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ABSTRACT

In this thesis, we study multiple radial SLE(𝜅) systems —a family of random
multi-curve systems in a simply-connected domain Ω, with marked boundary points
𝑧1, . . . , 𝑧𝑛 ∈ 𝜕Ω and a marked interior point 𝑞, where parameter 𝜅 > 0 measures the
randomness of the system. We also study the multiple radial SLE(0) systems as the
deterministic limit of multiple radial SLE(𝜅) systems.

As a consequence of domain Markov property and conformal invariance, we derive
that a multiple radial SLE(𝜅) system is characterized by a conformally covariant
partition function satisfying the null vector equations–a second-order PDE system.
On the other hand, using the Coulomb gas method inspired by conformal field
theory, we construct four types of solutions to the null vector equations, which can
be classified according to topological link patterns.

We construct the multiple radial SLE(0) systems from stationary relations by heuris-
tically taking the classical limit of partition functions as 𝜅 → 0. By constructing
the field integrals of motion for the Loewner dynamics, we show that the traces
of multiple radial SLE(0) systems are the horizontal trajectories of an equivalence
class of quadratic differentials. These trajectories have limiting ends at the growth
points and form a radial link pattern.

The stationary relations connect the classification of multiple radial SLE(0) sys-
tems to the enumeration of critical points of the master function of trigonometric
Knizhnik-Zamolodchikov (KZ) equations.

For 𝜅 > 0, the partition functions of multiple radial SLE(𝜅) systems correspond
to eigenstates of the quantum Calogero-Sutherland (CS) Hamiltonian beyond the
fermionic states. In the deterministic case of 𝜅 = 0, we show that the Loewner dy-
namics with a common parametrization of capacity form a special class of classical
CS systems, restricted to a submanifold of phase space defined by the Lax matrix.
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NOMENCLATURE

𝜅. SLE parameter measuring the roughness of the SLE curve.

E[XO𝛽]. CFT correlation function involving product of fields X.

L 𝑗 . Null vector differential operator acting on 𝜃 𝑗 .

O𝜷 [𝝉]. Chiral vertex operator with background charge 𝜷 and charge 𝝉 in CFT.

Z(𝜽). Partition function of the multiple SLE(𝜅) system.

𝑎. Charge at SLE growth point, defined by 𝑎 =
√︁
𝜅/2.

𝑏. Background charge in Coulomb gas formalism, 𝑏 =
√︁

8/𝜅 −
√︁
𝜅/2.

𝑐. Central charge in CFT, defined by 𝑐 = (3𝜅−8) (6−𝜅)
2𝜅 .

ℎ. Conformal dimension of the field associated to the SLE growth point with
charge 𝑎 defined by ℎ = 6−𝜅

2𝜅 .

𝐻𝑛 (𝛽). Quantum Calogero–Sutherland Hamiltonian with parameter 𝛽 = 8
𝜅
.

Charge Relation. 2𝑎(𝑎 + 𝑏) = 1, relating vertex charge 𝑎 and background charge
𝑏 in Coulomb gas formalism.

Neutrality Condition (NC𝑏). Total charge of a divisor is 2𝑏.
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C h a p t e r 1

INTRODUCTION

1.1 Background and main results
The Schramm-Loewner evolution SLE(𝜅) with 𝜅 > 0 is a one-parameter family of
random conformally invariant curves in the plane describing interfaces within con-
formally invariant systems arising from statistical physics, as introduced in Schramm
(2000), Lawler, Schramm, and Werner (2004), Smirnov (2006), Schramm (2006),
and Schramm and Sheffield (2009). Conformal field theory (CFT), a quantum field
theory invariant under conformal transformations, is also widely used to study crit-
ical phenomena, see J. L. Cardy (1996) and Friedrich and Kalkkinen (2004). SLE
and the multiple SLE systems can be coupled to conformal field theories (CFT)
through the SLE-CFT correspondence, which serves as a powerful tool for pre-
dicting phenomena and computing important quantities of SLE(𝜅) and multiple
SLE(𝜅) systems from the CFT perspective, as demonstrated in references like Bauer
and Bernard (2003), J. L. Cardy (2003), Friedrich and Werner (2003), Friedrich
and Kalkkinen (2004), Dubédat (2015), and E. Peltola (2019). The parameter 𝜅
measures the roughness of these fractal curves and determines the central charge
𝑐(𝜅) = (3𝜅 − 8) (6 − 𝜅)/2𝜅 of the associated CFT.

In most recent years, there has been tremendous interest in multiple chordal SLE(𝜅)
systems, as discussed in Dubédat (2006), Kozdron and Lawler (2007), Lawler (2009),
S. Flores and Kleban (2015a), E. Peltola and Wu (2019), and Eveliina Peltola and H.
Wang (2020). In contrast, multiple radial SLE(𝜅) systems have been less explored,
with notable contributions including Healey and Lawler (2021), Y. Wang and Wu
(2024), Nikolai Makarov and Zhang (2025b), and Nikolai Makarov and Zhang
(2025a) and discussions in physics literature such as J. Cardy (2004), Doyon and
J. Cardy (2007), Simmons et al. (2011), and S. M. Flores, Kleban, and Ziff (2012).

The core principle throughout our study of the multiple radial SLE(𝜅) system is
the SLE-CFT correspondence. SLE and multiple SLE systems can be coupled to a
conformal field in two key aspects:

• The level-two degeneracy equations for the conformal fields coincide with the
null vector equations for the SLE partition functions.



2

• The correlation functions of the conformal fields serve as martingale observ-
ables for the SLE processes.

1.2 Multiple radial SLE(𝜅) systems with 𝜅 > 0

Figure 1.1: Multiple radial SLE(𝜅) sys-
tems in D

Figure 1.2: Multiple radial SLE(𝜅) in D

In a simply connected domain Ω with boundary points 𝑧1, 𝑧2, . . . , 𝑧𝑛 and a marked
interior point 𝑞, we define a local multiple radial SLE(𝜅) system as a compatible
family of probability measures

P
(𝑈1,𝑈2,...,𝑈𝑛)
(Ω;𝑧1,𝑧2,...,𝑧𝑛,𝑞)

on 𝑛-tuples of continuous, non-self-crossing curves starting from 𝑧𝑖 within a local-
ization neighborhood𝑈𝑖, none of which contains 𝑞. A more precise characterization
of these measures is provided in Definition 1.2.1 and Definition 1.2.2.

Definition 1.2.1 (Localization of Measures). Let Ω ⊊ C be a simply connected
domain with an interior marked point 𝑢 ∈ Ω. Let 𝑧1, 𝑧2, . . . , 𝑧𝑛 denote distinct
prime ends of 𝜕Ω, and let𝑈1,𝑈2, . . . ,𝑈𝑛 be closed neighborhoods of 𝑧1, 𝑧2, . . . , 𝑧𝑛

in Ω such that:

• 𝑈𝑖 ∩𝑈 𝑗 = ∅ for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,

• None of the𝑈 𝑗 contain the interior point 𝑞.

We consider the measures
P
(𝑈1,𝑈2,...,𝑈𝑛)
(Ω;𝑧1,𝑧2,...,𝑧𝑛,𝑞)

defined on 𝑛-tuples of unparametrized continuous curves in Ω. Each curve 𝜂( 𝑗)

begins at 𝑧 𝑗 and exits𝑈 𝑗 almost surely.
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A family of such measures indexed by different choices of (𝑈1,𝑈2, . . . ,𝑈𝑛) is called
compatible if for all𝑈 𝑗 ⊂ 𝑈′

𝑗
, the measure

P
(𝑈1,𝑈2,...,𝑈𝑛)
(Ω;𝑧1,𝑧2,...,𝑧𝑛,𝑞)

is obtained by restricting the curves under

P
(𝑈′

1,𝑈
′
2,...,𝑈

′
𝑛)

(Ω;𝑧1,𝑧2,...,𝑧𝑛,𝑞)

to the portions of the curves that remain inside the subdomains𝑈 𝑗 before their first
exit.

Figure 1.3: Localization of multiple radial SLE(𝜅)

Similar to the chordal case, multiple radial SLE(𝜅) systems are characterized by
conformal invariance, the domain Markov property, and absolute continuity to
independent standard SLE(𝜅) (see Y. Wang and Wu (2024)).

Definition 1.2.2 (Local multiple radial SLE(𝜅)). The locally commuting 𝑛-radial
SLE(𝜅) is a compatible family of measures

P
(𝑈1,𝑈2,...,𝑈𝑛)
(Ω;𝑧1,𝑧2,...,𝑧𝑛,𝑞)

on 𝑛-tuples of continuous, non-self-crossing curves
(
𝛾 (1) , 𝛾 (2) , . . . , 𝛾 (𝑛)

)
for all

simply connected domains Ω with marked points (𝑧1, 𝑧2, . . . , 𝑧𝑛, 𝑞) and target sets
(𝑈1,𝑈2, . . . ,𝑈𝑛). These measures satisfy the following conditions:

(i) Conformal invariance: If 𝜑 : Ω → Ω′ is a conformal map, then the pullback
measure satisfies

𝜑∗P(𝜑(𝑈1),𝜑(𝑈2),...,𝜑(𝑈𝑛))
(Ω′;𝜑(𝑧1),𝜑(𝑧2),...,𝜑(𝑧𝑛),𝜑(𝑞)) = P

(𝑈1,𝑈2,...,𝑈𝑛)
(Ω;𝑧1,𝑧2,...,𝑧𝑛,𝑢) .
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It suffices to describe the measure when (Ω; 𝑧1, 𝑧2, . . . , 𝑧𝑛, 𝑞) = (D; 𝑧1, 𝑧2, . . . , 𝑧𝑛, 0).
The definition for arbitrary Ω with a marked interior point 𝑞 can then be ex-
tended by pulling back via a conformal equivalence 𝜑 : Ω → D mapping 𝑞 to
0.

(ii) Domain Markov property: Let
(
𝛾 (1) , 𝛾 (2) , . . . , 𝛾 (𝑛)

)
∼ P(𝑈1,𝑈2,...,𝑈𝑛)

(D;𝑧1,𝑧2,...,𝑧𝑛,𝑞) , and
parametrize 𝛾 ( 𝑗) by their own capacity inD. For stopping times t = (𝑡1, 𝑡2, . . . , 𝑡𝑛),
define

�̃� 𝑗 = 𝑈 𝑗 \ 𝛾 ( 𝑗)[0,𝑡 𝑗 ] , �̃� ( 𝑗) = 𝛾 ( 𝑗) \ 𝛾 ( 𝑗)[0,𝑡 𝑗 ] , Ω̃ = D \
𝑛⋃
𝑗=1
𝛾
( 𝑗)
[0,𝑡 𝑗 ] .

Then, conditionally on the initial segments
⋃𝑛
𝑗=1 𝛾

( 𝑗)
[0,𝑡 𝑗 ] , we have(

�̃� (1) , �̃� (2) , . . . , �̃� (𝑛)
)
∼ P(�̃�1,�̃�2,...,�̃�𝑛)(

Ω̃;𝛾 (1)𝑡1
,𝛾

(2)
𝑡2
,...,𝛾

(𝑛)
𝑡𝑛
,𝑞

) .
(iii) Absolute continuity with respect to independent SLE(𝜅): Let

(
𝛾 (1) , 𝛾 (2) , . . . , 𝛾 (𝑛)

)
∼

P
(𝑈1,𝑈2,...,𝑈𝑛)
(D;𝑧1,𝑧2,...,𝑧𝑛,0) . Let 𝑧 𝑗 (𝑡) = 𝑒𝑖𝜃 𝑗 (𝑡) , the capacity-parametrized Loewner driving

function 𝑡 ↦→ 𝜃 𝑗 (𝑡) for 𝛾 ( 𝑗) satisfies

d𝜃 𝑗 (𝑡) =
√
𝜅 d𝐵 𝑗 (𝑡) + 𝑏 𝑗 (𝜽 (𝑡)) d𝑡,

d𝜃𝑘 (𝑡) = cot
(
𝜃𝑘 (𝑡) − 𝜃 𝑗 (𝑡)

2

)
d𝑡, 𝑘 ≠ 𝑗 ,

(1.2.1)

where 𝐵 𝑗 (𝑡) are independent standard Brownian motions, and 𝑏 𝑗 (𝜽) are 𝐶2

functions on the chamber

𝔛𝑛 = {(𝜃1, 𝜃2, . . . , 𝜃𝑛) ∈ R𝑛 | 𝜃1 < 𝜃2 < · · · < 𝜃𝑛 < 𝜃1 + 2𝜋} .

The domain Markov property implies that one can sequentially map out the curves
𝛾
(𝑖)
[0,𝑡𝑖] using 𝑔(𝑖)𝑡𝑖 , or perform the mappings in reverse order. The resulting image

has the same distribution regardless of the order. This property is known as the
commutation relation or reparametrization symmetry (see Section 3.2).

In the following, we study how commutation relations and conformal invariance
impose constraints on the drift terms 𝑏 𝑗 (𝜽).

We study the multiple radial SLE(𝜅) systems by exploring the following two aspects:

• Commutation relations and conformal invariance;
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• Solution space of the null vector equations.

Extending the results in Dubédat (2007) on commutation relations (see also Y. Wang
and Wu (2024) for the two radial case), we derive analogous commutation relations
for multiple radial SLEs in the unit disk D with 𝑧1 = 𝑒𝑖𝜃1 , 𝑧2 = 𝑒𝑖𝜃2 , . . . , 𝑧𝑛 = 𝑒

𝑖𝜃𝑛 ∈
𝜕D and one additional marked point 𝑞 = 0, see section 3.2. The family of measure
P(𝜃1,...,𝜃𝑛) of a multiple radial SLE(𝜅) system is encoded by a partition function
𝜓(𝜽) : {(𝜃1, 𝜃2, . . . , 𝜃𝑛) ∈ R𝑛 | 𝜃1 < 𝜃2 < . . . < 𝜃𝑛 < 𝜃1 + 2𝜋} → R>0.

Theorem 1.2.3. For a local multiple radial SLE(𝜅) system in the unit disk D with
boundary points 𝑧1 = 𝑒𝑖𝜃1 , 𝑧2 = 𝑒𝑖𝜃2 , . . . , 𝑧𝑛 = 𝑒𝑖𝜃𝑛 and a marked point at 𝑞 = 0,
there exists a positive partition function 𝜓(𝜽) such that the drift term 𝑏 𝑗 in equation
(1.2.1) satisfies

𝑏 𝑗 = 𝜅
𝜕𝑗𝜓

𝜓
, 𝑗 = 1, 2, . . . , 𝑛. (1.2.2)

Moreover, 𝜓(𝜽) satisfies the null vector equation

𝜅

2
𝜕𝑖𝑖𝜓 +

∑︁
𝑗≠𝑖

cot
(
𝜃 𝑗 − 𝜃𝑖

2

)
𝜕𝑖𝜓 +

(
1 − 6

𝜅

) ∑︁
𝑗≠𝑖

1

4 sin2
(
𝜃 𝑗−𝜃𝑖

2

)𝜓 − ℎ𝜓 = 0, (1.2.3)

for some constant ℎ.

Furthermore, there exists a real constant 𝜔 such that for all 𝜃 ∈ R,

𝜓(𝜃1 + 𝜃, . . . , 𝜃𝑛 + 𝜃) = 𝑒−𝜔𝜃𝜓(𝜃1, . . . , 𝜃𝑛). (1.2.4)

Conversely, given a positive partition function𝜓(𝜽) that satisfies both the null vector
equation (1.2.3) and the rotation invariance condition (1.2.4), we define the multiple
radial Loewner chain as a normalized conformal map 𝑔𝑡 = 𝑔𝑡 (𝑧). The evolution of 𝑔𝑡
is governed by the following Loewner equation with the initial condition 𝑔0(𝑧) = 𝑧:

𝜕𝑡𝑔𝑡 (𝑧) =
𝑛∑︁
𝑗=1

𝜈 𝑗 (𝑡)𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

, 𝑔0(𝑧) = 𝑧.

For the covering map ℎ𝑡 (𝑧), defined by 𝑒𝑖ℎ𝑡 (𝑧) = 𝑔𝑡 (𝑒𝑖𝑧), the evolution is given by

𝜕𝑡ℎ𝑡 (𝑧) =
𝑛∑︁
𝑗=1

𝜈 𝑗 (𝑡) cot
(
ℎ𝑡 (𝑧) − 𝜃 𝑗 (𝑡)

2

)
, ℎ0(𝑧) = 𝑧.

The driving functions 𝜃 𝑗 (𝑡), for 𝑗 = 1, . . . , 𝑛, evolve as



6

𝑑𝜃 𝑗 = 𝜈 𝑗 (𝑡)
𝜕𝑗 log𝜓(𝜽)

𝜕𝜃 𝑗
𝑑𝑡 +

∑︁
𝑘≠ 𝑗

𝜈𝑘 (𝑡) cot
(
𝜃 𝑗 − 𝜃𝑘

2

)
𝑑𝑡 +

√
𝜅𝑑𝐵𝑡 ,

where 𝝂 = (𝜈1, . . . , 𝜈𝑛) is a set of measurable functions, each 𝜈𝑖 : [0,∞) → [0,∞).

The process ℎ𝑡 (𝑧) thus defines a local multiple radial SLE(𝜅) system.

Proof. This is a summary of results derived from Theorem 3.2.1 and Theorem 3.2.2,
which establish the commutation relations and conformal covariance properties of
the partition function 𝜓. □

A significant difference between the multiple radial SLE(𝜅) systems and standard
multiple chordal SLE(𝜅) systems arises when we study their conformal invariance
properties. Although the multiple radial SLE(𝜅) systems are conformally invariant,
the partition functions in its corresponding equivalence classes do not necessarily
exhibit conformal covariance when we have an extra marked point.

We define two partition functions as equivalent if and only if they induce iden-
tical multiple chordal SLE(𝜅) systems. Equivalent partition functions differ by a
multiplicative function 𝑓 (𝑢).

�̃� = 𝑓 (𝑢) · 𝜓, (1.2.5)

where 𝑓 (𝑢) is an arbitrary positive real smooth function depending on the marked
interior point 𝑢 A simple example that violates conformal covariance is when 𝑓 (𝑢)
is not conformally covariant. However, within each equivalence class, it is still
possible to find at least one conformally covariant partition function.

Theorem 1.2.4. For a multiple radial SLE(𝜅) system with 𝑛 SLEs starting at
(𝜃1, 𝜃2, . . . , 𝜃𝑛) ∈ 𝔛𝑛 (𝜽) and a marked point 𝑢 ∈ D not necessarily fixed at 0:

(i) Two partition functions𝜓 and𝜓 are equivalent if they differ by a multiplicative
factor 𝑓 (𝑢):

𝜓 = 𝑓 (𝑢) · 𝜓,

where 𝑓 (𝑢) is a smooth, positive function of 𝑢. Under this equivalence, 𝜓 and
𝜓 induce identical multiple radial SLE(𝜅) systems.

(ii) Within the equivalence class of partition functions, we can choose 𝜓 to satisfy
conformal covariance. Under 𝜏 ∈ Aut(D), 𝜓 transforms as:

𝜓(𝜃1, . . . , 𝜃𝑛, 𝑢) =
(
𝑛∏
𝑖=1

𝜏′(𝜃𝑖)
6−𝜅
2𝜅

)
𝜏′(𝑢)𝜆(𝑢)𝜏′(𝑢)𝜆(𝑢)𝜓(𝜏(𝜃1), . . . , 𝜏(𝜃𝑛), 𝜏(𝑢)).
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(iii) The choice of a conformally covariant partition function is not unique. Let:

𝑓 (𝑢) = (Rad(𝑢,H))𝛼 = (𝑖(𝑢 − 𝑢))𝛼, 𝛼 ∈ R.

Then for any conformally covariant 𝜓, 𝜓 = 𝑓 (𝑢) · 𝜓 yields an equivalent
solution with:

𝜆(𝑢) = 𝜆(𝑢) + 𝛼.

Following S. Flores and Kleban (2015b) on solution space of the null vector equa-
tions for partition functions of multiple chordal SLE(𝜅), we construct four types of
solutions to the null vector equations and Ward’s identities for partition functions of
multiple radial SLE(𝜅) via Coulomb gas integral method in conformal field theory.

Choosing charges 𝜎𝑗 for 𝑗 ∈ {1, 2, . . . , 𝑛} and charges 𝜏𝑘 for 𝑘 ∈ {1, 2, . . . , 𝑚}, the
following trigonometric Coulomb gas integral plays a crucial role in the theory of
multiple radial SLE:

∮
· · ·

∮
Γ

∏
1≤𝑖< 𝑗≤𝑛

(
sin

𝜃 𝑗 − 𝜃𝑖
2

)𝜎𝑖𝜎𝑗 ∏
1≤𝑟<𝑠≤𝑚

(
sin

𝜁𝑠 − 𝜁𝑟
2

)𝜏𝑟𝜏𝑠 ∏
1≤𝑖≤𝑛
1≤𝑟≤𝑚

(
sin

𝜁𝑟 − 𝜃𝑖
2

)𝜏𝑟𝜎𝑖
d𝜁1 · · · d𝜁𝑚 .

The integration variables 𝜁1, 𝜁2, . . . , 𝜁𝑚 are integrated along multiple contours Γ,
corresponding to various topological link patterns. A detailed explanation can be
found in Section 5.2.

Figure 1.4: Integrate 𝜁1, 𝜁2 (yellow points) along two Pochhammer contour

Theorem 1.2.5. The following four types of Coulomb gas integrals (see definitions in
Section 5.2) solve the null vector equation (1.2.3) and the rotation equation (3.2.2):
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(1) For any link pattern 𝛼 ∈ 𝐿𝑃(𝑛, 𝑚), with 𝑚, 𝑛 ∈ Z and 1 ≤ 𝑚 ≤ 𝑛
2 , the

Coulomb gas integral J 𝑛,𝑚
𝛼 (𝜽) defined in (5.2) solves the null vector equation

(1.2.3) with

ℎ =
1 − (𝑛 − 2𝑚)2

2𝜅
,

and the rotation equation (3.2.2) with 𝜔 = 0.

(2) For any link pattern 𝛼 ∈ 𝐿𝑃(𝑛, 𝑚), with 𝑚, 𝑛 ∈ Z, 1 ≤ 𝑚 ≤ 𝑛
2 , and 𝑛 even,

the corresponding Coulomb gas integrals K (𝑚,𝑛)
𝛼 (𝜽) defined in (5.2.20) solve

the null vector equation (1.2.3) with

ℎ =
1 −

(
𝑛 − 2𝑚 + 𝜅

2
)2

2𝜅
,

and the rotation equation (3.2.2) with 𝜔 = 0.

(3) For any link pattern 𝛼 ∈ 𝐿𝑃(𝑛, 𝑚), with 𝑚, 𝑛 ∈ Z and 1 ≤ 𝑚 ≤ 𝑛
2 , the

Coulomb gas integral J 𝑛,𝑚
𝛼 (𝜽 , 𝜂) solves the null vector equation (1.2.3) with

ℎ = − (𝑛 − 2𝑚)2

2𝜅
+ 1 + 𝜂2

2𝜅
,

and the rotation equation (3.2.2) with

𝜔 =
𝜂(𝑛 − 2𝑚)

𝜅
.

(4) For any link pattern 𝛼 ∈ 𝐿𝑃(𝑛, 𝑛2 ), with 𝑛 even, the Coulomb gas integral
L𝑛
𝛼 (𝜽) solves the null vector equation (1.2.3) with

ℎ =
(6 − 𝜅) (𝜅 − 2)

8𝜅
,

and the rotation equation (3.2.2) with 𝜔 = 0.

Here, 𝛼 denotes the integration contour, and 𝐿𝑃(𝑛, 𝑚) represents the set of all possi-
ble multiple integration contours with 𝑛 boundary points and𝑚 integration variables.
The abbreviation 𝐿𝑃 stands for link pattern, which is defined in Section 5.2.

We will discuss the linear independence of these solutions in our forthcoming
work. Understanding the complete classification of the solution space to the null
vector equations and rotation equation remains an intriguing open question. The
classification of the multiple radial SLE(𝜅) systems can be reduced to studying the
positive solutions to the null vector equations and rotation equations.
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Notably, in Y. Wang and Wu (2024), the authors introduce the following chordal
SLE weighted by the conformal radius. This type of solutions can also be realized
by screening. The corresponding partition function is given by

Z𝛼 (𝜃1, 𝜃2) = (sin(𝜃/2)) 𝜅−6
𝜅 E𝜃 [CR(D\𝛾)−𝛼] .

In Remark 5.2.5, we explain how this type of solution—weighted by the conformal
radius—corresponds to a sum of terms of the form J 2,1

𝛼 (𝜽 , 𝜂).

1.3 Multiple radial SLE(0) systems
We treat multiple radial SLE(0) curves as natural geometric objects without reference
to multiple radial SLE(𝜅) systems.

The defining properties of this ensemble of curves are geometric commutation and
conformal invariance.

Definition 1.3.1. Let 𝛾1, . . . , 𝛾𝑛 be simple disjoint smooth curves starting from
{𝑧1, 𝑧2, . . . , 𝑧𝑛} which are 𝑛 distinct points counterclockwise on the unit circle 𝜕D.

(i) Each curve can be individually generated by a Loewner chain. In angular
coordinate, let 𝑧 𝑗 = 𝑒𝑖𝜃 𝑗 , then the Loewner equation for the covering map
ℎ𝑡 (𝑧) of 𝑔𝑡 (𝑧) (i.e. 𝑒𝑖ℎ𝑡 (𝑧) = 𝑔𝑡 (𝑒𝑖𝑧)) is given by

𝜕𝑡ℎ𝑡 (𝑧) = cot(
ℎ𝑡 (𝑧) − 𝜃 𝑗 (𝑡)

2
), ℎ0(𝑧) = 𝑧, (1.3.1)

and the driving function 𝜃 𝑗 (𝑡) evolve as{
d𝜃 𝑗 (𝑡) = 𝑈 𝑗

(
𝜃1(𝑡), 𝜃2(𝑡), . . . , 𝜃 𝑗 (𝑡), . . . , 𝜃𝑛 (𝑡)

)
d𝑡

d𝜃𝑘 (𝑡) = cot
( (
𝜃𝑘 (𝑡) − 𝜃 𝑗 (𝑡)

)
/2

)
d𝑡, 𝑘 ≠ 𝑗

,

where𝑈 𝑗 (𝜽) : 𝔛𝑛 → R is assumed to be smooth in the chamber

𝔛𝑛 = {(𝜃1, 𝜃2, . . . , 𝜃𝑛) ∈ R𝑛 | 𝜃1 < 𝜃2 < . . . < 𝜃𝑛 < 𝜃1 + 2𝜋} .

(ii) The curves geometrically commute, meaning that the same collection of curves
can be generated by applying the individual Loewner chains in any chosen
order. For example, we can first map out 𝛾 (𝑖)[0,𝑡𝑖] using ℎ(𝑖)𝑡𝑖 , then mapping out

ℎ
(𝑖)
𝑡𝑖

(
𝛾
( 𝑗)
[0,𝑡 𝑗]

)
, or vice versa. The images are the same regardless of the order

in which we map out the curves.
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(iii) Each curve 𝛾 𝑗 is Möbius invariant in D. This means that if 𝛾 𝑗 is the curve
generated by a Loewner flow and initial data 𝜽 , then its image 𝜙

(
𝛾 𝑗

)
under a

conformal automorphism 𝜙 ofD is, up to a time change, generated by the same
flow with initial data 𝜙(𝜽) = (𝜙 (𝜃1) , . . . , 𝜙 (𝜃𝑛)). Our definition for multiple
radial SLE(0) can be naturally extended to an arbitrary simply-connected
domain Ω with a marked interior point 𝑢 via a conformal uniformizing map
𝜙 : Ω → D, sending 𝑢 to 0.

Under these dynamics, the driving function 𝜃 𝑗 (𝑡) evolves according to𝑈 𝑗 (𝜽), while
the points 𝜃𝑘 (𝑡), for 𝑘 ≠ 𝑗 , follow the Loewner chain generated by 𝜃 𝑗 (𝑡). We define
a differential operator corresponding to the curve 𝛾 𝑗 by

M 𝑗 = 𝑈 𝑗 (𝜽)𝜕𝑗 +
∑︁
𝑘≠ 𝑗

cot
(
𝜃𝑘 − 𝜃 𝑗

2

)
𝜕𝑘 , 𝑗 = 1, . . . , 𝑛.

For 𝜅 = 0, we can also derive the commutation relations for the generators M 𝑗 ; see
Section 3.3 for details.

Theorem 1.3.2. Let 𝛾1, . . . , 𝛾𝑛 be simple curves that are generated by Loewner
flows and U(𝜽) : 𝔛𝑛 → R is 𝐶2 smooth. We define the differential operator
M 𝑗 = 𝑈 𝑗𝜕𝑗 +

∑
𝑘≠ 𝑗 cot( 𝜃𝑘−𝜃 𝑗2 )𝜕𝑘 . If the curves locally geometrically commute, then

the vector fields M 𝑗 satisfy the commutation relations.

[M𝑖,M 𝑗 ] =
1

sin2( 𝜃𝑖−𝜃 𝑗2 )
(M 𝑗 −M𝑖) (1.3.2)

Moreover, under the additional assumption that 𝜕𝑗𝑈𝑘 = 𝜕𝑘𝑈 𝑗 for all 𝑗 , 𝑘 , then there
exists a smooth function U(𝜽) such that 𝑈 𝑗 = 𝜕𝑗U. The commutation relations
hold for L 𝑗 if and only if there exists a common constant ℎ such that

1
2
𝑈2
𝑗 +

∑︁
𝑘≠ 𝑗

cot(
𝜃𝑘 − 𝜃 𝑗

2
)𝑈𝑘 −

∑︁
𝑘≠ 𝑗

3

2 sin2 ( 𝜃 𝑗−𝜃𝑘2 )
= ℎ (1.3.3)

However, it is important to emphasize a key distinction between the cases 𝜅 > 0
and 𝜅 = 0: in the case 𝜅 = 0, the conditions 𝜕𝑗𝑈𝑘 = 𝜕𝑘𝑈 𝑗 are not consequences
of the commutation relations. These conditions are equivalent to the existence of a
smooth potential function U(𝜽) : 𝔛𝑛 → R such that

𝑈 𝑗 = 𝜕𝑗U,
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where the chamber 𝔛𝑛 is defined by

𝔛𝑛 = {(𝜃1, 𝜃2, . . . , 𝜃𝑛) ∈ R𝑛 | 𝜃1 < 𝜃2 < . . . < 𝜃𝑛 < 𝜃1 + 2𝜋} .

If we view the multiple radial SLE(0) system as the classical limit of a random
multiple radial SLE(𝜅) system, then for the latter, we have shown that the drift term
𝑏 𝑗 (𝜽) takes the form

𝑏 𝑗 (𝜽) = 𝜅
𝜕 logZ(𝜽)

𝜕𝜃 𝑗
,

where Z(𝜽) is a positive function satisfying the null vector equations. The idea is
that, as 𝜅 → 0, the limit

lim
𝜅→0

Z(𝜽)𝜅 = U(𝜽)

exists (at least for suitably chosen partition functions).

Therefore, we typically assume the existence of such a potential U(𝜽) with𝑈 𝑗 (𝜽) =
𝜕𝑗U(𝜽) when defining a multiple radial SLE(0) system.

This observation also suggests that, in fact, not all multiple radial SLE(0) systems
admit a quantization or arise as classical limits of random multiple SLE(𝜅) systems.

Extending the methods in Alberts et al. (2020), we establish the theory of the
multiple radial SLE(0) systems. We investigate the structure of the multiple radial
SLE(0) from four different perspectives:

• Stationary relations and critical points of master functions;

• Traces as horizontal trajectories of quadratic differentials forming link pat-
terns;

• Enumeration and classification;

• Relations to classical Calogero-Sutherland system.

We construct multiple radial SLE(0) systems through stationary relations. We
heuristically demonstrate how stationary relations naturally emerge when normal-
izing the partition function for the multiple radial SLE(𝜅) system as 𝜅 → 0, as
discussed in Section 6.1.

Definition 1.3.3 (Stationary relations). Let 𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} be distinct points on
the unit circle, and let 𝝃 = {𝜉1, 𝜉2, . . . , 𝜉𝑚} be a set of involution-symmetric marked
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points. In the unit disk D, the stationary relations are given by

−
𝑛∑︁
𝑗=1

2
𝜉𝑘 − 𝑧 𝑗

+
∑︁
𝑙≠𝑘

4
𝜉𝑘 − 𝜉𝑙

+ 𝑛 − 2𝑚 + 2
𝜉𝑘

= 0, 𝑘 = 1, 2, . . . , 𝑚. (1.3.4)

In angular coordinates, setting 𝑧𝑖 = 𝑒𝑖𝜃𝑖 for 𝑖 = 1, 2, . . . , 𝑛 and 𝜉𝑘 = 𝑒𝑖𝜁𝑘 for
𝑘 = 1, 2, . . . , 𝑚, the stationary relations take the form

𝑛∑︁
𝑗=1

cot
(
𝜁𝑘 − 𝜃 𝑗

2

)
=

∑︁
𝑙≠𝑘

2 cot
(
𝜁𝑘 − 𝜁𝑙

2

)
, 𝑘 = 1, 2, . . . , 𝑚. (1.3.5)

Based on the stationary relations, we now define the multiple radial SLE(0) systems.

Definition 1.3.4 (Multiple radial SLE(0) Loewner chain). Given boundary points
𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} on the unit circle, a marked interior point 𝑢 = 0, and involution-
symmetric screening charges {𝜉1, 𝜉2, . . . , 𝜉𝑚} that solve the stationary relations, we
define the multiple radial SLE(0) Loewner chain as follows:

Let 𝝂 = (𝜈1, . . . , 𝜈𝑛) be a set of parametrizations for the capacity, where each
𝜈𝑖 : [0,∞) → [0,∞) is assumed to be measurable.

In the unit disk D with 𝑢 = 0, we define the multiple radial SLE(0) Loewner chain
as a normalized conformal map 𝑔𝑡 = 𝑔𝑡 (𝑧), with the initial condition 𝑔0(𝑧) = 𝑧 and
the evolution given by the Loewner equation

𝜕𝑡𝑔𝑡 (𝑧) =
𝑛∑︁
𝑗=1

𝜈 𝑗 (𝑡)𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

, 𝑔0(𝑧) = 𝑧. (1.3.6)

The Loewner chain for the covering map ℎ𝑡 (𝑧) = −𝑖 log(𝑔𝑡 (𝑒𝑖𝑧)) is given by

𝜕𝑡ℎ𝑡 (𝑧) =
𝑛∑︁
𝑗=1

𝜈 𝑗 (𝑡) cot
(
ℎ𝑡 (𝑧) − 𝜃 𝑗 (𝑡)

2

)
, ℎ0(𝑧) = 𝑧. (1.3.7)

The driving functions 𝜃 𝑗 (𝑡), for 𝑗 = 1, . . . , 𝑛, evolve according to

¤𝜃 𝑗 = 𝜈 𝑗 (𝑡)
𝜕 logZ(𝜽 , 𝜻)

𝜕𝜃 𝑗
+

∑︁
𝑘≠ 𝑗

𝜈𝑘 (𝑡) cot
(
𝜃 𝑗 − 𝜃𝑘

2

)
, (1.3.8)

where the multiple radial SLE(0) master function is defined by

Z(𝜽 , 𝜻) :=
∏

1≤ 𝑗<𝑘≤𝑛
sin2

(
𝜃 𝑗 − 𝜃𝑘

2

) ∏
1≤𝑠<𝑡≤𝑚

sin8
(
𝜁𝑠 − 𝜁𝑡

2

) 𝑛∏
𝑘=1

𝑚∏
𝑙=1

sin−4
(
𝜃𝑘 − 𝜁𝑙

2

)
.

(1.3.9)
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The logarithmic derivative of Z(𝜽 , 𝜻) with respect to 𝜃 𝑗 (treating 𝜽 and 𝜻 as
independent variables) is given by

𝜕Z(𝜽 , 𝜻)
𝜕𝜃 𝑗

=
∑︁
𝑘≠ 𝑗

cot
(
𝜃 𝑗 − 𝜃𝑘

2

)
− 2

∑︁
𝑙

cot
(

2
𝜃 𝑗 − 𝜁𝑙

)
(1.3.10)

for 𝑗 = 1, . . . , 𝑛, The flow map 𝑔𝑡 is well-defined up to the first time 𝜏 at which
𝑧 𝑗 (𝑡) = 𝑧𝑘 (𝑡) for some 1 ≤ 𝑗 < 𝑘 ≤ 𝑛. For each 𝑧 ∈ C, the process 𝑡 ↦→ 𝑔𝑡 (𝑧) is
well-defined up to the time 𝜏𝑧 ∧ 𝜏, where 𝜏𝑧 is the first time at which 𝑔𝑡 (𝑧) = 𝑧 𝑗 (𝑡).
The hull associated with this Loewner chain is denoted by

𝐾𝑡 =

{
𝑧 ∈ D : 𝜏𝑧 ≤ 𝑡

}
.

Remark 1.3.5. The above definition of the multiple radial SLE(0) system is dynamic
and local. It allows us to define such a system for arbitrary initial configurations
of involution-symmetric 𝝃, without assuming the stationary relations. When 𝝃

satisfies the stationary relations, we will show that, for any parametrization 𝝂(𝑡),
the traces are horizontal trajectories of a quadratic differential 𝑄(𝑧), 𝑑𝑧2, as stated
in Theorem 1.3.7. This gives us an alternative perspective on the reparametrization
symmetry (commutation relations) in the case 𝜅 = 0.

To characterize the traces of multiple radial SLE(0) systems, we introduce a class of
quadratic differentials, denotedQD(𝒛), with prescribed zeros at 𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛}.
These quadratic differentials are defined on the Riemann sphere and exhibit involu-
tion symmetry.

Definition 1.3.6 (Quadratic differentials with prescribed zeros). Let 𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛}
be distinct points on the unit circle. The class of quadratic differentials, denoted by
QD(𝒛).

1. symmetric under the involution 𝑧∗ = 1
𝑧
, meaning

𝑄(𝑧∗) (𝑑𝑧∗)2 = 𝑄(𝑧)𝑑𝑧2.

2. distinct zeros at {𝑧1, 𝑧2, . . . , 𝑧𝑛}, each of order 2.

3. distinct finite poles at {𝜉1, . . . , 𝜉𝑚}, each of order 4, and the residues vanish
(Residue-free condition):

Res𝜉 𝑗 (
√︁
𝑄(𝑧)𝑑𝑧) = 0, for 𝑗 = 1, . . . , 𝑚.
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4. poles of order 𝑛+ 2− 2𝑚 at the marked points 0 and ∞. This ensures the total
difference between the number of zeros and poles is −4.

Here, the poles {𝜉1, . . . , 𝜉𝑚} are finite, meaning they do not coincide with 0 or ∞.
The quadratic differential 𝑄(𝑧) ∈ QD(𝒛) must take the following form:

𝑄(𝑧) =
∏𝑚
𝑘=1 𝜉

2
𝑘∏𝑛

𝑗=1 𝑧 𝑗
𝑧2𝑚−𝑛−2

∏𝑛
𝑗=1

(
𝑧 − 𝑧 𝑗

)2∏𝑚
𝑘=1 (𝑧 − 𝜉𝑘 )

4 .

By considering the primitive of 𝐹 (𝑧) =
∫ √︁

𝑄(𝑧)𝑑𝑧, we find that the residue-free
quadratic differentials are natural generalization of rational functions, specifically
designed to address the monodromy at 0; see section (6.3).

The geometry of the horizontal trajectories of a quadratic differential𝑄(𝑧) ∈ QD(𝒛)
is described as follows.

In the main theorem (1.3.7), we show that the traces of the multiple radial SLE(0)
systems correspond precisely to the horizontal trajectories of the class of residue-free
quadratic differentials 𝑄(𝑧) ∈ QD(𝒛) with limiting ends at 𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛}.

Theorem 1.3.7. Let 𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} be distinct growth points on the unit circle
and screening charges 𝜉 = {𝜉1, 𝜉2, . . . , 𝜉𝑚} involution symmetric and solve the
stationary relations.

There exists an 𝑄(𝑧) ∈ QD(𝒛) with 𝝃 as poles and 𝒛 as zeros, the hulls 𝐾𝑡 gener-
ated by the Loewner flows with parametrization 𝝂(𝑡) are subsets of the horizontal
trajectories of 𝑄(𝑧)𝑑𝑧2 with limiting ends at 𝒛, up to any time 𝑡 before the collisions
of any poles or critical points. Up to any such time

𝑄(𝑧) ◦ 𝑔−1
𝑡 ∈ QD(𝒛(𝑡)).

where 𝒛(𝑡) is the location of the critical points at time 𝑡 under the multiple radial
Loewner flow with parametrization 𝝂(𝑡).

The key ingredient in the proof of theorem (1.3.7) is the integral of motion for the
Loewner flows. This integral of motion, denoted by 𝑁𝑡 (𝑧), arises as the classical
limit of a martingale observable inspired by conformal field theory.

Theorem 1.3.8. In the unit disk D, let 𝑧1, 𝑧2, . . . , 𝑧𝑛 be distinct growth points on
𝜕D. For each 𝑧 ∈ D, define the following:
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𝐴(𝑡) =
∏𝑚

𝑗=1 𝜉
2
𝑘
(𝑡)∏𝑛

𝑘=1 𝑧𝑘 (𝑡)
,

𝐵𝑡 (𝑧) = 𝑒
−(2𝑚−𝑛)

(∫ 𝑡

0
∑

𝑗 𝜈 𝑗 (𝑠) 𝑑𝑠
)
𝑔𝑡 (𝑧)2𝑚−𝑛−2(𝑔′𝑡 (𝑧))2

∏𝑛
𝑘=1(𝑔𝑡 (𝑧) − 𝑧𝑘 (𝑡))2∏𝑚
𝑗=1(𝑔𝑡 (𝑧) − 𝜉 𝑗 (𝑡))4 ,

𝑁𝑡 (𝑧) = 𝐴(𝑡)𝐵𝑡 (𝑧) = 𝑒
−(2𝑚−𝑛)

(∫ 𝑡

0
∑

𝑗 𝜈 𝑗 (𝑠) 𝑑𝑠
) ∏𝑚

𝑗=1 𝜉𝑘 (𝑡)2∏𝑛
𝑘=1 𝑧𝑘 (𝑡)

𝑔𝑡 (𝑧)2𝑚−𝑛−2

(𝑔′𝑡 (𝑧))2
∏𝑛
𝑘=1(𝑔𝑡 (𝑧) − 𝑧𝑘 (𝑡))2∏𝑚
𝑗=1(𝑔𝑡 (𝑧) − 𝜉 𝑗 (𝑡))4 .

Then, 𝐴(𝑡), 𝐵𝑡 (𝑧), and 𝑁𝑡 (𝑧) are field integrals of motion on the interval [0, 𝜏𝑡∧𝜏) for
the multiple radial SLE(0) Loewner flows with parametrization 𝜈 𝑗 (𝑡), 𝑗 = 1, . . . , 𝑛.

Remark 1.3.9. 𝑁𝑡 (𝑧) is a field integral of motion for arbitrary initial positions of
screening charges 𝝃 even without assuming stationary relations. The stationary
relations imply the existence of a quadratic differential 𝑄(𝑧)𝑑𝑧2 ∈ QD(𝒛); see
Theorem 1.3.7.

A detailed explanation of this construction can be found in Section 6.5. This
approach can also be extended to various multiple SLE systems. For the systematic
and rigorous study of such conformal field theories, please refer to Kang and N.
Makarov (2013) and N-G. Kang and N. Makarov (2021).

The closure of horizontal trajectories of 𝑄(𝑧) ∈ QD(𝒛) with limiting ends at zeros
{𝑧1, 𝑧2, . . . , 𝑧𝑛} form radial topological link patterns, see theorem (6.3.5) for detailed
proof and section 6.7 and section 6.8 for figures illustrating the traces of the multiple
radial SLE(0) systems.

The classification of multiple radial SLE(0) is linked to the enumeration of the
master function for trigonometric KZ equations. This connection touches on a rich
and intricate area of enumerative geometry.

As shown in Scherbak (2002a), Scherbak (2002b), and Scherbak and Varchenko
(2003), these studies establish connections between the space of critical points and
tensor products of Verma modules and other algebraic structures, providing deeper
insights into the monodromy of the KZ equations. They also demonstrate that the
critical points of the master function can be interpreted as solutions to the Bethe
Ansatz equations, thereby linking the study of KZ equations with integrable systems.
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Furthermore, when all 𝑧1, 𝑧2, . . . , 𝑧𝑛 lie on the real line, it is shown in Mukhin,
Tarasov, and Varchenko (2009) that the enumeration of these critical points is
equivalent to the real Shapiro-Shapiro conjecture in real enumerative geometry.

This is part of our ongoing research, and based on Mukhin and Varchenko (2008), we
propose several illuminating conjectures about the enumeration problem in section
6.6.

1.4 Relations to classical Calegero-Sutherland systems
From the Hamiltonian point of view, we show that the multiple radial SLE(0)
Loewner growing with common parametrization of capacity (i.e. 𝜈 𝑗 (𝑡) = 1) are a
special type of classical Calogero-Sutherland system.

The stationary relations can be interpreted as initial conditions for the particles and
𝑛 quadratic null vector equations as 𝑛 null vector Hamiltonians, which are related
to the classical Calegro-Sutherland Hamiltonian via the lax pair. Furthermore,
these null vector Hamiltonians induce commuting Hamiltonian flows along the
submanifolds defined as the intersection of their level sets.

Theorem 1.4.1. From a dynamical system perspective, the driving functions of
multiple radial SLE(0) systems are given by

¤𝜃 𝑗 = 𝑈 𝑗 (𝜽) +
∑︁
𝑘≠ 𝑗

cot
(
𝜃 𝑗 − 𝜃𝑘

2

)
,

where𝑈 𝑗 satisfies the quadratic null vector equation for a constant ℎ:

1
2
𝑈2
𝑗 +

∑︁
𝑘≠ 𝑗

cot
(
𝜃𝑘 − 𝜃 𝑗

2

)
𝑈𝑘 −

∑︁
𝑘≠ 𝑗

3

2 sin2
(
𝜃 𝑗−𝜃𝑘

2

) = ℎ. (1.4.1)

(i) By introducing the momentum function 𝑝 𝑗 , defined as

𝑝 𝑗 = 𝑈 𝑗 +
∑︁
𝑘≠ 𝑗

cot
(
𝜃 𝑗 − 𝜃𝑘

2

)
, (1.4.2)

we can reformulate the multiple radial SLE(0) system as a Calogero-Sutherland
system. The momentum 𝑝 𝑗 satisfies the null vector Hamiltonian equation:

H 𝑗 (𝜽 , 𝒑) =
1
2
𝑝2
𝑗−

∑︁
𝑘≠ 𝑗

(
𝑝 𝑗 + 𝑝𝑘

)
𝑓 𝑗 𝑘+

∑︁
𝑘

∑︁
𝑙≠𝑘

𝑓 𝑗 𝑘 𝑓 𝑗 𝑙−2
∑︁
𝑘≠ 𝑗

𝑓 2
𝑗 𝑘 = ℎ−

3(𝑛 − 1)
2

−𝐶2
𝑛−1.

(1.4.3)
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The total null vector Hamiltonian H =
∑
𝑗 H 𝑗 is equivalent to the classical

Calogero-Sutherland Hamiltonian:

H =
∑︁
𝑗

𝑝2
𝑗

2
−

∑︁
1≤ 𝑗<𝑘≤𝑛

4

sin2
(
𝜃 𝑗−𝜃𝑘

2

) = 𝑛ℎ − 𝑛(𝑛2 − 1)
6

. (1.4.4)

(ii) The commutation relations between different growth pairs are expressed in
terms of the Poisson bracket:{

H 𝑗 ,H𝑘

}
=

1
𝑓 2
𝑗 𝑘

(
H𝑘 −H 𝑗

)
. (1.4.5)

Consequently, the vector flows 𝑋H 𝑗
induced by the Hamiltonians H 𝑗 commute

along the submanifolds 𝑁𝑐:

𝑁𝑐 =
{
(𝜽 , 𝒑) : H 𝑗 (𝜽 , 𝒑) = 𝑐, for all 𝑗

}
. (1.4.6)

This relationship is a classical analog of the relation between multiple radial 𝑆𝐿𝐸 (𝜅)
and quantum Calogero-Sutherland system, first discovered in Doyon and J. Cardy
(2007). Notably, in the 𝜅 > 0 case, the solutions to the null vector PDE system in
section 5.2 yield eigenstates of the quantum Calogero-Sutherland system beyond the
eigenstates built upon the fermionic ground states.
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C h a p t e r 2

COULOMB GAS CORRELATION AND RATIONAL 𝑆𝐿𝐸 (𝜅)

2.1 Schramm Loewner evolutions
In this section, we briefly recall the basic defintions and properties of the chordal
and radial SLE. We will describe the radial Loewner chain in D, where D = {𝑧 ∈
C| |𝑧 |< 1} and chordal Loewner chain in H = {Im(𝑧) > 0}.

Definition 2.1.1 (Conformal radius). The conformal radius of a simply connected
domain Ω with respect to a point 𝑧 ∈ Ω, defined as

CR(Ω, 𝑧) := | 𝑓 ′(0) | ,

where 𝑓 : D → Ω is a conformal map from the open unit disk D onto Ω with
𝑓 (0) = 𝑧.

Definition 2.1.2 (Capacity in D). For any compact subset 𝐾 of D such that D\𝐾 is
simply connected and contains 0 , let 𝑔𝐾 be the unique conformal map D\𝐾 → D
such that 𝑔𝐾 (0) = 0 and 𝑔′

𝐾
(0) > 0 . The conformal radius of D\𝐾 is

CR(D\𝐾) :=
(
𝑔′𝐾 (0)

)−1
.

The capacity of 𝐾 is

cap(𝐾) = log 𝑔′𝐾 (0) = − log CR(D\𝐾, 0).

Definition 2.1.3 (Capacity in H). For any compact subset 𝐾 ⊂ H such that H\𝐾 is
a simply connected domain. The half-plane capacity of a hull 𝐾 is the quantity

hcap(𝐾) := lim
𝑧→∞

𝑧 [𝑔𝐾 (𝑧) − 𝑧] ,

where 𝑔𝐾 : H\𝐾 → H is the unique conformal map satisfying the hydrodynamic
normalization 𝑔(𝑧) = 𝑧 +𝑂

(
1
𝑧

)
as 𝑧 → ∞.

Definition 2.1.4 (Radial Loewner chain). Let 𝑔𝑡 satisfies the radial Loewner equation

𝜕𝑡𝑔𝑡 (𝑧) = 𝑔𝑡 (𝑧)
ei𝜃𝑡 + 𝑔𝑡 (𝑧)
ei𝜃𝑡 − 𝑔𝑡 (𝑧)

, 𝑔0(𝑧) = 𝑧, (2.1.1)
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where 𝑡 ↦→ 𝜃𝑡 is real continuous and called the driving function. Let 𝐾𝑡 be the set of
points 𝑧 in D such that the solution 𝑔𝑠 (𝑧) blows up before or at time 𝑡. 𝐾𝑡 is called
the radial SLE hull driven by 𝜃𝑡 .

Radial Loewner chain in arbitrary simply connected domain Ω ⊊ C with a marked
interior point 𝑢 ∈ 𝐷, is defined via a conformal map from D onto Ω sending 0 to 𝑢.

Definition 2.1.5 (Radial SLE(𝜅)). For 𝜅 ≥ 0, the radial SLE(𝜅) is the random
Loewner chain in D from 1 to 0 driven by:

𝜃𝑡 =
√
𝜅𝐵𝑡 , (2.1.2)

where 𝐵𝑡 is the standard Brownian motion.

Definition 2.1.6 (Characterization of radial SLE). The radial SLE is a family
P(D; 𝜁, 0) of probability measures on curves 𝜂 : [0,∞) → D with 𝜂(0) = 𝜁

and parametrized by capacity satisfies the following properties:

• (Conformal invariance) For all 𝑎 ∈ R, let 𝜌𝑎 (𝑧) = ei𝑎𝑧 be the rotation map
D → D, the pullback measure 𝜌∗𝑎P(D; 𝜁, 0) = P(D; 𝑒−𝑖𝑎𝜁, 0). From this, we
may extend the definition to P(Ω; 𝑎, 𝑏) in any simply connected domainΩwith
an interior marked point 𝑢 by pulling back using a uniformizing conformal
map Ω → D sending 𝑢 to 0.

• (Domain Markov property) given an initial segment 𝛾 [0, 𝜏] of the radial SLE𝜅
curve 𝛾 ∼ P(Ω; 𝑥, 𝑦) up to a stopping time 𝜏, the conditional law of 𝛾 [𝜏,∞)
is the law P (Ω\𝐾𝜏; 𝛾(𝜏), 0) of the SLE𝜅 curve in the complement of the hull
𝐾𝜏 from the tip 𝛾(𝜏) to 0.

• (Reflection symmetry) Let 𝜄 : 𝑧 ↦→ 𝑧 be the complex conjugation, thenP(𝜁, 0) ∼
𝜄∗P(𝜁, 0).

Definition 2.1.7 (Chordal Loewner chain). Let 𝑔𝑡 satisfies the chordal Loewner
equation

𝜕𝑡𝑔𝑡 (𝑧) =
2

𝑔𝑡 (𝑧) − 𝜉 (𝑡)
, 𝑔0(𝑧) = 𝑧, (2.1.3)

where 𝑡 ↦→ 𝜉𝑡 is continuous and called the driving function. Let 𝐾𝑡 be the set of
points 𝑧 in H such that the solution 𝑔𝑠 (𝑧) blows up before or at time 𝑡. 𝐾𝑡 is called
the chordal SLE hull driven by 𝜉𝑡
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Chordal Loewner chain in arbitrary simply connected domain Ω ⊊ C from 𝑎 to 𝑏,
is defined via a uniformizing conformal map from Ω onto H sending 𝑎 to 0 and 𝑏 to
∞.

Definition 2.1.8 (Chordal SLE(𝜅)). For 𝜅 ≥ 0, the chordal SLE(𝜅) is the random
Loewner chain in H from 0 to ∞ driven by

𝜉𝑡 =
√
𝜅𝐵𝑡 , (2.1.4)

where 𝐵𝑡 is the standard Brownian motion.

Definition 2.1.9 (Characterization of Chordal SLE). Chordal SLE is a family of
probability measures on curves P(H; 𝑎, 𝑏) 𝜂 : [0,∞] → H with 𝜂(0) = 𝑎, 𝜂(∞) = 𝑏
and parametrized by capacity satisfies the following properties:

• (Conformal invariance) 𝜌(𝑧) ∈ Aut(H), the pullback measure 𝜌∗P(𝑎, 𝑏) =

P(H; 𝜌(𝑎), 𝜌(𝑏)). From this, we may extend the definition of to P(H; 𝑧1, 𝑧2)
in any simply connected domain Ω with two boundary points 𝑧1, 𝑧2 by pulling
back using a uniformizing conformal map Ω → H sending 𝑧1 to 𝑎 and 𝑧2 to
𝑏.

• (Domain Markov property) given an initial segment 𝛾 [0, 𝜏] of the SLE𝜅 curve
𝛾 ∼ P(Ω; 𝑥, 𝑦) up to a stopping time 𝜏, the conditional law of 𝛾 [𝜏,∞) is the
law P (Ω\𝐾𝜏; 𝛾(𝜏), 𝑦) of the SLE𝜅 curve in the complement of the hull 𝐾𝜏
from the tip 𝛾(𝜏) to 𝑦.

2.2 Coulomb gas correlation on Riemann sphere
To define more general SLE processes beyond the chordal and radial SLEs, we
introduce the concept of Coulomb gas correlations. These correlations serve as
partition functions for various SLE processes and play a central role in conformal
field theory.

We define the Coulomb gas correlations as the (holomorphic) differentials with
conformal dimensions 𝜆 𝑗 = 𝜎2

𝑗
/2 − 𝜎𝑗𝑏 at 𝑧 𝑗 (including infinity) and with values∏

𝑗<𝑘
𝑧 𝑗 ,𝑧𝑘≠∞

(
𝑧 𝑗 − 𝑧𝑘

)𝜎𝑗𝜎𝑘 ,

(
𝑧 𝑗 ∈ Ĉ

)
in the identity chart of C and the chart 𝑧 ↦→ −1/𝑧 at infinity. If 𝜎𝑗𝜎𝑘 ∉ 2Z, the
Coulomb gas differential is multi-valued; in this case, we choose a single-valued
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branch. After explaining this definition, we prove that under the neutrality condition,∑
𝜎𝑗 = 2𝑏, the Coulomb gas correlation functions are conformally invariant with

respect to the Möbius group Aut(Ĉ).

Definition 2.2.1 (Differential). A local coordinate chart on a Riemann surface 𝑀
is a conformal map 𝜙 : 𝑈 → 𝜙(𝑈) ⊂ C on an open subset 𝑈 of 𝑀 . A differential
𝑓 is an assignment of a smooth function ( 𝑓 ∥𝜙) : 𝜙(𝑈) → C to each local chart
𝜙 : 𝑈 → 𝜙(𝑈). 𝑓 is a differential of conformal dimensions [𝜆, 𝜆∗] if for any two
overlapping charts 𝜙 and 𝜙, we have:

( 𝑓 ∥𝜙) = (ℎ′)𝜆
(
ℎ′

)𝜆∗
( 𝑓 ◦ ℎ∥𝜙), (2.2.1)

where ℎ = 𝜙 ◦ 𝜙−1 : 𝜙(𝑈 ∩ �̃�) → 𝜙(𝑈 ∩ �̃�) is the transition map.

Definition 2.2.2 (Neutrality Condition). A divisor 𝝈 : Ĉ→ R is said to satisfy the
neutrality condition (NC)𝑏 if ∫

𝝈 = 2𝑏, (2.2.2)

for some 𝑏 ∈ R. In the context of SLE𝜅, the parameter 𝑏 is related to 𝜅 > 0 by

𝑏 =

√︂
8
𝜅
−

√︂
𝜅

2
. (2.2.3)

Definition 2.2.3 (Coulomb gas correlations for a divisor on the Riemann sphere).
Let the divisor

𝝈 =
∑︁

𝜎𝑗 · 𝑧 𝑗 ,

where
{
𝑧 𝑗

}𝑛
𝑗=1 is a finite set of distinct points on Ĉ. The Coulomb gas correlation

𝐶(𝑏) [𝝈] is a differential of conformal dimension 𝜆 𝑗 at 𝑧 𝑗 , given by

𝜆 𝑗 = 𝜆𝑏
(
𝜎𝑗

)
≡
𝜎2
𝑗

2
− 𝜎𝑗𝑏, (2.2.4)

where 𝜆𝑏 (𝜎) = 𝜎2

2 − 𝜎𝑏 (𝜎 ∈ C) whose value is given by

𝐶(𝑏) [𝝈] =
∏
𝑗<𝑘

(
𝑧 𝑗 − 𝑧𝑘

)𝜎𝑗𝜎𝑘 , (2.2.5)

where the product is taken over all finite 𝑧 𝑗 and 𝑧𝑘 .

This defines a holomorphic function of 𝒛 on the configuration space

C𝑛distinct =
{
𝒛 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛

�� 𝑧 𝑗 ≠ 𝑧𝑘 for 𝑗 ≠ 𝑘
}
.
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In general, the function is multivalued, and one must choose a single-valued branch
for each factor (𝑧 𝑗 − 𝑧𝑘 )𝜎𝑗𝜎𝑘 , except in special cases where all 𝜎𝑗 are integers. If
all 𝜎𝑗 are even integers, the function becomes single-valued and independent of the
ordering of the product. In the special case where 𝜎𝑗 = 1 for all 𝑗 , the correlation
function coincides with the Vandermonde determinant.

Theorem 2.2.4 (see N-G. Kang and N. Makarov (2021) thm (2.2)). Under the
neutrality condition (NC𝑏), the differentials 𝐶(𝑏) [𝝈] are Möbius invariant on Ĉ.

2.3 Coulomb gas correlation in a simply connected domain
In this section, we define the Coulomb gas correlation differential in a simply
connected domain.

Definition 2.3.1 (Symmetric Riemann surface). A symmetric Riemann surface is a
pair (𝑆, 𝑗) consisting of a Riemann surface 𝑆 and an anticonformal involution 𝑗 on
𝑆. The latter means that 𝑗 : 𝑆 → 𝑆 is an anti-analytic map with 𝑗 · 𝑗 = id (the
identity map).

The principal example for us is the symmetric Riemann surface obtained by taking
the Schottky double of a simply connected domain domain. The construction of this
is briefly as follows. (See section 2.2, Schiffer and Spencer (1954), II.3E, Ahlfors
and Sario (1960) for details.)

Definition 2.3.2 (Schottky double). Let Ω ⊊ C be a simply connected domain in C
with Γ = 𝜕Ω consisting of prime ends. Take copy Ω̃ of Ω and weld Ω and Ω̃ together
along Γ so that a compact topological surface Ω𝐷𝑜𝑢𝑏𝑙𝑒 = Ω ∪ Γ ∪ Ω̃ is obtained. If
𝑧 ∈ Ω let 𝑧 denote the corresponding point on Ω̃. Then an involution 𝑗 on Ω𝐷𝑜𝑢𝑏𝑙𝑒

is defined by
𝑗 (𝑧) = 𝑧 and
𝑗 (𝑧) = 𝑧 for 𝑧 ∈ Ω,

𝑗 (𝑧) = 𝑧 for 𝑧 ∈ Γ.

The conformal structure on Ω̃ will be the opposite to that on Ω, which means that
the function 𝑧 ↦→ 𝑧 serves as a local variable on Ω̃, and 𝑗 becomes anti-analytic.

For 𝑝 ∈ 𝜕Ω, let 𝜙 : 𝑈 ⊂ Ω → 𝜙(𝑈) be a local boundary chart at 𝑝, let �̃� be the
corresponding subset in Ω̃, then 𝜙 : �̃� ⊂ Ω̃ → 𝜙(�̃�) is a local chart at 𝑝. Then we
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can define a local chart 𝜏 for Ω𝐷𝑜𝑢𝑏𝑙𝑒 at boundary point 𝑝 by

𝜏(𝑧) =
{
𝜙(𝑧), 𝑧 ∈ 𝑈
𝜙(𝑧), 𝑧 ∈ �̃�.

Thus, the conformal structure on Ω𝐷𝑜𝑢𝑏𝑙𝑒, inherited from C, extends in a natural
way across Γ to a conformal structure on all of Ω𝐷𝑜𝑢𝑏𝑙𝑒. This makes Ω𝐷𝑜𝑢𝑏𝑙𝑒 into a
symmetric Riemann sphere.

For example, we identify Ĉ with the Schottky double of H or that of D. Then the
corresponding involution 𝑗 is 𝑗H : 𝑧 ↦→ 𝑧∗ = 𝑧 for Ω = H and 𝑗D : 𝑧 ↦→ 𝑧∗ = 1/𝑧 for
Ω = D.

Definition 2.3.3 (Double divisor). Suppose Ω is a simply connected domain (Ω ⊊
C).

A double divisor (𝝈+,𝝈−) is a pair of divisor in Ω

𝝈+ =
∑︁

𝜎+
𝑗 · 𝑧 𝑗 ,𝝈− =

∑︁
𝜎−
𝑗 · 𝑧 𝑗 . (2.3.1)

We introduce an equivalence relation for double divisors:

(
𝝈+

1 ,𝝈
−
1
)
∼

(
𝝈+

2 ,𝝈
−
2
)

(2.3.2)

if and only if
𝝈+

1 + 𝝈−
1 = 𝝈+

2 + 𝝈−
2 𝑜𝑛 𝜕Ω. (2.3.3)

Thus, we may choose a representative 𝝈− from each equivalence class that is
supported in Ω, i.e., 𝜎−

𝑗
= 0 if 𝑧 𝑗 ∈ 𝜕Ω .

Definition 2.3.4. Suppose Ω is a simply connected domain (Ω ⊊ C), let 𝜕Ω be its
Carathéodory boundary (prime ends) and consider the Schottky double 𝑆 = Ωdouble ,
which equips with the canonical involution 𝜄 ≡ 𝜄Ω : 𝑆 → 𝑆, 𝑧 ↦→ 𝑧∗.

Then, for a double divisor (𝝈+,𝝈−), we define the associated divisor on the Schottky
double 𝑆 by

𝝈 = 𝝈+ + 𝝈−
∗ , where 𝝈−

∗ :=
∑︁

𝜎−
𝑗 · 𝑧∗𝑗 , (2.3.4)

and each 𝑧∗
𝑗

denotes the image of 𝑧 𝑗 under the canonical involution 𝜄 of 𝑆. Accord-
ingly, 𝝈−

∗ is the pushforward of 𝝈− under 𝜄.
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Definition 2.3.5 (Neutrality condition). A double divisor (𝝈+,𝝈−) satisfies the
neutrality condition (NC𝑏) if∫

𝝈 =

∫
𝝈+ +

∫
𝝈− = 2𝑏. (2.3.5)

Definition 2.3.6 (Coulomb gas correlation for a double divisor in a simply connected
domain). For a double divisor (𝝈+,𝝈−), let 𝝈 = 𝝈+ + 𝝈−

∗ be its corresponding
divisor in the Schottky double 𝑆, we define the Coulomb gas correlation of the
double divisor (𝝈+,𝝈−) by

𝐶Ω

[
𝝈+,𝝈−] (𝒛) := 𝐶𝑆 [𝝈] . (2.3.6)

We often omit the subscripts Ω, 𝑆 to simplify the notations.

If the double divisor (𝝈+,𝝈−) satisfies the neutrality condition (NC𝑏), then the
Coulomb gas correlation function 𝐶Ω [𝝈+,𝝈−] is a well-defined differential on Ω,
with conformal weights

[
𝜆+
𝑗
, 𝜆−

𝑗

]
at each point 𝑧 𝑗 ∈ Ω.

If 𝑧 𝑗 ∈ 𝜕Ω, then the differential is with respect to a boundary chart: that is, a local
conformal map from a neighborhood of 𝑧 𝑗 in Ω to the upper half-plane H, sending
𝑧 𝑗 to a boundary point of H. The derivative 𝜕𝑧 𝑗 is then defined as the holomorphic
derivative in this local coordinate.

𝜆+𝑗 = 𝜆𝑏
(
𝜎+
𝑗

)
≡

(𝜎+
𝑗
)2

2
− 𝜎+

𝑗 𝑏, 𝜆−𝑗 = 𝜆𝑏
(
𝜎𝑗

)
≡

(𝜎−
𝑗
)2

2
− 𝜎−

𝑗 𝑏. (2.3.7)

By conformal invariance of the Coulomb gas correlation differential 𝐶𝑆 [𝝈] on
the Riemann sphere under Möbius transformation, the Coulomb gas correlation
differential 𝐶Ω [𝝈+,𝝈−] (𝒛) is invariant under 𝐴𝑢𝑡 (Ω).

Theorem 2.3.7 (see N-G. Kang and N. Makarov (2021) thm (2.4)). Under the
neutrality condition (NC𝑏), the value of the differential 𝐶H [𝝈+,𝝈−] in the identity
chart of H (and the chart 𝑧 ↦→ −1/𝑧 at infinity) is given by

𝐶H
[
𝝈+,𝝈−] = ∏

𝑗<𝑘

(
𝑧 𝑗 − 𝑧𝑘

)𝜎+
𝑗
𝜎+
𝑘
(
𝑧 𝑗 − 𝑧𝑘

)𝜎−
𝑗
𝜎−
𝑘

∏
𝑗 ,𝑘

(
𝑧 𝑗 − 𝑧𝑘

)𝜎+
𝑗
𝜎−
𝑖 , (2.3.8)

where the products are taken over finite 𝑧 𝑗 and 𝑧𝑘 .
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Example 2.3.8. We have

(i) if 𝝈− = 0, then (up to a phase)

𝐶H
[
𝝈+, 0

]
=

∏
𝑗<𝑘

(
𝑧 𝑗 − 𝑧𝑘

)𝜎+
𝑗
𝜎+
𝑘 ;

(ii) if 𝝈− = 𝝈+, then (up to a phase)

𝐶H

[
𝝈+,𝝈+

]
=

∏
𝑗<𝑘

���� (𝑧 𝑗 − 𝑧𝑘 )𝜎+
𝑗
𝜎+
𝑘
(
𝑧 𝑗 − 𝑧𝑘

)𝜎+
𝑗
𝜎+
𝑘

����2 ∏
Im 𝑧 𝑗>0

(
2 Im 𝑧 𝑗

) ���𝜎+
𝑗

���2 ;

(iii) if 𝝈− = −𝝈+, then (up to a phase)

𝐶H

[
𝝈+,−𝝈+

]
=

∏
𝑗<𝑘

���� (𝑧 𝑗 − 𝑧𝑘 )𝜎+
𝑗
𝜎+
𝑘
(
𝑧 𝑗 − 𝑧𝑘

)−𝜎+
𝑗
𝜎+
𝑘

����2 ∏
Im 𝑧 𝑗>0

(
2 Im 𝑧 𝑗

)−���𝜎+
𝑗

���2
.

where the products are taken over finite 𝑧 𝑗 and 𝑧𝑘 .

Theorem 2.3.9 (see N-G. Kang and N. Makarov (2021) thm (2.5)). Under the
neutrality condition (NC𝑏), the value of the differential 𝐶D [𝝈+,𝝈−] in the identity
chart of D is given by

𝐶D
[
𝝈+,𝝈−] = ∏

𝑗<𝑘

(
𝑧 𝑗 − 𝑧𝑘

)𝜎+
𝑗
𝜎+
𝑘
(
𝑧 𝑗 − 𝑧𝑘

)𝜎−
𝑗
𝜎−
𝑘

∏
𝑗 ,𝑘

(
1 − 𝑧 𝑗 𝑧𝑘

)𝜎+
𝑗
𝜎−
𝑘 , (2.3.9)

where the product is taken over finite 𝑧 𝑗 and 𝑧𝑘 .

2.4 Rational 𝑆𝐿𝐸𝜅 [𝝈]

Definition 2.4.1 (Rational SLE). In the unit diskD, let 𝑒𝑖𝜃 ∈ 𝜕D be the growth point,
and let 𝑢1 = 𝑒𝑖𝜃1 , 𝑢2 = 𝑒𝑖𝜃2 , . . . , 𝑢𝑘 = 𝑒𝑖𝜃𝑛 ∈ D be marked points. The symmetric
double divisor (𝝈+,𝝈−) assigns a charge distribution on 𝑒𝑖𝜃 and {𝑢1, 𝑢2, . . . , 𝑢𝑚},
where 𝝈+ = 𝑎 · 𝑒𝑖𝜃 + ∑

𝜎𝑗 · 𝑢 𝑗 and 𝝈− = 𝝈+ |Ω, satisfying the neutrality condition
(𝑁𝐶𝑏).

We define the rational 𝑆𝐿𝐸𝜅 [𝝈] Loewner chain as a random normalized conformal
map 𝑔𝑡 = 𝑔𝑡 (𝑧), with initial conditions 𝑔0(𝑧) = 𝑧 and 𝑔′𝑡 (0) = 𝑒−𝑡 . The evolution of
𝑔𝑡 (𝑧) is governed by the Loewner differential equation:

𝜕𝑡𝑔𝑡 (𝑧) = 𝑔𝑡 (𝑧)
𝑒𝑖𝜃 (𝑡) + 𝑔𝑡 (𝑧)
𝑒𝑖𝜃 (𝑡) − 𝑔𝑡 (𝑧)

, 𝑔0(𝑧) = 𝑧.
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Let ℎ𝑡 (𝑧) be the covering map of 𝑔𝑡 (𝑧), i.e., 𝑒𝑖ℎ𝑡 (𝑧) = 𝑔𝑡 (𝑒𝑖𝑧). The evolution of ℎ𝑡 (𝑧)
is described by:

𝜕𝑡ℎ𝑡 (𝑧) = cot
(
ℎ𝑡 (𝑧) − 𝜃 (𝑡)

2

)
, ℎ0(𝑧) = 𝑧.

The driving function 𝜃 (𝑡) evolves according to:

𝑑𝜃 (𝑡) = 𝜕 logZ(𝜃)
𝜕𝜃

𝑑𝑡 +
√
𝜅 𝑑𝐵𝑡 ,

where the partition function

Z(𝜽) =
∏
𝑗<𝑘

sin
(
𝜃 𝑗 − 𝜃𝑘

2

)𝜎𝑗𝜎𝑘 ∏
𝑗

𝑒
𝑖
2𝜎𝑗 (𝜎0−𝜎∞)𝜃 𝑗 . (2.4.1)

is defined in (2.4.1).

The flow map 𝑔𝑡 is well-defined up to the first time 𝜏 at which 𝜁 (𝑡) = 𝑔𝑡 (𝑤) for some
𝑤 in the support of 𝝈. For each 𝑧 ∈ C, the process 𝑡 ↦→ 𝑔𝑡 (𝑧) is well-defined up to
𝜏𝑧∧𝜏, where 𝜏𝑧 is the first time at which 𝑔𝑡 (𝑧) = 𝑒𝑖𝜃 (𝑡) . Denote 𝐾𝑡 =

{
𝑧 ∈ H : 𝜏𝑧 ≤ 𝑡

}
as the hull associated with this Loewner chain.

Furthermore, the law of the rational SLE(𝜅) Loewner chain is invariant under
Möbius transformations Aut(D) (up to a time change), due to the conformal invari-
ance of the Coulomb gas correlation. Consequently, we define rational 𝑆𝐿𝐸𝜅 [𝝈] in
any simply connected domain Ω by pulling back via a conformal map 𝜙 : Ω → D.

In definition (2.4.1), we define the rational SLE from the perspective of the partition
function. This approach helps us to understand the SLE within the framework of
conformal field theory and can be naturally extended to various settings, including
multiple SLE(𝜅) systems.

Example 2.4.2. Double divisor for chordal and radial SLE(𝜅, 𝜌), where 𝜉 denotes
the growth point and 𝑞 is the marked boundary point (in the chordal case) or interior
point (in the radial case).

In addition to the aforementioned definition, another widely used equivalent is
known as SLE(𝜅,𝜌). We prove the equivalence between rational 𝑆𝐿𝐸𝜅 [𝝈+,𝝈−] and
SLE(𝜅,𝜌) in the following theorem.
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Figure 2.1: Chordal SLE(𝜅) 𝝈+ = 𝑎 · 𝜉 +
(2𝑏 − 𝑎) · 𝑞, 𝝈− = 0

Figure 2.2: Radial SLE(𝜅) 𝝈+ = 𝑎 · 𝜉 +
(𝑏 − 𝑎) · 𝑞, 𝝈− = 𝑏 · 𝑞

Definition 2.4.3 (Radial SLE(𝜅, 𝜌)). Let 𝜉 be the growth point on the unit circle,
and let

𝝆 =

𝑛∑︁
𝑗=1

𝜌 𝑗𝛿𝑢 𝑗
+ 𝜎0 · 𝛿0 + 𝜎∞ · 𝛿∞

be a divisor on Ĉ, where 𝜌 𝑗 ∈ C, and the divisor 𝝆 is symmetric under inversion,
i.e.,

𝝆(𝑧) = 𝝆

(
𝑧

|𝑧 |2

)
for all 𝑧 ∈ Ĉ.

We say 𝝆 satisfies the neutrality condition for SLE(𝜅, 𝜌) if∫
𝝆 = 𝜅 − 6.

. Define the radial SLE(𝜅, 𝜉, 𝝆) Loewner chain by

𝜕𝑡𝑔𝑡 (𝑧) = 𝑔𝑡 (𝑧)
𝜉 (𝑡) + 𝑔𝑡 (𝑧)
𝜉 (𝑡) − 𝑔𝑡 (𝑧)

, 𝑔0(𝑧) = 𝑧. (2.4.2)

Let 𝜉 (𝑡) = 𝑒𝑖𝜃 (𝑡) , 𝑢 𝑗 = 𝑒𝑖𝑞 𝑗 and ℎ𝑡 (𝑧) be the covering map of 𝑔𝑡 (𝑧) (i.e. ℎ𝑡 (𝑧) =

𝑔𝑡 (𝑒𝑖𝑧)) , then the Loewner differential equation for ℎ𝑡 (𝑧) is given by

𝜕𝑡ℎ𝑡 (𝑧) = cot( ℎ𝑡 (𝑧) − 𝜃 (𝑡)
2

), ℎ0(𝑧) = 𝑧, (2.4.3)

the driving function 𝜃 (𝑡) evolves as

𝑑𝜃 (𝑡) =
√
𝜅𝑑𝐵𝑡 +

∑︁
𝑗

𝜌 𝑗 cot(
𝜃 (𝑡) − 𝑞 𝑗 (𝑡)

2
). (2.4.4)

Note that although the lifts of 𝜃 (𝑡) in universal cover are not unique, different lifts
lead to the same differential equation for ℎ𝑡 (𝑧) by periodicity cot(𝑧 + 𝑘𝜋) = cot(𝑧),
𝑘 ∈ Z.
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Theorem 2.4.4. For a symmetric double divisor𝝈+ = 𝑎 ·𝜉+∑
𝜎𝑗 ·𝑢 𝑗 and𝝈− = 𝝈+ |Ω

satisfying neutrality condition (𝑁𝐶𝑏), let 𝝆 =
∑𝑚
𝑗=1 𝜌 𝑗 ·𝑢 𝑗 where 𝜌 𝑗 = (𝜅𝑎)𝜎𝑗 . Then

two definitions 𝑆𝐿𝐸𝜅 [𝝈+,𝝈−] and SLE(𝜅, 𝜌) are equivalent.

Proof. The equivalence in one chart can be verified by directly computing the
drift term in the Loewner equation. The conformal invariance of SLE(𝜅, 𝜌) under
the neutrality condition (𝑁𝐶𝑏), where the divisor 𝝆 consists of real charges, is
established in Schramm and D. Wilson (2005). Moreover, their argument extends
naturally to the case where the charges 𝝆 are complex. □

2.5 Classical limit of Coulomb gas correlation
Now, we extend our definition of Coulomb gas correlation to 𝜅 = 0 by normalizing
the Coulomb gas correlation.

Definition 2.5.1 (Normalized Coulomb gas correlations for a divisor on the Riemann
sphere). Let the divisor

𝝈 =
∑︁

𝜎𝑗 · 𝑧 𝑗 ,

where
{
𝑧 𝑗

}𝑛
𝑗=1 is a finite set of distinct points on Ĉ. The normalized Coulomb gas

correlation 𝐶 [𝝈] is a differential of conformal dimension 𝜆 𝑗 at 𝑧 𝑗 by

Let 𝜆(𝜎) = 𝜎2 + 2𝜎 (𝜎 ∈ R).

𝜆 𝑗 = 𝜆𝑏
(
𝜎𝑗

)
≡ 𝜎2

𝑗 + 2𝜎𝑗 , (2.5.1)

whose value is given by

𝐶 [𝝈] =
∏
𝑗<𝑘

(
𝑧 𝑗 − 𝑧𝑘

)2𝜎𝑗𝜎𝑘 , (2.5.2)

where the product is taken over all finite 𝑧 𝑗 and 𝑧𝑘 .

Remark 2.5.2. The normalized Coulomb gas correlation can be viewed as taking the
𝜅 → 0 limit of the divisor

√
2𝜅𝝈, the Coulomb gas correlation function 𝐶(𝑏) [𝝈]𝜅,

and conformal dimension 𝜅𝜆 𝑗 .

Definition 2.5.3 (Neutrality condition). A divisor 𝝈 : Ĉ→ R satisfies the neutrality
condition if ∫

𝝈 = −2. (2.5.3)
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Theorem 2.5.4. Under the neutrality condition
∫
𝝈 = −2, the normalized Coulomb

gas correlation differentials 𝐶 [𝝈] are Möbius invariant on Ĉ.

Proof. By direct computation, similar to the 𝜅 > 0 case. □

Definition 2.5.5 (Coulomb gas correlation for a double divisor in a simply connected
domain). For a double divisor (𝝈+,𝝈−), let 𝝈 = 𝝈+ + 𝝈−

∗ be its corresponding
divisor in the Schottky double 𝑆, we define the Coulomb gas correlation of the
double divisor (𝝈+,𝝈−) by:

𝐶Ω

[
𝝈+,𝝈−] (𝒛) := 𝐶𝑆 [𝝈] . (2.5.4)

We often omit the subscripts Ω, 𝑆 to simplify the notations.

If the double divisor (𝝈+,𝝈−) satisfies the neutrality condition, then 𝐶 [𝝈+,𝝈−]is
a well-defined differential with conformal dimensions

[
𝜆+
𝑗
, 𝜆−

𝑗

]
at 𝑧 𝑗 .

𝜆+𝑗 = 𝜆
(
𝜎+
𝑗

)
≡

(𝜎+
𝑗
)2

2
+ 2𝜎+

𝑗 , 𝜆−𝑗 = 𝜆
(
𝜎𝑗

)
≡

(𝜎−
𝑗
)2

2
+ 2𝜎−

𝑗 . (2.5.5)

By conformal invariance of the Coulomb gas correlation differential 𝐶𝑆 [𝝈] on
the Riemann sphere under Möbius transformation, the Coulomb gas correlation
differential 𝐶Ω [𝝈+,𝝈−] (𝒛) is invariant under 𝐴𝑢𝑡 (Ω).

Definition 2.5.6 (Neutrality condition). A double divisor (𝝈+,𝝈−) satisfies the
neutrality condition if ∫

𝝈 =

∫
𝝈+ +

∫
𝝈− = −2. (2.5.6)

Theorem 2.5.7. Under the neutrality condition
∫
𝝈+ +

∫
𝝈− = −2 , the value of

the differential 𝐶H [𝝈+,𝝈−] in the identity chart of H (and the chart 𝑧 ↦→ −1/𝑧 at
infinity) is given by

𝐶H
[
𝝈+,𝝈−] = ∏

𝑗<𝑘

(
𝑧 𝑗 − 𝑧𝑘

)2𝜎+
𝑗
𝜎+
𝑘
(
𝑧 𝑗 − 𝑧𝑘

)2𝜎−
𝑗
𝜎−
𝑘

∏
𝑗 ,𝑘

(
𝑧 𝑗 − 𝑧𝑘

)2𝜎+
𝑗
𝜎−
𝑖 , (2.5.7)

where the products are taken over finite 𝑧 𝑗 and 𝑧𝑘 .
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Theorem 2.5.8. Under the neutrality condition
∫
𝝈+ +

∫
𝝈− = −2, the value of the

differential 𝐶D [𝝈+,𝝈−] in the identity chart of D is given by

𝐶D
[
𝝈+,𝝈−] = ∏

𝑗<𝑘

(
𝑧 𝑗 − 𝑧𝑘

)2𝜎+
𝑗
𝜎+
𝑘
(
𝑧 𝑗 − 𝑧𝑘

)2𝜎−
𝑗
𝜎−
𝑘

∏
𝑗 ,𝑘

(
1 − 𝑧 𝑗 𝑧𝑘

)2𝜎+
𝑗
𝜎−
𝑘 , (2.5.8)

where the product is taken over finite 𝑧 𝑗 and 𝑧𝑘 .

2.6 Rational 𝑆𝐿𝐸0 [𝝈]

Definition 2.6.1 (Rational SLE0). In the unit disk D, let 𝑒𝑖𝜃 ∈ 𝜕D be the growth
point, and let 𝑢1, 𝑢2, . . . , 𝑢𝑚 ∈ D be marked points. A symmetric double divisor
(𝝈+,𝝈−) assigns a charge distribution on 𝑒𝑖𝜃 and {𝑢1, . . . , 𝑢𝑘 }, where

𝝈+ = 𝑎 · 𝑒𝑖𝜃 +
𝑘∑︁
𝑗=1
𝜎𝑗 · 𝑢 𝑗 , and 𝝈− = 𝝈+ |D,

and the total charge satisfies the neutrality condition
∫
𝝈 = −2.

We define the rational SLE0 [𝝈] Loewner chain as a normalized conformal map
𝑔𝑡 (𝑧) with initial conditions 𝑔0(𝑧) = 𝑧 and 𝑔′𝑡 (0) = 𝑒−𝑡 . The evolution of 𝑔𝑡 is
governed by the Loewner differential equation:

𝜕𝑡𝑔𝑡 (𝑧) = 𝑔𝑡 (𝑧)
𝑒𝑖𝜃 (𝑡) + 𝑔𝑡 (𝑧)
𝑒𝑖𝜃 (𝑡) − 𝑔𝑡 (𝑧)

, 𝑔0(𝑧) = 𝑧.

In the angular coordinate, let ℎ𝑡 (𝑧) be the covering map of 𝑔𝑡 (𝑧) defined by 𝑒𝑖ℎ𝑡 (𝑧) =
𝑔𝑡 (𝑒𝑖𝑧). Then ℎ𝑡 (𝑧) evolves according to

𝜕𝑡ℎ𝑡 (𝑧) = cot
(
ℎ𝑡 (𝑧) − 𝜃 (𝑡)

2

)
, ℎ0(𝑧) = 𝑧.

The driving function 𝜃 (𝑡) evolves according to

𝑑𝜃 (𝑡) = 𝜕 logZ(𝜽)
𝜕𝜃

𝑑𝑡.

where the Coulomb gas partition function is

Z(𝜽) =
∏
𝑗<𝑘

sin
(
𝜃 𝑗 − 𝜃𝑘

2

)𝜎𝑗𝜎𝑘

·
∏
𝑗

𝑒
𝑖
2𝜎𝑗 (𝜎0−𝜎∞)𝜃 𝑗 . (2.6.1)

The flow 𝑔𝑡 is well-defined up to the first time 𝜏 at which 𝑤(𝑡) = 𝑔𝑡 (𝑤) for some 𝑤
in the support of 𝝈. For each 𝑧 ∈ D, the process 𝑡 ↦→ 𝑔𝑡 (𝑧) is well-defined up to
𝜏𝑧 ∧ 𝜏, where 𝜏𝑧 is the first time such that 𝑔𝑡 (𝑧) = 𝑒𝑖𝜃 (𝑡) . Denote

𝐾𝑡 =

{
𝑧 ∈ D : 𝜏𝑧 ≤ 𝑡

}
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as the hull associated with the Loewner chain.

Furthermore, the rational SLE0 Loewner chain is invariant under Möbius trans-
formations in Aut(D) (up to a time reparameterization), due to the conformal
invariance of the Coulomb gas correlation. Consequently, rational SLE0 [𝝈] in
any simply connected domain Ω is defined by pulling back via a conformal map
𝜙 : Ω → D.

In definition (2.6.1), we introduce the definition of 𝑆𝐿𝐸0 [𝛽] as a natural extension
of 𝑆𝐿𝐸𝜅 [𝛽] to 𝜅 = 0. The main ingredient in our definition is the normalized
Coulomb gas as the partition function.

Now, we introduce another widely used definition SLE(0, 𝝆) which is a natural
extension of SLE(𝜅, 𝝆) to 𝜅 = 0. We prove the equivalence between rational
𝑆𝐿𝐸0 [𝝈] and SLE(0, 𝝆) in the end.

Definition 2.6.2 ( SLE(0, 𝝆)). Let𝑤 be the growth point on 𝜕D and 𝝆 =
∑𝑛
𝑖=1 𝜌 𝑗𝛿𝑢 𝑗

+
𝜎0 ·0+𝜎∞ ·∞ be a divisor on Ĉ that is symmetric under involution, i.e. 𝝆(𝑧) = 𝝆( 𝑧

|𝑧 |2 )
for all 𝑧 and

∫
𝝆 = −6. Define the radial SLE(0, 𝑤, 𝝆) Loewner chain by

𝜕𝑡𝑔𝑡 (𝑧) = 𝑔𝑡 (𝑧)
𝑤(𝑡) + 𝑔𝑡 (𝑧)
𝑤(𝑡) − 𝑔𝑡 (𝑧)

, 𝑔0(𝑧) = 𝑧, (2.6.2)

where the driving function 𝑤(𝑡) evolves as

¤𝑤(𝑡) = 𝑤(𝑡)
∑︁
𝑗

𝜌 𝑗
𝑔𝑡 (𝑢 𝑗 ) + 𝑤(𝑡)
𝑔𝑡 (𝑢 𝑗 ) − 𝑤(𝑡)

, 𝑧(0) = 𝑧0. (2.6.3)

In the angular coordinate, 𝑤(𝑡) = 𝑒𝑖𝜃 (𝑡) and 𝑢 𝑗 (𝑡) = 𝑒𝑖𝑞 𝑗 (𝑡) , let ℎ𝑡 (𝑧) be the covering
conformal map of 𝑔𝑡 (𝑧) (i.e. 𝑒𝑖ℎ𝑡 (𝑧) = 𝑔𝑡 (𝑒𝑖𝑧)).

Then the Loewner differential equation for ℎ𝑡 (𝑧) is

𝜕𝑡ℎ𝑡 (𝑧) = cot( ℎ𝑡 (𝑧) − 𝜃𝑡
2

), ℎ0(𝑧) = 𝑧, 𝑧 ∈ H, (2.6.4)

where the driving function 𝜃𝑡 evolves as

¤𝜃𝑡 =
∑︁
𝑗

𝜌 𝑗 cot(
𝜃𝑡 − 𝑞 𝑗 (𝑡)

2
), 𝑥(0) = 𝑥0. (2.6.5)

Theorem 2.6.3. For an involution symmetric divisor 𝝈 = 𝑤+∑𝑚
𝑗=1 𝜎𝑗 · 𝑧 𝑗 satisfying

neutrality condition
∫
𝝈 = −2, let 𝝆 = 2

∑𝑚
𝑗=1 𝜎𝑗 · 𝑧 𝑗 , then

∫
𝝆 = −6 and two

definitions 𝑆𝐿𝐸0 [𝜎] and SLE(0, 𝜌) are equivalent.
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Proof. The equivalence in one chart can be verified by directly computing the
drift term in the Loewner equation. The conformal invariance of SLE(𝜅, 𝜌) under
the neutrality condition (𝑁𝐶𝑏), where the divisor 𝝆 consists of real charges, is
established in Schramm and D. Wilson (2005). Moreover, their argument extends
naturally to the case where the charges 𝝆 are complex. □
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C h a p t e r 3

COMMUTATION RELATIONS AND CONFORMAL
INVARIANCE FOR MULTIPLE SLE SYSTEMS

3.1 Transformation of Loewner flow under coordinate change
In this section we show that the Loewner chain of a curve, when viewed in a
different coordinate chart, is a time reparametrization of the Loewner chain in the
standard coordinate chart but with different initial conditions. This result serves as
a preliminary step towards understanding the local commutation relations and the
conformal invariance of multiple SLE(𝜅) systems.

Let us briefly review how Loewner chains transform under coordinate changes.

Theorem 3.1.1 (Deterministic Loewner chain under coordinate change). In angular
(trigonometric) coordinates, suppose 𝛾(0) = 𝜃 ∈ R and let the marked points be
𝜃1, 𝜃2, . . . , 𝜃𝑛 ∈ C. Let 𝛾(𝑡) be the curve generated by the deterministic Loewner
chain:

𝜕𝑡ℎ𝑡 (𝑧) = cot
(
ℎ𝑡 (𝑧) − 𝜃𝑡

2

)
, ¤𝜃𝑡 = 𝑏 (𝜃𝑡 ; ℎ𝑡 (𝜃1), . . . , ℎ𝑡 (𝜃𝑛)) , (3.1.1)

with initial condition ℎ0(𝑧) = 𝑧 and 𝜃0 = 𝜃, where 𝑏 : R × C𝑛 → R is a smooth
vector field.

Let 𝜏 : N → H be a conformal map defined on a neighborhood N of 𝜃 such that
𝛾 [0, 𝑇] ⊂ N and 𝜏(𝜕N ∩ R) ⊂ R. Define the image curve �̃�(𝑡) := 𝜏(𝛾(𝑡)) for
𝑡 ∈ [0, 𝑇], and let ℎ̃𝑡 denote the conformal map associated with �̃� [0, 𝑡].

Define the conformal coordinate change

Ψ𝑡 := ℎ̃𝑡 ◦ 𝜏 ◦ ℎ−1
𝑡 .

Then the image conformal map ℎ̃𝑡 (𝑧) satisfies the evolution equation:

𝜕𝑡 ℎ̃𝑡 (𝑧) = cot

(
ℎ̃𝑡 (𝑧) − �̃�𝑡

2

)
·
[
Ψ′
𝑡 (𝜃𝑡)

]2
, ℎ̃0(𝑧) = 𝑧, (3.1.2)

where the new driving function is

�̃�𝑡 := ℎ̃𝑡 ◦ 𝜏 ◦ ℎ−1
𝑡 (𝜃𝑡) = Ψ𝑡 (𝜃𝑡), �̃�0 = 𝜏(𝜃).
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Moreover, the curve �̃�(𝑡) is parameterized so that its unit disk capacity satisfies

hcap(�̃� [0, 𝑡]) = 2𝜎(𝑡), where 𝜎(𝑡) :=
∫ 𝑡

0

��Ψ′
𝑠 (𝜃𝑠)

��2 𝑑𝑠. (3.1.3)

Proof. See Section 4.6.2 in Lawler (2005). □

Theorem 3.1.2 (Stochastic Loewner chain under coordinate change). Suppose the
driving function 𝜃𝑡 evolves according to the stochastic differential equation

𝑑𝜃𝑡 =
√
𝜅 𝑑𝐵𝑡 + 𝑏 (𝜃𝑡 ;Ψ𝑡 (𝜃1), . . . ,Ψ𝑡 (𝜃𝑛)) 𝑑𝑡, (3.1.4)

where 𝐵𝑡 is standard Brownian motion, and Ψ𝑡 := ℎ̃𝑡 ◦ 𝜏 ◦ ℎ−1
𝑡 is the conformal

coordinate change defined as in Theorem 3.1.1.

Define the transformed driving function

�̃�𝑡 := Ψ𝑡 (𝜃𝑡),

and introduce the reparameterized time

𝑠(𝑡) :=
∫ 𝑡

0
|Ψ′
𝑢 (𝜃𝑢) |2 𝑑𝑢.

Then the process �̃�𝑠 := Ψ𝑡 (𝑠) (𝜃𝑡 (𝑠)) satisfies the following SDE:

𝑑�̃�𝑠 =
√
𝜅 𝑑𝐵𝑠+

𝑏
(
𝜃𝑠;Ψ𝑡 (𝑠) (𝜃1), . . . ,Ψ𝑡 (𝑠) (𝜃𝑛)

)
Ψ′
𝑡 (𝑠) (𝜃𝑠)

𝑑𝑠+ 𝜅 − 6
2

·
Ψ′′
𝑡 (𝑠) (𝜃𝑠)

[Ψ′
𝑡 (𝑠) (𝜃𝑠)]2 𝑑𝑠. (3.1.5)

Proof. We apply Itô’s formula to the composed process �̃�𝑡 = Ψ𝑡 (𝜃𝑡). Using the
chain rule for semimartingales:

𝑑�̃�𝑡 = (𝜕𝑡Ψ𝑡) (𝜃𝑡) 𝑑𝑡 + Ψ′
𝑡 (𝜃𝑡) 𝑑𝜃𝑡 +

1
2
Ψ′′
𝑡 (𝜃𝑡) 𝑑⟨𝜃⟩𝑡

= (𝜕𝑡Ψ𝑡) (𝜃𝑡) 𝑑𝑡 + Ψ′
𝑡 (𝜃𝑡)

[√
𝜅 𝑑𝐵𝑡 + 𝑏(𝜃𝑡 ;Ψ𝑡 (𝜃1), . . . ,Ψ𝑡 (𝜃𝑛)) 𝑑𝑡

]
+ 𝜅

2
Ψ′′
𝑡 (𝜃𝑡) 𝑑𝑡.

From Proposition 4.43 in Lawler (2005), we use the identity

(𝜕𝑡Ψ𝑡) (𝜃𝑡) = −3Ψ′′
𝑡 (𝜃𝑡).

Substituting into the equation:
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𝑑�̃�𝑡 = Ψ′
𝑡 (𝜃𝑡)

√
𝜅 𝑑𝐵𝑡 + Ψ′

𝑡 (𝜃𝑡)𝑏(𝜃𝑡 ;Ψ𝑡 (𝜃1), . . . ,Ψ𝑡 (𝜃𝑛)) 𝑑𝑡 +
( 𝜅
2
− 3

)
Ψ′′
𝑡 (𝜃𝑡) 𝑑𝑡

= Ψ′
𝑡 (𝜃𝑡)

√
𝜅 𝑑𝐵𝑡 + Ψ′

𝑡 (𝜃𝑡)𝑏(𝜃𝑡 ;Ψ𝑡 (𝜃1), . . . ,Ψ𝑡 (𝜃𝑛)) 𝑑𝑡 +
𝜅 − 6

2
Ψ′′
𝑡 (𝜃𝑡) 𝑑𝑡.

Now, we reparameterize time via 𝑠(𝑡) =
∫ 𝑡

0 |Ψ′
𝑢 (𝜃𝑢) |2𝑑𝑢. Under this change of time,

we obtain the transformed SDE for �̃�𝑠 by dividing all drift and diffusion terms by
|Ψ′
𝑡 (𝜃𝑡) |:

𝑑�̃�𝑠 =
√
𝜅 𝑑𝐵𝑠 +

𝑏(𝜃𝑠;Ψ𝑡 (𝑠) (𝜃1), . . . ,Ψ𝑡 (𝑠) (𝜃𝑛))
Ψ′
𝑡 (𝑠) (𝜃𝑠)

𝑑𝑠 + 𝜅 − 6
2

·
Ψ′′
𝑡 (𝑠) (𝜃𝑠)

[Ψ′
𝑡 (𝑠) (𝜃𝑠)]2 𝑑𝑠.

□

Remark 3.1.3. By Theorem 3.1.2, under a conformal coordinate change 𝜏, the drift
term in the marginal law transforms as a pre-Schwarzian form. Specifically, if the
driving function satisfies

𝑑𝜃𝑡 =
√
𝜅 𝑑𝐵𝑡 + 𝑏(𝜃𝑡) 𝑑𝑡,

then the drift 𝑏 transforms under 𝜏 as

𝑏(𝜃) = 𝜏′(𝜃) · �̃�(𝜏(𝜃)) + 6 − 𝜅
2

· (log 𝜏′(𝜃))′ .

Here, �̃� is the drift in the image coordinate �̃� = 𝜏(𝜃), and the second term is the
pre-Schwarzian derivative of 𝜏.

Corollary 3.1.4. Let 𝛾, �̃� be two hulls starting at 𝑒𝑖𝑥 ∈ 𝜕D and 𝑒𝑖𝑦 ∈ 𝜕D with
capacity 𝜖 and 𝑐𝜖 , let 𝑔𝜖 be the normalized map removing 𝛾 and 𝜖 = hcap(𝑔𝜖 ◦𝛾(𝑡)),
then we have:

𝜀 = 𝑐𝜀

(
1 − 𝜀

sin2( 𝑥−𝑦2 )

)
+ 𝑜

(
𝜀2

)
. (3.1.6)

Proof. Locally, we can define ℎ𝑡 (𝑧) = −𝑖 log(𝑔𝑡 (𝑒𝑖𝑧)). Then from the Loewner
equation, 𝜕𝑡ℎ′𝑡 (𝑤) = − ℎ′𝑡 (𝑤)

2 sin2
(
ℎ𝑡 (𝑤)−𝑥𝑡

2

) , which implies ℎ′𝜀 (𝑦) = 1 − 𝜀

2 sin2 ( 𝑦−𝑥2 ) + 𝑜(𝜀).

By applying conformal transformation ℎ𝜖 (𝑦), we get

𝜀 = 𝑐𝜖 (ℎ′𝜖 (𝑦)2 + 𝑜(𝜖)) = 𝑐𝜀
(
1 − 𝜀

sin2( 𝑥−𝑦2 )

)
+ 𝑜

(
𝜀2

)
.

□
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3.2 Local commutation relation and null vector equations in 𝜅 > 0 case
In this section, we explore how the commutation relations (reparametrization sym-
metry) and conformal invariance impose constraints on the drift terms 𝑏 𝑗 (𝒛, 𝑢) and
equivalently impose constraints on the partition function 𝜓(𝒛, 𝑢) derived from 𝑏 𝑗 .

The pioneering work on commutation relations was done in Dubédat (2007). The
author studied the commutation relations for multiple SLEs in the upper half
plane H with 𝑛 growth points 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈ R and 𝑚 additional marked points
𝑢1, 𝑢2, . . . , 𝑢𝑚 ∈ R.

We extend this Dubedat’s commutation argument to the case where there are 𝑛
growth points 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈ 𝜕D and one interior marked point 𝑢 ∈ D; see theorem
(3.2.1) and (3.2.5).

The commutation relations in the unit disk D with the marked point 0 are partially
studied in Dubédat (2007) and Y. Wang and Wu (2024).

A significant difference between the multiple radial and standard chordal SLE(𝜅)
systems (with no marked points) arises when we study their conformal invariance
properties. Although the multiple radial SLE(𝜅) systems are conformally invariant,
their corresponding partition functions form equivalence classes that do not neces-
sarily exhibit conformal covariance. However, within each equivalence class, it is
still possible to find at least one conformally covariant partition function.

Theorem 3.2.1 (Commutation Relations for 𝑢 = 0). In the unit disk D, consider 𝑛
radial SLEs starting at 𝑒𝑖𝜃1 , 𝑒𝑖𝜃2 , . . . , 𝑒𝑖𝜃𝑛 ∈ 𝜕D, with a marked interior point 𝑢 = 0.

(i) Let the infinitesimal diffusion generators be

M𝑖 =
𝜅

2
𝜕𝑖𝑖 + 𝑏𝑖 (𝜃1, 𝜃2, . . . , 𝜃𝑛)𝜕𝑖 +

∑︁
𝑗≠𝑖

cot
(
𝜃 𝑗 − 𝜃𝑖

2

)
𝜕𝑗 ,

where 𝜕𝑖 = 𝜕𝜃𝑖 . If the 𝑛 SLEs locally commute, the associated infinitesimal
generators satisfy

[M𝑖,M 𝑗 ] =
1

sin2
(
𝜃 𝑗−𝜃𝑖

2

) (M 𝑗 −M𝑖).

There exists a positive function 𝜓(𝜽), defined on 𝔛𝑛 (𝜽), such that the drift
term satisfies

𝑏𝑖 (𝜽) = 𝜅𝜕𝑖 log𝜓,
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and 𝜓 satisfies the null vector equations:

𝜅

2
𝜕𝑖𝑖𝜓 +

∑︁
𝑗≠𝑖

cot
(
𝜃 𝑗 − 𝜃𝑖

2

)
𝜕𝑖𝜓 +

(
1 − 6

𝜅

) ∑︁
𝑗≠𝑖

1

4 sin2
(
𝜃 𝑗−𝜃𝑖

2

)𝜓 − ℎ 𝑗 (𝜃 𝑗 )𝜓 = 0,

(3.2.1)
for 𝑖 = 1, 2, . . . , 𝑛, with undetermined functions ℎ 𝑗 (𝜃 𝑗 ).

(ii) By analyzing the asymptotic behavior of two adjacent growth points 𝜃𝑖 and 𝜃𝑖+1

(with no marked points between them), we further deduce that ℎ𝑖 (𝜃) = ℎ𝑖+1(𝜃).
Consequently, if all growth points are consecutive with no marked points
between them, there exists a common function ℎ(𝜃) such that

ℎ(𝜃) = ℎ1(𝜃) = · · · = ℎ𝑛 (𝜃).

Theorem 3.2.2 (Conformal Invariance under Aut(D, 0)). For a rotation map 𝜌𝜃 ,
the drift term 𝑏𝑖 (𝜽) is invariant under 𝜌𝜃 , i.e.,

𝑏𝑖 = �̃�𝑖 ◦ 𝜌𝜃 .

(i) The function ℎ(𝜃) in the null vector equation (3.2.1) is rotation-invariant, and
there exists a real constant ℎ such that

ℎ(𝜃) = ℎ. (3.2.2)

(ii) There exists a real constant 𝜔 such that, for all 𝜃 ∈ R,

𝜓(𝜃1 + 𝜃, . . . , 𝜃𝑛 + 𝜃) = 𝑒−𝜔𝜃𝜓(𝜃1, . . . , 𝜃𝑛). (3.2.3)

Remark 3.2.3. Combining Theorem (3.2.1) with Theorem (3.2.2), we conclude that
a multiple radial SLE(𝜅) system with fixed 𝑢 = 0 is characterized by a partition
function that satisfies the null vector equations (3.2.1) with a constant ℎ and has a
rotation constant 𝜔.

Remark 3.2.4. The drift term 𝑏𝑖 (𝜃1, . . . , 𝜃𝑛) is 2𝜋-periodic and therefore well-
defined on the unit circle 𝑆1. However, for 𝜔 ≠ 0, the partition function 𝜓 is
not 2𝜋-periodic, making it multivalued on 𝑆1 and well-defined only on the real line
R, the universal cover of 𝑆1.

Thus, for 𝜔 ≠ 0, the conformal invariance of partition functions requires the use of
the group Ãut(D, 0) with a group action on R.
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The discussion on commutation relations above extend to arbitrary 𝑢 ∈ D, as
described in the following theorem.

Theorem 3.2.5 (Commutation Relations for 𝑢 ∈ D). In the unit disk D, let 𝑛 radial
SLEs start at 𝑒𝑖𝜃1 , 𝑒𝑖𝜃2 , . . . , 𝑒𝑖𝜃𝑛 ∈ 𝜕D, with a marked interior point 𝑢 ≠ 0.

(i) For 𝑢 = 𝑒𝑖𝑣, let the infinitesimal diffusion generators be

M𝑖 =
𝜅

2
𝜕𝑖𝑖+𝑏𝑖 (𝜽 , 𝑢)𝜕𝑖+

∑︁
𝑗≠𝑖

cot
(
𝜃 𝑗 − 𝜃𝑖

2

)
𝜕𝑗+cot

(
𝑣 − 𝜃𝑖

2

)
𝜕𝑣+cot

(
𝑣 − 𝜃𝑖

2

)
𝜕𝑣 .

If the 𝑛 SLEs locally commute, the generators satisfy

[M𝑖,M 𝑗 ] =
1

sin2
(
𝜃 𝑗−𝜃𝑖

2

) (M 𝑗 −M𝑖).

There exists a partition function 𝜓(𝜽 , 𝑢) such that the drift term 𝑏𝑖 (𝜽 , 𝑢) is
given by

𝑏𝑖 (𝜽 , 𝑢) = 𝜅𝜕𝑖 log𝜓,

and 𝜓 satisfies the null vector equations:

𝜅

2
𝜕𝑖𝑖𝜓+

∑︁
𝑗≠𝑖

2
𝜃 𝑗 − 𝜃𝑖

𝜕𝑖𝜓+
2

𝑣 − 𝜃𝑖
𝜕𝑣𝜓+

2
𝑣 − 𝜃𝑖

𝜕𝑣𝜓+
[(

1 − 6
𝜅

) ∑︁
𝑗≠𝑖

1
(𝜃 𝑗 − 𝜃𝑖)2 + ℎ𝑖 (𝜃𝑖, 𝑢)

]
𝜓 = 0.

(ii) By analyzing the asymptotics of adjacent points 𝜃𝑖 and 𝜃𝑖+1, we deduce that
ℎ𝑖 (𝜃, 𝑢) = ℎ𝑖+1(𝜃, 𝑢). If all points are consecutive, there exists a common
function ℎ(𝜃, 𝑢) such that

ℎ(𝜃, 𝑢) = ℎ1(𝜃, 𝑢) = · · · = ℎ𝑛 (𝜃, 𝑢).

Now, we discuss how Aut(D)-invariance imposes constraints on the drift terms of a
multiple radial SLE(𝜅) system and how to choose a conformally covariant partition
function representative within its equivalence class.

Definition 3.2.6. The conformal group Aut(D) satisfies the following properties
(see Lang (1985)):

• Aut(D) is isomorphic to 𝑃𝑆𝐿2(R). Each element 𝜏 ∈ Aut(D) can be written
as

𝜏(𝑧) = 𝑇𝑣 ◦ 𝜌𝜃 (𝑧),
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where 𝜌𝜃 (𝑧) = 𝑒𝑖𝜃𝑧 and 𝑇𝑣 (𝑧) = 𝑧−𝑣
1−𝑣𝑧 .

Geometrically, Aut(D) is an 𝑆1-bundle over H, and it naturally acts on
𝜕D � 𝑆1 by extending the conformal maps to the boundary.

• The universal cover Ãut(D) is isomorphic to 𝑆𝐿2(R). Each element 𝜏 ∈
Ãut(D) can be decomposed as

𝜏 = 𝑇𝑣 ◦ 𝐴𝜃 ,

where 𝜃 ∈ R, and 𝐴𝜃 represents addition by 𝜃 on R.

Geometrically, Ãut(D) is an R-bundle over H, and it naturally acts on R, the
universal cover of 𝑆1.

– For 𝑥 ∈ R, 𝐴𝜃 (𝑥) = 𝑥 + 𝜃.

– For 𝑣 ∈ D, there exists a unique |𝑦 − 𝑥 | < 𝜋 such that 𝑒𝑖𝑦 = 𝑇𝑣 (𝑒𝑖𝑥).

Theorem 3.2.7. Let 𝜏 ∈ Aut(D). The drift term 𝑏(𝜽 , 𝑢) is a pre-Schwarzian form,
satisfying

𝑏𝑖 = 𝜏
′�̃�𝑖 ◦ 𝜏 +

6 − 𝜅
2

(log 𝜏′)′ .

(i) There exists a smooth function 𝐹 (𝜏, 𝑢) : Ãut(D) × D→ R such that

log𝜓 − log(𝜓 ◦ 𝜏) + 𝜅 − 6
2𝜅

∑︁
𝑖

log 𝜏′(𝜃𝑖) = 𝐹 (𝜏, 𝑢),

where 𝐹 satisfies the functional equation

𝐹 (𝜏1𝜏2, 𝑢) = 𝐹 (𝜏1, 𝜏2(𝑢)) + 𝐹 (𝜏2, 𝑢). (3.2.4)

(ii) There exists a rotation constant 𝜔 such that

𝐹 (𝐴𝜃 , 0) = 𝜔𝜃. (3.2.5)

If 𝜔 = 0, Aut(D) suffices to describe conformal invariance, and 𝐹 reduces to
a map Aut(D) × D→ R.

(iii) Suppose 𝐹1(𝜏, 𝑢) and 𝐹2(𝜏, 𝑢) correspond to partition functions 𝜓1 and 𝜓2.
If their rotation constants 𝜔1 = 𝜔2, then there exists a function 𝑔(𝑢) such that

𝜓2 = 𝑔(𝑢) · 𝜓1.
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(iv) For 𝜏 ∈ Ãut(D), let 𝜏(𝑢) = 𝑣. Decompose 𝜏 = 𝑇𝑣 ◦ 𝐴𝜃 ◦ 𝑇−1
𝑢 , where 𝑢, 𝑣 ∈ D

and 𝜃 ∈ R. Using the relations 𝑇 ′
𝑢 (𝑢) = 1

1−|𝑢 |2 and 𝑇 ′
𝑣 (0) = 1 − |𝑣 |2, define

𝜏′(𝑢)𝜆(𝑢)𝜏′(𝑢)𝜆(𝑢) :=
(

1 − |𝑣 |2
1 − |𝑢 |2

)2 Re(𝜆(𝑢))
𝑒−2𝜃 Im(𝜆(𝑢)) .

Then
𝐹 (𝜏, 𝑢) = log

(
𝜏′(𝑢)𝜆(𝑢)𝜏′(𝑢)𝜆(𝑢)

)
,

satisfy the functional equation (3.2.4), with rotation constant 𝜔 = Im(𝜆(𝑢)).

Remark 3.2.8. Combining Theorem (3.2.5) with Theorem (3.2.7), we show that a
multiple radial SLE(𝜅) system with 𝑢 ∈ D is described by a conformally covariant
partition function that satisfies the null vector equations (3.2.1) with a constant
ℎ. The partition function has a rotation constant 𝜔 and a non-unique conformal
dimension 𝜆(𝑢), with 𝜔 = ℑ(𝜆(𝑢)). Moreover, two distinct conformally covariant
solutions differ by a multiplicative factor corresponding to a power of the conformal
radius.

Proof of theorem (3.2.1) and theorem (3.2.5). The derivations of the commutation
relations for 𝑢 = 0 and arbitrary 𝑢 ≠ 0 are similar. We mainly discuss the case
𝑢 ≠ 0. The proof for 𝑢 = 0 can be obtained by simply ignoring the 𝑢-dependence
and related derivatives in the drift and diffusion generators since 𝑢 = 0 is fixed by
the Loewner flow.

(i) We first focus on the growth of two hulls from a specific pair of growth points.
Consider the following scenario: we grow two hulls from 𝑒𝑖𝑥 and 𝑒𝑖𝑦 on the
boundary 𝜕D and relabel the remaining growth points as 𝑒𝑖𝑧 𝑗 the marked point
𝑢 = 𝑒𝑖𝑣.

Lemma 3.2.9. In the angular coordinate, suppose two radial SLE hulls start
from 𝑥, 𝑦 ∈ R with marked points 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈ R and marked interior point
𝑢 ∈ D. If 𝑢 = 0 is a marked point, we simply omit it since 𝑢 = 0 is fixed by the
Loewner flow. Let M1 and M2

M1 =
𝜅

2
𝜕𝑥𝑥 + 𝑏(𝑥, 𝑦 . . .)𝜕𝑥 + cot( 𝑦 − 𝑥

2
)𝜕𝑦 +

𝑛∑︁
𝑖=1

cot( 𝑧𝑖 − 𝑥
2

)𝜕𝑖 + cot
(𝑣 − 𝑥

2

)
𝜕𝑣 + cot

(
𝑣 − 𝑥

2

)
𝜕𝑣

M2 =
𝜅

2
𝜕𝑦𝑦 + �̃�(𝑥, 𝑦, . . .)𝜕𝑦 + cot( 𝑥 − 𝑦

2
)𝜕𝑥 +

𝑛∑︁
𝑖=1

cot( 𝑧𝑖 − 𝑦
2

)𝜕𝑖 + cot
(𝑣 − 𝑦

2

)
𝜕𝑣 + cot

(
𝑣 − 𝑦

2

)
𝜕𝑣
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be the infinitesimal diffusion generators of two SLE hulls, where 𝜕𝑖 = 𝜕𝑧𝑖 .

If two SLEs commute, then the associated infinitesimal generators satisfy

[M1,M2] =
1

sin2( 𝑦−𝑥2 )
(M2 −M1). (3.2.6)

Moreover, there exists a positive function 𝜓(𝑥, 𝑦, 𝒛, 𝑢) such that

𝑏 = 𝜅
𝜕𝑥𝜓

𝜓
, �̃� = 𝜅

𝜕𝑦𝜓

𝜓

and 𝜓 satisfies the null vector equations

𝜅
2𝜕𝑥𝑥𝜓 + ∑

𝑖 cot( 𝑧𝑖−𝑥2 )𝜕𝑖𝜓 + cot( 𝑦−𝑥2 )𝜕𝑦𝜓 + cot
(
𝑣−𝑥

2
)
𝜕𝑣𝜓 + cot

(
𝑣−𝑥

2

)
𝜕𝑣𝜓

+
((

1 − 6
𝜅

)
1

4 sin2 ( 𝑦−𝑥2 ) + ℎ1(𝑥, 𝑧)
)
𝜓 = 0

𝜅
2𝜕𝑦𝑦𝜓 + ∑

𝑖 cot( 𝑧𝑖−𝑦2 )𝜕𝑖𝜓 + cot( 𝑥−𝑦2 )𝜕𝑥𝜓 + cot
( 𝑣−𝑦

2
)
𝜕𝑣𝜓 + cot

(
𝑣−𝑦

2

)
𝜕𝑣𝜓

+
((

1 − 6
𝜅

)
1

4 sin2 ( 𝑥−𝑦2 ) + ℎ2(𝑦, 𝑧)
)
𝜓 = 0

.

(3.2.7)

Proof. Consider a Loewner chain
(
𝐾𝑠,𝑡

)
(𝑠,𝑡)∈T with a double time index. The

associated conformal equivalence are 𝑔𝑠,𝑡 . We also assume that 𝐾𝑠,𝑡 = 𝐾𝑠,0 ∪
𝐾0,𝑡 . If 𝑠 ≤ 𝑠′, 𝑡 ≤ 𝑡′, (𝑠′, 𝑡′) ∈ T , then (𝑠, 𝑡) ∈ T .

Let 𝜎( resp. 𝜏) be a stopping time in the filtration generated by
(
𝐾𝑠,0

)
(𝑠,0)∈T (

resp.
(
𝐾0,𝑡

)
(0,𝑡)∈T

)
. Let also T ′ = {(𝑠, 𝑡) : (𝑠 + 𝜎, 𝑡 + 𝜏) ∈ T } and(

𝐾′
𝑠,𝑡

)
(𝑠,𝑡)∈T ′ =

(
𝑔𝜎,𝜏

(
𝐾𝑠+𝜎,𝑡+𝜏\𝐾𝑠,𝑡

) )
. Then

(
𝐾′
𝑠,0

)
(𝑠,0)∈T ′

is distributed as
a stopped SLE𝜅 (𝑏), i.e an SLE driven by

𝑑𝑥𝑠 =
√
𝜅𝑑𝐵𝑠 + 𝑏

(
𝑥𝑠, ℎ𝑠 (𝑦), . . . , ℎ𝑠 (𝑧𝑖) , . . . , 𝑒𝑖ℎ𝑠 (𝑣)

)
𝑑𝑡,

where ℎ𝑠 is the covering map of Loewner map 𝑔𝑠, (i.e. 𝑒𝑖ℎ𝑠 (𝑧) = 𝑔𝑠 (𝑒𝑖𝑧)).

Likewise
(
𝐾′

0,𝑡

)
(0,𝑡)∈T ′

is distributed as a stopped SLE𝜅 (�̃�) , i.e an SLE driven
by:

𝑑𝑦𝑡 =
√
𝜅𝑑�̃�𝑡 + �̃�

(
ℎ̃𝑡 (𝑥), 𝑦𝑡 , . . . , ℎ̃𝑡 (𝑧𝑖) , . . . , 𝑒𝑖ℎ̃𝑡 (𝑣)

)
𝑑𝑡,

where ℎ̃𝑡 is the covering map of �̃�𝑡 (i.e. 𝑒𝑖ℎ̃𝑠 (𝑧) = ℎ̃𝑠 (𝑒𝑖𝑧)).

Here 𝐵, �̃� are standard Brownian motions, (𝑔𝑠) , (�̃�𝑡) are the associated con-
formal equivalences, 𝑏, �̃� are some smooth, translation invariant functions.

Note that
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(𝑥𝑠, ℎ𝑠 (𝑦), . . . , ℎ𝑠 (𝑧𝑖) , . . . ,Re (ℎ𝑠 (𝑣)) , Im (ℎ𝑠 (𝑣)))

is a Markov process with semigroup 𝑃 and infinitesimal generator M1. Sim-
ilarly,

(
ℎ̃𝑡 (𝑥), 𝑦𝑡 , . . . , ℎ̃𝑡 (𝑧𝑖) , . . . ,Re

(
ℎ̃𝑡 (𝑣)

)
, Im

(
ℎ̃𝑡 (𝑣)

) )
is a Markov process with semigroup 𝑄 and infinitesimal generator M2.

We denote 𝐴𝑥 , 𝐴𝑦 the unit disk capacity of hulls growing at 𝑒𝑖𝑥 and 𝑒𝑖𝑦, and con-
sider the stopping time𝜎 = inf

(
𝑠 : 𝐴𝑥

(
𝐾𝑠,0

)
≥ 𝑎𝑥

)
, 𝜏 = inf

(
𝑡 : 𝐴𝑦

(
𝐾0,𝑡

)
≥ 𝑎𝑦

)
,

where 𝑎𝑥 = 𝜀, 𝑎𝑦 = 𝑐𝜀.

We are interested in the SLE hull 𝐾𝜎,𝜏. There are two natural ways to evolve
from the initial configuration 𝐾0,0 to 𝐾𝜎,𝜏:

– via 𝐾0,0 → 𝐾𝜎,0 → 𝐾𝜎,𝜏,

– or via 𝐾0,0 → 𝐾0,𝜏 → 𝐾𝜎,𝜏.

We describe both paths using infinitesimal capacity expansions:

(i) Run the first SLE (i.e., SLE𝜅 (𝑏)) from the initial configuration (𝑥, 𝑦, . . . , 𝑧𝑖, . . .)
until it accumulates capacity 𝜀. Then, independently run the second
SLE (i.e., SLE𝜅 (�̃�)) in the transformed domain 𝑔−1

𝜀 (D), stopping when
it reaches capacity 𝑐𝜀, measured in the original unit disk. Let ℎ𝜀 and ℎ̃𝜀
be the conformal maps removing the corresponding hulls, centered at 𝑥
and 𝑦, respectively. Define 𝜙 = ℎ̃𝜀 ◦ ℎ𝜀 as the normalized composition
map. Then expand

E
(
𝐹

(
ℎ̃𝜀 (𝑋𝜀), 𝑌𝜀

) )
up to second order in 𝜀. This expansion describes, in distribution, the
evolution from 𝐾0,0 to 𝐾𝜎,0, and then to 𝐾𝜎,𝜏.

(ii) Begin by running the second SLE (i.e., SLE𝜅 (�̃�)) until it reaches ca-
pacity 𝑐𝜀. Then, run the first SLE (i.e., SLE𝜅 (𝑏)) independently in the
transformed domain �̃�−1

𝜀 (D), stopping when it accumulates capacity 𝜀.
Let ℎ̃𝜀 and ℎ𝜀 be the conformal maps removing the hulls at 𝑦 and 𝑥,
respectively, and define 𝜙 = ℎ𝜀 ◦ ℎ̃𝜀. Then expand

E
(
𝐹

(
ℎ𝜀 ( �̃�𝜀), 𝑌𝜀

) )
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up to second order in 𝜀. This describes the evolution from 𝐾0,0 to 𝐾0,𝜏,
and then to 𝐾𝜎,𝜏.

Note that under the conformal map ℎ𝜖 , the capacity of �̃� is not 𝑐𝜖 . According
to lemma (3.1.4), the capacity is given by

𝜀 = 𝑐𝜀

(
1 − 𝜀

sin2( 𝑥−𝑦2 )

)
+ 𝑜

(
𝜀2

)
. (3.2.8)

Now, let 𝐹 be a test function R𝑛+2,2 → R , and 𝑐 > 0 be some constant and let

𝑤 = (𝑥, 𝑦, . . . , 𝑧𝑖, . . . , 𝑣)
𝑤′ = (𝑋𝜀, 𝑔𝜀 (𝑦), . . . 𝑔𝜀 (𝑧𝑖) , . . . , 𝑔𝜀 (𝑣))
𝑤′′ =

(
�̃�𝜀 (𝑋𝜀) , 𝑌𝜀, . . . �̃�𝜀 ◦ 𝑔𝜀 (𝑧𝑖) , . . . , �̃�𝜀 ◦ 𝑔𝜀 (𝑣)

) . (3.2.9)

We consider the conditional expectation of 𝐹 (𝑤′′) with respect to 𝑤.

E (𝐹 (𝑤′′) | 𝑤) = E (𝐹 (𝑤′′) |𝑤′| 𝑤) = 𝑃𝜀E (𝑄𝜀𝐹 | 𝑤′) (𝑤)

= 𝑃𝜀E

((
1 + 𝜀M1 +

𝜀2

2
M2

1

)
𝐹 (𝑤′)

)
(𝑤) = 𝑃𝜀𝑄

𝑐𝜀

(
1− 𝜀

sin2 ( 𝑥−𝑦2 )

)𝐹 (𝑤) + 𝑜 (
𝜀2

)
=

(
1 + 𝜀M1 +

𝜀2

2
M2

1

) (
1 + 𝑐𝜀

(
1 − 𝜀

sin2( 𝑥−𝑦2 )

)
M2 +

𝑐2𝜀2

2
M2

2

)
𝐹 (𝑤) + 𝑜

(
𝜀2

)
=

(
1 + 𝜀(M1 + 𝑐M2) + 𝜀2

(
1
2
M2

1 +
𝑐2

2
M2

2 + 𝑐M1M2 −
𝑐

sin2( 𝑥−𝑦2 )
M2

))
𝐹 (𝑤)

+ 𝑜
(
𝜀2

)
If we first grow a hull at 𝑦, then at 𝑥, one gets instead(
1 + 𝜀(M1 + 𝑐M2) + 𝜀2

(
1
2
M2

1 +
𝑐2

2
M2

2 + 𝑐M2M1 −
𝑐

sin2( 𝑥−𝑦2 )
M1

))
𝐹 (𝑤)+𝑜

(
𝜀2

)
.

Hence, the commutation condition reads

[M1,M2] =
1

sin2( 𝑦−𝑥2 )
(M2 −M1). (3.2.10)
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After simplifications, one gets

[M1,M2] +
1

sin2( 𝑦−𝑥2 )
(M1 −M2) =

(
𝜅𝜕𝑥 �̃� − 𝜅𝜕𝑦𝑏

)
𝜕𝑥𝑦

+
[
cot( 𝑦 − 𝑥

2
)𝜕𝑥𝑏 +

∑︁
𝑖

cot( 𝑦 − 𝑧𝑖
2

)𝜕𝑖𝑏 + cot
(𝑣 − 𝑥

2

)
𝜕𝑣𝑏 + cot

(
𝑣 − 𝑥

2

)
𝜕𝑣𝑏

−�̃�𝜕𝑦𝑏 +
𝑏

2 sin2( 𝑦−𝑥2 )
+

cos( 𝑥−𝑦2 )
4 sin3( 𝑥−𝑦2 )

(𝜅 − 6) − 𝜅

2
𝜕𝑦𝑦𝑏

]
𝜕𝑥

−
[
cot( 𝑥 − 𝑦

2
)𝜕𝑦 �̃� +

∑︁
𝑖

cot( 𝑥 − 𝑧𝑖
2

)𝜕𝑖 �̃� − cot
(𝑣 − 𝑥

2

)
𝜕𝑣 �̃� + cot

(
𝑣 − 𝑥

2

)
𝜕𝑣 �̃�

−𝑏𝜕𝑥 �̃� +
�̃�

2 sin2( 𝑦−𝑥2 )
+

cos( 𝑦−𝑥2 )
4 sin3( 𝑦−𝑥2 )

(𝜅 − 6) − 𝜅

2
𝜕𝑥𝑥 �̃�

]
𝜕𝑦

.

So, the commutation condition reduces to three differential conditions involv-
ing 𝑏 and �̃�.



𝜅𝜕𝑥 �̃� − 𝜅𝜕𝑦𝑏 = 0

cot( 𝑦 − 𝑥
2

)𝜕𝑥𝑏 +
∑︁
𝑖

cot( 𝑦 − 𝑧𝑖
2

)𝜕𝑖𝑏 + cot
(𝑣 − 𝑥

2

)
𝜕𝑣𝑏 + cot

(
𝑣 − 𝑥

2

)
𝜕𝑣𝑏

− �̃�𝜕𝑦𝑏 +
𝑏

2 sin2( 𝑦−𝑥2 )
+

cos( 𝑥−𝑦2 )
4 sin3( 𝑥−𝑦2 )

(𝜅 − 6) − 𝜅

2
𝜕𝑦𝑦𝑏 = 0

cot( 𝑥 − 𝑦
2

)𝜕𝑦 �̃� +
∑︁
𝑖

cot( 𝑥 − 𝑧𝑖
2

)𝜕𝑖 �̃�

− 𝑏𝜕𝑥 �̃� +
�̃�

2 sin2( 𝑦−𝑥2 )
+

cos( 𝑦−𝑥2 )
4 sin3( 𝑦−𝑥2 )

(𝜅 − 6) − 𝜅

2
𝜕𝑥𝑥 �̃� = 0

.

(3.2.11)

Now, from the first equation, one can write

𝑏 = 𝜅
𝜕𝑥𝜓

𝜓
, �̃� = 𝜅

𝜕𝑦𝜓

𝜓

for some non-vanishing function 𝜓 (at least locally). The smoothness of 𝑏
and �̃� implies the smoothness of 𝜓. It turns out that the second equation now
writes
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𝜅𝜕𝑥

(
𝜅
2𝜕𝑦𝑦𝜓 + ∑

𝑖 cot( 𝑧𝑖−𝑦2 )𝜕𝑖𝜓 + cot( 𝑥−𝑦2 )𝜕𝑥𝜓+
𝜓

cot
( 𝑣−𝑦

2
)
𝜕𝑣𝜓 + cot

(
𝑣−𝑦

2

)
𝜕𝑣𝜓 +

(
1 − 6

𝜅

)
𝜓

4 sin2 ( 𝑥−𝑦2 )

𝜓

ª®®¬ = 0.

Symmetrically, the last equation is

𝜅𝜕𝑦

(
𝜅
2𝜕𝑥𝑥𝜓 + ∑

𝑖 cot( 𝑧𝑖−𝑥2 )𝜕𝑖𝜓 + cot( 𝑦−𝑥2 )𝜕𝑦𝜓
𝜓

+ cot
(
𝑣−𝑥

2
)
𝜕𝑣𝜓 + cot

(
𝑣−𝑥

2

)
𝜕𝑣𝜓 +

(
1 − 6

𝜅

)
𝜓

4 sin2 ( 𝑦−𝑥2 )

𝜓

ª®®¬ = 0

It turns out that two equations now write



𝜅

2
𝜕𝑥𝑥𝜓 +

∑︁
𝑖

cot( 𝑧𝑖 − 𝑥
2

)𝜕𝑖𝜓 + cot( 𝑦 − 𝑥
2

)𝜕𝑦𝜓 + cot
(𝑣 − 𝑥

2

)
𝜕𝑣𝜓 + cot

(
𝑣 − 𝑥

2

)
𝜕𝑣𝜓

+
((

1 − 6
𝜅

)
1

4 sin2( 𝑦−𝑥2 )
+ ℎ1(𝑥, 𝒛, 𝑢)

)
𝜓 = 0

𝜅

2
𝜕𝑦𝑦𝜓 +

∑︁
𝑖

cot( 𝑧𝑖 − 𝑦
2

)𝜕𝑖𝜓 + cot( 𝑥 − 𝑦
2

)𝜕𝑥𝜓 + cot
(𝑣 − 𝑥

2

)
𝜕𝑣𝜓 + cot

(
𝑣 − 𝑥

2

)
𝜕𝑣𝜓

+
((

1 − 6
𝜅

)
1

4 sin2( 𝑥−𝑦2 )
+ ℎ2(𝑦, 𝒛, 𝑢)

)
𝜓 = 0.

(3.2.12)

□

Let us now begin our discussion on the multiple radial SLE(𝜅) systems with
𝑛 distinct growth points 𝑒𝑖𝜃1 , 𝑒𝑖𝜃2 , . . . , 𝑒𝑖𝜃𝑛 . We want to grow 𝑛 infinitesimal
hulls at 𝑒𝑖𝜃𝑖 , 𝑖 = 1, 2, . . . , 𝑛. We can either grow a hull 𝐾𝜀𝑖 at 𝑒𝑖𝜃𝑖 , and then
another one at 𝑒𝑖𝜃 𝑗 in the perturbed domain D\𝐾𝜀𝑖 , or proceed in any order.
The coherence condition is that these procedures yield the same result.

We grow two SLE hulls from 𝜃𝑖, 𝜃 𝑗 , 𝑖 ≠ 𝑗 and treat the rest as marked points.
By lemma (3.2.9), the commutation relation between two SLEs implies that
the infinitesimal generator satisfies

[M𝑖,M 𝑗 ] =
1

sin2( 𝜃𝑖−𝜃 𝑗2 )
(M 𝑗 −M𝑖). (3.2.13)
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By expanding (3.2.6), we derive that

𝜅𝜕𝑖𝑏 𝑗 − 𝜅𝜕𝑗𝑏𝑖 = 0 (3.2.14)

for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Since the chamber

𝔛𝑛×D = {(𝜃1, 𝜃2, . . . , 𝜃𝑛, 𝑢) ∈ R𝑛 × D | 𝜃1 < 𝜃2 < . . . < 𝜃𝑛 < 𝜃1 + 2𝜋, 𝑢 ∈ D}

is simply connected (contractible). Equations (3.2.14) imply that we can
integrate the differential form

∑
𝑗 𝑏 𝑗 (𝜽 , 𝑢)𝑑𝜃 𝑗 with respect to 𝜃1, 𝜃2, . . . , 𝜃𝑛.

Stoke’s theorem implies that this integral is path-independent. Consequently,
there exists a positive function 𝜓(𝜽 , 𝑢) such that

𝑏𝑖 (𝜽 , 𝑢) = 𝜅
𝜕𝑖𝜓

𝜓
(3.2.15)

and the null vector equations

𝜅

2
𝜕𝑖𝑖𝜓 +

∑︁
𝑘≠𝑖, 𝑗

cot( 𝜃𝑘 − 𝜃𝑖
2

)𝜕𝑘𝜓 + cot(
𝜃 𝑗 − 𝜃𝑖

2
)𝜕𝑗𝜓 + cot

(
𝑣 − 𝜃𝑖

2

)
𝜕𝑣𝜓 + cot

(
𝑣 − 𝜃𝑖

2

)
𝜕𝑣𝜓

+
((

1 − 6
𝜅

)
1

4 sin2( 𝜃 𝑗−𝜃𝑖2 )
+ ℎ𝑖 (𝜽 , 𝑢)

)
𝜓 = 0

𝜅

2
𝜕𝑗 𝑗𝜓 +

∑︁
𝑘≠𝑖, 𝑗

cot(
𝜃𝑘 − 𝜃 𝑗

2
)𝜕𝑘𝜓 + cot(

𝜃𝑖 − 𝜃 𝑗
2

)𝜕𝑖𝜓 + cot
(
𝑣 − 𝜃𝑖

2

)
𝜕𝑣𝜓 + cot

(
𝑣 − 𝑥

2

)
𝜕𝑣𝜓

+
((

1 − 6
𝜅

)
1

4 sin2( 𝜃𝑖−𝜃 𝑗2 )
+ ℎ 𝑗 (𝜽 , 𝑢)

)
𝜓 = 0.

(3.2.16)

We may write the first equation in (3.2.16) as

𝜅

2
𝜕𝑖𝑖𝜓 +

∑︁
𝑘≠𝑖, 𝑗

cot( 𝜃𝑘 − 𝜃𝑖
2

)𝜕𝑘𝜓 + cot(
𝜃 𝑗 − 𝜃𝑖

2
)𝜕𝑗𝜓 + cot

(
𝑣 − 𝜃𝑖

2

)
𝜕𝑣𝜓 + cot

(
𝑣 − 𝜃𝑖

2

)
𝜕𝑣𝜓

= −
((

1 − 6
𝜅

)
1

4 sin2( 𝜃 𝑗−𝜃𝑖2 )
+ ℎ𝑖 (𝜽 , 𝑢)

)
𝜓,

(3.2.17)
where ℎ𝑖 does not depend on 𝜃 𝑗 . Since integrability conditions hold for all
𝑗 ≠ 𝑖, by subtracting all

(
1 − 6

𝜅

)
1

4 sin2
(
𝜃 𝑗−𝜃𝑖

2

) terms, we obtain
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𝜅

2
𝜕𝑖𝑖𝜓 +

∑︁
𝑘≠𝑖, 𝑗

cot( 𝜃𝑘 − 𝜃𝑖
2

)𝜕𝑘𝜓 + cot(
𝜃 𝑗 − 𝜃𝑖

2
)𝜕𝑗𝜓 + cot

(
𝑣 − 𝜃𝑖

2

)
𝜕𝑣𝜓 + cot

(
𝑣 − 𝜃𝑖

2

)
𝜕𝑣𝜓

= −
((

1 − 6
𝜅

)
1

4 sin2( 𝜃 𝑗−𝜃𝑖2 )
+ ℎ𝑖 (𝜃𝑖, 𝑢)

)
𝜓

(3.2.18)

where ℎ𝑖 = ℎ𝑖 (𝜃𝑖, 𝑢) only depends on 𝜃𝑖 and 𝑢.

(ii)

Lemma 3.2.10. For adjacent growth points 𝑥, 𝑦 ∈ R (no marked points
{𝑧1, 𝑧2, . . . , 𝑧𝑛} are between 𝑥 and 𝑦). If the system

𝜅
2𝜕𝑥𝑥𝜓 + ∑

𝑖 cot( 𝑧𝑖−𝑥2 )𝜕𝑖𝜓 + cot( 𝑦−𝑥2 )𝜕𝑦𝜓 +
((

1 − 6
𝜅

)
1

4 sin2 ( 𝑦−𝑥2 ) + ℎ1(𝑥, 𝑧)
)
𝜓 = 0

𝜅
2𝜕𝑦𝑦𝜓 + ∑

𝑖 cot( 𝑧𝑖−𝑦2 )𝜕𝑖𝜓 + cot( 𝑥−𝑦2 )𝜕𝑥𝜓 +
((

1 − 6
𝜅

)
1

4 sin2 ( 𝑥−𝑦2 ) + ℎ2(𝑦, 𝑧)
)
𝜓 = 0

(3.2.19)
admits a non-vanishing solution 𝜓, then: functions ℎ1, ℎ2 can be written as
ℎ1(𝑥, 𝑧) = ℎ(𝑥, 𝑧), ℎ2(𝑦, 𝑧) = ℎ(𝑦, 𝑧).

Proof. The problem is now to find functions ℎ1, ℎ2 such that the above system
has solutions. So assume that we are given ℎ1, ℎ2, and a non-vanishing
solution 𝜓 of this system. Let:

L1 =
𝜅

2
𝜕𝑥𝑥 +

∑︁
𝑖

cot( 𝑧𝑖 − 𝑥
2

)𝜕𝑖 + cot( 𝑦 − 𝑥
2

)𝜕𝑦 +
(
1 − 6

𝜅

)
1

4 sin2( 𝑦−𝑥2 )

L2 =
𝜅

2
𝜕𝑦𝑦 +

∑︁
𝑖

cot( 𝑧𝑖 − 𝑦
2

)𝜕𝑖 + cot( 𝑥 − 𝑦
2

)𝜕𝑥 +
(
1 − 6

𝜅

)
1

4 sin2( 𝑥−𝑦2 )
.

Then𝜓 is annihilated by all operators in the left ideal generated by (L1 + ℎ1) , (L2 + ℎ2),
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including in particular their commutator:

L = [L1 + ℎ1,L2 + ℎ2] +
1

sin2( 𝑥−𝑦2 )
((L1 + ℎ1) − (L2 + ℎ2))

= [L1,L2] +
1

sin2( 𝑥−𝑦2 )
(L1 − L2) + ([L1, ℎ2] − [L2, ℎ1]) +

(ℎ1 − ℎ2)
sin2( 𝑥−𝑦2 )

=

(
cot( 𝑦 − 𝑥

2
)𝜕𝑦 +

∑︁
𝑖

cot( 𝑧𝑖 − 𝑥
2

)𝜕𝑖 + cot
(𝑣 − 𝑥

2

)
𝜕𝑣𝜓 + cot

(
𝑣 − 𝑥

2

)
𝜕𝑣𝜓

)
ℎ2

−
(
cot( 𝑥 − 𝑦

2
)𝜕𝑥 +

∑︁
𝑖

cot( 𝑧1 − 𝑦
2

)𝜕𝑖 + cot
(𝑣 − 𝑦

2

)
𝜕𝑣𝜓 + cot

(
𝑣 − 𝑦

2

)
𝜕𝑣𝜓

)
ℎ1

+ 4 (ℎ1 − ℎ2)
sin2( 𝑥−𝑦2 )

.

L is an operator of order 0, it is a function. SinceL(𝜓) = 0 for a non-vanishing
𝜓, L must vanish identically.

Note that if the two growth points 𝑥 and 𝑦 are adjacent (no marked points
{𝑧1, 𝑧2, . . . , 𝑧𝑛} are between 𝑥 and 𝑦), we consider the pole of L at 𝑥 = 𝑦.
The second-order pole must vanish, this implies ℎ1(𝑥, 𝑧) = ℎ(𝑥, 𝑧), ℎ2(𝑦, 𝑧) =
ℎ(𝑦, 𝑧) for a common function ℎ. □

By applying lemma (3.2.10) to adjacent 𝜃𝑖 and 𝜃𝑖+1, we obtain that the function
ℎ𝑖 (𝜃, 𝑢) = ℎ𝑖+1(𝜃, 𝑢) for each 1 ≤ 𝑖 ≤ 𝑛 − 1, which implies the existence of a
common function ℎ(𝜃, 𝑢).

□

We have already established the commutation relations and now we consider how
conformal invariance imposes constraints on the drift term and partition functions.

The first case is the Aut(D, 0) invariance of the multiple radial SLE(𝜅) with a
marked point 𝑢 = 0.

Proof of theorem (3.2.2). For a multiple radial SLE(𝜅) system with marked point
𝑢 = 0. Note that by rotation invariance of the drift term 𝑏𝑖, under a rotation 𝜌𝑎, the
functions 𝑏𝑖 (𝜃1, 𝜃2, . . . , 𝜃𝑛) satisify

𝑏𝑖 (𝜃1, 𝜃2, . . . , 𝜃𝑛) = 𝑏𝑖 (𝜃1 + 𝑎, 𝜃2 + 𝑎, . . . , 𝜃𝑛 + 𝑎)

for 𝑖 = 1, 2, . . . , 𝑛.
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(i) By equation (3.2.18), for 𝑢 = 0, we simply omit the 𝑢-dependence and related
derivatives we obtain that

ℎ(𝜃𝑖) = −𝜅
2
𝜕𝑖𝑖𝜓

𝜓
−

∑︁
𝑗

cot(
𝜃 𝑗 − 𝜃𝑖

2
)
𝜕𝑗𝜓

𝜓
−

(
1 − 6

𝜅

) ∑︁
𝑗

1

4 sin2( 𝜃 𝑗−𝜃𝑖2 )

= −𝜅
2
(𝜕𝑖𝑏𝑖 + 𝑏2

𝑖 ) −
∑︁
𝑗

cot(
𝜃 𝑗 − 𝜃𝑖

2
)𝑏 𝑗 −

(
1 − 6

𝜅

) ∑︁
𝑗

1

4 sin2( 𝜃 𝑗−𝜃𝑖2 )
.

(3.2.20)

The rotation invariance of 𝑏𝑖 (𝜽) implies the rotation invariance of ℎ(𝜃𝑖). Thus,
ℎ must be a constant.

(ii) Since 𝑏𝑖 = 𝜅𝜕𝑖 log(𝜓), by the rotation invariance of 𝑏𝑖, for rotation transfor-
mation 𝜌𝑎:

𝜕𝑖 (log(𝜓) − log(𝜓 ◦ 𝜌𝑎)) = 0.

for 𝑖 = 1, 2, . . . , 𝑛. Thus, independent of 𝜃1, 𝜃2, . . . , 𝜃𝑛. We obtain that there
exists a function 𝐹 (𝑎) : R→ R such that

log(𝜓) − log(𝜓 ◦ 𝜌𝑎) = 𝐹 (𝑎).

Since for 𝑎, 𝑏 ∈ R, 𝐹 satisfies the Cauchy functional equation

𝐹 (𝑎) + 𝐹 (𝑏) = 𝐹 (𝑎 + 𝑏).

The only solution for the Cauchy functional equation is linear. Thus, there
exists 𝜔 ∈ R.

𝐹 (𝑎) = 𝜔𝑎.

By differentiating with respect to 𝑎,∑︁
𝑖

𝜕𝑖𝜓 = 𝜔𝜓.

□

Proof of theorem (3.2.7).

(i) Note that by corollary (3.1.3), under a conformal map 𝜏 ∈ Aut(D), the drift
term 𝑏𝑖 (𝜃1, 𝜃2, . . . , 𝜃𝑛, 𝑢) transforms as
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𝑏𝑖 = 𝜏
′(𝜃𝑖) (𝑏𝑖 ◦ 𝜏) +

6 − 𝜅
2

(log 𝜏′(𝜃𝑖))′ .

Since 𝑏𝑖 = 𝜅𝜕𝑖 log(𝜓)

𝜅𝜕𝑖 log(𝜓) = 𝜅𝜏′(𝜃𝑖)𝜕𝑖 log(𝜓 ◦ 𝜏) + 6 − 𝜅
2

(log 𝜏′(𝜃𝑖))′

which implies

𝜕𝑖

(
log(𝜓) − log(𝜓 ◦ 𝜏) + 𝜅 − 6

2𝜅

∑︁
𝑖

log(𝜏′(𝜃𝑖))
)
= 0

for 𝑖 = 1, 2, . . . , 𝑛. Thus, independent of variables 𝜃1, 𝜃2, . . . , 𝜃𝑛.

We obtain that there exists a function 𝐹 : Aut(H) × H→ C such that

log(𝜓) − log(𝜓 ◦ 𝜏) + 𝜅 − 6
2𝜅

∑︁
𝑖

log(𝜏′(𝜃𝑖)) = 𝐹 (𝜏, 𝑢).

By direct computation and the chain rule, we can show that

𝐹 (𝜏1𝜏2, 𝑢) = log(𝜓) − log(𝜓 ◦ 𝜏1𝜏2) +
𝜅 − 6

2𝜅

∑︁
𝑖

log((𝜏1𝜏2)′(𝜃𝑖))

= log(𝜓) − log(𝜓 ◦ 𝜏2) + log(𝜓 ◦ 𝜏2) − log(𝜓 ◦ 𝜏1𝜏2)

+ 𝜅 − 6
2𝜅

∑︁
𝑖

log(𝜏′2(𝜃𝑖)) +
𝜅 − 6

2𝜅

∑︁
𝑖

log(𝜏′1(𝜏2(𝜃𝑖)))

= 𝐹 (𝜏1, 𝜏2(𝑢)) + 𝐹 (𝜏2, 𝑢).

(ii) By the functional equation (3.2.4) and 𝑢 = 0 is the fixed point of the addition
transformation 𝐴𝜃 (𝑧), we obtain that

𝐹 (𝐴𝜃1+𝜃2 , 𝑖) = 𝐹 (𝐴𝜃1 , 𝐴𝜃2 (𝑖)) + 𝐹 (𝐴𝜃2 , 𝑖) = 𝐹 (𝐴𝜃1 , 𝑖) + 𝐹 (𝐴𝜃2 , 𝑖).

This is a Cauchy functional equation, the only solution is linear, thus there
exists real constant 𝛽 such that

𝐹 (𝐴𝜃 , 𝑖) = 𝛽𝜃.

(iii) Let 𝑣 = 𝜏(𝑢), let 𝑇𝑢 be the conformal map:

𝑇𝑢 (𝑧) =
𝑧 − 𝑢

1 − 𝑢𝑧
then by the functional equation (3.2.4), we obtain that

𝐹𝑖 (𝜏, 𝑢) = 𝐹𝑖 (𝑇𝑣◦𝐴𝜃◦𝑇−1𝑢, 𝑇𝑢 (0)) = −𝐹𝑖 (𝑇𝑢, 0)+𝐹𝑖 (𝑇𝑣◦𝐴𝜃 , 0) = 𝐹𝑖 (𝑇𝑣, 0)−𝐹𝑖 (𝑇𝑢, 0)+𝜔𝑖𝜃
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for 𝑖 = 1, 2. we define

𝑓 (𝑢) = 𝐹1(𝑇𝑢, 0) − 𝐹2(𝑇𝑢, 0).

Now, suppose 𝜓𝑖 are corresponding partition functions. By the definition of
function 𝐹 (𝜏, 𝑢), 𝜓𝑖 satisfies the following functional equation

log(𝜓𝑖) − log(𝜓𝑖 ◦ 𝜏) +
𝜅 − 6

2𝜅

∑︁
𝑗

log(𝜏′(𝑧 𝑗 )) = 𝐹𝑖 (𝜏, 𝑢). (3.2.21)

Subtracting two equations, we obtain that

log(𝜓1

𝜓2
) − log(𝜓1 ◦ 𝜏

𝜓2 ◦ 𝜏
) = 𝑓 (𝑣) − 𝑓 (𝑢) + (𝜔1 − 𝜔2)𝜃.

Then if 𝜔1 = 𝜔2

log(𝜓1

𝜓2
) − log(𝜓1 ◦ 𝜏

𝜓2 ◦ 𝜏
) = 𝑓 (𝑣) − 𝑓 (𝑢).

which is equivalent to
𝜓2 = 𝑐𝑒 𝑓 (𝑢)𝜓1.

thus
𝑔(𝑢) = 𝑐𝑒 𝑓 (𝑢) .

where 𝑐 > 0.

(iv) Now we verify that 𝐹 (𝜏, 𝑢) defined in satisfy the functional equation (3.2.4).

Let 𝑣 = 𝜏2(𝑢), 𝑤 = 𝜏1 ◦ 𝜏2(𝑢),

𝜏2 = 𝑇𝑣 ◦ 𝐴𝜃2 ◦ 𝑇−𝑢

𝜏1 = 𝑇𝑤 ◦ 𝐴𝜃1 ◦ 𝑇−𝑣

𝜏1 ◦ 𝜏2 = 𝑇𝑤 ◦ 𝐴𝜃1+𝜃2 ◦ 𝑇−𝑢

then

𝐹 (𝜏1 ◦ 𝜏2, 𝑢) = 2 Re(𝜆(𝑢)) log
(
1 − |𝑤 |2
1 − |𝑢 |2

)
− 2(𝜃1 + 𝜃2)Im(𝜆(𝑢))

𝐹 (𝜏1, 𝜏2(𝑢)) = 𝐹 (𝜏1, 𝑣) = 2 Re(𝜆(𝑢)) log
(
1 − |𝑤 |2
1 − |𝑣 |2

)
− 2𝜃1Im(𝜆(𝑢))

𝐹 (𝜏2, 𝑢) = 𝐹 (𝜏1, 𝑣) = 2 Re(𝜆(𝑢)) log
(

1 − |𝑣 |2
1 − |𝑢 |2

)
− 2𝜃2Im(𝜆(𝑢)).

Combining above three equations, we obtain that

𝐹 (𝜏1𝜏2, 𝑢) = 𝐹 (𝜏1, 𝜏2(𝑢)) + 𝐹 (𝜏2, 𝑢). (3.2.22)
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□

Theorem (Restatement of Theorem 1.2.4). For a multiple radial SLE(𝜅) system
with 𝑛 SLEs starting at (𝜃1, 𝜃2, . . . , 𝜃𝑛) ∈ 𝔛𝑛 (𝜽) and a marked point 𝑢 ∈ D not
necessarily fixed at 0:

(i) Two partition functions𝜓 and𝜓 are equivalent if they differ by a multiplicative
factor 𝑓 (𝑢):

𝜓 = 𝑓 (𝑢) · 𝜓,

where 𝑓 (𝑢) is a smooth, positive function of 𝑢. Under this equivalence, 𝜓 and
𝜓 induce identical multiple radial SLE(𝜅) systems.

(ii) Within the equivalence class of partition functions, we can choose 𝜓 to satisfy
conformal covariance. Under 𝜏 ∈ Aut(D), 𝜓 transforms as:

𝜓(𝜃1, . . . , 𝜃𝑛, 𝑢) =
(
𝑛∏
𝑖=1

𝜏′(𝜃𝑖)
6−𝜅
2𝜅

)
𝜏′(𝑢)𝜆(𝑢)𝜏′(𝑢)𝜆(𝑢)𝜓(𝜏(𝜃1), . . . , 𝜏(𝜃𝑛), 𝜏(𝑢)).

(iii) The choice of a conformally covariant partition function is not unique. Let:

𝑓 (𝑢) = (Rad(𝑢,H))𝛼 = (𝑖(𝑢 − 𝑢))𝛼, 𝛼 ∈ R.

Then for any conformally covariant 𝜓, 𝜓 = 𝑓 (𝑢) · 𝜓 yields an equivalent
solution with:

𝜆(𝑢) = 𝜆(𝑢) + 𝛼.

Proof of Theorem (1.2.4). For a multiple radial SLE(𝜅) system with partition func-
tion 𝜓(𝜽 , 𝑢), we proceed as follows

(i) By equation (3.2.14), the drift term in the marginal law for multiple radial
SLE(𝜅) systems is given by

𝑏𝑖 = 𝜅𝜕𝑗 log(𝜓).

If two partition functions differ by a multiplicative function 𝑓 (𝑢).

�̃� = 𝑓 (𝑢) · 𝜓,

where 𝑓 (𝑢) is an arbitrary positive real smooth function depending on the
marked interior point 𝑢. Note that

𝑏𝑖 = 𝜅𝜕𝑗 log(𝜓) = 𝜅𝜕𝑗 log(𝜓) = 𝑏𝑖 .

Thus 𝜓 and 𝜓 induce identical multiple radial SLE(𝜅) system.
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(ii) Let 𝜔 be the corresponding rotation constant. Define:

𝜓(𝜃1, 𝜃2, . . . , 𝜃𝑛, 0) =
(
𝑛∏
𝑖=1
𝑇 ′
𝑢 (𝜃𝑖)

6−𝜅
2𝜅

)
𝑇 ′
𝑢 (𝑢)𝜆(𝑢)𝑇 ′

𝑢 (𝑢∗)𝜆(𝑢
∗)�̃� (𝑇𝑢 (𝜃1), 𝑇𝑢 (𝜃2), . . . , 𝑇𝑢 (𝜃𝑛), 𝑢) .

Here, �̃� and 𝜓 share the same rotation constant𝜔. By (iii) of Theorem (3.2.7),
there exists a function 𝑓 (𝑢) such that

�̃� = 𝑓 (𝑢) · 𝜓.

(iii) Since 𝑓 (𝑢) is given by:
𝑓 (𝑢) = (1 − |𝑢 |2)𝛼,

where 𝛼 is the conformal dimension, we conclude that the partition function:

(1 − |𝑢 |2)𝛼 · 𝜓

has conformal dimension 𝜆(𝑢) + 𝛼.

□

3.3 Local commutation relation and null vector equations in 𝜅 = 0 case
Proof of theorem 1.3.2. To study the commutation relations, we focus on growing
two hulls from growth points 𝑥, 𝑦 and relabeling other points as marked points 𝒛.

The definition of commutation implies that for sufficiently small 𝑠, 𝑡 > 0 the normal-
izing map for the hull 𝛾1 [0, 𝑡] ∪𝛾2 [0, 𝑠] is the composition of the Loewner maps for
each individual hull 𝛾1 [0, 𝑡] or 𝛾2 [0, 𝑠], when applied in either order. In removing
𝛾1 [0, 𝑡] we are considering the coordinate change ℎ1,𝑡 , which leads to

𝜎
𝑡,𝑠

1,2 = hcap (�̃�2 [0, 𝑠]) =
∫ 𝑠

0

(
𝑓
𝑡,𝑢

1,2

)′
(𝑦(𝑢))2 𝑑𝑢, (3.3.1)

where 𝑦(𝑢) is the position of 𝑦 at time 𝑢. In this case 𝑓 𝑡,𝑠1,2 = ℎ̃2,𝑠 ◦ ℎ1,𝑡 ◦ ℎ−1
2,𝑠. With

this notation in hand, commutation implies that

ℎ2,𝜎𝑡 ,𝑠

1,2
◦ ℎ1,𝑡 = ℎ1,𝜎𝑠,𝑡

2,1
◦ ℎ2,𝑠 .

On the left-hand side the driving function first evolves according to the dynamics
of L𝑥 for 𝑡 units of time and then L𝑦 for 𝜎𝑡,𝑠1,2 units of time. The right-hand side is
analogous. These Loewner maps can be the same only if the driving function move
to the same position when the maps are applied in either order. In our setup, the
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motion of the driving functions is fully determined by the motion of the points in 𝜃,
so a necessary condition for these maps to be the same is that

𝑒
𝜎
𝑡 ,𝑠

1,2M𝑦𝑒𝑡M𝑥 = 𝑒
𝜎
𝑠,𝑡

2,1M𝑥𝑒𝑠M𝑦 , (3.3.2)

where 𝑡 ↦→ 𝑒𝑡M denotes the flow map corresponding to the dynamics M. The
commutation relation (1.3.2), as we now explain, is a straightforward consequence
of this identity. From (3.3.1) we obtain

𝜎
𝑡,𝑠

1,2 = 𝑠

((
𝑓
𝑡,0
1,2

)′
(𝑦) +𝑂 (𝑠)

)
= 𝑠

(
ℎ′1,𝑡 (𝑥) +𝑂 (𝑠)

)
= 𝑠

(
1 − 𝑡

sin2( 𝑥−𝑦2 )
+ 𝑜(𝑡) +𝑂 (𝑠)

)
= 𝑠 − 𝑠𝑡

sin2( 𝜃𝑥−𝜃𝑦2 )
+ 𝑜(𝑠𝑡) +𝑂

(
𝑠2

) ,
where the constants in the error terms may depend on 𝑥 and 𝑦. Now use the above
to expand (3.3.2) in powers of 𝑠 and 𝑡, and compare coefficients of 𝑠𝑡, we obtain the
desired commutation relations for generators

[M𝑥 ,M𝑦] =
1

sin2( 𝑥−𝑦2 )
(M𝑦 −M𝑥). (3.3.3)

Expanding the infinitesimal commutation relation:

[M𝑥 ,M𝑦] +
1

sin2( 𝑦−𝑥2 )
(M𝑥 −M𝑦) =[

cot( 𝑦 − 𝑥
2

) 𝜕𝑈𝑥
𝜕𝑥

+
∑︁
𝑖

cot( 𝑦 − 𝑧𝑖
2

) 𝜕𝑈𝑖
𝜕𝑥

− 1
2
𝜕 (𝑈𝑦)2

𝜕𝑥
+ 𝑈𝑥

2 sin2( 𝑦−𝑥2 )
−

3 cos( 𝑥−𝑦2 )
2 sin3( 𝑥−𝑦2 )

]
𝜕𝑥

−
[
cot( 𝑥 − 𝑦

2
)
𝜕𝑈𝑦

𝜕𝑦
+

∑︁
𝑖

cot( 𝑥 − 𝑧𝑖
2

) 𝜕𝑈𝑖
𝜕𝑦

− 1
2
𝜕 (𝑈𝑥)2

𝜕𝑦
+

𝑈𝑦

2 sin2( 𝑦−𝑥2 )
−

3 cos( 𝑦−𝑥2 )
2 sin3( 𝑦−𝑥2 )

]
𝜕𝑦 .

(3.3.4)
The right hand side of (3.3.4) equal to 0 implies the null vector equations

1
2𝑈

2
𝑥 +

∑
𝑖 cot( 𝑧𝑖−𝑥2 )𝑈𝑖 + cot( 𝑦−𝑥2 )𝑈𝑦 +

(
− 3

2 sin2 ( 𝑦−𝑥2 ) + ℎ1(𝑥, 𝑧)
)
= 0

1
2𝑈

2
𝑦 +

∑
𝑖 cot( 𝑧𝑖−𝑦2 )𝑈𝑖 + cot( 𝑥−𝑦2 )𝑈𝑥 +

(
− 3

2 sin2 ( 𝑦−𝑥2 ) + ℎ2(𝑦, 𝑧)
)
= 0.

(3.3.5)

Note that 𝜕𝑗𝑈𝑘 = 𝜕𝑘𝑈 𝑗 do not naturally follow from the commutation relation. This
condition is equivalent to the existence of a function U(𝜽) such that

𝑈 𝑗 = 𝜕𝑗U(𝜽).

U : 𝔛𝑛 → R is smooth in the chamber

𝔛𝑛 = {(𝜃1, 𝜃2, . . . , 𝜃𝑛) ∈ R𝑛 | 𝜃1 < 𝜃2 < . . . < 𝜃𝑛 < 𝜃1 + 2𝜋}
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Lemma 3.3.1. Suppose there exists U such that 𝑈 𝑗 = 𝜕𝑗U, then for adjacent 𝑥, 𝑦
(no marked points are between 𝑥,𝑦), if the system

1
2𝑈

2
𝑥 +

∑
𝑖 cot( 𝑧𝑖−𝑥2 )𝑈𝑖 + cot( 𝑦−𝑥2 )𝑈𝑦 +

(
− 3

2 sin2 ( 𝑦−𝑥2 ) + ℎ1(𝑥, 𝑧)
)
= 0

1
2𝑈

2
𝑦 +

∑
𝑖 cot( 𝑧𝑖−𝑦2 )𝑈𝑖 + cot( 𝑥−𝑦2 )𝑈𝑥 +

(
− 3

2 sin2 ( 𝑦−𝑥2 ) + ℎ2(𝑦, 𝑧)
)
= 0.

(3.3.6)

admits a non-vanishing solution, then the functions ℎ1, ℎ2 can be written as ℎ1(𝑥, 𝑧) =
ℎ(𝑥, 𝑧), ℎ2(𝑦, 𝑧) = ℎ(𝑦, 𝑧)

Define two operators L1,L2 by:

L1 =
𝑈𝑥

2
𝜕𝑥 +

∑︁
𝑖

cot( 𝑧𝑖 − 𝑥
2

)𝜕𝑖 + cot( 𝑦 − 𝑥
2

)𝜕𝑦 −
3

2 sin2( 𝑦−𝑥2 )

L2 =
𝑈𝑦

2
𝜕𝑦 +

∑︁
𝑖

cot( 𝑧𝑖 − 𝑦
2

)𝜕𝑖 + cot( 𝑥 − 𝑦
2

)𝜕𝑥 −
3

2 sin2( 𝑥−𝑦2 )
.

U(𝜽) is annihilated by all operators in the left ideal generated by (L1+ℎ1), (L2+ℎ2),
including in particular their commutator:

L = [L1 + ℎ1,L2 + ℎ2] +
1

sin2( 𝑥−𝑦2 )
((L1 + ℎ1) − (L2 + ℎ2))

=

((
cot( 𝑦 − 𝑥

2
)𝜕𝑦 +

∑︁
𝑖

cot( 𝑧𝑖 − 𝑥
2

)𝜕𝑖

)
ℎ2(𝑦, 𝑧) −

(
cot( 𝑥 − 𝑦

2
)𝜕𝑥 +

∑︁
𝑖

cot( 𝑧1 − 𝑦
2

)𝜕𝑖

)
ℎ1(𝑥, 𝑧)

)
+ 4 (ℎ1 − ℎ2)

sin2( 𝑥−𝑦2 )
.

The operator L is an operator of order 0, and a function that must vanish identically.

If 𝑥, 𝑦 are adjacent (no marked points are between 𝑥,𝑦), consider the pole of L at 𝑥 =
𝑦. The second-order pole must vanish, and this implies ℎ1(𝑥, 𝑧) = ℎ(𝑥, 𝑧), ℎ2(𝑦, 𝑧) =
ℎ(𝑦, 𝑧) for some function ℎ.

Let us return to the proof of the theorem (1.3.2) for multiple radial SLE(0) systems
with 𝑛 distinct growth points 𝑧1 = 𝑒𝑖𝜃1 , 𝑧2 = 𝑒𝑖𝜃2 , . . . , 𝑧𝑛 = 𝑒

𝑖𝜃𝑛 .

We grow two SLEs from 𝜃𝑖, 𝜃 𝑗 , 𝑖 ≠ 𝑗 and treat the rest as marked points denoted by
𝑧.

The commutation relation between two SLEs implies that the infinitesimal generator
satisfies

[M𝑖,M 𝑗 ] =
1

sin2( 𝜃𝑖−𝜃 𝑗2 )
(M 𝑗 −M𝑖) (3.3.7)
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and the null vector equations


1
2𝑈

2
𝑖
+ ∑

𝑘 cot( 𝑧𝑘−𝜃𝑖2 )𝑈𝑘 + cot( 𝜃 𝑗−𝜃𝑖2 )𝑈 𝑗 +
(

3
2 sin2 (

𝜃 𝑗−𝜃𝑖

2 )
+ ℎ𝑖 (𝜃𝑖, 𝒛)

)
= 0

1
2𝑈

2
𝑗
+ ∑

𝑘 cot( 𝑧𝑘−𝜃 𝑗2 )𝑈𝑘 + cot( 𝜃𝑖−𝜃 𝑗2 )𝑈𝑖 +
(

3
2 sin2 (

𝜃𝑖−𝜃 𝑗

2 )
+ ℎ 𝑗 (𝜃 𝑗 , 𝒛)

)
= 0.

(3.3.8)

We may write the first equation in (3.3.8) as

1
2
𝑈2
𝑖 +

∑︁
𝑘

cot( 𝑧𝑘 − 𝜃𝑖
2

)𝑈𝑘 + cot(
𝜃 𝑗 − 𝜃𝑖

2
)𝑈 𝑗 = − 3

2 sin2( 𝜃 𝑗−𝜃𝑖2 )
− ℎ𝑖 (𝜃𝑖, 𝑧). (3.3.9)

By the integrability condition theorem (3.3.1), ℎ𝑖 (𝜃𝑖, 𝑧) does not depend on 𝜃 𝑗 ,

Since integrability conditions hold for all 𝑗 ≠ 𝑖, by subtracting all 3
2 sin2 (

𝜃 𝑗−𝜃𝑖

2 )
term,

we obtain that

1
2
𝑈2
𝑖 +

∑︁
𝑗

cot(
𝜃 𝑗 − 𝜃𝑖

2
)𝑈 𝑗 = −

∑︁
𝑗

3

2 sin2( 𝜃 𝑗−𝜃𝑖2 )
− ℎ𝑖 (𝜃𝑖). (3.3.10)

where ℎ𝑖 = ℎ𝑖 (𝜃𝑖) only depends on 𝜃𝑖.

Moreover, by the integrability condition, ℎ𝑖 = ℎ𝑖+1 for every pair of 1 ≤ 𝑖 ≤ 𝑛 − 1,
this implies ℎ1 = ℎ2 = . . . = ℎ𝑛 = ℎ.

ℎ(𝜃𝑖) = −1
2
𝑈2
𝑖 −

∑︁
𝑗

cot(
𝜃 𝑗 − 𝜃𝑖

2
)𝑈 𝑗 −

∑︁
𝑗≠𝑖

3

2 sin2( 𝜃 𝑗−𝜃𝑖2 )
. (3.3.11)

Rotation invariance of 𝑈𝑖 and 𝑈 𝑗 implies that ℎ(𝜃𝑖) must also be rotation invariant
and thus a constant. This completes the proof of the theorem (1.3.2).

□
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C h a p t e r 4

CONFORMAL FIELD THEORY FOR MULTIPLE SLE(𝜅)

4.1 Vertex operators and level two degeneracy equations
From the perspective of conformal field theory (CFT), we derive the null vector
equations, also known as the level-two degeneracy equations. This derivation relies
on the SLE-CFT correspondence, which describes the coupling between multiple
radial SLE(𝜅) and conformal field theory. For further reference on such conformal
field theories, please refer to Kang and N. Makarov (2013) and N-G. Kang and N.
Makarov (2021)

Definition 4.1.1 (Vertex Operator). Given a modified Gaussian free field Φ𝜷 with
background charge 𝜷 satisfying neutrality condition (𝑁𝐶𝑏) and a charge distribution
𝝉 =

∑
𝑗 𝜏𝑗 · 𝑧 𝑗 satisfying neutrality condition (𝑁𝐶0), we define the vertex operator

O𝜷 [𝝉] as the OPE-exponential of the chiral bosonic field 𝑖Φ+
𝜷 [𝝉]:

O𝜷 [𝝉] :=
𝐶(𝑏) [𝜷 + 𝝉]
𝐶(𝑏) [𝜷]

𝑒
⊙𝑖Φ+

𝜷 [𝝉] , (4.1.1)

where Φ+
𝜷 [𝝉] :=

∑
𝑗 𝜏𝑗Φ

+
𝜷 (𝑧 𝑗 ) is the chiral bosonic field and ⊙ denotes Wick order-

ing.

Its expectation value yields

E[O𝜷 [𝝉]] =
𝐶(𝑏) [𝜷 + 𝝉]
𝐶(𝑏) [𝜷]

.

Definition 4.1.2 (Current Field). Given a modified Gaussian free field Φ𝜷 with
background charge 𝜷, the current field 𝐽𝜷 (𝑧) is defined as the holomorphic derivative

𝐽𝜷 (𝑧) := 𝑖 𝜕Φ𝜷 (𝑧).

Definition 4.1.3 (Virasoro Field). The Virasoro field 𝑇𝜷 (𝑧), also called the stress-
energy tensor, is defined in terms of the current field as

𝑇𝜷 (𝑧) := −1
2
𝐽𝜷 (𝑧) ⊙ 𝐽𝜷 (𝑧) + 𝑖𝑏 𝜕𝐽𝜷 (𝑧),

Let {𝐽𝑛} and {𝐿𝑛} denote the modes of the current field 𝐽𝜷 and the Virasoro field
𝑇𝜷 in F𝜷 theory, respectively:
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𝐽𝑛 (𝑧) :=
1

2𝜋𝑖

∮
(𝑧)
(𝜁 − 𝑧)𝑛𝐽𝜷 (𝜁)d𝜁, 𝐿𝑛 (𝑧) :=

1
2𝜋𝑖

∮
(𝑧)
(𝜁 − 𝑧)𝑛+1𝑇𝜷 (𝜁)d𝜁 (4.1.2)

Recall that a field 𝑋 is called Virasoro primary if 𝑋 is a differential and if 𝑋 is in
the family F𝜷. It is well known that 𝑋 in F𝜷 is Virasoro primary if and only if
𝐿𝑛𝑋 = 𝐿𝑛 �̄� = 0 for all 𝑛 ≥ 1 and

𝐿−1𝑋 = 𝜕𝑋,

𝐿−1𝑋 = 𝜕𝑋,

𝐿0𝑋 = 𝜆𝑋,

𝐿0𝑋 = 𝜆∗𝑋.

(4.1.3)

for some numbers 𝜆 and 𝜆∗. (These numbers are called conformal dimensions of
𝑋 .) See Kang and N. Makarov (2013), Proposition 7.5 for this.

Definition 4.1.4. A Virasoro primary field 𝑋 is called current primary if 𝐽𝑛𝑋 =

𝐽𝑛 �̄� = 0 for all 𝑛 ≥ 1 and

𝐽0𝑋 = −𝑖𝜎𝑋, 𝐽0𝑋 = 𝑖𝜎∗𝑋

for some numbers 𝜎 and 𝜎∗ (These numbers are charges of 𝑋 .) It is well known
that current primary fields with specific charges satisfy the level two degeneracy
equations.

Theorem 4.1.5. For a current primary field O in F𝛽 with charges 𝜎, 𝜎∗ at 𝑧, we
have (

𝐿−2(𝑧) + 𝜂𝐿2
−1(𝑧)

)
O = 0

if 2𝜎(𝑏 + 𝜎) = 1 and 𝜂 = − 1
2𝜎2 .

Proof. See Kang and N. Makarov, 2013, Proposition 11.2. □

We now derive BPZ equations (Belavin-Polyakov-Zamolodchikov equations) on the
Riemann sphere with background charges

𝜷 = 𝑏 · 𝑢 + 𝑏 · 𝑢∗

, where 𝑢∗ is the conjugation of 𝑢.
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Given 𝑏 =
√︁
𝜅
8 −

√︃
2
𝜅
, let 𝑎 =

√︃
2
𝜅

be one of the solutions to the quadratic equation

2𝑥(𝑥 + 𝑏) = 1 for 𝑥 and let O𝛽 (𝑧) ≡ O (𝑎,𝜏)
𝛽

(𝑧) := O𝜷 [𝑎 · 𝑧 + 𝜏]

𝝉 =
∑︁

𝜏𝑗 · 𝑧 𝑗

with the neutrality condition (NC0) : 𝑎 + ∑
𝜏𝑗 = 0.

Theorem 4.1.6. If 𝑧 ∉ supp 𝜷 ∪ supp 𝜏, then for any tensor product X𝜷 of fields 𝑋 𝑗
in F𝜷, we have in the Ĉ-uniformization,

1
2𝑎2 𝜕

2
𝑧 EO𝛽 (𝑧)X𝛽 = E𝑇𝛽 (𝑧)EO𝛽 (𝑧)X𝛽 + EĽ+

𝑘𝑧
O𝛽 (𝑧)X𝛽 (4.1.4)

where the vector field 𝑘𝑧 is given by 𝑘𝑧 (𝜁) = 1/(𝑧 − 𝜁) in the identity chart of C
and the Lie derivative operator Ľ+

𝑘𝑥
does not apply to the 𝑧-variable (In general, Ľ+

𝑣

means that we differentiate with respect to L+
𝑣 except for poles of 𝑣).

Proof. See Kang and N. Makarov, 2013, Theorem 10.9. □

Theorem 4.1.7 (Expanded Level-Two Degeneracy Equation for Φ(𝑧)). Let 𝑎 =√︁
2/𝜅 and assume the neutrality condition (NC0) for 𝝉. Let

Φ(𝑧) := E
[
O𝛽 (𝑧)

]
,

whereO𝛽 (𝑧) is a current primary field of charge 𝑎 at 𝑧 in the Coulomb gas formalism.

Then Φ(𝑧) satisfies the following second-order differential equation:

𝜅

4
𝜕2
𝑧Φ(𝑧) =

∑︁
𝑗

(
𝜆 𝑗

(𝑧 − 𝑧 𝑗 )2 +
𝜕𝑧 𝑗

𝑧 − 𝑧 𝑗

)
Φ(𝑧)

+
(
𝜆(𝑏) (𝜎𝑢)
(𝑧 − 𝑢)2 +

𝜆(𝑏) (𝜎𝑢∗)
(𝑧 − 𝑢∗)2 + 𝑏2

(𝑧 − 𝑢) (𝑧 − 𝑢∗)

)
Φ(𝑧)

+
(
𝜕𝑢

𝑧 − 𝑢 + 𝜕𝑢∗

𝑧 − 𝑢∗

)
Φ(𝑧),

where 𝜆 𝑗 = 𝜆(𝑏) (𝜎𝑗 ) =
𝜎2
𝑗

2 − 𝜎𝑗𝑏, and similarly for 𝜆(𝑏) (𝜎𝑢), 𝜆(𝑏) (𝜎𝑢∗).

Proof. This follows from Theorem 4.1.6 with X ≡ 1.

1
2𝑎2 𝜕

2
𝑧 EO𝛽 (𝑧) = E𝑇𝛽 (𝑧)O𝛽 (𝑧) + Ľ+

𝑘𝑧
EO𝛽 (𝑧),

we evaluate each term separately.
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From the Lie derivative:

Ľ+
𝑘𝑧

EO𝛽 (𝑧) =
∑︁
𝑗

(
𝜆 𝑗

(𝑧 − 𝑧 𝑗 )2 +
𝜕𝑧 𝑗

𝑧 − 𝑧 𝑗

)
EO𝛽 (𝑧)

+
(
𝜆(𝑏) (𝜎𝑢) − 𝜆(𝑏) (𝑏)

(𝑧 − 𝑢)2 + 𝜕𝑢

𝑧 − 𝑢

)
EO𝛽 (𝑧)

+
(
𝜆(𝑏) (𝜎𝑢∗) − 𝜆(𝑏) (𝑏)

(𝑧 − 𝑢∗)2 + 𝜕𝑢∗

𝑧 − 𝑢∗

)
EO𝛽 (𝑧).

From the expectation of the stress-energy tensor:

E𝑇𝜷 (𝑧) =
𝜆(𝑏) (𝑏)
(𝑧 − 𝑢)2 +

𝜆(𝑏) (𝑏)
(𝑧 − 𝑢∗)2 + 𝑏2

(𝑧 − 𝑢) (𝑧 − 𝑢∗) .

Adding both contributions and using Φ(𝑧) = EO𝛽 (𝑧) yields the claimed equation.
□

Remark 4.1.8. Let 𝜎𝑗 = −2𝑎 or 𝜎𝑗 = 2(𝑎 + 𝑏) such that 𝜆 𝑗 = 1. Then(
𝜆 𝑗(

𝑧 − 𝑧 𝑗
)2 +

𝜕𝑗

𝑧 − 𝑧 𝑗

)
Φ = 𝜕𝑗

(
Φ

𝑧 − 𝑧 𝑗

)
(4.1.5)

which is in a closed form for 𝑧 𝑗 . By choosing appropriate closed contours Γ, such
as the Pochhammer contour, to integrate Φ with respect to 𝑧 𝑗 , the right-hand side
of (4.1.5) integrates to 0 along Γ. Consequently, the variable 𝑧 𝑗 is eliminated. This
procedure to generate a new correlation function is referred to as screening.
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C h a p t e r 5

COULOMB GAS SOLUTIONS TO THE NULL VECTOR
EQUATIONS

5.1 Coulomb gas correlation and Coulomb gas integral
Recall that the Coulomb gas correlation differential associated with a divisor 𝝈 =∑𝑛
𝑗=1 𝜎𝑗 · 𝑧 𝑗 on the Riemann sphere Ĉ is given by

𝐶(𝑏) [𝝈] =
∏
𝑗<𝑘

(𝑧 𝑗 − 𝑧𝑘 )𝜎𝑗𝜎𝑘 , (5.1.1)

where the product is taken over all finite 𝑧 𝑗 and 𝑧𝑘 .

Definition 5.1.1 (Monodromy of Coulomb Gas Correlation Differential). Let 𝝈 =∑𝑛
𝑗=1 𝜎𝑗 · 𝑧 𝑗 be a divisor on C with associated Coulomb gas correlation differential

𝐶(𝑏) [𝝈] =
∏
𝑗<𝑘

(𝑧 𝑗 − 𝑧𝑘 )𝜎𝑗𝜎𝑘 .

This function is multivalued due to the presence of non-integer exponents. Its
multivaluedness is described by the monodromy representation arising from analytic
continuation around branch points.

To illustrate the basic mechanism, consider the case 𝑛 = 2. Then

𝐶(𝑏) [𝝈] = (𝑧1 − 𝑧2)𝜎1𝜎2 ,

which is analytic in 𝑧1 on C \ {𝑧2}. If we analytically continue this function as
𝑧1 travels once counterclockwise around 𝑧2, the function picks up a multiplicative
factor of 𝑒2𝜋𝑖𝜎1𝜎2 .

Thus, the monodromy representation

𝜌 : 𝜋1(C \ {𝑧2}, 𝑧1) −→ C∗, 𝜌(𝐶2) = 𝑒2𝜋𝑖𝜎1𝜎2

captures how the function changes under analytic continuation around the singu-
larity at 𝑧2, where 𝐶2 is the loop encircling 𝑧2.

In general, for 𝝈 =
∑𝑛
𝑗=1 𝜎𝑗 · 𝑧 𝑗 , the function 𝐶(𝑏) [𝝈] is analytic in 𝑧1 on C \

{𝑧2, . . . , 𝑧𝑛}. The fundamental group 𝜋1(C \ {𝑧2, . . . , 𝑧𝑛}, 𝑧1) is the free group
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generated by loops 𝐶 𝑗 encircling each 𝑧 𝑗 ( 𝑗 = 2, . . . , 𝑛), and the monodromy
representation

𝜌 : 𝜋1(C \ {𝑧2, . . . , 𝑧𝑛}) → C∗, 𝜌(𝐶 𝑗 ) = 𝑒2𝜋𝑖𝜎1𝜎𝑗

describes the multiplicative factor acquired by 𝐶(𝑏) [𝝈] when 𝑧1 loops around 𝑧 𝑗
once in the counterclockwise direction.

Definition 5.1.2 (Screening Charge). Let 𝝈 be a configuration of charges on the
Riemann sphere, and let 𝐶(𝑏) [𝝈] denote the associated Coulomb gas correlation
differential. The conformal dimension of a charge 𝜎 ∈ C inserted at a point 𝑧 𝑗 is
defined by

𝜆𝑏 (𝜎) =
𝜎2

2
− 𝜎𝑏. (5.1.2)

The condition 𝜆𝑏 (𝜎) = 1 characterizes special charges whose insertions yield
integrands of weight (1, 0). Solving this quadratic equation yields two solutions:

𝜎 = −2𝑎, 𝜎 = 2(𝑎 + 𝑏).

A charge 𝜏 ∈ {−2𝑎, 2(𝑎 + 𝑏)} is called a screening charge. Consider a divisor of
the form

𝝈 =
∑︁
𝑖

𝜎𝑖 · 𝑧𝑖 +
∑︁
𝑗

𝜏𝑗 · 𝜉 𝑗 , (5.1.3)

where {𝜏𝑗 } are screening charges inserted at positions {𝜉 𝑗 }.

The resulting Coulomb gas differential on the Riemann sphere Ĉ is given by

𝐶(𝑏) [𝝈] =
∏
𝑖< 𝑗

(𝑧𝑖 − 𝑧 𝑗 )𝜎𝑖𝜎𝑗

∏
𝑖,𝑘

(𝑧𝑖 − 𝜉𝑘 )𝜎𝑖𝜏𝑘
∏
𝑗<𝑘

(𝜉 𝑗 − 𝜉𝑘 )𝜏𝑗𝜏𝑘 , (5.1.4)

where the products range over all distinct pairs of points.

Since each 𝜏𝑗 satisfies 𝜆𝑏 (𝜏𝑗 ) = 1, the differential 𝐶(𝑏) [𝝈] 𝑑𝜉 𝑗 transforms as a
holomorphic 1-form in each variable 𝜉 𝑗 . This allows for the definition of contour
integrals of the form ∫

Γ

𝐶(𝑏) [𝝈] 𝑑𝜉1 · · · 𝑑𝜉𝑚,

where Γ is a suitable multidimensional integration cycle avoiding branch points.

This procedure is known as screening, and it plays a fundamental role in the Coulomb
gas formalism. By integrating out screening charges, one obtains new correlation
functions that are conformally covariant and satisfy null vector differential equa-
tions, as required by conformal field theory.
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We now consider the simplest nontrivial case involving a single screening charge 𝜉.
The corresponding Coulomb gas correlation differential takes the form

𝐶(𝑏) [𝝈] =
∏
𝑖< 𝑗

(𝑧𝑖 − 𝑧 𝑗 )𝜎𝑖𝜎𝑗

∏
𝑗

(𝑧 𝑗 − 𝜉)𝜎𝑗𝜏, (5.1.5)

where {𝑧 𝑗 } are fixed insertion points with charges {𝜎𝑗 }, and 𝜏 is the charge at the
variable point 𝜉.

Let Γ : [0, 1] → C \ {𝑧1, . . . , 𝑧𝑛} be a path with basepoint 𝑝0 = Γ(0). Due
to the non-integer exponents, the integrand is multivalued in 𝜉, and its analytic
continuation along Γ depends on the monodromy of the branches. Consequently,
even if Γ is a closed loop, the contour integral∫

Γ

𝐶(𝑏) [𝝈] 𝑑𝜉

is not necessarily single-valued and may depend on the homotopy class of Γ relative
to the chosen branch at 𝑝0.

This multivaluedness necessitates a more refined homological framework: the inte-
gration should be understood in the context of twisted homology, where chains are
equipped with local system coefficients determined by the monodromy representa-
tion of the integrand. In this setting, valid integration cycles are twisted 1-cycles,
which keep track of the phase accumulated during analytic continuation.

A canonical example of such an integration path is the Pochhammer contour
𝒫(𝑧𝑖, 𝑧 𝑗 ), which loops around two branch points 𝑧𝑖 and 𝑧 𝑗 alternately. Though
homologically trivial in ordinary homology, this contour generates a nontrivial
class in twisted homology and yields a well-defined integral. These twisted cycles
form the natural domain of integration for Coulomb gas differentials with screening
charges.

Definition 5.1.3 (Pochhammer Contour). Let {𝑧1, 𝑧2, . . . , 𝑧𝑛} ⊂ C be distinct points.
The punctured planeC\{𝑧1, . . . , 𝑧𝑛} is homotopy equivalent to a bouquet of 𝑛 circles,∨𝑛
𝑖=1 𝑆

1, and its fundamental group is the free group:

𝜋1 (C \ {𝑧1, . . . , 𝑧𝑛}) � ∗𝑛𝑖=1Z,

generated by simple loops 𝐶𝑖 encircling each puncture 𝑧𝑖 in the positive (counter-
clockwise) direction.
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The Pochhammer contour associated with a pair of points (𝑧𝑖, 𝑧 𝑗 ) is defined as the
commutator of the generators 𝐶𝑖 and 𝐶 𝑗 :

𝒫(𝑧𝑖, 𝑧 𝑗 ) := 𝐶𝑖𝐶 𝑗𝐶−1
𝑖 𝐶

−1
𝑗 . (5.1.6)

Geometrically, this contour first winds around 𝑧𝑖, then around 𝑧 𝑗 , and then retraces
both loops in reverse order.

Although𝒫(𝑧𝑖, 𝑧 𝑗 ) is null-homologous in ordinary homology, it typically represents
a nontrivial class in twisted homology, where chains are valued in a local system
determined by the monodromy of a multivalued function. Such contours are essential
for defining well-posed integrals of Coulomb gas correlation differentials, which
exhibit nontrivial monodromy around insertion points.

Figure 5.1: The Pochhammer contour 𝒫(𝑧𝑖, 𝑧 𝑗 ): a commutator loop around 𝑧𝑖 and
𝑧 𝑗 .

We now analyze the role of the Pochhammer contour in defining single-valued
integrals of multivalued Coulomb gas differentials.

By definition, the Pochhammer contour 𝒫(𝑧𝑖, 𝑧 𝑗 ) := 𝐶𝑖𝐶 𝑗𝐶−1
𝑖
𝐶−1
𝑗

is a commutator
of simple loops 𝐶𝑖, 𝐶 𝑗 around 𝑧𝑖 and 𝑧 𝑗 , respectively. Since the winding numbers
of a loop and its inverse cancel, the total winding number of 𝒫(𝑧𝑖, 𝑧 𝑗 ) around any
puncture vanishes:

wind(𝒫(𝑧𝑖, 𝑧 𝑗 ), 𝑧𝑘 ) = 0, for all 𝑘 = 1, . . . , 𝑛. (5.1.7)

In particular, 𝒫(𝑧𝑖, 𝑧 𝑗 ) encircles neither 𝑧𝑖 nor 𝑧 𝑗 in total:

wind(𝒫(𝑧𝑖, 𝑧 𝑗 ), 𝑧𝑖) = wind(𝒫(𝑧𝑖, 𝑧 𝑗 ), 𝑧 𝑗 ) = 0. (5.1.8)

As a consequence, when the integrand is of the form

𝐶(𝑏) [𝝈] =
𝑛∏
𝑘=1

(𝑧𝑘 − 𝜉)𝜎𝑘𝜏,
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the analytic continuation of 𝐶(𝑏) [𝝈] along 𝒫(𝑧𝑖, 𝑧 𝑗 ) returns to the original branch,
and the monodromy along this loop is trivial:

𝜌(𝒫(𝑧𝑖, 𝑧 𝑗 )) = 1. (5.1.9)

Theorem 5.1.4 (Base Point Independence). Let Γ = 𝒫(𝑧𝑖, 𝑧 𝑗 ) be a Pochhammer
contour, and let 𝑝0 = Γ(0) denote its base point. Then the integral∫

Γ

𝐶(𝑏) [𝝈] 𝑑𝜉 (5.1.10)

is independent of the choice of base point 𝑝0.

Proof. Let 𝑝′0 be another base point, and let 𝛾 be a path from 𝑝′0 to 𝑝0. Define the
conjugated loop Γ′ = 𝛾 · Γ · 𝛾−1. Since the integrand is single-valued along Γ, and
𝜌(Γ) = 1, we have ∫

Γ′
𝐶(𝑏) [𝝈] 𝑑𝜉 =

∫
Γ

𝐶(𝑏) [𝝈] 𝑑𝜉.

Hence the integral is independent of the base point. □

Remark 5.1.5. The Pochhammer contour is a canonical example of a nontrivial
twisted cycle, but the base point independence property extends to any closed
contour Γ satisfying:

(i) wind(Γ, 𝑧𝑘 ) = 0 for all 𝑘 = 1, . . . , 𝑛;

(ii) Γ represents a nontrivial class in the twisted homology group.

Under these conditions, Γ lies in the twisted homology group𝐻1(C\{𝑧1, . . . , 𝑧𝑛};C𝜌),
where C𝜌 is the rank-one local system determined by the monodromy representation
𝜌 of the integrand.

This framework generalizes naturally to the case of 𝑚 screening charges 𝜉1, . . . , 𝜉𝑚.
In that setting, the integration domain is the product of𝑚 twisted cycles Γ1×· · ·×Γ𝑚,
with each Γ 𝑗 lying in 𝐻1(C \ {𝑧1, . . . , 𝑧𝑛};C𝜌) and chosen, for instance, as pairwise
non-intersecting Pochhammer contours. The resulting integral∫

Γ1

· · ·
∫
Γ𝑚

𝐶(𝑏) [𝝈] 𝑑𝜉1 · · · 𝑑𝜉𝑚 (5.1.11)

defines a well-posed conformally covariant correlation function.
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Theorem 5.1.6 (Conformal Invariance of the Coulomb Gas Integral). Let 𝝈 =∑𝑛
𝑖=1 𝜎𝑖 · 𝑧𝑖 +

∑𝑚
𝑗=1 𝜏𝑗 ·𝜉 𝑗 be a divisor on the Riemann sphere Ĉ, where each screening

charge 𝜏𝑗 ∈ {−2𝑎, 2(𝑎 + 𝑏)} is chosen so that its conformal dimension satisfies
𝜆𝑏 (𝜏𝑗 ) = 1. Let ℎ : Ĉ→ Ĉ be a Möbius transformation, and define

𝜁 𝑗 := ℎ(𝜉 𝑗 ), ℎ(𝝈) :=
𝑛∑︁
𝑖=1

𝜎𝑖 · ℎ(𝑧𝑖) +
𝑚∑︁
𝑗=1
𝜏𝑗 · 𝜁 𝑗 .

Then the Coulomb gas integral transforms covariantly under ℎ as(
𝑛∏
𝑖=1

ℎ′(𝑧𝑖)𝜆𝑏 (𝜎𝑖)
) ∮

ℎ(Γ)
𝐶(𝑏) [ℎ(𝝈)] 𝑑𝜁1 · · · 𝑑𝜁𝑚 =

∮
Γ

𝐶(𝑏) [𝝈] 𝑑𝜉1 · · · 𝑑𝜉𝑚,

(5.1.12)
where ℎ(Γ) denotes the image of the integration contour Γ under ℎ.

Each differential 𝑑𝜁 𝑗 transforms as 𝑑𝜁 𝑗 = ℎ′(𝜉 𝑗 ) 𝑑𝜉 𝑗 , and since 𝜆𝑏 (𝜏𝑗 ) = 1, the inte-
grand 𝐶(𝑏) [𝝈] 𝑑𝜉1 · · · 𝑑𝜉𝑚 is invariant under pullback by ℎ, up to the multiplicative
factor

∏
𝑖 ℎ

′(𝑧𝑖)𝜆𝑏 (𝜎𝑖) determined by the insertion points.

Proof. The conformal invariance of the Coulomb gas integral naturally comes from
the conformal invariance of the Coulomb gas correlation differential.

𝐶(𝑏) [𝝈] =
(∏
𝑖

ℎ′(𝑧𝑖)𝜆𝑖
) (∏

𝑗

ℎ′(𝜉 𝑗 )
)
𝐶(𝑏) [ℎ(𝝈)] (5.1.13)

Since 𝜁 𝑗 = ℎ(𝜉 𝑗 ), then 𝑑𝜉 𝑗 =
𝑑𝜁 𝑗
ℎ′ (𝜉 𝑗 ) , we have(∏

𝑖

ℎ′(𝑧𝑖)𝜆 𝑗

) ∮
ℎ(Γ)

𝐶(𝑏) [ℎ(𝝈)] 𝑑𝜁1𝑑𝜁2 . . . 𝑑𝜁𝑚 =∮
Γ

𝐶(𝑏) [𝝈]
𝑑𝜁(∏
𝑗 ℎ

′(𝜉 𝑗 )
) =

∮
Γ

𝐶(𝑏) [𝝈] 𝑑𝜉1𝑑𝜉2 . . . 𝑑𝜉𝑚

(5.1.14)

□

Corollary 5.1.7. The Coulomb gas integral J (𝒛) =
∮
C1
. . .

∮
C𝑚

Φ𝜅 (𝒛, 𝝃)𝑑𝜉𝑚 . . . 𝑑𝜉1

Φ𝜅 (𝒛, 𝝃) is a Coulomb gas correlation function of conformal dimension 𝜆𝑖 = 𝜆𝑖 (𝜎𝑖)
at 𝑧𝑖, and screening charges 𝜉 𝑗 of conformal dimension 1.
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satisfy the following conformal Ward’s indentities:[
𝑛∑︁
𝑖=1

𝜕𝑧𝑖

]
J (𝒛) = 0,[

𝑛∑︁
𝑖=1

(
𝑧𝑖𝜕𝑧𝑖 + 𝜆𝑖 (𝜎𝑖)

) ]
J (𝒛) = 0,[

𝑛∑︁
𝑖=1

(
𝑧2
𝑖 𝜕𝑧𝑖 + 2𝜆𝑖 (𝜎𝑖)𝑧𝑖

)]
J (𝒛) = 0.

(5.1.15)

Proof. The Ward identities follow from the invariance of the Coulomb gas integral
J (𝒛) under Möbius transformations. Consider the following three one-parameter
families of conformal maps:

ℎ
(1)
𝜖 (𝑧) = 𝑧 + 𝜖, ℎ

(2)
𝜖 (𝑧) = (1 + 𝜖)𝑧, ℎ

(3)
𝜖 (𝑧) = 𝑧

1 + 𝜖𝑧 ,

which correspond to translations, dilations, and special conformal transformations,
respectively.

By Theorem 5.1.6, the Coulomb gas integral transforms covariantly under Möbius
maps: (

𝑛∏
𝑖=1

ℎ′(𝑧𝑖)𝜆𝑖
)
J (ℎ𝜖 (𝒛)) = J (𝒛).

Taking the derivative with respect to 𝜖 at 𝜖 = 0, we obtain infinitesimal constraints
corresponding to conformal Ward identities.

• Translation: For ℎ𝜖 (𝑧) = 𝑧 + 𝜖 , we have ℎ′(𝑧) = 1, so:

𝑑

𝑑𝜖

����
𝜖=0

J (𝑧1 + 𝜖, . . . , 𝑧𝑛 + 𝜖) = 0.

By the chain rule, this gives:
𝑛∑︁
𝑖=1

𝜕𝑧𝑖J (𝒛) = 0.

• Dilation: For ℎ𝜖 (𝑧) = (1 + 𝜖)𝑧, we have ℎ′(𝑧) = 1 + 𝜖 , so:

𝑑

𝑑𝜖

����
𝜖=0

(
𝑛∏
𝑖=1

(1 + 𝜖)𝜆𝑖 · J ((1 + 𝜖)𝒛)
)
= 0.

Differentiating yields:
𝑛∑︁
𝑖=1

(
𝑧𝑖𝜕𝑧𝑖 + 𝜆𝑖

)
J (𝒛) = 0.
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• Shearing: For ℎ𝜖 (𝑧) = 𝑧
1+𝜖𝑧 , we compute

ℎ′(𝑧) = 1
(1 + 𝜖𝑧)2 ≈ 1 − 2𝜖𝑧 + 𝑜(𝜖), ℎ𝜖 (𝑧) ≈ 𝑧 − 𝜖𝑧2 + 𝑜(𝜖).

Plugging into the covariance relation and differentiating gives:

𝑛∑︁
𝑖=1

(
𝑧2
𝑖 𝜕𝑧𝑖 + 2𝜆𝑖𝑧𝑖

)
J (𝒛) = 0.

This establishes the three global conformal Ward identities in (5.1.15). □

5.2 Classification and link pattern
Throughout this section, we modify the notation by setting 𝑧𝑛+1 = 𝑢 and 𝑧𝑛+2 = 𝑢∗.
As usual, let 𝑧1 < 𝑧2 < . . . < 𝑧𝑛−1 < 𝑧𝑛.

We begin by considering the charge 𝝈 =
∑𝑛+𝑚+2
𝑗=1 𝜎𝑗 · 𝑧 𝑗 and the Coulomb gas

correlation:

𝐶(𝑏) [𝝈] = Φ (𝑧1, . . . , 𝑧𝑛+2+𝑚) =
𝑛+2+𝑚∏
𝑖< 𝑗

(
𝑧 𝑗 − 𝑧𝑖

)𝜎𝑖𝜎𝑗 .

Our strategy is to choose the 𝜎𝑖 (i.e., the charges associated with the divisor in the

Coulomb gas correlation) such that for 1 ≤ 𝑖 ≤ 𝑛, and 𝜆 𝑗 =
𝜎2
𝑗

2 − 𝜎𝑗𝑏:

[
𝜅

4
𝜕2
𝑖 +

𝑛∑︁
𝑗≠𝑖

(
𝜕𝑗

𝑧 𝑗 − 𝑧𝑖
−

𝜆 𝑗

(𝑧 𝑗 − 𝑧𝑖)2

)
+ 𝜕𝑛+1

𝑧𝑛+1 − 𝑧𝑖
+ 𝜕𝑛+2

𝑧𝑛+2 − 𝑧𝑖

− 𝜆𝑛+1

(𝑧𝑛+1 − 𝑧𝑖)2 − 𝜆𝑛+2

(𝑧𝑛+2 − 𝑧𝑖)2

]
Φ

=

𝑛+2+𝑚∑︁
𝑘=𝑛+3

𝜕𝑘 (. . .),

(5.2.1)

Theorem 5.2.1. (i) If we choose 𝜎𝑗 = 𝑎 =

√︃
2
𝜅
, and 𝜆 𝑗 = 𝑎2

2 − 𝑎𝑏 = 6−𝜅
2𝜅 for

1 ≤ 𝑗 ≤ 𝑛, and 𝜆 𝑗 =
𝜎2
𝑗

2 − 𝜎𝑗𝑏 for 𝑛 + 1 ≤ 𝑗 ≤ 𝑛 + 2, then we obtain the
following null vector equation:
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𝜅

4
𝜕2
𝑗 +

𝑛∑︁
𝑘≠ 𝑗

(
𝜕𝑘

𝑧𝑘 − 𝑧 𝑗
− (6 − 𝜅)/2𝜅

(𝑧𝑘 − 𝑧 𝑗 )2

)
+ 𝜕𝑛+1

𝑧𝑛+1 − 𝑧 𝑗

+ 𝜕𝑛+2

𝑧𝑛+2 − 𝑧 𝑗
− 𝜆𝑛+1

(𝑧𝑛+1 − 𝑧 𝑗 )2 − 𝜆𝑛+2

(𝑧𝑛+2 − 𝑧 𝑗 )2

]
Φ

=

𝑛+2+𝑚∑︁
𝑘=𝑛+3

𝜕𝑘

(
−Φ(𝑧1, . . . , 𝑧𝑛+𝑚+2)

𝑧𝑘 − 𝑧 𝑗

) (5.2.2)

for all 𝑗 ∈ {1, 2, . . . , 𝑛}. Thus, we attain the desired form (5.2.1) for all
𝑗 ∈ {1, 2, . . . , 𝑛}.

Currently, the number of screening charges 𝑚 and the values of 𝜎𝑘 = 2𝑎
or 𝜎𝑘 = 2(𝑎 + 𝑏) for 𝑘 ∈ {𝑛 + 3, 𝑛 + 4, . . . , 𝑛 + 𝑚 + 2} remain unspecified.
The charges 𝜎𝑛+1 = 𝜎𝑛+2 are chosen such that 𝝈 =

∑
𝑗 𝜎𝑗 · 𝑧 𝑗 satisfies the

neutrality condition (𝑁𝐶𝑏).

(ii) If 𝑛 = 2𝑘 , 𝑚 = 𝑘 − 1, and we choose 𝜎𝑗 = 𝑎 for all 𝑗 ∈ {1, 2, . . . , 𝑛 − 1},
𝜎𝑛 = 2𝑏 − 𝑎, and the sign of 𝜎𝑘 = −2𝑎 for all 𝑘 ∈ {𝑛 + 1, 𝑛 + 2, . . . , 𝑛 + 𝑚},
then we have the following null vector equation for 𝑗 ∈ {1, 2, . . . , 𝑛 − 1}:[

𝜅

4
𝜕2
𝑛 +

𝑛−1∑︁
𝑘=1

(
𝜕𝑘

𝑧𝑘 − 𝑧𝑛
− (6 − 𝜅)/2𝜅

(𝑧𝑘 − 𝑧𝑛)2

)]
Φ

=

𝑛+𝑚−1∑︁
𝑘=𝑛+1

𝜕𝑘

(
−Φ(𝑧1, . . . , 𝑧𝑛+𝑚)

𝑧𝑘 − 𝑧𝑛

)
+ 1

2

𝑛+𝑚−1∑︁
𝑘=𝑛+1

𝜕𝑘


8 − 𝜅
𝑧𝑘 − 𝑧𝑛

©«
𝑛−1∏
𝑠=1

𝑧𝑘 − 𝑧𝑠
𝑧𝑛 − 𝑧𝑠

𝑛+𝑚∏
𝑡=𝑛+1
𝑡≠𝑘

(
𝑧𝑛 − 𝑧𝑡
𝑧𝑘 − 𝑧𝑡

)2ª®®¬Φ
 .

(5.2.3)

Since the right-hand side of (5.2.3) consists of derivatives with respect to 𝑧𝑘
for 𝑘 ∈ {𝑛 + 1, 𝑛 + 2, . . . , 𝑛 +𝑚}, we obtain the desired form (5.2.1) for 𝑗 = 𝑛
as well. Therefore, the null vector equations are satisfied for all 1 ≤ 𝑗 ≤ 𝑛.

Then we will integrate 𝑧𝑛+3, . . . , 𝑧𝑛+2+𝑚 on both sides of (5.2.1) around nonintersect-
ing closed contours Γ1, . . . , Γ𝑚. On the left side, the integrand is a smooth function
of 𝑧1, . . . , 𝑧𝑛+𝑚+2 because the contours do not intersect.

Integration on the right side is expected to give zero. To attain this, we carefully
choose the integration contour for 𝑧𝑛+3, . . . , 𝑧𝑛+2+𝑚. A commonly used integration
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Figure 5.1: Example: 𝑧1, 𝑧2, 𝑧3, 𝑧4 with 2 screening charges 𝜉1, 𝜉2

contour is the Pochhammer contour encircling two points 𝑧𝑖 and 𝑧 𝑗 , denoted by
𝒫

(
𝑧𝑖, 𝑧 𝑗

)
.

Because either side of (5.2.1) is absolutely integrable on each path, we may perform
these integrations in any order according to Fubini’s theorem. Integrating the right
side of (5.2.1) therefore gives zero. Finally, because the contours do not intersect,
we have sufficient continuity to use the Leibniz rule of integration to exchange the
order of differentiation and integration on the left side of (5.2.1). (If Γ𝑝 intersects Γ𝑞
but 𝜎𝑝𝜎𝑞 > 0, then the contour integral

∮
Φ is not improper. In this event, we may

still use the Leibniz rule to perform this last step as long as we may continuously
deform these contours so they do not intersect.) We, therefore, find that the Coulomb
gas integral J :=

∮
Φ satisfies the null vector equations (5.2.4).

The Coulomb gas integral J (𝒛, 𝑢) satisfies the following system of differential
equations. For each 𝑗 = 1, . . . , 𝑛, the function J (𝒛, 𝑢) satisfies the null vector
equation:

𝜅

4
𝜕2
𝑗 +

𝑛∑︁
𝑘≠ 𝑗

(
𝜕𝑘

𝑧𝑘 − 𝑧 𝑗
− (6 − 𝜅)/2𝜅

(𝑧𝑘 − 𝑧 𝑗 )2

)
+ 𝜕𝑢

𝑢 − 𝑧 𝑗
+ 𝜕𝑢∗

𝑢∗ − 𝑧 𝑗
−
𝜆(𝑏) (𝑢)
(𝑢 − 𝑧 𝑗 )2 −

𝜆(𝑏) (𝑢∗)
(𝑢∗ − 𝑧 𝑗 )2

]
J (𝒛, 𝑢) = 0.

(5.2.4)

In addition, J satisfies the following global conformal Ward identities, as given in
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Corollary (5.1.7):[
𝑛∑︁
𝑖=1

𝜕𝑧𝑖 + 𝜕𝑢 + 𝜕𝑢∗
]
J (𝒛, 𝑢) = 0,[

𝑛∑︁
𝑖=1

(
𝑧𝑖𝜕𝑧𝑖 +

6 − 𝜅
2𝜅

)
+ 𝑢𝜕𝑢 + 𝜆(𝑏) (𝑢)𝑢 + 𝑢∗𝜕𝑢∗ + 𝜆(𝑏) (𝑢∗)𝑢∗

]
J (𝒛, 𝑢) = 0,[

𝑛∑︁
𝑖=1

(
𝑧2
𝑖 𝜕𝑧𝑖 +

6 − 𝜅
𝜅

𝑧𝑖

)
+ 𝑢2𝜕𝑢 + 2𝜆(𝑏) (𝑢)𝑢 + (𝑢∗)2𝜕𝑢∗ + 2𝜆(𝑏) (𝑢∗)𝑢∗

]
J (𝒛, 𝑢) = 0.

(5.2.5)

Here, 𝜆(𝑏) (𝑢) and 𝜆(𝑏) (𝑢∗) denote the conformal weights of the screening charges
located at 𝑢 and 𝑢∗, respectively. We also use the standard notation, for 𝑢 = 𝑣 + 𝑖𝑤,
where 𝑣, 𝑤 ∈ R, the complex derivatives are given by

𝜕𝑢 =
1
2
(𝜕𝑣 − 𝑖𝜕𝑤), 𝜕𝑢∗ =

1
2
(𝜕𝑣 + 𝑖𝜕𝑤).

Next, we explain how to construct J (𝒛, 𝑢) by choosing the appropriate sets of in-
tegration contours. In what follows, we describe the choice of screening charges
and contours that give rise to four distinct types of screening solutions; see Theo-
rem 1.2.5. We conjecture that these screening solutions span the full solution space
to the null vector equations (5.2.4) and the Ward identities (5.2.5).

To proceed, we begin by introducing the notion of link patterns, which encode the
topological types of the integration contours.

To do this, let’s begin by defining the link patterns that characterize the topology of
integration contours.

Definition 5.2.2 (Radial Link Pattern). Given 𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} on the unit circle,
a radial link pattern is a homotopy class (up to non-crossing deformation) of non-
intersecting curves in the unit disk, consisting of:

• 𝑚 links (or arcs), each connecting a distinct pair of boundary points, and

• 𝑛 − 2𝑚 rays, each connecting a boundary point to the origin.

Such a configuration is called a radial (𝑛, 𝑚)-link, and the set of all such patterns is
denoted by LP(𝑛, 𝑚).

The number of such patterns is given by

|LP(𝑛, 𝑚) | =
(
𝑛

𝑚

)
,
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Proof. Each radial (𝑛, 𝑚)-link pattern corresponds to a configuration of 𝑚 non-
crossing arcs and 𝑛 − 2𝑚 rays connecting marked points 𝑧1, . . . , 𝑧𝑛 ∈ 𝜕D to the
origin. We describe such configurations by a class of discrete functions encoding
their nesting structure.

Define a function
𝑓 : Z/𝑛Z→ Z≥0

satisfying:

• | 𝑓 (𝑥 + 1) − 𝑓 (𝑥) | = 1 for all 𝑥 ∈ Z/𝑛Z,

• min 𝑓 = 0.

Such functions are called periodic Dyck walks, and they encode a height profile
along the circle, rising and falling in steps of ±1, returning to the starting height, and
remaining non-negative throughout. Each local minimum at height 0 corresponds
to a ray (i.e., a line from a boundary point to the origin), while each matching of an
up-step followed by a down-step corresponds to an arc.

For a radial (𝑛, 𝑚)-link, we require: - Exactly 2𝑚 of the 𝑛 positions to participate in
arcs (encoded by up/down steps), - The remaining 𝑛 − 2𝑚 steps form rays (flat local
minima).

To count such walks: - Choose the 𝑚 positions (out of 𝑛) at which the rays will
attach to the origin — each such position corresponds to a local minimum (a peak
that immediately rises or falls). - This uniquely determines the link structure (since
the rest must form a fixed non-crossing matching of 2𝑚 points). - Thus, the number
of such patterns is given by:

|LP(𝑛, 𝑚) | =
(
𝑛

𝑚

)
.

□

Definition 5.2.3 (Chordal Link Pattern). Given 𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} on the real
line, a chordal link pattern is a homotopy class (up to non-crossing deformation) of
non-intersecting curves in the upper half-plane, consisting of:

• 𝑚 links, each connecting a distinct pair of boundary points, and

• 𝑛 − 2𝑚 rays, each connecting a boundary point to infinity.



73

Such a configuration is called a chordal (𝑛, 𝑚)-link, and the set of all such patterns
is denoted by LP(𝑛, 𝑚).

The number of such patterns is given by

|LP(𝑛, 𝑚) | =
(
𝑛

𝑚 + 1

)
−

(
𝑛

𝑚

)
,

for all integers 𝑛 ≥ 2𝑚.

Proof. Each (𝑛, 𝑚)-link corresponds to an increasing path on Z2 from (0, 0) to
(𝑛 −𝑚, 𝑚), using only steps to the right (1, 0) and upward (0, 1), such that the path
never crosses the diagonal 𝑥 = 𝑦.

To reach (𝑛 − 𝑚, 𝑚), the path must take its final step from either:

• (𝑛 − 𝑚 − 1, 𝑚), via a horizontal step, or

• (𝑛 − 𝑚, 𝑚 − 1), via a vertical step.

Since valid paths must stay strictly below the diagonal 𝑥 = 𝑦 (except possibly at the
start), any valid path to (𝑛 −𝑚, 𝑚) must be built by extending a valid path to one of
these two predecessor points.

Therefore, the number of such paths satisfies the recursion

𝑑𝑛,𝑚 = 𝑑𝑛−1,𝑚 + 𝑑𝑛−1,𝑚−1.

This completes the proof. □

By part (ii) of Theorem 5.2.1, when all screening charges are taken to be 𝜎𝑖 = 𝑎 for
1 ≤ 𝑖 ≤ 𝑛, the null vector equations are satisfied provided the screening charges are
chosen from the set {−2𝑎, 2(𝑎+𝑏)}, and the total configuration satisfies the neutrality
condition (𝑁𝐶𝑏). That is, each screening charge 𝜎𝑘 for 𝑘 ∈ {𝑛 + 3, . . . , 𝑛 + 𝑚 + 2}
may be assigned either −2𝑎 or 2(𝑎 + 𝑏), independently, so long as the total sum of
charges is 2𝑏.

• (Radial ground solutions) In the upper half plane H, we assign charge 𝑎 to
𝑧1, 𝑧2, . . . , 𝑧𝑛, charge −2𝑎 to 𝜉1, . . . , 𝜉𝑚 and charge 𝜎𝑢 = 𝜎𝑢∗ = 𝑏 − (𝑛−2𝑚)𝑎

2 to
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marked points 𝑢 and 𝑢∗ to maintain neutrality condition (NC𝑏).

Φ𝜅 (𝑧1, . . . , 𝑧𝑛, 𝜉1, 𝜉2, . . . , 𝜉𝑚, 𝑢) =
∏
𝑖< 𝑗

(
𝑧𝑖 − 𝑧 𝑗

)𝑎2 ∏
𝑗<𝑘

(
𝑧 𝑗 − 𝜉𝑘

)−2𝑎2 ∏
𝑗<𝑘

(
𝜉 𝑗 − 𝜉𝑘

)4𝑎2

∏
𝑗

(𝑧𝑖 − 𝑢)𝑎(𝑏−
(𝑛−2𝑚)𝑎

2 )
∏
𝑗

(𝑧𝑖 − 𝑢∗)𝑎(𝑏−
(𝑛−2𝑚)𝑎

2 )

∏
𝑗

(𝜉 𝑗 − 𝑢)−2𝑎(𝑏− (𝑛−2𝑚)𝑎
2 )

∏
𝑗

(𝜉 𝑗 − 𝑢∗)−2𝑎(𝑏− (𝑛−2𝑚)𝑎
2 ) .

(5.2.6)

In the unit disk D, if we set 𝑢 = 0, then we have

Φ𝜅 (𝑧1, . . . , 𝑧𝑛, 𝜉1, 𝜉2, . . . , 𝜉𝑚) =
∏
𝑖< 𝑗

(
𝑧𝑖 − 𝑧 𝑗

)𝑎2 ∏
𝑗<𝑘

(
𝑧 𝑗 − 𝜉𝑘

)−2𝑎2 ∏
𝑗<𝑘

(
𝜉 𝑗 − 𝜉𝑘

)4𝑎2

∏
𝑗

𝑧
𝑎(𝑏− (𝑛−2𝑚)𝑎

2 )
𝑖

∏
𝑗

𝜉
−2𝑎(𝑏− (𝑛−2𝑚)𝑎

2 )
𝑗

(5.2.7)

(1) (−2𝑎) · 𝑎 = −4
𝜅
. 𝜉𝑖 = 𝑧 𝑗 is a singular point of the type

(
𝜉𝑖 − 𝑧 𝑗

)−4/𝜅;

(2) (−2𝑎) · (−2𝑎) = 8
𝜅
. 𝜉𝑖 = 𝜉 𝑗 is a singular point of of the type (𝜉𝑖 − 𝜉 𝑗 )

8
𝜅 ;

(3) (−2𝑎) · (𝑏 − (𝑛−2𝑚)𝑎
2 ) = 2(𝑛−2𝑚+2)

𝜅
. 𝜉 = 𝑢 and 𝜉 = 𝑢∗ are singular points

of the type (𝜉𝑖 − 𝑢)
2(𝑛−2𝑚+2)

𝜅 and (𝜉𝑖 − 𝑢∗)
2(𝑛−2𝑚+2)

𝜅 .

In this case, for 𝑚 ≤ 𝑛+2
2 and a (𝑛, 𝑚) radial link pattern 𝛼, we can choose

𝑝 non-intersecting Pochhammer contours C1, C2, . . . , C𝑚 surrounding pairs
of points (which correspond to links in a radial link pattern); see (5.2.2) to
integrate Φ𝜅. We obtain

J (𝑚,𝑛)
𝛼 (𝒛) :=

∮
C1

. . .

∮
C𝑚

Φ𝜅 (𝒛, 𝝃)𝑑𝜉𝑚 . . . 𝑑𝜉1. (5.2.8)

In particular, if 𝑚 = 0, we call Φ𝜅 the fermionic ground solution.

Note that the charges at 𝑢 and 𝑢∗ are given by 𝜎𝑢 = 𝜎𝑢∗ = 𝑏 − (𝑛−2𝑚)𝑎
2 , and

thus

𝜆(𝑏) (𝑢) = 𝜆(𝑏) (𝑢∗) =
(𝑛 − 2𝑚)2𝑎2

8
− 𝑏2

2
=

(𝑛 − 2𝑚)2

4𝜅
− (𝜅 − 4)2

16𝜅
.

The radial ground solution J (𝑚,𝑛)
𝛼 satisfies the null vector equations (5.2.4)

and Ward’s identities (5.2.5) with above 𝜆(𝑏) (𝑢) and 𝜆(𝑏) (𝑢∗).
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• (Radial excited solutions) In the upper half plane H, we assign charge 𝑎 to
𝑧1, 𝑧2, . . . , 𝑧𝑛, charge −2𝑎 to 𝜉1, . . . , 𝜉𝑚 and charge 2(𝑎 + 𝑏) to 𝜁1, . . . , 𝜁𝑞.
Then, we assign charge 𝜎𝑢 = 𝜎𝑢∗ = 𝑏 − (𝑛−2𝑚)𝑎+2𝑞(𝑎+𝑏)

2 to marked points 𝑢
and 𝑢∗ to maintain neutrality condition (NC𝑏).

Φ𝜅

(
𝑧1, . . . , 𝑧𝑛, 𝜉1, 𝜉2, . . . , 𝜉𝑚, 𝜁1, 𝜁2, . . . , 𝜁𝑞, 𝑢

)
=∏

𝑖< 𝑗

(
𝑧𝑖 − 𝑧 𝑗

)𝑎2 ∏
𝑗<𝑘

(
𝑧 𝑗 − 𝜉𝑘

)−2𝑎2 ∏
𝑗<𝑘

(
𝜉 𝑗 − 𝜉𝑘

)4𝑎2

∏
𝑗<𝑘

(
𝑧 𝑗 − 𝜁𝑘

)2𝑎(𝑎+𝑏) ∏
𝑗<𝑘

(
𝜁 𝑗 − 𝜁𝑘

)4(𝑎+𝑏)2

∏
𝑗

(𝑧𝑖 − 𝑢)𝑎𝜎𝑢
∏
𝑗

(𝑧𝑖 − 𝑢∗)𝑎𝜎𝑢∗∏
𝑗

(𝜉 𝑗 − 𝑢)−2𝑎𝜎𝑢
∏
𝑗

(𝜉 𝑗 − 𝑢∗)−2𝑎𝜎𝑢∗∏
𝑗

(𝜁 𝑗 − 𝑢)2(𝑎+𝑏)𝜎𝑢
∏
𝑗

(𝜁 𝑗 − 𝑢∗)2(𝑎+𝑏)𝜎𝑢∗ .

(5.2.9)

In the unit disk D, if we set 𝑢 = 0, then we have

Φ𝜅 (𝑧1, . . . , 𝑧𝑛, 𝜉1, 𝜉2, . . . , 𝜉𝑚) =
∏
𝑖< 𝑗

(
𝑧𝑖 − 𝑧 𝑗

)𝑎2 ∏
𝑗<𝑘

(
𝑧 𝑗 − 𝜉𝑘

)−2𝑎2 ∏
𝑗<𝑘

(
𝜉 𝑗 − 𝜉𝑘

)4𝑎2

∏
𝑗

𝑧
𝑎(𝑏− (𝑛−2𝑚)𝑎

2 )
𝑖

∏
𝑗

𝜉
−2𝑎(𝑏− (𝑛−2𝑚)𝑎

2 )
𝑗

(5.2.10)

(1) (−2𝑎) · 𝑎 = −4
𝜅
. 𝜉𝑖 = 𝑧 𝑗 is a singular point of the type

(
𝜉𝑖 − 𝑧 𝑗

)−4/𝜅;

(2) (−2𝑎) · (−2𝑎) = 8
𝜅
. 𝜉𝑖 = 𝜉 𝑗 is a singular point of of the type (𝜉𝑖 − 𝜉 𝑗 )

8
𝜅 ;

(3) (−2𝑎) · (𝑏 − (𝑛−2𝑚)𝑎
2 − 𝑞(𝑎 + 𝑏)) = 2(𝑛−2𝑚+2)

𝜅
+ 𝑞. 𝜉 = 𝑢 and 𝜉 = 𝑢∗ are

singular points of the type (𝜉𝑖 − 𝑢)
2(𝑛−2𝑚+2)

𝜅
+𝑞 and (𝜉𝑖 − 𝑢∗)

2(𝑛−2𝑚+2)
𝜅

+𝑞;

(4) 2(𝑎+𝑏) · (𝑏− (𝑛−2𝑚)𝑎
2 −𝑞(𝑎+𝑏)) = (1−𝑞)𝜅

4 + −𝑛+2𝑚−2
2 . 𝜉 = 𝑢 and 𝜉 = 𝑢∗ are

singular points of the type (𝜉𝑖−𝑢)
(1−𝑞)𝜅

4 + −𝑛+2𝑚−2
2 and (𝜉𝑖−𝑢∗)

(1−𝑞)𝜅
4 + −𝑛+2𝑚−2

2 .

For 𝑞 = 1, 𝜁1 = 𝑢 and 𝜁1 = 𝑢∗ are two singular points of degree −𝑛+2𝑚−2
2 . We

have two choices for screening contours to integrate 𝜁1

– 𝑛 odd, Pochhammer contour 𝒫(𝑢, 𝑢∗) surrounding 𝑢 and 𝑢∗, however,∫
𝒫(𝑢,𝑢∗)

Φ𝜅𝑑𝜁 = 0.
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– 𝑛 even, the circle 𝐶 (0, 𝜖) around 0 with radius 𝜖 , this gives the excited
solution

In this case, for𝑚 ≤ 𝑛+2
2 and a (𝑛, 𝑚) radial link pattern 𝛼, we can choose

𝑝 non-intersecting Pochhammer contours C1, C2, . . . , C𝑚 surrounding
pairs of points (which correspond to links in a radial link pattern) to
integrate Φ𝜅, we obtain

K (𝑚,𝑛)
𝛼 (𝒛) :=

∮
C1

. . .

∮
C𝑚

∮
𝐶 (0,𝜖)

Φ𝜅 (𝒛, 𝝃)𝑑𝜉𝑚 . . . 𝑑𝜉1𝑑𝜁1. (5.2.11)

In particular, if 𝑝 = 0, we call Φ𝜅 the fermionic excited solution.

Note that the charges at 𝑢 and 𝑢∗ are given by 𝜎𝑢 = 𝜎𝑢∗ = (2𝑚−𝑛−2)𝑎
2 .

𝜆(𝑏) (𝑢) = 𝜆(𝑏) (𝑢∗) =
(𝑛 − 2𝑚 + 𝜅

2 )
2

4𝜅
− (𝜅 − 4)2

16𝜅

The radial excited solution K (𝑚,𝑛)
𝛼 satisfies the null vector equations (5.2.4)

and Ward’s identities (5.2.5) with above 𝜆(𝑏) (𝑢) and 𝜆(𝑏) (𝑢∗).

For 𝑞 ≥ 2, since 𝑢 and 𝑢∗ are the only singular points for screening charges,
it is impossible to choose two non-intersecting contours for {𝜁1, 𝜁2, . . . , 𝜁𝑞}.

We refer to it as a radial excited state because introducing a screening charge
of −(𝑎 + 𝑏) leaves the conformal weight at 𝑧𝑖 unchanged, while producing a
Virasoro descendant rather than a new primary field.

• (Radial ground solutions with spin 𝜂) In the upper half plane H, we assign
charge 𝑎 to 𝑧1, 𝑧2, . . . , 𝑧𝑛, charge −2𝑎 to 𝜉1, . . . , 𝜉𝑚. Then, we assign charge
𝜎𝑢 = 𝑏 − (𝑛−2𝑚)𝑎

2 − 𝑖𝜂𝑎

2 , 𝜎𝑢∗ = 𝑏 − (𝑛−2𝑚)𝑎
2 + 𝑖𝜂𝑎

2 to marked points 𝑢 and 𝑢∗ to
maintain neutrality condition (NC𝑏).

Φ𝜅 (𝑧1, . . . , 𝑧𝑛, 𝜉1, 𝜉2, . . . , 𝜉𝑚, 𝑢) =∏
𝑖< 𝑗

(
𝑧𝑖 − 𝑧 𝑗

)𝑎2 ∏
𝑗<𝑘

(
𝑧 𝑗 − 𝜉𝑘

)−2𝑎2 ∏
𝑗<𝑘

(
𝜉 𝑗 − 𝜉𝑘

)4𝑎2

∏
𝑗

(𝑧𝑖 − 𝑢)𝑎(𝑏−
(𝑛−2𝑚)𝑎

2 − 𝑖𝜂𝑎

2 )
∏
𝑗

(𝑧𝑖 − 𝑢∗)𝑎(𝑏−
(𝑛−2𝑚)𝑎

2 + 𝑖𝜂𝑎

2 )

∏
𝑗

(𝜉 𝑗 − 𝑢)−2𝑎(𝑏− (𝑛−2𝑚)𝑎
2 − 𝑖𝜂𝑎

2 )
∏
𝑗

(𝜉 𝑗 − 𝑢∗)−2𝑎(𝑏− (𝑛−2𝑚)𝑎
2 + 𝑖𝜂𝑎

2 )

(5.2.12)

In the unit disk D, if we set 𝑢 = 0, then we have
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Φ𝜅 (𝑧1, . . . , 𝑧𝑛, 𝜉1, 𝜉2, . . . , 𝜉𝑚) =∏
𝑖< 𝑗

(
𝑧𝑖 − 𝑧 𝑗

)𝑎2 ∏
𝑗<𝑘

(
𝑧 𝑗 − 𝜉𝑘

)−2𝑎2 ∏
𝑗<𝑘

(
𝜉 𝑗 − 𝜉𝑘

)4𝑎2

∏
𝑗

𝑧
𝑎(𝑏− (𝑛−2𝑚)𝑎

2 − 𝑖𝜂𝑎

2 )
𝑖

∏
𝑗

𝜉
−2𝑎(𝑏− (𝑛−2𝑚)𝑎

2 + 𝑖𝜂𝑎

2 )
𝑗

(5.2.13)

(1) (−2𝑎) · 𝑎 = −4
𝜅
. 𝜉𝑖 = 𝑧 𝑗 is a singular point of the type

(
𝜉𝑖 − 𝑧 𝑗

)−4/𝜅.

(2) (−2𝑎) · (−2𝑎) = 8
𝜅
. 𝜉𝑖 = 𝜉 𝑗 is a singular point of of the type (𝜉𝑖 − 𝜉 𝑗 )

8
𝜅

(3) (−2𝑎) · (𝑏 − (𝑛−2𝑚)𝑎
2 ) = 2(𝑛−2𝑚+2)

𝜅
. 𝜉 = 𝑢 and 𝜉 = 𝑢∗ are singular points

of the type (𝜉𝑖 − 𝑢)
2(𝑛−2𝑚+2)

𝜅 and (𝜉𝑖 − 𝑢∗)
2(𝑛−2𝑚+2)

𝜅

In this case, for 𝑝 ≤ 𝑛+2
2 and a (𝑛, 𝑝) radial link pattern 𝛼, we can choose

𝑝 non-intersecting Pochhammer contours C1, C2, . . . , C𝑝 surrounding pairs
of points (which correspond to links in a radial link pattern), see (5.2.2) to
integrate Φ𝜅, we obtain

J (𝑚,𝑛,𝜂)
𝛼 (𝒛) :=

∮
C1

. . .

∮
C𝑚

Φ𝜅 (𝒛, 𝝃)𝑑𝜉𝑚 . . . 𝑑𝜉1. (5.2.14)

Note that the charges at 𝑢 and 𝑢∗ are given by 𝜎𝑢 = 𝑏 − (𝑛−2𝑚)𝑎
2 − 𝑖𝜂𝑎

2 ,
𝜎𝑢∗ = 𝑏 − (𝑛−2𝑚)𝑎

2 + 𝑖𝜂𝑎

2 .

𝜆(𝑏) (𝑢) =
(𝑛 − 2𝑚 + 𝑖𝜂)2𝑎2

8
− 𝑏2

2
=

(𝑛 − 2𝑚 + 𝑖𝜂)2

4𝜅
− (𝜅 − 4)2

16𝜅

𝜆(𝑏) (𝑢∗) =
(𝑛 − 2𝑚 − 𝑖𝜂)2𝑎2

8
− 𝑏2

2
=

(𝑛 − 2𝑚 − 𝑖𝜂)2

4𝜅
− (𝜅 − 4)2

16𝜅

The radial ground solution with spin 𝜂, J (𝑚,𝑛,𝜂)
𝛼 satisfies the null vector

equations (5.2.4) and Ward’s identities (5.2.5) with above 𝜆(𝑏) (𝑢) and 𝜆(𝑏) (𝑢∗)

As shown in theorem (5.2.1), if we attach charge 𝑎 for 𝑧1, . . . , 𝑧𝑛−1 and 2𝑏 − 𝑎
for 𝑧𝑐, where 𝑛 = 2𝑘 . This corresponds to the charge distribution for multiple
chordal SLE(𝜅) as discussed in S. Flores and Kleban (2015b). In this case, we can
only assign charge −2𝑎 to the 𝑘 − 1 screening charges and assign no spin at 𝑢, 𝑢∗;
otherwise, the null vector equation at 𝑧𝑐 will generally not be satisfied.
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• (Chordal solutions) In the upper half planeH, we assign charge 𝑎 to 𝑧1, 𝑧2, . . . , 𝑧𝑛−1

and charge 2𝑏 − 𝑎 to 𝑧𝑐, charge −2𝑎 to 𝜉1, . . . , 𝜉𝑚, where 𝑛 = 2𝑘 , 𝑚 = 𝑘 − 1,
then assign the charge 𝜎𝑢 = 𝜎𝑢∗ = 0.

Φ𝜅 (𝑧1, . . . , 𝑧𝑛−1, 𝑧𝑐, 𝜉1, . . . , 𝜉𝑚, 𝑢) =
∏
𝑖< 𝑗

(
𝑧𝑖 − 𝑧 𝑗

)𝑎2 ∏
𝑗<𝑘

(
𝑧 𝑗 − 𝜉𝑘

)−2𝑎2 ∏
𝑗<𝑘

(
𝜉 𝑗 − 𝜉𝑘

)4𝑎2

∏
𝑖

(𝑧𝑖 − 𝑧𝑐)𝑎(2𝑏−𝑎)
∏
𝑗

(𝜉 𝑗 − 𝑧𝑐)−2𝑎(2𝑏−𝑎)

(5.2.15)

– (−2𝑎) · 𝑎 = −4
𝜅
. 𝜉𝑖 = 𝑧 𝑗 is a singular point of the type

(
𝜉𝑖 − 𝑧 𝑗

)−4/𝜅;

– (−2𝑎) · (2𝑏 − 𝑎) = 12
𝜅
− 2. 𝜉𝑖 = 𝑧𝑐 is a singular point of the type

(𝜉𝑖 − 𝑧𝑐)
12
𝜅
−2;

– (−2𝑎) · (−2𝑎) = 8
𝜅
. 𝜉𝑖 = 𝜉 𝑗 is a singular point of the type (𝜉𝑖 − 𝜉 𝑗 )

8
𝜅 .

In this case, for a (2𝑘, 𝑘) chordal link pattern, we choose 𝑚 = 𝑘 − 1
non-intersecting Pochhammer contours C1, C2, . . . , C𝑘−1 surrounding pairs
of points except 𝑧𝑐 (which correspond to links in a chordal link pattern not
connected to 𝑧𝑐) see S. Flores and Kleban (2015b) for detailed explanation.
We obtain:

L𝑛
𝛼 (𝒛) :=

∮
C1

. . .

∮
C𝑘−1

Φ𝜅 (𝒛, 𝝃)𝑑𝜉𝑘−1 . . . 𝑑𝜉1. (5.2.16)

Note that the charges at 𝑢 and 𝑢∗ are given by 𝜎𝑢 = 𝜎𝑢∗ = 0

𝜆(𝑏) (𝑢) = 𝜆(𝑏) (𝑢∗) = 0.

The chordal solution J (𝑚,𝑛)
𝛼 satisfies the null vector equations (5.2.4) and Ward’s

identities (5.2.5) with above 𝜆(𝑏) (𝑢) and 𝜆(𝑏) (𝑢∗).

We can also construct the Coulomb gas integral solutions in angular coordinates.
Consider the following Coulomb gas correlation in the angular coordinate

Φ(𝑧1, 𝑧2, . . . , 𝑧𝑛+𝑚) =
∏

1≤ 𝑗<𝑘≤𝑛+𝑚

(
sin

𝑧 𝑗 − 𝑧𝑘
2

)𝜎𝑗𝜎𝑘

.

Then, similar computations show the following.
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Theorem 5.2.4. If we choose 𝜎𝑗 = 𝑎 =

√︃
2
𝜅
, 𝜆 𝑗 =

𝑎2

2 − 𝑎𝑏 = 6−𝜅
2𝜅 , 1 ≤ 𝑗 ≤ 𝑛

then we have


𝜅

2
𝜕2
𝑗 +

∑︁
𝑘≠ 𝑗

©«cot
( 𝑧𝑘 − 𝑧 𝑗

2

)
𝜕𝑘 −

(6 − 𝜅)/2𝜅

2 sin2
(
𝑧𝑘−𝑧 𝑗

2

) ª®®¬
 Φ (𝑧1, 𝑧2, . . . , 𝑧𝑛+𝑚+2)

=

𝑛+𝑚∑︁
𝑘=𝑛+1

𝜕𝑘

(
cot

( 𝑧𝑘 − 𝑧 𝑗
2

)
Φ (𝑧1, 𝑧2, . . . , 𝑧𝑛+𝑚+2)

)
−

[
1

2𝜅

(
𝑛 − 2𝑝 + 𝜅

2
𝑞

)2
− 1

2𝜅

]
Φ (𝑧1, 𝑧2, . . . , 𝑧𝑛+𝑚+2)

(5.2.17)

for all 𝑗 ∈ {1, 2, . . . , 𝑛}. The number of screening charges 𝜎𝑘 = 2𝑎 is given by 𝑝,
and the number of screening charges 𝜎𝑘 = 2(𝑎 + 𝑏) is given by 𝑞, with 𝑚 = 𝑝 + 𝑞.

Now, we Coulomb gas integral solutions based on the theorem (5.2.4).

• Radial ground solutions:

Φ𝜅 (𝜽 , 𝜻) =
∏

1≤𝑖< 𝑗≤𝑛

(
sin

𝜃𝑖 − 𝜃 𝑗
2

)𝑎2 ∏
1≤𝑖< 𝑗≤𝑚

(
sin

𝜁𝑖 − 𝜁 𝑗
2

)4𝑎2 𝑛∏
𝑖=1

𝑚∏
𝑗=1

(
sin

𝜃𝑖 − 𝜁 𝑗
2

)−2𝑎2

.

(5.2.18)

In this case, for 𝑚 ≤ 𝑛+2
2 and a (𝑛, 𝑚) radial link pattern 𝛼, we can choose

𝑝 non-intersecting Pochhammer contours C1, C2, . . . , C𝑚 surrounding pairs
of points (which correspond to links in a radial link pattern); see (5.2.2) to
integrate Φ𝜅. We obtain

J (𝑚,𝑛)
𝛼 (𝜽) :=

∮
C1

. . .

∮
C𝑚

Φ𝜅 (𝜽 , 𝜻)𝑑𝜁𝑚 . . . 𝑑𝜁1. (5.2.19)

By integration formula (5.2.4), J (𝑚,𝑛)
𝛼 (𝜽) satisfies the null vector equations

(1.2.3) with constant

ℎ =
(6 − 𝜅) (𝜅 − 2)

8𝜅
− 𝜆𝑏 (0) − 𝜆𝑏 (0) =

1 − (𝑛 − 2𝑚)2

2𝜅
and the conformal dimension at 0 is given by

𝜆𝑏 (0) =
(𝑛 − 2𝑚)2𝑎2

8
− 𝑏2

2
=

(𝑛 − 2𝑚)2

4𝜅
− (𝜅 − 4)2

16𝜅
.

The rotation constant 𝜔 = 0
𝑛∑︁
𝑗=1

𝜕𝑗J (𝑚,𝑛)
𝛼 (𝜽) = 0.
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• Radial excited solutions:

Φ𝜅 (𝜽 , 𝜻) =
∏

1≤𝑖< 𝑗≤𝑛

(
sin

𝜃𝑖 − 𝜃 𝑗
2

)𝑎2 ∏
1≤𝑖< 𝑗≤𝑚

(
sin

𝜁𝑖 − 𝜁 𝑗
2

)4𝑎2 𝑛∏
𝑖=1

𝑚∏
𝑗=1

(
sin

𝜃𝑖 − 𝜁 𝑗
2

)−2𝑎2

𝑛∏
𝑖=1

(
sin

𝜃𝑖 − 𝜔
2

) (2𝑚−𝑛−2)
2

.

(5.2.20)

In this case, for 𝑚 ≤ 𝑛+2
2 and a (𝑛, 𝑚) radial link pattern 𝛼, we can choose

𝑝 non-intersecting Pochhammer contours C1, C2, . . . , C𝑚 surrounding pairs
of points (which correspond to links in a radial link pattern) to integrate
𝜁1, 𝜁2, . . . , 𝜁𝑚 and a vertical line from 𝐴 to 𝐴 + 2𝜋𝑖 to integrate 𝜔 (which
corresponds to a circle surrounds the origin), we obtain

K (𝑚,𝑛)
𝛼 (𝜽) :=

∮
C1

. . .

∮
C𝑚

∫ 𝐴+2𝜋𝑖

𝐴

Φ𝜅 (𝜽 , 𝜻)𝑑𝜁𝑚 . . . 𝑑𝜁1𝑑𝜔. (5.2.21)

By integration formula (5.2.4), J (𝑚,𝑛)
𝛼 (𝜽) satisfies the null vector equations

(1.2.3) with constant

ℎ =
(6 − 𝜅) (𝜅 − 2)

8𝜅
− 𝜆𝑏 (0) − 𝜆𝑏 (0) =

1 − (𝑛 − 2𝑚 + 𝜅
2 )

2

2𝜅
and conformal dimension at 0 is given by

𝜆(𝑏) (0) =
(𝑛 − 2𝑚)2

4𝜅
− (𝜅 − 4)2

16𝜅
.

The rotation constant 𝜔 = 0,
𝑛∑︁
𝑗=1

𝜕𝑗K (𝑚,𝑛)
𝛼 (𝜽) = 0.

• Radial ground solutions with spin 𝜂:

Φ𝜅 (𝜽 , 𝜻) =
∏

1≤𝑖< 𝑗≤𝑛
(sin

𝜃𝑖 − 𝜃 𝑗
2

)𝑎2 ∏
1≤𝑖< 𝑗≤𝑚

(sin
𝜁𝑖 − 𝜁 𝑗

2
)4𝑎2

𝑛∏
𝑖=1

𝑚∏
𝑗=1

(
sin

𝜃𝑖 − 𝜁 𝑗
2

)−2𝑎2

𝑛∏
𝑖=1

𝑒
𝜂𝑎2

2 𝜃𝑖

𝑚∏
𝑗=1

𝑒−𝜂𝑎
2𝜁 𝑗 .

(5.2.22)

In this case, for 𝑝 ≤ 𝑛+2
2 and a given (𝑛, 𝑝) radial link pattern 𝛼, we can choose

𝑝 non-intersecting Pochhammer contours C1, C2, . . . , C𝑝, each surrounding a
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pair of points corresponding to a link in the radial link pattern (see (5.2.2)).
Integrating Φ𝜅 along these contours, we obtain

J (𝑚,𝑛,𝜂)
𝛼 (𝜽) :=

∮
C1

. . .

∮
C𝑚

Φ𝜅 (𝜽 , 𝜻) 𝑑𝜁𝑚 . . . 𝑑𝜁1. (5.2.23)

By integration formula (5.2.4), J (𝑚,𝑛,𝜂)
𝛼 (𝜽) satisfies the null vector equations

(1.2.3) with constant

ℎ =
(6 − 𝜅) (𝜅 − 2)

8𝜅
− 𝜆𝑏 (0) − 𝜆𝑏 (0) = − (𝑛 − 2𝑚)2

2𝜅
+ 1 + 𝜂2

2𝜅

and conformal dimension at 0 is given by

𝜆(𝑏) (0) =
(𝑛 − 2𝑚 + 𝑖𝜂)2

4𝜅
− (𝜅 − 4)2

16𝜅
.

The rotation constant 𝜔 =
𝜂(𝑛−2𝑚)

𝜅
,

𝑛∑︁
𝑗=1

𝜕𝑗J (𝑚,𝑛,𝜂)
𝛼 (𝜽) = 𝜂(𝑛 − 2𝑚)

𝜅
J (𝑚,𝑛,𝜂)
𝛼 (𝜽).

• Chordal solutions, for 𝑛 = 2𝑘 and 𝑚 = 𝑘 − 1:

Φ𝜅 (𝜃1, . . . , 𝜃𝑛−1, 𝜃𝑐, 𝜁1, . . . , 𝜁𝑚) =
∏

1≤𝑖< 𝑗≤𝑛

(
sin

𝜃𝑖 − 𝜃 𝑗
2

)𝑎2 ∏
1≤𝑖< 𝑗≤𝑚

(
sin

𝜁𝑖 − 𝜁 𝑗
2

)4𝑎2

𝑛∏
𝑖=1

𝑚∏
𝑗=1

(
sin

𝜃𝑖 − 𝜁 𝑗
2

)−2𝑎2 𝑛−1∏
𝑖=1

(
sin

𝜃𝑖 − 𝜔
2

)𝑎(2𝑏−𝑎)
𝑚∏
𝑗=1

(
sin

𝜃𝑖 − 𝜔
2

)−2𝑎(2𝑏−𝑎)
.

(5.2.24)
In this case, for a (2𝑘, 𝑘) chordal link pattern, we choose 𝑚 = 𝑘 − 1
non-intersecting Pochhammer contours C1, C2, . . . , C𝑘−1 surrounding pairs
of points except 𝑧𝑐 (which correspond to links in a chordal link pattern not
connected to 𝑧𝑐); see S. Flores and Kleban (2015b) for detailed explanation.
We obtain

L𝑛
𝛼 (𝜽) :=

∮
C1

. . .

∮
C𝑘−1

Φ𝜅 (𝜽 , 𝜻)𝑑𝜁𝑘−1 . . . 𝑑𝜁1. (5.2.25)



82

By rewriting the chordal null vector equations in angular coordinate, J𝛼 (𝜽)
satisfies the null vector equations (1.2.3) with constant

ℎ =
(6 − 𝜅) (𝜅 − 2)

8𝜅
− 𝜆𝑏 (0) − 𝜆𝑏 (0) =

(6 − 𝜅) (𝜅 − 2)
8𝜅

and conformal dimension at 0 is given by

𝜆𝑏 (0) = 0.

The rotation constant 𝜔 = 0,
𝑛∑︁
𝑗=1

𝜕𝑗L𝑛
𝛼 (𝜽) = 0.

Remark 5.2.5. In Y. Wang and Wu (2024), the authors define the following Chordal
SLE weighted by the conformal radius. The corresponding partition function is
given by

Z𝛼 (𝜃1, 𝜃2) = (sin(𝜃/2)) 𝜅−6
𝜅 E𝜃 [CR(D\𝛾)−𝛼] ,

where 𝜃 = 𝜃1 − 𝜃2, CR(D \ 𝛾) denotes the conformal radius of the domain D \ 𝛾 as
seen from the origin, and E𝜃 denotes the expectation with respect to the law of 𝛾.

It is shown in Schramm, Sheffield, and D. B. Wilson (2009) and Y. Wang and
Wu (2024) that this partition function satisfies the null vector equation (3.2.1) with
constant

ℎ =
(6 − 𝜅) (𝜅 − 2)

8𝜅
− 𝛼

and is rotation invariant.

For radial ground solution with spin 𝜂, if 𝑛 = 2𝑚 (𝑛 is the number of growth points
and 𝑚 the number of screening charges) then in fact J (𝑚,𝑛,𝜂) is rotation invariant
and independent of the value of 𝜂 :

𝑛∑︁
𝑗=1

𝜕𝑗J (𝑚,𝑛,𝜂) (𝜽) = 𝜂(𝑛 − 2𝑚)
𝜅

J (𝑚,𝑛,𝜂) (𝜽) = 0.

This function also satisfies the null vector equation (3.2.1) with conformal dimen-
sion:

𝜆𝑏 (0) =
(𝑛 − 2𝑚 + 𝑖𝜂)2

4𝜅
− (𝜅 − 4)2

16𝜅
,

ℎ =
(6 − 𝜅) (𝜅 − 2)

8𝜅
− 𝜆𝑏 (0) − 𝜆𝑏 (0) = − (𝑛 − 2𝑚)2

2𝜅
+ 1 + 𝜂2

2𝜅
=

1 + 𝜂2

2𝜅
.
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In the special case where 𝑛 = 2 and 𝑚 = 1, there are two distinct topological
link patterns that correspond to two screening solutions denoted by Z𝜂

1 (𝜃) and
Z𝜂

2 (𝜃) = Z𝜂

1 (2𝜋 − 𝜃). Then Z𝜂

1 + Z𝜂

2 is rotation invariant and interchangeable.

We match the constant by setting

(6 − 𝜅) (𝜅 − 2)
8𝜅

− 𝛼 =
1

2𝜅
+ 𝜂

2

2𝜅
.

The uniqueness lemma (lemma A1 in Y. Wang and Wu (2024)) implies that there
exists a constant 𝑐:

Z𝜂

1 + Z𝜂

2 = 𝑐Z𝛼 .
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C h a p t e r 6

MULTIPLE RADIAL SLE(0) SYSTEM

6.1 Classical Limit of the Multiple Radial SLE(𝜅) System
In this section, we construct multiple radial SLE(0) systems as classical limits of
the multiple radial SLE(𝜅) systems in the regime 𝜅 → 0. Our construction is
self-contained and does not rely on the rigorous resolution of the limiting proce-
dure; rather, it is motivated by variational principles arising from the Coulomb gas
formalism and the method of steepest descent.

A key object in this setting is the stationary relation, which emerges naturally from
the asymptotic normalization of partition functions. For a multiple radial SLE(𝜅)
system with 𝑛 marked boundary points 𝑧 𝑗 = 𝑒𝑖𝜃 𝑗 on 𝜕D, the drift term 𝑏 𝑗 (𝜽) of the
driving function satisfies

𝑏 𝑗 (𝜽) = 𝜅
𝜕

𝜕𝜃 𝑗
logZ(𝜽),

where Z(𝜽) is a positive solution to the system of null vector equations (see equa-
tion (1.2.3)).

To obtain a meaningful limit as 𝜅 → 0, one must suitably renormalize the partition
function. For a well-chosen Z(𝜽), we expect the limit Z(𝜽)𝜅 to exist and be finite
as 𝜅 → 0.

Recall that the Coulomb gas integral solutions associated with a link pattern 𝛼 are
given by

J𝛼 (𝜽) =
∮
C1

· · ·
∮
C𝑚

Φ𝜅 (𝜽 , 𝜻) 𝑑𝜁𝑚 · · · 𝑑𝜁1, (6.1.1)

where Φ𝜅 is the SLE(𝜅) master function (see definition (5.2.18)), and the contours
C1, . . . , C𝑚 are non-intersecting Pochhammer contours. The partition functionZ(𝜽)
is a linear combination of such integrals.

Applying the method of steepest descent heuristically, we consider the asymptotic
behavior:

lim
𝜅→0

Z(𝜽)𝜅 = lim
𝜅→0

(∮
C1

· · ·
∮
C𝑚

Φ(𝜽 , 𝜻) 1
𝜅 𝑑𝜻

) 𝜅
, (6.1.2)

where Φ(𝜽 , 𝜻) is the SLE(0) master function (see definition (1.3.9)). In this limit,
the integral is asymptotically dominated by the contribution from critical points of
Φ(𝜽 , 𝜻), i.e., the points where the gradient with respect to 𝜻 vanishes.
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This leads to the following conjecture, which provides the foundation for the deter-
ministic structure of the SLE(0) system:

Conjecture 6.1.1. Let 𝛼 be a link pattern andZ𝛼 (𝜽) the corresponding pure partition
function. Then, in the classical limit 𝜅 → 0, the quantity Z𝛼 (𝜽)𝜅 converges to the
evaluation of the master function at a critical point:

lim
𝜅→0

Z𝛼 (𝜽)𝜅 = Φ(𝜽 , 𝜻), (6.1.3)

where 𝜻 is a critical point of the SLE(0) master function Φ(𝜽 , 𝜻).

6.2 Stationary Relations Imply Commutation Relations in the 𝜅 = 0 Case
Our construction of the multiple radial SLE(0) system treats the positions of the
screening charges 𝝃 and the marked boundary points 𝒛 as part of a coupled dynamical
system. In this formulation, the stationary relations are imposed as constraints on
the initial configuration of the screening charges.

In this section, we show that the stationary relations determine a partition func-
tion Z(𝜽), depending only on the boundary data 𝜽 , and that the associated drift
vector field 𝑈 𝑗 = 𝜕𝑗 logZ satisfies the 𝜅 = 0 null vector equations as well as the
conformal Ward identities. Consequently, the induced evolution of 𝜽 defines a dy-
namical system compatible with the structure of multiple SLE(0) as specified in
Definition (1.3.1).

Theorem 6.2.1. Let 𝒛 = {𝑧1, . . . , 𝑧𝑛} ⊂ 𝜕D be distinct boundary points, and let
𝝃 = {𝜉1, . . . , 𝜉𝑚} ⊂ D denote the positions of screening charges. In angular
coordinates, write 𝑧 𝑗 = 𝑒𝑖𝜃 𝑗 and 𝜉𝑘 = 𝑒𝑖𝜁𝑘 for 𝑗 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑚. Assume
that 𝜻 = 𝜻 (𝜽) is a smooth solution of the stationary relations.

Define the partition function

Z(𝜽) :=
∏

1≤ 𝑗<𝑘≤𝑛
sin2

(
𝜃 𝑗 − 𝜃𝑘

2

) ∏
1≤𝑠<𝑡≤𝑚

sin8
(
𝜁𝑠 (𝜽) − 𝜁𝑡 (𝜽)

2

) 𝑛∏
𝑗=1

𝑚∏
𝑙=1

sin−4
(
𝜃 𝑗 − 𝜁𝑙 (𝜽)

2

)
.

Then Z(𝜽) is smooth, strictly positive, and invariant under global rotation.

Define the drift vector field U = logZ(𝜽), and let

𝑈 𝑗 :=
𝜕U
𝜕𝜃 𝑗

=
∑︁
𝑘≠ 𝑗

cot
(
𝜃 𝑗 − 𝜃𝑘

2

)
− 2

𝑚∑︁
𝑙=1

cot
(
𝜃 𝑗 − 𝜁𝑙 (𝜽)

2

)
.
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Then each 𝑈 𝑗 is real-valued and satisfies the following second-order differential
identity:

1
2
𝑈2
𝑗 +

∑︁
𝑘≠ 𝑗

cot
(
𝜃𝑘 − 𝜃 𝑗

2

)
𝑈𝑘 −

∑︁
𝑘≠ 𝑗

3

2 sin2
(
𝜃 𝑗−𝜃𝑘

2

) = − (2𝑚 − 𝑛)2

2
+ 1

2
. (6.2.1)

Theorem 6.2.2 (Ward Identity). The drift components satisfy the constraint

𝑛∑︁
𝑗=1
𝑈 𝑗 = 0.

Proof of Theorem 6.2.1. The function Z(𝜽) is manifestly positive for distinct real
𝜃 𝑗 , and the 𝜁𝑘 (𝜽) occurring in complex conjugate pairs preserve real-valuedness of
the logarithmic derivative.

Smoothness follows from the fact that 𝜻 (𝜽) solves the stationary relations, and hence
depends smoothly on 𝜽 by the implicit function theorem. Direct computation of
𝜕𝑗 logZ yields:

𝜕𝑗 logZ =
∑︁
𝑘≠ 𝑗

cot
(
𝜃 𝑗 − 𝜃𝑘

2

)
+ 2

𝑚∑︁
𝑖=1

cot
(
𝜁𝑖 − 𝜃 𝑗

2

)
+ 2

𝑛∑︁
𝑘=1

𝑚∑︁
𝑙=1

cot
(
𝜃𝑘 − 𝜁𝑙

2

)
𝜕𝜁𝑙

𝜕𝜃 𝑗
+ 4

∑︁
1≤𝑙<𝑠≤𝑚

cot
(
𝜁𝑙 − 𝜁𝑠

2

) (
𝜕𝜁𝑙

𝜕𝜃 𝑗
− 𝜕𝜁𝑠

𝜕𝜃 𝑗

)
.

Applying the stationary relation

𝑛∑︁
𝑘=1

cot
(
𝜃𝑘 − 𝜁𝑙

2

)
= 2

∑︁
𝑠≠𝑙

cot
(
𝜁𝑙 − 𝜁𝑠

2

)
,

one sees that the last two terms cancel, yielding 𝜕𝑗 logZ = 𝑈 𝑗 as claimed.

To derive the null vector identity (6.2.1), define

𝑢 𝑗 := 𝑈 𝑗 −
∑︁
𝑘≠ 𝑗

cot
(
𝜃 𝑗 − 𝜃𝑘

2

)
= −2

𝑚∑︁
𝑙=1

cot
(
𝜃 𝑗 − 𝜁𝑙

2

)
.

A lengthy but straightforward computation (using trigonometric identities and the
stationary relation again) shows that:

1
2
𝑈2
𝑗 +

∑︁
𝑘≠ 𝑗

cot
(
𝜃𝑘 − 𝜃 𝑗

2

)
𝑈𝑘 −

∑︁
𝑘≠ 𝑗

3

2 sin2
(
𝜃 𝑗−𝜃𝑘

2

) = − (2𝑚 − 𝑛)2

2
+ 1

2
.

□
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Proof of Theorem 6.2.2. Summing over 𝑗 yields:

𝑛∑︁
𝑗=1
𝑈 𝑗 =

∑︁
𝑗≠𝑘

cot
(
𝜃 𝑗 − 𝜃𝑘

2

)
− 2

𝑛∑︁
𝑗=1

𝑚∑︁
𝑙=1

cot
(
𝜃 𝑗 − 𝜁𝑙

2

)
.

The first term vanishes by antisymmetry. For the second term, switching the order
of summation and using the stationary relation again, we find:

𝑛∑︁
𝑗=1
𝑈 𝑗 = −4

∑︁
1≤𝑘<𝑙≤𝑚

cot
(
𝜁𝑘 − 𝜁𝑙

2

)
= 0,

since each term appears with opposite sign in the pair (𝑘, 𝑙) and (𝑙, 𝑘). □

6.3 Residue-free quadratic differentials with prescribed zeros
The locus of real rational functions characterizes the traces of multiple chordal

SLE(0) systems. However, in the radial case, rational functions alone are insufficient
to fully describe these traces.

To address this limitation, we introduce an equivalence class of residue-free quadratic
differentials (Definition 1.3.6), denoted by QD(𝒛). This extended class is designed
to capture the behavior near the origin.

Definition 1 (Restatement of definition (1.3.6)). Let 𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} be distinct
points on the unit circle. The class of quadratic differentials, denoted by QD(𝒛).

1. symmetric under the involution 𝑧∗ = 1
𝑧
, meaning

𝑄(𝑧∗) (𝑑𝑧∗)2 = 𝑄(𝑧)𝑑𝑧2.

2. distinct zeros at {𝑧1, 𝑧2, . . . , 𝑧𝑛}, each of order 2.

3. distinct finite poles at {𝜉1, . . . , 𝜉𝑚}, each of order 4, and the residues vanish
(Residue-free condition):

Res𝜉 𝑗 (
√︁
𝑄(𝑧)𝑑𝑧) = 0, for 𝑗 = 1, . . . , 𝑚.

4. poles of order 𝑛+ 2− 2𝑚 at the marked points 0 and ∞. This ensures the total
difference between the number of zeros and poles is −4.

Here, the poles {𝜉1, . . . , 𝜉𝑚} are finite, meaning they do not coincide with 0 or ∞.
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A key analytical condition is that the associated differential
√︁
𝑄(𝑧) 𝑑𝑧 is residue-free

at each pole, which turns out to be equivalent to the stationary relations introduced
in Section 6.2.

Theorem 6.3.1 (Stationary Relations and Residue-Free Condition). The following
statements are equivalent:

1. The points 𝝃 are symmetric under the involution 𝑧∗ = 1
𝑧
, and the zeros 𝒛 on

the unit circle satisfy the stationary relations.

2. There exists a quadratic differential 𝑄(𝑧)𝑑𝑧2 ∈ QD(𝒛) with zeros at 𝒛 and
poles at 𝝃.

Proof of Theorem 6.3.1. We prove the equivalence by analyzing the structure of the
associated quadratic differential. The result follows from the following structural
lemma.

Lemma 6.3.2. Let 𝑛 ≥ 1 and 𝒛 = {𝑧1, . . . , 𝑧𝑛} ⊂ 𝜕D be distinct points on the unit
circle. Then the following statements hold:

(i) Up to a real constant multiple, any 𝑄(𝑧) 𝑑𝑧2 ∈ QD(𝒛) admits the factorized
form

𝑄(𝑧) =
∏𝑚
𝑘=1 𝜉

2
𝑘∏𝑛

𝑗=1 𝑧 𝑗
· 𝑧2𝑚−𝑛−2 ·

∏𝑛
𝑗=1(𝑧 − 𝑧 𝑗 )2∏𝑚
𝑘=1(𝑧 − 𝜉𝑘 )4 ,

where 𝝃 = {𝜉1, . . . , 𝜉𝑚} consists of distinct points in C \ {0,∞} symmetric
under inversion 𝑧 ↦→ 1/𝑧.

(ii) The square root
√︁
𝑄(𝑧) takes the form√︁
𝑄(𝑧) =

∏𝑚
𝑘=1 𝜉𝑘√︃∏𝑛
𝑗=1 𝑧 𝑗

· 𝑧𝑚− 𝑛
2 −1 ·

∏𝑛
𝑗=1(𝑧 − 𝑧 𝑗 )∏𝑚
𝑘=1(𝑧 − 𝜉𝑘 )2 .

If the poles 𝜉𝑘 are pairwise distinct, then
√︁
𝑄(𝑧) has a Laurent expansion

near each 𝜉𝑘 :√︁
𝑄(𝑧) = 𝐴𝑘

(𝑧 − 𝜉𝑘 )2 + 𝐵𝑘

𝑧 − 𝜉𝑘
+ (holomorphic terms),
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where

𝐴𝑘 = 𝜉
𝑚− 𝑛

2 −1
𝑘

·
∏𝑛

𝑗=1(𝜉𝑘 − 𝑧 𝑗 )∏
𝑙≠𝑘 (𝜉𝑘 − 𝜉𝑙)2 , (6.3.1)

𝐵𝑘 = 𝐴𝑘 · ©«
𝑛∑︁
𝑗=1

1
𝜉𝑘 − 𝑧 𝑗

− 2
∑︁
𝑙≠𝑘

1
𝜉𝑘 − 𝜉𝑙

−
𝑛
2 − 𝑚 + 1

𝜉𝑘

ª®¬ . (6.3.2)

(iii) The condition that
√︁
𝑄(𝑧) 𝑑𝑧 has vanishing residue at each pole 𝜉𝑘 is equiva-

lent to 𝐵𝑘 = 0 for all 𝑘 = 1, . . . , 𝑚, which in turn is equivalent to the stationary
relations.

Proof of Lemma 6.3.2. (i) The global structure of 𝑄(𝑧) 𝑑𝑧2 is determined by its
zeros and poles: - double zeros at 𝒛, - poles of order four at 𝝃, - and behavior at
𝑧 = 0 and 𝑧 = ∞ ensuring that the total degree of the meromorphic differential
on Ĉ is −4.

Thus, we may write:

𝑄(𝑧) = 𝜆𝑧𝑏 ·
∏𝑛

𝑗=1(𝑧 − 𝑧 𝑗 )2∏𝑚
𝑘=1(𝑧 − 𝜉𝑘 )4 .

The involution symmetry of 𝑄 under 𝑧 ↦→ 1/𝑧 implies

𝑄(𝑧) = 𝑄
(
1
𝑧

)
· 𝑧−4.

Computing both sides, we find

𝑄(𝑧) = 𝜆𝑧4𝑚−2𝑛−𝑏−4 ·
∏𝑛

𝑗=1(1 − 𝑧 𝑗 𝑧)2∏𝑚
𝑘=1(1 − 𝜉𝑘 𝑧)4

.

Matching powers of 𝑧 gives 𝑏 = 2𝑚 − 𝑛 − 2. Comparing constants yields

𝜆 = (real constant) · (−1)2𝑚−𝑛−1 ·
∏𝑚
𝑘=1 𝜉

2
𝑘∏𝑛

𝑗=1 𝑧 𝑗
.

(ii) From the explicit form of 𝑄(𝑧), the square root is:√︁
𝑄(𝑧) = 𝐶 · 𝑧𝑚− 𝑛

2 −1 ·
∏𝑛

𝑗=1(𝑧 − 𝑧 𝑗 )∏𝑚
𝑘=1(𝑧 − 𝜉𝑘 )2 ,

with constant 𝐶 =
∏
𝜉𝑘/

√︁∏
𝑧 𝑗 .
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Near each pole 𝜉𝑘 , the function
√︁
𝑄(𝑧) has a second-order pole and therefore

expands as: √︁
𝑄(𝑧) = 𝐴𝑘

(𝑧 − 𝜉𝑘 )2 + 𝐵𝑘

𝑧 − 𝜉𝑘
+ 𝑔(𝑧),

where 𝑔 is holomorphic near 𝜉𝑘 . This expansion implies:√︁
𝑄(𝑧) (𝑧 − 𝜉𝑘 )2 = 𝐴𝑘 + 𝐵𝑘 (𝑧 − 𝜉𝑘 ) + 𝑔(𝑧) (𝑧 − 𝜉𝑘 )2.

Differentiating both sides and evaluating at 𝑧 = 𝜉𝑘 gives:

𝐵𝑘 =
𝑑

𝑑𝑧

[√︁
𝑄(𝑧) (𝑧 − 𝜉𝑘 )2

] ����
𝑧=𝜉𝑘

.

Substituting the explicit form of
√︁
𝑄(𝑧) yields the claimed expressions for 𝐴𝑘

and 𝐵𝑘 .

(iii) By definition, Res𝜉𝑘
√︁
𝑄(𝑧) 𝑑𝑧 = 𝐵𝑘 . Hence, the condition that 𝑄(𝑧) 𝑑𝑧2 is

residue-free is equivalent to 𝐵𝑘 = 0 for all 𝑘 . Equation (6.3.1) shows that
these conditions coincide with the stationary relations.

□

Combining items (ii) and (iii), we conclude that the residue-free condition is equiv-
alent to the stationary relations, and hence Theorem 6.3.1 follows. □

To further understand the structure of residue-free quadratic differentials in the class
QD(𝒛), we associate to each such differential a multivalued analytic function 𝐹 (𝑧)
with nontrivial monodromy at the origin.

For any 𝑄(𝑧) 𝑑𝑧2 ∈ QD(𝒛), there exists a (locally defined) primitive 𝐹 (𝑧) of√︁
𝑄(𝑧), unique up to a real additive constant, which is involution symmetric and

meromorphic away from 𝑧 = 0. The nontriviality of the monodromy around 𝑧 = 0
reflects the multivalued nature of 𝐹 (𝑧).

Theorem 6.3.3. Let 𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} ⊂ 𝜕D be distinct boundary points, and let
𝑄(𝑧) 𝑑𝑧2 ∈ QD(𝒛) be a residue-free quadratic differential. Then:

• If 𝑛 is even, there exists a unique (up to real additive constant)

𝐹 (𝑧) = 𝑅(𝑧) + 𝑖𝑐 log 𝑧,

where 𝑅(𝑧) is a rational function and 𝑐 ∈ R, such that:
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1. 𝐹 (𝑧) is involution symmetric, i.e., 𝐹 (𝑧∗) = 𝐹 (𝑧) where 𝑧∗ = 1/𝑧,

2. 𝑄(𝑧) 𝑑𝑧2 = (𝐹′(𝑧))2 𝑑𝑧2,

3. the finite critical points of 𝐹 are exactly 𝒛.

• If 𝑛 is odd, there exists a unique

𝐹 (𝑧) =
√
𝑧𝑅(𝑧),

where 𝑅(𝑧) is a rational function, such that:

1. 𝐹 (𝑧) is involution symmetric,

2. 𝑄(𝑧) 𝑑𝑧2 = (𝐹′(𝑧))2 𝑑𝑧2,

3. the finite critical points of 𝐹 are exactly 𝒛.

Although 𝐹 (𝑧) is multivalued, the critical points where 𝐹′(𝑧) = 0 are well defined,
since: - for 𝐹 (𝑧) = 𝑅(𝑧) + 𝑖𝑐 log 𝑧, all branches differ by multiples of 2𝜋𝑖𝑐, so 𝐹′(𝑧)
is single-valued, - for 𝐹 (𝑧) = √

𝑧𝑅(𝑧), branches differ by sign, so 𝐹′(𝑧) differs by
sign as well.

The odd-𝑛 case can be reduced to the even case by passing to the double cover via
the change of variable 𝑧 = 𝑢2.

Proof. Let𝑄(𝑧) 𝑑𝑧2 ∈ QD(𝒛) with poles 𝝃 = {𝜉1, . . . , 𝜉𝑚}. Then by Lemma 6.3.2,
we have: √︁

𝑄(𝑧) = 𝐶 · 𝑧𝑚− 𝑛
2 −1 ·

∏𝑛
𝑗=1(𝑧 − 𝑧 𝑗 )∏𝑚
𝑘=1(𝑧 − 𝜉𝑘 )2 ,

for some constant 𝐶 ∈ C.

Case 1: 𝑛 even, 2𝑚 ≤ 𝑛. In this case,
√︁
𝑄(𝑧) has a pole at 𝑧 = 0, and its primitive

𝐹 (𝑧) must contain a logarithmic singularity:

𝐹 (𝑧) = 𝑅(𝑧) + 𝑖𝑐 log 𝑧,

with 𝑅(𝑧) rational. Since all residues vanish by the stationary relations, the only
possible monodromy arises from the logarithmic term, and involution symmetry of
𝐹 implies that 𝑐 ∈ R.

Case 2: 𝑛 even, 2𝑚 > 𝑛. Here, 𝑧 = 0 is a removable singularity or zero of
√︁
𝑄(𝑧),

so its primitive 𝐹 (𝑧) is a single-valued rational function:

𝐹 (𝑧) = 𝑅(𝑧),
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again involution symmetric and with critical points at 𝒛.

Case 3: 𝑛 odd. Let 𝑧 = 𝑢2 and define√︁
𝑄(𝑧) 𝑑𝑧 = 2𝑢 · 𝑢2𝑚−𝑛−1 ·

∏𝑛
𝑗=1(𝑢2 − 𝑧 𝑗 )∏𝑚
𝑘=1(𝑢2 − 𝜉𝑘 )2︸                            ︷︷                            ︸

:=𝑆(𝑢2)

𝑑𝑢.

This defines a rational 1-form 𝑆(𝑢2) 𝑑𝑢 on the double cover. Since the residues at
all ±

√
𝜉𝑘 vanish, and the form is even in 𝑢, we also have zero residue at 𝑢 = 0.

Therefore, the primitive of 𝑆(𝑢2) can be written as∫
𝑆(𝑢2) 𝑑𝑢 = 𝑢 · 𝑅(𝑢2),

with 𝑅 rational. Returning to 𝑧 = 𝑢2, we obtain

𝐹 (𝑧) =
√
𝑧𝑅(𝑧),

as desired. □

Lemma 6.3.4. Let 𝐹 (𝑧) be the multivalued analytic function associated to a residue-
free quadratic differential 𝑄(𝑧) 𝑑𝑧2 ∈ QD(𝒛). Then its real locus

Γ(𝐹) := {𝑧 ∈ C | 𝐹 (𝑧) ∈ R̂}

is well defined as a subset of C \ {0}, despite the multivaluedness of 𝐹 (𝑧).

Proof. We consider the two cases according to the parity of 𝑛.

Case 1: 𝑛 even. In this case, 𝐹 (𝑧) = 𝑅(𝑧) + 𝑖𝑐 log 𝑧, where 𝑅(𝑧) is rational and
𝑐 ∈ R. Since log 𝑧 is multivalued, 𝐹 (𝑧) is naturally defined on the universal cover
of C \ {0}. Let 𝜌 : 𝜃 ↦→ 𝑒𝑖𝜃 be the covering map, and define the lifted function

𝐹 (𝜃) := 𝐹 (𝑒𝑖𝜃) = 𝑅(𝑒𝑖𝜃) − 𝑐𝜃.

Then
𝐹 (𝜃 + 2𝜋) = 𝐹 (𝜃) − 2𝜋𝑐.

Since the shift is real, the condition 𝐹 (𝜃) ∈ R̂ is preserved under translation by 2𝜋.
Therefore, the real locus

Γ(𝐹) := {𝜃 ∈ R | 𝐹 (𝜃) ∈ R̂}
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is invariant under 𝜃 ↦→ 𝜃 + 2𝜋. As the projection 𝜌(𝜃) = 𝑒𝑖𝜃 is also 2𝜋-periodic, the
image Γ(𝐹) := 𝜌(Γ(𝐹)) ⊂ C \ {0} is well defined.

Case 2: 𝑛 odd. In this case, 𝐹 (𝑧) = √
𝑧𝑅(𝑧), where 𝑅(𝑧) is rational. The square

root introduces a two-sheeted branch structure. As before, we lift 𝐹 to the universal
cover using 𝜌(𝜃) = 𝑒𝑖𝜃 , and define

𝐹 (𝜃) =
√︁
𝑒𝑖𝜃 𝑅(𝑒𝑖𝜃) = 𝑒𝑖𝜃/2𝑅(𝑒𝑖𝜃).

This satisfies
𝐹 (𝜃 + 𝜋) = −𝐹 (𝜃), 𝐹 (𝜃 + 2𝜋) = 𝐹 (𝜃).

Hence the real locus Γ(𝐹) := {𝜃 ∈ R | 𝐹 (𝜃) ∈ R̂} is 2𝜋-periodic, and its image
under 𝜌 defines a well-defined subset Γ(𝐹) ⊂ C \ {0}. □

Next, we characterize the geometry of the horizontal trajectories of 𝑄(𝑧)𝑑𝑧2 ∈
QD(𝒛).

Theorem 6.3.5. Let 𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} be distinct points on the unit circle. Con-
sider a quadratic differential 𝑄(𝑧) ∈ QD(𝒛) defined by

𝑄(𝑧) =
∏𝑚
𝑘=1 𝜉

2
𝑘∏𝑛

𝑗=1 𝑧 𝑗
𝑧2𝑚−𝑛−2

∏𝑛
𝑗=1(𝑧 − 𝑧 𝑗 )2∏𝑚
𝑘=1(𝑧 − 𝜉𝑘 )4 ,

where {𝜉1, . . . , 𝜉𝑚} are involution-symmetric finite poles of𝑄(𝑧), and 𝜉𝑘 ≠ 0,∞ for
𝑘 = 1, 2, . . . , 𝑚.

The horizontal trajectories of 𝑄(𝑧), denoted as Γ(𝑄), are the trajectories of
𝑄(𝑧)𝑑𝑧2 ∈ QD(𝒛) that with limiting ends at the zeros {𝑧1, 𝑧2, . . . , 𝑧𝑛}. These
trajectories satisfy the following properties:

(1) If 2𝑚 ≤ 𝑛, the trajectories Γ(𝑄) form a topological radial link pattern in
LP(𝑛, 𝑚).

(2) If 2𝑚 > 𝑛, the trajectories Γ(𝑄) form a topological radial link pattern in
LP(𝑛, 𝑛 − 𝑚).

To prepare for this, we first introduce some fundamental concepts from the theory
of quadratic differentials.

Definition 6.3.6. For a quadratic differential 𝑄(𝑧)𝑑𝑧2 on a Riemann surface 𝑆, we
denote the zeros and simple poles of 𝑄(𝑧) by set 𝐶 and poles of order at least 2 by
set 𝐻.
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Definition 6.3.7 (F-set). A set 𝐾 on a Riemann surface 𝑆 is called an 𝐹-set (with
respect to 𝑄(𝑧)𝑑𝑧2) if any trajectory of 𝑄(𝑧)𝑑𝑧2 which meets 𝐾 lies entirely in 𝐾 .

Definition 6.3.8 (Inner closure). By the inner closure of a set on ℜ we mean the
interior of the closure of the set. The inner closure of a set 𝐾 will be denoted by �̂� .

In the following four definitions, we understand in each case 𝑆 to be a finite oriented
Riemann surface, 𝑄(𝑧)𝑑𝑧2 to be a quadratic differential on 𝑆.

Definition 6.3.9 (End domain). An end domain U (relative to𝑄(𝑧)𝑑𝑧2)) is a maximal
connected open 𝐹-set on 𝑆 with the properties:

(i) U contains no critical point of 𝑄(𝑧)𝑑𝑧2.

(ii) U is swept out by trajectories of 𝑄(𝑧)𝑑𝑧2 each of which has a limiting end
point in each of its possible senses at a given point 𝐴 in 𝐻.

(iii) U is mapped by 𝐹 (𝑧) =
∫
(𝑄(𝑧))1/2𝑑𝑧 conformally onto an upper or lower

half-plane.

Definition 6.3.10 (Strip domain). A strip domain 𝑈 (relative to 𝑄(𝑧)𝑑𝑧2) is a
maximal connected open 𝐹-set on 𝑆 with the properties:

(i) U contains no critical point of 𝑄(𝑧)𝑑𝑧2.

(ii) U is swept out by trajectories of 𝑄(𝑧)𝑑𝑧2 each of which has at one point 𝐴 in
𝐻 in the one sense a limiting end point and at another (possibly coincident)
point 𝐵 in 𝐻 in the other sense a limiting end point.

(iii) U is mapped by 𝐹 (𝑧) =
∫
(𝑄(𝑧))1/2𝑑𝑧 conformally onto a strip 𝑎 < Im𝐹 < 𝑏,

a, b are finite real numbers, 𝑎 < 𝑏.

Definition 6.3.11 (Circle domain). A circle domain 𝑈 (relative to 𝑄(𝑧)𝑑𝑧2) is a
maximal connected open 𝐹-set on 𝑆 with the properties:

(i) U contains a single double pole 𝐴 of 𝑄(𝑧)𝑑𝑧2,

(ii) 𝑈 − 𝐴 is swept out by trajectories of 𝑄(𝑧)𝑑𝑧2 each of which is a Jordan curve
separating 𝐴 from the boundary of S,
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(iii) For a suitably chosen purely imaginary constant c the function

𝑤 = exp
{
𝑐

∫
(𝑄(𝑧))1/2𝑑𝑧

}
extended to have the value zero at 𝐴 maps U conformally onto a circle |𝑤 | < 𝑅, 𝐴
going into the point 𝑤 = 0.

Definition 6.3.12 (Ring domain). A ring domain 𝑈 (relative to 𝑄(𝑧)𝑑𝑧2) is a
maximal connected open 𝐹-set on 𝑆 with the properties:

(i) 𝑈 contains no critical point of 𝑄(𝑧)𝑑𝑧2.

(ii) 𝑈 is swept out by trajectories of 𝑄(𝑧)𝑑𝑧2 each of which is a Jordan curve.

(iii) for a suitably chosen purely imaginary constant 𝑐 the function

𝑤 = exp
{
𝑐

∫
(𝑄(𝑧))1/2𝑑𝑧

}
maps𝑈 conformally onto a circular ring

𝑟1 < |𝑤 | < 𝑟2 (0 < 𝑟1 < 𝑟2) .

In Jenkins (2012) thm 3.5, the author proves a general result for positive quadratic
differentials on finite Riemann surface 𝑆. In our setting, we only need to consider a
special case 𝑆 = Ĉ where all quadratic differentials are positive.

Theorem 6.3.13 (Basic Structure Theorem, thm 3.5 in Jenkins (2012)). Let 𝑆 be
a Riemann sphere and 𝑄(𝑧)𝑑𝑧2 a quadratic differential on 𝑆 where we exclude
the following possibilities and all configurations obtained from them by conformal
equivalence:

(i) S the 𝑧-sphere, 𝑄(𝑧)𝑑𝑧2 = 𝑑𝑧2.

(ii) S the 𝑧-sphere, 𝑄(𝑧)𝑑𝑧2 = 𝐾𝑒𝑖𝑥𝑑𝑧2/𝑧2, 𝛼 real, 𝐾 positive.

Let Γ(𝑄) denote the union of all trajectories which have a limiting end point at a
point of 𝐶 (see definition (6.3.6). Then
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(i) 𝑆 − Γ(𝑄) consists of a finite number of end, strip, circle and ring domains,

(ii) Each such domain is bounded by a finite number of trajectories together with
the points at which the latter meet; every boundary component of such a
domain contains a point of 𝐶; for a strip domain the two boundary elements
arising from points of 𝐻 (see definition (6.3.6)) divide the boundary into two
parts on each of which is a point of 𝐶,

(iii) Every pole of𝑄(𝑧)𝑑𝑧2 of order𝑚 greater than two has a neighborhood covered
by the inner closure of 𝑚 − 2 end domains and a finite number (possibly zero)
of strip domains,

(iv) Every pole of 𝑄(𝑧)𝑑𝑧2 of order two has a neighborhood covered by the inner
closure of a finite number of strip domains or has a neighborhood contained
in a circle domain,

(v) The inner closure Γ̂(𝑄) of Γ(𝑄) is an 𝐹-set consisting of a finite number of
domains on 𝑆 each with a finite number (possibly zero) of boundary compo-
nents,

(vi) Each boundary component of such a domain is a piecewise analytic curve
composed of trajectories and their limiting end points in 𝐶.

Proof of Theorem 6.3.5. We characterize the geometry of Γ(𝑄) by considering the
following cases:

(i) Case 𝑛 even, 2𝑚 < 𝑛: The poles of𝑄(𝑧) at 0 and∞ are of order 𝑛+2−2𝑚 ≥ 4.
By the basic structure theorem (Theorem 6.3.13), the complement Ĉ \ Γ(𝑄)
consists of a finite collection of end, strip, circle, and ring domains.

We first show that there can be no strip or ring domains. For 𝑄(𝑧) 𝑑𝑧2 ∈
QD(𝒛), by Lemma 6.3.3 and 6.3.4, the function 𝐹 (𝑧) =

∫ √︁
𝑄(𝑧) 𝑑𝑧 takes

real values on Γ(𝑄). Hence, 𝐹 (𝑧) cannot map a domain𝑈 to a strip or a ring
domain, because in such cases the imaginary part Im 𝐹 takes two different
values on 𝜕𝑈, contradicting the level line structure.

Moreover, since the pole order at 𝑧 = 0 is at least 4, there are no circle
domains either. Thus, all domains are end domains. We denote the finite ones
by {𝑈1,𝑈2, . . . ,𝑈𝑠}, bounded away from 0 and ∞, and the infinite ones by
{𝑉1, 𝑉2, . . . , 𝑉𝑡}, whose closures contain 0 or ∞.
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For each finite domain 𝑈𝑖, the map 𝐹 (𝑧) sends it to the upper or lower half-
plane and extends continuously to the boundary. Therefore, there must be a
pole 𝜉𝑙 on 𝜕𝑈𝑖, and each pole 𝜉𝑙 lies on the boundary of exactly two adjacent
finite domains. Since there are exactly 𝑚 poles {𝜉1, 𝜉2, . . . , 𝜉𝑚}, we have
𝑠 = 2𝑚 finite domains.

Each𝑈𝑖 is bounded by disjoint arcs connecting pairs of zeros {𝑧1, . . . , 𝑧𝑛}. By
involution symmetry, there are 𝑚 such domains in D, giving exactly 𝑚 arcs in
Γ(𝑄) connecting 𝑚 pairs of zeros.

Since the pole at 𝑧 = 0 is of order 𝑛 + 2 − 2𝑚, by Theorem 6.3.13 there are
𝑛 − 2𝑚 infinite domains with closure containing 0, and by symmetry, 𝑛 − 2𝑚
domains containing ∞, so 𝑡 = 2(𝑛 − 2𝑚).

Hence, Γ(𝑄) consists of 𝑚 arcs connecting pairs of zeros and 𝑛 − 2𝑚 trajec-
tories ending at 0, whose tangents are equally spaced at angles 2𝜋

𝑛−2𝑚 . This
defines a radial (𝑛, 𝑚) link pattern.

(ii) Case 𝑛 even, 𝑛 = 2𝑚: In this case, the poles of 𝑄(𝑧) at 0 and ∞ are both of
order 2. Again, by Theorem 6.3.13, Ĉ \ Γ(𝑄) consists of end, strip, circle,
and ring domains.

As before, we exclude the possibility of strip or ring domains using Lem-
mas 6.3.3 and 6.3.4, since 𝐹 (𝑧) takes real values on Γ(𝑄) and cannot map 𝑈
to such domains.

With pole order exactly 2, there is precisely one circle domain centered at 0,
and by symmetry, one at ∞. The remaining domains are end domains.

Let the end domains be {𝑈1, . . . ,𝑈𝑠}, each bounded away from 0 and ∞. By
the same argument as before, each domain boundary contains a pole 𝜉𝑙 , and
we again find 𝑠 = 2𝑚 such domains.

By involution symmetry, half of these lie in D, giving 𝑚 arcs in Γ(𝑄) con-
necting 𝑚 pairs of zeros. Thus, Γ(𝑄) forms a radial (𝑛, 𝑚) link pattern.

(iii) Case 𝑛 even, 2𝑚 > 𝑛: In this case, by Theorem 6.3.3, the primitive 𝐹 (𝑧) =∫ √︁
𝑄(𝑧) 𝑑𝑧 is a rational function.

The degree of 𝐹 (𝑧) at 0 is 𝑚 − 𝑛
2 > 0, so the real locus Γ(𝐹) is regular near

0. There are 2𝑚 − 𝑛 trajectories ending at 0, with limiting tangents forming
equal angles of 2𝜋

2𝑚−𝑛 .

Hence, Γ(𝐹) forms a radial (𝑛, 𝑛 − 𝑚) link pattern.
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(iv) Case 𝑛 odd: In this case, the primitive of
√︁
𝑄(𝑧) takes the form 𝐹 (𝑧) =∫ √︁

𝑄(𝑧) 𝑑𝑧 = √
𝑧𝑅(𝑧), where 𝑅(𝑧) is rational.

Passing to the double cover, 𝐹 (𝑧2) = 𝑧𝑅(𝑧2) is rational. The degree of 𝐹 (𝑧2)
at 0 is |2𝑚 − 𝑛|, so there are |2𝑛 − 4𝑚 | trajectories ending at 0.

Projecting back, Γ(𝐹 (𝑧)) has |𝑛 − 2𝑚 | trajectories ending at 0, with tangents
forming equal angles 2𝜋

|𝑛−2𝑚 | .

Therefore, if 𝑛 > 2𝑚, Γ(𝐹) forms a radial (𝑛, 𝑚) link pattern; if 𝑛 < 2𝑚, it
forms a radial (𝑛, 𝑛 − 𝑚) link pattern.

□

6.4 Field integral of motion and horizontal trajectories as flow lines
In this section, we show that the traces of a multiple radial SLE(0) system coincide
with the horizontal trajectories of 𝑄(𝑧)𝑑𝑧2 ∈ QD(𝒛) with ends at {𝑧1, 𝑧2, . . . , 𝑧𝑛}
(which are double zeros of 𝑄(𝑧)).

From the dynamical point of view, the key ingredient in our proof of the main
theorem (1.3.7) is the field of integral of motions for the multiple radial Loewner
flow. This field integral of motion can be heuristically derived as the classical limit
of a martingale observable constructed via conformal field theory, see section 6.5.

Lemma 6.4.1. Let 𝑧1, 𝑧2, . . . , 𝑧𝑛 be distinct growth points in the unit circle 𝜕D, and
let 𝜉1, 𝜉2, . . . , 𝜉𝑚 be marked points. Let 𝑔𝑡 (𝑧) be the solution to the multiple radial
Loewner equation with a driving measure supported on {𝑧 𝑗 (𝑡)}, and assume that
only the 𝑗-th curve is growing, that is, 𝜈 𝑗 (𝑡) = 1 and 𝜈𝑘 (𝑡) = 0 for 𝑘 ≠ 𝑗 .

Define the following quantities for 𝑧 ∈ D:



𝐴(𝑡) =
∏𝑚

𝑗=1 𝜉 𝑗 (𝑡)2∏𝑛
𝑘=1 𝑧𝑘 (𝑡)

,

𝐵𝑡 (𝑧) = 𝑒−(2𝑚−𝑛)𝑡 𝑔𝑡 (𝑧)2𝑚−𝑛−2 (𝑔′𝑡 (𝑧))2
∏𝑛
𝑘=1(𝑔𝑡 (𝑧) − 𝑧𝑘 (𝑡))2∏𝑚
𝑗=1(𝑔𝑡 (𝑧) − 𝜉 𝑗 (𝑡))4 ,

𝑁𝑡 (𝑧) = 𝐴(𝑡) · 𝐵𝑡 (𝑧).

(6.4.1)

Then, for each 𝑧 ∈ D, the quantity 𝑁𝑡 (𝑧) is constant on the time interval [0, 𝜏𝑧 ∧ 𝜏),
where 𝜏 is the first time 𝑡 at which 𝑔𝑡 (𝑤) = 𝑧 𝑗 (𝑡) for some 𝑤 ∈ {𝜉1, . . . , 𝜉𝑚}, and 𝜏𝑧
is the first time such that 𝑔𝑡 (𝑧) = 𝑧 𝑗 (𝑡).
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Proof. Proof of lemma (6.4.1)

By the Loewner equation, the following identities hold:

𝑑𝑧 𝑗 (𝑡)
𝑑𝑡

=
∑︁
𝑘≠ 𝑗

𝑧 𝑗 (𝑡)
𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡)
𝑧𝑘 (𝑡) − 𝑧 𝑗 (𝑡)

− 2
∑︁
𝑙

𝑧 𝑗 (𝑡)
𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡)
𝜉𝑙 (𝑡) − 𝑧 𝑗 (𝑡)

𝑑𝑧𝑘 (𝑡)
𝑑𝑡

= 𝑧𝑘 (𝑡)
𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡)
𝑧 𝑗 (𝑡) − 𝑧𝑘 (𝑡)

, 𝑘 ≠ 𝑗

𝑑𝜉𝑙 (𝑡)
𝑑𝑡

= 𝜉𝑙 (𝑡)
𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡)
𝑧 𝑗 (𝑡) − 𝜉𝑙 (𝑡)

(6.4.2)

By substituting above equations into 𝑑 log 𝐴(𝑡)
𝑑𝑡

, we obtain that

log 𝐴(𝑡) = 2
𝑚∑︁
𝑗=1

log 𝜉𝑘 (𝑡) −
𝑛∑︁
𝑘=1

log 𝑧𝑘 (𝑡) (6.4.3)

𝑑 log 𝐴(𝑡)
𝑑𝑡

= 2
𝑚∑︁
𝑙=1

𝑑 log 𝜉𝑙 (𝑡)
𝑑𝑡

−
𝑛∑︁
𝑗=1

𝑑 log 𝑧 𝑗 (𝑡)
𝑑𝑡

= 2
𝑚∑︁
𝑙=1

𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡)
𝑧 𝑗 (𝑡) − 𝜉𝑙 (𝑡)

+
∑︁
𝑘≠ 𝑗

𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡)
𝑧 𝑗 (𝑡) − 𝑧𝑘 (𝑡)

+
∑︁
𝑘≠ 𝑗

𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡)
𝑧𝑘 (𝑡) − 𝑧 𝑗 (𝑡)

− 2
∑︁
𝑙

𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡)
𝜉𝑙 (𝑡) − 𝑧 𝑗 (𝑡)︸                                                                                                    ︷︷                                                                                                    ︸

𝐴 𝑗 (𝑡)

= 0.
(6.4.4)

We denote the sum in the second line of the equation (6.4.4) by 𝐴 𝑗 (𝑡). After
simplifying, it is clear that the sum 𝐴 𝑗 (𝑡) = 0.

Again, by Loewner equation, the following identities hold

𝑑𝑔𝑡 (𝑧)
𝑑𝑡

= 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

𝑑 log 𝑔′𝑡 (𝑧)
𝑑𝑡

=
𝑧 𝑗 (𝑡) + 𝑔𝑡
𝑧 𝑗 (𝑡) − 𝑔𝑡

+
2𝑧 𝑗 (𝑡)𝑔𝑡

(𝑧 𝑗 (𝑡) − 𝑔𝑡)2

𝑑 log 𝑔𝑡 (𝑧)
𝑑𝑡

=
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

𝑑 log(𝑔′𝑡 (𝑧)/𝑔𝑡)
𝑑𝑡

=
2𝑔𝑡 (𝑧)𝑧 𝑗 (𝑡)
(𝑧 𝑗 (𝑡) − 𝑔𝑡)2 =

𝑔𝑡 (𝑧) (𝑔𝑡 (𝑧) + 𝑧 𝑗 (𝑡))
(𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧))2 + 𝑔𝑡 (𝑧)

𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)
.

(6.4.5)
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𝑑 log(𝑧𝑘 (𝑡) − 𝑔𝑡 (𝑧))
𝑑𝑡

=
1

𝑧𝑘 − 𝑔𝑡
(𝑧𝑘 (𝑡)

𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡)
𝑧 𝑗 (𝑡) − 𝑧𝑘 (𝑡)

− 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

)

= −
𝑧 𝑗 (𝑡) (𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡))

(𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)) (𝑧𝑘 (𝑡) − 𝑧 𝑗 (𝑡))
+ 𝑔𝑡

𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)
, 𝑘 ≠ 𝑗

𝑑 log(𝜉𝑙 (𝑡) − 𝑔𝑡 (𝑧))
𝑑𝑡

=
1

𝜉𝑙 − 𝑔𝑡
(𝜉𝑙 (𝑡)

𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡)
𝑧 𝑗 (𝑡) − 𝜉𝑙 (𝑡)

− 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

)

= −
𝑧 𝑗 (𝑡) (𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡))

(𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)) (𝜉𝑙 (𝑡) − 𝑧 𝑗 (𝑡))
+ 𝑔𝑡

𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)
,

𝑑 log(𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧))
𝑑𝑡

=
1

𝑧 𝑗 (𝑡) − 𝑔𝑡
©«𝑧 𝑗 (𝑡)

∑︁
𝑘≠ 𝑗

𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡)
𝑧𝑘 (𝑡) − 𝑧 𝑗 (𝑡)

− 2
∑︁
𝑙

𝑧 𝑗 (𝑡)
𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡)
𝜉𝑙 (𝑡) − 𝑧 𝑗 (𝑡)

− 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡

ª®¬ .
(6.4.6)

log 𝐵𝑡 (𝑧) = −(2𝑚−𝑛)𝑡+(2𝑚−𝑛−2) log 𝑔𝑡 (𝑧)+2 log(𝑔′𝑡 (𝑧))+2
𝑛∑︁
𝑘=1

log(𝑔𝑡 (𝑧)−𝑧𝑘 (𝑡))−4
𝑚∑︁
𝑗=1

log(𝑔𝑡 (𝑧)−𝜉 𝑗 (𝑡))

(6.4.7)
By substituting equations (6.4.6) into equation (6.4.7),

𝑑 log 𝐵𝑡 (𝑧)
𝑑𝑡

=

− (2𝑚 − 𝑛) + (2𝑚 − 𝑛 − 2)
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

+ 2
(
𝑧 𝑗 (𝑡) + 𝑔𝑡
𝑧 𝑗 (𝑡) − 𝑔𝑡

+
2𝑧 𝑗 (𝑡)𝑔𝑡

(𝑧 𝑗 (𝑡) − 𝑔𝑡)2

)
+

+ 2
𝑛∑︁
𝑘=1

(
−

𝑧 𝑗 (𝑡) (𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡))
(𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)) (𝑧𝑘 (𝑡) − 𝑧 𝑗 (𝑡))

+ 𝑔𝑡

𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

)
− 4

𝑚∑︁
𝑗=1

1
𝑧 𝑗 (𝑡) − 𝑔𝑡

©«𝑧 𝑗 (𝑡)
∑︁
𝑘≠ 𝑗

𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡)
𝑧𝑘 (𝑡) − 𝑧 𝑗 (𝑡)

− 2
∑︁
𝑙

𝑧 𝑗 (𝑡)
𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡)
𝜉𝑙 (𝑡) − 𝑧 𝑗 (𝑡)

− 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡

ª®¬︸                                                                                                                     ︷︷                                                                                                                     ︸
𝐵
𝑗
𝑡 (𝑧)

(6.4.8)
We denote the sum on the right hand side of (6.4.8) by 𝐵 𝑗𝑡 (𝑧). By direct computations
we obtain that all terms canceled out,

𝑑 log 𝐵𝑡 (𝑧)
𝑑𝑡

= 𝐵
𝑗
𝑡 (𝑧) = 0

which implies
𝑑 log 𝑁𝑡 (𝑧)

𝑑𝑡
=
𝑑 log 𝐴(𝑡)

𝑑𝑡
+ 𝑑 log 𝐵𝑡 (𝑧)

𝑑𝑡
= 0.

□
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Theorem (Restatement of theorem 1.3.8 ). In the unit disk D, let 𝑧1, 𝑧2, . . . , 𝑧𝑛 be
distinct growth points on 𝜕D. For each 𝑧 ∈ D, define the following:



𝐴(𝑡) =
∏𝑚

𝑗=1 𝜉
2
𝑘
(𝑡)∏𝑛

𝑘=1 𝑧𝑘 (𝑡)
,

𝐵𝑡 (𝑧) = 𝑒
−(2𝑚−𝑛)

(∫ 𝑡

0
∑

𝑗 𝜈 𝑗 (𝑠) 𝑑𝑠
)
𝑔𝑡 (𝑧)2𝑚−𝑛−2(𝑔′𝑡 (𝑧))2

∏𝑛
𝑘=1(𝑔𝑡 (𝑧) − 𝑧𝑘 (𝑡))2∏𝑚
𝑗=1(𝑔𝑡 (𝑧) − 𝜉 𝑗 (𝑡))4 ,

𝑁𝑡 (𝑧) = 𝐴(𝑡)𝐵𝑡 (𝑧) = 𝑒
−(2𝑚−𝑛)

(∫ 𝑡

0
∑

𝑗 𝜈 𝑗 (𝑠) 𝑑𝑠
) ∏𝑚

𝑗=1 𝜉𝑘 (𝑡)2∏𝑛
𝑘=1 𝑧𝑘 (𝑡)

𝑔𝑡 (𝑧)2𝑚−𝑛−2

(𝑔′𝑡 (𝑧))2
∏𝑛
𝑘=1(𝑔𝑡 (𝑧) − 𝑧𝑘 (𝑡))2∏𝑚
𝑗=1(𝑔𝑡 (𝑧) − 𝜉 𝑗 (𝑡))4 .

Then, 𝐴(𝑡), 𝐵𝑡 (𝑧), and𝑁𝑡 (𝑧) are field integrals of motion on the interval [0, 𝜏𝑧∧𝜏) for
the multiple radial SLE(0) Loewner flows with parametrization 𝜈 𝑗 (𝑡), 𝑗 = 1, . . . , 𝑛.

Proof of theorem (1.3.8). Note that for 𝜈(𝑡) parametrization

𝜕𝑡𝑔𝑡 (𝑧) =
𝑛∑︁
𝑗=1

𝜈 𝑗 (𝑡)𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

, 𝑔0(𝑧) = 𝑧,


𝑑𝑧 𝑗 (𝑡)
𝑑𝑡

= 𝜈 𝑗 (𝑡) ©«
∑︁
𝑘≠ 𝑗

𝑧 𝑗 (𝑡)
𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡)
𝑧𝑘 (𝑡) − 𝑧 𝑗 (𝑡)

+ 2
∑︁
𝑙

𝑧 𝑗 (𝑡)
𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡)
𝜉𝑙 (𝑡) − 𝑧 𝑗 (𝑡)

ª®¬ +
∑︁
𝑘≠ 𝑗

𝜈𝑘 (𝑡)
(
𝑧 𝑗 (𝑡)

𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡)
𝑧𝑘 (𝑡) − 𝑧 𝑗 (𝑡)

)
𝑑𝜉𝑙 (𝑡)
𝑑𝑡

=
∑︁
𝑗

𝜈 𝑗 (𝑡)
(
𝜉𝑙 (𝑡)

𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡)
𝑧 𝑗 (𝑡) − 𝜉𝑙 (𝑡)

) .



𝑑𝑔𝑡

𝑑𝑡
=

∑︁
𝑗

𝜈 𝑗 (𝑡)
(
𝑔𝑡 (𝑧)

𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

)
𝑑 log 𝑔′𝑡 (𝑧)

𝑑𝑡
=

∑︁
𝑗

𝜈 𝑗 (𝑡)
(
𝑧 𝑗 (𝑡) + 𝑔𝑡
𝑧 𝑗 (𝑡) − 𝑔𝑡

+
2𝑧 𝑗 (𝑡)𝑔𝑡

(𝑧 𝑗 (𝑡) − 𝑔𝑡)2

)
𝑑 log 𝑔𝑡 (𝑧)

𝑑𝑡
=

∑︁
𝑗

𝜈 𝑗 (𝑡)
(
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

)
𝑑 log(𝑔′𝑡 (𝑧)/𝑔𝑡)

𝑑𝑡
=

∑︁
𝑗

𝜈 𝑗 (𝑡)
2𝑔𝑡 (𝑧)𝑧 𝑗 (𝑡)
(𝑧 𝑗 (𝑡) − 𝑔𝑡)2 =

∑︁
𝑗=1

𝜈 𝑗 (𝑡)
(
𝑔𝑡 (𝑧) (𝑔𝑡 (𝑧) + 𝑧 𝑗 (𝑡))
(𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧))2 + 𝑔𝑡 (𝑧)

𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

)
.
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𝑑 log(𝜉𝑙 (𝑡) − 𝑔𝑡 (𝑧))
𝑑𝑡

=
1

𝜉𝑙 − 𝑔𝑡

∑︁
𝑗

𝜈 𝑗 (𝑡)
(
𝜉𝑙 (𝑡)

𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡)
𝑧 𝑗 (𝑡) − 𝜉𝑙 (𝑡)

− 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

)
=

∑︁
𝑗

𝜈 𝑗 (𝑡)
(

𝑧2
𝑗
+ 𝑔𝑡𝑧 𝑗 + 𝜉𝑙𝑧 𝑗 − 𝜉𝑙𝑔𝑡

(𝑧 𝑗 (𝑡) − 𝜉𝑙 (𝑡)) (𝑧 𝑗 (𝑡) − 𝑔𝑡)

)
=

∑︁
𝑗

𝜈 𝑗 (𝑡)
(
−

𝑧 𝑗 (𝑡) (𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡))
(𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)) (𝜉𝑙 (𝑡) − 𝑧 𝑗 (𝑡))

+ 𝑔𝑡

𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧)

)
𝑑 log(𝑧 𝑗 (𝑡) − 𝑔𝑡 (𝑧))

𝑑𝑡
=

1
𝑧 𝑗 (𝑡) − 𝑔𝑡

𝜈 𝑗 (𝑡) ©«𝑧 𝑗 (𝑡)
∑︁
𝑘≠ 𝑗

𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡)
𝑧𝑘 (𝑡) − 𝑧 𝑗 (𝑡)

− 2
∑︁
𝑙

𝑧 𝑗 (𝑡)
𝑧 𝑗 (𝑡) + 𝜉𝑙 (𝑡)
𝜉𝑙 (𝑡) − 𝑧 𝑗 (𝑡)

−𝑔𝑡
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡

)
+ 1
𝑧 𝑗 (𝑡) − 𝑔𝑡

∑︁
𝑘≠ 𝑗

𝜈𝑘 (𝑡)
(
𝑧 𝑗 (𝑡)

𝑧 𝑗 (𝑡) + 𝑧𝑘 (𝑡)
𝑧𝑘 (𝑡) − 𝑧 𝑗 (𝑡)

− 𝑔𝑡
𝑧 𝑗 (𝑡) + 𝑔𝑡 (𝑧)
𝑧 𝑗 (𝑡) − 𝑔𝑡

)
.

By plugging in these identities, we obtain that

𝑑 log 𝐴(𝑡)
𝑑𝑡

=

𝑛∑︁
𝑗=1

𝜈 𝑗 (𝑡)𝐴 𝑗 (𝑡) = 0

𝑑 log 𝐵𝑡 (𝑧)
𝑑𝑡

=

𝑛∑︁
𝑗=1

𝜈 𝑗 (𝑡)𝐵 𝑗𝑡 (𝑧) = 0

𝑑 log 𝑁𝑡 (𝑧)
𝑑𝑡

=

𝑛∑︁
𝑗=1

𝜈 𝑗 (𝑡)
𝑑 log 𝑁 𝑗

𝑡 (𝑧)
𝑑𝑡

= 0.

□

𝑁𝑡 (𝑧) is a field integral of motion for arbitrary initial positions of screening charges
𝝃 even without assuming stationary relations. The stationary relations imply the
existence of a quadratic differential 𝑄(𝑧)𝑑𝑧2 ∈ QD(𝒛), see Theorem 1.3.7.

The integral of motion is motivated by a martingale observable in conformal field
theory. For a field X in the OPE family 𝐹𝛽,

Ê[X] :=
E[XO𝛽]
E[O𝛽]

is a martingale observable where O𝛽 is a vertex field. In our situation, we choose X
to be the chiral vertex field and take the classical limit as 𝜅 → 0. The martingale
observable degenerates to the integral of motion. We will discuss the construction
of the field X in Section 6.5.

In the proof of Theorem 1.3.7, we also need to consider
√︁
𝑁𝑡 (𝑧) as a field integral

of motion. However, an obstacle arises in the expression√︁
𝑁𝑡 (𝑧) = 𝑒

−(𝑚− 𝑛
2 )

(∫ 𝑡

0
∑

𝑗 𝜈 𝑗 (𝑠) 𝑑𝑠
)
𝑔𝑡 (𝑧)𝑚−

𝑛
2 −1 𝑔′𝑡 (𝑧)

∏𝑛
𝑘=1(𝑔𝑡 (𝑧) − 𝑧𝑘 (𝑡))∏𝑚
𝑗=1(𝑔𝑡 (𝑧) − 𝜉 𝑗 (𝑡))2 ,
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where the term 𝑔𝑡 (𝑧)𝑚−
𝑛
2 −1 becomes multivalued when 𝑛 is an odd integer, thus√︁

𝑁𝑡 (𝑧) is in fact not well defined. To resolve this technical problem, we introduce
the angular coordinate.

Corollary 6.4.2. In the angular coordinate, by changing variables, let 𝜉𝑘 = 𝑒𝑖𝜁𝑘 ,
𝑧𝑘 = 𝑒𝑖𝜃𝑘 , and ℎ𝑡 (𝑧) be the covering map of 𝑔𝑡 (𝑧) (i.e., 𝑒𝑖ℎ𝑡 (𝑧) = 𝑔𝑡 (𝑒𝑖𝑧)). For each
𝑧 ∈ H, we define:

𝐴𝑎𝑛𝑔 (𝑡) =
∏𝑚

𝑗=1 𝑒
𝑖𝜁𝑘 (𝑡)∏𝑛

𝑘=1 𝑒
𝑖
𝜃𝑘 (𝑡 )

2

,

𝐵
𝑎𝑛𝑔
𝑡 (𝑧) = 𝑒−(𝑚−

𝑛
2 )

(∫ 𝑡

0
∑

𝑗 𝜈 𝑗 (𝑠) 𝑑𝑠
)
𝑔𝑡 (𝑧)𝑚−

𝑛
2 −1𝑒𝑖(𝑚−

𝑛
2 −1)ℎ𝑡 (𝑧)ℎ′𝑡 (𝑧)𝑒𝑖ℎ𝑡 (𝑧)

∏𝑛
𝑘=1

(
𝑒𝑖ℎ𝑡 (𝑧) − 𝑒𝑖𝜃𝑘 (𝑡)

)
∏𝑚

𝑗=1
(
𝑒𝑖ℎ𝑡 (𝑧) − 𝑒𝑖𝜁 𝑗 (𝑡)

)2 ,

𝑁
𝑎𝑛𝑔
𝑡 (𝑧) = 𝐴𝑎𝑛𝑔 (𝑡)𝐵𝑎𝑛𝑔𝑡 (𝑧)

= 𝑒
−(𝑚− 𝑛

2 )
(∫ 𝑡

0
∑

𝑗 𝜈 𝑗 (𝑠) 𝑑𝑠
) ∏𝑚

𝑗=1 𝑒
𝑖𝜁𝑘 (𝑡)∏𝑛

𝑘=1 𝑒
𝑖
𝜃𝑘 (𝑡 )

2

𝑒𝑖(𝑚−
𝑛
2 −1)ℎ𝑡 (𝑧)ℎ′𝑡 (𝑧)𝑒𝑖ℎ𝑡 (𝑧)

∏𝑛
𝑘=1

(
𝑒𝑖ℎ𝑡 (𝑧) − 𝑒𝑖𝜃𝑘 (𝑡)

)
∏𝑚

𝑗=1
(
𝑒𝑖ℎ𝑡 (𝑧) − 𝑒𝑖𝜁 𝑗 (𝑡)

)2 .

(6.4.9)
Then, 𝐴𝑎𝑛𝑔 (𝑡), 𝐵𝑎𝑛𝑔𝑡 (𝑧), and 𝑁𝑎𝑛𝑔𝑡 (𝑧) are field integrals of motion on the interval
[0, 𝜏𝑧 ∧ 𝜏) for the multiple radial SLE(0) Loewner flows with parametrization 𝜈 𝑗 (𝑡),
𝑗 = 1, . . . , 𝑛.

Theorem (Restatement of theorem (1.3.7)). Let 𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} be distinct
growth points on the unit circle and screening charges 𝜉 = {𝜉1, 𝜉2, . . . , 𝜉𝑚} involu-
tion symmetric and solve the stationary relations.

There exists an 𝑄(𝑧) ∈ QD(𝒛) with 𝝃 as poles and 𝒛 as zeros, the hulls 𝐾𝑡 gener-
ated by the Loewner flows with parametrization 𝝂(𝑡) are subsets of the horizontal
trajectories of 𝑄(𝑧)𝑑𝑧2 with limiting ends at 𝒛, up to any time 𝑡 before the collisions
of any poles or critical points. Up to any such time

𝑄(𝑧) ◦ 𝑔−1
𝑡 ∈ QD(𝒛(𝑡)).

where 𝒛(𝑡) is the location of the critical points at time 𝑡 under the multiple radial
Loewner flow with parametrization 𝝂(𝑡).

Proof of Theorem (1.3.7). We first prove that 𝑄(𝑧) ◦ 𝑔−1
𝑡 is in QD(𝒛(𝑡)).

Since at 𝑡 = 0, the screening charges 𝝃 are assumed to be involution symmetric and
solve the stationary relations, stationary relations- residue free theorem guarantees
the existence of an 𝑄0(𝑧)𝑑𝑧2 ∈ QD(𝒛(0)) with 𝝃 (0) as poles and 𝒛(0) as zeros.
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Moreover, 𝑄0(𝑧) factors as

𝑄0(𝑧) =
∏𝑚
𝑘=1 𝜉

2
𝑘
(0)∏𝑛

𝑗=1 𝑧 𝑗 (0)
𝑧2𝑚−𝑛−2

∏𝑛
𝑗=1

(
𝑧 − 𝑧 𝑗 (0)

)2∏𝑚
𝑘=1 (𝑧 − 𝜉𝑘 (0))

4 . (6.4.10)

Using the integral of motion 𝑁t(𝑧), we have

𝑁𝑡 (𝑧) =
∏𝑚

𝑗=1 𝜉
2
𝑘
(𝑡)∏𝑛

𝑘=1 𝑧𝑘 (𝑡)
𝑒−(2𝑚−𝑛−2) (

∫ 𝑡

0
∑

𝑗 𝜈 𝑗 (𝑠)𝑑𝑠)𝑔2𝑚−𝑛−2
𝑡 (𝑧) (𝑔′𝑡 (𝑧))2

∏𝑛
𝑗=1

(
𝑔𝑡 (𝑧) − 𝑧 𝑗 (𝑡)

)2∏𝑚
𝑘=1 (𝑔𝑡 (𝑧) − 𝑔𝑡 (𝜉𝑘 ))

4

=

∏𝑚
𝑘=1 𝜉

2
𝑘
(0)∏𝑛

𝑗=1 𝑧 𝑗 (0)
𝑧2𝑚−𝑛−2

∏𝑛
𝑗=1

(
𝑧 − 𝑦 𝑗

)2∏𝑚
𝑘=1 (𝑧 − 𝜉𝑘 )

4 = 𝑁0(𝑧).

(6.4.11)

Denote the constant 𝜇(𝑡) = 𝑒−(𝑚−
𝑛
2 −1) (

∫ 𝑡

0
∑

𝑗 𝜈 𝑗 (𝑠)𝑑𝑠) .

Let 𝑓𝑡 = 𝑔−1
𝑡 , and since the above holds everywhere evaluate it at 𝑓𝑡 (𝑧) to obtain

𝜇2(𝑡)
∏𝑚

𝑗=1 𝜉
2
𝑘
(𝑡)∏𝑛

𝑘=1 𝑧𝑘 (𝑡)
𝑧2𝑚−𝑛−2

∏𝑛
𝑗=1

(
𝑧 − 𝑧 𝑗 (𝑡)

)2∏𝑚
𝑘=1 (𝑧 − 𝑔𝑡 (𝜉𝑘 ))

4

=

∏𝑚
𝑘=1 𝜉

2
𝑘
(0)∏𝑛

𝑗=1 𝑧 𝑗 (0)
𝑓 ′𝑡 (𝑧)2 𝑓 2𝑚−𝑛−2

𝑡 (𝑧)
∏𝑛

𝑗=1
(
𝑓𝑡 (𝑧) − 𝑧 𝑗

)2∏𝑚
𝑘=1 ( 𝑓𝑡 (𝑧) − 𝜁𝑡)

4 = 𝑓 ′𝑡 (𝑧)2𝑄0 ( 𝑓𝑡 (𝑧)) .

(6.4.12)

The left-hand side is exactly

𝜇2(𝑡)𝑧𝑚− 𝑛
2 −1

∏𝑛
𝑗=1

(
𝑧 − 𝑧 𝑗 (𝑡)

)∏𝑚
𝑘=1 (𝑧 − 𝑔𝑡 (𝜉𝑘 ))

2 = 𝜇(𝑡)𝑄𝑡 (𝑧). (6.4.13)

we obtain that

±𝜇(𝑡)𝑅𝑒𝑠𝜉 (𝑡) (
√︁
𝑄𝑡 (𝑧)) = 𝑅𝑒𝑠𝜉 (0) (

√︁
𝑄0( 𝑓𝑡 (𝑧)) = 0. (6.4.14)

The stationary relations at 𝑡 = 0 give the last equality. Thus, the residue-free
condition holds, and clearly, the involution symmetry of 𝝃 is preserved, which
implies 𝑄(𝑧) ◦ 𝑔−1

𝑡 ∈ QD(𝒛(𝑡)).

Finally, we prove that the hull 𝐾𝑡 is a subset of the horizontal trajectories of𝑄(𝑧)𝑑𝑧2

with limiting ends at {𝑧1, 𝑧2, . . . , 𝑧𝑛}. By theorem (6.3.4), equivalently, we can show
that 𝐾𝑡 is a subset of the real locus of the 𝐹 (𝑧) =

∫ √︁
𝑄(𝑧)𝑑𝑧 (which is well defined

as shown in lemma (6.3.4)).
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Note that 𝐹 (𝑧) is a multivalued function. To deal with the multi-valuedness, let
𝜌(𝑧) = 𝑒𝑖𝑧 be the exponential covering map, and we consider ℎ𝑡 (𝑧) the lifting map
of 𝑔𝑡 (𝑧) (i.e. 𝑒𝑖ℎ𝑡 (𝑧) = 𝑔𝑡 (𝑒𝑖𝑧)). We denote the lifting of 𝐹 (𝑧) by �̃� (𝑧), which is now
a single-valued function, and the lifting of 𝑄𝑡 (𝑧) by �̃�𝑡 (𝑧) = −𝑄𝑡 (𝑒𝑖𝑧)𝑒2𝑖𝑧𝑑𝑧, the
lifting of the hull 𝐾𝑡 by �̃�𝑡 .

By the integral of motion in angular coordinate (6.4.2)

𝑁
𝑎𝑛𝑔
𝑡 (𝑧) =𝜇(𝑡)

∏𝑚
𝑗=1 𝑒

𝑖𝜁𝑘 (𝑡)∏𝑛
𝑘=1 𝑒

𝑖
𝜃𝑘 (𝑡 )

2

𝑒𝑖(𝑚−
𝑛
2 −1)ℎ𝑡 (𝑧)ℎ′𝑡 (𝑧)𝑒𝑖ℎ𝑡 (𝑧)

∏𝑛
𝑘=1(𝑒𝑖ℎ𝑡 (𝑧) − 𝑒𝑖𝜃𝑘 (𝑡))∏𝑚
𝑗=1(𝑒𝑖ℎ𝑡 (𝑧) − 𝑒𝑖𝜁 𝑗 (𝑡))2

=

∏𝑚
𝑗=1 𝑒

𝑖𝜁𝑘 (0)∏𝑛
𝑘=1 𝑒

𝑖
𝜃𝑘 (0)

2

𝑒𝑖(𝑚−
𝑛
2 −1)𝑧𝑒𝑖𝑧

∏𝑛
𝑘=1(𝑒𝑖𝑧 − 𝑒𝑖𝜃𝑘 (0))∏𝑚
𝑗=1(𝑒𝑖𝑧 − 𝑒𝑖𝜁 𝑗 (0))2

= 𝑁
𝑎𝑛𝑔

0 (𝑧).

(6.4.15)
Let 𝑠𝑡 = ℎ−1

𝑡 , and since the above holds everywhere evaluate it at 𝑠𝑡 (𝑧) to obtain

𝜇(𝑡)
√︃
�̃�𝑡 (𝑧) = 𝜇(𝑡)

∏𝑚
𝑗=1 𝑒

𝑖𝜁𝑘 (𝑡)∏𝑛
𝑘=1 𝑒

𝑖
𝜃𝑘 (𝑡 )

2

𝑒𝑖(𝑚−
𝑛
2 −1)𝑧𝑒𝑖𝑧

∏𝑛
𝑘=1(𝑒𝑖𝑧 − 𝑒𝑖𝜃𝑘 (𝑡))∏𝑚
𝑗=1(𝑒𝑖𝑧 − 𝑒𝑖𝜁 𝑗 (𝑡))2

=

∏𝑚
𝑗=1 𝑒

𝑖𝜁𝑘 (0)∏𝑛
𝑘=1 𝑒

𝑖
𝜃𝑘 (0)

2

𝑒𝑖(𝑚−
𝑛
2 −1)𝑠𝑡 (𝑧)𝑒𝑖𝑠𝑡 (𝑧)

∏𝑛
𝑘=1(𝑒𝑖𝑠𝑡 (𝑧) − 𝑒𝑖𝜃𝑘 (0))∏𝑚
𝑗=1(𝑒𝑖𝑠𝑡 (𝑧) − 𝑒𝑖𝜁 𝑗 (0))2

(ℎ−1
𝑡 (𝑧))′

=
√︁
𝑄0(𝑠𝑡 (𝑧)) (𝑠𝑡 (𝑧))′

= (�̃� (𝑠𝑡 (𝑧)))′.
(6.4.16)

Since 𝜇(𝑡) is a real constant, �̃� (𝑠𝑡 (𝑧)) is the primitive of
√︁
�̃�𝑡 (𝑧) (up to a real

multiplicative constant). It suffices to show that �̃�𝑡 is the real locus of �̃� (𝑧)

Recall that 𝑔𝑡 is the unique conformal map fromD\𝐾𝑡 ontoDwith the hydrodynamic
normalization. Therefore, 𝑔𝑡 (𝑧) maps the subset 𝐾𝑡 to 𝜕D and ℎ𝑡 (𝑧) maps the subset
�̃�𝑡 to the real line.

Since �̃� (𝑠𝑡 (𝑧)) is the primitive of
√︁
�̃�𝑡 (𝑧) (up to a real multiplicative constant), the

real line is part of the real locus �̃� (𝑠𝑡 (𝑧)). Since ℎ𝑡 (𝑧) maps the subset �̃�𝑡 to the real
line, it follows that �̃�𝑡 is a subset of the real locus of �̃� (𝑧). □

Remark 6.4.3. The underlying principle is that for 𝑄(𝑧) ∈ QD(𝒛), the function√︁
𝑄(𝑧) admits a local meromorphic primitive in D \ {0}. As a result, the residues

of
√︁
𝑄(𝑧) at all nonzero poles must vanish.
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When the poles are distinct from the critical points, this principle manifests alge-
braically as the stationary relation. However, when a pole coincides with a critical
point (in which case the pole must be of order two), the partial fraction expansion of√︁
𝑄(𝑧) becomes more intricate, and so does the associated algebra. Nevertheless,

the same fundamental principle continues to govern the structure.

Example 6.4.4. The traces of 𝑛-braids multiple SLE(0) in D.

Proof. For 𝑛-braids multiple radial SLE(0), 𝑚 = 0, and there are no poles, thus
𝑄(𝑧)𝑑𝑧2 is given by

𝑄(𝑧) = 𝑐𝑧−𝑛−2
𝑛∏
𝑗=1

(
𝑧 − 𝑧 𝑗

)2 (6.4.17)

The 𝑛-braids multiple SLE(0) has 𝑛 trajectories with limiting ends at 𝑧 = 0, and with
limiting tangential directions that form an equal 2𝜋

𝑛
with each other.

□

6.5 Classical limit of martingale observables*
In this section, we discuss how the field integral of motion is heuristically derived as
the classical limit of martingale observables constructed via conformal field theory.

Based on the SLE-CFT correspondence, the multiple radial SLE(𝜅) system can be
coupled to a conformal field theory. We will construct this conformal field theory
using vertex operators, following the approach in Kang and N. Makarov (2013) and
N-G. Kang and N. Makarov (2021).

Definition 6.5.1 (Vertex operator). For a background charge 𝜷 =
∑
𝑘 𝛽𝑘 ·𝑞𝑘 with the

neutrality condition (NC𝑏) and divisor 𝝉 =
∑
𝑗 𝜏𝑗 · 𝑧 𝑗 with the neutrality condition

(NC0). We define the vertex operator O𝜷 [𝝉] as

O𝜷 [𝝉] :=
𝐶(𝑏) [𝝉 + 𝜷]
𝐶(𝑏) [𝜷]

𝑒⊙𝑖Φ
+ [𝝉] . (6.5.1)

where Φ+ [𝝉] :=
∑
𝜏𝑗Φ

+ (
𝑧 𝑗

)
is the chirdal bosonic field and ⊙ is the wick product.

Definition 6.5.2 (𝑛-leg operator with screening charges). Consider the following
charge distribution on the Riemann sphere.

𝜷 = 𝑏𝛿0 + 𝑏𝛿∞
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𝝉1 =

𝑛∑︁
𝑗=1
𝑎𝛿𝑧 𝑗 −

𝑚∑︁
𝑘=1

2𝑎𝛿𝜉𝑘 − (𝑛 − 2𝑚
2

)𝑎𝛿0 − (𝑛 − 2𝑚
2

)𝑎 𝛿∞

The 𝑛-leg operator with screening charges 𝝃 and background charge 𝜷 is given by
the OPE exponential:

O𝜷 [𝝉1] =
𝐶(𝑏) [𝝉1 + 𝜷]
𝐶(𝑏) [𝜷]

e⊙𝑖Φ[𝝉1] . (6.5.2)

For each link pattern 𝛼, we can choose closed contours C1, . . . , C𝑛 along which we
may integrate the 𝝃 variables to screen the vertex fields. Let S be the screening
operator. We define the screening operation as

S𝛼O𝜷 [𝝉1] =
∮
C1

. . .

∮
C𝑛

O𝜷 [𝝉1] . (6.5.3)

We integrate the correlation function EO𝜷 [𝝉1] = Φ𝜅 (𝒛, 𝝃), the conformal dimension
is 1 at the 𝝃 points, i.e. since 𝜆𝑏 (−2𝑎) = 1. This leads to the partition function for
the corresponding multiple radial SLE(𝜅) system:

J𝛼 (𝒛) := ES𝛼O𝜷 [𝝉1] =
∮
C1

. . .

∮
C𝑛

Φ𝜅 (𝒛, 𝝃)𝑑𝜉𝑛 . . . 𝑑𝜉1. (6.5.4)

Theorem 6.5.3 (Martingale observable). For any tensor product 𝑋 of fields in the
OPE family F𝜷 of Φ𝜷,

𝑀𝑡 (𝑋) =
E(S𝛼O𝜷 [𝝉1]𝑋)

ES𝛼O𝜷 [𝝉1]
∥𝑔−1
𝑡 (6.5.5)

is a local martingale, where 𝑔𝑡 (𝑧) is the Loewner map for multiple radial SLE(𝜅)
system associated to J𝛼 (𝒛) = ESO𝜷 [𝝉1]

Remark 6.5.4. The structure of multiple radial SLE(𝜅) systems is not yet fully
understood. We do not provide a rigorous justification of this theorem in this paper,
nor is the validity of our results dependent on this. In particular, the integral of
motion used in our arguments can be directly verified independently.

Moreover, the Martingale Observable Theorem can be extended to linear combina-
tions of screening fields of the form

SO𝜷 :=
∑︁
𝛼

𝜎𝛼 S𝛼O𝜷 [𝝉1],
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where each S𝛼 corresponds to a distinct choice of integration contours associated
with a link pattern 𝛼, and 𝜎𝛼 ∈ R are real coefficients.

Corollary 6.5.5. Let the divisor 𝝉2 = −𝜎
2 𝛿0 − 𝜎

2 𝛿∞ + 𝜎𝛿𝑧 where the parameter
𝜎 = 1

𝑎
, and insert 𝑋 = O𝜷 [𝝉2]

𝑀𝑡,𝜅 (𝑧) =
ESO𝜷 [𝝉1]O𝜷 [𝝉2]

ESO𝜷 [𝝉1]
∥𝑔−1
𝑡 (6.5.6)

is local martingale where 𝑔𝑡 (𝑧) is the Loewner map for multiple radial SLE(𝜅) system
associated to Z𝜅 (𝒛) = ESO𝜷 [𝝉1].

Explicit computation shows that

ES𝛼O𝛽 [𝝉1] = E
∮
C1

. . .

∮
C𝑛

O𝜷 [𝝉1]O𝜷 [𝝉2]

=

∮
C1

. . .

∮
C𝑛

∏
1≤𝑖< 𝑗≤𝑛

(𝑧𝑖 − 𝑧 𝑗 )𝑎
2 ∏

1≤𝑖< 𝑗≤𝑚
(𝜉𝑖 − 𝜉 𝑗 )4𝑎2

𝑛∏
𝑖=1

𝑚∏
𝑗=1

(
𝑧𝑖 − 𝜉 𝑗

)−2𝑎2

∏
𝑗

𝑧
𝑎(𝑏− 𝑛−2𝑚

2 𝑎− 𝜎
2 )

𝑗

∏
𝑘

𝜉
−2𝑎(𝑏− 𝑛−2𝑚

2 𝑎− 𝜎
2 )

𝑘
𝑧𝜎(𝑏−

𝑛−2𝑚
2 𝑎)𝑔′(𝑧 𝑗 )𝜆𝑏 (𝑎)𝑔′(𝑧)𝜆𝑏 (𝜎)

(𝑧 − 𝑧 𝑗 )𝜎𝑎 (𝑧 − 𝜉𝑘 )−2𝜎𝑎 |𝑔′(0) |2𝜆𝑏 (𝑏+ 2𝑚−𝑛
2 𝑎− 𝜎

2 )

E
∮
C1

. . .

∮
C𝑛

O𝜷 [𝝉1]

=

∮
C1

. . .

∮
C𝑛

∏
1≤𝑖< 𝑗≤𝑛

(𝑧𝑖 − 𝑧 𝑗 )𝑎
2 ∏

1≤𝑖< 𝑗≤𝑚
(𝜉𝑖 − 𝜉 𝑗 )4𝑎2

𝑛∏
𝑖=1

𝑚∏
𝑗=1

(
𝑧𝑖 − 𝜉 𝑗

)−2𝑎2

∏
𝑗

𝑧
𝑎(𝑏− 𝑛−2𝑚

2 )
𝑗

∏
𝑘

𝜉
−2𝑎(𝑏− 𝑛−2𝑚

2 𝑎)
𝑘

𝑧𝜎(𝑏−
𝑛−2𝑚

2 𝑎)𝑔′(𝑧 𝑗 )𝜆𝑏 (𝑎) |𝑔′(0) |2𝜆𝑏 (𝑏−
2𝑚−𝑛

2 𝑎) .

Conjecture 6.5.6. As 𝜅 → 0, the contour integral concentrate on the critical points
of the master function.

𝑁𝑡 (𝑧) =𝑀𝑡,0(𝑧) = lim
𝜅→0

𝑀𝑡,𝜅 (𝑧) = lim
𝜅→0

E
∮
C1
. . .

∮
C𝑛

O𝜷 [𝝉1]O𝜷 [𝝉2]

E
∮
C1
. . .

∮
C𝑛

O𝜷 [𝝉1]

= |𝑔′(0) |−(𝑚− 𝑛
2 )

∏𝑚
𝑗=1 𝜉𝑘√︁∏𝑛
𝑘=1 𝑧𝑘

𝑧𝑚−
𝑛
2 −1𝑔′(𝑧)

∏𝑛
𝑘=1(𝑧 − 𝑧𝑘 )∏𝑚
𝑗=1(𝑧 − 𝜉 𝑗 )2 ,

(6.5.7)

where 𝝃 solve the stationary relations. This is exactly the integral of motion 𝑁𝑡 (𝑧)
in the proof of the theorem.
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𝑀𝑡,𝜅 (𝑧) is a (𝜆𝑏 (𝜎), 0) differential with respect to 𝑧, where 𝜆𝑏 (𝜎) = 1
2𝑎2 − 𝑏

𝑎
. By

taking the limit 𝜅 → 0, lim𝜅→0 𝜆𝑏 (𝜎) = 1, and thus 𝑀𝑡,0(𝑧) is a (1,0) differential.

Remark 6.5.7. The integral of motion 𝑁𝑡 (𝑧) can be verified through direct compu-
tation. This heuristic argument provides valuable insight and motivation for con-
structing the integral of motion. It is worth noting that our paper is self-consistent
and does not depend on the detailed clarification of the classical limits.

6.6 Enumerative algebraic geometry and link pattern*
In this section, we propose several illuminating conjectures for the classification of
the quadratic differential 𝑄(𝑧)𝑑𝑧2 ∈ QD(𝒛) and equivalently the critical points of
the trigonometric KZ equations:

In the chordal setting, multiple chordal SLE(0) systems have been constructed and
analyzed in detail by Eveliina Peltola and H. Wang (2020), and the corresponding
stationary (commutation) relations have been completely solved and classified in
Scherbak and Varchenko (2003), Scherbak (2002a), and Scherbak (2002b). Moti-
vated by these results, we propose the following conjectures concerning the structure
of multiple radial SLE(0) systems.

Conjecture 6.6.1 (𝑛 even). Let 𝑄(𝑧) 𝑑𝑧2 ∈ QD(𝒛) be an involution symmetric
meromorphic quadratic differential with 𝑛 simple zeros located on the unit circle
(with even 𝑛) and 𝑚 poles. Then, up to multiplication by a nonzero real constant,
the horizontal trajectory Γ(𝑄) with limiting ends at 𝒛 satisfies:

• (Underscreening) If 𝑚 ≤ 𝑛
2 , then Γ(𝑄) consists of 𝑚 disjoint arcs connecting

distinct pairs of zeros, forming a radial (𝑛, 𝑚)-link. For each such link pattern,
there exists a unique differential𝑄 ∈ QD(𝒛) (up to scaling) whose horizontal
trajectories form this pattern.

• (Overscreening) If 𝑛+1
2 ≤ 𝑚 ≤ 𝑛, then Γ(𝑄) consists of 𝑛 − 𝑚 disjoint arcs

connecting pairs of zeros, forming a radial (𝑛, 𝑛 − 𝑚)-link. For each such
link pattern, there exists a continuous family of differential 𝑄 ∈ QD(𝒛) (up
to scaling) whose horizontal trajectories form this pattern.

• (Upper bound) If 𝑚 > 𝑛, there exists no such quadratic differential 𝑄 ∈
QD(𝒛).

Conjecture 6.6.2 (𝑛 odd). Let𝑄(𝑧) 𝑑𝑧2 ∈ QD(𝒛) be an involution symmetric mero-
morphic quadratic differential with 𝑛 simple zeros located on the unit circle (with
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odd 𝑛) and 𝑚 poles. Then, up to multiplication by a nonzero real constant, the
horizontal trajectory Γ(𝑄) with limiting ends at 𝒛 satisfies:

• (Underscreening) If 𝑚 ≤ 𝑛
2 , then Γ(𝑄) consists of 𝑚 disjoint arcs connecting

distinct pairs of zeros, forming a radial (𝑛, 𝑚)-link. For each such link pattern,
there exists a unique differential𝑄 ∈ QD(𝒛) (up to scaling) whose horizontal
trajectories form this pattern.

• (Overscreening) If 𝑛+1
2 ≤ 𝑚 ≤ 𝑛, then Γ(𝑄) consists of 𝑛 − 𝑚 disjoint arcs

connecting pairs of zeros, forming a radial (𝑛, 𝑛−𝑚)-link. For each such link
pattern, there exists a unique differential 𝑄 ∈ QD(𝒛) (up to scaling) whose
horizontal trajectories form this pattern.

• (Upper bound) If 𝑚 > 𝑛, there exists no such quadratic differential 𝑄 ∈
QD(𝒛).

Remark 6.6.3. When 𝑛 is an even integer, in the overscreening case, 𝑄(𝑧)𝑑𝑧2 =

𝑅′(𝑧)2𝑑𝑧2, where 𝑅(𝑧) is an involution symmetric rational function with 𝒛 as critical
points. In this case, the continuous family of solutions can be obtained by post-
composition with Möbius transformations.

We can equivalently reformulate our conjectures concerning the critical points of
the master functions.

Conjecture 6.6.4. For generic 𝒛 on the unit circle, critical points 𝝃 of the master
function Φ𝑚,𝑛 (𝒛, 𝝃) are involution symmetric.

Conjecture 6.6.5 (𝑛 even). For generic 𝒛 on the unit circle:

• (Underscreening) If𝑚 ≤ 𝑛
2 , Φ𝑚,𝑛 (𝒛, 𝝃) has exactly |𝐿𝑃(𝑛, 𝑚) | isolated critical

points.

• (Overscreening) If 𝑛+1
2 ≤ 𝑚 ≤ 𝑛, Φ𝑚,𝑛 (𝒛, 𝝃) has non-isolated critical points.

Let 𝜆1 =
∑
𝜉𝑖, 𝜆2 =

∑
𝜉𝑖𝜉 𝑗 , . . . , 𝜆𝑚 = 𝜉1 · · · 𝜉𝑚 be the standard symmetric

functions of 𝜉1, . . . , 𝜉𝑚. Denote C𝑚
𝜆

the space with coordinates 𝜆1, . . . , 𝜆𝑚.
Then written in symmetric coordinates 𝜆1, . . . , 𝜆𝑚, the critical points consist
of |𝐿𝑃(𝑛, 𝑛 − 𝑚) | straight lines in the space C𝑚

𝜆
.

• (Upperbound) If 𝑚 > 𝑛, Φ𝑚,𝑛 (𝒛, 𝝃) has no critical points.
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Conjecture 6.6.6 (𝑛 odd). For 𝝃 and generic 𝒛 on the unit circle:

• (Underscreening) If𝑚 ≤ 𝑛
2 , Φ𝑚,𝑛 (𝒛, 𝝃) has |𝐿𝑃(𝑛, 𝑚) | isolated critical points.

• (Overscreening) If 𝑛+1
2 ≤ 𝑚 ≤ 𝑛, Φ𝑚,𝑛 (𝒛, 𝝃) has |𝐿𝑃(𝑛, 𝑛 − 𝑚) | isolated

critical points.

• (Upperbound) If 𝑚 > 𝑛, Φ𝑚,𝑛 (𝒛, 𝝃) has no critical points.

6.7 Examples: underscreening
In this section, we provide a series of figures to illustrate the trace configurations
arising from various multiple radial SLE(0) systems.

For multiple radial SLE(0) system with growth points 𝒛 and screening charges 𝝃,
the corresponding quadratic differential is given by

𝑄(𝑧)𝑑𝑧2 =

∏𝑚
𝑗=1 𝜉

2
𝑘∏𝑛

𝑘=1 𝑧𝑘
𝑧2𝑚−𝑛−2

∏𝑛
𝑘=1(𝑧 − 𝑧𝑘 )2∏𝑚
𝑗=1(𝑧 − 𝜉 𝑗 )4 𝑑𝑧

2.

Lemma 6.7.1. Given 𝑄(𝑧) ∈ QD(𝒛) associate to it a vector field 𝑣𝑄 on Ĉ defined
by

𝑣𝑄 (𝑧) =
1√︁
𝑄(𝑧)

(6.7.1)

where √︁
𝑄(𝑧) =

∏𝑚
𝑗=1 𝜉𝑘√︁∏𝑛
𝑘=1 𝑧𝑘

𝑧𝑚−
𝑛
2 −1

∏𝑛
𝑘=1(𝑧 − 𝑧𝑘 )∏𝑚
𝑗=1(𝑧 − 𝜉 𝑗 )2

The flow lines of ¤𝑧 = 𝑣𝑄 (𝑧) are the horizontal trajectories of 𝑄(𝑧)𝑑𝑧2.

Remark 6.7.2. This lemma provides an elementary way to plot the horizontal trajec-
tories of 𝑄(𝑧)𝑑𝑧2.

In the following figures, the zeros are marked in red, the poles in yellow, and the
marked point 𝑢 = 0 in green.

Figure 6.1: 𝑛 = 2, 𝑚 = 1, 𝑧1 = 𝑖, 𝑧2 = −𝑖. The SLE(0) curves connect 𝑧1 and 𝑧2 to
the origin. √︁

𝑄(𝑧) = 𝑖𝑧−2(𝑧 − 𝑖) (𝑧 + 𝑖)

Figure 6.2: 𝑛 = 2, 𝑚 = 1, 𝑧1 = 𝑖, 𝑧2 = −𝑖, 𝜉1 = 1. The SLE(0) curve connects 𝑧1

and 𝑧2, and does not surround the origin.√︁
𝑄(𝑧) = 𝑖𝑧−1 (𝑧 − 𝑖) (𝑧 + 𝑖)

(𝑧 − 1)2
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Figure 6.1: 𝑧1 = 𝑖, 𝑧2 = −𝑖 Figure 6.2: 𝑧1 = 𝑖, 𝑧2 = −𝑖, 𝜉1 = −1

Figure 6.3: 𝑧𝑘 = 𝑒2𝜋𝑖𝑘/3, 𝑘 = 0, 1, 2 Figure 6.4: 𝑧𝑘 = 𝑒2𝜋𝑖𝑘/3, 𝑘 = 0, 1, 2,
𝜉1 = −1

Figure 6.3: 𝑛 = 3, 𝑚 = 0. The SLE(0) curves connect all three 𝑧𝑘 to the origin.√︁
𝑄(𝑧) = 𝑖𝑧−5/2(𝑧 − 1) (𝑧 − 𝑒2𝜋𝑖/3) (𝑧 − 𝑒4𝜋𝑖/3)

Figure 6.4: 𝑛 = 3, 𝑚 = 1, with pole 𝜉 = −1. The SLE(0) curves connect 𝑧2 and 𝑧3,
and connect 𝑧1 to 0.√︁

𝑄(𝑧) = 𝑖𝑧−3/2 (𝑧 − 1) (𝑧 − 𝑒2𝜋𝑖/3) (𝑧 − 𝑒4𝜋𝑖/3)
(𝑧 − 1)2

Figure 6.5: 𝑛 = 4, 𝑚 = 0. All 𝑧𝑘 are connected to the origin.√︁
𝑄(𝑧) = 𝑖𝑧−3

3∏
𝑘=0

(𝑧 − 𝑒(2𝑘+1)𝜋𝑖/4)

Figure 6.6: 𝑛 = 4, 𝑚 = 1, with pole 𝜉 = 1. The SLE(0) curves connect 𝑧3 and 𝑧4 to
0, and connect 𝑧1 to 𝑧2.√︁

𝑄(𝑧) = −𝑖𝑧−2
∏3
𝑘=0(𝑧 − 𝑒(2𝑘+1)𝜋𝑖/4)

(𝑧 − 1)2
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Figure 6.5: 𝑧𝑘 = 𝑒(2𝑘+1)𝜋𝑖/4, 𝑘 =

0, 1, 2, 3
Figure 6.6: 𝑧𝑘 = 𝑒(2𝑘+1)𝜋𝑖/4, 𝑘 =

0, 1, 2, 3, 𝜉1 = 1

Figure 6.7: 𝑧𝑘 = 𝑒𝑘𝜋𝑖/4, 𝑘 =

1, 2, 3, 4, 𝜉1 = 1, 𝜉2 = −1
Figure 6.8: 𝑧𝑘 = 𝑒(2𝑘+1)𝜋𝑖/4, 𝑘 =

0, 1, 2, 3, 𝜉1 = −1

Figure 6.7: 𝑛 = 4, 𝑚 = 2, 𝑧𝑘 = 𝑒(2𝑘+1)𝜋𝑖/4, 𝜉1 = −1, 𝜉2 = 1. The SLE(0) curves
connect 𝑧1 and 𝑧4, and 𝑧2 and 𝑧3.√︁

𝑄(𝑧) = 𝑖𝑧−1
∏3
𝑘=0(𝑧 − 𝑒(2𝑘+1)𝜋𝑖/4)
(𝑧 − 1)2(𝑧 + 1)2

Figure 6.8: 𝑛 = 4, 𝑚 = 2, 𝑧𝑘 = 𝑒(2𝑘+1)𝜋𝑖/4, 𝜉1 =
√︁

2 −
√

3, 𝜉2 =
√︁

2 +
√

3. The
SLE(0) curves connect 𝑧3 and 𝑧4 to 0, and connect 𝑧1 to 𝑧2.√︁

𝑄(𝑧) = 𝑖𝑧−1
∏3
𝑘=0(𝑧 − 𝑒(2𝑘+1)𝜋𝑖/4)

(𝑧 −
√︁

2 −
√

3)2(𝑧 −
√︁

2 +
√

3)2

6.8 Examples: overscreening
Let us recall the definition of the trace quadratic differential

Definition 2. Restatement of definition (1.3.6)

Let 𝒛 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} be distinct points on the unit circle, a class of quadratic
differentials with prescribed zeros denoted by QD(𝒛):
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(1) involution symmetric: 𝑄(𝑧∗) (𝑑𝑧∗)2 = 𝑄(𝑧)𝑑𝑧2, where 𝑧∗ = 1
𝑧
;

(2) zeros of order 2 at {𝑧1, 𝑧2, . . . , 𝑧𝑛};

(3) {𝜉1, . . . , 𝜉𝑚} are poles of order 4 and 𝑅𝑒𝑠𝜉 𝑗 (
√
𝑄𝑑𝑧) = 0, 𝑗 = 1, . . . , 𝑚

(Residue-free);

(4) poles of order 𝑛 + 2 − 2𝑚 at marked points 0 and ∞.

Note that when 𝑚 > 𝑛
2 + 1, the poles at 0 and ∞ are in fact zeros. 𝑚 = 𝑛

2 + 1 is a
threshold for screening.

Figure 6.1: 𝑧1 = 1, 𝜉1 = −1 Figure 6.2: 𝑧1 = 𝑖, 𝑧2 = −𝑖, 𝜉1 = 1,
𝜉2 = −1

Figure 4.9: 𝑛 = 1, 𝑚 = 1, 𝑧1 = 1, 𝜉1 = −1. The SLE(0) curve connects 𝑧1 to 0.√︁
𝑄(𝑧) = 𝑧−1/2 𝑧 − 1

(𝑧 − 𝑖)2

Figure 4.10: 𝑛 = 2, 𝑚 = 2, 𝑧1 = −𝑖, 𝑧2 = 𝑖, 𝜉1 = −1, 𝜉2 = 1. The SLE(0) curve
connects 𝑧1 and 𝑧2. √︁

𝑄(𝑧) = 𝑖 (𝑧 − 𝑖) (𝑧 + 𝑖)
(𝑧 − 1)2(𝑧 + 1)2

Figure 4.11: 𝑛 = 3, 𝑚 = 2, 𝑧𝑘 = 𝑒2𝑘𝜋𝑖/3, 𝜉1 = −3
2 +

√
5

2 , 𝜉2 = −3
2 −

√
5

2 . SLE(0)
curves connect two of the 𝑧𝑘 ’s to 0, and the third pair together.√︁

𝑄(𝑧) = 𝑧−1/2 (𝑧 − 1) (𝑧 − 𝑒2𝜋𝑖/3) (𝑧 − 𝑒4𝜋𝑖/3)
(𝑧 + 3

2 −
√

5
2 )2(𝑧 + 3

2 +
√

5
2 )2
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Figure 6.3: 𝑧𝑘 = 𝑒2𝑘𝜋𝑖/3, 𝜉1 = −3
2 +√

5
2 , 𝜉2 = −3

2 −
√

5
2

Figure 6.4: 𝑧𝑘 = 𝑒2𝑘𝜋𝑖/3, 𝜉𝑘 =

𝑒(2𝑘−1)𝜋𝑖/3

Figure 4.12: 𝑛 = 3, 𝑚 = 3, 𝑧𝑘 = 𝑒2𝑘𝜋𝑖/3, 𝜉𝑘 = 𝑒(2𝑘−1)𝜋𝑖/3. The SLE(0) curve
connects two of the 𝑧𝑘 ’s to 0, and the remaining two together.√︁

𝑄(𝑧) = 𝑧1/2 (𝑧 − 1) (𝑧 − 𝑒2𝜋𝑖/3) (𝑧 − 𝑒4𝜋𝑖/3)∏2
𝑘=0(𝑧 − 𝑒(2𝑘+1)𝜋𝑖/3)2

Figure 6.5: 𝑧𝑘 = 𝑒(2𝑘+1)𝜋𝑖/4, 𝜉1 = 𝑖,
𝜉2,3 complex conjugates

Figure 6.6: 𝑧𝑘 = 𝑒(2𝑘+1)𝜋𝑖/4, 𝜉𝑘 =

𝑒𝑘𝜋𝑖/2

Figure 4.13: 𝑛 = 4, 𝑚 = 3, 𝑧𝑘 = 𝑒(2𝑘+1)𝜋𝑖/4, 𝜉1 = 𝑖, 𝜉2 = −
4√3√
2
+ −1+

√
3

2 𝑖, 𝜉3 =
4√3√
2
+ −1+

√
3

2 𝑖. SLE(0) curves connect 𝑧1 and 𝑧4, and 𝑧2 and 𝑧3.√︁
𝑄(𝑧) = 𝑧4 + 1

(𝑧 − 𝑖)2(𝑧 − 𝜉2)2(𝑧 − 𝜉3)2

Figure 4.14: 𝑛 = 4, 𝑚 = 3, 𝑧𝑘 = 𝑒(2𝑘+1)𝜋𝑖/4, 𝜉𝑘 = 𝑒𝑘𝜋𝑖/2, 𝑘 = 0, 1, 2, 3. SLE(0)
curves connect each 𝑧𝑘 to the origin.√︁

𝑄(𝑧) = 𝑧 · 𝑧
4 + 1
𝑧4 − 1
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C h a p t e r 7

MULTIPLE RADIAL SLE(0) SYSTEM WITH SPIN

7.1 Residue-free quadratic differentials with prescribed zeros

Definition 7.1.1 (Quadratic differentials with prescribed zeros and spin). Let 𝜽 =

{𝜃1, 𝜃2, . . . , 𝜃𝑛} be distinct points on the unit circle 𝜕D. We define QD(𝜽) to be the
class of meromorphic quadratic differentials on C of the form

𝑄(𝜃) 𝑑𝜃2 =

∏𝑚
𝑘=1 𝑒

2𝑖𝜁𝑘∏𝑛
𝑗=1 𝑒

𝑖𝜃 𝑗
𝑒𝑖(2𝑚−𝑛)𝜃

∏𝑛
𝑗=1

(
𝑒𝑖𝜃 − 𝑒𝑖𝜃 𝑗

)2∏𝑚
𝑘=1

(
𝑒𝑖𝜃 − 𝑒𝑖𝜁𝑘

)4 𝑑𝜃
2,

satisfying the following conditions:

1. symmetric under the involution 𝜃∗ = 𝜃, meaning

𝑄(𝜃∗) (𝑑𝜃∗)2 = 𝑄(𝜃)𝑑𝜃2.

2. distinct zeros at {𝜃1, 𝜃2, . . . , 𝜃𝑛}, each of order 2.

3. distinct finite poles at {𝜁1, . . . , 𝜁𝑚}, each of order 4, and the residues vanish
(Residue-free condition):

Res𝜁 𝑗 (
√︁
𝑄(𝜃)𝑑𝜃) = 0, for 𝑗 = 1, . . . , 𝑚.

Here, the poles {𝜁1, . . . , 𝜁𝑚} are finite, meaning they do not coincide with ∞.

Theorem 7.1.2 (Traces as horizontal trajectories in angular coordinates). Let 𝜽 =

{𝜃1, 𝜃2, . . . , 𝜃𝑛} be distinct angular coordinates on the unit circle, i.e., 𝑧 𝑗 = 𝑒𝑖𝜃 𝑗 ∈
𝜕D, and let 𝜻 = {𝜁1, 𝜁2, . . . , 𝜁𝑚} be positions of poles satisfying the conjudgation
symmetry 𝜁∗

𝑘
= −𝜁𝑘 and the stationary relations.

Then there exists a quadratic differential 𝑄(𝜃) 𝑑𝜃2 ∈ QD(𝜽), with double zeros at
𝜃1, . . . , 𝜃𝑛 and poles of order 4 at 𝜁1, . . . , 𝜁𝑚, such that the hulls 𝐾𝑡 generated by
the multiple radial Loewner flow with driving functions 𝜽 (𝑡) and screening charges
𝜻 (𝑡) are a subset of the horizontal trajectories of 𝑄(𝜃) 𝑑𝜃2 whose limiting ends are
at 𝜽 , up to any time 𝑡 prior to a collision among poles and zeros.
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Moreover, for such times 𝑡,

𝑄(𝜽) ◦ ℎ−1
𝑡 ∈ QD(𝜽 (𝑡)),

where ℎ𝑡 denotes the covering map associated with the Loewner evolution, and 𝜽 (𝑡)
are the angles of the time-evolved growth points.

Proof. The proof proceeds by adapting the argument used in Theorem 1.3.7, now
expressed entirely in angular coordinates. Specifically, we apply the angular version
of the integral of motion (see Corollary 6.4.2) to show that the time-evolved hulls 𝐾𝑡
remain embedded in the horizontal trajectories of a quadratic differential𝑄(𝜃)𝑑𝜃2 ∈
QD(𝜽), as claimed. □

7.2 Field integral of motion and horizontal trajectories as flow lines
In this section, we generalize the integral of motion for multiple radial SLE(0)
systems to the case where the spin 𝜂 is non-zero.

We begin by considering the following integral of motion 𝑁𝑡 (𝑧): let 𝑧1, 𝑧2, . . . , 𝑧𝑛

be distinct points on the unit circle, and 𝑧 ∈ D. Let

𝑁𝑡 (𝑧) = 𝑒−(𝑚−
𝑛
2 ) (

∫ 𝑡

0
∑

𝑗 𝜈 𝑗 (𝑠)𝑑𝑠)𝑔𝑡 (𝑧)𝑚−
𝑛
2 −1− 𝜂𝑖

2 𝑔′𝑡 (𝑧)
∏𝑛
𝑘=1(𝑔𝑡 (𝑧) − 𝑧𝑘 (𝑡))∏𝑚
𝑗=1(𝑔𝑡 (𝑧) − 𝜉 𝑗 (𝑡))2 .

However, the term 𝑔𝑡 (𝑧)𝑚−
𝑛
2 −1− 𝜂𝑖

2 is multivalued and 𝑁𝑡 (𝑧) is in fact not well-defined.
To resolve this technical issue, we will write this expression in angular coordinates.

Theorem 7.2.1. In angular coordinates, let 𝜉𝑘 = 𝑒𝑖𝜁𝑘 , 𝑧𝑘 = 𝑒𝑖𝜃𝑘 , and let ℎ𝑡 (𝑧) be
the covering map of the radial Loewner flow 𝑔𝑡 (𝑧), i.e.,( 𝑒𝑖ℎ𝑡 (𝑧) = 𝑔𝑡 (𝑒𝑖𝑧).) Then for
each 𝑧 ∈ H, define the observable

𝑁
ang
𝑡 (𝑧) = 𝑒−(𝑚− 𝑛

2 )𝑡 ·
∏𝑚

𝑗=1 𝑒
𝑖𝜁 𝑗 (𝑡)∏𝑛

𝑘=1 𝑒
𝑖
𝜃𝑘 (𝑡 )

2

·𝑒𝑖(𝑚− 𝑛
2 −1)ℎ𝑡 (𝑧) ·𝑒

𝜂

2 ℎ𝑡 (𝑧) ·ℎ′𝑡 (𝑧)·
∏𝑛
𝑘=1(𝑒𝑖ℎ𝑡 (𝑧) − 𝑒𝑖𝜃𝑘 (𝑡))∏𝑚
𝑗=1(𝑒𝑖ℎ𝑡 (𝑧) − 𝑒𝑖𝜁 𝑗 (𝑡))2

·𝑒−𝑖𝑧 .

(7.2.1)
Then 𝑁ang

𝑡 (𝑧) is an integral of motion on the time interval [0, 𝜏𝑧 ∧ 𝜏), where 𝜏 is the
first collision time of any poles or critical points, and 𝜏𝑧 is the swallowing time of
the point 𝑧 under the multiple radial Loewner flow with parametrization 𝜈 𝑗 (𝑡) = 1,
𝜈𝑘 (𝑡) = 0 for 𝑘 ≠ 𝑗 .

Proof. The expression 𝑁ang
𝑡 (𝑧) can be factorized as the product of a part depending

only on time,

𝐴ang(𝑡) =
∏𝑚

𝑗=1 𝑒
𝑖𝜁 𝑗 (𝑡)∏𝑛

𝑘=1 𝑒
𝑖
𝜃𝑘 (𝑡 )

2

· 𝑒−(𝑚− 𝑛
2 )𝑡 ,
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and a part depending on 𝑧,

𝐵
ang
𝑡 (𝑧) = 𝑒𝑖(𝑚− 𝑛

2 −1)ℎ𝑡 (𝑧) · 𝑒
𝜂

2 ℎ𝑡 (𝑧) · ℎ′𝑡 (𝑧) ·
∏𝑛
𝑘=1(𝑒𝑖ℎ𝑡 (𝑧) − 𝑒𝑖𝜃𝑘 (𝑡))∏𝑚
𝑗=1(𝑒𝑖ℎ𝑡 (𝑧) − 𝑒𝑖𝜁 𝑗 (𝑡))2

· 𝑒−𝑖𝑧 .

By direct computation,
𝑑

𝑑𝑡
log 𝐴ang(𝑡) = −𝑖𝜂

2
,

𝑑

𝑑𝑡
log 𝐵ang

𝑡 (𝑧) = 𝑖𝜂
2
.

These terms cancel, and hence
𝑑

𝑑𝑡
log 𝑁ang

𝑡 (𝑧) = 𝑑

𝑑𝑡
log 𝐴ang(𝑡) + 𝑑

𝑑𝑡
log 𝐵ang

𝑡 (𝑧) = 0.

Therefore, 𝑁ang
𝑡 (𝑧) is conserved under the flow. □

Theorem 7.2.2. In angular coordinates, define 𝜉𝑘 = 𝑒𝑖𝜁𝑘 , 𝑧𝑘 = 𝑒𝑖𝜃𝑘 , and let ℎ𝑡 (𝑧)
be the covering map of the Loewner flow 𝑔𝑡 (𝑧), i.e., 𝑒𝑖ℎ𝑡 (𝑧) = 𝑔𝑡 (𝑒𝑖𝑧). For any 𝑧 ∈ H,
define:

𝐴ang(𝑡) =
∏𝑚

𝑗=1 𝑒
𝑖𝜁 𝑗 (𝑡)∏𝑛

𝑘=1 𝑒
𝑖
𝜃𝑘 (𝑡 )

2

, (7.2.2)

𝐵
ang
𝑡 (𝑧) = 𝑒−(2𝑚−𝑛)

∫ 𝑡

0
∑

𝑗 𝜈 𝑗 (𝑠)𝑑𝑠 · 𝑔𝑡 (𝑧)2𝑚−𝑛−2 · 𝑒𝑖(𝑚− 𝑛
2 −1+ 𝜂

2 )ℎ𝑡 (𝑧) · ℎ′𝑡 (𝑧) · 𝑒𝑖ℎ𝑡 (𝑧)

·

∏𝑛
𝑘=1

(
𝑒𝑖ℎ𝑡 (𝑧) − 𝑒𝑖𝜃𝑘 (𝑡)

)
∏𝑚

𝑗=1
(
𝑒𝑖ℎ𝑡 (𝑧) − 𝑒𝑖𝜁 𝑗 (𝑡)

)2 , (7.2.3)

𝑁
ang
𝑡 (𝑧) = 𝐴ang(𝑡) · 𝐵ang

𝑡 (𝑧). (7.2.4)

Then𝑁ang
𝑡 (𝑧) defines a field integral of motion for the multiple radial SLE(0) Loewner

flows with driving weights 𝜈 𝑗 (𝑡), on the interval [0, 𝜏𝑡∧𝜏), where 𝜏 is the first collision
time among the poles or driving points.

Proof. The computation is a deformation of the zero-spin case (𝜂 = 0), with the
additional spin term contributing to the angular prefactor. By direct differentiation:

𝑑

𝑑𝑡
log 𝐴ang(𝑡) = −𝑖𝜂

2

𝑛∑︁
𝑗=1

𝜈 𝑗 (𝑡), (7.2.5)

𝑑

𝑑𝑡
log 𝐵ang

𝑡 (𝑧) = 𝑖𝜂
2

𝑛∑︁
𝑗=1

𝜈 𝑗 (𝑡), (7.2.6)

𝑑

𝑑𝑡
log 𝑁ang

𝑡 (𝑧) = 𝑑

𝑑𝑡
log 𝐴ang(𝑡) + 𝑑

𝑑𝑡
log 𝐵ang

𝑡 (𝑧) = 0. (7.2.7)

Hence, 𝑁ang
𝑡 (𝑧) is preserved under the flow and is therefore a field integral of

motion. □
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7.3 Classical limit of martingale observables*
In this section, we discuss how the field integral of motion is heuristically derived as
the classical limit of martingale observables constructed as the correlation functions
of conformal fields.

Based on the SLE-CFT correspondence, we can couple the multiple radial SLE(𝜅)
system to a conformal field theory constructed via vertex operators, following the
approach outlined in Kang and N. Makarov (2013) and N-G. Kang and N. Makarov
(2021)

Definition 7.3.1 (𝑛-leg operator with screening charges). Consider the following
charge distribution on the Riemann sphere

𝜷 = 𝑏𝛿0 + 𝑏𝛿∞

𝝉1 =

𝑛∑︁
𝑗=1
𝑎𝛿𝑧 𝑗 −

𝑚∑︁
𝑘=1

2𝑎𝛿𝜉𝑘 +(𝑏+(𝑚− 𝑛
2
)𝑎− 𝑖𝜂𝑎

2
)𝛿0+(𝑏+(𝑚− 𝑛

2
)𝑎+ 𝑖𝜂𝑎

2
)𝛿∞ (7.3.1)

𝝉2 = −𝜎
2
𝛿0 −

𝜎

2
𝛿∞ + 𝜎𝛿𝑧,

where the parameter 𝜎 = 1
𝑎
.

The 𝑛-leg operator with screening charges 𝝃 and background charge 𝜷 is given by
the OPE exponential:

O𝜷 [𝝉1] =
𝐶(𝑏) [𝝉1 + 𝜷]
𝐶(𝑏) [𝜷]

e⊙𝑖Φ[𝝉1] . (7.3.2)

Definition 7.3.2 (Screening fields). For each link pattern 𝛼, we can choose closed
contours C1, . . . , C𝑛 along which we may integrate the 𝝃 variables to screen the
vertex fields. Let S be the screening operator, we define the screening operation as

S𝛼O𝜷 [𝝉1] =
∮
C1

. . .

∮
C𝑛

O𝜷 [𝝉1] .

Meanwhile, we integrate the correlation function EO𝜷 [𝝉1] = Φ𝜅 (𝒛, 𝝃) , the con-
formal dimension is 1 at the 𝝃 points, i.e. since 𝜆𝑏 (−2𝑎) = 1. This leads to the
partition function for the corresponding multiple radial SLE(𝜅) system:

J 𝜂
𝛼 (𝒛) := ES𝛼O𝜷 [𝝉1] =

∮
C1

. . .

∮
C𝑛

Φ𝜅 (𝒛, 𝝃)𝑑𝜉𝑛 . . . 𝑑𝜉1.
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Theorem 7.3.3 (Martingale observable). For any tensor product 𝑋 of fields in the
OPE family F𝜷 of Φ𝜷,

𝑀𝑡,𝜅 (𝑋) =
ES𝛼O𝜷 [𝝉1]𝑋
ES𝛼O𝜷 [𝝉1]

∥𝑔−1
𝑡 (7.3.3)

is a local martingale, where 𝑔𝑡 (𝑧) is the Loewner map for multiple radial SLE(𝜅)
system associated to J 𝜂

𝛼 (𝒛) = ES𝛼O𝜷 [𝝉1].

Corollary 7.3.4. Let the divisor 𝝉2 = −𝜎
2 𝛿0 − 𝜎

2 𝛿∞ + 𝜎𝛿𝑧 where the parameter
𝜎 = 1

𝑎
, and insert 𝑋 = O𝜷 [𝝉2].

𝑀𝑡,𝜅 (𝑧) =
ESO𝜷 [𝝉1]O𝜷 [𝝉2]

ESO𝜷 [𝝉1]
∥𝑔−1
𝑡 (7.3.4)

is local martingale where 𝑔𝑡 (𝑧) is the Loewner map for multiple radial SLE(𝜅) system
associated to Z𝜅 (𝒛) = ESO𝜷 [𝝉1].

Explicit computation shows that

E
∮
C1

. . .

∮
C𝑛

O𝜷 [𝝉1]O𝜷 [𝝉2]

=

∮
C1

. . .

∮
C𝑛

∏
1≤𝑖< 𝑗≤𝑛

(𝑧𝑖 − 𝑧 𝑗 )𝑎
2 ∏

1≤𝑖< 𝑗≤𝑚
(𝜉𝑖 − 𝜉 𝑗 )4𝑎2

𝑛∏
𝑖=1

𝑚∏
𝑗=1

(
𝑧𝑖 − 𝜉 𝑗

)−2𝑎2

∏
𝑗

𝑧
𝑎(𝑏− 𝑛−2𝑚

2 𝑎− 𝑖𝜂𝑎

2 − 𝜎
2 )

𝑗

∏
𝑘

𝜉
−2𝑎(𝑏− 𝑛−2𝑚

2 𝑎− 𝑖𝜂𝑎

2 − 𝜎
2 )

𝑘
𝑧𝜎(𝑏−

𝑛−2𝑚
2 𝑎− 𝑖𝜂𝑎

2 − 𝜎
2 )𝑔′(𝑧 𝑗 )𝜆𝑏 (𝑎)𝑔′(𝑧)𝜆𝑏 (𝜎)

(𝑧 − 𝑧 𝑗 )𝜎𝑎 (𝑧 − 𝜉𝑘 )−2𝜎𝑎 |𝑔′(0) |𝜆𝑏 (𝑏+ 2𝑚−𝑛
2 𝑎+ 𝑖𝜂𝑎

2 − 𝜎
2 )+𝜆𝑏 (𝑏+

2𝑚−𝑛
2 𝑎− 𝑖𝜂𝑎

2 − 𝜎
2 )

E
∮
C1

. . .

∮
C𝑛

O𝜷 [𝝉1]

=

∮
C1

. . .

∮
C𝑛

∏
1≤𝑖< 𝑗≤𝑛

(𝑧𝑖 − 𝑧 𝑗 )𝑎
2 ∏

1≤𝑖< 𝑗≤𝑚
(𝜉𝑖 − 𝜉 𝑗 )4𝑎2

𝑛∏
𝑖=1

𝑚∏
𝑗=1

(
𝑧𝑖 − 𝜉 𝑗

)−2𝑎2

∏
𝑗

𝑧
𝑎(𝑏− 𝑛−2𝑚

2 − 𝑖𝜂𝑎

2 )
𝑗

∏
𝑘

𝜉
−2𝑎(𝑏− 𝑛−2𝑚

2 𝑎− 𝑖𝜂𝑎

2 )
𝑘

𝑔′(𝑧 𝑗 )𝜆𝑏 (𝑎)

|𝑔′(0) |𝜆𝑏 (𝑏− 2𝑚−𝑛
2 𝑎+ 𝑖𝜂𝑎

2 )+𝜆𝑏 (𝑏− 2𝑚−𝑛
2 𝑎− 𝑖𝜂𝑎

2 )

.

Conjecture 7.3.5. As 𝜅 → 0, the Coulomb gas contour integrals concentrate on the
critical points of the master function.
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𝑁𝑡 (𝑧) =𝑀𝑡,0(𝑧) = lim
𝜅→0

𝑀𝑡,𝜅 (𝑧) = lim
𝜅→0

E
∮
C1
. . .

∮
C𝑛

O𝜷 [𝝉1]O𝜷 [𝝉2]

E
∮
C1
. . .

∮
C𝑛

O𝜷 [𝝉1]

= |𝑔′(0) |−(𝑚− 𝑛
2 )

∏𝑚
𝑗=1 𝜉𝑘√︁∏𝑛
𝑘=1 𝑧𝑘

𝑧𝑚−
𝑛
2 −1− 𝜂𝑖

2 𝑔′(𝑧)
∏𝑛
𝑘=1(𝑧 − 𝑧𝑘 )∏𝑚
𝑗=1(𝑧 − 𝜉 𝑗 )2

(7.3.5)

which is exactly the integral of motion we use.

𝑀𝑡,𝜅 (𝑧) is a (𝜆𝑏 (𝜎), 0) differential with respect to 𝑧, where 𝜆𝑏 (𝜎) = 1
2𝑎2 − 𝑏

𝑎
. By

taking the limit 𝜅 → 0, lim𝜅→0 𝜆𝑏 (𝜎) = 1, thus 𝑀𝑡,0(𝑧) is a (1,0) differential.

Remark 7.3.6. The integral of motion 𝑁𝑡 (𝑧) can be verified through direct compu-
tation.

7.4 Examples: spin
In this section, we provide a series of figures to illustrate the trace configurations
arising from various multiple radial SLE(0) systems with spin.

Remark 7.4.1. In the case of multiple radial SLE(0) with spin 𝜂, for 𝒛 and 𝝃, the
quadratic differential 𝑄(𝑧)𝑑𝑧2 can be written as

𝑄(𝑧)𝑑𝑧2 =

∏𝑚
𝑗=1 𝜉

2
𝑘∏𝑛

𝑘=1 𝑧𝑘
𝑧2𝑚−𝑛−2−𝜂𝑖

∏𝑛
𝑘=1(𝑧 − 𝑧𝑘 )2∏𝑚
𝑗=1(𝑧 − 𝜉 𝑗 )4 𝑑𝑧

2.

Figure 7.1: 𝑛 = 1, 𝜂 = −4 Figure 7.2: 𝑛 = 1, 𝜂 = 4

Figure 7.1: 𝑛 = 1, 𝑧1 = 1, 𝜂 = −4. A clockwise spiral connects 𝑧1 to 0.√︁
𝑄(𝑧) = 𝑧−3/2+2𝑖 (𝑧 − 1)

Figure 7.2: 𝜂 = 4. A counterclockwise spiral connects 𝑧1 to 0.√︁
𝑄(𝑧) = 𝑧−3/2−2𝑖 (𝑧 − 1)
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Figure 7.3: 𝑛 = 2, 𝑚 = 0, 𝜂 = −4 Figure 7.4: 𝑛 = 2, 𝑚 = 1, 𝜂 = −4

—

Figure 7.3: 𝑧1 = 𝑖, 𝑧2 = −𝑖, two spirals connect 𝑧1, 𝑧2 to 0.√︁
𝑄(𝑧) = 𝑧−2+2𝑖 (𝑧 − 𝑖) (𝑧 + 𝑖)

Figure 7.4: Pole 𝜉 =
√
−4−2𝑖√
4−2𝑖

. The link pattern remains stable under spin perturba-
tion; the pole moves clockwise as 𝜂 < 0. A closed orbit is observed.√︁

𝑄(𝑧) = 𝑖𝑧−1+2𝑖 (𝑧 − 𝑖) (𝑧 + 𝑖)(
𝑧 −

√
−4−2𝑖√
4−2𝑖

)2

—

Figure 7.5: 𝑛 = 3, 𝑚 = 0, 𝜂 = −4 Figure 7.6: 𝑛 = 3, 𝑚 = 1, 𝜂 = −4

Figure 7.5: 𝑧𝑘 = 𝑒2𝑘𝜋𝑖/3. Three spirals connect each 𝑧𝑘 to 0.√︁
𝑄(𝑧) = 𝑧−5/2+2𝑖 (𝑧 − 1) (𝑧 − 𝑒2𝜋𝑖/3) (𝑧 − 𝑒4𝜋𝑖/3)

Figure 7.6: Pole 𝜉 = (4+3𝑖)1/3

(4−3𝑖)1/3 .√︁
𝑄(𝑧) = 𝑧−3/2+2𝑖 (𝑧 − 1) (𝑧 − 𝑒2𝜋𝑖/3) (𝑧 − 𝑒4𝜋𝑖/3)

(𝑧 − 𝜉)2
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Figure 7.7: 𝑛 = 4, 𝑚 = 0, 𝜂 = −4 Figure 7.8: 𝑛 = 4, 𝑚 = 1, 𝜂 = −4

—

Figure 7.7: 𝑧𝑘 = 𝑒(2𝑘+1)𝜋𝑖/4, 𝜂2 = 2.√︁
𝑄(𝑧) = 𝑧−3+2𝑖

3∏
𝑘=0

(
𝑧 − 𝑒(2𝑘+1)𝜋𝑖/4

)
Figure 7.8: Pole 𝜉 = (−4−4𝑖)1/4

(4−4𝑖)1/4 .√︁
𝑄(𝑧) = −𝑖 (−4 − 4𝑖)1/4

(4 − 4𝑖)1/4 𝑧
−2+2𝑖

∏3
𝑘=0(𝑧 − 𝑒(2𝑘+1)𝜋𝑖/4)

(𝑧 − 𝜉)2

—

Figure 7.9: 𝑛 = 4, 𝑚 = 2, 𝜂 = −4 Figure 7.10: 𝑛 = 4, 𝑚 = 2, 𝜂 = −1

Figure 7.9: Poles at

𝜉1 =
(−4 − 4𝑖)1/4

(4 − 4𝑖)1/4 , 𝜉2 = − (−4 − 4𝑖)1/4

(4 − 4𝑖)1/4

The link pattern is stable under perturbation; a closed orbit appears.√︁
𝑄(𝑧) = −𝑖 (−4 − 4𝑖)1/2

(4 − 4𝑖)1/2 𝑧
−2+𝑖

∏3
𝑘=0(𝑧 − 𝑒(2𝑘+1)𝜋𝑖/4)
(𝑧 − 𝜉1)2(𝑧 − 𝜉2)2
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Figure 7.10: 𝜂 = −1. Let 𝜉1 = 0.5299 − 0.2650𝑖, 𝜉2 = 1.5097 − 0.7549𝑖 be the
roots of

3∑︁
𝑘=0

𝜉 − 𝑒(2𝑘+1)𝜋𝑖/4

𝜉 + 𝑒(2𝑘+1)𝜋𝑖/4 + 𝑖 = 2
𝜉 + 1/𝜉∗
𝜉 − 1/𝜉∗

Then √︁
𝑄(𝑧) = (0.8 + 0.6𝑖)𝑧−1+𝑖/2

∏3
𝑘=0(𝑧 − 𝑒(2𝑘+1)𝜋𝑖/4)
(𝑧 − 𝜉1)2(𝑧 − 𝜉2)2
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C h a p t e r 8

RELATIONS TO CALOGERO-SUTHERLAND SYSTEM

8.1 Multiple radial SLE(0) and classical Calogero-Sutherland system
In this section, we study the relations between the multiple radial SLE(0) and
classical Calogero-Sutherland system.

Theorem 8.1.1. Let 𝜽 = {𝜃1, . . . , 𝜃𝑛} be distinct real points and 𝜁 = {𝜁1, . . . , 𝜁𝑚}
closed under conjugation and solve the stationary relation. Let 𝜽 (𝑡) and 𝜻 (𝑡)
evolve according to multiple radial SLE(0) system with a common parametrization
of capacity (𝑖.𝑒.𝜈 𝑗 (𝑡) = 1).

(i) The pair (𝜽 (𝑡), 𝜻 (𝑡)) forms the closed dynamical system satisfying

¤𝜃 𝑗 = 2 ©«
∑︁
𝑘≠ 𝑗

cot(
𝜃 𝑗 − 𝜃𝑘

2
) −

𝑚∑︁
𝑘=1

cot(
𝜃 𝑗 − 𝜁𝑘

2
)ª®¬ , (8.1.1)

and

¤𝜁𝑘 = 2 ©«−
∑︁
𝑙≠𝑘

cot( 𝜁𝑘 − 𝜁𝑙
2

) +
𝑛∑︁
𝑗=1

cot(
𝜁𝑘 − 𝜃 𝑗

2
)ª®¬ . (8.1.2)

(ii) 𝜽 (𝑡) evolve according to the classical Calegero-Sutherland Hamiltonian, in
other words:

¥𝜃 𝑗 = −
∑︁
𝑘≠ 𝑗

cos( 𝜃 𝑗−𝜃𝑘2 )

sin3( 𝜃 𝑗−𝜃𝑘2 )
.

(iii) 𝜁𝑘 follows the second-order dynamics.

¥𝜁𝑘 = −
∑︁
𝑙≠𝑘

cos( 𝜁𝑘−𝜁𝑙2 )
sin3( 𝜁𝑘−𝜁𝑙2 )

. (8.1.3)

(iv) The energy of the system is given by

H(𝜽 , 𝒑) = −𝑛(2𝑚 − 𝑛)2

2
+ 𝑛

2
− 𝑛(𝑛2 − 1)

6
.

Proof of theorem (8.1.1).
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(i) The evolution of 𝜃 𝑗 (𝑡) is

¤𝜃 𝑗 = ©«
∑︁
𝑘≠ 𝑗

cot(
𝜃 𝑗 − 𝜃𝑘

2
) − 2

𝑚∑︁
𝑘=1

cot(
𝜃 𝑗 − 𝜁𝑘

2
) +

∑︁
𝑘≠ 𝑗

cot(
𝜃 𝑗 − 𝜃𝑘

2
)ª®¬

=2
∑︁
𝑘≠ 𝑗

cot(
𝜃 𝑗 − 𝜃𝑘

2
) − 2

𝑚∑︁
𝑘=1

cot(
𝜃 𝑗 − 𝜁𝑘

2
).

On the other hand, since the poles follow the Loewner flow we have 𝜁𝑘 (𝑡) :=
𝑔𝑡 (𝜁𝑘 (0)), and therefore

¤𝜁𝑘 = ¤𝑔𝑡 (𝜁𝑘 (0)) =
𝑛∑︁
𝑗=1

cot(
𝑔𝑡 (𝜁𝑘 (0)) − 𝜃 𝑗

2
) =

𝑛∑︁
𝑗=1

cot(
𝜁𝑘 − 𝜃 𝑗

2
).

The stationary relation implies that

¤𝜁𝑘 = 2
∑︁
𝑙≠𝑘

cot( 𝜁𝑘 − 𝜁𝑙
2

) = −2
∑︁
𝑙≠𝑘

cot( 𝜁𝑘 − 𝜁𝑙
2

) + 2
𝑛∑︁
𝑗=1

cot(
𝜁𝑘 − 𝜃 𝑗

2
).

(ii) By differentiating, we have

¥𝜃 𝑗 = −
∑︁
𝑘≠ 𝑗

¤𝜃 𝑗 − ¤𝜃𝑘
sin2( 𝜃 𝑗−𝜃𝑘2 )

+
∑︁
𝑙

¤𝜃 𝑗 − ¤𝜁𝑙
sin2( 𝜃 𝑗−𝜁𝑙2 )

.

Using the formula (8.1.1) for ¤𝜃 𝑗 , ¤𝜃𝑘 and the equality (8.1.2) for ¤𝜁𝑙 we obtain

¥𝜃 𝑗 = − 1
2

∑︁
𝑘≠ 𝑗

1

sin2( 𝜃 𝑗−𝜃𝑘2 )

(
2 cot(

𝜃 𝑗 − 𝜃𝑘
2

)
)
+

− 1
2

∑︁
𝑘≠ 𝑗

1

sin2( 𝜃 𝑗−𝜃𝑘2 )
©«
∑︁
𝑙≠ 𝑗 ,𝑘

(
cot(

𝜃 𝑗 − 𝜃𝑙
2

) − cot( 𝜃𝑘 − 𝜃𝑙
2

)
)
+

∑︁
𝑙

(
cot(

𝜁𝑙 − 𝜃 𝑗
2

) − cot( 𝜁𝑙 − 𝜃𝑘
2

)
)ª®¬

+ 1
2

∑︁
𝑙

1

sin2( 𝜃 𝑗−𝜁𝑙2 )
©«
∑︁
𝑘≠ 𝑗

cot(
𝜃 𝑗 − 𝜃𝑘

2
) +

𝑚∑︁
𝑠=1

cot(
𝜁𝑠 − 𝜃 𝑗

2
) +

∑︁
𝑠≠𝑙

cot( 𝜁𝑙 − 𝜁𝑠
2

) −
𝑛∑︁
𝑘=1

cot( 𝜁𝑙 − 𝜃𝑘
2

)ª®¬ .
Rearranging terms gives

¥𝜃 𝑗 +
∑︁
𝑘≠ 𝑗

cos( 𝜃 𝑗−𝜃𝑘2 )

sin3( 𝜃 𝑗−𝜃𝑘2 )
− 1

2

∑︁
𝑘≠ 𝑗

∑︁
𝑙≠ 𝑗 ,𝑘

1

sin( 𝜃 𝑗−𝜃𝑘2 ) sin( 𝜃 𝑗−𝜃𝑙2 ) sin( 𝜃𝑘−𝜃𝑙2 )

= −1
2

∑︁
𝑘≠ 𝑗

∑︁
𝑙

1

sin
(
𝜃 𝑗−𝜃𝑘

2

)
sin

(
𝜃 𝑗−𝜁𝑙

2

) (
𝜃𝑘−𝜁𝑙

2

) +
+ 1

2

∑︁
𝑙

1

sin
(
𝜃 𝑗−𝜁𝑙

2

)2
©«
∑︁
𝑘≠ 𝑗

cot(
𝜃 𝑗 − 𝜃𝑘

2
) +

∑︁
𝑚

cot(
𝜁𝑚 − 𝜃 𝑗

2
) −

∑︁
𝑚≠𝑙

cot( 𝜁𝑙 − 𝜁𝑚
2

)ª®¬ .
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The last term on the right hand side used the stationary relation and then use
the stationary relation again to obtain

1
2

∑︁
𝑙

1

sin
(
𝜃 𝑗−𝜁𝑙

2

)2
©«
∑︁
𝑘≠ 𝑗

cot(
𝜃 𝑗 − 𝜃𝑘

2
) +

∑︁
𝑚

cot(
𝜁𝑚 − 𝜃 𝑗

2
) −

∑︁
𝑚≠𝑙

cot( 𝜁𝑙 − 𝜁𝑚
2

)ª®¬
=

1
2

∑︁
𝑙

1

sin
(
𝜃 𝑗−𝜁𝑙

2

)2

∑︁
𝑚≠𝑙

(
cot( 𝜁𝑙 − 𝜁𝑚

2
) + cot(

𝜁𝑚 − 𝜃 𝑗
2

)
)

=
1
2

∑︁
𝑙

∑︁
𝑚≠𝑙

1

sin
(
𝜃 𝑗−𝜁𝑙

2

)
sin

(
𝜃 𝑗−𝜁𝑚

2

)
sin

(
𝜁𝑙−𝜁𝑚

2

) .
Combining all of the above, we obtain

¥𝜃 𝑗 +
∑︁
𝑘≠ 𝑗

cos( 𝜃 𝑗−𝜃𝑘2 )

sin3( 𝜃 𝑗−𝜃𝑘2 )
=

1
2

∑︁
𝑘≠ 𝑗

∑︁
𝑙≠ 𝑗 ,𝑘

1

sin
(
𝜃 𝑗−𝜃𝑘

2

)
sin

(
𝜃 𝑗−𝜃𝑙

2

)
sin

(
𝜃𝑘−𝜃𝑙

2

)
+ 1

2

∑︁
𝑙

∑︁
𝑚≠𝑙

1

sin
(
𝜃 𝑗−𝜁𝑙

2

)
sin

(
𝜃 𝑗−𝜁𝑚

2

)
sin

(
𝜁𝑙−𝜁𝑚

2

) .
The right-hand side is canceled by symmetry.

(iii) Differentiating the equality (8.1.2), we have

¥𝜁𝑘 = −
∑︁
𝑙≠𝑘

¤𝜁𝑘 − ¤𝜁𝑙
sin2( 𝜁𝑘−𝜁𝑙2 )

.

Now by using the first equality of (6.4) again for ¤𝜁𝑘 , ¤𝜁𝑙 we obtain

¥𝜁𝑘 = −1
2

∑︁
𝑙≠𝑘

1
sin2( 𝜁𝑘−𝜁𝑙2 )

(
cot( 𝜁𝑘 − 𝜁𝑙

2
) +

∑︁
𝑚≠𝑘,𝑙

cot( 𝜁𝑘 − 𝜁𝑚
2

) − cot( 𝜁𝑙 − 𝜁𝑘
2

) −
∑︁
𝑚≠𝑘,𝑙

cot( 𝜁𝑙 − 𝜁𝑚
2

)
)

Rearranging terms gives

¥𝜁𝑘 = −
∑︁
𝑙≠𝑘

cos( 𝜁𝑘−𝜁𝑙2 )
sin3( 𝜁𝑘−𝜁𝑙2 )

+ 1
2

∑︁
𝑙≠𝑘

∑︁
𝑚≠𝑘,𝑙

1
sin( 𝜁𝑘−𝜁𝑙2 ) sin( 𝜁𝑘−𝜁𝑚2 ) sin( 𝜁𝑙−𝜁𝑚2 )

.

The last term is canceled by symmetry.

(iv) For a multiple radial SLE(0) system with 𝑛 growth points and 𝑚 screening
charges that solve the stationary relations, by equation (6.2.1) in the proof of
the theorem (6.2.1),

𝑈 𝑗 =
∑︁
𝑘≠ 𝑗

cot(
𝜃 𝑗 − 𝜃𝑘

2
) − 2

𝑚∑︁
𝑘=1

cot(
𝜃 𝑗 − 𝜁𝑘

2
)
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satisfies the null vector equation (1.3.3) with constant

ℎ𝑚,𝑛 = − (2𝑚 − 𝑛)2

2
+ 1

2
.

Plugging into equation (8.1.4) and equation (8.1.6), we obtain the desired
result.

□

Proof of theorem (1.4.1). For multiple radial SLE(0) system with common parametriza-
tion of capacity (i.e. 𝜈 𝑗 (𝑡) = 1 for 𝑗 = 1, 2, . . . , 𝑛), let

{(
𝜃 𝑗 ,𝑈 𝑗

)
, 𝑗 = 1, . . . , 𝑛

}
are

related to
{(
𝜃 𝑗 , 𝑝 𝑗

)
, 𝑗 = 1, . . . , 𝑛

}
via

𝑝 𝑗 =
©«𝑈 𝑗 +

∑︁
𝑘≠ 𝑗

cot(
𝜃 𝑗 − 𝜃𝑘

2
)ª®¬ ,

where𝑈 𝑗 solves the null vector equations (1.3.3).

(i) Solving for𝑈 𝑗 and inserting the result into the left-hand side of the null vector
equation leads to the identity.

ℎ =
1
2
𝑈2
𝑗 +

∑︁
𝑘

𝑓𝑘 𝑗𝑈𝑘 −
∑︁
𝑘

3
2
(1 + 𝑓 2

𝑗 𝑘 )

=
1
2
𝑝2
𝑗 −

∑︁
𝑘

(
𝑝 𝑗 + 𝑝𝑘

)
𝑓 𝑗 𝑘 +

∑︁
𝑘

∑︁
𝑙≠𝑘

𝑓 𝑗 𝑘 𝑓 𝑗 𝑙 − 2
∑︁
𝑘

𝑓 2
𝑗 𝑘 + 𝐶

2
𝑛−1 +

3
2
(𝑛 − 1)

= H 𝑗 (𝜽 , 𝒑) + 𝐶2
𝑛−1 +

3
2
(𝑛 − 1),

(8.1.4)

where

𝑓 𝑗 𝑘 = 𝑓 𝑗 𝑘 (𝜽) =


0, 𝑗 = 𝑘

cot( 𝜃 𝑗−𝜃𝑘2 ), 𝑗 ≠ 𝑘
.

Therefore, H 𝑗 is preserved under the Loewner flow.

Futheremore, for each 𝑐 ∈ R, the submanifolds defined by the null vector
Hamiltonian

𝑁𝑐 =
{
(𝜽 , 𝒑) : H 𝑗 (𝜽 , 𝒑) = 𝑐 for all 𝑗

}
(8.1.5)

are invariant under the Loewner flow
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By direct computation, H 𝑗 is related to the Calogero-Sutherland Hamiltonian
H by: ∑︁

𝑗

H 𝑗 = H . (8.1.6)

Our next result shows that null vector HamiltonianH 𝑗 has a nice interpretation
in terms of the Lax pair for the Calogero-Sutherland system.

Theorem 8.1.2. The Lax pair is two square matrices 𝐿 = 𝐿 (𝜽 , 𝒑) and 𝑀 =

𝑀 (𝜽 , 𝒑) each of size 𝑛 × 𝑛, and by Moser (1975) the entries are given by

𝐿 𝑗 𝑘 =


𝑝 𝑗 , 𝑗 = 𝑘,

2 𝑓 𝑗 𝑘 , 𝑗 ≠ 𝑘,
and 𝑀 𝑗 𝑘 =


−∑

𝑙 𝑓
2
𝑗 𝑙
, 𝑗 = 𝑘

𝑓 2
𝑗 𝑘
, 𝑗 ≠ 𝑘

.

This leads to the following representation of H 𝑗 in terms of 𝐿2.

H 𝑗 =
1
2

e′𝑗𝐿
21, (8.1.7)

where e′
𝑗

is the transpose of the 𝑗 th standard basis vector and 1 is the vector
of all ones.

Consequently, the 𝑈 𝑗 , 𝑗 = 1, . . . , 𝑛, defined by solving the null vector equa-
tions for a given 𝜽 iff the 𝒑 variables satisfy 𝐿2(𝜽 , 𝒑)1 = 0.

Proof. Write 𝐿 = 𝑃 − 𝑋1, where 𝑃 = 𝑃( 𝒑) = diag( 𝒑) is the square matrix
with entries of 𝒑 along its diagonal, and 𝑋1 = 𝑋1(𝜽) is the square matrix with
entries (𝑋1) 𝑗 𝑘 = 𝑓 𝑗 𝑘 . Note that 𝑃 is symmetric and 𝑋1 is anti-symmetric.
Then

𝐿2 = 𝑃2 − 𝑃𝑋1 − 𝑋1𝑃 + 𝑋2
1 .

It is straightforward to compute the entries of 𝑃2 − 𝑃𝑋1 − 𝑋1𝑃 and see that
they give the first two terms on the right-hand side of the Hamiltonian. For
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𝑋2
1 we have

e′𝑗𝑋
2
1 1 =

∑︁
𝑘

(
𝑋2

1

)
𝑗 𝑘

= −4(
∑︁
𝑘

∑︁
𝑖

𝑓 𝑗 𝑙 𝑓𝑘𝑙)

= −4 ©«
∑︁
𝑙

𝑓 2
𝑗 𝑙 +

∑︁
𝑘≠ 𝑗

∑︁
𝑙≠ 𝑗

𝑓 𝑗 𝑙 𝑓𝑘𝑙
ª®¬

= −4 ©«
∑︁
𝑙

𝑓 2
𝑗1 +

1
2

∑︁
𝑘≠ 𝑗

∑︁
𝑙≠𝑘

(
𝑓 𝑗 𝑙 𝑓𝑘𝑙 + 𝑓 𝑗 𝑘 𝑓𝑙𝑘

)ª®¬
= −4 ©«

∑︁
𝑙

𝑓 2
𝑗1 −

1
2

∑︁
𝑘≠ 𝑗

∑︁
𝑙≠𝑘

𝑓 𝑗 𝑘 𝑓 𝑗 𝑙 +
1
2
𝐶2
𝑛−1

ª®¬ .
□

(ii)

Definition 8.1.3 (Poisson Bracket). For any smooth function 𝐹 = 𝐹 (𝒙, 𝒑)
defined on phase space, the associated vector field is given by

𝑋𝐹 =

𝑛∑︁
𝑗=1

𝜕𝐹

𝜕𝑝 𝑗
𝜕𝑥 𝑗 −

𝑛∑︁
𝑗=1

𝜕𝐹

𝜕𝑥 𝑗
𝜕𝑝 𝑗
.

Given two smooth functions 𝐹 = 𝐹 (𝒙, 𝒑) and 𝐺 = 𝐺 (𝒙, 𝒑), the commutator
of their associated vector fields satisfies

[𝑋𝐹 , 𝑋𝐺] = 𝑋{𝐹,𝐺},

where {𝐹, 𝐺}, the Poisson bracket of 𝐹 and 𝐺, is defined by

{𝐹, 𝐺} =
𝑛∑︁
𝑗=1

(
𝜕𝐹

𝜕𝑝 𝑗

𝜕𝐺

𝜕𝑥 𝑗
− 𝜕𝐹

𝜕𝑥 𝑗

𝜕𝐺

𝜕𝑝 𝑗

)
.

By direct computation, for all 𝑗 , 𝑘 , the null vector Hamiltonians H 𝑗 and H𝑘

satisfy the Poisson bracket identity

{H 𝑗 ,H𝑘 } =
1
𝑓 2
𝑗 𝑘

(
H𝑘 −H 𝑗

)
.

By the definition of 𝑁𝑐, we have {H 𝑗 ,H𝑘 } = 0 along 𝑁𝑐.

Thus, the vector fields 𝑋H 𝑗
induced by the Hamiltonians H 𝑗 commute along

the submanifolds 𝑁𝑐.

□
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8.2 Null vector equations and quantum Calogero-Sutherland system
In this section, we obtain parallel relations between multiple radial SLE(𝜅) systems
and the quantum Calogero-Sutherland system. We show that a partition function
satisfying the null vector equations corresponds to an eigenfunction of the quantum
Calogero-Sutherland Hamiltonian, as first discoverd in J. Cardy (2004).

Theorem 8.2.1. The multiple radial SLE(𝜅) is described by the partition function
Z(𝜽), which satisfies the following relation:

L 𝑗Z(𝜽) = ℎZ(𝜽), (8.2.1)

where L 𝑗 is the null vector differential operator given by:

L 𝑗 =
𝜅

2

(
𝜕

𝜕𝜃 𝑗

)2
+

∑︁
𝑘≠ 𝑗

©«cot
(
𝜃𝑘 − 𝜃 𝑗

2

)
𝜕

𝜕𝜃𝑘
− 6 − 𝜅

2𝜅
1

2 sin2
(
𝜃𝑘−𝜃 𝑗

2

) ª®®¬ . (8.2.2)

(i) By transforming the partition function Z(𝜽) using the Coulomb gas correla-
tion factor Φ−1

1
𝜅

(𝜽), we obtain

Z̃(𝜽) = Φ−1
1
𝜅

(𝜽)Z(𝜽), (8.2.3)

where

Φ𝑟 (𝜽) =
∏

1≤ 𝑗<𝑘≤𝑛

(
sin

𝜃 𝑗 − 𝜃𝑘
2

)−2𝑟
.

The transformed partition function Z̃(𝜽) satisfies(
Φ−1

1
𝜅

· L 𝑗 · Φ 1
𝜅

)
Z̃(𝜽) = ℎZ̃(𝜽),

where the differential operator Φ−1
1
𝜅

· L 𝑗 · Φ 1
𝜅

is given by

Φ−1
1
𝜅

· L 𝑗 · Φ 1
𝜅
=
𝜅

2
𝜕2
𝑗 − 𝐹𝑗𝜕𝑗 +

1
2𝜅
𝐹2
𝑗 −

1
2
𝐹′
𝑗

−
∑︁
𝑘≠ 𝑗

(
𝑓 𝑗 𝑘

(
𝜕𝑘 −

1
𝜅
𝐹𝑘

)
− 6 − 𝜅

2𝜅
𝑓 ′𝑗 𝑘

)
.

(8.2.4)

The sum of the null vector differential operators is

Φ− 1
𝜅
· L · Φ 1

𝜅
= 𝜅𝐻𝑛

(
8
𝜅

)
− 𝑛(𝑛2 − 1)

6𝜅
, (8.2.5)

where 𝐻𝑛 (𝛽), with 𝛽 = 8
𝜅
, is the quantum Calogero-Sutherland Hamiltonian:

𝐻𝑛 (𝛽) =
𝑛∑︁
𝑗=1

1
2
𝜕2

𝜕𝜃2
𝑗

− 𝛽(𝛽 − 2)
16

∑︁
1≤ 𝑗<𝑘≤𝑛

1

sin2
(
𝜃 𝑗−𝜃𝑘

2

) .
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(ii) The commutation relation between the null vector operators L 𝑗 and L𝑘 is

[L 𝑗 ,L𝑘 ] =
1

sin2
(
𝜃 𝑗−𝜃𝑘

2

) (L𝑘 − L 𝑗 ).

As a result:

[L 𝑗 ,L𝑘 ]Z(𝜽) = 1

sin2
(
𝜃 𝑗−𝜃𝑘

2

) (L𝑘 − L 𝑗 )Z(𝜽) = 0.

Proof of theorem (8.2.1). Recall that the null vector differential operator L 𝑗 is given
by

L 𝑗 =
𝜅

2

(
𝜕

𝜕𝜃 𝑗

)2
+

∑︁
𝑘≠ 𝑗

©«cot
(
𝜃𝑘 − 𝜃 𝑗

2

)
𝜕

𝜕𝜃𝑘
+

(
1 − 6

𝜅

)
1

4 sin2
(
𝜃𝑘−𝜃 𝑗

2

) ª®®¬ . (8.2.6)

Then, the null vector equations for 𝜓(𝜽) can be written as

L 𝑗𝜓(𝜽) = ℎ𝜓(𝜽) (8.2.7)

for 𝑗 = 1, 2, . . . , 𝑛.

(i) To simplify the formula, we introduce the notation

𝑓 (𝑥) = cot
(𝑥
2

)
, 𝑓 𝑗 𝑘 = 𝑓

(
𝜃 𝑗 − 𝜃𝑘

)
, 𝐹𝑗 =

∑︁
𝑘≠ 𝑗

𝑓 𝑗 𝑘 .

𝑓 ′(𝑥) = −1
2

1
sin2( 𝑥2 )

, 𝑓 ′𝑗 𝑘 = 𝑓 ′
(
𝜃 𝑗 − 𝜃𝑘

)
, 𝐹′

𝑗 =
∑︁
𝑘≠ 𝑗

𝑓 ′𝑗 𝑘 .

Using this notation, we have

L 𝑗 =
𝜅

2
𝜕2
𝑗 +

∑︁
𝑘≠ 𝑗

𝑓𝑘 𝑗𝜕𝑘 +
∑︁
𝑘≠ 𝑗

(1 − 6
𝜅
) 𝑓 ′𝑗 𝑘

with 𝜕𝑗 = 𝜕
𝜕𝜃 𝑗

and the Calogero-Sutherland hamiltonian can be written as

𝐻𝑛 (𝛽) = −
∑︁
𝑗

(
1
2
𝜕2
𝑗 +

𝛽(𝛽 − 2)
16

𝐹′
𝑗

)
. (8.2.8)
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where 𝛽 = 8
𝜅
,

To relate the null-vector equations to the Calogero-Sutherland system, we sum
up the null-vector operators. Let

L =
∑︁
𝑗

L 𝑗 =
𝜅

2

∑︁
𝑗

𝜕2
𝑗 +

∑︁
𝑗

(
𝐹𝑗𝜕𝑗 + ℎ𝐹′

𝑗

)
. (8.2.9)

Then the partition functions 𝜓(𝜽) are eigenfunctions of L with eigenvalue
𝑛ℎ.

L𝜓(𝜽) = 𝑛ℎ𝜓(𝜽) (8.2.10)

Recall that

Φ𝑟 (𝜽) =
∏

1≤ 𝑗<𝑘≤𝑛

(
sin

𝜃 𝑗 − 𝜃𝑘
2

)−2𝑟
.

From the properties 𝜕𝑗Φ𝑟 = −𝑟Φ𝑟𝐹𝑗 and
∑
𝑗 𝐹

2
𝑗
= −2

∑
𝑗 𝐹

′
𝑗
− 𝑛(𝑛2−1)

3 , we can
check that

Φ− 1
𝜅
· L · Φ 1

𝜅
= 𝜅𝐻𝑛

(
8
𝜅

)
+
𝑛
(
𝑛2 − 1

)
6𝜅

which implies
�̃�(𝜽) = Φ−1

1
𝜅

(𝜽)𝜓(𝜽)

is an eigenfunction of the Calogero-Sutherland hamiltonian 𝐻𝑛

(
8
𝜅

)
, with

eigenvalue

𝐸 =
𝑛

𝜅

(
−ℎ +

(
𝑛2 − 1

)
6𝜅

)
. (8.2.11)

(ii) This is exactly the commutation relations of generators proved in theorem
(3.2.1).

□
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