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Abstract

A method 1s proposed to determine the velocity of
propagation of electromagnetic waves by means of a resonant
cavity. A circular cylindrical cavity is used operating
in the TEyj; mode. It 1s shown that for a particular length-
to-dlameter ratio, the resonance frequency is only a function
of the cavity volume and the veloclty of electromagnetic
waves, The latter can be calculated, when resonance
frequency and cavity volume are determlined experimentally.
The main advantage of this method 1s, that the volume
has to be measured only to one-third the accuracy which
is desired for the propagation velocity. Linear dimensions,
on the other hand, have to be determined to the same accuracy.
Furthermore, the volume method requires only reasonable
tolerances in the construction of the cavity.

The effects of various cavity imperfections on the
resonance frequency were analysed. The frequency shifts
due to the finlte conductivity of the walls, the deformations
in the boundary surface, grooves, and coupling irises,
were calculated. The problem of a thick iris was treated

numerically.



Preliminary experiments on a silver-plated brass

cavlity led to a result of
299,764 *15 km/sec.

This 1s somewhat lower than the presently accepted value
of the veloclty of light, but 1s in substantlal agreement
with that value within the limits of experimental error.

A discussion of the various sources of error indicates
that an ultimate accuracy of 1 part in 150,000 1is quite

possible,
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I. Historlcal 3Survey

The veloclty of light is probably the moét fundamental
physical constant. A knowledge of 1ts exact value 1s of great
importance because many other physical constants are derivable
from or related to it.

Successful attempts to estimate the velocity of light
date back to the seventeenth century (1,2). The first crude
determinations were based on astronomical observations. Olaf
ROmer in 1675 correctly attributed the slight variations in
the periods of revolution of Jupiter's satellites to the
finite velocity of propagation of the sunlight reflected from
these satellites. Romer's work was discredited for many years
until finally James Bradley's discovery of the aberration of
stars in 1727 led to a new and independent method of estimating
the veloclty of light. All astronomical methods require a
imowledge of the distance between the Sun and the Earth which
is not known with sufficlent accuracy even today to rival
terrestrial determinations.

Two terrestrial methods were introduced by Fizeau (1849)
and Foucault (1850). All direct terrestrial methods used %o
date are improvements and modifications of Fizeau's cogwheel
method or Foucault's rotating mirror experiment. A great many
determinations were made during the latter half of the nine-
teenth century by Cornu, Young, Newcomb, Michelson, and others.
None of these approached the precision obtalned during the

last few decades (1,2,3, and 4).



Kobeo Michelson (5) conducted a new series of invest-
lgatlons from 1921 to 1926, He used rotating mirrors of
8,12, and 16 sides and a path length of about 45 miles
between Mount Wilson and Mount San Antonio. Fis final
result is quoted as 299,796 4 km/sec, The high precision
attributed to the result is not quite justified because of
the uncertainty in atmoslkpheric conditions and possibly
In the path length which had to be obtalned by triangulation
over mountainous terraln, Because of these uncertainties,
Michelson, Pease, and Pearson (6) repeated the experiments
(1929 to 1933) in an evacuated, mile-long steel pipe.

The effective path length was increased to 10 miles by
multiple reflections from two plane mirrors. A number of
rotating mirrors of 32 sides were used, The mean of 2885
determinations was 299,774 km/sec, Although individual
results show a considerable spread (about *29km), the

mean values obtained by different mirrors and at different
times are iIn remarkable good agreement, The probable error
of a single observation is given as +9 km/sec, with the
probable error of the mean considerably less than =1 km/sec.

A modified form of the cogwheel experiment was used
by Karolus and Mittelstaedt (7) about 1925, In-their experi=
ment the "shutter effect" of the teeth of the wheel was
reproduced by Kerr cells placed between crossed Nicol
prismgse. In this manner they were able to use shutter

frequencies as high as 7 megacycles per second, compared



to 50,000 cycles per second as used by Flzeau., Thls permits
a considerable reduction in path length. The final result for
a path length of approximately 300 meters was 299,778 +10 km/sec.

Anderson (8,9) used the rotating mirror method in
two series of determinations (1937 and 1941) in which
additional refinements were introduced. His 1941 result
is given as 299,776 *14 km/sec. This includes a correction
due to the difference in group and phase velocity which
had been overlooked by earlier investigators. The necessity
of this correction was pointed out by Birge (9).

Various indirect determinations of the velocity of
light have been made since 1900, In some of these determine
stlons, a degree of precision has been achieved which is
almost comparable to that obtained by direct methods,

From electromagnetic theory, the ratio of the charge
on a condenser measured In %re electrostatic units to that
measured in electromagnetic units, should be numerically
equal to the velbcity of light. The best value for this
ratio was obtained by Rosa and Dorsey (10) in 1907, Their
result was given in terms of the international ohm. Taking
account of the discrepancy between International and absolute
ohm, Birge (11,12) quotes thelr corrected result as
299,784 +10 km/sec.

A number of experimenters have deduced the walue of
the veloclty of light from an investigation of the standing

electric waves along parallel wires. Mercier (13) obtalned



a value of 299,782 % 30 km/sec in 1923, This 1s in excellent
agreement with Rosa and Dorsey's result, although the

large correctlons requlred make Mercier'!s result compara-
tlvely uncertaln,

Essen and Gordon-Smith (1l4) have applied resonant
cavity technlques for the first time to a precislon measure-
ment of the veloclty of propagation of electromagnetic
waves., They use a circular cylindrical cavity excited by
a probe from a coaxial line. The resonance frequency 1is
determined by adjusting the frequency for maximum cavity
transmission. Dimensions are measured by interferometer
comparison with wrung Johnson guage blocks. These measure-
ments are made at a number of polnts on the cavity clrcum-
ference and averages are used. Thelr results (1948) are
not too conslstent and differ somewhat, depending on the
mode of oscillation used. Best results are clalmed for the
TMoipo and TMO11l modes and the value finally adopted is
299,792+ 9 km/sec which exceeds Michelson's most recent result
by 18 km/sec. Averages for the TEpy1 and TEjj] modes are
given as 299,799 and 299,777 km/sec, respectively. Hence,
further investigation in this direction seems indlcated,

The presently accepted value for the veloclty of light
is that adopted by Birge (12) in 1941, namely

209,776 4 km/sec,
It is a weighted average of the results obtained by Michelson,

Pease, and Pearsonj Anderson, and Rosa and Dorseye.



II. Survey of Cavity Methods

The resonance frequency of a cavity resonator depends
on the internal dimensions of the cavity, the propagation
velocity of electromagnetic waves in the dielectric filling
the cavity, and the type of mode excited in 1t. Hence, if the
dimensions of the cavity and its resonance frequency for a
particular mode are measured, the propagation velocity can
be determined. In principle, i1t 1s not difficult to measure
the resonance frequency of an actual cavity to within one
part in a million, but corrections have to be applied for
the finite conductivity of the walls, the effect of the
coupling mechanism, and possibly for deviations from the
ideal cavity shape. The measurement of the Internal dimensions
of the cavity to the same degree of accuracy appears more
difficult, although it is conceivable that interferometer
methods could be applied. The construction of a cavity to
that precision certainly poses s problem.

For practical reasons and ease of construction a
circular cylindrical cavity was chosen. Such a cavity can be
very accurately machined by making it out of three parts:

a cylindrical main body and two flat end plates. If a
circular transverse-electric mode (TEonp) 1s excited in 1%,
there will be no wall currents crossing the jolnts between
the three parts and hence no good electrical contact will be

necessary. Such a mode will have a very high Q and hence



only a small correction to the measured resonance frequency

will be required.
For a circular cylindrical cavity excited in a TEqn

p
mode the ideal resonance frequency is given by (15,16)

f=c% (B3]
where

¢ = propagation veloclity of electromagnetic waves

D=dilameter of the cavity

L = length of the cavity

ron = nbth root of Ji(x)=0.

This assumes, of course, that the inside walls of the cavity
form a mathematically accurate right circular cylinder and
that the wall material has Infinlte conductlvity. Also any
effects of coupling holes or loops are neglected.

It is apparent that the precision with which the
internal cavity dlameter can be determined will be lower
than that achlevable for the length. For high accuracy it
willl therefore be of advantage to eliminate D from equation
(2.1). This can be done in at least three ways:

(a) The length of the cavity can be made varisble by
a moveable piston at one end. For a fixed frequency the
resonant lengths can be determined for two or more modes;
for example, the TE, ;17 and TEyg] modes. From two equations
of the form (2.1) the diameter can be expressed in terms

of two resonant length.



(b) For a cavity of fixed dimensions the resonance
frequency for two modes can be measured. This makes it
possible to determine the ratio D/L very accurately.

(c) If the volume of the cavity is measured instead
of its linear dimensions, it can be shown that the resonance
frequency is independent of the length-to-diameter ratio if
this ratio 1s chosen to be

et~ wr (2.2)
This ratio 1s not too critical and it will be shown later
that even a construction error as large as = per cent will
lead to a negligible error in the result if the effect of
the length-to-diameter ratio 1s neglected.

It 1s doubtful whether the first method will lead to
any higher accuracy than a direct measurement of D and L in
a fixed cavity. Although the diameter measurement 1s
replaced by another length measurement, the constructional
difficulties and the difficulties in accurately measuring the
lengths would certainly be increased. By using three
resonant modes and measuring only changes In length by
interferometer methods these difficulties can possibly be
circumvented.

The second method seems to be intrinsically more
sccurate. Only one length measurement 1s required, the
diameter measurement being replaced by another frequency
determination. Thils method requires, however, power sources

for two different frequencies and a secondary frequency



standard variable over-a large frequency range. Furthermore,
the cavity must be machlned to very clcose tolerances. The
end plates must be optically flat and accurately parallel.
An elaborate and expensive setup 1s necessary to determine
the exact distance between end plates. The ultimate limit
of this method will probably be set by the accuracy with
which corrections to the resonance frequency can be
determined, especially the correction due to coupling holes.
The third method certainly surpasses the other two in
simplicity. No extreme accuracy in the construction of the
cavity is necessary because the resonance frequency is com-
paratively insensitive to slight deformations or imperfections
in the cavity walls provided that the cavity volume is kept
constant. A frequehcy standard the frequency of which 1s
varliable over a small fraction of a per cent only is
required. No elaborate setup for measurement of linear
dimensions is necessary and the expendlture of time and
money 1is kept within reason. The ultimate accuracy of this
method 1s limited by the accuracy with which the internal
cavity volume can be determined. With sufficlent care 1t
should be possible to measure this volume to perhaps 1 part
in 50,000. The velocity of electromagnetic waves could then
be determined to an accuracy of about 1 part in 1850,000.
This 1s approximately the probable error in the presently
accepted value for the velocity of light and better than

the probable error in any single determination made so far.
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To obtain the same accufacy with the first two methods,
linear dimensions have to be determined to 1 part in
150,000,

To see whether it is possible to get at least the
same accuracy Iin the determination of the resonance frequency,
1t 1s first necessary to analyse the effect of the coupling
holes, since they cause by far the largest shift in the
ldeal resonance frequency. If 1t 1s assumed that this
shift can be calculated or measured to within a few percent
only, then the coupling holes must be kept small enough
so that they do not shift the frequency by more than 1
or 2 parts in 10,000, Thls places a serious limitation
on the power transmission through the cavity. It was found
experimentally, however, that with the avallable microwave
power sources sufflcient power could be transmitted through
the cavity to make good detection possible.

For the above reasons, the last method was adopted.
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ITI. Theory of Proposed Method

In terms of the cavity volume V and the length-to=-

diameter ratio ¢, the cavity dimensions can be written in

the form
D=VZs (3.1)
3/[4ve*
L=¢P=V—= (3.2)

Substituting these expressions into equation (2.1) and
solving for ¢, one obtalns
\/;"z; }/— (303)
_.—— m
c %ﬁ(—ﬁ

This result shows, as can of course be expected, that to
obtain a glven accuracy for the velocity c, the resonance
frequency must be known to the same accuracy, but the
volume need be known to only one third of this accuracy.
It 1s of greater interest, however, to investlgate the
dependence on ¢, Partlal differentiatlion with respect to ¢
ylelds:

7..

9c B (4m%7% a(an
- Y2
2gn f]

The fractional error in c due to a given fractlonal srror

in the measured value ofg is then

4c _ o dc sp _ 2 €o—p Ap (3e4)
£ e 9'0 e 3 Ff'-fz‘o" e
where
%~ 5, (345)

This error can be made to vanish by choosing the length-
to-dlameter ratlo equal to ¢, » The physical meaning of this

is, of course, that for this particular cavity shape the
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resonance frequency is only a function of the cavity
volume and not of the ratio of length to dlameter. For

such a cavity equation (3.3) reduces %o

16TV %
c=~g.( (3.6)

> .
P Ton

The above ratio is not too criticals If an error in ¢

is made when constructing the cavity such that the true
value differs from the 1ldeal value p, by an amount do ,

then by equation (3.4) the fractional error in ¢ will be

ac _ 2 pr=(pt9p) sp
3 3 2(p+dp)rp> o

Neglecting 4: compared to p 1in"the denominator and dropping
the term (o{"o)2 in the numerator, one obtains

i ~§—(fr£’—)(%ﬁ)‘ (347)
The relative error in c¢ is less than half the product of
the relative errors in ¢ due to construction and due to
measurement, Since the cavity can certainly be built to
a tolerance better than 1 part In 1,000 and its dimensions
can be measured to at least that accuracy, the above error
i1s entirely negligible., If 1t 1s found ‘that the actual p
differs from the 1ldeal value by Ap then, from (3.7),
equation (3,6) must be multiplied by a correction factor

I~ %)

For an accuracy of 1 part In 150,000 this correction

may be neglected for values of %§<1/250.
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By means of (3.,5) and (3.6) and the relation c=Xf,

equations (3,1) and (3.2) can be re=-written in the form

p=F 2. (3.9)

These expressions give the cavity dimensions in terms
of the resonant wave length subject to condition (3.5).

For the TEp3) mode, n=p=1 and rgy= 3.8317060,

Hence:
6= VEW;‘ = 045797525 (3.10)
= B A= 0.8660254 A (3.11)
D= 7‘;- = 1,4937840 A (3.12)
¢ = 0,8701640 F YV (3.13)

From (3.8) and (3.9) i1t is seen that the cavity
dimensions will depend on the choice of mode and the
resonance wave length, The selectlon of the operating
wave length 1s mainly governed by the avallable microwave
sources, but the size of the cavity volume also plays
an important role.

Since the cavity has to be copper plated or silver
plated on the inslide to obtain a large Q value, the only
feasible method for determining the cavity volume appears
to be the weilghlng of the amount of distilled water that
can be held by the cavity. Mercury may lead to better
accuracy because of 1ts larger density but it would attack
copper or silver walls. Assuming that the welght of water
f1lling the cavity can be determined to 1 milligram, a

cavity volume of at least 50 cuble centimeters must be
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used to obtain an accuracy of 1 part in 50,000, From
(3.8) and (3.9)

Vv = T = 25 p 20
For the lowest order TE mode (TEQpyj)

V= r52r°

Because of the above requirements a wave length of at
least 3.2 centimeters should be used. The use of 10 -centimeter
waves was not feasible as thls would requlre a minimum
volume of about 1500 cubic centimeters, which could not

be megsured accurately on availlable precision balancese.
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IVe. Apparatus and Measuring Technique

l. Frequency Measuring Apparatus

The method of measuring the resonance frequency was
similar to that described by Gaffney (17). A frequency-
modulated microwave generator supplies power to the cavity
(see Fige 1). The power transmitted through the cavity
is detected by a silicon crystal, amplified, and fed to
the vertical-deflection plates of a cathode-ray oscilloscopes.
The resonance curve of the cavity 1s thereby displayed on
the screen of the oscllloscope. The microwave generator
also serfes as the local osclllator in a superheterodyne
recelver, It 1s beaten agalnst a harmonic of a standard
guartz crystal osclllator iIn a microwave mixer, The mixer
output ls fed to an Intermediate-frequency receiver which
passes signals only when the local oscillator frequency
differs from the standard frequency by the Intermediate
frequencye. The two slde bands produced in this manner
are detected and fed to the intensliflier grid of the oscillo-
scope where they appear as two bright (or dark) dots
separated by twice the intermediate frequency. The dots
are superimposed on the resonance curve of the cavity,

The distance between them can be adjusted by varying the
intermediate frequency. By slightly changing the crystal
oscillator frequency, thelr position relative to the reson-
ance peak can also be varied to some extent. The resonance

frequency of the cavity is exactly equal to a multiple
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of the crystal frequency when the dots are on a horizontal
line on opposite sides of the peak. This frequency comparison
is particularly sensltive when the dots are placed at the
half=power points on the steepest portions of the resonance
curve. A precision of about *1/100 Q' is possible in this
manner. In this case the loaded cavity @ can also be deter-
mined to within about 5 per cent from the bandwidth as

read directly from the frequency dial of the intermediate~
frequency receiver. This assumes, of course, that the
detector crystal and the frequency dlal on the receiver

are properly calibrated.

The secondary frequency standard consisted of a
S-megacycle crystal osclllator and a chain of frequency
multipliers. A4 nominal base fregquency of 5 megacycles per
second was chosen to simplify comparison with standard
frequency broadcasts from radio station WWV at Beltsvillg Md.,
near Washington, D.C. (18). The quartz crystal was enclosed
in a heat-insulated box and its temperature could be therm-
ostatlcally controlled. A condenser in parallel with the
crystal made slight adjustments in the crystal frequency
possible, Conventional class=C triplers and one doubler
were used to bring the frequency up to 270 megacycles,

The final stage consisted of a type 832A beam power amplifier
operating in pushepull. It was driven at 90 megacycles |

from two 6C4 miniature triodes. The output tank clrcult

was constructed of F-inch copper tubing and tuned to 270

megacycles by means of a shorting bar. & power output of
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approximately 2 watts was available,

This power was used to drive a type 2K47 Sperry
klystron with the aild of a small plck-up loop and a 50-ohm
coaxlal cable, The 2K47 klystron 1ls a velocity modulation
frequency multiplier (19). It requlres an input power of
from 1 to 4 watts at frequencies between 250 to 280 megacycles.,
The output cavity can be tuned to the ninth, tenth, eleventh,
or twelfth harmonlic of the input frequency. The 270-mega-
cycle input frequency was selected to obtain optimum power
output. For the same reason the output cavity was btuned
to the eleventh harmonic of the input frequency. Thils
gave about 100 milliwatts output power at a nominal frequehcy
of 2970 megacycles. The tuning was checked by a 1lO0=-centimeter
coaxlal wavemeter.

To reach the 3=centimeter region, a further tripling
of the frequency was required. This was achleved by a
1N21 silicon crystal mounted across a standard 3-centimeter
wave guldg. Because of 1ts non-linear chapracteristics, the
crystal will pass a current rich In harmonics. The cut-off
property of the guilde does not permit propagation of the
fundamental and second-harmonic frequencies so that mainly
third-harmonic (8910-megacycle) power is transmitted,
Provislons were made to measure the d-c¢ crystal current. -
Currents of 1 to 2 milliamperes were found to be satisfactory
even though the conversion loss from fundamental to third-

harmonic power 1is quite large.
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A type R2K39 reflex klystron was used for the local
osclllator, It was tuned to about 8910 megacycles and
frequency modulated by modulating the repeller voltage
with the 60=-cycle saw=tooth sweep from the oscilloscope.
The use of the 60-cycle sweep has the advantage that
small stray plck-up voltages from the vertical-deflection
amplifier are not too objectionable. Furthermore, the
band width requirements for the intermediate=frequency
recelver necessitate a low sweep frequency as wlll be
shown later., The output from the local oscillator was
about 200 milliwatts. The frequency deviation could be
varlied from zero to several megacycles,

The local osclllator signal and the standard frequency
signal were combined in a magic T. The two signals were
fed into the H=-arm and E-arm, respectively, to avoid
coupling between the two oscillators and frequency pulling
of the standard. Converslon to intermediate frequency took
place in a 1N23 crystal mixer. The crystal was matched
to the guide by a shorting plunger and two tuning screws,
An attenuator was placed between the magic T. and the
mixer to avold excessive crystal currents. Arrangements
were made to use the mixer crystal as a detector for
preliminary adjustments of the equipment and tuning of
‘the local oscillator. For the same purpose a 3=centimeter
absorption wavemeter was attached to a sectlion of the guide.

The test cavity was placed between two attenuators

to prevent frequency pulling by external reactance. The
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attenuator between magic T and cavity also served to
provide a matched load to the maglic T. As will be shown
later, almost all the power incident on the cavity from
the wave guide 1s reflected., Without the attenuator the
magic T would thereby be seriously unbalanced and its
primary purpose would be defeated,

The power transmitted through the cavity was detected
by a sensitive 1N23B crystal. The detected signal was fed
to the vertical-deflection amplifier through a shielded cable,
To minimize 60-cycle pick-up the amplifier was operated
entirely on direct current from batterles and the input
stages were shielded, The flrst tube was shock-mounted
to reduce microphonics, Particular attention also had to
be given to the grounding.system. It was found necessary
to have a common ground for all equlipment at the vertical-
deflection amplifier and to move all power suppllies as
far as possible.

To get a falthful reproduction of the resonance
curve of the cavity, sufficient band width must be allowed
for in the amplifier design. For a 60-cycle sweep this is
no problem as any good audio amplifier will do. The test
cavity had a band width at resonance of about 300 kilocycles.
The local osclllator frequency should sweep through a
band of at least 2 or 3 megacycles to get the complete
resonance curve on to the oscilloscope screen,The slignal
changes most rapidly near the half-power pointse. The

amplifier should be able to follow these changes in a time
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interval corresponding to about 1/40 of the cavity band
width if this band width is to be reproduced to within

5 per cent, For a 60-cycle sweep this time interval will
be about 1/24,000 second and therefore, the amplifier
should be designed to have a flat response from about

30 to 12,000 cycles,.

The band width requirements on the intermediate-
frequency receiver are not as easlly met. The high accuracy
in the frequency measurement can by achieved only if the
intermediate~ frequency dots are quite sharp. This requires
that the width of the intensifier plps be very small compared
to the cavity band width. Hence, the receiver must pass
a band of 150 kilocycles or more. Since this 1s of the
same order of magnitude as the intermediate frequency
some compromise has to be made.

The intermediaste-frequency receiver used was an
adaptation of an ordinary communications receilver operating
between 15 and 600 kilocycles. Only the first radio-frequency
stage w_as used. This was followed by two further r-f
stages, a conventlonal dlode detector, and a wide-band
audio stage. Satlisfactory operation was obtained for inter-
medlate frequencies above 200 kilocycles. Relow that frequency
the intensifier pips broadened and eventually overlapped.

Radio station WWV was recelved at 5 megacycles on
a short-wave receiver. The antenna also picked up radiastion
from the crystal oscillator. The resulting audlo beat was
compared with the output of a calibrated audio osclllator

on a second cathode=ray oscllloscopes



2l

Cavity and crystal detector were placed under a
bell jar so the resonance frequency could be measured in
a vacuum. The Input wave gulde entered the bell jar through
a rubber stopper sealed with a beeswax-rosin mixture,
The gulde 1ltself was closed off with a thin polystyrene

plete and sealed in a similar manner.

2. The Cavity

A preliminary cavity was made of brass and
siiver plated on the inside., Some advantages could be
gained by using steel for the cavity material: the co-
efficient of thermal expansion is less (about 11 x 10™¢
compared to 19 x 10"'6 per degree centigrade), the strength
and rigidity is higher, the welght 1s somewhat less, and
it can be machined to closer tolerances by grinding.

No particulsr advantage would arise from the use of invar steel,
in spite of 1lts low coefficlent of expansion. It is difficult
to machine and samples free of internal defects due to

casting are not easily obtained. Furthermore, unless the
experiment 1s carried out at or near 4 degrees centigrade,

the large coefficlent of expansion of water requires an

exact knowledge of the temperature anyway. The correction

due to thermal expansion can then be calculated with suf-
ficlent accuracy even for a brass cavity.

The internal cavity dimensions were calculated to
make the actual resonance frequency in a vacuum equal to

the frequency of the secondary standard. By comparison
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with standard signals from WWV, the S-megacycle quartz
crystal was found to be about 1400 cycles below its nominal
frequency., This amounts to 2.5 megacycles at the 3=-centimeter
level., The cavity, therefore, had to be designed for
8907.5 megacycles., Adding 1.15 megacycles for the frequency
shift due to the coupling holes and 0.15 megacycles for
the effect of the finite conductivity of the walls
(see parts V and VI), one obtains a required ideal resonance
frequency of 8908.8 megacycles in vacua. Using the presently
accepted value of the velocity of light, the corresponding
wave length is 3.3650 centimeters. Hence, from (3.,11)
and (3.,12) the cavity dimensions should be:

D=5,0266 cm=1,2790 inches

L=2,9142 cm = 1,1473 inches
The actual mean cavity dimensions, as measured after
the plating, were

D=1,9793 inches
L=1.1464 inches
with maximum variations of 0.,0005 inches.
The main cavity body was constructed with comparatively

heavy flanges to make it as strong as possible (see Fig.2 to 4),
Short wave gulde sections were soldered on in such a
manner as to further increase the rigidity. This was
necessary because the wall thickness was only 1 millimeter
thick at the coupling holes. The hole diameters were
0.140 inches. The holes were tapered with a half-angle

of 41 degrees to approach the "infinitely thin sheet case"
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for which rigorous solutions are svailable (see part V).
The cavlity was copper plated and then silver plated

to increase the Q. The plating was probably not more than

0.0002 inches thick but this is sufficient since the

skin depth for silver at 8910 megacycles 1s only 2.7 x 10™°

inches. This was confirmed by the measurements of Q values

before and after silvering (see part VI).

3. Volume Measuring Apparatus

A number of methods for measuring the cavity volume
were tried. It was found that it is not too easy to fill the
cavity completely with distilled water. Because of the
comparatively large welght of the cavity itself (about 500 grams),
it was not possible to determine the internal volume by
welghing the cavity empty and filled with water. The cavity
had to be filled from a light container which could be
welghed, before and after, on avallable chemical balances,

The method finally adopted is illustrated on Figs. 5
to 7. A capillary glass tube had one end drawn out into
a fine tip. The other end was ground flat and waxed into a
brass sleeve which, in turn, was bolted to one of the wave
gulde flanges of the cavity. A plug bolted to the second
wave gulde flange served to close the other coupling iris.

A side arm was Jjoined to the glass capillary wlth a three-
way stop cock at the Jjunction. The side arm could be connected
to an aspirator or a vacuum pumpe.

With the three-way cock in position 1 (see Fig.7),

distilled water was drawn up from a flask with the aid of
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an aspirator. When the water completely filled the bottom«
part of the capillary up to the cock, the latter was turned
to position 2. The aspirator then suctlioned off the excess
water, Finally, a vacuum pump was connected to the side
arm through a drying tube and the cavity and adjoining
tubing were evacuated. The water flask was tﬁen replaced
by another bottle contalning distilled water whlch had
been carefully welghed, When the cock was turned to position 3,
water was forced up into the cavity by the outside atmospheric
pressure. The bottle was then welghed again and the reduction
in weight was determined. To correct for the volume in the
passages of the stop cock and the short section of tubing
between cock and cavity, the above procedure was repeated
without the cavity, but with the end of the capillary
sealed off, |

Although the three-way cock was properly greased, 1t
was found that a thin film of water would form around the
passages when the cock was turned from position 2 to
position 3. This was probably due to slight wear in the
center portion of the cock. The vacuum pump was therefore
still connected to the weighing bottle through a fine leak
and results of the volume measurement were not too consistent
and could not be relied upon. This difficulty was overcome
by placing another stop cock in the side arm of the capillary.
This cock was closed before turning the first cock to
position 3. Water was then also forced into the short connecting
capillary between the cocks. This added a little to the volume

but considerably improved the consistency of the results.
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Ve Analysils of the Cavity Excitation Problem

l. BExpansion in Normal Modes.

The steady-state fields in a charge-free cavity
of volume V, enclosed by a perfectly conducting surface S,
can be derived from a single vector potential é which
has zero divergence and satisfles the wave equation
Vx(VxA) = g*A = 0 (5.,1)
where
i &
The boundary conditions restrict the allowable values for 3
to a dlscrete set of elgennumbers, and the corresponding
elgenfunctions of é are the normal modes of oscillatlon
of the cavity. The latter satisfy the orthogonality relations
j_/ia.ﬁv_b dv = 0 (unless a=b) (5.2)
where a and b degignate any two normal modes., Any fileld A
inslide the cavity can be expanded in terms of these ortho=-
gonal vector functions provided that A is normal to the
cavity boundary, or normal to a portion of this boundary
and tangential to the rest (20).
Following Condon (21), it is convenient to write
A=Z A =3 pAL (543)
where ﬁ; represents the complex amplitude of the ath
mode and the A, are normelized potentials such that
[ac.asav = &V (5.4)
v
It 1s evident that the electric and magnetic fields can
be expanded in a similar fashion. The amplitude coefficlents

will be ildentical with those for the vector potential
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1f we define normalized fields by the relations

_é__:o= —-_/w_d: (505)
B2 = VxAs (5.6)

These fields then satisfy the orthogonality relations

S B2 ESdv = W2V (5.7)

y:

fy_:-é;’ dv = BV (5.8)
For the TEpyjy mode In a circular cylindrical cavity of
radius R (diameter D) and length I the normalized

potential and the normalized fields can be shown to be

0 J(kar) .. Tz
4 = o VE Juan ST St
W 9 J(ko" rz
£ z_erjwyz.j;?z%) ain — (5.10)
.z = '
B, = —m{gr%\//(ko,r)cos% + a, kp/‘{)(kw,)‘S/nzL:Z' (5.11)

where Koy 1s glven by
L R) =0 [or 4 (kaR)=0]
and hence

kOlR =rp1 = 3.8317060

2, Effect of Finite Conductivity of Cavity Walls

In an actual metal cavity the walls are not
perfectly conducting. A small component of electrlc fleld
wlll exlst tangential to the surface. If the cavity is
excited through an iris a tangentlal electric fileld will
also be present across the hole to satisfy boundary conditions
there., Strictly speaking, such a field can no longer be
expanded in terms of orthogonal normal modes, but if we
are only interested in relatlions close to a particular
resonance mode this can be done approximately, One can

~assume that the cavity field is not changed, to a first
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approximetion, from that in an 1ldeal cavity. The tangential
electric fleld over the metallic boundary can then be
estimated using skin effect formulas and the unperturbed
tangential magnetic fleld at the surface., Similarly, one
can obtain the field distrlbutions over the coupling irises
in terms of the unperturbed exciting fields either by
static methods using Smythe's double current sheets or
by the solution of a particular integral equation as pointed
out by Bethe. For high Q cavities the perturbed field
solutions obtained in this manner will be almost rigorous,

A suiltable expression for the amplitude coefficlents
in (5.3) can be obtained by applying Green's vector
identity to the vectors A and A° . Thus

/V[ﬁ:. Vx(7xA) —E.Vx(Vxﬁgydv=@xl7xéz ~AIxVxA]ndS (5,12)
Since both_é and A’ satisfy the wave equation (5.1) and
since the normalized vector potential A has no component

tangential to the surface S, this reduces to

(P-p5) [ A-82de = [AxBiinds = - [2xE B3 a5
or by (5.3) and (5.4) to
2 2y ¥ | ¥ o
(P =pa) pa = = v |22 E Ba 5 (5413)

The surface Integral on the right can be split into three
Iintegrals over portions of the surface:
(a) the metallic portion excluding the irises (SO),
(b) the input iris (Sl),
(¢) the output iris (82)°
Only the first part will be dealt with here and the irises
will be.treated in later sections.

In evaluating the integral over the metallic portion
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of the boundary very little error is introduced by extending
the Integral over the total cavity surface dlsregarding

the irises entirely. Provided that the skin depth J is

small compared to the radius of curvature of the cavity
walls one ohtalns from the skin effect formulas (22)

the following relation between linear current denslty and

tangential electric field:

Since n in equations (5.12) and (5.13) is defined as the

unit outward normal to the surface S one gets

pef = L pd - LA = S A
Close to the resonance frequency of a given mode only one
term In the above summation will be of importance and

further off resonance all terms will be negllglble. Hence

only one term need be retained and

¥ o I ¥ o
nxg & L pHa o0 S. (5.14)
Therefore
i L e e o Aok X TR mo e o I g8 R
jwvsﬁxé'_@ads o‘o"w/‘uVFaé_a Za Q, ﬁa/ba
Cl

where Q, 1s the unloaded cavity Q for the a th mode as

usually defined:

E’,_. é_:._;ds _ 'é‘:-aaféna;s (5.15)
a a d, :'_:0/ @ ps az
@ odp BBl Cupadf
Equation (5.13) now becomes
(pP=pr + SLpr) o = = Sy DXEBa o (5418)

55

It is seen that resonance occurs now when
PP TG e = O
or
B 2h(! = 35,
provided that Q 1s large enough. In that case,Q is a
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measure of the band width at resonance. The fractional
shift in resonance frequency due to the finite conductivity

of the walls is thus

A A
Fiiy el (5417)
For the TEOll mode and the adopted cavity dimensions
_ 3oy 73, 5,18
Q, R (i) - % ( )

5. Effect of Small Deformations

Although it has been shown in a previous section
that no extreme tolerances need be maintained for the
length-todliameter- ratio of the cavity, it is still necessary
to investigate the effect of lmperfections in the cavity
shape on the resonance frequency. Intuitively, we may
expect this effect to be negligible, because when measuring
the cavity volume we actually determine a mean linear
dimension and effects from positive and negative deviations
from the ideal shape will tend to cancel sach other,

Bernler and others have calculated the shift in
resonance frequency of a cavity due to small deformations
by perturbation methods and from general thermodynamic
principles(23). Their result can be obtained directly
from equation (5.13). Since small deformations, finite
conductivity of boundaries, and coupling holes affect the
resonance frequency only slightly, 1t is permissible to
calculate the three effects separately. In the following we
will therefore disregard the coupling holes and assume

perfectly conducting walls,
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Iet us assume that the electric and magnetic fields
are known in the cavity volume bounded by the surface S (Fig.3).
If the boundary is slightly deformed to a neighboring
surface Sl, the flelds will be changed somewhat and the

resonance frequency may be expected to shift.

Flg.8. Deformation of cavity.

The electric fleld is now everywhere normal to the surface 3',
but not necessarily normal to S. The surface integral in
(5.13) will therefore, in general, be different from zero.
It can be changed into a more convé&ent form by applying
Gauss's theorem to the vector E,x B2 in the volume
increment AV between the surfaces § and §':

{VV.(gx_@j)dv =—ééx§:.g d5 +4§'x_z_3;;.g J5
The negative sign in the first surface integral must be
chosen because n was defined to be the outward-pointing
normal to the cavity volume V and hence represents the
inward-pointing normal to AV which is taken to be positive
for a volume increase. The second surface integral above
vanishes because, by hypothesis, E is normal to the surface 3 .
Hence, the right-hand side of (5.13) becomes

_ﬁégxé,p;: 75 =+J.-("J—Vé_@;x§".g ds = j;TV‘/A‘an(éYXg:) dv

Using the vector ldentity
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V.(ExBL)= BL.VxE — E-VxB]
and Maxwell's curl equatlons, the above expression reduces to

_,&V/ (7&4..1_;.13: —+ eé-é;)a’lf
Ay

Near resonance one may write é==§a§g, é==§aég, and notlng

the 90° phase difference between ;g and §g from (5.5) and

(5.6) one obtains finally
gt [EE) - D) ] av
1t v[,,[/‘
or, making use of (5.8), ;
oo [ [ B SR
_&ﬁaiLi_T_Tr_*ﬁ.
‘/V'z/—b/Bal B/V
When this expression is substituted into equation (5.13) it

1s seen to give rise to a frequency shift

sf_ 4p 4‘/[#5"—-%51]61\/

e v " (5.19)
2. VA 2
f 3 /V 27‘ B dv

Subscripts have been dropped as irrelevant.

An examination of equation (5.19) shows that the
fractional change In resonance frequency is proportional
to the fractlonal changes in the average electric and
magnetic energies stored in the cavity volume. The resonance
frequency may be increased or decreased by the same
deformation of the boundary surface depending on whether the
deformation occurs in a region of high electric or high
magnetic field.

It is interesting to note that (5.19) could also
have been obtained from a lumped-circuit analogy. For a

resonant IL-C clcuilt

75:27rV1_C
and hence Ac
4 AL
=g [T+
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The stored electric and magnetic energies are, respectively,

&
Uy = —é—LI"
and hence
1 [ BY Alg
O ok [(ELE 4 25D (5.20)

The ambigulty in sign arises because of the two expressions
for Up. Evidently, we must use the second expression for Ugp
("constant-current analogy") in our problem to obtain the
lower sign in (5.20). Other problems may require the use
of the first expression for Ugp ("constant-voltage analogy")
and the upper sign in (5.20). This will be the case, for
instance, 1f the cavity volume 1s not changed but a small
amount of dielectric is introduced into the cavity.
Equation (5.19) must now be applied to the following
imperfections In the shape of a circular cylindrical cavity:
(a) ellipticity in the cavity body,
(b) tilted end plates, and
(¢} random dents in the cavity walls.
The first two points can be dealt with very briefly.
Any deformation of the cross-section of the cavity over
its entire length can be represented by expressing the
equation of the cylindrical wall in terms of a Fourier series
r= R{I + 2(xy cosrp + o500 np)f (5.21)
Similarly, a tilt in the end plates can be wrltten as
z =L (I + xcosny) (5.22)
The «'s and f's are inflinltesimals and hence the above

deformations leave the volume of the cavity unchanged to
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a first approximatione

For the TEO11 mode in a cylindrical cavity no
electric field exists near the surface and the second
term in (5.19) will vanish. The first term of that equation
1s also equal to zero because the magnetic field is axially
symmetric and the net volume change is zero for both types
of deformation,

There remains to be analysed the question of random
dents. Because of the axial symmetry of the flelds it will
be sufficient to estimate the effect of clircular grooves
either in the end plates or the main cavity body. Such
grooves may actually occur as a result of the machining
process In the lathe. To get an upper 1limit for the frequency
shift to be expected we must place the grooves in reglons
of maximum magnetic field, 1.e. half-way between the end
plates on the cylindrical surface and at a distance Ry
from the axis on the end plates glven by Jl(k01R1)==O.58
(maximum value of Jl).

To keep the volume unchanged it is, of course,
necessary to recess the rest of the cavity surface as shown
in Fig. 9. If the width of the grooves is b and their
depth is h, the recesses for the cylindrical surface

and the end surfaces are, respectively,

r_ _b ~ b (5.23)
= = h s
and

ot ATRS L om 2RB L (5.24)
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Equation (5.19) can now be evaluated for the two cases
using (5.8),(11),(23), and (24). For the groove In the
cylindrical wall one obtains for the residual frequency

shift approximately

hb (koY
2Lt — ﬂ(/‘(%) (5:25)

and for the grooves in the end plates

D IC = RUBEte

b

____‘;_El___

f

>

X

AXIs of cavrty
L

AX—/S o/-' cay/f)/

Fig. 9. Grooves in the cavity surface.

These expressions can be further simplified by using the
particular cavity dimenslions adopted previously. From
equations (34¢11) and (6 15) we have

() - (%)~ (24) - (5.27)

and
2 A \2
() ) =% (5.28)
Furthermore, Ry was chosen to make Jl(kOlR1)==O.58)and
Jo(k01R)==-O.4O because Jl(k01R)==O. Hence (5.25) and

(5.26) become, respectively,
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2rRb A

i}ﬁg——g_ i (5.29)
R, bh
é}{-‘%——éz—f}”“ (5.30)

When substltuting numerical values Into these
equations, 1t will be seen that grooves and dents may
have considerable effect on the resonance frequency (at
least, compared to the desired precision) unless construction
tolerances are kept to a few tenthousandths of an inch.
It must be noted, however, that the above derivatlion assumed
the worst possible case which is extremely unlikely.
In a well-machined cavity grooves will be more uniformly
distributed, and thé residual frequency shift will thereby

be substantially reduced.

4. Effect of Thin Coupling Irises

Both input and output iris will shift the resonance
frequency and cause a lowering of the effective cavity Q
and hence, and increase in the bandwidth at resonance (24,25).
These effects can agaln be estimated from equation (5.13)
1f reasonable assumptions can be made as to the tangential
electric field within the irises. This 1s possible for
irises small compared to the wavelength by using statle
field solutions for a hole in an infinitey plane sheet
and Smythe's double current sheet method (26) or by using
a method introduced by Bethe (27). The former method will
be used here,

Let us first consider the output iris and assume
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that, to a first approximation, the iris can be represented
by a circular hole of radius ¢ In a very thin,plane metal
sheet (Fige. 10)., We wish to find the perturbation of the
fleld near the hole when the sheet forms the boundary

of a uniform magnetic field of induction BO parallel

to the sheet. Such a field must be derivable from a scalar
magnetostatic potential and is best expressed in terms

of oblate spheroidal harmonics (28).

FigelO. Circular iris in thin sheet.

W.R. Smythe has shown that a sultable potentlal is
a2 = Be[JPUS) + £ QLGN Pi(4) cosyp |
-—px[1 - F(wtTs - )] (5.31)
where x ls the rectangular coordinate of the point
(¢,%,¢) measured in the direction of B, from the
center of the hole gilven by
x = peosp = c(1=§) (1 +5)  cos p (582)

Henice the first term in (5.31) represents a uniform field BO
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on both sides of the sheet, while the second term has
the effect of wiping out the field below the sheet for
large negative values of § but only slightly affects the
flield above the sheet,
The normal B in the hole is

. T %—?/ = w,ifigtyz (5.33)
and from a conslderation of flux linkages in the double

current sheet the tangential electric fleld is

= . 2w B 2
b7=—_/w/Bz D/X::.-/--—L—Ls—_-—e-(d—F)I/‘—
or
< ] ¥ z v
nx£E = A2 B (er—p*)™ (5434)

We shall assume that energy emitted through the
output iris into the waveguide beyond is completely absorbed
and not reflected back into the cavity. This will certainly
be the case if the detector crystal is reasonably well
matched into the gulde and if an attenuator 1s placed
between cavity and crystal. Then we may take the unperturbed
cavity field at the hole for the exciting field B N
Since the hole i1s small this may be assumed to be constant
in the vicinity of the iris and equal to the unperturbed
field at the center of the hole:

B, = B,(o) = puBilo)
The right side of (5.13) then becomes (for the output
| iris only) .
L 2200 / pxE oS = ;ZVPZ,[B:(o)]ZW (=p)ap = £ Lfpi]
From (5.11l) and (27)

Bl = 24 = Lp0 (5.35)
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If this 1is put into the above expression one obtains
B & F A
77/°a/-l’a

When substituted in equation (5.13) this corresponds

to a frequency shift

A ) 8 e aM
7_-“6:_/?':_7‘/" 3 Vv (5.56)
where
M:%OS (5437)

igs Bethe's magnetic polarizabllity of the iris.

We must find the energy radilated into the output
gulde to find the effect of the iris on the cavity Q.
This can be done by expanding the transverse electric fleld
in the gulde in a series of orthogonal normal modes (29)
and matching to the assumed field in the plane of the
iris (see Fig. 1l):

&y, = 22 8,0 (—pV*  for p<c

= 0 for f)>c (5.38)

Fig. 1ll. Coupling to output wave guids.
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Since only the TElO mode 1ls propagated in the guide,
it 1s sufficient to calculate the amplitude for this

mode. The field expressions for this mode at z=0 are

£, = ..L Cz s/in %{ £ C‘;_-.E—-/o (5°39)
w R A v A v
My = £ E— Cz S/n—”a-—x = Czﬂ,o, (5.40)

Making use of the orthognallty properties of the

transverse fleld components one obtains

[ el ety to B i

C, = U _Jds
2 a r4 P
,{_/; £p-£0 a’xa/)/ Eab
_ &2 B  2jcol 15g(02 .
= S o Bale e« (5.41)

The power transmitted into the output wave guide
through the iris can be calculated from (5.39),(40) and (41):

a b A 2 2
%= 5[ [ G tharay = TLT [ZET, (5.42)

It 1s seen to be proportional to the sixth power of the

irls radius, The power loss in the cavity walls due to

2 Ba(d7*
finlte conductlivity 1s % = ZrRD2(/~+ 2,0,)[7@] (5.43)
and hence the ratio
7! ‘327}’/‘7:L 7. / .
% T esin, D s 142 (5.44)

With numerical values substituted (see part VI) this

ratio becomes ,042, Hence the bandwidth at resonance

is increased 4.2% due to the output window , and the

cavity Q 1s decreased by approximately the sgme amount.
The ratio of the magnetic field in the principal

wave guide mode to the undisturbed cavity field at the

iris is from (5.,39) and (40)

4rM
ab A \y

When substituting numerical values this becomes ,008.
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Hence the'field in the principal wave guide mode just
outside the iris is less than 1% of the unperturbed cavity
field just inside the window. This justifies the original
agsumption that the exciting fileld outside the cavity

may be neglected.

Similar relations may be obtained for the input
iris., Here, of course, we must consider the field incildent
from the input wave gulde. It 1s not negligible with respect
to the cavity field and represents the forcing function
in equation (5.13) in terms of which the amplitude of
oscillation in the cavity can be calculated. Analogous
to equations (5.39) and (5.40), we take the incildent

wave gulde fields to be

£=CE, (5645)
H = L, H, (5.46)

To a flrst approximation we may assume that almost the
entire inclident energy 1s reflected at the end of the
guide containing the iris. It will be shown later in this
section that only a minute fraction of the incident power
is transmitted through the cavity. The effective exciting
field on the inside of the iris will therefore be

B, = B,(0) - 2B,(0) = pp, B(0) — 23,(o) (5.47)
The first term is identical with the exciting field at
the output iris and will lead to an identlcal frequency
shift and to the same contributlon to the loaded band width
of the cavity. The second term contributes to the surface

M X P
integral in (5.13) an amount: —'5%7 B,(0) By(9) .
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When account is taken of all the perturbations
discussed in this and previous sectlions, the amplitude

of oscillation in the cavity will be given by

(8% ' = J42) u = = - Bo@) Bito) (5.48)
where the actual resonance frequency ls
’ 4 M
P =l =5k~ 54 (5,49)
and the loaded Q 1is given by
7,2.
Z " wra-alrrw) (5.50)

Here 1/Qi is the additional band width contributed by each
of the two irises.

At resonance

2M o /
(Pa)res = a2y Dal® B @) Q

and the cavity field becomes, making use of (5.35) and (46),

B, (o) = 38— &5_&5’(0). {5:81)
Numerical substitutlon shows that the cavity field

at the iris is about ten times as large as the incident

field. The principal fleld In the oqtput wave gulde was

shown to be only 0.8% of the unperturbed cavity field at the

iris. It 1s therefore about 8% of the incident fleld in the

input guide. Approximately 0.64% of the incident power is -

transmitted through the cavity and hence from (5.44) about

16% of the incident power enters the cavity at the input

iris, 84% being reflected there. The reflected fleld is

thus 92% of the incident field and only 4% error was introduced

in (5.47) by assuming the reflected field equal to the

incldent field.
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5. Effect of Thick Coupling Irises

The representation of the irises by holes in very
thin sheets is, of course, only a very rough approximation,
The actual coupling holes were about one millimeter deep
and counterbored with a half-angle of 41° (see Fig., 12).
Since the experimentally determined frequency shift due
to these coupling holes (see part VI) turned out to be
only about two-thirds that predicted from the thin-sheet
formulas, this case had to be investigajed more thoroughly.

This can be done by a method suggested by W.R. Smythe (30).

Fige. 12. Thick coupling iris.

The potential of (5.31) may be generalized to

B e[ jP(¢) P(E) +de4,, Ay (jc)Pa(s)] cos y (5.52)
= —B,x + B,ccosyp 2 Ay Q:(/'S‘)Pnl@)

r odd

/;,_Q

The above expression represents. a possible solution of
Iaplace's equation in oblate spheroldal coordinates.

The choice of odd values of n is dictated by the fact that
the Qi(jg) with odd n go to infinity as § goes to -,

buﬁ vanish as § goes to +oo , Just the opposite is the

case for even subscripté n. The above solution automatically

makes A=A’ a line of force and A-B-B’ may be made a line
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of force by proper choice of coefficients. This can be
accomplished by choosing a number of points along the
boundary of the hole. The condition that the same line
of force passes through each of the points is given by
a linear algebraic equation. The set of equations obtalned
in thils manner can be solved for the coefficients An.

Let §°,5, be the coordinates of a point P on the
boundary of the hole (see Fig. 12). It 1s easily seen
that the condition that P lles on the surface of the same
tube of force as A-A' 1s the vanishing of the total normal
flux through the surface ¢{=5. between §=0 and ¢=5,,
and between p=-7 and y¢=+7, that is

wE
[gz/o. §°[TIZ g%gg)h’hs];odgdf =3,

Since for oblate spheroidal coordinates (28)

ho=e (25 §:)h (5.53)
hem e(555)" (5.54)
hy = c (146" —8)" (5455)

the above condition reduces to
or

X s + Z 4n 3 0306)f ig)ag 0 (5.56)
We can solve for a finite number of coefficients An 4 i
we wrlte this equation for an equal number of points on
the boundary A-B. The result will, of course, flt the
boundary only approximately over a finlte region, but
the approximation can be made extremely good by choosing
points close to the edge A. The reason for thls 1s, that

we are only interested in the fields in the plane of the
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hole ( ¢=0), and that the shape of the boundary at larger
distances from the hole is ofj&mportance because the filelds
drop off very rapidly for negative values of &,

The result of a calculation for a circular hole
tapered at 45° using four polnts (see Appendix B), is
given in the followlng table. For comparison, the tabls
also contains the result previously quoted for a cifcular
hole in a thin sheet (half-angle of cone 90°), and results
obtained by W.R. Smythe for a circular cylindrical hole

in a very thick plate (half-angle of cone 0°),

A, in 2¢ 2e 2e
i | T 7l<_‘1§— _ll*—ﬂ[__

Ay 0.318310 0.2369 0.118295

Az -0 -0.06042 -0.0256875

Ag 0 0.009305 0.000993431

Ar 0 -0.000741 -0.0000300924

A9 0 0.000000690751

With the coefficients in (5.52) known, we can proceed,
in a manner analogous %o that used in the previous sectlon,
to find the normal magnetic fleld and hence the tangential
electric field. Since the first term In (5.52) represents
a uniform magnetic field parallel to the plane of the hole,

it does not contribute anything to the required fields.
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Hence, inside the hole
8 -t 22| = ~AcwopZ MO RGR] (5.57)
and, since hpo=cg at ¢~ O‘
Ey=—jos B, o = jooB, Z [9;6? 9 )]§ o/ﬁWSfdx | (5.58)
From (5.32) and the definition of Pn(§) the last equation

reduces to
X ax

x
=/’6~BDHZM§~[%@,‘,O§)]§=O[§§Pn(§) E (5.59)
The magnetlc polarizabllity corresponding to (5.37) then
becomes
M= JwB/E),dS .
—Z A [a;@n(/q)L / /§d§d}" ”i)m (5.60)
It can be shown (see Appendix C) that the result of the
integrations is zero for all terms except the first one.
The first term is identical, except for the coefficlent,
with that previously worked out for the thin sheet case.
Hence, one flnally obtalns
M= %rc"’A,[g%af(jg)] »
or, since[é%Q%(j§2L=;= 2 (reference 31),
M=L2rA (5.61)
This is seen to reduce to (5.37) for Al——L as 1t should.
The frequency shift due to the irises will only depend on
the first coefficient in (5.52), because it is proportional
to the polarizabllity M.
A glance at the above table shows that the frequency
shifts for the three types of irilises will be approximately
in a 3 to 2 to 1 ratio. The shifts decrease with decreasing

cone angle. An intuitive consideration of the fleld
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penetration into the three irises, could, of course, be
used to anticipate such a result.

The relations for power transmission and loaded Q
could be revised in a similar manner. This problem is
somewhat complicated by the fact that the fields on the
wave gulde side of the thick irises must also be known.
Since exact expressions for the cavity transmission were not
required, and since the cavity loading due to the irises was

very small anyway, thls calculation was not carried out,
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VI. Experimental results

l. Preliminary experiments

Before actual measurements of the resonanceé
frequency and the volume of the cavity were undertaken,
a number of preliminary experiments were made to check
the callibration and performance of the apparatus and
to verify some of the relations derived previously. These
tests willl be discussed in the followlng order:
(a) Calibration of sudio oscillator and i-f receiver,
(b) Checks on performance of multiplier chain,
(c) Loading effects on secondary standard,.
(d) Checks on the i-f dots.
(e) Checks on the linearity of the frequency sweep.
(f) Shift of resonance frequency from air to vacuum,
(g) Cavity Q measurements,
(h) Frequency shift due to coupling irises.

(1) Resonance freguency from linear dimensions.

(a) The calibration of the audio oscillator was
checked by comparison with the 440-cycle signal from
WWV and with the 60-cycle line frequency. Frequency checks
were made in steps of 220 cycles up to 1320 cycles and
In steps of 30 cycles up to 300 cycles. The i=f receiver
was calibrated against an r-f signal generator in the
range from 150 to 600 kilocycles. 3pot checks were also
made using signals from two radlio statlons at the lower

end of the broadcast bande.
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(b) The proper functioning of the multiplier chain
was Investigated by measuring the frequency at all its
stages.For the lower levels, from 5 to 270 megacycles,

a sensitlve grid-dip meter was used. At the 2970-megacycle
level the wave length could be measured to 1 part in 5000
by means of a coaxial wavemeter. The final stage (8910
megacycles) was checked by a cavity-type wavemeter to about

the same accuracye

(¢c) The effect of loading on the crystal oscillator
was Investigated by de-tuning some of the higher frequency
stages, and by looking for changes in the audlo beat
between crystsl and WWV. No significant changes could be

observed.,

(d) A number of obvious tests were made to ascertain
that the i1-f dots on the oscilloscope were not spurious
images, but were actually caused by the heterodyne action
between secondary frequency standard and local oscillators
The intensity of the dots changed with variations in
elther the crystal oscillator or local osclllator power.
They disappeared, of course, when elther oscillator was
switched off. The distance between the dots was propor-
tional to the frequency setting on the i-f receiver.

This could be checked falrly accurately by direct measurement
on the oscilloscope screen. A rough verification of the
above was also possible by observing the change in dial

setting on the 3-centimeter wavemeter (see Fig. 1), when
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the "absorption pip" caused by the meter was moved from
one i-f dot to the other. The colncidence between the
absorption pip and one of the 1-f dots was indlicated by
a reduction in intensity of that dot.

By turning the tuning dial on the local oscillator,
the i-f dots could be brought to the edge of the region
of oscillation of the reflex klystron. In this manner,
the dots could be made to dlsappear one after the other,
as they crossed over into the zero-cutput region of the

klystron.

(e) As mentioned under (d) above, measurements of
i=f dot separation for various intermediate frequencles
showed that horizontal beam deflections on the oscilloscope
were nearly proportional to frequency increments. This
was true over a range of about 2 megacycles. The resonance
frequency of a cavity could theé}ore be measured over
a wider frequency range than would have been possible
by varying the crystal oscilllator frequency alone. It
was only necessary to note the position of the resonance
peak with respect to the two 1-f dots. With the intermedlate
frequency set at 500 kilocycles (1 megacycle dot separation),
and the 1-f dots about 1 inch apart on the screen, the
resonance peak could be easily located to within 1/20 inch.
This corresponds to an accuracy in the frequency determination
of better than 1 part in 150,000,

For cavity resonance frequencies differing from

the standard frequency by not more than 600 kilocycles,
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2 slight modification of the above method could be used

which leads to somewhat hilgher accuracy. With a sultable
setting of the crystal oscillator, the intermediate frequency
is varied until one of the i=f dots falls on the resonance
peak. The 1-f recelver dial then directly indicates the
amount by which the resonance frequency differs from the

standard.

(f) The actual dimensions of the test cavity differed
a little from those originally specified (part IV, 2).

It was intended to have the resonance frequency in vacuo
close to the crystal standard, but due to the error in
construction, the resonance frequency in air fell into
that range. The latter could therefore be very accurately
measured by the method outlined in part IV. It was then
necessary to measure the shift in resonance frequency
that occurred when the cavity was evacuated. This could
only be done with somewhat lower accuracy by the modifice
ation described under (e).

The shift in resonance frequency from alr to vacuum
amounted to about 2.8 megacycles. The exact value depended
on prevailing atmospheric conditions. The shift can also
be calculsted very accurately from the dlelectric constant
of air which is given by (32)

g, = /+57‘%§—(,7’+ ‘J%%O—Pw) 10~ ¢ (6,1)
where T = temperature of the air in degrees Kelvin
P = total pressure in mm Hg

€;=water vapor pressure in mm Hg.
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The fractional change in frequency from air to vacuum is

AF _ AE

7 6
£ 2 £

—‘féﬁﬁ P ) 10~ (602)

/—g_f(P —+
Values calculated from this formula agreed with exXperimental
results to within 10% or about 0.30 megacycles. This
comparatively large discrepancy was mainly due to the
non=linearity in the frequency sweep which became quite

noticeable for larger frequency deviations,

(g) It was pointed out previously (part II) that
the contact resistance between cavity body and end plates
does not affect the operation of the cavity for the TEOll
mode. Hence, calculated Q values should agree very well
with measured results if due consideration is given to
the loading by the coupling irises. Measurements of the
loaded band width at resonance were made before and after

the cavity was silvered. A table of comparative results

is given below,

Brass cavity

before plating after plating
Unloaded Q (calculated) 15,100 30, 000
Loaded @ (calculated) 14,200 27,600
Band width (calculated) 615 ke 322 ke
Band width (measured) 610 £30 ke 320 %15 ke

Unloaded Q's were calculated from (5.18), loaded Q's from
(5.44) and (5.50). Surface resistances Ry at 8900 megacycles
were taken to be 0.0473 and 0.0238 ohms for brass and

silﬁer, respectively.
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(h) The cavity was originally bullt with coupling
holes 0,120 inches in diameter. The diameters were later
enlarged to 0,140 inches to increase the power transmission.
The calculated total frequency shifts due to both irises
weres: 0,27 and 1l.54 megacycles, respectlvely, for the
two diameters using the thin sheet formula (5.36), but
only 0.72 and 1l.15 megacycles using the thick iris formula
(5.61), The expected net reduction in resonance frequency
after enlarging the holes was therefore:

0.57 megacycles from equations (5.36) and (37), and

0.43 megacycles from equation (5.61)

The measured shift was 0,40%x0.05 megacycles. The
two measurements were made under almost ldentical atmospheric
conditions. The uncertainty in the measured value arises
mainly from the fact that the cavity had to be taken apart
to machine the irlses. Re-assembling the cavity sometimes
led to changes in the resonance frequency of as much as
0.05 megacycles. A simllar uncertainty exlists in the calcul=~
eated values. An error of 0,002 inches in the iris diameter
corresponds to about 0,05 megacycles in the calculated
frequency shift. Within the limits of experimental error
the measured frequency shift is seen to agree with that
calculated from the thick iris formula.

Tests on a second cavity of approximately the same
dimenslons substantially confirmed the above result.

(1) The actual mean cavity dimensions as given iIn

part IV (section 2) are probably correct to 1 part in
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5000 or so. The ldeal resonance frequency in vacuo is
then, from (2.1), 8910.1 megacycles. To get the actual
resonance frequency in alr we must subtract:

2,80 Mc for the shift from vacuum to air

1.15 Mc for the shift due to the coupling holes

0,15 Mc for the shift due to finite conductivity,
The expected resonance frequency in aifTEOOm temperature
is thus 8906,0%2,0 megacycles. The actual resonance

frequency (about 8907.1 megacycles) was well within that

range.

2. Technique and Precautlons

To obtain accurate and consistent results for the
veloclty of light a number of precautions had to be
observed. The cavity was first carefully washed with a
detergent, rinsed with water and dried. It was then assembled,
connected Into the frequency measuring apparatus, and
allowed %o reach room temperature.

The resonance frequency of the cavity was then
measured, both in alr and in vacuo, b¥ comparison with
the crystal standard as descr;bed in part IV and In the
last sectlon under (f). The cirystal was compared to WWV
at the same time. Readings were taken of temperature,
pressure, and dew point. The frequency shift calculated
from (6.2) was then compared to the measured value,

After the frequency measurement, the cavity was
carefully sealed with a beeswax-rosin mixture. One of the

coupling holes was closed with a brass plug and the glass
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capillary was connected to the other iris (Flgs. 5 and 6).
The cavity was clamped to.a metal stand and the capillary
tube and side arm were also held rigidly by clamp supports
while the wax seal was completed. This was necessary to
avold breaking the seal when the stop cocks were turned
and when the hose connectlon to the vacuum pump was attached
to the side arm.

Some distilled water was bolled and poursed into
125-milliliter flasks ready for weighing. The flasks
were stoppered and kept closed throughout the test except
for a short time when the cavity was filled. The amount
of evaporation was not more than 1 milligram per hour.

The apparatus was then left over_night to reach
temperature equilibrium, and a series of volume measurements
were made the following day using the procedure outlined
in part IV (section 3). The flasks contalning distilled
water were weighed just before and just after filling the
cavity. A chemlcal precislion balance was used for that
purpose. The set of welghts was checked for internal
consistency and one of the weights was compared to a
National Buréau of Standards weight.

Before sach volume measurement room temperaturs,
water temperature, barometric pressure and dew polnt were
recorded. These data were used to compute the correction
for buoyancy in air. This correction amounts to about
0.1% for water weighed against brass weights and can be

calculated from
wgsw%p+(;fnﬁ)ﬁ] (B,5)
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where

W, 1s the "true" weight in vacuo

Wm is the measured weight in air

Jw, yB, Jo are the densities of water, brass, and air.
The density of the brass welghts was assumed to be 8.44
grams per cublc centimeter. The density of the air depends
on atmospheric conditions but the dependency is not too
critical (33). The buoyancy correction can be computed
to 1 milligram if the barometric pressure 1s known %o
+ 10 mm Hg, the room temperature to =2°C, and the dew
point to *5°C, However, the room temperature must be
known to a fraction of a degree because of the large
coefficlent of expansion of water: about 1 part in 5000
per degree centigrade at room temperature (34).

The excess volume in the capillary tubing was then
determined in a similar manner, except that some of the
precautions were unnecessary because of the smallness
of this volume,

When the velocity of light was computed from the
average of a series of volume determinations and the corres-
ponding frequency measurement, it was found that the results
were consistently low by about the same amount. It was
suspected that the cavity was not completely evacuated
before it was filled with water. The residual air then
occupied a smali fraction of the cavity volume at
approximately atmospheric pressure., This was verifled

by replacing the mercury manometer by a more sensitive
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residual pressure a correction to the volume could be

made which eliminated the discrepancy.

3. Results
The results of two series of measurements on the

preliminary brass cavity are given in the following table:

Series I Series IT

Corrected resonance frequency 8911.26 Mc 8911.30 Mc
(reduced to vacuum) at 24.4°C at 25,0°C
Corrected volume measursments 57.778 cm® 57.773 cm®
(reduced to temperature of 57.770 cm® 57,768 cm®
corresp. frequ. measurement) 57,775 cm® 57.766 cm®
Mean of volume measurements 57.774 cm6 57.769 cm3
Value of ¢ calculated from

mean of volume measurements | 299,767 km/sec| 299,760 km/sec

A typical set of data and its reduction is shown below:

Frequency measurement
Barometric pressure: 746 mm Hg
Temperature: 24.4°C
Dew point: 13°C (corresp. saturation pressure PW= 13.6 mm Hg)
Resonance frequency in air: 8907.08 lc

Shift in frequency from alr to vacuum (measured): 2.80 Mc
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Volume measurement
Barometrlc pressure: 748 mm Hg
Temperature: 22.1°C
Dew point: 15°C
Residual pressure in cavity before filling: 0.9 mm Hg
Wéight of flask before filling cavity: 159.102 g
Welght of flask after filllng cavity: 101.314 g
Net welght of water: 57.788 g
Excess volume in capillary tubing: 0.248 cm®

Excess volume in coupling irises: 0.033 cm®

Reductlon of frequency measurement

Resonance frequency in alr (measured) 8907.08 Mc
Frequency shift to vacuum (calculated)# 2.88 Me
Correction due to coupling irises 1.15 Mec
Correction due to finite conductivity of walls 0.15 Mec
Idéal resonance frequency in vacuo at 24.4°C 8911.26 Me

Reduction of volume measurement

Measured welght of water at 22.1°C 57.788 g
Buoyancy correction 0.060 g
Correction due to residual pressurs 0.071 g
Corrected weight 57.919 g
Total volume ()=0.997747 g/em® at 22.1°C) 58.049 cm®
Correction for caplllary tubing -0.248 cm®
Correction for coupling irises -0.033 cm®
Correction to 24.4°C 0.007 cm®
Net cavity volume at 24.4°C 57.775 em®

% The calculated rather than the measured value was used (see VII)
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VITI. Discussion

l. Evaluation of accuracy

The following table lists the estimated 1limits of

accuracy for the various measured and calculated quantities,

and the corresponding uncertainty 1in the determination of

the velocity of light.

Resonance frequency in air

Measured shift from air to vacuum

Calculated shift from air to vacuum

Correction due to coupling irises

Limit of
accuracy
*0.05 HMe

0.30 Mec
*0.10 Me
£0.10 Me

Correctlion due to finite conductivity £0.01 Me

Ideal resonance frequency (using the

calculated shift to wvacuum)

Buoyancy correctlon

Residual pressure

Density of water (assuming temp.
is known to 0.2°C)

Excess volume in capillaries

Excess volume In irises

Temperature correction
Net cavity volume

Uncertainty in fingl result

10.15 Me

+0.6 mg

#0.1 mm Hg

+46x10"% g/cm®

+0.0005 cm

*0,0005 cm

(AR ¢ I G\

+0.0005 cm

+0.0077 cm®

Uncertainty
in ¢
2 km/sec
12 km/sec
4 km/sec
4 km/sec
negligible

6 km/sec

1 km/sec
12 km/sec

Yam/sec
km/sec
km/sec

S =

km/sec
13 km/sec

15 km/sec
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The main uncertainty in the frequency measurement
arises from the fact that the shift in resonance frequency
from air to ﬁaouum could not be measured too accurately
because of the non-linearity in the frequency sweep
(part VI, section 1f). The corresponding calculated value,
on the other hand, is probably correct to within a few
per cent because 1ts dependence on atmospheric conditions
is not too critical, as was pointed out previously. The
calculated value therefore, was used Iin the reduction of
of the frequency measurements,

| Although the formulas for the frequency shift due
to the coupling irises are probably quite rigorous, a
deviation of *10% was allowed for, to account for possible
lnaccuracies in the irises. An error of 0,005 inches
in the hole diameters (about 3%) would give rise to such
a deviation.

Considerable uncertainty in the volume measurement
was Introduced by the large resldual pressure., Although
this pressure could be read to within 15%, the reliability
of this measurement 1s rather doubtful, It is possible
that pért of the residual pressure 1s due to a small
amount of water vapor. The limit of accuracy was therefore
set at about *10%Z.

The density of distilled water is quite accurately
known, but %o obtain a precision of 1 part in 50,000
for the cavity volume, the water temperature must be

0
ascertained to O.1 C. The room temperature could certainly
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be measured to that accuracy and stayed within O.1°C
during any one test. The water was at room temperature
before the cavity was filled and after it was emptiled,
but the questlion arises whether or not its temperature
changed slightly during the filling process due to initial
evaporation Into the evacuated cavity. It is believed
that thils effect 1s extremely small, Only a 1llttle water
will evaporate initiaslly. It must condense very rapidly
immediately afterwards, so that the residual temperature
change cannot be too large. This reasoning was confirmed
by examining the tlp of the caplllary for emerging
droplets after filling the cavity.

From the above discussion, 1t appears reasonable
to set the accuracy of the preliminary result for the
velocity of light at about *15 km/sec. Using the average
result from part VI, we may write

c =299,764 15 km/sec

This is somewhat lower than Michelson's result, but is
in substantial agreement with that result within the llmits

of experimental error.

2. Accuracy Attainable

The two main uncertainties in the frequency and
volume determinations (see the tabulation in the last section)
can undoubtedly be eliminated. The cavity should be machined
to the specifiled dimensions to closer tolerances to bring

its resonance frequency in vacuo directly within the range
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of the frequency standard. As an alternative, the latter
could be redesigned to cover a wider frequency range.
The vacuum system must be improved to obtalin pressures
as low as 107° op 10™° wm Hg.

The cavity should be made more uniform in diameter
and length. The variations in these dimensions should
be kept within 1 or 2 tenthousandths of an inch to keep
possible residual frequency shifts negligible (part V, section 3).
Preferably, the cavity should be of steel and very carefully
ground and polished. The coupling holes should be accurately
reamed and counterbored,

The frequency measurements could be further improved
by iﬁcreasing the local oscillator power by a factor of
ten or more., This would allow a reduction in the size
of the coupling irises and 1in the frequency shift produced
by them. The use of a more sensitive detector will also
be a step in the same direction. There are, of course,
limitations due to nolse, microphonics, and stray pick-up,
but there is still room for improvement with proper amplifier
design and careful shielding.

The ultimate limlt of accuracy of the method seems
to be determined by the volume measurement. Refilnements
in apparatus and technlque are possible. The entlire experi-
ment could be performed at or near 4OC to eliminate the
uncertainty in the density of water.

From the above, 1t appears that an accuracy of 1 part

in 150,000 may eventually be achleved by this method.



65

Appendix A

Principal Symbols Used

The rationalized M.K.S. system 1is used throughout.
Vectors are indicated by a bar undernsath the letter,
and complex numbers and their conjugete by the symbols ( )

and ( ) above the letter.

=

magnetlic vector potential

éo normalized vector potential

()

subscript referring to the a th cavity mode

a wide dimension of wave guildes

8ps8ys85 unlt vectors in cylindrical coordinates
B  magnetic induction

EO normalized magnetic fleld

§0 magnetic exciting fleld at irls
B(O)magnetic fileld at center of iris

b narrow dimension of wave guldes
C

amplitude of wave guilde fields

c veloclty of light

o} radius of coupling irises

T dismeter of cavity

E electric field intensity

EO normalized electric fleld

£ resonance frequency of cavity
H magnetic field intensity

1,5k unit vectors 1in rectangular coordinates
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J square root of -1
ko cub-off phase constant for TEy; mode in clrcular gulde
L  length of cavity
M magnetic polarizability of iris
n unit normal vector to cavity surface
Py amplitude of a th cavity mode
4 loaded cavity Q for the a th mode
Qa unlcaded cavity Q for the a th mode
R radius of cavity
skin-effect surface resistance
r _n th root of Jé(x)==0
S surface of cavity
S, area of input iris
o area of output iris
V  cavity volume
p  wave number 2mf/c = wVuE
d skin depth
¢ dlelectric constant of free space
E. ‘relative dielectric constant of alr
§)§/? oblate spheroidal coordinates
” intrinsic impedance of air or free space %%

A wave length

H permeability of free space

4 length-to-diameter ratio of cavlty

6 conductivity of material of cavity surface
@ angular frequency
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Appendix B

Iris Calculations

To evaluate the coefficlents A, in (5.52), equation
(5.56) was written for six points along the edge of the iris
(A-B in Fig. 12). The radius c¢c of the iris was taken equal
to one to simplify the numerical work. The points were
chosen at §=-O.1, -0.2, =0,3, =0.4, =0.5, and =-1.0. The
corresponding values of ¢ and of the cylindrical coordinates,

and z, were calculated from the relations
P

z=¢t (B.1)
p = (1+59m(- 89" (.2)
p=1-=z= (+]=] (45° cone) (B.3)

These equation can first be solved for z:
2 = - 5 {E0sT - 1} (B.4)

§ and p can then be found from (B.l) and (B.3).
Tables of integrals of associated Legendre functions

were avallable (35). So were tables of j%?i(jg) and jéQi(j;)

for positive values of {(31l). The corresponding values for
negative g's were deduced from the series definitions of the

general assoclated Legendre functions (36). They are
o=y h—2r-
GEF 5 gedl BT T (B.5)

s mii A
J TGx) = 27 = rl(n-r)t(n=-2r-1)!

j‘n“&;‘(jx) - (_I)nz'j—n ph“(j'x)[-%——tan~lx]+ G(x)+ H(X)} (B.6)

where
— TP (x)
G(x) = —%i | (B.7)
=7

— )" (2n—1—4r) asi+2r )
) = 2 ‘ 122/-—(#2//)7(”1/“)4 / ) P20 ¥ (B.8)

r=0
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Substituting -x for x in the above relations, one obtains
for odd values of n:
| () = Pa(x) (B.9)
Q7 (~jx) == CnUX) =7 T (jx) (B.10)
By a similar substitution in the derivatives of (B.5) and

(B.6):
L Pi(—jx) = =L PI(x) (B.11)

L RA(x) = -2 Qi(x) — T 5 Falx) (B.12)
All the terms in (5.56) can now be calculated

numerically. The six points chosen yield the equations

« 004128+ ,08905 Al-+ « 6808 A3 + 2.0879 AL + 4.7429 A7= 0

+016111 + .18650 A1-+1.8085 A6 + 6.7163 A_ +18.2510 A_=0

lo1]

. 034965 + ,28859 Ay +3.4879 AS + 15.475 A_+ 49.369 A_=0

. 058724 + 38796 A4 + 5.7869 A'3 + 30.236 A_+111.112 A_= O

+ 220.746 A_= O

o o o W

. 086209 + ,48574 A1-+8.8093 A:5 + 53.367 A

<34 N 9 9 -3

231253 + 89177 Al'*54.854 A5'+ 358.65 A54-1172.44 .= 0

The first four equations, when solved for the coefficlents An,
lead to the values given in the last section of part V.

With these solutions, the first fbur equations are satisfled
to four significant figures, the last two equations to three

significant figures.
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Appendix C

Evaluation of Polarizabllity of Iris

To find the magnetic polarizabllity for the thick
iris, the integrals iIn equation (5.60) must be evaluated.
The filrst term in the summation, n=1, has already been
worked out for the thin iris. It can be easily shown that
all other terms vanish and do not contribute to the
polarizability of the iris.

For simplicity, we may agaln take c¢=1. In the plane
of the iris ({=0) we then have from (5.32)

§ =Vings = fimaty®
Using the relations
ngGQ=Ff(§)=/
n(g)=2(5¢~1)
(&) =5 (27— 126 +1)
BE) = (4298 ~475¢%+ 135¢*~5)

the integrals

X dx

S e
A 5
can be evaluated (37). The resultant expressions are
functions of & only, and hence the further intégrations

in (5.60) are straight-forward. When the latter are carried
out, all terms vanish identically with the exception of the

first one.
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