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Summary

Oele Nature and Purpose of Thesise

Although solubtions of Bessel's differential equation,
2% a%w/az? + z aw/dz + (2 = »%)w = O, (1)

have been widely studied and extensively tabuleted for real values of
the index ) beceuse of their applications to all fields of mathemetical
physics, much less attention has been given to Bessel functions for which
the order »’is purely imeginary, the argument z being either imaginary
or reale Imesmuch as the functions of imaginary order appear in various
problems from different branches of mathemeticel physics, it seems worth
while to give a comnected discussion of their properties and to list +the
various physicel applications which have come to the author'!s noticee

The purpose of this thesis will be to suggest canonical definitions
for Bessellfunctions of imaginery order and either imeginary or real
argument, and to develop the mathematicel g?operties of these funotions,
including series and integrel representations, locetion of zeros, orthog-
onality properties, methods of représentation of arbitrary functions, and
methods of numericel celculetione Physicel applications of the functions
with imaginery argument will then be exhibitede These functions provide
solutions of Laplece'!s equation useful in certein types of potentisl and
heat flow problems in cylindrical coordinstes; they also occur in the
investigation of the stability of flow of a layer of fluid whose density
end velocity vary with height, and in the study of the propagation of
Love waves over the surface of an inhomogeneous elastic mediume Bessel
functions of imaginary order and real argument give solutions of the wave

equation which can be used to celculate the propsgation of sound waves



or electromagnetic waves around a circular bend in a rectangulaer wave
guldes They also occur in the solution of Schr8dinger's equation for
a particle in a radial force field when the potential is approximated
by an exponentiasl function, and in the solution of the relativistic
Schr8dinger equation for a free particle in an expanding universe when
the redius of the universe is & linear function of timee

The eppendix of the thesis contains a table of numericel values of
Bessel functions of imaginery order end imeginary argument, covering
representetive renges in both order and argumente It is felt that this
table, even though it is of limited acouracy, will be of interest because
it represents the only numericel tabuletion of Bessel.funotions of imag-

inary order at present in existencee
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CHAFTER I

Mathematical Properties of Bessel Functions of Imeginary Order

1,0 General Theory of Sturm-Liouville Equetionse

The differential equation for Bessel functions of iinagimry order
i and imeginary argument ilx is obtained from Oel (1), by writing ikx
for z, i? for v, and y for w, and dividing through by x, in the form
(e 3)- - )y
e e = 1
where unless otherwise specified ) and x will always be regarded as reals
The equetion for functions of imaginary order i»” eand reel argument kx
is similarly obtained as
2
M :2) 2 + —2/)) /0
= x -
2z (x%)+ Fx Y (z)
Both (1) and (2) are special cases of the self-adjoint Sturm equation
L (Ktx) 3 ~
L Kl -~ Glt)y =0 (3
Ay { f 7 )
and many of the properties of their solutions cen be deduced from genersl
*
theorems concerning the solutions of (3) under specified boundary con=

ditionse The Sturmian theory has been elegantly presented by Inoe;l)

a
number of par‘bizient theorems will be gquoted here for convenient references

We shall consider solutions of (3) in the closed interval & < x < b,
throughout which K and G are continuous real functions of the real varisble
xe X does not vanish and msy therefore be assumed positive; also K has a
continuous first derivative throughout the intervale The theorems which
we shell need are concerned principelly with the zeros in (a, b) of the

solutions of (3), and with the behavior of these zeros when the functions

K(x) and G(x) are varieds

1) Ince, Bs L., Ordinary Differential Equations, chapss X=XIo




silse

2
Theorem le ) Let y;(x) and yp(x) be any two real linearly independent
solutions of (3), and assume that y; venishes at leasttwice in (a, b)e
Then between any two consecutive zeros of Y there is one and only one

zero of Vgo

If a continuous function of x has two or more zeros in & given interval
it is said to be oscillatory in that interval; if it has not more than

one zero it is said to be non-oscillatory in the intervals,

Theorem 3.5) If the solutions of (3) oscillate in (a, b), they will
oscillate more rapidly when K or G or both are diminisheds TFor example,

the solutions of (1) and (2) oscillate more repidly with increasing 9)2.

It is not diffiocult Yo set up sufficient conditions for the oscillatory
or non-oscillatory character of the solutions of an equation in a given

intervale

Theorem }_5_.4) Let K(x) end G(x) be ’bov;nded as follows: K » K 7,/{)0
and 4 %G g ‘throughout (2, b)e Then the solutions of (3) are non-
oscillatory in (a, b) if either ?7,'0 or ~(9 /£ )4 72/(b - 8)% A suf-
ficient condition that the solutions of (3) should have at least m zeros

in (2, b) is that ~(4 /E )y u?7%/(b - a)%,

Theorem _.4:_§) Let y(x) be that solution of (3) which satisfies the
one-point boundary conditions y(a) = & ; y*'(a) = & 'e If the zeros of
y(x) are marked in order on the segment (a, b), the effect of diminishing
K and/or G, while leaving A and «! invarient, is to cause all the roots

%o move in the direction from b toward 2. If K and/or G diminish con=

2) Ince, ope cite, 224
3) Ibide, 225-6e

4) Tbid., 227

5) Ibide, 229



tinuously (a process which mey most easily be effected by supposing K and
G to depend upon an auxiliary parameter 1), from time to time a new zero
may enter the segment at b and move to the left toward ae
In an important special case of the Sturm equation the function G
has the form G = { - Xg, where A ena g are real continuous functions
of xina £ x £b, and A is an arbitrary parameter. Many problems of
methematical physices require the solution of such an equation subject to
assigned boundary conditions at two points; i. oe, one must simultaneously
satisfys:
%[Z{%}— (/—25)2’ =0, (2.1)
2'6G) ~“7’@7 =4, (402)
ﬂlﬁ (6—) ‘fﬂy ‘W) =9, (443)
‘where A, «1', L p' are independent of A e Egse (4e1)=(443) comprise
what is known as a Sturm-Liouville systems TFor any value of A, (4.1),
together with the boundary condition (42), has one and only one distinct
solution, say y = Y(x, A )e This solution,‘ Yaken together with the second
boundary condition (4.3), furnishes the characteristic equation
Z(2)= 3'Y(42) +/Y'/4;)) =0, © o (s)

whose roots in ) are the eigenvalues (characteristic numbers) of the

system (4)e The solutions of (4) correspondiag to the various eigenvalues

are called eigenfunctions (characteristic functions) of the systeme

)

Theoremn _§_.6 If in the system (4) K, g, and £ are real continuous
functions of x when a £ X ¢ b, are independent of ), and are such that
K>O, g >0, and if 4, a', g, and ' are also independent of A, then

there exists an infinite set of real characteristic numbers 2, A ;\1, ees

which have no limit-point except A =+ o3 if the corresponding character=

6) Ince, Ope Cite, 235



istic functions are y,, y1s Ygs ses , then y, has exactly m zeros in the
interval a £ x < be If the additional conditions /% 0, oot 0,

/9/‘3 t 7 0 are satisfied, then the characteristic numbers are all positives

Theorem.§P7) The eigenfunctions of the Sturm=Liouville system (4)
are orthogonal over the renge (a, b) with respect to the weight=function
g3 1le 8e, if 1 # J,

t G -
/ %)t () g o) A = O- (6e1)
Wy et/
If i= j’ .
Ao / 7%
/ 2 = AL
ﬁ[/g/ﬁy, bl = K/f/?///f)d/ i/ (642)

The eigenfunctions of (4) mey, in case g » 0, conveniently be nor=-
malized so that ) ,

/"’ . @:5:{?%”7’ (1)
«J7 7 J Rk

Thﬁoremuz.s) If, in the system (4), g > O, then the characteristic

numbers are all real and occur as simple roots of the characteristic

equation (5)e

Moch of the importance of the eigenfunctions of a SturmﬁLipuville
system lises in the possibility of representing an arbitrary function £x)
in the interval (a, b) by means of a series of such functionss If we
assume that it is possible to write, for a £ x < b,

= Zo Ancfnle) (801)

the coefficients may be formelly determined, using (8), as

gt f
T Catt) o) A

Mbrcerg) and others have in fact shown that the general Sturme-Liouville

(802)

7) Ince, ope cite, 237=241s
8) Ibide, 238, 24ls
9) Tercer, Je, Phile Transe Roy. Soce, (&), 211, 111-198 (1912).




sories (8) corresponding to f£(x) behaves in the seme way as the ordinary

Fourier series corresponding to f£(x)s A typical result is the followings

Theorem 2.10) Let the function £(x) possess a Lebesgue integral
in (a, b), and let f£(x) have limited total fluctuation in an arbitrarily
small neighborhood of a point x = s belonging to the open interval (e, b)e

Then the SturmeLiouville series (8) converges at the point s to the sum

Lle(s +0) + £(s - 0)fe

For the comprehensive extension of the principal theorems on Fourier
series to the whole class of Sturm-Liouville expansions, reference mey

be mede to the work of Mercer cited above,

lolo Bessel Functions of Imaginery Order and Imaginary Argumente Wedge

Tunctionse
We pass now to consideration of Bessel's egquation 0.1 (1) written
with imaginery veriable ix and imaginary pa’rame'ber i/ s 80 that it becomes:
J%jz ; xg; - -2y =e 1)
Our first task will be to obtain a fundamental pair of solutions of (1)
in useful forms

A series solution of the ordinary Bessel equation Oe1 (1) is customarily

obtained around the regular singuler point z = O in the form:ll)
2 4 2om
6 - 2
y) & ) /”7’/ /7/7)‘/"""""// (2)

Jy (z) is called the ordinary Bessel function of the first kind of argument
z and order >, It is a solution of Os1 (1) for unrestricted complex

veluss of z and 7 ; it is an analytic function of z for all values of z

10) Mercer’ _OBQ ci‘h.’ 196.
11) Wetson, Gs Ne, Theory of Bessel Functions, 2nd eds, chap. 3, 38-45e




(z = O possibly excepted), and an analytic function of ») for all values
of #e The function J, (z) also satisfies Osl (1) and is linearly inde=
pendent of J» (z) if 2 is not a real inbeger, so that if and only if 2 is
not en integer J, (z) and J_,(z) form a fundemental system of solutions
of Bessel's equatione

It is frequently convenient to take as standard solutions of Bessel's
equation linear combinations of J (z) and J_,,(z) which approach distinct

limits as 2 becomes an integere Particularly important are the two Hankel

) - Bt Rl

A pon ?)”

functionss

(301)

I
@) _ — 2 /e)
W) = §0 » . 5.2)
A gemn VT
these (or their limits as ) approaches a real integer) represent a funda=-
mental pair of solutions for all values of z and P,

Standard notations for a fundamental peir of solutions of O.1 (1),

when the argument z is purely immginary and the order 2 is unrestricted,

have been adopted as follows :13) oI £ 2

__ ’Ur'z G7{ k.
L) = ;,) (; ﬁ/ Z ol Tlpmtt] (441)
Ko - § B gy

(402)

I, (x) and Ky (x) are called modified Bessel functions of the first and
second kinds respsctively; they have been widely tabulated for real wvalues
of Ye

Since no restrictions were laid upon z and ) in the derivation of
the series (2) for J,(z), it is evident that J., (ix) and J ,(ix) both

12) Watson, Ope Cite, 730
13) Ibide, 77-8e



furnish solutions of Bessel!s equation (1) with imaginary order and imaginary
argument; in fact, since (1) has purely real coefficients, it is satisfied

by both the real and the imaginary parts of J;» (ix) separately. However

it is not convenient in practice to define standerd solutions of (1)

directly in terms of Jb>(ix). Rather we wish a fundamental real pair of
solutions whose form is as well adapted as possible to numerical computation,
and whose asymptotic behavior for large values of the argument is simplee
Such a pair may be compectly defined by forming from the modified Bessel
functions I;»(x) and I ,(x) the following real linear combinations, which

will henceforth be regarded as canonicel solutions of (1):

7 L) +T,,6) - T il
R e L AT
T L) - Tl o T g T4 ’
G;)[K/: 2 :y)f)’ﬂ’ 2 = %’rﬂﬂ 0’;"/
) S
= K,b) = 1’73 P E /75,,(/&%), (562)

where 2’ is real and x is real and positives. The linear independence of
F, (x) and G, (x) follows from the independsnoo of I,,(x) end I ,,(x)
(Watson, po 78), i’ being not a real integer,

Any solution of (1) may be calied & Bessel function of imaginary
order and imaginary argument; the special solutions Fp (x) and G, (x)
will be referred to as ™wedge functions™* of the first and second kinds
rospectivelye In the following sections various properties of the wedge

functions will be developedes

lell, Series and Integral Representations of Wedge Functionse

Series representations of the wedge functions in the neighborhood of

the origin are compliceted by the fact that both functions have an oscil=

¥This name was suggested by Profe Smythe in view of the application
of these functions to potential theory (Arte 2.1), where they show a
certain analogy to the solutions of Legendre's equation called "cone
functions®e



latory discontinuity et x = 0, the nature of this singularity being due
to the circumstance that the exponents * i»” of the differential equation
at the origin are purely imaginarye We may however obtain expressions
for the wedge functions in terms of series of modified Bessel functions
];m(x) » Which indicate clearly the behavior of F, (x) and G, (x) near the
origin and which can be used for numerical calculation when x is smalle
We consider the following serieslé‘) due to Lommel, which is wvalid

for unrestricted z 1f ;é)) and # is not a negative integer:
éﬂ/ Z’ ,/—,_/’_)L_‘Z (})}J/’HW [Q~ ‘
%)/9/ = /’fé/‘/ /—'{7‘1‘*»”—// o/ }”’7”' (1)

L2z
Replecing z by ix, »’ by i)),/b( by 0, multiplying through by e , end

using lel (441), we have, after some simplificetion,

,;/74/ 42’//2// /7‘/

A s &
- )" 7B &W Pyr)]

/7/f))/’~074=u W/W”/ (2)
&) 6™ (2)" T
where /4/95%/ = (-; 5)1‘)1\/ ;(/’ (3.1)

D) = ;;() &) Lo (302)
= A Zo ol o w‘/
Setting @é’/x/ = 9)/ 2-‘ an /-7(1’/
and using the known relation’ ) /77 //’)}/ (”/ })"/é) ) (4)
we have from lel (5.1) and (5.2) the resultss
bt - (7Hohpr) B Lo (=) 6.)
,f;""‘,,/ - [/4/074}% éé?z/ # ﬂé)x/m /74] .

Gyl = — (7o) Sn L9 (<)
- rfor [ 8600 @) = A% 0o @4’74/] (5.2)

14) Watson, Ope cite, 143,
15) Whittaker, Be Te, and Watson, Ge Ne, Modern Analysis, 4th ed.,
259, oxe 7o

=Y



The function arg F(i”) mey be computed from power seriesl6) for small
values of 2’ and from Stirling's asymptotic series 16) por log [ (i) when
# is larges Successive terms of the series for A(Y, x) and B(, x) de=
crease sufficiently rapidly when x is moderately small to facilitate compu-
tetion of these suxiliary functionse In Artes 1lel3 AQ), x) and B{/, x)
will be expressed as series in ascending powers of X

Simple definite integral expressions for the wedge functions may be

obtained from known integral representations for I, (z)es We havelT)

T oy -2 I
T,(%) = ;,Tl/x%c"ecnyéa/9~ 9{";"'5[’1 Ae-w1 g

o

for unrestricted values of 2 if hrg z| < 7 Letting z be real (= x)

and positive and replacing 2’ by i# , the formula becomes
/ = : -weft Dt
Tuwle) = 7 2 ek ptdd - sehzr [, oAt

Separation of real and immginary parts according to lel (5e1) and (5.2)

leads to the useful results:

B = 7 | "0 0 / A i

Z (6e1)

| Gy/x/ = /Obi—%cjf&o 9)/'0# (642)

The integral representing G,(x) is particularly simple and is easily
oevaluated by mechanical quadrature provided x is moderately large, so
that the exponential factor in the integrand becomes negligible before
the cosine term has undergone many oscillationse The first (finite)
integral in F,)(x) may be split into various parts which are not difficult
to calculate separately; some details are given in comnection with the
numerical table in the appendixe

18) Da.vi~s s Hoe Te, Tables of the Higher Mathemetical Functions, vole

1, 181-185
17) Watson, ope Cite, 181, ege (4)e

-11l=



1le12, Asymptotic Behavior of Wedge Functionse

Asymptotic representations of the wedge functions for large argument
and fixed order are sasily obtained from the known asymptotic seriesle)
for I,(z) and K,{z)e Using the notation
/
+ +5 /
@m}i-ﬁ)/n’bjz Fé)mz

B = e (1)
m’/ﬁ(ﬂ)—m '/'7:/) ’

we have, for |arg z] < 3172y
2 7 'z{ 2 & é{MJ
Ky&/ Né:/f /,,,ZJ: @)™ (241)

and, for -77’2 < arg z < 37/2,

-2+ 6)+—’)ﬂ2'
ey @m ORI - G

the second series on the right being negligible compared with the first

if |erg zl < $7; Putting i’ for 2 and x for z in (2¢2), substituting
(242) into 1ol (501), and expending (i2), m), we find thet, when ¥ is fixed

and x is large and positive,

% (7,4 !,;[ 6/,ﬂ+/) 2 22 ) (4 +3/
g6 g G/ U Ty " 2 e

Similarly from (2.1) and lel (5.2) we have,* when 2’ is fixed and x is

large and positive,
% b 11 Lg% 5
6&/ K(%/ é/ [/ //f7< '2/6’07‘) (3;2)'

18) Watson, ope cite, 202-203,

*It is a 11'155% Tricky to calculate the asymptotic expansion of G,(x)
directly by substituting the "negligible™ series of (2.2) into the first
equation of lel (5e2), since if we include this series in the expression

for I,(z) we no longer find I_Y(x) = I,:» (X)e Furthermors the ™megligible"

serles exhibits Stokes'! phenomenon in passing through the region larg z] ¢
-—’"’ since in the range =37/2< arg z < 7/2 the exponential factor is exp

L-z-(? + —)f‘i]



It may be noted that the two wedge functions behave at infinity in
e mgnner similer to that of the modified Bessel functions I,»(x) and K,(x)
of real orders i.‘e., one tends exponentially to infinity, the other
exponentially to zeroe Since in applications to physical problems it is
frequently necessary to find a solution of lel (1) which vanishes for large
positive values of the argument, the canonical definitions lel (5.1) and
(5+2) were chosen with this end in view; evidently no Bessel function of
imaginery order end imaginary argument cen venish at infinity if it is
linearly distinet from Gp(x)e

The asymptotic series (3+1) and (3.2) are useful for numsriocal calcu-
lation when x is moderately large, provided that 3’ is not of magnitude
compareble to xe (The larger 2), the less rapidly do successive terms
diminishe) In practice the number of significent figures obtainsble from

an asymptotic series may be greatly increased by the use of a “convergence

=13=

factores" This technique has been developed by Je Re Aireylg) end is adapted

for the calculetion of Bessel functions of imaginary order, as Airey shows
.

by an illustrative examples

In the neighborhood of x = O the wedge functions both oscillate in-
finitely rapidly, being essentially sinusoidel functions of »’log x with
phase constants depending on % Their limiting forms mey be deduceé from
1,11 (5)e We substitute into 1l.11 (3) the relation ;m(0)==5;m and obtein
A(»,0) = 0, B(»,0) = 1/; then we find from lell (5) that if ) is fixed

as x tends to zero,

) — Jv—/yo/;ﬁr W[yéfa,zfﬂ g f’///]} "
) — o can [PAog 4 =g T

(442)

19) Airey, Je Re, Phile Mage, (7), 24, 521-552 (1937).
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It is sometimes of interest to know the behavior of the wedge functions
for large values of the order 9), the argument remaining fixede The dominant
terms of the asymptotic expansions in #’ of the functions may be obtainedzo)
from the defining series lel (4.1) for I,(x)e If wo write i’ for ), the

series becomess: L

’Z:z)[’f“/ /4//)%/ [ 7 Civtr) (u)+/) T ]

We substitute for the r —func'l:lon Stirling's approximation,

/”[u)H/ ~ (V/) (2P [/ %é’(,))] (5)

and obtain ,
T s op (gt oy )] (1400
Pr/a /
= ¢ Tl %ty v1) - E] {12005
&5 o PGt

If we recall that for large » sh27 differs negligibly from %e’m: equations
lel (5¢1) and (5¢2) yield the following asymptotic expressions for the

wedge functions when »is large and x is fiwed:

/}‘;’éc /\)‘ ,@JWAJ%’TCMZO)% ,;—,ZZ //ff f]{/#ﬁ)@/f('z.l)
Gpl) P [%?M [7%3’)'69 2+ 7]t /Mﬂ/}) (7.2)

From these expressions it is evident that both cenonieal solutions of
Bessel's equation lel (1) with imeginery order and iraginary argument,
regarded as functions of their order 2, undergo an infinite number of
oscillations of exponentially decreasing amplitude end slowly decreasing
wevelength as 2 increeses without limite

The limiting forms of the wedge functions when 3’ tends to zero, x

remeining fixed, may be ssen immediately from the defining equations

20) Cfe Watson, Ope cite, 225



1.1 (5.1) and (5.2)e These forms ares

T T
Sk) 532 3 o (8-1)

Ry (8¢2)
Asymptotic expressions for the verious solutions of Bessel's equation

velid when the order >’ and the argument z are simulteneously large and of

compareble magnitude have been derived for general complex values of % and
z3 but the analysis is lengthy and the results are complicated by the
necessity for treating numerous subcases separetelye We shell not take
spece here to apply these general results to the special case of our wedge
functionss reference mey be made if desired to the complete treatment given

by Watson.m)

1le13s Alternative Definitions of Bessel Functions of Imaginary Order and

Ima.ginary Argumente

In connection with the definitions of the wedge functions F, (x) and
Gy(x) which we have edopted in this work, we mey neturelly inquire whether
any other fundementel set of solutions with more convenient properties
has ever been suggestede A brief discussion of the real and imaginary
parts of the function J 2t 7 (x) of complex order was given by Lommelzz)
many years egos but the only attempt et anything like a systemetic treatment
of Bessel functions of purely imaginary order is that of M. Bocher.zs)
We shall sumnarize the relations between the functions defined by Bocher
end our functions Epy(x) and Gu(x)e

Bocher first defines a particular solution {Jn(z)g of the ordinary
Bessel equation Oel (1) by writing, for unrestricted complex velues of

21) Wetson, ope cite, chape VIII,

22) Lommel, Ee, Mathe Ann., 3, 481-486 (1871).
23) Bocher, M., Annals of Mathemstics, 6, 137=160 (1892)




~and z,
()] = 2% [(a + 1) g,(2), (1)
where Jn(z) is the ordinary Bessel function of the first kinde When
z (=x) is resl end positive and n (=1i2) is purely imaginary, he defines
two real independent solutions of the differential equation as:
By (x) = % [§30 ®)] + f:0(=)] [, (201)
I,(x) 5{:'[5 I (X)} - §J_z,) (x)}] ° (22)
(Bocher's I(-,,(x) is not to be confused with the modified Bessel function
of the first kind, for which elsewhere in this thesis we use the customary
modern notation I,(z).)
Bocher goes on to find thet
H;»(x) = cos(¥log x) Sl(x) + sin(»log x) Sz(x), (341)
Ip (x) = =cos(log x) Sz(x) + sin(2’log x) Sl(x), (3+2)

where S7(x) end Sp(x) denote the following power seriess

B y 2 G)p ~CJ »* 427
5‘%/@}' o ! WA R
Yo 1)
- %535/(/4»’//2 *’//32‘”7’ Zl‘/f///‘*ﬂ/ (f‘*’// g
Gl - Gh»*+&, " o Clo ~Cly»* + 67 Z/ﬂ
T s () G A il (e (éw&’ N
oo @) » 2 N
S) = = ey * el () (2]

@y» — (/a) /7(7“

-] B

¢
S i e
(f/ﬂ Gl 2+ 8> "~ [/”) (é/”j"@/” _ B
T e (11 (5 VT (67
(402)

The symbol (p)q, where p and g are any positive integers such thet q £ p,

denotes the sum of all of the different products which can be formed by
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multiplying together g of the p factors 1, 2,eee, pe* By definition
(p)o = 1 and (p)q—- 0if q) p or if g & O,
As & fundsmental real set of Bessel functions whose order i* and

argumint ix are both purely imaginary, Bogxyr definess
Aol = Ko [ 7 ('»/"7/1] =H % [Hylo +i 1, éxj]
s TR 5305 3 (1) ~ i 2 v LY (ex)]
= Cwé’% ) Il + Mé’%#i (e
= 2r
I('))/@f-/ = gn[,g 2 %ﬁ&k}j/
= o bls) 5 in)-002y ) S, ).

(561)

(562)
The series Sy (ix) and S5(ix) are evidently real when x is real; they are
simply related to the functions which were denoted by A(»,x) and B(¥,x)
in Arte 1l.lle We-may deduce this relation by substituting for {J‘-,, (ix)}
from (1) into (5.1) and then comparing (5e1) with 1.11 (2); thuss
ZLQolel] = 2975 0) - 45 ()]
= Z(vfﬂw‘f)a%lr;(v/h/ = [lvn) 272 %7 i* [Aé,%/w-g/%/]
) e, ’
= [0 Algs) 0851

If wo cancel the exponential factor from the second and fifth members of

this equation and equate separately the real and imaginary parts, we havs
at once
Al ) = ~ ﬁi%?t/, Z?é}¢/= > 5 l4). (6)
Bocher's solutions H;y (ix) end I,»(ix) must of course be expressible
in terms of any other fundamental set of solutions of the differential
equation; it is an elementary exercise to write them as linear combinations,
with coefficients dopending on?, of F,(x) and Gy(x)e Since clearly both
*For example, (p)p = Dhy (P)p-l = pd(1+ 1/2 + 1/3+ eee+1/p), and

(P)1 =1+ 2 + eos +p; Bocher presents a short table of values of (p)q
calculated from the recursion formule (p)q = (p—l)q re p(p—l)q_lm
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H;p(ix) end T ,(ix) depend linearly upon Ep(x), which becomes exponentially
infinite for large positive values of the argument while G,(x) tends to
zero, both functions tend to infinity for large xe But in the physical
problems where Bessel functions ocour, se ge in electromagnetic theory,
o frequent boundary condition is the requirement that the quantities ine-
volved shall venish at infinitye It is therefore of considerable importance
to choose one of the canonical solutions of our differential equation so
that it does vaenish at infinitye. For this reason, in spite of the relatively
simple limiting forms of Bocher's functions near x = 0, we shall not employ
these functions in our worke

The reguirement that one of the wedge functions vanish for large values
of the argument still leaves at our disposal in fixing the canonical
definition of the function an arbitrary multiplicative factor which may
depend upon »s The definition actually chosen for Gy(x) in Arte l.1 was
suggested by the observation that the femiliar modified Bessel function
K(x) of real positive argument, defined for general velues of ¥ by lel

.

(442), is a real function when the order is purely imaginary, end that this
function has the simple definite integral representation ls1l (6s2)s We
accordingly defined Gy(x) = K;y(x), and then chose the definition of the
other canonical solution Eb(x) to exhibit as much formal symmetry as
possible with Gp(x)e

The fact that the amplitudes of both F,(x) and Gy(x) decrease ex~-
ponentially with increasing order for any fixed value of x (cfe 112 (7))
necessitates the use in numerical tables of negative powers of 10 to take
account of ‘the wide veriation of the wedge functions in absolute magnitudse
It is likely that if more extensive tables than ours are ever undertaeken,

»
the functions tabulated will be the more convenient ones e Eb(x) and



e” G,(x), with a short auxiliary teble of e%r. A similer device has
already been used with the modified Bessel fu.nction5324) namely, for lerge
values of the argument one tabulates not the functions themselves but
the combinations e *I,(x) end e*K,(x)e These latter functions vary slowly
over a wide range of values of x and are sméo’ch enough to permit accurate
interpolatione

One of the considerations involved in fixing the stendard definitions
of the various kinds of Bessel functions is the desirability of giving as
simple a form as possible to the recurrence relations which exist between
the functions of different orderse These recurrence relations, which
connect for example the function Kn(x) with the functions K,+j(x) and
their derivatives, are a conse‘quence of -bhé fact that Bessel?!s equation
is a confluent form of the hypergeometric equa'bion;25) they are quite
useful in simplifying the results of analysis and especially in the calcu=
lation of numericel tablese However the recurrence formulas are of little
practical valus if the orders of the functi.ons concerned are not all real;
for example the releations involving K;» (x) connect this function with the
functions K;,, 1(x) of complex order, or in our notetion they connect
G,(x) with Gp;;(x)e The existence of a linear relation comnecting G,(x)
with G, (x) is not guarenteed by the form of the differentiel equation;
and it does not appear lii:ely that any such recurrence formule can be
secured by adjusting the definitions of the wedge functionse*

24) British Association for the Advancement of Science, Mathematical
Tebles, vole VI, part 1, Cambridge, 1937 Table VIII.

T 25) Whittaker and Watson, ope cite, 359-360 et seqe

*Professor Bateman expressed in n conversation with the author the
opinion that the chances of finding such a relation were very remotes

-1
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le2o Zeros of Bessel Functions of Imaginary Order and Imaginary or Complex

Argumente

In the first part of the present section we are concerned with the

zeros of the solutions of the equation
Zl)- -2y a)

for Bessel functions of imaginary order and imaginary argument, when the
solutions are regarded as functions of the real variables x and 3/ Iater
we shall prove certein theorems involving the zeros of Bessel functions
of imaginary order and complex argument, which will be of use in the hy-
drodynemical investigations of Arte 242

With the notetion of Arte le0, where 2’ and x are real, (1) is a
Sturm equation in which K(x) = x, G(x) = x = Qz/x.* We shall be interested
in the solutions of (1) in the closed intervel O< a < x ¢ b<<? , throughout
which K(x) and G(x) are bounded by £ 3y K 74 > O and 4 ¥ G zj , where

K=b, f=2a, J-1b =»%h, a.nd;= 8 - 9%/0e

Theorem le (i)e Any real solution of* (1), considered as a function
of x, has an infinite number of real zeros in the interval between x = O
and x=% o

(ii)e No solution of (1) has more then one real zero to the right
of x=% o .

(iii)e If (2, b) is any preassigned finite interval of the positive
x=-oxis and m is any given positive integer, then for sufficiently large
values of 2’ every real solution of (1) will have at least m zeros in

(a: b)'

Part (i) of the theorem follows most readily by observing from 1e12

*No confusion will be caused by this notation, since when K and G
are used to denote Bessel functions they will always carry appropriate
subseriptse
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(4¢1) and (4¢2) that for small values of x every real solution of (1)
* has the limiting form

¥, (x) > A@) sin[ Ylog x + ?(2’)] " (2)
where the amplitude A(») and the phase constant §(?)) are independent of
xo The argument of the sine passes through all negative integral multiples
of 7 a8 x—~>+0; so the origin is a limit-point of zeros of all real solutions
of (1)e Parts (ii) end (iii) follow directly from theorem 3 of Arte 1leOe
If a vy, then?= a(l - ;’z/az)?/O; so the solubtions of (1) cannot oscillate
for x32e If a, b, end m are fixed, a sufficient condition for the solutions
to have at least m zeros in (a, b) is

I/E = 2%/% - 1y wPrP /(b - a)?;

and the inequality certainly holds for all sufficiently large values of e

Since G(x)= x -;92/& is decreased by incresasing yz, theorem 2 of
Arte 1o0 shows that the higher the order 3/, the more rapidly will the solu=-
tions of (1) oscillate in the neighborhood of a given pointy the increased
rate of oscillation is of course obvious im the limiting form (2)e

It is qualitetively apparent from theorem 1 above that, as the order
2) of the wedge functions E»(x) and Gy(x) is continuously increaged, the
real zeros of these functions move steedily to the right into interwvals
previously zero=freee The sudden appearance of & new zero between two
old zeros of either function is precluded; since Eg(x) and qﬁ(x) are con=
tinuous functions varying continuously'with'>z any such new zero would

26)

have to appear as a double zero, and no solution of (1) can possess

a double zero at an ordinary point unless it vanish identicallye

Theorem 2o If A and B are real constants independent of ¥ and if

x hes any fixed value, the linear combinetion of wedge functions

26) Cfe Ince, Ope Cite, 229, ne 2e



¥, (x) = A, (x) + BGy(x), (3)
considered aé a function of 37, has en infinite number of zeros for ine
cressing values of ») with a limit-point at +ote

From lel2 (7.1) end (7.2) we have the asymptotic form of y, when
)’ris large ‘va.nd x is fixed; nemely,
oy
ol) 0 Ca 7 @;M[Mz?ﬂ Ly )1 8]feo5), @

from which the theorem is evidente

The complex zeros of the solutions of the Sturm equation,
AfKG) ] - Gler =0, (8)
- may be investigated by the use of a certain integrel equality known as
the Green's transform.27) It is supposed thet K(z) and G(z) are amalytic
in a domain D throughout which K(z) doss not venish; and (5) is replaced
by the pair of equations
awy /dz = wp/K(z), dwo/dz = G(z) wy, (6)
where wy = W, Wy = K(z) aw/dze (7)
On combining the complex conjugate of the first member of (6) with the
second member, we get
Wo @y 4+ Wy dwp = ,wzlz az/%(z) +\w1]2 G(z) dz,
which, being integrated between limits z; and z, along a path of inte-
gration lying wholly within D, yields the Green's transform of (5), namely:
[T [T gy Gl - o (®)
/ 2,

K@
Let d2/R() = dE = A% 1445, Ga)ds = AG =l +i2, (o

and split the Green's transform into real and imaginary partss

B % 2, 2.
Blgan]”= [l pux, + | hiras, el

27) Ince, ope cits, chape XXI, We define G(z) with opposite sign
to that used by Ince, in order to keep our notetion consistent with Arte l.

=22
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B | " 2, 2,
Grlefas] "= - [/w;/’ﬂ; *[ fer| AL . (20.2)

Recalling (7), we ses that if the solution w(z) of (5) venishes at 29,

it cennot also venish at z, unless the right sides of (10.1) and (10.2)
both vanishs In particular it does not vanish at zZgy if we can find a
peth of integration in D comnecting Zy and Zg throughout which a definite

one of the following four pairs of inequalities is satisfieds
v gy VB AEco ) dX e,
&/ A yo; 44 <o, AL, o, Ag <o. (11)

Our first application of this theory will be to the modified Bessel

ff:{/’? %f/’(i**;z)”’q (12)

obtained by writing iz for z in Bessel's equation Os1 (1)s Any solution

equation

of (12) will be called a modified Bessel function of order ? (here assumed
real) and argument ze In this case we have K(z) = z, G(z) = z +2)2/z;
the domain D includes the whole complex plane, cub along the negative
half of the real axis, except for a smell circle excluding the origine

An elementery calculation gives, for the quantities defined in (9),
A = AK, +Ld K, = ohp +id8,
AF = AL, +A A

= flhow 26+ 2) b 045 20483 +4 [ 005 20 ahs e 204906 ot

ie

(1341)

)
where z = re , =7<0 <7
Useful in the statement of the results which we shall provs ere the
two curves whose equetions in polar coordinates ars
B 8) = frow a6 4270 = £iTIT (14)
The equationél(r, 9)$+%ﬂ7’2 represents the positive imaginary axis

@ = 37 plus the locus of points satisfying the relation

=23



r?= 2% (7= 20) osc 20 (1401)
for 0 < /77' =20/ <7, The latter locus is & bell=-shaped or witch-shaped
curve symmetrical about the imaginary axis 6 = %—7’; having e flat maximum
y=» at x =0, and asynptotic to the real axis for large wvalues of

x (>0 +0 or 7= 0)s The e@;a*bion,él(r, 9) = -2m? represents

the reflection in the real axis of é(r, e)= +%:T)’2.

Theorem 3¢ (i)s No modified Bessel function of real order can
have two complex roots whose imaginary parts are equal and whose real
parts have the same signe

(ii)s No such function can have two complex roots with equal imag-
inary parts whose representative points lie outside the open region between
the two curves r2= 122 (77 20) csc 20.

For part (i) assume that the modified Bessel function R Az) which
venishes at Zy= X+ ib also vanishes at ZIp= X, + ib, where for cone
venience we take Xo 7 Xpe Assume at first that both roots are in the first
quadrant, so that Xy 7 X >» 0 and b 7 O We carry out the integration
of (8) over the straight line y = b fron Zy to Zoe Along this sggmen’b
x> 0, d&x 70, and dy = 0; so on writing out in rectangular coordinates
the quantities defined in (9) we find that
QK = Re (dz/2) = (x ax +y ay)/(x® + ¥%) = (x ax)/(x® +b°) % 0,
d,él = Re (z-ra)z/z)dz = x[l + 3’2/(::24- yz)] dx —i—y[-l +2° 2/(x2+ 52)] dy
x[1+° 2/ (2 + bz)] ax 2 Oe

i\

1

Henc;e the inequalities (1la) are satisfied throughout the peth of inte-
gration, and R)(z) caunot venish both at z and at z,e The occurrence of
8 pair of complex roots with equal imeginary parts in any other quadrant
is ruled out in an exactly similar weye

ie

For part (ii) assume that R,(z) venishes both at Z;= X + ib = rye 1

=24=
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18
5 = Xy + ib = The 2, In view of the result just proved, it suffices

and at z
‘o take xq and Xy of opposite sign, say % < 0« Xo3 and for convenience
we consider first the case b » 0, so that Tr>91 y 5T 8, > O By hypoth-
esis the representative points of Zy end z, lie on or above the curve

rz =))z (7= 20) cse 20; lot the radii vectores to Zq and Zg intersect

this curve in the points g’ 1= fleigl and f o = fzeioz respectivelye. We
cerry out the integration of (8) along a path consisting of the following
parts: (1) the radial segment from z, to ;1; (2) that portion of the curve
r2= 2 (7= 28) csc 20 fromfl to fzg (3) the radial segment from g’z

to zye Along (1) we have d8 = O, dr £ 0, and sin 20 £ 0; so from (13.1)
and (1342), dK, = 0 and a4, ¥ Os On (2) déz 0 by definition, and

dK, = 48 £ 0s  Along (3) dK; = 40 = 0 and a4, - r sin 20 dr > O, Hence
the pair of inequalities (1lc) are satisfied, and R,)(z) cannot vanish both

et z; and at Zoe The case b { 0, in which both imaginary parts are negative,

is treated in a similar way to complete the proofe

It may be noted hers that our methods do not permit us to dispose
of the exceptional possibility that a solution of the modified Bessel
squation (12) of real order may have two complex roots of equal .imaginary
part, lying on opposite sides of the imaginary axis and wi'bhin the open
region* between the curves r?= t)2 (7 = 28) csc 26.

Analysis similar to the preceding may be applied to the solutions of
the eguation )

j—;&%r/‘( ":)M:O (15)
obtained by writing -)’2. for »# in (12)e Any solution of (15) will be
called a modified Bessel function of purely imaginary order i” and complex
argument ze** The functions K(z) = z and G(z) = z --»2/z are analytic

#This region is somewhat less extensive than the strip \y\ L Do

*¥The wedge functions defined in lel are of course particular solu-
tions when the independent variable of the equation is regarded as reale
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in +the whole complex plane (cut along the negative real axis) excluding
the origine The quantities dK and a¥ may be obtained by replacing »2

by =7 in (13.1) and (1342)e

Theorem 4¢ No modified Bessel function of purely imaginary order
cen have two complex roots with equal imaginery partse

To prove the theorem, assume that the modified Bessel funetion R;» (z)
vanishes both at z; = x; + ib and at Zy = X + ib, where for definiteness
%y Z Xos and we assume at first for convenience b > O We carry out the

integration of (8) along the straight line y = b from z. to z,o On this

1 2
segment dx Y 0, dy = O; so on writing out the expressions for dKé and
d&z we find that
aF, = In (d2/z) = (-3 ax + x ay)/(xP+ 3°) = =(b ax)/(=*+ B°) 2 0,  (1641)
Ay = I (z 2% /0)az = [y+ »y/(E+ F)] ax +[x = P/ ¥ &y

=b[1 + 7%/ ) bz)] ax > Oe (1642)

Thus the pair of inequalities (11c) are satisfied, and R(,)(z) cannot
vanish both et z; and at zpe If we assume b < 0, we merely reverse both

inequalities and obtain (11d); thus the theorem is completely establisheds

In the following theorem use will be made of the curve

r2 = 2,00 oso 20, 0 < 0] ¢ im r(0) =, (17)
which is just the symmetrical bell-sahped curve of (l4el) rotated through
an angle of -%77; so that it now lies on the right side of the immginary
axis, passes through the point (», 0), and is asymptotic to the imaginary
exis at £i0e Writing (17) in rectangular coordinates, xy = »ten™l(y/x) = 0,
and comparing with (16.2), we see that the differential equation of this

curve is just ddy = Os

Theorem 5¢ The modified Bessel function K ;»(z) of imaginary order



hes no complex zeros on or to the left of the curve r2 = 27)20 csc 20e

Let 2z, = x; 7 O be one of the real positive zeros which K,»(x) = &»(x)
hes by theorem 1, (i)e Assume Ka)(zz) vanishes, where z, = x, + ib is a
complex number on or to the left of the curve (17); let the line y=D>
intersect this curve in the point f = £+ ibe Assume for the moment
b ¥ Oe Carry out the integration of (8) along & path consisting of the
following parts: (1) the x-axis from (x, 0) to (2, 0); (2) the curve (17)
from (v, 0) to (&, b)s (3) the line y= b from (£, b) to (xg, b)e On
(1) y=0, 4y =0, so from (16s1) and (16e2) dK, =dgy = Os On (2) 4K,
= Im (dz/z) = Im d(log z) = d6 > O; a4, = O by definition of the curve
(17)e O (3) y=Db > 0, dy = O, and dx < O; so from (16e1) and (16.2)
&K, = -b &x/(x*+ v°) ¥ 05 &fp = b ax [1 +22/(x% + v2)] < 0
Hence the pair of inequalities (11d) are satisfied throughout the path
of integration, so Kb)(z) cannot vanish at zgpe In a similar way it is
established that K;p (z) cannot have & complex zero to the left of the
curve (17) with negative imaginary parte

The possibility that K, (z) may have complex zeros in the extensive
region of the right half-plane to the right of the curve v = 21)20 csc 20

cannot be excluded by our methodss

le3le Expansion of an Arbitrary Function in a Series of Wedge Functionss

The possibility of representing an arbitrary function over a finite
intervel of the positive x-axis by means of a series of wedge functions
follows directly from the general theory of Arte 100 we summerize here
the resultse

Consider the Sturm=Liouville systems

ﬁ[¢g)a[¢~fz)ﬁ=€ (1.1)



&' ya) — dg'ta) =% (1e2)
ﬂ’ﬁ(é‘/ *ﬂﬁ w =% (1a3)
where O < a < b < and, with the notation of 1.0 (4.1), K(x) = x,
L(x) = %, g(x)= 1/x, and A =2, Let Y(x,»)) be the solution of (lel)
satisfying the first boundary condition; then the second boundary condi-
tion yields the cheracteristic equation (cfe 1lo0 (5)) which must be satis-
fied by the eigenvelues 9} e In the simple case X % = 0 and &' =!g'; 1
the boundery conditions ere y(a) = y(b) = O, so Y(x,2’ ) may be taken as
the linear combination of wedge functions ‘
Y(xp) ) = F,:(a-)G,)(x) - Ga)(a)F,J(x)S
the characteristic equation then becomes
F?) = B(2)6,(b) = G(a)Es (b) = 0, (2)
Evidently the system (1) satisfies the conditions of theorem 5 of Arte
1.0, so there will be an infinite set of real, all positivex* eigenvalues
,,)02, ,)12, 9>22, 200 » which have no limite-point but +<?; and the eigen=
function corresponding to y‘m will have exactly m zeros between & and be
Methods for actually calculating the roots of the characteristic equation
numerically will be briefly discussed in Arte le4o
An erbitrary function f£(x) may be represented in (a, b) by the series

f/%/ "Z/L 7;3”[76), )

of wedge functions

-8

where 7, is the nth eigenvalue of the system (1), y, (x) is the corresponding
= ~n

eigenfunction, and the coefficient A, is determined by

i
A, = : (4)

(:3«,,2;, @) QZZ

*¥Provided, 6f course, that xo’2%0 andﬁ/&’bo, as is almost always the
case in practicee
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By theorem 8 of 1e0, if f(x) possesses a Lebesgue integrel in (a, b) and
is of limited totel fluectuation in the neighborhood of an interior point
s of (a, b), the series (3) converges et s to the (mean) value of £(s)e
It can also be shown to converge to f(x) at the end-points of the interval
unless the functions ygﬂ(x) are constrained to vanish at the end=pointse
In the latter case the series vanishes at the end=points, no matter whether
f£(e) = £(b) = O or note

The integral in the denominator of (4) may be calculated from 1le0 (5)

end (642); recalling that A ’Zﬁ, we obtain

[(BET - L[] [ oL T ] oo

=2,
Formules equivalent to this have been given by Dougallza) and Bocher

29)
The right side of (5) cennot be simplified, as can the coefficients in
an ordinary Fourier-Bessel expansion, because as noted in 1lel3 we have
no recurrence reletions involving derivatives of the wedge functionse
If we abttempt to represent a function f(x) over the interval (0, b)
or over the infinite interval (0,o¢) by meens of wedge functions, we find
that our boundary conditions no longer select discrete values of 2, We
have now to use all values of 2’ in the representation of £(x), and the
infinite series (2) passes over into an infinite integrel in o wey similer
Yo the well=known transition of an ordinary Fourier seriss into a Fourier
integral as the fundamentel intervel is extended to infinitye In the case
at hand we obtain what mey be called a Fourier-Bessel integrel, though
of a form not previously discussede Sufficient conditions for representing
a function'in the interval (0, b) by such an integral will be given in
the following articles but since the rigorous demonstration is lecng end
28) Dougall, Jes Proce Edinburgh Mathe Soce, 18, 40 (1900)e

29) Bocher, Ope cite, 14%¢ Bocher treats only the case F 0 and
writes i? for our »3 this accounts for his negative signe
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involved, we shall first give a heuristic development which, while meking

no pretense of rigor, will indicate formelly the result which we mey expecte
We assume 'Fhat a suitably behaved function f(x) may be expended in

the interval (a,o¢) in a series of wedge functions of the second kind,

which venish at & and et infinity; we shall eventuelly find the limiting

form of this series as &—7+0o* We have from (3), (4), and (5), on setting

g=0 [v"
(e 60
;Z/O‘/ Z -2 9@(«/ %;)M ()

fﬂ/—-—&.
9;) o

where the negetive sign arises from evaluating (5) at the lower limit
of the intervale Since we are interested in the limiting case a7+ 0,
we calculete the denominator of (6) approximately from lel2 (4.2); and
we also assume that we are considering only those terms of the series

for which » is so large that /(i) may be represented by Stirling's asymp-

totic;;m/njl(i} Tf;’i% i) Qm[(ﬂ-y%(i») ~¢» +Z? (27 |
= 3)/% p-t) = 5

and lel2 (4e2) becomes, for » large and x small,
L, _ ) /g

G}\)M A 7]'/,)4%,;77‘ %[ﬂ/[g?z% Z—aﬂf" '[“,? ]' (7)

Equation (7), together with the boundary condition G, (a) = 0, yields the
(3
equation for the eigenvalues:
ﬁ%-‘a %%H)“L = -(h+} (8)

If we subtract this equation from the similer equation satisfied by # % +1

and write o)k 417 ;)k + Q‘,)k, then neglecting squares of g,k we have

#The theorem of the next section actually permits the representation
of a funetion in the finite intervael (0, b), where b is any preassigned
number, however larges This is not quite the same as representing the
function in the infinite interval (0,40)e



p D T
Sﬂﬁ%zw~4?g)z +I)"‘J‘)% = 7’—} 5‘7}2 —%gﬂ . (9)

Differentiating (7) with respect to x and 2’ in turn and then employing

(8), we see that

£ % T
Ml | v R

(1061)
I r =
D, () 2 /% §,,_/ (1002)
X /4)“ % 4} Ch N oh ok

Substituting (10e1) and (10e2) into the denominator of (6), replecing
log(ZJ)k/a)by (717 /S})k) in accordence with (9), and letting the series pass

into an integral as a—7+0, we are led to the formulsa

’/éé/ /y/vrgk/;/f/ﬁgé‘)d[fJ” (1)

which presumebly represents f(x) in the open intervel (0,o2)e
The rigorous proof of a formule similar to (11), valid when f(x)

satisfies certain sufficient conditions, will be given in the next articlee

1le32¢ A Fourier-Bessel Integral Involving Wedge Functionse

The main result which we shall prove in this section is conteined
in the following

Theorems Let £(t) be & function of the real variable t in the range
04 %4£T, and let x be & fixed point of the open interval (0, T)e If

(i) £(%) is continuous except at a finite number of discontinuities
in (0, T),

(ii) f£(%) hes limited total fluctuetion in an interval surrounding

X, and

(iii) |£ ()| dt exists, then
%
0



2okl [ Ts) Efo - [flr)t fleolf.

We require certain preliminary lemmes, which will for convenience

be expressed in terms of the modified Bessel functions IL,(x) and K,(x)

-

defined for unrestricted complex values of the order by lel (40l) and (4e2)e

Lerme le If 04 t < T and if (£ % N, where ReZ % O, then

)
J’}/ﬂ=2%77’[/¢ o(%)]. (2)

Proof: From lel (4.1) we have

Ny SCL/A—
it) ;//7/{/ [ It L i) ) |

12 )°/ 7 Wand Reg” 7 0, then /% n/ > Wforn =1, 2, eee 5 50

L [l L|Rm 2, ,
Pl < 28 - B -0

amn =1

M=t
QeEeDe

Let != 3o+ i? :/Oelf, where/o 7 N and /§ﬂ/< %7"; then the following
asymptotic expression mey be ob‘bainedso) from Stirling'!'s formulas

//7/1_7/2 =270 s 71/5'1/1 ‘275”[/¢ é’(f’//
5 27,~jz5’”77/7///23;0"[/¢ﬁ[,ﬁ//. (3)

Lemma 2o Let 0 < £< T and let N be a positive integer greater them

unitye
(i)e If &= (N+ %)+ iy, where =(N+ 3) < p ¢ (N4 3), then

) = 4715 () [1410(5)] (&)

~ 30) Copson, Eo Te, Theory of Functions of a Complex Variable, 224.




(ii)e If = £+i(N+ 3), where 0 £ £ < (N +3), then

Kit)- 476G [0 G +olife) ] @

Proofs From lel (4.2) and (4,1) we have

) o T (B
// oen T ff’/f/((/ /(/f///fmj
—GtF Z 1 A AN
5] Leyom?575m) - (ﬁ»n/

We employ +the iden'l',:‘rt:y:5 )

end obtain, after factoring &/(£) (*‘b)— out of the right side of (6),

[((z‘/ L)l Gr)?
)4 [/+gw/&m

~ 7l /26’ Z Gt) M
oenfr /G L2 oal ) o)

In part (i), where £° = (N + 2) + 3.2 it is easily seen that for
N >1we have , =/[¢[<R7 (N +%) < 2N, so (3) implies that
- T 2N L
P> e TN 11005)] -
If k is any non=-negative integer we have the following evident inequalities:
{
[1-7] > 2, W24, andlfth] >H.

We also have [si = ch 71 and (%‘b)z;/ = (%‘G)ZN+1o
T n

Hence we may dominate the remainder terms on the right side of (7) as

follows Zm B Z{é/;)z___{_, v ({f} 2 it /

/L U T TT i ) L T
g 7 GGT)" 47 ) ,

Z% "W*’”"/Vi”’Z(/// _ [10G)]

AN+

g ir 1] +§r/ i LroB)] - 6%,

For part (ii), in which/” = §+i(N + %), we have again o < 2N,

31) Whitteker and Watson, ope cite, 239



and (3) becomes

I s e AT T 04 o).

We have also, if N > 1, W"z’)r

7] = o 5w 4 oA s Jrf* 2 tridfr > 72
as well as /(é‘b) ;/ = (—z*b) , and /k to0>

where k is any integere Accordingly:

7 ) )

m ‘ ””//ﬂ (m-¢) Mﬁr/’z(ﬂz /876 %+) - (Gm) /
7)o 4/177 177 ) Zm

z %m ' Fa ) 6]

f/)“f/ =)y T Ly e H) =03 0l5)

QeEeDe

The term O(1/N g) may evidently be disregarded if £ 3.

Lemma 3e Let x be & fixed positive number and let £(t) be a function
defined in the range (042 ) such that
(1) £(%) is continuous except at e finmite number of discontinuities

in (0,o2), end
)
(i )/J—f-(—tl/- dt exists; then

_Wo/ﬁ’/g(/zw/w“fw&/‘g/ﬁ/ﬂfdﬁ
- [Bokor Bl ([T K»WW@ .

provided the limit on the left existse

Proof: The function W K () is a continuous funetion of 2O
and t provided 0<» < R and t % %, 7 O3 furthermore it tends to zero
by lel2 (242) as t —e©e It is therefore a bounded function when the

variables are in the stated rangese On replacing /by i’ in (7) and

meking use of the reletion (1411 (4)) m/ﬁ(l?‘)/ =y , we have

=34
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after some elementary manipulations the inequality

/W[(U’/f/) S Fzg/z , (s)

and the right side of (9) is certainly bounded for all real 2 as t—7 + Oe
Hence if we define
gz, t)= Ppshenky (x) K (%),
where x and % are any positive real numbers, there exists a constant A
such that ];z{(z);. - t)] £ A solonges 0¢2¢ R
For any preassigned positive values of R and £ we may by hypothesis

(ii) choose (H so that

it
e e et
[t s bt 1[G Ft)

([P it - [ L Pt .

] /f%%@@%ﬁ@&# fo%ﬂ%/ﬁ%@ m‘/é&‘/;// A
<[ g@/ [pizt)doott 4 i e p)| ot

< £ .pdr LRt
2 a(e_ rrrpg
since we may evidently Jjustify /o A y by considering the ranges

within which £(%t) is continuouse* Since the preceding inequality is true

for an arbitrarily small £, the repeated integrals /7 /eand / / are
2 49 (Y ()

equal for all finite values of R; the desired result follows by passage

*In particuler, if the integrend lf(t)l /-b has & singulerity at © = C,
we breask the range of integration into two parts and treat the lower limit
in ‘the seme way that we have just treated the upper limite



1

=3 G

‘to the limit &s R—>o2,
If it heppens that £(t) =0 for t > T, we mey evidently write T for

‘the upper limits of the integrals over te We shall use this special case

of (8) in what followse n
We proceed now to the proof Cg i
@On) < W4,V
of the main theoremns.
Consider the conbour integral
' ‘ Y A
}{{Kg(x)]‘f(t)d{,’, where 0 < % £ x, %
2
around the rectangular contour in
the J=plene having corners at 7 £
(0, £(N+ %)) end ot (W+ Z, (N + 3))e
Since the integrand is everywhere Y A
an anelytic function of 7, by
Cauchy's theorem the contour integral N /1)
- éz-ﬂﬂé) d éhﬁ+§/*A/.i/
venishess ie €ey C:

' s \ 0
f/yflf'zz?/%/lr‘y/ﬂ/ﬂ? /Yé’ )T //// wol
where 'b—he——rlgh'b-ha.nd integral is evaluated over ‘the bottom, right side,
and top of the rectengular contours

Writing n)foriz in the lef%t side of (10) and noting from the definition
lel (542) that K:»(x) is an even funé‘cion of ¥, we may trensform the integral
over ‘the imaginery axis and obtain the following relations

/ LHW TN = - [ Bote) Tt s

— A/.i

=/ ;//f:)é‘f//v;/f//» ﬂ > Kpl) Ly (80

4 A/_

Vo K] L, s — / % o) Tt ) 10

1
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(1161)

w’/M:/ o Kip o) Ko ) 27

Similarly if 04 x £+t, we have
Wt
9’4/&71(;&/]@/77%) ’C/ﬁ'/[é’/f/ 1;%‘/“// (11.2)
/*C',_qu

Let u be the greater of the two quantities x eand 4+ and let v be the
other, so that 04 v £ u £ T. From (2), (4), and (5) we have
28
[[£5) 04 - HE R ad) e
17‘C CrG +Cy
where on the segments C; and Cg ]R(§ Yy v)] AN 4 B/'\I , and on the

segment Cg \R({f;. U, v)lé QC/N, A, By, and C being constants independent

of Ne Now
L//Vrﬁ,/ .
{/f J}/f, Cam[WH) ;;’”:] |
01’@) 47 e ’

and setting; log(v/u) = =A<0 and =54+ in, where on C; and C, l’Z‘ =

1
N+ % and on C, £= N4+ %, wo can dominate the remainder term of (12)

Ll

as followse

G =t R )]

€+(,Lc

[N e[

4—W+”} g[/ €~(A+243/V] (/V" )C ‘-)//J
A/,l[/ ] 1#249/;/ v y”(}m)

We consider separetely the case A< N-:e, where t is inside +*he intervel

{
— 1
(xe F’; xe W )s and the case X) N® s Where t is outside the intervale

If N"‘ then f 14
AY » enrom(ﬂ) 2 :0(’1’;/) \
<ty Ly 1 T OGHN e
» then by sutstituting A =0 in the second line of (14)

"2—

while if A& XN

we have



A +;{C}/4/tz// %/V - p201). e

/V

Collecting the results of (11), (12), (13), and (15), we have

7%7@%%@@%@@%

_ T r"ﬁ/ L (v Y ﬁ?ﬁ/&ﬁ{
’Z/Of 7y 2 %7‘/‘9["&/@'”&%/

Since by hypothesis /i(EL dt exists and x(e - —Ti’) = O(N ), both

remainder terms in (16) are o(l) and vanish as N—»?% On setting log x - o5

log t = ¢ in the first integral on the right side of (16), inverting the
order of integration on the left side by lemma 3, and letting N — =0,

we have

- /W Koi) | A Holt) 220
_ /fwwmwwﬂ

v-t)

/z/«w
I £(e¥) = g(2), then by hypothesis flglg(t)ld’é’ exists and g(v) is of
limited total fluctuation in an interval surrounding % Hence by Fourier?s

smgle integral formula we have

o K uéc)/wfﬂ //?L/Z/ja/))
_ 77—:. 1[/&4—;0 7{&/‘»/—/ e Z/[/émw}*}//%”o/j

32) Titchmarsh, Ee Ce, Theory of Fourier Integrals, Arte lel4s The
formula

4, # g “H e Ryl 1 gl <o

is valid even under less stringent conditions than we have imposed on

g(De

w38
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On writing the wedge function G for K. we obtain the result (1) stated

at the beginning of this sectione

The theorem just proved appears to be of a somewhat different type
from the ordinery Fourier=Bessel integral 'bheorem,ss) since it involves
integration over the order as well as the argument of the functions con=
cerneds) Tt would be of imberest to kmow whether an inbegrel of the
- form (1) cen represent a function over the entire renge (0,00), s the
considerations at the end of the preceding section might lead one to bew-
lievesy but the question does not seem easy to decide by our methodse

A number of formules involving integration of Ga)(x) with respect
%0 2 follow from 1,11 (662}, which defines G,(x) as the Fourier cosine
transform of %—’;" exp(=x ch t)e In general if £(%) is a continuous function
in (0,40) such that ooD[f('b)\d'b exists, and if £(t) has limited total
fluctuation in the neighborhood of the point t+ = s, there exist the following
reciprocal relations between £(t) and its Fourier cosine ’cransformJ: (1))335)

% ) IZ/)’O £(%) cos Pt ats (17.1)
£(s) r (x)) cos s¥’ d% - (17.2)

- If in lell (602) we make “bhe following identificationss

"

"

33) Watson, Ope Cite, Artse 14¢3 ot sedqs

34) But see Te M, NacRobert, Proce Roye Soce Edinburgh, 51, 116=126
(1931), where several Fourier=-type integrels are obteined by ‘contour
integrations One of lacRobert's results is the followings

= L0 [r)gppd, (0P F)

A % Lm+0) m‘“o) (< <q
o [Ty )bl - L0 P pey

0, 0<m 425 a1 MM 752.

' 35) Titchmarsh, ope cite, 1-4, 13,
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Z6) - ep(x), £(1) = [T X BT, (18)
then we have the pair of relations

G,y(x) = [ooe"‘x ch toog 2t dt, (19.1)

Liye=x ch 5 = /obnG,)(x) cos »s d7% (19+2)
In the special case s = 0, (1942) becomes

[ﬂ(‘;(x) a» = fme~%, (20)

5 ﬂ: ()j and.4, (?) are the Fourier cosine transforms of £(t) and
36)

g(%) respectively, then we have the formule

z[ L)AL () oos 4 a0 = ezt - w) e (21)
Applied to the wedge functions Gpy(x) and Gy(y), this gives
K%r,)(x)(},; (y) cos 2t d¥ = ;};_,f:-x ch(t-u)=y ch Y3u, (22)
or, in the special case t = O, | =
/W;y(x)ey(y)da) = %W[ "o (meplon vy, F6, (x + y)e (23)
The *theory oof Fourier integrals ocould doubtless be made to yield
other such results involving G,)(x); but since the applications which we

heve in view do not require the use of these formulas we shall not carry

the investi gation further herss

le4oe Transformation of the Differential Equation for the Wedge Functionse

Calculation of the Eigenvaluese

The wedge functions F,(x) end G,(x) are difficult to tebulete end
‘to employ in numericel calculations for small values .of the argument
because of their oscillatory discontinuity‘a'b x = Oe It is possible %o
facilitate their use in practicel problems, as well as formelly to simplify
soms V‘bl.leoretical developments, by transforming the independent variseble

of the defining differential equation so as to remove the singulerity at

36) Titchmarsh, ope cite, 5le



‘the origin from the finite part of the plenes For this purpose let
| u =log %, or x = e | (1)
The trensformation (1) tekes the triad of points (0, 1,-0) of the x-axis
into the triad (=es, 0,00) of the u-axis; and, since d/dx = e d/du, it
trensforms the equation lel (1) into |
dBy/a® + P - o%) y =0, (2)
which has no singularities for finite wvalues of u, and of which the genersl
solution is evidently
y = clEﬂ(eu) + chb(eu). (3)
The quentities F,,(e") end G,(e") are tabulated as functions of u
and » in the appendix of this thesise It is evident from (1) and le12
(401) and (4e2) that for large negative values of u, F,(e") and G,(e")
are spproximately sinusoidal functions of pu; this fact is plausible since
sin Pu and cos 7 both satisfy (2) when u is negative and large emough
to meke e2¥ negligible compared'with‘fz. By theorem 3 of Arte 1le0 the
solutions of (2) are non-oscillatory when u > log); their asymptotic
form for u large and positive may easily b; obtained from (1) and 112
(341) and (3e2)e
One may write a series expansion such as 1le31 (3) directly in terms
of Fy(eu) and Gy(e") by making the simple transformation of veriable (1)
in the integrals of 1le3l (4) and (5); but the eigenvalues 7£ must be
computed as the roots of a transceadental eguatione For example, if
the boundary conditions are y = 0 at u= ¢ and at u = d, then the eigen=
values are the roots in 7 of the equation (cfe 1e31 (2))
L OP) = B8 (%) = 6, (e®)E(e%) = 0o (4)

The only practicable wey to obtein the first few roots of (4) for given

4]

values of ¢ and d appears to be interpolation in a table of wedge functionse

One evaluatesézzfz) for several adjacent tabular values of # around the



expected root 7’):1 end interpolates to find the value of # for which the
function vanishese Then it is possible to calculate by double interpolation
the value of the eigenfunction corresponding to 7)n for any desired valus
of ue

If it is necessary to calculate the roots of (4) beyond the range
of the aveilable tables, recourse mey be had to the asymptotic develop=

37) of +the large eigenvalues of (2) and their

ments, first given by Horn,
corresponding eigenfunctionse Horn's results will be briefly quoted here
and applied to the case at hende
We consider the equation

‘{/42) # (y%*c)ﬁ - (5)
where A, B, and C are real continuous functions of the real variable u
and possess continuous derivetives of all orders in ¢ 4 u € d, A and B
being positive in the given interval; and 2R is an arbitrary parametere
Horn shows 'l;hat the solution of (5) which satisfies the boundery condi=-
tions y=«, dy/du =d? at u = ¢ is represented asymptotically for large

L]

values of 9’2 by the series
= cova( B+ Gr) s snro(Z 1B i

where W and the ;f's are functions of u defined by:

wiu) = é(Fufﬁéfiaéb;

(7e1)
?fﬂ&/ ) ff__;ﬂfff%g Y
(742)

) T g pgics A T
“ zW "W' W TaT 1.s)
%«/a/ /m A A, m»"LC L g (=42, ) (7e4)

AR M M % o Bt & W )
W/ 0 a0

37) Horn, Je, Matho Amn., _5_2_, 271-292 (1899). (/,,=/,,2I -,




If we impose the boundary conditions
y(c) =y(d) = O, (8)
we get from (6), on setting A =0 in (7) and introducing the notations

Gz wll)z [T, Yo fouldl) fro 7=t @

the characteristic equation

ﬂb/t)v:/éﬂ {.. pf+“_f:%ﬂ—+g+§+.” (10)

- il —-1—)—-' 232
Y + = )

where k is an integer (assumed positive) and an elementary celculation
gives

R AR A
5:_%/ %:- 7»1—):’“ 3_)2;) (11)

-

On setting 4%{ ‘

_ _ /,Zf’ + § £ RN

% T & 3 77 (12)
in (10) and equeting to zero coefficients of successive powers of 1/k,
we find that y _ "’gﬂl

2
z ) - ),
g/ = g"‘— P g 7? ((/o 5.; ! (13)

Henece from (9), (11), (12), and (13) the eigenvalues of (5) with the

boundery conditions (8) are given by

4 R, 5(@r)

T e

% @ L7 ﬁ(d/ (12)

and the eigenfunctions are given to the same degree of approximetion by
(6) if we keep terms in 1/92.
The case in which the boundary conditions are
y*(e) - hy(e) = 0, y*(a) + Hy(d) = O (15)
is treated in Horn's papere One sets « =1 and ! = h in (7) and obtains
formally the same results as in (10) - (13) above, except that the quantities

)& are now defined by
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R A AR VIR AR AV AL P

the functions all being evaluated at u = de
. If we consider specifically equation (2) under the boundary conditions
(8)y we have A =1, B =1, C = ~e?%, and A= 0, so that from (7),
wolie) = | s e
P(a) =0; Pl =
) e+ L]
Hence the eigenvalues are given z{proxlmately by

7, = N (17.1)

-c) '~ s 7

and the corresponding eigenfunctions by

. Lo
I e R i o

Horg*

If we trensform back to the original variable x by meens of (1) and let

a = 6% b = ed, the eigenvalues are given by
AT A -at )
@, = Lo Ly (1841)
74 A 4Er

and the eigenfunctions by
s ] e Gl 2 s

the multiplicetive constantA' being arbitrarye It would of course be

dcn//

possible to improve %he approximations by computing more ‘terms, but the
quantities %5, 5£, end &, increase rapidly in complexity for larger values
of ne

A great many theoretical results involving the eigenfunctions and
eigenvelues of a Sturm=ILiocuville system, as well as some actual numerical

information, ey be obteined by adopting the viewpoint of the calculus



“45m

of variationse>®) In comection with the system
{KZ/#Z //—’/Ig) =0 (1{>0,; 70) (1961)
Q// a) =9, (1942)
’6&} h?/é} = Y (1943)

one conmders the functional expressions

ﬁ@7=4%%y4u%ﬁa;4%@%&¢@f+ﬂxaﬁ%df —_—
MY =[2G 9t o)

in the case of the differential equation 1.2 (1) satisfied by the wedge
functions, K = x, /: Xy and g = 1/::, so that

BLp] = o 19t + S p)* +HEAH  runy
g ] - [+ % 2}

Now it is known that if Yos J1s eee s Yn-1 are the first n eigenfunctions
of the system (19), then the (n+l)st sigenfunction of (19) is that function
Vn which minimizes the quotient Q[yn] = ‘,G[yn]/ﬂlﬁrn, Vn] under the n sub-
sidiary conditions %’):yi, yn]= 0, i =0, 1, eee, n=1; and the actual
minimum value of Q is the (n+l)st eigenvelue A,s In particular, if Ao

is ‘the least eigenvalue of (19) and 4 is any continuous function with a

piecewise continuous first derivative, then

B
QWI=ﬂ%%>iu (22)

the more exactly / approximates to the true eigenfunction, the more closely
does the value of the quotient approach }\0. One may improve the approxi-

mation by following the procedure of Ri'bzsg)

and assuming for p' a series
clp'll-} 02}{2 + oo + cnpfn with adjustable coefficients, then minimizing
Q[g{] qua function of the coefficientss
The ideas just developed evidently apply also to Bessel functions
of real argument and either real or purely imaginary orders Application
38) Courant, R., and Hilbert, Ds, Methoden der Mathematischen Physik,

vole 1, 2nd edo, chape 6, 345=348,
39) Ibid, 149=-135Le




to a numerical example will bs made in Arte 3e.11le

le5s Bessel Funchions of Imaginary Order and Real Argumente Definitions

of Uy(x) and V)(x)o

The remainder of this chapber will be devoted to a development of the
properties of Bessel functions of purely imaginary order and real arguments
The treatment will be similar to that just given the functions of imaginary
order and imeginary argument, but somewhat less detgiled..

Bessel!s differential equation 0.1 (1) becomes, when i» is written
for 7, x for z, and y for w,

x2a%y/dx® + x dy/dx + (x°+ %) y =0 (1)
Two linearly independent solutions of (1), namely J,,(x) and J_.o(x), are
given immediately by the power series ls1 (2). Since when 2’ is real and
x is real and positive J;p(x) and J_./y(x) are evidently complex conjugate
quentitises, under these conditions we shall regard as our fundamentel

pair of solutions of (1) the following real combinationss

Uply) = z'[yzyéo/ 4'/7.0)(?‘/] = % ,/Q"’(“/J (Zel)

Vo) = Zi’[f»és}—/w/%// = ﬁn/ %  (2.2)
Te observe that U,(x) is an even functioa of 2 and V,(x) is an odd function
of Py |

It mey be noted that while the definitions of ¥,(x) and G,(x) can

be so chosen thet the two wedge functions exhibit very different bshavior
at infinity, no such marked difference in asymptotic behavior exists among
the various real solutions of (1) with immginary order and real argument
Yo dictate the form which we shall adopt for the definitions of U,(x)
and V,,(x). It might Be well, before any extensive numerical calculations

of these functions are undertaeken, to consider more carefully whether

=G



hey are indeed the most convenient pair of solutions of equation (1).%
We shall mention briefly some alternative solubions of (1) in Arte le53;:

meantime we proceed to develop the properties of U,(x) and Vy(x)e

1s5le Series and Integral Representations of Up(x) and Vy(x)e

Like the wedge functions, the funebions U?)(x) and V,,(x) possess an

oscillatory discontinuity a®t the origine They may however be conveniently

reprosented for small values of x in terms of series of ordinary Bessel
functions or power series,
From Lommel's series lesll (1), on replacing # by iz, z by x, and/u

by O, we obtain without difficulty

(P $t
Do) = 20 [00y0) ~cD0r)] @
h Aﬁ;\}?’; /m ’
where _ ot d e Qm/f/t’- |
0/7&%/ ;’ ”ﬂ/@’z’l});/p/ /
0@/737&/ = L, ):;//gvﬂgfl} ! (202)
As in 1.1l we set&(~, x)= Plog 3x - erg/(i») and employ lell (4); then

(261)

on separéxting real and imaginary parts of (1) by 1le¢5 (2e1) and (2.2) we

Ut = P[00 o) cor 860) #8605/ v 813 ],
N (301)
[z o) - D) 6l
() - 2z [y )i G3) =S Oog].

N

Comparing (2.1) and (2.2) with 1e11 (3.1) end (3.2) and using 1e13 (6e1)

get

and (6e2), we see that C(#, ix)= A, x)= -Sz(ix)/a)a.nd D(#, ix)=
B, %) = 5, (ix)A, so that
c(/ x) = =85(x)/¥, D(3} x) = 8;(x)P, (4)

#he matter of notation is also open Yo discussions

47w



~ whare_sl(x) and - Sg (x) afe the power series defined by lel3 (4.l1) and
(402)e

A large number of conbtour inbtegrals representing J),(z), most of which
remein valid when % is purely impginary, are given by Wa-bson.4‘0) of

theoretical interest is Poisson's iritegral, velid for Re (2) > -3,
(2)= (%2))} /W V/ ) L2 -

PV gy b o Ceobroon 8 42 (s
which was used by Lommel in the work previously citedzg) to define Bessel
functions of complex orders However if #/ is complex, say ») = o+ iT), then
separation of real and imeginary parts of (5) leads %o oscillatory factors
under the integral sign of the form 22‘: (et 1og's:‘m @) which, while they
do not impeir the theoretical usefulness of (5), render it practically
worthless for purposes of numericai computatione The same criticism
applies to the various transformetions of this integral given by Watsons

A much more useful representation of U,(x) end V,X(x) is furnished
by Schl¥fli's generalization of Bessel's integra1.41) If Re (z) > O,

<

then for unrestricted values of ?), -

/@,/&)ff?'[gw(;/%zwda@” "%ﬁflj‘#%é/jﬂlﬁ (6)

If we replace » by i” and z by x and seperate real and imaginary parts,

we get by le5 (2e1) and (242)

52;%%% - ;ééﬂz;oé;qﬂcg é@)q%é;é?a47 - éﬁéézziz:ieﬂﬁgéé?;w;‘zaf;4f

2 (7.1)
Ob——-
\4/4/} = #o gen(fom 9)/;;9/4 B f‘é{ £ 7‘%@09){&% (742)
Another in’cegral‘ representation of J Q)(x) s valid for \Re (9))] <1

40) Watson, ope cite, chape VIe
41) Tbide, 1760
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and x > O, 18
j&/ /b;a« (oAt - W/O/i’/f% 8)

This yields, on setting i# for :),

Ux)/ﬁ‘/ - ;:Z-a/-?;-j[b;ﬁﬂ &%/%ﬂfﬁ% (941)
i) = = 2 AL o fucty) cart # -

Since the convergence of the last two inbtegrals is obtained only by the
rapidity of osecillation of the integrands, they are probably not so well
adapted to evaluation by mechanical quadrature as the infinite integrals

of (7e1) and (7e2), whose convergence is secured by the factor exp (=x sh t)o

1le52¢ Asymptotic Behavior of Up(x) sad V,(x)e

Using the notation of 1lel2 (1), we have if 2 is fixed and \z\ is
large and posi'l:ive with \arg z\ <7 , the following asymptotic expansion

ofJ(z

T // (__)”’"-[ M"/
i~ ( §) -2 }Z (2229:,:/ J
4 972/”#-/
M(z 4 - qf)j QZ)MH ] )

The coefficient (9, m) may be written if m > 1 in the form

e
2 m

(2)

while (, 0) = 1o Replacing » by i» and z by x and separating real sand

imaginary parts of (1) we have if 27is fixed end x is large and positives:

e hyr( 2/[%“/7‘—4’72 & 5:5# @@-{/ggﬁ%&n

42) Watson, Ope Cite, 180,
43) Ibid., 199, The convergence factor for the series (1) is given

explicitly by Airey in reference 19
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From (3s1) and (3¢2) we see that any real solution of le5 (1) has for
sufficiently lerge values of x the asymptotic form
y o Ax'% sin (x+§ ), (4)

thus confirming the remark made at the end of Arte le5 that all real
Bessel functions of imaginary 6rder and real argument exhibit the same
(oscillatory) asymptotic behavior for lerge values of the argumente This
reosult is to be contrasted with the non-oscill#itory che.racterr of the
functions of imeginary order and imaginary argument for x 2/

The limiting forms of U,(x) and V,(x) as x —+0, #being fixed, may
be obtained from l.51 (2) and (3) if we recall that Jy(0)=$,,,.; these

forms are

z/}}/&& . WM[‘?)ZTZ mﬁ /7/)’)] o)
Vi —7— J%{Ecﬂ[’%’? =%y 7 (502)

Both functions evidently undergo en infinite number of oscillations in
the neighborhood of the origins

To find asymptotic expressions for vU,,(x) and V,(x) when2 is large
and x is fixed, we substitﬁ’be Stirling's approximation lel2 (5) for the
[=function into the first term of the series {cfs 1ol (2)) for J;y (x)
and obtain | ) . / / /j
ot~ Lol £y oo =) -7 JL1100
= ,zy s ,4%,4[,{57 [?7,)+/) T]{/%ﬂ/»)f

Y

Hence we have, for 1a.rge. and x fixed,
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) o -7
Vol ~ MZV/Z? %7) )= 77/2(/ %ﬁ/?)j (702)

Both canonical solutions of Bessel's equation with imaginary order and
real argument, regarded as functions of their order 3/, undergo an infinite
number of oscillations of expomentially increasing amplitude and slowly
decreasing wavelongth as ») increases without limits

Since J,)(z) is a continuous function of ), we see from the definitions

1.5 (21) and (2.2') that as 270, x remsining fixed,

é(,,/%) D20 %;/94) (8el1); 9)/&/ q)’)‘) 0. (802)
e, /¢/ > 0,,,/70/ ookl - 1 Tl

P20 2(}) (8.5)

2P0
by definition, where Z(x) is the Bessel function of the second kind of

Hankel's 'type.44)

Asymptotic expressions for U,(x) and V,(x) when 2 and x are simul=-
‘taneously large and of comparable megnitude may be obtained if necessary
by specializing the formulas for Bessel functions of large order contained

in the referenceg5) mentioned at the end of Arte lel2e

1lo53s Alternative Definitions of Bessel Functions of Imaginary Order

and Real Arguments

The equation
x2aly/axt ¥ x ayfax + (B + ) y = (1)
appears to have been first solved by Boole,45) who obtained by the methods
of operational calculus the general solution

44) Watson, OPe citey Artse 3¢5, 366
45) Boole, Ge, Phile Transs Roye Soce (1844), 239
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0 o
y = cos (Ylog xZZT aanza-+ sin (log xlzzwbzn;zn, (2)
, ”m=o M=o
where a, and b, are arbitrary and for n 2 1
/}1Q29,,_Z~9)4’2,,.~2 % _ /rf/éz.,.-z ‘['))abn—?.
d,?m: # I -

Dot 4 %) T b2y O
Bocher®s functions, denoted in 1413 by Hy, (x) and I,,{x) and defined by
1613 (3e1) and (3e2), may evidently be obtained from Boole's solution by
taking a, and by, to be 1 and O or O and 1 respectivelys

If cenonical solutions of (1) be defined by assigning simples values
to the constants a, and b, in the general solution (2), the resultant
series give precise information about the behavior of the functioms which
they represent in the neighborhood of the origin; but they do not convey
e good idea of the nature of these functions for large values of the
arguments On the other hend the functions U,(x) and V,(x), despite the
faet that to represent them in the form (2)'would require choosing a,
and b, to have a complicated dependence on », are defined as simple com=-
binations of the functions Jiip(x), whosse Q?havior for all values of
order and argument is already well knowns* In view of the present state
of development of ‘the theory of Bessel functions, it seems convenient
to choose the canonical functions of imeginary order and real argument
4o be related as directly as possible to Jbg(x); whether or not we insert
e multiplicative factor depending on ?& as in the case of the wedge
functions Eb(x) and G)(x), does not appear to be particularly significants
1P q;(x) end V, (x) are to be tabulated over a considerable range of velues
of ¥, it is evident from 1le52 (7.1) and (7.2) that the functions will

*So many of the known properties of the solutions of Bessel!s equa=-
tion have been expressed in terms of the funetion J¢(z) that now +the
easiest way to investigate the series (2) would probably be to express

it by 1el3 (1) end (2) a5 a linear combination of J;y (x) end J;h)(x),
from which its properties could be quickly deducede



=253=

show a wide variation in absolute magnitude; this complication may be

avoided by tebulating the combinations exp (=37TU,(x) and exp (=3>7)V,(x)e
For the reasons discussed at the end of Arte 1,13, it is not to be

expectod that recurrence relations will exist among Bessel functions of

real argument and purely imaginary orders

le6e Zoros of the Functions U.(x) and Vp(x)e

With the notation of Arte 1.0, the equation
Zz(wﬁéﬁ‘/ /ac*'ﬂ‘/y = (1)
is a Sturm equation in which K(x) = x, G(x) = =x ~ o /x. The function
G(x) attains its meaximum value =2» when x = # and tends to =<cag x—>+0
or as x—~+co% The following theorem summerizes verious results concerning

the distribution of the positive real zeros of the solutions of (1).

Theorem lo (i)e Every real solution of (1) has an infinite number
of positive real zeros, with limit points at x = 0 and at x =426

(ii)e If (2, b) is any preassigned finite intervel of the positive
real axis and m is any given positive integer, then for sufficiently large
values of » every real solution of (1) will have at least m zeros in
(as b)o

(iii)e If y,(x) is any real solution of (1) which vanishes at x
= ¢ (»0), then the next smaller zero of y,(x) exceeds ¢ -'u"c/(c B 2y 1)2 46)

Part (i) is an evident consequence of the limiting forms 1l.52 (4)
and (5) of the fundamental pair of solutions of (1) for large and small
values of Xe

For part (ii), if 227 b we have throughout (a, b) the inequalities

G(x) ¢xF= =b (1 + 7/2/1)2) and X(x) €K =be The desired resuls follows

46) Cf. Watson, ope oite, Arte 15¢82
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from theorem 3 of Arte 1leD, since
YK =1+ 272/‘b2 7 mz"n‘z/(b - a)z
for all sufficiently large values of2)e The larger +the order 2/, the more
rapidly will the solutioms of (1) oscillate in ‘the neighborhood of a
given pointe
To prove part (iii) we write u = {xXy in (1); u obviously has the

same positive zeros as ye This substitution transforms (1) into

2 Ptz ) -
Lo (14 23 2 ) =4, (2)
which is Yo be compared with the equation
A PrrL -
Lo TSR (%)

The solubions of the latter equation are sinusoids in x with an interval
7rc/(02+ P2 + %—)% between successive zeross Now if x £ ¢, we have

(;:2+ %;)/xz 7 (7)24- %;)/cz, so that by theorem 2 of Arte 1o0 the solut_iéns
of (2) oscillate more rapidly than the solutions of (3)e This implies
that if %)(x) venishes at x = ¢, it must have venished previously to the
right of ¢ -n'c/(cz-l— »2 4 %;)%. Since c/(c.z + 22+ ,Jg;)% <1, we see thet
every real solution of (1) vaniéhes at least once in any inbtervel of

length 7 of the positive real axise

The following theorem is concerned with the zeros of the solutions

of (1) regarded as functions of their orders.

Theorem 2o If A and B are real constants independent of 2’ and if
x has any fixed value, the linear combination
y,(x) = AG,(x) + BU(x), (4)
regarded as a function of 2, has ean infinite number of zeros for increasing
values of 2 with a limit-point at +<9,
The theorem follows from a consideration of the asymptotic forms

1652 (7s1) and (702) for U (x) end V,(x) when 2 is large and x is fixed,



in a manner analogous to the proof of theorem 2, Arte le2, which involves

the wedgs functionse

1.7¢ Expansion of an Arbitrary Function in a Series of Bessel Functions

of Imaginary Order and Real Argumente

If wo attempt to rqpresent an ax;bitrary function by a series of
Bessel functions of imeginery order and real argument over a finite iﬁ-
terval of the positive x-axis, we arrive at results somewhat different
from those encountered in the similar problem involving wedge functions,
for we find thet the represen'ba'\:ion usually requires a finite number of
ordinary Bessel functions of real order and real argument in additiomn %o
an infinite series of functions of imeginary order and real argumente

Consider the Sturm=Liouville system:

%[ﬂ%/—(ﬁé‘%z)y =5 (1.1)

Xya) = 2y ‘) =0, (1.2)

57/// +ﬂy = . (143)
whers O < & < b<4o? and, with the notation of 1¢0 (4.1), K(x) = x,
L(x) = =x, g(x) = 1/x, and A=22¢ The two boundary conditions together
furnish the characteristic equation (cfe 1le0 (5)) which must be satisfied
by the eigenvalues; @ gZe, in the simple case where ' - /3' = O so that
‘the boundary conditions are y'(a) = y'(b) = O, the characteristic equation
is

F (D) = T2 (@), (b) = Uyt (0)V,1(a) = 0. (2)

In any case the sjstein (1) satisfies the conditions of the first sentence
of theorem 5, Arte 1le0, so thers will be an infinite set of real eigen=
values Ays 2A7s 7Ags ses » Which have no limit=point bubt +o0e Since £(x)
is negative, in gemeral a finite number, sey k, of these eigenvalues will

bo negatives If the eigenvalues be arranged in order of increasing alge=
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braic megnitude and denoted bY =4 =% s =4 = A1s eos 5 U1’ A ko1
7)1:2 =A k® ))kd-lz =2 ks1® °°® » Wo see that the eigenfunctions ;ﬂ[ correspond=
ing %o the first k eigenvalues will be ordinary Bessel functions of real
order /ﬂi and real argument, while the remaining eigenfunctions y,;, will
be Bessel functions of purely imeginary order and real argumente It may
be noted that the funections %i (x) and y,j . (x) exhibit no qualitative dif=
ferences in behavior within the inbterval (a, b) except for +the regular
inerease in number of zeros required by the fundamental theorem 63 outside
the given interval in the neighborhood of the origin thers is of course

a marked difference in the behavior of the functions of real order and
those of imaginary ordere

An arbitrary function f£(x) may be represented in (a, b) by means of

the eigenfunct:.o of the system (lloin the form

A = Z Ao ) + 2o Ao (), (3)

an=0

where the coefficients A, of the second series are given formally by

1,31 (4) and (6),* and the coefficients A, of the first series are given,

L E |
. l;’ﬂm&/?’f | (4)

&
é?/;m%@z 5%[9% W] (%%// /%]x o

since sy = e bY

3374

The convergence properties of the series (3) depend upon such resul'bs
as theorem 8 of Arte 1.0, which apply to Sturm=Liouville series in generale
We now consider briefly what form the series (3) must take if we

try to represent £(x) in the infinite intervel (a,2) or in the interval

*0f course y, 1is not the same function in the present section that
it was in 1e31s % ;



(0, b) which includes the origine®’? Trom 1.52 (1) and (3) we see that
every solution of Bessel's equation with real argument and either real

or pursly imeginery order vanishes, together with its derivatives, as

X —?ov, 80 that if a is positive and b is infinite, the boundary conditions
{1e2) and (1s3) no longer select discrete walues of ¢ We have instead

to use all vaelues of 2, both real and purely imaginary, in the representa-
tion of £(x); and we are led to expect that if a representation of £(x)

analogous to (3) is possibls in the interval (a,=2), it will be of the

form [, e /
Al = KWZ/‘/%‘ *[’%/7”@) g (8)
where y, (x) and y,(x) are those solutions of Bessel's equation, of real

Ju
end purely imeginary order respectively, which satisfy the boundary condie

tion (le2)e The coefficients Cﬁﬂ) end D(#)), which will themselves involve

definite integrals, may be expressed, as in the derivation at the end of

1,31, by '
0= don L D) = S L
A Aoy ’ LA G (7)

If the left-hand end=point of the fundamental interval (a, b) is

taken to be the origin, the boundary conditions (1.2) and (1.3) s%ill
give us a finite number of discrete negative eigenvalues A 7= -}411-2
corresponding to eigenfunctions % (x)e Since we have automatically
‘/ra(o)= 0 if /# 70 and ;Ta'(o) =0 if pv 1, 'bhe//(.'s are the roots in
/aof the equation p'./fa (v) + ﬂ ‘/r“' (b) = Oe On the other hand if 1:,;2 > 0,
we cannot satisfy the boundary condition (1le2), since in this case from
1s52 (501) and (5.2) all solutions of (lol) oscillate infinitely rapidly

47) Bocher, ope cite, 159-160, discusses both of these possibilities
in the case where the boundary condition at the end-points is y = O



in the neighborhood of the origin and their derivatives are unboundede
However in some applications, such as those arising in potential theory,
it is sufficient to require, not thet (1le2) be satisfied, but merely that
the functions y, (x) remein bounded as x—+0e This latter condition is
satisfied byathe solutions of (l.1) for all positive values of 22, Hence
‘the representation enalogous to (3) of £(x) in the open.interval (0, b)
mast consist of a finite series of ordinary Bessel functions of real
order plus an infinite integral over the functions of imaginery order;
vize, Ao

fé”/ gﬂg 4/»{’4‘;/11”,, (4 *ﬁﬁ/d/%)///ﬂ, (8)
where /yl/m(x) and y,(x) are bounded at the origin and satisfy the boundary

condition (le3)s The coofficient Ay is given by (4) and the coefficient

B(¥) vy

(9)
The representation of f(x) over the whole range (0, .0) will evidently
require two infinite integrals of the form (6) with a = O,

The actual existence of formmlas such as (6) and (8) appears very

«58=

plausible in view of the known validity of several similar integral formulas

of Fourier's type; however we shall not here investigate the explicit form
of the coefficients in (6) and (8) or the conditions under which these

formulas may be rigorously valide

le8e Transformation of the Differential Equation for the Functions U, (x)

and ¥ (x)e Calculation of the Eigenvaluese

For purposes of numerical calculation it is convenient %o subject
the differential equation le5 (1) for Bessel functions of imaginary order

and real argument to the transformation of Arte le4, namely



w5 Qe

u

u=1log X, Or X= 0 (1)
The squation then becomss
Py/at + Pr ) y =0, (2)

which has no singularities for finite values of u, and of which the general
solution is evidently

V= clﬂﬂ(eu)-F czwu(eu). (3)
From (1) and 1452 (5sl) and (5s2), or by inspection of the transformed
equation (2), the solutions are approximately sinusoidal functions of
Pevwhen u is negative end so large that ot ee 2%,

To find the smell eigenvalues of the Sturme=Liouville system 1.7 (1),
it is necessary to obtain the first few roots of some such characteristic
egquation as le7 (2)e As in the cesc of the wedge functions, the only
practicable way of doing this appears to be interpolation in a teble of
the functions T end V), or preferably in a table of their derivativess
until such tebles are available the practical value of Bessel functions
of imaginery order and real argument willqbe limitods If the characteristic
equation happens to have'negative roots, as discussed in the preceding
article, recourse must be had to & table of ordinary Bessel functions which
includes non=integral os well as integral values of the ordere

The large positive eigenvalues of the system 1le7 (1) are given
asymptotically by Horn's method, outlined in Arte l.4s If for exzample
the boundary conditions are dy/du= O at u = ¢ and et u = d, corresponding
in virtue of (1) to dy/dx = O at x = e° and at x = e%, then we have h

2u

~H =0 in 1le¢4 (15)e Setting A= B =1, C = 6", andol' = 0 in 1.4 (7),

we get

M&L '—'M-'C/ %(ﬂ/'z 0(/ %//"/: = ?(22“—-__026},

Hence from 1.4 (16), (11), (12), and (13) the positive eigenvalues are



=G0

given approximately by

Y= Xr/(8 = o) = (* = &%) /aicr;
or transforming back to the variable x by (1) and setting a -=-e°, b= ed,
7, = knflog (b/a) = (v - ?)/axm (4)
The corresponding eigenfunctions are, by le4 (6),

d{cﬂ@kzzfﬁ)[/%é’f%)] M(a;z;ﬁ)[ z =2l +ﬂ@))]}) (5)

As in Arte le4, we may employ the caleulus of variations to estimate

the lowest eigenvalue A, of the system 1lo7 (1l)s In the case where the
boundary conditions are y'(a) = y'(b) = O, we find on comparing 1.7 (1)

with le4 (19), (20), and (22), that

7/[%?/ (641)

were B[ 4] = /”fc/y“ Y Mﬁ@’ﬂ/ %1,.,, (602)

£ being any continuous function with a piecewise continuous derivative

in (a, b) such that

gt (a) = g1 (b) = 0o * (7)
If we take g(x) = 1, we get at once from (6)
< Qi = =% - &®)/10g (b/a)e (8)

It is also of some interest to take g = cos[mr(x -a)/(b - a)], where
n is a positive integere This function evidently satisfies (7), and an

elementary calcula.'bion g:.ves for the expressions defined by (6e2)

2, = / v ,4-@/1 o’ %)i/ o W’mé @Z]@

_ %/[/f—aﬁ ’/]j (9.1)

= [ a2 ) o
7‘7’/" /a %fJ x

g e 0l -G g2
+ 7 oo j;,ra [/ Mr/& ~/ %_Z (942)

A
L
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where Si u = e dt end Ciu= = dte It is not necessarily
0 fe  *
true that the ratio of the last given expressions for /) and %. dominates
the (n+l)st eigenvalue of the system le7 (1), because the function g =
cos [wr(x = a(b = a) is not strietly orthogonal to the preceding n

eigenfunctions; nevertheless the ratio ‘,&n/;?/,,v should give a rough approxie

mation to the (n+l)st eigenvalue for smell values of n, and in the absence

of tables this value may be improved by using such definite integrals as
1.51 (701) and (7+2) actually to compute the functions U, end V,! occur-
ring in the cheracteristic equation for a pair of adjacent values of Ve

In Arte 3e1ll we shall compare for a particular numerical case the

estimates of the eigeﬁvalues given by (4) =nd by (9)e

=-8l=
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CHAPTER II

Physical Applications of Bessel Functions of Imaginary Order

and Imaginary Argument

Z2elo A Gemersl Potential Problem in Cylindrical Coordinatese

Bessel functions of imaginery order were introduced into methematicel
physics by Me Bocherl) in the investigation of a certain problem of po=
tential theorye The essential features of Bocher's discussion will be
given in the present articlee

The potential problem in question is the following: Given a space
S bounded externally by two coaxial cylinders of revolution, two plenes
through the axis of these cylinders, and two plenes perpendicular %o
'l:his axisoe It is required to find a potential function V which 1) every=
where within S satisfies Laplece's equation VZV = 0, and is finite, con=-
Yinuous, and single-valued, together with f.-bs first space derivatives,
and 2) assumes on the surface of S arbitrerily assigned veluese

The space S may be defined in a conveniently chosen system of cylin-
dricel coordinastes (/o, #s z) by the inequalities 0 £ a £ 24 b, 04 &
4t £ 2myand 04 z £ ce We may solve the general potential problem by
superposing six simpler potential functions, each of which takes on assigned
values on a single (different) face of S and vanishes on the other five
facese The face of S on which a given potential function does not. vanish
will be called the exceptional face; it turms out that we shall get

essentially three different types of soluktion, corresponding to the

following casess

1) Bocher, M., Annals of Mathematics, 6, 137-160 (1892)e




(i) The exceptional face is one of +the planes perpendiculer %o the
axis, say z = C3

(ii) the exceptional face is ome of the cylindrical surfaces of S,
sey /o: bs:

(1ii) the exceptional face is one of the azimuthal planses, say £ =ole

Our first task is Yo find suiteble solutions of Laplace's equation,

which in cylindrical coordinates takes the form

i 4 P W
Vz‘/ fé’f/og )‘f 1 +’§? = 0. (1)

If we assume that V may be expressed as a product of eylindrical haermonics,

V = Rp) a(d) 2(z), (2)
we find that V will be a solution of (1) provided that R, &, and Z satisfy

the following equations:z)

dzm/d;{2= -3, (3)

a%z/a:% = ¥%z, ‘ (4)

/2d2R/d/2 s paR/Ap + (szz ~i* R O, (5)
where kz a.ndz)2 are arbitrary separation c?nstants. It is seen that @
and Z will be exponential or trigonometric functions of their arguments,
and, by compering (5) with 0.1 (1), thet R will be a Bessel function of
order ) and argument %p.* The behavior of all three functions depends
largely upon the nature of the separation constantse

If Uy Uy Uz reprosent the three cylindrical coordinates in any
order, the exceptional face of § being given by usz - constant, then the
product of harmonics (2) must vanish on a pair of faces Uy = constant and
2 2

on a pair of faces Uy = constants therefors kX and 2° must be 80 chosen

that Uy(uy) and Up(up) are oscillatory functions of their arguments in

2) Smythe, Wo Re, Static and Dynamic Electricity, lst ed., Artse
5029, 502910

*In the special cases k= O and k =» - 0, the solutions of (3),
(4), and (5) are all elementary functions; these are not of interest in
our present developmente

=85



—-84=

the relevant intervalse This requirement fixes the nature of the separation
constants in the thres different cases listed abovse

In case (i) the condition that R end & must be oscillatory functions
is secured by taking 2’ and k both real, so that the solutions of the
g-oquation will be sinusoids in o4 and the solutions of the Re-equation
will be ordinary Bessel functions of order 2’ and argument k/o. The solu=-
tions of the Z-equation'willlba real exponential (hyperbolie) functions
of kze It is easy to show from the genergl theory of Sturm-Liouville
systems that the boundary conditions on @ and R determine an infinite
number of admissible values of the constants >’ and ke

In case (ii) we make both @ end Z sinusoidal functions by taking
Preal and k purely imaginary; the boundary conditions are satisfied by
an infinite number of values of eache The solutions of the R=equation
are now Bessel functions of real order and imaginary argument, ie. ce,
modified Bessel functions I and K,e

In case (iii) we take #) and k both imaginary, so that Z is a sinusoidal
function of |z and R is a Bessel function of imaginary order and imaginary
arguments & will be a sum of real exponéntial (hyperbolic) functions of
bﬁﬁ; If we now write k for ik emd ¥ for i? end employ the notation intro=
duced in lel for Bessel functions of imaginary order and imeginary argument,
we get for the typical product of harmonics
7 = [ A%, (150)+ BG)(k/o)][C sh? §+ D ch»#/[E sin kz + F cos kzj. (6)

The separate solutions of our thres partial problems all proceed now
in much the same wey; but since problems of types (i) and (ii) involve
only well=known functions and are treated in standard works on potential

thsory,s) we turn our attention immediately to (iii)e In this case the

3) See for example Smythe, ope cits, chape Ve
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boundary condition on the surfaces p=a, p=b, 2 =0, 2z =¢c, and g =0
issv = 0; on the remaining surface ;( =« +the condition is
vgo,oc, z) = £(ps 2)e (7

We secure the venishing of V on the first five surfaces by choosing from
the set of all products of the type (8) every one which has the form
Vim = Cm[G,nm(nm/c)F,,mn(nrrf/c)-I«)nm(nﬂa/c)G,,nm(mf/cj@ha;m(! sin(nmnz/c),  (8)
where we have taken k= nm/c, n & positive integer, and 2, is the mth
positive root of the equation

G, (am/c)E, (arb/c) = F, (nme/c)G,(arb/c) = O, (9)
The last equation is equivalent to 1621 (2); it has sn infinite number
of real positive roots in>’e We shall denote the Bessel function enclosed
in square brechets in (8) by R,)m(nrf/c)o

We now build from the set of products (8) the double series

V(f’« 4, z) =ZZ‘ CmR,)nm(mT/o/c) shj)nmﬂ sin nyz/c, (10)

=l M=
which venishes on the non-exceptionsl faces of S and which we shall assume

satisfies Laplace's equation, as it certair}ly would if it consisted of only
e finite number of termse* Inasmch as the functions sin npz/c and
R,)nm(mrf/c) form complete orbhogonal sets over the intervals 0 £ z ¢ ¢

end a £ /0\4 b, we may formelly determine the coefficients to satisfy the
boundery condition on the» excepticnal facee. Substitution of (10) into

(7) gives

*In the present section and the two following we shall assume withe
out further investigation that the infinite series and infinite integrals
with which we deal are convergent and that the necessary interchanges of
limit=operations are justifieds such formel procedure is often fruitful,
even though from the point of view of pursg methematics & more rigorous
treatment would be desirables As Bocher® points out, the practical
utility of such & series eas (10) depends not so much on its ultimete cone
vergence as on the numerical accuracy with which the first few terms ap-
proximate to the desired functione

4) Bocher, M., Uber die Reihenentwickelungen der Potentialtheorie,
157=158¢




f(/, z) Z’Z CorRyo (mr/ﬁ/c) shs o sin nmz/ce (11)

m=l =y

We multiply both sides of (11) by/o lRy) (paf/c sin prz/c and integrate
first over z from O to ¢, then over/o from a to be The orthogonality
properties of the sine and Bessel functions ceuse all terms to drop out

except the one for which n = p, m = g3 and we get, using 1¢31 (5) with

005 by ) ki

,!L/f A %M/
7?j7b Px ’ "”Aé

The last equation expresses the value of C

=Cf,g/%4o<

(12)

ap in 'berms of the given funce

tion f(/, z) on the exceptional face and completes the formal determina-

tion of the potential funetion corresponding to subcase (iii) of our general

potential probleme Cases (i) end (ii) may evidently be trested in a
similar menner; the latter requires the expansion of an arbitrary function
in a double Fourier series in ;K end z, and the former involves a mixed
Fourier and Fourier-Bessel expension in & and [e

It is epparent from whet we have Just ’done that the complete solution,
by the method of development in series, of the general potential problem
steted at the beginning of this section requires the use not only of ordi-
nery and modified Bessel functions of real order but also of Bessel func=-
tions whose order and ergument are both purely imaeginery, the latter funce
tions being necessary to secure assigned boundary values on portions of
the wedge surfaces y! = constante The analogous potential problem in

spherical polar coordinetes involves the space S bounded externally by

the concentric spheres r = a end r = b, the coaxial cones 8 =« and 9:/;’,

and the azimuthal planes £ = O and £= ﬂoa The subcase (iii) above corresponds

to & potential in the spherical poler system which takes assigned velues

on the cons O=ﬁ and vanishes on the remaining faces of Se To satisfy



these boundary conditions we require associated Legendre functions

5)

P ... ™cos ©) of complex degrees

= these have been called Ycone funce
=z11p

tions” on account of the menner of their introduction into methemeticel
physicse Because the functions F,,(x) and G,)(x) appear in the emelogous
problem involving wedges, we refer to them in this work as “wedge func=
tions®,

Al‘bhough‘poten’cial problems as general as ours sre not often solved
explicitly in textbooks, it is sasy to see thet many practical problems
of potential theory are merely special cases of the one discussed here,
in which one or more of the six surfeces of the space S have disappearede
These degenerate cases lead to changes, such eLs the replacement of an
infinite series by an infinite integral, in the various formal expressions
for the potentiale We no'e particularly the various albernative forms
which the solution involving wedge functions may assume.e)

If we take a = O, so that the inner cylindricel surface of S shrinks
to the axis, then the condition that R},(nﬁf/c) vanish at f = @ can no
longer be satisfied, because of the oscilla‘gory behavior of the wedge
functions at the origini but it may be replaced by the weeker requirement
that R’)(n71/’o/e) remain finite as /0'7 0, which is met by every real value
of Yo Hence the surmation over m in (10) is replaced by en integration
over ell positive velues of %, end the solution reteins this form whether
or not the outer cylindrical boundery of S is let move away to infinitye
(Compare in this comnection the latter part of Arte le3le) Similarly if
one or both of the bounding surfaces z = constant is removed to infinity,
the boundary condition which restricts k (= n7/c) to discrete veluss in

(10) is ebolished, end the summation over n becomss & Fourier integral

5) Hobsoﬁ, Ee We, Spherical end Ellipsoidel Harmonics, 444-448,
6) Bocher, M., Annals of Vathematics, 6, 152=154 (1892)e




over all real values of ke An example of a potential distribubion ine
volving wedge boundaries where the fields extend to infinity will be given
in Arte 212

It may be noted finally that if the angle & between the inclined
surfaces of S is allowed to increase to 27 and the azimuthel planes are
removed, leaving a ring-shaped region with only four faces, the potential
_problem corresponding to cese (iii) vanishes end we need +to use only
ordinary end modified Bessel functions of real orders

The reader is doubtless aware that the usefulness of solutions of
Leplacet's equation is not confined to electrostaticse This important
equation is satisfied by such quantities as the magnetic scalar potential,
the velocity potential of irrotational flow of a perfect fluid, and the
temperature in the steady state of diffusion of heat, all of which may
occur in problems involving wedge boundaries. Since the mathematical
troatment of all of these functions is very similar, we shall confine our=
solvss in the next two articles to examples from the fisld of electro=
staticss in Arte 2013 we shall make & few remerks concerning the squation

for the conduction of heate

2,1l Potential Distribution Due %o a Point Charge inside a Cylindrical

Conducting Ring with Two Dielectricse

In this article we shall consider the problem of finding the potential
distribution within a hollow ring bounded by the earthed conducting sur-
faces /oz a, /0: by, z = 0, and 2 = ¢, under the influence of an interior
point charge g a%t 500, Bos Zo)s the region 0 & £ <ot ¢ #, within the ring
being filled with a dielectric of capacitivity ¢ , and the region o ¢ g
£ _27!’ containing the charge being filled with a dielectric of capacitivity
Ee

=GB
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Like most potential theory problems involving point charges, this
problem reduces essentially to the determination of a function (called
the Green's function) which setisfies Laplacae's equation in a given region,
venishes on the boundaries of the region, and has a simple pole at an
interior point of the region, such that the difference between the Green's
function and the reciprocal of the distance from the pole tends to a definite
limit as the variable point approaches the poles The Green's function
is just proportional to the potential which would be produced by & point
charge situated at the pols, the boundaries of the region being held at
potential zeroe Since the problem at hand requires us to satisfy boundary
conditions on the wedge surfaces ;{ = constant, obviously we shall meed
in the determination of the Green's function the harmonics of 2.1 (6)
which involve the wedge functionse |

Now it turns out that a systematic and mathematically rigorous study
of the various forms of Green's function for spaces bounded by surfaces
of the cylindrical coordinate system was made several decades ago by Je
Douga11,7) his results being reproduced in the textbook of Gray, Matthews,
and MacRdbertos) It would therefore be possible, using the methods- of
Dougall, to develop rigorously the Green's function for the cylindrical
ring-shaped region a £, ¢ b, 0£ z £ ¢ (a result which he does not write
down explicitly), for the case where the region is filled with a single
homogeneous isotropic dielectric, and then to solve the problem at hand
by superposing series of the form 2.1 (10) which represent the effect of
the second dielectric, the coefficients being determined so as to intro=-

7) Dougall, Je, Proce Edinburgh Mathe Socs, 18, 33=83 (1900).

8) Gray, Ae, Matthews, Ge Be, and MacRobert, Te M., Bessel Functions,
2nd ede, 101-110, Note that these authors express Dougall's results in
terms of the function Kjg employed in the present work; the function which

Dougall calls Gjg(ix) (cfe Go Me Me, pe 23) is equal to exp (FsT)K;4(x),
or, in terms of our wedge functions, to exp (Fs7)Gg(x)e




duce no additionsl singularities and to satisfy the continmuity conditions
at the dielectric boundariess Instead of proceeding in this menner, howe
ever, we shall solve the problem ab initio, taking account of the singulerity
due to the point cherge by a method often employed by Smythe, which, if
it lecks anything in mathemstical rigor, has at least the advantege of
physical claritye |

Using the notation of 21, where

R,,(mrf/c) = @, (nma/c) F,,(nvrﬁ/o) = F))(nm/c) G,,(nTr//c) (1)
and Vpy, is the mth positive root of Rj,(n;r‘b/c) = 0, we assume potentials

in the different regioms of interest as follows: Tor 04 p’ Lol g

vy ::f [Anmej)nm’{+ Bme'%ﬂ'ﬁRz)m(nW/c) sin nwz/o3 (2)

m=y n=/

for A< 4 <& fos

Vs '—'f Z [Cnmew—# Dmne-’)nm’{]Rynm(nﬂf/c) sin oz /ey (38)

m=t N

end for g <« £ « 2m,

& -3)
Vg zz ’f [Enmez)nmi{ 4 Fpe xm*l{]R ’)nm(mr(o/c) sin nmz/ce (4)
an= RrR=)
These potentiels have been chosen so as Yo vanish on all conducting sure

L ]

fecese The remaining erbitrary constents will be determined from the

v

conditions that V and 85; mist be continuous ecross dielectric boundaries
(where d-132 represents the normel derivetive) and that V must be cone

an [ oF

tinuous except at the charge itself across the surface g = pfo, while for
any closed surface S within the ring end surrounding the point charge,
— / s 5 = 7; (5)
s Om

n being the oubtwerd rnormal to Se Equation (5) is the stetement of Gauss's
- electric fiu:; theorem in rationalized MKS unitse

Applying the continuity conditions to Vl at g =0 and %o Vz at 4= 2w
axd ﬁoting 'bha'b’because the sine and Bessel functions form orthogonal
sets, corresponding terms of the resultent series must be equal separately,

we get, on cencelling common factors,



Y

Anm + Bpy = Bpy® + ane-Zme, (6)
22, 2T,
E1(Byy = Bry) = Ep(Bpye™ 0 - T 0 4Mom), (7)
Similerly et d =« ,
P - -
.A.,_,,me + Byp® nm™ . Cnme’ima-# Dy.® ynm“, (8)
El(Anme = Byl 3%‘md) = ‘;_(Cnmew - Dy )3 (9)
end et 4 = 4o
» -3 ) -2)
cmne m¢o+ Dmne n.m?‘o = Enme I)JD%O + ane I’JID’JO. (10)

We shall spply Gauss's electric flux theorem (5) to the peir- of plenes
£= fo =0 and g = o+ O which fit snugly eround the point charge at

ws Bos Zo)s for this purpose we write

> /2 _é’!a/
Pl "l
SR R sl e AT W

mltiply both sides of (11) by R, (kn}a/c) sin krz/c, end integrate over
¥ 34

z from C to ¢ and over /o from a to be On the left side we get the integral

[TA1%-2] (g

o to P 9iﬂ\,9fﬁ PR %p' e

Since the electric field is continuous across the plane ¢ = #o except at
the point where the charge is situated, the factor in square brackets
venishes except in an area sround /0 :/Oo, z = 2y which will be taken to
be so small that in it the sine and Bessel functions may be regarded as
constent and teken out from under the integral sign.9> The remeining
integral is just the left~haend side of (5) and is equal 4o qe Hence the
left side of (11) becomes, after integration, QR%E (k?Wo/c) sin krz/c,

while on the right side all terms drop out except the one for which n = k,

9) Cfs Smythe, Ope cite, Arte 56297, The factor in brackets is as=
sumed to possess the cheracteristic property of the S=function employed
by Dirac end others in quentum mechenicse
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m={ , which we evaluate by 1le31 (5)e

On introducing the notation

Z = 5[/6) (/hnﬂ//d:;/mﬂ%//
[ W] e, =3 o

we get
Ez(fcmn =E )¢ 0 o (D = }"m)e')) tuf 37 =F - (13)

Simultenecus solution of the six linear equations (6) = (10) and

(13) is a tedious but elementery exercises on carrying out the algebre
and combining terms we get for the factor depending on ;{ in (2) the fol=

lowing expressions

fzm.a%’w’ A
 -8)3 % A o (YA 17) 4Pl Gr-a)oh e (P T~
o A e (4 4/ (r-d)

where lg: (& =5, )/(& +%, )o Eagse (2) end (14) provide sn explicit

(14)

expression for the potential in the region of éapacitivi-hy g 3 similar

expressions may easily be written down for the regicn of capacitivity ch

2012, Potentisl Distribution Due to a Point Charge in the Neighborhood

of & Dielectric Wedgee

We shall next determine by the use of wedge functions the potential
distribution produced by a point charge near sn infinite dielectric wedgee
Iet the charge g be located at yo’»’{o’ 2,)s the region 0 & gL X4 4
being filled with a dielectric of capacitivity ¢, and the region «<4 g
4 27 contaeining the charge being filled with a dielectric of capacitivity
£,0 Since in this case the fields &re not limited to a finite regiom by
conducting boundaries, we shell expect the potentials to be expressed by
integrels rather than by series of discrete terms, es noted at the end

of Arte 2010
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We require first an expression in terms of wedge functions for the
inverse distance from the pole (/’o’ 45 2,) to the variable point (/ﬁ, As 2)3
such an expression has been obtained by Dougalllo) by the method of comtour
integratione One considers the function of {

£E@) = csesmeosslr= 4 + 4,) K lkp,) T(kp), (1)
where 0 £/ £ 0o and 0 < g = #o ¢« 2wy this function is emalytic except
for simple poles corresponding to all real integral values of Ze Let
£(£) be integrated around a contour in the Z-plane consisting of a large
semicirdle of radius half an odd integer in the right helf-plene, end the
imaginery axis indented at the origine It is easy to show that the in-
tegral around the infinite semicircle venishese The integral over the
imaginery axis, which may be transformed as in 1e32 (1lol), is then equal,
by the theorem of residues, to an infinite series of products of modified
Bessel functionse Using the addition theorem for modified Bessel funce

tions ,11)

| K(kR) Z’(z = ém) In(kp) En(key) cos m(ﬁ' £ods (2)
where 0 <2< L., 04;{ g < 27 end R = 50 +/0 = 2o cos(g = ﬁof
we find that
;[Zhv (= £+ £5) Kio(ko) Kypu(ka,) a2 = K (1R), (3)
and by sysmetry this equality evidently holds whatever be the relative
magnitudes of o end 7o From the lmown resultl?)
2 cosk(z-z)K(m)dk_%, (4)1
where r ~[R2 (2 = 2 )2]2 2 &32 4/% 54/00 cos(f = go) + (z - z°)7§
is the distence between the points sg, P#s z) end 900,» Pos 2o)s Wo get finally

the desired expression for inverse distence, namely

110} See Gray, Matthews, and MacRobert, ope cite, 101-1030
11) Ibide, 74e
12) Tbide, 10le



7.
%: ;f‘;z ) cos k(z = z4) ) ch (M= g + 4,) GJ)(}YJ) G, (k;ao) dvdk, (5)
where 0 4 g = 4, ¢ 27 and we have introduced the wedge function notation
G, for K;,e |
The potential problem at hand is now to be solved by writing the
totel potential in the wedge in the form Vi= Vo + Vi3, and the total

poten'bial cutside the wedge in the form Vo =V, + Vig0 Here

v, = = £ [Toos k(s - 2,) [ = f 4+ £0)6,(kp)e, (ipo)arak,  (6)

o"hiﬂ 3
where O ¢ g = g, < 2w, is the potential which would be produced by the

charge ¢ in the ebsence of the wedge; the presenceof the wedge introduces

‘the add_i tionel term

Vyq = ;P%[’Zos k(z = zo)ﬁA(;J, k)e’)" + B(2), k)é"ﬁ]c;” (y)eo(kfo)dﬂik (7)

for 04 g< K, and the additional term

Vo = /bc%s k(z - zo)["‘zé(y, ©)f+ D, k)e")_‘/e‘)(lio)c;p(k/oo)dvdk (8)

m3g, Jo
for A< g ¢ 2m, where the functions A, B, C, and D must be chosen so as

to insure ths continuity of the total potentisl V end the normel component

; 9V of the total displacement at dielectric bounderiese (The integrals

(7) and (8) ere assumed to converge and, since ‘the integrends ere cyline-
dricél hermonics of the form 201 (6), to satisfy Laplece's equations)
We insure that the integrals will satisfy the continuity conditions by
requiring thet the integrends themselves do so (assuming, of course, the
legitimeoy of differentiation under the sign of integration)e Recalling
that if 0 & § < g, we must write g + 2mfor £ in (6), we find that the

boundery 6ondi'tions lead to the following four simulteneous equationss:

At £ =0,

A+ B = Co?™”+ pe~2"7, (9)

E1[a = B + sho(r = 4,) ] - £5[ce?™ = De=2""+ sh (i - #o)]i (10)
and at g=o

oA -P4 2% By
A%+ Be " =ce + De ”%, (11)



> DA -4 Y28 —2d
(a6 =Bo + shP( 4x - g))]= g Jce” =De + sh (T - /oy. (12)
If we solve equations (9) - (12) simulteneously and then combine

terms, we get at length the following expression for the factor depending

on & in (8):
C(})/ )JL 4_0&6)%/2 ”P

g(/,u [Jm Ao (1 h=o-37) 42 efiol - ) Mplir-2)]
,y7“ (4?;4w474x%f—o¢)

(13)
where ﬁ: (é,‘ - 81_ )/(é; + EL )Je Hence we have a formal representation of
the potential function in the region outside the wedge; the solubtion inside
the wedge may obviously be worked out in the seme waye*

As is well known,15) in the case of steady flow of electric current
in an extended conducting medium +the potential function satisfies Laplacels
equation end the conduetivity of the medium plays exactly the same role
as the cepacitivity in electrostatics, so that all the mathematical teche
nigue used in electrostatics also applies here. This fact is sometinmes
used by geophysicists to investigate the structure below the earth's
surface by observing the distribution of potential on the surfaece when
current is passed through the soil between two or more surface electrodese
It is evident thet with slight changes in notation the problem just solved
will provide expressions for the potential distribution in the conducting
half-space O % ,c{ 27 when current enters the surface through a single
point electrode, if the wedge-shaped region 0 ¢ #<Y has uniform con-
guctivity o end the region Y4 § 47 has uniform conductivity o3 the
results may be generalized to the case of several electrodes if desirede

A solution of the problem trested in this section has been given

*It would probably be possible to convert the integrals over 2 in
(7) end (8) into infinite series by the method of contour integration
used to derive (3); but the results would be complicated end there seems
to be no reason for attempting the trensformatione

13) Smy'bhe, OPe _9_:_.1-_15_0,‘ Arte 66106
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14)

in an entirely different form by Ss Qs Rice in terms of a single ine
finite integral of the Legendre function Qi}~% of complex order with
respect to the parameter de Rice's development is maethematically rigorous,
though his result is not well adapted to numerical calculation in the
ebsence of tebles of the function Qi’;\ A* |

It is worth noting in conclusion that the anslogous two=-dimensional
problem of e line charge parallel to the vertex of a dielectric wedge
is solved in the second edition of Smythe's textbookl5) by the use of the

circuler hermonics
Vog) < 55 % )™

20130 The Equation of Conduction of Heate

(14)

The equation of conduction of heat in & homogeneous isotropic solid
may be written in +the form;6)
LT (1)

where v(x, ¥, z, t) represents the temperature, + the time, end K is s
constant of the material celled the diffusivitye We wish to consiéer
briefly whether useful solutions of (1) may be found involving Bessel
functions of imaginary orders

In the special case where the flow of heat has reached a steady state,
the right side of (1) vanishes and the distribution of temperature seatis-
fies Laplace?s equation, so that all the methods of potential theory are
available to determine ite Thus if we went to find the steady-state

tempereture in a general solid bounded by surfaces of the cylindricel

14) Rice, Se Oo, Phile Mage, (7), 29, 36=46 (1940)e

15) Smythe, Stetic and Dynemic Electricity, 2nd eds, in presse
Arte 40070

16) Carslaw, He Se, Mathematical Theory of the Conduction of Heat,
2nd edey, e




coordinate system, when the surface temperature is specified on two axial
plenes g = constant, we shall require harmonies of the form 2.1 (6) in-
volving the wedge functions, and the solution will be mathematically identical
with case (1ii) of Arte 2ele

In the more generesl case where the tempersture veries with time, we
mey seek a solution of (1) which is the product of four functions each
depending on & single variable; in cylindrical coordinates such & solution

is readily obtained in the forml7)

.

o TR 76/‘/0/%”% Dz, @)
where RUqu) is & Bessel function of order # and argument/@og/y,zl, and
d being completely arbitrary separation constentse If these constants
all be taken as real, we see that all three of the space-dependent fectors
on the right side of (2) are oscillatory, so that by giving special values
to the separetion constants a triple series cen be built from products
of the form (2) which venishes for all values of t on a2ll six faces of
the general solid bounded by surfaces of t?e cylindrical coordinate system,
end assumes for t = 0 arbitrary values in the interior of the solide
Now eny problem in heat conduction (or radiation) with surface conditions
independent of time cen be reduced to two simpler problems, one of which
is a case of steady temperature, while the other is a cese of veriable
temperature with the surface (or the surrounding medium, in the case of
radietion) held at zero tempersture; and finally ény conduction or radia=-
tion problem where surface conditions vary with time can be reduced by
a method dus to Duhamel to a simpler problem with surface conditiocns

18)

independent of timee We thus get from the general heat conduction

problem in cylindricel coordinates no new applications of Bessel functions

17) Cerslew, Ope Cite, 123
18) Ibide, 16-19
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of imeginary order beyond those trested in Arte 2ele
In spherical polar coordinates (r, , #) a particuler time dependent
solution of (1) is given by?o) ) oo
A= J—Kd#{dﬂ) 2 fﬂi () @/«/@9 & in AL (3)
where R;“é.is a Bessel function and é?;%‘is an assoclated Legendre function
of degres;’ and order;;q ‘the separation constantsai;ll, and ? being com=
pletely arbitrery. If we’write i? for 2+ % in (3) we get the solutions
e S o) G (00 Z sy @
which involves Bessel functions of imaginary order and cone functions
(ses Arte 2e1) if/k and # are reale The last expression for v certainly
satisfies the conduction eq;ation (1), but it does not seem to be adapted
to the solution of any problems which cennot be treated by the use of
harmonics of the form (3); in any case the usefulness of (4) is limited
because of the singularity of the radiel factor at r = Qo
A differential equation analogous to the equation of conduction of
heat occurs in the treatment of induced electric currents (eddy currents)
in extended conductorse In the case whers the inducing magnetic field
is exially symmetric end veries sinusoidally with time, the vector potential
of the eddy currents may be expressed in terms of modified Bessel functions
" of complex argument xi%; which lead to the ber and bei functions of Lord

Kelvin.21) It is formelly possible, by choosing the separation constents

properly in the differential equetion describing the eddy currents, %o

*Carslaw end Jaegerlg) in deriving the Green's function for the cone
duction equation in cylindrical coordinetes maske use of Dougallt!s contour
integrals of Bessel functions with respect to their order (compare the
derivation of 2612 (5)), but the functions of imegirery order do not come
into the expressions for the final resultse

19) Carslew, He Se, and Jaeger, Je Ce, Je London Mathe Soce, 15, 278
(1940).

20) Carslew, ope cite, 144,

21) Smythe, Ope Cite, Artse 11s02 = 114040
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obtain solutions involving the complex functions ), (xi®) ana G,)(xi—’%) s
but no problems have been found whose solubions would be facilitated by

the use of these functionse

2¢2¢ An Application to Hydrodynemicse Stability of Superposed Streams

of Fluids of Different Densitiese

We turn now to quite a different epplication of Bessel functions of
imaginery order, which occurs in some hydrodynemical investigations of

22) and Se Goldsteinozs) The problem which occasions the

Ge Ie Taylor
use of these functions may be inbtroduced es followss

It is well known that when the wind near the ground drops at night
with the cooling of the ground, the wind at a higher level frequently
remains unchanged, so that the effect of a decrease in density with height
is to suppress turbulence end to enable a large wvelocity gradient to be
mainteineds This et once presents to the mathemstician the problem of
the stebility of a fluid in which the density and velocity very with height
ebove the ground, regerded as a horizontal planee It turns out that if
the velocity is assumed to vary lineerly with height and the density ex=-
ponentielly, the stability investigations involve Bessel functions, and
the results are simple enough to admit physical interpretation.

Taylor's analysis proceeds in the following manner: We assums en

undisturbed flow in the direction of the axis of x with a velocity u,(z)

depending in e menner later to be specified on z, the height; the density
of the undisturbed fluid et height z is taken as /0 e"g }o We now superimpose
o swmall sinusoidal disturbance on the original flow, so that the total

vector velocity -c‘f is given by

22) Taylor, Ge Ie, Proce Roys Soce London, (4), 132, 499-507 (1931)
23) Goldstein, Se, ibide, 524=548¢
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3 = Tug(2) + uy(2)ef + Fry(2) e + Ty (2)e, (1)
where ¢ = exp i{kx =c%)e* Here k is regarded as a real number (evidently
k = 2m/2, where A is the wavelength of the disturbance), and the nature
of s~ 1is to be determined from the equations of motion together with the
boundary conditionss Real values of ¢~ correspond %o steble progressive
waves, while complex values of s~ correspond either to exponentially ampli-
fied waves and instebility or to exponentially attenuated wavess the
criterion for stability of the originel flow against smell disturbences
of the form (1) is thus Imo < O The tobal densitylo and pressure p also
fluctuate about their undisturbed values in the same manner as the wvelocltys
they may accordingly be written as

/ :/)oe"gz + p1(2)es (2)

p==$o°g43)e7az + p(2)es (3)
since the undisturbed pressure 1ls given by //jgoge'pdeo

It is assumed that the variation of thegundisturbed density with

altitude is due to the changing physical gyaracteristics of the fluid,
any small element of fluid being regerded as incompressible. Hence for
points that move with the flow the particle derivativ924) qp/bt = Jdp/a%
$ qiﬁf venishess on teking account of (1) and (2) we get, to the first
order of small quantities,

~i0py (2) + ikug(2)p, (2) =pw (2)pe ™ = 0. (4)

The continuity equetionVed = O gives
ikul(z) + dwy/dz = 0. (5)
On substituting (1) = (3) into Euler's dynamical equation
— = e
g R ®
#The more general assumption &= exp i(kx 4/ y =o%) would lead to
no essential change in the form of our resultse

24) Webster, Ae Ge, Dynamics, 2nd ede, 496-499, develops the hydro=-
dynamical equations used in this paragraphs
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writing =kg for the body force F per unit mass, end dropping products of

small quantities, we get the equations of motion to first orders

-ikp, = ikf,(uo - a7k)u1 +,owlduo/dz, (7)
0 = iklo(uo - ﬁ'k)vl, (8)
-dpy/dz = ikp(u, = ofkwy 4 gos (9)

and in these three equations /0 mey be replaced wherever it occurs by
/Ooe-ﬂ Z %o the seme order of approximatione If we eliminate the quentities
Pys Uy, and p; among the equetions (4), (58), (7), and (9), we obtein the
equation for the vertical component of velocity wl(z):
dz'w'l/d.z2 - ﬂdwl/dz + W]_[(uo - a‘/k)_l(pduo/dz - dzuo/dzz) - 12

+ g3, = /)] = o, (10)

We now consider the case of a uniform wvelocity gradient uo(z) T g

and write
wy(2) = £(z) exp (3fz), (11)

so that (10) becomes

dPefaz® - 2[¥* 4 34 - &/ - o/x)? - A3/ ~o/x)] = O (12)

In order to reduce (12) to a tractable form, we essums with Taylor that

the density of the fluid does not change appreciably in a distance equal

to the wavelength of the disturbances ie ee, A =27m/k <41/, or k >7 s

so that _:}*__52 is negligible compered with kz. We also assume that the wave-

length is small compared with the charecteristic length g/-gz (the velocity

gradient is not too high)s io ee, 1/k <<gk%e If gﬁ/qz ig of order of

magnitude unity enmd if z is comparable with e wavelength (z = 1/k), then
g/ s = 2= >y ap/s - o) = kf

provided ’/k is not comparable with az; while if az = o7k is very small

the term with the squared denominator certeinly dominetes the othere Hence

the last term in (12) may be neglected and the equation for f becomes

dzf/dzz - [k2 - g@/(otz -r/k)zjf = 0 (13)



On writing

ks = ofky £ = £Pn(0), | (14)
(13) becomes ‘
g2/ ¢ panfag - [£%4 (5 - ep®)] 1 =0, (15)

which, by comparison with l.2 (12)) is ‘the equation for modified Bessel
functions of ergument / and order
1

2= (3= g/a/dz)ﬁo (16)
Clearly if « v 4g(g’, corresponding to a large velocity gradient, 2will
be a real number between -% and +%, while if < 4@(6’, corresponding %o
a smell velocity gradient, #/ will be purely imaginarye Returning via:
(14) end (11) to the originel variables, we see that the vertical component
of veloecity is given by
w (2) = (2 = o k)R BPR (1cp = of)et (BE), (17)
where R),(z) represents any solution of the modified Bessel equation 1.2

(12)s We shell now investigate some special casess

Case of a Fluid of Variable Density Cbntained between Two Horizontal

Planegs If the moving fluid is bounded by the rigid horizontal planes
z = 21 end 2 = 2y, the boundary conditions are wy(z9) = wy(z5) = O; since
k, z, and & are real, the conditions can be satisfied only if there exist
two zeros of the function Z%R () with the same imaginery parte Suppose
for the moment that we have two such roots, say ;”1 =$l + ib and 52 =

$o t ibs then k and ”are determined by the pair of equations

kzq = o/« = §p + ib, (1861)
ki, = o/ = £ + ibe | (1842)
Hence k =27/ = (g’z - ;l)/(zz - zl) (18,1)
and 5~ = (245, = 25§90/ (25 = 21) = ib, (19.2)

end the phase velocity (Reo)/k is given by
(Reo‘)/k :d(zlgz = zz§1)/(§2 = §1)' (20)

@S2



In the case o> 4%3, where 2 is real end =5 <2 ¢ 3, stable waves
of all wavelengths can propagate, since the function ﬁ ))(() vanishes
at /= O because of the first factor and the modified Bessel function
\ca.n. certainly be chosen to vanish for Z = 52, where 52 is any desired
real numbere TFrom (20), the phase velocity of these waves is justotzl,
the velocity of the fluid at the lower boundary Zys SO that they are
all moving backward with rospect to the upper layers of fluide The possi-
bility of unstable waves in the case of? > 4%6 canmot be decided ﬁith our
present kmowledge of the complex zeros of modified Bessel functions of
real order, which is summarized in theorem 3 of Arte leo2e The most we
can say is that if unstable waves do exist, they correspond to values of
g—for which [Imo| ¢ Do <A,

In the case o34 4g@, wo mey write for clarity (£ = g/i/«z)% = i/,
where I’ is purely imaginary; then the fumection R,y () occurring in (17)
is & linear combination of wedge func'b:’AL.ons. Stable waves of all lengths
can be propagated, since both wedge functi?ns have en infinite number of
real roots with limit-points et the origin, and if R, (£) is the linear
combinatior of these functicms venishing at g; s it is evidently possible
by continuous veriation of the coefficients in R, s to vary 561. continuocusly
and Yo make the difference between gL end the next smaller real root
§: assume & velue corresponding, by (19%.1), to any desired wavelengthe
The velocity of this wave is then determined by (20)s On the other hand,
since by theorem 4 of Arte lo2 R(')) cannot have two complex roots with

eqﬁal imaginery perts, no unstable waves caen be propagateds (Taylor could

not show the ebsence of unsteble wavese)

Case of a Tluid _9£ Veriable Density Bounded :.11_ a Horizontal Plane

and Extending to Infinitye If the fluid is bounded by the horizomtal

plene z = z. and extends to +o5 the Bessel function in (17) must vanish

X



as its argument tends to infinity in the right half-plane, so that from
112 (2) it must be a constent multiple of the function K,e If x%> 4gﬁ

so that the order ») is real, no unsteble waves can exist in the semi=-

infinite fluid, since it is known that, if » is real and =5 < ¢ %,
Ky(f) has no zeros in the region 1e.rg{fl é'ﬂ‘,zs) The only stable weves
are ‘;hose given by 50 = O (Taylor seems to have overlocked this possie
bility when he states that no waves, either stable or unstable, can exist
for 41> 4g(§.) From (18.1) we see that these waves cen have any wavelength,
but thet they all move with the same velocity o7k = AZqs which is the
velocity of the fluid at the boundery plene z = Zqe
In the case %< 4:g;é’ we have to deel with the function K (&) of
imaginery order, which by theorem 1 of l.2 has an infinite number of real
Zeros :Lnf between the origin and the pointf = 4/ e* Corresponding %o
any perticular real root f of Kt-))(f) = 0, steble waves of all wavelengths
can propagate, the dependence of velocity on wavelength being given by
o’/k from (18el)e The possibility of unsta't.)le waves must remain open,
since theorem 5 of 1¢2 does not preclude the existence of complex zeros
of K;,(4) in the right half-plenes
The stability problem treated by Goldstein in the second paperzz)
cited above is somewhat different from Taylorfss it mey be stated as
follows: We consider an infinite expanse of perfect fluid with a layer
of constant velo’ci'by and density end infinite depth on top, 2 layer of
25) Watson, Ge Ne, Theory of Bessel Functioms, 2nd ede The region

lergs | {7 is proved zero-iree in Arte 1Be7, while the absence of zeros
on the negative real exis follows from the formule [Ar't. 3eTly ©Qs (18)]

K,)(xet'”) = ermK) () 7 7T (x)e

#Maylor asserts that the Hankel function H,(i,) (i§) [= (-Zi/yr) exp(>7)
K (§ )J is purely imeginery whenever £ is real, end that it has an infinite
number of real positive and negative zeros in £ in the neighborhood of the
origine His argument is actually velid only for real positive veluss of
jil)since («1)" is not the complex conjugate of (=1)~%, the functions
Hi (15) end K, (%) are complex valued when £ is resl end negatives



different constant velocity and slightly larger constant density and ine
finite depth at the bottom, and a finite trensition layer in between,
where the velocity varies linearly end the density varies exponentiali_ly
from one boundery to the other. We wish to investigate the behavior of
e smell sinusoidel disturbance progressing in the direction of the steady
flows

We assume the following steady-state distribubion of velocity, density,
and pressure gradient, the notation being chosen to agree as closely as
possible with the first part of this articles
For z £ O, u, =0, /O:fb’ dpo/dz - 7oog; (2161)
for 0¢ z { hy uj = Uz/h= oz, /oz-/ooe"{gz, dpy/dz - -fbge‘ﬂz; (21e2)
for z > h, U= U=z oh,  ps ]ooe'(?h, dpy/dz = -foge‘(fh. (213)
On these steady-state quantities we superimpose fluctuations of +the form
given by egse (1) = (3) and obtain as before the hydrodynemical equations
(4), (8)y (7)s (8), and (9), noting that in the regions of constent density
£ (2) = 0 so that (4) is nugatorye

The expression for the vertical component of wveloeity in the transi=-
tion layer is derived in the form (17} by exsctly the seme arguments as
before, but with the added simplification that if we assuwe the change
in density to be only a smell fraction of the mean density,* we may cons

sider the fector exp(—;%ez) to be essentielly equal to unity, so that

(5 =~V R, (kg =/ Yo 0T, (22)

)

Wl(z)é‘
where » is defined by (16) and R) is a modified Bessel functione The
equation for wy(z) in the top end bottom layers is easily derived from
(5)y (7), end (9); on setting u, = constant, /- constent, and q = 0O,
we get directly

*hctually Goldstein does not make expl'ici't- use of +the approximations

introduced by Teylor to simplify eqe (12) above, but bases all the approxi-

mations necessary to obbain (22) on the single assumption that the totel
chenge in density is small compered with the mean densitye



&% faz® = YPw (23)
1 1.

so that for 2 £ O or z Y h, wl(z) is proportional to exp(fkz)e

The boundary conditions in our problem are that the normal component
of velocity and the pressure must be continuous across surfaces W—here the
velocity gredient is discontinuouse Let z = z, be the equation of such
a surface in the undisturbed flow, end let z = z°+7 be the equetion
of this surface in the disturbed motione Then to first order Wl(z) must

be continuous at z = Zge Also, to first order, the value of wy at z = 2

o
is comnected wi'bh'] by the equetion

Wy =87/3't + ug 37/3:: = i(kug -d‘)']o (24)
The pressure must be continuous at z = zo—f-f( s so that to first order
Py + P1 +71dpo/dz must be continuous 8t z, 3 ie e, Pg -“UDOg must be
continuous et z,e Substitubing for? from (24) end for py from (7) and
(5), end dropping terms like Po and wy (z) which ere already assumed to
be continuous at z = z,, we find that the expression

lry duy/dz = (kug =97) dwl/gz (25)
must be continuous &% z = Zge
Solutions of the equations of motion which venish et z =12 are,

from (22) and (23):

For z £ O, wl(z) = Ae¥E, (2641}

AL
for 04 z < h, - wy(2) < $B[BL, () + cL, ({)], (2642)
and for z > h, wl(z) = De"'kz, (2643)

=28 Gae

where £ = kz =4, end if # =0 the term I ,(¢) in (2602) is 4o be replaced

by K (£)e If we set

8= =T Ly Kb =T, (27)
the continuity of wy(z) et z = O and at 2z = h leads to the conditions
l a
A= §*[B3,(4 )+ o1, (£)], (2801)

D= {j'” [Bly(fx) + CI_,(4,)]e (2802)



The continuity of the expression (25) leads, with use of (28) and somse

rearrangement, to the pair of conditionss:

3[(1+54™)1,(4) -L,1(4)] ro [ 2™, (£) -1,1(K)] =0, (29.1)
B[4 7)5,(%) + NG+ o[- 571, (£5) +Lo1(5)] = 0, (20.2)

which have e nonwzero solution in B and C provided that
[0+ #6716 - 1 Q)] 441,650+ 1) ]
- [a+#5 ™1, 6 -1 3G (- 355, (6) 1,1 ()] < 0a (30)
The real roots of equation (30), regerded in virtue of (27) as an equation
in os~when k is a given real number, correspond to stable progressive waves,
while the complex roots with Imo~>0 correspond to amplified unstable
wavese

A rigorous theoretical treatment of the roots of the period equation
(30) apparently being infeasible, Goldstein attacks the problem indirectlye
By the use of asymptotic formulas for the modified Bessel functions when
the order end the argument are simultaneously large, he obtains the limite
ing form of (30) as A2 0 ()éfl-aoO,léf)—?¢9, »-2 4, which corresponds
to the case of no steady motione The system is then completely stable,
and there are an infinite numbér of principal periods of oscillation,
which are shown ‘o vary continuously and to remain real and distinct as
o> increases from zero to just less than 4g@5 hk being supposed small
for this pert of the worke Then when o> is just less than 439, the periods
are shown to vary continuously and to remain real and distinct when the
wavelength is varied over all possible valuese It is deduced that the
motion is stable for «*< 4%3. When o™= 4gf’there is one real principal
voriod if kh is less than about O.4 and none otherwise; and when o> 4g€
there is, for kh smll, one real principal period and an infinite number
of imeginary omes, which correspond to unstable modes of oscillatione

Tt is deduced that the motion is unsteble for a*> 4%&; end it appears



that this is true for all wavelengthse

Since the rather lengthy mathematicel calculations involved in carrye
ing out the argument which has just been sketched yield no outstanding
new results for the theory of Bessel functions of imaginery order, the

reader is referred to Goldstein's original peper for details of the works

2030 Propagebion of Love Waves over the Surfece of an Elastically Ine

homogeneous Mediume

Bessel functions of imaginery order and imaginery argument occur in
the solution of the problem of propagation of transverse elastic waves
over the surface of a semi~-infinite body whose modulus of rigidity increases
as e quadratic function of the depthe This problem is of some practical
interest in sseismolegy for the following reasonss

When an searthquake disturbance is transmitted to a great distance
from its point of origin, the mein shock reaches the distant stetions
at vimes corresponding to the passage of we.ves over the surface of the
earth with nearly constant veloeity; and the oscillations are largely
in a horizontal plane and transverse to the direction of propegation of
the shocke Observations indicate the existence of dispersion, ie €e,
some variation of velocity with wavelength, in these surface wavese

Such transverse surface waves oscillating in e horizonbal plene are

26) who showed theat waves -of

celled Love waves in honor of Aes Ee He Love,
the Type described may be transmitted if we have a homogeneous surface
layer of rigidity /(, density /0, end finite thickness overlying a semie

infinite homogeneous solid of different rigidity /(' and density /0', such

26) Love, Ae Ee He, Some Problems of Geodynemics, 160=165,



27)

s L
thet 5“’ //D')z S y(//o)z. It has been shown by Ee Moissner and others
that Love waves may propagate over the surface of an elastic solid whose

modulus of rigidity snd/or density vary continuously with the depths

It is known from seismological dataZB) that the velocities of both the
¢iletational and the distortional waves through the body of the earth
increase with depth according to e lew which is nsarly linear for the
first 1200 kme This fact is not sufficient to determine completely the
veriation of the demsity or of the elastic moduli in the interior of the
earth; but in order to give scme sort of theoreticel trestment of seismic
waves we may make mathematically simple assumptions which are not too
widely et varience with our present incomplete knowledges

We first recall the general dynamical equations for an isotropic
elastic solid.zg) Let 3 = Iu +3v + kv be the vector displacement of
any point in the body from its equilibrium positions The strain tensor

is then

_ 4
Q = )?x ?a J;Ji y (1)
g

)/%t )/4«(7 Z
where £ = IW/Ix, )/Ka: aﬁ/”‘ = %(Qu/yy +9v/9x), etce If the stress tensor
is
7/ 77:;4 77\49 (7<-2
S G Ty ot (2)
* %
o ?7 /2‘7«3 ®
Z2x (i7 @‘22

27) Meissner, Eo, Vierteljashrsschrift der Naturforschenden Gesell=
scheft in Zirich, 66, 181=195 (1921},

28} 1bide, 182s

29) Page, Le, Introduction to Theoretical Physics, 2nd edey chope
IITe Observe changes in notations

=S 0m
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where Z; is the y=component of stress across the plane x = constant,
and the other components heve similar significance, then the total force
por unit volume, including the body force 'G‘, is

— SN PR §

F=G+V-Te. (3)
The relation between stress and strain for an isobtropic elastic medium

is given by the tensor equa'bionzo)

-2,)9-2
[k-2,)9-2] T +2/egf (4)
where K is the bulk modulus, /( ‘the modulus of rigidity, and I e unib
tensors Substituting for T and T in Newbton's equation :I': = /0325‘/91:2,
we have the general equation of motion for an isotropic elastic mediums
LGV -2)VE]L + T (ud
e T l-34)V IR + V(). =
We now consider the following problem: A semi=infinite elastic solid

is given by z ¥ 0, its densi'by/p(z) and rigidity/((z) being functions of
the depth z onlye. A distortional wave propagating in the positive x=

direction and vibrating in the y=direction is given by

l(]ﬂ("’d‘t). (6)

_

3 =3v = 32(z)e

Tor such a wave the only non-venishing components of the strain tensor

are
9 . s = ?;‘/-
43 B éx = "(“f@:f J )%& );3 i oz (7)

If we neglect the body force due to gravity and note that the dilatation
¥ = 0, the equation of motion (5) becomess

I~ & k) 1 20 )b BE+ BT ] ©

If v has the form (6), substitution into (8) leads to

1Lt/ Z2 ]+ [riot) ~#ien)] 26) =© ©)

One boundary condition is that the stress must vanish at the free surface

= 0; from (4), (6), and (7), since V-§ = O, we see that this impliss

30) Page, ops Cilte, 162, ©Qs (47-16)s



that at 2 = O 2,/) .
—&’f‘; o 0 = #
Gy 2y i =

The other boundary condition is that the wave must be essentially confined

(10.1)

to the surface of the mediumg ie e,

lim Z(z) = Os (10.2)
Z-> +ob
We now further essume that the modulus of rigidity and the density

1)

; 3
are given by
P
/¢(=/ﬂo(1”" z/4)° s /“/00 = constante (11)
Then the local wvelocity ¢ of distortional waves is & linear function of
the depth, nemely
¢ = J//,o = co(l + z/f), where Cy = M. (12)
The fact tha'b/ﬂ is infinite at an infinite depth makes very little difference
in the results, since the waves with which we shall be concerned are of
relatively short wavelength and are confined largely to the surface of
the medium, so that its elastic properties at great depths do not coms
32) '

into accounte

e

If we substitute / and £ from (11) into (9) and introduce the dimen=
sionléss variable f 1= z/,/, we get
2iPa/? v aganfal PR e f - ¥ a - o, (13)
the boundary conditions (10) becoming

az/af = 0 at £ = 1; lim Z(¢) = Os (14)
= 4.0
Introducing V = 7 /k for the phase velocity of the waves represented by

(6) and A= 27"/k for the wavelength, and making the substitution
: 1
26)= & "e(g), (15)
we find that (13) becomes
31) Sskuraba, Se, Geophysical Mage, Tokyo, 9, 211=214 (1935), has
given a very brief treatment of this cases I am indebted to Profs Batemen

for calling Sakurebats paper to my attentions
32) Cfo Meissner, oDe Cite, 195s
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2.2,/ 2
! f/dfz +£4f/a8 = [ (27%/))2; tE - (2rr1v/aco)2] £ =0, (18)
which is just the modified Bessel equation 1.2 (12) for functions of argument

2766/ end order ¥, where

2% =% (2rbi/2cy)%, (17)

i

Before procesding fur-bherrwith the analysis, we shall try to get
an idea of the order of magnitude of the numbers involved in our works
From representative observational date given by Gu‘benberg,ss) we see that
the velocity of distortional waves through the interior of the earth ine
creases uniformly from the surface value of 4.4 km/sec to a value 50%
greater et a depth of 1200 kme Hence we have in (12) the approximate
values ¢q = 4e4 km/sec, A= 2400 km, Trensverse surface waves with o
fepresen'ba’cive period T - 20 sec all have observed velocities near V=
383 km/sec,gé) corresponding to the wavelength } < VI = 66 kme Tor such
waves, 274/y = 230 and 2m/V/acy = 1703 hence we see from (17) that 2 is
purely imaginery and very nearly equal to WVi/Aco. Since we are inter=-
ested in values off slightly greater 'bhan' unity and in veluss of V/co
slightly less than unity, we shall be dealing with Bessel functions whose
argument is roughly equal to 250, the magnitude of the retio order/argument
being somewhat less than unitye

The modified Bessel fuﬁction which vanishes (exponentially) for large
positive values of the argument, thus satisfying the second boundary
condition (14), is known from 1.12 (2) to be the function K,,(Zﬂ'/f/));
hence from (15) we have, on writing i»’ instead of 2) for the order since
we shall henceforth be concerned only with functions of purely imaginary
ordery -

1 L
2(8) = &K, (274 )9) = ARG, (27572)s (18)

33) Gutenberg, Be, Der Aufbau der Erde, 31, teble 5
34) Tbide, 109, table 49a,




The first boundary condition (14) reduces to

(274/2)6, * (270/3) = £6,(274/3) = Oa (19)
Egse {13) end (14) represent a stendard two=point Sturm=Liouville boundary
value problem, so we know from theorem 5 of Arte 1.0 or directly from the
properties of the wedge function G, that for any fixed valus of 2ﬁ171,
6ge (1¢) will determine a series of inq?easing real positive values of
z)(¢’2ﬂ1V/?co) corresponding to waves of a given wavelength traveling
with e discrete series of velocitiese The slowest wave of a given weve=
length will have no nodal plenes below the surface of the mediumg the
faster waves will have 1y 2; 3, eeo nodal plenes, corresponding to the
higher values of 22e It turns out thet only the slowest wave corresponding
to a given wavelengthy, i. eey, the wave without nodal planes, is of seis-
mologicel interest.55)

From oge (19) we may in principle obtein the dispersion curve of
rhase velocity V= a)lco/Z'ﬂ’[ ageinst wavelength'Ae The group velocity
(velocity of propegetion of energy) is then obtainable as V = XdV/hRo
Since the values of order and argument under consideration are far outside
the range covered by our teble of wedge functions, it is necessary ‘o
work from the asymptotic representations of Bessel functions whose order
and ergument are simultaneously large and of comparsble magnitude (see
reference 21 of chepter I), the results in the cese at hand being conw
veniently expressible in terms of the ratio brder/hrgument\ﬂt V/%oéi
This problem has been treeted numerically by He Jeffreysss) in an attempt

35) Meissner, ODe cite, 186s We may note that Sakurabe (reference
31) is guilty of the incorrect stetement thet "the Love wave exists, which
is charecterized by en infinite lerge number of nodel plenese" The waves
of finite frequency end finite wavelength certeinly have only e finite
nunber of nodal planese IHe also remarks that the solution involving
Bessel functions of purely imaginary order is "only of theoretical in-
terost,” wheress we have seen above that for all physically ocecurring

values of the quentities involved, the order is purely imaginarys
36) Jeffreys, He, Monthly Notices of the Royal Astronomical Society,

Geophysical Supplements, 2, 101-111 (1928=31).
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to get quentitative agreement with observetional datae Jeffreys considers
the slightly more generel problem of a homogeneous surface layer of finite
thickness overlying a deep layer wherein the velocity of distortional waves
increases linearly with the depth, and plots phase and group velocities
vse wavelength of the Love waves for various values of the parsmeters
involvede He obtains asymptotic expressions for the necessary modified
Bessel functions of imaginary order directly from the differential equa=-
tione Tor the various curves cbtained reference mey be had to Jeffreys's
papers His analyticel expressions might easily be derived in the stendard
Bessel function notetion by the methods of this thesis, though it is
unlikely that any significent extension of the results would be suggested
by so doing, particularly in view of the relatively meagre seismological

deta at present available for comparison with any detailed theorye

Note added June 23, 1947: The flow of electric current between
coexial cylindrical electrodes, taking account of both convection and
diffusion, has been investigated by Fe Borgnis* using Bessel functions
of imeginary order and imaginary argument, in a paper of which the author
was unaware when the preceding chapter was written. Subsequently Fe
Emde** has discussed in some detail asymptotic representations of Bessel
functions of large purely imeginary ordere

*Borgnis, Fe, Anne de Physe (5), 31, 745=754 (1938).
*+Emde, Fo, Zo fo Angew. Mathe ue Meche, 19, 101-118 (1939).
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CHAPTER IIX

Physicel Applications of Bessel Functions of Imaginary Order

and Real Argument

3ele Solutions of the Weve Equation Involving Bessel Functions of Imeginary

Ordere
The most importent practical use of Bessel functions of purely imagi-
nary order and real argument is for the construction of solutions of +the
weve equation,
R = 91,/)_/ fz
VAL G Za (1)
in cylindrical coordinatese In the present article we shall write out
some useful scalar solutions of (1) which may be applied to the ecoustic
and electromsgnetic problems of the next two sectionse
Restrioting ourselves from the start to functions which are harmonic
in time, we assume thet & solution of (1) .’l.n cylindrical coordinstes may
be written in the form
- =iwk
_0..(/03 ﬁ{: 2y B) = RV)G(%)Z(z)e » (2)
where w is reale We find that ) will be a solution of the wave equation

provided that

a2a/aff = -»%8, (3)

a*z/az® = -x,%z, (4)

2 2 . 2, 2,2 2 27 _

,odza/d,o +,odR/dp+l}0(w/v -kz)-z)]R-O, (5)
where » and k, are arbitrary separation constantse If we introduce the
notation

1? = (BAP, k2o ¥ - k2, (6)

and teke 9% and kz2 to be real, we see that & will consist of trigonometriec



or exponential functions depending on the sign of 22 and that Z will also
be trigonometric or exponential in form depending on the sign of kzz s
while R will be a Bessel function of (reel or imaginary) argument kcp
and (resl or imeginery) order Y,

The boundery conditions usually imposed upon-nare that (L =0 or
thet 9,()/311 =0 on two pairs of level surfaces of the cylindrical coordinate
systems we therefore choose the separation constents so that two of the
three space factors on the right side of (2) are oscillatory functions
of their respective arguments over the desired rangese In the applications
of the next two articles the boundery conditions will be that 2or its
normel derivetive must venish on a pair of plenes z = constent end on a
pair of cylinders /= constente Hence we must choose k, real to make
Z a sinusoidal function of z, and we must choose ) purely imaginary %o
meke R oscillatory, since the Bessel functions of real order are not
oscillatory if the argument kc/O happens to be imaginary, that is, if
wz/vz - kz2 = kcz { O¢ On writing i» for 9? and denoting by RC. 5 (kcf) any
Bessel func'l}ion of order i) and argument k(./J, we have for a typical solue
tion of (1),

N= Rw(kOF)ZCe})’{ + De-))’{ ][E sin k z + F cos kzz]e-iwb. (7)

To fix our ideas, let us consider the case where the boundary con=

*If we take kzz = 0 and Z(z) = constent, we get solutions of the
two-dimensional wave equationg
L3 m) L 920 _ 1 I

B o //0 — |+ 02 5 T Ta =3’

Cop \ ap opr - of 1)
which may involve Bessel functions of imaginery ordere Bocher™* has noted
the applicetion of these functions to the problem of the transverse vibra-
tions of a thin uniform membrane bounded by two concentric circuler arcs
and two radii of these circles; the functions of imaginary order and resal
ergument occur when an arbitrery harmonic displecement of the membrane

is specified along the bounding radii p’ = constente
1) Bocher, Mo, Annals of Mathematics, 6, 155-160 (1892)e
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ditions are 9n/9z = 0 at z =0 and at z =b, and 91;/9/0 =0at Pf
and at /1/01 e Then the admissible solutions of (1) are of the form
Yomf -22 —iwt
0 = Rit)m(kcn{o)[cnme + D@ an{] cos (nmz/b)e . (8)

where we have taken k,~ an/b, n an integer, end
kg = Wi/ = ()2 (9)

R;y (ko) is the particular Bessel function of order i? and argument Eonf?
which satisfies the initial condition

R, ' (kcnfl) 2 0, (10.1)
and ﬂ,{w is the mth root* in # of %he equation

Ri}" (kcnjoz) = Oe » (10.2)
If ko, is real we know from Arte le7 that there will be in gemeral a finite
number of ordinary Bessel functions of real order satisfying the boundery
conditions (10.1) and (10e2), in addition to an infinite number of funce-
tions of imaginery order, while if k,, is imeginery we know from Arte le31
that the boundary conditions will determine merely an infinite number of
functions of imeginery ordere The same cox@xclusions follow, of course,
in case the boundary conditions are thet -0 at /2 and fhe

Solutions of the wave equation in rectanguler coordinates (x, ¥, z)

mey also easily be obteined as products of harmonicse Since the resulﬁs
are well known, we shall merely note here for future reference the form
L EA. sin k;x + B cos lcxx][c sin kyy + D cos kyy][E sin k,z +F cos kzz]e"i“fb, (11)
This expression, as well as the equivalent form in terms of imaginary ex-
ponentials, obviously satisfies (1) provided that

R R A S A (12)

#he roots are ordered so that a’nlz( ﬂnzz { ﬂ)ng,z( 0co} evidentlg
we need take only one root corresponding to each different value of 2%,



Selle Propagetion of Sound Waves eround a Circular Bend in a Rectangular

Pipeo

We are now ready to consider the following problem: Given two similar
semi=infinite straight pipes of rectengular cross section, whose upper and
lower surfaces are respsctively coplanar and whose axes intersect at a
specified angles The ends of the pipes are comnnected by a circular elbow
of the same rectangular cross section, whose lateral surfaces are cylin-
driceles An infinite harmonic wave train of given frequency and amplitude
is sent through one pipe and impinges upon the bent sectiones It is de=
sired to calculate the form end amplitude of +the wave train which is
transmitted into the second pipe, and also of the reflected wave traine
The practical inte¥est of this problem lies in the calculation of the
transmission of high-frequency electromagnetic waves through conducting
weve guidess but since the electrical problem is compliceted by the vectorial
nature of the electrogagnetic field, it seems worth while to discuss first
the same problem es applied to sound waves, which mey be handled in terms
of scaler quantitiese

In treating the irrotational motion of & compressible non-viscous
fluid it is convenient to introduce the scelar velocity potential -,
whose gradient is the velocity Qe For smell oscillations -asatisfies
the wave equation

TrYEA = 911)—/9?‘? (1)

where v2 = dp/go is the squere of the velocity of sound in the given
fluidoz) The boundary condition on—lat a rigid boundary is that the

normal component of the velocity shall vanish, ie ey

9—0-/9/)1 = O. (2)

2) Rayleigh, Theory of Sound, 2nd ede, vole II, Arte 244,




29 Qs

A%t the interfece between two medie of different densities § and §, we
must have the normel component of velocity continuous, so. thet ,
20,/ = 9,01/9,,, . (3e1)
The recquirement that the presvsu.re must be continuous across the boundary
implies the.‘as)
5. 90,/ = & 90, /ot

If the two media are of equal density, the last condition mey be setisfied
by teking
, = L (302)
et the boundarys

We now qonsid.er ‘the propagetion of en infinite wave train of constent
frequency in the positive x=direction through & rectangular pipe boundsd

4)

by the plenes y= 0, y =&, end 2= Oy 2 = be From 3¢1 (11) and (12)
we see that the most general wave train setisfying the boundery condition
(2) is given by
L L '
0 =Z'Z A cos (nry/a) cos (nmrz/b) exp i(hyx = whb), (4)

=0 /=0
where 7

b = WP/ = (@nfa)? - (ar/o)? (5)
The coefficients Ay, in (4) may evidently be determined by Fourierfs
method so &s to repressnt arbitrerily prescribed values of 9.0./93: over
any desired section x = Xo of the pipee
Tt will be noted thet the individuel terms of (4), such as

ALy ™ Mo €08 (rry/a) cos (wwrz/b) exp i(hyx =wt), (6)
correspond to wave types in which the velocity components 9.0/9y and Jn./9z
perpendicular to the axis of the pipe heve m=l and n=1 nodes respectively
between the bounding planese Furthermore we see from (5) thet for any

3) Reyleigh, Ope Cites 7%
4) Tbide, Arte 268



fixed value of the frequency end sufficiently large values of m and n,
hmnfa is negative, so that hp, = iy, say, and the factor depending on
x in (4) becomes a real negative exponential e"{mnx e Thus at a given
frequency only a finite number of the lower modes can be propageted along
the pipe without attenuation, the higher modes beccming rapidly insensible
as we leave the neighborhood of the sources The "cut=off" of the higher
modes is a phenomenon well known to workers with ultra-high~frequency
electromagnetic wavess Of course at sufficiently high frequencies any
given mode can be propagated through the pipe; the cut=off frequency,
by (5), corresponds to
u)mz = v‘?’[(m‘rr/a)z + (nﬂ/b)zj, (7)
and thus depends on the dimensions & and b of the pipe as well as on the
integers m and ne We note that the mode for which m = n = 0, which is
& purely longitudinal plene wave with all particles vibrating in the
direction of propagetion, is passed by the pipe without attenuation at
all frequenciess .
In the problem at hand, we shall assume for negetive values of x
an infinite train of plane waves traveling in the positive x=direction
in a rectangular pipe bounded by y = Oy y = &y 2 = O, and z = by and
given by the welocity potential 7 |
e * 8% x 0, (8)
where k = w/v, and it is understood throughout the rest of this section
that all potentiels vary with time according to the factor e~ Incident
plane waeves of the form (8) mey be cbtained either by choosing the dimens
sions of the pipe so thet the given frequency is below cut-off (see (7))
for all modes except the one with m= n = O, or by arranging a source

which does not execite the higher modesg the case in which the incident

wave trein is e mixture of several modes merely leads to greater complica=

=100
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tion in the form of the solubione
At x = O the incident wave train enters the circular elbow bounded
by lozfl, /o:log = f31+ 8y 2 = 0, and z = b, and extending from g = +o
%0 £ = =de Observing thet no modes with z=components of veloeity will
be excited in the ben®t pipe because no such components are present in the
incident wave, we may set n = O in 3,1 (8) and assume for the steadyw
state velocity potential in the elbow
s _
0y ‘I’Z’Ri,;m(kF)EBmeom’li- Cme-%/], raf v =a, (9)
where k(= bo/v) is always real, so thet the Bessel function satisfying
3ol (1061} mey be written in terms of the functions U, and V,, of Arte
1.5 as
Rip(kp) = Wt (kp1)Us(kp) = Ut (kpy )Y, (kpd, (10)
end # is the (m+l)st root of
Ry,' (k) = 0o | (11)
As pointed out in 31, there will in general be, in addition to the ine
finite number of functions of imaginary oriier, e finite number of functions
of real order which satisfy the boundary conditions; these latter may
‘conveniently be expressed in a form similer to (10) by eny fundementel
peir of ordinery Bessel functions of real ordere
On the other side of the elbow we shall assume for the wave train

which is transmitted into the second pipe the velocity potential

) s
L5 =7 Dy cos (mry/a)e ™™, x5 0, (12)
e ) i
and for the waves reflected back into the first pipe,
& ~ihyg
N =Z Ay cos (wry/e)e 2 X L0, (13)
M=o
where
2 2,2 2 '
hy =W /v = (u/a), (14)

and in case hp (= %o sey) is imaginery the sign is so chosen that the

corresponding weves in the first pipe vanish as x> =e0and in the second
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pips as X —7+o%e Depending on the dimensions of the pipe and the frequency,
only a finite number of the lower modes (possibly only the mode for which
m =n =0) are propagated, with determinate phases and amplitudes, to
any great distance from the bend; but in order to satisfy the boundary
conditions at the bend it is necessary to take into account also the
modes which are attenuated within a short distances 4
The boundery conditions (3.2) and (3.1) are to be applied ‘to match
o +01 86 x = O with-Qp at £ = +te From (3¢2) we get
A+2 Ay cos (mry/a) j’ : (1?0)):13 o2y Cp m°7, (15)
and from (3.1) 0 /0x% +91L1/3x « -p ~9ngfh 4, or
i[kA j’ . 9 cos(myry/a)]— - —Z?;)nﬁwm(kf)[Bme - cme-""mdﬁ (16)

‘S:.mllarly on. ma'bching;ﬁg at p’= -o(m'bhn.s at x= 0, we get

Z Rin ( )[B o =~ + 6 e%] f'D cos (mry/a.), (17)
- 5 TR <k,a>[sme‘ i o] = ij ByDy 008 (wry/a)e (28)

On replaclngf by £+ ¥ in egse (15) = (18), multiplying through by

cos(nﬂy/a.), and integrating from y = O to Y = & we get the set of equations:

2a[285on+ Ap(1+ fon)] Z Y [Bre Pn?, Cme-%d] (19)

ia[2khSon = hphn(1 4§ on)] = - Z umNm[Bme - cpe™ [, (20)

f Yo B ™ + e Y04 [+ 3201+ Sonds (21)

| Z‘ o (B ™ 2 = Cyo V'] = BaihDa(1 + Son)s (22)

where My, = /; Rip (A1 + ¥) cos(ury/e) ay (23)

and Ny = / “Rb?n(ﬂ ¢ I cos(umy/a) dye (24)
° £ +¥

If we could solve the infinite set of equations (19) = (22) for +the
infinite set of ratios Ap/A, Bm/As Cm/A, 8nd Dp/A, we should presumebly
have the rigorous solution of our original probleme Although the exact

solution is not feasible, similar sets of equetions have been used by
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We Co Hahns) and others to obtain approximate solutions of various electro=
magnetic problems involving cavity resonators and wave guides which it
is not practicable to treat in any other waye The procedure is to take
only a finite number of values of m, say three or four, and to solve the
resultent equations for the cosfficients of the first few terms in the
expensions for the potentiale The convergence of the process is suffie
ciently demonstrated, from an engineer's point of view, if the amplitudes
of the higher order waves diminish rapidly‘ compared with the amplitude of
the original wave; this will be seen only by carrying out & numsrical
calculation in a particular cesee It is worth noting that s‘ince the funce=
tions R,y (k/) and R;), (k)o)/ /0 ymdergo an integral number of oscillations
in the interval (/q s i+ 8), they will be in a manner of speaking ap=
proximately orthogonal to the cosine functions, so that when m £ n the
quantities My, and Ny, defined by (23) and (24) mey be expected to be much
smeller than the quantities Myn and Npn with equal subscriptse Thus the
largest coefficients in the set of equations (19) - (22) will be +those
of the diagonal terms, a circumstance which greatly facilitates the solution
of a finite number of these equations by the method of successive approxi=
mationse In the cases published by Hahn (which involved only trigonometric
functions), the repidity of convergence of the solutions was increased
by the introduction of certein auxiliary functions which could be separately
calculated; possibly further investigation might disclose the usefulness
of similar auxiliary functions in the present probleme

We shall not here underteke any extensive numerical calculations for
the problem which we have been discussings but it mey nevertheless be of

interest to see what would be the magnitude of order and ergument of the

5) Hehn, We Ce, Journal of Applied Physics, 12, 62=68 (1941)e
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Bessel functions involved in a typical casee Consider a square pipe for
which & = b = 10 em, transmitting a plane wave of wavelength 107 cm, which
corresponds to.a frequency at 0°C of (331e5 x 102)/1017' = 1055 cpse For
such a wave k = &)/v = 277’/7\ = 1/5 cm"'l, so that from (7) all modes except
the one for which m = n = O are below the cut-off frequencye If we teke
15 cm for the radius of the center line of the bend, then /, - 10 ecm,
/01 = 20 cm, and the equations 3¢l (1001) and (10e2) for the admissible
velues of ) become
R,y' (2) =R, *(4) = O, (25)

If the squeres of the successive roots of (25) are ;)02 Lﬂ)lz 4;)224
ooy WO get from the calculus of variations, on putting a= 2, b = 4
in 1.8 (8), ;che inequality

;)02 { =6/log 2 = =Be656 = -(2.942)2,
so that the first root of (25) corresponds to an ordinary Bessel function
of real order somewhat greater than 2694 A rough approximation %o 1)12
mey be obtained from 1.8 (9.1) and (9+2); Yvi'bh the aid of & table of
cosine integrals we get
,)12 B/ = 12441 = (3.52)%,

corresponding to a Bessel function of imaginary order in the neighborhood
of Be5ie On setting k =1 in Horn's approximation 1le8 (4) to Vk, we f£ind
;)1“«“ 358, with no a priori way of klgowing which approximation is closer
%o the true value of Pqe It appears, however, that with the chosen values
of the various parameters we should need to obtain by trial and error
from a table only the first two eigenvalues 2, and Di,' the others being
given wifbh sui‘f‘icignt accurecy for all practicel purposes by Horn's
asymptotic formula, which improves rapidly for the higher eigenvaluess

Likewise the eigenfunctions Ri,)m(kp) for m 772 would be represented quite
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simply by the asymptotic formula le8 (5)e

3¢12s Propagation of Electromagnetic Waves earound a Circular Bend in &

Rectangular Wave Guidee

In free space or in a perfect homogeneous isotropic dielectric of
capacitivity ¢ and permeability;/othe electric field intensity'ﬁ satisfies
the vector wave equation

v2E /2‘ 9%1 (1)
and all the other field vectors and potentials satisfy equations of +the
same forme The rectangular components of the field vectors individuelly
setisfy scaler wave equations of the form (1), but the components of these
vectors with respect to a general curvilinear coordinate system do not
individuelly satisfy the scalar wave'equation, because the unit vectors
in a curvilinear system are not in general constante The difficulty may
be avoided by deriving the fields from potentials which satisfy (1) and
which can be oﬁtained by verious methodsg ory if by any means we have
expressions.forrone component each of the electric and magnetic field
vectorsiﬁ‘and'ﬁ; the other components mey be derived from the interrela-
tions expressed by Mexwell's equationse For our purpose the latter pro-
cedure;will be sufficiente

If we assume that the time variation of all field quantities is
given by the harmonic factor e-ﬂ”t, so that differentiation with respect
Yo time is equivalent to multiplication by =iw, the curl equations of
Mexwell become, for a homogensous isotropic dlelectrlc,

UE=~28 07 (2] =2 (E)=-wel
o /
If we write out the six component equations in cylindrical coordinates

and further assume that all components vary as sin k,z or cos k,z, so
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thet the operation of 92/922 is equivalent to multiplication by -kzz,

it is possibls to solve for B,, E’{, B/,, and B,e{ in Yerms of B, and B,s

we get6) P g g/j
2 4 2 “'U gz / 5’26(} o/ 252 ,
“le f’” Fwl R 3/3 ()

£ ] 24 ///9;] By <[ 25 £ 987
A Lop % “p op opze @ g0 I @
2. 8 2 _ 2 2 - S s
where k™ = w /116, k,” = = k,%e Similarly in rectangular coordinates,
if the components Ey and By are supposed known and the fields are assumed
to be propageting in the positive x=direction so that their depsndence

i (hx=wh )

on x and £t is given by e s We get from the curl equations (2)

2& 4, L& .,
f? %[‘[”/7f s ral Z;’%’%Z[X/?f % s (5)

Z %#[/M 2] b [”/J”M/f;—f# (6)

Since it happens thet in the cylindrical coordinate system the unit
vector in the z=direction is constant, the z=components of the field vectors
do sat:.sfy the scalar wave equations é

& 99{% , Vo E (7)

of which solutions are given by 3.1 (7). It is therefors easy %o write

dovn from 3.1 (7) and from (3) and (4) above various types of fields which
setisfy the boundary conditions thet the tengential component of B and
the normal component of B shall vaenish on the perfectly conducting sure

faces/):ﬁ ,/0:/% 2L % 8.9 2 = 0y and z = be

We consider first the case in which B, = O and E; is a suitably

6) Compsre Ramo, S, and Whinnery, Js Re, Fields and Waves in Modern
Radio, 299-300 and 326-327s Note that in Ramo and Whlzmery's notation
The time dependence of the field quentities is given by e™J
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specialized function of the form given by 31 (7)s On meking use of egse
(3) and (4), we find that a field satisfying the specified boundery con=
ditions is given by the following set of components (the time dependence
o~1%% being understood)s

B, = Riym(kcnf)[%eﬂm+ Bme-’)m“ﬁ{] cos {nwrz/b), (8e1)
Ep = =(0/bken)Rip o 1 (Konp) [A.,me’)n.m’{ + ane'ﬁnm’(] sin(nm/b), (842)
By = =(an/Sonf) Rivry(conp) (e ™™ = Byge™ %] sin(are), (845)
By =0, (8e4)
Bp = _(ikza)m/kcnzm‘a)ni,)nm(kcnf)[Amnez)m"d - ane"’)nmp/ ] cos (a7%/b), (8e5)
Bf - (112 /i o) Ripy ' (Konf )L‘*nme’)”mpl + Bnme-ﬂnm’{] cos(anz/b), (846)
where n is any non-negative integer, kan___ wi«z - (:cm'/b)z. Ri}’(kcnf’)

is a Bessel function of order i venishing at /0 :,ol, and 7)nm is the

mth root of the equation R:b)(kcnfE) = Os A field in which B, = 0 will
be designated as "transverse megnetic", or TM;* and the particular oscile
lation specified, as in (8), by the integers m and n will be called the

M modes

Similarly we may write dovm the components of a "transverse electric®

®

field for which E, = O and B, is given by 3e1 (7); these are, for the
TE,, mode,

Rivy (Kenf) [qme’)m”’{ + Dme")m’”, [ sin(amz/b), (91)
(a7/kenb) Rippy ' (Konf) [cme “md | Dmne'%m’{] cos{awz/b), (942)
Bf (nﬂ'z)nm/kcnzbf) B3 (Kanp) [cme’}m’{ - Dmne"’mp,] cos(urz/b), (943)
By 0y (9+4)

B, - (ipoqm,/kcnzlp)Ri;)(kcnf‘) (cmneg)m" - Dme"pnm’{ ] sin(orz/b), (945)

By

Be

#The designation TM has in this case no particular advanbage except
brovitys It was originally introduced to describe fields which were
propagating in the z=-direction, and for which therefore the magnetic
field was transverse to the direction of propagetione
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. 2, -t

By = -(1/ken) Ri%:skcnf)icmne et | Dyme m“"{] sin(arz/fb), (946)
where to satisfy the boundary conditions in this case the Bessel funetion
Ria)(kcrf) must be so chosen that Ry»"(ky,py) = 0, and 2, is the mth
root of the equation Rw’(kcnﬁz) = De

The types of waves which may propagate in a conductingguide of rec-
tangular cross section have been widely discussed in the 1iterature.7)
For +the TE,, mode propagating in the positive x=direction in a guide
bounded by the conducting pleanes y = 0, y= &, 2 = 0, and z = b, the

fields are given by (5) and (6) in connection with 3.1 (11) and (12) as

followss ‘

Bx = App cos(amry/a) cOS(m/‘D)eihmx. | (10.1)
By = =ihyy,(n/a) (k2 - hmz)-l.&m sin(mry/p) con(are/b)e 0=, (10e2)
B, = -ihmn(m’/b)(kz - hmz)-lAmn cos (mry/a.) sin(mrz/b)eihﬂmx; (10.3)
By = O, (10.4)
By = ~wo(ar/b) (& = hyy”) Ay cos(uay/a) sin(ora/b)e M, (1065)
By ° iw(mn/a)(kz - hmnz)"lAmn sin(mry/a) c.os(nﬂ'z/b)eihmnx, (10.6)
where

1 = wz/e = (mrfe)? + (ar/b)’+ humte (11)

The corresponding components in the trensverse magnetic medes may be
written down in a similer wey, or they may be found in the work of Ramo
and Whinnerye

One of the simplest wave types which may exist in a hollow rectangular
pipe is the TEjp modes this mode is also of great engineering importa.nceoe)
We suppose that we have a TE,; wave traveling in the positive x=direction
through a guide bounded by y = Oy y =—a, z = O, and z = b, which is con=

7) Remo and Whinnery, ope Cite, Artse 9¢04=9s05,
8) Ibide, Arte 9405
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nected at x = O to a similar guide at a different angle through the cir-
cular elbow bounded by p=fi, [+ 2= fA+ 8 2z =0, 2z =D, and extending
from p’ -+ to ;{ = =oly and we proceed to write down the equations which
de’cermin_a the amount and form of the transmitted and reflected waves at
the bends

In the first pipe, where x { O, the non=-vanishing field components

of the incident TE,, wave are given by (10) and (11) as

Bog = A cOs (-ny/a.)elhl'x (1261)

Boy = =(ihja/m)A sin@ry/a)eihlx, (1242)

Ey, = (iwe /)L sin(ﬁy/a)eihlx, (1263)
where . hmz - wf‘ae - (mff/a)zo (13)

Since there is no y=component of electric field in the incident wave there
will be no radial component of E in the bend; from (8), the only modes
that will be excited are transverse magnetic modes with n = Qs Accordingly
we assume a sum of such modes to represent the fields in the bend, the
non=venishing components belng, for &) ;{ Y =al,
Z Rip (kf)[B o + Cpe ‘“’J] (1441)
B2f= j’ -(1;&n/wf)Ru)m(k’o)[Bme - '], (14+2)
B = (ik/)Rsy t(k )[ o b Cpe m’{] (1443)
2d =5 Ry _* (kp) By . .
where Riz)(kf’l) = 0 and 2}, is the mth root of Riz)(kfz) = O¢* In the

transmitted and reflected waves we shall find only those transverss elsctric

modes for which Ey= Os hence for the reflected waves, x < Oy we assume

Byy Z Amcos(nvry/a)e - (15.1)
Byy j’ (+ ihge/mm) Ap sin(umy/a)e” ihmx (1502)

*¥As in Artse 3.1 and 3oll, the boundary conditions will in general
be satisfied by a finite number of Bessel functions of real order as well
as an infinite number of functions of imaginary orders; these latter funce
tions may be written if desired in the form

Ry (kp) = V,(kp) U (kf) = U(ka) V. (kp)e



= ) ~ihmx \
Eq, :oé'l (+ iwa,/mr) A sin(mry/a)e % (15:3)
and for the transmitted waves, x > O,
B3y Z D, cos (mry /s )ettmX, (1661)
B3y = =(ihye/mr)Dy, s:.n(mrry/a)elhmx (1642)
an=s h
Bz, = (iwe/mm)Dy, sin(mry/a)ethmX, (1663)

~

It is ewdo’r‘: from (13) that if the dimensions of the guide aere propsrly
chosen hy may be imaginary for m > 1, in which cass all the modes except
TE1p0 will be rapidly attenuateds

The boundary conditions in this problem require the continuity of

the fields at all points; hence we must have Eg, + Ej, Eg, and B, +

oy
= Bzf' over the plane x = =0, g =<, as well as By, = Eg, and Bzf =

!}

Bly

Bz., over the plane ;{ = =yy x = +0¢ (If these four conditions are satisge

A
fied, the curl equations (2) imply that the remaining component of +the
magnetic field is also continuous.) Evidently these conditions, applied
to the éxpressions which we have written down for the field components,
will lead to four sets of equations for the four sets of ratios Ay/A,
Bp/As Cp/A, and Dy/A, precisely similar to egse (19) = (22) of Arte 3elle
Space limitations due to the original plan of this work, which was
to exhibit as many different occurrences of Bessel functions of imaginary

order as possible rather then to discuss any single application exhaus=

tively, prevent us from continuing here the treatment of the wave gulde

problem which we have thus briefly introduceds It can scarcely be doubted,

however, that this general problem currently represents the most important

practical application of Bessel functions of imaginary order, and that it
merits e much more extensive treatment than we have been able to givee

Probably the equivalent circuit concepts which have already proved so

9)

fruitful in enalyzing the transmission of microwaves”’ can be applied

9) For example, Whinnery, Je Re, and Jamieson, He We, "Equivalent
Circuits for Discontinuities in Transmission Lines," Proce Io Re Eo, 32
98-114 (1944),
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here, the reflsction and transmission coefficients of the bent portion
of the guide 'being represented by an sequivalent impedance network at the
Jjunction between two sections of uniform lines For numerical analysis
it would be highly desirable to have a table of the Bessel functions
U,(x) end V, (x) of imaginary order and real argument comparable in range
with the table of functions of imaginary order end imeginery ergument
contained in 'the appendix of the present worke If such a teble can be
mede aveilable, we feel that Bessel functions of imaginary order will.

find a very practicel use in electromagnetic theorye

3e¢2, Schr8dinger Wave Functions for a Particle in an Exponential Field

Among the more importent physical applicetions of Bessel functions
ere those which occur in the quantum theory. MNost of the elementary quan=~
tum mechenicel problems which require the use of Bessel functions lsad
only to functions of real crder; but With:‘l;n the past three or four years
several investigetions heve been published which involve the functions
of purely inaginery order. We shall now formulete the basic problem
which gives rise to these latter functionse

The quantum mechenicel behavior of a particle of mass m and total
energy E in a field of force given by the potential function V is deter=
nined by the time independent SchrB8dinger equation

Vi + 2 (E-y) $=9 (@)
where (/f is the weve fxmc‘b.uon of the particle and 2#% is Flenck's quentum
of action he In a central force field, where V [: V(r)} is & function

of the radial distence only, it is well ]mcvmlo} that the wave function

Y

10) See for example Peuling, Les, and Wilson, Ee Bey, Jre, Introduc=
Tion ‘to Quantum Mechenics, 113=121,
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mey be written in spherical coordinates as
#(rs 0, £) = R(r)KO)a(#), (2)

where @ and @ are respectively trigonometric end associated Legendre funce
tions depending on two integral quantum numberss The differsntial equation
satisfied by the radial function is then .

L () [faip-v))- MK S
where the non-negative integer { measurss the total angular momentum of
the particle in units of fie If we consider the spherically symmetric

state of zero total angular momentum (the so-called s=-state) and write

R(r) = u(r)/r, (4)
ege (3) becomes
AP

We now specialize the problem under consideration by assuming for
the potential V(r) ‘the exponential form
V(r) = =Vy exp(-r/a), ' (6)
which repreosents an attractive force fielq if the constan®t V, is positives
The exponential field given by (6) evidently venishes at large distances
much more rapidly than the Coulamb potential =V, a/r; it has an effective
range given essentially by the characteristic length as Such a potential
has often been used as a convenient and mathemetically tractable approxiw=
" mation to the short-range non-Coulomb fields of nuclsar particlese
If we substitute (6) imto (5) and introduce the notations
x = exp(=r/2a), B = ﬁzkz/%m, Yo =-ﬁ2p2/%m, (7)
we find that the equation for u becomes
x232u/ax2 + x du/dx + [(2ak)2—+ (2ap)2x?]u = 0, (8)

which by comparison with le5 (1) is seen to have the solutions u= Jrpgij(2apx)
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for unrestricted values of k and pe* Various cases may arise, according
to whether k and p are real or imeginarys

For a bound particle, ies @s, one with negative total energy E, in
the neighborhood of an attractive center of forece, p = (mvo,éiz)% is real
but k = (ZmE/fﬁz)% is purely imaginery, so that u is proportional to the
ordinary Bessel function J2a \k\ (2apx) of real order and real arguments
(The second solution of Bessel's equation is infinite at x = 0, which
corresponds o r =<% ) The admissible values, if any, of the total ensrgzy
ars determined by the boundary condition that u must vanish at r = 0, so
sach root in |k| of the squation

J2e x| (22p) O (9)

corrasponds to a stationary state of the bound particle defined by a
particular value of the total energy Ee This problem has been discussed

by Bethe and Bachern)

in their treatment of the ground state of the
deuterone If on the other hand E is positive, corresponding %o a net
kinetic energy of the particls at ini‘ini‘t;:, then k is real and we have

to do with Bessel functions of imaginary order and real argument; we shall
discuss this case briefly in the following paragraphse If E is positive
but Vo is negative, so that (8) represents a repulsive field of force,
then p is imaginary and we are led to functions of imaginary order and
imaginary argument; these functions would arise in the problem of scatter-

ing of a stream of particles by a repulsive center of forcee

Application of the functions of imaginary order and real argument

*If 2aki is a real integer, then in the general solution of (8) we
must replace J.2skis Which is no longer distinet from Jgqki, by auy one
of the various so-called functions of the second kind which are linearly
independent of Jggiis Or the general solution may be expressed in terms
of the peir of Hankel functions defined by 1le5 (3)e

11) Bethe, He Ae, and Bacher, Re Fe, Reve Mods Phys., 8, 110-111
(1936)e
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to nuclear physics has been made by Dube and Jhalz)

in a paper on the
emission of alpha=-particles from radioactive nucleis As is well knowm,
the first successful theory of alpha-radioactivity was given by Condon
and Gurney and by Gamcw.lz) In the original form of the theory, the
nucleus was represented by a réeta.ngular potential hols of constant depth
Vo, and of radius a equal by definition Yo the nuclear radius. Outside
the nucleus the potential function was taken to be the ordinary Coulomb
one betwesn alpha-particle and product nuclsus. It was then possible to
compute the quantum mechanical probability that an alpha-particle of
energy E would "leak through®™ the potential barrier end escape from the
nucleus; and the result was found to agree with the empirical Geiger-
Nuttall relation between half-life and disintegration energy for alpha=
radioactive nuclei, |

Since the model of the nucleus deseribed above is admitbtedly very
erude, Dube and Jha set out to try the effect of replacing the rectangular
potential function by an exponential functé.on. They accordingly assume
that for r ¢ a the potential is given by the exponential law (6), and for
r > a by the Coulomb law

V = 22q%/r, : (10)

where q is the electronic charge, Z is the atomic number of the product
nuclous, and z ( =2) is the atomic number of the alpha-particles

Now the wave function of an alpha-particle of (positive) energy E
and zero total angular momentum is spherically symmetric and may be written

in the form ¥ (r) = u(r)/r, whers u(r) satisfies (5)s Inside the nucleus,

12) Dube, Ge Pe, and Jha, Se Ne, Indian Journal of Physics, 17, 344-
356 (1943), This paper was called to my attention by Profe. Batemane

13) Bethe, He Ae, RoVe Mode Physe, 9, 161=163 (1937), gives a simple
derivation of the resultbe




for r/ &, V(r) is the exponential function (6), so using the notation
of (7),
u(r) = D[J_Zaki(Zap)Jzaki(Zape-r/ aey Jga,d(zapj.y_zm(zape'r/ 2“)], (11)
which venishes at r = O, D being an arbitrery constente For r » a, V(r)
is the Coulomb poten'bia.i (10), and the corresponding solutions of (5) are
of different types in the regions a { r < rp and r 7 ry, where g = zZqz/E
is the claessical turnirg point of en alphe=particle of energy E felling
on the nucleus from outsidee In the region a < r ¢ rgp of the potential
barrier, where E = V is negative, u(r) is of exponential type, while in
the outer region r 7 rps where E = V is positive, u(r) is of wave typse
At large distences from the nucleus u(r) must represent an outgoing spher=
ical wave:

u(r) ~ 1, (12)
To obtain the relation between the emplitude A of the outgoing wave and
the coefficient D of the wave function inside the nucleus it is simplest
to use the well=-lmown Wentzel-Kra.mers-Bril}ouin (WKB) approximation,
which connects the esymptotic form (12) with the exponential function
in the potential barrier, emd so finally with the inside function (11)
et r = ae From the value of A/D we may compube the decay comstant A\
of the given nucleus, which is defined as the ratic of the number of
particles emitted per second to the total number of particles inside the
nucleuse

The details of the calculation of the decay constant have been carried

out by Dube and Jha for the exponential well in a form entirely similer
13)

to Bethe's calculation for the rectengular well, and the values of

A are expressed in terms of E, a, and Z for the two limiting cases V, 7 0

and V, —> <0, which correspond respectively %o p -~ O and o p 2% I% is
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founde that for reasonable values of the paremeters the ratio 1,/9,.

= 1/6, approximately, from which the authors conclude that the decay
constent does not depend critically on the exact depth of the potential
well inside the nucleuse They also give a more complicated expression
for A when E and Vo' are of the same order of magnitude, derived from the
known asymptotic representation of J, (z) when » end z are simltaneously
larges* The nuclear radii computed from observed velues of the decay
constant agree closely with the velues obtained by earlier workers with
the simple rectengular potential well, thus confirming the expectation
that the results celculated from the one=body theory of aelpha~decay are
not sensitive to changes in the form of the assumed potential functione
Eowever, as Dube and Jha point out, in view of the present more correct
meny=body model of the nucleus, calculations such as theirs based on
any one=body model must now be regarded es rough approximetions and are
therefore mainly of theoretical rather than of practical intereste

15, 16) have discussed the problem

L

of scattering by an exponential field of the form (6) as it is formu=

In recent months various writers

leted in Heisemberg's recent theory of the characteristic matrixe With-
out entering into detsails here, it may be stated that Heisenberg'!s

new theory centers around e certain unitary matrix S, which vanishes

14) Dube and Jha, ope Cite, 3536

*for a numerical estimate of the quantities involved we employ the
values i = 1054 x 10-27 erg sec, m = 40003 x 1,660 x 10=24 gm, and take
for en aversge redioactive nucleus (Bethe, loce cite) 2= 9 x 10=13 cm,
E=6Mov=06zx1lex 106 ergse The order of the Bessel functions is
2aki = (2841)(2nB)R1 = 19i, approximetely, snd the argument is of the
seme megnitude if V, and E are comparsbles

15) Ter Hear, De, Physica, 12, 501=-508 (1946).

16) Ma, Se Te, PhySe Rove, 71, 195=200 (1947)s See also an exchange
of letters between Ma and W. Opechowski, Physe. Rev., 69, 668 (1946); 70,
772 (1946)3 71, 210 (1947)e ~
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for those values of the energy which correspond to stetionary stetes of
the systeme It was originally surmised that 21l velues of the energy for
which § venishes correspond %o closed stationary states; but ter Haer

end Ma have shown by the example of the attractive exponential field,
solved as sbove in terms of Bessel functions of imaginary order and real
argument, that there mey be redundent zeros of S which do mot correspond
to stationary states of the energy. The proper method for excluding

these redundant zeros does not yet appear to have been convineingly settled;
end though for the sake of completeness we have called atitention to this
newest occurrence of Bessel functions of imaginery order in the literature,
a detailed discussion of the problem which occasioned their use or of the
ultimate significence of the characteristic matrix in quantum mechanics

falls outside the scope of this thesise

S¢2¢ Relativistic Wave Functions for a Free Particle in an Expending

Universee

The last application of Bessel functiogs of imaginary ordsr which
we shall discuss occurs in a paper by Ee SchrBdinger17) on the proper
vibrations of an expanding universes In order to present Schr8dinger's
results we must make a brief excursion into the field of relativistic
guantum theorye

The simplest Lorentz=invariant wave equation is the scalar Klein-

Gordon equationls)

17) Schr8dinger, Ee, Physica, 6, 899-912 (1989)s This paper wes
called to my attention by Prof. Batemane

18) Pauli, We, RoVe Mode Physe, 13, 208=210 (1941), derives the
results stated in this paragraphe
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where K= me/n = 27/),, o being the velocity of light, 2r% the quantum
of action, m the rest mass of the particle, and A, its Compton wavelengthe
It is known thet the most genersl solution of (1) can be decomposed into
e sum of proper vibrations of the form

¢(§, %) = A(K) exp[i(-'];-’i‘ +u’t)]+ B(k) exp [i(l?-'i -td'by, (2)
where X is the ordinary three=dimensional position vector and u)2/02=
* 4 Kz. The solution (2) evidently represents a plane wave with propas
gation vector k and angular frequency Y It turns out that if the particles
described by (1) are charged and if we are to define an energy-momentum
tensor and a charge-current vector which satisfies the equation of con=-
tinuity (cfe Pauli, loce 233,), then we must regard the proper vibrations
of negative frequency, such as the second term on the right side of (2),
as representing particles of opposite charge from the proper vibrations
of positive frequencye This convention is necessary beceuse, as Pauli
shows, if we interchenge the factors exp [:].('-'E-’i +w t)] end exp [i(E'x -wt)]
in (2) we change the sign of the charge-cu{rent vector while the energy-
momentum tensor remsins unalterede

In the genersasl metric space defined by the line element*

as® = gd@dx“ ax® (3)

the Klein=Gordon equation is to be regerded as the covariant equation
! —a’ a N a"ﬂ K?- % =0 '
= Gl ®

where g is the determinant 'gq@i of the components of the metric tensors

evidently (4) reduces to (1) if ds® is the special relativity line element

2

-dx? = dy? = dz% + 2t TWe now wish to extend the investigation to ‘the

case of the non-static homogeneous universe whose line element is given

*Greek indices assume the values 1, 2, 3, 4; and the usual summetion
convention applies to repeated indicese
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by
ds? = R%(%) [df + sinzy((doz + sin% d;fz)_] + czdtz, (5)
where X, ©, and £ are the well-known co-moving engular coordinates and
R(t), the radius of curvature of space, is a function as yet unspecified
of the time te

The general equation (4) may be expressed in terms of the coordinates
(7(, e, ;f, t) with the aid of the line element (5) and a solution obtained
by the standard method of separation of veriables in the form

Y (s @5 £y B)=LL (Y 0, £) £(%)e (6)
The details of the transformetion of variables and the calculation of the
angle dependent function (Lhave been given elsewhere by Schr8dinger; our
present interest is only in the resultant equation for the time dependent
factor f(‘b).IWhl;/h he finds to bel[ adnidl 5 57 f] f: 5
ﬁ%[%’%]* CL e (7)
The integer n is related to the wavelength X of the proper vibration
by the formule .
A= 2R/n, or n= 27R/)s (8)

in the cases of practical interest n is thus an enormously large numbere

For any given valus of n we take for the time dependent factor in
(8) & linear combination f,(t) of two independent solutions of (7) with
arbitrary coefficientss The general solution of (4) for this universe
mey then be written in the form of en infinite series of products of the
type (6) including all non-negative integral values of n, and this series
can in the familiar menner be adapted to an arbitrary initial state.
The different members of the series are all independent of one another;
if at the outset only one is present, no others will turn up in the course

of timee We thus have a genuine decomposition into proper wvibrations,

although the time factors are in general not trigonometric functionss



They will be trigonometric functions whenever R(t) ceases to vary and
remains constant for a time, since during any period when R is constant
‘the general solution of (7) is
£u(t) = Anei%t + Bne"iwn"b, whers &) = c[n(n + 2.)/R2 % Kz]%o (s)
Suppose that initially R(t) is consbant for a time and that we fix
our sttention on the particular proper vibration £ (t) = Aeln%, which
corresponds, in virtue of the remarks following (2), to a particle of posiw-
tive chargee Now suppose that R(t) undergoes a period of arbitrary varia=
tion, during which time of course the particular solution fn(t) loses its
trigonometric character, and then returns %o constancye As soon as R(%)
ceases to vary f,(t) will assume the form Ateih't ¢ B'e"i“)n‘t, but now
= gand this is the essential point = we have no guarantee that the coeffiw=
cient B* of the negative frequency term will be zero, In other words
there will be a mutual adulteration of positive and negative frequency
Yerms in the course of timees This means with particles the production
of oppositely charged pairs mersly by the ?xpansion, while with light it
implies a production of light traveling in the opposite direction, thus
a sort of reflection of light in homogeneous spaces Alarmed by thesse
prospocts, Schr8dinger has investigated the question in more detail in
the case in which R is a linear function of the timee This case is soluble
in terms of Bessel functions; we proceed to outline SchrBdinger's analysise
We assume that the radius of our universe is given by
= a + bt, (10)
end we introduce into (7) the new variables
z = KeR/b = xe(a/b + t), w(z) = z£, (11)
so that after en elementary calculation (7) becomes
223%w/dz® + zaw/dz + (R + 22w =0, (12)

where 24+ 1 = n(n + 2)e%/b% (13)
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Wo see on comparing (12) with 1le5 (1) that w is a Bessel function of real
argument z and imeginary order iYe

The solution of (12) corresponding to a proper vibration of positive
froquency is the Hankel function of the first kind Hi,)(l)(z) defined,
if we write 1 for P, by lel (3e1)s Recalling that K = 27/3_, we see from
(8), (13), and (11) that both» and z are enormously large numbers, while
the ratio z/q? is of the comparatively moderate order of magnitude A/A,s
which is the ratio of the actual wavelength to the Compton wavelength
of the particles, An asymptotic representation of Hi?)(l)(z) may ‘therefore
be obtained by Debye's method of saddle=point in’cegra'tionlg) in terms

of the ratio

Y[z =2 shd o (14)
The result is DT — AT a)@%d .-cx)
2
7 7 ) L, JZa I
T2Ad (15)

$o a very high degree of approximation, bscause of the enormous megnitude

of 9’ and zo Hence from (11), on dropping an irrelevant constant multi-

plier, -2 % /7’_ 7 [QJZZ/”( —d)
= 2 .
f) =2 (16)
In order to find the angular frequency W, we differentiate the phase

of (16) with respect to t and obtain, on making use of (11), (14), amd

(13) +to simpllfy the result,

w = % [Pehn )] = Pk r) 4

- ke cha - [%ﬂ M]i

19) Asymptotic expressions for all kinds of Bessel functions of large
complex order are derited by Ge Ne Watson, Theory of Bessel Functions,
2nd ode, Artss Se6-8+61s In connection with the functions of purely
imaginary order see particularly the last paragraph of Arte 8e61e

(17)
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The phase velocity is, from (8) and (17),
Voh =/ =(KeR cho()/n,

while the group velocity is
9&( A

Ai/; %2@ %K Q(’”f ’/

D77y

so that

VbV :cz(ru- 1)/n. (18)
Since n is very large, (18) is equivelent to the usual relation between
phase and group velocities for both de Broglie waves and light waves,

The Hankel function Hjy (2) (z) of the second kind casn be worked out
in the same way and gives the exponential of negetive frequency, correspond-
ing to e particle of opposite charge from that represented by Hjy (l)(z) .
Since Hjj)(l)(z) and. Hj))( 2)(z) are linesrly independent solutions of (12),
we see that the positive and negetive frecuency solutions of (7) keep
clear of each other indefinitely so long as R(t) increzses or decrezses
uniformly with time, so that under these circumstances we do not get the
pair production anticipated above.® This lafter phenomenon is evidently
not caused by the velocity of expansion, but would probably be caused
by asccelerated expansion. It might play en important role in thebritical
periods of cosmology, when expension changes to contraction or vice versa.

Solutions of the Diresc equation for a free electron in verious cos-

mologicel spaces have been obtained by Taubj R0)

it happens that the time
dependence of the solutions in a De Sitter universe is given by Bessel

functions J:tii’i'-i of complex order, where ) is e very lorge number of

Slm:l.l'zrly the pos:Ltlve and negative frequency solutions of D'Alembert's
equation for light, which is obtzined by setting K = O in (4), may be
rigorously separsted for all time if R(t) has the form a + bt; in this
case D'Alembert's equation may be solved in terms of elementary functions,
and there is nothing in the solutions which would correspond to a reflec-
tion of light in free space.

20) Teub, A. H., Phys. Rev., 51, 512-525 (1937),
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the order of 1037, so that for all practical purposes the behavior of

the functions is completely described by their asymptotic representationss
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APPENDIX
Tables of the Wedge Functions F)‘,(ex) end G{e¥)

We heve shown in the preceding chapters that Bessel functions of
imaginary order find application to several fields of mathematical physics,
but before our formal results can be of much practical use in calculetion
we need adequate numerical tables of the functions of imaginary ordere
We shall present with this thesis a table of the wedge functions studied
in chapters I and IIe Although the scope of our taeble has been limited
by requirements of time and the lack of elaborate facilities for compu=
tation, we feel that it will be of interest because no other such table
is at present in existence.

The quentities tebulated are the wedge functions F,,(e*) and G,(e*)
defined in Arte lel, the argument being taken as e* for the reasons dis=
cussed in Arte lo4e Since, as we have seen, in the physical applications
whore these functions occur the order »” is not restricted to integral
values but must be regarded as a continuous varieble, we have essentially
to tebulate them as functions of two continuous variables x and ¥s Ob-
viously the calculation of a function of two variables over representative
ranges in both variables is a much more laborious task than the calculation
of a function of a single veriable, and the resultant table is correspond-
ingly buikiero

In the following sections we shall set forth the method used for
compubing the main body of the tablee This work was done on the automatic
punched card machines at the Southern Califormia Cooperative Wind Tunnel
in Pasadena, which is directed by the California Institutes We shall

then describe the actual table, indicating the method of checking and
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Lole (General Method of Numerical Integration by Means of Punched Cerd

Machinese
The following method for the eutomatic numericel integration of the
differential equation
afy/ax? = v(x)y (1)
by means of the punched card machines menufactured by Internationsl Busi=-
ness Machines Corporation has been published by Le Feinstein and Me Schwarze
child.l) One expands y in the Teylor series
y@+ b) < 5 @)y ®(x) (2)
and obtains, on meking use of 2”1:)f> to eliminate the second derivative,
y(x + B) + y(x = b) = [2 + B%(x)[y(x) + zf [622/(20) ]y (32)(x)a (3)
Similerly, "=z
oo
'+ B) 4 3"z = b) = 2y"(x) = 2 7 [0¥/(anafy (B Ry (a)
Solving (4) for hzy(4) (x) and using (1):z.eliminate the second derive=

tives at x and at x* h, we get

(1 - mBA2)e(x + B)]y(x + B) + [1 - (W%/12)b(x - b)[y(x - b)

[z + (s2/6m(x)]y(x) - (18/200)3(8)(x) + 0(u®) = 0. (5)
If we let
%n = %o + Wy Yo = Y(E)s Zn = (/12)[1 - (6°/12)0(n)[¥(am),s
2 (/) _, _ BbGm) (&)
1 - (8%/12)b(xy) 1 = (2%/12)b(xn) °

and neglect the sixth eand higher powers of h, (5) becomes

Zn+) = BpZp = Zpele (7)

1) Feinstein, Le, end Schwarzchild, Me, Reve Scie Inste, 12, 405~-408
(1941)e These authors treat the general linear differential equation of
the second order, but we shell be concerned only with an equetion of the

speciel form (1)e
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Sclving the third member of (6) for yn in terms of Zp, we obtain
Y = (B + 10)Z,e (8)
The extrapolation formula (7) permits us to calculate from any two
adjacent values of Z the next succeeding value using only the operations
of multiplication end addition, which can be performed by the IBM automstic
multiplying punche The quentities Bl’ Bos eee may be computed by (6)
from the coefficient b(x) of the differential equetion and punched into
a deck of IBM cardss then if we punch into the first card the starting
values Z, and Zq obteined from the initial conditions of the given problem,
the multiplier punch will compute Zs end record it in the same cerde We
then transfer Z; and Zgs to the card conteining Bo* and repeat the processe
When we are finished we obtein y, from Z, via (8); since B, and Z, are
alreedy punched in the same ocard, this step is easily carried oute
The punched card method of integration is particularly useful when
the coefficient b(x) of the differentiel equation (1) depends lineerly
on a parameter and we wish to obtain solut.ions for several different values
of the paremetere Suppose for instence that
b(x) = Jb(x) + 2% b(x)s (9)

then from (6) we have, on dropping the sixth and higher powers of h,

2 4
Bn = oBn +2°1By */ 2Bns (10)
where
2
oBy = 2 + h% by + (n%/12) b7, (1041)
1Bp = b2qb, + (5%/6) b 1bps (10.2)
0By = (h%/12)1b,% (1003)

#The multiplying punch described by Feinstein and Schwerzchild con=-
tained e mechanism for storing Z, end Zp,1 in the machine between stepse
Our mechine was not thus equipped, so the quantities Z; and Zn,3 had %o
be transferred from one card to the next with the IBM reproducing punchse



Only the quentities By, 1B, and 9B,, which are all independent of 1’2 s
have to be computed beforehand; B;h can then be obteined with the help
of the punched card mechines for any velue of 2)2.

Punched card methods are most efficient in calculations where the
same numericel deta are used over and over in different combinetionsg

thus in the problem at hand their relative efficiency, as compared with
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other methods, increases with the number of different values of the parameter

P which we desire to considere. The method of numerical integration just
described has, however, the disadventage thet it is not self=checking or
self=correctings we have no wey of lmowing how the inherent errors in the
extrapolation formule (7) are mounting up during the course of an extended
calculatione (The estimates given by Feinstein and Schwarzchild of the
obtainable accuracy proved of little use in the calculation which we per=
formede) 1In cases where it is possible, the safest procedure would be +o
check the last velue yy of the sequence by some independent method of

calculatione

Ae2e Method of Calculation of the Wedge Functionse

The equetion satisfied by the wodge functions F,(e*) end G,(e*) is

just le4 (2), nemely
a2y/ax? = (62X = %)y, (1)

With the notetion of Ae.l (9) we have b(x) = o2 -9)2, ob(x) = ezx, 1b(x)
= =1, so that the quantities B, 1Bns 2nd 2B, may easily be written down
from Ael (10el) = (10e3) and evaluated from tebles of the exponentiel
functione

Tt was originally plemned to tabulate both F 4)(63‘) and G, (e*) for

50 values of 9 extending from 2= 0,2 to 2= 10,0, and for 300 values of
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x extending from x = =049 (6% = 0e613) to % = 2450 (e* = 12,18) with &
step interval h = 0.0le The starting values Z,, end Z,, , corresponding
to xy= =080 end Xq = =0¢49, were computed for both functionms from the
series representetions lell (5e1) and (5¢2), the quentities A and B being
oxprossed by lel3 (6) in terms of the power series S; end Spe This work
was done on & 10 x 10 x 20 Friden automatic calculating machine, the results
being recorded to ten figures and checked by repesting the entire compute=-
tion at another timee Because of the necessity for computing the auxiliery
functions A, B, sin@, and cos @ to a high degree of accuracy before under=
teking the actuel evaluation of g,(ex) and G,(e*), this calculation of
the starting values was the most laborious and time-consuming part of the
whole projecte It would be of considereble value to have simpler repre-
sentations of the canonical functions which are adepted to easy numerical
evaluetion when the argument is small,

The punched card machines were used to calculate and record on cards
the coefficients By, given by Ael (10) for 50 values of 2/ and 300 values
of n, in preperetion for the step-by=-step process of evaluating the Zp's
from the recurrence formule Ael (7)e Bach step of the sctual numerical
integration involved the processing of 100 cards (50 values of ) for each
function), and in order to guard against mechanical errors the entire calw
culation'wés carried out with two identicel decks and two mulbtiplying
punches, the IBM reproducer being used to compare results at the end of
each stepe All numbers appearing on the cards were expressed to eight
significent figurese

When the integration had been completed, it was clear that the in-
herent errors in the approximete extrapoletion formula Ael (7) had accumu-

lated, in some cases to an intolersble degree, in the latter part of the
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renge of integratione It would have been infeasible at this stage to
repeat the integration with a smeller step intervel or with additional
stearting values at intermediste points of the original range; so we com=
promised by checking the results at various points, correcting the errors
where possible, and discaerding the relatively few values which were too
much in error to be easily correctede

The teble of G, (e*) was checked by means of the definite integral
representetion lell (6e2):

G})(ex) = A exp(=e¥ch t) cos Pt dte (2)

This integrsl converges quite rapidly when x is greater than log# ; for
example, when x = 2,50 it was found possible to evaeluate Gy(ex) for 0.2
<2410 to one more significent figure then was desired in the table
by bresking off the range of integration at ¥ = le5 and applying Tschebyscheff's
mochsnical quadrature formulaz) with fifteen subdivisionse The integral
(2) was therefore used with a Monroe automatic calculating machine to
evaluate G,(e*) for x = 0,00, 0.50, 1.00, }.50, 2,00, and 2¢50s In the
portion of the table where G,(e*) was oscillatory (is ee, x < logs; cfe
Arte 1le2), the values given by the punched card integration were found to
be accurate to one or two units in the fifth significant plece; presumebly
the errors in the integration formula Ael (7) cancelled out on the average

in this regione On the other hand, where x was appreciably larger than

2) Encyklopédie der Mathemetischen Wissenscheften, Bde II, 3¢l, 72«74
The formula in question is:

/XA- n
/oyf(x)dx = (b - a)/nZ e + (2r = 1)(b = 8)/2n] + Rye
R=s

This is not the most accurate quadrature formule availaeble for a given
number of subdivisions, but it is very easy to use because the coefficients
are simplee In practice the remsinder term Rp may be controlled by ine
vestigating whether an increase in the number of subdivisions n gives a
significantly different value for the inbtegrale
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log 9), the punched cerd integration led to rapidly asccumulsting errors,
the resulting functions tending to go off to toorather than to approsch
+0 as they shoulds Since the errors seemed to be varying continuously,
it was possible to approximete to the correction terms by meesns of Legrenge's
interpolating polynomial fitted to the known values of the corrections at
X = 0600, x = 0680, otce Corrections were applied in genersl where they
did not exceed 1% of the uncorrectsd value, and the remainder of the teble,
where x was considerebly greater then log>’, was discardede

In order to check the table of F;,(ex) it was necessary to use the
integral representetion lell (6l.1),
E, (6*) = csch ™ [ pr(excos Q)ch 20 46 = [:::p(-exch t)sin 2% dt, (3)
since for most of the values of 2’ and x in the table neither power series
nor asymptotic series converge rapidly enough to be usefule The second
integrel in (3) can be evaluated without difficulty by mechanicel quadra-
ture; but depending on the relative magnitudes of x and 2 the first inte=
grend mey have sharp peaks at either end ?i‘ the range of integration,
which must 'bé subtracted off and integrated separatelye If v - e%, it is
easy to show that the first term on the right side of (3) is equal to

T

cschz)ﬂ'A {ev cos® -e"v[l + Ex(m - 9)2]} (ch 2@ « 1) 46 +mreschr7I (v)

+ 6"V (1/¥ - Mesch»’m) 4+ ve'v[1/2)3 - mescho T (1/0% + n—z/s)]. (4)
Bven with this transformetion the remeining integrel in (4) is surprisingly
intractable; it apparently cannot be calculated by mechanical quadrature
with e reasonable number of subdivisions to the accuracy desired in our
table if » is greater then about 066 o~ Consequently it was not possible
to check the table of F, (e*) completely in the time at our disposale
We did find however that at x - 2.50, for 2’4 8.0 only ten values were

in error by more than 0.05% (5 parts in 10,000); all of these erroneous
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values occurred for Y <3.0e% In the range 340 £ 2 ¢ 8,0 most of the
values were in error by not more then a few units in the fifth significent
figuree Though it was not possible to compute accurate check values from
(3) for 227860, wo know from the behavior of G (%) that for large values
of 2/, when the functions are oscillatory over most of the range, the inte=-
gration formula Ae.l (7) is unlikely to accumulate errors of large ebsolute
magnitudes The ten erroneous wvalues mentioned above were adjusted by
fitting a continuous correction curve to cancel the known relative error
at x = 0000, 0650, esey 2050, and with these alterations the entire table
of F(e*) is printeds

It is worth noting that since the errors involved in the integration
formula Ael (7) seem to compensate on the average when the solutions of
the differential equation are oscillatory, the punched card method might
be used with considerable success to calculate the Bessel functions U,(e*)
end T, (e¥) of imaginery order and real argument, since by le52 (3) and
(5) these functions are oscillatory for alZ.L velues of xe The results of

such a calculation would of course have to be checked before publicatione

Ae3e Description of the Tablese

Since the tables of the wedge functions were printed directly from
punched cards on an IBM tabulator, some changes, such as the placing of
the negative sign on the right of the entry to which it applies, have had
to be made in the usual format of such tablese The position of the decimal

point is determined by multiplying the tabular entry by IOP, where the

#'he probable reason for the absence of large relative errors in
the functions F,(e*) is that these functions tend rapidly to infinity
when x >» log »’, and so increase in absolute magnitude as fast as the
errors accumnulatee
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(negative) integer p is tabulated to the right of each row of the tablos
Thus Gg,o(e2*%0) = 22452 x 1078 = 2,2452 x 10™%, etce In case the valué
of p increases in algebraic magnitude in the middle of a row, the entrises
marked with an asterisk should be used with the value of p on the pre-
coding pagos

The range and accuracy of the tables mey be summarized as follows:

The function E, (e*) is tabulated over the complete ranges 0.2 %2/
£ 10s0, =0e49 £ x £ 2450, In the region where F ,(e*) is oscillatory
the error in the last figure given should never exceed 5 unitss In the
region where F,) (e*) is non-oscillatory the error in the tabulated values
should not exceed 5 parts in 10,000,

The function G,(e ) is tebulated over the following renges in 2 and

X3

062 £V £1,0, =0,49 £ x € 0,503 4,2 £ ¥ £ 7,0, =0,49 & x £ 2,003
1a2 :’) % 2.0, =0s49 £ x £ 1,003 To2 ¢ 2 £10,0, =0,49 £ x & 2450,
2.2 s = 4.0, -0049 L5 X < 1.50;

The error in the last figurs of any tabula;bed value does not exceed 5
unitse

As o matber of interest the values of G,f(e*) computed from the definite
integral A.2 (2) end correct to the last printed figure are given for x
= 1600, 1s50, 200, and 2650 for those values of » not included in the

main teblee



BIBLIOGRAPHY

Books

Bocher, M., Uber die Reihenentwickelungen der Potentialtheoriee ILeipzig,

Teubner, 13%%.

British Association for the Advancement of Science, Mathematical Tables,
vole VI, part ls Cambridge, 1937.

Carslaw, He Se, Mathematical Theory of the Conduction of Heat, 2nd edse
New York, Dover, 1945

Copson, Ee Te, Theory of Functions of a Complex Variable, Oxford, 1935

Courant, Re, and Hilbert, De., Methoden der Mathematischen Physik, vols
1, 2nd ede Berlin, Springer, 1931.

Davis, He Te, Tables of the Higher Mathemabical Functiomns, vele le Blooms

ington, Inde, Principie Fress, 1946

Encyklop#idie der lMathematischen Wissenschaften, vole II, 3ele Ieipzig,
Teubner, 1909-21,

Grey hAe, Metthews, Ge Be, end MacRobert, Te le, Bessel Functions, 2nd
ede London, Macmillan, 1931e

Gutenberg, Be, Der Aufbasu der Erdee Berlin, Borntraeger, 1925

Hobson, Ee We, Spherical and Ellipsoidal Harmonicse Cembridge, 1931e

Incey, Ee Le, Ordinery Differential Equationse New York, Dover, 1944.

Love, Ae Ee He, Some Problems of Geodynemicse Cembridge, 1¢lle

Page, Le, Introduction to Theoretical Fhysics, 2nd ede New York, Van
' Nostrand, 1935 '

Pauling, Le, end Wilson, Ee Be, Jre, Introduction to Quantum lMechanicse
New York, McGraw~Hill, 1935,

Ramo, Se, end Whimnery, Je Re, Fields and Waves in Modern Radio. New

Rayleigh, Theory of Sound, 2nd ede, vole IIo New York, Dover, 1645,

Smythe; We Re, Static and Dynemic Electricitye New York, McGraw=~Hill,
19396

Titchmarsh, Ee Ce, Theory of Fourier Integralse Oxford, 19376

=153



Watson, Ge Ne, Theory of Bessel Functionse New York, Macmillan, 1944,
Webster, Ae Go, Dynemics, 2nd eds Leipzig, Teubner, 151Z2e

Whittaker, Ee Te, and Watson, Ge Ne, Modern Analysis, 4th ede Cambridge,
1940, '

Papers
Airey, Je Ro, "Convergence Factor in Asymptotic Series," Phile Mage (7),
24, 521-552 (1937)e

Bethe, He Ae, "Nuclear Physics: Nuclear Dynemics, Theoretical," Revs
Mode Physe, 9, 161-~163 (1937)e

Bethe, He Ae, end Bacher, Re Fe, "Nuclear Physics: Stationary States of
Nuclei,™ Reve Mode Physe, 8, 110-111 (1936).

Bocher, Ms, "On Some Applications of Bessel's Functions with Pure Imagie
nery Index," Amnels of Mathematics, 6, 137=-160 (1892).

Booles; Ge, "On a Genersl Method in Analysis," Phile Transe Roye Soce
(1844), 239,

Carslaw, He Se, and Jaeger, Je Ce, "The Determination of Green's Function
for the Equation of Conduction of Heat in Cylindrical Coordinates
by the Leplece Transformetion," Je London Mathe Soce, 15, 278 (1940k

Dougall, J. s "The Determination of Green's Function by Means of Cyline
drical or Spherical Harmonics," Procs Edinburgh Mathe Socs, 18,
33=-83 (1900),

Dubes Ge Pe, and Jha, Se Ne, "On the Theory of the Emission of Alphe=
Porticles from Radiosctive Nuclei," Indien Journsl of FPhysics, 17,
344-366 (1943)e

Feinsteing Le, and Schwarzchild, Me, "Automatic Integration of Linear
Second=COrder Differential Equations by Means of Punched Card Machines,
Reve Scie Inste, 12, 405-408 (1941).

Goldstein, Se, "On the Stability of Superposed Streams of Fluids of Difw=
ferent Densities," Proce Roye Soce London, (A), 132, 524-548 (1931)e

Hehn, We Ce, "A New Method for the Calculation of Cavity Resonators,™
Journal of Applied Physics, 12, 62-68 (1941).

Horn, Je, "Uber eine Lineare Differentialgleichung Zweiter Ordnung mit
einem Willkilrlichen Paremeter," Mathe Anne, 52, 271-292 (1899).

Jeffreys,; He, "The Effect on Love Waves of Heterogeneity in the Lower
Layer," Monthly Notices of the Royal Astronomicel Society, Geophys-
ical Supplements, 2, 101-111 (1928=31)e




w=l35m

Lommel, Ee, "Zur Theorie der Bessel'schen Functionen," lath. Ann., 3,
481-486 (1871),

Mo, Se Te, "On a General Condition of Heisenberg for the S Matrix," Physe
Reve, 71, 195200 (1947)e

MecRobert, Te Me, "Fourier Integrals," Proc. Roye Soce Edinburgh, 51,
116-126 (1931)e

Meissner, Be, "Elastiche Oberflichenwellen mit Dispersion in einem Ine
homogenen Medium," Vierteljahrsschrift der Naturforschenden Geselle
schaft in ZHUrich, 66, 181-195 (1921)

Mercer, Je, "Sturme~Liouville Series of Normal Functions in the Theory of
Integral Equations,” Phile Transes Roye Soce, (A), 211, 111-198 (1912)e

Pauli, We, "Relativistic Field Theories of Elemsntary Particles," Rev.
Modo Physs, 13, 208-210 (1941), -

Rice, Se Os, "'he Electric Field Produced by a Point=Charge Located outside
e Dielectric Wedge," Phile Mage (7), 29, 36-46 (1940).

Sakuraba, Se, A Contribution to the Theory of the Love Waves Propagating
over a Semi=Infinite Solid Body of Varying Elasticity," Geophysical
Magazine, Tokyo, 9, 211-214 (1935)e

SchrBdinger, Ee, "The Proper Vibrebions of the Expanding Universe," Physice,
6, 899=912 (1939)e

Taub, Ae Ho, "Quantum Equations in Cosmological Spaces,” Phys. Reve, 51,
512-525 (1937)e

Taylor, Ge I., "Effect of Variation in Density on the Stability of Super=
posed Streams of Fluid," Proce Roye Soce London, (4), 132, 499=507
(1931),

Ter Haar, De, "On the Redundent Zeros in the Theory of the Heisenberg
Metrix," Physica, 12, 501-508 (1946)e

Whinnery, Je Re, and Jamieson, He We, "Equivalent Circuits for Discon=
tinuities in Transmission Lines," Proce Ie Ro Ee, 32, 98-114 (1944},

Borgnis, Fe, "Stromleitung durch Konvektion und Diffusion in zylindrischen
Anordnungen," Anne de Physe (5), 31, 745-754 (1938).

Emde, Fo, "Passintegrale fiir Zylinderfunktionen von komplexem Index,"
Zo fo Angew, Mathe ue Meche, 19, 101-118 (1939).




TABLES OF BESSEL FUNCTiONS OF IMAGINARY ORDER
AND [IMAGINARY ARGUMENT

BY
SAMUEL P. MORGAN

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA

1947



TABLES OF BESSEL FUNCTIONS OF IMAGINARY ORDER
AND IMAGINARY ARGUMENT

INTRODUCTION

1. Summary of Mathematical Formulas.:

Various problems from different branches of mathematical physics

give rise to the differential equation

v2alw/dv? + vaw/dv - (v? - v2)w = 0, (1)

in which v and ¥ are real quantities. Eqg. (4) is a Speciai case of

Bessel:s equation,

22d%w/dz? + zdw/dz + (z2 m'pz)w = Q, {2)
in which'z = iv, p = iv; and its solutions are therefore Bessel func-
tions whose order and argument are both purely imaginary.® The accom-

panying table gives numerical values of a fundamental real set of
solutions of {4) over representative ranges in both order and argument;.
it is the only numerical tabulation of Bessel functions of imaginary
order at present in existence

e
A fundamental real pair of solutions of (4) may be defined as .

foliows
. o Iiv (v] + Iin{v) o
Fy (VJ = 2 ShW = ShV7T Re Iiy(vj (3‘
P ) Iiv(v) 3 leV(V) __m .
Gy v} = 5 shwrr ="shom Im Ij,(vi
]
; FUVIT ¢
= K, (v) = imie Hi;l)(lv), (4)
where v is real and v is real and positive.” In these definitions

IiV{V} is the modified BRessel function of the first kind of -purely

imaginary ovder, being related to the ordinary Bessel function

Jivﬁiv) of 1maginary order and imaginary argument by
. ) Q ¢ L \lV + 2m S
iV(v> = eTWJiV?\jV) = 3 Ehd - (5.
m=o m! [{iv + m + 1}
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Kj,(v) is the modified Bessel function of the second kind of purely
imaginary order, and Higl) (iv) is the Hankel function of the first
kind with imaginary order and imaginary argument. For brevity the
functions F,(v) and Gy[v) may be.called '"wedge functions® of the
first and second kinds respectively, since in potential theory they
show a certain analogy to the solutions of Legendre*s equation called

“"cone functions".
Representations of FV[V) and Gv(v) in terms of series of modified

Bessel functions of positive integral order are given by

F (v) = (Vw/shvv)%[A(v,v) cos O(r v) + B(v,v)sin 6(v,v)l, (6}
G (V) = (vn/shvn)%[B(V,v) cos B(v,v) — A(v,v)sin B(v,v)]  (7)
where
(v .v) = v log 3v - arg ['(iv), (8)
¥ [00) i
Aw,v) = 5 BTGV g, (9)
m=1 m' (m2+ VZ)
®
B(v,v) = 2 v ()"(4v)7 I.(v) (10;
m=o0 m! (m2+v )
A(v,v) and B(v,v) may also be expressed as power series in V.
| 7. k 2k 2
Aly,v) = Ozo [ig o fed ™ Sl g 'V_n (L1}
g k=0 4t n (12:02) (nls+v2)
© [4n] ()% (n)ppx w** ¥20
=—]-'— .—L— B ; 4 112)
Bl 7] === nil kfo P nillti (2t fa)

where [s]- Tepresents the greatest integer cor tained in s and the
symbol (p)q, where p and g are any positive integers such that g < p,
denotes the sum of all the different products which can be formed by
multiplying together g of the p factors 1}2i‘:.;p1\p)o being equal to
1 by definition. A short table of values of (p)q has been given by
Bocherhl

Definite integral representations of Fv(v) and Gp(v) are the

following:
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F (v) e — (7 v cos o @ wwoht ..

¥ shvrr ©0° chvgds - foe sinvt dt, (13)
G. & t .

kvl = f(.)e"VCh cosvt dt.: (14)

When v is fixed and v is large and positive we have the asymptotic
series: .

F(v) ~2l _ (Z[1 « (@20d) , (awlald) (el

% 15

vl shvmr  2v 1i(8v) 21 (8v)? kot

G, (v) ~ e_V(Z_J%[l— (égzilz) o (47/2+12)(4V2+32)_01.:]J (16)
2v 11(8v) 21 (8v)?

while if v is fixed as v tends to zero through positive wvalues,

By A¥) ~  (7/vshwm)? sinlvlogiv — arg [(iv)], (17)
V=40

G,(v) = (m/vshum)? coslvliogsv ~ arg [(iv)]= S
Vo+0

When v is large and v is fixed,

L]

Pv[v) ~ e”%VW[ZW/v)%cos[vtlogv - logsv — 1) +4m](1+0(1/v)),

(19)

8,(v) = e”%V"(Zﬂ/yJ%sin[V(logv - logsv — 1) +4m] (1+0(1/v)),
" (20)

while if v tends to zero, v being fixed,
L. (v
F,(v) gt - o (21)
v—0 v v-o

GV(V)V:O Ko (V) (22)

2. Method of Computation of the Tables .-

Since the functions Fv[v) and GV[V) have an oscillatory singular-
ity at v = O (ecf.  (17) and (18)), it is more convenient to tabulate the

the related quantities FV(eX) and GV[eX) as functions of x.° These’
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latter functions satisfy the differential equation
d?w/dx? + (12 = e2%X) w = O, (23)

obtdined from (1) by the transformation of wvariable
v = o¥, x = log v, (24)

which takes the triad of points {0, 1, ©} of the v..axis into the
triad (-®, O, ®) of the x-axis. The functions F (e*) and G, (e*) have
no singularities on the finite part of the x-axis. and they approach
sinusoids in ¥vx as x = - © (v = + Q) .

‘The accompanying table of the functions F,(e*) and G, (e*) was
computed by step-by-step numerical integration of the differential
equation (23) on the punched card machines at the Southern California
Cooperative_Wind Tunnel in Pasadena. using a method described by
Feinstein and Schwarzchild .2 The starting values for the numerical
integration were obtained from (6) and (7) using the series (11) and
(12), this preliminarY.work being carried out on a 10 x 10 x 20
Friden automatic calculating machine and the computations checked by
Tepetition at another time. Mechanical errors in the punched card
machines were avoided by performing the entire calculation with two
identical sets of cards on two multiplyinq punches . the results being
compared at the end!of each step. ‘

The numerical integration was carried from x = O 49 (v=0 6123)
tox = 2.50 (v=12.18), and the accuracy of the results checked-by
evaluatingFV(eX) and Gv(ex) at the right-hand end-point and various
intermediate points of the interval from the definite integrals (13)
and (14). In the portion of the table where the functions are
oscillatory (essentiallynx < log v), the results of the punched card
integration were found to be accurate to one or two units in the
fifth significant figure. Over most parts of the non-oscillatory
Tegion the errors were small enough to be approximated by a continuous
correction curve fitted to the known values of the corrections at
certain check points; a small part of the table of Gy(ex) had however

to be entirely discarded *

*Tt is not to be expected that any step-by -step numerical integra.
tion formula will follow the solution Gy(ex) accurately in the region
x >> log v where this function is very small, because any inherent errors
in the formula quickly introduce a small amount of the other solution

Fv(ex) which in this region tends rapidly to infinity.



N

3. Description of the Tables.

Since the tables of the wedge functions were printed directly from

punched cards on an International Business Machines tabulator, some

changes, such as the placing of the negative sign on the right of the

right of the entry to which it applies, have had to be made in the usual

format of such tables. The position of the decimal point is determined

by multiplying the tabular entry by 10P, where the (negative) integer p

is tabulated to the right of each row of the table Thus Gsuo(el“oo)
= 22452 x 1078 = 2.2452 x 107%4, etc. 1In case the value of p increases
in algebraic magnitude in the middle of a row, the entries marked with
an asterisk should be used with the value of p on.the preceding page.

The tabular interval is 0.0l in x and O 2 in v. The range and
accuracy of the tables may be summarized as follows:

The function PV(eX) is tabulated over the complete ranges 0.2 < v
< 10.0, - 0.49 < x £12.,50. In the region where FV(eX) is oscillatory

the error in the last figure given should not exceed 5 units In the

region where Py(ex) is non-oscillatory the error in the tabulated values

should not exceed ‘5 parts in 10,000.

The function Gy(ex) is tabulated over the following ranges in v and x:

9.2 £ v < 1.0, -0.49 <:x < 0.50; 4.2 v < 7.0, 0.49 < ¥ £ 2.00;

1.2 <v <20, -0.49 < x < 1.00, 7.2 <v < 10.0, 0.49 < x < 2.50

2.2 <v < 4.0, -0.49 < x < 1,50;

The error in the last figure of any tabuldited value does not exceed 5 units.

As a matter of interest the value of Gv(ex) computed from the definite

integral (14) and correct to the last printed figure are given for X =

1 OO,

1.50, 2.00, and 2.50 for those values of v not included in the main table.

The use of the computing equipment at the Cooperative Wind Tunnel

was arranged by Pfofessor C. B. Millikan and Mr, F. H. Felberg. For

instruction in the operation of the punched card machines the author thanks

Dr. E C. Bower of Douglas Aircraft Compdny and various members of the

wind tunnel staff
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