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1 Introduction

ChirpLab is a collection of MATLAB-routines that can be used to detect chirping signals from very noisy
data [1]. This guide explains how to use this software; it includes installation instructions together with
a brief description of the code, and some demos. For example, ChirpLab will allow the user to reproduce
all the numerical experiments presented in the companion paper [1]. We expect that the user will expand
the library and tailor the software for her/his particular purpose. There is also little doubt that ChirpLab’s
performance and design may still be optimized. In summary, ChirpLab is a collection of core data structures
and algorithms which may be used as a starting point, and which we expect will become richer in the future.

2 Installing ChirpLab

2.1 Requirements

The software requirements for ChirpLab are

• tar and gunzip to install the package on Mac OS X, Linux or Solaris, or zip for Windows.

• MATLAB version 6 or higher.

We have successfully compiled ChirpLab under the following operating systems and compiler versions:

• Solaris 9 (SunOS 5.9), cc 5.3

• Fedora Core 4 Linux, gcc 3.3.6

• Mac OS X

Compilation on other systems, such as Windows, should also work just fine.

2.2 Installing and starting up ChirpLab

ChirpLab is distributed as a compressed tar file for Unix-based systems or as a zip file for Windows systems.
The current version is available on the ChirpLab home page [2]. To install,
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1. Download the compressed tar or zip file.

2. Uncompress the archive at the desired location.
For Linux and Mac OS X use

tar -xzvf ChirpLab1_1.tar.gz

For Solaris use

gunzip -c ChirpLab1_1.tar.gz | tar xfv -

In Windows, use zip to uncompress the zip file at the desired location.

This will create a directory tree rooted at ChirpLab1 1/ containing the source code.

Starting up ChirpLab: Launch MATLAB, enter the ChirpLab root directory that you created when you
uncompressed the archive and run:

>> ChirpPath

This will add the ChirpLab directories to your MATLABPATH during your MATLAB session. If you are using
ChirpLab for the first time it will automatically compile the MEX source files if needed. If you run into
trouble at this stage, please check that MATLAB is correctly configured to mex .c and .cpp files. If the
problem persists, please contact us.

To test that ChirpLab is installed properly run (the output is shown):

>> FindBPDemo

--Running FindBPDemo.m--

Generating chirp...

Taking chirplet transform...

Generating chirplet graph and assigning costs... (this will take a while)

Running optimization routine for graph...

Done!

After running this demo, you should get two MATLAB figures looking similar to figures 2 and 3.

3 Chirplets and the Chirplet Graph: Brief Description

3.1 Multiscale chirplets

The methods in ChirpLab use a family of multiscale chirplets which provide good local approximations of a
wide range of chirps. We assume we work in the time interval [0, 1] and that our measurements are evenly
sampled. For each j ≥ 0, we let I denote the dyadic interval I = [k2−j , (k+1)2−j ], where k = 0, 1, . . . , 2j−1.
The multiscale chirplet dictionary is a family of functions of the form

fI,µ(t) := |I |−1/2 ei(aµt2/2+bµt) 1I(t), (1)

where (aµ, bµ) ∈ Mj is a discrete collection of offset and slope parameters which may depend on scale. One
can think of the ‘instantaneous frequency’ of a chirplet as being linear and equal to aµt + bµ so that in a
diagrammatic sense, a chirplet is a line segment in the time-frequency plane (see Figure 1).
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Figure 1: Diagrammatic representation of two chirplets in the time-frequency plane.

Remark: In ChirpLab, when we talk about the slope of a chirplet, we are referring to aµ/(2πN) where
N is the number of samples. The frequency offset (or simply the offset) of a chirplet refers to bµ/(2π) and
typically takes on integer values.

3.2 The chirplet graph

An important concept in ChirpLab is the chirplet graph G = (V, E) where V is the set of nodes (or vertices)
and E the set of edges. Each node in the graph is a chirplet index v = (I, µ). Nodes corresponding to
chirplets starting at time t = 0 are said to be start-nodes, and nodes corresponding to chirplets ending at
time t = 1 are said to be end-nodes. The edges between nodes are selected to impose a certain regularity
about the instantaneous frequency. We say that two chirplets are connected if:

1. they have adjacent supports in time,

2. the frequency offset at the juncture is small,

3. and the difference in their slopes is not too large.

The first release of ChirpLab implements the first two constraints, namely, 1 and 2. The third type of
constraint will be included in a future release.

4 Description of Code

The code is divided in three main parts:

1. Chirplet Transform – Algorithms for calculating chirplet coefficient tables.

2. Networks – Network flow algorithms for solving optimization problems on the chirplet graph, e.g. the
shortest path, the constrained shortest path, and the minimum cost-to-time ratio.

3. Utilities – Scripts for plotting chirplets, source code for simulating noise and generating signals.
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An object or data structure called the Chirplet Graph Parameters holds various parameters which link these
three parts together; these parameters determine the slope discretization, the scales which are used and
other properties of the chirplet transform and the chirplet graph. Section 5 shows how these parameters
can be adjusted. The code also includes functions for generating simulated gravitational wave signals; see
their MATLAB documentation for instructions on what they do and how they should be used. Section 10.1
provides a simplified example of how ChirpLab can be used to search for gravitational wave signals.

4.1 Packages

In the ChirpLab root directory, you will find:

ChirpletTrans/ – Functions to compute chirplet transforms.
Data/ – Directory holding data from earlier simulations.
Demos/ – Some examples demonstrating how to use this software.
Documentation/ – Documentation for ChirpLab.
Networks/ – Network flow algorithms for finding the minimum cost to-time ratio,

the shortest path, and for solving the constrained shortest path problem.
Inspiral/ – Functions for generating simulated gravitational wave signals.
Utilities/ – Scripting utilities (for plotting chirplets etc.), code for generating simulated

noise and signals.

5 Initializing the Chirplet Graph

The MATLAB-routine used to set the chirplet graph parameters is GetChirpletGraphParam and is located in
the directory ChirpletTrans. For a detailed description of that function, type help GetChirpletGraphParam

at the MATLAB command prompt. In a nutshell, the adjustable parameters are:

• Coarsest and finest scales included in the chirplet graph.

• Slope range [minslope,maxslope]; that is, the range of aµ/(2πN) in equation (1).

• Slope stepsize.

• Minimum and maximum frequency. i.e. the range of bµ in equation (1)

• Degree of the polynomials used to fit the amplitude (see the varying amplitude chirplet transform).

A note about the default configuration: Assume that the number of samples is dyadic, N = 2J . In
the default setting, the coarsest and finest scales are set to 2−j with j = 0 and j = J − 1 respectively (the
number of time points per interval is N at the coarsest scale and 2 at the finest scale). The frequency offsets
bµ/(2π)—at all scales—are integers ranging from 0 to N − 1. The slope parameters aµ range from −πN to
πN with a discretization at scale 2−j of the form aµ = 2πN(−1/2 + k · m2j−J ); m = 1, k ∈ {0, . . . , 2J−j}
which ensures that the frequency offsets at the endpoints are all integers. For a full description of the default
settings, type help GetChirpletGraphParam at the MATLAB prompt.

5.1 Customizing the slopes

In applications, one would probably want to tune the discretization of the slope parameter depending upon
the type of signals under study. For example, we might have bounds on the chirping rate of the unknown
signal (the speed at which the instantaneous frequency is changing) or we might only be interested in chirping
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signals whose instantaneous frequency is nondecreasing with time. In the latter case, one could restrict the
graph to chirplets with nonnegative slopes.

Consider the cubic phase chirp signal in the example discussed in Section 8.1.2. The instantaneous frequency
is strictly increasing and just as explained before, suppose we only consider chirplets with nonnegative slopes.
The example below shows how to configure the chirplet graph parameters so that the slopes belong to the
interval [0, 0.5]:

discrStepFactor = 4; % parameter for discretization step

minslope = 0; % minimum slope in chirplet graph

maxslope = 0.5; % maximum slope in chirplet graph

graphparam = GetChirpletGraphParam(N,[],[],discrStepFactor,[minslope maxslope]);

The two empty brackets imply the default setting at the finest and coarsest scale but these parameters can
also be specified. For a full example which shows how to do this, see Demos/FindBPposSlopesDemo.m. If
you run this m-file, you should get the same figures as with FindBPDemo.m.

Further customization. Although GetChirpletGraphParam offers various slope discretization adjust-
ments, it is still possible—with a little bit of extra work—to make your own discretization scheme by
using the function ChirpletTrans/GetSlopes.m and then overwriting the slope parameters returned by
GetChirpletGraphParam. Type help GetSlopes at the MATLAB prompt for information. The MATLAB
code below gives an idea of how this can be achieved.

graphparam = GetChirpletGraphParam(....);

...

set up input parameters for GetSlopes

...

slopeparam = GetSlopes(...); % generate slope parameters

graphparam{3} = slopeparam; % overwrite slope parameters

... take chirplet transform and find the optimal path...

Connectivities in the graph. If a chirplet ends at a frequency offset that is not an integer, it will be
connected to a chirplet starting at the nearest integer offset.

6 Chirplet Transforms

Three different chirplet transforms for calculating chirplet costs are supported in ChirpLab 1.1, see [1] for
a definition of each chirplet cost:

(i) white noise and constant amplitude

(ii) white noise and polynomial amplitude

(iii) colored noise and constant amplitude (the noise spectrum needs to be provided)

In a future release, we will also include support for computing costs with time-varying amplitudes in colored
noise. We will also provide code for computing real-valued chirplet costs.

The main function for calculating chirplet transforms is ChirpletTrans/ChirpletTransform.m. A typical
call to this function is
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cc = ChirpletTransform(sig,param)

where the variable sig stores a signal of dyadic length N = 2J , J ≥ 1, and the variable param stores the
graph parameters as returned by GetChirpletGraphParam (see Section 5). The chirplet coefficients are
stored as a cell array. There is, in general, no need to worry about how the parameters are stored since the
cell array is passed directly to the network algorithms which we use to calculate the statistics of interest.

The Chirplet Coefficient Data Structure. Each element in the cell array is a table of chirplet co-
efficients corresponding to a specific dyadic time interval [k2−j , (k + 1)2−j ], labeled (j, k) where k =
0, 1, . . . , 2j − 1, j is a scale index which can range from 0 to J − 1. A table corresponding to a dyadic
interval (j, k) is indexed by 2j + k and is an n-by-(#slopes at scale j) matrix whose values are described as
follows:

• Each column in the table corresponds to a specified slope. The kth column corresponds to the kth
slope.

• Each entry in a column corresponds to a specified frequency offset. In each column, the mth entry
corresponds to the frequency offset 2π(m − 1)/N .

Explaining the data structure with an example. This example assumes that the demo script FindBPDemo
has been previously executed and that the MATLAB variables graphparam and cc storing the graph pa-
rameters and the coefficient table are still in the workspace. To get the slopes, we retrieve the third entry of
the parameter data structure:

>> slopesAtAllScales = graphparam{3}

slopesAtAllScales =

Columns 1 through 4

[1x513 double] [1x257 double] [1x129 double] [1x65 double]

Columns 5 through 8

[1x33 double] [1x17 double] [1x9 double] [1x5 double]

Column 9

[1x3 double]

Column k in slopesAtAllScales has the vector of slopes used at scale 2−k+1. To retrieve the slopes at
scale 2−j where j = 7 do

>> j = 7;

>> slopesForj7 = slopesAtAllScales{j+1}

slopesForj7 =

-0.5000 -0.2500 0 0.2500 0.5000

Now suppose that we would like to retrieve all the chirplet coefficients in the time interval [k2−j , (k +1)2−j ],
where k = 65 and j = 7. We can use the function node as follows:

6



>> j=7; k = 65;

>> ccAtDyadInt = cc{node(j,k)};

Finally, we get the chirplet coefficient with a slope equal to 0.25—the third slope in slopesForj7 above—and
a frequency offset obeying m = 100 by typing

>> m = 100; slopeNo = 3;

>> ccoeff = ccAtDyadInt(m,slopeNo)

ccoeff =

0.0768 + 0.0437i

6.1 Chirplet costs with time-varying amplitudes

Refined detection methods correlate the data with chirplets which—in addition to having a quadratic
phase function—also have polynomial amplitudes (rather than constant amplitude). The current version
of ChirpLab allows these polynomials to be of degree 0, 1 or 2; higher degrees are of little use here since
we are interested in chirping signals for which the phase varies much more rapidly than the amplitude.
One can invoke the function ChirpletTransform to compute coefficients against chirplets with time-varying
amplitudes. One simply needs to set the parameter xttype in GetChirpletGraphParam to the char array
‘VARAMP’. At each scale, one can also select the degree of the polynomial one wishes to use. The following
MATLAB script snippet shows how to invoke this function; the coarsest and finest scales are 2−s with s = 0
and s = 6 respectively.

% we assume the data is stored in a vector y and is of length N=2^10=1024

csc = 0; % coarsest scale

fsc = 6; % finest scale

xttype = ‘VARAMP’;

degreeArray = [2 2 1 1 1 1 1]; % degrees for polynomials, coarsest to finest scale

graphparam = GetChirpletGraphParam(N,csc,fsc,[],[],[],[],xttype,degreeArray);

cc = ChirpletTransform(y,graphparam);

The scales in the graph are 2−s, with s = 0, 1, . . . , 6 so the total number of scales is 7. The array of polynomial
degrees is also of length 7 enumerating scales from the coarsest to the finest. Thus in our example, we use
quadratic polynomials at the two coarsest scales and linear amplitudes at all the other scales. The MATLAB
script Demos/VarAmpDemo.m applies a time-varying chirplet transform.

6.2 Colored Noise

To calculate chirplet costs which assume colored noise, the parameter xttype in GetChirpletGraphParam

has to be set to the char array ‘COLOREDNOISE.’ Concretely,

xttype = ‘COLOREDNOISE’;

param = GetChirpletGraphParam(N,[],[],[],[],[],[],xttype);

The empty brackets imply default values for the respective parameters but they can be changed. Once the
chirplet graph parameters have been set up, call ChirpletTransform:

C = ChirpletTransform(sig,param,S,Cnorm);
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where S is the spectrum as before and Cnorm is the normalization cell array as returned by the function
ChirpNormColoredNoise.m. It is possible to invoke the function without the variable Cnorm:

C = ChirpletTransform(sig,param,S);

Typically, one will compute many chirplet transforms with the same type of noise (the same noise spectrum)
and the same chirplet discretization. In such cases, it is more efficient to precompute the normalization cell
array and write it to a mat-file for future use. Here is an example:

Cnorm = ChirpNormColoredNoise(S,param);

The MATLAB-script Demos/ColoredNoiseDemo.m shows how to compute chirplet costs adjusted for colored
noise.

7 Network Flow Algorithms for the Chirplet Graph

In the current ChirpLab release, three different optimization routines are implemented. Below, cv is the
cost/value assigned to the chirplet indexed by v which is a function of the corresponding coefficient (possibly
adjusted to deal with time-varying amplitudes and colored noise). In the simplest situation, white noise +
constant amplitude chirplets, cv = −|〈y, fv〉|

2 where y is the data vector and fv the chirplet (1). Let W be
any path in the chirplet graph and |W | be the number of chirplets in the path.

• Shortest Path
min
W

∑

v∈W

cv. (2)

• Best Path
min
W

∑

v∈W

cv, s.t. |W | = 1, 2, . . . , `, (3)

where ` is an integer.

• Minimum Cost to Time Ratio

min
W∈Wk

∑

v∈W cv

|W |
, (4)

where for each k, Wk is a subset of all paths in the chirplet graph. In ChirpLab, W0 could be chosen
to be the set of all paths, W1 be the set of paths which cannot use chirplets at the coarsest scale, W2

be the set of paths which cannot use chirplets at the two coarsest scales, and so on.

The motivation behind these statistics and the algorithms used for efficient computations are discussed in
[1]. Sections 8.1.1, 8.1.2 and 8.1.3 show how to compute these statistics in ChirpLab.

8 Tutorials

Below are some instructions for getting started with ChirpLab 1.1. A good idea is to go through the
examples below or to check/run the scripts in the folder ChirpLab/Demos. For detailed description about
each function, simply type help <name of function> in MATLAB.
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8.1 Demos: finding the best paths in the chirplet graph

The steps below are required to compute the main statistics of interest:

1. Make a signal.

2. Select the chirplet graph/discretization parameters and apply the chirplet transform.

3. Initialize the graph with the chirplet costs and compute a test statistic.

4. Plot the chirplet paths.

Steps 1 and 2 are independent of steps 3 and 4. They only share the graph parameters.

Below is our first example (step 1 and 2):

% STEP 1

>> N = 2^9;

>> [y,omega]= MakeChirp(‘CubicPhase’,N);

% STEP 2

>> graphparam = GetChirpletGraphParam(N);

>> cc = ChirpletTransform(y,graphparam);

A cubic phase chirp signal of length N = 512 is generated in step 1 and stored as y. The variable omega is the
‘instantaneous frequency’ (first derivative of the phase) of the chirp and is not used in any calculations; it may
be interesting to plot it though, and compare how chirplet paths ‘track’ the instantaneous frequency. In step
2, one retrieves the default chirplet graph parameters and calculate the chirplet coefficients table. In Section
5, we saw how to configure the chirplet graph by passing other arguments to GetChirpletGraphParam. Note
that one can omit the graph parameters and calculate the chirplet coefficients with the default setting by
typing:

>> cc = ChirpletTransform(y);

However, it is recommended to always use the graph parameters especially since they have to be passed to
the optimization routines and to the plotting utilities.

8.1.1 Shortest Path

To calculate the Shortest Path through the graph, one sets the second argument of the function CalculateStatistic

to the string ‘SP.’ Step 3 is as follows:

>> cnetwork = GetChirpletNetwork(cc,graphparam);

>> [costpath,shortestpath] = CalculateStatistic(cnetwork,‘SP’);

The variable costpath returns the sum over the chirplet costs along the shortest path. The variable
shortestpath is a vector of numbers corresponding to the chirplets in that path. One can plot the shortest
path by issuing the following command:

>> DisplayChirpletPath(shortestpath,graphparam);

Check out the demo-file Demos/FindSPDemo.m.
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8.1.2 Best Path

Next we show how to calculate the BP test statistic and plot the chirplet paths which gives the best cost for
a given length. We initialize the graph/network as before

>> cnetwork = GetChirpletNetwork(cc,graphparam);

(there is no need to do this again provided that the variables are still in the workspace). To calculate the
Best Path statistic, we set the second argument of CalculateStatistic to BPFORPLOTTING and add a third
parameter which sets the maximum number of chirplets that should be used in a path:

>> STATTYPE = ‘BPFORPLOTTING’;

>> maxLength = 5;

>> [costpaths,bestpaths] = CalculateStatistic(cnetwork,STATTYPE,maxLength);

The variable costpaths stores the costs of the best paths of length 1,...,maxLength and the variable
bestpaths stores the corresponding chirplet paths as vectors in a MATLAB cell array of length maxLength.
To plot the best path of length k, type

>> DisplayChirpletPath(bestpaths{k},graphparam);

The demo-file Demos/FindBPDemo.m shows how to calculate the BP statistic. If you execute this file, MAT-
LAB should return plots similar to Figures 2 and 3. The chirplet graph in this demo is restricted to
nonnegative frequencies by using the following commands

minfreq = 0;

maxfreq = N/2-1;

graphparam = GetChirpletGraphParam(N,[],[],[],[],minfreq,maxfreq);

Note that in the demo, the parameters minfreq and maxfreq are set at the beginning of the file.
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Figure 2: The first figure in the sample script FindBPDemo.m.
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Figure 3: The second figure in the sample script FindBPDemo.m.

8.1.3 Minimum Cost to Time Ratio

To calculate the minimum cost to time ratio (MCTR), an additional argument needs to be passed to the
function GetChirpletNetwork. This parameter sets the coarsest scale allowed in a path. In the example,
the coarsest scale in the path is set to 2−s with s = 3.

>> coarsestScale = 3;

>> cnetwork = GetChirpletNetwork(cc,graphparam,coarsestScale);

>> [mctrCost,mctrPath,nchirplets] = CalculateStatistic(cnetwork,‘MCTR’);

The variable mctrCost holds the value of the MCTR, i.e. the optimal value of (path cost)/(number of
chirplets). The variable nchirplets holds the number of chirplets for the optimal path so that the actual
cost of the path is nchirplets*mctrCost. One can plot the path in exactly the same way as before.

>> DisplayChirpletPath(mctrPath,graphparam);

Check out the demo file Demos/FindMCTRDemo.m.

8.2 Running Monte Carlo simulations with noisy data

ChirpLab includes routines for running simulations which illustrate the performance of the detection strate-
gies introduced in [1].

8.2.1 Running simulations for pure noise and signal+noise

Suppose we wish to estimate the null distribution of a given test statistic and consider the following example:

% set signal length and initialize chirplet graph using the default settings

N = 2^6;

graphparam = GetChirpletGraphParam(N);
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% Use the best path statistic with lengths 1,2,3,4

statType = ‘BP’;

statParam = 4;

numSims = 10; % number of simulations

% wrap the experiment setup

expSetup = ExperimentSetup(graphparam,statType,statParam,numSims);

% file name to store the data

fname = ‘nullRunSimsDemo.mat’;

% run the simulations

T = RunSimulations(expSetup,fname);

After execution, the variable T holds 10 realizations of the BP statistic with the cost of the best chirplet
paths of lengths 1,2,3 and 4. Here the two key functions are:

• ExperimentSetup.m – This wrapper is meant to make experiments with the same setting easier to
repeat. The settings are saved in in one mat-file. For simulations with noise only, one should of course
omit the signal.

• RunSimulations.m – This runs the simulations as described in the experiment setup. The optional
argument is a file name for saving the data to a file. In case, the signal is not provided, the routine
will simulate the null distribution of the test statistic. In each realization, the data is of the form
z = zr + izi, where zr and zi are two independent vectors with i.i.d. N(0, 1) entries.

In case a signal and a SNR are provided, the function normalizes the signal such that

SNR =
‖s‖`2

√

E‖z‖2
,

where y = s + z is the simulated data, s is the normalized signal of length N . Note that E‖z‖2 = 2N .

For further information about these functions, see the MATLAB documentation using help.

Running the demo script RunSimsDemo.m which includes the commands from the previous example gives

>> RunSimsDemo

--Running RunSimsDemo.m--

Initialize chirplet graph...

Run the simulations (this might take awhile)...

Done!

>> T

T =

-18.4163 -19.5320 -23.4282 -27.0571

-16.5960 -24.9926 -28.4492 -32.5346

-18.9530 -22.6076 -25.1558 -28.6932

-14.2429 -17.8198 -22.4245 -25.1301

-20.2356 -22.0379 -28.2136 -31.5691

-18.7165 -23.2990 -31.6998 -34.3740
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-10.5744 -15.5506 -18.2989 -23.4716

-10.9623 -16.1651 -19.7368 -23.9579

-19.7387 -21.7211 -32.1896 -36.1324

-18.5750 -22.4598 -27.2383 -31.3057

After running the script, the variables T, expSetup and the random seed used to generate the data have
been saved to the file nullRunSimsDemo.mat in the current directory. What does it contain?

>> load(‘nullRunSimsDemo’);

>> who

Your variables are:

T expSetup seedUsed

>> expSetup

expSetup =

graphParam: {[64 6] [0 5] {1x6 cell} [0 63] [] ‘PLAIN’}

statType: ‘BP’

statParam: 4

numSims: 10

sig: []

snr: []

description: ‘’

>> seedUsed

seedUsed =

1234

Note that the last three parameters in expSetup are empty since they were not set.

To run simulations with the signal of your choice, simply make a signal, select a SNR and add it to the
experiment setup as shown in the following MATLAB snippet:

sig = MakeChirp(‘CubicPhase’,N);

snr = 0.5;

% wrap the experiment setup

expSetup = ExperimentSetup(graphparam,statType,statParam,numSims,sig,snr);

The file Demos/RunSimsAltDemo does just this. It gives the following output:

>> RunSimsAltDemo

--Running RunSimsAltDemo.m--

Initializing chirplet graph...

Running the simulations (this might take awhile)...

T =
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-27.7749 -29.5230 -35.6481 -42.1786

-28.9956 -29.8739 -34.7797 -38.5646

-24.1944 -31.5743 -38.3908 -40.9896

-25.9676 -34.4569 -37.1174 -45.3329

-23.8026 -29.5673 -32.8835 -39.0411

-22.8067 -42.3826 -48.9427 -54.8580

-30.2571 -43.7777 -51.8028 -55.5910

-30.7068 -47.2637 -52.0503 -53.4561

-26.4720 -40.3218 -49.7803 -50.8223

-24.5752 -41.4134 -42.4127 -49.2123

Done!

8.2.2 Estimating minimum P -values and calculating detection rates

In [1], one decides to reject the null hypothesis by checking the minimum P -value and comparing it with a
threshold. ChirpLab has a routine called EstimateMinPvalues for estimating the minimum P -values given
realizations of multivariate random variables.

Assume the variable nullT is a B×k matrix where each row corresponds to one realization of a k-dimensional
random vector T = [T1, . . . , Tk]. B is the number of realizations. You might think about the random vector
T as the best path costs corresponding to chirplet path lengths 1, . . . , k. To estimate the minimum P -value
of the random vector T ′ := [T1, T2, T4, T8, T16], a subset of the entries in the full vector T , you can run

whichCoord= [1 2 4 8 16];

pmin = EstimateMinPvalues(nullT,[],whichCoord);

This estimates the minimum P -value for each of the B realizations of T ′ in nullT.

For a particular realization T ′ = t′, we estimate its minimum P -value by comparing it to an estimate of the
distribution of T ′ done from the other B − 1 realizations.

Using pmin, one can estimate the distribution of the minimum P -value and find thresholds for given signifi-
cance levels. The function below will compute these tresholds.

alpha = 0.05;

thresh = GetThreshold(pmin,alpha);

Here, this gives the threshold for a fixed type I error equal to 5%.

Suppose we wish to detect a signal in additive noise. Assume we have a variable sigT which is a B ′ × n
matrix where each row corresponds to one realization of an n-dimensional random vector y = s + z, where
z is a random vector of the same form as in nullT and s is a deterministic signal. B ′ is the number of
realizations. To estimate the probability of detection for a fixed type I error, type

estPow = EstimateDetRate(nullT,sigT,thresh);

which returns estimated power curves/detection rates. For further information, check See the MATLAB
documentation for EstimateDetRate.

The script Demos/AnalyzeDataDemo.m uses all these routines. It uploads results from simulations to save
time. These data may be found in the directory Data/ForDemos.
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9 Further releases

Some selected features under development that will be included in future releases of ChirpLab:

• Routines for calculating chirplet costs with time-varying amplitude chirplets and colored noise.

• Adjust the chirplet costs to handle real-valued data gracefully.

• Implement connectivities to impose a curvature constraint upon the instantaneous frequency along a
chirplet path.

• Develop software for estimating chirps from noisy data (estimation as opposed to mere detection).

Stay tuned. Comments are welcome!

10 Appendix

10.1 An example with a gravitational wave signal

One application of note in conjunction with these methods is the problem of detecting gravitational waves
in data from laser interferometric detectors such as LIGO [3]. The inspiral of two massive bodies (such as a
pair of neutron stars) is a good candidate for a detectable source of gravitational waves. The signal detected
by a LIGO-type detector is a sinusoidal wave

h(t) = A+(t) cosφ(t) + A×(t) sin φ(t) (5)

here expressed in terms of the two polarisations h+ and h×. The strain h(t) is the fractional change induced in
the arm length of the interferometer by the gravitational wave. That is, if the arm length of the interferometer
“at rest” is L, then h(t) = ∆L/L. For a binary inspiral signal, the post2-Newtonian approximation to the
instantaneous frequency of h(t) is of the form

f(t) = φ̇(t)/2π = a0(tc − t)−3/8 + a1(tc − t)−5/8 + a2(tc − t)−3/4 + a3(tc − t)−7/8 (6)

where tc is the time when the two bodies coalesce.

We have found that the Best Path statistic is most suitable for detecting signals of this form. Since the LIGO
noise spectrum is strongly colored, we must also supply a spectrum for weighting the chirplet coefficients.
The code Demos/BinaryInspiralDemo.m gives an example of how to set up the detection problem with a
simulated signal and simulated LIGO noise. First we obtain a LIGO noise spectrum via

>> S = MakeLIGO1Psd(N, Fs, true);

>> S = Fs*S;

Here N is the number of samples in the signal (512 in the demo), the sampling rate Fs is 2048 Hz and the
final parameter is a flag which tells the function to limit the spectrum’s magnitude at low frequencies. Since
LIGO power spectra are normally given in units of strain2/Hz we multiply by Fs to get a spectrum with
units of strain2.

The gravitational wave signal is generated using the inspiral function:

>> [h, p, fr] = inspiral(t, m1, m2, tc);
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where m1 and m2 are the masses of the two bodies (here both are taken to be 14 solar masses) and t is
the vector of time values at which h is to be calculated. The function also returns the phase p and the
instantaneous frequency fr in Hz (see Fig 4). We normalise h with respect to S by scaling it so that

1

N

N−1
∑

n =0

|h̃n|
2

Sn
= 1 (7)

where h̃ is the discrete Fourier transform of h.

The next step is to prepare the parameters for the chirplet graph. Since the data is real, we can restrict the
search to positive frequency indices only, i.e. frequency indices from 0 (DC) to N/2 (Nyquist). This is set
by specifying the 5th and 6th parameters of GetChirpletGraphParam:

>> transformType = ’COLOREDNOISE’;

>> fmin = 0;

>> fmax = N/2;

>> graphparam = GetChirpletGraphParam(N,csc,fsc,[],[],fmin,fmax,transformType);

Since the spectrum is colored we also need to calculate the norm of each chirplet in the chirplet dictionary:

>> Cnorm = ChirpNormColoredNoise(S,graphparam);

This only needs to be done once in advance and the resulting norms, stored in Cnorm, can be re-used for
each new instance of data.

For a single simulation we use S to generate an instance of simulated LIGO noise. The data used as the input
to the chirplet transform is the sum of the noise and the normalised h multiplied by the signal strength:

>> n = MakeRealNoise2(S);

>> y = n + SNR*h;

Following this step we generate the chirplet transform of y, the chirplet graph, and the list of best paths as
in Section 8.1.2:

>> cc = ChirpletTransform(y,graphparam,S,Cnorm);

>> cnetwork = GetChirpletNetwork(cc,graphparam);

>> STATTYPE = ’BPFORPLOTTING’;

>> maxLength = 8;

>> [costpaths,bestpaths] = CalculateStatistic(cnetwork,STATTYPE,maxLength);

10.2 Compiling the MEX source using make (optional)

It is possible to compile the MEX sources outside MATLAB before you start up ChirpLab the first time.
From a terminal, try running make from the ChirpLab directory:

make

If this returns errors make sure that your system fullfills the following requirements:

• a C/C++ compiler capable of creating MEX files (if you have MATLAB installed, you should be able
to create MEX files from the MATLAB command prompt.
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Figure 4: The first figure in the sample script BinaryInspiralDemo.m.

• GNU make (compilation will not work using non-GNU versions of make). On Solaris, aliasing “make”
to “gmake” will usually work.

Some hand editing of the Makefile.include in the top level directory of ChirpLab may be required to set
the correct extension for compiled MEX files.

10.3 Permanently adding the ChirpLab directories to the MATLABPATH (optional)

Path settings for ChirpLab are set in the file ChirpPath.m. It is possible, although not necessary, to edit
the file and change the variable CHIRPLABPATH to the directory where ChirpLab is installed. Note that the
directory separator character should be the same as what is normally used on your OS.

To permanently add the ChirpLab directories to your MATLABPATH, you can add the following commands to
your Unix profile For csh-derived shells use:

setenv CHIRPLAB <root directory of ChirpLab>

setenv MATLABPATH ${MATLABPATH}:${CHIRPLAB}/mex/src/Networks:

${CHIRPLAB}/ChirpletTrans:${CHIRPLAB}/Data:${CHIRPLAB}/Data/ForDemos:

${CHIRPLAB}/Networks:${CHIRPLAB}/Utilities:${CHIRPLAB}/Inspiral

For Bourne-shell derived shells use:

CHIRPLAB=<root directory of ChirpLab>; export CHIRPLAB

MATLABPATH=${MATLABPATH}:${CHIRPLAB}/mex/src/Networks:

${CHIRPLAB}/ChirpletTrans:${CHIRPLAB}/Data:${CHIRPLAB}/Data/ForDemos:

${CHIRPLAB}/Networks:${CHIRPLAB}/Utilities:${CHIRPLAB}/Inspiral;

export MATLABPATH
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Figure 5: The second figure in the sample script BinaryInspiralDemo.m.
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