PROPERTIES AND APPLICATIONS OF BESSEL FUNCTIONS OF IMAGINARY ORDER Thesis by Samuel P. Morgan, Jr. In Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1947 #### ACKNOWLEDGMENTS It is a pleasure to thank Professor W. R. Smythe for stimulating discussions of the problems involved in this thesis, for many helpful suggestions, and above all for his enthusiasm and his active interest in all stages of the work. For several of the more important references of chapters II and III I am indebted to the late Professor Harry Bateman, whose untimely death prevented his seeing the full development of the research. The use of the computing equipment at the Cooperative Wind Tunnel was arranged for me by Professor C. B. Millikan and Mr. F. H. Felberg. For instruction in the operation of the punched card machines I have to thank Dr. E. C. Bower of Douglas Aircraft Company and various members of the wind tunnel staff. ## CONTENTS | | | Page | |-------|--|------| | | Summary | | | 0.1. | Nature and Purpose of Thesis | 1 | | | Chapter I Mathematical Properties of Bessel Functions of Imaginary Order | | | 1.0. | General Theory of Sturm-Liouville Equations | 3 | | 1.1. | Bessel Functions of Imaginary Order and Imaginary Argument. Wedge Functions | 7 | | 1.11. | Series and Integral Representations of Wedge Functions . | 9 | | 1.12. | Asymptotic Behavior of Wedge Functions • • • • • • • | 12 | | 1.13. | Alternative Definitions of Bessel Functions of Imaginary Order and Imaginary Argument | 15 | | 1.2. | Zeros of Bessel Functions of Imaginary Order and Imaginary or Complex Argument • • • • • • • • • • • | 20 | | 1.31. | Expansion of an Arbitrary Function in a Series of Wedge Functions | 27 | | 1.32. | A Fourier-Bessel Integral Involving Wedge Functions | 31 | | 1.4. | Transformation of the Differential Equation for the Wedge Functions. Calculation of the Eigenvalues | 40 | | 1.5. | Bessel Functions of Imaginary Order and Real Argument. Definitions of $U_{\mathcal{P}}(x)$ and $V_{\mathcal{P}}(x)$ | 46 | | 1.51. | Series and Integral Representations of $U_{\nu}(x)$ and $V_{\nu}(x)$. | 47 | | 1.52. | Asymptotic Behavior of $U_{\mathcal{J}}(x)$ and $V_{\mathcal{J}}(x)$ | 49 | | 1.53. | Alternative Definitions of Bessel Functions of Imaginary Order and Real Argument | 51. | | 1.6. | Zeros of the Functions $U_{\nu}(x)$ and $V_{\nu}(x)$ | 53 | | 1.7. | Expansion of an Arbitrary Function in a Series of Bessel Functions of Imaginary Order and Real Argument | 55 | | 1.8. | Transformation of the Differential Equation for the Functions $U_{p}(x)$ and $V_{p}(x)$. Calculation of the Eigenvalues | 58 | | | Chapter II | Page | |-------|--|------| | ž. | Physical Applications of Bessel Functions of Imaginary Order and Imaginary Argument | | | 2.1. | A General Potential Problem in Cylindrical Coordinates • | 62 | | 2.11. | Potential Distribution Due to a Point Charge inside a Cylindrical Conducting Ring with Two Dielectrics • • | 68 | | 2.12. | Potential Distribution Due to a Point Charge in the Neighborhood of a Dielectric Wedge • • • • • • • | 72 | | 2.13. | The Equation of Conduction of Heat | 76 | | 2.2. | An Application to Hydrodynamics. Stability of Superposed Streams of Fluids of Different Densities | 79 | | 2.3. | Propagation of Love Waves over the Surface of an Elastically Inhomogeneous Medium | 88 | | | Chapter III Physical Applications of Bessel Functions of Imaginary Order and Real Argument | | | 3.1. | Solutions of the Wave Equation Involving Bessel Functions of Imaginary Order • • • • • • • • • • | 95 | | 3.11. | Propagation of Sound Waves around a Circular Bend in a Rectangular Pipe | 98 | | 3.12. | Propagation of Electromagnetic Waves around a Circular Bend in a Rectangular Wave Guide | 105 | | 3.2. | Schrödinger Wave Functions for a Particle in an Exponential Field of Force • • • • • • • • • • • • | 111 | | 3.3. | Relativistic Wave Functions for a Free Particle in an Expanding Universe | 117 | | | Appendix Tables of the Wedge Functions $F_{y}(e^{X})$ and $G_{y}(e^{X})$ | | | A.l. | General Method of Numerical Integration by Means of Punched Card Machines | 125 | | A. 2. | Method of Calculation of the Wedge Functions | 127 | | A.3. | Description of the Tables | 131 | #### Summary #### 0.1. Nature and Purpose of Thesis. Although solutions of Bessel's differential equation, $$z^2 d^2w/dz^2 + z dw/dz + (z^2 - z^2)w = 0,$$ (1) have been widely studied and extensively tabulated for real values of the index γ because of their applications to all fields of mathematical physics, much less attention has been given to Bessel functions for which the order γ is purely imaginary, the argument z being either imaginary or real. Inasmuch as the functions of imaginary order appear in various problems from different branches of mathematical physics, it seems worth while to give a connected discussion of their properties and to list the various physical applications which have come to the author's notice. The purpose of this thesis will be to suggest canonical definitions for Bessel functions of imaginary order and either imaginary or real argument, and to develop the mathematical properties of these functions, including series and integral representations, location of zeros, orthogonality properties, methods of representation of arbitrary functions, and methods of numerical calculation. Physical applications of the functions with imaginary argument will then be exhibited. These functions provide solutions of Laplace's equation useful in certain types of potential and heat flow problems in cylindrical coordinates; they also occur in the investigation of the stability of flow of a layer of fluid whose density and velocity vary with height, and in the study of the propagation of Love waves over the surface of an inhomogeneous elastic medium. Bessel functions of imaginary order and real argument give solutions of the wave equation which can be used to calculate the propagation of sound waves or electromagnetic waves around a circular bend in a rectangular wave guide. They also occur in the solution of Schrödinger's equation for a particle in a radial force field when the potential is approximated by an exponential function, and in the solution of the relativistic Schrödinger equation for a free particle in an expanding universe when the radius of the universe is a linear function of time. The appendix of the thesis contains a table of numerical values of Bessel functions of imaginary order and imaginary argument, covering representative ranges in both order and argument. It is felt that this table, even though it is of limited accuracy, will be of interest because it represents the only numerical tabulation of Bessel functions of imaginary order at present in existence. #### CHAPTER I Mathematical Properties of Bessel Functions of Imaginary Order ## 1.0. General Theory of Sturm-Liouville Equations. The differential equation for Bessel functions of imaginary order $i\nu$ and imaginary argument ikx is obtained from 0.1 (1), by writing ikx for z, $i\nu$ for ν , and y for w, and dividing through by x, in the form $$\frac{d}{dx}\left(x\frac{dy}{dx}\right) - \left(k^{2}x - \frac{\nu^{2}}{x}\right)y = 0, \tag{1}$$ where unless otherwise specified ν and x will always be regarded as real. The equation for functions of imaginary order $i\nu$ and real argument kx is similarly obtained as $$\frac{d}{dx}\left(x\frac{dy}{dx}\right) + \left(k^2x + \frac{y^2}{x}\right)y = 0. \tag{2}$$ Both (1) and (2) are special cases of the self-adjoint Sturm equation $$\frac{d}{dx}\left\{K(x)\frac{dy}{dx}\right\} - G(x)y = 0; \tag{3}$$ and many of the properties of their solutions can be deduced from general theorems concerning the solutions of (3) under specified boundary conditions. The Sturmian theory has been elegantly presented by Ince; 1) a number of pertinent theorems will be quoted here for convenient reference. We shall consider solutions of (3) in the closed interval $a \le x \le b$, throughout which K and G are continuous real functions of the real variable x. K does not vanish and may therefore be assumed positive; also K has a continuous first derivative throughout the interval. The theorems which we shall need are concerned principally with the zeros in (a, b) of the solutions of (3), and with the behavior of these zeros when the functions K(x) and G(x) are varied. ¹⁾ Ince, E. L., Ordinary Differential Equations, chaps. X-XI. Theorem 1. Let $y_1(x)$ and $y_2(x)$ be any two real linearly independent solutions of (3), and assume that y1 vanishes at least twice in (a, b). Then between any two consecutive zeros of y_1 there is one and only one zero of y, If a continuous function of x has two or more zeros in a given interval it is said to be oscillatory in that interval; if it has not more than one zero it is said to be non-oscillatory in the interval. If the solutions of (3) oscillate in (a, b), they will oscillate more rapidly when K or G or both are diminished. For example, the solutions of (1) and (2) oscillate more rapidly with increasing y^2 . It is not difficult to set up sufficient conditions for the oscillatory or non-oscillatory character of the solutions of an equation in a given interval. Theorem 3.4) Let K(x) and G(x) be bounded as follows: K > K > k > 0and $\theta \geqslant G \geqslant g$ throughout (a, b). Then the solutions of (3) are nonoscillatory in (a, b) if either g > 0 or $-(g/k) < \pi^2/(b-a)^2$. A sufficient condition that the solutions of (3) should have at least m zeros in (a, b) is that $-(\frac{3}{K}) > m^2 \pi^2 / (b - a)^2$. Theorem 4_{\bullet}^{5} Let y(x) be that solution of (3) which satisfies the
one-point boundary conditions $y(a) = \alpha$; $y(a) = \alpha$. If the zeros of y(x) are marked in order on the segment (a, b), the effect of diminishing K and/or G, while leaving a and d'invariant, is to cause all the roots to move in the direction from b toward a. If K and/or G diminish con- ²⁾ Ince, op. cit., 224. 3) Ibid., 225-6. ⁴⁾ Ibid., 227. ⁵⁾ Ibid., 229. tinuously (a process which may most easily be effected by supposing K and G to depend upon an auxiliary parameter λ), from time to time a new zero may enter the segment at b and move to the left toward a. In an important special case of the Sturm equation the function G has the form $G = \mathcal{L} - \lambda g$, where \mathcal{L} and g are real continuous functions of x in a \leq x \leq b, and λ is an arbitrary parameter. Many problems of mathematical physics require the solution of such an equation subject to assigned boundary conditions at two points; i. e., one must simultaneously satisfy: $$\frac{d}{dx}\left\{K\frac{dy}{dx}\right\} - (l-\lambda g)y = 0, \tag{4.1}$$ $$\beta'y(b) + \beta y'(b) = 0,$$ (4.3) where α , α , β , β are independent of λ . Eqs. (4.1)-(4.3) comprise what is known as a Sturm-Liouville system. For any value of λ , (4.1), together with the boundary condition (4.2), has one and only one distinct solution, say $y = Y(x, \lambda)$. This solution, taken together with the second boundary condition (4.3), furnishes the characteristic equation $$\mathcal{Z}(\lambda) = \beta' Y(b, \lambda) + \beta Y'(b, \lambda) = 0, \tag{5}$$ whose roots in λ are the eigenvalues (characteristic numbers) of the system (4). The solutions of (4) corresponding to the various eigenvalues are called eigenfunctions (characteristic functions) of the system. Theorem 5.6) If in the system (4) K, g, and ℓ are real continuous functions of x when a ℓ x ℓ b, are independent of λ , and are such that K > 0, g > 0, and if ℓ , ℓ , ℓ , and ℓ are also independent of ℓ , then there exists an infinite set of real characteristic numbers ℓ , ℓ , ℓ , ℓ , ℓ , ℓ , which have no limit-point except ℓ = ℓ ; if the corresponding character- ⁶⁾ Ince, op. cit., 235. istic functions are y_0 , y_1 , y_2 , ..., then y_m has exactly m zeros in the interval a \angle x \angle b. If the additional conditions $/\!\!\!/ > 0$, $\alpha \alpha \cdot > 0$, etaeta : > 0 are satisfied, then the characteristic numbers are all positive. Theorem 6.7) The eigenfunctions of the Sturm-Liouville system (4) are orthogonal over the range (a, b) with respect to the weight-function g; i. a., if $i \neq j$, $$\int_{a}^{b} g(x) y_{i}(x) y_{j}(x) dx = 0.$$ (6.1) If i = j. $$\beta' \int_{\alpha}^{b} g(x) y_i^2(x) dx = K(b) y_i(b) \mathcal{J}'(\lambda_i). \qquad (6.2)$$ The eigenfunctions of (4) may, in case g > 0, conveniently be normalized so that $$\int_{a}^{b} g y_{i} y_{j} dx = \delta_{ij} = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}$$ (7) Theorem 7^{8} If, in the system (4), g > 0, then the characteristic numbers are all real and occur as simple roots of the characteristic equation (5). Much of the importance of the eigenfunctions of a Sturm-Liouville system lies in the possibility of representing an arbitrary function f(x)in the interval (a, b) by means of a series of such functions. assume that it is possible to write, for $a \le x \le b$, $$f(x) = \sum_{n=0}^{\infty} A_n y_n(x), \qquad (8.1)$$ the coefficients may be formally determined, using (6), as $$A_{n} = \frac{\int_{a}^{b} g(t) y_{n}(t) f(t) dt}{\int_{a}^{b} g(t) y_{n}^{2}(t) dt}.$$ (8.2) Mercer 9) and others have in fact shown that the general Sturm-Liouville ⁷⁾ Ince, op. cit., 237-241. 8) Ibid., 238, 241. 9) Mercer, J., Phil. Trans. Roy. Soc., (A), 211, 111-198 (1912). series (8) corresponding to f(x) behaves in the same way as the ordinary Fourier series corresponding to f(x). A typical result is the following: Theorem 8. 10) Let the function f(x) possess a Lebesgue integral in (a, b), and let f(x) have limited total fluctuation in an arbitrarily small neighborhood of a point x = s belonging to the open interval (a. b). Then the Sturm-Liouville series (8) converges at the point s to the sum $\frac{1}{2}[f(s+0) + f(s-0)]$ For the comprehensive extension of the principal theorems on Fourier series to the whole class of Sturm-Liouville expansions, reference may be made to the work of Mercer cited above. ## Bessel Functions of Imaginary Order and Imaginary Argument. Functions. We pass now to consideration of Bessel's equation 0.1 (1) written with imaginary variable ix and imaginary parameter iarnothing, so that it becomes: $$\chi^{2} \frac{d^{2}y}{dy^{2}} + \chi \frac{dy}{dy} - (\chi^{2} - y^{2})y = 0.$$ (1) Our first task will be to obtain a fundamental pair of solutions of (1) in useful form. A series solution of the ordinary Bessel equation 0.1 (1) is customarily obtained around the regular singular point z = 0 in the form: 11) $$\int_{\mathcal{P}}(2) = \sum_{m=0}^{\infty} \frac{(-)^m \left(\frac{1}{2} \, 2\right)^{2J} + 2m}{m! \, \Gamma(y+m+l)} . \tag{2}$$ J_{γ} (z) is called the ordinary Bessel function of the first kind of argument z and order ν . It is a solution of 0.1 (1) for unrestricted complex values of z and γ ; it is an analytic function of z for all values of z ¹⁰⁾ Mercer, op. cit., 196. 11) Watson, G. N., Theory of Bessel Functions, 2nd ed., chap. 3, 38-45. (z = 0) possibly excepted), and an analytic function of ν for all values of \mathcal{P}_{\bullet} The function $J_{\mathcal{P}}(z)$ also satisfies 0.1 (1) and is linearly independent of $J_{\gamma}(z)$ if γ is not a real integer, so that if and only if γ is not an integer $J_{\mathcal{P}}(z)$ and $J_{\mathcal{P}}(z)$ form a fundamental system of solutions of Bessel's equation. It is frequently convenient to take as standard solutions of Bessel's equation linear combinations of $J_{\nu}(z)$ and $J_{-\nu}(z)$ which approach distinct limits as 2 becomes an integer. Particularly important are the two Hankel functions: 12) $$H_{\nu}^{(i)}(\underline{z}) = \underbrace{\int_{-\nu}^{-\nu} (\underline{z}) - \underline{\varrho}}_{i \text{ sin } \nu \overline{n}} (3.1)$$ $$H_{\nu}^{(2)}(x) = \int_{-\nu}^{-\nu(x)} (x) - e^{-\nu(x)} \int_{-\infty}^{\infty} (x) dx$$ (3.2) these (or their limits as 2 approaches a real integer) represent a fundamental pair of solutions for all values of z and \mathcal{V}_{\bullet} Standard notations for a fundamental pair of solutions of 0.1 (1), when the argument z is purely imaginary and the order 2 is unrestricted, have been adopted as follows: 13) $$I_{y}(x) = \int_{-y}^{-y\pi i} \int_{y} (i\pi) = \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\pi\right)^{y+2m}}{m! \Gamma(y+m+i)}, \qquad (4.1)$$ $$K_{\nu}(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu \pi} = \frac{\pi i}{2} a^{\frac{\nu \pi i}{2}} H_{\nu}^{(i)}(i_{\chi}). \tag{4.2}$$ I_{γ} (x) and K_{γ} (x) are called modified Bessel functions of the first and second kinds respectively; they have been widely tabulated for real values of 2. Since no restrictions were laid upon z and p in the derivation of the series (2) for $J_{\mathcal{P}}(z)$, it is evident that $J_{\mathcal{P}}(ix)$ and $J_{\mathcal{P}}(ix)$ both ¹²⁾ Watson, op. cit., 73. 13) Ibid., 77-8. furnish solutions of Bessel's equation (1) with imaginary order and imaginary argument; in fact, since (1) has purely real coefficients, it is satisfied by both the real and the imaginary parts of $J_{(i)}(ix)$ separately. However it is not convenient in practice to define standard solutions of (1) directly in terms of $J_{(i)}(ix)$. Rather we wish a fundamental real pair of solutions whose form is as well adapted as possible to numerical computation, and whose asymptotic behavior for large values of the argument is simple. Such a pair may be compactly defined by forming from the modified Bessel functions $I_{(i)}(x)$ and $I_{(i)}(x)$ the following real linear combinations, which will henceforth be regarded as canonical solutions of (1): $$F_{\nu}(x) = \frac{\pi}{2} \frac{I_{i\nu}(x) + I_{-i\nu}(x)}{sh\nu\pi} = \frac{\pi}{sh\nu\pi} \operatorname{Re} I_{i\nu}(x),$$ $$G_{\nu}(x) = \frac{i\pi}{2} \frac{I_{i\nu}(x) - I_{-i\nu}(x)}{sh\nu\pi} = -\frac{\pi}{sh\nu\pi} \operatorname{Im} I_{i\nu}(x)$$ $$= K_{i\nu}(x) = \frac{\pi i}{2} e^{-\frac{\nu \pi}{2}} H_{i\nu}^{(i)}(i_{\perp}x),$$ (5.1) where ν is real and x is real and positive. The linear independence of F_{ν} (x) and G_{ν} (x) follows from the independence of I_{ν} (x) and I_{ν} (x) (Watson, p. 78), ix being not a real integer. Any solution of (1) may be called a Bessel function of imaginary order and imaginary argument; the special solutions F_{ν} (x) and G_{ν} (x) will be referred to as "wedge functions"* of the first and second kinds respectively. In the following sections various properties of the wedge functions will be developed. ## 1.11. Series and Integral Representations of Wedge Functions. Series representations of the wedge functions in the neighborhood of the origin are complicated by the fact that both functions have an oscil- ^{*}This name was suggested by Prof. Smythe in view of the application of these functions to potential theory (Art. 2.1), where they show a certain analogy to the solutions of Legendre's equation called "cone functions". latory discontinuity at x = 0, the nature of this singularity being due to the circumstance that the exponents $\pm i \mathcal{P}$ of the differential equation at the origin are purely imaginary. We may however obtain expressions for the wedge functions in terms of series of modified Bessel functions $I_m(x)$, which indicate clearly the behavior of $F_{\mathcal{P}}(x)$ and $G_{\mathcal{P}}(x)$ near the origin and which can be used for numerical
calculation when x is small. We consider the following series 14 due to Lommel, which is valid for unrestricted z if $M \neq N$ and N is not a negative integer: $$\int_{\mathcal{Y}} \sqrt{2} = \frac{\Gamma(u+1)}{\Gamma(y-\mu)} \sum_{m=0}^{\infty} \frac{\Gamma(y-\mu+m)}{\Gamma(y+m+1)} \frac{\left(\frac{\pi}{2}\right)^{2}\mu+m}{m!} \int_{\mathcal{U}+m} (\pm). \tag{1}$$ Replacing z by ix, ν by i ν , μ by 0, multiplying through by $e^{\frac{1}{2}\nu\pi}$, and using 1.1 (4.1), we have, after some simplification, $$I_{i\nu}(x) = e^{2\pi i/2} \int_{i\nu} (ix)$$ $$= \frac{e^{2\pi i/2}}{r(i\nu)} \sum_{m=0}^{\infty} \frac{(-)^m (x)^m I_m(x)}{m! (m+i\nu)} = \frac{e^{i\nu l_g x}}{r(i\nu)} [Ab_{ix}]_{-i} Bb_{ix}]$$ (2) where $$A(y,x) = \sum_{m=1}^{\infty} \frac{m+1^m (x)^m I_m(y)}{m! (m^2+y^2)}$$ (3.1) and $$B(x,x) = \sum_{m=0}^{m=1} \frac{y(-)^m (x)^m I_m(x)}{m! (m^2 + y^2)}$$ (3.2) Setting $$\Theta(\nu, x) = \nu \log \frac{x}{2} - \arg \Gamma(i\nu)$$ and using the known relation 15) $|\Gamma(i\nu)| = (\pi/\nu sh\nu\pi)$, (4) we have from 1.1 (5.1) and (5.2) the results: $$F_{\nu}(x) = (\pi/sh\nu\pi) \operatorname{Re} \, I_{i\nu}(x)$$ $$= \sqrt{\nu\pi/sh\nu\pi} \left[Ah_{\nu,x} \right] c_0 \, \Theta(\nu,x) + \mathcal{B}(\nu,x) \sin \, \Theta(\nu,x) \right] \qquad (5.1)$$ $$G_{\nu}(x) = -(\pi/\cosh\nu\pi) \operatorname{Im} I_{i\nu}(x)$$ $$= \sqrt{\nu\pi/\cosh\nu\pi} \left[B(\theta_{i,x})\cos\theta(\theta_{i,x}) - A(\theta_{i,x})\sin\theta(\theta_{i,x})\right]. \quad (5.2)$$ ¹⁴⁾ Watson, op. cit., 143. ¹⁵⁾ Whittaker, E. T., and Watson, G. N., Modern Analysis, 4th ed., 259, ex. 7. The function $\arg \Gamma(i^{\nu})$ may be computed from power series $^{16)}$ for small values of ν and from Stirling's asymptotic series $^{16)}$ for $\log \Gamma(i^{\nu})$ when ν is large. Successive terms of the series for $A(\nu, x)$ and $B(\nu, x)$ decrease sufficiently rapidly when x is moderately small to facilitate computation of these auxiliary functions. In Art. 1.13 $A(\nu, x)$ and $B(\nu, x)$ will be expressed as series in ascending powers of x_0 Simple definite integral expressions for the wedge functions may be obtained from known integral representations for $I_{\nu}(z)$. We have 17) $$I_{\nu}(z) = \frac{1}{\pi} \int_{0}^{\pi} e^{2\cos\theta} \cos\nu\theta d\theta - \frac{\sin\nu\pi}{\pi} \int_{0}^{\infty} e^{-2cht - \nu t} dt$$ for unrestricted values of ν if $|\arg z| < \frac{1}{2}\pi$. Letting z be real (= x) and positive and replacing ν by i ν , the formula becomes Separation of real and imaginary parts according to 1.1 (5.1) and (5.2) leads to the useful results: $$F_{\nu}(x) = \frac{1}{2 \pi L_{\nu}} \int_{0}^{\pi} e^{-x c} dx dx dx - \int_{0}^{\infty} e^{-x c} dx dx, (6.1)$$ $$G_{\nu}(x) = \int_{0}^{\infty} e^{-xcht} \cos \nu t \, dt. \tag{6.2}$$ The integral representing $G_{p}(x)$ is particularly simple and is easily evaluated by mechanical quadrature provided x is moderately large, so that the exponential factor in the integrand becomes negligible before the cosine term has undergone many oscillations. The first (finite) integral in $F_{p}(x)$ may be split into various parts which are not difficult to calculate separately; some details are given in connection with the numerical table in the appendix. 17) Watson, op. cit., 181, eq. (4). ¹⁶⁾ Davis, H. T., Tables of the Higher Mathematical Functions, vol. 1, 181-185. ## 1.12. Asymptotic Behavior of Wedge Functions. Asymptotic representations of the wedge functions for large argument and fixed order are easily obtained from the known asymptotic series 18) for $I_{\nu}(z)$ and $K_{\nu}(z)$. Using the notation $$(2,m) \equiv (-2,m) \equiv \frac{\Gamma(2+m+\frac{1}{2})}{m!\Gamma(2-m+\frac{1}{2})},$$ (1) we have, for $|\arg z| < 3\pi/2$, $$K_{\nu}(2) \sim \left(\frac{\pi}{2\pi}\right)^{\frac{1}{2}} e^{-2\pi} \sum_{m=0}^{\infty} \frac{(\nu, m)}{(2\pi)^m},$$ (2.1) and, for $-\pi/2 < \arg z < 3\pi/2$, $$T_{\nu}(2) \sim \frac{\ell^{2}}{(2\pi 2)^{\frac{1}{2}}} \sum_{m=0}^{\infty} \frac{(-)^{m}(p_{,m})}{(2\pi)^{m}} + \frac{\ell^{-\frac{1}{2}} + (\nu + \frac{1}{2})\pi i}{(2\pi 2)^{\frac{1}{2}}} \sum_{m=0}^{\infty} \frac{(\nu + \frac{1}{2})\pi i}{(2\pi)^{m}}, \quad (2.2)$$ the second series on the right being negligible compared with the first if $|\arg z| < \frac{1}{2}\pi_0$ Putting iv for v and x for z in (2.2), substituting (2.2) into 1.1 (5.1), and expanding (iv, m), we find that, when v is fixed and x is large and positive, $$\int_{2}^{2} (x) \sim \frac{e^{x}}{2 h v \pi} \left(\frac{\pi}{2 h}\right)^{\frac{1}{2}} \left[1 + \frac{(4 v^{2} + 1^{2})}{1! (8 x)} + \frac{(4 v^{2} + 1^{2})(4 v^{2} + 3^{2})}{2! (8 x)^{2}} + \cdots \right] (3.1)$$ Similarly from (2.1) and 1.1 (5.2) we have, * when ν is fixed and x is large and positive. $$G_{j}(x) = K_{ij}(x) N \left(\frac{\pi}{2x}\right)^{\frac{1}{2}-x} \left[1 - \frac{(4y^{2}+1^{2})}{1!(8x)} + \frac{(4y^{2}+1^{2})(4y^{2}+3^{2})}{2!(8x)^{2}} - \dots\right].$$ (3.2) ¹⁸⁾ Watson, op. cit., 202-203. ^{*}It is a little tricky to calculate the asymptotic expansion of $G_{\nu}(x)$ directly by substituting the "negligible" series of (2.2) into the first equation of l.1 (5.2), since if we include this series in the expression for $I_{\nu}(z)$ we no longer find $I_{-\nu}(x) = \overline{I_{+i\nu}(x)}$. Furthermore the "negligible" series exhibits Stokes' phenomenon in passing through the region $|\arg z| < \frac{1}{2}\pi$, since in the range $-3\pi/2 < \arg z < \pi/2$ the exponential factor is exp $[-z-(2+\frac{1}{2})\pi i]_{\bullet}$. It may be noted that the two wedge functions behave at infinity in a manner similar to that of the modified Bessel functions $I_{p}(x)$ and $K_{p}(x)$ of real order; i. e., one tends exponentially to infinity, the other exponentially to zero. Since in applications to physical problems it is frequently necessary to find a solution of l.l (1) which vanishes for large positive values of the argument, the canonical definitions l.l (5.1) and (5.2) were chosen with this end in view; evidently no Bessel function of imaginary order and imaginary argument can vanish at infinity if it is linearly distinct from $G_{p}(x)$. The asymptotic series (3.1) and (3.2) are useful for numerical calculation when x is moderately large, provided that ν is not of magnitude comparable to x. (The larger ν , the less rapidly do successive terms diminish.) In practice the number of significant figures obtainable from an asymptotic series may be greatly increased by the use of a "convergence factor." This technique has been developed by J. R. Airey¹⁹⁾ and is adapted for the calculation of Bessel functions of imaginary order, as Airey shows by an illustrative example. In the neighborhood of x=0 the wedge functions both oscillate infinitely rapidly, being essentially sinusoidal functions of $\nu\log x$ with phase constants depending on ν . Their limiting forms may be deduced from 1.11 (5). We substitute into 1.11 (3) the relation $I_m(0) = S_{om}$ and obtain $A(\nu,0) = 0$, $B(\nu,0) = 1/\nu$; then we find from 1.11 (5) that if ν is fixed as x tends to zero, $$F_{\nu}(x) \longrightarrow \sqrt{\nu/\nu} ch\nu\pi \sin\left[\nu\log\frac{1}{2}x - arg\Gamma(i\nu)\right],$$ (4.1) $G_{\nu}(x) \longrightarrow \sqrt{\nu/\nu} ch\nu\pi \cos\left[\nu\log\frac{1}{2}x - arg\Gamma(i\nu)\right].$ (4.2) ¹⁹⁾ Airey, J. R., Phil. Mag., (7), 24, 521-552 (1937). It is sometimes of interest to know the behavior of the wedge functions for large values of the order ν , the argument remaining fixed. The dominant terms of the asymptotic expansions in \mathscr{P} of the functions may be obtained 20 from the defining series 1.1 (4.1) for $I_{\nu}(x)$. If we write $i\nu$ for ν , the series becomes: $$\mathcal{I}_{i\nu}(x) = \frac{(2x)^{i\nu}}{\Gamma(i\nu+i)} \left[1 + \frac{(2)^2}{1!(i\nu+i)} + \cdots \right].$$ We substitute for the $$\Gamma$$ -function Stirling's approximation, $$\Gamma(i\nu+i) \, N \, \left(i\nu/e\right)^{i\nu} \sqrt{2\pi i\nu} \, \left[1 + O\left(\frac{1}{\nu}\right)\right], \tag{5}$$ and obtain Tiv (x) $$\sim \frac{1}{\sqrt{2\pi \nu}}$$ exp [iv log $\frac{1}{2}$ - iv(log ν + $\frac{i\pi}{2}$ -1) - $\frac{i\pi}{4}$] $\left\{1 + O\left(\frac{i}{\nu}\right)\right\}$ $$= \frac{2}{\sqrt{2\pi \nu}} \exp i \left[2\left(\log \frac{\pi}{2} - \log \nu + i\right) - \frac{\pi}{4}\right] \left\{1 + O\left(\frac{i}{\nu}\right)\right\}$$ (6) If we recall that for large ν sh $\nu\pi$ differs negligibly from $\frac{1}{2}e^{\nu\pi}$, equations 1.1 (5.1) and (5.2) yield the following asymptotic expressions for the wedge functions when 2 is large and x is fixed: $$F_{\nu}(x) \sim e^{-\nu\pi/2} \sqrt{\frac{2\pi}{\nu}} \cos \left[\nu (\log \nu - \log \frac{x}{2} - 1) + \frac{\pi}{4}\right] \left\{1 + O(\nu)\right\} (7.1)$$ $G_{\nu}(x) \sim e^{-\nu\pi/2} \sqrt{\frac{2\pi}{\nu}} \sin \left[\nu (\log \nu - \log \frac{x}{2} - 1) + \frac{\pi}{4}\right] \left\{1 + O(3)\right\} (7.2)$ From these expressions it is evident that both canonical solutions of Bessel's equation 1.1 (1) with imaginary order and imaginary argument, regarded as functions of their order ν , undergo an infinite number of oscillations of exponentially decreasing amplitude and slowly decreasing wavelength as 2 increases without limit. The limiting forms of the wedge functions when 2 tends to zero, x remaining fixed, may be seen immediately from the defining equations ²⁰⁾ Cf. Watson, op. cit., 225. 1.1 (5.1) and (5.2). These forms are: $$F_{\nu}(\kappa) \xrightarrow{\nu \to 0} \frac{I_{\nu}(\kappa)}{\nu} \xrightarrow{\nu \to 0} \mathcal{D},$$ (8.1) $$G_{\mathfrak{p}}(x) \xrightarrow{\mathfrak{p} \to \mathfrak{p}} K_{\mathfrak{p}}(x).$$ (8.2) Asymptotic expressions for the various solutions of Bessel's equation valid when the order γ and the argument z are simultaneously large and of comparable magnitude have been derived for general complex values of ${\mathcal P}$ and z; but the analysis is lengthy and the results are
complicated by the necessity for treating numerous subcases separately. We shall not take space here to apply these general results to the special case of our wedge functions; reference may be made if desired to the complete treatment given by Watson. 21) ## 1.13. Alternative Definitions of Bessel Functions of Imaginary Order and Imaginary Argument. In connection with the definitions of the wedge functions $F_{\nu}(x)$ and $G_{\mathcal{S}}(x)$ which we have adopted in this work, we may naturally inquire whether any other fundamental set of solutions with more convenient properties has ever been suggested. A brief discussion of the real and imaginary parts of the function $J_{\gamma + k}$: (x) of complex order was given by Lommel²²) many years ago; but the only attempt at anything like a systematic treatment of Bessel functions of purely imaginary order is that of M. Bocher. 23) We shall summarize the relations between the functions defined by Bocher and our functions $F_{\mathcal{O}}(x)$ and $G_{\mathcal{O}}(x)$. Bother first defines a particular solution $\{J_n(z)\}$ of the ordinary Bessel equation 0.1 (1) by writing, for unrestricted complex values of ²¹⁾ Watson, op. cit., chap. VIII. 22) Lommel, E., Math. Ann., 3, 481-486 (1871). 23) Bocher, M., Annals of Mathematics, 6, 137-160 (1892). mand z, $$\left\{J_{n}(z)\right\} = 2^{n} / (n+1) J_{n}(z), \qquad (1)$$ where $J_n(z)$ is the ordinary Bessel function of the first kind. When z = (z) is real and positive and z = (z) is purely imaginary, he defines two real independent solutions of the differential equation as: $$H_{i\nu}(\mathbf{x}) = \frac{1}{2\pi} \left[\left\{ J_{i\nu}(\mathbf{x}) \right\} + \left\{ J_{-i\nu}(\mathbf{x}) \right\} \right], \tag{2.1}$$ $$I_{i\nu}(\mathbf{x}) = \frac{1}{2i} \left[\left\{ J_{i\nu}(\mathbf{x}) \right\} - \left\{ J_{-i\nu}(\mathbf{x}) \right\} \right]. \tag{2.2}$$ (Bocher's $I_{(p)}(x)$ is not to be confused with the modified Bessel function of the first kind, for which elsewhere in this thesis we use the customary modern notation $I_{(p)}(z)$.) Bocher goes on to find that $$H_{i\nu}(\mathbf{x}) = \cos(\nu \log \mathbf{x}) S_1(\mathbf{x}) + \sin(\nu \log \mathbf{x}) S_2(\mathbf{x}), \qquad (3.1)$$ $$I_{\mathcal{D}}(x) = -\cos(\rho \log x) S_2(x) + \sin(\rho \log x) S_1(x), \quad (3.2)$$ where S₁(x) and S₂(x) denote the following power series: $$S_{1}(x) = 1 - \frac{1}{4(1^{2}+\nu^{2})} x^{2} + \frac{(2)_{2} - (2)_{0} \nu^{2}}{4^{2}2!(1^{2}+\nu^{2})(2^{2}+\nu^{2})} x^{4}$$ $$- \frac{(3)_{3} - (3)_{1} \nu^{2}}{4^{3}3!(1^{2}+\nu^{2})(2^{2}+\nu^{2})(3^{2}+\nu^{2})} x^{6} + \frac{(4)_{4} - (4)_{2} \nu^{2} + (4/_{0} \nu^{4})}{4^{4}4!(1^{2}+\nu^{2})\cdots(4^{2}+\nu^{2})} x^{8}$$ $$- \frac{(5)_{5} - (5)_{3} \nu^{2} + (5)_{1} \nu^{4}}{4^{5}5!(1^{2}+\nu^{2})\cdots(5^{2}+\nu^{2})} x^{10} + \frac{(6)_{6} - (6)_{4} \nu^{2} + (6)_{2} \nu^{4} - (6)_{2} \nu^{6}}{4^{6}6!(1^{2}+\nu^{2})\cdots(6^{2}+\nu^{2})} x^{10}$$ $$- \frac{(3)_{2} \nu - (3)_{0} \nu^{3}}{4^{3}3!(1^{2}+\nu^{2})\cdots(3^{2}+\nu^{2})} x^{6} + \frac{(4)_{3} \nu - (4)_{1} \nu^{3}}{4^{4}4!(1^{2}+\nu^{2})\cdots(4^{2}+\nu^{2})} x^{10}$$ $$- \frac{(5)_{4} \nu - (5)_{2} \nu^{3} + (5)_{0} \nu^{5}}{4^{5}5!(1^{2}+\nu^{2})\cdots(5^{2}+\nu^{2})} x^{10} + \frac{(6)_{5} \nu - (6)_{3} \nu^{3} + (6)_{1} \nu^{5}}{4^{6}6!(1^{2}+\nu^{2})\cdots(6^{2}+\nu^{2})} x^{12} - \cdots$$ $$- \frac{(4 \cdot 2)_{1} \nu^{3}}{4^{5}5!(1^{2}+\nu^{2})\cdots(5^{2}+\nu^{2})} x^{10} + \frac{(6)_{5} \nu - (6)_{3} \nu^{3} + (6)_{1} \nu^{5}}{4^{6}6!(1^{2}+\nu^{2})\cdots(6^{2}+\nu^{2})} x^{12} - \cdots$$ $$- \frac{(4 \cdot 2)_{1} \nu^{3}}{4^{5}5!(1^{2}+\nu^{2})\cdots(5^{2}+\nu^{2})} x^{10} + \frac{(6)_{5} \nu - (6)_{3} \nu^{3} + (6)_{1} \nu^{5}}{4^{6}6!(1^{2}+\nu^{2})\cdots(6^{2}+\nu^{2})} x^{12} - \cdots$$ The symbol $(p)_q$, where p and q are any positive integers such that $q \le p$, denotes the sum of all of the different products which can be formed by multiplying together q of the p factors 1, 2,..., p.* By definition $(p)_0 = 1$ and $(p)_q = 0$ if q > p or if q < 0. As a fundamental real set of Bessel functions whose order is and argument ix are both purely imaginary, Bocher defines: $$\begin{aligned} \overline{H}_{i\nu}(i\varkappa) &= Re\left[e^{\frac{2\pi}{2}}\left\{\int_{i\nu}(i\varkappa)\right\}\right] &= Re\ e^{\frac{2\pi}{2}}\left[H_{i\nu}(i\varkappa) + i\ I_{i\nu}(i\varkappa)\right] \\ &= e^{\frac{2\pi}{2}}Re\left[e^{i\nu\log(i\varkappa)}S_{i}(i\varkappa) - ie^{i\nu\log(i\varkappa)}S_{2}(i\varkappa)\right] \\ &= Cos(\nu\log_{2})S_{i}(i\varkappa) + oin(\nu\log_{2}\varkappa)S_{2}(i\varkappa), \\ \overline{I}_{i\nu}(i\varkappa) &= Im\left[e^{\frac{2\pi}{2}}\left\{\int_{i\nu}(i\varkappa)\right\}\right] \\ &= oin(\nu\log_{2}\varkappa)S_{i}(i\varkappa) - Cos(\nu\log_{2}\varkappa)S_{2}(i\varkappa). \end{aligned} (5.2)$$ The series $S_1(ix)$ and $S_2(ix)$ are evidently real when x is real; they are simply related to the functions which were denoted by $A(\nu,x)$ and $B(\nu,x)$ in Art. 1.11. We may deduce this relation by substituting for $\{J_{i,\nu}(ix)\}$ from (1) into (5.1) and then comparing (5.1) with 1.11 (2); thus: $$e^{\frac{2\pi}{2}}\{\int_{i\nu}(ix)\} = e^{i\nu\log_{\mathcal{X}}}\left[S_{\nu}(ix) - iS_{\nu}(ix)\right]$$ $$= 2^{i\nu}\Gamma(i\nu+1)e^{\frac{2\pi}{2}}\int_{i\nu}(ix) = \frac{\Gamma(i\nu+1)}{2^{i\nu}}e^{i\nu\log_{\frac{1}{2}}\frac{1}{2}}\left[A(\nu,x) - iB(\nu,x)\right]$$ $$= e^{i\nu\log_{\mathcal{X}}}\left[i\nu A(\nu,x) + \nu B(\nu,x)\right].$$ If we cancel the exponential factor from the second and fifth members of this equation and equate separately the real and imaginary parts, we have at once $$A(\partial_{i}x) = -\frac{1}{2}S_{2}(ix); \quad B(\partial_{i}x) = \frac{1}{2}S_{i}(ix). \tag{6}$$ Bocher's solutions $\overline{H}_{i\mathcal{P}}(ix)$ and $\overline{I}_{i\mathcal{P}}(ix)$ must of course be expressible in terms of any other fundamental set of solutions of the differential equation; it is an elementary exercise to write them as linear combinations, with coefficients depending on \mathcal{P} , of $F_{\mathcal{P}}(x)$ and $G_{\mathcal{P}}(x)$. Since clearly both ^{*}For example, $(p)_{p=p}$, $(p)_{p-1} = p!(1+1/2+1/3+...+1/p)$, and $(p)_1 = 1+2+...+p$; Bocher presents a short table of values of $(p)_q$ calculated from the recursion formula $(p)_q = (p-1)_q + p(p-1)_{q-1}$. $\overline{H}_{i,r}(ix)$ and $\overline{I}_{i,r}(ix)$ depend linearly upon $F_{rr}(x)$, which becomes exponentially infinite for large positive values of the argument while $G_{rr}(x)$ tends to zero, both functions tend to infinity for large x. But in the physical problems where Bessel functions occur, e. g. in electromagnetic theory, a frequent boundary condition is the requirement that the quantities involved shall vanish at infinity. It is therefore of considerable importance to choose one of the canonical solutions of our differential equation so that it does vanish at infinity. For this reason, in spite of the relatively simple limiting forms of Bocher's functions near x = 0, we shall not employ these functions in our work. The requirement that one of the wedge functions vanish for large values of the argument still leaves at our disposal in fixing the canonical definition of the function an arbitrary multiplicative factor which may depend upon \mathcal{P}_{\bullet} . The definition actually chosen for $G_{\mathcal{P}}(x)$ in Art. 1.1 was suggested by the observation that the familiar modified Bessel function $K_{\mathcal{P}}(x)$ of real positive argument, defined for general values of \mathcal{P} by 1.1 (4.2), is a real function when the order is purely imaginary, and that this function has the simple definite integral representation 1.11 (6.2). We accordingly defined $G_{\mathcal{P}}(x) \equiv K_{i,\mathcal{P}}(x)$, and then chose the definition of the other canonical solution $F_{\mathcal{P}}(x)$ to exhibit as much formal symmetry as possible with $G_{\mathcal{P}}(x)$. The fact that the amplitudes of both $F_{\nu}(x)$ and $G_{\nu}(x)$ decrease exponentially with increasing order for any fixed value of x (cf. 1.12 (7)) necessitates the use in numerical tables of negative powers of 10 to take account of the wide variation of the wedge functions in absolute magnitude. It is likely that if more extensive tables than ours are ever undertaken, the functions tabulated will be the more convenient ones $e^{\frac{2\pi i}{3}}F_{\nu}(x)$ and e^{2} G,(x), with a short auxiliary table of e^{2} . A similar device has already been used with the modified Bessel functions;²⁴ namely, for large values of the argument one tabulates not the functions themselves but the combinations $e^{-x}I_{n}(x)$ and $e^{x}K_{n}(x)$. These latter functions vary slowly over a wide range of values of x and are smooth enough to permit accurate interpolation. One of the considerations involved in fixing the standard definitions of the various kinds of Bessel functions is the desirability of giving as simple a form as possible to the recurrence relations which exist between the functions of different orders. These recurrence relations, which connect for example the function $K_n(x)$ with the functions $K_{n\pm 1}(x)$ and their derivatives, are a consequence of the fact that Bessel's equation is a confluent form of the hypergeometric equation; 25) they are quite useful in simplifying the results of analysis and especially in the calculation of numerical tables. However the recurrence formulas are of little practical value if the orders of the functions concerned are not all real; for example the relations involving $K_{i\nu}$ (x) connect this function with the functions Kivil(x) of complex order, or in our notation they connect $G_{\nu}(x)$ with $G_{\nu,\tau_i}(x)$. The existence of a linear relation connecting $G_{\nu}(x)$ with $G_{\nu \pm 1}(x)$ is not guaranteed by the form of the differential equation; and it does not appear likely that any such recurrence formula can be secured by adjusting the definitions of the
wedge functions.* ²⁴⁾ British Association for the Advancement of Science, Mathematical Tables, vol. VI, part 1, Cambridge, 1937. Table VIII. ²⁵⁾ Whittaker and Watson, op. cit., 359-360 et seq. *Professor Bateman expressed in conversation with the author the opinion that the chances of finding such a relation were very remote. # 1.2. Zeros of Bessel Functions of Imaginary Order and Imaginary or Complex Argument. In the first part of the present section we are concerned with the zeros of the solutions of the equation $$\frac{d}{dx}\left(x\frac{dy}{dx}\right) - \left(x - \frac{y^2}{x^2}\right)y = 0 \tag{1}$$ for Bessel functions of imaginary order and imaginary argument, when the solutions are regarded as functions of the real variables x and ν . Later we shall prove certain theorems involving the zeros of Bessel functions of imaginary order and complex argument, which will be of use in the hydrodynamical investigations of Art. 2.2. With the notation of Art. 1.0, where ν and x are real, (1) is a Sturm equation in which K(x)=x, $G(x)=x-\nu^2/x$. We shall be interested in the solutions of (1) in the closed interval $0 < a \le x \le b < \omega$, throughout which K(x) and G(x) are bounded by K > K > k > 0 and S > G > g, where K = b, k = a, $S = b - \nu^2/b$, and $S = a - \nu^2/a$. Theorem 1. (i). Any real solution of (1), considered as a function of x, has an infinite number of real zeros in the interval between x = 0 and x = 2. - (ii). No solution of (1) has more than one real zero to the right of x = y. - (iii). If (a, b) is any preassigned finite interval of the positive x-axis and m is any given positive integer, then for sufficiently large values of ν every real solution of (1) will have at least m zeros in (a, b). Part (i) of the theorem follows most readily by observing from 1.12 ^{*}No confusion will be caused by this notation, since when K and G are used to denote Bessel functions they will always carry appropriate subscripts. (4.1) and (4.2) that for small values of x every real solution of (1) has the limiting form $$y_{\nu}(x) \rightarrow A(\nu) \sin[\nu \log x + S(\nu)],$$ (2) where the amplitude $A(\nu)$ and the phase constant $S(\nu)$ are independent of x. The argument of the sine passes through all negative integral multiples of π as $x\to +0$; so the origin is a limit-point of zeros of all real solutions of (1). Parts (ii) and (iii) follow directly from theorem 3 of Art. 1.00 If $a > \nu$, then $g = a(1 - \nu^2/a^2) > 0$; so the solutions of (1) cannot oscillate for $x > \nu$. If a, b, and m are fixed, a sufficient condition for the solutions to have at least m zeros in (a, b) is $$-3/K = v^2/b^2 - 1 > m^2\pi^2/(b - a)^2$$; and the inequality certainly holds for all sufficiently large values of ν_{\bullet} Since $G(x) = x - y^2/x$ is decreased by increasing y^2 , theorem 2 of Art. 1.0 shows that the higher the order y, the more rapidly will the solutions of (1) oscillate in the neighborhood of a given point; the increased rate of oscillation is of course obvious in the limiting form (2). It is qualitatively apparent from theorem 1 above that, as the order \mathcal{P} of the wedge functions $F_{\mathcal{P}}(x)$ and $G_{\mathcal{P}}(x)$ is continuously increased, the real zeros of these functions move steadily to the right into intervals previously zero-free. The sudden appearance of a new zero between two old zeros of either function is precluded; since $F_{\mathcal{P}}(x)$ and $G_{\mathcal{P}}(x)$ are continuous functions varying continuously with \mathcal{P} , any such new zero would have to appear as a double zero, f(x) and f(x) and f(x) and f(x) and f(x) are continuously with f(x) and are continuous functions varying continuously with f(x) and f(x) and f(x) are continuous functions varying continuously with f(x) and f(x) and f(x) are continuous functions varying continuously with f(x) and f(x) and f(x) are continuous functions varying continuously with f(x) and f(x) and f(x) are continuous functions varying continuously with f(x) and f(x) and f(x) are continuously with f(x) and f(x) and f(x) are continuously with f(Theorem 2. If A and B are real constants independent of ν and if x has any fixed value, the linear combination of wedge functions ²⁶⁾ Cf. Ince, op. cit., 229, n. 2. $$y_{y}(x) = AF_{y}(x) + BG_{y}(x), \qquad (3)$$ considered as a function of ν , has an infinite number of zeros for increasing values of ν with a limit-point at $+\infty$. From 1.12 (7.1) and (7.2) we have the asymptotic form of y_{ν} when ν is large and x is fixed; namely, $$y_{\nu}(x) \sim C_{e}^{-\frac{2\pi}{2}\sqrt{2\pi}} \sin\left[\nu\left(\log\nu - \log\frac{\kappa}{2} - I\right) + \delta\right] \left\{1 + O\left(\frac{1}{\nu}\right)\right\},$$ (4) from which the theorem is evident. The complex zeros of the solutions of the Sturm equation, $$\frac{d}{dx}\left\{R(x)\frac{d\omega}{dx}\right\} - G(x)\omega = 0, \tag{5}$$ may be investigated by the use of a certain integral equality known as the Green's transform. The is supposed that K(z) and G(z) are analytic in a domain D throughout which K(z) does not vanish; and (5) is replaced by the pair of equations $$dw_1/dz = w_2/K(z)$$, $dw_2/dz = G(z) w_1$, (6) where $$w_1 = w$$, $w_2 = K(z) \frac{dw}{dz}$. (7) On combining the complex conjugate of the first member of (6) with the second member, we get $$w_2 \overline{dw_1} + \overline{w_1} dw_2 = |w_2|^2 \overline{dz}/\overline{K(z)} + |w_1|^2 G(z) dz$$ which, being integrated between limits z_1 and z_2 along a path of integration lying wholly within D, yields the Green's transform of (5), namely: $$\left[\overline{u}_{1}^{2} u_{2}^{2}\right]_{2}^{\frac{2}{2}} - \int_{2}^{\frac{2}{2}} \frac{|u_{2}^{2}|^{2} d\overline{x}}{\overline{K(x)}} - \int_{2}^{\frac{2}{2}} |u_{3}^{2}|^{2} G(x) dx = 0.$$ (8) Let $$d_2/K(2) = dK = dK, +idK_2$$, $G(2)d2 = dG = dG, +idG_2$, (9) and split the Green's transform into real and imaginary parts: $$R_{2}\left[\overline{\omega_{1}},\omega_{2}\right]_{\frac{1}{2},}^{\frac{1}{2}} = \int_{\frac{1}{2},}^{\frac{1}{2}} |\omega_{2}|^{2} dK_{1} + \int_{\frac{1}{2},}^{\frac{1}{2}} |\omega_{1}|^{2} d\mathcal{L}_{1}, \qquad (10.1)$$ ²⁷⁾ Ince, op. cit., chap. XXI. We define G(z) with opposite sign to that used by Ince, in order to keep our notation consistent with Art. 1.0. $$Im \left[w_{1} w_{2} \right]_{\frac{2}{2}}^{\frac{2}{2}} = - \int_{\frac{2}{2}}^{\frac{2}{2}} |w_{2}|^{2} dK_{2} + \int_{\frac{2}{2}}^{\frac{2}{2}} |w_{1}|^{2} dk_{2}.$$ (10.2) Recalling (7), we see that if the solution w(z) of (5) vanishes at z_1 , it cannot also vanish at z_2 unless the right sides of (10.1) and (10.2) both vanish. In particular it does not vanish at z_2 if we can find a path of integration in D connecting z_1 and z_2 throughout which a definite one of the following four pairs of inequalities is satisfied: (a) $$dE_{1}, 70;$$ (b) $dE_{1} \leq 0;$ (c) $dE_{2} \leq 0;$ (d) $dE_{2} \leq 0.$ (11) Our first application of this theory will be to the modified Bessel equation $$\frac{d}{dz}\left(\frac{2}{z}\frac{dw}{dz}\right) - \left(2 + \frac{z^2}{z}\right)w = 0,$$ (12) obtained by writing iz for z in Bessel's equation 0.1 (1). Any solution of (12) will be called a modified Bessel function of order \mathcal{D} (here assumed real) and argument z. In this case we have K(z) = z, $G(z) = z + \mathcal{D}^2/z$; the domain D includes the whole complex plane, cut along the negative half of the real axis, except for a small circle excluding the origin. An elementary calculation gives, for the quantities defined in (9), $dK = dK + i dK_2 = dv/n + i d\theta, \tag{13.1}$ $$dK = dK_1 + idK_2 = dr/n + id\theta,$$ $$dS = dS_1 + idS_2$$ (13.1) = $$\{(nc_0 20 + \frac{2^2}{n})dn - n^2 sin 2\theta d\theta\} + i \{nsin 2\theta dn + (n^2 c_0 20 + v^2)d\theta\}$$ (13.2) where $z = re^{i\theta}$, $-\pi < \theta < \pi$. Useful in the statement of the results which we shall prove are the two curves whose equations in polar coordinates are $$\mathcal{L}_{2}(\eta, \theta) = \frac{1}{2} \chi^{2} \sin 2\theta + 2^{2} \theta = \pm \frac{1}{2} \pi 2^{2}. \tag{14}$$ The equation $\mathcal{G}_{1}(\mathbf{r}, \Theta) = +\frac{1}{2}\pi n^{2}$ represents the positive imaginary axis $\Theta = \frac{1}{2}\pi$ plus the locus of points satisfying the relation $$r^2 = x^{1/2} (\pi - 2\theta) \csc 2\theta$$ (14.1) for $0 < |\pi-2\theta| < \pi$. The latter locus is a bell-shaped or witch-shaped curve symmetrical about the imaginary axis $\theta = \frac{1}{2}\pi$, having a flat maximum y=2 at x=0, and asymptotic to the real axis for large values of $x (\theta \to 0 + 0 \text{ or } \theta \to \pi - 0)$. The equation $\mathcal{L}_1(r, \theta) = -\frac{1}{2}\pi^2$ represents the reflection in the real axis of $\mathcal{L}_1(r, \theta) = +\frac{1}{2}\pi^2$. Theorem 3. (i). No modified Bessel function of real order can have two complex roots whose imaginary parts are equal and whose real parts have the same sign. (ii). No such function can have two complex roots with equal imaginary parts whose representative points lie outside the open region between the two curves $r^2 = \pm \nu^2$ (π - 29) csc 20. For part (i) assume that the modified Bessel function $R_{\gamma}(z)$ which vanishes at $z_1 = x_1 + ib$ also vanishes at $z_2 = x_2 + ib$, where for convenience we take $x_2 > x_1$. Assume at first that both roots are in the first quadrant, so that $x_2 > x_1 > 0$ and b > 0. We carry out the integration of (8) over the straight line y = b from z_1 to z_2 . Along this segment x > 0, dx > 0, and dy = 0; so on writing out in rectangular coordinates the quantities defined in (9) we find that $$dK_1 = \text{Re } (dz/z) = (x dx + y dy)/(x^2 + y^2) = (x dx)/(x^2 + b^2) > 0,$$ $$df_1 = \text{Re } (z + y^2/z)dz = x[1 + y^2/(x^2 + y^2)] dx + y[-1 + y^2/(x^2 + y^2)] dy$$ $$= x[1 + y^2/(x^2 + b^2)] dx > 0.$$ Hence the inequalities (lla) are satisfied throughout the path of integration, and
$R_{\gamma}(z)$ cannot vanish both at z_1 and at z_2 . The occurrence of a pair of complex roots with equal imaginary parts in any other quadrant is ruled out in an exactly similar way. For part (ii) assume that $R_{y}(z)$ vanishes both at $z_{1} = x_{1} + ib = r_{1}e^{i\theta_{1}}$ and at $z_2 = x_2 + ib = r_2 e^{i\Theta_2}$. In view of the result just proved, it suffices to take x_1 and x_2 of opposite sign, say $x_1 < 0 < x_2$; and for convenience we consider first the case b > 0, so that $\pi > \theta_1 > \frac{1}{2}\pi > \theta_2 > 0$. By hypothesis the representative points of z_1 and z_2 lie on or above the curve $r^2 = r^2$ ($\pi = 2\theta$) csc 2θ ; let the radii vectores to z_1 and z_2 intersect this curve in the points $\mathcal{L}_1 = \mathcal{L}_1 e^{i\Theta_1}$ and $\mathcal{L}_2 = \mathcal{L}_2 e^{i\Theta_2}$ respectively. We carry out the integration of (8) along a path consisting of the following parts: (1) the radial segment from z_1 to z_1 ; (2) that portion of the curve $r^2 = r^2$ ($\pi = 2\theta$) csc 2θ from z_1 to z_2 ; (3) the radial segment from z_2 to z_2 . Along (1) we have z_1 and z_2 objectively. We definition, and z_2 and z_2 are z_1 and z_2 or z_2 or z_2 and z_2 or z_2 or z_2 or z_2 and z_2 or It may be noted here that our methods do not permit us to dispose of the exceptional possibility that a solution of the modified Bessel equation (12) of real order may have two complex roots of equal imaginary part, lying on opposite sides of the imaginary axis and within the open region* between the curves $\mathbf{r}^2 = \pm j)^2$ ($\pi = 20$) csc 20. Analysis similar to the preceding may be applied to the solutions of the equation $$\frac{d}{dt}\left(t^{2}\frac{d\omega}{dt}\right)-\left(t^{2}-\frac{2t^{2}}{t^{2}}\right)\omega=0$$ (15) obtained by writing $-\nu^2$ for ν^2 in (12). Any solution of (15) will be called a modified Bessel function of purely imaginary order $i\nu$ and complex argument z.** The functions K(z) = z and $G(z) = z - \nu^2/z$ are analytic ^{*}This region is somewhat less extensive than the strip $|y| < \mathcal{D}_{\bullet}$ *The wedge functions defined in 1.1 are of course particular solutions when the independent variable of the equation is regarded as real. in the whole complex plane (cut along the negative real axis) excluding the origin. The quantities dK and $d\theta$ may be obtained by replacing y^2 by $-y^2$ in (13.1) and (13.2). Theorem 4. No modified Bessel function of purely imaginary order can have two complex roots with equal imaginary parts. To prove the theorem, assume that the modified Bessel function R_{i} (z) vanishes both at $z_1 = x_1 + ib$ and at $z_2 = x_2 + ib$, where for definiteness $x_1 < x_2$, and we assume at first for convenience b > 0. We carry out the integration of (8) along the straight line y = b from z_1 to z_2 . On this segment dx > 0, dy = 0; so on writing out the expressions for dK_2 and $d\theta_2$ we find that $$dK_{2} = \text{Im } (dz/z) = (-y dx + x dy)/(x^{2} + y^{2}) = -(b dx)/(x^{2} + b^{2}) < 0, \qquad (16.1)$$ $$dU_{2} = \text{Im } (z - y^{2}/z)dz = [y + y^{2}y/(x^{2} + y^{2})] dx + [x - y^{2}x/(x^{2} + y^{2})] dy$$ $$= b[1 + y^{2}/(x^{2} + b^{2})] dx > 0. \qquad (16.2)$$ Thus the pair of inequalities (11c) are satisfied, and $R_{(\nu)}(z)$ cannot vanish both at z_1 and at z_2 . If we assume 6 < 0, we merely reverse both inequalities and obtain (11d); thus the theorem is completely established. In the following theorem use will be made of the curve $$r^2 = 2x^2 \theta \csc 2\theta, \ 0 < |\theta| < \frac{1}{2}\pi; \qquad r(0) = y, \qquad (17)$$ which is just the symmetrical bell-sahped curve of (14.1) rotated through an angle of $-\frac{1}{2}\pi$, so that it now lies on the right side of the imaginary axis, passes through the point $(\gamma, 0)$, and is asymptotic to the imaginary axis at ti ∞ . Writing (17) in rectangular coordinates, $xy = y^2 \tan^{-1}(y/x) = 0$, and comparing with (16.2), we see that the differential equation of this curve is just $d\mathcal{L}_2 = 0$. Theorem 5. The modified Bessel function $K_{ij}(z)$ of imaginary order has no complex zeros on or to the left of the curve $r^2 = 22^2 \theta$ csc $2\theta_{\bullet}$ Let $z_1 = x_1 > 0$ be one of the real positive zeros which $K_{ij}(x) \equiv G_{j}(x)$ has by theorem 1, (i). Assume $K_{ij}(z_2)$ vanishes, where $z_2 = x_2 + ib$ is a complex number on or to the left of the curve (17); let the line y = b intersect this curve in the point $\mathcal{E} = \mathcal{E} + ib$. Assume for the moment b > 0. Carry out the integration of (8) along a path consisting of the following parts: (1) the x-axis from (x, 0) to (v, 0); (2) the curve (17) from (v, 0) to (\mathcal{E}, b) ; (3) the line y = b from (\mathcal{E}, b) to (x_2, b) . On (1) y = 0, dy = 0, so from (16.1) and (16.2) $dK_2 = dU_2 = 0$. On (2) $dK_2 = dU_2 = dU_3 dU_3$ The possibility that $K_{(i)}(z)$ may have complex zeros in the extensive region of the right half-plane to the right of the curve $r^2 = 2\sqrt{9}$ csc 29 cannot be excluded by our methods. ## 1.31. Expansion of an Arbitrary Function in a Series of Wedge Functions. The possibility of representing an arbitrary function over a finite interval of the positive x-axis by means of a series of wedge functions follows directly from the general theory of Art. 1.0; we summarize here the results. Consider the Sturm-Liouville system: $$\frac{d}{dx}\left(x\frac{dy}{dx}\right) - \left(x - \frac{2)^2}{x}\right)y = 0, \tag{1.1}$$ $$\alpha'y(a) - \alpha y'(a) = 0,$$ (1.2) $\beta'y(b) + \beta y'(b) = 0,$ (1.3) where $0 < a < b < \infty$ and, with the notation of 1.0 (4.1), K(x) = x, $\ell(x) = x$, g(x) = 1/x, and $\lambda = \ell^2$. Let $Y(x, \ell)$ be the solution of (1.1) satisfying the first boundary condition; then the second boundary condition yields the characteristic equation (cf. 1.0 (5)) which must be satisfied by the eigenvalues ℓ . In the simple case $\alpha = \beta = 0$ and $\alpha' = \beta' = 1$ the boundary conditions are y(a) = y(b) = 0, so $Y(x, \ell)$ may be taken as the linear combination of wedge functions $$Y(x_p) = F_p(a)G_p(x) - G_p(a)F_p(x);$$ the characteristic equation then becomes $$\mathcal{J}(y^2) = F_y(a)G_y(b) - G_y(a)F_y(b) = 0.$$ (2) Evidently the system (1) satisfies the conditions of theorem 5 of Art. 1.0, so there will be an infinite set of real, all positive* eigenvalues v_0^2 , v_1^2 , v_2^2 , ..., which have no limit-point but v_1^2 ; and the eigenfunction corresponding to v_1^2 will have exactly m zeros between a and b. Methods for actually calculating the roots of the characteristic equation numerically will be briefly discussed in Art. 1.4. An arbitrary function f(x) may be represented in (a, b) by the series of wedge functions $f(x) = \sum_{n=0}^{\infty} A_n y_{n}(x), \tag{3}$ where γ_n is the nth eigenvalue of the system (1), $y_{\gamma_n}(x)$ is the corresponding eigenfunction, and the coefficient A_n is determined by $$A_{n} = \frac{\int_{a}^{b} f(t) y_{n}(t) \frac{dt}{t}}{\int_{a}^{b} y_{n}^{2}(t) \frac{dt}{t}}.$$ (4) ^{*}Provided, of course, that $\alpha\alpha' > 0$ and $\beta\beta' > 0$, as is almost always the case in practice. By theorem 8 of 1.0, if f(x) possesses a Lebesgue integral in (a, b) and is of limited total fluctuation in the neighborhood of an interior point s of (a, b), the series (3) converges at s to the (mean) value of f(s). It can also be shown to converge to f(x) at the end-points of the interval unless the functions $y_{2}(x)$ are constrained to vanish at the end-points. In the latter case the series vanishes at the end-points, no matter whether f(a) = f(b) = 0 or not. The integral in the denominator of (4) may be calculated from 1.0 (5) and (6.2); recalling that $\lambda = 2^{2}$, we obtain $$\int_{\alpha}^{b} \frac{y_{2n}^{2}(t) dt}{t} = \frac{b}{2\nu_{n}} \left[\frac{\partial y_{2n}(x)}{\partial x} \right]_{x=b} \left[\frac{\partial y_{2n}(x)}{\partial x} + \frac{\beta}{\beta'} \frac{\partial^{2} y_{2n}(x)}{\partial x^{2n}} \right]_{x=b}. (5)$$ Formulas equivalent to this have been given by Dougall²⁸) and Bocher²⁹). The right side of (5) cannot be simplified, as can the coefficients in an ordinary Fourier-Bessel expansion, because as noted in 1.13 we have no recurrence relations involving derivatives of the wedge functions. If we attempt to represent a function f(x) over the interval (0, b) or over the infinite interval $(0, \infty)$ by means of wedge functions, we find that our boundary conditions no longer select discrete values of 2 We have now to use all values of 2 in the representation of f(x), and the infinite series (2) passes over into an infinite integral in a way similar to the well-known transition of an ordinary Fourier series into a Fourier integral as the fundamental interval is extended to infinity. In the case at hand we obtain what may be called a Fourier-Bessel integral, though of a form not previously discussed. Sufficient conditions for representing a function in the interval (0, b) by such an integral will be given in the following article; but since the rigorous demonstration is long and ²⁸⁾ Dougall, J., Proc. Edinburgh Math. Soc., 18, 40 (1900). 29) Bocher, op. cit., 149. Bocher treats only the case $\beta = 0$ and writes i ν for our ν ; this accounts for his negative sign. involved, we shall first give a heuristic development which, while making no pretense of rigor, will indicate formally the result which we may expect. We assume that a suitably behaved function f(x) may be expanded in the interval (a, ∞) in a series of wedge functions of the second kind, which vanish at a and at infinity; we shall eventually find the limiting form of this series as $a \to +0.*$ We have from (3), (4), and (5), on setting $$\beta = 0,$$ $$f(x) = \sum_{n=0}^{\infty} \frac{\int_{\alpha}^{\infty} f(t)G_{\nu_n}(t)
\frac{dt}{t} G_{\nu_n}(x)}{-\frac{a}{2\nu_n} \left[\frac{\partial G_{\nu}(x)}{\partial x} \frac{\partial G_{\nu}(x)}{\partial \nu}\right]_{x=a}}{\frac{\partial G_{\nu}(x)}{\partial x}},$$ (6) where the negative sign arises from evaluating (5) at the <u>lower limit</u> of the interval. Since we are interested in the limiting case $a \rightarrow +0$, we calculate the denominator of (6) approximately from 1.12 (4.2); and we also assume that we are considering only those terms of the series for which \mathcal{P} is so large that $\Gamma'(i\mathcal{P})$ may be represented by Stirling's asymptotic formula. Then totic formula. Then $$arg \Gamma(i\nu) = \lim_{n \to \infty} \log \Gamma(i\nu) \sim \lim_{n \to \infty} \left[(i\nu - \frac{1}{2}) \log(i\nu) - i\nu + \log \sqrt{2\pi} \right]$$ $$= \nu \left(\log \nu - 1 \right) - \frac{\pi}{4}$$ and 1.12 (4.2) becomes, for P large and x small, Equation (7), together with the boundary condition $G_{\mathcal{H}}$ (a) = 0, yields the equation for the eigenvalues: $$2k \left(\log \frac{1}{2}a - \log 2k + 1\right) + \frac{\pi}{4} = -(k + \frac{1}{2})\pi.$$ (8) If we subtract this equation from the similar equation satisfied by \mathcal{P}_{k+1} and write $\mathcal{P}_{k+1} = \mathcal{P}_k + \mathcal{G}_{\mathcal{P}_k}$, then neglecting squares of $\mathcal{G}_{\mathcal{P}_k}$ we have ^{*}The theorem of the next section actually permits the representation of a function in the finite interval (0, b), where b is any preassigned number, however large. This is not quite the same as representing the function in the infinite interval $(0, \infty)$. $$S_{\mathcal{L}_{k}}\left(\log\frac{1}{2}\alpha - \log\nu_{k} + 1\right) - S_{\mathcal{L}_{k}} = -\pi; \quad S_{\mathcal{L}_{k}} = \frac{\pi}{\log\frac{2\nu_{k}}{\alpha}}. \quad (9)$$ Differentiating (7) with respect to x and \mathcal{D} in turn and then employing (8), we see that $$\frac{\partial G_{n}(x)}{\partial x}\Big|_{\chi=a} \sim (-)^{k} \frac{2}{k} \sqrt{\frac{\pi}{2k} a^{k}} \sqrt{\frac{\pi}{2k} a^{k}}$$ (10.1) $$\frac{\partial G_{\nu}(a)}{\partial \nu}\Big|_{\nu^{2}\nu_{b}} \sim (10.2)$$ Substituting (10.1) and (10.2) into the denominator of (6), replacing $\log(2\nu_k/a)$ by $(\pi/5\nu_k)$ in accordance with (9), and letting the series pass into an integral as $a \to +0$, we are led to the formula $$f(x) = \frac{2}{\pi^2} \int_0^D \nu sh \nu \pi G_s(x) \left\{ \int_0^s f(t) G_s(t) \frac{dt}{t} \right\} d\nu, \tag{11}$$ which presumably represents f(x) in the open interval (0,0). The rigorous proof of a formula similar to (11), valid when f(x) satisfies certain sufficient conditions, will be given in the next article. ## 1.32. A Fourier-Bessel Integral Involving Wedge Functions. The main result which we shall prove in this section is contained in the following Theorem. Let f(t) be a function of the real variable t in the range $0 \le t \le T$, and let x be a fixed point of the open interval (0, T). If - (i) f(t) is continuous except at a finite number of discontinuities in (0, T), - (ii) f(t) has limited total fluctuation in an interval surrounding x, and (iii) $$\int_{0}^{T} \frac{|f(t)| dt}{t}$$ exists, then $$\frac{2}{\pi^{2}} \left\{ \frac{\partial^{2} f(x)}{\partial x^{2}} \left\{ \int_{0}^{\infty} f(t) G_{0}(t) \frac{dt}{t} \right\} dx = \frac{1}{2} \left[f(x+0) + f(x-0) \right].$$ (1) We require certain preliminary lemmas, which will for convenience be expressed in terms of the modified Bessel functions $I_{\nu}(x)$ and $K_{\nu}(x)$ defined for unrestricted complex values of the order by 1.1 (4.1) and (4.2). Lemma 1. If $0 \le t \le T$ and if $|\mathcal{G}| > N$, where $\text{Re} \mathcal{G} > 0$, then $$I_{S}(t) = \frac{(\frac{1}{2}t)^{S}}{S\Gamma(S)} \left[1 + O(\frac{1}{N}) \right]. \tag{2}$$ Proof: From 1.1 (4.1) we have $$I_{S}(t) = \frac{(\frac{1}{2}t)^{S}}{S\Gamma(S)} \left[1 + \sum_{m=1}^{\infty} \frac{(\frac{1}{2}t)^{2m}}{m!(S+1)(S+2)\cdots(S+m)}\right].$$ If $\beta/7$ N and Re β 7, 0, then β n/ N for n = 1, 2, ...; so $$\left|\sum_{m=1}^{\infty} \frac{\left(\frac{1}{2}t\right)^{2m}}{m! \left(\frac{1}{6}+1\right)\cdots\left(\frac{6}{6}+m\right)}\right| < \sum_{m=1}^{\infty} \frac{\left(\frac{1}{2}T\right)^{2m}}{m! N^m} = \exp\left(\frac{T^2}{4N}-1\right) = O\left(\frac{1}{N}\right),$$ $$Q \cdot E \cdot D \cdot \frac{1}{2} = O\left(\frac{1}{N}\right)$$ Let $f = f + i\eta = \rho e^{i\theta}$, where $\rho \gg N$ and $|\varphi| \le \frac{1}{2}\pi$; then the following asymptotic expression may be obtained³⁰) from Stirling's formula: $$|P(\xi)|^{2} = 2\pi e^{-2\xi} (\xi^{2} + \eta^{2})^{\xi - \frac{1}{2}} e^{-2\eta \varphi} [1 + O(\frac{1}{\xi})]$$ $$> 2\pi e^{-2\xi} - \pi/\eta |N^{2\xi}|^{-1} [1 + O(\frac{1}{N})].$$ (3) Lemma 2. Let $0 < t \le T$ and let N be a positive integer greater than unity. (i). If $$S = (N + \frac{1}{2}) + i\eta$$, where $-(N + \frac{1}{2}) \le \eta \le (N + \frac{1}{2})$, then $$K_{\mathcal{E}}(t) = \frac{1}{2} \Gamma(S) \left(\frac{1}{2}t\right)^{-S} \left[1 + O\left(\frac{1}{N}\right)\right]. \tag{4}$$ ³⁰⁾ Copson, E. T., Theory of Functions of a Complex Variable, 224. (ii). If $$f = g \pm i(N + \frac{1}{2})$$, where $0 \le g \le (N + \frac{1}{2})$, then $$K_{g}(t) = \frac{1}{2} \int_{-1}^{\infty} \left[\left(\frac{1}{2} t \right)^{-g} \left[\left(\frac{1}{N} \right) + O\left(\frac{1}{N^{2}} g \right) \right]^{2} \right]. \tag{5}$$ Proof: From 1.1 (4.2) and (4.1) we have $$K_{g}(t) = \frac{\pi}{2 \sin 6\pi} \left[\frac{(\frac{1}{2}t)^{-5}}{-5 \Gamma(-5)} \left\{ 1 + \sum_{m=1}^{\infty} \frac{(\frac{1}{2}t)^{2m}}{m!(1-5)(2-5) \cdots (m-5)} \right\} - \frac{(\frac{1}{2}t)^{5}}{\Gamma(5)} \sum_{m=0}^{\infty} \frac{(\frac{1}{2}t)^{2m}}{m! S(5+1) \cdots (5+m)} \right]. (6)$$ We employ the identity 31) and obtain, after factoring $\frac{1}{2}/(6)(\frac{1}{2}t)^{-3}$ out of the right side of (6), $$K_{g}(t) = \frac{1}{2} \Gamma(g) (\frac{1}{6}t)^{-5} \left[1 + \sum_{m=1}^{\infty} \frac{(\frac{1}{2}t)^{2m}}{m! (1-g)(2-g) \cdots (m-g)} - \frac{\pi(\frac{1}{2}t)^{2g}}{\sin g\pi} \int_{m=0}^{\infty} \frac{(\frac{1}{2}t)^{2m}}{m! g(g+1) \cdots (g+m)} \right].$$ In part (i), where $g = (N + \frac{1}{2}) + i\eta$, it is easily seen that for N > 1 we have $\rho = |\mathcal{E}| \le \sqrt{2}$ (N + $\frac{1}{2}$) < 2N, so (3) implies that 15(6)/2> The -(2N+1)TT N2N [1+0(1)]. If k is any non-negative integer we have the following evident inequalities: We also have $\left|\sin \zeta_{\pi}\right| = \cosh \eta \pi \ge 1$ and $\left|\left(\frac{1}{2}t\right)^{25}\right| = \left(\frac{1}{2}t\right)^{2N+1}$. Hence we may dominate the remainder terms on the right side of (7) as follows: $$\frac{\int_{m=1}^{\infty} \frac{(\frac{1}{2}t)^{2m}}{m!(1-\xi)\cdots(m-\xi)} - \frac{\pi(\frac{1}{2}t)^{2\xi}}{\min_{n=0}^{\infty} \frac{(\frac{1}{2}t)^{2m}}{m!(1-\xi)\cdots(\xi+m)}} = \frac{\pi(\frac{1}{2}t)^{2m}}{\min_{n=1}^{\infty} \frac{(\frac{1}{2}t)^{2m}}{m!(1+\xi)}} + \frac{\pi(\frac{1}{2}t)^{2N+1}}{\pi(2N+1)\pi(2N)} = \frac{(\frac{1}{2}t)^{2m}}{\min_{n=0}^{\infty} \frac{(\frac{1}{2}t)^{2m}}{m!(1+\xi)}} = \frac{1}{2N+1} \left[\frac{1}{2N} + \frac{\pi(\frac{1}{2}t)^{2N+1}}{2N} \frac{\pi(\frac{1}{2}t)^{2N+1$$ For part (ii), in which $\zeta = \xi \pm i(N + \frac{1}{2})$, we have again $\rho < 2N$, ³¹⁾ Whittaker and Watson, op. cit., 239. and (3) becomes $$\frac{|f'(\xi)|^2}{|f'(\xi)|^2} = \frac{-25 - (N + \frac{1}{2})\pi}{N^{2\xi - 1}} \left[1 + O(\frac{1}{N}) \right].$$ We have also, if N > 1. $|\sin \delta \pi| = \left[\sin^2 \delta \pi + \sinh^2 \left(N + \frac{1}{2} \right) \pi \right]^{\frac{1}{2}} > \sinh \left(N + \frac{1}{2} \right) \pi > \sqrt{2}$ as well as $\left| \left(\frac{1}{2} t \right)^{25} \right| = \left(\frac{1}{2} t \right)^{25}$, and $\left| k + \frac{1}{2} t \right| > N$. where k is any integer. Accordingly: $$\left| \sum_{m=1}^{2^{n}} \frac{(\frac{1}{2}t)^{2m}}{m!(1-\xi)\cdots(m-\xi)} - \frac{\pi(\frac{1}{2}t)^{2\xi}}{\sinh(\pi T^{2}(\xi))} \right| \leq \frac{(\frac{1}{2}t)^{2m}}{m!(1-\xi)\cdots(m-\xi)} + \frac{4(\frac{1}{2}T)^{2\xi}}{e^{-2\xi}N^{2\xi-1}} \leq \frac{(\frac{1}{2}T)^{2m}}{m!(1-\xi)} \left[1+O(\frac{1}{N}) \right] \\ = (\exp\frac{T^{2}}{4N} - 1) + 4(\frac{Te}{2N})^{2\xi} \exp\frac{T^{2}}{4N} \left[1+O(\frac{1}{N}) \right] = O(\frac{1}{N}) + O(\frac{1}{N^{2\xi}}).$$ Q.E.D. The term $O(1/N^{2\xi})$ may evidently be disregarded if $\xi \gg \frac{1}{2}$. Lemma 3. Let x be a fixed positive number and let f(t) be a function defined in the range $(0, \infty)$ such that (i) f(t) is continuous except at a finite number of discontinuities in $(0, \mathcal{P})$, and (ii) $$\int_{0}^{\infty} \frac{f(t)}{t} dt \text{ exists; then}$$ $$\lim_{R\to\infty} \int_{0}^{\infty} \frac{f(t)}{t} \left\{ \int_{0}^{R} v sh v \pi K_{iv}(x) K_{iv}(t) dv \right\} dt$$ $$= \int_{0}^{\infty} v sh v \pi K_{iv}(x) \left\{ \int_{0}^{\infty} f(t) K_{iv}(t) dt \right\} dv, \quad (8)$$ provided the limit on the left exists. Proof: The function $\sqrt{\nu \text{sh}\nu\pi} \, K_{i\nu}(t)$ is a continuous function of ν and t provided $0 \le \nu \le R$ and $t > t_0 > 0$; furthermore it tends to zero by 1.12 (2.2) as $t \to \infty$. It is therefore a bounded function when the variables are in the stated ranges. On replacing ℓ by $i\nu$ in (7) and making use of the relation (1.11 (4)) $\sqrt{\nu \text{sh}\nu\pi} \, |\Gamma'(i\nu)| = \sqrt{\pi}$, we have after some elementary manipulations the inequality $$|\sqrt{\nu sh \nu \pi} K_{i\nu}(t)| \leq \sqrt{\pi} \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}t\right)^{2m}}{(m!)^2}; \qquad (9)$$ and the right side of (9) is certainly bounded for all real ν as $t \rightarrow +0$. Hence if we define $$\phi(\nu)$$; x, t) = ν sh ν π K; ν (x) K; ν (t), where x and t are any positive real numbers, there exists a constant A such that $|\phi(\nu); x, t\rangle \leq A$ so long as $0 \leq \nu \leq R_0$ For any preassigned positive values of R and $\mathcal E$ we may by hypothesis (ii) choose β so that
We then have $\int_{\beta}^{\infty} \frac{|f(t)|}{t} dt < \frac{\varepsilon}{2RA}.$ We then have $\int_{\beta}^{\infty} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt - \int_{\beta}^{\infty} \int_{\gamma}^{R} f(t) f(v;x,t) dt dv dt$ $= \int_{\beta}^{\infty} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt + \int_{\beta}^{\infty} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt$ $- \int_{\beta}^{\infty} \int_{\gamma}^{R} f(t) f(v;x,t) dv dt - \int_{\beta}^{\infty} \int_{\gamma}^{R} f(t) f(v;x,t) dt dv$ $= \int_{\beta}^{\infty} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt - \int_{\beta}^{\infty} \int_{\gamma}^{R} f(t) f(v;x,t) dt dv$ $\leq \int_{\beta}^{\infty} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt + \int_{\beta}^{\infty} \int_{\gamma}^{R} \frac{f(t)}{t} f(v;x,t) dt dv$ $\leq \int_{\beta}^{\infty} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt + \int_{\beta}^{\infty} \int_{\gamma}^{R} \frac{f(t)}{t} f(v;x,t) dt dv$ $\leq \int_{\beta}^{\infty} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt + \int_{\gamma}^{R} \int_{\gamma}^{R} \frac{f(t)}{t} f(v;x,t) dt dv$ $\leq \int_{\beta}^{\infty} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt + \int_{\gamma}^{R} \int_{\gamma}^{R} \frac{f(t)}{t} f(v;x,t) dt dv$ $\leq \int_{\beta}^{\infty} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt + \int_{\gamma}^{R} \int_{\gamma}^{R} \frac{f(t)}{t} f(v;x,t) dt dv$ $\leq \int_{\beta}^{\infty} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt + \int_{\gamma}^{R} f(t) f(t) dv$ $\leq \int_{\gamma}^{R} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt + \int_{\gamma}^{R} f(t) f(t) dv$ $\leq \int_{\gamma}^{R} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt + \int_{\gamma}^{R} f(t) f(t) dv$ $\leq \int_{\gamma}^{R} \frac{f(t)}{t} \int_{\gamma}^{R} f(v;x,t) dv dt + \int_{\gamma}^{R} f(t) f(t) dv$ $\leq \int_{\gamma}^{R} \frac{f(t)}{t} \int_{\gamma}^{R} f(t) f(t) dv$ $\leq \int_{\gamma}^{R} f(t) f(t) dv$ $\leq \int_{\gamma}^{R} \frac{f(t)}{t} \int_{\gamma}^{R} f(t) dv$ $\leq \int_{\gamma}^{R} f(t) f($ since we may evidently justify $\int_0^R \int_0^R \int_0$ ^{*}In particular, if the integrand |f(t)|/t has a singularity at t=0, we break the range of integration into two parts and treat the lower limit in the same way that we have just treated the upper limit. to the limit as $R \rightarrow \infty$. If it happens that $f(t) \equiv 0$ for t > T, we may evidently write T for the upper limits of the integrals over t. We shall use this special case of (8) in what follows. We proceed now to the proof of the main theorem. Consider the contour integral $\int \mathcal{L}_{K_{\mathcal{S}}}(\mathbf{x}) \mathbf{I}_{\mathcal{S}}(\mathbf{t}) d\mathcal{L}_{\mathcal{S}}$, where $0 < \mathbf{t} < \mathbf{x}$, around the rectangular contour in the \mathcal{L} -plane having corners at $(0, \pm (N + \frac{1}{2}))$ and at $(N + \frac{1}{2}, \pm (N + \frac{1}{2}))$. Since the integrand is everywhere an analytic function of $\mathcal{L}_{\mathcal{S}}$, by Cauchy's theorem the contour integral vanishes; i. e., $\int_{-N-\frac{1}{2}}^{N+\frac{1}{2}} i \eta K_{i\eta}(x) I_{i\eta}(t) i d\eta = \int_{C_i}^{L} K_{i}(x) I_{j}(t) df,$ where the right-hand integral is evaluated over the bottom, right side, and top of the rectangular contour. Writing ν for η in the left side of (10) and noting from the definition 1.1 (5.2) that $K_{i\nu}(x)$ is an even function of ν , we may transform the integral over the imaginary axis and obtain the following relation: $$\int_{C_{i}+C_{2}} K_{i}(x) I_{j}(t) db = -\int_{-N-\frac{1}{2}}^{N+\frac{1}{2}} \chi K_{i}\nu(x) I_{i}\nu(t) d\nu$$ $$= -\int_{-N-\frac{1}{2}}^{0} \chi K_{i}\nu(x) I_{i}\nu(t) d\nu - \int_{0}^{N+\frac{1}{2}} \chi K_{i}\nu(x) I_{i}\nu(t) d\nu$$ $$= \int_{0}^{N+\frac{1}{2}} \chi K_{i}\nu(x) I_{-i}\nu(t) d\nu - \int_{0}^{N+\frac{1}{2}} \chi K_{i}\nu(x) I_{i}\nu(t) d\nu$$ $$=\frac{2i}{\pi}\int_{0}^{N+\frac{1}{2}} \nu sh \nu \pi K_{i\nu}(x) K_{i\nu}(t) d\nu. \tag{11.1}$$ Similarly if $0 \le x \le t$, we have $$\frac{2i}{\pi} \int_{0}^{N+\frac{1}{2}} v sh v \pi K_{iv}(x) K_{iv}(t) dv = \int_{C_{i}+C_{2}+C_{3}} K_{g}(t) I_{g}(x) df. \quad (11.2)$$ Let u be the greater of the two quantities x and t and let v be the other, so that $0 \le v \le u \le T$. From (2), (4), and (5) we have $$\int_{C_{1}+C_{2}+C_{3}}^{C_{3}} K_{5}(u) I_{5}(v) ds = \frac{1}{2} \int_{C_{1}+C_{2}+C_{3}}^{\infty} [1 + \mathcal{R}(b; u, v)] db, \qquad (12)$$ where on the segments C_1 and C_3 $|R(f; u, v)| \le A/N + B/N^{2f}$, and on the segment C_2 $|R(f; u, v)| \le \frac{1}{2}C/N$, A, B, and C being constants independent of N. Now $$\frac{i}{2}\int \frac{(x^{2})^{2}d\xi}{(x^{2})^{2}} = \frac{i}{2}\int \frac{e_{1}f_{1}}{e_{1}f_{2}} \left(c_{1}e_{2}f_{2}\right)d\xi = \frac{i\sin\left[\left(N+\frac{1}{2}\right)\log\frac{x^{2}}{m}\right]}{\log\frac{x}{m}}; \quad (13)$$ and setting $\log(v/u) = -\lambda < 0$ and $f = f + i\eta$, where on C_1 and $C_3 |\eta| = N + \frac{1}{2}$ and on $C_2 f = N + \frac{1}{2}$, we can dominate the remainder term of (12) as follows: $$R_{N} = \left| \frac{1}{2} \int_{\mathcal{L}} e^{-\lambda S} \mathcal{R}(S; u, v) dS \right|$$ $$= \int_{0}^{N+\frac{1}{2}} -\lambda S \left[\frac{A}{N} + \frac{B}{N^{2S}} \right] dS + \int_{0}^{N+\frac{1}{2}} -\lambda (N+\frac{1}{2}) \frac{C}{2N} d\eta$$ $$= \frac{A}{N\lambda} \left[1 - e^{-\lambda (N+\frac{1}{2})} \right] + \frac{B \left[1 - e^{-(\lambda + 2\log N)} \right]}{\lambda + 2\log N} + \frac{(N+\frac{1}{2})C}{2N} e^{-\lambda (N+\frac{1}{2})}$$ We consider separately the case $\lambda \leq N^{\frac{1}{2}}$, where t is inside the interval We consider separately the case $\lambda \leq N^{-2}$, where t is inside the interval $(xe^{-\frac{t}{W}}, xe^{\frac{t}{W}})$, and the case $\lambda > N^{-\frac{1}{2}}$, where t is outside the interval. If $$\lambda > N^{\frac{1}{2}}$$, then from (14) $$R_{N} < \frac{A}{\sqrt{N}} + \frac{B}{2\log N} + C_{2} - \sqrt{N} = O(\log N); \qquad (15.1)$$ while if $\lambda \in \mathbb{N}^{\frac{1}{2}}$, then by sutstituting $\lambda = 0$ in the second line of (14) we have $$\mathcal{R}_{N} < \frac{(A + \frac{1}{2}C)(N + \frac{1}{2})}{N} + \frac{\mathcal{B}}{2l_{og}N} = \mathcal{O}(1). \tag{15.2}$$ Collecting the results of (11), (12), (13), and (15), we have $$\int_{0}^{T} \frac{f(t)}{t} \int_{0}^{N+\frac{1}{2}} v sh v \pi K_{iv}(x) K_{iv}(t) dv dt$$ $$= \underbrace{\pi}_{2} \int_{0}^{T} \underbrace{f(t)}_{t} \frac{sin \left[(N+\frac{1}{2}) log \frac{x}{x} \right]}_{log \frac{x}{t}} dt + \int_{0}^{T} \underbrace{f(t)}_{t} O(log N) dt + \int_{0}^{T} \underbrace{f(t)}_{t} O(l) dt.$$ $$+ \underbrace{\int_{0}^{T} \frac{f(t)}{t} O(log N)}_{t} dt + \underbrace{$$ Since by hypothesis $\int_0^{\infty} \frac{|f(t)|}{t} dt$ exists and $x(e^{i\vec{k}} - e^{i\vec{k}}) = O(N^{-\frac{1}{2}})$, both remainder terms in (16) are o(1) and vanish as $N \to \infty$. On setting $\log x = \infty$, $\log t = 0$ in the first integral on the right side of (16), inverting the order of integration on the left side by lemma 3, and letting $N \to \infty$, we have $$\int_{0}^{\infty} \nu sh \nu \pi K_{i\nu}(x) \int_{0}^{\pi} f(t) K_{i\nu}(t) \frac{dt}{t} d\nu$$ $$= \lim_{N \to \infty} \frac{\pi}{2} \int_{-\infty}^{\log T} f(e^{x}) \sin \frac{[N + \frac{1}{2}](\sigma - e^{x})}{(\sigma - e^{x})^{2}} dr.$$ If $f(e^{c}) \equiv g(c)$, then by hypothesis $\int_{c}^{\infty} |g(c)| dc$ exists and g(c) is of limited total fluctuation in an interval surrounding ∞ . Hence by Fourier's single integral formula $\frac{32}{c}$ we have $$\int_{0}^{\infty} \mathcal{D}_{sh} \mathcal{D}_{\pi} K_{i\nu}(x) \int_{0}^{\pi} f(t) K_{i\nu}(t) dt d\nu$$ $$= \underbrace{\pi^{2}}_{2} \cdot \underbrace{\frac{1}{2} \left[f(e^{\tau + 0}) + f(e^{\tau - 0}) \right]}_{2} = \underbrace{\pi^{2}}_{2} \cdot \underbrace{\frac{1}{2} \left[f(x + 0) + f(x - 0) \right]}_{2}.$$ $$\lim_{\lambda \to \infty} \frac{1}{\pi} \int_{-\infty}^{a} g(x) \frac{\sin \lambda(\sigma-\tau)}{\sigma-\tau} d\tau = \frac{1}{2} \left[g(\sigma+0) + g(\sigma-0) \right], \sigma \perp \alpha,$$ ³²⁾ Titchmarsh, E. C., Theory of Fourier Integrals, Art. 1.14. The formula is valid even under less stringent conditions than we have imposed on g(?). On writing the wedge function G_{ν} for $K_{i\nu}$ we obtain the result (1) stated at the beginning of this section. The theorem just proved appears to be of a somewhat different type from the ordinary Fourier-Bessel integral theorem, 33) since it involves integration over the order as well as the argument of the functions concerned. 34) It would be of interest to know whether an integral of the form (1) can represent a function over the entire range $(0, \infty)$, as the considerations at the end of the preceding section might lead one to believe; but the question does not seem easy to decide by our methods. A number of formulas involving integration of $G_{\mathcal{D}}(x)$ with respect to \mathcal{D} follow from 1.11 (6.2), which defines $G_{\mathcal{D}}(x)$ as the Fourier cosine transform of $\sqrt{\frac{1}{2}}\pi \exp(-x \operatorname{ch} t)$. In general if f(t) is a continuous function in $(0,\mathcal{D})$ such that $\int_0^{\mathcal{D}} |f(t)| dt$ exists, and if f(t) has limited total fluctuation in the neighborhood of the point t=s, there exist the following reciprocal relations between f(t) and its Fourier cosine transform $\mathcal{F}_{\mathcal{D}}(\mathcal{D})$: 35 $$\mathcal{Z}(\omega) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos \omega t \, dt; \qquad (17.1)$$ $$f(s) = \sqrt{\frac{2}{\pi}} \int_{c}^{\infty} \mathcal{I}_{c}(\nu) \cos s\nu \, d\nu, \qquad (17.2)$$ If in 1.11 (6.2) we make the following identifications: If $$f(\lambda) = \int_{\rho}^{q} \rho(\rho) J_{\rho}(\rho \lambda) \rho d\rho$$, $(0 \le \rho \le q)$ then $\int_{0}^{\infty} \left(\lambda - \frac{1}{\lambda} \right) f(\lambda) \int_{m} (m\lambda) d\lambda = \begin{cases} \frac{1}{2} \left[\rho(m+0) + \rho(m-0) \right], & p < m < q; \\ 0, & 0 < m < p \text{ or }
m > q. \end{cases}$ ³³⁾ Watson, op. cit., Arts. 14.3 et seq. 34) But see T. M. MacRobert, Proc. Roy. Soc. Edinburgh, 51, 116-126 (1931), where several Fourier-type integrals are obtained by contour integration. One of MacRobert's results is the following: ³⁵⁾ Titchmarsh, op. cit., 1-4, 13. $$\mathcal{J}_{c}(\mathcal{V}) = G_{\mathcal{V}}(x), f(t) = \sqrt{\frac{1}{2}\pi} e^{-x \operatorname{ch} t},$$ (18) then we have the pair of relations $$G_{y}(x) = \int_{0}^{\infty} e^{-x} \operatorname{ch} t \cos 2t dt, \qquad (19.1)$$ $$\frac{1}{2}\pi_{\Theta} = x \text{ ch } s = \int_{0}^{\infty} G_{\nu}(x) \cos \nu s \, d\nu. \tag{19.2}$$ In the special case s = 0, (19.2) becomes $$\int_{0}^{\infty} G_{y}(x) dy = \frac{1}{2} \pi e^{-x}. \tag{20}$$ If $\mathcal{F}(\nu)$ and $\mathcal{F}(\nu)$ are the Fourier cosine transforms of f(t) and g(t) respectively, then we have the formula 36) $$2\int_{c}^{\infty} \mathcal{J}_{c}(\nu) \mathcal{J}_{c}(\nu) \cos \nu t \, d\nu = \int_{c}^{\infty} g(u)f(t-u) \, du. \tag{21}$$ Applied to the wedge functions $G_{\mathcal{Y}}(x)$ and $G_{\mathcal{Y}}(y)$, this gives $$\int_{0}^{\infty} G_{y}(x)G_{y}(y) \cos yt \, dy = \frac{1}{4}\pi \int_{0}^{\infty} e^{-x} \operatorname{ch}(t-u)-y \, \operatorname{ch} \, u_{du_{s}}(22)$$ or, in the special case t = 0, $$\int_{0}^{\infty} G_{y}(x)G_{y}(y)dy = \frac{1}{2}\pi \int_{0}^{\infty} e^{-(x+y)} ch u_{du} = \frac{1}{2}\pi G_{0}(x+y). \quad (23)$$ The theory of Fourier integrals could doubtless be made to yield other such results involving $G_{\nu}(x)$; but since the applications which we have in view do not require the use of these formulas we shall not carry the investigation further here. ## 1.4. Transformation of the Differential Equation for the Wedge Functions. Calculation of the Eigenvalues. The wedge functions $F_{\rho}(x)$ and $G_{\rho}(x)$ are difficult to tabulate and to employ in numerical calculations for small values of the argument because of their oscillatory discontinuity at x=0. It is possible to facilitate their use in practical problems, as well as formally to simplify some theoretical developments, by transforming the independent variable of the defining differential equation so as to remove the singularity at ³⁶⁾ Titchmarsh, op. cit., 51. the origin from the finite part of the plane. For this purpose let $$u = \log x, \text{ or } x = e^{u}. \tag{1}$$ The transformation (1) takes the triad of points (0, 1, ∞) of the x-axis into the triad (∞ , 0, ∞) of the u-axis; and, since d/dx = e^{-u} d/du, it transforms the equation 1.1 (1) into $$d^{2}y/du^{2} + (y^{2} - e^{2u}) y = 0, (2)$$ which has no singularities for finite values of u, and of which the general solution is evidently $$y = c_1 F_{\nu}(e^{u}) + c_2 G_{\nu}(e^{u}) \qquad (3)$$ The quantities $F_{\nu}(e^{u})$ and $G_{\nu}(e^{u})$ are tabulated as functions of u and ν in the appendix of this thesis. It is evident from (1) and 1.12 (4.1) and (4.2) that for large negative values of u, $F_{\nu}(e^{u})$ and $G_{\nu}(e^{u})$ are approximately sinusoidal functions of ν u; this fact is plausible since $\sin \nu$ u and $\cos \nu$ u both satisfy (2) when u is negative and large enough to make e^{2u} negligible compared with ν^{2} . By theorem 3 of Art. 1.0 the solutions of (2) are non-oscillatory when $u \gg \log \nu$; their asymptotic form for u large and positive may easily be obtained from (1) and 1.12 (3.1) and (3.2). One may write a series expansion such as 1.31 (3) directly in terms of $F_{\gamma}(e^{u})$ and $G_{\gamma}(e^{u})$ by making the simple transformation of variable (1) in the integrals of 1.31 (4) and (5); but the eigenvalues γ_{n} must be computed as the roots of a transcendental equation. For example, if the boundary conditions are y = 0 at u = c and at u = d, then the eigenvalues are the roots in γ of the equation (cf. 1.31 (2)) $$\mathcal{J}_{\mathcal{I}}(\mathcal{P}^{2}) = \mathcal{F}_{\mathcal{P}}(e^{\mathbf{c}})\mathcal{G}_{\mathcal{I}}(e^{\mathbf{d}}) - \mathcal{G}_{\mathcal{P}}(e^{\mathbf{c}})\mathcal{F}_{\mathcal{P}}(e^{\mathbf{d}}) = 0. \tag{4}$$ The only practicable way to obtain the first few roots of (4) for given values of c and d appears to be interpolation in a table of wedge functions. One evaluates $\mathcal{F}(\mathcal{F}^2)$ for several adjacent tabular values of \mathcal{F} around the expected root $\mathcal{V}_{\mathbf{n}}$ and interpolates to find the value of \mathcal{V} for which the function vanishes. Then it is possible to calculate by double interpolation the value of the eigenfunction corresponding to \mathcal{V}_n for any desired value of u. If it is necessary to calculate the roots of (4) beyond the range of the available tables, recourse may be had to the asymptotic developments, first given by Horn, 37) of the large eigenvalues of (2) and their corresponding eigenfunctions. Horn's results will be briefly quoted here and applied to the case at hand. We consider the equation $$\frac{d}{du}\left(A\frac{dy}{du}\right) + \left(2^{2}B + C\right)y = 0, \tag{5}$$ where A, B, and C are real continuous functions of the real variable u and possess continuous derivatives of all orders in $c \le u \le d$, A and B being positive in the given interval; and 2 is an arbitrary parameter. Horn shows that the solution of (5) which satisfies the boundary conditions $y = \alpha$, $dy/du = \alpha$ at u = c is represented asymptotically for large values of 22 by the series $$y = C_0 \times \omega (9_0 + \frac{q_2}{2^2} + \cdots) + \sin 2\omega (\frac{q_1}{2^2} + \frac{q_3}{2^2} + \cdots), (6)$$ where w and the property are functions of u defined by: 37) Horn, J., Math. Ann., 52, 271-292 (1899). $$W(u) = \int_{A}^{u} \frac{\partial u}{\partial x}; \qquad (7.1)$$ $$P_{0}(u) = \frac{\partial \sqrt{A(c)B(c)}}{\sqrt{AB}}; \qquad \frac{\partial \sqrt{A(c)B(c)}}{\sqrt{AB}}; \qquad (7.2)$$ $$P_{1}(u) = -\frac{1}{2\sqrt{AB}} \int_{c}^{u} \frac{AP_{0}'' + A'P_{0}' + CP_{0}du}{\sqrt{AB}} + \frac{[\alpha' - \varphi_{0}'(c)]\sqrt{A(c)^{3}}}{\sqrt{AB}}; \qquad (7.3)$$ $$P_{2m}(u) = \frac{1}{2\sqrt{AB}} \int_{c}^{u} \frac{AP_{2m-1}'' + A'P_{2m-1}' + CP_{2m-1}}{\sqrt{AB}} du \quad (n = 1, 2, ...) \qquad (7.4)$$ $$P_{2m+1}(u) = -\frac{1}{2\sqrt{AB}} \int_{c}^{u} \frac{AP_{2m}'' + A'P_{2m}' + CP_{2m}}{\sqrt{AB}} du - \frac{P_{2m}'(c)\sqrt{A(c)^{3}}}{\sqrt{AB}}; \qquad (7.5)$$ $$\sqrt{AB} \sqrt{B(c)}$$ 37) Horn, J., Math. Ann., 52, 271-292 (1899). $(n = 1, 2, ...)$. If we impose the boundary conditions $$y(c) = y(d) = 0, \tag{8}$$ we get from (6), on setting $\alpha = 0$ in (7) and introducing the notations $$\widetilde{\omega} = \omega(d) = \int_{c}^{d_{1}} \frac{B}{A} du, \quad \forall n = q_{n+2}(d) \text{ for } n > -1, \quad (9)$$ the characteristic equation $$\widetilde{v}\widetilde{\omega} = \widetilde{tan} \left\{ -\frac{Y_0 + \frac{Y_1}{D^2} + \cdots}{vY_{-1} + \frac{Y_1}{D} + \cdots} \right\} = \widetilde{k}_{\pi} + \frac{S_1}{D} + \frac{S_3}{D^3} + \cdots$$ (10) where k is an integer (assumed positive) and an elementary calculation gives $$S_{i} = -\frac{\gamma_{o}}{\gamma_{-i}}, \quad S_{3} = -\left(\frac{\gamma_{2}}{\gamma_{-i}} - \frac{\gamma_{o}\gamma_{i}}{\gamma_{-i}^{2}} - \frac{\gamma_{o}^{3}}{3\gamma_{-i}^{3}}\right). \tag{11}$$ On setting $$v_{k} = \frac{k\pi}{\omega} + \frac{\varepsilon_{i}}{k} + \frac{\varepsilon_{3}}{k^{3}} + \cdots$$ (12) in (10) and equating to zero coefficients of successive powers of 1/k, we find that $$\varepsilon_{i} = \frac{S_{i}}{\pi}, \quad \varepsilon_{3} = \frac{1}{\pi^{3}} \left(\vec{\omega}^{2} S_{3} - \vec{\omega} S_{i}^{2} \right).$$ (13) Hence from (9), (11), (12), and (13) the eigenvalues of (5) with the boundary conditions (8) are given by $$\frac{\partial}{\partial k} = \frac{k\pi}{\varpi} - \frac{f_2(d)}{k\pi f_1(d)} + O\left(\frac{1}{(k\pi)^3}\right), \tag{14}$$ and the eigenfunctions are given to the same degree of approximation by (6) if we keep terms in 1/2. The case in which the boundary conditions are $$y'(c) - hy(c) = 0, y'(d) + Hy(d) = 0$$ (15) is treated in Horn's paper. One sets $\alpha = 1$ and $\alpha' = h$ in (7) and obtains formally the same results as in (10) - (13) above, except that the quantities γ_n are now defined by $$Y_{-1} = -\omega' \varphi_0, \quad Y_0 = \varphi_0' + H \varphi_0 + \omega' \varphi_1,$$ $$Y_1 = \varphi_1' + H \varphi_1 - \omega' \varphi_2, \quad Y_2 = \varphi_2' + H \varphi_2 + \omega' \varphi_3, \quad \cdots, \quad (16)$$ the functions all being evaluated at u = d. If we consider specifically equation (2) under the boundary conditions (8), we have A = 1, B = 1, $C = -e^{2u}$, and $\alpha = 0$, so that from (7), $$\omega(u) = \int_{c}^{u} du = u - c;$$ $$\varphi_{0}(u) = 0; \quad \varphi_{i}(u) = \alpha';$$ $$\varphi_{2}(u) = -\frac{\alpha'}{2} \int_{c}^{u} e^{2u} du = -\frac{\alpha'}{4} \left[e^{2u} - e^{2c} \right].$$ Hence the eigenvalues are given approximately by $$\frac{k\pi}{k} = \frac{k\pi}{(d-c)} + \frac{2^{2}-2^{2}c}{4k\pi},$$ (17.1) and the corresponding eigenfunctions by If we transform back to the original variable x by means of (1) and let $a = e^{c}$, $b = e^{d}$, the eigenvalues are given by $$\mathcal{D}_{k} = \frac{k\pi}{\log t/a} + \frac{t^2 - a^2}{4k\pi} + \cdots; \qquad (18.1)$$ and the eigenfunctions by the multiplicative constant a' being arbitrary. It would of course be possible to improve the approximations by computing more terms, but the quantities ϕ_n , δ_n , and \mathcal{E}_n increase rapidly in complexity for larger values of ne A great many theoretical results involving the eigenfunctions and eigenvalues of a Sturm-Licuville system, as well as some actual numerical information, may be obtained by adopting the viewpoint of the calculus of variations. 38) In connection with the system $$\frac{d}{dx} \left\{ K \frac{dy}{dx} \right\} - (l - \lambda g)_y = 0 \quad (K > 0, g > 0), \tag{19.1}$$ $$y'(a) - hy(a) = 0,$$ (19.2) $$y'(a) - hy(a) = 0,$$ (19.2)
$y'(b) + Hy(b) = 0,$ (19.3) one considers the functional expressions $$D[q] = \int_{a}^{b} (K q^{12} + l q^{2}) dx + h K(a) q(a)^{2} + H K(b) q(b)^{2}, \quad (20.1)$$ $$\mathcal{H}[\mathcal{Q}, \mathcal{Y}] = \int_{a}^{b} g \, \mathcal{Q} \, \mathcal{Y} \, dx \, ; \tag{20.2}$$ in the case of the differential equation 1.2 (1) satisfied by the wedge functions, K = x, $\ell = x$, and g = 1/x, so that $$D[q] = \int_{a}^{b} \chi(q^{2} + {\varphi'}^{2}) dx + ha \varphi(a)^{2} + H(b) \varphi(b)^{2}, \qquad (21.1)$$ $$\mathcal{H}[\mathcal{A}, \mathcal{A}] = \int_{a}^{b} \mathcal{A} \mathcal{A} \frac{dx}{x}. \tag{21.2}$$ Now it is known that if y_0 , y_1 , ..., y_{n-1} are the first n eigenfunctions of the system (19), then the (n+1)st eigenfunction of (19) is that function y_n which minimizes the quotient $Q[y_n] = \mathcal{D}[y_n]/\mathcal{V}[y_n, y_n]$ under the n subsidiary conditions $\mathcal{H}[y_i, y_n] = 0$, i = 0, 1, ..., n-1; and the actual minimum value of Q is the (n+1)st eigenvalue λ_{n} . In particular, if λ_{o} is the least eigenvalue of (19) and ø is any continuous function with a piecewise continuous first derivative, then $$Q[\varphi] = \frac{\mathcal{D}[\varphi]}{\mathcal{V}[\varphi,\varphi]} \geqslant \lambda_{o}; \tag{22}$$ the more exactly of approximates to the true eigenfunction, the more closely does the value of the quotient approach λ_0 . One may improve the approximation by following the procedure of Ritz³⁹⁾ and assuming for ø a series $c_1 p_1 + c_2 p_2 + \cdots + c_n p_n$ with adjustable coefficients, then minimizing Q[6] qua function of the coefficients. The ideas just developed evidently apply also to Bessel functions of real argument and either real or purely imaginary order. Application ³⁸⁾ Courant, R., and Hilbert, D., Methoden der Mathematischen Physik, vol. 1, 2nd ed., chap. 6, 345-348. 39) Ibid, 149-151. to a numerical example will be made in Art. 3.11. ### 1.5. Bessel Functions of Imaginary Order and Real Argument. Definitions of $U_{\mathcal{D}}(x)$ and $V_{\mathcal{D}}(x)$. The remainder of this chapter will be devoted to a development of the properties of Bessel functions of purely imaginary order and real argument. The treatment will be similar to that just given the functions of imaginary order and imaginary argument, but somewhat less detailed. Bessel's differential equation 0.1 (1) becomes, when $i\nu$ is written for ν , x for z, and y for w, $$x^{2}d^{2}y/dx^{2} + x dy/dx + (x^{2} + \nu^{2}) y = 0$$ (1) Two linearly independent solutions of (1), namely $J_{i,p}(x)$ and $J_{-i,p}(x)$, are given immediately by the power series 1.1 (2). Since when ω is real and x is real and positive $J_{i,p}(x)$ and $J_{-i,p}(x)$ are evidently complex conjugate quantities, under these conditions we shall regard as our fundamental pair of solutions of (1) the following real combinations: $$U_{\nu}(x) = \frac{1}{2} \left[\int_{i\nu} (x) + \int_{-i\nu} (x) \right] = Re \int_{i\nu} (x)$$ (2.1) $$V_{\nu}(x) = \frac{1}{2i} \left[\int_{i\nu} (x) - \int_{-i\nu} (x) \right] = \lim_{n \to \infty} \int_{-i\nu} (x) dx. \qquad (2.2)$$ We observe that $U_{\mathcal{P}}(x)$ is an even function of \mathcal{P} and $V_{\mathcal{P}}(x)$ is an odd function of \mathcal{P}_{\bullet} . It may be noted that while the definitions of $F_{\nu}(x)$ and $G_{\nu}(x)$ can be so chosen that the two wedge functions exhibit very different behavior at infinity, no such marked difference in asymptotic behavior exists among the various real solutions of (1) with imaginary order and real argument to dictate the form which we shall adopt for the definitions of $U_{\nu}(x)$ and $V_{\nu}(x)$. It might be well, before any extensive numerical calculations of these functions are undertaken, to consider more carefully whether they are indeed the most convenient pair of solutions of equation $(1)_{\bullet}*$ We shall mention briefly some alternative solutions of (1) in Art. 1.53; meantime we proceed to develop the properties of $U_{\nu}(x)$ and $V_{\nu}(x)$ #### Series and Integral Representations of $U_{\nu}(x)$ and $V_{\nu}(x)$. Like the wedge functions, the functions $U_{\nu}(x)$ and $V_{\nu}(x)$ possess an oscillatory discontinuity at the origin. They may however be conveniently represented for small values of x in terms of series of ordinary Bessel functions or power series. From Lommel's series 1.11 (1), on replacing $\mathcal P$ by $i\mathcal P$, z by x, and μ by 0, we obtain without difficulty $$\int i\nu(x) = \frac{i\nu \log^{\frac{1}{2}x}}{\Gamma(i\nu)} \left[C(\nu, x) - iD(\nu, x) \right], \tag{1}$$ $$C(\nu, x) = \sum_{m=1}^{\infty} \frac{m(2x)^m \int_m (x)}{m! (m^2 + D^2)};$$ (2.1) $$\mathcal{D}(\mathcal{V}, \mathcal{K}) = \sum_{m=1}^{\infty} \frac{\nu(\frac{1}{2}n)^m \int_{m} (\mathcal{K})}{m! (m^2 + \nu^2)}. \tag{2.2}$$ As in 1:11 we set $\Theta(\nu, x) = \rho \log \frac{1}{2}x - \arg f(i\nu)$ and employ 1.11 (4); then on separating real and imaginary parts of (1) by 1.5 (2.1) and (2.2) we get $$U_{\nu}(x) = \sqrt{\frac{\nu sh \nu \pi}{\pi}} \left[C(\nu, x) \cos \Theta(\nu, x) + \mathcal{D}(\nu, x) \sin \Theta(\nu, x) \right];$$ $$V_{\nu}(x) = \sqrt{\frac{\nu sh \nu \pi}{\pi}} \left[C(\nu, x) \sin \Theta(\nu, x) - \mathcal{D}(\nu, x) \cos \Theta(\nu, x) \right].$$ (3.1) $$V_{y}(x) = \sqrt{\frac{\nu_{x}h_{x}\pi}{\pi}} \left[C(\nu_{x}, x) \sin \Theta(\nu_{x}x) - D(\nu_{x}x) \cos \Theta(\nu_{x}x) \right]. \tag{3.2}$$ Comparing (2.1) and (2.2) with 1.11 (3.1) and (3.2) and using 1.13 (6.1) and (6.2), we see that $C(\nu, ix) = A(\nu, x) = -S_2(ix)/\nu$ and $D(\nu, ix) =$ $B(\mathcal{V}, x) = S_1(ix)/\mathcal{V}$, so that $$C(x), x) = -S_2(x)/y, D(x), x) = S_1(x)/y,$$ (4) ^{*}The matter of notation is also open to discussion. where $S_1(x)$ and $S_2(x)$ are the power series defined by 1.13 (4.1) and (4.2). A large number of contour integrals representing $J_{\gamma}(z)$, most of which remain valid when ν is purely imaginary, are given by Watson. Of theoretical interest is Poisson's integral, valid for Re $(\gamma) > -\frac{1}{2}$, $$J_{\nu}(2) = \frac{\left(\frac{1}{2} \frac{2}{2}\right)^{2}}{\Gamma(\nu + \frac{1}{2})\Gamma(\frac{1}{2})} \int_{0}^{\pi} \cos(2\cos\theta) \sin^{2\nu}\theta \ d\theta, \tag{5}$$ which was used by Lommel in the work previously cited 22) to define Bessel functions of complex order. However if ν is complex, say $\nu = \sigma + i \tau$, then separation of real and imaginary parts of (5) leads to oscillatory factors under the integral sign of the form $\sin (2T \log \sin \theta)$ which, while they do not impair the theoretical usefulness of (5), render it practically worthless for purposes of numerical computation. The same criticism applies to the various transformations of this integral given by Watsonullet A much more useful representation of $U_{\nu}(x)$ and $V_{\nu}(x)$ is furnished by Schläfli's generalization of Bessel's integral. 41 If Re (z) > 0, then for unrestricted values of ν , $$\int_{\mathcal{D}}(2) = \frac{1}{\pi} \int_{0}^{\pi} \cos(y\theta - 2\sin\theta) d\theta - \frac{\sin y\pi}{\pi} \int_{0}^{\infty} -yt - 2\sin t dt.$$ (6) If we replace y by iv and z by x and separate real and imaginary parts. we get by 1.5 (2.1) and (2.2) $$U_{\nu}(x) = \frac{1}{\pi} \int_{0}^{\pi} \cos(x \sin \theta) \cosh \theta d\theta - \frac{\sinh \pi}{\pi} \int_{0}^{\infty} e^{-x \sinh t} \sin \nu t dt, (7.1)$$ $$V_{\nu}(x) = \frac{1}{\pi} \int_{0}^{\pi} \sin(x \sin \theta) \sinh \theta d\theta - \frac{\sinh \pi}{\pi} \int_{0}^{\infty} e^{-x \sinh t} \cosh t dt. (7.2)$$ Another integral representation of $J_{\mathcal{D}}(x)$, valid for $\mathbb{R}e^{(\mathcal{V})}$ < 1 ⁴⁰⁾ Watson, op. cit., chap. VI. 41) Ibid., 176. and x > 0, is 42) $$J_{\nu}(x) = \frac{2}{\pi} \int_{0}^{\infty} \sin\left(x \cosh t - \frac{\nu \pi}{2}\right) \cosh t \, dt. \tag{8}$$ This yields, on setting $i\nu$ for ν , $$U_{\mathfrak{p}}(x) = \frac{2}{\pi} ch^{\frac{2\pi}{2}} \int_{0}^{\infty} \sin(x cht) \cos x t \, dt, \tag{9.1}$$ $$V_{\nu}(x) = -\frac{2}{\pi} sh^{\frac{2\pi}{2}} \int_{0}^{\infty} c_{0}(x cht) c_{0}x t dt. \qquad (9.2)$$ Since the convergence of the last two integrals is obtained only by the rapidity of oscillation of the integrands, they are probably not so well adapted to evaluation by mechanical quadrature as the infinite integrals of (7.1) and (7.2), whose convergence is secured by the factor exp (-x sh t). ### 1.52. Asymptotic Behavior of Up(x) and Vp(x). Using the notation of 1.12 (1), we have if ν is fixed and z is large and positive with $\arg z < \pi$, the following asymptotic expansion of $$J_{\nu}(z)$$: 43) $$\int_{\nu}(z) \sim \left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \left[\cos(2-\frac{1}{2}\nu\pi - \frac{1}{4}\pi)\right] \sum_{m=0}^{\infty} \frac{(-)^{m}(\nu, 2m)}{(2z)^{2m}} \\ -\sin(2-\frac{1}{2}\nu\pi - \frac{1}{4}\pi)\sum_{m=0}^{\infty} \frac{(-)^{m}(\nu, 2m+1)}{(2z)^{2m+1}}\right]. (1)$$ The coefficient (\mathcal{V}, m) may be written if $m \geqslant 1$ in the form $$(9,m) = \frac{\{4v^2-1^2\}\{4v^2-3^2\}\cdots\{4v^2-(2m-1)^2\}}{2^{2m}m!},$$ (2) while $(\nu, 0) = 1$. Replacing ν by $i\nu$ and z by x and separating real and imaginary parts of (1) we have if ν is fixed and x is large and positive: ⁴²⁾ Watson, op. cit., 180. 43) Ibid., 199. The convergence factor for the series (1) is given explicitly by Airey in reference 19. From (3.1) and (3.2) we see that any real solution of 1.5 (1) has for sufficiently large values of x the asymptotic form $$y \sim Ax^{-\frac{1}{2}} \sin (x + \delta), \qquad (4)$$ thus confirming the remark made at the end of Art. 1.5 that all real Bessel functions of imaginary order and real argument exhibit the same (oscillatory) asymptotic behavior for large values of the argument. This result is to be contrasted with the non-oscillatory character of the functions of imaginary order and imaginary argument for $x \gg 2$. The limiting forms of $U_{\nu}(x)$ and $V_{\nu}(x)$ as
$x \to +0$, ν being fixed, may be obtained from 1.51 (2) and (3) if we recall that $J_{m}(0) = S_{om}$; these forms are $$(|y|_{\mathcal{X}}) \longrightarrow \sqrt{\frac{sh\nu\pi}{\nu\pi}} \sin\left[\nu\log\frac{1}{2}\chi - \arg\Gamma(i\nu)\right],$$ $$(5.1)$$ $$V_{\nu(\chi)} \longrightarrow -\sqrt{\frac{sh\nu\pi}{\nu\pi}} \cos\left[\nu\log\frac{1}{2}\chi - \arg\Gamma(i\nu)\right].$$ $$(5.2)$$ Both functions evidently undergo an infinite number of oscillations in the neighborhood of the origin. To find asymptotic expressions for $U_{\mathcal{J}}(x)$ and $V_{\mathcal{J}}(x)$ when \mathcal{J} is large and x is fixed, we substitute Stirling's approximation 1.12 (5) for the Γ -function into the first term of the series (cf. 1.1 (2)) for $J_{i\mathcal{J}}(x)$ and obtain $$\int_{iv(x)}^{100} \sim \frac{1}{\sqrt{2\pi\nu}} \exp\left[iv(\log \frac{1}{2} - \log \nu + 1 - \frac{i\pi}{2}) - \frac{i\pi}{4}\right] \left\{1 + O\left(\frac{1}{\nu}\right)\right\} \\ = \frac{\nu}{\sqrt{2\pi\nu}} \exp\left[iv(\log \frac{1}{2} - \log \nu + 1) - \frac{\pi}{4}\right] \left\{1 + O\left(\frac{1}{\nu}\right)\right\}.$$ (6) Hence we have, for 2 large and x fixed, $$U_{\nu}(\nu) \sim \frac{\sqrt{2\pi\nu}}{\sqrt{2\pi\nu}} \cos \left[\nu (\log \frac{\pi}{2} - \log \nu + 1) - \frac{\pi}{4}\right] \left\{1 + O(\frac{1}{2})\right\}, (7.1)$$ $$V_{\nu}(\kappa) \sim \frac{2^{\nu\pi/2}}{\sqrt{2\pi\nu}} \sin \left[\nu (\log \frac{\pi}{2} - \log \nu + 1) - \frac{\pi}{4}\right] \left\{1 + O(\frac{1}{2})\right\}. (7.2)$$ Both canonical solutions of Bessel's equation with imaginary order and real argument, regarded as functions of their order ν , undergo an infinite number of oscillations of exponentially increasing amplitude and slowly decreasing wavelength as y increases without limit. Since $J_{\nu}(z)$ is a continuous function of ν , we see from the definitions 1.5 (2.1) and (2.2) that as $\mathcal{V} \rightarrow 0$, x remaining fixed, $$U_{\nu}(x)$$ $\overline{\nu} \rightarrow 0$ $\int_{0}^{\infty} (x)$ (8.1); $V_{\nu}(x)$ $\overline{\nu} \rightarrow 0$. (8.2) Furthermore $$\lim_{N \to 0} \frac{V_{\nu}(x)}{2} = \lim_{N \to 0} \frac{\int_{i\nu}(x) - \int_{-i\nu}(x)}{2i\nu} = \frac{i}{2} \mathcal{I}_{o}(x)$$ (8.3) by definition, where $\mathcal{I}_{\rho}(\mathbf{x})$ is the Bessel function of the second kind of Hankel's type. 44) Asymptotic expressions for $U_{\gamma}(x)$ and $V_{\gamma}(x)$ when γ and x are simultaneously large and of comparable magnitude may be obtained if necessary by specializing the formulas for Bessel functions of large order contained in the reference 23) mentioned at the end of Art. 1.12. ### Alternative Definitions of Bessel Functions of Imaginary Order and Real Argument. The equation $$x^2 d^2 y/dx^2 + x dy/dx + (x^2 + y^2) y = 0$$ (1) appears to have been first solved by Boole, 45) who obtained by the methods of operational calculus the general solution ⁴⁴⁾ Watson, op. cit., Arts. 3.5, 3.6. 45) Boole, G., Phil. Trans. Roy. Soc. (1844), 239. $$y = \cos (\log x) \sum_{n=0}^{\infty} a_{2n} x^{2n} + \sin (\log x) \sum_{n=0}^{\infty} b_{2n} x^{2n},$$ (2) where a_0 and b_0 are arbitrary and for $n \geqslant 1$ $$a_{2n} = -\frac{ma_{2n-2} - 2\sqrt{b_{2n-2}}}{4m(n^2 + \nu^2)}, \quad b_{2n} = -\frac{mb_{2n-2} + \nu a_{2n-2}}{4m(n^2 + \nu^2)}. \quad (3)$$ Bocher's functions, denoted in 1.13 by $H_{ij}(x)$ and $I_{ij}(x)$ and defined by 1.13 (3.1) and (3.2), may evidently be obtained from Boole's solution by taking a_0 and b_0 to be 1 and 0 or 0 and 1 respectively. If canonical solutions of (1) be defined by assigning simple values to the constants ao and bo in the general solution (2), the resultant series give precise information about the behavior of the functions which they represent in the neighborhood of the origin; but they do not convey a good idea of the nature of these functions for large values of the argument. On the other hand the functions $U_{2}(x)$ and $V_{2}(x)$, despite the fact that to represent them in the form (2) would require choosing a and b_0 to have a complicated dependence on \mathcal{V}_{\bullet} are defined as simple combinations of the functions $J_{\pm i\nu}(x)$, whose behavior for all values of order and argument is already well known. * In view of the present state of development of the theory of Bessel functions, it seems convenient to choose the canonical functions of imaginary order and real argument to be related as directly as possible to $J_{i\nu}(x)$; whether or not we insert a multiplicative factor depending on $\mathscr{V}_{m{s}}$ as in the case of the wedge functions $F_{y}(x)$ and $G_{y}(x)$, does not appear to be particularly significant. If $U_{y}(x)$ and $V_{y}(x)$ are to be tabulated over a considerable range of values of \mathcal{P}_{\bullet} it is evident from 1.52 (7.1) and (7.2) that the functions will ^{*}So many of the known properties of the solutions of Bessel's equation have been expressed in terms of the function $J_{\rho}(z)$ that now the easiest way to investigate the series (2) would probably be to express it by 1.13 (1) and (2) as a linear combination of $J_{(\rho)}(x)$ and $J_{-i\rho}(x)$, from which its properties could be quickly deduced. show a wide variation in absolute magnitude; this complication may be avoided by tabulating the combinations $\exp\left(-\frac{1}{z}\mathcal{P}^{\eta}\right)U_{\mathcal{P}}(x)$ and $\exp\left(-\frac{1}{z}\mathcal{P}^{\eta}\right)V_{\mathcal{P}}(x)$. For the reasons discussed at the end of Art. 1.13, it is not to be expected that recurrence relations will exist among Bessel functions of real argument and purely imaginary order. ### 1.6. Zeros of the Functions U,(x) and V,(x). With the notation of Art. 1.0, the equation $$\frac{d}{dx}\left(x\frac{dy}{dx}\right) + \left(x + \frac{y^2}{x}\right)y = 0 \tag{1}$$ is a Sturm equation in which K(x) = x, $G(x) = -x - \sqrt{2}/x$. The function G(x) attains its maximum value $-2\sqrt{2}$ when $x = \sqrt{2}$ and tends to $-\infty$ as $x \to +0$ or as $x \to +\infty$. The following theorem summarizes various results concerning the distribution of the positive real zeros of the solutions of (1). Theorem 1. (i). Every real solution of (1) has an infinite number of positive real zeros, with limit points at x = 0 and at $x = +\infty$. - (ii). If (a, b) is any preassigned finite interval of the positive real axis and m is any given positive integer, then for sufficiently large values of \mathcal{P} every real solution of (1) will have at least m zeros in (a, b). - (iii). If $y_{y}(x)$ is any real solution of (1) which vanishes at $x = c \ (>0)$, then the next smaller zero of $y_{y}(x)$ exceeds $c = \pi c/(c^{2} + y^{2} + \frac{1}{4})^{\frac{1}{2}} \cdot 46)$ Part (i) is an evident consequence of the limiting forms 1.52 (4) and (5) of the fundamental pair of solutions of (1) for large and small values of x_0 . For part (ii), if y > b we have throughout (a, b) the inequalities $G(x) \le \mathcal{L} = -b (1 + y^2/b^2)$ and $K(x) \le \mathcal{K} = b$. The desired result follows ⁴⁶⁾ Cf. Watson, op. cit., Art. 15.82. from theorem 3 of Art. 1.0, since $$-4/K = 1 + v^2/b^2 > m^2\pi^2/(b - a)^2$$ for all sufficiently large values of \mathcal{V}_{\bullet} . The larger the order \mathcal{I}_{\bullet} , the more rapidly will the solutions of (1) oscillate in the neighborhood of a given point. To prove part (iii) we write $u = \sqrt{xy}$ in (1); u obviously has the same positive zeros as y. This substitution transforms (1) into $$\frac{d^2u}{dx^2} + \left(1 + \frac{y^2 + \frac{1}{4}}{x^2}\right)u = 0,$$ (2) which is to be compared with the equation $$\frac{d^2 v}{dx^2} + \left(1 + \frac{v^2 + \frac{1}{4}}{c^2}\right) v = 0. \tag{3}$$ The solutions of the latter equation are sinusoids in x with an interval $\pi c/(c^2+\sqrt[3]{2}+\frac{1}{4})^{\frac{1}{2}}$ between successive zeros. Now if $x \neq c$, we have $(\sqrt[3]{2}+\frac{1}{4})/x^2 \geqslant (\sqrt[3]{2}+\frac{1}{4})/c^2$, so that by theorem 2 of Art. 1.0 the solutions of (2) oscillate more rapidly than the solutions of (3). This implies that if $y_2(x)$ vanishes at x=c, it must have vanished previously to the right of $c -\pi c/(c^2+\sqrt{2}+\frac{1}{4})^{\frac{1}{2}}$. Since $c/(c^2+\sqrt{2}+\frac{1}{4})^{\frac{1}{2}} < 1$, we see that every real solution of (1) vanishes at least once in any interval of length π of the positive real axis. The following theorem is concerned with the zeros of the solutions of (1) regarded as functions of their order. Theorem 2. If A and B are real constants independent of 2 and if x has any fixed value, the linear combination $$y_{\nu}(x) = AU_{\nu}(x) + BV_{\nu}(x), \qquad (4)$$ regarded as a function of \mathcal{D}_{\bullet} has an infinite number of zeros for increasing values of \mathcal{D} with a limit-point at $+\infty_{\bullet}$ The theorem follows from a consideration of the asymptotic forms 1.52 (7.1) and (7.2) for $U_{y}(x)$ and $V_{y}(x)$ when v^{y} is large and x is fixed, in a manner analogous to the proof of theorem 2, Art. 1.2, which involves the wedge functions. ### 1.7. Expansion of an Arbitrary Function in a Series of Bessel Functions of Imaginary Order and Real Argument. If we attempt to represent an arbitrary function by a series of Bessel functions of imaginary order and real argument over a finite interval of the positive x-axis, we arrive at results somewhat different from those encountered in the similar problem involving wedge functions, for we find that the representation usually requires a finite number of ordinary Bessel functions of real order and real argument in addition to an infinite series of functions of imaginary order and real argument. Consider the Sturm-Liouville system: $$\frac{d}{dx}\left(x\frac{dy}{dx}\right) - \left(-x - \frac{y^2}{x^2}\right)y = 0, \tag{1.1}$$ $$\alpha'y(a) - \alpha y'(a) = 0, \qquad (1.2)$$ $$\beta' y(b) + \beta y'(b) = 0,$$ (1.3) where $0 < a < b < \infty$ and, with the notation of
1.0 (4.1), K(x) = x, $\ell(x) = -x$, g(x) = 1/x, and $\lambda = 2$. The two boundary conditions together furnish the characteristic equation (cf. 1.0 (5)) which must be satisfied by the eigenvalues; e. g., in the simple case where $\ell' = \beta' = 0$ so that the boundary conditions are y'(a) = y'(b) = 0, the characteristic equation is $$\mathcal{J}_{1}(y^{2}) = U_{y^{2}}(a)V_{y^{2}}(b) - U_{y^{2}}(b)V_{y^{2}}(a) = 0.$$ (2) In any case the system (1) satisfies the conditions of the first sentence of theorem 5, Art. 1.0, so there will be an infinite set of real eigenvalues λ_0 , λ_1 , λ_2 , ..., which have no limit-point but $+\infty$. Since $\ell(x)$ is negative, in general a finite number, say k, of these eigenvalues will be negative. If the eigenvalues be arranged in order of increasing alge- braic magnitude and denoted by $-\frac{1}{16}^2 = \lambda_0$, $-\frac{1}{12}^2 = \lambda_1$, ..., $\frac{1}{12}^2 = \lambda_{k-1}$, $\frac{1}{12}^2 = \lambda_{k-1}$, $\frac{1}{12}^2 = \lambda_{k+1}$, $\frac{1}{12}^2 = \lambda_{k+1}$, ..., we see that the eigenfunctions y_{ij} , corresponding to the first k eigenvalues will be ordinary Bessel functions of real order y_{ij} and real argument, while the remaining eigenfunctions y_{ij} , will be Bessel functions of purely imaginary order and real argument. It may be noted that the functions $y_{ij}(x)$ and $y_{ij}(x)$ exhibit no qualitative differences in behavior within the interval (a, b) except for the regular increase in number of zeros required by the fundamental theorem 5; outside the given interval in the neighborhood of the origin there is of course a marked difference in the behavior of the functions of real order and those of imaginary order. An arbitrary function f(x) may be represented in (a, b) by means of the eigenfunctions of the system (1) in the form $$f(x) = \sum_{m=0}^{k-1} A_m y_{\mu_m}(x) + \sum_{m=k}^{\infty} A_m y_{\nu_m}(x), \qquad (3)$$ where the coefficients A_m of the second series are given formally by 1.31 (4) and (5),* and the coefficients A_m of the first series are given, since $M_m = i P_m$, by since $$\mu_{\mathbf{m}} = i \nu_{\mathbf{m}}$$ by $$A_{mn} = \frac{\int_{a}^{h} f(t) y_{\ell m}(t) \frac{dt}{t}}{\int_{a}^{a} y_{\ell m}(t) \frac{dt}{t}},$$ (4) $$\int_{a}^{b} \frac{dx}{x} (t) \frac{dt}{t} = -\frac{b}{2u_{m}} \left[\frac{\partial y_{u_{m}}(x)}{\partial x} \right]_{x=b} \left[\frac{\partial y_{u}(x)}{\partial u} + \frac{\beta}{\beta} \frac{\partial^{2} y_{u}(x)}{\partial u \partial x} \right]_{x=b} (5)$$ The convergence properties of the series (3) depend upon such results as theorem 8 of Art. 1.0, which apply to Sturm-Liouville series in general. We now consider briefly what form the series (3) must take if we try to represent f(x) in the infinite interval (a, ∞) or in the interval ^{*}Of course y_p is not the same function in the present section that it was in 1.31. (0, b) which includes the origin. From 1.52 (1) and (3) we see that every solution of Bessel's equation with real argument and either real or purely imaginary order vanishes, together with its derivatives, as $x \to \infty$, so that if a is positive and b is infinite, the boundary conditions (1.2) and (1.3) no longer select discrete values of \mathcal{V} . We have instead to use all values of \mathcal{V} , both real and purely imaginary, in the representation of f(x); and we are led to expect that if a representation of f(x) analogous to (3) is possible in the interval (a,∞) , it will be of the form $f(x) = \int_{0}^{\infty} C(\mu) y_{\mu}(x) d\mu + \int_{0}^{\infty} D(\nu) y_{\nu}(x) d\nu, \tag{6}$ where $y_{\mu}(x)$ and $y_{\mu}(x)$ are those solutions of Bessel's equation, of real and purely imaginary order respectively, which satisfy the boundary condition (1.2). The coefficients $C(\mu)$ and $D(\nu)$, which will themselves involve definite integrals, may be expressed, as in the derivation at the end of 1.31, by $$C(\mu) = \lim_{b \to 0} \frac{A_m}{\mu_{m+1} - \mu_m}; \quad D(\nu) = \lim_{b \to 0} \frac{A_m}{\nu_{m+1} - \nu_m}. \tag{7}$$ If the left-hand end-point of the fundamental interval (a, b) is taken to be the origin, the boundary conditions (1.2) and (1.3) still give us a finite number of discrete negative eigenvalues $\lambda_i = -\mu_i^2$ corresponding to eigenfunctions $J_{\mu_i}(x)$. Since we have automatically $J_{\mu}(0) = 0$ if $\mu > 0$ and $J_{\mu'}(0) = 0$ if $\mu > 1$, the μ_i 's are the roots in μ of the equation $\beta^*J_{\mu}(b) + \beta J_{\mu'}(b) = 0$. On the other hand if $\lambda = \mu^2 > 0$, we cannot satisfy the boundary condition (1.2), since in this case from 1.52 (5.1) and (5.2) all solutions of (1.1) oscillate infinitely rapidly ⁴⁷⁾ Bocher, op. cit., 159-160, discusses both of these possibilities in the case where the boundary condition at the end-points is y=0. in the neighborhood of the origin and their derivatives are unbounded. However in some applications, such as those arising in potential theory, it is sufficient to require, not that (1.2) be satisfied, but merely that the functions $y_2(x)$ remain bounded as $x \to +0$. This latter condition is satisfied by the solutions of (1.1) for all positive values of y^2 . Hence the representation analogous to (3) of f(x) in the open interval (0, b) must consist of a finite series of ordinary Bessel functions of real order plus an infinite integral over the functions of imaginary order; $$f(x) = \sum_{m=0}^{k-1} A_m y_{\ell m}(x) + \int_0^\infty B(x) y_{\nu}(x) d\nu, \qquad (8)$$ where $y_{\ell,m}(x)$ and $y_{\nu}(x)$ are bounded at the origin and satisfy the boundary condition (1.3). The coefficient A_m is given by (4) and the coefficient $B(\nu)$ by $$\mathcal{B}(\nu) = \lim_{\alpha \to 0} \frac{A_m}{\nu_{m+1} - \nu_m}.$$ (9) The representation of f(x) over the whole range $(0, \infty)$ will evidently require two infinite integrals of the form (6) with a = 0. The actual existence of formulas such as (6) and (8) appears very plausible in view of the known validity of several similar integral formulas of Fourier's type; however we shall not here investigate the explicit form of the coefficients in (6) and (8) or the conditions under which these formulas may be rigorously valide # 1.8. Transformation of the Differential Equation for the Functions $U_{\nu}(x)$ and $V_{\nu}(x)$. Calculation of the Eigenvalues. For purposes of numerical calculation it is convenient to subject the differential equation 1.5 (1) for Bessel functions of imaginary order and real argument to the transformation of Art. 1.4, namely $$u = \log x, \text{ or } x = e^{u}. \tag{1}$$ The equation then becomes $$d^{2}y/dx^{2} + (y^{2} + e^{2u}) y = 0, (2)$$ which has no singularities for finite values of u, and of which the general solution is evidently $$y = c_1 V_{\nu}(e^{u}) + c_2 V_{\nu}(e^{u}). \tag{3}$$ From (1) and 1.52 (5.1) and (5.2), or by inspection of the transformed equation (2), the solutions are approximately sinusoidal functions of ν when u is negative and so large that $e^{2u} << \nu^2$. To find the small eigenvalues of the Sturm-Liouville system 1.7 (1), it is necessary to obtain the first few roots of some such characteristic equation as 1.7 (2). As in the case of the wedge functions, the only practicable way of doing this appears to be interpolation in a table of the functions U₂) and V₂, or preferably in a table of their derivatives; until such tables are available the practical value of Bessel functions of imaginary order and real argument will be limited. If the characteristic equation happens to have negative roots, as discussed in the preceding article, recourse must be had to a table of ordinary Bessel functions which includes non-integral as well as integral values of the order. The large positive eigenvalues of the system 1.7 (1) are given asymptotically by Horn's method, outlined in Art. 1.4. If for example the boundary conditions are dy/du = 0 at u = c and at u = d, corresponding in virtue of (1) to dy/dx = 0 at $x = e^{c}$ and at $x = e^{d}$, then we have h = H = 0 in 1.4 (15). Setting A = B = 1, C = e^{2u} , and a = 0 in 1.4 (7), we get $$W(u) = n - c$$, $f_0(u) = d$, $f_1(u) = -\frac{\alpha}{4}(e^{2u} - e^{2c})$. Hence from 1.4 (16), (11), (12), and (13) the positive eigenvalues are given approximately by $$v_{k} = k\pi/(d - c) - (e^{2d} - e^{2c})/4k\pi_{s}$$ or transforming back to the variable x by (1) and setting $a = e^{c}$, $b = e^{d}$, $$y_k = k\pi/\log (b/a) - (b^2 - a^2)/4k\pi_0$$ (4) The corresponding eigenfunctions are, by 1.4 (6), As in Art. 1.4, we may employ the calculus of variations to estimate the lowest eigenvalue λ_0 of the system 1.7 (1). In the case where the boundary conditions are $y^*(a) = y^*(b) = 0$, we find on comparing 1.7 (1) with 1.4 (19), (20), and (22), that $$\lambda_{\circ} \leq Q[\varphi] = \frac{\mathcal{D}[\varphi]}{\mathcal{H}[\varphi, \varphi]}, \tag{6.1}$$ where $$\mathcal{D}[q] = \int_{a}^{b} \chi(q'^2 - q^2) dx$$ and $\mathcal{H}[q,q] = \int_{a}^{b} q^2 \frac{dx}{\chi}$, (6.2) \$\delta\$ being any continuous function with a piecewise continuous derivative in (a, b) such that $$\phi^{\bullet}(a) = \phi^{\bullet}(b) = 0_{\bullet} \tag{7}$$ If we take $\beta(x) \equiv 1$, we get at once from (6) $$\lambda_0 \leq Q[1] = -\frac{1}{2}(b^2 - a^2)/\log (b/a).$$ (8) It is also of some interest to take $\phi = \cos[n\pi(x-a)/(b-a)]$, where n is a positive integer. This function evidently satisfies (7), and an elementary calculation gives for the expressions defined by (6.2) where Si $u = \int_0^u \frac{\sin t}{t} dt$ and Ci $u = -\int_0^u \frac{\cos t}{t} dt$. It is not necessarily true that the ratio of the last given expressions for \mathcal{D}_m and \mathcal{H}_m dominates the (n+1)st eigenvalue of the system 1.7 (1), because the function $\phi = \cos \left[n\pi(x-a)/(b-a) \right]$ is not strictly orthogonal to the preceding n
eigenfunctions; nevertheless the ratio $\mathcal{D}_m/\mathcal{H}_m$ should give a rough approximation to the (n+1)st eigenvalue for small values of n, and in the absence of tables this value may be improved by using such definite integrals as 1.51 (7.1) and (7.2) actually to compute the functions U_p , and V_p , occurring in the characteristic equation for a pair of adjacent values of \mathcal{D}_p . In Art. 3.11 we shall compare for a particular numerical case the estimates of the eigenvalues given by (4) and by (9). #### CHAPTER II Physical Applications of Bessel Functions of Imaginary Order and Imaginary Argument #### 2.1. A General Potential Problem in Cylindrical Coordinates. Bessel functions of imaginary order were introduced into mathematical physics by M. Bocher¹⁾ in the investigation of a certain problem of potential theory. The essential features of Bocher's discussion will be given in the present article. The potential problem in question is the following: Given a space S bounded externally by two coaxial cylinders of revolution, two planes through the axis of these cylinders, and two planes perpendicular to this axis. It is required to find a potential function V which 1) everywhere within S satisfies Laplace's equation $\nabla^2 V = 0$, and is finite, continuous, and single-valued, together with its first space derivatives, and 2) assumes on the surface of S arbitrarily assigned values. The space S may be defined in a conveniently chosen system of cylindrical coordinates (ρ, ϕ, z) by the inequalities $0 \angle a \angle \rho \angle b$, $0 \angle \phi$ $\angle \alpha \angle 2\pi$, and $0 \angle z \angle c$. We may solve the general potential problem by superposing six simpler potential functions, each of which takes on assigned values on a single (different) face of S and vanishes on the other five faces. The face of S on which a given potential function does not vanish will be called the exceptional face; it turns out that we shall get essentially three different types of solution, corresponding to the following cases: ¹⁾ Bocher, M., Annals of Mathematics, 6, 137-160 (1892). - (i) The exceptional face is one of the planes perpendicular to the axis, say z = c; - (ii) the exceptional face is one of the cylindrical surfaces of S_{s} say $\rho = b$; - (iii) the exceptional face is one of the azimuthal planes, say $\beta = \alpha$. Our first task is to find suitable solutions of Laplace's equation, which in cylindrical coordinates takes the form $$\nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \rho^2} + \frac{\partial^2 V}{\partial z^2} = 0. \tag{1}$$ If we assume that V may be expressed as a product of cylindrical harmonics, $$V = R(\rho) \bar{\mathfrak{a}}(\emptyset) Z(z), \qquad (2)$$ we find that V will be a solution of (1) provided that R, Φ , and Z satisfy the following equations:²⁾ $$d^2 \mathbf{\Phi} / d \phi^2 = - \sigma^2 \mathbf{\Phi}, \tag{3}$$ $$d^2Z/dz^2 = k^2Z, (4)$$ $$\rho^2 d^2 R/d\rho^2 + \rho dR/d\rho + (k^2 \rho^2 - \nu^2) R = 0,$$ (5) where k^2 and p^2 are arbitrary separation constants. It is seen that \overline{a} and Z will be exponential or trigonometric functions of their arguments, and, by comparing (5) with 0.1 (1), that R will be a Bessel function of order p and argument kp * The behavior of all three functions depends largely upon the nature of the separation constants. If u_1 , u_2 , u_3 represent the three cylindrical coordinates in any order, the exceptional face of S being given by u_3 = constant, then the product of harmonics (2) must vanish on a pair of faces u_1 = constant and on a pair of faces u_2 = constant; therefore k^2 and p^2 must be so chosen that $U_1(u_1)$ and $U_2(u_2)$ are oscillatory functions of their arguments in ²⁾ Smythe, W. R., Static and Dynamic Electricity, 1st ed., Arts. 5.29, 5.291. ^{*}In the special cases k = 0 and k = 20 = 0, the solutions of (3), (4), and (5) are all elementary functions; these are not of interest in our present developments the relevant intervals. This requirement fixes the nature of the separation constants in the three different cases listed above. In case (i) the condition that R and a must be oscillatory functions is secured by taking ν and k both real, so that the solutions of the a-equation will be sinusoids in ν and the solutions of the R-equation will be ordinary Bessel functions of order ν and argument k. The solutions of the Z-equation will be real exponential (hyperbolic) functions of kz. It is easy to show from the general theory of Sturm-Liouville systems that the boundary conditions on a and R determine an infinite number of admissible values of the constants ν and k. In case (ii) we make both & and Z sinusoidal functions by taking preal and k purely imaginary; the boundary conditions are satisfied by an infinite number of values of each. The solutions of the R-equation are now Bessel functions of real order and imaginary argument, i. e., modified Bessel functions I_D and K_D. In case (iii) we take \mathcal{P} and k both imaginary, so that Z is a sinusoidal function of $|\mathbf{k}|$ and R is a Bessel function of imaginary order and imaginary argument; \mathbf{Q} will be a sum of real exponential (hyperbolic) functions of $|\mathbf{p}| \mathbf{p}$. If we now write k for ik and \mathbf{p} for $\mathbf{i}^{\mathbf{p}}$ and employ the notation introduced in 1.1 for Bessel functions of imaginary order and imaginary argument, we get for the typical product of harmonics V = [AF, (kp) + BG, (kp)][C sh v p + D ch v p][E sin kz + F cos kz] (6) The separate solutions of our three partial problems all proceed now in much the same way; but since problems of types (i) and (ii) involve only well-known functions and are treated in standard works on potential theory, 3) we turn our attention immediately to (iii). In this case the ³⁾ See for example Smythe, op. cit., chap. V. boundary condition on the surfaces $\rho = a$, $\rho = b$, z = 0, z = c, and $\phi = 0$ is V = 0; on the remaining surface $\phi = \infty$ the condition is $$V(\rho, \alpha, z) = f(\rho, z). \tag{7}$$ We secure the vanishing of V on the first five surfaces by choosing from the set of all products of the type (6) every one which has the form $V_{mn} = C_{mn} \left[G_{\nu_{nm}}(n\pi a/c) F_{\nu_{nm}}(n\pi \rho/c) - F_{\nu_{nm}}(n\pi a/c) G_{\nu_{nm}}(n\pi \rho/c) \right] \sin \nu_{nm} \sin (n\pi z/c), \quad (8)$ where we have taken $k = n\pi/c$, n a positive integer, and ν_{nm} is the mth positive root of the equation $$G_{\nu}(n\pi a/c)F_{\nu}(n\pi b/c) - F_{\nu}(n\pi a/c)G_{\nu}(n\pi b/c) = 0.$$ (9) The last equation is equivalent to 1.31 (2); it has an infinite number of real positive roots in \mathcal{S}_{\bullet} . We shall denote the Bessel function enclosed in square brackets in (8) by $R_{\mathcal{S}_{nm}}(n\pi\rho/c)$. We now build from the set of products (8) the double series $$V(\rho, \phi, z) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{mn} R_{nm} (n\pi \rho/c) \text{ show sin } n\pi z/c, \qquad (10)$$ which vanishes on the non-exceptional faces of S and which we shall assume satisfies Laplace's equation, as it certainly would if it consisted of only a finite number of terms.* Inasmuch as the functions $\sin n\pi z/c$ and $R_{\rho_{nm}}(n\pi\rho/c)$ form complete orthogonal sets over the intervals $0 \le z \le c$ and a $\le \rho \le b$, we may formally determine the coefficients to satisfy the boundary condition on the exceptional face. Substitution of (10) into #### (7) gives ^{*}In the present section and the two following we shall assume without further investigation that the infinite series and infinite integrals with which we deal are convergent and that the necessary interchanges of limit-operations are justified; such formal procedure is often fruitful, even though from the point of view of pure mathematics a more rigorous treatment would be desirable. As Bocher⁴) points out, the practical utility of such a series as (10) depends not so much on its ultimate convergence as on the numerical accuracy with which the first few terms approximate to the desired function. ⁴⁾ Bocher, M., Über die Reihenentwickelungen der Potentialtheorie, 157-158. $$f(\rho, z) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} C_{mn} R_{\rho, nm}(n\pi\rho/c) \text{ shown sin } n\pi z/c.$$ (11) We multiply both sides of (11) by $\rho^{-1}R_{pq}(pm/c)$ sin pmz/c and integrate first over z from 0 to c, then over ρ from a to b. The orthogonality properties of the sine and Bessel functions cause all terms to drop out except the one for which n=p, m=q; and we get, using 1.31 (5) with $$\beta = 0,$$ $$\int_{a}^{b} \int_{c}^{c} \frac{1}{f(\beta, 2)} R_{2pq}(p\pi \rho/c) \sin(p\pi 2/c) d2 d\rho$$ $$= C_{qp} \sinh 2pq \times \frac{p\pi b}{4pq} \left[\frac{\partial R_{\nu}(x)}{\partial x} \frac{\partial R_{\nu}(x)}{\partial y} \right]_{x} = p\pi b/c$$ $$= 2pq$$ (12) The last equation expresses the value of C_{qp} in terms of the given function $f(\rho, z)$ on the exceptional face and completes the formal determination of the potential function corresponding to subcase (iii) of our general potential problem. Cases (i) and (ii) may evidently be treated in a similar manner; the latter requires the expansion of an arbitrary function in a double Fourier series in ρ and z, and the former involves a mixed Fourier and Fourier-Bessel expansion in ρ and ρ . It is apparent from what we have just done that the complete solution, by the method of development in series, of the general potential problem stated at the beginning of this section requires the use not only of ordinary and modified Bessel functions of real order but also of Bessel functions whose order and argument are both purely imaginary, the latter functions being necessary to secure assigned boundary values on
portions of the wedge surfaces $\phi = \text{constant}$. The analogous potential problem in spherical polar coordinates involves the space S bounded externally by the concentric spheres r = a and r = b, the coaxial cones $\theta = \alpha$ and $\theta = \beta$, and the azimuthal planes $\phi = 0$ and $\phi = \phi_0$. The subcase (iii) above corresponds to a potential in the spherical polar system which takes assigned values on the cone $\theta = \beta$ and vanishes on the remaining faces of S. To satisfy these boundary conditions we require associated Legendre functions tions" on account of the manner of their introduction into mathematical physics. Because the functions $F_{\nu}(x)$ and $G_{\nu}(x)$ appear in the analogous problem involving wedges, we refer to them in this work as "wedge functions". Although potential problems as general as ours are not often solved explicitly in textbooks, it is easy to see that many practical problems of potential theory are merely special cases of the one discussed here. in which one or more of the six surfaces of the space S have disappeared. These degenerate cases lead to changes, such as the replacement of an infinite series by an infinite integral, in the various formal expressions for the potential. We note particularly the various alternative forms which the solution involving wedge functions may assume. 6) If we take a = 0, so that the inner cylindrical surface of S shrinks to the axis, then the condition that $R_{\mu}(n\pi\rho/c)$ vanish at ρ = a can no longer be satisfied, because of the oscillatory behavior of the wedge functions at the origin; but it may be replaced by the weaker requirement that $R_{\nu}(n\pi\rho/c)$ remain finite as $\rho \rightarrow 0$, which is met by every real value of ν_{\bullet} Hence the summation over m in (10) is replaced by an integration over all positive values of 2 and the solution retains this form whether or not the outer cylindrical boundary of S is let move away to infinity. (Compare in this connection the latter part of Art. 1.31.) Similarly if one or both of the bounding surfaces z = constant is removed to infinity, the boundary condition which restricts k (= nT/c) to discrete values in (10) is abolished, and the summation over n becomes a Fourier integral ⁵⁾ Hobson, E. W., Spherical and Ellipsoidal Harmonics, 444-448. 6) Bocher, M., Annals of Mathematics, 6, 152-154 (1892). over all real values of k. An example of a potential distribution involving wedge boundaries where the fields extend to infinity will be given in Art. 2.12. It may be noted finally that if the angle a between the inclined surfaces of S is allowed to increase to 2m and the azimuthal planes are removed, leaving a ring-shaped region with only four faces, the potential problem corresponding to case (iii) vanishes and we need to use only ordinary and modified Bessel functions of real order. The reader is doubtless aware that the usefulness of solutions of Laplace's equation is not confined to electrostatics. This important equation is satisfied by such quantities as the magnetic scalar potential, the velocity potential of irrotational flow of a perfect fluid, and the temperature in the steady state of diffusion of heat, all of which may occur in problems involving wedge boundaries. Since the mathematical treatment of all of these functions is very similar, we shall confine ourselves in the next two articles to examples from the field of electrostatics; in Art. 2.13 we shall make a few remarks concerning the equation for the conduction of heat. ### 2.11. Potential Distribution Due to a Point Charge inside a Cylindrical Conducting Ring with Two Dielectrics. In this article we shall consider the problem of finding the potential distribution within a hollow ring bounded by the earthed conducting surfaces ρ = a, ρ = b, z = 0, and z = c, under the influence of an interior point charge q at ρ_0 , ρ_0 , ρ_0 , ρ_0 , the region $0 < \rho < \alpha < \rho_0$ within the ring being filled with a dielectric of capacitivity ϵ , and the region $\alpha < \rho$ ϵ 2 ϵ containing the charge being filled with a dielectric of capacitivity ϵ . Like most potential theory problems involving point charges, this problem reduces essentially to the determination of a function (called the Green's function) which satisfies Laplace's equation in a given region, vanishes on the boundaries of the region, and has a simple pole at an interior point of the region, such that the difference between the Green's function and the reciprocal of the distance from the pole tends to a definite limit as the variable point approaches the pole. The Green's function is just proportional to the potential which would be produced by a point charge situated at the pole, the boundaries of the region being held at potential zero. Since the problem at hand requires us to satisfy boundary conditions on the wedge surfaces β = constant, obviously we shall need in the determination of the Green's function the harmonics of 2.1 (6) which involve the wedge functions. Now it turns out that a systematic and mathematically rigorous study of the various forms of Green's function for spaces bounded by surfaces of the cylindrical coordinate system was made several decades ago by J. Dougall, his results being reproduced in the textbook of Gray, Matthews, and MacRobert. It would therefore be possible, using the methods of Dougall, to develop rigorously the Green's function for the cylindrical ring-shaped region a $\leq \rho \leq$ b, $0 \leq z \leq$ c (a result which he does not write down explicitly), for the case where the region is filled with a single homogeneous isotropic dielectric, and then to solve the problem at hand by superposing series of the form 2.1 (10) which represent the effect of the second dielectric, the coefficients being determined so as to intro- ⁷⁾ Dougall, J., Proc. Edinburgh Math. Soc., 18, 33-83 (1900). 8) Gray, A., Matthews, G. B., and MacRobert, T. M., Bessel Functions, 2nd ed., 101-110. Note that these authors express Dougall's results in terms of the function Kis employed in the present work; the function which Dougall calls $G_{is}(ix)$ (cf. G. M. M., p. 23) is equal to exp $(\frac{1}{2}sv)K_{is}(x)$, or, in terms of our wedge functions, to exp $(\frac{1}{2}sv)G_{s}(x)$. duce no additional singularities and to satisfy the continuity conditions at the dielectric boundaries. Instead of proceeding in this manner, however, we shall solve the problem ab initio, taking account of the singularity due to the point charge by a method often employed by Smythe, which, if it lacks anything in mathematical rigor, has at least the advantage of physical clarity. Using the notation of 2.1, where $$R_{\nu}(n\pi\rho/c) = G_{\nu}(n\pi\alpha/c) F_{\nu}(n\pi\rho/c) - F_{\nu}(n\pi\alpha/c) G_{\nu}(n\pi\rho/c)$$ (1) and \mathcal{D}_{nm} is the mth positive root of $R_{\mathcal{D}}(n_{\pi}b/c) = 0$, we assume potentials in the different regions of interest as follows: For $0 < \emptyset < \emptyset$, $$V_{1} = \sum_{m=1}^{\infty} \left[A_{nm} e^{2nm\theta} + B_{nm} e^{-2nm\theta} \right] R_{2nm} (n\pi\rho/c) \sin n\pi z/c; \qquad (2)$$ for depeto. $$V_2 = \sum_{m=1}^{\infty} \sum_{m=1}^{\infty} \left[c_{nm} e^{2nm} + D_{nm} e^{-2nm} \right] R_{p,nm} (n\pi \rho/c) \sin n\pi z/c; \qquad (3)$$ and for \$ 4 \$ 4 2TT, $$V_3 = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \left[E_{nm} e^{2nm} + F_{nm} e^{-2nm} \right] R_{nm} (n\pi \rho/c) \sin n\pi z/c. \tag{4}$$ These potentials have been chosen so as to vanish on all conducting surfaces. The remaining arbitrary constants will be determined from the conditions that V and $\mathcal{E}_{\partial n}^{2V}$ must be continuous across dielectric boundaries (where $\frac{\partial}{\partial n} = \frac{1}{f} \frac{\partial}{\partial p}$ represents the normal derivative) and that V must be continuous except at the charge itself across the surface $\phi = \phi_0$, while for any closed surface S within the ring and surrounding the point charge, $$-\int_{S} \varepsilon \frac{\partial V}{\partial n} dS = q, \tag{5}$$ n being the outward normal to S. Equation (5) is the statement of Gauss's electric flux theorem in rationalized MKS units. Applying the continuity conditions to V_1 at $\beta=0$ and to V_3 at $\beta=2\pi$ and noting that because the sine and Bessel functions form orthogonal sets, corresponding terms of the resultant series must be equal separately, we get, on cancelling common factors, $$A_{nm} + B_{nm} = E_{nm}e^{2\pi\nu_{nm}} + F_{nm}e^{-2\pi\nu_{nm}}, \qquad (6)$$ $$\mathcal{E}_{1}(\mathbf{A}_{nm} - \mathbf{B}_{nm}) = \mathcal{E}_{2}(\mathbf{E}_{nm}e^{2\pi \nu_{nm}} - \mathbf{F}_{nm}e^{-2\pi \nu_{nm}}). \tag{7}$$ Similarly at $\beta = \alpha$, $$A_{nm}e^{\nu_{nm}\alpha} + B_{nm}e^{-\nu_{nm}\alpha} = C_{nm}e^{\nu_{nm}\alpha} + D_{nm}e^{-\nu_{nm}\alpha}, \qquad (8)$$ $$\mathcal{E}_{1}(A_{nm}e^{2nm\alpha} - B_{nm}e^{-2nm\alpha}) = \mathcal{E}_{2}(C_{nm}e^{2nm\alpha} - D_{nm}e^{-2nm\alpha}); \qquad (9)$$ and at $p = p_0$ $$C_{nm}e^{\nu_{nm}} = C_{nm}e^{-\nu_{nm}} = C_{nm}e^{\nu_{nm}} C_{nm}e^{\nu$$ We shall apply Gauss's electric flux theorem (5) to the pair of planes $\beta = \beta_0 = 0$ and $\beta = \beta_0 + 0$ which fit snugly around the point charge at (β_0, β_0, z_0) ; for this purpose we write $$=\frac{\varepsilon_{2}}{\rho}\left[\frac{\partial V_{1}}{\partial \varphi}-\frac{\partial V_{3}}{\partial \varphi}\right]\rho=\varphi_{0}$$
$$=\frac{\varepsilon_{2}}{\rho}\sum_{m=1}^{\infty}\sum_{m=1}^{\infty}N_{mm}\left[\left(C_{mm}-E_{mm}\right)_{\ell}\right]^{2nm}\left[\left(C_{mm}-E_{mm}\right)_{\ell}\right]$$ multiply both sides of (11) by R, $(k\pi\rho/c)$ sin $k\pi z/c$, and integrate over z from 0 to c and over ρ from a to b. On the left side we get the integral Since the electric field is continuous across the plane $\phi = \phi_0$ except at the point where the charge is situated, the factor in square brackets vanishes except in an area around $\rho = \rho_0$, $z = z_0$, which will be taken to be so small that in it the sine and Bessel functions may be regarded as constant and taken out from under the integral sign. The remaining integral is just the left-hand side of (5) and is equal to q. Hence the left side of (11) becomes, after integration, $qR_{\rho_0}(k\pi\rho_0/c)$ sin $k\pi z_0/c$, while on the right side all terms drop out except the one for which n = k, ⁹⁾ Cf. Smythe, op. cit., Art. 5.297. The factor in brackets is assumed to possess the characteristic property of the S-function employed by Dirac and others in quantum mechanics. m = l, which we evaluate by 1.31 (5). On introducing the notation $$I_{nm} = \frac{4R_{nm}(n\pi f_0/c)\sin(n\pi 2o/c)}{n\pi b\left[\frac{\partial R_{\nu}(x)}{\partial x} \frac{\partial R_{\nu}(x)}{\partial \nu}\right]_{x=n\pi b/c}},$$ (12) we get $$\mathcal{E}_{2}\left(C_{nm}-E_{nm}\right)e^{2nm}C-\left(D_{nm}-F_{nm}\right)e^{-2nm}O=qI_{nm}. \tag{13}$$ Simultaneous solution of the six linear equations (6) - (10) and (13) is a tedious but elementary exercise; on carrying out the algebra and combining terms we get for the factor depending on \$\psi\$ in (2) the following expression: $= \frac{(-\beta)q + mm}{2\varepsilon_2} \frac{\sinh q + B_{mm} - 2mm q}{\sinh (q - q_0 + \pi) + \beta \sinh (\pi - \alpha) \cosh 2mm (q + q_0 - \pi - \alpha)},$ $= \frac{(-\beta)q + mm}{2\varepsilon_2} \frac{\sinh 2mm \pi - \beta^2 \sinh^2 2mm (\pi - \alpha)}{\sinh^2 2mm \pi - \beta^2 \sinh^2 2mm (\pi - \alpha)},$ (14) where $\beta = (\mathcal{E}_1 - \mathcal{E}_2)/(\mathcal{E}_1 + \mathcal{E}_2)$. Eqs. (2) and (14) provide an explicit expression for the potential in the region of capacitivity \mathcal{E}_1 ; similar expressions may easily be written down for the region of capacitivity \mathcal{E}_2 . # 2.12. Potential Distribution Due to a Point Charge in the Neighborhood of a Dielectric Wedge. We shall next determine by the use of wedge functions the potential distribution produced by a point charge near an infinite dielectric wedge. Let the charge q be located at (ρ_0, ϕ_0, z_0) , the region $0 < \phi < \alpha < \phi_0$ being filled with a dielectric of capacitivity \mathcal{E}_i , and the region $\alpha < \phi$ $< 2\pi$ containing the charge being filled with a dielectric of capacitivity \mathcal{E}_2 . Since in this case the fields are not limited to a finite region by conducting boundaries, we shall expect the potentials to be expressed by integrals rather than by series of discrete terms, as noted at the end of Art. 2.1. We require first an expression in terms of wedge functions for the inverse distance from the pole (ρ_0, ϕ_0, z_0) to the variable point (ρ, ϕ, z) ; such an expression has been obtained by Dougall¹⁰ by the method of contour integration. One considers the function of ζ where $0 < \rho < \rho_0$ and $0 < \rho = \rho_0 < 2\pi$; this function is analytic except for simple poles corresponding to all real integral values of \mathcal{E}_0 . Let $f(\mathcal{E})$ be integrated around a contour in the \mathcal{E} -plane consisting of a large semicircle of radius half an odd integer in the right half-plane, and the imaginary axis indented at the origin. It is easy to show that the integral around the infinite semicircle vanishes. The integral over the imaginary axis, which may be transformed as in 1.32 (11.1), is then equal, by the theorem of residues, to an infinite series of products of modified Bessel functions. Using the addition theorem for modified Bessel functions, 11) $K_{0}(kR) = \sum_{m=0}^{\infty} (2 - S_{cm}) I_{m}(k\rho) K_{m}(k\rho_{0}) \cos m(\phi - \phi_{0}), \qquad (2)$ where $0 < \rho < \rho_{0}$, $0 < \phi - \phi < 2\pi$, and $R = \left[\rho^{2} + \rho_{0}^{2} - 2\rho_{0} \cos(\phi - \phi_{0})\right]^{\frac{1}{2}}$, we find that $$\frac{2}{\pi} \int_{0}^{\infty} \cosh \nu \left(\pi - \phi + \phi_{0}\right) K_{i\nu}(k\rho) K_{i\nu}(k\rho_{0}) d\nu = K_{0}(kR), \qquad (3)$$ and by symmetry this equality evidently holds whatever be the relative magnitudes of ρ and ρ . From the known result 12) $$\frac{2}{\pi} \int_{0}^{\infty} \cos k(z-z_{0}) K_{0}(kR) dk = \frac{1}{r},$$ where $r = \left[R^{2} + (z-z_{0})^{2}\right]^{\frac{1}{2}} = \left[c^{2} + c^{2} - 2c_{0}\cos(\phi-\phi_{0}) + (z-z_{0})^{2}\right]^{\frac{1}{2}}$ is the distance between the points (c, ϕ, z) and (c_{0}, ϕ_{0}, z_{0}) , we get finally the desired expression for inverse distance, namely ¹⁰⁾ See Gray, Matthews, and MacRobert, op. cit., 101-103. ¹¹⁾ Ibid., 74. 12) Ibid., 101. $$\frac{1}{r} = \frac{4}{\pi z} \int_{0}^{\infty} \cos k(z - z_0) \int_{0}^{\infty} ch \, \nu(\pi - \phi + \phi_0) \, G_{\nu}(k\rho) \, G_{\nu}(k\rho_0) \, d\nu dk, \qquad (5)$$ where $0 < \phi - \phi_0 < 2\pi$ and we have introduced the wedge function notation G_{ν} for K_{ν} The potential problem at hand is now to be solved by writing the total potential in the wedge in the form $V_1 = V_0 + V_{11}$, and the total potential cutside the wedge in the form $V_2 = V_0 + V_{12}$. Here $V_0 = \frac{1}{4\pi\epsilon_2 n} = \frac{1}{\pi^3 \epsilon_2} \int_0^\infty \cos k(z-z_0) \int_0^\infty \cosh 2(\pi-\phi+\phi_0) G_{\rho}(k\rho) G_{\rho}(k\rho) d\nu dk$, (6) where $0 < \phi - \phi_0 < 2\pi$, is the potential which would be produced by the charge q in the absence of the wedge; the presence of the wedge introduces the additional term $$V_{11} = \int_{\pi^2 \mathcal{E}_2}^{\infty} \int_{0}^{\infty} \cos k(z - z_0) \int_{0}^{\infty} \left[A(\nu, k) e^{\nu \phi} + B(\nu, k) e^{\nu \phi} \right] G_{\nu}(k\rho) G_{\nu}(k\rho) d\nu dk$$ (7) for $0 < \phi < \omega$, and the additional term $$V_{12} = \int_{\pi^2 \mathcal{E}_2}^{\pi^2} \int_0^{\infty} \cos k(z-z_0) \int_0^{\infty} (C(z), k) e^{-z/2} + D(z), k) e^{-z/2} G_{z}(kp_0) G_{z}(kp_0) dz dk$$ (8) for $\alpha < \beta < 2\pi$, where the functions A, B, C, and D must be chosen so as to insure the continuity of the total potential V and the normal component $\frac{\mathcal{E}}{f} \frac{\partial V}{\partial \varphi}$ of the total displacement at dielectric boundaries. (The integrals (7) and (8) are assumed to converge and, since the integrands are cylindrical harmonics of the form 2.1 (6), to satisfy Laplace's equation.)
We insure that the integrals will satisfy the continuity conditions by requiring that the integrands themselves do so (assuming, of course, the legitimacy of differentiation under the sign of integration). Recalling that if $0 < \beta < \beta_0$ we must write $\beta + 2\pi$ for β in (6), we find that the boundary conditions lead to the following four simultaneous equations: At $\beta = 0$, $$A + B = Ce^{2\pi \nu} + De^{-2\pi \nu}, \qquad (9)$$ $$\mathcal{E}_{1}[A - B + \sinh \nu(\pi - \phi_{0})] = \mathcal{E}_{2}[Ce^{2\pi\nu} - De^{-2\pi\nu} + \sinh \nu(\pi - \phi_{0})]; (10)$$ and at $\phi = \alpha_{0}$ $$Ae^{y\lambda d} + Be^{-y\lambda d} = Ce^{y\lambda d} + De^{-y\lambda d}, \tag{11}$$ (13) $$\mathcal{E}_{1}\left[Ae^{2d} - Be^{-2d} + \sinh 2(\pi + \alpha - \phi_{0})\right] = \mathcal{E}_{2}\left[Ce^{2d} - De^{-2d} + \sinh 2(\pi + \alpha - \phi_{0})\right] \cdot (12)$$ If we solve equations (9) - (12) simultaneously and then combine terms, we get at length the following expression for the factor depending on ϕ in (8): $C(\nu,k) e^{-\nu\varphi}$ = $$\frac{-\beta sh x \left[sh v \pi ch v \left(\varphi + \varphi_0 - \alpha - 2\pi \right) + \beta ch v \left(\varphi - \varphi_0 \right) sh v \left(\pi - \alpha \right) \right]}{sh^2 v \pi - \beta^2 sh^2 v \left(\pi - \alpha \right)}$$ where $\beta = (\xi - \ell_1)/(\xi + \ell_2)$. Hence we have a formal representation of the potential function in the region outside the wedge; the solution inside the wedge may obviously be worked out in the same way.* As is well known, 13 in the case of steady flow of electric current in an extended conducting medium the potential function satisfies Laplace's equation and the conductivity of the medium plays exactly the same role as the capacitivity in electrostatics, so that all the mathematical technique used in electrostatics also applies here. This fact is sometimes used by geophysicists to investigate the structure below the earth's surface by observing the distribution of potential on the surface when current is passed through the soil between two or more surface electrodes. It is evident that with slight changes in notation the problem just solved will provide expressions for the potential distribution in the conducting half-space $0 \le \emptyset \le \pi$ when current enters the surface through a single point electrode, if the wedge-shaped region $0 \le \emptyset \le \pi$ has uniform conductivity σ_1 and the region $\forall \ell \notin \pi$ has uniform conductivity σ_2 ; the results may be generalized to the case of several electrodes if desired. A solution of the problem treated in this section has been given ^{*}It would probably be possible to convert the integrals over \mathcal{D} in (7) and (8) into infinite series by the method of contour integration used to derive (3); but the results would be complicated and there seems to be no reason for attempting the transformation. ¹³⁾ Smythe, op. cit., Art. 6.10. in an entirely different form by S. O. Rice 14) in terms of a single infinite integral of the Legendre function $Q_{i\lambda} = 1$ of complex order with respect to the parameter A. Rice's development is mathematically rigorous, though his result is not well adapted to numerical calculation in the absence of tables of the function Qianto It is worth noting in conclusion that the analogous two-dimensional problem of a line charge parallel to the vertex of a dielectric wedge is solved in the second edition of Smythe's textbook 15) by the use of the circular harmonics $$V(\rho, \varphi) = \sin(2\log \rho) e^{\pm \nu \varphi}. \tag{14}$$ #### 2.13. The Equation of Conduction of Heat. The equation of conduction of heat in a homogeneous isotropic solid may be written in the form 16) $$\nabla^2 v = \sqrt{\frac{\partial v}{\partial t}},\tag{1}$$ where v(x, y, z, t) represents the temperature, t the time, and K is a constant of the material called the diffusivity. We wish to consider briefly whether useful solutions of (1) may be found involving Bessel functions of imaginary order. In the special case where the flow of heat has reached a steady state, the right side of (1) vanishes and the distribution of temperature satisfies Laplace's equation, so that all the methods of potential theory are available to determine it. Thus if we want to find the steady-state temperature in a general solid bounded by surfaces of the cylindrical ¹⁴⁾ Rice, S. Co., Phile Mag., (7), 29, 36-46 (1940). 15) Smythe, Static and Dynamic Electricity, 2nd ed., in press. Art. 4.07. ¹⁶⁾ Carslaw, H. S., Mathematical Theory of the Conduction of Heat, 2nd ed., 8. coordinate system, when the surface temperature is specified on two axial planes \$ = constant, we shall require harmonics of the form 2.1 (6) involving the wedge functions, and the solution will be mathematically identical with case (iii) of Art. 2.1. In the more general case where the temperature varies with time. we may seek a solution of (1) which is the product of four functions each depending on a single variable; in cylindrical coordinates such a solution is readily obtained in the form $$(2)$$ $V = e^{-K(\alpha^2 + \mu^2)t} R_{\nu}(\mu \rho) \sin^2 \nu \rho \sin^2 \alpha^2$, (2) where Ry (m) is a Bessel function of order 2 and argument m, m, and d being completely arbitrary separation constants. If these constants all be taken as real, we see that all three of the space-dependent factors on the right side of (2) are oscillatory, so that by giving special values to the separation constants a triple series can be built from products of the form (2) which vanishes for all values of t on all six faces of the general solid bounded by surfaces of the cylindrical coordinate system, and assumes for t = 0 arbitrary values in the interior of the solid. Now any problem in heat conduction (or radiation) with surface conditions independent of time can be reduced to two simpler problems, one of which is a case of steady temperature, while the other is a case of variable temperature with the surface (or the surrounding medium, in the case of radiation) held at zero temperature; and finally any conduction or radiation problem where surface conditions vary with time can be reduced by a method due to Duhamel to a simpler problem with surface conditions independent of time. 18) We thus get from the general heat conduction problem in cylindrical coordinates no new applications of Bessel functions ¹⁷⁾ Carslaw, op. cit., 123. 18) <u>Ibid.</u>, 16-19. of imaginary order beyond those treated in Art. 2.1.* In spherical polar coordinates (r, θ, ϕ) a particular time dependent solution of (1) is given by $$N = e^{-\kappa \alpha^2 t} (\alpha r)^{-\frac{1}{2}} R_{2+\frac{1}{2}} (\alpha r) \Theta_{2}^{-\mu} (co \theta) \sin \mu \theta, \tag{3}$$ where $\mathbb{R}_{\mathcal{N}+\frac{1}{2}}$ is a Bessel function and $\widehat{\theta}_{\mathcal{N}}^{-\infty}$ is an associated Legendre function of degree \mathcal{N} and order—m, the separation constants d, m, and \mathcal{N} being completely arbitrary. If we write $i\mathcal{N}$ for $\mathcal{N}+\frac{1}{2}$ in (3) we get the solution: $$N = e^{-\kappa d^2 t} (\alpha n)^{-\frac{1}{2}} R_{i\nu} (\alpha n) G_{\frac{1}{2} + i\nu}^{-1} (\cos \theta) cos \mu \varphi, \qquad (4)$$ which involves Bessel functions of imaginary order and cone functions (see Art. 2.1) if μ and ν are real. The last expression for v certainly satisfies the conduction equation (1), but it does not seem to be adapted to the solution of any problems which cannot be treated by the use of harmonics of the form (3); in any case the usefulness of (4) is limited because of the singularity of the radial factor at r = 0. A differential equation analogous to the equation of conduction of heat occurs in the treatment of induced electric currents (eddy currents) in extended conductors. In the case where the inducing magnetic field is axially symmetric and varies sinusoidally with time, the vector potential of the eddy currents may be expressed in terms of modified Bessel functions of complex argument xi², which lead to the ber and bei functions of Lord Kelvin. It is formally possible, by choosing the separation constants properly in the differential equation describing the eddy currents, to ^{*}Carslaw and Jaeger 19) in deriving the Green's function for the conduction equation in cylindrical coordinates make use of Dougall's contour integrals of Bessel functions with respect to their order (compare the derivation of 2.12 (5)), but the functions of imaginary order do not come into the expressions for the final results. ¹⁹⁾ Carslaw, H. S., and Jaeger, J. C., J. London Math. Soc., 15, 278 (1940). ²⁰⁾ Carslaw, op. cit., 144. ²¹⁾ Smythe, op. cit., Arts. 11.02 - 11.04. obtain solutions involving the complex functions F, (xi2) and G, (xi2); but no problems have been found whose solutions would be facilitated by the use of these functions. #### 2.2. An Application to Hydrodynamics. Stability of Superposed Streams of Fluids of Different Densities. We turn now to quite a different application of Bessel functions of imaginary order, which occurs in some hydrodynamical investigations of G. I. Taylor 22) and S. Goldstein. 23) The problem which occasions the use of these functions may be introduced as follows: It is well known that when the wind near the ground drops at night with the cooling of the ground, the wind at a higher level frequently remains unchanged, so that the effect of a decrease in density with height is to suppress turbulence and to enable a large velocity gradient to be maintained. This at once presents to the mathematician the problem of the stability of a fluid in which the density and velocity vary with height above the ground, regarded as a horizontal plane. It turns out that if the velocity is assumed to vary linearly with height and the density exponentially, the stability investigations involve Bessel functions, and the results are simple enough to
admit physical interpretation. Taylor's analysis proceeds in the following manner: We assume an undisturbed flow in the direction of the axis of x with a velocity $u_0(z)$ depending in a manner later to be specified on z, the height; the density of the undisturbed fluid at height z is taken as ρ_o e^{- βz}. We now superimpose a small sinusoidal disturbance on the original flow, so that the total vector velocity q is given by ²²⁾ Taylor, G. I., Proc. Roy. Soc. London, (A), 132, 499-507 (1931). 23) Goldstein, S., ibid., 524-548. $$\vec{q} = \vec{i} \left[u_0(z) + u_1(z) \mathcal{E} \right] + \vec{j} v_1(z) \mathcal{E} + \vec{k} w_1(z) \mathcal{E}, \qquad (1)$$ where $\xi = \exp i(kx - \sigma t)$.* Here k is regarded as a real number (evidently $k = 2\pi/\lambda$, where λ is the wavelength of the disturbance), and the nature of σ is to be determined from the equations of motion together with the boundary conditions. Real values of σ correspond to stable progressive waves, while complex values of σ correspond either to exponentially amplified waves and instability or to exponentially attenuated waves; the criterion for stability of the original flow against small disturbances of the form (1) is thus $\operatorname{Im} \sigma \leq 0$. The total density ρ and pressure ρ also fluctuate about their undisturbed values in the same manner as the velocity; they may accordingly be written as $$\rho = \rho_0 e^{-\beta z} + \rho_1(z) \varepsilon_s \tag{2}$$ $$p = (\varphi_0 g/\beta) e^{-\beta z} + p_1(z) \mathcal{E}, \qquad (3)$$ since the undisturbed pressure is given by $\int_{\mathcal{X}} \rho_0 g e^{-\beta z} dz$. It is assumed that the variation of the undisturbed density with altitude is due to the changing physical characteristics of the fluid, any small element of fluid being regarded as incompressible. Hence for points that move with the flow the particle derivative 24) $D\rho/Dt = \partial\rho/\partial t$ $+ q \cdot \nabla \rho$ vanishes; on taking account of (1) and (2) we get, to the first order of small quantities, $$-i \mathcal{P}_1(z) + i k u_0(z) \mathcal{P}_1(z) - \beta w_1(z) \mathcal{P}_0 e^{-\beta z} = 0.$$ (4) The continuity equation voq = 0 gives $$iku_1(z) + dw_1/dz = 0. (5)$$ On substituting (1) - (3) into Euler's dynamical equation $$\frac{\partial \vec{q}}{\partial \vec{r}} + \vec{q} \cdot \vec{\nabla} \vec{q} = \vec{F} - \vec{\nabla} \vec{p}, \qquad (6)$$ ^{*}The more general assumption $\mathcal{E} = \exp i(kx + l y - \sigma t)$ would lead to no essential change in the form of our results. ²⁴⁾ Webster, A. G., Dynamics, 2nd ed., 496-499, develops the hydrodynamical equations used in this paragraph. writing -kg for the body force F per unit mass, and dropping products of small quantities, we get the equations of motion to first order: $$-ikp_1 = ik\rho(u_0 - \sigma/k)u_1 + \rho w_1 du_0 / dz, \qquad (7)$$ $$0 = ik\rho(u_0 - \sqrt{k})v_1, \qquad (8)$$ $$-dp_1/dz = ik\rho(u_0 - \sigma/k)w_1 + g\rho_1; \qquad (9)$$ and in these three equations ρ may be replaced wherever it occurs by $\rho_0 e^{-\beta z}$ to the same order of approximation. If we eliminate the quantities p_1 , u_1 , and ρ_1 among the equations (4), (5), (7), and (9), we obtain the equation for the vertical component of velocity $w_1(z)$: $$\frac{d^{2}w_{1}/dz^{2} - \beta dw_{1}/dz + w_{1}[(u_{0} - \sigma/k)^{-1}(\beta du_{0}/dz - d^{2}u_{0}/dz^{2}) - k^{2} + g\beta(u_{0} - \sigma/k)^{-2}] = 0.$$ (10) We now consider the case of a uniform velocity gradient $u_{o}(z) = \alpha z$ and write $$w_1(z) = f(z) \exp\left(\frac{1}{2}\beta z\right), \tag{11}$$ so that (10) becomes $$\frac{d^2f}{dz^2} - f\left[k^2 + \frac{1}{4}\beta^2 - gg/(\alpha z - \sigma/k)^2 - \alpha\beta/(\alpha z - \sigma/k)\right] = 0. \tag{12}$$ In order to reduce (12) to a tractable form, we assume with Taylor that the density of the fluid does not change appreciably in a distance equal to the wavelength of the disturbance; i. e., $\lambda = 2\pi/k <<1/\beta$, or $k >> \beta$, so that $\frac{1}{4}\beta^2$ is negligible compared with k^2 . We also assume that the wavelength is small compared with the characteristic length g/χ^2 (the velocity gradient is not too high); i. e., $1/k << g/\chi^2$. If g/χ^2 is of order of magnitude unity and if z is comparable with a wavelength ($z \approx 1/k$), then $$g\beta/(\alpha z - \sigma/k)^2 \approx k^2 >> \alpha\beta/(\alpha z - \sigma/k) \approx k\beta$$ provided \sqrt{k} is not comparable with αz ; while if $\alpha z - \sqrt{k}$ is very small the term with the squared denominator certainly dominates the other. Hence the last term in (12) may be neglected and the equation for f becomes $$d^{2}f/dz^{2} - [k^{2} - g\beta/(\alpha z - \sigma/k)^{2}]f = 0.$$ (13) On writing $$kz - \sigma/\alpha$$, $f = \int_{-\infty}^{1} h(\zeta)$, (14) (13) becomes $$g^{2}d^{2}h/dg^{2} + gdh/dg - [g^{2} + (\frac{1}{4} - g\beta/\alpha^{2})] h = 0,$$ (15) which, by comparison with 1.2 (12), is the equation for modified Bessel functions of argument ζ and order $$\mathcal{D} = \left(\frac{1}{4} - g\beta/\alpha^2\right)^{\frac{1}{2}} \tag{16}$$ Clearly if $\alpha^2 > 4g\beta$, corresponding to a large velocity gradient, ν will be a real number between $-\frac{1}{2}$ and $+\frac{1}{2}$, while if $\alpha^2 < 4g\beta$, corresponding to a small velocity gradient, ν will be purely imaginary. Returning via (14) and (11) to the original variables, we see that the vertical component of velocity is given by $$w_{1}(z)\mathcal{E} = (z - \sigma/\alpha k)^{\frac{1}{2}} e^{\frac{1}{2}\beta z} R_{a}(kz - \sigma/\alpha) e^{i(kx - \sigma t)}, \qquad (17)$$ where $R_{\gamma}(z)$ represents any solution of the modified Bessel equation 1.2 (12). We shall now investigate some special cases. Case of a Fluid of Variable Density Contained between Two Horizontal Planes. If the moving fluid is bounded by the rigid horizontal planes $z = z_1$ and $z = z_2$, the boundary conditions are $w_1(z_1) = w_1(z_2) = 0$; since k, k, and k are real, the conditions can be satisfied only if there exist two zeros of the function $\int_{\mathbb{R}}^{2} R(x) dx$ with the same imaginary part. Suppose for the moment that we have two such roots, say $x_1 = x_1 + x_2 + x_1 + x_2 + x_2 + x_2 + x_3 + x_4 x_$ $$kz_1 - \sigma/\alpha = \beta_1 + ib, \qquad (18.1)$$ $$kz_2 = \sigma/\alpha = \xi_2 + ib \qquad (18.2)$$ Hence $$k = 2\pi/\lambda = (\xi_2 - \xi_1)/(z_2 - z_1)$$ (19.1) and $$\sigma = \alpha (z_1 \beta_2 - z_2 \beta_1)/(z_2 - z_1) - i \alpha b$$, (19.2) and the phase velocity (Re σ)/k is given by $$(\text{Re}\,\sigma)/k = \alpha (\mathbf{z}_1 \hat{\mathbf{s}}_2 - \mathbf{z}_2 \hat{\mathbf{s}}_1)/(\hat{\mathbf{s}}_2 - \hat{\mathbf{s}}_1).$$ (20) In the case $\alpha^1 > 4g\beta$, where γ is real and $\frac{1}{2} < \gamma < \frac{1}{2}$, stable waves of all wavelengths can propagate, since the function $\sqrt{2}R_{\gamma}(\zeta)$ vanishes at $\zeta = 0$ because of the first factor and the modified Bessel function can certainly be chosen to vanish for $\zeta = \xi_2$, where ξ_2 is any desired real number. From (20), the phase velocity of these waves is just αz_1 , the velocity of the fluid at the lower boundary z_1 , so that they are all moving backward with respect to the upper layers of fluid. The possibility of unstable waves in the case $\alpha^2 > 4g\beta$ cannot be decided with our present knowledge of the complex zeros of modified Bessel functions of real order, which is summarized in theorem 3 of Art. 1.2. The most we can say is that if unstable waves do exist, they correspond to values of of or which $|\text{Im } \gamma| < \gamma \alpha < \frac{1}{2} \zeta_0$ In the case $\alpha^2 < 4g\beta$, we may write for clarity $(\frac{1}{4} - g\beta/\alpha^2)^{\frac{1}{2}} = i\nu$, where $i\nu$ is purely imaginary; then the function $R_{i\nu}(\zeta)$ occurring in (17) is a linear combination of wedge functions. Stable waves of all lengths can be propagated, since both wedge functions have an infinite number of real roots with limit-points at the origin, and if $R_{i\nu}(\xi)$ is the linear combination of these functions vanishing at ξ_2 , it is evidently possible by continuous variation of the coefficients in $R_{i\nu}$ to vary ξ_1 continuously and to make the difference between ξ_1 and the next smaller real root ξ_1 assume a value corresponding, by (19.1), to any desired wavelength. The velocity of this wave is then determined by (20). On the other hand, since by theorem 4 of Art. 1.2 $R_{i\nu}$ cannot have two complex roots with equal imaginary parts, no unstable waves can be propagated. (Taylor could not show the absence of unstable waves.) Case of a Fluid of Variable Density Bounded by a Horizontal Plane and Extending to Infinity. If the fluid is bounded by the horizontal plane z = z, and extends to $+\infty$, the Bessel function in (17) must vanish as its argument tends to infinity in the right half-plane, so that from 1.12 (2) it must be a constant multiple of the function K_{pe} . If $\alpha^{2} > 4g\beta$ so that the order γ is real, no unstable waves can exist in the semi-infinite fluid, since it is known that, if γ is real and $-\frac{1}{2} < \nu < \frac{1}{2}$, $K_{p}(\zeta)$ has no zeros in the region $|\arg \zeta| \le \pi_{pe}^{25}$. The only stable waves are those given by $\beta = 0$. (Taylor seems to have overlooked this possibility when he states that no waves, either stable or unstable, can exist for $\alpha^{2} > 4g\beta$.) From (18.1) we see that these waves can have any wavelength, but that they all move with the same velocity $\sigma/k = \alpha z_{1}$, which is the velocity of the fluid at the boundary plane $z = z_{1}$. In the case $\chi^2 \angle 4g\beta$ we have to deal with the function $K_{ij}(\zeta)$ of imaginary order, which by theorem 1 of 1.2 has an infinite number of real zeros in
ζ between the origin and the point $\zeta = +j$.* Corresponding to any particular real root ζ , of $K_{ij}(\zeta) = 0$, stable waves of all wavelengths can propagate, the dependence of velocity on wavelength being given by \sqrt{k} from (18.1). The possibility of unstable waves must remain open, since theorem 5 of 1.2 does not preclude the existence of complex zeros of $K_{ij}(\zeta)$ in the right half-plane. The stability problem treated by Goldstein in the second paper 23) cited above is somewhat different from Taylor's; it may be stated as follows: We consider an infinite expanse of perfect fluid with a layer of constant velocity and density and infinite depth on top, a layer of $$K_{j}(xe^{i\pi i}) = e^{-i\pi i}K_{j}(x) - \pi iI(x)$$ ²⁵⁾ Watson, G. N., Theory of Bessel Functions, 2nd ed. The region | arg\$ | <\pi\$ is proved zero-free in Art. 15.7, while the absence of zeros on the negative real axis follows from the formula [Art. 3.71, eq. (18)] ^{*}Taylor asserts that the Hankel function $H_{i,j}^{(!)}(i\xi) \left[= \left(-2i/\pi \right) \exp \left(\frac{1}{2i} \nu \pi \right) \right]$ K_{i,j,j}(\xi) is purely imaginary whenever \xi\$ is real, and that it has an infinite number of real positive and negative zeros in \xi\$ in the neighborhood of the origin. His argument is actually valid only for real positive values of \xi_i \since (-1)^{ij} is not the complex conjugate of (-1)^{-ij}, the functions $H_{i,j}^{(i)}(i\xi)$ and $K_{i,j}(\xi)$ are complex valued when \xi\$ is real and negative. different constant velocity and slightly larger constant density and infinite depth at the bottom, and a finite transition layer in between, where the velocity varies linearly and the density varies exponentially from one boundary to the other. We wish to investigate the behavior of a small sinuscidal disturbance progressing in the direction of the steady flows We assume the following steady-state distribution of velocity, density, and pressure gradient, the notation being chosen to agree as closely as possible with the first part of this article: For $$z \angle 0$$, $u_0 = 0$, $\rho = \rho_0$ $dp_0/dz = \rho_0 g$; (21.1) for $0 \angle z \angle h$, $u_0 = Uz/h = \alpha z$, $\rho = \rho_0 e^{-\beta z}$, $dp_0/dz = -\rho_0 g e^{-\beta z}$; (21.2) for $$0 < z < h$$, $u_0 = Uz/h = \alpha z$, $\rho = \rho_0 = \beta^z$, $dp_0/dz = -\rho_0 ge^{-\beta z}$; (21.2) for $$z > h$$, $u_0 = U = dh$, $\rho = \rho_0 e^{-\beta h}$, $dp_0/dz = -\rho_0 ge^{-\beta h}$. (21.3) On these steady-state quantities we superimpose fluctuations of the form given by eqs. (1) - (3) and obtain as before the hydrodynamical equations (4), (5), (7), (8), and (9), noting that in the regions of constant density $\rho(z) = 0$ so that (4) is nugatory. The expression for the vertical component of velocity in the transition layer is derived in the form (17) by exactly the same arguments as before, but with the added simplification that if we assume the change in density to be only a small fraction of the mean density, * we may consider the factor $\exp(\frac{1}{2}\beta z)$ to be essentially equal to unity, so that $$w_{1}(z)\mathcal{E} = (z - \sigma/\alpha k)^{\frac{1}{2}} R_{y}(kz - \sigma/\alpha) e^{i(kx - \sigma t)}, \qquad (22)$$ where > is defined by (16) and R, is a modified Bessel function. The equation for $w_1(z)$ in the top and bottom layers is easily derived from (5), (7), and (9); on setting $u_0 = \text{constant}$, $\rho = \text{constant}$, and $\rho_1 = 0$, we get directly ^{*}Actually Goldstein does not make explicit use of the approximations introduced by Taylor to simplify eq. (12) above, but bases all the approximations necessary to obtain (22) on the single assumption that the total change in density is small compared with the mean density. $$d^{2}w_{1}/dz^{2} = k^{2}w_{1}, \qquad (23)$$ so that for z < 0 or z > h, $w_1(z)$ is proportional to $\exp(\frac{t}{z}kz)$. The boundary conditions in our problem are that the normal component of velocity and the pressure must be continuous across surfaces where the velocity gradient is discontinuous. Let $z = z_0$ be the equation of such a surface in the undisturbed flow, and let $z = z_0 + \eta$ be the equation of this surface in the disturbed motion. Then to first order $w_1(z)$ must be continuous at $z = z_0$. Also, to first order, the value of w_1 at $z = z_0$ is connected with η by the equation $$w_1 = \partial \eta / \partial t + u_0 \partial \eta / \partial x = i(ku_0 - \sigma) \eta$$ (24) The pressure must be continuous at $z = z_0 + \eta$, so that to first order $p_0 + p_1 + \eta dp_0/dz$ must be continuous at z_0 ; i. e., $p_1 = \eta \rho_0 g$ must be continuous at z_0 . Substituting for η from (24) and for p_1 from (7) and (5), and dropping terms like ρ_0 and $w_1(z)$ which are already assumed to be continuous at $z = z_0$, we find that the expression $$kw_1 du/dz - (ku_0 - \sigma) dw_1/dz$$ (25) must be continuous at z = zoo Solutions of the equations of motion which vanish at $z = \frac{t}{2}$ are, from (22) and (23): For $$z < 0$$, $w_{1}(z) = Ae^{kz}$, (26.1) for $$0 < z < h$$, $w_1(z) = \sqrt{2} \left[BI_{J_1}(\zeta) + CI_{J_1}(\zeta) \right]$, (26.2) and for $$z > h$$, $w_1(z) = De^{-kz}$, (26.3) where $\mathcal{L} = \mathcal{L}_{\mathcal{L}}$, and if $\mathcal{L} = 0$ the term $I_{\mathcal{L}}(\mathcal{L})$ in (26.2) is to be replaced by $K_0(\mathcal{L})$. If we set $$S_1 = -\sigma/\lambda, \qquad S_2 = kh - \sigma/\lambda, \qquad (27)$$ the continuity of $w_1(z)$ at z = 0 and at z = h leads to the conditions $$A = S_{1}^{\frac{1}{2}} \left[BI_{1}(S_{1}) + CI_{1}(S_{1}) \right], \qquad (28.1)$$ $$D = \int_{2}^{1} \left[BI_{p}(G_{2}) + CI_{-p}(G_{2}) \right] . \tag{28.2}$$ The continuity of the expression (25) leads, with use of (28) and some rearrangement, to the pair of conditions: $$B\left[\left(1+\frac{1}{2}S_{1}^{-1}\right)I_{\nu}(S_{1})-I_{\nu}'(S_{1})\right]+C\left[\left(1+\frac{1}{2}S_{1}^{-1}\right)I_{\nu}(S_{1})-I_{\nu}'(S_{1})\right]=0, \quad (29.1)$$ $$B\left[\left(1-\frac{1}{2}\delta_{2}^{-1}\right)I_{2}(\delta_{2})+I_{2}(\delta_{2}^{2})\right]+C\left[\left(1-\frac{1}{2}\delta_{2}^{-1}\right)I_{2}(\delta_{2}^{2})+I_{2}(\delta_{2}^{2})\right]=0, (29.2)$$ which have a non-zero solution in B and C provided that $$\left[\left(1 + \frac{1}{2} \mathcal{E}_{1}^{-1} \right) \mathbf{I}_{y} \mathcal{E}_{1} \right) - \mathbf{I}_{y} \mathcal{E}_{1} \right] \left[\left(1 - \frac{1}{2} \mathcal{E}_{2}^{-1} \right) \mathbf{I}_{y} \mathcal{E}_{2} \right) + \mathbf{I}_{y} \mathcal{E}_{2} \right]$$ $$- \left[\left(1 + \frac{1}{2} \mathcal{E}_{1}^{-1} \right) \mathbf{I}_{y} \mathcal{E}_{1} \right) - \mathbf{I}_{y} \mathcal{E}_{1} \mathcal{E}_{1} \right] \left[\left(1 - \frac{1}{2} \mathcal{E}_{2}^{-1} \right) \mathbf{I}_{y} \mathcal{E}_{2} \right) + \mathbf{I}_{y} \mathcal{E}_{2} \right] = 0.$$ (30) The real roots of equation (30), regarded in virtue of (27) as an equation in σ when k is a given real number, correspond to stable progressive waves, while the complex roots with $\text{Im} \sigma > 0$ correspond to amplified unstable waves. A rigorous theoretical treatment of the roots of the period equation (30) apparently being infeasible, Goldstein attacks the problem indirectly. By the use of asymptotic formulas for the modified Bessel functions when the order and the argument are simultaneously large, he obtains the limiting form of (30) as a = 0 (15, 1 = 0, 15, 1 = 0, x) = id, which corresponds to the case of no steady motion. The system is then completely stable, and there are an infinite number of principal periods of oscillation, which are shown to vary continuously and to remain real and distinct as $lpha^1$ increases from zero to just less than $4 \mathrm{g} eta_{m{s}}$ hk being supposed small for this part of the work. Then when a is just less than 4g3, the periods are shown to vary continuously and to remain real and distinct when the wavelength is varied over all possible values. It is deduced that the motion is stable for $\alpha^2 < 4g$. When $\alpha^2 = 4g\beta$ there is one real principal period if kh is less than about 0.4 and none otherwise; and when \checkmark > 4g β there is, for kh small, one real principal period and an infinite number of imaginary ones, which correspond to unstable modes of oscillation. It is deduced that the motion is unstable for $\alpha^2 > 4g\beta_s$ and it appears that this is true for all wavelengths. Since the rather lengthy mathematical calculations involved in carrying out the argument which has just been sketched yield no outstanding new results for the theory of Bessel functions of imaginary order, the reader is referred to Goldstein's original paper for details of the work. # 2.3. Propagation of Love Waves over the Surface of an Elastically In- Bessel functions of imaginary order and imaginary argument occur in the solution of the problem of propagation of transverse elastic waves over the surface of a semi-infinite body whose modulus of rigidity increases as a quadratic function of the depth. This problem is of some practical interest in seismology for the following reasons: When an earthquake disturbance is transmitted to a great distance from its point of origin, the main shock reaches the distant stations at times corresponding to the passage of waves over the <u>surface</u> of the earth with nearly constant velocity; and the oscillations are largely in a horizontal plane and transverse to the direction of propagation of the shock. Observations indicate the existence of dispersion, i. e., some variation of velocity with wavelength, in these surface waves. Such transverse surface waves oscillating in a horizontal plane are called Love waves in honor of A. E. H. Love, 26) who showed that waves of the type described may be transmitted if we have a homogeneous surface layer of rigidity μ , density ρ , and finite thickness
overlying a seminimite homogeneous solid of different rigidity μ , and density ρ , such ²⁶⁾ Love, A. E. H., Some Problems of Geodynamics, 160-165. that $(\mu'/\rho')^{\frac{1}{2}} > (\mu/\rho)^{\frac{1}{2}}$. It has been shown by E. Meissner 27) and others that Love waves may propagate over the surface of an elastic solid whose modulus of rigidity and/or density vary continuously with the depth. It is known from seismological data 28) that the velocities of both the dilatational and the distortional waves through the body of the earth increase with depth according to a law which is nearly linear for the first 1200 km. This fact is not sufficient to determine completely the variation of the density or of the elastic moduli in the interior of the earth; but in order to give some sort of theoretical treatment of seismic waves we may make mathematically simple assumptions which are not too widely at variance with our present incomplete knowledge. We first recall the general dynamical equations for an isotropic elastic solid. Let $\vec{s} = \vec{i}u + \vec{j}v + \vec{k}w$ be the vector displacement of any point in the body from its equilibrium position. The strain tensor is then $$\underbrace{\int}_{\chi_{1}} = \begin{pmatrix} \varepsilon_{\chi} & \gamma_{\chi_{1}} & \gamma_{\chi_{2}} \\ \gamma_{\chi_{\chi}} & \varepsilon_{\chi} & \gamma_{\chi_{2}} \\ \gamma_{\chi_{\chi}} & \gamma_{\chi_{2}} & \varepsilon_{\chi} \end{pmatrix}, \qquad (1)$$ where $\mathcal{E}_{\chi} = \partial u/\partial x$, $V_{\chi y} = V_{\chi \chi} = \frac{1}{2}(\partial u/yy + \partial v/\partial x)$, etc. If the stress tensor is $$\mathcal{T} = \begin{pmatrix} \mathcal{T}_{\chi\chi} & \mathcal{T}_{\chi\gamma} & \mathcal{T}_{\chi2} \\ \mathcal{T}_{\chi\chi} & \mathcal{T}_{\chi\gamma} & \mathcal{T}_{\chi2} \\ \mathcal{T}_{\chi\chi} & \mathcal{T}_{\chi\gamma} & \mathcal{T}_{\chi2} \end{pmatrix}, \tag{2}$$ ²⁷⁾ Meissner, E., Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 66, 181-195 (1921). 28) Ibid., 182. ²⁹⁾ Page, L., Introduction to Theoretical Physics, 2nd ed., chap. III. Observe changes in notation. where ℓ_{xy} is the y-component of stress across the plane x = constant, and the other components have similar significance, then the total force per unit volume, including the body force \vec{G} , is $$\vec{F} = \vec{G} + \vec{\nabla} \cdot \vec{T} . \tag{3}$$ The relation between stress and strain for an isotropic elastic medium is given by the tensor equation 30) $$\mathcal{I} = \left[\left(\mathbf{K} - \frac{2}{3} \mu \right) \vec{\nabla} \cdot \vec{\omega} \right] \mathcal{I} + 2\mu \vec{\mathcal{D}}, \tag{4}$$ where K is the bulk modulus, the modulus of rigidity, and I a unit tensor. Substituting for \widehat{F} and \widehat{T} in Newton's equation $\widehat{F} = \rho 2^2 \widehat{s}/\partial t^2$, we have the general equation of motion for an isotropic elastic medium: We now consider the following problem: A semi-infinite elastic solid is given by z > 0, its density $\rho(z)$ and rigidity $\rho(z)$ being functions of the depth z only. A distortional wave propagating in the positive x-direction and vibrating in the y-direction is given by $$\vec{s} = \vec{j}v = \vec{j}\vec{Z}(z)e^{i(kx - \sigma t)}.$$ (6) For such a wave the only non-vanishing components of the strain tensor are $$Y_{xy} = Y_{yx} = \frac{1}{2} \frac{\partial v}{\partial x} ; \quad Y_{yz} = Y_{zy} = \frac{1}{2} \frac{\partial v}{\partial z}. \tag{7}$$ If we neglect the body force due to gravity and note that the dilatation $\nabla \cdot \vec{s} = 0$, the equation of motion (5) becomes: $$\int_{\mathcal{L}} \left(\frac{\partial^2 \mathcal{N}}{\partial t^2} \right) = \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{N}}{\partial t} \right) + \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{N}}{\partial t} \right) = \mathcal{N}(t) \frac{\partial^2 \mathcal{N}}{\partial t^2} + \frac{\partial}{\partial t} \left(\mathcal{N}(t) \frac{\partial \mathcal{N}}{\partial t^2} \right). \tag{8}$$ If v has the form (6), substitution into (8) leads to $$\frac{d}{dz} \left[u(k) \frac{d^2}{dz} \right] + \left[\sigma^2 \rho(z) - k u(k) \right] Z(z) = 0. \tag{9}$$ One boundary condition is that the stress must vanish at the free surface z = 0; from (4), (6), and (7), since $\nabla \cdot \vec{s} = 0$, we see that this implies ³⁰⁾ Page, op. cit., 162, eq. (47-16). that at z = 0 $$T_{2y} = 2\mu Y_{2y} = \mu \frac{\partial v}{\partial z} = 0, \text{ or } Z'(0) = 0.$$ (10.1) The other boundary condition is that the wave must be essentially confined to the surface of the medium; i. e., $$\lim_{z \to +\infty} Z(z) = 0_{\bullet} \tag{10.2}$$ We now further assume that the modulus of rigidity and the density are given by 31) $$\mu = \mu_0 (1 + z/R)^2; \quad \rho = \rho_0 = \text{constant}. \tag{11}$$ Then the local velocity c of distortional waves is a linear function of the depth, namely $$c = \sqrt{\mu \rho} = c_0(1 + z/\ell)$$, where $c_0 = \sqrt{\mu o/\rho_0}$ (12) The fact that u is infinite at an infinite depth makes very little difference in the results, since the waves with which we shall be concerned are of relatively short wavelength and are confined largely to the surface of the medium, so that its elastic properties at great depths do not come into account. 32) If we substitute μ and ρ from (11) into (9) and introduce the dimensionless variable $f = z/l_s$ we get the boundary conditions (10) becoming $$dZ/df = 0$$ at $f = 1$; $\lim_{h \to +\infty} Z(f) = 0$. (14) Introducing $V = \frac{\pi}{k}$ for the phase velocity of the waves represented by (6) and $\lambda = 2\pi/k$ for the wavelength, and making the substitution $$Z(\mathcal{G}) = \mathcal{G}^{-\frac{1}{2}}f(\mathcal{G}), \tag{15}$$ we find that (13) becomes ³¹⁾ Sakuraba, S., Geophysical Mag., Tokyo, 9, 211-214 (1935), has given a very brief treatment of this case. I am indebted to Prof. Bateman for calling Sakuraba's paper to my attention. ³²⁾ Cf. Meissner, op. cit., 195. $$g^{2}d^{2}f/dg^{2} + gdf/dg - \left[(2\pi l/\lambda)^{2}g^{2} + \frac{1}{4} - (2\pi l/\lambda c_{0})^{2} \right]f = 0, \qquad (16)$$ which is just the modified Bessel equation 1.2 (12) for functions of argument 2m/5/2 and order , where $$\nu^{2} = \frac{1}{4} - (2\pi l \nabla / \lambda c_{0})^{2} \tag{17}$$ Before proceeding further with the analysis, we shall try to get an idea of the order of magnitude of the numbers involved in our work. From representative observational data given by Gutenberg, 33) we see that the velocity of distortional waves through the interior of the earth increases uniformly from the surface value of 4.4 km/sec to a value 50% greater at a depth of 1200 km. Hence we have in (12) the approximate values $c_0 = 4.4$ km/sec, l = 2400 km. Transverse surface waves with a representative period T = 20 sec all have observed velocities near V = 3.3 km/sec, 34) corresponding to the wavelength χ - VT = 66 km. For such waves, $2\pi l/\chi = 230$ and $2\pi l \sqrt{\chi} c_0 = 170$; hence we see from (17) that ν is purely imaginary and very nearly equal to 2π/Vi/λco. Since we are interested in values of ζ slightly greater than unity and in values of V/c_0 slightly less than unity, we shall be dealing with Bessel functions whose argument is roughly equal to 250, the magnitude of the ratio order/argument being somewhat less than unity. The modified Bessel function which vanishes (exponentially) for large positive values of the argument, thus satisfying the second boundary condition (14), is known from 1.12 (2) to be the function $K_{\nu}(2\pi l_{\nu}^{2}/\lambda)$; hence from (15) we have, on writing $i\nu$ instead of ν for the order since we shall henceforth be concerned only with functions of purely imaginary order. $$Z(\mathcal{S}) = A \mathcal{S}^{\frac{1}{2}} K_{ij} (2\pi l \mathcal{G}/\lambda) = A \mathcal{S}^{\frac{1}{2}} G_{j} (2\pi l \mathcal{S}/\lambda). \tag{18}$$ ³³⁾ Gutenberg, B., Der Aufbau der Erde, 31, table 5, 34) Ibid., 109, table 49a. The first boundary condition (14) reduces to $$(2\pi l/\lambda)G_{\rho}^{*}(2\pi l/\lambda) = \frac{1}{2}G_{\rho}(2\pi l/\lambda) = 0.$$ (19) Eqs. (13) and (14) represent a standard two-point Sturm-Liouville boundary value problem, so we know from theorem 5 of Art. 1.0 or directly from the properties of the wedge function G, that for any fixed value of 27//2, eq. (19) will determine a series of increasing real positive values of ν ($\approx 2\pi k V/\lambda c_0$) corresponding to waves of a given wavelength traveling with a discrete series of velocities. The slowest wave of a given wavelength will have no nodal planes below the surface of the medium; the faster waves will have 1, 2, 3, ... nodal planes, corresponding to the higher values of 2. It turns out that only the slowest wave corresponding to a given wavelength, i. e., the wave without nodal planes, is of seismological interest. 35) From eq. (19) we may in principle obtain the dispersion curve of phase velocity $V \approx \sqrt[3]{c_0/2\pi \ell}$ against wavelength λ_{\bullet} The group velocity (velocity of propagation of energy) is then obtainable as $V = \lambda dV/d\lambda$. Since the values of order and argument under consideration are far outside the range covered by our table of wedge functions, it is necessary to work from the asymptotic representations of Bessel functions whose order and argument are simultaneously large and of comparable magnitude (see reference 21 of chapter I), the results in the case at hand being comveniently expressible in terms of the ratio |order/argument| $\approx V/c_0 f_0$ This problem has been treated numerically by H. Jeffreys 36) in an attempt 36) Jeffreys, H., Monthly Notices of the Royal Astronomical Society, Geophysical Supplements, 2, 101-111 (1928-31). ³⁵⁾ Meissner, op. cit., 186. We may note that Sakuraba (reference 31) is guilty of the incorrect statement that "the Love wave exists,
which is characterized by an infinite large number of nodal planes." The waves of finite frequency and finite wavelength certainly have only a finite number of nodal planes. He also remarks that the solution involving Bessel functions of purely imaginary order is "only of theoretical interest," whereas we have seen above that for all physically occurring values of the quantities involved, the order is purely imaginary. to get quantitative agreement with observational data. Jeffreys considers the slightly more general problem of a homogeneous surface layer of finite thickness overlying a deep layer wherein the velocity of distortional waves increases linearly with the depth, and plots phase and group velocities vs. wavelength of the Love waves for various values of the parameters involved. He obtains asymptotic expressions for the necessary modified Bessel functions of imaginary order directly from the differential equation. For the various curves obtained reference may be had to Jeffreys's paper. His analytical expressions might easily be derived in the standard Bessel function notation by the methods of this thesis, though it is unlikely that any significant extension of the results would be suggested by so doing, particularly in view of the relatively meagre seismological data at present available for comparison with any detailed theory. Note added June 23, 1947: The flow of electric current between coaxial cylindrical electrodes, taking account of both convection and diffusion, has been investigated by F. Borgnis* using Bessel functions of imaginary order and imaginary argument, in a paper of which the author was unaware when the preceding chapter was written. Subsequently F. Emde** has discussed in some detail asymptotic representations of Bessel functions of large purely imaginary order. ^{*}Borgnis, F., Ann. d. Phys. (5), 31, 745-754 (1938). **Emde, F., Z. f. Angew. Math. u. Mech., 19, 101-118 (1939). #### CHAPTER III Physical Applications of Bessel Functions of Imaginary Order and Real Argument ### 3.1. Solutions of the Wave Equation Involving Bessel Functions of Imaginary Order. The most important practical use of Bessel functions of purely imaginary order and real argument is for the construction of solutions of the wave equation. $$\mathcal{S}^2 \nabla^2 \Omega = \partial^2 \Omega / \partial t^2, \tag{1}$$ in cylindrical coordinates. In the present article we shall write out some useful scalar solutions of (1) which may be applied to the acoustic and electromagnetic problems of the next two sections. Restricting ourselves from the start to functions which are harmonic in time, we assume that a solution of (1) in cylindrical coordinates may be written in the form $$\Omega(\rho, \phi, z, t) = R(\rho)\bar{a}(\phi)Z(z)e^{-i\omega t}, \qquad (2)$$ where ω is real. We find that Ω will be a solution of the wave equation provided that $$d^2 \bar{a} / d \rho^2 = -\nu^2 \bar{a}, \qquad (3)$$ $$d^2Z/dz^2 = -k_z^2Z, (4)$$ $$\rho^{2} d^{2} R/d\rho^{2} + \rho dR/d\rho + \left[\rho^{2} (\omega^{2}/v^{2} - k_{z}^{2}) - \nu^{2} \right] R = 0,$$ (5) where γ and k_z are arbitrary separation constants. If we introduce the notation $$k^2 = \omega^2/v^2$$, $k_c^2 = k^2 - k_z^2$, (6) and take y^2 and k_z^2 to be real, we see that \overline{a} will consist of trigonometric or exponential functions depending on the sign of ν^2 and that Z will also be trigonometric or exponential in form depending on the sign of k_z^2 , while R will be a Bessel function of (real or imaginary) argument $k_c \rho$ and (real or imaginary) order $\nu_{\bullet}*$ The boundary conditions usually imposed upon Ω are that Ω =0 or that $\partial \mathcal{N} \partial n = 0$ on two pairs of level surfaces of the cylindrical coordinate system; we therefore choose the separation constants so that two of the three space factors on the right side of (2) are oscillatory functions of their respective arguments over the desired ranges. In the applications of the next two articles the boundary conditions will be that Ω or its normal derivative must vanish on a pair of planes z = constant and on a pair of cylinders $\rho = \text{constant}$. Hence we must choose k_z real to make z = constant and we must choose z = constant to make z = constant since the Bessel functions of real order are not oscillatory if the argument z = constant to be imaginary, that is, if $z = \frac{1}{2} \sum_{z=1}^{\infty} z \sum_{z=1}^$ $$\mathcal{L} = \mathbb{R}_{i\mathcal{D}}(\mathbf{k}_{c}\rho)\left[Ce^{i\phi} + De^{-i\phi}\right]\left[E \sin \mathbf{k}_{z}z + F \cos \mathbf{k}_{z}z\right]e^{-i\omega t}.$$ (7) To fix our ideas, let us consider the case where the boundary con- which may involve Bessel functions of imaginary order. Bocher has noted the application of these functions to the problem of the transverse vibrations of a thin uniform membrane bounded by two concentric circular arcs and two radii of these circles; the functions of imaginary order and real argument occur when an arbitrary harmonic displacement of the membrane is specified along the bounding radii $\beta = \text{constant}_{\bullet}$ 1) Bocher, M., Annals of Mathematics, 6, 155-160 (1892). ^{*}If we take $k_z^2 = 0$ and Z(z) = constant, we get solutions of the two-dimensional wave equation, ditions are $\partial n/\partial z = 0$ at z = 0 and at z = b, and $\partial n/\partial \rho = 0$ at $\rho = \rho$, and at $f = \rho_2$. Then the admissible solutions of (1) are of the form $R_{i\nu_{nm}}(k_{cn}\rho)\left[C_{mn}e^{\nu_{nm}\rho} + D_{mn}e^{-\nu_{nm}\rho}\right]\cos(n\pi z/b)e^{-i\omega t}, \quad (8)$ where we have taken $k_z = n\pi/b$, n an integer, and $$k_{\rm cn}^2 = \omega^2/v^2 - (n\pi/b)^2$$ (9) $R_{i\nu}$ (k_{cm}^{ρ}) is the particular Bessel function of order $i\nu$ and argument k_{cm}^{ρ} which satisfies the initial condition $$R_{i}^{\prime} (k_{en}^{\prime}) = 0,$$ (10.1) and 2 is the mth root* in of the equation $$R_{ij}^{\prime}(k_{en}\rho_2) = 0 \qquad (10.2)$$ If k_{cn} is real we know from Art. 1.7 that there will be in general a finite number of ordinary Bessel functions of real order satisfying the boundary conditions (10.1) and (10.2), in addition to an infinite number of functions of imaginary order, while if k_{cn} is imaginary we know from Art. 1.31 that the boundary conditions will determine merely an infinite number of functions of imaginary order. The same conclusions follow, of course, in case the boundary conditions are that $-\Omega = 0$ at ρ_1 and ρ_2 . Solutions of the wave equation in rectangular coordinates (x, y, z) may also easily be obtained as products of harmonics. Since the results are well known, we shall merely note here for future reference the form $\mathcal{L} = \begin{bmatrix} A \sin k_x x + B \cos k_x x \end{bmatrix} \begin{bmatrix} C \sin k_y y + D \cos k_y y \end{bmatrix} \begin{bmatrix} E \sin k_z z + F \cos k_z z \end{bmatrix} e^{-i\omega t}. \tag{11}$ This expression, as well as the equivalent form in terms of imaginary exponentials, obviously satisfies (1) provided that $$k_x^2 + k_y^2 + k_z^2 = k^2 = \omega^2/v^2$$ (12) ^{*}The roots are ordered so that $\nu_{n1}^2 \langle \nu_{n2}^2 \langle \nu_{n3}^2 \rangle$ evidently we need take only one root corresponding to each different value of ν^2 . ### 3.11. Propagation of Sound Waves around a Circular Bend in a Rectangular Pipe. We are now ready to consider the following problem: Given two similar semi-infinite straight pipes of rectangular cross section, whose upper and lower surfaces are respectively coplanar and whose axes intersect at a specified angle. The ends of the pipes are connected by a circular elbow of the same rectangular cross section, whose lateral surfaces are cylindrical. An infinite harmonic wave train of given frequency and amplitude is sent through one pipe and impinges upon the bent section. It is desired to calculate the form and amplitude of the wave train which is transmitted into the second pipe, and also of the reflected wave train. The practical interest of this problem lies in the calculation of the transmission of high-frequency electromagnetic waves through conducting wave guides; but since the electrical problem is complicated by the vectorial nature of the electromagnetic field, it seems worth while to discuss first the same problem as applied to sound waves, which may be handled in terms of scalar quantities. In treating the irrotational motion of a compressible non-viscous fluid it is convenient to introduce the scalar velocity potential Ω_{\bullet} whose gradient is the velocity $\overline{\mathbf{q}}_{\bullet}$ For small oscillations Ω satisfies the wave equation $$\sigma^2 \nabla^2 \Omega = \partial^2 \Omega / \partial t^2 \tag{1}$$ where $\sqrt{2} = dp/dp$ is the square of the velocity of sound in the given fluid. The boundary condition on Ω at a rigid boundary is that the normal component of the velocity shall vanish, i. e., $$\partial \Omega / \partial n = 0. \tag{2}$$ ²⁾ Rayleigh, Theory of Sound, 2nd ed., vol. II, Art. 244. At the interface between two media of different densities S_1 and S_2 we must have the normal component of velocity continuous, so that $$\partial \Omega_{i}/\partial n = \partial \Omega_{i}/\partial n . \tag{3.1}$$ The requirement that the pressure must be continuous across the boundary implies that3) If the two media are of equal density, the last condition may be satisfied by taking $$\Omega_1 = \Omega_2 \tag{3.2}$$ at the boundary. We now consider the propagation of an infinite wave train of constant frequency in the positive x-direction through a rectangular pipe bounded by the planes y = 0, y = a, and z = 0, $z = b_0^{4}$ From 3.1 (11) and (12) we see that the most general wave train satisfying the boundary condition (2) is given by $$\Omega = \sum_{m=0}^{\infty} \sum_{m=0}^{\infty} A_{mn} \cos (m\pi y/a) \cos (n\pi z/b) \exp
i(h_{mn}x = \omega t),$$ where $$h_{mn}^2 = \omega^2/v^2 - (m\pi/a)^2 - (n\pi/b)^2$$ (5) The coefficients Amn in (4) may evidently be determined by Fourier's method so as to represent arbitrarily prescribed values of $\partial A/\partial x$ over any desired section x = xo of the pipe. It will be noted that the individual terms of (4), such as $\Omega_{mn} = A_{mn} \cos (m\pi y/a) \cos (n\pi z/b) \exp i(h_{mn}x - \omega t)$ (6) correspond to wave types in which the velocity components $\partial \mathcal{N}/\partial y$ and $\partial \mathcal{N}/\partial z$ perpendicular to the axis of the pipe have m-l and n-l nodes respectively between the bounding planes. Furthermore we see from (5) that for any ³⁾ Rayleigh, op. cit., 79. 4) Ibid., Art. 268. fixed value of the frequency and sufficiently large values of m and n, h_{mn}^2 is negative, so that $h_{mn} = i \gamma_{mn}$, say, and the factor depending on x in (4) becomes a real negative exponential $e^{-\gamma_{mn}x}$. Thus at a given frequency only a finite number of the lower modes can be propagated along the pipe without attenuation, the higher modes becoming rapidly insensible as we leave the neighborhood of the source. The "cut-off" of the higher modes is a phenomenon well known to workers with ultra-high-frequency electromagnetic waves. Of course at sufficiently high frequencies any given mode can be propagated through the pipe; the cut-off frequency, by (5), corresponds to $$\omega_{\rm mn}^2 = v^2 [(m\pi/a)^2 + (m\pi/b)^2],$$ (7) and thus depends on the dimensions a and b of the pipe as well as on the integers m and n. We note that the mode for which m = n = 0, which is a purely longitudinal plane wave with all particles vibrating in the direction of propagation, is passed by the pipe without attenuation at all frequencies. In the problem at hand, we shall assume for negative values of x an infinite train of plane waves traveling in the positive x-direction in a rectangular pipe bounded by y = 0, y = a, z = 0, and z = b, and given by the velocity potential $$\Omega_{\circ} = Ae^{ikx}, x \angle 0, \tag{8}$$ where $k = \omega/v_0$ and it is understood throughout the rest of this section that all potentials vary with time according to the factor $e^{-i\omega t_0}$. Incident plane waves of the form (8) may be obtained either by choosing the dimensions of the pipe so that the given frequency is below cut-off (see (7)) for all modes except the one with m = n = 0, or by arranging a source which does not excite the higher modes; the case in which the incident wave train is a mixture of several modes merely leads to greater complica- tion in the form of the solution. At x = 0 the incident wave train enters the circular elbow bounded by $f = f_1$, $f = f_2 = f_1 + a$, z = 0, and z = b, and extending from $\phi = + \alpha$ to $\phi = -\alpha$. Observing that no modes with z-components of velocity will be excited in the bent pipe because no such components are present in the incident wave, we may set n = 0 in 3.1 (8) and assume for the steady- where $k(=\omega/v)$ is always real, so that the Bessel function satisfying 3.1 (10.1) may be written in terms of the functions U, and V, of Art. 1.5 as $$R_{i\nu}(k\rho) = \nabla_{\nu} (k\rho_1) \nabla_{\nu}(k\rho) - \nabla_{\nu} (k\rho_1) \nabla_{\nu}(k\rho), \qquad (10)$$ and 2m is the (m+1)st root of $$R_{i\nu}(k\rho_2) = 0. \tag{11}$$ As pointed out in 3.1, there will in general be, in addition to the infinite number of functions of imaginary order, a finite number of functions of real order which satisfy the boundary conditions; these latter may conveniently be expressed in a form similar to (10) by any fundamental pair of ordinary Bessel functions of real order. On the other side of the elbow we shall assume for the wave train which is transmitted into the second pipe the velocity potential $$\Omega_3 = \sum_{m=0}^{\infty} D_m \cos (m\pi y/a) e^{ih_m x}, x > 0, \qquad (12)$$ and for the waves reflected back into the first pipe, $$\Omega_1 = \sum_{m=0}^{\infty} A_m \cos (m\pi y/a) e^{-ih_m x}, x \neq 0, \qquad (13)$$ where $$h_{\rm m}^2 = \omega^2/v^2 - (m\pi/a)^2$$, (14) and in case h_m (= $i \mathcal{J}_m$, say) is imaginary the sign is so chosen that the corresponding waves in the first pipe vanish as $x \to -\infty$ and in the second pipe as x -> +0. Depending on the dimensions of the pipe and the frequency, only a finite number of the lower modes (possibly only the mode for which m = n = 0) are propagated, with determinate phases and amplitudes, to any great distance from the bend; but in order to satisfy the boundary conditions at the bend it is necessary to take into account also the modes which are attenuated within a short distance. The boundary conditions (3.2) and (3.1) are to be applied to match $\Omega_0 + \Omega_1$ at x = 0 with Ω_2 at $\phi = +\infty$. From (3.2) we get $$A + \sum_{m=0}^{\infty} A_m \cos (m\pi y/a) = \sum_{m=0}^{\infty} R_{i\omega_m}(k\rho) \left[B_m e^{2m\alpha} + C_m e^{-2m\alpha} \right], \qquad (15)$$ and from (3.1) $2n_0/2x + 2n_1/2x = -p^{-1}2n_2/2p_0$, or $$i\left[kA - \sum_{m=0}^{\infty} h_{m}A_{m} \cos(m\pi y/a)\right] = -\frac{1}{2} \sum_{m=0}^{\infty} \nu_{m}R_{i\nu_{m}}(k\rho)\left[B_{m}e^{\nu_{m}\alpha} - C_{m}e^{-\nu_{m}\alpha}\right]. \quad (16)$$ Similarly on matching Ω_{2} at $\alpha = 0$, we get $$\sum_{m=0}^{\infty} R_{i\nu_{m}}(k_{p}) \left[B_{m} e^{-m} + C_{m} e^{2m^{d}} \right] = \sum_{m=0}^{\infty} D_{m} \cos(m\pi y/a), \qquad (17)$$ $$-\frac{1}{\rho} \sum_{m=0}^{2} \mathcal{V}_{m} R_{i} \mathcal{V}_{m} (k\rho) \left[B_{m} e^{-\nu_{m} \alpha} - C_{m} e^{\nu_{m} \alpha} \right] = i \sum_{m=0}^{2} h_{m} D_{m} \cos(m\pi y/a).$$ (18) On replacing p by p, + y in eqs. (15) - (18), multiplying through by $\cos(n\pi y/a)$, and integrating from y = 0 to y = a, we get the set of equations: $$\frac{1}{2}a\left[2AS_{on} + A_{n}(1+S_{on})\right] = \sum_{m=0}^{\infty} M_{mn}\left[B_{m}e^{2m} + C_{m}e^{-2m}\right], \qquad (19)$$ $$\frac{1}{2}ia\left[2kAS_{on}-h_{n}A_{n}(1+S_{on})\right]=-\sum_{m}\nu_{m}N_{mn}\left[B_{m}e^{\nu_{m}\alpha}-c_{m}e^{-\nu_{m}\alpha}\right], \quad (20)$$ $$\sum_{m} \mathbb{I}_{mn} \left[\mathbb{B}_{me}^{-2m^d} + \mathbb{C}_{me}^{2m^d} \right] = \frac{1}{2} \mathbb{E} D_n (1 + \mathcal{S}_{on}), \qquad (21)$$ $$\sum_{m=0}^{\infty} \mathbb{M}_{mn} \left[\mathbb{B}_{m} e^{-m^{\alpha}} + \mathbb{C}_{m} e^{2m^{\alpha}} \right] = \frac{1}{2} a D_{n} (1 + \mathcal{S}_{on}), \qquad (21)$$ $$-\sum_{m=0}^{\infty} \mathbb{P}_{m} \mathbb{N}_{mn} \left[\mathbb{B}_{m} e^{-2m^{\alpha}} - \mathbb{C}_{m} e^{2m^{\alpha}} \right] = \frac{1}{2} a i h_{n} D_{n} (1 + \mathcal{S}_{on}), \qquad (22)$$ where $$\mathbb{I}_{mn} = \int_{0}^{\infty} \mathbb{R}_{i\nu_{m}}(\rho_{1} + y) \cos(n\pi y/a) dy$$ (23) and $$N_{mn} = \int_{0}^{\alpha R_{l}} \frac{(\rho_{l} + y)}{(\rho_{l} + y)} \cos(n\pi y/a) dy$$ (24) If we could solve the infinite set of equations (19) - (22) for the infinite set of ratios A_m/A , B_m/A , C_m/A , and D_m/A , we should presumably have the rigorous solution of our original problem. Although the exact solution is not feasible, similar sets of equations have been used by W. C. Hahn⁵⁾ and others to obtain approximate solutions of various electromagnetic problems involving cavity resonators and wave guides which it is not practicable to treat in any other way. The procedure is to take only a finite number of values of m, say three or four, and to solve the resultant equations for the coefficients of the first few terms in the expansions for the potential. The convergence of the process is sufficiently demonstrated, from an engineer's point of view, if the amplitudes of the higher order waves diminish rapidly compared with the amplitude of the original wave; this will be seen only by carrying out a numerical calculation in a particular case. It is worth noting that since the functions $R_{i\nu}(k\rho)$ and $R_{i\nu}(k\rho)/\rho$ undergo an integral number of oscillations in the interval (ρ , ρ , + a), they will be in a manner of speaking approximately orthogonal to the cosine functions, so that when $m \neq n$ the quantities M_{mn} and N_{mn} defined by (23) and (24) may be expected to be much smaller than the quantities Mnn and Nnn with equal subscripts. Thus the largest coefficients in the set of equations (19) - (22) will be those of the diagonal terms, a circumstance which greatly facilitates the solution of a finite number of these equations by the method of successive approximations. In the cases published by Hahn (which involved only trigonometric functions), the rapidity of convergence of the solutions was increased by the introduction of certain auxiliary functions which could be separately calculated; possibly further investigation might disclose the usefulness of similar auxiliary functions in the present problem. We shall not here undertake any extensive numerical calculations for the problem which we have been discussing; but it may nevertheless be of interest to see what would be the magnitude of order and argument of the ⁵⁾ Hahn, W. C., Journal of Applied Physics, 12, 62-68 (1941). Bessel functions involved in a typical case. Consider a square pipe for which a = b = 10 cm, transmitting a plane wave of wavelength 10π cm, which corresponds to a frequency at 0° C of $(331.5 \times 10^{2})/10\pi = 1055$ cps. For such a wave $k = \sqrt[6]{v} = 2\pi/\lambda = 1/5$ cm⁻¹, so that from (7) all modes except the one for which m = n = 0 are below the cut-off frequency. If we take 15 cm for the radius of the center line of the bend, then $f_{i} = 10$ cm, $f_{i} = 20$ cm, and the equations 3.1 (10.1) and (10.2) for the admissible values of f_{i} become $$R_{i\nu}$$ (2) = $R_{i\nu}$ (4) = 0. (25) If the squares of the successive roots of (25) are $\nu_0^2 \not\perp \nu_1^2 \not\perp \nu_2^2 \not\perp$..., we get from the calculus of variations, on putting a=2, b=4 in 1.8 (8), the inequality
$$v_0^2 = -6/\log 2 = -8.656 = -(2.942)^2$$ so that the first root of (25) corresponds to an ordinary Bessel function of real order somewhat greater than 2.94. A rough approximation to ν_1^2 may be obtained from 1.8 (9.1) and (9.2); with the aid of a table of cosine integrals we get $$\nu_1^2 \approx \mathcal{D}_1/\mathcal{N}_1 = 12.41 = (3.52)^2$$, corresponding to a Bessel function of imaginary order in the neighborhood of 3.5i. On setting k = 1 in Horn's approximation 1.8 (4) to \mathcal{P}_k , we find $\mathcal{P}_1 \approx 3.58$, with no a priori way of knowing which approximation is closer to the true value of \mathcal{P}_1 . It appears, however, that with the chosen values of the various parameters we should need to obtain by trial and error from a table only the first two eigenvalues \mathcal{P}_0 and \mathcal{P}_1 , the others being given with sufficient accuracy for all practical purposes by Horn's asymptotic formula, which improves rapidly for the higher eigenvalues. Likewise the eigenfunctions $R_{i\mathcal{P}_m}(k\rho)$ for $m \gg 2$ would be represented quite simply by the asymptotic formula 1.8 (5). ## 3.12. <u>Propagation of Electromagnetic Waves around a Circular Bend in a Rectangular Wave Guide.</u> In free space or in a perfect homogeneous isotropic dielectric of capacitivity ϵ and permeability μ the electric field intensity \vec{E} satisfies the vector wave equation $$\nabla^2 \vec{\mathcal{E}} = \mu \mathcal{E} \frac{\partial^2 \vec{\mathcal{E}}}{\partial t^2},\tag{1}$$ and all the other field vectors and potentials satisfy equations of the same form. The rectangular components of the field vectors individually satisfy scalar wave equations of the form (1), but the components of these vectors with respect to a general curvilinear coordinate system do not individually satisfy the scalar wave equation, because the unit vectors in a curvilinear system are not in general constant. The difficulty may be avoided by deriving the fields from potentials which satisfy (1) and which can be obtained by various methods; or, if by any means we have expressions for one component each of the electric and magnetic field vectors \overrightarrow{E} and \overrightarrow{E} , the other components may be derived from the interrelations expressed by Maxwell's equations. For our purpose the latter procedure will be sufficient. If we assume that the time variation of all field quantities is given by the harmonic factor $e^{-i\omega t}$, so that differentiation with respect to time is equivalent to multiplication by $-i\omega$, the curl equations of Maxwell become, for a homogeneous isotropic dielectric, $$\vec{\nabla} \times \vec{\mathcal{E}} = -\frac{\partial \vec{B}}{\partial t} = i\omega \vec{B}; \quad \vec{\nabla} \times \left(\frac{\vec{B}}{\mu}\right) = \frac{\partial}{\partial t} \left(\varepsilon \vec{\mathcal{E}}\right) = -i\omega \varepsilon \vec{\mathcal{E}}. \quad (2)$$ If we write out the six component equations in cylindrical coordinates and further assume that all components vary as $\sin k_z z$ or $\cos k_z z$, so that the operation of $\partial^2/\partial z^2$ is equivalent to multiplication by $-k_z^2$, it is possible to solve for Ep, Ep, and Bp in terms of Ez and Bz; we get⁶) $$\mathcal{E}_{p} = \frac{i}{k_{c}^{2}} \left[\frac{\partial^{2} \mathcal{E}_{2}}{\partial \rho \partial z} + \frac{i\omega}{\rho} \frac{\partial \mathcal{B}_{2}}{\partial \varphi} \right], \quad \mathcal{E}_{q} = \frac{i}{k_{c}^{2}} \left[\frac{i}{\rho} \frac{\partial^{2} \mathcal{E}_{2}}{\partial \rho \partial z} - i\omega \frac{\partial \mathcal{B}_{2}}{\partial \rho} \right];$$ $$\mathcal{B}_{p} = \frac{i}{k_{c}^{2}} \left[\frac{\partial^{2} \mathcal{B}_{2}}{\partial \rho \partial z} - \frac{ik}{\omega \rho} \frac{\partial \mathcal{E}_{2}}{\partial \varphi} \right], \quad \mathcal{B}_{q} = \frac{i}{k_{c}^{2}} \left[\frac{i}{\rho} \frac{\partial^{2} \mathcal{B}_{2}}{\partial \varphi \partial z} + \frac{ik^{2}}{\omega} \frac{\partial \mathcal{E}_{2}}{\partial \rho} \right];$$ $$(3)$$ where $k^2 = \omega^2 \mu \epsilon$, $k_c^2 = k^2 - k_z^2$. Similarly in rectangular coordinates, if the components E_x and E_x are supposed known and the fields are assumed to be propagating in the positive x-direction so that their dependence on x and t is given by $e^{i(hx-\omega t)}$, we get from the curl equations (2) $$\mathcal{E}_{y} = \frac{i}{k^{2}-h^{2}} \left[ih \frac{\partial \mathcal{E}_{x}}{\partial y} + i\omega \frac{\partial \mathcal{B}_{x}}{\partial z^{2}} \right], \quad \mathcal{E}_{z} = \frac{i}{k^{2}-h^{2}} \left[ih \frac{\partial \mathcal{E}_{x}}{\partial z} - i\omega \frac{\partial \mathcal{B}_{x}}{\partial y} \right]; (5)$$ $$\mathcal{B}_{y} = \frac{i}{k^{2}-h^{2}} \left[ih \frac{\partial \mathcal{B}_{x}}{\partial y} - \frac{i}{\omega} \frac{\partial \mathcal{E}_{x}}{\partial z} \right], \quad \mathcal{B}_{z} = \frac{i}{k^{2}-h^{2}} \left[ih \frac{\partial \mathcal{B}_{x}}{\partial z} + \frac{ih^{2}}{\omega} \frac{\partial \mathcal{E}_{x}}{\partial y} \right]; (6)$$ Since it happens that in the cylindrical coordinate system the unit vector in the z-direction is constant, the z-components of the field vectors do satisfy the scalar wave equations $$\nabla^2 \mathcal{E}_2 = \mathcal{M} \mathcal{E} \frac{\partial^2 \mathcal{E}_2}{\partial t^2}, \quad \nabla^2 \mathcal{B}_2 = \mathcal{M} \mathcal{E} \frac{\partial^2 \mathcal{B}_2}{\partial t^2}, \tag{7}$$ of which solutions are given by 3.1 (7). It is therefore easy to write down from 3.1 (7) and from (3) and (4) above various types of fields which satisfy the boundary conditions that the tangential component of \vec{E} and the normal component of \vec{B} shall vanish on the perfectly conducting surfaces $\rho = \rho$, $\rho = \rho_2 = \rho$, $\rho = \rho_3 = \rho$, and $\rho = \rho$ and $\rho = \rho$. We consider first the case in which $B_z = 0$ and E_z is a suitably ⁶⁾ Compare Ramo, S., and Whinnery, J. R., Fields and Waves in Modern Radio, 299-300 and 326-327. Note that in Ramo and Whinnery's notation the time dependence of the field quantities is given by e[†]Jut, specialized function of the form given by 3.1 (7). On making use of eqs. (3) and (4), we find that a field satisfying the specified boundary conditions is given by the following set of components (the time dependence e^{-iωt} being understood): $$E_{z} = R_{i\nu_{nm}}(k_{cn}\rho) \left[A_{mn}e^{\nu_{nm}\rho} + B_{mn}e^{-\nu_{nm}\rho}\right] \cos(n\pi z/b), \qquad (8.1)$$ $$E_{\rho} = -(n\pi/bk_{cn})R_{i\nu_{nm}}(k_{cn}\rho)\left[A_{mn}e^{\nu_{nm}b} + B_{mn}e^{-\nu_{nm}b}\right]\sin(n\pi z/b), \qquad (8.2)$$ $$E_{\phi} = -(n\pi^{\nu}_{nm}/bk_{cn}\rho) R_{i\nu}_{nm}(k_{cn}\rho) \left[A_{mn}e^{\nu_{nm}\phi} - B_{mn}e^{-\nu_{nm}\phi}\right] \sin(n\pi z/b), \quad (8.3)$$ $$B_{\mathbf{Z}} = \mathbf{0}_{\mathbf{9}} \tag{8.4}$$ $$B_{\rho} = -(ik^{2}\nu_{nm}/k_{cn}^{2}\nu_{\rho})R_{i\nu_{nm}}(k_{cn}\rho)[A_{mn}e^{\nu_{nm}\phi} - B_{mn}e^{-\nu_{nm}\phi}]\cos(n\pi z/b), (8.5)$$ $$B_{p} = (ik^{2}/k_{cn}\omega) R_{i\nu_{nm}} \cdot (k_{cn}\rho) \left[A_{mn}e^{\nu_{nm}\rho} + B_{mn}e^{-\nu_{nm}\rho}\right] \cos(n\pi z/b), \qquad (8.6)$$ where n is any non-negative integer, $k_{\rm cn}^2 = \omega^2 \mu \epsilon - (n\pi/b)^2$, $R_{\rm i}\nu(k_{\rm cn}\rho)$ is a Bessel function of order iv vanishing at $\rho = \rho_1$, and $\nu_{\rm nm}$ is the mth root of the equation $R_{\rm i}\nu(k_{\rm cn}\rho_2) = 0$. A field in which $B_z = 0$ will be designated as "transverse magnetic", or TM;* and the particular oscillation specified, as in (8), by the integers m and n will be called the $TM_{\rm mn}$ mode. Similarly we may write down the components of a "transverse electric" field for which $E_z = 0$ and B_z is given by 3.1 (7); these are, for the TE_{mn} mode, $$B_{z} = R_{i\nu_{nm}}(k_{cn}\rho) \left[C_{mn} e^{\nu_{nm}\rho} + D_{mn} e^{-\nu_{nm}\rho} \right] \sin(n\pi z/b), \qquad (9.1)$$ $$B_{\rho} = (n\pi/k_{cn}b) R_{i\nu}_{nm} \cdot (k_{cn}\rho) \left[C_{mn}e^{\nu}_{nm}b + D_{mn}e^{-\nu}_{nm}b \right] \cos(n\pi z/b), \qquad (9.2)$$ $$B_{p} = (n\pi \nu_{nm}/k_{cn}^{2}b_{f}) R_{i\nu_{nm}}(k_{cn}f) \left[C_{mn}e^{\nu_{nm}b} - D_{mn}e^{-\nu_{nm}b}\right] \cos(n\pi z/b), \quad (9.3)$$ $$\mathbf{E}_{\mathbf{z}} = \mathbf{O}_{\mathbf{s}} \tag{9.4}$$ $$\mathbb{E}_{\rho} = (i\omega \nu_{nm}/k_{cn}^{2}\rho)\mathbb{R}_{i\nu}(k_{cn}\rho)\left[C_{mn}e^{\nu_{nm}\rho} - D_{mn}e^{-\nu_{nm}\rho}\right]\sin(n\pi z/b), \qquad (9.5)$$ ^{*}The designation TM has in this case no particular advantage except brevity. It was originally introduced to describe fields which were propagating in the z-direction, and for which therefore the magnetic field was transverse to the direction of propagation. $$E_{\beta} = -(i\omega/k_{\rm cn}) R_{i\nu}(k_{\rm cn}\rho) \left[C_{\rm mn} e^{\nu_{\rm nm}\theta} + D_{\rm mn} e^{-\nu_{\rm nm}\theta} \right] \sin(m\pi z/b), \qquad (9.6)$$ where to satisfy the boundary conditions in this case the Bessel function $R_{i\nu}(k_{enf})$ must be so chosen that $R_{i\nu}(k_{enf1}) = 0$, and v_{nm} is the mth root of the equation Rip (kenf2) = 0. The types of waves which may propagate in a conductingguide of rectangular cross section have been widely discussed in the literature. 7) For the TEmm mode propagating in the positive x-direction in a guide bounded by the conducting planes y = 0, y = a, z = 0, and z = b, the fields are given by (5) and (6) in connection with 3.1 (11) and (12) as follows: $$B_{x} = A_{mn} \cos(m\pi y/a) \cos(n\pi z/b) e^{ih_{mn}x}$$ (10.1) $$B_y = -ih_{mn}(m\pi/a)(k^2 - h_{mn}^2)^{-1}A_{mn} \sin(m\pi/a) \cos(n\pi z/b)e^{ih_{mn}x},$$ (10.2) $$B_z = -ih_{mn}(mr/b)(k^2 - h_{mn}^2)^{-1}A_{mn} \cos(mry/a) \sin(mrz/b)e^{ih_{mn}x},$$ (10.3) $$\mathbf{E}_{\mathbf{x}} = \mathbf{O}_{\mathbf{y}} \tag{10.4}$$ $$E_{y} = -i\omega(n\pi/b)(k^{2} - h_{mn}^{2})^{-1}A_{mn}\cos(m\pi y/a)\sin(n\pi z/b)e^{ih_{mn}x},$$ (10.5) $$E_z = i\omega(m\pi/a)(k^2 -
h_{mn}^2)^{-1}A_{mn} \sin(m\pi/a) \cos(n\pi/b)e^{ih_{mn}x},$$ (10.6) where $$k^2 = \omega^2 / \varepsilon = (m\pi/a)^2 + (n\pi/b)^2 + h_{mn}^2$$ (11) The corresponding components in the transverse magnetic modes may be written down in a similar way, or they may be found in the work of Ramo and Whinnery. One of the simplest wave types which may exist in a hollow rectangular pipe is the TE10 mode; this mode is also of great engineering importance. 8) We suppose that we have a TE10 wave traveling in the positive x-direction through a guide bounded by y = 0, y = a, z = 0, and z = b, which is con- ⁷⁾ Ramo and Whinnery, op. cit., Arts. 9.04-9.05. 8) Ibid., Art. 9.05. nected at x = 0 to a similar guide at a different angle through the circular elbow bounded by $\rho = \rho_1$, $\rho = \rho_2 = \rho_1 + a$, z = 0, z = b, and extending from $\phi = + a$ to $\phi = -a$; and we proceed to write down the equations which determine the amount and form of the transmitted and reflected waves at the bend. In the first pipe, where x < 0, the non-vanishing field components of the incident TE_{10} wave are given by (10) and (11) as $$B_{\rm ox} = A \cos(\pi y/a) e^{ih_1 x}, \qquad (12.1)$$ $$B_{oy} = -(ih_1 a/\pi) A \sin(\pi y/a) e^{ih_1 x}, \qquad (12.2)$$ $$E_{oz} = (i\omega a/\pi)A \sin(\pi y/a)e^{ih}l^{x}, \qquad (12.3)$$ where $$h_{\rm m}^2 = \omega^2 / (\epsilon - (m\pi/a)^2)$$ (13) Since there is no y-component of electric field in the incident wave there will be no radial component of \tilde{E} in the bend; from (8), the only modes that will be excited are transverse magnetic modes with n = 0. Accordingly we assume a sum of such modes to represent the fields in the bend, the non-vanishing components being, for $\alpha > 0$. $E_{2z} = \sum_{m=1}^{\infty} R_{i\nu_{m}}(k\rho) \left[B_{m} e^{\nu_{m}\rho} + C_{m} e^{-\nu_{m}\rho} \right], \qquad (14.1)$ $$B_{2\rho} = \sum_{m=0}^{\infty} -(i\nu_{m}/\omega\rho)R_{i\nu_{m}}(k\rho)\left[B_{m}e^{\nu_{m}\beta} - C_{m}e^{-\nu_{m}\beta}\right], \qquad (14.2)$$ $$B_{2\phi} = \sum_{m=0}^{\infty} (ik/\omega)R_{i\nu_{m}} (k\rho) \left[B_{m}e^{\nu_{m}\phi} + c_{m}e^{-\nu_{m}\phi}\right], \qquad (14.3)$$ where $R_{i\nu}(k\rho_1) = 0$ and ν_m is the mth root of $R_{i\nu}(k\rho_2) = 0$. In the transmitted and reflected waves we shall find only those transverse electric modes for which $E_{\nu} = 0$; hence for the reflected waves, x < 0, we assume $$B_{1x} = \sum_{m=1}^{\infty} A_m \cos(m\pi y/a) e^{-ih_m x}, \qquad (15.1)$$ $$B_{1y} = \sum_{m=1}^{\infty} (+ih_{m}a/m\pi) A_{m} \sin(m\pi y/a)e^{-ih_{m}x}, \qquad (15.2)$$ $$R_{ij}(kp) = V_{j}(kp_1) U_{j}(kp) - U_{j}(kp_1) V_{j}(kp_0)$$ ^{*}As in Arts. 3.1 and 3.11, the boundary conditions will in general be satisfied by a finite number of Bessel functions of real order as well as an infinite number of functions of imaginary order; these latter functions may be written if desired in the form $$E_{1z} = \sum_{m=1}^{\infty} (+iwa/m\pi) A_{m} \sin(m\pi y/a) e^{-ih_{m}x}, \qquad (15.3)$$ and for the transmitted waves, x > 0, $$B_{3x} = \int_{m=1}^{\infty} D_{m} \cos(m\pi y/a) e^{ih_{m}x}, \qquad (16.1)$$ $$B_{3y} = \int_{m=1}^{\infty} -(ih_{m}a/m\pi)D_{m} \sin(m\pi y/a) e^{ih_{m}x}, \qquad (16.2)$$ $$B_{3y} = \sum_{m} -(ih_{m}a/m\pi)D_{m} \sin(m\pi y/a)e^{ih_{m}x}, \qquad (16.2)$$ $$E_{3z} = \sum_{n=0}^{\infty} (iwa/m\pi)D_{m} \sin(m\pi y/a)e^{ih_{m}x}, \qquad (16.3)$$ It is evident from (13) that if the dimensions of the guide are properly chosen hm may be imaginary for m > 1, in which case all the modes except TE10 will be rapidly attenuated. The boundary conditions in this problem require the continuity of the fields at all points; hence we must have $E_{0z} + E_{1z} = E_{2z}$ and $B_{oy} +$ $B_{1y} = B_{2\rho}$ over the plane x = -0, $\beta = 4$, as well as $E_{2z} = E_{3z}$ and $B_{2\rho} =$ B_{3v} over the plane $\phi = -d_0 x = +0$. (If these four conditions are satisfied, the curl equations (2) imply that the remaining component of the magnetic field is also continuous.) Evidently these conditions, applied to the expressions which we have written down for the field components, will lead to four sets of equations for the four sets of ratios Am/A, B_m/A , C_m/A , and D_m/A , precisely similar to eqs. (19) - (22) of Art. 3.11. Space limitations due to the original plan of this work, which was to exhibit as many different occurrences of Bessel functions of imaginary order as possible rather than to discuss any single application exhaustively, prevent us from continuing here the treatment of the wave guide problem which we have thus briefly introduced. It can scarcely be doubted, however, that this general problem currently represents the most important practical application of Bessel functions of imaginary order, and that it merits a much more extensive treatment than we have been able to give. Probably the equivalent circuit concepts which have already proved so fruitful in analyzing the transmission of microwaves 9) can be applied ⁹⁾ For example, Whinnery, J. R., and Jamieson, H. W., "Equivalent Circuits for Discontinuities in Transmission Lines," Proc. I. R. E., 32, 98-114 (1944). here, the reflection and transmission coefficients of the bent portion of the guide being represented by an equivalent impedance network at the junction between two sections of uniform line. For numerical analysis it would be highly desirable to have a table of the Bessel functions $U_{p}(x)$ and $V_{p}(x)$ of imaginary order and real argument comparable in range with the table of functions of imaginary order and imaginary argument contained in the appendix of the present work. If such a table can be made available, we feel that Bessel functions of imaginary order will find a very practical use in electromagnetic theory. ## 3.2. Schrödinger Wave Functions for a Particle in an Exponential Field of Force. Among the more important physical applications of Bessel functions are those which occur in the quantum theory. Most of the elementary quantum mechanical problems which require the use of Bessel functions lead only to functions of real order; but within the past three or four years several investigations have been published which involve the functions of purely imaginary order. We shall now formulate the basic problem which gives rise to these latter functions. The quantum mechanical behavior of a particle of mass m and total energy E in a field of force given by the potential function V is determined by the time independent Schrödinger equation $$\nabla^2 \psi + \frac{2m}{f^2} (E - V) \psi = 0, \tag{1}$$ where ψ is the wave function of the particle and $2\pi\hbar$ is Planck's quantum of action h. In a central force field, where V = V(r) is a function of the radial distance only, it is well known¹⁰ that the wave function ¹⁰⁾ See for example Pauling, L., and Wilson, E. B., Jr., Introduction to Quantum Mechanics, 113-121. may be written in spherical coordinates as $$\psi(\mathbf{r}, \Theta, \phi) = R(\mathbf{r})\Theta(\Theta)\bar{a}(\phi),$$ (2) where $\bar{\mathbf{d}}$ and $\boldsymbol{\Theta}$ are respectively trigonometric and associated Legendre functions depending on two integral quantum numbers. The differential equation satisfied by the radial function is then $$\frac{1}{n^{2}}\frac{d}{dn}\left(n^{2}\frac{dk}{dn}\right) + \left[\frac{2m}{\hbar^{2}}\left\{E - V(n)\right\} - \frac{\ell(\ell+1)}{\hbar^{2}}\right]R = 0,$$ (3) where the non-negative integer ℓ measures the total angular momentum of the particle in units of \hbar . If we consider the spherically symmetric state of zero total angular momentum (the so-called s-state) and write $$R(r) = u(r)/r, \qquad (4)$$ eq. (3) becomes $$\frac{d^{2}u}{dr} + \frac{2m}{f^{2}} \left[E - V(r) \right] u = 0.$$ (5) We now specialize the problem under consideration by assuming for the potential V(r) the exponential form $$V(r) = -V_0 \exp(-r/a), \qquad (6)$$ which represents an attractive force field if the constant V_0 is positive. The exponential field given by (6) evidently vanishes at large distances much more rapidly than the Coulomb potential $-V_0a/r$; it has an effective range given essentially by the characteristic length a. Such a potential has often been used as a convenient and mathematically tractable approximation to the short-range non-Coulomb fields of nuclear particles. If we substitute (6) into (5) and introduce the notations $$x = \exp(-r/2a), E = \frac{\pi^2 k^2}{2m}, V_0 = \frac{\pi^2 p^2}{2m},$$ (7) we find that the equation for u becomes $$x^2d^2u/dx^2 + x du/dx + [(2ak)^2 + (2ap)^2x^2]u = 0,$$ (8) which by comparison with $l_{\bullet}5$ (1) is seen to have the solutions $u = J_{\pm 2aki}(2apx)$ for unrestricted values of k and p.* Various cases may arise, according to whether k and p are real or imaginary. For a bound particle, i. e., one with negative total energy E, in the neighborhood of an attractive center of force, $p = (2mV_0/\hbar^2)^{\frac{1}{2}}$ is real but $k = (2mE/n^2)^{\frac{1}{2}}$ is purely imaginary, so that u is proportional to the ordinary Bessel function J2a /k/ (2apx) of real order and real argument. (The second solution of Bessel's equation is infinite at x = 0, which corresponds to $r = \sim_{\bullet}$) The admissible values, if any, of the total energy are determined by the boundary condition that u must vanish at r = 0, so each root in |k| of the equation $$J_{2a,|k|}(2ap) = 0$$ (9) corresponds to a stationary state of the bound particle defined by a particular value of the total energy E. This problem has been discussed by Bethe and Bacher 11) in their treatment of the ground state of the deuteron. If on the other hand E is positive, corresponding to a net kinetic energy of the particle at infinity, then k is real and we have to do with Bessel functions of imaginary order and real argument; we shall discuss this case briefly in the following paragraphs. If E is positive but Vo is negative, so that (6) represents a repulsive field of
force, then p is imaginary and we are led to functions of imaginary order and imaginary argument; these functions would arise in the problem of scattering of a stream of particles by a repulsive center of force. Application of the functions of imaginary order and real argument 11) Bethe, H. A., and Bacher, R. F., Rev. Mod. Phys., 8, 110-111 $(1936)_{\bullet}$ ^{*}If 2aki is a real integer, then in the general solution of (8) we must replace J-2aki, which is no longer distinct from J2aki, by any one of the various so-called functions of the second kind which are linearly independent of J2aki; or the general solution may be expressed in terms of the pair of Hankel functions defined by 1.5 (3). to nuclear physics has been made by Dube and Jha¹²⁾ in a paper on the emission of alpha-particles from radioactive nuclei. As is well known, the first successful theory of alpha-radioactivity was given by Condon and Gurney and by Gamow.¹³⁾ In the original form of the theory, the nucleus was represented by a rectangular potential hole of constant depth Vo and of radius a equal by definition to the nuclear radius. Outside the nucleus the potential function was taken to be the ordinary Coulomb one between alpha-particle and product nucleus. It was then possible to compute the quantum mechanical probability that an alpha-particle of energy E would "leak through" the potential parrier and escape from the nucleus; and the result was found to agree with the empirical Geiger-Nuttall relation between half-life and disintegration energy for alpha-radioactive nuclei. Since the model of the nucleus described above is admittedly very crude, Dube and Jha set out to try the effect of replacing the rectangular potential function by an exponential function. They accordingly assume that for r < a the potential is given by the exponential law (6), and for r > a by the Coulomb law $$V = zZq^2/r, (10)$$ where q is the electronic charge, Z is the atomic number of the product nucleus, and z (=2) is the atomic number of the alpha-particle. Now the wave function of an alpha-particle of (positive) energy E and zero total angular momentum is spherically symmetric and may be written in the form \forall (r) = u(r)/r, where u(r) satisfies (5). Inside the nucleus, ¹²⁾ Dube, G. P., and Jha, S. N., <u>Indian Journal of Physics</u>, <u>17</u>, 344-356 (1943). This paper was called to my attention by Prof. Bateman. ¹³⁾ Bethe, H. A., Rev. Mod. Phys., 9, 161-163 (1937), gives a simple derivation of the result. for $r \neq a$, V(r) is the exponential function (6), so using the notation of (7), $u(r) = D[J_{-2aki}(2ap)J_{2aki}(2ape^{-r/2a}) - J_{2aki}(2ap)J_{-2aki}(2ape^{-r/2a})]$, (11) which vanishes at r = 0, D being an arbitrary constant. For r > a, V(r) is the Coulomb potential (10), and the corresponding solutions of (5) are of different types in the regions a $\langle r < r_E \text{ and } r > r_E$, where $r_E = zZq^2/E$ is the classical turning point of an alpha-particle of energy E falling on the nucleus from outside. In the region a $\langle r < r_E \text{ of the potential}$ barrier, where E = V is negative, u(r) is of exponential type, while in the outer region $r > r_E$, where E = V is positive, u(r) is of wave type. At large distances from the nucleus u(r) must represent an outgoing spherical wave: $$u(r) \sim Ae^{ikr}$$ (12) To obtain the relation between the amplitude A of the outgoing wave and the coefficient D of the wave function inside the nucleus it is simplest to use the well-known Wentzel-Kramers-Brillouin (WKB) approximation, which connects the asymptotic form (12) with the exponential function in the potential barrier, and so finally with the inside function (11) at $r = a_0$. From the value of A/D we may compute the decay constant λ of the given nucleus, which is defined as the ratio of the number of particles emitted per second to the total number of particles inside the nucleus. The details of the calculation of the decay constant have been carried out by Dube and Jha for the exponential well in a form entirely similar to Bethe's calculation for the rectangular well, and the values of λ are expressed in terms of E, a, and Z for the two limiting cases $\nabla_0 \rightarrow 0$ and $\nabla_0 \rightarrow \infty$, which correspond respectively to $p \rightarrow 0$ and to $p \rightarrow \infty$. It is found 14) that for reasonable values of the parameters the ratio λ_0/λ_0 = 1/6, approximately, from which the authors conclude that the decay constant does not depend critically on the exact depth of the potential well inside the nucleus. They also give a more complicated expression for χ when E and V_0 are of the same order of magnitude, derived from the known asymptotic representation of $J_{\nu}(z)$ when ν and z are simultaneously large.* The nuclear radii computed from observed values of the decay constant agree closely with the values obtained by earlier workers with the simple rectangular potential well, thus confirming the expectation that the results calculated from the one-body theory of alpha-decay are not sensitive to changes in the form of the assumed potential function. However, as Dube and Jha point out, in view of the present more correct many-body model of the nucleus, calculations such as theirs based on any one-body model must now be regarded as rough approximations and are therefore mainly of theoretical rather than of practical interest. In recent months various writers 15, 16) have discussed the problem of scattering by an exponential field of the form (6) as it is formulated in Heisenberg's recent theory of the characteristic matrix. Without entering into details here, it may be stated that Heisenberg's new theory centers around a certain unitary matrix S, which vanishes ¹⁴⁾ Dube and Jha, op. cit., 353. ^{*}For a numerical estimate of the quantities involved we employ the values $\% = 1.054 \times 10^{-27}$ erg sec, m = $4.003 \times 1.660 \times 10^{-24}$ gm, and take for an average radioactive nucleus (Bethe, loc. cit.) $a = 9 \times 10^{-13}$ cm, $E = 6 \text{ MeV} = 6 \times 10^{-6} \text{ k} \times 10^{-6}$ ergs. The order of the Bessel functions is $2aki = (2a/K)(2mE)^{2i} = 19i$, approximately, and the argument is of the same magnitude if Vo and E are comparable. ¹⁵⁾ Ter Haar, D., Physica, 12, 501-508 (1946). 16) Ma, S. T., Phys. Rev., 71, 195-200 (1947). See also an exchange of letters between Ma and W. Opechowski, Phys. Rev., 69, 668 (1946); 70, 772 (1946); 71, 210 (1947). for those values of the energy which correspond to stationary states of the system. It was originally surmised that all values of the energy for which S vanishes correspond to closed stationary states; but ter Haar and Ma have shown by the example of the attractive exponential field, solved as above in terms of Bessel functions of imaginary order and real argument, that there may be redundant zeros of S which do not correspond to stationary states of the energy. The proper method for excluding these redundant zeros does not yet appear to have been convincingly settled; and though for the sake of completeness we have called attention to this newest occurrence of Bessel functions of imaginary order in the literature, a detailed discussion of the problem which occasioned their use or of the ultimate significance of the characteristic matrix in quantum mechanics falls outside the scope of this thesis. # 3.2. Relativistic Wave Functions for a Free Particle in an Expanding Universe. The last application of Bessel functions of imaginary order which we shall discuss occurs in a paper by E. Schrödinger¹⁷) on the proper vibrations of an expanding universe. In order to present Schrödinger's results we must make a brief excursion into the field of relativistic quantum theory. The simplest Lorentz-invariant wave equation is the scalar Klein-Gordon equation 18) $\nabla^2 \psi - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} - K^2 \psi = 0,$ ¹⁷⁾ Schrödinger, E., Physica, 6, 899-912 (1939). This paper was called to my attention by Prof. Bateman. ¹⁸⁾ Pauli, W., Rev. Mod. Phys., 13, 208-210 (1941), derives the results stated in this paragraph. where $K = mc/\hbar = 2\pi/\lambda_0$, c being the velocity of light, $2\pi\hbar$ the quantum of action, m the rest mass of the particle, and λ_0 its Compton wavelength. It is known that the most general solution of (1) can be decomposed into a sum of proper vibrations of the form where \vec{x} is the ordinary three-dimensional position vector and $\omega^2/c^2 = k^2 + \kappa^2$. The solution (2) evidently represents a plane wave with propagation vector \vec{k} and angular frequency $\vec{\omega}$. It turns out that if the particles described by (1) are charged and if we are to define an energy-momentum tensor and a charge-current vector which satisfies the equation of continuity (cf. Pauli, loce cit.), then we must regard the proper vibrations of negative frequency, such as the second term on the right side of (2), as representing particles of opposite charge from the proper vibrations of positive frequency. This convention is necessary because, as Pauli shows, if we interchange the factors $\exp\left[i(-\vec{k}\cdot\vec{x}+\omega\,t)\right]$ and $\exp\left[i(\vec{k}\cdot\vec{x}-\omega\,t)\right]$ in (2) we change the sign of the charge-current vector while the energy-momentum tensor remains unaltered. In the general metric space defined by the line element* $$ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta}$$ (3) the Klein-Gordon equation is to be regarded as the covariant equation $$\frac{1}{\sqrt{-g'}} \frac{\partial}{\partial x'} \left(g^{\alpha\beta} \sqrt{-g'} \frac{\partial \psi}{\partial x'} \right) + K^2 \psi = 0, \tag{4}$$ where g is the determinant $|g_{\alpha\beta}|$ of the components of the metric tensor; evidently (4) reduces to (1) if ds^2 is the special relativity line element $-dx^2 - dy^2 - dz^2 + c^2dt^2$. We now wish to extend the
investigation to the case of the non-static homogeneous universe whose line element is given ^{*}Greek indices assume the values 1, 2, 3, 4; and the usual summation convention applies to repeated indices. by $$ds^{2} = -R^{2}(t) \left[d\chi^{2} + \sin^{2}\chi (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right] + c^{2}dt^{2}, \qquad (5)$$ where χ , θ , and β are the well-known co-moving angular coordinates and R(t), the radius of curvature of space, is a function as yet unspecified of the time to The general equation (4) may be expressed in terms of the coordinates $(\gamma, \theta, \phi, t)$ with the aid of the line element (5) and a solution obtained by the standard method of separation of variables in the form $$\psi(\chi, \Theta, \beta, t) = \Omega(\chi, \Theta, \beta) f(t). \tag{6}$$ The details of the transformation of variables and the calculation of the angle dependent function Ω have been given elsewhere by Schrödinger; our present interest is only in the resultant equation for the time dependent factor f(t), which he finds to be $$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$$ The integer n is related to the wavelength λ of the proper vibration by the formula $$\lambda = 2\pi R/n$$, or $n = 2\pi R/\lambda$; (8) in the cases of practical interest n is thus an enormously large number. For any given value of n we take for the time dependent factor in (6) a linear combination $f_n(t)$ of two independent solutions of (7) with arbitrary coefficients. The general solution of (4) for this universe may then be written in the form of an infinite series of products of the type (6) including all non-negative integral values of n, and this series can in the familiar menner be adapted to an arbitrary initial state. The different members of the series are all independent of one another; if at the outset only one is present, no others will turn up in the course of time. We thus have a genuine decomposition into proper vibrations, although the time factors are in general not trigonometric functions. They will be trigonometric functions whenever R(t) ceases to vary and remains constant for a time, since during any period when R is constant the general solution of (7) is $$f_n(t) = A_n e^{i\omega_n t} + B_n e^{-i\omega_n t}$$, where $\omega_n = c \left[n(n+2)/R^2 + K^2 \right]^{\frac{1}{2}}$ (9) Suppose that initially R(t) is constant for a time and that we fix our attention on the particular proper vibration $f_n(t) = Ae^{i\omega_n t}$, which corresponds, in virtue of the remarks following (2), to a particle of positive charge. Now suppose that R(t) undergoes a period of arbitrary variation, during which time of course the particular solution $f_n(t)$ loses its trigonometric character, and then returns to constancy. As soon as R(t) ceases to vary fn(t) will assume the form A'eiun't + B'e-iun't, but now - and this is the essential point - we have no guarantee that the coefficient B' of the negative frequency term will be zero. In other words there will be a mutual adulteration of positive and negative frequency terms in the course of time. This means with particles the production of oppositely charged pairs merely by the expansion, while with light it implies a production of light traveling in the opposite direction, thus a sort of reflection of light in homogeneous space. Alarmed by these prospects. Schrödinger has investigated the question in more detail in the case in which R is a linear function of the time. This case is soluble in terms of Bessel functions; we proceed to outline Schrödinger's analysis. We assume that the radius of our universe is given by $$R = a + bt, (10)$$ and we introduce into (7) the new variables $$z = \kappa cR/b = \kappa c(a/b + t), w(z) = zf, \qquad (11)$$ so that after an elementary calculation (7) becomes $$z^{2}d^{2}w/dz^{2} + zdw/dz + (v^{2} + z^{2})w = 0, (12)$$ where $$v^2 + 1 = n(n + 2)c^2/b^2$$ (13) We see on comparing (12) with 1.5 (1) that w is a Bessel function of real argument z and imaginary order is. The solution of (12) corresponding to a proper vibration of positive frequency is the Hankel function of the first kind $H_{i\nu}^{(1)}(z)$ defined, if we write $i\nu$ for ν , by l.1 (3.1). Recalling that $K=2\pi/\lambda_0$, we see from (8), (13), and (11) that both ν and z are enormously large numbers, while the ratio z/ν is of the comparatively moderate order of magnitude λ/λ_0 , which is the ratio of the actual wavelength to the Compton wavelength of the particle. An asymptotic representation of $H_{i\nu}^{(1)}(z)$ may therefore be obtained by Debye's method of saddle-point integration $h_{i\nu}^{(1)}(z)$ in terms of the ratio $$y/z \equiv \sinh d \cdot \tag{14}$$ The result is ult is $$H_{i\nu}^{(0)}(2) \sim \frac{\sqrt{2} \rho \sqrt{12 - i\pi/4} i\nu (c_0 th \alpha - \alpha)}{\sqrt{\pi 2 ch \alpha}}$$ (15) to a very high degree of approximation, because of the enormous magnitude of \mathcal{D} and z_0 . Hence from (11), on dropping an irrelevant constant multiplier, $f(t) = 2^{-\frac{3}{2}} (chd)^{-\frac{1}{2}} e^{is(czthd-d)}$ (16) In order to find the angular frequency ω , we differentiate the phase of (16) with respect to t and obtain, on making use of (11), (14), and (13) to simplify the result, $$\omega = \frac{d}{dt} \left[\mathcal{N}(\cosh \alpha - \alpha) \right] = -\mathcal{N}(\cosh^2 \alpha + 1) \frac{d\alpha}{dt}$$ $$= Kc \cosh \alpha = c \left[\frac{m(m+2) - b^2/c^2}{R^2(t)} + K^2 \right]^{\frac{1}{2}}.$$ (17) ¹⁹⁾ Asymptotic expressions for all kinds of Bessel functions of large complex order are derived by G. N. Watson, Theory of Bessel Functions, 2nd ed., Arts. 8.6-8.61. In connection with the functions of purely imaginary order see particularly the last paragraph of Art. 8.61. The phase velocity is, from (8) and (17). $$v_{\rm ph} = \omega \lambda / 2\pi = (\kappa c R \ cha) / n$$, while the group velocity is group velocity is $$N_g = R \frac{\partial w}{\partial n} = R K c \frac{\partial ch d}{\partial n} = \frac{C(m+1)}{K R ch d},$$ so that $$v_{\rm ph}v_{\rm g} = c^2(n+1)/n.$$ (18) Since n is very large, (18) is equivalent to the usual relation between phase and group velocities for both de Broglie waves and light waves. The Hankel function H₁, (2)(z) of the second kind can be worked out in the same way and gives the exponential of negative frequency, corresponding to a particle of opposite charge from that represented by H_{i2} (1)(z). Since $H_{i\nu}^{(1)}(z)$ and $H_{i\nu}^{(2)}(z)$ are linearly independent solutions of (12), we see that the positive and negative frequency solutions of (7) keep clear of each other indefinitely so long as R(t) increases or decreases uniformly with time, so that under these circumstances we do not get the pair production anticipated above.* This latter phenomenon is evidently not caused by the velocity of expansion, but would probably be caused by accelerated expansion. It might play an important role in the critical periods of cosmology, when expansion changes to contraction or vice versa. Solutions of the Dirac equation for a free electron in various cosmological spaces have been obtained by Taub; 20) it happens that the time dependence of the solutions in a De Sitter universe is given by Bessel functions $J_{\text{tipt}_{\frac{1}{2}}}$ of complex order, where ν is a very large number of ^{*}Similarly the positive and negative frequency solutions of D'Alembert's equation for light, which is obtained by setting K = 0 in (4), may be rigorously separated for all time if R(t) has the form a + bt; in this case D'Alembert's equation may be solved in terms of elementary functions, and there is nothing in the solutions which would correspond to a reflection of light in free space. 20) Taub, A. H., Phys. Rev., 51, 512-525 (1937). the order of 10³⁷, so that for all practical purposes the behavior of the functions is completely described by their asymptotic representations. #### APPENDIX ## Tables of the Wedge Functions F(eX) and G(eX) We have shown in the preceding chapters that Bessel functions of imaginary order find application to several fields of mathematical physics, but before our formal results can be of much practical use in calculation we need adequate numerical tables of the functions of imaginary order. We shall present with this thesis a table of the wedge functions studied in chapters I and II. Although the scope of our table has been limited by requirements of time and the lack of elaborate facilities for computation, we feel that it will be of interest because no other such table is at present in existence. The quantities tabulated are the wedge functions $F_{\nu}(e^{X})$ and $G_{\nu}(e^{X})$ defined in Art. 1.1, the argument being taken as e^{X} for the reasons discussed in Art. 1.4. Since, as we have seen, in the physical applications where these functions occur the order ν is not restricted to integral values but must be regarded as a continuous variable, we have essentially to tabulate them as functions of two continuous variables X and ν . Obviously the calculation of a function of two variables over representative ranges in both variables is a much more laborious task than the calculation of a function of a single variable, and the resultant table is correspondingly bulkier. In the following sections we shall set forth the method used for computing the main body of the table. This work was done on the automatic punched card machines at the Southern California Cooperative Wind Tunnel in Pasadena, which is directed by the California Institute. We shall then describe the actual table, indicating the method of checking and the estimated accuracy of the published figures. ## A.l. General Method of Numerical Integration by Means of Punched Card Machines. The following method for the automatic numerical integration of the differential equation $$d^2y/dx^2 = b(x)y \tag{1}$$ by means of the punched card machines manufactured
by International Business Machines Corporation has been published by L. Feinstein and M. Schwarz-child. One expands y in the Taylor series $$y(x + h) = \sum_{n=0}^{\infty} (h^n/n!)y^{(n)}(x)$$ (2) and obtains, on making use of (1) to eliminate the second derivative, $$y(x + h) + y(x - h) = [2 + h^2b(x)]y(x) + 2\sum_{n=2}^{\infty} [h^{2n}/(2n)]y^{(2n)}(x)$$ (3) $y''(x + h) + y''(x - h) - 2y''(x) = 2 \sum_{n=1}^{\infty} [h^{2n}/(2n)] y^{(2n+2)}(x)$. (4) Solving (4) for $h^2y^{(4)}(x)$ and using (1) to eliminate the second derivatives at x and at $x \pm h$, we get $$[1 - (h^2/12)b(x + h)]y(x + h) + [1 - (h^2/12)b(x - h)]y(x - h)$$ $$-[2 + (5h^2/6)b(x)]y(x) - (h^6/240)y^{(6)}(x) + 0(h^8) = 0.$$ (5) If we let $$x_n = x_0 + nh, y_n = y(x_n), Z_n = (1/12) \left[1 - (h^2/12)b(x_n) \right] y(x_n),$$ $$B_n = \frac{2 + (5h^2/6)b(x_n)}{1 - (h^2/12)b(x_n)} = 2 + \frac{h^2b(x_n)}{1 - (h^2/12)b(x_n)},$$ (6) and neglect the sixth and higher powers of h, (5) becomes $$Z_{n+1} = B_n Z_n - Z_{n-1}$$ (7) ¹⁾ Feinstein, L., and Schwarzchild, M., Rev. Sci. Inst., 12, 405-408 (1941). These authors treat the general linear differential equation of the second order, but we shall be concerned only with an equation of the special form (1). Solving the third member of (6) for y_n in terms of Z_n , we obtain $$y_n = (B_n + 10)Z_{n^{\bullet}}$$ (8) The extrapolation formula (7) permits us to calculate from any two adjacent values of Z the next succeeding value using only the operations of multiplication and addition, which can be performed by the IBM automatic multiplying punch. The quantities B_1 , B_2 , ... may be computed by (6) from the coefficient b(x) of the differential equation and punched into a deck of IBM cards; then if we punch into the first card the starting values Z_0 and Z_1 obtained from the initial conditions of the given problem, the multiplier punch will compute Z_2 and record it in the same card. We then transfer Z_1 and Z_2 to the card containing B_2* and repeat the process. When we are finished we obtain y_n from Z_n via (8); since B_n and Z_n are already punched in the same card, this step is easily carried out. The punched card method of integration is particularly useful when the coefficient b(x) of the differential equation (1) depends linearly on a parameter and we wish to obtain solutions for several different values of the parameter. Suppose for instance that $$b(x) = {}_{0}b(x) + \nu^{2}{}_{1}b(x);$$ (9) then from (6) we have, on dropping the sixth and higher powers of h, $$B_{\nu n} = {}_{0}B_{n} + {}_{\nu}{}^{2}{}_{1}B_{n} + {}_{\nu}{}^{4}{}_{2}B_{n}, \tag{10}$$ where $$_{0}B_{n} = 2 + h^{2}_{0}b_{n} + (h^{4}/12)_{0}b_{n}^{2},$$ (10.1) $${}_{1}B_{n} = h^{2}{}_{1}b_{n} + (h^{4}/6)_{0}b_{n} {}_{1}b_{n}$$ (10.2) $$_{2B_{n}} = (h^{4}/12)_{1}b_{n}^{2}$$ (10.3) ^{*}The multiplying punch described by Feinstein and Schwarzchild contained a mechanism for storing Z_n and Z_{n+1} in the machine between steps. Our machine was not thus equipped, so the quantities Z_n and Z_{n+1} had to be transferred from one card to the next with the IBM reproducing punch. Only the quantities ${}_{0}B_{n}$, ${}_{1}B_{n}$, and ${}_{2}B_{n}$, which are all independent of \mathcal{P}_{\bullet} , have to be computed beforehand; $B_{\mathcal{P}_{n}}$ can then be obtained with the help of the punched card machines for any value of \mathcal{P}_{\bullet} . Punched card methods are most efficient in calculations where the same numerical data are used over and over in different combinations; thus in the problem at hand their relative efficiency, as compared with other methods, increases with the number of different values of the parameter \mathcal{P} which we desire to consider. The method of numerical integration just described has, however, the disadvantage that it is not self-checking or self-correcting; we have no way of knowing how the inherent errors in the extrapolation formula (7) are mounting up during the course of an extended calculation. (The estimates given by Feinstein and Schwarzchild of the obtainable accuracy proved of little use in the calculation which we performed.) In cases where it is possible, the safest procedure would be to check the last value y_N of the sequence by some independent method of calculation. ### A. 2. Method of Calculation of the Wedge Functions. The equation satisfied by the wedge functions $F_{\rho}(e^{X})$ and $G_{\rho}(e^{X})$ is just 1.4 (2), namely $$d^2y/dx^2 = (e^{2x} - y^2)y_{\bullet}$$ (1) With the notation of A.1 (9) we have $b(x) = e^{2x} - p^2$, $ob(x) = e^{2x}$, 1b(x) = -1, so that the quantities oB_n , $1B_n$, and $2B_n$ may easily be written down from A.1 (10.1) - (10.3) and evaluated from tables of the exponential function. It was originally planned to tabulate both $F_{\nu}(e^{X})$ and $G_{\nu}(e^{X})$ for 50 values of ν extending from $\nu = 0.2$ to $\nu = 10.0$, and for 300 values of x extending from x = -0.49 ($e^x = 0.613$) to x = 2.50 ($e^x = 12.18$) with a step interval h = 0.01. The starting values Z_{p_0} and Z_{p_1} , corresponding to $x_0 = -0.50$ and $x_1 = -0.49$, were computed for both functions from the series representations 1.11 (5.1) and (5.2), the quantities A and B being expressed by 1.13 (6) in terms of the power series S_1 and S_2 . This work was done on a 10 x 10 x 20 Friden automatic calculating machine, the results being recorded to ten figures and checked by repeating the entire computation at another time. Because of the necessity for computing the auxiliary functions A_0 , B_0 , $\sin\theta_0$, and $\cos\theta_0$ to a high degree of accuracy before undertaking the actual evaluation of $F_{p_0}(e^x)$ and $G_{p_0}(e^x)$, this calculation of the starting values was the most laborious and time-consuming part of the whole project. It would be of considerable value to have simpler representations of the canonical functions which are adapted to easy numerical evaluation when the argument is small. The punched card machines were used to calculate and record on cards the coefficients $B_{\nu n}$ given by A.1 (10) for 50 values of ν and 300 values of n, in preparation for the step-by-step process of evaluating the Z_n 's from the recurrence formula A.1 (7). Each step of the actual numerical integration involved the processing of 100 cards (50 values of ν for each function), and in order to guard against mechanical errors the entire calculation was carried out with two identical decks and two multiplying punches, the IBM reproducer being used to compare results at the end of each step. All numbers appearing on the cards were expressed to eight significant figures. When the integration had been completed, it was clear that the inherent errors in the approximate extrapolation formula A.1 (7) had accumulated, in some cases to an intolerable degree, in the latter part of the range of integration. It would have been infeasible at this stage to repeat the integration with a smaller step interval or with additional starting values at intermediate points of the original range; so we compromised by checking the results at various points, correcting the errors where possible, and discarding the relatively few values which were too much in error to be easily corrected. The table of $G_{y}(e^{X})$ was checked by means of the definite integral representation 1.11 (6.2): $$G_{\mathcal{D}}(e^{\mathbf{X}}) = \int_{0}^{\infty} \exp(-e^{\mathbf{X}} \operatorname{ch} t) \cos 2 t dt_{\mathbf{0}}$$ (2) This integral converges quite rapidly when x is greater than $\log \nu$; for example, when x = 2.50 it was found possible to evaluate $G_{\nu}(e^{X})$ for 0.2 $\leq \nu \leq 10$ to one more significant figure than was desired in the table by breaking off the range of integration at t = 1.5 and applying Tschebyscheff's mechanical quadrature formula² with fifteen subdivisions. The integral (2) was therefore used with a Monroe automatic calculating machine to evaluate $G_{\nu}(e^{X})$ for x = 0.00, 0.50, 1.00, 1.50, 2.00, and 2.50. In the portion of the table where $G_{\nu}(e^{X})$ was oscillatory (i. e., $x < \log \nu$; cf. Art. 1.2), the values given by the punched card integration were found to be accurate to one or two units in the fifth significant place; presumably the errors in the integration formula A.1 (7) cancelled out on the average in this region. On the other hand, where x was appreciably larger than $$\int_{a}^{b} f(x) dx = (b - a)/n \sum_{n=1}^{\infty} f(a + (2r - 1)(b - a)/2n) + R_{n}$$ ²⁾ Encyklopädie der Mathematischen Wissenschaften, Bd. II, 3.1, 72-74. The formula in question is This is not the most accurate quadrature formula available for a given number of subdivisions, but it is very easy to use because the coefficients are simple. In practice the remainder term R_n may be controlled by investigating whether an increase in the number of subdivisions n gives a significantly different value for the integral. log $\mathscr{P}_{\mathfrak{p}}$ the punched card integration led to rapidly accumulating errors, the resulting functions tending to go off to $\pm \infty$ rather than to approach ± 0 as they should. Since the errors seemed to be varying continuously, it was possible to approximate to the correction terms by means of Lagrange's interpolating polynomial fitted to the known values of the corrections at x = 0.00, x = 0.50, etc. Corrections were applied in general where they did not exceed 1% of the uncorrected value, and the remainder of the table, where x was considerably greater than $\log \mathscr{P}_{\mathfrak{p}}$ was discarded. In order to check the table of $F_{\nu}(e^{X})$ it was necessary to use the integral representation 1.11 (6.1), Fy (e^X) = csch $\nu\pi$ $\int_{0}^{\pi} \exp(e^{X}\cos{\Theta}) \operatorname{ch} \nu\Theta \ d\Theta = \int_{0}^{\infty} \exp(-e^{X} \operatorname{ch} t) \sin{\nu t} \ dt$, (3) since for most of the values of ν and x in the table
neither power series nor asymptotic series converge rapidly enough to be useful. The second integral in (3) can be evaluated without difficulty by mechanical quadrature; but depending on the relative magnitudes of x and ν the first integrand may have sharp peaks at either end of the range of integration, which must be subtracted off and integrated separately. If $v = e^{X}$, it is easy to show that the first term on the right side of (3) is equal to $\operatorname{csch} \nu\pi \int_{0}^{\pi} \left\{ e^{V} \cos{\Theta} - e^{-V} \left[1 + \frac{1}{2} x (\pi - \Theta)^{2} \right] \right\} \left(\operatorname{ch} \nu\Theta - 1 \right) d\Theta + \pi \operatorname{csch} \nu\pi \operatorname{I}_{0}(v) + e^{-V} (1/\nu) - \pi \operatorname{csch} \nu\pi \right) + ve^{-V} \left[1/\nu^{3} - \pi \operatorname{csch} \nu\pi \left(1/\nu^{2} + \pi^{2}/6 \right) \right]$. (4) Even with this transformation the remaining integral in (4) is surprisingly intractable; it apparently cannot be calculated by mechanical quadrature with a reasonable number of subdivisions to the accuracy desired in our table if ν is greater than about $0.6 \, \mathrm{e}^{\mathrm{x}}$. Consequently it was not possible to check the table of F_{ν} (e^x) completely in the time at our disposal. We did find however that at x = 2.50, for $\nu \le 8.0$ only ten values were in error by more than 0.05% (5 parts in 10,000); all of these erroneous values occurred for \mathcal{Y}^{\perp} 3.0.* In the range 3.0 $\leq \mathcal{Y} \leq$ 8.0 most of the values were in error by not more than a few units in the fifth significant figure. Though it was not possible to compute accurate check values from (3) for $\mathcal{Y} > 8.0$, we know from the behavior of $G_{\mathcal{Y}}(e^{\mathbf{X}})$ that for large values of \mathcal{Y} , when the functions are oscillatory over most of the range, the integration formula A.1 (7) is unlikely to accumulate errors of large absolute magnitude. The ten erroneous values mentioned above were adjusted by fitting a continuous correction curve to cancel the known relative error at $\mathbf{x} = 0.00$, 0.50, ..., 2.50, and with these alterations the entire table of $F_{\mathcal{Y}}(e^{\mathbf{X}})$ is printed. It is worth noting that since the errors involved in the integration formula A.1 (7) seem to compensate on the average when the solutions of the differential equation are oscillatory, the punched card method might be used with considerable success to calculate the Bessel functions $U_{\nu}(e^{x})$ and $V_{\nu}(e^{x})$ of imaginary order and real argument, since by 1.52 (3) and (5) these functions are oscillatory for all values of x. The results of such a calculation would of course have to be checked before publication. ## A.3. Description of the Tables. Since the tables of the wedge functions were printed directly from punched cards on an IBM tabulator, some changes, such as the placing of the negative sign on the right of the entry to which it applies, have had to be made in the usual format of such tables. The position of the decimal point is determined by multiplying the tabular entry by 10°, where the ^{*}The probable reason for the absence of large relative errors in the functions $F_{\gamma}(e^{x})$ is that these functions tend rapidly to infinity when $x > 7 \log \gamma$, and so increase in absolute magnitude as fast as the errors accumulate. (negative) integer p is tabulated to the right of each row of the table. Thus $G_{5\cdot 0}(e^{1\cdot 00}) = 22452 \times 10^{-8} = 2\cdot 2452 \times 10^{-4}$, etc. In case the value of p increases in algebraic magnitude in the middle of a row, the entries marked with an asterisk should be used with the value of p on the preceding page. The range and accuracy of the tables may be summarized as follows: The function $F_{\nu}(e^{X})$ is tabulated over the complete ranges $0.2 \le \nu$ ≤ 10.0 , $-0.49 \le x \le 2.50$. In the region where $F_{\nu}(e^{X})$ is oscillatory the error in the last figure given should never exceed 5 units. In the region where $F_{\nu}(e^{X})$ is non-oscillatory the error in the tabulated values should not exceed 5 parts in 10.000. The function $G_{\nu}(e^{2})$ is tabulated over the following ranges in ν and x: $$0.2 \stackrel{?}{=} \stackrel{?}{\vee} \stackrel{?}{=} 1.0$$, $-0.49 \stackrel{?}{=} x \stackrel{?}{=} 0.50$; $4.2 \stackrel{?}{=} \stackrel{?}{\vee} \stackrel{?}{=} 7.0$, $-0.49 \stackrel{?}{=} x \stackrel{?}{=} 2.00$; $1.2 \stackrel{?}{=} \stackrel{?}{\vee} \stackrel{?}{=} 2.0$, $-0.49 \stackrel{?}{=} x \stackrel{?}{=} 1.00$; $7.2 \stackrel{?}{=} \stackrel{?}{\vee} \stackrel{?}{=} 10.0$, $-0.49 \stackrel{?}{=} x \stackrel{?}{=} 2.50$. $2.2 \stackrel{?}{=} \stackrel{?}{\vee} \stackrel{?}{=} 4.0$, $-0.49 \stackrel{?}{=} x \stackrel{?}{=} 1.50$; The error in the last figure of any tabulated value does not exceed 5 units. As a matter of interest the values of $G_{2}(e^{X})$ computed from the definite integral A.2 (2) and correct to the last printed figure are given for x = 1.00, 1.50, 2.00, and 2.50 for those values of \mathcal{P} not included in the main table. #### BIBLIOGRAPHY ### Books - Bocher, M., Über die Reihenentwickelungen der Potentialtheorie. Leipzig, Teubner, 1894. - British Association for the Advancement of Science, Mathematical Tables, vol. VI, part 1. Cambridge, 1937. - Carslaw, H. S., Mathematical Theory of the Conduction of Heat, 2nd ed. New York, Dover, 1945. - Copson, E. T., Theory of Functions of a Complex Variable. Oxford, 1935. - Courant, R., and Hilbert, D., Methoden der Mathematischen Physik, vol. 1, 2nd ed. Berlin, Springer, 1931. - Davis, H. T., Tables of the Higher Mathematical Functions, vol. 1. Bloom-ington, Ind., Principia Press, 1933. - Encyklopädie der Mathematischen Wissenschaften, vol. II, 3.1. Leipzig, Teubner, 1909-21. - Gray A., Matthews, G. B., and MacRobert, T. M., Bessel Functions, 2nd ed. London, Macmillan, 1931. - Gutenberg, B., Der Aufbau der Erde. Berlin, Borntraeger, 1925. - Hobson, E. W., Spherical and Ellipsoidal Harmonics. Cambridge, 1931. - Ince. E. L. Ordinary Differential Equations. New York, Dover, 1944. - Love, A. E. H., Some Problems of Geodynamics. Cambridge, 1911. - Page, I., Introduction to Theoretical Physics, 2nd ed. New York, Van Nostrand, 1935. - Pauling, L., and Wilson, E. B., Jr., Introduction to Quantum Mechanics. New York, McGraw-Hill, 1935. - Ramo, S., and Whinnery, J. R., Fields and Waves in Modern Radio. New York, Wiley, 1944. - Rayleigh, Theory of Sound, 2nd ed., vol. II. New York, Dover, 1945. - Smythe, W. R., Static and Dynamic Electricity. New York, McGraw-Hill, 1939. - Titchmarsh, E. C., Theory of Fourier Integrals. Oxford, 1937. - Watson, G. N., Theory of Bessel Functions. New York, Macmillan, 1944. - Webster, A. G., Dynamics, 2nd ed. Leipzig, Teubner, 1912. - Whittaker, E. T., and Watson, G. N., Modern Analysis, 4th ed. Cambridge, 1940. ### Papers - Airey, J. R., "Convergence Factor in Asymptotic Series," Phil. Mag. (7), 24, 521-552 (1937). - Bethe, H. A., "Nuclear Physics: Nuclear Dynamics, Theoretical," Rev. Mod. Phys., 9, 161-163 (1937). - Bethe, H. A., and Bacher, R. F., "Nuclear Physics: Stationary States of Nuclei," Rev. Mod. Phys., 8, 110-111 (1936). - Bocher, M., "On Some Applications of Bessel's Functions with Pure Imaginary Index," Annals of Mathematics, 6, 137-160 (1892). - Boole, G., "On a General Method in Analysis," Phile Trans. Roy. Soc. (1844), 239. - Carslaw, H. S., and Jaeger, J. C., "The Determination of Green's Function for the Equation of Conduction of Heat in Cylindrical Coordinates by the Laplace Transformation," J. London Math. Soc., 15, 278 (1940). - Dougall, J., "The Determination of Green's Function by Means of Cylindrical or Spherical Harmonics," Proc. Edinburgh Math. Soc., 18, 33-83 (1900). - Dube, G. P., and Jha, S. N., "On the Theory of the Emission of Alpha-Particles from Radioactive Nuclei," <u>Indian Journal of Physics</u>, <u>17</u>, 344-356 (1943). - Feinstein, I., and Schwarzchild, M., "Automatic Integration of Linear Second-Order Differential Equations by Means of Punched Card Machines," Rev. Sci. Inst., 12, 405-408 (1941). - Goldstein, S., "On the Stability of Superposed Streams of Fluids of Different Densities," Proc. Roy. Soc. London, (A), 132, 524-548 (1931). - Hahn, W. C., "A New Method for the Calculation of Cavity Resonators," Journal of Applied Physics, 12, 62-68 (1941). - Horn, J., "Über eine Lineare Differentialgleichung Zweiter Ordnung mit einem Willkürlichen Parameter," Math. Ann., 52, 271-292 (1899). - Jeffreys, H., "The Effect on Love Waves of Heterogeneity in the Lower Layer," Monthly Notices of the Royal Astronomical Society, Geophysical Supplements, 2, 101-111 (1928-31). - Lommel, E., "Zur Theorie der Bessel'schen Functionen," Math. Ann., 3, 481-486 (1871). - Ma, S. T., "On a General Condition of Heisenberg for the S Matrix," Phys. Rev., 71, 195-200 (1947). - MacRobert, T. M., "Fourier Integrals," Proc. Roy. Soc. Edinburgh, 51, 116-126 (1931). - Meissner, E., "Elastiche Oberflächenwellen mit Dispersion in einem Inhomogenen Medium," Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 66, 181-195 (1921). - Mercer, J., "Sturm-Liouville Series of Normal Functions in the Theory of Integral Equations," Phil. Trans. Roy. Soc., (A), 211, 111-198 (1912). - Pauli, W., "Relativistic Field Theories of Elementary Particles," Rev. Mod. Phys., 13, 208-210 (1941). - Rice, S. O., "The Electric Field Produced by a Point-Charge Located outside a Dielectric Wedge," Phil. Mag. (7), 29, 36-46 (1940). - Sakuraba, S., "A Contribution to the Theory of the Love Waves Propagating over a Semi-Infinite Solid Body of Varying Elasticity," Geophysical Magazine, Tokyo, 9, 211-214 (1935). - Schrödinger, E., "The Proper Vibrations of the Expanding Universe," Physica, 6, 899-912 (1939). - Taub, A. H., "Quantum Equations in Cosmological Spaces," Phys. Rev., 51, 512-525 (1937). - Taylor, G. I., "Effect of
Variation in Density on the Stability of Super-posed Streams of Fluid," Proc. Roy. Soc. London, (A), 132, 499-507 (1931). - Ter Haar, D., "On the Redundant Zeros in the Theory of the Heisenberg Matrix," Physica, 12, 501-508 (1946). - Whinnery, J. R., and Jamieson, H. W., "Equivalent Circuits for Discontinuities in Transmission Lines," Proc. I. R. E., 32, 98-114 (1944). - Borgnis, F., "Stromleitung durch Konvektion und Diffusion in zylindrischen Anordnungen," Ann. d. Phys. (5), 31, 745-754 (1938). - Emde, F., "Passintegrale für Zylinderfunktionen von komplexem Index," Z. f. Angew. Math. u. Mech., 19, 101-118 (1939). # TABLES OF BESSEL FUNCTIONS OF IMAGINARY ORDER AND IMAGINARY ARGUMENT BY SAMUEL P. MORGAN CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA 1947 #### TABLES OF BESSEL FUNCTIONS OF IMAGINARY ORDER ### AND IMAGINARY ARGUMENT #### INTRODUCTION #### 1. Summary of Mathematical Formulas. Various problems from different branches of mathematical physics give rise to the differential equation $$v^{2}d^{2}w/dv^{2} + vdw/dv - (v^{2} - v^{2})w = 0,$$ (1) in which v and $\dot{ u}$ are real quantities. Eq. (1) is a special case of Bessel's equation, $$z^{2}d^{2}w/dz^{2} + zdw/dz + (z^{2} - \rho^{2})w = 0,$$ (2) in which z = iv, $\rho = i\nu$; and its solutions are therefore Bessel functions whose order and argument are both purely imaginary. The accompanying table gives numerical values of a fundamental real set of solutions of (1) over representative ranges in both order and argument; it is the only numerical tabulation of Bessel functions of imaginary order at present in existence A fundamental real pair of solutions of (4) may be defined as follows: $$F_{\nu}(v) = \frac{\pi}{2} \frac{I_{i\nu}(v) + I_{-i\nu}(v)}{sh\nu\pi} = \frac{\pi}{sh\nu\pi} \operatorname{Re} I_{i\nu}(v), \tag{3}$$ $$G_{\nu}(v) \equiv \frac{i\pi}{2} \frac{I_{i\nu}(v) - I_{-i\nu}(v)}{sh\nu\pi} \equiv \frac{\pi}{sh\nu\pi} Im I_{i\nu}(v)$$ $$\equiv K_{i\nu}(v) \equiv \frac{1}{2}\pi i e^{-\frac{1}{2}\nu\pi} H_{i\nu}^{(1)}(iv), \qquad (4)$$ where ν is real and v is real and positive. In these definitions $I_{i\nu}(v)$ is the modified Bessel function of the first kind of purely imaginary order, being related to the ordinary Bessel function $J_{i\nu}(iv)$ of imaginary order and imaginary argument by $$I_{i\nu}(\mathbf{v}) \equiv e^{\frac{i}{2}\nu\pi} J_{i\nu}(i\mathbf{v}) \equiv \sum_{m=0}^{\infty} \frac{(\frac{i}{2}\mathbf{v})^{i\nu} + 2m}{m! \Gamma(i\nu + m + 1)}$$ (5) $K_{i\, u}(v)$ is the modified Bessel function of the second kind of purely imaginary order, and $H_{i\, u}^{(1)}$ (iv) is the Hankel function of the first kind with imaginary order and imaginary argument. For brevity the functions $F_{ u}(v)$ and $G_{ u}(v)$ may be called "wedge functions" of the first and second kinds respectively, since in potential theory they show a certain analogy to the solutions of Legendre's equation called "cone functions". Representations of $F_{\nu}(v)$ and $G_{\nu}(v)$ in terms of series of modified Bessel functions of positive integral order are given by $$F_{\nu}(\mathbf{v}) = (\nu \pi / \mathrm{sh} \nu \pi)^{\frac{1}{2}} [\mathbf{A}(\nu, \mathbf{v}) \cos \theta(\nu, \mathbf{v}) + \mathbf{B}(\nu, \mathbf{v}) \sin \theta(\nu, \mathbf{v})], \quad (6)$$ $$G_{\nu}(\mathbf{v}) = (\nu \pi / \mathrm{sh} \nu \pi)^{\frac{1}{2}} [B(\nu, \mathbf{v}) \cos \theta(\nu, \mathbf{v}) - A(\nu, \mathbf{v}) \sin \theta(\nu, \mathbf{v})]_{\alpha}$$ (7) where $$\theta(\nu, v) = \nu \log \frac{1}{2}v - \arg \Gamma(i\nu), \tag{8}$$ $$A(\nu, v) = \sum_{m=1}^{\infty} \frac{m(-)^m (\frac{1}{2}v)^m}{m! (m^2 + \nu^2)} I_m(v),$$ (9) $$B(\nu, v) = \sum_{m=0}^{\infty} \frac{\nu(-)^m (\frac{1}{2}v)^m}{m! (m^2 + \nu^2)} I_m(v).$$ (10) A(u, v) and B(u, v) may also be expressed as power series in v: $$A(\nu, v) = -\sum_{n=1}^{\infty} \sum_{k=0}^{\left[\frac{1}{2}n - \frac{1}{2}\right]} \frac{(-)^{k} (n)_{n-1-2k} \nu^{2k} v^{2n}}{4^{n} n (1^{2} + \nu^{2}) \cdots (n^{2} + \nu^{2})}$$ (11) $$B(\nu, v) = \frac{1}{\nu} + \frac{1}{\nu} \sum_{n=1}^{\infty} \frac{\sum_{k=0}^{\lfloor \frac{1}{2}n \rfloor} \frac{(-)^k (n)_{n-2k} \nu^{2k} v^{2n}}{4^n n! (1^2 + \nu^2) (2^2 + \nu^2) \cdots (v^2 + \nu^2)}, \quad (12)$$ where [s] represents the greatest integer contained in s and the symbol $(p)_q$, where p and q are any positive integers such that $q \le p$, denotes the sum of all the different products which can be formed by multiplying together q of the p factors $1,2,\ldots,p$, $(p)_0$ being equal to 1 by definition. A short table of values of $(p)_q$ has been given by Bocher. 1 Definite integral representations of $\mathbf{F}_{\nu}(\mathbf{v})$ and $\mathbf{G}_{\nu}(\mathbf{v})$ are the following $$F_{\nu}(v) = \frac{1}{\sinh \nu \pi} \int_{0}^{\pi} e^{v} \cos \theta \cosh \nu \theta d\theta - \int_{0}^{\infty} e^{-v \cosh t} \sinh \nu t dt, \qquad (13)$$ $$G_{\nu}(v) = \int_{0}^{\infty} e^{-v \operatorname{ch} t} \cos \nu t \, dt. \tag{14}$$ When u is fixed and v is large and positive we have the asymptotic series: $$F_{\nu}(v) \sim \frac{e^{v}}{\sinh \nu \pi} \left(\frac{\pi}{2v}\right)^{\frac{1}{2}} \left[1 + \left(\frac{4\nu^{2}+1^{2}}{1!(8v)} + \frac{(4\nu^{2}+1^{2})(4\nu^{2}+3^{2})}{2!(8v)^{2}}\right) + \cdots\right], \quad (15)$$ $$G_{\nu}(v) \sim e^{-v} (\frac{\pi}{2v})^{\frac{1}{2}} [1 - (\frac{4\nu^2 + 1^2}{1!(8v)}) + (\frac{4\nu^2 + 1^2}{2!(8v)^2}) - \frac{1}{2!(8v)^2}],$$ (16) while if ν is fixed as v tends to zero through positive values, $$F_{\nu}(v) \xrightarrow{\gamma} (\pi/\nu sh\nu\pi)^{\frac{1}{2}} \sin[\nu \log^{\frac{1}{2}}v - \arg\Gamma(i\nu)], \qquad (17)$$ $$G_{\nu}(v) \xrightarrow{\nabla \to +0} (\pi/\nu sh\nu \pi)^{\frac{1}{2}} \cos[\nu \log_{\frac{1}{2}} v - \arg \Gamma(i\nu)]^{-\alpha}$$ (18) When ν is large and v is fixed, $$F_{\nu}(v) \sim e^{-\frac{1}{2}\nu\pi} (2\pi/\nu)^{\frac{1}{2}} \cos\left[\nu(\log\nu - \log\frac{1}{2}v - 1) + \frac{1}{4}\pi\right] (1 + O(1/\nu)), \tag{19}$$ $$G_{\nu}(v) \sim e^{-\frac{1}{2}\nu\pi} (2\pi/\nu)^{\frac{1}{2}} \sin[\nu(\log\nu - \log\frac{1}{2}v - 1) + \frac{1}{4}\pi] (1 + O(1/\nu)),$$ (20) while if ν tends to zero, v being fixed, $$F_{\nu}(v) \xrightarrow{\nu \to 0} \frac{I_{0}(v)}{\nu} \xrightarrow{\nu \to 0} \infty$$ (21) $$C_{\nu}(\mathbf{v}) \xrightarrow{\nu \to 0} K_{\mathbf{0}}(\mathbf{v}) \tag{22}$$ ## 2. Method of Computation of the Tables. Since the functions $F_{\nu}(v)$ and $G_{\nu}(v)$ have an oscillatory singularity at v=0 (cf. (17) and (18)), it is more convenient to tabulate the the related quantities $F_{\nu}(e^{x})$ and $G_{\nu}(e^{x})$ as functions of x. These latter functions satisfy the differential equation $$d^2w/dx^2 + (\nu^2 - e^{2x}) w = 0,$$ (23) obtained from (1) by the transformation of variable $$\mathbf{v} = \mathbf{e}^{\mathbf{x}} \quad \mathbf{x} = \log \mathbf{v}_{3} \tag{24}$$ which takes the triad of points (O, 1, ∞) of the v-axis into the triad (- ∞ , O, ∞) of the x-axis. The functions $F_{\nu}(e^{x})$ and $G_{\nu}(e^{x})$ have no singularities on the finite part of the x-axis, and they approach sinusoids in νx as $x \to -\infty$ ($v \to + O$). The accompanying table of the functions $F_{\nu}(e^{X})$ and $G_{\nu}(e^{X})$ was computed by step-by-step numerical integration of the differential equation (23) on the punched card machines at the Southern California Cooperative Wind Tunnel in Pasadena, using a method described by Feinstein and Schwarzchild. The starting values for the numerical integration were obtained from (6) and (7) using the series (11) and (12), this preliminary work being carried out on a 10 x 10 x 20 Friden automatic calculating machine and the computations checked by repetition at another time. Mechanical errors in the punched card machines were avoided by performing the entire calculation with two identical sets of cards on two multiplying punches, the results being compared at the endiof each step. The numerical integration was carried from x = 0.49 (v=0.613) to x = 2.50 (v=12.18), and the accuracy of the results checked by evaluating $F_{\nu}(e^{x})$ and $G_{\nu}(e^{x})$ at the right-hand end-point and various intermediate points of the interval from the definite integrals (13) and (14). In the portion of the table where the functions are oscillatory (essentially x < log ν), the results of the punched card integration were found to be accurate to one or two units in the fifth significant figure. Over most parts of the non-oscillatory region the errors were small enough to be approximated by a continuous correction curve fitted to the known values of the corrections at certain check points; a small part of the table of $G_{\nu}(e^{x})$ had however to be entirely discarded * ^{*}It is not to be expected that any step-by-step numerical integration formula will follow the solution $G_{\nu}(e^{x})$ accurately in the region $x >> \log \nu$ where this function is very small, because any inherent errors in the formula quickly introduce a small amount of the other solution $F_{\nu}(e^{x})$ which in this region tends rapidly to infinity. #### 3. Description of the Tables. Since the tables of the wedge functions were printed directly from punched cards on an International Business Machines tabulator, some changes, such as the placing of the negative sign on the right of the right of the entry to which it applies, have had to be made in the usual format of such tables. The position of the decimal point is determined by multiplying the tabular entry by $10^{\rm p}$, where the (negative) integer p is tabulated to the right of each row of the table. Thus ${\rm G_{5-O}(e^{1.00})}$ = 22452 x 10^{-8} = 2.2452 x 10^{-4} , etc. In case the value of p increases in algebraic magnitude in the middle of a row, the entries marked with an asterisk should be used with the value of p on the preceding page. The tabular interval is 0.01 in x and 0.2 in ν . The range and accuracy of the tables may be summarized as follows: The function
$F_{\nu}(e^{x})$ is tabulated over the complete ranges 0.2 $\leq \nu$ \leq 10.0, -0.49 \leq x \leq 2.50. In the region where $F_{\nu}(e^{x})$ is oscillatory the error in the last figure given should not exceed 5 units. In the region where $F_{\nu}(e^{x})$ is non-oscillatory the error in the tabulated values should not exceed 5 parts in 10.000. The function ${ t G}_{ u}({ t e}^{ t x})$ is tabulated over the following ranges in u and ${ t x}$: $$2.2 < \nu < 4.0$$, $-0.49 < x < 1.50$; The error in the last figure of any tabulated value does not exceed 5 units. As a matter of interest the value of $G_{\nu}(e^{X})$ computed from the definite integral (14) and correct to the last printed figure are given for X = 1 ∞ , 1.50, 2.00, and 2.50 for those values of ν not included in the main table. The use of the computing equipment at the Cooperative Wind Tunnel was arranged by Professor C. B. Millikan and Mr. F. H. Felberg. For instruction in the operation of the punched card machines the author thanks Dr. E. C. Bower of Douglas Aircraft Company and various members of the wind tunnel staff. References: ¹Bocher, M., "On Some Applications of Bessel's Functions with Pure Imaginary Index," (Annals of Mathematics, 6, 144 (1892). ²Feinstein, L., and Schwarzchild, M., "Automatic Integration of Linear Second—Order Differential Equations by Means of Punched Card Machines," Rev. Sci. Inst., 12, 405-408 (1941). | • | |---| | | | | | | | | | | | | | • | 10.0 | 00000
CG400 | 8 8 8 8 0
0 6 4 6 8 | 7.7.7.0 | 00000
0040 | | 4 4 4 4
0 6 4 6 8 | | 000000
00400 | 1.0
1.4
1.6 | 0.000 %
8.000 % | |----------------------|---|--|--|---|--|---|--|--|---|---| | 10430 | 59198
27337
14660
16857 | 30929
17182
3489
5020-
75418- | 159
93921
183650
13616
17616 | 1 2 5 5 9 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 197471
257371
9196 | 16712
4484
50948
1 | 1067
49635
18375 | 5 2 8 9 5 5 1 8 2 9 5 5 1 8 2 9 5 5 1 8 2 9 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3280
13161
4051
6339 | 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 10961 | 303611
303611
126901
15884 | 30924
18290
4793
4103: | 1586
98863
14014551 | 15131
16793
175231 | 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 55 55 57 35 55 55 55 55 55 55 55 55 55 55 55 55 | 14
48
48
48
48
48
48
48
48
48
48
48
48
48 | 8 4 5 6 8 8 9 8 9 8 9 8 9 8 8 8 8 8 8 8 8 8 9 | 1338
1338
1358
1361
1361
1361
1361 | 61888
5888
91905
90005
8005 | | 11382 | 33128
115632
15359 | 30723
19275
6064
3156-
67815- | 15728
10239
37666
6128 | 82700
50878
17647
5550 | 84 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 17973
5812
552860
1 | 1836
46665
44533
44533 | 52357
52376
37503
10307 | 33656
13926
2426
35769 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 11691 | 356171
985257
14687 | 303
303
3013
7293
2383
185
1 | 155
105831
429883
1138 | 88331
58681
30091
14701 | 2301
2325
4070
84708 | 1 85
5 8 5 6 6 8 8 6 5 8 6 5 8 6 5 8 6 8 8 8 8 | 34 4 5 5 6 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 520811
376251
10730 | 3408
14309
24307
33334
1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 11883 | 60050-
37806-
11343-
13875 | 20854
20854
8468
11199: | 108730
480644!! | 1 1 5 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 | 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 19133
7099
49137- | 44 E 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 517644
377254
1114641 | 1445
144686
3085
50901 | .45.
52775
23086
12337 | | 11957 | 5904
3967
1406
491
1893 | 5 88
5 90
5 80
5 80
5 80
5 80
5 80
5 80
5 80
5 8 | 11486
5288
3387
5387 | 000 4 30 000 000 000 000 000 000 000 000 | 4 3
W W W W K
W S W W W W
W W W K F W | 1965
7785
4590
5490 | 4 4 W
6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 5961
5142
3780
2357 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 528
528
52314
72314
0 | | | 17179 | 110079 | 51679 | 00001 | 111 | 00000 | 88876 | 11111 | 0 4 0 F 10 | 4 5000 | | 11912 | | 27997
21877
10636
- 46651 | 100 | | | 10000M | 3351
1782
2 4 0112
2 3069
3 3069 | W C1 O1 C1 -2 | 0 4 0 F W | | | 1912 11 | - 57571 - 5563
- 41214 - 4240
- 16655 - 1910
2758 - 57
11862 1068 | 27997 2685
21877 2217
10636 1161
- 794 178 | 1 14436 - 1393
1 11284 - 1140
57420 - 6164
8356 - 1279
20279 1728 | 79404 77864 556877 57848 26898 28960 2497 4504 11066: 9745 | 1 43681 4369
26212 2706
9450 1 1052
2090 120
7458 693 | 3 20153 20621
5 8338 8936
6 45 566
6 42580 39165
9 53153 51667 | 6- 3351- 3723
7 1782 1495
2 40112 38358
2 42183 41461
2 33069 33109 | 7 - 58661 - 5768
3 - 51060 - 5067
6 - 37867 - 3790
5 - 23883 - 2417
11952 - 1234 | 2 35340 35757
4 15441 15814
2 3719 4035
7 2 8502 8357
5 358 8 5188 | .4343434343434343. | | 1912 11749 114 | - 57571 - 55631 - 53848
- 41214 - 42404 - 43237
- 16655 - 19104 - 21384
2758 - 573 - 1617
11862 - 10681 - 9397 | 27997 26857 25
21877 22171 22
10636 11612 12
- 794 1785 2
46651- 40352- 33 | - 14436- 13933- 1336
- 11284- 11402- 1146
- 57420- 61642- 6552
- 8356- 12792- 1715
20279 17280 1417 | 79404 77864 76
56877 57848 58
26898 28960 30
2497 4504 6
11066: 9745: 8 | - 43681 - 43690 - 43592
- 26212 - 27060 - 27837
9450 - 10527 - 11573
2090 1201 307
7458 6939 6397 | 3 20153 20621 21
5 8338 8936 9
6 45 566 1
9 53153 5165 50
9 53153 51667 50 | 6- 3351- 3723- 4093 7 1782 1495 1208 2 40112 38358 36560 2 42183 41461 40688 2 33069 33109 33103 | 7 - 58661 - 57683 - 5668 3 - 51060 - 50674 - 5026 6 - 37867 - 37907 - 3792 5 - 23883 - 24175 - 2445 11958 - 12348 - 1272 | 2 35340 35757 3617
4 15441 15814 1618
2 3719 4035 435
7: 2602 2357 211
5: 5358 5188 501 | .43424
7 53001 53115 5323
8 23211 23274 2333
6 12436 12485 1253
6 68258 68706 6915 | | 1912 11749 11468 110 | - 57571- 55631- 53242- 5042
- 41214- 42404- 43237- 4370
- 16655- 19104- 21384- 2347
2758 573 1617- 379
11862 10681 9397 802 | 27997 26857 25546 2407
21877 22171 22316 2231
10636 11612 12506 1331
- 794 1785 2763 372
- 45651- 40352- 33743- 2687 | - 14436- 13933- 13362- 127
- 11284- 11402- 11463- 114
- 57420- 61642- 65529- 690
- 8356- 12792- 17155- 214
20279 17280 14177 109 | 79404 77864 76047 73959 56877 57848 58600 59129 26898 28960 30906 32726 2497 4504 6491 8451 11066- 9745- 8379- 6975 | - 43681- 43690- 43592- 4338
- 26212- 27060- 27837- 2853
- 9450- 10527- 11573- 1258
2090 1201 307 58
7458 6939 6397 583 | 3 20153 20621 21058 21451 5 8338 8936 9519 10085 6: 45 566 1086 1604 6: 42580: 39165 35670 32101 9: 53153 51667 50064 48347 | 6- 3351- 3723- 4093- 4458 7 1782 1495 1208 918 2 40112 38358 36560 34722 2 33069 33109 33103 33050 | 7 - 58661 - 57683 - 56685 - 5566
3 - 51060 - 50674 - 50265 - 4983
6 - 37867 - 37907 - 37927 - 3792
5 - 23883 - 24175 - 24452 - 2471
11952 - 12342 - 12723 - 1309 | 2 35340 35757 36171 36584 4 15441 15814 16188 16558 2 3719 4035 4351 4666 7 2602 2357 2112 1866 5 5358 5188 5018 4846 | 4434241
7 53001 53115 53233 533
8 23211 23274 23339 234
6 12436 12485 12535 125
6 68258 68706 69154 695 | # TABLE OF THE WEDGE FUNCTION $F_{ u}(e^{x})$ | 10.0 | 999990 | 0.0000000000000000000000000000000000000 | 7.0
7.2
7.4
7.6 | 00000
00400 | 0.03400 | 4 4 4 4
0 % 4 6 8 | 00000000000000000000000000000000000000 | N N N N N N O & O | 11.12.0 | 0.000 % | | |-------|--|--|---|--|---|---|--
---|---|--|--| | 10569 | 47201
43808
85363
65733 | 22147
22161
14026
19798 | 12029-
11407-
72818-
25563-
7734 | 77
594
344
360
55374
394 | 1391075
1391675
1391675
1391999 | 2 1 8 3 1 1 0 6 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 333
888 3
99868
58848
88680 | 54629
49383
37907
24959 | 3699
16929
16929
1619
17619 | .39 -
5 3 4 7 5
2 3 4 6 9
1 2 6 3 5
7 0 0 4 4 | | | 9959 | 8435
8735
8705
800
800
800
800
800
800
800
800
800
8 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 11127
11290
74983
4558
3 | 1 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | # 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 111167
4477701 | 30053
80053
80053
80053 | 5357
389091
378671
251901
138071 | 374
17296
13293
1373 | .38 - 53 5 9 9 9 5 3 5 3 4 9 5 5 3 4 9 5 6 8 5 7 6 8 5 7 | | | 9250 | 396
2889091
1003521 | 18779
151515
56408
450 | 10463-
11116-
77341-
33385-
1105 | 1473365
8473655
97845
9884 | 000000 | 48 | 388 55
37098
616 | 52496
3780731
25404141 | 37807
17663
5606
1126- | .37 - 53725
83601
12736
70929 | | | 8449 | 35371
419151
11952811
1905811 | 16760
20826
15561
7210 | 10885
79879
37080
1 | 158993
158616
1100
100
100
100
100
100
100
100
100 | 151510
1625751
141171 | 41 12 20 20 20 20 20 20 20 20 20 20 20 20 20 | 387088
300048
3700040 | 51401
47897
37726
25602
14480 | 38821
180227
59187
1458 | 36-
53854
23668
12786 | | | 7565 | 30814-
40568-
30544-
13763-
293- | 14634
15858
15858
15858
15858
15858 | 10598-
80787-
40344-
5552- | 59761
58397
39711
17539 | 407821
170571
2767 | 31 | 6 48 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 10000000000000000000000000000000000000 | 3861
18390
6229
5311 | .35-
53985
23737
12837
71810 | | | 6605 | 26008-
38881-
31192-
15448-
1323- | 1 1 1 2 2 3 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 7744-
10257-
81857-
43636-
8839- | 56241
57579
40646
19160 | 39955
31110-
17813-
5817-
2118 | 23164
13089
3613
95577 | 33 9 6 6 8 8 8 8 6 8 8 8 9 6 9 9 9 9 9 9 9 | 49158
46802
37506
25951
15110 | 39014
18751
6539
3788 | 5.3 4.1 .3 4.1 2.3 3.4 2.3 3.4 2.5 2.3 8.6 2.7 2.3 8.8 8.7 2.3 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8 | | | 5579 | | 10119
18245
16119
9296
23893 | 6756
9863
82483
46578
12074 | 55
55
55
50
50
50
50
50
50
50
50
50
50
5 | 39030
31254
18519
14641 | 0 ← 50 € 50 € 50 € 50 € 50 € 50 € 50 € 5 | 31115
32761
402 | 48010
46224
37367
15409 | 3941
19109
6848
1368 | .33-
54255
23876
12938 | | | 4498 | | 7757
17134
16080
9861
30856 | | 4861
4861
4801
481
481
484
484
484 | | 234
13919
18056
10651 | 10 cm | 12668
12668
12668
12668
12668
12668
12668
12668
12668
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688
12688 | 9 8 0
9 4 6
9 1 5
1 1 5
2 1 1 8 | 2000
2000
2000
2000
2000
2000
2000
200 | | | 3372 | υσσουσ | 5347
15907
15928
10354
37583 | 1 8 3 6 8 8 8 9 2 5 1 1 8 3 6 6 8 8 9 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 36896-
31294-
19770-
8226-
137 | W 0 1 8 W | 5 6 7 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1 8 3 5 6 6 6 6 6 7 8 8 9 8 1 1 1 1 1 1 | 0000
0004
00004 | 31 - 34 5 3 6 2 4 0 1 8 6 7 3 5 5 9 | | | 8813 | 55001 | | 3618-
8386-
81677-
53747-
21265- | 400098
407169
40713
7710 | 35693-
31190-
20312-
8982-
527- | W 4 0 10 10
10 10 14 10 10 |
7857-
1976-
15581
29079
30032 | るのまらら | | .30
54
679
13099
14099
14899 | | | - T T | | | 000000 | 00000 | & & & & & & & & & & & & & & & & & & & | 88777 | 77766 | 00000 | ភេសសភភ
IIIII | 0° 4440 | | # TABLE OF THE WEDGE FUNCTION $F_{\nu}(e^{x})$ | 10.0 | 00000
000400 | 00000000000000000000000000000000000000 | 7.7
7.7
7.6
7.7
8 | 000000 | 00000000000000000000000000000000000000 | 2 4 4 4 4 6
C 37 4 6 8 | υυυυυ
c 3 4 6 ¢ | 0,000,00
0,004,00 | 11.6 | × 00000 × 00000 | |-------|---|--|---|---|--|---|---|---|---|---| | 1031 | 25918
30296
21391
21391 | 13146
15293
11109
50120 | 25 5 5 3 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 35918
50307
42802
25903
9097 | 344
31003
20795
1190 | 2 3 4 5 6 0 2 5 5 5 5 6 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 6 6 6 6 | 8 1 6 5 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 4 3 2 5 8
4 3 7 1 5 8
2 6 6 5 3 7 3 1 1 1 | 40986
20529
8073
853
2877- | 5 4 8 8 6
1 3 1 1 4 4 8 9 : | | 160- | 202576
202573
2023013
102214611 | 11 1 6 2 0 0 5 1 1 1 4 1 6 2 0 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1429
71831
78924
57012
26783 | 10401
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607
10607 | 330727
212727
104089 | 15290
15290
13694
20580 | 2000 88 80 80 80 80 80 80 80 80 80 80 80 | 42031
363040-
266377-
16728- | 41375
20879
8377
1101
2693 | .28
54976
24239
13196 | | 1350- | 11153
190381
280481
114481 | 10034
14231
14231
11538
61120 | 769528
9916025
1111 | 1 2 4 4 8 6 7 9 4 4 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 3157
303831
1107821
1-1-1-1 | 235
1556
7751
17751
17751
1778
28 | 22 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 40790
361327
16957
11 | 41763
21228
8679
1348 | | | 2527- | 11 | 6903-
8373
13549
11626
65936 | 787
5833-
74464-
58975-
31657- | 2 4 3 6 0 8 4 3 6 0 1 8 8 6 0 5 3 4 8 6 0 5 8 8 6 7 9 8 7 9 9 7 9 9 7 9 9 9 9 9 9 9 9 9 9 | 30038-
29952-
21884-
11706- | 15829
15829
21304
21304 | 00000000000000000000000000000000000000 | 3 9 5 3 5 5 5 6 6 9 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 21574
8981
15941
2321 | 5 5 5 8 5 8 5 7 5 7 2 9 1 1 3 3 0 1 1 | | 3679- | 21616
11521-
24819-
28879-
13550- | 9284-
6656
12771
11689
70246 | 1893
51111
71622
59454 | 17289
41038
41436
29335
14162 | 28 4 4 4 2 2 1 1 2 2 3 2 3 2 1 1 1 1 1 1 1 1 1 1 | 23299
16045
8486
25047
12211 | 000
0000
0000
0000
0000
0000
0000 | 38267
40906
35556
26710 | 42531
21918
9280
1840
2135+ | 71 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 4793- | 20000000000000000000000000000000000000 | 11606-
4895
11905
11547
74016 | 356
558
558
558
558
558
558
558
558
558
5 | 12
38303
406309
159886
29886 | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 23133
168243
28846
9358 | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 3698572455111 | 48913
88861
9580
8086 | 55.05
55.05
134.547
765.07 | | | 31385
3617:
20721:
22325:
15137: | | 4070
3592
59391
37508 | 35435
397435
39743
16309 | 25016
28190
22411
13378
5007 | | 29 39 8 5 9 4 5 9 6 9 7 5 9 4 1 1 1 1 |
35691
39397
2669167
17748 | | .23-
55770
24628
13461
77027 | | 8 7 | 5911
397
8390
1740
5718 | 81980
83881 | 98085 | 3 8 6 1 8
3 8 6 5 8 7
3 0 6 0 5 8
1 7 3 0 6 0 5 | 04400
4107000 | | 4
4
4
7
7
7
7
7
9
0
0 | 4 3 8 8 5 7 8 8 5 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12000 W | · 0504 | | 7811- | 40004 | 807
883
079
188 | | | w 6 4 6 € | 90708 | 0440
W460F
00700 | 33068
37821
342051
180621 | 4 4 0 0 5 0 5 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 | .2
79
79
89 | | 8674- | | 13630 | 1 6 7 9 1 1 3 | TOTO | 4 C W O C C | | 0 5 9 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 31740
370091
2655331 | 13034 | 00 00 00 v | | 1 1 1 | 44444
44444
1111 | | | 00000 | & & & & & & & & & & & & & & & & & & & | 88777 | 77788 | 9 9 9 9 9 9
1 1 1 1 1 | សេស្សស
ព្រះ | | | 10.0 | 0.0000
0.004
0.004 | 000000
00400 | 7.0
7.6
7.6
7.6 | 000000
00400 | 0.0 % 4 6 & | 4 4 4 4 0
0 0 4 0 0 | ジラジヴァ
O G 4 O E | 0 0 0 4 0 0 | 06460 | W 0000 00 00 00 00 00 00 00 00 00 00 00 | |--------|---|---|---|---|--|---|---|--|--|---| | 9452- | 11005185
11005185
11005185
11055181 | 21837
41611
6465
9901
83923 | 4557 8
2557 31
252164
252168
35111 | 1221
2221
32271
1906
1906
1906
1906 | 10001
10000
10000
10000
1111 | 21776
16813
10389
46165 | 2 | 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 44799
23948
11053
1005- | .19-
56465
24958
13680
78757 | | 10135- | 16085
16085
16085
17679
17493
16507 | 235
5935
5237
5208
9341 | 44
90
40
40
40
40
40
40
40
40
40
4 | 2311
232
232
232
232
232
232
232
232
232 | 12000
15000
15000
15000
15000
11111 |
11014
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
110004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
1000 | 2115410
21154170
47466
3466 | 29 0 5
35 34 0 1
28 0 0 8 1
18 4 4 1 | 24517
24280
111344
8155 | .1856 6 4 8 25 0 4 5 1 3 7 3 6 7 9 1 8 9 | | 10718- | 53576
19751
4772-
16003-
16312- | 25047
7674
3916
8713
83452 | 4546677
903457
903457
111 | 21788-
15793
30983
30091
20916 | 1 0 0 0 1 1 1 1 1 1 | 106848
10874
108533 | 20080
113631
20080
111 | 186247
86247
562546
57753
41111 | 24554
24554
37632
5626 | 56834
25132
13792 | | 11195- | 5591
23251
18231
15962 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1081
2085
311005
487955 | 2000
2000
2000
2000
2000
2000
2000
200 | 11 1 3 8 2 1 5 7 8 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20559
16814
11086
55544
13678 | 1145
5651
157651
19087 | 2 3 3 3 5 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5 | 4591
24938
11931
4033
436 | .16-
57024
25221
13848
80057 | | 11560- | 5781
26556
11556
12599 | 27626-
10983-
1258
7271
80427 | 11601
2887
25386
46073- | 31133
8633
26995
289977
21715 | 920
20
20
20
20
20
20
20
20
20
20
20
20
2 | 20089
16757
11278
58451
16488 | 12 15 15 15 15 15 15 15 15 15 15 15 15 15 | 2 4 9 4 8 3 1 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | \$ 00 00 00 00 00 00 00 00 00 00 00 00 00 | 157218
25311
13906
80492 | | 11811- | 59240
29638
4097
10717-
14811- | 286556
1285336
8991
77983 | 123335
1953674
2309011 | 2 2 2 2 3 2 4 4 5 5 6 6 2 4 5 6 6 6 7 2 4 5 6 6 7 7 8 6 7 8 | 191401
205711
1605011 | 195
116678
111849
19849 | 11 8 3 8 1 1 7 7 6 1 1 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 23
31
31
31
31
31
31
31
31
31
31
31
31
31 | 12555
4555
4549
5121
561 | 57416
25403
13964 | | | 50194
32472
7016
8736- | | 13008
13580
13580
39860
1473 | 22 13 3 4 0 0 3 8 7 3 3 6 8 0 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 17842
20061
161091 | 1905
116559
11558
63903
21990 | 1 2 5 5 5 6 8 8 1 1 1 | 2009171
2009171
20068371 | 47016
25911
127774
4753 | .1 3 - 57 6 1 8 2 5 4 9 6 8 1 3 6 4 | | 11961- | 35033
38033
9876
13096 | 30169
153375 -
27771 -
1325 | 3619
7550
7550
40475 | 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000
004444 | 18499
16418
11726
66436
24670 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2077
29993
30170
254770
18843 | 267381
1362381
4991
3224 | .1 2 57 8 2 5 5 7 8 2 5 5 9 1 1 4 0 8 0 0 1 | | 11857- | 0 F G 4 G | 30642
16647
4088
3798 | 14164
5907
1480
32740
3275 | 25 7 7 8 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 15110
18871
16079 | 17912
16850
11832
68833
27296 | 1 2 3 2 2 0 1 1 2 3 7 3 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 58035
25687
14140 | | 11637- | 1 5 3 9 2 5 7
1 0 8 3 9 2 5 7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3 0 9 2 1 1 7 8 0 9 1 1 8 0 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 4 6 5 9 6 6 5 9 6 6 7 7 5 9 0 1 1 | 5 4 5 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 113683
100633
100633
1111 | 170054
2710054
2710054
30091 | 000010
40140
04003 | 1 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1.369
1.369
1.361
1.361
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1. | 5 8 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 11- | 44444
44444
1111 | 11111 | | 00000 | 000000
1111 | 88777 | 77766 | 99999 | ហេសាសាសា
ររររ | or 44470 | | 1 0.0 | 00000
06400 | ထ္ထပ္သာလ
ဝ <i>လ်န်ဂ်</i> တ် | 77.70
7.80
8.80 | 000000
00400 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4
0 0 4 0 0 | ショミョョロ
6 cs 4.cs cs | 0 0 0 0 0 0
0 4 4 0 | 1111
054
664
1111 | 0000 V/M | |--------|---|---|--|---|--|---|--|---|--|--| | 11301- | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 5 | 381 75
64085
6355
5354
7544
11 | 88775
78846
77776
88968
88688 | 4444
0004800
000600
00008 | 271156
221986
289725
50817 | 1 2 7 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
288
878
848
848
868
868
868
868
868
868
868
86 | 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | 10853- | 8457
840877
840868
8408068
84088 | 5 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2000 15
2000 25
22000 20
2000 20
3011 | 88445
9446
7444
77038
77056
11 | 4444
0000
70004
40006
4417
4417 | 37444
85855
74055
86486
76644 | 1 | 1: 82 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 124
124
134
154
150
150
150
150
150
150
150
150
150
150 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 10297- | 0 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | \$ 0 5 5 8 8 5 7 7 1 1 5 5 6 1 1 1 1 | 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00 10000000000000000000000000000000000 | 115507
155007
155007
1571 | 776973
76973
1376973
1379 | 2 1 1 1 1 | 1 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 12781
10441
101441
12160
1200 | .07 - 26 089 14384 010 | | 9640- | 3 4 3 4
5 6 4 3 4 4
3 7 9 7 7
1 8 5 7 7 | 300
2100
2100
200
200
200
200
200
200
200 | 80 H 80 H 90 80 80 80 80 80 80 80 80 80 80 80 80 80 | 000 400
000000
000000
000000
11 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 37254
986008
460004
0324 | 3 13 13 13 13 13 13 13 13 13 13 13 13 13 | # 0 0 0 F
0 4 6 4 0
7 0 7 0 0
6 0 0 0 0
1 1 1 1 1 | 12 00 00 00 00 00 00 00 00 00 00 00 00 00 | 81455
44195
5775
6 | | 8887- | 50634
43875
26180
8351 | 22 17 1 1 8 7 1 1 1 1 0 8 7 1 1 1 1 0 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 7 5 9 3 5 7 7 6 5 4 7 0 8 5 1 1 | 26890
26990
1166051
1166641
1168 | 1111
1111 | 1138
12467
12000
15131
1531 | 13
780
8768
9768
9566
80
1111 | 1081
2380
26183
18373
1871
0 - 1 - 1 | 14991
14991
16630 | 55
55
55
55
55
55
55
55
55
55
55
55
55 | | 8046- | 4743
43713
277736
10349 | 8 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 3 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 71
30151
14915
19036
111 | 1111 | 1140
1140
1110
1110
100
100
100
100
100 | 13100
7998
111166
5554 | 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 5 9 6 4 4 1 1 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 | | 7125- | 12 4 4 3 8 5 7 8 5 7 8 5 7 8 7 8 7 8 7 8 7 8 7 8 | 1 2 2 3 3 4 4 5 7 7 7 5 5 1 1 1 1 | 8 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 111 1
140001
1400000
17000000000000000000000 | 44484
680468
408664
40866
94884 | 13
48
48
48
48
48
48
48
48
48
48
48
48
48 | 2011 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 12 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 6134- | 1 4 4 9 9 8 8 9 9 8 8 8 8 8 8 8 8 8 8 8 8 | 1 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 7600
36229
11227931 | 1111
13113
15113
15113
1513
1513
1513
1 | 48444
7676
7676
7676
7676
7676
7676
7676 | 7 4 7 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 15785
2316
2316 | とうりゃ | | 5082- | 35
410
30
50
15
50
60
60
60
60
60 | 8845
8845
8888
8988
8988
8988
8988
8988 | 15
54
54
54
54
54
54
54
54
54
54
54
54
54 | 77923-
39070-
8747-
16363- | 300
302
10071-
13079- | 107
1313
11673
844676
49468 | 14 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0 1 6 4 W 4 R 4 R 1 R 4 | 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | 001 - 01 - 01 - 01 - 01 - 01 - 01 - 01 | | 3980- | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2000
2000
2000
2000
2000
2000
2000
200 | 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 79512-
41765-
11385-
15386 | 11 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 120688
11540
11540
1131 | 7688
6458
64054 | 1 1 1 1 1 | 12 8 5 1 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 | | | 11- | در مر مر در مو
در در در در در
۱ ۱ ۱ ۱ ۱ | 1111 | 00000 | 00000 | & & & & & & & & & & & & & & & & & & & | 88777 | 77766 | 00000 | ហហហហ
ប្រ | U 444 0 | | A | ֡ | |-------|---| | a | | | G. | | | L | | | C | | | - | | | _ | | | == | | | 1 | | | 4 | | | - | | | WEDGE | | | G | | | 1 | | | U | | | = | | | 2 | | | - | | | | | | 0 | | | Z | | | 7 | | | 2 | | | e | | | e > | | | ~ | | | 1 0.0 | 9.99.90
9.44.00
9.44.00 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.0
7.7
7.4
7.6
7.6
8.7 | 00000
00400 | 0 0 0 4 0 0 | 4 4 4 4 4
0 0 0 4 0 0 | υυυυυ
ο α 4 ο α | 0 0 0 0 0 0
0 0 4 0 0 | 1,6
1,6
1,8 | √ 0000 0
× √ 004 0 € | |-------|--|--|---|---|----------------------------------|---|---|--|--|--| | 2839- | 375553
375563
31688
57688 | 21599
21706-
15363-
10461- | 114987
1113887
168948
18996
11: | 1 1 3 9 7 9 9 1 1 1 3 9 7 9 9 1 1 1 3 9 7 9 9 1 1 1 3 9 7 9 9 1 1 1 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 23833
35083
1119611 | 50 11 14 00 00 00 00 00 00 00 00 00 00 00 00 00 | 14
41
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000 | 170321
222265
216971 | 5206
30265
16573
7992 | .01
60944
26986
14910 | | 1669- | 335337
335337
337664
433 | 19767 -
21192 -
15725 -
17712 - | 114569
1114488
86788
613805 | 81851 -
46676 -
16516 -
3488
13037 | 25618
5099
6752
11347 | 8186
11741
11204
85940
54030 | 13358
8786
1790 | 15977 - 21573 - 217942 - 1 | 524
30561
16833
8216 | .02
61221
27108
14979
88121 | | 483- | 16205
32798
31364
20797 | 17810-
20538-
15978-
24867- | 1 4 0 8 8
1 1 4 9 9
7 0 1 5 0
2 7 2 7 9
2 8 3 0 - | 1488759
14888759
14883
118988
11801 | 27343
6677
5603-
10699- | 7317
11237
11005
86086
55360 | 13364
8890
50627
21888
1016 | 754
14916-
20871-
20915-
17782- | 52783
30860
17091
8437
3140 | .03
61504
27232
15050
8593 | | 708 | 1091
29999
30790
21621
9998 | 15741
197481
16120
31753 | 135
1145
73149
731299
73099 | 508901
213841
10512 | 2900
8238
10018! | 10715
10715
10787
86058 | 25 89 86 9
23 33 35 9
23 37 01 1 1 1 1 | 138491
201591
176111 | 1711
1711
1873
1865
1865
1865
1865
1865
1865
1865
1865 | .04
617
87359
15188
9069 | | 1892 | 269531
26950
29948
22249
11236 | 1357
168827
160150
10025
7: | 11290
751436
349455
8186 | 8387
8387
8387
9176
 | 3059
9777
3262
10275 | 10175
10175
10548
15548
57658 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3654
12778
19438
20086 | 53502
31454
17603
8877
3507 | 0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05 | | 3057 | 106
28845
188676
188674 | 11320
17783-
16068-
10497- | 112327
781318
78104
7118 | 00000000000000000000000000000000000000 | 32108
11291
2076
8567: | 400000
000000
040004
00001
00001 | 1331
9152
8617331
66188
1111 | 5102
11701:
18707:
19654:
17232- | 53863
31750
17857
9095
3689 | .06
67629
157620
90032 | | 4192 | 128893
128893
138893 | 51110000000000000000000000000000000000 | 1114
79914
719934
11882
751 | 88 26
88 27 77 77 77 78 78 78 78 78 78 78 78 78 78 | | 5581
9400
4400
5414
554
557 | 25 9 3 3 4 3 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 10620
179680
179211 | 54223
182045
18109
3812 | .07
627
01
27754
15345 | | 8 | 1107
116564
25896
28904
148904 | | 71440 | 00000
00000
00000
00000
00000
1111 | \$0 W W O | 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & | 000000
W00004 | 7993
9536
7221
8757
6807 | 4 3 8 9 4
8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0040 | | 80 | 16001
12786
24076
28707
15023 | 4000446 | 4 4 0 0 0 | Q Q Q W 4 | 000400
4000
0400
0400 | 0 TO 0 4 O | 2000
2000
2000 | 9 4 3 6
6 4 4 4 7
6 5 7 9 3 | 40004
00006
4004w | WOAN. | | | F040W | | 10888
88888
50388
70380 | 133670
23670
28658
00583
1111 | 737
701
837
835 | 04504 | MWSWH | 38738
32057 | 55
50
50
50
50
50
50
50
50
50
50
50
50
5 | | | 11- | 44444
44444
11111 | | 444
9009
11111 | 00000 | 0 0 0 0 0 0
1 1 1 1 | 88777 | 77766 | 00000 | ហហហហហ
!!!!! | o 444 ₪ | ## TABLE OF THE WEDGE FUNCTION $F_ u(e^{X})$ | 10.0 | 00000
00400 | လ လ လ လ လ
ဝ <i>လဲ နဲ ဂ်</i> တ | 7.0
7.2
7.4
7.8 | 000°00
00000 | 0.000000000000000000000000000000000000 | 4 4 4 4 4
0 0 4 6 6 | ろうろうう
ひに 4 か 得 | 0 0 0 4 0 0 | 0.3466 | × 0000 × 000 | | |---------|--|---|--|---|---|---|---|--|---
--|-----| | 8 2 1 2 | 26173-
4942
19825
21697
16095 | 715
10961-
14023-
11661-
70777- | 8 8 9 8 8 9 8 8 9 8 9 8 9 8 9 8 9 9 9 9 | 78
5935
40885
5935
50785
7955
1111 | 18347
38347
785757
71: | 8 1 0 8 8 7 1 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 136 1
880 9 3
5 5 8 8 6
8 7 8 1 8
1 1 1 1 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 55677
33215
19104
10165
4588 | .11
64010
28320
15658 | | | 9038 | 30967-
941
17431
20893
16404 | 3171
9340:
13307:
11643: | 8000
8000
8000
8000
8000
8000
8000 | 76333-
59707-
36767-
15840-
979- | 39487
19631
50631
7391 | 5977
8369
79714
61610 | 12944
9450-
61198-
33734-
13670- | 1374
1415661
158841 | 56043
33505
19349
10375 | .1
64356
28468
15739
93035 | | | 9775 | 35
50
50
50
50
50
50
50
50
50
50
50
50
50 | 5606
7658-
12500-
11540-
77637- | 05000000000000000000000000000000000000 | 7
59
59
28
20
20
20
20
20
20
20
20
20
20
20
20
20 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 17
5330
78182
61644 | 1284
9470
62070
14787
1-1 | 15177
13373
15338
15553 | 195795
10584
10584
110584 | 64710
28621
15822
5555 | | | 10415 | 39776
7049
187210
16726 | 1115925
111354
111354
111 | 5000
80506
57630 | 7190
59742
191537 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 266
4675
76601
76495 | 127
9481
628781
158781 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 56781
34085
19835
10791
5116 | .1 4
65073
28776
15907
94081 | | | 10953 | 10973
10973
10973
17388
17388
17388 | 10336
4154
10631
11086
82138 | 3939
78839
58665
32665
555 | 59437
40316
3069487
5398 | 41948
23164
8461
1040 - | 3574-
4011
7195
74656
61309 | 10000000000000000000000000000000000000 | 18083
1868
11789
15305
14978 | 57153
34374
20076
10998
5290 | 2654
2654
2653
2653
2653
2653
2653
2653
2653
2653 | | | 11382 | 14806
155666
160666
160666 | 22 23 35 4
20 7 33 55 1
30 7 33 51
30 7 33 51
30 7 31 1 1 | 2861
767221
59370
34755 | 566
664
6884
684
684
684
684
684
684
684 | 5 1 5 3 7 8 6 1 1 | 4480
-3341
6777
72669
60942 | 1249
643019
1800351 | 19440
766-
10990-
14776- | 57526
34663
20317
11202
5464 | 55822
29096
16081
95152 | | | 11700 | 000000
4444 | 1 48 47
5 40 1
8 4 6 9 1
1 0 3 1 0 1
8 4 1 4 6 1 | 1768
6566
74249
59741
36619 | 55814
56814
6856918
568918
1111 | 106886
4 77386
4 77386
1 | 5379
2666
705367
70538 | 1 2 3 5 8 1 6 4 9 1 5 5 1 1 1 9 0 3 2 1 1 | 20851
101851
142851
143651 | 57901
34952
20555
111406
5635 | .17
66209
29263
16171
95698 | 7 8 | | 11902 | 60 60 60 60 60 60 60 60 60 60 60 60 60 6 | 16960
1278
72961
98081 | 5879
5879
597353
38265 | 571691
48438
96001 | 26164
11665
11615
1975 | 5906
5906
5986
5906 | 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 58279
35240
20793
11608 | .18
66606
29431
16262
51 | | | 11987 | 0 0 0 0 0 4 F 4 0 0 0 4 0 F 4 | 18967
3087
6073-
9236- | 5161
58077
59477
39684 | 0 0 0 4 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 | 23033
12033
12033
13467
1359
1003
1003
1003
1003
1003
1003
1003
100 | 715
1303
65865
59055 | 20000000000000000000000000000000000000 | 71556 | 20000 | .19
67013
29605
16354
96812 | | | 11700 | 35860
35860
35860 | 0 8 4 4 0 8 8 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1448
08445
84488
8188 | | D W 4 6 4 | 8 4 W 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11892
9374
66359
41633
21963 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | 1 | | H0000 | | 99999 | | 88777 | 77766 | 00000 | ហហហហហ | o 44410 | | | 0.0000000000000000000000000000000000000 | | 7.0
7.6
7.6
7.6 | 00000000000000000000000000000000000000 | 2 2 2 2 2 0 0 6 4 6 6 | 0 6 4 4 4 4 0
0 6 4 6 0 | υυυυυ
όκάδα | 00000000000000000000000000000000000000 | 11111000460 | × 60000 | |---|---|--|---|---|---|---|---|---|--| | 1 1 8 0 3 8 8 1 1 8 0 3 8 8 1 1 8 0 3 8 8 1 1 8 0 3 8 1 1 8 0 3 8 1 1 1 1 8 0 3 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 35034
35034
0524 | 578657
41869 | 53018
430018
137895
1111 | 1285
1485
1485
1485
150
150
150
150
150
150
150
150
150
15 | 8 8 8 8 4 1
6 0 6 7 1
5 7 1 5 7 | 1171
9327:
424707: | 26
4736
12026
13029 | 59428
36106
21500
12206
5313 | .21
67854
29963
16545
97958 | | 34187-
10921-
4406
11205 | 8 3 4 8 8 3 4 8 8 6 7 1 3 5 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 | 3716
2868
56153
56574
42502 | 5 1 2 2 7 1 1 2 2 8 7 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 15477
15473
144175
15473 | 5 5 7 8 9 7 3 8 8 9 3 3 8 1 1 |
11537
9272
66988
43148
23775 | 27821
5833
6103
11448
12674 | 59818
36395
21733
12403
6480 | 9160180
9160180
91601490
91601490 | | 13656491
1366491
128646
11156 | 00000000000000000000000000000000000000 | 51551
54962
48944 | 4 0 0 8 6 7
4 2 8 6 0 5 4 4
5 6 7 7 1 1 1 1 1 | 29799
16325
761 | 10565-
1438-
3555-
55001
54767 | 11346
9209
67202
43833
24636 | 29196
6929
5277-
10870-
12311- | 60210
36684
21966
12599 | .23
68736
30337
16744
99138 | | 166839
16639
10665
10665 | 7000
1600
1495
1379 | 5883
1861
46675
53043
13131 | 36535
47098
42131
16695 | 130304
17131
6737
1037 | 11383
2121
52063
53395 | 111
9138
67349
254667 | 3 0 5 6 8 0 8 8 0 8 8 8 0 8 8 8 8 8 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 | 60607
36975
22199
12793 | .24
69192
30530
16847
99742 | | 100420 - 18729 - 2116 - 7218 - 10071 | 25725
25725
25725 | 6837-
41551
50825
43063 | 11111 | 435
30733
17891
7535
556 | 10
00
00
00
00
00
00
00
00
00
00
00
00
0 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 319
3119
36000
1156900
111 | 61006
37265
22429
129429
6974 | .25
69660
30728
16951 | | \$ 4 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 | 31548
35648
35643 | 7819-
372-
36206
48322
42740 | 27508
42277
40693
185740 | 43180
31083
18601
8310 | 1 2 9 6 8 4 7 4 4 5 7 0 5 2 1 1 0 5 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1072
8972
45585
7026 | 11788 | 61410
37557
22660
13179
7137 | .26 70139 30930 17058 100980 | | 8 4 4 0 8 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 20 4 55 8 8 8 8 8 8 4 8 8 8 4 8 8 8 4 8 8 8 4 8 | 8764
1187
30669
45549
42164 | 2000
2000
2000
2000
2000
2000
2000
200 | 42677
31355
19260
19260
1866 | 1373
4143
1556
4868
6868
6868
6868
6868
6868
6868
6 | 1 0 5 0 1 - 8 8 7 8 - 6 7 3 8 9 - 6 7 7 5 5 - 7 | 75988
80588
84778 | 57849
37849
22890
13370
13370 | .27 70628 31138 17167 101615 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2114
714
714
714
714
714
714
714
714
714 | 9668
1997
4970
2521
1339 | 09881 | 207
207
207
207
207
207
207 | 4480
4805
1047
9053
6796 | 0000
0007
0007
0000
0000 | 59 59 23 65 11 24 79 05 0 3 8 5 | 8 4 4 7 7 8 4 W 4 4 7 8 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2711 | | 67951
10257
1027
1027 | 5 6 8 8 8 | 2243
2548
2548
2548 | 00733
80800 | 0 1 4 5 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 | 55 55 55 55 55 55 55 55 55 55 55 55 55 | 18063 | 7 2 3 4 8 8 8 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 4 W C 0 4 W 4 A 4 A | 8711 | | 1 4 4 6 6 1 4 4 6 6 6 6 6 6 6 6 6 6 6 6 | 9236 | 33533
35033
36053
4 | 05084
05085
0705
4405 | 058
169
091
114
378 | 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 9 0 9 9 0 9 9 0 9 9 0 9 | 976857
80558 | 56556
04460
004486 | 73573
73573
7377 | W 7 H 80 | | प्रमास्य म
सम्मास्य म
सम्मास्य म | H0000 | | 99999 | 000000
11111 | 88777 | 77766 | 00000 | មាល់
លេសលេស
ព្រះ | 0 4440
1111 | | 0 | |-----| | (C) | | 0 | | O | | | | 1 0.0 | 0,000,000
0,000,000,000,000,000,000,000 | 000000
00400 | 7.7.7.0
7.4.4.7.6.8 | 0,000,00 | 0 0 4 6 6 | 444400 | มเบเมเม
0 ่ ่ ่ | 0,000,00
0,040,00 | 000400 | 0000 VM | |-------|--|---|---|---|---|---|---|---|---|--| | 4693 | 48 2 2 2 7 0 - 1 4 1 3 5 7 0 - 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 31111
301111
9297
1257
1007 | 7 0 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8338
10473
53365
73787
35955 | 50000000000000000000000000000000000000 | 4 80 90 90 90 90 90 90 90 90 90 90 90 90 90 | 0448
04048
04048
04170
04048
04068 | | 14 24 3 3 6 6 7 9 1 2 2 3 4 9 6 7 9 1 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 | 7 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 3577 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 12787
50967
116161
2882161 | 8 8 3 8 1
1 9 8 4 1
9 9 6 4 3
0 4 8 1 1
5 1 9 8 8 |
121157
52470
52470
52470
52470
52470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
54470
5470
5 | 22 72 8
8 4 9 9 6 8
6 8 9 9 7 8
1 1 1 | 346
07689
8648
5939
4355
1111 | 00000
004400 | 1 4 4 0 3 2 2 7 8 0 8 8 8 | 73264
73264
32249
17749 | | 2427 | 0 6 8
174
118
730
532 | 2005
21145
2005
2005
2005
2005
2005 | 28 P
25 4 25 U
27 1 28 2
27 1 28 2
20 5 6 5
1 1 1 | 22 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 4 9 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1788
17988
1150631
131216 | 9009
656911
1111 | 50000000000000000000000000000000000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | .33
73831
32488
17873 | | 1253 | 36719-
40317-
31629-
18661-
6827 | 30019
21929
12280
14146 | 13999
10907
20035
31537 | 22222
2222
2222
2222
2222
2222
2222
2222 | 123404
63347
63347
6444
5444
9 | 18
85
84
805
84
89
17
80
13
10
10
10
10
10
10
10
10
10
10
10
10
10 | 6 5 1 8 3 7 7 1 8 2 7 8 5 1 1 8 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 000000 | 6 4 8 1 0
3 9 9 3 3
2 4 4 8 7
1 4 6 7 7
8 3 9 6 | .34
74411
32732
17999 | | 67 | 13388
89188
88758
65956
80980 | 13000
13115
4050
4050
1 | 1,450
7,167
1,687
1,5765
1,1
2,9186 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24 | | 00000000000000000000000000000000000000 | | Table 645 1105 120 120 110 | .35
75007
32983
18129 | | 1120- | 275
36466
208695
6605
1111 | 8 8 4 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 2 7 4 9 4 8 5 1 1 1 4 6 6 8 8 6 8 6 8 6 8 6 8 6 6 8 6 6 8 6 | 8 8 8 9 9 8 8 8 8 8 9 8 9 8 9 8 8 8 9 8 9 8 8 8 9 8 9 8 9 8 9 8 9 | 120001
120001
120001
120001
120001 | 297467
97467
29968 | 8174
7704
63980
48047
32643 | 46353
30851
5553
69971
1 | 20057 | ~ 00 W W | | | 86406 | 27256
22465
14508
10767 | W 7059 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | | 40000
40044
80044 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | .37
76248
33508
18398
108635 | | 4 | 75
06
14
06
70
33
10
50
50 | 75055
75055
75055 | 15001 | 99
99
99
99
99
99
99
99
99
99
99
99
99 | 800 80 80 80 80 80 80 80 80 80 80 80 80 | 00000
0000
0400
00000 | 80000
80000 | 9 6 3
9 1 9
1 7 9
0 9 5 | 04 3 4 5 | 10 00 WO | | 5 | 00000000000000000000000000000000000000 | 4 8 7 8 4
7 6 7 8 7
7 6 0 8 0 | 84 D O G | 4 C C C C C C C C C C C C C C C C C C C | 00000
445
00000 | 25 2 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 7728
7728
7728
7786 | 01 05
3944
7999
11 088
5648 | 14001
100004 | C400 | | 4 | 44000 | 18512
1869
1598
1598 | 000000000000000000000000000000000000000 | 8 5 5 6 4
8 8 6 6 0
4 7 0 8 6
4 4 0 8 6 | 1
1
1
1
1
1
1 | 115
549
586
568
568
568
568 | 75809 | 1337
4963
460
5186 | 27886 | 00 4 00 | | 11 - | | 11111 | 00000 | 90000 | 0 0 0 0 0 0
1 1 1 1 1 | 88777 | 77766 | 00000 | ហហហហហ
ព្រះ ព្រះ | σ 444
1111 | | 1 0.0 | 0.00
0.40
0.40
0.40 | 0.00.00
0.00.4.00.00 | 7.0
7.4
7.8
7.8 | 0,0000
0,400 | 0.00
0.40
0.00 | 0.4.4.4
0.6.4.4.4
0.6.4.4.4 | υυυυυ
okáno | , , , , , , , , , , , , , , , , , , , | 1111 | 0000 | |--------|--|---|--|---|--|--
---|---|---|---| | 6664- | 1516
21966
271766
14827176 | 21260
21146
16080
9560
38097 | 110007
10007
10003
10003
1111 | 200659621
111 | 12 00 00 00 00 00 00 00 00 00 00 00 00 00 | 123478
123478
159063
111 | 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 15942
4811
9442
482
483 | 789 03
34620
118975 | | 7619- | 11 8 8 9 4 1 7 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1940
20466
16204
44099 | 1607
10623
152206
111 | 111065
110103
19124
19878 | 100000
100000
100000
100000
100000
100000 | 128845
128845
1288683
1586683
1111 | 589531
47014
1091 | 5 3 7 7 7 4 2 5 6 9 8 0 1 2 6 9 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 8 6 1 9 2 6 5 1 8 1 9 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 | 79612
34916
19168
11271 | | 8500- | 1 4717
2 3 6 6 1 7 1
2 5 9 9 8 1 1 1 | 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 440
000
000
000
000
000
000
000
000
000 | 5124
14609
7471
175161 | 22673
25129
21916
10227 | 2271
13294
16313
10606 | 5
5
6
7
7
7
7
8
8
8
8
8
1
8
1
8
1
8
1
9
1
1
1
1
1
1
1 | 54980
27979
11257
38026 | 69130
42776
26550
16898
9733 | | | 9297 | 14581
10895
21590
16362 | 15356
18711
16119
10956
56230 | 15851
11168
23664
23859 | 18100
48100
15835- | 20830
24135
21570
16307 | 23037
13725
203347
7564 | 5 6 6 6 5 7 1 4 6 6 8 2 1 9 9 5 1 1 1 1 1 1 | 56176
28970
12055
3336 | 69653
43109
26783
16476
9877 | 35534
115446 | | 10004- | 19773
6984
19334
21008 | 1318
17649
115918
11268 | 15628
11359
66817
27709 | 58639
21525
2130:
14089: | 18939
23081
21167
16341
10800 | 141357
141357
717701 | 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 7018
43445
27016
10654 | .45
81847
35854
19610
11537 | | 10614- | 2016
2016
2016
2016
2016
2016
2016
2016 | 10927
15596
11499
66287 | 1114933
41686634
50001111 | 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 17006
21971
20707
16327
11040 | 1 2 3 3 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 | 0.04 M
0.004 M
0.006 M
0.006 M
0.006 M
0.006 M | 585
30932
13650
3307
2399 | 70728
43787
27252
16831
10162 | .46
82631
36183
19779 | | 11120- | 11 8 8 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 15189
115174
115174
70588 | | 28123
28123
103248
10431
10431 | 15008035
11600807
11600807
460 | 3126211
935211 | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0. | 134490
134490
134490
19332
19332
1 | 1
2
3
3
4
4
7
4
9
9
9
9
9
9
9
9
9 | .47
83436
36520
19951
11725 | | 151 | 2 W W D D | らろ 4 1 4
この 6 6 7 7
この 4 1 6 | 14533
11591
76047
10859 | 8231
1291
5917
8534
4395 | 0 5 5 4 4
5 6 6 5 4 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4495
4195
4095 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 04 C 11 4
4 C 11 C 4 | 4 C O 4
0 C 1 C | | 180 | 00 00 00 00
00 00 00 00
00 00 00 00 | 2000H | 4 1 3 6 4
C 5 1 1 1 0 | 0986
4337
8567
6602
3235 | 00000
00000 | 4 50 80 60 60 60 60 60 60 60 60 60 60 60 60 60 | 355143
355143
355173
355173 | 56080
91088
91088
45044 | 03 .4 10 10 co | 10 75 | | 197 | 45004 | 137
078
330
159 | 54050
44664
60464 | 0 6 4 8 5 0 4 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3
5 7 3 5 7 5 7 | 165
165 | 46954
1690
1690
1690 | 3883
3883
3883
3863
683 | 5776
5798
5798 | 30000
00440 | 80 75 | | 1-2 | | 40000 | 11111 | | | | | 00000 | | σ 4&4.4
 | | بر | | | | | | | | | | | | |--------|---|--|--|--|--|---|---|---|---|---|------| | 0.0 | 0,000,000 | 0 0 4 0 c | 7.6 | 004400 | 000000 | 44400 | | 00040000000000000000000000000000000000 | 111.0 | 0000 | × | | 12029- | 16545
16545
12665-
14615- | 1066-
9168
12496
11415
82255 | 12832
111312
811723
48049
20103 | 75778
40050
13760
2665-
10747- | 15673
17611
17718 | 126 12 20 5 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 | 3361
4680
47811
42144
1 | 64305
35710
17558
6411 | 73608
45569
28455
17718 | 86871
37959
20689
12129 | ·5 | | | 49694
20176
138-
10795-
13781- | 3505-
7489
11601
11151
83680 | 12143
111107
827757
506121 | | 14286
16845
15269 | 164
973791
148233791 | 300
46343
313765
111 | | | 87788
38343
20885
12236 | .5 ર | | 11788- | 52649
23643
2867
12828- | 5922 -
5762
10628
10807
84480 | 11397
10847
83399
52897
25712 | 79564
45193
18743
1375
8073- | 2661
12865
16035
14936
11737 | 24494
16605-
10065-
17727- | 30000000000000000000000000000000000000 | 66554
37570
19086
7635
908 | 74848
46323
28951
18075
11140 | 88728
38737
21086
12346 | .5 3 | | 11495- | 55193
26917
5728
6783-
11739- | 8303
3998
9598
10387
84652 | 10599
105355
835899
28489291 | 81064
47527
21132
53301 | H & U H | 20 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3931
3930
3971
3971
1111 | 198466
198488
198441
19841 | 18965
8887
8880
750 |
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000 | .55 | | 11091- | 57307
29970
8600
4677-
10548- | 10634
2209
8474
9893
84193 | 9753
10171
83347
56586
- | 840
0000
0000
0004
004
004
004
004
004 | 9000 | 2000
2000
2000
2000
2000
2000
2000
200 | 3 8 1 7 7 1 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 68773
39400
20591
8849
1852 | | 90688
39559
21506
12574 | .5 5 | | 10579- | 58997
111398
25298 | 12900-
405
7307
9329
83108 | 8861
97571
826741
3797011 | 2516683
756663
1225
450 | 3666
13360
1136860
114685 | 24401
171361
108921
60257161 | 3 1 6 1 2 3 7 8 9 7 1 1 1 1 | 00000000000000000000000000000000000000 | | 91708
39985
21724
12693 | .5 6 | | | 0182
5321
4100
359
7886 | 50 0 8
50 0 9
50 0 9
50 0 9 | 9
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 3946
3491
7783
9147
8353 | 0,0000 | 00 L 0 0 | 24040 | 0 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 750
799
168
168 | | - | | 254 | 6 0 9 2 2
3 7 5 7 6
1 6 5 8 1
1 8 1 4
6 4 3 8 - | 7182
3199
4834
8007
9097 | 69
69
68
88
88 | 357
109
800
832
882 | 7857
5364
1399
2656
1160 | 76 W W H | 09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000
00000
00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 383
087
293 | | | 4 5 | 39524
19120
3971 | 917
497
3544
7254
6258
0354 | 0 0 4 4 0 0 | 470 C C C | 9999
03810
9877
487 | C 4 D 4 G G A D A A | 550
2704
5034
4890
0379 | 31 38 3
78 5 7 3
78 3 7 3 | 99498 | 20
20
20
20
20
30
40
40
40
40
40
40
40
40
40
40
40
40
40 | | | S | 1115
1115
337 | 0 F G 4 F | 90574
90769
90953 | 47 W 4 G W 6 C C C C C C C C C C C C C C C C C C | 19
23
23
24
34
34
36
36
36
36
36
36
36
36
36
36
36
36
36 | 04 C B B B B B B B B B B B B B B B B B B | 98289
98289
83849 | 4 1 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 130
100
100
100
100 | 3607
3651
3651 | | | 17 | 11111
11111 | 40000 | 00000 | | | | 77766 | | | | ซ | | | هـ | | | | | | | | | | | | |---|--|--|--|--|---|---|---|--|--|---|--|---| | - | 0.0 | 000000000000000000000000000000000000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 77.00 | 00000000000000000000000000000000000000 | ម្នាល់ ក្នុង ខ្លួន
ទីស្វាស់ ខ្លួន | 4444
06400 | 0 0 4 6 0 | 0 4 4 6 0 | 11111 | N 64 6 6 | | | | 6616- | 8 4 5 6 6 7 1 1 4 4 4 9 9 5 9 5 9 5 5 5 5 5 5 5 5 5 5 5 | 00 000 000 000 000 000 000 000 000 000 | 50373
10000
10000
5055
1111 | 8 + C + 8
6 4 6 4 6 6
7 6 4 6 6 6
7 6 6 6 6 6
8 6 6 6 6 | 1108 300
0088 009
0088 000
0099 000 | 40400
00400
00400
00400
00011 | 8 2 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1244727
484970
6533 | 19638
19638
19638
19638
19638
19638 | 9484
6 800
9 800
9 800
9 800
9 | | | | 5597- |
25339
25339
20158
20158
2015
2015
2015
2015
2015
2015
2015
2015 | 0 4 4 0 4 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 | 00000000000000000000000000000000000000 | 55 65 65 65 65 65 65 65 65 65 65 65 65 6 | 15999
10718891
1001884 | 4723
04873
14873
15837
11111 | 88 | 76555555555555555555555555555555555555 | 81196
50085
31340
19725
12373 | 0 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 3 | \$ 50 N A 1 | 12068
12068 | 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 6024
400000
10000000000000000000000000000 | # 40 80 80 80 80 80 80 80 80 80 80 80 80 80 | 64046
64046
45006
60000 | 11730
12750
12750
13750
11111 | 227867
3048955
7941351 | 7774
46640
26640
13656
3556
366 | 50548
50548
199625
19914 | .63
99678
234221
136157 | | | | 3408 | 55481
44227
28518
13861 | 5 23 2 3 2 1 2 3 2 3 2 3 2 3 2 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0004
405-W
00040
40005-
44405- | 8 1 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 | 200449
2000
2000
2000
2000
11 | 5712
500
500
500
500
500
500
500
500
500
50 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7844
70891
70891
70891
70893 | 8 28 09
5 1 0 2 1
3 1 9 1 7
2 0 1 0 7
1 2 6 4 8 | 1 0 0 9 4 4 4 3 8 5 5 5 5 6 9 8 5 5 7 6 1 1 | | | | 88 88 88 88 88 88 88 88 88 88 88 88 88 | 50 4 4 8 8 4 4 9 9 4 9 9 9 9 9 9 9 9 9 9 9 | 4 1 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 795
60791
40416
9168 | 00 00 75 74
00 00 75 74
00 00 75 75 00 00 75 00 00 75 00 00 75 00 00 00 00 00 00 00 00 00 00 00 00 00 | 4 C C C C C C C C C C C C C C C C C C C | 1578
11378
24186
56566 | 79517
48136
27772
14692 | 5150
520
322
302
302
302
302
303
303
303
303
3 | 1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | | | 1087- | 1445
670651
670694
87588 | 4 15 9 2 7 9 2 7 9 2 2 4 5 5 5 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6 | 004400
404400
04400
04000
04000 | 77809
60766
41366
23927
10496 | 8
0 7 8 7 8
0 10 10 10
0 10 10 10
0 1 1 | 4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000
4 0000
000000
1100000 | 12 8 8 8 9 9 8 9 8 9 8 9 9 8 9 9 9 9 9 9 | 5 8 4 5 0 0 0 7 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 10
40
444
444
40
40
60
60
60
60
60 | | | | 95 | 121380
121380
131380
131463 | 17159
68861
6641 | 454
454
455
455
455
455
455
455
455
455 | 75809
60531
48168
251768
7779 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 5 8 P P 8 8 0 W 8 7 P P F 5 5 P P P R 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 | 888
900
800
800
800
800
800
800 | 8161
49809
29137
15809
7389 | 14 8 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | | | | 1275 | 43183
41629
31816
19687
19687 | 24
0000
0000
0000
0000
0000
0000 | 44445090
657281 | 7 3 5 6 6 5 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6 | 100
100
100
100
100
100
100
100
100
100 | 51485779
11111 | 1 1 1 1 | 100000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000 | 55000000000000000000000000000000000000 | 106387
461387
24862
14389 | | | | 00
A
A
A | 3920
40119
31920
51930
60739
60739 | 8 | 443
1637
1633
1633
1111 | 2 4 5 5 7 1 4 5 4 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 | 74 48
74 87
74 88
74 88
84 88
84 88
84 88
84 88 | 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4000
0 0004
0 0004
00000
00000 | 8 3 7 7 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 8 5 5 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 107847
467847
251746
14557 | | | | 3589 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 1303
8303
830683
8516051 | 555468
555468
55468
55468 | 0000
0000
0000
0000
0000
0000
0000
0000 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2000 00 00 00 00 00 00 00 00 00 00 00 00 | 109 70
473749
47496
47496 | | | | 111 | 44444
44444
11111 | 44444 | 722 | 00000 | 00 00 00 00
1 1 1 1 1 | 88777 | 77766 | 00000
00000 | ហេហហហហ
!!!!! | 1111 | 3 | ### TABLE OF THE WEDGE FUNCTION $F_{\nu}(e^{x})$ | 1 0.0 | 000000000000000000000000000000000000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.0
7.2
7.4
7.6
7.8 | 00000
00400 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 4 4 4 4 0
0 3 4 6 8 | 9 9 7 7 9 8
9 9 7 9 8 8 | 33333
334
344
355 | 111110 | × 0000 × 000 | |-------|---|---
--|---|---|---|--|---|---|--| | 4700 | 8 4 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 3141
20935
112795
73531 | 6783
537
28413-
40864-
39668- | 5545
57519
43763
16360 | 31908
14488
32188
5169 | 19897
164487
12515
879085 | 3677
457
12646-
20168- | | 22111 | 71
11090
48024
25825
14909 | | 5765 | 2561
30861
208711
135767 | 31276
21562-
12207-
4846- | 7760
1348
37500
38807 | 1798763
1798763
17683
40683 | 1533
4537
5537
5537
77
111 | 1938
16212
12470
88617
1111 | 10682
187931
111 | 000000 | 9 0 1 8 7 5 5 2 4 8 3 4 4 5 5 2 1 7 3 4 1 3 7 7 3 | 7 2 11 24 9 2 4 8 6 9 2 2 6 1 6 6 6 2 2 2 5 1 5 0 9 2 2 5 1 5 0 9 2 5 1 5 0 0 9 2 5 1 5 0 0 9 2 5 1 5 | | 6776 | 231008
239663
4464
50968 | 3095
22053
13054
7186 | 9702
169141
33936-
36531- | 5 8 9 8 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | 34797
17230-
15507-
1456
4877 | 1884
12955
8924
58857
1 1 1 1 | 11
98
988
174
94
202
1 | 791
310
904
001 | 91230
55840
34804
21952
13919 | .73
11413
49379
26517
15281 | | 7721 | 155
288
288
151
151
151
151
151
151
151
151
151
1 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 9605
2929
11028
30191
34648 | 55466
53180
43279
30860
19091 | 1861
6651
4 6653
5 653
6 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 5 4 9 5 5 5 1 1 8 9 9 9 5 5 1 1 | 0 K M W Q | 9 2 3 5 5 6 4 4 4 8 8 8 8 7 7 7 3 8 8 8 8 8 8 8 8 8 8 8 8 | .74
11581
50086
26878
15475 | | 8593 | 1024878
274878
23068 | 29762
22616
144436
15177 | 10
370
370
30
50
50
50
50
50
50
50
50
50
50
50
50
50 | 51778
51364
42799
31207
19846 | 37398-
19815-
7741-
272-
3680 | 17709
15377
12221
609842 | 504
1516
4744
18038 | 0 ¢ 4 0 0
0 w w 0 œ | 93407
57072
35525
22398
14215 | .75 11756 50816 27250 15675 | | 9383 | 1 8 8 9 4 6 8 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 | 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 11278
4461
8889
222384
30308- | 4791
49373
48164
605138 | 385
810485
111361
3065 | 17109
15058
12101
89951
61765 | 5378
1779
2757-
13142- | | | .76 11935 51567 27632 15881 | | 10084 | 10000000000000000000000000000000000000 | 2786131
155331
879681
11111 | 120 < 1
5197
68 56
18073-
27875- | 43906
47216
41374
31534
21105 |
00000000000000000000000000000000000000 | 164
14719
11963
89910
111 | 5712
2041
767-
11699-
16082- | 5791
111
150 | 95713
58373
36284
22862
14518 | .77
12119
52340
28028
16094 | | 068 | 氏の946000000000000000000000000000000000000 | 60000
6004
60004 | 2 2 3 3 5 1 3 5 5 1 5 5 5 1 5 5 5 5 5 5 5 5 | 040
040
000
000
000
000 | 07 20
09 4 30
18 10 | 1 1 3 U 3
U N O 6 5 | 0000
0000
0000
0004 | 00 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 61 60 1 | $\sigma \omega \omega \omega$ | | 119 | 147000
60000
74660 | 7960
790
790
700
700 | 0000
0000
0000
0000
0000 | 33 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 7 0 5 0 4 5 0 4 5 0 5 0 5 0 5 0 5 0 5 0 5 | W 9 H W B | 00000
00000
00000
00000 | 4 2 6 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 17 C M B B B B B B B B B B B B B B B B B B | 9 9 6 9 | | 15 | 90409 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 333
34
34
34
34
34
34
34
34
34
34
34
34 | 0000
00400
00400
00400
0400 | 00400
00404 | 55488
573498
30345
3038 | 7538
7538
751
751 | 99439
60466
374966
23594 | BAOR | | 1 | 44444
44444
1111 | | 00000 | 00000 | | | | | | ₩ ₩443
 | | 10.0 | 9.0000 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | 7.0
7.2
7.4
7.6 | 0.0000 | 0.0 4 0.0
0.00 4 0.00 | 4.6 4.6 | ひ ろ ひ ひ ひ
○ ぷ 4 ゟ ಱ | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1.6
1.8
1.8 | 0000 | × | |-------------|--|--|---|--------------------------|---|---|--|---|---|--|-----------| | 1 | 244 | 0 H H 8 8 | <u> </u> | พนนนพ | 4 G H | 68111 | 1 | 12359 | + N U 6 0 | H 20 CM H³ | | | 18 | 46766 | 90602 | 0 | 20070 | N 4 6 N T | 8 1 4 8 4 8 4 8 4 8 4 8 4 8 4 8 8 4 8 | 7
7
7
7
9
7
9 | 9485E | 54710 | 7958 | | | 7 | 00007
70700 | 46800 | ₩ 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 2 4 2 2
0 8 0 2 3 0 | 000000 | 50000000000000000000000000000000000000 | \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 27 W 18 | NO 0 4 4 | 100H | 8 | | • | 10144 | 11111 | 11 | 034002 | 11111 | 11111 | 11077 | 90 K @ 9 | 99177 | 1105 | _ | | 1 | 2 444 | 97788 | <u>, , , , , , , , , , , , , , , , , , , </u> | 80 W W W 80 | 4 % 4 | 58111 | μ | P 8 W 8 A | 18360 | <u> </u> | | | 80 | 56816 | 00014
1000
1000 | 04000 | 0 4 5 0 6
0 4 6 6 6 | 2
2
3
4
4
7
4
7
7
7
8
7
7
8
7
7
8
7
7
8
7
8
7 | 47123 | 7 W C A A A A A A A A A A A A A A A A A A | 7
7
7
7
7
7
7
7 | 3 2 3 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 | 7063
2151 | | | 47 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 90000000000000000000000000000000000000 | 74940 | 70000
48000 | 0 ± 3 × 4 × 0 × 0 × 0 | 9948 | 40000 | 0 1 4 0 1 W 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 11561
41086 | | ထ
လ | | | 1.1 | 1111 | 1 | | 1111 | 1111 | 1 1 | | | | | | <u> </u> | ال <u>سر سر</u> | 2444 | <u> </u> | 20000 | 464 | 68444 | | 40000 | 12360 | 1401 | | | 2 | 55951 | 80000 | 0 0 0 0 4 | 7 1 1 2 0 B | 1657
1697 | 88004
4UF00 | 98
98 | 800 4 4
7 7 7 7 1 0 1 | ₩ 6 8 4 5 6 7 6 7 6 7 6 7 6 7 6 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 | 7053 | | | 0 6 | 30796 | 00 C 18 | 48268 | 4 6 H O H | 9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 |
40850 | 77869 | 08500 | 1 9
5 3
7 8
8 0 | | 20 | | | 1.1 | 11111 | 1 | | TITLE | 11111 | 11 | | | | | | ь | и ич | 44444 | P & P | 2222 | 404 | 9001111 | н | P 20 U 0 V | 10000 | 1467 | | | 20 | 00000000000000000000000000000000000000 | 2400A | 5000C | 88888 | 27685
27591 | 45004 | 338
331
331 | 9 W 2 4 4 | 000000
00000 | 7183 | | | ഗ | 02404 | 00004 | 4000 | 04066 | 800000 | 74006 | C W O Q Q | 40000 | 55400 | 701000 | 00 | | 17 | 12719 | 78910 | 18490 | 04400 | 11111 | 000000 | 45074 | J W W W 4 | 76876 | 7581 | • | | <u>در</u> | טין יין | 74446 | 15 H | _ស ស ผ ស | 464 | 68111 | P | 4 0 0 0 0 4 13 4 | 100000 | 1 W 6: 11 | | | 8 | 31309 | 4 C 10 C C C C C C C C C C C C C C C C C | \$6096
17990 | 04000 | 88795 | 04044
02020 | 7 5 1 8 8 7 7 9 8 | 040 to 0 | 0404D
4WC0X | 8400 | | | 30 | 0. W.O. W.A | B14 4 4 2 12 | 04400 | AOUUU | 5 P 7 9 W | 8 C 6 C 6 | → 9 57 30 80 | BMC46 | 004wa | 4004 | 30 | | N | 11 | 71111 | 00001 | 9 m c 4 4 | 20751 | 44446 | 74876 | C M 68 M O | 04643 | 8075 | 5 | | | 4 | | | | | | | | | | | | , L | 44 4 | 72222 | 80 51 H | พพพพ | 404 | 68 11 | Д | 4 0 0 0 4 3 4 | 4000464 | 1 W O 1 | | | μ | NO 00 | ⊘ 1 | 0500 | 5 7 8 F W | W 9 8 0 5 | CODWA | 84710 | S S 1 → S S | 65057 | 4 C 0 00 | | | 60 | 00 C C C C C C C C C C C C C C C C C C | 1000
1000
1000 | 00000 | 0073
00730 | 8 M H R R
8 M A A F | 000 | 90000
90000 | 44676 | 0 N N N V | 344
367
363 | 8 | | | 10467 | 10000 | υ ο C 4 α | 43430 | 36604 | 11111
11111 | 4 10 12 02 CC | 18627 | 77700 | 8174 | 9 | | | | | * | | | | | ب | <u>بــر</u> | | | | ⊢ ≥ | 46 47 46 47 | 444cc
04444 | 85905
85905 | 10001
10001 | 4 W H
0 0 8 0 W | 5.8 1 9 | OT U2 D A DC | 0 C 4 G 4 | 0.040L | 1351 | | | 2 | 4 W 4 B B B B B B B B B B B B B B B B B | 0 0 0 0 C C C C C C C C C C C C C C C C | W C C C C C C C C C C C C C C C C C C C | 90035 | 8 9 9 9 1 8 5 7 5 1 | 4 W C C C
4 B B 4 O | 00000
0004
0004 | 0 0 2 0 W | 24448 | 2000 | 30 | | ·
> | 44000 | クエエアア | 0044D | 40449 | 13 W W W W | 00 A 00 | C4044 | 0 6 7 9 A | 27445 | | 7 | | | 111 | 11111 | | | 1 1 1 1 1 | 1111 | 1. | Д. | ъ | | | | ⊬ | | 20 14 14 20 | 20077 | | 4244 | 01.00 | 30 | 00464 | 40464 | H W & H | | | 07 | 05530 | 2000
2000
2000 | C 4 4 0 D | 04W44
00000 | 04004 | 00 W B B | 04C44
08C04 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 4 0 W C | | | 13 | 0400 C | 0 N N N N N N N N N N N N N N N N N N N | 0 W 4 H 0 | 5 5 7 8 4 | F B D 4 B | | OCCAN | 10001
64064 | 27100
27200 | | ω
30 | | | 111 | 11111 | | 1 | 11111 | 11111 | 1 | | | | | | 14 | N 01 | C 14 14 14 | 4400 | 2000- | 4 20 05 4 | 0.4 | N | 00464 | 40464 | 1001 | | | | 94774 | 04W44 | 88316 | 13110 | 54046 | C O O O C C O C O C O C O C O C O C O C | 30 N S S S | 00075 | 99499 | 4 W W Q | | | 1 | 00400
0000 | WAGAR | 0 5 7 6 7 A | 2040
2040
2040 | 44000 | 10 4 10 10 10
4 4 4 10 10 | 0 C C C W | 0 8) 40 H 8) | 000 W | AND THE RESERVE AND THE PARTY OF O | 8 | | 01 | 111 | 11111 | W W O & A | 73070 | 11111 | 11111 | 1 | 010101010 | - 1400 | 0.42 | • | | | + \(\sigma \) | 4448 | 13711 | 4 4 4 G G | 4 W G H | 67 | N | 4
0 0 4 0 4 | 40464 | 1361 | | | 9 | 24000 | G → N O N | 80440 | 0 20 00 05 | 0000 A | 100001 | 0 to 4 to 60 | | 4000c | 10440 | | | A
() | 0
0
0
0
0
0
0
0
0
0 | 40000 | 0040D | 20000 | 0 4 0 U U | 75780 | 00000 | 50000 | (1 (1 1) 1) 1 | SVOH ! | | | 4 | 111 | 0 0 H W 0 | w 20 00 00 | 40000 | 1111 | 77088 | 81161 | 7. O H O O | 04040 | W004 | ٥ | | - 3 | 44444 | 44444 | 12 pa pa | | | | 77766 | 00000 | (n (n (n (n (n | | ਰ | | 1 | 44444 | 11111 | 11111 | 11111 | 000000 | 88777 | | 11111 | 1 1 1 1 1 | 1111 | - | | | | | | | | | | | | | | | Pag | | |-----|---| | e | | | 6 | • | | 1 0.0 | 999999 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.0
7.2
7.6
7.8 | 5,5,6,0
6,6,0
6,6,0 | 00000000000000000000000000000000000000 | 4.4.4.6
4.6.6
4.6.6 | υυυυυ
o o a a o o | 000 4 6 6 | 11,6 | , 0000
, 7 004 6 6 | |--------|--|--|---|---|---|--|--|--|--|---| | 2096- | 53961
44324
31425
19007 | 21566
8806
647
3759 | 11070
10340
83975
60861
39193 | 8614
894661
86711
3459 |
11030
0000
0000
0000
0000
0000
0000
000 | 194
23981
498941 | 12893
7791
44596
23208
9863 | 11 2 2 3 3 5 5 0 4 4 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1983
1983
1975
1985
1985
1985
3070
853 | 1.01
18839
80550
42439
23852 | | 3240- | 51167-
43617-
31992-
20180-
10320- | 2328
10424
1957
287021 | 10263
9934
82737
61380
40618 | 647
32532
112532
15345
15345 | 39589
31830
183927
10969 | 276
276
3977
469777
1 1 1 1 | 13160
8003
46302
24571
10936 | 12396
79435
51154
32909 | 14094
83573
50570
31167
19524 | 1.0 2
1.9 2.5 3
8 2 2 8 5
4 3 3 2 7
2 4 3 3 2 7 | | 4354- | 47997
42576
323016
211831 | 24869
111979
3256
18756 | 9413
9484
81109
61591
41827 | 67855
35498
13722
6661 | 38534
31364
23853
16985
11247 | 3585
11774
3538
43987
- | 13426
8214
47991
25921
12000 | 12562
80465
51828
33378
21339 | 14365
85083
51417
31649
19803 | 1.03
1.9681
84082
44246
24826 | | 5427- | 12007
12007
12007
12007 | 2631
13463
4534
9111 | 8525
8993
79101
61496
42815 | 7 0 8 0 0 0 1 1 6 1 8 3 5 6 1 1 5 2 3 2 8 4 1 1 1 1 | 37413-
30838-
23728-
17106-
11496- | 44 3 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1369
8488
49661
37858
137858 | 12733
81520
52513
338513
21684 | 1 4 6 6 4 8 8 8 7 7 9 7 9 7 9 1 1 4 7 7 9 1 1 4 7 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123
20123 | | 6451- | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2761
14868
5783
96583 | 7608
76788
76788
44094
4576 | 735
41097
485917
38845
1 1 1 1 | 36
30
30
30
30
30
53
55
4
11
71
87
11
71
87
11 | 5 2 1 7
2 6 4 7 1
3 7 8 4 5 1 1 | 1395
8629
51314
28582
14106 | 10
80
80
80
80
80
80
80
80
80
80
80
80
80 | 14
55
58
58
58
50
50
50
50
50
50
50
50
50
50
50
50
50 | 1.0 5
2 0 5 8 3
8 7 8 7 4
4 6 1 8 6
2 5 8 7 1 | | 7415- | 3649
37537
31672
14519
1-1-1 | 28759
16185
6997
1027
22838- | 6648
7894
73988
60390
44108 | 76088
43714
20938
6150 | 3498
29612
17227
11905 | 6027
669
2197 -
346981 | 1 | 13091
83709
53920
34807
22375 | 15848
89950
54146
33197 | 1.06
21058
89873
47209
26423 | | 8312- | 3 5 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 | 29744
17406
8167
1990
15860- | | 784
46199
80347
1048 | 33679
28915
17228
18064 | A STATE OF THE STA | 14475
9037
54568
31188 | 35443
35443
73444
73444
7344
7344
7344
7 | 155
91694
337483
10149 | 1.07
21551
91947
48270
26994 | | 1 | 23274
23274
232724
53448231
811211 | 305
18556
9286
39286
7740 | 00000000000000000000000000000000000000 | 80
80
80
80
80
80
80
80
80
80
80
80
80
8 | 32319
28165
22733
17190 | | 14735
9239
56169
32470
17197 | 78817 | 158
93508
56135
21323
4323
4323 | 1.08
22063
94096
49370
27587 | | 9870- | 00 C G F | 3121
19537
10348
16870 | 7000
700
700
700
700
700 | W4444 | 2000
2000
2000
2000
2000
2000
2000
200 | 30 WO W | 14
94
94
94
94
99
18
97
19
99
99
99
99
99 | | 0 0 1 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 01000 | | 10517- | 10000000000000000000000000000000000000 | 3169
20434
113434
4775
5533 | | 1 2 3 3 4 4 3 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2000
2000
2000
2000
2000
2000
2000
200 | アアンアア | 0000GG | M 00 00 M
00 4 00 F F | 8559
8569
8569
8569
8569
8569
8569
8569 | | | 111 | 11111 | 11111
10000 | 1111
00099 | 00000 | 000000 | | 74700 | | មាលាលាលាហ
!!!!! | ₩ ₩444 | | | 0 | |---|---| | 5 | v | | | 2 | | 5 | D | | | | | 1 0.0 | 00000000000000000000000000000000000000 | 00000
00400 | 7.0
7.2
7.6
7.8 | 00000
00400 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 6
0 0 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | υυυυυ
0 ώ 4 δ & | 00000000000000000000000000000000000000 | 1.6 | , , , , , , , , , , , , , , , , , , , | |--------|---|--|---|--|--|---|--
---|---|---| | 11069- | 40004
00000000000000000000000000000000 | 3199
21222
12222
2522
2532
2532
2532
2532
25 | で ら ひ み 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | + U U 0
+ U I + U U
+ U U U O U
+ U U U O U
+ U U U O U
+ U U U I I I I | 1 1 1 1 1 | 26508
100000000000000000000000000000000000 | 8 4 5 F | 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1.1 1
2 3 7 1 6
*1 0 1 0 4 1
5 2 9 2 4
2 9 5 0 4 | | 11520- | 72701
20301-1
23831-1
16941-1 | 32127
21867
13127
19689 | 509566
42451 | 56433
1690764
169071111 | 11 1 1 1 1 | 10774
4324
150424
24161 | 15772
10032
62420
37460
21179 | 1431
91038
378510
4488 | *101440
60580
36836
22781 | 1.1 2
2 4 3 0 9
2 1 0 3 5 3 3
5 4 1 9 9
3 0 1 9 1 | | 11867- | 1 | 32081
22395
13900
7283
26590 | 4 6 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 25 8 7 7 5 0 7 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 22 32 32 32 32 32 32 32 32 32 32 32 32 3 | 11 49 2 3 3 2 1 1 4 5 6 7 9 9 1 1 1 6 7 9 9 1 1 1 6 7 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2001
2002
2004
2004
2004
2004
2004
2004 | 2 5 5 5 A
2 5 5 0 A
4 6 0 0 0 0 5
5 6 0 0 0 0 0
5 7 8 9 0 | °17704
°103617
°51799
37524
23174 | 1.13
1.06121
3.05121
3.05023 | | 12107- | 3280
13073-
19572
19780- | 31860
22795
14588
8032
33310 | 1609
412359
441213
40112 | 8885
36718
800981 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 3 3 0 3 1 1 9 3 3 0 2 3 1 1 | . 1629
65461
39874
23107 | 14774
93790
60196
38914
25218 | \$ 10 0 5 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11 4
25564
108809
31647 | | 12238- | 1178563
11111 | 31467
23063
15188
8730
39805 | 3 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 00000000000000000000000000000000000000 | 201578
11925767
108663211 | 13057
6110
1900
4916
16938 | 16556
10618
66963
41068 | 15019
95234
61074
259471 | 18535
108231
64381
38981
24005 | 1115
26228
111602
58329 | | 12258- | 1547006
1771888
1171888
1111 | 3090
23200
15690
59371
2032 | 3693
812
30729
38360
36956 | 8931
617111
396081
11322
111322 | 19787
204697
185955
121391 | 1 | 2 4 6 6 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 15278
96727
619727
40041
25968 | 18974
11067
65749
39758 | 26 9 20
11 4 5 0
5 9 8 1 4
1 9 | | | 1 8 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 | | | | | | | | | 1.17
27637
11753
61358
34052 | | 197 | AAONW | 8044D | 5721
749
9698
13051 | 04000
04044 | | | 64117
85485
3510 | 58
58
58
71
78
71
74
74
72
74 | 119908
11585
68647
25386 | 4000
4000
11 | | 1665 | W 20 00 00 | 0000E | 1500
1500
4050
7555
7557 | 88 0
8 0
8 0
8 0
8 0
9 0
9 0 | ちのようらるちょう | 50 00 00 00 00 00 00 00 00 00 00 00 00 0 | 10000
1000
1000 | | | 0004D | | | | 61188
71687
43740 | 00 W 00 80 -3 | 0 0 0 4 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 20077 | 0020A | 0,000000 | 100000
10000
1000
1000 | 047740
004460
047740 | 7 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | OWAGE | | 997
1971
1900 | | 11111
004440
000004 | | | |
14000
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004
10004 | | | 901 | | | | | | | | | | | | |--------|---|--|---|--|---|--|---|--|---|--|--| | 0.0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.0
7.8
7.6
7.8 | 00000
00400 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4
0 0 6 6 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 4 4 6 B | 1.6 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | 10746- | 37575
13795
8881
11143 | 25
25
25
25
25
25
25
27
27
27
27
27
27
27
27
27
27
27
27
27 | 812
598558
96668
0489 | 10000000000000000000000000000000000000 | 4444
444
444
444
444
444
444
444
444
4 | 17 4 5 5 5 5 7 4 6 7 9 6 5 5 6 5 6 5 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 7 | 18177
11788
75799
57951 | 1669
105028
53117
27959 | 0 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1.21
30808
13085
68180
37731 | | | 10142- | 41680
17453
19453
64751 | 7116688
6596
3596 | 148
250
250
250
250
250
250
250
250
250
250 | 0 4 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 13188
13988
12887
10886
1111 | 18104
10101
5008
18739 | 1845
11986
77255
49066
30396 | 17010
68047
43785
28383 | 2201
12753
45068
27467 | 1.22
31684
13453
70063
38746 | | | 9447- | 20984
4849
4849
711 | 2 2 2 6 1 8 2 0 5 2 8 8 1 7 8 9 8 5 1 | 1 4 5 4 4 4 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8 5 0 8 4 6 4 8 3 3 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1117
1231
1231
1231
1331
1331
1331
1331 | 1 8 7 9 2 5 4 4 3 8 8 3 0 5 7 1 1 5 3 5 3 5 3 5 3 5 5 3 5 5 5 5 5 5 5 | 18746
12185
78709
50174 | 17341
108794
69176
44474
28817 | 2 2 3 5 9 2 5 5 9 2 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1.03
1.03
1.38
1.38
1.38
1.38
1.36
1.36
1.36
1.36
1.36
1.36
1.36
1.36 | | | 8669 | 248998
76691
73189 | 20896
19660
16240
12115
808 | 11166
12577
146761
17199 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11111 | 19 4 7 2 5 5 3 8 1 1 1 1 8 8 7 7 7 8 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 8 7 7 8 | 1903
12386
80166
32127
1275 |
117685
7107885
703588
295185 | 23197
13411
28861
2863
47144
5 | 1.2 6
3 3 5 4 4
1 4 2 3 5
4 0 9 0 5 | | | 7815- | 52161
27561
10430
57821 | 19066
18683
15868
15968
14131 | 119
59551
14815881
111 | 81 87 4
63 397 4
46 36 36 3 1 1 1
20 4 8 8 1 1 1 1 | 11111111111111111111111111111111111111 | 20144
111721
6286
28669
8076 | 193
12589
51689
711
81689 | 18043
112860
71571
45920
29720 | 23 8 2 7
1 3 7 6 1
8 0 8 2 1
2 9 2 7 0 | 1.25
3453.
14651
76194
42053 | | | 68921 | 1 3 0 4 6 6 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 17137
17603
15403
12071
85843 | 1 1 2 5 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000000000000000000000000000000000000 | 1644
10372
10372
1105941 | 20808
12239
6703
31930 | 44800000000000000000000000000000000000 | 18416
11502
72837
46679 | 00 4 00 4 00 4 00 4 00 4 00 00 00 00 00 | 1.26
35565
15085
78412
43249 | | | 5909- | 5739
33343
15695
2763 | 15119
16427
14849
11938
87028 | 13372-
7267-
31351-
5562-
8748 | 24 64 7 7 9 4 64 8 8 5 9 5 5 5 6 9 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0000
000404
00000
004400 | 2146
12770
351166
13065 | 19
9 0 0 4 4 4 4 4 6 5 5 6 0 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1880
11726
74150
47465
30675 | | 1.27
36641
15537
80725
44496 | | | 4875- | 5 9 4 2 8
1 8 1 8 9
1 8 1 5 9
1 2 1 3 1 | 13024
15161
14209
11731
87650 | 1401
7884
366761
9791 | 34000000000000000000000000000000000000 | 8 9 8 5 8 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1381
1381
1583
1583
1583
1583
1583
1583 | 35500000000000000000000000000000000000 | 19209
11959
75516
48279
31174 | 25883
14902
87206
51842
31310 | 1.28
37763
16008
83137
45796 | | | 3798- | 61060
38167
20485
8105
348 | 10862
13813
13487
11487
11452 | 14604
8470-
41848-
13976- | 2 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 3395
3795
37994
376034
1111 | 1277
1377
1598
900
900 | 84000000000000000000000000000000000000 | 196
1000
1000
1000
1000
1000
1000
1000
1 | 3 3 3 1 4 5 6 6 8 9 5 3 1 7 8 9 5 8 1 9 5 8 1 9 9 5 8 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1,29
38933
16500
85654
47154 | | | 2688- | 602277
401777
20659
10062 | 12390
12688
11106
87201 | 1514
90883
180883
7111 | 2 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 798841
798841
798841
798841 | 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 209
13648
89040
371817 | 20071
12456
499412
22998 | 27406
15748
91935
54505
32819 | 1.30
40155
17013
88281
48570 | | | 11- | 444444
444444
11111 | 11111 | 11009 | 00000
 | 00 00 00 00 09 | 88777 | 77766 | 000000 | 4 4 10 10 10
 | 0 NW44 | | | 0.0 | 999999 | 000000
0040£ | 7.0
7.8
7.4
7.6 | 000000 | 0 0 4 0 0 | 00444 | S S S S S S S S S S S S S S S S S S S | 0 0 4 6 0 | | 0000 | N | |--------|---|---|---|--|---|--|--|---|---|---|-------| | 1555 " | 1145075
1146003
149003 | 6385
10901
11816
10689
86138 | 25 1 5 5 6 2 7 1 5 5 6 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 579000
335931111 | 7754007
489907
30443 | 124
124
124
127
128
127
128
128
128
138
138
138
138
138
138
138
138
138
13 | 21
903
903
50
50
50
50
50
50
50
50
50
50
50
50
50 | 20530
12720
79949
50907
32771 | 0 0 6 4 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 41430
17549
51048
50048 | 1.31 | | 408- | 7 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 10877
10877
10877
10810 | \$5 12 12
\$6 0 0 0 0 0
\$0 0 0 0 0 0
\$0 0 0 0 0 0
\$0 0 0 0 | 34550
34550
34551
34551
34551
3651
3651
3651
3651
3651
3651
3651
3 | 76 A 35
05 A 35
12 8 9 5
5 A 7 8 9 | 25 9 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 216
921099
60008
38758 | 21
129
51
51
53
54
53
54
54
65
65
65
65
65
65
65
65
65
65
65
65
65 |
16666
17666
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466
17466 | 42763
18109
*93889
51592 | 3 | | 742 | 2 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1780
7756
9877
9869
82377 | 16430
10468
60605
29919
9996 | 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 554745
554745
367745
36874 | 25
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
7
5
5
5
5
7
5
5
5
5
7
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 21986
93633
91108
51108 | 21509
13283
83218
33934 | 2995
17152
59953
5333 | 55555
55555
55555
5555
5555
5555
5555
5555 | 1.33 | | 1886 | 129522
76952
8500
8500
8500
8500 | 542
6117
8821
9071
79710 | 11 0 0 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 131
312
5342
50445
711 | 04 00 00 00 00 00 00 00 00 00 00 00 00 0 | \$ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | 354350
43953
43953
43953
43953
43953 | 30878
17675
602707
362569 | 45610
19304
100009
54891 | 1.3 4 | | 3013 | 62031
45756
30717
18386
9210 | 7 8 4 4 4 7 7 7 1 6 5 4 1 9 5 4 1 9 | 17005
11237-
68582-
37177- | 0 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5 4 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22751
14818
96887
41195 | 22577
13896
86771
54920
35177 | *18218
18218
625710
37212 | 47131
19944
103279
56654 | 1.3 5 | | 4115 | 60789
45930
51688
19670 | 5166 -
2753
6568
7717 | 17206 -
11560 -
72167 -
18939 - | 52155
47769
40371
32075
24133 | 16780
5876
403-
3663-
5014- | 27109
17193
10612
5362764 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 2000
2000
2000
2000
2000
2000
2000
200 | 11 8 8 8 7 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 48723
20612
10670
58497 | 1.36 | | 5183 | 590
45785
322428
116893 | 7 4 4 6 1
1 1 0 4 5 5
5 3 8 4 4
6 9 7 0
3 7 9 3 | 17348-
11841-
75467-
43798-
21764- | 4 5 5 6 5 8 2 1 5 0 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10 | 27716
17659
10977
65647 | 1005356
4000230
4050229
20002 | 1237
9045
5776
57184
841,53 | 33915
19360
11213
65871
39257 | 5 0 3 8 8 8 2 1 3 1 3 1 3 1 3 8 8 6 0 4 2 5 5 | 1.37 | | 20 | 6 5 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 404
000
000
000
000 | H0000W | 38 5 5 5 1
38 5 5 5 1 | 0318
8600
1648
3954 | 3 4 3 4 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4040
000
000
000
000 | 4 4 6 8 C
5 C C C C C C C C C C C C C C C C C C | 119975
119975
40356 | 00040
4044
W404 | 1.38 | | 17 | # 20 00 4 4 4 4 4 4 5 6 5 6 6 6 6 6 6 6 6 6 6 6 | 95330
95330
95330
95330 | 7460
2272
1168
9681
7107 | MOVOR | 2059
2948
2671
1405
1205 | 0.00000 | 4 D W C 4
4 B C 0 A
4 C 6 B C | 70400
00000
40040 | 3 6 1
8 0 6 1
8 0 6 1
4 1 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | 0 | 54584
155584
1668
1668
1668
1668
1668
1668
1668
16 | 4444 | 9 8 8 8 7
6 8 5 4 4
0 4 5 8 8
0 4 6 8 8 8
0 7 8 8 9 | 08450 | 3 ままり る 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0 0 0 0 B | S S S S S S S S S S S S S S S S S S S | 00755
79467
56880 | 4 7 1 8 4 8 4 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 | | 11- | 1 | | 00009 | | 000000 | 88777 | 37766 | 00000
11111 | 00000 | \$ W W W | ָּט | | 0 | |---| | 2 | | Ω | | 0 | | | | 1 | | | | 1 0.0 | 9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 | ထထထထထ
ဝေတ်န်တ် | 7.0
7.2
7.4
7.6 | 00000
00400 | 0 0 4 0 0 | 00444 | ラ ラ ラ ラ ラ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο | 0 0 4 0 C | 111000000000000000000000000000000000000 | , 0000
M, 004 9 8 | |-------|---|---|---|---|---|--|--|--|--
---| | 8932 | 4885
4885
330098
23679
5555 | 161
57551
48423 | 1734
112529
54737
677 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 4 2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 30140
19490
18397
76817 | °1076457
4074417 | \$66414
\$994814
\$95337 | 3866
31966
31996
431596
3945
3945 | 1.4 1
57872
24456
69086 | | 9701 | 45067
40438
32559
23960
16106 | 18099
7403
8463
2722 | 17198
12591
873551
34190 | 29
331599
274099
13151991 | 27163
13923
5714
873
1757 | 307
1994
1274
7952
3 | 25901
16764
109343
71657
47011 | 27162
16524
101951
40410 | \$20001
\$2735
13099
76480
45262 | 1.42
59972
25338
13086
71516 | | 10390 | 41323
38505
31877
24062
16630 | 3 0 0 1 5 1 1 3 0 5 3 6 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 25710-
30379-
29764-
26356-
21770- | 15222
15222
16716
1631 | 31362
20393
13087
4926
82196 | 211120835
1170835
11113083
1729430 | 27946
104536
41275 | 4135098
4135098
489111 | 1.43
6 2 1 7 6
2 6 2 6 3
7 4 0 6 3 | | 10993 | 37315
36314
30970
23984
17023 | 21831
105811
33551
878 | 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22222
2222
2322
2322
2322
2322
2322
23 | 30459
16505
7711
8387 | 31
208
208
44
42
7
3
5
8
9
3
5
8
9
3
8
7
8
9
8
8
7
8
8
8
8
7
8
8
8
8
8
8
8
8 | 111741
11741
7143383
748360 | 28767
17443
107244
66846
42213 | 4 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1.4 4
6 4 4 8 7
27 2 3 4
7 6 7 3 5 | | 11506 | 33073
33880
29844
23728
17283 | 23 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 10000000000000000000000000000000000000 | 1759
84734
86087
80501 | 32075
17774
8696
3139
75- | 5 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 27543
17757
115507
75614
49660 | *110088
68498
43176 | 44401
25174
14462
84139 | 1.45
66913
28253
14577 | | 11925 | . 28 18 6 2 2 1 1 7 2 8 9 7 7 4 0 9 9 | 25161-
13550-
5793-
986-
16715 | 16090
12408
91009
63349
41514 | 13488
218331
224068
19778 | 33668
19027
9672
3888 | 33232
21747
14103
90041
56108 | 28139
18115
11771
77008
50578 | 30532
18452
11306
70216 | 4601
86068
14961
86945
51188 | 694
694
1393
1393
1393
1393
1393
1393
1393
13 | | | 23993
28355
26975
22694
17400 | 26658
14939
19959
1912 | 10570 | | | | 11847
11848
111948
111948
1514
1516
1616
1616
1616
1616
1616
1616 | | | | | 246 | 8 0 8 W W | 80
80
80
80
80
80
80
80
80 | 15835
12066
90856
45081 | 0000
0004
0004
0004
7 | 5 3 6
1 6 0 | 45
265
477
515
008 | 294
1887
12837
79923
477 | 00120
00120
0020
002120
002120 | 9 F A G A A A V O O D B B O V V B O | 149
169
8830
888 | | 259 | 8 0 5 0 F | 9 2 3 3 5 5 5 7 2 8 5 5 7 2 8 5 5 7 2 8 5 5 7 2 8 5 7 2 7 2 8 5 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 | 114739
111835
655721 | 7 8 8 9 5
7 8 9 9 5
9 4 8 9 5 | 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 517
311
511
767
203 | | 75 0 0 5 1
5 9 8 6 1 | 00000000000000000000000000000000000000 |
1,
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,0 | | | 5 9 W 7 W | 40000 | 00000 | 3105
9859
5742
7291 | 000000
00000
00000 | 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 | 30809
19708
12739
83051
54478 | 0761
078
264
799 | 8970U
36818 | 1.5
101
417
760
582 | | | | 4444
40000
11111 | 00000 | 00000 | 00 00 00 00 00
1 1 1 1 1 | 8 7 7 1 | 77666 | ๑๑๓๓๓๓ | 0101444 | P 1111 | | 1 0.0 | 0,000
0,640
0,640 | ထထထထထ
ဝ အ န က် ထံ | 7.6
7.8
7.8
7.8 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | | 4444.0 | υυυυυ
ό ιδ ά δ α | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1,4 | 0000 | |-------|--|---|--|---|---|--|--|--|---|---| | 6 | 2127
2107
210
210 | 335
248
1176
743 | 456
456
453
450 | 8 5 7
8 5 5 8
8 5 6 8 | υνα4
υνα4
υνα40
400α4 | 004400
40004
40004
00000 | 2055
2055
2055
2055
3055 | 30 30 30 30 30 30 30 30 30 30 30 30 30 3 | ************************************** | 15742 | | 10 | 311 4
931 2
186 2 2 | 9991
9971
3971
1151
1151
1151
1151 | 75
2711
39115
45 | 5 6 5 8 8 5 8 5 8 5 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 70113 | 8 6 0 2 4 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 3 4
7 6 2
7 0 1
9 4 *1 0
8 8 6 | 15
58
58
71
71
1
1
1
6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 5854 | 6507-
4384-
9854-
1010- | 3065
4836
7821
2167 | 5 | 109
1194
21194
61 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 4 9 9 5
5 0 7 9 5
8 8 8 5
8 4 5 8 0 | 8750
8919
88864
9993 | 9150 | 6998
8739
7595
1187 | 1.6 2
6590
9046 | | 4854 | 50026-
27531-
12460-
3031-
2312 | 32403-
24672-
17956-
12460-
81809- | 5 3 3 3 3 5 5 3 3 2 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 4 8 0 9
2 9 3 7 6
1 3 4 1 1
1 6 1 1 1 | 58179
37998
24475
154434 | 46683
30688
20200
13359
83356 | 44119
27537
17391
111070
71681 | 5541
32652
19456
11727
71500 | 90983
50906
8808
14457
94993 | 1 4 0 6 8
5 9 2 0 9
3 0 3 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 3818 | 53270-
30517-
14988-
5033- | 31618 - 24407 - 18012 - 12693 - 84923 - | 3416
49218
1
39045
1 | 58471
32229
15609
378 | 59562
39019
25249
16033 | \$7768
31299
20629
13643
90277 | 45562
28381
17888
11402
73453 | 57696
33950
20200
12156
73980 | 95075
53199
30076
17171
99015 | 1.6 4
1.4729
61982
31798
17212 | | 2754 | 56224
33326
17424
6701 | 3071
24042
17998
87606 | 373451
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 62078
35043
17785
7126
867 | 6095
40037
26017
16684
10356 | 4889
31999
21072
13933
25033 | 47085
89878
18418
11713 | 35.09.00
10.09.00
10.09.00
10.09.00
10.09.00
9.09.00
9.09.00 | *99478
55686
31486
17986
103867 | 1.65
15629
66919
33295
18016 | | 1670 | 58875-
35943-
19753-
8924-
2159- | 2969
23581
178861
129791 | 1601
34061
40360
397661 | 55630
37817
19936
8772
2105 | 62359
41056
26779
17208
10810 | 500077
32728
21532
94232
0000 | 3080
1896
1896
77804
178040 | 62657
36774
21817
13087
79362 | *104126 * 58196 32855 18726 *107767 * | 1.6 6
1 6171
68031
34882
18868 | | 7 | 38356
21963
10790 | 28575-
23026-
17708-
13032-
91638- | 35760
35760
35760 | 69127
40551
22060
10405
3339 | 63781
42077
27538
117786 | 51320
33491
22010
14540
96314 | 50394
31205
19548
793385 | 8 1 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 1.67
1.6958
71389
36565 | | N | 125 87
1 25 87
1 25 87
1 1 1 1 1 | 27349
1774542
13029
11. | 3100827
50811 | 7 | 65223
43104
28294
118358 | 91 2 3 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 52190
32254
20163
12749
81498 | 688212
39933
23685
14127
85372 | 114290
63804
35971
20469
11757 | 1.6
74877
74888
74888
7488
7488
7488
7488 | | 8 | 1 | 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11 1 4 2 3 0 6 2 8 9 3 6 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 75 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1 2 4 5 6 6 7 4 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 | 5 3 9 9 8
2 5 1 2 5 5
2 3 0 2 6
1 5 1 5 8 8 | 5
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 71237
41653
24609
14693
88641 | 11983
66864
37671
21419 | 1.69
1.8678
78553
21745 | | 2707- | 157488
757888
7578578
75578 | 9 2 3 4 6 6 1 3 4 6 6 1 3 4 6 6 1 3 4 6 6 1 3 4 6 1 5 6 6 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 79303
88503
151960
16997 | 0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 1 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1 2 5 7 3 7 0 1 1 1 1 1 1 2 2 2 4 2 7 4 1 1 1 2 8 5 7 8 5 8 6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 11- | 1 1 1 1
c1 c1 c1 c1
c1 c1 c1 c1 c1 | 44444 | 1111 | 90000 | 00000000 | 8 2 2 2 2 7 | 16666 | ១ លេខ ខេត្ត
ព្រះ ព្រះ | W4444
 | 0 000 U | | 1 0.0 | 0.0000000000000000000000000000000000000 | 000000
00400 | 7.0
7.2
7.6
7.8 | 00000
00400 | 0 0 4 0 6 | 444.0 | υυυυυ
○ α 4 δ α | 0 0 0 4 0 0 | 1,6 | 0000 | |--------|---|--|---|---|---|---|---|---|--|---| | 3773- |
67273
45750
293750
17459
9192 | 23117-
19949-
16266-
12656-
94304- | 23 4 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 82596
51071
30266
16757
8196 | 69717
46240
30561
20050
12991 | 56966
36924
24135
15886 | 58 25 35 77 6
35 27 7 6
13 29 6 7
36 7 36 7 | 977844
45408
26755
15927
95762 | 13198
*73558
41388
23496
13460 | 1.7 1
20618
86674
44389
23969 | | 4813- | 67946
46996
30824
18879
10453 | 21543
18985
15736
12422
93854 | 3865
612
11615
19897- | 55355
35259
4
36264
36264
3646
3646
3646
3646
3646 | 71286
47313
31324
20609
13413 | 58572
37894
24728
1.6257 | 60481
37089
22998
14421
91425 | 881
4714
27745
27745
187926
187926
187929 | 13862
*77219
43421
24632
14098 | 1.7 2
2 1 6 8 0
4 9 1 1 2 7
4 6 6 5 8
5 1 8 6 | | 5820- | 68280-
47991-
32097-
20185-
11646- | 19899-
17955-
15144-
12134-
92970- | 1286
1286
16337
19914 | 8 9 0 5 1
5 6 0 8 8
3 4 1 8 8
1 9 8 0 8
1 0 5 5 4 | 72899
48407
32092
21168
13832 | 60267
38925
25352
16644
109935 | 994469
44900
6666 | 85278
49630
49168
29168
17312
173755 | 14568
*81110
455179
25837
14774 | 1.73
28810
25868
49078 | | 6787- | 68279-
48733-
33189-
21369-
12763- | 18190-
16859-
14494-
11795-
91663- | 1958
1958
1673
12734 | 92221
58540
36094
21299
11711 | 7
49
49
49
49
50
50
50
50
50
50
50
50
50
50
50
50
50 | 62056
39991
26006
17049 | 55400
39954
24676
15408 | *89345
51938
50485
18069
*108117 | 15319
85248
47876
27118
15494 | 1.74
24012
100901
51639
27857 | | 7709- | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 16424
15706
13788
11407
89943 | 14 80 95 5
80 90 90 1 | 95358
60957
37975
22767
12851 | 76280
50667
23657
28890 | 63949
41126
26695
17473 | 68085
41517
25590
15946
100450 | *93665
54389
31885
18872 | 16119
*89651
50317
28480
16258 | *1 25 29 3
20 6 26 7
29 3 2 3 | | | 67288
494548
348454
14759 | 14608
14498
13031
10973
87825 | 7 39 6
3288
8284
12186
1186
1186 | 984
63341
39843
13486
1346
1397
5 | 78060
51841
34458
22857
15077 | 55950
42326
27420
117918 | 70933
43176
26560
16516
103817 | *98257
568994
33371
119725 | 10
50
50
50
50
50
50
50
50
50
50
50
50
50 | 1.76
26657
111983
57285
30883 | | 392 | 66313
49436
353436
24137
15609 | 12747
12242
122242
10226
10494 | 8253
3945
13242
1770
9533- | 101556
65696
41648
25630
15081 | | 68069
43593
281593
18386
12085 | 73958
44935
27589
17120
107386 | °103144
59764
54951
20631
12848 | 17877
\$99329
55682
31473
17937 | | | 0143 | 65029
49171-
35681-
24786-
16371- | 10849-
11943-
11376-
9974-
82455- | 9098
4595
18173
1904
6855 | 104628
68025
43444
27027
16170 | 81834
54299
36111
24008
15906 | 70314
289934
18878
12389 | 77172
46804
28681
17761
111169 | 91083
682711
366711
316631
13894 | 18843
*104649
58630
33116
18859 | 1.78
29661
12457
54597 | | 0829 | 1755654
1756654
1756654
175667
1111 | 8919-
10606-
10487-
9416-
79239- | 9 9 3 1
5 2 3 7
2 3 0 6 9
5 5 7 5
4 1 5 9 - | 107692
70332
45214
28401
17241 | 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11960
11960
11960
1960
1960
1960
1960 | 8 0 5 8 7
4 8 7 8 9
2 9 8 4 4 1
1 1 8 4 4 2
1 1 5 1 8 | 11 38 88 88 88 88 88 88 88 88 88 88 88 88 | 19874
*110321
61772
34868
19841 | 1.79
31316
13151
67228
36218 | | 11445- | 61579
47916
35790
17594 | 7
9
9
9
9
9
9
9
9
9
9
9
9
9 | 10750
5871
27921
9233
1453- | 110755
72621
46961
29753
18294 | 859
56934
37851
167195 | 00700 | 84219
50900
31073
19164 | 400H | 2097
11637
65123
36736
20887 | 1.80
33083
13891
70999
38231 | | 11 - | 62 62 64 64 FP | 22222
2000
11111 | 1111 | 00000 | 00 00 00 00
1 1 1 1 1 | 7777 | 99999 | 4 10 10 10 10 | טשמקק
ווווו | 1111
MMDW A | Page 24 | 1 0.0 | 000000000000000000000000000000000000000 | 000000
00400 | 7.0
7.8
7.6
7.8 | 00000
00400 | 20000000000000000000000000000000000000 | 4444 | ころうろうつんだんがん | 0 4 4 4 0 | 1,6 | 0000 V/W | | |---------------|---|---|--|--|--|--|---|---|--|---|--| | 11989- | 59437-
46941-
35565-
25881-
18049- | 7835
7835
86025
71838 | 1155
6496
128728
128728 | °113824
74896
48688
31085
19329 | 88140
58330
38762
25808
17172 | 77897
49453
31705
20521
13398 | 988083
531483
128383
1299333
129933 | 12607
12752
42351
24870
14727 | 200
200
200
200
200
200
200
200
200
200 | 144
154697
154688
166888
166888 | | | 12458- | 57036
457431
259621 | 3003 -
6413 -
7615 -
7537 -
67695 - | 12349
7112
37467
16485 | 11691
77163
50397
32397
20347 | 90448
59787
39704
26436
17605 | 80742
51145
32718
211132
13771 | 902197
55534
35777
207777
12878 | 13278
76550
44514
264108 | 23406
123974
208584
40856 | 1.9
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 | | | 12850- | 5 4 3 3 2 1
3 4 5 3 3 2 1
2 5 9 0 3 1 | 1008
4972
66604
38852 | 13128
7717
42149
20065 |
25.572
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00 | 92874
61309
40682
27082 | 83766
52942
337942
21779
14165 | 96580
58077
35860
2168
21618 | 13994
80603
46820
27427
16196 | 2 4 7 4 7 4 8 9 4 7 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 13163- | 51516
42719
33822
18779 | 5 5 5 7 1 6 1
5 6 1 4 3 1 1 1 | 1389
46313
236768
3408 | 1231
614696
53776
22370
34970 | 95
62905
41699
27748
18495
5 | 1 2 3 4 5 9 5 8 2 5 5 8 2 5 8 2 8 2 8 2 8 2 8 2 8 2 | 10125
60787
36840
23543
133543 | 1 4760
8 4931
49281
28834
17004 | 26
145
105
105
105
105
105
105
105
105
105
10 | 1,84
41,461
1,7400
88864
47797 | | | 13397- | 48
4094
3209138
18537331 | 2985
2051:
4521:
5414: | 14647
8899
51309
27108
12008 | 236336
23623
23623
2363
2363
2363
2363 | 98183
64579
42760
28437
18957 | 90 4 0 3 3 6 1 4 3 3 1 9 4 3 3 1 9 4 3 3 1 9 4 3 1 9 4 3 1 9 4 3 1 9 4 1 9 4 1 9 4 1 9 4 1 9 4 1 9 1 9 1 | 9106232
363676
36583
23583
14513 | 15578
849554
51909
30336
17867 | 2772
15346
85645
27280 | 44
50
60
60
60
60
60
60
60
60
60
6 | | | 13551- | 1. 8. 9. 8. 8. 9. 8. 9. 8. 9. 8. 9. 8. 9. 8. 9. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. | 497
34580
45666
34566
111 | 15387
9474
55780
30561
146647 | \$3500
\$377
\$377
\$300
\$300
\$300
\$300
\$300
\$3 | 100970
66340
43869
29152
19451 | 94048
59048
37430
23964
15487 | e111548
66757
40317
24579
15130 | 16452
54727
18787 | 29 29 35 8
29 35 5
29 35 5
29 35 5
25 7 | 1.86
46590
19549
53648 | | | | 41681
367711
306011
24319
18560 | 4
33
39
39
30
30
30
30
30
30
30
30
30
30
30
30
30 | 16116
10040
60176
33963
17258 | 2588567
2588567
258734
252734 | 103981
68196
45032
29896
19919 | 979
61342
38799
24784
284784 | 1117
40045
25698
888 | 17388
99783
57720
33656
19771 | 31133
17219
96004
53916
30500 | 1.87
20743
50860
50860 | | | 13622- | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3 8 9 1 2 3 5 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 16833
10595
54495
37313 | 136
90939
500486
29974
444 | 1071
70154
46253
30672
20425 | 102061
63792
60257
25656
16507 | 11 23 34 25 35 25 25 25 25 25 25 25 25 25 25 25 25 25 | 18390
*105441
60933
35489
20822 | 33027
18260
101768
57107
32283 | 1.88
52490
52019
112366
60372 | | | 0 | 3 4 2 8 5 1 2 3 7 7 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100
300
300
300
300
300
300
300
300
300 | 17540
111148
68740
40607
22379 | 13979
93332
62180
41211
27070 | 110550
72224
475224
314534
20484
7550 | 106478
66405
41809
26584
17065 | 120
477309
77894597
7884597
8887 | 111508
643708
37458
219458 | 35058
19375
107908
60529
34194 | 1.89
55769
23398
54108 | | | 13382- | 2003
2003
2003
2003
2003
2003
2003
2003 | 8 | 11000000000000000000000000000000000000 | 1
95
5
5
7
8
8
8
8
7
7
9
9
9
9
9
9
9
9
9
9 | 11
74
44
48
48
49
55
65
65 | 1111179
69188
43468
27572
17658 | 13671
81382
89530
36 | 2061
68060
39556
23150 | 12
13
15
15
15
15
15
15
15
15
15
15
15
15
15 | 6 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 62
62
1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11111 | 444 | 00000
11111 | 00 30 00 00 00
1 1 1 1 1 | 33377 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | មាលល្ខ១
ព្រះព្រះ | 45466 | ଜଣ ଅଧ୍ୟ ହ | | Page 25 | 10.0 | 9,999,000 | 00000
00400
00400 | 7.0
7.2
7.6
7.8 | 000000
00400 | 5.50
5.60
5.60
5.60 | 44440034664 | ラララマラ
0 ぷ 4 ゟ お | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1.6
1.6
1.8 | , 0000
, 0000 | |-------------------------|---|--|--|--|--
--|---|---|--|--| | 13150- | 26379-
26715-
24371-
20800-
16887- | 14672
6725
1948
7548 | 1 8 9 7 7 7 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 | 14711
698277
65629
43692
28906 | 11795
76738
50322
33222
22066 | 11 1 6 2 1 7 2 1 6 1 1 6 2 1 6 | 14413
585614
51284
30985
18890 | 21849
12496
472006
41804
24439 | 39585
21858
121658
388145
446 | 1.9 1
63 08 1
26 4 5 3
13 4 9 2 | | 12846- | 222277
22539077
1966111 | 16542
8154
3025
15325 | 19613
12730
81029
50149
29770 | 15097
00851
67396
44944
29819 | 18201
79203
51835
34170
82662 | 12158
75335
47113
29748
18963 | 15 20 3 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 23175
13244
76243
44218
25820 | 402107
23241
12925
40809 | 1.92
67157
28159
14359 | | 12474- | 180991
210081
205931
184331 | 18383
9566
4096
844 | 2029
2029
3245
3216
3215
1 | 15500
103505
69201
46210
30734 | 12633
81822
53438
35164
23888 | 12732
78727
49125
30946
19680 | 16060
95133
56810
34209
20779 | 24600
14047
80790
46807
27302 | 44820
24729
13747
43350 | 1.93
71545
29996
15293
82066 | | 12036- | 13860-
18031-
18573-
17122-
14726- | 20193
10959
5157
164
3599 | 200
1375
8888
44888
44888
44888
48888 | 15920
706254
71050
477493
31653 | 13093
84609
55139
36213
946 | 1334
882354
512375
802275
466 | 16074
100410
59872
35995
21824 | 26131
14909
495675
28892 | 47742
26331
14630
46082 | 1.9 ¢
76273
31975
16299 | | 11537- | 149891
157371
138591 | 21972
12331
6206
2433
2887 | 2164
114258
92724
59188
36788 | 16360
*109109
72953
48800
32578 | 13584
87577
56946
37335
24639 | 1400
86235
53574
21269 | 17955
106071
63154
37905
22943 | 27777
15837
990986
52575
30599 | 50 89 0
50 89 0
50 57
15 58 2
49 00 3
4 | 1.95
81369
34108
17384 | | | | | | | | | | | | | | 10979- | 11 1 2 2 2 6 1 1 1 2 2 2 2 7 1 1 1 1 1 1 1 1 1 1 1 1 | 23 27 2 3 3 4 3 4 3 4 3 4 3 4 4 4 4 4 4 4 4 4 | 2231
14759
65759
39035 | 16822
712083
74917
50135
33514 | 14109
90741
58869
38504
25371 | 14
90390
56034
35057
22137 | 119009
118147
39955
24142
2668776 | 29
29
29
29
29
29
29
29
29
29
29
29
29
2 | 54284
29916
16607
52797
52191 | 1.96
86869
36409
18554 | | 0979 | 50 14 4 60 60 60 60 60 60 60 60 60 60 60 60 60 | 300
300
300
100
100
100
100 | 231
6575
909
903 | 1682
1208
7491
5013
3351 | 537
537 |
40000
40000
40000
40000 | 19
66
66
66
67
49
67
67
67 | 25669
25685
2578
2578 | 4 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q | 1.9
6 8 6
6 4 0
9 4 9 | | 0979- 10366 | 5261 - 930
1894 - 8758
4320 - 12107
4284 - 12771
2927 - 11936 | 3719 | 2318 2299
4759 1525
6515 10026
2099 6496
9035 4124 | 16822 1730
12083 1151
74917 7695
50135 5150
33514 3446 | 4109 1466
0741 9411
8869 6091
8504 3975
5371 2614 | 4708
0390
6034
5866
5057
23662
2307 | 19009 2014
12147 1186
66676 76 7045
39956 4215
24142 2542 | 9550
6836
1791
6574
10265
5786
5924
2435 | 4284 5794
9916 3192
6607 1771
2797 9892
2191 5560 | 1.96 1.9
6869 9280
6409 3889
8554 1981
9490 10623 | | 0979- 10366- 9703 | 5261- 930- 3404 1894- 8758- 5593 4320- 12107- 9849 4284- 12771- 11207 2927- 11936- 10892 | 3719 25433 2711 3682 15010 1631 7243 8265 927 3219 3998 476 8166 14024 1984 | 2318 22997 2368
4759 15258 1575
6515 100264 10397
2099 64964 6778
9035 41247 4342 | 16822 17308 1782 12083 11519 1184 74917 76953 7906 50135 51504 5391 33514 34464 3543 | 4109 14669 1526
0741 94116 9772
8869 60917 6310
8504 39757 4108
5371 26145 2696 | 4708 15463 1627
0390 94841 9961
6034 58668 6149
5057 36623 3829
2137 23071 2407 | 19009 20141 2135
12147 11867 1256
66676 70456 7451
39956 42156 4451
24142 25428 2680 | 9550 31461 3351 6836 17911 1906 6574 •102653 •10920 5786 59241 6296 2435 34407 3653 | 4284 57948 6190 9916 31924 3409 6607 17713 1890 2797 98926 10553 2191 55604 5928 | 1.96 1.97 1.9 6869 92806 9922 6409 38895 4157 8554 19817 2118 9490 106236 11352 | | 0979- 10366- 9703- 8994 | 5261- 930- 3404 7728 1894- 8758- 5593- 2410 4320- 12107- 9849- 7555 4284- 12771- 11207- 9598 2927- 11936- 10892- 9800 | 3719 25433 27116 2876 3682 15010 16314 1759 7243 8265 9271 1026 3219 3998 4768 552 8166 14024 19845 2561 | 2318 22997 23682 2437 4759 15258 15756 1625 6515 100264 103979 10767 2099 64964 67788 7057 9035 41247 43420 4555 | 16822 17308 17821 1836 12083 11519 11845 1218 74917 76953 79068 8127 50135 51504 52915 5437 33514 34464 35431 3642 | 4109 14669 15268 1590 0741 94116 97722 10157 8869 60917 63100 6543 8504 39757 41089 4250 5371 26145 26966 2783 | 4708 15463 16273 1714 0390 94841 99613 10473 6034 58668 61491 6451 5057 36623 38299 4009 2137 23071 24071 2514 | 19009 20141 21359 2267
12147 11867 12569 1332
666676 70456 74518 7888
39956 42156 44518 4705
24142 25428 26808 2829 | 9550 31461 33519 3574 6836 17911 19069 2031 6574 •102653 •109201 1162 5786 59241 62961 6696 2435 34407 36532 3881 | 4284 57948 61903 6617 9916 31924 34090 3643 6607 17713 18908 2019 2797 98926 105538 1126 2191 55604 59285 6325 | 1.96 1.97 1.98 1.9 6869 92806 99220 10615 6409 38895 41578 4447 8554 19817 21180 2265 9490 *106236 *113522 1214 | | 1 0.0 | 9.999.0 | ထောလာတ္လ
ဝေအန်က်ထိ | 7.0
7.8
7.6
7.8 | 000000
00400 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 44460 | 0 0 4 6 B | 0 0 4 6 0 | 91111 | 00000 × × × × × × × × × × × × × × × × × | |-----------|--|---|---|--|--|---|--|---|--|--| | 7455- | 16
39
63
63
63
63
63
63
63
63
63
63
63
63
63 | 3198
20081
12186
7018 | 25795
17263
11502
76069 | 1195
8000000
574500
45000 | 9110113
70584
45637
29753 | 19079
11613
44088
27519 | 9 H N N N N N N N N N N N N N N N N N N | 91 0 0 0 7
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | *75801
*1698
23098
12873
*72190 | 2.01
12177
51017
25977 | | 6634- | 80533
7146
55711
687777 |
\$\frac{1}{2}\text{23}\text{33}\text{34}\text{35}\text{30}\text{35}\text{30} | 26530
17776
11871
78788
51788 | 2019
888533
9009
59099 | 18119
11484
73434
47363 | 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 3945
345
345
345
345
345
345
345
345
345
3 | 4 3 5 2 8
2 4 6 9 8
1 4 0 9 7
4 6 9 8 6
1 1 | *81218
44663
24729
13776
77208 | 202
13058
54700
27847
14912 | | 5784- | 10303
1797
5862 | 4 12 3 5 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 27286
118298
112242
81500 | 20885
40885
40886
40886
50886 | 18965
11992
76487
49211
31931 | 31320
113930
48691
308591 | 550000
55000
55000
5000
5000
5000
5000 | 46558
86400
15057
986426 | *87089
*7875
*1475
88753 | 2.03
14013
58691
29875
15994 | | 4910- | 28836
13433
11140
11137 | 5 9 3 6 6 1 1 5 3 9 1 4 3 9 3 9 3 9 3 9 3 9 3 9 3 9 9 3 9 | 5 5 4 2 6 0 6 7 8 2 2 1 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | \$1400
\$1400
\$150
\$150
\$150
\$150
\$150
\$150
\$150
\$1 | 1987
1987
1975
1976
11189
331133 | 3 1 2 3 5 5 7 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 30930
18072
180306
37563 | 5 9 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 9
5
5
5
5
5
5
5
5
5
5
5
5
5 | 2.0 4
15 0 4 8
6 3 0 2 3
3 2 0 7 5
1 7 1 6 8 | | 4016- | 150
650
650
650
650
650
70
70
70
70 | 5 9888
6 888
5 5 6 888
6 5 6 5 6 | 28875
19378
129998
57885
5885 | 897100
647109
64536 | 20 0 8 5 1
13 1 2 1 2 1
5 3 3 2 7 5
3 4 4 2 0 | 23 9 1 9 5 4 0 1 3 3 4 1 8 8 0 1 3 4 1 8 | 32999
19259
11315
66932
39872 | 53391
30240
17220
568875 | 94904 | 16178
67787
33464
18443 | | 3105 | 36890
19584
8785
2319
1305 | 00000000000000000000000000000000000000 | 2971
19942
59688
89688
89688
859888 | 11 0 0 3 2 2 4 8 5 5 1 4 8 5 1 4 8 5 | 21901
13749
87048
55586
35799 | 25374
15309
56984
35181 | 35
2052
12054
712055
4236
363
363 | 57247
32404
18439
•105571
60812 | 107874
59240
32746
18208
101826 | 2.06
17395
72839
37059
19827 | | 2183- | 1
2000
1200
2000
2000
2000
2000
2000
20 | 641708
641708
641708
641468 | 30596
20525
13783
92470
61829 | 24148
15768
15768
45786 | 5544
572
572
572
572
572
572
572
572
572
572 | 2000
2000
2000
2000
2000
2000
2000
200 | 4 7 5 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 61429
34752
19761
65065 | 11604
63700
35198
19568 | 2,07
18724
78398
39882
21333 | | 1253- | 4 C C C C C C C C C C C C C C C C C C C | 2825
2825
1283
7223
897
127
97 | 31517
21130
14191
95300
63845 | 25113
16358
107365
70954
47174 | 3 6 9 1 2 4 2 5 6 9 1 5 5 6 8 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 | 11 28 8 7 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 48400000000000000000000000000000000000 | 55972
37302
21195
12115
59677 | 1 24 9
68552
37865
21035
11751 | 2.08
20171
84449
42953
22972 | | | | | | | | | | | | | | 8 7, 8 | 4 0 4
0 0 0 5
4 4 0 4 0
0 4 0 0 0
0 4 0 0 0 | 4044
6004
6006
6006
6006
6006
6006
6006 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 26149
16990
711852
73367
48690 | 2556
15936
100161
40579 | 30475
18897
110609
67360
41332 | 43137
25068
14659
86273 | 7091
20073
120753
4696
8088 | 1 3 4 5 7 1 3 8 6 6 6 3 3 6 6 6 6 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2.09
21747
91040
247399 | | 20 | 8 8 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 40000
C004F
WWOWF | 0 4 4 8 0
4 7 7 4 8
8 7 4 8 8 | 2614
1699
1125
7336
4869 | 255
155
001
631
634
705
7 | 11829
1060
1136
1136 | 10000
1000
1000
1000
1000 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 117 8.0
6004 7594 | 99999 | ###################################### |
--| | 1 | | 20 | | 22 444 447 | | 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 224 4444 881392 889073 97573 106988 11742 112901 11424 134030 37239 40789 44723 49082 53921 14244 14249 92070 18896 20696 20696 12090 132689 142689 142689 12090 132689 14 | | 2.24 2.25 2.26 2.27 2.28 2.29 2.30 p 4.444 *81.392 *89073 *97573 *106988 11742 12901 0 1.127 34030 37239 40789 20696 22689 24898 27349 1 5.799 17270 *18896 20696 22689 24898 27349 1 4241 *92070 *18896 20696 22689 24898 27349 1 42632 *49862 54537 59707 65432 71776 78813 2 42632 272228 22773 32587 35702 39155 42982 27349 1 49251 16343 316343 317882 39155 23565 23702 23690 23690 240413 33690 240413 33702 23690 </td | | 2.24 2.25 2.26 2.27 2.28 2.29 2.30 p 4.444 **81392 **89073 *97573 *106988 11742 12901 0 37039 17270 18896 20696 22689 24898 27349 1 5799 1790 *100724 *110296 12090 13264 14568 1 5632 49862 254537 59707 65432 71776 78813 2 3690 149851 16343 17882 19585 21472 23565 2 1899 45721 49939 54600 59757 65466 71792 3 3750 25881 28235 30835 33709 36890 40413 3 3477 *80053 *87305 *95308 *104151 11393 12475 3 45211 27489 29993 32755 35809 39186 4 | | 2.24 2.25 2.26 2.27 2.28 2.29 2.30 p 4.444 *81392 *89073 *97573 *106988 11742 12901 0 5799 17270 18896 20696 22689 24898 27349 1 4241 *92070 *100724 *110296 12090 13264 14568 1 4925 49862 54537 59707 65432 71776 78813 2 4925 27228 29773 32587 35702 39155 42982 2 3690 14951 16343 17882 19585 21472 23565 2 1899 45721 49939 54600 59757 65466 71792 3 | | 2.24 2.25 2.26 2.27 2.28 2.29 2.30 p 4.444 *81392 *89073 *97573 *106988 11742 12901 0 1127 34030 37239 40789 44723 49082 53921 1 5799 17270 18896 20696 22689 24898 27349 1 4241 *92070 *100724 *110296 12090 13264 14568 1 | | .24 2.25 2.26 2.27 2.28 2.29 2.30 | | | | 1 0.0 | 000000
000000 | လလလလလ
ဝေ <i>ဖ်နေ</i> က်လံ | 7.0
7.8
7.6
7.6 | 00000
0040 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4
0 0 4 0 0 | υυυυ
ό ώ 4 δ & | 00000000000000000000000000000000000000 | 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | , , , , , , , , , , , , , , , , , , , | |-------------|--|--|--|---|---|--|--|---|--|---| | 17550 | 28 4 5 5 2 5 2 5 7 1 7 3 3 8 6 5 5 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 995
505
505
505
509
509
509
509
509
509 | 0 0 0 0 0 4
4 0 4 0 4
7 0 0 0 0 0
4 4 0 0 0 0
4 7 0 0 0 0 | 2000 00 00 00 00 00 00 00 00 00 00 00 00 | 9110655
966220
39840
24101 | 15569
*53269
31388
18588 | *80593
860370
860370 | 44318
24413
13675
42952 | *86628
*47233
25888
114253 | 2.31
1.4187
*59295
30071
16016 | | 18245 | 12982
59188
40037
27062 | 9996
65556
98866
11587
1588
1588
1588
1588 | 9
5
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11995
*71678
43057
26004
15794 | 16978
*98983
*57966
34115
20177 | 27039
15401
50664
29264 | 48652
26803
15006
47074 | *95315
*51955
28468
15668 | 2.32
2.56
3.56
3.56
3.30
3.30
3.30
3.30
3.30
3.30
3.30
3.3 | | 18946 | 200726
610726
814885
814885
8049 | *104617
68593
45869
30061
20073 | 1 8 6 9 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 | 10
00
00
00
00
00
00
00
00
00
00
00
00
0 | 13019
*77686
46595
28095
17034 | 18537
107957
63153
37153
21928 | 2964
16874
554183
1981 | 53467
29457
16483
51648 | *104979
*57210
31338
17241 | 2.33
17211
971923
36468
19416 | | 19658 | 13988
634983
42941
29064 | *110008
71922
47336
31353
20888 | 10220
64547
41043
16279
16279 | 111969
68535
42197
26138
16292 | 14148
84305
50490
30394
18397 | 20262
11788
46883
40445 | 32539
18508
105743
60687
34990 | 58820
32409
18126
101822
56790 | 11574
963061
34534
18993
104906 | 2.3 4
1 8 9 8 6
7 9 3 3 4
4 0 2 2 1
2 1 4 1 2 | | 20385 | 145
97658
65825
44487
112 | 1158
75583
495863
327580
21768 | *109158
68760
43605
27841
17899 | 12008
73849
285377
4477
448 | 15394
54781
32927
19896 | 2017
2017
2018
2017
2011
2011
2011
2011
2011
2011
2011 | 3575
2038
11688
56531
38386 | 64777
35695
19953
11203
62478 | 12774
*69584
38096
20945
11564 | 800 8.3
800 8.3
8760 66
84440 7 | | 21132 | 15144
101480
68294
31203 | 100
100
100
100
100
100
100
100
100
100 | 11677
73373
46407
29549
18944 | 13069
79692
48871
18703 | 16778
99666
59516
35718
21548 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |
00000000000000000000000000000000000000 | 71414
39357
21989
18339
68813 | 14115
*76864
42068
23122
12761 | 2.3 6
2.3 1 7 6
2.6 8 2 9
2.6 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 21906 | 15790
105588
70929
47832
47832 | 23545789
3546789
3791749
4154 | 1 25 1 3 7 8 4 2 8 8 7 8 4 7 7 7 8 4 7 7 7 7 7 7 7 7 7 7 | 200446
200446 | 1 1 8 2 9 5 6 4 7 4 6 6 8 3 3 3 5 6 8 | 00000000000000000000000000000000000000 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7881
43441
24259
75875 | 1561
464995
46506
25554
14099 | 25647
25647
254302
28895 | | 22711 | 16489
109998
73749
49657
33544 | 1369
57575
277708
598 | 1
5
5
3
3
4
4
3
3
3
4
4
3
5
5
6
5
6
7
6
7
6
7
6
7
6
7
7
6
7
7
6
7
7
7
8
7
8 | 15
9330
56940
34978
21610 | 1998
111843
70528
252301 | 30000000000000000000000000000000000000 | 4775
27087
15430
88267
50717 | 870
48002
26793
15018 | 17285
514087
28270
15592 | 28411
11869
50145 | | 23554 | 1724
11477
76778
51604 | 10000
40000
50000
50000
5000
5000
5000
5 | 14
9006
355536
887710
30703 | 16656
101027
61604
37768 | 0 4 7 7 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 32173
18627
608285
37087 | 52711
29877
17007
97215
55812 | 9631
29631
129625
126596 | 19159
104265
57020
31310
17263 | 2.39
3.1507
1.3161
66689
35476 | | 22 4 4 4 22 | 18071
11993
80044
53690 | 15447
99243
64188
41796
27395 | 155
96768
80591
281774 | 1811
109659
66747
408848 | 3001330
3001330
3001337
3001337 | 35
35
41
11896
400
69400
59 | 58 24 8
32994
18767
107197
61492 | 106648
58808
32793
18361
102408 | 1110
6335
1210
1347
1367
1360
1360
1360
1360
1360
1360
1360
1360 | 34980
74611
393736 | | 1-2
1 | 11111
11111 | 00000 | 00000 | 000007 | 77766 | 0. 6. 57 57 57 57 57 57 57 57 57 57 57 57 57 | 44400 | WWWW4 | 000044 | 1100 p | 00000 | 10. | 99999 | သက္ထာထာတ | 22222 | υυυυυυ | ប្រុប្ប | 4444 | W W W W W | N N N N N | عامر مار مار مار | 0000 | |-------|---|---|---|---|--|---|---|--|---|---| | ò | ού 4 ο σ | O i i i i i i i | ού 4 κα | ဝ်ဖြင့် ကို ထ | 0 is 4 is is | o is 4 is to | ούΑδα | où 4 k œ | o's i o'a | x 640 c | | 5847 | 13153
14830
175658
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1166
14258
15729
10490
36915 | 857
4686
66858
66858
7786 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 123
233
233
233
233
233
233
233
233
233 | 16572
16157
11566
59803
13891 | 13081
8605
10437
18897 | 11910
15041
16055 | 4 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 745
6998
68998
37740 | | 4778 | 7792
31581
31539
18884
4602 | 1302
12807
15383
10882
43386 | 1394
5885-
76099-
27321- | 33897
39988
29913
14396 | 11
23
23
20
10
10
10
10
10
10
10
10
10
10
10
10
10 | 159
1159
1159
1685
1685
1685
1685
1685
1685
1685
1685 | 130
8711
44603
12063
17696 | 13039
15039
1579611 | 43497
235530
24187
16049
474 | .48
7378
6924
6219 | | 3663 | 2368
311466
20033
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 3762
11271
14928
11194
49523 | 24 9 6 5 1 6 5 6 5 8 7 5 2 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 30821
30821
30821
15504 | 9774
22088
21870
15081 | 15204
15732
11790
65120
19484 | 13001
8808
13638
13638 | 14160
14160
13922
15521 | 161173
95115
2416
161173
25115 | .47
7304
6858
6164 | | 2510 | 304867
760986
1111 | 6198-
9659
14369
11423
55279 | 35
7
4418
593164
1111 | 2 7 6 2 7 0 3 0 0 1 0 5 3 4 5 6 5 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 7651-
20917-
21577-
15368-
7384- | 1144
11548
111868
227579 | 1 2 9 4 4 4 7 7 7 4 1 1 1 5 2 0 8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11 1 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 429
33277
24156
16175
9689 | .46-
7230
6791
6110
52516 | | 1333 | 88 8 8 8 8 8 9 5 5 5 5 8 8 9 5 5 5 5 8 8 9 5 5 5 5 | 8595
7983
13709
11569 | 465
671999
59537999 | 139
36398
36398
177498 | 196901
7860901
15607211 | 13740
15199
11924
69897
24901 | 12876-
8977-
49231-
16763- | 16384
16384
12768
14941 | 48707
23145
166134
9793 | 5 6 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 1 4 2 | 13843
18580
283631
1023441 | 10937
6254
12953
11630
5473 | 5708
2860-
53478-
59416-
44- | 18768-
20937
34891
30750
18369 | 1 8 4 1 1 1 1 8 3 5 5 5 1 1 1 | 12975
14893
11957
27070 | 1 0 7 9 7 9 7 9 7 1 8 8 0 9 6 7 1 1 | 50649
17485
2511-
12179- | 40439
33011
24109
16288
9894 | 7081
6659
5999
51695 | | v | 1908
86988
1157138 | | 594131
589551
3783551 | | 1189-
17083-
20330-
15940-
8800- | 12191
14561
11968
74093
30093 | 12707-
9110-
52046-
19807-
1564 | 51803
18580
1632
11582 | 4 2 1 6 8 7 8 9 9 9 9 8 8 8 8 9 8 9 8 9 8 8 8 8 | 7008
55928
1284
1 | | N | 241
25241
252457
28873-1 | 15398
2681
111794
73654 | 98517
98007
848
9500 | | 20779 | @ 0 0 0 @ | 1396
3396
3396
3396 | 9665
751
0977
3988 | 870
80
80
80
80
80 | · νανα
4 νανα | | 390 | 29057
7095-
23346-
32823-
13611- | 4 8 8 8 8 6 2 2 1 6 4 4 9 1 0 0 0 9 1 0 0 | 8
64
64
64
64
64
64
64
64
64
64
64
64
64 | 8 W S O 4 | 00000
0000
0000
0000 | THE RESERVE OF THE PARTY. | | 4059
0741
126
0366
3650 | 41619
32584
24012
16431
10180 | . 8484
4 00WZ | | | | | 0 6 8 9 1 | 5708
5708
5708
5708 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 5158
1809
1005
9748
3301 | AWFFF | . 7
7
8
8
8
8
8 | | 11 | | 11111
0000
11111 | 00000 | 00000 | | | 77766 | | ហហហហហ
!!!!! | σ 444 τυ | | 1 0.0 | 0,000,000,000,000,000,000,000,000,000, | 000000
00400 | 7.0
7.4
7.6
7.8 | 000000
00400 | 0 0 0 0 0 0 | 2 4 4 4 4
0 0 4 0 0 | υυυυυ
ό ιδ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1,420 | 0000 | -/- | |--------------------------|--|--|--|--|--|--|--|---|--|--|----------| | 5597- | 3 8 0 9 8 9 1 4 8 9 5 1 4 8 9 5 1 4 8 9 5 1 4 8 9 5 1 4 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 81
707
81
707
80
80
80
80
80
80
80 | 10
4 10
4 01
8 3 0 1 0 1 0 4
8 3 0 7 1 7 9 4
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4 0000
4 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 4 0 0 0 |
1174
1174
1000554
1111 | 12990
11785
80615
39615 | 4 000
000
000
000
000
000
11111 | 1 N S N S N S N S N S N S N S N S N S N | 4 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 9 6 3 3 0
6 3 3 0
6 8 0 0 | | | 6
8
8 | 100 A 9 9 A 9 A 9 A 9 A 9 A 9 A 9 A 9 A 9 | 8304
4584
10837
10887
10886 | 11257
2033
34747
517047 | 200 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 179837
179097
159077 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 85 P
85 8 8 8
85 8 8
85 8 8 8 8 8 8
85 8 8 8 8 8 8
85 8 8 8 8 8 8 8
85 8 8 8 8 8 8 8
85 8 8 8 8 8 8 8 8
85 8 8 8 8 8 8 8 8 8
85 8 8 8 8 8 8 8 8 8 8
85 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 85
88837
84798
79619
44557 | 232130
238130
45881
45881 | 4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | .38- | | 7581- | 1 3 8 9 9 3 5 1 5 1 5 6 7 7 1 1 | 8 4 6 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 | 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 22 4 9 8 8 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | \$ 014 07 1
\$ 20 5 5 6 8
5 6 6 7 9 | N S P S S S S S S S S S S S S S S S S S | 2000
2000
2000
2000
2000
2000
2000
200 | 105573
10563
10573
105573
105573 | \$ 500
500
500
500
500
500
500
500
500
500 | .37- | | 8465- | 112788
1951686
111 | 26037
80777
4203
9130
83972 | 12071
3685
466659
1 1 | 537
79257
26371
2708
27108 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 623
111575
111413
83767 | 11777
9293
60000
29587
7065 | 25935
25935
25935
25179
10197 | 40206
31811
23777
16598 | 4
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6 | .36- | | 9264- | 11 8 8 8 8 5 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8 8 8 7 7 8 8 8 8 7 0 9 1 1 | 441 H
8374335
877855
111 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 | 11068
11068
11268
11268
11774 | 36 P
800886
70083
1111 | 200
200
200
200
200
200
200
200
200
200 | 1066746
7588 | 6430
6071
5508 | , 3 S. | | | | | | | | | | | | | | | 9972- | 5 | 28369
11358
1551
1551
82318 | 1 1 1 1 1 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 | 60863
15118
13370
22077 | 1778
135463
11363983
1111 | 11053
11053
495057
70677 | 36 92 4
920 6 9 4
5 7 4 1 4 9
1 1 1 1 1 | | 10000000000000000000000000000000000000 | 4 5 6 3 6 0 0 7 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | .34- | | 972 | 40000
00000
00000
00000 | 23
23
23
23
23
24
25
25
25
25
25
26
27
26
27
26
27
26
27
26
27
26
27
26
27
26
27
26
27
26
27
26
27
26
27
27
27
27
27
27
27
27
27
27
27
27
27 | 3986
5143
586
11473:
541
0547:
3713
4121 | 0863
5118
3370
4077
2057 | 149553
49548
49963 | 40400
40004
WW000 | 90000
40004
40000
4000
4140 | 1329 6228
7998 2898
6261 712
5926 51
1012 1060 | 9626
3933
3658
3658
2359
6642
1665
1081 | 6360
6007
5453
7533 | | | 972- 10580 | 56921
0220
0220
23697
5450
2507
6884
15330
16282 | 8369 - 29268
1358 - 12890
1551 - 205
7767 6997
2318 80538 | 3926
5143
5865
1473-
5418
0547-
37134
41211 | 0863- 64109
5118- 18635
3370 10761
4077 22770
2057 21881 | 7783 19740
3546: 1940
3639: 12667
4998: 14653
1346: 11450 | 44 ³ 30 3515
0531 9981
1057 10848 1
5006 85363 8
9477 51132 5 | 114
9264
1691
1691
1691
1624
156
1634
156
166
166
166
166
166
166
166
166
166 | 1329 62285 7998 28989 6261 7128 5926 5273 | 9626
1479
31309
3658
23594
6642
16658
0747
10817 | 6360 628
6007 594
5453 540
7523 4710 | 433 | | 972- 10580- 11083- 114 | 4809 56921 58575
0220 23697 26974
5450- 2507- 458
6884- 15330- 13636
6490- 16282- 15920 | 8369- 29268- 29982 1358- 12890- 14336 1551 205 1144 7767 6997 6176 2318 80538 78138 | 3926 14432 14868 1523 5143 5865 656 721 1473- 5418- 666 674 0547- 37134- 33508- 2969 2022- 41211- 40151- 3885 | 0863- 64109- 67127- 699 5118- 18635- 22081- 254 3370 10761 8107 54 4077 22770 21365 198 2057 21881 21604 212 | 7783 19740 21649
3546: 1940- 328
3639: 12667- 11659
4998- 14653- 14263
1346- 11450- 11516 | 44°30 3515 259 0531 9981 941 1057 10848 1061 5006 85363 8554 9477 51132 5267 | 1419 1 11826 1 11023
9264 9236 1 9199
1691 62435 63110
2074 33259 34402
9467 10649 1 11816 | 1329 62285 63218
7998 28989 29969
6261 7128 7991
5926 5273 4618:
1012 10600 10181 | 9626 3933 3903
1479 31309 3113
3658 23594 2352
6642 16658 1667
0747 10817 1088 | 6360 6289 621 6007 5943 587 5453 5400 534 7523 47102 4668 | .3338 | | 972- 10580- 11083- 11476 | 4809 56921 58575 59757 0220 23697 26974 30026 5450- 2507- 458 3419 6884- 15330- 13636- 11818 6490- 16282- 15920- 15405 | 8369- 29268- 29982- 30505 1358- 12890- 14336- 15687 1551 205 1144- 2484 7767 6997 6176 5310 2318 80538 78138 75137 | 3926 14432 14868 15232 1 5143 5865 6556 7214 1473- 5418- 666 6747- 1 0547- 37134- 33508- 29691- 2 2022- 41211- 40151- 38850- 3 | 0863- 64109- 67127- 69907 5118- 18635- 22081- 25443 3370 10761 8107 5421 4077 22770 21365 19868 2057 21881 21604 21229 | 7783 19740 21649 23505
3546: 1940- 328- 1285
3639: 12667- 11659- 10618
4998- 14653- 14263- 13829
1346- 11450- 11516- 11544 | 44°30 3515 2594 1669 0531 9981 9414 8832 8 1057 10848 10618 10368 10 5006 85363 85543 85548 85 9477 51132 52671 54092 55 | 1419-11226-11023-10810 9264-9236-9199-9153 1691-62435-63110-63715 2074-33259-34402-35502 9467-10649-11816-12967 | 1329 62285 63218 64130 7998 28989 29969 30935 6261 7128 7991 8851 5926 5273- 4618- 3959 1012 10600- 10181- 9754 | 9626 39333 39038 38742 384 1479 31309 31136 30960 307 3658 23594 23527 23455 233 6642 16658 16671 16681 166 0747 10817 10883 10947 110 | 6360 6289 6219 614 6007 5943 5878 581 5453 5400 5345 529 7523 47102 46680 4625 | 4333831- | ## TABLE OF THE WEDGE FUNCTION $\mathfrak{G}_{\nu}(\mathbf{e}^{\mathbf{x}})$ | 10.0 | 00000
00400 | ထက္ကာတာတ
ဝေတ်န်က်တဲ | 7.0
7.2
7.4
7.8 | 0 0 0 0 0
0 0 0 0 0 | មេ
១០៥ ៤ ១ ១ | 4444 | សសសសស
៤៧៨៤០ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ין בן בן בן
סטיל ה' פ | 0000 6 | 'n | |--------|--|--|---|--|---|--|--
---|--|--|---------| | 11918- | 353347
98847
98847
43673
11 | 50970
51006
7466
13466 | U 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 21 24 2
0 6 24 2
0 6 7 1
0 8 6 7 1
0 8 6 7 1 | 004400
40460
40460
40460
60460 | 0.00 0 1
0.00 0 1
0.00 0 1
0.00 0 1 | 200 200 200 200 200 200 200 200 200 200 | 1 1
C M V 4 Q
D M N N N
D V N N N
D N N N
D N N N | 50000000000000000000000000000000000000 | 55688
5184 | 29 - | | 11961- | 137573
137573
137573
137621
1 | 190908
636363
786363 | 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 | 11 30 50 70 80 80 80 80 80 80 80 80 80 80 80 80 80 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000 00 00 00 00 00 00 00 00 00 00 00 00 | 4 684
484
486
486
687
887
887
887
887
887
887
887
887
8 | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5 0 5 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 594
5625
5130
87 | 80
1 | | 11886- | 59647
39483
14710
119461 | 5 1 5 8 8 1 1 1 | 22 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 11 1 | 200000
200000
200000
200000
200000
200000 | 00000000000000000000000000000000000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7 4 0 4 7
7 4 0 0 4 0
0 0 0 0 0
7 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 | 375
3023
2023
115
115
115
115
115
115
115
115
115
11 | 5555
5557
5557
55763 | .27 - | | 11693- | 17270
17270
17465 | 5 8 0 1 9
8 0 7 1 9
8 0 7 2 8
1 1 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 44
40
40
40
40
40
40
40
40
40 | 1 1 1
(2 0 0 00 00
(3 0 0 00 00
(4 00 00 00
(4 0 0 00 00
(4 0 00 00 00
(4 0 0 00 00 00 00
(4 | 00000000000000000000000000000000000000 | 200000
200000
200000
200000
200000
200000 | 1 | 7 7 7 8 4 4 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 | 5004
5000
5000
5000
5000 | .26- | | 11384- | 5670
48896
19678
7884 | 200
200
200
200
200
200
200
200
200
200 | 2 4103379
640379
640477
1 | 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 10744
10744
10984
10984
10988
10988 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11111
H (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | 7 0 5 5 7 1 | 12 12 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 5736
5436
3714 | .25- | | 10962- | 5 4 4 4 5 5 6 8 8 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 28 7 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1566
1066
1066
1066
1066
1066
1066
1066 | 1 1 4 8 1 9 9 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 46600
06000
06000
04000
46000
111 | 00044
00044
00044
00000
00000 | 0 4 0
0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 | 5 6 9 8 7 7 6 5 8 6 9 8 6 9 8 7 7 7 7 7 7 7 8 9 8 6 9 | 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5667
5376
4916
43289 | .24 | | 10430- | 5 1 2 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 844 4
86 5 8 8 4
8 8 8 4 8
9 8 8 8 8 6
9 8 8 8 8 8
9 8 8 8 8 8 8
9 8 8 8 8 8 8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 4 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 1 1 1 | | 2000
2000
2000
2000
2000
2000 | 4 4 5 5 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2
3 | | 9796- | 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1 5 0 0 9 7 9 6 8 8 3 4 7 1 | 8 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 7 7 W O O O O O O O O O O O O O O O O O | 6597
777312
61119 | 0 4 6
0 0 0 0 0 0
0 0 0 0 0 0
4 4 7 0 0 0
4 4 7 0 0 0
4 1 1 1 1 | 00000
40000 | 11 12 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | | | 9064- | 440
0800
0800
1900
1900
1900
1900
1 | 1 1 8 8 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 | 1 4 7 0 5 1 4 3 0 7 1 4 3 0 7 1 4 3 0 7 1 4 3 0 7 1 4 3 0 7 1 4 3 0 0 4 1 | 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2000 C C C C C C C C C C C C C C C C C C | 7 4 8 3 5 0 0 1 2 2 2 2 2 9 1 | 0 4 6
0 0 0 0 0 0
6 6 0 0 0
4 4 4 0 0
0 0 0 0 0 0 | 71999
171199
511917
51501 | 11 20 80 30 10 10 10 10 10 10 10 10 10 10 10 10 10 | 0714 | °21 - | | 8242- | 287036
287036
2111768
207089 | 0004 000000000000000000000000000000000 | 9 H 900 H | 00000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | 8 4 6 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 00000 | 000 W A O O O O O O O O O O O O O O O O O O | 110000
12000
12000
12000
12000
12000
12000
12000 | 5400
5130
4704
1591 | .20- | | 11- | حر مر دم هم دم
دم دم دم دم دم
ا ا ا ا ا | 0000
0000
11111 | 11111 | 00000 | 000000 | 88777 | 77766 | 00000 | ហហបាបាបា
!!!!! | 0000 | Ď, | | 1 0.0 | 0,000 | 000000
00400 | 7.0
7.8
7.6
7.6 | 000000
00400 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4
0 0 4 6 0 | νυ υυ υ
0 % 4 δ & | 0 0 0 4 0 0 | 1.6 | | |----------|--
---|---|---|--|---|---|---|--|---| | 7338- | 37633
42090
29883
13034 | 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 13710
111478
67994
22416 | 1 85507
855099
1 86608
1 1 1 1 | 191847
191847
58035
11 | 57 5 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7327
41389
18679
4014 | 235
285
286
286
286
286
286
286
286
286
286
286 | 19 -
5 3 3 4
5 0 6 9
4 1 1 6 6 | | 6361- | 33221
40791
30737
14773
1197 | 15155
20155
20155
20155
2015
2015
2015
2 | 11147
11147
11147
2652
2652
2652
2652
2652
2652
2652
265 | 8 | 84
80
80
80
80
80
80
80
80
80
80
80
80
80 | 10068-
276
5567
70071
60738 | 257785
257785
257785
25755 | 7388
42158
44255
36673
1 |
110000
110000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
1000 | 5000
5000
5000
5000
5000
5000 | | 5322- | 28542
39150
31321
16376
2801 | 1825
20997
17728
10073 | 1245
11414
74173
30478
1888 | 29 0 0 0 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 811638
51638
51675
11077 | 10900
418
5103
67775
60302 | 646887
657881
557881 | 244
2020
3020
3122
5020
5020
5020 | 3 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 5203
4948
4948
4547 | | 60 60 | 23634
37180
31632
17830
4378 | 16202
20303
15921
17336 | 1117
76670
34867
14860 | 785
5834
5834
585
544
60
60
60
60
60
60
60
60
60
60
60
60
60 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1171
11111
65341
197341 | 0440
0440
0444
0441
0860
0111 | 75029
209435
5981 | 3 4 1 0 9
2 8 0 1 6
2 2 0 0 7
1 6 4 3 1
1 1 5 4 5 | 5138
4889
4494
4994 | | 3095- | 185
34899
31665
19181
59181 | 11940
10040
10080
10080
10080
10080
10080 | 10950
11118
78752
37847
4767 | 7694
332751
10468 | 24
23
23
23
24
24
25
25
25
25
25
25
25
25
25
25
25
25
25 | 56 12
5821851
8071801
8071701 | 6318
636878
793987 | 75563
44349
21685
6630
2188 | 33792
27802
21887
16390
11560 | 5074
5829
4533 | | 1930- | 138389
31481
73837
7398 | 11814-
18515-
16133-
9683-
31409- | 10119
10884
80409
41217 | 1 3 5 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 24869
24869
9071
4759 | 1329
2491
560057
192 | 0 4 6 7 7 5 8 8 8 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 76073
45044
78410
1687 | 3347
87587
116365
116364
745 | .14-
5009
4770
4391
39048 | | 746- | 7938
29480
30902
21169
8801 | 9500
17434
16070
10201
38111 | 10593
816395
11353
2533
77 | 72725
59615
14163
1486 | 105855
55851
7855
7855
11 | 14
347
347
347
378
5788
5788
7889 | 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 76558
45721
23124
1184 | 331
27368
21639
116297
11585 | 3 4 4 9 4 5 5 8 6 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | \$
\$ | 2522
26388
30112
21907
10126 | 11588377
14588377
1588377 | 1 0 2 5 1 5
4 7 2 3 1 5
4 7 2 3 3 6
1 4 7 2 3 6 | 70228
59528
159291
15923
8 | 43759
26706
11211
306
5454 | 14
55
56
56
56
56
56
56
56
56
56
56
56
56 | 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | 7701
46379
23825
8551 | 328
27147
21511
16251
11592 | 3 8 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 1633 | 2000
2007
2007
2005
2005
2005
2005
2005 | 11.44
15.60
11.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | 7350
9856
82752
49851
17577 | 593431
176151 | 1238
1238
1238
1238
141
153
153
163
163
163
163
163
163
163
163
163
16 | 5 4 4 5 5 6 6 4 6 7 7 8 8 6 7 7 8 8 6 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 8 7 8 8 7
8 8 7 | 608631
469344
169345 | 774
47018
24516
9181
1777 | 325
26925
21381
16193
11597 | .11
4818
4594
4637
7781 | | 2804 | 19569
27752
22778
12475 | 5115556
512556
52556
7455
11111 | 88
944
944
944
95
95
95
95
95
95
95
95
95
95
95
95
95 | 1 4 0 0 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 16195
16190
1638
48128
53578 | 3 4 5 6 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 77865
47638
25195
9806
327 | 321
26702
21248
16137
11599 | 4755
4755
4535
4185 | | 11- | 44444
4444
1111 | 1111
1000
1111 | 111
0099
11111 | 00000 | 00000
11111 | 88777 | 77766 | 00000 | | 0 44470
1111 | | | : | Ì | | • | |-----|---|---|---|---| | | 1 | ī | | 2 | | | | | | | | | I | | T | 1 | | | • | | | 2 | | | • | | 7 | 1 | | | | | | | | | : | - | - | | | | : | | 1 | | | | 1 | | 1 | | | | | | | | | | • | | | | | | : | | • | | | | 1 | | ; | | | | i | Ī | 1 | | | | | | | | | | • | | 1 | | | | • | • | - | • | | | | 4 | | | | | | | | • | | 250 | | _ | _ | | | • | | c | | | | | | | | | | | | | | | | | | C | 3 | | | 1 | Ç | | | | | | | | _ | • | | | | (| ī | , | * | | | |---|------|--|--|---|--|--|--|---|--|--|---|--------| | | 0.0 | 000000000000000000000000000000000000000 | 0 0 0 0 0 0
0 0 4 0 0 | 7.0
7.2
7.4
7.6
7.8 | 0,0,0,0,0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4444000 | コラフラフ | 0 4 4 6 8 | 1.6
1.8 | 0000 / x x x x x x | ı
L | | | 3948 | 13674
15899
26808
28904
13476 | 203
12034-
14714-
11497- | 8 8 8 9 3 8 8 9 3 8 8 9 9 9 9 9 9 9 9 9 | 58178-
58178-
40948-
20767-
4463- | 28930
14176
2965 | 16862
584661
1123
521129 | 4 6 8 6 8 5 7 8 1 1 2 9 7 1 1 | 7 8 8 8 5 1
2 5 8 6 5 1
1 0 5 8 6 1
8 3 1 | 31864
26477
21114
16078
11599 | 3694
4477
36940 | • | | | 5052 | 18911-
12095
24422
28820
14350 | 2664
10460-
14111-
11615-
66301- | 81094
55940 | 57873-
57266-
41670-
22213-
5916- | 150000
250000
250000
250000
250000
250000
250000 | 17503-
6492-
606
41540
50545 | 3869
580569
46748 | 78
4886
2651
2059
11039 | 31541
26250
20976
16016
11595 | 36 4 4 4 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | | | 6106 | 23996 - 8191
22430
22528
15087 | 5108
8816-
13410-
11648-
70573- | 3187
7794
79660
57347
28713 | 554
554
554
554
554
554
554
554
554
554 | 43176
30036
15957
4697
2351 | 18117-
7128-
89
38116
48858 | 3505
5659
3805
380777 | 78949
49386
27155
11646
1836 | 31217
26022
20837
15952
11588 | 3 4 4 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 | | | 3 | 7099 | 288899-
202417
20241
15681 | 7520
7115-
12615-
11597-
76305- | 2095
7172
77797
58427
31106 | 504291
548011
426211
248151 | 42745
30473
16781
1699 | 18704-
7751-
429-
47064 | 3137
54011
46330
32403 | 79261
49927
27782
122748
3337 | 30893
25792
20694
115884
11579 | 2 44 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 8023 | 33551
209
17875
21333
16125 | 9885
11738-
11460- | 7 6513
7 5516
59176
3312 | 10089111 | 42210
30829
17557
6371 | 192631
83611
94711
5165 | 5 5 1 6 5 7 6 7 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 79 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 30569
25560
20550
15814
11567 | 24400
44400
744400
744400 |)
J | | | 8867 | 379444
3802-
15353
20440 | 12188
3581-
10768-
11240- | 7 | 422378
4289041
1139741 | 41574
31105
18284
7180 | 197931
89571
14621
27410 | 24 E
84 E E E
80 4 O O
98 4 O O
44 E E E
1 I I I | 79
5098
28995
134995
3333
3333 | 302
25328
25328
115741
15531 | 3 4 4 3 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 | | | 9623 | 420341
77801
12697
19361
16551 | 14413
17733
9728
10938 | | 3797
495772
1279721
1279131 | 40837
31300
18959
7968 | 20293-
9539-
1975-
23721 | 3354
455
455
455
455
455
455
455
455
455 | 80004
51436
1495796
140000 | 250991
250991
250855
2555
2555
2555 | 3
4
4
3
4
3
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | 0 3 1 | | | 02 | 45788:
11694:
19929
18105 | 16548
1055611 | 9 6 8 8 6 6 | 335
4745
4745
4745
4773
4773
4773
4773
4 | | 20762
10104
2484
19983
38886 | RAFE CO | 04044
0040W
0050W | 29594
24859
20104
115588 | 0.000
0.000 | | | | 08 | 49175-
15509-
7076
16684
16350 | | P 4 4 10 4 | | 04140 | | W W W P O | 004
007
007
007
007
007 | 115968
155951
155951
155596
155596 | 34
60
60
60
60
60
60
60
60 | | | | 14 | 04444 | 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 47204 | 12000000000000000000000000000000000000 | 0 6 5
0 2 5
0 5
0 5
0 5
0 5
0 5 | 216
111607
11183
123488
112395 | 393
393
342 | 568
588
588 | 40000 | 4000 | | | | 11- | | 11111 | 00000 | 00000 | | 8 8 7 7 7 | 77766 | 00000 | ហេហហហេហ | 1111 | ರ | | | | | | | | | | | | | | | 00000 111111 000000 UUUUU 004444 00000 004600 004600 004600 004600 0046600 0046600 0046600 0046600 0046600 0046600 99999 00400 HH 805 4 G 4 W D 502022 A GOOM HH WU 20444 85708 vo on en en on 50445 40400 H0715 FFONG 00450 20000 14 00 A 00 CM 000-200 H HWO 12 W C: 00 O FOTWO 200000 M M O F 10 0 P C 30 O 044 a Rwo 4 M (1) (2) (2) (2) NA CO n) 4 (5 on we no o c o u o 10 4 0 F 0 புவலுக 54000 00400 $N \cap \Omega \cup \Omega$ 4 C 30 C rus s 1 1 1 ഗാഗാ മാ 0040F 90FFE 44404 04004 DWALO FURRO 1 OHOGO 0 0 9 - 0 S 5 N N a 0 9 0 0 0 0 0 0 0 4 0 0 GN 4 BW 0400A 04476 NEWOG 200000 00700 90000 97057 24800 JUNE JUNDS 0400 44CHP 44100 ADWING 71895 01007 75981 40040 DOUDE 04000 000W4 4000H THOOC COANG OCD B פרחבט חבורטם מבונה HH 0 11 H 00000 17470 4000 Cn 1 1 1 1 1 0 90757 N 2001 2001 2001 2001 900000 W010W 20000 50225 90005 VAROR F AWG NOGFO 44000 308 B 44550 40440 -J 00 00 80 07 500000 GWWG 4 GAA GH H HWA CON A (R CO NNOHN 0 H W 8 5 30H0H مر مر مر 8 7 0 W 6 4 644 64 0000 BUTEN 46464 ODWAE COONE NEWNON 71100 68668 FOFEA AFROID 04000 0F00F 04000 F0000 PN000 00140 HW WW H HUN NH 1 1 05759 04800 W D 4 01 40 40 A1 C0 AIDA 404 0 DUHLO 40WDA HUBGO AWAGE 00000 HAAWH 40009 0 4 5 0 5 C1 00 00 01 -3 20000 HUUUH 45005 600001 76276 HWWW 88588 04050 22400 90715 $\sigma \sigma \sigma \omega \sigma \sigma$ SOUPO 00400 N W W N 0050 2000 O 4 4 F CS W 00 4 O 10 11111 8000 75 N 00 00 00 W 400 82 H S S S - 3 2007 H W 00466 20047 0 4 40 5 00010 2000- 04204 9075W 00F02 C C C W 10 NNNHN AHOOG HU70H 4040W WAGOW 1111 ## TABLE OF THE WEDGE FUNCTION $\mathbf{G}_{ u}(\mathbf{e}^{\mathbf{x}})$ | 1 0.0 | 00000000000000000000000000000000000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.0
7.8
7.6
7.6
7.8 | 000000
00400 | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 4 4 4 4
0 0 4 6 0 | ม ม ม ม ม | 0 0 4 0 0 | 1,64 | × 34 6 6 | |-----------------|---|--|---|---|--|--|--|---|--|--| | 8726 | 254
244
244
244
244
254
254
254
254
254 | 31048
19535
8034
8781 | 1384
59001
2035
28350
36667 | 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | + 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 23
25
25
25
25
25
25
25
25
25
25
25
25
25 | 32 8 9 9 9 5
11 3 4 9 9 9 5
1 1 1 1 | 80866
56075
36196
21099
10336 |
25376
21715
17983
14368
11030 | ,11
3526
3388
3166
28758 | | 7869 | 2652
2652
2652
2652
273
4 ! ! ! | 30897
20362
9173
716 | 14
658921
483821
18 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1955
84674
280674
15768 | 15894
17894
1770
1770 | 30300000000000000000000000000000000000 | 8075
56254
36550
21526
10759 | 25 0 5 5
21 4 6 9
17 8 0 9
14 2 5 9
10 9 7 6 | 28 33 34 ,1 28 33 11 9 8 8 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 6936 | 49368
53819
28028
11399
768 | 3055
21055
10249
1705
32636: | 1 481
7244
1 4103
20156
32762 | 3781
259122
259182
55111 | 1761
23651
21718
15943
9358 | 33805
16126
9086
1090 | 3987
350181
320621 | 80613
56413
36887
21941 | 24733
21221
176321
14149 | .13
3420
3286
3074
27972 | | 5930 | 120000
120000
120000
1111 | 30016
21608
11253
2682
25748 | 15200-
7863-
20041-
15876
30511 | 21 25 25 25 25 25 25 25 25 25 25 25 25 25 | 1562
22562
21365
16076
9735 | 2373
16334
40071
3966 | 23 | 8 0 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 20975
17458
14037 | 3366
3236
3028
27581 | | 4868 | 4404
66046
65066
64066
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
66766
6 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 15510-
8442-
25871-
11507
28079 | 46297
7158
14978
22974 | 1360
21425
20952
16161 | 165171
97401
683561 | 0000
0000
04000
04000
01000 | 80274
56671
37512
22735
11983 | 00000000000000000000000000000000000000 | 3314
3187
3187
27193 | | 3759 | 1 1 1 1 1 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 15747-
8979-
31563-
7073-
25480 | 50306
10764
124144
21585
11 | 115
20222
10222
10197
10397 | 116673
106673
106673
106673
106673
106673
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
106773
10 | 5060
189536
2835331 | 80073
56770
37800
23113
12377 | 23776
20479
17102
13808 | .16
3261
3138
2939
26806 | | 2612 | 1343
5745
5795
585
795
585
595
595
1111 | 2004
2007
2004
2007
2000
2000
3000 | 159
94701
37086
28799
111 | 26 14 4
26 26 26 26 26 26 26 26 26 26 26 26 26 2 | 9470
1.8980
19954
16185 | 1163896
11038396
129961111 | 541
16889
27056 | 79850
56850
38071
23479 | 11 3 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 33000
3000
3000
3000
4000
3000
3000
300 | | 1439 | 317999
7987409
191740
191740 | 00000000000000000000000000000000000000 | 1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 57787
17845
71491
1854411 | 17682
19378
16124
10921 | 1059011
153088
153068711 | 2014
2014
2014
2014
2016
2016
2016
2016
2016
2016
2016
2016 | | 231
19984
16742
13572
10610 | 3158
3040
36038 | | 253 | 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 16006
10307
47512
6367 | 2123
2123
2123
24469
2386
611 | 1 6 7 3 4 6 7 3 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 10000000000000000000000000000000000000 | 1 1 0 0 9 9 2 4 3 7 7 7 3 5 9 9 1 1 | 7934
56952
38564
24174
13507 | 1 0 0 7 3 8 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | ,19
3107
2992
2807
25658 | | 937- | 234
944
944
944
944
944
944
944
944
944
9 | 23051
21883
15444
17798 | 159
106490
108358
137369 | 244471
177721
1851851 | 1495
18095
15805
1305
1305
1305
1305 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2006
2006
2006
2006
2006
2006
2006
2006 | 79059
56973
38785
24508 | 22511
19489
16379
13330
10472 | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | <u>بر</u>
در | | 44444
0000
11111 | 444
99000
11111 | 00000 | 0 0 0 0 0 0
1 1 1 1 1 | 88777 | 77766 | 0,0000 | ហ ហ ហ ហ ហ
! ! ! ! ! | ט' 44410
וווו | | 10 | 00000 | | 22222 | 9 9 9 9 9 | ហហហហហ | 4444 | ند لدا لدا لدا ند | | | | |------------
---|---|---|--|---|---|--|--|---|---| | ò | ဝံ ဖေ နေ က် ထ | Ó is Á ró co | ο ά ά ό ώ | O 13 4 18 to | 0 % 4 6 & | | o i i i i i | o is 4 is to | 11.6 | W 64 6 6 | | 2117- | 14075-
30630-
30706-
22000-
11085- | 21334
214419
25792
24884 | 15799-
10937-
56926-
15190-
10551 | 67484
27939
933
13407: | 13533
17308
1444 | 222245
17036
11263
2351
811 | 8 1 5 5 0 1 1 5 5 0 1 1 5 5 0 1 1 5 5 0 1 1 5 5 0 1 1 1 5 5 0 1 1 1 5 5 0 1 1 1 5 5 0 1 1 1 1 | 78755
56975
38990
24817
14218 | 22197
19241
16196
13207
10400 | .21
3007
2897
2720
24903 | | 3276- | 1 2 2 3 5 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 19484
20814
16030
9242
31800 | 15582
111170
611191
19486 | 7026
31114
3634
11573- | 1171
12075
16522
15403
11545 | 21170290
6414490
5414490
155111 | 20 6 3 5 9 7
20 1 0 8 1 1 | 78432
56959
39179
25120
14560 | 21885
18994
16013
13082
10327 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 4403- | 2335
284410
286410
1328411 | 17512
20072
16158
19816
38475 | 15292
11347
65130
23672 | 72804
34174
6320
9690- | 3312-
10587
15690
15106
11610 | 215
16993
116993
66924
1111 | 7
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 780
390
390
390
390
390
390
390
390
390
39 | 21574
18747
15828
12956
10252 | 2908
2908
2803
2635 | | 5486- | 20983-
27287-
27287-
14168- | 15431
19198
16175
10319
44858 | 114989
6878861
2772861 | 75093
37108
8982
7767- | 5444
9072
14815
14765 | 21117
16929
11759
69322
31256 | 7736
2769
27156
22199 | 77728
56870
39507
25685
15216 | 21263
18500
15644
12828
10175 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 6516- | 17387
85659
1476
14955
111 | 13254
18199
16080
10748
50902 | 11 | 77124
39906
11608
5812-
13594- | 7564-
7534
13900
16379
11627 | 20679-
16838-
111883-
71585-
33709- | 8047
3041
54
15651-
21281- | 77347
56798
39646
25948
15530 | 11540
1009
1009
1009
1009
1009
1009 | 23419 | | 7482- | 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 10995
17080
15874
11098
56560 | 13993
1115333
74798
59244 | 788889
148556
144189
238311 | 9666
5977
12946
13951
11580 | 202121
16721-
11986-
73708-
36090- | 8358
3311
2127
203367 | 76950
56708
39769
26198
15835 | 20648
18007
15274
12571 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | | 1155849
1155860
115560 | 2000 | 44406 | 11745
14405
11956
13481
11496 | | 5 X 2 2 7 1 | 76534
56600
39875
26434
16130 | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | 14.
14. | 61951
330
340
340
340 | 55158 | 279
136
928
217
240 | 1603
7380
9174
168
9817 | 7 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9 | 38 4 4
5 4 6 4 4
5 6 5 5
6 6 9 | 4
4
4
5
5
7
1
1 | 9330
935
935
935
935 | N N N N | | 904 | 00004D | 0143386
016186 | | 9554
9535
15535
1758
1771
163 | 8 4 8 3 1 8 4 8 4 8 1 1 8 3 1 1 8 8 1 1 8 8 1 1 8 1 8 1 8 | 89868
78486
50603 | 9230
4101
8593
9468
7350 | 0 20 0 8 0 4 20 4 20 8 8 | 973
471
976 | ₩ 8 8 8 8 | | 052 | 53517
86358
98816 | 35
35
35
35
35
35
35
35
35
35
35
35
35
3 | 135
097
209
805
859 | 3201
1509
3858
4165
7071 | 0 8 8 4 8 0 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 806
598
218
479 | 9510
4358
0712
7891
6309 | 18
17
19
19
19 | 9 7 4 8 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | → 80 80 80 | | 1 | | H0000 | | | | | | | | טי 444 ת
ווו | ## TABLE OF THE WEDGE FUNCTION $G_{ u}(e^{x})$ | 10.0 | | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0. | 7.0
7.2
7.6
7.8 | 0,0000000000000000000000000000000000000 | 0.00 4 6 6 | 444.00 | νυυυ
63466 | 0,000,00
0,004,000 | 1.8
1.8
1.8 | , , , , , , , , , , , , , , , , , , , | |--------
--|---|---|--|---
--|--|--|--|--| | 11046- | 7222
6137
11844
8105
64555 | 1036-
9979
13262
11620
77693 | 105
885
5060
515
535
1111 | 8 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 | 1974
19555
11259
10797 | \$ 8 12 12 7
\$ 8 12 12 7
\$ 8 12 12 7
\$ 1 1 1 1 1 | 2000
000
000
000
000
000
000 | 74699
55994
40141
27245
17209 | 19133
16784
14339
11908
9593 | 21230
21230
212307 | | 11457- | 365
055
1683 | 3484
124423
114449
80266 | 103666
831746
528671 | 83663
54884
28169
42003 | 2164
3543
105574
10565
10565 | \$ 8 12 12 6
8 13 13 15 6
8 13 13 15 6
8 13 15 15 15 15
8 15 15 15
8 1 | 10049
4861
14916
14714 | 74199
55800
40168
27414
17453 | 18835
16541
14152
11773
9504 | % % & & & & & & & & & & & & & & & & & & | | 11755- | 5180
3922
6187
5112
5726 | 5910
6613
11550
112344 | 8798
9983
54835
7016 | 30164
10011
2731
3731 | 234
55122
56433
70288
30111 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10307
5106
16998
3116- | 73683
55589
40179
27570
17687 | 18539
16298
13964
11637
9414 | 00000
0000
0000
0000
0000
0000 | | 11939- | 76539
7658
74055
7404 | 8 2 9 9 1
4 8 6 0
1 0 5 7 1
1 0 9 3 3
8 3 5 8 0 | 8000
8000
80000
804040
804000
804000 |
110000
110000
110000
110000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10 | 25
55
56
58
57
9
16
16
16
16
16
16
16
16
16
16
16
16
16 | 5 8 2 2 4 5
5 5 5 6 8 4 6 0
4 2 3 6 6 4 4 6 1
1 1 1 1 1 | 1055
19064
11515
11515
11 | 73153
55363
40175
27713
17910 | 137777
11500
115777
23777
2388 | 2023
2031
2031
2023
2023
2023
2034 | | 180001 | 1 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10637
3074
9521
10544
84297 | 3 7 8 8 9 0 5 8 8 1 5 0 5 8 8 1 1 1 1 1 1 1 1 | 88881
58433
33793
13713 | 8 2 3 2 3 3 4 4 5 5 5 8 8 8 8 8 9 8 9 8 9 8 9 9 9 9 9 9 | 1480
14504
111954
85984
111954 | 10803
5584
21111
10824 | 72608
55120
40156
27842
18123 | 17951
15817
13589
11362
9229 | 35
235
2275
2275
2275
2282 | | 11935- | さたらたい
の | 129091
1269
8405
10079
84378 | 8 0 0 7 6 1 7 7 8 0 0 7 7 6 1 7 7 8 0 1 1 1 1 1 1 1 | 154114
17482
17482 | 28
9766
19766
7663
1663 | 5 8 1 1 4 4 9 5 5 6 5 8 4 2 3 7 7 7 8 5 1 1 1 1 1 | 23 1 1 0 3 5 5 8 1 4 5 6 6 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 | 72048
54862
40122
27959
18326 | 17660
15578
13402
11224
9135 | .36
2308
2233
22113 | | 11/3/1 | 27575
50000
10000
10000
10000 | 151015441
953441
83533141 | 4837
7972
78230
59570
35959 | 79859
59742
36897
17187 | 30291
11270
6876
8746 | 782423
7773
7777
7777
7777
7777
7777
7777 | 25 6 1
25 6 0 2
25 6 0 2
25 6 0 2
25 6 | 71475
54589
40073
28062 | 17370
15339
13214
11086 | .37
2265
2193
2075 | | F 0 | 48404 COS400 COS | 20000
20000
20000 | 0 9 9 3 7
7 0 7 2 9 | | 16 08
87408
84508 | A H U W U | 10000
40100
80000 | 50000 | X O M A A | 00HN . | | 1 | 200000
200000
200000 | 9
4
4
4
4
4
4
6
6
6
6 | | 4 1 4 W O 1 0 C C C C C C C C C C C C C C C C C C | 2440
8468
99646 | 50 4 4 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 4 4 C C C C C C C C C C C C C C C C C | 50018
50018
50018 | | 0 | 8 1 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 4 D 4 | 56741 | 74304
60077
40466
21848
7507 | 45000
0000
00000 | 10170000000000000000000000000000000000 | 580690 | | | @ p & & & | | | | +++++ | | 00000 | | 88777 | | 00000 | ហហហហហ
!!!!! | U 444 0 | | 9290- | 60884
40026
19009
3123
6038 | 24413
9325
793
5921
71837 | 58099711
58009711 | 10000000000000000000000000000000000000 | 188217
188299
8687
111 | 111498
10778
66955 | 12293
7103
34776
112776 | 53003
39613
28384
19316 | 1 5 9 5 3 1 1 2 2 8 5 3 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | | |-------|--|---|---|---|---|--|---|---|--|---|----| | 8494- | 51295
45146 | 5 5 5 4 7 4 5 1 1 1 2 5 6 5 6 7 7 2 5 6 6 7 7 2 6 6 7 7 2 6 6 7 7 2 6
7 7 2 6 | 1682
59004
42914 | 10000000000000000000000000000000000000 | 38360
195882
1815
5705 | 11 09 9 8 5 7 7 8 5 8 8 6 4 6 1 1 1 1 | 12474
7299
36612
12759
1424 | 5266
5266
3926
455
1984
10 | 1567
123931
102047
10244
5344 | 2018
1955
17856 | | | 7615- | 8 4 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 271581
124921
18831
63107 | 5 5 5 6 6 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 63438
57495
43083
26778
12776 | 39 41 7 - 20 81 7 - 1
7 41 0 - 1
9 3 9
5 1 2 7 | 7733-
10470-
10263-
85111-
61964- | 1 2 6 4 6 7 4 8 8 8 8 9 9 5 5 6 1 | 5671
58227
28423
19561 | 15 & 0 0
13700
11912
10103
8351 | 1978
1917
1821
16927 | | | 6662- | 5 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 28828
13959
32077
111 | 49913-
43303-
777- | 560156
56383
43858
27747
13967 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6849988
84199811
11111 | 12810
7672
40183
15824 | 51889
5170
39170
28424
19667 | 15
13
14
14
14
14
14
14
14
14
14
14
14
14
14 | 1939
1880
1786
16613 | | | 5643- | 55
439
839
839
833
833
833
844 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 449641
5110841
430791 | 56679
43349
158601
15096 | 23126
96081
3923
111 | 6016
93776
831777
4684111 | 12966
7850
41915
17333 | 65747
51493
38997
28413 | 1124
8311
9354
9354
7034
7004 | 1 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 70 | | 4570- | 53370
44081
28437
13188
1859 | 30008
166141
57779
1255 | 59 40
657
48631
1 - 1 | 5301
53377
43310
89331
16160 | 106004
106703
1069703
109703 | 51
88
93
70
11
88
81
80
81
80
81
80
81
81
81
81
81
81
81
81
81
81
81
81
81 | 13114
8088
18888
3366 | 65056
51085
38811
28391
198390 | 1 & 5 8 8
1 3 0 1 8
1 1 3 6 0
9 6 7 9
8 0 4 4 | 1861
1806
1717 | 47 | | 3453- | 1240
0040
0040
0044
0044
0060 | 30596-
17784-
7011-
267 | 6947
157
34389-
45885-
41934- | 51616
489940
179955
555 | 487
85817
11503
18569 | 80000000000000000000000000000000000000 | , N 4 1 4 5 1 4 5 5 1 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 198655
198655
198655
198655
198655 | 1 4 3 2 1
1 2 7 9 3
1 1 1 7 7
1 9 5 3 7
7 9 4 0 | | 48 | | 2301- | 47326
43197
30602
16500 | 30997-
18839-
8195-
722-
33730 | 7 9 8 8 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 | 4 4 5 1 4 5 1 5 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 126169
127069
203469
1111 | 7900541
1111 | 13383
8348
46876
21745 | 50253
50233
38402
28308
19988 | 14058
12570
10995
9396
7836 | 173
173
538
538 | 49 | | 1128- | 44
437
488
47
47
48
48
48
46
46
46 | 31207
19773:
9323:
1707: | 8868
1777
33098
39814 | 40998
47540
41909
30819
18912 | 136751
13889
13889 | 7 7 8 3 3 4 9 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 13505
8501
48448
6920 | 3 4 6 8 8 8 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 | 13795
12348
10814
9855
7738 | 1749
1698
1617
15090 | 10 | | 11- | 44444
44444
1111 | +0000
1111 | 11111
66000
11111 | 00000
11111 | 00000
1111 | 88777 | 77766 | 00000 | ហហហហហ
!!!!! | | ರ | \mathbf{x} 9996- | 0.0 | 06466 | တတ္ထာထတ္
တေတ်န်လ်ဝဲ | 77770 | 000000
00400 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 6
0 6 6 6 6 | こうこうこうこん | 0 0 4 6 0 | 00400 | 0000 y | H | |------|---|---|--|---|--|---|--
--|---|--------|---------------| | 51 | 39803
30900
31720
19830
79830 | # # N U 9 N O O P 9 N O U N 0 N O N O N 0 N O N O N 0 N O O O O O 1 I I I I | 344
300
44
300
400
400
400
400
400
400
4 | 84480
6840
6840
69416
8840
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
88416
884 | 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 87
157361
857846
814846
04866 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 8 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 14
4000
4040
30440
8446 | | °5 12 | | 1241 | 50 50 50 50 50 50 50 50 50 50 50 50 50 5 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 106
11336
75386
7570
111 | 2444
0400
0400
0400
0800
0800
0800
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0400
0 | 1111
00000
00000
00000
00000
00000 | 67 75 76 95 76 95 95 95 95 95 95 95 95 95 95 95 95 95 | 4 50 00 00 00 00 00 00 00 00 00 00 00 00 | 0.4900000000000000000000000000000000000 | 11909
10455
8973
7522 | | 5
8 | | 2413 | 31038
37268
31756
212756 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 38 54 P
4 28 55 4 P
9 7 7 24 P
3 7 7 3 0
1 1 1 | 39447
39447
39447
39447
30
30
30
30
30
30
30
30
30
30
30
30
30 | 1244
663388
57750
11111 | 57 1 5 1 5 5 6 7 1 4 7 7 7 7 5 5 6 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 205 P | 00000000000000000000000000000000000000 | 1000
1000
1000
1000
1000
1000
1000
100 | | ,
Ся
Ся | | 3562 | 23 4 9 8 7
23 2 3 4 9 8 7
23 2 3 4 5 7 4
23 2 3 5 7 4 | 2014
2014
531486
1845466
1111 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
3744
3795
1403
1403
1403
1403
1403
1403
1403
1403 | 1244
1249
1254
1256
1256
1256
1256
1256
1256
1256
1256 | 56
987
987
987
985
985
985
985
985
985
985
985
985
985 | 4 00 6 4 00 4 00 0 0 0 0 0 0 0 0 0 0 0 0 | 5998
47919
37175
27903 | 1147
10098
8692
7311 | | .5.4 | | 4676 | 20000000000000000000000000000000000000 | 0 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 12
00
00
00
00
00
00
00
00
00
00
00
00
00 | 1845
34548
36590
30778
21818 | 20 4 7 7 7 7 8 3 3 3 3 7 7 7 8 8 3 3 3 3 7 7 8 8 8 9 3 3 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1973
56634461
584461 | 4 50 84 84 84 84 84 84 84 84 84 84 84 84 84 | 59
347
347
347
347
347
347
347
347
347
347 | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9 | 55 | | 5744 | 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 26530
26530
26530
26530
26530
11 | 23156
35156
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
35000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000 | 180947
180947
19080
10080
1111 | 56
50
50
50
50
50
50
50
50
50
50
50
50
50 | 140
56988
1311943
775
56 | 00000000000000000000000000000000000000 | 11051
9746
8412
7099 | | .56 | | 6758 | 128655
448655
44065
74417
9007 | 8 4 8 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 20000000000000000000000000000000000000 | 31345
993146
1980191 | 56 55 55 55 55 55 55 55 55 55 55 55 55 5 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5770
46419
363119
275311
40 | 108
957
8877
8877
888 | | .57 | | 70 | な 8 8 6 10 10 10 10 10 10 10 10 10 10 10 10 10 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 00000000000000000000000000000000000000 | 1948
1948
1948
1948
1948
1948
1948
1948 | 5 9 1 6 3 2 2 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 4 5 5 5 5 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 | 86903
873803
873803
87387
1157 | 10633
9400
8134
6886 | | .58 | | U | 今
(3
(3
(3
(3
(3
(3
(3
(3
(3
(3
(3
(3
(3 | 884 ほうしょう でんり でいる ままままままままままままままままままままままままままままままままままま | 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000
10000
100044
100044
00045 | 201907
201907
2115077
21507770
11111 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 654
4604
6850
6850
5000
5000 | 561
455379
356879
0080
080 | 10427
9227
7994
6780 | | . 5 9 | | | | | 7 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1233
2011
2011
2010
2010
2010
2011 | 55 | 14261
9673
616573
359658
18047 | 00000
0000
0000
0000
0000
0000
0000
0000 | 10223
9056
7857
6673 | | .60 | | | نم هم عم هم مط
مر هم عم مم مط
ا ا ا ا | 11111 | 444
90000
11111 | 00000 | 0 0 0 0 0 0
1 1 1 1 1 | 88777 | 77766 | Control of the Contro | ហហហហហ
. I I I I I | 4440 | ซ | ## TABLE OF THE WEDGE FUNCTION $G_{ u}(e^{x})$ | 1 0.0 | 000000
06400 | ထက္ကတ္တတ္
၁၀ က နှစ် ဝ | 77770 | 000000
0040 | ນ ໝ ໜ ໜ ໜ
c c c c d d c c c | 0 6 4 4 4 4 0
0 6 4 0 0 | こうこうこう | 00000000000000000000000000000000000000 | 11111
00468 | 0000 | e/n | |-------|---|--|---|--|--
--|---|---|---|------|-------------| | 10068 | 105
21234
21534
515
714
105
714 | 4 H H 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1 | 448666
0 5 5 6 6
4 0 6 6
6 6 6 6
6 6
7 7 6 | # W W # W W W W W W W W W W W W W W W W | 000
0400
00400
00440
00440 | 136 1
97894
00778
64059
65440 | 14 85 54 44 55 99 65 65 65 65 65 65 65 65 65 65 65 65 65 | 10020
8887
7726
6567 | | ,61 | | 10671 | 15833
19369
20714 | 510000
510000
50000
50000
50000
11111 | 110699
000139
500283
40083 | 1
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 4004
66460
44004
40000
4004
4004 | 44
044
0444
0444
0444 | 236 94
03494
041081
64488 | 5450
5450
6566
6666
6666
6666
6666
6666 | 9820
8718
7583 | | .62 | | 11171 | 20979
1 4536
1 1 9 5 5 4
1 1 9 6 7 1 1 5 | 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 74100
741019
744017
8450
7450
77 | 0000 P P P P P P P P P P P P P P P P P | 45000000000000000000000000000000000000 | 44
64849
90049
9005
111 | 4 650 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 5 4 5 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 968581
78451
53477 | 16 | .63 | | 11563 | 25961
14395
18454
16405 | 1563688
1160048
117404
11111 | 16179
10533
187880
18789 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1235
1235
1235
1235
1235
1235
1337
1111 | 44
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
900000
90000
90000
90000
90000
90000
90000
90000
90000
9000000
900000
900000
900000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
90000
9 | 4 646
4650
7650
7650
7650
7650
7650
7650
7650
7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5789
8734
4188
885 | | ,
0
4 | | 11843 | 30743-
3418-
11715
17073 | 13485
17265:
15703:
11607: | 1619
10866
60041
22908
1094 | 00000000000000000000000000000000000000 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | 105
276
376
376
376
330
111 | 14331
10010
66394
61094
21094 | 5143
42096
33609
26116 | 9 & 3 ± 1 7 1 7 1 7 1 7 8 8 1 2 1 1 4 2 2 2 1 4 2 2 2 1 4 2 2 2 2 1 1 1 1 | | .65 | | 12010 | 11
35 8 7 5 2 8 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 11 1 2 5 0 0 1 1 1 5 2 9 6 6 7 1 1 1 7 2 8 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 16138
111136
84095
86963 | 123377
903977
903977
91719 | 0 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2467143
2467152
3018672
313667 | 5064
415330
332330
125300
125300 | 6005
6005
6034
748 | | .66 | | 12061 | 11 13 9 5 4 3 8 6 6 8 7 8 6 8 7 8 8 | 1 4 7 3 8 8 1 1 7 7 8 8 8 1 1 1 | 4504
50475
50884
77859
8888 | 244
2004
2004
2000
2000
2000
2000
2000 | 374
3114
15305
6611
1 1 1 1 | 30 42 7 7 5 7 5 7 5 7 1 1 1 | 11
10
10
10
10
10
10
10
10
10
10
10
10
1 | 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 88 48
78 9 6
5 9 1 1 1 | | .67 | | 11996 | 11 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1 3 3 3 3 0 1 1 1 1 7 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 15793
115793
71203
84615 | 44
800000
800044
775040
04040 | 1 2 3 6 6 8 9 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 4450 00 00 00 00 00 00 00 00 00 00 00 00 0 | 8660
7736
6780
5827 | | .68 | | 11816 | 10 240
131763
10 240
10 183 | 3114
3114
3154
3154
3154
316
316
316
316
316
316
316
316
316
316 | 1155
11682
11882
11917
1997 | 14 44
15 6 2 5 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 20000000000000000000000000000000000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 04040
04040
04000
0000
0000 | 100000
10000
10000
10000
10000
10000
10000 | 847
7577
57849 | | .69 | | 11522 | 200
200
200
200
200
200
200
200
200
200 | 10270
120270
126870
11392 | 1116169
111673
115866
11588 | 11 | 29640
29640
16070
1111 | 4 D 0 G 4 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 4 5 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 19 49 4
23 19 8
24 | 5 5 5 2 8 9
5 5 4 8 9
5 6 7 4 8 9 | | .70 | | 11- | 444444
444444
1111 | 1111 | 11111 | 00000 | 000000 | 88777 | 77766 | 00000 | ហហហហហ | 4410 | ъ | | | | | | TABLE OF | THE WEDGE | FUNCTION | $G_{\nu}(e^{x})$ | | | | Page | |--------|----------|---------------|------|------------|-----------|----------|------------------|--------|-------|-------|------| | × | 71 | .72 | .73 | 7.4 | .75 | 76 | .77 | .78 | .79 | .8 0 | 4 | | (0400) | | | | | | | | | | | 4410 | | NO | <u> </u> | ು
ಬ | 7 5 | 5 7 | 4 | છ
પ્ર | 0 6 | æ | 7 3 | 5 7 | ហហ | | ₽. | N | 11 | 95 | 80 | 65 | 51 | 36 | S
S | 0 | 8 | | | O, | w | 8 | 13 | 00 | 88 | 75 | 3 | 5 1 | 39 | 27 | | | 30 | 5515 | 5412 | 5309 | 5208 | 5106 | 5005 | 4906 | | 4708 | 4610 | | | 0 | | S | S | 000 | 43469 | | 41890 | 41104 | 40321 | 9 5 | 6- | | N | 86 | 804 | 745 | 686 | 627 | 56 | 507 | 4 8 | 88 | 33287 | 9 - | | ** | 12 | 087 | 045 | 004 | 962 | 91 | 876 | 833 | 790 | 746 | | | Ų, | 24709 | 4 5 | 18 | 91 | 63 | W | 0 6 | 277 | 248 | 218 | | | 1 0.0 | 0.000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.0
7.2
7.4
7.6 | 000000000000000000000000000000000000000 | 003400 | 4444 | พพพพพ
∂ is 4 o o | 0 4 4 6 6 | 11.6 | 0000 5/m | |-------|---|---|---|--|--|---|--|--|---|------------------| | 11118 | 556207
5608
10984 | 656
8638
11811
11106
84691 | 14754
111669
791119
44652
18092 | 30
30
30
30
30
30
30
30
30
30
30
30
30
3 | 110000
10000
10000
10000
1111 | 15 1 8 6 1 1 8 6 5 4 3 1 1 | 14166
10197
70358
46014
27971 | 46651
38636
31280
24709
18996 | 8108
7264
5390 | .7 1 | | 10608 | 55779
287631
4021
9732 | 3084
69521
108571
107421 | 14273
11609
80972
47541
21033 | 57957
236457
17740
10039 | 10000000000000000000000000000000000000 | 1 1 5 8 9 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14114
10206
70836
46694
28714 | 38049
30872
188551 | 79
711
50
10
10
10
10
10
10
10
10
10
10
10
10
10 | .7
8 | | 9996 | 57822
31675-
11268-
1872 | 5 4 9 3 5 8 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 13728
111493
82416
50176
23856 | 2691
2691
3691
3391
31593
111 | 110000
00000
00000
00000
00000
00000
00000 | 8 1
4 9 8 7 6
6 8 8 8 8
7 8 8 4 8
8 0 0 8 6 | 11 4 0 5 4
11 0 2 0 9
71 2 6 0
4 7 3 3 3 2
2 9 4 2 8 | 37458
30459
24186 | 7750
6958
6134 | .73 | | 9289 | 139671
6 9931
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7869
83458
97393
111 | 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 546901
300911
7030-
12133 | 27718-
26696-
22258-
116601- | 17257
8437
87637
281177 | 13988
10206
71634
47930
30111 | 30086
30086
30086
30048
183915
554 | 7576
6808
5808 | <i>3</i> 4 | | 8492 | 367151
1655011
245611 | 10199
16739
75901
98151 | 111100
111100
84053
84683
989 | 67755
33166
9641
4294 | 11660
11660
11660
1183
1111 | 1790
9022
3251
18361 | 13916
10197
71957
48487
30765 | 43469
36271
29621
183938 | 7403
6659
5106 | .7 ₅₁ | | 7615 | 4 8 8 8 4 4 6 8 8 8 4 8 8 8 8 8 8 8 8 8 | 1 2 4 6 7 1 2 3 3 7 1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 | 11737
108227
564238
314524 | 70606-
36129-
12217-
2336 | 22 4 3 6 4 3 6 5 9 9 9 1 1 1 1 1 | 18538
9594
3729
1867 | 1383
10188
72228
31388
8 | 48678
35678
89196
83356 | 723
6512
5759
5005 | ,7
6 | | 6665 | 8 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 14662
1917
5150-
7870-
77537- | 10965
10497
844097
57990
53653 | 1489691
8 36891
1 4 6 9 9 1 1 1 | 22 26 1 0 2 3 3 8 4 6 6 1 1 1 1 6 5 3 3 1 1 1 1 1 | 1 11
4 5 4 0 1 1
8 5 8 6 0 1
8 6 6 4 8 6 7 | 13753
10161
72461
49477
31980 | 41890
35079
28768
23069 | 7063
6366
5637
4906 | .77 | | 5652 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 16770
3700
3874-
7114- | 1014
10120
83340
59108
35661 | 75635
178877
16027
16021 | 20810
22786
20577
16419 | 19735
107035
46608
115086 | 13663
10135
72623
49911
38540 | 41104
34483
28336
28777
17876 | 0000
0000
0000
0000
0000 | .78 | | 4585 | 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 18778
5460
2574
6308
70477 | 9878
9695
59987
37469 | 777799
1968451
556641 | 1896
816768
1168668
118861 | 111230
111230
121235
1225
1225
1 | 13566
10103
72741
50303
33069 | 2003
2003
2003
2003
2003
2003
2003
2003 | 673
6080
5396
4708 | .79 | | 3474 | ###################################### | 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 807885
607885
90546
60546
60546 | 79
79
70
80
80
80
80
80
80
80
80
80
80
80
80
80 | 17088
20517-
194317-
160651- | 20843
11754
165761
16576 | 13464
10065
72813
50655
33566 | 395
33384
87464
178180 | 555
555
553
553
553
553
553
553
553
553 | 0 | | 11 - | حر معر دحر دحر
د- دحر دحر دحر
۱ ۱ ۱ ۱ ۱ | 1 1 1 1 1
P 3 0 3 0 | 1111
1111 | 00000 | 0 0 0 0 0
0
1 1 1 1 1 | 88777 | 77766 | 00000 | ភេសភាភាភ
IIIII | p 44410 | | ŭ | | |------------|------------------| | 8 & | | | 8
3 | | | 0
4 | TABLE OF | | . 89
55 | THE WEDGE | | .86 | FUNCTION | | .87 | $G_{\nu}(e^{x})$ | | 8
8 | | | .89 | | | .90 | | Page 44 | 1 0.0 | 9.9
9.6
4.0
9.8 | လ လ လ လ လ
ဝ <i>လဲ နဲ</i> က် လ | 7.0
7.2
7.4
7.8 | 0,000,00
00406 | 0.0 4.0 0
0.6 4.0 0 | 4444 | υυυυυ
doi4oo | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1.6
1.8
1.8 | 0000 | ,
(| |---------------|--|---|---|---|--|--|--|---|---|--------|-------------| | 2330 | 5767
44351
143472
114345
11 | 8 8 4 5 8 8 6 6 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7428
8712
60779
5048 | 248939
248985
25454
1111 | 15174
19313
18786
15824
11956 | 21363
12257
20201
33151 | 13357
10023
72838
50966
34032 | 38766
32690
27025
21875
17308 | 6413
5800
5159
4513 | ; | 36
1 | | 1164 | | 104095
11395
563654 | 6451
8158
76620
60697
41603 | 8 2 8 1 7 2 6 4 3 3 4 1 1 1 3 8 1 1 | 13229
18067
18096
15541
11944 | 21859
12746
23793
5651 | 1324
9975
72816
51238
34465 | 37995
32094
26584
21567
17109 | 5685
5663
5043 | | 3 0 | | 13- | 53113-
44140-
30701-
170783- | 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 | 7 7 5 4 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 5 2 9 8 4 4 5 2 9 4 4 1 2 9 5 9 5 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11258
16781
17363
15218
11897 | 2 133
2 133
2 133
2 134
2 134
3 3 | 13126
99226
72746
34867 | 37228
311499
26141
21255
16905 | 4928
320 | č | | | 1189- | 5022
435091
1883091 | 26947
13538
4010
17491 | 441
6939
70937
59579
53214 | 547131
130499
1777511 | 15 4 5 9 9 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 22780
13675
7304
30858
4930 | 1300
9864
72630
51660
35237 | 3646
30905
25697
20941
16697 | 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | | 30 | | 2355- | 348
348
348
348
348
348
348
348 | 281
5281
5284
7775
1 | | 35554
1437373
1137373
1111 | 7254
14103
15773
14453
11708 | 23205
141114
77111
34380 | 12876
9801
78470
51812
35574 | 35709
30312
25251
16483 | 5798
5263
4701
4132 | | 00
05 | | 3498- | 10000
10000
10000
10000
10000
10000 | 31576- | 638591
57214
43867 | 347675
165132
16510
1111 | | | 1 | 3 4 9 5 7 8 8 8 8 9 9 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 5651
5134
4590
4040 | | .86 | | | 393
3958
21897
551
551 | | 1236
4876
59833
55580
43830 | 86056
58874
35771
18162 | 3193
11303
14035
13538
11375 | 23980
14941
8492
41078
13100 | 12608
9668
72018
52001
36154 | 34211
29137
24360
19979
16050 | 55
55
55
55
55
55
55
55
55
56
56
56
56
5 | | _8 7 | | \mathcal{V} | 51
1763
1763
199 | 2 N 2 C 2 | 565145 | 70705 | 1151
9865
3115
3028
1164 | 4 5 8 4 5
W W 8 W F | 4 57 C C F C F C F C F C F C F C F C F C F | 33470
28548
23913
19653
15827 | B U B U | | œ
œ | | 90 | | 0 4 9 5 8 | 6 E E E E E E E E E E E E E E E E E E E | | 8444
6444
60666
80640 | 4 D O C D
0 0 C C D
0 0 C C D
0 0 C C D | 00000
00000 | 50440 | 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 89 | | 9 | 2585
30885
431331
1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 | 1004W | 00000 | | 011693
0194
4183 | 495
957
1078 | 14008 | 38378
39030 | 6160
7638 | | 000 | | 11- | | 11111
1000 | | 99999 | 00000 | 88777 | 77766 | 00000 | ហហហហហ
ព្រ | 0 4440 | d | | - | _ | 4 | |--------|---|---| | מ כר ר | > | • | | Ç | X | 7 | | Г | _ | - | | Г | ۲ | 1 | | C | 7 | > | | - | 1 | 7 | | - | | 4 | | = | 3 | | | r | 1 | 7 | | : | 1 | E | | r | ٦ | ٦ | | • | = | 2 | | ٥ | 3 | 2 | | ſ | T | 1 | | - | 7 | ٦ | | (| Ξ | _ | | : | 2 | 2 | | (| |) | | • | - | + | | • | - | • | | (| | > | | | 2 | = | | • | 3 |) | | | _ | | | - | _ | • | | (| 3 | • | | | | | | - | - | - | | 1 0.0 | 000 4 000
000 4 000 | 00000
00400 | 7.0
7.2
7.4
7.8 | 6.0
6.20
6.80
6.80 | 0 0 0 0 0 0 0 | 0 6 4 4 4 4
0 6 4 6 6 | υυυυυ
∂ ά ά δ ἀ | 0,000,000
00,400 | 1.6 | 0000 | ·/ > | |--------|--|---|--|---
---|---|--|--|---|------|----------| | 8518- | 1 1 1 1 1 | 3168
21168
11926
3820 | 4410306
10306
10307
10307
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
10306
1030 | 1140217
41077
41077
40277
41111 | 101439
101811
1030511 | 1633
9917
33791
2365
656 | 1 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 11885
1088
1088
1088
1088
1088
1088
1088 | 3444
55054
55054
5746 | | .91 | | 9317- | 1582
870555
16119 | 31639
21779
12805
5821
11023 | 4112
1037
35778
43305
40085 | 882817
619357
252798111 | 6999
3936
9153
10017 | 25000000000000000000000000000000000000 | 11867
9239
70168
518268
37054 | 3057
2623
2813
1833
66 | 44 EV 8 8 4 4 EV 14 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | .9
20 | | 10029- | 1200
6303
5303
5303
5303
5303
5303
5303
53 | 3141
22261
13600
18148 | 30 51
400 8440
601 885
508 85 | 81
6195
82795
837999111 | 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0
1 0 | 16986
8718
896548
7187 | 11708
9143
69683
51668
37148 | 118666
118666
118666
118666
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
1186
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
118 | 34 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | .93 | | 10647- | 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3100
82600
113600
74307
1444 | 36 7 7 3 3 3 7 0 1 6 | 79774
617711
275000
15008 | 11011
703701
9325111 | 3591
17861
68868
11708 | 11
15
9004
77
25
25
25
25
25
25
25
25
25
25
25
25
25 | 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 5 5
7 4 7 5
8 6 6 7 5
8 7 8 8 | | .94 | | 11166- | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3004825
1149817
114983
11983
11963 | 7148-
1353-
19068
33156
35175 | 77
61398
43991
16088 | 1.2 9 8 8
60 7
5 9 5 4 • 8
8 6 1 7 • • 8 | 335098
335098
355098 | 11383
8940
68605
51295
37230 | 28 4 6 9
24 5 4 1
20 8 0 8
17 3 4 0
14 1 8 7 | 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | .95 | | 11580- | 10000
2000
2004
2004
2004
2005
2005
2005 | 2000
2000
2000
2000
2000
2000
2000
200 | 8105
13142
13278
13410 | 75793
60819
44361
170931 | 149
2123
78857
1 1 | 26245
17754
111390
67857
35928 | 11216
88816
51016
3725
3725
429 | 27783
23985
20369
17007
13945 | 430
3942
3168 | | .96 | | 11887- | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4 9 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 30000000000000000000000000000000000000 | 73466
600541
4458011
1800621 | | 2637
17972
11643
703843
38282 | 1104
87285
507395
72781 | 27106
23433
19943
16674 | 34
34
34
34
34
34
34
34
34
34 | | .97 | | 12083- | 84044
2000 | 00007 | 39
11
15
15
15
15
15
15
15
15
15
15
15
15 | 709
446699
1069997
1011 | 87
514
637
750 | 0 2 2 3 4 4 8 5 2 8 8 5 2 8 5 2 8 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8 6 C 4 A C C C A C A C A C A C A C A C A C | 60000
40004 | 0 3 7 0 0 7 0 6 | | .98 | | 2167 | 9 4 0 G 6 | 00000
40400
0000 | 0 4 4 C C C C C C C C C C C C C C C C C | 579581
1475641
14756441
1476641 | 068
663
151
700 | 00000
000400
04000 | F4C4C | 0000
0000
0000
0000 | 9 C C C C 4 C F C C | | .99 | | 20 | 8 8 5 6 W 4 | 5 0
6 5
1 8
1 7 | 31336
31336
31336
31336 | 00450
00440
00000
40500
40500
0000
1111 | 00 40
44074
04808 | 478668
73311
7371 | 105
8385
65385
697889
5389 | 5 1 8 0 8 6 4 8 9 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 | 5815 | | 1.00 | | | 4 44 44 44 44
44 44 44 44
1 1 1 1 1 | 11111
10000 | 00000 | 00000 | | 88777 | 77766 | 00000 | ហេហហហ
ព្រៃព្រ | 4440 | ซ | | TABLE | | |-------|---| | 00 | | | r- | | | m | | | 0 | | | 0 | | | _ | | | I | | | IHE | | | 45 | | | ~ | | | WEDGE | | | G | | | Ш | | | FUN | | | | | | Z | • | | C | ֡ | | _ | | | O | | | Z | | | 10000 | | | G | | | 67 | | | 6 | | | | | | _ | | | خنز | | | | | | | | | | | | |----------|--|--|--|--|---|--|---|---|---|----------|----------| | 0.0 | 000000000000000000000000000000000000000 | 0 0 4 0 0
0 0 4 0 0 | 7.0
7.8
7.6
7.8 | 000000
00400 | 0 0 4 0 0 | 4 4 4 4 4
0 0 4 0 0 | うでうするののは、ないのは、ないのは、ないのは、ないのは、ないのは、ないのは、ないのは、な | 0 0 4 6 0 | 0,111,0
0,4,7,1,1,0
0,4,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | K 64 6 6 | | | 11997- | 11 7 5 5 6 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2346
21200
16530
11318
66592 | 1030
16064
16064
111 | 5521
4551
24594
753485
7193485 | 84
94
99
99
99
99
99
99
99
99
99
99
99
99 | 2665
1865
1865
1945
1955
1955
1955
1955
1955
1955
195 | 7 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1122
1232
1332
1341
137
137
137 | | 1.01 | | | 11745- | 3515
10216
47214
117747 | 21790
20469
16436
11593 | 13004-
6555-
21815-
4513
17660 | 58881
434761
2211181 | 11008
11008
5417687
80170 | 26669
18773
12693
81510
48710 | 101
63140
36984
5656 | 2075
17795
15018 | | 1.0 2 | | | 11385- | 1 4 0 0 6
1 8 2 6 6
1 1 1 | 19995
19616
16239
11791
74801 | 13649:
7207:
27464:
14663 | 555
544
5764
1184451
2811 | 24
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 2666
128877
128877
503410
503410 | 9989
63016
483058
538
70 | 2023
17377
14690
12219 | | 1,0 3 | | | 10920- | 17688
1076
111869 | 18089
18647
15941
11911
78138 | 14239-
7828-
32984-
4198-
11587 | 5171
496561
3219291
5013691 | 1383
450954
251764
11 | 11866
8530968
48010
0010 | 3607
607
807
807
807
807
807
807 | 19723
16962
14364
11970 | | 1.0 4 | 9 | | 10354- | 47006
3000
5000
5000
11000
11 |
16080
17568
15548
11953
3 | 14770 -
8414 -
38350 -
8533 -
8451 | 47945-
47516-
40976-
31974-
22811- | 150
55893
66801
71 | 26
19029
13146
86879
7 | 9625
7763
61412
47581 | 1921
16550
14041
17722 | | 1.0 5 | 20 80 10 | | 9694- | 50385
24619
6833
3727 | 13982
16385
15047
11917
83168 | 15240
89631
128251
178270 | 44041
450341
39888
31699
11 | 38483
16575
6896
151
3092 | 26504
19078
13268
55774
4 | 60558
470638
7069 | 18716
16144
13718
11475 | | 1.06 | | | 89 & 4 | 53340
27816
9641
16000 | 1145100
1146055
1146055
116055 | 15649-
9474-
48522-
17055-
2061 | 4001
42812
38670
313131
23164 | 33978
17890
7377
985
2489- | 2641
19109
13374
89897
57339 | 56979
56658
45665
50889 | 1822
15741
13398
11228 | | 1.07 | , | | 8113- | | 9565
13737
13779
11610
85904 | | 7 T N O O O | 5
4
1
1
1
1
8
8
1
8 | 26
19123
13467
91234
88821 | 907
907
907
907
907 | 17736
15344
13080
10982 | | 1.08 | | | 7208 - | | 11202
11302
11301
1301
1501
1501
1501
1501
1501
150 | 8 プ F & B A P | W0574 | | 1961
1911
1911
160
160
160
160
160
160
160
160
160
1 | 20000 | 1725
1425
1225
1075
70737 | | 1.09 | | | 6237- | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10768
12171
11000
86283 | 200754
7515592
1111 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 381
381
31688
3468
507 | 26014
19098
13608
93569
51589 | ###################################### | 4444
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 1.10 | | | <u> </u> | حر هم هم هم هم
هم هم هم هم
د ا ا ا ا ا ا | 11111 | 11111
00000
11111 | 00000 | | 8 8 7 7 7 | | | ហហ្ហាហ្ហា
ររររ | | , | | | - 200 | | | |---|-------|---|--| | | r | _ | | | | - | 1 | | | | = | 1 | | | | | | | | | 1700 | • | | | | - 0 | 1 | | | | | | | | | 2 | 2 | | | 7 | 2 | - | | | | c | 0 | | | | - | - | | | 1 0.0 | 0.0000 | 0 0 0 0 0 0
0 0 4 0 0 | 7.0
7.2
7.4
7.8 | 0,000,00
00400 | 0.00 d 0.00 | 4 4 4 4
0 0 4 6 0 | 00000000000000000000000000000000000000 | 0 0 4 0 0 | 064,00 | 00000 | 'n | |-------|---|--|---|--|---|--|---|--------------------------------------|--------|-------|-------| | 5210- | 19891
11774 | 9 1 8 5 7 5 1 1 1 2 5 5 8 7 5 5 8 6 6 | 1066
6600871
0793571 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11 8 9
8 15 8 0
8 15 9 0
8 15 9 0
8 15 9 0
1 | 00000000000000000000000000000000000000 | 56 69 68
44 19 7
34 17 7 | 16317
14175
102142 | | | 111 | | 4135- | 62012
40210
82108
8879 | 200
7548
10264
10106
84306 | 16725
1113765
696811
1365511 | 18476
88960
30803
27785
11 | 40581
83930
18514
5086
586 | 6 5 5 6 6 5 8 8 9 9 9 3 3 6 9 9 3 3 6 9 9 3 3 6 9 9 9 9 | 550611
43570
33802 | 15857
13795
11835
10008 | | | 1.1 2 | | 3023- | 62445
41844
24151
10822
1977 | 82452
82452
82452 | 16742
116161
730311
168351 | 13971
859011
86781411 | 41717
25018
13474
15879
1203 | 25 5 4 5 5 5 6 6 6 8 2 2 1 1 5 5 6 8 2 2 1 1 5 5 6 6 8 2 2 1 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 34566
346696
346696
466696 | 15405
13420
11531
9768 | | | 1.1 3 | | 1883- | 43164
26003
12676
3535 | 4541
4154
8106
8950 | 1166
1118071
1938371
19181 |
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
200000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
200000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
200000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
20000
200 | 126062
14408
16660
1817 | 25
1885
1372
9688
9688
909 | 531560
4531560
33068 | 1496
1305
11235
1123
530 | | | 1.1 4 | | 727- | 5061
5061
1442
5061 | 7708550
8550
1 | 16580
119490
18730
468771
131 | 1 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4379
27062
15314
2426
2726 | 24999
18757
13719
97430
66785 | 7785
6423
52135
41597
576 | 12658
108687
90934 | | | 1.1 5 | | 436 | 61078
29083
16057 | 9185 -
665
5758
7566
73611 | 16401
1204111
81055111 | 10000000000000000000000000000000000000 | 44735
28015
16191
8177
3031 | 24748
18645
13701
97871
57575 | 7608
6285
51142
40913
32137 | 14095
12337
10640
9058 | | | 1.16 | | 1595 | 5974
45162
30287
17557
11757 | 11438
1090
4519
69642 | 1161
12088
12088
11680
1111 | 13012
20518
20518
19830 | 4561
28921
17037
8910
3628 | 2 4 4 8 3
1 8 5 1 8
1 3 6 7 1
9 8 2 0 5
6 8 2 7 8 | 74
61481
50140
40217
1685 | 13673
11974
10350
8826 | | i. | 1.1 7 | | 2740 | 579 98
45161
31255
18913 | 136
2830
3259
53259
1 | 1158
544657
657
657
657
657
657
657
657
657
657 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 64
7977
9657
1221 | 118377
118377
118377
118629
98432
94 | 7240
6011
49134
39511
31220 | 13258
11626
10064
8596 | | SP. | 1.18 | | 3861 | 55839
44826
31981
20115
10609 | 15750 -
4573 -
1979
5141
60335 | 35658355
6561035
661035
661011 | 1 3 4 0 8 1 9 9 0 0 3 5 1 1 1 | 47158
30587
18632
10319
4795 | 5 9 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 7061
5874
48123
38796
30743 | 1285
11285
97884
83681 | | | 1.19 | | 4947 | 53
443
3445
11145
1115
115
115
115
115
115
115
1 | 1 7 7 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1150
86606
87968
8888
8888
1111 | 17920
2928
13538
17459
17339 | 47831
31346
19379
10992
5363 | 23608
18058
13509
98577 | 6884
5738
47108
38072
30255 | 12452
10947
9503
8143 | | | 1.20 | | 11- | حر مر مر مر مر
مر مر مر مر مر
۱ ۱ ۱ ۱ ۱ | HO000 | 11111
00099
11111 | 00000 | 000000
11111 | 88777 | 77766 | 00000 | ហហហហហ | 44410 | b | ## TABLE OF THE WEDGE FUNCTION $G_{ u}(e^{X})$ | 1 0.0 | 0,000
0640
0640 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.0
7.2
7.4
7.6 | 0 0 4 6 00
0 0 4 6 00 | 0 0 4 0 6 | 0.00 d d d d d d d d d d d d d d d d d d | υυυυυ
6 % 4 δ & | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 06.44.69 | × 64000 | |--------------|-------------------------------------|---|--|--|--|---|--|--|----------------|---------------| | 5989 | ONEGO | 1977
7978
49458
49458
111 | 359714
597175
74755
397175
39111 | 22387
111421
158581 | 48 4 3
3 2 0 5 5
2 0 0 9 5
1 1 6 4 3
5 9 1 8 | 2329
17880
13480
98498
70231 | 97656 | 12060
10617
9229
7920 | | 1.21 | | 6978 | 87689 | 215
9579
1900
1900
1900
111 | 1404
111547
87238
60754 | 26799
3850
8670
14206 | 48978
32713
20766
12271 | 2296
17691
13344
98322
70510 | 3 4 5 5 6 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 | 11676
10291
8959
7700 | | 1.2 2 | | 7905 | 00 4 00 4 05 | 2329
11154
3181
13181
1481 | 1134
86944
017748
7168
71748 | 31
72
72
72
72
72
72
72
72
72
73
74
74
75
75
75
75
75
75
75
75
75
75
75
75
75 | 494
3334
21435
5051
6987
6987
9974 | 22626
17491
13246
98050
70707 | 4
5
5
5
5
5
5
5
6
6
6
6
7
6
6
7
8
6
7
8
7
8
7
8
8
8
8
8 | | | 123 | | 8762 | 0 4 D W O | 20 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 6 8 1 1 2 8 4 1 5 5 5 5 5 8 4 1 5 1 1 1 1 1 1 | 3541
10587
107781
131881 | 123388
73888
7380077
5500000000000000000000000000000000 | 22279
17281
13137
97686 | 8 8 2 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | ű | 1.8 4 | | 9 55
4 80 | 44000 | 2 12 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1065
6050
7060
1060
7060
1000
1000
1000
1000
100 | 139602
13918
11955
12020 | 12340
74840
74850
7000
8480
8480 | 21923
17060
130160
97232
70862 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 1. 8 5 | | 10239 | 0000
0000
0000
0000 | 27702-
15473-
6882-
1381-
17157 | 11396
10279
83854
63018
43732 | 43693
17212
1314
7201-
10816- | 50 50 50 50 50 50 50 50 50 50 50 50 50 5 | 215
16831
12891
96690 | 7 4 4 5 5 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 | 10218
9050
7920
6848 | | 1.86 | | 10846 | 5 4 8 5 6
8 4 8 6 4
8 5 5 1 5 | 167531
101386
101386
1111 | 10000000000000000000000000000000000000 | 47681
20462
3818
5379 | 1 8 3 5 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 21
16592
127542
70065 | 83345
6886
58998
5998
8994 | 9 8 7 8 7 8 8 7 8 8 7 8 8 8 8 8 8 8 8 8 | | 1.27 | | 11358 | 78781
09415
78004 | 1299
1799
1799
1656
1111 | 98
98
93
96
93
96
93
96
96
96
96
96
96
96
96
96
96
96
96
96 | 5
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 508
35598
24030
15493
84 | 208
16345
12608
95357
705357 | 38985
38985
38099
36099 | 0 8 7 7
7 4 4 4
7 7 6 6 4
7 7 7 9 6 | | 1.
20 | | 11772 | 734
34
34
34
34
34 | 30000000000000000000000000000000000000 | 77898
77575
617578
61757
61756
1111 | 55317
26796
8789
1690- | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2004
1004
1009
1009
1000
1000
1000
1000
1 | 0 U U U U U U U U U U U U U U U U U U U | 9206
8182
6243 | | 1.29 | | 12083 | 7155 | 112300
11230
1091
1911 | 4 6 7 8 8 8 6 7 8 9 8 9 8 9 8 8 8 8 8 9 9 9 9 9 9 9 9 | 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5097
26147
16349
10347 | 200
15830
937394
93710 |
30544
444
4059
4059
4059
8059
8059
8059
8059 | 888
6905
6048 | | 1,30 | | 7 | | 4444 | 444
00099 | 00000 | 000000
11111 | 88777 | 77766 | 0 0 0 0 0
0 0 0 0 0 | ហហហហហ
!!!!! | U 44410 | | 1 0.0 | 9.0
9.2
9.6
9.8 | 0 0 0 0 0
0 0 4 0 c | 7.0
7.4
7.6
7.8 | 000000 | 0.0000 | 44440 | らっている
るられる。 | 0 0 4 d d | 1.0
1.2
1.6 | 0000 | /× | |-------|---|--|---|---|--|--|---|----------------------------------|-------------------|-------|-------| | 12290 | 6367
18245
21866
20564
16811 | 32147-
20901-
12171-
5908-
17877- | 7174-
7802-
71759-
59484- | 32859
13662
43018 | 50947
36351
25140
16730 | 1963
185688
9871868
43777 | 2000
4000
4000
4000
4000
4000
4000 | 857
6634
5856 | | | 131 | | 12391 | 1175
14668
19674
19443
16443 | 32562
21670
13043
6727
24720 | 6241
7208
57967
45135 | 35772
16045
3867
2985 | 50862
36506
25432
17083
10952 | 19230
15288
11951
91774
69084 | 8 9 0 0 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 56499
56499 | | | 1.32 | | 12386 | 4025-
10987
17335
18171
15940 | 32815
22324
13841
7506
31408 | 5285
6587
561767
44620 | 69024
38598
18386
5703
1620- | 50722
36614
25684
17406
11292 | 18825
15007
11770
90707
68562 | E G G G G G G G G G G G G G G G G G G G | 79
7110
5278
83 | | | 1.33 | | 12274 | 9197-
7229
14868
16758
15307 | 3290
228590
1455611
37896111 | 4311
5941
60870
54182
43897 | 72090
41331
20678
7523 | 50527
36675
25900
17700 | 18416
14722
11582
89576 | 33919
33919
37588
888 | 7673
6857
5302 | | | 1.3 4 | | 12058 | 14309
122291
152291
145214 | 32831
232741
15200
4414771 | 55533
55733
519738
7738
1 1 1 1 | 7500
43965
22915
11222
2222 | 50279
36691
26078
17964
11906 | 18006
14433
111390
88388
67342 | 3374
37737
38137
38137
3888
4888 | 7388
6610
5858
5124 | | | 1,35 | | 11739 | 19326
9624
13553
13674 | 5 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 000044
0000000000000000000000000000000 | 77755
46496
25092
111093 | 36668
36668
186218
181199 | 17593
14140
111192
66648 | 311198
311198
311198
315714 | 7111
6370
5645 | | | 1.36 | | 11321 | 2 4 4 2 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100220
100220
5013311 | 1315
3881-
47785-
46779- | 803
489
19720
1283
333
49 | 26533
26533
126433
2404
31 | 17178
13844
10989
85847 | 8888
1888
1888
1888
1888
1888
1888
188 | 0000
0444
484
00040 | | | 1.37 | | 10807 | 28948
8043
4098
9932
11599 | 31654
23787
16599
10652
110852 | 4433
31633
31633
1 1 | 88 88 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1266474
1266474
1266390
126660 | 16763
13543
10781
84501
65106 | 6666
4666
4666
4666
6667
6667
6667 | 00000
00000
00000
00000 | | | 1.38 | | 10202 | 33491-
11788-
1281
8001
10418 | 3095
33713
111108611 | 380983
408383
73635 | 3334
3348
3348
3348
330
330
330 | 48798
36318
264318
186727
12866 | 16348
13241
10570
83110 | 10000000000000000000000000000000000000 | 00004
60004
00004
04004 | | | 1.39 | | 9511 | 37817-
15452-
1546-
6009
9154 | 30102-
23517-
17081-
11499-
70579- | 3316
576
576
576
576
576
576
576
576
576
57 | 555499
333111
17821 | 365
365
365
365
365
365
365
365
365
365 | 15933
12937
10356
81678 | 6861
6865
6865
6865
6865
6865
6865 | 4 5 5 6 7 7 8 8 8 8 8 9 9 | | | 1.40 | | 111- | 44444444
44444444
11111 | 11000 | 747
00099
11111 | 00000 | 000000
11111 | 88777 | 77766 | 00000 | ហហហហ
ព្រ | 44410 | ש | TABLE OF THE WEDGE FUNCTION $G_{\mathcal{V}}(\mathbf{e}^{\mathbf{x}})$ | A | | |----------|------------------| | 1 4 3 | | | 1 4 4 | TABLE OF | | 1
A | 3 H.L | | 1 4 6 | WEDGE FUNCTION | | 1 4 7 | $G_{\nu}(e^{x})$ | | 1 4 8 | | | 149 | | | л
Э | | | 1 0.0 | 9.9
9.9
9.4
9.6
9.8 | 0 0 0 0 0 0
0 0 4 0 0 | 7.0
7.2
7.4
7.8 | 000000 | 5.5.5.5
5.6.4.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6. | 0.4.4.4
0.6.4.6.0 | มมมม
0 ่ ่ 3 4 ก ๋ ซ์ | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1.0
1.4
1.8 | 0000 | /, | |-------|---|--|---|--|---|---|--|--|-------------------|------------|-----------| | 8742 | 41899-
19012-
4361-
3971
7816 | 29109
23202
17184
11824
74686 | 33 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 8904
57452
34922
193922
21322 | 47790
35889
26385
18935
13210 | 15518
12631
10139
80207 | 3 6 1 0
3 1 2 1
2 6 6 7 0
1 8 8 1 7 | 0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 2 0. 600 / | x . 1,4 1 | | 7899 | 224421
71451
1903 | 227770
17194
12082
78339 | 3724
225034
30684111 | 90791
59281
36649
20911
10394 | 35562
26317
189317
133998 | 151
12324
9939
78701
61478 | 25 3 4 4 8 2 5 8 0 1 5 5 8 0 1 5 5 8 0 1 5 5 8 0 1 5 5 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 5050
45050
95060
888 | | | 1.42 | | 6991 | 4923
25721
98721
4967 | 26
26
20
20
20
20
20
20
20
20
20
20
20
20
20 | 17107
27030
29095 | 92369
60983
38288
22375
11626 | 1365312
1365317
1365317
1366317
666 | 1 4 6 9 3
1 2 0 1 6
9 6 9 7
7 7 1 6 2
6 0 4 7 3 | 335
835
835
835
831
831
831
831
831
831
831
831
831
831 | 5376
4850
4333
3833 | | | 1.4 3 | | 6025 | 1 2 3 3 3 3 4 4 5 5 5 5 5 5 5 7 7 8 9 1 1 1 1 | 25 3 3 0 1 1 6 3 3 9 0 0 1 1 1 2 3 3 9 0 0 1 1 1 2 3 9 0 0 1 1 2 3 9 0 0 1 1 2 3 9 0 0 1 1 2 3 9 0 0 1 1 2 3 9 0 0 1 1 2 3 9 0 0 1 1 2 3 9 0 0 1 1 2 3 9 0 0 1 1 1 2 3 9 0 0 1 1 1 2 3 9 0 0 1 1 1 2 3 9 0 0 1 1 1 2 3 9 0 0 1 1 1 2 3 9 0 0 1 1 1 2 3 9 0 0 1 1 1 2 3 9 0 0 1 1 1 2 3 9 0 0 1 1 1 2 3 9 0 0 1 1 1 2 3 9 0 0 1 1 1 2 3 9 0 0 0 1 1 1 2 3 9 0 0 0 1 1 1 2 3 9 0 0 0 1 1 1 2 3 9 0 0 0 1 1 1 2 3 9 0 0 0 0 1 1 1 2 3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11689
83386
857
111 | 9 37 7 5 6 8 5 5 7 7 5 9 8 3 7 7 5 9 8 3 7 7 8 0 0 1 8 8 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 45989
34978
26087
190043
13561 | 14283
11709
9473
75595
59434 | 323
2808
24118
20419
17209 | 351
44656
685 | | | 1.4 4 | | 5010 | 5531
31740
151140
14323
1962 | 23 3 8 2 3 8 2 7 8 4 4 4 0 3 3 1 1 1 1 1 | 2035
194148
105121 | 95011
64003
41295
25124
13987 | 45380
34599
125987
13636 | 13877
11401
9248
74004
58365 | 3116
2708
193298
16827 | 4943
4468
4001
3547 | | | 1.4 5 | | 3954 | 57849
34443
17587
6354
431 | 11900
11900
11900
11900
11900
11900 | 7562
2770
624-
15479- | 96077
65319
42658
26405
15110 | 44619
34196
25737
18985
13687 | 13473
11094
9021
72390
57266 | 2009
2010
2010
2010
10174
10165 | 4735
4285
3841 | | | 1.46 | | 2866 | 60018-
36918-
19933-
1104- | 205
11897771
12897771 | 114902
114902
11486
161 | 969 76
665 05
4 3 9 2 6
2 7 6 1 9
1 6 1 9 1 | 43890
33765
25521
18919
13719 | 13072
10788
10788
70756
56143 | 200
200
200
200
200
200
200
200
200
200 | 45
4108
3686
77 | | | 1.47 | | 1754 | 39151
22141
10264
2630 | 18696
17923
15379
131777 | 9354
4211
10421
74410
16019 | 97710
67561
45097
28766
17228 | 43135
33305
35379
18829
13731 | 10484
10484
69108
54996 | 20929
17900
15147 | 4
2
2
2
3
3
4
4
3
3
4
4
3
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | | , | 1,48 | | 628 | 63230
41128
241128
121137
121136 | 16807
16783
14784
11954 | 1021
4912
15882
13381 | 98888888899999999999999999999999999999 | 4 2 3 5 4 2 5 8 2 0 2 5 0 1 3 5 1 7 1 7 2 2 2 | 12283
10180
8338
67446
53829 | 20130
20130
117282
14649 | 3715
3769
389
080 | | | 1.49 | | 502- | 428257
260869
138751 | 1 4 8 4 4 4 1 1 1 5 5 6 6 7 4 1 1 1 1 1 6 6 7 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
11035
5597
21298
10237 | 98689
69286
47145
30848
19161 | 126583
126595 | 11895
9880
81111
52643 | 198561
198888
146673 | 33608
33608
33848
93 | | | 1.50 | | 11- | 44444
44444
1111 | 1100 | 11111 | 99999 | 00000 | 88777 | 77766 | 99999 | ហ្ហហ្ហហ
!!!!! | 44470 | ש | | | | | | | | | | | | | | | TABLE | |------------------| | 0 F | | 3 H.L | | WEDGE | | FUNCTION | | $G_{\nu}(e^{x})$ | | | | 1 0.0 | 000000
000400 | 0 0 4 0 0
0 0 0 0 0 | 7.0
7.2
7.4
7.6
7.8 | 000000
00400 | 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4 0
0 6 4 6 0 | υυυυ
66466 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 11,6 | 0000 | -/× | |--------|--|---|--|--|--|--|---------------|--|----------------|-------|--------| | 1629- | 0404
44707
806700
97000
46700 | 12881
14870
113373
1133173
113177 | 11
20
50
50
50
50
50
50
50
50
50
50
50
50
50 | 9894
69957
48021
31781
20053 | 3178
3178
34478
1184409
488 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | | | | | 1.5 1 | | 2743- | 179320
179320
179320
179320 | 10731
12911
12565
10906
87253 | 125
6912
31891
48834 | 99040
70503
48800
32641
20894 | 3988
31288
21289
188075
5886 | 50245
0245
0245
0247 | | | | | 1.5 2 | | 3835- | 18551631
18551631
1851651 | 11491
11691
10637
10637 | 13314
7539
37034
12861
1283 | 989990
499985
334480
21681 | 39028
30656
23721
18059 | 8993
7433
60727
49002 | | | | | 1.5 3 | | 4897- | 6 4 4 5 6
4 6 8 5 1
3 1 7 6 5 1
1 9 8 1 3
1 0 9 7 9 | 11000
8 9 9 7 6 6 9 8 9 9 7 6 6 9 8 8 9 1 1 1 1 1 1 | 1 4 0 0 2
8 1 4 2
4 20 5 3
1 6 8 4 0
1 7 2 8 | 9 8 7 9 5
7 1 2 2 5
3 4 1 3 8
2 2 4 1 3 8 | 38156
30067
23348
17846
13407 | 8704
7209
59043
47770 | | | | | 1.5 4 | | 5921- | 63540
47124
32673
120971 | 8 0 0 3 3 8 8 0 0 3 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14651
8721
46933
20760 | 9845
71408
50551
34775 | 37271
29461
22957
17617 | 8417
6987
57362
46530 | | | • | | 1.55 | | 6898- | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2026
6945
8757
87157 | 1586
9874
51661
24605
7719 | 97986
71474
50944
35338
23717 | 36376
28841
28551
17371
13165 | 55688
458688 | • | | | | 1.56 | | 7823- | 1 2 3 4 5 6 6 6 7 9 7 7 8 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1583
9800
568800
1068363 | 977
71148
351248
45843
77883
478 | 35478
88809
88130
177111 | 5 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | | 1.57 | | 8687- | 58
58
54
50
50
50
50
50
50
50
50
50
50 | 5 8 3 7 4 7 1 5 8 8 1 1 1 1 | 16361
10298
60607
32025
13592 | 96655
71270
51450
36243 | 345
27562
21697
16836
55 | 7584
6336
58367
48796 | | | | | 1.58 | | 9485- | 2 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
40004
0044
0004
0040
1111 | 1 68 4 9
1 0 7 6 7
6 4 8 0 3
3 5 5 7 6
1 6 4 5 8 | 958
711008
31569
36586 | 336
86914
18185
1855
1865
1865
1865
1865
1865
186 | 7315
6124
50724
41554 | | | | | . 1.59 | | 10211- | 4435
64459
44594
4759111 | 5 5 6 8 2 7 5 5 8 8 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 17294
11206
68799
39008
19263 | 706443
51600
36858
49 | 50202 | 7050
5914
49095 | | | | | 1.60 | | 11- | 44444444444444444444444444444444444444 | 11111
1000 | 11111 | 00000 | 000000 | 88777 | 77766 | 00000 | ហហហហហ
!!!!! | 4.470 | טי | | 1 0.0 | 9.9.9.0
9.4.4
9.0.0
9.0.0 | 000000
00400 | 7.0
7.4
7.6
7.8 | 0,0000
0.0040
0.0040 | 0.00 4 0.00 | 4.4.4.0
6.4.4.0
8.6.4.6.8 | υυυυυ
ό ώ 4 δ φ | 0 0 4 6 0 | 1.66 | 00000 | /× | |--------|---|--|--|---|--|---|--------------------|-----------|----------------------|-------|-------| | 10860- | 50631
427291
335311
170011 | 5 3 1 1 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | 17698
111614
72587
42310
21998 | 93771
70181
51546
37060
25992 | 31807
25586
20327
15937
18937 | 6791
5707
47483
39083 | | | | | 1.6 1 | | 11427- | 47385
41053
32915
17411 | 11112
2787
1903
4173 | 18059
111991
76160
45474
84655 | 9 8 5 9 6 8 8 9 6 8 8 9 6 8 8 9 6 8 8 9 6 8 8 9 6 8 9 8 9 | 30887
24914
19851
15615
12115 | 37890
35890 | | | | | 1.62 | | 11910- | 43877
391333
17698
1 | 13199
4409
6989
433211 | 18377
123377
79510
48491 | 9132
68977
511195
57259 | 19996
199368
199368
199368 | 5305
44310
5305
64316
64316 | | | | | 1.63 | | 12304- | 36985
31069
17869
17862 | 15236
6013
510
24531
374691 | 12865
12865
12865
12865
12965
12970
1000 | 80000000000000000000000000000000000000 | 29053
23558
18880
14947
11678 | 5108
42764
35439 | | | | | 1.64 | | 12609- | 236
346
2396
2396
2396
239
239
239
24
24
24
24
24
24
24
24
24
24
24
24
24 | 1721
7592
1716
1716
1573- | 11888
128933
845581
8607381 | 88 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 28143
22878
18387
14601
11447 | 5 8 0 0 4 4 9 1 6 6 6 7 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 | | | | | 1.65 | | 12821- | 31996
32060
28457
17818 | 1913
9141
2915
6861 | 19081
13183
88174
56595
34338 | 865988
501105
37074 | 27238
22199
17890
114249 | 5571
4726
39731
33069 | • | | | | 1.66 | | 12941- | 27663
2931663
286886
130-130-1 | 20980
10654
14101
205
18730- | 1923
13401
90588
58963
36490 | 8 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 26340
21521
17390
13892
10963 | 5 3 4 3 4 5 5 3 4 3 1 9 0 6 | | | | | 1.67 | | 12968- | 25540551
2515551
216391 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 19346
13587
92762
61156
38522 | 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 25 4 5 1
208 4 5
1 6 8 8 9
1 3 5 3 1
1 0 7 1 1 | 5122
4361
36802
30760 | | | | | 1.68 | | 12902- | 18583
23348
23373
16812
16847 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 194
137420
94695
63172 | 81999
63463
48415
36360
26834 | 24572
20173
16386
13166
10455 | 4906
4185
35379
29633 | | | | | 1.69 | | 12746- | 10000000000000000000000000000000000000 | 64
64
64
64
64
64
64
64
64
64 | 1945
13866
96387
48010 | 80219
62315
47735
36015
26720 | 23703
19505
15885
12798 | 23 4 4 6 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | | 1.70 | | 11- | 44444
4444
11111 | 11111 | 11111
0000
0000
0000 | 00000 | 00000
1111 | 88777 | 77766 | 00000 | ហេហៈបារបា
ព្រៃព្រ | 4410 | ט | | _ | | |---|--| | IABL | | | ~ | | | r | | | 9 | | | | | | ======================================= | | | 7 | | | | | | 3 | | | WEDGE | | | G | | | IT | | | - | | | G | | | 707 | | | C | | | C | | | 2 | | | 5 | | | - | | | E P (e | | | | | | | | | 1 0.0 | 9.9.9.9
9.4.4.0
9.6.4.0 | 0 0 0 0 0 0
0 0 4 0 0 | 7.6
7.6
7.6
7.6 | 000000
00400 | 00000000000000000000000000000000000000 | 4444000460 | υυυ υυ
0 % 4 φ φ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11,6 | 0000 | e/m | |--------|---|---|--|--
---|---|----------------------------|---------------------------------------|----------------|-------|-------| | 12500- | 16865
19111
18111
15633 | 27571
16240
8626
3718
7398 | 1945
13960
97840
66665 | 78391
611114
47002
35621
26562 | 11888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
12888
10888
10888
10888
10888
10888
10888
10888
10888
10888
10888
10888 | 33 34
33 34
33 34
34 55
34 55
34 55 | | | | | 1.7 1 | | 12168- | 1 3 4 7 7 7 1 1 6 8 5 8 1 1 1 4 8 7 0 1 1 1 | 174997
145681
145655 | 1941
14024
99056
68140
45382 | 76520
59865
46221
35181
26363 | 22002
18189
14887
12059
9661 | 31368
631889
631889
637 | | | | | 1.72 | | 11751- | 10017
14508
15896
1-15896 | 30329
18694
10698
20380 | 19344
14060
100040
69434
46766 | 7461
58572
45394
34698
26124 | 2117
17541
11688
9391 | 2000
2000
2000
2000
2000
2000
2000
200 | | | | | 1.7 3 | | 11255- | 5361
12077-1
13711-1 | 31563
19822
11674
6197 | 19239
14067
100794
70549
48015 | 72673
57241
44526
34173
25847 | 20355
16902
13900
11318
9119 | 391
3366
28715
24291 | | | | | 1.74 | | 10683- | 101
205
205
305
305
305
305
305
305
305
305
305
3 | 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 19101
14047
101323
71484
49127 | 70709
55876
43620
33611
25535 | 1955
16272
13413
10949
8846 | 3730
3215
27478
888 | | | | | 1.7 5 | | 10039- | 1 4 9 8 5 1 0 3 0 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 33731
21871
13489
7727
39092 | 1 8 9 3 4
1 0 1 6 3 4
7 2 2 4 4
5 0 1 0 4 | 554480
42680
33014
5188 | 18768
15651
12931
10582
8573 | 25
2069
2062
2073
2092 | | | | | 1.7 6 | | 9329 | 11;
104480
104476
1088444
111 | 2 2 3 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 18738
13929
101731
72830
50944 | 53060
41709
32384
24811 | 18000
15048
12456
10217 | 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | | | 1.77 | | 8558- | 24
7420
1821
1821
11: | 54000 | 18514
13833
101620
73346
51651 | 64713
51618
40711
31726
24405 | 17248
14444
11987
9856
8027 | 22 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25 | | | | | 1.78 | | 7731- | 28693
11201
803
47799 | 5 9 7 8 3 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1 8 8 8 8 8 8 9 8 9 8 9 8 9 8 8 8 8 8 8 | 62696
50160
39690
31040
23971 | 1651
13857
115857
77585 | 3068
2656
1955
17 | | | | | 1.79 | | 6855- | 24
20
20
20
20
20
20
20
20
20
20
20
20
20 | 36845
25081
16510
10391
615398 | 17991
13573
100812
73588
52667 | 60680
48688
38648
30338
23513 | 15798
13283
11071
9146
7486 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | 1.80 | | 11- | مر مر مر مر مر
مر مر مر مر مر
ا ا ۱ ا ۱ ا | 1111
1000 | 11111
99000
11111 | 00000 | 00000
11111 | 8 7 7 7 | 77766 | 00000 | ហហហហហ
!!!!! | 44470 | ש | | Pa | |----| | 0 | | 0 | | 5 | | | | 1 0.0 | 00000 | 000000
00400 | 7.0
7.2
7.6
7.6 | 00000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | 4 4 4 4 4 6 00 6 4 6 6 00 6 6 6 00 6 6 6 00 | υυυυ
0 ώ 4 ю ¢ | 0 0 4 0 0 | 11.0
11.6
11.6
11.6 | 0000 | / n | |----------|--|--|--|---|---|--|-------------------|-----------|------------------------------|------|------------| |
5936- | 00000
000040 | 37369
25693
17128
10973 | 17695
13411
100129
73523
52983 | 8897586
8975866
3975888
898988 | 15100
12721
10625
7219 | 276
276
2775
17779 | | | | | 1,8 1 | | 4979- | 39910
3997
3941 | 37794
.26228
17690
11508
71371 | 17379
13830
99271
73377
53174 | 200510
200510
200510
200510 | 1014
1017
1017
845
55 | 19748
15950 | , | , | | | 1.82 | | 3991- | 79157 | 38120
26687
18193
12001
75860 | 1704
13031
9884
7894
447 | 35446
35446
3604335
11 | 13761
11637
9760
8117
6692 | 2484
2168
18778
16145 | | | | | 1.83 | | 2979- | 0 4 9 8 5 | 38351
27070
18639
12452
80056 | 1669
12815
97069
72450
53198 | 5
6
6
7
7
7
8
8
8
8
7
7
7
7
7 | 13120
11116
9332
7786 | 235
235
27841
15365 | | | | | 1.84 | | 1949- | 2000
2004
2004 | 3848
27378
190378
12861
83950 | 1632
12582
95743
71823
53033 | 50
412
33
33
34
36
36
36
36
36
36
36
36
36
36
36
36
36 | 1249
10609
8933
7461 | 1 6 9 3 7
1 4 6 9 3 7 | , | | | | 1,85 | | , | 145
8885
8865 | 81123
739 | 579115 | 4 L L C C C C C C C C C C C C C C C C C | 10
10
7 | 11 2 2 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | | | | | 907- | 47359 | 5 6 6 6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 9 10 10 10 10 10 10 10 10 10 10 10 10 10 | 794
151
780 | 840
946
80
80
80
80
80 | 106
847
883 | | | | | 1.86 | | 1 4 0 | 58641
36032
20580
10379
3944 | 384
27776
19635
90801 | | | 1131
9636
8146
56838 | | | | | | 1.87 | | 1186 | 4574E
55666 | 78883
78877 | 198
198
198 | 36888
29963
24111
19208 | 555
555
555
555
555
555
555
555
555
55 | 1 1 8 7 9
1 4 4 2 1
1 2 5 0 2 | | | | , | 1.88 | | ง | 404W0
0010 | 38164
27896
140618
96369 | W1157 | 18 8 8 8 5 7 7 7 8 8 8 8 8 9 7 7 7 8 8 8 8 8 8 9 8 9 | 07400000000000000000000000000000000000 | 1 7 7 3
1 3 5 6 2
1 1 8 4 9 | | | | | 1.89 | | N. | | 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 79884
15540 | 14768
W0740 | | 0400 | | | | | 1.90 | | 11- | 44444 | H0000 | 00000 | 00000 | | | | | | | ש | | • | τ | |---|----| | | n | | U | | | (| D | | (| רכ | | Č | ת | | 1 0.0 | 99999 | စစစစ္စ
ဝံ <i>ဖံ နံ စံစံ</i> | 7.0
7.0
7.8
7.8 | 0 0 0 0 0
0 0 4 0 0 | 0 0 4 0 0 | 4444
00400 | မများမှာ မ
ဝေတိန်က်တ် | 0 0 4 0 0 | 11111 | 00000 | /H | |-------|---|--|--|--|---|--|--------------------------|-----------|--------------------|-------|-------| | 4261 | 68488
45134
28530
17017 | 37526
27753
20187
14411
100645 | 13879
10937
85854
49987 | 39
32
32
32
35
35
35
35
35
35
35
35
35
35
35
35
35 | 4567667
75667
75664 | 1575
1390
12189
10616 | | | | | 1.9 1 | | 5247 | 70350
46980
30888
108488
10595 | 37101
27591
20196
14522
102300 | 13446
10631
83175
64346
49180 | 37810
31288
25676
20888
16838 | 456786
450468
504664
504644
504644 | 1482
1311
11506
10036 | | | | | 1.92 | | 6205 | 71969
48648
31798
119888
11688 | 36612
27371
20155
103639 | 1 3 0 1 0 1 0 3 2 0 0 4 8 3 0 2 9 2 9 2 9 | 36
2994
2994
3000
35
43
3 | 821
7070
6043
5128
4319 | 1394
10852
9479 | | | | | 1.9 3 | | 7130 | 73347
50134
33239
21192
12803 | 36062
27098
10686
10686
10686 | 1257
10004
78822
471446
959 | 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 | 776
6694
48730
4112 | 1311
1162
10227
8945 | | | | | 1.9 4 | | 8019 | 7
5
5
4
4
4
4
4
4
6
6
4
4
4
4
6
4
4
4
6
4
4
6
6
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 3545
26773
19937
14681
105395 | 12134
9685
76566
59907
46358 | 11 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 7
5
5
5
5
3
3
3
3
1
0
3
3
1
0
1
0
1
0
1
0
1
0
1
0 | 11033
1003
1003
1003
1003
1003
1003
100 | | | | | 1.95 | | 8867 | 8575W | 34796
26401
19764
14581 | 116
9364
74264
58317
45304 | 312
86090
177614
177514 | 6916
5983
5139
4385
3715 | 11156
1027
9059 | í | | | | 1.9 6 | | 9671 | 1 2 3 5 5 6 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 | 34091
11955984
1145066 | 1
7
90
4
4
8
8
8
8
8
8 | 20645
17007
13895 | 00000000000000000000000000000000000000 | 1083
964
8515 | | | | | 1.97 | | 10428 | 765
5427
37662
1664
454 | 33343
25525
19300
14399
105836 | 108
8718
55016
43059 |
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
119693
11 | 0 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1016
905
7998
7032 | | | | | 1.98 | | 11135 | 64867
78464
4667
4667 | 200440
00440
00064
004404
004404 | 10394
8395
67215
53317
41879 | 22579
18774
15540
12760 | 5777
5021
4334
3718
3167 | 958
848
7507
6607 | | | | | 1.99 | | 11791 | 7
5
5
5
5
6
7
8
8
9
8
6
9
8
6
9
8
6
9
8
6
4
6
6
4
6
6
6
6
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 31735
24500
18697
14093
104792 | 9969
8074
51596
40669 | 25 4 0 8
21 3 8 7
1 7 8 7 4
1 2 8 2 8
1 2 2 0 6 | 5
4
4
7
3
3
3
3
5
1
8
8
9
9
1
7
7
7 | 891
794
62039 | | | | | 2.00 | | 11 | 44444
4444
1111 | 11111 | 444
00099
11111 | 00000 | & & & & & & & & & & & & & & & & & & & | 88777 | 77766 | 99999 | ហេហេហេហ
ព្រៃព្រ | 44410 | þ | Page | 0.1 1 | | |-------|------------------| | 2.1.2 | | | 2.1 3 | | | 2.1 4 | TABLE OF | | 2.15 | THE WEDGE | | 2.16 | FUNCTION | | 2,17 | $G_{\nu}(e^{x})$ | | 818 | | | 2.19 | | | 2.20 | | | 1 0.0 | 0,0000 | 00000
00400 | 7.0
7.4
7.6
7.6 | 00000000000000000000000000000000000000 | | 0.00 4.4.4
0.00 4.4.0 | บบบบบ
๐๋เง๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋ | 0 0 0 4 0 0 | 1.00 | , 0000
, 004 q q | /× | |----------|--|--|--|--|---------------------------|--------------------------|--|-------------|-------|---------------------|-----------| | 15360 | 578
039
817
857
110 | 21598
17327
13786
10876
84996 | 4830
39926
32773
26706 | | | | | | | | 2.1 1 | | 15364 | 9 0 5
9 0 5
9 0 5
9 0 7 | 11 6 6 6 6 7 1 1 3 2 5 7 8 8 2 4 5 8 8 4 5 8 4 5 8 4 5 8 4 5 8 4 5 8 6 6 6 7 6 6 6 7 6 6 6 6 7 6 6 6 6 6 6 | | | | | | | | | 2.12 | | 15321 | 7070 | 19748
15936
12760
10134
79788 | 2000
4000
5000
5000
6000
8000
8000
8000 | | | | | | | | 2.1 3 | | 15234 | 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 18841
15249
12247
9759
77098 | 4089
34026
28135
23105 | | | | | | | | 2.1 4 | | 15104 | 000000 | 17951
14569
11736
9381
74367 | 3858
38175
26667
21954 | * | | | | | | | 2.15 | | 14935 | 04400 | 17078
13898
11227
9003
71609 | 3636
30385
85841
80833 | | | | | | | | 2.16 | | 14728 | 95884
56874
80854 | 1622
13238
10723
68832
7 | 28658
28658
23860
19740 | | | | | | | | 2,17 | | 14487 | 4 ± 4 ± 6 ± 6 ± 6 ± 6 ± 6 ± 6 ± 6 ± 6 ± | 1 1 5 3 9 0 0 0 5 5 8 9 0 0 5 5 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 5 5 9 9 5 7 2 9 1 | | | | | | | , | 8 7.8 | | 14215 | 4 B B B B B B B B B B B B B B B B B B B | 14578
11957
9741
7881
63280 | 5 8 8 9 1 | | | | | | | | 2.19 | | 13914 | 837
018
353
818 | 13790
11338
9262
7515
60521 | 5050 | | | | | | | | &.
& 0 | | <u>н</u> | | 11111
11111 | 11111
0009
11111 | 90000 | 0 0 0 0 0 0 0 1 1 1 1 1 1 | 88777 | 77766 | 00000 | ហហហហហ | 4440 | ק | | - X | 7 2 2 1 | |-----------|----------| | | | | | 700 | | M C D G C | モカフカリ | | | コニミントーンと | | _ | 2 | | 9 | × | | 1 0.0 | 000000
0004000 | လူ ထု လူ လူ လူ
လု က် က် လုံ | 7.6
7.6
7.6
7.6 | 0 0 4 0 0 | 22220
06466 | 4.4.4.0
6.4.4.0
6.4.4.0 | υ υ υ υ υ
Ο ι ά ά δ ι δ | .0000000000000000000000000000000000000 | 1,6 | 0000
0400 | ~/× | |-------|---
--|---------------------------------|-----------|----------------|-------------------------------|----------------------------|--|----------|--------------|--------------------| | 13587 | 46338
36874
29109
28787
17687 | 13025
10737
8793
7155
57786 | 285
285
18795
15695 | | j. | | | | | | ని. ప | | 13238 | 44305
35371
28020
22017
17151 | 12285
10151
8335
6833
55084 | 2479
20969
17646
14768 | | | | | | | | <u>ಜ</u>
ಜ
ಜ | | 12868 | 12000
61000
61000
61000
6100
6100
6100
6 | 11
95
78887
44884
833 | 19622
19622
13877 | | | | | | | | 2.2 3 | | 12480 | 4029
32374
25817
160431 | 10883
9034
7456
6115
9817 | 18336
15492
13083 | | | | | | | | 2.2.4 | | 12079 | 3833
30890
24712
15624 | 1000
8500
7036
57036
85786
8586 | 2012
17113
14487
12204 | | | | | | | | 2.2 5 | | 11664 | 3640
29423
188612
18872 | 4
0 0 7
0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 | 1873
15949
13528
11419 | | | | | | | | 2.26 | | 11242 | 34516
27976
22520
18001
14281 | 4
250507
21537
20037 | 1741
14845
12615
10671 | | | | | | | | 2.27 | | 10811 | 3 2 3 2 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 3 9 9 5 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1616
13798
11748
9959 | | | | | | | , | 2.28 | | 10376 | 30874
25162
20375
16388
13089 | 7
7
8
7
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9 | 1497
12809
10925
9280 | | | | | | | 6 | 2.29 | | 9938 | 29127
23803
19329
15593 | 7311
6148
5147
4282
35422 | 1386
11874
10146
8636 | | | | | | | | 2.30 | | 111 | د در در در در
در در در در در
۱ ۱ ۱ ۱ ۱ | 11111
10000 | 11111 | 00000 | | 88777 | 77766 | 00000 | ហ្ហាហ្ហា | 1111
Att | 'ਚ | | 1 0.0 | 000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.0
7.2
7.6
7.6 | 0.0000
004000 | 2000 000 000 000 000 000 000 000 000 00 | 4 4 4 4 4
0 0 4 6 6 | บบบบบ
๐๋ํํ๘๎๘๎๗ํ | 0,000,00
0,40,0 | 1.6 | 00000 | / × | |-------|---|---|---|------------------|---|------------------------|---------------------|--------------------|------------------|-------|------------| | 9499 | © 18304
14810
11903 | 6808
5737
4813
4014
33278 | 1281
10992
9408
8024 | | | | | | | | 2.31 | | 9062 | 25797
21192
17303
14041
11319 | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 1183
10162
8713
7446 | | | | | | | | 2.32 | | 8628 | 24218
19945
16329
13288
10743 | 5878
4973
4190
3510
29234 | 1091
9381
8058
6900 | | | | | | | | 2.3 3 | | 8199 | 22699
18740
15382
10178 | 545
4680
3901
3274 | 1004
8649
7442
6385 | | | | | | | | 2.3 4 | | 7776 | 2124
17579
14466
11836 | 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 7 9 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 | | | | | | | | 2.35 | | 7361 | 19843
16462
13581
11140 | 8
33
34
50
60
60
60
60
60
60
60
60
60
60
60
60
60 | 7 3 2 1
5 3 2 0
5 4 4 4 | | | | | | | | 2.36 | | 6955 | 1 8 5 0 8 1 1 0 4 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 3670
3119
2634
2737 | 5 8 1 2 8
5 0 1 5 | | | | | | | | 2.37 | | 6559 | 17235
14364
11908
9819
8049 | 2
3
3
9
3
3
9
8
9
8
9
8
9
8
9
8
9
9
9
9
9 | 5 3 3 6
4 6 1 4 | | | | | | | , | 2.38 | | 6174 | 16023
13384
11122
9193
7555 | 1
9
8
8
1
9
8
8
8
1
1
9
8
8
1
1
1
8
1
8 | 70 4 4
70 70 70
70 70 70
70 70 70
70 70 70
70 70 70
70 70
70 70
70
70
70
70
70
70
70
70
70
70
70
70
7 | | | | | | | | 2.39 | | 5800 | 1 4 8 7 2
1 2 4 5 1
1 0 3 7 1
7 0 8 0 | 3358
2878
2460
2069
17673 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | | | | | 2.40 | | 11- | 44444
44444
1111 | +++++
+0000 | 444
90099
11111 | 00000 | @ & @ & & & & & & & & & & & & & & & & & | 8 7 7 7 | 77766 | 00000 | ហេហៈបាហ
!!!!! | 4440 | ש | TABLE OF THE WEDGE FUNCTION $G_{\mathcal{V}}(e^{\mathbf{x}})$ | | | | | | | | - | | | | | | |---------|---|---|---|-----------------|---------------------------------------|------|--------------------|---------------------------------------|-------|------|------|------------------| | 0.0 | 00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 777.00 | 000000
00400 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4444 | υυκυυ
0 ά 4 δ φ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11111 | 0000 | × | | | 5 4 4 0 | 00057 | 3 0 8 3 2 6 4 5 5 7 7 8 2 9 9 9 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 54
4710
4097
563 | | | | | | | | 2.4 | | | 5098 | 14977 | 2825
2429
2085
1777
15091 | 3 7 8 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | | | | | 8.4. | | | 4757 | 10007 | 2585
2227
19227
1635
1535 | 3911
3911
3411
2918 | | | | | | | | 2.43 | | | 100 | BALLAM . | | 408
3557
3108
2717 | | | | | | | | 2.4 | TABLE OF | | 4151 | 1 11000 | 2157
1863
1607
1377
11766 | 371
3231
2827
2475 | | | | | | | | 2.45 | THE WEDG | | 000 | 0 5 5 7 1 2 7 9 9 | 1965
1700
1470
1268
10795 | 888
8593
5733
80085 | • | | ř. | | | | | 2.46 | SE FUNCTION | | 0 | 3 4 4 3 7 6 5 7 6 6 7 6 7 6 7 6 7 7 6 7 7 7 7 7 | 7 2 2 4 3 8 8 4 5 8 8 8 4 5 8 8 8 8 8 8 8 8 8 8 8 | 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | * | | | | | | 2.47 | $G_{\nu}(e^{x})$ | | V. | 55577
55777
50404
50404 | 0440000446464 | 8448 | | | | | | | , | 2.48 | | | 4 | 7078
6030
5118
36386 | 20127 | 6474 | | | | | s. | | | 2.49 | | | 0 | 6 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | 5801W
W016W | 0 4 4 0
0 4 4 0 | | | | | | , | | 2,50 | | | - | | H0000 | 11111 | | | | | | | | ט | Page | | 2/X | 1.00 | 1.50 | 2.00 | 2.50 | p | |---------------------------------|--------------------------------------|--|--|---|----------------------------| | 0.2
0.4
0.6
0.8 | 479.06
470.00
455.25
4353.3 | 65.044
64.257
62.965
611.99 | 2.7972
2.7759
2.7408
26.923 | 0.018173
0.018087
0.017945
0.17747 | 4-
4-
5- | | 1.0
1.2
1.4
1.6
1.8 | 4108.9 | 589.96
564.06
534.83
502.88
468.86 | 26.312
25.584
24.748
23.816
22.800 | 0.17497
0.17195
0.16845
0.16450
0.16013 | 5-
5-
5-
5-
5- | | 2.0
2.2
2.4
2.6
2.8 | | 4334.2 | 217.15
205.73
193.89
181.76
169.48 | 1.5538
1.5029
1.4490
1.3925
1.3340 | 6-
6-
6-
6- | | 3.0
3.2
3.4
3.6
3.8 | | * | 157.18
144.99
1330.1
1213.4
1100.8 | 1.2738
1.2124
11.502
10.876
10.251 | 6-
7-
7-
7- | | 4.0
4.2
4.4
4.6
4.8 | | | 993.00 | 9.6294
9.0160
8.4136
78.252
72.536 | 7-
7-
8-
8- | | 5.0
5.4
5.6
5.8 | | | | 67.010
61.694
56.606
51.758
47.162 | 8
8
8
8 | | 6.0
6.2
6.4
6.6
6.8 | | | • | 428.23
387.47
349.34
313.83
280.91 | 9-
9-
9-
9- | | 7.0 | | | | 250.53 | 9- |