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ABSTRACT

Predicting the behavior of physical systems under complex loading conditions
remains a central challenge in engineering and the applied sciences. In solid
mechanics, accurate prediction requires not only knowledge of the governing
physical laws but also appropriate constitutive models that describe mate-
rial behavior. These constitutive models are parameterized functions typically
obtained through material characterization techniques. However, traditional
techniques have limited applicability due to their reliance on challenging ex-
periments designed to produce homogeneous fields, especially for complex ma-
terials.

First, we propose a method to accurately and efficiently identify the constitu-
tive behavior of complex materials from full-field observations. We formulate
the problem of inferring constitutive relations as an indirect inverse problem
constrained by the balance laws. Specifically, we seek a constitutive relation
that minimizes the difference between experimental observations and model
predictions while strictly enforcing physical laws. The forward problem is
posed as a boundary value problem corresponding to the experiment, and sen-
sitivities are computed using the adjoint method. The resulting framework is
robust and applicable to constitutive models of arbitrary complexity. We focus
on elasto-viscoplasticity and demonstrate the method using synthetic data on
two problems, one quasistatic and the other dynamic.

We then extend this methodology to infer constitutive parameters from experi-
mental dynamic contact data, where challenges such as noise, incomplete infor-
mation, and model-form uncertainties complicate inversion. Using force–depth
measurements from split Hopkinson pressure bar experiments on steel and alu-
minum samples, and incorporating regularization techniques to mitigate ill-
posedness, the framework robustly recovers material properties. Results show
the successful extraction of meaningful parameters, highlighting the method’s
effectiveness over traditional direct inversion approaches, particularly for non-
linear models.

A key limitation of the proposed method is its reliance on a pre-specified form
of the constitutive model. The choice of such forms becomes harder with the
evergrowing catalog of materials. To address this, we develop a neural network-
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based framework where the constitutive relation emerges directly from data.
Using a recurrent neural operator to model history-dependent behavior with
internal variables, we demonstrate on synthetic high strain rate compression
experiments that this approach significantly outperforms traditional models
in capturing path-dependent material responses. Therefore, this proves that
neural networks can be powerful tools for constitutive modeling.

Building on the ability of neural networks to approximate complex functions,
we further explore their use in approximating solutions to partial differen-
tial equations (PDEs). In following study, we investigate neural operators
for multiscale modeling of elliptic PDEs, focusing on learning effective macro-
scopic behavior from complex microstructures without repeatedly solving fine-
scale problems. Targeting the classical homogenization setting of linear elliptic
PDEs with discontinuous coefficients, we analyze the challenges posed by sharp
interfaces and degraded solution regularity. We provide theoretical guarantees
on approximation capabilities and demonstrate the method across various rep-
resentative microstructures, showing that neural operator-based homogeniza-
tion offers a scalable and non-intrusive approach to multiscale modeling.

Finally, in the last study, we extend these data-driven tools to topology op-
timization, where the need for numerous PDE solves presents a major com-
putational bottleneck. By integrating a reduced-order PCA-based neural net-
work into the optimization loop, we represent complex structures in a low-
dimensional latent space and achieve efficient, high-quality updates. This ap-
proach significantly accelerates optimization while preserving design flexibility,
highlighting the potential of machine learning to enhance and transform clas-
sical design methodologies.

Together, these contributions present a unified strategy that integrates physics-
based modeling, machine learning, and optimization to advance material char-
acterization, multiscale modeling, and design in solid mechanics.
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C h a p t e r 1

INTRODUCTION

Modeling the behavior of physical systems under diverse and often complex
conditions remains a foundational challenge in engineering and the applied
sciences. Whether dealing with physical systems at the microscale or large-
scale engineered systems, the ability to make accurate predictions is critical for
understanding performance, ensuring safety, and enabling innovation. These
systems are influenced by a broad range of factors—such as external stimuli,
environmental variability, evolving conditions, and interactions across multiple
scales—all of which contribute to their complexity. Over the years, increas-
ingly sophisticated techniques have been developed to predict the behavior
of engineering systems while accounting for this growing spectrum of factors.
While these methods have achieved remarkable success, the complexity of
real-world systems continues to grow, driven by emerging technologies, novel
materials, and increasingly ambitious design goals. As a result, there is a
continual and evolving need for more flexible, accurate, and robust predictive
techniques—tools that can adapt to new contexts and push the boundaries of
what engineering models can achieve.

This thesis addresses solid mechanics, the study of the mechanical behavior
of solids and structures. The approach involves deriving a set of governing
equations based on Newton’s laws, which describes how the system responds
to the external conditions. However; these equations are not closed and an
extra set of relations, called the constitutive laws, are necessary to solve the
system [31, 8]. These constitutive laws are independent of the governing equa-
tions, depend only on the material under consideration, and incorporate the
complexity that is not explicitly resolved. They are typically obtained from
controlled experiments that measure how a material deforms under different
loading conditions. Therefore, the problem of predicting the behavior of a
structure requires two things: a proper constitutive law describing the mate-
rial and a set of governing equations describing the physics of the problem.

In the recent decade, neural networks have emerged as a powerful tool for
modeling complex systems, especially when traditional approaches fall short.
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Their ability to approximate functions and learn from data makes them use-
ful for capturing complicated behaviors in the physical sciences. Recently,
they have been used to speed up computations and offer flexible, data-driven
models.

In this thesis, we address two related challenges: the extraction of constitutive
behavior from experimental observations, and the use of neural networks in
mechanics. We show examples of the latter for constitutive modeling, multi-
scale modeling and topology optimization.

1.1 Novel method for material characterization

Constitutive laws describe the relationship between stress and strain in a ma-
terial, capturing its mechanical response under different loading conditions.
Traditionally, these laws are postulated from phenomenological observations
or micromechanical principles and expressed through mathematical equations,
such as elasticity, viscoelasticity or plasticity models. However, they require
material-specific parameters—such as elastic moduli, yield strength, or hard-
ening coefficients—that are often unknown and must be inferred from experi-
ments. This method of obtaining the necessary material parameters is known
as material characterization [9]. Conventional characterization techniques are
limited in accuracy and applicability, especially when the experimental data
are noisy, sparse, or when the material exhibits non-linear, non-local behavior.
Therefore, improved methods are needed to characterize material behavior
under different stress and strain conditions. Furthermore, traditional consti-
tutive models, while effective in many scenarios, often fail to capture the full
complexity of real-world material responses. These limitations arise from the
fundamental assumptions inherent in phenomenological models, which impose
pre-defined functional forms on the stress-strain relationship. Such models
may be adequate for simple materials under controlled conditions, but they
often break down when dealing with complex materials, multi-axial loading, or
history-dependent behaviors [16, 38, 20]. This motivates the need for a more
flexible, data-driven approach that can adapt to a wide range of mechanical
phenomena [23].

A common approach to material characterization is to perform experiments
and use the data collected to recover the parameters of a chosen constitutive
model by solving an inverse problem. Conventionally, this method typically
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consists of three steps: (i) measuring deformation fields, surface tractions, or
other macroscopic observables, (ii) converting these measurements into stress-
strain data, and (iii) extracting constitutive parameters from the data [8, 22].
While this technique is conceptually straightforward, it is often inefficient and
impractical for complex materials. It requires carefully controlled experiments
to ensure a reliable conversion of measurable data into stress-strain pairs. Such
conversion is only possible if the experiment is conducted under sterile condi-
tions to obtain homogeneous fields. As material complexity increases, these
experiments become expensive and cumbersome. Additionally, each experi-
ment typically provides only a single data point for inversion, necessitating a
large number of experiments for constitutive models with numerous param-
eters. Another key limitation is that material parameters are learned from
experiments conducted in simple configurations but are later applied to sce-
narios with highly complex loading conditions, creating a gap in applicabil-
ity. These limitations motivate the exploration of alternative approaches that
leverage data-driven techniques and machine learning to improve robustness
and generalizability.

To overcome the above limitations, we employ an alternative framework. We
formulate a boundary value problem corresponding to the experiment, and
compute the measurable quantities using finite element analysis (FEA). The
material parameters are inferred by minimizing the discrepancy between ex-
perimental observations and model predictions. This minimization is an op-
timization problem with a partial differential equation (PDE) as a constraint
[13, 4, 37]. This approach offers several advantages: it does not require sterile
experiments as we do not need to convert measurable data into stress-strain
pairs, it is more robust as it leverages the governing differential equations to
improve inversion accuracy; and it can handle complex, nonlinear constitutive
models more effectively. Furthermore, we aim to design this framework to
scale effectively with the complexity of the constitutive law. Additionally, this
framework enables learning material behavior directly from complex loading
conditions, enhancing its predictive capabilities for future applications.

We demonstrate the capability of this framework with synthetically generated
quasistatic and dynamic data. The data is obtained by solving finite element
simulations of a known constitutive model under different loading conditions,
providing a controlled setting for evaluating the methodology. The material
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parameters are recovered by minimizing an objective which measures the dif-
ference between the computed and synthetic reference data. The governing
equations serve as a constraint to this minimization problem, which is solved
using a gradient based method. An adjoint-based optimization approach is
employed to efficiently compute gradients, enabling rapid convergence of the
material parameters. The results demonstrate that the framework can accu-
rately recover the underlying constitutive parameters highlighting its robust-
ness and effectiveness for material characterization in both static and dynamic
regimes.

This methodology is extended to infer constitutive parameters from experimen-
tal data, specifically focusing on dynamic contact problems. Unlike synthetic
data, experimental measurements introduce additional complexities such as
noise, incomplete information, and model-form uncertainties, which make di-
rect inversion approaches unreliable. Our method considers dynamic contact
scenarios, where both inertia effects and contact interactions must be accu-
rately captured within the inversion process [24, 2]. Experimental data is
obtained using split Hopkinson pressure bars to indent steel and aluminum
samples [12, 27, 11]. Indentation force versus depth data is used to recover
material properties. Regularization techniques are incorporated to improve
robustness against measurement noise and ill-posedness, enabling stable and
reliable parameter recovery. The results demonstrate that this framework can
successfully extract meaningful material parameters from experimental data
in dynamic contact settings, making it a powerful alternative to traditional
direct inversion methods, particularly for nonlinear constitutive models.

The problems outlined above rely on a postulated form of the constitutive law,
with the goal of inferring the parameters involved. However, conventional con-
stitutive models often lack physical reasoning, require a priori knowledge, and
are based on phenomenological laws or analytical approximations. Moreover,
as the catalog of newly discovered alloys and materials continues to expand,
existing constitutive laws may struggle to generalize across a wide range of ma-
terials. The intersection of machine learning (ML) and mechanics has opened
new avenues for modeling complex material behaviors beyond the capabilities
of traditional constitutive models [17, 14, 30, 21]. By leveraging data-driven
techniques, ML offers a powerful alternative for constructing constitutive re-
lations directly from experimental or simulated data, reducing the need for
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explicit assumptions about material behavior [17, 5, 33]. In this context, the
framework can be extended by replacing the explicit constitutive model with
a recurrent neural network (RNN), allowing for a fully data-driven approach
to characterize materials [7, 29]. This is particularly useful in cases where
the underlying constitutive law is unknown or too complex to be expressed in
a closed-form equation. Rather than extracting traditional material parame-
ters, the methodology optimizes the weights and biases of the neural network
using dynamic data within a PDE-constrained optimization framework. The
neural network serves as a black-box constitutive model, learning the material
response directly from experimental or simulated data while ensuring consis-
tency with the governing equations of solid mechanics. Since the adjoint-based
optimization strategy scales efficiently with the number of parameters, the size
of the neural network does not significantly affect computational time. This
approach provides a powerful alternative to traditional constitutive modeling,
enabling the characterization of materials without predefined assumptions and
allowing for adaptive learning of complex material behaviors directly from
data.

1.2 Multiscale modeling

Going a step further, constitutive laws on the continuum scale truly arise from
mechanisms occurring at a lower scales [32]. It is quite cumbersome to cap-
ture these mechanisms and bridge the gap between the layers, and therefore
constitutive laws are assumed to be of some form dependent on a priori knowl-
edge. Multiscale modeling is an effective method in dealing with this problem
as it derives closure relations from lower scale mechanisms. A set of theories
have been developed to model these mechanisms at their individual scales, for
instance - Density Functional Theory at the electron scale [18], Molecular Dy-
namics at the atomistic scale [32], Crystal Plasticity at the polycrystal scale [3],
and Continuum Mechanics at the structural scale [19]. Multiscale modeling ap-
proaches these complex theories by solving relevant mechanisms at each scale,
and stitching the hierarchy back by passing information between scales [35].
This hierarchy is shown in Figure 1.1. The interaction between different scales
occurs pairwise with the larger scale filtering the equations and regulating the
lower scale. Conventionally, there are two methods of implementing multiscale
models. The first approach is known as the sequential multiscale/parameter
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Figure 1.1: The approach of multiscale modeling in mechanics at various levels
using different theories.

passing method, which involves solving for model parameters at any given
scale using the information from lower scale mechanisms [36]. This approach
is motivated by empirical models. The second approach involves evaluating
the behavior at every scale simultaneously [10, 34, 15]. This results in higher
fidelity compared to the sequential method. However, it is computationally
expensive and can require high amounts of processing power. Furthermore,
this approach also requires empirical information (e.g., order parameters) to
connect models at two scales [6]. Both the above methods also use a very
small portion of information for the increased amount of complexity, which
does not justify their usage. Therefore, the current methods in multiscale
modeling suffer from three challenges — (1) need of empirical knowledge on
the interaction between models at different scales, (2) complex equations need
to be solved repeatedly only to use trivial amounts of the solution, and (3)
expensive computational costs.

Previous research has addressed the complexity of multiscale partial differen-
tial equations (PDEs) by employing deep neural networks to learn surrogate
models that approximate fine-scale behavior based on offline simulations [28,
29, 26]. These learned models can be seamlessly integrated into coarse-scale
computations, bypassing the need for repeated fine-scale evaluations or prede-
fined state variables. Such approaches capture essential physical characteris-
tics, while enabling high-fidelity simulations of macroscopic phenomena, such
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as impact problems, at significantly reduced computational cost. By eliminat-
ing the need to repeatedly solve the same fine-scale equations, these methods
focus only on the necessary macroscopic information. Additionally, because
they are based on machine learning, they can be efficiently parallelized on
GPUs, further accelerating computations. Central to this paradigm is the use
of neural operators, which learn mappings between function spaces and provide
a flexible, data-driven framework for approximating solutions to elliptic PDEs
[25]. These methods stem from the theory of homogenization, replacing ex-
plicit upscaling with learned solution maps that generalize across microstruc-
tures and enable fast, coarse-scale predictions without repeated micro-scale
solves.

We examine this learning framework, targeting elliptic operators in multiscale
problems. Homogenization seeks to derive effective macroscopic equations that
describe the behavior of heterogeneous media characterized by multiple spatial
scales. We focus on scenarios with complex microstructures—such as discon-
tinuities and sharp interfaces—that pose challenges for traditional learning
approaches due to their impact on solution regularity. Our method leverages
specialized neural operators to learn coarse-scale solutions directly from fine-
scale data, without relying on empirical closure models or handcrafted feature
selection. We provide theoretical insights into the learning process and vali-
date our approach through a series of numerical experiments, demonstrating
its effectiveness in capturing key macroscopic behaviors while remaining com-
putationally efficient. This work offers a scalable, non-intrusive path toward
learning homogenized models in complex multiscale systems.

The development of a neural operator framework capable of efficiently ap-
proximating solutions to multiscale elliptic PDEs, we recognize the broader
potential of this approach for solving other challenging problems in mechan-
ics. They provide a powerful tool for learning solution maps directly from data,
bypassing the need for repeated fine-scale computations once trained. This ca-
pability makes them well-suited for computational tasks that involve iterative
PDE solves, such as topology optimization, uncertainity quantification and
evolutionary problems. We demonstrate the case of topology optimization,
where sensitivities must be computed repeatedly over many design iterations.
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1.3 Topology optimization

Topology optimization is a computational design method that optimally dis-
tributes material within a given domain to achieve a desired performance objec-
tive while satisfying constraints such as weight, stress limits, or manufactura-
bility. It has been widely used in structural mechanics, aerospace engineering,
and materials design to develop lightweight and high-performance structures
[1]. Classical topology optimization methods rely on gradient-based or heuris-
tic approaches to iteratively refine the material distribution. These techniques
have enabled significant advancements in automated design but also suffer
from several limitations [4]. The iterative nature of these methods requires
repeatedly solving finite element analyses (FEA), making the process com-
putationally intensive. Additionally, conventional approaches struggle with
capturing complex microstructural patterns, often requiring ad hoc regular-
ization techniques or additional post-processing steps to ensure manufactura-
bility. Another key limitation is the dependency on predefined interpolation
schemes for material properties, which can constrain the diversity of achievable
designs and limit the method’s applicability to emerging material systems.

To overcome the computational and representational limitations of traditional
topology optimization methods, we integrate a Principal Component Analysis
(PCA)-based neural network within the optimization loop. Instead of directly
optimizing the full high-dimensional design space, a reduced-order represen-
tation is learned using PCA, capturing the most significant design variations
while drastically reducing computational costs . At each iteration of the topol-
ogy optimization process, the design is represented in this low-dimensional
latent space, and updates are performed efficiently before reconstructing the
full structure. This approach not only accelerates convergence by reducing the
number of required finite element analyses but also enhances the diversity of
achievable designs by enabling smooth and data-driven design updates.

1.4 Outline of the thesis

Here we present five studies which address the above problems of constitutive
modeling, material characterization and accelerating computations in the fol-
lowing five chapters. Each chapter is self-contained and contains a detailed
literature survey related to that study.
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In the first study included included in Chapter 2, we provide a detailed
overview of the existing material characterization techniques and highlight
their limitations. We then introduce a novel approach for characterizing ma-
terial behavior by recovering material properties from partial observations.
The formulation, solution strategy, and associated numerical techniques are
presented in detail. To demonstrate the efficacy of the method, we recover
viscoplastic material parameters from synthetically generated quasistatic and
dynamic datasets.

In Chapter 3, we extend our framework to dynamic contact problems and
demonstrate its applicability using experimental data. Specifically, we infer
material parameters for RHA (Rolled Homogeneous Armor) steel and poly-
crystalline aluminum alloy obtained using indentation tests. Two key things
highlighted in the chapter are the formulation of the inverse problem in the
presence of contact constraints and the regularization used to stabilize noisy
data. Our results show that the proposed method can accurately recover ma-
terial properties for real-world applications.

A key limitation of the previous framework is its reliance on a pre-specified
form of the constitutive law. Furthermore, traditional constitutive models
suffer from predicting the response of the evergrowing catalog materials. We
move on to chapter 4 where we depart from traditional constitutive models
and use a neural network constitutive law, allowing the constitutive relation to
emerge from data without prescribing a form. A recurrent neural operator is
used to describe a history dependent material response using internal variables.
We demonstrate our framework using synthetic high strain rate compression
experiments, where the RNO-based model significantly outperforms classical
models in capturing path-dependent responses.

In chapter 5, we explore neural networks’ ability to approximate solutions to
partial differential equations. We shift our focus to the problem of multiscale
modeling of elliptic PDEs and use neural operators to learn effective macro-
scopic behavior from complex microstructured media, eliminating the need to
repeatedly solve fine-scale problems. We target the classical homogenization
setting of linear elliptic PDEs with discontinuous coefficients, which is rep-
resentative of many applications in solid mechanics. A key challenge in this
setting is the presence of sharp interfaces and corners in the microstructure,
which degrade solution regularity and make learning difficult. We analyze the
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approximation capabilities of neural operators in this regime, provide theo-
retical guarantees, and demonstrate the approach on several representative
microstructure classes. This work shows that data-driven homogenization us-
ing neural operators provides a scalable and non-intrusive path toward mul-
tiscale modeling, and sets the stage for future applications in nonlinear and
history-dependent materials.

Finally, we apply these data-driven tools to topology optimization in chap-
ter 6, where design tasks typically require many expensive PDE solves. By
integrating a reduced-order PCA-based neural network into the optimization
loop, we represent complex structures in a low-dimensional latent space and
perform efficient updates. This significantly reduces computational cost while
maintaining design quality and flexibility. The results illustrate how machine
learning can accelerate and enhance classical optimization pipelines, paving
the way for next-generation design frameworks.

We conclude in chapter 7 with a summary of results and contributions toward
constitutive modeling and usage of neural networks in solid mechanics. Lastly,
we provide some suggestions for future work on the discussed approaches.

References

[1] A. Akerson. Optimal Design of Soft Responsive Actuators and Impact
Resistant Structures. California Institute of Technology, 2023.

[2] R. J. Anton and G. Subhash. “Dynamic Vickers indentation of brittle
materials.” In: Wear 239.1 (2000), pp. 27–35.

[3] R. J. Asaro. “Crystal Plasticity.” In: Journal of Applied Mechanics 50.4b
(1983), pp. 921–934.

[4] M. P. Bendsoe and O. Sigmund. Topology optimization: theory, methods,
and applications. Springer Science & Business Media, 2013.

[5] M. A. Bessa, R. Bostanabad, Z. Liu, A. Hu, D. W. Apley, C. Brinson,
W. Chen, and W. K. Liu. “A framework for data-driven analysis of
materials under uncertainty: Countering the curse of dimensionality.” In:
Computer Methods in Applied Mechanics and Engineering 320 (2017),
pp. 633–667.

[6] K. Bhattacharya. “Phase boundary propagation in a heterogeneous body.”
In: Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences 455.1982 (1999), pp. 757–766.



11

[7] K. Bhattacharya, B. Liu, A. Stuart, and M. Trautner. “Learning Marko-
vian homogenized models in viscoelasticity.” In: Multiscale Modeling &
Simulation 21.2 (2023), pp. 641–679.

[8] E. Billington and A. Tate. Physics of Deformation and Flow: An Intro-
duction. McGraw Hill, 1981.

[9] W. D. Callister Jr and D. G. Rethwisch. Materials science and engineer-
ing: An introduction. John Wiley & Sons, 2020.

[10] R. Car and M. Parrinello. “Unified approach for molecular dynamics
and density-functional theory.” In: Physical Review Letters 55.22 (1985),
p. 2471.

[11] D. Casem and E. Retzlaff. “A kolsky bar for high-rate indentation.” In:
Journal of Dynamic Behavior of Materials 9.3 (2023), pp. 300–314.

[12] J. Clayton, J. Lloyd, and D. Casem. “Simulation and dimensional anal-
ysis of instrumented dynamic spherical indentation of ductile metals.”
In: International Journal of Mechanical Sciences 251 (2023), p. 108333.

[13] A. Constantinescu and N. Tardieu. “On the identification of elastovis-
coplastic constitutive laws from indentation tests.” In: Inverse Problems
in Engineering 9.1 (2001), pp. 19–44.

[14] J. Dornheim, L. Morand, H. J. Nallani, and D. Helm. “Neural networks
for constitutive modeling: From universal function approximators to ad-
vanced models and the integration of physics.” In: Archives of computa-
tional methods in engineering 31.2 (2024), pp. 1097–1127.

[15] F. Feyel and J.-L. Chaboche. “Multi-scale non-linear FE2 analysis of
composite structures: damage and fiber size effects.” In: Revue européenne
des éléments finis 10.2-4 (2001), pp. 449–472.

[16] N. Fleck and J. W. Hutchinson. “Strain gradient plasticity.” In: Advances
in Applied Mechanics 33 (1997), pp. 295–361.

[17] J. N. Fuhg, G. Anantha Padmanabha, N. Bouklas, B. Bahmani, W. Sun,
N. N. Vlassis, M. Flaschel, P. Carrara, and L. De Lorenzis. “A review on
data-driven constitutive laws for solids.” In: Archives of Computational
Methods in Engineering (2024), pp. 1–43.

[18] F. Giustino. Materials modelling using density functional theory: Prop-
erties and predictions. Oxford University Press, 2014.

[19] M. E. Gurtin, E. Fried, and L. Anand. The mechanics and thermody-
namics of continua. Cambridge University Press, 2010.

[20] G. A. Holzapfel. Nonlinear solid mechanics: a continuum approach for
engineering science. Kluwer Academic Publishers Dordrecht, 2002.



12

[21] A. Hussain, A. H. Sakhaei, and M. Shafiee. “Machine learning-based con-
stitutive modelling for material non-linearity: A review.” In: Mechanics
of Advanced Materials and Structures (2024), pp. 1–19.

[22] K. T. Kavanagh and R. W. Clough. “Finite element applications in the
characterization of elastic solids.” In: International Journal of Solids and
Structures 7.1 (1971), pp. 11–23.

[23] T. Kirchdoerfer and M. Ortiz. “Data-driven computational mechanics.”
In: Computer Methods in Applied Mechanics and Engineering 304 (2016),
pp. 81–101.

[24] B. Koeppel and G. Subhash. “An experimental technique to investigate
the dynamic indentation hardness of materials.” In: Experimental Tech-
niques 21.3 (1997), pp. 16–18.

[25] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A.
Stuart, and A. Anandkumar. “Neural operator: Learning maps between
function spaces with applications to pdes.” In: Journal of Machine Learn-
ing Research 24.89 (2023), pp. 1–97.

[26] N. Kovachki, B. Liu, X. Sun, H. Zhou, K. Bhattacharya, M. Ortiz, and
A. Stuart. “Multiscale modeling of materials: Computing, data science,
uncertainty and goal-oriented optimization.” In: Mechanics of Materials
165 (2022), p. 104156.

[27] A. Lee and K. Komvopoulos. “Dynamic spherical indentation of elastic-
plastic solids.” In: International Journal of Solids and Structures 146
(2018), pp. 180–191.

[28] B. Liu, N. Kovachki, Z. Li, K. Azizzadenesheli, A. Anandkumar, A. M.
Stuart, and K. Bhattacharya. “A learning-based multiscale method and
its application to inelastic impact problems.” In: Journal of the Mechan-
ics and Physics of Solids 158 (2022), p. 104668.

[29] B. Liu, E. Ocegueda, M. Trautner, A. M. Stuart, and K. Bhattacharya.
“Learning macroscopic internal variables and history dependence from
microscopic models.” In: Journal of the Mechanics and Physics of Solids
178 (2023), p. 105329.

[30] X. Liu, S. Tian, F. Tao, and W. Yu. “A review of artificial neural net-
works in the constitutive modeling of composite materials.” In: Compos-
ites Part B: Engineering 224 (2021), p. 109152.

[31] L. E. Malvern. Introduction to the Mechanics of a Continuous Medium.
Monograph. 1969.

[32] R. Phillips. Crystals, defects and microstructures: Modeling across scales.
Cambridge University Press, 2001.



13

[33] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations.” In: Journal
of Computational Physics 378 (2019), pp. 686–707.

[34] E. B. Tadmor, M. Ortiz, and R. Phillips. “Quasicontinuum analysis of
defects in solids.” In: Philosophical magazine A 73.6 (1996), pp. 1529–
1563.

[35] E. Van Der Giessen, P. A. Schultz, N. Bertin, V. V. Bulatov, W. Cai,
G. Csányi, S. M. Foiles, M. G. Geers, C. González, M. Hütter, et al.
“Roadmap on multiscale materials modeling.” In: Modelling and Simu-
lation in Materials Science and Engineering 28.4 (2020), p. 043001.

[36] E. Weinan. Principles of multiscale modeling. Cambridge University Press,
2011.

[37] A. Wihardja and K. Bhattacharya. “Constitutive relations from images.”
In: arXiv preprint arXiv:2504.00898 (2025).

[38] A. Wineman. “Nonlinear viscoelastic solids—A review.” In: Mathematics
and Mechanics of Solids 14.3 (2009), pp. 300–366.



14

C h a p t e r 2

LEARNING CONSTITUTIVE RELATIONS FROM
EXPERIMENTS: I. PDE CONSTRAINED OPTIMIZATION

Akerson, A., Rajan, A. and Bhattacharya, K., 2025. “Learning constitutive
relations from experiments: 1. PDE constrained optimization.” Journal of the
Mechanics and Physics of Solids, p.106128.

Contributions: A.R. and A.A. developed the computational code and per-
formed simulations. A.A. and K.B. conceptualized the methodology. A.R.,
A.A. and K.B. wrote the manuscript.

2.1 Introduction

Continuum mechanics is an approach to solving problems involving complex
phenomena directly at the scale of applications (e.g., [18, 8]). It exploits
universal laws of physics: the balance of mass, momenta, energy as well as
the second law of thermodynamics. However these equations are not closed
and a constitutive relation that characterizes the material is necessary to do
so. This constitutive relation is typically obtained empirically by conducting
experiments. However, we cannot measure the constitutive relation directly
and it has to be obtained through the solution of an inverse problem. In
fact, we cannot even directly measure the quantities like stress, strain, strain
rate and energy density that comprise the constitutive relation. Instead, they
have to be inferred from quantities like displacements and total forces that
can be measured in the laboratory. Thus, the problem of inferring constitutive
relations from experiments, and thereby completing the continuum mechanical
formulation, requires the solution of an indirect inverse problem.

The classical approach is to design an experimental setup that is consistent
with either uniform states of stress and strain/strain-rate („ uniaxial tension
in solids or shear rheometers in complex fluids), or a universal solution (e.g.,
torsion in solids or viscometric flow in complex fluids); these enable a semi-
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analytic solution to the indirect inverse problem (e.g., [8]). There are a number
of difficulties with this approach. First, we obtain information about the con-
stitutive relation only in simple, idealized states of stress (history) while we
seek to deploy them in more complex situations. For example, we may obtain
only uniaxial tensile data while we may want to use the model in multiaxial,
non-proportional loading scenarios. Second, one has to conduct a large num-
ber of tests since each test can only provide a limited amount of information
on the constitutive behavior. For example, we may have to repeat a test at
various strain rates, or with specimens with different orientation. Third, one
may need sterile conditions with precise alignment (e.g., plate impact) to ob-
tain the desired state. This limits the number of tests that one can conduct.
Together, these and other shortcomings contribute significantly to the uncer-
tainty, and limit the fidelity of the constitutive relations that can be obtained
from experiments.

It is also classical to postulate a priori an explicit formula for the constitutive
relation with a few constants, and then use above-described experiments to
fit the constants (e.g., [8]). Since it is common practice to use a very few
constants, the limited experimental information is sufficient to fit them. How-
ever, the ability of explicit formulas with a few constant to represent complex
behavior is limited. Even in the setting of isotropic, incompressible hyper-
elasticity, we have a still-evolving menagerie of models (e.g., [33, 26]). It
is therefore natural to try to go beyond hypo-parametrized explicit formulas
to hyper-parametrized neural networks and other approximations that have
proven to be enormously successful in a variety of fields. However, this re-
quires significant amounts of data, much more than the traditional approach
can deliver.

There is a closely related issue. In history dependent and structured con-
tinua, one also has to postulate a priori the internal or state variables that
describe the history dependence/internal structure [8]. For example, we in-
troduce plastic strain, accumulated plastic strain and a kinematic hardening
variable as internal variables in plasticity. However, the choice of internal vari-
ables is unclear in complex anisotropic situations like in composite media or
shape memory alloys [23]. Instead, one would like to infer these directly from
experimental measurements, further increasing the need for empirical data.

The recent decade has seen a revolution in experimental methods primarily
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driven by the growth of full-field observations techniques. In particular, digital
image correlation (DIC) [12, 46, 21], where one infers deformation by compar-
ing images of a complex (speckle) pattern imprinted on a surface taken before
and after deformation, is widely used. The method has been extended to stereo
DIC to obtain out-of-plane deformation [45], the high resolution setting using
the scanning electron microscope [24], to dynamics [42] and to digital volume
correlation [10, 53]. DIC enables the measurement of the entire deformation
and strain field on a surface. This opens the intriguing possibility of breaking
away from homogeneous (or idealized) states: instead, one can probe many
different strain paths in a single test by working with specimens with complex
geometries. However, there are challenges. While one can measure the strain
field, it is limited to a single surface. More importantly, it is not possible to
measure the stress field, and instead, we typically can only measure the total
reaction force on a surface. So we need to address the difficult indirect inverse
problem discussed earlier.

Another rapidly evolving technique that provides full-field information is high
energy diffraction microscopy (HEDM) that uses high energy synchrotron ra-
diation and diffraction to obtain the crystal structure on a three-dimensional
voxelated volume [7]. Comparing the obtained crystal structure with the
stress-free structure gives us the lattice strain on a voxelated volume. One
can convert this to stress by using the elastic modulus of the material. How-
ever, there are two issues. First, one only obtains the lattice strain, and not
the total strain. Therefore, one still has to solve an indirect inverse prob-
lem in inelastic phenomena. Second, this is averaged over the volume of the
voxel with some unknown kernel, and therefore subject to errors. For example,
the resulting stress fields obtained by this approach are not equilibrated [54].
While we do not address HEDM in this paper, the ideas presented may be
extended to this technique.

A variety of approaches have been proposed to solve this indirect inverse prob-
lem. The key idea is to use the balance laws, and specifically equilibrium in
some form. We review a few contributions to provide context to our work,
without attempting a comprehensive review of this rapidly growing literature.
One approach is to use a combination of model reduction and Gaussian process
regression to obtain the parameters associated with a particular constitutive
relation (see [49, 50] for the use of this approach in viscoelastic materials). It is
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possible to combine Bayesian uncertainty quantification with such approaches
(see [52] on toughness). While such approaches are effective in identifying
a small number of parameters, they scale exponentially with the number of
parameters and are prohibitively expensive for complex materials or neural
network representations.

Miller, Dawson and collaborators pioneered the concurrent use of finite element
analysis with given constitutive relations and experimental observations using
high energy x-ray diffraction with the goal of understanding the relationship
between single crystal elastic modulus and hardening laws and heterogeneity
in stress distribution in polycrystals.[15, 36, 51, 11]. However, they do not
seek to obtain the full constitutive relation.

An emerging approach is to use a physics informed neural network (PINN)
where the constitutive relation is represented as a neural network and the
(failure of the fields to satisfy) balance laws are used as a part of the objective
(loss function) to be minimized as a part of the fitting [19, 16, 48]. The balance
laws are not enforced exactly in this approach.

In the virtual field method (VFM) (for example, [17, 40, 29, 31, 27]), the
balance laws are integrated against a set of “virtual fields” to obtain a system
of equations for the unknown constants in a postulated constitutive relation.
The system is linear when the constitutive relation is linear in the constants as
in the case of hyperelasticity, but is typically solved by linearization otherwise.
The application of the method requires one to specify kinematically admissible
virtual fields, and one may take them to be the measured strain field. However,
the strain field is typically measured on a part of the boundary of the specimen,
and has to be extrapolated to obtain it over the entire domain. Further,
one needs as many independent full field measurements as there are unknown
constitutive constants even for complex domains. This limits the complexity
of the constitutive model. Finally, only a finite dimensional approximation of
the balance laws is enforced.

A widely used approach is the finite element updating (FEMU) (for example,
[25, 38, 32, 34, 20, 44, 28, 43, 13] ). The idea is to formulate the problem as
an inverse method which is solved iteratively by using a finite element method
to solve the forward problem, and then to update the model parameters using
a numerically computed sensitivity. This has been applied to a variety of
history dependent phenomena and can be integrated with the inverse problem
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of digital image correlation [32]. An important consideration here is that the
sensitivity, or the gradient of the objective with respect to the objective, is
computed numerically. While a number of ideas can be used to speed this up,
this approach scales poorly with the number of material parameters. A closely
related idea is to formulate the problem as a PDE-constrained optimization
problem where the balance laws act as the PDE constraint, and then use the
adjoint method to compute the sensitivity. This has been applied to elasticity
[35], viscoelasticity [14] and Norton-Hoff viscoplasticity [9].

In this work, we build on the last two lines of work, and propose a method
to accurately and efficiently identify the constitutive behavior through exper-
iments. We formulate this as an indirect inverse problem that is constrained
by the balance laws (PDE constraint). The objective that we seek to minimize
is the difference between the experimental observation and the corresponding
quantities computed using the constitutive model. We then formulate the for-
ward problem as a boundary value problem corresponding to the experiment,
and the problem of computing sensitivity of the solution to the parameters
as an adjoint problem. This is a partial differential equation that is linear in
space and quasilinear in time. The adjoint equation has widely been used in
optimal design in mechanics (e.g., [6, 2]). In this work, we implement both
the forward and the adjoint problem using finite element approximation. The
cost of solving the adjoint problem is that of a single iteration of the forward
problem, and the parameters can be updated at little cost from the solution
of the adjoint problem. Thus, the core computation of the method is indepen-
dent of the number of parameters, and thus suited for complex models with
numerous parameters (including neural networks).

We formulate and demonstrate the method for both quasistatic and dynamic
experiments with synthetic data in the current Part 1. We extend the formula-
tions to include contact in Part 2 and demonstrate it using experimental data
from a dynamic indentation test. We demonstrate the method for models for-
mulated as neural networks in Part 3. Together, these show that the method
is robust and can be adapted for various experimental situations. While we
focus on elasto-viscoplasticity, the ideas are valid for any local constitutive
relation.

The paper is organized as follows. We present the method in Section 2.2. We
do so for an arbitrary inelastic material described by a rate-dependent internal
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variable theory in Section 2.2.1, and for a J2 elasto-viscoplastic model with
yield in Section 2.2.2. We overview the numerical method in Section 2.2.3 with
details provided in the appendix. We demonstrate and validate the method
using synthetic data on two examples in Section 2.3: a thick plate with a hole
in quasistatic compression in Section 2.3.1 and an extended dynamic impact
test in Section 2.3.2. We conclude with some comments in Section 2.4.

2.2 Formulation and method

We first present our method for a general history-dependent constitutive rela-
tion, and then specialize to elasto-viscoplasticity.

2.2.1 Internal variable theory

Governing equations

We consider an open, bounded domain Ω ⊂ Rn occupied by a solid body
undergoing a deformation with displacement u(x, t) over time interval (0, T ).
We assume the body is composed of a material of density ρ, and one whose
constitutive behavior is described by a set of internal parameters ξ := {ξi}, i =
1, . . . , Nξ that evolve according to a Perzyna-type kinetic law:

σ = S(F, ξ;P ),

ξ̇ = R(F, ξ;P ),
(2.1)

where σ is the first Piola-Kirchoff stress, F is the deformation gradient, and
S and R are constitutive functions parametrized by material parameters P :=
{Pi}, i = 1, . . . , Np. The deformation of the body is then governed by the
equations

ρü− ∇ · σ = b on Ω,

σ = S(∇u, ξ;P ) on Ω,

ξ̇ = R(∇u, ξ;P ) on Ω,

σn = f on ∂fΩ,

u = u0 on ∂uΩ,

u|t=0 = u̇|t=0 = ξ|t=0 = 0, on Ω,

(2.2)

where b is the applied body force, f is the applied (dead) traction on part ∂fΩ
of the boundary while u0 is the applied displacement on the complement ∂dΩ of
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the boundary. Note that ∂fΩ typically includes regions that are traction-free.
We assume quiescent initial conditions.

Indirect inverse problem of parameter identification

We are given experimental data, usually displacements at certain instances
of time on just a portion of the boundary of the domain (some subset of the
traction-free portion of ∂fΩ) and some overall force or moment acting on some
part of the boundary (some subset of ∂uΩ). We label the experimental data
Dexp := {uexp,M exp}. Here, uexp is the set of partial displacement measure-
ments, and M exp is a collection of macroscopic measurable quantities which
could consist of net loads or averaged strains. The goal is to find the parameter
set P such that the modeled trajectory and computed macroscopic quantities
from solving (2.2) match the experimental data Dexp. We write this as an
optimization problem

inf
P∈P

O(P, u, ξ,Dexp) subject to {u, ξ} satisfying (2.2), (2.3)

where P defines a physical range of parameters and O(P, u, ξ.D) is the objec-
tive or loss function.

We need to choose an objective function O that is both computationally ef-
ficient and one that attains a minimum when the displacement and forces
computed using the solutions {u, ξ} to (2.2) are equal to the measured values
Dexp. A somewhat subtle point in internal variable theories like (2.1) is that
the internal variable is only defined pointwise, and thus does not have a math-
ematical meaning (specifically a trace) on the boundary. However, the traction
is mathematically defined through the interior stress distribution. Thus, we
have to interpret the measurement of boundary forces accordingly. In this work
we use a finite element discretization, and the governing equations are used in
their weak form. Specifically, the displacements are imposed on the nodes, but
the strains, stress and internal variables are defined on the quadrature points
and inherit their meaning by integration. Therefore, it is natural to write the
objective as a volume integral even though the force measurements are made
on the boundary. So, we take

O(P, u, ξ,Dexp) :=
∫ T

0

∫
Ω
o(P, u, ξ,Dexp) dΩ dt. (2.4)
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for some o that is concentrated near the boundary. We discuss specific choices
of o in Section 2.3.

Adjoint method for sensitivity

A gradient based optimization approach requires that we compute the sensitiv-
ities, that is, the total derivative of the objective with respect to the parameter
set P while enforcing the PDE constraint of the governing equations. We may
compute this by applying standard chain rule. However, this would require
expressions for du

dP and dξ
dP , which are the sensitivity of the solutions of (2.2) to

changes in parameters. These are difficult to compute. Therefore, we use the
adjoint method [22, 41] to circumvent the difficulty. We rewrite the objective
by adding a term that is zero according to the weak form of the evolution
equation,

O =
∫ T

0

∫
Ω
o(P, u, ξ,Dexp) dΩ dt

+
∫ T

0


∫

Ω

[
−ρü · v − σ · ∇v + b · v − ϕ(ξ̇ −R)

]
dΩ

+
∫
∂f Ω

f · v dS

 dt,

(2.5)

where v and ϕ are test functions associated with momentum balance and
internal variable evolution. The idea of the adjoint method is to choose the
test functions v and ϕ such that there is no need to explicitly compute the
sensitivity of the solutions of (2.2) to changes in parameters ( du

dP and dξ
dP ).

Differentiating this rewritten objective with respect to P gives

dO
dP =

∫ T

0

∫
Ω

 ∂o
∂P

+ ∂o

∂u

du
dP + ∂o

∂ξ

dξ
dP − ρ

dü
dP · v

−
(
∂σ

∂P
+ ∂σ

∂∇u
· ∇ du

dP + ∂σ

∂ξ

dξ
dP

)
· ∇v

− ϕ

(
dξ̇
dP − ∂R

∂P
− ∂R

∂∇u
· ∇ du

dP − ∂R

∂ξ

dξ
dP

) dΩ dt.

(2.6)
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We group terms to obtain

dO
dP =

∫ T

0

∫
Ω

( ∂o
∂P

− ∂σ

∂P
· ∇v + ϕ

∂R

∂P

)
− ρv · dü

dP

−
(

∇v · ∂σ

∂∇u
− ϕ

∂R

∂∇u

)
·
(

∇
(

du
dP

))

+ ∂o

∂u

du
dP − ϕ

dξ̇
dP +

(
∂o

∂ξ
− ∇v · ∂σ

∂ξ
+ ∂R

∂ξ
ϕ

)
dξ
dP

 dΩ dt.

(2.7)

The terms that include dü
dP and dξ̇

dP are integrated by parts temporally, while
the term that includes ∇

(
du
dP

)
is treated with divergence theorem in space.

This yields

dO
dP =

∫ T

0

∫
Ω

( ∂o
∂P

− ∂σ

∂P
· ∇v + ϕ

∂R

∂P

)

+
[
−ρv̈ + ∂o

∂u
+ ∇ ·

(
∇v · ∂σ

∂∇u
− ϕ

∂R

∂∇u

)]
· du

dP

+
(
ϕ̇+ ∂o

∂ξ
− ∇v · ∂σ

∂ξ
+ ∂R

∂ξ
ϕ

)
dξ
dP

 dΩ dt

−
∫ T

0

∫
∂Ω

(
∇v · ∂σ

∂∇u
− ϕ

∂R

∂∇u

)
n · du

dP dS dt

+
[∫

Ω

(
−ρv · du̇

dP + ρv̇ · du
dP − ϕ

dξ
dP

)
dΩ
]T

0
.

(2.8)

We eliminate the dependence on du
dP and dξ

dP by choosing a particular v and ϕ

such that the respective terms multiplying them become zero. As du̇
dP

∣∣∣
t=0

=
du
dP

∣∣∣
t=0

= 0, and dξ
dP

∣∣∣
t=0

= 0 (since u, u̇ and ξ are prescribed at t = 0 as initial
conditions), we eliminate the contributions from boundary terms by choosing
v|t=T = v̇t=T = 0 and ϕ|t=T = 0.

We conclude that the expression for the sensitivity is

dO
dP =

∫ T

0

∫
Ω

 ∂o
∂P

− ∂σ

∂P
· ∇v + ϕ

∂R

∂P

 dΩ dt (2.9)
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where the adjoint variables v and ϕ satisfy the evolution

ρv̈ − ∇ ·
(

∇v · ∂σ

∂∇u
− ϕ

∂R

∂∇u

)
= ∂o

∂u
on Ω,

ϕ̇ = ∇v · ∂σ
∂ξ

− ∂R

∂ξ
ϕ− ∂o

∂ξ
on Ω,(

∇v · ∂σ

∂∇u
− ϕ

∂R

∂∇u

)
n = 0 on ∂fΩ,

v = 0 on ∂dΩ,

v|t=T = v̇|t=T = 0, ϕ|t=T = 0.

(2.10)

We note that the conditions for the adjoint variables are given at the end time
t = T . Thus, the adjoint system should be solved backwards in time starting
from t = T and moving to t = 0.

Putting all of this together, we use the following procedure to solve the opti-
mization problem (2.3). We start with an initial value for the parameter set
P . We then solve the forward problem (2.2) for u(t), ξ(t) followed by the
adjoint problem (2.10) for v(t), ϕ(t). These are used in (2.9) to compute the
sensitivities. The sensitivities are used to update the parameters and the pro-
cess is repeated until convergence. The schematic for the algorithm is shown
in Figure 2.1.

Scaling

We now discuss how the numerical cost of the algorithm shown in Figure 2.1
scales respect to the number of parameters. The forward problem ((2.2) labeled
(F) in the figure) is largely independent of the number of parameters, as is the
adjoint problem ((2.10) labeled (A)). The calculation of the sensitivity ((2.9)
labeled (S)) and the parameter update (labeled (U)) scale linearly, but do not
involve the solution of any equations. Thus the overall cost of each iteration
is

Cost(NP ) = A+BNP , where A >> B (2.11)

where NP is the number of parameters. In other words, the cost is linear with
a small coefficient. This is in contrast with gradient-free approaches that scale
as AαNP for some α since NP is the dimension of the search space.
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Figure 2.1: Schematic representation of the iterative algorithm to obtain ma-
terial parameters. The forward and adjoint problem are given by (2.2) and
(2.10), respectively. The sensitivity is given by (2.9).

2.2.2 J2 Elasto-viscoplasticity

Governing equations

We now specialize to a specific example of a J2 plastic material with isotropic
power-law hardening and rate dependence in the small strain setting [37, 30].
We denote the displacement as u and the strain as ε = (∇u + ∇uT )/2. The
plastic strain is εp and the accumulated plastic strain is

q̇ =
√

2
3 ε̇

p · ε̇p. (2.12)

The body is linearly elastic before yield, with the stress and stored elastic
energy density as

σ = Cεe and W e = 1
2ε

e · Cεe, (2.13)

respectively, where C is the elastic modulus and εe = ε − εp is the elastic
strain. We assume a von Mises yield criterion with yield strength σy, power
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law isotropic hardening with potential

W p(q) = σy

q + nεp0
n+ 1

(
q

εp0

)(n+1)/n
 , (2.14)

with εp0 the reference plastic strain and n the hardening exponent, and isotropic
power law rate hardening with dissipation potential

ψ(q̇) =


g∗(q̇) := mσy ε̇

p
0

m+1

(
q̇
ε̇p

0

)(m+1)/m
q̇ ≥ 0,

∞ q̇ < 0
, (2.15)

where ε̇p0 is the reference plastic strain rate, and m is the rate-sensitivity ex-
ponent.

The governing equations for the fields {u, q, εp} are

ρü = ∇ · Cεe on Ω,

0 ∈ σM − ∂W p

∂q
− ∂ψ(q̇) on Ω,

ε̇p = q̇M on Ω,

u = u0 on ∂uΩ,

f = Cεe · n̂ on ∂fΩ,

u|t=0 = u̇|t=0 = 0, q|t=0 = 0, εp|t=0 = 0,

(2.16)

where u0 is the applied displacement on ∂uΩ, f is the applied traction on
∂uΩ, σM =

√
2
3s · s is the Mises stress, s := Cεe − (1/N) tr(Cεe) is the stress

deviator, and M := (1/σM)s is the flow direction. We have assumed quiescent
initial conditions.

The governing equations for quasistatic evolution can be obtained by ignoring
the inertial term in the momentum balance, and the initial conditions for the
displacement.

Adjoint method for sensitivities

We seek to find the material parameters by solving the optimization problem
(2.3) with (2.16) replacing (2.2) as the constraint for a suitable objective O.
We follow Section 2.2.1 to find the sensitivity using the adjoint method; the
details are provided in Appendix A.1. The sensitivity is

dO
dP =

∫ T

0

∫
Ω

[
γq̇

(
−∂2W p

∂q∂P
− ∂2g∗

∂q̇∂P

)]
dΩ dt, (2.17)
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where the adjoint variables v, γ, and ζ, being dual to the forward variables u,
q, and εp, satisfy the evolution relations

ρv̈ − ∇ ·
(
C∇v + γq̇

∂σM
∂ε

− q̇ζ · ∂M
∂ε

)
= −∂o

∂u
on Ω,

d
dt

[
γ

(
σM − ∂W p

∂q
− ∂g∗

∂q̇

)
− γq̇

∂2g∗

∂q̇2 − ζ ·M
]

= −γq̇ ∂
2W p

∂q2 on Ω,

dζ
dt = ∇ξ · ∂

2W e

∂ε∂εp
+ γq̇

∂σM
∂εp

− q̇ζ · ∂M
∂εp

on Ω,

v|t=T = v̇|t=T = 0, γ|t=T = 0, ζ|t=T = 0.

(2.18)

Note that these equations are solved backward in time as before.

We obtain the equation in the quasistatic setting by ignoring the inertial (v̈)
term in the first equation, and the final conditions on v̇ in the last.

2.2.3 Numerical implementation

We discretize the equations in space using standard P = 1 Largrange polyno-
mial finite elements for the displacement u and the corresponding adjoint vari-
able v. The plastic quantities q and εp are spatially discretized at quadrature
points. In dynamics, we adopt a mixed scheme for the temporal discretization.
For the governing equations (2.16), we use an explicit central difference update
for the displacement, but an implicit backwards Euler scheme for the plastic
updates. Similarly, for the adjoint equations (2.18) we use an explicit central
difference method for the adjoint displacement v, and implicit backwards Eu-
ler scheme for the plastic adjoints γ, ζ. In quasistatic evolution, we use an
implicit backward Euler scheme for temporal discretization of all variables.
Further details are provided in Appendix A.2.

We solve the optimization problem iteratively starting from an arbitrary ini-
tial guess. We update the parameter set using the gradient-based method of
moving asymptotes optimization scheme [47]. This technique for solving con-
strained optimization problems has been used extensively in the optimal design
community to solve PDE-constrained design problems over both small [3] and
large parameter sets [39, 1]. We compare this with other optimization ap-
proaches in Appendix A.3. We allow the optimization to run for a set number
of iterations, with this number chosen large enough such that the objective
plateaus. We implement the numerical method in the deal.ii Finite Element
Library [5, 4].
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Synthetic and Converged Viscoplastic Material Parameters
σy/µ εp0 n ε̇p0 (/s) m Õ Oind

P gen 0.001935 0.02245 3.23 5.00×105 2.00 – –
P init 0.005000 0.05000 5.00 3.00×105 5.00 – –
PQS 0.002127 0.03932 3.05 4.75×105 1.88 5.59×10−9

(2.74×10−4)
0.0069
(1.452)

PDC 0.001734 0.02859 2.87 4.05×105 4.50 1.44×10−4

(1.81×10−1)
0.021
(1.452)

Table 2.1: Summary of results. The parameters used to generate the synthetic
data, the initial guess and ones obtained through the proposed method in the
quasistatic tension (QS) and dynamic compression (DC) experiments. The
final objectives are reported in the table with the initial objectives in the
parenthesis.

2.3 Demonstration and validation

We now demonstrate and validate the method described above using two ex-
amples with synthetic data. The first example is a quasistatic compression
test on a plane-strain specimen while the second is an extended dynamic im-
pact test. In both cases, we generate synthetic data using numerical simula-
tions of a material model with properties similar to that of copper. Specif-
ically, we take the shear modulus to be µ = 46.7 GPa, a Poisson ratio of
ν = 0.3656, and the density to be ρ = 8.93 × 103 kg/m3, with the other
parameters P = {σy, εp0, n, ε̇

p
0, m} as shown in the the first row (P gen) of

Table 2.11. We use these parameters, and the forward problem described in
Section 2.2.2 above, to simulate the respective experiments to generate the
data Dexp. We then use this data to obtain the material parameters using
the indirect inversion method described in Section 2.2.2. We initialize these
calculations with an initial guess P init that are significantly different from the
ground truth P gen. The P gen, P init and recovered parameters for both experi-
ments are summarized in Table 2.1.

2.3.1 Quasistatic compression test of a plane strain specimen

The first example is a thick plate with an off-center hole subjected to qua-
sistatic compression shown in Figure 2.2(a). We consider a geometry with

1The stress scales as the shear modulus µ and therefore we use it to normalize all our
calculations.
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Figure 2.2: Results for the quasistatic compression of a thick plate with offset
hole. (a) Geometry and boundary conditions. (b) Normalized objective from
2.20 vs iteration number. (c) Results of an independent uniaxial stress-strain
test. (d) Deformed configurations at the final time-step for the ground truth
data with the accumulated plasticity q.

L/H = 0.8, R/H = 0.1, Loff/H = 0.1, and Hoff/H = 0.04. We assume plane
strain conditions. We impose uniform vertical displacement

u0(t) = ˙̄εHt, (2.19)

with a nominal or macroscopic strain rate ˙̄ε on the top boundary, T , while the
bottom surface is held fixed. The experimental data Dexp consists of the full-
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field displacement uexp(x, T ) = u(x, T ) at the final time T , and the reaction
load history f exp

R (t) :=
∫

T Cεen dΓ. We emphasize that we only use the full-
field displacement at the final time step2. We further assume that we have
data from n tests with varying rates. We define our objective to be

O(P ) :=
n∑
i=1

αu
L4

∫
Ω

|ui(x, T ) − uexp,i(x, T )|2dΩ

+ αf
Tiµ2L2

∫ Ti

0

∥∥∥f iu(t) − f exp,i
R

∥∥∥2
dt


where {ui, qi, εp,i} satisfy 2.16 for each i = 1, . . . , n

(2.20)

where the superscript indexes each of the tests, and αu and αf are scaling
factors that balance the weights of the two objective terms.

We consider a data-set from three tests (n = 3) on the same geometry and
material, but differing in the loading rate. The loading rates span two orders
of magnitude, with macroscopic strain rates of 102, 103, and 104/s, reaching
a final macroscopic strain of ε̄ = 0.1 over 100 time-steps. The data-set is
generated synthetically from forward simulations using the parameters P gen

in Table 2.1. We then use the proposed approach with the objective (2.20).
Full numerical details of the forward and adjoint problem can be found in
Appendix A.2.1 and Appendix A.2.3

The results are shown in Figure 2.2(b-d) and the recovered parameters are
listed in Table 2.1. Figure 2.2(b) shows the change in the objective as we
iterate. It drops rapidly but then gradually stabilizes after a little over 100
iterations decreasing by a roughly a factor 105. The values of the recovered
parameters after 300 iterations is listed as PQS in the Table 2.1. We recover
the normalized yield strength σy/µ to within 10%, but the strain and rate
hardening parameters differ significantly. This is true despite the fact that
our objective is extremely small, with an objective value on the order of 10−9.
This means that the experiment with three tests at three strain rates are
unable to distinguish between the two sets of parameters, the parameters P gen

used to generate the data and the recovered parameters P rec. This is further
2It is typical in such tests to use a high speed camera to capture multiple snapshots

and thus have the displacement field over many snapshots. We could extend our method to
include multiple snapshots, but we chose not to do so to understand how much information
we can obtain from a minimal amount of data since the inversion from DIC to displacement
fields can also add computational cost.
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demonstrated in Figure 2.2(d) which compares the accumulated plastic strain
computed using the two sets of parameters, P gen and PQS.

Independent objective We found that the parameters we recover PQS is
different from those used to generate the data P gen even though the difference
in the measured quantities (objective) are very small. Therefore, we consider a
zero-shot test where we evaluate our results against an independent objective
that is not used in the inverse problem. We simulate the material response
with the two sets of parameters with an independent uniaxial tension test.
The resulting stress-strain curves are shown in Figure 2.2(c), and they agree
well. Thus, even the independent uniaxial stress tension test is also unable to
distinguish between the two sets of parameters.

To assess this quantitatively, we define a independent objective to be the aver-
age relative root mean square error of the material response for tests performed
at n different strain rates:

Oind = 1
n

n∑
i=1

(∫
(σrec(ε) − σgen(ε))2 dε∫

σ2
gen dε

)1/2

, (2.21)

where σgen is the uniaxial stress computed using P gen while σrec is the uniaxial
stress-strain curve generated using the recovered parameters. The value of Oind

in Table 2.1 confirms the results in Figure 2.2(c) that the two sets of parameters
can not be distinguished in independent uniaxial stress-strain curves.

We conclude this section by studying the robustness of the method to the
initial guess, objective and mesh size.

Sensitivity to initial guess We consider three tests with different and
quite distinct initialization sets {P init

1 , P init
2 , P init

3 }. These are shown, along
with their corresponding recovered parameter sets in Table 2.2. We observe
that the method is insensitive to the initial parameter guess, yielding only
slight variations in the recovered parameters with the objective remaining on
the order of 10−9 for all of the recovered parameter values.

Sensitivity to objective The parameters αu and αf in the objective func-
tion represent the weights for the displacement data and the force data, re-
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σy/µ εp

0 n ε̇p
0 (/s) m O Oind

P gen 0.001935 0.02245 3.23 5.00×105 2.00
Sensitivity to initial guess

P init
1 0.005000 0.05000 5.00 3.00×105 5.00 2.74×10−4 1.452

P rec
1 0.002127 0.03932 3.05 4.75×105 1.88 5.59 × 10−9 0.0069

P init
2 0.01 0.1 2.0 2.0×105 6.0 6.43×10−4 3.791

P rec
2 0.002064 0.03352 3.09 8.16×105 2.23 2.81×10−9 0.0060

P init
3 0.0075 0.075 4.0 4.0×105 1.0 3.49×10−4 1.91

P rec
3 0.002142 0.04039 3.05 3.62×105 1.71 7.37×10−9 0.0128

Sensitivity to objective
P gen 0.001935 0.02245 3.23 5.00×105 2.00 – –
P init

1 0.005000 0.05000 5.00 3.00×105 5.00 – 1.452
αf /αu = 0.1 0.002081 0.03456 3.08 5.34×105 1.96 4.44 × 10−9 0.0049
αf /αu = 1 0.002127 0.03932 3.05 4.75×105 1.88 5.59 × 10−9 0.0069
αf /αu = 10 0.002132 0.04009 3.04 4.98×105 1.87 2.44 × 10−9 0.0048

Sensitivity to meshsize
P gen 0.001935 0.02245 3.23 5.00×105 2.00 – –
P init 0.005000 0.05000 5.00 3.00×105 5.00 – 1.452
h = h0 0.002036 0.03233 3.08 6.81×105 2.26 9.94 × 10−10 0.0031
h = h0/2 0.002127 0.03932 3.05 4.75×105 1.88 5.59 × 10−9 0.0060
h = h0/4 0.002150 0.04410 3.00 4.56×105 1.95 7.50 × 10−9 0.0089
h = h0/8 0.002129 0.04410 3.00 4.47×105 2.18 8.44 × 10−9 0.0090

Table 2.2: Robustness of the proposed method for the quasistatic experiment.

spectively. Table 2.2 shows the recovered set of parameters for three different
orders of αf/αu, with all of them showing similar performance.

Sensitivity to mesh size To confirm the convergence of solution with re-
spect to the mesh size, we perform the optimization on different mesh refine-
ment levels. Table 2.2 shows the recovered parameters for four mesh resolu-
tions ranging from 384 to 24,576 elements. As the recovered parameters only
differ slightly between the four meshes, we conclude that the solution does not
depend on mesh resolution.

We conclude that the method accurately recovers elasto-viscoplastic material
parameters from data obtained from the final snapshot and force-history of
three quasistatic tests. While the values of the recovered and generate param-
eters differ slightly, these parameters are unable to distinguish either observa-
tions of the test, or the zero-shot independent test, and possibly reflects the
degeneracy of the constitutive model.
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2.3.2 Dynamic compression of thin specimens

The second example we consider is that of dynamic impact of a cylinder. We
consider a thin cylindrical specimen that Ω := Ω×(0, h) with cross-section Ω ∈
R2 and thickness of h ∈ R. Figure 2.3(a) shows the case where Ω is a circular
annulus. The cylinder is placed on an anvil and impacted on the top with
a striker whose cross section is larger than that of the cylinder. Ignoring an
irrelevant rigid translation, this corresponds to the following imposed boundary
conditions:

u3(X1, X2, 0, t) = 0, u3(X1, X2, h, t) = (λ(t) − 1)h (2.22)

where λ(t) is the imposed nominal axial stretch. We assume that the con-
tact with the anvil and the striker is friction-free, and that the specimen is
sufficiently small so that we may assume uniform axial strain,

u(X1, X2, X3, t) = ū(X1, X2, t) + (λ(t) − 1)X3 e3, (2.23)

where ū := Ω̄ 7→ R2 is the in-plane displacement. This enables us to reduce
this to two space dimensions, see Appendix A.4 for details.

Our experimental data Dexp consists of the final in plane displacement ūexp

(X1, X2, T ) and the net axial force history f exp
R (t). Notice that this is more data

than is typically collected in a classical dynamic impact experiment, where
only f exp

R is measured. However, we may measure ūexp(X1, X2, T ) by placing
a speckle pattern on the face of the specimen, imaging it before and after the
impact, and using digital image correlation. We repeat the test n times, and
consider the following objective

O(P ) :=
n∑
i=1

αu
L4

∫
Ω

|ūi(X1, X2, T ) − ūexp,i(X1, X2, T )|2 dΩ̄

+ αf
Tiµ2L4

∫ T

0
|f iu − f exp,iR |2 dT


where {ūi, qi, εp,i} satisfy (A.27) for i = 1, . . . , n,

(2.24)

and f exp,iu :
∫

Ω̄(Cε̄e,i)33 dS is the net vertical force. αu and αf are weights
associated with the displacement and force components of the objective. L, µ
and Ti are characteristic length, shear modulus, and characteristic time, re-
spectively.
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Figure 2.3: Results for the dynamic compression of circular annulus. (a) Ge-
ometry and deformation. (b) Applied stretch along the annulus thickness (c)
Normalized objective from (2.24) vs iteration number. (d) The net vertical
force applied to the annulus over time. (e) Comparison of accumulated plas-
ticity q. (f) Results of an independent uniaxial stress-strain test.
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σy/µ εp

0 n ε̇p
0 (/s) m O Oind

P gen 0.001935 0.02245 3.23 5.00×105 2.00
Sensitivity to initial guess

P init
1 0.005000 0.05000 5.00 3.00×105 5.00 1.81×10−1 1.452

P rec
1 0.001734 0.02859 2.87 4.05×105 4.50 1.44×10−4 0.021

P init
2 0.01 0.1 2.0 2.0×105 6.0 5.55×10−1 3.791

P rec
2 0.001793 0.06623 2.11 2.40×105 4.50 8.57×10−4 0.079

P init
3 0.0075 0.075 4.0 4.0×105 1.0 2.12×10−1 1.91

P rec
3 0.0022 0.07812 2.70 6.02×105 1.09 2.93×10−4 0.090

Sensitivity to objective
P gen 0.001935 0.02245 3.23 5.00×105 2.00 – –
P init

1 0.005000 0.05000 5.00 3.00×105 5.00 1.81×10−1 1.452
αf /αu = 0.1 0.001726 0.03583 2.71 3.46×105 4.58 1.47 × 10−4 0.050
αf /αu = 1 0.001734 0.02859 2.87 4.05×105 4.50 1.44×10−4 0.021
αf /αu = 10 0.001778 0.03929 2.69 3.51×105 4.81 0.87 × 10−4 0.043

Sensitivity to geometry
P gen 0.001935 0.02245 3.23 5.00×105 2.00 – –
P init

1 0.005000 0.05000 5.00 3.00×105 5.00 1.81×10−1 1.452
Circular 0.001734 0.02859 2.87 4.05×105 4.50 1.44×10−4 0.021
Ellipse 0.001921 0.04590 2.55 3.10×105 3.14 1.81 × 10−5 0.020
Flower hole 0.001735 0.03892 2.63 3.51×105 4.43 2.92 × 10−4 0.060
Flower 0.001800 0.02768 2.93 3.93×105 3.04 8.49 × 10−5 0.023

Table 2.3: Robustness of the proposed method for the dynamic compression
experiment.

Figure 2.4: Objective curves for the dynamic compression test with respect to
iterations for different mesh sizes.

We apply our method to a specimen whose cross-section is a circular annulus
shown in Figure 2.3(a). We generate synthetic data for n = 3 tests with im-
posed thickness strains shown in Figure 2.3(b) that correspond to initial strain
rate in the range ε̇ = 102 −104 s−1 with the parameters P gen. We initialize our
iterative optimization approach with the parameters P init. αu and αf are cho-
sen such that the contribution of both parts of the objective are approximately
equal, αf/αu = 1. Figure 2.3(c) shows the evolution of the objective with it-
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Figure 2.5: Results for the dynamic compression of elliptic annulus . (a)
Normalized objective from 2.24 vs iteration number. (b) The net vertical force
applied to the annulus over time. (c) Comparison of accumulated plasticity q.
(d) Results of an independent uniaxial stress-strain test.
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Figure 2.6: Results for the dynamic compression of flower-shaped hole . (a)
Normalized objective from 2.24 vs iteration number. (b) The net vertical force
applied to the annulus over time. (c) Comparison of accumulated plasticity q.
(d) Results of an independent uniaxial stress-strain test.
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Figure 2.7: Results for the dynamic compression of disc with flower-shaped
specimen . (a) Normalized objective from 2.24 vs iteration number. (b) The
net vertical force applied to the annulus over time. (c) Comparison of accu-
mulated plasticity q. (d) Results of an independent uniaxial stress-strain test.
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eration. The objective decreases rapidly at first and then stabilizes at a value
with a factor greater than 103 than the initial value. The resulting parameters
are shown in Table 2.1 as PDC. As in the previous quasistatic compression
test, there is good agreement with the yield strength, but not for the hardening
parameters. Despite the fact that the objective is very small, the experimental
observations agree well, as shown in Figures 2.3(d,e). Figure 2.3(d) compares
the experimental reaction force with the one simulated with the recovered pa-
rameters, and we observe excellent agreement. Figure 2.3(e) compares the
accumulated plastic strain computed with the original parameters P gen with
those computed with the recovered parameters PDC. Again, we see good
agreement. Finally, we conduct the zero-shot test of comparing the response
in uniaxial tensile tests. Figure 2.3(f) shows the results of the independent
stress-strain test, and we again see very good agreement.

Finally, we demonstrate the robustness of our method.

Sensitivity to initial guess We consider three tests with different and
quite distinct initialization sets {P init

1 , P init
2 , P init

3 }. These are shown, along
with their corresponding recovered parameter sets in Table 2.3. We observe
that the method is insensitive to the initial parameter guess, yielding only
slight variations in the recovered parameters with the objective remaining on
the order of 10−4 for all of the recovered parameter values.

Sensitivity to objective The parameters αu and αf in the objective func-
tion represent the weights for the displacement data and the force data, re-
spectively. Table 2.3 shows the recovered set of parameters for three different
orders of αf/αu, with all of them showing similar performance.

Sensitivity to mesh size To confirm the convergence of solution with re-
spect to the mesh size, we perform the optimization for three different mesh
sizes. Figure 2.4 shows the objective versus optimization iterations for differ-
ent mesh sizes. Since the objective remains the same for all mesh sizes, we
conclude that it is safe to assume the solution does not depend on the size of
the mesh.
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Sensitivity to configuration The geometry of the specimen can signifi-
cantly impact the inversion methodology. Certain geometries can induce a
wide range of strains during compression, providing datasets with richer infor-
mation about the material properties. To investigate this, we performed the
inversion on different cross-sectional geometries, specifically circular, elliptical,
and flower-shaped configurations. The results for the elliptic annulus, disc with
flower-shaped hole and flower-shaped specimen are shown in Figures 2.5, 2.6
and 2.7, respectively. The recovered parameters for these configurations are
compared in Table 2.3. Due to the geometry of the ellipse configuration, the
average forces experienced is much higher than the other two configurations,
leading to more efficient recovery of parameters and a lower overall objective
value. Furthermore, the lack of angular symmetry of the strain field in the
ellipse provides a richer dataset, resulting in a more efficient inversion.

2.4 Conclusion

Material characterization through a constitutive model is necessary to close the
balance laws and allow for continuum modeling. Traditional approaches rely
on experimental configurations that yield uniform states of stress and strain
(rate), and can therefore be easily inverted to characterize the constitutive law.
However, these approaches only probe highly selected and idealized states and
trajectories, thereby leading to large uncertainties in the complex states and
trajectories that arise in the applications of the resulting models. Further,
some of these configurations require careful alignment to achieve the idealized
states, further limiting the amount of data that can be collected. In this
work, we have introduced an alternate approach that uses a combination of
PDE-constrained optimization and full-field observation techniques to obtain
material models from complex experiments.

We formulate the problem of learning the constitutive model as an indirect in-
verse problem. We assume that the model is given in a parametrized form: this
can be either classical where one has a few parameters or a hyperparametrized
formulation like a neural network. We recast this inverse problem as a PDE-
constrained optimization where we seek to find the parameters that minimize
the difference between experimentally measured quantities, and the corre-
sponding quantities computed using the parameters subject to the balance
laws (PDE-constraint). We follow an iterative gradient-based approach where
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we use the adjoint method to compute the sensitivities. This results in an
adjoint partial differential equation (linear in space and quasilinear in time)
that is no more expensive to solve than the forward problem. The result-
ing algorithm is shown in Figure 2.1. As noted in the introduction, our work
builds on prior work in the literature on the finite-element updating and PDE-
constrained optimization.

In this paper, we describe the formulation, first for a general history depen-
dent material and then for the specific model of a J2 elasto-viscoplasticity. We
then demonstrate it with synthetic data in two experimental configurations:
quasistatic compression of a thick plate with a hole, and extended dynamic
compression. In forthcoming work, we demonstrate the method against ex-
perimental data (part 2).

We point out a number of salient features of this approach. First, the method
scales linearly (see Section 2.2.1) with the number of parameters in a model
with a small pre-factor to the linear term. Therefore, this method is ideally
suited for complex models with a large number of parameters including a
hyperparametrized formulation like a neural network. We demonstrate this in
forthcoming work (part 3).

Second, the method is able to recover complex behavior with relatively little
data. In the quasistatic test described in Section 2.3.1, we only used the strain
field at the final time instead of a series of snapshots. This is because this test
used a complex geometry and full-field information, and thus probed multiple
trajectories through the adjoint method. At the same time, the computational
cost of the method is relatively independent of the amount of data: so we could
have easily incorporated multiple snapshots.

Third, the approach is versatile. We have demonstrated this by applying it
to two different configurations. Further, the approach is capable of addressing
non-smooth problems. We applied the method here to elasto-viscoplasticity
including a yield criterion. This is difficult to do with a method that uses a
numerical derivative. In forthcoming work (part 2), we extend the approach
to indentation including contact.

Finally, the formulation does not make any assumptions about isotropy or
homogeneity. Our current work addresses learning single crystal behavior from
observations on polycrystals.
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C h a p t e r 3

LEARNING CONSTITUTIVE RELATIONS FROM
EXPERIMENTS: II. DYNAMIC INDENTATION

Akerson, A., Rajan, A., D. Casem and Bhattacharya, K., 2025. “Learning
viscoplastic constitutive behavior from experiments: II. Dynamic indentation.”
In preparation.

Contributions: A.R. and A.A. developed the computational code and per-
formed simulations for the synthetic and experimental section, respectively.
D.C. performed the experiments required for material characterization. K.B.
supervised the project and conceptualized the methodology. A.R., A.A. and
K.B. wrote the manuscript.

3.1 Introduction

The engineering of solutions involving complex materials and phenomena re-
quires a constitutive relation that describes the properties of the material.
This constitutive relation is typically obtained empirically by conducting ex-
periments. However, we cannot measure the constitutive relation directly and
it has to be obtained through the solution of an inverse problem. In fact,
we cannot even directly measure the quantities like stress, strain, strain rate
and energy density that comprise the constitutive relation. Instead, they have
to be inferred from quantities like displacements and total forces that can be
measured in the laboratory. Thus, the problem of inferring constitutive re-
lations from experiments, and thereby completing the continuum mechanical
formulation, requires the solution of an indirect inverse problem.

In part I of this work [2], we proposed an approach where this indirect in-
verse problem is formulated as a partial differential equation constrained op-
timization problem. The constitutive relation is postulated as a parametrized
relation; this could either be a classical constitutive relation or a hyper-
parametrized neural network. The problem of identifying the constitutive
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relation, then, is to find the parameters that minimize the different between
the experimental observation and the corresponding quantities computed by
solving the governing equations (PDE constraint). We adopt a gradient-based
optimization approach, where we compute the sensitivity using the adjoint
method. We survey the literature, describe the method broadly and demon-
strate it against quastistatic and dynamic experiments using synthetic data.

In this part II, we extend the work to dynamic indentation, and demonstrate
the method with both synthetic and experimental data. Since their introduc-
tion by J.A. Brinnell over a century ago, indentation tests have been widely
used in the static setting to study the hardness of materials. Koeppel and
Subhash [11] introduced dynamic indentation by adapting a split Hopkinson
pressure bar to study the dynamic hardness of materials. Since then, this
methods and adaptations based on it have been used by various researchers
due to the relative ease of use [4, 18, 21, 8]. However, obtaining quantitative
information about the constitutive behavior has remained a challenge for a
number of reasons (e.g., [13]). Dynamic indentation leads to a complex time-
dependent state of stress, and elastic-plastic deformation. Addressing these is
the purpose of the approach that we are developing. Further, we have contact
between indenter and the specimen. Contact, is a one-sided constraint, and
this requires additional theoretical development to that presented in part I.
This is one of the main objectives of this paper. The second objective is to
test the method against experimental data. We do so against experiments in
both rolled hardened armor (RHA) steels, and aluminum. In each case, we
demonstrate the ability of our method to recover elasto-plastic constitutive
behavior with a very few tests.

This paper is divided into 5 sections. We begin in section 3.2.1 by presenting
the details for the constitutive law and the evolution laws. Section 3.2.2 de-
scribes the method for performing inversion. Following which, we show results
of the inversion algorithm in section 3.3 and 3.4. Section 3.5 concludes the
study.

3.2 Formulation and method

We build on the method developed in [2] by generalizing to include contact.
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3.2.1 Governing equations

We begin by recalling the constitutive relations, balance laws and contact
conditions. We formulate the latter two in weak form.

Constitutive Model We consider an elastic-plastic body of mass density ρ
occupying the domain Ω ⊂ RN over time (0, T ), governed by small strain, J2
plasticity with power-law isotropic hardening and power law rate-sensitivity [19,
15]. We assume the displacement field u : (0, T ) × Ω 7→ RN is fixed to u = u0

on a portion of the boundary ∂uΩ. Additionally, we consider a surface traction
f applied to a portion of the boundary ∂fΩ and an applied body force b. The
elasto-plastic potential of the body has contributions from the elastic energy,
the plastic potential, and the plastic dissipation,

U(u, q, εp) =
∫

Ω

[1
2ε

e · Cεe +W p(q) +
∫ t

0
ψ(q̇) dt

]
dΩ, (3.1)

where εp : (0, T ) × Ω 7→ RN×N is the plastic strain and q : (0, T ) × Ω 7→ R is
the accumulated plastic strain

q̇ =
√

2
3 ε̇

p · ε̇p. (3.2)

C is the stiffness tensor, εe := ε−εp is the elastic strain, and ε := (∇u+∇uT )/2
is the symmetric gradient of the displacement field. W p is the power-law plastic
potential

W p(q) = σy

q + nεp0
n+ 1

(
q

εp0

)(n+1)/n
 , (3.3)

where σy is the yield stress, εp0 is the reference plastic strain, and n is the
hardening exponent. We consider a power-law dissipation potential which
enforces the monotonicity of the accumulated plasticity,

ψ(q̇) =


g∗(q̇) := mσy ε̇

p
0

m+1

(
q̇
ε̇p

0

)(m+1)/m
q̇ ≥ 0,

∞ q̇ < 0
, (3.4)

where ε̇p0 is the reference plastic strain rate, and m is the rate-sensitivity ex-
ponent.

Dynamic Rigid Contact We now discuss rigid contact in the context of
dynamic indentation. Here, we consider the simplified case of frictionless con-
tact. However, the presented formulation may be readily extended to include
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friction. We consider a convex, rigid indentor occupying ΩI ⊂ RN which
may come into contact with the original elastic, J2 plastic body occupying
Ω ⊂ RN . Here, we consider N = 3. The centroid position and orientation of
the indentor is described by qI := {xI , oI}, xI ∈ RN , with oI ∈ RN+1 describ-
ing the quaternion orientation. We consider a continuous contact function
CI : RN × RN × RN+1 7→ R such that CI(x, qI) < 0 if x ∈ ΩI and CI(x, qI) ≥ 0
if x /∈ ΩI . In the case of a spherical indentor of radius R, the contact function
may take the form

CsphereI (x, qI) := |x− xI | −R. (3.5)

Then, we consider the contact condition on boundary ∂Ω. We enforce CI(x, qI) ≥
0 through the Lagrange multiplier and slack variables λ, ℓ : ∂Ω 7→ R.

Balance Laws We derive the governing equations by writing the action
integral based on the elasto-plastic potential, with a Lagrange multiplier for
contact:

Ã(u, q, εp, λ) :=
∫ t2

t1

[ ∫
Ω

ρ

2 |u̇|2 dΩ − U(u, q, ε)

+
∫

Ω
b · u dΩ +

∫
∂f Ω

f · u dS

−
∫
∂Ω
λ(CI(X + u, qI) − ℓ2) dS

]
dt.

(3.6)

Stationarity of this action integral over the variable set {u, q, εp, λ} gives the
evolution relations

0 =
∫

Ω
[ρü · δu+ Cεe · ∇δu− b · δu] dΩ

−
∫
∂f Ω

f · δu dS −
∫
∂Ω
λ
∂CI
∂u

· δu dS ∀δu ∈ K0,

0 ∈ σM − ∂W p

∂q
− ∂ψ(q̇) on Ω,

ε̇p = q̇M on Ω,

0 = CI(X + u, qI) − ℓ2 on ∂Ω,

u|t=0 = u̇|t=0 = 0, q|t=0 = 0, εp|t=0 = 0,

(3.7)

where we now have the additional contact condition and associated contact
force.
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Numerics We discuss the discretizations and numerical schemes we use to
solve for the deformation and plasticity evolution for each of the previously
presented scenarios. The full details of this is presented in B.1. In all of these,
the spatial discretization for the displacement field u is through standard P = 1
Largrange polynomial finite elements. The plastic quantities q and εp are
spatially discretized at quadrature points. To handle the contact condition
of (3.7), we adopt a staggered mixed update through a predictor-corrector
algorithm [7, 17]. The displacements and velocities are first updated explicitly
through a central difference scheme assuming no contact. Then, if penetration
is detected, a correction force is computed and applied which maintains the
contact condition. Then, the plastic quantities are updated with the usual
implicit backwards Euler scheme.

3.2.2 Indirect inverse problem of parameter identification

We now turn to the problem of obtaining the elasto-viscoplastic material pa-
rameters, specifically P := {σy, εp0, n, ε̇

p
0, m}, from dynamic indentation

tests.

Optimization Problem We formulate the inverse problem for finding the
elasto-viscoplastic material parameters as an optimization problem. Following
Section 3.2.1, we assume experimental data Dexp := {uexp, M exp}, where uexp

is partial displacement data and M exp is a collection of macroscopic measurable
quantities. Then, the optimization problem may be written as

inf
P∈P

O(P, u, q, εp, λ,Dexp)

Subject to : Evolution for {u, q, εp, λ} from (3.7).
(3.8)

Here, the objective function is left general, however, it is expected that it at-
tains its minimum value when the associated values computed from {u, q, εp, λ}
match the data Dexp.

Adjoint Method for Sensitivities We apply the adjoint method to obtain
the sensitivities following [1] and the general approach of 3.2.1. We assume an
objective of integral form,

O(P, u, q, εp, λ,Dexp) =
∫ T

0

∫
Ω
o(P, u, q, εp, λ,Dexp) dΩ dt. (3.9)
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We introduce the adjoint variable set {v, γ, µ, b} associated, respectively, with
{u, q, εp, λ}. Performing the adjoint method gives the sensitivities as

dO
dP =

∫ T

0

∫
Ω

[
γq̇

(
− ∂W p

∂q∂P
− ∂2g∗

∂q̇∂P

)]
dΩ dt, (3.10)

where the adjoint variables ξ, γ, and µ satisfy the evolution relations

0 =
∫

Ω

ρv̈ · δu+
(
C∇v + γq̇

∂σM
∂ε

− q̇µ · ∂M
∂ε

)
· ∇δu

+ ∂o

∂u
· δu

 dΩ +
∫
∂Ω

(
lλ
∂CI
∂u

− λv · ∂
2CI

∂u∂u

)
· δu dS ∀δu ∈ K0

d
dt

[
γ

(
σM − σ0 − ∂g∗

∂q̇

)
− γq̇

∂2g∗

∂q̇2 − µ ·M
]

= −γq̇ ∂σ0

∂q
on Ω

dµ
dt = ∇ξ · ∂

2W e

∂ε∂εp
+ γq̇

∂σM
∂εp

− q̇µ · ∂M
∂εp

on Ω

0 = ∂CI
∂u

· v − ∂o

∂λ
on ∂Ωλ̸=0

v|t=T = v̇|t=T = 0, γ|t=T = 0, µ|t=T = 0.

Here, we may interpret λl as a Lagrange multiplier enforcing the constraint
that ∂CI

∂u
· v = ∂o

∂λ
on regions of the boundary with nonzero λ.

Numerics The spatial discretization for each of the adjoint variables are
equivalent to that of their associated forward variables. We use temporal dis-
cretizations which are analogous to the forward problem which accommodate
the backwards in time nature of the adjoint problem. In the case of dynamic
evolution of the displacement field u, the adjoint displacements are approxi-
mated with a explicit central difference method. Then, the adjoint Lagrange
multiplier which satisfies the adjoint constraint is solved through a predictor-
corrector scheme similar to the contact condition for the forward problem.
Finally, the adjoint plastic variables are solved implicitly through a forward
Euler scheme. The full details of this can be found in B.3.

Following the solution of the forward and adjoint problem, the objective and
sensitivities are computed. Both are approximated with a simple Riemann
sum in time and integrated with Gauss-quadrature in space.
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Figure 3.1: Diagram for the rigid indentation test. We consider a cylindrical
domain Ω of radius RC and height h indented on its top surface ∂CΩ by a rigid
sphere of radius RI to a prescribed depth δ.

3.3 Demonstration using synthetic data

We consider a rigid sphere of radius RI described by position xI(t) indenting
a body which occupies a circular cylindrical domain Ω, which has radius RC

and height h in the reference configuration. This is shown in Figure. Then,
following the formulation of Section 3.2.1, we look to match the net vertical
load applied to the indentor F sim

net (t) :=
∫
∂CΩ −λN · e3dS to the corresponding

experimental data F exp
net (t). However, the explicit contact model introduces

slight oscillations in the net load. Additionally, experimental data for inden-
tation forces tends to be noisy. Thus, simply matching the L2 norm in time
of these two quantities, as is done in the previous examples, is inappropriate.
Thus, we consider a mollification where a convolution filter in time is applied
to both the modeled and experimental loads

F̃ sim,exp
net (t) := 1∫ T

0 K(t− τ)dτ

∫ T

0
K(t− τ)F sim,exp

net (t) dτ, (3.11)

where K ∈ H1((−T, T )) is a positive kernel. Here, a re-normalization is
applied to ensure unit weighting. Figure 3.2 shows a typical net force vs
indentation depth plot for a dynamic indentation simulation with and without
the filter.

Then, we consider the optimization problem

inf
P∈P

O =
r∑
i=1

∥∥∥F̃ sim,i
net − F̃ exp,i

net

∥∥∥
L2((0,T ))

,

Subject to : Evolution for {u, q, εp, λ} from (3.7) for i = 1, . . . , r.
(3.12)

We again consider r trajectories at different indentation velocities.

Again, we generate synthetic data by running a forward set of simulations for
a set parameters P gen. Then, starting from P init, we apply the gradient-based
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Figure 3.2: Raw and filtered net indentation force Fnet vs indentation depth δ
for a typical dynamic indentation simulation.

Synthetic and converged viscoplastic material parameters
σy/µ εp0 n ε̇p0 (/s) m

P gen 0.001935 0.02245 3.23 5.00×105 2.00
P init 0.005000 0.05000 5.00 3.00×105 5.00
P conv 0.001961 0.03018 2.88 4.98×105 2.43

Table 3.1: Parameters for synthetic data generation and ones obtained through
the adjoint method for the quasi-static tension, dynamic compression and
dynamic indentation test.

optimization scheme. We consider r = 4 trajectories differing only by their
indentation velocities of V = 1.56, 6.25, 25, and 100m/s.

Table 3.1 shows the parameter values for those used to generate the synthetic
data (P gen), as well as the final converged parameter values (P conv) and the ini-
tial parameter values (P init). Figure 3.5a shows the relative objective function
through optimization iterations. We see that the objective function decreases
by 4.8 orders of magnitude over 500 iterations. This is more iterations than was
required by both the quasi-static (300) and the dynamic annular compression
case (150). Figure 3.4 shows the final deformed configurations corresponding
to the synthetic data and the converged parameter sets for each of the tested
impact velocities, while Figure 3.3 shows the load displacement curves. We see
excellent agreement for both the deformed configurations and net load. Addi-
tionally, the converged set of parameters is close to the values used to generate
the synthetic data. Figure 3.5b shows the quasi-static, uniaxial stress-strain
behavior computed for a single element in tension for both the synthetic pa-
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Figure 3.3: Filtered force vs indentation depth curves for the synthetic and
the converged paraemter sets for the four indenter velocities tested.

rameters and learned parameters at different strain rates. While the values
of the optimized parameters differ somewhat from those used to generate the
synthetic data, their behavior in tension is quite similar. However, it does
begin to differ at the larger strain rate (106).

Overall, the parameter optimization for the dynamic indentation test behaves
worse than the quasi-static and annular compression example. This maybe
due to a few factors. Firstly, we have only considered the force values in the
objective function. This is the most easily accessible data from dynamic in-
dentation testing. Secondly, the filtering applied to the loads in the objective
function may affect the optimization. While this is necessary to clean up os-
cillations in the computations and those expected in real data, it may also
expand the solution space of the optimization problem. Finally, the computa-
tional cost associated with the 3-dimensional nature of this example requires
coarser-grained simulations. This may also contribute to the larger error seen
in this example when compared to the 2D ones previously studied.
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Figure 3.4: Deformed configurations at the final timestep for the indentation
tests at the impact site for the synthetic and converged parameter sets at each
of the impacting velocities of V = 1.56, 6.25, 25, and 100m/s.

(a) Normalized objective vs iteration number for
the indentation test parameter optimization.

(b) Uniaxial stress-strain re-
sponse of a single element in
quasi-static tension for the syn-
thetic and learned parameters
from the indentation test at dif-
ferent strain rates.

Figure 3.5: Optimization results and validation for synthetic data.

3.4 Demonstration using experimental data

3.4.1 Experimental setup

In this section, we attempt to invert experimental data obtained from dynamic
indentation tests. Here, a specimen is impacted by a comparatively rigid
indenter moving at an initial velocity. The indentation is performed using
a Kolsky bar impact testing system [23, 8]. The setup consists of an input
bar, an indenter bar, a striker and the specimen, which is placed between the
input and output bars. For the test, the striker impacts the opposite end of
the input bar, causing the sample to get compressed between the input and
indenter bars. A combination of interferometers and strain-gages are used
to measure indentation forces and velocity simultaneously. Thus, the set of
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measurables include the indentation force and velocity profile of the indenter
as a function of time. The spherical indenter was made of tungsten-carbide
and mounted on a 38.6mm output bar. For simplicity of computations, the
indenter is assumed to be rigid. In our tests, the peak indentation force was
O(100N), total penetration depth O(10µm) and deformation rate of O(1 m/s).
The optimization problem we are trying to solve is

inf
{E,σy ,n,ε

p
0}

O = αIN
r∑
i=1

∥∥∥F̃ sim,i
net − F̃ exp,i

net

∥∥∥
L2((0,T ))

,

Subject to : Evolution for {u, q, εp, λ} from (3.7) for i = 1, . . . , r.
(3.13)

We seek to obtain the elastic modulus, yield stress and hardening parameters.
Indentation data was performed at the same order of velocities, and therefore
does not posses rich information about the rate effects. The inversion results
for rolled homogeneous armous steel and polycrystalline aluminum alloy Al
6061-T6 are presented below.

3.4.2 Rolled homogeneous armour steel

We consider a rectangular RHA steel specimen of dimensions 10mm×10mm×
4mm . The indentation is directed parallel to the direction of the shortest di-
mension (4mm). The indenter surface is spherical with a radius of 1608µm.
Full details of the setup can be found in [8]. Two tests are performed with
different velocity profiles of the striker to obtain the experimental data shown
in Figure 3.6a. We apply the inversion method, and recover the set of inverted
parameters P conv shown in Table 3.2. The normalized objective through op-
timization iterations are shown in Figure 3.7a. We find the recovered force-
indentation depth curves are in close agreement with the experimental data
shown in Figure 3.6b and 3.6c.

Converged parameters obtained using experimental indentation data
Recovered Computed

E (GPa) σy (MPa) εp0 n µ (GPa) λ (GPa)
P conv 172.919 664.8012 0.0425 10.5537 68.08 79.92

Table 3.2: Recovered parameters for RHA Steel. We perform inversion over
elastic modulus (E), yield stress (σy) and hardening parameters (εp0, n). We
have also presented the computed values of shear modulus (µ) and lame pa-
rameter λ.
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(a) Velocity profiles for
experimental inversion of
indetation.

(b) Force versus Inden-
tation curves for velocity
profile 1.

(c) Force versus Inden-
tation curves for velocity
profile 2.

Figure 3.6: Indentation inversion results for Rolled Homogeneous Armor Steel

(a) Objective plot for inversion of ex-
perimental data.

(b) Material point calculation for uni-
axial stress-strain response for ten-
sile loading. For both responses, the
stress has been normalized using µ =
82.68 GPa.

Figure 3.7: Optimization results and validation of learnt model from experi-
mental indentation results.

Material properties of RHA steel from literature [16, 5]
E (Gpa) µ (GPa) A(MPa) B(MPa) n C λ (GPa)
200 82.68 740 780 0.106 0.0891 97.06

Table 3.3: Johnson-Cook parameters for RHA Steel from [16, 5]. We present
these parameters to compare the values with our recovered set of parameters.
The material point calculation for an uniaxial stress-strain response has been
shwon in figure 3.7b.
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We further compare the efficacy of recovered material properties with existing
models as shown in figure 3.7b. Most popularly, RHA Steel is modeled using
Johnson-Cook model using the material properties as shown in table 3.3. A
material point calculation is performed for uniaxial tensile loading to compare
the normalized stress-strain response of the recovered material parameters and
Johnson-Cook model obtained from pervious literature. The learnt parameters
are able to capture the behaviour with good efficacy.

3.4.3 Polycrystalline aluminum alloy Al 6061-T6

Similarly, we used previously published data on indentation of aluminium [9].
The material properties were determined by performing an inversion analysis
using the dynamic spherical indentation data at an average indentation veloc-
ity of v̄ = 1.36m/s. The complete velocity profile of the indenter has been
shown in figure 3.8a. The experimental force-depth response was input exper-
imental data to our indirect inversion technique. The recovered response com-
pared with finite element (FE) simulations incorporating the Johnson–Cook
plasticity model, which accounts for strain hardening, strain rate sensitiv-
ity, and thermal softening effects. The simulation results closely matched
the experimental indentation force-depth curves, with minor deviations at-
tributed to boundary condition approximations and potential variations in
strain rate sensitivity. The extracted material parameters demonstrated rea-
sonable agreement with previously published values for Al 6061-T6, validating
the methodology for characterizing dynamic material behavior using indenta-
tion techniques. Additionally, the estimated strain rate sensitivity parameter,
obtained through optimization of the force-displacement curves, aligned well
with independent high-strain-rate experimental data, further supporting the
robustness of the inversion approach.

Converged parameters obtained using experimental indentation data
Recovered Computed

E (Gpa) σy (MPa) εp0 n µ (GPa) λ (GPa)
P conv 85.776 386.88 4.94 1.96 32.24 62.65

Table 3.4: Recovered parameters for Al 6061-T6 Steel. We perform inversion
over elastic modulus (E), yield stress (σy) and hardening parameters (εp0, n).
We have also presented the computed values of shear modulus (µ) and lame
parameter λ.
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(a) Velocity profile for experimen-
tal inversion of indetation.

(b) Force versus Indentation
curves for velocity profile 1.

Figure 3.8: Indentation results for polycrystalline aluminium allow Al 6061-
T6.

(a) Objective plot for inversion of ex-
perimental data.

(b) Uniaxial stress-strain response of
a single element in quasi-static com-
pression. For both responses, the
stress has been normalized using µ =
27 GPa.

Figure 3.9: Optimization results and validation of learnt model from experi-
mental indentation results.
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Material properties of Al 6061-T6 from literature [9, 3]

E (Gpa) µ (GPa) A(MPa) B(Mpa) n C λ (GPa)
70 26 300 200 0.3 0.05 51
69 24 324 114 0.42 0.002 50

Table 3.5: Johnson-Cook parameters for Al6061-T6 from previous literature
[9, 3]. We present these parameters to compare the values with our recovered
set of parameters. The material point calculation for an uniaxial stress-strain
response has been shown in figure 3.9b. Since polycrystalline aluminium alloy
is known to have a slight variation in response due to several factors, we present
two different set of parameters.

3.5 Conclusions

The persistent challenge in material characterization revolves around the con-
ventional approach of direct inversion, wherein measurable data is initially
converted into constitutive quantities before being inverted to deduce mate-
rial properties. Unfortunately, this method necessitates intricate and expensive
experimental setups. Previously, we introduced an alternative approach called
the indirect inversion to directly obtain material properties from the measur-
able data. This methodology offers a more efficient and practical means of ma-
terial characterization mitigating the shortcomings associated with traditional
techniques. We formulate the problem as a PDE-constrained optimization,
with an objective function quantifying the disparity between measurable data
and predictions and the optimization process is conducted over the material
parameter set. Leveraging the adjoint method, we compute the sensitivity of
the objective concerning the material parameters. Subsequently, we employ
gradient descent to minimize the objective, iterating until the objective falls
below a predefined tolerance threshold.

In this study, We present results pertaining to the inversion of synthetically
generated data of dynamic rigid indentation data for a J2-isotropic material
featuring power-law strain and rate hardening. The material parameters ob-
tained through convergence closely align with the synthetic parameters em-
ployed to generate the data. To further validate the accuracy of the converged
parameters, we conduct quasi-static uniaxial tensile tests and compare the re-
sponse with the assumed synthetic parameter set. Additionally, our inversion
methodology extends to experimental data, encompassing both indentation
data and uniaxial stress-strain data. Notably, we apply this approach to RHA-
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steel specimens, successfully obtaining reasonable values for yield and strain
hardening parameters. This demonstrates the effectiveness of our technique
across synthetically and experimentally acquired datasets.

In future works, we aim to extend our methodology to encompass a gener-
alized constitutive law by integrating a history-dependent neural network as
the constitutive model [20, 10, 22]. Recently, recurrent neural operators have
been shown to effectively capture the behaviour of plastic materials through
an arbitrarily defined set of internal variables [14, 6, 12]. The scalability of
our method, operating at order 1 with respect to the number of parameters,
ensures that the computation time for inversion remains unaffected even with
the incorporation of a recurrent neural operator with large number of param-
eters. Moreover, there is a need for an automated experimental setup for
generating high-throughput data for inversion. Implementing such a system
will enable us to acquire data rapidly for robust material characterization.
Another additional avenue to be researched is the mathematical formulation
of the relationship between prior and posterior distribution of the material
parameters. This includes a systematic investigation into efficiently obtaining
various parameters from different types of data.
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C h a p t e r 4

LEARNING CONSTITUTIVE RELATIONS FROM
EXPERIMENTS: III. MACHINE LEARNING

Rajan, A. and Bhattacharya, K., 2025. “Learning viscoplastic constitutive
behavior from experiments: III. Machine Learning.” In preparation.

Contributions: A.R. developed the computational code and performed
simulations. K.B. conceptualized the methodology. A.R. and K.B. wrote the
manuscript.

4.1 Introduction

The characterization of constitutive behavior from experimental observations
remains a central problem in continuum mechanics. While the governing equa-
tions of motion are well-established through the balance laws of mass and
momentum, they are not closed without a constitutive relation that captures
the material’s response to deformation [12, 4]. This relation cannot be mea-
sured directly; instead, it must be inferred from observable quantities such as
displacements and forces. Recovering constitutive behavior from such data is
therefore a challenging task, as it requires reasoning backward from global or
partial field measurements to local material response—often under conditions
of limited data, measurement noise, and complex loading.

In part I [1], we developed a computational framework for identifying material
behavior from experimental data by casting the problem as a partial differen-
tial equation (PDE)-constrained optimization. The constitutive relation was
represented using a classical isotropic J2 elasto-viscoplasticity model, with
a set of parameters governing the stress–strain response. These parameters
were inferred by minimizing the discrepancy between measured experimental
quantities—such as displacements or reaction forces—and the predictions from
solving the governing evolution laws. The optimization was performed using
gradient-based methods, with sensitivities efficiently computed via the adjoint
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method. This formulation enabled accurate recovery of material parameters in
both quasistatic and dynamic settings using synthetic data, while remaining
computationally efficient and scalable.

In part II, we built on that foundation and extended the approach to dynamic
indentation experiments. These tests, which involve time-dependent effects
and contact interactions, present rich yet challenging data for material char-
acterization [18, 17, 6, 24, 27]. We incorporated contact constraints into the
variational formulation and tested the method on both synthetic and exper-
imental data. By applying the approach to indentation tests on aluminum
and rolled hardened armor steel, we demonstrated that accurate constitutive
behavior can be recovered from limited experimental observations—even in
complex loading regimes. This extension broadened the method’s applicabil-
ity to more practical and experimentally relevant scenarios.

While classical constitutive models—such as isotropic plasticity or viscoelas-
ticity—have been remarkably successful in many settings, they rely on ex-
plicit formulas with a small number of parameters and simplifying assumptions
about material behavior. These assumptions often limit their applicability in
scenarios involving complex loading histories, anisotropy, or rate-dependent
effects. Even for homogeneous and isotropic materials, there remains an ongo-
ing debate about which constitutive models best capture observed behaviors
under multiaxial or non-proportional loading conditions [22, 16, 14, 32]. As
materials and applications become more complex, so too must the models that
describe them. This has led to a growing interest in using hyper-parameterized
representations—such as neural networks—to approximate constitutive rela-
tions directly from data. These models offer the expressive capacity to capture
subtle, nonlinear, and history-dependent behaviors without committing to a
specific closed-form structure [20, 9, 15]. However, realizing this potential re-
quires addressing the significant challenges associated with data generation,
representation, and inference.

Physics-Informed Neural Networks (PINNs) have emerged as a popular ap-
proach for learning constitutive models by embedding physical laws directly
into the training process [10, 13, 29, 8]. In this framework, the neural net-
work serves as the constitutive relation—mapping, for instance, strain to
stress—and is trained not only to fit experimental observations (such as dis-
placement or force data), but also to minimize residuals of the governing partial
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differential equations (PDEs), as well as enforce boundary and initial condi-
tions. However, a central limitation of PINNs is that the PDE is not solved
exactly, rather it is only approximately satisfied by penalizing its residuals at
a finite number of collocation points.

In the field of plasticity, researchers have started using neural networks for
multiscale modeling, where they serve as a surrogate for expensive fine-scale
simulations. In traditional multiscale approaches, homogenization techniques
are used to relate microscopic structure and behavior to macroscopic response
[30]. However, these can be computationally intensive, especially for inelastic
or history-dependent materials as equations are required to be solved in mul-
tiple length scales [5, 28, 11, 31]. Efforts have been made to computationally
acclerate these traditional techniques using GPUs, but they make significant
assumptions on the microscopic structure [33, 25]. Learning-based approaches
offer an efficient alternative: by training neural networks on the results of
high-fidelity simulations (e.g., direct numerical simulations of microstructure
or crystal plasticity), one can construct surrogate constitutive models that ac-
curately approximate the macroscale response. These models can be integrated
directly into finite element simulations, significantly reducing computational
cost while retaining fidelity to the underlying physics. For example, neural
operators have been used to capture history-dependent behavior learned from
microstructural simulations, enabling real-time macroscale predictions in dy-
namic impact problems [21, 19]. Such efforts demonstrate the potential of
machine learning to bridge scales and serve as a conduit for embedding fine-
scale physics into macroscale models.

A new method for constitutive modeling of history dependent materials is
recurrent neural operators (RNOs) [21, 3, 7, 2, 23]. Unlike traditional feedfor-
ward neural networks that map inputs to outputs in a single pass, RNOs are
designed to model mappings between time-dependent function spaces. They
maintain an evolving hidden state that encodes the material’s memory, making
them naturally suited for history-dependent phenomena such as viscoelasticity
[7, 3], viscoplasticity [21, 2], or damage[23]. At each time step, the RNO takes
in the current strain (or strain rate) and updates the hidden state, which in
turn determines the stress response. This architecture enables the model to
learn complex temporal dependencies without the need to predefine internal
variables or their evolution laws. In this work, we aim to use a similar RNO
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architecture trained using the PDE-constrained framework.

In Part III of our series, we develop a framework for learning history-dependent
constitutive models using recurrent neural operators (RNOs) embedded within
a PDE-constrained optimization setting. Building on our previous work, we
replace the classical parametric constitutive relation with a data-driven model
that implicitly captures material memory through a learned recurrent struc-
ture. The RNO is trained by minimizing the discrepancy between observed
measurable data and the output of forward simulations that solve the governing
PDEs, ensuring that the learned model is both predictive and physically con-
sistent. Unlike PINNs, which penalize residuals without solving the PDEs, our
approach explicitly enforces the governing equations through numerical sim-
ulation. We demonstrate this method using synthetic dynamic experiments,
where the ground truth material response exhibits strong path dependence.
Our results show that the RNO-based model is able to accurately recover the
underlying mechanical behavior, outperforming classical models in scenarios
involving complex loading histories. This work highlights the potential of
neural operators to serve as general-purpose, structure-aware surrogates for
history-dependent constitutive behavior.

The paper is organized as follows. We present the methodology in Section
4.2 with details provided in the appendix. A recurrent neural operator based
constitutive model is assumed in section 4.2.1 and the framework for parameter
recovery is derived in section 4.2.2. We present the results for training the
model parameters in section 4.3.1 and validate the method in section 4.3.2.
We conclude with some comments in Section 4.4.

4.2 Methodology

In this section we provide the details of the framework for a RNO-based con-
stitutive model. The formulation is derived from our previous work [1]. We
formulate the problem of material behavior identification from experimental
data as a PDE-constrained optimization. In this section, we describe the for-
mulation for a viscoplastic constitutive law. We begin by introducing a class of
constitutive models that incorporate history dependence through internal vari-
ables. This is followed by a presentation of the governing equations, including
the momentum balance and the evolution laws for the internal variables. We
then pose the inverse problem: given partial observations from experiments,
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determine the set of material parameters that produces a state trajectory—via
the evolution laws—that best matches the measured data. This leads natu-
rally to a PDE-constrained optimization formulation. To efficiently compute
gradients of the objective with respect to the parameters under these con-
straints, we introduce the adjoint method, which yields the total derivative of
the objective while satisfying the governing equations. We then outline the
general solution procedure for the resulting optimization problem. Finally, we
comment on the scalability of the approach with respect to the dimensionality
of the parameterization.

4.2.1 Recurrent neural operator as a constitutive model

Viscoplastic materials are inherently history-dependent—their current stress
state is influenced not only by the instantaneous deformation but also by the
entire sequence of prior loading. Traditional constitutive models encode this
memory through internal variables governed by phenomenological evolution
laws. However, designing such models requires substantial physical insight
and may not capture complex or emergent behavior present in novel materi-
als. Neural networks offer a flexible alternative, and among them, recurrent
architectures are particularly well-suited for capturing history dependence due
to their natural ability to process sequential data. Recurrent neural operators
(RNOs) have recently been proposed as a powerful and general framework
for learning mappings between function spaces, particularly in the context of
PDE-constrained problems [21, 3, 7]. Furthermore, universal approximation
theorems has been proved for RNOs ability to capture viscoelastic and vis-
coplastic behavior [2, 21]. Their ability to model temporal evolution makes
them an attractive choice for representing constitutive relations in history-
dependent materials. In this work, we incorporate RNOs into our PDE-
constrained optimization framework to model both stress response and internal
state evolution directly from data, without prescribing explicit evolution laws.

Constitutive model and governing equations. We consider an open,
bounded domain Ω ⊂ Rn occupied by a deformable solid over the time inter-
val (0, T ). The body has material density ρ and is governed by a constitutive
model parameterized by a set of material parameters P = {PC, PRNO,σ, PRNO,ξ}.
Additionally, the material exhibits history dependence captured by a set of in-
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ternal variables ξ := {ξi}, i = 1, . . . , Nξ. Assuming a Perzyna-type kinetic
formulation, the constitutive behavior is expressed as

σ = Cε + SNN(∇u, ξ;PRNO,σ), ε = (∇u+ ∇uT )/2

ξ̇ = GNN(∇u, ξ;PRNO,ξ), (4.1)

where σ is the first Piola-Kirchhoff stress and u is the displacement field. C
is the elastic modulus tensor and ε is the strain tensor. SNN, GNN are neural
networks and {PRNO,σ, PRNO,ξ} represents the corresponding sets of weights
and biases. The functions SNN and GNN describe the non-linear stress response
and internal variable evolution, respectively. The classical material parameters
are PC, which is the elastic modulus. The constitutive model combines classical
linear elasticity with a recurrent neural operator (RNO) component. This
hybrid approach balances physical fidelity with expressive power: the classical
model captures well-established elastic behavior observed in a wide range of
materials, while the RNO component augments the model’s ability to capture
complex, uncharacterized, or nonstandard material responses. In doing so, the
RNO acts as a data-driven correction or extension to the phenomenological
framework.

The dynamic evolution of the body is governed by

ρü− ∇ · σ = b in Ω,

ξ̇ = GNN(∇u, ξ;P ) in Ω,

σn = f on ∂Ω,

u|t=0 = u̇|t=0 = ξ|t=0 = 0,

(4.2)

where b and f denote prescribed body and surface loads. The first equation
enforces conservation of linear momentum, while the second and third specify
the constitutive law and internal variable evolution. We assume quiescent
initial conditions.

4.2.2 Formulation of the optimization problem

We assume access to partial experimental data denoted byDexp := {uexp,M exp},
where uexp represents displacements recorded at select time instances and loca-
tions—typically only on parts of the boundary—and M exp denotes additional
macroscopic observables, such as net forces or spatially averaged strains. The
goal is to identify the parameter set P such that the predicted displacement
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and internal variable evolution from the model in (4.2) yield outputs that
match the measured data Dexp. This inverse problem is posed as a PDE-
constrained optimization problem:

inf
P∈P

O(P, u, ξ,Dexp)

Subject to: evolution of {u, ξ} governed by (4.2),
(4.3)

where P defines the admissible range of physical parameters. The objective
function O(P, u, ξ,Dexp) quantifies the mismatch between the model predic-
tions and experimental observations. Its structure can significantly affect both
the solution and the convergence behavior of the optimization; we explore these
aspects in Section 4.3.

Since each evaluation of the objective requires solving the full dynamic sys-
tem in (4.2), sampling-based approaches such as Bayesian inference or Monte
Carlo methods become prohibitively expensive—especially as the dimension of
P increases. These methods scale poorly, with costs growing exponentially in
the number of parameters. Therefore, we adopt a gradient-based optimization
framework, where cost scales primarily with the complexity of the forward
model rather than the parameter space dimension. This necessitates comput-
ing the sensitivities—the total derivative of the objective with respect to P ,
constrained by the governing PDEs. We use the adjoint method [26], a classi-
cal and efficient approach that provides these sensitivities at a computational
cost comparable to a single forward solve. The sensitivities are then used to
iteratively update P until convergence.

Adjoint method. We perform the adjoint method to obtain expressions
for the sensitivities. Without loss of generality, we consider an objective of
integral form

O(P, u, ξ,Dexp) :=
∫ T

0

∫
Ω
o(P, u, ξ,Dexp) dΩ dt. (4.4)

Then, the sensitivity is dO
dP subject to the constraint that the evolution laws

in (4.2) are satisfied. We may compute this by applying standard chain rule.
However, this would require expressions for du

dP and dξ
dP . These, resulting from

perturbations on the dynamic trajectory, are difficult to compute. Thus, we
instead apply the adjoint method to circumvent the need to compute them.
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We consider adding zero to the objective through the assumed satisfied weak
form of the evolution

O =
∫ T

0

∫
Ω
o(P, u, ξ,Dexp) dΩ dt

+
∫ T

0

{ ∫
Ω

[
−ρü · v − σ · ∇v + b · v − ϕ(ξ̇ −GNN)

]
dΩ

+
∫
∂Ω
f · v dS

}
dt,

(4.5)

where v and ϕ are test functions associated with momentum balance and
internal variable evolution. Then, differentiating with respect to P gives

dO
dP =

∫ T

0

∫
Ω

 ∂o
∂P

+ ∂o

∂u

du
dP + ∂o

∂ξ

dξ
dP − ρ

dü
dP · v

−
(
∂σ

∂P
+ ∂σ

∂∇u
· ∇ du

dP + ∂σ

∂ξ

dξ
dP

)
· ∇v

− ϕ

(
dξ̇
dP − ∂GNN

∂P
− ∂GNN

∂∇u
· ∇ du

dP − ∂GNN

∂ξ

dξ
dP

) dΩ dt.

(4.6)

After grouping terms, applying integration by parts and Gauss divergence
theorem, we eliminate the dependence on du

dP and dξ
dP by choosing a particular

v and ϕ. Substituting σ from equation 4.1, the expression for the sensitivities
reduces to

dO
dP =

∫ T

0

∫
Ω

 ∂o
∂P

−
(
∂C
∂P

+ ∂SNN

∂P

)
· ∇v + ϕ

∂GNN

∂P

 dΩ dt (4.7)

if the adjoint variables v and ϕ satisfy the evolution

ρv̈ − ∇ ·
(

∇v · C ∂ε

∂∇u
+ ∇v · ∂SNN

∂∇u
− ϕ

∂GNN

∂∇u

)
= ∂o

∂u
on Ω,

ϕ̇ = ∇v · ∂SNN

∂ξ
− ∂GNN

∂ξ
ϕ− ∂o

∂ξ
on Ω,(

∇v · C ∂ε

∂∇u
+ ∇v · ∂SNN

∂∇u
− ϕ

∂GNN

∂∇u

)
n = 0 on ∂Ω,

v|t=T = v̇|t=T = 0, ϕ|t=T = 0.

(4.8)

We note that the initial conditions for the adjoint variables are given at the
end time t = T . Thus, the adjoint system should be solved backwards in time
starting from t = T and moving to t = 0.

The general procedure is to start with an initial value for the parameter set
P . First, we solve the forward problem (4.2) for u(t), ξ(t). Then, the adjoint
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problem (4.8) is solved backwards in time for v(t), ϕ(t). These are used
in (4.7) to compute the sensitivities. Finally, the sensitivities are used to
update the parameter set through a gradient-based optimization algorithm
and the process is repeated until convergence. This formulation is general and
flexible, enabling the recovery of material behavior across a broad spectrum of
constitutive responses. The inversion can be carried out over the full parameter
set P = {PC, PRNO,σ, PRNO,ξ}, encompassing both physically motivated and
neural network-based components.

Scalability. A key advantage of the proposed framework is its scalability
with respect to the number of parameters. Since our method relies on adjoint-
based gradient computation, the optimization cost scales linearly with the
number of parameters, regardless of whether they are physical parameters in a
classical constitutive law or weights and biases in a neural network. As a result,
the framework remains computationally tractable even when incorporating
high-dimensional parameterizations such as those arising from RNOs, making
it well-suited for complex, data-driven constitutive modeling.

Numerics. We discuss the discretizations and numerical schemes we use
to solve for the deformation and internal variables in C.2. The spatial dis-
cretization for the displacement field u is through standard P = 1 Largrange
polynomial finite elements. The internal variables ξ are spatially discretized
at quadrature points.

4.3 Demonstration using synthetic data

We assess the performance of the neural operator-based constitutive model-
ing framework introduced in Section 4.2.1 by applying it to synthetic dynamic
experiments. These tests simulate high-rate compressive loading on thin cylin-
drical specimens and serve to validate whether the recurrent neural operator
(RNO) can accurately capture history-dependent plasticity from sparse yet
informative data.

We consider specimens of the form Ω := Ω × (0, h), where Ω ⊂ R2 is the
in-plane cross-section and h ≪ dimension(Ω) is the thickness. During testing,
the top and bottom faces are subjected to prescribed motion representative of
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an impact experiment:

u3(X1, X2, 0, t) = 0, u3(X1, X2, h, t) = (λ(t) − 1)h, (4.9)

where λ(t) is the nominal axial stretch. We assume uniform axial strain across
the thickness, so the kinematics simplify to:

u(X1, X2, X3, t) = ū(X1, X2, t) + (λ(t) − 1)X3 e3, (4.10)

where ū(X1, X2, t) is the in-plane displacement. This allows us to reduce
the problem to two spatial dimensions (see Appendix C.1 for details). The
synthetic dataset Dexp consists of:

• The final in-plane displacement field ūexp(X1, X2, T ), and

• The time history of the axial reaction force f exp
R (t).

While dynamic tests typically record only reaction forces, we assume additional
full-field displacement data is available—similar to that obtained using digital
image correlation (DIC) techniques applied before and after the experiment.
This richer dataset enables us to impose stronger constraints on the learning
process.

We simulate n dynamic tests with varied loading histories using a known J2
elasto-viscoplastic model. The material parameters used to generate the data
are listed in Table 4.1. These simulations form the ground-truth dataset for
training. To recover the RNO weights and biases P , we minimize the following
objective:

O(P ) :=
n∑
i=1

(
αu
L4

∫
Ω

|ūi(X1, X2, T ) − ūexp,i(X1, X2, T )|2 dΩ̄

+ αf
Tiµ2L4

∫ T

0
|f iu − f exp,iR|2 dt

)
,

f iu :=
∫

Ω̄
σ33 dS,

where {ūi, ξi} satisfy (4.2) for i = 1, . . . , n,

(4.11)

where {ūi, ξi} are the state variables for the i-th simulation, evolved according
to the neural constitutive model via the governing equations (4.2). The weights
αu and αf balance the contributions from displacement and force data, and
L, µ, and Ti are characteristic length, shear modulus, and time scales, respec-
tively. The recovery can be performed on all parameters in the constitutive
law 4.1 (on PC, PRNO,σ and PRNO,ξ).
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Synthetic Elasto-Viscoplastic Material Parameters

ρ
(g/cm3)

λ
(GPa)

µ
(GPa)

σy/µ εp0 n ε̇p0 (s−1) m

P gen 20 15.0 10.0 0.001 0.15 2.0 1.00×103 1.00

Table 4.1: The parameters used to generate the synthetic data. The consti-
tutive model used is a J2-isotropic viscoplastic model. λ and µ are the lame
parameters and σy is the yield stress. εp0, ε̇p0 are the reference plastic strain
and strain rate, respectively. n, m represent the exponents of strain hardening
and rate hardening, respectively.

Figure 4.1: Results for the dynamic compression of circular annulus. (a)
Geometry and deformation. (b) Applied stretch along the annulus thickness
(c) Normalized objective vs iteration number.

4.3.1 Learning using compression data

We apply our method to a specimen whose cross-section is a circular annu-
lus shown in Figure 4.1(a). We generate synthetic data for n = 3 tests with
imposed thickness strains shown in Figure 4.1(b) that correspond to initial
strain rate in the range ε̇ = 104 − 106 s−1 with the parameters P gen. αu and
αf are chosen such that the contribution of both parts of the objective are
approximately equal, αf/αu = 10. In general, we have noticed that the RNO
architecture is more efficient in learning the force data rather than the dis-
placement data, which is why we fix αf to be greater than αu. This is because
the experimental setting does not offer rich displacement data set for the RNO
to learn. The forces arising from compression of thin structures offer more in-
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Figure 4.2: Force of compression versus time and displacements

Figure 4.3: Results for the dynamic compression of flower hole configuration.
(a) Applied stretch along the annulus thickness (c) Normalized objective vs
iteration number.
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Figure 4.4: Force of compression versus time and displacements

formation, facilitating easier tuning of the weights and biases 1. Figure 4.1(c)
shows the evolution of the objective with iteration. We compare the inversion
for three cases: (i) a linear model (classical model, optimizing over PC) , (ii)
an RNO model with a single internal variable (RNO ξ ∈ R1, optimizing over
PRNO,σ, PRNO,ξ), (iii) an RNO model with 2 internal variables (RNO ξ ∈ R2)
and (iv) an RNO model with 5 internal variables (RNO ξ ∈ R5). Clearly, the
RNO models outperform the classical linear constitutive law and show signs of
better inversion with higher dimension of ξ. In classical plasticity theory, it is
often assumed that five internal variables are needed to describe the full range

1We observed similar phenomenon in our previous study [1]. A configuration with a
higher surface area produces higher compressive forces, enabling a better recovery.
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of inelastic behavior in two-dimensional materials. This assumption guides
our choice to test an RNO model with ξ = 5. However, our results reveal
that such a high-dimensional internal state may not be strictly necessary for
accurate modeling. Specifically, we observe that a model with only ξ = 2 in-
ternal variables is already capable of reproducing the experimental force and
displacement data with high fidelity. This suggests a form of degeneracy in
the optimization problem, where lower-dimensional representations can still
effectively capture the essential features of the material response. More re-
sults with other dimensions of ξ can be found in appendix C.3. The objective
decreases rapidly at first and then stabilizes at a value with a factor 103 than
the initial value. Despite the fact that the objective is very small, the experi-
mental observations agree well, as shown in Figures 4.2. Figure 4.2 compares
the experimental reaction force with the one simulated with the recovered pa-
rameters, and we observe excellent agreement. We also show the magnitude
of displacement seen for all the three models at the end time compared to the
displacements of the generated data. Again, we see good agreement.

We repeat the inversion for a specimen with a flower-shaped hole, shown in
figures 4.3 and 4.4, using the same set of strain rate conditions and weight-
ing parameters. The results closely mirror those of the circular case. The
RNO models outperform the classical linear model, with improved accuracy
for higher-dimensional internal states. The objective decreases rapidly and
stabilizes at a low value, and the simulated forces and displacements again
show excellent agreement with the generated data.

4.3.2 Validation

To validate the performance and generalizability of the RNO models, we con-
duct a compression test on a square specimen without any internal holes or
geometric complexities. This test serves as an out-of-distribution validation
case, as it differs from the configurations used during training. Specifically, the
loading profiles in this test are linear in time, in contrast to the exponential
loading conditions used to generate the training data. This allows us to eval-
uate how well the RNO models extrapolate to loading paths not seen during
training. The validation results are shown in Figure 4.5. The stretch along
the thickness direction as a function of time is presented in Figure 4.5a, while
the corresponding compression force response is shown in Figure 4.5b. In both
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(a) Linear stretch profiles for the
compression of square configuration
for validation.

(b) Compression force versus time
for validation.

Figure 4.5: Validation of the recovered models

measures, the RNO-based models significantly outperform the classical linear
constitutive model. In particular, they are able to closely track the ground
truth compression force, while the classical model exhibits large deviations.
These results demonstrate that the RNO models are capable of capturing the
underlying material behavior more accurately, even under loading protocols
that were not explicitly part of the training dataset.

While the RNO models perform well within the scope of this experiment, it is
important to acknowledge their limitations. In particular, neural networks are
known to struggle with extrapolation beyond the domain represented in the
training data. This limitation also applies to our RNO models: although they
generalize across variations in geometry and loading profiles within the same
experimental regime (i.e., compression of thin structures), they do not reliably
predict material response in fundamentally different settings. For example,
if we query the trained RNO with a strain trajectory outside the space of
compressive behavior—such as torsion, bending, or multiaxial tension—the
predictions become unstable or unphysical. This is not a shortcoming of our
specific model, but a general limitation of data-driven neural networks. A
common approach to improve generalization is to initialize the neural network
using pre-training on a known constitutive model. In this context, the RNO
architecture can be pretrained on stress-strain pairs generated from simulations
using classical constitutive laws (e.g., hyperelasticity or viscoplasticity). Such
a strategy would embed physical priors into the model from the outset and
reduce the burden on the data. We propose exploring this hybrid strategy
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in future work as a means to extend the utility of RNO models beyond their
current scope.

4.4 Conclusion

Conventional methods for material characterization rely on converting mea-
surable experimental data into stress-strain pairs, allowing the recovery of
constitutive parameters. To facilitate this conversion, experiments are typ-
ically designed under highly controlled and homogeneous conditions where
traction and displacement fields can be cleanly mapped to stress and strain.
In prior work, we developed a framework that bypasses this intermediate step,
recovering constitutive parameters directly from raw measurable data. This
is achieved by posing the problem as a PDE-constrained optimization, where
sensitivities are efficiently computed via the adjoint method. However, a key
limitation of that approach is the need to assume a specific functional form for
the constitutive law. With the rapid expansion of material systems and the
increasing complexity of material behavior, prescribing such a form a priori
has become increasingly difficult. Moreover, classical constitutive models are
often phenomenological, lack a foundation in physics, and require significant
domain expertise to define.

To address these limitations, we extend our earlier framework to incorporate
a neural network-based constitutive law. Specifically, we adopt a recurrent
neural operator (RNO) architecture due to its demonstrated ability to rep-
resent history-dependent behavior in a compact and generalizable manner.
We validate this framework using synthetically generated data of dynamic
compression on a thin annular specimen. Across a range of test cases, the
RNO significantly outperforms classical linear models in recovering the under-
lying material response. A limitation of the present work is that the trained
RNO model is specialized to the experimental configuration on which it was
trained—compression of thin structures—and does not generalize to markedly
different loading or geometrical scenarios. Future efforts could address this by
pretraining the neural architecture on synthetic data generated from known
constitutive models, thereby embedding physical priors and extending the util-
ity of the framework beyond the original training distribution.
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C h a p t e r 5

LEARNING HOMOGENIZATION FOR ELLIPTIC
OPERATORS

Bhattacharya, K., Kovachki, N.B., Rajan, A., Stuart, A.M. and Trautner, M.,
2024. “Learning homogenization for elliptic operators.” SIAM Journal on
Numerical Analysis, 62(4), pp.1844-1873.

Contributions: A.R. developed the code for a portion of the numerical re-
sults. N.B.K. and M.T. took the lead in the mathematical proofs, developed
the code, performed simuations. A.M.S. and K.B. supervised the mathemati-
cal proofs. N.B.K., M.T., A.M.S., and K.B. wrote the paper

5.1 Introduction

Homogenization theory is a well-established methodology that aims to elimi-
nate fast-scale dependence in partial differential equations (PDEs) to obtain
homogenized PDEs which produce a good approximate solution of the prob-
lem with fast scales while being more computationally tractable. In continuum
mechanics, this methodology is of great practical importance as the constitu-
tive laws derived from physical principles are governed by material behavior at
small scales, but the quantities of interest are often relevant on larger scales.
These homogenized constitutive laws often do not have a closed analytic form
and may have new features not present in the microscale laws. Consequently,
there has been a recent surge of interest in employing data-driven methods to
learn homogenized constitutive laws.

The goal of this paper is to study the learnability of homogenized constitutive
laws in the context of one of the canonical model problems of homogeniza-
tion, namely the divergence form elliptic PDE. One significant challenge in
applications of homogenization in material science arises from the presence of
discontinuities and corner interfaces in the underlying material. This leads to a
lack of smoothness in the coefficients and solutions of the associated equations,
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a phenomenon extensively studied in numerical methods for PDEs. Addressing
this challenge in the context of learning remains largely unexplored and is the
focus of our work. We develop underlying theory and provide accompanying
numerical studies to address learnability in this context.

In Subsection 5.1.1 we establish the mathematical framework and notation
for the problem of interest, state the three main contributions of the paper,
and overview the contents of each section of the paper. In Subsection 5.1.2
we provide a detailed literature review. Subsection 5.1.3 states the stability
estimates that are key for the approximation theory developed in the paper
and discusses the remainder of the paper in the context of these estimates.

5.1.1 Problem formulation

Consider the following linear multiscale elliptic equation on a bounded domain
Ω ⊂ Rd:

−∇x · (Aϵ∇xu
ϵ) = f x ∈ Ω, (5.1a)

uϵ = 0 x ∈ ∂Ω. (5.1b)

Here Aϵ(x) = A
(
x
ϵ

)
for A(·) which is 1-periodic and positive definite: A :

Td → Rd×d
sym,≻0, a condition which holds throughout this work. Assume further

that f ∈ L2(Ω;R) and has no microscale variation with respect to x/ϵ.

Our focus is on linking this multiscale problem to the homogenized form of
equation (5.1), which is

−∇x ·
(
A∇xu

)
= f x ∈ Ω, (5.2a)

u = 0 x ∈ ∂Ω, (5.2b)

where A is given by

A =
∫
Td

(
A(y) + A(y)∇χ(y)T

)
dy, (5.3)

and χ : Td → Rd solves the cell problem

−∇ · (∇χA) = ∇ · A, χ is 1-periodic. (5.4)

All of the preceding PDEs are to be interpreted as holding in the weak sense.
For 0 < ϵ ≪ 1, the solution uϵ of (5.1) is approximated by the solution u of
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(5.2), and the error converges to zero as ϵ → 0 in various topologies [4, 8, 50].
We assume that

∥A∥L∞ := sup
y∈Td

|A(y)|F < ∞

where | · |F is the Frobenius norm. Hence A ∈ L∞
(
Td;Rd×d

)
and Aϵ ∈

L∞
(
Ω;Rd×d

)
. Similarly, for A ∈ L2(Td;Rd×d), we define

∥A∥2
L2 :=

∫
Td

|A(y)|2F dy.

Also, for given β ≥ α > 0, we define the following subset of 1-periodic, positive-
definite, symmetric matrix fields in L∞

(
Td;Rd×d

)
by

PDα,β = {A ∈ L∞(Td;Rd×d) : ∀(y, ξ) ∈ Td × Rd, α|ξ|2 ≤ ⟨ξ, A(y)ξ⟩ ≤ β|ξ|2}.

For open set Ω ⊂ Rd, we denote the variation of a function u ∈ L1
loc(Ω) by

V (u,Ω) = sup
{ d∑
i=1

∫
Ω

∂Φi

∂xi
u dx : Φ ∈ C∞

0 (Ω;Rd), ∥Φ∥L∞(Ω;Rd) ≤ 1
}

and the set of functions of bounded variation on Td as

BV = {u ∈ L1(Td) : V (u,Td) < ∞}.

For further information on BV, we refer to [32]. Finally, we often work in the
Sobolev space H1 restricted to spatially mean-zero periodic functions, denoted

Ḣ1 :=
{
v ∈ W 1,2(Td)

∣∣∣∣ v is 1-periodic,
∫
Td
v dy = 0

}
;

the norm on this space is defined by

∥g∥Ḣ1 := ∥∇g∥L2 . (5.5)

Numerically solving (5.1) is far more computationally expensive than solving
the homogenized equation (5.2), motivating the wish to find the homogenized
coefficient A defining equation (5.2). The difficult part of obtaining the equa-
tion (5.2) is solving the cell problem (5.4). Although explicit solutions exist
in the one-dimensional setting for piecewise constant A [7] and in the two-
dimensional setting where A is a layered material [50], in general a closed
form solution is not available and the cell problem must be solved numerically.
Note that in general the action of the divergence ∇· on terms involving A in
the cell problem necessitates the use of weak solutions for A /∈ C1(Td,Rd×d);
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this is a commonly occurring situation in applications such as those arising
from porous medium flow, or to vector-valued generalizations of the setting
here to elasticity, rendering the numerical solution non-trivial. For this reason,
it is potentially valuable to approximate the solution map

G : A 7→ χ, (5.6)

defined by the cell problem, using a map defined by a neural operator. More
generally it is foundational to the broader program of learning homogenized
constitutive models from data to thoroughly study this issue for the divergence
form elliptic equation as the insights gained will be important for understand-
ing the learning of more complex parameterized homogenized models, such as
those arising in nonlinear elasticity, viscoelasticity, and plasticity.

The full map from A to the homogenized tensor A is expressed by A 7→
(χ,A) 7→ A, and one could instead learn the map

F : A 7→ A. (5.7)

Since the map (χ,A) 7→ A is is defined by a quadrature, we focus on the
approximation of A 7→ χ and state equivalent results for the map A 7→ A that
emerge as consequences of the approximation of χ. In this paper we make the
following contributions:

1. We state and prove universal approximation theorems for the map G

defined by (5.4) and (5.6), and map F defined by (5.3), (5.4), and (5.7).

2. We provide explicit examples of microstructures which satisfy the hy-
potheses of our theorems; these include microstructures generated by
probability measures which generate discontinuous functions in BV.

3. We provide numerical experiments to demonstrate the ability of neural
operators to approximate the solution map on four different classes of
material parameters A, all covered by our theoretical setting.

In Subsection 5.1.2 we provide an overview of the literature, followed in Sub-
section 5.1.3 by a discussion of stability estimates for (5.4), with respect to
variations in A; these are at the heart of the analysis of universal approxi-
mation. The main body of the text then commences with Section 5.2, which
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characterizes the microstructures of interest to us in the context of contin-
uum mechanics. Section 5.3 states universal approximation theorems for G(·)
and F (·), using the Fourier neural operator. In Section 5.4 we give numerical
experiments illustrating the approximation of the map G defined by (5.6) on
microstructures of interest in continuum mechanics. Details of the stability
estimates, the proofs of universal approximation theorems, properties of the
microstructures, and details of numerical experiments are given in Appendices
D.1, D.2, D.3, and D.4, respectively.

5.1.2 Literature review

Homogenization aims to derive macroscopic equations that describe the effec-
tive properties and behavior of solutions to problems at larger scales given
a system that exhibits behaviour at (possibly multiple) smaller scales. Al-
though it is developed for the various cases of random, statistically stationary,
and periodic small-scale structures, we work here entirely in the periodic set-
ting. The underlying assumption of periodic homogenization theory is that the
coefficient is periodic in the small-scale variable, and that the scale separation
is large compared to the macroscopic scales of interest. Convergence of the
solution of the multiscale problem to the homogenized solution is well-studied;
see [1, 12]. We refer to the texts [4, 8, 50] for more comprehensive citations to
the literature. Homogenization has found extensive application in the setting
of continuum mechanics [18] where, for many multiscale materials, the scale-
separation assumption is natural. In this work, we are motivated in part by
learning constitutive models for solid materials, where crystalline microstruc-
ture renders the material parameters discontinuous and may include corner
interfaces. This difficulty has been explored extensively in the context of nu-
merical methods for PDEs, particularly with adaptive finite element methods
[25, 9, 47, 49].

There is a significant body of work on the approximation theory associated
with parametrically dependent solutions of PDEs, including viewing these so-
lution as a map between the function space of the parameter and the function
space of the solution, especially for problems possessing holomorphic regularity
[13, 14, 11]. This work could potentially be used to study the cell problem for
homogenization that is our focus here. However, there has been recent interest
in taking a data-driven approach to solving PDEs via machine learning because
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of its flexibility and ease of implementation. A particular approach to learn-
ing solutions to PDEs is operator learning, a machine learning methodology
where the map to be learned is viewed as an operator acting between infinite-
dimensional function spaces rather than between finite-dimensional spaces [6,
33, 40, 46, 29]. Determining whether, and then when, operator learning models
have advantages over classical numerical methods in solving PDEs remains an
active area of research [3]. The paper [43] makes a contribution to this area, in
the context of the divergence form elliptic PDE and the map from coefficient
to solution when the coefficient is analytic over its domain; the authors prove
that ϵ error is achievable for a DeepONet [40] of size only polylogarithmic
in ϵ, leveraging the exponential convergence of spectral collocation methods
for boundary value problems with analytic solutions. However, in the setting
of learning homogenized constitutive laws in material science, discontinuous
coefficients form a natural focus and indeed form the focus of this paper. A
few characteristics make operator learning a promising option in this context.
First, machine learning has been groundbreaking in application settings with
no clear underlying equations, such as computer vision and language models
[21, 10]. In constitutive modeling, though the microscale constitutive laws are
known, the homogenized equations are generally unknown and can incorporate
dependencies that are not present on the microscale, such as history depen-
dence, anisotropy, and slip-stick behavior [51, 5]. Thus, constitutive models lie
in a partially equation-free setting where data-driven methods could be useful.
Second, machine learned models as surrogates for expensive computation can
be valuable when the cost of producing data and training the model can be
amortized over many forward uses of the trained model. Since the same mate-
rials are often used for fabrication over long time periods, this can be a setting
where the upfront cost of data production and model training is justified.

Other work has already begun to explore the use of data-driven methods for
constitutive modeling; a general review of the problem and its challenges, in
the context of constitutive modeling of composite materials, may be found in
[38]. Several works use the popular framework of physics-informed machine
learning to approach the problem [17, 52, 41, 19]. In [2], physical constraints
are enforced on the network architecture while learning nonlinear elastic con-
stitutive laws. In [34], the model is given access to additional problem-specific
physical knowledge. Similarly, the work of [53] predicts the Cholesky factor
of the tangent stiffness matrix from which the stress may be calculated; this
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method enforces certain physical criteria. The paper [26] studies approxima-
tion error and uncertainty quantification for this learning problem. In [20],
a derivative-free approach is taken to learning homogenized solutions where
regularity of the material coefficient is assumed. The work of [35] illustrates
the potential of operator learning methodology to model constitutive laws
with history dependence, such as those that arise in crystal plasticity. Finally,
a number of further works demonstrate empirically the potential of learning
constitutive models, including [44, 39, 54, 37].

However, the underlying theory behind operator learning for constitutive mod-
els lags behind its empirical application. In [7], approximation theories are
developed to justify the use of a recurrent Markovian architecture that per-
forms well in application settings with history dependence. This architecture
is further explored in [36] with more complex microstructures. Universal ap-
proximation results are a first step in developing theory for learning because
they guarantee that there exists an ϵ-approximate operator within the operator
approximation class, which is consistent with an assumed true model under-
lying the data [15, 31, 29, 28]. In addition to universal approximation, further
insight may be gained by seeking to quantify the data or model size required
to obtain a given level of accuracy; the papers [31, 28, 42] also contain work in
this direction, as do the papers [22, 48], which build on the analysis developed
in [13, 14, 11] referred to above. In our work we leverage an existing univer-
sal approximation theorem for Fourier neural operators (FNOs), a particular
practically useful architecture from within the neural operator (NO) class [28].
We take two different approaches to proving approximation theorems based
on separate PDE solution stability results in pursuit of a more robust under-
standing of the learning problem. Since the state of the field is in its infancy,
it is valuable to have different approaches to these analysis problems. Finally,
we perform numerical experiments on various microstructures to understand
the practical effects of non-smooth PDE coefficients in learning solutions. We
highlight the fact that in this paper we do not tackle issues related to the
non-convex optimization problem at the heart of training neural networks; we
simply use state of the art stochastic gradient descent for training, noting that
theory explaining its excellent empirical behaviour is lacking.

Throughout this paper we focus on equation (5.1), which describes a conduc-
tivity equation in a heterogeneous medium; a natural generalization of interest
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is to the constitutive law of linear elasticity, in which the solution is vector-
valued and the coefficient is a fourth order tensor. Though it is a linear elliptic
equation, we echo the sentiment of Blanc and Le Bris [8] with their warning
“do not underestimate the difficulty of equation (5.1).” There are many effects
to be understood in this setting, and resolving learning challenges is a key step
towards understanding similar questions for the learning of parametric depen-
dence in more complex homogenized constitutive laws where machine-learning
may prove particularly useful.

5.1.3 Stability estimates

At the heart of universal approximation theorems is stability of the solution
map (5.6); in particular continuity of the map for certain classes of A. In this
subsection, we present three key stability results that are used to prove the
approximation theorems in Section 5.3. The proofs of the following stability
estimates may all be found in Appendix D.1.

A first strike at the stability of the solution map (5.6) is a modification of the
classic L∞/H1 Lipschitz continuity result for dependence of the solution of
elliptic PDEs on the coefficient; here generalization is necessary because the
coefficient also appears on the right-hand side of the equation defining G(·) :

Proposition 1. Consider the cell problem defined by equation (5.4). The
following hold:

1. If A ∈ PDα,β, then (5.4) has a unique solution χ ∈ Ḣ1(Td;Rd) and

∥χ∥Ḣ1(Td;Rd) ≤
√
dβ

α
.

2. For χ(1) and χ(2) solutions to the cell problem in equation (5.4) associated
with coefficients A(1), A(2) ∈ PDα,β, respectively, it follows that

∥χ(2) − χ(1)∥Ḣ1(Td;Rd) ≤
√
d

α

(
1 + β

α

)
∥A(1) − A(2)∥L∞(Td;Rd×d). (5.8)

However, this perturbation result is insufficient for approximation theory be-
cause the space L∞ is not separable and it is not natural to develop approx-
imation theory in such spaces [16, Chapter 9]. While it is possible to define
the problem on a separable subspace of L∞, see Lemma 1, such spaces are not
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particularly useful in applications to micromechanics. Many natural models
for realistic microstructures work with classes of discontinuous functions in
which the boundary of material discontinuity can occur anywhere in the do-
main. Such functions cannot be contained in any separable subspace of L∞;
see Lemma 2. To deal with this issue it is desirable to establish continuity from
Lq to Ḣ1 for some q ∈ [2,∞). To this end, we provide two additional stability
results. The first stability result gives continuity, but not Lipschitz continuity,
from L2 to Ḣ1. The second stability result gives Lipschitz continuity from Lq

to Ḣ1, some q ∈ (2,∞).

Proposition 2. Endow PDα,β with the L2(Td;Rd×d) induced topology and let
K ⊂ PDα,β be a closed set. Define the mapping G : K → Ḣ1(Td;Rd) by A 7→ χ

as given by (5.4). Then there exists a bounded continuous mapping

G ∈ C(L2(Td; Rd×d); Ḣ1(Td;Rd))

such that G(A) = G(A) for any A ∈ K.

The preceding L2 continuity proposition is used to prove the approximation
results for the FNO in Theorems 7 and 8. While not necessary for the ap-
proximation theory proofs, the following proposition on Lipschitz continuity
from Lq to Ḣ1 establishes a more concrete bound on the approximation error,
which allows for additional analysis such as providing rough bounds on grid
error as discussed in Subsection 5.4.3.

Proposition 3. There exists q0 ∈ (2,∞) such that, for all q satisfying q ∈
(q0,∞], the following holds. Endow PDα,β with the Lq(Td;Rd×d) topology and
let K ⊂ PDα,β be a closed set. Define the mapping G : K → Ḣ1(Td;Rd) by
A 7→ χ as given by (5.4). Then there exists a bounded Lipschitz-continuous
mapping

G : Lq(Td;Rd×d) → Ḣ1(Td;Rd)

such that G(A) = G(A) for any A ∈ K.

Remark 4. Explicit upper bounds for q0 in Proposition 3 exist and are discussed
in Remark 12.
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5.2 Microstructures

The main application area of this work is constitutive modeling. In this sec-
tion we describe various classes of microstructures that our theory covers. In
particular, we describe four classes of microstructures in two dimensions:

1. Smooth microstructures generated via truncated, rescaled log-normal
random fields.

2. Discontinuous microstructures with smooth interfaces generated by Lip-
schitz star-shaped inclusions.

3. Discontinuous microstructures with square inclusions.

4. Voronoi crystal microstructures.

Visualizations of examples of these microstructures may be found in Figure
5.1. We emphasize that all four examples lead to functions in BV, a fact that
we exploit in Section 5.4 when showing that our abstract analysis from Section
5.3 applies to them all.

Smooth Star Square Voronoi

Figure 5.1: Microstructure Examples.

Smooth microstructures The smooth microstructures are generated by
exponentiating a rescaled Gaussian random field. A is symmetric and coercive
everywhere in the domain with a bounded eigenvalue ratio. Furthermore, the
smooth function A and its derivatives are Lipschitz. Our theory is developed
specifically to analyze non-smooth microstructures, so this example is used
mainly as a point of comparison.

Star inclusions For the star inclusion microstructure, A is taken to be
constant inside and outside the star-shaped boundary. The boundary function
is smooth and Lipschitz in each of its derivatives. A is positive and coercive in
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both regions with a bounded eigenvalue ratio. This microstructure introduces
discontinuities, but the boundary remains smooth.

Square inclusions For the square inclusion microstructure, A is taken to be
constant inside and outside the square boundary. Since we assume periodicity,
without loss of generality the square inclusion is centered. The size of the
square inclusion within the cell is varied between samples as are the constant
values of A. This microstructure builds on the complexity of the star inclusion
microstructure by adding corners to the inclusion boundary.

Voronoi interfaces The Voronoi crystal microstructures are generated by
assuming a random Voronoi tessellation and letting A be piecewise-constant
taking a single value on each Voronoi cell. The values of A on the cells and
locations of the cell centers may be varied. This is the most complex mi-
crostructure among our examples and is a primary motivation for this work as
Voronoi tessellations are a common model for crystal structure in materials.

5.3 Universal approximation results

In this section we state the two approximation theorems for learning solution
operators to the cell problem. Theorem 7 concerns learning the map A → χ

in equation (5.4), and Theorem 8 concerns learning the map A → A described
by the combination of equations (5.4) and (5.3). Theorems 7 and 8 are specific
to learning a Fourier neural operator (FNO), which is a subclass of the general
neural operator. The proofs of the theorems in this section may be found in
Appendix D.2.

5.3.1 Definitions of neural operators

First, we define a general neural operator (NO) and the Fourier neural operator
(FNO). The definitions are largely taken from [29], and we refer to this work
for a more in-depth understanding of these operators. In this work, we restrict
the domain to the torus.

Definition 5 (General Neural Operator). Let A and U be two Banach
spaces of real vector-valued functions over domain Td. Assume input functions
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a ∈ A are Rda-valued while the output functions u ∈ U are Rdu-valued. The
neural operator architecture Gθ : A → U is

Gθ = Q ◦ LT−1 ◦ · · · ◦ L0 ◦ P ,

vt+1 = Ltvt = σt(Wtvt + Ktvt + bt), t = 0, 1, . . . , T − 1

with v0 = P(a), u = Q(vT ) and Gθ(a) = u. Here, P : Rda → Rdv0 is a local
lifting map, Q : RdvT → Rdu is a local projection map and the σt are fixed non-
linear activation functions acting locally as maps Rdvt+1 → Rdvt+1 in each layer
(with all of P, Q and the σt viewed as operators acting pointwise, or point-
wise almost everywhere, over the domain Td), Wt ∈ Rdvt+1 ×dvt are matrices,
Kt : {vt : Td → Rdvt } → {vt+1 : Td → Rdvt+1 } are integral kernel operators and
bt : Td → Rdvt+1 are bias functions. For any m ∈ N0, the activation functions
σt are restricted to the set of continuous R → R maps which make real-valued,
feed-forward neural networks dense in Cm(Rd) on compact sets for any fixed
network depth.1 The integral kernel operators Kt are defined as

(Ktvt)(x) =
∫
Td
κt(x, y)vt(y) dy

with standard multi-layered perceptrons (MLP) κt : Td × Td → Rdvt+1 ×dvt .
We denote by θ the collection of parameters that specify Gθ, which include
the weights Wt, biases bt, parameters of the kernels κt, and the parameters
describing the lifting and projection maps P and Q (usually also MLPs).

The FNO is a subclass of the NO.

Definition 6 (Fourier Neural Operator). The FNO inherits the structure
and definition of the NO in Definition 5, together with some specific design
choices. We fix dvt = dv for all t, where dv is referred to as the number
of channels, or model width, of the FNO. We fix σt = σ to be a globally
Lipschitz, non-polynomial, C∞ function.2 Finally, the kernel operators Kt are
parameterized in the Fourier domain in the following manner. Let

ψk(x) = e2πi⟨k,x⟩, x ∈ Td, k ∈ Zd,
1We note that all globally Lipschitz, non-polynomial, Cm(R) functions belong to this

class.
2In this work in all numerical experiments we use the GeLU activation function as in

[33].
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denote the Fourier basis for L2(Td;C) where i =
√

−1 is the imaginary unit.
Then, for each t, the kernel operator Kt is parameterized by

(Ktvt)l(x) =
∑
k∈Zd

|k|≤kmax

 dv∑
j=1

P k
lj⟨(vt)j, ψk⟩L2(Td;C)

ψk(x).

Here, l = 1, . . . , dv and each P k ∈ Cdv×dv constitute the learnable parameters
of the integral operator.

From the definition of the FNO, we note that parameterizing the kernels in
the Fourier domain allows for efficient computation using the FFT. We refer
to [29, 33] for additional details.

Finally we observe that in numerous applications, an example being learning
of the map A 7→ Ā (5.3), (5.4), it is desirable to modify the FNO so that
the output space is simply a Euclidean space, and not a function space; this
generalization is explored in [27]. An alternative approach, exemplified by
Theorem 8 in the next subsection, is to allow the FNO output to be a function
that may be evaluated at any point in the domain to yield an approximation
of the point in Euclidean space.

5.3.2 Main theorems

These two theorems guarantee the existence of an FNO approximating the
maps A 7→ χ and A 7→ A and are based on the stability estimate for conti-
nuity from L2 → Ḣ1 obtained in Proposition 2. Both theorems are proved in
Appendix D.2.

Theorem 7. Let K ⊂ PDα,β and define the mapping G : K → Ḣ1(Td;Rd)
by A 7→ χ as given by (5.4). Assume in addition that K is compact in
L2(Td;Rd×d). Then, for any ϵ > 0, there exists an FNO Ψ : K → Ḣ1(Td;Rd)
such that

sup
A∈K

∥G(A) − Ψ(A)∥Ḣ1 < ϵ.

Theorem 8. Let K ⊂ PDα,β and define the mapping F : K → Rd×d by A 7→ Ā

as given by (5.3), (5.4). Assume in addition that K is compact in L2(Td;Rd×d).
Then, for any ϵ > 0, there exists an FNO Φ : K → L∞(Td;Rd×d) such that

sup
A∈K

sup
x∈Td

|F (A) − Φ(A)(x)|F < ϵ.
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The above approximation results can also be formulated to hold, on average,
over any probability measure with a finite second moment that is supported
on PDα,β. In particular, if we let µ be such a probability measure then there
exists an FNO or a neural operator Ψ such that

EA∼µ∥G(A) − Ψ(A)∥Ḣ1 < ϵ. (5.9)

This follows by applying Theorem 18 from [28] in the respective proofs instead
of Theorem 5 from the same work. We do not carry out the full details here.
While this allows approximation over the non-compact set PDα,β, the error
can only be controlled on average instead of uniformly. In Section 5.4, inputs
are generated via probability measures supported on compact subsets of L2;
thus both the approximation Theorem 7, and its analog in the form (5.9), are
relevant.

5.4 Numerical experiments

In this section, we show that it is possible to find good operator approxi-
mations of the homogenization map (5.6), defined by (5.4), in practice. We
focus on use of the FNO and note that, while Theorems 7 and 8 assert the
existence of desirable operator approximations, they are not constructive and
do not come equipped with error estimates. We find approximations using
standard empirical loss minimization techniques and, by means of numerical
experiments, quantify the complexity with respect to volume of data and with
respect to size of parametric approximation.

We work with the microstructures from Section 5.2. In this context we note
that Theorems 7 and 8 apply. To demonstrate this it is necessary to establish
that the subsets of coefficient functions employed are compact in L2. We
achieve this by noting that all our sets of coefficient functions are contained
in PDα,β ∩ BV, as defined in Subsection 5.1.1. Then we use Lemma 11 to
establish compactness of these subsets of coefficient functions in L2. The
smooth microstructure example serves as a comparison case for examining the
impact of discontinuous coefficients on the learning accuracy. The remaining
three examples present different approximation theoretic challenges including
curved boundaries (star inclusions), corners (square inclusions) and junctions
of several domains (Voronoi).
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The experiments are all conducted using an FNO with a fixed number T = 4
of hidden layers. The two remaining parameters to vary are the channel width
dv and the number of Fourier modes kmax. For implementation details, see
Appendix D.4. We make the following observations based on the numerical
experiments.

1. The effective A tensors computed from the model predicted solutions ex-
hibit relative error under 1% for all examples; the effective A is computed
from the learned cell problem solution χ using equation (5.3).

2. The error in the learned χ is significantly higher along discontinuous ma-
terial boundaries and corner interfaces, as expected. However, the FNO
operator approximation is able to approximate the solution with reason-
able relative error even for the most complex case; this most complex
case concerns the set of input functions with varying Voronoi geometry
and varying microstructural properties within the domain.

3. In comparison with the smooth microstructure case, learning the map
for the Voronoi microstructure requires substantially more data to avoid
training a model which plateaus at a poor level of accuracy.

4. When compared with the smooth microstructure case, the error for the
Voronoi microstructure decreases more slowly with respect to increasing
model width, but shows more favourable response with respect to in-
creasing the number of Fourier modes.

5. Models trained at one discretization may be evaluated at different dis-
cretizations for both the smooth and Voronoi microstructures as is char-
acteristic of the FNO. The Voronoi microstructure exhibits, empirically,
greater robustness to changes in discretization.

We first describe implementation details of each of the microstructures in
Subsection 5.4.1. Then we show outcomes of the numerical experiments in
Subsection 5.4.2, discussing them in Subsection 5.4.3.

5.4.1 Microstructure implementation

For each microstructure, two positive eigenvalues and three components of the
two eigenvectors are randomly generated, and the final eigenvector component
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is chosen to enforce symmetry. All eigenvalue ratios are at most e2 by con-
struction. In this manner, A is symmetric and coercive and has a bounded
eigenvalue ratio.

Smooth Microstructures The smooth microstructures are generated by
exponentiating a rescaled approximation of a Gaussian random field. The
random field used to generate the eigenvalues and three eigenvector compo-
nents of A(x) is as follows:

λ̂i(x) =
4∑

k1,k2=1
ξ

(1)
k1,k2 sin (2πk1x1) cos(2πk2x2) + ξ

(2)
k1,k2 cos (2πk1x1) sin (2πk2x2) ,

λi(x) = exp
 λ̂i(x)

maxx′∈[0,1]2 |λ̂i(x′)|

 ,
where ξ(j)

k1,k2 are i.i.d. normal Gaussian random variables.

Star-Shaped Inclusions The star-shaped inclusions are generated by defin-
ing a random Lipschitz polar boundary function as

r(θ) = a + b
5∑

k=1
ξk sin(kθ)

where ξk are i.i.d. uniform random variables U [−1, 1], and a and b are con-
stants that guarantee 0 < ϵ < r < 0.5 − ϵ for some fixed ϵ > 0. Then A(x)
is constant inside and outside the boundary. We randomly sample eigenval-
ues for A on each domain via λi ∼ U [e−1, e]. The three components of the
eigenvectors are i.i.d. normal random variables.

Square Inclusions The radius of the square is randomly generated via

r = a + bζ

where ζ is a uniform random variable on [0, 1] and a and b are positive constants
that guarantee 0 < ϵ < r < 0.5 − ϵ for some fixed ϵ > 0. The values of A
on each of the constant domains are chosen in the same manner as in the
star-shaped inclusion case.
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Voronoi Interfaces The Voronoi crystal microstructure has constant A on
each Voronoi cell and is chosen uniformly at random in the same manner as
for the star inclusions. Voronoi tessellations are a common model for crystal
structure in materials. In one Voronoi example, we fix the geometry for all
data, and in a second Voronoi example we vary the geometry by randomly
sampling five cell centers from a uniform distribution on the unit square.

5.4.2 Results

Each FNO model is trained using the empirical estimate of the mean squared
H1 norm:

Loss(θ) = 1
N

N∑
n=1

(
∥χ(n) − χ̂(n)∥2

L2 + ∥∇χ(n) − ∇χ̂(n)∥2
L2

)
(5.10)

where n is the sample index, χ is the true solution, and χ̂ is the FNO approxi-
mation of the solution parameterized by θ. In the analysis, we examine several
different measures of error, including the following relative H1 and relative
W 1,10 errors.

Relative H1 Error (RHE) = 1
N

N∑
n=1

(
∥χ(n) − χ̂(n)∥2

L2 + ∥∇χ(n) − ∇χ̂(n)∥2
L2

∥χ(n)∥2
L2 + ∥∇χ(n)∥2

L2

) 1
2

(5.11a)

Relative W 1,10 Error (RWE) = 1
N

N∑
n=1

(
∥χ(n) − χ̂(n)∥10

L10 + ∥∇χ(n) − ∇χ̂(n)∥10
L10

∥χ(n)∥10
L10 + ∥∇χ(n)∥10

L10

) 1
10

(5.11b)

The W 1,10 norm gives a sense of the higher errors that occur at interfaces,
corners and functions. We could have used W 1,p for any p large enough.

Finally, we also look at error in A, which we scale by the difference between
the arithmetic and harmonic mean of A. Any effective A should have a norm
in this range; these are known in mechanics as Voigt-Reuss bounds and have
a physical interpretation as bounds obtained via energy principles by ignoring
equilibrium for the upper bound (arithmetic mean) and ignoring compatibility
for the lower bound (harmonic mean) [23]. The resulting error measure is given
by

Relative A Error (RAE) = ∥A− Â∥F
am − ah

(5.12)
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where the arithmetic mean am and harmonic mean ah are given by

am =
∥∥∥∥∫

T2
A(x) dx

∥∥∥∥
F

ah =
∥∥∥∥∥
(∫

T2
A−1(x) dx

)−1
∥∥∥∥∥
F

.

We note that using am − ah rather than ∥A∥F as a scaling factor in equation
(5.12) leads to a larger error value, so achieving low error in this measure of
distance is harder.

We train models on five different datasets. Visualizations of the median-error
test samples for each example may be viewed in Figure 5.2, and the numerical
errors are shown in Figure 5.3. Each of these models is trained on 9500 data
samples generated using an FE solver on a triangular mesh with the solution
interpolated to a 128 × 128 grid. Additional model details may be found in
Appendix D.4.

We perform an experiment to test the discretization-robustness of the FNO
model, results of which are shown in Figure 5.4. The models are trained with
data from the resolution 128 × 128 and evaluated on test data with different
resolution. We emphasize that evaluating the FNO on different resolution is
trivial in implementation by design.

We also investigate the effects of the number of training data and the model
size on the error for the smooth and Voronoi microstructures; similar experi-
ments, for different operator learning problems, are presented in [24]. A plot
of error versus training data may be found in Figure 5.5, and plots of error
versus the number of Fourier modes for fixed total model size, as measured by
(model width) × (number Fourier modes), may be found in Figure 5.6. Fig-
ure 5.6 addresses the question of how to optimally distribute computational
budget through different parameterizations to achieve minimum error at given
cost as measured by number of parameters; it should be compared to similar
experiments in [30].

5.4.3 Discussion

As can be seen from the data in Figure 5.3, the microstructures exhibiting dis-
continuities lead to higher model error than the smooth microstructure, and
the introduction of corner interfaces leads to further increase in error. The
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Figure 5.2: Visualization of the trained models evaluated on test samples that
gave median relative H1 error for each microstructure. The microstructure
inputs of each row correspond to those of Figure 5.1. The first shows the true
χ1, the second shows the FNO predicted χ1, and the third shows the absolute
value of the error between the true and predicted χ1. The fourth column shows
the 2-norm of the gradient of the true χ1, and the fifth shows the 2-norm of
the gradient of the predicted χ1. The last column shows the 2-norm of the
difference between the two gradients.

Microstructure Mean RHE Mean RWE Median RAE
Smooth 0.0062 ± 1 · 10−4 0.0091 ± 1 · 10−4 0.0007 ± 1 · 10−5

Star 0.0313 ± 1 · 10−4 0.1318 ± 5 · 10−4 0.0014 ± 3 · 10−5

Square 0.1012 ± 5 · 10−4 0.2741 ± 2 · 10−3 0.0047 ± 1 · 10−4

Voronoi 0.0565 ± 4 · 10−4 0.2129 ± 3 · 10−3 0.0027 ± 8 · 10−5

Voronoi
(Fixed Geometry) 0.0073 ± 3 · 10−5 0.0140 ± 3 · 10−4 0.0007 ± 2 · 10−5

Figure 5.3: Errors for each each numerical experi-
ment; five sample models are trained for each mi-
crostructure. The expressions for the RHE (Rela-
tive H1 Error), RWE (Relative W 1,10 Error) and
RAE (Relative A Error) may be found in equa-
tions (5.11) and (5.12). The errors are evaluated
over a test set of size 500. All examples have vary-
ing geometry except the second Voronoi example.
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Figure 5.6: Relative H1 error versus model size
for the smooth and Voronoi examples with varying
geometry. The number of Fourier modes in each
direction and the model width were varied. Each
line indicates a constant product of modes×width.
Training data size was fixed at 9500 samples, and
five samples were used for each data point.

visualizations of the median-error test samples in Figure 5.2 give some intu-
ition; error is an order of magnitude higher along discontinuous boundaries;
this is most apparent in the gradient. The true solution gradient often takes
its most extreme values along the discontinuities, and the RWE gives an indi-
cation of how well the model captures the most extreme values in the solution.
Unsurprisingly, this error is much higher than the RHE, but we note that it
is confined to a small area of the domain along discontinuous boundaries and
corner interfaces.

In the discretization-robustness experiment described in Figure 5.4, we observe
that the Voronoi model exhibits greater robustness to changes in discretization.
We hypothesize that, in the direction of decreasing resolution, the smaller error
increase for the Voronoi model, in comparison with the smooth model, could be
due to the piecewise-constant nature of the Voronoi microstructure on faces;
improved resolution here does not help. On the other hand, for larger grid
sizes, increased resolution on corners and discontinuities can help, which could
explain the decrease in error from grid edge size of 128 to 256 for the Voronoi
model while the smooth model increases in error. One could fine-tune the
trained models with small amounts of data from different resolutions, but we
leave this transfer learning exploration to future work.

We also examine the effect of the number of training data samples and the
FNO size on model accuracy for the smooth and Voronoi microstructures. For
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data size dependence, we observe in Figure 5.5 that for these two microstruc-
tures, the test error scales ≈ N−0.65 and ≈ N−0.25, respectively, where N is
the number of training data. In theory, we do not expect to beat the Monte
Carlo error decay of 1√

N
[45]. We note that this is comparable to the behavior

during training over 400 epochs; the test error for the smooth microstructure
continues to decrease over the entire training periodic, but the test error for the
Voronoi microstructure plateaus by around 100 epochs. The model size also
presents a qualitatively different effect on error for the smooth and Voronoi
microstructures. In Figure 5.6, we see the tradeoff between the number of
Fourier modes and the model width for approximately constant model size,
measured as the product of the width and number of modes. The Voronoi
example benefits from additional Fourier modes, whereas the smooth exam-
ple worsens. On the other hand, the smooth model benefits more from an
increase in model width. We refer to [24, 30] for in-depth numerical studies of
errors, choice of hyperparameters, and parameter distributions for FNO; here
we highlight only the qualitative differences between the model behavior for
different microstructures.

We also note that a significant portion of the model error may be attributed to
grid ambiguity; with a 128 × 128 grid, the FNO does not know where between
gridpoints a discontinuity may fall. This may be quantified empirically in
the case of the square microstructure. We perform an experiment in which we
create data of square microstructure inclusions whose boundary falls exactly on
the gridpoints. One dataset treats the boundary as open, and the other treats
the boundary as closed; the input grid points that fall on the boundary differ
between the two datasets. We quantify grid ambiguity error by the difference
in the outputs of a model given both the open square data and the closed
square data. We find that the absolute H1 norm of the difference between
these two outputs is 0.041, which is slightly under twice the absolute H1 norm
of the output compared to the true solution, which has a value of 0.025. We
hypothesize that the model learns to assume the boundary falls near the middle
of the grid square, which explains why the output difference between the two
datasets is roughly twice the true error. From a theory standpoint, one could
bound the Lipschitz constant of the FNO and compare it to the Lipschitz
constant of the true map described by Proposition 3. However, we leave the
theoretical estimates of error rates to future work.
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Finally, we compare the error in the effective A defined in (5.3). This error is
scaled by a difference between the Frobenius norms of the arithmetic and har-
monic means of the true A because the Frobenius norm of the true A should
fall within that range. For this reason, in the case where the arithmetic and
harmonic means are very close, as is frequently the case for the square and
star inclusions, it is not valuable to learn the true A. On the other hand, the
varying-geometry Voronoi microstructure example on average has about 100
times greater difference between the arithmetic and harmonic means, in com-
parison with the star and square microstructure examples. This characteristic
of the Voronoi microstructure further underscores the value of learning in this
setting.

5.5 Conclusions

In this work, we establish approximation theory for learning the solution op-
erator arising from the elliptic homogenization cell problem (5.4), viewed as
a mapping from the coefficient to the solution; the theory allows for discon-
tinuous coefficients. We also perform numerical experiments that validate the
theory, explore qualitative differences between various microstructures, and
quantify error/cost trade-offs in the approximation. We provide two different
stability results for the underlying solutions that build understanding of the
underlying map. These stability results, when combined with existing uni-
versal approximation results for neural operators, result in rigorous approxi-
mation theory for learning in this problem setting. On the empirical side we
provide, and then study numerically, examples of various microstructures that
satisfy the conditions of the approximation theory. We observe that model
error is dominated by error along discontinuous and corner interfaces, and
that discontinuous microstructures give rise to qualitatively different learning
behavior. Finally, we remark that the learned effective properties are highly
accurate, especially in the case of the Voronoi microstructure that we regard
as the most complex. Since discontinuous microstructures arise naturally in
solid mechanics, understanding learning behavior in this context is an impor-
tant prerequisite for using machine learning for applications. In this area and
others, numerous questions remain which address the rigor necessary for use
of machine learning in scientific applications.

We have confined our studies to one of the canonical model problems of ho-
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mogenization theory, the divergence form elliptic setting with periodic mi-
crostructure, to obtain deeper understanding of the learning constitutive laws.
One interesting potential extension of this work is the setting in which the
material coefficient A is not periodic but random with respect to the mi-
crostructure. Another is where it is only locally periodic and has dependence
on the macroscale variable as well; thus Aϵ = A(x, x

ϵ
). In this case, the form of

the cell problem (5.4) and homogenized coefficient (5.3) remain the same, but
A and χ both have parametric dependence on x. The approximation theory
and the empirical learning problem would grow in complexity in comparison
to what is developed here, but the resulting methodology could be useful and
foundational for understanding more complex constitutive models in which the
force balance equation couples to other variables. Indeed, the need for efficient
learning of constitutive models is particularly pressing in complex settings such
as crystal plasticity. We anticipate that the potential use of machine learning
to determine parametric dependence of constitutive models defined by homog-
enization will be for these more complex problems. The work described in this
paper provides an underpinning conceptual approach, foundational analysis
and set of numerical experiments that serve to underpin more applied work in
this field.
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C h a p t e r 6

PCA-NET SURROGATE FOR TOPOLOGY OPTIMIZATION
WITH A POINT-LOAD SINGULARITY

Hertlein, N., Rajan, A., Chen, J., Bhattacharya, K., and Buskohl, P., 2025.
“PCA-Net Surrogate for Topology Optimization with a Point-load Singularity.”
In preparation.

Contributions: N. H. developed the code for topology optimization. The
neural network code for learning sensitivities and singular solutions was written
by A. R., N. H. and J. C. . P. B. and K. B. conceptualized the methodology and
supervised the project. The manuscript was written collectively by everyone.

6.1 Introduction

6.1.1 Background

Topology optimization (TO) has become a popular and valuable tool for ap-
proaching materials and design problems in various disciplines. Since its in-
troduction, it has been applied in mechanics [32], thermodynamics [10], meta-
materials [26], compliant mechanisms [13], and others (a thorough review has
been previously published [11]) including situations with uncertainties [35,
2]. Because it generally involves iterative simulations in a gradient-based op-
timization loop, computational expense is a persistent challenge [27]. And
because objective functions optimized in TO are usually nonconvex, suscepti-
bility to local optimality [33] is another limitation across most applications.

Recent efforts have attempted to mitigate these challenges through various
techniques from machine learning (ML). For example, frameworks based on
neural networks (NNs) have been used to predict optimal topologies directly,
given a problem definition. Yu et al. [39] trained a convolutional neural
network (CNN) for this purpose, and after the CNN had been trained, the
computational cost was negligible for any new problem that comes from the
same general class as the training data. The same high level approach has been
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taken elsewhere [21], including with generative adversarial networks (GANs)
[31, 28, 16] variational autoencoders (VAEs) [9] and diffusion models [14]. In
some cases, these models have generated designs that outperform conventional
TO designs, especially when the problem is more constrained, for example, to
improve manufacturability [17]. Additionally, in this configuration, GANs have
shown promising capacity for fast, natural interaction with designers during
the early stages of design, including by providing reduced dimensional design
representations that can ease exploration of high-performing geometries in a
collaboration between the model and the human designer [36].

Others integrate ML more centrally into the TO routine by training surro-
gate models for design sensitivities, which can then be called each optimizer
iteration and remove the need for solving the linear elasticity partial differ-
ential equation (PDE). These efforts often involve retraining the surrogate
successively after batches of several iterations that are interwoven with tra-
ditional iterations [8, 40, 6], a technique most valuable when either training
is extremely efficient or the particular TO formulation’s sensitivity analysis is
especially costly. Other efforts have called the surrogate throughout the entire
optimization run, which required careful selection of training data from past
problems’ convergence histories and operated only on very basic cantilever
beam problems [30].

These approaches of ML within the TO routine, along with additional ap-
proaches [7, 34], are discussed in greater detail in a recent review [38]. De-
spite their advances in post-training computational savings and in discovering
some design candidate that outperform TO structurally, challenges still re-
main. Overall computational savings are limited to cases where the upfront
training expense can be justified. Situations like this include when multiple
TO runs of a similar class is anticipated [16] or when a designer desires to in-
teract with generated topologies to explore alternative possibilities throughout
the design space [31, 36]. Very large neural networks are often used, with pa-
rameter counts frequently in the millions, which increases training cost. NNs
also tend to be limited to a pre-specified output dimensionality, limiting usage
to TO problems of only that particular size.

Neural operators are a generalization of traditional neural networks designed to
approximate the underlying operators that map between infinite-dimensional
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spaces [23]. These operators can represent complex relationships, such as
the solution operator of partial differential equations (PDEs) that map input
parameters to the solution function [5]. While prior strategies aim to dis-
cretize the input and output spaces of PDEs and train neural networks to
map between these finite-dimensional spaces, neural operators aim to learn
the mapping between function spaces themselves. This provides the added
benefit of mesh-independence, where unlike with many NN approaches, accu-
racy may remain even as resolution increases [5]. The benefits can be seen in
solving the Navier-Stokes equation, for example, which has been approximated
at arbitrary resolutions in climate science [22], superesolution of low-resolution
images has been demonstrated in computer vision [37], and elastic waves sim-
ulations have been approximated in 3D [24].

One specific type of neural operator is PCA-Net [5]. PCA-Net combines prin-
cipal component analysis (PCA) to reduce the dimensionality of both the
input and output spaces with a NN that approximates the mapping between
the resulting finite-dimensional latent spaces. The NN effectively maps the
PCA-reduced inputs to the coefficients of the outputs’ PCA projections, and a
decoding step reconstructs the outputs from its PCA coefficients. The approx-
imate solution obtained by PCA-Net can be seen as a linear combination of
basis functions derived from the PCA of the output data. While this linearity
may limit accuracy particularly in the presence of non-smooth data, it repre-
sents an efficient and simple approach that is amenable to analysis. Neural
operators like PCA-Net can be seen as an alternative to traditional methods
which focus on learning mappings between functions spaces directly from data.

6.1.2 PCA-net and topology optimization

Neural operators in the context of topology optimization remain less explored,
leaving questions about resulting performance, its optimal situation within
the overall TO routine, and whether the general approach is compatible with
the TO problem. Initial indications are promising, with Liang et al. [25]
demonstrating a Fourier neural operator for level set TO, which generalizes
to output dimensionalities outside of its training data. They further show
that, after an initial training, their framework could be transferred to a new
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class of boundary conditions with relatively low re-training cost, which seems
to be enabled in part by the neural operator’s flexibility and low parameter
count relative to convolutional approaches. In density-based TO, Erzmann
et al [12] presented a neural operator that calculates design sensitivities from
displacement fields to inform a gradient-based TO loop. Performance at first
was poor, but improved dramatically when the loss function was engineered
to encourage equivariance.

Looking to the example architecture of PCA-Net [5], the present work ex-
pands on these efforts by considering both direct prediction of the optimal
design (referred to as direct design) and prediction of design sensitivities to
be queried sequentially within a gradient descent loop (referred to as sensi-
tivity prediction) on the same class of TO problems (Fig. 6.1). While the
PCA-Net architecture may be less expressive compared to other neural op-
erators like FNO or Deep-O-Net, the architecture is simple and significantly
faster in evaluation once trained. Further, its efficacy in learning elliptic prob-
lems like those that arise in TO has been established [5]. In direct design,
PCA-Net gives excellent fidelity to ground truth designs in both per-pixel ac-
curacy and mechanical performance. In sensitivity prediction, performance is
reasonable but weaker, motivating further study which revealed that the sin-
gularity presented by the mechanical point force was not directly compatible
with PCA-Net. Two alternative methods for addressing this are presented,
including a softening of the singularity by applying a modest spatial distri-
bution to the point load and removal of the singularity from the PCA-Net
training data via a Green’s function analytical approximation. Both methods
significantly improve the prediction results, and provide the opportunity to
explore relationships between PCA-reduced representations of sensitivity data
and the resulting framework performance.

6.2 Methods

This section will describe the TO formulation, the class of problems consid-
ered, the PCA-based neural operator studied, and the two configurations for
approximating TO with PCA-Net.
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Figure 6.1: Overview of PCA-Net surrogate implementations for topology op-
timization. (a) The direct design configuration in which PCA-Net directly
predicts the optimal design given a problem definition. The problem defini-
tion is represented as a vector and passed directly into a feedforward neural
network, whose output is lifted into the image space using PCA parameters
calculated from the training data. (b) The sensitivity prediction routine, in
which the problem definition is appended to a reduced-dimensional version of
the current iteration’s design to use as input. One neural network predicts
the compliance sensitivity values while another predicts the global compli-
ance scalar, enabling a design update which is repeated until convergence. (c)
Schematic of the TO design domain and boundary condition parameter space.
Training samples are selected randomly by varying the load position within
the white domain and selecting two corners for a fixed boundary condition.



116

6.2.1 A class of topology optimization problems

We consider the classical problem of compliance optimization [4]. We consider
a design domain that is fixed on part of the boundary, and subject to an applied
load on another part of the boundary. We seek the design that minimizes the
compliance (maximizes the stiffness) with respect to the applied load subject
to a constraint on the overall volume fraction of the domain. Assuming a finite
element discretization, we can write the objective as [32, 3]

min
x

c(x) = UTKU =
N∑
c=1

(xe)puTe k0ue (6.1)

where c is the global structural compliance, x is the design variable with
xi ∈ [0, 1] is the material density in each element, K is the stiffness matrix
and U the displacement field obtained by solving the equations of the linear
elasticity. Note that we have used solid isotropic material with penalization
(SIMP) interpolation for the stiffness with the usual value of p = 3. We as-
sume that the volume fraction is constrained to 30%. The design sensitivities
can then be calculated using the adjoint method, and a gradient based opti-
mization iteratively until convergence to an optimum, x∗. In this work, this
is implemented using the Python version of the 99-line code [32, 1], including
its mesh independency filter with the radius set to 3 elements.

In the sensitivity prediction configuration, PCA-Net will be trained to predict
∂c
∂xe

and a second model will predict c(x). This will occur iteratively until
convergence, such that up to hundreds of calls to PCA-Net will be required
for a given problem. In the direct design configuration, the target prediction
of PCA-Net will be the final design x∗.

In this work, we focus on the class of problems shown in Fig. 6.1(c). A 64
element square design domain is considered, with a single point load that can
be located anywhere greater than 5 nodes from the boundary, at any angle.
Two corners are assigned a fixed boundary condition stretching 5 nodes out
from the corner node in both directions.

6.2.2 Learning problems

In the previous section, we have described a class of problems. While domain
is fixed, the two corners that are clamped, the point of application of applied
force and the direction of the applied force are unspecified. We could solve each



117

of these design problems by the standard method described above. However,
this is computationally expensive. So, the goal of this work is to see if we can
solve a few of these problems, and use this as data to train a neural operator to
act as a surrogate for solver. We specifically consider PCA-Net as the neural
operator for three problems.

Direct design In direct design, we seek to learn the map from the inputs
consisting of the corners that are fixed, the point of application of the point
load and the angle of the point load to the output that is the optimal design.
The input is encoded in a vector as follows. The first four elements of the
vector represent the fixed boundary conditions. These elements correspond to
the existence (value 1) or absence (value 0) of fixed boundary conditions on
the top left, top right, bottom left, and bottom right of the design. The fifth
and sixth elements represent the force in the x- and y-directions, the seventh
and eighth elements represent the location of the load on the x- and y-axis.
The output is the optimal design that is a function discretized into 642 in this
case.

The NN’s output target is the first 500 PCs of the optimal design, which is
then lifted to the desired output dimensionality, which is 642 in this case. Loss
is assessed as the relative L2 norm between the result x̂∗ and x∗, the TO
solution for the same problem.

Sensitivity prediction In this problem, we seek to learn the sensitivity of a
particular design. So, the inputs are a combination of the problem (the corners
that are fixed, the point of application of the point load and the angle of the
point load) as well as a design x. The latter is a function, but discretized
into 642. The output is the sensitivity ∂c/∂x. This is again a function, but
discretized into 642.

Compliance prediction We seek to predict the global compliance of any
particular design. The inputs are the same as the sensitivity prediction, prob-
lem specification and design, and the output is the global compliance.
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Figure 6.2: PCA-Net architectures and their training data selection. (a)
Schematic of the fully connected neural network used for predicting the re-
duced dimensional images, including both the final design (for direct design)
and the compliance sensitivity (for sensitivity prediction). Numbers beneath
each layer indicate the number of neurons. (b) The network used for predicting
global compliance. (c) For sensitivity prediction, the distribution of samples
selected per TO iteration. This biasing is roughly proportional to the rate
of change of design as a function of iteration, as discussed more fully in our
previous work [18].

6.2.3 PCA-net and architecture

The learning problems described above involve functions as inputs and out-
puts, and therefore the maps from the input to output are operators. Even
though we work with discretized data, we would like the learning to be in-
dependent of discretization to some degree. This requires neural operators,
neural approximations that maps functions to functions. Specifically, we use
PCA-Net in this work [5]. A PCA-Net is a composition of a projection oper-
ator (that projects input functions to finite dimensions), a multi-layer neural
network that maps the projected input to a finite dimensional vector and a
final lifting operator to function space. The projection operator as well as the
lifting operator are both based on principal component analysis (PCA) of the
input and output data. In this work, functions are represented as 642 vectors,
and the PCA is use to project/lift them into 500 dimensional vectors in the
direct design and sensitivity prediction, and 100 dimensional vectors in the
compliance prediction.

The particular architecture used for the various cases are shown in Figure 6.2
with a RELU activation function [20].
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6.2.4 Data and training

Direct design requires predicting the optimal design. We sample the inputs
(clamped corners, load location and load direction) randomly, and for each
input, we solve the topology optimization problem (Sec. 6.2.1) iteratively
until convergence. The data consists of the inputs and the final design x∗ as
output. Fifty thousand samples are used for training, with an additional five
thousand used for validation and ten thousand for testing.

We propose to use sensitivity prediction in the iterative design loop. In a
typical TO iteration, the nature of the inputs and outputs in the early it-
eration differ from those close to the optimal. To ensure good performance
throughout, convergence trajectories of TO examples should be sampled ac-
cordingly. Previous work has employed re-training for a given problem every
several iterations [8, 40], but that carries significant online computational cost.
Sampling only early portions of trajectories has also been proposed [30]. In
the present work, following the best results from a previous comparison of
approaches [18], 4 ± 2 iterations are selected from each problem, according to
a bias curve loosely based on the rate of change of xi as a function of i. The
actual distribution in an example collection is shown in Fig. 6.2(c). Also as in
previous work [18], compliance sensitivities were linearly scaled to the range
of [−1,−0.01] and compliance values were scaled according to the linear map-
ping going from [0, 150] to [0, 1]. Fifty thousand total samples are collected in
this manner for the training dataset, with an additional five thousand and ten
thousand for validation and testing, respectively.

For all problems, training was conducted using the Adam optimizer [19] with
a batch size of 32. The learning rate was scheduled by cosine annealing with a
minimum of 10−6. The models were implemented in PyTorch [29] and executed
on an NVIDIA V100 GPU.

6.3 Results

6.3.1 Direct design

For the direct design configuration, training and validation loss curves are
shown in Fig. 6.3. Learning was smooth and stable across ∼4.7 hours wall-
clock time, with some overfitting suggesting fewer epochs would have been
sufficient. After training, across the 10 thousand test problems, PCA-Net in-
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Figure 6.3: PCA-Net is an effective direct design TO surrogate. The graph
in the first column shows the relative mean squared error loss during train-
ing & validation, as calculated in the PC-space. Learning is generally stable,
with some minor overfitting. The second column represents the same error
measurement taken on the final output in image space, for the test set. The
final column is the relative error in compliance calculated on the final output
according to the relevant problem definition, clipped at 0 and 1. Histogram
legends indicate the number of traditional TO iterations performed on PCA-
Net’s output to improve performance, which led to considerable improvement
in performance. Overall, performance remains similar across load distribu-
tions. Randomly selected examples are shown below the graphs, including the
ground truth and the raw PCA-Net outputs. Numbers above the example
outputs represent relative compliance error.

ference time averaged roughly 0.001 second per problem. The first histogram
shows the same relative L2 loss measure in pixel-space, that is, after lifting
the predicted PCs to the intended x̂∗ dimensionality. The second histogram
shows relative compliance error of PCA-Net predictions, evaluated as the dif-
ference in compliance of x̂∗ from PCA-Net and x∗ from TO, normalized by the
compliance of x∗. Randomly selected example designs are shown below. De-
spite presence of some shortcomings typical of ML approaches for TO, such as
blurriness, predictions demonstrate excellent accuracy relative to the ground
truth TO designs. Median relative compliance error was 0.8%. Some accuracy
improvement was obtained by post-processing raw PCA-Net outputs with a
few iterations of traditional TO as a finishing operation. Results after 2 and
10 iterations are included in the histograms.
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Figure 6.4: PCA-Net surrogate for compliance sensitivity analysis exhibits
higher training error and topology prediction error than the direct design
surrogate. Formatted in the same manner as Fig. 3, results for sensitiv-
ity analysis-based PCA-Net performance of TO indicate reasonable outcomes
when considering the final optimum. Histogram legends indicate the number
of traditional TO iterations performed before and after the remaining itera-
tions performed using PCA-Net. Results show that overall accuracy on the
optimum is lower than in the direct design configuration. This appears to be
driven by blotchy design patterns combined with some thinned strut features
which in some cases are structurally disconnected.

6.3.2 Sensitivity prediction

Results from the sensitivity prediction configuration are shown in Fig. 6.4, in
the same format as the previous figure. Additional loss curves are included
for the NN that predicted global compliance c(x). Training time was around
4.9 hours. Test problems solved with PCA-Net alone are represented in the
histogram and example designs, with the histograms also including results from
problems where the initial and final 2 iterations were solved using traditional
sensitivity analysis to improve accuracy. All outliers were assigned a maximum
error value of 1.

Relative to the direct design results, histograms here show lower performance,
with a considerable number of outliers (approaching 10% of problems). Median
relative compliance error increased over the direct design results to 6.2%. The
average time to solve a single problem was significantly higher at ∼3.2 seconds
per problem, due to the requirement for iterative calls to the surrogate as
well as additional calculations in the optimizer in between. Geometric trends
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common in poor-performing designs include thinly-connected or disconnected
strut features, wavy edges, and extraneous material, indicating difficulty across
TO problems and geometries.

Causes could be multiple. Because PCA-Net operates across all iterations in
this configuration, it must act as an effective surrogate for a wide range of pixel
intensity distributions. This may be a fundamentally more challenging task
than always operating on PC-representations of almost entirely binary data.
Small error may also compound through the optimization trajectory, as PCA-
Net predictions are used to suggest designs for the next PCA-Net prediction–a
pattern not applicable in the direct design case. Significant challenges also may
be associated with the nature of design sensitivity fields, which often include
a sharp gradient at the location of the load, due to the point load singularity.
Mitigating the impact of this singularity will be addressed in the following
section.

6.4 Singularity correction approaches

A key difference between the two problems studied in Sec. 6.3 is the presence
of a singularity in sensitivity field that occurs due to the point load. In direct
design , no analog exists because the target outputs x∗ are inherently smooth
due to the TO neighborhood filter. In sensitivity prediction, sharp valleys
generally exist in ∂c

∂xe
around the load due to the use of a point load, which is

a common practice in TO. This may present a particular challenge for neural
operators like PCA-Net, because linear dimensionality reduction techniques
such as PCA may struggle to capture it in the reduced dimensional space. To
understand the extent to which this effect hampers performance in the TO
context, two methods for removing the singularity are investigated.

6.4.1 Analytical removal via a green’s functions

The underlying singularity occurs in the displacement field due to a point load.
From linear elasticity theory, the displacement field behaves as

U(r) ∼ F log(r), (6.2)
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where F is the point load and r is the radial distance from loading location
[15]. It follows that the behaviour of design sensitivity is given by

∂c

∂xe
∼ 1
r2 . (6.3)

This poses an issue for PCA based neural networks to learn the sensitivities.
Singular functions create outliers that may skew the principal components,
leading to poor reconstruction of compliance sensitivity in the rest of the
region. Furthermore, the NN predictions might also be heavily inaccurate
around the singularity due to its architecture. Therefore, we decompose the
domain into a singular and non-singular region and treat them separately
during training. An analytical solution is used to model the behaviour around
the singular region while the PCA-based NN is used to model the non-singular
region.

The compliance sensitivity is given by

∂c

∂xe
=
(
∂c

∂xe

)
s

+
(
∂c

∂xe

)
ns

, (6.4)

where the terms on the right hand side represent the singular and non-singular
components. We can obtain the analytical form of the singular component,
given by (

∂c

∂xe

)
s

= cs(F) 1
r2 , (6.5)

where cs is a constant dependent on the point load. By definition, the non-
singular component is a smooth function which can be learned by a PCA-based
NN. Therefore, in order to compute ∂c

∂xe
from the input conditions, c(F) and(

∂c
∂xe

)
ns

must be predicted. An overview of the framework has been represented
in Fig. 6.5.

For complete details of this framework, please refer to the supplementary in-
formation.
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Singular solution

Figure 6.5: Modified PCA based neural network to mitigate errors arising due
to singularities.

6.4.2 Load distribution

The second approach entailed spreading the point force according to a smooth-
ing distribution to effectively eliminate ( ∂c

∂xe
)s mentioned in Sec. 6.4.1. This

distribution is defined as

χ0(r) =


0, r ≤ rmin

1, r ≥ rmin

1 + C2
(

sin (C3(rmin−r))
C2

3
+ (r−rmin)

C3

)
, rmin < r < rmax

(6.6)

where the constants are defined as

C1 = (rmax − rmin), C2 = −2π
(rmax − rmin)2 , C3 = 2π

(rmax − rmin) . (6.7)

This gives a smooth distribution which is then scaled linearly to ensure the re-
sultant force retains a magnitude of unity. The parameters rmin and rmax were
selected as 1 and 3, respectively, to ensure the load was spread approximately
as widely as the removal of ( ∂c

∂xe
)s from Sec. 6.4.1.

With the same class of TO problem definitions and the same iteration sam-
pling strategy, a new training dataset was collected using this distributed load.
Inherently, by smoothing out the load, this changes the actual TO problem be-
ing solved. However, the neighborhood filter in TO already effectively ensures
a spread of material around the point load, such that smoothing the load to
this modest degree bears little effect on the final geometry. Apart from usage
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of this distributed load data and a larger input vector that captures all com-
ponents of the distributed load (100 components to capture the load instead
of 4), PCA-Net training and testing was performed in the same manner as
before.

Figure 6.6: Methods of smoothing the problem for more effective sensitivity
predictions. Two methods are explored. When performing an analytical re-
moval of the singularity, the singular component (b) of the original compliance
sensitivity (a) is subtracted, resulting in a smoother image (c) that PCA-Net
is required to predict. The region in which the singularity is removed is defined
according to an exponential, as shown in the case of ρmax = 10 in panel (d).
This graph also shows the relative load distribution explored as the second
method of smoothing the problem. For comparison, the original point load is
illustrated as a Dirac delta function.

6.4.3 Singularity correction results

With loss curves shown in Fig. 6.7 for both methods of removing the sin-
gularity at the point load, significant performance improvement was achieved
with both methods. Although distributions of relative L2 error remain similar,
median relative compliance error was reduced to 4.6% and 3.9% for the ana-
lytical removal and load distribution, respectively. This suggests a reduction
in spatially small errors that give large mechanical performance issues, such
as disconnected struts. Review of the examples included in Fig. 6.8 indicates
some structural defects remain present in some examples, which may be the
result of other complicating factors inherent in the sensitivity prediction con-
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Figure 6.7: PCA-Net surrogate in the compliance sensitivity configuration
improves with load smoothing. The first row corresponds to analytical removal
of the singularity, with the second row representing the case of the distributed
load. Columns are the same as Figs. 3 and 4. Note: PCA-Net prediction error
decreases with removal or smoothing of the point load singularity. Histogram
error distribution also decrease and consolidate with load smoothing. Two
TO pre-processing iteration and two TO post-processing iterations further
promote this trend. The loss histogram and compliance error histogram from
point load in fig. 4 is overlaid in gray for comparison.

figuration as mentioned in Sec. 6.3.2. Despite this, overall improvement with
removal of the singularity at the load is noticeable. As before, pre- and post-
processing with a small number of TO iterations provides additional gains,
while increasing per-problem runtimes from about 3.2 seconds to about 3.8
seconds.

6.5 Discussion

Of the two problems studied, direct design gave significantly better perfor-
mance, in both per-pixel accuracy and structural compliance measured relative
to designs from traditional TO. From a purely performance-driven standpoint,
this suggests the direct design configuration could be a more appropriate fit for
neural operators such as PCA-Net. However, this may depend on additional
practical factors driven by the use case. For example, a single training sample
for this configuration requires an entire TO run, while the same run could
provide several training samples for sensitivity prediction. After training how-
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Figure 6.8: TO predictions when PCA-Net used as a compliance sensitivity
surrogate are effected by point load singularity. Array of representative topol-
ogy solutions based (row 1) on ground truth TO runs with point load boundary
conditions and PCA-net surrogates with various modifications applied to the
point load, including removal of the singularity and spatially soothing the
load. Performance improved with both methods of smoothing, with further
improvements using a modest number (∼2) of pre- and post-processing TO
iterations. Annotations denote relative compliance error.

ever, in this work, direct design runtimes per problem were around 3 orders
of magnitude lower than sensitivity prediction. In practice, these factors must
be balanced.

Several effects may be limiting performance in sensitivity prediction, such as
those mentioned in Sec. 6.3.2, but both methods of smoothing the problem
yielded improvements. Additional analysis was conducted to investigate the
effects of these smoothing techniques, especially within the PC representation
within the neural operator architecture.

For both ground truth sensitivities from TO and predicted sensitivities, the
first two PCs are plotted in Fig. 6.9. The distributed load resulted in a
more consolidated distribution of samples in these PCs. However, this shift
in distribution was not associated with dramatically improved performance
relative to the analytically smoothed data, suggesting that PCs beyond the
first are important in determining overall TO outcomes.

The amount of variance captured per component was also plotted, in Fig. 6.10,
for final designs in the direct design case and sensitivities in the sensitivity pre-
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Figure 6.9: Higher variance observed in point load PCA projection. Left
Column: Projection of the compliance sensitivity into the first two principal
components for the ground truth (red) and PCA-Net prediction (blue), under
the different load smoothing conditions. Note the consolidated distribution
with load smoothing. Right Columns: plots of the compliance sensitivity field
in the physical domain for representative examples denoted by square and star
annotations.

diction case. For direct design, regardless of whether the load was distributed
or not, most of the variance is captured very quickly, at roughly the same rate.
The first 100 components captured 97.5% of the variance. For sensitivities,
variance is captured relatively slowly with the raw unsmoothed data (83.8%
captured by component 100), with low and intermediate PCs capturing much
more variance in both forms of smoothed data (92.6% and 98.3% for analytical
smoothing and distributed load, respectively). This trend is correlated with
performance of the three approaches (raw, analytical singularity removal, load
distribution), further suggesting that relatively early components above the
first two are important in final TO outcomes. It also suggests that other,
potentially nonlinear, dimensionality reduction techniques that can capture
sensitivity data variance faster than PCA may result in further improved per-
formance in the sensitivity prediction configuration.

To understand how iterations are distributed in the PCA representation of
sensitivities, samples from iterations ranging from 1 to ≥8 are plotted Fig.
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Figure 6.10: Compliance sensitivity variance decreases with smoothing. Com-
parison of explained variance (left column) and PCA-net prediction errors
(right columns) for Direct Design (top row) and Sensitivity Prediction (bot-
tom row). Strong dependence of the number of components needed to capture
the variance on the smoothing of the load.

6.11, for both the original and distributed load. In both cases, the overall dis-
tribution starts relatively compact, spreads out increasingly through the first
several iterations, and then becomes relatively compact again by iteration 8.
The effect is more noticeable for the point load, but is present for both. By
enabling PCs to be calculated on more compact data and training a neural
network on a more consistent distribution, training a PCA-Net-based sensitiv-
ity prediction framework only on iterations ≥8, while leaving initial iterations
to traditional TO, could give further improvements in performance.

6.6 Conclusion

In this work, the PCA-Net neural operator was investigated on minimum
compliance SIMP TO in multiple configurations. In the direct design con-
figuration, performance was excellent both for its per-pixel accuracy and its
structural compliance, with median relative compliance error of 0.8%. When
the surrogate was alternatively trained to perform only the sensitivity analysis
portion of the TO routine within the iterative design update loop, structural
performance declined to 6.2% median error, in part due to the presence of
a singularity in the design sensitivities at the point force. Two smoothing
methods were introduced, and both improved performance to around 4-4.5%
median error. Analysis of PC spaces showed that PCA’s ability to capture
variance more quickly in smoother data is linked to better TO outcomes. In
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Figure 6.11: Highest variance observed in the PCA of the compliance sensi-
tivity between TO iterations 2-7. Projections of the compliance sensitivity
into the first two principal components for the rmax=7 data set. Note: all
TO runs assume a uniform density initial guess and are only differentiated by
their problem boundary conditions. Motivates training a PCA-Net sensitivity
surrogate just on iterations beyond 8.

addition to showing PCA-Net to be an effective surrogate for direct design
and sensitivity analysis when smoothing is applied, this effort helps lay the
groundwork for further exploration of neural operators for TO that consider
factors such as generalization, capacity for arbitrarily scalable output, and
training data minimization.

References

[1] N. Aage. Topology optimization codes written in Python. Apr. 2019. url:
https://www.topopt.mek.dtu.dk/apps-and-software/topology-
optimization-codes-written-in-python.

[2] M. Allen and K. Maute. “Reliability-based design optimization of aeroe-
lastic structures.” In: Structural and Multidisciplinary Optimization 27.4
(June 2004), pp. 228–242. issn: 1615147X. doi: 10.1007/s00158-004-
0384-1.

[3] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sig-
mund. “Efficient topology optimization in MATLAB using 88 lines of
code.” In: Structural and Multidisciplinary Optimization 43.1 (Jan. 2011),
pp. 1–16. issn: 1615147X. doi: 10.1007/s00158-010-0594-7.

https://www.topopt.mek.dtu.dk/apps-and-software/topology-optimization-codes-written-in-python
https://www.topopt.mek.dtu.dk/apps-and-software/topology-optimization-codes-written-in-python
https://doi.org/10.1007/s00158-004-0384-1
https://doi.org/10.1007/s00158-004-0384-1
https://doi.org/10.1007/s00158-010-0594-7


131

[4] M. P. Bendsoe. “Optimal shape design as a material distribution prob-
lem.” In: Structural Optimization 1 (1989), pp. 193–202.

[5] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. Model
Reduction And Neural Networks For Parametric PDEs. Tech. rep. 2021,
pp. 121–157.

[6] S. Bi, J. Zhang, and G. Zhang. “Scalable deep-learning-accelerated topol-
ogy optimization for additively manufactured materials.” In: NeurIPS
Workshop on ML for Engineering Modeling (Nov. 2020). url: http:
//arxiv.org/abs/2011.14177.

[7] N. K. Brown, A. P. Garland, G. M. Fadel, and G. Li. “Deep reinforce-
ment learning for engineering design through topology optimization of
elementally discretized design domains.” In: Materials and Design 218
(June 2022). issn: 18734197. doi: 10.1016/j.matdes.2022.110672.

[8] H. Chi, Y. Zhang, T. L. E. Tang, L. Mirabella, L. Dalloro, L. Song, and
G. H. Paulino. “Universal machine learning for topology optimization.”
In: Computer Methods in Applied Mechanics and Engineering 375 (Mar.
2021). issn: 00457825. doi: 10.1016/j.cma.2019.112739.

[9] C. Chu, A. Leichner, F. Wenz, and H. Andrä. “Exploring VAE-driven
implicit parametric unit cells for multiscale topology optimization.” In:
Materials and Design 244 (Aug. 2024). issn: 18734197. doi: 10.1016/
j.matdes.2024.113087.

[10] S. Das and A. Sutradhar. “Multi-physics topology optimization of func-
tionally graded controllable porous structures: Application to heat dis-
sipating problems.” In: Materials and Design 193 (Aug. 2020). issn:
18734197. doi: 10.1016/j.matdes.2020.108775.

[11] J. D. Deaton and R. V. Grandhi. A survey of structural and multidis-
ciplinary continuum topology optimization: Post 2000. Jan. 2014. doi:
10.1007/s00158-013-0956-z.

[12] D. Erzmann and S. Dittmer. “Equivariant neural operators for gradient-
consistent topology optimization.” In: Journal of Computational Design
and Engineering 11.3 (June 2024), pp. 91–100. issn: 22885048. doi: 10.
1093/jcde/qwae039.

[13] A. T. Gaynor, N. A. Meisel, C. B. Williams, and J. K. Guest. “Multiple-
material topology optimization of compliant mechanisms created via
polyJet three-dimensional printing.” In: Journal of Manufacturing Sci-
ence and Engineering, Transactions of the ASME 136.6 (Dec. 2014).
issn: 15288935. doi: 10.1115/1.4028439.

[14] G. Giannone and F. Ahmed. “Diffusing the optimal topology: A genera-
tive optimization approach.” In: (Mar. 2023). url: http://arxiv.org/
abs/2303.09760.

http://arxiv.org/abs/2011.14177
http://arxiv.org/abs/2011.14177
https://doi.org/10.1016/j.matdes.2022.110672
https://doi.org/10.1016/j.cma.2019.112739
https://doi.org/10.1016/j.matdes.2024.113087
https://doi.org/10.1016/j.matdes.2024.113087
https://doi.org/10.1016/j.matdes.2020.108775
https://doi.org/10.1007/s00158-013-0956-z
https://doi.org/10.1093/jcde/qwae039
https://doi.org/10.1093/jcde/qwae039
https://doi.org/10.1115/1.4028439
http://arxiv.org/abs/2303.09760
http://arxiv.org/abs/2303.09760


132

[15] M. E. Gurtin. “The linear theory of elasticity.” In: Mechanics of Solids.
Ed. by C. Truesdell. Vol. II. Springer, 1973, pp. 1–295.

[16] N. Hertlein, P. R. Buskohl, A. Gillman, K. Vemaganti, and S. Anand.
“Generative adversarial network for early-stage design flexibility in topol-
ogy optimization for additive manufacturing”. In: Journal of Manufac-
turing Systems 59 (Apr. 2021), pp. 675–685. issn: 02786125. doi: 10.
1016/j.jmsy.2021.04.007.

[17] N. Hertlein, A. Gillman, and P. R. Buskohl. “Generative adversarial
design analysis of non-convexity in topology optimization.” In: Interna-
tional design engineering technical conferences and computers and in-
formation in engineering conference (2022). doi: 10.1115/DETC2022-
89997.

[18] N. Hertlein, A. Gillman, and P. R. Buskohl. “{TBD}”. In: {TBD} (2025).

[19] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimiza-
tion.” In: International conference on learning representations. Dec. 2015.
url: http://arxiv.org/abs/1412.6980.

[20] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-Normalizing
Neural Networks. Tech. rep.

[21] H. T. Kollmann, D. W. Abueidda, S. Koric, E. Guleryuz, and N. A.
Sobh. “Deep learning for topology optimization of 2D metamaterials.”
In: Materials and Design 196 (Nov. 2020). issn: 18734197. doi: 10 .
1016/j.matdes.2020.109098.

[22] T. Kurth, S. Subramanian, P. Harrington, J. Pathak, M. Mardani, D.
Hall, A. Miele, K. Kashinath, and A. Anandkumar. “FourCastNet: Accel-
erating global high-resolution weather forecasting using adaptive fourier
neural operators”. In: Proceedings of the Platform for Advanced Scientific
Computing Conference, PASC 2023. Association for Computing Machin-
ery, Inc, June 2023, pp. 1–11. doi: 10.1145/3592979.3593412.

[23] S. Lanthaler. Operator learning with PCA-Net: upper and lower complex-
ity bounds. Tech. rep. 2023, pp. 1–67. url: http://jmlr.org/papers/
v24/23-0478.html..

[24] F. Lehmann, F. Gatti, M. Bertin, and D. Clouteau. “3D elastic wave
propagation with a Factorized Fourier Neural Operator (F-FNO).” In:
Computer Methods in Applied Mechanics and Engineering 420 (2024).
doi: 10.57745/LAI6YU.

[25] K. Liang, D. Zhu, and F. Li. “A Fourier neural operator-based lightweight
machine learning framework for topology optimization.” In: Applied Math-
ematical Modelling 129 (May 2024), pp. 714–732. issn: 0307904X. doi:
10.1016/j.apm.2024.02.011.

https://doi.org/10.1016/j.jmsy.2021.04.007
https://doi.org/10.1016/j.jmsy.2021.04.007
https://doi.org/10.1115/DETC2022-89997
https://doi.org/10.1115/DETC2022-89997
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.matdes.2020.109098
https://doi.org/10.1016/j.matdes.2020.109098
https://doi.org/10.1145/3592979.3593412
http://jmlr.org/papers/v24/23-0478.html.
http://jmlr.org/papers/v24/23-0478.html.
https://doi.org/10.57745/LAI6YU
https://doi.org/10.1016/j.apm.2024.02.011


133

[26] Q. Liu, R. Xu, Y. Zhou, J. Ge, S. Yuan, Y. Long, and T. Shi. “Metamate-
rials mapped lightweight structures by principal stress lines and topology
optimization: Methodology, additive manufacturing, ductile failure and
tests”. In: Materials and Design 212 (Dec. 2021). issn: 18734197. doi:
10.1016/j.matdes.2021.110192.

[27] S. Mukherjee, D. Lu, B. Raghavan, P. Breitkopf, S. Dutta, M. Xiao,
and W. Zhang. “Accelerating large-scale topology optimization: state-
of-the-art and challenges.” In: Archives of Computational Methods in
Engineering 28.7 (Dec. 2021), pp. 4549–4571. issn: 18861784. doi: 10.
1007/s11831-021-09544-3.

[28] Z. Nie, T. Lin, L. Burak Kara, A. Preprint Zhenguo Nie, and H. Jiang.
TopologyGAN: Topology Optimization Using Generative Adversarial Net-
works Based on Physical Fields Over the Initial Domain. Tech. rep. 2020.
url: https://github.com/zhenguonie/TopologyGAN.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury Google, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. K. Xamla,
E. Yang, Z. Devito, M. Raison Nabla, A. Tejani, S. Chilamkurthy, Q. Ai,
B. Steiner, L. F. Facebook, J. B. Facebook, and S. Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. Tech. rep.
2019.

[30] C. Qian and W. Ye. “Accelerating gradient-based topology optimization
design with dual-model artificial neural networks”. In: Structural and
Multidisciplinary Optimization 63.4 (Apr. 2021), pp. 1687–1707. issn:
16151488. doi: 10.1007/s00158-020-02770-6.

[31] C. Sharpe and C. C. Seepersad. “Topology design with conditional gener-
ative adversarial networks.” In: IDETC. Anaheim, CA, Aug. 2019. url:
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-
pdf/IDETC- CIE2019/59186/V02AT03A062/6453126/v02at03a062-
detc2019-97833.pdf.

[32] O. Sigmund. “A 99 line topology optimization code written in Matlab.”
In: Struct Multidisc Optim 21 (2001), pp. 120–127. url: http://www.
topopt.dtu.dk..

[33] O. Sigmund and J. Petersson. Numerical instabilities in topology op-
timization: A survey on procedures dealing with checkerboards, mesh-
dependencies and local minima. Tech. rep. 1998, pp. 68–75.

[34] Z. Sun, Y. Wang, P. Liu, and Y. Luo. “Topological dimensionality reduction-
based machine learning for efficient gradient-free 3D topology optimiza-
tion.” In: Materials and Design 220 (Aug. 2022). issn: 18734197. doi:
10.1016/j.matdes.2022.110885.

https://doi.org/10.1016/j.matdes.2021.110192
https://doi.org/10.1007/s11831-021-09544-3
https://doi.org/10.1007/s11831-021-09544-3
https://github.com/zhenguonie/TopologyGAN
https://doi.org/10.1007/s00158-020-02770-6
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2019/59186/V02AT03A062/6453126/v02at03a062-detc2019-97833.pdf
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2019/59186/V02AT03A062/6453126/v02at03a062-detc2019-97833.pdf
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2019/59186/V02AT03A062/6453126/v02at03a062-detc2019-97833.pdf
http://www.topopt.dtu.dk.
http://www.topopt.dtu.dk.
https://doi.org/10.1016/j.matdes.2022.110885


134

[35] A. P. Torres, J. E. Warner, M. A. Aguiló, and J. K. Guest. “Robust
topology optimization under loading uncertainties via stochastic reduced
order models.” In: International Journal for Numerical Methods in En-
gineering 122.20 (Oct. 2021), pp. 5718–5743. issn: 10970207. doi: 10.
1002/nme.6770.

[36] S. Valdez, N. Rodriguez, and C. Seepersad. “Latent variable represen-
tations for interactive structural design exploration.” In: IDETC-CIE
(2022). doi: 10.1115/DETC2022-91076.

[37] M. Wei and X. Zhang. Super-Resolution Neural Operator. Tech. rep. url:
https://github.com/.

[38] R. V. Woldseth, N. Aage, J. A. Bærentzen, and O. Sigmund. On the use
of artificial neural networks in topology optimisation. Oct. 2022. doi:
10.1007/s00158-022-03347-1.

[39] Y. Yu, T. Hur, J. Jung, and I. G. Jang. “Deep learning for determining
a near-optimal topological design without any iteration.” In: Structural
and Multidisciplinary Optimization 59.3 (Mar. 2019), pp. 787–799. issn:
16151488. doi: 10.1007/s00158-018-2101-5.

[40] Y. Zhang, H. Chi, B. Chen, T. L. Elaine Tang, L. Mirabella, L. Song, and
G. H. Paulino. “Speeding up computational morphogenesis with online
neural synthetic gradients.” In: Proceedings of the International Joint
Conference on Neural Networks. Vol. 2021-July. Institute of Electrical
and Electronics Engineers Inc., July 2021. doi: 10.1109/IJCNN52387.
2021.9533789.

https://doi.org/10.1002/nme.6770
https://doi.org/10.1002/nme.6770
https://doi.org/10.1115/DETC2022-91076
https://github.com/
https://doi.org/10.1007/s00158-022-03347-1
https://doi.org/10.1007/s00158-018-2101-5
https://doi.org/10.1109/IJCNN52387.2021.9533789
https://doi.org/10.1109/IJCNN52387.2021.9533789


135

C h a p t e r 7

CONCLUSION AND FUTURE WORK

In this thesis, we have addressed two challenges: developing a novel method
for material characterization, and exploring the use of neural networks to solve
complex mechanics problems.

The first two chapters focus on the formulation and application of a new
approach for recovering material properties directly from experimental data.
Traditional techniques typically require highly constrained experimental con-
ditions—such as inducing homogeneous deformation fields or relying on sim-
plified loading configurations—which limits their applicability to real-world,
complex scenarios. In contrast, our method enables the inference of material
parameters from general experimental setups directly from measurable quan-
tities such as full-field deformation and force data. Assuming a constitutive
model, we simulate the boundary value problem corresponding to the experi-
mental configuration and compute the resulting fields. An objective function is
then defined to quantify the discrepancy between these simulated fields and the
actual measurements. To minimize this objective, we employ a gradient-based
optimization method, where sensitivities are efficiently computed using the ad-
joint method. This approach, known as PDE-constrained optimization, allows
for scalable and accurate parameter identification even in high-dimensional
settings.

We demonstrate the method on synthetic datasets under both quasistatic and
dynamic loading conditions. Importantly, because the framework does not
rely on specific governing equations, it generalizes naturally to more complex
scenarios, such as dynamic contact problems. Building on these synthetic vali-
dations, we apply the methodology to real experimental data, recovering mate-
rial properties for rolled homogeneous armor (RHA) steel and polycrystalline
aluminum alloys from instrumented indentation tests. These case studies high-
light the method’s potential for practical use in characterizing materials under
complex loading and boundary conditions.

Classical constitutive models, while successful in modeling a wide range of
materials often rely on specific assumptions and require significant a priori
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knowledge of the underlying physical mechanisms. As the catalog of engi-
neered materials continues to expand, including complex alloys and metama-
terials, these traditional approaches may fall short, either due to the absence
of established models or the difficulty of parameter identification. In the third
chapter, we address this challenge by introducing a data-driven constitutive
model based on a recurrent neural operator (RNO). RNOs are well-suited for
modeling systems with temporal dependencies, making them a natural choice
for capturing elasto-viscoplastic behavior without the need for hand-crafted
constitutive laws. We integrate the RNO within a PDE-constrained optimiza-
tion framework, where the network parameters (weights and biases) are opti-
mized directly from experimental data. As a demonstration, we consider a dy-
namically compressed thin annular specimen, and use displacement and force
measurements to train the RNO model. The trained model is then validated
on an unseen loading configuration to assess its generalization. Results show
that the RNO not only captures the observed behavior accurately but also out-
performs a classical elasto-viscoplastic model in predictive performance. This
study illustrates the potential of neural operator-based constitutive models as
flexible and robust alternatives to classical approaches, especially in scenarios
where first-principles modeling is impractical.

While the RNO framework enables data-driven modeling of constitutive be-
havior at the macroscopic continuum scale, it operates independently of the
physical mechanisms that give rise to this behavior. In reality, continuum-scale
responses often originate from physics at smaller scales, governed by their own
PDEs. Capturing this relationship requires solving the governing equations at
both macro and microscale: the macroscale provides boundary conditions to
the microscale model, which in turn returns effective material behavior back
to the larger scale. This bidirectional coupling forms the basis of multiscale
modeling.

Although powerful, this approach is computationally intensive, as it demands
repeated microscale PDE solves across the domain during simulation. To
make this process tractable, the fourth chapter introduces neural operators
as efficient surrogates for these lower-scale solvers. Rather than resolving the
microscale physics directly, we train a neural operator to map microstructural
parameters and loading conditions to approximate PDE solutions. We focus
on elliptic equations relevant to equilibrium problems in heterogeneous media
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and evaluate the model on a variety of microstructure types. Results show
that neural operators can provide fast, reliable approximations, paving the
way for scalable multiscale simulations without sacrificing fidelity.

Taken together, the two chapters of this thesis show that neural operators can
be powerful tools in computational mechanics, playing two distinct roles: (i) as
constitutive models that are trained directly from experimental data without
requiring explicit assumptions about the material’s functional form, and (ii)
as surrogates for lower-scale PDE solvers, enabling efficient multiscale simu-
lations. These findings open the door to more flexible and computationally
feasible approaches for modeling complex material behavior.

In the fifth chapter, we extend the application of neural operators to tackle
an engineering design problem. Topology optimization is a well-established
approach for solving inverse design problems, which involves the repeated so-
lution of governing equations to compute sensitivities and update the design
iteratively. However, this process is computationally expensive due to the high
number of PDE solves required. To accelerate the optimization, we employ
a PCA-based neural operator to approximate the PDE solutions efficiently.
Because the solution fields are high-dimensional, we first project them onto a
lower-dimensional principal component (PCA) space. The neural operator is
then trained to predict the solution in this reduced space, enabling fast and ac-
curate reconstruction of the full solution field. This dimensionality reduction
improves computational efficiency, facilitates easier training and inference.

7.1 Future directions

The PDE-constrained optimization technique for material characterization re-
lies critically on the assumption that the experimental data contain sufficient
information to enable accurate identification of material properties. However,
this is a nontrivial assumption and presents an area for further research. De-
signing experiments that produce data rich enough to reliably recover constitu-
tive parameters remains a significant challenge. Moreover, different parameters
influence different regions of the data, suggesting that certain experimental
configurations may be more informative for specific aspects of the material
behavior. Therefore, the development of a formal framework for intelligent ex-
periment design—aimed at maximizing the informativeness of measurements
for parameter identification—is a necessary direction for future work.
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The RNO-based constitutive model presented in Chapter 4 exhibits limited
generalization when applied to settings beyond those encountered during train-
ing. For this reason, validation was restricted to strain rates and length scales
similar to those used during training, and there no guarantee the model will
give accurate predictions outside of this regime. This limitation can potentially
be addressed by pretraining the RNO on data generated from a known classical
constitutive model, followed by transfer learning within the PDE-constrained
framework. Such offline pretraining introduces minimal additional computa-
tional cost but can significantly enhance the robustness of the model. Another
key limitation of the RNO is its lack of built-in physical constraints—it does
not inherently enforce principles such as material symmetry, frame indiffer-
ence, or thermodynamic consistency. There is, however, a growing body of
work focused on embedding these physical principles into neural network ar-
chitectures from the outset [1, 2], which presents a promising direction for
enhancing interpretability, reliability and generalization of data-driven consti-
tutive models.

In Chapter 5, we introduced a neural operator for approximating solutions to
elliptic PDEs at the microscale. While the results are promising, several open
challenges remain. One major difficulty is that plasticity at the microscale
can induce localized singularities in the solution field, which are notoriously
difficult for neural operators to capture. Similarly, sharp variations in material
properties across the domain can lead to discontinuities or steep gradients,
further complicating learning. Even though we present a method to learn
singular solutions using neural operators, it relies on the assumption that the
local solution around the singularity is known. This might not be generalizable
to all problems. Another important limitation is that current neural operator
surrogates typically approximate only the solution fields—not their gradients.
This restricts their applicability in quasistatic problems, where accurate stress
and strain gradients are essential for computing internal forces. As a result,
such surrogates are more suited to dynamic problems where gradient accuracy
is less critical.
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A p p e n d i x A

APPENDIX FOR CHAPTER 2

A.1 Adjoint problem in elasto-viscoplascitity

We consider an objective of integral from

O(u, q, εp, P ) =
∫ T

0

∫
Ω
o(u, q, εp, P ) dΩ. (A.1)

We follow Section 2.2.1 to use the adjoint method to compute the sensitivity
of O with respect to the parameters P . So we augment to objective using the
governing equations

O =
∫ T

0

∫
Ω

{
o+ ρü · v + ∂W e

∂ε
· ∇v − b · v

+ γq̇

[
σM − ∂W p

∂q
− ∂ḡ∗

∂q̇

]
+ ζ · (ε̇p − q̇M)

}
dΩdt

+
∫ T

0

∫
∂Ω

(f · v) dS dt,

(A.2)

where the fields v, γ and ζ which correspond to the displacement, plastic
hardening and plastic strain, respectively, are to be determined. Also, we have
used the Kuhn-Tucker condition to replace (2.16)2 to include the irreversibility
of the accumulated plastic strain. We differentiate this augmented objective
with respect to the parameters P ,

dO
dP =

∫ T

0

∫
Ω

{
∂o

∂P
+ ∂ρ

∂P
ü · v + ∂2W e

∂ε∂P
· ∇v + γq̇

(
∂σ̄M
∂P

− ∂2W p

∂q∂P
− ∂2g∗

∂q̇∂P

)

+ ∂o

∂u
δPu+ ρv · δP ü+

(
∇v · ∂

2W e

∂ε∂ε
+ γq̇

∂σ̄M
∂ε

− q̇ζ · ∂M
∂ε

)
· ∇δPu

+
(
∂o

∂q
− γq̇

∂2W p

∂q2

)
δP q

+
(

−γq̇ ∂
2ḡ∗

∂q̇2 + γ

[
σM − ∂W p

∂q
− ∂ḡ∗

∂q̇

]
− ζ ·M

)
δP q̇

+ ζ · δP ε̇p

+
(
∂o

∂εp
+ ∇v · ∂

2W e

∂ε∂εp
+ γq̇

∂σ̄M
∂εp

− q̇ζ · ∂M
∂εp

)
· δP εp

}
dΩ dt.

(A.3)
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We then integrate by parts, and enforce quiescent conditions on v at the final
time T to remove the boundary terms. Then, localizing gives the sensitivities
as

dO
dP =

∫ T

0

∫
Ω

{
∂o

∂P
+ ∂ρ

∂P
ü · v + ∂2W e

∂ε∂P
· ∇v

+ γq̇

(
∂σ̄M
∂P

− ∂2W p

∂q∂P
− ∂2g∗

∂q̇∂P

)}
dΩ dt,

(A.4)

if the adjoint variables satisfy the evolution

0 =
∫

Ω

ρv̈ · δPu+ ∂o

∂u
· δPu

+
(

∇v · ∂
2W e

∂ε∂ε
+ γq̇

∂σ̄M
∂ε

− q̇ζ · ∂M
∂ε

)
· ∇δPu

 dΩ ∀δPu ∈ K0,

d
dt

[
γ

(
σ̄M − ∂W p

∂q
− ∂ḡ∗

∂q̇

)
− γq̇

∂2ḡ∗

∂q̇2 − ζ ·M
]

= ∂o

∂q
− γq̇

∂2W p

∂q2 on Ω,

dζ
dt = ∂o

∂εp
+ ∇v · ∂

2W e

∂ε∂εp
+ γq̇

∂σ̄M
∂εp

− q̇ζ · ∂M
∂εp

on Ω,

v|t=T = 0, v̇|t=T = 0, γ|t=T = 0, ζ|t=T = 0,
(A.5)

where K0 := {φ ∈ H1(Ω), φ = 0 on ∂uΩ} is the space of kinematically admis-
sible displacement variations. This is the weak form of (2.18).

A.2 Numerical method in elasto-viscoplasticity

We discuss the finite element discretization and numerical method to solve the
forward and adjoint problems for both the quasistatic and dynamic setting.
We consider a spatial discretization with standard p = 1 Lagrange polynomial
shape functions for the displacements

u =
nu∑
i=1

uiNi(x), (A.6)

where Ni : Ω 7→ Rn are the standard vector valued shape functions with
compact support. The fields q and εp are discretized at quadrature points as

q(xg) = qg, εp(xg) = εpg, (A.7)

for some Gauss point xg, g = 1, . . . , ng.
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A.2.1 Quasistatic forward problem

The governing relations in this setting are

0 =
∫

Ω
[Cεe · ∇δu− b · δu] dΩ −

∫
∂f Ω

f · δu dS ∀δu ∈ K0,

0 ∈ σM − ∂W p

∂q
− ∂ψ(q̇) on Ω,

ε̇p = q̇M on Ω,

q|t=0 = 0, εp|t=0 = 0

(A.8)

where K0 := {φ ∈ H1(Ω), φ = 0 on ∂uΩ} is the space of kinematically admis-
sible displacement variations.

We consider a fully implicit approach, with a backwards Euler approximation
of the temporal derivatives of the plastic variables. We examine this from the
n to n + 1 time step. That is, we look to solve for {un+1, qn+1, εp,n+1} given
{un, qn, εp,n} assuming the discretizations in (A.6) and (A.7). Thus, we look
to solve

0 = Ri :=
∫

Ω

[
C
(
ε(un+1) − εp,n+1

)
· ∇Ni

− b ·Ni

]
dΩ −

∫
∂f Ω

f ·Ni dS i = 1, . . . , nu

0 ∈

σM(∇un+1, εp,n+1)

− ∂W p

∂q
− ∂ψ

(
qn+1 − qn

∆t

)
xg

g = 1, . . . , ng
[
εp,n+1 − εp,n

∆t

]
xg

=
[
qn+1 − qn

∆t M(∇un+1, εp,n+1)
]
xg

g = 1, . . . , ng.

(A.9)

We solve this through a nested Newton-Raphson approach. From the unidirec-
tional nature of M , we have M(∇un+1, εp,n+1) = M(∇un+1, εp,n). Then, from
the last line (A.9), we may explicitly write εp,n+1 = εp,n+1(∇un+1, qn+1, εp,n, qn).
We may then reduce the plastic updates to a single scalar yield equation from
the second line of (A.9),

0 ∈

σM(∇un+1, εp,n+1(∇un+1, qn+1, εp,n, qn))

− ∂W p

∂q
(qn+1) − ∂ψ

(
qn+1 − qn

∆t

)
xg

(A.10)
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for g = 1, . . . , ng. Then, given ∇un+1, εp,n, and qn, the above equation is a
scalar relation for qn+1 at each quadrature point. We solve this through a stan-
dard Newton-Raphson method. Then, from the solution of the above, we may
write qn+1 = qn+1(∇un+1, εp,n, qn) and therefore εp,n+1 = εp,n+1(∇un+1, εp,n, qn).
This allows us to reduce the entire system to

0 = Ri :=
∫

Ω

[
C
(
ε(un+1) − εp,n+1(∇un+1, εp,n, qn)

)
· ∇Ni − b ·Ni

]
dΩ

−
∫
∂f Ω

f ·Ni dS

(A.11)
for i = 1, . . . , nu, where the plastic update relations are accounted for through
the dependence of εp,n+1 on ∇un+1, εp,n and qn. We solve this system through
a Newton-Raphson method. Thus, it is necessary to compute the stiffness
matrix

Kij :=
∫

Ω

[
C
(

∇Nj − ∂εp,n+1

∂∇u
· ∇Nj

)
· ∇Ni

]
] dΩ (A.12)

where

∂εp,n+1

∂∇u
= M(∇un+1, εp,n) ⊗ ∂qn+1

∂∇u
+ (qn+1 − qn) ∂M

∂∇u
. (A.13)

Here, the derivative ∂qn+1

∂∇u is found through an implicit differentiation of (A.10)
giving

∂qn+1

∂∇u
= 2µ

∂2W p

∂q2 + 1
∆t

∂2ψ
∂q̇2 + 3µ

M(∇un+1, εp,n). (A.14)

Then, starting from un+1,1 = un and p = 1, we conduct Newton Raphson
iterations over p in the form

Kij(un+1,p)∆uj = −Ri(un+1,p), i = 1, . . . , nu, j = 1, . . . , nu
un+1,p+1
j = ∆uj + un+1,p

j , j = 1, . . . , nu.
(A.15)

until |R(un+1,p+1)| < tol, and set un+1 = un+1,p+1 and qn+1 = qn+1(∇un+1, εp,n, qn)
and εp,n+1 = εp,n+1(∇un+1, εp,n, qn).

A.2.2 Dynamic forward problem

We specialize to the dynamic compression test where a disc (possibly with
a hole) is compressed axially. See Section 2.3.2) and Appendix (A.4). The
governing equations are (A.28).
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We use an explicit central difference scheme to update the displacement field.
The plasticity updates q and εp are then updated implicitly with a backwards
Euler update. For the n to n+ 1 time-step the displacement updates are

¨̄uni = M−1
ij F

n
j (ūn, εp,n, qn, tn),

˙̄un+1/2
i = ˙̄un−1/2

i + ∆tn ¨̄uni ,

ūn+1
i = ūni + ∆tn+1/2 ˙̄un+1/2

i ,

(A.16)

where

Mij =
∫

Ω
ρ(x)Ni ·Ni dΩ, F n

j =
∫

Ω
[−σ(εn, εp,n, αn, η) · ∇Nj + b ·Nj] dΩ.

(A.17)
In standard fashion, the integrals above are approximated with Gauss quadra-
ture. We then update the plasticity variables through an implicit backwards
Euler discretization. For this, we employ a predictor-corrector scheme [8] to
solve point-wise at each quadrature point,

0 ∈ σ̄M(εn+1|xg , ε
p,(n+1)
g , η(xg)) − ∂W p

∂q
− ∂g∗

(
qn+1
g − qng

∆t , η(xg)
)
,

εp,(n+1)
g = εp,ng + ∆qM(εn+1

g , εp,(n+1)
g ).

(A.18)

A.2.3 Quasistatic adjoint problem

The governing set of quasistatic adjoint relations are

0 =
∫

Ω

[
∂o

∂u
· δPu

+
(

∇v · ∂2W e

∂ε∂ε
+ γq̇

∂σ̄M
∂ε

− q̇ζ · ∂M

∂ε

)
· ∇δPu

]
dΩ ∀δPu ∈ U ,

d
dt

[
γ

(
σ̄M − ∂W p

∂q
− ∂ḡ∗

∂q̇

)
− γq̇

∂2ḡ∗

∂q̇2 − ζ · M

]
= ∂o

∂q
− γq̇

∂2W p

∂q2 on Ω,

dζ

dt
= ∂o

∂εp
+ ∇v · ∂2W e

∂ε∂εp
+ γq̇

∂σ̄M
∂εp

− q̇ζ · ∂M

∂εp
on Ω,

γ|t=T = 0, ζ|t=T = 0.

(A.19)
As the boundary conditions are found at the final time t = T , we solve this

system backwards in time. We consider a fully implicit approach, with a back-
ward Euler approximation of the temporal derivatives of the plastic variables.
We examine this from the n + 1 to n time step. That is, we look to solve
for {vn, γn, ζn} given {vn+1, γn+1, ζn+1} assuming the discretizations in (A.6)
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and (A.7) given the complete set of forward-problem solution variables. Thus,
we look to solve

0 = Radj
i =

∫
Ω

∂o
∂u

∣∣∣∣∣∣
tn

·Ni +
∇vn · ∂

2W e

∂ε∂ε

∣∣∣∣∣∣
tn

+ γn

q̇ ∂σ̄M
∂ε


tn

− ζn ·

q̇ ∂M
∂ε


tn

 · ∇Ni

 dΩ
∂o

∂q

∣∣∣∣∣∣
tn

− γn

q̇ ∂2W p

∂q2


tn

= 1
∆t

γ
σ̄M − ∂W p

∂q
− ∂ḡ∗

∂q̇

− γq̇
∂2ḡ∗

∂q̇2 − ζ ·M

tn+1

tn

ζn+1 − ζn
∆t = ∂o

∂εp

∣∣∣∣∣∣
tn

+ ∇vn · ∂
2W e

∂ε∂εp

∣∣∣∣∣∣
tn

+ γn

q̇ ∂σ̄M
∂εp


tn

− ζn ·

q̇ ∂M
∂εp


tn

,

(A.20)
This is a linear set of equations for the {vn, γn, ζn} and can be solved through
direct inversion.

A.2.4 Dynamic adjoint problem

Similar to the forward problem, we apply an explicit central difference scheme
to update the adjoint field v. The other adjoint variables, namely γ and ζ are
solved locally using then updated implicitly with a backwards Euler update.
For the n to n+ 1 time-step the displacement updates are

¨̄vni = M−1
ij H

n
j (ūn, εp,n, qn, tn),

˙̄vn+1/2
i = ˙̄vn−1/2

i + ∆tn ¨̄vni ,

v̄n+1
i = v̄ni + ∆tn+1/2 ˙̄vn+1/2

i ,

(A.21)

where

Mij =
∫

Ω
ρ(x)Ni ·Ni dΩ,

Hn
j =

∫
Ω

−
(

∇vn · ∂
2W e

∂ε∂ε
+ γnq̇n

∂σ̄M
∂ε

− q̇nζn · ∂M
∂ε

)
· ∇Nj (A.22)

− ∂o

∂u
·Nj

 dΩ. (A.23)

In standard fashion, the integrals above are approximated with Gauss quadra-
ture. We then update the adjoint variables γ and ζ through an implicit
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Figure A.1: Comparison of the performance of the method of moving asymp-
totes (MMA), gradient descent (GD), stochastic gradient descent (SG) and
the Barzilai-Borwein method (GDBB) for the parameter update.

backwards Euler discretization. For this, we solve a linear set of equations
point-wise at each quadrature point,

γn+1
(

σ̄M − ∂W p

∂q
− ∂ḡ∗

∂q̇
− q̇

∂2ḡ∗

∂q̇2

)
− ζn+1 · M = γn

(
σ̄M − ∂W p

∂q
− ∂ḡ∗

∂q̇
− q̇

∂2ḡ∗

∂q̇2

)
,

− ζn · M + ∆t
∂o

∂q
− ∆tγnq̇

∂2W p

∂q2 ,

ζn+1 = ζn + ∂o

∂εp
+ ∇v · ∂2W e

∂ε∂εp
+ γnq̇

∂σ̄M

∂εp
− q̇ζn · ∂M

∂εp
.

(A.24)

A.3 Optimization

The gradient of the objective function is computed using the adjoint method.
However, the parameter update is performed using method of moving asymp-
totes (MMA) as it allows for upper and lower bounds to be applied to the
parameters. Furthermore, MMA automatically adjusts step sizes for each pa-
rameter using asymptotes, which prevents large and unstable updates. How-
ever, other methods like a gradient descent or stochastic gradient could also
be used. We compare the results of MMA with gradient-descent, stochastic
gradient descent and the Barzilai-Borwein method in Figure A.1. Both gradi-
ent descent techniques have a power-law decay of the step-size. The stochastic
gradient-decent has a 5% noise added to the gradients at every step. The
Barzilai-Borwein method is similar to the gradient-descent, with the distinc-
tion being that the step-size is chosen based on the previous iterations. We
observe that MMA outperforms the other two methods, as the other methods
get “stuck” in local minima.
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A.4 Dimension reduction for annular specimen

The annulus ring being thin allows us to perform computations on a reduced
dimensional space enabling quicker algorithm. Reiterating our approximation
of uniform axial strain along the e3 direction,

u(X1, X2, X3, t) = ū(X1, X2, t) + (λ(t) − 1)X3 e3, (A.25)

where ū := Ω̄ 7→ R2 is the in-plane displacement. The corresponding deforma-
tion gradient is given by

∇u =
∇̄ū 0

0 λ

 , (A.26)

where ∇̄ is the gradient computed along the in-plane directions {e1, e2}. The
governing equations are,

0 =
∫

Ω
[ρü · δu+ σ · ∇δu− b · δu] dΩ −

∫
∂f Ω

f · δu dS ∀δu ∈ K0,

0 ∈ σM − ∂W p

∂q
− ∂ψ(q̇) on Ω,

ε̇p = q̇M on Ω.
(A.27)

Substituting the approximation of the displacement A.25 into the above equa-
tions, we obtain the simplified form

0 = −h2||Ω||
3 ρλ̈−

∫
Ω
σ33 +

∫
Ω
f · e3 ds

∣∣∣∣
X3=h

,

0 =
∫

Ω

[
ρ¨̄u · δū+ σ · ∇δū− b · δū

]
dΩ ∀δū ∈ K0,

0 ∈ σM − ∂W p

∂q
− ∂ψ(q̇) on Ω,

ε̇p = q̇M on Ω.

(A.28)

Since ū exists in a 2-dimensional space, the computational cost for solving
the above equations are cheaper than solving for a 3-dimensional system of
equations. The dynamic boundary condition involves specifying λ(t); therefor,
the first equation is not necessary. The net force on the surface X3 = h can
be calculated using

f =
∫

Ω
σ33 dΩ

∣∣∣∣
X3=h

. (A.29)

Our experimental data consists of the final in plane displacement ūexp(X1, X2, T )
and the net axial force f exp

R , which are compared with the inplane-displacements
obtained from equation A.28 and the surface forces computed using A.29.
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A p p e n d i x B

APPENDIX FOR CHAPTER 3

B.1 Numerical method for the governing equations

We discuss the finite element discretization and numerical schemes used to
solve the forward problem for the cases of quasi-statics, dynamics, and dy-
namic rigid contact. For all of these, we consider a spatial discretization with
standard p = 1 Lagrange polynomial shape functions for the displacements

u =
nu∑
i=1

uiNi(x), (B.1)

where Ni : Ω 7→ Rn are the standard vector valued shape functions with
compact support. The fields q and εp are discretized at quadrature points as

q(xg) = qg, εp(xg) = εpg, (B.2)

for some Gauss point xg, g = 1, . . . , ng. Stating the evolution equations in
equation 3.7, we need to solve the equations

0 =
∫

Ω
[ρü · δu+ Cεe · ∇δu− b · δu] dΩ −

∫
∂f Ω

f · δu dS

−
∫
∂Ω
λ
∂CI
∂u

· δu dS ∀δu ∈ K0,

0 ∈ σM − ∂W p

∂q
− ∂ψ(q̇) on Ω,

ε̇p = q̇M on Ω,

0 = CI(X + u, qI) − ℓ2 on ∂Ω,

u|t=0 = u̇|t=0 = 0, q|t=0 = 0, εp|t=0 = 0.
(B.3)

The first equation is the dynamic evolution of the displacement field u. The
second and third equations represent the kinetic relations for the plastic vari-
ables q, εp. We use an explicit central difference scheme to update the dis-
placement field. The plasticity updates q and εp are then updated implicitly
with a backwards Euler update. For the n to n+1 time-step the displacement
updates are
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üni = M−1
ij F

n
j (un, εp,n, qn, tn),

u̇
n+1/2
i = u̇

n−1/2
i + ∆tn üni ,

un+1
i = uni + ∆tn+1/2 u̇

n+1/2
i ,

(B.4)

where
Mij =

∫
Ω
ρ(x)Ni ·Ni dΩ. (B.5)

F n
j is the term containing internal forces, body forces, tractions and contact

forces, which is computed with a staggered predictor-corrector algorithm to
compute F n

j . First we assume contact forces are absent and predict the dis-
placement field un,prei ,

F n
j =

∫
Ω

[−Cεe(un) · ∇Nj + b ·Nj] dΩ +
∫
∂f Ω

f ·Nj ∂S,

ün,prei = M−1
ij F

n
j (un, εp,n, qn, tn),

u̇
n+1/2,pre
i = u̇

n−1/2
i + ∆tn ün,prei ,

un+1,pre
i = uni + ∆tn+1/2 u̇

n+1/2,pre
i .

(B.6)

If the contact condition is satisfied throughout ∂Ω, the predicted displacement
field is accepted. However, if the contact condition is not satisfied and penetra-
tion occurs, we need a correction in the displacement field. We first compute
the penetration depth δ at each node,

xn+1,pre
i = xni + un+1,pre

i ,

δ(xi) = arg min
δ

(
CI(xn+1,pre

i + δ, qI) − ℓ2
)
.

(B.7)

The contact force attached with this penetration depth is given by

F n
j =

∫
Ω

[−Cεe(un) · ∇Nj + b ·Nj] dΩ +
∫
∂f Ω

f ·Nj ∂S

+
∫
∂Ω
ρ(x)Ni ·Ni

δ(x)
∆t2 ·Nj ∂S,

üni = M−1
ij F

n
j (un, εp,n, qn, tn),

u̇
n+1/2
i = u̇

n−1/2
i + ∆tn üni ,

un+1
i = uni + ∆tn+1/2 u̇

n+1/2
i .

(B.8)

The plastic variables are solved in standard fashion where the integrals ap-
proximated with Gauss quadrature. We then update the plasticity variables
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through an implicit backwards Euler discretization. For this, we employ a
predictor-corrector scheme [9] to solve point-wise at each quadrature point,

0 ∈ σ̄M(εn+1|xg , ε
p,(n+1)
g , η(xg)) − ∂W p

∂q
− ∂g∗

(
qn+1
g − qng

∆t , η(xg)
)
,

εp,(n+1)
g = εp,ng + ∆qM(εn+1

g , εp,(n+1)
g ).

(B.9)

B.2 Optimization and adjoint formulation

B.2.1 Dynamic rigid contact

We consider an objective of integral from

O(u, q, εp, λ, P ) =
∫ T

0

∫
Ω
o(u, q, εp, λ, P ) dΩ. (B.10)

We follow Section 3.2.2 to use the adjoint method to compute the sensitivity
of O with respect to the parameters P . So we augment to objective using the
governing equations

O =
∫ T

0

∫
Ω

{
o+ ρü · v + Cεe · ∇v − b · v

+ γq̇

[
σM − ∂W p

∂q
− ∂ḡ∗

∂q̇

]
+ ζ · (ε̇p − q̇M)

}
dΩdt

+
∫ T

0

∫
∂Ωf

(f · v) dS dt−
∫ T

0

∫
∂Ω
λ
∂CI
∂u

· v dS +
∫ T

0

∫
∂Ω
τλ
(
CI − ℓ2

)
dSdt,

(B.11)
where the fields v, γ, ζ and τ which correspond to the displacement, plas-
tic hardening, plastic strain and lagrange multiplier for contact, respectively,
are to be determined. Also, we have used the Kuhn-Tucker condition to re-
place (3.7)2 to include the irreversibility of the accumulated plastic strain. We
differentiate this augmented objective with respect to the parameters P ,

dO
dP

=
∫ T

0

∫
Ω

{
∂o

∂P
+ ∂ρ

∂P
ü · v + ∂C

∂P
εe · ∇v + γq̇

(
∂σ̄M

∂P
− ∂2W p

∂q∂P
− ∂2g∗

∂q̇∂P

)
+ ∂o

∂u
δP u + ρv · δP ü +

(
∇v · C + γq̇

∂σ̄M

∂ε
− q̇ζ · ∂M

∂ε

)
· ∇δP u

+
(

∂o

∂q
− γq̇

∂2W p

∂q2

)
δP q +

(
−γq̇

∂2ḡ∗

∂q̇2 + γ

[
σM − ∂W p

∂q
− ∂ḡ∗

∂q̇

]
− ζ · M

)
δP q̇

+ ζ · δP ε̇p

+
(

∂o

∂εp
+ ∇v · ∂2W e

∂ε∂εp
+ γq̇

∂σ̄M

∂εp
− q̇ζ · ∂M

∂εp

)
· δP εp

}
dΩ dt

+
∫ T

0

∫
∂Ω

(
τλ

∂CI

∂u
− λ

∂2CI

∂u∂u

)
· δP u dS dt +

∫ T

0

∫
∂Ωλ ̸=0

(
∂CI

∂u
· v − ∂o

∂λ

)
· δP λ dS dt.

(B.12)
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Following this, we integrate by parts, and enforce quiescent conditions on v at
the final time T to remove boundary terms. This leads to the adjoint problem

0 =
∫

Ω

[
ρv̈ · δu+

(
C∇v + γq̇

∂σM
∂ε

− q̇µ · ∂M
∂ε

)
· ∇δu

+ ∂o

∂u
· δu

]
dΩ +

∫
∂Ω

(
bλ
∂CI
∂u

− λv · ∂
2CI

∂u∂u

)
· δu dS ∀δu ∈ K0

d
dt

[
γ

(
σM − σ0 − ∂g∗

∂q̇

)
− γq̇

∂2g∗

∂q̇2 − µ ·M
]

= −γq̇ ∂σ0

∂q
on Ω

dµ
dt = ∇ξ · ∂

2W e

∂ε∂εp
+ γq̇

∂σM
∂εp

− q̇µ · ∂M
∂εp

on Ω

0 = ∂CI
∂u

· v − ∂o

∂λ
on ∂Ωλ ̸=0

v|t=T = v̇|t=T = 0, γ|t=T = 0, µ|t=T = 0,

where K0 := {φ ∈ H1(Ω), φ = 0 on ∂uΩ} is the space of kinematically admis-
sible displacement variations.

B.3 Numerical method for the adjoint problem

B.3.1 Dynamic contact

Since the boundary conditions for the adjoint variables are specified at final
time T , we solve this system backwards. The adjoint variable v is updated
using explicitly and γ, ζ are updated implicitly. For the n to n+ 1 time-step
the adjoint updates are

v̈ni = M−1
ij H

n
j (un, εp,n, qn, tn),

v̇
n+1/2
i = v̇

n−1/2
i + ∆tn v̈ni ,

vn+1
i = vni + ∆tn+1/2 v̇

n+1/2
i ,

(B.13)

where
Mij =

∫
Ω
ρ(x)Ni ·NidΩ. (B.14)

We then update the adjoint variables γ and ζ through an implicit backwards
Euler discretization. For this, we solve a linear set of equations point-wise at
each quadrature point,
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γn+1
(

σ̄M − ∂W p

∂q
− ∂ḡ∗

∂q̇
− q̇

∂2ḡ∗

∂q̇2

)
− ζn+1 · M = γn

(
σ̄M − ∂W p

∂q
− ∂ḡ∗

∂q̇
− q̇

∂2ḡ∗

∂q̇2

)
,

− ζn · M + ∆t
∂o

∂q
− ∆tγnq̇

∂2W p

∂q2 ,

ζn+1 = ζn + ∂o

∂εp
+ ∇v · ∂2W e

∂ε∂εp
+ γnq̇

∂σ̄M

∂εp
− q̇ζn · ∂M

∂εp
.

(B.15)
Hn
j is the equation B.13 is computed with a staggered predictor-corrector algo-

rithm. First we assume contact forces are absent and predict the displacement
field un,prei ,

Hn
j =

∫
Ω

[
−
(

∇vn · C + γnq̇n
∂σ̄M
∂ε

− q̇nζn · ∂M

∂ε

)
· ∇Nj − ∂o

∂u
· Nj

]
dΩ

+
∫
∂Ω

(
−λnvn · ∂2CI

∂u∂u

)
· Nj dS

v̈n,prei = M−1
ij Hn

j (un, εp,n, qn, tn),

v̇
n+1/2,pre
i = v̇

n−1/2
i + ∆tn v̈n,prei ,

vn+1,pre
i = uni + ∆tn+1/2 v̇

n+1/2,pre
i .

(B.16)
Following this we check if the condition,

0 = ∂CI
∂u

· v − ∂o

∂λ
, (B.17)

is satisfied on ∂Ωλ ̸=0. If the constraint is not satisfied, we correct Hn
j by solving

for the lagrange multiplier bλ,

υ(xi) = arg min
δ

(
∂CI
∂u

· v − ∂o

∂λ

)
. (B.18)

The contact force attached with this penetration depth is given by

Hn
j =

∫
Ω

[
−
(

∇vn · C + γnq̇n
∂σ̄M
∂ε

− q̇nζn · ∂M
∂ε

)
· ∇Nj − ∂o

∂u
·Nj

]
dΩ

+
∫
∂Ω

(
−λnvn · ∂

2CI
∂u∂u

)
·Nj dS +

∫
∂Ωλ ̸=0

υ(xi)
∂CI
∂u

·Nj dS

üni = M−1
ij F

n
j (un, εp,n, qn, tn),

u̇
n+1/2
i = u̇

n−1/2
i + ∆tn üni ,

un+1
i = uni + ∆tn+1/2 u̇

n+1/2
i .

(B.19)
In standard fashion, the integrals above are approximated with Gauss quadra-
ture.
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A p p e n d i x C

APPENDIX FOR CHAPTER 4

C.1 Dimension reduction for annular specimen

The annulus ring being thin allows us to perform computations on a reduced
dimensional space enabling quicker algorithm. Reiterating our approximation
of uniform axial strain along the e3 direction,

u(X1, X2, X3, t) = ū(X1, X2, t) + (λ(t) − 1)X3 e3, (C.1)

where ū := Ω̄ 7→ R2 is the in-plane displacement. The corresponding deforma-
tion gradient is given by

∇u =
∇̄ū 0

0 λ

 , (C.2)

where ∇̄ is the gradient computed along the in-plane directions {e1, e2}. The
governing equations are,

0 =
∫

Ω
[ρü · δu+ σ · ∇δu− b · δu] dΩ −

∫
∂f Ω

f · δu dS ∀δu ∈ K0,

ξ̇ = G(∇u, ξ) on Ω.
(C.3)

Substituting the approximation of the displacement C.1 into the above equa-
tions, we obtain the simplified form

0 = −h2||Ω||
3 ρλ̈−

∫
Ω
σ33 +

∫
Ω
f · e3 ds

∣∣∣∣
X3=h

,

0 =
∫

Ω

[
ρ¨̄u · δū+ σ · ∇δū− b · δū

]
dΩ ∀δū ∈ K0,

ξ̇ = G(∇u, ξ) on Ω.

(C.4)

Since ū exists in a 2-dimensional space, the computational cost to solve the
above equations is cheaper than solving a 3-dimensional system of equations.
The dynamic boundary condition involves specifying λ(t); therefore, the first
equation is not necessary. The net force on the surface X3 = h can be calcu-
lated using

f =
∫

Ω
σ33 dΩ

∣∣∣∣
X3=h

. (C.5)
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Our experimental data consists of the final in plane displacement ūexp(X1, X2, T )
and the net axial force f exp

R , which are compared with the inplane-displacements
obtained from equation C.4 and the surface forces computed using C.5.

C.2 Numerical method

We discuss the finite element discretization and the numerical method to solve
the forward and adjoint problems for both the quasistatic and dynamic setting.
We consider a spatial discretization with standard p = 1 Lagrange polynomial
shape functions for the displacements

ū =
nu∑
i=1

ūiNi(x), (C.6)

where Ni : Ω 7→ Rn are the standard vector valued shape functions with
compact support. The internal variable field ξ is discretized at quadrature
points as

ξ(xg) = ξg, (C.7)

for some Gauss point xg, g = 1, . . . , ng.

C.2.1 Forward problem

The governing equations for the compression of the thin annulus are given in
equation (C.4). We use an explicit central difference scheme to update the
displacement field and the internal variables. For the n to n+ 1 time-step the
displacement updates are

¨̄uni = M−1
ij F

n
j (ūn, ξn, tn),

˙̄un+1/2
i = ˙̄un−1/2

i + ∆tn ¨̄uni ,

ūn+1
i = ūni + ∆tn+1/2 ˙̄un+1/2

i ,

(C.8)

where

Mij =
∫

Ω
ρ(x)Ni ·Ni dΩ, F n

j =
∫

Ω
[−σ(∇un, εp,n, ξ) · ∇Nj + b ·Nj] dΩ.

(C.9)
In standard fashion, the integrals above are approximated with Gauss quadra-
ture. We then update the internal variables through an explicit backwards
Euler discretization,

ξn+1
g = ξng + ∆t GNN

(
∇u(xg)n, ξng

)
. (C.10)
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C.2.2 Adjoint problem

Similar to the forward problem, we apply an explicit central difference scheme
to update the adjoint field v. The other adjoint variable, namely ϕ, is solved
locally using a backward Euler update. For the n to n + 1 time-step the
displacement updates are

¨̄vni = M−1
ij H

n
j (ūn, ξn, ϕn, tn),

˙̄vn+1/2
i = ˙̄vn−1/2

i + ∆tn ¨̄vni ,

v̄n+1
i = v̄ni + ∆tn+1/2 ˙̄vn+1/2

i ,

(C.11)

where

Mij =
∫

Ω
ρ(x)Ni ·Ni dΩ,

Hn
j =

∫
Ω

[
−
(

∇vn ·
(
∂σ

∂∇u

)n
− ϕn

(
∂G

∂∇u

)n)
· ∇Nj − ∂o

∂u
·Nj

]
dΩ. (C.12)

In standard fashion, the integrals above are approximated with Gauss quadra-
ture. We then update the adjoint variables ϕ through an explicit backwards
Euler discretization point-wise at each quadrature point,

ϕn+1
g = ϕng + ∆t

∇v(xg)n ·
(
∂σ

∂ξ

)n
g

−
(
∂GNN

∂ξ

)n
g

− ∂o

∂ξ

 . (C.13)

The derivatives for σ for the RNO constitutive (refer to equation 4.1) is given
by

∂σ

∂∇u
= CI + ∂SNN

∂∇u
,

∂σ

∂ξ
= ∂SNN

∂ξ
. (C.14)

The derivatives of the neural networks SNN and GNN are computed using Py-
torch’s autograd function.

C.3 Extra set of results for elliptic configuration

We present additional results for the elliptical configuration. Interestingly, we
observe that the choice of the objective weighting ratio αf/αu (as seen in equa-
tion 4.11) plays a critical role in the model’s ability to benefit from increased
internal state dimensionality. Specifically, when αf/αu = 0.1, the final ob-
jective remains nearly unchanged as the dimension of ξ increases, suggesting
that the displacement data is hard to learn and saturates the inversion process
(refer to figure C.1). In contrast, when αf/αu = 10.0, the objective decreases
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(a) αf/αu = 0.1 in equation 4.11 (b) αf/αu = 10.0 in equation 4.11

Figure C.1: Objective versus iteration for three different RNOs for the dynamic
compression of elliptical hole configuration.

noticeably with higher-dimensional internal states, indicating that the force
data is more informative for learning the latent structure. This highlights the
importance of balancing the data modalities to effectively utilize the model’s
capacity.

While the current experimental setup offers a useful testbed for evaluating
the RNO framework, it is not ideal for full material characterization. Due to
the axisymmetry of the loading and geometry, the in-plane displacement fields
obtained from DIC-like measurements are relatively low-rank and lack the rich-
ness needed to constrain the constitutive response fully. As a result, the dis-
placement data does not significantly improve recovery of the internal material
parameters, especially in configurations where force data is weighted less heav-
ily. This limitation underscores the need for more informative two-dimensional
deformation patterns—such as those arising from shear-dominated or asym-
metric loading conditions—which can more effectively excite and probe the
underlying constitutive behavior. Developing such 2D experimental configu-
rations is a promising direction for future work.
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(a) αf/αu = 0.1 in equation 4.11

(b) αf/αu = 10.0 in equation 4.11

Figure C.2: Force versus time for three different RNOs for the dynamic com-
pression of elliptical hole configuration.
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A p p e n d i x D

APPENDIX FOR CHAPTER 5

D.1 Proofs of stability estimates

In this section, we prove the stability estimates stated in Section 5.1.3. The
following lemma is a modification of the standard estimate for parametric
dependence of elliptic equations on their coefficient. We include it here for
completeness.

Proposition 1. Consider the cell problem defined by equation (5.4). The
following hold:

1. If A ∈ PDα,β, then (5.4) has a unique solution χ ∈ Ḣ1(Td;Rd) and

∥χ∥Ḣ1(Td;Rd) ≤
√
dβ

α
.

2. For χ(1) and χ(2) solutions to the cell problem in equation (5.4) associated
with coefficients A(1), A(2) ∈ PDα,β, respectively, it follows that

∥χ(2) − χ(1)∥Ḣ1(Td;Rd) ≤
√
d

α

(
1 + β

α

)
∥A(1) − A(2)∥L∞(Td;Rd×d). (5.8)

Proof. For existence and uniqueness of the solution to the cell problem using
Lax-Milgram, we refer to the texts [3, 10]; we simply derive the bounds and
stability estimate. First, note that (5.4) decouples, in particular,

−∇ · (A∇χℓ) = ∇ · Aeℓ, y ∈ Td (D.1)

for l = 1, . . . , d where eℓ is the ℓ-th standard basis vector of Rd and each
χℓ ∈ Ḣ1(Td;R). Multiplying by χℓ and integrating by parts shows

α∥∇χℓ∥2
L2 ≤

∫
Td

⟨A∇χℓ,∇χℓ⟩ dy

= −
∫
Td

⟨Aeℓ,∇χℓ⟩ dy

≤
∫
Td

|Aeℓ||∇χℓ| dy

≤
(∫

Td
|Aeℓ|2 dy

) 1
2
(∫

Td
|∇χℓ|2 dy

) 1
2

≤ ∥A∥L∞∥∇χℓ∥L2 .
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Therefore
∥∇χ∥2

L2 =
d∑
l=1

∥∇χℓ∥2
L2 ≤ d∥A∥2

L∞

α2 ≤ dβ2

α2 ,

which implies the first result.

To prove the second result, we denote the right hand side of D.1 by f
(i)
ℓ =

∇ · A(i)eℓ in what follows. For any v ∈ Ḣ1(Td;R), we have that

−
∫
Td

∇ · (A(1)∇χ(1)
ℓ )v dy =

∫
Td
f

(1)
ℓ v dy

−
∫
∂Td

vA(1)∇χ(1)
ℓ · n̂ dy +

∫
Td

∇v · A(1)∇χ(1)
ℓ dy =

∫
Td
f

(1)
ℓ v dy.

Since v, A(1), and the solution χ
(1)
ℓ are all periodic on Td, the first term is 0.

Combining with the equation for χ(2)
ℓ , we get∫

Td
∇v ·

(
A(1) − A(2)

)
∇χ(1)

ℓ dy =

=
∫
Td

(f (1)
ℓ − f

(2)
ℓ )v + ∇v ·

(
A(2)

(
∇χ(2)

ℓ − ∇χ(1)
ℓ

))
dy.

Setting v = χ
(2)
ℓ − χ

(1)
ℓ , we have∫

Td

(
∇χ

(2)
ℓ − ∇χ

(1)
ℓ

)
·
((

A(1) − A(2)
)

∇χ
(1)
ℓ

)
dy =

∫
Td

(f (1)
ℓ − f

(2)
ℓ )

(
χ

(2)
ℓ − χ

(1)
ℓ

)
dy

+
∫
Td

(
∇χ

(2)
ℓ − ∇χ

(1)
ℓ

)
·
(

A(2)
(

∇χ
(2)
ℓ − ∇χ

(1)
ℓ

))
dy,

α∥∇χ
(2)
ℓ − ∇χ

(1)
ℓ ∥2

L2 ≤ ∥A(1) − A(2)∥L∞∥∇χ
(1)
ℓ ∥L2∥∇χ

(2)
ℓ − ∇χ

(1)
ℓ ∥L2

+ ∥f
(1)
ℓ − f

(2)
ℓ ∥Ḣ−1∥∇χ

(2)
ℓ − ∇χ

(1)
ℓ ∥L2 ,

∥χ(2)
ℓ − χ

(1)
ℓ ∥Ḣ1 ≤ 1

α

(
∥A(1) − A(2)∥L∞∥∇χ(1)

ℓ ∥L2 + ∥f (1)
ℓ − f

(2)
ℓ ∥Ḣ−1

)
. (D.2)

Evaluating,

∥f (1)
ℓ − f

(2)
ℓ ∥Ḣ−1 = ∥∇ · A(1)eℓ − ∇ · A(2)eℓ∥Ḣ−1 , (D.3)

= sup
∥ξ∥Ḣ1 =1

∫
Td
ξ∇ · (A(1) − A(2))eℓ dy, (D.4)

≤ sup
∥ξ∥Ḣ1 =1

∥(A(1) − A(2))eℓ∥L2∥∇ξ∥L2 , (D.5)

≤ ∥A(1) − A(2)∥L2 ≤ ∥A(1) − A(2)∥L∞ (D.6)

since our domain is Td. Combining this with (D.2) and the bound of ∥∇χℓ∥L2 ≤
β
α

obtained in the first part of this proposition, we have

∥χ(2)
ℓ − χ

(1)
ℓ ∥Ḣ1 ≤ 1

α

(
1 + β

α

)
∥A(1) − A(2)∥L∞ . (D.7)

Returning to d vector components yields the result.
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The following result shows that the mapping A 7→ Ā is continuous on separable
subspaces of L∞(Td;Rd×d).

Lemma 1. Let A ⊂ L∞(Td;Rd×d) be a separable subspace and K ⊂ A∩PDα,β

a closed set in L∞. Define the mapping F : K → Rd×d by A 7→ Ā as given
by (5.3). Then there exists a continuous mapping F ∈ C(A;Rd×d) such that
F(A) = F (A) for any A ∈ K.

Proof. Let A(1), A(2) ∈ K then, by Proposition 1,∣∣F (A(1))− F
(
A(2))∣∣

F
≤
∫
Td

|A(1) − A(2)|F
(
1 + |∇χ(1)|F

)
dy

+
∫
Td

|A(2)|F |∇χ(1) − ∇χ(2)|F dy

≤ ∥A(1) − A(2)∥L∞
(
1 + ∥∇χ(1)∥L2

)
+ ∥A(2)∥L∞∥∇χ(1) − ∇χ(2)∥L2

≤

(
1 +

√
d

α

(
∥A(1)∥L∞ + ∥A(2)∥L∞

(
min

(
∥A(1)∥L∞ , ∥A(2)∥L∞

)
α

+ 1
)))

· ∥A(1) − A(2)∥L∞ ,

hence F ∈ C(K;Rd×d). Applying the Tietze extension theorem [5] to F implies
the existence of F .

The following lemma shows that, unfortunately, separable subspaces of L∞(Td;Rd×d)
are not very useful. Indeed, in the desired area of application of continuum
mechanics, we ought to be able to place a boundary of material discontinuity
anywhere in the domain. The following result shows that doing so is impossible
for a subset of PDα,β which lies only in a separable subspace of L∞(Td;Rd×d).

Lemma 2. For any t ∈ [0, 1] define ct : [0, 1] → R by

ct(x) =

1, x ≤ t

0, x > t
, ∀ x ∈ [0, 1].

Define E = {ct : t ∈ [0, 1]} ⊂ L∞([0, 1]). There exists no separable subspace
A ⊂ L∞([0, 1]) such that E ⊆ A.

Proof. Suppose otherwise. Since (A, ∥·∥L∞) is a separable metric space, (E, ∥·
∥L∞) must be separable since E ⊆ A; this is a contradiction since (E, ∥ · ∥L∞)
is not separable. To see this, let {ctj }∞

j=1 be an arbitrary countable susbset of
E. Then for any t ̸∈ {tj}∞

j=1, we have,

inf
{tj}∞

j=1

∥ct − ctj ∥L∞ = 1.
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Hence no countable subset can be dense.

Instead of working on a compact subset of a separable subspace of L∞(Td;Rd×d),
we may instead try to find a suitable probability measure which contains the
discontinous functions of interest. The following remarks makes clear why such
an approch would still be problematic for the purposes of approximation.

Remark 9 (Gaussian Threshholding). Let µ be a Gaussian measure on

L2([0, 1]). Define

T (x) =

1, x ≥ 0

0, x < 0
, ∀ x ∈ [0, 1]

and consider the corresponding Nemytskii operatorNT : L2([0, 1]) → L∞([0, 1]).
Then, working with the definitions in Lemma 2, it is easy to see that E ⊂
supp NT

♯µ. Therefore there exists no separable subspace of L∞([0, 1]) which
contains supp NT

♯µ.

We therefore abandon L∞ and instead show continuity and Lipschitz continu-
ity for some Lq with q < ∞ to Ḣ1. The following lemma is a general result
for convergence of sequences in metric spaces which is used in a more specific
context in the next lemma.

Lemma 3. Let (M,d) be a metric space and (an) ⊂ M a sequence. If every
subsequence (ank

) ⊂ (an) contains a subsequence (ankl
) ⊂ (ank

) such that
(ankl

) → a ∈ M then (an) → a.

Proof. Suppose otherwise. Then, there exists some ϵ > 0 such that, for every
N ∈ Z+, there exists some n = n(N) > N such that

d(an, a) ≥ ϵ.

Then we can construct a subsequence (anj
) ⊂ (an) such that d(anj

, a) ≥
ϵ ∀nj. Therefore anj

does not have a subsequence converging to a, which is a
contradiction.

The following lemma proves existence of a limit in L2(D;Rd) of a sequence of
outputs of operators in L∞(D;Rd×d).



162

Lemma 4. Let D ⊆ Rd be an open set and (An) ⊂ L∞(D;Rd×d) a sequence
satisfying the following:

1. An ∈ PDα,β for all n,

2. There exists A ∈ L∞(D;Rd×d) such that (An) → A in L2(D;Rd×d).

Then, for any g ∈ L2(D;Rd), we have that (Ang) → Ag in L2(D;Rd).

Proof. We have
∥Ang∥L2 ≤ β∥g∥L2

hence (Ang) ⊂ L2(D;Rd) and, similarly, by finite-dimensional norm equiva-
lence, there is a constant C1 > 0 such that

∥Ag∥L2 ≤ C1∥A∥L∞∥g∥L2

hence Ag ∈ L2(D;Rd). Again, by finite-dimensional norm equivalence, we
have that there exists a constant C2 > 0 such that, for j ∈ {1, . . . , d} and
almost every y ∈ D, we have

(Ang)j(y)2 ≤ |A(j)
n (y)|2|g(y)|2 ≤ C2β

2|g(y)|2

where A(j)
n (y) denotes the j-th row of A(j)

n (y). In particular,

|(Ang)j(y)| ≤
√
C2β|g(y)|.

Let (Ank
) ⊂ (An) be an arbitrary subsequence. Since (An) → A, we have that

(Ank
) → A in L2(D;Rd×d). Therefore, there exists a subsequence (Ankl

) ⊂
(Ank

) such that Ankl
(y) → A(y) for almost every y ∈ D. Then Ankl

(y)g(y) →
A(y)g(y) for almost every y ∈ D. Since |g| ∈ L2(Rd), we have, by the
dominated convergence theorem, that (Ankl

g)j → (Ag)j in L2(D) for every
j ∈ {1, . . . , d}. Therefore (Ankl

g) → Ag in L2(D;Rd). Since the subsequence
(Ank

) was arbitrary, Lemma 3 implies the result.

Finally, we may prove Proposition 2.

Proposition 2. Endow PDα,β with the L2(Td;Rd×d) induced topology and let
K ⊂ PDα,β be a closed set. Define the mapping G : K → Ḣ1(Td;Rd) by A 7→ χ

as given by (5.4). Then there exists a bounded continuous mapping

G ∈ C(L2(Td; Rd×d); Ḣ1(Td;Rd))

such that G(A) = G(A) for any A ∈ K.
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Proof. Consider the PDE

−∇ · (A∇u) = ∇ · Ae, y ∈ Td (D.8)

where e is some standard basis vector of Rd. Let (An) ⊂ K be a sequence such
that (An) → A ∈ K in L2(Td;Rd×d). Denote by un ∈ Ḣ1(Td) the solution to
(D.8) corresponding to each An and by u ∈ Ḣ1(Td) the solution corresponding
to the limiting A. A similar calculation as in the proof of Proposition 1 shows

α∥un − u∥2
Ḣ1 ≤

∫
Td

⟨(A− An)(∇u+ e),∇un − ∇u⟩ dy

≤ ∥un − u∥Ḣ1∥(An − A)(∇u+ e)∥L2 .

Since ∇u + e ∈ L2(Td;Rd), by Lemma 4,
(
An(∇u + e)

)
→ A(∇u + e) in

L2(Td;Rd) hence (un) → u in Ḣ1(Td). In particular, the mapping A 7→ u

defined by (D.8) is continuous. Since the problem (5.4) decouples as shown
by (D.1), we have that each component mapping Gl : K → Ḣ1(Td) defined
by A 7→ χℓ is continuous thus G is continuous. Applying the Tietze extension
theorem [5] to G implies the existence of G.

The following is a straightforward consequence of Proposition 2 that estab-
lishes continuity of the map A 7→ A defined in (5.3) as well.

Lemma 5. Endow PDα,β with the L2(Td;Rd×d) induced topology and let K ⊂
PDα,β be a closed set. Define the mapping F : K → Rd×d by A 7→ Ā

as given by (5.3). Then there exists a bounded continuous mapping F ∈
C
(
L2(Td;Rd×d);Rd×d

)
such that F(A) = F (A) for any A ∈ K.

Proof. Since ∇ : Ḣ1(Td;Rd) → L2(Td;Rd×d) is a bounded operator, Lemma 2
implies that the mapping A 7→ A+A∇χT is continuous as compositions, sums,
and products of continuous functions are continuous. Now let A ∈ PDα,β then
A ∈ L1(Td;Rd×d) since A ∈ L∞(Td;Rd×d). Thus∣∣∣∣∫

Td
A dy

∣∣∣∣
F

≤
∫
Td

|A|F dy ≤ ∥A∥L2

by Hölder’s inequality and the fact that
∫
Td dy = 1. Hence F ∈ C(K;Rd×d)

as a composition of continuous maps. Again applying the Tietze extension
theorem [5] to F implies the existence of F .
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To prove Proposition 3, we need to establish Lipschitz continuity. We first es-
tablish the following result, which is similar to the one proved in [4] in Theorem
2.1. We show it again here both for completeness and because we specialize
to the case of the cell problem (5.4) with periodic boundary conditions rather
than the system (5.1) with Dirichlet boundary conditions.

Lemma 6. Let A(1), A(2) ∈ PDα,β and let χ(1), χ(2) be the corresponding solu-
tions to (5.4). Then

∥χ(1) − χ(2)∥Ḣ1 ≤
√
d

α

(
∥A(2) − A(1)∥L2 + ∥∇χ(2)∥Lp∥A(2) − A(1)∥Lq

)
(D.9)

for p ≥ 2 and q = 2p
p−2 .

Proof. As in the proof of Proposition 1, we denote f (i) = ∇ ·A(i) for i ∈ {1, 2}
for simplicity of notation and to be easily comparable to the proof of Theorem
2.1 in [4]. Since both sides of the cell problem equation (5.4) depend on A(i),
we introduce χ̃ as the solution of

−∇ ·
(
∇χ̃A(2)

)
= ∇ · A(1), χ̃ ∈ Ḣ1(Td;Rd) (D.10)

as an intermediate function. We obtain bounds using χ̃ and apply the triangle
inequality to

∥(χ(1) − χ̃) + (χ̃− χ(2))∥Ḣ1

to obtain a bound on ∥χ(1) − χ(2)∥Ḣ1 . From the naïve perturbation bound in
(D.2) we have

∥χ̃ℓ − χ
(2)
ℓ ∥Ḣ1 ≤ 1

α
∥f (1)

ℓ − f
(2)
ℓ ∥Ḣ−1 ,

so we are left to bound ∥χ(1)
ℓ − χ̃ℓ∥Ḣ1 . We note that

∇ ·
(
A(2)∇χ̃ℓ

)
= ∇ ·

(
A(1)∇χ(1)

ℓ

)
∫
Td
A(2)∇χ̃ℓ · ∇v dy =

∫
Td
A(1)∇χ(1)

ℓ · ∇v dy ∀v ∈ Ḣ1(Td;R).

Letting v = χ
(1)
ℓ − χ̃ℓ,∫

Td
A(2)∇χ̃ℓ ·

(
∇χ(1)

ℓ − ∇χ̃ℓ
)

dy =
∫
Td
A(1)∇χ(1)

ℓ ·
(
∇χ(1)

ℓ − ∇χ̃ℓ
)

dy∫
Td
A(2)

(
∇χ̃ℓ − ∇χ(1)

ℓ

)
·
(
∇χ̃ℓ − ∇χ(1)

ℓ

)
dy

=
∫
Td

(
A(2) − A(1)

)
∇χ(1)

ℓ ·
(
∇χ(1)

ℓ − ∇χ̃ℓ
)

dy

α∥χ̃ℓ − χ
(1)
ℓ ∥Ḣ1 ≤ ∥(A(2) − A(1))(∇χ(1)

ℓ )∥L2 .
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Applying Hölder for L2, we get

∥χ̃ℓ − χ
(1)
ℓ ∥Ḣ1 ≤ 1

α
∥∇χ(1)

ℓ ∥Lp∥A(2) − A(1)∥Lq (D.11)

for q = 2p
p−2 where p ∈ [2,∞]. Putting the two parts together, we have that

∥χ(2)
ℓ − χ

(1)
ℓ ∥Ḣ1 ≤ 1

α
∥∇ · A(2)eℓ − ∇ · A(1)eℓ∥Ḣ−1 + 1

α
∥∇χ(1)

ℓ ∥Lp∥A(2) − A(1)∥Lq

≤ 1
α

∥A(2) − A(1)∥L2 + 1
α

∥∇χ(1)
ℓ ∥Lp∥A(2) − A(1)∥Lq .

Combining bounds for all d dimensions yields the result.

Remark 10. Since Lq(Ω) ↪→ L2(Ω) for bounded Ω ⊂ Rd and q ≥ 2, we could
also write the bound of Lemma 6 as

∥χ(2)
ℓ − χ

(1)
ℓ ∥Ḣ1 ≤ 1

α

(
C + ∥∇χ(1)

ℓ ∥Lp

)
∥A(2) − A(1)∥Lq

for some C dependent only on q and Ω.

The result of Lemma 6 is unhelpful if ∥∇χ∥Lp is unbounded. In this setting, it
is not possible for Lemma 6 to result in Lipschitz continuity as a map from L2

to Ḣ1. Instead, we seek to bound ∥∇χ∥Lp for some p satisfying 2 < p < ∞.

Before continuing, we establish a bound on the gradient of the solution to the
Poisson equation on the torus. This follows the strategy of [4] for the Dirichlet
problem. In order to avoid extra factors of 2π in all formulae, we work on
the rescaled torus denoted Yd = [0, 2π]d with opposite faces identified for the
following result of Lemma 7. As we work on the torus, it is useful to first set
up notation for the function spaces of interest. Let

D(Yd) = C∞
c (Yd) = C∞(Yd)

be the space of test functions where the last equality follows from compactness
of the torus. Functions can be either R or C valued hence we do not explicitly
specify the range. We equip D(Yd) with a locally convex topology generated
by an appropriate family of semi-norms, see, for example, [11, Section 3.2.1].
Any function g ∈ D(Yd) can be represented by its Fourier series

g(x) =
∑
k∈Zd

ĝ(k)eix·k
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where ĝ denotes the Fourier transform of g and convergence of the right-hand
side sum is with respect to the topology of D(Yd), and i denotes the imagi-
nary unit. It holds that ĝ ∈ S(Zd), the Schwartz space of rapidly decreasing
functions on the integer lattice, so we have

|ĝ(k)| ≤ cm(1 + |k|)−m, m = 0, 1, . . .

for some constants cm. We may then define the topological (continuous) dual
space of D(Yd), the space of distributions, denoted D′(Yd), which can be
described as follows: the condition that f ∈ D′(Yd) is characterized by the
property

|f̂(k)| ≤ bm(1 + |k|)m, m = 0, 1, . . .

for some constants bm. We take the weak-∗ topology on D′(Yd) and generally
use the prime notation for any such dual space. For any −∞ < s < ∞, we
define the fractional Laplacian as

(−∆)sf =
∑

k∈Zd\{0}
|k|2sf̂(k)eik·x (D.12)

where the right-hand side sum converges in the topology of D′(Yd). It is
easy to see that (−∆)s : D′(Yd) → D′(Yd) is continuous. Furthermore, for
any j ∈ {1, . . . , d}, we define the family of operators R̃j : D′(Yd) → D′(Yd),
defining periodic Riesz transforms, by

R̃jf =
∑
k∈Zd

−ikj
|k|
f̂(k)eik·x (D.13)

where we identify kj

|k| |k=0 = lim|k|→0
kj

|k| = 0. Again, we stress that convergence
of the right-hand side sum is in the topology of D′(Yd). Lastly, we denote by
S(Rd) and S ′(Rd) the Schwartz space and the space of tempered distributions
on Rd, respectively; see, for example, [12, Chapter 1] for the precise definitions.

The following lemma establishes boundedness of the periodic Riesz transform
on Lp(Yd). It is essential in proving boundedness of the gradient to the solution
of the Poisson equation on the torus. The result is essentially proven in [12].
We include it here, in our specific torus setting, giving the full argument for
completeness.

Lemma 7. There exists a constant c = c(d, p) > 0 such that, for any j ∈
{1, . . . , d} and any f ∈ Lp(Yd) for some 2 ≤ p < ∞, we have

∥R̃jf∥Lp(Yd) ≤ c∥f∥Lp(Yd).
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Proof. Let g ∈ L2(Rd) ∩ Lp(Rd) for some 1 < p < ∞. For any j ∈ {1, . . . , d},
define the family of operators Rj by

(Rjg)(x) = lim
δ−1,ϵ→0+

∫
δ≥|t|≥ϵ

g(x− t)Kj(t) dt,

where

Kj(t) =
Γ
(
(d+ 1)/2

)
tj

π(d+1)/2|t|d+1

and Γ denotes the Euler-Gamma function. By [12, Chapter 4, Theorem 4.5],
Kj ∈ S ′(Rd) and its Fourier transform satisfies

K̂j(t) = −itj
|t|
.

Therefore, for any ϕ ∈ S(Rd), we have

(Kj ∗ ϕ)̂ (t) = −itj
|t|
ϕ̂(t)

where ∗ denotes convolution, see, for example, [12, Chapter 1, Theorem 3.18].
Since g ∈ L2(Rd), we therefore find that, by [12, Chapter 6, Theorem 2.6],

(Rjg)̂ (x) = −ixj
|x|

ĝ(x) (D.14)

for Lebesgue almost every x ∈ Rd. The result [12, Chapter 6, Theorem 2.6]
further shows that there exists a constant c = c(d, p) > 0 such that

∥Rjg∥Lp(Rd) ≤ c∥g∥Lp(Rd).

We note from (D.14) and the definition (D.13) that R̃j may be viewed as Rj

with the restriction of the Fourier multiplier − ixj

|x| to the lattice Zd. We can
therefore use the transference theory of [12] to establish boundedness of R̃j

from the boundedness of Rj. In particular, note that the mapping x 7→ − ixj

|x|

is continuous at all x ∈ Rd except x = 0. However, by symmetry, we have
that, for all ϵ > 0 ∫

|x|≤ϵ
−ixj

|x|
dx = 0.

Therefore we can apply [12, Chapter 7, Theorem 3.8, Corollary 3.16] to con-
clude that, since Rj is bounded from Lp(Rd) to Lp(Rd), R̃j is bounded from
Lp(Yd) to Lp(Yd) with

∥R̃j∥Lp(Yd)→Lp(Yd) ≤ ∥Rj∥Lp(Rd)→Lp(Rd).

This implies the desired result.



168

We define the Bessel potential spaces by

Ls,p(Yd) = {u ∈ D′(Yd) | ∥u∥Ls,p(Yd) := ∥(I − ∆)s/2u∥Lp(Yd) < ∞}

for any −∞ < s < ∞ and 1 < p < ∞. We also define the homogeneous
version of these spaces, sometimes called the Riesz potential spaces, by

L̇s,p(Yd) = {u ∈ D′(Yd) | ∥u∥L̇s,p(Yd) := ∥(−∆)s/2u∥Lp(Yd) < ∞,
∫
Yd
u dy = 0}.

It is clear that L̇s,p(Yd) ⊂ Ls,p(Yd) is closed subspace. We then have the
following result for the Poisson equation.

Lemma 8. For each f ∈ Ls,p(Yd), for −∞ < s < ∞ and 2 ≤ p < ∞, the
solution u of the equation

−∆u = f, u 1-periodic,
∫
Yd
u dy = 0 (D.15)

satisfies
∥∇u∥L̇s+1,p(Yd) ≤ K∥f∥L̇s,p(Yd) (D.16)

for some finite K > 0 depending only on p and d.

Proof. From the definitions (D.12) and (D.13), it is easy to see that the Riesz
transform can be written as

R̃j = −∂xj
(−∆)−1/2

in the sense of distributions. Consider now equation (D.15) with f ∈ Ls,p(Yd)
for 2 ≤ p < ∞. We have that

∥∂xj
u∥L̇s+1,p(Yd) = ∥∂xj

(−∆)−1f∥L̇s+1,p(Yd)

= ∥∂xj
(−∆)−1/2(−∆)s/2f∥Lp(Yd)

= ∥R̃j(−∆)s/2f∥Lp(Yd).

It is clear that
∥(−∆)s/2f∥Lp(Yd) = ∥f∥L̇s,p(Yd) < ∞

hence (−∆)s/2f ∈ Lp(Yd). We can thus apply Lemma 7 to find a constant
c = c(d, p) > 0 such that

∥∂xj
u∥L̇s+1,p(Yd) ≤ c∥(−∆)s/2f∥Lp(Yd) = c∥f∥L̇s,p(Yd).

The result follows by finite-dimensional norm equivalence.
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Next we define the homogeneous Sobolev spaces on the torus as

Ẇ k,p(Td) = {u ∈ W k,p(Td) | u is 1-periodic,
∫
Td
u dy = 0} (D.17)

for k = 0, 1, . . . , and 1 ≤ p ≤ ∞ with the standard norm on W k,p, see, for
example [1].

Remark 11. By [11, Section 3.5.4], we have that, for any k = 0, 1, . . . and
1 < p < ∞,

Lk,p(Td) = W k,p(Td), L̇k,p(Td) = Ẇ k,p(Td).

Furthermore, by [11, Section 3.5.6],

W−k,p′(Td) =
(
W k,p(Td)

)′
=
(
Lk,p(Td)

)′
= L−k,p′(Td),

Ẇ−k,p′(Td) =
(
Ẇ k,p(Td)

)′
=
(
L̇k,p(Td)

)′
= L̇−k,p′(Td)

where p′ is the Hölder conjugate of p, i.e., 1/p+ 1/p′ = 1.

In the following, we use the notation

[K0, K1]θ,q (D.18)

to denote the real interpolation between two Banach spaces continuously em-
bedded in the same Hausdorff topological space, as described in [1]. We also
need Lemma A1 from [6], which we have copied below as Lemma 9 to ease
readability. Although this lemma was written only for q = 2, the result still
holds for our q > 2 with a very similar proof.

Lemma 9. Let E1 ⊂ E0 be two Banach spaces with E1 continuously embedded
in E0. Let T : Ej → Ej be a bounded operator with closed range and assume
that T is a projection, j ∈ {0, 1}. Denote by K0 and K1 the ranges of T |E0

and T |E1, respectively. Then the following two spaces coincide with equivalent
norms:

[K0, K1]θ,q = [E0, E1]θ,q ∩K0 ∀θ ∈ (0, 1).

We now state the result for the bound on ∥∇χ∥Lp with a proof largely devel-
oped in [4].

Lemma 10. Let χ solve (5.4) for A ∈ PDα,β. Then

∥∇χ∥Lp ≤ Kη(p)

1 −Kη(p)
(
1 − α

β

) (D.19)
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for 2 ≤ p < p∗
(
α
β

)
where

p∗(t) := max
{
p | K−η(p) ≥ 1 − t, 2 < p < Q

}
(D.20)

for η(p) = 1/2−1/p
1/2−1/Qand K = K(d,Q) is the constant in Lemma 8, for any

choice of Q > p.

Proof. The operator T = −∆ is invertible fromH−1 to Ḣ1, and the inverse T−1

is bounded with norm 1 since the Poisson equation with periodic boundary
conditions has a unique solution in Ḣ1 for f ∈ H−1 with bound ∥u∥Ḣ1 ≤
∥f∥H−1 . From Lemma 8 it is also bounded with norm K = K(d,Q) from
W−1,Q to Ẇ 1,Q for any Q > 2. By the real method of interpolation [1], for
2 < p < Q we have that

W 1,p =
[
H1,W 1,Q

]
η(p),p

(D.21)

using the notation of [1] where η(p) = 1/2−1/p
1/2−1/Q . From the duality theorem

(Theorem 3.7.1. of [2]), we have that
[
H−1,W−1,Q

]
η(p),p

=
([
H1,W 1,Q′]

η(p),p′

)′
, (D.22)

From real interpolation, the right hand side equals (W 1,p′)′ = W−1,p in our no-
tation. Therefore, we have the necessary dual statement that parallels (D.21):

W−1,p =
[
H−1,W−1,Q

]
η(p),p

. (D.23)

Next we restrict these spaces to functions with periodic boundary conditions.
Using the projection onto the space of continuous, periodic functions on Td

and noticing that W 1,Q ↪→ H1, we apply Lemma 9 with K0 = Ḣ1 and have

Ẇ 1,p = [Ḣ1, Ẇ 1,Q]η(p),p. (D.24)

Using the exact interpolation theorem, Theorem 7.23 of [1], T−1 is also a
bounded map from W−1,p to Ẇ 1,p with norm Kη(p):

∥T−1f∥Ẇ 1,p ≤ Kη(p)∥f∥W−1,p . (D.25)

The remainder of the proof is identical to that of the proof of Proposition
1 in [4], but we state it here in our notation for completeness. Define S:
Ẇ 1,p → W−1,p as the operator Su = −∇·

(
1
β
A∇u

)
. Let V be the perturbation
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operator V := T − S. Since A ∈ PDα,β, S and V are bounded operators from
Ẇ 1,p to W−1,p, with the operator norms ∥S∥ ≤ 1 and ∥V ∥ ≤ 1− α

β
. Therefore,

∥T−1V ∥Ẇ 1,p→Ẇ 1,p ≤ ∥T−1∥W−1,p→Ẇ 1,p∥V ∥Ẇ 1,p→W−1,p ≤ Kη(p)
(

1 − α

β

)
,

(D.26)
where the input and output spaces defining the operator norms are included
for clarity. Since T is invertible, S = T (I − T−1V ) is invertible provided
Kη(p)

(
1 − α

β

)
< 1. Moreover, for S−1 as a mapping from W−1,p to Ẇ 1,p,

∥S−1∥ ≤ ∥(I − T−1V )−1∥Ẇ 1,p→Ẇ 1,p∥T−1∥W−1,p→Ẇ 1,p ≤ Kη(p)

1 −Kη(p)
(
1 − α

β

) .
(D.27)

Therefore,

∥∇χ∥Lp = ∥χ∥Ẇ 1,p ≤ 1
β

∥S−1∥∥∇ · A∥ ≤ Kη(p)

1 −Kη(p)
(
1 − α

β

) (D.28)

provided Kη(p)
(
1 − α

β

)
< 1. The bound and specified range of p follow.

Finally, we may prove Proposition 3

Proposition 3. There exists q0 ∈ (2,∞) such that, for all q satisfying q ∈
(q0,∞], the following holds. Endow PDα,β with the Lq(Td;Rd×d) topology and
let K ⊂ PDα,β be a closed set. Define the mapping G : K → Ḣ1(Td;Rd) by
A 7→ χ as given by (5.4). Then there exists a bounded Lipschitz-continuous
mapping

G : Lq(Td;Rd×d) → Ḣ1(Td;Rd)

such that G(A) = G(A) for any A ∈ K.

Proof. Lemma 10 guarantees a p0 > 2 such that ∥∇χ(2)∥Lp in Lemma 6 is
bounded above by a constant for 2 < p < p0. Then Lemma 6 gives Lipschitz
continuity of the solution map from Lq(Td) 7→ Ḣ1(Td) for q satisfying q0 <

q < ∞ for some q0 > 2.

Remark 12. From the results of Lemma 10 and Lemma 6, we have that we
can take q0 = 2p0

p0−2 where

p0 = max{p | K−η(p) ≥ 1 − t, 2 < p < Q}.

Therefore, bounds on p0 may be inherited from bounds on K that appears in
Lemma 8.
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D.2 Proofs of approximation theorems

In this section we prove the approximation theorems stated in Section 5.3.

Theorem 7. Let K ⊂ PDα,β and define the mapping G : K → Ḣ1(Td;Rd)
by A 7→ χ as given by (5.4). Assume in addition that K is compact in
L2(Td;Rd×d). Then, for any ϵ > 0, there exists an FNO Ψ : K → Ḣ1(Td;Rd)
such that

sup
A∈K

∥G(A) − Ψ(A)∥Ḣ1 < ϵ.

Proof. By Proposition 2, there exists a continuous map

G ∈ C(L2(Td;Rd×d); Ḣ1(Td;Rd)) such that G(A) = G(A) for any A ∈ K. By
[7, Theorem 5], there exists a FNO Ψ : L2(Td;Rd×d) → Ḣ1(Td;Rd) such that

sup
A∈K

∥G(A) − Ψ(A)∥Ḣ1 < ϵ.

Therefore

sup
A∈K

∥G(A) − Ψ(A)∥Ḣ1 = sup
A∈K

∥G(A) − Ψ(A)∥Ḣ1 < ϵ

as desired.

Theorem 8. Let K ⊂ PDα,β and define the mapping F : K → Rd×d by A 7→ Ā

as given by (5.3), (5.4). Assume in addition that K is compact in L2(Td;Rd×d).
Then, for any ϵ > 0, there exists an FNO Φ : K → L∞(Td;Rd×d) such that

sup
A∈K

sup
x∈Td

|F (A) − Φ(A)(x)|F < ϵ.

Proof. The result follows as in Theorem 7 by applying Lemma 5 instead of
Proposition 2.

D.3 Proofs for microstructure examples

The following lemma establishes the compactness of subsets of PDα,β generated
by the probability measures from Section 5.4. As we are unaware of a proof in
the literature, we have provided one below. The proof uses the L1-Lipschitz
spaces, which are defined as

Lipα(L1) = {u ∈ L1 : ∃M(u) > 0 : ω(u, t)1 ≤ Mtα}
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where ω(u, t)1 is the 1-modulus of continuity, defined via

ω(u, t)1 = sup
0≤|h|≤t

∥τhu− u∥L1(Td).

Lemma 11. BV(Td) ∩ L∞(Td) is compactly embedded in L2(Td).

Proof. Let u ∈ B, where B is a bounded subset of BV(Td) ∩L∞(Td) with L∞

norm and BV seminorm bounded by M , and let τhf denote the translation of
f by h, i.e., τhf(x) = f(x− h). Then

∥τhu− u∥L2 ≤ ∥τhu− u∥1/2
L1 ∥τhu− u∥1/2

L∞ . (D.29)

Since BV(Td) ≡ Lip1(L1(Td)), ∥τhu− u∥L1 ≤ ∥u∥BV|h|. We have then

∥τhu− u∥L2 ≤ ∥u∥1/2
BV |h|1/2(2M)1/2.

By the Fréchet-Kolmogorov theorem [13], this equicontinuity result is sufficient
for compactness of B in L2(Td).

Using the result of Lemma 11, we see that any set of microstructure coeffi-
cients bounded in L∞(Td) ∩ BV (Td) satisfies the compactness assumption of
the Approximation Theorems in Section 5.3. It is clear that the method of
construction of the examples in Subsection 5.4.1 leads to such sets.

D.4 Numerical implementation details

All FNO models are implemented in pytorch using python 3.9.7. Unless oth-
erwise specified, the models have 18 modes in each dimension, a width of 64,
and 4 hidden layers. The lifting layer is a linear transformation with trainable
parameters, and the projecting layer is a pointwise multilayer perceptron with
trainable parameters. The batch size is 20, the learning rate is 0.001, and the
number of epochs is 400. These hyperparameters are chosen with a small grid
search, but we emphasize that the FNO does not drastically change in perfor-
mance unless these parameters are changed by an order of magnitude. For a
model trained on 9500 data using these hyperparameters and accelerated with
an Nvidia P100 GPU, the training time is approximately 7 hours. In Figures
5.4, 5.5, and 5.6, the error bars shown correspond to two standard deviations
in each direction over the five samples. All code for this work may be found
at github.com/mtrautner/LearningHomogenization/.

https://github.com/mtrautner/LearningHomogenization/
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A p p e n d i x E

APPENDIX FOR CHAPTER 6

E.1 Exploration of designs and sensitivities in PCA distributions

Figure E.1 shows the first two principal components (PCs) of the ground truths
in the point load direct design training dataset, which was composed of X
thousand samples, with example designs shown surrounding the plot. Designs
near each other in the first two PCs often tend to have similar boundary
conditions leading to qualitatively similar topologies (e.g., green and gray,
purple and blue). Figure E.2 shows the first two PCs of the ground truth
compliance sensitivities in point load data, point load data with the singularity
analytically removed, and the dataset with the distributed load. The same
12 examples are shown around the perimeter of each plot. The former two
cases are arranged in a pitchfork-like pattern, where one side of the pitchfork
tends to have samples with boundary conditions of North East and South
West, while samples on the other side often have boundary conditions of North
West and South East. The points that do not belong on either side of the
pitchfork tend to have boundary conditions that are along the same side,
such as North East and North West. The distributed load dataset is more
compactly distributed, with a less-clear distribution of boundary conditions.
Because PCA-Net performance is strong with both forms of smoothing yet the
distributions in these first two PCs are quite different, review of higher-order
PCs is of interest.

E.2 Exploration of higher-order principal components

For the sensitivity prediction configuration, Figure E.3 shows projections of
the compliance sensitivity into the first eight principal components. The dis-
tributed load data set, the point load with analytical singularity removal, and
the original point load data are included as separate colors. At low-order PCs
(1 and 2), the analytically smoothed data and the original unsmoothed data
show a split pattern with two distinct offshoot regions from the main cluster.
The distributed load data shows the same general pattern by PCs 3 and 4,
indicating that the same trend was captured at a different rate.
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Figure E.1: First two dimensions of the PCA projection of the final designs
in the direct design training set. Individual example designs are also shown,
with the same designs indicated in the plot by the colors corresponding to
their outlines.

The distributions for the analytically smoothed data (which performed well
in TO) and the original unmodified data (which performed less well in TO)
appear qualitatively similar in shape, with the smoothed data generally pos-
sessing a noticeably broader distribution of that shape. The distributed load
(strong TO performance) resulted in a distinctly different distribution. Be-
cause the resulting performance in the TO loop is not directly correlated with
the shape of PCA distributions, other factors appear more important, such
as the ability to capture variance with low- and intermediate-order PCs as
indicated in the main text’s Figure 9.

E.3 Varying the degree of smoothing

In the case of distributing the point force to effectively smooth the sensitiv-
ity prediction problem, distributing the load across a relatively modest region
resulted in a significant performance improvement as measured by structural
compliance. In this work, there was no clear way to optimally select the ex-
act amount of distribution applied. To understand whether more distribution
might have given further improvement, the load distribution parameter rmax
was increased from 3 shown in the main text to 7 — roughly doubling the
size. In the same format as in Section 5, the results are shown in Figs. E.4 -
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(A)

(B)

(C)

Figure E.2: First two dimensions of the PCA projection of the compliance
sensitivities in the ground truth of the training set for a) point load b) point
load with singularity analytically removed c) distributed load. Example de-
signs are shown surrounding the plots, with the same 12 examples shown for
each panel.
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PC1 PC2 PC3 PC4 PC5 PC6 PC7

PC2

PC3

PC4

PC5

PC6

PC7

PC8

Figure E.3: Higher-order PCs for the sensitivity prediction datasets. Numbers
above each subplot indicate the fraction of variance captured by the two PCs
shown, for the distributed load, analytically smoothed, and original point load
datasets (from left to right), which are included as separate colors.
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Figure E.4: PCA-Net surrogate in the compliance sensitivity configuration
improves with load smoothing. The first row corresponds to point load, the
second row corresponds to the case of the distributed load with rmax of 3, and
the third row corresponds to the case of the distributed load with rmax of 7.
The columns are the same as Figs. 4 and 6 in the main text.

E.6 below. The original point load and distributed load (rmax = 3) cases are
reprinted here for comparison. Relative compliance error overall increased un-
der the more broadly distributed load. In particular, there was a dramatic in-
crease in the number of outliers (designs with relative compliance error greater
than 1). Upon inspection of some these samples, loads were found to fall just
slightly off of the structure, causing dramatically higher compliance values.
This effect may have been largely avoided when rmax was set to 3 because
the neighborhood filter included in the TO routine was similar at 3 elements,
ensuring design features would generally have a thickness of at least 3 elements.

A similar activity was performed with the degree of distribution in the sin-
gularity removal process, testing parameters both narrower (rmax = 8) and
wider (rmax = 12) than the original value shown in the main text. The results
are shown in the same format in Figs. E.7 and E.8. Using an rmax of 8 when
analytically removing the singularity leads to significantly worse performance
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Ground truth

Point load

𝑟𝑚𝑎𝑥 = 3

𝑟𝑚𝑎𝑥 = 7

𝑟𝑚𝑎𝑥 = 7

with 2 pre- and post- 

iterations TO

Figure E.5: Example topologies. Going down the are ground truth predic-
tions, point load predictions, distributed load with rmax of 3, distributed load
with rmax of 7, and distributed load with rmax of 7 with 2 TO pre-processing
iterations and 2 TO post-processing iterations. The compliance errors com-
pared with the compliance of the ground truth of each design are displayed
above. Note: the compliance errors are measured using the ground truths of
the respective load, not the point load.

Training

Direct Design 7x7 4.7 hours

SensPred 7x7 4.7 hours

Output Images 2 Post Iterations 5 Post Iterations
10 Post 

Iterations

Direct Design 7x7 0.00082 seconds 0.6 seconds 1 second 1.66 seconds

Output Images
2 Pre- 2 Post-

Iterations

SensPred 7x7 2.6 seconds 3.13 seconds

Figure E.6: Recorded time log for distributed load with rmax of 7 training and
testing. The first table is the total time it took to train the distributed load
of rmax 7 for both direct design and sensitivity prediction. The second table
is the time per sample it took to make the predictions for each configuration
of direct design. The third table is the time per sample it took to make the
predictions for each configuration of sensitivity prediction.
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Figure E.7: Results of analytical singularity removal when done with an rmax
of 8, 10, and 12. The first row corresponds to an rmax of 8, the second row
corresponds to an rmax of 10 (used in the main text, shown here for compar-
ison), The columns are the same as those used in Figs. 4 and 6 in the main
paper.

compared to rmax of 10, suggesting that the entire singularity was not cap-
tured. As a result, the change may have simply complicated the problem,
making it even more difficult than on the original unmodified dataset. Using
an rmax of 12 resulted in predictions sufficiently poor that the optimizer often
encountered numerical difficulties when determining the next design, so prob-
lems did not converge to any design at all. These attempts suggest that the
selection of the region for singularity removal is an important factor, and an
practical value for the problem set studied in this work is rmax = 3.

Collectively, because performance degraded with smoothing in both methods
when the degree was too large, care must be taken in the setup and parameter
selection, with the awareness that excessive smoothing may create additional
unanticipated effects that outweigh any performance improvements.
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Ground truth

Point load

𝑟𝑚𝑎𝑥 = 3

𝑟𝑚𝑎𝑥 = 7

𝑟𝑚𝑎𝑥 = 7

with 2 pre- and post- 

iterations TO

Figure E.8: Examples of predictions made using analytical singularity removal
with differing rmax values. The first row is the ground truth, the second row
are predictions when doing singularity removal with an rmax of 8. The third
row is the same with 2 pre-processing TO iterations and 2 post-processing TO
iterations. The fourth row is the predictions when doing singularity removal
with an rmax of 10, which is also in the main text. The row after is the same
with 2 pre-processing TO iterations and 2 post-processing TO iterations. No
examples were created when doing removal using rmax of 12 due to failures of
tests.

E.4 Analytical removal via a green’s functions

The problem for topology optimization involves minimizing compliance subject
to equilibirum,

min
Ω

J (u, ϕ) =
∫

Ω

1
2∇u · C∇u dΩ, (E.1)

s. t. ∇ · C∇u = f in Ω, (E.2)

where ϕ is the design variables over which optimization is performed. f is a
point load. We use adjoint method to solve this optimization problem. The
compliance can be written as

J =
∫

Ω

1
2∇u · C∇u + v (∇ · C∇u− f) dΩ. (E.3)
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The directional derivative of the compliance along δϕ is given as

J,ϕδϕ = lim
ϵ→0

J (ϕ + ϵδϕ) − J (ϕ)
ϵ

= lim
ϵ→0

1
ϵ

∫
Ω

1
2∇u(ϕ + ϵδϕ) · C(ϕ + ϵδϕ)∇u(ϕ + ϵδϕ)

(E.4)

+ v (∇ · C(ϕ + ϵδϕ)∇u(ϕ + ϵδϕ) − f(ϕ + ϵδϕ)) (E.5)

− 1
2∇u(ϕ) · C(ϕ)∇u(ϕ) (E.6)

− v (∇ · C(ϕ)∇u(ϕ) − f(ϕ)) dΩ, (E.7)

=
∫

Ω

1
2∇u · C,ϕ∇u + ∇u,ϕ · C∇u (E.8)

+ v (∇ · C,ϕ∇u − f,ϕ) (E.9)

+ v (∇ · C∇u,ϕ) δϕ dΩ, (E.10)

where C,ϕ, f,ϕ, u,ϕ are given by

C,ϕδϕ = lim
ϵ→0

C(ϕ+ ϵδϕ) − C(ϕ)
ϵ

, (E.11)

f,ϕδϕ = lim
ϵ→0

f(ϕ+ ϵδϕ) − f(ϕ)
ϵ

, (E.12)

u,ϕδϕ = lim
ϵ→0

u(ϕ+ ϵδϕ) − u(ϕ)
ϵ

. (E.13)

(E.14)

Since v is a free variable, we can choose the value such that an adjoint equation
is satisfied given by

0 =
∫

Ω
∇u,ϕ · C∇u+ v (∇ · C∇u,ϕ) dΩ, (E.15)

=
∫

Ω
∇u,ϕ · C∇u− ∇v · C∇u,ϕ dΩ, (E.16)

=
∫

Ω
∇u,ϕ · (C∇u− ∇v) dΩ, (E.17)

= ∇ · C∇u− ∇ · C∇v. (E.18)

Substituting the value of v back into derivative of the compliance, we obtain

J,ϕδϕ =
∫

Ω

1
2∇u · C,ϕ∇u+ v (∇ · C,ϕ∇u− f,ϕ) δϕ dΩ. (E.19)

We know f ∈ R2, f = f i0êi, where êi are unit vectors in each direction. The
variables u, v contain a singular component and a smooth component. In order
to deal with the singular component, we are going to look at a particular set
of vector functions defined by Gi and s such that(

CijklG
i
k,j

)
,j

= δêi (i no sum) (E.20)

s = χ0G
if i0 (or sk = χ0G

i
kf

i
o in index notation) (E.21)
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where χ0 ∈ C∞
0 ,R. The variable u is decomposed into two components con-

taining the singular solution and a smooth integrable part (us)

u = s+ us. (E.22)

Substituting this decomposition into the forward problem, we obtain

∇ · C∇u = ∇ · C∇s+ ∇ · C∇us. (E.23)

The second term on the right is smoothly integrable due to us. The first term
can be simplified into

∇ · C∇s = (Cijkl sk,l),j = (Cijkl χ0,jG
m
k f

m
0 ),j +

(
Cijkl χ0G

m
k,lf

m
0

)
,j

(E.24)

= (Cijkl χ0,jG
m
k f

m
0 ),j + (Cijklχ0),j G

m
k,lf

m
0 (E.25)

+
(
Cijkl G

m
k,lf

m
0

)
,j
χ0︸ ︷︷ ︸

f

. (E.26)

We can see that the first tow terms on the right hand side are smooth. There-
fore,

∇ · C∇us = ∇ · C∇u− ∇ · C∇s, (E.27)

is smoothly integrable. Since the adjoint problem and the forward problem
are similar PDEs, we can decompose the adjoint variable in a similar way too

v = s′ + vs, (E.28)

where s′ is the singular component of the adjoint variable and vs is smooth
component. Furthermore,

∇ · C∇vs = ∇ · C∇v − ∇ · C∇s′ (E.29)

is smoothly integrable. Subtituting these into the compliance sensitivity, we
obtain

J,ϕδϕ =
∫

Ω

1
2∇u · C,ϕ∇u+ v (∇ · C,ϕ∇u− f,ϕ) δϕ dΩ, (E.30)

=
∫

Ω

1
2∇u · C,ϕ∇u− ∇v · C,ϕ∇u− v f,ϕ︸ ︷︷ ︸

=0

δϕ dΩ. (E.31)

Substituting the decomposition for u, v, we obtain

J,ϕδϕ =
∫

Ω

1
2∇s · C,ϕ∇s+ ∇s · C,ϕ∇us + 1

2∇us · C,ϕ∇us (E.32)

− ∇s′ · C,ϕ∇s′ − 2∇s′ · C,ϕ∇vs − ∇vs · C,ϕ∇vs δϕ dΩ, (E.33)
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where r is the distance from the point of load applied and c1 is an arbitrary
constant. The first and fourth term are not integrable. Therefore, we will look
at the compliance sensitivity’s projection perpendicular to these non-integrable
terms, as these would be smooth and would be easier to learn through PCA-
net. From Green’s function solution, we know that the functions Gi have the
form

Gi = c1 log(r) êi, (E.34)

s = c1 χ0(r) log(r)f i0 êi. (E.35)

Substituting this form into the sensitivity

J,ϕδϕ =
∫

Ω

1
2∇s · C,ϕ∇s − ∇s′ · C,ϕ∇s′ δϕ dΩ (E.36)

+
∫

Ω
∇s · C,ϕ∇us + 1

2∇us · C,ϕ∇us − 2∇s′ · C,ϕ∇vs − ∇vs · C,ϕ∇vs δϕ dΩ︸ ︷︷ ︸
=Js (smooth)

,

(E.37)

=
(

1
2c2

1 − c′2
1

)∫
Ω

χ2
0

(
f i

0êi · C,ϕf j
0 êj

)
(1/r)2 dΩ δϕ + Js δϕ. (E.38)

(E.39)

Therefore the singularity is of the form log(r). Since there is an arbitrary
constant before the singular part, we can choose any value such that J,s is
smooth and learnable by a PCA Net. Therefore, we project J,ϕ onto log(r)
and compute J,s.
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