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ABSTRACT 

Architected materials offer a wide range of mechanical properties through the 

choice of their constitutive materials and the design of their structure. Periodic 

architected materials are the most widely studied and used in practical applications, 

as their repeating unit cells are easy to design, fabricate, and analytically model, 

but these materials are only a small subset of the possible design space. Irregular 

architected materials, which are aperiodic but not necessarily stochastic, offer a way 

to achieve a wider design space of mechanical properties.  

 

In this thesis, we explore the design space of irregular architected materials and 

relate structural irregularity to the mechanical properties using measures of 

topology and geometry. We show that these measures of irregularity can be used to 

spatially and temporally control the mechanical response across linear and non-

linear regimes, including fracture and dynamic impact, and we show that 

irregularity leads to improved mechanical properties when compared with periodic 

equivalents. To generate the irregular architected materials, we use a virtual growth 

algorithm, which imitates the stochastic growth process of biological structures by 

assembling a finite set of building blocks according to local connectivity rules. By 

varying the building blocks and connectivity rules, we show how to achieve a wide 

range of structures with varying degrees of irregularity all the way up to fully 

periodic structures. This thesis primarily focuses on the fabrication and 

characterization of additively manufactured two-phase polymer composites, but the 

design methods and irregular structure characterizations are material-agnostic, 

opening up a wide design space for future architected materials which use 

irregularity to achieve excellent mechanical performances.  
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C h a p t e r  1  

INTRODUCTION 

1.1 Research Objectives 

This thesis explores the mechanical characterization of irregular architected 

materials, using topological and geometrical descriptors to quantify structure-to-

property relationships. The primary objectives of the research presented in this 

thesis are (i) to understand the relationship between irregularity and mechanical 

behavior in both linear and non-linear regimes, including fracture and dynamic 

impact, and (ii) to leverage this understanding to develop materials with spatially 

and temporally controllable mechanical responses. In order to achieve these 

objectives we developed a framework to design, fabricate and test materials with 

intentionally designed irregularity. 

 

1.2 Motivation 

Irregular materials are ubiquitous in biological and engineering applications. In 

nature, irregularity can be observed across many length scales in many materials 

including collagen[1], enamel[2,3], bone[4–6], barnacle exoskeletons[7], mussel 

adhesive[8], fruit peels[9], and termite nests[10].  These materials all use their irregular 

structures to achieve excellent mechanical properties, including high stiffness, 

strength, toughness, and flexibility[1,2,6,7,10–12].  For example, the irregular foam-like 

structure of trabecular bone achieves high stiffness- and high strength-to-weight 

ratios for a variety of loading conditions[4,13], while the irregular arrangement of 

collagen fibrils in cortical bone increases compliance, which allows the material to 

better withstand fracture[1]. Similarly, the irregular foam-like structure of citrus fruit 

peel allows the fruit to accommodate dynamic impact when it falls from the tree[9]. 

Another example is the adhesive plaques and threads of mussels, which lack 
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ordered protein structures, allowing the animal to arrange them into a continuous 

gradient to better accommodate repeated loading from wave motion or predators[7]. 

Irregularity can also be found in engineering materials, including in foams[14–17], 

composites[18,19], polymer networks[20], and metal grain boundaries[21,22]. These 

materials achieve excellent mechanical performances as a result of irregularity, 

such as how foams achieve high-stiffness and high strength-to-weight ratios while 

maintaining isotropy from their irregular cell shapes[14], how particle-reinforced 

composites can achieve both isotropy and good creep and fatigue performances 

from the addition of randomly distributed particles[23], and how metals can achieve 

high strength from misaligned grain boundary pile-ups[21]. However, although these 

engineering materials feature irregularity, the irregularity is not intentionally 

designed and instead arises from stochastic fabrication processes. In contrast, the 

irregular biological materials developed their structures as a result of evolution, 

indicating that nature may favor designed irregularity for functionality[7,24].  

 

To bridge the gap, we then turn our attention to architected materials, which are 

defined as materials that are intentionally designed to offer a wide range of 

mechanical properties beyond that of their constitutive materials[25–31]. However, 

most architected materials studied to date are periodic, as repeating unit cells are 

easy to design, fabricate and analytically model[29,31–36]. Some methods to design 

irregular architected materials have been presented, including spinodal 

decomposition[37–39], network pruning[40] and Voronoi tessellations[41–43], but these 

methods are generally stochastic with limited control over structural irregularity. 

Nonetheless, it has been shown that these irregular architected materials can offer 

a way to achieve a wider range of mechanical performances, including auxetic 

responses[44,45], improved damage tolerance[46,47], ductility[48] and toughness[49], as 

well as tailorable stiffness and strength[10,50,51].  
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Given these benefits arising from irregularity, it is therefore of particular interest 

to understand how irregularity leads to the excellent mechanical properties. To do 

so, it is necessary to develop methods to generate irregular materials with greater 

control over descriptors of irregularity, such as topology, defined as how elements 

connect, and geometry, defined as the shape of elements, in order to understand and 

quantify the structure-to-property relationships. To achieve this, virtual growth 

algorithms (VGA) have been developed. These generative algorithms imitate the 

growth process of biological material structures by assembling a set of building 

blocks according to local connectivity rules[10,50–52]. Unlike other methods, the VGA 

method offers control over both the underlying geometry and topology of the 

generated structure, through control of building block geometry and inclusion or 

exclusion of connectivity rules. In this thesis, we will use and expand these VGA 

methods to explore how topological and geometrical control over irregularity 

allows us to understand and quantify the structure-to-property relationships of 

irregular architected materials.  

 

In order to experimentally characterize the VGA-generated samples, it is also 

necessary to consider fabrication methods. The VGA-generated samples are 

complex, with local variations in topology and geometry which must be accurately 

fabricated in the samples. It is therefore necessary to use additive manufacturing 

(AM) techniques to achieve this level of precise resolution. There is a wide variety 

of AM methods, such as stereolithography, material extrusion, multi-jet fusion and 

selective laser sintering. These methods can be used for a range of materials 

(although some are particular to a certain class of materials), including polymers, 

metals and ceramics[53]. Although we briefly explore irregular 2D truss-based 

materials, our primary focus is on irregular composite materials, which feature two 

distinct phases, inspired by the composition of many natural materials. We therefore 

choose to fabricate our composite materials from polymers, using a multi-jet AM 

photoresin polymer method to simultaneously print multiple phases with the 
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desired resolution and macroscale sample size for mechanical characterization. 

Additional details about material properties and printing details are provided in 

each chapter according to the specific materials and sample dimensions.  

 

1.3 Chapter Outlines 

This thesis begins with an exploration of the mechanical characterization of 

irregular network reinforced polymer composites generated using a VGA. In 

Chapter 2, we first study the role of irregular topology and geometry on the 

mechanical response of the polymer composites, including the stiffness, strength, 

and modulus of toughness. With this understanding of the structure-to-property 

relationships, we show how to modify the irregular network reinforcement at the 

meso-scale to improve the global mechanical performance, creating assemblies of 

various network reinforcements with spatially-tuned fracture initiation and 

propagation. In Chapter 3, we expand the fracture characterization, obtaining J-

integral and R-curve measurements by exploring the role of reinforcement and 

matrix materials as well as structural feature size and geometry in the irregular 

composites. In Chapter 4, we introduce a hexagonal VGA, which allows us to 

explore higher degree topologies and demonstrate the temporal response of the 

fracture behavior of the composites. In this chapter, we also study the effect of 

irregularity on damage tolerance, showing that introducing irregularity leads to 

improved damage tolerance.  

 

We then further explore the intersection of irregular materials and bioinspiration. 

In Chapter 5, we present a materials design method using statistical measures of 

topology and geometry in natural materials to develop spatially tailorable materials 

with excellent energy absorption, inspired by citrus pericarp. In Chapter 6, inspired 

by tough and strong materials such as nacre and bone, we explore the inverse of the 

network reinforced composites. We present a class of bioinspired interlocking 

materials, and then demonstrate how to use irregularity to control the degree of 
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interlocking and strain energy distribution. Finally, in Chapter 7, we present a 

summary of the research in this thesis and discuss the potential future research 

directions. 

 

1.4 Experimental Methods  

To conduct the mechanical characterization and analysis of the irregular architected 

materials presented in this thesis, a variety of experimental methods are used across 

quasi-static and dynamic regimes for both linear and non-linear deformations.  

 

1.4.1 Quasi-static Characterization 

To conduct quasi-static testing of the materials, we use a universal testing machine 

(Instron E3000 (Instron, USA)) equipped with a 5 kN load cell, which has a 

resolution of 5 N. To apply tensile loading, we use a set of either 5 cm or 7.5 cm 

wide steel grips which fix the top and bottom of the sample and then we apply 

displacement-controlled loading at quasi-static loading rates varying from 1 mm/s 

to 5 mm/s, according to the particular application. To apply compression loading, 

we use a set of 5 cm diameter steel compression platens, position the sample in the 

center, and apply displacement-controlled loading at the desired strain rate. To 

apply cylindrical contact loading, we place samples on the bottom compression 

platen, position a 1 cm diameter cylindrical steel contact above the sample, and 

apply displacement-controlled loading at the desired strain rate. To record images 

of the tests, we use a Nikon D750 camera (Nikon, USA) with a Nikkor 120 mm f/4 

lens (Nikon, USA) at frame rates from 1-5 frames per second, according to the 

particular material response. Additional details for each study conducted, including 

specific sample dimensions, experimental configurations, camera frame rates and 

strain rates, are provided in each chapter.  
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1.4.2 Fracture Characterization  

We then go beyond the simple tension and compression testing to conduct fracture 

characterization of the irregular architected materials, which is of great interest to 

understand how irregularity can lead to improved fracture resistance. Although 

analytical solutions exist to describe the mechanical properties relevant to fracture 

(e.g. stiffness, yield strength, and toughness) of cellular solids, which resemble our 

network reinforced materials, these models rely on assumptions of stochasticity or 

periodicity[33,35,54]. In contrast, our materials are irregular, but not stochastic, as the 

VGA method used to generate the samples has a limited set of building blocks and 

connectivity rules. Other structural descriptors, including the Maxwell number[55], 

can give indications about the overall deformation mechanisms of a lattice material, 

such as if it is in a bending- or stretching-dominated regime, but these measures are 

unable to consider the effect of local variations in topology and geometry on the 

fracture response. Our materials are also composites, with two distinct phases, 

which further complicates the use of analytical models. To bridge the design space 

between stochastic and periodic structures and determine the effect of structural 

irregularity on the fracture response, we therefore conduct a full fracture 

characterization. 

 

Using linear elastic fracture mechanics (LEFM), we first conduct single edge notch 

tension (SENT) tests on each phase of the irregular composite materials, to 

determine the Mode I fracture toughness of the constitutive materials[56]. The 

toughness is calculated by: 

 

𝐾𝐼𝑐 =
𝑃

𝐵 √𝑊
∙ 𝑓 (

𝑎

𝑊
),                      (1) 

 

where P  is the applied load, B is the sample thickness, W is the sample width, a is 

the crack width, and 𝑓 (
𝑎

𝑊
) is given by:  
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𝑓 (
𝑎

𝑊
) =

√2∙𝑡𝑎𝑛
𝜋𝑎

2𝑊

𝑐𝑜𝑠
𝜋𝑎

2𝑊

[0.752 + 2.02 
𝑎

𝑊
+ 0.37 (1 − 𝑠𝑖𝑛

𝜋𝑎

2𝑊
)].           (2) 

 

We also conduct SENT tests on laminate samples to determine that the interfacial 

toughness between the reinforcing network and matrix phases is greater than that 

of the matrix phase. All of these force displacement curves are provided and further 

discussed in Chapter 2 and Appendix A.  

 

With an understanding of the fracture response of the individual phases, in Chapter 

2, we then conduct plate tension tests on the composite materials and obtain values 

for the modulus of toughness (MOT), in order to relate it to variations in the 

irregular reinforcing networks. The MOT is defined as 

 

 𝑀𝑂𝑇 =  ∫ 𝜎𝑑𝜀,                       (3) 

 

where σ is the stress and ε is the strain, resulting in a measure of energy per unit 

volume of material. Although the MOT tells us how much energy the material is 

able to dissipate prior to rupture, it is also important to characterize the fracture 

response of the material with consideration of size effects as well as effects beyond 

the elastic regime, including plasticity. To do this, we conduct SENT tests on 

irregular network reinforced composites and use measures of the J-integral to obtain 

R-curves. Chapter 3 explores the effect of irregularity on R-curve shape and breaks 

down contributions of elastic and plastic deformation, relating topology and 

geometry to the fracture response.  

 

1.4.3 Dynamic Characterization  

The dynamic response of the irregular architected composites is also of interest to 

understand the effect of irregularity on mechanical properties at higher strain rates. 
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It has been shown that introducing irregularity into cellular architected materials 

can lead to improved mechanical performances and isotropy at dynamic strain rates, 

with damage delocalization[57-59]. Here, we expand this characterization to our 

irregular network reinforced composite materials, using a drop tower apparatus to 

explore dynamic strain rates up to 100 s-1. The drop tower consists of an aluminum 

tube with wall thickness of 0.3 cm, inner diameter of 2.7 cm, and height of 3 m, 

attached to a steel frame. A 10 cm steel striker with a diameter of 2.5 cm and a mass 

of ~400 g is released and falls down the tube to impact the sample, positioned and 

glued at the base. A photodiode placed at the base of the tube, just above the sample, 

captures the moment the striker passes the bottom of the tube, and is used to trigger 

a high speed camera (Phantom v1610, Vision Research, AMETEK, USA), which 

captures images of the event at frame rates up to 1 million frames per second. A 

schematic of the drop tower is provided in Figure 1.1. The striker can reach 

velocities up to 7-8 m/s, which can be measured both from high speed camera 

images and calculated from the energy balance of potential and kinetic energy, 

given the drop tower height of 3 m: 

 

𝑣 =  √2𝑔ℎ ,                        (4) 

 

where v is the velocity, h is the height and g is the gravitational constant.  

 

We can then quantify the energy absorption of the samples using the coefficient of 

restitution (CR), measured from the high speed camera images of striker position 

through time: 

 

𝐶𝑅 =  
𝑣𝑓

𝑣𝑖
 ,                          (5) 

 



 

 

9 

where 𝑣𝑓 is the striker velocity after impact and 𝑣𝑖 is the striker velocity before 

impact.  

 

     

 

Figure 1.1: Drop tower configuration. 

 

1.4.4 Digital Image Correlation  

To non-invasively measure the deformation of the materials during loading, we use 

2D digital image correlation (DIC). DIC uses image analysis to track the surface 

deformation of a continuous material across a set of images and can provide 

information about displacement, strain and rigid body motion. To conduct DIC, a 

high-contrast random speckle pattern is uniformly applied to the surface of the 

object of interest. The pattern should be sufficiently dense, containing about 50% 

dark and 50% light speckles, and the speckles should be large enough to take up 

between 3x3 and 7x7 pixels of the camera image. The speckle pattern should also 

be able to deform with the material of interest, and a wide range of speckling 
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techniques are available, including spray paint, ink, and particle deposition. In 

order to obtain the information about the material deformation and motion, there 

are two common DIC techniques: global DIC and local DIC. While global DIC 

examines the entire material’s deformation simultaneously, local DIC tracks subsets 

of speckles independently, making it less computationally expensive[60]. The choice 

of speckle size and subset size is therefore critical to obtain accurate measurements 

and must be tailored to the particular material and test. The specific details of the 

DIC techniques used, including speckling method, speckle size, subset size, step 

size, and strain measures are further discussed in each chapter and corresponding 

appendices.  
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Chapter Abstract 

Composites with high strength and high fracture resistance are desirable for 

structural and protective applications. Most composites, however, suffer from poor 

damage tolerance and are prone to unpredictable fractures. Understanding the 

behavior of materials with an irregular reinforcement phase offers fundamental 

guidelines for tailoring their performance. Here, the fracture nucleation and 

propagation in two-phase composites is studied as a function of the topology of 

their irregular microstructures. A stochastic algorithm is used to design the 

polymeric reinforcing network, achieving independent control of topology and 

geometry of the microstructure. By tuning the local connectivity of isodense tiles 

and their assembly into larger structures, the mechanical and fracture properties of 

the architected composites are tailored at the local and global scale. Finally, 

combining different reinforcing networks into a spatially determined meso-scale 

assembly, it is demonstrated how the spatial propagation of fracture in architected 

composite materials can be designed and controlled a priori. 

 

 



 

 

16 

2.1 Introduction 

Composite materials offer many advantages over traditional materials, such as 

being lightweight while maintaining a high strength and stiffness[1, 2], but they 

suffer from lack of toughness and poor damage tolerance[3-6]. One way to improve 

their crack response is to tailor the reinforcing phase architecture[7-10]. Fiber 

reinforcements, for example, exploit crack bridging between fibers for toughening. 

Introducing fibers and other high-aspect-ratio reinforcing elements in the design of 

composite materials often leads to direction-dependent mechanical properties and 

anisotropic fracture resistance[11]. Depending on the reinforcing elements’ 

alignment direction, composites can be either toughened by high fracture energy 

dissipative mechanisms, such as fiber bridging and fiber pullout, or be subject to 

delamination fractures, which occur at the fiber-matrix interface[11-14]. On the 

contrary, randomly distributed inclusions, which primarily toughen the material 

through microcracking and secondary crack formation, often lead to composite 

materials with isotropic fracture properties[15-17]. Developing materials that use 

multiple toughening mechanisms, like bridging, deflecting, or even arresting the 

propagation of cracks, has the potential to improve the amount of absorbed fracture 

energy. This was recently demonstrated in bioinspired architected composites, 

where the internal microstructure was finely tailored to control crack propagation 

behavior[18, 19]. The combination of multiple toughening mechanisms can also be 

achieved by fabricating composite materials with irregular reinforcing networks[20, 

21]. Irregular microstructures are common in biological structural materials[22-25] and 

understanding their behavior during loading and fracture is relevant for the design 

of architected materials with tailored load-bearing performance. Irregular networks 

can control the fracture and toughening behavior of materials through the creation 

of meso-scale structures with different dimensions and orientations that cause 

multiple fracture nucleation and propagation events. Finally, reinforcing 

composites with irregular networks allows the creation of materials with direction-

independent mechanical properties, a desirable feature in structural and load-
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bearing applications. Here, we describe how network coordination influences the 

global mechanical properties of two-phase materials, like strength, stiffness, and 

energy dissipated during fracture, as well as the role of local mechanisms on 

fracture nucleation and propagation. Introducing desired irregular networks as 

composite reinforcement and achieving a fine control over their assembly across 

multiple length scales, from the micro- to the centimeter-scale, requires advances 

in both numerical design and manufacturing. In recent work, machine-learning and 

data-driven approaches were used to computationally design hierarchical 

architected materials[26]. Here, we employ algorithms that “grow” regular and 

irregular networks[27] for composite design and use multi-material additive 

manufacturing processes for fabrication. 

 

2.2 Design of Irregular Reinforcement 

To design the stiff reinforcement phase of our two-phase composites, we utilized a 

virtual growth algorithm (Appendix A.3.1), which tessellates a set of bimaterial 

tiles on a discretized spatial grid, following a set of connectivity rules[22]. We used 

a combination of 2-coordinated tiles ([L] and [-]) and 3-coordinated tiles ([T]) and 

ensured that each tile had the same volume fraction of stiff reinforcing phase and 

soft matrix phase (Figure 2.1a, left). We combined these tiles to generate 

composites with a stiff reinforcing irregular network (white) and a soft elastomeric 

matrix (black) (Figure 2.1a, right). The virtual growth algorithm ensures continuity 

between the two phases through modifiable connectivity rules (Figure A.1). 

Depending on the relative composition of 2- and 3-coordinated tiles, the virtual 

growth algorithm creates various composites with the same volume fraction of 

reinforcement, but a large ternary design space (Figure 2.1b). We expect the shape 

and directional tile connectivity to influence the local deformation mechanisms 

accessible within the clusters, with [L] shaped tiles showing bending-dominated 

local deformations and straight [-] tiles showing stretching-dominated behaviors. 
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Figure 2.1: Architecture of two-phase materials. (a) Selected isodensity tile 

geometries and composite assembly. (b) Compositional design space in a ternary 

diagram. (A) and (B) architectures are represented by red and blue circles, 

respectively. (c) Average coordination <R> as a function of [T] tiles content. (A) 

and (B) reinforcing networks are represented by red and blue circles, respectively. 

d,e) Representative (A) and (B) architectures (d and e, respectively). (f,g) Close-up 

view of meso-structures that populate (A) and (B) architectures in (d) and (e), 

respectively. Yellow, green, cyan, and blue represent 4, 6, 8, and 10+ tiles meso-

structures, respectively. (h) Meso-structure distributions in (A) (red bars) and (B) 

architectures (blue bars). (i) Example of meso-structure with labeled coordination 

and bridges. (j) Expanded version of (i). (k) Comparison of bridge length and their 

frequency for (A) and (B) architectures (red and blue, respectively). 

 

2.3 Network Characterization 

We evaluate the properties of the reinforcing networks using frameworks developed 

to describe covalent random networks (Appendix A.3.2), at two hierarchical scales. 

At the global scale, we evaluate the average coordination of the materials at 

constant density, and at the local scale, we analyze how growth rules affect the 
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formation of characteristic meso-structures. We evaluate the average 

coordination <R> in the reinforcing networks, accounting for the presence of 

dangling bonds, unconnected ligaments at the network edges (Figure 2.1c)[28, 29]. 

Scaling linearly with the volume fraction of 3-coordinated tiles, we expect <R> to 

influence the global mechanical properties, like strength and stiffness, as reported 

in other amorphous material systems[30-32]. To understand the effect of the 

reinforcing network architecture on the composite properties, we compare two 

different compositions with significantly different average coordination: (A)-

networks (35 [T], 10 [-], 55 [L]), dominated by 2-coordinated tiles and floppy 

modes; and (B)-networks (80 [T], 10 [-], 10 [L]), dominated by 3-coordinated tiles 

and that are purely rigid (Figure 2.1b,c, red and blue circles, respectively). 

 

Despite having the same reinforcing and matrix phase volume fractions, (A)- and 

(B)-network reinforced composites (NRC's) form different local meso-structures, 

defined as the matrix domains enclosed by reinforcing network (Figure 2.1d,e). 

While the average coordination of the reinforcing network explains the global 

mechanical behavior of the materials, studying the meso-structures that pattern 

each composite is key to understand their local properties. First, the meso-structures 

are categorized and mapped based on size and number of constitutive tiles (Figure 

2.1f,g). Then, their surface distribution is used to indicate the texture of (A)- and 

(B)-NRC's (Figure 2.1h). Additionally, the number density of each meso-structure 

(Figure A.2), their angle of orientation (Figure A.3), and the effect that small meso-

structures have on their surroundings (Figure A.4) are important descriptors of these 

architected composites. 

 

We characterize the reinforcing networks by drawing parallels with the concept of 

network bridges, often used in studying of the mechanical performance of covalent 

random networks[28, 29]. A bridge (black solid lines, Figure 2.1i,j) connects two 3-

coordinated tiles, considered anchored in the network (I–V white circles, Figure 
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2.1i,j). It was demonstrated that a bridge composed of six or more 2-coordinated 

tiles (red circles, Figure 2.1i,j) forms a floppy region within the network[28, 29]. The 

presence of floppy domains in a stiff, yet deformable, reinforcing network 

influences the local mechanical composite performance, resulting in a globally 

more extensible and deformable material (Figure A.5). In this context, the presence 

of an incompressible matrix phase is important to prevent large bridge 

deformations. Because of the different content of 3-coordinated tiles, (A)-NRC's 

display a multimodal distribution of bridge lengths, which are significantly longer 

than those of (B)-NRC's (Figure 2.1k). 

 

2.4 Mechanical Properties 

Although (A)- and (B)-NRC's have the same volume fraction of reinforcement and 

matrix phases, the difference in average coordination, bridge length, and different 

meso-structure populations influence the mechanical properties at both global and 

local scales. To measure experimentally the mechanical properties of the chosen 

architectures, we additively manufactured composite samples using a polyjet 

printer (Stratasys Objet500 Connex3). Recent studies have focused on 

experimentally determining the mechanical and physical properties of objects 

printed by polyjet printing and shed light on the relationship between the printing 

parameters and the final performance of the part[33-35]. In our study, a stiff 

viscoelastic resin (VeroWhite Polyjet Resin) and a soft elastomeric resin 

(TangoBlack Polyjet Resin) were chosen for the reinforcing phase and matrix 

phase, respectively. Both resins are commercially available, and their constitutive 

properties fall within ranges reported in literature (Figure A.7)[18, 36-38]. We 

combined these two materials in a polymer composite with a volume fraction of 

reinforcing phase of 0.3. At this volume fraction, we observed that the composites 

display a desired tradeoff between rigidity and extensibility (Figure A.8), while the 

reinforcing network thickness is one order of magnitude larger than the polyjet 

printer resolution limit (Figure A.9). To characterize their mechanical response, we 
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performed plate tension experiments and confirmed that at the global scale, the 

purely rigid-like (B)-NRC's achieve higher strength and higher stiffness than the 

(A)-NRC's (Figure 2.2a,b). 

 

 

Figure 2.2: Mechanical characterization of composites. (a,b) Engineering stress–

strain curves recorded during uniaxial tension tests on plate geometries of (A)-

NRC's and (B)-NRC's (red solid lines in a, blue solid lines in b, respectively). The 

solid black lines in (a,b) represent the response of samples photographed in (c,d), 

respectively. The solid gray lines in (a,b) represent the response of the same (A)-

NRC and (B)-NRC samples, without the matrix phase. Fracture events in the 

reinforcing phase of (A)-NRC's and (B)-NRC's are indicated by red and blue arrows 

in (a) and (b), respectively, and in the reinforcing networks by gray arrows (see also 

Figure A.6). (c,d) Fracture evolution in representative samples of (A)-NRC and (B)-

NRC, respectively. The circles indicate the locations within the samples that display 

the signs of voids growth (circles in (c) and (d), frame II and insets in (c) and (d), 

frame II, bottom). (e,f) Digital image correlation (DIC) maps of the representative 

samples of (A)-NRC and (B)-NRC recorded at 0.5% strain (e and f, respectively). 

The DIC maps refer to the areas of samples highlighted by (*) in frame I of c) and 

d). 

 

Despite a significant difference in the global mechanical properties, the composites 

display similarities in the local scale mechanisms that determine the initiation and 

propagation of fractures. Due to the remarkable adhesion properties between the 

two resins used in this study[39], fracture initiation does not occur at the interface 
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between the matrix and the reinforcing network, in either pristine or pre-notched 

samples, but within the matrix (Figure A.7). Void nucleation in the matrix phase 

initiates the composite fracture process, similar to the ductile fracture of metals[40]. 

Void formation is followed by matrix detachment from the reinforcing network, 

resulting in steady void growth (Figure 2.2c,d, I to III, respectively). In this 

propagation phase, the void growth and coalescence are hindered by the reinforcing 

network bridges, which elongate as the sample undergoes tensile loading. Thus, the 

average bridge length and extensibility before rupture become paramount, as these 

characteristics predict the strain of the reinforcing network before failure 

(Appendix A.3.3). After the sequential failure of the bridges (Figure 2.2a,b, red and 

blue arrows, respectively), we observe the complete loss of composite integrity. 

 

The local composite architecture becomes key during failure, as strain localization 

in selected meso-structures leads to fracture nucleation and growth, as confirmed 

by 2D digital image correlation (DIC) at small strains (Figure 2.2e,f). Therefore, to 

design composites capable of dissipating the most fracture energy, one must act on 

both the global and local scale, tailoring the network rigidity and generating local 

meso-structures, to avoid localized strain fields. To achieve this, we modify the 

connectivity rules of the growth algorithm. 

 

We changed the connectivity rules of the growth algorithm to increase energy 

dissipation during fracture in composites. By amending four tile connectivity rules 

(Figure 2.3a, top; Appendix A.3.4, Figure A.10), we prevented the formation of 

large floppy domains, which increased network rigidity, stiffness, and strength. The 

modified networks displayed a purely rigid-like behavior, as shown by their higher 

average coordination than the original networks (Figure 2.3a, bottom). We tested 

the effect of the modified reinforcing networks on the composites’ mechanical 

performance and fracture energy dissipation through plate tension experiments. As 

a result of their higher coordination, modified-(A)-network reinforced composites 
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(Mod-(A)-NRC's) displayed higher ultimate tensile strength (UTS) and up to 

60% increase in tensile stiffness (Figure 2.3b red and gray solid lines, respectively), 

while modified-(B)-network reinforced composites (Mod-(B)-NRC's) had a 5% 

reduction in stiffness as a result of the slightly lower average coordination (Figure 

2.3e blue and gray solid lines, respectively). Although each composite begins 

failure at ≈10% tensile strain, the modified designs’ damage tolerance dramatically 

improved. At high tensile strain (up to ≈16%), the Mod-NRC's carry a load of ≈70–

80% their UTS (Figure 2.3c,d,f,g). As a comparison, their original counterparts at 

the same tensile strain had completely lost any load bearing capabilities, due to 

presence of sample-scale cracks and coalesced voids, resulting from the extensive 

failure of the reinforcing phase. Conventional calculations of the stress intensity 

factor and local stress concentration field require making assumptions based on 

continuum mechanics: for composite materials, the reinforcing feature sizes must 

be small compared to the size of the singularity zone, and the non-linear damage 

must be confined to a small region within the singularity zone[40]. In our irregular 

composites, these conditions are not satisfied; meso-structures sizes are in the order 

of several mm (Figure A.2) and crack nucleation occurs in multiple locations within 

the microstructure (Figure 2.2c,d; Figure 2.3d,g). In the present study, to highlight 

how these simple modifications to the reinforcing networks influence significantly 

the energy dissipated during fracture, we measured the modulus of toughness 

(MOT), taken as the area under the stress–strain curve. Modifying the reinforcing 

networks in (A) and (B) composites improved the total dissipated energy during 

fracture of up to ≈130% and ≈60%, respectively (Figure 2.3b,e, top). 
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Figure 2.3: Modified composites and their performance. (a) Modifications of 

connectivity rules and average coordination number as a function of [T] tiles (top 

and bottom, respectively). (b) Engineering stress–strain diagram of Mod-(A)-

NRC's (red solid lines) and of original (A)-NRC's (gray solid lines). The modulus 

of toughness (MOT) is reported for both composites at the top of the diagram. (c,d) 

Fracture evolution in representative Mod-(A)-NRC at 0.5% and 16% strain (c and 

d, respectively). (e) Engineering stress–strain diagram of Mod-(B)-NRC's (blue 

solid lines) and of the original (B)-NRC's (gray solid lines). The MOT is reported 

for both composites at the top of the diagram. (f,g) Fracture evolution in 

representative Mod-(B)-NRC at 0.5% and 16% strain (f and g, respectively). (h,i) 

Modification of microstructure of (A)- and (B)-networks (h and i, respectively) and 

measured polydispersity index (PDI) for each network. (j,k) Variation in relative 

meso-structure orientation distribution of (A) and (B)-networks (j and k, 

respectively). (l) Frequency of bridge lengths for (A)- and Mod-(A)-networks (top 

and bottom, respectively). (m) Frequency of bridge lengths for (B)- and Mod-(B)-

networks (top and bottom, respectively). 

 

Considering only global scale descriptors, like the average reinforcing network 

coordination, is insufficient to explain the higher strength of Mod-(B)-NRC's 
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compared to (B)-NRC's. Thus, we evaluated the modified designs at the local 

scale, to investigate the effect that simple modifications of the connectivity rules 

had on the meso-structures. First, we notice by visual inspection that the modified 

composites (Figure 2.3h,i, bottom) have a significantly different internal structure 

than their original counterparts (Figure 2.3h,i, top). The modified architectures 

feature a more homogeneous distribution of meso-structures, which are quantified 

through the polydispersity index (PDI) (Figure 2.3h,i; Appendix A.3.5). The 

decrease in PDI by 33% for (A)-NRC's and by 20% for (B)-NRC's, confirms that 

more stringent connectivity rules homogenize and coarsen the meso-structures 

sizes (Figure A.11). Furthermore, the modified composites feature meso-structures 

that display a more homogeneous angle of orientation with respect to their original 

counterparts (Figure 2.3j,k). As a result of the more homogeneous size and 

orientation distribution of domains, the modified composites are subject to a more 

homogeneous distribution of the deformation during loading, preventing high strain 

localization (Figure A.12) and leading to the multiple uniformly distributed void 

nucleation sites in the matrix (Figure A.3d,g). Finally, we evaluated the effect of 

the modifications on bridges length distributions. In Mod-(A)-NRC's, the increase 

in short bridges confirms that the newly generated networks are more constrained 

and thus rigid, compared to their original counterparts (Figure 2.3l). Conversely, 

Mod-(B)-networks have a distribution of bridge lengths that shifts toward larger 

sizes and becomes multimodal, becoming like those of (A)-networks, suggesting 

the generation of reinforcing networks with higher local extensibility and hence, 

higher bridging capability (Figure 2.3m). 

 

We developed a method to control crack trajectory in network reinforced 

composites by creating hierarchical microstructures that combine local rules, meso-

scale assemblies, and macroscale connectivity networks at a constant density. We 

drew inspiration from biological composites like mother-of-pearl[41-45] and cortical 

bone[46-48], which deflect incoming cracks and dissipate fracture energy. Our meso-
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scale assemblies feature rational designs of “strong and tough” network portions 

combined with “soft” network portions. We created two laminate configurations 

with complementary meso-scale arrangements (Figure 2.4a I and b I, respectively) 

and found that the (A)-NRC's domains carry most of the strain regardless of their 

spatial arrangement. For an applied 0.5% strain, (A)-NRC's domains are subject to 

~0.8% strain whereas Mod-(B)-NRC's domains experience as little as 0.3% strain 

(Figure 2.4c,d). We can thus control the fracture trajectory through domain 

assembly, since fracture nucleates (Figure 2.4a II,b II) and propagates (Figure 2.4a 

III,b III) in “soft” domains. These properties are also consistent with crack 

propagation observed in single edge notch tension tests (SENT) (Figure A.7). We 

take inspiration from the cross section of cortical bone, composed of tightly packed 

osteons enveloped by the cement lines, specifically designed to arrest and guide 

incoming cracks on tortuous trajectories[49-51] (Figure 2.4e). In our cortical bone-

inspired assembly, we embedded strong and tough osteon-inspired high 

coordination domains in a floppy and low coordination matrix domain (Figure 

2.4f). At 7% strain, it is already visible how the strain localizes in the floppy 

portions of the composite (Figure 2.4g), leading to fracture nucleation in the central 

matrix area (left side, Figure 2.4h), that is then arrested as it approaches the opposite 

osteon-domain (right side, Figure 2.4h). Meanwhile, crack nucleation above and 

below the plane of propagation initiates the desired process of renucleation and 

redirection of the fracture, critical to deflect its trajectory (red arrows, Figure 2.4h) 

and to successfully shield the osteon domains (Figure 2.4i). 
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Figure 2.4: Multiarchitecture meso-scale assemblies. (a,b) Laminate assemblies: 

(A), Mod-(B), (A) and Mod-(B), (A), Mod-(B) (a and b, respectively). The insets 

highlight differences in reinforcing architecture. Fracture evolution (I, II, III (a) and 

(b), respectively). (c,d) DIC maps at 0.5% strain in laminate assemblies. (e) Sketch 

of cross section of cortical bone. (f) Cortical bone inspired meso-scale assembly. 

Mod-(A) constitutes osteon-inspired features (dashed red semicircles), (A) 

constitutes the matrix phase. (g) DIC map at 7% strain and highlighting strain 

distribution in cortical bone inspired assembly. (h,i) Fracture evolution at 11% and 

21% strain (h and i, respectively). 

 

2.5 Conclusions 

In this study, we developed architected composite materials that exhibit a high 

degree of hierarchical order through material design. By utilizing a virtual growth 

algorithm, we manipulated the local connectivity between isodensity tiles, resulting 

in the formation of larger meso-structures, which were merged to create sample-

sized assemblies with predetermined spatial arrangements. This approach enabled 

tailoring the mechanical and fracture properties of the architected composites, at 
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the local and global scales. We envision that the use of different sets of starting 

tiles and the combination of different reinforcing and matrix phases, will allow for 

fine-tuning the activation of desired reinforcement and fracture energy dissipation 

mechanisms. Building on our proof-of-concept observations, we hypothesize that 

controlling the spatial arrangement and continuity between the soft and stiff phases 

can be used to prevent interfacial failure, while their intentional design can facilitate 

the precise spatial distribution of fractures in architected composites. 
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Chapter Abstract 

The mechanical behavior of composite materials is significantly influenced by their 

structure and constituent materials. One emerging class of composite materials is 

irregular network reinforced composites (NRC’s), whose reinforcing phase is 

generated by a stochastic algorithm. Although design of the reinforcing phase 

network offers tailorable control over both the global mechanical properties, like 

stiffness and strength, and the local properties, like fracture nucleation and 

propagation, the fracture properties of irregular NRC’s has not yet been fully 

characterized. This is because both the irregular reinforcing structure and choice of 

matrix phase material significantly affect the fracture response, often resulting in 

diffuse damage, associated with multiple crack nucleation locations. Here, we 

propose irregular polymer NRC’s whose matrix phase has a similar stiffness but 

half the strength of the reinforcing phase, which allows the structure of the 

reinforcing phase to control the fracture response, while still forming and 

maintaining a primary crack. Across a range of network coordination numbers, we 

obtain J-integral and R-curve measurements, and we determine that low 

coordination polymer NRC’s primarily dissipate fracture energy through plastic 

zone formation, while high coordination polymer NRC’s primarily dissipate energy 

through crack extension. Finally, we determine that there are two critical length 
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scales to characterize and tailor the fracture response of the composites across 

the coordination numbers: (i) the size of the plastic zone, and (ii) the size and 

geometry of the structural features, defined as the areas enclosed by the reinforcing 

network.   

 

3.1 Introduction 

Architected materials often draw inspiration from the structure of biological 

materials to achieve desirable properties such as high stiffness and strength[1–3], 

good energy dissipation[3–6], and high fracture toughness[2,7–13]. These bioinspired 

materials also often feature two or more phases[6,7,13–16], as biological materials are 

typically composite materials, such as bone[17–20] or nacre[21,22], with mechanical 

properties superior to that of their constitutive elements. Although most 

bioinspired composite materials feature repeating structural patterns[7,8,23–26], 

many biological materials have a non-periodic structure[24,27–29], indicating that 

evolution may favor irregularity as a way to optimize function[27].  

 

To explore the role of irregularity, virtual growth algorithms (VGA) have been 

developed to imitate the stochastic growth process of biological material 

structures[30,31]. These algorithms generate a continuous irregular network by 

assembling a set of building blocks according to local connectivity rules, and 

studies have been conducted to determine the relationship between the structure 

and function of these networks[30–32], including for polymer composite 

materials[3,10], whose reinforcing phase is generated by the VGA. It has been shown 

that controlling the average network coordination[33,34], defined as the number of 

branches in each building block, primarily influences the stiffness and strength of 

the materials[3,10,31,35], while controlling the connectivity rules determines the 

formation of specific structural features, defined as the areas enclosed by the 

reinforcing network[3,10]. 
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However, despite the large design space offered by the choice of building blocks 

and their connectivity rules, polymer composites reinforced by stiff irregular 

networks with a compliant matrix display the same fracture behavior[10]. Fracture 

begins with the nucleation of voids in the compliant matrix, similar to what is 

observed in ductile metals[36], followed by bridging of the reinforcing phase, similar 

to what occurs in fiber reinforced composites[37–40]. During fracture bridging, the 

most extensible portions of the reinforcing phase deform in the direction of the 

applied load, until they undergo local yielding followed by sequential strut 

failure[10]. The sequential failure of the reinforcing phase causes the coalescence of 

the large-scale voids, leading to the overall loss of structural integrity in the 

composites[10].  

 

Previous efforts have shown how to nucleate and guide the fracture path[10], but the 

fracture properties of irregular network reinforced composites have not yet been 

fully characterized. To better understand the role of the reinforcing phase during 

fracture, we generate centimeter-scale polymer composite materials (with 

millimeter scale features), whose matrix phase has a similar stiffness but half the 

strength of the reinforcing phase. This prevents the diffuse nucleation of voids 

across the sample and maintains a primary crack, making fracture characterization 

measurements possible, while still allowing the reinforcing phase to significantly 

influence the fracture response. Across a range of coordinations from 2.3 to 2.8, we 

determine that there are two critical length scales necessary to understand and 

describe the fracture response of the composites: (i) the plastic zone size, and (ii) 

the structural feature size (and geometry). We then show how to tailor the tradeoff 

between plastic zone size and primary crack extension using the coordination 

number and its effect on the structural feature populations ahead of the crack tip.  
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3.2 Material and Methods 

We generate the irregular reinforcing phase of the polymer composite samples 

using a VGA[30]. This computer-assisted material design tool generates the irregular 

samples on a square grid from a set of three tile types, with coordination numbers 

of either two, for (-) tiles and (L) tiles, or three, for (T) tiles (Figure 3.1a). Using 

tile frequency hints and a set of connectivity rules (Figure 3.1b), the VGA 

assembles the tiles into continuous irregular networks (Figure 3.1c), with a 

characteristic length defined as one tile, which is equivalent to the smallest possible 

structural feature that can be formed, with a size of 1 mm (Figure 3.1c). We generate 

samples with an average coordination that ranges from 2.3 to 2.8 (Figure 3.1d), 

which spans the transition from floppy to rigid behavior while maintaining 

percolation[33,41]. The 2.3 coordination samples are composed of 5% (-) tiles, 65% 

(L) tiles, and 30% (T) tiles, the 2.5 coordination samples are composed of 5% (-) 

tiles, 45% (L) tiles, and 50% (T) tiles, and the 2.8 coordination samples are 

composed of 10% (-) tiles, 10% (L) tiles, and 80% (T) tiles, with equally 

represented two-fold ((-) tiles) or four-fold rotations ((L) and (T) tiles). To 

determine the sample size needed for testing, we determine the minimum number 

of tiles required for the network to be representative of the coordination number’s 

population of structural features by finding an exponential fit and looking for when 

the exponential fit parameters converge as the sample size increases (Figure 3.1j, 

1k). We find that samples of 30x30 tiles are sufficiently representative (Figure 3.1f-

i), but we also note that networks with higher coordination reach a plateau more 

quickly than lower coordination ones, as the structural feature size depends on the 

coordination number (Figure 3.1k, Appendix B.2.1). 

 

To fabricate our polymer composite samples for single edge notch plate tension 

tests, we first choose the volume fraction of the reinforcing phase in each tile, with 

values of 20% for 2-coordination tiles and 30% for 3-coordination tiles, 

corresponding to a branch width of 0.2 mm. We then add a matrix phase with a 
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similar stiffness (~1 GPa)[9,10,42,43], but half the strength of the reinforcing phase 

(Figure 3.1e) to fill the remaining space in each tile. We use a Polyjet printer 

(Stratasys Objet500 Connex3) to additively manufacture the composite materials 

using a commercially available photoresin (VeroWhite Polyjet Resin, Stratasys) for 

the reinforcing network, and a compatible photoresin with lower strength (Stratasys 

Grey60 Polyjet Resin) for the matrix (Figure 3.1e). Furthermore, the composite 

materials have a strong adhesion between phases, key to avoid delamination during 

fracture testing.  

 

 

Figure 3.1: Material and structural characterization. (a) VGA tiles and coordination 

numbers. (b) VGA connectivity rules, green is allowed, red is not allowed. (c) 
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Fracture samples with characteristic length scale. (d) Average coordination 

number. (e) Constitutive uniaxial stress-strain plot for reinforcing and matrix phase 

materials. (f-i) Frequency of 2.3 coordination structural feature areas for 5x5, 

10x10, 20x20, and 30x30 tiles. (j) Exponential fits of structural feature areas for 

2.3, 2.5 and 2.8 coordination samples with 30x30 tiles. (k) Exponential fit 

parameters for increasing sizes of sample regions of interest.   

 

3.3 Results and Discussion 

3.3.1 Single Edge Notch Plate Tension Fracture Tests 

We conduct single edge notch plate tension fracture tests on composite samples of 

9x6 cm, corresponding to 90x60 tiles (or characteristic lengths), with a thickness of 

1mm and an initial crack of length 3 cm, which we sharpen with a razor blade prior 

to testing. Grip areas of height 3 cm, manufactured from the same photoresin as the 

reinforcing phase, are added during printing to the top and bottom of the sample. 

We use an Instron E3000 (Instron, USA) equipped with a 5 kN load cell to apply a 

tensile load at a rate of 2 mm/min and we test three different samples for each 

coordination, repeating one of these samples three times to verify that the same 

structure fractures self-consistently. We compare our results to samples exclusively 

composed of the matrix and reinforcing phases (Figure 3.2a,e), and similar to the 

bulk materials, the composite samples maintain one primary crack, which initiates 

and propagates through both phases as the tensile loading is applied. This is the 

consequence of the relatively low mismatch in mechanical properties between the 

reinforcing and matrix phase polymers, which prevents crack arrest at the interface 

[44]. Nonetheless, despite having similar volume fractions of reinforcing phase 

across the coordination numbers, with values of 23%, 25% and 28% for 2.3, 2.5, 

and 2.8 coordinations, respectively, the force-displacement curves (Figure 3.2b-d) 

display significant variations. Among composite samples, 2.3 coordination samples 

fail at the highest global strain, while 2.8 coordination samples fail at the lowest 

global strain (Figure3. 2b,d). The measured strain-to-failure values are in between 

the recorded strain-to-failure values for the bulk materials (Figure 3.2a,e). To 

explain these variations, we track the strain fields ahead of the crack tip using 2D 
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digital image correlation. We spray paint the samples with matte white paint and 

apply matte black speckles of diameter 0.1-0.3 mm and then use VIC-2D 

(Correlated Solutions, USA) to analyze the Lagrangian strain fields. Unlike 

previous studies featuring composites with a soft elastomeric matrix, which are 

prone to multiple void nucleation sites and diffuse damage across the entire sample 

[10] (Figure B.1), we observe the formation of a single plastic zone across all 

samples. Assuming that plastic yielding begins when the maximum principal strain 

value exceeds the yield strain from the constitutive uniaxial stress-strain data, we 

apply a threshold and track the size of the plastic zone with respect to the sequential 

events: yield, crack initiation, and sample failure (Figure 3.2f-j). Most importantly, 

we note that the plastic zone in all samples develops to be over one order of 

magnitude larger than the structural features. 

 

Figure 3.2: Mechanical characterization and DIC images of plastic zone growth 

for bulk material and composite samples. (a-e) Force-displacement plots for bulk 

and composite samples. (f-j) 2D DIC strain maps of bulk and composite samples 

with plasticity threshold in red and time stamps.  
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3.3.2 Fracture Behavior of the Composites: Plastic Zone Formation and Crack 

Extension 

Although the plastic zone begins to develop at approximately the same global 

displacement in all samples, we observe that the maximum size of the plastic zone 

reached by each coordination increases non-linearly with coordination number 

(Figure 3.3a; Figure B.2). By tracking the amount of crack extension with respect 

to the global displacement applied, using the image processing software, FIJI [45], 

we also observe that lower coordination samples have less crack extension despite 

reaching a higher global strain. Indeed, the 2.3 coordination samples do not exceed 

1.4 ± 0.2 mm of crack extension, while 2.8 coordination samples reach up to 3.5 ± 

0.8 mm of crack extension before their sudden failure (Figure 3.3b). This tradeoff 

between plastic zone size, crack extension, and global strain-to-failure is also 

reflected in the J-integrals for each sample. We define the J-integral for an edge 

cracked sample as: 

𝐽 =
𝜂𝑈

𝐵𝑏
, (1) 

 

where η is a dimensionless constant, U is the area under the force displacement 

curve, B is the sample thickness, and b is the uncracked length[36] (Figure 3.3b, 

inset). The J-integral can also be written as a sum of its elastic and plastic 

components: 

𝐽 = 𝐽𝑒 + 𝐽𝑝, (2) 

 

𝐽𝑒 =
𝜂𝑒𝑈𝑒

𝐵𝑏
, (3) 

 

𝐽𝑝 =
𝜂𝑝𝑈𝑝

𝐵𝑏
, (4) 
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where e and p refer to the elastic and plastic components, respectively [36]. By 

extracting the elastic and plastic components of the J-integral incrementally (Figure 

B.3), we observe the tradeoff between recoverable and irrecoverable deformation 

within the samples, as the contribution to the normalized elastic J-integral increases 

as the coordination number increases, while the contribution to the normalized 

plastic J-integral decreases as the coordination number increases (Figure 3.3c).  

 

We then obtain the R-curves for each coordination by plotting the normalized J-

integrals as a function of crack extension (Figure 3.3d). Regardless of their 

coordination, all samples exhibit a rising trend, although the shape of each R-curve 

varies significantly across the coordination numbers (Figure 3.3d). The 2.3 

coordination samples have a higher critical J-integral value, Jc, at which the crack 

begins to grow, while the higher coordination samples show an average decrease in 

the critical Jc of 32.6% and 61.2% for 2.5 and 2.8 coordinations, respectively. After 

initiation, the 2.3 coordination samples all exhibit subcritical crack extension of a 

few characteristic lengths before reaching a saturation point, during which the crack 

arrests and the plastic zone grows until the sample reaches a maximum J-integral 

value, Jm, and the sample fails suddenly (Figure 3.3d, left). In contrast, the 2.5 

coordination samples all exhibit simultaneous crack extension and plastic zone 

growth before sample failure, reaching a 16.1% lower average Jm than the 2.3 

coordination samples (Figure 3.3d, center). However, unlike the lower 

coordinations, the 2.8 coordination samples reach a saturation point in plastic zone 

size, allowing for several characteristic lengths of crack extension before sample 

failure, and reaching the lowest average Jm, 29.4% lower than the 2.3 samples 

(Figure 3.3d, right). We then compare the composite materials with the bulk 

materials of the reinforcing and matrix phases. The bulk material of the matrix 

phase displays a larger plastic zone area than the 2.3 coordination samples and has 

a constantly rising R-curve with simultaneous crack extension. In contrast, the bulk 

material of the reinforcing phase displays a smaller plastic zone area than the 2.8 
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coordination samples, with a very short R-curve, as the sample fails at very low 

global strain with little crack extension (Figure B.4). 

 

 

Figure 3.3: Plastic zone size, crack extension length, J-integrals and R-curves for 

composite material samples. S corresponds to start of test, Y corresponds to 

yielding, C corresponds to crack initiation, F corresponds to failure. (a) Plastic zone 

area as a function of displacement for 2.3, 2.5, and 2.8 coordination samples. (b) 

Crack extension length as a function of displacement for 2.3, 2.5, and 2.8 

coordination samples, with inset showing single edge notch plate tension sample 
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dimensions. (c) Incremental elastic J-integrals (ηe normalized) and plastic J-

integrals (ηp normalized) as a function of displacement for 2.3, 2.5, and 2.8 

coordination samples. (d) R-curves for 2.3, 2.5, and 2.8 coordination samples.  

 

3.3.3 Effect of Structural Features 

Although the plastic zone size is the critical length scale to understand and describe 

the global fracture behavior (R-curves) of the samples, it is also necessary to 

consider a second length scale: the relative size and distribution of the structural 

features. Structural features are composed of groups of tiles which form different 

populations as a function of coordination number, resulting in plastic zone shape 

variations across the coordination numbers (Figure 3.4a). Lower coordination 

numbers form more polydisperse structural features with a wide range of sizes, 

from one characteristic length squared up to tens of characteristic lengths squared, 

resulting in more extensible composite materials, while higher coordination 

numbers form more monodisperse structural features that are smaller, resulting in 

stiffer composite materials (Figure 3.4a; Figure B.5).  

 

In order to characterize the structural features, we describe their size in terms of 

their bridge lengths, defined as the distances between (T) tiles (Figure 3.4b), and 

we note that the bridge lengths for each coordination are on the same order of 

magnitude as the characteristic length of 1 mm, which is at least one order of 

magnitude lower than that of the plastic zones (Figure 3.4c). It is this relative size 

ratio, coupled with the reinforcing phase’s higher strength, that results in a 

deformation which not only follows the shape of the local individual structural 

features ahead of the crack tip, but also globally the characteristic plastic zone shape 

from linear elastic fracture mechanics [36] (Figure 3.4a).  

 

Given that the strain field immediately ahead of the crack tip follows the shape of 

the local structural features (Figure 3.4a), it is important to examine the orientation 
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and geometry of these local features (Figure 3.4d,e) to explain why higher 

coordination samples have greater crack extension. In order to generate higher 

coordination numbers, because they are stochastically generated on a square grid, 

samples are forced to form many smaller linear structural features that are aligned 

in the direction of the primary crack, at 0° (Figure 3.4f). These linear features 

(Figure 3.4e, red) can be more easily split apart, allowing for more crack extension 

at lower global strains. In contrast, lower coordination samples have fewer 

reinforcing interfaces to pass through than high coordination samples, and instead 

form many larger complex structural features that are at an angle to the primary 

crack, greater than 0° (Figure 3.4f). It is more difficult for the crack to proceed 

through these extensible diagonal features (Figure 3.4e, gray, green), resulting in 

crack arrest and allowing the sample to instead dissipate energy through the 

formation of a large plastic zone.  
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Figure 3.4: Structural feature analysis. (a) Zoomed images of maximum plastic 

zone area for 2.3, 2.5, and 2.8 coordination samples with overlaid map of structural 

features. (b) Sample bridges for lengths of 1, 2, 3, and 4 mm (characteristic lengths). 

(c) Distributions of bridge lengths for 2.3, 2.5, and 2.8 coordination samples. (d) 

Samples with highlighted structural features ahead of the crack tip that contribute 

to the plastic zone shape for 2.3, 2.5, and 2.8 coordination samples. (e) Sample 

structural features with their constitutive bridges for 2.3, 2.5, and 2.8 coordination 

samples (gray, green, red, respectively). (f) Distributions of angles of alignment of 

structural features for 2.3, 2.5, and 2.8 coordination samples.  
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3.3.4 Plastic Zone Tailoring 

With the two critical length scales in mind (the size of the plastic zone that is able 

to develop, and the population of structural features composing a given 

coordination number), we then seek to control the fracture response of the 

composite materials by spatially tailoring the coordination number. We create 

laminated assemblies with 25% high coordination and 75% low coordination 

regions in the sample (high-R edge) and then the inverse, with 25% low 

coordination and 75% high coordination regions (low-R edge) and perform the 

same single edge notch plate tension tests (Figure 3.5a). We observe that the low-

R edge makes it possible for the development of a significantly larger plastic zone 

in the 2.8 coordination region than the 100% 2.8 coordination samples previously 

discussed (Figure 3.5b,c). In contrast, the high-R edge prevents the formation of as 

large of a plastic zone in the 2.3 coordination region as observed in the 100% 2.3 

coordination samples previously discussed (Figure 3.5b,d). This ‘flipping’ effect is 

likely the result of the similarity in the matrix and reinforcing phase stiffnesses, 

which allows the entire structure to simultaneously engage in the deformation, prior 

to and during plastic zone formation. It is also important to note the effect of the 

interface where the low coordination region transitions to the high coordination 

region, and vice versa, which is only one characteristic length wide. This transition 

line causes the vertical flattening of the plastic zone in the high-R edge sample, as 

the population of structural features abruptly transitions from larger and more 

extensible to smaller and less extensible (Figure 3.5d). In contrast, the low-R edge 

sample transitions from smaller structural features to larger structural features, 

allowing for greater extensibility and a larger plastic zone ahead of the crack 

(Figure 3.5c). 
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Figure 3.5: Tailoring the plastic zone. (a) 2.3 coordination and 2.8 coordination 

edge sample force-displacement plot. (b) Plastic zone size growth for 2.3 and 2.8 

coordination edge sample. (c) 2D DIC strain maps for 2.3 coordination edge 

sample. (d) 2D DIC strain maps for 2.8 coordination edge sample.  

 

3.4 Conclusions  

We study the fracture behavior of nearly isodense bioinspired polymer composites 

with irregular network reinforcing phases. The composites feature a matrix phase 

with a similar stiffness but half the strength of the reinforcing phase, allowing for 

the formation and extension of a primary crack and therefore J-integral and R-curve 

measurements. We compare the effect of coordination number, a global scale 

descriptor, to the mechanical properties of the reinforcing phase, through 

measurements of plastic zone size and crack extension. We observe that low 

coordination samples dissipate fracture energy through the formation of a large 

plastic zone, and fail at higher global strain, while high coordination samples 

dissipate energy through crack extension, and fail at lower global strain. We 

determine that there are two critical length scales that explain the fracture response 

of the polymer composites and the variations across the coordination numbers: (i) 

the size of the plastic zone, and (ii) the size and geometry of the structural features. 
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Finally, we discuss how to tailor the tradeoff between plastic zone size and 

primary crack extension using the coordination number and its effect on the 

structural feature populations ahead of the crack tip.  
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Chapter Abstract 

Irregular architected materials offer a wide design space of mechanical properties 

beyond that of typical periodic architected materials. However, these irregular 

materials are often completely stochastic, offering little control over the structure-

to-property relationships. Here, we show that intentional design of irregular 

materials, using topology and geometry, leads to control of the mechanical 

response. We demonstrate this experimentally using additively manufactured two-

phase polymer composites, which we generate using a hexagonal virtual growth 

algorithm (hexa-VGA). The hexa-VGA tessellates a finite set of hexagonal tiles 

into an irregular network according to coordination number, defined as the average 

number of connections per network node, with values from one to six. The network 

then forms the stiff reinforcing phase of the composites, while the space enclosed 

by the network is filled with a soft matrix. Through plate tension tests, we show 

that the coordination number determines the mechanical response, allowing us to 

achieve temporal variations in the fracture response as well as improved damage 

tolerance. 
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4.1 Introduction 

Architected materials offer a wide range of mechanical properties through the 

careful design of their structure and the choice of their constitutive materials. Truss 

and shell-based materials, for example, offer a way to achieve high stiffness and 

strength while maintaining low weight[1–4], while architected composites offer 

higher toughness than their constitutive bulk materials[5–8]. These materials often 

rely on periodicity to achieve their properties, with repeating unit cells which can 

be tessellated to form an effectively bulk material across a range of different length 

scales[4,7,9,10]. Although periodic architected materials are easier to fabricate and 

analyze[2,3], researchers have recently begun to explore the design space of irregular 

architected materials[11–24]. These irregular materials are generated using a wide 

variety of methods, including spinodal decomposition[19–21], Voronoi 

tessellations[22–24], and virtual growth algorithms[25–27], which stochastically arrange 

sets of tiles into irregular networks. It has been shown that these irregular 

architected materials can provide desirable mechanical performances, such as 

superior damage tolerance[28], tailorable stiffness, strength and fracture 

toughness[16,17,25,26,29,30], as well as improved energy absorption[18,19].  

 

To further expand the design space of irregular architected materials, we present 

here irregular network reinforced composites generated using a hexagonal virtual 

growth algorithm. Inspired by the stochastic assembly of natural structures, the 

algorithm grows a network from a set of nodes on a hexagonal grid, with up to 6-

sided connectivity for each node. The generated network can be defined by a 

coordination number, which is the average number of connections per node[31,32]. 

The higher degree of possible connectivity allows us to study the transition from 

bending-dominated to stretching-dominated irregular structures, as defined by the 

Maxwell number[33], using the coordination number as the input parameter to span 

the design space. The virtual growth algorithm also provides precise control over 

both reinforcing network geometry, defined as the shape of structural features 
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enclosed by the network, and the network topology, defined as the network 

connectivity, allowing us to decouple the effects of these parameters on the 

mechanical response. Through study of additively manufactured polymer 

composites, we demonstrate that the coordination number is the most relevant 

predictor of global mechanical properties in these irregular architected materials. 

We then go one step further to show how irregularity can influence the temporal 

evolution of fractures, and improve damage tolerance in both bending- and 

stretching-dominated irregular network reinforced composites. 

 

4.2 Material Design, Generation and Characterization 

4.2.1 Sample Generation 

We generate our samples using a hexagonal virtual growth algorithm (hexa-VGA), 

which assembles a network from a set of nodes placed on a hexagonal grid[34]. Each 

node has up to 6-sided connectivity and the hexa-VGA generates samples by first 

defining a list of all possible lines in the network which connect the nodes. The 

hexa-VGA then selects an arbitrary endpoint and uses the input parameter of 

coordination number, defined as the average number of connections per node, to 

assign X lines per node with a “positive” status, while the remaining lines are 

assigned a “negative” status. Once all lines for a given node are assigned, the hexa-

VGA removes the endpoint from the list of available nodes, checks if any of the six 

neighboring endpoints are free endpoints, and repeats the process. If there are no 

free neighboring endpoints, a random endpoint is selected, and the process 

continues until all lines have been assigned a status. Given the underlying 

hexagonal grid and 6-sided connectivity of the network, we can therefore define a 

set of 63 geometrically or rotationally unique tiles, which tessellate to form 

continuous networks (Figure 4.1a, b).  

 

Using the coordination number as a design parameter for the hexa-VGA, we study 

a range of networks, from coordination 2X to coordination 6X.  To understand the 
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effect of locally-varying geometry and topology on the global mechanical 

response, we compare homogenous and non-homogenous distributions of network 

node connectivity (Figure 4.1c). Homogeneous (H) networks are composed 

primarily of tiles of their coordination number, while the non-homogeneous (nH) 

networks are composed of different tiles, which average to the same coordination 

number. For example, we study homogeneous networks with coordination 3X 

composed of only tiles with coordination 3X (H3_3X). We also study non-

homogeneous networks with coordination 3X, either composed of 2X and 4X tiles 

(nH3_24X), or composed of 1X and 5X tiles (nH3_15X). Furthermore, we study 

homogenous networks with coordination 4X (H4_4X), as well as non-

homogeneous networks composed of 3X and 5X tiles (nH4_35X), and of 1X and 

5X tiles (nH4_15X). The 3X and 4X coordination samples also mark the transition 

point from bending-dominated to stretching-dominated 2D lattices, as defined by 

the Maxwell number[33],  

 

𝑀 = 𝑏 − 2𝑗 + 3,                      (1) 

 

where 𝑏 is the number of struts between nodes of coordination 3 or greater, and 𝑗 is 

the number of these tiles. It is therefore possible for samples to have the same 

coordination number and same average structural feature areas (Figure 4.1d), while 

the Maxwell number varies significantly as a result of topological variations (Figure 

4.1e). 

 

To fabricate our irregular composite materials for testing, we use a Polyjet printer 

(Stratasys Objet500 Connex3), and we select a stiff viscoelastic resin (VeroWhite 

Polyjet Resin) for the reinforcing network phase and a soft elastomeric resin 

(TangoBlack Polyjet Resin) for the matrix phase. Both resins are commercially 

available, and their constitutive properties (Figure C.1) fall within ranges reported 

in literature[35–37]. We print the irregular network reinforced composites in a plate 



 

 

55 

tension geometry, with a width of 5 cm, thickness of 3 cm, and a height of 10 

cm, with grips of height 3.75 cm. For consistency, we design all samples with 25 

hexagonal tiles across and a constant width of the reinforcing network of 0.5 mm, 

which is an order of magnitude greater than the minimum printer resolution[38]. As 

a result of maintaining a constant network width, the volume fraction of the 

different samples increases linearly with increasing coordination, with a value of 

0.23±0.001 for 2X samples up to a value of 0.57±0.001 for 6X samples. 

 

 

Figure 4.1: Hexa-VGA generated sample design and structure characterization. (a) 

Hexa-VGA tiles. (b) Example hexa-VGA network generation and plate tension 

sample. (c) Tile distributions for each coordination and topology type. (d) Average 

area as a function of coordination number. (e) Maxwell number as a function of 

coordination number.  
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4.2.2 Structural Characterization 

To characterize the differences in structure as a result of both coordination number 

and topology, we first look at how the structural features are arranged. We can 

define a feature by its centroid, which is calculated using regionprops in MATLAB 

(MathWorks, USA). We can then measure the distribution of these centroids using 

a radial distribution function (RDF), defined as: 

 

𝑔(𝑟) =
〈𝜌(𝑟)〉

𝜌𝑜
 ,                       (2) 

 

where 𝑔(𝑟) is the radial density at a radius, 𝑟, 𝜌(𝑟) is the local feature density at 

radius, 𝑟, and 𝜌𝑜 is the feature density of the entire structure (Figure 4.2a, inset). 

We observe that 6X coordination has a periodic radial density, with peaks and 

valleys at constant intervals, indicative of long-range order[39]. As the coordination 

number decreases, the structure becomes less ordered, with less distinct 

frequencies, as a result of the larger design space permitted by the possible feature 

geometries and sizes (Figure 4.2a-e; Figure C.2).  

 

We then quantify the distribution of structural feature areas using regionprops in 

MATLAB (MathWorks, USA). These distributions are effectively a proxy for the 

Fourier transform of the RDF’s, showing the trend of a single frequency for 6X and 

then wider distributions of frequencies as coordination number decreases (Figure 

4.2f-n). The distributions also widen as topology becomes more inhomogeneous in 

iso-coordination samples. This trend can be observed when comparing H3_3X to 

nH3_24X and to nH3_15X (Figure 4.2g-i), as well as when comparing H4_4X to 

nH4_35X and to nH4_15X (Figure 4.2j-l). For comparison, all areas are plotted as 

triangle normalized, as a triangle formed by three connecting adjacent nodes is the 

smallest feature that the hexa-VGA can form (Figure 4.2o). To summarize these 

structural feature distribution trends, we then quantify the polydispersity index 
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(PDI)[40,41] of the structural feature areas. The PDI indicates the distribution 

spread of populations of structural features, and its values range from 1 in samples 

with coordination 6X, where all features are identical, up to 4.3±0.9 for 2X, where 

the largest possible features can form (Figure 2p). 

 

 

Figure 4.2: Geometry characterization of reinforcing network phase. (a-e) Radial 

distribution functions for homogeneous coordination samples. (f-n) Structural 

feature area distributions for all coordination samples. (o) Example of triangle 

normalized area. (p) Polydispersity index (PDI) as a function of coordination 

number for all coordination samples. 

 

4.3 Results and Discussion 

4.3.1 Homogenous Topology Tensile Plate Tension Tests 
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We conduct plate tension tests on the composites to understand the effect of 

coordination number and topology on the mechanical response across the bending 

to stretching-dominated regimes. We use an Instron E3000 with a 5 kN load cell 

and fix the samples with clamps at the top and bottom, and then we load the samples 

at a quasi-static rate of 2 mm/min until failure, defined as the point when samples 

lose all load-bearing capacity.  

 

We first look at the homogeneous topology cases from 2X to 6X. Lower 

coordination samples show a more ductile response, with larger values of strain-to-

failure, while higher coordination samples show lower values of strain-to-failure, 

but higher strength (Figure 4.3a-e). This tradeoff is partly due to the volume fraction 

of the reinforcing phase, which linearly increases with coordination number, and 

partly due to the mechanisms of deformation. At lower coordinations (less than 4X), 

the composites are primarily bending-dominated, while at higher coordinations, the 

samples are primarily stretching-dominated, and become stiffer and stronger. We 

also observe that 6X displays a nearly perfect elastic-plastic response, similar to 

that of the bulk VeroWhite material[17] (Figure C.1), indicating that the reinforcing 

phase is dominating the response (Figure 4.3e). At lower coordinations, even those 

still in the stretching-dominated regime, the composites are affected by the 

elastomeric properties of the incompressible matrix material (Figure C.1) 

displaying a more extensible response and longer time from the first drop in load 

(as a result of local fractures in the reinforcing network), to complete loss of load-

bearing capacity (Figure 4.3a-c).  

 

We also conduct 2D digital image correlation (DIC) to understand how strain is 

accommodated in the materials during loading. We first spray paint the samples 

with flat white paint and then speckle with flat black paint to achieve an average 

speckle size of 0.1 to 0.3 mm. We calculate the Lagrangian strain fields using VIC-

2D DIC software (Correlated Solutions, USA), with a subset size of 27 and a step 
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size of 2. DIC maps at 2% global strain highlight that the strain becomes more 

uniformly distributed across the samples with increasing coordination number 

(Figure 4.3f-j). These results are in agreement with the trend quantified by the 

RDF’s that demonstrated an increased homogeneity in reinforcing network 

arrangement with increasing coordination (Figure 4.2a-e).  

 

Finally, we compare the volume fraction equivalent samples for each coordination 

to see the effect of different structural arrangements of reinforcing phases (i.e. 

irregular and periodic). We generate 6H_6X coordination samples with varying 

structural feature sizes to match the volume fraction of the 2H_2X, 3H_3X, 4H_4X 

and 5H_5X. These samples (6H_2Vf, 6H_3Vf, 6H_4Vf, 6H_5Vf) show a similar 

mechanical response to the original 6H_6X samples, as they are stretching-

dominated with an elastic-plastic loading profile, followed by a sudden failure and 

loss of load bearing capacity (Figure 4.3k). Unlike the irregular equivalents, these 

periodic samples do not undergo local failure events with the sawtooth drops in 

load observed in the irregular equivalents, particularly at higher coordinations, 

including 4H_4X and 5H_5X. The periodic equivalents also do not reach as high 

of strain-to-failure values, although this comes at the expense of the ultimate tensile 

strength, which is higher for the periodic equivalents (Figure 4.3k). 
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Figure 4.3: Tensile testing of irregular network reinforced composites. (a-e) Tensile 

stress-strain response of 2H_2X, 3H_3X, 4H_4X, 5H_5X, and 6H_6X 

coordination samples. (f-j) Example 2D DIC 𝜀𝑦  strain fields for each sample from 

0 to 2% global tensile strain. (k) Tensile stress-strain response of volume fraction 

equivalent samples. 

 

4.3.2 Inhomogeneous Topology Tensile Plate Tension Tests 

We then explore the effect of varying the topology in iso-coordination samples, 

effectively decreasing the homogeneity of the structures. To achieve this, we test 

composites with coordination numbers of 3X and 4X, but vary the topology for 

each, studying 3H_3X, 3nH_24X, 3nH_15X, 4H_4X, 4nH_35X and 4nH_15X. 

Due to the variations in topology, the Maxwell number varies significantly, 
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indicating that 3H_3X, 3nH_24X, 4H_4X and 4nH_35X are in the bending-

dominated regime, while 3X(15) and 4X(15) cross the transition to the stretching-

dominated regime (Figure 4.1e). We conduct the same plate tension tests as 

previously described and observe variations in the stress-strain response (Figure 

4.4a, b). Samples with greater inhomogeneity and greater PDI appear slightly stiffer 

and stronger, particularly for 3nH_15X, compared to 3H_3X, and for 4nH_15X, 

compared to 4H_4X (Figure 4.4a,b, black lines). However, this variation in stiffness 

is influenced by the volume fraction and by the sample generation method. Indeed, 

more inhomogeneous topologies result in more constraints during tessellation in 

the hexa-VGA, as more dissimilar nodes must connect. As a result, nodes grow 

extra connections to ensure that the sample is one continuous network. This leads 

to a slightly higher volume fraction of reinforcing phase in the more 

inhomogeneous samples. These topological variations also cause geometric 

variations, resulting in more polydisperse structural features, which tend to 

accommodate strain in more local regions (Figure 4.4c-h). To quantify this effect, 

we measure the modulus of toughness (MOT), defined as the area under the stress-

strain curve, to indicate how much energy the samples can dissipate, and normalize 

the MOT by the sample volume fraction. We observe that the normalized MOT 

correlates linearly with the volume fraction variations across the coordination 

numbers (Figure 4.4i,j), even for bending-dominated composites. This indicates 

that although the samples accommodate strain differently, the stochastic nature of 

the irregular network reinforcing phase indicates that the coordination number is 

the most important parameter for determining the global mechanical response.  
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Figure 4.4: Characterizing the effect of inhomogeneous topology on irregular 

network composites. (a) Tensile stress-strain response of 3H_3X, 3nH_24X and 

3nH_15X samples. (b) Tensile stress-strain response of 4H_4X, 4nH_35X and 

4nH_15X samples. (c-e) Example 2D DIC 𝜀𝑦 strain fields for 3H_3X, 3nH_24X 

and 3nH_15X samples at 2% global tensile strain. (f-h) Example 2D DIC 𝜀𝑦 strain 

fields for 4H_4X, 4nH_35X and 4nH_15X samples at 2% global tensile strain. (i) 

Volume fraction of reinforcing phase as a function of coordination number. (j) 

Modulus of toughness (MOT) (volume fraction normalized) as a function of 

coordination number. 

 

4.3.3 Fracture and Temporal Response of the Composites 

We then study the large strain regime, when the materials begin to fracture. In this 

regime, we investigate the temporal component of the materials’ mechanical 
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response to tensile loading as a function of irregularity. We use the image 

processing software, FIJI, to measure the amount of crack surface opened (Figure 

4.5a-c) under tensile strain (Figure 4.5d-h, Figure C.3), and we observe that 

coordination number and time-to-failure are inversely related (Figure 4.5i). It is 

important to note that cracks do not initiate at the interface between the two phases, 

due to their high interfacial toughness[42], but instead nucleate in the matrix phase 

and then propagate to the reinforcing phase. Lower coordination samples tend to 

nucleate cracks sooner than higher coordination samples and open a larger amount 

of total crack area, with as much as 2.38±0.92 times the original cross section 

opened for 2H_2X (Figure 4.5j). This is a result of the bending-dominated response 

of the network, which can continue to elongate after the adjacent matrix phase 

fractures, with up to 8.67±0.36 times longer from first crack nucleation to loss of 

load-bearing capacity in the samples for 2H_2X when compared with 6H_6X 

(Figure 4.5i).  

 

In contrast, although higher coordination samples also initiate cracks first in the 

matrix phase and then the reinforcing phase, these samples open up less cross 

section area, with 5H_5X only opening up 2.07±0.42 times the original cross 

section of area, while 6H_6X opens up one crack across the entire cross section, 

although the Poisson ratio reduces this value below the original 300 mm2 cross 

section. These higher coordination samples also fail more quickly after the first 

crack nucleation, with 5H_5X losing all load-bearing capacity 1.53±.09 times faster 

than 2H_2X, and 1.94±0.41 times faster than 3H_3X. This trend is even more 

pronounced for the periodic 6H_6X case, which loses all load-bearing capacity 

within just 28.67±2.31 seconds after crack nucleation, an order of magnitude faster 

than all other samples (Figure 4.5i). This trend for the periodic case is independent 

of volume fraction, as shown by the equivalent 2X, 3X, 4X, and 5X volume fraction 

samples with 6X coordination (Figure 4.5d-h, dashed lines).  
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Across both the bending and stretching-dominated regimes, the arrangement of 

the reinforcing phase into an irregular network instead of a periodic network 

provides a significant temporal benefit, preventing sudden loss of load-bearing 

capacity. We measure the average crack area opening rate and observe that higher 

coordinations tend to have a higher rate, with 6H_6X having the fastest rate of 

nearly 10 mm2 per second (Figure 4.5k). This is likely the result of the load-bearing 

pathways in the irregular composites, which reach a wider radius of node 

connections, creating a more diffuse structural response[43]. In contrast, the periodic 

equivalents have nodes which are only connected to the nodes closest to 

themselves. Although these periodic network materials can withstand a higher load, 

once one node fails, the load bearing capacity drops suddenly and adjacent nodes 

quickly fail in succession as one crack propagates across the entire sample. The 

comparison between the periodic and irregular 5X coordination samples 

demonstrate this best, showing that, although they remain in the stretching-

dominated regime, only a small amount of irregularity results in significantly higher 

strain-to-failure and damage tolerance, as the composites are able to maintain load 

bearing capacity after crack nucleation and propagation (Figure 4.5b,c). Instead of 

failing suddenly, these samples nucleate many crack locations, with up to 2.95±.87 

times the original cross section of crack surface area distributed across the sample, 

preventing site coalescence (Figure 4.5j).  
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Figure 4.5: Temporal characterization of irregular network composite fracture 

response. (a-c) Time evolution of crack nucleation and propagation for example 

3H_3X, 5H_5X, and 6H_6X composites. (d-h) Crack surface area opened as a 

function of tensile strain for homogeneous coordination samples, dashed lines show 

periodic volume fraction equivalent 6H_6X samples. (i) Time from fracture 

initiation to complete loss of load-bearing capacity in all samples. (j) Maximum 

crack area opened. (k) Average crack area opening rate for all samples. 

 

4.4 Conclusions  

We presented architected network reinforced composite materials and explored the 

role of irregularity and topology on their mechanical performance. We generated 

the materials using a hexagonal virtual growth algorithm to achieve control over 

the topology, using the average network coordination number as an input parameter 

and varying the local topology to achieve various structural feature polydispersities. 
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We observed that the effect of local topology variations in iso-coordination 

samples was less influential on the global mechanical response than the average 

coordination number. We also observed that introducing irregularity leads to 

improved damage tolerance across both the bending and stretching-dominated 

regimes. Irregular composites were able to maintain more load bearing capacity 

even after cracks nucleated and propagated, as the nucleation sites were more 

dispersed when compared with periodic equivalents. We also showed that this 

dispersed fracture response leads to variations in the temporal response, which can 

be controlled as a function of coordination number to achieve an improved 

mechanical response when compared with periodic equivalents. 
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Chapter Abstract 

As a result of evolution, many biological materials have developed irregular 

structures that lead to outstanding mechanical performances, like high stiffness-to-

weight ratios and good energy absorption. However, reproducing these irregular 

biological structures in synthetic materials remains a complex design and 

fabrication challenge. We present here a bioinspired material design method that 

characterizes the irregular structure as a network of building blocks, also known as 

tiles, and rules to connect them. Rather than replicating the biological structure one-

to-one, we generate synthetic materials with the same distributions of tiles and 

connectivity rules as the biological material and we show that these equivalent 

materials have structure-to-property relationships similar to the biological ones. To 

demonstrate the method, we study the pericarp of the orange, a member of the citrus 

family known for its protective, energy-absorbing capabilities. We generate 

polymer samples and characterize them under quasi-static and dynamic 

compression and observe spatially-varying stiffness and good energy absorption, 

as seen in the biological materials. By quantifying which tiles and connectivity rules 
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locally deform in response to loading, we also determine how to spatially control 

the stiffness and energy absorption.  

 

5.1 Introduction 

Nature provides many examples of materials with desirable mechanical properties, 

such as high strength[1–5], high toughness[4,6–8], and high impact resistance[2,9–12]. 

Some of these materials are periodic, like nacre[1,4], conch shells[13], and beetle 

wings[5], while others have irregular structures, like trabecular bone[2,9,10] and citrus 

pericarp [14,15]. However, periodic bioinspired materials are more widely studied 

than irregular materials, as they are more easily fabricated via additive 

manufacturing[16–22] and studied computationally[18,19,21,23–25]. Conversely, 

generating irregular materials often requires complex biomimicking processes such 

as micro-computed tomography coupled with 3D printing[26,27], or investment 

casting[28,29]. Other approaches include the use of stochastic processes, such as 

virtual growth algorithms[30,31], Voronoi tessellations[32–34] and foaming[35–40] for 

irregular materials generation, but these methods are limited in their ability to 

imitate the biological structure. Indeed, biological materials are often defined by 

highly complex and geometrically irregular concave and convex internal 

structures[3,11,14,41,42], as well as spatial density variation, optimized to respond to 

specific loading conditions[2,15,26,42,43].   

 

Here, we propose a bioinspired material design method that characterizes the 

irregular biological structure by discretizing it into a network of tiles and rules for 

how to connect them. The set of available tiles and their connectivity rules lead to 

materials that, in a stochastic sense, have predetermined topology and geometry. 

Topology is defined as the connectivity between adjacent tiles, and we quantify it 

for each tile as the topological coordination number, R, defined as the number of 

branches, connecting to neighbors from the central node[44]. Geometry is defined as 

the shape of elements in the structure, and is relevant at different scales: (i) at the 
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individual tile level and (ii) after tessellation, at the structural feature level, 

consisting of assemblies of multiple tiles. Tiling and tessellation approaches that 

generate irregular geometries have already been studied to achieve mechanical 

properties such as stiffness and strength[30,45–49], but these approaches often focus 

on homogenization or have very limited size due to computational costs[50], whereas 

our approach seeks to quantify the structure and its structure-to-property 

relationships at a local tile level that can be spatially controlled and scaled.  

 

To demonstrate the bioinspired material design method, we focus on the pericarp 

of the orange, a member of the citrus family[41]. Citrus fruits are known for their 

thick pericarps, which range from 5-7 mm for oranges and lemons, to 15-20 mm 

for the citron (the thickest pericarp)[51]. Regardless of the type of fruit, these thick 

pericarps consist of an irregular, density-graded foam-like structure, which has 

evolved for energy absorption and impact resistance, key to protecting the pulp 

when the ripe fruit falls from the tree[15,51]. The dense outer layer of the pericarp, 

known as the flavedo, acts as a protective layer, while the less dense internal region, 

known as the albedo, provides energy absorption due to the presence of large, 

compressible intercellular spaces[15]. Furthermore, vascular bundles throughout the 

structure act as reinforcing elements, providing additional strength and stiffness[15]. 

We determine the tiles and connectivity rules of the orange pericarp and then use 

these as instructions for a computer-aided virtual growth algorithm (VGA)[30] to 

generate equivalent synthetic samples with the same tile and connectivity rule 

distributions as the fruit, which we then additively manufacture. Under quasi-static 

and dynamic compression, we observe spatially-varying stiffness and energy 

absorption similar to that of the biological material, indicating that the tiles and 

connectivity rules are sufficient structural descriptors for the mechanical properties. 

We then quantify which tiles and connectivity rules produce a particular property 
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by examining the local deformation to understand how to spatially control the 

mechanical performance. 

 

5.2 Methods, Results and Discussion 

5.2.1 Bioinspired Material Design 

We begin with a two-dimensional cross-sectional image of an orange pericarp, 

acquired transversely from the external surface to approximately 5 mm into the 

fruit, where the pericarp transitions into the pulp (Figure 5.2a; Figure D.1, 

Appendix D.2.1). We use the image processing software, FIJI[52], to skeletonize[53] 

the structure into a simplified line form of the original pericarp image (Figure 5.1a). 

This irregular image skeleton is then broken down using a uniform square grid into 

a collection of tiles (Figure 5.1b,c). The tile size is determined by taking the largest 

possible size while ensuring that each tile contains no more than one node, defined 

here as an intersection point between branches (Figure 5.1b). Although each tile 

contains a unique portion of the original orange pericarp image, all tiles can be 

reduced to the simplest set of five tile types (Figure 5.1d). Each tile in the reduced 

set has the same branch thickness, which was chosen to match the volume fraction 

of the orange pericarp’s structure, so that the branch length to thickness ratio is 

maintained when the tiles are assembled at any scale. We perform the translation 

process between the original tiles and the reduced tiles by analyzing the tile 

perimeter, counting the number branch intersections, and assigning a binary code 

value to the left (1), top (10), right (100), and bottom (1000), or zero otherwise 

(Figure 5.1d). By summing the perimeter values for each unique biological tile, we 

can determine its coordination number[63], as well as its orientation (Figure 5.1f, 

Appendix D.2.2). Next, we determine the connectivity rules governing how the tiles 

are assembled by examining the frequency at which two tiles are adjacent in the 

biological structure (Figure 5.1e,g, Appendix D.2.2). The frequency of the tiles and 

the rules that determine their connectivity, two parameters that can be extracted 
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from any starting structure (Figure 5.1h), are then supplied to a virtual growth 

algorithm[30] to assemble the irregular bioinspired structure (Figure 5.1i). 

 

Figure 5.1: Bioinspired material design method. (a) Orange pericarp image with 

right half as skeletonized structure. (b) Skeletonized structure with node locations. 

(c) Irregular tiles from skeleton. (d) Translation of biological tiles into reduced tile 

types using perimeter identification numbers and summation. (e) Connectivity rules 

from skeleton image. (f) Reduced set of five VGA tiles and their coordination 

number, R. (g) VGA-allowed and -not-allowed connectivity rules. (h) Example 

image of orange pericarp. (i) Example of VGA-generated sample. 

 

5.2.2 Material Generation and Fabrication 

To generate samples, we divide the orange pericarp into external and internal 

regions, which correspond to the flavedo and the albedo[15,41], respectively (Figure 

5.2a,b,c). The external region is from 0 mm to 0.5±0.16 mm into the pericarp and 

the internal region is from 0.5±0.16 mm to 5 mm into the pericarp, where the 
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endocarp and pulp begin. Using the gridded approach on eight different 

equivalent pericarp images (Figure D.1), we determine that the external region is 

composed of 20.6 ± 1.3% of coordination number zero (0-R) tiles, 34.8 ± 1.2% of 

coordination number two (2-R) tiles, 34.7 ± 1.4% of coordination number three (3-

R) tiles, and 10.0 ± 1.0% of coordination number four (4-R) tiles (Figure 5.2d, 

blue). The internal region is composed of 26.6 ± 1.6% of 0-R tiles, 36.9 ± 1.3% of 

2-R tiles, 28.2 ± 1.4% of 3-R tiles, and 8.3 ± 0.9% of 4-R tiles (Figure 5.2d, orange). 

Although all connectivity rules occur at some point in the original orange pericarp, 

the current virtual growth algorithm assembles tiles based on either allowed or 

disallowed connections. As such, to help with accurately capturing the geometry of 

the original sample and avoid defects during tessellation, we have a limit for when 

to keep or remove a connectivity rule. If the connectivity rule appears less than 5% 

of the time, it is automatically removed, while if it appears less than 15%, it is 

removed only if either of the two tile coordination types that make up the rule 

appear in other connectivity rules. In the external region, all connectivity rules are 

included except between 0-R tiles and 0-R tiles, and between 4-R tiles and 4-R tiles 

(Figure 5.2e, blue). In the internal region, all connectivity rules are included except 

between 3-R tiles and 4-R tiles, and 4-R tiles and 4-R tiles (Figure 5.2e, orange).  

With the tile frequencies and connectivity rules extracted from the two different 

regions of the orange pericarp, a computer-aided virtual growth algorithm[30] uses 

the set of five tile types to generate 50x50 tile samples for the external (VGA-ext) 

and the internal (VGA-int) regions (Figure 5.2f,g). These samples are then 

combined together to form the bioinspired equivalent of the orange pericarp (VGA-

full): a continuous structure with interface-free, spatially-varying density and 

structural features, defined as the areas enclosed by cell walls (Figure 5.2h). We 3D 

print the VGA-generated geometries into a two-phase composite material to create 

a structure suitable for mechanical testing, image analysis, and strain mapping. We 

use a polyjet printer (Stratasys Objet500 Connex3), with a stiff viscoelastic resin 

(Stratasys VeroWhite Polyjet Resin) for the reinforcing structure, and a soft 
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elastomeric resin (Stratasys TangoBlack Polyjet Resin) for the matrix, both of 

whose mechanical properties fall within those reported in literature[54–56].  

Although we exactly imitate the topology of the original sample by matching tile 

percentages, we must also quantify how well the VGA-generated samples’ 

geometry compares with the original orange pericarp. For this, we use two different 

metrics: density, as a measure of structural feature size, and concavity, as a measure 

of structural feature shape. We observe that the VGA-generated samples maintain 

the same density difference between the external and internal regions as the orange 

pericarp samples, with 3-5% lower density in the internal region as a result of the 

larger structural features (Figure 5.2i). To compare the concavity of the original 

samples with the VGA-generated samples, we examine each structural feature, 

using the bridge length to Euclidean distance ratio, where the bridge length is the 

length of a structural feature’s edge between 3-R and 3-R or 4-R nodes, and the 

Euclidean distance is the linear distance between the 3-R and 3-R or 4-R nodes 

(Figure D.2). A ratio value of 1 indicates no concavity, whereas a higher ratio 

indicates a greater degree of concavity. When compared with the orange pericarp’s 

structural features, the VGA-generated samples are very similar, with average 

concavity values within 2% for both regions, and with the internal region features 

having significantly higher concavity than the external region features (Figure 5.2j).  

We also observe that the orange pericarp and the VGA-generated samples have an 

isotropic distribution of structural features, which can be shown by examining the 

orientation of the structural features averaged over several samples to determine 

how the features are distributed. Using the orientation of an elliptic fit in MATLAB 

(MathWorks, USA), we observe a uniform distribution of structural feature 

orientations in the internal region, while the distribution is more bimodal (0˚ and 

180˚) in the external region (Figure D.3). This bimodal distribution is due to the 

extensive presence of small, circular cells, but it is an artefact, as circular cells are 

inherently isotropic. Although the angles of orientation show a uniform distribution, 

they are not an independently sufficient metric to confirm an isotropic material 
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distribution, because they do not consider the effect of feature size. Therefore, 

we also verify that the orientation angles do not correspond to a certain structural 

feature size to ensure isotropy. There is no correlation between size and angle in the 

orange pericarp internal and external regions, or in the VGA-int samples, although 

there is a slight correlation for angles of 0°, 45°, 90°, and 135° in the VGA-ext 

samples, due to the four-sided nature of the virtual growth algorithm coupled with 

higher coordination number resulting in lower polydispersity (Figure D.3). Finally, 

it should be noted that the internal region VGA samples individually are not 

isotropic because their mechanical response is dominated by a few of the largest 

features, due to testing size limitations (Figure D.4).  
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Figure 5.2: Orange pericarp characterization and VGA sample generation. (a) 

Cross-sectional image of orange pericarp. (b) Representative image of external 

region. (c) Representative image of internal region. (d) Tile percentages for external 

and internal regions. (e) Selected connectivity rule percentages for external and 

internal regions. (f) VGA-generated sample of external region. (g) VGA-generated 

sample of internal region. (h) 3D-printed composite polymer sample with 80% + 
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20% external and internal regions, respectively. (i) External and internal region 

density for orange pericarp and VGA samples. (j) External and internal region 

concavity ratio for orange pericarp and VGA samples. 

 

5.2.3 Mechanical Characterization: Quasi-static Testing 

After establishing the topology and geometry equivalence of the VGA-generated 

samples with the original orange pericarp samples, we conduct quasi-static 

compression tests on additively manufactured polymer composite samples 

(Appendix D.2.3). Like the original orange pericarp, which features a stiff, 

protective flavedo[15,41], VGA-ext samples prove to be 116% stiffer than the VGA-

int samples (Figure 5.3a,b, respectively) and even when normalized for their 

difference in density, VGA-int samples prove more compliant, like the energy-

absorbing albedo of the orange pericarp[14,15,51]. The orange pericarp inspired 

samples, VGA-full, featuring a 20% external and 80% internal composition, have 

a stiffness that is between the VGA-ext and VGA-int samples (Figure 5.3c). The 

constitutive stress-strain plots for VGA-full samples with a different composition, 

featuring 10% external and 90% internal, as well as 50% external and 50% internal, 

also have an intermediate stiffness (Figure D.6). We also quantify which tiles and 

connectivity rules are primarily responsible for the stiffness variations by 

examining the local feature deformation. We do this by quantifying the strain field 

experienced by each sample up to 10% total strain, using 2D digital image 

correlation (2D DIC) to identify which features are the stiffest (and undergo the 

least deformation) and which features are the least stiff (and undergo the most 

deformation) (Figure 5.3d,e,f, Appendix D.2.4). We then break down these features 

into their constitutive tiles and connectivity rules and identify which tiles and rules 

appear in a feature, according to the amount of strain. 2D DIC shows that the strain 

field in VGA-ext samples is more uniformly distributed, with no region exceeding 

15% local strain at a global strain of 10% (Figure 5.3d, III) and that the samples are 

more homogenously composed of many smaller stretching-dominated[31] structural 

features (Figure 5.3d), like the protective flavedo and reinforcing vascular bundles 
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of the orange pericarp[15]. These features are formed by high percentages of high 

coordination tiles and by limiting large consecutive 0-R and 2-R tile connections, 

which results in lower polydispersity and local structural feature coordination 

numbers from ~2 up to 3.5 (Figure 5.3d, III, insets). The local structural feature 

coordination number is calculated from the average of all tiles that compose a given 

structural feature. 

 

In contrast, VGA-int samples display a significantly more localized strain field, 

with certain structural features reaching up to 30% local strain, although these local 

regions of high strain are uniformly distributed across the sample (Figure 5.3e, III, 

insets). This is in contrast to the periodic and graded honeycomb samples tested 

under the same loading conditions, which begin to form local shear bands (Figure 

D.5). We can observe that the VGA-int samples are composed of larger structural 

features, like the highly compressible, large intercellular spaces of the orange 

pericarp[15], formed by higher percentages of low coordination tiles and large 

consecutive 0-R tile connections, as well as by consecutively aligned tiles (such as 

2-R to 2-R, or 3-R to 3-R) or by consecutively repeating two-tile combinations 

(such as repetitions of the same 2-R to 3-R pair), which prevents the diversion of 

feature edges (Figure 5.3e, III, insets). This results in local coordination numbers 

as low as ~1.5, allowing for less stiff bending and buckling mechanisms[57], as well 

as higher polydispersity (Figure 5.3e, III, insets). Furthermore, the largest, most 

deformed structural features have many concave edges, formed by the connection 

of diagonal 2-R tiles with 3-R tiles, which act as less-constrained joints[58,59] that 

can rotate as the feature deforms (Figure 5.3e, III, insets). Finally, the VGA-full 

sample shows the same trends, with the internal region displaying highly localized 

strain values up to 30% (Figure 5.3f, III, insets), while the external region never 

exceeds 15% local strain.  
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Figure 5.3: Quasi-static compression tests. (a) VGA-ext engineering stress-strain 

plot for three different samples. (b) VGA-int engineering stress-strain plot for three 

different samples. (c) VGA-full engineering stress-strain plot for three different 

samples. (d) Example 2D DIC strain maps for 0%, 5%, and 10% global strain for 

VGA-ext sample, yellow insets show coordination color coded example structural 

features. (e) Example 2D DIC strain maps for 0%, 5%, and 10% global strain for 

VGA-int sample, yellow insets show concave structural features at high strain and 

coordination color coded example structural feature. (f) Example 2D DIC strain 

maps for 0%, 5%, and 10% global strain for VGA-full sample, yellow insets show 

concave structural features at high strain. 

 

5.2.4 Mechanical Characterization: Structural Feature Analysis 

We conduct computational simulations of the samples using the COMSOL 2D 

linear elastic solid mechanics module to gain further understanding of the 

deformation mechanisms of the individual structural features and their effect on the 

global mechanical performance under compressive loading (Figure 5.4b,d). To 

validate the computational results, we first manually track the bending angles of 

several structural features in the experimentally-tested VGA-generated samples 
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(Figure 5.4a,c) using the image processing software, FIJI[52]. Although the 

experimental samples are composite materials, the simulated bending angle results 

on just the reinforcing phase are a close match because the matrix phase is 

significantly less stiff and does not play a significant role in the bending of features 

at low strain (Figure 5.4e). As the strain increases, the bending angles display 

varying changes, with some increasing, then decreasing, some remaining relatively 

constant, while yet others only increase or only decrease (Figure 5.4e). We then 

computationally study the distributions of all structural features in the samples 

using the eccentricity in MATLAB (MathWorks, USA) from elliptic fits of each 

feature as a proxy for bending angle (Figure 5.4f, g, left). We observe that the 

distribution of eccentricities remains similar across all strains, the result of some 

features becoming more elongated while others become more circular with 

increasing strain, making the material locally anisotropic but globally isotropic 

(Figure 5.4g, left). This is in contrast to the honeycomb, whose distribution shifts 

up (Figure 5.4g, right) as every feature becomes more elongated with increasing 

strain.  
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Figure 5.4: Experimental and finite element analysis of changes in structural 

feature morphology under quasi-static compressive loading. (a,c) Experimental 

testing of VGA-full structural features from 0% to 10% global strain, insets show 

example features with example bending angles. (b,d) Finite element analysis of 

VGA-full reinforcing phase structural features from 0% to 10% global strain. (e) 

Comparison of experimental and finite element analysis of variations in bending 

angle of example structural features from 0% to 10% global strain. (f) Defining 

elliptic fit of structural features and their resulting eccentricity as a way to measure 

structural feature deformation. (g) Tracking the eccentricity of all structural features 

from 0% to 10% global strain in the VGA-full reinforcing phase (left) and in 

honeycomb reinforcing phase (right). 

 

5.2.5 Mechanical Characterization: Dynamic Testing 

To characterize the energy absorption capabilities of the VGA-generated samples, 

drop tower tests at a strain rate of ~100 s-1 are conducted. To quantify the energy 

absorption capabilities of the VGA-generated materials, we measure the time of 

contact between the striker and sample, and the coefficient of restitution, defined 

as the ratio of the average striker velocity 2 ms before and after impact. The 

velocities are measured using the image processing software, FIJI[52], by reslicing 

a vertical line through the center of each image (Figure 5.5a, vertical dashed line). 

Evaluating the evolution of pixel values over the experiment duration allows us to 

temporally track the striker position (Figure 5.5b). The VGA-generated samples are 

tested along with a periodic honeycomb sample and a 20% + 80% graded 

honeycomb sample, both with the same volume fraction of reinforcing phase as the 

20% + 80% VGA-full sample, for comparison. After normalizing for density, we 

observe that the VGA-ext samples have the highest coefficient of restitution 

(0.45±0.03), indicating the least amount of energy dissipated (Figure 5.5c), along 

with the shortest time in contact (Figure 5.5d). Despite having the same volume 

fraction of reinforcing- and matrix phases, the VGA-full samples have a 7.5% lower 

coefficient of restitution (0.37±0.02) than their periodic equivalent (0.40±0.01), as 

well as a 16% longer time in contact, and a 9.8% lower coefficient of restitution 

(0.41±0.03) than their graded equivalent, as well as a 25% longer time in contact 
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(Figure 5.5c,d). The similarity in behavior of the periodic honeycomb and the 

graded honeycomb is because the branch thickness is always maintained, and there 

is a density difference of less than 10% between the two regions. We also test the 

10% and 90% as well as 50% and 50% combination samples of external and 

internal regions to compare the coefficients of restitution (Figure D.6, Appendix 

D.2.5). To explain these differences in energy absorption, we observe a positive 

correlation between structural feature size, overall sample concavity and amount of 

deformation, noting that higher concavity leads to less constrained strut bending 

and buckling in the largest structural features (Figure 5.5e,f), like the large, 

compressible intercellular spaces of the orange pericarp, known for their energy 

dissipation[15]. The high percentages of low coordination tiles and consecutively 

repeating aligned tiles or two-tile combinations are responsible for the large size, 

while the connection of diagonal 2-R tiles with 3-R tiles are responsible for the high 

concavity (Figure 5.5g). Indeed, the largest structural features have local 

coordination numbers as low as 1.28 (Figure 5.5f, I) and concavity ratios as high as 

1.17 (Figure 5.5f, IV). To quantify the strain and structural feature deformation, we 

can also refer back to the quasi-static 2D DIC maps (Figure 5.3d,e,f), as well as the 

computational results (Figure 5.4e,g) which are valid also at our drop tower strain 

rate since the striker velocity is between 7-8 m/s and the elastic wave speed in the 

material is approximately 575 m/s, indicating that drop tower loading occurs slowly 

enough to reach a state of stress equilibrium (Figure D.7, Appendix D.2.6).  
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Figure 5.5: Drop tower testing. (a) VGA-full samples before, during and after 

loading. (b) Time versus distance of resliced striker/sample center axis with time in 

contact, and angles giving striker initial and final velocities. (c) Coefficient of 

restitution normalized for density for VGA-ext, VGA-int, VGA-full, and 

honeycomb polymer composite samples as a function of concavity ratio. (d) Striker 

time in contact with sample for VGA-ext, VGA-int, VGA-full, and honeycomb 

polymer composite samples. (e) VGA-full samples before and at maximum strain 

with highlighted large structural features. (f) Highlighted large structural features 

before and at maximum strain. (g) Coordination color coded tiling of largest 

structural feature. 

 

5.3 Conclusions 

We present a bioinspired material design method to achieve the desirable 

mechanical performances of irregular biological materials in synthetic materials. 

Instead of mimicking the biological structure one-to-one, our synthetic structures 

match the statistical distributions of features to obtain structure-to-property 

relationships similar to the biological material. Although this article only explores 
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the irregular structure of the orange pericarp and its mechanical performance, the 

method is easily extendable to other irregular biological materials with desirable 

mechanical properties in 2D and 3D. Furthermore, this method lends itself to 

spatially-controlled bioinspired materials that combine the tiles and connectivity 

rules of multiple different materials simultaneously, to locally and globally tailor 

mechanical properties.  
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Chapter Abstract 

Natural materials often feature a combination of soft and stiff phases, arranged to 

achieve excellent mechanical properties, such as high strength and toughness. 

Many natural materials have even independently evolved to have similar structures 

to obtain these properties. For example, interlocking structures are observed in 

many strong and tough natural materials, across a wide range of length scales. 

Inspired by these materials, we present a class of two-phase composites with 

controllable interlocking. The composites feature tessellations of stiff particles 

connected by a soft matrix and we control the degree of interlocking through 

irregularity of particle size, geometry and arrangement. We generate the composites 

through stochastic network growth, using an algorithm which connects a hexagonal 

grid of nodes according to a coordination number, defined as the average number 

of connections per node. The generated network forms the soft matrix phase of the 

composites, while the areas enclosed by the network form the stiff reinforcing 

particles. At low coordination, composites feature highly polydisperse particles 

with irregular geometries, which are arranged non-periodically. In response to 

loading, these particles interlock with each other and primarily rotate and deform 

to accommodate non-uniform kinematic constraints from adjacent particles. In 

contrast, higher coordination composites feature more monodisperse particles with 
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uniform geometries, which collectively slide. We then show how to control the 

degree of interlocking as a function of coordination number alone, demonstrating 

how irregularity facilitates controllability. 

 

6.1 Introduction 

Nature offers an abundance of materials with excellent mechanical properties, 

including high stiffness[1–6], high strength[2–4,7–11], high toughness[1,4,5,10,12–15], and 

good energy absorption[16–18]. These materials are often composed of stiff and soft 

phases, arranged to optimize mechanical performance. Many biological materials 

have even independently evolved to have similar structures across a wide range of 

length scales[19]. For example, interlocking structures that provide excellent 

mechanical performances can be observed in many different biological materials, 

providing high strength, ductility, and toughness[19]. In nacre, interlocking occurs 

as a result of rough, wavy tablets, which jam as they slide past one another[1,20,21], 

while in turtle carapaces and cranial bone, interlocking is seen in zigzag bone 

interfaces, which engage like puzzle pieces for improved bending strength and 

toughness[11,14,22]. Interlocking is even seen in stomatopod dactyl clubs, which 

feature bouligand and herringbone structures that deflect cracks with out-of-plane 

interlocked layer arrangement[23,24]. However, mimicking all of these advantageous 

biological structures for use in bioinspired engineering materials remains a complex 

design and fabrication challenge.  

 

Here we propose the use of irregularity to generate bioinspired interlocking 

materials, and we present a class of two-phase composites composed of 

tessellations of stiff reinforcing particles connected by a soft matrix. Going one step 

beyond the biological materials, we show that our materials offer control over the 

degree of interlocking, defined as the kinematic constraints provided by 

neighboring particles[25,26], through control of particle size, geometry and 
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arrangement. We generate the materials using a virtual growth algorithm (VGA), 

which mimics the growth of stochastic structures observed in nature by assembling 

simple building blocks into a network according to connectivity rules[27–31]. To 

further increase the design space, we present a VGA on a hexagonal grid (hexa-

VGA), offering up to 6-sided connectivity. The hexa-VGA begins with a set of 

nodes on the hexagonal grid and randomly assigns connections from each node 

until the entire grid is filled, forming a network. We define the average number of 

connections per node as the coordination number[32,33], which we use as an input 

parameter to the hexa-VGA. The generated hexa-VGA network then forms the 

matrix phase of our composite materials, while the reinforcing particles are formed 

by the areas enclosed by the matrix.  

 

As a function of coordination, and the resulting particle size, geometry, and 

arrangement, particles interlock to varying degrees in response to the kinematic 

constraints provided by neighboring particles. This mechanical performance is 

reminiscent of not only interlocking biological materials, but also of interlocking 

engineering materials, which have been previously shown to provide tunable 

bending stiffness[34–37], enhanced load-bearing capacity[36,38–40], and improved 

toughness[37,41–45]. However, all of the previous studies on interlocking are all 

limited by the periodic nature of the interlocking elements, in both the biological 

materials and the engineering materials. In contrast, our irregular elements 

(particles) offer a wider design space, with control over the degree of interlocking 

in response to loading, as a function of coordination number.  

 

6.2 Results and Discussion 

6.2.1 Sample Design 

To design and generate our samples, we use a hexagonal virtual growth algorithm 

(hexa-VGA), which stochastically grows a network from a set of nodes on a 
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hexagonal grid. The hexa-VGA is defined by a coordination number, which is 

the average number of connections per node (Figure 6.1a). We can therefore define 

a set of 63 geometrically or rotationally unique hexagonal tiles, which form from 

the network on the grid (Figure 6.1b,c). To make our polymer composite materials, 

we additively manufacture the generated network as the soft matrix phase, while 

the areas enclosed by the network form the stiff reinforcing phase. Further details 

on the material properties may be found in Appendix E (Figure E.1) and details on 

generation and fabrication methods may be found in Section 6.4.  

 

To span the available design space, we generate samples with coordinations of 2X, 

2.5X, 3X, 3.5X, 4X, 5X, and 6X, which are composed of primarily either 100% the 

coordination tile type (for integer coordinations) or 50% of the tile type above and 

50% of the tile type below (for non-integer coordinations) (Figure 6.1e). The 

particle size is inversely related to the coordination number, with coordination 2X 

below the percolation threshold for equilateral triangular networks[46], resulting in 

the largest particles (Figure 6.1f). The smallest particle size possible is that of a 

triangle formed by adjacent lines (Figure 6.1c).  
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Figure 6.1: Sample generation and characterization of design space. (a) Node 

identification with positive (green) and negative (red) nodes. (b) Assorted 

hexagonal tiles. (c) Hexagonal tile connectivity. (d) Composite material generation 

with reinforcing particles and matrix. (e) Hexa-VGA sample compositions as a 

function of coordination number. (f) Triangle-normalized particle size distributions 

as a function of coordination number.  

 

6.2.2 Mechanical Characterization: Cylindrical Contact Loading 

Samples are loaded in compression with a cylindrical contact to understand how 

the structure responds to localized load at displacements up to 3 mm (Figure 6.2a-

f). We test three different samples for each coordination (2X, 2.5X, 3X, 3.5X, 4X) 

and observe that at the lowest coordination, the material behaves similarly to a bulk 

material, as it falls below the percolation threshold for an equilateral triangular 

network[46] and is primarily composed of a few large particles (Figure 6.2a). As 

coordination number increases, stiffness and strength decrease non-linearly, as a 

result of both structure and material properties, since the volume fraction of the 
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reinforcing phase decreases with increasing coordination number (Figure 6.2b-

f). To decouple the effect of volume fraction, we test 6X samples with the same 

volume fraction of reinforcing particles as 2X, 2.5X, 3X, 3.5X, and 4X irregular 

samples. These equivalent samples are composed of uniform triangular particles of 

varying sizes, according to the volume fraction of each coordination, and we 

maintain the same matrix width for all samples. We observe an increase in both 

stiffness and strength with increasing particle phase volume fraction (Figure E.2), 

but not as large of an increase in stiffness and strength as observed in the irregular 

composites (Figure 6.2a-f). These periodic equivalent samples also begin to fail 

sooner at lower coordinations, resulting in a decrease in measured force, as a result 

of bands of particles shearing for these periodic materials, rather than their 

interlocking irregular counterparts. 

 

Given the hexagonal nature of the hexa-VGA used to generate the samples, we 

examine the effect of orientation by testing samples at 0° (horizontal, blue) and 90° 

(vertical, red), such that the underlying hexagonal grid is aligned along the widest 

hexagon direction and the narrowest hexagon direction. At lower coordinations, 

there is significant anisotropy, with the vertical orientation displaying greater 

stiffness and strength (Figure 6.2a,b). This trend decreases as coordination number 

increases (Figure 6.2c-e), until we reach the periodic 6X case, where the vertical 

orientation remerges as being stiffer (Figure 6.2f; Figure E.3). This anisotropy 

effect is likely the result of both particle size, which decreases with coordination, 

offering a wider range of possible geometries and orientations, while maintaining 

irregularity at intermediate coordinations, as well as the result of the matrix 

alignment with respect to the direction of loading, where horizontal alignment 

allows for greater deformability in the lateral x-direction when loaded from the 

normal y-direction. We measure the angle of alignment of the particles to quantify 

this anisotropy. Using regionprops in MATLAB (MathWorks, USA) to obtain the 

angle of orientation, we show that intermediate coordinations have a more uniform 
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distribution of particle orientations for both alignments, while more extreme 

coordinations (i.e. 2X and 6X) show more skewed distributions (Figure E.4). These 

differences in structure and resulting mechanical response (Figure 6.2a-f) offer a 

way to design materials which primarily deform and fail in a desired direction and 

with a particular mode, depending on the desired application. For example, it is 

possible to obtain stronger materials from vertically-aligned lower coordinations 

which deform primarily through the axial compression of larger vertically-aligned 

particles, or to obtain weaker materials from horizontally-aligned higher 

coordinations, which deform through the shearing of smaller diagonally-aligned 

particles. 

 

We then use 2D digital image correlation (DIC) to track the sample deformation up 

to 1 mm cylindrical contact displacement (indicated by the gray line in the force-

displacement plots). Across the various samples (Figure 6.2g-l, Figure E.5), we 

observe varying amounts of strain surface area (structural engagement) as a 

function of coordination number, with intermediate coordinations displaying the 

largest region of both 𝜀𝑥 (Figure 6.2m-r, Figure E.5) and 𝜀𝑦 strain (Figure 6.2s-x, 

Figure E.5). 
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Figure 6.2: Cylindrical contact loading characterization. (a-f) Force-displacement 

plots for coordinations 2X, 2.5X, 3X, 3.5X, 4X, and 6X, respectively. Red refers to 

vertical matrix orientation, blue refers to horizontal matrix orientation, gray line 

highlights 1 mm displacement. (g-l) Selected samples with vertical orientation. (m-

r) 2D DIC maps of 𝜀𝑥 strain for corresponding selected samples. (s-x) 2D DIC maps 

of 𝜀𝑦 strain for corresponding selected samples. 

 

6.2.3 Mechanical Characterization: Matrix Response 

To understand the reason for the non-linear trend in the structural engagement, we 

first characterize the matrix response as a function of coordination number. The 

matrix response (i.e. regions of non-zero strain) gives us an indication about how 

the particles are interacting and how many particles are engaging to accommodate 

the loading. The strain surface maps can be masked to obtain the strain maps of 

exclusively the soft matrix (Figure 6.a-c). After normalizing for the volume fraction 

of matrix in each sample, we observe that matrix engagement (defined as non-zero 
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matrix strain across the sample surface area) follows the same trend as the overall 

structure engagement and varies with coordination number. The lowest values 

occurring at 6X, followed by 2X, and the greatest values occurring around 3X to 

3.5X, once we reach a cylindrical contact displacement greater than 0.33 mm, for 

both 𝜀𝑥 and 𝜀𝑦 strain (Figure 6.2d,e). This peak of matrix engagement is likely the 

result of particle geometries and arrangement, whose irregularity leads a series of 

kinematic constraints as particles engage with neighboring particles, distributing 

strain over a large amount of the sample. We also compare these irregular 

composites with their periodic counterparts to understand the role of particle 

interlocking. In response to loading, the 6X equivalent volume fraction samples 

display exclusively collective sliding behavior, resulting in shear bands forming, 

similar to that of the original 6X samples (Figure E.6). We then measure the amount 

of matrix engagement as a function of volume fraction to quantify the extent of the 

interlocking mechanism and decouple the effect of interlocking from the intrinsic 

material properties. We observe a nearly linear trend in the amount of matrix 

engagement in the periodic samples, unlike the trend with a peak around the 

intermediate coordinations in the irregular samples (Figure E.7). This discrepancy 

in trends between the periodic and irregular samples can therefore be attributed to 

the activation of the interlocking mechanism, which are in competition with the 

collective sliding mechanism in the irregular samples. It is also important to note 

that the total percent of matrix engagement in the periodic samples is higher than 

in the irregular samples, especially at lower coordinations, but the number of 

particles is also greater in the periodic samples. This means that although the total 

amount of matrix engaged is higher, the number of particles interacting per unit of 

matrix engagement is actually lower.   

 

To further quantify how the matrix distributes strain across the structure, we also 

measure the average strain across the sample depth. At 1 mm cylindrical contact 

displacement, we first convert the strain maps to grayscale values in MATLAB 
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(MathWorks, USA) and then collapse the strain maps to a vertical line, where 

darker values indicate greater amounts of strain (Figure 6.2f-k). We observe that 

intermediate coordinations also display the greatest depth of matrix engagement 

(Figure 6.2l), with maxima around 3X and 3.5X (Figure 6.2m). This again indicates 

that these intermediate coordinations engage the largest amount of the composite 

structure in response to the cylindrical contact loading.  

 

Figure 6.3: Matrix response characterization. (a-c) Example 3.5X matrix 𝜀𝑥 strain 

with increasing cylindrical contact displacement. (d) Volume normalized fraction 

of matrix engaged as a function of coordination number and cylindrical contact 

displacement for 𝜀𝑥 strain. (e) Volume normalized fraction of matrix engaged as a 

function of coordination number and cylindrical contact displacement for 𝜀𝑦 strain. 

(f-k) Example 2X, 2.5X, 3X, 3.5X, 4X, and 6X matrix 𝜀𝑥 strains at 1 mm cylindrical 

contact displacement with corresponding horizontally averaged 𝜀𝑥 strain values 

(grayscale bars with line plot average). (l) Average 𝜀𝑥 strain value as a function of 

depth for all 2X, 3X, and 4X coordinations at 1 mm cylindrical contact 

displacement. (m) Average 𝜀𝑥 strain value as a function of coordination number for 

all 2X, 3X, and 4X coordinations at various sample depths. 
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6.2.4 Mechanical Characterization: Particle Response 

We then examine the particle response to further understand the relationship 

between coordination number and how the structure accommodates the applied 

loading. In this study, we focused on the low-strain regime, and therefore it is 

important to note the tough matrix-particle interface does not fracture during 

loading[47] and particles remain adhered to their surrounding matrix phase 

throughout our analysis.  

 

The 2X samples are primarily composed of a few large particles, given that they 

are below the percolation threshold, and behave similarly to a bulk material. As the 

coordination increases and crosses the percolation threshold, particle number 

increases and particle size decreases, although lower coordinations (3X) still 

feature highly polydisperse particles with irregular geometries which are often 

concave (Figure 6.4a). Under cylindrical contact loading, these low-coordination 

samples deform as individual particles uniquely translate, rotate and deform to 

accommodate the non-uniform kinematic constraints provided by neighboring 

particles. We define the degree to which particles are kinematically constrained by 

neighboring particles as interlocking[25,38] and the lower coordinations display the 

greatest amount of interlocking (Figure 6.4a). To quantify the interlocking behavior, 

individual particle path vectors can be tracked using FIJI TrackMate[48], and we can 

then use these vectors to observe how the particles move relative to one another 

(Figure 6.4b). Greater interlocking results in a particle vector that is more dissimilar 

to neighboring particle vectors, resulting in a wide distribution of vector angles in 

a local region (Figure 6.4c). As the coordination increases further to 4X, particle 

size continues to decrease, and particles become more uniform in both shape and 

size (Figure 6.4d). In addition to particle-to-particle interlocking, this uniformity 

results in the activation of mechanisms of collective particle sliding, due to the 

reduced neighboring particle kinematic constraints in local regions. This mixed 

mode behavior is reminiscent of nacre, although the interlocking and collective 
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sliding of nacre’s tablets is a sequential deformation response resulting from 

monodisperse tablets[1,9,20,49], rather than a simultaneous tradeoff resulting from 

polydispersity and irregularity. The mixed mode behavior results in a narrower 

distribution of particle vector angles, as the collectively sliding particles have more 

similar angles in a local region (Figure 6.4e,f). At 6X coordination, all particles 

collectively slide, as all particles are convex and periodically arranged, with 

uniform shape and size (Figure 6.4g,h), and the distribution of particle vector angles 

becomes much narrower in a local region (Figure 6.4i).  
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Figure 6.4: Particle response characterization. (a) Example 3X particle image at 

0.5 mm (I) and 1 mm (II) cylindrical contact displacement. (b) Corresponding 

particle vector map at 0.5 mm (I) and at 1 mm (II) displacement. (c) Histogram of 
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vector map line angle frequencies at 0.5 mm (I) and 1 mm (II) displacement. 

(d) Example 4X particle image at 0.5 mm (I) and 1 mm (II) displacement. (e) 

Corresponding particle vector map at 0.5 mm (I) and at 1 mm (II) displacement. (f) 

Histogram of vector map line angle frequencies at 0.5 mm (I) and 1 mm (II) 

displacement. (g) Example 6X particle image at 0.5 mm (I) and 1 mm (II) 

displacement. (h) Corresponding particle vector map at 0.5 mm (I) and at 1 mm (II) 

displacement. (i) Histogram of vector map line angle frequencies at 0.5 mm (I) and 

1 mm (II) displacement. 

 

6.2.5 Mechanical Characterization: Statistical Analysis 

To quantify the transition from interlocking to collective sliding behavior in our 

materials, we examine the statistics behind the particle and matrix arrangement. To 

reduce interlocking and achieve collective sliding behavior, the matrix must be 

arranged in continuous straight lines to form planes along which particles can slide. 

Given an initial matrix orientation on a hexagonal tile, we can therefore determine 

which subsequent tiles allow the straight line of matrix to continue (Figure 6.5a), 

and which divert it (Figure 6.5b). With rotational symmetry, regardless of the initial 

matrix orientation, the tile distributions for continuing or diverting remains the 

same, resulting in a continuous or discontinuous line of matrix (Figure 6.5c). Given 

the input parameter of coordination number, which tells us which tile types we have 

available, we can then calculate the probability of the matrix continuing to 

determine the average length of matrix lines. We use Bayes theorem,  

  

𝑃(𝑅 ∩ 𝑡𝑖𝑙𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑒) = [∑ 𝑃(𝑡𝑖𝑙𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑒|𝑡𝑖𝑙𝑒 𝑡𝑦𝑝𝑒𝑖) ∗ 𝑃(𝑡𝑖𝑙𝑒 𝑡𝑦𝑝𝑒𝑖)
𝑖
1 ]

𝑗
,   (1) 

 

where i is the number of tile types, and j is the number of tiles. By placing a 

threshold at a percent less than 1% likelihood, we can plot the expected length of 

straight lines of matrix for each coordination type and we can see that the 

probability increases non-linearly with coordination number (Figure 6.5d). Low 

coordinations have statistically shorter lines of continuously aligned matrix, 

resulting in complex geometries that interlock, while higher coordinations have 
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statistically longer lines, with 6X showing only continuous lines, resulting in 

collective sliding behavior (Figure 6.5d).  

 

To further understand what gives rise to interlocking behavior and how particles 

engage with neighboring particles, we also quantify the average number of 

neighboring particles per particle. Using the Euler characteristic50, we determine 

the number of particles and the number of edges (which correspond to neighbors). 

The Euler characteristic is defined for a 2D graph as 

 

𝑉 − 𝐸 + 𝐹 =  1,                        (2) 

 

where V is the number of tiles greater than 2X, E is the number of edges, defined 

as  

𝐸 =  
𝑅𝑐𝑉

2
,                              (3) 

 

where Rc is the corrected coordination number, found by removing any 2X tiles, 

which only contribute to the length of the edges but not to the number of edges, and 

F is the number of particles. F can therefore be rewritten as 

 

𝐹 = 1 − 𝑉(1 −
𝑅𝑐

2
).                            (4) 

 

We then determine the average number of neighboring particles per particle, N 

(Figure 6.5e):  

𝑁 =  
𝐸

𝐹
.                           (5) 

 

From the Euler characteristic (Equation 2), the maximum average number of 

neighbors per particle cannot exceed six, and as the corrected coordination number 

increases above 3X, the maximum number of neighbors per particle decreases, until 



 

 

106 

we reach a limit of three neighbors at 6X (Figure 6.5f). This follows the trend 

we observed where the maximum amount of structural engagement occurs at 

intermediate coordinations. At these coordinations, we have both interlocking 

particles engaging with a nearly maximum number of neighbors, as well as 

collectively sliding particles, which easily move in large groups. At these 

intermediate coordinations, the average particle size also maintains a concave 

shape, which allows for more kinematic constraints (greater interlocking), formed 

by more than three triangles (Figure 6.5g). These kinematic constraints then allow 

the particles to easily distribute the loading to their neighboring particles across the 

structure.  

 

To find the upper bounds of the design space, we plot together maximum 

continuous tilings and corresponding neighbors per particle, and we include our 

tested samples as well as additional samples which were only statistically analyzed 

(Figure 6.5h). To achieve the greatest degree of interlocking, lower coordinations 

are desirable, while the lowest degree of interlocking is achieved at 6X, when all 

particles collectively slide along continuous matrix lines. However, as previously 

discussed, the greatest amount of structural engagement occurs at intermediate 

coordinations, when there is a tradeoff between the simultaneous activation of the 

interlocking and collective sliding mechanisms. It should be noted that the upper 

limit defined here is for the homogenous case where samples are formed by nearly 

100% of their coordination number tile type for integer coordinations or 50% above 

and 50% below for non-integer coordinations (Figure 6.1e). It is therefore possible 

to increase the continuous tiling length by forming the same coordination number 

with other tile compositions that have greater numbers of high coordination tiles, 

although these may not be feasible to generate using the hexa-VGA.  
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Figure 6.5: Statistical characterization of matrix and particles. (a) Continuous tiles 

for 60° example matrix plane according to coordination number. (b) Discontinuous 

tiles for 60° example matrix plane according to coordination number. (c) Example 

of continuous and discontinuous tiling plane. (d) Probability of continuous tiling as 

a function of number of tiles for various coordination numbers. (e) Examples of 

counts of neighboring particles per particle. (f) Neighboring particles per particle 

as a function of corrected coordination number, solid black line denotes upper limit. 

(g) Example of convex (red) particle and concave (green) and geometries. (h) 

Average neighboring particles per particle as a function of maximum continuous 

tiling, dashed black line denotes concavity threshold, solid black line denotes upper 

limit. 

     

6.3 Conclusions 

We present a class of two-phase composites composed of tessellations of stiff 

particles connected by a soft matrix. Drawing inspiration from the excellent 

mechanical performance of interlocking structures observed in many natural 

materials, our composites feature particle interlocking in response to loading. 
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Going one step beyond the biological materials, we control the degree of 

interlocking using irregularity of particle size, geometry, and arrangement. We 

generate the composites through a hexa-VGA, which stochastically connects a 

network of nodes on a hexagonal grid according to coordination number. We then 

use the generated hexa-VGA network as the matrix phase, while the reinforcing 

particles are formed by the areas enclosed by the matrix. Lower coordinations 

feature highly polydisperse particles, which interlock as a result of their irregular 

geometries and non-periodic tessellations. Higher coordinations feature more 

monodisperse particles, which collectively slide as a result of their more uniform 

geometries and tessellations. Finally, we show and statistically quantify how to 

control the tradeoff between these interlocking and sliding mechanisms, with 

activation of a particular mechanism and the amount of structural engagement 

controlled by coordination number alone. These findings offer an exciting new 

research direction, especially for 3D extensions of these 2D findings on controllable 

interlocking, for new materials with spatially tailorable stiffness, strength, ductility, 

and toughness.  

 

6.4 Methods 

6.4.1 Sample Generation and Fabrication  

The hexa-VGA code used to generate the samples is written in Python and may be 

found at the following link: https://github.com/basbaskoko/hexaVGA. 

 

The hexa-VGA generates (irregular) networks by beginning with an equilateral 

triangular network placed on a hexagonal grid. Lists of unique lines in the network 

are first defined by their endpoints and then initiated with a status of “neither”. An 

arbitrary endpoint (a node) is randomly selected, from which, X (out of 6) lines are 

assigned the status “positive”, while the rest are given the status “negative”. This 

number X is defined as the coordination number, and we define it on a set of tiles 

formed by the hexagonal grid. Once a line has been assigned a status, that status 

https://github.com/basbaskoko/hexaVGA
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cannot change. After all lines beginning at an endpoint have been assigned a 

status, that endpoint is removed from the set of “free” endpoints. If any of the 

neighboring six endpoints are free endpoints, one of them is chosen to have its lines 

assigned a status. If none of the neighboring endpoints are free endpoints, a random 

free endpoint is selected, and this process continues until no free endpoints remain 

and all lines have been assigned a status, resulting in a network of interconnected 

nodes.  

 

To fabricate our composite samples from the hexa-VGA output network, we first 

use the network information to create an STL file for the soft matrix, which is made 

from TangoBlack Polyjet Resin, and then take its negative to form the stiff 

reinforcing particles, which is made from VeroWhite Polyjet Resin. We conducted 

simple tension tests to obtain the constitutive stress-strain properties of both resins 

(Figure E.1) and the mechanical properties of the two phases fall within those 

reported in literature[51–53]. Due to printer resolution constraints, we choose a matrix 

width of 100 µm and a minimum particle width of 1 mm.  

 

It is also important to consider the effect of the sample geometry, given that the 

fabricated samples have a square shape, while the tiles that tessellate it are 

hexagonal and therefore cannot perfectly fill the square space, resulting in smaller 

average edge particle size. However, the number of total tiles is significantly higher 

than the number of edge tiles, which represent just 18% of the total tile population.  

 

6.4.2 Cylindrical Contact Compression Testing 

We use an Instron E3000 with a 5 kN load cell (Instron, USA) to apply compression 

loading. Samples of 2.5 cm by 2.5 cm by 1 cm are loaded with a cylindrical contact 

of 1 cm diameter. Testing is conducted for displacements up to 3 mm, which is just 

prior to fracture. Three different samples are tested for each coordination to ensure 

consistency across samples.  
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6.4.3 Digital Image Correlation 

To conduct 2D digital image correlation (DIC) on the samples, we apply a layer of 

matte white paint and then matte black speckles with a diameter of 0.1-0.3 mm to 

the front face of the samples. During loading, we use a Nikon D750 DSLR camera 

(Nikon, Japan) with a 120mm lens to take images at a rate of 1 frame per second. 

We use VIC-2D (Correlated Solutions, USA) to conduct the DIC analysis, using a 

step size of 2 and a subset size of 29, and obtain the Lagrangian strain fields in the 

x-direction and y-direction. 
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C h a p t e r  7  

CONCLUSIONS 

7.1 Summary of Contributions 

This thesis explored the mechanical characterization of irregular architected 

materials, using topological and geometrical descriptors to understand and control 

structure-to-property relationships. We first showed how to design and fabricate 

materials with intentionally architected irregularity using virtual growth algorithms 

and additive manufacturing. We then explored the characterization of the 

relationship between the irregular structure and the resulting mechanical properties, 

investigating both linear and non-linear deformations, including fracture and 

dynamic impact. Finally, we showed how to tailor these architected materials using 

irregularity to achieve spatially and temporally controllable mechanical responses.  

 

In Chapter 2, we studied the role of irregular topology and geometry on the 

mechanical response of the irregular network reinforced polymer composites, 

including the stiffness, strength, and modulus of toughness. With this understanding 

of the structure-to-property relationships, we then showed how to modify the 

network reinforcement at the meso-scale to improve the global mechanical 

performance, creating assemblies of various network reinforcements with spatially-

tuned fracture initiation and propagation. In Chapter 3, we expanded the fracture 

characterization, obtaining J-integral and R-curve measurements by exploring the 

role of reinforcement and matrix composition as well as irregular structural feature 

size and geometry. In Chapter 4, we introduced a hexagonal virtual growth 

algorithm, which allowed us to explore higher degree topologies. Using this 

algorithm, we demonstrated how to temporally control the fracture response of the 
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composites. We also studied the effect of irregularity on damage tolerance, 

showing that introducing irregularity leads to improved damage tolerance.  

 

We then explored the intersection of irregular materials and bioinspiration. In 

Chapter 5, we presented a bioinspired materials design method which uses 

statistical measures of topology and geometry in biological materials in conjunction 

with stochastic network growth to develop spatially tailorable materials with 

excellent energy dissipation properties. Finally, in Chapter 6, inspired by tough and 

strong materials such as nacre and bone, we presented a class of bioinspired 

interlocking materials, and showed how irregularity gives rise to controllable 

interlocking in particle-reinforced composites.  

 

7.2  Outlook and Future Research Directions 

This thesis primarily explored 2D irregular architected polymer composites and 

characterized the structure-to-property relationships across both linear and non-

linear regimes. Using topological and geometrical measures, we designed and 

quantified the irregular materials and then showed how to use irregularity to 

achieve tailorable fracture performance, improve impact absorption, and control 

deformation mechanisms. With these findings in mind, there are several future 

research directions to pursue. 

 

First, the virtual growth algorithms used for the chapters of this thesis assembled 

their irregular structures using a limited set of tiles with simple geometries. 

Introducing more complex geometries, such as those with greater curvature, 

variations in strut width, or greater than two phases, could therefore increase the 

design space, providing a wider range of spatially- and temporally-controllable 

mechanical performances. Furthermore, the connectivity rules determining the tile 

assembly are limited to a binary inclusion or exclusion. Introducing tunable control 

of this parameter (i.e. choosing a percentage of how often to allow a connection) 
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could also offer a greater degree of control over the design space. The virtual 

growth algorithms could also be extended to 3D, and indeed some work has already 

been conducted in this direction to explore 3D truss-based geometries, which are 

generated using voxels rather than tiles[1,2]. We envision further expansion of this 

work beyond the cubic voxel and truss-based designs to other space-filling 

polyhedral voxels (e.g. hexagonal prism or truncated octahedron), as well as shell-

based designs.  

 

We also envision future research on irregular architected materials beyond 

additively manufactured polymers. While the polymer materials we used have 

inherent material properties (i.e. Young’s modulus, yield strength, and toughness) 

and display viscoelastic behavior, we studied our irregular structures from a 

relatively material-agnostic perspective. Therefore, the topological and geometrical 

measures used to relate structure-to-property relationships could be extended to any 

class of material across a range of length scales to further develop an understanding 

of how irregularity gives rise to mechanical performance. Preliminary 

investigations on additively manufactured metallic network samples show similar 

deformation localization (for periodic architectures) and delocalization responses 

(for irregular architectures) (Figure 7.1). 
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Figure 7.1: Preliminary results of isodensity irregular network metallic samples. 

(top) VGA-generated periodic (left) and irregular network architectures with low-

coordination (center) and high coordination (right). (bottom) Metallic periodic 

(left) and irregular network samples with low-coordination (center) and high 

coordination (right). 

 

Another direction that is particularly promising is to extend the idea of controllable 

interlocking particles to other materials such as ceramics or metals, which have 

more practical applications, especially under extreme loading conditions. The 2D 

interlocking materials presented in Chapter 6 could also be extended to 3D in order 

to design structures with improved toughness, strength, and impact absorption 

performances. It could also be an interesting direction to explore the use of active 

materials as one or more of the phases in these irregular materials for the design of 

spatially or temporally controlled materials which are locally responsive to external 

stimuli such as light, temperature, or magnetic fields.  

 

Overall, the goal of this thesis was to study the design space of irregular architected 

materials in order to understand and quantify the relationship between irregularity 

and mechanical performance. Inspired by the irregular structure of many natural 

materials, we showed how designing and controlling irregularity allows for spatial 



 

 

119 

and temporal control of mechanical properties, as well as improved mechanical 

performances, offering a new design space for future architected materials. 
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A p p e n d i x  A  

CONTROL OF MECHANICAL AND FRACTURE PROPERTIES 

IN TWO-PHASE MATERIALS REINFORCED BY 

CONTINUOUS, IRREGULAR NETWORKS 

A.1 Experimental Section  

A.1.1 Sample Fabrication  

Samples were generated using the virtual growth algorithm described by Liu et. al.28 

and further described in the Section A.3.1. The virtual growth algorithm provides a 

PNG file of the sample architecture, which is then edited using Adobe Illustrator to 

smoothen all tile connections, ensuring the same volume fraction of reinforcing 

phase and matrix phase in each sample. Finally, each phase of the sample is 

extruded and converted into a separate STL file for printing. The specimens are 

then printed using a Polyjet printer Stratasys Objet500 Connex3, that has a lateral 

resolution of 40-85 µm[1]
. The reinforcing phase and matrix phases are printed from 

Stratasys VeroWhite Polyjet Resin and Stratasys TangoBlack Polyjet Resin, 

respectively.  

  

A.1.2 Mechanical Characterization 

Uniaxial tension tests were performed on plate geometries of the additively 

manufactured polymeric composites, with dimensions of 75 mm x 75 mm x 5 mm. 

An Instron E3000 (Instron, USA) with a 5 kN load cell was used to apply a small 

preload followed by a quasi-static tensile loading at a rate of 2 mm/min. The 

measured force and displacements were then used to calculate the tensile 

engineering stress and strain. The experiments were recorded using a Nikon D750 

camera (Nikon, USA) with a Nikkor 120 mm f/4 lens (Nikon, USA) at a rate of 1 

frame per second.   
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A.1.3 Digital Image Correlation 

The same camera setup was used to perform 2D digital image correlation (DIC) on 

equivalent sets of samples. Samples were painted white using flat white spray paint 

and then speckled using flat black spray paint such that each speckle was 

approximately 0.1 to 0.3 mm in diameter and would take up approximately 3x3 to 

5x5 pixels of each image. VIC-2D digital image correlation software (Correlated 

Solutions, USA) was used to calculate the displacements and the resulting 

Lagrangian strain fields across the different substructures, using a subset size of 31 

and a step size of 2, which captured the large global deformation while allowing 

for sufficient resolution of the local deformation.   

  

  

A.2 Supplementary Figures  

 
 

  

Figure A.1: Connectivity rules for (L), (T) and (-) tiles, with allowed connections 

(green shade) and prevented connections (red shade).  

 
 

  

Figure A.2: (a) Meso-structure dimension analysis using elliptic fit to find Xm 

(meso-structure size), performed by image analysis.2  (b) Meso-structure size 
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distributions for (A) and (B) architectures relating Xm dimension to 

concentration percent. Yellow, green, cyan, and blue represent 4, 6, 8, and 10+ tiles 

meso-structures, respectively.  
  

 

  

Figure A.3: (a,b) Meso-structure angle distribution in (A) and (B) networks (a and 

b, respectively).  

 

 
 

  

Figure A.4: (a) Meso-structure distributions around (L)-dominated 4-node 

substructures. (b) Substructure distributions around (T)-dominated architectures.   
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Figure A.5: (a) Engineering tensile strain-stress diagram plotted with opening 

angle of (L) tile as tensile loading is applied. (b) Progression of (L) tile angle 

opening under tensile loading.   
 

 

  

Figure A.6: Comparison of reinforcing network and composite failure locations 

under tensile loading. (a) (A) reinforcing network and (b) (A)-NRC showing the 

same failure locations. (c) (B) reinforcing network and (d) (B)-NRC showing the 

same failure locations.  
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Figure A.7: (a) Simple tension experiment performed on VeroWhite and 

TangoBlack specimens. (b) Single edge notch tension (SENT) experiment 

performed on VeroWhite and TangoBlack specimens at a loading rate of 1mm/min. 

(c) Evolution of the crack position over time during the fracture of a VeroWhite-

TangoBlack-VeroWhite specimen, confirming sequential events of crack arrest at 

the interface (I and II). The crack position has been retrieved by image analysis.2 

(d) Digital Image Correlation (DIC) maps of the eyy strain during the test reported 

in (c). The inset confirms the sequential formation of a plastic zone in the 

VeroWhite portions subject to local yielding, as also observed in literature.2,3 (e) 

Optical photographs during a controlled fracture experiment (SENT geometry) of 

a network reinforced composite loaded at 1mm/min (initial crack length/specimen 

width ~ 0.5). Sequential details display the instantaneous propagation of a crack at 

small displacements internally to the first meso-structure, within the TangoBlack 

matrix (scale bar = 1 mm). Circular insets highlight the event of fracture arrest at 

the first soft to hard interface and the nucleation of a void in a nearby meso-

structure. (f) Optical photographs highlighting the sequence of craze formation, 

fibril elongation, and fracture within the TangoBlack matrix phase, internally to a 

meso-structure.  
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Figure A.8: (a) Stress strain curves recorded on A-NRCs with a different 

reinforcement volume fraction VR, ranging from 0.15 to 0.45. (b) Modulus of 

Toughness (MOT) as a function of the reinforcement volume fraction. (c) Optical 

photographs depicting the evolution of the fracture in specimens with increasing 

reinforcement volume fraction 0.15 (left), 0.30 (center), and 0.45 (right).   
  

  

  

Figure A.9: (Left) Optical photographs of composites with increasing 

reinforcement volume fraction VR ranging from 0.15 to 0.45. The ligament 

thickness map is obtained with the plugin ‘local thickness’ 3 in the open-source 

image analysis software Fiji2 and it is then overlayed on the images. (Right) 
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Ligament thickness distribution for each specimen (bars), smoothing of the 

distributions measured for each specimen (solid lines).  

  

  

  

Figure A.10: Engineering tensile stress-strain diagrams showing connectivity rule 

modification effects. (a) Original (A) architecture (lower curve) comparison with 

first iteration (upper curve) of connectivity rule modifications as shown in upper 

right corner. (b) Original (B) architecture (lower curve) comparison with first 

iteration (upper curve) of connectivity rule modifications as shown in upper right 

corner.  

 
 

  

Figure A.11: Variations in distribution of meso-structure sizes for (A)-NRCs and 

Mod-(A)-NRCs (left) and (B)-NRCs and Mod-(B)-NRCs (right), measured by 

image analysis.2 Yellow, green, cyan, and blue represent 4, 6, 8, and 10+ tiles meso-

structures, respectively, before (white bars) and after (red and blue bars) 

connectivity rule modifications.  
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Figure A.12: Images (left) and digital image correlation maps (right) recorded at 

0.5% strain of (A)* and (B)* composites (top and bottom, respectively).  
 

  

A.3 Supplementary Discussion 

A.3.1 The Virtual Growth Algorithm 

The program used to design the composites iteratively grows irregular materials 

over a predefined area by selecting spatial sites, defined by two coordinates, and 

assigning tiles to these coordinates. The entropy of each site, defined as the number 

of available connections that can still be formed, a number that ranges from 1 to 4, 

is evaluated, and the sites with the lowest entropy are filled first. The algorithm 

then randomly selects tiles based on their initial concentration or availability, 

reported often as ‘frequency hints’ (Figure 1b, left). This parameter is provided as 

an input by the user. To ensure a smooth growth without local defects or 

discontinuity between the reinforcing and matrix phases, the connectivity of each 

tile is governed by a set of connectivity rules, also known as adjacency rules (Figure 

A.1). As the structure grows and the sites are occupied, each remaining available 

site can only be occupied by a limited number of tiles, arranged in a limited number 

of rotational configurations (Figure 2.1b, center). The growth algorithm then 
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proceeds with the random selection of one of the allowed tiles until it ensures 

the complete filling of the predefined area (Figure 1b, right). For this study, a 

specific (L) to (L) connection is not allowed, to prevent the formation of secondary 

disconnected architectures (Figure A.1).  

  

A.3.2 The Reinforcing Networks  

Networks are mathematical models that describe systems of nodes connected by 

edges. The rules that govern how nodes connect ultimately determine the network's 

characteristics, distinguishing an irregular network, which follows a set of rules to 

form an irregular pattern, from a random network, where nodes are connected 

randomly. Relying on the theoretical frameworks developed for continuous random 

networks, that describe the relationship between networks architecture and 

mechanical properties, we can characterize the reinforcing networks generated 

using the virtual growth algorithm based on their average coordination <R>, the 

mean number of connections each node has, and their bridge length, defined as the 

distance between two nodes. In this context, among the different models developed, 

covalent networks have been extensively studied to describe amorphous solids and 

glasses, composed by atoms with different coordination, analogous to our system 

tiles. The average coordination of covalent networks <R> can be measured through 

constraint counting, estimating the network's stability and identifying floppy 

modes, independent deformations that occur with no cost in energy. The critical 

coordination <RC> marks the transition between rigid and floppy behavior and can 

be used to predict the mechanical behavior of the network. 

  

A.3.3 The Mechanical Behavior of the Reinforcing Networks  

To confirm this description of the failure mechanisms in (L)-dominated and (T)-

dominated architectures, we performed control experiments on the reinforcing 

networks and compared the results with the behavior of the composites.  



 

 

130 

(L)-dominated architectures: the experiments on the reinforcing networks 

consolidated our description of a transition from a bending- to a stretching-

dominated behaviour. As the strain exceeded 20% (figure 3a, grey solid line and 

grey arrows, and Figure A.6) we observed the sequential fracture of the reinforcing 

network ligaments. Finally, these experiments allowed us to shed light on the role 

of the matrix during fracture. The reinforcing networks display a significantly lower 

strength than the composites: this suggests that the matrix has a key role during 

loading in resisting against the deformation of the meso-structures, requiring higher 

forces and thus increasing the total amount of energy that is needed to cause 

composite failure (Figure 3a, black solid line composite, grey solid line reinforcing 

network). Nonetheless, the matrix has a marginal role in influencing the trajectory 

of the cracks, which can almost perfectly overlap between the composite and the 

reinforcing network.  

 

(T)-dominated architectures: To consolidate our description of their mechanical 

behavior, we performed control experiments on the reinforcing network of (B) 

architectures. As expected, they display a primarily stretching-dominated behavior, 

that features sequential failure events at lower strain values (Figure 2.3b, grey 

arrows, Figure A.6). As observed in the (L)-dominated architectures, the crack 

trajectory can almost perfectly overlap between the composite and the reinforcing 

network.   

  

A.3.4 The Iterative Modification Design Process  

With our approach, we display that without changing the shape or the volume 

fraction of the constitutive tiles, and without any shape optimization, it is possible, 

simply by changing the rules that govern the connectivity of tiles, to tune the 

mechanical properties of these architected materials. Although this study focused 

on improving the energy dissipated during fracture of the architectures, the iterative 

process of modifying connectivity rules and characterizing the mechanical response 
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allowed us to identify which set of rules can be modified to increase or to 

decrease various other mechanical properties. The two specific mechanical 

properties we examined during the iterative process were strength and strain-to-

failure, which combined to give an improved fracture energy dissipation.   

 

We began by removing the most prominent defect in each architecture. The tile 

distributions are directly responsible for the frequency of the type of defect in each 

architecture, and the most prominent defect is the one that occurs most often in an 

architecture. For (A), that was certain (L) to (L) connections, while for (B), certain 

(T) to (T) connections were the most problematic. Although the modified 

architectures (A) and (B) were generated using the exact same frequency hints as 

their original counterparts, the modification of the connectivity rules, and thus the 

possible substructures that could be formed, influenced their final composition: the 

modified designs (A_NO LL) and (B_NO TT) have a composition of 50% (T), 19% 

(L), and 31% (-) and 68% (T), 22% (L), and 10% (-),  respectively.  

 

We then performed the same mechanical testing and characterization of the 

modified (A) and (B) composites as described for the original composites. For both 

composites, the removal of the most prominent defects resulted in an increase in 

the modulus of toughness, but the mechanism behind the increase was different for 

(A) and (B) (Figure A.7). The increase in modulus of toughness for (A) was due to 

an increase in strength, while the increase in modulus of toughness for (B) was due 

to an increase in strain-to-failure. From this, we concluded that removal of (L) to 

(L) connections is responsible for strength and that removal of (T) to (T) and (-) to 

(-) connections is responsible for strain-to-failure.    

 

To test this hypothesis, we then removed the (-) to (-) connections from (A) to 

improve its strain-to-failure (resulting in 37% (T), 58% (L), and 5% (-)), and the 

(L) to (L) connections from (B) (resulting in 83% (T), 9% (L), and 8% (-)) to 
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improve its strength. We again performed the same mechanical testing and 

characterization of the newly modified (A) and (B) architectures, and as expected, 

observed that the removal of (-) to (-) connections improved the strain-to-failure 

from the original (A) architecture, while removal of (L) to (L) connections 

improved the strength from the original (B). However, unlike the first modification, 

the second modifications did not have as great of an impact on the increase in 

modulus of toughness.   

 

The improvements in strength and strain-to-failure are due to the tile distributions 

and thus meso-structure populations that result from the connectivity rules applied. 

Since energy dissipation during fracture is optimized by a combination of strength 

and strain-to-failure, we then decided to combine all the modulus of toughness 

improvements into a final set of connectivity rules that were applied to the original 

(A) and (B) architectures.    

  

A.3.5 The Polydispersity Index (PDI)  

Borrowing the concept from the field of polymer science, a measure of the 

polydispersity of a polymer is the polydispersity index (PDI), defined as the ratio 

of Mw (weighted average mass) over MN (number average mass). The parallel 

between polymers and irregular architected materials is apparent in this case; each 

tile can be seen as one monomer, and each formed substructure can be seen as one 

polymer chain. The total amount of tiles (or monomers) is fixed by the total 

extension of the material and the final assembly will therefore be a collection of 

differently sized meso-structures (or polymer chains). In this context, we propose 

here that comparing the PDI of each architecture can be a quick method to evaluate 

the homogeneity of each architecture. The PDI is calculated following Equation 1:  

 

  PDI = MW/MN, 

  

(1) 
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in which MW and MN are given by Equation 2 and 3 respectively:  

 

  MW = ∑(Area2∗Counts)/∑(Area∗Counts),  (2) 

  

  MN = ∑(Area∗Counts)/∑(Counts). 

  

 (3) 

Area is the enclosed area of an nth meso-structure and Counts is the frequency 

(the number of times) it gets measured.  

  

As it is defined, the PDI is larger than 1.0 and the closer it is to 1.0, the more 

homogeneous the architecture is. As a result of more stringent connectivity rules, 

that bias the growth of architectures capable of higher energy dissipation during 

fracture, we observed across the design space an overall decrease of the PDI, 

suggesting that the modified architectures become more homogeneous (Table 1).  

 

Table 1:  

Architecture #  (T)  (-)  (L)  PDI 

Original  

(T)*  (-)*  (L)*  PDI Modified*  

1  62  18  20  1.78  63  18  19  1.41  

2  60  29  11  1.81  65  18  17  1.37  

3  57  6  37  2.08  64  12  24  1.58  

4  42  45  13  1.85  58  22  20  1.39  

5  19  2  79  1.80  49  26  25  1.36  

6 (A)  35  10  55  2.09  54  19  27  1.41  

7  36  28  36  2.27  53  24  21  1.51  

8 (B)  80  10  10  1.81  71  11  18  1.45  
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A p p e n d i x  B  

FRACTURE CHARACTERIZATION OF BIOINSPIRED 

IRREGULAR NETWORK REINFORCED COMPOSITES 

 

B.1 Supplementary Figures 

 

 

Figure B.1: DIC images and fracture nucleation images for composite samples 

with different matrix phases. (a) 2D DIC strain maps and fracture nucleation image 

for 2.3 coordination composite sample with Shore60 matrix. (b) 2D DIC strain 

maps and fracture nucleation image for 2.3 coordination composite sample with 

TangoBlack matrix. (c) 2D DIC strain maps and fracture nucleation image for 2.8 

coordination composite sample with Shore60 matrix. (d) 2D DIC strain maps and 

fracture nucleation image for 2.8 coordination composite sample with TangoBlack 

matrix.   
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Figure B.2: Maximum plastic zone size reached as a function of coordination 

number for 2.3, 2.5, and 2.8 samples. 

 

 

Figure B.3: Calculating the incremental J-integral as elastic and plastic 

components. 
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Figure B.4: Plastic zone size, J integral and R-curves for bulk material samples. 

(a) Plastic zone area as a function of displacement for Grey60 and VeroWhite 

samples. S corresponds to start of the test, Y corresponds to time at yield, C 

corresponds to time at crack initiation, F corresponds to time at failure. (b) 

Incremental elastic J integrals (ηe normalized) and plastic J integrals (ηp 

normalized) as a function of displacement for Grey60 and VeroWhite samples. (c) 

R-curves for Grey60 and VeroWhite samples. 
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Figure B.5: Structural feature characterization. (a) Structural feature area 

distributions for 2.3 coordination (top), 2.5 coordination (middle) and 2.8 

coordination (bottom) samples. (b) Structural feature area profiles as a function of 

distance across the sample for 2.3 coordination (top), 2.5 coordination (middle), 

and 2.8 coordination (bottom) samples. 
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B.2 Supplementary Discussion 

B.2.1 Structural Feature Characterization 

By plotting the profile of feature sizes across the samples, we also observe that 

features are isotropically distributed, and that the average size profile varies 

across the coordination numbers (Figure B.5). For the 2.8 coordination samples, 

the smallest features appear as a high frequency with a minimum wavelength of 

one characteristic length, while for the 2.5 and 2.8 coordination samples, which 

can form larger features, lower frequencies emerge in addition to the higher 

frequencies, all of which are superimposed as a result of averaging across the 

entire structure (Figure B.5).  
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A p p e n d i x  C  

MECHANICAL AND TEMPORAL RESPONSE OF HIGH-

COORDINATED IRREGULAR NETWORK REINFORCED 

COMPOSITES 

 

C.1  Supplementary Figures 

 

 

Figure C.1: Simple tension experiment performed on VeroWhite and TangoBlack 

samples. 

 

 

Figure C.2: Radial distribution functions for various topologies.  
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Figure C.3: Crack surface area opened as a function of tensile strain for various 

topologies. 
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A p p e n d i x  D  

EXTRACTING GEOMETRY AND TOPOLOGY OF ORANGE 

PERICARPS FOR THE DESIGN OF BIOINSPIRED ENERGY 

ABSORBING MATERIALS 

 

D.1 Supplementary Figures 

 

Figure D.1: All orange pericarp cross sections from 0 mm to 5 mm into the fruit. 

 

 

Figure D.2: Concavity description. (I) Original orange pericarp image. (II) 

Selected feature. (III) Highlighted bridge length (red) and Euclidean distance 

(blue).  
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Figure D.3: Orange pericarp and VGA sample characterization. (a) Counts of 

structural feature areas for external region of orange pericarp. (b) Counts of 

structural feature areas for internal region of orange pericarp. (c) Counts of 

structural feature angle of orientation for external region of orange pericarp. (d) 
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Counts of structural feature angle of orientation for internal region of orange 

pericarp. (e) Structural feature area plotted as a function of elliptic fit angle of 

orientation of structural features for external region of orange pericarp. (f) 

Structural feature area plotted as a function of elliptic fit angle of orientation of 

structural features for internal region of orange pericarp. (g)   Counts of structural 

feature angle of orientation for external region of VGA sample. (h) Counts of 

structural feature angle of orientation for internal region of VGA sample. (i) 

Structural feature area plotted as a function of elliptic fit angle of orientation of 

structural features for external region of VGA sample. (j) Structural feature area 

plotted as a function of elliptic fit angle of orientation of structural features for 

internal region of VGA sample. 

 

 

Figure D.4: External region (left) and internal region (right) engineering stress-

strain plot for 0-, 15-, 30-, and 45-degree rotated VGA samples.  
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Figure D.5: Quasi-static compression tests. (a) Engineering stress-strain plot for 

graded and periodic honeycomb samples. (b) Example 2D DIC strain maps for 0%, 

5%, and 10% global strain for graded honeycomb sample. (c) Example 2D DIC 

strain maps for 0%, 5%, and 10% global strain for periodic honeycomb sample. 

 

 

Figure D.6: Sample external and internal region combinations. Sample PNG’s for 

10% + 90%, 20% + 80%, and 50% + 50% (top). Compressive stress strain data for 

each variation (center). Coefficient of restitution for each variation (bottom). 
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Figure D.7: Wave speed propagation in composite materials. Sample with linear 

dot pattern and loading direction (left). Resliced image in time with dot trajectories 

over time as deformation reaches each dot (right).  

 

D.2 Supplementary Discussion 

D.2.1 Sample Preparation and Imaging 

Tissue samples of approximately 1 cm3 are collected directly from the orange fruit 

and include the outer layer (exocarp or flavedo) and the inner white layer (mesocarp 

or albedo)[1]. The samples are first immersed in a fixative solution, a 4% buffered 

glutaraldehyde solution at pH 7.2 (Glutaraldehyde Solution 25% in H2O, Sigma 

Aldrich). The samples remain in the fixative solution for 24 hours, to ensure the 

complete penetration of the fixative in every part of the biological tissue. The 

tissues are then sequentially immersed in 70%, 80%, 90%, 95%, and 100% v/v 

ethanol solutions (Ethanol Absolute Anhydrous for analysis RPE, Carlo Erba 

Reagents), to ensure the complete removal of any water trace. Subsequently, the 

tissues are immersed in terpene (natural origin, Bio Clear, Bio-Optica) for two 

hours. Terpene is an organic solvent that is miscible with alcohol and with most 

waxes. The next step is the infiltration of the tissues with an embedding medium. 

For the purpose, we transfer the tissues into disposable PVC molds, (DispoMold, 

Bio-Optica) fill the molds with liquid paraffin wax at 56˚C (Histosec Pastilles, 
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Sigma-Aldrich) and leave it overnight in a temperature-controlled oven at 56˚C, 

to ensure complete infiltration of the paraffin within the tissues. The precise 

positioning of the tissues is critical to determine the subsequent imaging cross 

section. The following day, a dedicated support for histological inclusion (Ring, 

Bio-Optica) is placed on top of the PVC mold, filled with liquid paraffin at 56˚C 

and left it to solidify at room temperature. The paraffin block is then mounted on a 

microtome (RMC Products, Boeckeler MR3) and thin sections are cut (~5 µm). The 

thin sections are then transferred on microscopy glass slides. After drying, the 

paraffin-embedded thin tissue slices are treated in terpene (natural origin, Bio 

Clear, Bio-Optica) to eliminate any trace of paraffin. Then we proceed with the re-

hydration of the tissues. This is done by immersing the thin tissue slices in solutions 

with decreasing concentrations of ethanol (Ethanol Absolute Anhydrous for 

analysis RPE, Carlo Erba Reagents): 100% (pure ethanol), 95%, 80%, 50%, and 

0% v/v (pure water). After the re-hydration of the tissues, we proceed with the 

staining. First, we immerse the tissues in a 3% acetic acid solution (Acetic Acid 

Solution, Sigma Aldrich) for 5 minutes. We then perform the staining for 30 minutes 

using Alcian Blue (Alcian Blue Solution, Sigma Aldrich). After rinsing with 

distilled water, we then perform the counterstaining using Safranin (Safranin T RS-

for Microscopy, Hydroalcoholic Solution, Carlo Erba Reagents) for 5 minutes. We 

finally wash the stained tissues using distilled water for 1 minute. Before imaging, 

the tissues are de-hydrated by sequential immersions in 80%, 95%, and 100% v/v 

ethanol solutions and immersed in terpene (natural origin, Bio Clear, Bio-Optica) 

for ten minutes. Finally, the thin tissue slices are protected by a mounting cover 

glass, fixed on top of the microscopy glass slide with a refractive index matching 

acrylic resin (Eukitt, Bio-Optica). An upright optical microscope (Axiophot 

Microscope, Zeiss) is used for observation with a magnification of 10X and 20X. 

High resolution images were then acquired with a digital camera (CMOS 11 

Discovery C30). 
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D.2.2 Bioinspired Sample Generation 

To generate samples, we use a virtual growth algorithm developed by Liu et al.[2] 

and further described by Magrini et al.[3], to generate a PNG file, which is scalable 

to any size. From the limitations of the additive manufacturing process and testing 

setup size, we choose samples with a tile size of 0.5 mm x 0.5 mm and a branch 

thickness of 0.1 mm. [2][3]The PNG file is then extruded and converted to an STL 

file to be printed using a Stratasys Objet500 Connex polyjet printer, with a stiff 

viscoelastic resin (Stratasys VeroWhite Polyjet Resin) for the reinforcing structure, 

and a soft elastomeric resin (Stratasys TangoBlack Polyjet Resin) for the matrix, 

both of whose mechanical properties fall within those reported in literature[4–6]. To 

investigate the spatially-varying density of the orange pericarp, samples with 0% 

external and 100% internal regions, 10% external and 90% internal regions, 20% 

external and 80% internal regions, and 50% external and 50% internal regions, and 

100% external and 0% internal regions were all generated. Although the actual 

orange pericarp has approximately the 10% and 90% region breakdown, the sample 

dimensions required for testing limits the size of the samples, while the printer’s 

lateral resolution of 40-85 µm[7] limits the number of tiles that can be printed for a 

given sample size and thus the 20% and 80% sample is the optimal tradeoff to 

maintain a thin external region while having sufficient structural features to 

understand the structure-property relationship. 

 

D.2.3 Quasi-static Mechanical Testing 

Polymer composite samples with a height of 2.5 cm, a width of 2.5 cm and a 

thickness of 1 cm for the external and internal regions, and with a height of 3 cm, a 

width of 2.5 cm and a thickness of 1 cm for the combination samples, are tested 

using an Instron E3000 (Instron, USA) with a 5 kN load cell and compression 

platens to apply compressive loading at a rate of 1 mm/min up to 10% strain. 
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D.2.4 Digital Image Correlation 

For the digital image correlation, polymer composite samples are spray painted 

with flat white paint and then speckled with flat black paint to achieve speckles 

with a diameter of 0.1-0.3 mm. VIC-2D (Correlated Solutions, USA) is used to 

analyze the Lagrangian strain fields using a subset size of 35 and a step size of 2, 

such that each subset contains 3x3 to 5x5 speckles and each speckle contains at 

least 3x3 pixels. 

 

D.2.5 Dynamic Testing 

The drop tower consists of an aluminum tube with wall thickness of 0.3 cm, inner 

diameter of 2.7 cm, and height of 3 m, attached to a steel frame. A 10 cm steel 

striker with a diameter of 2.5 cm and a mass of ~400 g is released and falls down 

the tube to impact the sample, positioned and glued at the base, with an impact 

velocity of 7-8 m/s. A photodiode placed at the base of the tube, just above the 

sample, captures the moment the striker passes the bottom of the tube, and is used 

to trigger a high speed camera (Phantom v1610, Vision Research, AMETEK, USA), 

which captures images of the event at 50,000 frames per second, with resolution of 

512 by 512 pixels. 

 

D.2.6 Dynamic Wave Speed Testing 

The elastic wave speed is measured during the drop tower test by placing a vertical 

line of white dots on a sample, in the direction of loading, and using a high-speed 

camera (Phantom v1610, Vision Research, AMETEK, USA) at 500,000 frames per 

second to capture when the dots move relative to one another as a measure of when 

the wave arrives and then dividing the distance between dots by the time interval 

between arrival events (Figure D.7).  
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D.2.7 Tiles and Connectivity Rules 

We determine the type of tile by examining its perimeter and assigning a binary 

value of 1 to the left, 10 to the top, 100 to the right, and 1000 to the left and summing 

the perimeter values for each tile. If we have a 0-coordination tile, also called 

‘empty tile’, the perimeter values sum to 0. 2-coordination tiles display perimeter 

values that sum either to 101 or 1010 for tiles that feature a vertical or horizontal 

straight line, or to 11, 110, 1100 or 1001 for tiles that feature a diagonal line in their 

4-fold rotations. 3-coordination tiles have perimeter values that sum to 111, 1011, 

1110 or 1101, depending on their orientation, while 4-coordination tiles have a 

perimeter sum that is always equivalent to 1111. Following this counting approach, 

we can then assign a reduced geometry tile equivalent to the original irregular tile. 

It should be noted that the irregularity of the orange pericarp means that there is no 

preferential orientation for any tile and all orientations are approximately equally 

represented in the tile counts. We determine the connectivity rules by determining 

how often a rule appears relative to the rest of the rules, by examining the tiles 

adjacent to the right and bottom of each tile. For the virtual growth algorithm 

approach in this work, it is only possible to either allow or disallow any connectivity 

rule. 

 

D.2.8 Quasi-static Sample Anisotropy Testing 

As discussed in the main article, it should be noted that as a result of the four-sided 

nature of the virtual growth algorithm tiles and limited sample size, the structural 

features of the VGA-generated samples have a certain degree of anisotropy with 

respect to the amount of reinforcing material in the loading direction, as defined by 

feature orientation (Figure D.3h, 3g). To investigate the effect of anisotropy on the 

mechanical properties of the samples, we generated VGA-ext and VGA-int samples 

that feature a structure rotated by 15°, 30°, and 45° and tested them in compression 

to determine their stiffness (Figure S4). The VGA-ext samples are nearly isotropic, 

with all rotated samples falling within 9% of the original sample’s stiffness, while 
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the VGA-int samples display up to 31% lower stiffness at 30° compared to 0°, 

indicating a higher degree of anisotropy (Figure S4). However, this is an artefact of 

the finite sample size that we tested and is attributed to the largest structural features 

with a limited number of orientations that dominate the loading response in a given 

sample.  
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A p p e n d i x  E  

CONTROLLABLE INTERLOCKING FROM IRREGULARITY IN 

TWO-PHASE COMPOSITES 

 

E.1 Supplementary Figures 

 

 

Figure E.1: Simple tension experiment performed on VeroWhite and TangoBlack 

samples. 

 

 

 

Figure E.2: Force-displacement plots for volume fraction equivalent periodic 

samples for coordinations 2X, 3X, 4X, and 6X, respectively. Red refers to vertical 

matrix orientation, blue refers to horizontal matrix orientation. 
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Figure E.3: Force-displacement plots for coordination 6X, zoomed in to show 

variation from sample orientation.  

 

 

 

Figure E.4: Angle of orientation of particles as a function of alignment and 

coordination number. 

 



 

 

155 

 

Figure E.5: Cylindrical contact loading characterization. 2D DIC maps of all 

samples for 𝜀𝑥 strain (above) and 𝜀𝑦 strain (below). 
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Figure E.6: 2D DIC maps of equivalent volume fraction 6X samples for 𝜀𝑥 strain 

(above) and 𝜀𝑦 strain (below) at 1 mm cylindrical contact displacement. 
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Figure E.7: Volume normalized fraction of matrix engaged as a function of 

coordination number at 1 mm cylindrical contact displacement for comparison of 

irregular samples and periodic equivalent 6X coordination samples. 
 


