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ABSTRACT

Neural networks have emerged as powerful models for understanding both biological
and artificial intelligence, yet significant questions remain about how these systems
develop rich, generalizable representations of the world. This thesis investigates
fundamental principles of learning and generalization across four interconnected
domains, bridging insights from theoretical neuroscience and artificial intelligence
to advance our understanding of intelligent systems.

In Chapter I, we address a central question in associative learning: how do neural
circuits learn to associate concepts with one another? We propose a recurrent neural
network model incorporating two critical features of cortical architecture—mixed
selectivity and compartmentalized neurons. These architectural inductive biases
enable a biologically plausible learning rule that achieves stimulus substitution,
where neurons respond identically to a conditioned stimulus as they would to the
associated unconditioned stimulus. Our model explains a remarkable range of
conditioning phenomena under conditions in which traditional associative models
fail, highlighting how the cortical architecture may confer significant evolutionary
advantages for flexible learning.

Chapter II pivots from the static mappings between concepts learned in Chapter I
to explore how neural systems develop the precise synaptic connectivity required to
establish dynamic mappings for path integration—the ability to maintain an internal
sense of direction without external cues. We demonstrate that the same principles
of compartmentalized learning can shape networks that accurately track angular
position in darkness. Applied to the Drosophila head direction system, our model
develops connectivity patterns strikingly similar to those observed experimentally,
with continuous attractor (CAN) dynamics emerging naturally from learning. This
offers a novel perspective on how precisely calibrated neural circuits can develop
through experience, rather than requiring genetic pre-specification, and explains ex-
perimental findings where animals adapt their internal representation when sensory
experience changes.

In Chapter III, we establish a theoretical framework explaining how disentangled
representations—internal models that isolate independent factors of variation in the
world—emerge from multi-task learning. We prove that any system competent at
multiple related tasks must implicitly represent the underlying latent variables in a
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linearly decodable form when sufficient tasks are learned. These theoretical guaran-
tees align with experimental results showing neural networks develop generalizable
representations when trained on multiple tasks simultaneously. This work reveals
a fundamental connection between task diversity and representation quality, with
implications for biological cognition and artificial intelligence design, particularly
explaining why modern transformer models may develop human-interpretable con-
cepts, and how brains may acquire their impressive zero-shot generalization ability.

Chapter IV proposes leveraging Large Language Models as cognitive tools for
evaluating latent factor hypotheses for psychology, leveraging the theoretical insights
from Chapter III. It suggests that the self-consistency of an LLM’s responses given
hypothesized psychological factors could serve as a metric for hypothesis evaluation.
While preliminary, this approach represents a novel computational methodology for
psychology that could transform how hypotheses for human cognition are developed
and refined.

All chapters are supported by corresponding Appendices that go deeper in partic-
ular details, including proofs. An exemption is Chapter IV, which is work early
in development (yet valuable to mention). Instead, for Appendix D we provide
some considerations about the detection of Continuous Attractors (CANs), which
display prominently in Chapters II and III, consideration particularly important in
order to avoid confusion when it comes to these concepts, particularly within the
experimental neuroscience community.

Together, these investigations reveal complementary aspects of how intelligent sys-
tems develop useful representations through learning. From biologically plausible
learning rules to abstract computational principles, this thesis demonstrates how
neural networks can illuminate fundamental mechanisms of intelligence across
natural and artificial systems, advancing our understanding of the computational
foundations that enable flexible, generalizable learning.
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INTRODUCTION

This thesis touches on several fields: theoretical neuroscience, machine learning,
representation learning, (cognitive) neuroscience, and psychology. A common
bridging element between all the different components is the usage of Neural Net-
works as elemental building blocks of intelligence, and the attempt to account for
several aspects of intelligence from the low level up; in ways that often allow for
precise mechanistic interpretability, i.e., understanding of the precise computa-
tional mechanism that leads to emergent behavior, as opposed to "word models"
commonly used in the field of neuroscience, which often fail to expose competing
claims, hindering progress.

Biological Inspiration
This thesis draws inspiration from several key neuroscientific observations that il-
luminate fundamental principles of neural computation. The first concerns the
unique structure of pyramidal neurons, particularly in layer 5 of the cortex, which
feature distinct compartments that integrate inputs from different sources (Larkum,
Zhu, and Sakmann, 1999; Larkum, 2013; Urbanczik and Senn, 2014; Doron et
al., 2020). These compartmentalized neurons implement a cellular-level predictive
coding mechanism through their anatomical organization: proximal dendrites typ-
ically receive feedforward sensory inputs, while distal dendrites in layer 1 receive
feedback signals carrying predictions based on internal models (Larkum, 2013).
This architecture enables these neurons to compare bottom-up sensory informa-
tion with top-down predictions, generating error signals when mismatches occur.
The resulting dendritic plateau potentials and calcium spikes serve as coincidence
detection mechanisms that drive synaptic plasticity, effectively implementing the
computational principle of prediction error minimization (Rao and Ballard, 1999;
Rao, 1999). Through this structural specialization, individual neurons become pow-
erful predictive units capable of associating temporally correlated inputs arriving
at different dendritic compartments, laying the foundation for cortical learning and
representation formation.

The structure of neural representations across brain regions is another inspiration
this thesis draws from: successful generalization requires representations that isolate
underlying factors of variation (abstract, or disentangled representations (Caruana,
1997; Higgins et al., 2017; Higgins et al., 2018; Ostojic and Fusi, 2024)). In
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the field of machine learning and computational neuroscience, multi-task learn-
ing approaches have demonstrated that systems trained on diverse but related tasks
naturally develop such representations (Maziarka et al., 2023; Johnston and Fusi,
2023). Wet lab neuroscience research has corroborated these findings, revealing
abstract, disentangled encoding of behaviorally relevant variables in prefrontal cor-
tex (Bongioanni et al., 2021; Nogueira et al., 2023), hippocampus (Bernardi et al.,
2020; Boyle et al., 2022; Courellis et al., 2024), and amygdala (Saez et al., 2015),
across humans, mice and non-human primates. These representations allow neural
circuits to generalize by decomposing novel stimuli into familiar components, en-
abling appropriate responses to previously unseen inputs—a hallmark of biological
intelligence that artificial systems increasingly emulate.

Finally, mixed selectivity—the tendency of neurons to respond to diverse combina-
tions of task variables rather than encoding single variables, is a central theme of
this work. Initially, mixed selectivity appeared to be a curious property of neural
coding, particularly in prefrontal regions (Rigotti et al., 2013). However, theoretical
work has demonstrated that mixed selectivity is not a bug but a feature, dramatically
expanding the computational capacity of neural circuits (Fusi, Miller, and Rigotti,
2016). Mixed representations enable high-dimensional encoding of complex task
variables, supporting flexible computation through linear readouts that can extract
task-relevant information. This reframing of mixed selectivity as a computational
advantage rather than an inefficiency challenges traditional notions of neural special-
ization and suggests that apparent disorder in neural responses may actually reflect
a sophisticated encoding strategy optimized for flexible, generalizable computation.

Gaps in the Literature
Despite these insights, the neuroscience field has neglected critical aspects of neural
computation that this thesis aims to address. A significant oversight is the field’s
persistent focus on serial processing paradigms, where experimental designs typi-
cally isolate single tasks or functions. This approach fundamentally misaligns with
how the brain operates—neural circuits process multiple streams of information
simultaneously and perform numerous computations in parallel (Markram et al.,
2015; Hawkins et al., 2019). The field’s fixation on what might be termed the
"consciousness bottleneck"—the serial nature of awareness—has led to experimen-
tal paradigms that artificially constrain neural processing to single tasks, potentially
missing the rich parallel computations occurring below the threshold of conscious
perception. This methodological constraint has profound consequences: it has lim-
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ited our understanding of how the brain develops generalizable representations that
support flexible behavior across contexts. By designing experiments that force serial
task execution, we may have systematically underestimated the brain’s capacity for
parallel computation and obscured the very mechanisms that enable its remarkable
generalization abilities.

Another critical gap exists in connecting neuronal architecture to computational ca-
pabilities. The cortex’s parallel processing architecture, with its massively recurrent
connectivity pattern repeated across regions, appears ideally suited for developing
disentangled representations through simultaneous processing of diverse task de-
mands (Hawkins et al., 2019; Ostojic and Fusi, 2024). Yet this connection between
parallel cortical structure and the emergence of abstract representations remains
theoretically underdeveloped. Similarly, mixed selectivity—while recognized as
expanding computational capacity—has not been explicitly linked to flexible pre-
dictive learning capabilities. When neurons maintain mixed tuning to multiple
variables, they create a high-dimensional representation space where complex, non-
linear functions become linearly separable (Rigotti et al., 2013; Fusi, Miller, and
Rigotti, 2016). This property should theoretically allow neural circuits to learn
increasingly sophisticated predictive models of the world, yet the mechanisms by
which mixed selectivity enables predictive learning have remained elusive. The
synergistic relationship between cortical architecture, mixed representations, and
learning capabilities represents a fundamental gap in our understanding of intelli-
gence. This thesis addresses these interconnected aspects of neural computation,
proposing that the cortex’s structural organization specifically enables both effi-
cient disentangled representations and high-capacity predictive learning through its
unique combination of parallel processing and mixed selectivity.

Contributions
This thesis makes fundamental advancements in understanding two key aspects of
intelligence: learning and generalization. Through computational modeling and
theoretical analysis, I demonstrate how neural architectural principles enable so-
phisticated learning capabilities and robust generalization across diverse contexts.
The first major contribution establishes that compartmentalized neurons with mixed
selectivity provide an ideal substrate for stimulus-stimulus associative learning. In
Chapter I, we show how this architecture enables cortical circuits to efficiently pack
multiple associations within the same neural population—a significant evolutionary
advantage compared to dedicated circuit approaches. The model accounts for a
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broad range of classical conditioning phenomena using biologically plausible learn-
ing rules, demonstrating how the two-compartment structure of layer-5 pyramidal
neurons enables predictive learning without requiring specialized teaching signals
(Vafidis and Rangel, 2024). This work suggests that the cortical architecture itself
may represent an evolved specialization for flexible associative learning, allowing
mammals to rapidly acquire new stimulus associations beyond what genetically
pre-specified circuits could support.

Building on these insights, this thesis demonstrates that the same cellular and learn-
ing principles can support the development of sophisticated continuous attractor
dynamics necessary for path integration. Chapter II shows how a biologically plau-
sible learning rule, operating within compartmentalized neurons, shapes a head
direction network capable of accurately integrating angular velocity signals in the
absence of external cues (Vafidis et al., 2022). The resulting model produces connec-
tivity patterns strikingly similar to those observed in the Drosophila head direction
system, suggesting that precisely calibrated neural circuits for complex functions
need not be genetically pre-specified but can instead emerge through self-supervised
learning during development. Importantly, the continuous attractor dynamics that
support path integration are found to emerge naturally from learning rather than
requiring fine-tuned connectivity. This finding generalizes beyond navigation, sug-
gesting that continuous attractors may serve as a general computational substrate for
maintaining and updating internal representations across neural systems.

A central theoretical contribution of this thesis is the establishment of formal guar-
antees for the emergence of disentangled representations in neural systems that
perform multiple tasks in parallel. Chapter III proves that any system competent at
multiple related tasks must implicitly represent the underlying latent variables in its
hidden state, with disentanglement increasing as the number of tasks grows (Vafidis,
Bhargava, and Rangel, 2025). This theoretical result provides a fundamental ex-
planation for why parallel processing—a hallmark of cortical computation—leads
to generalizable representations. Through extensive computational experiments,
I confirm that recurrent neural networks trained on multiple tasks develop disen-
tangled representations in the form of continuous attractors, leading to zero-shot
generalization to previously unseen regions of input space. These findings establish
a deep connection between architectural organization (parallel processing) and rep-
resentational properties (disentanglement), providing an explanatory framework for
empirical observations of abstract representations across brain regions.
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Finally, this thesis demonstrates the power of leveraging computational models as
tools for cognitive science. Chapter IV proposes a novel framework for evaluating
psychological latent factor hypotheses using Large Language Models, extending
the theoretical insights from Chapter III to the domain of psychological theory
development. By quantifying the self-consistency of model responses to different
psychological constructs, this approach offers a computational methodology for
assessing theoretical coherence in psychology. While more preliminary than the
other contributions, this work illustrates how computational principles discovered
in the context of neural representation learning can inform and enhance human-
centered disciplines like psychology, pointing toward new paradigms for theory
evaluation and refinement that leverage sophisticated computational models.

Chapters III and IV share a deep, not directly obvious methodological connection.
Both chapters leverage the model’s confidence as a primary signal rather than treating
it as a mere byproduct. In Chapter III, uncertainty in multi-task classification
helps uncover the quality and structure of learned representations, while Chapter
IV extends this approach by using Large Language Model confidence to evaluate
psychological hypotheses. This focus on extracting meaningful information from
model uncertainty represents a powerful approach that can yield insights across
diverse domains, with applications to model distillation and the "copying of world
models" via the logits—effectively transferring the model’s understanding of the
world rather than just its output behavior.

Viewpoint of this Thesis
The diverse topics touched upon here reflect the diversity of the interests of the
author, which ideally should be the substrate for cross-disciplinary efforts in the
brain sciences. The field is in desperate need of researchers that can think beyond
the specific sub-discipline they have been trained for (cognitive science, neuro-
science, neural computation, artificial intelligence) which, again, is necessary for
real progress. Brain science is not an extension of biology or plant science; hence
it should not be pursued as such.

Central to what makes the brain interesting is the question of intelligence—how do
(low-level) mechanisms in the brain lead to flexible, intelligent cognition. So while
a lot of the models used in this thesis draw direct and close inspiration from biology,
our primary focus is on understanding the computational principles that enable in-
telligence rather than replicating biological details that may or may not be important
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from a computational standpoint. The question of intelligence is, unfortunately,
largely ignored—or reduced to a byproduct—by contemporary neuroscience. Two
exceptions to this rule, namely the investigation of mechanisms for predictive coding
and the representational structure that allows flexible generalization, have sparked
the interest of the author and hence appear prominent in this thesis.

Answering the question of intelligence is something definitely within the reach of
neuroscience with its modern (and expensive) tools, and something that might make
the field relevant beyond internal consumption. Brain science should (and can) be
the catalyst for truly intelligent artificial intelligence. With its current intense focus
on methods for the sake of methods, neuroscience may have lost sight of this big
picture. Hence, as far as the author is concerned at least, when we are talking about
neuroscience, what we really mean is brain science. With machine learning merging
with psychology with the advent of Large Language Models, we are way beyond
that compartmentalized approach to cognition, and the term neuroscience is archaic
and out of focus (although there are several examples of intelligence down to the
level of neurons, some examples in this thesis).

Similarly, terms such as "NeuroAI" assume a dichotomy that does not exist, and will
not be utilized in this thesis. As reflected in the name of Caltech’s "Computation and
Neural Systems" program which started all the way back in 1986, the correct word
is "computation"; insights on the fundamental nature and principles of computation
when pairing many simple elements together can lead to better understanding of both
biological and artificial systems. The author believes that being able to comfortably
go back and forth between the two will pay dividends in the future. We will be seeing
direct evidence of that, as the work on Disentangled Representations in Chapter III
was directly inspired from the work in the Drosophila head direction system in
Chapter II; the Drosophila has an explicit representation of head direction exactly
because it is useful for many downstream processes.

Brain science may represent a new kind of "soft hard science," where the traditional
statistical rigidity of Western scientific methods sometimes must yield to intuition
and assessments of coherence to make progress. The complex, self-referential na-
ture of studying a high-capacity, adaptable system creates unique challenges that
our current epistemological frameworks struggle to accommodate. This does not
mean abandoning rigor, but rather recognizing that understanding intelligence may
require innovative methodological approaches that blend quantitative precision with
qualitative insight in ways that traditional disciplinary boundaries often resist. This
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"good taste" has been the hallmark of valuable philosophical insight, beyond the
stricter confines of "natural philosophy" science stems from; a good taste increas-
ingly missing from academic discourse often favoring formulaism and process over
substance (you have to be able to write a grant to "defend" anything nowadays).

To conclude, I would like to mention two catalysts that allowed this work to materi-
alize. One is the unrivaled scientific merit, freedom to think, and opportunity to be
heard that is present in Caltech; its importance cannot be understated in fostering
scientists that have the confidence and self-belief to make impact. The second lesson
I learned here was the value of collaboration. I am now convinced that collaboration,
not isolation, is the right way to do science, where every one brings out the best
from another, and the sum is always greater than its parts.
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C h a p t e r 1

STIMULUS-TO-STIMULUS LEARNING IN RECURRENT
NEURAL NETWORKS WITH CORTICAL INDUCTIVE BIASES

Vafidis, Pantelis and Antonio Rangel (2024). “Stimulus-to-stimulus learning in
RNNs with cortical inductive biases.” arXiv: 2409.13471 [q-bio.NC]. url:
https://arxiv.org/abs/2409.13471.

The brain’s remarkable ability to learn from experience is a fundamental aspect
of intelligence. This chapter explores theoretical models that help explain how the
cerebral cortex might learn to associate stimuli with each other, in a heteroasso-
ciative manner, with deep connections to the rich history of classical conditioning
research. We show how specific architectural features (inductive biases) of cortical
neurons, namely mixed selectivity in the cortex and the compartmentalization of
layer-5 pyramidal neurons, provide the biological foundation for efficient learning
mechanisms. Such mechanisms offer insight into why mammals with developed cor-
tices demonstrate superior associative abilities, which might have conferred them
important evolutionary advantanges. A main distinction of our work to previous
theoretical work on classicial conditioning is that we associate rich stimulus pop-
ulation vectors to each other, instead of mapping a stimulus to an outcome (e.g.,
a reward), allowing for more direct, general and powerful association of concepts,
in a process coined stimulus substitution. We also show that traditional synaptic
plasticity models (e.g., Hebbian, BCM ) fail to learn multiple associations in the
mixed selectivity regime in which the cortex operates, emphasizing the importance
of predictive learning rules, like the one utilized in our model.

https://arxiv.org/abs/2409.13471
https://arxiv.org/abs/2409.13471
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Chapter Abstract

Animals learn to predict external contingencies from experience through a condi-
tioning process. A natural mechanism for conditioning is stimulus substitution,
in which the neuronal response to the CS becomes increasingly identical to that
of the US. We propose a recurrent neural network model of stimulus substitution
which leverages two forms of inductive bias pervasive in the cortex: representa-
tional inductive bias in the form of mixed stimulus representations, and architectural
inductive bias in the form of two-compartment pyramidal neurons that have been
shown to serve as a fundamental unit of cortical associative learning. The proper-
ties of these neurons allow for a biologically plausible learning rule that implements
stimulus substitution, utilizing only information available locally at the synapses.
We show that the model generates a wide array of conditioning phenomena, and can
learn large numbers of associations with an amount of training commensurate with
animal experiments, without relying on parameter fine-tuning for each individual
experimental task. In contrast, we show that commonly used three-factor Hebbian
rules fail to learn generic stimulus-stimulus associations with mixed selectivity and
require task-specific parameter fine-tuning. In comparison to previous work, we
directly predict the identity of the US, and not just a proxy for it (e.g., the reward
associated with the US). Overall, our framework highlights the importance of multi-
compartment neuronal processing in the cortex, and showcases how it might confer
cortical animals the evolutionary edge.
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1.1 Introduction
The ability to forecast important events is necessary for effective behavior. Animals
are equipped with innate reflexes to tackle common threats and to exploit oppor-
tunities in their environment. However, given the complex and changing nature of
the world, animals also need to acquire new reflexes by learning from experience.
This process involves the association or conditioning of an initially neutral stimulus
(conditioned stimulus, CS) with another stimulus intrinsically related to primary
reward or punishment (unconditioned stimulus, US). If learning is successful, the
CS can then induce the same behavioral response as the US. Initially proposed by
Pavlov, this type of learning is known as classical conditioning.

A potential mechanism for conditioning is stimulus substitution (Jenkins and Moore,
1973). Under this mechanism, the response of the relevant population of neurons to
the CS becomes increasingly identical to that generated by the US. After this, any
downstream processes that are normally triggered by the US are also triggered by
the CS. Behavioral evidence in favor of stimulus substitution comes from studies
showing that animals display the same behavior to the CS as to the US, even when
the behavior is not appropriate (e.g., consummatory response towards a light that has
been associated with food), and that the behavior is reinforcer dependent (Jenkins
and Moore, 1973). Furthermore, recent experiments show that during conditioning
the response of S1 pyramidal neurons to the CS becomes increasingly similar to their
response to the US, a phenomenon the authors termed "learning induced neuronal
identity switch," and that this change correlates with learning performance (Dai and
Sun, 2023).

A basic goal in computational and cognitive neuroscience is to build plausible
models of neural network architectures capable of accounting for psychological
phenomena. Previous work has shown that three-factor Hebbian synaptic plasticity
rules accounts for a wide gamut of conditioning phenomena (Sutton and Barto,
1987; Klopf, 1988; Balkenius and Morén, 1998; Izhikevich, 2007). However, these
models have some important limitations. First, they fail to capture the generality
of pattern-to-pattern associations implicit in stimulus substitution, where both the
US and the CS correspond to population activity patterns. Some use learning rules
requiring storage of recent events at each synapse (Balkenius and Morén, 1998),
while most assume that the tuning of neurons to stimuli is demixed, allowing simple
reward modulated spike-timing-dependent plasticity to establish the appropriate
mappings (Balkenius and Morén, 1998; Izhikevich, 2007). These assumptions are
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inconsistent with the well-established fact that representations throughout the brain
are high-dimensional and mixed (Rigotti et al., 2013).

In this study we propose a recurrent neural network (RNN) model of stimulus sub-
stitution. Critically, the model learns pattern-to-pattern associations using only
biologically plausible local plasticity, and individual neurons are tuned to multiple
behavioral stimuli, which gives rise to mixed representations of the CSs and USs.
While subcortical (Christian and Thompson, 2003) and even single-neuron (Ger-
shman et al., 2021) mechanisms for conditioning exist, our model is focused on
stimulus-stimulus learning in the cortex, where the use of mixed stimulus repre-
sentation allows learning a wide and flexible range of associations within the same
neuronal network, which confers an evolutionary edge.

To achieve this goal, we leverage two forms of biological inductive bias built into
the cortex: first, representational inductive bias in the form of mixed stimulus repre-
sentations, that permit the efficient packing of multiple associations within the same
neuronal population. To combat the additional complexity introduced by mixed rep-
resentations, which requires not just the activation of the correct neurons but also the
correct activity level, we leverage the second form of inductive bias: architectural
inductive bias in the form of two-compartment layer-5 pyramidal neurons which are
prevalent in the cortex (Nieuwenhuys, 1994).

We propose a RNN model of such two-compartment neurons. Recent work has
shown that these neurons can learn to be predictive of a reward (Doron et al., 2020),
and suggests that they could serve as a fundamental unit of associative learning in
the cortex through a built-in cellular mechanism (Larkum, 2013). Hence, we refer
to them as associative neurons. The term associative here does not have a strictly
Hebbian interpretation; rather it refers to the hetero-associative capacity of these
neurons to link together information originating from different streams (Shin, Doron,
and Larkum, 2021), through a mechanism known as BAC firing (Larkum, Zhu, and
Sakmann, 1999). The properties of these neurons allow for a biologically plausible
learning rule that utilizes only information available locally at the synapses, and that
is capable of inducing self-supervised predictive plasticity (Urbanczik and Senn,
2014; Urbanczik and Senn, 2009), which allows neurons to respond with the same
firing rate to the CS as they would to the US, i.e., achieve stimulus substitution.
Hence, a key distinction of our work with previous work (e.g., Izhikevich (2007)) is
that we predict the identity (i.e., induced population vector of firing activity) of the
US, and not just a proxy for it (e.g., the reward associated with the US).
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We show that the model generates a wide array of conditioning phenomena, includ-
ing delay conditioning, trace conditioning, extinction, blocking, overshadowing,
saliency effects, overexpectation, contingency effects and faster reacquisition of
previous learnt associations. Furthermore, it can learn large numbers of CS-US
associations with an amount of training commensurate with animal experiments,
without relying on parameter fine-tuning for each individual experimental task. In
contrast, we show that Hebbian learning rules, including three-factor extensions of
Oja’s rule (Oja, 1982) and the BCM rule (Bienenstock, Cooper, and Munro, 1982),
fail to learn generic stimulus-to-stimulus associations due to their unsupervised
nature, and require task specific parameter fine-tuning.

1.2 Methods
Model setup
In classical conditioning animals learn to predict the upcoming appearance of an
unconditioned stimulus (US, e.g., food) after the presentation of a conditioned
stimulus (CS, e.g., bell ring). As shown in fig. 1.1A, trials start with the presentation
of the CS, which lasts until 𝑡cs-off. The US is presented at 𝑡us-on, and lasts until the
end of the trial. Each trial has a fixed duration of 𝑡trial seconds. If the US appears
before the CS disappears, the task involves delay conditioning. In contrast, if the
CS disappears before the US is shown, the task involves trace conditioning, with
𝑡delay = 𝑡us-on− 𝑡cs-off denoting the delay between the two stimuli. In our task animals
need to learn 𝑁stim different CS-US pairs. Every trial one pair is randomly chosen,
and the corresponding CS is shown followed by its associated US.

We model a RNN of associative neurons (fig. 1.1C, yellow background) that repre-
sents the stimuli using mixed population representations and is capable of learning
all of the CS-US associations using only local information available at the synapses.
The inputs to the model are time-dependent vectors 𝑟cs(𝑡) and 𝑟us(𝑡), of dimension
𝑁inp, that encode the presence and identity of the CS and the US. For simplicity,
these vectors are represented by unique Boolean vectors, and they take the value
of the stimulus while it is shown, and zero otherwise. The vectors are randomly
generated, subject to a constraint for a minimal Hamming distance 𝐻d between any
two vectors of the same type. This minimal separation limits the extent to which
learning on any give pair impairs learning of the other associations. The output
of the associative network is an estimate of the US vector 𝑟us, denoted 𝑟us, which
is decoded from network activity at all times (see fig. 1.1C and "US decoding" in
Methods).
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Figure 1.1: Stimulus Substitution Model. (A) Every trial has a duration of 𝑡trial
seconds. Trials start with the presentation of a CS, which disappears after time 𝑡cs-off.
The associated US appears at time 𝑡us-on and stays until the end of the trial. The
network has to learn 𝑁stim unique CS-US pairs. (B) Associative neurons are modeled
as an abstraction of a layer-5 cortical pyramidal neuron. 𝑉 s and𝑉d denote the voltage
in the somatic and dendritic compartments. The somatic compartment receives as
input a Boolean vector 𝑟us representing the US. The dendritic compartment receives
as inputs a vector 𝑟cs with a short-term memory representation of the CS, as well as
recursive activity from all other neurons in the RNN. The matrices𝑊rnn,𝑊cs and𝑊us
denote the synaptic weights for the inputs. 𝑊us is fixed throughout the experiment.
𝑊rnn and 𝑊cs are updated over trials with training. (C) Full outline of the model.
The associative network is made of 𝑁rnn associative neurons. The US is presented
directly to the associative neurons, whereas the CS is presented to a short-term
memory circuit that produces the short-term memory representation 𝑟cs. Learning
in the associated network is gated by a surprise signal which measures the extent to
which the US, or its absence, was anticipated. The surprise signal is computed in
three steps. First, throughout the trial a linear decoder is used to obtain an estimate
𝑟us of the US from the population vector of the associative network, denoted by 𝑟rnn.
Second, an expectation 𝐸 𝑖 is formed according for each US based on the similarity
between 𝑟𝑖us and 𝑟us. These expectations determine the level of surprise 𝑆 associated
with the arrival or absence of the US, which then gives rise to neuromodulator
dynamics that gate learning in the associative network. (D) Performance of the
short-term memory network in a single trial when CSs are presented only for 500
ms. We plot the output of the memory network for several seconds. Each color
denotes a different element in 𝑟cs.
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RNN of associative neurons
The fundamental unit of computation in the associative network is the associative
neuron, a two-compartment neuron modelled after layer-5 pyramidal cells in the
cortex (fig. 1.1B). A crucial property of the associative neuron is that it can separate
incoming "feedforward" inputs from "feedback" ones, and compare the two to drive
learning. In our case, since we are modelling a primary reinforcer cortical area, US
inputs are assumed feedforward and arrive at the somatic compartment (correspond-
ing to the soma and proximal dendrites) through synaptic connections𝑊us, and CS
inputs are considered feedback connections arriving to the distal dendrites from the
rest of the cortex, along with local recurrent connections (𝑊cs and 𝑊rnn, respec-
tively, fig. 1.1B). This separation of inputs ultimately allows for the construction
of a biologically plausible predictive learning rule, capable of achieving stimulus
substitution.

The central element of the model is a RNN of 𝑁rnn associative neurons. The goal
of the network is to learn to predict the identity of the upcoming US from the
presentation of the corresponding CS, by reproducing the US population vector
when only the CS is presented. Each associative neuron is a two-compartment
rate neuron modelled after layer-5 pyramidal cortical neurons (Larkum, Zhu, and
Sakmann, 1999; Urbanczik and Senn, 2014). The somatic compartment models
the activity of the soma and apical dendrites of the neuron, while the dendritic
compartment models the activity of distal dendrites in cortical layer-1. As depicted
in fig. 1.1B, the somatic compartment receives 𝑟us(𝑡) as input, whereas the dendritic
compartment receives 𝑟cs(𝑡) as well feedback activity from the all the RNN units,
which is denoted by 𝑟rnn(𝑡).

The instantaneous firing rate of the associative neurons is a sigmoidal function of
the somatic voltage 𝑉 s:

𝑟rnn =
𝑓max

1 + exp
[
−𝛽(𝑉 s −𝑉1/2)

] . (1.1)

This activation function is applied element-wise to the vector 𝑉 s, which represents
the instantaneous somatic voltage in each associative neuron. 𝑓max sets the maximum
firing rate of the neuron, 𝛽 is the slope of the activation function, and 𝑉1/2 is the
voltage level at which half of the maximum firing rate is attained. We set 𝑓max to a
reasonable value for cortical neurons, and choose appropriate values for 𝛽 and 𝑉1/2

so that the whole dynamic range of the activation function is used and firing rates
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when somatic input is present are relatively uniform. See table 1.1 for a description
of all model parameters.

The somatic voltages, and thus the firing rates, are determined by the following
system of differential equations:

• The associative neurons receive an input current to their dendritic compart-
ments, denoted by 𝐼d, which obey:

𝜏s
d𝐼d

d𝑡
= −𝐼d +𝑊cs 𝑟cs +𝑊rnn 𝑟rnn (1.2)

where 𝑊rnn is the matrix of synaptic weights between any pair of associative
neurons (dimension: 𝑁rnn × 𝑁rnn), 𝑊cs is the matrix of synaptic weights for
the CS input (dimension: 𝑁rnn × 𝑁inp), and 𝜏s is the synaptic time constant.

• The dynamics of the voltage in the dendritic compartments 𝑉d are given by:

𝜏l
d𝑉d

d𝑡
= −𝑉d + 𝐼d; (1.3)

i.e., it is a low-pass filtered version of the dendritic current 𝐼d with the leak
time constant 𝜏l. For simplicity, voltages and currents are dimensionless in
our model. Therefore the leak resistance of the dendritic compartment is also
dimensionless and set to unity.

• The voltages of the somatic compartments, denoted by 𝑉 s, are given by:

𝐶
d𝑉 s

d𝑡
= −𝑔𝐿𝑉 s − 𝑔𝐷 (𝑉 s −𝑉d) + 𝐼s (1.4)

where 𝐶 is the somatic membrane capacitance, 𝑔𝐿 is the leak conductance,
𝑔𝐷 is the conductance of the coupling from the dendritic to the somatic
compartment, and 𝐼s is a vector of input currents to the somatic compartments.
Note that this specification assumes that the time constant for the somatic
voltage is one, or equivalently, that it is included in 𝐶.

• The vector 𝐼s of input currents to the somatic compartment is given by:

𝐼s = 𝑔e ⊙ (𝐸e −𝑉 s) + 𝑔i ⊙ (𝐸i −𝑉 s) (1.5)

where 𝑔e and 𝑔i are vectors describing the time-varying excitatory and in-
hibitory conductances of the inputs, 𝐸e and 𝐸i are the reversal potentials for
excitatory and inhibitory inputs, and ⊙ denotes the Hadamard (element-wise)
product.
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• The vectors of excitatory and inhibitory conductances 𝑔e and 𝑔i for the somatic
compartment are described, respectively, by the following two equations:

𝜏s
d𝑔e
d𝑡

= −𝑔e + [𝑊us]+ 𝑟us (1.6)

and
𝜏s

d𝑔i
d𝑡

= −𝑔i + [−𝑊us]+ 𝑟us + 𝑔inh (1.7)

where𝑊us is a matrix describing the synaptic weights for the US inputs to the
somatic compartments (dimension: 𝑁rnn × 𝑁inp), 𝜏s is the same synaptic time
constant used in equation 1.2, 𝑔inh is a constant inhibitory conductance of
all associative neurons, and [.]+ is the rectification function applied element-
wise.

The model implicitly assumes zero resting potentials for the somatic and dendritic
compartments. In addition, we assume that there is no input to the RNN between
trials, and that the inter-trial interval is sufficiently long so that the variables control-
ling activity in the associative neurons reset to zero between trials. The differential
equations describing activity within trials are simulated using the forward Euler
method with time setp Δ𝑡 = 1 ms.

At the beginning of the experiment, all synaptic weight matrices are randomly
initialised, independently for each entry, using a normal distribution with mean
0 and standard deviation 1/

√
𝑁rnn, as is standard in the literature. Note that since

associative neurons are pyramidal cells, the elements of𝑊rnn are restricted to positive
values; hence we use the absolute value of those random weights.

𝑊us stays fixed for the entire experiment. 𝑊rnn and𝑊cs are plastic and updated using
the learning rules described next.

Synaptic plasticity rule
Specifically, to account for the ability of the associative neuron to predict its own
spiking activity to somatic inputs from dendritic inputs alone (Larkum, Zhu, and
Sakmann, 1999), we utilize a synaptic plasticity rule that implements local error
correction at the neuronal level (Urbanczik and Senn, 2014). The learning rule
modifies the connections to the dendritic compartment (i.e.,𝑊cs and𝑊rnn) in order
to minimize the discrepancy between the firing rate of the neuron 𝑓 (𝑉 s) (where𝑉 s is
the somatic voltage, primarily controlled by US inputs in the beginning of learning,
and 𝑓 the activation function) and the prediction of the firing rate by the dendritic
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Table 1.1: Model parameter values

Parameter Value Description

𝑁stim 16 Number of CS-USs pairs to be learnt
𝑡trial 2 s Trial duration
𝑡cs-off 2 s Time in the trial at which CS disappears
𝑡us-on 1 s Time in the trial at which US appears
𝑁inp 20 Stimuli input vector length
𝐻d 8 Minimal Hamming distance between stimulus vectors
𝑁rnn 64 Number of associative neurons
𝑓max 100 Hz Maximum firing rate
𝛽 2 Steepness of activation function
𝑉1/2 1.5 Input level for 50% of the maximum firing rate
𝜏s 100 ms Synaptic time constant
𝜏l 20 ms Leak time constant of dendritic compartment
𝐶 2 ms Capacitance of somatic compartment
𝑔𝐿 0.1 Leak conductance of somatic compartment
𝑔𝐷 0.2 Conductance from dendritic to somatic compartment
𝑔inh 3/8 Constant inhibitory conductance
𝐸e 14/3 Excitatory synaptic reversal potential
𝐸i −1/3 Inhibitory synaptic reversal potential
𝑎 0.95 Self-consistency adjustment constant of learning rule
𝜏r 200 ms Dopamine release time constant
𝜏u 300 ms Dopamine uptake time constant
𝜂0 5 × 10−3 Baseline learning rate
Δ𝑡 1 ms Euler integration step size

Model parameter values. These values apply to all simulations, unless otherwise
stated. Note that voltages, currents, and conductances are assumed unitless in the
text; therefore capacitances have the same units as time constants.

compartment 𝑓 (𝑝′𝑉d) (where 𝑉d is the dendritic voltage, primarily controlled by
CS inputs, and 𝑝′ is a constant accounting for attenuation of 𝑉d due to imperfect
coupling with the somatic compartment). The synaptic weight 𝑊pre,post from a
presynaptic neuron to a postsynaptic associative neuron is modified according to:

Δ𝑊pre,post = 𝜂(𝑆)
[
𝑓 (𝑉 s

post) − 𝑓 (𝑝′𝑉d
post)

]
Ppre (1.8)

where 𝜂 is a variable learning rate which depends on a surprise signal 𝑆 and Ppre

the postsynaptic potential from the presynaptic neuron (for details, see "Synaptic
plasticity rule" in Methods). In the Supplementary Information (section "Predictive
coding and normative justification for the learning rule") we show how this learning
rule can be derived directly from the objective of stimulus substitution.
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We utilize a synaptic plasticity rule inspired by Larkum, Zhu, and Sakmann, 1999;
Larkum, 2013; Doron et al., 2020, where the firing rate of the somatic compartment
in the presence of the US acts like a target signal for learning the weights 𝑊rnn and
𝑊cs (see Urbanczik and Senn, 2014 for the initial spike-based learning rule, and
Vafidis et al., 2022 for the rate-based formulation). The learning rule modifies these
synaptic weights so that, after learning, CS inputs can predict the responses of the
RNN to the USs.

Consider the synaptic weights from input neuron 𝑗 to associative neuron 𝑖, for either
the RNN or the CS inputs. The weights are updated continuously during the trial
using the following rule:

Δ𝑊𝑖 𝑗 = 𝜂(𝑆)
[
𝑓 (𝑉 s

𝑖 ) − 𝑓 (𝑝′𝑉d
𝑖 )

]
𝑃 𝑗 (1.9)

where 𝜂(𝑆) is a variable learning rate that depends on the instantaneous level of
a surprise signal 𝑆, 𝑝′ is an attenuation constant derived below, and 𝑃 𝑗 is the
postsynaptic potential in input neuron 𝑗 .

The postsynpactic potential 𝑃 𝑗 has a simple closed form solution detailed in Vafidis
et al., 2022. In particular, it is a low-passed filtered version of the neuron’s firing
rate, so that

𝑃 𝑗 (𝑡) = 𝐻 (𝑡) ∗ 𝑟 𝑗 (𝑡), (1.10)

where ∗ denotes the convolution operator, and 𝐻 is the transfer function given by

𝐻 (𝑡) = 1
𝜏l − 𝜏s

[
exp(− 𝑡

𝜏l
) − exp(− 𝑡

𝜏s
)
]
𝑢(𝑡) (1.11)

and 𝑢(𝑡) is the Heaviside step function that takes a value of 1 for 𝑡 > 0 and a value
of 0 otherwise.

As noted in Vafidis et al., 2022, for constant 𝜂 the learning rule is a predictive
coding extension of the classical Hebbian rule. When 𝜂 is controlled by a surprise
signal, as in our model, it can be thought of a predictive coding extension of a
three-factor Hebbian rule (Frémaux, Sprekeler, and Gerstner, 2010; Frémaux and
Gerstner, 2016).

Importantly, all of the terms in the learning rule are available at the synapses in
the dendritic compartment, making this a local, biologically plausible learning rule.
The firing rate of the neuron 𝑓 (𝑉 s

𝑖
) is available due to backpropagation of action

potentials (Larkum, Zhu, and Sakmann, 1999). 𝑓 (𝑝′𝑉d
𝑖
) is a constant function of

the local voltage 𝑉d
𝑖

computed locally in the dendritic compartment even when the
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somatic input is present. By definition, postsynaptic potentials are available at the
synapse.

There are a total number of 𝑁train training trials, divided among all CS-US pairs.
After each training trial we measure the state of the RNN off-line by inputing one
𝑟cs at a time without the US, keeping the network weights constant, and measuring
the output produced by the model at that stage of the learning process.

US decoding
Up to this point the model has been faithful to the biophysics of the brain. The
next part of the model is designed to capture the variable learning rate 𝜂 in equation
1.9, and thus is more conceptual in nature. Our goal here is simply to provide a
plausible model of the factors affecting the learning rates for the RNN. As illustrated
in fig. 1.1C, this part of the model involves three distinct computations: decoding
the US from the RNN activity, computing expectations about upcoming USs, and
computing the surprise signal 𝑆.

The brain must have a way to decode the upcoming US, or its presence, from the
population activity in the RNN at any point during the trial. This prediction is
represented by the time-dependent vector 𝑟us(𝑡). For the purposes of our model, we
will use the optimal linear decoder 𝐷 (dimension: 𝑁rnn × 𝑁inp), so that

𝑟us(𝑡) = 𝑟rnn(𝑡)⊺𝐷. (1.12)

The optimal linear decoder 𝐷 is constructed as follows. First, for each US 𝑖 =
1, ..., 𝑁stim define the row vector 𝜙𝑖 describing the steady-state firing rate the each
associative neuron that arises when it is presented alone. Then define an activity
matrix Φ by stacking vertically these 𝑁stim row vectors (dimension: 𝑁stim × 𝑁rnn).
Φ is built using the initial random weights 𝑊rnn, before learning has taken place.
Second, define a target matrix 𝑇 (dimension: 𝑁stim × 𝑁inp) to be the row-wise
concatenated set of US input vectors 𝑟us. Then, if 𝐷 perfectly decodes the US from
the RNN activity, when only the USs are presented, we must have that

Φ𝐷 = 𝑇. (1.13)

It then follows that
𝐷 = Φ+𝑇, (1.14)

where + denotes the Moore-Penrose matrix inverse. A desirable property of the
Moore-Penrose inverse is that if equation 1.14 has more than one solutions, it pro-
vides the minimum norm solution, which results in the smoothest possible decoding.
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Note that the decoder, which could be implemented in any downstream brain area
requiring information about USs, is completely independent of the input represen-
tations of the CSs. Instead, it is determined before learning given only knowledge
of the USs, and is kept fixed throughout training.

US expectation estimation
Since the USs are primary reinforcers, it is reasonable to assume that their repre-
sentations, 𝑟𝑖us for 𝑖 = 1, ..., 𝑁stim , are stored somewhere in the brain. Then an
expectation for each US can be formed by

𝐸 𝑖 (𝑡) = exp(−𝜅∥𝑟us(𝑡) − 𝑟𝑖us∥2), (1.15)

where ∥𝑟us(𝑡) − 𝑟𝑖us∥ is Euclidean distance between the stored and the decoded
representations for each US at time 𝑡, and 𝜅 controls the steepness of the Gaussian
kernel. Recognizing that the ability to discriminate these patterns increases with the
Hamming distance 𝐻d, we set the precision to be inversely proportional to 𝐻d, i.e.,

𝜅 =

(
8
𝐻d

)2
.

Note that 𝐸 𝑖 takes values between 0 and 1, and equals 1 only when the US is perfectly
decoded (i.e., when 𝑟us = 𝑟

𝑖
us). Thus, 𝐸 𝑖 can be interpreted as a probabilistic estimate

for each US that is computed throughout the trial. To simplify the notation, we denote
the expectation for the US associated with the trial as 𝐸 .

Surprise based learning rates
The learning rule in equation 1.8 is gated by a well-documented surprise signal
(Gerstner et al., 2018). This surprise signal diffuses across the brain, and activates
learning in the RNN.

For each US the following surprise signal is computed throughout the trial:

𝑆𝑖 (𝑡) = 𝛿(𝑡 − 𝑡trig)
(
1𝑈𝑆𝑖 − 𝐸 𝑖 (𝑡 − 𝑡syn)

)
, (1.16)

where 1𝑈𝑆𝑖 is an indicator function for the presence of US-i, 𝛿 is the Dirac delta
function and 𝑡trig the time a surprise signal is triggered. In trials where the US
appears, we set 𝑡trig = 𝑡us-on + 𝑡syn, where 𝑡syn = 2 ∗ 𝜏s = 200 ms is a synaptic
transmission delay for the detection of the US which matches well perceptual delays
(Picton, 1992). The expectation 𝐸 𝑖 also lags by the same amount, representing
synaptic delays from the associative network to the surprise computation area. As
can be seen in eq. (1.16), the more the US is expected upon its presentation, the
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lower the surprise. In extinction trials, we set 𝑡trig = 𝑡us-on + 𝑡syn + 𝑡wait, where 𝑡wait is
a time after which a US is no longer expected to arrive. The overall surprise signal
is given by:

𝑆 =
∑︁
𝑖

𝑆𝑖 . (1.17)

The surprise signal 𝑆 gives rise to neuromodulator release and uptake which deter-
mine the learning rate 𝜂. We assume that separate neuromodulators are at work for
positive and negative surprise, and that they follow double-exponential dynamics
(Cragg, Hille, and Greenfield, 2000).

Consider the case of positive surprise. The released and uptaken neuromodulator
concentration 𝐶+

r and 𝐶+
u are given by:

𝜏r
d𝐶+

r
d𝑡

= −𝐶+
r + [𝑆]+ (1.18)

and
𝜏u

d𝐶+
u

d𝑡
= −𝐶+

u + 𝐶+
r (1.19)

where 𝜏r and 𝜏u are the neuromodulator release and uptake time constants, respec-
tively, chosen to match the dopamine dynamics in fig. 1.1B in Cragg, Hille, and
Greenfield, 2000.

Negative surprise is controlled by a different neuromodulator, described by the
following analogous dynamics:

𝜏r
d𝐶−

r
d𝑡

= −𝐶−
r + [−𝑆]+ (1.20)

and
𝜏u

d𝐶−
u

d𝑡
= −𝐶−

u + 𝐶−
r . (1.21)

The neuromodulator uptake concentrations control the learning rate:

𝜂 = 𝜂0 (𝐶+
u − 𝐶−

u ), (1.22)

where 𝜂0 is the baseline learning rate.

CS short-term memory circuit
During trace conditioning the CS disappears before the US appears, but an associa-
tion is still learnt. This suggests that the brain maintains some short-term memory
representation of the CS after it disappears. To capture this, we introduce a short-
term memory RNN that maintains a (noisy) representation of the CS, denoted by 𝑟cs,
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over time (for details, see "CS short-term memory circuit" in Methods). As shown
in fig. 1.1D, the network is able to maintain short-term representations of the CS for
several seconds before memory leak becomes considerable.

We now describe the short-term memory network used to maintain the 𝑟cs represen-
tation that serves as input to the RNN.

To obtain a circuit that can maintain a short-term memory through persistent activity
in the order of seconds (Wang, 2001), we train a separate recurrent neural network
of point neurons using backpropagation through time (BPTT). These networks have
been deemed to not be biologically plausible (although see Greedy et al., 2022).
However, for the purposes of our model we are only interested in the end product
of a short-term memory circuit, and not in how the brain acquired such a circuit.
Thus, BPTT provides an efficient means of accomplishing this goal.

The memory circuit contains 64 neurons, and the vector of their firing rates 𝑟mem

obeys:
𝜏s

d𝑟mem
d𝑡

= −𝑟mem +
[
𝑊mem 𝑟mem +𝑊inp 𝑟cs + 𝑏 + 𝑛mem

]
+ (1.23)

where𝑊mem is a matrix with the connection weights between the memory neurons
(dimension: 64 × 64), 𝑊inp is a matrix of connection weights for the incoming
CS inputs to the memory net (dimension: 64 × 𝑁inp), 𝜏s is the same synaptic time
constant described above, 𝑏 is a unit-specific bias vector, and 𝑛mem is a vector of IID
Gaussian noise with zero mean and variance 0.01 added during training. A linear
readout of the activity of the memory network provides the memory representation:

𝑟cs = 𝑊out 𝑟mem, (1.24)

where𝑊out is a readout matrix (dimension: 𝑁inp × 64).

The weight matrices𝑊mem, 𝑊inp, and𝑊out, as well as the bias vector 𝑏, are trained
as follows. Every trial lasts for 3 seconds. On trial onset, a Boolean vector 𝑟cs is
randomly generated and provided as input to the network. The CS input is provided
for a random duration drawn uniformly from [0.5, 2] seconds. The network is
trained to output 𝑟cs at all times for trials that are 3 seconds long. We train the
network for a total of 107 trials in batches of 100. We use mean square error loss
at the output, with a grace period 200 ms at the beginning of the trial where errors
are not penalized. We optimize using Adam (Kingma and Ba, 2014) with default
parameters (decay rates for first and second moments 0.9 and 0.999, respectively,
learning rate 0.001). To facilitate BPTT, which does not scale well with the number
of timepoints, we train the memory network using a time step of 10 ∗ Δ𝑡.
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1.3 Network learns stimulus substitution in delay conditioning
Consider a delay conditioning experiment in which the animal needs to learn 16
CS-US pairs, and the timing of the trial is as shown in fig. 1.2A. Note that in this
case the CS is present throughout the trial and, as a result, 𝑟cs ≈ 𝑟cs. Although the
short-term memory network is not necessary in this particular experiment, we keep
it in the model to maintain consistency across experiments.

We train the RNN for a total of 1000 trials. Figure 1.2B compares the actual
representations of all the USs, one component at a time, with those decoded from
the activity of the network in response only to the associated CSs. The network has
accurately learnt all of the associations after 500 training trials (≈ 32 per CS-US
pair).

We next investigate how learning evolves with the amount of training. Figure 1.2C
compares the activity of the associative neurons when presented only with the US, for
all possible CS-US pairs, with their activity when presented only with the associated
CS. Early in training, the associative neurons exhibit little activity in response to the
CSs, and their responses are not correlated with the amount of activity elicited by
the USs. By the end of training however, the neurons respond to the CS the same
way they respond to the US, therefore stimulus substitution is achieved. A host
of conditioning phenomena, detailed in following sections, follow from that. For
further details on the trial dynamics of learning see the Supplementary Information
(section "How does the RNN learn?"). Importantly, in the Supplements we also
show that three-factor Hebbian learning rules fail at stimulus substitution in our
experiments.

Figure 1.2D tracks the learning dynamics more closely. The green curve shows the
average expectation 𝐸 assigned to the USs at different stages of training. Perfect
learning occurs when 𝐸 = 1 for all USs. The red curve provides a measure of
distance between the 𝑟us and 𝑟us. We see that learning requires few repetitions per
CS-US pair, and is substantially faster early on.

There are three sources of randomness in the model: (1) randomness in the sampling
of CS and US sets, (2) randomness in the order in which the stimulus pairs are
presented, and (3) randomness in the initialization of𝑊rnn,𝑊cs and𝑊us. In fig. 1.3
we explore the impact of this noise in our results by training 5 networks with different
initializations and training schedules. We find that the level of random variation
across training runs is small, and is mostly dominated by randomness in the sampling
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Figure 1.2: Delay conditioning and stimulus substitution. (A) Trial structure.
The network is presented with 𝑁stim = 16 different CS-US pairs, randomly selected
in each trial. (B) The network learns all of the CS-US pairs after 500 training
trials (≈ 32 per pair). 𝑟us denotes the individual components of the Boolean vectors
encoding each of the USs. 𝑟us denotes the individual components of the decoded
USs, based only on the presentation of the associated CSs, and measured just before
the US appears. (C) Evolution of population responses during learning. Colors
denote trial number. Each point compares the firing rate of an associate neuron
at that stage of learning for a specific CS-US pair when only the US, or only the
associated CS are presented. The colored lines are linear regression fits at each
stage of learning. (D) Evolution of predicted US during learning. Green curve
depicts the average expectation across USs after the network is presented only with
the associated CS. Red curve depicts the distance between the true representation
of the USs (𝑟us) and their decoded representation 𝑟us when presented only with the
associated CS. Individual pairs are shown in faint thin lines. (E) Number of trials
required for the network to reach 80% performance for all pairs (defined as the
first time at which the average expectation 𝐸 across pairs exceeds 0.8) for different
numbers of stimulus pairs. Performance is measured just before the US appears.
Error bands denote ∓ SD computed across 5 different runs of the experiment. (F)
Number of trials required to reach 80% performance for all pairs for different levels
of similarity in the encoding of the CS and US input vectors. Error bands denote ∓
SD computed across 10 different runs of the experiment.

of the stimuli. For this reason, unless otherwise stated, we present results using only
a single training run.
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Figure 1.3: Variation across training runs. Each curve depicts a different training
run. Bands represent the ∓ SD across stimulus pairs. (A) Expectation for each US
after the network is presented only with the associated CS, averaged across all pairs at
different levels of training. (B) Distance between the true representation of the USs
(𝑟us) and their decoded representation 𝑟us when presented only with the associated
CS, averaged across all pairs at different levels of training.

Since the RNN uses mixed representations over the same neurons to encode the
stimuli, one natural question is how does learning depend on the number of CS-US
pairs in the experiment (𝑁stim) and on the similarity of their representations (𝑟cs vs
𝑟us).

We explore the first question by training the model for different values of 𝑁stim

and then measuring the number of trials that it takes the network to reach a 80%
level of maximum performance, defined as the level of training at which the average
expectation 𝐸 across pairs exceeds 0.8. Interestingly, the required number of trials
increases exponentially with the number of CS-US pairs (fig. 1.2E). This is likely
due to interference across pairs: learning of an association also results in unlearning
of other associations at the single trial level. This interference gets worse as the
number of stimuli 𝑁stim increases (fig. 1.4), which might explain the exponential
dependence. Finally, note that the network is capable of very fast learning when
there are only a few pairs (about 5 presentations per pair for two pairs, fig. 1.2E).

We explore the second question by training the model for different values of the
Hamming distances 𝐻d, which provides a lower bound on the similarity among
USs and, separately, among CSs. 𝑁stim = 8 for these experiments. Perhaps unsur-
prisingly, the more dissimilar the stimulus representations, the faster the learning
(fig. 1.2F). Figure 1.5 shows how smaller 𝐻d naturally leads to greater interference
across stimuli.
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Figure 1.4: Impact of the number of stimulus pairs on delay conditioning.
Learning paths for each CS-US pair for a single experimental run. Each thin line
tracks the expectation 𝐸 for a single stimulus pair. Note that the paths do not increase
monotonically, which shows that there can be interference across pairs. The vertical
read lines indicate the time at which the average 𝐸 across pairs (thicker green line)
reaches 80% performance level.

1.4 Short-term memory and trace conditioning
Next we consider trace conditioning experiments, in which there is a delay interval
𝑡delay > 0 between the disappearance of the CS and the arrival of the US (fig. 1.6A).
In this case the memory network is crucial for maintaining a memory trace of the
CS to be associated with the US.

As before, we train the RNN for 1000 trials, with 16 different pairs, to explore
how learning changes over time and how the delay 𝑡delay > 0 affects learning. For
comparison purposes, we include the case of delay conditioning in the same figures
(𝑡delay = −1 s).

Figure 1.6B shows the quality of the decoded representation of the US and fig. 1.6C-
D the strength of the associated expectation signal, both measured offline and in
response only to the CS. We find that the RNN learns the associations well for small
delays, but that the quality of the learning decays for larger delays. This pattern has
been observed in animal experiments (Schneiderman and Gormezano, 1964), and
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Figure 1.5: Impact of the similarity on stimulus representation on delay
conditioning. Learning paths for each CS-US pair for a single experimental run.
Each thin line tracks the expectation 𝐸 for a single stimulus pair. Note that the paths
do not increase monotonically, which shows that there can be interference across
pairs. The vertical read lines indicate the time at which the average 𝐸 across pairs
(thicker green line) reaches 80% performance level.

the model provides a mechanistic explanation: conditioning worsens with increasing
delays because the memory representation of the CS is leaky and degrades at longer
delays, as shown in fig. 1.1D.

1.5 Extinction and re-acquisition
The model can also account for the phenomenon of extinction. To investigate this,
we focus on the case in which the RNN only needs to learn a single CS-US pair in the
delay conditioning task described before. We keep the same trial structure, except
that the US is not shown at all, and the trial duration is extended (fig. 1.7A). The
latter is important because in extinction, the computation of surprise in equation
1.16 is triggered 𝑡wait seconds after the normal time the US would appear, where 𝑡wait

is the time after which the US is no longer expected. Without loss of generality, we
set 𝑡wait = 5 seconds.

As shown in fig. 1.7B, the network learns this association with a small number of
trials. At this point the extinction regime is introduced by presenting the same CS in
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Figure 1.6: Trace conditioning. (A) Trial structure. The network is presented
with 𝑁stim = 16 different CS-US pairs, randomly selected in each trial. (B) After
500 training trials (∼ 32 per pair), the network learns all of the CS-US pairs for short
𝑡delay, but struggles for longer delays. 𝑟us denotes the individual components of the
Boolean vectors encoding each of the USs. 𝑟us denotes the individual components
of the decoded USs, based only on the presentation of the associated CSs. For
comparison purposes, we also show results for delay conditioning (𝑡delay = −1) (C)
Evolution of predicted US during learning. Each curve depicts the expectation for
each US after the network is presented on ly with the associated CS. Line is the
mean across all stimulus pairs. Bands represent the ∓ SD across stimulus pairs. (D)
Network learning performance after 500 training trials for different CS-US delays.
Bars denoted ∓ SD across stimulus pairs.

isolation, and as a result the learned association rapidly disappears from the network
(fig. 1.7B,C).

Figure 1.7D looks at the phenomenon of re-acquisition where, after a period of
extinction, the same CS-US pair is reintroduced in training. A common finding
in many classical conditioning experiments is that re-acquisition is faster than the
initial learning (Napier, Macrae, and Kehoe, 1992). To test this, we compare two
cases: one in which the same US is used during re-acquisition (shown in blue),
and one in which a different US is used during re-acquisition (shown in red). We
find that re-learning an association to the same US is faster, therefore accounting
for experimental findings on re-acquisition. Furthermore, our network provides
a mechanistic explanation: re-acquisition is faster because the responses of the
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Figure 1.7: Extinction and re-acquisition. (A) Trial structure. In trials where
there US is not shown, surprise is computed at 𝑡 ≈ 6 seconds. (B) Learning
and extinction path for the acquisition of a single CS-US pair. (C) Evolution of
population responses during extinction. Colors denote extinction trial number.
Each point compares the firing rate of an associate neuron at that stage of learning
for a specific CS-US pair when only the US, or only the associated CS are presented.
(D) Learning, extinction and re-acquisition path. Blue line involves an experiment in
which the same CS-US pair is used in training and re-acquisition. Red line involves
an experiment in which a new US is used at the re-acquisition phase.

neurons in fig. 1.7C have not decayed to zero, even though the expectation almost
has. Therefore, re-learning is faster to begin with, although the new pattern catches
up later.
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1.6 Phenomena arising from CS competition
So far we have focused on experiments in which the network needs to learn one-to-
one CS-US pairings. However, some of the most interesting findings in conditioning
arise when multiple CSs are associated with the same US.

To explore this, we extend the model to the case in which the network can be
exposed to two CSs for each US (fig. 1.8A). Now there are two separate RNNs of
associative neurons, one for each CS. Without loss of generality we focus on delay
conditioning and therefore, for the sake of simplicity, we remove the short-term
memory network and directly feed inputs for the respective CSs (denoted by 𝑟cs1

and 𝑟cs2). The activity of these populations is used to decode the identity of the US,
based on the activity generated by each CS separately. These predictions are then
used to generate expectations 𝐸cs1 and 𝐸cs2, which denote the predicted strength
generated by each of them when shown in isolation. The total expectation for the
US is then given by 𝐸 = 𝐸cs1 + 𝐸cs2. The same logic could be extended to more
than two CSs. For all of these experiments, we learn a single association between a
pair of CSs and a single US, i.e., 𝑁stim = 1.

Figure 1.8B presents the results for a typical blocking experiment. We first present
CS1 alone for the first 100 trials, resulting in the acquisition of an expectation very
close to 1. Subsequently, we start presenting both CSs together. However, the US is
already well predicted from CS1, resulting in small surprises after CS2 is introduced,
and thus an approximate zero learning rate. Thus, in this setting the model generates
the well established phenomenon of blocking.

Figure 1.8C studies an overshadowing experiment. Here we present both CSs
together from the first trial. In this case both of them develop an expectation from
the US, but neither individually reaches 1. Instead, it is the sum of their expectations
that learns the association. Thus, in this setting the model generates the well
established phenomenon of overshadowing. Notice that the expectation stemming
from one of the CSs is larger than the other, which can be attributed to randomness
in the weight matrix initializations.

Figure 1.8D investigates the impact of stimulus saliency in CS competition. Salient
stimuli receive more attention and generate stronger neural responses than similar
but less salient ones (Gottlieb, Kusunoki, and Goldberg, 1998). We model relative
saliency by multiplying the input vector 𝑟cs1 of CS1, the high-saliency cue, by a
constant 𝑠ℎ = 1.2, while keeping 𝑟cs2 the same. Otherwise, the task is identical to
the case of overshadowing. Consistent with animal experiments, fig. 1.8D shows that
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the more salient CS1 acquires a substantially stronger association with the US than
the less salient CS2. This results from the fact that the more salient stimulus leads
to higher firing rates, and thus to stronger pre-synaptic potentials which strengthen
learning at those synapses.

Finally, fig. 1.8E presents the results for a typical overexpectation experiment. Here
CS1 is presented alone for the first 100 trials, CS2 is then presented alone for the
next 100, and starting from trial 200, both CSs are presented together. Since at
this point the CSs already have expectations very close to 1, their joint expectation
greatly surpasses 1. As a result, surprise is now negative, leading to unlearning of
both conditioned responses, up to the point where 𝐸cs1 + 𝐸cs2 ≈ 1.

1.7 Contingency and unconditional support
So far we have considered experiments that depend on the temporal contiguity of
the CS and US. Another important variable affecting conditioning is contingency;
i.e., the probability with which the CS and the US are presented together (Rescorla,
1968).

To vary the level of contingency, the US is shown in every trial, but the CSs are
presented only with some probability, which we vary across experiments. Note
that this is not the only way of running contingency conditioning experiments. For
example, one could change the contingency by showing the CSs every trial and
then only show the US with some probability. This would manipulate the degree of
contingency, but also introduce an element of extinction, since there are some trials
in which no US follows the CS. We favor the aforementioned experiment because it
eliminates this confound.

Figure 1.9A involves experiments with a single CS which is shown with different
probability. Consistent with the animal literature (Rescorla, 1968), we find that the
strength and speed of learning increases with the CS-US contingency.

Figure 1.9B involves experiments with two independent predictive stimuli. Every
trial CS1 is shown with probability 0.8 and, independently, CS2 is shown with
probability 0.4. Unsurprisingly, we find that the CS with the highest contingency
acquires the stronger predictive response. Note that the conditioned responses do
not need to add up to 1 in this setting.

Figure 1.9C,D involves a different probabilistic structure for the CSs. CS1 is shown
every trial with probability 0.8, as in the previous case. But now CS2 is only shown if
CS1 is present, and with various probability 𝑃(CS2 |CS1). When 𝑃(CS2 |CS1) = 0.5,
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Figure 1.8: Blocking, overshadowing, saliency and overexpectation. (A) Model
extension to allow for simultaneous presentation of two CSs. Associations for
CS1 and CS2 are represented in separate populations of associative neurons. The
activity of each population is used to separately decode the US and to construct
expectations 𝐸cs1 and 𝐸cs2. The overall expectation generated by the two CSs is
given by 𝐸 = 𝐸cs1 +𝐸cs2. Experiments assume that a single association between the
US and both CSs has to be learnt. 𝐸cs1 is the prediction generated by CS1 alone. 𝐸cs2
is the prediction generated by CS2 alone. and 𝐸cs1 + 𝐸cs2 is the prediction generated
by both cues together. Since the CSs are present throughout the trial, we omit the
short-term memory networks from this exercise. (B) Blocking: CS1 is presented
in isolation and fully learns to predict the US before CS2 is introduced. In this
case, CS2 is blocked from learning to predict the US. (C) Overshadowing: Both CSs
are presented from onset and none of them reaches the same conditioning level as
when it was presented alone; instead, the sum 𝐸 of their expectations learns the full
association. (D) Saliency effects: similar to (C), but now the relative salience of CS1
has been increased by scaling up its input vector. As a result, the final conditioning
level of CS1 is consistently higher than the one for CS2. (D) Overexpectation: CS1
and CS2 are conditioned separately. When presented together, 𝐸 exceeds 1, which
leads to a negative learning rate and unlearning.

the unconditional probabilities of the two CSs are the same as in fig. 1.9B, but
the associations learnt are different. After an initial acquisition phase, 𝐸cs2 decays
monotonically to zero. More interestingly, the same effect arises if 𝑃(CS2 |CS1) =
0.875, where 𝑃(𝐶𝑆2) = 0.7: even though the two CSs are similarly likely, 𝐸cs2
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decays to zero after initially going toe-to-toe with 𝐸cs1. This exemplifies the heavily
non-linear behavior of this phenomenon.

To explain this finding, we need to introduce the concept of unconditional support.
A CS has unconditional support if there are trials when it is presented by itself,
which means the network has to rely on it to predict the incoming US. In fig. 1.9B,
both CSs have unconditional support, albeit CS2’s is much lower. This explains
both the noisiness in 𝐸cs2, which increases each time CS2 is presented alone, and
the fact that 𝐸cs2 < 𝐸cs1. However, the situation drastically changes when CS2 is
only presented together with CS1. Here CS2 has no unconditional support. Initially,
both CSs are conditioned, until the sum of their conditioned responses reaches 1.
At that point no more positive surprise is generated for CS2. When CS1 is presented
alone, 𝑆 > 0 because 𝐸cs1 < 1, which leads to an increase in the 𝐸cs1 association.
When both CSs are presented together, the sum of their conditioned responses is
now greater than 1, and therefore 𝑆 < 0 and both conditioned responses drop. As
a result, over time 𝐸cs2 gradually decay to zero. This also explain why 𝐸cs takes
longer to decay when 𝑃(CS2 |CS1) is high.

In this task, CS2 is a spurious predictor of the US, since it only appears if CS1

is shown, and has no additional predictive value conditional on CS1, as shown in
fig. 1.9E. Essentially, the network learns to retain the predictive relationship but
erase the spurious one. Importantly, we did nothing that would bias the network
towards developing this strikingly non-linear effect.

A common fallacy of causal reasoning is known as the post hoc ergo propter hoc
fallacy (Hamblin, 1970). It posits that the temporal proximity of two events is
sufficient to infer that the earlier event is a contributing cause of the latter. This can
lead to erroneous conclusions, when such temporal proximity is coincidental. In
fig. 1.9C-E, CS1 is predictive of both CS2 and the US, but CS2 is not predictive of
the US, despite it preceding it temporally. Therefore, the network can recognize the
lack of predictive ability (or unconditional support) of CS2, resolving the post hoc
fallacy in this simpler predictive setting. Similar mechanisms might allow the brain
to perform more advanced forms of causal reasoning.

Finally, note that compared to other conditioning phenomena, the network takes
substantially longer to learn the predictive structure of the task. Combined with the
fact that real world data are scarce and often ambiguous, this might explain why
such fallacies often persist.
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Figure 1.9: Contingency and causality. The US is shown every trial, while
the contingency of the CSs is varied. (A) Impact of changing the probability of
showing the CS in every trial. Each line depicts the learning path for a different
experiment. (B) Experiment with two independent predictive stimuli. In every trial,
CS1 is shown with probability 0.8 and CS2 is shown with probability 0.4. Blue
curve is the expectation acquired by CS1 when shown by itself. Orange curve is
the expectation acquired by CS2 when shown by itself. (C,D) Experiments with a
conditional CS structure. Every trial CS1 is shown with probability 0.8 and CS2 is
shown only if CS1 is also present, with probability 𝑃(CS2 |CS1). (E) The network
learns to ignore spurious predictors. Since CS2 is conditionally dependent on CS1,
our network gradually phases out any explanatory power of CS2, as more evidence
that the US is never caused by the CS2 by itself arrives.

1.8 Three-factor Hebbian learning fails at stimulus substitution
So far we have shown that our model with the predictive learning rule in equation
1.8 accounts for many common patterns in classical conditioning. A key feature of
this rule is that learning is guided by a comparison of activity in the dendritic and
somatic compartments of the associative neurons.

We now investigate whether the same network trained using previously proposed
Hebbian plasticity rules is able to account for the same phenomena. To do this,
we keep all of the model components unchanged except for the learning rule. We
train the model with two widely used Hebbian-like plasticity rules, Oja’s rule (Oja,
1982) and the BCM rule (Bienenstock, Cooper, and Munro, 1982). We find that the
resulting network either cannot learn multiple associations, or requires task specific
parameter tuning.
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Figure 1.10: Delay conditioning with Oja’s rule. Each point compares the firing
rate of an associative neuron at that stage of learning for a specific CS-US pair when
only the US, or only the associated CS are presented. Model is trained using Oja’s
rule. (A) Model learns stimulus substitution for different normalization strengths
when 𝑁stim = 1. Model trained for 100 trials with 𝜂0 = 2 ∗ 10−4. (B) Models fails
to learn after 1000 training trials (64 per CS-US pair) when 𝑁stim = 16. For this
experiment, we use 𝜂0 = 10−3.

Consider Oja’s learning rule first. In this case the synaptic weights from input
neuron 𝑗 to associative neuron 𝑖 are updated using the following rule:

Δ𝑊𝑖 𝑗 = 𝜂(𝑆) 𝑓 (𝑉 s
𝑖 )

[
𝑃 𝑗 − 𝑛𝑊𝑖 𝑗 𝑓 (𝑉 s

𝑖 )
]

(1.25)

where 𝑛 is the normalization strength. The normalization component is crucial,
because otherwise learning would diverge. Normalization here focuses on the
weights, and subjects the largest weights to the strongest normalization. We choose
𝑛 = 40 for which the final responses to the CS span most of the output range of
associative neurons in our model (0 − 100 spikes/s).

Figure 1.10 shows the results of training the RNN with this learning rule in the delay
conditioning task. We find that the network can learn well when there is a single
CS-US pair, but it fails when it has to learn multiple associations. In fact, 𝑟us-only

rnn and
𝑟

cs-only
rnn are anti-correlated in this case. This occurs because normalization introduces

competition between incoming synapses to the same neuron (Gerstner et al., 2014),
which in turn induces competition between the associations to be stored and leads
to interference. More specifically, neurons that fire strongly for one pattern will
sustain the harshest normalization in their incoming weights affecting the response
to all other patterns. The role of the normalization coefficient is minimal when
learning a single association. This might be because final weight levels for active
neurons are determined mostly by the firing rate 𝑓 (𝑉 s

𝑖
) which is constant for the

same association, and hence it serves as a modulator of the learning rate.
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Now consider the BCM rule, which involves an alternative normalization strategy
that, instead of focusing on the weights, sets a variable potentiation threshold for the
postsynaptic firing rate. The rule is given by:

Δ𝑊𝑖 𝑗 = 𝜂(𝑆) 𝑓 (𝑉 s
𝑖 )

[
𝑓 (𝑉 s

𝑖 ) − 𝛼𝜃𝑖
]
𝑃 𝑗 (1.26)

where 𝜃𝑖 is a time-varying threshold, and 𝛼 is a parameter that modulates the size of
the threshold. A common choice is to make the threshold a function of the average
recent firing rate, which we implement by making it an exponential moving average
of the firing rate though the following differential equation:

𝜏𝜃
d𝜃𝑖
d𝑡

= −𝜃𝑖 + 𝑓 (𝑉 s
𝑖 ) (1.27)

where the parameter 𝜏𝜃 determines the temporal window of integration. In theory,
this approach sounds promising, since if 𝑟cs-only

rnn,𝑖 < 𝑟both
rnn,𝑖, then 𝑓 (𝑉 s

𝑖
) > 𝜃𝑖 leading to

potentiation and vice versa, with this logic converging to 𝑟cs-only
rnn,𝑖 ≈ 𝑟both

rnn,𝑖. However,
as we show this is not enough to guarantee the performance of the BCM rule.

Figure 1.11 shows the results of training the RNN with the BCM rule and 𝛼 = 1.
We find that with the same trial conditions used for our main results (as shown in
fig. 1.2) the BCM rule generates intermediate amounts of conditioning, as it has
a tendency to overshoot. Furthermore, when we change the time at which the US
appears conditioning becomes even worse, and that the problem persists for different
values of 𝜏𝜃 . Since the BCM rule has a tendency of underestimating the impact
of the CS, we also explored a remedy that involved amplifying the threshold by
setting 𝛼 = 1.05. This can fix the problem for experiments in which 𝑡𝑢𝑠−𝑜𝑛 = 1 s,
but the performance of the network is still highly dependent on US timing. This is
because the threshold, determined by a moving averaging filter of the firing rate, is
highly dependent on trial specifics. Therefore, we conclude that the time-dependent
threshold of the BCM rule introduces sensitivity to experimental details that cannot
be overcome.

Overall, the need to fine-tune the parameters of the BCM rule to specific trial details
is a general problem of Hebbian learning rules, stemming from the fact that they
lack supervision. A similar point has been made by Vafidis et al., 2022; Stringer
et al., 2002. In contrast, predictive learning does not demonstrate such sensitivity.
The network using our predictive learning rule learns the task well for a variety of
US onset times, without any explicit parameter tuning.

These results showcase the importance of the predictive learning rule in this work,
facilitated by the two-compartment nature of the associative neurons. The existence
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Figure 1.11: Delay conditioning with BCM rule. Model trained with 𝜂0 = 0.3
for 1000 trials in order to learn 𝑁stim = 16 associations. Model parameters and
task conditions vary across panels. (A,C) Left: learning path. Green curve depicts
the average expectation across CS-US pairs. Learned expectations for individual
pairs are shown in faint thin lines. Right: firing rates of all associative neurons
after training. (B,D) Network performance, as measured by 𝐸 , as a function of the
parameter 𝜏𝜃 in the BCM rule and the timing at which the US is presented. (E) Learnt
US expectations with our proposed predictive learning rule for different US timings.
In contrast to the BCM rule, predictive learning is insensitive to experimental details.
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of two compartments, which separate CS inputs to the dendritic compartment from
US inputs to the somatic compartment, makes it possible for the biologically plau-
sible learning rule in eq. 1.8 to compare the two and guide learning using only
information locally available at the synapse. In this learning rule, the activity of the
somatic compartment serves as a supervisory signal for learning the weights of the
inputs to the dendritic compartment until they are able to fully predict their activity
in response to the US. In contrast, we have shown that two canonical Hebbian rules
struggle with this type of associative learning, in part because they do not have an
analogous supervisory signal.

1.9 Discussion
The ability to engage in stimulus-stimulus associative learning provides a crucial
evolutionary advantage. The cerebral cortex might contribute to this evolutionary
edge by exploiting representational (Rigotti et al., 2013) and architectural (Larkum,
Zhu, and Sakmann, 1999) inductive biases present in the cortical microcircuit
(Nieuwenhuys, 1994). We here propose a recurrent neuronal network model of
how the cortex can implement stimulus substitution, which allows the same set of
neurons to encode multiple stimulus-stimulus associations. The model relies on
the properties of two-compartment layer-5 pyramidal neurons, which based on re-
cent experimental findings, we refer to as associative neurons. These neurons can
act as coincidence detectors for information about the US arriving at their somatic
compartment and information about the CS arriving at their dendritic compartment
(Larkum, Zhu, and Sakmann, 1999; Larkum, 2013; Doron et al., 2020). Coinci-
dence detection allows for a biologically plausible synaptic plasticity rule that, after
learning, results in neurons that would normally fire in the presence of the US to
respond in the same manner when the CS is presented. At the population level, this
means that the pattern of neural activity corresponding to the CS can be morphed
into the one corresponding to the US, leading to stimulus substitution.

Our model accounts for many of most important conditioning phenomena observed
in animal experiments, including delay conditioning, trace conditioning, extinction,
blocking, overshadowing, saliency effects, overexpectation and contingency effects.
The model is able to learn multiple CS-US associations with a degree of training that
is commensurate with animal experiments. Significantly, the model performs well
across a wide variety of conditioning tasks without experiments-specific parameter
fine-tuning.
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We also show that some influential models of three-factor Hebbian learning rules -
Oja’s rule (Oja, 1982) and the BCM rule (Bienenstock, Cooper, and Munro, 1982) -
fail to learn generic stimulus-stimulus associations due to their unsupervised nature.
Hebbian rules have demonstrable autoassociative (Hopfield, 1982) and heteroas-
sociative (Sompolinsky and Kanter, 1986) capabilities, and when augmented with
eligibility traces they have been shown to account for neuronal-level reinforcement
learning (Urbanczik and Senn, 2009; Vasilaki et al., 2009; Frémaux, Sprekeler, and
Gerstner, 2010). Still, they struggle with pattern-to-pattern associations when rep-
resentations are mixed. This is because Hebbian rules are purely unsupervised, and
therefore provide no guarantee that the impact of the CS will be eventually shaped
to be identical to the one of the US. Instead, network performance heavily depends
on implementation details, like training history, task details and stimulus statistics.
As a result, decoding from a population encoding several associations is hampered
by the fact that activation levels for individual neurons when exposed to the CS will
more often than not be off from those resulting from exposure to the corresponding
US.

Related work utilized a predictive learning rule similar to the one used here to account
for prospective coding of anticipated stimuli (Brea et al., 2016). While prospective
coding might also be involved in conditioning, their study differs in several ways.
First, their learning rule is timing-dependent; it succeeds in a delayed pair associative
learning task, but it would require re-learning when the relative timing of the US
in relation to the CS is variable. In contrast, our learning rule applies to arbitrary
task timings. Second, their learning rule lacks gating which, unless strict conditions
are met (dendritic and somatic activity conditioned on a stationary Markov chain),
leads to reduced responses and even catastrophic forgetting. Furthermore, adding
gating is not feasible in their model, because learning needs to bootstrap before the
presentation of the delayed stimulus, and gating would inactivate learning at these
times.

Several features of the model are worth emphasizing.

First, the proposed RNN leverages architectural inductive biases in the form of
two-compartment associative neurons. These associative neurons are the most
common neuron type in the mammalian cortex (Nieuwenhuys, 1994). This is
likely no coincidence; once evolution stumbled upon their usefulness in predicting
external contingencies, it might have favored them. While subcortical (Christian and
Thompson, 2003) and even single-neuron (Gershman et al., 2021) mechanisms for



44

conditioning exist, the mechanism that we propose can handle mixed representations,
and thus allow animals with a cerebral cortex to flexibly learn large numbers of
associations.

The structure of the associative neuron is ideal for stimulus-stimulus learning. Feed-
forward inputs, like the US representations, arrive near the soma in layer-5 and
directly control the neuron’s firing rate. Feedback inputs, like the CS represen-
tations and the activity of other cortical neurons, arrive at the distal dentrites in
layer-1 (Larkum, 2013). This compartmentalized structure allows the signals to
travel independently, and get associated via a cellular mechanism known as BAC
firing (Larkum, Zhu, and Sakmann, 1999). Specifically, it has been shown that these
cells implement coincidence detection, whereby feedforward inputs trigger a spike
which backpropagates to the distal dendrites and concurrently feedback input ar-
rives at these dendrites, then plateau calcium potentials are initiated in the dendritic
compartment (Larkum, Zhu, and Sakmann, 1999). These plateau potentials result
in the neuron spiking multiple times subsequently and learning occurs in the distal
dendrites, so that feedback inputs can elicit spikes alone in the future, without the
need for external information.

Second, a prerequisite for the biological plausiblity of the learning rule used in the
model is that backpropagating action potentials to be disentangled from postsynaptic
potentials at the dendritic compartment. Only then can the two critical components in
our learning rule, 𝑓 (𝑉 s) and 𝑓 (𝑝′𝑉d) in eq. 1.8 be compared. Since backpropagating
action potentials (denoted by 𝑓 (𝑉 s) in the model) do not need to travel far, they
experience minimal attenuation (Larkum, Zhu, and Sakmann, 1999) and therefore
they maintain some of their high-frequency components, which could be used at
synapses to differentiate them from slower postsynaptic potentials (denoted by 𝑉d

in the model). As a result, only a static transformation of this last term is needed to
compare the two signals. Consequently, the learning rule relies only on information
locally available at each synapse, which is a prerequisite for biological plausibility.

Third, our model suggests multiple functional roles for gating. It limits learning to
episodes that appear to have behavioral significance. Gating also prevents drifting
of learned associations due to a lack of perfect self-consistency between 𝑓 (𝑉 s) and
𝑓 (𝑝′𝑉d) in the learning rule (Urbanczik and Senn, 2009), which is expected in a
biological system subject to noise and approximate computation. In addition, gating
provides a critical global reference signal when multiple CSs are available at the
same time.
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The model also has some limitations to be addressed in future work. Most impor-
tantly, it does not account for spontaneous recovery of previously learnt associations
after extinction. In our model, extinction stems from the decay of the response of the
associate neurons to the CS, a mechanism akin to unlearning, which erases previous
learning, and thus does not allow for spontaneous recovery or faster re-acquistion.
The extinction mechanism proposed here is complementary to inhibitory learning,
the mechanism initially put forth by Pavlov to explain spontaneous recovery.

In the case of experiments with multiple CSs, the model assumes that different
neuronal population implements separate RNNs to learn the associations for each of
them. Although the two populations interact indirectly through the surprise signals,
they each learn to predict the US on their own. The existence of separate populations
might be justifiable when the CSs involve different sensory modalities (e.g., sound
and vision), or very different spatial locations, but not necessarily when they are
presented simultaneously. Extending the model to include differential routing of
simultaneously presented stimuli is an open question for future work.

Another direction for future work is to account for more psychological aspects of
conditioning by developing a larger model that incorporates other forms of learning
and generalization like model-based strategies also thought to take place in the
PFC (Wang et al., 2018), or to allow for context-dependent computation to resolve
conflicts among competing stimuli (Mante et al., 2013). In these larger models, our
network would model the stimulus substitution component.

The model allows to differentiate between conditioning effects that can be accounted
by low-level, synaptic plasticity mechanisms, versus other high level explanations.
At its core, the model performs stimulus substitution at the neuronal level, via a
gradual acquisition process (Thorndike, 1898; Rescorla and Wagner, 1972; Sutton
and Barto, 1981). Despite that, the model is still capable of rapid, few-shot learning,
especially when the number of associations is small compared to size of the network
(fig. 1.2E). Yet, for rapid learning in more complicated scenarios, fast inference
based on prior knowledge might be necessary (Lake et al., 2016).

Finally, our model suggests an alternative role for representational inductive biases
in the form of mixed selectivity, other than readout flexibility (Fusi, Miller, and
Rigotti, 2016): it allows the efficient packing of multiple stimulus-stimulus associa-
tions within the same neuronal population, which might confer cortical animals the
evolutionary edge.
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C h a p t e r 2

LEARNING ACCURATE PATH INTEGRATION IN RING
ATTRACTOR MODELS OF THE HEAD DIRECTION SYSTEM

Vafidis, Pantelis et al. (June 2022). “Learning accurate path integration in ring
attractor models of the head direction system.” In: eLife 11. Ed. by S. Ostojic,
R. L. Calabrese, and H. Rouault, e69841. issn: 2050-084X. doi: 10.7554/
eLife.69841. url: https://doi.org/10.7554/eLife.69841.

In Chapter I, we explored how associative neurons can learn static stimulus-to-
stimulus mappings using a compartmentalized learning rule with surprise-based
gating. Here, we extend this approach to the more complex domain of angular path
integration, where neurons must learn a dynamic mapping from current head direc-
tion and angular velocity to future head direction. We employ a similar learning
rule based on compartmentalized neurons, but without the gating mechanism, focus-
ing instead on how this rule can shape a network that accurately integrate angular
velocity inputs to perform angular path-integration in darkness, in the absence of
external cues. Turns out that the resulting circuit is a one-dimensional continu-
ous attractor (CAN), or ring-attractor, a circuit long hypothesized by theorists and
relatively recently discovered by experimentalists in the fruit fly (Drosophila) head-
direction system. The learned neural network can indeed perform (pretty) accurate
integration over long time horizons, and maintain a dynamically varying estimate
of the integrand, only using a pair of (well-tuned) weights, learned with biologically
plausible learning rules.
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Chapter Abstract

Ring attractor models for angular path integration have received strong experimental
support. To function as integrators, head direction circuits require precisely tuned
connectivity, but it is currently unknown how such tuning could be achieved. Here,
we propose a network model in which a local, biologically plausible learning rule ad-
justs synaptic efficacies during development, guided by supervisory allothetic cues.
Applied to the Drosophila head direction system, the model learns to path-integrate
accurately and develops a connectivity strikingly similar to the one reported in ex-
periments. The mature network is a quasi-continuous attractor and reproduces key
experiments in which optogenetic stimulation controls the internal representation of
heading, and where the network remaps to integrate with different gains in rodents.
Our model predicts that path integration requires self-supervised learning during a
developmental phase, and proposes a general framework to learn to path-integrate
with gain-1 even in architectures that lack the physical topography of a ring.
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2.1 Introduction
Spatial navigation is crucial for the survival of animals in the wild and has been
studied in many model organisms (Tolman, 1948; O’Keefe and Nadel, 1978; Gallis-
tel, 1993; Eichenbaum, 2017). To orient themselves in an environment, animals rely
on external sensory cues (e.g., visual, tactile, or auditory), but such allothetic cues
are often ambiguous or absent. In these cases, animals have been found to update
internal representations of their current location based on idiothetic cues, a process
that is termed path integration (PI, Darwin, 1873; Mittelstaedt and Mittelstaedt,
1980; McNaughton et al., 1996; Etienne, Maurer, and Séguinot, 1996; Neuser et al.,
2008; Burak and Fiete, 2009). The head direction (HD) system partakes in PI by per-
forming one of the computations required: estimating the current HD by integrating
angular velocities; namely angular integration. Furthermore, head direction cells
in rodents and flies provide an internal representation of orientation that can persist
in darkness (Ranck, 1984; Mizumori and Williams, 1993; Seelig and Jayaraman,
2015).

In rodents, the internal representation of heading takes the form of a localized
"bump" of activity in the high-dimensional neural manifold of HD cells (Chaudhuri
et al., 2019). It has been proposed that such a localized activity bump could be
sustained by a ring attractor network with local excitatory connections (Skaggs et
al., 1995; Redish, Elga, and Touretzky, 1996; Hahnloser, 2003; Samsonovich and
McNaughton, 1997; Song and Wang, 2005; Stringer et al., 2002; Xie, Hahnloser, and
Seung, 2002), resembling reverberation mechanisms proposed for working memory
(Wang, 2001). Ring attractor networks used to model HD cells fall in the theoretical
framework of continuous attractor networks (CANs, Amari, 1977; Ben-Yishai, Bar-
Or, and Sompolinsky, 1995; Seung, 1996) . In this setting, HD cells can update the
heading representation in darkness by smoothly moving the bump around the ring
obeying idiothetic angular-velocity cues.

Interestingly, a physical ring-like attractor network of HD cells was observed in the
Drosophila central complex (CX, Seelig and Jayaraman, 2015; Green et al., 2017;
Green et al., 2019; Franconville, Beron, and Jayaraman, 2018; Kim et al., 2019;
Fisher et al., 2019; Turner-Evans et al., 2020). Notably, in Drosophila (from here
on simply referred to as "fly"), HD cells (named E-PG neurons, also referred to as
"compass" neurons) are physically arranged in a ring, and an activity bump is readily
observable from a small number of cells (Seelig and Jayaraman, 2015). Moreover,
as predicted by some computational models (Skaggs et al., 1995; Samsonovich and
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McNaughton, 1997; Stringer et al., 2002; Song and Wang, 2005), the fly HD system
also includes cells (named P-EN1 neurons) that are conjunctively tuned to head
direction and head angular velocity. We refer to these neurons as head rotation
(HR) cells because of their putative role in shifting the HD bump across the network
according to the head’s angular velocity (Turner-Evans et al., 2017; Turner-Evans
et al., 2020).

A model for PI needs to both sustain a bump of activity and move it with the
right speed and direction around the ring. The latter presents a great challenge,
since the bump has to be "pushed" for the right amount starting from any location
and for all angular velocities. Therefore, ring attractor models that act as path
integrators require that synaptic connections are precisely tuned (Hahnloser, 2003).
If the circuit was completely hardwired, the amount of information that an organism
would need to genetically encode connection strenghts would be exceedingly high.
Additionally, it would be unclear how these networks could cope with variable
sensory experiences. In fact, remarkable experimental studies in rodents have shown
that when animals are placed in an augmented reality environment where visual and
self-motion information can be manipulated independently, PI capabilities adapt
accordingly (Jayakumar et al., 2019). These findings suggest that PI networks are
able to self-organize and to constantly recalibrate. Notably, in mature flies there
is no evidence for such plasticity (Seelig and Jayaraman, 2015) — however, the
presence of plasticity has not been tested in young animals.

Here, we propose that a simple local learning rule could support the emergence of
a PI circuit during development and its re-calibration once the circuit has formed.
Specifically, we suggest that accurate PI is achieved by associating allothetic and
idiothetic inputs at the cellular level. When available, the allothetic sensory input
(here chosen to be visual) acts as a “teacher” to guide learning. The learning rule
is an example of self-supervised multimodal learning, where one sense acts as a
teaching signal for the other and the need for an external teacher is obviated. It
exploits the relation between the allothetic heading of the animal (given by the
visual input) and the idiothetic self-motion cues (which are always available), to
learn how to integrate the latter.

The learning rule is inspired by previous experimental and computational work
on mammalian cortical pyramidal neurons, which are believed to associate inputs
to different compartments through an in-built cellular mechanism (Larkum, 2013;
Urbanczik and Senn, 2014; Brea et al., 2016). In fact, it was shown that in layer 5
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pyramidal cells internal and external information about the world arrive at distinct
anatomical locations, and active dendritic gating controls learning between the two
(Doron et al., 2020). In a similar fashion, we propose that learning PI in the HD
system occurs by associating inputs at opposite poles of compartmentalized HD
neurons, which we call "associative neurons" (Urbanczik and Senn, 2014; Brea
et al., 2016). Therefore, to accomplish PI the learning rule relies on structural
inductive biases in terms of the morphology and arborization of HD cells.

In summary, here we show for the first time how a biologically plausible synaptic
plasticity rule enables to learn and maintain the complex circuitry required for PI.
We apply our framework to the fly HD system because it is well characterized; yet
our model setting is general and can be used to learn PI in other animal models
once more details about the HD circuit there are known (Abbott et al., 2020). We
find that the learned network is a ring attractor with a connectivity that is strikingly
similar to the one found in the fly CX (Turner-Evans et al., 2020) and that it can
accurately path-integrate in darkness for the entire range of angular velocities that
the fly displays. Crucially, the learned network accounts for several key findings in
the experimental literature, and it generates predictions, including the presence of
plasticity in young animals, that could be tested experimentally.

2.2 Methods
Model setup
The gross model architecture closely resembles the one found in the fly CX (fig. 2.1A).
It comprises HD cells organized in a ring, and HR cells organized in two wings.
One wing is responsible for leftward and the other for rightward movement of the
internal heading representation. HD cells receive visual input from the so-called
"ring" neurons; this input takes the form of a disinhibitory bump centered at the
current HD (fig. 2.1B, Omoto et al., 2017; Fisher et al., 2019). The location of this
visual bump in the network is controlled by the current head direction. We simulate
head movements by sampling head-turning velocities from an Ornstein-Uhlenbeck
process (Methods), and we provide the corresponding velocity input to the HR cells
(fig. 2.1C). HR cells provide direct input to HD cells, and HR cells also receive input
from HD cells (fig. 2.1A). Both HR and HD cells receive global inhibition, which is
in line with a putative "local" model of HD network organization (Kim et al., 2017).
The connections from HR to HD cells (𝑊HR) and the recurrent connections among
HD cells (𝑊 rec) are assumed to be plastic. The goal of learning is to tune these
plastic connections so that the network can achieve PI in the absence of visual input.
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Figure 2.1: Path-integrating network architecture. (A) The ring of HD cells
projects to two wings of HR cells, a leftward (Left HR cells, abbreviated as L-HR)
and a rightward (Right HR cells, or R-HR), so that each wing receives selective
connections only from a specific HD cell (L: left, R: right) for every head direction.
For illustration purposes, the network is scaled-down by a factor of 5 compared
to the cell numbers 𝑁HR = 𝑁HD = 60 in the model. The schema shows the
outgoing connections (𝑊HD and 𝑊 rec) only from the green HD neurons and the
incoming connections (𝑊HR and𝑊 rec) only to the light blue and yellow HD neurons.
Furthermore, the visual input to HD cells and the velocity inputs to HR cells are
indicated. (B) Visual input to the ring of HD cells as a function of radial distance
from the current head direction (see eq. (2.5)). (C) Angular-velocity input to the
wings of HR cells for three angular velocities: 720 (green), 0 (blue), and −360
(orange) deg/s (see eq. (2.10)). (D) The associative neuron: 𝑉𝑎 and 𝑉 𝑑 denote
the voltage in the axon-proximal (i.e., closer to the axon initial segment) and axon-
distal (i.e., further away from the axon initial segment) compartment, respectively.
Arrows indicate the inputs to the compartments, as in (A), and 𝐼vis is the visual
input current. (E) Left: skeleton plot of an example HD (E-PG) neuron (Neuron
ID = 416642425) created using neuPrint (Clements et al., 2020); the ellipsoid body
(EB) and protocerebral bridge (PB) are overlayed. Right: zoomed in area in the EB
indicated by the box, showing postsynaptic locations in the EB for this E-PG neuron;
for details, see Methods. The neuron receives recurrent and HR input (green and
orange dots, corresponding to inputs from P-EN1 and P-EN2 cells, respectively) and
visual input (purple and blue dots, corresponding to inputs from visually responsive
R2 and R4d cells, respectively) in distinct spatial locations.
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The unit that controls plasticity in our network is an ”associative neuron.” It
is inspired by pyramidal neurons of the mammalian cortex whose dendrites act,
via backpropagating action potentials, as coincidence detectors for signals arriv-
ing from different layers of the cortex and targeting different compartments of the
neuron (Larkum, Zhu, and Sakmann, 1999). Paired with synaptic plasticity, coinci-
dence detection can lead to long-lasting associations between these signals (Larkum,
2013). To map the morphology of a cortical pyramidal cell to the one of a HD cell
in the fly, we first point out that all relevant inputs arrive at the dendrites of HD
cells within the ellipsoid body (EB) of the fly (Xu et al., 2020); moreover, the soma
itself is externalized in the fly brain, and it is unlikely to contribute considerably
to computations (Nathan W. Gouwens, 2009; Tuthill, 2009). We thus link the den-
drites of the pyramidal associative neuron to the axon-distal dendritic compartment
of the associative HD neuron in the fly, and we link the soma of the pyramidal
associative neuron to the axon-proximal dendritic compartment of the associative
HD neuron in the fly. Furthermore, we assume that the axon-proximal compartment
is electrotonically closer to the axon initial segment, and therefore, similarly to the
somatic compartment in pyramidal neurons, inputs there can more readily initiate
action potentials. Note that our model does not require active backpropagation of
action potentials — passive spread of voltage to the axon-distal compartment would
be sufficient (for details, see Methods and Discussion). We also assume that asso-
ciative HD cells receive visual input (𝐼vis) in the axon-proximal compartment, and
both recurrent input (𝑊 rec) and HR input (𝑊HR) in the axon-distal compartment;
accordingly, we model HD neurons as two-compartment units (fig. 2.1D). The as-
sociative neuron can learn the synaptic weights of the incoming connections in the
axon-distal compartment, therefore, as mentioned, we let𝑊 rec and𝑊HR be plastic.

We find that the assumption of spatial segregation of postsynapses of HD cells is
consistent with our analysis of EM data from the fly (Xu et al., 2020). For an
example HD (E-PG) neuron, fig. 2.1E depicts that head rotation and recurrent inputs
(mediated by P-EN1 and P-EN2 cells, respectively (Turner-Evans et al., 2020))
contact the E-PG cell in locations within the EB that are distinct compared to those
of visually responsive neurons R2 and R4d (Omoto et al., 2017; Fisher et al., 2019),
as hypothesized. The same pattern was observed for a total of 16 E-PG neurons (one
for each "wedge" of the EB) that we analyzed (fig. B.1A). To further support the
assumption that visual inputs are separated from recurrent and HR-to-HD inputs, we
perform binary classification between the two classes, using SVMs (for details, see
Methods). fig. B.1B shows that predicting class identity from spatial location alone
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in held-out test data is excellent (test accuracy > 0.95 across neurons and model
runs).

The connections from HD to HR cells (𝑊HD) are assumed to be fixed, and HR
cells are modeled as single-compartment units. Projections are organized such
that each wing neuron receives input from only one specific HD neuron for every
HD (fig. 2.1A). This simple initial wiring makes HR cells conjunctively tuned
to HR and HD, and we assume that it has already been formed, for example,
during circuit assembly. We note that the conditions for 1-to-1 wiring and constant
amplitude of the HD-to-HR connections can be relaxed, because the learning rule
can balance asymmetries in the initial architecture (see Appendix B.4). In addition,
the connections carrying the visual and angular velocity inputs are also assumed to
be fixed. Although plasticity in the visual inputs has been shown to exist (Fisher
et al., 2019; Kim et al., 2019), here we focus on how the path-integrating circuit
itself originally self-organizes. Therefore, to simplify the setting and without loss of
generality, we assume a fixed anchoring to environmental cues as the animal moves
in the same environment (for details, see Discussion).

In our model, the visual input acts as a supervisory signal during learning (as in
D’Albis and Kempter, 2020), which is used to change weights of synapses onto
the axon-distal compartment of HD cells. We utilize the learning rule proposed by
Urbanczik and Senn (2014) (for details, see Methods), which tunes the incoming
synaptic connections in the axon-distal compartment in order to minimize the dis-
crepancy between the firing rate of the neuron 𝑓 (𝑉𝑎) (where𝑉𝑎 is the axon-proximal
voltage, primarily controlled by the visual input) and the prediction of the firing rate
by the axon-distal compartment in the absence of visual input, 𝑓 (𝑝𝑉 𝑑) (where 𝑝
is a constant and 𝑉 𝑑 is the axon-distal voltage, which depends on head rotation
velocity). From now on, we refer to this discrepancy as "learning error," or simply
"error" (eq. (2.18)) (in units of firing rate). The synaptic weight change Δ𝑊pre,post

from a presynaptic (HD or HR) neuron to a postsynaptic HD neuron is then given
by:

Δ𝑊pre,post = 𝜂
[
𝑓 (𝑉𝑎post) − 𝑓 (𝑝𝑉 𝑑post)

]
Ppre (2.1)

where 𝜂 is the constant learning rate and Ppre is the postsynaptic potential from the
presynaptic neuron. When implementing this learning rule, we low-pass filter the
prospective weight change Δ𝑊pre,post to ensure smoothness of learning.

Importantly, this learning rule is biologically plausible because the firing rate of
an associative neuron 𝑓 (𝑉𝑎) is locally available at every synapse in the axon-distal
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compartment due to the (passive or active) backpropagation of axonal activity to
the axon-distal dendrites. The other two signals that enter the learning rule are the
voltage of the axon-distal compartment 𝑉 𝑑 and the postsynaptic potential P, which
are also available locally at the synapse; for details, see Methods. Furthermore,
recent behavioral experiments show that conditioning in Drosophila (Zhao et al.,
2021) is not well explained by classical correlation-based plasticity, but it can be
well accounted for by predictive synaptic plasticity. The latter is in line with the
learning rule utilized here.

Detailed Network Architecture
In what follows, we describe our computational model for learning a ring attractor
network that accomplishes accurate angular PI, in more detail. The model described
here focuses on the HD system of the fly, however the proposed computational setup
is general and could be applied to other systems. Unless otherwise stated, the
simulation parameter values are the ones summarized in table 2.1. Simulation
results for a given choice of parameters are very consistent across runs, hence most
figures are generated from a single simulation run, unless otherwise stated.

Neuronal Model
We model a recurrent neural network comprising 𝑁HD = 60 head-direction (HD)
and 𝑁HR = 60 head-rotation (HR) cells, which are close to the number of E-PG
and P-EN1 cells in the fly central complex (CX), respectively (Turner-Evans et al.,
2020; Xu et al., 2020). A scaled-down version of the network for 𝑁HR = 𝑁HD = 12
is shown in fig. 2.1A. The average spiking activity of HD and HR cells is modelled
by firing-rate neurons. HD cells are organized in a ring and receive visual input,
which encodes the angular position of the animal’s head with respect to external
landmarks. We use a discrete representation of angles and we model two HD
cells for each head direction, as observed in the biological system (Turner-Evans
et al., 2017). Therefore the network can represent head direction with an angular
resolution Δ𝜙 = 12 deg.

Motivated by the anatomy of the fly CX (Green et al., 2017; Turner-Evans et al.,
2020), HR cells are divided in two populations (fig. 2.1A): a ’leftward’ (L-HR)
population (with increased velocity input when the head turns leftwards) and a
’rightward’ (R-HR) population (with increased velocity input when the head turns
rightwards). After learning, these two HR populations are responsible to move the
HD bump in the anticlockwise and clockwise directions, respectively.



60

Table 2.1: Parameter values.

Parameter Value Explanation

𝑁HD 60 Number of head direction (HD) neurons
𝑁HR 60 Number of head rotation (HR) neurons
Δ𝜙 12 deg Angular resolution of network
𝜏𝑠 65 ms Synaptic time constant
𝐼HD
𝑖𝑛ℎ

−1 Global inhibition to HD neurons
𝜏𝑙 10 ms Leak time constant of axon-distal compartment
𝐶 1 ms Capacitance of axon-proximal compartment
𝑔𝐿 1 Leak conductance of axon-proximal compartment
𝑔𝐷 2 Conductance from distal to proximal compartment
𝑰HD
𝑒𝑥𝑐 4 Input to axon-proximal compartment in light
𝜎𝑛 0 Synaptic input noise level
𝑀 4 Visual input amplitude
𝑀stim 16 Optogenetic stimulation amplitude
𝜎 0.15 Visual receptive field width
𝜎stim 0.25 Optogenetic stimulation width
𝐼𝑣𝑖𝑠𝑜 −5 Visual input baseline
𝑓𝑚𝑎𝑥 150 Hz Maximum firing rate
𝛽 2.5 Steepness of activation function
𝑥1/2 1 Input level for 50 % of the maximum firing rate
𝐼HR
𝑖𝑛ℎ

−1.5 Global inhibition to HR neurons
𝑘 1/360 s/deg Ratio of velocity input and head angular velocity

𝐴𝑎𝑐𝑡𝑖𝑣𝑒 2 Input range for which 𝑓 has not saturated
𝑤HD 13.3 ms Constant weight from HD to HR neurons
𝜏𝛿 100 ms Plasticity time constant
Δ𝑡 0.5 ms Euler integration step size
𝜏𝑣 0.5 s Time constant of velocity decay
𝜎𝑣 450 deg/

√
𝑠 Standard deviation of angular velocity noise

𝜂 0.05 1/s Learning rate

Parameter values. Parameter values, in the order they appear in the Methods
section. These values apply to all simulations, unless otherwise stated. Note that
voltages, currents, and conductances are assumed unitless in the text; therefore
capacitances have the same units as time constants.

The recurrent connections among HD cells and the connections from HR to HD
cells are assumed to be plastic. On the contrary, connections from HD to HR cells
are assumed fixed and determined as follows: for every head direction, one HD
neuron projects to a cell in the L-HR population, and the other to a cell in the R-HR
population. Because HD cells project to HR cells in a 1-to-1 manner, each HR
neuron is simultaneously tuned to a particular head direction and a particular head
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rotation direction. The synaptic strength of the HD-to-HR projections is the same
for all projections (these restrictions on the HD-to-HR connections are relaxed in
Appendix B.4). Finally, HR cells do not form recurrent connections.

We assume that each HD neuron is a rate-based associative neuron (fig. 2.1D),
i.e., a two-compartmental neuron comprising an axon-proximal and an axon-distal
dendritic compartment (Urbanczik and Senn, 2014; Brea et al., 2016). The two
compartments model the dendrites of that neuron that are closer to or further away
from the axon initial segment. Note that here the axon-proximal compartment
replaces the somatic compartment in the original model by Urbanczik and Senn
(2014). This is because the somata of fly neurons are typically electrotonically
segregated from the rest of the cell and they are assumed to contribute little to
computation (Nathan W. Gouwens, 2009; Tuthill, 2009). We also note that to fully
capture the input/output transformations that HD neurons in the fly perform, more
compartments than two might be needed (Xu et al., 2020). Finally, only HD cells
are associative neurons, whereas HR cells are simple rate-based point neurons.

HD cells receive an input current 𝑰𝑑 to the axon-distal dendrites, which obey

𝜏𝑠
d𝑰𝑑

d𝑡
= −𝑰𝑑 +𝑊𝑟𝑒𝑐 𝒓HD +𝑊HR𝒓HR + 𝐼HD

𝑖𝑛ℎ + 𝜎𝑛𝒏𝑑 (2.2)

where 𝑰𝑑 is a vector of length 𝑁HD with each entry corresponding to one HD cell.
In eq. (2.2), 𝜏𝑠 is the synaptic time constant, 𝑊 rec is a 𝑁HD × 𝑁HD matrix of the
recurrent synaptic weights among HD cells, 𝑊HR is a 𝑁HD × 𝑁HR matrix of the
synaptic weights from HR to HD cells, 𝒓HR and 𝒓HD are vectors of the firing rates of
HR and HD cells, respectively, 𝐼HD

𝑖𝑛ℎ
is a constant inhibitory input common to all HD

cells, and 𝒏𝑑 is a random noise input to the axon-distal compartment. 𝒏𝒅 is drawn
IID from 𝑁 (0, 1), and its variance is scaled by 𝜎2

𝑛 . Note that in the main text we set
𝜎𝑛 to zero, but we explore different values for this parameter in Appendix B.2. The
constant current 𝐼HD

𝑖𝑛ℎ
is in line with a global-inhibition model with local recurrent

connectivity, as opposed to having long-range inhibitory recurrent connectivity
(Kim et al., 2017). The inhibitory current 𝐼HD

𝑖𝑛ℎ
suppresses HD bumps in general;

however the exact strength of this inhibition is not important in our model.

Since several electrophysiological parameters of the fly neurons modeled here are
unknown, we use dimensionless conductance values. Therefore, in eq. (2.2), which
describes the dynamics of the axon-distal input of HD cells, currents (e.g., 𝑰𝑑 , 𝐼HD

𝑖𝑛ℎ
,

and 𝒏𝑑) are dimensionless. Membrane voltages are also chosen to be dimensionless,
and because we measure firing rates in units of 1/s, all synaptic weights (e.g., 𝑊 rec
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and𝑊HR) then have, strictly speaking, the unit ’seconds’ (s), even though we mostly
suppress this unit in the text. Importantly, all time constants (e.g., 𝜏𝑠), which define
the time scale of dynamics, are measured in units of time (in seconds).

Our model incorporates several time scales, whose interplay is not obvious. To
facilitate understanding, we summarize the parameters that define the time scales in
table B.1, and discuss their relation in Appendix B.5.

The axon-distal voltage 𝑽𝑑 of HD cells is a low-pass filtered version of the input
current 𝑰𝑑 , that is,

𝜏𝑙
d𝑽𝑑

d𝑡
= −𝑽𝑑 + 𝑰𝑑 (2.3)

where 𝜏𝑙 is the leak time constant of the axon-distal compartment. The voltage
𝑽𝑑 and the current 𝑰𝑑 have the same unit (both dimensionless), which means that
the leak resistance of the axon-distal compartment is also dimensionless, and we
assume that it is unity for simplicity. We choose values of 𝜏𝑙 and 𝜏𝑠 (for specific
values, see table 2.1) so that their sum matches the phenomenological time constant
of HD neurons (E-PG in the fly), while 𝜏𝑠 equals to the phenomenological time
constant of HR neurons (P-EN1 in the fly, Turner-Evans et al., 2017). Note that
𝑽𝑑 is the low-frequency component of the axon-distal voltage originating from
postsynaptic potentials, i.e., excluding occasional high-frequency contributions from
backpropagating action potentials.

The axon-proximal voltage 𝑽𝒂 of HD cells is then given by

𝐶
d𝑽𝒂

d𝑡
= −𝑔𝐿𝑽𝒂 − 𝑔𝐷 (𝑽𝒂 − 𝑽𝑑) + 𝑰𝑣𝑖𝑠 + 𝑰HD

𝑒𝑥𝑐 + 𝜎𝑛𝒏𝒂 (2.4)

where 𝐶 is the capacitance of the membrane of the axon-proximal compartment,
𝑔𝐿 is the leak conductance, 𝑔𝐷 is the conductance of the coupling from axon-
distal to axon-proximal dendrites, 𝑰𝑣𝑖𝑠 is a vector of visual input currents to the
axon-proximal compartment of HD cells, 𝑰HD

𝑒𝑥𝑐 is an excitatory input to the axon-
proximal compartment, and 𝒏𝒂 is a random noise vector injected to the axon-
proximal compartment, drawn IID from 𝑁 (0, 1). The excitatory current 𝑰HD

𝑒𝑥𝑐 is
assumed to be present only in light conditions. The values of 𝐶, 𝑔𝐿 , and 𝑔𝐷 in the
fly HD (E-PG) neurons are unknown, thus we keep these parameters unitless, and set
their values to the ones in Urbanczik and Senn (2014). Note that since conductances
are dimensionless here, 𝐶 is effectively a time constant.
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Following Hahnloser (2003), the visual input to HD cell 𝑖 is a localized bump of
activity at angular location 𝜃𝑖:

𝐼𝑣𝑖𝑠𝑖 (𝑡) = 𝑀 exp
(
− 1

2𝜎2 sin2
(
𝜃𝑖 + 𝜃0(𝑡)

2

))
+ 𝐼𝑣𝑖𝑠𝑜 (2.5)

where 𝑀 scales the bump’s amplitude, 𝜎 controls the width of the bump, 𝜃𝑖 is the
preferred orientation of HD neuron 𝑖, 𝜃0(𝑡) is the position of a visual landmark at
time 𝑡 in head-centered coordinates, and 𝐼𝑣𝑖𝑠𝑜 < 0 is a constant inhibitory current
that acts as the baseline for the visual input. We choose 𝑀 so that the visual input
can induce a weak bump in the network at the beginning of learning, and we choose
𝜎 so that the resulting bump after learning is ∼60 deg wide. Note that the bump
in the mature network has a square shape (fig. B.3B); therefore we elect to make it
slightly narrower than the average full width at half maximum of the experimentally
observed bump (∼80 deg; Seelig and Jayaraman, 2015; Kim et al., 2017; Turner-
Evans et al., 2017). In addition, the current 𝐼𝑣𝑖𝑠𝑜 is negative enough to make the
visual input purely inhibitory, as reported (Fisher et al., 2019). The visual input
is more inhibitory in the surround to suppress activity outside of the HD receptive
field. Therefore the mechanism in which the visual input acts on the HD neurons is
disinhibition.

The firing rate of HD cells, which is set by the voltage in the axon-proximal com-
partment, is given by

𝒓HD = 𝑓 (𝑽𝒂) (2.6)

where
𝑓 (𝑥) = 𝑓𝑚𝑎𝑥

1 + exp(−𝛽(𝑥 − 𝑥1/2))
(2.7)

is a sigmoidal activation function applied element-wise to the vector 𝑽𝒂. The
variable 𝑓𝑚𝑎𝑥 sets the maximum firing rate of the neuron, 𝛽 is the slope of the
activation function, and 𝑥1/2 is the input level at which half of the maximum firing
rate is attained. The value of 𝑓𝑚𝑎𝑥 is arbitrary, while 𝛽 is chosen such that the
activation function has sufficient dynamic range, and 𝑥1/2 is chosen such that for
small negative inputs the activation function is non-zero.

We note that the saturation of the activation function 𝑓 in eq. (2.7) is an essential
feature of our model, especially for the convergence of the plasticity rule in eq. (2.12);
see also the section “Synaptic Plasticity Rule.” Even though, to the best of our
knowledge, it is currently not known whether E-PG neurons actually reach saturation,
other Drosophila neurons are known to reach saturation with increasing inputs,
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instead of some sort of depolarization block (Wilson, 2013; Brandão, Silies, and
Martelli, 2021). Saturation with increasing inputs may be due to, for instance, short-
term synaptic depression: beyond a certain frequency of incoming action potentials,
the synaptic input current is almost independent of that frequency (Tsodyks and
Markram, 1997; Tsodyks, Pawelzik, and Markram, 1998).

The firing rates of the HR cells are given by

𝒓HR = 𝑓

(
𝑊HD𝒓HD

LP + 𝑰𝑣𝑒𝑙 + 𝐼HR
𝑖𝑛ℎ + 𝜎𝑛𝒏

HR
)

(2.8)

where 𝒓HR is the vector of length 𝑁HR of firing rates of HR cells, the 𝑁HR × 𝑁HD

matrix 𝑊HD encodes the fixed connections from the HD to the HR cells, 𝒓HD
LP is a

low-pass filtered version of the firing rate of the HD cells where the filter accounts
for delays due to synaptic transmission in the incoming synapses from HD cells, 𝑰𝑣𝑒𝑙

is the angular velocity input, 𝐼HR
𝑖𝑛ℎ

is a constant inhibitory input common to all HR
cells, and 𝒏HR is a random noise input to the HR cells drawn IID from 𝑁 (0, 1). We
set 𝐼HR

𝑖𝑛ℎ
to a value that still allows sufficient activity in the HR cell bump, even when

the animal does not move. The low-pass filtered firing-rate vector 𝒓HD
LP is given by

𝜏𝑠
d𝒓HD

LP
d𝑡

= −𝒓HD
LP + 𝒓HD , (2.9)

and the angular-velocity input to HR neuron 𝑖 is given by

𝐼𝑣𝑒𝑙𝑖 (𝑡) = 𝑞 𝑘 𝑣(𝑡) with 𝑞 =


−1 for 𝑖 ≤ 𝑁HR/2

1 for 𝑖 > 𝑁HR/2
(2.10)

where 𝑘 is the proportionality constant between head angular velocity and velocity
input to the network, 𝑣(𝑡) is the head angular velocity at time 𝑡 in units of deg/s,
and the factor 𝑞 is chosen such that the left (right) half of the HR cells are primarily
active during leftward (rightward) head rotation. Note that the same 𝜏𝑠 is in both
eq. (2.2) and eq. (2.9). Finally, as mentioned earlier, the matrix 𝑊HD encodes the
hardwired 1-to-1 HD-to-HR connections, i.e.,𝑊HD

𝑖 𝑗
= 𝑤HD if HD neuron 𝑗 projects

to HR neuron 𝑖, and 𝑊HD
𝑖 𝑗

= 0 otherwise. Specifically, for 𝑗 odd, HD neuron 𝑗

projects to L-HR neuron 𝑖 =
𝑗+1
2 , whereas for 𝑗 even, HD neuron 𝑗 projects to

R-HR neuron 𝑖 = 30 + 𝑗

2 . The synaptic strength 𝑤HD is chosen such that the range
of the firing rates of the HD cells is mapped to the entire range of firing rates of the
HR cells. Specifically, we set 𝑤HD =

𝐴𝑎𝑐𝑡𝑖𝑣𝑒

𝑓𝑚𝑎𝑥
, where 𝐴𝑎𝑐𝑡𝑖𝑣𝑒 is the range of inputs

for which 𝑓 has not saturated, i.e., the input values for which 𝑓 remains between
about 7% and 93% of its maximum firing rate 𝑓𝑚𝑎𝑥 (see eq. (2.7)). Finally, the
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proportionality constant 𝑘 is set so that the firing rate of HR neurons does not reach
saturation for the range of velocities relevant for the fly (approx. [−500, 500] deg/s),
given all other inputs they receive.

Synaptic Plasticity Rule
In our network, the associative HD neurons receive direct visual input in the axon-
proximal compartment and indirect angular velocity input in the axon-distal com-
partment through the HR-to-HD connections (fig. 2.1D). We hypothesize that the
visual input acts as a supervisory signal that controls the axon-proximal voltage 𝑽𝒂

directly, and the latter initiates spikes. Therefore, the goal of learning is for the
axon-distal voltage 𝑽𝑑 to predict the axon-proximal voltage by changing the synap-
tic weights 𝑊 rec and 𝑊HR. This change is achieved by minimizing the difference
between the firing rate 𝑓 (𝑽𝒂) in the presence of visual input and the axon-distal
prediction 𝑓 (𝑽𝑠𝑠) of the firing rate in the absence of visual input. In the latter case
and at steady-state, the voltage 𝑉 𝑠𝑠

𝑖
for HD neuron 𝑖 is an attenuated version of the

axon-distal voltage,
𝑉 𝑠𝑠𝑖 =

𝑔𝐷

𝑔𝐷 + 𝑔𝐿
𝑉 𝑑𝑖 , (2.11)

with conductance 𝑔𝐷 of the coupling from the axon-distal to axon-proximal den-
drites and leak conductance 𝑔𝐿 of the axon-proximal compartment, as explained in
eq. (2.4), and 𝑝 =

𝑔𝐷
𝑔𝐷+𝑔𝐿 in eq. (2.1). Therefore, following Urbanczik and Senn

(2014), we define the plasticity-induction variable PI𝑖 𝑗 for the connection between
presynaptic neuron 𝑗 and postsynaptic neuron 𝑖 as

PI𝑖 𝑗 =
[
𝑓 (𝑉𝑎𝑖 ) − 𝑓 (𝑉 𝑠𝑠𝑖 )

]
P 𝑗 (2.12)

where P 𝑗 is the postsynaptic potential of neuron 𝑗 , which is a low-pass filtered
version of the presynaptic firing rate 𝑟 𝑗 . That is,

P 𝑗 (𝑡) = 𝐻 (𝑡) ∗ 𝑟 𝑗 (𝑡) (2.13)

where ∗ denotes convolution. The transfer function

𝐻 (𝑡) = 1
𝜏𝑙 − 𝜏𝑠

[
exp

(
− 𝑡
𝜏𝑙

)
− exp

(
− 𝑡

𝜏𝑠

)]
𝑢(𝑡) (2.14)

is derived from the filtering dynamics in eq. (2.2) and eq. (2.3) and accounts for
the delays introduced by the synaptic time constant 𝜏𝑠 and the leak time constant 𝜏𝑙 .
In eq. (2.14), 𝑢(𝑡) denotes the Heaviside step function, i.e., 𝑢(𝑡) = 1 for 𝑡 > 0 and



66

𝑢(𝑡) = 0 otherwise. The plasticity-induction variable is then low-pass filtered to
account for slow learning dynamics,

𝜏𝛿
d𝛿𝑖 𝑗
d𝑡

= −𝛿𝑖 𝑗 + PI𝑖 𝑗 , (2.15)

and the final weight change is given by

d𝑊𝑖 𝑗

d𝑡
= 𝜂𝛿𝑖 𝑗 (2.16)

where 𝜂 is the learning rate and 𝑊𝑖 𝑗 is the connection weight from presynaptic
neuron 𝑗 to postsynaptic neuron 𝑖. Note that the synaptic weight 𝑊𝑖 𝑗 is an element
of either the matrix 𝑊 rec or the matrix 𝑊HR depending on whether the presynaptic
neuron 𝑗 is an HD or an HR neuron, respectively. The value of the plasticity time
constant 𝜏𝛿 is not known, therefore we adopt the value suggested by Urbanczik and
Senn (2014).

Equation (2.12) is a "delta-like" rule that can be interpreted as an extension of the
Hebbian rule; compared to a generic Hebbian rule, we have replaced the postsynaptic
firing rate 𝑓 (𝑉𝑎

𝑖
) by the difference between 𝑓 (𝑉𝑎

𝑖
) and the predicted firing rate 𝑓 (𝑉 𝑠𝑠

𝑖
)

of the axon-distal compartment of the postsynaptic neuron. This difference drives
plasticity in the model. We note that 𝑓 (𝑉𝑎

𝑖
) is a continuous approximation of the

spike train of the postsynaptic neuron, which could be available at the axon-distal
compartment via back-propagating action potentials (Larkum, 2013). Furthermore,
the axon-distal voltage 𝑉 𝑑

𝑖
and postsynaptic potentials are by definition available at

the synapses arriving at the axon-distal compartment. Note that even though 𝑓 (𝑉 𝑠𝑠
𝑖
)

is the firing rate in the absence of visual input, it can still be computed at the axon-
distal compartment when the visual input is available; 𝑉 𝑑

𝑖
is the local voltage and

therefore only a constant multiplicative factor (eq. (2.11)) and the static nonlinearity
𝑓 need to be computed to obtain 𝑓 (𝑉 𝑠𝑠

𝑖
). Therefore, the learning rule is biologically

plausible because all information is locally available at the synapse.

The learning rule used here differs from the one in the original work of Urbanczik and
Senn (2014) because we utilize a rate-based version instead of the original spike-
based version. Even though spike trains can introduce Poisson noise to 𝑓 (𝑉𝑎

𝑖
),

Urbanczik and Senn (2014) show that once learning has converged, asymmetries in
the weights due the spiking noise are on average canceled out.

Another difference in our learning setup is that, unlike in Urbanczik and Senn (2014),
the input to the axon-proximal compartment does not reach zero in equilibrium
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(see, e.g., fig. 2.3D, and Appendix B.6). Therefore, an activation function with a
saturating non-linearity, as in eq. (2.7), is crucial for convergence, which could not
be achieved with a less biologically plausible threshold-linear activation function.
This lack of strict convergence in our setup is responsible for the square form of the
bump (fig. B.3B and Appendix B.6).

Training Protocol
We train the network with synthetically generated angular velocities, simulating head
turns of the animal. 𝑊 rec and 𝑊HR are both initialized with random connectivity
drawn from a normal distribution with mean 0 and standard deviation 1/

√
𝑁HD, as

common practise in the modeling literature. In further simulations with various other
initial conditions (e.g., in simulations with gain changes in fig. 2.4 or in simulations
in which we randomly shuffled weights after learning, not shown), we confirmed
that the final PI performance is virtually independent of the initial distribution of
weights𝑊 rec and𝑊HR.

The network dynamics are updated in discrete time steps Δ𝑡 using forward Euler
integration. The entrained angular velocities cover the range of angular velocities
exhibited by the fly, which are at maximum ∼ 500 deg/s during walking or flying
(Geurten et al., 2014; Stowers et al., 2017). The angular velocity 𝑣(𝑡) is modeled as
an Ornstein-Uhlenbeck process given by

𝑣(𝑡 + Δ𝑡) = (1 − 𝛼) 𝑣(𝑡) + 𝜎𝑣
√
Δ𝑡 𝑛(𝑡) (2.17)

where 𝛼 = Δ𝑡/𝜏𝑣 and 𝜏𝑣 is the time constant with which 𝑣(𝑡) decays to zero, 𝑛(𝑡)
is noise drawn from a normal distribution with mean 0 and standard deviation 1 at
each time step, and 𝜎𝑣 scales the noise strength.

We pick 𝜎𝑣 and 𝜏𝑣 so that the resulting angular velocity distribution and its time
course are similar to what has been reported in flies during walking or flying (Geurten
et al., 2014; Stowers et al., 2017). Finally, note that we train the network for angular
velocities a little larger than what flies typically display (up to ±720 deg/s).

Quantification of the Mean Learning Error
In eq. (2.12) we have used the learning error

𝐸𝑖 = 𝑓 (𝑉𝑎𝑖 ) − 𝑓 (𝑉 𝑠𝑠𝑖 ) (2.18)

which controls learning in every associative HD neuron 𝑖. To quantify the mean
learning error err(𝑡) in the whole network at time 𝑡, we average 𝐸𝑖 across all HD
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neurons and across a small time interval [𝑡, 𝑡 + 𝑡𝑤], that is,

err(𝑡) = 1
𝑡𝑤𝑁

HD

𝑁HD∑︁
𝑖=1

∫ 𝑡+𝑡𝑤

𝑡

|𝐸𝑖 (𝜏) | d𝜏 (2.19)

with 𝑡𝑤 = 10 s. In fig. 2.3D, we plot this mean error at every 1 % of the simulation,
for 12 simulations, and averaged across the ensemble of the simulations. Note that
individual simulations occasionally display "spikes" in the error. Large errors occur
if the network happens to be driven by very high velocities that the network does
not learn very well because they are rare; larger errors also occur for very small
velocities, i.e., when the velocity input is not strong enough to overcome the local
attractor dynamics, as seen, e.g., in fig. 2.2C. On average, though, we can clearly
see that the mean learning error decreases with increasing time and settles to a small
value (e.g., fig. 2.3D and fig. 2.4A).

Population Vector Average
To decode from the activity of HD neurons an average HD encoded by the network,
we use the population vector average (PVA). We thus first convert the tuning direction
𝜃𝑖 of each HD neuron 𝑖 to the corresponding complex number 𝑒 𝑗𝜃𝑖 on the unitary
circle, where 𝑗 is the imaginary unit. This complex number is multiplied by the
firing rate 𝑟HD

𝑖
of HD neuron 𝑖, and then averaged across neurons to yield the PVA

𝑟𝑎𝑣 =
1
𝑁HD

𝑁HD∑︁
𝑖=1

𝑟HD
𝑖 𝑒 𝑗𝜃𝑖 . (2.20)

The PVA is a vector in the 2-D complex plane and points to the center of mass of
activity in the HD network. Finally, we take the angle 𝜃 of the PVA as a measure
for the current heading direction represented by the network.

Diffusion Coefficient
To quantify the variability of heading direction in the trained networks, we define
the diffusion coefficient 𝐷 as:

𝐷 =

〈
Δ𝜃2〉 − ⟨Δ𝜃⟩2

𝑡sim
(2.21)

where Δ𝜃 is the change in heading direction in a time interval 𝑡sim. Therefore, 𝐷 is
given by the variance of the distribution of displacements in a given time interval,
divided by the time interval.
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In the main text, we estimate 𝐷 during PI, i.e., with velocity inputs only. In this
setting, 𝐷 is the rate at which the variance of the PI errors increases (see, e.g.,
fig. 2.2B). Deviations from gain-1 PI contribute to this estimate; hence, to single
out the effects of noise during training on the stability of the learned attractor in
Appendix B.2, we also estimate 𝐷 in the presence of test noise when no inputs are
received at all.

Fly Connectome Analysis
Our model assumes the segregation of visual inputs to HD (E-PG) cells from head
rotation and recurrent inputs to the same cells. To test this hypothesis, we leverage
on the fly hemibrain connectome (Xu et al., 2020; Clements et al., 2020). First,
we randomly choose one E-PG neuron per wedge of the EB, for a total of 16 E-
PG neurons. We reasoned this sample would be sufficient because the way E-PG
neurons in the same wedge are innervated is expected to be similar. We then find all
incoming connections to these neurons from visually responsive ring neurons R2
and R4d (Omoto et al., 2017; Fisher et al., 2019). These are the connections that
arrive at the axon-proximal compartment in our model. We then find all incoming
connections from P-EN1 cells, which correspond to the HR neurons, and from P-
EN2 cells, which are involved in a recurrent excitatory loop from E-PG to P-EG to
P-EN2 and back to E-PG (Turner-Evans et al., 2020). These are the connections
that arrive at the axon-distal compartment in our model.

To further support the assumption that visual inputs are separated from recurrent and
HR-to-HD inputs in the Drosophila EB, we perform binary classification between
the two classes (R2 and R4d vs. P-EN1 and P-EN2). We use SVMs with Gaussian
kernel, and perform nested 5-fold cross validation, for a total of 30 model runs for
every neuron tested (fig. B.1).

Quantification of PI performance
To quantify PI performance of the network and compare to fly performance, we use
the measure defined by Seelig and Jayaraman (2015) and estimate the correlation
coefficient between the unwrapped PVA and true heading in darkness. We estimate
the correlation in 140-second long trials and report the point estimate and 95%
confidence intervals (Student’s t-test, 𝑁 = 100).
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2.3 Mature network can path-integrate in darkness
Figure 2.2A shows an example of the performance of a trained network, for the
light condition (i.e., when visual input is available; yellow overbars) and for PI in
darkness (purple overbars); the performance is quantified by the PI error (in units
of degrees) over time. PI error refers to the accumulated difference between the
internal representation of heading and the true heading, and it is different from the
learning error introduced previously.

A unique bump of activity is clearly present at all times in the HD network (fig. 2.2A,
top), in both light and darkness conditions, and this bump moves smoothly across
the network for a variable angular velocity (fig. 2.2A, bottom). The position of the
bump is defined as the population vector average (PVA) of the neural activity in
the HD network. The HD bump also leads to the emergence of bumps in the HR
network, separately for L-HR and R-HR cells (fig. 2.2A, second and third panel
from top). In light conditions (0–20 s in fig. 2.2A), the PVA closely tracks the
head direction of the animal in HD, L-HR, and R-HR cells alike, which is expected
because the visual input guides the network activity. Importantly, however, in
darkness (20–50 s in fig. 2.2A), the self-motion input alone is enough to track the
animal’s heading, leading to a small PI error between the internal representation of
heading and the ground truth. This error is corrected after the visual input reappears
(at 50 s in fig. 2.2A). Such PI errors in darkness are qualitatively consistent with
data reported in the experimental literature (Seelig and Jayaraman, 2015). The
correction of the PI error also reproduces in silico the experimental finding that the
visual input (whenever available) exerts stronger control on the bump location than
the self-motion input (Seelig and Jayaraman, 2015), which suggests that even the
mature network does not rely on PI when visual cues are available.

To quantify the accuracy of PI in our model, we draw 1000 trials, each 60 s long,
for constant synaptic weights and in the absence of visual input. We also limit the
angular velocities in these trials to retain only velocities that flies realistically display
(see dashed green lines in fig. 2.2C and Methods). We then plot the distribution
of PI errors every 10 s (fig. 2.2B). We find that average absolute PI errors (widths
of distributions) increase with time in darkness, but most of the PI errors at 60 s
are within 60 deg of the true heading. This vastly exceeds the PI performance
of flies (Seelig and Jayaraman, 2015). In flies, the correlation between the PVA
estimate and the true heading in darkness varied widely across animals in the range
[0.3, 0.95] (Seelig and Jayaraman, 2015), whereas for the model it is close to 1.
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However, it should be noted that the model here corresponds to an ideal scenario
that serves as a proof of principle. We will later incorporate irregularities owing
to biological factors (asymmetry in the weights, biological noise) that bring the
network’s performance closer to the fly’s behavior.

To further assess the network’s ability to integrate different angular velocities, we
simulate the system both with and without visual input in 5-s intervals during which
the angular velocity is constant. We then compute the average movement velocity
of the bump across the network, i.e., the neural velocity, and compare it to the real
velocity provided as input. Figure 2.2C shows that the network achieves a PI gain
(defined as the ratio between neural and real velocity) close to 1 both with and
without supervisory visual input, meaning that the neural velocity matches very
well the angular velocity of the animal, for all angular velocities that are observed
in experiments (|𝑣 | < 500 deg/s for walking and flying) (Geurten et al., 2014;
Stowers et al., 2017). Although expected in light conditions, the fact that gain 1
is achieved in darkness shows that the network predicts the missing visual input
from the velocity input, i.e., the network path integrates accurately. Note that PI is
impaired in our model for very small angular velocities (fig. 2.2C, flat purple line for
|𝑣 | < 30 deg/s), similarly to previous hand-tuned theoretical models (Turner-Evans
et al., 2017). This is a direct consequence of the fact that maintaining a stable
activity bump and moving it across the network at very small angular velocities are
competing goals. Crucially, it has been reported that such an impairment of PI for
small angular velocities exists in flies (Seelig and Jayaraman, 2015). Note that if
we increase the number of HD neurons from 60 (∼50 were reported in the fly by
Turner-Evans et al. (2020) and Xu et al. (2020)) to 120 or 240, this flat region is no
longer observed (data not shown).

2.4 The network is a quasi-continuous attractor
A continuous attractor network (CAN) should be able to maintain a localised bump
of activity in virtually a continuum of locations around the ring of HD cells. To
prove that the learned network approximates this property, we seek to reproduce
in silico experimental findings in Kim et al. (2017). There it was shown that local
optogenetic stimulation of HD cells in the ring can cause the activity bump to jump
to a new position and persist in that location — supported by internal dynamics
alone.
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Figure 2.2: Path integration (PI) performance of the network. (A) Example
activity profiles of HD, L-HR, and R-HR neurons (firing rates gray-scale coded).
Activities are visually guided (yellow overbars) or are the result of PI in the absence
of visual input (purple overbar). The ability of the circuit to follow the true heading is
slightly degraded during PI in darkness. The PI error, i.e., the difference between the
PVA and the true heading of the animal as well as the instantaneous head angular
velocity are plotted separately. (B) Temporal evolution of the distribution of PI
errors in darkness, for 1000 simulations. The distribution gets wider with time, akin
to a diffusion process. We estimate the diffusion coefficient to be 𝐷 = 24.5 deg2/s
(see "Diffusion Coefficient" in Methods). Note that, unless otherwise stated, for
this type of plot we limit the range of angular velocities to those normally exhibited
by the fly, i.e., |𝑣 | < 500 deg/s. (C) Relation between head angular velocity and
neural angular velocity, i.e., the speed with which the bump moves in the network.
There is almost perfect (gain 1) PI in darkness for head angular velocities within
the range of maximum angular velocities that are displayed by the fly (dashed
green horizontal lines; see Methods). (D) Example of consecutive stimulations in
randomly permeated HD locations, simulating optogenetic stimulation experiments
in Kim et al. (2017). Red overbars indicate when the network is stimulated with
stronger than normal visual-like input, at the location indicated by the animal’s true
heading (light green line), while red dashed vertical lines indicate the onset of the
stimulation. The network is then left in the dark. Our simulations show that the
bump remains at the stimulated positions.

To reproduce the experiments by Kim et al. (2017), we simulate optogenetic stim-
ulation of HD cells in our network as visual input of increased strength and extent
(for details, see Methods). We find that the strength and extent of the stimulation
needs to be increased relative to that of the visual input; only in this case, a bump
at some other location in the network can be suppressed, and a new bump emerges
at the stimulated location. The stimuli are assumed to appear instantaneously at
random locations, but we restrict our set of stimulation locations to the discrete
angles represented by the finite number of HD neurons. Furthermore, the velocity
input is set to zero for the entire simulation, signaling lack of head movement.

Figure 2.2D shows network activity in response to several stimuli, when the stimula-
tion location changes abruptly every 5 s. During stimulation (2 s long, red overbars),
the bump is larger than normal due to the use of a stronger than usual visual-like
input to mimic optogenetic stimulation. The way in which the network responds to
a stimulation depends on how far away from the “current” location it is stimulated:
for shorter distances, the bump activity shifts to the new location, as evidenced by
the transient dynamics at the edges of the bump resembling a decay from an initial
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to a new location (see fig. 2.2D at {5,15,20} s). However, for larger phase shifts Δ𝜃
the bump first emerges in the new location and subsequently disappears at the initial
location, a mechanism akin to a “jump” (fig. 2.2D, all other transitions). Similar
effects have been observed in the experimental literature (Seelig and Jayaraman,
2015; Kim et al., 2017). The way the network responds to stimulation indicates that
it operates in a CAN manner, and not as a winner-takes-all network where changes
in bump location would always be instantaneous (Carpenter and Grossberg, 1987;
Itti, Koch, and Niebur, 1998; Wang, 2002). That is to say, the network operates as
expected from a quasi-continuous attractor. Furthermore, we find that the transition
strategy in our model changes from predominantly smooth transitions to jumps at
Δ𝜃 ≈ 90 deg, which matches experiments well (Kim et al., 2017).

Following a 2-s stimulation, the network activity has converged to the new cued
location. After the stimulation has been turned off, the bump remains at the new
location (within the angular resolution Δ𝜙 of the network), supported by internal
network dynamics alone (fig. 2.2D). We confirmed in additional simulations that the
bump does not drift away from the stimulated location for extended periods of time
(3-minute duration tested, only 3 s shown), and for all discrete locations in the HD
network (only six locations shown). Therefore, we conclude that the HD network is
a quasi-continuous attractor that can reliably sustain a heading representation over
time in all HD locations. Note that for the network size used (𝑁HD = 60) we still
obtain discrete attractors with separated basins of attraction; however it is expected
that with increasing 𝑁HD adjacent attractors will merge when the intrinsic noise
overcomes the barrier separating them. Indeed, we find that for 𝑁HD = 𝑁HR = 120
it is easier to diffuse to adjacent attractors in the presence of synaptic input noise;
for the impact of noise, see fig. B.6C in Appendix B.2. In reality, the bump may
drift away due to asymmetries in the connectivity of the biological circuit as well as
intrinsic noise (Burak and Fiete, 2012); see also Appendix B.2. In flies, for instance,
the bump can stay put only for several seconds (Kim et al., 2017).

2.5 Learning results in synaptic connectivity that matches the one in the fly
To gain more insight into how the network achieves PI and attains CAN properties,
we show how the synaptic weights of the network are tuned during a developmental
period (fig. 2.3). fig. 2.3A,B shows the learned recurrent synaptic weights among
the HD cells, 𝑊 rec, and the learned synaptic weights from HR to HD cells, 𝑊HR,
respectively. Circular symmetry is apparent in both matrices, a crucial property
for a symmetric ring attractor. Therefore we also plot the profiles of the learned
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weights as a function of receptive field difference in fig. 2.3C. Note that pixelized
appearance in these plots is due to the fact that two adjacent HD neurons are tuned
for the same HD, and develop identical synaptic strengths.

First, we discuss the properties of the learned weights. Local excitatory connections
have developed along the main diagonal of𝑊 rec, similar to what is observed in the
CX (Turner-Evans et al., 2020). This local excitation can be readily seen in the
weight profile of 𝑊 rec in fig. 2.3C, and it is the substrate that allows the network
to support stable activity bumps in virtually any location. In addition, we observe
inhibition surrounding the local excitatory profile in both directions. This inhibition
emerges despite the fact that we provide global inhibition to all HD cells (𝐼HD

𝑖𝑛ℎ

parameter, Methods), in line with suggestions from previous work (Kim et al.,
2017). Surrounding inhibition was a feature we observed consistently in learned
networks of different sizes and for different global inhibition levels. Finally, the
angular offset of the two negative sidelobes in the connectivity depends on the size
and shape of the entrained HD bump (for details, see Appendix B.6).

Furthermore, we find a consistent pattern of both L-HR and R-HR populations to
excite the direction for which they are selective (fig. 2.3C), which is also similar to
what is observed in the CX (Turner-Evans et al., 2020). Excitation in one direction
is accompanied by inhibition in the reverse direction in the learned network. As a
result of the symmetry in our learning paradigm, the connectivity profiles of L-HR
and R-HR cells are mirrored versions of each other, which is also clearly visible
in fig. 2.3C. The inhibition of the reverse direction has a width comparable to the
bump size and acts as a “break” to prevent the bump from moving in this direction.
The excitation in the selective direction, on the other hand, has a wider profile,
which allows the network to path integrate for a wide range of angular velocities,
i.e., for high angular velocities neurons further downstream can be "primed" and
activated in rapid succession. Indeed, when we remove the wide projections from the
excitatory connectivity, PI performance is impaired for the higher angular velocities
exclusively (fig. B.2). The even weight profile in𝑊 rec and the mirror symmetry for
L-HR vs. R-HR profiles in𝑊HR, together with the circular symmetry of the weights
throughout the ring, guarantee that there is no side bias (i.e., tendency of the bump
to favor one direction of movement versus the other) during PI. Indeed, the PI error
distribution in fig. 2.2B remains symmetric throughout the 60-s simulations.

Next, we focus our attention on the dynamics of learning. For training times larger
than a few hours, the absolute learning error drops and settles to a low value,
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Figure 2.3: Network connectivity during and after learning. (A), (B) The
learned weight matrices (color coded) of recurrent connections in the HD ring,𝑊 rec,
and of HR-to-HD connections, 𝑊HR, respectively. Note the circular symmetry in
both matrices. (C) Profiles of (A) and (B), averaged across presynaptic neurons.
(D) Absolute learning error in the network (eq. (2.19)) for 12 simulations (transparent
lines) and average across simulations (opaque line). At time 𝑡 = 0, we initialize all
the plastic weights at random and train the network for 8 × 104 s (∼ 22 hours). The
mean learning error increases in the beginning while a bump in 𝑊 rec is emerging,
which is necessary to generate a pronounced bump in the network activity. For
weak activity bumps, absolute errors are small because the overall network activity
is low. After ∼1 hour of training, the mean learning error decreases with increasing
training time and converges to a small value. (E), (F) Time courses of development
of the profiles of𝑊 rec and𝑊HR, respectively. Note the logarithmic time scale.

indicating that learning has converged after ∼20 hours (or 4000 cycles, each cycle
lasting 1/𝜂) of training time (fig. 2.3D). The non-zero value of the final error is only
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due to errors occurring at the edges of the bump (fig. B.3A, top panel). An intuitive
explanation of why these errors persist is that the velocity pathway is learning to
predict the visual input; as a result, when the visual input is present, the velocity
pathway creates errors that are consistent with PI velocity biases in darkness.

Figure 2.3E,F shows the weight development history for the entire simulation. The
first structure that emerges during learning is the local excitatory recurrent connec-
tions in𝑊 rec. For these early stages of learning, the initial connectivity is controlled
by the autocorrelation of the visual input, which gets imprinted in the recurrent con-
nections by means of Hebbian co-activation of adjacent HD neurons. As a result,
the width of the local excitatory profile mirrors the width of the visual input. Once a
clear bump is established in the HD ring, the HR connections are learned to support
bump movement, and negative sidelobes in 𝑊 rec emerge. To understand the shape
of the learned connectivity profiles and the dynamics of their development, we study
a reduced version of the full model, which follows learning in bump-centric coor-
dinates (see Appendix B.6). The reduced model produces a connectivity strikingly
similar to the full model, and highlights the important role of non-linearities in the
system.

So far we have shown results in which our model far outperforms flies in terms
of PI accuracy. To bridge this gap, we add noise to the weight connectivity in
fig. 2.3A,B and obtain the connectivity matrices in fig. B.4A,B, respectively. This
perturbation of the weights could account for irregularities in the fly HD system
owning to biological factors such as uneven synaptic densities. The resulting neural
velocity gain curve in fig. B.4E is impaired mainly for small angular velocities
(cf. fig. 2.2C). Interestingly, it now bears greater similarity to the one observed in
flies, because the previously flat area for small angular velocities is wider (flat for
|𝑣 | < 60 deg/s, cf. extended data fig. 7G,J in Seelig and Jayaraman (2015)). This
happens because the noisy connectivity is less effective in initiating bump movement.
Finally, the PI errors in the network with noisy connectivity grow much faster and
display a strong side bias (fig. B.4D, cf. fig. 2.2B). The latter can be attributed to
the fact that the noise in the connectivity generates local minima that are easier to
transverse from one direction vs. the other. Side bias can also emerge if the learning
rate 𝜂 in eq. (2.16) is increased, effectively forcing learning to converge faster
to a local minimum, which results in slight deviations from circularly symmetric
connectivity (data not shown). It is therefore expected that different animals will
display different degrees and directions of side bias during PI, owning either to fast
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learning or asymmetries in the underlying neurobiology. Since the exact behavior
of the network with noise in the connectivity depends on the specific realization, we
also generate multiple such networks and estimate the diffusion coefficient during
path integration, which quantifies how fast the width of the PI error distribution in
fig. B.4D increases. We find the grand average to be 82.3 ± 15.7 deg2/s, which is
considerably larger (Student’s t-test, 95% conf. intervals for a total of 12 networks)
than the diffusion coefficient for networks without a perturbation in the weights
(24.5 deg2/s in fig. 2.2B). Finally, in Appendix B.2 we also incorporate random
Gaussian noise to all inputs, which can account for noisy percepts or stochasticity
of spiking, and show that learning is not disrupted even for high noise levels.

2.6 Fast adaptation of neural velocity gain
Having shown how PI and CAN properties are learned in our model, we now turn our
attention to the flexibility that our learning setup affords. Motivated by augmented-
reality experiments in rodents where the relative gain of visual and self-motion
inputs is manipulated (Jayakumar et al., 2019), we test whether our network can
rewire to learn an arbitrary gain between the two. In other words, we attempt to
learn an arbitrary gain 𝑔 between the idiothetic angular velocity 𝑣 sensed by the
HR cells and the neural velocity 𝑔 · 𝑣 dictated by the allothetic visual input. This
simulates the conditions in an augmented reality environment, where the speed at
which the world around the animal rotates is determined by the experimenter, but
the proprioceptive sense of head angular velocity remains the same.

Starting with the learned network shown in fig. 2.3, which displayed gain 𝑔 = 1, we
suddenly switch to a different gain, i.e., we learn weights for 𝑔 ∈ {0.25, 0.5, 1.5, 2}.
In all cases, we observe that the network readily rewires to achieve the new gain.
The mean learning error after the gain switch is initially high, but reaches a lower,
constant level after at most 3 hours of training (fig. 2.4A). We note that convergence
is much faster compared to the time it takes for the gain-1 network to emerge from
scratch (compare to fig. 2.3D), especially for the smaller gain changes. Importantly,
fig. 2.4B shows that PI performance in the resulting networks is excellent for the new
gains, with some degradation only for very low and very high angular velocities.
There are two reasons why high angular velocities are not learned that well: limited
training of these velocities, and saturation of HR cell activity. Both reasons are
by design and do not reflect a fundamental limit of the network. In Appendix B.3
we show that without the aforementioned limitations the network learns to path-
integrate up to an angular velocity limit set by synaptic delays and that the bump
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Figure 2.4: The network rapidly adapts to new gains. Starting from the converged
network in fig. 2.3, we change the gain 𝑔 between visual and self-motion inputs, akin
to experiments conducted in VR in flies and rodents (Seelig and Jayaraman, 2015;
Jayakumar et al., 2019). (A) The mean learning error averaged across 12 simulations
for each gain. After an initial increase due to the change of gain, the errors decrease
rapidly and settle to a lower value. The steady-state values depend on the gain due
to the by-design impairment of high angular velocities, which affects high gains
preferentially. Crucially, adaptation to a new gain is much faster than learning the
HD system from scratch (cf. fig. 2.3D). (B) Velocity gain curves for different gains.
The network has remapped to learn accurate PI with different gains for the entire
dynamic range of head angular velocity inputs (approx. [−500, 500] deg/s). (C),
(D) Final profiles of𝑊 rec and𝑊HR, respectively, for different gains.

width sets a trade-off between location and velocity-integration accuracy in the HD
system.

Figure 2.4C,D compare the weight profiles of the circularly symmetric matrices𝑊 rec

and 𝑊HR resulting from the initial gain 𝑔 = 1, with the weight profiles resulting
from adaptation to the most extreme gains shown in fig. 2.4, i.e., 𝑔 ∈ {0.25, 2}. An
increase in gain slightly suppresses the recurrent connections and slightly amplifies
the HR-to-HD connections, while a decrease in gain substantially amplifies the
recurrent connections and slightly suppresses the HR-to-HD connections. The
latter explains why the flat region for small angular velocities in fig. 2.4B has
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been extended for 𝑔 ∈ {0.25, 0.5}: it is now harder for small angular velocities to
overcome the attractor formed by stronger recurrent weights and move the bump.

Finally, we address the limits of the ability of the network to rewire to new gains
(fig. B.5). We find that after rewiring the performance is excellent for gains between
0.25 and 4.5. The network can even reverse its gain to 𝑔 = −1, i.e., when allothetic
and idiothetic inputs are signaling movement in opposite directions. However, for
larger gain changes, learning takes longer.

2.7 Summary of findings
The ability of animals to navigate in the absence of external cues is crucial for their
survival. Head direction, place, and grid cells provide internal representations of
space (Ranck, 1984; Moser, Kropff, and Moser, 2008) that can persist in darkness
and possibly support path integration (PI) (Mizumori and Williams, 1993; Quirk,
Muller, and Kubie, 1990; Hafting et al., 2005). Extensive theoretical work has
focused on how the spatial navigation system might rely on continuous attractor
networks (CANs) to maintain and update a neural representation of the animal’s
current location. Special attention was devoted to models representing orientation,
with the ring attractor network being one of the most famous of these models
(Amari, 1977; Ben-Yishai, Bar-Or, and Sompolinsky, 1995; Skaggs et al., 1995;
Seung, 1996). So far, modelling of the HD system has been relying on hand-tuned
synaptic connectivity (Zhang, 1996; Xie, Hahnloser, and Seung, 2002; Turner-
Evans et al., 2017; Page, Walters, and Stringer, 2018) without reference to its origin;
or has been relying on synaptic plasticity rules that either did not achieve gain-1 PI
(Stringer et al., 2002) or were not biologically plausible (Hahnloser, 2003).

Inspired by the recent discovery of a ring attractor network for HD in Drosophila
(Seelig and Jayaraman, 2015), we show how a biologically plausible learning rule
leads to the emergence of a circuit that achieves gain-1 PI in darkness. The learned
network features striking similarities in terms of connectivity to the one experimen-
tally observed in the fly (Turner-Evans et al., 2020), and reproduces experiments
on CAN dynamics (Kim et al., 2017) and gain changes between external and self-
motion cues in rodents (Jayakumar et al., 2019). Furthermore, an impairment of PI
for small angular velocities is observed in the mature network, which is a feature
that has been reported in experiments (Seelig and Jayaraman, 2015). Finally, the
proposed learning rule can serve to compensate deviations from circular symmetry
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in the synaptic weight profiles; such deviations are expected in biological systems
and — if not compensated — could lead to large PI errors.

The mature circuit displays two properties characteristic of CANs: 1) it can support
and actively maintain a local bump of activity at a virtual continuum of locations,
and 2) it can move the bump across the network by integrating self-motion cues.
Note that we did not explicitly train the network to achieve these CAN properties,
but they rather emerged in a self-organized manner.

To achieve gain-1 PI performance, our network must attribute learning errors to the
appropriate weights. The learning rule we adopt in eq. (2.1) is a "delta-like" rule,
with a learning error that gates learning in the network, and a Hebbian component
that comes in the form of the postsynaptic potential and assigns credit to synapses
that are active when errors are large. The learning rule leads to the emergence of
both symmetric local connectivity between HD cells (which is required for bump
maintenance and stability), and asymmetric connectivity from HR to HD cells
(which is required for bump movement in darkness). The first happens because
adjacent neurons are co-active due to correlated visual input; the second because
only one HR population is predominantly active during rotation: the population
that corresponds to the current rotation direction. Crucial to the understanding
of the learning dynamics of the model was the development of a reduced model,
which follows learning in bump-centric coordinates and is analytically tractable
(see Appendix B.6). The reduced model can be extended to higher dimensional
manifolds (Gardner et al., 2022), and therefore it offers a general framework to
study how activity-dependent synaptic plasticity shapes CANs.

2.8 Relation to experimental literature
Our work comes at a time at which the fly HD system receives a lot of attention
(Seelig and Jayaraman, 2015; Turner-Evans et al., 2020; Kim et al., 2017; Kim et al.,
2019; Fisher et al., 2019), and suggests a mechanism of how this circuit could self-
organize during development. Synaptic plasticity has been shown to be important
in this circuit for anchoring the visual input to the HD neurons when the animal is
exposed to a new environment (Kim et al., 2019; Fisher et al., 2019). This has also
been demonstrated in models of the mammalian HD system (Skaggs et al., 1995;
Zhang, 1996; Song and Wang, 2005). Here we assume that an initial anchoring of
the topographic visual input to the HD neurons with arbitrary offset with respect to
external landmarks already exists prior to the development of the PI circuit; such an
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anchoring could even be prewired. In our model, it is sufficient that the visual-input
tuning is local and topographically arranged. Once the PI circuit has developed,
visual connections could be anchored to different environments, as shown by Kim
et al. (2019) and Fisher et al. (2019). Alternatively, the HD system itself could come
prewired with an initial gross connectivity, sufficient to anchor the visual input; in
this case, our learning rule would enable fine tuning of this connectivity for gain-1
PI. In either case, for the sake of simplicity and without loss of generality, we study
the development of the path-integrating circuit while the animal moves in the same
environment, and keep the visual input-tuning fixed. Therefore, the present work
addresses the important question of how the PI circuit itself could be formed, and it
is complementary to the problem of how allothetic inputs to the PI circuit are wired
(Fisher et al., 2019; Kim et al., 2019). The interplay of the two forms of plasticity
during development would be of particular future interest.

A requirement for the learning rule we use is that information about the firing rate
of HD neurons is available at the axon-distal compartment. There is no evidence
for active backpropagation of APs in E-PG neurons in the fly, but passive backprop-
agation would suffice in this setting. In fact, passive spread of activity has been
shown to attenuate weakly in central fly neurons (Nathan W. Gouwens, 2009). In
HD neurons, the axon-proximal and axon-distal compartments belong to the same
dendritic tuft (fig. 2.1E), and since we assume that the axon initial segment is close
to the axon-proximal compartment, the generated AP would need to propagate only
a short distance compared to the effective electrotonic length. This means that APs
would not be attenuated much on their way from the axon initial segment to the
axon-distal compartment, and thus would maintain some of their high-frequency
component, which could be used at synapses to differentiate them from slower
postsynaptic potentials.

In fig. 2.4 we show that our network can adapt to altered gains much faster than
the time required to learn the network from scratch. Our simulations are akin to
experiments where rodents are placed in a VR environment and the relative gain
between visual and proprioceptive signals is altered by the experimenter (Jayakumar
et al., 2019). In this scenario, Jayakumar et al. (2019) found that the PI gain of place
cells can be recalibrated rapidly. In contrast, Seelig and Jayaraman (2015) found that
PI gain in darkness is not significantly affected when flies are exposed to different
gains in light conditions. We note, however, that Seelig and Jayaraman (2015)
tested mature animals (8–11 days old), whereas plasticity in the main HD network is
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presumably stronger in younger animals. Also note that the manipulation we use to
address adaptation of PI to different gains differs from the one in (Kim et al., 2019)
who used optogenetic stimulation of the HD network combined with rotation of the
visual scene to trigger a remapping of the visual input to the HD cells in a Hebbian
manner. The findings in Jayakumar et al. (2019) can only be reconciled by plasticity
in the PI circuit, and not in the sensory inputs to the circuit.

In order to address the core mechanisms that underlie the emergence of a path
integrating network, we use a model that is a simplified version of the biological
circuit. For example, we did not model inhibitory neurons explicitly and omitted
some of the recurrent connectivity in the circuit, whose functional role is uncertain
(Turner-Evans et al., 2020). We also choose to separate PI from other complex
processes that occur in the CX (Raccuglia et al., 2019). Finally, we do not force the
network to obey Dale’s law and do not model spiking explicitly.

Nevertheless, after learning, we obtain a network connectivity that is strikingly
similar to the one of the fly HD system. Indeed, the mature model exhibits local
excitatory connectivity in the HD neurons (fig. 2.3A,C), which in the fly is mediated
by the excitatory loop from E-PG to P-EG to P-EN2 and back to E-PG (Turner-
Evans et al., 2020), a feature that hand-tuned models of the fly HD system did not
include (Turner-Evans et al., 2017). Furthermore, the HR neurons have excitatory
projections towards the directions they are selective for (fig. 2.3B,C), similar to
P-EN1 neurons in the fly. Interestingly, these key features that we uncover from
learning have been utilized in other hand-tuned models of the system (Turner-Evans
et al., 2017; Kim et al., 2017; Kim et al., 2019). Future work could endeavor to come
closer to the architecture of the fly HD system and benefit from the incorporation
of more neuron types and the richness of recurrent connectivity that has been
discovered in the fly (Turner-Evans et al., 2020).

Compared to the fly, our network achieved better PI performance. As a simple
way to match the performances, we added noise to the learned connectivity in the
model; however this is not an explanation why the fly performs worse. Indeed, there
could be multiple reasons why PI performance is worse in the biological circuit. For
instance, a confounder that would affect performance but not necessarily learning
could be the presence of inputs that are unrelated to path integration, e.g., inputs
related to circadian cycles and sleep (Raccuglia et al., 2019). In the presence of such
confounders, a precise tuning of the weights might be crucial in order to reach the
performance of the fly. In other words, only if the model outperforms the biological
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circuit in a simplified setting, it has a chance to perform as well in a realistic setting,
with all the additional complexities the latter comes with.

2.9 Relation to theoretical literature
A common problem with CANs is that they require fine tuning: even a slight
deviation from the optimal synaptic weight tuning leads to catastrophic drifting
(Goldman, Compte, and Wang, 2009). A way around this problem is to sacrifice
the continuity of the attractor states in favor of a discrete number of stable states
that are much more robust to noise or weight perturbations (Kilpatrick, Ermentrout,
and Doiron, 2013). In our network, the small number of HD neurons enables a
coarse-grained representation of heading; the network is a CAN only in a quasi-
continuous manner, and the number of discrete attractors corresponds to the number
of HD neurons. This makes it harder to transition to adjacent attractors, since a
"barrier" has to be overcome in the quasi-continuous case (Kilpatrick, Ermentrout,
and Doiron, 2013). The somewhat counter-intuitive conclusion follows that a CAN
with more neurons and, as a result, finer angular resolution, will not be as potent in
maintaining activity, and diffusion to nearby attractors will be easier since the barrier
will be lower. Indeed, we found that doubling the number of neurons produces a
CAN that is less robust to noise. Overall, the quasi-continuous and coarse nature of
the attractor shields the internal representation of heading against the ever-present
biological noise, which would otherwise lead to diffusion of the bump with time.
The fact that the network can still path-integrate accurately with this coarse-grained
representation of heading is remarkable.

Seminal theoretical work on ring attractors has proven that in order to achieve
gain-1 PI, the asymmetric component of the network connectivity (corresponding
here to𝑊HR) needs to be proportional to the derivative of the symmetric component
(corresponding to𝑊 rec) (Zhang, 1996). However, this result rests on the assumption
that asymmetric and symmetric weight profiles are mediated by the same neuronal
population, as in the double-ring architecture proposed by Xie, Hahnloser, and
Seung (2002) and Hahnloser (2003), but does not readily apply to the architecture
of the fly HD system where HD and HR cells are separate. In our learned network
we find that the HR weight profile is not proportional to the derivative of the
recurrent weight profile, therefore this requirement is not necessary for gain-1 PI
in our setting. Note that our learning setup can also learn gain-1 PI for a double-
ring architecture, which additionally obeys Dale’s law (Vafidis (2019), Learning
of a path-integrating circuit [Unpublished master’s thesis], Technical University of
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Berlin). Finally, we emphasize that circular symmetry is not a necessary condition
for a ring attractor (Darshan and Rivkind, 2021). Rather, symmetry in our model
results from the symmetry in the architecture, the symmetrially prewired weights,
and the symmetric stimulus space. If any of those were to be relaxed, the resulting
network would not be circular symmetric; then, the reduced model analysis that we
perform in Appendix B.6 would also not be feasible, because local asymmetries in
the setup would result in non-local deviations from circular symmetry of the learned
weights, which was our main assumption there. Nevertheless, we demonstrated that
the full model can handle such asymmetries in the setup and learn accurate PI (see
Appendix B.4).

Our learning setup, inspired by Urbanczik and Senn (2014), is similar to the one
in Guerguiev, Lillicrap, and Richards (2017) in the sense that both involve com-
partmentalized neurons that receive "target" signals in a distinct compartment. It
differs, however, in the algorithm and learning rule used. Guerguiev, Lillicrap,
and Richards (2017) use local gradient descent during a "target" phase, which is
separate from a forward propagation phase, akin to forward/backward propagation
stages in conventional deep learning. In contrast, we use a modified Hebbian rule,
and in our model "forward" computation and learning happen at the same time;
time multiplexing, whose origin in the brain is unclear, is not required. Our setting
would be more akin to the one in Guerguiev, Lillicrap, and Richards (2017) if an
episode of PI in darkness would be required before an episode of learning in light
conditions, which does not seem in line with the way animals naturally learn.

Previous theoretical work showed that head direction cells, head rotation cells, and
grid cells emerge in neural networks trained for PI (Banino et al., 2018; Cueva and
Wei, 2018; Cueva et al., 2020). These networks were trained with backpropagation,
therefore achieving gain-1 PI was not their primary focus; rather, this work elegantly
demonstrated that the aforementioned cell types are efficient representations for
spatial navigation that could be learned from experience.

2.10 Testable predictions
We devote this section to discussing predictions of our model, and we suggest future
experiments in flies and, potentially, other animal models. An obvious prediction
of our model is that synaptic plasticity is critical for the development of the PI
network for heading, and the lack of a supervisory allothetic sensory input (e.g.,
visual) during development should disrupt the formation of the PI system. Previous
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experimental work showed that head direction cells in rat pups displayed mature
properties already in their first exploration of the environment outside their nest
(Langston et al., 2010), which may seem to contradict our assumption that the PI
circuit wires during development; however, directional selectivity of HD cells in
the absence of allothetic inputs and PI performance were not tested in this study.
In addition, it has been shown that visually impaired flies were not able to learn to
accurately estimate the size of their body. This type of learning also requires visual
inputs and, upon consolidation, remains stable (Krause et al., 2019).

We also predict that HD neurons have a compartmental structure where idiothetic
inputs are separated from allothetic sensory inputs, which initiate action potentials
more readily due to being electrotonically closer to the axon initial segment. While
we already demonstrate the separation of allothetic and idiothetic inputs to E-PG
neurons in the fly EB (fig. 2.1E, fig. B.1), our prediction can only be tested with
electrophysiological experiments. Another model prediction that can be tested only
with electrophysiology is that APs backpropagate from the axon-proximal compart-
ment (at least passively but with little attenuation) to the axon-distal compartment.
Then spikes could be separated from postsynaptic potentials locally at the synapse
by cellular mechanisms sensitive to the spectral density of the voltage.

Finally, similarly to place cell studies in rodents (Jayakumar et al., 2019), we
predict that during development the PI system can adapt to experimenter-defined
gain manipulations, and that it can do so faster than the time required for the system
to develop from scratch. Therefore, a suggestion from this study would be to repeat
in young flies the adaptation experiments by Seelig and Jayaraman (2015).

2.11 Outlook
The present study adds to the growing literature of potential computational abilities
of compartmentalized neurons (Poirazi, Brannon, and Mel, 2003; Gidon et al., 2020;
Payeur et al., 2021). The associative HD neuron used in this study is a coincidence
detector, which serves to associate external and internal inputs arriving at differ-
ent compartments of the cell. Coupled with memory-specific gating of internally
generated inputs, coincidence detection has been suggested to be the fundamental
mechanism that allows the mammalian cortex to form and update internal knowledge
about external contingencies (Doron et al., 2020; Shin, Doron, and Larkum, 2021).
This structured form of learning does not require engineered "hints" during training,
and it might be the reason why neural circuits evolved to be so efficient at reasoning
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about the world, with the mammalian cortex being the pinnacle of this achievement.
Here we demonstrate that learning at the cellular level can predict external inputs
(visual information) by associating firing activity with internally generated signals
(velocity inputs) during training. This effect is due to the anti-Hebbian component
of the learning rule in eq. (2.12), where the product of postsynaptic axon-distal and
presynaptic activity comes with a negative sign. Specifically, it has previously been
demonstrated that anti-Hebbian synaptic plasticity can stabilize persistent activity
(Xie and Seung, 2000) and perform predictive coding (Bell et al., 1997; Hahnloser,
2003). At the population level, this provides a powerful mechanism to internally
produce activity patterns that are identical to the ones induced from an external
stimulus. This mechanism can serve as a way to anticipate external events or, in our
case, as a way of "filling in" missing information in the absence of external inputs.

Local, Hebb-like learning rules are considered a weak form of learning, due to their
inability to utilize error information in a sophisticated manner. Despite that, we
show that local associative learning can be particularly successful in learning appro-
priate fine-tuned synaptic connectivity, when operating within a cell structured for
coincidence detection. Therefore, in learning and reasoning about the environment,
our study highlights the importance of inductive biases with developmental origin
(e.g., allothetic and idiothetic inputs arrive in different compartments of associative
neurons) (Lake et al., 2016).

In conclusion, Chapter I addresses the age-old question of how to develop a CAN
that performs accurate, gain-1 PI in the absence of external sensory cues. We show
that this feat can be achieved in a network model of the HD system by means of a
biologically plausible learning rule at the cellular level. Even though our network
architecture is tailored to the one of the fly CX, the learning setup where idiothetic
and allothetic cues are associated at the cellular level is general and can be applied
to other PI circuits. Of particular interest is the rodent HD system: despite the
lack of evidence for a topographically-organized recurrent HD network in rodents,
a one-dimensional HD manifold was extracted in an unsupervised way (Chaudhuri
et al., 2019). Therefore, our work lays the path to study the development of ring-like
neural manifolds in mammals. Finally, it has been shown that grid cells in mammals
form a continuous attractor manifold with toroidal topology (Gardner et al., 2022).
It would be interesting to see if a similar mechanism underlies the emergence of
PI in place and grid cells. Our model can be extended to higher dimensional CAN
manifolds and provides a framework to interrogate this assumption.
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C h a p t e r 3

DISENTANGLING REPRESENTATIONS THROUGH
MULTI-TASK LEARNING

Vafidis, Pantelis, Aman Bhargava, and Antonio Rangel (2025). “Disentangling rep-
resentations through multi-task learning.” In: The Thirteenth International Con-
ference on Learning Representations. url: https://openreview.net/forum?
id=yVGGtsOgc7.

While Chapters I and II explored biologically plausible learning mechanisms based
on compartmentalized neurons and local learning rules, this chapter takes a dif-
ferent approach focusing on representation learning without specific claims about
mechanism. Here, we show that neural networks develop generalizable, disentan-
gled representations when trained to perform multiple related tasks in parallel.
Although we employ backpropagation through time (BPTT) rather than biologically
plausible learning rules, our work addresses fundamental principles that may un-
derlie generalization in both biological and artificial systems: the emergence of
robust representations through competence at multiple interrelated tasks.

Remarkably, we find that networks trained on noisy evidence accumulation tasks
develop multi-dimensional continuous attractor dynamics similar to those explored
in Chapter II. We also provide theoretical guarantees that any system that optimally
solves multiple such tasks must encode a disentangled representation of the under-
lying latent variables in its hidden state. Our experiments with recurrent networks
confirm these predictions, demonstrating zero-shot generalization to unseen regions
of the input space. These findings suggest that parallel processing of diverse tasks
may be a general principle through which both biological and artificial agents de-
velop generalizable world models, irrespective of the learning mechanism that leads
to competence at such tasks. Finally, we posit that ideal substrate for such parallel
processing in the brain is the cortex, with its massively parallel, largely invariant
structure.

https://openreview.net/forum?id=yVGGtsOgc7
https://openreview.net/forum?id=yVGGtsOgc7


97

Chapter Abstract

Intelligent perception and interaction with the world hinges on internal representa-
tions that capture its underlying structure (“disentangled” or “abstract” representa-
tions). Disentangled representations serve as world models, isolating latent factors
of variation in the world along approximately orthogonal directions, thus facilitat-
ing feature-based generalization. We provide experimental and theoretical results
guaranteeing the emergence of disentangled representations in agents that optimally
solve multi-task evidence accumulation classification tasks, canonical in the neu-
roscience literature. The key conceptual finding is that, by producing accurate
multi-task classification estimates, a system implicitly represents a set of coordi-
nates specifying a disentangled representation of the underlying latent state of the
data it receives. The theory provides conditions for the emergence of these represen-
tations in terms of noise, number of tasks, and evidence accumulation time, when
the classification boundaries are affine in the latent space. Surprisingly, the theory
also produces closed-form expressions for extracting the disentangled representation
from the model’s latent state Z(𝑡). We experimentally validate these predictions in
RNNs trained on multi-task classification, which learn disentangled representations
in the form of continuous attractors, leading to zero-shot out-of-distribution (OOD)
generalization in predicting latent factors. We demonstrate the robustness of our
framework across autoregressive architectures, decision boundary geometries and
in tasks requiring classification confidence estimation. We find that transformers
are particularly suited for disentangling representations, which might explain their
unique world understanding abilities. Overall, our framework establishes a formal
link between competence at multiple tasks and the formation of disentangled, inter-
pretable world models in both biological and artificial systems, and helps explain
why ANNs often arrive at human-interpretable concepts, and how they both may
acquire exceptional zero-shot generalization capabilities.
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3.1 Introduction
The ability to construct representations that capture the underlying structure of the
world from data, is a hallmark of intelligence. Humans and animals leverage their
experiences to construct such faithful representations of the world ("world models,"
"cognitive maps"), resulting in a near-effortless ability to generalize to new settings
(Lake, Salakhutdinov, and Tenenbaum, 2015; Lake et al., 2016). Modern foundation
models also display emergent out-of-distribution (OOD) generalization abilities, in
the form of zero- or few-shot learning (Brown et al., 2020; Pham et al., 2021; Jia et
al., 2021; Oquab et al., 2023); however whether artificial systems learn world models
remains unclear. Understanding the conditions under which that occurs is bound
to lead to better generalizable systems, and explain why artificial systems often
converge to human interpretable, aligned representations of the world (Templeton
et al., 2024).

A promising direction towards understanding the construction of world models is
abstract, or disentangled representations (Higgins et al., 2017; Kim and Mnih, 2018;
Johnston and Fusi, 2023). These two concepts are interrelated yet somewhat distinct.
Since there exists some ambivalence about their meaning in the literature, we would
like to strictly define them here. We will be using definitions adapted from Ostojic
and Fusi (2024):

• An abstract representation of latent factors 𝑥1, . . . , 𝑥𝑛 represents each 𝑥𝑖 lin-
early and approximately mutually orthogonally. Thus, abstractness ensures a
simple linear map can decode each 𝑥𝑖 regardless of variation in 𝑥 𝑗≠𝑖.

• Disentangled representations of 𝑥1, . . . , 𝑥𝑛 encode each 𝑥𝑖 orthogonally, with-
out the necessity of linearity.

Both abstact and disentangled representations preserve the latent structure present
in the world in their geometry by isolating factors of variation in the data, which
facilitates downstream generalization. When a representation is abstract, a linear
decoder (i.e., downstream neuron) trained to discriminate between two categories
can readily generalize to stimuli not observed in training, due to the structure of
the representation. Furthermore, the more disentangled the representation is, the
lower the interference from other variables and hence the better the performance.
This corresponds to decomposing a novel stimulus into its familiar features, and
performing feature-based generalization. For instance, imagine you are at a grocery



99

store, deciding whether a fruit is ripe or not. If the brain’s internal representation
of food attributes (ripeness, caloric content, etc.) is disentangled, then learning to
perform this task for bananas would lead to zero-shot generalization to other fruit
(e.g., mangos, fig. 3.1a). Crucially, the visual representation of a mango is high-
dimensional, non-linear and noisy, making it particularly challenging to extract a
low dimensional latent like "ripeness."

Several brain areas including the amygdala, prefrontal cortex, and hippocampus
encode variables of interest in an abstract format (Saez et al., 2015; Bernardi et al.,
2020; Boyle et al., 2022; Nogueira et al., 2023; Courellis et al., 2024). This raises the
question of under which conditions do such representations emerge in biological and
artificial agents alike. Previous work showed that feedforward neural networks de-
velop abstract representations when trained to multitask (Johnston and Fusi, 2023).
However, real-world decisions typically rely on imperfect, noisy information, evolv-
ing dynamically over time (Britten et al., 1992; Krajbich, Armel, and Rangel, 2010).
To account for this important feature of the world, we train autoregressive models
(RNNs, LSTMs, transformers) to multitask canonical neuroscience tasks involving
the accumulation of evidence over noisy streams. The tasks tie closely to Bayesian
filtering theory, and should be solved by any agent that deals with a noisy world.

Contributions. Our main contributions are the following:

• We prove that any optimal multi-task classifier is guaranteed to learn an ab-
stract representation of the ground truth contained in the noisy measurements
in its latent state, if the classification boundary normal vectors span the input
space (Appendix C.6). Furthermore, the representations are guaranteed to be
disentangled as the number of tasks 𝑁task greatly exceeds the input dimen-
sionality 𝐷. Intriguingly, noise in the observations is necessary to guarantee
the latent state would compute a disentangled representation of the ground
truth.

• We confirm that RNNs trained to multitask develop abstract representations
that zero-shot generalize OOD, when 𝑁task ≥ 𝐷, and orthogonal, disentan-
gled representations for greater 𝑁task. The computational substrate of these
representations is a 2D continuous attractor (Amari, 1977) storing a ground
truth estimate in a product space of the latent factors. In addition, the repre-
sentations are sparse and mixed, attributes of biological neural networks.
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• We reproduce these findings in GPT-2 transformers, which generalize better
due to them learning disentangled representations already from 𝑁task ≥ 𝐷,
confirming their appropriateness for constructing disentangled world models.

• We demonstrate that our setting is robust to a number of manipulations,
including correlated inputs, interleaved learning of tasks and free reaction-
time tasks canonical in the cognitive neuroscience literature (Britten et al.,
1992; Krajbich, Armel, and Rangel, 2010).

• Finally, we discuss implications for generalizable representation learning in
biological and artificial systems, and demonstrate the strong advantage of
multi-task learning over previously proposed mechanisms of representation
learning in the brain (Mante et al., 2013).

Although framed in the context of canonical neuroscience tasks, our results are gen-
eral; they apply to any system aggregating noisy evidence. While our experiments
focus on supervised multi-task learning for tractability, the theory only assumes
competence at multiple tasks, thus enabling alternative methods of acquiring such
competence, such as self-supervised or unsupervised pre-training.

Related work
Disentanglement has long been recognized as a promising strategy for generaliza-
tion (Bengio, Courville, and Vincent, 2012) (although note Locatello et al. (2019)
and Montero et al. (2020) for a contrarian view), yet most classic work focuses on
feedforward architectures (Higgins et al., 2017; Kim and Mnih, 2018; Whittington
et al., 2022; Maziarka et al., 2023). In autoregressive models, Hsu, Zhang, and
Glass (2017) and Li and Mandt (2018) showed that variational LSTMs disentagle
representations of underlying factors in sequential data allowing style transfer; how-
ever the underlying representational geometry was not characterised. Other work
focuses on fitting RNNs to behavioral data while enforcing disentanglement for in-
terpretability (Dezfouli et al., 2019; Miller et al., 2023). Work on context-dependent
decision making has shown that RNNs re-purpose learned representations in a com-
positional manner when trained in related tasks (Yang et al., 2019; Driscoll, Shenoy,
and Sussillo, 2022); however, the abstractness of the resulting representations was
not established. Finally John et al. (2018) show that multitasking results in disen-
tanglement, however unlike us they directly enforce latent factor separation through
their adversarial optimization objectives. Our approach is most closely related to
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weakly supervised disentanglement, without comparing across samples (Shu et al.,
2019).

Our work relates to previous work on linear identifiability. Geoffrey Roeder (2021)
show that representations of models trained on the same distribution must be linear
transformations of each other; yet we go beyond their results to show that abstract
representations are guaranteed to emerge under moderate conditions, irrespec-
tively of the dimensionality of the input and model architecture. Lachapelle et al.
(2023) proved that disentangled representations emerge in feedforward architectures
from multitask learning in sparse tasks when a sparsity regularization constraint is
placed on the predictors; we place no such constraints and still uncover disentangled
representations.

Previous neuroscience-inspired work showed that multitasking feedforward net-
works learn abstract representations, as quantified by regression generalization
(Johnston and Fusi, 2023). We expand upon these findings in several ways. First, we
extend the framework to autoregressive architectures (RNNs, LSTMs, transform-
ers) that can update their representations as further information arrives. Second,
we prove theorems that guarantee the emergence of abstract representations in any
optimal multitask classifier if the number of tasks exceeds the input dimensionality
𝐷, and showcase disentanglement in our trained networks. Third, we rigorously
analyze the role of noise in forming disentangled representations, extending the
noise-free regime studied in Johnston and Fusi (2023). Finally, we explore a range
of values for 𝐷, providing experimental validation of our theory.

3.2 Problem formulation
Multi-Task Classification with Evidence-Aggregation: We study the evidence
accumulation multi-task classification paradigm shown in Figure 3.1b. An agent
with latent state Z(𝑡) receives noisy, non-linearly mapped observations { 𝑓

(
X(𝑡)

)
}𝑇
𝑡=1

where each X(𝑡) = x∗ + 𝜎N(0, 𝐼𝐷) is a noisy measurement of unknown ground
truth vector x∗ ∈ R𝐷 (𝑥∗

𝑖
∼ Uniform(−0.5, 0.5)), N being Gaussian noise. The noisy

measurements are transformed by an injective observation map 𝑓 , which can be non-
linear and high dimensional, representing the wide range of sensory transformations
found in real-world scenarios. The agent is tasked with simultaneously solving
𝑁task classification problems by accumulating information over time (a canonical
neuroscience task (Britten et al., 1992)), each defined by a random linear decision



102

Figure 3.1: Disentangled representations and a framework to learn them. (a)
A disentangled representation directly lends itself to OOD generalization: a down-
stream linear decoder that can differentiate ripe from unripe bananas can readily
generalize to mangos, even though it has never been trained on mangos. (b)
Overview of our multi-task classification framework. A ground truth x∗ is sam-
pled and Gaussian noise is added to arrive at observations {X(1), ...,X(𝑡)}. These
observations are processed by the filter-based model illustrated graphically in Fig-
ure C.6, maintaining a latent state Z(𝑡). The latent state Z(𝑡) is then used to produce
classification outputs 𝑌1(𝑡), 𝑌2(𝑡). Theorem C.6.6 proves that Z(𝑡) must encode the
optimal estimator of x∗ given the noisy observations, 𝜇(𝑡).

boundary1 in the ground truth space R𝐷 , i.e.,

𝑦𝑖 (x∗) =


1 if c⊤
𝑖

x∗ > 𝑏𝑖
0 otherwise

(3.1)

where y(x∗) ∈ {0, 1}𝑁task represents the 𝑁task classifications of x∗, {(c𝑖, 𝑏𝑖)}𝑁task
𝑖=1 are

the classification boundary normal vectors and offsets, and let Ŷ(𝑡) = 𝑔(Z(𝑡)) ∈
[0, 1]𝑁task represent the agent’s predicted likelihood of 𝑦𝑖 (x∗) = 1 over each of the
binary classifications 𝑖 at time 𝑡. The classification lines reflect criteria based on
which decisions will be made. Imagine for example that 𝑥1 corresponds to food and
𝑥2 to water reward. Depending on the agent’s internal state, one takes precedence
over the other, and the degree of preference is reflected in the slope of the line.

Criterion for Disentangled Representation Learning: We investigate how
solving the multi-task classification problem (Figure 3.1b) leads to agents learning
disentangled representations of the latent ground truth x∗ in its internal state Z(𝑡).
Specifically, we ask whether there exists a linear-affine transformation (A, b) such

1Due to the observation map 𝑓 , the tasks may appear non-linear from the perspective of the
multi-task classification agent.
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that x∗ = AZ(𝑡) + b. Such a mapping would imply Z(𝑡) linearly represents x∗. If
the rows of A are approximately orthogonal, the representation is disentangled.

3.3 Theoretical results
Here we provide conditions and guarantees for the emergence of disentangled rep-
resentations in optimal multi-task classifiers with latent state Z(𝑡) in the paradigm
described in Section 3.2 and Figure 3.1. By “optimal multi-task classifier,” we
refer to any agent or system whose outputs Ŷ(𝑡) correspond to the correct posterior
classification probabilities given the noisy, non-linearly transformed observations;
that is, for each task 𝑖 = 1, . . . , 𝑁task

𝑌𝑖 (𝑡) = Pr (𝑦𝑖 (x∗) = 1 | 𝑓 (X(1)), . . . , 𝑓 (X(𝑡))) . (3.2)

The notion of optimality allows us to make precise statements about the informa-
tional content of the agent’s internal state since Ŷ(𝑡) = 𝑔(Z(𝑡)). Let C ∈ R𝑁task×𝐷

be a matrix where each row is a decision boundary normal vector. Then

Theorem 3.3.1 (Disentangled Representation Theorem). If C ∈ R𝑁task×𝐷 is a full-
rank matrix and 𝑁task ≥ 𝐷 and noise 𝜎 > 0, then

1. Any optimal estimator of y(x∗) must encode a finite-sample, maximum like-
lihood estimate 𝜇(𝑡) of the ground truth evidence variable x∗ in its latent state
Z(𝑡).

2. If the activation function is sigmoid-like, 𝜇(𝑡) will be linearly decodable from
Z(𝑡), thus implying that Z(𝑡) contains an abstract representation of 𝜇(𝑡)
(Ostojic and Fusi, 2024).

3. The representation is guaranteed to be disentangled (orthogonal) as 𝑁task ≫
𝐷 for random decision boundaries.

Specifically, 𝜇(𝑡) is the maximum likelihood estimate (MLE) of x∗ given observations
𝑓 (X(1)), . . . , 𝑓 (X(𝑡)). A closed-form expression for extracting 𝜇(𝑡) from Z(𝑡) if
𝑁task ≥ 𝐷 is:

𝜇(𝑡) = (C⊤C)−1C⊤
(
𝜎√
𝑡
Φ−1 (𝑔(Z(𝑡))

)
+ b

)
(3.3)

where Φ is the CDF of the normal distribution, 𝜎 is the noise magnitude and 𝑡 the
trial duration. Furthermore, if the activation function 𝑔 is of the sigmoid family
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of functions (tanh, sigmoid), then the term Φ−1 (𝑔(·)) approximately cancels out,
leading to:

𝜇(𝑡) ≈
𝑎𝑔 𝜎√
𝑡
(C⊤C)−1C⊤Z(𝑡)︸                      ︷︷                      ︸

Linear Function of Z(𝑡)

+ (C⊤C)−1C⊤b︸           ︷︷           ︸
Affine Term

(3.4)

where we have approximated 𝑎tanh = 2
√

3
𝜋

for 𝑔 = tanh and 𝑎𝜎 = 0.5886 for
𝑔 = sigmoid. For Gaussian IID noise, 𝜇(𝑡) is the sample mean of {X(𝑡)}𝑇

𝑡=1, i.e.,
with non-linearity 𝑓 removed.

Proof. Point 1 and Equation 3.3 are proven in Appendix C.6 in Theorem C.6.6.
Point 2 and Equation 3.4 are proven in Corollary C.6.8 for tanh and Corollary C.6.9
for sigmoid. Point 3 is proven in Corollary C.6.10.

The key conceptual insight in the proof of Theorem 3.3.1 is that each of the multi-
task classification probability estimates 𝑌𝑖 (𝑡) represents an estimated projection
distance between the MLE 𝜇(𝑡) and the given classification boundary (c𝑖, 𝑏𝑖). Once
distances to classification boundaries are recovered, 𝜇(𝑡) can be inferred if the 𝑁task

classification boundaries span the 𝐷-dimensional space of x∗.

Robustness of results While theorem 3.3.1 applies to optimal multi-task clas-
sifiers, Corollary C.6.7 shows that a sub-optimal multi-classifier with zero-mean
independent errors will represent �̃�(𝑡) in state Z(𝑡) (Equation 3.3) with resid-
ual errors w.r.t. optimal 𝜇(𝑡) expected to decrease at a rate of approximately
O(1/

√
𝑁𝑡𝑎𝑠𝑘 ). See Appendix C.6, C.6.9 for extensions of the theory to anisotropic

and non-Gaussian noise distributions (Elliptical, t-distribution, Laplace distribu-
tions). The linear approximation for decoding 𝜇(𝑡) from Z(𝑡) in Equation 3.4 is
enabled by the remarkable similarity between sigmoid functions and the Gaussian
CDF Φ (Corollary C.6.8). The sigmoid-like structure of Φ suggests many similar
activations 𝑔 (e.g., softmax) would exhibit approximate linear decodability.

More general decision boundaries Decision boundaries 𝑦𝑖 on latents x∗ may
appear non-linear in the image of observation map 𝑓 , but theorem 3.3.1 applies
to linear boundaries 𝑦𝑖 on latent space (Eq. 3.1). Our results extend naturally to
smooth manifold decision boundaries through local linearization when the manifold
𝑦𝑖’s reach 𝜏𝑖2 is much larger than the noise scale 𝜎. Intriguingly, classification

2“Reach”: maximum distance at which each point on a manifold has a unique closest point on
the manifold
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boundary distances are only guaranteed to be recoverable when there is non-zero
noise 𝜎 > 0 such that 𝑌𝑖 (𝑡) does not saturate to 1 or 0, and thus still carries
useful decision boundary distance information (see Lemma C.6.3) 3. An intriguing
open question is what conditions on manifolds {𝑦𝑖}𝑁task

𝑖=1 are necessary and sufficient
to preserve the decodability of 𝜇(𝑡). We leave a complete characterization of
representation learning with multiple manifold decision boundaries for future work.

3.4 Methods
Network architecture
We trained autoregressive models (RNNs, LSTMs, GPT-2 transformers) with latent
state z(𝑡), to output multi-task classifications y(x∗) ∈ {0, 1}𝑁task given noisy and non-
linearly mapped inputs 𝑓 (X(1)), . . . , 𝑓 (X(𝑡)) (fig. 3.2). We subsequently trained
linear probes A on z(𝑡) to estimate x∗, denoted �̂�(𝑡) = A z(𝑡). We here focus
on leaky RNNs, representing a brain area making decisions; for more details on
GPT-2 experiments see Section 3.4. The networks contain 𝑁neu neurons, and their
activations z(𝑡) obey:

𝜏¤z = −z + [ Wrec z + Win xin + b ]+ (3.5)

where Wrec is the recurrent weight matrix, Win is the matrix carrying the input
vector xin, b is a unit-specific bias vector, 𝜏 is the neuronal time constant, [.]+
is the ReLU applied element-wise and time dependencies have been dropped for
brevity. We discretize Equation 3.5 using the forward Euler method for 𝑇 = 20
timesteps of duration Δ𝑡 = 𝜏 = 100 ms, which we find to be stable. The RNN’s
output ŷ(𝑡) ∈ R𝑁task is given by ŷ(𝑡) = 𝑔(Wout z(𝑡)), where Wout is a readout matrix
and 𝑔 = sigmoid the output activation function applied elementwise. The encoder
𝑓 is a 3-layer MLP with hidden dimensions 100, 100, 40 and ReLU non-linearities,
and it is randomly initialized and kept fixed during training as it represents a static
mapping from latents to observations (observation map). An additional fixation
input is directly passed to the hidden layer. It is 1 during the trial and turns 0 at the
end of the trial, indicating that the network should report its decisions (fig. 3.2b).
The fixation input is concatenated with 𝑓 (X(𝑡)) to form xin, and it precludes the
RNN from learning a specific timing in its response. We refer to this kind of tasks
as fixed reaction-time (RT). The network is trained with a cross-entropy loss and

3In fact, Equations 3.3 and 3.4 do not hold for 𝜎 → 0, as they were derived by means of Bayesian
estimation which assumes the presence of noise.
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Figure 3.2: Data generation and architecture. (a) For each trial, we sample a
ground truth vector x∗, and add IID noise to arrive at X(𝑡). The task is to report
whether x∗ lies above (1) or below (0) each of the classification lines (color matches
corresponding boolean variable in 𝑦), given the noisy and non-linearly transformed
samples 𝑓 (X(1)), . . . , 𝑓 (X(𝑡)). (b) Models (RNN depicted) are trained to report
the outcome of all the binary classifications in a at the end of the trial (indicated by
the fixation input turning 0).

Adam default settings, except learning rate 𝜂0 = 10−3, to produce the target outputs
y(x∗). By minimizing loss across trials, the network is incentivized to estimate
Ŷ(𝑡) = Pr{𝑦𝑖 (x∗) = 1}. Table 3.1 summarizes all hyperparameters and their values,
which are shared across all architectures.

Quantification of generalization performance
To assess OOD generalization performance, we keep the trained networks fixed and
train a linear decoder A to predict the ground truth x∗ from network activity at
the end of the trial. We train the decoder in 3 out of 4 quadrants and test OOD
in the remaining quadrant, repeating this process 5 times for each quadrant, which
results in a total of 20 OOD 𝑟2 values for each network. To account for randomness
in initialization and sythetic generation of datasets, we train 5 networks for each
combination of number of tasks 𝑁task and dimensionality 𝐷, resulting in a total
of 100 OOD 𝑟2 values for each pair of (𝑁task, 𝐷). We report the 25, 50 (median)
and 75 percentiles of those values in fig. 3.3a,b and throughout the text. For ID
generalization performance, we train on all quadrants and test in one quadrant at a
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Table 3.1: Hyperparameter values for RNN training

Parameter Value Explanation

Δ𝑡 100 ms Euler integration step size
𝜏 100 ms Neuronal time constant
𝑁neu 64 Number of hidden neurons
𝜎 0.2 Input noise standard deviation
𝑇 20 Trial duration (in Δ𝑡s)
𝜂0 0.001/0.003 Adam learning rate fixed/free RT
𝐵 16 Batch size
𝑁batch 105 Number of training batches
𝐷 2 Dimensionality of latent space
𝑁layer 1 RNN/LSTM number of layers

Hyperparameter values for RNN training. These values apply to all simulations,
unless otherwise stated. 𝜏 = 100ms was chosen as a conservative estimate of mem-
brane time constant. 𝜎 was varied in some simulations (e.g., fig. 3.7c). We found
that free RT tasks benefited from a higher learning rate. Other hyperparameters
worked out of the box.

time. For input dimensionality 𝐷 > 2, we keep the same logic by choosing every
4-th quadrant to be sampled only in testing, repeating the process for every mod 4
group of quadrants.

Estimation of angles between latent factors
To estimate the angles between latent factors in the representation, we obtain the
normal vectors of the decoders A for each of the latents, and compute pairwise angles
for all of them. To account for variability in the decoder fits, we repeat the decoder
fit 5 times for each out-of-distribution region (see Section 3.4 for details). We also
repeat this process across 5 trained networks for each combination of (𝑁task, 𝐷),
and report the 25, 50 (median) and 75 percentiles of all values for each (𝑁task, 𝐷)
combination in fig. 3.3c and fig. 3.8.

Derivation of theoretical 𝑟2 for optimal multi-task classifiers
Here we derive the theoretical 𝑟2 for the estimation of ground truth x∗ from noisy
data for a discrete time optimal multi-task classifier at time 𝑡. 𝑟2 is defined as:

𝑟2 = 1 − MSE(x∗, 𝜇)
Var(x∗) (3.6)
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where 𝜇, the mean of X(1), . . . ,X(𝑡), is the prediction of the multi-task classifier
(see Appendix C.6). The optimal estimator of x∗ given observations X(1), . . . ,X(𝑡)
is denoted X̂(𝑡) ∼ N (𝜇(𝑡), 𝑡−1𝜎2𝐼𝐷) where 𝜎 is the noise strength. Note that
𝜇(𝑡) → x∗ as 𝑡 → ∞ by the central limit theorem, and 𝜇(𝑡) is the optimal estimator
of x∗ given Gaussian-noised observations. Since the dimensions in both noise and
ground truth are independent, we can focus on one dimension at a time, i.e.:

𝑟2 = 1−
MSE(𝑥∗

𝑖
, 𝜇𝑖 (𝑡))

Var(𝑥∗
𝑖
) = 1−

E[(𝑥∗𝑖 − 𝑥∗𝑖 + N(0, 𝑡−1𝜎2))2]
𝑉𝑎𝑟 (𝑥∗

𝑖
) = 1− 𝜎2

𝑡 𝑉𝑎𝑟 (𝑥∗
𝑖
) . (3.7)

Remembering that 𝑥∗
𝑖
∼ Uniform(−0.5, 0.5) it follows that 𝑉𝑎𝑟 (𝑥∗

𝑖
) = 2

30.53, and
replacing 𝜎 = 0.2 from table 2.1 we arrive to 𝑟2 = 1 − 0.48

𝑇
for given trial duration

𝑇 which we compare to RNN OOD generalization performance in fig. 3.7a.

GPT-2 experiments
We train GPT-2 causal transformers with 𝑑model = 𝑁neu = 64, 𝑁layer = 1, 𝑁head = 8
in the multi-task classification task of the main text. The networks receive con-
tinuous, noisy and non-linearly mapped inputs 𝑓 (X(1)), . . . , 𝑓 (X(𝑡)), and should
output multi-task classifications y(x∗) ∈ {0, 1}𝑁task . The output of the network is
Ŷ(𝑡) := 𝑔(Z(𝑡)), where Z(𝑡) is the last embedding of the sequence in the last layer
and 𝑔 = sigmoid. Since the input is continuous, we omit the tokenization and
embedding steps, and project the input directly to the hidden state with a linear map.
Furthermore, since the inputs are IID, we do not include positional encodings. The
networks are trained with binary cross-entropy loss for 𝑁batch = 2 ∗ 104 batches,
while the rest of the parameters are identical to the fixed RT networks of the main
text (table 2.1).

Finding fixed points and linearization of dynamics
To find approximate fixed points of RNN dynamics after training, we follow a
standard procedure outlined in Sussillo and Barak (2013). Specifically, we keep
network weights fixed, provide no inputs to the network, and instead optimize
over hidden activity. Specifically, we penalize any changes in the hidden activity,
motivating the network to find stable states of the dynamics in the absence of input,
i.e., attractors of the dynamics. This process finds all states of accumulated evidence
that can be stored in this network as short-term memory. Network dynamics could
then leverage these states to maintain and update the internal representation of the
ground truth x∗ on a single trial level, and drive downstream decisions.
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Then for every approximate fixed point z 𝑓 , we linearize RNN dynamics around it
and estimate the eigenmodes which describe how the system behaves in a small
region 𝛿z around z 𝑓 . Specifically, following Sussillo and Barak (2013) and Mante
et al. (2013) we take the difference system 𝛿z(𝑡 + 𝑡0) = z(𝑡 + 𝑡0) − z(𝑡0) and linearize
it, i.e.,

¤𝛿z = F′(z 𝑓 ) 𝛿z (3.8)

where ¤z = F(z) is the function describing the RNN dynamics and M ≡ F′(z 𝑓 ) is
its Jacobian at z 𝑓 . To estimate F′(z 𝑓 ), we let network dynamics run in the absence
of inputs for one time step Δ𝑡 starting from z 𝑓 , i.e., 𝛿z(Δ𝑡) = z(Δ𝑡) − z 𝑓 , and
autodifferentiate 𝛿z(Δ𝑡). We then perform eigendecomposition of M and report
the eigenvalues around each approximate fixed point. Eigenvalues near 0 indicate
that the difference system 𝛿z(𝑡) = z(𝑡) − z 𝑓 changes slowly over time, i.e., they
correspond to "slow" dimensions in network dynamics which can integrate inputs
and maintain them over time (continuous attractors) (Amari, 1977; Mante et al.,
2013).

3.5 Multi-task learning leads to disentangled representations
We train RNNs to do simultaneous classifications for 𝑁task linear partitions of the
latent space for 𝐷 = 2 (fig. 3.2a, 6 partitions shown). To quantify the disentan-
glement of the representations after learning, we evaluate regression generalization
by training a linear decoder to predict the ground truth x∗ while network weights
are frozen. We perform out-of-distribution 4-fold crossvalidation, i.e., train the
decoder on 3 out of 4 quadrants and test in the remaining quadrant (Section 3.4 for
details). We also evaluate in-distribution (ID) performance by training the decoder
in all quadrants. An example of train and test losses is shown in fig. 3.5f. We find
that the network’s OOD and ID generalization performance are excellent (median
𝑟2 = 0.96, 0.97, respectively, across 5 example networks); therefore the network has
learned an abstract representation that zero-shot generalizes OOD. In addition, ID
performance increases with the number of tasks 𝑁task, and the OOD generalization
gap decreases (fig. 3.3a). Performance is identical when choosing a more nonlinear,
power-law nonlinearity for the encoder (fig. 3.4). Therefore we conclude that multi-
task learning leads to abstract representations in the RNN’s hidden layer, when tasks
span the latent space.
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Figure 3.3: Learning disentangled representations. (a) ID and OOD general-
ization performance for networks trained in different number of tasks 𝑁task. We
report the 25, 50 and 75 percentile of 𝑟2 for each network size (see Section 3.4). ID
and OOD performance increase with 𝑁task, and the generalization gap decreases,
indicating that the networks have learned abstract representations. (b) The results
hold for other autoregressive architectures, including LSTMs and GPT-2 transform-
ers. (c) Angles between latent factor decoders (see Section 3.4 for how they were
estimated). The angles approach 90 degrees as 𝑁task ≫ 𝐷 for RNNs, but already
fror 𝑁task ≥ 𝐷 for transformers. Remaining errors around 90 degrees are attributed
to variability in the linear decoder fits. (d) Top 3 PCs of RNN activity (𝑁task = 24,
𝐷 = 2), capturing 85% of variance (see inset). Each line is a trial, while color
saturation indicates time. All trials start from the center and move outwards, to-
wards the location of x∗ in state space. We color the last timepoint in each trial
(squares) according to the quadrant this trial was drawn from. Red x’s correspond
to attractors (see Section 3.4). Here we remove input noise so that trajectories can
be visualized easier. The network learns a two-dimensional continuous attractor
that provides a disentangled representation of the 2D state space. (e) Spectral plot
resulting from linearizing RNN dynamics around every fixed point (Section 3.4).
First two eigenvalues of the difference system are near 0, while the rest decay much
faster, indicating marginal stability across two dimensions for every fixed point, a
signature of a 2D continuous attractor.
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Figure 3.4: OOD generalization is robust to choice of encoder nonlinearity. We
find that replacing ReLUs in the encoder with a quadratic nonlinearity results in
virtually identical OOD generalization performance compared to fig. 3.3a. There-
fore we conclude that our setting is robust to the choice of encoder nonlinearity,
even when the nonlinearity is not injective, going beyond our theoretical proofs
(Appendix C.6).

Since x∗ can be decoded by this representation in unseen (by the decoder) parts of the
state space, it follows that the representation can be used to solve any task involving
the same latent variables, without requiring further pretraining. In other words, to
solve any other task we do not need to deal with the denoising and unmixing of
the latent factors 𝑥1, 𝑥2; we would just need to learn the (potentially non-linear)
mapping from 𝑥1, 𝑥2 to task output. Furthermore, the representation scales linearly
with input dimensionality 𝐷 (see fig. 3.7b). This marks a significant improvement
from previously proposed models for representation learning in the brain where one
task is executed at a time (Mante et al., 2013; Yang et al., 2019), which scale linearly
with 𝑁task, and exponentially with 𝐷 (see Appendix C.1 for details). Crucially, these
findings are architecture-agnostic: they hold for non-leaky ("vanilla") RNNs, which
outperform leaky ones for small 𝑁task, LSTMs which perform the best, and GPT-
2 transformers (details in Section 3.4) which have excellent performance already
from 𝑁task = 2 (fig. 3.3b). Note that state-space models have superior asymptotic
performance, which is expected due to the nature of the task. We focus on leaky
RNNs because of their closer correspondence to biological neurons, which have a
membrane voltage that decays over time.

So far we showcased abstractness, but not disentanglement. For disentanglement, it
is crucial that the latents lie in orthogonal subspaces. Looking at the angles between
the decoders of the latents, we find that they become orthogonal as 𝑁task ≫ 𝐷

for RNNs (fig. 3.3c), as predicted by our theory. Intriguingly, this already occurs
from 𝑁task ≥ 𝐷 in transformers, showcasing their superior ability to separate latent
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factors. Furthermore, orthogonality strongly correlates with OOD generalization
performance, which emphasizes the close link between disentanglement and ab-
stractness: the more orthogonal the representations are, the cleaner the readout of
the latent factors by linear decoders.

We further demonstrate the robustness of our setting by showing that abstract rep-
resentations emerge for different noise distributions and correlated inputs (Ap-
pendix C.2), non-linear boundaries (Appendix C.3), and for cognitive neuroscience
integrate-to-bound tasks where the agent can make their decision whenever confident
enough, not at a fixed time (Krajbich, Armel, and Rangel, 2010) (Appendix C.4).

3.6 Representational structure in RNNs and Transformers
In this section, we open the black box and investigate the representations learned
by the networks, starting with RNNs. Figure 3.3d shows the top 3 PCs (capturing
∼ 85 % of the variance) of network activity after training (final accuracy ∼ 95%) for
multiple trials, along with the fixed points of network dynamics. To find the fixed
points, we follow a standard procedure outlined in Sussillo and Barak (2013) (see
Section 3.4 for details). Looking at fig. 3.3d the fixed points span the entire two-
dimensional manifold that the trials evolve in, which corresponds to a continuous
attractor with stable states across a 2D "sheet." Linearizing the dynamics around each
fixed point and computing the eigenvalues of the linearized system (Section 3.4 for
details), reveals marginal stability across two eigenvectors, i.e., near-0 eigenvalues
which correspond to slow, integration dimensions in network dynamics, therefore
confirming the continuousness of the attractor (fig. 3.3e). This implies that the
network can store a short-term memory (Wang, 2001) of the current amount of
accumulated evidence in a product space of the latent variables, and update it as
further evidence arrives.

Furthermore, compared to the representations after the encoder which are non-
linearly mixed, high-dimensional and overlapping (fig. 3.5a), the representation in
fig. 3.3d looks disentangled as we would expect from the theory and metrics above.
Individual trials with noise show how the representation maintains a sense of metric
distances in the RNN representation space (fig. 3.5b). Figure 3.5c demonstrates how
this representation comes about during learning, and fig. 3.5d that the short-term
memory persists when a delay period is included before the decision. Therefore,
multi-task learning has led to disentangled, persistent representations of the latent
variables. Importantly, and in line with our theory, this only happens when noise
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Figure 3.5: Details of learned representations and of learning. (a) Representation
after the decoder. Compared to fig. 3.3d the representations wrap around non-
linearly, and the quadrants are overlapping. The RNN needs to invert the non-linear
mapping and denoise to arrive at disentangled representations. (b) Individual trial
examples from network in fig. 3.2b. Plotting conventions same as in fig. 3.3d, except
here every trial has its own color. The ground truth x∗ for all trials is shown in the
bottom right. As can be seen, the network maintains a sense of metric distances in
the 2D space: examples close in state space are also close in representation space.
(c) Representation early in learning, for a network trained with 1/4 of the examples
compared to fig. 3.3d. The representation is not disentangled yet, however it is
visible how the quadrants start separating and the attractors start spreading in the 2D
manifold. (d) Same as in b, but for network with a delay period of 500 ms (5 darker
dots at the end of trajectories). Activity remains localized after the removal of the
evidence streams, maintaining a short-term memory of the joint evidence with only
minor leaks. (e) Representation learned in a network trained without input noise
(𝜎 = 0). Trajectories separate from the beginning, and there is no pressure to learn
a 2D continuous attractor anymore. (f) Train and test errors for linear decoder for
the OOD generalization task. Transparent lines correspond to different quadrants
while opaque lines to the average across quadrants for one network.



114

Figure 3.6: RNN and GPT representations and relation to latent variables. (a)
Hidden layer activations of RNN in fig. 3.2b (left) and GPT-2 transformer (right),
while systematically varying the latent factors 𝑥1 and 𝑥2 from -0.5 to 0.5. Activations
are plotted in 8*8 grids, one for each value of 𝑥1 and 𝑥2. Each grid contains firing
rates for a total of 64 neurons for the RNN, and activations for 8 units for each of
the 8 heads from the final embedding of the sequence for GPT-2. (b) Correlation
coefficient of activations for both models with 𝑥1 and 𝑥2, respectively.

is present in the input, which forces the network to learn a notion of distance from
classification boundaries (Lemma C.6.3). Indeed, when the network is trained
without input noise, it does not learn a 2D continuous attractor (fig. 3.5e).

Finally, we examined RNN and GPT unit activations, and their relation to the latent
variables. In fig. 3.6a we plot activations for all 64 units for both networks, while
regularly sampling 𝑥1 and 𝑥2. RNNs representations are sparse, with only ∼ 10 %
of neurons active at any time, which is in line with sparse coding in the brain (see
Appendix C.5 for quantification of sparsity as a function of 𝑁task, 𝐷 and RNN
architecture). In addition, the average firing rate is ∼ 1 spike/s, which is surprisingly
close to cortical values. Transformers on the other hand, do not have these features,
shared by RNNs and their biological counterparts. Furthermore, we find that
both networks display mixed selectivity, i.e., neurons are tuned to both variables,
which is a known property of cortical neurons (Rigotti et al., 2013) (fig. 3.6b). This
suggests that metrics of disentanglement that assume that individual neurons encode
distinct factors of variation (Higgins et al., 2017; Kim and Mnih, 2018; Chen et al.,
2018; Eastwood et al., 2022; Hsu et al., 2023) might be insufficient in detecting
disentanglement in networks that generalize well. While recent work incorporates
such axis-alignment in the definition of disentaglement, our work along with others
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Figure 3.7: Experiments confirm theoretical predictions. (a) OOD 𝑟2 for free
RT RNN required to report its estimate of x∗ at different times (see Appendix C.4
for details, 𝑁task = 24, 𝐷 = 2). Maximum network 𝑟2 matches optimal multi-task
classifier theory predictions (Equation 3.7 in Section 3.4). (b) OOD 𝑟2 as a function
of input dimensionality 𝐷 and number of tasks 𝑁task. Good values of 𝑟2 are obtained
when 𝑁task ≥ 𝐷, especially for GPT models, confirming our theoretical results. (c)
Increasing amounts of noise in pretraining results in better OOD generalization
(𝐷 = 2).

(Johnston and Fusi, 2023) showcases the advantages of approaching disentanglement
from a mixed representations perspective. Importantly, these properties were not
imposed during training, nor was there any parameter fine tuning involved; they
emerged from task and optimization objectives.

3.7 Experiments confirm and extend theoretical predictions
Here we expore the relation between the theory in Section 3.3 and Appendix C.6
and the experiments in the previous sections in more depth. First, we wondered
why performance saturates in our networks to a high yet non-1 𝑟2. The central limit
theorem predicts that the estimate of the ground truth x∗ in any optimal multi-task
classifier becomes more accurate with

√
𝑡, providing a theoretical maximum 𝑟2 given

trial duration𝑇 (Section 3.4). Since the RNNs trained on the free reaction-time (free
RT) task in Appendix C.4 are required to output their decision confidence at any
time in the trial, we can compute OOD 𝑟2 of free RT network predictions at any
timepoint 𝑡, and compare that to the theoretical prediction. fig. 3.7a shows that
indeed the highest RNN 𝑟2 falls in the vicinity of or just short of the theoretical
maximum. This indicates that RNNs trained with BPTT on these tasks behave like
near-optimal multi-task classifiers that create increasingly accurate predictions with
time, tightening the relation between our theoretical and experimental results.

An important prediction of our theory is that to learn abstract representations, 𝑁task

should exceed 𝐷. To test this, we increase 𝐷 (adding more inputs to fig. 3.2b),
while varying 𝑁task. Sampling classification hyperplanes homogeneously (similar
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Figure 3.8: Angles between latent factor decoders in higher dimensions. Angles
converge to 90 degrees as 𝑁task ≫ 𝐷 for RNNs, and as early as 𝑁task ≥ 𝐷 for
transformers (see Section 3.4 for angle estimation details). This confirms that multi-
task learning leads to orthogonal, disentangled representations, in some cases even
earlier than our theoretical guarantees.

to fig. 3.2a, center) in high-dimensional spaces is non-trivial; therefore we resort
to randomly sampling them. Figure 3.7b shows OOD generalization performance
for various combinations of 𝐷 and 𝑁task. We observe that performance is bad
when the 𝑁task < 𝐷, but it increases when 𝑁task ≥ 𝐷. For RNNs, this increase is
abrupt for smaller 𝐷 and more gradual for higher, which is in line with remarks by
Johnston and Fusi (2023) that it is easier to learn abstract representations when 𝐷
is high. Transformers on the other hand display higher generalization performance
than RNNs, and always perform almost perfectly when 𝑁task ≥ 𝐷, demonstrating
their superior performance in learning abstract representations. Looking at the
angles between latents for higher 𝐷 (fig. 3.8), we find that transformers have ex-
cellent disentanglement as long as 𝑁task ≥ 𝐷, which might explain their superior
generalization performance to RNNs for lower 𝑁task. These results, together with
fig. 3.3c demonstrate the superior ability of transformers in disentangling latent fac-
tors. Overall, our findings confirm our theory that abstract representations emerge
when 𝑁task ≥ 𝐷, and even go beyond to suggest that disentangled representations
emerge earlier than the theoretical condition 𝑁task ≫ 𝐷, as long as the architecture
is appropriate. These results are remarkable, especially for high 𝐷, because they go
against our intuition that 𝑁task should scale exponentially with 𝐷 to fill up the space
adequately; instead it need only scale linearly.

Importance of noise for generalization Our theory and experiments provide
insight on the importance of noise for developing efficient, abstract representations
(fig. 3.5e). The closer to a classification boundary the ground truth x∗ is, the
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more likely noise will cross over the boundary. Since, as our theory shows, any
optimal multi-task classifier has to estimate Pr{𝑦𝑖 (x∗) = 1}, and said probability
directly relates to the actual distance from the boundary, it follows that noise allows
the model to learn distances from boundaries (Lemma C.6.3)), leading to efficient
localization. We reasoned that additional noise might be even more beneficial, as
it would allow more accurate estimation of Pr{𝑦𝑖 (x∗) = 1}, especially when x∗ is
far from the boundary. To test this, we increase noise strength 𝜎 when pretraining
RNNs, while testing with the same 𝜎 = 0.2. Indeed, increasing amounts of noise
consistently result in better OOD generalization (fig. 3.7c). This benefit comes for
smaller numbers of tasks, allowing us to consider less supervised tasks (e.g., 3),
train on them with more noise, and achieve the same performance as more tasks
(e.g., 12). So even though networks with more noise perform worse in pretraining
(low 90%s classification accuracy), they learn more abstract representations. These
findings are highly non-trivial, and have informed our thinking about generalization
and inherent variability of the underlying latent factors.

3.8 Implications for representation learning
In this Chapter, we proved that disentangled, generalizable representations must
emerge in agents optimally solving multi-task evidence accumulation tasks canon-
ical in the neuroscience literature. We also conducted experiments in a suite of
autoregressive models (RNNs, LSTMs, transformers) which confirmed all of the
main theoretical predictions. A key takeaway is that transformers more readily
disentangle representations, which may explain their unique world understanding
abilities. Here we discuss the broader impact of this work for representation learn-
ing, followed by implications for neuroscience alike, limitations of this study and
how it can be extended in the future.

Topology-preserving representation learning Our work has profound implica-
tions for learning representations that inherit the topological structure of the world.
We prove this naturally happens as long as there are enough tasks to uniquely
identify the location of x∗. Crucially, the constraints from different tasks should
be placed simultaneously on the representation, which explains why representa-
tions from context-dependent computation (Mante et al., 2013) are typically not
disentangled.
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Representational alignment across individuals Our results provide a new per-
spective on the Platonic representation hypothesis (Huh et al., 2024), which suggests
that the convergence in deep neural network representations is driven by a shared
statistical model of reality, like Plato’s concept of an ideal “Platonic” reality. The-
orem 3.3.1 suggests that the key factor driving convergence is the diversity and
comprehensiveness of the tasks being learned. As long as individuals are faced
with similar day-to-day tasks that collectively span the space of the underlying data
representation, convergence to a shared, reality-aligned representation can occur.
This could explain why for example modern LLMs come to encode high-level,
human-interpretable concepts (Templeton et al., 2024).

Manifold hypothesis While our problem is framed in terms of arbitrary injective
observation map 𝑓 , the formulation encompasses many scenarios relevant to the
manifold hypothesis (Fefferman, Mitter, and Narayanan, 2013). The function 𝑓

can represent a smooth manifold embedded in a high dimensional space, directly
modelling the manifold hypothesis of deep learning. In neuroscience, 𝑓 could
be a non-linear encoding of stimuli in a neural population response, connecting
our work to neural manifold research (Langdon, Genkin, and Engel, 2023). By
developing and testing theoretical guarantees for the emergence of disentangled
representations in this multi-task problem formulation, we provide insight on how
neural networks can inherently discover and linearize low-dimensional manifolds
within high-dimensional, non-linear observations, enhancing our understanding of
how complex data structures are captured and represented in deep learning models
and biological systems alike.

Interplay between number of tasks and fine-grainness of representations Fi-
nally, the theorem and experimental results presented here are not a one-way-street
from dimensionality 𝐷 of the latents to how many tasks 𝑁task are required to uncover
them. Instead, there is a fundamental interplay between richness of tasks performed
and detail of the representation learned. In a high-dimensional world, the richness
of the tasks at hand directly affects the dimensionality 𝐷 of the latents that can
be extracted, allowing for "ground truths" x∗ at different levels of granularity to
be explored. The richer the label information available, the more fine-grained the
resulting world model will be.
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3.9 Implications for neuroscience
The brain encodes variables of interest in a disentangled format, in processes as
disparate as memory (Boyle et al., 2022), emotion (Saez et al., 2015), and decision
making (Bongioanni et al., 2021). Furthermore, performance in tasks has been
shown to degrade once abstract representations collapse (Saez et al., 2015), sup-
porting their role in guiding generalizable behavior. Our findings put forth parallel
processing as a unifying mechanism for generalization in brains. The cortex, with
its massively parallel architecture (Markram et al., 2015; Hawkins et al., 2019),
is a prime candidate area for the construction of disentangled, generalizable world
models. Another candidate area is the thalamus; it is posited that thalamocortical
loops operate in parallel, and combined with internal state-dependent mechanisms
lead to state-dependent action selection (e.g., prioritizing water when thirsty), while
evidence integration occurs in corticostriatal circuits (Rubin et al., 2020). The
representations discovered here (continuous attractors, CANs) have been widely
found in the brain when solving similar tasks, highlighting their role as a general
computational substrate for cognitive functions in the brain. Notably, the receipt of
rich supervisory signals from the environment is not a requirement for our setting,
as it can leverage the output of previously learned tasks (see Section 3.10 on the
biological plausibility of multi-task learning).

The algorithmic efficiency of multi-task learning compared to alternatives (“context-
dependent computation”( Mante et al. (2013), Appendix C.1)), makes us think that
it is no coincidence that the cortex can support parallel processing; all the pieces
are there, and we feel that the brain has to leverage this feature to construct faithful
models of the world, as it does.

Relation to neuroscience literature
An ongoing debate in the brain sciences is whether to solve tasks the brain learns
abstracts representations, or simple input-output mappings. Here we show that
training RNNs to multitask results in shared, disentangled representations of the
latent variables, in the form of continuous attractors. In this multitask setting, one
task acts as a regularizer for the others, by not letting the representation collapse, or
overfit, to specific tasks (Zhang and Yang, 2017).

Our findings directly link to two important neuroscientific findings: spatial cogni-
tion and value-based decision-making. First, the tasks here bear close resemblance
to path-integration, i.e., the ability of animals to navigate space only relying on
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their proprioceptive sense of linear and angular velocity (Mittelstaedt and Mittel-
staedt, 1980; Burak and Fiete, 2009; Vafidis et al., 2022; Sorscher et al., 2023).
In path-integration animals integrate velocity signals to get location, while here we
integrate noisy evidence to get rid of the noise. In path-integration, networks have
to explicitly report distances, while in our setting distances are estimated implicitly
(Lemma C.6.3)). We learn abstract representations in the form of a 2D "sheet"
continuous attractor, while the computational substrate for path integration is a
2D toroidal attractor (Gardner et al., 2022; Sorscher et al., 2023)—not an abstract
representation. The conditions under which a 2D sheet vs. toroidal continuous
attractor is learned is a potential area of future research. Second, decision making
experiments in monkeys result in a 2D abstract representation in the medial frontal
cortex, which supports novel inferential decisions (Bongioanni et al., 2021). Like-
wise, context-dependent decision-making experiments in humans also resulted in
orthogonal, abstract representations (Flesch et al., 2022).

3.10 Biological plausibility of multi-task learning
While our theory stems from parallel processing, i.e., multi-task learning, it is not
contingent upon the parallel execution of multiple tasks, i.e., multitasking, or the
receipt of rich supervisory feedback from the environment in parallel. Behaviorally,
the agent need only perform one action, the one most appropriate to its current
internal state (e.g., its level of thirst vs. hunger might control the slope of the decision
boundary in the 2D latent space of water & food). What we posit is that tasks that
have been performed by the agent before and rely on the same input are still resolved
somewhere in the brain, by the brain circuits (e.g., cortical columns Hawkins et al.
(2019)) previously responsible for them, instead of the entire decision-making brain
area focusing only on the current task (Mante et al., 2013). Therefore, the output of
these tasks is still placing pressure on the representation, even though they are not
actively driving behavior. In other words, our theory assumes competence at 𝑁task

tasks, independently of when and how that competence was achieved. We feel that
this is a more natural way of thinking about how the brain manages different tasks,
with older tasks still leaving traces somewhere in the brain (Losey et al., 2024); after
all, biological agents are remarkable because they achieve high performance on
many tasks. This theory is also closely related to the widely observed phenomenon
of memory replay (Foster and Wilson, 2006), or mental simulation of counterfactuals
(Jensen, Hennequin, and Mattar, 2024). A future direction to further enhance the
biological relevance of our work would be to investigate the relation between multi-
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task learning and slow, interleaved learning (see Appendix C.3), in a continual
learning setting.

3.11 Limitations and future directions
A limitation of the present work is that factorization is assumed. Yet not all
problems are factorizable, or should be factorized. For instance, a more coarse-
grained understanding of the world, that does not disentangle all factors, might
be more suitable in many cases, and that might be reflected in the nature of the
tasks. Furthermore, we focus on canonical cognitive neuroscience tasks which
are somewhat removed from standard ML benchmarks. Normally, disentanglement
methods would be tested against a benchmark such as dSprites (Matthey et al., 2017);
however to the best of our knowledge no such benchmark exists for sequential tasks
where evidence has to be aggregated over time. Future work could endeavor to
apply our setting to richer tasks, like extracting latent item attributes from item
embeddings when sequential decisions are made in online retailer settings.

Our theory is agnostic to the way by which competence at multiple tasks is achieved.
Thus, a natural next step is to investigate whether disentangled representations exist
in a wider range of models capable of solving multiple tasks. A prime exam-
ple is large language models that display excellent zero- and few-shot generaliza-
tion capabilities, with progress already made in that direction (Templeton et al.,
2024). Moreover, the pre-training objective for LLMs (cross entropy loss/likelihood
maximization) fits well within our theoretical framing on (approximately) optimal
multi-classifiers. Another application area, as already mentioned, is neuroscience;
animals are naturally competent at multiple tasks, thus our work provides theoretical
justification for why disentangled representations have been found in many brain
areas, and motivates looking for more.

Our experiments showed parsimony of our theoretical results under conditions not
covered by our theory, including non-injective observation maps (Appendix C.3) and
decision boundaries (Appendix C.4) which is encouraging for testing our findings on
settings beyond what is strictly covered by the theory. It would be interesting to see
how the theoretical insights generalize to different task geometries, for example those
implied by self-supervised learning applications (e.g., image patch-filling, next-
token prediction, iterative de-noising). The connection between our framework and
self-supervised learning is deep and promising. Both frameworks share a common
structure, where an underlying latent truth (e.g., objects in an image and their
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relationships) is inferred. Each objective (e.g., filling in missing image patches)
contributes synergistically to understanding the latent space as a whole. A similar
logic applies to predicting words, where the latent “meaning” of a sentence is shared,
whether in a causal (e.g., LLMs) or masked setting (e.g., BERT). Our study is a first
effort towards understanding such parallel learning, and providing guarantees for its
performance.
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C h a p t e r 4

EVALUATING PSYCHOLOGICAL LATENT FACTOR
HYPOTHESES THROUGH SELF-CONSISTENCY

This Chapter is a little bit different than the previous ones. While all previous
chapters contain mature work, this is a more theoretical idea with little experi-
mental exploration, but potentially big impact in the way we approach the field of
psychology.

The exploratory idea discussed in this Chapter is to leverage Large Language
Models as computational tools for the field of psychology. While several ideas
exist in the realm of prompting, this theoretical framework here proposes a deeper
level of exploration, leveraging insights from Chapter III. LLMs are sophisticated
models, trained on an immense wealth of data, often rivaling human performance
when it comes to performing intensive tasks and finding relations between concepts
(from language to mathematics). The core idea is to leverage their associative and
"world understanding" (loosely defined) abilities to evaluate psychological latent
factor hypotheses (i.e., latent dimensions that can describe someone’s psyche), along
certain axes. Specifically, I hypothesize that an LLM’s uncertainty when evaluating
psychological constructs could potentially reflect something about the coherence (or
Self-Consistency) of those constructs themselves. Of course, this comes with a lot of
practical and conceptual roadblocks that will be discussed throughout the chapter.

The hope of the author is that these ideas form the seed for the serious usage of
LLMs as tools and facilitators in the field of psychology, and beyond. This Chapter
should be read as an invitation to consider novel methodological possibilities rather
than as established research.
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4.1 Introduction: Self-Consistency in Philosophical Inquiry
Since the dawn of philosophical inquiry, thinkers have sought to develop theories that
embody self-consistency—frameworks of understanding that can coherently explain
a multitude of phenomena without breaking down when extended beyond their
original domain. This search for self-consistent explanations of reality represents
one of the foundational aims of philosophical thought. From Aristotle’s systematic
categorization of knowledge to Kant’s transcendental idealism, to Nietzsche’s Will
to Power and modern analytical philosophy, the mark of theoretical excellence
has consistently been the ability to maintain coherence across varied contexts and
applications.

The concept of self-consistency in philosophy extends beyond mere logical non-
contradiction. A truly self-consistent theory demonstrates an internal harmony
where its principles reinforce rather than undermine one another, and where its
explanatory power extends gracefully to new domains. Philosophers have long held
that the value of a philosophical theory rests in how accurately and comprehensively
it can explain disparate experienced phenomena while maintaining its own internal
integrity.

As expressed by Ludwig Wittgenstein in his Tractatus Logico-Philosophicus, "The
limits of my language mean the limits of my world" (Wittgenstein, 1922). This
profound insight suggests that our conceptual frameworks, embodied in language,
shape our understanding of reality itself. The quality of these frameworks—their
clarity, distinctiveness, and self-consistency—determines their utility in making
sense of our experience. And that language is the prime and only mediator of these
concepts.

The pursuit of self-consistency has always been essential to philosophical progress,
yet it has remained largely qualitative, relying on the careful reasoning and intuition
of individual thinkers. The challenge has been a lack of standardized, quantifiable
methods for evaluating the self-consistency of theoretical frameworks. Today, with
advances in computational methods and artificial intelligence, we stand at a unique
historical juncture where we can begin to operationalize and quantify this fundamen-
tal philosophical principle. In particular, we nowadays have extremely sophisticated
models that operate in the realm of psychology and philosophy—language—and
that excel at understanding relations between concepts: Large Language Models
(LLMs).



131

This chapter introduces a novel computational framework for evaluating the self-
consistency of psychological latent factor hypotheses, bridging centuries of philo-
sophical inquiry with contemporary computational capabilities. By leveraging Large
Language Models (LLMs) as tools for psychological inquiry, we propose a method to
quantitatively assess the coherence, distinctiveness, and relevance of psychological
latent factor hypetheses—creating a new intersection between philosophy, psychol-
ogy, and computational science. Promising as it might be, the framework proposed
here remains theoretical and would require substantial experimental validation; a
direction of current active research.

4.2 From Philosophy to Psychological Latent Factors
While philosophy aims to understand fundamental principles governing reality
broadly, psychology focuses more specifically on the nature of human experience,
behavior, and mental processes. Within psychology, a central challenge has been
developing frameworks that can adequately capture the multidimensional nature of
human personality and psychological functioning.

Psychological Latent Factor Hypotheses
Psychological latent factor hypotheses represent attempts to systematically catego-
rize and understand human psychology through a defined set of underlying dimen-
sions or traits. These hypotheses posit that a finite set of latent factors—unobservable
psychological constructs—underlie and explain the vast diversity of human psycho-
logical experience. Such factors are typically derived through a combination of
theoretical reasoning and statistical methods applied to behavioral, cognitive, or
self-report data.

A psychological latent factor hypothesis, in our context, consists of:

• A set of latent attributes (factors or traits) that can collectively characterize
the psychological makeup of individuals across a population,

• Clear descriptions and definitions of these attributes, and

• An implicit claim that these factors are sufficient, necessary, and optimal for
understanding human psychology.

The central question we aim to explore is: How might we potentially evaluate the
quality, validity, and utility of different latent factor hypotheses? More specifically,
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could we develop methods to assess whether a given set of psychological factors
represents a self-consistent and comprehensive framework for understanding human
psychology?

Prominent Psychological Latent Factor Models
Several influential latent factor models have been developed in psychology. These
models vary in their theoretical foundations, the number of dimensions they propose,
and their applications. Among the most prominent are:

The Five-Factor Model (NEO)

The Five-Factor Model, often operationalized through the NEO Personality Inven-
tory (NEO-PI), represents one of the most empirically supported frameworks for
understanding personality (McCrae and John, 1992). The model proposes five broad
dimensions:

• Neuroticism: Tendency toward negative emotions, psychological distress,
and emotional instability;

• Extraversion: Tendency toward sociability, assertiveness, and positive emo-
tionality;

• Openness to Experience: Appreciation for art, emotion, adventure, unusual
ideas, imagination, and curiosity;

• Agreeableness: Tendency toward compassion, cooperation, and prosocial
behavior;

• Conscientiousness: Tendency toward organization, self-discipline, and achieve-
ment orientation.

The NEO model emerged from lexical studies of personality traits in natural language
and was refined through extensive factor analysis. Its strength lies in its robust
empirical foundation and cross-cultural validation.

Myers-Briggs Type Indicator (MBTI)

The MBTI, based on Carl Jung’s theory of psychological types, identifies four
dichotomies (Myers, 1962):
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• Extraversion (E) vs. Introversion (I): Orientation of energy toward the
external world or the inner world;

• Sensing (S) vs. Intuition (N): Preference for concrete information versus
abstract patterns;

• Thinking (T) vs. Feeling (F): Preference for logical analysis versus value-
based decision making;

• Judging (J) vs. Perceiving (P): Preference for structure and closure versus
flexibility and openness.

Though widely used in professional and educational settings, the MBTI has received
criticism regarding its test-retest reliability and construct validity (Pittenger, 1993).
Nevertheless, its cultural impact and intuitive appeal have made it a persistent
framework in applied psychology.

Alternative Models

Other influential models include:

• HEXACO: A six-factor model adding Honesty-Humility to the five factors;

• Minnesota Multiphasic Personality Inventory (MMPI): Focused on clini-
cal dimensions of personality;

• Eysenck’s PEN model: Proposing Psychoticism, Extraversion, and Neuroti-
cism as core dimensions;

• Cattell’s 16PF: Offering a more granular 16-dimension approach to person-
ality.

Each model emerges from different methodological approaches and theoretical tra-
ditions, leading to variation in both the number and nature of the proposed factors.
This diversity raises a critical question: How can we determine which model offers
the most useful, accurate, and self-consistent account of human psychology?

4.3 Measuring Self-Consistency: A Thought Experiment
To address the challenge of evaluating the coherence of a psychological latent factor
hypothesis, I propose a thought experiment that operationalizes the concept of self-
consistency in a measurable way.
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The Human Rating Paradigm
Imagine the following scenario: We provide a group of human raters with compre-
hensive information about a participant—including detailed narratives about their
life experiences, behavioral tendencies, cognitive patterns, emotional reactions, and
interpersonal dynamics, or even responses to standardized questionnaires (like the
NEO). This information is sufficiently rich to paint a complete psychological portrait.

We then ask these raters to evaluate the participant on each dimension of a given
psychological latent factor hypothesis (e.g., the five factors of the NEO). Specifically,
raters must assign a value on a defined scale (e.g., 1−10) for each latent factor based
on their interpretation of the participant’s psychological profile.

For a well-defined, self-consistent psychological factor, we would expect high agree-
ment among raters—the distribution of ratings would be sharply concentrated around
a specific value. In contrast, for a poorly defined or inconsistent factor, ratings would
be widely dispersed, reflecting uncertainty and ambiguity in how the factor applies
to the individual, a poorly defined/ambiguous concept, or combinations thereof.

Crucially, when this procedure is repeated across many diverse participants, patterns
emerge that inform us not just about individual participants but about the latent
factors themselves. The key insight is that while rating distributions for a single
participant tell us primarily about how well we can characterize that individual,
aggregate patterns across many, diverse participants reveal a fundamental property of
the psychological factors themselves—namely, the Self-Consistency of the concept
across a diverse group of individuals.

Limitations of Human Raters
While conceptually elegant, implementing this approach with human raters presents
significant challenges:

• Expertise requirements: Accurate ratings demand sophisticated understand-
ing of psychological constructs;

• Scale limitations: Conducting the experiment across hundreds of participants
and multiple factor models would require enormous human resources;

• Consistency challenges: Human raters may themselves show inconsistency
in their application of psychological constructs;
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• Implicit biases: Human judgments are susceptible to various cognitive biases
that may distort ratings;

• Domain-specific knowledge: Raters may have uneven familiarity with dif-
ferent psychological domains.

These practical constraints have historically limited our ability to systematically
evaluate psychological latent factor hypotheses at scale. However, recent advances
in artificial intelligence, particularly in the domain of Large Language Models
(LLMs), offer a promising alternative approach.

4.4 Large Language Models as Tools for Psychological Latent Factor Hypoth-
esis Evaluation

Large Language Models (LLMs) present a unique opportunity to operationalize
the evaluation of psychological latent factor hypotheses. These computational sys-
tems, trained on vast corpora of text, have developed sophisticated capabilities for
processing and generating language-based content, including psychological descrip-
tions and assessments.

Why LLMs Are Suited for Psychological Latent Factor Hypothesis Evaluation
Several properties suggest that LLMs might be well-suited for exploring psycholog-
ical latent factor hypotheses, though limitations exist:

• Knowledge breadth: LLMs are trained on extensive psychological literature,
including different theoretical traditions;

• Distributional outputs: They produce probability distributions over potential
responses rather than single-point estimates;

• Consistent application: They apply the same inference process across all
evaluations;

• Scalability: They can process thousands of evaluations efficiently;

• Linguistic sophistication: They can interpret nuanced psychological descrip-
tions and apply abstract constructs.

Most importantly, LLMs are fundamentally designed to model probability distribu-
tions over language. This property aligns perfectly with our need to assess uncer-
tainty in psychological construct application—the key to measuring self-consistency.
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Such uncertainty will be quantified by the sharpness of the resulting distributions
over the ratings (1 − 10) for a specific latent factor.

From LLM Uncertainty to Psychological Self-Consistency
The central insight of our approach is that an LLM’s uncertainty when rating an
individual on a psychological factor can serve as a proxy for that factor’s self-
consistency as a theoretical construct.

When presented with a comprehensive description of an individual and asked to
rate them on a psychological dimension, an LLM produces a probability distri-
bution over possible ratings. The entropy of this distribution directly reflects the
model’s certainty about how the factor applies to the individual. Low entropy
(highly concentrated distribution) indicates high certainty, while high entropy (dif-
fuse distribution) signals uncertainty. Importantly, since the LLM is queried with
multiple sources of information, our theoretical findings from Chapter III provide
theoretical justification to trust the LLM responses—with sufficient information,
we have localization guarantees when it comes to psychological latent factors (see
Trilateration Theorem, Theorem C.6.4).

By aggregating these entropy measurements across diverse individuals, we obtain a
metric of the factor’s overall self-consistency. A truly self-consistent psychological
factor should yield consistently low-entropy distributions across many individuals,
indicating that the concept is well-defined and can be applied with high certainty
across diverse psychological profiles.

This approach leverages what LLMs do best—generating probability distributions
over next tokens while drawing on extensive knowledge—to interrogate models of
psychological latent factors.

Relation to Existing LLM Literature
Our approach connects to several important developments in the LLM literature
while formalizing what has traditionally been a highly empirical domain. The con-
cept of "self-consistency" has already emerged as a technique in prompt engineering
and LLM evaluation, though in different contexts from our application.

Wang et al. (2023) introduced self-consistency for mathematical reasoning, showing
that sampling multiple reasoning paths and selecting the most consistent answer
improves performance. Similarly, Kadavath et al. (2022) demonstrated that LLMs
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can evaluate the correctness of their own reasoning. These approaches, however,
have been largely empirical and task-specific, lacking theoretical formalization.

Our framework elevates these empirical techniques into a formalized methodol-
ogy with rigorous mathematical foundations specifically designed for psychological
latent factor hypothesis evaluation. While previous work used self-consistency
pragmatically to improve single-point answers, we provide a principled formaliza-
tion through information-theoretic metrics like entropy and KL divergence. This
transforms what was previously a heuristic approach into a quantifiable, systematic
framework.

The use of LLMs to evaluate coherence of concepts also aligns with recent work
on evaluating conceptual understanding in language models (Shanahan, McDonell,
and Reynolds, 2023), suggesting that these models have developed sophisticated
capabilities for assessing theoretical coherence. Our contribution extends this work
on calibration and uncertainty in LLMs (Jiang et al., 2021), showing that model
uncertainty can be meaningfully harnessed to evaluate psychological constructs.

By explicitly defining rigorous quantitative metrics, we move beyond subjective
assessments of hypothesis quality toward a formalized evaluative framework that
can be consistently applied across different psychological theories.

4.5 Formalizing Metrics for Latent Factor Hypothesis Evaluation
To operationalize our approach, I propose a formal mathematical framework for
evaluating psychological latent factor hypotheses. This framework includes three
core metrics: Self-Consistency Entropy Metric (SCEM), Factor Distinctiveness
Metric (FDM), and Relevance Metric (RM), but could be easily extended to include
more, or tweeked to use different computational quantities for a specific metric (e.g.,
correlation for the Distinctiveness metric).

Mathematical Preliminaries
Before introducing the metrics, let us establish notation:

• Let 𝑧 represent a set of latent psychological factors {𝑧1, 𝑧2, ..., 𝑧𝑀} that con-
stitute a psychological latent factor hypothesis.

• Let 𝑖 ∈ {1, 2, ..., 𝑁} index individuals whose psychological profiles are being
evaluated.

• Let 𝑗 ∈ {1, 2, ..., 𝑀} index the latent factors in the hypothesis.
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• Let 𝑃𝑧
𝑖, 𝑗

represent the probability distribution over ratings (1 to 10) for factor
𝑗 applied to individual 𝑖, as determined by an LLM.

We now introduce the key measure of information theory that underlies our metrics.

Entropy

The entropy of a probability distribution measures its uncertainty or dispersion. For
a discrete distribution 𝑃 over values {1, 2, ..., 10}, the entropy is given by:

𝐻 (𝑃) = −
10∑︁
𝑘=1

𝑃(𝑘) log 𝑃(𝑘). (4.1)

Lower entropy indicates a more concentrated distribution, reflecting higher certainty.

Kullback-Leibler Divergence

The Kullback-Leibler (KL) Divergence measures the difference between two prob-
ability distributions. For distributions 𝑃 and 𝑄, the KL Divergence is defined as:

𝐷𝐾𝐿 (𝑃∥𝑄) =
∑︁
𝑘

𝑃(𝑘) log
𝑃(𝑘)
𝑄(𝑘) . (4.2)

Higher KL Divergence indicates greater differentiation between distributions.

Self-Consistency Entropy Metric (SCEM)
The Self-Consistency Entropy Metric quantifies how consistently and precisely a
psychological latent factor hypothesis’s latent factors can be applied across individ-
uals. It is calculated as the average entropy of rating distributions across all factors
and individuals:

SCEM(𝑧) = 1
𝑁 × 𝑀

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝐻 (𝑃𝑧
𝑖, 𝑗
) (4.3)

where 𝐻 (𝑃𝑧
𝑖, 𝑗
) is the entropy of the rating distribution for individual 𝑖 on factor 𝑗 .

Lower SCEM values indicate higher self-consistency—the psychological factors
can be applied with greater precision and certainty across diverse individuals. This
metric directly operationalizes the philosophical concept of self-consistency in psy-
chology and philosophy.
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Factor Distinctiveness Metric (FDM)
The Factor Distinctiveness Metric evaluates how uniquely distinguishable the dif-
ferent factors within a hypothesis are from one another. It uses the Kullback-Leibler
Divergence to measure the differentiation between factors:

FDM(𝑧) = 1
𝑁

𝑁∑︁
𝑖=1

1(𝑀
2
) ∑︁
𝑗≠𝑘

𝐷𝐾𝐿 (𝑃𝑧𝑖, 𝑗 ∥𝑃
𝑧
𝑖,𝑘
) (4.4)

where 𝐷𝐾𝐿 (𝑃𝑧𝑖, 𝑗 ∥𝑃
𝑧
𝑖,𝑘
) is the KL Divergence between the distributions for factors 𝑗

and 𝑘 for individual 𝑖, and
(𝑀

2
)

is the number of factor pairs.

Higher FDM values indicate greater distinctiveness among factors. This metric
captures how well a psychological latent factor hypothesis differentiates between its
constituent factors, avoiding redundancy and overlap. Distinctiveness relates to the
principle of parsimony (Occam’s razor) in scientific theory—a theory should use
the minimal necessary number of distinct factors to explain phenomena.

Relevance Metric (RM)
The Relevance Metric assesses how applicable the latent factors are across different
individuals. It quantifies how many factors have high expected values for each
individual:

RM𝑖 (𝑧) =
𝑀∑︁
𝑗=1

𝐼

(
E[𝑃𝑧

𝑖, 𝑗
] > 𝑉threshold

)
(4.5)

whereE[𝑃𝑧
𝑖, 𝑗
] is the expected value of the rating distribution,𝑉threshold is a predefined

threshold, and 𝐼 (·) is an indicator function that equals 1 if the condition is met and
0 otherwise.

The aggregate Relevance Metric is the average across individuals:

RM(𝑧) = 1
𝑁

𝑁∑︁
𝑖=1

RM𝑖 (𝑧). (4.6)

Higher RM values indicate that the latent factors are consistently relevant across
diverse individuals, capturing salient aspects of human psychology. This metric
ensures that the psychological latent factor hypothesis includes factors that are
meaningfully applicable to a wide range of individuals.



140

Implementation with Large Language Models
To implement these metrics using LLMs, we:

1. Provide the LLM with comprehensive descriptions of diverse individuals.

2. Ask the model to rate each individual on each factor 𝑧 𝑗 in a given psychological
latent factor hypothesis 𝑧.

3. Extract the probability distributions over ratings from the model’s output.

4. Calculate SCEM, FDM, and RM using these distributions.

Mathematically, we can represent the LLM as a function L that maps a description
of individual 𝑖 and a psychological factor 𝑗 to a probability distribution over ratings:

𝑃𝑧
𝑖, 𝑗

= L(𝐷𝑖, 𝑧 𝑗 ) (4.7)

where 𝐷𝑖 is the description of individual 𝑖 and 𝑧 𝑗 is the definition of factor 𝑗 .

The probability distribution is extracted from the logits of the LLM’s output layer,
representing the model’s uncertainty in applying the psychological factor to the
given individual.

4.6 Comprehensive Hypothesis Evaluation Framework
While each metric provides valuable information about specific aspects of a psycho-
logical latent factor hypothesis 𝑧, a comprehensive evaluation requires considering
all three metrics together. Rather than collapsing these metrics into a single score,
we propose reporting them as a tuple:

Evaluation(𝑧) = (SCEM(𝑧), FDM(𝑧),RM(𝑧)). (4.8)

This multi-dimensional approach respects the complexity of psychological phenom-
ena while offering potential comparative standards between different latent factor
hypotheses. The practical utility of these metrics for psychological research remains
to be seen.

Under this framework, a strong psychological latent factor hypothesis 𝑧 should
demonstrate:



141

• Low SCEM (high self-consistency);

• High FDM (strong factor distinctiveness);

• High RM (broad relevance).

However, trade-offs between these dimensions may exist. For example, a hypothesis
might achieve high self-consistency by sacrificing relevance, or high distinctiveness
by sacrificing self-consistency. The tuple representation makes these trade-offs
explicit and enables researchers to select theories based on priorities relevant to
their specific applications.

It is important to emphasize that our proposed metrics focus primarily on exter-
nal validity—how well psychological constructs can be consistently applied across
diverse individuals and contexts. This approach differs from traditional internal
consistency measures that assess reliability within the constructs themselves. What
makes our framework valuable is its ability to evaluate how psychological theories
perform "in the wild" when applied to varied human experiences.

In clinical psychology, for instance, predictive validity remains crucial—a psycho-
logical latent factor hypothesis should effectively forecast treatment outcomes or
symptom trajectories. Our metrics complement these predictive approaches by as-
sessing how clearly delineated and applicable the theoretical constructs themselves
are. Additional metrics like test-retest reliability, cross-cultural generalizability,
and developmental sensitivity provide further dimensions for evaluation. By in-
corporating our self-consistency framework alongside these established validation
techniques, researchers can develop a more comprehensive understanding of a psy-
chological latent factor hypothesis’s real-world utility and conceptual strength.

Example Application: Comparing NEO and MBTI
To illustrate the utility of our framework, we can consider how it might be applied
to compare prominent psychological theories such as the NEO Five-Factor Model
and the Myers-Briggs Type Indicator.

The NEO model, with its empirical foundation in factor analysis, might be expected
to show high self-consistency (low SCEM) and high factor distinctiveness (high
FDM), as its dimensions were explicitly derived to be orthogonal. However, its
relevance (RM) might vary across different populations.
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In contrast, the MBTI, with its dichotomous structure, might show lower self-
consistency (higher SCEM) due to the forced binary nature of its dimensions.
Its factor distinctiveness (FDM) might also be lower due to correlations between
dimensions. However, its cultural popularity might contribute to high relevance
scores (RM) in certain populations.

Our framework would allow for a systematic, quantitative comparison of these
theories based on their performance across all three metrics, potentially revealing
strengths and weaknesses that have not been apparent in traditional validation ap-
proaches. It could also detect and report correlations between extraneous concepts
in lengthier psychological latent factor hypotheses, reflecting potential existing crit-
icisms of such hypotheses in the psychological literature, which would be a good
validation step for our theoretical metrics.

4.7 Future Directions and Limitations
The approach presented in this chapter represents a novel theoretical framework for
evaluating psychological latent factor hypotheses. While conceptually promising, it
would still require empirical validation, and several important directions for future
development and limitations must be acknowledged.

Expanding the Framework
Future work could enhance the framework in several ways:

• Incorporating additional metrics: Beyond self-consistency, distinctiveness,
and relevance, other dimensions such as predictive utility, developmental
stability, and cross-cultural applicability could be formalized.

• Human-guided iterative refinement: The metrics can be used by psycho-
logical experts to iteratively refine theories in a quantitatively guided pro-
cess—identifying which factors show poor self-consistency, excessive corre-
lation with other factors, or limited relevance, and refining their definitions
accordingly. Unsupervised learning in the rich 𝑁×𝑀 matrices of the proposed
measures would be immensely helpful in that direction, to detect outliers and
examples that cannot be covered by a certain hypothesis, and come up with
new proposals.
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• Integration with empirical methods: Combining our computational ap-
proach with traditional empirical validation methods could provide a more
comprehensive evaluation methodology.

• Cross-cultural validation: Testing whether the same latent factor hypotheses
maintain self-consistency across different cultural contexts.

Limitations and Potential Mitigation Strategies
Several important limitations warrant consideration, along with potential approaches
to address them:

• LLM limitations and biases: Current models have inherent limitations in
their understanding of complex psychological phenomena and may reflect
biases present in their training corpora, which can skew evaluations. These can
be mitigated through fine-tuning on balanced, diverse psychological literature
and careful prompt engineering.

• Simplicity bias: The framework may favor simpler theories that are easier to
apply consistently, potentially missing valuable complexity. This can be ad-
dressed by explicitly incorporating metrics that reward appropriate complexity
where justified.

• Domain and cultural specificity: LLMs may have uneven performance
across different psychological domains and primarily reflect Western psycho-
logical frameworks. Human-in-the-loop verification by experts from diverse
backgrounds can help identify and correct these imbalances.

• Validation challenges: Determining ground truth for comparison remains
challenging. Cross-model validation using different model architectures and
training sets can help establish convergent validity.

• Evolving model capabilities: As LLMs continue to develop, their evaluations
of psychological theories may change, requiring periodic recalibration of the
framework.

Ethical Considerations
The application of computational methods to psychological hypothesis evaluation
raises important ethical considerations:
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• Algorithmic determinism: An over-reliance on computational evaluation
could lead to reductive views of human psychology.

• Cultural sensitivity: Psychological frameworks vary across cultures, and
computational evaluations must respect this diversity.

• Reinforcement of dominant paradigms: LLMs may reinforce already dom-
inant psychological frameworks in their evaluations.

• Informed consent: Use of psychological profiles for evaluation raises ques-
tions about consent and privacy.

These considerations underscore the importance of using our framework as one
component within a broader, human-centered approach to psychological hypothesis
development and evaluation. It is crucial to emphasize that our approach positions
LLMs as tools for psychological inquiry, not as replacements for human psycho-
logical expertise. The ultimate interpretation of results and hypothesis refinement
remains the domain of trained psychologists and researchers.

4.8 Discussion
This chapter has introduced a novel computational framework for evaluating psycho-
logical latent factor hypotheses through the lens of self-consistency. By leveraging
Large Language Models as tools for psychological inquiry, we have operational-
ized the philosophical concept of self-consistency in a quantifiable way that can be
applied systematically to diverse (psychological) concepts.

The proposed metrics—Self-Consistency Entropy Metric (SCEM), Factor Distinc-
tiveness Metric (FDM), and Relevance Metric (RM)—provide a multidimensional
approach to psychological latent factor hypothesis evaluation that respects the com-
plexity of psychological phenomena while offering rigorous comparative standards.
Yet, the practical value and implementation of these metrics in LLMs remains to be
seen.

This approach represents a new intersection between philosophy, psychology, and
computational science, potentially opening new avenues for psychological hypoth-
esis development and refinement. By quantifying aspects of theoretical quality that
have historically been evaluated through more subjective means, our framework
offers a complementary methodology that may accelerate progress in psychological
science.
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Importantly, the framework positions Large Language Models not as replacements
for human psychological expertise but as tools that extend our capabilities for system-
atic psychological latent factor hypothesis evaluation. The ultimate interpretation
and application of psychological theories remain firmly in the domain of human
understanding.

As computational capabilities continue to advance and our understanding of both
human psychology and artificial intelligence deepens, frameworks like the one
proposed here may help bridge the gap between qualitative theoretical insights and
quantitative evaluation methodologies, potentially catalyzing new developments in
our understanding of the human mind.
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CONCLUSION

This thesis has investigated learning and generalization in neural networks, drawing
parallels between biological and artificial systems while seeking to explain cogni-
tive processes from the bottom up, with a particular focus on cortical mechanisms.
By examining the computational principles underlying intelligence across multiple
levels—from individual neurons to network dynamics and representational struc-
ture—the work presented here advances our understanding of how neural systems
develop rich, generalizable internal models of the world.

A central focus has been cortical learning and the unique advantages conferred by
the architectural and representational inductive biases present in the cerebral cortex.
In Chapter I, we demonstrated how the compartmentalized structure of pyramidal
neurons enables efficient packing of multiple associations within the same neural
population—a capability that explains the exceptional associative learning capacity
of mammals with developed cortices. Importantly, we addressed a significant gap in
the literature by explicitly testing whether traditional three-factor Hebbian learning
rules could achieve similar performance in networks with mixed selectivity. The
results conclusively showed that these rules fail at stimulus substitution in mixed
representation regimes, highlighting the necessity of predictive learning mecha-
nisms like those enabled by compartmentalized neurons. This finding provides a
mechanistic explanation for why evolution may have converged on the specific mor-
phology of cortical pyramidal cells. Furthermore, the model’s ability to account
for sophisticated conditioning phenomena, including forms of causal reasoning like
unconditional support, demonstrates how these architectural features contribute to
cognitive capabilities previously thought to require more complex, top-down mech-
anisms.

This work also establishes how the cortex’s massively parallel processing archi-
tecture serves as a powerful inductive bias driving the emergence of generalizable
representations. Chapter III provided theoretical guarantees that systems competent
at multiple related tasks must develop abstract, disentangled representations of un-
derlying latent variables, with representational quality directly tied to task diversity.
This insight has profound implications for computational neuroscience, potentially
revolutionizing how we understand cortical function. The theoretical finding aligns
with empirical observations that performance in cognitive tasks degrades when ab-
stract representations collapse (Saez et al., 2015), suggesting that representational
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disentanglement is not merely a computational convenience but a requirement for
flexible cognition. Furthermore, the consistent finding that neural networks arrive
at similar representations when solving similar tasks, regardless of their specific
architecture, points to fundamental principles governing representation formation
in both biological and artificial systems.

These insights extend beyond neuroscience to inform artificial intelligence research,
particularly in understanding why large language models, which are inherently
multitask learners (Brown et al., 2020), develop human-interpretable concepts. In
Chapter IV, we exploit this multitask nature of LLMs by proposing a novel framework
that leverages their representational properties to disentangle psychological latent
factors from behavioral reports of the participants, demonstrating how computational
principles discovered in neural systems can inform traditionally human-centered
disciplines. This cross-disciplinary application illustrates the broad impact of the
theoretical advances presented in this thesis.

Predictive learning objectives emerged throughout this thesis as a powerful mecha-
nism for developing rich, structured representations. The compartmentalized learn-
ing rules explored in Chapters I and II implement a form of self-supervised prediction
where neurons learn to anticipate their own activity patterns. Looking beyond the
mammalian cortex, Chapter II demonstrated that the same predictive learning prin-
ciples can be applied to understand neural circuit development in evolutionarily
distant organisms like the fruit fly. The resulting model not only explained how
precise connectivity for path integration could develop through experience rather
than genetic pre-specification, but also made novel predictions about the plastic-
ity of the head direction system that align with experimental findings (Jayakumar
et al., 2019). This predictive mechanism does not just apply to biological neurons;
the same computational principle drives large language models where next-token
prediction serves as a remarkably effective unsupervised learning objective (Brown
et al., 2020). The parallel between these domains suggests that prediction may
represent a universal principle for developing rich internal models, regardless of
whether the substrate is biological or artificial.

Integration and evidence accumulation emerged as central computational themes
across chapters, with continuous attractor dynamics serving as a common substrate
for these functions. First proposed by Amari (Amari, 1977), continuous attractors
were long theorized in computational neuroscience but received limited experimen-
tal attention until compelling demonstrations in the fly head direction system (Seelig
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and Jayaraman, 2015; Green et al., 2017; Green et al., 2019). Chapter II showed
how these dynamics emerge naturally from learning in the path integration context,
while Chapter III demonstrated the spontaneous formation of higher-dimensional,
disentangled continuous attractors in networks trained on noisy evidence accumu-
lation tasks. The recurrent appearance of this computational motif across diverse
contexts suggests that continuous attractors represent a general neural solution for
maintaining and updating continuous variables. The recent proliferation of claimed
continuous attractor discoveries in the experimental literature also prompted the
development of Appendix D, which provides a principled approach to identifying
and characterizing these dynamics, helping to prevent confusion and false positive
detection of continuous attractors in experimental work.

The contributions of this thesis span multiple levels of analysis—from biophysically
detailed models of neuronal learning to abstract computational principles governing
representation formation. Throughout, a consistent theme has been the emergence
of sophisticated computational capabilities from the interaction of relatively simple
elements. This perspective bridges traditionally separate domains of neuroscience
and artificial intelligence, demonstrating how insights from one can inform the other,
and breaking a duality that has been ever-present, in particular in neuroscience
research. The predictive learning mechanisms explored in cortical neurons may
inspire new approaches to training artificial neural networks, while the theoretical
guarantees for representation quality through multitask learning offer a principled
framework for understanding both biological and artificial intelligence.

Overall, by focusing on the computational principles that enable learning and gener-
alization across different neural systems, this thesis contributes to a unified science
of Neural Computation. The findings presented here suggest that, irrespective of
their specific implementations, biological and artificial neural networks converge on
similar solutions when faced with similar computational challenges. This conver-
gence points to fundamental principles of information processing that transcend the
specific substrate in which they are implemented. As we continue to develop more
sophisticated computational models and gather more detailed experimental data, the
conceptual frameworks established in this thesis may help guide our understanding
of how interconnected networks of simple processing elements—whether biological
neurons or artificial units—give rise to the remarkable flexibility and generalization
capabilities that characterize intelligent behavior; the mammalian cortex being our
prime example and inspiration for such intelligence.
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A p p e n d i x A

SUPPLEMENTARY MATERIAL FOR CHAPTER I
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A.1 How Does the RNN Learn?
In Chapter I, we have shown that the network is able to learn complex delay con-
ditioning tasks using relatively few trials. In this section we explore in more detail
the mechanisms through which the network solves the problem.

Figure A.1 shows how the activity of the associative neurons changes with training.
It compares firing rates in response only to the CSs (top), in response only to the
associated USs (middle), or in response to the full trial in which both are presented
(bottom). Several things are worth noticing.

First, the right column depicts the activity of the network after it has learnt the delay
conditioning task. At this stage, the activity patterns in response to only the CS or
only the US are very similar. This makes it possible to decode the upcoming US
using only the activity in the network in response to the associated CS.

Second, the network learns mixed stimulus representations. This is important since
there is evidence that the associative areas of the prefrontal cortex use this type of
mixed coding (Rigotti et al., 2013).

Third, the pattern of activity in response to only the US is unchanged by learning.
This follows from the fact that in this case the response of the associative neurons
is driven only by the input 𝑟us to the somatic compartment and the synaptic weights
𝑊us are not updated with training.

Fourth, the activity pattern in response to both the CS and the US, is very similar to
the response to the US alone, irrespective of the stage of learning. This is because
the firing rate in our model is mainly controlled by the US, while later in learning
the CS would induce the same response anyway. Overall, the learning rule modifies
the CS weights so that the CS inputs are able to generate the representation of the
US both when the CS is presented by itself, and when presented together with the
US.

Figure A.2 provides further insight into the inner workings of the model. Each panel
depicts the dynamics of a model component within a training trial. Columns denote
different stages of training. Recall that the learning rule between associative neuron
𝑖 and input neuron 𝑗 is the product of three terms: a surprise modulated learning
rate 𝜂(𝑆), the presynaptic potential in the input neuron 𝑃 𝑗 , and the neuron-specific
firing rate error term

[
𝑓 (𝑉 s

𝑖
) − 𝑓 (𝑝′𝑉d

𝑖
)
]
.

Consider the last term first. 𝑓 (𝑉 s
𝑖
) is the firing rate of associative neuron 𝑖, which is

determined by its somatic voltage 𝑉 s
𝑖
. 𝑓 (𝑝′𝑉d

𝑖
) is the (approximate) counterfactual
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Figure A.1: RNN activity during learning. Firing rates in response to each
stimulus pair at different stages of learning. Top row shows activity in response only
to the associated CS. Middle row shows activity in response only to the associated
US. Bottom row shows activity in response to the presentation of both. Activity is
measured off-line (i.e., between learning trials).

firing rate that would occur if the CS were presented by itself. When the US is
presented it dominates the activity of the associative neurons and thus the firing rate
in the presence of both stimuli is similar to what would have been in the presence of
only the US. As a result, for the RNN to be able to predict the US in response to only
the CS, it has to be the case that 𝑓 (𝑝′𝑉d

𝑖
) ≈ 𝑓 (𝑉 s

𝑖
). The learning rule implements a

gradient like rule by increasing the CS input weights when 𝑓 (𝑝′𝑉d
𝑖
) < 𝑓 (𝑉 s

𝑖
), and

decreasing them when the opposite is true. As shown in the third row of fig. A.2,
these two variables are unrelated early in training, but converge to the same pattern
as learning progresses.
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Figure A.2: Within trial dynamics of model components. Each panel depicts the
dynamics of a model component within a training trial. Columns denote the level of
training. Rows denote model variables. 𝑓 (𝑉 s

𝑖
) is the firing rate of associative neuron

𝑖, which is determined by its somatic voltage 𝑉 s
𝑖
. 𝑓 (𝑝′𝑉d

𝑖
) is the (approximate)

counterfactual firing rate of the neuron when only the CS is presented. 𝐸 is the
expectation signal for the US shown in the trial. 𝜂(𝑆) is the surprise-modulated
learning rate. 𝑃 𝑗 is the presynaptic potentials of input neuron 𝑗 . Δ𝑊 is the
incremental weight change for elements of each element in𝑊rnn and𝑊cs.

Next consider the surprise modulated learning rate 𝜂(𝑆). Gating the learning rate
by surprise is critical, as it provides a global reference signal crucial when there
are more than one predictive CSs available. Furthermore, biological neurons may
not be able to compute 𝑓 (𝑝′𝑉d

𝑖
) exactly at the dendritic compartment, resulting

in potential mismatches between 𝑓 (𝑉 s
𝑖
) and 𝑓 (𝑝′𝑉d

𝑖
). If the learning rate 𝜂 were

constant across training, these mismatches would result in slow unlearning when
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nothing behaviorally significant is happening. In contrast, when the learning rate
is gated by surprise, the learning rate 𝜂 = 0 most of the times, and any mismatch
between when 𝑓 (𝑉 s

𝑖
) and 𝑓 (𝑝′𝑉d

𝑖
) does not result in unlearning.

Finally consider the presynaptic potential 𝑃 𝑗 . This term is present in most learning
rules and reflects the old Hebbian dictum that "neurons that fire together wire
together." In particular, other things being equal, the weights of more active synapse
are updated more since they have a potentially stronger influence on the postsynaptic
firing rate.

We emphasize again that the fact that associative neurons are two-compartment
neurons is important for the biological plausibility of the model. The gradient like
term

[
𝑓 (𝑉 s

𝑖
) − 𝑓 (𝑝′𝑉d

𝑖
)
]

depends only on information available at the synapse,
since it is based only on variables associated with that neuron. By definition, the
presynaptic potential 𝑃 𝑗 is also available at the synapse. Finally, the learning rate is
implemented by neuromodulators that are diffused to the synapses of the associative
network. As a result, all of the variables required to implement the learning rule are
locally available at each synapse.

Having explored the mechanisms through which the network learns, we now provide
a more rigorous mathematical analysis of why the learning rule converges to the
desired solution.

A.2 Convergence of Synaptic Plasticity Rule
To understand how and why the learning rule works, it is useful to characterize the
somatic voltages, and thus their associated firing rates, in different trial conditions.

Consider first the case in which only the CS is presented, so the associative neurons
only receive dendritic input. In this case the somatic voltages converge to a steady-
state given by

𝑉 ss =
𝑔𝐷

𝑔𝐷 + 𝑔𝐿
𝑉d. (A.1)

In other words, the somatic voltages converge simply to an attenuated level of the
dendritic voltages, with the level of attenuation given by 𝑝 =

𝑔𝐷
𝑔𝐷+𝑔𝐿 . In this case,

the firing rates of the associative neurons converge to

𝑟
cs-only
rnn = 𝑓 (𝑉 ss). (A.2)

This follows from the fact that the dendritic voltage is determined only by equations
1.2 and 1.3, and thus is not affected by the state of the somatic compartment, and by
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the fact that in the absence of US input 𝐼s = 0. The result then follows immediately
from equation 1.4.

Next consider the case in which only the US is presented. In this case equations 1.2
and 1.3 imply that 𝑉d = 0, and it then follows from equations 1.4 and 1.5 that the
steady-state somatic voltage, when 𝐼s = 0, is given by

𝑉eq(𝑡) = 𝑔e𝐸e + 𝑔i𝐸i
𝑔e + 𝑔i

(A.3)

and that the firing rates of the associative neurons become

𝑟
us-only
rnn = 𝑓 (𝑉eq). (A.4)

Finally consider the case in which the associative neurons receive input from both
the CS and the US. We follow Brea et al., 2016 to derive the steady-state solution
for the somatic voltage in this case. Provided inputs to the circuit, which are in
behavioral timescales, change slower than the membrane time constant (𝐶/𝑔𝐿 =

20 ms), equation 1.4 reaches a steady-state given by

𝑉 s(𝑡) ≈ 𝜅𝑉 ss + (1 − 𝜅)𝑉eq, (A.5)

where 𝜅(𝑡) =
𝑔𝐷+𝑔𝐿

𝑔𝐷+𝑔𝐿+𝑔e+𝑔i
∈ (0, 1] performs a linear interpolation between the

steady-state levels reached where only the CS or the US are presented.

Practically, when there is no US-input, 𝑉 ss slightly precedes 𝑉 s due to the non-zero
dendritic-to-somatic coupling delays, resulting in slight overestimation of the firing
rate upon CS presentation. This can be accounted for by introducing an additional
small attenuation, so that 𝑝′ = 𝑎 𝑔𝐷

𝑔𝐷+𝑔𝐿 = 𝑎𝑝 in equation 1.9, with 𝑎 = 0.95.

Learning is driven by a comparison of the firing rates of the associative neurons
in the presence of both the CS and the US, and the firing rates if they only receive
input from the CS. Importantly, this can happen online and without the need for
separate learning phases, because an estimate of the latter can be formed in the
dendritic compartment at all times. Learning is achieved by modifying 𝑊rnn and
𝑊cs to minimize this difference. We can use the expressions derived in the previous
paragraphs to see why the synaptic learning rule converges to synaptic weights for
which 𝑟cs-only

rnn = 𝑟both
rnn .

Take the case in which associative neurons underestimate the activity generated
by the US inputs when exposed only to the CS (i.e., 𝑉 ss < 𝑉eq). In this case,
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𝑉 ss < 𝑉 s < 𝑉eq and 𝐼s > 0. Then from equation 1.9 we find that Δ𝑤 > 0, leading
to a futures increase in associative neuron activity in response to the CS.

The same logic applies in opposite case, where the associative neurons overestimate
the activity generated by the US inputs when exposed only to the CS. In this case,
𝑉 ss > 𝑉 s > 𝑉eq and 𝐼s < 0, which leads to a future decrease in associative neuron
activity in response to the CS.

Given enough training, this leads to a state where 𝑉 ss ≈ 𝑉eq and at which learning
stops (Δ𝑤 ≈ 0). When this happens, we have that

𝑟
cs-only
rnn = 𝑓 (𝑉 ss) ≈ 𝑓 (𝑉eq) = 𝑟both

rnn , (A.6)

so that the RNN responses to the CS become fully predictive of the activity generated
by the US, when presented by themselves.

The previous section demonstrated how the learning rule converges to a state where
the CS response matches the US response. We now show how this learning rule can
be derived directly from the objective of stimulus substitution.

A.3 Predictive Coding and Normative Justification for the Learning Rule
In this section we provide further insight into the learning rule used in our model by
showing that it follows directly from the objective of stimulus substitution.

Stimulus substitution states that synaptic connections change during learning so that
the activity of the associative network induced by the CS (𝑟cs-only

rnn ) becomes identical
to the response induced by the US (𝑟us-only

rnn ). It follows that the objective of stimulus
substitution is to minimize the discrepancy or loss L between the two:

L =
1
2
(𝑟cs-only

rnn − 𝑟us-only
rnn )2. (A.7)

We assume that the synaptic weights for US inputs are fixed, since these are primary
reinforcers. The synaptic weights for the CS inputs are plastic, and they are shaped
so that the CS elicits the same response as the US, essentially becoming predictive
of the latter. Assuming a rectified linear (ReLU) activation function, 𝑟cs-only

rnn will
obey

𝑟
cs-only
rnn = [𝑊⊺𝑃 ]+ (A.8)

where𝑊 are the plastic synaptic weights for the CS inputs, and 𝑃 are the postsynaptic
potentialsof the input CS neurons, low-pass filtered by synaptic delays.
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To minimize the loss L, we perform local gradient descent with respect to𝑊 , which
leads to the following update rule:

𝜕𝑊

𝜕𝑡
= −𝜂 𝜕L

𝜕𝑊
. (A.9)

This results in the following update rule between input neuron 𝑗 and associative
neuron 𝑖 from presynaptic neuron 𝑗 :

Δ𝑊𝑖 𝑗 = 𝜂

(
𝑟

us-only
rnn,𝑖 − 𝑟cs-only

rnn,𝑖

)
𝑃 𝑗 . (A.10)

Here, 𝑟us-only
rnn,𝑖 acts as a "teacher" signal, in a setting that resembles self-supervised

learning. Specifically, 𝑟cs-only
rnn,𝑖 is compared to 𝑟us-only

rnn,𝑖 , and the discrepancy determines
the sign and magnitude of weight change. However, only synapses from presynaptic
neurons that have recently been active (𝑃 𝑗 > 0) are modified. This learning rule is
said to perform predictive coding, because CS inputs should predict (or anticipate)
the response to the US.

An implicit requirement of the learning rule is that there has to be a way to tell
apart 𝑟cs-only

rnn,𝑖 and 𝑟us-only
rnn,𝑖 , in order to compare them. However, a neuron only has

a single output at a given time. Therefore, in principle it is unclear how the two
firing rates could be compared in an online fashion and within the same neuron. The
2-compartment associative neurons resolve this because the activity in the somatic
compartment 𝑓 (𝑉 s

𝑖
) provides a measure of 𝑟us-only

rnn,𝑖
1, 𝑓 (𝑝′𝑉d

𝑖
) provides a measure

of 𝑟cs-only
rnn,𝑖 , and the information available to compute the former term is available in

the dendritic compartment due to backpropagating action potentials (Larkum, Zhu,
and Sakmann, 1999). Thus, the associative neurons contain all of the information
needed to implement the learning rule that yields stimulus substitution.

1In reality, as we show in eq. (A.5) 𝑉 s
𝑖

is affected by both somatic and dendritic inputs, however
as we explain in the same section the influence of the dendritic inputs can never change the sign of[
𝑓 (𝑉 s

𝑖
) − 𝑓 (𝑝′𝑉d

𝑖
)
]
, and the resulting weight changes are always in the correct direction.
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B.1 Supplementary figures

A

B

Figure B.1: Separation of axon-proximal and axon-distal inputs to HD (E-PG)
neurons in the Drosophila EB. (A) Synaptic locations in the EB where visual (R2
and R4d) and recurrent and HR-to-HD (P-EN1 and P-EN2) arrive, for a total of
16 HD neurons tested (Neuron ID above each panel). Similarly to the example in
Fig. 1E (repeated here in the top left panel, Neuron ID 416642425), these two sets
of inputs appear to arrive in separate locations. (B) Binary classification between
the two classes (R2 and R4d vs. P-EN1 and P-EN2) using SVMs with Gaussian
kernel. Nested 5-fold cross validation was performed 30 times for every neuron
tested, and the test accuracy histograms per neuron are plotted. The two classes can
be separated with a test accuracy > 0.95 for every neuron.
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A B

Figure B.2: Removal of long-range excitatory projections impairs PI for high
angular velocities. (A) Profiles of the HR-to-HD weight matrix𝑊HR from fig. 2.3C
(dashed lines), and the same profiles after the long-range excitatory projections have
been removed (solid lines). (B) PI in the resulting network is impaired for high
angular velocities, compared to fig. 2.2C.
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B C

Figure B.3: Details of learning. (A) Learning errors (eq. (2.18)) in the converged
network in light conditions (yellow overbar) or during PI in darkness (purple over-
bar). Note the difference in scale. In light conditions, the error is zero in all positions
apart from the edges of the bump, where the error is substantial. Such errors occur
because the velocity pathway, which implements PI, cannot move the bump for
very small angular velocities, and tends to move it slightly faster for intermediate
velocities, and slower for large ones (see fig. 2.2C). The velocity pathway is active
and affects network activity even in the presence of visual input; hence, in light
conditions, it creates errors at the edges of the bump, and the sign of the errors is
consistent with the aforementioned PI velocity biases. Other than that, the angular
velocity input predicts the visual input near-perfectly, as evidenced by the near-zero
error everywhere else in the network. During PI in darkness, the network operates
in a self-consistent manner, merely integrating the angular velocity input, and the
learning error is much smaller. (B) Snapshot of the bump and the errors at 𝑡 = 11.5 s
in light conditions from (A). Also overlaid is the hypothetical form of the bump if
only the visual input was present in the axon-proximal compartment of the HD neu-
rons, termed "Visual bump." Notice that the errors are due to the fact that the visual
bump is trailing in relation to the bump in the network. As a result, at the front of
the bump the subthreshold visual input is actually inhibiting the bump. Also note
that the bump in the network has a square form, in contrast to the smoother form
that would be expected from visual input alone. This is because the learning rule
in eq. (2.12) only converges when HD neurons reach saturation (see also fig. B.13
panel A2). (C) Histogram of entrained velocities.
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Figure B.4: PI performance of a perturbed network. After learning, the synaptic
connections in fig. 2.3A,B have been perturbed with Gaussian noise with standard
deviation∼1.5. (A), (B) Synaptic weight matrices after noise addition. (C) Example
of PI. The activity of HD, L-HR, and R-HR neurons along with the PI error and
instantaneous angular velocity are displayed, as in fig. 2.2A. (D) Temporal evolution
of distribution of PI errors during PI in darkness. Compared to fig. 2.2B the
distribution widens faster, and also exhibits side bias. (E) PI is impaired compared
to fig. 2.2C, particularly for small angular velocities. Note that the exact form of
the PI gain curve at very small angular velocities may vary slightly depending on
the noise realization, but the findings mentioned in the Results (middle part of last
paragraph of section "Learning results in synaptic connectivity that matches the one
in the fly") remain consistent.
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Figure B.5: Limits of PI gain adaptation. (A) Normalized root mean square
error (NRMSE) between neural and head angular velocity, for gain-1 networks that
subsequently have been rewired to learn different gains. We estimate RMSE in
a range of head angular velocities set by the maximum neural angular velocity
𝑣𝑚𝑎𝑥 (e.g., blue dot-dashed line in C; see also fig. B.7A); this range is given by
this maximum neural angular velocity divided by the gain 𝑔. Then, to obtain
the NRMSE we divide the RMSE by that range. For instance, in (C), 𝑔 = 10
and 𝑣𝑚𝑎𝑥 = 1150 deg/s, and we only test for the range of head angular velocities
[−115, 115] deg/s. We find that rewiring performance is excellent for gains 𝑔
between 0.25 and 4.5, for which NRMSE < 0.15. Note that the more a new gain
differs from original gain 1, the longer it takes for the network to rewire. (B), (C) PI
performance plots for a small (𝑔 = 0.125) and a large (𝑔 = 10) gain. The NRMSE is
0.31 and 0.46, respectively. Performance is impaired because the flat area for small
angular velocities gets enlarged in (B), whereas the network struggles to keep up with
the desired gain in (C). (D) PI performance plot for a network that has been instructed
to reverse its gain (from +1 to −1), i.e., when the visual and self-motion inputs are
signaling movement in opposite directions. Performance is excellent, indicating
that there is nothing special about negative gains; albeit learning takes considerably
more time. (E), (F) Weight history for HR-to-HD and for recurrent connections,
respectively, for the network trained to reverse its gain. The directionality of the
asymmetric HR-to-HD connections in (E) reverses only after ∼ 20 hours, while the
recurrent weights in (F) remain largely unaltered.
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B.2 Robustness to noise
In Chapter II, the only source of stochasticity in the network came from the angular
velocity noise in the Ornstein-Uhlenbeck process (Methods, eq. (2.17)). Biological
HD systems, however, are subject to other forms of biological noise like randomness
of ion channels. To address that, we include Gaussian IID synaptic current noise to
every location in the network where inputs arrive: the axon-proximal and axon-distal
compartments of HD cells and the HR cells (see Methods, parameterized by 𝜎𝑛 in
eq. (2.2), eq. (2.4), and eq. (2.8)). We then ask how robustly can the network learn
in the presence of such additional stochasticity.

To quantify the network’s robustness to noise, we need to define a comparative
measure of useful signals vs. noise in the network. By "signals" we refer to the
velocity/visual inputs and any network activity resulting from them, whereas "noise"
is the aforementioned Gaussian IID variables. We thus define the signal-to-noise
ratio (SNR) as the squared ratio of the active range 𝐴𝑎𝑐𝑡𝑖𝑣𝑒 of the activation function
𝑓 (defined in eq. (2.7)) over two times the std of the Gaussian noise, 𝜎𝑛, i.e.,

SNR =

(
𝐴𝑎𝑐𝑡𝑖𝑣𝑒

2𝜎𝑛

)2
. (B.1)

This definition is motivated by the fact that 𝐴𝑎𝑐𝑡𝑖𝑣𝑒 determines the useful range that
signals in the network can have. If any of the signals exceed this range, they cannot
impact the network in any meaningful way because the neuronal firing rate has
saturated, unless they are counterbalanced by other signals reliably present. The
factor 2 in the denominator is due to the fact that the noise can extend to both positive
and negative values, whereas 𝐴𝑎𝑐𝑡𝑖𝑣𝑒 denotes the entire range of useful inputs.

Here we vary the SNR and observe its impact on learning and network performance.
fig. B.6A–D shows the performance of a network that has been trained with SNR ≈ 2.
The resulting network connectivity remains circularly symmetric and maintains the
required asymmetry in the HR-to-HD connections for L- and R-HR cells (data not
shown). Therefore we plot only the profiles in fig. B.6B, which look very similar
to the ones in fig. 2.3C trained with SNR = ∞. The peak of the local excitatory
connectivity in𝑊 rec is not as pronounced. This happens because the noise corrupts
auto-correlations of firing during learning.

The network activity still displays a clear bump that smoothly follows the ground
truth in the absence of visual input (fig. B.6A). There are only minor differences
compared to the network without noise (fig. 2.2A). The presence of the noise is
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most obvious in the HR cells, since HD cells that do not participate in the bump are
deep into inhibition, and therefore synaptic input noise does not affect as much their
activity. We note that the network can no longer sustain a bump in darkness when
SNR = 1, i.e., when the standard deviation of the noise covers the full active range
of inputs (data not shown).

Finally, the neural velocity slightly overestimates the head angular velocity (fig. B.6C
compared to fig. 2.2C), and the PI errors diffuse faster in the network with noise
(88.1 deg2/s in fig. B.6D compared to 24.5 deg2/s in fig. 2.2B); these values are also
indicated in fig. B.6E (triangles). Importantly, we find that the diffusion assumption
holds, because the estimation of the diffusion coefficient when varying simulation
time (between 10 and 60 s) is consistent.

So far we have addressed the diffusivity of PI in networks that receive velocity
input, and we have compared the performance of networks that were trained with
and without synaptic input noise. However, in mature networks, i.e., during testing,
it is unclear how large the impact of synaptic input noise is, compared to noise that
originates from imperfect PI. To disentangle these two noise contributions during
testing, we study diffusivity in networks that do not receive velocity inputs at all
(i.e., without PI). In the absence of velocity inputs, we vary the level of synaptic
input noise during testing (called "test noise"), and estimate diffusion coefficients.
Specifically, for each test noise magnitude𝜎𝑛 we run 1000 simulations of 𝑡sim = 10 s,
each time randomly initializing the network at one of the angular locations 𝜃𝑖 for
which HD neurons are tuned for. For 𝜎𝑛 = 0, we run one simulation per 𝜃𝑖, since
the simulation is deterministic.

Our results in fig. B.6E show that the diffusion coefficients obtained in networks
without velocity inputs (dots) are always much smaller that those with velocity inputs
(triangles). Thus, imperfect integration of velocity inputs is by far the dominating
source of noise in trained, mature networks. Omitting the velocity inputs, we
detected small differences between networks that were trained without synaptic
input noise (blue dots) and with such noise (orange dots, train noise 𝜎𝑛 = 0.7). The
network trained with noise is sligthly more diffusive up to the level of test noise at
which is was trained (𝜎𝑛 = 0 – 0.7), and it is slightly less diffusive beyond that level
(𝜎𝑛 > 0.7).

We conclude that learning PI is robust to synaptic input noise during learning, and
that synaptic input noise during testing degrades performance much less than errors
due to deviations from perfect gain-1 PI, which are already quite small.
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Figure B.6: Robustness to injected noise. (A) PI example in a network trained
with noise (SNR ≈ 2, train noise 𝜎𝑛 = 0.7). Panels are organized as in fig. 2.2A,
which shows the activity in a network trained without noise (SNR = ∞, 𝜎𝑛 = 0).
(B) Profiles of learned weights. Both 𝑊 rec and 𝑊HR are circularly symmetric.
Panel is organized as in fig. 2.3C, which shows weight profiles in a network trained
without noise (SNR = ∞, 𝜎𝑛 = 0). (C) The network achieves almost perfect gain-1
PI, despite noisy inputs. Compared to fig. 2.2C the performance is only slightly
impaired. (D) Temporal evolution of distribution of PI errors during PI in darkness.
Compared to fig. 2.2B the distribution widens faster, however it also does not exhibit
side bias. (E) Diffusion coefficient for networks as a function of the level of test noise
(for details, see section "Diffusion Coefficient" in Methods). We distinguish between
networks that experienced noise during training (𝜎𝑛 = 0.7, orange) and networks
that were trained without injected noise (𝜎𝑛 = 0, blue), which were studied in
the Results of Chapter II. Diffusion coefficients that include contributions from PI
errors, estimated from (D) and fig. 2.2B, are also plotted (triangles).
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B.3 Synaptic delays set a neural velocity limit during path integration
In Chapter II we trained networks for a set of angular velocities that cover the full
range exhibited by the fly (|𝑣 | < 500 deg/s), and we showed that the mature network
can account for several key experimental findings. However, the ability of any
continuous attractor network to path-integrate is naturally limited for high angular
velocities, due to the synaptic delays inherent in any such network (Zhong et al.,
2020). To evaluate the ability of our network to integrate angular velocities, we
sought to identify a limit of what velocities could be learned.

The width of the HD bump in our network is here termed BW, and it is largely
determined by the width 𝜎 of the visual receptive field. This is because during
training we force the network to produce a bump with a width matching that of the
visual input, and this width is then maintained when the latter is not present. The
reason for this behavior is that the width of the learned local excitatory connectivity
profile in 𝑊 rec that guarantees such stable bumps of activity will be similar to the
width of the bump, because recurrent connections during learning are only drawn
from active neurons (non-zero P 𝑗 in eq. (2.12)). As mentioned in Chapter II,
this emphasizes the Hebbian component of our learning rule (fire together — wire
together). As a result, the width of local excitatory recurrent connections should be
approximately BW.

In fig. B.2 we show that the higher angular velocities are served by the long-range
excitatory connections in 𝑊HR. However, these connections might not be strong
enough to move the bump by themselves; a contribution from HD cells might still
be needed to move the bump at such high angular velocities. In that case, the
width of the connectivity bump in 𝑊 rec might limit how far away from the current
location the bump can be moved. In addition, there is a limitation in how quickly
the bump can be moved: the learning rule in eq. (2.1) tries to predict the next state
of the network from the current state; but to activate the next HD neurons in line,
current HD and HR cell activity must go through the synaptic delay 𝜏𝑠. Therefore,
the maximum velocity that the network can achieve without external guidance (i.e.,
without visual input) should be inversely proportional to 𝜏𝑠, i.e.,

𝑣𝑚𝑎𝑥 =
𝑏(𝜎,Δ𝜙)

𝜏𝑠
(B.2)

where we assume that 𝑏 might reflect an effective HD connectivity bump width,
which depends on 𝜎 but also on the angular resolution of the HD network Δ𝜙, due to
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discretization effects. In reality, the HR-to-HD connectivity profiles in 𝑊HR likely
also have a bearing on 𝑏.

We then systematically vary 𝜏𝑠 and test what velocities the network can learn. We
indeed find that networks can path-integrate all angular velocities up to a limit, but
not higher than that. As predicted, this limit is inversely proportional to 𝜏𝑠, for a wide
range of delays (fig. B.7A). Furthermore, 𝑏 matches BW reasonably well. Fitting
eq. (B.2) to the data we obtain 𝑏(0.25, 6 deg) ≈ BW = 96 deg for 𝑁HD = 𝑁HR = 120
and 𝑏(0.15, 12 deg) = 75 deg, BW = 60 deg for 𝑁HD = 𝑁HR = 60.

As mentioned in Chapter II, there are two limitations other than synaptic delays
why the network could not learn high angular velocities: limited training of these
velocities, and saturation of HR cell activity. These limitations kick in for 𝜏𝑠 <
150 ms, for which 𝑣𝑚𝑎𝑥 matches the maximum velocity the fly displays (500 deg/s).
Therefore to create fig. B.7A for these delays, we increased the standard deviation of
the velocity noise in the Ornstein-Uhlenbeck process to 𝜎𝑣 = 800 deg/s to address
the first limitation, and we increased the dynamic range of angular velocity inputs by
decreasing the proportionality constant in eq. (2.10) to 𝑘 = 1/540 s/deg to address
the second.

The velocity gain plot for an example network with high synaptic delays (𝜏𝑠 =

190 ms) is shown in fig. B.7B. Interestingly, we notice that the performance drop at
the velocity limit is not gradual; instead, the neural velocity abruptly drops to a near-
zero value once past the velocity limit. Further investigation reveals that for velocities
higher than this limit, the network can no longer sustain a bump (fig. B.7C). This
happens because the HD network cannot activate neurons downstream fast enough
to keep the bump propagating, and therefore the bump disappears and the velocity
gain plot becomes flat.

Equation (B.2) is similar to a relationship reported in Turner-Evans et al. (2017)
(their page 35, 1st paragraph), where it was demonstrated that the phase shift of the
HR population bump compared to the HD bump limits angular velocity. Our result
hence generalizes this finding in the case where recurrent connections between HD
neurons are also allowed.

Finally, we note that so far we only tested the limits of network performance when
increasing 𝜏𝑠. To demonstrate that smaller delays also work, as an extreme example
we show PI performance in a network where 𝜏𝑠 = 1 ms in fig. B.7D,E. A potential
issue with such small synaptic delays is that the network would not be able to
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distinguish rightward from leftward rotation for small angular velocities, because
the motion direction offset of the HR bumps would be small, and the activity in
the two HR populations comparable. In such a setting it is harder to learn the
asymmetries in the HR-to-HD connections required to differentiate leftward from
rightward movement. Indeed, this effect is visible in fig. B.7E where the amplitude
of HR-to-HD connections has been suppressed, and in fig. B.7D where the flat
region for small angular velocities has been extended compared to fig. 2.2C.

Overall, these results indicate that the network learns to path-integrate angular
velocities up to a fundamental limit imposed by the architecture of the HD system
in the fly. Furthermore, we conclude that the phenomenological delays observed in
the fly HD system in Turner-Evans et al. (2017) are not fundamentally limiting the
system’s performance, since they can support PI for angular velocities much higher
than the ones normally displayed by the fly.
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Figure B.7: Limits of network performance when varying synaptic delays.
(A) Maximum neural angular velocity learned is inversely proportional to the synap-
tic delay 𝜏𝑠 in the network, with constant 𝑏 = 75 deg in eq. (B.2) (blue dot-dashed
line). Green dots: point estimate of maximum neural velocity learned, green bars:
95 % confidence intervals (Student’s t-test, 𝑁 = 5). (B) Example neural velocity
gain plot (as in fig. 2.2C) in a network with increased synaptic delays (𝜏𝑠 increased
from the "standard" value 65 ms to the new value 190 ms). (C) Behavior of the
activity of HD cells in the network with parameters as in (B) near the velocity limit.
The example network is driven by a single velocity in every column, in light (top
row) and darkness (bottom row) conditions. In darkness, near and below the limit
(left and middle column), there is a delay in the appearance of the bump, which
then path-integrates with gain 1; above the limit observed in (B), however, the
bump cannot stabilize, resulting in the dip in neural velocity (right column). (D) PI
performance for a network with drastically reduced synaptic delays (𝜏𝑠 = 1ms).
Compared to fig. 2.2C, PI performance is worse for small angular velocities. This
occurs because for small angular velocities, the offset of the HR bump in leftward vs.
rightward movement is not as pronounced. As a result, it is harder to differentiate
leftward from rightward movement. (E) For the same reason, the asymmetries in
the learned HR-to-HD connectivity are not as prevalent as in fig. 2.3C.
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B.4 Robustness to architectural asymmetries
The networks we have trained in the Results had a circular symmetric initial ar-
chitecture, including the hardwired HD-to-HR connections 𝑊HD. However, such
symmetry is unrealistic for any biological system that is assembled by imperfect pro-
cesses; deviations from symmetry should be expected. Therefore, in this Appendix
we let𝑊HD vary randomly, and observe how PI performance is affected.

First, we remind the reader that the magnitude 𝑤HD of the HD-to-HR connections
is chosen so that we take advantage of the full dynamic range of HR neurons;
however, the exact magnitude should not be critical for our model. Homeostatic
plasticity could adjust the magnitude, but for simplicity we have not incorporated
such plasticity rules in our model. Instead, to see whether the exact values of
synaptic weights, their circular symmetry, and the 1-to-1 nature of the HD-to-HR
connections is crucial for our model, we draw connection strengths randomly.

In a first approach, we let HD neurons project also to adjacent HR neurons. Specif-
ically, if 𝑈 (𝑎, 𝑏) denotes the uniform distribution in the interval (𝑎, 𝑏), we sample
the magnitude of weights from𝑈

(
𝑤HD

2 , 𝑤HD
)

for the main diagonal and𝑈
(
0, 3𝑤HD

4

)
for the side diagonals of𝑊HD (fig. B.8A). We then adjust the network connectivity
(𝑊 rec and 𝑊HR) in a learning phase, similar to the one illustrated in fig. 2.3E,F.
After learning, as shown in fig. B.8C–E, PI is still excellent because the learning
rule can balance out any deviations from circular symmetry in 𝑊HD. It does so
by introducing deviations from circular symmetry in the learned weights, mainly
in 𝑊HR (fig. B.8B). Thus, small deviations from circular symmetry in the learned
weights are essential for PI.

We illustrate the necessity to counterbalance small deviations of circular symmetry
again in a second example that is based on the symmetric network studied in the
Results. Here we use the connectivity of the network illustrated in fig. 2.3A–C and
also preserve the 1-to-1 nature of HD-to-HR connections, but now we randomly vary
their magnitude, while maintaining the same average connection strength; specifi-
cally, we sample the magnitude of weights from 𝑈

(
𝑤HD

2 , 3𝑤HD

2

)
. PI performance in

this network is considerably impaired compared to the original network (compare
fig. B.9 to fig. 2.2A,C). This is a further argument in favor of synaptic plastic-
ity operating to fine-tune connectivity, because as mentioned we expect that such
anatomical asymmetries are indeed present in the biological circuit. Therefore, even
if the circular symmetric synaptic weights were passed down genetically with great
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accuracy, PI performance in flies should be considerably degraded for a biological
circuit with anatomical asymmetries when no learning is involved.

To better quantify the effect of anatomical asymmetries, we incorporate both noise
in the learned connectivity as in fig. B.4A,B and noise in the HD-to-HR connections
as in fig. B.8A. We tune the noise independently for each weight matrix: for 𝑊 rec

and 𝑊HR we set the variance of the Gaussian noise to 𝑝 times the variance of the
individual weight matrices, while for 𝑊HD we draw the connections connections
from 𝑈

(
(1 − 𝑝) 𝑤HD, (1 + 𝑝) 𝑤HD)

for the main diagonal and 𝑈
(
0, 𝑝 𝑤HD)

for the
side diagonals. We find that for 𝑝 = 0.3 the correlation between the PVA and true
heading in darkness drops 0.27 ± 0.09 which is below reported fly PI performance
(mean correlation across animals ∼ 0.5 in Seelig and Jayaraman (2015)), while
the structure of the weights is preserved. We observed a steep decline in the
correlation coefficient between 𝑝 = 0.25 (for which the correlation is 0.92 ± 0.04)
and 𝑝 = 0.3. Furthermore, we study the effect of perturbing individual weight
matrices, and find that perturbing only 𝑊HD with 𝑝 = 0.3 considerably affects
performance (correlation 0.39± 0.09) while perturbation of𝑊 rec and𝑊HR together
has a much smaller effect on performance. This again argues in favor of learning
𝑊 rec and 𝑊HR to counterbalance asymmetries in 𝑊HD (fig. B.8). Furthermore,
note that confounders other than imperfect weights might be responsible for the
degradation of PI performance in the fly, which further argues in favor of learning.

As a final test for the capability of the learning rule to balance anatomical asym-
metries, in fig. B.10 we use a completely random connectivity for HD-to-HR con-
nections, drawing weights from a folded Gaussian distribution. We find that even
then, PI performance of the converged network is great, albeit for a smaller range
of velocities. In addition, bumps are not clearly visible in the HR populations any-
more; in the main network, HR bumps were inherited from the HD bump due to the
sparseness of the HD-to-HR connections. However, when HD-to-HR connections
are random, HR cells are no longer mapped to a topographic state space.
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Figure B.8: Performance of a network where HD-to-HR connection weights
are allowed to vary randomly, and HD neurons are projecting to HR neurons
also adjacent to the ones they correspond to, respecting the topography of the
protocerebral bridge (PB). (A) The HD-to-HR connectivity matrix, 𝑊HD. Note
that, compared to what is described in the Methods (final paragraph of "Neuronal
Model"), the order of HD neurons is rearranged: we have grouped HD neurons that
project to the same wing of the PB together, so that the diagonal structure of the
connections is clearly visible. (B) The learned HR-to-HD connections,𝑊HR, depart
from circular symmetry (as, e.g., in fig. 2.3B), so that asymmetries in𝑊HD could be
counteracted. The recurrent connections𝑊 rec (not shown) remain largely unaltered
compared to the ones shown in fig. 2.3A. (C)–(E) Despite the randomization and
lack of 1-to-1 nature of HD-to-HR connections, PI in the converged network remains
excellent (cf. fig. 2.2A–C).
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Figure B.9: PI performance in a network with random HD-to-HR connection
strengths and learned weights from network in fig. 2.3. Here we vary the magnitude
of the main diagonal HD-to-HR connections but preserve the 1-to-1 nature of the
connections. We assume that𝑊 rec and𝑊HR are passed down genetically (i.e., there is
no further learning of these connections), and therefore the same, circular symmetric
profiles apply to every location in the circuit. We choose these (assumed here to
be genetically stored) profiles to be the ones we learned in the network outlined
in fig. 2.3A,B. (A) Example that shows that PI is impaired, because the circular
symmetric profiles passed down genetically cannot counteract small asymmetries
in the architecture that are likely to be present in any biological system. Notice that
it can even take several seconds for the large PI error to be corrected by the visual
input. (B) PI errors grow fast (compare to, e.g., fig. 2.2B). Already by 20 sec of PI
the heading estimate is random.
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Figure B.10: PI performance of a network where HD-to-HR connection weights
are completely random. (A) The HD-to-HR weights are drawn from a folded
normal distribution, originating from a normal distribution with 0 mean and
𝜋(𝑤HD)2/200 variance. (B) As a result, the learned HR-to-HD connections have
also lost their structure. (C) The recurrent connections preserve some structure,
since adjacency in the HD network is still important. (D) Impressively, the con-
verged network can still PI with a gain close to 1, but for a reduced range of angular
velocities compared to, e.g., the network in fig. B.8. (E) A bump still appears in
the HD network and gets integrated in darkness, albeit with larger errors. Note that
bumps no longer appear in the HR populations; HR bumps are inherited from the
HD bump only when adjacencies in the HD population are carried over to the HR
populations by the HD-to-HR connections. Note that we have restricted angular
velocities to the interval [−360, 360] deg/s for this example, to showcase that PI is
still accurate within this interval.
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B.5 Requirements on time scales
We devote this Appendix to discuss requirements for the time scales involved in
our model (see table B.1). Several of these time scales are well constrained by
biology, and thus we chose to keep them constant. These include the membrane
time constants of the axon-proximal and axon-distal compartments, 𝐶/𝑔𝐿 and 𝜏𝑙 ,
respectively, which should be in the order of milliseconds; and the velocity decay
time constant 𝜏𝑣, for which we choose a value in the same order of magnitude (0.5 s)
as experimentally reported (Turner-Evans et al., 2017).

In general, the learning time scale given by 1/𝜂 should be the slowest one in our
network model. The time scale should be large enough so that the network samples
the input statistics for a long enough time. Varying 1/𝜂 from 2 s to 20 s to 200 s,
we find that the final learned weights are virtually identical (not shown). However,
1/𝜂 should not be too large to enable fast enough learning.

The synaptic time constant 𝜏𝑠 is determined from phenomenological delays in the
network (Turner-Evans et al., 2017). Nevertheless, we also addressed the impact of
varying 𝜏𝑠 in Appendix B.3 and found that learning PI was robust in a wide range
of values.

In additional simulations, we varied the weight update filtering time constant 𝜏𝛿
from 0 (effectively removing filtering) to 1000 s (which is four orders of magnitude
larger than the default value). We observed almost no effect on learning dynamics,
and the performance of the final networks was almost identical (not shown). Since
the specific value of 𝜏𝛿 is of little consequence in our network (if 1/𝜂 is large
enough), there are hardly any limitations on its value compared to other time scales.
Therefore, this justifies ignoring 𝜏𝛿 in the derivation of a reduced model without
noise in Appendix B.6.

Table B.1: Default values for time scales in the model

Time scale Expression Value

Membrane time constant of axon-proximal compartment 𝐶/𝑔𝐿 1 ms
Membrane time constant of axon-distal compartment 𝜏𝑙 10 ms

Synaptic time constant 𝜏𝑠 65 ms
Weight update filtering time constant 𝜏𝛿 100 ms

Velocity decay time constant 𝜏𝑣 0.5 s
Learning time scale 1/𝜂 20 s

Default values for time scales in the model, ordered by their magnitude.
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B.6 Reduced theoretical model for a circular symmetric learned network
In this section we derive a reduced model for the dynamics of the synaptic weights
during learning. The goal is to gain an intuitive understanding of the structure
obtained in the full model (fig. 2.3 of Chapter II). Such a model reduction is obtained
by 1) exploiting the circular symmetry in the system; 2) averaging weight changes
across different speeds and moving directions; 3) writing dynamical equations in
terms of convolutions and cross-correlations. With these methods, we derive a
non-linear dynamical system for the weight changes as a function of head direction.
Finally, we simulate this dynamical system and inspect how the different variables
interact to obtain the final weights. We find that the reduced model results in nearly
identical connectivity and learning dynamics to the full network in Chapter II, and
explains how the latter assigns learning errors to the correct weights. Furthermore,
it drastically reduces simulation times by two orders of magnitude.

Note that in this section we use slightly different notation compared to Chapter
II. Notably, we refer to the recurrent head direction weight matrix simply as 𝑊
(omitting the superscript rec), and use capital letters for functions of time and small
letters for functions of heading direction.

We study the learning equation (see eqs. (2.12)–(2.16) where the low-pass filtering
with time constant 𝜏𝛿 has been ignored, since we find that the value of 𝜏𝛿 is not
important for learning (see Appendix B.5))

d
d𝑡
𝑊𝑖 𝑗 (𝑡) = 𝜂 𝐸𝑖 (𝑡) 𝑃 𝑗 (𝑡) (B.3)

where
𝐸𝑖 (𝑡) = 𝑓 [𝑉𝑎𝑖 (𝑡)] − 𝑓 [𝑉 𝑠𝑠𝑖 (𝑡)] (B.4)

is the pre-synaptic error at cell 𝑖 and

𝑃 𝑗 (𝑡) =
∫ ∞

0
d𝑠 𝐻 (𝑠) 𝑓 [𝑉𝑎𝑗 (𝑡 − 𝑠)] (B.5)

is the post-synaptic potential at HD cell 𝑗 , and 𝐻 is a temporal filter (with time
constants 𝜏𝑠 and 𝜏𝑙 , see eq. (2.14)).

Clockwise movement
Assuming that the head turns clockwise (which equals to rightward rotation, i.e.,
rotation towards decreasing angles) and anti-clockwise (leftward, i.e., towards in-
creasing angles) with equal probability, we can approximate the weight dynamics by
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summing the average weight change 𝑊+
𝑖 𝑗

for clockwise movement and the average
weight change𝑊−

𝑖 𝑗
for anti-clockwise movement:

d
d𝑡
𝑊𝑖 𝑗 (𝑡) =

d
d𝑡
𝑊+
𝑖 𝑗 (𝑡) +

d
d𝑡
𝑊−
𝑖 𝑗 (𝑡). (B.6)

We start by assuming head movement at constant speed and we later generalize the
results for multiple speeds. We compute the expected weight change d

d𝑡𝑊
+
𝑖 𝑗

for one
lap in the clockwise direction at speed 𝑣+ > 0:

d
d𝑡
𝑊+
𝑖 𝑗 (𝑡) =

𝜂𝑣+

2𝜋

∫ 2𝜋/𝑣+

0
d𝜏 𝐸+

𝑖 (𝜏) 𝑃+
𝑗 (𝜏) (B.7)

where
𝑃+
𝑗 (𝑡) =

∫ ∞

0
d𝑠 𝐻 (𝑠) 𝑓 [𝑉𝑎+𝑗 (𝑡 − 𝑠)] (B.8)

is the post-synaptic potential for clockwise movement, and

𝐸+
𝑖 (𝑡) = 𝑓 [𝑉𝑎+𝑖 (𝑡)] − 𝑓 [𝑉 𝑠𝑠+𝑖 (𝑡)] (B.9)

is the error for a clockwise movement. Assuming that the axon-proximal voltage is
at steady state (eq. (2.4) with the l.h.s. set to zero and 𝐼HD

𝑒𝑥𝑐 absorbed into 𝐼𝑣𝑖𝑠), the
clockwise axon-proximal voltage reads

𝑉𝑎+𝑖 (𝑡) = 𝑉 𝑠𝑠+𝑖 (𝑡) +
𝐼𝑣𝑖𝑠
𝑖

(𝑡)
𝑔𝐷 + 𝑔𝐿

(B.10)

where (see eq. (2.11))
𝑉 𝑠𝑠+𝑖 (𝑡) = 𝑔𝐷

𝑔𝐷 + 𝑔𝐿
𝑉 𝑑+𝑖 . (B.11)

From eqs. (2.2) and (2.3), we can write the axon-distal voltage 𝑉 𝑑+
𝑖

as a low-pass
filtered version of the total axon-distal current 𝐷+

𝑖
for clockwise movement (see also

eq. (2.14)):

𝑉 𝑑+𝑖 =

∫ ∞

0
d𝑠 𝐻 (𝑠)𝐷+

𝑖 (𝑡 − 𝑠) , (B.12)

which yields

𝑉 𝑠𝑠+𝑖 (𝑡) = 𝑔𝐷

𝑔𝐷 + 𝑔𝐿

∫ ∞

0
d𝑠 𝐻 (𝑠)𝐷+

𝑖 (𝑡 − 𝑠) . (B.13)

Importantly, the visual input 𝐼𝑣𝑖𝑠 is translation invariant:

𝐼𝑣𝑖𝑠𝑗 (𝑡) = 𝐼𝑣𝑖𝑠𝑖
(
𝑡 +

𝜃 𝑗 − 𝜃𝑖
𝑣+

)
(B.14)
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where 𝜃 𝑗 and 𝜃𝑖 are the preferred head directions of cells 𝑗 and 𝑖, respectively. As a
result of this translation invariance, the recurrent weight matrix𝑊 develops circular
symmetry:

𝑊𝑖 𝑗 = 𝑊0,( 𝑗−𝑖) mod 𝑁HD (B.15)

where 𝑁HD is the number of HD cells in the system. Consequently, the post-synaptic
potential 𝑃+

𝑗
is also translation invariant:

𝑃+
𝑗 (𝜏) = 𝑃𝑖

(
𝜏 +

𝜃 𝑗 − 𝜃𝑖
𝑣+

)
= 𝑃0

(
𝜏 +

𝜃 :=︷  ︸︸  ︷
𝜃 𝑗 − 𝜃0

𝑣+

)
. (B.16)

In this case, without loss of generality, we can rewrite eq. (B.7) for a single row of
the matrix d

d𝑡𝑊
+
𝑖 𝑗

as a function of the angle difference 𝜃 := 𝜃 𝑗 − 𝜃0:

d
d𝑡
𝑊+
𝑖 𝑗 (𝑡) =

d
d𝑡
𝑊+

0,( 𝑗−𝑖) mod 𝑁HD
(𝑡) = 𝜂𝑣+

2𝜋

∫ 2𝜋/𝑣+

0
d𝜏 𝐸+

0 (𝜏) 𝑃
+
( 𝑗−𝑖) mod 𝑁HD

(𝜏)

(B.17)

=
𝜂𝑣+

2𝜋

∫ 2𝜋/𝑣+

0
d𝜏 𝐸+

0 (𝜏) 𝑃
+
0 (𝜏 + 𝜃/𝑣

+)

(B.18)

=
𝜂

2𝜋

∫ 2𝜋

0
d𝜑 𝐸+

0 (𝜑/𝑣
+) 𝑃+

0 [(𝜑 + 𝜃)/𝑣+]

(B.19)

=
𝜂

2𝜋

∫ 2𝜋

0
d𝜑 𝜖+(𝜑) 𝑝+(𝜑 + 𝜃)

(B.20)

=
𝜂

2𝜋
(𝜖+ ★ 𝑝+) (𝜃)

(B.21)

=:
d
d𝑡
𝑤+(𝜃) .

(B.22)

where we defined 𝜖+(𝜑) := 𝐸+
0 (𝜑/𝑣

+) and 𝑝+(𝜑) := 𝑃+
0 (𝜑/𝑣

+), and ★ denotes
circular cross-correlation.
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From eq. (B.8), we derive

𝑝+(𝜑) := 𝑃+
0 (𝜑/𝑣

+) =
∫ ∞

0
d𝑠 𝐻 (𝑠) 𝑓 [𝑉𝑎+0 (𝜑/𝑣+ − 𝑠)] (B.23)

≈
∫ 2𝜋

0
d𝛽

1
|𝑣+ |𝐻 (𝛽/𝑣+)︸          ︷︷          ︸
=: ℎ+(𝛽)

𝑓 [𝑉𝑎+0 ((𝜑 − 𝛽)/𝑣+)︸               ︷︷               ︸
=: 𝑣𝑎+(𝜑 − 𝛽)

] (B.24)

= [ℎ+ ∗ 𝑓 (𝑣𝑎+)] (𝜑) . (B.25)

The approximation in eq. (B.24) holds when a bump exists in the network and moves
with a velocity below the velocity limit, and it is valid if the temporal filter 𝐻 is
shorter than 2𝜋/𝑣+, that is for 𝐻 (𝑡) ≪ 1 for 𝑡 > 2𝜋/𝑣+, which holds for the filtering
time constants and velocity distribution we assumed (fig. B.11). Therefore, plugging
eq. (B.25) into eq. (B.22), we obtain:

d
d𝑡
𝑤+(𝜃) ≈ 𝜂

2𝜋
{𝜖+ ★ [ℎ+ ∗ 𝑓 (𝑣𝑎+)]}(𝜃) . (B.26)

By using the definition of 𝜖 (𝜑)+ we derive

𝜖+(𝜑) := 𝐸+
0 (𝜑/𝑣

+) = 𝑓 [𝑉𝑎+0 (𝜑/𝑣+)︸       ︷︷       ︸
= 𝑣𝑎+(𝜑)

] − 𝑓 [𝑉 𝑠𝑠+0 (𝜑/𝑣+)︸        ︷︷        ︸
=: 𝑣𝑠𝑠+(𝜑)

] (B.27)

with (eq. (B.10))

𝑣𝑎+(𝜑) = 𝑣𝑠𝑠+(𝜑) +
𝐼𝑣𝑖𝑠0 (𝜑/𝑣+)
𝑔𝐷 + 𝑔𝐿︸       ︷︷       ︸
=: 𝐼𝑣𝑖𝑠 (𝜑)

(B.28)

and (eq. (B.13))

𝑣𝑠𝑠+(𝜑) = 𝑔𝐷

𝑔𝐷 + 𝑔𝐿

∫ ∞

0
d𝑠 𝐻 (𝑠)𝐷+

0 (𝜑/𝑣
+ − 𝑠) (B.29)

≈ 𝑔𝐷

𝑔𝐷 + 𝑔𝐿

∫ 2𝜋

0
d𝛽

1
|𝑣+ |𝐻 (𝛽/𝑣+)︸          ︷︷          ︸
= ℎ+(𝛽)

𝐷+
0

(
𝜑 − 𝛽
𝑣+

)
︸        ︷︷        ︸
=: 𝑑+(𝜑 − 𝛽)

(B.30)

≈ 𝑔𝐷

𝑔𝐷 + 𝑔𝐿
(ℎ+ ∗ 𝑑+) (𝜑). (B.31)

The approximation in eq. (B.31) is valid if the temporal filter 𝐻 is shorter than
2𝜋/𝑣+, which again holds true for our parameter choices (fig. B.11).



183

Calculation of the axon-distal input

Let us compute the axon-distal current 𝐷+
𝑖

to neuron 𝑖 for clockwise movement.
From eq. (2.2), setting the l.h.s. to zero, and splitting the rotation-cell activities in
the two populations (L-HR and R-HR), we derive

𝐷+
𝑖 (𝑡) =

∑︁
𝑗

𝑊𝑖 𝑗 (𝑡) 𝑓 [𝑉𝑎+𝑗 (𝑡)]︸                    ︷︷                    ︸
:= 𝐷𝑟𝑒𝑐+𝑖 (𝑡)

+
∑︁
𝑗

𝑊𝑅
𝑖 𝑗 (𝑡) 𝑓 [𝑉𝑅+𝑗 (𝑡)]︸                    ︷︷                    ︸
:= 𝐷𝑅+

𝑖 (𝑡)

+
∑︁
𝑗

𝑊 𝐿
𝑖 𝑗 (𝑡) 𝑓 [𝑉 𝐿+𝑗 (𝑡)]︸                    ︷︷                    ︸
:= 𝐷𝐿+

𝑖 (𝑡)

+𝐼HD
𝑖𝑛ℎ𝑖𝑏 .

(B.32)
where 𝑊R

𝑖 𝑗
(𝑊L

𝑖 𝑗
) are the weights from the right (left) rotation cells, and 𝑉𝑅+

𝑗
(𝑉 𝐿+
𝑗

)
are the voltages of the right (left) rotation cells (see eqs. (2.8)–(2.10)):

𝑉𝑅+𝑗 (𝑡) =𝐴active
𝑓max

∫ ∞

0
d𝑠 𝐻s(𝑠) 𝑓 [𝑉𝑎+𝑗 (𝑡 − 𝑠)] + 𝐼𝑣𝑒𝑙 + 𝐼HR

𝑖𝑛ℎ𝑖𝑏 (B.33)

𝑉 𝐿+𝑗 (𝑡) =𝐴active
𝑓max

∫ ∞

0
d𝑠 𝐻s(𝑠) 𝑓 [𝑉𝑎+𝑗 (𝑡 − 𝑠)] − 𝐼𝑣𝑒𝑙 + 𝐼HR

𝑖𝑛ℎ𝑖𝑏 . (B.34)

The function 𝐻𝑆 (𝑡) := exp(−𝑡/𝜏𝑠)/𝜏𝑠 is a temporal low pass filter with time constant
𝜏𝑠 and the velocity input reads (eq. (2.10))

𝐼𝑣𝑒𝑙 := 𝑣+/(2𝜋) . (B.35)

Equation (B.33) and eq. (B.34) show that the rotation-cell voltages are re-scaled and
filtered versions of the corresponding HD-cell firing rates with a baseline shift 𝐼𝑣𝑒𝑙
that is differentially applied to right and left rotation cells.

From eq. (B.32), we derive

𝑑+(𝜑) := 𝐷+
0

( 𝜑
𝑣+

)
= 𝐷𝑟𝑒𝑐+0

( 𝜑
𝑣+

)
+ 𝐷𝑅+

0

( 𝜑
𝑣+

)
+ 𝐷𝐿+

0

( 𝜑
𝑣+

)
+ 𝐼HD

𝑖𝑛ℎ𝑖𝑏 . (B.36)

Assuming a large number 𝑁HD of HD cells evenly spaced around the circle, the
recurrent axon-distal input reads

𝐷𝑟𝑒𝑐+0

( 𝜑
𝑣+

)
=

∑︁
𝑗

𝑊0 𝑗 𝑓 [𝑉𝑎+𝑗 (𝜑/𝑣+)] + 𝐼HD
𝑖𝑛ℎ𝑖𝑏 (B.37)

= 𝜌HD

∫ 2𝜋

0
d𝜃 𝑤(𝜃) 𝑓

[
𝑉𝑎+0

(
𝜑 + 𝜃
𝑣+

)
︸         ︷︷         ︸
=: 𝑣𝑎+(𝜑 + 𝜃)

]
+ 𝐼HD

𝑖𝑛ℎ𝑖𝑏 (B.38)

= 𝜌HD [𝑤 ★ 𝑓 (𝑣𝑎+)] (𝜑) + 𝐼HD
𝑖𝑛ℎ𝑖𝑏 (B.39)
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where 𝜌HD = 𝑁HD/2𝜋 is the density of the HD neurons around the circle and we used
the fact that the axon-proximal voltage is translation invariant (see also eq. (B.16)):

𝑉𝑎+𝑗 (𝜏) = 𝑉𝑎+0 (𝜏 + 𝜃/𝑣+) . (B.40)

Following a similar procedure for 𝐷𝑅+
0 and 𝐷𝐿+

0 , we obtain:

𝑑+(𝜃) =
[
𝜌HD𝑤 ★ 𝑓 (𝑣𝑎+) + 𝜌HR𝑤

𝑅 ★ 𝑓 (𝑣𝑅+) + 𝜌HR𝑤
𝐿 ★ 𝑓 (𝑣𝐿+)

]
(𝜃) + 𝐼HD

𝑖𝑛ℎ𝑖𝑏

(B.41)
where 𝜌HR = 𝑁HR/2𝜋 is the density of the HR neurons for one particular turning
direction (note that we assumed 𝜌HR = 2𝜌HD in Chapter II). In deriving eq. (B.41)
we defined

𝑣𝑅+(𝜃) := 𝑉𝑅+0 (𝑡/𝑣+) ≈ 𝐴active
𝑓max

[ℎ+𝑠 ∗ 𝑓 (𝑣𝑎+)] (𝜃) + 𝐼𝑣𝑒𝑙 + 𝐼HR
𝑖𝑛ℎ𝑖𝑏 (B.42)

𝑣𝐿+(𝜃) := 𝑉 𝐿+0 (𝑡/𝑣+) ≈ 𝐴active
𝑓max

[ℎ+𝑠 ∗ 𝑓 (𝑣𝑎+)] (𝜃) − 𝐼𝑣𝑒𝑙 + 𝐼HR
𝑖𝑛ℎ𝑖𝑏 (B.43)

where we defined the filter ℎ+𝑠 (𝜑) := 1
|𝑣+ |𝐻𝑠 (𝑡/𝑣

+), and the approximations are valid
if 𝐻𝑠 (𝑡/𝑣+) ≪ 1 for 𝑡 > 2𝜋/𝑣+, which holds true for the time contant and velocity
distribution assumed in Chapter II.

Finally, we compute the rotation-cells’ weights change. For these weights, the
learning rule is the same as the one for the recurrent connections, except that
the post-synaptic HD input is replaced by the post-synaptic HR input. Therefore,
following the same procedure as in eq. (B.17)–eq. (B.25), the rotation weight changes
are given by:

d
d𝑡
𝑤𝑅+(𝜃) = 𝜂

2𝜋
{𝜖+ ★ [ℎ+ ∗ 𝑓 (𝑣𝑅+)]}(𝜃) (B.44)

d
d𝑡
𝑤𝐿+(𝜃) = 𝜂

2𝜋
{𝜖+ ★ [ℎ+ ∗ 𝑓 (𝑣𝐿+)]}(𝜃) . (B.45)
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In summary, for clockwise movement, we obtain the following system of equations:

𝑑+(𝜃) = [𝜌HD𝑤 ★ 𝑓 (𝑣𝑎+) + 𝜌HR𝑤
𝑅 ★ 𝑓 (𝑣𝑅+) + 𝜌HR𝑤

𝐿 ★ 𝑓 (𝑣𝐿+)] (𝜃) + 𝐼HD
𝑖𝑛ℎ𝑖𝑏

𝑣𝑠𝑠+(𝜃) =
𝑔𝐷

𝑔𝐷+𝑔𝐿 (ℎ
+ ∗ 𝑑+) (𝜃)

𝑣𝑎+(𝜃) = 𝑣𝑠𝑠+(𝜃) + 𝐼𝑣𝑖𝑠 (𝜃)

𝑣𝑅+(𝜃) =
𝐴active
𝑓max

[ℎ+𝑠 ∗ 𝑓 (𝑣𝑎+)] (𝜃) + 𝐼𝑣𝑒𝑙 + 𝐼HR
𝑖𝑛ℎ𝑖𝑏

𝑣𝐿+(𝜃) =
𝐴active
𝑓max

[ℎ+𝑠 ∗ 𝑓 (𝑣𝑎+)] (𝜃) − 𝐼𝑣𝑒𝑙 + 𝐼HR
𝑖𝑛ℎ𝑖𝑏

𝜖+(𝜃) = 𝑓 [𝑣𝑎+(𝜃)] − 𝑓 [𝑣𝑠𝑠+(𝜃)]

d
d𝑡𝑤

+(𝜃) =
𝜂

2𝜋 {𝜖
+ ★ [ℎ+ ∗ 𝑓 (𝑣𝑎+)︸        ︷︷        ︸

=: 𝑝+

]}(𝜃)

d
d𝑡𝑤

𝑅+(𝜃) =
𝜂

2𝜋 {𝜖
+ ★ [ℎ+ ∗ 𝑓 (𝑣𝑅+)︸        ︷︷        ︸

=: 𝑝𝑅
+

]}(𝜃)

d
d𝑡𝑤

𝐿+(𝜃) =
𝜂

2𝜋 {𝜖
+ ★ [ℎ+ ∗ 𝑓 (𝑣𝐿+)︸        ︷︷        ︸

=: 𝑝𝐿+

]}(𝜃) .

(B.46)

Anti-clockwise movement
We now consider anticlockwise movements with speed 𝑣− = −𝑣+. First we note that
the temporal filter

ℎ−(𝜃) :=
1
|𝑣− |𝐻 (𝜃/𝑣−) = 1

|𝑣+ |𝐻 (−𝜃/𝑣+) = ℎ+(−𝜃) (B.47)

is a mirrored version about the origin of its clockwise counterpart ℎ+, whereas the
visual input is unchanged because it is symmetric around the origin (see eq. (2.5))

𝐼𝑣𝑖𝑠0 (𝜃/𝑣−) = 𝐼𝑣𝑖𝑠0 (𝜃/𝑣+) . (B.48)

Let us first assume that
𝑑−(𝜃) = 𝑑+(−𝜃) , (B.49)

we shall verify the validity of this assumption self-consistently at the end of this sec-
tion. From eq. (B.47)–eq. (B.49) it follows that 𝑓 (𝑣𝑎−) = 𝑓

[
𝑔𝐷

𝑔𝐷+𝑔𝐿 (ℎ
− ∗ 𝑑−) + 𝐼𝑣𝑖𝑠

]
is a mirrored version of 𝑓 (𝑣𝑎+), that is,

𝑓 [𝑣𝑎−(𝜃)] = 𝑓 [𝑣𝑎+(−𝜃)] , (B.50)
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and, as a result,
𝜖−(𝜃) = 𝜖+(−𝜃) . (B.51)

We now compute the anticlockwise weight change for the recurrent weights

d
d𝑡
𝑤−(𝜃) = 𝜂

2𝜋
{𝜖− ★ [ℎ− ∗ 𝑓 (𝑣𝑎−)]}(𝜃) . (B.52)

The r.h.s. of eq. (B.52), without the 𝜂/(2𝜋) pre-factor reads:

{𝜖− ★ [ℎ− ∗ 𝑓 (𝑣𝑎−)]}(𝜃) =
∫ 2𝜋

0
d𝜏 𝜖−(𝜏)

∫ 2𝜋

0
d𝑠 ℎ−(𝑠) 𝑓 [𝑣𝑎−(𝜏 + 𝜃 − 𝑠)]

(B.53)

=

∫ 2𝜋

0
d𝜏 𝜖+(−𝜏)

∫ 2𝜋

0
d𝑠 ℎ+(−𝑠) 𝑓 [𝑣𝑎+(−𝜏 − 𝜃 + 𝑠)]

(B.54)

=

∫ 2𝜋

0
d𝜏 𝜖+(𝜏)

∫ 2𝜋

0
d𝑠 ℎ+(𝑠) 𝑓 [𝑣𝑎+(𝜏 − 𝜃 − 𝑠)]

(B.55)

= {𝜖+ ★ [ℎ+ ∗ 𝑓 (𝑣𝑎+)]}(−𝜃)
(B.56)

where from eq. (B.54) to eq. (B.55) we used variable substitution. Therefore, the
weight change for clockwise movement is the mirrored version around the origin of
the weight change for anticlockwise movement:

d
d𝑡
𝑤−(𝜃) = d

d𝑡
𝑤+(−𝜃) , (B.57)

meaning that, with learning, the recurrent weights develop into an even function:

𝑤(𝜃) = 𝑤(−𝜃) . (B.58)

Let us now study the anticlockwise weight change for the rotation weights. The
rotation-cell voltages during anticlockwise movement read:

𝑣𝑅−(𝜃) = 𝐴active
𝑓max

[ℎ𝑠 ∗ 𝑓 (𝑣𝑎−)] (𝜃) − 𝐼𝑣𝑒𝑙 + 𝐼HR
𝑖𝑛ℎ𝑖𝑏 (B.59)

𝑣𝐿−(𝜃) = 𝐴active
𝑓max

[ℎ𝑠 ∗ 𝑓 (𝑣𝑎−)] (𝜃) + 𝐼𝑣𝑒𝑙 + 𝐼HR
𝑖𝑛ℎ𝑖𝑏 . (B.60)

Using eq. (B.50) in eq. (B.59) and eq. (B.60) we find

𝑣𝑅−(𝜃) = 𝑣𝐿+(−𝜃) (B.61)

𝑣𝐿−(𝜃) = 𝑣𝑅+(−𝜃) . (B.62)
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Therefore, applying the same procedure outlined in eq. (B.52)–eq. (B.56), to the
anticlockwise change in the rotation weights yields

d
d𝑡
𝑤𝑅−(𝜃) = d

d𝑡
𝑤𝐿+(−𝜃) (B.63)

d
d𝑡
𝑤𝐿−(𝜃) = d

d𝑡
𝑤𝑅+(−𝜃) , (B.64)

meaning that, during learning, the right and left rotation weights develop mirror
symmetry:

𝑤𝑅 (𝜃) = 𝑤𝐿 (−𝜃) . (B.65)

To verify that our original assumption in eq. (B.49) holds, we compute the axon-
distal input for anticlockwise movement:

𝑑−(𝜃) = [𝜌HD𝑤★ 𝑓 (𝑣𝑎−)+𝜌HR𝑤
𝑅★ 𝑓 (𝑣𝑅−)+𝜌HR𝑤

𝐿★ 𝑓 (𝑣𝐿−)] (𝜃)+ 𝐼HD
𝑖𝑛ℎ𝑖𝑏 . (B.66)

Using Eqs. B.50, B.58, B.59, B.60, B.65 in eq. (B.66), yields

𝑑−(𝜃) = 𝜌HD𝑤★ 𝑓 (𝑣𝑎+)+𝜌HR𝑤
𝐿★ 𝑓 (𝑣𝐿+)+𝜌HR𝑤

𝑅★ 𝑓 (𝑣𝑅+)] (−𝜃)+𝐼HD
𝑖𝑛ℎ𝑖𝑏 = 𝑑

+(−𝜃) .
(B.67)

Finally, using Eqs. B.57, B.63, and B.64, the total synaptic weight changes for both
clockwise and anticlockwise movement read

d
d𝑡𝑤(𝜃) = d

d𝑡𝑤
+(𝜃) + d

d𝑡𝑤
+(−𝜃)

d
d𝑡𝑤

𝑅 (𝜃) = d
d𝑡𝑤

𝑅+(𝜃) + d
d𝑡𝑤

𝐿+(−𝜃)

d
d𝑡𝑤

𝐿 (𝜃) = d
d𝑡𝑤

𝑅 (−𝜃) .

(B.68)

Averaging across speeds
So far, we have only considered head turnings at a fixed speed 𝑣+ (clockwise) and
𝑣− = −𝑣+ (anticlockwise). However, in the full model described in Chapter II,
velocities are sampled stochastically from an OU process. This random process
generates a half-normal distribution of speeds with spread 𝜎𝑣/2 (fig. B.11, left, see
also table 2.1). We thus compute the expected weight changes with respect to this
speed distribution: 

d
d𝑡 ⟨𝑤⟩𝑣 (𝜃) :=

∫ ∞
0 d𝑣 𝑝(𝑣) d

d𝑡𝑤𝑣 (𝜃)

d
d𝑡 ⟨𝑤

𝑅⟩𝑣 (𝜃) :=
∫ ∞

0 d𝑣 𝑝(𝑣) d
d𝑡𝑤

𝑅
𝑣 (𝜃)

d
d𝑡 ⟨𝑤

𝐿⟩𝑣 (𝜃) :=
∫ ∞

0 d𝑣 𝑝(𝑣) d
d𝑡𝑤

𝐿
𝑣 (𝜃)

(B.69)
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Figure B.11: Speed distribution and impact on spatiotemporal filter. Left:
assumed distribution of head-turning speeds (black) and discrete approximation
used for the simulations. The colored vertical lines indicate speeds for which the
filter ℎ+ is plotted in the right panel. Right: temporal filter ℎ+(𝜃) for several example
speeds (see vertical lines in the left panel). Note that even for the largest speeds
(blue curve) the filter decays within one turn around the circle.

where 𝑤𝑣 is the weight change for speed |𝑣+ | = |𝑣− | = 𝑣 and 𝑝(𝑣) is an half-normal
distribution with spread 𝜎𝑣/2.

Simulation of the reduced model
In this section, we show the dynamics of the reduced model numerically simulated
according to Eqs. B.46, B.68, and B.69. Weight changes are computed at discrete
time steps and integrated using the forward Euler method. At each time step we
compute the weight changes for each speed 𝑣 (eq. (B.46) and eq. (B.68)) and we
estimate the expected weight change according to eq. (B.69). We then update the
weights and proceed to the next step of the simulation. Note that eq. (B.46) requires
the firing rates of HD and HR cells at the previous time step (recurrent input, first
line of eq. (B.46)). Therefore, at each time step, we save the HD and HR firing
rates for every speed value 𝑣 and provide them as input to the next iteration of the
simulation.

Figure B.12 shows the evolution of the reduced system for 400 time steps, starting
from an initial condition where all weights are zero. One can see that from time
steps 75 to 100 the system switches from a linear regime (HD firing rates below
saturation, see top panel) to a non-linear regime (saturated HD rates). Such a switch
is accompanied by peaks in the average absolute error (third panel from the top).
Notably, the rotation weights start developing a structure only after such switch has
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occurred (see two bottom panels)—a feature that has been observed also in the full
model (fig. 2.3E).

Development of the recurrent weights

Figure B.13 provides an intuitive explanation for the shape of the recurrent-weight
profiles 𝑤 that emerge during learning. The first column shows the evolution of
the recurrent weights in the linear regime (𝑡 = 25), i.e., before the HD rates reach
saturation. In this regime, both recurrent and rotation weights are small, and the
steady-state axon-distal rate

𝑓 (𝑣𝑠𝑠) ≈ 𝑓

(
𝑔𝐷

𝑔𝐷 + 𝑔𝐿
𝐼𝑖𝑛ℎ𝑖𝑏

)
(B.70)

is flat and close to zero. Therefore, the HD output rate 𝑓 (𝑣𝑎) is dominated by the
visual input 𝐼𝑣𝑖𝑠 (eq. (B.46), third line), which has the shape of a localized bump
(panel A1). Thus the error 𝜖 has also the shape of a bump (B1). Additionally,
the post-synaptic inputs 𝑝+ and 𝑝− are shifted and filtered versions of this bump
(eq. (B.46), seventh line). The recurrent weight changes d𝑤+ and d𝑤− for clockwise
and anticlockwise movement are given by the cross-correlation of the errors 𝜖+

and 𝜖− with the post-synaptic inputs 𝑝+ and 𝑝− (panel C1; see eq. (B.46) seventh
line and eq. (B.52)). Note that because 𝑎(𝑥) ★ 𝑏(𝑥) = 𝑎(−𝑥) ∗ 𝑏(𝑥), the operation
of cross-correlation can be understood graphically as a convolution between the
mirrored first function 𝑎 and the second function 𝑏. Such a mirroring is irrelevant in
C1 (linear regime) because the error is an even function, but becomes important in
C2 (non-linear regime). As a result of this cross-correlation, the recurrent recurrent-
weight changes d𝑤+ and d𝑤− are shifted bumps (colored lines in C1), which merge
into a single central bump after summing clockwise and anticlockwise contributions
(black line in C1). Therefore, in the linear regime, the recurrent weights develop a
single central peak in the origin (panel D1).

The second column of fig. B.13 shows the development of the recurrent weights in
the non-linear regime (time step 350). Panel A2 shows that in this scenario the HD
firing-rate bumps are broader and approach saturation due to the strong recurrent
input. The coupling between the axon-distal and axon-proximal compartment acts
as a self-amplifying signal during learning which results in the activity of all active
neurons participating in the bump reaching saturation. Additionally, because the
recurrent input is filtered in time (eq. (B.46), second line), such bumps are also
shifted towards the direction of movement. Importantly, due to the lack of visual



190

A

B

C

D

E

F

Figure B.12: Training evolution of the reduced model. The figure shows from
top to bottom: A) the HD-cells’ firing rate 𝑓 (𝑣𝑎+); B) the error 𝜖 ; C) the average
absolute error; D) the recurrent weights 𝑤; E-F) the rotation weights 𝑤𝑅 and 𝑤𝐿 .
The HD firing rate and the errors (panels A-C) are averaged across speeds and and
both movement directions. The vertical dashed lines denote the time points shown
in fig. B.13 and fig. B.14.
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A1 A2

B1 B2

C1 C2

D1 D2

Figure B.13: Development of the recurrent weights. The figure provides an
intuition for the shape of the recurrent-weights profiles that emerge during learning.
Each column refers to a different time step (see also dashed lines in fig. B.12). Each
row shows a different set of variables of the model (see legends in the first column).
The figure is to be read from top to bottom, because variables in the lower rows
are computed from variables in the upper rows. Blue (orange) lines always refer to
clockwise (anticlockwise) motion. Black lines in C show the total weight changes
for both clockwise and anti-clockwise motion, i.e., d𝑤 = d𝑤+ + d𝑤−.
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input, within the receptive field the steady-state axon-distal rates are always smaller
than the firing rates. As a result, the errors 𝜖+ and 𝜖− show small negative bumps in
the direction of movement, and small positive bumps in the opposite direction (panel
B2). Additionally, the post-synaptic inputs 𝑝+ and 𝑝− shift further apart from the
origin. Consequently, the total weight change d𝑤 develops negative peaks around
60 deg (black line in C2, contrast to panel C1), and these peaks get imprinted in the
final recurrent weights’ profiles (panel D2).

Development of the rotation weights

Figure B.14 provides an intuitive explanation for the shape of the rotation-weights
profiles 𝑤𝑅 and 𝑤𝐿 that emerge during learning. The first column shows the
evolution of the rotation weights in the linear regime (𝑡 = 25), i.e., before the HD
rates reach saturation. In this regime, the rotation-cell firing rates are filtered versions
of the HD bumps but re-scaled by a factor 𝐴active/ 𝑓max ≈ 0.013 and baseline-shifted
by an amount ±𝐼𝑣𝑒𝑙 + 𝐼HR

𝑖𝑛ℎ𝑖𝑏
(eq. (B.46) lines 4 and 5; panel A1, compare to fig. B.13

panel A1. This baseline shift acts as a switch that determines from which rotation
cells population connections will be mainly drawn from, depending on the direction
of motion. Panel B1 shows that the errors 𝜖+ and 𝜖− overlap and have the shape of
a bump centered at the origin (same curves as in fig. B.13 panel B1). Additionally,
the post-synaptic potentials 𝑝𝑅± and 𝑝𝐿± in B1 are filtered versions of the curves
in A1 (eq. (B.46), lines 7 and 8). As a result, the weight changes d𝑤𝑅± and d𝑤𝐿±,
i.e., the errors cross-correlated by the post-synaptic potentials, appear similar to the
bumps in A1, but they are smoother and further apart from the origin (panel C1).
Finally, such weight changes get imprinted in the rotation weights (panel D1).

The second column shows the evolution of the rotation weights in the non-linear
regime (𝑡 = 350), i.e., after the HD rates reach saturation. In this case, the large
recurrent input gives rise to larger rotation rates (A2, compare to A1) and larger
post-synaptic potentials (B2, compare to B1). In panel B2, we can see that the errors
𝜖+ and 𝜖− show positive and negatives peaks shifted from the origin (same curves
as in fig. B.13 panel B2), which generate weight changes with both positive and
negative lobes (panel C2). Such weight changes get finally imprinted in the rotation
weights (panel D2).
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A1 A2

B1 B2

C1 C2

D1 D2

Figure B.14: Development of the rotation weights. The figure provides an intuition
for the shape of the rotation-weights profiles that emerge during learning. Each
column refers to a different time step (see also dashed lines in fig. B.12). Each row
shows a different set of variables of the model (see legends in the first column).
The figure is to be read from top to bottom, because variables in the lower rows
are computed from variables in the upper rows. Blue (orange) lines always refer to
clockwise (anticlockwise) motion.
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C.1 Context-dependent computation is not state-space efficient
The workhorse model for computational neuroscience has traditionally been context-
dependent computation, where tasks are carried out one at a time and task identity
is cued to the RNN by a one-hot vector (Mante et al., 2013). However, this approach
can be algorithmically inefficient, because as we show here it scales linearly with
the number of tasks 𝑁task, and exponentially with input dimensionality 𝐷. This
is because context-dependent computation utilizes different parts of the state space
for different tasks, and the resulting representations collapse to what is minimally
required for each task (also see (Mante et al., 2013; Yang and Wang, 2020)). This can
be detrimental for brains, which need to pack a lot of computation within a large yet
limited neural substrate. In contrast, abstract representations are general, compact
(Ma, Tsao, and Shum, 2022), can be used for any downstream task involving the
same variables, scale linearly with 𝐷, and as we show readily emerge from relatively
simple tasks.

To compare context-dependent decision making, where one task is performed at a
time (Mante et al., 2013), to multitasking, in terms of state-space usage efficiency, we
train RNNs to perform context-dependent decisions on the same tasks encountered
in Chapter III. Compared to the network in Chapter III (fig. 3.2b), the RNN now
also receives a one-hot task rule vector indicating the current task, and it outputs the
decision for that task only (fig. C.1b). We have also omitted the non-linear encoder,
making the tasks easier. We train the RNN for two tasks, one task at a time, in
interleaved batches (fig. C.1a). In one task, the RNN is required to decide which
stream has more evidence, and at the other whether the sum of evidence across
streams exceeds a certain decision threshold (here 0).

We find that in this setting the network is not incentivized to learn abstract represen-
tations. Instead a separate line attractor is present in the dynamics for each task (red
and orange x’s in fig. C.1c); one of them is presumably tracking the difference of
evidence (similar to Yang and Wang (2020) but for independent evidence streams)
and the other the sum of evidence. That is to say, the task rule biases the network
to learn different computations in separate regions of state space, as in Mante et
al. (2013). As a result, the 2D latent space has collapsed and cannot be decoded
from network activity; therefore generalization to any task that involves these two
variables is not possible.

It follows that the network can be inefficient in terms of state space usage, because
instead of compressing all of its activity around the same region, it spreads it across
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Figure C.1: Representations in an RNN trained in context-dependent decision
making. (a) We trained RNNs for two classification tasks: two-alternative forced
choice (where the decision boundary is the 𝑥1 = 𝑥2 line) and evidence integration
(corresponding to the 𝑥1 = −𝑥2 line). Each task corresponds to a different one-hot
task rule vector. (b) Network architecture. In addition to the inputs in fig. 3.2b,
the network also a one-hot vector indicating the current task. (c), Top 3 PCs of
RNN activity example trials (40 in total). The task rule biases the network towards
learning separate solutions in different parts of the state space for different tasks,
in the form of separate line attractors; red x’s for two-alternative forced choice and
orange x’s for evidence integration.

multiple regions, one for each task, which scales badly (linearly with the number
of tasks 𝑁task and exponentially with input dimensionality 𝐷). To demonstrate
the latter, imagine a family of tasks with classification boundaries of the form
⊕ 𝑥1 ⊕ 𝑥2 ⊕ ..⊕ 𝑥𝐷 = 0, where ⊕ ∈ {+1,−1, 0} is an operator indicating contribution
with a positive sign, negative sign or absence of contribution for a factor to a
specific task, respectively. As just shown, each one of this tasks will require
its own line attractor, resulting in a total of 3𝐷 line attractors lying in separate
regions of the state space, just for this simple family of tasks. As mentioned in
Chapter III, such inefficiency can be detrimental for brains, which need to pack
a lot of computation within a large yet limited neural substrate. Compare that
to multitasking, which builds representations that can serve any task that involves
the same latent variables, scaling linearly with 𝐷 (as we saw that we only need
𝑁task ≥ 𝐷 to learn them). Note that context-dependent computation can still be
efficient, if tasks have a compositional structure where the solution for one task is
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part of the solution for another (Yang et al., 2019; Driscoll, Shenoy, and Sussillo,
2022); in this case, representations developed for the former can act as a scaffold for
representations for the latter.

Overall, we believe that multitasking may present a paradigm swift for generalizable
representation learning in biological and artificial systems alike. That is not to say
that context-dependent representations are not useful; they are great at leveraging
the compositional structure of tasks (Yang et al., 2019; Driscoll, Shenoy, and
Sussillo, 2022), but tend to overfit to the specifics of the task, while multitask
representations serve as world models applicable to various scenarios. Both types
of representations are likely to be found in the brain. One possibility is that context-
dependent representations may emerge as a first quick solution to a task, while
disentangled representations come about with more experience or when more tasks
are performed over time to support better generalization.

C.2 Robustness to other noise distributions and correlated inputs
We here show that our setting is robust to Gaussian anisotropic and autocorrelated
noise, and other asymmetric distributions of noise (Gumbel) whose CDF no longer
matches the sigmoid functions in shape, with almost no drop in performance, and
correlated inputs. This demonstrates that abstract representations are also learned
outside of the specific assumptions made by our theory.

Starting from anisotropic noise, we observe that doubling the standard deviation
of noise across one dimension (𝜎 = 0.4) does not result in a reduction in OOD
generalization performance (median 𝑟2 = 0.96 for 𝑁task = 24, 𝐷 = 2). This is in
line with our theory that can be extended to cover anisotropic noise (Lemma C.6.11).
Non-IID noise should not be a problem either, since we are training our network for
many samples and the effects of correlations will cancel out over long ensembles.
Indeed, we find that including autocorrelated AR(1) noise with an AR coefficient of
0.7 results in only minor reduction in performance (median 𝑟2 = 0.95 for 𝑁task = 24,
𝐷 = 2).

We were also curious to see the impact of correlated inputs. A problem with high
correlations is that they render parts of the state space virtually invisible to the
network (fig. C.2a). Surprisingly, OOD generalization performance is very weakly
affected by input correlations, even though the state space is sampled uniformly
in test (fig. C.2b). The behavior is highly non-linear: performance is great until
𝜌 = 0.97, but for perfectly correlated inputs (𝜌 = 1), the performance drop is sharp.
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Figure C.2: Disentanglement and factor correlations. (a) We introduce strong
correlations in the latent factors, rendering parts of the state space virtually invisible
to the network during pre-training (trained for a total of 24 classification tasks). (b)
Despite that, generalization performance is excellent for correlations very close to
1. Once the factors are perfectly correlated, performance drops significantly. This
implies that the network can learn an abstract representation from correlated inputs,
as long as there is some signal about the factors independently. This finding goes
beyond (Johnston and Fusi, 2023) to show that the multi-task learning setting allows
OOD generalization when the distribution during training the RNN itself is vastly
different that the one during testing.

Finally, our theory pointed out sigmoid functions as a choice for activation function
because of their close resemblance to the Gaussian CDF, resulting in the best OOD
𝑟2. Still we find that for an asymmetric noise distribution (Gumbel) whose CDF does
not match sigmoid functions well, there is only a slight drop in performance (median
𝑟2 = 0.95 from 0.96). Therefore the conditions for the activation function/CDF
should be quite lax; any monotonic bijective function should work with small
performance drop. This drop in performance is because the representation would
be “stretched out” and “compressed” in a non-linear manner in regions where
there is discrepancy between the noise CDF and the activation function. But this
nonlinear squishing (determined by the term Φ−1(𝑔(Z(𝑡)))) would be geometrically
inoffensive — no cutting or gluing together would be required to map from Z(𝑡)
to a linear representation of 𝜇(𝑡). As a result, the representations would remain
approximately linearly decodable. Monotonicity and bijectivity are quite mild
assumptions for the activation function used by neurons in the brain.

C.3 Nonlinear classification boundaries and interleaved learning
In Chapter III we trained networks on linear classification boundaries. The tasks are
still non-linear, since the encoder renders these boundaries non-linear to the network.
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However, there are cases where the latent factors themselves might need to be
combined non-linearly, to make decisions. For instance, if the two factors represent
the amount and probability of reward, respectively, an agent needs to multiply the
two and decide whether the expected value exceeds a certain (metabolic) cost 𝛾 of
performing an action to obtain said reward. Figure C.3a shows the classification lines
for the multiplicative task, where the network should decide whether the ground truth
x∗ lies above or below the curve 𝑥1 𝑥2 = 𝛾, for multiple values of 𝛾. This family of
tasks is not covered by theorem C.6.6, because they violate the injectivity condition.
Hence, we wondered how the representation would look like if the network was
trained on both the linear and multiplicative boundaries, as animals do.

Figure C.3: Interleaved learning of linear and non-linear boundaries. (a) Clas-
sification lines for the multiplicative task. There is a total of 48 classification lines,
12 per quadrant. (b) The network learns an abstract representation when trained for
the linear and multiplicative boundaries in interleaved batches.

For that we perform interleaved training of both tasks (i.e., train in batches sampled
from one of the tasks at a time), a setting where neural networks excel at, compared to
humans who excel at blocked training, where tasks are learned sequentially (but see
Flesch et al. (2022)). Figure C.3b shows that the network still learns an abstract, two-
dimensional continuous attractor. OOD generalization for this network is excellent,
and almost identical to ID performance (median 𝑟2 = 0.94, 0.97, respectively).
Overall, we conclude that our framework extends to interleaved learning of a mixture
of linear and nonlinear boundaries, which better reflects the challenges encountered
by agents in the real world. Note that during interleaved training, linear and non-
linear tasks are not performed simultaneously; yet they are in immediate succession
which can also place pressure to the network to gradually learn representations
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that satisfy all tasks. The relation between multi-task and interleaved learning is a
promising topic for future research.

C.4 Abstract representations are learned for a free reaction time, integrate
to bound task

In Chapter III we trained networks to produce a response at the end of the trial.
However, in many situations agents are free to make a decision whenever they are
certain enough. Therefore, we here seek to extend our framework to free reaction
time (RT) decisions. A canonical model accounting for choices and reaction times
in humans and animals is the drift-diffusion model (Krajbich, Armel, and Rangel,
2010; Brunton, Botvinick, and Brody, 2013). It is composed of an accumulator that
integrates noisy evidence over time, until a certain amount of certainty, represented
by a bound, is reached, triggering a decision. In the linear classification task setting,
the accumulated amount of evidence at time 𝑡 for a line with slope 𝛼, 𝐴𝛼 (𝑡) is given
by:

𝐴𝛼 (𝑡) = 𝐴𝛼 (𝑡 − 1) + 𝑋1(𝑡) − 𝛼 𝑋2(𝑡). (C.1)

Figure C.4: Free reaction time task. (a) Data generating process. Every classi-
fication line from fig. 3.2a now corresponds to an accumulator (see corresponding
colors), and the desired output for the RNN is the accumulator values for the entire
trial. The accumulator is quantized to integer values between±5. (b) Representation
for RNN trained on free reaction time task. The network learns a two-dimensional
continuous attractor, similar to fig. 3.3d. A 3D rotating figure to better visualize this
representation is provided in the Supplementary Material. (c) OOD generalization
performance for the free reaction time (RT) task. Free RT outperforms fixed RT for
a small number of tasks.

Intuitively, 𝐴𝛼 (𝑡) reflects the amount of confidence at time 𝑡 that the ground truth x∗

lies above or below the classification line with slope 𝛼. Essentially, the network has
to explicitly report distance from the classification lines, not just in which side of the
line x∗ lies for that trial. We set the decision bound to ±5, and plot the accumulators
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𝐴𝛼 for all lines in fig. 3.2a. Note that once the bound is reached a decision is
effectively made and 𝐴𝛼 is kept constant. Also, instead of using continuous values,
we quantize 𝐴𝛼, because it is going to be used as target signal to train the network,
and we do not want to introduce a strong inductive bias towards integrating the
evidence streams.

We then train the RNN to reproduce confidence estimates from fig. C.4a for the entire
trial. Compared to previous experiments, the fixation input is no longer available
to determine when to produce a decision. Instead, decisions evolve dynamically
throughout the trial. We also use a MSE loss, change the activation function to
𝑔 = 5 tanh, and the Adam learning rate 𝜂0 = 3 ∗ 10−3, but all other parameters
remain the same as in Chapter III. To have a closer correspondence to the free
RT experiments here, we also train the fixed RT task from Chapter III with MSE
loss, symmetric labels y(x∗) ∈ {−1, +1}𝑁task and output non-linearity 𝑔 = tanh. We
find that the change of objective and loss only has minor effects on generalization
performance.

Figure C.4b shows that in this setting the network still learns a two-dimensional con-
tinuous attractor of the latent space. Furthermore, the free RT outperforms the fixed
RT network from Chapter III (fig. C.4c) for a small number of tasks, since it is explic-
itly required to report distance from the classification lines. However, as our theory
shows (Lemma C.6.3)) the fixed RT network is also implicitly reporting distance
from the boundaries, when behaving like an optimal multi-task classifier, which
explains the similar performance for a larger number of tasks. Overall, we showed
that our setting accounts for naturalistic free RT decisions, and provides theoretical
justification for the importance of confidence signals in the brain (Rutishauser et al.,
2018; Masset et al., 2020).

The importance of the confidence (i.e., calibrated likelihoods) of a network’s output,
is a recurring theme in machine learning too (e.g., knowledge distillation (Bhargava
et al., 2024)). We here show that confidence fundamentally connects to how
neural networks construct world models, either directly (integrate-to-bound task
here) or indirectly (classification tasks in Chapter III). Under this framework, knowl-
edge distillation can be cast as smaller models directly copying the world models
(logits) of larger ones.
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C.5 Quantification of sparsity
In Chapter III, we observed that RNN representations are sparse. We here seek
to more precisely quantify the sparsity in these networks, and investigate how it is
affected by the number of tasks 𝑁task, latent dimensionality 𝐷, and specific recurrent
architecture. To do so, we sample 𝑛 = 1000 ground truth vectors x∗ randomly for
every network, and compute the sparseness (Vinje and Gallant, 2000) of a neuron
in the hidden layer as:

𝑆 =

1 −
(∑(𝑧𝑖/𝑛)2∑(𝑧2

𝑖
/𝑛)

)
1 − 1

𝑛

∗ 100 % (C.2)

where 𝑧𝑖 is the steady-state response of the neuron to ground-truth stimulus 𝑖. Sparse-
ness ranges from 0 to 100 %, with greater sparseness indicating greater selectivity
of the neuron to stimuli. Then, the sparsity of a network is given as the average of
the sparseness of all its neurons.

Figure C.5: Quantification of sparsity as a function of 𝑁task, 𝐷 and recurrent
architecture choice. (a) Sparsity of a recurrent network as a function of number of
tasks and network architecture. Five networks trained for each network configura-
tion. Greater levels of sparsity indicate that the network activations are more sparse.
(b) Sparsity of RNNs as a function of number of tasks and latent dimensionality 𝐷.
Five network are trained for each combination of (𝑁task, 𝐷).

Figure C.5a shows that RNNs and non-leaky RNNs are very sparse, with sparsity
values around 90 % for different values of 𝑁task, supporting the claim in Chapter III.
LSTMs on the other hand, which are less brain-like1, have lower sparsity values,
although interestingly sparsity increases with 𝑁task. Notably, we did not do anything

1LSTMs architecturally enforce intricate, high-capacity multiplicative gating mechanisms, while
in biological neural networks gating has to be learned. For other aspects of biological implausibility
of LSTMs compared to RNNs, see Appendix B in (Soo, Goudar, and Wang, 2023).
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to promote sparsity (e.g., regularization) in these networks. Therefore we conclude
that sparsity naturally emerges from the optimization objective of multitask learning,
particularly in architectures that are more brain-like.

Next we wondered how latent space dimensionality 𝐷 would affect sparsity in our
trained RNNs. Figure C.5b shows that networks remain very sparse for the whole
range of dimensionality 𝐷 tested in Chapter III, with sparsity values above 75 %.
Greater dimensionality results in less sparsity on average, which is expected since
𝑁neu = 64 in our networks, therefore a significant amount of their capacity must be
used as 𝐷 increases. This effect plays in only as 𝑁task increases, as networks will
only learn to disentangle the input dimensions that are spanned by the tasks, as our
theory predicts. Overall, there seems to be a proportional relationship between the
number of active neurons and dimensionality 𝐷, as long as there are enough tasks
to uncover the 𝐷 latents.
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C.6 Theoretical Derivations
Here we prove our main theoretical result outlined in Section 3.3.

High-level summary of proof We prove that competence at 𝑁task tasks guaran-
tees linear decodability when 𝑁task ≥ 𝐷 for non-degenerate tasks (theorem C.6.5),
and orthogonality when 𝑁task ≫ 𝐷 and task boundaries are sampled randomly
(Corollary C.6.10). To that end, we first show that optimal evidence aggregation in
a multi-task classification framework enforces the multi-task classifier to encode a
notion of distances from classification lines (Lemma C.6.3). Given a suitable set of
distances from classification lines, we show that one can uniquely identify an opti-
mal estimate of the latents given noisy data in closed form (Trilateration Theorem,
Theorem C.6.4). In addition, if the readout function of the multi-task classifier is
sigmoid-like, the optimal estimate will be approximately linearly decodable from
the representation (Corrolary C.6.8,C.6.9). We then prove by contradiction that
all the above results hold when an arbitrary injective observation map 𝑓 is applied
to the input after noising (theorem C.6.6). The theory generalizes to sub-optimal
classifiers via least-mean squares approximation and the Moore-Penrose Pseudoin-
verse (theorem C.6.7), and to different noise distributions (Section C.6). Finally, we
discuss implications of the theorem for representation learning, manifold learning
and the Platonic representation hypothesis, and future directions (Section C.6).

Notation: lower case variables denote scalars (e.g., 𝑥), upper case variables denote
random variables (e.g., 𝑋), and boldfaced variables denote vector quantities (e.g.,
x,X). We denote the 𝐷 × 𝐷 identity matrix as I𝐷 .

Variable Glossary:

• x∗ ∈ R𝐷 : Ground truth (un-noised) input variable of dimension 𝐷.

• X(𝑡) ∼ x∗ + 𝜎N(0, I𝐷) are i.i.d. noisy measurements of x∗, where

– 𝜎 is the amount of equivariant Gaussian noise, and

– 𝑡 is the discrete time index within a trial.

• 𝑓 : R𝐷 → Z : An injective observation map that transforms the noisy
measurements X(𝑡) before they reach the latent state Z(𝑡) of the optimal
estimator. The map 𝑓 is injective, meaning that it preserves the uniqueness of
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Figure C.6: Bayesian graphical model framework representing our theoretical
framework for multi-task classification. The agent with latent state Z(𝑡) estimates
the ground truth decision output y(x∗) ∈ {0, 1}𝑁task from noisy observations X(𝑡)
transformed by injective observation map 𝑓 . We prove that latent state Z(𝑡) must
encode an optimal, linearly decodable estimate of the de-noised environment state
x∗ when the decision boundary normal vectors {c𝑖}𝑁task

𝑖=1 span R𝐷 .

the input, i.e., if 𝑓 (x1) = 𝑓 (x2), then x1 = x2. The codomain Z can be any
suitable space, such as C𝑀 , R∞, or other spaces.

• 𝑁task is the number of classification tasks,

• {(c𝑖, 𝑏𝑖)}𝑁task
𝑖=1 are the classification boundary normal vectors and offsets re-

spectively, with c𝑖 ∈ R𝐷 and 𝑏𝑖 ∈ R. We assume each ∥c𝑖∥ = 1.

• (C, b) are a matrix and vector representing each of the 𝑁task classification
tasks where C ∈ R𝑁task×𝐷

• y(x∗) ∈ {0, 1}𝑁task : Ground truth classification outputs, where each ground
truth classification 𝑦𝑖 (x∗) is given by

𝑦𝑖 (x) =


1 if c⊤
𝑖

x > 𝑏𝑖
0 otherwise

(C.3)

• Z(𝑡) : Latent variable of a multi-task classification model, conditional on
X(1), . . . ,X(𝑡).

• 𝑔 : Map from latent state Z(𝑡) to multi-task classification estimates Ŷ(𝑡). For
most of our experiments, readout map 𝑔 = sigmoid, for instance.
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• Ŷ(𝑡) := 𝑔(Z(𝑡)) ∈ [0, 1]𝑁task : Output vector of the multi-task classification
model at time 𝑡, where each 𝑌𝑖 (𝑡) is a Bernoulli random variable estima-
tor, estimating the conditional probability Pr{𝑦𝑖 (x∗) = 1} given the noisy
observations (via latent variable Z(𝑡) – see Equation C.4).

• X̂(𝑡) = N(𝜇(𝑡), Σ(𝑡)) : Optimal estimate of x∗ given measurements X(1), . . . ,X(𝑡),
derived in Lemma C.6.1.

Problem Statement: We consider optimal estimators of y(x∗) in the multi-
classification paradigm in Equation C.4, shown graphically in Figure C.6.

x∗ → X(1), . . . ,X(𝑡)
𝑓
→ Z(𝑡)

𝑔
→ Ŷ(𝑡) (C.4)

Contribution: We prove in Theorem C.6.6 (“Optimal Representation Theorem”)
that any optimal estimator of y(x∗) described above will represent an optimal esti-
mate of x∗ in latent state Z(𝑡). We begin by proving results on optimal estimators in
Sections C.6, C.6 with identity observation map 𝑓 , developing the linear case of the
optimal representation theorem (Theorem C.6.5) showing that the latent state Z(𝑡)
must encode an estimate of x∗ (visualized in Figure C.7). We generalize this result
any injective observation map 𝑓 in Section C.6 and derive closed-form solutions
for extracting the estimate of x∗ from Z(𝑡). We derive approximation results for
𝑔 = tanh in Corollary C.6.8 and 𝑔 = sigmoid in Corollary C.6.9 that show the
representation of x∗ in Z(𝑡) will be linear-affine decodable if 𝑔 is in the sigmoid
family of functions.

Single Decision Boundary
First, we will derive 𝑌 (𝑡) for a single decision boundary with parameters (c, 𝑏). We
focus on 𝑃(𝑌 (𝑡) |X(1), . . . ,X(𝑡)), reintroducing the latent variable Z(𝑡) later on.

Since 𝑦(x∗) is a deterministic function of non-random variable x∗, we will derive the
probability distribution over 𝑃(x∗ |X(1), . . . ,X(𝑡)) – denoted X̂(𝑡) – to determine
𝑌 = 𝑦(X̂(𝑡)). 2

Lemma C.6.1. Assuming no prior on x∗, the conditional probability distribution
X̂(𝑡) ∼ 𝑃(x∗ |X(1), . . . ,X(𝑡)) is given by

X̂(𝑡) = N(𝜇(𝑡), Σ(𝑡)) (C.5)
2Note that the intermediate computation of X̂(𝑡) does not imply that a system must compute this

value to predict 𝑌 , as the full computation of X̂(𝑡) may not be necessary to determine 𝑌 (𝑡).
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Figure C.7: An overview of the classification process using an RNN with Gaus-
sian noisy observations. The ground truth x∗ generates the noisy observations
{X(1), ...,X(𝑡)}. These observations are processed by the filter-based model illus-
trated graphically in Figure C.6, maintaining a latent state Z(𝑡). The latent state
Z(𝑡) is then used to produce classification outputs 𝑌1(𝑡) and 𝑌2(𝑡). Theorem C.6.6
proves that Z(𝑡) must encode an estimate of x∗, visualized in this figure, shown as
X̂∗, including its mean 𝜇(𝑡), which is the optimal estimator for x∗ given the noisy
observations.

where 𝜇(𝑡) = mean(X(1), . . . ,X(𝑡)) and Σ(𝑡) = 𝑡−1𝜎2I𝐷 .

Proof. Since X(1), . . . ,X(𝑡) are i.i.d. from a Gaussian distribution with mean x∗ and
identity covariance, the sample mean is known to be distributed normally centered
at the ground truth x∗. We apply the known standard deviation of the underlying
distribution (identity covariance scaled by 𝜎) to arrive at Σ(𝑡) = 𝑡−1𝜎2I𝐷 as the
variance on the sample mean (derived from the central limit theorem).

We can use estimator X̂(𝑡) to construct Ŷ(𝑡) by expanding Ŷ(𝑡) = 𝑦(X̂(𝑡)) via
Equation C.3.

In essence, we are interested in the amount of the probability density of X̂ that lies
on each side of the decision boundary. Deriving this probability is simplified by the
fact that X̂ is isotropic—i.e., it inherits the spherical covariance of the underlying
data generation process (Lemma C.6.2).

Lemma C.6.2. X̂(𝑡) = N(𝜇(𝑡), Σ(𝑡)) with isotropic covariance Σ(𝑡) = 𝑡−1𝜎2I𝐷
and mean 𝜇(𝑡) ∈ R𝐷 . The probability density of X̂(𝑡) on the positive side of the
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decision boundary {x : c⊤x > 𝑏} can be expressed as

𝑌 (𝑡) ≜ Pr{c⊤x∗ > 𝑏} = Φ(𝑘
√
𝑡/𝜎) (C.6)

where Φ is the CDF of the normal distribution and 𝑘 = c⊤𝜇(𝑡) − 𝑏 is the signed
projection distance between the decision boundary and the mean 𝜇(𝑡) of X̂(𝑡).

Proof. Since the X̂(𝑡) is isotropic, the variance on every axis is equal and indepen-
dent. We may rotate our coordinate system such that the projection line between
the plane and the mean of X̂(𝑡) aligns with an axis we denote as “axis 0.” The rest
of the axes must be orthogonal to the plane. Since each component of an isotropic
Gaussian is independent, the marginal distribution of X̂(𝑡) on axis 0 is a univariate
Gaussian with variance 𝑡−1𝜎2 mean at distance 𝑘 from the boundary. Equation C.6
applies the normal distribution CDF Φ to determine the probability mass on the
positive side of the boundary.

Observe that 𝑌 (𝑡) in Equation C.6 monotonically scales with the signed distance 𝑘
between the hyperplane and 𝜇(𝑡) (CDFs are monotonic).

Lemma C.6.3. Knowledge of time 𝑡 and optimal classification estimate𝑌 (𝑡) is suffi-
cient to determine the projection distance 𝑘 between 𝜇(𝑡) = mean

(
X(1), . . . ,X(𝑡)

)
and the decision boundary (c, 𝑏).

Proof. Recall Equation C.6 from Lemma C.6.2. We may solve for projection
distance 𝑘 separating the decision boundary and the mean 𝜇(𝑡) of observations
X(1), . . . ,X(𝑡) as

𝑘 =
𝜎
√
𝑡
Φ−1(𝑌 (𝑡)) (C.7)

Since Φ is the CDF of the normal distribution, and the normal distribution is not
zero except at ±∞, the inverse Φ−1 is well-defined.

Note that non-zero noise is required for Lemma C.6.3 to hold, as zero noise would
yield zero probability mass on one side of each decision boundary, meaning that no
distance information would be recoverable from 𝑌 (𝑡) (and eq. (C.7) would lead to a
0 · ∞ indeterminacy).
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Trilateration via Multiple Decision Boundaries
To recap Section C.6 : We derived an optimal estimator of x∗ (denoted X̂(𝑡))
based on noisy i.i.d. measurements X(1), . . . ,X(𝑡) ∼ N (x∗, 𝜎2I𝐷) in Lemma C.6.1.
In Lemma C.6.2 we derived the equation for Bernoulli variable estimator 𝑌 (𝑡) to
estimate a single classification output 𝑦(x∗) based on the same noisy measurements
via X̂(𝑡). Finally, we showed in Lemma C.6.3 that the uncertainty in 𝑌 (𝑡) and
the time 𝑡 is sufficient to determine the projection distance between the decision
boundary and 𝜇(𝑡) = mean(X(1), . . . ,X(𝑡)) via Equation C.7.

Let Ŷ(𝑡) denote the vector of classification estimates 𝑌 (𝑡) from Equation C.7. We
now have the tools to prove our final result via trilateration. Much like distance
information from cell towers can be used to trilaterate3 one’s position, we will
leverage Lemma C.6.3 and use distances from decision boundaries {(c𝑖, 𝑏𝑖)}𝑖∈[𝑁task]

to constrain the positions.

Theorem C.6.4 (Trilateration Theorem). If C ∈ R𝑁𝑡𝑎𝑠𝑘×𝐷 is full-rank and 𝑁𝑡𝑎𝑠𝑘 ≥
𝐷, then Ŷ(𝑡), 𝑡, b, and C are sufficient to reconstruct the exact value of 𝜇(𝑡), the
mean of X(1), . . . ,X(𝑡), which is also the optimal estimator for x∗.

Proof. We may prove this claim by providing an algorithm to reconstruct 𝜇(𝑡) =

mean(X(1), . . . ,X(𝑡)) from Ŷ(𝑡),C, and 𝑡. Invoke Lemma C.6.3 to compute the
signed projection distance between 𝜇(𝑡) and each decision plane (c𝑖, 𝑏𝑖). Let k =

[𝑘1, . . . , 𝑘𝑁𝑡𝑎𝑠𝑘
]⊤ where each 𝑘𝑖 corresponds to decision boundary c𝑖. Then the

mean 𝜇(𝑡) must satisfy
C𝜇(𝑡) = k + b (C.8)

Thus, for full rank C and 𝑁𝑡𝑎𝑠𝑘 ≥ 𝐷, we will have a uniquely determined 𝜇(𝑡)
value.

Sufficient statistics and optimal estimators: “A statistic 𝜇(𝑡) is called sufficient
for x∗ if it contains all the information in X(1), . . . ,X(𝑡) about x∗.” (from Cover and
Thomas’ Elements of Information Theory, 1999, Section 2.10, substituting variable
names).

3Trilateration differs from triangulation, and it is more frequently used in practice. Triangulation
is when one has angle information w.r.t. the cell towers. Usually, this is not available – so one
trilaterates their position Oguejiofor et al., 2013. This more closely matches our setting, where we
just have distances information w.r.t. the decision boundaries and must determine the position.
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More formally, “A function 𝑇 (X(1), . . . ,X(𝑡)) is said to be a sufficient statistic rela-
tive to the family [of probability density functions indexed by x∗] 𝑓 (X(1), . . . ,X(𝑡) |x∗)
if X(1), . . . ,X(𝑡) is independent of x∗ given 𝑇 (X(1), . . . ,X(𝑡)), i.e.,

x∗ → 𝑇
(
X(1), . . . ,X(𝑡)

)
→ X(1), . . . ,X(𝑡)

forms a Markov chain. This is the same as the condition for equality in the data
processing inequality,

𝐼 (x∗; X(1), . . . ,X(𝑡)) = 𝐼 (x∗; 𝜇(𝑡))

for all distributions on x∗. Hence sufficient statistics preserve mutual information and
conversely." (Cover and Thomas’ Elements of Information Theory, 1999, Section
2.10, substituting variable names)

𝜇(𝑡) = mean(X(1), . . . ,X(𝑡)) is a sufficient statistic for x∗ given measurements
X(𝑖) ∼ x∗ + 𝜎N(0, I𝐷): For Gaussian noise, it is a well known result that the
sufficient statistic for the underlying mean given i.i.d. samples is the sample mean
of the observations (Cover and Thomas, Elements of Information Theory, 1999,
Section 2.10).

Theorem C.6.5 (Optimal Representation Theorem, Linear Case). Any system that
optimally estimates classification probabilities Ŷ(𝑡) based on noisy measurements
{X(1), . . . ,X(𝑡)}must implicitly encode a representation of 𝜇(𝑡) = mean(X(1), . . . ,X(𝑡))
in its latent state Z(𝑡) if decision boundary matrix C is full rank and 𝑁𝑡𝑎𝑠𝑘 ≥ 𝐷.

Proof. We showed in Theorem B.4 (Trilateration Theorem) that if C ∈ R𝑁𝑡𝑎𝑠𝑘×𝐷 is
full-rank and 𝑁𝑡𝑎𝑠𝑘 ≥ 𝐷, then Ŷ(𝑡), 𝑡, b, and C are sufficient to reconstruct the exact
value of 𝜇(𝑡), the mean of X(1), . . . ,X(𝑡). Rearranging Equation 16 and applying
Equation 15,

𝜇(𝑡) = (C⊤C)−1C⊤( 𝜎√
𝑡
Φ−1(Ŷ(𝑡)) + b)

Replacing Ŷ(𝑡) = 𝑔(Z(𝑡)) from our problem setup reveals that 𝜇(𝑡) is a deterministic
function of Z(𝑡).

Therefore, optimal multi-task classifier latent state Z(𝑡) contains a sufficient statistic
𝜇(𝑡) of x∗, which implies that Z(𝑡) must also contain all information about x∗ given
noisy measurements X(1), . . . ,X(𝑡) if C ∈ R𝑁𝑡𝑎𝑠𝑘×𝐷 is full-rank and𝑁𝑡𝑎𝑠𝑘 ≥ 𝐷.
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Theorem C.6.5 boils down to the observation that the confidence associated with
each𝑌𝑖 in Ŷ(𝑡) are measures of distance between an implied estimate of x∗ (denoted
𝜇(𝑡)) and classification boundary 𝑖 (denoted (c𝑖, 𝑏)). Ŷ specifies the position of
X̂ = 𝜇 via “coordinates” defined by decision boundary normal vectors c1, . . . , c𝑁task .

For sub-optimal estimators of Ŷ, we may still obtain an understanding of the im-
plied estimate X̂ using the same methods. In fact, the machinery of least-squares
estimation for Ax = b provides a readily accessible formula for �̃� in sub-optimal
estimators of Ŷ (Equation C.8) in the form of the Moore-Penrose pseudoinverse:

�̃� = (C⊤C)−1C⊤(k + b) (C.9)

Conveniently, if the estimation errors in sub-optimal Ŷ have a mean of zero, addi-
tional decision boundaries in C (e.g., beyond the minimum 𝐷 linearly independent
boundaries) result in improved estimation of x∗ by the central limit theorem, thus
generalizing our results to sub-optimal estimators (see Corollary C.6.7).

Optimal Representation Theorem (General Case)
We extend the results from the linear case (Theorem C.6.5) to the general case where
observations are transformed by an injective observation map 𝑓 in Theorem C.6.6.

Theorem C.6.6 (Optimal Representation Theorem). Let x∗ ∈ R𝐷 be a latent rep-
resentation for linear binary classification task y(x∗) ∈ {0, 1}𝑁task and X(𝑡) =

𝑓 (x∗ + 𝜎N(0, I𝐷)) be noisy observations transformed by an injective observation
map 𝑓 .

If C ∈ 𝑁task × 𝐷 is a full-rank matrix representing the decision boundary normal
vectors in R𝐷 and 𝑁task ≥ 𝐷, then any optimal estimator of y(x∗) must encode an
optimal estimator 𝜇(𝑡) of the latent variable x∗ in its latent state Z(𝑡). Furthermore,
𝜇(𝑡) is a sufficient statistic of x∗, ensuring that all the information about x∗ contained
in {X(𝑡)} is also contained in Z(𝑡). Consequently, 𝜇(𝑡) – the optimal estimate of
x∗ based on 𝑓 (X(1)), . . . , 𝑓 (X(𝑡)) – can be written as a deterministic function
(Equation C.10) of latent state Z(𝑡).

𝜇(𝑡) = (C⊤C)−1C⊤
(
𝜎√
𝑡
Φ−1 (𝑔(Z(𝑡))

)
+ b

)
(C.10)
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Proof. We use proof by contradiction to extend the linear case of the general repre-
sentation theorem to account for injective observation maps 𝑓 that map X(𝑡) before
they are input to Z(𝑡). Assume toward a contradiction that there exists a superior
way of computing 𝑌 based on injectively mapped 𝑓 (X(𝑡)) other than learning 𝑓 −1

and following the same procedure as when X(𝑡) was fed in directly (which we de-
rived the optimal estimator for in Lemma C.6.1 and Lemma C.6.2). This assumption
implies there is some additional information in 𝑓 (X(𝑡)) that is not in X(𝑡), violating
the data processing inequality.

Formally, consider the following Markov chain:

x∗ → {X(1), . . . ,X(𝑡)}
𝑓
→ Z(𝑡) → Ŷ(𝑡) → 𝜇(𝑡). (C.11)

Since 𝑓 is injective, 𝑓 −1 exists, making 𝑓 (X(𝑡)) → X(𝑡) an equivalent transforma-
tion in terms of information content. Hence, any optimal estimator that processes
𝑓 (X(𝑡)) can only perform as well as if it had directly processed X(𝑡).

To complete the proof, we show that 𝜇(𝑡) can be reconstructed from Z(𝑡). Given the
full-rank matrix C, we can use the same trilateration process as in the linear case.
The optimal estimate 𝜇(𝑡) can be written as:

𝜇(𝑡) = (C⊤C)−1C⊤
(
𝜎√
𝑡
Φ−1 (𝑔(Z(𝑡))

)
+ b

)
, (C.12)

where 𝑔(Z(𝑡)) represents the transformation from the latent state to the classification
probabilities.

Since 𝜇(𝑡) is the optimal estimator (and sufficient statistic) for x∗ given measure-
ments {X(1), . . . ,X(𝑡)}, it contains all information about x∗ contained in the mea-
surements (Cover and Thomas, 1991). In other words, 𝜇(𝑡) is a deterministic
function of Z(𝑡), implying that Z(𝑡) will contain all information about x∗ contained
in the measurements {X(𝑡)}.

Corollary C.6.7 (Recovery of 𝜇(𝑡) for Sub-Optimal Classifiers). Let Ŷ(𝑡) ∈ [0, 1]𝑁task

represent the output of a sub-optimal classifier with zero-mean independent errors,
i.e., 𝑌𝑖 (𝑡) = Pr{𝑦𝑖 (x∗) = 1} + 𝜖𝑖, where E[𝜖𝑖] = 0 and Var[𝜖𝑖] = 𝜎2

𝜖 for all
𝑖 ∈ {1, . . . , 𝑁task}.

If C ∈ R𝑁task×𝐷 is a full-rank and well-conditioned matrix of decision boundary
normal vectors with 𝑁task ≥ 𝐷, the estimated mean �̃�(𝑡) of x∗ can be recovered
using the Moore-Penrose pseudoinverse:

�̃�(𝑡) = (C⊤C)−1C⊤(k + b),
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where k = 𝜎√
𝑡
Φ−1(Ŷ(𝑡)) and Φ−1 is the inverse CDF of the standard normal

distribution.

For sub-optimal classifiers, as the number of tasks 𝑁task increases:

• The redundancy in C reduces sensitivity to classification errors.

• Under the assumption of independent, zero-mean errors in Ŷ(𝑡), the residual
error in �̃�(𝑡) is expected to decrease at a rate of approximately O(1/

√
𝑁task),

driven by the averaging effect of least-squares estimation.

Motivated by the similarity betweenΦ(𝑧) and sigmoid-like activation functions 𝑔(𝑧),
we show that the two can be approximately canceled in Equation C.10, implying
that 𝜇(𝑡) can be reconstructed with high accuracy with a linear-affine transformation
(e.g., linear decoding) when 𝑔 = tanh or 𝑔 = sigmoid. This implies that Z(𝑡) contains
an abstract representation of 𝜇(𝑡) (Ostojic and Fusi, 2024).

Corollary C.6.8. If the readout function 𝑔 is tanh, then the reconstruction equation
for 𝜇(𝑡) from Z(𝑡) can be simplified using the approximation Φ(𝑧) ≈ 1

2 tanh( 𝜋

2
√

3
𝑧) +

1
2 . Consequently, 𝜇(𝑡) can be expressed directly in terms of Z(𝑡) without the need
for the inverse CDF.

𝜇(𝑡) ≈ 2
√

3𝜎
𝜋
√
𝑡
(C⊤C)−1C⊤Z(𝑡) + (C⊤C)−1C⊤b. (C.13)

Proof. Consider the readout function 𝑔 given by 𝑔(Z(𝑡)) = Ŷ(𝑡) = 1
2 tanh(Z(𝑡)) + 1

2 .
To show that this function allows for linear decoding of x∗ from Z(𝑡), we need to
leverage the similarity between tanh and Φ.

The normal distribution CDF Φ(𝑧) and the function 1
2 tanh(𝑧) + 1

2 are known to be
very similar, as both functions are sigmoid-like, centered at zero, and asymptotically
approach 0 and 1 (Choudhury, 2014).

Page (1977) proposed a simple approximation of Φ via tanh. Eliminating higher
order terms, their approximation isΦ(𝑥) ≈ 1

2 tanh(
√︃

2
𝜋
𝑥)+ 1

2 . We found the following
approximation yielded a superior mean squared error:

Φ(𝑧) ≈ 1
2

tanh
(
𝜋

2
√

3
𝑧

)
+ 1

2
.
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Using this approximation, we can express Φ−1 in terms of tanh:

Φ−1
(
1
2

tanh(𝑧) + 1
2

)
≈ 2

√
3
𝜋
𝑧.

Substituting this approximation into the reconstruction equation for 𝜇(𝑡) from The-
orem C.6.6:

𝜇(𝑡) = (C⊤C)−1C⊤
(
𝜎√
𝑡
Φ−1

(
1
2 tanh(Z(𝑡)) + 1

2

)
+ b

)
≈ (C⊤C)−1C⊤

(
𝜎√
𝑡

(
2
√

3
𝜋

Z(𝑡)
)
+ b

)
=

2
√

3𝜎
𝜋
√
𝑡
(C⊤C)−1C⊤Z(𝑡) + (C⊤C)−1C⊤b.

Therefore, we have shown that 𝜇(𝑡) can be expressed as a linear transformation of
Z(𝑡) when the readout function 𝑔 is sigmoid-like. This confirms the corollary.

Corollary C.6.9. For 𝑔 = sigmoid, linear scaling by 𝑎𝜎 = 0.5886 yields a mean
absolute error of 0.0038699 from 𝑍 (𝑡) in the range [−10, 10], enabling the following
accurate linear-affine approximation of 𝜇(𝑡) from Z(𝑡) given 𝑔 = sigmoid:

𝜇(𝑡) ≈ 𝑎𝜎 𝜎√
𝑡
(C⊤C)−1C⊤Z(𝑡) + (C⊤C)−1C⊤b. (C.14)

Proof. We found 𝑎𝜎 = 0.5886 by computationally minimizing the mean squared
error between Φ(𝑎𝜎𝑧) and 𝜎(𝑧) (see sigmoid_approx_gaussianCDF.m in sup-
porting code). Upon computing 𝑎𝜎 on successively larger optimization bounds
𝑇 = 1, 10, 100, ..., we found that 𝑎𝜎 converged to 0.5886. We note that sigmoid
approximations to the Gaussian distribution CDF have existed in the literature for
some time (Waissi and Rossin, 1996).

Corollary C.6.8 and C.6.9 are visualized in Figure C.8, showing the close approxi-
mations to the Gaussian CDF.

Corollary C.6.10. 𝑁task ≫ 𝐷 implies orthogonal representations in latent 𝑍 (𝑡).

Proof. Recall eq. (3.3) from the disentangled representation theorem:

𝜇(𝑡) = (C⊤C)−1C⊤
(
𝜎√
𝑡
Φ−1 (𝑔(Z(𝑡))

)
+ b

)
.
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Figure C.8: Sigmoid (𝜎(·)) and tanh approximations of the normal distribution
CDF Φ via horizontal scaling.

For sigmoid-like 𝑔, we can approximate

𝜇(𝑡) ≈
𝑎𝑔 𝜎√
𝑡
(C⊤C)−1C⊤Z(𝑡) + (C⊤C)−1C⊤b.

The orthogonality of the representations in Z(𝑡) is therefore governed by the orthog-
onality of the rows in the matrix A := (C⊤C)−1C⊤ ∈ R𝐷×𝑁task . If AA⊤ ∈ R𝐷×𝐷 is
diagonal, then the rows of A are orthogonal.

AA⊤ =
(
(C⊤C)−1C⊤) (

(C⊤C)−1C⊤)⊤
=

(
(C⊤C)−1C⊤) (

C((C⊤C)−1)⊤
)

= (C⊤C)−1(C⊤C) ((C⊤C)−1)⊤

= ((C⊤C)−1)⊤

𝐵⊤𝐵 is a symmetric matrix for any matrix B. Recall that the inverse of a symmetric
matrix is also symmetric. So (C⊤C)−1 is also symmetric. Therefore

AA⊤ = (C⊤C)−1.

As the columns of C are high-dimensional randomly sampled vectors, their proba-
bility of being non-orthogonal vanishes as the dimensionality 𝑁task increases. We
can also state the condition in terms of the singular value decomposition (SVD) of
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C = UΣV𝑇 where U ∈ R𝑁task×𝐷 , Σ = diag(𝜎1, ..., 𝜎𝐷), V ∈ R𝐷×𝐷 , and 𝜎𝑖 is the 𝑖th
singular value of C and U,V are orthonormal. Then

AA⊤ = VΣ−2V𝑇 .

If the singular values are approximately uniform 𝜎1 . . . 𝜎𝐷 ≈ 𝜎 then

AA⊤ ≈ V( 1
𝜎2 I𝐷)V𝑇

AA⊤ ≈ 1
𝜎2 VV𝑇 =

1
𝜎2 I𝐷 .

Therefore, uniform singular values in C is a sufficient condition to guarantee an
orthogonal, disentangled representation of 𝜇(𝑡) in Z(𝑡)4.

As a sidenote, we would like to point out that the setting here relates to the
Marchenko-Pastur law while noting important caveats: while the law typically
applies to matrices with i.i.d. entries 𝑁 (0, 𝜎), our C matrix consists of random
row vectors in R𝐷 of unit norm. This structure, while not strictly meeting the law’s
conditions, still supports our conclusions about orthogonalization.

Suitable Noise Distributions
While the original proof leverages Gaussian noise due to its mathematical conve-
nience, the key property required for the proof is more general. Specifically, the
essential requirement is that the marginal posterior distributions along the de-
cision boundary normals c𝑖 have invertible cumulative distribution functions
(CDFs), allowing us to recover the distances from the observed classification prob-
abilities.

We will now provide a precise mathematical description of the class of noise distri-
butions where this key property holds, generalizing the disentangled representation
theorem beyond Gaussian noise.

Key Noise Property Required for Proof: Invertibility of the Marginal Posterior
CDFs Along Decision Boundary Normals. For each decision boundary normal
vector c𝑖, the marginal posterior distribution of x∗ projected onto c𝑖 must have an
invertible CDF. This allows us to map the observed classification probabilities to
unique distances between the estimated mean 𝜇(𝑡) and the decision boundaries.

4This uniformity condition in the singular value decomposition is analogous to the outcome of
the LM damping technique (Levenberg, 1944; Marquardt, 1963), used for least squares inversion
problems in various applications.
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Mathematical Description of Suitable Noise Distributions: Let us define a class
of noise distributions 𝜖 (𝑡) where the key property holds and is straight forward to
solve analytically.

Definition: The proof is immediately generalizable to noise distribution 𝜖 (𝑡) if it
satisfies the following conditions:

1. Additive noise model:
X(𝑡) = x∗ + 𝜖 (𝑡)

where 𝜖 (𝑡) are i.i.d. random vectors.

2. Posterior Distribution Tractability: The posterior distribution𝑃(x∗ |{X(𝑠)}𝑡
𝑠=1

must be analytically tractable or well-approximated, allowing us to compute
the posterior mean or maximum a posteriori estimate 𝜇(𝑡) of x∗ and understand
its properties.

3. Existence of Invertible Marginal Posterior CDFs: For each decision bound-
ary normal vector c𝑖, the marginal posterior distribution of c⊤

𝑖
x∗ has a contin-

uous and strictly increasing CDF 𝐹𝑖 (𝑘), which is invertible.

4. Support over X: Let X ⊆ R𝐷 be the connected subset of allowable x∗ values.
The noise distribution must have full support over X, ensuring that any real-
valued x∗ is possible to trilaterate. For our proof, we assume support over the
maximally permissible R𝐷 is used.

Implications: Any suitable noise distribution allows classification task probabil-
ity 𝑌𝑖 (𝑡) to be expressed as

𝑌𝑖 (𝑡) = Pr{c⊤𝑖 x∗ > 𝑏𝑖 | [X(𝑠)]𝑇𝑠=1}

= 1 − 𝐹𝑖 (𝑏𝑖 − c⊤𝑖 𝜇(𝑡))

where 𝐹𝑖 is the marginal distribution of c⊤
𝑖

x∗.

Since 𝐹𝑖 is invertible, we can solve for distance 𝑘𝑖 = c⊤
𝑖
𝜇(𝑡) − 𝑏𝑖 as

𝑘𝑖 = 𝐹
−1
𝑖 (1 − 𝑌𝑖 (𝑡)).

This equation allows us to reconstruct decision boundary distances 𝑘𝑖 from optimal
classification probabilities𝑌𝑖 (𝑡). Thus the proof via trilateration for the disentangled
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representation theorem is feasible for any suitable noise distribution 𝜖 (𝑡) as described
above.

Examples of Suitable Noise Distributions
Elliptical Distributions

Definition: A multivariate distribution (Fang, 2018) is elliptical if its density
function 𝑓 (x) can be expressed as:

𝑓 (x) = |𝚺 |−1/2𝑔
(
(x − 𝝁)⊤𝚺−1(x − 𝝁)

)
where 𝑔 : [0,∞) → [0,∞) is a non-negative function, 𝜇 ∈ R𝐷 is the location
parameter, and Σ ∈ R𝐷×𝐷 is the scale matrix.

Properties:

• Symmetric and unimodal around 𝝁.
• Projections onto any direction c𝑖 yield univariate elliptical distributions.
• Marginal distributions along c𝑖 have invertible CDFs if 𝑔 leads to such

marginals.

Examples of Suitable Elliptical Distributions:

• Multi-variate Gaussians with Full-Rank Covariance Matrix (Lemma C.6.11).
• Multi-variate T-distributions with Full-Rank Scale Matrix: Heavy-tailed

alternative to the Gaussian.
• Multivariate Laplace Distribution With Full-Rank Scale Matrix: Has

exponential tails.

Exponential Power Distributions

Definition: Also known as the generalized Gaussian distribution, defined by the
density:

𝑓 (x) = 𝛽

2𝛼Γ(1/𝛽) exp

(
−

(
|x − 𝝁 |
𝛼

) 𝛽)
,

where 𝛽 > 0 controls the kurtosis (Box and Tiao, 2011). Properties:

• For 𝛽 = 2, it reduces to the Gaussian distribution.
• For 𝛽 = 1, it becomes the Laplace distribution.
• Symmetric and unimodal.
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• Marginal distributions are of the same form and have invertible CDFs.

Generalizing the Proof

Given the above, the proof can be generalized to any noise distribution 𝜖 (𝑡) satisfying
the conditions stated. The key steps are as follows:

1. Compute the Posterior Distribution:

• Since 𝜖 (𝑡) is i.i.d., the likelihood function is:

𝑃({X(𝑠)}𝑡𝑠=1 | x∗) =
𝑡∏
𝑠=1

𝑓𝜖 (X(𝑠) − x∗).

• Without a prior (uniform prior), the posterior is proportional to the
likelihood.

• The posterior distribution 𝑃(x∗ | {X(𝑠)}𝑡
𝑠=1) can be found (or approxi-

mated) based on the noise distribution.

2. Marginalize Along Decision Boundary Normals:

• For each c𝑖, compute the marginal posterior distribution of c⊤
𝑖

x∗.
• Due to the symmetry and unimodality of the noise distribution, this

marginal will also be symmetric and unimodal.

3. Compute Classification Probabilities: The classification probability is:

𝑌𝑖 (𝑡) = Pr{c⊤𝑖 x∗ > 𝑏𝑖 | {X(𝑠)}𝑡𝑠=1} = 1 − 𝐹𝑖 (𝑏𝑖 − c⊤𝑖 𝜇(𝑡)),

where 𝐹𝑖 is the marginal posterior CDF of c⊤
𝑖

x∗.

4. Invert Marginal CDFs to Find Distances: Since 𝐹𝑖 is invertible, we can solve
for 𝑘𝑖:

𝑘𝑖 = 𝐹
−1
𝑖 (1 − 𝑌𝑖 (𝑡)).

5. Set Up Linear System to Recover 𝜇(𝑡):

• The distances 𝑘𝑖 relate to 𝜇(𝑡) via:

c⊤𝑖 𝜇(𝑡) = 𝑘𝑖 + 𝑏𝑖 .

• Collecting all 𝑁task equations:

C𝜇(𝑡) = k + b.
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6. Solve for 𝜇(𝑡): If C is full rank, we can solve for 𝜇(𝑡):

𝜇(𝑡) = (C⊤C)−1C⊤(k + b).

Implications

• Optimal Estimator Must Encode 𝜇(𝑡).
• The latent state Z(𝑡) must contain sufficient information to recover 𝜇(𝑡), as it

is essential for optimal classification across all tasks.
• The theorem holds for any noise distribution satisfying the stated conditions,

not just Gaussian noise.

Example with Multivariate t-Distribution

Suppose 𝜖 (𝑡) follows a multivariate t-distribution (Kotz and Nadarajah, 2004) with
degrees of freedom 𝜈 > 2:

1. Posterior Distribution: The posterior 𝑃(x∗ | {X(𝑠)}𝑡
𝑠=1) is also a multivariate

t-distribution.

2. Marginal Posterior Distributions: Projections onto c𝑖 yield univariate t-
distributions.

3. Invertible Marginal CDFs: The CDF of the t-distribution is known and in-
vertible.

4. Recover Distances: Use the inverse t-CDF to find 𝑘𝑖:

𝑘𝑖 = 𝑠𝑡 · 𝑇−1
𝜈 (1 − 𝑌𝑖 (𝑡)),

where 𝑠𝑡 is the scale parameter, and𝑇−1
𝜈 is the inverse CDF of the t-distribution

with 𝜈 degrees of freedom.

5. Proceed with the proof: Follow the same steps as before to reconstruct 𝜇(𝑡).

Example with Anisotropic Gaussian Noise

Lemma C.6.11. Suppose 𝜖 (𝑡) follows an anisotropic multi-variate Gaussian dis-
tribution with full-rank covariance matrix Σ and zero mean. Then we can update
Equation C.6 from Lemma C.6.2 as

𝑌 (𝑡) ≜ Pr(c⊤x∗ > 𝑏) (C.15)

= Φ

(
𝑘
√
𝑡√

c⊤Σc

)
. (C.16)
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Proof. Anisotropic noise results in the quadratic form c⊤Σc in the denominator
representing the variance of the marginalized anisotropic noise distribution along
decision boundary normal vector c𝑖. As long as Σ is non-singular, the remainder of
the disentangled representation proof may proceed substituting Equation C.6 with
Equation C.16.

Conclusion

The key property enabling us to recover distances from classification probabilities
is the invertibility of the marginal posterior CDFs along the decision boundary
normals. This property is not exclusive to Gaussian noise but is shared by a broader
class of noise distributions, including but not limited to:

• Elliptical distributions (e.g., Laplace, multivariate t-distributions).
• Exponential power distributions.
• Other symmetric and unimodal distributions with invertible marginals.

Therefore, the proof of the Disentangled Representation Theorem generalizes to
any noise distribution satisfying the conditions outlined above. The essential re-
quirement is that we can uniquely map the observed classification probabilities to
distances along the normals, allowing us to reconstruct the posterior mean 𝜇(𝑡) and
establish that any optimal estimator must encode this information in its latent state
Z(𝑡).

Correspondence in the structure of noise distribution CDF along marginals 𝐹𝑖 and
point-wise activation functions 𝑔 (the activation function Ŷ(𝑡) = 𝑔(Z(𝑡))).

Discussion
The theoretical results presented in this appendix, particularly the Optimal Rep-
resentation Theorem (Theorem C.6.6), provide insights into the factors driving
representational convergence and alignment in neural networks and, more generally,
any optimal multi-task classifier in the setup shown in Figure C.6. This theorem
establishes a clear connection between the latent representations learned by optimal
multi-task classifiers and the true underlying data representation, offering a princi-
pled explanation for the emergence of disentangled representations aligned with the
intrinsic structure of the data.

Connection to Manifold Hypothesis: Our theoretical results have important im-
plications for the manifold hypothesis, which posits that real-world high-dimensional
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data tend to lie on or near low-dimensional manifolds embedded in the high-
dimensional space (Fefferman, Mitter, and Narayanan, 2016; Olah, 2014). The
key insight is that our proofs show an optimal multi-task classifier must encode an
estimate of the disentangled coordinates of the true underlying environment state in
its latent representation. Consider the disentangled space in which x∗ resides, de-
noted X∗. The injective observation map 𝑓 : X∗ → X, where decision boundaries
𝑦𝑖 : X∗ → {0, 1} are linear. Our results imply that an optimal classifier’s latent state
Z(𝑡) must encode disentangled coordinates in X∗ rather than ambient coordinates
X.

The injective observation map 𝑓 aligns closely to the typical conception of a data
manifold (e.g., if 𝑓 ∈ 𝐶1 or 𝑓 ∈ 𝐶𝑛, as described in Tu, 2017). The disentangled
space X∗ can be seen as the intrinsic coordinate system of the manifold, while 𝑓

maps these coordinates to the high-dimensional observation space X. Our find-
ings suggest that an optimal classifier will implicitly learn to invert this mapping to
recover the disentangled coordinates. Moreover, for natural data where the mani-
fold hypothesis holds, the learned latent representation would plausibly capture the
manifold structure, as this is essential for disambiguating noisy observations and
estimating the true underlying state. The low-dimensional manifold structure is a
key prior that an optimal classifier can (and in our case must) exploit to improve its
performance.

Relation to Autoregressive Language & Multi-Modal Transformers: Con-
sider an analogy with masked autoencoder vision foundation models, where x∗ is
the “ground truth” of a scene (objects, positions, states, and relationships), the mea-
surement variable X is an image with missing patches (Dosovitskiy et al., 2020;
He et al., 2021), and the model predicts the missing patch data 𝑦(x∗). The model’s
latent variable Z exhibits some “understanding” of x∗ in the form of abstract repre-
sentations useful for downstream tasks. This analogy extends to masked language
models (Devlin et al., 2018) and autoregressive language models (Radford et al.,
2019), where x∗ is “meaning” in a semantic space, X(𝑡) are words, and 𝑦 is the next
word. Localizing x∗ from Z(𝑡) relates to constructing a world model, showing that
Z represents x∗ abstractly and with high fidelity.

Ordering of Noise and Observation Map: The ordering of the noise and the
non-linear observation map matters for the latent space representation. When the
noise is applied before the observation map, the noisy observations are constrained



224

Figure C.9: The impact of noise and non-linear transformation order. (A) x∗
is noised before being transformed by injective observation map 𝑓 , resulting in
observations 𝑓 (X(𝑡)) lying on the image of 𝑓 (here 𝑓 is a 2D folded surface). (B)
x∗ is first transformed by injective observation map 𝑓 and noise is added afterward,
resulting in observations 𝑓 (x∗) + 𝜎N(0, 𝐼) that do not lie on the image of 𝑓 .

to lie on a manifold with the same intrinsic dimension as the true latent space X∗. In
contrast, when the noise is applied after the observation map, the noisy observations
can deviate from the low-dimensional manifold, potentially introducing degeneracy
where two noised observations arising from different x∗ may appear identical (i.e.,
non-injective). ImagineX∗ as a 2D piece of paper. An injective, smooth, continuous
observation map 𝑓 : X∗ → X where X is a 3-dimensional space “crumples” the
sheet of paper X∗ into a crumpled ball in X. If you add noise after the mapping, a
point on one corner of the paper could get “popped out” of the 2D manifold by the
noise and end up very far away on the crumpled surface if you were to examine it
flattened out (illustrated in Figure C.9).

The curvature of the observation map 𝑓 and the level of noise 𝜎 are fundamental
factors influencing the extent of the degeneracy introduced by the noise after the
observation map. High curvature in 𝑓 can make the intrinsic geometry of the data
more challenging to identify (e.g., more tightly crumpled paper). Large noise levels
can push observations further from the underlying manifold, similarly worsening
the potential degeneracy in the observations. The reach of the manifold 𝑓 (Aamari
et al., 2019) can be used as an immediate loose bound for post-observation map
noise 𝜖2(𝑡) to ensure that the derived theorems still hold.

Connection to the Platonic Representation Hypothesis: Our results provide a
new perspective on the Platonic representation hypothesis (Huh et al., 2024). The
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Platonic representation hypothesis suggests that the convergence in deep neural net-
work representations is driven by a shared statistical model of reality, like Plato’s
concept of an ideal reality. Convergence of representations is analyzed in terms of
similarity of distances between embedded datapoints among AI models trained on
various modalities. While the authors of the hypothesis argue that energy constraints
might lead to divergence from a shared representation for specialized tasks, our Op-
timal Representation Theorem suggests that the key factor driving convergence is
the diversity and comprehensiveness of the tasks being learned. As long as the tasks
collectively span the space of the underlying data representation, convergence to a
shared, reality-aligned representation can occur, even in the presence of energy or
computational limitations. Our theoretical results amount to a necessary condition
for optimal multi-task classifiers to represent a disentangled representation of the
data within their latent state. With energy constraints, extraneous network activity
may be regularized out of the model, resulting in greater alignment between disen-
tangled representations in energy constrained models that “understand” the Platonic
nature of reality. The very energy constraints Huh et al., 2024 suggest may lead
to divergence could actually facilitate convergence of the platonic representations,
as they may encourage the learning of simple, generalizable features that capture
the essential structure of the data. This insight opens up interesting avenues for
future research on the interplay between task diversity, energy constraints, and the
emergence of shared representations. Finally, energy constraints have been shown
to naturally lead to predictive coding (Rao and Ballard, 1999; Ali et al., 2022),
tightening the relationship between energy efficiency, prediction, and cognitive map
learning. A relationship between predictive coding and optimal Bayesian estimation
has also been established (Rao, 1999).

Implications and Future Directions: The theoretical analysis presented in this
appendix sheds light on the factors driving the emergence of disentangled repre-
sentations in neural networks and their alignment with the intrinsic structure of the
data. By formalizing the conditions under which learned representations recover the
true underlying data manifold, our work provides a foundation for understanding the
remarkable success of representation learning across diverse domains. Avenues for
future research include exploring the sample complexity of learning under different
observation maps and noise levels, and empirically validating the convergence of
representations across models and modalities in the context of task diversity and
energy constraints.
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A p p e n d i x D

A PRIMER ON DETECTING AND QUANTIFYING
CONTINUOUS ATTRACTORS (CANS)

Continuous attractors played a central role in this thesis, notably in Chapters II and
III; however, their definitions often reside in somewhat ambiguous territory. This
Appendix aims to clarify these ambiguities, particularly to prevent unnecessary
confusion within the experimental community, leading to wasted efforts and time,
and potentially reduced trust for computational methods.
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D.1 Defining Attractors
Attractors are stable configurations toward which dynamical systems evolve over
time. They represent equilibrium states in an energy landscape, typically character-
ized by an energy function 𝐸 (x), where the system state x evolves to minimize this
energy. Formally, the dynamics of the system with state x are defined as:

𝑑x
𝑑𝑡

= −∇𝐸 (x). (D.1)

In neural networks, Hopfield networks (Hopfield, 1982) are classic examples of
discrete attractors, where stable points represent stored memories, and x is the
population vector of the firing rates of the neurons that evolves over time. More
generally, lets define an arbitrary recurrent neural network with recurrent matrix
weight𝑊 connecting its neurons. Its dynamics are governed by:

𝑑x
𝑑𝑡

= 𝐹 (x,𝑊), where 𝐹 (x,𝑊) = −∇𝐸 (x). (D.2)

Here, the function 𝐹 describes how the state x evolves continuously over time, and
the explicit inclusion of the recurrent weight matrix 𝑊 emphasizes its central role
in the dynamics. The recurrent weight matrix 𝑊 governs how activity propagates
and evolves through the neural population, determining the stability and dynamics
of network states. Each neuron’s activation 𝑥𝑖 influences others through this con-
nectivity, enabling complex patterns of sustained and evolving activity. Hence, 𝑊
is going to be the center of our attention going forward, when we define continuous
attractors.

D.2 Extension to Continuous Attractors
Continuous attractors (CANs), introduced notably by Amari (1977), extend the
concept of discrete attractors to represent a continuum of stable states. Imagine a
perfectly flat energy valley rather than isolated energy wells. A useful analogy is
a multi-stable pool table where a cue ball can stably rest at any point along a line
or plane. Continuous attractors are useful to store continuous variables, instead of
discrete memories. However, continuous attractors in neuroscience typically require
very precise connectivity, to avoid leakage while being at the "edge" of stability:
stable, but also reactive to minimal perturbations that might update their state
(i.e., the value of the stored variable). In addition, maintaining exact continuous
attractors in biological neural networks is challenging due to inherent noise and
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imprecisions. Hence, biological continuous attractors are often leaky, exhibiting
slight drift. Furthermore, in order to have perfectly continuous attractors, an infinite
number of neurons is needed, as the number of stable states scales linearly with the
number of available neurons supporting these states. Therefore, every continuous
attractor in neuroscience is an approximate, or quasi-continuous attractor. The word
approximate has been used erroneously in recent neuroscience literature to relax the
conditions a quasi-continuous attractor must meet to qualify as such, however the
correct definition is the one just mentioned; more on that later. For now, the reader
should keep in mind that when it comes to neuroscience, when we are talking about
a continuous attractor we are effectively referring to a quasi-continuous attractor.
Yet, in order to qualify as a quasi-continuous attractor, an attractor still has to satisfy
some (quite hard to meet) requirements (e.g., separation of timescales, see next).

A quasi-continuous attractor can take several forms, including a set of discrete
attractors that are close enough and have low energy barriers between them so that
they qualify as a continuous attractor, or a set of slow points that, even though
not really stable, are slow enough to act as a continuous memory with regards to
the rest of the circuit (separation of timescales argument) (Seung, 1996; Khona
and Fiete, 2022). Examples of quasi-continuous attractors in neuroscience include
head-direction (Seelig and Jayaraman, 2015; Kim et al., 2017; Chaudhuri et al.,
2019; Vafidis et al., 2022) and grid cell representations (Gardner et al., 2022;
Banino et al., 2018; Sorscher et al., 2023). The former are implemented by a 1D
ring attractor, while the latter by 2D toroidal attractors. An accurate estimation
of location in space is crucial for animals to navigate the world in the absence of
external cues (see Chapter II of this thesis), justifying the precise synaptic weights
required for the implementation of continuous attractors that form the substrate of
these representations.

D.3 Continuous vs. Discrete: Microstructure Matters
To determine whether a network implements a truly continuous attractor or merely
a set of discrete ones, it is essential to analyze the microstructure of the attractor.
Continuous attractors should possess multiple stable (or near-stable) states separated
by small energy barriers, facilitating smooth transitions within the attractor manifold
(Vafidis et al., 2022; Khona and Fiete, 2022). Critically, continuous attractors func-
tion as memory systems, necessitating a separation of timescales between dynamics
within the attractor dimension (slow) and external circuit dynamics (fast).
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This separation of timescales can be practically assessed by analyzing the eigen-
structure of the recurrent connectivity matrix of the neural system, as demonstrated
in Chapter III of this thesis (Vafidis, Bhargava, and Rangel, 2025). The continuouss-
ness of the attractor can also be judged by the stimulation experiments performed
in vivo in Kim et al. (2017) and in silico in Vafidis et al. (2022) (Chapter II of this
thesis), where continuous attractors have small energy barriers between stable states,
and as a result transitions between adjacent stable states are "smooth" as opposed to
"jumpy" for far away states (see fig. 2.2D).

D.4 From Local Eigenvalues to Local Time Constants
Mathematically, a neural system’s discrete-time linearized dynamics around a fixed
point can be approximated by:

x𝑡+1 − x𝑡 ≈ 𝑊x𝑡 (D.3)

where𝑊 represents the effective recurrent weight matrix. To analyze local stability
and dynamics, we calculate eigenvalues 𝜆𝑖 of matrix𝑊 :

𝑊v𝑖 = 𝜆𝑖v𝑖 . (D.4)

These eigenvalues were computed in Chapter III of this thesis. Eigenvalues near
0 indicate that the difference system x𝑡+1 − x𝑡 changes slowly over time, i.e., they
correspond to "slow" dimensions in network dynamics which can integrate inputs
and maintain them over time (continuous attractors) (Amari, 1977; Mante et al.,
2013). From these eigenvalues, local time constants (𝜏𝑖) describing the speed at
which the system returns to equilibrium along the eigen-directions can also be
derived as:

𝜏𝑖 =
1

|log( |1 + 𝜆𝑖 |) |
(D.5)

where time constants are assumed to be positive. Note that the notation here
follows the difference system x𝑡+1 − x𝑡 . For the time evolution system x𝑡+1 ≈ 𝑊′x𝑡 ,
the formula for the time constants would be 𝜏𝑖 = 1

|log|𝜆′𝑖 | |
, where 𝑊′ and 𝜆′

𝑖
are

the effective recurrent weight matrix and corresponding eigenvalue for the time
evolution system, where𝑊 = 𝐼 +𝑊′ and 𝜆𝑖 = 1+𝜆′

𝑖
(Maheswaranathan et al., 2019).
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D.5 From Local Time Constants to Quasi-Continuous Attractors
The presence of a continuous attractor dimension manifests as one or more directions
in state space with very long (large) time constants relative to other directions. Thus,
a continuous attractor can be identified as a set of discrete attractors with similarly
high time constants forming a continuous manifold. To quantify the ability of an
(approximate) fixed point to maintain its state, we can define the time constant
amplification ratio 𝐴 as:

𝐴 =
𝜏network
𝜏neuronal

. (D.6)

Here, the numerator, 𝜏network, represents the time constant of the network dynamics,
while the denominator, 𝜏neuronal, reflects the intrinsic timescale of individual neurons
(a combination of membrane and synaptic time constants). Thus, this ratio captures
how much the network dynamics have been amplified beyond the intrinsic neural
timescales due to the presence of the attractor.

When multiple fixed points with significantly amplified time constants exist within
a continuous manifold, we can define directional time constants that characterize
the temporal dynamics along specific dimensions of the network state space. These
directional time constants emerge as compositions of individual point time constants
within that manifold, typically dominated by the slowest individual attractor states.

If such a continuum of stable or quasi-stable states exists, characterized by directional
time constants substantially larger than intrinsic neuronal timescales (indicating clear
separation of timescales), we conclude that the network exhibits a quasi-continuous
attractor along that particular direction.

Indeed, this is exactly what we observed in Chapter III, where a continuum of
approximately fixed points was observed (fig. 3.3d), with eigenvalues close to 0
across two directions for each point (fig. 3.3e). This paints the picture of a 2D
continuous attractor, similar to the pool table mentioned before. Furthermore, we
can quantify the time constant amplification ratio 𝐴 for all of these fixed points. We
observe that most amplification ratios are in the range of 10-100 (fig. D.1), which
satisfies the condition for separation of timescales (typically, there should be an
order of magnitude or more difference between the slow and fast timescales). While
ideally we would like these time constant amplification factors to be larger, we have
to remember that the circuit is just composed of 64 neurons, that have to perform a
lot of other operations apart from memory (invert nonlinear mapping, denoise, etc.).



234

Furthermore, we can obtain directional time constants by quantifying the average
directional amplification ratio 𝐴𝑑 as a result of traversing along a certain direction
in this continuous attractor (dominated by higher individuals ratios 𝐴).

Figure D.1: Time Constant Amplification Ratios for individual approximate fixed
points in Continuous Attractor in Chapter III (fig. 3.3d). Network time constants
𝜏network were derived from the eigenvalues in fig. 3.3e, and the time constant ampli-
fication ratio was computed as 𝐴 =

𝜏network
𝜏

, where 𝜏 is the neuronal time constant
from table 3.1.

Finally, note that in the case of the continuous attractor in Chapter II, the fixed
points are stable, therefore the amplification factor is technically infinity. However,
in that case we still have to show that the energy barrier between adjacent fixed
point is low, i.e., show that the continuous attractor can update itself with minimal
perturbation, a requirement to maintain a memory of a continuous variable. This is
exactly what we showed in fig. 2.2D. This further demonstrates the dynamic balance
between stability and flexibility that a continuous attractor has to demonstrate, a feat
particularly challenging to achieve, requiring exquisite synaptic weight balance.
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