
Reduced Order Modeling of Near-wall and Roughness
Sublayer Turbulence Using Resolvent Analysis

Thesis by
Miles Chan

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended April 22, 2025



ii

© 2025

Miles Chan
ORCID: 0009-0007-7898-3739

All rights reserved



iii

ACKNOWLEDGEMENTS

During my PhD, I have enjoyed the camaraderie of many wonderful and supportive
communities composed of my colleagues, mentors, friends, and family. All these
people have supported and inspired me in my career, music, sports, and life. Without
them, I could not have conducted the research presented in this thesis.

I theorize that it is impossible for any set of acknowledgments to fully resolve all the
interpersonal interactions that have contributed to this endeavor, which is as much
of the heart as of the mind. Therefore, I claim only to capture broader themes and
that all omissions are errors arising from the honorable pursuit of brevity, for which
I beg forgiveness.

My advisor, Dr. Beverley McKeon, has always been fair, kind, and honest in our
interactions. I am thankful for her good taste in research problems and her advice
which I have found invaluable in my research journey. Beverley led our group
through COVID and a move to Stanford, making it possible for me to stay with the
group and experience two different wonderful places to do graduate school. I will
miss being able to pop in for a quick chat when the office door was open, which
helped immensely with the smooth handling of countless research thoughts and
logistical issues. She somehow manages to be available while managing her many
responsibilities with admirable grace. I have had a wonderful experience working
with Beverley, for which I am forever grateful.

I am also thankful for my good relationship with Dr. Ugo Piomelli, who has been
very generous with his time and knowledge in our interactions. We have had many
fun and insightful conversations about surface roughness, simulations, and music.
His thoughts and questions have influenced and strengthened several aspects of this
work.

I am also grateful for the other members of my committee, Dr. Dan Meiron and Dr.
Anthony Leonard. Dan served as the option representative during my early years
in the PhD program and taught my class in partial differential equations. During
those tumultuous years, which included a global pandemic and virtual qualifying
exams, Dan was an important resource for me and our student cohort, and I am
very thankful for him. Tony was also present during much of my time at Caltech,
always attending our group meetings and asking great questions. Therefore, it was
very fitting that Dan and Tony were on my committee, and I am grateful for their



iv

questions and suggestions, which have improved this thesis.

It was a pleasure to work with my long-time collaborator on the wall-modeled
LES project, Zvi Hantsis, who generously helped with many questions I had about
simulations and analyzing rough wall flows. In addition to his duties on the wall
modeling project, Zvi also produced the time-averaged roughness DNS data that is
often referenced in this thesis and set up simulation code on our computing clusters,
with which I have generated many useful datasets. It was also very cool to work
briefly with Nam Hoang, who is pushing the wall modeling work forward now. I
hope to see what he can achieve.

Thank you to all the members of Beverley’s group whose company I have enjoyed
over the years. I cherish the memories of our movie nights, dinners, and random
conversations in our offices about a wide array of meaningful topics, such as the
true definition of a sandwich. I will miss peeking over my cubical wall in Firestone
to pepper Greg with math questions, deep philosophical discussions I shared with
Tanner, Aaron parking himself at the empty desk next to me for camaraderie,
wondering where Federico is, unlocking the office door for Claire MacDougall, and
jumping out of an airplane with Yuting. I hope that Miya will find someone else to
silently pop out of nowhere in her office with questions about triadic interactions in
turbulence. I will miss the bountiful wisdom, silly jokes, wide smiles, and hearty
laughter of the lab postdocs Tomek, Jonah, Facundo, Shilpa, Eric, and Teresa. We
have commiserated and shared in each others’ good moments, and as such I consider
you all to be true friends who have a special place in my heart.

I would also like to thank my GALCIT friends, especially my first year classmates, for
being my buddies through the zoom class era when we endured a global pandemic,
studying in our rooms for virtual qualifying exams, and a terrible fire season in
LA. I am so grateful for their friendship and care during those difficult times and
beyond, when we were able to go on beach outings and play hilarious games of
frisbee and flag football (at least, until Brayden’s retirement!). My fond memories
of these people include Peter’s weekly nondimensional numbers and our practices
for quals, Sorina’s supreme ownership of the role of group mom, food adventures
with Ying and Liam, driving Stephanie, Tracy, and Sahangi around in Yosemite,
parties at John’s, and Nikhil’s grilled bell peppers.

I am also thankful for my Building 500 friends at Stanford, who welcomed me to
a new place with open arms. I appreciate all the open office doors in the building
and the many fun interactions I have had with many of you who work on wall-



v

modeled large eddy simulations and experiments alike. I will miss our office and
lunch discussions, revolving around Tony’s political discussions, Murray’s interest
in ways of staying young, Tim’s love of marmite, Carlos’ unhinged takes on many
subjects of general interest, and the universal topic of what constitutes a sandwich. I
have particularly fond memories of our Lord of the Rings viewing parties and Mak’s
excellent cooking and cocktails.

In parallel with my experiences in research, I had a lovely time playing music with
many wonderful people at Caltech and Stanford, particularly in the orchestral and
chamber music communities. I am especially thankful for the four years that Ziyun,
Vincent, Sam, and I spent working through so much of the string quartet repertoire.
I always looked forward to our rehearsals inside and outside the Music House and at
Sam’s house in the hills. Our performances in many Caltech Chamber showcases,
the Athenaeum Holiday Party, and in Sam’s backyard for our friends are precious
memories for me. I’m also grateful for Calen’s Band Camp music parties; I always
love seeing the passion for music and performance of all forms that people show in
such an intimate, supportive environment, and some of my most memorable bouts of
music-making have been here with Nathan, Nina, Étienne, and others. At Stanford, I
also had a blast exploring the piano quartet, piano quintet, and string quartet literature
with Daiyao, Ben, Cyrus, and Elisabeth. Many aspects of our work together had
fantastic entertainment value, including our musical choices, fierce Dvořák-inspired
rivalry with other chamber groups, and delicious oranges from Cyrus’ tree. I am
thankful to have learned so much from wonderful chamber coaches Maia, Martin,
Stephen, and Dawn. I am especially grateful to my teacher at Stanford, Joo-
Mee, who has added a lot of value to my brief stint at Stanford by encouraging my
exploration of new repertoire, pursuit of competition and performance opportunities,
and continued artistic growth.

Sports have also brought me a lot of joy, meaning, and camaraderie, and I have
enjoyed countless wonderful adventures, training sessions, and races with dear
friends at Caltech and Stanford. Caltech Triathlon gave me so many priceless
memories, including savage Oxford hill repeats and track workouts, well earned
spells in the hot tub after long swim sessions, fast laps of the Rose Bowl, and sweaty
trips to Lucky Baldwin’s. I really loved Wednesday and Saturday morning trail
runs through the San Gabriel and Angeles mountains with the Caltech Alpine club
runners. Long adventure rides at team camp, Collegiate Nationals, and countless
pleasant coffee rides with Stanford Cycling are also big highlights for me. I have



vi

spent meaningful and memorable times with so many wonderful athletes that it is
truly overwhelming trying to list all your names. So, I will do my best, and patch
the rest using academia-speak. Thank you Angus, Annette, Matias, Ryan, Scott,
William, Stephanie, Carina, Marshall, Shae, Jack, Lindsey, Rob, Calen, Maria,
Ashley, Sam, Aubrey, Daniel, Pippa, Paddy, Cris, Ed, Adele, Adrian, Carlos, Alex,
Claire, Gina, Jack, Jess, Matt, Michael, Murray, Nikhil, Owen, Rohit, et al. for all
the love, kudos, and stoke.

A special thank you goes to my undergraduate advisor Dr. David Hu and graduate
student mentor Dr. Patricia Yang, who were instrumental at the beginning of my
research career. I am thankful that my memories of delving into the mysteries of
wombat feces with them are fond, though somewhat odorous.

I am also grateful for all the friends I’ve made along the way. I think often of
my teammates and the mentors of my high school robotics team, who fostered my
desire to pursue a career in STEM and continue to inspire me with their hard work
and achievements. I’m thankful for Claire Bang, whose continued friendship and
blunt honesty I find invaluable. I am grateful for my undergraduate roommates Ben,
Elena, Eric, and Asutosh, who hold a special place in my heart.

Finally, I am thankful for my family. My mother has always supported and loved
me unconditionally, which has allowed me to pursue my dreams with reckless
abandon. When I was young, she made sure I was able to attend orchestra rehearsal,
robotics club meetings, and cross country practice, fostering my enduring love of
music, science, and sports, activities which have brought me so much friendship and
fulfillment in my life. I acknowledge my father, whose beliefs in the importance of
education and hard work I share. I am grateful for the good and mutually-supportive
relationship I have with my sibling Morgan, whose supreme passion for music
inspires me to pursue my own dreams with vim and vigor.



vii

ABSTRACT

Modeling near-wall and roughness sublayer turbulence using physics-based methods
remains a topic of paramount importance, since most engineering-relevant flows are
turbulent and most surfaces are not smooth. While today there exists a wide range
of empirical, data-driven modeling approaches for turbulence, these methods are
limited because fully resolved turbulence data remains expensive to generate and
burdensome to store and analyze. Therefore, the ability to predict out-of-sample
is important, and since data-driven methods struggle to extrapolate, developing
physics-based approximations that give useful, inexpensive predictions remains
necessary. Yet the complexity of near-wall turbulence makes developing theoret-
ical models difficult. This thesis tackles two main challenges. First, methods for
reduced order modeling of the sensitivity of turbulence to multiscale, engineering-
relevant roughness geometries are developed. In particular, a physics-based method
for incorporating a drag-scaled, Reynolds-decomposed volume penalization into
resolvent analysis yields a linear reduced order model that gives computationally in-
expensive estimates for roughness sublayer fluctuations and dispersive stresses given
a surface geometry and the mean flow profile in a rough wall channel flow. Then,
an iterative method is developed to predict the mean flow profile, equivalent sand
grain roughness, and Hama roughness function that utilizes the discovered relation-
ship between the fluctuations and the mean flow. That model yields a closed-loop
system for predicting roughness sublayer turbulence and the mean response given
only a scan of the roughness geometry and a bulk Reynolds number in a rough wall
channel flow. Second, a methodology for generating spatiotemporal representations
of near-wall turbulence with very few degrees of freedom is developed. It utilizes
a coarse-graining approach to reduce the number of modes required to describe a
turbulent flow, selection criteria for picking descriptive modes, and Reynolds num-
ber scaling to provide predictions for an out-of-sample, higher Reynolds number
flow. A spatiotemporal representation is generated, and results from Piomelli et al.
that incorporate the modal representation into the wall layer of a wall modeled large
eddy simulation are presented. Overall, this thesis contributes new reduced order
modeling approaches that make use of physics-based insights to tackle outstanding
problems in the prediction of near-wall and roughness sublayer turbulence.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Turbulence is in the tempestuous swirling of gases inside a star, oil gushing through
a pipeline, and the wind passing over an airplane wing; it is ubiquitous in fluid
flows of universal significance and human relevance. Anyone who has experienced
a bumpy ride in a commercial aircraft is aware of the effects of clear air turbulence
that occurs on an atmospheric scale. However, even when the aircraft is in calm air
and the passengers are comfortable, turbulence on a smaller scale still occurs close
to the surfaces of the wing, tail, and body of the aircraft. The character of this near-
wall turbulence is sensitive to any roughness on the surface that arises from various
sources, including manufacturing processes, corrosion, biofouling, ice accretion,
and by design (Kadivar et al., 2021). Near-wall turbulence enhances mixing and
momentum transport near those surfaces, and is responsible for an increase in drag
of up to 50% for a modern airliner (Marusic, Mathis, et al., 2010).

Due to the universality and profound impact of turbulence in nature and engineering
applications, scientists and engineers have devoted themselves to its study for over
a century. Yet a complete understanding of turbulence remains elusive. The noto-
rious intractability of turbulence can be understood by considering the governing
equations of fluid motion, the Navier-Stokes equations (NSE).

In the Newtonian, incompressible flows considered in this thesis, the NSE enforce
conservation of mass and momentum. These equations are nonlinear, which means
that the interaction between different scales of motion is important for the system.
Furthermore, the range of scales represented in turbulent flows is enormous. That
separation of scales is captured by the Reynolds number, which is the ratio between
inertial and viscous forces. Below a critical Reynolds number, the flow remains
laminar. However, above that critical Reynolds number, the flow transitions to
turbulence (Reynolds, 1883). For aerospace vehicles, the range of scales that must
be considered ranges from the micrometer scale of near-wall motions and surface
roughness to the tens or hundreds of meters that characterize the aerodynamic body
shape, which is a scale separation of𝑂(106 −108). For high Reynolds number flows
relevant to engineering and geophysical applications, a full-fidelity evaluation of the
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exact Navier-Stokes equations that resolves all the relevant scales is intractable for
modern and foreseeable computational power.

Despite the fact that directly solving for the turbulent flow is impractical in many
circumstances, there remains an ever-present need to provide information about the
turbulence in systems of human relevance. Therefore, turbulence research is con-
cerned with the development of modeling approaches that replace some or all of
the fidelity of the full NSE with simplified relations and equations that approximate
turbulence or flow quantities of interest. Turbulence research also involves develop-
ing and applying methods for analyzing and understanding the observed structure of
turbulent flows. Most of these methods rely on the key observation that while turbu-
lence can be usefully understood as stochastic, it also contains coherent structures
(Kline et al., 1967; Brown and Roshko, 1974). Furthermore, these structures appear
to have an organized distribution of sizes and display self-similarity. Townsend,
1976 codified this in his attached eddy hypothesis, which models turbulence using
hierarchies of geometrically self-similar eddies. The attached eddy idea is powerful
and has been profitably implemented to model turbulent stresses (Perry and Chong,
1982; Moarref, Sharma, et al., 2014).

The existence of dominant coherent structures in turbulence has prompted a high
degree of interest in reduced order modeling of turbulence. These methods are
based on the description of high-dimensional systems and/or data as the sum of
weighted basis functions called modes, which can be determined based on data
or governing equations. These modal decompositions are attractive for describing
phenomena in which dominant structures or trends exist, because it is reasonable to
expect that only a corresponding subset of the possible basis functions is strongly
represented. It is possible then to construct reduced-order models of physical
phenomena by considering only the dominant subset of basis functions. These
approaches can achieve a great degree of freedom reduction, which can lead to
increased computational efficiency and model interpretability. Therefore, the study
of how to determine modes, which modes are active, and how to model their weights
in turbulent flows is a topic of interest to the scientific community.

Reduced order models can be roughly classified into physics-based and data-driven
approaches, although aspects based on observation and physical intuition pervade
both types of models. The distinction is related to how the modes and their weights
are determined. The proper orthogonal decomposition (POD) and its implemen-
tation in wave number space, spectral POD (SPOD), are examples of data-driven
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methods where weights and modes are determined from data (Lumley, 1970; Towne
et al., 2018). Resolvent analysis is an equation-based method that determines modes
from the linearized Navier-Stokes equations and an exact relation for the weights
(McKeon and Sharma, 2010). The two types of models are useful in particular
scenarios. When data is abundant and accurate governing equations are not known,
data-driven models are a natural choice. When data is scarce but the governing
equations describe the system well, physics-based approaches offer more general-
izable results. Since fully-resolved data for turbulence is challenging to generate
and burdensome to store and share, there remains a strong need for physics-based
reduced order modeling techniques that give more universal insights.

Surface roughness adds another layer to the modeling challenge posed by classi-
cal wall-bounded turbulence, which is significant given the ubiquity of roughness
in engineering flows. Despite decades of study, there is no comprehensive the-
ory for the sensitivity of turbulence and flow quantities of interest to features of
the surface roughness. In lieu of this, scientists have devised a plethora of em-
pirical approximations and machine-learning models using data from experiments
and geometry-resolving simulations, as well as physics-based models applicable to
idealized geometries. Given the extreme expense of performing simulations and
experiments at Reynolds numbers in the fully rough regime across the whole range
of conceivable surface geometries, it is fair to ask if reduced order modeling tech-
niques for roughness can contribute to deeper understanding and modeling of this
problem.

The present thesis contributes to the development and application of reduced-order
modeling methods for analyzing and predicting near-wall and roughness sublayer
turbulence. First, a physics-based reduced order modeling framework is developed
that yields a linear transfer function relating a multiscale, engineering-relevant
roughness geometry to the spatially-varying turbulent flow response in the roughness
sublayer. That framework is used to provide quantitatively reasonable predictions
for the response of turbulent fluctuations, stresses, mean flow profile, and drag to a
particular surface geometry, given minimal empirical assumptions. This approach
models the spatially-varying flow sensitivity to features of the surface roughness,
yielding physical insights into rough wall flows that are not provided by empirical
models that seek only the mean or drag response from roughness statistics or spectra.
Second, a method is developed for coarse-graining spatiotemporal representations
of near-wall turbulence which greatly reduces the degrees of freedom required to
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describe turbulent motions.

1.2 Similarity and modeling of roughness in wall-bounded turbulent flows
The turbulent flow over surface roughness can no longer be parameterized by the
Reynolds number alone, since the geometrical features of the roughness geometry
affect the drag and set the scales of the observed turbulent motions. However,
important behavioral similarities are observed between smooth and rough wall-
bounded turbulent flows that are foundational for historical and present modeling
efforts.

Nikuradse, 1933 conducts a systematic study of sand grain roughness with differ-
ent grain sizes and Reynolds numbers and observes that both smooth and rough
pipe flows scale with the friction velocity 𝑢𝜏 and fluid viscosity 𝜈, the mean flow
profiles are similar in the outer layer far from the wall, and the friction factor be-
comes constant above a certain Reynolds number. Colebrook, 1939 introduces the
equivalent sand grain roughness 𝑘+

𝑠 , which is a hydrodynamic quantity that relates
a given surface roughness to the grain dimension of the sand grain roughness that
produces the same friction factor or drag at a given Reynolds number. Hama, 1954
introduces the shift between the smooth and rough wall mean flow profiles for flows
observing outer layer similarity at a given Reynolds number, Δ𝑈+. That shift can
also be interpreted as a change in the virtual origin of the wall 𝑑, where if statistics
are plotted against 𝑦 − 𝑑, the profiles of the mean and statistics collapse in the outer
layer (Chung et al., 2021). For fully rough, zero pressure gradient flows, 𝑑 can be
taken as the centroid of the drag force (Jackson, 1981). Oftentimes, 𝑘+

𝑠 , Δ𝑈+, or 𝑑
are quantities of interest for engineers in a rough wall flow, as they characterize the
response of the mean flow profile to a rough geometry as compared with a smooth
wall, assuming outer layer similarity.

Outer layer similarity can be observed in the mean flow and second-order statistics,
and is expected to hold for a sufficient separation between the roughness scale 𝑘 and
outer length scales of the flow 𝛿. Jiménez, 2004 provides the guideline 𝛿/𝑘 ≳ 50 for
flows that are expected to respect outer layer similarity. In flows that respect outer
similarity, the effects of roughness are confined to the roughness sublayer, a region
of the flow that extends to approximately 𝑦 = 2− 5𝑘 (Raupach, 1981). In flows over
obstacles where 𝛿/𝑘 ≲ 50 or where long length scales in the streamwise or spanwise
directions are present, roughness effects can be expected to extend through the outer
region.



5

In many engineering contexts at high Reynolds number, the scales of roughness are
small with relation to the outer scales of fluid motion, so outer similarity is respected.
Therefore, this thesis considers only turbulent flows over surface roughness with
outer similarity. In these flows, the turbulence in the outer region feels the presence
of the surface roughness only indirectly, through the drag and scales of motion
set in the roughness sublayer. Meanwhile, the roughness sublayer turbulence that
determines the drag and roughness scales depends spatially on the specific geometric
attributes of the surface roughness.

Many efforts for modeling the effects on turbulence over realistic, multiscale surface
geometries bypass the details of the spatially-varying roughness sublayer fluctuations
and focus instead on directly predicting the drag-related flow quantities 𝑘+

𝑠 and/or
Δ𝑈+ given statistics and spectral information about the roughness using empirical
models. There is a large body of literature on the development of fitted equations
to relate surface statistics to roughness flow parameters, which is well reviewed
by Flack and Chung, 2022. Due to the difficulty inherent in discovering truly
generalizable fitted equations, several efforts have been made to link surface statistics
and spectral information to roughness flow parameters by training neural networks
(Aghaei Jouybari et al., 2021; S. Lee et al., 2022; Yang et al., 2023). These methods
are useful for predicting drag for rough surfaces without considering the complex,
spatially-varying turbulent flow response in the roughness sublayer. However, as
with all data-driven methods, generalizing outside the training dataset remains an
issue.

For modeling the mean flow profile, Bornhoft, 2024 and Brereton and Yuan, 2018
give empirically-fitted relations between the statistics of the roughness and 𝑘+

𝑠 to the
shape of the mean flow profile for use in WMLES. These methods are practical for
usage in a wall model, but do not provide a method for predicting 𝑘+

𝑠 , which is an
input to the analysis.

Therefore, it remains desirable to develop more generalizable models, and it is
natural to seek model forms that more directly encode the physics that link roughness
features to the drag response through modeling the roughness sublayer fluctuations
and their spatially-varying effects. However, the complexity of turbulent motions
observed over realistic roughness geometries has made theoretical development
extremely challenging. One promising physics-based effort is the wind shade model
of Meneveau et al., 2024 that uses minimal empirical assumptions to link surface
features of realistic roughness to the resulting drag.
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For modeling turbulent fluctuations and stresses arising from surface roughness,
recent studies have focused on idealized or filtered roughness geometries, with the
goal of identifying important scales and patterns that can be generalized to realistic
surfaces. Mejia-Alvarez and Christensen, 2010 fabricates 3D-printed low order rep-
resentations of a wind turbine roughness using subsets of POD modes and compares
their performance in wind tunnel testing. A 16 mode POD representation is found
to produce similar stresses as the original 383 mode surface, indicating that only
certain geometric scales contribute to the drag response. Studies of Fourier-filtered
roughness are also suggestive of the importance of different scales in determining
the flow response (Alves Portela et al., 2021). Morgan, 2019 studied sinusoidal
roughness in a wind tunnel, finding a linear response in the time averaged field and
suggesting that the flow over realistic surfaces may be determined by superposing
the flow responses to a linear combination of simple roughness geometries.

None of these models provide predictions for a realistic roughness. Therefore, there
remains a need for a generalizable, inexpensive model that predicts the sensitivity
of the spatially-varying turbulent fluctuations and drag response to features of a
multiscale, realistic roughness geometry. Also, the question of whether linear
trends can be used to give quantitatively useful predictions is unanswered by these
studies. The present thesis tackles these challenges.

1.3 Reduced order modeling of turbulence
Reduced order models are based on spatiotemporal representations of turbulence
consisting of the superposition of weighted modes, each embodying different spatial
and temporal scales. There exists a wide variety of data-driven and physics-based
methods to determine modes and weights that describe turbulence.

The Fourier transform is a rational choice for analyzing flows with homogeneous
directions; for the flows considered in this thesis, the Fourier transform is taken in
the homogeneous streamwise and spanwise directions, resulting in Fourier modes
parameterized by wave number that are coherent in the wall-normal direction. This
technique can be applied to the governing equations as well as the data.

Data-driven methods for generating modal representations include POD, SPOD, and
DMD (Lumley, 1970; Schmid, 2010). POD seeks a set of modes that optimally cap-
ture the variance of an ensemble of flow data, while DMD gives modes that optimally
describe the dynamic motions of the flow. SPOD is the spatiotemporal counterpart
of POD for a statistically stationary flow, giving converged spatiotemporal modes at
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Figure 1.1: Resolvent analysis.

each frequency. These methods, and particularly SPOD, are data-intensive because
they rely on many realizations of a flow to obtain converged mode shapes.

Resolvent analysis of the NSE, developed by McKeon and Sharma, 2010 provides a
physics-based method for generating efficient, descriptive modal bases for turbulent
flows. Resolvent analysis is an exact expression of the NSE linearized about the
turbulent mean and forced with the nonlinear term in the fluctuations. It can
be understood as a self-sustaining, closed-loop system consisting of the resolvent
operator, which serves as a transfer function relating the endogenous forcing from
the nonlinear term to the flow response, as illustrated in Figure 1.1. For the flows
in this thesis, resolvent analysis is derived from the NSE Fourier transformed in
time and the homogeneous streamwise and spanwise directions. In this case, for a
given wave number, the resolvent operator relates the forcing at that wave number
to the response at the same wave number. Taking the SVD of the resolvent operator
yields response modes, gains, and forcing modes. The resolvent operator has been
shown to be low rank at wave numbers where turbulence is energetic, meaning
that the first (few) SVD modes have much larger gains than those of the remaining
modes. Therefore, resolvent response modes are a reasonable choice for developing
a low-rank basis for reconstructing or modeling the flow response. The projection
of the nonlinearity onto the forcing modes gives an exact expression for the mode
weights. However, exact calculation of the weights requires the loop to be closed,
which is challenging to implement. Approximate treatments of the weights can
give approximate solutions, and in this way resolvent analysis successfully provides
low order models for turbulent spectra (Moarref, Sharma, et al., 2013; Moarref,
Jovanović, et al., 2014). An advantageous aspect of using a resolvent mode basis for
describing turbulent flows is the potential applicability of Reynolds number scalings
for resolvent modes and singular values developed by Moarref, Sharma, et al., 2013,
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as well as for resolvent weights that represent self-sustaining turbulence and agree
with classical turbulence theories such as the attached eddy hypothesis by Moarref,
Sharma, et al., 2014. Therefore, from weighted resolvent mode bases, it should be
possible to develop predictions that apply in other turbulent flows, and this thesis
begins some preliminary work in this direction.

Resolvent analysis has been extended to accommodate non-spatially uniform bound-
ary conditions, including linearized velocity-pressure conditions for compliant walls
(Luhar et al., 2015; Huynh et al., 2021), velocity conditions for opposition control
(Toedtli, Luhar, et al., 2019; Toedtli, Yu, et al., 2020), and perforated surfaces (Jafari
et al., 2023). For modeling roughness, Chavarin and Luhar, 2020 develops a volume
penalization method using a permeability function that drives the velocities to 0 in
the solid region and is set to 0 in the fluid region, and applies the method to stream-
wise riblets. Flynn et al., 2024 has developed an approach to represent roughness
using a projection-based immersed boundary method and applied it to a sinusoidal
roughness. All the resolvent analysis methods developed for roughness rely on
the solution of wave-number-coupled systems, and have therefore been limited to
systems that can be well described by a single wave number and its harmonics.

SPOD and resolvent analysis are closely connected. For uncorrelated forcing,
SPOD and resolvent modes are equivalent, and to obtain the best reconstruction of
the SPOD statistics using resolvent modes, resolvent weights must be determined by
the best projection onto the SPOD modes using a statistical rather than deterministic
understanding of the weights (Towne et al., 2018).

1.4 Thesis Outline
Chapter 2 introduces methods for relating velocity and pressure fluctuations to drag
forces in rough wall-bounded flows, resolvent analysis, and spectral proper orthog-
onal decomposition. Chapter 3 analyzes linear trends observed in resolvent mode
representations of the temporally-averaged, spatially-varying roughness sublayer
fluctuations in the presence of surface roughness, and shows what drag-related quan-
tities are captured by these representations. Chapter 4 develops a drag-normalized,
Reynolds-decomposed treatment of resolvent analysis with volume penalization
(RAVP) to predict roughness sublayer fluctuations and dispersive stresses given a
mean flow profile and a surface scan of an engineering-relevant, multiscale rough-
ness in a channel flow. Chapter 5 details a modeling approach that predicts the mean
flow profile and drag response given a surface roughness geometry in a channel
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flow with a given bulk Reynolds number, using an iterative framework that lever-
ages the link between the mean flow profile, surface scan, and dispersive stresses
encoded in RAVP. Chapter 6 introduces a framework for constructing data-driven
reduced-order models of turbulent fluctuations at high Reynolds numbers from re-
solvent representations constructed using data collected at computationally-feasible
Reynolds numbers. Finally, Chapter 7 draws conclusions and identifies pathways
for future research.
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C h a p t e r 2

METHODS

2.1 Averaging operators and the triple decomposition for rough wall flow
When considering the temporally-averaged turbulent flow over surface roughness,
spatial variation is readily observed. Therefore, spatial and temporal averaging must
be considered separately.

Intrinsic, superficial, and planar spatial averages

First, define the area occupied by fluid at a particular 𝑦-height to be 𝐴 𝑓 . The domain
area at that 𝑦-height is 𝐴𝑡 = 𝐿𝑥 × 𝐿𝑧. Then, the intrinsic average of a flow quantity
𝑞(𝑥, 𝑦, 𝑧, 𝑡) can be written

⟨𝑞⟩ (𝑦, 𝑡) =
1
𝐴 𝑓

∫
𝐴 𝑓

𝑞(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝐴. (2.1)

The superficial average can then be written

⟨𝑞⟩𝑠 (𝑦, 𝑡) =
1
𝐴𝑡

∫
𝐴 𝑓

𝑞(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝐴. (2.2)

Note that both averages are computed with integrals over the area occupied by fluid.
The plane average is the usual definition,

⟨𝑞⟩𝑥𝑧 (𝑦, 𝑡) =
1
𝐴𝑡

∫
𝐴𝑡

𝑞(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝐴. (2.3)

When there is no roughness, all these averages are observed to collapse because
𝐴𝑡 = 𝐴 𝑓 in this case.

Triple decomposition for rough wall flow quantities

The Reynolds decomposition decomposes a turbulent flow into a mean and fluc-
tuations about that mean. Here, the flow quantity is decomposed into a temporal
average and temporal fluctuations,

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞(𝑥, 𝑦, 𝑧) + 𝑞′(𝑥, 𝑦, 𝑧, 𝑡). (2.4)

In a smooth wall turbulent channel flow, the temporal average does not vary in the
streamwise or spanwise directions (𝑥, 𝑧), so the temporal average is equal to the



11

spatiotemporal average, ⟨𝑞⟩ = 𝑞. However, in a rough wall turbulent channel flow,
the temporal average has spatial variation, ⟨𝑞⟩ ̸= 𝑞. The temporal average can be
further decomposed into the spatiotemporal average and wake field,

𝑞(𝑥, 𝑦, 𝑧) = ⟨𝑞⟩ (𝑦) + 𝑞(𝑥, 𝑦, 𝑧) (2.5)

which leads to the triple decomposition,

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = ⟨𝑞⟩ (𝑦) + 𝑞(𝑥, 𝑦, 𝑧) + 𝑞′(𝑥, 𝑦, 𝑧, 𝑡). (2.6)

Also, define the sum of wake field and temporal fluctuations,

𝑞′′(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞(𝑥, 𝑦, 𝑧) + 𝑞′(𝑥, 𝑦, 𝑧, 𝑡), (2.7)

so that the following holds:

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = ⟨𝑞⟩ (𝑦) + 𝑞′′(𝑥, 𝑦, 𝑧, 𝑡). (2.8)

2.2 Fourier transform
The Fourier transform in time and the streamwise and spanwise directions is natural
for the streamwise- and spanwise-homogeneous flows studied in this thesis. The
Fourier transform pair used is

𝑞(𝑦; 𝑘𝑥 , 𝑘𝑧, 𝜔) =
∫∞

−∞

∫∞

−∞

∫∞

−∞
𝑞(𝑥, 𝑦, 𝑧, 𝑡)𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑧𝑧−𝜔𝑡)𝑑𝑥𝑑𝑧𝑑𝑡

𝑞(𝑥, 𝑦, 𝑧, 𝑡) =
∫∞

−∞

∫∞

−∞

∫∞

−∞
𝑞(𝑦; 𝑘𝑥 , 𝑘𝑧, 𝜔)𝑒𝑖(𝑘𝑥𝑥+𝑘𝑧𝑧−𝜔𝑡)𝑑𝑘𝑥𝑑𝑘𝑧𝑑𝜔.

(2.9)

2.3 Resolvent analysis
Begin with the incompressible, Newtonian Navier-Stokes equations. Time is nondi-
mensionalized by 𝛿/𝑢𝜏, spatial coordinates by 𝛿, pressure by 𝜌𝑢2

𝜏, and velocity by
𝑢𝜏.

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
= − 𝜕𝑝

𝜕𝑥𝑖
+

1
𝑅𝑒𝜏

𝜕2𝑢𝑖
𝜕𝑥 𝑗𝜕𝑥 𝑗

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0.

(2.10)

Apply the Reynolds decomposition 𝑞(x, 𝑡) = ⟨𝑞⟩ (𝑦) + 𝑞′′(x, 𝑡), and take the spa-
tiotemporal average,

(2.11)
𝜕𝑢′′

𝑖

𝜕𝑡
+

〈
𝑢 𝑗

〉 𝜕 ⟨𝑢𝑖⟩
𝜕𝑥 𝑗

+ 𝑢′′𝑗
𝜕 ⟨𝑢𝑖⟩
𝜕𝑥 𝑗

+
〈
𝑢 𝑗

〉 𝜕𝑢′′
𝑖

𝜕𝑥 𝑗
+ 𝑢′′𝑗

𝜕𝑢′′
𝑖

𝜕𝑥 𝑗

= −𝜕(⟨𝑝⟩ + 𝑝′′)
𝜕𝑥𝑖

+
1
𝑅𝑒𝜏

𝜕2(⟨𝑢𝑖⟩ + 𝑢′′
𝑖
)

𝜕𝑥 𝑗𝜕𝑥 𝑗
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𝑢 𝑗

〉 𝜕 ⟨𝑢𝑖⟩
𝜕𝑥 𝑗

+

〈
𝑢′′
𝑗

𝜕𝑢′′
𝑖

𝜕𝑥 𝑗

〉
= −𝜕 ⟨𝑝⟩

𝜕𝑥𝑖
+

1
𝑅𝑒𝜏

𝜕2 ⟨𝑢𝑖⟩
𝜕𝑥 𝑗𝜕𝑥 𝑗

. (2.12)

Subtract the spatiotemporally averaged equation to obtain the equations for the
fluctuations, assuming that ⟨𝑣⟩ = ⟨𝑤⟩ = 0,

𝜕𝑢′′
𝑖

𝜕𝑡
+ ⟨𝑢⟩

𝜕𝑢′′
𝑖

𝜕𝑥
+ 𝑣′′

𝑑 ⟨𝑢𝑖⟩
𝑑𝑦

− 1
𝑅𝑒𝜏

𝜕2𝑢′′
𝑖

𝜕𝑥 𝑗𝜕𝑥 𝑗
+
𝜕𝑝′′

𝜕𝑥𝑖
= −

(
𝑢′′𝑗
𝜕𝑢′′

𝑖

𝜕𝑥 𝑗
−

〈
𝑢′′
𝑗

𝜕𝑢′′
𝑖

𝜕𝑥 𝑗

〉)
𝜕𝑢′′

𝑖

𝜕𝑥𝑖
= 0.

(2.13)

Take the Fourier transform in time and the homogeneous spatial directions 𝑥 and 𝑧
of the NSE to obtain, noting that Δ ≜ 𝜕2

𝜕𝑦2 − 𝑘2
𝑥 − 𝑘2

𝑧 ,(
−𝑖𝜔 + 𝑖𝑘𝑥 ⟨𝑢⟩ −

1
𝑅𝑒𝜏

Δ

)
𝑢̂ +

𝑑 ⟨𝑢⟩
𝑑𝑦

𝑣̂ + 𝑖𝑘𝑥 𝑝 = 𝑓1(
−𝑖𝜔 + 𝑖𝑘𝑥 ⟨𝑢⟩ −

1
𝑅𝑒𝜏

Δ

)
𝑣̂ +

𝑑𝑝

𝑑𝑦
= 𝑓2(

−𝑖𝜔 + 𝑖𝑘𝑥 ⟨𝑢⟩ −
1
𝑅𝑒𝜏

Δ

)
𝑤̂ + 𝑖𝑘𝑧𝑝 = 𝑓3

𝑖𝑘𝑥𝑢̂ +
𝑑𝑣̂

𝑑𝑦
+ 𝑖𝑘𝑧𝑤̂ = 0,

(2.14)

where

𝑓𝑖 ≜ −
�(

𝑢′′
𝑗

𝜕𝑢′′
𝑖

𝜕𝑥
− 𝑢′′

𝑗

〈
𝜕𝑢′′

𝑖

𝜕𝑥

〉)
. (2.15)

Then, the resolvent formulation in primitive variables is written[
û
𝑝

]
=

(
−𝑖𝜔

[
I

0

]
−

[
Lk −∇
∇⊤ 0

])−1

︸                                ︷︷                                ︸
Resolvent H∈C4𝑁𝑦×3𝑁𝑦

[
I
0

]
f̂, (2.16)

where

Lk ≜


−𝑖𝑘𝑥 ⟨𝑢⟩ + 𝑅𝑒−1

𝜏 Δ 𝜕𝑦 ⟨𝑢⟩
−𝑖𝑘𝑥 ⟨𝑢⟩ + 𝑅𝑒−1

𝜏 Δ

−𝑖𝑘𝑥 ⟨𝑢⟩ + 𝑅𝑒−1
𝜏 Δ


∇ ≜


𝑖𝑘𝑥
𝜕
𝜕𝑦

𝑖𝑘𝑧

 , û ≜


𝑢̂

𝑣̂

𝑤̂

 , f̂ ≜


𝑓1

𝑓2

𝑓3

 ,
(2.17)
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or in the shorter form [
û
𝑝

]
= H f̂. (2.18)

Using the SVD H = ∑𝑁
𝑗=1 𝜎𝑗𝜓 𝑗𝜙

†
𝑗
, a modal representation can be written for the

velocity fluctuations,[
û
𝑝

]
=

𝑁∑︁
𝑗=1
𝜎𝑗𝜓 𝑗 𝜒 𝑗 where 𝜒 𝑗 =

〈
𝜙 𝑗 , f̂

〉
. (2.19)

2.4 SPOD
In this section, SPOD is derived following the procedure of Nekkanti and Schmidt,
2021. Calculating SPOD begins with a time series of data arranged into columns
q𝑖 = q(𝑡𝑖) where 𝑖 = 1, ..., 𝑛𝑡 . In this thesis, the data is already transformed in the
spatial homogeneous directions, 𝑥 and 𝑧. From this time series, a snapshot matrix
is constructed,

Q =
[
q1, q2, . . . , q𝑛𝑡

]
. (2.20)

The energy of each snapshot is expressed in terms of a spatial inner product over
the domain of interest Ω,

∥q∥2
𝑥= ⟨q, q⟩𝑥 =

∫
Ω

q∗(𝑥, 𝑡)W(𝑥)q(𝑥, 𝑡)d𝑥, (2.21)

where𝑊 is a positive definite Hermitian weight matrix. SPOD determines optimal
modes in the sense of the space-time inner product for statistically stationary data,

∥q∥2
𝑥,𝑡= ⟨q, q⟩𝑥,𝑡 =

∫∞

−∞

∫
Ω

q∗(𝑥, 𝑡)W(𝑥)q(𝑥, 𝑡)d𝑥 d𝑡. (2.22)

Then, blocks of the Fourier-transformed data are assembled,

Q(𝑘) =
[
q(𝑘)

1 , q(𝑘)
2 , . . . , q(𝑘)

𝑛 𝑓 𝑓 𝑡

]
. (2.23)

Each block is considered to be a statistically independent realization of the flow. A
Hamming window is applied to each block to reduce the spectral leakage,

𝑤(𝑖 + 1) = 0.54 − 0.46 cos
(

2𝜋𝑖
𝑛 𝑓 𝑓 𝑡 − 1

)
for 𝑖 = 0, 1, . . . , 𝑛 𝑓 𝑓 𝑡 − 1. (2.24)

Then, the discrete Fourier transform is taken on each windowed block,

q̂(𝑘)
𝑗

= F
{
𝑤( 𝑗)q(𝑘)

𝑗

}
, (2.25)
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to create the Fourier-transformed data matrix,

Q̂(𝑘) =
[
q̂(𝑘)

1 , q̂(𝑘)
2 , . . . , q̂(𝑘)

𝑛 𝑓 𝑓 𝑡

]
, (2.26)

where q̂(𝑘)
𝑖

denotes the 𝑘-th Fourier realisation at the 𝑖-th discrete frequency. Then,
for each frequency 𝑙, the matrix

Q̂𝑙 =
[
q̂(1)
𝑙
, q̂(2)

𝑙
, . . . , q̂(𝑛𝑏𝑙𝑘)

𝑙

]
(2.27)

is constructed. From this matrix, the SPOD modes, 𝚽, and energies, 𝜆, can be
computed as the eigenvectors and eigenvalues of the cross-spectral density (CSD)
tensor S𝑙 = Q̂𝑙Q̂∗

𝑙
. The snapshot approach is taken for efficiency, since the number

of spatial degrees of freedom 𝑛 greatly exceeds the number of realizations,

1
𝑛𝑏𝑙𝑘

Q̂∗
𝑙WQ̂𝑙𝚼𝑙 = 𝚼𝑙𝚲𝑙 . (2.28)

Then, the coefficients 𝚼𝑙 =
[
𝜐

(1)
𝑙
, 𝜐

(2)
𝑙
, . . . , 𝜐

(𝑛𝑏𝑙𝑘)
𝑙

]
that expand the SPOD modes in

terms of the Fourier realizations are used to recover the SPOD modes,

𝚽𝑙 =
1

√
𝑛𝑏𝑙𝑘

Q̂𝑙𝚼𝑙𝚲
−1/2
𝑙

. (2.29)

The matrices 𝚲𝑙 = diag
(
𝜆

(1)
𝑙
, 𝜆

(2)
𝑙
, . . . , 𝜆

(𝑛𝑏𝑙𝑘)
𝑙

)
, where by convention 𝜆(1)

𝑙
≥ 𝜆

(2)
𝑙

≥

· · · ≥ 𝜆
(𝑛𝑏𝑙𝑘)
𝑙

, and 𝚽𝑙 =
[
ϕ(1)
𝑙
,ϕ(2)

𝑙
, . . . ,ϕ(𝑛𝑏𝑙𝑘)

𝑙

]
contain the SPOD energies and

modes, respectively.

Reconstructing data in the frequency domain using SPOD
Then, SPOD can be used to reconstruct the data in the frequency domain. The
original realizations of the Fourier transform at each frequency 𝑙 can be written

Q̂𝑙 = 𝚽𝑙A𝑙 , (2.30)

where A𝑙 is the matrix of expansion coefficients:

A𝑙 =
√
𝑛𝑏𝑙𝑘𝚲

1/2
𝑙

𝚼∗
𝑙 = 𝚽∗

𝑙WQ̂𝑙 . (2.13)

The structure of 𝐴, dropping the 𝑙 notation, is

A =


𝑎11 𝑎12 · · · 𝑎1𝑛𝑏𝑙𝑘

𝑎21 𝑎22 · · · 𝑎2𝑛𝑏𝑙𝑘
...

... . . . ...
𝑎𝑛𝑏𝑙𝑘1 𝑎𝑛𝑏𝑙𝑘2 · · · 𝑎𝑛𝑏𝑙𝑘𝑛𝑏𝑙𝑘


. (2.14)



15

The coefficients in 𝐴 cant be used to reconstruct a specific Fourier realization from
the SPOD modes. Also, they can be used to expand an SPOD mode in terms of the
Fourier realizations,

𝚽𝑙 = (1/𝑛𝑏𝑙𝑘 ) Q̂𝑙A∗
𝑙𝚲

−1
𝑙 . (2.31)

Then, the Fourier-transformed data of the 𝑘-th block can be reconstructed as

Q̂(𝑘) =

(∑︁
𝑖

𝑎𝑖𝑘ϕ
(𝑖)

)
𝑙=1

,

(∑︁
𝑖

𝑎𝑖𝑘ϕ
(𝑖)

)
𝑙=2

, . . . ,

(∑︁
𝑖

𝑎𝑖𝑘ϕ
(𝑖)

)
𝑙=𝑛 𝑓 𝑓 𝑡

 (2.32)

and the original data in the 𝑘-th blocks can be recovered using the inverse Fourier
transform, accounting for the window weight,

q(𝑘)
𝑗

=
1

𝑤( 𝑗)
F −1

{
q̂(𝑘)
𝑗

}
. (2.33)

Equivalence between SPOD and resolvent modes for uncorrelated forcing
For uncorrelated forcing, SPOD and resolvent modes are identical (Towne et al.,
2018). This can be observed by writing the cross spectral density tensor at a given
frequency, dropping the 𝑙 notation,

S = E [q̂q̂∗] . (2.34)

Expanding in terms of resolvent modes 𝜓, gains 𝜎, and weights 𝜒 yields

S =
∞∑︁
𝑗=1

∞∑︁
𝑘=1

𝜓 𝑗𝜎𝑗𝜎𝑘𝜓𝑘𝑆𝜒 𝑗 𝜒𝑘 , (2.35)

where
𝑆𝜒 𝑗 𝜒𝑘 = E

[
𝜒 𝑗 𝜒

∗
𝑘

]
. (2.36)

Then,

S =
∞∑︁
𝑗=1
𝜆 𝑗ϕ 𝑗ϕ

∗
𝑗

=
∞∑︁
𝑗=1

∞∑︁
𝑘=1

𝜓 𝑗𝜎𝑗𝜎𝑘𝜓𝑘𝑆𝜒 𝑗 𝜒𝑘 .

(2.37)

For the case where the resolvent weights are uncorrelated from one another, 𝑆𝜒 𝑗 𝜒𝑘 =
𝜇 𝑗𝛿 𝑗 𝑘 where 𝜇 𝑗 is a scalar. Then,

S =
∞∑︁
𝑗=1
𝜆 𝑗ϕ 𝑗ϕ

∗
𝑗

=
∞∑︁
𝑗=1
𝜓 𝑗𝜓

∗
𝑗𝜎

2
𝑗 𝜇 𝑗 .

(2.38)
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By orthogonality, the sets of SPOD and resolvent modes are identical when ranked
in descending order by 𝜆 𝑗 and 𝜎2

𝑗
𝜇 𝑗 respectively. If 𝜇 𝑗 = 1 for every 𝑗 , then the

ordering of the two sets is identical and 𝜎2
𝑗

= 𝜆 𝑗 and 𝜓 𝑗 = ϕ 𝑗 .

2.5 Datasets
Channel DNS with sand grain roughness in the fully rough regime
This dataset is extensively applied in Ch. 3, 4, and 5. The temporal average
computed over 50 eddy turnover times from a DNS of a channel flow over sand
grain roughness in the fully rough regime is provided by Hantsis and Piomelli, 2020.
The code solves the Navier-Stokes equations using a second-order accurate central
difference in space on a staggered mesh (Keating et al., 2004). A second-order
accurate semi-implicit time advancement method is used, where Crank-Nicolson is
used for the wall-normal diffusive terms and low-storage third-order Runge-Kutta
is applied to the remaining terms. The Poisson equation is solved using an efficient
Fourier transform solver. The roughness is modeled using an immersed-boundary
method (IBM) based on the volume of fluid fraction (VOF) approach. The VOF
𝜑 takes on values between and including 0 and 1 in the solid and fluid regions
respectively. Fractional values of 𝜑 are achieved when the surface intersects a grid
cell. The form of the IBM force is given as

𝐹𝑖(𝑥, 𝑦, 𝑧) = −
𝑢̂′
𝑖
(𝑥, 𝑦, 𝑧)
Δ𝑡

(1 − 𝜑(𝑥, 𝑦, 𝑧)), (2.39)

where 𝑢̂′
𝑖
the predicted velocity, and Δ𝑡 is the time step. This force is used to correct

the velocity to 0 inside of the roughness.

The bottom and top roughness surfaces are mirrored across the channel centerline.
The sand grain roughness consists of randomly oriented ellipsoids with semiaxes 𝑘 ,
1.4𝑘 , and 2𝑘 , where 𝑘 = 0.04𝛿 (Scotti, 2006). In the fully rough regime, 𝑘𝑠 ≈ 1.6𝑘
for this geometry. The simulation is run at a constant 𝑅𝑒𝑏 = 21,400. The domain
has dimensions (𝐿𝑥 , 𝐿𝑦, 𝐿𝑧) = (6𝛿, 2.064𝛿, 3𝛿), where the choice of 𝐿𝑦 = 2.064𝛿
instead of the conventional 𝐿𝑦 = 2𝛿 is made to account for blockage effects. The
simulation parameters are documented in Table 2.1.

Type Method 𝑘/𝛿 𝑅𝑒𝜏 𝑢𝜏 𝐿𝑥/𝛿 𝐿𝑦/𝛿 𝐿𝑧/𝛿 𝑁𝑥 𝑁𝑦 𝑁𝑧 Δ𝑥+ Δ𝑦+
𝑚𝑖𝑛

Δ𝑧+

Sand grain DNS 0.04 1745 0.0814 6 2.064 3 1024 530 512 10.2 0.84 10.2

Table 2.1: Simulation parameters
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Figure 2.1: Surface roughness geometry.

2.6 Relating terms in the mean momentum balance to wake field fluctuations
In the mean momentum balance (here, velocity normalized by𝑈𝑏, spatial coordinates
by 𝛿) for a smooth wall flow as depicted in Figure 2.2, the mean flow gradient is
balanced by the Reynolds stress,

−⟨Π⟩︸︷︷︸
pressure gradient

=
𝑑

𝑑𝑦

[
𝜈
𝑑 ⟨𝑢⟩
𝑑𝑦︸ ︷︷ ︸

mean flow gradient

−
〈
𝑢′𝑣′

〉︸︷︷︸
Reynolds stress

]
. (2.40)

The mean momentum balance for rough wall flow, shown in Figure 2.3, adds addi-

Figure 2.2: Mean momentum balance for smooth wall flow.

tional terms: pressure and viscous drag forces on the surface roughness elements,
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as well as a dispersive stress,

−⟨Π⟩𝑠 =
𝑑

𝑑𝑦

[
𝜈
𝑑 ⟨𝑢⟩𝑠
𝑑𝑦

−
〈
𝑢′𝑣′

〉
𝑠︸ ︷︷ ︸

stochastic stress

− ⟨𝑢̃𝑣̃⟩𝑠︸︷︷︸
dispersive stress

]
+ 𝑓𝑝︸︷︷︸

pressure force

+ 𝑓𝜈︸︷︷︸
viscous force

. (2.41)

The pressure and viscous forces can be related to wake field fluctuations and the

Figure 2.3: Mean momentum balance for rough wall flow for the case of sand grain
roughness.

mean flow, using relations derived by taking the superficial average of the Navier-
Stokes equations in a rough wall flow where the surface geometry is represented
using the volume of fluid fraction (Yuan and Piomelli, 2014). The pressure force is
calculated by

𝑓𝑝 = −
〈
𝜕𝑝

𝜕𝑥

〉
𝑠

, (2.42)

and the viscous force by

𝑓𝜈 =
〈
𝜕

𝜕𝑥𝑘

(
𝜈
𝜕𝑢̃

𝜕𝑥𝑘

)〉
𝑠︸              ︷︷              ︸

𝑓𝜈1

−2𝜈
𝑑 ⟨𝑢⟩
𝑑𝑦

𝑑Φ

𝑑𝑦︸           ︷︷           ︸
𝑓𝜈2

−𝜈 ⟨𝑢⟩ 𝑑
2Φ

𝑑𝑦2︸        ︷︷        ︸
𝑓𝜈3

. (2.43)

2.7 Relationship between the IBM force and the pressure and viscous drag
forces

The sum of the viscous and pressure drag at a given location and time is equal to the
streamwise body force imposed by the IBM Yuan, 2015. That body force is given
by

𝑓𝑑(𝑥, 𝑧, 𝑡) =
∫1

0
𝐹1(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑦 (2.44)
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Figure 2.4: (left) The breakdown of the drag force 𝑓 into the pressure 𝑓𝑝 and viscous
contributions 𝑓𝜈. (right) The components of the viscous drag 𝑓𝜈 originating from
the streamwise velocity wake field, 𝑓𝜈1 and two mean-dependent terms 𝑓𝜈2 and 𝑓𝜈3 .

for the channel flow considered in this thesis, given outer scaled spatial variables
and velocities. Therefore, 〈

𝑓𝑑

〉
𝑥𝑧

= 𝑓𝑝 + 𝑓𝜈 . (2.45)

Therefore, to calculate the plane- and time-averaged streamwise body force, 𝑓𝑝 and
𝑓𝜈 are calculated from the pseudopressure, the wake field, and the mean flow profile.

2.8 Calculation of the pressure wake field and drag forces from velocity source
terms

The contributions to the time averaged pressure can be broken down into source
terms in the Poisson equation.

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑖
(⟨𝑝⟩ + 𝑝) = − 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

( velocity terms︷                                         ︸︸                                         ︷
⟨𝑢𝑖⟩ 𝑢̃ 𝑗 + 𝑢̃𝑖

〈
𝑢 𝑗

〉︸              ︷︷              ︸
fast

+ 𝑢̃𝑖𝑢̃ 𝑗︸︷︷︸
dispersive

+ 𝑢′
𝑖
𝑢′
𝑗︸︷︷︸

stochastic

)
− 𝜕𝐹𝑖

𝜕𝑥𝑖︸︷︷︸
IBM force

There is a fast source that involves the interaction of the mean profile and fluctuations.
There is also a source involving just the wake field fluctuations and another based
on the time-averaged stochastic stress. The boundary forcing also contributes.

When the pressures associated with these quantities are plotted for the sand grain
roughness in Figure 2.5, it is observed that the boundary force contribution dom-
inates. Of the velocity terms, the major contribution comes from the dispersive
source. All of the curves have the same shape, indicating that there is value to
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Figure 2.5: The drag force arising from the pseudopressure and contributions from
the different source terms.

calculating the pressure from any known source, since it can lead to a full esti-
mate of the force if the relative magnitude of that contribution can be predicted.
The least contribution is from the stochastic source, which makes sense since the
stochastic fluctuations do not have a strong presence within the roughness itself.
The fast source also does not contribute much because the mean is small within the
roughness.

The drag force from the pressure calculated from the dispersive source is denoted

𝑓𝑝𝑑 = −
〈
𝜕𝑝𝑑

𝜕𝑥

〉
𝑠

, (2.46)

where 𝑝𝑑 = 𝑝𝑑 − ⟨𝑝𝑑⟩ and

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑖
𝑝𝑑 = − 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

(
𝑢̃𝑖𝑢̃ 𝑗

)
. (2.47)
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C h a p t e r 3

LINEAR TRENDS IN MODAL RECONSTRUCTIONS OF WAKE
FIELD TURBULENCE

3.1 Introduction
Surface roughness induces a spatial variation in the temporally averaged flow near
the wall, known as the wake field. In this chapter, modal reconstructions of wake
field turbulence over a sand grain roughness in channel flow are constructed using
resolvent modes calculated with smooth and rough wall mean flows at the same fric-
tion Reynolds number, and weights computed to provide a best fit to the data. The
modes are constructed using no-slip and no-penetration boundary conditions at the
bottom and top of the domain, so that knowledge of the surface roughness geometry
enters only through the weights and not into the resolvent mode basis. Inspired
by the study of reduced representations of surface roughness by Mejia-Alvarez and
Christensen, 2010, the effect of different truncations of the wave numbers most
highly represented in the surface roughness and different numbers of retained resol-
vent modes are investigated to inform the choices made when calculating resolvent
mode reconstructions. These reconstructions are analyzed to evaluate the efficacy
of describing the wake field and forcing terms in the mean momentum balance
using resolvent modes computed with and without knowledge of the rough wall
mean flow. The ability of the wake field representations, in conjunction with the
original mean, to represent the original roughness surface using isosurfaces of flow
metrics is evaluated. Modes of the wake field and surface roughness are compared,
revealing average magnitude and phase relationships which could inform modeling.
Inspired by these observed trends, the validity of a linear ansatz which relates the
roughness geometry and the weights is evaluated.

3.2 Wake field reconstructions using resolvent modes
Dataset
This analysis utilizes the wake field velocity, mean flow, and pressure data calculated
from the temporal average of a DNS dataset of periodic channel flow with sand grain
roughness on both walls at 𝑅𝑒𝜏 = 1745, documented in Sec. 2.5. The wake field
is calculated by subtracting the intrinsic average (ũ = u − ⟨u⟩), and averaging top
and bottom. Since the wake field does not extend past the channel centerline, and
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the roughness surface is mirrored top and bottom, it is justifiable to treat the top and
bottom temporally-averaged flows as independent instances of the same flow. The
averaging operation used is

𝑢(𝑥, 𝑦, 𝑧) = 0.5 [𝑢(𝑥, 𝑦, 𝑧) + 𝑢(𝑥, 2.064 − 𝑦, 𝑧)]
𝑣(𝑥, 𝑦, 𝑧) = 0.5 [𝑣(𝑥, 𝑦, 𝑧) − 𝑣(𝑥, 2.064 − 𝑦, 𝑧)]
𝑤(𝑥, 𝑦, 𝑧) = 0.5 [𝑤(𝑥, 𝑦, 𝑧) + 𝑤(𝑥, 2.064 − 𝑦, 𝑧)] ,

(3.1)

where the difference for averaging 𝑣 accounts for the sign difference between the
wall-normal fluctuations at the bottom and top (mirrored) surfaces.

Resolvent mode reconstructions
The wake field is Fourier-transformed in the homogeneous streamwise 𝑘𝑥 and span-
wise 𝑘𝑧 directions. Each wake field Fourier mode, denoted û(𝑘𝑥𝑟 , 𝑘𝑧𝑟 ), is recon-
structed using the sum of weighted resolvent modes computed to correspond to that
wave number as documented in Table 3.1. The resolvent is computed on a 400 point
Chebyshev grid defined on 𝑦𝑐ℎ𝑒𝑏 ∈ [−1, 1], which maps to 𝑦/𝛿 ∈ [0, 2.064] by the
equation

𝑦

𝛿
=

2.064
2

(𝑦𝑐ℎ𝑒𝑏 + 1). (3.2)

Base flows

The resolvent modes are calculated using two choices of base flow at 𝑅𝑒𝜏 = 1745;
a smooth wall mean profile modeled using a Cess empirical eddy viscosity with
parameters 𝐴 = 25.4 and 𝜅 = 0.426 and a rough wall mean profile from the data,
mapped to the domain using Eq. 3.2 (Cess, 1958). No-slip and no-penetration
boundary conditions are enforced at the top and bottom of the domain. The choices
of base flow and wave numbers considered are outlined in Table 3.1. For the case
SM and RM, the wave number for which the resolvent is calculated matches the wave
number of the wake field mode. For the case SMC, a choice is made to calculate
the resolvent modes with a convecting velocity corresponding to the height where
the dispersive stresses are expected to peak of 𝑦/𝛿 = 0.04. This choice localizes the
peak amplitudes of the resolvent modes, and is investigated to determine whether
this basis is more efficient at modeling the wake field data.

Choosing the rough wall mean is most consistent with the derivation of the resolvent
analysis. Choosing the smooth wall mean is motivated by the desire to analyze and
predict the wake field as the flow response given a surface roughness and the
nominally smooth wall mean flow, without knowledge of the rough wall mean.
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Designation Description 𝑅𝑒𝜏 𝑅𝑒𝑏 𝑘𝑥 𝑘𝑧 𝑐

SM Smooth wall mean 1745 36,940 𝑘𝑥𝑟 𝑘𝑧𝑟 0
RM Rough wall mean 1745 21,400 𝑘𝑥𝑟 𝑘𝑧𝑟 0
SMC Smooth wall mean + effective convecting velocity 1745 36,940 𝑘𝑥𝑟 𝑘𝑧𝑟 ⟨𝑢⟩ (𝑦 = 0.04)

Table 3.1: Base flow and wave number choice for considered cases

Surface roughness wave number selection

In the study of Mejia-Alvarez and Christensen, 2010, the POD modes in a reduced
representation of a surface roughness were included based on the variance captured
in each POD mode. In a similar manner, the present study considers reduced
representations of the surface geometry created by retaining the 𝑁K wave numbers
k = (𝑘𝑥𝑟 , 𝑘𝑧𝑟 ) most strongly represented in the roughness 𝑟(𝑥, 𝑧) by mode amplitude
|𝑟(𝑘𝑥𝑟 , 𝑘𝑧𝑟 )|, out of a maximum of 𝑁𝑡𝑜𝑡𝑎𝑙 = 2.6 × 105 wave numbers. That wave
number set is denotedK. In this analysis, only positive streamwise wave numbers are
considered, while both positive and negative spanwise wave numbers are retained.
The set is sorted in decreasing order of roughness mode amplitude and written as
K =

(
k0, k1, k2, · · · , k𝑁K

)
, where |𝑟(k0)|≥ |𝑟(k1)|≥ · · · ≥ |𝑟(k𝑁K )|.

Figure 3.1 depicts the actual appearance of the filtered surface for selected values
of 𝑁K . As the number of wave numbers is increased, the filtered roughness start to
more strongly resemble the original rough surface. Visually, 𝑁K = 4× 104 is nearly
indistinguishable from the original surface.

To understand how these surfaces differ statistically, Figure 3.2 displays how the
root-mean-squared (RMS) height 𝑘𝑟𝑚𝑠, skewness 𝑆𝑠𝑘 , kurtosis 𝑆𝑘𝑢, and effective
slope 𝐸𝑆 statistics of the surface roughness defined in Eq. 3.5-3.8 vary with 𝑁K .
The RMS height and effective slope of the roughness increase until approximately
𝑁K = 104 out of 𝑁𝑡𝑜𝑡𝑎𝑙 = 2.6 × 105 possible wave numbers before leveling off.
The skewness is near 0 until around 𝑁K = 103, whereupon the skewness increases
until around 𝑁K = 4 × 103 before relaxing to a final value near 𝑁K = 105. This
suggests that there is a band of wave numbers from 𝑁K = 103−4×103 that make the
major contribution to the skewness metric. Meanwhile, the kurtosis peaks before
reaching 𝑁K = 102, and then gradually decreases to a final value near 𝑁K = 105.
This suggests that different scales destructively interfere to determine the kurtosis
of the full surface. The correlation coefficient computed between the two surfaces,
calculated as

Corr(𝑟 𝑓 , 𝑟) =
Cov(𝑟, 𝑟 𝑓 )
𝜎𝑟𝜎𝑟 𝑓

, (3.3)
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Figure 3.1: Zoomed views of (a) original roughness geometry and filtered versions
where 𝑁K is (b) 4 × 104, (c) 104, (d) 5 × 103, (e) 103, and (f) 102.

increases to approximately 1 at 𝑁K = 104. The 2-norm error, calculated as

Err(𝑟 𝑓 , 𝑟) =

√︃〈
𝑟 − 𝑟 𝑓

〉
𝑥𝑧√︂〈

𝑟2
𝑓

〉
𝑥𝑧

, (3.4)

decreases to roughly 10% at 𝑁K = 104, but takes until 𝑁K ≈ 𝑁𝑡𝑜𝑡𝑎𝑙 to achieve 1%
error.

When the statistics for the filtered surface that most resembles the original surface,
𝑁K = 4 × 104, are considered in Figure 3.2, it is notable that this surface falls in
the region where the 𝑘+

𝑟𝑚𝑠, 𝑆𝑠𝑘 , 𝑆𝑘𝑢 and 𝐸𝑆 statistics have either leveled off or are
relaxing to the values of the unfiltered surface. The 𝑁K = 104 and 𝑁K = 5 × 103

surfaces still visually and statistically resemble the unfiltered surface. The 𝑁K = 103

and 𝑁K = 102 surfaces do not match visually, and in particular their skewness values
are not close to the original surface. The trends observed with 𝑁K suggest that at
least 𝑁K = 104 wave numbers are required to capture the character and statistics of
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the surface. Also, different different bands of wave numbers contribute to different
surface statistics; major contributions to the skewness occur between 𝑁K = 103

and 104, while wave numbers less than 103 make contributions to the RMS height,
kurtosis, and effective slope. For further analysis, cases for 𝑁K = 4 × 104 and
𝑁K = 104 are considered.

𝑘𝑟𝑚𝑠 =
√︂〈(

𝑟 − ⟨𝑟⟩𝑥𝑧
)2

〉
𝑥𝑧

(3.5)

𝑆𝑠𝑘 =
1
𝑘3
𝑟𝑚𝑠

〈(
𝑟 − ⟨𝑟⟩𝑥𝑧

)3
〉
𝑥𝑧

(3.6)

𝑆𝑘𝑢 =
1
𝑘4
𝑟𝑚𝑠

〈(
𝑟 − ⟨𝑟⟩𝑥𝑧

)4
〉
𝑥𝑧

(3.7)

𝐸𝑆 =
〈����𝜕𝑟𝜕𝑥 ����〉𝑥𝑧 . (3.8)

Figure 3.2: Statistics of filtered roughness as a function of number of modes retained
𝑁K . The statistics are (a) RMS height, (b) skewness, (c) kurtosis, (d) effective
slope, (e) correlation coefficient between the unfiltered and filtered roughness, and
(f) normalized error computed between the unfiltered and filtered roughness.

Figure 3.3 depicts the variation in 𝑘+
𝑠 predicted for filtered surfaces using several

correlations from the literature, as well as the reference value for the unfiltered
surface, 1.6𝑘+ = 112. These plots suggest that the band of wave numbers between
𝑁K ≈ 103 to 104 contribute strongly to the predicted 𝑘+

𝑠 . This can be likely attributed
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Figure 3.3: Equivalent sand grain roughness values predicted for filtered sur-
faces using various correlations from literature (Abdelaziz et al., 2024; Flack and
Schultz, 2010; Flack, Schultz, and Barros, 2020; Forooghi et al., 2017; Kuwata and
Kawaguchi, 2019).

to their functional dependence on skewness, which has principal contributions from
this same band of wave numbers. The correlations of (Flack, Schultz, and Barros,
2020) and (Abdelaziz et al., 2024) are particularly interesting, since they match the
reference value most closely while having different functional forms. The Flack
correlation depends on RMS height and skewness, and is written as

𝑘𝑠

𝑘𝑟𝑚𝑠
= 2.48(1 + 𝑆𝑠𝑘 )2.24, (3.9)

for surfaces with 𝑆𝑠𝑘 > 0. The Abdelaziz correlation depends on skewness, RMS
height, and effective slope, and is written as

𝑘𝑠

𝑘𝑟𝑚𝑠
= −7.65 − 0.0013𝑆𝑠𝑘 + 2.90𝐸𝑆 + 9.40𝑒0.705𝑆𝑠𝑘𝐸𝑆 . (3.10)

Here, it seems that 𝑁K ≈ 104 captures the drag-contributing scales, so the 𝑘+
𝑠 value

predicted for the filtered surface matches that of the full surface, with the exception
of the Forooghi case. In these regions, the correlations have flattened out in this
regime, and adding more wave numbers does not change the predicted result.

Figure 3.4 depicts the dispersive stresses, calculated by filtering the wake field by
retaining the same wave numbers as in the filtered roughness. Of particular interest
is the ⟨𝑢̃𝑣̃⟩ stress due to its contribution to the mean momentum balance, and it is
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accurately captured with 𝑁K = 104. This is affected by the counteracting trends
observed in the streamwise and wall normal velocities with 𝑁K ; at some values of
𝑁K < 𝑁𝑡𝑜𝑡𝑎𝑙 , the dispersive ⟨𝑢̃𝑢̃⟩ actually exceeds the total contribution while the
⟨𝑣̃𝑣̃⟩ stress is under-represented. It is worth noting that this does not necessarily
depict the response observed in a channel flow over such a filtered surface. This
analysis is simply a way to determine how many wave numbers are required to
represent a statistic of interest.

Figure 3.4: Dispersive (a) streamwise, (b) wall-normal, (c) spanwise, and (d) shear
stresses for wake fields filtered to retain different 𝑁K wave numbers.

Number of retained resolvent modes

At each wave number, the resolvent modes form a complete basis for the velocity
response observed at that wave number. With increasing number of resolvent modes
retained at each wave number, the quality of reconstruction should improve since
the resolvent modes are orthogonal. Since it remained computationally practical
to retain as many as 50 SVD modes out of 400 possible, the number of modes
retained in the analysis is 50. Also, since the wake field is symmetric top and
bottom, and channel resolvent modes exist in symmetric and anti-symmetric pairs,
the anti-symmetric modes are disregarded in this analysis, so effectively 25 resolvent
modes per wave number are used.
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Determining weights

The weights for the modes are computed such that the reconstruction best matches
the Fourier coefficients of the wake field with respect to the spatial inner product,

X★
k = arg min

Xk

∥û −𝚿k𝚺kXk∥2
W , (3.11)

where The reconstruction for the wake field is computed as

ũ★ =
∑︁
k∈K

ΨkΣkX★
k . (3.12)

The approach for reconstructing the wake field over sand grain roughness is presented
graphically in Figure 3.5.

Rough wall data
Reτ = 1745
wake field
ũ(x, y, z)

Fourier
Analysis

Compute
weights X⋆

k

Compute
resolvent

modes & gains

Chosen base flow
Reτ = 1745

U(y)

Compute
reduced order
reconstruction
of wake field

Reduced order reconstruction of
rough wall wake field

˘̃u(x, y, z)

ˆ̃u

K

ΨkΣkX
⋆
k

ΨkΣk

Figure 3.5: The process for computing a reduced order reconstruction of the wake
field using resolvent modes given a choice of base flow and the data wake field.

3.3 Statistics, error analysis, and physical appearance of wake field recon-
structions

In Figure 3.6, the velocity components of the data wake field, filtered components,
and the SMC resolvent mode reconstruction are compared for 𝑁K = 10,000. The
reconstructions reproduce the general magnitude and spatial variation in the fluctu-
ations. The streamwise and spanwise velocities from the filtered data and resolvent
mode reconstructions agree well. The resolvent mode reconstructions somewhat
underestimate the magnitude of the wall-normal velocity fluctuations, and there are
areas where the sign of the fluctuations differs between the filtered and resolvent
mode reconstructions. An example is near (𝑥/𝛿, 𝑧/𝛿) = (0.25, 0.5). The resolvent
mode reconstructions also capture areas of recirculation where the velocity behind
roughness elements is higher near the roughness crest but lower near 𝑦 = 0, which
are important form drag-inducing features.

Correlation and error metrics are defined to measure how well the reconstructions
reproduce the wake field filtered data. Figure 3.7 shows the correlation coefficient
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computed using Eq. 3.13 between the filtered wake field data and the reconstructions
for the velocity components and dispersive shear stress as those quantities vary with
𝑦/𝛿, computed over all fluid points.

Corr(𝑦; 𝑢̃ 𝑓 , 𝑢̃★) =
Cov(𝑢̃ 𝑓 (𝑦), 𝑢̃★(𝑦))
𝜎𝑢̃ 𝑓

(𝑦)𝜎𝑢̃★(𝑦)
. (3.13)

The value of the correlation coefficient is high below the roughness crest for the SM
and RM cases. The SMC case does not correlate well below 𝑦/𝛿 = 0.02, which
can be attributed to the localization of these modes due to the imposed convecting
velocity. The correlation coefficient decreases away from the wall for all cases.

Figure 3.7: Correlation coefficient between filtered wake field and resolvent re-
constructions for (a) streamwise velocity, (b) wall-normal velocity, (c) spanwise
velocity, and (d) shear stress.

Err𝑟𝑚𝑠(𝑦; 𝑢̃ 𝑓 , 𝑢̃★) =

√︂〈(
𝑢̃ 𝑓 (𝑦) − 𝑢̃★(𝑦)

)2
〉

√︂〈
𝑢̃2
𝑓
(𝑦)

〉 . (3.14)

Figure 3.8 depicts the intrinsically-averaged error normalized by the root-mean-
square (RMS) of the fluctuations computed using Eq. 3.14 varying with wall-
normal location 𝑦/𝛿. It is observed that the RMS-normalized error metric is a
relatively unforgiving metric, as it takes on large values between 10% to around
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90% even though the reconstructions match the data well in magnitude, qualitative
appearance, and by correlation coefficient. The RMS-normalized error generally
takes on minimum values beneath the roughness crest before increasing above
the roughness. The RMS-normalized error can be large when the RMS of the
fluctuations is low, which results in high error values above the roughness crest
where the dispersive stresses are small. The RMS-normalized error is relatively low
for the streamwise component within the roughness crest for the SM and RM cases,
but higher near 𝑦 = 0 for the SMC case, which agrees with the trends observed
in the correlation coefficient. The RMS-normalized errors for the spanwise and
wall-normal velocity components are higher, since their fluctuation magnitudes are
smaller.

Figure 3.8: Error normalized by RMS between filtered wake field and resolvent
reconstructions for (a) streamwise velocity, (b) wall-normal velocity, (c) spanwise
velocity, and (d) shear stress.

Err𝑝𝑝(𝑦; 𝑢̃ 𝑓 , 𝑢̃★) =

√︂〈(
𝑢̃ 𝑓 (𝑦) − 𝑢̃★(𝑦)

)2
〉

max(𝑢̃ 𝑓 (𝑦)) − min(𝑢̃ 𝑓 (𝑦))
, (3.15)

Figure 3.9 depicts the intrinsically-averaged error normalized by difference between
the maximum and minimum value (peak-to-peak value) of the fluctuations, com-
puted using Eq. 3.15. This metric appears to be more forgiving, taking on values
of 10% or less, and better reflects the reasonable correlation and agreement be-
tween the data and the reconstructions. The max-min normalized error is small
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throughout the domain, though the SMC case shows higher error than the SM and
RM cases close to 𝑦 = 0. The max-min normalized error trends slightly upwards
above the roughness crest, but far less than in the RMS-normalized error. The error
observed in the SMC case is slightly higher than for the other modal bases close to
𝑦 = 0, matching the trend observed in the RMS-normalized error and the correlation
coefficent.

Figure 3.9: Error with max-min normalization between filtered wake field and
resolvent reconstructions for (a) streamwise velocity, (b) wall-normal velocity, (c)
spanwise velocity, and (d) shear stress.

Figure 3.10 depicts the statistics of the wake field reconstructions. The reconstruc-
tions reproduce the streamwise dispersive stress well in all cases. The SMC case
underestimates the data close to 𝑦 = 0 due to the localization of the modes induced
by the imposed convecting velocity, in agreement with the trend observed in the
correlation and error metrics. For the wall-normal dispersive stress, the best recon-
struction is given by the SM modes, while the RM and SMC modes underestimate
this component. For the spanwise dispersive stress, the SMC reconstruction is near
0 where the peak of the filtered stress is located, while the other reconstructions
approximate the data more closely. The ⟨𝑢̃𝑣̃⟩𝑠 term, which contributes to the mean
momentum balance, is reasonably well captured by all three reconstructions, though
with a slight underestimation. This can be rationally attributed to the underestima-
tion of the 𝑣̃ component since the 𝑢̃ component is generally reconstructed well. The
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relative success in capturing ⟨𝑢̃𝑣̃⟩+
𝑠 means that a resolvent mode basis can capture

at least part of the contribution to the mean stress balance, which is promising for
resolvent mode-based reduced order models.

Figure 3.10: Dispersive stresses from filtered wake field and resolvent reconstruc-
tions for (a) streamwise, (b) wall-normal, (c) spanwise, and (d) shear components.

3.4 Representation of wake field forcing terms in mean momentum balance
The wake field pressure and velocity contribute strongly to the pressure and viscous
drag forces in the mean momentum balance. The wall-normal integrals of the forc-
ing components computed from the filtered data and resolvent reconstructions are
compared in Figure 3.11. The forcing components originating from the dispersive
source term, 𝑓𝑝𝑑 , and the wake field u velocity, 𝑓𝜈1 are reasonably well represented
by the resolvent mode reconstructions, as calculated in Sec. 2.8 and Sec. 2.6,
respectively. The peak forcing term magnitudes from the resolvent reconstructions
are somewhat underestimated, but the profile shapes match reasonably well. To
improve these estimations, a multiplicative factor could be employed.

3.5 Surface representations from wake field representations + the rough wall
mean

The wake field reconstructions are built using resolvent modes which respect the
no-slip condition at the bottom and top planes of the domain, and information about
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Figure 3.11: Forcing terms reproduced by the resolvent mode reconstructions of the
wake field.

the surface roughness enters through the mode weights, which are determined by
projecting wake field data onto the modes. The wake field has values throughout the
domain, including where the volume fraction of fluid is 0, i.e. within the roughness
geometry, which makes this possible. Therefore, it is important to evaluate how
well the spatially varying time average reconstructions, constructed by summing the
rough wall mean and the wake field reconstructions, reproduce the location of the
surface geometry.

Here, three methods for defining a surface using isosurfaces of flow data metrics are
defined and tested on the unfiltered temporal average for different isovalues. Then,
the performance of the metrics for the 𝑁K = 10,000 case are tested. Finally, the
performance of the isosurfaces from resolvent reconstructions is evaluated.

Isosurfaces of time averaged data
There are several physically justifiable metrics of the time averaged velocity for
which isosurfaces provide reasonable estimates for the surface geometry. The most
intuitive conditions are 𝑢 = 𝑣 = 𝑤 = 0, since there should be no-slip and no-
penetration at the surface. In practice, a small positive isovalue of the metric, such
as 𝑢+ = 𝜖 where 𝜖 ≈ 𝑂(1) in inner units, works better than taking 𝑢 = 0, as the
resulting surface geometries become more noisy. Furthermore, 𝑣+ = 𝜖 or 𝑤+ = 𝜖

do not produce meaningful results since the wall normal and spanwise-varying
velocity data are highly multivalued, taking on near-zero values at possibly many
y-coordinates for each (x,z) location. Taking the lowest y-coordinate corresponding
to 𝑢+ = 1, by contrast, yields a meaningful result. It depicts an isosurface which
rides over the top of the roughness geometry and over recirculation regions in the
flow, as depicted in the side view of Figure 3.12. This analysis is similar to the
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blanketing layer analysis of Busse et al., 2017, which considers a higher isovalue of
𝑢+ = 5. The present study considers only lower values of 𝜖 which give isosurfaces
that more closely approximate the roughness geometry, while Busse et al., 2017
considers the effective flow response felt slightly above the roughness.

Figure 3.12: An xy slice of the temporal average and surface roughness. The quivers
indicate the streamwise and spanwise flow directions. The color contour depicts
where the time averaged streamwise velocity is positive (red) and negative (blue).
The isosurface contour in this particular xy slice is also plotted.

The presence of recirculation regions motivates the evaluation of an alternative
choice of velocity metric. While using the isosurface of 𝑢+ = 𝜖 is limited to
capturing the y-coordinates where flow is moving slowly in the positive streamwise
direction, using an isosurface of |𝑢+ |= 𝜖 theoretically permits the discovery of points
where flow is moving slowly in the negative streamwise direction, as is possible at
the bottom of recirculation bubbles, closer to the original roughness surface. This
could give an isosurface that hugs the surface geometry more closely.

Another interesting metric is velocity magnitude, |u+ |=
√︁
𝑢+2 + 𝑣+2 + 𝑤+2 = 𝜖 . This

metric provides a way of incorporating the information provided by the spanwise
and wall-normal velocities into a metric dominated by the streamwise velocity. The
velocity magnitude also has the capacity to position an isosurface where the flow
is moving weakly in the negative streamwise and negative wall-normal directions,
which should be closer to the original roughness surface. This is reflected in Figure
3.12.

Figure 3.13 shows zoomed-in 3D views of the corresponding surfaces, which qual-
itatively supports the assertion that the |𝑢+ |= 1 and |u+ |= 1 surfaces reproduce the
original surface roughness more closely than |𝑢+ |= 1, which renders the smoothest
surface by riding over the recirculation regions.

Figure 3.14 (a-d) compares the rms height, skewness, kurtosis, and effective slope
statistics for the roughness surface with the values calculated for the isosurfaces as a
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Figure 3.13: (a) Original roughness surface compared with isosurfaces of (b) 𝑢+ = 1,
(c)

��𝑢+�� = 1, and (d)
��u+�� = 1.

Figure 3.14: Statistics of isosurfaces of metrics from original time averaged data,
compared with those of the original roughness surface. The statistics are (a) RMS
height, (b) skewness, (c) kurtosis, (d) effective slope, (e) correlation coefficient
between the isosurfaces and original roughness, and (f) normalized error computed
between the isosurfaces and original roughness.

function of the metric isovalue. Generally, with decreasing value of the isovalue, the
statistics of the isosurfaces approach the actual values from the original roughness.
Isovalues as low as 0.1 in plus units generate meaningful isosurfaces. At higher
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values of the isovalue, the isosurfaces generally align with each other. This makes
sense because there should no longer be recirculation regions at the wall-normal
locations which correspond to these isovalues. Moreover, the contributions of
spanwise and wall-normal velocities ought to be dominated by that of the streamwise
velocity at this height as well, so the actual values of the metrics themselves should
collapse. The statistics of isosurfaces calculated using the |u+ | approach the statistics
of the original roughness more quickly than the |𝑢+ | metric. Both of the magnitude
metrics outperform the 𝑢+ metric in this regard. The 𝑘𝑟𝑚𝑠 statistic is recovered
almost exactly at low isovalues. The skewness is best represented with the 𝑢+

metric up until the lowest isovalue plotted. The kurtosis is represented less well by
the 𝑢+ metric at low isovalues, while the magnitude metrics approximately recover
the original surface value. It seems that the magnitude isosurfaces can capture
the rms height, kurtosis, and effective slope reasonably well, while skewness is
more challenging. Figure 3.14 (e-f) plots the correlation coefficient and normalized
error calculated by comparing the original surface and the isosurfaces. The |u+ |
isosurfaces most closely correlate to the original roughness and show the least error
for low isovalues. In this regard, the isosurfaces of |𝑢+ | show a similar but slower
trend towards matching the original roughness well, though the performance of the
two magnitude metrics is similar at the lowest isovalue. The 𝑢+ metric does not go
towards a high correlation coefficient or low error value, because it cannot account
for even a small negative value as seen in recirculation regions.

Figure 3.15: Equivalent sand grain roughness predicted for original roughness and
isosurfaces of time averaged data by (a) Flack, Schultz, and Barros, 2020 and (b)
Abdelaziz et al., 2024 correlations.

Figure 3.15 plots the predicted values of sand grain roughness for the surfaces using
the correlations given by (Flack, Schultz, and Barros, 2020) and (Abdelaziz et al.,
2024). For both correlations at the the lowest isovalue, the prediction for sand grain
roughness given by the magnitude isosurfaces is higher and closer to the original
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surface value than that of the 𝑢+ isosurfaces. The (Abdelaziz et al., 2024) correlation
seems to approach the prediction for the original surface more quickly than the
(Flack, Schultz, and Barros, 2020) correlation. This is attributable to the dependence
on effective slope explicitly contained in the (Abdelaziz et al., 2024) correlation,
which is not captured in the (Flack, Schultz, and Barros, 2020) correlation. It is
likely that in this fully rough regime, since pressure drag dominates and effective
slope increases with frontal area, the effective slope is a good metric for inclusion
in a drag correlation. The fact that the isosurfaces capture statistics including the
effective slope as well as the equivalent sand grain roughness reasonably well raises
hope that the surfaces represented by the isosurfaces could be useful surrogates for
the actual roughness.

Isosurfaces of filtered time average
Then, these metrics are tested in the filtered case, to evaluate the importance of
small scales in calculating the isosurfaces, and plots are shown for 𝑁K = 40,000.
Figures 3.16 and 3.17 show side and zoomed 3D views of the surface, demonstrating
that the appearance of the different isosurfaces in the filtered case is similar to that
observed for the unfiltered case. The trends observed in the statistics and predicted
sand grain roughness identified in the unfiltered case are mostly replicated for a
sufficiently large 𝑁K . Here, 𝑁K = 40,000, which is still only 15% of the original
wave numbers. It is further noted that the isovalues chosen cannot be as small when
computing isosurfaces of the filtered data as those chosen for the unfiltered data. This
indicates that the fidelity of capturing very small velocity values is not as good in
the filtered case. This is demonstrated in Figure 3.18 (e-f), where it is observed that
at the smallest isovalue of 0.1 in inner units, the correlation between the isosurfaces
and the filtered roughness surface suddenly drops while the normalized error is near
1. Therefore, a choice is made not to plot the statistics in Figure 3.18 (a-d) for that
isovalue, since they are spurious. The magnitude isosurfaces once again capture the
trends in rms height, kurtosis, and effective slope reasonably well, but the issues
with recovering the skewness are exacerbated.

Isosurfaces of resolvent reconstructions
Finally, the ability of the resolvent reconstructions to replicate the trends observed in
the isosurfaces of metrics calculated from the filtered and original temporal averages
is evaluated. The trends can be summarized by comparing the isosurfaces from the
filtered data and the resolvent reconstructions.
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Figure 3.16: An xy slice of the filtered temporal average and filtered roughness for
𝑁K = 40,000. The quivers indicate the streamwise and spanwise flow directions.
The color contour depicts where the time averaged streamwise velocity is positive
(red) and negative (blue). The isosurface contour in this particular xy slice is also
plotted.

Figure 3.17: (a) Filtered roughness surface compared with isosurfaces of filtered
velocity data (b) 𝑢+ = 1, (c)

��𝑢+�� = 1, and (d)
��u+�� = 1.

In Figure 3.20, the zoomed views are provided for the 𝑢+ = 1 isosurfaces. All three
resolvent reconstructions reproduce the appearance of the reference isosurface from
the filtered data reasonably well. In Figure 3.21, the statistics, correlation coefficient,
and normalized error between the isosurfaces from the filtered data and the resolvent
reconstructions are plotted. The RM statistics match those of the reference best.
The SM statistics also behave well except at the lowest isovalue plotted. The SMC
statistics demonstrate high error particularly at low isovalues. In Figure 3.22, the
expected equivalent sand grain roughness is compared. Intuitively, the SM and RM
predicted 𝑘+

𝑠 shows good agreement with the reference, while the SMC case shows
poor agreement because of the disagreement in the statistics.
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Figure 3.18: Statistics of isosurfaces of metrics calculated from filtered data, com-
pared with that of the filtered roughness surface. The statistics are (a) RMS height,
(b) skewness, (c) kurtosis, (d) effective slope, (e) correlation coefficient between the
isosurfaces and filtered roughness, and (f) normalized error computed between the
isosurfaces and filtered roughness.

Figure 3.19: Equivalent sand grain roughness predicted for isosurfaces of filtered
velocity and filtered surface by (a) Flack, Schultz, and Barros, 2020 and (b) Abde-
laziz et al., 2024 correlations.

3.6 Linear trends observed in the wake field representations
In this section, the wake field velocity Fourier modes and surface roughness Fourier
modes are compared, to determine if there are trends observable across wavenumber
space which can inform modeling. The analysis is focused on the wavenumbers in the
set 𝐾 which are most represented in the roughness by magnitude. The circular mean
of the phase difference between a wake field mode velocity component 𝑢̂𝑖(𝑦, k) and
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Figure 3.20: 𝑢+ = 1 isosurfaces for (a) filtered data, (b) SM reconstruction, (c) SMC
reconstruction, and (d) RM reconstruction.

Figure 3.21: Statistics of isosurfaces of metrics calculated from the filtered data and
resolvent mode reconstructions. The statistics are (a) RMS height, (b) skewness, (c)
kurtosis, (d) effective slope, (e) correlation coefficient between the isosurfaces and
filtered roughness, and (f) normalized error computed between the isosurfaces and
filtered roughness.

the corresponding roughness mode 𝑟(k) is written as the argument of the resultant
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Figure 3.22: Equivalent sand grain roughness predicted for isosurfaces of the filtered
data and resolvent mode reconstructions by (a) Flack, Schultz, and Barros, 2020 and
(b) Abdelaziz et al., 2024 correlations.

𝑅 = exp (𝑖 [ ̸ 𝑢̂𝑖(𝑦; k) − ̸ 𝑟(k)]),

Δ𝜃𝑖(𝑦) = arg

(∑︁
k∈𝐾

exp (𝑖 [ ̸ 𝑢̂𝑖(𝑦; k) − ̸ 𝑟(k)])
)
. (3.16)

Its variance, defined as 1 − |𝑅 |, is written

Var [Δ𝜃𝑖(𝑦)] = 1 −
�����∑︁k∈𝐾 exp (𝑖 [ ̸ 𝑢̂𝑖(𝑦; k) − ̸ 𝑟(k)])

����� . (3.17)

The average magnitude ratio between |𝑢̂𝑖(𝑦; k)| and 𝑟(k) is defined as

𝑀𝑖(𝑦) =
1
𝑁𝐾

∑︁
k∈𝐾

|𝑢̂𝑖(𝑦; k)|
|𝑟(k)| . (3.18)

In Figure 3.23(a), Δ𝜃𝑖 and its standard deviation are plotted as functions of 𝑦.
The streamwise velocity mode is out of phase with the roughness mode below the
roughness crest, and approximately in phase above the roughness crest. The physical
analogy is having a faster streamwise velocity fluctuation between bumps. The wall-
normal velocity switches between being roughly −𝜋/2 and 𝜋/2 out of phase with the
roughness at 𝑦+ ≈ 60. This is akin to a slight upwards velocity fluctuation upstream
of a bump, and a slight negative velocity fluctuation downstream of the bump. The
spanwise velocity is in phase if k has positive spanwise wavenumber 𝑘𝑧, and out
of phase if 𝑘𝑧 is negative. Essentially, if a (𝑘𝑥 , 𝑘𝑧) wave is canted towards the first
quadrant on a (𝑥, 𝑧) grid, then the spanwise velocity wave is positive, and if the wave
is canted towards the fourth quadrant then the spanwise velocity wave is positive.

In Figure 3.23(b), 𝑀𝑖 and its interquartile range are plotted. Once again, distinct
mean trends are detectable, although the interquartile range is large particularly in
the case of the streamwise component.
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(a)

(b)

Figure 3.23: (a) Phase of 𝑢̂, 𝑣̂, 𝑤̂ relative to 𝑟, 𝑁K = 10,000 (4%). (b) Magnitude of
𝑢̂, 𝑣̂, 𝑤̂ relative to 𝑟 .
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The existence of these linear trends, which seem to hold on a wavenumber-by-
wavenumber basis in a multiscale roughness geometry, suggests that a linear mod-
eling framework for the wake field is potentially useful.

3.7 Proposed modeling methodology using resolvent modes and its challenges
The average linear relationships identified between the roughness and wake field
velocity modes suggest that a linear ansatz for modeling the wake field fluctuations
could be useful. One possible linear model for the wake field fluctuations is formed
as

𝑢𝑖(𝑦) =
∑︁
k∈𝐾

𝑀𝑖𝑟(k) exp (𝑖Δ𝜃𝑖) . (3.19)

This model form assumes that the average linear relationships are sufficient to
give predictions of the wake field mode shape (magnitude and wall-normal phase
variation) and phase alignment (phase with respect to a reference) when applied
across the included wavenumbers.

The resulting wake field from this model form is not necessarily physical; it is not
divergence-free by construction. An improvement to the modeling methodology is
made by determining the mode shape using the sum of weighted resolvent modes,
which is divergence-free by construction. Here, a linear ansatz is developed that
permits the building of a model using resolvent modes, leveraging the interpretation
that the resolvent mode weights contain the influence of the roughness.

For each wave number, the resolvent mode gains and singular values are written as
linearly related to the roughness through a complex coefficient 𝜉 𝑗 , as in

𝜎1𝜒1
...

𝜎𝑁 𝜒𝑁

 =


𝜉1
...
𝜉𝑁

 𝑟, (3.20)

then the wake field can be represented as[
ˆ̃𝑢

ˆ̃𝑝 𝑓 𝑎𝑠𝑡

]
=

𝑁∑︁
𝑗=1
𝜓 𝑗𝜉 𝑗𝑟. (3.21)

This linear ansatz reduces the problem of modeling the wake field using resolvent
modes to modeling 𝜉 𝑗 , which captures how strongly each resolvent mode is forced
by the roughness and the phase alignment of the modes with respect to the roughness
modes.
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To investigate this modeling methodology, the values of 𝜉 𝑗 are calculated from the
best fit weights determined for the resolvent mode reconstructions,

𝜉★𝑗 =
𝜎𝑗 𝜒

★
𝑗

𝑟
, (3.22)

and the |𝑟 |-weighted average computed over the wave number set K is used for the
model, 𝜉⊙

𝑗
. The weighted average and standard deviations of the magnitude and

phase of 𝜉⊙
𝑗

for each resolvent mode is plotted in Figure 3.24 for the RM case.
These plots show a promising strong collapse of the magnitude with small standard
deviation, but relatively large standard deviation for the phase, which poses issues
for modeling. Also, while the trend in the magnitudes with 𝑗 appears to be a curve
which could be modeled, there is not a clearly discernable trend in the phase with
𝑗 . To investigate the linear ansatz in the case of the smooth wall mean, Figure 3.25

Figure 3.24: |𝑟 |-weighted mean and standard deviation of 𝜉 values obtained from
𝜒★ fit to data for RM case.

shows the trend in 𝜉 𝑗 for the SM case. In this case, the magnitude and phase are
scattered and do not necessarily show an organized trend. For the SM and RM cases,
it might be possible to model the phase by considering alternating values of ±𝜋/2,
though this is not explored in the present work. This suggests that to reconstruct
wake field modes, additional resolvent modes act in a constructive and destructive
manner, leveraging the opposing phase angles to generate the correct mode shape.
It is also noted that while the magnitude of 𝜉 𝑗 in the RM case approaches 0 quickly
with increasing 𝑗 , that favorable trend is not as strong in the SM case. In the
SMC case, the magnitude and phase of 𝜉 𝑗 appears more organized and amenable to
modeling than those of the RM or SM cases, with the magnitude going to 0 with
increasing 𝑗 and a smaller alternating trend in the phase. This is due to the wall-
normal localization of the SMC modes, which is artificially imposed by the effective
convecting velocity. This wall-normal localization reduces the need for resolvent
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Figure 3.25: |𝑟 |-weighted mean and standard deviation of 𝜉 values obtained from
𝜒★ fit to data for SM case.

modes to add destructively and constructively when optimally reconstructing the
wake field modes. This highlights that the SMC basis may be desirable from a
modeling perspective, even though the SMC basis does not necessarily provide a
superior reconstruction to the SM and RM cases.

Figure 3.26: |𝑟 |-weighted mean and standard deviation of 𝜉 values obtained from
𝜒★ fit to data for SMC case.

For each of these cases, the model based on 𝜉⊙ values is calculated to evaluate
whether these trends are sufficient to model the wake field. The correlation co-
efficient between the filtered and modeled wake field is plotted in Figure 3.27.
The correlation coefficient always has a low value of less than 0.4, indicating that
the modeled wake field does not correlate well with the filtered wake field at any
wall-normal location. Figure 3.28 plots the RMS-normalized error, which is on
the order of 100% between the modeled and filtered wake fields, suggesting that
the agreement between the model and data is poor. Figure 3.29 plots the max-min
normalized error. This error metric takes on values of 5% to 30%, but generally
exceeds 10%. This is notable because the best fit reconstructions from Sec. have
max-min normalized error values of less than 10%, suggesting that values for this
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Figure 3.27: Correlation coefficient between the filtered and modeled wake fields
for the (a) streamwise velocity, (b) wall-normal velocity, (c) spanwise velocity, and
(d) shear stress.

Figure 3.28: Error normalized by RMS between the modeled and filtered wake fields
for the (a) streamwise velocity, (b) wall-normal velocity, (c) spanwise velocity, and
(d) shear stress.
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error metric of above 10% suggest poor agreement. Figure 3.30 shows that the

Figure 3.29: Error with max-min normalization between the modeled and filtered
wake fields for the (a) streamwise velocity, (b) wall-normal velocity, (c) spanwise
velocity, and (d) shear stress.

wake field statistics are generally not well captured by the model. The models for
the wall-normal dispersive stress show some qualitative agreement, with the SMC
model qualitatively capturing the shape reasonably well. However, the magnitude
is underestimated. The agreement for the streamwise velocity component is poor,
so the shear dispersive stress is not predicted well. The shape of the spanwise
stress is somewhat predicted by the SM and RM models, and the peak agreement
is reasonable for the RM model. The SMC model does not perform well for the
spanwise stress. Overall, while the modeling framework is logical and produces
a divergence-free field by construction, a successful model closure for generating
usable predictions of fluctuations and dispersive stresses has not been achieved here.
One challenging aspect is that the model depends on training a large number of 𝜉 𝑗
parameters. While mean trends in the 𝜉 𝑗 parameters across wave number space
are easily recognized, using average values of the 𝜉 𝑗 parameters proves insufficient
in this analysis to model the fluctuations effectively. It is possible that there are
trends across wave number space which could be incorporated to improve the model
form. To successfully close this modeling framework, improvements to the model-
ing method for the weights must be found from the data analysis. It is also unclear
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Figure 3.30: Dispersive stresses of the modeled and filtered wake fields.

how trends learned from analysis of the sand grain roughness hold in the turbu-
lent flows over other surface geometries. Therefore, it is unclear how to improve
this modeling approach to predict wake field and dispersive fluctuations over other
surface geometries.

3.8 Summary
In this chapter, modal reconstructions of the wake field using resolvent modes
are analyzed for their capacity to serve as surrogates for the original wake field and
roughness geometry. The resolvent mode bases (SM, SMC, and RM) are constructed
using smooth and rough wall mean profiles, in which the effect of the roughness
enters only through the mode weights. All three reconstructions reproduce the
general appearance of the wake field velocities, dispersive statistics of velocity and
pressure, and the shapes of the forcing terms in the mean momentum equation. When
the rough wall mean is added to the reconstructions, isosurfaces of metrics computed
from the resulting temporal average reconstruction are shown to be similar to the
original roughness. These results demonstrate that a resolvent mode representation
built using modes calculated with standard boundary conditions and a different mean
than in the original data, with information about the roughness entering through the
weights, can still reproduce information about the original rough surface.
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Comparison of the wake field and surface roughness modes reveals a phase alignment
in the flow induced by the roughness. This demonstrates that linear trends exist in
the data which can inform modeling approaches. Inspired by this, a linear ansatz
is taken to relate the resolvent mode weights and the roughness through a complex
coefficient 𝜉⊙

𝑗
learned from data. The trends in 𝜉⊙

𝑗
are analyzed and used to evaluate

the resulting modeling framework. However, the wake field model does not provide
usable estimates of wake field fluctuations and dispersive stresses, indicating that the
average trends identified from the data are insufficient to model the flow response.

The difficulties associated with this modeling approach suggest that an alternative
to data-driven methods for analyzing the weights is desirable, which is the subject
of the next chapter.
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C h a p t e r 4

REDUCED ORDER MODEL FOR ROUGHNESS SUBLAYER
FLUCTUATIONS OVER MULTISCALE ROUGHNESS USING

RESOLVENT ANALYSIS

4.1 Introduction
In this chapter, a reduced order modeling method for roughness sublayer turbu-
lent fluctuations over engineering-relevant multiscale roughness is formulated using
resolvent analysis with volume penalization (RAVP). The model accepts an inner-
scaled mean flow profile and a scan of the roughness geometry as inputs, and
outputs quantitatively useful predictions of spatiotemporal fluctuations and disper-
sive stresses. The key innovations in this development are a drag-scaled approach
for determining the magnitude of the penalizing term required to produce physically
meaningful fluctuations, and the Reynolds decomposition of the volume penalizing
term that allows the model to be evaluated inexpensively on a wave number by wave
number basis. The volume penalization model results in good agreement between
leading resolvent modes and data, and introduces a geometry-dependent forcing
term which determines mode weights. Here, the method is applied to model the
wake field fluctuations observed in fully rough turbulent channel flows over sand-
grain roughness as a proxy for engineering-type roughness at different Reynolds
numbers, and compared with results from DNS and LES.

4.2 Mathematical description of RAVP
Governing equations
RAVP is developed from the Navier-Stokes equations formed with a drag term −𝐷u
which depends on an encoding of the roughness geometry 𝐷 and the fluid velocity
u. 𝐷 depends on the roughness geometry expressed as the volume of fluid fraction
(VOF) 𝜑(𝑥, 𝑦, 𝑧) and a real-valued magnitude parameter 𝐷𝑚𝑎𝑥 , which is closed to
normalize the integral of the drag term.

With physical variables denoted by the superscript ∗, the governing equations are
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formed as:
𝜕u∗

𝜕𝑡∗
+ u∗ · ∇∗u∗ = −1

𝜌
∇∗𝑝∗ + 𝜈∇∗2u∗ − 1

𝜌
𝐷∗u∗

∇∗ · u∗ = 0

𝐷∗ = 𝐷∗
𝑚𝑎𝑥[1 − 𝜑].

(4.1)

Then, the governing equations are nondimensionalized such that velocity is nor-
malized by 𝑢𝜏, spatial dimensions by 𝛿, time by 𝛿/𝑢𝜏, pressure by 𝜌𝑢2

𝜏, and 𝐷 by
𝜌𝑢𝜏/𝛿,

𝜕u
𝜕𝑡

+ u · ∇u = −∇𝑝 +
1
𝑅𝑒𝜏

∇2u − 𝐷u

∇ · u = 0

𝐷 = 𝐷𝑚𝑎𝑥[1 − 𝜑].

(4.2)

The volume fraction of fluid representation of a roughness surface
Any surface specified as a height function which depends on spatial coordinates,
e.g. 𝑟(𝑥, 𝑧) in a Cartesian grid, has a unique VOF representation, 𝜑(𝑥, 𝑦, 𝑧). In a
continuous 3D space, this is expressed mathematically that for any point,

𝜑(𝑥, 𝑦, 𝑧) =


0 𝑦(𝑥, 𝑧) ≤ 𝑟(𝑥, 𝑧)

1 𝑦(𝑥, 𝑧) > 𝑟(𝑥, 𝑧).
(4.3)

The discretization of a computational grid means that the VOF of a grid cell centered
at (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) can be between 0 and 1, depending on how the roughness surface 𝑟(𝑥, 𝑧)
intersects the grid cell. The grid cells which have a VOF between 0 and 1 are
important when solving the DNS with IBM which generated the reference dataset
(Hantsis and Piomelli, 2020). However, when computing statistics on the fluid
domain only, a strict VOF approach is used, where any cell with 𝜑 < 1 is set to
𝜑 = 0, such that when an average is taken over a fluid quantity multiplied by 𝜑, only
data in cells which do not contain any of the solid are considered. The strict VOF
approach is also taken for the results presented for RAVP in this chapter.

Using the mean momentum equation to close the magnitude parameter
The driving principle for closing the magnitude parameter is that the integral in y
of the resulting double-averaged drag term in the mean momentum equation should
approach 1 in inner units. For the IBM scheme of the reference data, written with
the spatial variables in outer units and velocities in inner units, this results in

1
𝑅𝑒𝜏

𝑑 ⟨𝑢⟩𝑠
𝑑𝑦

−
〈
𝑢′𝑣′

〉
𝑠
− ⟨𝑢̃𝑣̃⟩𝑠 +

∫1

𝑦

〈
𝑓𝑑

〉
𝑥𝑧
𝑑𝑦′ = 𝑦 − 1, (4.4)
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where 𝑓𝑑 is the IBM force (Brereton and Yuan, 2018). As 𝑦 → 0, the following
trends are observed:

𝑑 ⟨𝑢⟩𝑠
𝑑𝑦

→ 0〈
𝑢′𝑣′

〉
𝑠
→ 0

⟨𝑢̃𝑣̃⟩𝑠 → 0.

(4.5)

This is because near the bottom and top of the domain, roughness occupies most of
the grid so that the fluid is nearly static. With these trends, the mean momentum
equation can simplify at 𝑦 = 0 to∫1

0

〈
𝑓𝑑

〉
𝑥𝑧
𝑑𝑦′ = −1. (4.6)

The mean momentum equation of RAVP computed by plane averaging is

1
𝑅𝑒𝜏

𝑑 ⟨𝑢⟩𝑠
𝑑𝑦

−
〈
𝑢′𝑣′

〉
𝑠
− ⟨𝑢̃𝑣̃⟩𝑥𝑧 −

∫1

𝑦

⟨𝐷𝑢⟩𝑥𝑧 𝑑𝑦′ = 𝑦 − 1, (4.7)

taking into account that the plane average of a flow quantity is equal to the superficial
average when that quantity is 0 inside the roughness, so ⟨𝑢⟩𝑥𝑧 = ⟨𝑢⟩𝑠 and

〈
𝑢′𝑣′

〉
𝑥𝑧

=〈
𝑢′𝑣′

〉
𝑠
. This gives the similar condition that∫1

0
⟨𝐷𝑢⟩𝑥𝑧 𝑑𝑦′ = 1. (4.8)

Taking the form of 𝐷 in Eq. 4.2 yields the condition that

𝐷𝑚𝑎𝑥

∫1

𝑦

[
⟨1 − 𝜑⟩𝑥𝑧 ⟨𝑢⟩𝑠 − ⟨𝜑̃𝑢̃⟩𝑥𝑧

]
𝑑𝑦′ = 1. (4.9)

While the mean ⟨𝑢⟩𝑠 and 𝜑 are inputs to the analysis, 𝑢̃ remains unknown. However,
if ⟨𝜑̃𝑢̃⟩𝑥𝑧 is considered small, then a simplified condition can be written for a scalar
𝐷𝑚𝑎𝑥 ,

𝐷𝑚𝑎𝑥 =
1∫1

𝑦
⟨1 − 𝜑⟩𝑥𝑧 ⟨𝑢⟩𝑠 𝑑𝑦′

. (4.10)

For a 𝐷𝑚𝑎𝑥 which varies with 𝑦, tuned such that the plane-averaged profile matches
the IBM profile from the reference data

〈
𝑓𝑑

〉
𝑥𝑧

, the 𝐷𝑚𝑎𝑥 parameter can be deter-
mined by

𝐷𝑚𝑎𝑥(𝑦) = −

〈
𝑓𝑑

〉
𝑥𝑧

⟨1 − 𝜑⟩𝑥𝑧 ⟨𝑢⟩𝑠
. (4.11)

By definition, this version of the parameter also normalizes the magnitude achieved
by the drag term integral at 𝑦 = 0. The resulting force profiles for a scalar 𝐷𝑚𝑎𝑥 and
𝐷𝑚𝑎𝑥(𝑦) are compared to the IBM force in Figure 4.1.
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Figure 4.1: (a) The plane-averaged drag term from the IBM simulation, RAVP with
a scalar 𝐷𝑚𝑎𝑥 , and RAVP with a 𝐷𝑚𝑎𝑥(𝑦) tuned to match the IBM force. (b) Drag
terms integrated in y normalize to 1 at the bottom and top of the domain.

Derivation of RAVP
The fluctuations and volume penalization term are Reynolds-decomposed with re-
spect to the plane average. This is consistent with taking the Fourier analysis of
the data over all values within the domain, including inside cells where the volume
fraction is 0.

𝐷̃ = 𝐷 − ⟨𝐷⟩𝑥𝑧
u′′ = u − ⟨u⟩𝑠 ,

(4.12)

so the equations for the fluctuations are written,

𝜕u′′

𝜕𝑡
+ ⟨u⟩𝑠 · ∇u′′ + u′′ · ∇ ⟨u⟩𝑠 −

1
𝑅𝑒𝜏

∇2u′′ + ∇𝑝′′ + ⟨𝐷⟩𝑥𝑧 u′′ = f − 𝐷̃ ⟨u⟩𝑠 − d

f = −
(
u · ∇u −

〈
u′′ · ∇u′′

〉
𝑥𝑧

)
d = −

(
𝐷̃u′′ −

〈
𝐷̃ũ

〉
𝑥𝑧

)
∇ · u′′ = 0.

(4.13)

Then, assuming that ⟨𝑣⟩𝑠 = ⟨𝑤⟩𝑠 = 0, RAVP is written[
û
𝑝

]
=

(
−𝑖𝜔

[
I

0

]
−

[
Lk − D −∇
∇⊤ 0

])−1

︸                                       ︷︷                                       ︸
Resolvent ˜H∈C4𝑁𝑦×3𝑁𝑦

[
I
0

] (
f̂ − 𝐷̂ ⟨u⟩𝑠 + d̂

)
, (4.14)
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where

Lk ≜


−𝑖𝑘𝑥 ⟨𝑢⟩𝑠 + 𝑅𝑒−1

𝜏 Δ 𝜕𝑦 ⟨𝑢⟩𝑠
−𝑖𝑘𝑥 ⟨𝑢⟩𝑠 + 𝑅𝑒−1

𝜏 Δ

−𝑖𝑘𝑥 ⟨𝑢⟩𝑠 + 𝑅𝑒−1
𝜏 Δ


D ≜


diag ⟨𝐷⟩𝑥𝑧

diag ⟨𝐷⟩𝑥𝑧
diag ⟨𝐷⟩𝑥𝑧


∇ ≜


𝑖𝑘𝑥
𝜕
𝜕𝑦

𝑖𝑘𝑧

 , Δ ≜
𝜕2

𝜕𝑦2 − 𝑘2
𝑥 − 𝑘2

𝑧 , û ≜


𝑢̂

𝑣̂

𝑤̂

 , f̂ ≜


𝑓1

𝑓2

𝑓3

 ,
(4.15)

or in the shorter form [
û
𝑝

]
= ˜H (

f̂ − 𝐷̂ ⟨u⟩𝑠 + d̂
)
. (4.16)

Using the SVD ˜H = ∑𝑁
𝑗=1˜𝜎𝑗˜𝜓 𝑗˜𝜙†𝑗 , a modal representation can be written[

û
𝑝

]
=

𝑁∑︁
𝑗=1 ˜𝜎𝑗˜𝜓 𝑗˜𝜒 𝑗 where ˜𝜒 𝑗 =

〈̃
𝜙 𝑗 , f̂ − 𝐷̂ ⟨u⟩𝑠 + d̂

〉
. (4.17)

It is observed that the drag term changes the modes from RAVP as compared to those
from conventional resolvent analysis. Also, two additional terms in the equation for
the weights appear. First, a wave number-dependent component of the forcing term
appears, 𝐷̂ ⟨u⟩𝑠. This term is of particular interest since it is known from the inputs
to RAVP, 𝐷 and ⟨u⟩𝑠. It is nonzero only in the case of the wake field fluctuations
where 𝜔 = 0. The second term relates to the interaction between the wake field
fluctuations and spatial variation of the roughness geometry, and is not known prior
to the evaluation of the method.

Numerical details of the resolvent analysis presented
For the comparisons made in this chapter, the resolvent operators are computed on a
200 point Chebyshev grid defined on 𝑦𝑐ℎ𝑒𝑏 ∈ [−1, 1], which maps to 𝑦/𝛿 ∈ [0, 2.064]
by Eq. 3.2, as in Ch. 3. The reconstructions and model are calculated using the
leading 25 symmetric resolvent modes.

RAVP for predicting wake field fluctuations
With modeling assumptions and simplifications, RAVP can provide predictions for
turbulent fluctuations given the mean and roughness geometry.
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For wake field fluctuations (𝑘𝑥 ̸= 0, 𝑘𝑧 ̸= 0, 𝜔 = 0), the 𝐷̂ ⟨u⟩ term is known, while
f̂ and d̂ are unclosed. A model for predicting the wake field fluctuations can be
formed by assuming that the unclosed terms are small, yielding[

û
𝑝

]
≈

𝑁∑︁
𝑗=1 ˜𝜎𝑗˜𝜓 𝑗 ˘˜𝜒 𝑗 where ˘˜𝜒 𝑗 ≜ 〈̃

𝜙 𝑗 ,−𝐷̂ ⟨u⟩
〉
. (4.18)

This model assumes that the wake field can be well modeled using a sum of resolvent
modes computed at wave numbers (𝑘𝑥 , 𝑘𝑧, 0) which are linearly excited by the
corresponding roughness mode 𝐷̂(𝑘𝑥 , 𝑘𝑧). In this analysis, results are given using
this assumption. Figure 4.2 depicts this model.

RAVP

Mean flow
⟨u⟩, Reτ

Surface geometry
φ(x)

[
u′′(x, t)
p′′(x, t)

]
IFT

FT

Figure 4.2: RAVP with linear excitation forms a model for the fluctuations given
the mean flow and the surface geometry.

It is important to note that this form cannot account for the possibility that rough-
ness modes can also excite responses at harmonics of that roughness mode, e.g.
(𝑛𝑥𝑘𝑥 , 𝑛𝑧𝑘𝑧, 0) where 𝑛𝑥 , 𝑛𝑧 ∈ Z+ are positive integers greater than 0. This phe-
nomenon can only be accounted for through d̂.

This form also does not account for the possibility that f̂ could be large. The
effectiveness of these assumptions is evaluated in the subsequent results.

RAVP for convecting fluctuations
For predicting convecting fluctuations where 𝜔 > 0, the −𝐷̂ ⟨u⟩𝑠 term is inactive.
Therefore, the convecting modes can only be forced through the action of the
nonlinear term f̂ and the interaction between convecting modes and roughness
modes, d̂.

4.3 Datasets for validation
The dataset considered in this section contains the mean flow and dispersive stress
profiles, roughness geometries, and temporally averaged velocity data from a DNS
simulation of a channel flow with sand grain roughness on both top and bottom
walls. The roughness is represented using a volume of fluid fraction IBM Hantsis,
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2022. The flow is in the fully rough regime. This dataset is fully detailed in Section
2.5, and key parameters are reproduced here for convenience.

Case Geometry 𝑘/𝛿 𝐿𝑥/𝛿 𝐿𝑧/𝛿 Method 𝑅𝑒𝜏 𝑅𝑒𝑏
1 SG 6x3 0.04 6 3 DNS 1745 21,400

Table 4.1: Sand grain roughness case for RAVP validation.

4.4 Evaluating the capability of RAVP modes to represent data modes
The predictive capacity of the RAVP modes is evaluated by computing the projection
coefficient of data modes onto the basis modes. The projection coefficient 𝛾 of mode
û on a basis consisting of modes 𝜓1 through 𝜓𝑁 with respect to some inner product
⟨·⟩ and associated norm ∥·∥ is defined as

𝛾(û, 𝜓1−𝑁 ) ≜

√√√
𝑁∑︁
𝑗=1

( ��〈û, 𝜓 𝑗 〉��
∥û∥∥𝜓 𝑗 ∥

)2

. (4.19)

𝛾 takes on a value between 1, which denotes that the data modes can be perfectly
described by a weighted sum of the basis modes, and 0, which denotes that the basis
cannot describe the data modes.

In this section, three sets of resolvent modes are compared as documented in Table
4.2.

Case Description 𝑅𝑒𝜏
RA-s Smooth wall modeled mean 1745
RA-r Rough wall data mean 1745
RAVP Rough wall data mean + volume penalization 1745

Table 4.2: Resolvent analysis cases.

To determine where in wave number space the modes are energetic, a measure of
mode kinetic energy is used,

𝐸(k) =
∫2

0

(
|𝑢̂(k)|2+|𝑣̂(k)|2+|𝑤̂(k)|2

)
𝑑𝑦. (4.20)

Figure 4.3 depicts the projection coefficient for the data onto the first symmetric
mode for resolvent analysis for the RA-s, RA-r, and RAVP cases. Both the RA-r and
RAVP results show regions of wave number space where the projection coefficient is
high, while the RA-s projection coefficient is relatively low throughout wavenumber
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space. RA-r performs better, and in particular there is a region at low streamwise
wavenumber where the projection coefficient is particularly high, indicating that
the first mode describes the data very well. RAVP also has reasonable first mode
performance across wavenumber space. The overlaid contour shows where the mode
kinetic energy is 10% of the observed maximum across wave number space. The
contour differentiates between an energetic interior region (smaller 𝑘𝑥 , 𝑘𝑧) and a less
energetic outer region (larger 𝑘𝑥 , 𝑘𝑧). The RA-r and RAVP bases perform well in
the energetic region of wave number space, which is most relevant for modeling.

Figure 4.3: Spectra of the projection coefficient for the wake field data onto the
first symmetric resolvent mode for resolvent analysis with (a) smooth mean, (b)
rough mean, (c) rough mean and volume penalization (RAVP). The overlaid contour
indicates where the wake field TKE is 10% of its maximum.

Figure 4.4 depicts the projection coefficient for the first through fourth symmetric
modes. The additional 3 modes improve the performance of all cases, and it can be
expected with additional modes that the projection coefficient will improve due to
orthogonality.

To clarify what is responsible for the higher projection coefficient values demon-
strated by RAVP, a single data wake field mode is compared with the leading
resolvent mode from RA-s, RA-r, and RAVP in Figure 4.5. The wall-normal local-
ization of the RA-s mode is lower than that of the RA-r mode, showcasing the effect
of the different mean profiles to shift the location of peak response in the 𝜔 = 0
modes. The addition of the − ⟨𝐷⟩𝑥𝑧 terms in the RAVP operator results in a further
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Figure 4.4: Spectra of the projection coefficient for the wake field data onto the first
through fourth symmetric resolvent modes for resolvent analysis with (a) smooth
mean, (b) rough mean, and (c) rough mean with volume penalization (RAVP).

shift in the location of the peak for all components, which helps the RAVP modes
to describe the data more effectively.

Figure 4.5: Mode shape comparison between wake field and RA-s, RA-r, and RAVP
mode shapes. The mode shapes are normalized by their maximum 𝑢 component
magnitude.

Overall, this analysis highlights that the RAVP response mode basis is effective for
describing the wake field response.
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4.5 Evaluation of RAVP-predicted weights
To evaluate the ability of the forcing modes to capture the RAVP-modeled forcing,
the projection coefficient of the forcing term 𝐷̂ ⟨𝑢⟩𝑠 onto the first forcing mode is
plotted in Figure 4.6. The projection coefficient of the forcing onto the first forcing

Figure 4.6: Spectra of the projection coefficient for the RAVP forcing term onto the
first symmetric resolvent forcing mode for (a) RA-s, (b) RA-r, and (c) RAVP.

mode is stronger for RA-r and RAVP than RA-s. The projection coefficient of the
forcing on the leading forcing modes is smaller than that of the wake field onto the
leading response modes depicted in Figure 4.3. This is reasonable due to the low-
rank nature of the resolvent operator, where the linear amplification of the leading
mode often dominates that of the subsequent modes in the SVD expansion.

Figure 4.7 depicts the projection coefficient of the forcing onto the first eight forcing
modes. For large portions of wave number space, the forcing bases provided by
RA-r and RAVP can describe the forcing well. It is notable that the projection
coefficient for RA-r, and to a greater extent RAVP, remains small for low streamwise
wave numbers, indicating that the resolvent forcing basis is somehow inefficient at
these low wave numbers.

Now that the ability of the RAVP forcing mode basis to describe the RAVP forcing
has been evaluated, the question remains as to whether that projection results in
reasonable values for the weights. To evaluate the efficacy of the RAVP model
form for the weights, magnitude spectra of the reconstruction (best-fit) weights and
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Figure 4.7: Spectra of the projection coefficient for the RAVP forcing term onto the
first symmetric resolvent forcing mode for (a) RA-s, (b) RA-r, and (c) RAVP.

modeled weights for the first three symmetric RAVP modes are compared in Figure
4.8. The reconstruction weights are computed in the same manner as in Section 3.2.

Qualitatively, the modeled weights reproduce the trends in the best-fit weights,
although the modeled weights generally have smaller magnitude. This trend is
exacerbated at larger wave numbers, or smaller scales. The agreement between the
best-fit and modeled weights also decreases from the first to third resolvent modes,
indicating that the ability of the modeled weights to force modes further down the
SVD decreases.

4.6 Predictions of wake field fluctuations from RAVP
The ability of RAVP to model aspects of the wake field fluctuations and statistics
is examined here by comparing between the low-pass filtered wake field over sand
grain roughness and the predictions given by RAVP calculated over that same set of
wave numbers,

𝑘𝑥

Δ𝑘𝑥
∈ [0, 64]

𝑘𝑧

Δ𝑘𝑧
∈ [−64, 64],

(4.21)

where Δ𝑘𝑥 = 1.05 and Δ𝑘𝑧 = 2.09. From a total of 𝑁𝑥 × 𝑁𝑧 = 512 × 256 wave
numbers, 64 × 128 wave numbers are considered in this analysis.
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Figure 4.8: Spectra of the (left) best fit 𝜒 𝑗 and (right) RAVP modeled 𝜒 𝑗 weights
for (a-b) 𝑗 = 1, (c-d) 𝑗 = 2, (e-f) 𝑗 = 3.

Figure 4.9 compares the visual appearance of the filtered, RAVP-reconstructed, and
RAVP-modeled wake field fluctuations for the velocity components at 𝑦/𝛿 = 0.03,
which is approximately halfway between the lowest and highest points of the rough-
ness geometry. Visually, the reconstruction and filtered data agree well for all
three components. The prediction provided by RAVP shows promising qualitative
agreement with the data for all three components, suggesting that the weights model
captures at least some of the phase relationship between the velocity and roughness
modes. The low streamwise velocity downstream of roughness elements and high
streamwise velocity between elements is predicted by this model. Also, the model
predicts the upwards wall-normal velocity behind roughness elements which occurs
due to recirculation reasonably well. Comparing the spanwise velocity fields indi-
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cates that the turning of the flow around roughness elements is somewhat captured.

The predicted magnitude of fluctuations is slightly lower than the data for all three
velocity components, though predominantly in the wall-normal and spanwise com-
ponents. For the wall-normal velocity component, the shape of the response is well
predicted, but the model struggles to reproduce areas of particularly high or low
velocity. The spanwise component has the least promising agreement, suggesting
that the model does not enforce the horizontal turning of the flow as effectively.
The areas of low streamwise velocity downstream of the roughness elements pre-
dicted by the model are somewhat elongated compared to the data. It is possible
that the model over-predicts the velocity decrease induced by a particular roughness
element. Furthermore, the model does not predict well the more intuitive upwards
velocity often observed in front of roughness elements.

These differences are quantified in Figure 4.10 which plots the spatially-varying
normalized residual 𝑒𝑝𝑝 of the reconstruction and model with respect to the filtered
data at 𝑦/𝛿 = 0.03, normalized by the peak-to-peak value of the filtered data. The
definition of the normalized residual is given as

𝑒𝑝𝑝
(
𝑦; 𝑢 𝑓 , 𝑢★

)
=

𝑢★(𝑦) − 𝑢 𝑓 (𝑦)
max

(
𝑢 𝑓 (𝑦)

)
− min

(
𝑢 𝑓 (𝑦)

) . (4.22)

The normalized residual has directionality, assuming values between -1 and 1 corre-
sponding to underestimation and overestimation compared to the data, respectively.
The reconstruction has a small residual for all three components. The residual mag-
nitude of the modeled velocity is less than 1 across the domain for all components.
The streamwise residual has the most activity, while the wall-normal and spanwise
residuals have notable magnitudes only in certain locations. The streamwise residual
of the model is often positive within and immediately downstream of the roughness
elements, where the streamwise wake field velocity is negative due to the volume
penalization. In extended regions of fluid downstream of roughness elements, the
streamwise residual is often negative since the model predicts longer regions of
lower velocity than exists in the data. The wall-normal residual illustrates that the
model does not predict particularly strong wall-normal fluctuations that are some-
times observed next to (at similar streamwise coordinate 𝑥/𝛿, but adjacent spanwise
coordinate 𝑧/𝛿) roughness elements. These regions correspond approximately to
where the spanwise fluctuations are not as well estimated, suggesting that modeling
errors in the wall-normal and spanwise components are possibly correlated.
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Figure 4.10: Normalized residual comparing the 𝑅𝑒𝜏 = 1745 wake field filtered
data with the RAVP reconstruction and model plotted at 𝑦/𝛿 = 0.03. (a) Data vs.
Reconstruction 𝑢̃, (b) Data vs. Model 𝑢̃, (c) Data vs. Reconstruction 𝑣̃, (d) Data vs.
Model 𝑣̃, (e) Data vs. Reconstruction 𝑤̃, (f) Data vs. Model 𝑤̃.

Figure 4.11 compares the data, reconstruction, and model at 𝑦/𝛿 = 0.05, which
is slightly below the highest point of the roughness at 𝑦/𝛿 ≈ 0.06. At this wall-
normal location, the reconstruction matches the data well. When comparing the
data and modeled streamwise velocity, it is evident that the model predicts much
longer regions of lower streamwise velocity. The shape of the wall-normal and
spanwise responses also obey similar behavior to a lesser extent. This behavior has
a few possible sources. First, the modeled weights underestimate the excitement of
higher wave numbers, so smaller wavelength flow features may be underestimated
by the model. Second, small streamwise wave numbers experience high linear
amplification of small streamwise wave numbers in resolvent analysis, which may
lead to an overestimation of long wavelength streamwise flow features. Third, the
wall-normal localization of modes calculated at small streamwise wave numbers
may be overestimated, though the projection coefficient plots suggest that the wall-
normal localization of the RAVP and data wake field modes agree well. It is possible
that modifications to the analysis, such as a careful consideration of the effective
location of the wall, may improve these results.
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Figure 4.12 plots the normalized residual 𝑒𝑝𝑝 of the reconstruction and model with
respect to the filtered data at 𝑦/𝛿 = 0.05. The residual for the reconstruction is
small, indicating that the modal basis remains suitable for predicting the response.
The residual of the model is higher. In the streamwise component, the areas of large
residual magnitude correspond to the elongated regions of lower streamwise velocity
behind roughness elements, where the model overestimates the streawmise length
of those regions. In the wall-normal and spanwise compoennts, areas of stronger
magnitude fluctuations are underestimated by the model. The trends observed in
the model residual are qualitatively similar to those observed in Figure 4.10, but the
model residual at 𝑦/𝛿 = 0.05 is higher in general than at 𝑦/𝛿 = 0.03, due to the
overestimated length of streaky features predicted by the model at this height.

Figure 4.12: Normalized residual comparing the 𝑅𝑒𝜏 = 1745 wake field filtered
data with the RAVP reconstruction and model plotted at 𝑦/𝛿 = 0.05. (a) Data vs.
Reconstruction 𝑢̃, (b) Data vs. Model 𝑢̃, (c) Data vs. Reconstruction 𝑣̃, (d) Data vs.
Model 𝑣̃, (e) Data vs. Reconstruction 𝑤̃, (f) Data vs. Model 𝑤̃.

Next, in Figure 4.13, the streamwise, wall-normal, spanwise, and shear dispersive
stresses are plotted for the filtered data, RAVP reconstruction, and RAVP model.
The reconstructions reproduce the streamwise stress almost exactly, while slightly
under-representing the spanwise and wall-normal velocity components. The RAVP
model predicts the streamwise stress above 𝑦/𝛿 ≈ 0.05 reasonably well, while
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underestimating the streamwise stress below 𝑦/𝛿 ≈ 0.05. Effectively, this results
in a peak of the modeled dispersive streamwise stress that is located slightly higher
than that of the data. The shear dispersive stress is also modeled reasonably well,
though with a slightly lower magnitude and also a slightly higher peak.

The modeled wall-normal and spanwise stresses underestimate the data. This im-
plies that the RAVP weights model does not excite the wall-normal and spanwise
velocity components enough, given that the modes are capable of reconstructing the
wall-normal and spanwise velocity components. This could reasonably be attributed
to the fact that the −𝐷 ⟨u⟩𝑠 forcing only has a streamwise component, or to the low
excitation of modes further down the SVD as observed in 4.5. Another possible
explanation is that local resolvent modes are known to overestimate the relative
strength of the streamwise velocity component as compared with the spanwise and
streamwise velocity components, due to the TKE norm used when calculating the
modes; this may be a feature of the RAVP modes as well. The observation that
the dispersive shear and streamwise stress match well, while the wall-normal stress
does not, also suggests that the weighted modes encode a phase difference between
the streamwise and wall-normal components that must be larger than in the data.

Figure 4.13: 𝑅𝑒𝜏 = 1745 dispersive (a) streamwise, (b) wall-normal, (c) spanwise,
and (d) shear stresses for the filtered data, RAVP reconstruction, and RAVP model.

In Figure 4.14, the correlation coefficient between the filtered data and estimates is
plotted for the velocity components and the dispersive shear stress. The reconstruc-
tions correlate well with the data. The modeled 𝑢̃ velocity has a region where the
correlation coefficient is more than 50% below the roughness crest, before rapidly
decaying to 0 outside of the roughness. The other components demonstrate around
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25% correlation throughout the plotted domain, and the dispersive shear stress shows
a particularly low correlation. This suggests that while the model can capture the
intrinsically averaged stresses well, the spatial variation of the predicted stresses
differs from the data.

Figure 4.14: Correlation coefficient comparing the filtered wake field data to the
RAVP reconstruction and RAVP model for the (a) streamwise velocity, (b) wall-
normal velocity, (c) spanwise velocity, and (d) shear stress.

In Figure 4.15, the peak-to-peak normalized error between the filtered data and
estimates given as

Err𝑝𝑝(𝑦; 𝑢̃ 𝑓 , 𝑢̃★) =

√︂〈(
𝑢̃ 𝑓 (𝑦) − 𝑢̃★(𝑦)

)2
〉

max(𝑢̃ 𝑓 (𝑦)) − min(𝑢̃ 𝑓 (𝑦))
, (4.23)

is plotted with 𝑦. The error in the reconstructions is relatively low with respect to the
range of the data at each 𝑦-height, taking values of roughly 10% or less. The model
error is generally higher, with the most error observed in the streamwise component
of around 25%. The wall-normal and spanwise component errors are smaller, at
around 10%.

In Figure 4.16, the spectral content of the y-integrated kinetic energy is plotted for the
filtered data, RAVP reconstruction, and RAVP model. The reconstruction on RAVP
modes reproduces the spectra faithfully. However, the RAVP model underestimates
the kinetic energy content at higher streamwise wavenumbers, and overestimates
the kinetic energy content at lower streamwise wavenumbers. These results suggest
that it is possible to represent the spectra with RAVP modes well. However, the
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Figure 4.15: Max-min normalized error comparing the filtered wake field data to
the RAVP reconstruction and RAVP model for the (a) streamwise velocity, (b) wall-
normal velocity, (c) spanwise velocity, and (d) shear stress.

Figure 4.16: 1
𝑁𝑥𝑁𝑧

∫2
0 |û|

2+|v̂|2+|ŵ|2𝑑𝑦 spectra of wake field for (a) data, (b) recon-
struction, and (c) model.

longer regions of lower streamwise velocity may be attributed to the RAVP-modeled
weights or the linear amplification of the modes, which may overexcite the RAVP
modes at lower streamwise wavenumbers and/or over-exciting the modes at lower
streamwise wave numbers.

To isolate these trends, the energetic content of the 𝑢, 𝑣, and 𝑤 components are
broken out in Figures 4.17, 4.18, and 4.19. The results for the 𝑢 component strongly
resemble that of the energy spectra, which is sensible because the mode kinetic
energy is dominated by the streamwise velocity component. In the data, the spectra
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of the wall-normal and spanwise velocity components are active at higher 𝑘𝑥 than
that of the streamwise velocity component. The model does not seem to overestimate
the spectral content at lower wave numbers, but underestimates the contribution of
higher wave numbers to the wall-normal and spanwise velocity components. This
analysis shows that the overestimation of the kinetic energy at low wave numbers is
due to the overestimation of streamwise kinetic energy, even though the wall-normal
and spanwise velocity spectra are still underestimated.

Figure 4.17: 1
𝑁𝑥𝑁𝑧

∫2
0 |û|

2𝑑𝑦 spectra of wake field for (a) data, (b) reconstruction, and
(c) model.

Figure 4.18: 1
𝑁𝑥𝑁𝑧

∫2
0 |v̂|

2𝑑𝑦 spectra of wake field for (a) data, (b) reconstruction, and
(c) model.
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Figure 4.19: 1
𝑁𝑥𝑁𝑧

∫2
0 |ŵ|2𝑑𝑦 spectra of wake field for (a) data, (b) reconstruction,

and (c) model.

4.7 Summary and future work
In this chapter, resolvent analysis with volume penalization (RAVP) is developed
for a channel flow over multiscale roughness with a drag-normalized, Reynolds-
decomposed treatment of the volume penalization term. RAVP produces a modal
basis that improves the description of the roughness sublayer turbulence at low rank,
and a linear model for the weights that predict the wake field response to the Fourier
modes of the surface roughness. This makes the RAVP model readily applicable
to multiscale, k-type roughness geometries, since it can be evaluated cheaply on
a wavenumber-by-wavenumber basis. The model is used in a channel flow over
sand grain roughness at 𝑅𝑒𝜏 = 1745 and compared against DNS results. RAVP
demonstrates that a linear model ansatz for the weights can be reasonably effective at
predicting wake field fluctuations and dispersive stresses over a multiscale roughness
geometry.

RAVP provides reasonable predictions of roughness sublayer fluctuations at low
computational cost. While simulations require a fine grid resolution to obtain
converged results, the actual flow features in the wake field occur on large spatial
scales, and can be captured with fewer wave numbers. For the analysis presented
in this chapter, RAVP is computed over a small grid of (𝑁𝑥 , 𝑁𝑧) = (64, 128) wave
numbers, on a 200 point Chebyshev grid, giving 64 × 128 × 200 = 1.6 × 106

degrees of freedom. This is compared with datasets simulated in a (𝑁𝑥 , 𝑁𝑦, 𝑁𝑧) =
(1024, 530, 1024) averaged over ≈ 100 snapshots, for 5.5×1010 degrees of freedom.
This gives a 10,000× model order reduction. Furthermore, since RAVP can be run
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in a wavenumber-by-wavenumber fashion, the memory requirements of RAVP are
much lower than for a DNS or LES simulation. Practically, the results presented
for RAVP in this chapter can be run in around 20 minutes on a laptop, while fully
resolved simulations and post-processing take hours to days on a high performance
computing cluster.

RAVP provides a physics-based modeling paradigm that predicts the spatially-
varying sensitivity of the turbulent fluctuations to roughness features, using the
linear amplification of the resolvent operator and a forcing corresponding to the
roughness geometry. This differs from other modeling approaches in the literature
that seek to relate surface statistics and spectra to mean flow parameters, and do not
predict the sensitivity of the fluctuations to the surface roughness. The model pre-
dicts the shear dispersive stress ⟨𝑢̃𝑣̃⟩𝑠 , which is not addressed in previous modeling
efforts and is important for the momentum balance in a channel flow.

One possible avenue for future study is using RAVP to determine which roughness
features contribute most to the turbulent flow response. By studying the linear
amplification to the resolvent operator and the roughness forcing, the wave num-
bers corresponding to the most energetic flow response modes can be ranked. This
ranking, based on the modeled turbulent flow response, is different than ranking the
surface roughness modes by amplitude as in Ch. 3. Then, it should be possible to
define a minimal flow response composed of a subset of energetic flow response
modes, and study the corresponding minimal roughness containing only those wave
numbers. Trends in the wave numbers and the most significant roughness features
that contribute to the flow response could be identified using an RAVP-based ap-
proach. It may also be possible to visualize the important roughness features by
studying the isosurfaces of temporally averaged flow response as in Ch. 3.

Future work also includes improving and extending the predictive abilities of the
model. Since the model underestimates the activation of higher wave numbers in
the wake field, it is potentially useful to study the harmonic forcing of wake field
modes by roughness modes at lower wave numbers to determine its importance
and potential for modeling using the ̂̃𝐷ũ term contained in d̂. This might also
suggest investigating whether harmonic resolvent analysis, which solves for the
velocity components at particular wave numbers and harmonics simultaneously,
might be used to handle this term. Alternatively, it is possible that the nonlinear
term f̂ contributes significantly and needs to be modeled. It would also be useful
to study whether the overestimation of the magnitude of small wake field modes
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can be improved, by modifying the treatment of the wall location or some improved
modeling approach that handles the high linear amplification of long wavelength
modes in resolvent analysis. Also, it would be useful to study how RAVP can model
convecting fluctuations. This requires the development of a modeling treatment of
the ̂̃𝐷u′ term contained in d̂, which might also involve harmonic resolvent analysis.

Another important aspect for future work is to characterize the performance of this
model for other roughness geometries and at other Reynolds numbers. This model
is expected to perform well for a k-type roughness geometry where 𝑘 ≪ 𝛿, so such
geometries are natural candidates for testing.

In addition, an extension to handle heterogeneous roughness, such as a configuration
of rough patches, may be possible. By employing a windowed analysis, RAVP may
be able to predict the roughness sublayer fluctuations over the roughness patches.
Over the intervening smooth wall patches, RAVP reverts to the standard resolvent
analysis when appropriately windowed. Since motions that describe the transitional
effects between the smooth and rough patches occur at larger scales than the rough-
ness sublayer, modeling these motions requires an extension to the present work or
the prescription of an outer layer solution as in WMLES.

The model should also be tested for other Reynolds numbers, where a key consid-
eration is to define a grid that captures the spatial scales of the roughness sublayer,
which are set by the roughness geometry. Finally, the RAVP methodology should
be developed and evaluated for other canonical flows, such as pipe and boundary
layer flows.
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C h a p t e r 5

MODELING THE ROUGH WALL MEAN FLOW USING
RESOLVENT ANALYSIS

5.1 Introduction
Previously, Ch. 3 and 4 focused on modeling roughness sublayer fluctuations,
with the smooth or rough wall spatiotemporal mean flow profile as an input. In
engineering applications, the quantities of interest are often related to the mean
flow, such as the Hama roughness function Δ𝑈+, equivalent sand grain roughness
𝑘+
𝑠 , or the mean flow profile shape itself. In this chapter, a physics-based model is

developed for predicting the rough wall mean flow profile in a channel, given only a
scan of the surface geometry and a desired bulk Reynolds number. The mean flow
model utilizes resolvent analysis with volume penalization (RAVP) developed in
Chapter 4 and a physically-informed eddy viscosity treatment to link the drag force,
dispersive stress, and stochastic stress to the shape of the mean flow profile. This
allows the model to solve for the rough wall mean flow profile and friction Reynolds
number iteratively, beginning with smooth wall estimates of the mean flow and
friction Reynolds number at the desired bulk Reynolds number. Along the way,
the drag force, dispersive stress, and stochastic stresses are also modeled, so this
modeling methodology captures aspects of the sensitivity of the spatially-varying
and mean turbulent flow to a given roughness geometry. In a sense, this model
presents a simple method for closing the loop in resolvent analysis, utilizing the link
between the mean profile shape and the dispersive stresses and drag force encoded
in RAVP to converge on the mean flow profile over the roughness geometry. The
model is demonstrated to work well for the sand grain roughness given reasonable
estimates of the model parameters.

5.2 Comparing the smooth and rough wall mean momentum balances
The shape of the mean velocity profile ⟨𝑢⟩ (𝑦) in a channel flow is a consequence of
the mean momentum balance. In the case of a smooth wall channel, the Reynolds
stress and mean flow gradient sum to the total stress. With velocity scaled in inner
units and spatial variables scaled in outer units, this equation is

𝑑

𝑑𝑦

[
1
𝑅𝑒𝜏

𝑑 ⟨𝑢⟩𝑠
𝑑𝑦

−
〈
𝑢′𝑣′

〉]
= −1. (5.1)
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To close this equation, the Reynolds stress is often related to the mean flow profile
with a eddy viscosity profile 𝜈𝑇 (𝑦)〈

𝑢′𝑣′
〉

= − 𝜈𝑇

𝑅𝑒𝜏

𝑑 ⟨𝑢⟩𝑠
𝑑𝑦

(5.2)

so that equation 5.1 can now be solved for the mean flow profile.

The rough wall case
Adding surface roughness changes the mean flow by adding and changing terms in
the mean momentum balance, written in terms of superficial averages,

𝑑

𝑑𝑦

[
1
𝑅𝑒𝜏

𝑑 ⟨𝑢⟩𝑠
𝑑𝑦

−
〈
𝑢′𝑣′

〉
𝑠
− ⟨𝑢̃𝑣̃⟩𝑠

]
+ 𝑓 = −1. (5.3)

A drag force 𝑓 now appears, which represents the plane-average of viscous and
pressure forces on the roughness elements. The dispersive stress ⟨𝑢̃𝑣̃⟩𝑠 also appears
due to the wake field fluctuations. Figure 5.1(a) plots the terms in the mean mo-
mentum balance for the smooth wall mean modeled using a Cess eddy viscosity
with parameters 𝐴 = 25.4 and 𝜅 = 0.426, while in Figure 5.1(b) the rough wall bal-
ance calculated from the velocity and pseudopressure using the methods outlined
in Sec. 2.6 for the DNS simulation at 𝑅𝑒𝜏 = 1745 is plotted. In the rough wall

Figure 5.1: (a) Smooth wall mean momentum balance. (b) Rough wall mean
momentum balance for sand grain DNS data at 𝑅𝑒𝜏 = 1745.

data, the stochastic stress
〈
𝑢′𝑣′

〉
𝑠

resembles the smooth wall Reynolds stress above
outer region, but decreases rapidly beneath the roughness crest where the drag force
dominates the stress balance. The stochastic stress is also attenuated particularly up
until approximately 𝑦/𝛿 ≈ 0.4. The roughness sublayer is classically understood to
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reach to roughly 𝑦/𝛿 = 3𝑘 − 5𝑘 , which is 𝑦/𝛿 ≈ 0.12 to 0.2. The attenuation above
𝑦/𝛿 ≈ 0.2 may simply indicate that roughness effects penetrate slightly higher before
dissipating in this flow, or that perhaps additional averaging time might be required
to converge the dispersive and stochastic stresses, since the dispersive stresses are
small above the roughness sublayer.

In Figure 5.2, the eddy viscosity profiles which relate the mean flow to the Reynolds
stress in the smooth wall case and the stochastic stress in the rough wall data are
compared, where 𝜈𝑇 is as used in Eq. 5.2 and the rough wall eddy viscosity 𝜈𝑇𝑟
corresponds to the form 〈

𝑢′𝑣′
〉
𝑠

= −
𝜈𝑇𝑟

𝑅𝑒𝜏

𝑑 ⟨𝑢⟩𝑠
𝑑𝑦

. (5.4)

The rough wall eddy viscosity is less than the smooth wall eddy viscosity within

Figure 5.2: Eddy viscosity for smooth and rough wall at 𝑅𝑒𝜏 = 1745.

the roughness sublayer and slightly above. The profiles then match reasonably well,
before diverging again near the channel centerline, where it is possible that, due to
the small values of 𝑑⟨𝑢⟩𝑠

𝑑𝑦
and possible discrepancy in the dispersive stress data, the

rough wall eddy viscosity profile may be subject to error.

This suggests a possible model form for the rough wall eddy viscosity 𝜈𝑇𝑟 could be
an attenuation of the smooth wall eddy viscosity in the roughness sublayer, which
will be implemented in the model.

5.3 Closing the rough wall mean momentum balance with RAVP
To solve for the rough wall mean flow profile, the roughness-induced changes in the
mean momentum balance must be taken into account and all terms must be related to
the mean flow. The value of RAVP from Ch. 4 in this context is to provide relations
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between the mean flow and the drag and dispersive stress terms in the momentum
balance. This amounts to writing the rough wall mean flow model as

𝑑

𝑑𝑦

[
1
𝑅𝑒𝜏

𝑑 ⟨𝑢⟩𝑠
𝑑𝑦

−𝒮(𝑅𝑒𝜏, 𝑘, ⟨𝑢⟩𝑠) −𝒟(⟨𝑢⟩𝑠 , 𝜑,K)
]

+ ℱ(⟨𝑢⟩𝑠 , 𝜑) = −1, (5.5)

where

𝑓 = ℱ(⟨𝑢⟩𝑠 , 𝜑)

⟨𝑢̃𝑣̃⟩𝑠 = 𝒟(⟨𝑢⟩𝑠 , 𝜑,K)〈
𝑢′𝑣′

〉
= 𝒮(𝑅𝑒𝜏, 𝑘, ⟨𝑢⟩𝑠).

(5.6)

Drag term modeling using volume penalization term
The drag term is modeled based on the mean momentum forcing term from RAVP,

𝑓 = ℱ(⟨𝑢⟩𝑠 , 𝜑) = − ⟨𝐷⟩ ⟨𝑢⟩𝑠 (5.7)

where 𝐷 = 𝐷𝑚𝑎𝑥(1 − 𝜑) and 𝐷𝑚𝑎𝑥 is closed by the condition∫1

0
⟨𝐷⟩ ⟨𝑢⟩𝑠 𝑑𝑦 = 1, (5.8)

since the drag term integral must approach 1 in inner units, as developed in Section
4.2.

This term can be cheaply evaluated given only the mean profile, without needing to
actually evaluate RAVP.

Dispersive stress modeling using RAVP
For a given mean flow profile, roughness geometry, and set of wave numbers K,
RAVP can be evaluated to model 𝑢̃, 𝑣̃, and 𝑤̃, and therefore ⟨𝑢̃𝑣̃⟩. The RAVP function
for the dispersive stress is denoted 𝒟̌. Depending on the wave number choice K,
it is possible that the dispersive stress is underestimated, so a multiplicative scaling
factor 𝑆 is also defined. Then, the dispersive stress is modeled as,

⟨𝑢̃𝑣̃⟩ = 𝒟(⟨𝑢⟩𝑠 , 𝜑,K), (5.9)

where
𝒟(⟨𝑢⟩𝑠 , 𝜑,K) = 𝑆𝒟̌(⟨𝑢⟩𝑠 , 𝜑,K). (5.10)

Stochastic stress modeling via eddy viscosity
The stochastic stress

〈
𝑢′𝑣′

〉
is modeled in terms of the mean flow profile ⟨𝑢⟩𝑠, 𝑅𝑒𝜏,

and an empirical eddy viscosity profile 𝜈𝑇𝑟 which is adjusted for the presence of the
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roughness based on the shape of the drag force 𝑓 modeled as described in Sec. 5.3,〈
𝑢′𝑣′

〉
= 𝒮(𝑅𝑒𝜏, 𝑘, ⟨𝑢⟩𝑠) =

𝜈𝑇𝑟 ( 𝑓 ; 𝑅𝑒𝜏)
𝑅𝑒𝜏

𝑑 ⟨𝑢⟩𝑠
𝑑𝑦

. (5.11)

The eddy viscosity profile 𝜈𝑇 is computed using the Cess model with parameters
𝜅 = 0.426 and 𝐴 = 25.4 which were chosen based on a mean flow profile at
𝑅𝑒𝜏 = 2000 as in Del Álamo and Jiménez, 2009,

𝜈𝑇 (𝑦) =
𝜈

2

[
1 +

𝜅2𝑅𝑒2
𝜏

9

(
1 − 𝑦2

)2 (
1 + 2𝑦2

)2
(
1 − exp

[
(|𝑦 |−1)

𝑅𝑒𝜏

𝐴

] )2
]1/2

+
𝜈

2
.

(5.12)
Then, the rough wall eddy viscosity profile is modeled as

𝜈𝑇𝑟 = (1 − 𝜁( 𝑓 ))𝜈𝑇 , (5.13)

where 𝜁( 𝑓 ) is a piecewise continuous function which attenuates the smooth wall
eddy viscosity to model the rough wall eddy viscosity. 𝜁( 𝑓 ) consists of Cauchy
functions which are normalized such that their peak values are 1 and centered at
𝑦 = 0 and 2. The extents of the Cauchy functions are determined based on the shape
of the drag force 𝑓 .

First, a normalized Cauchy function 𝑔̂ is fitted to the drag force 𝑓 using a least-
squares approach. The normalized Cauchy function is of the form

𝑔̂(𝑦; 𝑦0, 𝛾) =
1

1 +
(
𝑦−𝑦0
𝛾

)2 , (5.14)

where 𝑦0 denotes the peak location, and 𝛾 is the scale parameter which specifies
the half-width at half-maximum of the normalized Cauchy function. Essentially,
𝛾 sets the wall-normal presence of the normalized Cauchy function. To model
the attenuation of the eddy viscosity above the roughness itself, a new normalized
Cauchy function with a larger scale parameter is defined

𝑔(𝑦; 𝑦0, 𝐶𝛾) =
1

1 +
(
𝑦−𝑦0
𝐶𝛾

)2 , (5.15)

where a value of 𝐶 = 3.48 is found to be suitable for describing the behavior of the
rough wall eddy viscosity. Then, 𝜁( 𝑓 ) is defined as

𝜁(𝑦; 𝑓 ) =

𝑔(𝑦; 0, 𝐶𝛾) for 0 ≤ 𝑦 < 1

𝑔(𝑦; 2, 𝐶𝛾) for 1 ≤ 𝑦 ≤ 2.
(5.16)
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Figure 5.3: (a) Eddy viscosity profiles plotted for 𝑅𝑒𝜏 = 1745 for the smooth wall,
rough wall data, and rough wall model, (b) Attenuation function 𝜁 for 𝐶 = 3.48.

𝜁( 𝑓 ) is defined on both sides because the same roughness is imposed on both the
top and bottom of the channel. This formulation opens the possibility of applying
a different roughness on the top and bottom walls, but this is not explored in this
work.

The Cauchy function is chosen because it captures the attenuation of the eddy
viscosity observed in the data well. The dependence on the shape of the drag force
is also desirable, as the eddy viscosity attenuation should be such that the stochastic
stress is present only where the drag force is weak. A comparison between the eddy
viscosity profiles from the model and data is given in Figure 5.3(a) for 𝑅𝑒𝜏 = 1745.
The model replicates the attenuation beneath the roughness crest and achieves similar
peak magnitude at roughly 𝑦/𝛿 = 0.5 with respect to the data. In Figure 5.3(b), the
attenuation function used is plotted.

5.4 A numerical method for solving the rough wall mean flow model iteratively
for a given bulk flow

The mean flow model equation can then be written

𝑑

𝑑𝑦

[
(1 + 𝜈𝑇𝑟 )

𝑑

𝑑𝑦
− 𝑅𝑒𝜏 ⟨𝐷⟩𝑠

]
⟨𝑢⟩𝑠 = −𝑅𝑒𝜏 + 𝑅𝑒𝜏

𝑑

𝑑𝑦
𝒟(⟨𝑢⟩𝑠 , 𝜑,K). (5.17)

In this form, the equation is amenable to a numerical solution. Since the disper-
sive term must be solved using RAVP given the mean, the solution for the mean
flow is now iterative. The equations are discretized and solved using Chebyshev
differentiation matrices Weideman and Reddy, 2000.

The iterative scheme is laid out in Figure 5.4. The inputs for the analysis are the
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Figure 5.4: Full workflow for rough wall mean flow model.

surface roughness geometry and an initial guess for the inner-scaled mean flow
profile ⟨𝑢⟩(𝑖)

𝑠 at the desired bulk Reynolds number 𝑅𝑒𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑏

. The smooth wall mean
profile for that 𝑅𝑒𝑏 is a reasonable starting point. Those are fed into RAVP, which
gives predictions for the drag force and dispersive stress. Then, the mean momentum
balance is solved to give a new inner-scaled mean profile, ⟨𝑢⟩(𝑖+1)

𝑠 . From this mean
profile, 𝑢(𝑖+1)

𝜏 and a new 𝑅𝑒
(𝑖+1)
𝑏

are computed using

𝑢
(𝑖+1)
𝜏 =

1∫1
0 ⟨𝑢⟩

(𝑖+1)
𝑠 𝑑𝑦

𝑅𝑒
(𝑖+1)
𝑏

=
𝑅𝑒

(𝑖)
𝜏

𝑢
(𝑖+1)
𝜏

.

(5.18)

To determine whether the loop needs to continue, the resulting bulk Reynolds
number is compared with the desired bulk Reynolds number. This loop finishing
condition is stated as ���𝑅𝑒(𝑖+1)

𝑏
− 𝑅𝑒𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑏

���
𝑅𝑒𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑏

< 𝜖 (5.19)

for some choice of 𝜖 . If the condition is not met, 𝑅𝑒𝜏 is updated using

𝑅𝑒
(𝑖+1)
𝜏 = 𝑅𝑒(𝑖)

𝜏 +
(
𝑅𝑒

(𝑖+1)
𝑏

− 𝑅𝑒𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑏

)
𝑢

(𝑖+1)
𝜏 . (5.20)

The loop repeats until the finishing condition is met.

Reduced models implemented
Since 𝑂(100) iterations are usually required to converge the mean, and RAVP can
take 𝑂(10) minutes to run, the mean flow modeling framework becomes time-
consuming if RAVP is evaluated to find the dispersive stress at every iteration. Two
reduced versions of the full mean flow model are presented.

The first reduced model is a proof-of-concept that uses the data value of the dispersive
stress. This model is reasonable to use if the dispersive stress can already be modeled
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for a given roughness, either independently or as combined with the stochastic stress
using the eddy viscosity. This model is cheap, as it only updates the drag term from
RAVP and the eddy viscosity on each iteration. It runs in 𝑂(10) seconds.

The second reduced model evaluates RAVP at the second iteration, and every 𝑁𝑒𝑣𝑎𝑙
iterations. The dispersive stress is initialized as 0. Starting the evaluation of RAVP
for the dispersive stress at the second iteration allows the mean profile shape to be
somewhat corrected by the drag term and adjusted eddy viscosity first, so that the
estimate for the dispersive stress is more realistic. Evaluating every 𝑁𝑒𝑣𝑎𝑙 iterations
reduces cost while still encoding the relationship between the mean flow profile and
dispersive stress in the model results. For 𝑁𝑒𝑣𝑎𝑙 ≈ 40, the model runs in 𝑂(1) hour.

Estimation of Δ𝑈+ and 𝑘+
𝑠

To computeΔ𝑈+ and 𝑘+
𝑠 , the values of the mean profile ⟨𝑢⟩𝑠 over 𝑦+ ∈ [3𝑅𝑒0.5

𝜏 , 0.15𝑅𝑒𝜏]
are taken, which are suggested conservative limits for the extent of the logarithmic
layer (Marusic, Monty, et al., 2013). For this calculation, ⟨𝑢⟩𝑠 is given on coor-
dinates 𝑦/𝛿 ∈ [−0.032, 2.032] to account for the roughness blockage. Then, the
values of Δ𝑈+ across the logarithmic layer are computed by

Δ𝑈+(𝑦+) =
1
𝜅

ln 𝑦+ + 𝐵 − ⟨𝑢⟩𝑠 for 𝑦+ ∈ [3𝑅𝑒0.5
𝜏 , 0.15𝑅𝑒𝜏]. (5.21)

A final value for Δ𝑈+ is given by taking the median of Δ𝑈+(𝑦). It is also possible to
take the mean, and this does not have a substantial effect on the results.

To estimate 𝑘+
𝑠 , the relationship

𝑘+
𝑠 = exp

[
𝜅(Δ𝑈+ − 𝐵 + 𝐷)

]
(5.22)

is used, where 𝐵 = 5 is the smooth wall constant and 𝜅 = 0.39 is the von Karman
constant. For the sand grain roughness, 𝑘𝑠 ≈ 1.6𝑘 . For this relationship to hold
true, 𝐷 = 7.9 is found to be a good value; it is similar to 𝐷 = 8.5, which is common
in the literature. This value of 𝐷 is taken for all models shown in this chapter.

5.5 Dataset considered and parameters of analysis
The sand grain roughness at 𝑅𝑒𝜏 = 1745 is used for this analysis. The wave number
set K chosen is the same low pass filtered set as in Chap. 4,

𝑘𝑥

Δ𝑘𝑥
∈ [0, 64]

𝑘𝑧

Δ𝑘𝑧
∈ [−64, 64]

(5.23)



83

where Δ𝑘𝑥 = 1.05 and Δ𝑘𝑧 = 2.09. From a total of 𝑁𝑥 × 𝑁𝑧 = 512 × 256 wave
numbers, 64 × 128 wave numbers are considered in this analysis. The number of
Chebyshev points considered is 𝑁𝑦 = 200. The volume fraction representation of
the sand grain roughness is mapped to the Chebyshev grid using Eq. 3.2.

5.6 Proof of concept using fixed dispersive stress
In this section, the iterative framework is tested using the data value of the dispersive
stress. In this test, the parameters 𝐶 = 3.48, 𝑆 = 1, and 𝜖 = 0.00001 are taken. This
model runs in 260 iterations, taking approximately 13 seconds on a laptop.

Figure 5.5: The mean flow prediction for the fixed dispersive stress cases in (a) inner
and (b) outer units, and the (c) eddy viscosity profile.

Figure 5.5 shows the prediction of the mean flow and eddy viscosity profiles. The
mean flow profile is well predicted, though with a discrepancy close to 𝑦+ = 100.
This error is particularly noticeable when plotted with inner-scaled spatial units, but
is less noticeable when plotted with outer spatial units. The modeled eddy viscosity
compares qualitatively well with the data eddy viscosity, though with regions of
slight underestimation in the roughness sublayer and outer regions.

Figure 5.6 compares the terms in the mean momentum balance from the model and
data. This image shows that the mean flow gradient is underestimated in a region
below 𝑦/𝛿 ≈ 0.045, and slightly overestimated above this region, which leads to
the discrepancy in the mean profile shape near 𝑦+ = 100. The drag force is also
overestimated beneath the roughness crest, corresponding to the error in the mean
profile. The stochastic stress is underestimated where the drag force is overestimated
because of the form of the eddy viscosity attenuation based on the drag force, which
helps the model still perform well in predicting the right logarithmic layer profile.
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Figure 5.6: Stress balance for the fixed dispersive stress case.

Data Model Error
𝑅𝑒𝑏 21,400 21,400 0.007%
𝑅𝑒𝜏 1745 1749 0.2%
𝑢𝜏 0.0814 0.0817 0.4%
Δ𝑈+ 9.2 9.3 0.5%
𝑘+
𝑠 112 116 2%

Table 5.1: Comparison of data and model results for the fixed dispersive stress case.

The roughness function Δ𝑈+ and 𝑘+
𝑠 are then calculated from the modeled mean

flow. Table 5.1 summarizes those results, and the agreement between the model and
data is good.

5.7 Results for mean flow model incorporating RAVP evaluation
In this section, results are presented for the mean flow model with the RAVP-
modeled dispersive stress. For the model presented here, ⟨𝑢̃𝑣̃⟩𝑠 is initialized as
0. The modeling parameters 𝐶 = 3.48, 𝑆 = 1, 𝜖 = 0.0005, and 𝑁𝑒𝑣𝑎𝑙 = 40 are
used. Then, the drag force, dispersive stress, and stochastic stresses are iteratively
estimated. The model computes 148 iterations in approximately 2 hours.

Figure 5.7 gives the final predictions of the mean flow and eddy viscosity profiles.
The agreement between the data and predictions is good in inner and outer units.
The predicted eddy viscosity curve underestimates the data, which occurs because
the final friction Reynolds number is underestimated.

Figure 5.8 compares the terms in the mean momentum balance of the model and
data. The mean flow gradient matches reasonably well, but is slightly underestimated
within the roughness geometry. The dispersive stress is overestimated, due to the
underestimation of the mean flow gradient causing an overestimation of 𝐷𝑚𝑎𝑥 from
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Figure 5.7: Mean flow prediction in (a) inner and (b) outer units, and the (c) predicted
eddy viscosity for the model including RAVP evaluations.

Figure 5.8: Mean flow prediction in inner and outer units for the model including
RAVP evaluations.

Data Model Error
𝑅𝑒𝑏 21,400 21,390 0.05%
𝑅𝑒𝜏 1745 1742 0.2%
𝑢𝜏 0.0814 0.0814 0.03%
Δ𝑈+ 9.2 9.3 0.2%
𝑘+
𝑠 112 113 0.7%

Table 5.2: Comparison of data and results of model incorporating RAVP evaluations.

the integral condition of Eq. 5.8. The drag force is slightly overestimated, which is
characteristic of the RAVP analysis. The stochastic stress agrees well with the data.

Table 5.2 summarizes the results of the iteration. The error in the estimates is
reasonably small,
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On sensitivity of the RAVP-estimated dispersive stress to the mean flow
One important observation made while evaluating the mean flow model is that the
RAVP estimate of the dispersive stress is highly sensitive to the mean flow gradient.
This is because the 𝐷𝑚𝑎𝑥 parameter that controls the magnitude of the volume
penalization term is set by an integral condition based on the mean flow profile
shape and the roughness.

This has consequences for the convergence behavior of the mean flow model if the
mean flow gradient is during any iteration underestimated within the roughness. This
is not a problem at the outset because the mean flow profile from the smooth wall
case used to initialize the method overestimates the mean flow gradient. However,
if the mean flow gradient is underestimated during an iteration, the 𝐷𝑚𝑎𝑥 parameter
increases, which increases the RAVP-predicted dispersive stress magnitude and
the fullness of the drag force profile (effectively, an overestimation at any given
𝑦-height). When evaluating the momentum balance, the overestimation of these
stresses further decreases the resulting mean flow gradient. This results in the
method moving farther away from the solution.

This behavior is mitigated somewhat by increasing 𝜖 so the method does not iterate
to a point where the mean flow gradient is underestimated, and this measure has
been taken for the results presented in Sec. 5.7.

5.8 Discussion and future work
In this section, an iterative mean flow modeling framework is developed to predict
mean flow quantities for a given bulk flow in a channel with surface roughness,
which utilizes RAVP and a roughness-modified eddy viscosity profile to close
the terms in the mean momentum balance. The model requires only the bulk
Reynolds number and the surface geometry as inputs, provides a starting point for
the iteration as the corresponding smooth wall profile and friction Reynolds number,
and iteratively solves for the rough wall mean flow and friction Reynolds number.
Two computationally efficient reductions of that framework are tested, one with
a fixed dispersive stress and one which evaluates RAVP for the dispersive stress
every 𝑁𝑒𝑣𝑎𝑙 iterations. For physically justifiable choices of the model parameters,
both models deliver reasonable estimates for the mean flow profile shape, drag
force, Hama roughness function, and equivalent sand grain roughness. The model
that evaluates RAVP also provides predictions for the wake field fluctuations and
dispersive stresses. In this way, the developed approach models the spatially-varying
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and mean turbulent flow response to a given roughness geometry in a channel flow,
providing more information than is provided by models that link the surface statistics
and spectra to aspects of the drag response only.

One major challenge of the method is the computational time associated with eval-
uating RAVP for the dispersive term. To mitigate this, results are given for the case
where the dispersive term is evaluated only once every 40 iterations, where O(100)
iterations are run. This amount is sufficient to recover the mean flow profile, since
the drag force term dominates the effect on the mean flow near the wall. Paralleliz-
ing the wave number by wave number evaluation of RAVP could also speed up the
process considerably and lead to time savings.

Another important area of work is towards improving the convergence properties
of the method as discussed in 5.7. The condition where the mean flow gradient
is underestimated during an iteration results in the method driving away from the
solution. A modification to the treatment of 𝐷𝑚𝑎𝑥 that prevents the overestimation
of the dispersive stress magnitude, or another algorithmic improvement is desirable.

An important avenue for further investigation is improving the modeling of the
stochastic stress contribution. The eddy viscosity modeling used here has virtue in
its simplicity and ease of implementation. However, the model is highly sensitive to
the shape of the eddy viscosity profile and how it is attenuated near the roughness.
A more general method may involve improvements to the eddy viscosity modeling
to better represent the data, or using RAVP to model the effects on the convecting
fluctuations, i.e. solving for the stochastic stress or its modulation in some way.

The ideas presented here complement other existing works in the literature for closing
the loop to estimate the mean and fluctuations in resolvent analysis. For instance,
the work of Rosenberg and McKeon, 2019 demonstrates that by modeling the self-
interaction of one resolvent mode description of an ECS, it is possible to iteratively
estimate the 2D turbulent mean and the resolvent mode representation of the ECS
starting from a laminar solution. The present model develops a simple closure for
the flow over sand grain roughness that incorporates the self-interaction of the wake
field fluctuations. To model this flow demands additional modeling assumptions,
including an eddy viscosity formulation which is less elegant than capturing the
self-interaction of stochastic modes. Nonetheless, the iterative process presented
recovers the mean and dispersive stresses, which is significant because this means
that the wake field fluctuations were predicted using RAVP without having to supply
the mean a priori.
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C h a p t e r 6

DATA-DRIVEN REDUCED ORDER MODEL OF TURBULENT
FLUCTUATIONS USING RESOLVENT ANALYSIS FOR

WALL-MODELED LES

6.1 Introduction
Fully-resolved turbulence contains a huge range of scales of motion, and can only
be resolved in physical space by sampling at a high frequency over long time
on a large computational grid with fine spatial resolution. This makes simulations
expensive, and the storage and analysis of turbulence data challenging. In particular,
spatiotemporal (modal) representations of turbulence calculated using techniques
such as SPOD have many degrees of freedom, and many modes must still be retained
even in a reduced-order representation to preserve the statistics and characteristics
of the original data.

This chapter explores whether there is a way to leverage ideas about the structure
of wall-bounded turbulence to help reduce the dimensionality of spatiotemporal
(modal) representations of turbulence, while still preserving the essential character-
istics of the original data. Such classical ideas include the attached eddy hypothesis
of Townsend, 1976, who painted a picture of turbulence in the logarithmic layer as
composed of hierarchies of geometrically self-similar eddies with inversely-varying
population density.

In this chapter, data-driven methods for coarse-graining modal representations of
turbulence in (𝑘𝑥 , 𝑘𝑧, 𝜔)-space are developed. These methods are different than the
coarse-graining approach Grinstein et al., 2025 takes to coarse-grain the governing
equations, the NSE. The presented method rebins already-existing, high-dimensional
datasets to give reduced order spatiotemporal representations of turbulence. The
presented methods take high-dimensional data from a highly resolved turbulent
channel flow simulation at moderate Reynolds number, and output coarse-grained
modal representations which reproduce the statistics and qualitative characteristics,
but with a large reduction in the number of modes required. Selection criteria based
on the magnitude of the modes and their wave speeds are developed, so that modal
representations that capture dynamic inner and outer layer motions can be isolated.
The data-driven coarse-grained representations are used to weight resolvent mode
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bases, which are shown to represent the data reasonably well. Then, the effect
of applying wave number scalings to the coarse-grained representations to predict
inner region turbulence at higher Reynolds number is explored.

Aspects of the feasibility and efficacy of using these near-wall representations in
wall-modeled LES (WMLES) are investigated, and the impact on the turbulent flow
statistics is highlighted by results obtained in collaboration with Piomelli et. al.1It is
noted that for the purposes of including modes in WMLES, the modal representation
used does not need to represent a full dynamic ROM; all it needs to do is add energy
to the flow where it is desirable.

6.2 General methodology for generating coarse-grained resolvent mode rep-
resentations of near-wall turbulence

The coarse-graining methods presented in this chapter start by taking an SPOD on a
time series of velocity fields from a highly resolved simulation of turbulent channel
flow as inputs. Then, the spatiotemporal representations are coarse-grained, i.e.
the energy content of the modes is redistributed into an appropriate selection of
spatial frequency and temporal frequency or critical layer bins, each represented
by a characteristic mode shape. From these coarse-grained representations, criteria
are developed to select modes that most effectively represent fluctuations present
in the inner, logarithmic, and outer regions of the flow. Then, the coarse-grained
modal representation can be projected onto resolvent modes, resulting in a coarse-
grained resolvent mode representation of near-wall turbulence. Furthermore, these
representations can be scaled to give predictions for fluctuations at different 𝑅𝑒𝜏, and
they can be inverted back into physical space. Figure 6.1 outlines the overarching
structure of the method, and the subsequent subsections document the details of the
data generation, SPOD averaging, coarse-graining, mode selection, projection onto
resolvent modes, and wave number scaling.

1Data-driven and resolvent mode representations of near-wall turbulence are developed using
data analysis and mode selection guidelines as developed in the present chapter by the author. The
WMLES results are obtained by Piomelli et. al., who developed the numerical scheme for a wall
model that incorporates the modal representations in WMLES. Hantsis also develops some empirical
amplifications for modal representations. The results are presented in

• Hantsis, Z., M. J. Chan, B. J. McKeon, and U. Piomelli (2024). Resolvent modes as the
foundation for LES wall models. 77th Annual Meeting of the Division of Fluid Dynamics,
Salt Lake City, Utah. URL: Abstract

• Piomelli, U., Z. Hantsis, M. J. Chan, and B. J. McKeon (2024). Resolvent modes as the foun-
dation for LES wall models. 16th World Congress on Computational Mechanics, Vancouver,
Canada.

https://meetings.aps.org/Meeting/DFD24/Session/C15.11
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Input data: u′(x, y, z, t) at Reτ,in

Compute
averaged SPOD

Coarse-graining

Make selection
of CG modes

Project onto
resolvent basis

Scale to Reτ,out

Invert to
physical space

Output: u′(x, y, z, t) at Reτ,out

Mean flow

û(y;k)

CG û(y;k)

Subset of CG û(y;k)

Best resolvent reconstruction of the subset of CG ˆ̆u(y;k)

Scaled CG subset ˆ̆u(y;k)

Figure 6.1: Workflow for developing coarse-grained spatiotemporal representations
of turbulence using resolvent modes.

On the definition and properties of a mode
In this chapter, a spatiotemporal mode û at a given wave number (𝑘𝑥 , 𝑘𝑧, 𝜔) contains
the three Fourier-transformed 𝑦-varying components of velocity, 𝑢̂, 𝑣̂, and 𝑤̂ stacked
in a vertical vector,

q̂ =


𝑢̂

𝑣̂

𝑤̂

 . (6.1)

Therefore, a mode embeds information about the 𝑦-varying phase and magnitude
of each velocity component. The relative phase and magnitude between velocity
components is fixed. Velocity modes calculated from the Fourier transform are
divergence-free based on their wave number and velocity components

𝑖𝑘𝑥𝑢̂ +
𝑑𝑣̂

𝑑𝑦
+ 𝑖𝑘𝑧𝑤̂ = 0. (6.2)
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𝑅𝑒𝜏 𝐿𝑥 𝐿𝑦 𝐿𝑧 𝑁𝑥 𝑁𝑦 𝑁𝑧 Δ𝑥+ Δ𝑦+
𝑚𝑖𝑛

Δ𝑦+
𝑚𝑎𝑥 Δ𝑧+

1000 16𝛿 2𝛿 3𝛿 640 256 256 25 0.258 23.2 11.7

Table 6.1: Simulation parameters.

To maintain this favorable property, the manipulations on a mode are limited to
multiplication by a complex scalar, which can set the alignment and magnitude of a
mode while preserving incompressibility.

Channel flow data generation
A wall-resolved LES (WRLES) of channel flow at 𝑅𝑒𝜏 = 1000 is performed using
the MPI-parallelized code employed by Piomelli et al (Keating et al., 2004). The
filtered Navier-Stokes equations are solved using a second-order accurate central
difference in space on a staggered mesh. The Vreman subgrid scale model is
used. A second-order accurate semi-implicit time advancement method is used,
where Crank-Nicolson is used for the wall-normal diffusive terms and low-storage
third-order Runge-Kutta is applied to the remaining terms. The Poisson equation
is solved using an efficient Fourier Transform solver. The simulation is run at a
constant 𝑅𝑒𝑏 = 20000. The parameters of the simulation are documented in Table
6.1. 2000 snapshots of velocity data are collected, with a time interval of Δ𝑡+ = 1.5
or Δ𝑡 = 0.03.

Then, each snapshot is Fourier transformed in the streamwise and spanwise di-
rections, so the data is passed to SPOD as a time series of 𝑦-varying data in
(𝑘𝑥 , 𝑘𝑧)-space, where 𝑘𝑥 and 𝑘𝑧 denote the streamwise and spanwise wave numbers
respectively.

Averaged SPOD
To give a spatiotemporal representation of the data, an averaged SPOD is performed
on the Fourier-transformed data in space and time. The time series is broken into
several windowed blocks, or realizations of the flow, each with a phase offset corre-
sponding to the initial time of each window applied. Then, calculating SPOD gives
mode shapes and expansion coefficients that best reconstruct each flow realization
included in the analysis with respect to a kinetic energy norm. Finally, the expansion
coefficients are averaged across realizations to give an average SPOD representation
of the data. The results are given as a 𝑦-varying dataset in (𝑘𝑥 , 𝑘𝑧, 𝜔)-space.

For each wave number, SPOD relates the original realizations of the Fourier trans-
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formed data Q̂ ∈ C𝑛×𝑛𝑏𝑙𝑘 , SPOD modes 𝚽 ∈ C𝑛×𝑛𝑏𝑙𝑘 , and matrix of expansion
coefficients A ∈ C𝑛𝑏𝑙𝑘×𝑛𝑏𝑙𝑘 ,

Q̂ = 𝚽A. (6.3)

The structure of A is

A =


𝑎11 𝑎12 · · · 𝑎1𝑛𝑏𝑙𝑘

𝑎21 𝑎22 · · · 𝑎2𝑛𝑏𝑙𝑘
...

... . . . ...
𝑎𝑛𝑏𝑙𝑘1 𝑎𝑛𝑏𝑙𝑘2 · · · 𝑎𝑛𝑏𝑙𝑘𝑛𝑏𝑙𝑘


, (6.4)

where the 𝑎𝑖 𝑗 coefficient gives the contribution of the 𝑖-th SPOD mode to the 𝑗-th
realization of data. The coefficients are averaged to give a reasonable representation
of all the data blocks, which is calculated as the multiplication of the root-mean-
squared modulus and the average unit vector over all realizations,

Ă =



√︃
1
𝑛𝑏𝑙𝑘

∑𝑛𝑏𝑙𝑘
𝑗=1 |𝑎1 𝑗 |2 1

𝑛𝑏𝑙𝑘

∑𝑛𝑏𝑙𝑘
𝑗=1

𝑎1 𝑗
|𝑎1 𝑗 |√︃

1
𝑛𝑏𝑙𝑘

∑𝑛𝑏𝑙𝑘
𝑗=1 |𝑎2 𝑗 |2 1

𝑛𝑏𝑙𝑘

∑𝑛𝑏𝑙𝑘
𝑗=1

𝑎2 𝑗
|𝑎2 𝑗 |

...√︃
1
𝑛𝑏𝑙𝑘

∑𝑛𝑏𝑙𝑘
𝑗=1 |𝑎𝑛𝑏𝑙𝑘 𝑗 |2

1
𝑛𝑏𝑙𝑘

∑𝑛𝑏𝑙𝑘
𝑗=1

𝑎𝑛𝑏𝑙𝑘 𝑗

|𝑎𝑛𝑏𝑙𝑘 𝑗 |


. (6.5)

Then, an average modal representation ˆ̆q ∈ C𝑛 at a given frequency is obtained using

ˆ̆q = 𝚽Ă. (6.6)

A time series of 2000 snapshots is collected, with a time interval of Δ𝑡+ = 1.5 or
Δ𝑡 = 0.03 in outer units. The time series covers 60 outer time units. The SPOD
is carried out on 19 Hamming windows of 200 snapshots each, with an overlap of
50%. Therefore, each window is 6 outer time units long. This window is chosen so
that near-wall motions are captured, and it is permissible for outer motions that have
a temporal wavelength longer than 6 outer time units to be binned in the 0 frequency
component.

Coarse-graining modal representations in (𝑘𝑥 , 𝑘𝑧, 𝜔)-space
The SPOD modal representations are given in (𝑘𝑥 , 𝑘𝑧, 𝜔)-space. To reduce the order,
approximately logarithmically spaced bins are defined in (𝑘𝑥 , 𝑘𝑧, 𝜔)-space, and each
bin is represented by one mode which is amplified to preserve the streamwise velocity
intensity originally contained in the bin.
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The wave numbers for rebinning in (𝑘𝑥 , 𝑘𝑧, 𝜔) are calculated by calculating loga-
rithmically spaced wave numbers, and selecting the closest (𝑘𝑥 , 𝑘𝑧, 𝜔) wave num-
bers from the original grid to define the bin edges. Only positive wave numbers
(+𝑘𝑥 , +𝑘𝑧, +𝜔) are considered, with Hermitian symmetry accounting for (−𝑘𝑥 ,−𝑘𝑧,−𝜔)
and a cross flow symmetry applied when inverting back to physical space,

𝑢̂(𝑘𝑥 ,−𝑘𝑧, 𝜔) = 𝑢̂(𝑘𝑥 , 𝑘𝑧, 𝜔)

𝑣̂(𝑘𝑥 ,−𝑘𝑧, 𝜔) = 𝑣̂(𝑘𝑥 , 𝑘𝑧, 𝜔)

𝑤̂(𝑘𝑥 ,−𝑘𝑧, 𝜔) = −𝑤̂(𝑘𝑥 , 𝑘𝑧, 𝜔).

(6.7)

The axis of positive wave numbers is defined by the maximum frequency 𝑘𝑥𝑚𝑎𝑥
,

𝑘𝑧𝑚𝑎𝑥
, and 𝜔𝑚𝑎𝑥 , as well as the frequency resolution Δ𝑘𝑥 , Δ𝑘𝑧, and Δ𝜔. Then, the

logarithmically spaced wave numbers are computed as

𝑘̆𝑥 =
[
𝑘𝑥1 , 𝑘𝑥2 , . . . , 𝑘𝑥𝑚𝑎𝑥

]
, 𝑘𝑥𝑙 = 𝑘𝑥1 ·

(
𝑘𝑥𝑚𝑎𝑥

Δ𝑘𝑥

) 𝑙−1
𝐿−1

, for 𝑙 = 1, 2, . . . , 𝐿

𝑘̆𝑧 =
[
𝑘𝑧1 , 𝑘𝑧2 , . . . , 𝑘𝑧𝑚𝑎𝑥

]
, 𝑘𝑧𝑚 = 𝑘𝑧1 ·

(
𝑘𝑧𝑚𝑎𝑥

Δ𝑘𝑧

) 𝑚−1
𝑀−1

, for 𝑚 = 1, 2, . . . , 𝑀 − 1

𝜔̆ = [𝜔1, 𝜔2, . . . , 𝜔𝑚𝑎𝑥] , 𝜔𝑛 = 𝜔1 ·
(𝜔𝑚𝑎𝑥
Δ𝜔

) 𝑛−1
𝑁−1

, for 𝑛 = 1, 2, . . . , 𝑁 − 1,

(6.8)

where 𝑘𝑥1 = Δ𝑘𝑥 , 𝑘𝑧1 = Δ𝑘𝑧, and 𝜔1 = Δ𝜔 by construction. Then, the closest values
from the original 𝑘𝑥 , 𝑘𝑧, and 𝜔 grids are taken to denote the bin wave numbers,

𝑘̃𝑥𝑙 = 𝑘𝑥𝑖 , where arg min
𝑖

��𝑘𝑥𝑖 − 𝑘̆𝑥𝑙 ��
𝑘̃𝑧𝑚 = 𝑘𝑧𝑖 , where arg min

𝑖

��𝑘𝑧𝑖 − 𝑘̆𝑧𝑚 ��
𝜔̃𝑛 = 𝜔𝑖, where arg min

𝑖
|𝜔𝑖 − 𝜔̆𝑛 | .

(6.9)

Then, each bin is defined by the mode calculated at its representative wave number.
The bin defined by k𝑏𝑖𝑛 = (𝑘𝑥𝑙 , 𝑘𝑧𝑙 , 𝜔𝑙) encompasses the set K of all wave numbers
from the original (𝑘𝑥 , 𝑘𝑧, 𝜔) axes that meet the criteria,

𝑘𝑥 ∈ (𝑘𝑥𝑙−1 , 𝑘𝑥𝑙 ]

𝑘𝑧 ∈ (𝑘𝑥𝑚−1 , 𝑘𝑧𝑚]

𝜔 ∈ (𝜔𝑛−1, 𝜔𝑛].

(6.10)

Then, the mode which represents the bin is amplified by a real scalar 𝑏 such that
amplitude of the mode’s streamwise velocity component captures the streamwise
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Region 𝑦 𝑐+

Inner 𝑦+ < 100 [2, 16]
Logarithmic 𝑦+ = 100 to 𝑦/𝛿 > 0.1 [16,𝑈𝑐𝑙 − 6.15]
Outer 𝑦/𝛿 > 0.1 [𝑈𝑐𝑙 − 6.15,𝑈𝑐𝑙]

Table 6.2: Regions of flow delineated by wall normal height with the corresponding
guidelines for convecting velocity.

energy intensity of all the modes contained in the bin. The scalar 𝑏 is calculated as

𝑏 =
∑

k∈K
∫𝛿

0 |𝑢̂(k)|2𝑑𝑦∫𝛿
0 |𝑢̂(k𝑏𝑖𝑛)|2

. (6.11)

The logarithmic spacing is important because it preserves the distinction between
large wavelength modes that convect at different but similar speeds to produce
important near-wall motions, while binning together small wavelength modes to
reduce the degrees of freedom of the modal representation. The choice to rebin
using wave numbers contained in the original frequency axis is crucial because it
minimizes the manipulations carried out on the retained modes to multiplication by
a scalar.

Mode selection and filtering by convecting velocity
From spatiotemporal representations of turbulence, it is possible to select and extract
modes that are characteristic of motions in the inner, logarithmic, and outer regions
of the flow. Those regions are delineated by their wall-normal extent and the mean
velocity at those wall-normal locations in Table 6.2 (Moarref, Sharma, et al., 2013).
For modes to contribute to dynamic motions in a particular region of the flow,
they must be energetic in that region. The amplitude of the streamwise velocity
component of a mode is usually highest near its critical layer, which is the height
𝑦𝑐𝑟𝑖𝑡 where the wave speed of the mode 𝑐 = 𝜔/𝑘𝑥 is equal to the mean velocity. This
critical layer mechanism can be described by the linear dynamics captured in the
linearized Navier-Stokes operator. Therefore it is reasonable to select modes based
on whether their convecting velocities are characteristic of the particular region of
the flow of interest.

Selecting a mode that is only energetic in the inner region is straightforward because
the wall-normal extent of the mode is compressed when its amplitude is localized
in the inner region. Selecting a mode that is active in the outer region but not in the
inner region is tricky because a mode that has a higher critical layer height also tends
to have significant amplitude spread out over a larger wall-normal extent. These
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modes are representative of large scale motions that reach from the outer region into
the inner region.

Even amongst modes that convect at a particular speed, some modes are more
energetic than others, and it is often possible to truncate a modal representation
further while capturing the statistics. Selecting modes by their integrated streamwise
energy intensity within a region of the flow of interest,

𝐸̂𝑢𝑢(𝑦1, 𝑦2) =
∫ 𝑦2

𝑦1

|𝑢̂ |2𝑑𝑦, (6.12)

is a reasonable choice, especially since the streamwise energy dominates the turbu-
lent kinetic energy. However, it is also possible to select modes by shear Reynolds
stress,

𝐸̂𝑢𝑣(𝑦1, 𝑦2) =
∫ 𝑦2

𝑦1

𝑅𝑒(𝑢̂𝑣̂∗)𝑑𝑦, (6.13)

or another mode quantity of interest,

𝐸̂𝑞(𝑦1, 𝑦2) =
∫ 𝑦2

𝑦1

𝑞𝑑𝑦. (6.14)

A final consideration is to select modes based on the wave numbers expected to be
active in the flow; motions of 𝜆+

𝑥 ≈ 1000 and 𝜆+
𝑧 ≈ 100 are characteristic of near-wall

streaks, while superstructures exist in the logarithmic region of boundary layers of
roughly 6𝛿 in streamwise length.

The metric for choosing the modes can be based on what statistics are desired to
be reproduced or considered important for a numerical scheme. For the scheme of
Piomelli et. al, it is shown that having concentrated Reynolds shear stress in the
inner layer is desirable, as it excites additional turbulent activity in the near-wall
region, resulting in an increase in the inner layer peak which improves the matching
of statistics from WMLES and wall-resolved simulations. From the perspective of
selecting modes which best represent turbulent kinetic energy, choosing by TKE or
streamwise stress, which is the bulk of TKE, works well.

Determining weights for resolvent modes using SPOD modes
Weights for resolvent modes are determined to best reconstruct the SPOD modal
representations with respect to the kinetic energy norm. For each frequency, a rank
𝑀 SPOD approximation is taken,

ˆ̆q =
𝑀∑︁
𝑖=1

𝜑𝑖 𝑎̆𝑖 . (6.15)
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Then, the best projection of the SPOD mode onto the jth resolvent mode from the
SVD expansion can be found by solving

𝜒 𝑗 = arg min
𝜒 𝑗

| | ˆ̆q − 𝜎𝑗𝜓 𝑗 𝜒 𝑗 | |2𝑊 , (6.16)

where 𝑊 is a matrix of grid weights. The 2-norm is used here, but other norm
choices are possible. Solving this problem yields

X =
(
BHWB

)−1
BHW ˆ̆q, (6.17)

where B = [𝜎1𝜓1, 𝜎2𝜓2, ..., 𝜎𝐽𝜓𝐽], X = [𝜒1, 𝜒2, · · · , 𝜒𝐽]⊤, and 𝐽 is the number of
resolvent modes to include in the expansion. Then, the state can be reconstructed as

ˆ̆q(k) = B(k)X(k). (6.18)

6.3 Scaling modal representations to higher Reynolds numbers
In the equilibrium channel flows considered considered in this chapter, turbulent
fluctuations obey known scalings with 𝑅𝑒𝜏. The inner layer motions maintain their
sizes in inner units, the outer layer motions scale in outer units, and the logarithmic
layer motions are observed to be self-similar. This behavior appears in wave number
space, where resolvent analysis gives the expected scalings for wave numbers, mode
shapes, and gains for inner, self-similar, and outer-scale modes (Moarref, Sharma,
et al., 2013; Moarref, Sharma, et al., 2014).

In this chapter, the subset of scaling rules developed for inner modes are applied to
scale the coarse-grained modal representations of inner layer turbulent fluctuations.
For inner modes, the wave numbers and wall-normal shape are held constant in
inner units. The inner mode amplitude is also kept the same in inner units. The
application of these rules means that the modal representations of inner scaled
motions calculated from data at a lower 𝑅𝑒𝜏 become smaller in outer units, so the
fluctuations have higher spatial frequencies and smaller wall-normal extents.

6.4 Results
In this section, coarse-grained modal representations of near-wall turbulence in
(𝑘𝑥 , 𝑘𝑧, 𝜔) are calculated and compared with SPOD to evaluate their efficacy in
representing statistics and turbulent motions. Then, the effectiveness of the best-fit
resolvent mode representations is also evaluated.



97

Baseline: SPOD representations of near-wall turbulence
To develop representations of the near-wall motions, SPOD is calculated using
a short temporal window. This choice decreases the amount of data required to
converge SPOD but sacrifices some resolution of large motions that occur on long
time scales. Figure 6.2 verifies that the Reynolds stresses computed from the
averaged SPOD approach match well with those obtained using Welch’s method on
the same short window. The streamwise peak is somewhat lower than that expected
at this Reynolds number, and this is attributed to the truncation of large motions
which extend down to the wall and contribute to the streamwise peak, but are not
captured in the short-windowed analysis. Both the Welch’s method and SPOD
therefore have 8.2 × 106 modes, which when multiplied by 𝑁𝑦 = 200 is the degrees
of freedom required to describe the data.

Figure 6.2: Reynolds stresses captured by the Welch’s analysis and SPOD containing
8.2 × 106 modes, as well as a truncated SPOD containing 4.0 × 105 modes.

In general, modal representations of turbulence can be truncated but still capture the
same energy. One form of truncation has already been applied; the number of SPOD
modes for each frequency was truncated to 8 out of a possible 19. The dotted curve
in Figure 6.2 shows that when a reduced modal representation (denoted SPODt) is
constructed by retaining only the leading 4.0 × 105 modes ranked by streamwise
energy content out of a possible 8.2 × 106 modes, and Hermitian and cross-flow
symmetries are applied, it is possible to recover the Reynolds stresses. The cross
flow symmetry, defined as

𝑢̂(𝑘𝑥 ,−𝑘𝑧, 𝜔) = 𝑢̂(𝑘𝑥 , 𝑘𝑧, 𝜔)

𝑣̂(𝑘𝑥 ,−𝑘𝑧, 𝜔) = 𝑣̂(𝑘𝑥 , 𝑘𝑧, 𝜔)

𝑤̂(𝑘𝑥 ,−𝑘𝑧, 𝜔) = −𝑤̂(𝑘𝑥 , 𝑘𝑧, 𝜔),

(6.19)
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must at least hold in an integrated sense across wave number space in a channel.
Applying the cross-flow symmetry on a wave number by wave number sense is
informed by the desire to develop truncated modal representations of near-wall
turbulence, which is made more feasible when the symmetry is encoded in the
modal basis.

(a)

(b)

(c)

Figure 6.3: Comparison among (a) streamwise velocity from data, (b) SPOD, and
(c) SPODt. The domain shown is 𝑥/𝛿 ∈ [0, 6], 𝑦/𝛿 ∈ [0, 1], and 𝑧/𝛿 = 1.5. SPOD
captures qualitatively similar turbulent motions to the original data, and SPODt
reproduces the fluctuations well.

In Figure 6.3, the streamwise velocity fields at 𝑡 = 0 are compared from a data
snapshot, SPOD, and SPODt. The data and SPOD agree qualitatively, though the
phase encoded in the average SPOD representations is different, such that the fields
appear almost as though they are at different times. SPOD and SPODt agree well,
indicating that the choice of modes retained in SPODt still capture the energetic
streamwise motions.

The SPOD modes can be filtered by their convecting velocities, and the resulting
stresses are plotted in Figure 6.4. The modes that convect primarily at speeds
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Figure 6.4: Effect of filtering SPOD modes by convecting velocity on the Reynolds
(a) streamwise, (b) wall-normal, (c) spanwise, and (d) shear stresses.

characteristic of the mean velocity in the inner region, denoted 𝑐+ ∈ [2, 16], have
peaks primarily in the inner region and represent most of the contribution to the
inner peak of streamwise stress. Those inner modes have

〈
𝑣′𝑣′

〉
,
〈
𝑤′𝑤′〉, and

〈
𝑢′𝑣′

〉
stresses that span the inner and outer regions. The modes that convect primarily at
speeds characteristic of the outer velocity 𝑐+ > 16 have sizeable contributions in
the inner and outer layer, so they also contribute to the inner streamwise peak. The
outer modes contribute to

〈
𝑣′𝑣′

〉
,
〈
𝑤′𝑤′〉, and

〈
𝑢′𝑣′

〉
stresses mainly in the outer

layer. As compared to the 4.0 × 105 modes retained in the SPODt representation,
2.7× 105 inner modes and 1.3× 105 outer modes are required to represent the inner
and outer layer motions respectively.

In Figure 6.5, 𝑥𝑦-planes in physical space of the SPODt and subsets corresponding
to the inner and outer modes are plotted. The effect of retaining only modes that have
convecting velocities 𝑐+ ∈ [2, 16] is to represent turbulent motions that occur within
the inner region and, to a lesser extent, some motions that occur above the inner
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(a)

(b)

(c)

Figure 6.5: Streamwise velocity fluctuations for SPODt containing (a) all convection
speeds, (b) 𝑐+ ∈ [2, 16] , and (c) 𝑐+ > 16.

region. The effect of retaining modes that have convecting velocities 𝑐+ > 16 is to
retain turbulent motions that have significant strength across the domain, including
the inner region; these modes reach to the wall. Since this data is at 𝑅𝑒𝜏 = 1000, the
inner and outer regions are close together, which contributes to this observed effect.
At higher friction Reynolds numbers, the inner and outer regions will be separated
by a logarithmic layer of increasing extent in plus units, and the outer layer would be
defined by a higher minimum 𝑐+. It is reasonable to assume that by setting a higher
minimum 𝑐+, as would be the case in a higher 𝑅𝑒𝜏 flow, that the outer motions might
not be uniformly as strong across the domain, though there will still be large-scale
motions that reach the wall.

Coarse-grained (𝑘𝑥 , 𝑘𝑧, 𝜔) SPOD modal representations of near-wall turbu-
lence
In this section, the coarse-graining methodology is applied in (𝑘𝑥 , 𝑘𝑧, 𝜔)-space, and
the ability of the coarse-grained representations to reproduce the statistics, flow
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features, and behavior when filtered by convecting velocity is evaluated.

Figure 6.6: Comparison of the Reynolds stresses of the SPODt, coarse-grained
(CG), and truncated coarse-grained (CGt) representations.

In Figure 6.6, the Reynolds stresses calculated for coarse-grained representations
are compared with the Reynolds stress of SPODt. The coarse-grained SPOD (CG)
reproduces the streamwise, wall-normal, spanwise, and shear stresses, though it
underestimates the streamwise peak. This behavior is also captured by a truncated
version of the coarse grained representation (CGt), based on retaining only the lead-
ing modes ranked by their streamwise energy. The CGt representation reproduces
the statistics with 2.4× 103 modes, for a 𝑂(100) order of magnitude reduction. The
Reynolds stress curves remain reasonably smooth even with the extreme coarse-
graining of the wave number space.

In Figure 6.7, the Reynolds stresses for the original truncated SPOD and coarse-
grained SPOD are compared for modal representations filtered by wave speed.
The behavior of the data is mostly reproduced by the coarse-grained approach,
particularly in the streamwise and shear Reynolds stresses. The agreement for the
𝑣 and 𝑤 components is not as favorable. This disagreement is possibly attributable
to the selection method for representative mode for each bin, which is purely based
on the wave number that defines the bin, without any consideration for whether the
mode represents the relative phase and magnitude of velocity components obtained
from the modes originally in the bin. Nonetheless, the stresses from SPODt and
CGt agree reasonably well, and CGt captures that information with an order of
magnitude reduction of around 𝑂(100).

In Figure 6.8, the physical fields at 𝑧/𝛿 = 1.5 between SPODt and CGt retaining
wave speeds 𝑐+ ∈ [2, 16] are plotted. Both representations narrow the wall-normal
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Figure 6.7: The Reynolds (a) streamwise, (b) wall-normal, (c) spanwise, and (d)
shear stresses captured by subsets of the SPODt and CGt modal representations
corresponding to inner 𝑐+ ∈ [2, 16] and outer 𝑐+ > 16 motions.

extent of fluctuations captured to be mostly at the wall. The general length and size
of fluctuations in the inner region appears reasonably similar. The coarse-grained
representation appears to have slightly more activity in the outer region, although
the magnitude remains low as desired.

In Figure 6.9, the physical fields are compared between SPODt and CGt. Here,
the fields do not look as similar, and it appears that small scale activity has been
attenuated in the outer region. This may be due to the logarithmic binning of 𝜔; at
high 𝜔 and high 𝑘𝑥 characteristic of smaller scale motions, the bin sizes are larger,
so more small scale modes in the outer region are binned together.

Resolvent mode representations of coarse-grained data
The coarse-grained modal representations can be approximated well using resolvent
bases. In Figure 6.10, the stresses calculated from coarse-grained representations
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(a)

(b)

Figure 6.8: Comparison between (a) coarse-grained SPOD and (b) convection
velocity-filtered SPOD (bottom), where 𝑐+ ∈ [2, 16] was retained.

(a)

(b)

Figure 6.9: Comparison between (a) coarse-grained SPOD and (b) convection
velocity-filtered SPOD (bottom), where 𝑐+ > 16 was retained.

and the best-fit local and eddy resolvent mode reconstructions on a 𝑁𝑦 = 240
Chebyshev grid with 50 SVD modes are compared. The eddy resolvent mode
reconstructions reproduce the Reynolds stresses better than the local resolvent mode
reconstructions for this number of SVD modes. This may be attributed to the
improved ability of the leading eddy resolvent modes to represent mode shapes in
turbulence for the wave numbers characteristic of near-wall motions, since the eddy
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Figure 6.10: Spatiotemporally averaged Reynolds stresses from coarse-grained
SPOD, eddy resolvent, and local resolvent reconstructions.

modes embed some information about the flow nonlinearity (Morra et al., 2019;
Symon et al., 2023). It is noted that since resolvent modes form a complete basis
for the fluctuations, retaining more SVD modes should enable the local resolvent
reconstructions to match the Reynolds stresses as well.

6.5 WMLES results incorporating 𝑅𝑒𝜏-scaled modal representations
In this section, a selection of spatiotemporal modes describing near wall motions
is made from the 𝑅𝑒𝜏 = 1000 data. The mode selection criteria, statistics, and
appearance of the near wall representation are documented. Then, the modal rep-
resentations are scaled and inserted into the wall layer of a wall-modeled LES at
𝑅𝑒𝜏 = 5200 by Piomelli et. al. Their results demonstrate the potential utility of
spatiotemporal modal representations of near-wall turbulence to augment existing
wall modeling schemes in LES.

The modal representation, denoted ũ, consists of 22 resolvent modes with weights
computed to best fit SPOD data at the considered wave numbers. In addition, the
modes are amplified to achieve a peak Reynolds shear stress of approximately 20% of
the maximum, which permits the usage of a very compact modal representation as a
proof-of-concept. The mode selection is made using wave numbers of order𝑂(102−
103) and convecting velocities generally within 𝑐+ ∈ [2, 16] that are approximately
representative of inner layer motions, as plotted in Figure 6.11. Their localization
is visualized in Figure 6.12(a), where the modes are plotted in physical space at
𝑅𝑒𝜏 = 1000.

The magnitude of amplification is a tunable parameter for the presented results;
adding modes that are not amplified does not change the modeled turbulence sig-
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nificantly, while adding modes that are too highly amplified results in un-physical
behavior. The goal for future work is to incorporate the coarse-grained modes,
which have already been amplified as part of that modeling scheme.

Figure 6.11: Wave number and convecting velocities of the resolvent modes, plotted
in (a) (𝜆+

𝑥 , 𝑐
+)-space and (b) (𝜆+

𝑥 , 𝜆
+
𝑧 )-space.

To apply the modes at 𝑅𝑒𝜏 = 5200, the modes are scaled to preserve their dimensions
and amplitudes in inner units. The theoretical effect of that scaling is to shrink the
spatial extent of the modes in outer units, while the intensity remains similar. This
effect is observed in Figure 6.12(b), which depicts the scaled modal representation.
The height of the wall layer interface is plotted at 𝑦/𝛿 = 0.1 on both plots for
reference.

Figure 6.13 shows the Reynolds shear stress components of the modes scaled to
𝑅𝑒𝜏 = 5200. These modes reproduce the streamwise energy peak behavior, and
capture shear stress content which spans the inner layer and extends to slightly above
the interface.

The modes are transformed into physical space and their contribution ũ is added to
the wall layer velocity of a WMLES on the embedded grid only; the wall interface
ensures that the outer flow matches the wall layer solution across the boundary.
Now, the wall layer velocity is given by the sum of a modified inner layer model
and the mode contribution ũ. The inner layer model for the inner layer velocity U
is modified to account for the contribution of the modes,

𝜕

𝜕𝑦

[
(𝜈 + 𝜈∗𝑇,𝑤𝑚)

𝜕U𝑖

𝜕𝑦
− 𝑢̃𝑖 𝑣̃

]
=

1
𝜌

𝜕P
𝜕𝑥𝑖

(6.20)
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(a)

(b)

Figure 6.12: Streamwise velocity fluctuations for the modal representation at (a)
𝑅𝑒𝜏 = 1000 and scaled to (b) 𝑅𝑒𝜏 = 5200.

by adding the 𝑢̃𝑖 𝑣̃ contribution and by using a modified eddy viscosity 𝜈∗
𝑇,𝑤𝑚

defined
as

𝜈∗𝑇,𝑤𝑚 = 𝜅 [𝑦𝐷(𝑦)]2 𝜕U
𝜕𝑦

where 𝐷(𝑦) = 1 − exp(−𝑦+/25) (6.21)

that accounts for the mode contribution through a modification to the von Karman
constant 𝜅. For a channel, 𝜅 is given by,

𝜅̃2 = 𝜅2 +
⟨𝑢̃𝑣̃⟩

𝑦2
〈
𝐷2(𝑦)

〉 ��� 𝜕⟨U⟩
𝜕𝑦

��� 𝜕⟨U⟩
𝜕𝑦

. (6.22)

Therefore, in this formulation, the turbulent motions influence the near wall stress
directly by making their own contribution, as well as by exciting additional inner
layer motions through 𝑢̃𝑖 𝑣̃ where 𝑖 = 1, 2 for the stresses formed by the wall-normal
velocity and the streamwise and spanwise components respectively.

In Figure 6.14, the effect of including the modal representation in the wall layer
of WMLES is evaluated by comparing the streamwise stress behavior with DNS
data from M. Lee and Moser, 2015 and a baseline WMLES using an equilibrium
wall model. The baseline WMLES underestimates the streamwise energy intensity
in the inner layer compared to the DNS results. Adding the modes to the inner
layer of WMLES has two effects. First, the modes excite additional activity in the
inner layer model solution, modifying the stress from the inner velocity ⟨U′U′⟩.
Second, the modes add their own contribution to the streamwise energy content
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Figure 6.13: (a) Reynolds stress components plotted for the near wall representation
on inner spatial units and (b) the Reynolds shear stress component on outer spatial
units.

𝑢̃𝑢̃. These additions sum, resulting in an increase in the peak streamwise stress
that approximately matches the behavior observed in the DNS. Outside of the wall
layer, both WMLES schemes match and underestimate the DNS, which is expected
because on a coarse grid, the WMLES statistics will never match the DNS in the
outer region. However, in the inner region, the addition of the modes improves
the streamwise stress, demonstrating the potential of the method to improve the
modeling capabilities of WMLES.

DNS (Lee & Moser 2015)

RM

WMLES + RM

Figure 6.14: Comparison of the streamwise stress from DNS, WMLES, and WM-
LES with the resolvent mode-based near-wall representation of turbulent motions.
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6.6 Conclusions
In this work, a method for producing dynamic coarse-grained modal representations
of near-wall turbulent motions is presented, which drastically reduces the number
of modes required to represent turbulent motions and statistics. An averaged SPOD
is developed to generate a spatiotemporal representation of a time series of flow
fields, and that representation is rebinned on logarithmically spaced axes, where
each bin is represented by a mode which is amplified to preserve the energetic
content of the bin. Those amplified modes retain amplitude and phase information.
The logarithmic rebinning maintains the distinction of large wavelength modes while
binning small wavelength modes together, so that the flow motions captured by larger
wavelength modes convecting at different speeds are captured in the coarse-grained
representations. The coarse-grained modal representations reproduce the qualitative
appearance of the turbulent fluctuations and the spatiotemporally averaged Reynolds
stresses at a degree-of-freedom reduction of 𝑂(100). Future work could include
developing ways of using the data compression capabilities of the coarse-graining
algorithm to assist with data storage and super-resolution.

The coarse-grained modal representations are amenable to reconstruction by resol-
vent modes and rescaling to represent turbulent motions at higher Reynolds numbers.
The choice of resolvent mode basis can be informed by the knowledge that resolvent
mode bases constructed with an eddy viscosity reconstruct the Reynolds stresses
more readily with fewer SVD modes. The inner layer motions from 𝑅𝑒𝜏 = 1000 can
be scaled to 𝑅𝑒𝜏 = 5200 by scaling the wave numbers and mode shapes using rules
from resolvent analysis.

Finally, a compact resolvent mode representation of near-wall motions is developed
by choosing convecting velocities and wave numbers representative of inner layer
motions. The representation is scaled from 𝑅𝑒𝜏 = 1000 to 𝑅𝑒𝜏 = 5200 and added
to the wall layer of a WMLES by Piomelli et. al. The addition of the resolvent
modes improves the streamwise stress resolved by the simulation as compared
with WMLES with an equilibrium wall model. The improvement is such that it
matches the streamwise stress from DNS at the same Reynolds number. These
results demonstrate the predictive promise of the methods for calculating compact
resolvent mode representations of turbulence developed in this chapter. It also
motivates future development on using resolvent mode scaling to make predictions
for flow motions in the logarithmic region which grows with Reynolds number, since
these motions make up the majority of the WMLES wall layer at higher 𝑅𝑒𝜏.
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C h a p t e r 7

CONCLUSIONS AND FUTURE WORK

This thesis contributes to the capabilities of reduced order modeling techniques
to capture roughness sublayer turbulence in multiscale roughness geometries, and
the construction of compact modal representations of near-wall turbulence with
applications to wall-modeling schemes in LES. First, a physics-based reduced-order
model is developed to predict the sensitivity of the spatially-varying roughness
sublayer turbulence to a multiscale roughness geometry using resolvent analysis
with a drag-normalized, Reynolds-decomposed volume penalization term. This
model provides computationally inexpensive, quantitatively useful predictions of
the roughness sublayer turbulence and mean flow profile over a multiscale roughness
geometry, capabilities which are only partially addressed by other methods in the
literature which seek to bypass the details of the roughness sublayer fluctuations
and connect the statistics and spectra of the surface geometry directly to the mean
response. This model has the potential to predict these flow quantities for realistic
surfaces that have not been previously tested in numerical or physical experiments.
The coarse-graining chapter develops a method for capturing motions in near-wall
turbulence using a modal representation with a large decrease in degrees of freedom,
which admits scaling rules developed for modal representations to make predictions
for near-wall motions at higher Reynolds numbers. These predictions are used in
the WMLES of Piomelli et. al to improve the matching of the streamwise velocity
statistics between DNS and WMLES of a channel flow, and points towards how to use
data-driven, scaled modal representations in conjunction with physics knowledge to
make predictions outside of the original training data.

In Chapter 3, the ability of a resolvent mode basis developed using different mean
flow profiles with standard no-slip, no-penetration boundary conditions at the wall to
model wake field 𝜔 = 0 fluctuations in the turbulent flow over sand grain roughness
in the fully rough regime is evaluated using weights calculated to best reconstruct the
observed fluctuations. The analysis reveals that a resolvent mode basis developed
using a smooth wall mean and standard boundary conditions at the walls can still
represent the wake field velocity fluctuations effectively. Furthermore, those wake
field velocities also represent components of the wake field pressure and can be
used to model the pressure force on roughness elements, and an approximate linear
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relationship between the weights and modes of the surface geometry exists in the
turbulent flow over a multiscale roughness geometry. Finally, a modeling framework
for the wake field is developed using the physics-based resolvent modes and a data-
informed model for the weights utilizing the average linear relationship identified
between the surface roughness modes. This framework represents a way of using
data to inform the description of turbulence using resolvent modes. However, the
data-informed model is evaluated and shown to not perform well for the given flow.

The promise embedded in a linear model for wake field fluctuations even in a mul-
tiscale roughness geometry motivates the development of a physics-based method
to model resolvent mode weights as linearly related with the surface geometry.
In Chapter 4, resolvent analysis with a drag-normalized, Reynolds-decomposed
treatment of the volume penalization is developed to model roughness sublayer
fluctuations given only a mean flow profile and the roughness geometry. The key
insight that the magnitude of the volume penalization should be scaled to give the
correct magnitude of integrated inner-scaled drag force allows a simple closure of
the model. RAVP gives resolvent modes that are descriptive of the wake field fluc-
tuations even at low SVD rank, and mode weights which contain the contributions
from a linear relationship with the roughness geometry, the usual nonlinear term
in the fluctuations, and the interaction between the roughness geometry and fluc-
tuations at other wave numbers. It is shown that modeling using only the portion
that linearly relates the surface geometry and the fluctuations is sufficient to make
predictions of the wake field fluctuations and dispersive stresses. In addition, RAVP
predicts the relationship between the shape of the drag force profile and the mean
flow profile. RAVP works for a multiscale roughness, and future work should in-
clude the characterization of the model performance over other realistic roughness
geometries. In addition, RAVP should be applied to convecting (𝜔 ̸= 0) modes,
with the goal of determining approaches to approximate the stochastic fluctuations
and stresses.

Oftentimes, quantities related to the mean flow, such as the Hama roughness func-
tion, equivalent sand grain roughness, and the shape of the mean flow profile are the
quantities of interest for engineers in a given bulk flow. In Chapter 5, a modeling
framework for mean flow quantities is developed that takes advantage of the link
between the roughness sublayer fluctuations and the mean flow profile embedded
in the RAVP methodology. The framework is iterative; for a desired bulk flow and
starting from a modeled smooth wall mean flow profile, the method predicts the
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fluctuations, drag force, and stresses, updates the mean flow profile, and iterates un-
til the rough wall mean profile is predicted for the given bulk flow. This work gives a
different perspective on the modeling problem for the rough wall mean flow profile;
previous modeling methodologies in the literature for rough surfaces are based on
fitting the parameters of a model form to data. By modeling the mean flow profile
as the sum of the stresses which define its shape, and closing the model by capturing
the relationship between the stresses and the mean flow profile encoded in RAVP
and a modeled rough wall eddy viscosity, this model has almost all of the ingredients
for a fully physics-based framework for predicting the mean flow profile and mean
quantities of interest over an arbitrary surface geometry using reduced order mod-
eling. One important avenue of development for this modeling methodology is to
improve or find an alternative to the eddy viscosity profile for relating the stochastic
stress to the mean, which would reduce the remaining empiricism embedded in the
model. One clear avenue for this is to investigate the modeling of the stochastic
fluctuations and stresses using RAVP itself. Another, more speculative suggestion
for future study is to incorporate the physical relationships embedded in RAVP and
this mean flow model into the regularization of physics-informed neural networks,
which may improve out-of-sample performance and enable these methods to predict
more than 𝑘+

𝑠 .

Finally, in Chapter 6, a coarse-graining method is presented which dramatically
reduces the number of modes required to describe the statistics and motions of
turbulence in channel flow. Methods for selecting modes that represent motions
in particular regions of the flow are developed, and a Reynolds-number-scaled
representation of inner region motions is placed in the wall layer of an WMLES in
collaboration with Piomelli et. al. Its inclusion improves the agreement between the
streamwise energy peaks from DNS and that of the wall layer velocity in WMLES.
The coarse-graining method takes spatiotemporal modal representations of data
in (𝑘𝑥 , 𝑘𝑧, 𝜔)-space onto logarithmically spaced bins. This representation permits
an extremely compact representation of the turbulence, with a degree of freedom
reduction of 𝑂(102) times. To determine which modes are retained in a near-
wall turbulence representation for input into a wall-modeling scheme, criteria for
selecting modes based on metrics, wave number, and wall-normal localization are
developed. Future work should include working out how to form a spatiotemporal
representation in (𝑘𝑥 , 𝑘𝑧, 𝑐)-space, which lends itself naturally to the representation
of turbulence as the superposition of convecting motions. Another important avenue
for future work is to apply the scaling findings of Moarref, Sharma, et al., 2014
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to extend the predictions of higher Reynolds number turbulence to self-similar
modes. Also, developing methods for data storage and super-resolution using the
data compression capabilities of the coarse-graining methodology could be a useful
pathway for future research.

Overall, this thesis contributes to the development of physics-based methods for
reduced order modeling of near wall and roughness sublayer turbulence to give
generalizable insights. The resolvent analysis method forms a transfer function
between the surface and 3D flow response that yields the drag and turbulent fluc-
tuations, which goes beyond the capabilities of existing empirical methods. The
physical insights embedded in RAVP offer a particular lens through which to un-
derstand the sensitivity of turbulence and drag to surface roughness, which are
generally useful and could also be applied in other modeling architectures. The
coarse-graining methodology and mode selection criteria represent a promising
step towards Reynolds-number-scalable modal representations of turbulence that
augment wall layer prediction schemes for wall modeled simulations.
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