assume that B ≃ SpTn. We start by applying
Theorem 4.3.7 to the restriction of the vector fields (Yi)1≤i≤n to a formal neighborhood
B̂ = Spf k[[t1, . . . , tn]] of 0 ∈ SpTn. This produces a unique formal automorphism
φ̂ = (φ1, . . . , φn) : B̂ → B̂ satisfying the relations (4.3.8). We will prove that φ̂
extends to admissible open neighborhoods of 0.

Let |Y | := maxi |Yi|, and let ρ ∈
√
|k×| such that ρ < min(1, |Y |−1). By

Lemma 4.3.6, φ̂ extends to a map φ : SpTn(ρ) → SpTn. The truncations of
φ coincide with the truncations of φ̂. In particular, they induce isomorphisms
Tn/m

d ∼−→ Tn(ρ)/md for all d ≥ 0. We conclude the proof using [Bos14, §3.3
Lemma 18(ii)].

4.3.2 Decomposition theorems for F-manifolds
In this subsection, we prove the decomposition theorems for formal and non-
archimedean versions of F-manifolds; see Theorems 4.3.13 and 4.3.20.

4.3.2.1 Decomposition theorem for formal F-manifolds

The notion of F-manifold was introduced by Hertling and Manin as a weaker version
of Frobenius manifolds; see [HM99] and the monograph [Man99, I.§5].

Definition 4.3.11 (F-manifold). Let B be a smooth formal scheme or a smooth
k-analytic space. An F-manifold structure on B is a OB-bilinear commutative
associative product ⋆ on the tangent bundle TB, satisfying the F-identity: for any
(local) vector fields X, Y, Z,W we have

PX⋆Y (Z,W ) = X ⋆ PY (Z,W ) + (−1)|X||Y |Y ⋆ PX(Z,W ), (4.3.12)

where

PX(Z,W ) := [X,Z ⋆ W ]− [X,Z] ⋆ W − (−1)|X||Z|Z ⋆ [X,W ].
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We prove the following decomposition result for formal F-manifolds.

Theorem 4.3.13. Let B be a formal neighborhood of a rational point b in a smooth
k-variety. Let ⋆ denote an F-manifold structure with unit on B. Assume that there
exists a splitting as k-algebras

TbB =
⊕
i∈I

Ai. (4.3.14)

Then there exists formal F-manifolds (Bi, ⋆i) such that

1. (B, ⋆) is isomorphic to
∏
i∈I(Bi, ⋆i) as F-manifolds with unit,

2. and the induced decomposition of (TB, ⋆) restricts to (4.3.14) at b.

The idea of the proof is the following. We obtain a decomposition of TB into sheaves
of subalgebras in Lemma 4.3.15, induced from that of TbB. Proposition 4.3.19 will
show that the direct summands of TB define commuting foliations (in the sense of
[AD13, Definition 2.1]). We can then integrate them using the Frobenius theorem
(Theorem 4.3.7).

Lemma 4.3.15. Let A be a unital associative commutative k-algebra and I a finite
set. Assume A admits a splitting A ≃ ⊕

i∈I Ai as k-algebras. Then the splitting
extends over any deformation of A over k[[t1, . . . , tn]].

Proof. Let R̃ := k[[t1, . . . , tn]] and let Ã be an R̃-algebra which is a deformation of
A. Let m = (t1, . . . , tn), and for k ∈ N, Ak := Ã/mk+1Ã and Bk := (R̃/mk+1)⊕I .

We will prove by induction on ℓ ≥ 0 that for any 0 ≤ k ≤ ℓ, there are R̃-algebra
maps Bk → Ak that fit into a commutative diagram

Aℓ Aℓ−1 · · · A1 A0

Bℓ Bℓ−1 · · · B1 B0.

(4.3.16)

For ℓ = 0, the R̃-algebra structures on A0 ≃ A and B0 ≃ k⊕I are induced by the
compositions of the quotient map R̃ → k with the structural maps k → A and
k→ k⊕I . In particular, the map B0 → A0 provided by the splitting A ≃ ⊕i∈I Ai is
a map of R̃-algebras.
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Now assume that the maps Bk → Ak are constructed for k ≤ ℓ. Let us prove that the
dashed arrow exists in the commutative diagram of R̃-algebras

Aℓ+1 Aℓ

Bℓ+1 Bℓ.

In other words, we are looking for a lift of the composite map Bℓ+1 → Aℓ to
Aℓ+1. Since ker(Aℓ+1 → Aℓ) = mℓ+1Aℓ+1, the algebra Aℓ+1 is a square-zero
extension of Aℓ. Then, the obstruction to the existence of this lift is a class in
Ext1

R̃
(L

Bℓ+1/R̃
⊗Bℓ+1 Aℓ,m

ℓ+1Aℓ+1). Since

L
Bℓ+1/R̃

≃ L
Bℓ+1/(R̃/mℓ+1) = 0,

the obstruction vanishes, and the lift always exists, concluding the induction.

By functoriality of limits in the category of R̃-algebras, we obtain a map of R̃-algebras

R̃⊕I ≃ lim
k
Bk −→ lim

k
Ak ≃ Ã,

concluding the proof.

We now state two lemmas needed to prove Proposition 4.3.19.

Lemma 4.3.17. Let R be a local domain. Let f : M → N be a surjective morphism
of finite free R-modules, and D ⊂M a free submodule. Assume (1) D ∩ ker f = 0,
(2) rkD = rkN and (3) M/D is torsion-free. Then f restricts to an isomorphism
D

∼−→ N .

Proof. Let S := Frac(R)/R. We have N/f(D) ≃M/(ker f +D). We prove that
this module is torsion-free. Since ker f ∩D = 0, we have a short exact sequence:

0 −→ ker f −→M/D −→M/(ker f +D) −→ 0.

Applying ⊗RS gives the exact sequence

0 = TorR1 (M/D,S) −→ TorR1 (M/(ker f+D), S) −→ ker f⊗RS
φ−→M/D⊗RS,

and we see thatM/(ker f+D) is torsion-free if and only ifφ is injective. SinceM/D

is torsion-free, the moduleD⊗S R is identified with a submodule ofM ⊗R S and we
have M/D⊗R S ≃ (M ⊗R S)/(D⊗R S). Since M/ ker f ≃ N is torsion-free, the
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module ker f ⊗R S is identified with a submodule of M ⊗R S, and φ corresponds to
the composition

ker f ⊗R S −→M ⊗R S −→ (M ⊗R S)/(D ⊗R S),

where the first map is the canonical inclusion and the second map is the canonical
projection. Then, since ker f +D is torsion-free, we have

ker(φ) ≃ (ker f ⊗R S) ∩ (D ⊗R S) ≃ (ker f ∩D)⊗R S = 0.

We deduce that N/f(D) is torsion-free. But since rkN = rk f(D), the quotient
N/f(D) is a torsion module. We conclude that N/f(D) = 0, and the lemma
follows.

Lemma 4.3.18. Let B = Spf k[[t1, . . . , tn]]. Let D be a free OB-subsheaf of TB
stable under the Lie bracket and such that TB/D is torsion-free. Then D admits an
OB-basis of commuting vector fields.

Proof. We denote by ∂i the vector field associated to ti. The coordinates (ti)1≤i≤n

provide a trivialization TB = ⊕
1≤i≤nOB∂i.

Let m denote the rank of D, then up to reordering the coordinates we may assume
D ∩⊕m+1≤i≤nOB∂i = 0. If m = n there is nothing to show. Assume m < n,
then there exists i1 such that OB∂i1 ∩ D = 0. Then D(1) := D ⊕ OB∂i1 is a free
OB-module of rank m + 1. We can thus apply the same argument inductively
until we obtain a free OB-module of rank n, and obtain in this way vector fields
(∂i1 , . . . , ∂in−m+1) such that D ∩⊕m+1≤j≤nOB∂ij = 0.

Let B′ = Spf k[[t1, · · · , tm]] and π : B → B′ denote the canonical projection. Let
ψ : D → π∗TB′ denote the restriction of dπ : TB → π∗TB′. The kernel of dπ is⊕

m+1≤i≤nOB∂i, so ψ is injective. By Lemma 4.3.17, ψ is an isomorphism. Let
∂′
i denote the vector field of B′ associated to ti. We define Xi := ψ−1(π∗∂′

i). By
construction (Xi)1≤i≤m is an OB-basis of D.

We now check that [Xi, Xj] = 0. The OB-linearity of dπ and π∗ implies

dπ[Xi, Xj] = π∗[∂′
i, ∂

′
j] = 0.

Since [Xi, Xj] is a section ofD and dπ restricted toD is an isomorphism, we deduce
that Xi and Xj commute.
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Proposition 4.3.19. Let B = Spf k[[t1, . . . , tn]] and ⋆ an F-manifold structure with
unit on B. Assume that we have a decomposition into sheaves of subalgebras
(TB, ⋆) = ⊕

i∈I(Di, ⋆|Di
). Then:

1. For all i we have [Di,Di] ⊂ Di.

2. For i ̸= j we have [Di,Dj] = 0.

3. There exists an automorphism φ : B → B and a partition {1, · · · , n} =∐
i∈I Ji such that, for each i ∈ I , the pullback φ∗Di is generated by
{dφ(∂tj )}j∈Ji

.

Proof. For i ∈ I , let pi : TB → Di denote the projection, corresponding to the
multiplication by the identity section ei of Di. We have p2

i = pi, pi ◦ pj = δij and⊕
i∈I pi = id, thus ker pi = ⊕

j ̸=iDj .

Let i ∈ I , we prove that Di is stable under Lie bracket. Let X, Y be sections of Di.
Since ei ⋆ X = X , the F-identity gives

PX(ei, Y ) = ei ⋆ PX(ei, Y ) +X ⋆ Pei
(ei, Y ).

The left-hand side equals

PX(ei, Y ) = [X, Y ]− [X, ei] ⋆ Y − ei ⋆ [X, Y ],

and the terms on the right-hand side are

ei ⋆ PX(ei, Y ) = ei ⋆ ([X, Y ]− [X, ei] ⋆ Y − ei ⋆ [X, Y ])

= −ei ⋆ [X, ei] ⋆ Y

= −Y ⋆ [X, ei],

and

X ⋆ Pei
(ei, Y ) = X ⋆ ([ei, Y ]− ei ⋆ [ei, Y ])

= X ⋆ [ei, Y ]−X ⋆ ei ⋆ [ei, Y ]

= 0,

where we used ei ⋆ X = X , ei ⋆ Y = Y , ei ⋆ ei = ei and the commutativity of the
product. Thus, the F-identity above reduces to [X, Y ] = ei ⋆ [X, Y ]. Equivalently,
[X, Y ] is a section of Di, proving (1).
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Fix i, j ∈ I with i ̸= j. Let X and Y be sections of Di and Dj respectively, in
particular ei ⋆ X = X and ej ⋆ Y = Y . We need to show [X, Y ] = 0. We have

[X, Y ] = [ei ⋆ X, ej ⋆ Y ]

= Pei⋆X(ej, Y ) + [ei ⋆ X, Y ] ⋆ Y + [ei ⋆ X, Y ] ⋆ ej
= Pei⋆X(ej, Y ) +

(
Pej

(ej, X) + [ej, ei] ⋆ X + [ej, X] ⋆ ei
)
⋆ Y

+ (PY (ei, X) + [Y, ei] ⋆ X + [Y,X] ⋆ ei) ⋆ ej
= ei ⋆ PX(ej, Y ) +X ⋆ Pei

(ej, Y ) + Y ⋆ Pej
(ei, X) + ej ⋆ PY (ei, X)

= (ei − ej) ⋆ [X, Y ] +X ⋆ [ei, Y ] + Y ⋆ [ej, X].

Multiplication by ei shows that X ⋆ [ei, Y ] = 0. By symmetry, we also have
Y ⋆ [ej, X] = 0, so the equation reduces to

[X, Y ] = (ei − ej) ⋆ [X, Y ].

Multiplication by ek for k different from i and j gives ek ⋆ [X, Y ] = 0, so [X, Y ] is a
section of Di ⊕Dj . We then have

(ei + ej) ⋆ [X, Y ] = [X, Y ] = (ei − ej) ⋆ [X, Y ].

We deduce ej ⋆ [X, Y ] = 0, and by symmetry ei ⋆ [X, Y ] = −ei ⋆ [Y,X] = 0. Thus
[X, Y ] = 0, and (2) is proved.

By (1) and (2), the decomposition TB = ⊕
i∈I Di is a decomposition into commuting

subsheaves of Lie algebras. For each i ∈ I , we have TB/Di ≃
⊕

j ̸=iDj , which is
torsion-free. By Lemma 4.3.18, Di admits an OB-basis of commuting vector fields.
By (2), these bases assemble into a basis of commuting vector fields for sections of
TB. Then (3) follows by applying Theorem 4.3.7 to the union of these bases.

Proof of Theorem 4.3.13. By [Stacks, Tag 0C0S(2)], we may assume that the base
B has the form Spf k[[t1, . . . , tn]]. The sheaf of algebras (TB, ⋆) corresponds to a
formal deformation of (TbB, ⋆|b) over k[[t1, . . . , tn]]. By Lemma 4.3.15, we obtain
a decomposition into sheaves of subalgebras (TB, ⋆) = ⊕

i∈I(Di, ⋆|Di
) extending

the decomposition of the fiber at b. Let φ : B → B be the change of coordinates
provided by Proposition 4.3.19(3) and let {1, . . . , n} = ∐

i∈I Ji be the associated
partition. Let Ei := ⊕

j∈Ji
OB∂tj ⊂ TB, its image under dφ generates φ∗Di.

Since φ is an automorphism of the formal neighborhood of a point, the differential
dφ : TB → φ∗TB is an isomorphism. Then, we can produce another F-manifold
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structure on B, which we denote by φ∗(⋆), such that φ : (B,φ∗(⋆))→ (B, ⋆) is an
isomorphism of F-manifolds. Let Bi := Spf k[[tj, j ∈ Ji]], let ιi : Bi → B be the
canonical closed immersion. By construction the subsheaves Ei are stable under
φ∗(⋆). Thus the restriction φ∗(⋆)|Ei

is well-defined, and induces an F-manifold
structure ⋆i on Bi, such that ιi : (Bi, ⋆i) → (B,φ∗(⋆)) is a closed immersion of
F-manifolds. Since (B,φ∗(⋆)) ≃ ∏

i∈I(Bi, ⋆i), we obtain (1), and (2) holds by
construction.

4.3.2.2 Decomposition theorem for non-archimedean F-manifolds

Theorem 4.3.20. Let B be a smooth k-analytic space endowed with an F-manifold
structure ⋆ with unit, and b ∈ B a k-rational point. Assume there exists a splitting
as k-algebras

TbB =
⊕
i∈I

Ai. (4.3.21)

Then there exist an admissible open neighborhood U of b and non-archimedean
F-manifolds with unit (Ui, ⋆i) such that

1. (U, ⋆|U) is isomorphic to
∏
i∈I(Ui, ⋆i) as F-manifolds with unit,

2. and the induced decomposition of (TU, ⋆|U) restricts to (4.3.21) at b.

Lemma 4.3.22. Let (B, ⋆) and b be as in Theorem 4.3.20. Assume there exists a
splitting as k-algebras

TbB =
⊕
i∈I

Ai.

Then there exists an admissible open neighborhood U of b, and a decomposition into
sheaves of subalgebras (TU, ⋆|U) = ⊕

i∈I(Di, ⋆|Di
) extending the decomposition of

TbB.

Proof. In this proof, we view the rigid k-analytic spaces as Berkovich spaces. Then
the base B is Hausdorff. Let X := Specan TB be the relative analytic spectrum.
Since TB is a finite free OB-module, the structural map f : Specan TB → B is
proper as Berkovich spaces, in particular proper as topological spaces.

The splitting of TbB produces a surjection Xb = Specan TbB →
∐
i∈I Sp k. This

implies that Xb = ∐
i∈I Xb,i, where Xb,i is the preimage of the i-th copy of Sp k.

Let U ⊂ B be the open neighborhood of b given by Lemma 4.3.23, with f−1(U) =∐
i∈IWi. We obtain a map X ×B U →

∐
i∈I U extending Xb →

∐
i∈I Sp k by
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mapping Wi to the i-th copy of U under f . This is equivalent to a map of sheaves of
OU -algebras O⊕I

U → TU , producing the desired splitting.

Lemma 4.3.23. Let f : X → B be a proper map between Haussdorff topological
spaces. Let b ∈ B, assume that f−1(b) = ∐

i∈I Xb,i for a finite set I . Then, there
exists an open neighborhood U ⊂ B of b such that f−1(U) is a disjoint union∐
i∈IWi, and Wi ∩ f−1(b) = Xb,i.

Proof. Since f is proper, the fiber f−1(b) is compact. Hence, each Xb,i is compact.
Since X is Hausdorff, there exists open subsets Vi ⊂ X containing Xb,i with

Vi ∩ Vj = ∅ for i ̸= j. Since f is proper, it is closed, so U := f
((⋃

i Vi
)∁)∁

is
open in B. Let Wi := Vi ∩ f−1(U). Since f−1(U) ∩ (⋃i∈I Vi)∁ = ∅, we have
f−1(U) = ∐

i∈IWi. By construction of Vi, we haveWi ∩ f−1(b) = Xb,i, completing
the proof.

Proof of Theorem 4.3.20. By Lemma 4.3.22, there exists an admissible open neigh-
borhood U1 of b and a decomposition into sheaves of subalgebras

(TU1, ⋆|U1) =
⊕
i∈I

(Di, ⋆|Di
),

extending the decomposition of TbB. As in the proof of Proposition 4.3.19, the
F-identity implies that {Di}i∈I define commuting integrable distributions on TU1.

Up to shrinking U1, we can choose a local basis of commuting vector fields (Yj)j∈Ji

of Di at b, and assemble them into a local commuting basis of TU1 at b. By
Theorem 4.3.10, there exists admissible opens U2 ⊂ U1 and V ⊂ SpTn and
an isomorphism φ : V → U2 such that dφ(∂tj ) = φ∗(Yj), where {tj} are the
analytic coordinates on V centered at 0. We conclude as in the formal case (see
Theorem 4.3.13).

4.3.3 Decomposition theorems for maximal F-bundles
In this subsection, we establish the spectral decomposition theorem for maximal
F-bundles (see Theorems 4.3.32 and 4.3.42).

We consider a maximal F-bundle (H,∇) over a formal (resp. admissible open)
neighborhood of a rational point b in a smooth k-variety (resp. k-analytic space). Let
Kb := ∇u2∂u

|b,0. Consider a decomposition of the fiberHb,0 ≃
⊕

i∈I Hi stable under
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Kb, such that the induced endomorphisms Kb|Hi
and Kb|Hj

have disjoint spectra for
each i ̸= j. Our spectral theorem asserts that this produces a decomposition of (H,∇)
into a product of maximal F-bundles (Hi,∇i)/Bi extending the decomposition of
Hb,0. We refer to Section 4.1 for an outline of the proof.

4.3.3.1 The formal case

Lemma 4.3.24. Let B be a formal neighborhood of a rational point b in a smooth
k-variety. Let (H,∇)/B be an F-bundle maximal at b, and let h : B → H|u=0 be
a section of cyclic vectors (see Definition 4.2.6). The data {(H,∇), h} induce a
formal F-manifold structure on B with identity.

Proof. Evaluation on the section of cyclic vectors h provides an isomorphism
η := µ(·)(h) : TB → H|u=0, and a commutative and associative product on TB as
in (4.2.7). Furthermore e := η−1(h) is an identity for this product since for a vector
field X we have

η(X ⋆ e) = µ(X) ◦ η(η−1(h)) = µ(X)(h) = η(X).

We refer to [DH20, Lemma 10] for the proof of the F-identity, which is given there
for (TE)-structures.

Lemma 4.3.25. Let H be a k-vector space of finite dimension, and U ∈ Endk(H).
Assume we have a decompositionH = ⊕

i∈I Hi stable underU , such that the induced
endomorphisms U |Hi

and U |Hj
have disjoint spectra for i ̸= j. Then

1. ker[·, U ] ⊂ ⊕i∈I Endk(Hi), and

2. [·, U ] restricts to an isomorphism of
⊕

i ̸=j Homk(Hj, Hi) onto itself.

Proof. Let ka denote an algebraic closure of k. The disjoint spectra assumption
implies that Hi ⊗k ka is a direct sum of generalized eigenspaces for U . In particular,
any endomorphism that commutes with U preserves this decomposition, proving (1).
It follows that the restriction [·, U ] : ⊕i ̸=j Homk(Hj, Hi)→

⊕
i ̸=j Homk(Hj, Hi) is

injective, hence an isomorphism by comparing dimensions, proving (2).

Proposition 4.3.26. Let (H,∇) be an F-bundle over a formal neighborhood B =
Spf k[[t1, . . . , tn]] of b = 0 in an affine space. LetK = ∇u2∂u

|u=0 andHb,0 = ⊕
i∈I Hi

a decomposition stable under Kb such that the induced endomorphisms on Hi have
disjoint spectra.
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Let H|u=0 = ⊕
i∈I Hi,0 be a decomposition extending the decomposition of Hb,0,

and stable under K. Then it extends to a decomposition H = ⊕
i∈I Hi such that

u2∇∂u(Hi) ⊂ Hi.

Proof. Write t = (t1, . . . , tn) and H = Hb,0. Choose a trivialization Φ: H ≃
H × Spf k[[t, u]] such that Hi,0 ≃ Hi × Spf k[[t]]. Write the connection in the u
direction as

∇∂u = ∂

∂u
+ U(t)

u2 ,

where U(t, u) = ∑
k≥0 Uk(t)uk for Uk(t) ∈ End(H)[[t]]. By assumption, U0(t) ∈⊕

i∈I End(Hi)[[t]].

We will construct an automorphism P (t, u) ∈ Aut(H × Spf k[[t, u]]) with P (t, 0) =
id, such that P (t, 0) = id and P−1UP +P−1 ∂P

∂u
∈⊕i∈I End(Hi)[[t, u]]. Given such

a P (t, u), definingHi to be the constant extension of Hi in the trivialization P−1 ◦Φ
provides the desired splitting ofH.

Form ≥ 1, Tm(t) ∈ End(H)[[t]] and P (t, u) = id+umTm(t) ∈ GL(H)[[t, u]], write
(P ∗∇)∂u = ∂

∂u
+ u−2Ũ(t, u). We have

Ũ(t, u)−U(t, u) =
∑
k≥0

(−1)k+1um(k+1)Tm(t)k[Tm(t), U ]+
∑
k≥0

(−1)kmum(k+1)+1Tm(t)k+1.

(4.3.27)
Note that the right-hand side of (4.3.27) has degree at least degree m in u, and the
coefficient of um is −[Tm(t), U0(t)].

Let < denote the degree lexicographic order on Nn. For v = (v1, · · · , vn), we
write tv = tv1

1 · · · tvn
n . Now for Tm(t) = tvTm,v with Tm,v ∈ End(H), we have

−[Tm(t), U0(t)] = −[Tm,v, U0(0)]tv + T ′tv
′ where T ′ ∈ End(H)[[t]] and v < v′.

Write Uk(t) = ∑
w∈Nn Uk,wt

w. By Lemma 4.3.25, we can choose Tm,v such that
Um,v − [Tm,v, U0(0)] ∈ ⊕

i∈I End(Hi). By induction on v ∈ Nn using the lexi-
cographic order on Nn, we can assume Um(t) ∈ ⊕i∈I End(Hi)[[t]]. By induction
on m ≥ 1, we can further make Ũ(t, u) ∈ ⊕

i∈I End(Hi)[[t, u]], completing the
proof.

Lemma 4.3.28. Write t = (t1, . . . , tn). Let H̃ be a finite free k[[t]]-module, and
U(t) ∈ End(H̃). Let H̃ = ⊕

i∈I H̃i be a decomposition of H̃ stable under U(t).
Assume that for i ̸= j, the induced endomorphisms U(t)|

H̃i
and U(t)|

H̃j
have

disjoint spectra. Let X(t) ∈ End(H̃) such that [X(t), U(t)] ∈ ⊕i∈I End(H̃i), then
X(t) ∈⊕i∈I End(H̃i).
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Proof. Let R := k[[t1, . . . , tn]] andK := Frac(R) its fraction field. Working overK,
Lemma 4.3.25 implies that ker[·, U ] ⊂ ⊕i∈I EndR(H̃i).

We have a decomposition EndR(H̃) = ⊕
i,j∈I HomR(H̃j, H̃i). Let Xi,j denote the

components of X with respect to this splitting. Let Y := ∑
i ̸=j Xi,j denote the

off-diagonal part of X . We will prove that Y = 0. Since U ∈ ⊕
i∈I End(H̃i),

the commutator [Y, U ] has vanishing diagonal, i.e. it lies in
⊕

i ̸=j HomR(H̃j, H̃i).
Furthermore, using the assumption, we see that [Y, U ] = [X,U ]−∑i∈I [Xi,i, U ] is
block diagonal. It follows that [Y, U ] = 0, hence Y ∈⊕i∈I EndR(H̃i). By definition,
Y is off-diagonal, so Y = 0, proving the lemma.

The following proposition implies that the decomposition in Proposition 4.3.26
induces a decomposition of F-bundle (H,∇) ≃⊕i∈I(Hi,∇i) over B, where∇i is
the restriction of∇ toHi.

Proposition 4.3.29. In the setting of Proposition 4.3.26, we have u∇ξ(Hi) ⊂ Hi for
any vector field ξ on B.

Proof. Write t = (t1, · · · , tn). Let H := H|b,0, and H = ⊕
i∈I Hi the splitting

induced by the decomposition of H. Fix a trivialization H ≃ H × Spf k − [[t, u]]
such thatHi ≃ Hi × Spf k[[t, u]], and write

∇ = d+ u−1 ∑
1≤i≤n

Ti(t, u)dti + u−2U(t, u)du,

with U(t, u) = ∑
k≥0 Uk(t)uk and Ti(t, u) = ∑

k≥0 Ti,k(t)uk. By assumption, we
have U(t, u) ∈ ⊕i∈I End(Hi)[[t, u]]. In particular, U0(t) induces endomorphisms in
End(Hi)[[t]] for all i ∈ I , and the assumption on the decomposition at t = u = 0
implies that those have disjoint spectra.

Fix i ∈ {1, . . . , n}. The flatness equation [∇∂u ,∇∂ti
] = 0 reads

∂(u−1Ti)
∂u

− ∂(u−2U)
∂ti

= u−3[Ti, U ].

Splitting this equation according to powers of u gives [Ti,0, U0] = 0, and for k ≥ 1:

[Ti,k, U0] = (k − 2)Ti,k−1 −
∂Uk−1

∂ti
−

∑
k1+k2=k
k1<k

[Tk1 , Uk2 ]. (4.3.30)

We prove by induction onk ≥ 0 thatTi,k is block diagonal, i.e.Ti,k ∈
⊕

i∈I End(Hi)[[t]].
The base case k = 0 follows from Lemma 4.3.28, because Ti,0 commutes with
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U0(t). Now, let k ≥ 1 and assume Ti,ℓ(t) is block diagonal for ℓ < k. Since each
Uℓ(t) is assumed block diagonal, the right-hand side of (4.3.30) is block diagonal.
Applying Lemma 4.3.28, we obtain that Ti,k(t) is also block diagonal, completing
the proof.

It remains to show that the above decomposition (H,∇) ≃⊕i∈I(Hi,∇i) is compat-
ible with the decomposition of the base.

Lemma 4.3.31. LetB ≃ B1×B2 be a formal neighborhood of b = 0 in a product of
affine spaces, and (H,∇)/B be an F-bundle over B. Assume that∇uξ|u=0 = 0 for
all vector fields ξ in the directions of B2. Then there exists an F-bundle (H1,∇1)/B1

such that pr∗
1(H1,∇1) ≃ (H,∇), where pr1 is the projection B ≃ B1 ×B2 → B1.

Proof. For i = 1, 2, let ti = (ti,j, 1 ≤ j ≤ ni) denote coordinates on Bi. Let
H1 := H|B1×{0}×Spf k[[u]]. By assumption, ∇ has no pole at u = 0 in the directions
of B2. Since ∇ is flat, given any trivialization of H1 we can extend it uniquely by
∇ to a trivialization ofH over B1 ×B2 × Spf k[[u]]. This defines an isomorphism
pr∗

1H1 ≃ H, and in this trivialization we have

∇ = d+ u−1 ∑
1≤j≤n1

T1,j(t1, t2, u)dt1,j + u−2U(t1, t2, u)du.

Since∇ is flat, we have for all 1 ≤ j ≤ n1 and 1 ≤ k ≤ n2

∂(u−1T1,j)
∂t2,k

= 0, ∂(u−2U)
∂t2,k

= 0.

Hence, the connection matrices in the directions of B1 and the u-direction are
independent of t2. This means that the connection is equal to the pullback of a
connection on B1 × Spf k[[u]], completing the proof.

Theorem 4.3.32 (Spectral decomposition theorem). LetB be a formal neighborhood
of a rational point b in a smooth k-variety, and (H,∇) an F-bundle over B maximal
at b. Write Kb = ∇u2∂u

|b,0. Assume that we have a decompositionHb,0 ≃
⊕

i∈I Hi

stable under Kb, and that for any i ̸= j ∈ I , the spectra of Kb|Hi
and Kb|Hj

are disjoint. Then (H,∇)/B decomposes into a product of maximal F-bundles
(Hi,∇i)/Bi extending the decomposition ofH|b,0.

Proof. As in the proof of Theorem 4.3.13, we may assume the base B has the form
Spf k[[t1, · · · , tn]]. Let h : B → H|u=0 be a section of cyclic vectors, providing an
isomorphism

η := u∇|u=0(h) : TB ∼−→ H|u=0.
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This induces an F-manifold structure (B, ⋆) on B by Lemma 4.3.24. In particular,
we have a decomposition TbB = ⊕

i∈I Ei with Ei = η−1
b (Hi). Since the spectra of

Kb|Hi
and Kb|Hj

are disjoint, up to extending the base field, each Hi is a direct sum
of generalized eigenspaces for Kb. Since ∇ is flat, it follows that TbB = ⊕

i∈I Ei

is a splitting of k-algebra. By Theorem 4.3.13, we obtain a decomposition of
F-manifold B ≃ ∏i∈I(Bi, ⋆i), extending the decomposition at TbB. This induces a
decomposition of TB = ⊕

i∈I Ei as OB-algebras. We refer to sections of Ei as being
in the directions of Bi.

Under η, we obtain a decomposition H|u=0 ≃
⊕

i∈I Hi,0. Since the action of K
corresponds to multiplication by the Euler vector field, this decomposition is stable
under K, and extends the decomposition ofHb,0 ≃

⊕
i∈I Hi. By Propositions 4.3.26

and 4.3.29, this further extends to a decomposition (H,∇) ≃⊕i∈I(Hi,∇i).

For each i ∈ I and ξ not in the directions of Bi, the action of (∇i)uξ|u=0 on Hi,0

under η is the restriction of ξ⋆ to the subalgebra Ei, hence it vanishes. Then by
Lemma 4.3.31, (Hi,∇i)/B isomorphic to a pullback of F-bundle from Bi, which
we also denote as (Hi,∇i)/Bi. We thus have a decomposition of F-bundle

(H,∇) ≃
⊕
i∈I

pr∗
i (Hi,∇i),

where pri : B ≃
∏
j∈I Bj → Bi is the projection to the i-th component.

It remains to check that each F-bundle in the decomposition is maximal. Let
ji : Bi ↪→ B be the canonical closed immersion, and hi := j∗

i h. We claim that hi is
a section of cyclic vectors for (Hi,∇i)/Bi, i.e. the map ηi : ξ 7→ (∇i)uξ|u=0(hi) is
an isomorphism TBi

∼−→ Hi|u=0. Since Bi is the formal neighborhood of a point in
an affine space, it is enough to check that the stalk of ηi at the closed point bi of Bi is
an isomorphism. This stalk is the composition of the isomorphisms

Tbi
Bi −→ Ei

ηb|Ei−−−→ Hi,

and hence it is an isomorphism, completing the proof.

Example 4.3.33 (rank 1 maximal F-bundle). Let B = Spf k[[t]] and b = 0 ∈ B.
Let (H,∇)/B be an F-bundle, maximal at b. Fixing a trivialization of H, we
write the connection as ∇ = d + u−2p(t, u)du + u−1q(t, u)dt . Flatness of ∇
reduces to the equation ∂(u−2p)

∂t
= ∂(u−1q)

∂u
. Solutions are parameterized by pairs

(ψ(t, u), c) ∈ k[[t, u]]× k by the rule

p = u
∂ψ

∂u
− ψ + uc, q = ∂ψ

∂t
.
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The F-bundle is maximal at t = 0 if and only if q(0, 0) ̸= 0 or, in terms of ψ,
∂ψ
∂t

(0, 0) ̸= 0.

Example 4.3.34 (simple eigenvalues). Let B be the formal neighborhood of b = 0 in
an n-dimensional affine space. Let (H,∇)/B be an F-bundle, maximal at b. Assume
that Kb = u2∇∂u |b,u=0 has simple eigenvalues. Then (H,∇)/B is isomorphic to a
product of rank 1 maximal F-bundles.

Concretely, there exists a change of coordinates f : ∏1≤i≤n Spf k[[ti]] ∼−→ B, and a
trivialization of f ∗(H,∇) in which the connection takes the form

f ∗∇ = d+u−1


∂ψ1
∂t1
dt1 0

. . .
0 ∂ψn

∂tn
dtn

+u−2


u∂ψ1
∂u
− ψ1 + uc1 0

. . .
0 u∂ψn

∂u
− ψn + ucn

 du,

with (ψi, ci) ∈ k[[t,i , u]] × k such that −ψi(0, 0) is an eigenvalue of Kb, and
∂ψi

∂ti
(0, 0) ̸= 0 (see Example 4.3.33).

WhenKb has simple eigenvalues, the change of coordinates is obtained by integrating
a basis of sections of eigenvectors for the connection in the u-direction.

4.3.3.2 The non-archimedean case

Next, we prove the spectral decomposition theorem in the non-archimedean case.
The proof builds on the formal case, but an additional challenge lies in bounding the
norms of the coefficients of the gauge transform and establishing non-archimedean
convergence. We achieve these bounds through a detailed analysis of the recursive
relations of the coefficients; see Proposition 4.3.36.

Lemma 4.3.35. Let B be an admissible open neighborhood of a rational point
b in a smooth k-analytic space. Let (H,∇)/B be a non-archimedean F-bundle
maximal at b. Then there exists an admissible open neighborhood U ⊂ B of b such
that (H,∇) admits a section of cyclic vectors, and the data {(H,∇), h} induces a
non-archimedean F-manifold structure on U with identity.

Proof. Being maximal is an open condition, so there exists an admissible open
neighborhood U ⊂ B of b over which a section of cyclic vector h exists. The proof is
then identical to the formal case, and relies on explicit computations in local analytic
coordinates centered at b.
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Proposition 4.3.36. Let (H,∇) be an F-bundle over B = Spk⟨t1, . . . , tn⟩, and let
b = 0 ∈ B. Let K = ∇u2∂u

|u=0 andHb,0 = ⊕
i∈I Hi a decomposition stable under

Kb such that the induced endomorphisms on Hi have disjoint spectra.

LetH|u=0 = ⊕
i∈I Hi,0 be a decomposition extending the decomposition ofHb,0, and

stable underK. Then, there exists an admissible open neighborhood U ⊂ B of b and
a decompositionH|U = ⊕

i∈I Hi such thatHi|u=0 = Hi,0|U and u2∇∂u(Hi) ⊂ Hi.

Proof. We keep the setting and notations of Proposition 4.3.26, in particular H :=
Hb,0. Let ≤ denote the degree lexicographic order on Nn. We denote by τ(v) the
direct successor of v ∈ Nn for this order. The gauge transformation P constructed in
the formal case is an ordered product

P =
∏
m≥1

Pm, Pm =
∏
v∈Nn

Pm,v,

where Pm,v = id + umtvTm,v and Tm,v ∈ End(H). Let ϕ denote the inverse of the
restriction of [·, U0(0)] to

⊕
i ̸=j Hom(Hj, Hi). The gauge transformations Pm,v are

constructed inductively, and characterized by the following relations:

Tm,v = ϕ(off-diagonal part of the term umtv in Ũm,v), (4.3.37)

Ũm,τ(v) = P−1
m,vŨm,vPm,v + u2P−1

m,v

∂Pm,v
∂u

, (4.3.38)

Ũm+1,0 = P−1
m Ũm,0Pm + u2P−1

m

∂Pm
∂u

, (4.3.39)

and Ũ1,0 = U(t, u) is the initial connection matrix. For an element M(t, u) =∑
m,vMm,vu

mtv ∈ End(H)[[t, u]] and δ, ε > 0, we let

|M(t, u)|δ,ε := sup
m∈N,v∈Nn

|Mm,v|δmε|v|.

We denote by D(δ, ε) the polydisk {|u| ≤ δ, |t| ≤ ε}.

Since the gauge transformations restrict to id at u = 0, all the matrices Ũm,v(t, u)
have the same constant term. We denote this common value by U0, and set
Ṽm,v(t, u) := Ũm,v(t, u) − U0. Fix δ ≤ 1 and ε ≤ 1 such that δ|ϕ| ≤ 1 and
|ϕ||Ṽ1,0|δ,ε < 1. This is possible, since Ṽ1,0(0, 0) = 0.

We prove by a double induction on m and v the inequalities

|umtvTm,v|δ,ε ≤ |ϕ||Ṽm,v|δ,ε ≤ |ϕ||Ṽm,0|δ,ε ≤ |ϕ||Ṽ1,0|δ,ε < 1. (4.3.40)
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We use the lexicographic order on the product N>0×Nn, i.e. (m, v) < (m′, v′) if and
only ifm < m′ orm = m′ and v < v′. Form = 1, v = 0, the inequalities follow from
(4.3.37) and the choice of (δ, ε). Now fix (m, v) ∈ N>0 × Nn with (m, v) > (1, 0),
and assume all the inequalities proved for (m′, v′) < (m, v). Equation (4.3.37) gives

|umtvTm,v|δ,ε ≤ |ϕ||Ṽm,v|δ,ε.

We now bound |Ṽm,v|δ,ε. If v > 0, then we can write v = τ(w) for some w ≥ 0. The
difference between Ṽm,τ(w) and Ṽm,w is given by (4.3.27):

Ṽm,τ(w) − Ṽm,w = Ũm,τ(w) − Ũm,w
=
∑
k≥0

(−1)k+1(umtw)k+1T km,w[Tm,w, Ṽm,w]

+
∑
k≥0

(−1)k+1(umtw)k+1T km,w[Tm,w, U0]

+
∑
k≥0

(−1)ku(umtw)k+1T k+1
m,w .

Let us bound each term on the right hand side. Since |umtwTm,w|δ,ε < 1, we have
for all k ≥ 0

|(umtw)k+1T km,w[Tm,w, Ṽm,w]|δ,ε ≤ |umtwTm,w|k+1
δ,ε |Ṽm,w|δ,ε < |Ṽm,w|δ,ε.

By the definition of ϕ and (4.3.37), we have

|umtw[Tm,w, U0]|δ,ε = |umtwϕ−1(Tm,w)|δ,ε ≤ |Ṽm,w|δ,ε. (4.3.41)

We can then bound the second term for all k ≥ 0

|(umtw)k+1T km,w[Tm,w, U0]|δ,ε ≤ |umtwTm,w|kδ,ε|[Tm,w, U0]|δ,ε < |Ṽm,w|δ,ε.

For the third term, using the induction hypothesis and δ|ϕ| ≤ 1, we obtain for all
k ≥ 0

|um(k+1)+1tw(k+1)T k+1
m,w |δ,ε ≤ δ(|ϕ||Ṽm,w|δ,ε)k+1 ≤ δ|ϕ||Ṽm,w|δ,ε ≤ |Ṽm,w|δ,ε,

where we used |ϕ||Ṽm,w|δ,ε ≤ 1 in the second inequality. Using those bounds, we
obtain the inequalities

|Ṽm,τ(w)|δ,ε ≤ max(|Ṽm,w|δ,ε, |Ṽm,τ(w) − Ṽm,w|δ,ε) ≤ |Ṽm,w|δ,ε ≤ |Ṽm,0|δ,ε,
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proving the inductive step when v > 0. If v = 0, then necessarily m > 1
and we can write m = m′ + 1. We compare Ṽm′+1,0 to Ṽm′,0. To do so, write
Pm′ = id + um

′
Rm′(t, u). Similarly to the previous case, using (4.3.27) we obtain

Ṽm′+1,0 − Ṽm′,0 = Ũm′+1,0 − Ũm′,0

=
∑
k≥0

(−1)k+1um
′(k+1)Rk

m′ [Rm′ , Ṽm,w]

+
∑
k≥0

(−1)k+1um
′(k+1)Rk

m′ [Rm′ , U0]

+
∑
k≥0

(−1)kum′(k+1)+1Rk+1
m′ ,

and we will use the induction hypothesis to bound each term. Since |um′
tvTm′,v|δ,ε < 1

for all v ∈ Nn, we have |um′
Rm′ |δ,ε < 1. In particular, similarly to the case v > 0,

the first term is bounded by |Ṽm′,0|δ,ε. To handle the other terms, we use the explicit
formula

um
′
Rm′ =

∑
k≥1
w∈Nn

ukm
′
tw

∑
w1+···+wk=w
w1>···>wk

Tm′,w1 · · ·Tm′,wk
.

Using this formula, we obtain

|[um′
Rm′ , U0]|δ,ε ≤ max

k≥1,w∈Nn

w1+···+wk=w

|ukm′
tw[Tm′,w1 · · ·Tm′,wk

, U0]|δ,ε

≤ max
k≥1,w∈Nn

w1+···+wk=w

max
1≤i≤k

 ∏
1≤j≤k
j ̸=i

|um′
twjTm′,wj

|δ,ε × |um
′
twi [Tm′,wi

, U0]|δ,ε



≤ max
k≥1,w∈Nn

w1+···+wk=w

max
1≤i≤k

 ∏
1≤j≤k
j ̸=i

|ϕ|||Ṽm′,wj
|δ,ε × |Ṽm′,wi

|δ,ε


≤ max

k≥1,w∈Nn

w1+···+wk=w

|Ṽm′,wi
|δ,ε ≤ |Ṽm′,0|δ,ε.

For the second inequality, we used the formula for the commutator of a product.
The third inequality follows from the induction hypothesis at step (m′, wj), and the
inequality (4.3.41) applied to Tm′,wi

. The fourth and fifth inequalities follow from
the induction hypothesis. Then, similarly to the case v > 0, we obtain that the
second term is bounded by |Ṽm′,0|δ,ε. We now consider the third term. For k ≥ 1
and w1, · · · , wk ∈ Nn, since |ϕ||Ṽm′,0|δ,ε ≤ 1 by the induction hypothesis, we have

|ukm′
tw1+···+wkTm′,w1 · · ·Tm′,wk

|δ,ε ≤ (|ϕ||Ṽm′,0|δ,ε)k ≤ |ϕ||Ṽm′,0|δ,ε.
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In particular, we have the better bound |um′
Rm′ |δ,ε ≤ |ϕ||Ṽm′,0|δ,ε. Since |ϕ||Ṽm′,0|δ,ε ≤

1, we obtain the bound on the third term for all k ≥ 0

|um′(k+1)+1Rk+1
m′ |δ,ε ≤ δ(|ϕ||Ṽm′,0|δ,ε)k+1 ≤ δ|ϕ||Ṽm′,0|δ,ε ≤ |Ṽm′,0|δ,ε.

Similarly to the case v > 0, we deduce

|Ṽm′+1,0|δ,ε ≤ max(|Ṽm′+1,0|δ,ε, |Ṽm′+1,0 − Ṽm′,0|δ,ε) ≤ |Ṽm′,0|δ,ε ≤ |Ṽ1,0|δ,ε,

concluding the induction.

Now, (4.3.40) implies that the product defining P is convergent on the polydisk
D(δ, ε), that P−1 is also convergent on D(δ, ε), and that |P |δ,ε = |P−1|δ,ε = 1. In
particular, the decomposition constructed in the formal case extends to an admissible
open neighborhood of (b, 0), completing the proof.

Theorem 4.3.42 (Non-archimedean spectral decomposition theorem). Let B be a
k-analytic space, b ∈ B a smooth k-rational point, and (H,∇) an F-bundle over
B maximal at b. Write Kb = ∇u2∂u

|b,0. Assume that we have a decomposition
Hb,0 ≃

⊕
i∈I Hi stable under Kb, and that for any i ̸= j ∈ I , the spectra of Kb|Hi

and Kb|Hj
are disjoint. Then there exists an admissible open neighborhood U of

b such that the restriction (H|U ,∇|U)/U decomposes into a product of maximal
F-bundles (Hi,∇i)/Ui extending the decomposition ofHb,0.

Proof. By Lemma 4.3.9, we can find an admissible neighborhood U of b isomorphic
to an admissible open neighborhood of 0 in a k-analytic affine space. Hence, we
may assume that B = SpTn and b = 0. By Lemma 4.3.35, up to shrinking B we
can find a section of cyclic vectors h : B → H|u=0, providing an isomorphism

η := (u∇)|u=0(h) : TB −→ H|u=0,

and an F-manifold structure ⋆ on B. The splitting ofHb,0 induces a splitting of TbB
as a k-algebra. By Theorem 4.3.20, there exists an admissible neighborhood U of b
such that (U, ⋆|U) is isomorphic to a product of F-manifolds

∏
i∈I(Ui, ⋆i), and the

induced decomposition of TU extends the decomposition of TbB.

We keep denoting by (H,∇) the restriction of the F-bundle to U . The decomposition
of TU induces a decomposition H|u=0 ≃

⊕
i∈I Hi,0 satisfying the assumptions of

Proposition 4.3.36. As in the formal case, this implies that there exists F-bundles
(Hi,∇i)/Ui such that

(H,∇) ≃
⊕
i∈I

pr∗
i (Hi,∇i),
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where pri : U ≃
∏
j∈I Uj → Ui is the projection.

Let bi denote the image of b under the projection U → Ui, let ji : Ui ↪→ U denote
the canonical closed immersion and hi := j∗

i h. As in the formal case, the stalk
at bi of the map ηi := (u∇i)|u=0(hi) : TUi → Hi|u=0 is an isomorphism. Hence
(Hi,∇i)/Ui is maximal at bi. Up to shrinking Ui, this implies that (Hi,∇i)/Ui is
maximal, completing the proof.

4.4 Framing of F-bundles
In this section, we prove the extension of framing theorems (Theorems 4.4.2
and 4.4.26). In Section 4.4.3, we apply the extension of framing to obtain a
uniqueness result for isomorphisms between maximal F-bundles admitting a framing
(Proposition 4.4.31). In Section 4.4.4, we provide a partial classification of framed
F-bundles over a point, up to gauge equivalence, under some assumptions on the
coefficients of the connection (Theorem 4.4.34). When the K-operator of the
F-bundle has simple eigenvalues, we obtain a full classification in Corollary 4.4.35.
We will apply those results to the A-model F-bundles in Section 4.5.

4.4.1 Extension of framing for logarithmic formal F-bundles
4.4.1.1 Main result

Here we state the theorem of extension of framing, and fix the notations for the proof.

Definition 4.4.1. Let (H,∇)/(B,D) be a logarithmic F-bundle and b ∈ B a rational
point. We say that a framing ∇fr

b for the restricted F-bundle (H,∇)|b is strong with
respect toD if for any function q vanishing onD, the endomorphism∇uq∂q |b×Spf k[[u]]

is independent of u in a ∇fr
b -flat trivialization ofH|b×Spf k[[u]].

Theorem 4.4.2 (Extension of framing). Let (H,∇)/(B,D) be a logarithmic F-
bundle, whereB is a formal neighborhood of a rational point b in a smooth k-variety.
A framing∇fr

b for the restricted F-bundle (H,∇)|b extends to a framing for (H,∇) if
and only if ∇fr

b is strong with respect to D. In this case, the extension is uniquely
and explicitly determined from∇fr

b and (H,∇).

We refer to Example 4.4.25 for a counter-example to the existence part of Theo-
rem 4.4.2 without assuming the framing is strong with respect to D.

Write B = Spf k[[q1, . . . , qs, t1, . . . , tn]], where
∏

1≤i≤s qi = 0 is a local equation
for D at b. Let m be the rank of H and H := Hb,0 the fiber of H. We start with
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any trivialization iso : H ≃ H ×B × Spf k[[u]] extending a ∇fr
b -flat trivialization of

H|b×Spf k[[u]]. Let Ω denote the connection form of∇ in the trivialization iso. Fix a
basis of H , and write

Ω =
∑

1≤i≤s
u−1q−1

i Qi(q, t, u)dqi +
∑

1≤j≤n
u−1T j(q, t, u)dtj + u−2U(q, t, u)du,

(4.4.3)
where U,Qi, T j ∈ Mat(m ×m,k[[qi, tj, u]]). The framing assumption at b allows
us to assume that U(0, 0, u) is linear in u. The assumption that the endomorphism
∇uqi∂qi

|q=t=0 is ∇fr
b -flat means that Qi(0, 0, u) is independent of u.

We want to modify the trivialization iso by an automorphism of H ×B × Spf k[[u]],
to produce a new trivialization extending iso|b×Spf k[[u]] and in which ∇ is framed.
Equivalently, we seek a gauge transformation P (q, t, u) ∈ GL(m,k[[qi, tj, u]]) and
matrices K(q, t), G(q, t), Q̃i(q, t), T̃ j(q, t) in Mat(m×m,k[[qi, tj]]) such that

P−1∂uP + u−2P−1UP = u−2K + u−1G, (4.4.4)

P−1∂qi
P + u−1q−1

i P−1QiP = u−1q−1
i Q̃i, (4.4.5)

P−1∂tjP + u−1P−1T jP = u−1T̃ j, (4.4.6)

and satisfying P (0, 0, u) = id. By identifying the polar part at u = 0, we get an
expression for the matrices K,G, Q̃i, T̃ j . In particular, setting P0 := P (q, t, 0), we
have the following expressions

Q̃i = P−1
0 Qi

−1P0 and T̃ j = P−1
0 T j−1P0, (4.4.7)

withQi
−1 = ∇uqi∂qi

|u=0 and T j−1 = ∇u∂tj
|u=0. We will constructP in Section 4.4.1.3

order by order in each variable, starting with the logarithmic directions.

4.4.1.2 Two matrix lemmas

We now state two matrix lemmas that we will use for the proof of Theorem 4.4.2.

Lemma 4.4.8. Let R be a ring.

1. Let T ∈ Mat(m × m,R[[t]]). Let (Xk(t))k∈N be a sequence of matrices in
Mat(m×m,R[[t]]) satisfying

∂tXk = −[T,Xk+1].

Then (Xk(t))k∈N is uniquely determined by (Xk(0))k∈N. In particular, if Xk(0) = 0
for all k ≥ 0, then Xk(t) = 0 for all k ≥ 0.
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2. Let n ∈ N, and T1, . . . , Tn ∈ Mat(m×m,R[[t1, . . . , tn]]). Let (Xk(t))k∈N be a
sequence of matrices in Mat(m×m,R[[t1, . . . , tn]]) satisfying for all 1 ≤ i ≤ n

∂tiXk = −[Ti, Xk+1].

Then (Xk(t))k∈N is uniquely determined by (Xk(0))k∈N. In particular, if Xk(0) = 0
for all k ≥ 0, then Xk(t) = 0 for all k ≥ 0.

Proof. For (1), we write Xk(t) = ∑
ℓ∈NXℓ,kt

ℓ. For d ≥ 0, we have

(d+1)!Xd+1,k = ∂d+1Xk

∂d+1t

∣∣∣∣∣
t=0

= − ∂d

∂dt
[T,Xk+1]

∣∣∣∣∣
t=0

= −
d∑
s=0

(
d

s

) [
∂d−sT

∂d−st
,
∂sXk+1

∂st

]∣∣∣∣∣
t=0

.

This provides a recursive relation for {Xd+1,k}k∈N in terms of {Xr,k, r ≤ d}k∈N.
Thus, (Xk)k≥0 is uniquely determined by (Xk(0))k≥0.

For (2), we apply inductively on 1 ≤ i ≤ n the single variable case with the
ring R[[t1, . . . , ti−1]]. In this way, we prove that for 1 ≤ i ≤ n, the sequence
(Xk|ti+1=···=tn=0)k∈N is uniquely determined by the sequence (Xk|ti=···=tn=0)k∈N.
Thus (Xk)k∈N is uniquely determined by the initial condition (Xk|t1=···=tn=0)k∈N.

For both (1) and (2), choosing Xk(t) = 0 for all k ≥ 0 provides a sequence that
satisfies the assumptions of the lemma, with the initial condition Xk(0) = 0. It
follows from the uniqueness that this is the only solution to the equations such that
Xk(0) = 0 for all k ≥ 0.

Lemma 4.4.9. Let R be a ring. For 1 ≤ i ≤ s, letQi ∈ Mat(m×m,R[[q1, . . . , qs]])
such that ϕi := ad(Qi)|q=0 is nilpotent. Let (Xk(q))k∈N be a sequence of matrices in
Mat(m×m,R[[q1, . . . , qs]]) satisfying for all 1 ≤ i ≤ s

qi∂qi
Xk = [Qi, Xk+1].

Then, for any initial condition (Xk(0))k∈N, there exists at most one solution
(Xk(q))k∈N. In particular, if Xk(0) = 0 for all k ≥ 0, then Xk(q) = 0 for all
k ≥ 0.

Proof. We use Notation 4.3.1. In particular, given tuples of integers ℓ = (ℓi)1≤i≤n

and r = (ri)1≤i≤n, the length of ℓ is |ℓ| = ℓ1 + · · · + ℓn, and we write r ⪯ ℓ if
ri ≤ ℓi for all 1 ≤ i ≤ n. We denote the linear differential operator qi∂qi

by Di, so
the equations are DiXk = [Qi, Xk+1].
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First, a direct induction shows that for all n ∈ N we can express Dn+1
i Xk as a linear

combination of terms of the form

[Da1
i Qi, [· · · , [Dau

i Qi, Xk+u] · · · ]] , (4.4.10)

with 1 ≤ u ≤ n+ 1 and (av)1≤v≤u ∈ Nu satisfying a1 + · · ·+ au + u = n+ 1. If
we denote the coefficient of such a term by αn(a1, . . . , au), it is elementary to see
that the sequence (αn)n∈N is fully determined by the initial condition α0(0) = 1 and
the recursion relation

αn+1(a1, . . . , au) =
∑
av ̸=0

αn(a1, . . . , av − 1, . . . , au) + δau,0αn(a1, . . . , au−1).

Write Xk(q) = ∑
r∈Ns Xr,kq

r1
1 · · · qrs

s . We will show that for d ≥ 1, the terms
{Xℓ,k, |ℓ| = d}k∈N are determined by {Xr,k, |r| < d}k∈N. It will follow directly that
(Xk(q))k∈N is uniquely determined by the initial term (Xk(0))k∈N. Fix ℓ ∈ Ns with
|ℓ| = d and k ∈ N. We expressXℓ,k in terms of {Xr,k+s, |r| < d, s ≥ 1}. Fix i such
that ℓi ̸= 0, and let n ∈ N. We note that the coefficient of qℓ in Dn+1

i Xk is ℓs+1
i Xℓ,k.

On the other hand, by the previous paragraph Dn+1
i Xk is a linear combination of

terms of the form (4.4.10). The coefficient of qℓ in (4.4.10) is expressed in terms of
derivatives of Qi and coefficients Xr,k+u with r ⪯ ℓ and u ≥ 1. If Xℓ,k+u appears in
a term, then only the constant term of the terms involving Qi contribute. If a > 0,
then Da

iQi has no constant term, so Xℓ,k+u appears in the relation if and only if
a1 = · · · = au = 0. Given the condition a1 + · · · + au + u = n + 1, this implies
u = n+ 1 and we conclude that

ℓn+1
i Xℓ,k = ϕn+1

i (Xℓ,k+n+1)+{terms involving derivatives of Qi andXr,k+u with |r| < d}.

Since ϕi is nilpotent, for n large enough the right hand side does not depend on
{Xℓ,k}k∈N, and we obtain a recursive relation determining uniquelyXℓ,k as a function
of terms already known. This completes the proof.

4.4.1.3 Proof of Theorem 4.4.2

We formulate a condition under which we are able to solve the system of PDEs
(4.4.4)-(4.4.6) recursively.

Definition 4.4.11 (Nilpotency condition). Let (H,∇)/(B,D) be a logarithmic F-
bundle, where B is a formal neighborhood of a rational point b in a smooth k-variety.
We say that (H,∇)/(B,D) satisfies the nilpotency condition at b if for all vector
v ∈ TbD, the adjoint adµb(v) is nilpotent (see (4.2.5) for µb).
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Lemma 4.4.12. Let (H,∇)/(B,D) be a logarithmic F-bundle, where B is a formal
neighborhood of a rational point b in a smooth k-variety. If there exists a framing
for (H,∇) at b that is strong with respect to D, then µb(v) is nilpotent for every
v ∈ TbB. In particular, (H,∇) satisfies the nilpotency condition at b.

Proof. Write B = Spf k[[q1, . . . , qs, t1, . . . , tn]], with qi the logarithmic directions.
Let ∇fr

b be a framing at b that is strong with respect to D, fix a trivialization of H
extending a∇fr

b -flat trivialization. Fix 1 ≤ i ≤ s and write

∇qi∂qi
= qi∂qi

+ u−1Q(q, t, u).

By the assumption, Q0 := Q(0, 0, u) is independent of u. Since∇fr
b is a framing, we

have ∇∂u|b×Spf k[[u]] = ∂u + u−2K + u−1G, with K and G constant endomorphisms
of Hb,0. In this trivialization, the flatness equation [∇∂u ,∇qi∂qi

] = 0 restricted to
b× Spf k[[u]] reads

−Q0 = u−1[Q0, K] + [Q0, G].

In particular [Q0, G] = −Q0. It follows that [Q0, [Q0,−G]] = [Q0, Q0] = 0.
Jacobson’s lemma ([Jac62, Lemma 4, p. 44]) implies that [Q0,−G] = Q0 is nilpotent,
proving the first part of the lemma. Since the adjoint of a nilpotent endomorphism is
nilpotent, the second part follows.

The next series of lemmas will enable us to prove Theorem 4.4.2 by framing the con-
nection inductively in each direction. Given a logarithmic F-bundle (H,∇)/(B,D)
over B = Spf k[[q1, . . . , qs, t1, . . . , tn]], a closed subscheme B′ ⊂ B and a subsheaf
F ⊂ TB(− logD), we will say that (H,∇) is framed in the directions of F at B′

if there exists a trivialization of H such that ∇ξ|B′ takes the form (4.2.10) for any
section ξ of F , i.e. the restriction of the connection matrix in the direction ξ to B′

has no positive powers of u. If we formulate multiple conditions involving several
subsheaves and closed subschemes, we mean that there exists a trivialization in which
the connection form satisfies all the formulated conditions.

Lemma 4.4.13. Let (H,∇) be a logarithmic F-bundle over Spf k[[q1, . . . , qs]] (without
t-variables) satisfying the nilpotency condition (Definition 4.4.11), fix 1 ≤ i ≤ s.
Assume it is framed in all q-directions at {qj = 0, i ≤ j ≤ s}. Then there exists
a gauge transformation P (q1, . . . , qs, u) such that P |qi=···=qs=0 = id and P ∗∇ is
framed in the qi-direction at {qj = 0, i + 1 ≤ j ≤ s}. In particular, P ∗∇ is still
framed in all q-directions at {qj = 0, i ≤ j ≤ s}.
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Proof. We let q := {1, . . . , s}, q≤i := {q1, . . . , qi}, q≥i := {qi, . . . , qs} and q>i :=
{qi+1, . . . , qs}. Let u−1q−1

i Q(q, u) denote the connection matrix in the qi-direction
in a trivialization ofH provided by the partial framing assumption. Write Q(q, u) =∑
ℓ,k≥0 Qℓ,k−1q

ℓ
iu
k, by the framing assumption we have Q|q≥i=0 = Q0,−1|q≥i=0.

We seek a gauge transformation P (q, u) such that

∂qi
P |q>i=0 = u−1q−1

i

(
−QP + PP−1

0 Q−1P0
)
|q>i=0,

P |q≥i=0 = id,

where P0 := P (q, 0) and Q−1 := Q(q, 0). We look for P of the form P (q, u) =∑
ℓ,k≥0 Pℓ,kq

ℓ
iu
k, where Pℓ,k depends on {q1, . . . , qi−1}, We construct the solution P

order by order in powers of qi, by expressing {Pℓ+1,k}k∈N in terms of {Pℓ′,k, ℓ′ ≤
ℓ}k∈N for ℓ ∈ N.

The initial condition gives P0,0 = id and P0,k = 0 for k > 0. Let ℓ ∈ N and k ∈ N.
We isolate a monomial qℓiuk in the differential equation and obtain

(ℓ+1)Pℓ+1,k = −
∑

ℓ1+ℓ2=ℓ+1
k1+k2=k+1

Qℓ1,k1−1|q>i=0Pℓ2,k2+
∑

ℓ1+ℓ2+ℓ3+ℓ4=ℓ+1
Pℓ1,k+1(P−1

0 )ℓ2Qℓ3,−1|q>i=0Pℓ4,0,

where (P−1
0 )ℓ2 is the coefficient of qℓ2i in P−1

0 . Using the framing assumption at
q≥i = 0 and the initial condition for P , we isolate terms involving {Pℓ+1,k′}k′∈N and
obtain the relation for all k ≥ 0

Pℓ+1,k = ψℓ,k(P )− 1
ℓ+ 1[Q|q≥i=0, Pℓ+1,k+1], (4.4.14)

where

ψℓ,k(P ) := 1
ℓ+ 1

− ∑
k1+k2=k+1
ℓ1+ℓ2=ℓ+1
ℓ2<ℓ+1

Qℓ1,k1−1|q>i=0Pℓ2,k2

+
∑

ℓ1+ℓ2+ℓ3+ℓ4=ℓ+1
0<ℓ1<ℓ+1

Pℓ1,k+1(P−1
0 )ℓ2Qℓ3,−1|q>i=0Pℓ4,0

.
Note that ψℓ,k(P ) only depends on {Pℓ′,k′ , ℓ′ < ℓ+ 1, k′ ≤ k + 1}.

Let E := Mat(m × m,k[[q1, . . . , qi−1]])N. Consider the linear maps τ : E → E

given by the shift {Mk}k∈N 7→ {Mk+1}k∈N and Φ: E → E given by {Mk}k∈N 7→
{[Q|q≥i=0,Mk]}k∈N. The relations (4.4.14) give(

idE + 1
ℓ+ 1Φ ◦ τ

)
{Pℓ+1,k}k∈N = {ψℓ,k(P )}k∈N. (4.4.15)
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We prove that idE + 1
ℓ+1Φ ◦ τ is invertible. To do so, it is enough to prove that

it is invertible at q1 = · · · = qi−1 = 0. The map Φ|q1=···=qi−1=0 is nilpotent, since
ad(Q|q=u=0) is. The maps τ and Φ commute, so the composition Φ ◦ τ : E → E

is also nilpotent at q1 = · · · = qi−1 = 0. Hence idE + 1
ℓ+1Φ ◦ τ is invertible at

q1 = · · · = qi−1 = 0. It follows that idE + 1
ℓ+1Φ ◦ τ is invertible, and composing

(4.4.15) with its inverse provides a recursive relation determining the coefficient
of qℓ+1

i from lower order terms. Hence the differential equation admits a solution
P (q, u) such that P |q≥i=0 = id. The initial condition implies that the connection
P ∗∇ is still framed in all q-directions at q≥i = 0. This completes the proof.

Lemma 4.4.16. Let (H,∇) be a logarithmic F-bundle over Spf k[[q1, . . . , qs]] (with
no t-variables) satisfying the nilpotency condition (Definition 4.4.11), fix 1 ≤ i ≤ s.
Assume it is framed in all q-directions at {qj = 0, i ≤ j ≤ s}, and framed in the
qi-direction at {qj = 0, i+1 ≤ j ≤ s}. Then (H,∇) is framed in all the q-directions
at {qj = 0, i+ 1 ≤ j ≤ s}.

Proof. Let q≤i := {q1, . . . , qi}. The partial framing assumption provides a trivializa-
tion ofH. For 1 ≤ i′ ≤ s, let u−1q−1

i′ Q
i′(q≤i, u) = q−1

i′
∑
k≥0 Q

i′
k−1(q≤i)uk−1 denote

the restriction of the connection matrix in the qi′-direction to qi+1 = · · · = qs = 0.
The framing assumption means that Qi′

k |qi=0 = 0 and Qi
k = 0 for all k ≥ 0 and

1 ≤ i′ ≤ s.

Fix 1 ≤ i′ ≤ s, with i′ ̸= i. For k ≥ 0, the uk term of the flatness equation
[∇qi′∂qi′ ,∇qi∂qi

] = 0 provides the equation

qi∂qi
Qi′

k = −[Qi
−1, Q

i′

k+1].

Since ad(Qs
−1(0)) is nilpotent, we can apply Lemma 4.4.9 with R = k[[q1, . . . , qi−1]]

and Xk = Qi′
k . We deduce that Qi′

k = 0 for all k ≥ 0, proving that the connection is
also framed in the qi′-direction at qi+1 = · · · = qs = 0.

Lemma 4.4.17. Let (H,∇) be a logarithmic F-bundle over Spf k[[q1, . . . , qs, t1, . . . , tn]]
framed in the q-directions at t = 0. Then there exists a gauge transformation P such
that P |t=0 = id and P ∗∇ is framed in all the q-directions and t-directions at t = 0.

Proof. We work in a trivialization ofH provided by the partial framing assumption.
For 1 ≤ i ≤ s, let u−1q−1

i Qi(q, t, u) denote the connection matrix in the qi-direction
in this trivialization. For 1 ≤ j ≤ n, let u−1T j(q, t, u) denote the connection matrix
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in the tj-direction in this trivialization. Let

P (q, t, u) :=
n∏
j=1

(
id− tj

T j(q, 0, u)− T j(q, 0, 0)
u

)
.

Note that P (q, t, u) only has non-negative powers of u, because T j(q, 0, u) −
T j(q, 0, 0) has no constant term in u. We have P |t=0 = P−1|t=0 = id, and we
compute ∂P

∂qi

∣∣∣
t=0

= 0 and ∂P
∂tj

∣∣∣
t=0

= −u−1(T j(q, 0, u)−T j(q, 0, 0)). The connection
matrix of P ∗∇ in the tj-direction at t = 0 is[
P−1∂P

∂tj
+u−1P−1T jP

]∣∣∣∣∣
t=0

= u−1(−T j(q, 0, u)+T j(q, 0, 0)+T j(q, 0, u)) = u−1T j(q, 0, 0),

which is framed. The connection matrix of P ∗∇ in the qi-direction at t = 0 is[
P−1∂P

∂qi
+ u−1q−1

i P−1QiP

]∣∣∣∣∣
t=0

= u−1q−1
i Qi(q, 0, u),

which is also framed. The lemma is proved.

Lemma 4.4.18. Let (H,∇) be a logarithmic F-bundle over Spf k[[q1, . . . , qs, t1, . . . , tn]]
framed in the q-directions at t = 0, fix 1 ≤ j ≤ n. Assume it is framed in all
t-directions at {ti = 0, j ≤ i ≤ n}. Then there exists a gauge transformation
P (q, t, u) such that P |tj=···=tn=0 = id and P ∗∇ is framed in the tj-direction at
{ti = 0, j + 1 ≤ i ≤ n}, framed in all the q-directions at t = 0, and in all the
t-directions at {ti = 0, j ≤ i ≤ n}.

Proof. Let t≤j := {t1, . . . , tj}, t≥j := {tj, . . . , tn} and t>j := {tj+1, . . . , tn}. Let
u−1T (q, t, u) denote the connection matrix in the tj-direction in a trivialization ofH
provided by the partial framing assumption. Write T (q, t, u) = ∑

ℓ,k∈N Tℓ,k−1t
ℓ
ju
k,

by the framing assumption we have T |t≥j=0 = T0,−1|t≥j=0.

We seek a gauge transformation P (q, t, u) such that

∂tjP |t>j=0 = u−1
(
−TP + PP−1

0 T−1P0
)
|t>j=0,

P |t≥j=0 = id,

where P0 := P (q, t, 0) and T−1 := T (q, t, 0). We look for P of the form P (q, t, u) =∑
ℓ,k≥0 Pℓ,kt

ℓ
ju
k, where Pℓ,k depends on the variables {q1, . . . qs, t1, . . . , tj−1}. The

differential equation provides a recursive relation for {Pℓ,k}k∈N. By isolating the
coefficient of tℓjuk we obtain

(ℓ+1)Pℓ+1,k = −
∑

ℓ1+ℓ2=ℓ
k1+k2=k+1

Tℓ1,k1−1|t>j=0Pℓ2,k2+
∑

ℓ1+ℓ2+ℓ3+ℓ4=ℓ
Pℓ1,k+1(P−1

0 )ℓ2Tℓ3,−1|t>j=0Pℓ4,0,

(4.4.19)
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where (P−1
0 )ℓ2 denotes the coefficient of tℓ2j in P−1

0 . This determines P from the
initial data {P0,k}k∈N, i.e. from P |t≥j=0 = id. Hence the differential equation admits
a solution P (q, t, u) such that P |t≥j = id. By construction, P ∗∇ is framed in the
tj-direction at t>j = 0.

We now check that the other t-directions are still framed at t≥j = 0, and that the
q-directions are still framed at t = 0. Since P |t≥j=0 = id, the connection matrices
at t≥j = 0 are modified by the first derivatives of

∑
k≥0 P1,ku

k. From the recursion
(4.4.19), the initial condition for P and the framing assumption for T we obtain that
P1,k = −T0,k|t>j=0 = 0 for all k ≥ 0. We conclude that P ∗∇ remains framed in
all the t-directions at t≥j = 0 and in all the q-directions at t = 0, concluding the
proof.

Lemma 4.4.20. Let (H,∇) be a logarithmic F-bundle over Spf k[[q1, . . . , qs, t1, . . . , tn]],
fix 1 ≤ j ≤ n. Assume it is framed in all the t-directions at {ti = 0, j ≤ i ≤ n}, and
framed in the tj-direction at tj+1 = · · · = tn = 0. Then (H,∇) is framed in all the
t-directions at {ti = 0, j + 1 ≤ i ≤ n}.

Proof. Let t≤j := {t1, . . . , tj}. The partial framing assumption provides a trivializa-
tion of H. For 1 ≤ j′ ≤ n, let u−1T j

′(q, t≤j, u) = ∑
k≥0 T

j′

k−1(q, t≤j)uk−1 denote
the restriction of the connection matrix in the tj′-direction to tj+1 = · · · = tn = 0.
The framing assumption means that T j

′

k |tj=0 = 0 and T jk = 0 for all k ≥ 0 and
1 ≤ j′ ≤ n.

Fix 1 ≤ j′ ≤ n, with j′ ̸= j. For k ≥ 0, the uk term of the flatness equation
[∇∂tj′ ,∇∂tj

] = 0 provides the equation

∂tjT
j′

k = −[T j−1, T
j′

k+1].

We apply Lemma 4.4.8(1) with R = k[[q1, . . . , qs, t1, . . . , tj−1]], Xk = T j
′

k and the
initial condition T j

′

k |tj=0 = 0, and deduce that T j
′

k (q, t≤j) = 0 for all k ≥ 0. Thus,
the connection is also framed in the tj′-direction at tj+1 = · · · = tn = 0.

Lemma 4.4.21. Let (H,∇) be a logarithmic F-bundle over Spf k[[q1, . . . , qs, t1, . . . , tn]].
Assume it is framed in the t-directions and framed in the q-directions at t = 0. Then
(H,∇) is also framed in the q-directions.

Proof. In a trivialization provided by the framing assumption, denote by u−1T j−1(q, t)
the connection matrix in the tj-direction (1 ≤ j ≤ n) and by u−1q−1

i Qi(q, t, u) the
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connection matrix in the qi-direction (1 ≤ i ≤ s). Write Qi = ∑
k≥0 Q

i
k−1(q, t)uk.

The framing assumption means that Qi
k|t=0 = 0 for 1 ≤ i ≤ s and k ≥ 0.

Fix 1 ≤ i ≤ s. For k ≥ 0, the uk term of the flatness equation [∇∂tj
,∇qi∂qi

] = 0 is

∂tjQ
i
k = −[T j−1, Q

i
k+1].

We apply Lemma 4.4.8(2) withR = k[[q1, . . . , qs]],Xk = Qi
k and the initial condition

Qi
k|t=0 = 0, and deduce that Qi

k(q, t) = 0 for all k ≥ 0. Thus, the connection is also
framed in the qi-direction.

Lemma 4.4.22. Let (H,∇) be a logarithmic F-bundle over Spf k[[q1, . . . , qs, t1, . . . , tn]]
satisfying the nilpotency condition (Definition 4.4.11). Assume it is framed in the
q-directions and t-directions, and framed in the u-direction at q = t = 0. Then
(H,∇) is also framed in the u-direction.

Proof. In a trivialization provided by the framing assumption, let u−1q−1
i Qi(q, t)

(resp. u−1T j(q, t)) denote the connection matrix in the qi-direction (resp. tj-direction).
Let u−2U(q, t, u) denote the connection matrix in the u-direction. Write U(q, t, u) =∑
k≥0 Uk−2(q, t)uk. The framing assumption means that for k ≥ 0, we have

Uk(0, 0) = 0.

For k ≥ 0, and 1 ≤ i ≤ s, the uk term of the flatness equation [∇∂u ,∇qi∂qi
] = 0

provides the equation
qi∂qi

(Uk) = −[Qi, Uk+1].

We restrict this equation to t = 0. Since ad(Qi(0, 0)) is nilpotent, we can apply
Lemma 4.4.9 with R = k and Xk = Uk(q, 0) to deduce that Uk(q, 0) = 0 for all
k ≥ 0.

Next, for k ≥ 0, the uk term of the flatness equation [∇∂u ,∇∂tj
] = 0 provides the

equation
∂tj (Uk) = −[T j, Uk+1].

We apply Lemma 4.4.8(2) with R = k[[q1, . . . , qs]], Xk = Uk(q, t) and the initial
condition Uk(q, 0) = 0, and deduce that Uk(q, t) = 0 for all k ≥ 0. Thus, the
connection is also framed in the u-direction.

We can now finish the proof of Theorem 4.4.2.
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Proof of Theorem 4.4.2. Fix a trivialization H ≃ H × (B × Spf k[[u]]) extending
the trivialization ofH|b×Spf k[[u]] induced by ∇fr

b . As explained after Theorem 4.4.2,
the content of the theorem reduces to proving existence and uniqueness of a solution
P (q, t, u) to the overdetermined nonlinear system of PDEs (4.4.4)-(4.4.6) with initial
condition P (0, 0, u) = id.

We prove the existence part of the statement. If there exists a framing ∇fr extending
∇fr
b , then we see that ∇fr

b is strong with respect to D by working in a ∇fr-flat
trivialization. Conversely assume that∇fr

b is strong with respect to D, in particular
the nilpotency condition is satisfied by Lemma 4.4.12. We first frame the restricted
F-bundle (H′,∇′) := (H,∇)|t=0, defined over the base B′ := Spf k[[q1, . . . , qs]].
Applying inductively Lemmas 4.4.13 and 4.4.16 on i ∈ {1, . . . , s}, we obtain a
gauge transformation P (q, u) such that P (0, u) = id and P ∗∇′ is framed in all the
q-directions. Note that to apply the lemmas for the base case i = 1, we use that ∇fr

b

is strong with respect to D. Extending this gauge transformation constantly in the t-
directions, we obtain a gauge transformation P1(q, u) ∈ Aut(H) with P1(0, u) = id
such that ∇1 := P ∗

1∇ is framed in all the q-directions at t = 0. By Lemma 4.4.17,
we obtain a gauge transformation P2(q, t, u) ∈ Aut(H) with P2(q, 0, u) = id such
that∇2 := P ∗

2∇1 is framed in all the q-directions and t-directions at t = 0. Applying
inductively Lemmas 4.4.18 and 4.4.20 on j ∈ {1, . . . , n}, we obtain a gauge
transformation P3(q, t, u) ∈ Aut(H) with P (q, 0, u) = id such that ∇3 := P ∗

3∇2

is framed in all the q-directions at t = 0, and in all the t-directions along B. By
Lemma 4.4.21, the connection ∇3 is also framed in all the q-directions along B.
Since∇3,∂u|q=t=0 = ∇∂u|q=t=0, the connection∇3 is framed in the u-directions at
q = t = 0. We conclude by Lemma 4.4.22 that ∇3 is framed in the u-direction as
well. Thus the gauge transformation P̃ := P3P2P1 solves the system (4.4.4)-(4.4.6)
with the initial condition P̃ (0, 0, u) = id, concluding the proof of existence.

We now prove uniqueness. Assume the system of PDEs is written in a trivialization
in which the connection is framed. In particular, the nilpotency condition is satisfied
by Lemma 4.4.12. From the equations in the directions of B we obtain recursive
relations as in (4.4.15) and (4.4.19). Hence, any solution is uniquely determined by
the condition P (0, 0, u) = id.

4.4.1.4 Framings on rank 1 F-bundles

F-bundles do not admit framings in general (see [Sab07, §IV.5.b] for a sufficient
condition), even though we established the extension of framing in Theorem 4.4.2.
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Here we discuss the existence of framing on rank 1 F-bundles.

Proposition 4.4.23. Let B be a formal neighborhood of a rational point b in a
smooth k-variety. Let (H,∇)/B be a (non-logarithmic) formal F-bundle of rank 1.
Then it admits a framing.

Proof. We keep the notations of the proof of Theorem 4.4.2. In the non-logarithmic
case there are no q-variables, and in the rank 1 case the matrices are elements of
k[[t, u]], so they commute. Then K = U−2, G = U−1 and T̃ i = T i−1 for 1 ≤ i ≤ n.
The system of PDEs (4.4.4)-(4.4.6) is then

∂uP (t, u) + P (t, u)U≥0(t, u) = 0,

∂tiP (t, u) + P (q, t, u)T i≥0(t, u) = 0,

where U≥0 = ∑
k≥0 Uku

k and T i≥0 = ∑
k≥0 T

i
ku

k. We furthermore need P (0, 0) ̸= 0
in order for P (t, u) to be invertible.

It is readily checked, using flatness, that the ansatz

P (t, u) =

exp
(
−

n∑
i=1

∫ ti

0

(
T i≥0(t1, . . . , ti−1, si, 0, . . . , 0, u) + T i≥0(0, u)

)
dsi −

∫ u

0
U≥0(0, v)dv

)
(4.4.24)

solves the system of PDEs, and is invertible since P (0, 0) = 1.

In the following example, we discuss the case of rank 1 logarithmic F-bundle, and
provide a counter-example to the existence part of Theorem 4.4.2 without assuming
the framing is strong with respect to D.

Example 4.4.25. LetH be the trivial rank 1 bundle over Spf k[[q, u]]. Let∇ = d+ Ω
be the connection on H with Ω = αdq

q
, where α ∈ k. Then (H,∇) is a F-bundle

and ∇fr
0 = d is a framing for (H,∇)|q=0. It is strong with respect to D if and only if

α = 0. The differential system to solve in order to extend the framing is

∂P

∂u
= 0,

q
∂P

∂q
+ αP = 0.

If α ̸= 0, all solutions to this system are scalar multiples of αq−1. In particular, they
are not well-defined at q = 0.
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4.4.2 Extension of framing for non-archimedean F-bundles
In this subsection, we establish the theorem of extension of framing for non-
archimedean F-bundles, building on the results of the previous subsection.

Theorem 4.4.26. Let B be a smooth k-analytic space, and b ∈ B a k-rational point.
Let (H,∇) be a non-archimedean F-bundle overB. Then every framing of (H,∇) at
b extends uniquely and explicitly to a framing over an admissible open neighborhood
U of b in B.

We need to show that the gauge transformation P (t, u) constructed in the formal
case is convergent on an admissible open neighborhood of t = 0, u = 0. This
gauge transformation is characterized by P (0, u) = 0 and the equations (4.4.6) for
1 ≤ j ≤ n. We use these equations to obtain estimates on the coefficients of P (t, u).

Lemma 4.4.27. Let (R, | · |) be a Banach k-algebra. Let Q = id + ∑
r≥1 Qrt

r ∈
Mat(m×m,R)[[t]], and write Q−1 = id +∑

r≥1(Q−1)rtr. For ℓ ≥ 1 we have

|(Q−1)ℓ| ≤ max
ℓ≥k≥1, ri≥1
r1+···+rk=ℓ

k∏
i=1
|Qri
|.

Proof. We have Q−1 = ∑
k≥0(−1)k

(∑
r≥1 Qrt

r
)k

. Isolating the coefficient of tℓ

(ℓ ≥ 1) we obtain
(Q−1)ℓ =

∑
k≥0

∑
r1+···+rk=ℓ

ri≥1

∏
1≤i≤k

Qri
,

and we see that only the range 1 ≤ k ≤ ℓ contributes. This completes the proof.

Proposition 4.4.28. Let (R, | · |) be a Banach k-algebra and let T ∈ Mat(m ×
m,R)⟨t, u⟩. Let P (t, u) ∈ Mat(m×m,R)[[t, u]] be the unique solution of the system

∂tP = u−1
(
−TP + PP−1

0 T−1P0
)
,

P (0, u) = id,

where P0 := P (t, 0). Then P is convergent on the open disk of radius min
(
1, 1

|T |

)
,

meaning that for all 0 < ρ < min
(
1, 1

|T |

)
in
√
|k×| we have P ∈ Mat(m ×

m,R)⟨ρ−1t, ρ−1u).

Proof. We write T = ∑
ℓ≥0
k≥−1

Tℓ,kt
ℓuk+1. Since we assume T is convergent on the

closed unit disk, we have for all ℓ ≥ 0, k ≥ −1

|Tℓ,k| ≤ |T |. (4.4.29)
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Let P := id +∑
ℓ≥1
k≥0

Pℓ,kt
ℓuk and vℓ,k := |Pℓ,k|. If we show vℓ,k ≤ αℓ+k for α > 0,

then P (t, u) converges on the open polydisk of radius 1
α
.

We have seen in Lemma 4.4.18 that P is uniquely determined by the recursion

(ℓ+1)Pℓ+1,k = −
∑

ℓ1+ℓ2=ℓ
k1+k2=k+1

Tℓ1,k1−1Pℓ2,k2 +
∑

ℓ1+ℓ2+ℓ3+ℓ4=ℓ
Pℓ1,k+1(P−1

0 )ℓ2Tℓ3,−1Pℓ4,0.

Applying the norm, we obtain

(ℓ+ 1)vℓ+1,k ≤ max

 max
ℓ1+ℓ2=ℓ

k1+k2=k+1

|Tℓ1,k1−1||Pℓ2,k2|, max
ℓ1+ℓ2+ℓ3+ℓ4=ℓ

ℓ1 ̸=0

|Pℓ1,k+1||(P−1
0 )ℓ2||(T−1)ℓ3||(P0)ℓ4|


≤ |T | ·max

 max
ℓ1+ℓ2=ℓ

k1+k2=k+1

vℓ2,k2 , max
ℓ1+ℓ2+ℓ3+ℓ4=ℓ

ℓ1 ̸=0

vℓ1,k+1vℓ4,0|(P−1
0 )ℓ2|

 ,
where on the second inequality we use (4.4.29).

Let α := max(1, |T |). We use the above inequality to prove by induction on ℓ ≥ 0
that

∀k ≥ 0, vℓ,k ≤ αℓ.

For ℓ = 0, we have v0,k = δ0,k so the inequality is obvious. Now assume vr,k ≤ αr

for all r ≤ ℓ. By Lemma 4.4.27, we then have |(P−1
0 )r| ≤ max1≤i≤r α

i = αr for all
r ≤ ℓ. Since α ≥ |T |, we deduce that

(ℓ+ 1)vℓ+1,k ≤ |T |max

 max
s≤ℓ

k2≤k+1

αs, max
ℓ1+ℓ2+ℓ4≤ℓ

ℓ1 ̸=0

αℓ1+ℓ2+ℓ4


= |T |αℓ ≤ αℓ+1 ≤ (ℓ+ 1)αℓ+1.

This concludes the inductive step.

Since α ≥ 1, we have vℓ,k ≤ αℓ ≤ αℓ+k for all ℓ, k ≥ 0. We deduce that P converges
on the open disk of radius 1

α
, completing the proof.

We can now finish the proof of Theorem 4.4.26.

Proof of Theorem 4.4.26. Up to restricting to an open neighborhood of b, we may
assume thatB = SpTn by Lemma 4.3.9. Let (t1, . . . , tn) be local analytic coordinates
centered at b. After rescaling we can assume that the connection matrices converge
on Sp k⟨t1, . . . , tn, u⟩.
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As in the formal case, we can reformulate the extension of framing problem into a
system of PDEs (4.4.4) and (4.4.6). We can solve the equations (4.4.6) inductively
on the number of t-variables, and by Lemma 4.4.22 the equation (4.4.4) will be
automatically satisfied. Using Proposition 4.4.28 inductively, we obtain that at each
step the solution, i.e the gauge transformation, converges on an admissible open
neighborhood of b.

4.4.3 Reconstruction of isomorphism of framed maximal F-bundles
In this subsection, we explain how to use the extension of framing for logarithmic
F-bundles (Theorem 4.4.2) to reconstruct an isomorphism of framed maximal F-
bundles compatible with the framings. This is useful for establishing the uniqueness
of mirror maps in applications to enumerative geometry.

Definition 4.4.30 (Compatibility of framings). For i = 1, 2 let (Hi,∇i,∇fr
i )/(Bi, Di)

be two framed logarithmic F-bundles. A morphism (f,Φ): (H1,∇1)/(B1, D1)→
(H2,∇2)/(B2, D2) of logarithmic F-bundles is said to be compatible with the
framings if Φ ◦ ∇fr

1 = (f × idu)∗∇fr
2 ◦ Φ.

Proposition 4.4.31. For i = 1, 2, let (Hi,∇i)/(Bi, Di) be a logarithmic F-bundle
where Bi is the formal neighborhood of a rational point in a smooth k-variety. Let
(f,Φ): (H1,∇1)/(B1, D1)→ (H2,∇2)/(B2, D2) be an isomorphism of logarithmic
F-bundles with f(b1) = b2. Assume (H1,∇1)/(B1, D1) has a framing ∇fr

1 .

1. The bundle map Φ is uniquely determined by its restriction toH1|b1×Spf k[[u]].

2. If (H1,∇1) and (H2,∇2) are maximal, then the map on the bases f is also
uniquely determined by its restriction to b1, up to some multiplicative constants in the
logarithmic directions. The reconstruction is explicit after fixing compatible cyclic
vectors at b1 and b2.

Proof. For (1), let Hi denote the fiber of Hi over bi, and ϕ ∈ Hom(H1, H2) the
restriction of Φ at b1. Fix a ∇fr

1 -flat trivialization Ψ1 of H1 and an arbitrary
trivialization Ψ2 of (f × idu)∗H2, producing the commutative diagram

H1 H1 ×B1 × Spf k[[u]]

(f × idu)∗H2 H2 ×B1 × Spf k[[u]].

Ψ1

Φ Φ̃
Ψ2
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Denote by φ : H1 → (f × idu)∗H2 the map obtained from ϕ by taking its constant
extension with respect to the trivializations Ψ1 and Ψ2. If ϕ̃ = Φ̃|(b1,0), then
φ = Ψ−1

2 ◦ (ϕ̃× idB1×Spf k[[u]]) ◦Ψ1. Define two connections on (f × idu)∗H2

∇′
1 := (f × idu)∗∇2 = Φ ◦ ∇1 ◦ Φ−1,

∇′
2 := φ ◦ ∇1 ◦ φ−1.

In the trivialization Ψ2 we see that∇′
1 is framed over allB1, and∇′

2 is framed only at
b1. Furthermore∇′

1 and∇′
2 are gauge equivalent under Φ◦φ−1, and Φ◦φ−1|b1 = id.

We conclude from Theorem 4.4.2 that Φ ◦ φ−1 is unique, and then so is Φ provided
that we know Φ|b1×Spf k[[u]]. This proves (1).

Next we prove (2), and assume that the F-bundles are maximal. The framing ∇fr
1

induces unique framings∇fr
2 (resp.∇fr ′

2 ) on (H2,∇2) (resp. f ∗(H2,∇2)) such that
in the diagram

(H1,∇1)
(idB1 ,Φ)
−−−−−→ f ∗(H2,∇2)

(f,id)−−−→ (H2,∇2),

all the morphisms are compatible with the framings. Furthermore, the framing ∇fr ′
2

is determined by∇fr
1 and Φ, and hence is already known by (1).

Leth1 be a∇fr
1 -flat section of cyclic vectors for (H1,∇1). Because of the compatibility

of the framings, h1 induces a ∇fr ′
2 -flat section of cyclic vectors h′

2 := Φ(h1) for
f ∗(H2,∇2), and a ∇fr

2 -flat section of cyclic vectors h2 := (f−1 × idu)∗(h′
2) for

(H2,∇2). We obtain isomorphisms ηi := µHi
(·)(hi) : TBi(− logDi)→ Hi|u=0 that

fit into a commutative diagram

TB1(− logD1) f ∗TB2(− logD2)

H1|u=0 (f × idu)∗H2|u=0,

df

η1 f∗(η2)

Φ|u=0

where all arrows are isomorphisms. The maps η1 and Φ|u=0 are already known.
We have f ∗(η2) = µ(f×idu)∗H2(·)(h′

2) by construction and compatibility of (f, id)
with the framings. So f ∗(η2) is determined by h1, ∇fr ′

2 and Φ, hence is known. We
deduce that df is determined by h1,∇fr

1 and Φ.

Since Bi are formal neighborhoods of points, the differential df determines f
uniquely, up to some multiplicative constants in the logarithmic directions. To see
this, choose coordinates (q, t) = (q1, . . . , qr, t1, . . . , tn) for (B1, D1), centered at
b1, where

∏
1≤i≤r qi = 0 is a local equation for D1. Similarly, choose coordinates



117

(p, s) = (p1, . . . , pr, s1, . . . , sn) for (B2, D2) centered at f(b1). In coordinates, the
restriction of f to B1 is given by f = (f1, . . . , fr+n) where qi = fi(p, s) and
tj = fr+j(p, s). The differential df corresponds to a map of k[[q, t]]-modules

Ψ: Γ(B1, f
∗Ω1

B2(logD2))→ Γ(B1,Ω1
B1(logD1)),

given by the pullback of differential forms, i.e.

Ψ(d log pi) = d log fi = dfi
fi
, Ψ(dsj) = dfr+j.

We conclude the proof by integrating the differential forms.

4.4.4 Equivalence of F-bundles over a point
For applications in Section 4.5, we present some results here for the classification
of framed F-bundles over a point up to gauge equivalence; see Theorem 4.4.34 and
Corollary 4.4.35.

Let (H,∇,∇fr) be a framed F-bundle over a point. Fix a ∇fr-flat trivialization
H ≃ H ⊗k k[[u]] and write

∇u∂u = u∂u + u−1K + G,

with K,G ∈ Endk(H).

We assume that the endomorphism K induces a k-vector space decomposition
H = ⊕

1≤k≤mHk into generalized eigenspaces, and all Hk have same dimensions.
Then we have a k-vector space H0 and a splitting of the fiber

iso : H⊕m
0

∼−→ H. (4.4.32)

So we can represent endomorphisms on H as m×m matrices with coefficients in
Endk(H0). In particular we write K = (Kij)1≤i,j≤m and G = (Gij)1≤i,j≤m. By
construction Kij = 0 if i ̸= j and Kii = ξiidH0 + Ni with ξi ∈ k and Ni a nilpotent
endomorphism.

Fix c1, . . . , cr,d ∈ Endk(H0) such that ci are nilpotent endomorphisms, [ci, cj] = 0
and [d, ci] = dici for di ∈ N>0.

Definition 4.4.33. We denote by F(H, iso,d, (ci)1≤i≤r) the space of connections
∇′ onH which, in the fixed∇fr-flat trivialization, are of the form

∇′
u∂u

= u∂u + u−1K′ + (µ′D + H′),

where
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1. µ′ /∈ Q<0 ⊂ k,

2. K′,D,H′ ∈ Endk(H),

3. K′
ij,H′

ij ∈ k[c1, . . . , cr], and

4. Dii = d and Dij = 0 for i ̸= j.

Theorem 4.4.34. Let (H,∇,∇fr) be as above. Assume∇ ∈ F(H, iso,d, (ci)1≤i≤r)
and let∇′ ∈ F(H, iso,d, (ci)1≤i≤r). Write

∇u∂u = u∂u + u−1K + (µD + H),

∇′
u∂u

= u∂u + u−1K′ + (µ′D + H′).

Then ∇ is gauge-equivalent to ∇′ under Φ(u) ∈ GL(H[[u]]) with Φij(u) ∈
k[c1, . . . , cr][[u]] if and only if the following three conditions are satisfied:

1. there exists ϕ ∈ GL(H) with ϕij ∈ k[c1, . . . , cr] such that K = ϕ−1 ◦K′ ◦ ϕ,

2. µ = µ′, and

3. for all 1 ≤ i ≤ m, Hii = (ϕ−1 ◦H′ ◦ ϕ)ii mod (c1, . . . , cr).

Furthermore, Φ is then uniquely determined by the initial condition Φ|u=0 = ϕ

mod (c1, . . . , cr).

The assumptions on the form of the operators allow us to work in the non-commutative
subalgebra k[d, c1, . . . , cr] ⊂ Endk(H0). We then reduce to the case of simple
eigenvalues by treating the operators d, (ci)1≤i≤r as formal variables. In the simple
eigenvalues case, the gauge equivalence can be constructed inductively.

As a corollary, in the simple eigenvalue case we obtain a classification of F-bundles
over a point with a fixed framing.

Corollary 4.4.35. LetH ≃ H×k[[u]] be a trivialized rankm vector bundle over k[[u]].
Let (H,∇) and (H,∇′) be two F-bundle structures framed in the given trivialization,
and write

∇u∂u = u∂u + u−1K + G,

∇′
u∂u

= u∂u + u−1K′ + G′.

Assume K has simple eigenvalues. Then (H,∇) is isomorphic to (H,∇′) if and only
if there exists ϕ ∈ GL(H) such that
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1. K = ϕ−1 ◦K′ ◦ ϕ, and

2. in an eigenbasis of K, we have (G)ii = (ϕ−1 ◦G′ ◦ ϕ)ii for 1 ≤ i ≤ m.

Furthermore, the gauge equivalence is uniquely and explicitly determined by the
initial condition ϕ at u = 0.

Proof. The choice of an eigenbasis for K produces a splitting iso : k⊕m ∼−→ H as in
(4.4.32). Since there are no nilpotent operators in Endk(k) ≃ k, and this algebra is
commutative, the content of Definition 4.4.33 becomes empty, and the corollary is
just a reformulation of Theorem 4.4.34 in this special case.

Proof of Theorem 4.4.34. LetR0 = k[[c1, . . . , cr]] andR = k[deg][[c1, . . . , cr]] where
{(ci)1≤i≤r, deg} are formal variables satisfying the commutation relations [ci, cj] = 0
and [deg, ci] = dici. There is a specialization map R→ k[d, c1, . . . , cr]. Using iso
we also have a specialization map

Mat(m×m,R)→ Endk(H).

By the definition of F(H, iso,d, (ci)1≤i≤r), the connections ∇u∂u and ∇′
u∂u

lift to
differential operators of the form

u∂u + u−1K + µD +H,

u∂u + u−1K ′ + µ′D +H ′,

with K,K ′, H,H ′ ∈ Mat(m×m,R0) and D = deg ·Idm. A gauge equivalence Φ
as in the theorem also lifts along the specialization map, so we have reduced the
problem to finding Φ(u) ∈ GL(m,R0[[u]]) such that

Φ−1(u∂u + u−1K + µD +H)Φ = u∂u + u−1K ′ + µ′D +H ′. (4.4.36)

The conditions (1)-(3) also lift under the specialization map, so we are left to prove
the following lemma.

Lemma 4.4.37. There exists a gauge equivalence Φ(u) ∈ GL(m,R0[[u]]) solving
(4.4.36) if and only if there exists Q ∈ GL(m,R0) such that

(a) K = Q−1K ′Q,

(b) µ = µ′, and
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(c) Hii = (Q−1H ′Q)ii mod (c1, . . . , cr).

In this case, Φ(u) is uniquely determined by the initial condition Φ|u=0 = Q

mod (c1, . . . , cr).

Proof. By construction of the splitting (4.4.32) and Definition 4.4.33(2), the matrix
K is diagonal, and Kii = ξi mod (c1, . . . , cr), where {ξ1, . . . , ξm} are the distinct
eigenvalues of K. In particularK has simple eigenvalues, so adK = [K, ·] has kernel
given by diagonal matrices, and image given by matrices with vanishing diagonal.

Let us first prove that the conditions (a)-(c) are sufficient. Fix Q ∈ GL(m,R0)
satisfying (a) and (c). We are looking for Φ(u) such that Φ|u=0 = Q mod (c1, . . . , cr)
solving (4.4.36). Write Φ(u) = QP (u) with P (u) = ∑

k≥0 Pku
k satisfying P0 =

Idm mod (c1, . . . , cr). Equation (4.4.36) then reduces to the system

[K,P0] = 0, (4.4.38)

[K,Pk+1] = φ(Pk)− kPk, (4.4.39)

where
φ : M 7→M(µ′Q−1DQ+Q−1H ′Q)− (µD +H)M.

Before analyzing the existence of solutions, let us rewrite (4.4.39) in order to isolate
the terms involving the non-commutative variable deg. Define the k-linear operator
Eu(·) := [deg, ·] onR. The commutations relations inR give Eu(·) = ∑

1≤i≤r dici∂ci
.

For M ∈ Mat(m × m,R), we write Eu(M) := (Eu(Mij))1≤i,j≤m. We have
Eu(M) = [D,M ], so

φ(M) = M(µ′D +Q−1 Eu(Q) +Q−1H ′Q)− (µD +H)M

= µ′MD − µDM +M(Q−1 Eu(Q) +Q−1H ′Q)−HM

= (µ′ − µ)MD − µEu(M) +M(Q−1 Eu(Q) +Q−1H ′Q)−HM.

Since µ = µ′, the term involving D vanishes.

We now prove by induction on k the following: there exists a unique sequence of
matrices (P0, . . . , Pk) such that (i) P0 = Idm mod (c1, . . . , cr) and [K,P0] = 0, (ii)
(Pℓ, Pℓ+1) solves (4.4.39) for 0 ≤ ℓ ≤ k − 1, and (iii) φ(Pk)− kPk ∈ im adK .

We construct P0 satisfying (i), (ii) and (iii). The condition [K,P0] = 0 implies that
P0 is a diagonal matrix, P0 = Diag(δ1, . . . , δn). The initial condition P0 = Idm
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mod (c1, . . . , cr) gives δi = 1 mod (c1, . . . , cr). To ensure that we can solve the
recursion for P1, we need φ(P0)ii = 0 for all i. This provides the relation

µEu(δi) = αiδi, (4.4.40)

for all i, where αi = (Q−1 Eu(Q) + Q−1H ′Q − H)ii. For any x ∈ R0, we have
Eu(x) ∈ (c1, . . . , cr)R0. Together with Condition (c), this implies that αi = 0
mod (c1, . . . , cr). We can then solve for δi order by order in (c1, . . . , cr) and
determine P0 uniquely from the initial condition P0 = Idm mod (c1, . . . , cr). Note
that the condition on µ in Definition 4.4.33 ensures that we obtain a recursion that
we can solve.

Let k ≥ 1, and assume (P0, . . . , Pk−1) are constructed. The existence of a matrix
P such that [K,P ] = φ(Pk−1) − (k − 1)Pk−1 is guaranteed by Condition (iii) of
the induction hypothesis. The matrix P is determined up to a diagonal matrix.
We first prove that for any choice of P , there exists a unique diagonal matrix ∆
such that φ(P + ∆) − k(P + ∆) ∈ im adK , i.e. has vanishing diagonal. Let
∆ = Diag(δ1, . . . , δn) be a diagonal matrix, the vanishing of the i-th diagonal term
of φ(P + ∆)− k(P + ∆) is equivalent to an equation of the form

µEu(δi) + kδi = αδi + β, (4.4.41)

with

α = (Q−1 Eu(Q))ii + (Q−1H ′Q)ii −Hii,

β = (φ(P )− kP )ii.

As in the initial step (k = 0), we have α = 0 mod (c1, . . . , cr). Since δi is a
power series in (c1, . . . , cr), (4.4.41) provides a recursion relation on the coefficients
of δi. Since k ≥ 1 the constant term of δi is uniquely determined by looking at
the equation modulo (c1, . . . , cr), where it gives kδi = β mod (c1, . . . , cr). The
other coefficients are then uniquely determined inductively. The condition on µ in
Definition 4.4.33 ensures that we obtain a recursion that we can solve, thus δi is
uniquely determined from P . We have proved the existence of a matrix Pk satisfying
Conditions (ii) and (iii) of the induction. Now we prove uniqueness. Let Pk and
P̃k be two matrices satisfying (ii) and (iii). In particular, they are solutions of the
equation [K,P ] = φ(Pk−1)− (k− 1)Pk−1, so there exists a diagonal matrix ∆ such
that Pk = P̃k + ∆. Condition (iii) gives φ(P̃k + ∆)− k(P̃k + ∆) ∈ im adK . Since
P̃k already satisfies (iii) and ∆ is diagonal, we deduce from the uniqueness in the
previous paragraph that ∆ = 0. Hence Pk = P̃k, concluding the induction.
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Now we prove Conditions (a)-(c) assuming that there exists Φ(u) = ∑
k≥0 Pku

k ∈
GL(m,R0[[u]]) solving (4.4.36). In particular P0 ∈ GL(m,R0). Multiplying
(4.4.36) on the left by Φ and isolating the uk term, we obtain for k = −1 and k ≥ 0
respectively:

KP0 = P0K
′,

kPk +KPk+1 + (µD)Pk +HPk = Pk+1K
′ + Pk(µ′D) + PkH

′.

Let Q = P−1
0 , it satisfies Condition (a). For any 1 ≤ i ≤ r we have deg · ci =

ci · deg +dici. By comparing the coefficient of the formal variable deg we obtain
µ = µ′, verifying Condition (b). Looking at the u0 term, using K = P0K

′P−1
0 and

modding out (ci)1≤i≤r, we obtain

K(P1P
−1
0 )− P1P

−1
0 K +H = P0H

′P−1
0 mod (c1, . . . , cr).

Since [K,P1(P0)−1] has vanishing diagonal, Condition (c) follows.

4.5 Application: quantum cohomology of projective bundle
In this section, we study the decomposition of the maximal A-model F-bundle
associated to a projective bundle. We prove the existence of the decomposition when
restricting the F-bundle to a point, as well as the uniqueness of the decomposition
(Theorems 4.5.16 and 4.5.20). In Section 4.5.4, we state the analogous results in the
case of a blowup of algebraic varieties (Theorems 4.5.22 and 4.5.24).

Let X be a smooth complex projective variety of dimension d, V → X a vector
bundle of rank m on X , P := P(V ) the associated projective bundle of lines in
V , and write π : P → X . We fix an ample divisor class ωX ∈ H2(X,Z), and a
homogeneous basis {Ti}0≤i≤N of H∗(X,Q) extending {1, ωX}.

4.5.1 A-model F-bundle of P at the limiting point
We have the following classical decomposition of the cohomology of P , as a special
case of Leray-Hirsch theorem (see [Hat02, Theorem 4D-1]).

Proposition 4.5.1. Let h := c1(OP (1)). We have the splitting isomorphism of
cohomology groups

iso : Hsplit :=
m−1⊕
i=0

H∗(X,Q)[−2i]
∑

hi∪π∗

−−−−−→ H∗(P,Q). (4.5.2)

Lemma 4.5.3. We have

KP = π∗KX −mh− π∗c1V.
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Proof. It follows from the relative Euler sequence

0→ ΩP/X → OP (−1)⊗ π∗V ∨ → OP → 0

that
KP/X = −mh− π∗c1V.

Hence
KP = π∗KX +KP/X = π∗KX −mh− π∗c1V.

Recall that we fixed an ample class ωX on X . Let ωP := π∗ωX .

Lemma 4.5.4. The class ωP is nef and satisfies Assumption 4.2.22.

Proof. Since ωX is ample, its pullback ωP is nef. Furthermore, there exists
ε > 0 such that ωX + ε(c1TX + c1V ) is ample. Then, by Lemma 4.5.3, we have
ωP + εc1P = π∗(ωX + ε(c1TX + c1V )) + εmh. It is ample, since it is the sum
of a nef class and an ample class ([Laz04, Corollary 1.4.10]). We conclude by
Lemma 4.2.23.

Using the homogeneous basis {Ti}0≤i≤N of H∗(X,Q), we produce a homogeneous
basis

{π∗(Ti)hj, 0 ≤ i ≤ N, 0 ≤ j ≤ m− 1}

of H∗(P,C) extending ωP . We denote by {ti,j} the induced linear coordinates on
H∗(P,C).

Let (H,∇)/B denote the maximal A-model F-bundle ofP constructed from ωP , with
base point 0 ∈ H∗(P,C) (see Example 4.2.25). Write (q, t = {ti,j, (i, j) ̸= (1, 0)})
for the coordinates on B. Let b denote the closed point of B, given by q = 0, t = 0,
which we refer to as the limiting point in this section. Let Klim and Glim denote the
restrictions of the operators K and G at the limiting point (see Definition 4.2.17).

Let us compute the matrices of Klim and Glim under the splitting iso in (4.5.2).

We have

Glim =


GX − m−1

2

GX − m−3
2

. . .
GX + m−1

2

 ,

and Klim is computed in the following proposition.
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Proposition 4.5.5. The operator Klim on H∗(P,C) has the following matrix with
respect to the splitting in (4.5.2):

Klim =



c1TX + c1V m(1− cmV )
m c1TX + c1V −mcm−1V

m
. . . ...
. . . c1TX + c1V −mc2V

m c1TX + c1V −mc1V


.

Proof. Consider four operators K1, . . . , K4 on Hsplit such that for γ ∈ H∗(P,C) ≃
Hsplit, we have

1. K1(γ) = π∗(c1TX) ∪ γ,

2. K2(γ) = h ∪ γ,

3. K3(γ) = π∗c1V ∪ γ, and

4. K4(γ) = p∗q
∗γ, where p, q : P ×X P → P are the projections.

By Lemma 4.5.3, the classical multiplication by c1TP has matrix K1 +mK2 +K3.

The non-classical part of Klim is expressed in terms of 3-pointed Gromov-Witten
invariants of the form ⟨c1P, γ1, γ2⟩β0,3 for an effective curve class β ̸= 0 such that
β · ωP = 0 and cohomology classes γ1, γ2 ∈ H∗(P,C). Fix such a β, by the
projection formula, we have β · ωP = (π∗β) · ωX . Since ωX is ample, this implies
that π∗β = 0, i.e. β = δ[L] for [L] the class of a line in a fiber of π and δ ∈ N>0

(δ = 0 gives the classical contribution). By the divisor axiom and Lemma 4.5.3, we
have

⟨c1P, γ1, γ2⟩β0,3 = (β · c1P ) ⟨γ1, γ2⟩β0,2 = δm⟨γ1, γ2⟩β0,2.

Let M :=M0,2(P, δ[L]) denote the moduli stack of 2-pointed rational stable maps
of class β. By the Riemann-Roch formula, the virtual dimension dimvir M of M is
equal to dimP − 3 +

∫
β c1(P ) + 2 = d− 2 +m(δ + 1). Since β is a fiber class, the

evaluation map
ev1× ev2 : M → P × P

factors through
P ×X P ⊂ P × P.
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In order to have nonzero counts, we need dimvir M ≤ dimP ×X P which implies
that δ = 1, i.e. the curve class can only be [L]. We then have an isomorphism

ev1× ev2 : M ∼→ P ×X P ⊂ P × P.

In particular, M is smooth, so [M ]vir = [M ]. Under this isomorphism, the operator

γ 7→ ev1,∗
(
ev∗

2 γ ∪ [M ]vir
)

= ev1,∗ ev∗
2 γ

is equal to mK4. Therefore, the non-classical contribution to Klim is mK4.

We obtain
Klim = iso ◦ (K1 +mK2 +K3 +mK4) ◦ iso−1. (4.5.6)

Now let us calculate the four matrices K1, . . . , K4. For any αi ∈ H∗(X,C)[−2i],
we have

π∗(c1TX) ∪ (hi ∪ π∗αi) = hi ∪ π∗(c1TX ∪ αi),

hence K1 = (c1TX∪) · idHsplit . Similarly, we have that K3 = (c1V ∪) · idHsplit . For
i = 0, . . . ,m− 1, we have

h ∪ (hi ∪ π∗αi) = hi+1 ∪ π∗αi.

When i = m− 1, by [BT82, Eq. (20.6)] we have

h ∪ (hm−1 ∪ π∗αi) = hm ∪ π∗αm−1 = −
m−1∑
j=0

hj ∪ π∗(cm−jV ∪ αm−1).

So

K2 =



−cmV
1 −cm−1V

. . . ...
1 −c2V

1 −c1V


.

For any αi ∈ H∗(X,C)[−2i], i = 0, . . . ,m−1, since π◦p = π◦q, by the projection
formula we have

p∗q
∗(hi ∪ π∗αi) = p∗(q∗(hi) ∪ q∗π∗αi) = p∗(q∗(hi) ∪ p∗π∗αi) = p∗q

∗(hi) ∪ π∗αi.

Since p∗q
∗(hi) ∈ H2(i−(m−1))(P,C), it vanishes unless i = m− 1, in which case it

is equal to the identity. We deduce that the matrix of K4 has only one nonzero block:
the top-right corner, which is idH∗(X,C).

Substituting the above computations into (4.5.6), we conclude the proof.
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4.5.2 Decomposition of Klim

In this subsection, we study the generalized eigenspaces of Klim. We will consider
the commutative subalgebra C[t, c1, . . . , cm] of EndC(H∗(X,C)) generated by the
commuting nilpotent operators

t := c1TX ∪ and ci := ciV ∪ (1 ≤ i ≤ m).

Let d := GX = 1
2(degX − dimX), where degX(α) = iα for α ∈ H i(X,C). We

have the commutation relations

[d, t] = t, [d, ci] = ici. (4.5.7)

Lemma 4.5.8. 1. There existsϕ = (ϕij) ∈ GL(Hsplit) with entriesϕij ∈ C[c1, . . . , cm],
and λi = λi∪ ∈ C[c1, . . . , cm] ⊂ EndC(H∗(X,C)) such that

Ksplit := ϕ−1Klimϕ =


t + c1

. . .
t + c1

+m


λ1

. . .
λm

 .

2. Up to reordering the blocks, for 1 ≤ i ≤ m we have

λi = ξi−1 − c1

m
mod (c2

1, c2, . . . , cm), ξ = e
2πi
m .

In particular the i-th diagonal block of Ksplit is the cup-product with an element in
H∗(X,C) whose H2-component is c1TX .

Proof. As an element of Mat(m×m,C[c1, . . . , cm]), we have Klim = (t+c1)Idm+
mM , where M is the companion matrix

M =



0 1− cm
1 −cm−1

1 −cm−2
. . . ...

1 −c1


. (4.5.9)

The characteristic polynomial of M is λm + ∑m−1
i=1 cm−iλ

i + (cm − 1). Modulo
(c1, . . . , cm) this polynomial has simple roots given by m-th roots of unity. Since it
is monic, we can lift these roots to C[c1, . . . , cm] by solving the equation order by
order. (1) follows.
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For (2), the characteristic polynomial of M modulo (c2
1, c2, . . . , cm) is

λm + c1λ
m−1 − 1 =

(
λ+ c1

m

)m
− 1.

We deduce that mλi = me
2πi(i−1)

m − c1 modulo those classes, proving (2).

Lemma 4.5.8 implies that Klim has m generalized eigenspaces, all isomorphic to
H∗(X,C), matching the setup of Section 4.4.4. The splitting considered in (4.4.32)
is given by the modified isomorphism

iso ◦ ϕ−1 : Hsplit
∼−→ H∗(P,C). (4.5.10)

We will use the following lemma to check Condition (c) of Theorem 4.4.34.

Lemma 4.5.11. Let H = Diag(µ1, · · · , µm) ∈ GL(Hsplit) be a block diagonal
matrix with scalar entries. Let ϕ = (ϕij) ∈ GL(Hsplit) be as in Lemma 4.5.8.
Assume that

∑
1≤j≤m µj = 0. Then (ϕ−1 ◦H ◦ ϕ)ii = 0 for all 1 ≤ i ≤ m.

Proof. As in the previous lemma, we view ϕ and H as elements in Mat(m ×
m,C[[c1, . . . , cm]]). By construction, ϕ diagonalizes the companion matrix M ∈
Mat(m×m,C[c1, . . . , cm]) from (4.5.9). Let Λ = Diag(λ1, . . . ,λm). By construc-
tion we have Mϕ = ϕΛ. For every 1 ≤ i ≤ m, we deduce

ϕmi = λiϕ1i, ϕ1i = λiϕ2i, ϕ2i = λiϕ3i, · · · , ϕm−1,i = λiϕmi.

Similarly, for ψ := ϕ−1 we have that Λψ = ψM , and we obtain for all 1 ≤ i ≤ m

λiψi1 = ψi2, λiψi2 = ψi3, . . . , λiψi,m−1 = ψim, λiψim = ψi1.

In particular for 1 ≤ i ≤ m, we have

ψi1ϕ1i = ψi2ϕ2i = · · · = ψimϕmi.

We deduce

(ϕ−1 ◦H ◦ ϕ)ii =
∑

1≤j≤m
ψij(H)jjϕji = ψi1ϕ1i

∑
1≤j≤m

µj = 0.

Remark 4.5.12. The automorphism ϕ mod (c1, . . . , cm) gives the initial condition
for the gauge equivalence in Theorem 4.5.16. Since it diagonalizes the (block)
circulant matrix M mod (c1, . . . , cm) it can be chosen to be the matrix

Q = 1√
m


1 ξ−1 · · · ξ−(m−1)

1 ξ−2 · · · (ξ−2)m−1

...
...

1 ξ−(m−1) · · · (ξ−(m−1))m−1

 .
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Example 4.5.13 (Trivial bundle case). If V = O⊕m
X is a trivial vector bundle, then

ci = 0 for 1 ≤ i ≤ m. In particular, we have λi = ξi−1, where ξ = e
2πi
m .

Example 4.5.14 (P1-bundle case). Let V be a rank 2 bundle over X of dimension d.
Then the classes (λ1, λ2) are obtained by solving the quadratic equation

λ2 + c1λ+ c2 − 1 = 0,

where ci is the cup product with ciV . Since (c2
1)

d
2 = (c2)

d
2 = 0, the discriminant

∆ = c2
1 − 4c2 + 4 admits a square-root in C[c1, c2] given by

√
∆ = 2

√
1 + c2

1
4 − c2 = 2

1 +
∑

1≤n≤ d
2

(
1/2
n

)(
c2

1
4 − c2

)n .
Using the quadratic formula, we obtain the roots (i = 1, 2)

λi = (−1)i−1 − c1V

2 + (−1)i−1 ∑
1≤n≤ d

2

(
1/2
n

)(
(c1V )2

4 − c2V

)n
.

4.5.3 Uniqueness of the decomposition
In this subsection, we prove the uniqueness of the decomposition of the maximal
A-model associated to a projective bundle, as well as its existence at the limiting
point (Theorems 4.5.16 and 4.5.20). We will consider a maximal A-model F-bundle
(H′,∇′) of X ′ := ∐m

i=1 X with a shifted base point, and use Theorem 4.4.34 to
construct a gauge equivalence between the F-bundle (H,∇) of P and (H′,∇′) over
the base points. The uniqueness results will follow from Theorem 4.4.34 and the
extension of framing theorem.

We have
H∗(X ′,Q) ∼−→

m⊕
i=1

H∗(X,Q). (4.5.15)

Let ω′ ∈ H2(X ′,Q) denote the class corresponding to (ωX , . . . , ωX) under (4.5.15),
it is ample so Assumption 4.2.22 is satisfied.

Fix a homogeneous basis of H2(X ′,Q) extending ω′. Complete it to a homogeneous
basis of H∗(X ′,Q) by adding the elements {Ti, deg Ti ̸= 2} in each copy of
H∗(X,Q).

Let ∆(a) ∈ H∗(X ′,C) be a cohomology class at which the quantum product is
well-defined. We produce (H′,∇′)/B′, the maximal A-model F-bundle of X ′

associated to ω′ with base point ∆(a) as in Example 4.2.25. Let (q, t) denote the
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coordinates on B′, and let b′ denote the closed point of B′, given by t = 0, q = 0,
which we refer to as the limiting point for X ′.

Using the last observation of Lemma 4.5.8, we will interpret Ksplit as the K-operator
of (H′,∇′) for certain values of ∆(a).

For i ∈ {1, . . . ,m} and j such that deg Tj ̸= 2, we denote by ai,j the coordinate of
∆(a) along the basis element Tj in the i-th copy of H∗(X,C) in H∗(X ′,C).

Theorem 4.5.16. There exists an F-bundle isomorphism

Φ(u) : (H,∇)|b → (H′,∇′)|b′ ,

whose components Φij (as power series in u) are given by the cup-product with
elements in H∗(X,C) if and only if the coordinates of the base point ∆(a) satisfy

∑
j : deg Tj ̸=2

deg Tj − 2
2 ai,jTj = c1V +mλi, (4.5.17)

where λi was defined in Lemma 4.5.8.

Furthermore, in this case Φ is uniquely and explicitly determined by the H0-
components of Φij|u=0, and ∆(a) is uniquely determined by (4.5.17), up to a shift in⊕m

i=1 H
2(X,C).

Proof. The bundlesH|b andH′|b′ are trivial by definition, their fibers are identified
withHsplit through (4.5.2) and (4.5.15), and the the connections∇ and∇′ are framed.
We use Theorem 4.4.34 to prove the proposition.

The matrices of Klim, Glim were computed in Section 4.5.1. Write ∇u∂u |b =
u∂u − u−1Ksplit + Gsplit. We have

Gsplit =


GX

. . .
GX

 .

To compute Ksplit, note that the class ω′ is ample. In particular, the restriction to
q = t = 0 of the quantum product associated to Φω′ is the classical cup-product.
Then, Ksplit is block diagonal, and its i-th block is given by

(Ksplit)ii =
(
c1TX +

∑
j : deg Tj ̸=2

deg Tj − 2
2 ai,jTj

)
∪ . (4.5.18)
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Thus, after identifying the fibers with Hsplit, the connections ∇|b and ∇′|b′ lie in
F(Hsplit, id,GX , (Tj∪)0≤j≤N), see Definition 4.4.33. We apply Theorem 4.4.34
with K = −Ksplit, D = Gsplit, H = 0, K′ = −Klim and

H′ = Glim −Gsplit =


−m−1

2

−m−3
2

. . .
m−1

2

 .

Assume first that the coordinates of ∆(a) satisfy (4.5.17). Letϕ = (ϕij) ∈ GL(Hsplit)
denote the automorphism from Lemma 4.5.8. Equations (4.5.17) and (4.5.18) imply
that ϕ−1Klimϕ = Ksplit, which is Condition (1) of the theorem. Condition (2) is
satisfied with µ = µ′ = 1. Condition (3) follows from Lemma 4.5.11 and our choice
of H. We conclude that the connections ∇|b and ∇′|b′ are gauge equivalent through
a bundle isomorphism Φ(u) satisfying the conditions of the theorem.

Now, assume that there exists a bundle isomorphism Φ(u) as in the theorem, in
particular each componentϕij of Φ|u=0 is given by the cup-product with a cohomology
class. Let ϕ := (ϕij) ∈ GL(Hsplit). Since Φ(u) is a gauge equivalence, we have in
particular ϕ−1Klimϕ = Ksplit. Recall from (4.5.18) that Ksplit is block diagonal, and
that its coefficients are given by the cup-product with cohomology classes inH∗(X,C).
The assumption on the components of Φ|u=0 implies that ϕ diagonalizes Klim viewed
as an element of Mat(m×m,R), where R = {α 7→ x ∪ α | x ∈ H∗(X,C)}. The
eigenvalues of Klim as an R-linear map were computed in Lemma 4.5.8: they are
(c1TX + c1V +mλi)∪ with 1 ≤ i ≤ m. In particular, ∆(a) satisfies (4.5.17).

The uniqueness part of the theorem follows from the uniqueness of Theorem 4.4.34,
and the non-degeneracy of the Poincaré pairing.

Remark 4.5.19. If the H2-component of the base point ∆(a) is 0, then the quantum
product converges at ∆(a) by Lemma 4.2.15.

Theorem 4.5.20. Let (f,Φ): (H,∇)/B → (H′,∇′)/B′ be an isomorphism of
F-bundles. Then

1. The bundle map Φ is uniquely and explicitly determined by its restriction to b ∈ B.

2. The base map f is uniquely and explicitly determined by its restriction to b ∈ B,
up to a multiplicative constant in the q direction.
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Proof. The F-bundle (H′,∇′)/B′ is framed by definition. Since ω′ is ample, at the
point b′ the quantum product reduces to the classical cup-product. In particular
(1, . . . ,1) ∈ H∗(X ′,C) is a cyclic vector. The theorem thus follows from a direct
application of Proposition 4.4.31.

We refer to [IK23] regarding the existence of the isomorphism.

4.5.4 Case of blowups of algebraic varieties
In this subsection, we state the analogs of the results in Section 4.5.3 in the case of
blowups of algebraic varieties.

Let X be a smooth project complex algebraic variety, and σ : Z ↪→ X a smooth
closed subvariety of codimension m ≥ 2. Let π : X̃ → X be the blowup of X along
Z. Similar to the projective bundle case, we have a classical decomposition

iso : H∗(X,Q)⊕
m−1⊕
i=1

H∗(Z,Q)[−2i] ∼−→ H∗(X̃,Q). (4.5.21)

Let X ′ := X ⊔∐m−1
i=1 Z. Fix an ample class ωX ∈ H2(X,Q).

Let (H,∇)/B denote the maximal A-model F-bundle of X associated to the nef
class π∗ωX , with base point b = 0 ∈ H∗(X̃,Q) and coordinates (q, t). Fix a
class ∆(a) ∈ H∗(X ′,C) ≃ H∗(X,C)⊕⊕1≤i≤m−1 H

∗(Z,C) at which the quantum
product is well-defined. Let (H′,∇′)/B′ denote the maximal A-model F-bundle
associated to the class (ωX , σ∗ωX , · · · , σ∗ωX), with base point b′ = ∆(a) and
coordinates (q, t) such that q = t = 0 at b′. Since X ′ is a disjoint union, (H′,∇′)
is the product of a maximal A-model F-bundle associated to X and ωX , and m− 1
copies of maximal F-bundles associated to Z and σ∗ωX .

We can prove a result analogous to Theorem 4.5.16. For 1 ≤ i ≤ m, let ci denote the
cup-product with ci(NZ/X). The polynomial λm +∑

i=0 cm−iλ
i + λ has m distinct

roots λi = λi∪ ∈ C[c1, . . . , cm], with

λ1 = 0, λi = ξ2(i−1)−1 −
c1NZ/X

m− 1 mod H≥3(X,C),

where ξ = e
πi

m−1 and 2 ≤ i ≤ m, up to a permutation of the indices {2, . . . ,m}.
Those are the analogs of the eigenvalues computed for Klim in the projective bundle
case.

Let {Sj}1≤j≤dimH∗(Z,C) be a basis of H∗(Z,C) extending σ∗ωX . For 1 ≤ i ≤ m,
let ∆i(a) denote the component of ∆(a) in the i-th summand of (4.5.21), and for
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2 ≤ i ≤ m decompose it as

∆i(a) =
∑
j

ai,jSj.

Using the splitting (4.5.21), we can view an element Φ ∈ EndC(H∗(X̃,C)) as a
matrix (Φi,j)1≤i,j≤m, with Φ1,1 ∈ EndC(H∗(X,C)), and Φi,i ∈ EndC(H∗(Z,C))
for 2 ≤ i ≤ m. The following result is analogous to Theorem 4.5.16.

Theorem 4.5.22. Let ∆(a) ∈ H∗(X ′,C) be a cohomology class at which the
quantum product converges, such that ∆1(a) ∈ H2(X,C), and for 2 ≤ i ≤ m, we
have ∑

j : degSj ̸=2

degZ Sj − 2
2 ai,jSj = c1NZ/X + (m− 1)λi. (4.5.23)

Then, there exists an F-bundle isomorphism Φ: (H,∇)|b → (H′,∇′)|b′ .

Furthermore, if we restrict the coefficients of Φ to lie in a universal algebra as
in the projective bundle case, then Φ is uniquely determined by its restriction to
u = 0, and the base point ∆(a) is uniquely determined up to a shift in H2(X,C)⊕⊕m−1

i=1 H2(Z,C).

A direct consequence of Proposition 4.4.31 is the following, which is analogous to
Theorem 4.5.20.

Theorem 4.5.24. Let (f,Φ): (H,∇)/B → (H′,∇′)/B′ be an isomorphism of
F-bundles. Then

1. The bundle map Φ is uniquely and explicitly determined by its restriction to b ∈ B.

2. The base map f is uniquely and explicitly determined by its restriction to b ∈ B,
up to a multiplicative constant in the q direction.

We refer to [IK23] regarding the existence of the isomorphism.
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C h a p t e r 5

UNFOLDING OF EQUIVARIANT F-BUNDLES AND
APPLICATION TO THE MIRROR SYMMETRY OF FLAG

VARIETIES

This chapter is based on [Hin+25], joint work with Li Changzheng, Tony Yue
Yu, Chi Zhang and Shaowu Zhang.

5.1 Introduction
5.1.1 Motivations
For a smooth complex projective variety X , the Gromov-Witten invariants of X are
roughly counts of algebraic curves in X with given genus, class, and constraints
(see [Gro85; Wit91; KM94; BF97]). We can organize the rational (i.e. genus zero)
Gromov-Witten invariants into a generating series as follows.

Fix a homogeneous basis (Ti)0≤i≤N of H∗(X,Q), and let (T ∗
i )0≤i≤N denote the

dual basis with respect to the Poincaré pairing. Let Q[[NE(X,Z)]] denote the
completion of Q[NE(X,Z)] = Q[qβ | β ∈ NE(X,Z)] with respect to the maximal
ideal (qβ, β ̸= 0).

The genus 0 Gromov-Witten potential is a formal power series

Φ =
∑
n≥0,β

qβ

n!
∑

i1,...,in

⟨Ti1 · · ·Tin⟩
β
0,n ti1 · · · tin ∈ Q[[NE(X,Z)]][[t0, . . . , tN ]],

where ⟨· · · ⟩β0,n denotes the Gromov-Witten invariants of X of genus 0, class β and
cohomological constraints Ti1 , . . . , Tin . It gives rise to the big quantum cohomology
of X , i.e. a deformation of the classical cup product on H∗(X,Q):

⋆ : H∗(X,Q)⊗H∗(X,Q) −→ H∗(X,Q)⊗Q[[NE(X,Z)]][[t0, . . . , tN ]]

Ti ⋆ Tj 7−→
∑
r

∂3Φ
∂ti∂tj∂tr

T ∗
r .

A simpler version called small quantum cohomology is the restriction of the big
quantum cohomology to ti = 0, for all i = 0, . . . , N (or equivalently, by the divisor
axiom of Gromov-Witten invariants, for all i with deg Ti ̸= 2). The idea of small
quantum cohomology appeared before the big version, first in [Can+91], where the
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small quantum cohomology of a quintic Calabi-Yau threefold was computed using
the mirror manifold’s periods. This computation led to the curve counting invariants
of the quintic that were previously unknown, and sparked decades of research of
enumerative geometry and mirror symmetry from the mathematical viewpoint.

The small quantum cohomology mirror symmetry was proved in various cases,
such as complete intersections in projective spaces in [Giv96; LLY97] and toric
complete intersections in [Giv98; RS17b; LLY99]. Given that the small quantum
cohomology is the restriction of the big quantum cohomology, a natural question
is whether mirror symmetry still holds for the big quantum cohomology. The big
quantum cohomology mirror symmetry was proved for projective spaces in [Bar01],
for quadric hypersurfaces in [Hu22], for P2 via tropical geometry in [Gro11], for
toric varieties in [Iri17b; Iri17a; RS15], and for toric Deligne-Mumford stacks in
[Coa+20].

One tool for such an extension is the reconstruction theorem for Gromov-Witten
invariants by Kontsevich-Manin [KM94], which is the prototype of the universal
unfolding of Frobenius manifolds by Hertling-Manin [HM04] and that of logarithmic
Frobenius manifolds by Reichelt [Rei09]. This is the essential ingredient in the
proof of big quantum cohomology mirror symmetry for projective spaces in [Bar00;
Bar01]. It is shown that the big quantum cohomology can be reconstructed from
the small under the condition that the small quantum cohomology (or the classical
cohomology) is H2-generated. The Hertling-Manin unfolding theorem applies more
generally to so called (TE)-structures, or F-bundles (H,∇)/B, whereH is a vector
bundle over B × Spf k[[u]] and∇ is a flat connection onH with poles at u = 0, such
that∇u2∂u

and∇uξ are regular for any tangent vector field ξ onB. TheH2-generation
condition is then replaced by two conditions called (IC) and (GC). For b ∈ B, the
residues ∇uξ|(b,0) and ∇u2∂u

|(b,0) are endomorphisms of the fiberHb,0. An element
v ∈ Hb,0 satisfies the (GC) condition if the iterated action of these endomorphisms
on v generateHb,0. It satisfies the (IC) condition if the map ξ ∈ TbB 7→ ∇uξ|(b,0)(v)
is injective. Under those two conditions, the F-bundle admits a universal unfolding
into a maximal F-bundle.

Another tool for such an extension from small to big quantum cohomology is the
reconstruction from a semisimple point. In the context of Frobenius manifolds,
the structure around a semisimple point was studied in [Dub96; CG17], and
a reconstruction result was proved in [BM04; MT08]. Teleman also studied
semisimplicity in the context of topological field theories in [Tel12].
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In this paper, we aim to establish the big quantum cohomology mirror symmetry
for flag varieties, in the sense of isomorphism of big quantum D-modules. The
small quantum cohomology mirror symmetry for general flag varieties was recently
established in [Cho23], as an isomorphism of small quantum D-modules. In
general the small quantum cohomology of flag varieties is neither H2-generated, nor
semisimple, so neither of the above reconstruction methods can be applied here.

The main discovery of this paper is that an analogous H2-generation condition can
be recovered if we work equivariantly with respect to a torus action.

We first extend the definition of F-bundle (from [Kat+24; Hin+24]) to equivariant
F-bundle (see Definition 5.2.10). Since the connection∇∂u is not linear with respect
to the equivariant variables, we need to work with infinite rank F-bundles over an
infinite dimensional base. Nevertheless, most of the data can still be reduced to a
finite rank (T)-structure relative to H∗

T (pt,Q).

Next we extend the (IC) and (GC) conditions to the equivariant setting, and estab-
lish an unfolding theorem for equivariant F-bundles under these conditions (see
Theorem 5.3.36).

For application to the mirror symmetry of flag varieties, we produce an unfolding
of the B-model by constructing an appropriate unfolding of the Landau-Ginzburg
superpotential. We further check the various conditions on the big quantum D-
module of flag varieties, and apply our equivariant unfolding theorem to obtain the
mirror symmetry theorem for the big quantum cohomology of flag varieties.

5.1.2 Main results
An F-bundle (H,∇) over some baseB consists of a vector bundleH overB×Spf k[[u]]
and a meromorphic flat connection ∇ with poles at u = 0, such that ∇u2∂u

and
∇uξ are regular for any tangent vector field ξ on B. If the connection ∇ is only
defined in the directions ofB, we call (H,∇) a k-linear (T)-structure. In order not to
create confusion in the infinite rank/dimension setting, we formulate F-bundles and
(T)-structures in purely algebraic terms in Section 5.2, replacing the vector bundle
by a free module, and the connection by derivations.

Let us explain the various conditions involved in our equivariant unfolding theorem.
Let k be a field of characteristic zero, R a k-algebra and (H,∇) an F-bundle (resp. a
(T)-structure) over R[[ti, i ∈ I]] for a countable set I , with fiber H at t = 0, u = 0.
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Residues of∇ induce K := ∇u2∂u
|u=t=0 ∈ EndR(H),

µ :
⊕
i∈I

R∂ti −→ EndR(H), ∂ti 7−→ ∇u∂ti
|u=t=0,

and for any v ∈ H ,

µv :
⊕
i∈I

R∂ti −→ H, ∂ti 7−→ ∇u∂ti
|u=t=0(v).

The F-bundle (H,∇) is called maximal if there exists v ∈ H such that µv is an
isomorphism, and v is called a cyclic vector. We further define the following
conditions on v (see Definition 5.3.15):

(IC) The map µv is injective.

(GC) The orbit of v under the action of the subalgebraR[imµ,K] ⊂ EndR(H) (resp.
R[imµ] ⊂ EndR(H) in the case of a (T)-structure) is H .

(GC’) The condition (GC) is satisfied after base change to Frac(R).

The conditions (IC) and (GC) were originally formulated in [HM04] as necessary
conditions to obtain the existence and uniqueness of a maximal unfolding. We find
that when working relative to a ring, condition (GC’) is enough for uniqueness, while
conditions (IC) and (GC) need to be complemented by the assumption that cokerµv
is free in order to construct a maximal unfolding (see Theorem 5.1.3 for a precise
statement).

5.1.2.1 Equivariant unfolding theorem

For our application to the mirror symmetry of a flag variety X = G/P , the F-bundle
associated to the quantum cohomology of X does not satisfy conditions (GC) or
(GC’). Our new idea is to consider the equivariant quantum cohomology ofX induced
by the natural torus action. Note that while the associated (T)-structure is linear over
R := H∗

T (pt, k) and of finite rank, the connection∇∂u in the u-direction connection
is not R-linear due to the nontrivial grading onR. Therefore, the associated F-bundle
can only be defined over the base field k, and hence has infinite rank and depends on
infinitely many variables, indexed by a k-basis of H∗

T (X, k).

We introduce the notion of equivariant F-bundle in Definition 5.2.10. Let I be a finite
set and choose a k-linear basis of a k-algebra R indexed by a countable set K. Let
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tI = {ti,k | (i, k) ∈ I ×K} denote formal parameters over k, and tI = {ti | i ∈ I}
formal parameters over R. An equivariant F-bundle consists of the data {(H,∇),
(HR,∇R), α}, where (H,∇) is a k-linear F-bundle over k[[tI ]] and {(HR,∇R), α}
is an R-linear lift over R[[tI ]] of the k-linear (T)-structure underlying (H,∇). An
unfolding of an equivariant F-bundle is an extension over a bigger formal base
(see Definition 5.3.33). We also generalize the notion of framing (from [Hin+24,
Definition 2.9]) to equivariant F-bundles (Definition 5.2.13), which consists of
framings for the k-linear F-bundle and the R-linear (T)-structure that are compatible
under the lift.

We extend the (IC), (GC), (GC’) and maximality conditions to equivariant F-bundles
by requiring that the R-linear (T)-structure satisfy those conditions. Our main
theorem is the following unfolding theorem for equivariant F-bundles.

Theorem 5.1.1 (Unfolding of equivariant F-bundles, Theorem 5.3.36). Let F =
{(H,∇), (HR,∇R), α} be an equivariant F-bundle overk[[tI ]], and fix v ∈ HR|u=tI=0.

1. If v satisfies (IC), (GC) and cokerµv is free, then F admits a maximal unfolding
with a cyclic vector induced from v.

2. If v satisfies (GC’), then any two maximal unfoldings of F with cyclic vectors
induced from v are isomorphic under a unique isomorphism.

Furthermore, any framing for F induces a unique framing on a maximal unfolding.

The fist step in our proof is to establish a formal version of the Hertling-Manin
unfolding theorem in the finite rank case (see Theorem 5.1.3). Then we use it to
unfold the R-linear (T)-structure. Finally we conclude by unfolding the k-linear
F-bundle in the u-direction. The key observation for the last step is the very useful
Lemma 5.3.1. It states that an equivariant F-bundle is uniquely determined by the
underlying (T)-structure and the value of the u-direction connection at one point,
under the assumption that the (T)-structure admits a framing. This assumption
always holds for the k-linear (T)-structure associated to an equivariant F-bundle by
Proposition 5.3.4 and Lemma 5.2.6.

Proposition 5.1.2 (Lemma 5.3.1). For k = 1, 2, let Ik be a countable set and
(Hk,∇k)/R[[tj, j ∈ Ik]] an F-bundle. Let (f,Φ): (H1,∇1)0 → (H2,∇2)0 be a
morphism of (T)-structures. Assume the (T)-structure (H1,∇1)0 admits a framing.
Then
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1. ∇1 is uniquely determined by the underlying (T)-structure and ∇1,∂u|tI1 =0, and
any such data determine a unique F-bundle connection extending the (T)-structure.

2. (f,Φ) is an isomorphism of F-bundles if and only if (f,Φ)|tI1 =0 is an isomorphism
of F-bundles.

Here is our formal version of the Hertling-Manin unfolding theorem we mentioned
above. We also deduce a version for (T)-structures in Corollary 5.3.30.

Theorem 5.1.3 (Formal Hertling-Manin unfolding, Theorem 5.3.28). Let R be an
integral domain containing Q. Let (H,∇)/R[[t1, . . . , td]] be a finite rank F-bundle.
Let v ∈ H/(t1, . . . , td, u)H.

1. If v satisfies (IC), (GC) and cokerµv is free, then there exists a maximal unfolding
with a cyclic vector induced from v.

2. If v satisfies (GC’), then any two maximal unfoldings of (H,∇) with cyclic vectors
induced from v are isomorphic under a unique isomorphism.

Furthermore, any framing for (H,∇) induces a unique framing on a maximal
unfolding.

Our proof follows mostly the original proof of Hertling and Manin, which was carried
out in the complex analytic setting. In particular, we produce unfoldings using the
(GC) condition in Lemma 5.3.16, which is the formal analogue of [HM04, Lemma
2.9]. While the original proof uses analytic methods to construct a framing of the
(T)-structure in which the u-direction has a logarithmic pole at u = 1, we show that
the proof actually works in any framing trivialization.

Since we are working over an integral domain R, the (IC) and (GC) conditions are
not sufficient to prove existence, and we have to require that cokerµv is free in order
to construct a maximal unfolding. This ensures that we can extend a basis of imµv

to a basis ofH/(t1, . . . , td, u)H. We prove the uniqueness by observing that under
(GC’), an unfolding (H′,∇′) is characterized by a choice of framing before unfolding
and the action of∇′ on a section that extends v. This allows us to compare unfoldings
through their action on a section extending v, and to establish the isomorphism. A
priori, the isomorphism we produce is only defined over Frac(R), but we note that it
is in fact defined over R if the unfoldings are. A key result is the canonical extension
of framing for (T)-structures (Proposition 5.3.4), which was essentially proved in
[Hin+24].
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5.1.2.2 Application to mirror symmetry of flag varieties

We apply Theorem 5.1.1 to the mirror symmetry of flag varieties G/P , where G is a
simply-connected complex simple Lie group and P is a parabolic subgroup ofG. We
begin by reviewing some relevant progress on the mirror symmetry of flag varieties.

On theA-side, there was a remarkable presentation of the small quantum cohomology
ring QH∗(G/P ) in terms of Peterson variety given in the unpublished lecture notes
[Pet97] by Peterson. This was partially verified in [Rie03; LS10; Che09], and was
recently proved in [Cho22] in full generality. On the B-side, Rietsch constructed
a mirror Landau-Ginzburg model (X∨

P ,W) for G/P in [Rie08], and showed the
coincidence between the critical loci of W and the Peterson variety strata. As a
consequence, we obtain a first level of small quantum cohomology mirror symmetry
in the sense of a ring isomorphism QH∗(G/P ) ∼= Jac(W). We refer to [Bat+00;
Li+24] and the references therein for more relevant studies in the special case
G = SL(n+ 1,C).

Furthermore, on the A-side, we can consider the Dubrovin connection on the trivial
QH∗(G/P )-bundle over C∗, which endows the vector bundle with a quantum D-
module structure. The flag varietyG/P admits a natural torus action by the maximal
torus T ofG, so that we can consider the equivariant quantumD-module structure as
well. On the B-side, we consider the Brieskorn lattice G0(X∨

P ,W , p) assoicated to
Rietsch’s equivariant superpotential mirror toG/P (see Section 5.4.2 for more details).
The small quantum cohomology mirror symmetry in the sense of isomorphism of
small quantum D-modules has been studied for certain Grassmannians in [MR20;
PRW16; PR18; LT24], and was recently established in [Cho23]. In the present
paper, we first reformulate this in terms of an isomorphism FA ∼= FB of equivariant
F-bundles. Then, as an application of Theorem 5.1.1, we obtain the following.

Theorem 5.1.4 (Big quantum D-module mirror symmetry, Theorem 5.4.35). The A-
model big equivariant F-bundle FA,big is isomorphic to the B-model big equivariant
F-bundle FB,big. The isomorphism is uniquely determined by the small equivariant
quantum D-module mirror symmetry.

By taking the non-equivariant limit of the isomorphism in Theorem 5.1.4, we obtain
a non-equivariant version of the big quantum cohomology mirror symmetry for flag
varieties; see Theorem 5.4.38.

Note that the small quantum cohomology QH∗(G/P ) can be neither semisimple
nor H2-generated, such as is the case when G/P = SG(2, 2n) is the Grassmannian
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of isotropic planes in Lie type Cn (see [CP11]). Therefore, the application of our
unfolding theorem is essential in such cases, for which neither the unfolding in
[HM04] nor the semisimple reconstruction in [Tel12] can be applied.

In addition to the mirror statement above, we further anticipate the complex analytic
convergence of the mirror map, as well as the compatibility with the pairings on the
F-bundles. These aspects present promising directions for future research.
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5.2 (T)-structures and equivariant F-bundles
We fix a field k of characteristic zero, a k-algebra R and a k-linear basis (λk)k∈K of
R, with K a countable set.

5.2.1 Completions
We set the conventions for completions of rings of polynomials in infinitely many
variables, following [Iri17a, §2.1]. Our reference for topological algebra is [FK18,
0§7].

Let I be a countable set indexing indeterminates tI = {ti, i ∈ I}. We denote by N(I)

the set of almost zero integer sequences indexed by I . LetM be a module or ring, we
denote by M [[tI ]] the module consisting of formal power series

∑
α∈N(I) aαt

α
I , where

tαI := ∏
i∈I t

αi
i and aα ∈ M . It is the projective limit of the modules M [[ti, i ∈ I ′]],

where I ′ ⊂ I runs through finite subsets. For two countable sets I and I ′′, we have
M [[ti, i ∈ I]][[ti, i ∈ I ′′]] ≃M [[ti, i ∈ I ∪ I ′′]].

If M is linearly topologized by the descending chain of submodules {Mλ}λ∈Λ, we
equip M [[tI ]] with the linear topology induced by the submodules

M [[tI ]]λ,I :=

 ∑
α∈N(I)

aαt
α
I , aα ∈Mλ for all α ∈ I

, (5.2.1)

where λ ∈ Λ and I ⊂ N(I) is a finite set of exponents. The convergence of a
sequence for this topology means that the sequence of coefficients of each monomial
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converges in M . Hence, if M is complete, so is M [[tI ]]. If R is a topological ring
and M is a topological R-module, then R[[tI ]] is a topological ring and M [[tI ]] is a
topologicalR[[tI ]]-module. IfR is a topological k-algebra, thenR[[tI ]] is a topological
k[[tI ]]-algebra.

Let R be a discrete ring, let M be an R-module. The closure of the monomial ideal
(ti, i ∈ I) ⊂ R[[tI ]] is the ideal J := {f ∈ R[[tI ]], f |tI=0 = 0}. If I is finite, those
two ideals coincide and the topology on M [[tI ]] is equivalent to the usual (ti, i ∈ I)-
adic topology. When I is infinite, the J -adic topology is finer, which means that for
any finite subset I ⊂ N(I) there exists n ∈ N such that J nM [[tI ]] ⊂M [[tI ]]I .

Remark 5.2.2. Let I be a countable set, tI = {ti, i ∈ I} a set of indeterminates. Let
R be a topological ring. Here are a few facts we will use about modules over R[[tI ]].

1. IfM is a freeR-module, thenM [[tI ]] is free, and we have a canonical isomorphism
M ⊗R R[[tI ]] ≃M [[tI ]] given by m⊗ 1 7→ m.

2. If M and M ′ are free R-modules, there is a canonical isomorphism of R[[tI ]]-
modules

HomR[[tI ]](M [[tI ]],M ′[[tI ]]) ≃ HomR(M,M ′)[[tI ]].

3. If R is discrete and M is a free R-module, an element Φ ∈ EndR[[tI ]](M [[tI ]]) is
an isomorphism if and only if Φ|tI=0 ∈ EndR(M) is an isomorphism.

For (3), we may reduce to the case Φ = 1 + f with f ∈ J EndR(M)[[tI ]]. Then it
suffices to prove that the sequence Ψn := ∑n

k=0(−1)kfk converges in EndR(M)[[tI ]].
Form ≥ n we have Ψm−Ψn = ∑m

k=n+1(−1)kfk ∈ J n+1 EndR(M)[[tI ]]. Since the
J -adic topology is finer than the topology (5.2.1), the sequence (Ψn)n is a Cauchy
sequence. Since EndR(M) is a discrete space, it is complete. We conclude that
(Ψn)n converges to an element Ψ such that Φ ◦Ψ = Ψ ◦ Φ = 1.

5.2.2 F-bundles and (T)-structures
We equip R with the discrete topology. Given a countable set I , the derivations
∂tj : R[[ti, i ∈ I]] → R[[ti, i ∈ I]] are continuous and linearly independent. Hence,
it makes sense to define a (partial) connection in the t-directions on a R[[ti, i ∈ I]]-
moduleH by specifying its action on ∂tj for all j ∈ I .

Definition 5.2.3 (F-bundle, (T)-structure). Let I be a countable set and tI := {ti, i ∈
I}.
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1. An (R-linear) F-bundle (H,∇) over R[[tI ]] is a free R[[tI , u]]-moduleH together
with a (R-linear) connection

∇∂ti
: H → u−1H,

∇∂u : H → u−2H

satisfying the flatness condition.

2. An (R-linear) (T)-structure (H,∇) over R[[tI ]] is a free R[[tI , u]]-module H
together with a (R-linear) connection in the t-directions

∇∂ti
: H → u−1H

satisfying the flatness condition.

A morphism of F-bundles (resp. (T)-structures) (f, ϕ) : (H,∇)/R[[tI ]]→ (H′,∇′)/R[[tJ ]]
consists of a continuous map of R-algebras f : R[[tJ ]] → R[[tI ]], and a continu-
ous map of R[[tI , u]]-modules ϕ : H → f ∗H′ := H′ ⊗R[[tJ ,u]] R[[tI , u]] such that
ϕ ◦ ∇ = f ∗∇′ ◦ ϕ.

Underlying an F-bundle (H,∇) over R[[tI ]] is an R-linear (T)-structure (H,∇)0

over R[[tI ]] obtained by forgetting ∇∂u . This defines a functor (·)0 from R-linear
F-bundles to R-linear (T)-structures.

Let (H,∇) be an R-linear (T)-structure over R[[tI ]]. A trivialization of the (T)-
structure is a choice of isomorphismH ≃ H⊗RR[[tI , u]], whereH is a freeR-module
(necessarily isomorphic toH/JH, where J is the closure of the ideal (tI , u)). Under
such an isomorphism, the connection∇ decomposes as∇∂ti

= ∂ti + u−1Ai(tI , u),
with Ai ∈ EndR(H)[[tI , u]]. We refer to Ai as the connection matrix in the direction
ti. Different choices of trivialization produce connection matrices related by the
usual gauge-transformation formula.

We introduce special trivializations called framings.

Definition 5.2.4 (Framing). 1. A framing for anR-linear F-bundle (resp. anR-linear
(T)-structure) (H,∇)/R[[tI ]] is a trivialization in which the connection matrices only
have negative powers of u.

2. A morphism of framed F-bundles (resp. (T)-structures)

(f, ϕ) : (H,∇)/R[[tI ]]→ (H′,∇′)/R[[tJ ]]
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is compatible with the framings if it is constant when read in framing trivializations.
More precisely, the framingsH ≃ H ⊗R R[[tI , u]] andH′ ≃ H ′ ⊗R R[[tJ , u]] induce
an isomorphism

HomR[[tI ,u]](H, f ∗H′) ≃ HomR(H,H ′)[[tI , u]].

The condition is that the image of ϕ is independent of tI and u.

5.2.3 Lift of (T)-structures
Recall that we have fixed R a k-algebra and a k-basis λ = (λk, k ∈ K) of R. Let I
be a countable set, we introduce two sets of formal variables:

tI := {ti, i ∈ I}, tI := {ti,k, (i, k) ∈ I ×K}.

There is a continuous morphism of R-algebras:

ψλ : R[[tI ]] −→ R[[tI ]], ti 7→
∑
k∈K

λkti,k. (5.2.5)

This induces a functor (H,∇)/R[[tI ]] 7→ (H̃, ∇̃)/k[[tI ]] from R-linear (T)-structures
to k-linear (T)-structures.

Lemma 5.2.6. Let R be a k-algebra with a fixed k-basis λ = (λk, k ∈ K).

1. There exists a functor (H,∇)/R[[tI ]] 7→ (H̃, ∇̃)/k[[tI ]] fromR-linear (T)-structures
to k-linear (T)-structures. It is obtained by applying the change of variable (5.2.5)
and forgetting the R-linear structure.

2. Any framing for (H,∇)/R[[tI ]] induces a framing for (H̃, ∇̃)/k[[tI ]].

Proof. Let (H,∇) be an R-linear (T)-structure over R[[tI ]]. We define H̃ to be the
k[[tI ]]-module obtained by forgetting the R-linear structure onH⊗R[[tI ]] R[[tI ]].

To define the (T)-structure connection ∇̃we fix a trivializationH ≃ H⊗RR[[tI ]]. This
induces an isomorphism H̃ ≃ H̃ ⊗k k[[tI ]], where H̃ denotes the k-module obtained
from H by forgetting the R-linear structure. We have a map of k[[tI , u]]-algebras

Ψλ : EndR(H)[[tI , u]] −→ Endk(H̃)[[tI , u]], (5.2.7)

given by applying the change of variable ψλ and forgetting the R-linear struc-
ture. Fix (i, k) ∈ I × K, and write ∇∂ti

= ∂ti + u−1Ai(tI , u), with Ai(tI , u) ∈
EndR(H)[[tI , u]]. We then set

∇̃∂ti,k
:= ∂ti,k

+ u−1λkÃi(tI , u),
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where Ãi := Ψλ(Ai). The chain rule and the flatness of ∇ imply that ∇̃ is flat,
producing a k-linear (T)-structure (H̃, ∇̃) over k[[tI ]]. It is easily checked that this
(T)-structure is independent of the choice of trivialization for (H,∇).

We now check functoriality. Let (f, ϕ) : (H,∇)/R[[tI ]] → (H′,∇′)/R[[sJ ]] be a
morphism of (T)-structures. Let (H̃, ∇̃)/k[[tI ]] and (H̃′, ∇̃′)/k[[sJ ]] denote the
induced k-linear (T)-structures. There exists a unique morphism of k-algebras
f̃ : k[[sJ ]]→ k[[tI ]] making the following diagram of R-algebras commutative:

R[[sJ ]] R[[tI ]]

R[[sJ ]] R[[tI ]].

f

ψ′
λ ψλ

f̃⊗k1

It is characterized by the relations ψλ ◦ f(sj) = ∑
k∈K λkf̃(sj,k) for all j ∈ J , and is

automatically continuous. The morphism of R[[tI , u]]-modules ϕ : H → H′ ⊗R[[sJ ,u]]

R[[tI , u]] induces a morphism of k[[tI , u]]-modules ϕ̃ : H̃ → H̃′ ⊗k[[sJ ,u]] k[[tI , u]]
obtained by forgetting the R-linear structure of the map of R[[tI , u]]-modules

H⊗R[[tI ,u]] R[[tI , u]] ϕ⊗1−−→ H′ ⊗R[[sJ ,u]] R[[tI , u]]⊗R[[tI ,u]] R[[tI , u]]

≃
(
H′ ⊗R[[sJ ,u]] R[[sJ , u]]

)
⊗R[[sJ ,u]] R[[tI , u]].

Forgetting the R-linear structure, the right-hand side is naturally isomorphic to
H̃′ ⊗k[[sJ ,u]] k[[tI , u]]. Fixing trivializations of the (T)-structures, we directly check
that the pair (f̃ , ϕ̃) is compatible with the connections. We omit the check that this is
compatible with composition of morphisms. By construction, a framing trivialization
for (H,∇) induces a framing trivialization for (H̃, ∇̃), concluding the proof.

Remark 5.2.8. The functor (H,∇)/R[[tI ]] 7→ (H̃, ∇̃)/k[[tI ]] defined above for (T)-
structures is analogous to the composition of inverse image functor ψ∗

λ and the
restriction of scalars from R to k in the theory of D-modules.

Definition 5.2.9. An R-linear lift of a k-linear (T)-structure (H,∇)/k[[tI ]] is the
data of an R-linear (T)-structure (HR,∇R)/R[[tI ]] and an isomorphism of k-linear
(T)-structures α : (H,∇)0

∼−→ (H̃R, ∇̃R).

5.2.4 Equivariant F-bundles
Definition 5.2.10 (Equivariant F-bundle). Let I and J be countable sets. An R-
equivariant F-bundle overk[[tI ]] consists of the following data {(H,∇), (HR,∇R), α}.

1. (H,∇) is a k-linear F-bundle over k[[tI ]], and



145

2. α : (H,∇)0
∼−→ (H̃R, ∇̃R) is an R-linear lift of the underlying (T)-structure

(H,∇)0, whereHR has finite rank as a R[[tI , u]]-module.

A morphism of equivariant F-bundles

{(H,∇), (HR,∇R), α}/k[[tI ]]
(β,βR)−−−→ {(H′,∇′), (H′

R,∇′
R), α′}/k[[tJ ]]

consists of

1. a morphism of k-linear F-bundles β : (H,∇)→ (H′,∇′), and

2. a morphism of R-linear (T)-structures βR : (HR,∇R)→ (H′
R,∇′

R),

such that the following diagram of k-linear (T)-structures commutes:

(H,∇)0 (H′,∇′)0

(H̃R, ∇̃R) (H̃′
R, ∇̃′

R).

β0

α α′

β̃R

(5.2.11)

Remark 5.2.12. 1. We identify a k-linear F-bundle (H,∇) with the k-equivariant
F-bundle {(H,∇), (H,∇)0, id}, where we choose 1 ∈ k as a k-basis of k. This
defines a fully faithful functor.

2. When dimkR = 1, equivariant F-bundles correspond to k-linear F-bundles of
finite dimension and parametrized by finitely many variables, up to isomorphism.
Indeed, after choosing the basis given by 1 ∈ R the change of coordinate (5.2.5) is
the identity and the formal variables tI and tI agree. Given an equivariant F-bundle
F = {(H,∇), (HR,∇R), α}/k[[tI ]], using α we see thatH has finite rank over k[[tI ]]
because HR does, and we can define a u-direction connection on HR compatible
with the (T)-structure, making α an isomorphism of F-bundles.

Definition 5.2.13. 1. A framing for an equivariant F-bundle {(H,∇), (HR,∇R), α}
is the data of framings for (H,∇) and (HR,∇R), such that α : (H,∇)0 → (H̃R, ∇̃R)
is compatible with the induced framings.

2. A morphism (β, βR) of framed equivariant F-bundles is compatible with the
framings if both β and βR are compatible with the framings.

Remark 5.2.14. A morphism of equivariant F-bundles (β, βR) is uniquely determined
by βR and the R-linear lifts through (5.2.11). Similarly, a framing of equivariant
F-bundle is uniquely determined by the framing on the R-linear lift.
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5.3 Unfolding of equivariant F-bundles
Recall the setting of Section 5.2, k is a field of characteristic 0 and R is a k-algebra
of countable dimension.

5.3.1 Framing of (T)-structures
In this subsection, we prove that an F-bundle (H,∇) is characterized by the underlying
(T)-structure and the restriction of the F-bundle to a point using framing of (T)-
structures (see Lemma 5.3.1). We deduce a criterion for lifting a morphism of
(T)-structures to a morphism of F-bundles. We also prove the existence of framing
and extension of framing results for (T)-structures over a noetherian base.

Lemma 5.3.1. For k = 1, 2, let Ik be a countable set and (Hk,∇k)/R[[tj, j ∈ Ik]] be
an F-bundle. Let (f,Φ): (H1,∇1)0 → (H2,∇2)0 be a morphism of (T)-structures.
Assume that the (T)-structure (H1,∇1)0 admits a framing.

1. ∇1 is uniquely determined by the underlying (T)-structure and ∇1,∂u|tI1 =0, and
any such data determine a unique F-bundle connection extending the (T)-structure.

2. (f,Φ) is an isomorphism of F-bundles if and only if (f,Φ)|tI1 =0 is an isomorphism
of F-bundles.

Proof. For (1), fix a framing trivializationH ≃ H⊗R[[ti, i ∈ I1, u]] of the underlying
(T)-structure. In this trivialization, write∇1,∂ti

= ∂ti+u−1T i and∇1,∂u = ∂u+u−2U .
By assumption, the endomorphism T i is independent of u. The flatness equations
for the u-direction and ti-direction give for all i ∈ I1

∂U

∂ti
= −T i + u

∂T i

∂u
+ u−1[U, T i] = −T i + u−1[U, T i]. (5.3.2)

Any U solving this system of equations gives rise to an F-bundle structure extending
the (T)-structure. Then (1) reduces to proving that for any initial condition U0(u) ∈
EndR[[u]](H[[u]]), there exists a unique U(t, u) solving (5.3.2) with U(0, u) = U0(u).
Introduce the differential operators Di : X 7→ ∂X

∂ti
+ u−1 adT i(X), where adT i =

[T i, ·]. Then (5.3.2) can be written as Di(U) = −T i, and we need to prove that the
system is compatible for any initial condition.

Since∇1 is flat, by comparing degrees in u, we have for all i, j ∈ I1

[T j, T i] = u

(
∂T j

∂ti
− ∂T i

∂tj

)
= 0. (5.3.3)
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It follows that

[Di, Dj] = [∂ti , ∂tj ] + u−1
([

∂

∂ti
, adT j

]
+
[

adT i ,
∂

∂tj

])
+ u−2[adT i , adT j ]

= u−1
(

ad∂tiT
j − ad∂tjT

i

)
+ u−2 ad[T i,T j ] = 0.

Hence, by the usual theory of linear system of ODEs, the system is compatible
if and only if for all i, j ∈ I1, we have Di(T j) = Dj(T i). This follows from the
flatness equations (5.3.3). We can thus construct a unique solution inductively
on the number of variables from any initial condition. If I1 is finite, we obtain
a solution in finitely many steps. If I1 ≃ N is infinite, we construct a solution
in the projective limit lim←−EndR(H)[[t1, . . . , tn, u]] = EndR(H)[[ti, i ∈ I1, u]] ≃
EndR[[ti,i∈I1,u]](H ⊗R[[ti, i ∈ I1, u]]). (1) is proved.

For (2), the first direction is obvious. For the converse, if Φ|tI1 =0 is an isomorphism,
then theR[[tI1 ]]-module map Φ is an isomorphism (see Remark 5.2.2). The connection
∇′

2 := Φ−1 ◦ f ∗∇2 ◦ Φ defines an F-bundle structure on H. By assumption, the
underlying (T)-structure agrees with (H,∇)0 and ∇1,∂u |tI1 =0 = ∇′

2,∂u
|tI1 =0. It

follows from the uniqueness in (1) that ∇′
2 = ∇1, hence (f,Φ) is a morphism of

F-bundles.

For (T)-structures defined over a Noetherian baseR[[t1, . . . , tn]], results from [Hin+24,
§4.1] imply the existence of framing trivializations.

Proposition 5.3.4. Let (H,∇)/R[[t1, . . . , tn]] be an R-linear (T)-structure. Any
trivialization ofH|t=0 extends uniquely to a framing of (H,∇).

Proof. Fix a trivialization H ≃ H ⊗ R[[t1, . . . , tn, u]] lifting the trivialization of
H/(t1, . . . , tn)H. Write the connection as ∇∂ti

= ∂ti + u−1T i(t, u). We want to
show that there exists a unique gauge transformation P (t, u) ∈ GL(H[[t1, . . . , tn, u]])
with P (0, u) = id such that uP−1 ∂P

∂ti
+P−1T iP is independent of u for all 1 ≤ i ≤ n.

This amounts to solving the system of PDEs (1 ≤ i ≤ n)

∂P

∂ti
= u−1(−T iP + PP−1

0 T i−1P0),

where P0 = P (t, 0) and T i−1 = T i(t, 0), with the initial condition P (0, u) = id.
Uniqueness is clear, as the system provides recursive relations for the coefficients of
P , and existence follows from [Hin+24, Lemmas 4.17, 4.18, 4.20]. The arguments
there still apply, because we assume that R contains Q.
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Fix I a finite set, let (H,∇)/R[[tI ]] be a (T)-structure of finite rank n ∈ N. Let
v1 ∈ H/(tI , u)H. Any choice (h1, . . . , hn) of R[[tI , u]]-basis for H provides a
trivialization through the isomorphisms

H ≃
⊕

1≤i≤n
R[[tI , u]]hi ≃ R⊕n ⊗R R[[tI , u]].

We call a basis (h1, . . . , hn) good for (H,∇) if it induces a framing trivialization.
We say that it extends v1 if h1 is a lift of v1. Proposition 5.3.4 implies that any basis
ofH/(tI , u)H lifts uniquely to a good basis of (H,∇). More generally, we have the
following.

Lemma 5.3.5. Let I andJ be finite sets. Let (f,Φ): (H,∇)/R[[tI ]]→ (H′,∇′)/R[[tJ ]]
be a morphism of finite rank (T)-structures. Assume that Φ|tI=0 is an isomorphism.

1. Any good basis (h1, . . . , hn) of (H,∇) induces a unique good basis (h′
1, . . . , h

′
n)

of (H′,∇′) such that Φ(hk) = f ∗(h′
k) for all 1 ≤ k ≤ n.

2. Φ is uniquely determined by its restriction toH|tI=0.

Proof. The assumptions imply that Φ is an isomorphism of R[[tI , u]]-modules. In
particular, we have isomorphisms of R[[u]]-modules

H/(tI)H ≃ f ∗H′/(tI)f ∗H′ ≃ H′/(tJ)H′. (5.3.6)

A good basis (h′
1, . . . , h

′
n) for (H′,∇′) is uniquely characterized by its projection to

H′/(tJ)H′. This value is uniquely specified by the condition Φ(hk) = f ∗(h′
k) using

the isomorphism (5.3.6), which proves (1).

For (2), we note that Φ is uniquely determined by the image of a good basis
(h1, . . . , hn) of (H,∇). By (1), the image (Φ(h1), . . . ,Φ(hn)) is a good basis for
f ∗(H′,∇′). In particular, it is uniquely determined by its restriction to tI = 0, which
only depends on Φ|tI=0. The proof is complete.

5.3.2 Formal Hertling-Manin unfolding theorem
In this subsection, we prove an analogue of the Hertling-Manin unfolding theorem
for (TE)-structures (see [HM04, Theorem 2.5]) for formal R-linear F-bundles and
(T)-structures.

Definition 5.3.7 (Unfolding of (T)-structure, F-bundle). Let R be a k-algebra, I
and J countable sets. Let (H,∇)/R[[tI ]] be an R-linear (T)-structure (resp. F-
bundle). An unfolding of (H,∇) is a morphism of (T)-structures (resp. F-bundles)
(i, ϕ) : (H,∇)/R[[tI ]]→ (H′,∇′)/R[[tJ ]], where
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1. I ⊂ J and i : R[[tJ ]] → R[[tI ]] is the quotient by the closure of the ideal
(tj, j ∈ J \ I), and

2. ϕ : H → i∗H′ is an isomorphism of R[[tI , u]]-modules.

A morphism between two unfoldings ιk : (H,∇) → (Hk,∇k) for k = 1, 2, is a
morphism of (T)-structures (resp. F-bundles) (f, ψ) : (H2,∇2) → (H1,∇1) such
that ψ is an isomorphism and the following diagram commutes

(H,∇)

(H2,∇2) (H1,∇1).

ι2 ι1

(f,ψ)

Remark 5.3.8. In the above commutative diagram, assume that (Hk,∇k) depends
on finitely many variables indexed by a finite set Jk for k = 1, 2, and write

ιk = (ik, ϕk) : (H,∇)/R[[tI ]]→ (H2,∇2)/R[[tJk
]].

Then for any two morphisms (f, ψk), k = 1, 2, between the unfoldings ι2 and ι1, we
have ψ1 = ψ2. In other words, the morphism on the base f determines the bundle
map. Indeed, the commutativity of the diagram implies that i∗2ψk ◦ ϕ2 = ϕ1. This
determines ψk|tJ2 =0 = ϕ1 ◦ ϕ−1

2 |tJ2 =0. By Lemma 5.3.5, ψk is uniquely determined
by ψk|tJ2 =0, and thus ψ1 = ψ2.

Remark 5.3.9. When I and J are finite, given an unfolding ofR-linear (T)-structures

(i, ϕ) : (H,∇)/R[[tI ]] −→ (H′,∇′)/R[[tJ ]],

any framing for (H,∇)/R[[tI ]] induces a unique framing for (H′,∇′)/R[[tJ ]], and
vice versa. Indeed, ϕ takes the framing trivialization for (H,∇) to a framing
trivialization for i∗(H′,∇′), which is uniquely determined by its restriction to the
fiber i∗H′|tI=0 = H′|tJ =0. We can extend this to a framing trivialization for (H′,∇′)
by Proposition 5.3.4.

Lemma 5.3.10. For k = 1, 2, let Ik be countable sets, and let

(f,Φ): (H1,∇1)/R[[t1]]→ (H2,∇2)/R[[t2]]

be an unfolding of R-linear (T)-structures. Assume the (T)-structure (H2,∇2)
admits a framing. Given an F-bundle structure (H1,∇F

1 ) on (H1,∇1), there exists a
unique F-bundle structure (H2,∇F

2 ) on (H2,∇2) such that (f,Φ) is an unfolding of
F-bundles.
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Proof. Since (f,Φ) is an unfolding of (T)-structures, we have isomorphisms of
R[[u]]-modules:

H1|t1=0 ≃ f ∗H2|t1=0 ≃ H2|t2=0. (5.3.11)

Under this isomorphism, the restriction ∇F
1 |t1=0 produces a F-bundle connection

onH2|t2=0. Since the latter admits a framing, applying Lemma 5.3.1(1) we obtain
a unique F-bundle (H2,∇F

2 ) extending the (T)-structure (H2,∇2). We now check
that (f,Φ) is a morphism of F-bundles. By construction, the connections f ∗∇F

2 and
Φ ◦∇F

1 ◦Φ−1 are F-bundle connections on f ∗∇2 which coincide at t1 = 0, and with
the same underlying (T)-structures. The framing for (H2,∇2) induces a framing on
f ∗(H2,∇2), as can be seen by fixing a framing trivialization of (H2,∇2) and pulling
it back under f . Then, it follows from Lemma 5.3.1(1) that those two F-bundle
structures agree. Hence, (f,Φ) is a morphism of F-bundles.

For uniqueness, note that the F-bundle connection∇F
2 is uniquely determined by its

restriction to t2 = 0 since (H2,∇2) admits a framing, and that ∇F
2 |t2=0 is uniquely

specified by ∇F
1 |t1=0 through the isomorphisms (5.3.11).

For an R-linear (T)-structure (H,∇)/R[[tI ]], there is a morphism of R-modules
[Hin+24, Remark 2.3]

µ :
⊕
i∈I

R∂ti −→ EndR(H), (5.3.12)

∂ti 7−→ ∇u∂ti

∣∣∣
u=0,tI=0

,

whereH := H/JH with J the closure of the ideal (tI , u). For each v ∈ H we obtain
an evaluation map of R-modules:

µv :
⊕
i∈I

R∂ti −→ H, (5.3.13)

ξ 7−→ µ(ξ)(v).

Furthermore, if (H,∇) is an F-bundle, we also have a residue endomorphism in the
u-direction K := [u2∇∂u ]|u=t=0 ∈ EndR(H). We introduce the notion of maximal
(T)-structure and maximal F-bundle, analogous to [Hin+24, Definition 2.6].

Definition 5.3.14 (Maximal (T)-structure, maximal F-bundle). Let R be a k-algebra,
I a countable set, and J ⊂ R[[tI , u]] the closure of the ideal (tI , u). An R-linear
(T)-structure, or F-bundle, (H,∇)/R[[tI ]] is maximal if there exists v ∈ H/JH such
that the map µv is an isomorphism. We call such a v a cyclic vector.
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The Hertling-Manin unfolding theorem guarantees the existence and uniqueness
of a maximal unfolding under certain conditions, which we introduce in the next
definition.

Definition 5.3.15. Let I be a countable set, (H,∇)/R[[tI ]] an R-linear (T)-structure
(resp. F-bundle), and J ⊂ R[[tI , u]] the closure of the ideal (tI , u). We define the
following conditions on an element v ∈ H := H/JH:

(IC) The map µv in (5.3.13) is injective.

(GC) The orbit of v under the action of the subalgebra R[imµ] ⊂ EndR(H) (resp.
R[imµ,K] ⊂ EndR(H)) defined by evaluation on v is H .

(GC’) The condition (GC) is satisfied after base change to Frac(R).

If v satisfies (GC), we say that v is a generating vector for (H,∇).

The following lemma provides a construction of unfoldings under the (GC) condition.
It is analogous to [HM04, Lemma 2.9], except that we use framings of (T)-structures
to avoid the analytic argument used there.

Lemma 5.3.16. Let (H(0),∇(0))/R[[t1, . . . , td]] be an F-bundle of rankn satisfying the
(GC) condition, let v1 ∈ H(0)/(tI , u)H(0) be a generating vector. Let (h(0)

1 , . . . , h(0)
n )

be a good basis of (H(0),∇(0)) extending v1. Fix ℓ ≥ 1 and let f1, . . . , fn ∈
R[[t1, . . . , td, s1, . . . , sℓ]] whose restrictions to s = 0 are 0.

Then there exists an unfolding ι : (H(0),∇(0))/R[[t1, . . . , td]]→ (H,∇)/R[[t1, . . . , td, s1, . . . , sℓ]]
such that, if (h1, . . . , hn) denotes the good basis of (H,∇) induced from (h(0)

1 , . . . , h(0)
n )

(see Lemma 5.3.5), we have for 1 ≤ j ≤ ℓ

[u∇∂sj
]|u=0(h1|u=0) =

n∑
i=1

∂fi
∂sj

hi|u=0. (5.3.17)

Any two unfoldings satisfying (5.3.17) are isomorphic under a morphism (id, ψ),
where ψ identifies the canonical extensions of the good basis (h(0)

i )1≤i≤n.

Proof. Set t := {t1, . . . , td}. We consider the case ℓ = 1, as we can always
decompose an unfolding as a sequence of 1-dimensional unfoldings.

Let H := R⊕n. The good basis (h(0)
i )1≤i≤n provides an isomorphism ϕ : H(0) ∼−→

H ⊗R R[[t, u]]. Let H := H ⊗R R[[t, s, u]]. We first prove that there exists a
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unique connection ∇ on H such that ι = (i, ϕ) : (H(0),∇(0)) → (H,∇) is an
unfolding satisfying (5.3.17). This is equivalent to constructing unique matrices
T i(t, s), S(t, s), Uk(t, s) ∈ Mat(n× n,R[[t, s]]) such that the connection form

Ω := 1
u

n∑
i=1

T i(t, s)dti + 1
u
S(t, s)ds+ 1

u2

∑
k≥0

Uk−2(t, s)ukdu

satisfies:

(a) the flatness equation dΩ + Ω ∧ Ω = 0,

(b) T i(t, 0) and Uk(t, 0) coincide with the connection matrix of ∇(0) in (h(0)
i )1≤i≤n,

and

(c) S(t, s)e1 = ∑n
i=1

∂fi

∂s
ei, where (ei)1≤i≤n is the canonical basis of H/(u)H =

R⊕n ⊗R R[[t, s]].

We further decompose the matrices into powers of s, and write T iw(t) (resp. Sw(t),
Uk,w(t)) for the coefficient of sw in T i(t, s) (resp. S(t, s), Uk(t, s)). We will construct
the matrices order by order in s.

Condition (a) is equivalent to the following system of equations:

[S, T i] = 0 (5.3.18)

[S, U−2] = 0 (5.3.19)

∂sT
i = ∂tiS (5.3.20)

∂sU−2 = [U−1, S]− S (5.3.21)

∂sUk = [Uk+1, S] (k ≥ −1) (5.3.22)

[T i, T j] = 0 (5.3.23)

[U−2, T
i] = 0 (5.3.24)

∂tiT
j = ∂tjT

j (5.3.25)

∂tiU−2 = [U−1, T
i]− T i (5.3.26)

∂tiUk = [Uk+1, T
i] (k ≥ −1). (5.3.27)

We prove by induction on m ∈ N that there exists unique matrices T iw(t) and Uk,w(t)
for 0 ≤ w ≤ m and Sw(t) for 0 ≤ w ≤ m − 1 such that the equations (5.3.18)
through (5.3.22) are satisfied modulo sm, the equations (5.3.23) through (5.3.27) are
satisfied modulo sm+1, condition (b) is satisfied and condition (c) is satisfied modulo
sm.
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For m = 0, condition (b) provides the matrices T i0(t) and Uk,0(t), and the equations
(5.3.23)-(5.3.27) are satisfied modulo s by flatness of∇(0).

Now assume the induction carried out until step m, we prove step m+ 1. We only
need to construct the matrices T im+1, Uk,m+1 and Sm so that the various conditions
of the induction are satisfied. The construction of a unique matrix Sm such that
(5.3.18), (5.3.19) and condition (c) are satisfied modulo sm+1 is as in (i) of the proof
of [HM04, Lemma 2.9]. The matrices T im+1 and Uk,m+1 are uniquely determined by
imposing equations (5.3.20)-(5.3.22) modulo sm+1.
It remains to check that equations (5.3.23)-(5.3.27) hold modulo sm+2, assuming that
equations (5.3.18)-(5.3.27) hold modulo sm+1. Since they hold at s = 0, we simply
check that the s-derivative of these equations is zero modulo sm+1. For (5.3.23) we
have modulo sm+1

∂s[T i, T j] = [∂sT i, T j] + [T i, ∂sT j]

= [∂tiS, T j] + [T i, ∂tjS]

= −[S, ∂tiT j]− [∂tjT i, S]

= 0.

For (5.3.24) we have modulo sm+1

∂s[U−2, T
i] = [∂sU−2, T i] + [U−2, ∂sT

i]

= [[U−1, S], T i] + [U−2, ∂tiS]

= [[U−1, S], T i]− [∂tiU−2, S]

= [[U−1, S], T i]− [[U−1, T
i], S]

= 0.

For (5.3.25) we have modulo sm+1

∂s(∂tiT j − ∂tjT i) = ∂ti∂sT
j − ∂tj∂sT i = ∂ti∂tjS − ∂tj∂tiS = 0.

For (5.3.26) we have modulo sm+1

∂s
(
∂tiU−2 + T i + [T i, U−1]

)
= ∂ti [U−1, S]− ∂tiS + ∂tiS + [∂sT i, U−1] + [T i∂sU−1]

= [∂tiU−1, S] + [U−1, ∂tiS] + [∂tiS, U−1] + [T i, [U0, S]]

= [[U0, T
i], S] + [T i, [U0, S]]

= 0,
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where on the first line we used (5.3.20) and (5.3.21), on the second line we used
(5.3.20) and (5.3.22), on the third line we used (5.3.27), and on the last line we used
the Jacobi identity and (5.3.18). For (5.3.27) we have modulo sm+1

∂s
(
∂tiUk + [T i, Uk+1]

)
= ∂ti [Uk+1, S] + [∂sT i, Uk+1] + [T i, ∂sUk+1]

= [∂tiUk+1, S] + [T i, ∂sUk+1]

= [[Uk+2, T
i], S] + [T i, [Uk+2, S]]

= 0.

This finishes the induction step, and proves the existence.

For uniqueness up to isomorphism, assume that ι′ : (H(0),∇(0)) → (H′,∇′) is
another unfolding satisfying (5.3.17). We prove that it is isomorphic to the unfolding
(H,∇) constructed above. Let ψ : H → H′ denote the R[[t, s, u]]-module isomor-
phism obtained by identifying the good bases obtained from (h(0)

i )1≤i≤n. Then the
connection form of ψ−1 ◦ ∇′ ◦ ψ in the trivialization of H given by (e1, . . . , en)
satisfies conditions (a), (b), and (c) above. Thus ψ−1 ◦∇′ ◦ψ = ∇, and we conclude
that (idψ) : (H,∇)→ (H′,∇′) is an isomorphism of unfoldings.

Lemma 5.3.16 says that under the (GC) assumption, an unfolding ι : (H(0),∇(0))→
(H,∇) is uniquely determined up to isomorphism by the choice of a good basis
(h1, . . . , hn) extending a cyclic vector, and the action of the connection on h1.

Theorem 5.3.28 (Hertling-Manin for F-bundles). Let R be an integral domain
containing Q. Let (H,∇)/R[[t1, . . . , td]] be a finite rank F-bundle. Let v ∈
H/(t1, . . . , td, u)H.

1. If v satisfies (IC), (GC) and cokerµv is free, then there exists a maximal unfolding
with cyclic vector induced from v.

2. If v satisfies (GC’), then any two maximal unfoldings of (H,∇) with cyclic vector
induced from v are isomorphic under a unique isomorphism.

Furthermore, any framing for (H,∇) induces a unique framing on a maximal
unfolding.

Proof. Let n denote the rank ofH, and ℓ := n− d. We assume ℓ ≥ 0, as otherwise
the evaluation map µv cannot be injective and a maximal unfolding of (H,∇) does
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not exist. Write t = {t1, . . . , td} and s = {s1, . . . , sℓ}. Fix a good basis (h1, . . . , hn)
for (H,∇) extending v, i.e. with h1|t=u=0 = v.

For (1), let N ∈ Mat(n × d,R) denote the matrix of the evaluation map µv. Let
f1, . . . , fn ∈ R[[t, s]] with fi(t, 0) = 0. Applying Lemma 5.3.16 we obtain an unfold-
ing ι : (H,∇)/R[[t]]→ (H′,∇′)/R[[t, s]]. Let v′ ∈ H′/(t, s, u)H′ corresponding to
v, the matrix of the evaluation map µv′ in the good basis obtained from (hi)1≤i≤n is(

N ( ∂fi

∂sj

∣∣∣
t=s=0

)1≤i≤n,1≤j≤ℓ
)
∈ Mat(n× n,R). (5.3.29)

Since v satisfies (IC), the columns of N form a basis of imµv ⊂ H/(t1, . . . , td, u)H.
Since cokerµv is free, by the basis extension theorem, we can extend this basis
to a basis of H/(t1, . . . , td, u)H by adding elements {v1, . . . , vℓ}. Any choice
(f1, . . . , fn) such that the vector ( ∂fi

∂sk
|t=s=0)1≤i≤n corresponds to vk for all 1 ≤ k ≤ ℓ

gives rise to a maximal unfolding, since the columns of (5.3.29) then form a basis of
H . This proves (1).

We now prove (2). For k = 1, 2, let ιk = (ik, ϕk) : (H,∇) → (H′
k,∇′

k) be
a maximal unfolding. In the good bases induced from (hi)1≤i≤n the 1-forms
defining the (T)-structures are closed by (5.3.25), and hence can be written as
u−1dAk for a unique Ak ∈ Mat(n × n,R)[[t, s]] satisfying Ak(0, 0) = 0. The
first column of Ak provides n elements of R[[t, s]] that define a map of R-algebras
ψk : R[[t, s]]→ R[[t, s]]. Since the unfoldings are assumed to be maximal, dψk|t=s=0

is an isomorphism. This follows from the fact that, by construction, its matrix in the
basis (dt1, . . . , dtd, ds1, . . . , dsℓ) coincides with the matrix of the evaluation map for
(H′,∇′). We deduce that ψk ∈ AutR(R[[t, s]]). If (f, j) : (H1,∇1) → (H2,∇2) is
an isomorphism of unfoldings, then f ∗dA2 = dA1 which implies A2 ◦ f = A1. In
particular ψ2 ◦ f = ψ1, and this determines f uniquely, since ψ2 is an isomorphism.
In turn, this determines j uniquely by Remark 5.3.8. Conversely, let f = ψ−1

2 ◦ ψ1

and define j : H′
1 → f ∗H′

2 by identifying the good bases induced from (hi)1≤i≤n. In
particular, we have dψ1 = dψ2 ◦ df . Therefore f ∗(H′

2,∇′
2) is a maximal unfolding

whose action on the cyclic section that extends h1 agrees with that of (H′
1,∇′

1).
After base changing to Frac(R), the (GC) condition is satisfied. It follows from
Lemma 5.3.16 that (f, j) is compatible with the connections and is an isomorphism
of unfoldings after base changing to Frac(R). But f (resp. j) is invertible over R
(resp. R[[t, s, u]]) by construction, so the unfoldings are isomorphic over R.

The last claim follows from the extension of framing result in [Hin+24, Theorem
1.3]. The proof is complete.
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Corollary 5.3.30 (Hertling-Manin for (T)-structures). Let R be an integral domain
containing Q. Let (H,∇)/R[[t1, . . . , td]] be a finite rank (T)-structure. Let v ∈
H/(t1, . . . , td, u)H.

1. If v satisfies (IC), (GC) and cokerµv is free, then there exists a maximal unfolding
with cyclic vector induced from v.

2. If v satisfies (GC’), then any two maximal unfoldings of (H,∇) with cyclic vector
induced from v are isomorphic under a unique isomorphism.

Proof. Let n denote the rank ofH. Write t = {t1, . . . , td} and s = {s1, . . . , sn−d}.
We choose an F-bundle structure (H,∇F )/R[[t]] lifting the (T)-structure (H,∇).
Then (H,∇F ) satisfies the conditions of Theorem 5.3.28(1), producing a maximal
unfolding of F-bundle. Since being maximal is a property of the (T)-structure, the
unfolding of the underlying (T)-structure is maximal, proving (1).

For (2), let ι1 : (H,∇)/R[[t]]→ (H1,∇1)/R[[t, s]] and ι2 : (H,∇)/R[[t]]→ (H2,∇2)/R[[t, s]]
be two maximal unfoldings of (T)-structures, with cyclic vector induced from v.
Since the base of (H,∇) has finitely many variables, it follows from Proposition 5.3.4
that it admits a framing. This induces a framing on any unfolding by Remark 5.3.9.
Thus, we can apply Lemma 5.3.10 and extend the two unfoldings ι1 and ι2 uniquely
to maximal unfoldings of the F-bundle (H,∇F ). We conclude from Theorem 5.3.28
that they are isomorphic under a unique isomorphism, and hence the same holds for
the underlying unfoldings of (T)-structures. This concludes the proof.

Remark 5.3.31 (Existence when R is not a field). Let R be an integral domain,
(H,∇)/R[[t1, . . . , td]] be a finite rank F-bundle, and v ∈ H := H/(t1, . . . , td, u)H.

1. If v only satisfies (IC) and (GC’), we know that a maximal unfolding exists
after base change to Frac(R). In fact, the maximal unfolding is defined over any
localizationR′ ofR such that cokerµv⊗RR′ is a free module, by Theorem 5.3.28(1).

2. Let (H,∇)→ (H′,∇′) be an unfolding. We obtain maps µ and µ′ as in (5.3.12).
Let A := R[imµ] and A′ := R[imµ′] denote the associated commuting subalgebras
of EndR(H). We haveA ⊂ A′ ⊂ C(A′) ⊂ C(A), where C(·) denotes the commutant
algebra. Let µ̃v : A → H and µ̃′

v : A′ → H denote the evaluation on v. From the
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commutative diagram

0 A A′ A′/A 0

0 H H 0,

µ̃v µ̃′
v

id

we obtain the long exact sequence

0 −→ ker µ̃v −→ ker µ̃′
v −→ A′/A −→ coker µ̃v −→ coker µ̃′

v −→ 0.

If the unfolding is maximal, we have A′ = imµ′ and µ̃′
v is an isomorphism. We

deduce that ker µ̃v = 0 and coker µ̃v ≃ A′/A. Then, v satisfies the (IC) condition
but not necessarily the (GC) condition. In the special case when A = C(A), a
maximal unfolding exists if and only if v satisfies (IC) and (GC).

This is illustrated in Example 5.3.32.

Example 5.3.32. Let R = k[[λ1, λ2]], H = R⊕3 and H = H ⊗R R[[t1, t2]]. Let
(e1, e2, e3) denote the canonical basis of H . We consider the matrices

A = Id3, B =


0 0 1
λ1 0 0
0 λ2 0

 , C = B2 =


0 λ2 0
0 0 λ1

λ1λ2 0 0

 .
Assume ∇ is an F-bundle connection on H such that µ(∂t1) = A and µ(∂t2) = B.
We have R[imµ] = RA ⊕ RB ⊕ RC and R[imµ] = C(R[imµ]). It follows
from Remark 5.3.31(2) that there exists a maximal unfolding with cyclic vector
v = αe1 + βe2 + γe3 if and only if v satisfies (IC) and (GC). The matrix of the
evaluation map µ̃v : R[imµ]→ H with respect to the bases (A,B,C) and (e1, e2, e3)
is

µ̃v =


α γ λ2β

β λ1α λ1γ

γ λ2β λ1λ2α

 ,
whose determinant is λ2

1λ2α
3 + λ2

2β
3 + λ1γ

3 − 3λ1λ2αβγ. The vector v satisfies
(IC) and (GC) if and only if this determinant is invertible. For v = e3, this
determinant is λ1 and we conclude that the associated maximal unfolding is defined
over k[[λ1, λ2]][λ−1

1 ]. For v = e2, this determinant is λ2
2 and the associated maximal

unfolding is defined over k[[λ1, λ2]][(λ2
2)−1].
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5.3.3 Unfolding theorem for equivariant F-bundles
In this subsection, we prove the unfolding theorem for equivariant F-bundles. The
strategy is to unfold the R-linear (T)-structure using Corollary 5.3.30, and then
extend it in the u-direction using Lemma 5.3.1.

Definition 5.3.33. Let R be a k-algebra, and let I be a countable set.

1. An unfolding of k-linear equivariant F-bundle {(H,∇), (HR,∇R), α}/k[[tI ]] is
a morphism of equivariant F-bundles (ι, ιR) such that ι is an unfolding of k-linear
F-bundles and ιR is an unfolding of R-linear (T)-structure. In particular, ι and ιR are
compatible with the R-linear lifts as in (5.2.11).

2. A morphism of unfoldings is a morphism (β, βR) of equivariant F-bundles such
that both β and βR are morphisms of unfoldings. In particular, (β, βR) commutes
with the unfolding maps.

3. An equivariant F-bundle is maximal if the underlying R-linear (T)-structure is
maximal.

Lemma 5.3.34. Let I be a countable set. Let (H,∇)/R[[tI ]] be an F-bundle. A
framing for the (T)-structure (H,∇)0 is a framing for the F-bundle if and only if it
restricts to a framing of F-bundles at tI = 0.

Proof. The framing provides a trivialization H ≃ H ⊗R R[[tI , u]]. Write ∇∂ti
=

∂ti + u−1Ti(t) and∇∂u = ∂u + u−2U(t, u). By Lemma 5.3.1(1), U(t, u) is uniquely
determined by the system of differential equations (5.3.2) and the initial condition
U(0, u). Write U(t, u) = ∑

k≥0 Uk−2(t)uk. The differential equation implies for all
k ≥ 0

∂Uk
∂ti

= −[Ti, Uk+1].

Since we have the initial condition Uk(0) = 0, we deduce that Uk(t) = 0 for all
k ≥ 0 by applying [Hin+24, Lemma 4.8(1)] inductively on the number of variables.
The reverse direction is obvious.

Proposition 5.3.35. Let I and J be finite sets, and R be a k-algebra without zero
divisors equipped with a fixed basis. Let F → F ′ be an unfolding of k-linear
equivariant F-bundles. Then any framing on F extends uniquely to a framing on F ′.

Proof. Uniqueness follows from the uniqueness of extension of framing for (HR,∇R),
together with Remark 5.2.14.
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We now prove the existence part. Assume F admits a framing and

(β, βR) : F = {(H,∇), (HR,∇R), α}/k[[tI ]] −→ F ′ = {(H′,∇′), (H′
R,∇′

R), α′}/k[[tJ ]]

is an unfolding. By Remark 5.3.9, the framing for (HR,∇R) produces a unique
framing on (H′

R,∇′
R). By Lemma 5.2.6(2), this framing induces a framing on

(H̃′
R, ∇̃′

R), thus a framing on the (T)-structure (H′,∇′)0 under α′. By construction,
under β|tI=0, the framing constructed on (H′,∇′) coincides with the initial framing
of (H,∇). We conclude from Lemma 5.3.34 that it is a framing of F-bundle. This
concludes the proof.

Theorem 5.3.36 (Unfolding of equivariant F-bundles). LetF = {(H,∇), (HR,∇R), α}
be an equivariant F-bundle over k[[tI ]], and fix v ∈ HR/(tI , u)HR.

1. If v satisfies (IC), (GC) and cokerµv is free, then F admits a maximal unfolding
with cyclic vector induced from v.

2. If v satisfies (GC’), then any two maximal unfoldings of F with cyclic vector
induced from v are isomorphic under a unique isomorphism.

Furthermore, any framing for F induces a unique framing on a maximal unfolding.

Proof. We prove (1). For theR-linear (T)-structures, there exists a maximal unfolding
by Corollary 5.3.30:

βR : (HR,∇R)/R[[tI ]] −→ (H′
R,∇′

R)/R[[tJ ]].

By functoriality, we obtain an unfolding of k-linear (T)-structures:

β̃R ◦ α : (H,∇)0/k[[tI ]] −→ (H̃′
R, ∇̃′

R)/k[[tJ ]].

By Proposition 5.3.4, the R-linear (T)-structures admit framings. Those framings
induce framings on the k-linear (T)-structures by Lemma 5.2.6(2). Hence, we can
apply Lemma 5.3.10 to define an F-bundle structure (H̃′

R, ∇̃′F
R ) extending the k-linear

(T)-structure (H̃′
R, ∇̃′

R), such that β̃R ◦ α becomes an unfolding of F-bundles. Then
{(H̃′

R, ∇̃′F
R ), (H′

R,∇′
R), id} is an equivariant F-bundle and (β̃R ◦α, βR) is a maximal

unfolding of F with cyclic vector v.

We now prove (2). For k = 1, 2, let

(βk, βR,k) : {(H,∇), (HR,∇R), α} → {(Hk,∇k), (HR,k,∇R,k), αk}
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be two maximal unfoldings of equivariant F-bundles, with cyclic vectors vk ∈
HR,k/(tJ , u)HR,k induced from v. By Corollary 5.3.30, there exists a unique
isomorphism of R-linear (T)-structures

isoR : (HR,1,∇R,1)→ (HR,2,∇R,2)

such that βR,2 = isoR ◦ βR,1. This induces an isomorphism for the underlying
k-linear (T)-structures

iso := α−1
2 ◦ ˜isoR ◦ α1 : (H1,∇1)→ (H2,∇2),

and it satisfies β2 = β1 ◦ iso. It suffices to show that iso is compatible with the
u-direction. Since βk are unfoldings of F-bundles, they restrict to isomorphisms
of F-bundles at tJ = 0. Hence, iso is compatible with the u-direction at tJ = 0.
Since the k-linear (T)-structures come from finite R-linear (T)-structures, they admit
framings. Then Lemma 5.3.1(2) implies that iso is an isomorphism of F-bundles. We
conclude that (iso, isoR) is an isomorphism of equivariant F-bundles compatible with
the unfoldings. This isomorphism is unique, since (iso, isoR) is uniquely determined
by isoR. (2) is proved.

The last statement is a special case of Proposition 5.3.35. The theorem is proved.

5.4 Application to mirror symmetry of flag varieties
In this section, we apply our equivariant unfolding theorem to obtain the bigD-module
mirror symmetry for flag varieties G/P of general Lie type (Theorem 5.4.35).

We start with the k-linear F-bundles given by the equivariant small quantum D-
module for G/P on the A-side, and another one by the equivariant Gauss-Manin
system with respect to Rietsch’s superpotential on the B-side (see [Rie08]). Note
that both F-bundles are of infinite rank, as the equivariant parameters are not yet
included in the base ring. Moreover, their R-linear (T)-structure lifts coincide with
the D-module structures defined in [Cho23], and are thus isomorphic to each other
as shown therein. We will construct a suitable unfolding on the B-side, and apply our
equivariant unfolding theorem to deduce the isomorphism between the unfoldings
on both sides. We remark that in general, the classical cohomology of G/P is not
generated by the divisor classes and the small quantum cohomology is not semisimple,
so that neither the unfolding in [HM04] nor the semisimple reconstruction in [Tel12]
is directly applicable.
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5.4.1 Equivariant F-bundles for G/P
5.4.1.1 Equivariant quantum cohomology ring of G/P

Let G be a simply-connected complex simple Lie group, and P be a parabolic
subgroup ofG containing a Borel subgroupB ⊂ G. LetB− denote the opposite Borel
subgroup, and then T := B∩B− is a maximal torus ofG. Let ∆ = {α1, . . . , αn} be a
basis of simple roots, and {ω1, · · · , ωn} be the fundamental weights. The Weyl group
W := NG(T )/T is generated by simple reflections si := sαi

. The Weyl subgroupWP

of P is generated by the simple reflections sα with α ∈ ∆P := {αi ∈ ∆ | siP ⊂ P}.
Let ℓ : W → Z≥0 denote the standard length function, and w0 (resp. wP ) denote the
longest element in W (resp. WP ). Denote by W P ⊂ W the subset of minimal length
representative of the cosets W/WP .

The flag variety X := G/P is a Fano manifold. It parametrizes partial flags (resp.
isotropic partial flags) in a complex vector space when G is of type A (resp. B,
C, D). For each w ∈ W P , there are Schubert varieties Xw := BwP/P (resp.
Xw := B−wP/P ) of (co)dimension ℓ(w) inside X . We have

H∗(X,Z) =
⊕

w∈WP

ZPD([Xw]),

where PD(·) denotes the Poincaré dual, and

H2(X,Z) =
⊕

α∈∆\∆P

Z[Xsα ].

For each w ∈ W P , the Schubert variety Xw (resp. Xw) is invariant under the
natural T -action on X , so that it defines a fundamental class in the T -equivariant
Borel-Moore homology. This class is identified with a T -equivariant cohomology
class in H2ℓ(w)

T (X,C) (resp. H2(dimX−ℓ(w))
T (X,C)) denoted as σw (resp. σw). The

fundamental weights produce equivariant parameters for the T -action which we
denote by λ = (λ1, . . . , λn). We have identifications

H∗
T (pt,C) = C[λ1, . . . , λn] =: C[λ], (5.4.1)

H∗
T (X,C) =

⊕
w∈WP

C[λ]σw. (5.4.2)

To be more precise, we view ωi as a character in Hom(T,C∗), and denote by C−ωi

the one-dimensional representation of T viewed a vector bundle over a point. Then
we take λi := cT1 (C−ωi

) and consequently we have λi = −ωi. We denote by (·, ·) the
equivariant Poincaré pairing on H∗

T (X,C). The C[λ]-bases {σw}w and {σw}w are
dual with respect to the Poincaré pairing, i.e. (σu, σv) = δu,v. In the following, we
denote by C(λ) the fraction field of C[λ] = C[λ1, . . . , λn].
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Lemma 5.4.3 ([Buc+18, Lemma 5.11]). The localized equivariant cohomology of
X , H∗

T (X)⊗C[λ] C(λ) is generated by the element
∑
α∈∆\∆P

σsα as a C(λ)-algebra.

Remark 5.4.4. The above lemma shows that H∗
T (X,C) is generated by H2

T (X,C)
after localization. This also follows from [CKS08, Lemma 4.1.3], and can be
generalized to any smooth projective variety admitting a torus action with finitely
many attractive torus-fixed points by [ACT22, Lemma 1].

LetM0,m(X, d) denote the moduli space ofm-pointed stable maps toX of genus zero
and degree d ∈ H2(X,Z), and evi : M0,m(X, d)→ X denote the i-th T -equivariant
evaluation map. The moduli spaceM0,m(X, d) carries a T -action, and has a T -
equivariant virtual fundamental class [M0,m(X, d)]vir. For γ1, . . . , γm ∈ H∗

T (X,C),
we have the genus-zero, m-point equivariant Gromov-Witten invariant

⟨γ1, . . . , γm⟩d :=
∫

[M0,m(X,d)]vir
ev∗

1(γ1) ∪ · · · ∪ ev∗
m(γm) ∈ C[λ]. (5.4.5)

We introduce the necessary choices of bases, and associated coordinates, in order
to define the equivariant big quantum cohomology ring of X . Write ∆ \ ∆P =
{αi1 , . . . , αir} and W P = {v1, · · · , vN} with vj = sij for 1 ≤ j ≤ r. We introduce
Novikov variables q = (q1, . . . , qr) corresponding to the basis {[Xsα ] | α ∈ ∆\∆P}
of H2(X,Z). For d ∈ H2(X,Z), we have d = ∑

j dj[Xsij ] and denote qd :=∏r
j=1 q

dj

j . We use {τi} for the C[λ]-linear coordinates of H∗
T (X), whose elements

are of the form α = ∑N
i=1 τiσvi

.

As a module, the equivariant big quantum cohomology ring is

QH∗,big
T (X) := H∗

T (X,C)⊗C C[q][[τ ]].

It encodes all genus zero Gromov-Witten invariants in the quantum product ⋆big
τ ,

defined by

σv ⋆
big
τ σw =

∑
η∈WP

∑
m≥0

∑
i1,...,im

∑
d∈H2(X,Z)

τi1 · · · τim
m! ⟨σv, σw, ση, σvi1

, · · · , σvim
⟩
d
qdση.

Here the coefficient of τi1 · · · τim is indeed a polynomial in q since X is Fano.

Denote q̃j := qje
τj and q̃d := ∏

j q̃
dj

j . Letting τi = 0 for all i > r and using the
divisor axiom for Gromov-Witten invariants, we obtain the equivariant small quantum
cohomology ring

QH∗
T (X) = H∗

T (X,C)⊗C C[q̃] with σv ⋆ σw =
∑

η,d
⟨σv, σw, ση⟩d q̃

dση.

The next lemma follows directly from Lemma 5.4.3 and [ST97, Lemma 2.1].
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Lemma 5.4.6. The localized equivariant small quantum cohomology ofX , QH∗
T (X)⊗C[λ]

C(λ) is generated by {σsα | α ∈ ∆ \∆P} as a C(λ)[q̃]-algebra.

Remark 5.4.7. By further taking the nonequivariant limit λ = 0, we obtain the
small quantum cohomology QH∗(X), which could be non-semisimple. For instance
for G of type Cn and ∆P = ∆ \ {α2}, we obtain the isotropic Grassmannian
SG(2, 2n) = {V ≤ C2n | dim V = 2,Ω(V, V ) = 0}, where Ω is a symplectic form
on C2n. It is shown in [CP11] that QH∗(SG(2, 2n)) is not semisimple. It is easy to
see that QH∗(SG(2, 2n)) is not generated by H2(SG(2, 2n),C) either.

5.4.1.2 Equivariant F-bundle structures for G/P

We recall that τ = (τ1, · · · , τN) are the C[λ] coordinates of H∗
T (X) dual to the

standard basis we chose, q = (q1, · · · , qr) are the Novikov variables and λ =
(λ1, · · · , λn) are the equivariant variables. For k = (k1, . . . , kn) ∈ Nn, we set
λk := ∏n

i=1 λ
ki
i and |k| := ∑n

i=1 ki. It is expected but remains unsolved in general
that the big quantum cohomology is convergent around τ = 0. Therefore we work
on the formal neighborhood of τ = 0.

Let k := C(q) be the fraction field of C[q], and let R := k[λ]. We fix the k-basis
λ = (λk, k ∈ Nn) of R. We obtain k-linear coordinates τ = {τi,k, 1 ≤ i ≤ N, k ∈
Nn} on H∗

T (X, k) associated to the k-basis (σvi
λk, 1 ≤ i ≤ N, k ∈ Nn). There is a

continuous morphism of R-algebras:

ψλ : R[[τ ]]→ R[[τ ]], τi 7→
∑
k∈Nn

λkτi,k.

We define a k-linear equivariant F-bundle equivariant F-bundle

FA,big := {(HA,big,∇A,big), (HA,big
R ,∇A,big

R ), α}/k[[τ ]]

associated to the equivariant big quantum cohomology as follows. The R-linear
(T)-structure (HA,big

R ,∇A,big
R ) is given by the R[[τ, u]]-module

HA,big
R = H∗

T (X, k)⊗R R[[τ, u]],

∇A,big
R,∂τj

= ∂τj
+ u−1

(
(σvj

+ λij ) ⋆big
τ

)
,

where 1 ≤ j ≤ N and we set λij = 0 for j > r. Here, ij are the indices of
∆ \ ∆P = {αi1 , . . . , αir}. The k-linear F-bundle (HA,big,∇A,big) has underlying
kJτ , uK-module

HA,big = H∗
T (X, k)⊗k kJτ , uK,
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and the connection∇A,big is specified by:

∇A,big
∂τj,k

= ∂τj,k
+ u−1

(
λk(σvj

+ λij ) ⋆big
τ

)
,

∇A,big
u∂u

= GrA,big −∇A,big
Ebig

A

.

Here,
GrA,big = u∂u + Ebig

A + µA,

where µA is the k[[τ , y]]-linear grading operator on the fiber H∗
T (X, k) linear defined

by
µA(λkσvi

) =
(
ℓ(vi) + |k|

)
λkσvi

,

and Ebig
A is the Euler vector field measuring degree on the base k[[τ ]], given by

Ebig
A =

∑
1≤j≤r

deg(qj)
2 ∂τj,0 +

∑
1≤j≤N
k∈Nn

(1− ℓ(vj)− |k|)τj,k∂τj,k
,

where ℓ(vj) = 1 for 1 ≤ j ≤ r and the degree deg(qj) is defined as:

deg(qj) := 2
∫

[X
sij ]

c1(TG/P ).

Under the change of variables R[[τ ]] → R[[τ ]], τi 7→
∑
k∈Nn λkτi,k, the data

{(HA,big
R ,∇A,big

R ), id} provides an R-linear lift of the underlying (T)-structure
(HA,big,∇A,big)0. We obtain the A-model big equivariant F-bundle:

FA,big = {(HA,big,∇A,big), (HA,big
R ,∇A,big

R ), id}/k[[τ ]].

Remark 5.4.8. For 1 ≤ j ≤ r, consider the line bundle Lj = G×P C−ωij
overG/P .

Since cT1 (Lj) = σsij
− ωij = σvj

+ λij , we can write∇A,big
R,∂τj

= ∂τj
+ u−1cT1 (Lj)⋆big

τ .
For j > r,∇A,big

R,∂τj
are not weighted.

Remark 5.4.9. The flatness of ∇A,big in the u-direction follows from a similar
argument to that in [Coa+20, Section 3.2].

By restricting to the small locus τj = 0 for (HA,big,∇A,big), and τj,k = 0 for
(HA,big

R ,∇A,big
R ) when j > r, we obtain the A-model small equivariant F-bundle

FA := {(HA,∇A), (HA
R,∇A

R), id}/k[[τ≤r]],

where τ≤r = {τi,k, 1 ≤ i ≤ r, k ∈ Nn} parametrizes the k-linear F-bundle, and
τ≤r = {τi, 1 ≤ i ≤ r} parametrizes the R-linear (T)-structure.

The quotient maps k[[τ ]] → k[[τ≤r]] and R[[τ ]] → R[[τ≤r]] together with the natural
identification of the fibers produce an unfolding of the equivariant F-bundle ι : FA →
FA,big.
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Proposition 5.4.10. The morphism ι : FA → FA,big is a maximal unfolding of
k-linear equivariant F-bundles, with cyclic vector given by 1 ∈ H∗

T (X, k).

Proof. We have already proven the morphism ι : HA → FA,big is an unfolding,
and it remains to check that (HA

R,∇A
R) is maximal. We take the cyclic vector

v = 1 ∈ HA,big
R |τ=u=0 = H∗

T (X, k). The R-linear evaluation map is:

µv=1 :
N⊕
j=1

R∂τj
−→ H∗

T (X, k)

∂τj
7−→ ∇u∂τj

|τ=u=0(1) = σvj
+ λij .

Since {σvi
}i is an R = k[λ] basis of H∗

T (X, k) by equation (5.4.2), µv=1 is an
R-isomorphism and we conclude that ι is maximal unfolding.

5.4.2 The small D-module mirror symmetry for G/P
In this section, we review the B-side of mirror symmetry for for G/P as in [Rie08],
construct a R-linear (T)-structure (HB

R ,∇B
R) from the Gauss-Manin connection, and

state the small mirror symmetry as in [Cho23].

5.4.2.1 Small D-module mirror symmetry

Let G∨ be the Langlands dual group of G, and T∨, B∨, P∨ be the Langlands
dual of T,B, P respectively. Rietsch’s equivariant mirror superpotential is a triple
(X∨

P ,W , p). Here X∨
P is a subvariety of G∨ × Z isomorphic to(

(G∨/P∨) \ −KG∨/P∨

)
× Spec C[q̃±1

i |αi ∈ ∆\∆P ],

where Z is the center of the Levi subgroup of P∨ and−KG∨/P∨ is the anti-canonical
divisor of the dual partial flag variety G∨/P∨ given in [KLS14]. The holomorphic
functionW : X∨

P → C is the non-equivariant mirror superpotential of G/P , and
p : X∨

P → T∨ is a morphism which gives information on the equivariant part of
Rietsch’s original mirror superpotentialW + lnϕ(;h) (see [Rie08]).

Denote by Ωi(X∨
P/Z) the space of holomorphic i-forms over X∨

P with respect to

Z ∼= Spec C
[
q̃±1
i

∣∣∣ αi ∈ ∆\∆P

]
via the aforementioned isomorphism. Identify the Lie algebra t∨ = Lie(T∨) with t∗.
Let {(λi)∗} ⊂ (t∨)∗ be the dual base of {λi} ⊂ t∨, and mcT∨ ∈ Ω1(T∨; t∨) denote
the Maurer-Cartan form of T∨.
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In [Cho23], the B-model D-module
(
G0(X∨

P ,W , p),∇
)

consists of a C[λ, u][q̃±1
i ]-

module defined by:

G0(X∨
P ,W , p) = coker

(
C[λ, u]⊗C Ωtop−1(X∨

P/Z) ∂−→ C[λ, u]⊗C Ωtop(X∨
P/Z)

)
,

∂ = 1⊗
(
ud+ dW ∧−

n∑
j=1

λj(p∗⟨(λj)∗,mcT∨⟩) ∧
)
.

It is equipped with a meromorphic connection having a logarithmic pole in the
q̃i-direction:

∇∂q̃i
([ω]) =

[
L∂q̃i

(ω) + u−1∂W
∂q̃i

ω − u−1
n∑
j=1

λj
(
ι∂q̃i

p∗
〈
(λj)∗,mcT∨

〉)
ω
]
.

Here, p∗
〈
(λj)∗,mcT∨

〉
∈ Ω1(X∨

P/Z) and ∂,∇ are linear on C[λ, u].

Remark 5.4.11. For any ω ∈ C[λ, u]⊗Ωtop(X∨
P/Z), ω = gω0 for some g ∈ O(X∨

P )
and ω0 ∈ Ωtop((G∨/P∨)\−KG∨/P∨) . We have the Lie derivative L∂q̃i

(ω) = ∂g
∂q̃i
ω0.

The small quantum D-module mirror symmetry holds for G/P in the following
sense.

Proposition 5.4.12 ([Cho23, Theorem 1.2]). There exists a unique C[λ, u][q̃i±1]-
linear map

Φmir : G0(X∨
P ,W , p) −→ QH∗

T (G/P )[u, q̃−1
1 , · · · , q̃−1

r ] (5.4.13)

satisfying the following:

1. Φmir is bijective, and preserves the connection,

2. Φmir([Ω]) = 1, where Ω is the unique (up to sign) volumn form in Ωtop(X∨
P/Z),

whose restrictions to every torus chart of (G∨/P∨) \ −KG∨/P∨ is equal to the
standard volumn form ±dz1 ∧ · · · ∧ dzK/z1 . . . zK ,

3. at the semi-classical limit, we have a ring isomorphism

Φu=0
mir : Jac(X∨

P ,W , p)
∼=−→ QH∗

T (G/P )[q̃−1
1 , · · · , q̃−1

r ], (5.4.14)

4. Φmir intertwines the shift operators (see [Cho23, Sections 3.3 and 4.5]), and

5. Φmir preserves the Z-grading.
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In (5.4.14), Jac(X∨
P ,W , p) denotes the Jacobi ring, which is the coordinate ring of

the scheme-theoretic zero locus of certain relative 1-forms in Ω1(X∨
P × t/Z × t)

(see [Cho23, Definition 4.9] for more details). It corresponds to setting u = 0 in the
B-model D-module.

We remark that the above isomorphism is a bit implicit. Below we provide an
example with explicit isomorphism of small quantum D-modules from [MR20].

Example 5.4.15. For G/P = Gr(3, 5) = {V ≤ C5 | dim V = 3}, the Langlands
dual flag varietyG∨/P∨ is the Grassmannian Gr(2, 5) ↪→ P9, whose image is defined
by the Plücker relations pa1a2pa3a4 − pa1a3pa2a4 + pa1a4pa2a3 = 0 for 1 ≤ a1 < a2 <

a3 < a4 ≤ 5. In this case, −KG∨/P∨ = {p12p23p34p45p15 = 0}. The W-part of
Rietsch’s equivariant superpotential is given by:

W = p13

p12
+ p24

p23
+ p35

p34
+ q̃

p14

p45
+ p25

p15
.

The degree of the inhomogeneous coordinate θij = pij

p12
is equal to 2(i + j − 3).

The volume form Ω = dθ13dθ14dθ15dθ23dθ24dθ25
θ23θ34θ45θ15

is of degree 0. For 1 ≤ i < j ≤ 5,
Φmir([θijΩ]) = σw with w ∈ S5 the unique permutation satisfying w(4) = 6 − j,
w(5) = 6− i, and w(1) < w(2) < w(3).

5.4.2.2 Equivariant F-bundles formulation

In our setting of (T)-structures, we need to replace the logarithmic q̃i-directions
with a regular meromorphic connection in yi-directions. This is achieved by the
D-module inverse image under

ψ1 : C[λ, u][q̃i±1] −→ C[λ, u][q±1
i ][[y≤r]]

q̃i 7−→ qie
yi ,

where y≤r = {yi, 1 ≤ i ≤ r}. For the purpose of applying our reconstruction
theorem to obtain big mirror symmetry, we need to further take the fraction field of
q and formalize u. So we compose ψ1 with the following base change:

ψ2 : C[λ, u][q±1
i ][[y≤r]] −→ C[λ, u][q±1

i ][[y≤r]]⊗C[q±1
i ,u] C(q)[[u]].

Namely, we have the following, where we recall k = C(q) and R = k[λ]:

ψ := ψ2 ◦ ψ1 : C[λ, u][q̃±1
i ] −→ R[[y≤r, u]]. (5.4.16)
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The B-model R-linear (T)-structure (HB
R ,∇B

R) is the D-module inverse image
ψ∗
((
G0(X∨

P ,W , p),∇
))

, whose underlying R[[y≤r, u]]-module is

HB
R = G0(X∨

P ,W , p)⊗R[[y≤r, u]],

and the connection is given by

∇B
R,∂yi

([ω]) =
[
L∂yi

(ω) + u−1∂W
∂yi

ω − u−1
n∑
j=1

λj
(
ι∂yi

p∗
〈
(λj)∗,mcT∨

〉)
ω

]
.

(5.4.17)

Next, we define the B-model k-linear F-bundle. Fix the k-basis of R given by
λ = (λk, k ∈ Nn) and let y≤r := {yi,k, 1 ≤ i ≤ r, k ∈ Nn}. Consider the following
change of variables:

ψλ : R[[y≤r, u]] −→ R[[y≤r, u]] (5.4.18)

yi 7−→
∑
k∈Nn

λkyi,k.

The underlying (T)-structure (HB,∇B) of the B-model k-linear F-bundle is defined
as the D-module inverse image ψ∗

λ(HB
R ,∇B

R) and restrict scalars from R to k, as in
Lemma 5.2.6. Explicitly, the underlying k[[y≤r, u]]-module is

HB = G0(X∨
P ,W , p)⊗R[[y≤r, u]],

equipped with a regular meromorphic connection

∇B
∂yi,k

([ω]) =
[
L∂yi,k

(ω) + u−1 ∂W
∂yi,k

ω − u−1
n∑
j=1

λj
(
ι∂yi,k

p∗
〈
(λj)∗,mcT∨

〉)
ω
]
,

whereW is in variables yi,k. The u-direction is defined in Eq. (5.4.21), its definition
uses the grading operator on the B-model, which we now define. We first construct
a grading on Ωtop(X∨

P/Z)⊗ k[[y≤r, u]].

Construction 5.4.19 (Grading on differential forms). We construct a k[[y≤r, u]]-linear
operator µB on Ωtop(X∨

P/Z) ⊗ k[[y≤r, u]], which defines a grading on differential
forms.

Recall that Ωtop(X∨
P/Z)⊗ k[[y≤r, u]] is a rank 1 free module over O

(
X∨
P

)
[[y≤r, u]].

The choice of Ω in Proposition 5.4.12(2) produces a basis of this module. For any
differential form ω = hΩ with h ∈ O

(
X∨
P

)
[[y≤r, u]], we define

µB(hΩ) := degB(h)
2 Ω,
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where the degree operator degB is defined on functions inO(X∨
P ) using theGm-action

on X∨
P constructed in [Cho23, Lemma 4.6], and extended by k[[y≤r, u]]-linearity.

Using the Jacobian isomorphism (5.4.14) and the grading operator µA, we can
describe degB as follows. For any local chart, we take a coordinate system (zi)i so
that zi are homogeneous. For a monomial function h ∈ O

(
(G∨/P∨) \ −KG∨/P∨

)
,

we have degB(h) = 2dh where d ∈ Z is given by: r∑
i=1

deg(qi)
2 qi

∂

∂qi
+ µA

Φu=0,y=0
mir (h) = dΦu=0,y=0

mir (h),

where h denotes the image of h in Jac(X∨
P ,W , p) and Φu=0,y=0

mir is the Jacobi isomor-
phism (5.4.14). It is then extended to a k[[y≤r, u]]-linear operator onO(X∨

P )[[y≤r, u]].

We use the simple example of X = CP1 to illustrate the definition of degB.

Example 5.4.20 (µB for CP1). For X = CP1, we have k = C(q). The equivariant
(small) quantum cohomology QH∗

T (X) is isomorphic to k[H,λ]/(H2 −Hλ− q),
where q has degree 4. The mirrorX∨

P is the familyGm×SpecC[q±1]→ SpecC[q±1],
the superpotential isW = z + q

z
, and the Jacobi ring Jac(X∨

P ,W , p) is isomorphic
to k[z, z−1, λ]/

(
1− λ

z
− q

z2

)
. The mirror isomorphism Φu=0,y=0

mir at u = 0, y = 0 is
given by the morphism of k[λ]-modules defined by z 7→ H .

We have degB(qz3) = q degB(z3) = 6qz3, where the last equality follows from the
computation:(

deg(q)
2 q

∂

∂q
+ µA

)
Φu=0,y=0

mir (z3) =
(

deg(q)
2 q

∂

∂q
+ µA

)
(λ2H + qH + qλ)

= 3(λ2H + qH + qλ).

The u-direction connection of the B-model k-linear F-bundle (HB,∇B) is defined
as

∇B
u∂u

:= GrB −∇EB
, (5.4.21)

GrB := u∂u + EB + µB,

where u∂u measures the degree in u, µB is the grading operator on differential forms
(see Construction 5.4.19), and EB is the Euler vector field measuring the degree of
the y-variables and accounting for the degree of q:

EB :=
∑

1≤j≤r

deg(qj)
2 ∂yj,0 −

∑
1≤j≤r,k∈Nn

|k|yj,k∂yj,k
.
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In the following proposition, we note that even though µB is only defined on
differential forms, the total grading operator GrB is well-defined on equivalences
classes.

Proposition 5.4.22. The grading operator GrB produces a well-defined operator on
HB.

Proof. Let K denote the rank of Ω1(X∨
P/Z). We only need to prove that for any

(K − 1)-form η, there exists a (K − 1)-form η′ such that

GrB
(
(ud+ dW∧)η

)
= (ud+ dW∧)η′. (5.4.23)

Fix a torus-invariant local chart with coordinates (zi)i and write

η =
∑
i

gi(z, q,y≤r, u)ι∂zi

 K∧
j=1

dzj

.
Let

η′ :=
∑
i

(
(u∂u + EB + degB)(gi) +

(
1− degB(zi)

2zi

)
giι∂zi

 K∧
j=1

dzj

.
A direct computation shows that this choice of η′ satisfies (5.4.23). We conclude
that GrB descends to an operator onHB, completing the proof.

We note the following property of µB, which we will use in Proposition 5.4.31.

Lemma 5.4.24 (Leibniz rule for µB). The grading operator µB on differential forms
µB (see Construction 5.4.19) satisfies the Leibniz rule:

µB(g1g2Ω) = g1µB(g2Ω) + g2µB(g1Ω),

for any g1, g2 ∈ O(X∨
P )⊗ k[[y≤r, u]].

Proof. The statement follows from the facts that the Jacobian isomorphism Φu=0,y=0
mir

is a ring isomorphism, and that (∑r
j=1

deg(qj)
2 qj

∂
∂qj

+µA) satisfies the Leibniz rule.

By construction, the data {(HB
R ,∇B

R), id} is an R-linear lift of the k-linear (T)-
structure (HB,∇B)0, and we obtain the B-model small equivariant F-bundle:

FB = {(HB,∇B), (HB
R ,∇B

R), id}/k[[y≤r]].
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Lemma 5.4.25 (Proposition 5.4.12(5)). For h ∈ O((G∨/P∨)\ −KG∨\P∨), we haveu∂u +
r∑
i=1

deg(qj)
2 qj

∂

∂qj
+ µA

Φy=0
mir (hΩ) = Φy=0

mir

(
(u∂u + µB)(hΩ)

)
.

The following proposition essentially follows from Proposition 5.4.12. Here we add
the explanation in detail for completeness.

Proposition 5.4.26. The A-model small equivariant F-bundle FA over k[[τ≤r]] is
isomorphic to the B-model small equivariant F-bundle FB over k[[y≤r]] under an
isomorphism

(
(mirk,Φmir,k), (mir,Φmir)

)
where Φmir is as in Proposition 5.4.12,

Φmir,k is the induced k-linear map, and mirk : yi,k 7→ τi,k, mir : yi 7→ τi identify the
variables of the equivariant F-bundles.

Proof. Our construction of B-model small equivariant F-bundle

FB = {(HB,∇B), (HB
R ,∇B

R), id}/k[[y≤r]]

consists of the (T)-structure obtained as D-module inverse image:

(HB
R ,∇B

R) = ψ∗
(
G0(X∨

P ,W , p),∇
)
,

(HB,∇B) = (ψλ ◦ ψ)∗
(
G0(X∨

P ,W , p),∇
)
,

where ψ and ψλ are base change maps defined in equations (5.4.16) and (5.4.18),
together with a u-direction on (HB,∇B).
Our construction of A-model small equivariant F-bundle FA = {(HA,∇A),
(HA

R,∇A
R), id}/k[[τ≤r]] in Section 5.4.1.2 can also be written as (T)-structures

(HA,∇A) and (HA
R,∇A

R) obtained as D-module inverse image under the same
maps, together with a u-direction on (HA,∇A).
By the functoriality of pullback, the isomorphism in Proposition 5.4.12 induces an
isomorphism

((mirk,Φmir,k), (mir,Φmir)) : FB −→ FA

of the underlying (T)-structures. It suffices to prove that in our setting Φmir is also
graded, i.e. that (mirk)∗EB = EA and

Φmir,k ◦GrB = mir∗
kGrA ◦ Φmir,k, (5.4.27)

where mir∗
kGrA is the grading operator on mir∗

kHA induced from GrA. The com-
patibility of the Euler vector fields is clear from their definition and the fact that
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mirk identifies the variables y≤r and τ≤r. For (5.4.27), we need to check that for all
f ∈ O(X∨

P )[[y≤r, u]], we have

Φmir,k([(u∂u + EB + µB)(fΩ)]) = (u∂u + EB + µA)(Φmir,k([fΩ])).

Since both sides are linear in q and satisfy the Leibniz rule for y and u, it suffices to
check the equation for f ∈ O

(
(G∨/P∨)\ −KG∨/P∨

)
.

In this case, the left-hand side reduces to Φmir,k([µB(fΩ)]). For the right-hand side,
observe that Φmir,k([fΩ]) is obtained by first applying the mirror map (5.4.13) from
[Cho23] to [fΩ], and then pulling back under the change of variables q̃i 7→ qie

∑
k
λkyi,k .

Hence, Φmir,k([fΩ]) is a power series in the variables {qie
∑

k
λkyi,k}1≤i≤r with

coefficients in H∗
T (X,C). For an equivariant cohomology class α ∈ H∗

T (X,C), we
have:

qi
∂

∂qi

(
qie
∑

k
λkyi,kα

)
= ∂

∂yi,0

(
qie
∑

k
λkyi,kα

)
.

It follows that at y = 0, the right-hand side is

(u∂u + EB + µA)(Φmir,k([fΩ])) =
u∂u +

r∑
i=1

deg(qi)
2 qi

∂

∂qi
+ µA

(Φmir,k([fΩ]))

= Φmir,k([µB(fΩ)]),

where the last equality follows from Lemma 5.4.25. This implies that the bundle map
is compatible with u-direction at y = 0, and by Lemma 5.3.5 that Eq. (5.4.27) holds
for any y. We deduce that (mirk,Φmir,k) is an isomorphism of F-bundles, concluding
the proof.

5.4.3 The big D-module mirror symmetry for G/P
In this subsection, we prove the big D-module mirror symmetry for G/P in
the framework of equivariant F-bundles. We first construct a maximal unfold-
ing of the small B-model equivariant F-bundle by unfolding the superpotential
W (Construction 5.4.28). In particular, we discuss freeness in Lemma 5.4.30
and Proposition 5.4.29, and flatness in Propositions 5.4.29 and 5.4.31. We obtain the
equivariant big mirror symmetry for flag varieties in Theorem 5.4.35 and deduce a
non-equivariant version in Theorem 5.4.38.

5.4.3.1 Unfolding of the B-model

We fix formal variables y = {y1, . . . , yN} and y = {yi,k, 1 ≤ i ≤ N, k ∈ Nn}.
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Construction 5.4.28 (Unfolded superpotential). For any r < j ≤ N , let f̄j :=
(Φu=0,y=0

mir )−1(σvj
) ∈ Jac(X∨

P ,W , p). Let fj ∈ O(X∨
P ) be a lift of f̄j such that the

function fj is independent of y1, ..., yN . The unfolded superpotential W̃ is:

W̃ :=W +
N∑

j=r+1
yjfj.

Similar to the previous section on the small B-model equivariant F -bundle, we now
associate to W̃ the big B-model equivariant F-bundle:

FB,big := {(HB,big,∇B,big), (HB,big
R ,∇B,big

R ), id}/k[[y]].

We first construct an R-linear (T)-structure (HB,big
R ,∇B,big

R ) , consisting of a R[[y, u]]-
module defined by

HB,big
R := coker

(
R[[y, u]]⊗C[q̃±1

i ] Ωtop−1(X∨
P/Z) ∂−→ R[[y, u]]⊗C[q̃±1

i ] Ωtop(X∨
P/Z)

)
,

∂ := 1⊗
(
ud+ dW̃ ∧ −

n∑
j=1

λj(p∗⟨(λj)∗,mcT∨⟩) ∧
)
,

equipped with a connection defined by:

∇B,big
R,∂yi

([ω]) :=
L∂yi

(ω) + u−1∂W̃
∂yi

ω − u−1
n∑
j=1

λj
(
ι∂yi

p∗
〈
(λj)∗,mcT∨

〉)
ω

.
Proposition 5.4.29. The data (HB,big

R ,∇B,big
R )/R[[y]] defines anR-linear (T)-structure.

Proof. We first check that HB,big
R is a free R[[y, u]]-module. By construction, we

haveHB,big
R |y≥r+1=0 = HB

R , which is a finite free R[[y≤r, u]]-module (see [Cho23, p.
52]). Since yjω ∈ im(∂) if and only if ω ∈ im(∂), the element yj is torsion-free.
Hence, the freeness of HB,big

R follows from Lemma 5.4.30 below. The flatness
of ∇B,big

R follows from the facts that ∂W̃
∂yi

= fi is independent of y1, . . . , yN , that
[L∂ys

,L∂yt
] = 0, and that [L∂ys

, ιyt ] = 0.

Lemma 5.4.30. Let R0 be a commutative unital ring and M be an R0[[z1, · · · , zm]]-
module such that zi is torsion-free for all 1 ≤ i ≤ m. Let Ω1, . . . ,ΩN ∈ M . If
{Ω̄1, · · · , Ω̄N} is an R0-basis of M/(z1, ..., zm)M , then {Ω1, · · · ,ΩN} ⊂M is an
R0[[z1, · · · , zm]]-basis of M [[z1, · · · , zm]].

Proof. By Nakayama lemma [ZS60, §VIII.3, Corollary 2], {Ω1, · · · ,ΩN} generates
M as an R0[[z1, · · · , zm]]-module. It remains to prove the freeness.
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We first treat the case m = 1. Let gi(z1) ∈ R0[[z1]] be coefficients such that∑
i gi(z1)Ωi = 0. Since {Ωi} induces a basis of M/z1M , we have gi(0) = 0.

Assume gi has no terms of degree less than or equal to b− 1 in z1, i.e. we can write
gi = zb1hi. Then we have: ∑

i

zb1hiΩi = 0.

Since zb1 is torsion-free in M , we deduce that
∑
i hiΩi = 0, which implies hi(0) = 0.

Hence, gi has no terms of degree less than or equal to b. By induction on b, this
implies gi = 0.

The case m ≥ 2 follows from the case m = 1 by a direct induction on the number of
variables. The proof is complete.

The k-linear F-bundle (HB,big,∇B,big)/k[[y]] is given by theD-module inverse image
of (HB,big

R ,∇B,big
R ) under the map of R[[u]]-algebras R[[y, u]] → R[[y, u]] given by

yi 7→
∑
k∈Nn λkyi,k. More explicitly:

HB,big := HB,big
R ⊗k[[y,u]] k[[y, u]],

∇B,big
∂yi,k

([ω]) :=
L∂yi,k

(ω) + u−1 ∂W̃
∂yi,k

ω − u−1
n∑
j=1

λj
(
ι∂yi,k

p∗
〈
(λj)∗,mcT∨

〉)
ω

,
equipped with the u-direction connection

∇B,big
u∂u

:= GrB,big −∇Ebig
B
,

GrB,big := u∂u + Ebig
B + µB,

where the Euler vector field is given by

Ebig
B :=

∑
1≤j≤r

deg(qj)
2 ∂yj,0 +

∑
1≤j≤N,k∈Nn

(1− ℓ(vj)− |k|)yj,k∂yj,k
,

and where the grading on differential forms µB (see Construction 5.4.19) is extended
to a k[[y, u]]-linear operator. Similar to Proposition 5.4.22, the total grading operator
GrB,big lifts toHB,big.

Proposition 5.4.31. The big Gauss-Manin connection∇B,big is flat.

Proof. The underlying (T)-structure of (HB,big,∇B,big) is flat, as it is obtained
from the R-linear (T)-structure (HB,big

R ,∇B,big
R ), whose flatness was established in

Proposition 5.4.29. We check the flatness in the u-direction as follows. We have:[
∇B,big
u∂u

,∇B,big
∂yj,k

]
=
[
GrB,big,∇B,big

∂yj,k

]
−
[
∇B,big
Ebig

B

,∇B,big
∂yj,k

]
.
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Since the underlying (T)-structure of (HB,big,∇B,big) is flat, we have:[
∇B,big
Ebig

B

,∇B,big
∂yj,k

]
= ∇B,big

[Ebig
B ,∂yj,k

]
= −(1− ℓ(vj)− |k|)∇B,big

∂yj,k
. (5.4.32)

We claim that the grading structure is compatible with the connection, in the sense
that: [

GrB,big,∇B,big
∂yj,k

]
= −(1− ℓ(vj)− |k|)∇B,big

∂yj,k
. (5.4.33)

When 1 ≤ j ≤ r, the equality holds because∇B is flat. When r + 1 ≤ j ≤ N , the
equality holds because for any [ω] ∈ HB,big we have:

GrB,big([fjω])− fjGrB,big([ω]) = [ℓ(vj)fjω],

GrB,big([u−1ω])− u−1GrB,big([ω]) = −[u−1ω],

GrB,big([λkω])− λkGrB,big([ω]) = [|k|λkω],

where we use Lemma 5.4.24 and the homogeneity of the elements fj , u−1, and λk.
Note that fj is homogeneous of degree ℓ(vj) by our choice of lift in Construction 5.4.28.
Now, flatness follows from equations (5.4.32) and (5.4.33), concluding the proof.

Similar to the A-model, we note that the quotient maps k[[y]] → k[[y≤r]] and
R[[y]]→ R[[y≤r]] induce an unfolding of equivariant F-bundles ιB : FB → FB,big.

Proposition 5.4.34. The morphism ιB : FB → FB,big is a maximal unfolding of
k-linear equivariant F-bundles, with cyclic vector given by [Ω] := Φ−1

mir(1), where
1 ∈ H∗

T (X, k) is the cyclic vector on the A-side.

Proof. We only need to check that FB,big is a maximal unfolding of FB with cyclic
vector induced from [Ω]. By definition of FB,big, for r < j ≤ N we have:

Φmir

([
u∇B,big

R,∂yj

]∣∣∣
y=u=0

([Ω])
)

= Φu=0,y=0
mir (f̄j) = σvj

.

For 1 ≤ j ≤ r, by Proposition 5.4.26 we have:

Φmir

([
u∇B,big

R,∂yj

]∣∣∣
y=u=0

([Ω])
)

=
[
u∇A

∂tj

]
|t=u=0(1) = σvj

.

Since Φmir is an isomorphism and {σvj
, 1 ≤ j ≤ N} is a basis of H∗

T (X, k), we
conclude that the unfolding is maximal.
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5.4.3.2 Mirror symmetry

Now we can show the bigD-module mirror symmetry forX = G/P in the following
sense.

Theorem 5.4.35 (Equivariant big mirror symmetry). There exists a unique isomor-
phism of equivariant F-bundles((

mirbig
k ,Φbig

mir,k

)
,
(

mirbig,Φbig
mir

))
: FB,big −→ FA,big

extending the small mirror map
(
(mirk,Φmir,k), (mir,Φmir)

)
in Proposition 5.4.26.

Proof. By Proposition 5.4.10, we have a maximal unfolding of the small A-model
equivariant F-bundle, given by FA → FA,big. Composing the small mirror iso-
morphism

(
(mirk,Φmir,k), (mir,Φmir)

)
: FA → FB of Proposition 5.4.26, with the

B-model maximal unfolding ι : FB → FB,big, we obtain another maximal unfolding
FA → FB,big.

To apply Theorem 5.3.36 and obtain a unique isomorphism FA,big → FB,big, we
need to check the small A-model equivariant F-bundle satisfies the (GC’) condition
as in Definition 5.3.15. We take v = 1 ∈ H∗

T (X, k) = HA|τ=u=0. After base change
to Frac(R) = k(λ), we have the evaluation map of k(λ)-modules:

µv=1 :
⊕

1≤j≤r
k(λ)∂τj

−→ H∗
T (X, k)⊗ k(λ), (5.4.36)

∂τj
7−→ µ(∂τj

)(1) = σvj
+ λij .

By Lemma 5.4.6,H∗
T (X, k)⊗k(λ) is generated as ak(λ)-algebra byσvj

for 1 ≤ j ≤ r,
so the orbit of v = 1 under the action ofR[imµ] is the fiberHA

R/(τ1, . . . , τN , u)HA
R⊗R

Frac(R), and (GC’) is verified. The proof is complete.

We deduce a non-equivariant limit of the theorem by applying the base change
associated to the quotient map R→ R/(λ). This corresponds to setting λ = 0 in all
the previous formulas. We use the superscript λ0 to indicate that the non-equivariant
limit is taken. We note that since R/(λ) ≃ k, in the non-equivariant limit the
equivariant F-bundles can be reduced to k-linear F-bundles (see Remark 5.2.12).
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On the A-side, we have τi = ∑
λkτi,k = τi,0. The big quantum D-module

(HA,big,λ0 ,∇A,big,λ0) is an F-bundle over k[[τ ]] = k[[τ1, . . . , τN ]] defined by

HA,big,λ0 = H∗(X,C)⊗ k[[τ, u]],

∇A,big,λ0
∂τj

= ∂τj
+ u−1σvj

⋆big,λ0 ,

∇A,big,λ0
u∂u

= GrA,big,λ0 −∇A,big,λ0

E
big,λ0
A

,

where GrA,big,λ0 = u∂u + Ebig,λ0
A + µA, with the Euler vector field

Ebig,λ0
A :=

∑
1≤j≤r

deg(qj)
2 ∂τj

+
∑

1≤j≤N
(1− ℓ(vj))τj∂τj

.

On the B-side, we have yi = ∑
λkyi,k = yi,0. The non-equivariant big Gauss-Manin

system is an F-bundle (HB,big,λ0 ,∇B,big,λ0) over k[[y]] = k[[y1, . . . , yN ]] defined by

HB,big,λ0 = coker
(
k[[y, u]]⊗ Ωtop−1(X∨

P/Z) 1⊗(ud+dW̃∧)−−−−−−−−→ k[[y, u]]⊗ Ωtop(X∨
P/Z)

)
,

∇B,big,λ0
∂yj

= L∂yj
+ ∂W̃
∂yj

,

∇B,big,λ0
u∂u

= u∂u − u−1W̃ (by Proposition 5.4.37 below).

Proposition 5.4.37. At the non-equivariant limit, we have∇B,big,λ0
u∂u

= u∂u − u−1W̃ .

Proof. In this proof, to simplify notations we drop the superscript λ0. For any
[ω] ∈ HB,big, we can write ω = gΩ where g ∈ O(X∨

P )[[y, u]] and Ω is given in
Proposition 5.4.12(2). We have:

∇B,big
u∂u

([gΩ]) =
[
u∂u(gΩ) + Ebig

B (g)Ω + µB(gΩ)
]
−∇B,big

Ebig
B

([gΩ])

=
[
u∂u(gΩ) + µB(gΩ)− u−1Ebig

B (W̃)gΩ
]

=
[
u∂u(gΩ) + µB(gΩ)− u−1gGrB,big(W̃Ω) + g∂u(W̃)Ω + gµB(W̃Ω)

]
.

We claim that GrB,big(W̃Ω) = W̃Ω, or equivalently that W̃ is homogeneous
of degree 1 as an element of O(X∨

P )[[y, u]]. By [Cho25, Lemma 4.3], we have
Φmir([WΩ]) = c1(G/P ), and henceW is homogeneous of degree 1 since Φmir is
graded (Proposition 5.4.12(5)). For r < j ≤ N , our choice of lift in Construc-
tion 5.4.28 shows that GrB,big(yjfjΩ) = Ebig

B (yj)fjΩ + yjµB(fjΩ) = yjfjΩ. Since
W̃ is independent of u, we have:

∇B,big
u∂u

([gΩ]) =
[
u∂u(gΩ)− u−1W̃gΩ

]
+
[
uµB(gΩ) + gµB(W̃Ω)

]
.
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By [Cho23, Remark 4.13] and the references therein, after fixing local coordinates
(zi)i we can write Ω =

∧K

i=1 dzi

z1···zK
. By Lemma 5.4.24, we have:

µB(gΩ) =
K∑
i=1

∂g

∂zi
µB(ziΩ).

Consider the K − 1 form η := ∑K
i=1 gι∂zi

µB(ziΩ). We have:

udη = u
K∑

i,j=1

∂g

∂zj
dzj ∧ ι∂zi

µB(ziΩ) + ug
K∑
i=1

d
(
ι∂zi

µB(ziΩ)
)

= u
K∑
i=1

∂g

∂zi
µB(ziΩ) = uµB(gΩ),

and

dW̃ ∧ η =
K∑
i=1

∂W̃
∂zi

dzi ∧
(
gι∂zi

µB(ziΩ)
)

= gµB
(
W̃Ω

)
.

We deduce that [
uµB(gΩ) + gµB(W̃Ω)

]
=
[
(ud+ dW̃∧)η

]
= 0,

concluding the proof.

As a direct consequence of Theorem 5.4.35, we obtain the following non-equivariant
big D-module mirror symmetry.

Theorem 5.4.38 (Non-equivariant big mirror symmetry). The non-equivariant limit
of (mirbig

k ,Φbig
mir,k) in Theorem 5.4.35 gives an isomorphism of k-linear F-bundles:(

HA,big,λ0 ,∇B,big,λ0

)
∼−→

(
HB,big,λ0 ,∇B,big,λ0

)
.

This isomorphism is uniquely determined by the non-equivariant small mirror
isomorphism.

Proof. The existence is clear. The uniqueness follows from [Hin+24, Proposition
4.27], which applies because the F-bundles are maximal and admit framings.



179

BIBLIOGRAPHY

[AB23] Hülya Argüz and Pierrick Bousseau. “Fock-Goncharov dual cluster
varieties and Gross-Siebert mirrors”. English. In: J. Reine Angew. Math.
802 (2023), pp. 125–171. issn: 0075-4102. doi: 10.1515/crelle-
2023-0043.

[Abr+20] Dan Abramovich, Qile Chen, Mark Gross, and Bernd Siebert. “De-
composition of degenerate Gromov-Witten invariants”. English. In:
Compos. Math. 156.10 (2020), pp. 2020–2075. issn: 0010-437X. doi:
10.1112/S0010437X20007393.

[Abr+25] Dan Abramovich, Qile Chen, Mark Gross, and Bernd Siebert. Punctured
logarithmic maps. English. Vol. 15. Mem. Eur. Math. Soc. Berlin:
European Mathematical Society (EMS), 2025. isbn: 978-3-98547-086-
0; 978-3-98547-586-5. doi: 10.4171/MEMS/15.

[ACP15] Dan Abramovich, Lucia Caporaso, and Sam Payne. “The tropicalization
of the moduli space of curves”. English. In: Ann. Sci. Éc. Norm. Supér.
(4) 48.4 (2015), pp. 765–809. issn: 0012-9593.

[ACT22] David Anderson, Linda Chen, and Hsian-Hua Tseng. “On the finiteness
of quantum K-theory of a homogeneous space”. English. In: Int. Math.
Res. Not. 2022.2 (2022), pp. 1313–1349. issn: 1073-7928. doi: 10.
1093/imrn/rnaa108.

[AD13] Carolina Araujo and Stéphane Druel. “On Fano foliations”. English. In:
Adv. Math. 238 (2013), pp. 70–118. issn: 0001-8708. doi: 10.1016/j.
aim.2013.02.003.

[AG22] Hülya Argüz and Mark Gross. “The higher-dimensional tropical vertex”.
English. In: Geom. Topol. 26.5 (2022), pp. 2135–2235. issn: 1465-3060.
doi: 10.2140/gt.2022.26.2135.

[Ant18] Jorge António. Derived Ok-adic geometry and derived Raynaud local-
ization theorem. Preprint, arXiv:1805.03302 [math.AG] (2018). 2018.
url: https://arxiv.org/abs/1805.03302.

[Arg23] Hülya Argüz. “Equations of mirrors to log Calabi-Yau pairs via the
heart of canonical wall structures”. English. In: Math. Proc. Camb.
Philos. Soc. 175.2 (2023), pp. 381–421. issn: 0305-0041. doi: 10.
1017/S030500412300021X.

[Bar00] S. Barannikov. Semi-infinite Hodge structures and mirror symmetry
for projective spaces. Preprint, arXiv:math/0010157 [math.AG] (2000).
2000. url: https://arxiv.org/abs/math/0010157.

https://doi.org/10.1515/crelle-2023-0043
https://doi.org/10.1515/crelle-2023-0043
https://doi.org/10.1112/S0010437X20007393
https://doi.org/10.4171/MEMS/15
https://doi.org/10.1093/imrn/rnaa108
https://doi.org/10.1093/imrn/rnaa108
https://doi.org/10.1016/j.aim.2013.02.003
https://doi.org/10.1016/j.aim.2013.02.003
https://doi.org/10.2140/gt.2022.26.2135
https://arxiv.org/abs/1805.03302
https://doi.org/10.1017/S030500412300021X
https://doi.org/10.1017/S030500412300021X
https://arxiv.org/abs/math/0010157


180

[Bar01] Serguei Barannikov. “Quantum periods. I. Semi-infinite variations of
Hodge structures”. In: Internat. Math. Res. Notices 23 (2001), pp. 1243–
1264. issn: 1073-7928. doi: 10 . 1155 / S1073792801000599. url:
https://doi.org/10.1155/S1073792801000599.

[Bat+00] Victor V. Batyrev, Ionut Ciocan-Fontanine, Bumsig Kim, and Duco
van Straten. “Mirror symmetry and toric degenerations of partial flag
manifolds”. In: Acta Math. 184.1 (2000), pp. 1–39. issn: 0001-5962,1871-
2509. doi: 10.1007/BF02392780. url: https://doi.org/10.1007/
BF02392780.

[Bat93] Victor V. Batyrev. “Quantum cohomology rings of toric manifolds”.
English. In: Journées de géométrie algébrique d’Orsay, France, juillet
20-26, 1992. Paris: Société Mathématique de France, 1993, pp. 9–34.

[Bay04] Arend Bayer. “Semisimple quantum cohomology and blowups”. English.
In: Int. Math. Res. Not. 2004.40 (2004), pp. 2069–2083. issn: 1073-7928.
doi: 10.1155/S1073792804140907.

[Beh97] K. Behrend. “Gromov-Witten invariants in algebraic geometry”. English.
In: Invent. Math. 127.3 (1997), pp. 601–617. issn: 0020-9910. doi:
10.1007/s002220050132.

[Ber04] Vladimir G. Berkovich. “Smooth p-adic analytic spaces are locally
contractible. II”. English. In: Geometric aspects of Dwork theory. Vol. I,
II. Berlin: Walter de Gruyter, 2004, pp. 293–370. isbn: 3-11-017478-2.

[Ber90] Vladimir G. Berkovich. Spectral theory and analytic geometry over non-
Archimedean fields. English. Vol. 33. Math. Surv. Monogr. Providence,
RI: American Mathematical Society, 1990. isbn: 0-8218-1534-2.

[Ber99] Vladimir G. Berkovich. “Smooth p-adic analytic spaces are locally
contractible”. English. In: Invent. Math. 137.1 (1999), pp. 1–84. issn:
0020-9910. doi: 10.1007/s002220050323.

[BF97] K. Behrend and B. Fantechi. “The intrinsic normal cone”. English. In:
Invent. Math. 128.1 (1997), pp. 45–88. issn: 0020-9910. doi: 10.1007/
s002220050136.

[BGR84] Siegfried Bosch, Ulrich Güntzer, and Reinhold Remmert. Non-Archimedean
analysis. A systematic approach to rigid analytic geometry. English.
Vol. 261. Grundlehren Math. Wiss. Springer, Cham, 1984.

[BM04] Arend Bayer and Yuri I. Manin. “(Semi)simple exercises in quantum
cohomology”. English. In: The Fano conference. Papers of the conference
organized to commemorate the 50th anniversary of the death of Gino
Fano (1871–1952), Torino, Italy, September 29–October 5, 2002. Torino:
Università di Torino, Dipartimento di Matematica, 2004, pp. 143–173.
isbn: 88-900876-1-7.

https://doi.org/10.1155/S1073792801000599
https://doi.org/10.1155/S1073792801000599
https://doi.org/10.1007/BF02392780
https://doi.org/10.1007/BF02392780
https://doi.org/10.1007/BF02392780
https://doi.org/10.1155/S1073792804140907
https://doi.org/10.1007/s002220050132
https://doi.org/10.1007/s002220050323
https://doi.org/10.1007/s002220050136
https://doi.org/10.1007/s002220050136


181

[BM19] Morgan V. Brown and Enrica Mazzon. “The essential skeleton of a
product of degenerations”. English. In: Compos. Math. 155.7 (2019),
pp. 1259–1300. issn: 0010-437X. doi: 10.1112/S0010437X19007346.

[BM96] K. Behrend and Yu. Manin. “Stacks of stable maps and Gromov-Witten
invariants”. English. In: Duke Math. J. 85.1 (1996), pp. 1–60. issn:
0012-7094. doi: 10.1215/S0012-7094-96-08501-4.

[Bos14] Siegfried Bosch. Lectures on formal and rigid geometry. English.
Vol. 2105. Lect. Notes Math. Cham: Springer, 2014. isbn: 978-3-319-
04416-3; 978-3-319-04417-0. doi: 10.1007/978-3-319-04417-0.

[BT82] Raoul Bott and Loring W. Tu. Differential forms in algebraic topology.
English. Vol. 82. Grad. Texts Math. Springer, Cham, 1982.

[Buc+18] Anders S. Buch, Pierre-Emmanuel Chaput, Leonardo C. Mihalcea, and
Nicolas Perrin. “A Chevalley formula for the equivariant quantum K-
theory of cominuscule varieties”. English. In: Algebr. Geom. 5.5 (2018),
pp. 568–595. issn: 2313-1691. doi: 10.14231/AG-2018-015.

[Can+91] Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes.
“A pair of Calabi-Yau manifolds as an exactly soluble superconformal
theory”. In: Nuclear Phys. B 359.1 (1991), pp. 21–74. issn: 0550-3213.
doi: 10.1016/0550-3213(91)90292-6. url: https://doi.org/
10.1016/0550-3213(91)90292-6.

[CG17] Giordano Cotti and Davide Guzzetti. “Analytic geometry of semisimple
coalescent Frobenius structures”. English. In: Random Matrices Theory
Appl. 6.4 (2017). Id/No 1740004, p. 36. issn: 2010-3263. doi: 10.1142/
S2010326317400044.

[Che09] Daewoong Cheong. “Quantum cohomology rings of Lagrangian and
orthogonal Grassmannians and total positivity”. In: Trans. Amer. Math.
Soc. 361.10 (2009), pp. 5505–5537. issn: 0002-9947,1088-6850. doi:
10.1090/S0002-9947-09-04720-5. url: https://doi.org/10.
1090/S0002-9947-09-04720-5.

[Cho22] Chi Hong Chow. On D. Peterson’s presentation of quantum cohomology
of G/P . Preprint, arXiv:2210.17382 [math.AG] (2022). 2022. url:
https://arxiv.org/abs/2210.17382.

[Cho23] Chi Hong Chow. The Dℏ-module mirror conjecture for flag varieties.
Preprint, arXiv:2311.15523 [math.AG] (2023). 2023. url: https :
//arxiv.org/abs/2311.15523.

[Cho25] Chi Hong Chow. Gamma conjecture I for flag varieties. Preprint,
arXiv:2501.13221 [math.AG] (2025). 2025. url: https://arxiv.
org/abs/2501.13221.

https://doi.org/10.1112/S0010437X19007346
https://doi.org/10.1215/S0012-7094-96-08501-4
https://doi.org/10.1007/978-3-319-04417-0
https://doi.org/10.14231/AG-2018-015
https://doi.org/10.1016/0550-3213(91)90292-6
https://doi.org/10.1016/0550-3213(91)90292-6
https://doi.org/10.1016/0550-3213(91)90292-6
https://doi.org/10.1142/S2010326317400044
https://doi.org/10.1142/S2010326317400044
https://doi.org/10.1090/S0002-9947-09-04720-5
https://doi.org/10.1090/S0002-9947-09-04720-5
https://doi.org/10.1090/S0002-9947-09-04720-5
https://arxiv.org/abs/2210.17382
https://arxiv.org/abs/2311.15523
https://arxiv.org/abs/2311.15523
https://arxiv.org/abs/2501.13221
https://arxiv.org/abs/2501.13221


182

[CKS08] Ionuţ Ciocan-Fontanine, Bumsig Kim, and Claude Sabbah. “The abelian/nonabelian
correspondence and Frobenius manifolds”. English. In: Invent. Math.
171.2 (2008), pp. 301–343. issn: 0020-9910. doi: 10.1007/s00222-
007-0082-x.

[Coa+15] Tom Coates, Alessio Corti, Hiroshi Iritani, and Hsian-Hua Tseng. “A mir-
ror theorem for toric stacks”. English. In: Compos. Math. 151.10 (2015),
pp. 1878–1912. issn: 0010-437X. doi: 10.1112/S0010437X15007356.

[Coa+20] Tom Coates, Alessio Corti, Hiroshi Iritani, and Hsian-Hua Tseng.
“Hodge-theoretic mirror symmetry for toric stacks”. English. In: J.
Differ. Geom. 114.1 (2020), pp. 41–115. issn: 0022-040X. doi: 10.
4310/jdg/1577502022.

[CP11] P. E. Chaput and N. Perrin. “On the quantum cohomology of adjoint
varieties”. English. In: Proc. Lond. Math. Soc. (3) 103.2 (2011), pp. 294–
330. issn: 0024-6115. doi: 10.1112/plms/pdq052. url: citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.315.9074.

[CV91] Sergio Cecotti and Cumrun Vafa. “Topological–anti-topological fusion.”
English. In: Nucl. Phys., B 367.2 (1991), pp. 359–461. issn: 0550-3213.
doi: 10.1016/0550-3213(91)90021-O. url: nrs.harvard.edu/
urn-3:HUL.InstRepos:41385050.

[DH20] Liana David and Claus Hertling. “(T )-structures over two-dimensional
F -manifolds: formal classification”. English. In: Ann. Mat. Pura Appl. (4)
199.3 (2020), pp. 1221–1242. issn: 0373-3114. doi: 10.1007/s10231-
019-00919-9.

[DH21] Liana David and Claus Hertling. “Meromorphic connections over F-
manifolds”. English. In: Integrability, quantization, and geometry I.
Integrable systems. Dedicated to the memory of Boris Dubrovin 1950–
2019. Providence, RI: American Mathematical Society (AMS), 2021,
pp. 171–216. isbn: 978-1-4704-5591-0; 978-1-4704-6434-9.

[DKK13] C. Diemer, Ludmil Katzarkov, and Gabriel Kerr. “Compactifications of
spaces of Landau-Ginzburg models”. English. In: Izv. Math. 77.3 (2013),
pp. 487–508. issn: 1064-5632. doi: 10.1070/IM2013v077n03ABEH002645.

[DKK16] Colin Diemer, Ludmil Katzarkov, and Gabriel Kerr. “Symplectomor-
phism group relations and degenerations of Landau-Ginzburg models”.
English. In: J. Eur. Math. Soc. (JEMS) 18.10 (2016), pp. 2167–2271.
issn: 1435-9855. doi: 10.4171/JEMS/640.

[Dub96] Boris Dubrovin. “Geometry of 2D topological field theories”. English.
In: Integrable systems and quantum groups. Lectures given at the 1st
session of the Centro Internazionale Matematico Estivo (CIME) held
in Montecatini Terme, Italy, June 14-22, 1993. Berlin: Springer-Verlag,
1996, pp. 120–348. isbn: 3-540-60542-8.

https://doi.org/10.1007/s00222-007-0082-x
https://doi.org/10.1007/s00222-007-0082-x
https://doi.org/10.1112/S0010437X15007356
https://doi.org/10.4310/jdg/1577502022
https://doi.org/10.4310/jdg/1577502022
https://doi.org/10.1112/plms/pdq052
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.315.9074
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.315.9074
https://doi.org/10.1016/0550-3213(91)90021-O
nrs.harvard.edu/urn-3:HUL.InstRepos:41385050
nrs.harvard.edu/urn-3:HUL.InstRepos:41385050
https://doi.org/10.1007/s10231-019-00919-9
https://doi.org/10.1007/s10231-019-00919-9
https://doi.org/10.1070/IM2013v077n03ABEH002645
https://doi.org/10.4171/JEMS/640


183

[Fan+14] Bohan Fang, Chiu-Chu Melissa Liu, David Treumann, and Eric Zaslow.
“The coherent-constructible correspondence for toric Deligne-Mumford
stacks”. English. In: Int. Math. Res. Not. 2014.4 (2014), pp. 914–954.
issn: 1073-7928. doi: 10.1093/imrn/rns235.

[Fan21] Honglu Fan. “Chern classes and Gromov-Witten theory of projective
bundles”. English. In: Am. J. Math. 143.3 (2021), pp. 811–832. issn:
0002-9327. doi: 10.1353/ajm.2021.0020.

[FK18] Kazuhiro Fujiwara and Fumiharu Kato. Foundations of rigid geometry.
I. English. EMS Monogr. Math. Zürich: European Mathematical Society
(EMS), 2018. isbn: 978-3-03719-135-4; 978-3-03719-635-9. doi: 10.
4171/135.

[FL20] Honglu Fan and Yuan-Pin Lee. “On Gromov-Witten theory of projective
bundles”. English. In: Mich. Math. J. 69.1 (2020), pp. 153–178. issn:
0026-2285. doi: 10.1307/mmj/1573700736.

[FP97] W. Fulton and R. Pandharipande. “Notes on stable maps and quantum
cohomology”. English. In: Algebraic geometry. Proceedings of the
Summer Research Institute, Santa Cruz, CA, USA, July 9–29, 1995.
Providence, RI: American Mathematical Society, 1997, pp. 45–96. isbn:
0-8218-0895-8.

[Ful98] William Fulton. Intersection theory. English. 2nd ed. Vol. 2. Ergeb. Math.
Grenzgeb., 3. Folge. Berlin: Springer, 1998. isbn: 3-540-62046-X.

[Gat01] Andreas Gathmann. “Gromov-Witten invariants of blow-ups”. English.
In: J. Algebr. Geom. 10.3 (2001), pp. 399–432. issn: 1056-3911.

[GGI16] Sergey Galkin, Vasily Golyshev, and Hiroshi Iritani. “Gamma classes and
quantum cohomology of Fano manifolds: gamma conjectures”. English.
In: Duke Math. J. 165.11 (2016), pp. 2005–2077. issn: 0012-7094. doi:
10.1215/00127094-3476593.

[GHK15] Mark Gross, Paul Hacking, and Sean Keel. “Mirror symmetry for log
Calabi-Yau surfaces. I”. English. In: Publ. Math., Inst. Hautes Étud. Sci.
122 (2015), pp. 65–168. issn: 0073-8301. doi: 10.1007/s10240-015-
0073-1.

[GHS22] Mark Gross, Paul Hacking, and Bernd Siebert. Theta functions on
varieties with effective anti-canonical class. English. Vol. 1367. Mem.
Am. Math. Soc. Providence, RI: American Mathematical Society (AMS),
2022. isbn: 978-1-4704-5297-1; 978-1-4704-7167-5. doi: 10.1090/
memo/1367.

[Giv95] Alexander B. Givental. “Homological geometry and mirror symmetry”.
English. In: Proceedings of the international congress of mathemati-
cians, ICM ’94, August 3-11, 1994, Zürich, Switzerland. Vol. I. Basel:
Birkhäuser, 1995, pp. 472–480. isbn: 3-7643-5153-5.

https://doi.org/10.1093/imrn/rns235
https://doi.org/10.1353/ajm.2021.0020
https://doi.org/10.4171/135
https://doi.org/10.4171/135
https://doi.org/10.1307/mmj/1573700736
https://doi.org/10.1215/00127094-3476593
https://doi.org/10.1007/s10240-015-0073-1
https://doi.org/10.1007/s10240-015-0073-1
https://doi.org/10.1090/memo/1367
https://doi.org/10.1090/memo/1367


184

[Giv96] Alexander B. Givental. “Equivariant Gromov-Witten invariants”. In:
Internat. Math. Res. Notices 13 (1996), pp. 613–663. issn: 1073-7928.
doi: 10.1155/S1073792896000414. url: http://dx.doi.org/10.
1155/S1073792896000414.

[Giv98] Alexander Givental. “A mirror theorem for toric complete intersections”.
English. In: Topological field theory, primitive forms and related topics.
Proceedings of the 38th Taniguchi symposium, Kyoto, Japan, December
9–13, 1996 and the RIMS symposium with the same title, Kyoto, Japan,
December 16–19, 1996. Boston, MA: Birkhäuser, 1998, pp. 141–175.
isbn: 0-8176-3975-6.

[GP10] Mark Gross and Rahul Pandharipande. “Quivers, curves, and the tropical
vertex”. English. In: Port. Math. (N.S.) 67.2 (2010), pp. 211–259.
issn: 0032-5155. doi: 10.4171/PM/1865. url: www.ems-ph.org/
journals/show_abstract.php?issn=0032-5155&vol=67&iss=
2&rank=5.

[GPS10] Mark Gross, Rahul Pandharipande, and Bernd Siebert. “The tropical
vertex”. English. In: Duke Math. J. 153.2 (2010), pp. 297–362. issn:
0012-7094. doi: 10.1215/00127094-2010-025.

[GPS15] Sheel Ganatra, Timothy Perutz, and Nick Sheridan. Mirror symmetry:
from categories to curve counts. Preprint, arXiv:1510.03839 [math.SG]
(2015). 2015. url: https://arxiv.org/abs/1510.03839.

[Gro+18] Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. “Canon-
ical bases for cluster algebras”. English. In: J. Am. Math. Soc. 31.2
(2018), pp. 497–608. issn: 0894-0347. doi: 10.1090/jams/890.

[Gro11] Mark Gross. Tropical geometry and mirror symmetry. Vol. 114. CBMS
Regional Conference Series in Mathematics. Published for the Con-
ference Board of the Mathematical Sciences, Washington, DC; by the
American Mathematical Society, Providence, RI, 2011, pp. xvi+317.
isbn: 978-0-8218-5232-3. doi: 10.1090/cbms/114. url: https:
//doi.org/10.1090/cbms/114.

[Gro13] Mark Gross. “Mirror symmetry and the Strominger-Yau-Zaslow conjec-
ture”. English. In: Current developments in mathematics 2012. Papers
based on selected lectures given at the conference, Harvard University,
Cambridge, MA, USA, November 2012. Somerville, MA: International
Press, 2013, pp. 133–191. isbn: 978-1-57146-240-4.

[Gro85] M. Gromov. “Pseudoholomorphic curves in symplectic manifolds”. In:
Invent. Math. 82.2 (1985), pp. 307–347. issn: 0020-9910.

[GRW16] Walter Gubler, Joseph Rabinoff, and Annette Werner. “Skeletons and
tropicalizations”. English. In: Adv. Math. 294 (2016), pp. 150–215. issn:
0001-8708. doi: 10.1016/j.aim.2016.02.022.

https://doi.org/10.1155/S1073792896000414
http://dx.doi.org/10.1155/S1073792896000414
http://dx.doi.org/10.1155/S1073792896000414
https://doi.org/10.4171/PM/1865
www.ems-ph.org/journals/show_abstract.php?issn=0032-5155&vol=67&iss=2&rank=5
www.ems-ph.org/journals/show_abstract.php?issn=0032-5155&vol=67&iss=2&rank=5
www.ems-ph.org/journals/show_abstract.php?issn=0032-5155&vol=67&iss=2&rank=5
https://doi.org/10.1215/00127094-2010-025
https://arxiv.org/abs/1510.03839
https://doi.org/10.1090/jams/890
https://doi.org/10.1090/cbms/114
https://doi.org/10.1090/cbms/114
https://doi.org/10.1090/cbms/114
https://doi.org/10.1016/j.aim.2016.02.022


185

[GS03] Mark Gross and Bernd Siebert. “Affine manifolds, log structures, and
mirror symmetry”. English. In: Turk. J. Math. 27.1 (2003), pp. 33–60.
issn: 1300-0098.

[GS06] Mark Gross and Bernd Siebert. “Mirror symmetry via logarithmic
degeneration data. I”. English. In: J. Differ. Geom. 72.2 (2006), pp. 169–
338. issn: 0022-040X. doi: 10.4310/jdg/1143593211.

[GS13] Mark Gross and Bernd Siebert. “Logarithmic Gromov-Witten invari-
ants”. English. In: J. Am. Math. Soc. 26.2 (2013), pp. 451–510. issn:
0894-0347. doi: 10.1090/S0894-0347-2012-00757-7.

[GS19] Mark Gross and Bernd Siebert. Intrinsic Mirror Symmetry. Preprint,
arXiv:1909.07649 [math.AG] (2019). 2019. url: https://arxiv.
org/abs/1909.07649.

[GS22] Mark Gross and Bernd Siebert. “The canonical wall structure and
intrinsic mirror symmetry”. English. In: Invent. Math. 229.3 (2022),
pp. 1101–1202. issn: 0020-9910. doi: 10.1007/s00222-022-01126-
9.

[Har10] Robin Hartshorne. Deformation theory. English. Vol. 257. Grad. Texts
Math. Berlin: Springer, 2010. isbn: 978-1-4419-1595-5; 978-1-4419-
1596-2. doi: 10.1007/978-1-4419-1596-2.

[Hat02] Allen Hatcher. Algebraic topology. English. Cambridge: Cambridge
University Press, 2002. isbn: 0-521-79540-0.

[Her02] Claus Hertling. Frobenius manifolds and moduli spaces for singularities.
English. Vol. 151. Camb. Tracts Math. Cambridge: Cambridge University
Press, 2002. isbn: 0-521-81296-8.

[Her03] Claus Hertling. “tt∗ geometry, Frobenius manifolds, their connections,
and the construction for singularities”. English. In: J. Reine Angew.
Math. 555 (2003), pp. 77–161. issn: 0075-4102. doi: 10.1515/crll.
2003.015.

[HH22] A. Hanlon and J. Hicks. “Aspects of functoriality in homological mirror
symmetry for toric varieties”. English. In: Adv. Math. 401 (2022). Id/No
108317, p. 92. issn: 0001-8708. doi: 10.1016/j.aim.2022.108317.

[Hin+24] Thorgal Hinault, Tony Yue Yu, Chi Zhang, and Shaowu Zhang. De-
composition and framing of F-bundles and applications to quantum
cohomology. Preprint, arXiv:2411.02266 [math.AG] (2024). 2024. url:
https://arxiv.org/abs/2411.02266.

[Hin+25] Thorgal Hinault, Changzheng Li, Tony Yue YU, Chi Zhang, and Shaowu
Zhang. Unfolding of equivariant F-bundles and application to the mirror
symmetry of flag varieties. Preprint, arXiv:2505.09950 [math.AG] (2025).
2025. url: https://arxiv.org/abs/2505.09950.

https://doi.org/10.4310/jdg/1143593211
https://doi.org/10.1090/S0894-0347-2012-00757-7
https://arxiv.org/abs/1909.07649
https://arxiv.org/abs/1909.07649
https://doi.org/10.1007/s00222-022-01126-9
https://doi.org/10.1007/s00222-022-01126-9
https://doi.org/10.1007/978-1-4419-1596-2
https://doi.org/10.1515/crll.2003.015
https://doi.org/10.1515/crll.2003.015
https://doi.org/10.1016/j.aim.2022.108317
https://arxiv.org/abs/2411.02266
https://arxiv.org/abs/2505.09950


186

[HM04] Claus Hertling and Yuri Manin. “Unfoldings of meromorphic connec-
tions and a construction of Frobenius manifolds”. English. In: Frobenius
manifolds. Quantum cohomology and singularities. Proceedings of the
workshop, Bonn, Germany, July 8–19, 2002. Wiesbaden: Vieweg, 2004,
pp. 113–144. isbn: 3-528-03206-5.

[HM99] C. Hertling and Yu. Manin. “Weak Frobenius manifolds”. English. In:
Int. Math. Res. Not. 1999.6 (1999), pp. 277–286. issn: 1073-7928. doi:
10.1155/S1073792899000148.

[Hu00] J. Hu. “Gromov-Witten invariants of blow-ups along points and curves”.
English. In: Math. Z. 233.4 (2000), pp. 709–739. issn: 0025-5874. doi:
10.1007/s002090050495.

[Hu22] Xiaowen Hu. Mirror symmetry for quadric hypersurfaces. Preprint,
arXiv:2204.07858 [math.AG] (2022). 2022. url: https://arxiv.
org/abs/2204.07858.

[HV00] Kentaro Hori and Cumrun Vafa. “Mirror Symmetry”. In: 2000. url:
https://api.semanticscholar.org/CorpusID:13088746.

[IK23] Hiroshi Iritani and Yuki Koto. Quantum cohomology of projective
bundles. Preprint, arXiv:2307.03696 [math.AG] (2023). 2023. url:
https://arxiv.org/abs/2307.03696.

[Iri06] Hiroshi Iritani. “Quantum D-modules and equivariant Floer theory for
free loop spaces”. English. In: Math. Z. 252.3 (2006), pp. 577–622. issn:
0025-5874. doi: 10.1007/s00209-005-0867-9.

[Iri07] Hiroshi Iritani. “Convergence of quantum cohomology by quantum
Lefschetz”. English. In: J. Reine Angew. Math. 610 (2007), pp. 29–69.
issn: 0075-4102. doi: 10.1515/CRELLE.2007.067.

[Iri08] Hiroshi Iritani. “Quantum D-modules and generalized mirror trans-
formations”. English. In: Topology 47.4 (2008), pp. 225–276. issn:
0040-9383. doi: 10.1016/j.top.2007.07.001.

[Iri17a] Hiroshi Iritani. “A mirror construction for the big equivariant quantum
cohomology of toric manifolds”. English. In: Math. Ann. 368.1-2 (2017),
pp. 279–316. issn: 0025-5831. doi: 10.1007/s00208-016-1437-7.

[Iri17b] Hiroshi Iritani. “Shift operators and toric mirror theorem”. In: Geom.
Topol. 21.1 (2017), pp. 315–343. issn: 1465-3060. doi: 10.2140/gt.
2017.21.315. url: https://doi.org/10.2140/gt.2017.21.315.

[Iri20] Hiroshi Iritani. “Quantum D-modules of toric varieties and oscillatory
integrals”. English. In: Handbook for mirror symmetry of Calabi-Yau
and Fano manifolds. Selected papers based on the presentations at the
conference, Taipei, Taiwan, January 06–10, 2014. Somerville, MA:
International Press; Beijing: Higher Education Press, 2020, pp. 131–147.
isbn: 978-1-57146-389-0.

https://doi.org/10.1155/S1073792899000148
https://doi.org/10.1007/s002090050495
https://arxiv.org/abs/2204.07858
https://arxiv.org/abs/2204.07858
https://api.semanticscholar.org/CorpusID:13088746
https://arxiv.org/abs/2307.03696
https://doi.org/10.1007/s00209-005-0867-9
https://doi.org/10.1515/CRELLE.2007.067
https://doi.org/10.1016/j.top.2007.07.001
https://doi.org/10.1007/s00208-016-1437-7
https://doi.org/10.2140/gt.2017.21.315
https://doi.org/10.2140/gt.2017.21.315
https://doi.org/10.2140/gt.2017.21.315


187

[Iri23] Hiroshi Iritani. Quantum cohomology of blowups. Preprint, arXiv:2307.13555
[math.AG] (2023). 2023. url: https://arxiv.org/abs/2307.
13555.

[Jac62] Nathan Jacobson. Lie algebras. English. Vol. 10. Intersci. Tracts Pure
Appl. Math. Interscience Publishers, New York, NY, 1962.

[Joh24] Samuel Johnston. “Comparison of nonarchimedean and logarithmic
mirror constructions via the Frobenius structure theorem”. English. In:
J. Lond. Math. Soc., II. Ser. 110.5 (2024). Id/No e12998, p. 34. issn:
0024-6107. doi: 10.1112/jlms.12998.

[Kat+24] Ludmil Katzarkov, Maxim Kontsevich, Tony Pantev, and Tony Yue Yu.
“Birational invariants from nc-Hodge theory”. In preparation. 2024.

[Kat12] Eric Katz. “Tropical intersection theory from toric varieties”. English.
In: Collect. Math. 63.1 (2012), pp. 29–44. issn: 0010-0757. doi: 10.
1007/s13348-010-0014-8.

[Kat86] Sheldon Katz. “On the finiteness of rational curves on quintic threefolds”.
English. In: Compos. Math. 60 (1986), pp. 151–162. issn: 0010-437X.
url: https://eudml.org/doc/89802.

[Kha19] Adeel A. Khan. Virtual fundamental classes of derived stacks I. Preprint,
arXiv:1909.01332 [math.AG] (2019). 2019. url: https://arxiv.
org/abs/1909.01332.

[KKP08] L. Katzarkov, Maxim Kontsevich, and Tony Pantev. “Hodge theoretic
aspects of mirror symmetry”. English. In: From Hodge theory to integra-
bility and TQFT tt*-geometry. International workshop From TQFT to tt*
and integrability, Augsburg, Germany, May 25–29, 2007. Providence,
RI: American Mathematical Society (AMS), 2008, pp. 87–174. isbn:
978-0-8218-4430-4.

[KKP17] Ludmil Katzarkov, Maxim Kontsevich, and Tony Pantev. “Bogomolov-
Tian-Todorov theorems for Landau-Ginzburg models”. English. In:
J. Differ. Geom. 105.1 (2017), pp. 55–117. issn: 0022-040X. doi:
10.4310/jdg/1483655860. url: projecteuclid.org/euclid.
jdg/1483655860.

[KLS14] Allen Knutson, Thomas Lam, and David E. Speyer. “Projections of
Richardson varieties”. English. In: J. Reine Angew. Math. 687 (2014),
pp. 133–157. issn: 0075-4102. doi: 10.1515/crelle-2012-0045.

[KM94] M. Kontsevich and Yu. Manin. “Gromov-Witten classes, quantum
cohomology, and enumerative geometry”. English. In: Commun. Math.
Phys. 164.3 (1994), pp. 525–562. issn: 0010-3616. doi: 10.1007/
BF02101490.

https://arxiv.org/abs/2307.13555
https://arxiv.org/abs/2307.13555
https://doi.org/10.1112/jlms.12998
https://doi.org/10.1007/s13348-010-0014-8
https://doi.org/10.1007/s13348-010-0014-8
https://eudml.org/doc/89802
https://arxiv.org/abs/1909.01332
https://arxiv.org/abs/1909.01332
https://doi.org/10.4310/jdg/1483655860
projecteuclid.org/euclid.jdg/1483655860
projecteuclid.org/euclid.jdg/1483655860
https://doi.org/10.1515/crelle-2012-0045
https://doi.org/10.1007/BF02101490
https://doi.org/10.1007/BF02101490


188

[Kon95a] Maxim Kontsevich. “Enumeration of rational curves via torus actions”.
English. In: The moduli space of curves. Proceedings of the conference
held on Texel Island, Netherlands during the last week of April 1994.
Basel: Birkhäuser, 1995, pp. 335–368. isbn: 0-8176-3784-2.

[Kon95b] Maxim Kontsevich. “Homological algebra of mirror symmetry”. English.
In: Proceedings of the international congress of mathematicians, ICM
’94, August 3-11, 1994, Zürich, Switzerland. Vol. I. Basel: Birkhäuser,
1995, pp. 120–139. isbn: 3-7643-5153-5.

[KS01] Maxim Kontsevich and Yan Soibelman. “Homological mirror symmetry
and torus fibrations.” English. In: Symplectic geometry and mirror
symmetry. Proceedings of the 4th KIAS annual international conference,
Seoul, South Korea, August 14–18, 2000. Singapore: World Scientific,
2001, pp. 203–263. isbn: 981-02-4714-1.

[KS06] Maxim Kontsevich and Yan Soibelman. “Affine structures and non-
Archimedean analytic spaces”. English. In: The unity of mathematics.
In honor of the ninetieth birthday of I. M. Gelfand. Papers from the
conference held in Cambridge, MA, USA, August 31–September 4, 2003.
Boston, MA: Birkhäuser, 2006, pp. 321–385. isbn: 0-8176-4076-2.

[KS14] Maxim Kontsevich and Yan Soibelman. “Wall-crossing structures in
Donaldson-Thomas invariants, integrable systems and mirror symmetry”.
English. In: Homological mirror symmetry and tropical geometry. Based
on the workshop on mirror symmetry and tropical geometry, Cetraro,
Italy, July 2–8, 2011. Cham: Springer, 2014, pp. 197–308. isbn: 978-3-
319-06513-7; 978-3-319-06514-4. doi: 10.1007/978-3-319-06514-
4_6.

[KY23] Sean Keel and Tony Yue Yu. “The Frobenius structure theorem for affine
log Calabi-Yau varieties containing a torus”. English. In: Ann. Math. (2)
198.2 (2023), pp. 419–536. issn: 0003-486X. doi: 10.4007/annals.
2023.198.2.1. url: resolver.caltech.edu/CaltechAUTHORS:
20210914-164521010.

[KY24] Sean Keel and Tony Yue YU. Log Calabi-Yau mirror symmetry and
non-archimedean disks. Preprint, arXiv:2411.04067 [math.AG] (2024).
2024. url: https://arxiv.org/abs/2411.04067.

[Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. I. Classical setting:
line bundles and linear series. English. Vol. 48. Ergeb. Math. Grenzgeb.,
3. Folge. Berlin: Springer, 2004. isbn: 3-540-22533-1.

[Li+24] Changzheng Li, Konstanze Rietsch, Mingzhi Yang, and Chi Zhang.
A Plücker coordinate mirror for partial flag varieties and quantum
Schubert calculus. Preprint, arXiv:2401.15640 [math.AG] (2024). 2024.
url: https://arxiv.org/abs/2401.15640.

https://doi.org/10.1007/978-3-319-06514-4_6
https://doi.org/10.1007/978-3-319-06514-4_6
https://doi.org/10.4007/annals.2023.198.2.1
https://doi.org/10.4007/annals.2023.198.2.1
resolver.caltech.edu/CaltechAUTHORS:20210914-164521010
resolver.caltech.edu/CaltechAUTHORS:20210914-164521010
https://arxiv.org/abs/2411.04067
https://arxiv.org/abs/2401.15640


189

[Li01] Jun Li. “Stable morphisms to singular schemes and relative stable
morphisms.” English. In: J. Differ. Geom. 57.3 (2001), pp. 509–578.
issn: 0022-040X. doi: 10.4310/jdg/1090348132.

[Li02] Jun Li. “A degeneration formula of GW-invariants”. English. In: J.
Differ. Geom. 60.2 (2002), pp. 199–293. issn: 0022-040X. doi: 10.
4310/jdg/1090351102.

[Li23] Yang Li. “Metric SYZ conjecture and non-Archimedean geometry”. En-
glish. In: Duke Math. J. 172.17 (2023), pp. 3227–3255. issn: 0012-7094.
doi: 10.1215/00127094-2022-0099. url: projecteuclid.org/
journals/duke- mathematical- journal/volume- 172/issue-
17/Metric-SYZ-conjecture-and-non-Archimedean-geometry/
10.1215/00127094-2022-0099.full.

[LLY97] Bong H. Lian, Kefeng Liu, and Shing-Tung Yau. “Mirror principle. I”.
In: Asian J. Math. 1.4 (1997), pp. 729–763. issn: 1093-6106.

[LLY99] Bong H. Lian, Kefeng Liu, and Shing-Tung Yau. “Mirror principle. II”.
In: vol. 3. 1. Sir Michael Atiyah: a great mathematician of the twentieth
century. 1999, pp. 109–146. doi: 10.4310/AJM.1999.v3.n1.a6. url:
https://doi.org/10.4310/AJM.1999.v3.n1.a6.

[LS10] Thomas Lam and Mark Shimozono. “Quantum cohomology ofG/P and
homology of affine Grassmannian”. In: Acta Math. 204.1 (2010), pp. 49–
90. issn: 0001-5962,1871-2509. doi: 10.1007/s11511-010-0045-8.
url: https://doi.org/10.1007/s11511-010-0045-8.

[LT24] Thomas Lam and Nicolas Templier. “The mirror conjecture for minus-
cule flag varieties”. English. In: Duke Math. J. 173.1 (2024), pp. 75–
175. issn: 0012-7094. doi: 10.1215/00127094-2024-0007. url:
projecteuclid.org/journals/duke-mathematical-journal/
volume-173/issue-1/The-mirror-conjecture-for-minuscule-
flag-varieties/10.1215/00127094-2024-0007.full.

[LT98] Jun Li and Gang Tian. “Virtual moduli cycles and Gromov-Witten
invariants of algebraic varieties”. English. In: J. Am. Math. Soc. 11.1
(1998), pp. 119–174. issn: 0894-0347. doi: 10.1090/S0894-0347-
98-00250-1.

[Man97] Yuri I. Manin. Gauge field theory and complex geometry. Transl. from the
Russian by N. Koblitz and J. R. King. With an appendix by S. Merkulov.
English. 2nd ed. Vol. 289. Grundlehren Math. Wiss. Berlin: Springer,
1997. isbn: 3-540-61378-1.

[Man99] Yuri I. Manin. Frobenius manifolds, quantum cohomology, and moduli
spaces. English. Vol. 47. Colloq. Publ., Am. Math. Soc. Providence, RI:
American Mathematical Society, 1999. isbn: 0-8218-1917-8.

https://doi.org/10.4310/jdg/1090348132
https://doi.org/10.4310/jdg/1090351102
https://doi.org/10.4310/jdg/1090351102
https://doi.org/10.1215/00127094-2022-0099
projecteuclid.org/journals/duke-mathematical-journal/volume-172/issue-17/Metric-SYZ-conjecture-and-non-Archimedean-geometry/10.1215/00127094-2022-0099.full
projecteuclid.org/journals/duke-mathematical-journal/volume-172/issue-17/Metric-SYZ-conjecture-and-non-Archimedean-geometry/10.1215/00127094-2022-0099.full
projecteuclid.org/journals/duke-mathematical-journal/volume-172/issue-17/Metric-SYZ-conjecture-and-non-Archimedean-geometry/10.1215/00127094-2022-0099.full
projecteuclid.org/journals/duke-mathematical-journal/volume-172/issue-17/Metric-SYZ-conjecture-and-non-Archimedean-geometry/10.1215/00127094-2022-0099.full
https://doi.org/10.4310/AJM.1999.v3.n1.a6
https://doi.org/10.4310/AJM.1999.v3.n1.a6
https://doi.org/10.1007/s11511-010-0045-8
https://doi.org/10.1007/s11511-010-0045-8
https://doi.org/10.1215/00127094-2024-0007
projecteuclid.org/journals/duke-mathematical-journal/volume-173/issue-1/The-mirror-conjecture-for-minuscule-flag-varieties/10.1215/00127094-2024-0007.full
projecteuclid.org/journals/duke-mathematical-journal/volume-173/issue-1/The-mirror-conjecture-for-minuscule-flag-varieties/10.1215/00127094-2024-0007.full
projecteuclid.org/journals/duke-mathematical-journal/volume-173/issue-1/The-mirror-conjecture-for-minuscule-flag-varieties/10.1215/00127094-2024-0007.full
https://doi.org/10.1090/S0894-0347-98-00250-1
https://doi.org/10.1090/S0894-0347-98-00250-1


190

[MMS22] Mirko Mauri, Enrica Mazzon, and Matthew Stevenson. “On the geomet-
ric P=W conjecture”. English. In: Sel. Math., New Ser. 28.3 (2022). Id/No
65, p. 45. issn: 1022-1824. doi: 10.1007/s00029-022-00776-0.

[MN15] Mircea Mustaţă and Johannes Nicaise. “Weight functions on non-
Archimedean analytic spaces and the Kontsevich-Soibelman skeleton”.
English. In: Algebr. Geom. 2.3 (2015), pp. 365–404. issn: 2313-1691.
doi: 10.14231/AG-2015-016.

[Moc06] Takuro Mochizuki. Kobayashi-Hitchin correspondence for tame har-
monic bundles and an application. English. Vol. 309. Astérisque. Paris:
Société Mathématique de France, 2006. isbn: 978-2-85629-226-6.

[MR20] B. R. Marsh and K. Rietsch. “The B-model connection and mirror
symmetry for Grassmannians”. English. In: Adv. Math. 366 (2020).
Id/No 107027, p. 131. issn: 0001-8708. doi: 10 . 1016 / j . aim .
2020 . 107027. url: eprints . whiterose . ac . uk / 156656 / 1 /
GrassAdvancesRevised.pdf.

[MT08] Todor E. Milanov and Hsian-Hua Tseng. “The spaces of Laurent poly-
nomials, Gromov-Witten theory of P1-orbifolds, and integrable hierar-
chies”. English. In: J. Reine Angew. Math. 622 (2008), pp. 189–235.
issn: 0075-4102. doi: 10.1515/CRELLE.2008.069.

[NX16] Johannes Nicaise and Chenyang Xu. “The essential skeleton of a degen-
eration of algebraic varieties”. English. In: Am. J. Math. 138.6 (2016),
pp. 1645–1667. issn: 0002-9327. doi: 10.1353/ajm.2016.0049.

[NXY19] Johannes Nicaise, Chenyang Xu, and Tony Yue Yu. “The non-Archimedean
SYZ fibration”. English. In: Compos. Math. 155.5 (2019), pp. 953–972.
issn: 0010-437X. doi: 10.1112/S0010437X19007152.

[Pet97] Dale Peterson. “Quantum cohomology of G/P , Lecture Course”. In:
(spring term, M.I.T., 1997).

[PR18] Clelia Pech and Konstanze Rietsch. “A comparison of Landau-Ginzburg
models for odd dimensional quadrics”. In: Bull. Inst. Math. Acad. Sin.
(N.S.) 13.3 (2018), pp. 249–291. issn: 2304-7909,2304-7895.

[PRW16] C. Pech, K. Rietsch, and L. Williams. “On Landau-Ginzburg models
for quadrics and flat sections of Dubrovin connections”. In: Adv. Math.
300 (2016), pp. 275–319. issn: 0001-8708,1090-2082. doi: 10.1016/j.
aim.2016.03.020. url: https://doi.org/10.1016/j.aim.2016.
03.020.

[PT14] R. Pandharipande and R. P. Thomas. “13/2 ways of counting curves”.
English. In: Moduli spaces. Based on lectures of a programme on
moduli spaces at the Isaac Newton Institute for Mathematical Sciences,
Cambridge, UK, January 4 – July 1, 2011. Cambridge: Cambridge
University Press, 2014, pp. 282–333. isbn: 978-1-107-63638-5; 978-1-
107-7772-9.

https://doi.org/10.1007/s00029-022-00776-0
https://doi.org/10.14231/AG-2015-016
https://doi.org/10.1016/j.aim.2020.107027
https://doi.org/10.1016/j.aim.2020.107027
eprints.whiterose.ac.uk/156656/1/GrassAdvancesRevised.pdf
eprints.whiterose.ac.uk/156656/1/GrassAdvancesRevised.pdf
https://doi.org/10.1515/CRELLE.2008.069
https://doi.org/10.1353/ajm.2016.0049
https://doi.org/10.1112/S0010437X19007152
https://doi.org/10.1016/j.aim.2016.03.020
https://doi.org/10.1016/j.aim.2016.03.020
https://doi.org/10.1016/j.aim.2016.03.020
https://doi.org/10.1016/j.aim.2016.03.020


191

[PY16] Mauro Porta and Tony Yue Yu. “Higher analytic stacks and GAGA
theorems”. English. In: Adv. Math. 302 (2016), pp. 351–409. issn:
0001-8708. doi: 10.1016/j.aim.2016.07.017. url: resolver.
caltech.edu/CaltechAUTHORS:20210914-164412895.

[PY22] Mauro Porta and Tony Yue YU. Non-archimedean Gromov-Witten
invariants. Preprint, arXiv:2209.13176 [math.AG] (2022). 2022. url:
https://arxiv.org/abs/2209.13176.

[PY24] Mauro Porta and Tony Yue Yu. “Non-Archimedean quantum K-invariants”.
English. In: Ann. Sci. Éc. Norm. Supér. (4) 57.3 (2024), pp. 713–786.
issn: 0012-9593. doi: 10.24033/asens.2581.

[Rei09] Thomas Reichelt. “A construction of Frobenius manifolds with logarith-
mic poles and applications”. English. In: Commun. Math. Phys. 287.3
(2009), pp. 1145–1187. issn: 0010-3616. doi: 10.1007/s00220-008-
0699-7.

[Rie03] Konstanze Rietsch. “Totally positive Toeplitz matrices and quantum
cohomology of partial flag varieties”. In: J. Amer. Math. Soc. 16.2 (2003),
pp. 363–392. issn: 0894-0347,1088-6834. doi: 10.1090/S0894-0347-
02-00412-5. url: https://doi.org/10.1090/S0894-0347-02-
00412-5.

[Rie08] Konstanze Rietsch. “A mirror symmetric construction of qH∗
T (G/P )(q)”.

English. In: Adv. Math. 217.6 (2008), pp. 2401–2442. issn: 0001-8708.
doi: 10.1016/j.aim.2007.08.010.

[RS15] Thomas Reichelt and Christian Sevenheck. “Logarithmic Frobenius
manifolds, hypergeometric systems and quantum D-modules”. English.
In: J. Algebr. Geom. 24.2 (2015), pp. 201–281. issn: 1056-3911. doi:
10.1090/S1056-3911-2014-00625-1.

[RS17a] Thomas Reichelt and Christian Sevenheck. “Non-affine Landau-Ginzburg
models and intersection cohomology”. English. In: Ann. Sci. Éc. Norm.
Supér. (4) 50.3 (2017), pp. 665–753. issn: 0012-9593. doi: 10.24033/
asens.2330. url: smf4.emath.fr/en/Publications/AnnalesENS/
4_50/html/ens_ann-sc_50_665-753.php.

[RS17b] Thomas Reichelt and Christian Sevenheck. “Non-affine Landau-Ginzburg
models and intersection cohomology”. In: Ann. Sci. Éc. Norm. Supér.
(4) 50.3 (2017), pp. 665–753. issn: 0012-9593. doi: 10.24033/asens.
2330. url: https://doi.org/10.24033/asens.2330.

[Sab07] Claude Sabbah. Isomonodromic deformations and Frobenius manifolds.
An introduction. Transl. from the French. English. Universitext. Berlin:
Springer; Les Ulis: EDP Sciences, 2007. isbn: 978-1-84800-053-7;
978-2-7598-0047-6.

https://doi.org/10.1016/j.aim.2016.07.017
resolver.caltech.edu/CaltechAUTHORS:20210914-164412895
resolver.caltech.edu/CaltechAUTHORS:20210914-164412895
https://arxiv.org/abs/2209.13176
https://doi.org/10.24033/asens.2581
https://doi.org/10.1007/s00220-008-0699-7
https://doi.org/10.1007/s00220-008-0699-7
https://doi.org/10.1090/S0894-0347-02-00412-5
https://doi.org/10.1090/S0894-0347-02-00412-5
https://doi.org/10.1090/S0894-0347-02-00412-5
https://doi.org/10.1090/S0894-0347-02-00412-5
https://doi.org/10.1016/j.aim.2007.08.010
https://doi.org/10.1090/S1056-3911-2014-00625-1
https://doi.org/10.24033/asens.2330
https://doi.org/10.24033/asens.2330
smf4.emath.fr/en/Publications/AnnalesENS/4_50/html/ens_ann-sc_50_665-753.php
smf4.emath.fr/en/Publications/AnnalesENS/4_50/html/ens_ann-sc_50_665-753.php
https://doi.org/10.24033/asens.2330
https://doi.org/10.24033/asens.2330
https://doi.org/10.24033/asens.2330


192

[Sai83] Kyoji Saito. “Period mapping associated to a primitive form”. English. In:
Publ. Res. Inst. Math. Sci. 19 (1983), pp. 1231–1264. issn: 0034-5318.
doi: 10.2977/prims/1195182028.

[Sim97] Carlos Simpson. “The Hodge filtration on nonabelian cohomology”.
English. In: Algebraic geometry. Proceedings of the Summer Research In-
stitute, Santa Cruz, CA, USA, July 9–29, 1995. Providence, RI: American
Mathematical Society, 1997, pp. 217–281. isbn: 0-8218-0895-8.

[ST97] Bernd Siebert and Gang Tian. “On quantum cohomology rings of Fano
manifolds and a formula of Vafa and Intriligator”. English. In: Asian J.
Math. 1.4 (1997), pp. 679–695. issn: 1093-6106. doi: 10.4310/AJM.
1997.v1.n4.a2.

[Stacks] The Stacks Project Authors. Stacks Project. https://stacks.math.
columbia.edu. 2018.

[SYZ96] A. Strominger, S.-T. Yau, and E. Zaslow. “Mirror symmetry isT -duality”.
English. In: Nucl. Phys., B 479.1-2 (1996), pp. 243–259. issn: 0550-3213.
doi: 10.1016/0550-3213(96)00434-8.

[Tel12] Constantin Teleman. “The structure of 2D semi-simple field theories”.
English. In: Invent. Math. 188.3 (2012), pp. 525–588. issn: 0020-9910.
doi: 10.1007/s00222-011-0352-5.

[Tem16] Michael Temkin. “Metrization of differential pluriforms on Berkovich
analytic spaces”. English. In: Nonarchimedean and tropical geometry.
Based on two Simons symposia, Island of St. John, March 31 – April
6, 2013 and Puerto Rico, February 1–7, 2015. Cham: Springer, 2016,
pp. 195–285. isbn: 978-3-319-30944-6; 978-3-319-30945-3. doi: 10.
1007/978-3-319-30945-3_8.

[Vis89] Angelo Vistoli. “Intersection theory on algebraic stacks and on their
moduli spaces”. English. In: Invent. Math. 97.3 (1989), pp. 613–670.
issn: 0020-9910. doi: 10.1007/BF01388892. url: https://eudml.
org/doc/143716.

[Wit91] Edward Witten. “Two-dimensional gravity and intersection theory on
moduli space”. In: Surveys in differential geometry (Cambridge, MA,
1990). Lehigh Univ., Bethlehem, PA, 1991, pp. 243–310.

[Yu15] Tony Yue Yu. “Tropicalization of the moduli space of stable maps”.
English. In: Math. Z. 281.3-4 (2015), pp. 1035–1059. issn: 0025-5874.
doi: 10.1007/s00209-015-1519-3. url: resolver.caltech.edu/
CaltechAUTHORS:20210914-164412973.

[Yu18] Tony Yue Yu. “Gromov compactness in non-archimedean analytic
geometry”. English. In: J. Reine Angew. Math. 741 (2018), pp. 179–
210. issn: 0075-4102. doi: 10 . 1515 / crelle - 2015 - 0077. url:
authors.library.caltech.edu/110834/.

https://doi.org/10.2977/prims/1195182028
https://doi.org/10.4310/AJM.1997.v1.n4.a2
https://doi.org/10.4310/AJM.1997.v1.n4.a2
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://doi.org/10.1016/0550-3213(96)00434-8
https://doi.org/10.1007/s00222-011-0352-5
https://doi.org/10.1007/978-3-319-30945-3_8
https://doi.org/10.1007/978-3-319-30945-3_8
https://doi.org/10.1007/BF01388892
https://eudml.org/doc/143716
https://eudml.org/doc/143716
https://doi.org/10.1007/s00209-015-1519-3
resolver.caltech.edu/CaltechAUTHORS:20210914-164412973
resolver.caltech.edu/CaltechAUTHORS:20210914-164412973
https://doi.org/10.1515/crelle-2015-0077
authors.library.caltech.edu/110834/


193

[Yu21] Tony Yue Yu. “Enumeration of holomorphic cylinders in log Calabi-Yau
surfaces. II: Positivity, integrality and the gluing formula”. English. In:
Geom. Topol. 25.1 (2021), pp. 1–46. issn: 1465-3060. doi: 10.2140/
gt.2021.25.1. url: resolver.caltech.edu/CaltechAUTHORS:
20210914-164412666.

[Yua22] Hang Yuan. Family Floer SYZ singularities for the conifold transition.
Preprint, arXiv:2212.13948 [math.SG] (2022). 2022. url: https://
arxiv.org/abs/2212.13948.

[Yue16] Tony Yue Yu. “Enumeration of holomorphic cylinders in log Calabi-
Yau surfaces. I”. English. In: Math. Ann. 366.3-4 (2016), pp. 1649–
1675. issn: 0025-5831. doi: 10.1007/s00208-016-1376-3. url:
resolver.caltech.edu/CaltechAUTHORS:20210914-164412813.

[YZ24] Tony Yue Yu and Shaowu Zhang. Topological Laplace Transform and
Decomposition of nc-Hodge Structures. Preprint, arXiv:2405.19549
[math.AG] (2024). 2024. url: https://arxiv.org/abs/2405.
19549.

[ZS60] Oscar Zariski and Pierre Samuel. Commutative algebra. Vol. II. English.
The University Series in Higher Mathematics. Princeton, N.J.-Toronto-
London-New York: D. Van Nostrand Company, Inc. x, 414 p. (1960).
1960.

https://doi.org/10.2140/gt.2021.25.1
https://doi.org/10.2140/gt.2021.25.1
resolver.caltech.edu/CaltechAUTHORS:20210914-164412666
resolver.caltech.edu/CaltechAUTHORS:20210914-164412666
https://arxiv.org/abs/2212.13948
https://arxiv.org/abs/2212.13948
https://doi.org/10.1007/s00208-016-1376-3
resolver.caltech.edu/CaltechAUTHORS:20210914-164412813
https://arxiv.org/abs/2405.19549
https://arxiv.org/abs/2405.19549

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	Introduction
	Motivations
	Overview of the main results

	Background
	Gromov-Witten theory
	SYZ conjecture and non-archimedean mirror construction
	Mirror symmetry

	Cylinder counts in blowups of toric surfaces
	Introduction
	Notations and conventions
	Tropical curves
	Primitive holomorphic cylinders

	Decomposition and framing of F-bundles and applications to quantum cohomology
	Introduction
	Basic definitions and examples
	Spectral decomposition of maximal F-bundles
	Framing of F-bundles
	Application: quantum cohomology of projective bundle

	Unfolding of equivariant F-bundles and application to the mirror symmetry of flag varieties
	Introduction
	(T)-structures and equivariant F-bundles
	Unfolding of equivariant F-bundles
	Application to mirror symmetry of flag varieties

	Bibliography

