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ABSTRACT

Polymerized ionic liquids (PILs) exhibit complex ion transport dynamics that are
central to advancing technology in energy storage and efficient energy conversion.
In this work, we probe the behavior of charged polymer systems in the solvent-
free limit using a coarse-grained Gaussian core model that explicitly incorporates
long-range electrostatic interactions. Our simulations span a wide range of chain
lengths, from monomeric units to highly entangled polymers, revealing how both
intrachain and interchain interactions govern key properties such as the radius of
gyration, relaxation time, and diffusivity. Notably, charged polymers adhere to
classical reptation scaling, indicating that electrostatic forces do not inhibit standard
polymer melt scaling behavior. We quantify these effects by evaluating both the
Onsager transport coefficients and the direct drift response under applied electric
fields, thereby linking molecular trajectories to macroscopic ion conductivity.

Our findings show that as the chain length increases, the motion of polymerized
ions becomes increasingly correlated, a trend that stabilizes ion conductivity despite
decreasing diffusivity. This study demonstrates that the complex interplay between
correlated motion and cooperative chain dynamics results in a relatively stable
conductivity that increases over short chain length, plateaus in the transition regime,
before decreasing in the fully entangled regime — contrary to idealized predictions
based solely on diffusivity. By explicitly modeling the microscopic interactions and
accounting for both hydrodynamic and electrostatic effects, we provide a physically
grounded framework that captures the emergent behavior of these charged systems.
In doing so, our work offers a robust platform for the rational design of next-
generation PIL electrolytes, distinguishing itself from phenomenological models
through clear, simulation-based insights.
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C h a p t e r 1

INTRODUCTION/POLYIONIC LIQUIDS

Polymerized Ionic Liquids (PILs) have gained increasing research interest as charge-
dense materials with wide applications including energy storage [1], separations
membranes [2, 3], transistors [4], catalysis [5], and sensors [6]. PILs are composed
of ionically charged monomer units and their corresponding counter-ions, and can
exhibit liquid-like ionic conductivity at room temperature [7]. Particularly for energy
storage applications, these materials are desirable due to their unique combination of
high ionic conductivity, diffusivity, and relative durability compared to other energy
storage materials, all maintained at standard operational temperatures [8]. Under-
standing how these critical dynamic properties scale with adjustable parameters like
polymer chain length and composition is crucial for optimizing these materials for
various applications.

While experimentalists have made significant strides in synthesizing, studying, and
tuning polymerized ionic liquids, there remain substantial hurdles in examining
these charge-dense systems [5]. In the solvent-free limit, high molecular weight
or long-chained PILs exhibit relatively high glass transition temperatures compared
to conventional experimental settings. Below this temperature, polymers exist in a
glassy state where ion conductivity along with other transport properties are substan-
tially decreased; reaching and maintaining temperatures above the glass transition
temperature can be challenging from an experimental perspective [9]. Despite ad-
vances in synthesis techniques, creating and consistently characterizing polymerized
ionic liquid systems remains a challenging area of research [10, 11]. PILs, like there
uncharged polymer melt equivalents, exhibit a positive relationship between there
chain length and glass transition temperature - where an increase in chain length nec-
essarily leads to an increase in glass transition temperature [12–14]. Consequently,
in long-chain polymers, the glass transition temperature plateaus at a prohibitively
high value, preventing the polymer melt from remaining fluid at temperatures that
are experimentally accessible. Even when these systems are experimentally acces-
sible, decoupling the intrinsic effects of chain length from those induced by state
transitions is challenging due to overlapping phase behavior and interdependent
transport phenomena [15]. Additionally, changing the temperature necessarily al-
ters the strength of the electrostatic interactions, making the decoupling even more



2

challenging [16]. Given the experimental challenges in decoupling chain length
effects from overlapping state transitions and temperature-dependent electrostatic
interactions in PILs, it is essential to leverage non-experimental techniques, such as
advanced molecular dynamics simulations, to directly elucidate how chain length
modulates their transport properties.

Molecular dynamics simulations have been extensively employed to investigate the
fundamental properties of these materials using both atomistic and coarse-grained
approaches [8]. While atomistic simulations with detailed force fields can eluci-
date critical dynamic and structural quantities [17, 18], they are computationally
expensive. Computing properties such as diffusivity and chain relaxation times
requires extensive simulations with large system sizes, particularly for longer poly-
mer chains, thereby significantly increasing computational costs. To mitigate these
limitations, coarse-graining techniques can be used [8, 19]. In this approach, groups
of atoms and molecules are mapped onto coarse-grained beads, preserving essential
features such as mass and charge distributions. By reducing the degrees of freedom
of the system to the necessary complexity required to observe desired properties,
coarse-graining allows for an efficient way to probe system features. The current
standard for hard sphere, bead-spring polymer models relies primarily on Lennard-
Jones forces and Coulomb interactions to model non-bonded interactions between
beads on different chains [20]. Notably, the Kremer-Grest model [21, 22] has been
used to probe important structural properties. However, due to the rigid excluded-
volume interactions inherent in hard-sphere models, simulations often fall short in
capturing the nuanced, large-scale behavior of systems featuring long poly anions,
where particle deformation, interpenetration, and dense packing are critical phe-
nomena [23]. In contrast, soft-sphere models offer a more realistic alternative by
accommodating the flexibility of particle interactions, allowing for better modeling
at larger length scales. Additionally, hard-sphere models struggle to model charge
delocalization and encounter divergences in potential energy when particle spheres
overlap - a problem that necessitates restricted time stepping and therefore additional
computational limits [23].

Alternatively, methods like Dissipative Particle Dynamics (DPD) use soft spheres
that can overlap, enabling the representation of larger numbers of molecules and
facilitating the efficient probing of mesoscale properties and system sizes. DPD
employs both dissipative and random forces alongside conservative interactions
to capture hydrodynamic and thermal fluctuations. This simulation method allows
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Figure 1.1: Example coarse graining of ionic liquid monomer [BMIM+] [24] into a
hard sphere

DPD to replicate momentum transfer and energy dissipation at the mesoscopic scale,
making it particularly useful for capturing dynamic properties such as diffusion and
collective motion observed in PIL systems [25, 26]. DPD’s soft-sphere interac-
tions also allow it to more effectively model systems requiring flexibility and dense
packing without the stringent limitations on time stepping [8]. However, when
electrostatic potentials are incorporated, there is no closed-form analytical solu-
tion for the Ewald summation, necessitating computationally intensive calculations
that can diminish the computational speed-up offered by modern GPU-accelerated
computing [23].

The Gaussian core model developed by Ben Ye and the Wang group, as outlined in
Appendix A of this work [23, 27], provides a computationally efficient method for
modeling these systems using soft spheres. It enables the simulation of larger, fully
entangled systems to obtain dynamic and experimentally relevant quantities, which
we have set out to achieve in this thesis.

Experimental studies have observed that polymerized ionic liquids exhibit higher
conductivity than their monomeric counterparts even at ambient temperature, though
the underlying mechanism remains unresolved [28]. While, molecular dynamics
simulations using Lennard-Jones hard sphere models similarly indicate a conduc-
tivity increase that persists up to a chain length of 25, these studies do not examine
the relevant dynamic properties [29, 30]. Moreover, the behavior of these systems
beyond the unentangled regime, into the partially entangled, and fully entangled
regimes remains unclear. This paper primarily investigates whether isolating the
effect of increasing PIL chain length leads to a continued enhancement in conduc-
tivity and evaluates the extent to which chain length can serve as an effective tuning
parameter for these systems. To address these questions, we employ our Gaussian
Core Model for its computational efficiency and its ability to replicate the essential
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features of PIL systems, thereby allowing us to systematically isolate the influence
of chain length on conductivity and constituent dynamic properties.
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C h a p t e r 2

DYANIMCS OF GAUSSIAN CORE MODELED POLYIONIC
LIQUID SYSTEMS

In this chapter, we examine the dynamic properties of a polymerized ionic liquid
system using the Gaussian core model described in Appendix A. We derive and ana-
lyze the fundamental characteristics of the system—including the radius of gyration,
diffusivity, relaxation time, and ion conductivity—and investigate how these prop-
erties scale with polymer chain length, 𝑁 . Furthermore, we employ the Onsager
transport framework to compute and tabulate the relevant transport coefficients,
thereby linking molecular trajectories to bulk transport properties. The system is
modeled as a coarse-grained polyanion, where each bead carries a single negative
charge and is paired with a cation carrying a single positive charge. Each simulation
contains equal quantities of anionic and cationic monomer beads, with no solvent
present - modeling a polymerized ionic liquid in the ionic density limit. In summary,
this modeling approach bridges microscopic dynamics with macroscopic transport
behavior, allowing for insight into the properties and ultimately design of advanced
polymerized ionic liquids for material applications.

Figure 2.1: Example system snapshot for a polyanion (blue) and cation (red) system
with chain length, N = 50 - visualized using Ovito [1]
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2.1 Methodology
The molecular dynamics simulations for this section were performed using OpenMM
[2] in the NVT, canonical ensemble. The system has at least 48,000 identically sized,
coarse grained, charged monomer particles (𝑁𝑝) - with longer chain systems having
up to 118,000 particles and there is no solvent in the system. Chain length N,
of the polyanion was varied from 1 to 350, while the cation remained monomeric
for all simulations. A standard temperature of T = 300 K was maintained a DPD
thermostat [3] for the Onsager coefficients and ionic conductivity calculations - this
thermostat was selected in order to capture the hydrodynamic and diffusive effects
at both short and long chain lengths. Again, the system is modeled as solvent free,
with an equal number of symmetric polyanion and cation beads in the melt. These
simulations rely on the Gaussian Core Model, outlined in Appendix A, of this paper
with smeared electrostatics and mass to coarse grain the monomer beads. Bonds
between connecting polyanion chains were modeled by a harmoninc bond potential
[4]. As a point of comparison, a uncharged system with identical system set up and
parameterization to the charged system where only the system charges are removed.

𝑢ℎ𝑎𝑟𝑚 (𝑟𝑖 𝑗 ) =
1
2
𝑘 (𝑟𝑖 𝑗 − 𝑏)2 (2.1)

where the force constant 𝑘𝑖 𝑗 is 100 𝑘𝑏𝑇/𝑑2, and the equilibrium bond length b = .8d,
and d is the characteristic length scale, defined formally in A.10. The polarization
of the fluid is accounted for by the relative permittivity (𝜖𝑟 = 12), which is within
the standard range of values for ionic liquids [5, 6].

The systems are initialized by determining the appropriate box dimensions (𝐿𝑥 , 𝐿𝑦, 𝐿𝑧)
and volume to accommodate the system, constrained by the system density and total
number of particles (𝑁𝑝):

𝐿𝑧 =

(
𝑁𝑝

𝜌

) 1
3

(2.2)

All system dimensions are equal, and periodic boundary conditions are applied
in all directions. For example, the system size for a 48,000-particle system is
288 Å × 288 Å × 288 Å. The system is then randomly populated with polyanions
(𝑁𝑝/(2𝑁)) and cations (𝑁/2).

A local energy minimization is performed before the system is simulated over a time
scale sufficient to capture its dynamics. The time step size is 𝑡 = 0.02𝜏, where 𝜏 is
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the characteristic time scale as defined in A.11. Because, as we show later in this
paper, the relaxation time of the system scales as ∼ 𝑁3.0 (figure 2.4), the runtime
can vary significantly depending on the chain length.

For the special case, where we are applying an electric field to the system, the field
strength is calculated based on the potential difference (in units 𝑘𝑏𝑇/𝑒), scaled by
the system dimensions, ensuring consistency with physical units. This electric field
is then introduced along the specified axis (the z axis in this case) while accounting
for the system’s dielectric properties.

2.2 Results and Discussion
Radius of Gyration
The radius of gyration, 𝑅𝑔 can be a useful quantity to understand the dimensions
of a polymer and give insight into scaling relationships with other properties like
diffusivity. It is defined as the root mean square of the distances between the center
of mass of the polymer, Rc and the position vectors of each constituent monomer,
ri (both vector quantities, represented by bolded text). [7].

𝑅𝑔 =

√√∑𝑁
𝑖=1 𝑚𝑖∥r𝑖 − Rc∥2∑𝑁

𝑖=1 𝑚𝑖

(2.3)

For an ideal chain obeying random walk scaling, the radius of gyration scales with
𝑁

1
2 [7, 9]. Similarly, for standard (non-ionic) polymers in a melt, where excluded

volume interactions are screened out by densly packed monomers, we also expect
the radius of gyration to scale with an exponent of 1

2 [7]. That is to say 𝑅𝑔 ∝ 𝑁𝜉 ,
where 𝜉 = 1

2 . Indeed, we get back almost precisely this relationship at large chain
lengths (N > 200) for our charged polyanion system 2.2.

It can be helpful to compare our system to an identical polymer melt where the
polymer and its counter-ions have identical parameterization but without any charge.
While in figure 2.2 we get back an identical scaling relationship with N of 𝑅𝑔 ∝ 𝑁 .5

for both systems, the consistent difference in size for the charged system compared
with the uncharged system highlights the residual electrostatic repulsion even in the
highly screened ionic liquid density limit.

Relaxation Time
The orientational relaxation time of a polymer, denoted as 𝜏𝑟 , is an important
parameter for determining the duration over which a polymer loses correlation with
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Figure 2.2: Radius of gyration for polyanion and neutral system polymers as a
function of the chain length, showing a scaling relationship of .52 for the charged
system and .53 for the uncharged system [8]

.

its initial orientation. This relaxation time can be efficiently calculated from the
end-to-end autocorrelation function, 𝐶ee(𝑡) [7] as shown below, where 𝑅𝑒𝑒 is the
end to end distance of a polymer:

Ree(𝑡) = r𝑁 − r1,

𝐶ee(𝑡) =
⟨Ree(𝑡) · Ree(0)⟩

⟨R2
ee⟩

.
(2.4)

The autocorrelation function 𝐶ee(𝑡), expressed as a function of the dot product,
converges to zero at sufficiently large times. This relaxation behavior can be modeled
by fitting 𝐶ee(𝑡) to a stretched exponential function. The relaxation time of the
polyanions is then determined by integrating the stretched exponential function,
which involves the gamma function [10], as shown below:

𝐶
𝑓 𝑖𝑡
ee (𝑡) = exp

[
−
(

𝑡

𝜏 𝑓 𝑖𝑡

) 𝛽]
(2.5)
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Figure 2.3: End to end autocorrelation function plotted against time for a range of
chain lengths

𝜏𝑟 =

∫ ∞

0
𝐶

𝑓 𝑖𝑡
ee (𝑡) 𝑑𝑡 =

𝜏 𝑓 𝑖𝑡

𝛽
Γ

(
1
𝛽

)
(2.6)

where 𝜏𝑟 is the relaxation time, and 𝜏 𝑓 𝑖𝑡 and 𝛽 are fitting parameters. Finally, the
gamma function defined as:

Γ(𝛽) =
∫ ∞

0
𝑒−𝑡𝑡𝛽−1 𝑑𝑡 (2.7)

For a fully entangled uncharged polymer, the relaxation time typically scales with
the cube of chain length, that is to say, 𝜏𝑟 ∝ 𝑁3. For polymers in the transition
regime, where they are only partially entangled, 𝜏𝑟 ∝ 𝑁𝜉 for 2 < 𝜉 < 3.

Looking at our system in both the transition region (𝑁 < 150) and what would
typically be considered the entangled region (𝑁 > 150), we observe the expected
behavior for an ideal chain in both regime. This apparent adherence to standard
reptation scaling of 𝜏𝑟 ∝ 𝑁3 would imply that the charged polymers are fully
entangled with one another and behave relatively ideal in the solvent-free polyionic
liquid limit. This adherence is significant, as we can expect or chains to continue to
exhibit ideality in dynamic scaling properties like diffusivity.
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Figure 2.4: Plot of relaxation time vs. chain length for polyanions in our polymerized
ionic liquid system compared to an identical uncharged system, showing scaling
relationship of ∼ 𝑁3.00 in the fully entangled region. Note the scaling in the
transition regime is ∼ 𝑁2.25 (25<N<100) and 𝜏 here is the characteristic time scale
defined in equation A.11

By way of comparison it is helpful to compare this behavior to that of our identical
uncharged system portrayed by the blue data points in figure 2.4. Similar to the
charged system, in our uncharged system, we can see the same expected adherence
to reptation scaling of 𝜏𝑟 ∝ 𝑁3. However, it is important to recognize that our
charged system relaxes substantially slower than the uncharged counterpart in both
the transition and fully-entangled regimes. The charged polymers relax more slowly
because the electrostatic interactions between them and their counter-ions, that
increase friction and create additional dynamic constraints, hindering chain motion.
This extra resistance delays relaxation in both the transition and fully entangled
regimes, even though both systems follow the same scaling.
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Diffusion
Diffusion behavior as a function of chain length is not only an experimentally
relevant transport property but also a key factor in uncovering fundamental transport
mechanisms and providing valuable insights into material behavior. We compute
the per-particle diffusivity directly from the per-particle averaged mean squared
displacement[11, 12]:

MSD =

〈
1
𝑁𝑝

𝑁𝑝∑︁
𝑖=1

(r𝑖 (0) − r𝑖 (𝑡))2

〉
(2.8)

where 𝑖 is the particle index, and 𝑁𝑝 remains our number of total particles for
a species. Ultimately deriving our diffusion coefficient from our mean squared
displacement - note 6 as coefficient comes from our three dimensional system [7].

𝐷=

MSD
6𝑡

=
1
6

lim
𝑡→∞

𝑑

𝑑𝑡

〈
1
𝑁𝑝

𝑁𝑝∑︁
𝑖=1

(r𝑖 (0) − r𝑖 (𝑡))2

〉
(2.9)

We can further explicitly write this expression in terms of chain center of mass, Rc,
to get our polymer diffusivity 𝐷−. Where we instead sum over our total number of
polymers, 𝑛, noting that 𝑛 =

𝑁𝑝

𝑁
and in our constant density system is a function

solely of chain length:

𝐷− =
1
6

lim
𝑡→∞

𝑑

𝑑𝑡

〈
1
𝑛

𝑛∑︁
𝑎

[Rc
𝑎 (𝑡) − Rc

𝑎 (0)]2

〉
(2.10)

here, 𝑎 is the chain index. We can determine the diffusion coefficient from the mean
squared displacement using either the position vectors of the individual constituent
monomers or the position vectors of the polymer’s center of mass. For this analysis
we calculated diffusion coefficients for the central fifth of monomer beads as well
as the center of mass to ensure consistency between the two forms. However, the
central bead displacement is used throughout the analysis in section 2.4. Figure 2.5
portrays the central bead diffusivity showing the scaling relationship between chain
length and polymer diffusivity.

For an uncharged polymer in the fully entangled regime, we expect the diffusivity
to scale with 𝑁−2. In our charged system, we can conduct a dimensional analysis of
our scaling laws [13] and determine that we should expect our diffusion to scale with
𝑁−1.96, considering both our relaxation time and our radius of gyration - similarly
we would expect our uncharged system to scale with 𝑁−1.92. This approach provides
a way to corroborate our diffusivity scaling results for our polyanion:
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Figure 2.5: Diffusivity vs. chain length showing an unentangled scaling relationship
of 𝑁−1.08 system and a reptation scaling relationship of approximately 𝑁−2.06 for our
polyanion. Similarly, the uncharged system shows a scaling relationship of 𝑁−.97

and 𝑁−2.06 in the untentangled and entangled regimes respectively.

𝐷 [=]
𝑅2
𝑔

𝜏𝑟
≈ 𝑁1.04

𝑁3.00 ≈ 𝑁−1.96 (2.11)

Our dimensional analysis confirms our molecular dynamics analysis for our scaling
law where our diffusivity scales scale at the expected 𝑁−2 from typical reptation
regime. From this we can conclude that our chains follow ideal scaling behavior,
with our polyanion chains moving slower as a result of the electrostatics.

For internal consistency, figure 2.6 shows the center of mass diffusivity, compared
to the central bead diffusivity for our charged system. The key takeaway here is that
our central bead displacement correctly models the center of mass for each polymer
- at sufficiently long time.
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Figure 2.6: Center of mass diffusivity for the charged polyanion system compared
to central bead diffusion, showing agreement between the two methods, even at our
longer chain lengths

Onsager Transport Coefficients
The Onsager transport framework, [11] represents an intuitive way in molecular
dynamics of characterizing electrolyte transport phenomena from the system flux.
It is particularly useful in systems where the traditional Nernst-Eisntein ideal solution
transport relationship, driven mostly by system diffusion, breaks down. Here the flux
of species i, 𝐽𝑖 can be characterized by the sum of the Onsager transport coefficients
and their corresponding chemical potentials:

𝐽𝑖 = −
∑︁
𝑗

𝐿𝑖 𝑗∇�̄� 𝑗 (2.12)

where �̄� 𝑗 is the electrochemical potential of each species indexed at j. From there
we can calculate the Onsager transport coefficients from the particle positions using
a similar Einstein relation scheme as diffusivity in equation 2.11, where the Onsager
transport coefficient between species i and j, 𝐿𝑖 𝑗 is:
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𝐿𝑖 𝑗 =
1

6𝑘𝑏𝑇𝑉
lim
𝑡→∞

𝑑

𝑑𝑡

〈∑︁
𝛼

[
r𝑖,𝛼 (𝑡) − r𝑖,𝛼 (0)

]
·
∑︁
𝛽

[
r 𝑗 ,𝛽 (𝑡) − r 𝑗 ,𝛽 (0)

]〉
(2.13)

where i and j in our case each represent a positive or negative ion, 𝛽 and 𝛼 represent
each particle and the denominator, 𝑘𝑏𝑇𝑉 , represent the Boltzman constant, the
temperature, and fixed volume of our system respectively. Because of the symmetric
nature of the function, 𝐿+− = 𝐿−+, ie, the cation/anion correlation term is identical
to its corresponding cross term. If we evaluate each particle, r𝑖,𝛼 (𝑡) relative to the
system center of mass at time t, we can further conlcude that the individual mass flux
for each species must sum to zero,

∑
𝑖 𝑀𝑖𝐽𝑖 = 0 [14]. This relationship constrains

our Onsager Coefficients for each species as,
∑

𝑖 𝑀𝑖𝐿𝑖 𝑗 . Four our two species system
composed entirely of anion/cation particles with the same mass, it then follows that
𝑀+(𝐿++ + 𝐿+−) = 𝑀−(𝐿−− + 𝐿+−) = 0 and thus 𝐿−− = 𝐿++ = −𝐿+−. As a result the
values of the respective Onsager transport coefficients, 𝐿𝑖 𝑗 , are intrinsically linked,
where an increase in one must cause a decrease in another. Larger values of those
coefficients demonstrates an increase in correlated motion, while decreasing values
of a coefficient imply an increase in anticorrelated motion, this is illustrated in figure
2.8. In the case of the same species Onsager coefficient 𝐿𝑖𝑖 the equation simplifies
to:

𝐿𝑖𝑖 =
1

6𝑘𝑏𝑇𝑉
lim
𝑡→∞

𝑑

𝑑𝑡

〈∑︁
𝛼

∑︁
𝛽

[
r𝑖,𝛼 (𝑡) − r𝑖,𝛼 (0)

]
·
[
r𝑖,𝛽 (𝑡) − r𝑖,𝛽 (0)

]〉
(2.14)

In the case of our polymer it can be more natural to further simplify this term into a
summation over each chain and its constituent particles:

𝐿−− =
1

6𝑘𝑏𝑇𝑉
lim
𝑡→∞

𝑑

𝑑𝑡

〈∑︁
𝑎

∑︁
𝛼

[
r𝑎,𝛼 (𝑡) − r𝑎,𝛼 (0)

]
·
∑︁
𝑏

∑︁
𝛽

[
r𝑏,𝛽 (𝑡) − r𝑏,𝛽 (0)

]〉
(2.15)

where a and b are now the chain indices, and 𝛼 and 𝛽 are particle index on each
chain. We can further transform this relation in terms of chain center of mass, Rc -
a more natural representation that allows for direct continuation with our previous
scaling arguments.

𝐿−− =
𝑁2

6𝑘𝑏𝑇𝑉
lim
𝑡→∞

𝑑

𝑑𝑡

〈∑︁
𝑎

[Rc
𝑎 (𝑡) − Rc

𝑎 (0)] ·
∑︁
𝑏

[
Rc

𝑏 (𝑡) − Rc
𝑏 (0)

]〉
(2.16)
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noting again that the chain center of mass Rc = 1
𝑁

∑
𝛼 ra,𝛼, which leads to the

multiplicative inclusion of the 𝑁2 term into the prefactor. If we exclude the instance
where 𝛽 = 𝛼 from the summation, we get our 𝐿𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

−− term. Finally, in the special
case of when 𝛽 = 𝛼, for our "self" term, 𝐿𝑠𝑒𝑙 𝑓

𝑖𝑖
, we can derive the following:

𝐿
𝑠𝑒𝑙 𝑓

𝑖𝑖
=

1
6𝑘𝑏𝑇𝑉

lim
𝑡→∞

𝑑

𝑑𝑡

〈∑︁
𝛼

[
r𝑖,𝛼 (𝑡) − r𝑖,𝛼 (0)

]2
〉

(2.17)

Making the same transformation we did in equations 2.15, 2.16 we can arrive at a
center of mass expression of our polyanion term for the self contribution:

𝐿𝑠𝑒𝑙 𝑓
−− =

𝑁2

6𝑘𝑏𝑇𝑉
lim
𝑡→∞

𝑑

𝑑𝑡

〈∑︁
𝑎

[Rc
𝑎 (𝑡) − Rc

𝑎 (0)]2

〉
(2.18)

Formally it follows that:

𝐿𝑖𝑖 = 𝐿𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
𝑖𝑖 + 𝐿

𝑠𝑒𝑙 𝑓

𝑖𝑖
(2.19)

Where the 𝐿𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
−− term accounts for only interchain interactions and the 𝐿𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

++
term accounts for all cation interactions not captured by the mean squared displace-
ment. Finally, comparing equation 2.11 with 2.17 and 2.10 with 2.18 we can see
the direct relationship between the self term and diffusivity below:

𝐿
𝑠𝑒𝑙 𝑓

𝑖𝑖
=

𝐷𝑖𝑛𝑖𝑁
2
𝑖

𝑘𝑏𝑇𝑉
, 𝐿

𝑠𝑒𝑙 𝑓
++ =

𝐷+𝑛+
𝑘𝑏𝑇𝑉

, 𝐿𝑠𝑒𝑙 𝑓
−− =

𝐷−𝑛−𝑁2

𝑘𝑏𝑇𝑉
(2.20)

where 𝑛𝑖 is the total molecules of species i in the system, while N is still the
chain length. By inspection, we can see that 𝐿𝑠𝑒𝑙 𝑓

++ is directly proportional to the
cation diffusivity. It is important to remember here that the monomeric species
concentration remains fixed and equal (eg. 𝑛𝑖𝑁𝑖

𝑉
) regardless of species or chain size.

We therefore can conclude that 𝐿𝑠𝑒𝑙 𝑓
−− must have 𝑁1 proportionality to the diffusivity

of that species. Additionally, the self terms are necessarily positive contributions
to their respective coefficients, given the intrinsically positive nature of the mean
squared displacement. For ion carriers with application to energy storage, it is
desirable to have uncorrelated anion to cation motion, and correlated anion to anion,
cation to cation motion. Under an applied potential, the decoupled ion motion
lowers the frictional drag on charge carriers, which means that during charging or
discharging the ions move more freely and energy losses are minimized.
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For our system, illustrated in figure 2.7, we see a steady magnitude of correlated
motion for our polyanion when we increase chain length, which comports with results
found in similar studies of solvent free but shorter chained polymer electrolytes
systems [15].

Figure 2.7: Onsager transport coefficients for polyanion system. Note the 𝐿++ and
𝐿−− overlap near-perfectly and may not be distinguishable

Dynamics of electrolyte solutions in the ionic liquid limit are governed by elec-
trostatic interactions, short screening lengths due to dense packing, and diffusive
driven motion [16, 17]. These conditions yield systems in which diffusion-induced
perturbations are moderated by the opposing influences of electroneutrality and elec-
trostatic repulsion. When looking at solvent-free PILs, we must also consider how
the correlated movement of monomers along the same chain further complicates the
dynamics.

Beginning our analysis with the 𝐿𝑠𝑒𝑙 𝑓
−− term (purple line) we observe a gradually

increasing decline, indicating an increasing 𝑁 dependence as chains become en-
tangled. Accounting for the 𝑁 dependence in equation 2.20 and the short chain
diffusivity scaling relationship of ∼ 𝑁−1, it becomes clear that we should expect
almost no change to 𝐿𝑠𝑒𝑙 𝑓

−− in the short chain regime (N<10) - this is borne out in the
data where in the short chain regime we see a scaling relationship of ∼ 𝑁−.08. As the
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Figure 2.8: Illustration of correlated and anticorrelated anion/cation motion for our
PIL system. 2.19

chains enter the semi-entangled and fully entangled regime, where the diffusivity
scales with ∼ 𝑁−2 we should expect 𝐿𝑠𝑒𝑙 𝑓

−− to begin to scale with ∼ 𝑁−1, and indeed
the relationship in the fully entangled regime is∼ 𝑁−1.05. The sudden and then more
subtle decrease in the 𝐿

𝑠𝑒𝑙 𝑓
++ (red line), term corresponds to the transport limitations

on the monomer as it’s diffusion is hindered by an increasingly bulk polyanion. For
our non-self terms, we can see a marked decline in correlated motion in the cross
term, 𝐿+−, coupled with a corresponding increase in the two remaining terms, 𝐿++

and 𝐿−−. Evaluating just our polyanion term, 𝐿−− (green/orange line), in the very
short chain regime (N<25), the self component (𝐿𝑠𝑒𝑙 𝑓

−− ) has a substantial, positive
contribution to the overall term. This necessarily implies that the distinct contri-
bution is negative, where electrostatics drive anticorrelated interchain interactions,
as seen in figure 2.8. As chain length increases, correlated intrachain motion over-
takes the decreasing contribution from the diffusive 𝐿𝑠𝑒𝑙 𝑓

−− , and the anticorrelated
interchain contributions. The ultimate effect of this competition between these in-
teractions is an increase in 𝐿−−, or anion correlated motion as chain length enters
the Rouse regime - ultimately tapering off and decreasing slightly once fully entan-
gled. Again, making a direct comparison with our uncharged system can be helpful
for this analysis, as shown in figure 2.9, where the system’s Onsager coefficients
follow the same general trend. However, the marked increase in the magnitude of
the uncharged polymer correlation (red line) relative to the polyanion (blue line)
indicates that electrostatics dampen polymer correlated motion. It follows that this
loss of correlation results from electrostatic repulsion between like species.

Noting again that in our binary, uniform mass polyanion system we can show that
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Figure 2.9: 𝐿−− for both charged and uncharged system plotted against chain length
for direct comparison. Note for both two component systems where all particles
have the same mass, 𝐿−− contains the same information as the other two Onsager
Coefficients.

𝐿−− = 𝐿++ = −𝐿+−, it is expected that our cation and cross terms are equal and op-
posite respectively of our polyanion term. Physically, the cations begin and remain
anticorrelated with one another driven by repulsive electrostatic interactions and
incompressibility - the relationship in equation 2.19 and a dominant self term (red
line in figure 2.7) implies a negative contribution from the ’distinct’ cation interac-
tions. An initial increase in 𝐿++ in the short chain region represents increasingly
correlated motion between cations, driven by system incompressibility response to
increasingly correlated polyanions. Intuitively the same analysis is used to justify
anti-correlated motion between cations and anions - resulting in a negative 𝐿+− term.
From figure 2.9 we can again note that the magnitude of our Onsager coefficient
for our uncharged system is greater than that of our charged system. Considering
the cross species term, 𝐿+−, this means that incompressibility drives this anticorre-
lated motion while short range electrostatic attraction between species dampens that
affect.

Ion Conductivity
Ion conductivity is a measure of the electrical conduction resulting from the motion
of charged ions [18]. In our system, it quantifies the mobility of the two ion
species, capturing both their diffusive and compensatory behavior. Maximizing
this conductivity is important for designing and optimizing next-generation energy
conversion and storage devices. Ion conductivity, 𝜅, can be expressed in terms of
the Onsager transport coefficients as seen below [19]:
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𝜅 = 𝐹2
∑︁
𝑖

∑︁
𝑗

𝐿𝑖 𝑗 𝑧𝑖𝑧 𝑗 (2.21)

where F is the Faraday constant, and 𝑧𝑖 is the valency of the ion, which is +/- 1 in
our case. For our system, we can simplify this expression to be:

𝜅 = 𝐹2(𝐿++ + 𝐿−− − 2𝐿+−) (2.22)

Since we have a binary mixture, where again 𝐿++ = 𝐿−− = −𝐿+− it follows that our
conductivity can be expressed ultimately in terms of any single Onsager Coefficient,
and we should expect it to follow similar trends. With that simplification in mind, our
ion conductivity below, follows the same trend as our Onsager transport coefficients:
[19].

Figure 2.10: Ion conductivity calculated from Onsager transport coefficients for
polyanion system

Excluding the monomer instance, the behavior in the short-chain regime aligns
closely with previous molecular dynamics studies on shorter chain polyanions [11].
Where an increase in polyanion chain length leads to enhanced correlated motion,
which directly contributes to a steady increase in ion conductivity. Moreover, as
the polyanion enters the transition regime, we observe a steady albeit small uptick
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in ion conductivity — an outcome consistent with the predicted behavior. In the
fully entangled regime, we see a slight decline in conductivity, mirroring the drop
in correlated motion in our Onsager Coefficients. These results underscore the
limitations of chain length as a tuning parameter for polymerized ionic liquids in
deployment as efficient charge transport materials.

These results are non-obvious when considering the traditional Nernst-Einstein
method of calculating conductivity of an ideal solution [11], we can make a few
manipulations to get a functional form with a more obvious scaling relationship with
𝑁:

𝜅NE =
𝑒

𝑘𝑏𝑇
(𝜌+(𝑧+𝑒)2𝐷+ + 𝜌−(𝑧−𝑒)2𝐷−) =

𝑒2

𝑉𝑘𝑏𝑇
(𝑛+𝐷+ + 𝑛−𝐷−𝑁

2) (2.23)

where, 𝜌𝑖 is the number density, 𝑛𝑖 is the molecules per species, and 𝑧𝑖 is the species
valence - remembering that our 𝐿𝑠𝑒𝑙 𝑓

−− which accounts for the whole chain, the valency
is N. Accordingly, Nernst Einstein conductivity for an ideal electrolyte solution in
the dilute limit should scale with the diffusivity of that system. Simplifying in terms
of the Onsager transport coefficients - for consistency we can get:

𝜅𝑁𝐸 = 𝐹2(𝐿𝑠𝑒𝑙 𝑓
++ + 𝐿𝑠𝑒𝑙 𝑓

−− ) (2.24)

Looking at figure 2.7 and equation 2.24, we would expect our conductivity to
decrease as the diffusivity (or 𝐿

𝑠𝑒𝑙 𝑓

𝑖𝑖
terms) decrease. This trend at first driven by

the cation diffusivity, 𝐷+, and then by the N dependent polyanion diffusivity, 𝐷−, in
the semi and entangled regimes. Comparing the two results, we can see that while
the Nernst-Einstein conductivity decreases with chain length, our true conductivity
remains relatively stable across chain length - seen in figure 2.11. Again, this effect
is driven by the increase in correlated motion from the intrachain interactions. This
effect can be seen to some degree experimentally [20], but these results might not
be able to fully isolate the effects of increasing chain length versus the increasingly
glassy behavior.

Electric Field Calculated Ion Conductivity
Another method to measure ion conductivity is to apply an external, static electric
field to our system, and calculate a conductivity directly from the system displace-
ment response to the applied field [21]. To do this, we need to find the drift velocity,
𝑣𝑧 by comparing the additional displacement from an applied electric field relative
to that of a static, equilibrated system. We can also directly calculate the drift
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Figure 2.11: Conductivity and Nernst-Einstein Conductivity vs. Chain Length

velocity from the displacement in the direction of the electric field relative to the
displacement orthaganol to that field. Below is the equation for finding the drift
velocity for an electric field applied in the z direction.

⟨𝑣𝑧⟩2𝑡2 = ⟨(r𝑧 (𝑡) − r𝑧 (0))2⟩𝐸 − ⟨(r𝑧 (𝑡) − r𝑧 (0))2⟩0

= ⟨(r∥ (𝑡) − r∥ (0))2⟩𝐸 − ⟨(r⊥(𝑡) − r⊥(0))2⟩𝐸
(2.25)

We can extract the average drift velocity directly from the mean squared displacement
of our ions under the electric field by fitting 𝑎 + 𝑏𝑡2 to log-log, where a and b are
fitting parameters, and ⟨𝑣𝑧⟩ =

√
𝑏. This is done at sufficiently long time where the

slopes of the log-log mean squared displacement in the parallel direction are 2 and
the orthaganol directions are 1. An example of this can be seen in figure 2.12

Using the average drift velocity, we can directly calculate the average electrophoretic
mobility and ultimately our ion conductivity:

𝜇 =
⟨𝑣𝑧⟩
𝐸

(2.26)

𝜅 = 𝜇+𝜌+𝑒 + 𝜇−𝜌−𝑒 (2.27)
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Figure 2.12: Example trajectory showing fitting data for drift velocity, 𝑣𝑧, extraction
from applied electric field

In practice, this calculation is done by looking at the mobility, 𝜇 response at a range
of electric fields in our case (0-0.2 in reduced units). We should expect a linear
response when we plot 𝑣𝑧 against our electric field a and are able to use the linear
slope of that line to attain our average mobility, 𝜇.

Finally, we can extract the ion conductivity from the mobility using equation 2.27
to get the relationship in figure 2.14.

We get a similar trend where as chain length increases the conductivity remains
relatively the same, with a maximum value around N 100. This is an expected result
given our static simulations and helps confirm our results from our equilibrium sim-
ulations - that we see a moderate increase in conductivity in very short chain length
but that increase tapers off in the partially entangled regime. A quick comparison
with figure 2.11, will confirm that our electric field conductivity continues to exceed
our Nernst Einstein conductivity.

2.3 Conclusion
Our combined analysis shows that our charged PIL system obeys typical scaling
laws for a polymer melt across our measured dynamic properties, with the role
of electrostatics primarily influencing the magnitude of relaxation and chain size.
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Figure 2.13: Example plot of drift velocity𝑉𝑧 versus electric field - notice the linear
response as we increase the field strength and the clear intercept with the origin

Figure 2.14: Plot of conductivity vs. chain length for applied electric field simula-
tions
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In particular, relaxation times and diffusivity adhere to the expected scaling laws
even in the presence of electrostatic interactions. In the fully entangled regime,
the charged polymer systems exhibit characteristic reptation scaling, again with
distinctly slower time scales and larger chain size. These observations affirm that
both our equilibrium and non-equilibrium measurements capture the anticipated
ideality in dynamic scaling, with the charged and uncharged systems displaying
closely related behavior aside from the inherent delay in relaxation and increase in
chain size of the charged ensemble.

Employing the Onsager framework to investigate the correlated and anti-correlated
motion of our system’s ions provides a quantitative avenue to assess how electro-
static interactions shape both individual particle dynamics and collective charge
transport. Our analysis reveals that in the short chain regime, the correlated motion
of polyanions drives a pronounced and initial increase in ion conductivity (exclud-
ing the monomer instance). Strikingly, this initial boost gives way to a marked
plateau—featuring a subtle yet persistent rise—that endures well into the semi-
entangled regime before eventually tapering off fully entangled state. The slow,
almost absent decline in conductivity in the fully entangled regime is an unexpected
result that reflects continuing correlation between polyanions even as individual
ion mobility decreases. This distinctive conductivity behavior, confirmed through
both Onsager transport coefficient evaluation and direct electric field measurements,
underscores the critical role of electrostatic forces in modulating polymer dynam-
ics. This phenomenon could further inform experimental advances in these systems
and emphasizes the importance of designing PILs with progressively lower glass
transition temperatures to enhance ionic mobility and overall performance.
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A p p e n d i x A

GAUSSIAN CORE MODEL

The Gaussian Core Model (GCMe), developed by Ben Ye [1], introduces a novel
approach to coarse-grained molecular dynamics simulations that smears both elec-
trostatics and mass across particles. This model presents two key advantages over
conventional coarse-graining techniques. First, it exploits the computational accel-
eration afforded by modern GPU computing via an implementation in the OpenMM
molecular dynamics platform [2]. Second, it employs soft-sphere particles. Tradi-
tional molecular dynamics packages, such as Kremer-Grest, struggle to accurately
model densely packed ion complexes and often overestimate electrostatic forces,
particularly in systems like our polymerized ionic liquids. In contrast, the soft-
sphere particles used in this model can more accurately model systems of that often
deform or are densely packed. Using soft-spheres also permits limited particle
overlap without causing energy divergence, thereby enabling larger time steps and
further enhancing computational efficiency. In total, this will allow the Gaussian
Core Model to explore larger system sizes over greater time scales.

Overall, the Gaussian Core Model is exceptionally well-suited for accurately and
efficiently investigating the dense ionic liquid systems analyzed in this thesis. In the
subsequent sections, we will derive and parameterize the essential characteristics of
the polyanion system described in Chapter 2.

A.1 Model and Parameterization
The coarse grained spheres in GCMe interact with one another based on their
centrosymmetric pair potentials [1] where the Gaussian distributed mass density for
particle 𝑖 can be defined as

𝜌𝑖,𝑚 (r) = ( 3
2𝜋𝜎2

𝑖

) 3
2 exp(−3

2
(r − ri)2) (A.1)

where 𝜎𝑖 is the mass smearing radii. While the Gaussian distributed charge density
for particle 𝑖 can be defined as

𝜌𝑖,𝑞 (r) =
𝑧𝑖𝑒

(2𝑎2
𝑖
) 3

2
exp(− 𝜋

2𝑎𝑖
(r − ri)2) (A.2)



30

where 𝑎𝑖 is the electrostatic smearing radii, 𝑧𝑖 is the particle valency, and e is
the elementary charge. One of the computational advantages of GCMe over other
soft particle models like DPD, lies in the fact that both equations A.1 and A.2 are
both analytically solvable integrals. The excluded interaction between two partciles
indices i and j can then be described as a gaussian interaction below

𝑢𝑒𝑥𝑐𝑙 (rij) = ( 3
2𝜋𝜎2

𝑖 𝑗

) 3
2 exp(− 3

2𝜎2
𝑖 𝑗

rij
2) (A.3)

where 𝜎2
𝑖 𝑗

can be found from the corresponding mass smearing radii by 𝜎2
𝑖 𝑗

=√︃
𝜎2
𝑖
+ 𝜎2

𝑗
, 𝑟𝑖 𝑗 is the radial distance between particles, and 𝐴𝑖 𝑗 as the excluded

volume scaling parameter. Similarly the smeared electrostatic interaction between
two particles can be expressed as:

𝑢𝑒𝑙𝑒𝑐 (rij) = (
𝑧𝑖𝑧 𝑗𝑒

2

4𝜋𝜀0𝜀𝑟rij
)𝑒𝑟 𝑓 (

√
𝜋

√
2𝑎𝑖 𝑗

rij) (A.4)

where 𝑎2
𝑖 𝑗

can be found from the corresponding mass smearing radii by 𝑎2
𝑖 𝑗

=√︃
𝑎2
𝑖
+ 𝑎2

𝑗
, 𝜀0 is the permittivity of free space, and 𝜀𝑟 is the relative permittivity (set

as 12 for the systems discussed in this thesis). In order to determine appropriate
values for 𝐴𝑖 𝑗 , the compressibility it can be convenient to relate system pressure to
simulation density. We can then use the virial theorem and the summation of the
pairwise forces to make this comparison:

𝑝 = 𝜌𝑘𝑏𝑇 + 1
3𝑉

⟨
∑︁
𝑖< 𝑗

(ri − rj) 𝑓𝑖⟩ (A.5)

= 𝜌𝑘𝑏𝑇 + 2𝜋
3
𝜌2

∫ ∞

0
𝑟3 𝑓𝑖 𝑗 (𝑟)𝑔𝑖 𝑗 (𝑟)𝑑𝑟 (A.6)

In this context, 𝑘𝑏𝑇 represents the energy scale, while 𝑉 denotes the system’s
volume. The variables 𝑓𝑖 and 𝑟𝑖 correspond to the force and position of particle 𝑖,
respectively, whereas 𝑓𝑖 𝑗 and 𝑔𝑖 𝑗 describe the pairwise GCMe force and the radial
distribution function between particles 𝑖 and 𝑗 . Approximating for soft spheres,
where the majority contribution comes from the leading order term, we can simplify
and approximate this relationship as:

𝑝 ≈ 𝜌𝑘𝑏𝑇 + 𝜔𝐴𝑖 𝑗 𝜌
2 (A.7)

where 𝜔 is a dimensionless scaling constant, derived in [1] as .499. We can than
relate the dimensionless compressibility constant 𝜅−1, set to the value for water,
15.9835, thru a maxwell relation
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𝜅−1 =
1

𝑛𝑘𝑏𝑇𝜅𝑇
=

(
𝜕𝑝

𝜕𝜌

)
𝑇

(
𝜕𝑝

𝜕𝑛

)
𝑇

(A.8)

=
1
𝑁𝑚

(1 +
2𝜔𝐴𝑖 𝑗 𝜌

𝑘𝑏𝑇
) (A.9)

n here is the number density, 𝜅𝑇 is the isothermal compressibility, and 𝑁𝑚 ≡
(
𝜕𝑝

𝜕𝑛

)
𝑇

is a size normalization factor that relates the relative size of a simulation particle
to a water molecule. With these parameters, the model can be fully parameterized,
and appropriate system values can be chosen. For this system we selected a 𝑁𝑚 of 4
based on the relative dimensions of a polymerized ionic liquid monomer [3, 4], and
a 𝜌 of 2.5 𝑑−3 derived in [1], to appropriately represent the relative molecule size
and density compared to water. The length scale, d can be defined formally as

𝑑 = .275𝑛𝑚(𝑁𝑚𝜌𝑑
3)1/3 (A.10)

where .275 nm is the diameter of water, giving a value of 𝑑 ≈ 1.07𝑛𝑚. It then follows
that individual particle size, 𝜎 = .275 and .275 Å is the diameter of water. The
mass of individual monomers in our system is set as 𝑚 = 𝑚𝑤𝑎𝑡𝑒𝑟𝑁𝑚 ≈ 72.09𝑎𝑚𝑢.
The system characteristic time scale can be extracted as seen below:

𝜏 =

√︄
𝑚𝑑2

𝑁𝐴𝑘𝑏𝑇
(A.11)

Which for our N = 48,000 particle polyanion and cation system is ≈ 7.202𝑝𝑠. This
is used to calcualte step size, t = .02 𝜏, or 𝑡 ≈ .1404 for our studied system. With a
small rearrangement, it follows then that 𝐴𝑖 𝑗 = 𝑘𝑏𝑇

𝑁𝑚𝜅
−1−1

2𝜔𝜌
or 𝐴𝑖 𝑗 ≈ 78.65𝑛𝑚3𝑘𝐽

𝑚𝑜𝑙
.

A.2 Applied Electric Field
In the instance where we apply an electric field to the polyanion system, this is done
by first selecting a potential difference within the range of .1 - 10 𝑘𝑏𝑇

𝑒
or about .25

V, well within the standard range for ionic liquids [5, 6]. The voltage is than scaled
by both the system energy and size as seen below:

𝐸 = −𝑉 𝑘𝑏𝑇

𝑒

𝑁𝑎

𝑑
(A.12)

where 𝐸 is the applied electric field, 𝑉 is the thermal voltage difference, 𝑒 is the
elementary charge, and 𝑁𝑎 is Avogadro’s number. For a 𝑉 of 1,

𝐸 ≈ −0.04323,
kJ

nm · mol · 𝑒
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. Then a force is applied to all charged particles in the system based on their charge.

𝑓𝑖 = 𝑞𝑖𝐸 (A.13)

Here, 𝑓𝑖 is the force applied to particle 𝑖 and 𝑞𝑖 is the charge on particle 𝑖, or +1 or
-1 for each polyanion or cation bead. Since the applied electric field is negative,
or E<0, positive ions in our system (𝑞𝑖 > 0) will have a negative force. In practice
this means that positive ions will move with the field in the negative direction and
negative ions will move in the positive direction. See below graphic for clarity:

Figure A.1: Electric field graphic

A.3 Conclusion
This methodology combined with the GPU enabled OpenMM platform represents
a powerful way to explore systems that benefit from soft sphere, and require large
systems studied at relatively long time frames. This appendix reviews the implemen-
tation and employment of key model parameters that are underlying the simulations
in this thesis.
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A p p e n d i x B

ONSAGER TRANSPORT COEFFICIENT FITTING

In this appendix we will describe and show how Onsager transport coefficients, and
other key values were extracted from simulation trajectories. The point here is to
show clearly how these quantities were fitted, substantiate the values represented
in this thesis, and to serve as a support for analytical methods of Chapter 2 of this
thesis.

B.1 Mean Squared Displacement and Diffusivity
Diffusivity measurements, used in the dynamics scaling law relationship, were taken
using the middle 20% monomers from each polyanion. This was done to replicate
the center of mass diffusivity while keeping a statistically significant amount of
data points in systems with limited total chains; for example for N = 300 system,
with a system size of 96,000 particles, equating to 160 total chains. Again, the
mean squared displacement was calculated using equation 2.8, using the ensemble
average of each individual particle squared displacement. For a relaxing polymer
obeying the reptation model, like in one of the equilibrium simulations, we expect
that polymer to mean squared displacement after a ballistic region to initially scale
with 𝑡1/2 and then transition into a diffusive regime where it scales with 𝑡1 [1].

Additionally, when looking at our uncharged systems it is important to note that they
undergo a similar intial scaling of 𝑡1/2 and then transitioning into a diffusive regime
where it scales with 𝑡1 at sufficiently long time. The key difference between figure
?? is the much quicker transition to the diffusive regime, and greater magnitude of
displacement.

For short chain polymers, this transition region within the time scale we are studying
can be very small, but in long chained polymer, this region can be more pronounced,
see figure B.1. The mean square displacement for these trajectories are then fitted
from their diffusive region, where the MSD scales with 𝑡1, or where their slope
in the log-log space is one. Using that fit data, we are able to generate figure
2.5. Looking at a range of chain lengths we can see the expected trend where
displacement decreases as chain length increases, in figure B.3.

Note in figure B.3, that cations are immediately diffusive, and relatively close values
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Figure B.1: Example log-log mean squared displacement of charged polyanion
system where diffusive slope = 1. Also displayed is linear scale of the same
trajectory.

Figure B.2: Example log-log mean squared displacement of uncharged polymer
system where diffusive slope = 1. Note comparatively short time scale to enter
diffusive regime when compared to polyanion system.
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Figure B.3: Mean squared displacement, for cation and polyanions in our static
system, varied over chain length. Diffusivity values were fit from the diffusive
regime, where the log-log slope is 1 (dashed line).

correspond to asymptotic behavior in 𝐿
𝑠𝑒𝑙 𝑓
++ in 2.7. While the substantial difference

in polyanion displacement is borne out in 𝐿𝑠𝑒𝑙 𝑓
−− the same figure and the polymer

diffusivity (figure 2.5)

B.2 Onsager Coefficient
The Onsager Coefficients are similarly fitted from the analog to mean squared
displacement for each of the corresponding summations (see equations 2.17, 2.14)
[2]. As equation 2.20 implies, the self terms for both 𝐿𝑠𝑒𝑙 𝑓

−− and 𝐿
𝑠𝑒𝑙 𝑓
++ can be fitted

directly from the mean squared displacements as seen in figure B.3. Again, this is
done by fitting data from the diffusive regime for each trajectory.

For the full and distinct components of the Onsager transport coefficients, we use
a modified form of the mean squared displacement, referred to as "MSD". This is
done plotting the summation components of equation 2.14 - stated explicitly, we are
plotting:

′𝑀𝑆𝐷′ =

〈∑︁
𝛼

∑︁
𝛽

[
r𝑖,𝛼 (𝑡) − r𝑖,𝛼 (0)

]
·
[
r𝑖,𝛽 (𝑡) − r𝑖,𝛽 (0)

]〉
(B.1)

Then, as described in Chapter 2, to recover the 𝐿𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
++ and 𝐿𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

−− terms we can
add back in the self components (eg. 𝐿++ = 𝐿

𝑠𝑒𝑙 𝑓
++ +𝐿𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

++ ). Note, because there
remains a self component in the cross term (eg. the self portion of the dot product
remains inside the summation), 𝐿+− can be extracted directly from the ’MSD’,
without an additional summation. Additionally, because the 𝐿+− is negative, the
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absolute value of the trajectory is used to extract the Onsager transport coefficient
in the log-log space. An example of this can be seen below in figure B.4:

Figure B.4: "MSD" terms for the full 𝐿𝑖 𝑗 terms in the Onsager transport coefficient
framework that were used to fit data with a reference slope of 1. Note, longer chained
trajectories were run for longer periods of time to achieve full relaxation and ensure
trajectories are in the diffusive regime.
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