
Computational complexity and quantum Gibbs sampling
for local Hamiltonians

Thesis by
Jiaqing Jiang

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended May 13th, 2025

ii

© 2025

Jiaqing Jiang
ORCID: 0000-0003-4055-1950

All rights reserved

iii

ACKNOWLEDGEMENTS

The PhD journey has been more interesting and transformative than I ever antici-
pated, filled with moments of doubt, discovery, and personal growth. I am deeply
grateful to everyone who supported me along the way.

I would like to thank my advisors Thomas Vidick, Urmila Mahadev, and John
Preskill. It took me several years to discover the research topics I truly enjoy. I am
especially grateful to Thomas for giving me unlimited freedom to explore different
directions, even when I shifted my interest from interactive proofs to investigating
quantum advantages in physics and chemistry—areas outside his usual expertise.
He was fully supportive and told me, “The most important thing is doing what you
are interested in!” Without his support, this thesis would not have been possible.
Urmila has been like a friend throughout my PhD. We frequently met to chat and
discuss research just for fun. She encouraged me to pursue the problems I’m truly
passionate about, and her enthusiasm for research has profoundly influenced me.
John is incredibly knowledgeable and brings unique insights to the problems I work
on. He also has a great sense of humor, often kicking off group meetings with a
joke, which made them enjoyable and fun.

I am deeply grateful to my collaborator Sandy Irani. I feel very fortunate to have
met someone who shares such similar research interests. With Sandy I solved my
first project on local Hamiltonians. Since then, we have worked together on topics
ranging from Hamiltonian complexity to quantum Gibbs sampling and have enjoyed
many spontaneous and stimulating discussions along the way.

I would also like to sincerely thank Garnet Chan for kindly welcoming me into their
group meetings. The discussions in these meetings, as well as my conversations
with Garnet, gave me valuable insights into the questions chemists are investigating
and the challenges that matter to them. I am also grateful to Chris (Jielun) Chen,
Yongtao Zhan, Gunhee Park, Tomislav Begusic, Runze Chi, Sijin Du and many other
members of Garnet’s group for fun discussions and their generosity in helping me
better understand tensor networks, the Fermi-Hubbard model, and various concepts
in chemistry.

I am deeply grateful to many collaborators and group members. I want to thank
Sandy Irani, Chris Chen, Norbert Schuch, Dominik Hangleiter, Yeongwoo Hwang,
Yu Tong, Yiyi Cai, Akshar Ramkumar, Adam Artymowicz, and Fernando Brandao

iv

for the fun collaborations and insightful discussions. I would like to thank Saeed
Mehraban and Atul Singh Arora for their encouragement and support during times
when I felt deeply stuck and frustrated in the early years of my PhD. I still remember
our long conversation at Urth Caffé that lasted until 2 a.m., where we talked about
research, life, and Orion. I am also grateful for the many research discussions,
Friday dinners, and beers with: Robbie King, Alexander Poremba, Ulysse Chabaud,
Jiayu Zhang, Chris Chen, Abhinav Deshpande, Saeed Mehraban, Atul Singh Arora,
Chris Partison, Yu Tong, Mehdi Soleimanifar, Shouzhen (Bailey) Gu, Eugene Tan,
Isabel Franco, Yongtao Zhan, Alexander Jahn, Hsin-Yuan (Robert) Huang, Chi-
Fang (Anthony) Chen, Leo Zhou, Eric Anschuetz, Samson Wang, Tommy Schuster,
Andreas Elben, Laura Cui, Haimeng Zhao, and Nat Tantivasadakarn.

I am also grateful to the Simons Institute for the Theory of Computing at UC Berke-
ley. I participated in several summer programs there, where I had the opportunity to
meet many outstanding researchers. Much of my work was carried out during my
visits to the Simons Institute.

Finally, I would like to thank my parents, Xiaoping Jiang and Chunlin Dai, and
my friend Yixuan Song. Their continued and unconditional support has carried me
through the many ups and downs of this journey.

v

ABSTRACT

One of the primary motivations for building quantum computers is to simulate quan-
tum many-body systems. While significant progress has been made in simulating
quantum dynamics, much less is known about simulating ground states and Gibbs
states, an essential task for understanding the static properties of quantum many-
body systems. From a computer science perspective, problems on ground states and
Gibbs states are quantum analogues of the Boolean satisfiability problem (SAT) and
classical Gibbs sampling, which have wide applications in optimization, machine
learning, and computational complexity.

This thesis leverages tools from computer science to explore the potential quantum
advantage in simulating ground states and Gibbs states, through two complementary
approaches: designing new quantum algorithms and evaluating the extent to which
classical algorithms remain effective. In particular,

• Quantum Gibbs sampling. In the first part, we describe our progress in
developing quantum algorithms for preparing quantum Gibbs states. For
general Hamiltonians, we develop a quantum analogue of the Metropolis-
Hastings algorithm that is both conceptually simple and provably correct, with
the Gibbs state as its approximate unique fixed point. Note that generalizing
the Metropolis-Hasting algorithm to the quantum setting is non-trivial due
to the unclonability of quantum states. Additionally, for a broad class of
commuting Hamiltonians, we propose a different approach which constructs
efficient quantum Gibbs samplers by leveraging reductions to existing classical
sampling algorithms.

• Sharpening the understanding of classical algorithms. In the second part,
we present new complexity results to deepen our understanding of the capa-
bilities of classical algorithms for ground energy estimation. The potential
quantum advantage in solving many-body systems stems from the sign prob-
lem in general Hamiltonians, which classical algorithms struggle to handle.
We give rigorous evidence to show that under certain conditions, widely used
classical methods, such as fixed-node Monte Carlo and tensor network con-
traction, may overcome this barrier and effectively resolve the sign problem.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[HJ25] Yeongwoo Hwang and Jiaqing Jiang. “Gibbs state preparation for com-
muting Hamiltonian: Mapping to classical Gibbs sampling”. In: Con-
tributed Talk at the 28th Annual Quantum Information Processing
Conference (QIP2025) arXiv preprint arXiv:2410.04909 (2025).
The author list is ordered alphabetically (all authors contributed equally).
JJQ conceived the project and participated in the development of the
proofs and the writing of the manuscript.

[Jia25] Jiaqing Jiang. “Local Hamiltonian problem with succinct ground state
is MA-complete”. In: Contributed Talk at the 27th Annual Conference
on Quantum Information Processing (QIP2024). PRX Quantum 6.2
(2025), p. 020312.
JJQ conceived the project, developed the key ideas for the proofs, and
wrote the manuscript.

[JI25] Jiaqing Jiang and Sandy Irani. “Quantum Metropolis Sampling via
Weak Measurement”. In: Contributed Talk at the 28th Annual Quan-
tum Information Processing Conference (QIP2025) arXiv preprint
arXiv:2406.16023 (2025).
JJQ conceived the project, developed the key ideas for the proofs, and
wrote the majority of the manuscript.

[Jia+25] Jiaqing Jiang et al. “Positive bias makes tensor-network contraction
tractable”. In: Proceedings of the 57th Annual ACM Symposium on
Theory of Computing (STOC ’25); Contribued Talk at the 27th Annual
Conference on Quantum Information Processing (QIP2024). (2025).
JJQ participated in the conception the project and the development of
the key ideas of the proof, and wrote the manuscript.

[IJ24] Sandy Irani and Jiaqing Jiang. “Commuting Local Hamiltonian Prob-
lem on 2D beyond qubits”. In: Contributed Talk at the 27th Annual
Conference on Quantum Information Processing (QIP2024). (2024).
The author list is ordered alphabetically (all authors contributed equally).
JJQ participated in the conception of the project, the development of
the proofs, and the writing of the manuscript.

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Published Content and Contributions . vi
Table of Contents . vi
List of Illustrations . ix
Nomenclature . xi
Chapter I: Introduction . 1

1.1 Local Hamiltonians, Gibbs states, and ground states 2
1.2 Quantum Gibbs sampling . 4
1.3 Sharpen the understanding for classical algorithms 5

Chapter II: Quantum Metropolis Sampling via Weak Measurement 8
2.1 Introduction . 8
2.2 Overview . 10
2.3 Preliminary and Settings . 21
2.4 Quantum Metropolis Algorithm in More Detail 22
2.5 Main Theorems and the Effective Quantum Markov Chain 24
2.6 Uniqueness of the Fixed Point . 31
2.7 Gibbs States as Approximate Fixed Point 34
2.8 Proofs of Theorem 4 and Theorem 6 45
2.9 Appendix: More Details on Quantum Phase Estimation 46
2.10 Appendix: Matrix Norm Properties 50
2.11 Appendix: Bounding Mixing time w.r.t. spectral gap of L (𝑠) 52

Chapter III: Gibbs state preparation for commuting Hamiltonian 57
3.1 Introduction . 57
3.2 Preliminary . 72
3.3 Reduction for 2-local qudit CLHs 75
3.4 Reduction for 2D 4-local qubit CLH without classical qubits 80
3.5 Reduction for 2D (4-local) qubit CLH with classical qubit 88
3.6 Appendix: Gibbs sampling reduction for defected Toric code 104
3.7 Appendix: Proofs of reductions for specific Hamiltonians 110

Chapter IV: Local Hamiltonian problem with succinct ground state is MA-
complete . 113
4.1 Introduction . 113
4.2 Notations and Definitions . 125
4.3 Preliminaries . 128
4.4 The MA verification protocol . 135
4.5 Appendix:Relationship to matrix verification 153
4.6 Appendix:MA-hardness . 154
4.7 Appendix:Proof of two facts . 156

viii

4.8 Appendix:Properties of 𝐹𝐻,𝜙. 157
4.9 Appendix:Properties of the CTMC 159
4.10 Appendix: Proof of Claim 102 . 164
4.11 Appendix: Remarks on precision 165
4.12 Appendix: Calculation for Equations 167

Chapter V: Positive bias makes tensor-network contraction tractable 170
5.1 Introduction . 170
5.2 Notation and tensor networks . 177
5.3 Barvinok’s method and its variant 181
5.4 Tensor network contraction algorithm from Barvinok’s method . . . 184
5.5 Approximating random PEPS with positive mean 188
5.6 Approximating arbitrary positive tensor networks 202
5.7 Appendix:#P-hardness of exactly contracting random 2D tensor net-

works . 214
5.8 Appendix:More on Barvinok’s method 219
5.9 Appendix:BPP-hardness of additive-error approximation (Theorem

135) . 220
Chapter VI: Commuting Local Hamiltonian Problem on 2D beyond qubits . . 223

6.1 Introduction . 223
6.2 Preliminaries . 235
6.3 Review of 𝐶∗-algebras and the Structure Lemma 237
6.4 Qutrit Commuting Local Hamiltonian on 2D 242
6.5 Factorized commuting local Hamiltonian on 2D 261
6.6 Appendix:Relationship between general case and projection case . . 271
6.7 Appendix:Qudits on the vertexs or on the edges 271

Bibliography . 273

ix

LIST OF ILLUSTRATIONS

Number Page

2.1 One iteration of the proposed Quantum Metropolis algorithm. 13
2.2 Approximating the amplitudes of the quantum phase estimation. . . . 48

3.1 Mixing time of Gibbs samplers for 1D and 2D CLHs at different
temperatures (temp). 60

3.2 Illustration of Gibbs states preparation for the Toric code. 68
3.3 Examples of 𝑘-local Hamiltonians 73
3.4 Illustration of decoupling the commuting terms. 77
3.5 Illustration of initial restriction can lead to the creation of new clas-

sical qubits. 91
3.6 Illustration of the terms 𝐴 and 𝐵 and relevant qubits. 94
3.7 The choice of correction operator may depend on the choice of clas-

sical qubits. 97
3.8 An example of a triangulation, followed by a co-triangulation. 98
3.9 Illustration of (Case 2). 99

3.10 Recreation of Figure 3.2. 105
3.11 Using translational invariance. 111

5.1 Tensor and operations on tensors. 178
5.2 Graphical representation of the expectation of tensor products. 193
5.3 Graphical representation of mapping the expectation value to the

partition function of 2D Ising model. 194
5.4 Illustration of dividing the circle into 𝑀 disjoint circular sectors. . . . 201
5.5 Illustration of the notations. 204
5.6 Represent 𝑡𝑟 (𝑀2

𝑥) as a tensor network. 212
5.7 Illustration of Circuit for 𝑝0. 221

6.1 Illustration of qudit-CLHP-2D. 225
6.2 Notations for the qutrit-CLHP-2D-projection. 251
6.3 Relationships of factors on 𝑞. 267
6.4 Qudits on edges to qudits on vertices 272
6.5 Qudits on 2D edges to qudits on 2D vertices 272

x

6.6 Qudits on 2D edges to qudits on 2D vertices 272

xi

NOMENCLATURE

MA. A complexity class that denotes decision problems which can be verified in
polynomial time by probabilistic classical computer.

NP. A complexity class that denotes decision problems which can be verified in
polynomial time by deterministic classical computer.

QMA. A complexity class that denotes decision problems which can be verified in
polynomial time by quantum computer.

Gibbs State. A state that describes a many-body system in thermal equilibrium at
a given finite temperature.

Ground Energy. The minimum energy that a many-body system can have, defined
as the smallest eigenvalue of the corresponding local Hamiltonian.

Ground State. A state that describes a many-body system at zero finite temperature.
It is the eigenvector of the local Hamiltonian corresponding to the ground
energy.

Guided State. A state that has 1/𝑝𝑜𝑙𝑦(𝑛) overlap with the ground state. Often
used as a warm start in both quantum and classical algorithms.

Local Hamiltonian. An 𝑛-qubit local Hamiltonian is a 2𝑛 × 2𝑛 size matrix which
can be written as written as sum of local terms, where local terms only act
non-trivially on constant qubits.

Quantum and Classical Hamiltonians. We say a local Hamiltonian 𝐻 is classical
if it is a diagonal matrix in computational basis. Otherwise, 𝐻 is called a
quantum Hamiltonian. An example of a classical Hamilontian is the Ising
model, while an example of a quantum Hamilontian is the transverse-field
Ising model.

Quantum Gibbs Sampling. A quantum algorithm to prepare the Gibbs states of
quantum Hamiltonian.

Quantum Many-Body System. A physical system composed of many interacting
quantum particles, such as electrons or spins, whose collective behavior is
governed by quantum mechanics.

Quantum Monte Carlo Method. A classical method to simulate quantum many-
body system by using Monte Carlo sampling.

Tensor Network. A computational tool for classically estimating properties of
many-body systems, such as ground state properties.

1

C h a p t e r 1

INTRODUCTION

One of the primary motivations for building quantum computers is to simulate
quantum many-body systems [Fey18]—complex systems of interacting particles
governed by quantum mechanics, such as multi-electron molecules and materials.
The potential quantum advantage in these simulations arises from the inherently
quantum nature of the systems: the state of an 𝑛-qubit (quantum bit) system is
described by a vector in a 2𝑛-dimensional Hilbert space, meaning that direct classical
simulation of such systems requires an exponentially large amount of computational
resources.

Over the past few decades, significant progress has been made in simulating quantum
dynamics [Ber+14; Ber+15; BCK15; CW16; LC19], including the development of
optimal protocols for Hamiltonian evolution [LC19]. However, much less is known
about simulating ground states and Gibbs states, an essential task in understanding
the static properties of a many-body system.

Ground states and Gibbs states are fundamental concepts that play a central role
in numerous areas. From a computer science perspective, problems on ground
states and Gibbs states are the quantum analogues of the Boolean satisfiability prob-
lem (3SAT) and the classical Gibbs sampling. Estimating the ground state energy
is a central problem in quantum complexity theory [KKR06; AAV13; AGM20;
AAG22a; IJ23], playing a role analogous to that of SAT in classical complexity
theory. Algorithms for sampling from Gibbs states can be used to solve semidefinite
programs [Bra+19; Van+17], with wide applications in optimization. Addition-
ally, Gibbs states can serve as generative models in machine learning, forming the
foundation of classical and quantum Boltzmann machines [HS83; Ami+18]. From
a natural science perspective, ground states and Gibbs states describe quantum
many-body systems at zero and finite temperatures. Their properties are crucial
to understanding the phase diagrams and the electronic binding energies, which
are central topics in quantum chemistry and condensed matter physics. Develop-
ing quantum algorithms and deepening the complexity-theoretic understanding of
simulating Gibbs states and ground states may lead to breakthroughs in materials
science and quantum chemistry [Cao+19; Alh23; Qin+22].

2

In this thesis, I leverage tools from computer science to investigate the potential
quantum advantage in simulating Gibbs states and ground states. The exploration
follows a twofold approach: developing novel quantum algorithms and evaluating
the extent to which classical algorithms can simulate or dequantize these quantum
processes. In particular, in this introduction, I will start by reviewing the key
concepts. I will then describe our progress in developing new quantum algorithms
for quantum Gibbs state preparation, as well as new computational complexity
characterizations for estimating ground state energy that sharpen our understanding
of the regimes in which classical algorithms remain effective.

1.1 Local Hamiltonians, Gibbs states, and ground states
Before presenting our results, we briefly review the key concepts.

𝑛-qubit local Hamiltonian. An 𝑛-qubit local Hamiltonian 𝐻, which describes a
many-body system, is a 2𝑛 × 2𝑛 size matrix that can be written as a sum of local
terms, i.e.

𝐻 =

𝑚∑︁
𝑖=1

𝐻𝑖, (1.1)

where 𝑚 = 𝑝𝑜𝑙𝑦(𝑛), each 𝐻𝑖 is Hermitian and only acts non-trivially on at most
constant qubits. We say that a local Hamiltonian 𝐻 is classical if each 𝐻𝑖 is a
diagonal matrix. Otherwise, we say 𝐻 is quantum.

Gibbs states and quantum Gibbs sampling: A many-body system at finite tem-
perature is described by its Gibbs state, which is known as the thermal equilibrium
state and is written as

𝜌𝛽 =
exp(−𝛽𝐻)

Tr exp(−𝛽𝐻) , (1.2)

where 𝐻 is the local Hamiltonian and 𝛽 is the inverse temperature.

Given (𝐻, 𝛽), the quantum Gibbs sampling task is to design a quantum algorithm that
prepares the Gibbs states 𝜌𝛽 with provable correctness and efficiency. Although
this problem has been extensively studied for classical Hamiltonians such as the
Ising model [Met+53; MO94; CCS87; Hol85; SW87; FGW23] (classical Gibbs
sampling), much less is known when 𝐻 is a quantum Hamiltonian. In Chapter
1.2 we will describe our progress in designing quantum algorithms for preparing
quantum Gibbs states.

3

Ground states and ground energy estimation: While the Gibbs state characterizes
many-body systems at finite temperature, the ground state of a local Hamiltonian
𝐻 represents the state of a many-body system at zero temperature. Mathematically,
the ground state of 𝐻 is the eigenvector corresponding to its minimum eigenvalue,
where the minimum eigenvalue is denoted as the ground energy.

The problem of finding the ground energy of a local Hamiltonian is a quantum
generalization of the classical Boolean satisfiability problem (SAT), where SAT
corresponds to determining the ground energy of a classical Hamiltonian. Analo-
gous to the central role that solving the SAT problem plays in science, operations
research, and engineering, estimating the ground energy of a quantum Hamiltonian
plays a fundamental role in chemistry, physics, and quantum information. Conse-
quently, many quantum and classical algorithms have been proposed to tackle this
challenge [Whi92; Whi93; Sch05; Cao+19; McA+20; Bau+20], though the majority
are heuristic.

In Chapter 1.3, we present new rigorous results for ground energy estimation, which
offer more insight into the capabilities of classical algorithms to solve the ground
energy estimation problem.

Complexity class. Here we briefly explain the complexity classes discussed later
in Chapter 1.3. All the representative problems mentioned are complete for their
respective complexity class.

◦ NP denotes the set of decision problems that can be verified in polynomial
time by a deterministic classical computer. A representative problem in this
class is the classical Boolean satisfiability problem (SAT).
◦ MA denotes the set of decision problems that can be verified in polynomial

time by a probabilistic classical computer.
◦ QMA denotes the set of decision problems that can be verified in polynomial

time by a quantum computer. A representative problem in this class is the
local Hamiltonian problem (LHP), which is the decision version of the ground
energy estimation problem [KKR06].
◦ QCMA represents the set of decision problems that can be verified in poly-

nomial time by a quantum computer, where the proof can be represented
by 𝑝𝑜𝑙𝑦(𝑛) classical bits. A representative problem in this class is the lo-
cal Hamiltonian problem (LHP) where the ground state can be prepared by
polynomial-size quantum circuits [WJB03].

4

◦ #P is a class of counting problems. A representative problem in this class is
#SAT, which counts the number of satisfying assignments in the SAT formula.

1.2 Quantum Gibbs sampling
Quantum Gibbs sampling is a crucial computational technique with wide application
in chemistry, physics, and computer science [Alh23; HS83; Ami+18; Bra+19;
Van+17]. In designing a quantum algorithm to prepare quantum Gibbs states, there
are two fundamental goals:

1. The first is to design a quantum algorithm which correctly prepares the Gibbs
states.

2. The second is to make the proposed quantum algorithm efficient (fast mixing).

In this thesis, we present two of our works that address the above goals.

Chapter 2: Quantum Metropolis Sampling via Weak Measurement

The goal of correctly preparing Gibbs states of classical Hamiltonians is achieved by
the celebrated Metropolis algorithm [Met+53], which has become one of the most
widely used algorithms throughout science. For quantum Hamiltonians, designing
an algorithm which provably converges to the Gibbs state has been more challenging
since mimicking the rejection process in quantum Metropolis requires reverting
a quantum measurement, which is hard. In addition, quantum computers with
finite resources cannot distinguish eigenvalues to infinite precision (energy-time
uncertainty principle), which brings additional technical difficulties. To ease the two
issues, previous work [Tem+11] designed a quantum Metropolis algorithm assuming
a special variant of quantum phase estimation algorithm, which is suggested to be
impossible by recent work [Che+23].

In Chapter 2, we [JI24] design a provably-correct quantum Metropolis-based al-
gorithm for quantum Gibbs states preparation. We addressed the difficulties in
the previous algorithm [Tem+11] by incorporating two new ideas: applying weak
measurement and using two different ways to implement an accepting move. The
only provably correct quantum Gibbs sampler before our work [Che+23] is based on
an approach significantly different from classical Metropolis. It uses the weighted
operator Fourier transform technique to give an approximate quantum simulation of

5

the Davies generator, a Lindbladian1 closely related to the thermalization process
in nature. Compared to previous work, the main advantage of our Gibbs sampler is
its simplicity and the conceptual connection to the classical Metropolis algorithm.
These advantages might make it easier to adapt variations of Metropolis algorithms
that speed up the convergence of classical Markov chains to the preparation of
quantum Gibbs states. Examples of variations that have been successful in the
classical setting include delayed rejection [ZK11], equi-energy sampling [KZW06],
and adaptive methods [HST01].

Chapter 3: Gibbs state preparation for commuting Hamiltonian

While significant progress has been made in developing provably-correct quantum
Gibbs samplers, much less is known about the mixing times of those methods. Based
on the Davies generator, recent papers [CRF20; Bar+23; KB16] have designed
fast mixing Gibbs samplers for various commuting local Hamiltonians (CLHs), in
particular for 1D CLH at any temperature [Bar+23; KB16] and 2D CLH at high
temperature [CRF20; KB16].

In Chapter 3 we design novel Gibbs samplers for various CLHs by giving a reduction
from quantum Gibbs sampling to classical Gibbs sampling, rather than using Davies
generator. Those CLHs include all 2-local CLHs (either 1D or 2D) and a large class
of qubit 4-local 2D CLHs, including the defected Toric code. Combined with the
existing fast mixing results for classical Hamiltonians, our Gibbs sampler is able
to replicate the state-of-the-art performances mentioned above [Bar+23; KB16;
CRF20], as well as prepare the Gibbs state in regimes which were previously
unknown, such as the low temperature region, as long as there exists fast mixing
Gibbs samplers for the corresponding classical Hamiltonians. For example, we
are able to utilize low-temperature classical Gibbs sampling techniques such as the
Swendsen-Wang algorithm [FGW23] and Barvinok’s method [Bor+20], to prepare
low-temperature Gibbs states for certain 2-local CLHs.

1.3 Sharpen the understanding for classical algorithms
Quantum many-body systems have been studied for decades by physicists and
chemists even before the emergence of quantum computers. Numerous powerful
classical algorithms have already been proposed for classically estimating properties

1Note that Davies generator assumes the ability to distinguish eigenvalue to infinite precision,
thus cannot be directly simulated on quantum computers without using the weighted operator Fourier
transform techniques developed in [Che+23].

6

of Gibbs states and ground states, such as the Monte Carlo based method [GKW16;
MZ18], the tensor network based approach [Whi92; Orú19; Bañ23], and variational
methods [Fis87; CT17]. In seeking quantum advantage in quantum many-body
systems, it is not only important to design efficient quantum algorithms, but it is also
important to sharpen our understanding of the regions where classical algorithms
work. The intuitive belief in a potential quantum advantage for solving many-body
systems stems from the fact that general Hamiltonians are affected by the sign
problem, which classical algorithms struggle to handle. In this thesis we describe
several works that have enhanced our understanding of classical algorithms’ ability
to address the sign problem, thereby refining our understanding of the boundary of
quantum advantage.

Chapter 4: Local Hamiltonian problem with succinct ground state is MA-complete

In ground energy estimation, a guided state for a local Hamiltonian refers to a
state with 1/poly(𝑛) overlap with the ground state, which is commonly used as a
warm start in both quantum and classical algorithms. It was believed that quantum
algorithms assisted with guided states could achieve higher precision in ground en-
ergy estimation than classical algorithms, potentially offering exponential quantum
advantage for quantum chemistry [Cao+19; McA+20; Bau+20]. This belief was
supported by the theoretical evidence that achieving high-precision in ground en-
ergy estimation is inherently a quantum problem (QCMA-complete [GL22]) while
achieving low-precision is a classical problem (in NP [WFC23]).

However, it is important to note that guided states are often derived from classical
heuristics, and can be used as a warm start for not only quantum algorithms but
also classical algorithms. Recent numerical investigation by chemists [Lee+23] sug-
gests that these guided states may possess more structure than assumed in previous
complexity results [GL22; WFC23], an observation which could lead to efficient
classical algorithms. In Chapter 4 we describe a rigorous complexity result [Jia25]
to support the observation [Lee+23] that classical access to more structured guided
states may invalidate the assumed quantum advantage. More specifically, we use
the fixed node Monte Carlo method [Ten+95; Bra+23a] to demonstrate that clas-
sical query access to an extremely good guided state (ground state) will make
high-precision ground energy estimation a classical problem; this problem becomes
MA-complete, in contrast to the QCMA-complete result mentioned above. This
suggests that the sign problem can be resolved by classical algorithms with the help
of certain good guided states.

7

Chapter 5: Positive bias makes tensor-network contraction tractable

We also provide rigorous results that advance our understanding of the complexity of
tensor network contractions, another widely used computational tool for classically
estimating ground state properties [Whi93; Whi92; MVC07; VC21]. In particular,
it is well-known that contracting random tensor networks with zero mean exactly
is #P-hard, and remains numerically hard for approximate contraction. While it is
expected that tensor network contraction becomes easier when all entries are positive
(eliminating the so-called sign problem), in Chapter 5, we [Jia+24] give rigorous
evidence that random tensor network contraction becomes tractable even when the
tensor network is only slightly positive. In particular, we show that a small bias on
the mean value already dramatically decreases the computational complexity of 2D
tensor network contractions, enabling a quasi-polynomial approximation algorithm.
This work provides rigorous support for previous observations made by chemists
and physicists [GC24; Che+25].

Chapter 6: Commuting Local Hamiltonian Problem on 2D beyond qubits

The ground energy estimation problem is typically formalized as the Local Hamil-
tonian Problem (LHP): given an 𝑛-qubit local Hamiltonian 𝐻 =

∑𝑚
𝑖=1 𝐻𝑖 and two

real numbers 𝑎 > 𝑏, the goal is to decide whether the ground energy of 𝐻 is greater
than 𝑎 or less than 𝑏, under the promise that one of these is true. While it is widely
believed that there are quantum advantages for ground energy estimation, it is well-
known that LHP is QMA-complete [KKR06], which indicates that even quantum
computers cannot efficiently solve general LHP.

A natural question is to identify additional properties and understand how they
weaken the hardness of LHP. In Chapter 6 we study the commuting variant of LHP,
where we additionally assume that all the local terms 𝐻𝑖 commute with each other.
Compared to the general LHP, commuting LHP is conjectured to be more classical
— potentially in NP — based on the intuition [FS97] in quantum physics that it is
the non-commutativity that makes the quantum world different from classical (as
illustrated by the Heisenberg uncertainty principle). However, despite two decades
of study, the complexity of CLHP still remains widely open, with a few special cases
known to be in NP ([BV03; AE13; AE11; Sch11; AKV18; Has12]). We approach
this question by focusing on the special case of the CLHP defined on a 2D lattice.
In Chapter 6, we will show that on 2D lattice the qutrit commuting LHP and the
factorized commuting LHP are both in NP.

8

C h a p t e r 2

QUANTUM METROPOLIS SAMPLING VIA WEAK
MEASUREMENT

2.1 Introduction
One of the primary motivations for building quantum computers is to simulate quan-
tum many-body systems. While there has been significant progress in simulating
quantum dynamics [Ber+14; BCK15; CW16], much less is known about preparing
ground states and Gibbs states, an essential task in understanding the static properties
of a system. In particular, the properties of Gibbs states, which describe the thermal
equilibrium of a system at finite temperature, are closely related to central topics in
condensed matter physics and quantum chemistry [Alh23], such as the electronic
binding energy and phase diagrams. In addition to applications in physics, Gibbs
states are widely used as generative machine learning models, such as classical and
quantum Boltzmann machines [HS83; Ami+18]. Algorithms for preparing Gibbs
states are also used as subroutines in other applications, such as solving semidefinite
programs [Bra+19; Van+17].

Typically, a good Gibbs state preparation algorithm (Gibbs sampler) should satisfy
two requirements: it should have the Gibbs state as its (unique) fixed point and it
should be rapidly mixing. The fixed point property ensures the correctness of the
Gibbs sampler. An algorithm that keeps the Gibbs states invariant and shrinks any
other state will eventually converge to the Gibbs states after a sufficiently long time.
Our algorithm satisfies an approximate version of the fixed point property. The
mixing time determines the efficiency of the algorithm. In particular, an algorithm
is said to be fast mixing if it convergences to Gibbs state in 𝑝𝑜𝑙𝑦(𝑛) time.

The focus of this manuscript is the correctness part, that is, designing a Gibbs
sampler which satisfies the fixed point property. For classical Hamiltonians, like the
Ising model, the fixed point property is easily satisfied by the celebrated Metropolis
algorithm [Met+53] which has become one of the most widely used algorithms
throughout science. For quantum Hamiltonians, designing an algorithm which
provably converges to the Gibbs state has been more challenging. As noticed in the
pioneering work of [Tem+11] ten years ago, designing a Metropolis-type algorithm
for quantum Hamiltonians is non-trivial, mainly due to two reasons:

9

(1) Quantum computers with finite resources cannot distinguish eigenvalues and
eigenstates to infinite precision.

(2) Mimicking the rejection process in quantum Metropolis requires reverting a
quantum measurement.

[Tem+11] eased the first challenge using a boosted version of QPE which sharpens
the accuracy by taking the median of multiple runs. They addressed the second chal-
lenge using the Marriott-Watrous rewinding technique along with a shift-invariant
version of QPE in the case of a rejected move. As a result, their analysis depends
on a version of QPE that is both boosted and shift-invariant. Recent work [Che+23]
suggests a version of QPE with both of those properties may be impossible. While
[Tem+11] provides many innovative ideas, a provably correct quantum Gibbs sam-
pler remained elusive for some time. Recently, Chen et.al. [Che+23] designed the
first Gibbs sampler which provably satisfies the fixed point property for general
Hamiltonians based on a significantly different approach. Their method is based on
simulating quantum master equations (Lindbladians) which more closely mimics
the way that systems thermalize in nature. Their algorithm approximately simulates
the Davies generator [Dav76; Dav79], which describes the evolution of quantum
systems coupled to a large heat bath in the weak coupling limit. It is worth men-
tioning that the Davies generator by itself also assumes the ability to distinguish
eigenvalues to infinite precision, and thus cannot be efficiently simulated by quan-
tum computers. To resolve this problem, [Che+23] devised a method to smooth the
Davies’ generator by using a weighted operator Fourier Transform for Lindbladians.

Although [Che+23] provides a provably correct quantum Gibbs sampler by simu-
lating the thermalization process occurring in nature, it is natural to ask whether
a Metropolis-style quantum Gibbs sampler can be designed. Are there intrinsic
reasons why an algorithm based on the classical Metropolis process cannot work
for quantum Hamiltonians? Or on the other hand:

Is it possible to design a provably correct quantum Gibbs sampler, which is analo-
gous to the conceptually simple classical Metropolis algorithm?

In this manuscript, we give an affirmative answer to the above question, by de-
signing a simple Metropolis-style Gibbs sampler. Our algorithm uses many of the
components of [Tem+11], but there are some key differences: (1) we use weak

10

measurement in determining whether to accept or reject a given move; (2) we use
a Boosted QPE and do not assume the shift-invariant property. (3) we do not use
Marriott-Watrous Rewinding tehchnique [MW05], which simplifies the algorithm
considerably.

For (3), more precisely, recall that the mechanism that [Tem+11] uses to back up
in a reject case requires a 𝑝𝑜𝑙𝑦(𝑛) sequence of forward and backward unitaries
and complex measurements until the backing up process succeeds. In comparison,
we use only one single-qubit measurement and one unitary for rewinding. This
simplification is achieved by noticing that after one round of unsuccessful rewinding,
the state is almost equivalent to the state in the accept case. This allows us to accept
and conclude the iteration in one step instead of attempting to rewind again. We
call this case an Alternate Accept. This observation is an essential feature of our
analysis, since we would still need to perform Marriott-Watrous rewinding without
the Alternate Accept case, even with the weak measurement. One remark is that
while weak measurement helps in rewinding, it comes at the expense of increasing
the number of iterations by a polynomial factor. Also, while our algorithm is simple,
it does not have the most favorable scaling as a function of the system parameters
and desired precision.

We note that weak measurement is also one of the reasons why the approaches based
on the Davies generator succeed, since simulating a Lindbladian requires the use of
weak measurement. Our algorithm also effectively approximates the evolution of a
Lindbladian. In this sense our algorithm is conceptually similar to [CKG23]. The
key difference is that our Gibbs sampler is directly designed from QPE instead of a
Davies generator.

2.2 Overview
Algorithm Overview
Given a local Hamiltonian 𝐻 and an inverse temperature 𝛽, the goal is to design
a quantum algorithm which prepares the Gibbs states 𝜌𝛽 = exp(−𝛽𝐻)/𝑍 , where
𝑍 = 𝑡𝑟 (exp(−𝛽𝐻)).

Our quantum algorithm attempts to mimic the classical Metropolis algorithm similar
to [Tem+11]. Recall that the classical Metropolis algorithm is a random walk whose
states are eigenstates of a classical Hamiltonian. In each iteration, the algorithm
starts in some state 𝑥 with energy 𝜈𝑥 . A jump operator is applied to alter 𝑥 in some
way to obtain a new state 𝑦 with energy 𝜈𝑦. Then a randomized decision is made

11

whether to Accept the move and remain in state 𝑦, or Reject the move and revert
back to 𝑥. The acceptance probability is defined by a function 𝑓𝜈𝑥𝜈𝑦 ∈ [0, 1] . The
Metropolis acceptance rule is designed so that the random walk converges to the
Gibbs state. In particular, the rule must satisfy

exp(−𝛽𝜈𝑥) 𝑓𝜈𝑥𝜈𝑦 = exp(−𝛽𝜈𝑦) 𝑓𝜈𝑦𝜈𝑥 .

Metropolis sampling uses the following function 𝑓 :

𝑓𝜈𝑥𝜈𝑦 := min
{
1, exp

(
𝛽𝜈𝑥 − 𝛽𝜈𝑦

)}
.

The main obstacle in adapting the classical Metropolis algorithm to the quantum
setting, is that a measurement must be performed in deciding whether to accept
or reject. Then in the Reject case, one needs to rewind back to the state before
the move, thus reverting a quantum measurement, which is hard. The algorithm
presented here manages this difficulty effectively by using weak measurement in
determining whether to Accept or Reject. It is worth noting that, in contrast to
the classical case where we can compute the energy 𝜈𝑥 exactly, there are intrinsic
limitations on our ability for estimating energies of quantum states (due to the
energy-time uncertainty principle). Analyzing the errors incurred by imperfect
quantum energy estimation is non-trivial, and is one of the most technical parts in
all related works [Che+23; CKG23; WT23; Tem+11]. We will explain more in the
overview of techniques section.

The quantum algorithm uses four registers. The first is an 𝑛-qubit register which
stores the current state of the algorithm. The next two each have 𝑔𝑟 qubits for integers
𝑔, 𝑟 and are used to store the output of an application of the Boosted Quantum Phase
Estimation (BQPE) algorithm, which provides an estimate of the state’s eigenvalue.
The last register is a single qubit register which controls whether we accept or reject
the new state.

The algorithm uses three different operations outlined below. Let 𝐻 be an 𝑛-qubit
local Hamiltonian. We use

{��𝜓 𝑗 〉 , 𝐸 𝑗 } 𝑗 to denote an ortho-normal eigenbasis of 𝐻
and their corresponding eigenvalues.

Boosted Quantum Phase Estimation (BQPE): BQPE is a unitary on two registers
of 𝑛 and 𝑔𝑟 qubits respectively. If BQPE starts with an eigenstate of 𝐻 in
the first register and the second register is initialized to 𝑔 copies of |0𝑟⟩, then

12

BQPE corresponds to performing 𝑔 independent iterations of the standard
Quantum Phase Estimation with respect to the first register and storing the
result in each copy of |0𝑟⟩. This process leaves the first register unchanged
and outputs 𝑔 independent estimates of 𝐸 𝑗 in the second register. Each 𝑟-bit
string 𝒃 in the second register represents an energy 𝐸 (𝒃) defined as

𝐸 (𝒃) := 𝜅𝐻
𝑟∑︁
𝑗=1

𝑏 𝑗2− 𝑗 , (2.1)

where 𝜅𝐻 is a power of two that upper bounds ∥𝐻∥. The set 𝑆(𝑟) :=
{𝐸 (𝒃)}𝒃∈{0,1}𝑟 is the set of energies that can be represented by 𝑟-bit strings,
which are integer multiples of 𝜅𝐻 · 2−𝑟 . To ease notation, we use notation |𝐸⟩
for 𝐸 ∈ 𝑆(𝑟)⊗𝑔 as the basis of the second register, instead of using strings in
{0, 1}𝑟𝑔. Thus, BQPE operates as

BQPE
��𝜓 𝑗 〉 |0𝑔𝑟⟩ = ��𝜓 𝑗 〉 ∑︁

𝐸∈𝑆(𝑟)⊗𝑔
𝛽 𝑗𝐸 |𝐸⟩ , (2.2)

The cost of BQPE is 𝑔 · 𝑝𝑜𝑙𝑦(2𝑟 , 𝑛).

We write𝐸 as the median of the 𝑔 energy estimates in𝐸 . We denote ⌊𝐸 𝑗⌋, ⌈𝐸 𝑗⌉
as the best two approximations of𝐸 𝑗 in 𝑆(𝑟), that is the closet value to𝐸 𝑗 which
is an integer multiples of 𝜅𝐻 · 2−𝑟 and is smaller/greater than 𝐸 𝑗 respectively.
More details on BQPE are given in Appendix 2.9.

We also use a variant of BQPE, which we call FBQPE (Flipped Boosted
Quantum Phase Estimation), where the amplitudes of the output of FBQPE
are the complex conjugates of BQPE:

FBQPE
��𝜓 𝑗 〉 |0𝑔𝑟⟩ = ��𝜓 𝑗 〉 ∑︁

𝐸∈𝑆(𝑟)⊗𝑔
𝛽∗𝑗𝐸 |𝐸⟩ .

The implementation of FBQPE is a slight modification of BQPE and is given
in Appendix 2.9. It is worth noting that FBQPE ≠ BQPE†.

Jump operators: A set of unitaries {𝐶 𝑗 } 𝑗 called jump operators and a distribution
𝜇 over this set. We require that the set {𝐶 𝑗 } 𝑗 is closed under adjoint. In
addition, for any 𝐶 ∈ {𝐶 𝑗 } 𝑗 , we require that 𝜇 chooses 𝐶 and 𝐶† with the
same probability. We use 𝐶 ← 𝜇 to denote a selection of 𝐶 drawn according
to distribution 𝜇.

To ensure the uniqueness of the fixed point, we also require that the algebra
generated by {𝐶 𝑗 } 𝑗 is equal to the full algebra, that is the set of all 𝑛-qubit
operators. For example one can choose {𝐶 𝑗 } 𝑗 to be all single-qubit Paulis.

13

Acceptance Operator (𝑊): Finally, we use a unitary which calculates the accep-
tance probability based on the two energies stored in registers 2 and 3, scaled
by a factor of 𝜏2 and rotates the last qubit by the square root of the acceptance
probability. More precisely,𝑊 operates on registers 2, 3, and 4 as

𝑊 :=
∑︁

𝐸,𝐸 ′∈𝑆(𝑟)⊗𝑔
|𝐸𝐸′⟩ ⟨𝐸𝐸′| ⊗

[√︁
1 − 𝜏2 𝑓𝐸𝐸 ′ 𝜏

√︁
𝑓𝐸𝐸 ′

𝜏
√︁
𝑓𝐸𝐸 ′ −

√︁
1 − 𝜏2 𝑓𝐸𝐸 ′

]
, (2.3)

where 𝑓𝐸𝐸 ′ is the Metropolis acceptance rate based on the median of energy
estimates:

𝑓𝐸𝐸 ′ := min
{
1, exp

(
𝛽𝐸 − 𝛽𝐸′

)}
. (2.4)

We can think of 𝑊 as computing the median of 𝐸 and 𝐸′ to get 𝐸 and 𝐸′

respectively and then rotating the last qubit w.r.t 𝑓𝐸𝐸 ′ . The median operation
𝐸 is used to boost the energy estimation, suppressing the probability of an
incorrect estimate with Chernoff bounds. The operator 𝑊 is the same as the
one used in [Tem+11] with the addition of the slow-down factor of 𝜏2. Note
that

𝑊 |𝐸𝐸′⟩ |0⟩ = |𝐸𝐸′⟩
(√︁

1 − 𝜏2 𝑓𝐸𝐸 ′ |0⟩ + 𝜏
√︁
𝑓𝐸𝐸 ′ |1⟩

)
. (2.5)

With those components defined, we can now describe an iteration of our algorithm
depicted in Figure 2.1. The Algorithm Sketch below is a high-level overview of the
algorithm. The complete pseudo-code is given in Section 2.4.

Figure 2.1: One iteration of the proposed Quantum Metropolis algorithm. The operation𝑈
is QPE1,3 ◦ 𝐶 ◦ QPE1,2. The two measurements are performed on the last qubit only. The
■ symbol indicates that the last three registers are traced out and replaced by fresh qubits in
the |0⟩ state.

Algorithm Sketch: In each iteration, the algorithm chooses one of {BQPE, FBQPE}
with equal probability. The selected operation is called QPE. A jump operator
𝐶 ← 𝜇 is also selected. We use C to denote the random choices for QPE and 𝐶
made in a particular iteration. The algorithm starts an iteration with a state |𝜙⟩ in
register 1 and all 0’s in the other three registers. Then:

14

• QPE is first applied to the current state, and the estimate of the eigenvalue is
stored in register 2. Then the jump operator𝐶 is applied to the state in register
1 to obtain a new state. QPE is then applied to the new state in register 1 and
the estimate of its eigenvalue is stored in register 3. We call the sequence of
these three operations𝑈C := QPE1,3 ◦ 𝐶 ◦ QPE1,2.

• Then 𝑊 is applied to registers 2, 3, and 4, and the last qubit is measured to
get Outcome1.

• If Outcome1 = 1, the algorithm accepts the move (Case: Accept) and con-
tinues.

• If Outcome1 = 0, then 𝑊† is applied and the last qubit is measured again to
get Outcome2.

– The case in which Outcome2 = 1 represents an alternative way of ac-
cepting the move (Case: AltAccept).

– If Outcome2 is 0, then this represents a rejection of the move (Case:
Reject), in which case𝑈†C is applied.

• Finally, registers 2, 3, and 4 are traced out and replaced by fresh qubits in all
0’s states.

Informal Statement of Results
Let E(𝜌) be the map corresponding to one iteration of the algorithm. Recall that 𝜏
is the parameter in the acceptance operator𝑊 , and 𝑔, 𝑟 are the precision parameters
in BQPE. Our main result is proving that our algorithm approximately fixes the
Gibbs states:

Theorem 1 (Informal version of theorem 4) E can be expressed as

E = I + 𝜏2L + 𝜏4J ,

whereL is independent of 𝜏 and approximately fixes the Gibbs state. More precisely
for any 𝛿, parameters 𝑔 and 𝑟 can be chosen so that 𝑔 = 𝑂 (𝑛 + log 1/𝛿) and
𝑟 = 𝑂 (log 𝛽 + log 𝜅𝐻 + log 1/𝛿), and��L(𝜌𝛽)��1 ≤ 𝛿.
Here |·|1 refers to the trace norm.

15

The proof that the fixed point of our algorithm is approximately the Gibbs State
depends upon the assumption that L is fast mixing, meaning that L converges to
its fixed point 𝜌L in 𝑝𝑜𝑙𝑦(𝑛) time. More precisely, we can combine the fast mixing
property with the fact that

��L(𝜌𝛽)��1 ≈ 0 from Theorem 1 above to establish that the
fixed point of L is close to the true Gibbs state: 𝜌L ≈ 𝜌𝛽. The next step then is to
show that starting from an arbitrary state, repeated iterations of our algorithm will
result in a good approximation of 𝜌L . In particular, the second part of Theorem 1,
which says that E = I+𝜏2L+𝜏4J , implies that E𝐾 ≈ 𝑒𝐾𝜏2L , where E𝐾 corresponds
to 𝐾 iterations of the algorithm. The error in the approximation scales as 𝐾𝜏4. 𝐾
and 𝜏 can be chosen so that 𝐾𝜏2 is polynomial in 𝑛 but the approximation error 𝐾𝜏4

is still small. Assuming that L is fast mixing, we can conclude that 𝑒𝐾𝜏2L drives
any states to 𝜌L . This reasoning leads to Theorem 2 below.

Theorem 2 (Informal version of Theorem 6) Suppose the mixing time of L is
𝑝𝑜𝑙𝑦(𝑛). Assume 𝛽, 𝜅𝐻 ≤ 𝑝𝑜𝑙𝑦(𝑛). For parameters 𝜏 = 1/𝑝𝑜𝑙𝑦(𝑛), 𝑔 = 𝑂 (𝑛),
𝑟 = 𝑂 (log 𝑛), 𝐾 = 𝑝𝑜𝑙𝑦(𝑛), and for any initial state 𝜌, we have��E𝐾 (𝜌) − 𝜌𝛽��1 ≤ 1/𝑝𝑜𝑙𝑦(𝑛). (2.6)

Theorem 2 can also be rephrased in terms of the spectral gap similarly as in the
classical Metropolis algorithm. The formal statement is in Corollary 9.

For the above choice of parameters the cost of implementing E𝐾 is𝐾𝑔 ·𝑝𝑜𝑙𝑦(2𝑟 , 𝑛) =
𝑝𝑜𝑙𝑦(𝑛), where the 𝑝𝑜𝑙𝑦(2𝑟 , 𝑛) is mainly the cost of implementing one run of
standard Quantum Phase Estimation.

Overview of Techniques
Intuitively our algorithm should approximately fix the Gibbs state, since it mimics
the classical Metropolis. The approximation errors come from two resources: one
is controlled by the parameter 𝜏 in the acceptance operator 𝑊 , and the other is
controlled by the 𝑔 and 𝑟 in BQPE.

Let us begin with the error from 𝜏. According to the algorithm, E can be expressed
as the sum of three operators representing the three cases: E (𝑎) (for Accept), E (𝑏)

for (AltAccept), and E (𝑟) (for Reject). So that E = E (𝑎)+E (𝑏)+E (𝑟) . Each of these
can be further expanded to represent their dependence on 𝜏. Mores specifically, in
Section 2.5, we define additional operators,M (𝑎) ,M (𝑟) , J (𝑏) , J (𝑟) , all with norm

16

bounded by a constant. We show that

Accept: E (𝑎) = 𝜏2M (𝑎) (2.7)

AltAccept: E (𝑏) = 𝜏2M (𝑎) + 𝜏4J (𝑏) (2.8)

Reject: E (𝑟) = I − 𝜏2M (𝑟) + 𝜏4J (𝑟) (2.9)

Note that the operators for the Accept and AltAccept cases only differ by an
operator on the order of 𝜏4, which means that the state in the AltAccept is very
close to the resulting state in the Accept case. By defining L = 2M (𝑎) −M (𝑟) and
J = J (𝑏) + J (𝑟) , we have that

E = I + 𝜏2L + 𝜏4J .

Most of the technical effort in the proof of Theorem 1 is spent showing that��L(𝜌𝛽)��1 ≈ 0. There are two features of BQPE that make this fact challenging
to prove. The first feature is that BQPE cannot be made deterministic. More pre-
cisely, recall that ⌊𝐸 𝑗⌋ and ⌈𝐸 𝑗⌉ are the best two approximations of 𝐸 𝑗 . Without
additional assumptions on the Hamiltonian, the amplitudes 𝛽 𝑗 ⌊𝐸 𝑗⌋ and 𝛽 𝑗 ⌈𝐸 𝑗⌉ are
both non-negligible. We use the boosted version of BQPE which guarantees that the
probability of generating an estimate 𝐸 that is different from ⌊𝐸 𝑗⌋ or ⌈𝐸 𝑗⌉ is negli-
gibly small. However, the fact that the output of BQPE will still be a superposition
of ⌊𝐸 𝑗⌋ and ⌈𝐸 𝑗⌉ is unavoidable and makes the process inherently different from a
classical random walk. Mathematically, this means that if the algorithm begins in an
eigenstate

��𝜓 𝑗 〉, after one iteration, the new state is no longer diagonal in the energy
eigenbasis. In particular, L(𝜌𝛽) can have exponentially many non-zero off-diagonal
entries when expressed in the energy eigenbasis.

The second feature of BQPE that makes the analysis problematic is that there
are intrinsic limitations on the precision of energy estimation of quantum states.
In particular, the energy/time uncertainty principle suggests that a 𝑝𝑜𝑙𝑦(𝑛)-time
quantum algorithm (like BQPE) can only estimate the energy of a state within
1/𝑝𝑜𝑙𝑦(𝑛) precision. This means that the off-diagonal entries of L(𝜌𝛽) can have
magnitude on the order of 1/𝑝𝑜𝑙𝑦(𝑛). The fact that L(𝜌𝛽) can have exponentially
many off-diagonal entries that have magnitude 1/𝑝𝑜𝑙𝑦(𝑛) rules out a brute-force
approach to bounding

��L(𝜌𝛽)��1.

To illustrate our approach in overcoming these technical difficulties, first imagine
instead an ideal version of BQPE which deterministically maps every

��𝜓 𝑗 〉 to ⌊𝐸 𝑗⌋.

17

The resulting process has a fixed point which is a Gibbs state where the probability
of each state is proportional to 𝑒−𝛽⌊𝐸 𝑗⌋ instead of 𝑒−𝛽𝐸 𝑗 . Call this truncated fixed
point 𝜌𝛽0. It’s not too hard to show that 𝜌𝛽0 ≈ 𝜌𝛽, which implies L(𝜌𝛽0) ≈ L(𝜌𝛽),
so we will focus instead on bounding

��L(𝜌𝛽0)
��
1. For the practically realizable,

non-deterministic BQPE, our analysis effectively decomposes L(𝜌𝛽0) into a sum of
a constant number of terms and bounds the trace norm of each term separately by
a 1/𝑝𝑜𝑙𝑦(𝑛). The different terms are derived by inserting different projectors that
separate out the cases when BQPE maps a state

��𝜓 𝑗 〉 to ⌊𝐸 𝑗⌋, ⌈𝐸 𝑗⌉, or some other
𝐸 entirely. We can represent the cases by defining projectors:

𝑃(0) =
∑︁
𝑗

|𝜓 𝑗 ⟩⟨𝜓 𝑗 | ⊗
∑︁

𝐸 :𝐸=⌊𝐸 𝑗⌋

|𝐸⟩⟨𝐸 |

𝑃(1) =
∑︁
𝑗

|𝜓 𝑗 ⟩⟨𝜓 𝑗 | ⊗
∑︁

𝐸 :𝐸=⌈𝐸 𝑗⌉

|𝐸⟩⟨𝐸 |.

When the matrix

L(𝜌𝛽0) =
∑︁
𝑗

𝑒−𝛽⌊𝐸 𝑗⌋

𝑍
⟨𝜓𝑚 | L(

��𝜓 𝑗 〉 〈
𝜓 𝑗

��) |𝜓𝑛⟩
is written out, there are four applications of phase estimation: BQPE1,2 and BQPE1,3

are applied to
��𝜓 𝑗 〉, and BQPE†1,2 and BQPE†1,3 are applied to

〈
𝜓 𝑗

��. This results in a
total of 16 terms depending on which of the two projectors (𝑃(0) or 𝑃(1)) is applied
after each occurrence of BQPE. Recall that L = 2M (𝑎) −M (𝑟) . In most cases, we
don’t get exact cancellation between the accept and reject operators because each
case may have some multiplicative error of the form 𝑒±𝛽𝛿, where 𝛿 = ⌈𝐸 𝑗⌉ − ⌊𝐸 𝑗⌋ is
the precision of BQPE (which is independent of 𝑗). The essential observation is that
each separate case results in exactly the same multiplicative error. This is because
in each case, all of the BQPE estimates are erring in exactly the same direction
and by exactly the same amount. We get that L(𝜌𝛽0) can be expressed as a linear
combination of terms {𝑁 𝑗 }:

L(𝜌𝛽0) ≈
16∑︁
𝑗=1

error 𝑗 · 𝑁 𝑗 , (2.10)

where error 𝑗 = 𝑒±𝛽𝛿 − 1 and
��𝑁 𝑗

��
1 = 𝑂 (1). In the proof we manage to reduce the

number of terms from 16 to 6 by carefully clustering terms. Note that the parameters
are chosen so that 𝑒𝛽𝛿 = (1+1/poly(𝑛)). Equation (2.10) is still approximate because
we have not yet taken into account the case where BQPE maps

��𝜓 𝑗 〉 to some value

18

other than ⌊𝐸 𝑗⌋ or ⌈𝐸 𝑗⌉. For this case, we have a third projector:

𝑃(𝑒𝑙𝑠𝑒) =
∑︁
𝑗

|𝜓 𝑗 ⟩⟨𝜓 𝑗 | ⊗
∑︁

𝐸 :𝐸≠⌊𝐸 𝑗⌋,⌈𝐸 𝑗⌉

|𝐸⟩⟨𝐸 |.

When 𝑃(𝑒𝑙𝑠𝑒) is used, the norm of the resulting operator is exponentially small
because of the use of boosted QPE. Specifically, we use the following lemma which
is included in Appendix 2.9.

Lemma 3 If
��𝜓 𝑗 〉 is an eigenstate of 𝐻 with energy 𝐸 𝑗 , then

BQPE
��𝜓 𝑗 〉 |0𝑔𝑟⟩ = ��𝜓 𝑗 〉 ∑︁

𝐸∈𝑆(𝑟)⊗𝑔
𝛽 𝑗𝐸 |𝐸⟩ , (2.11)

where
∑︁

𝐸∈𝑆(𝑟)⊗𝑔: 𝐸≠⌊𝐸 𝑗⌋,𝐸≠⌈𝐸 𝑗⌉

|𝛽 𝑗𝐸 |2 ≤ 2−𝑔/5. (2.12)

Our proof works for general Hamiltonians and we do not assume non-physical
assumptions like rounding promise [WT23]. One more remark is that BQPE itself
will create some biased phase in the resulting states. In our algorithm, we choose
BQPE and FBQPE randomly to cancel this bias. Finally, the proof of uniqueness of
the fixed point, which appears in Section 2.6, is standard, and is based on showing
that L is of Lindbladian form, and that the generators of the Lindbladian generate
the full algebra of operators on the 𝑛-qubit Hilbert space.

Related Work
We have recently become aware of the concurrent, independent work of [Gil+24a],
which also provides a quantum generalization of Glauber/Metropolis dynamics. In
contrast with our algorithm, their method does not use QPE. Instead, they construct
a quantum extension of discrete and continuous-time Glauber/Metropolis dynamics,
in the style of a smoothed Davies generator [Che+23; CKG23]. They show that their
construction exactly fixes the Gibbs states and can be efficiently implemented on a
quantum computer. For the continuous-time case, their implementation is achieved
by Linbladian simulation [Che+23]. For the discrete-time case, they use oblivious
amplitude amplification [Gil+19] in combination with techniques based on linear
combinations of unitaries and the quantum singular value transform.

Before the appearance of [Che+23], there were many previous results on simulating
Davies generators, with additional assumptions on the Hamiltonian. As mentioned
before, Davis generators cannot be implemented exactly since they require the abil-
ity to estimate eigenvalues perfectly, which is impossible with quantum computers

19

with finite resources. [WT23] circumvents this problem by assuming a rounding
promise on the Hamiltonian, which disallows eigenvalues from certain sub-intervals.
[RWW23] later eliminates the rounding promise by using randomized rounding,
which at the same time incurs an additional resource overhead. More recently,
[CKG23] designed a weighted version of Davies generator which exactly fixes the
Gibbs states (before truncating the infinite integral to a finite region). [DLL24] intro-
duces a family of quantum Gibbs samplers satisfying the Kubo-Martin-Schwinger
detailed balance condition, which includes the construction of [CKG23] as a special
instance. In addition to approaches based on the Davies generator, there are Grover-
based approaches [PW09; CS16], which prepare a purified version of Gibbs states.
The performance of those algorithms depends on the overlap between the initial and
the target state.

All of the above approaches use either quantum phase estimation or quantum sim-
ulation, which involve large quantum circuits. In contrast to those approaches,
[ZBC23] designs a dissipative quantum Gibbs sampler with simple local update
rules. [ZBC23] differs from the ordinary Gibbs samplers in that the Gibbs state
is not generated as the fixed point of the Markov Chain, but is generated on a
conditionally stopped process.

All the above work is focused on satisfying the fixed point requirement. A different
but important task is to bound the mixing time, which is wide open with the exception
of a few special cases. In particular, [KB16] shows that for a commuting Hamiltonian
on a lattice, there is an equivalence between very rapid mixing (more precisely,
constant spectral gap of the Linbladian) and a certain strong form of clustering
of correlations in the Gibbs state, which generalizes the classical result [SZ92a;
SZ92b] to the quantum setting. [Bar+23] proves fast mixing for 1D commuting
Hamiltonian at any temperature. Recently [RFA24; Bak+24] prove fast mixing for
non-commuting Hamiltonian at high temperature.

There are also many heuristic methods for preparing Gibbs states. Previous propos-
als include methods that emulate the physical thermalization process by repeatedly
coupling the systems to a thermal bath [TD00; SN16; Met+20]. There are also ap-
proaches based on quantum imaginary time evolution [Mot+20] and the variational
algorithms [WLW21; Lee+22; Con+23].

20

Conclusions and Future Work
In this manuscript, we use weak measurement to design a quantum Gibbs sam-
pler based on the Metropolis algorithm which satisfies the approximate fixed point
property. Compared with previous work, the main advantage of our algorithm is its
conceptual simplicity. We hope that our Metropolis-style Gibbs sampler will make it
easier to adapt variations of the Metropolis algorithm that speedup the convergence
of classical Markov chains to the preparation of quantum Gibbs states. Exam-
ples of variations that have been successful in the classical setting include delayed
rejection [ZK11], Equi-energy sampling [KZW06], and adaptive methods [HST01].

Our algorithm uses a Boosted QPE which takes the median value of multiple
independent runs of the standard QPE. We do not require a version of QPE that
satisfies shift-invariance. In addition, our algorithm is free of Marriott-Watrous
rewinding techniques and only performs single-qubit measurements. Technically,
we give a new way of bounding the errors incurred by imperfect energy estimation
of QPE, by grouping the error terms into finite classes. Our proof works for general
Hamiltonians and we do not assume the rounding promise. It might be interesting
to investigate whether this technique can be applied to prove that the existing Gibbs
Sampler for Hamiltonians with rounding promise [WT23] in fact works for general
Hamiltonians.

While our algorithm is simple, it comes at a cost of not having the most favorable
scaling in the parameters of the system and desired precision. In particular, our
algorithm effectively corresponds to directly simulating a Lindblad evolution 𝑒𝑡L

by discretizing 𝑡, where the cost is scaled as 𝑂 (𝑡2/𝜖) for precision parameter 𝜖 . It is
worth noting, however, that our algorithm itself is designed directly from QPE, and
we use 𝑒𝑡L only in our analysis, as opposed to first designing the Lindbldian L and
attempting to simulate it on a quantum computer. It would be interesting to explore
how more sophisticated Linbladian simulation techniques (such as [LW22; CW16;
CL16]) could be applied to our algorithmic structure to improve the dependence on
parameters. Note that our 𝑒𝑡L circumvents the problem of precision in the Davies
generator, because the operator L is already defined in terms of QPE of finite
precision.

Another possible direction for future work is to compare the mixing time of different
Gibbs samplers. In particular, it would be interesting to compare, either numerically
or theoretically, the spectral gap of the Davies generator, the Davies-generator-
inspired Lindbldian in [Che+23; CKG23], and the Lindbladian L in our algorithm.

21

Since our algorithm is similar to the classical Metropolis algorithm, it might also be
interesting to explore whether classical techniques for analyzing mixing times can
be generalized to the quantum setting.

Structure of the manuscript
The manuscript is structured as follows. In Section 2.3 we give necessary definitions
and notations. In Section 2.4 we give explicit pseudo-code of our algorithm and
express the result of each operation more formally. We state our main results in
Theorem 4 and Theorem 6 at the beginning of Section 2.5.

The proofs of Theorem 4 and Theorem 6 are divided into several sections. Section
2.5 contains the derivation of the explicit formula for L. In Section 2.6 we show
that L can be written as a Lindbladian and has a unique fixed point. Section 2.6 is
independent of Section 2.7 and can be skipped temporarily. In Section 2.7 we prove
L approximately fixes the Gibbs state. Finally in Section 2.8 we prove Theorem 4
and Theorem 6.

2.3 Preliminary and Settings
Gibbs states and Assumptions
For any 𝑛-qubit Hamiltonian 𝐻, we always use

{��𝜓 𝑗 〉 , 𝐸 𝑗 } 𝑗 to denote an ortho-
normal set of (eigenstate, eigenvalue) for 𝐻. We use symbols different from

��𝜓 𝑗 〉 to
denote other states. For any inverse temperature 𝛽 ≥ 0, we denote the Gibbs state
as

𝜌𝛽 (𝐻) := exp(−𝛽𝐻)/𝑡𝑟 (exp(−𝛽𝐻)) (2.13)

=
∑︁
𝑗

𝑝 𝑗
��𝜓 𝑗 〉 〈

𝜓 𝑗
�� , (2.14)

where 𝑝 𝑗 := exp(−𝛽𝐸 𝑗)/𝑡𝑟 (exp(−𝛽𝐻)). (2.15)

We assume 𝐻 ≥ 0, and its spectrum norm is bounded by ∥𝐻∥ ≤ 𝑝𝑜𝑙𝑦(𝑛). Note
that one can always add multiples of identity matrices to 𝐻 to ensure 𝐻 ≥ 0 and
this operation does not change the Gibbs state. To ease notation, we will fix 𝐻 and
abbreviate 𝜌𝛽 (𝐻) as 𝜌𝛽.

𝜅𝐻 = 𝑝𝑜𝑙𝑦(𝑛) is a power of two that upper bounds ∥𝐻∥. For example, for local
Hamiltonian 𝐻 =

∑𝑚
𝑖=1 𝐻𝑖, ∥𝐻𝑖∥ ≤ 1, one can set 𝜅𝐻 to be the least integer which is

a power of two and is greater than 𝑚. Then 𝜅𝐻 ≤ 2𝑚.

For simplicity, in this manuscript we assume that we can implement arbitrary 2-
qubit gates exactly. Note that this assumption does not influence the generality of

22

our results, since the error analysis can be easily generalized to the practical case
where we approximate arbitrary 2-qubit gate to 1/𝑝𝑜𝑙𝑦(𝑛) precision, by noticing
that the 𝑙2 norm ∥(𝑈 −𝑉) |𝜓⟩ ∥2 is bounded by the spectrum norm ∥𝑈 −𝑉 ∥ for any
|𝜓⟩.

Notations and Norms.
We use log for log2. For a complex value 𝑎 ∈ C, we use 𝑎∗ to represent its complex
conjugate. For two numbers 𝑥, 𝑦, we use 𝛿𝑥𝑦 to denote the function which equals to 1
if 𝑥 = 𝑦 and 0 otherwise. For a matrix𝑀 , we use𝑀† to denote its complex conjugate
transpose. For two matrices𝑀, 𝑁 , we use {𝑀, 𝑁}+ to denote their anti-commutator:
𝑀𝑁 + 𝑁𝑀 . We use ∥𝑀 ∥ to denote the spectrum norm of 𝑀 . For a vector |𝜙⟩ we
use ∥ |𝜙⟩ ∥2 to denote the 𝑙2 norm. |𝜙⟩ can be normalized or unnormalized. When
it is necessary, we will use number subscripts to denote the name of the quantum
registers. For example, |𝜙⟩1 means the state is in register 1.

We use Ξ(𝑚) to denote the set of linear operators on an 𝑚-qubit Hilbert space. We
use H(𝑚) to denote the set of Hermitian linear operators on an 𝑚-qubit Hilbert
space. We say 𝜌 ∈ H (𝑚) is an 𝑚-qubit quantum state if 𝜌 ≥ 0, 𝜌 = 𝜌† and
𝑡𝑟 (𝜌) = 1. We use 𝐼𝑚 to denote the identity matrix on 𝑚 qubits. When 𝑚 is clear we
abbreviate 𝐼𝑚 as 𝐼. Given a set of linear operators 𝑆 = {𝑀1, 𝑀2, ...} ⊆ Ξ(𝑚), the
algebra generated by 𝑆 is the set of linear operators which is a finite sum

∑
𝑘 𝛼𝑘𝑃𝑘 ,

where 𝛼𝑘 ∈ C and 𝑃𝑘 is a product of finite operators in 𝑆.

We use symbols R, E, F ... to represent linear maps from Ξ(𝑚) to Ξ(𝑚). We use I
to denote the identity map. We say a linear map E : H(𝑚) → H(𝑚) is Completely
Positive and Trace Preserving (CPTP) if there exists a set of linear operators {𝐴𝑢}𝑢
such that ∀𝑀 ∈ H (𝑚), E(𝑀) = ∑

𝑢 𝐴𝑢𝑀𝐴
†
𝑢, where

∑
𝑢 𝐴
†
𝑢𝐴𝑢 = 𝐼.

The trace norm of 𝑀 ∈ H (𝑚) is defined to be |𝑀 |1 := 𝑡𝑟 (
√
𝑀†𝑀). The trace norm

induces a norm on linear maps R : H(𝑚) → H(𝑚), which quantifies how much R
can scale the trace norm:

|R |★ := max
𝑀∈H (𝑚);|𝑀 |1=1

|R(𝑀) |1 . (2.16)

2.4 Quantum Metropolis Algorithm in More Detail
The algorithm takes in seven input parameters:

• An 𝑛-qubit local Hamiltonian 𝐻.

• Inverse temperature 𝛽.

23

• 𝜏, which is a small 1/𝑝𝑜𝑙𝑦(𝑛) real value that controls the weak measurement.

• 𝐾 ∈ N, which is the number of iterations in the main loop.

• 𝜌, which is an arbitrary initial state.

• 𝑟, 𝑔 ∈ N, which controls the precision of QPE.

The jump operators {𝐶 𝑗 } 𝑗 , the acceptance operator 𝑊 , and the Boosted Quan-
tum Phase Estimation (BQPE, FBQPE) are described in Section 2.2. For QPE ∈
{BQPE, FBQPE}, we use QPE𝑎,𝑏 for applying QPE on register 𝑎, 𝑏 of 𝑛 and 𝑔𝑟
qubits respectively.

The pseudo-code for the main algorithm is given in Algorithm 1. All measurements
are done in the computational basis. The outline of each iteration is given in Figure
2.1.

Algorithm 1 QMetropolis(H,𝛽,𝜏,𝐾 ,𝜌,𝑟,𝑔)
1: Initialize Register 1 to 𝜌. {For example one can set 𝜌 = |0𝑛⟩ ⟨0𝑛 |} 𝑖𝑡𝑒𝑟 = 1 to
𝐾

2: QPE← {BQPE, FBQPE} (with equal probability.)
3: Sample 𝐶 ← 𝜇,
4: Append (fresh) Registers 2, 3, 4 in state |0𝑔𝑟⟩ |0𝑔𝑟⟩ |0⟩ ,
5: Define𝑈 := QPE1,3 ◦ 𝐶 ◦ QPE1,2.
6: Apply𝑈, then apply𝑊
7: Measure register 4 to get Outcome1 (Outcome1 = 1)
8: Case Accept: do nothing. (Outcome1 = 0)
9: Apply(𝑊†), and measure register 4 to get Outcome2. (Outcome2 = 1)

10: Case AltAccept: do nothing. (Outcome2 = 0)
11: Case Reject: Apply𝑈†
12: Trace out (throw away) registers 2, 3, 4.

To illustrate the result of each step of the algorithm, we give explicit formulas for
the contents of the registers throughout one iteration. Assume that the version of
QPE chosen is BQPE. Let 𝐶 be the chosen jump operator, which can be expressed
in the energy eigenbasis of 𝐻 as

𝐶
��𝜓 𝑗 〉 = ∑︁

𝑘

𝑐 𝑗 𝑘 |𝜓𝑘⟩ . (2.17)

Assume we begin with the state
��𝜓 𝑗 〉 |0𝑔𝑟⟩ |0𝑔𝑟⟩ |0⟩, where

��𝜓 𝑗 〉 is an eigenstate of
𝐻. Recall that

BQPE
��𝜓 𝑗 〉 |0𝑔𝑟⟩ = ��𝜓 𝑗 〉 ∑︁

𝐸∈𝑆(𝑟)⊗𝑔
𝛽 𝑗𝐸 |𝐸⟩ .

24

Then:

BQPE1,2
��𝜓 𝑗 〉 |0𝑔𝑟⟩ |0𝑔𝑟⟩ |0⟩ = ∑︁

𝐸∈𝑆(𝑟)⊗𝑔
𝛽 𝑗𝐸

��𝜓 𝑗 〉 |𝐸⟩ |0𝑔𝑟⟩ |0⟩ ,
(2.18)

𝐶 · BQPE1,2
��𝜓 𝑗 〉 |0𝑔𝑟⟩ |0𝑔𝑟⟩ |0⟩ = ∑︁

𝑘;𝐸∈𝑆(𝑟)⊗𝑔
𝛽 𝑗𝐸 · 𝑐 𝑗 𝑘 |𝜓𝑘⟩ |𝐸⟩ |0𝑔𝑟⟩ |0⟩ ,

(2.19)

BQPE1,3 · 𝐶 · BQPE1,2
��𝜓 𝑗 〉 |0𝑔𝑟⟩ |0𝑔𝑟⟩ |0⟩ = ∑︁

𝑘;𝐸,𝐸 ′∈𝑆(𝑟)⊗𝑔
𝛽 𝑗𝐸 · 𝑐 𝑗 𝑘 · 𝛽𝑘𝐸 ′ |𝜓𝑘⟩ |𝐸⟩ |𝐸′⟩ |0⟩ .

(2.20)

Finally, when𝑊 is applied, the result is∑︁
𝑘;𝐸,𝐸 ′∈𝑆(𝑟)⊗𝑔

𝛽 𝑗𝐸 · 𝑐 𝑗 𝑘 · 𝛽𝑘𝐸 ′ |𝜓𝑘⟩ |𝐸⟩ |𝐸′⟩
(√︁

1 − 𝜏2 𝑓𝐸𝐸 ′ |0⟩ + 𝜏
√︁
𝑓𝐸𝐸 ′ |1⟩

)
. (2.21)

Note that if FBQPE is chosen instead of BQPE, the result is∑︁
𝑘;𝐸,𝐸 ′∈𝑆(𝑟)⊗𝑔

𝛽∗𝑗𝐸 · 𝑐 𝑗 𝑘 · 𝛽∗𝑘𝐸 ′ |𝜓𝑘⟩ |𝐸⟩ |𝐸
′⟩

(√︁
1 − 𝜏2 𝑓𝐸𝐸 ′ |0⟩ + 𝜏

√︁
𝑓𝐸𝐸 ′ |1⟩

)
. (2.22)

Then for the state in Eq. (2.21) we measure register 4 in computational basis. If we
get measurement outcome 1, the (unnormalized) state becomes∑︁

𝑘;𝐸,𝐸 ′∈𝑆(𝑟)⊗𝑔
𝜏
√︁
𝑓𝐸𝐸 ′𝛽 𝑗𝐸 · 𝑐 𝑗 𝑘 · 𝛽𝑘𝐸 ′ |𝜓𝑘⟩ |𝐸⟩ |𝐸′⟩ |1⟩ . (2.23)

2.5 Main Theorems and the Effective Quantum Markov Chain
In this section, we state formal versions of the main theorems that we will prove
about the performance of Algorithm 1. Note that each iteration in Algorithm 1
corresponds to a quantum channel which maps 𝑛-qubit states to 𝑛-qubit states. We
denote this quantum channel as E[𝜏]. We will expand E[𝜏] as power series of 𝜏.
The performance of Algorithm 1 can be analyzed by studying the term of order
∼ 𝜏2, which is L defined below. To ease notation, define

𝑟𝛽𝐻 := 1 + log 𝜅𝐻 + log 𝛽. (2.24)

Theorem 4 For any 𝑛-qubit state 𝜌,

E[𝜏] (𝜌) =
(
I + 𝜏2L + 𝜏4J [𝜏]

)
(𝜌), (2.25)

where L,J [𝜏] : H(𝑛) → H(𝑛) are linear maps on operators. L is independent
of 𝜏. Assuming 𝑟 ≥ 𝑟𝛽𝐻 we have

25

• (Fixed point)
��L(𝜌𝛽)��1 ≤ 2−𝑔/10+2𝑛+4 + 40𝛽 · 𝜅𝐻 · 2−𝑟 .

• (Error terms) |J [𝜏] |★ ≤ 4.

• (Uniqueness and Relaxation) There is a unique 𝜌L such that L(𝜌L) = 0.
Besides, 𝜌L is a full-rank quantum state and for any quantum state 𝜌,

lim
𝑡→∞

𝑒𝑡L (𝜌) = 𝜌L . (2.26)

To make
��L(𝜌𝛽)��1 ≤ 𝛿 parameters 𝑔 and 𝑟 are chosen so that 𝑔 = 𝑂 (𝑛 + log 1/𝛿)

and 𝑟 = 𝑂 (log 𝛽 + log 𝜅𝐻 + log 1/𝛿). The constant in the bound of
��L(𝜌𝛽)��1 might

be improved by a finer analysis. To ease notation, we will abbreviate E[𝜏] as E.

Theorem 4 suggests that Algorithm 1 effectively approximates a continuous-time
chain 𝑒𝑡L with a step-size of 𝜏2. The divergence between the output of our algorithm
and 𝜌𝛽 depends on the mixing time of L, which depends on the choice of the jump
operators {𝐶 𝑗 } 𝑗 .

Definition 5 (Mixing time) Let 𝜖 be a precision parameter. The mixing time w.r.t
(L, 𝜖) is defined to be the time needed for driving any initial state 𝜖-close to its fixed
point

𝑡𝑚𝑖𝑥 (L, 𝜖) := inf{𝑡 ≥ 0 :
��𝑒𝑡L (𝜌) − 𝜌L ��1 ≤ 𝜖, for any quantum state 𝜌}. (2.27)

Theorem 6 (Error bounds w.r.t Mixing time) Let 𝜏, 𝜖 be parameters. Assume
𝑟 ≥ 𝑟𝛽𝐻 . For integer1 𝐾 := 𝑡𝑚𝑖𝑥 (L, 𝜖)/𝜏2, we have for any quantum state 𝜌,��E𝐾 (𝜌) − 𝜌𝛽��1 ≤ 2𝜖 +

(
2−𝑔/10+2𝑛+4 + 40𝛽 · 𝜅𝐻 · 2−𝑟 + 2𝑒4𝜏2

)
𝑡𝑚𝑖𝑥 (L, 𝜖).

Abbreviate 𝑡𝑚𝑖𝑥 (L, 𝜖) as 𝑡𝑚𝑖𝑥 . For parameters

𝜏2 = 𝑂 (𝜖/𝑡𝑚𝑖𝑥)
𝑔 = 𝑂 (𝑛 + log 𝑡𝑚𝑖𝑥 + log 1/𝜖)
𝑟 = 𝑂 (log 𝛽 + log 𝜅𝐻 + log 𝑡𝑚𝑖𝑥 + log 1/𝜖).
𝐾 = 𝑡𝑚𝑖𝑥/𝜏2 = 𝑂 (𝑡2𝑚𝑖𝑥/𝜖)

we have
��E𝐾 (𝜌) − 𝜌𝛽��1 ≤ 3𝜖 . The total runtime of the algorithm is

𝐾 · 4𝑔 · 𝑝𝑜𝑙𝑦(2𝑟 , 𝑛) = 𝑂 (𝑝𝑜𝑙𝑦(𝑡𝑚𝑖𝑥 , 𝛽, 𝜅𝐻 , 1/𝜖, 𝑛)) ,
1For simplicity, here we assume 𝐾 := 𝑡𝑚𝑖𝑥 (L, 𝜖)/𝜏2 is an integer. Otherwise we set 𝐾 to be the

least integer which is greater than 𝑡𝑚𝑖𝑥 (L, 𝜖)/𝜏2 and the error bounds can be analyzed similarly.

26

which is 𝑝𝑜𝑙𝑦(𝑛, 1/𝜖) assuming 𝑡𝑚𝑖𝑥 = 𝑝𝑜𝑙𝑦(𝑛), 𝛽 ≤ 𝑝𝑜𝑙𝑦(𝑛) and 𝜅𝐻 ≤ 𝑝𝑜𝑙𝑦(𝑛).
The 𝑝𝑜𝑙𝑦(2𝑟 , 𝑛) in the above formula is mainly the cost of implementing one run of
standard Quantum Phase estimation. Theorem 4 and Theorem 6 will be proved in
Section 2.8.

Instead of mixing time, as in the classical Metropolis algorithm, one can also bound
the error

��E𝐾 (𝜌) − 𝜌𝛽��1 in terms of the spectral gap of L. More precisely, since L
may not be Hermitian, we need to define a symmetrized version of L in order for
the spectral gap to be well-defined. Note that 𝜎 := 𝜌−1

L is well-defined since 𝜌L is
full rank. Define L∗ to be dual map w.r.t inner product

⟨𝑀, 𝑁⟩𝜎 := 𝑡𝑟 (𝜎 1
2𝑀†𝜎

1
2𝑁).

Define the symmetrized mapL (𝑠) = 1
2 (L+L

∗). Then by definitionL (𝑠) is Hermitian
w.r.t. ⟨, ⟩𝜎 and is diagonalizable, thus its spectral gap, denoted as Υ, is well-defined.
Furthermore one can prove L (𝑠) has a unique fixed point thus the spectral gap Υ

is strictly greater than 0. The following Theorem 7 implies 𝑡𝑚𝑖𝑥 can be bounded
in terms of Υ. Thus one can translate Theorem 6 in terms of Υ to get Corollary
9. For completeness, we put a more detailed explanation of the dual map L∗, the
symmetrized map L (𝑠) , their properties and a proof for Theorem 7 in Appendix
2.11.

Theorem 7 (Bounding mixing time w.r.t spectral gap) Define𝜎 := 𝜌−1
L . For any

quantum state 𝜌, we have��𝑒𝑡L (𝜌) − 𝜌L ��1 ≤ 2𝑛/2 ·
√︃
𝑡𝑟 (𝜎 1

2 𝜌𝜎
1
2 𝜌) · exp(−Υ𝑡).

Corollary 8 Define 𝜎 := 𝜌−1
L , we have

𝑡𝑚𝑖𝑥 (L, 𝜖) ≤
1
Υ

(
ln

1
𝜖
+ 𝑛 ln 2

2
+ 1

2
ln 𝑡𝑟 (𝜎 1

2 𝜌𝜎
1
2 𝜌)

)
.

Corollary 9 (Error bounds w.r.t Spectral gap) Let 𝜏, 𝜖 be two parameters. Let Υ
be the spectral gap of L (𝑠) . Assume 𝑟 ≥ 𝑟𝛽𝐻 . Define 𝜎 := 𝜌−1

L . Then for any
quantum state 𝜌, we have��E𝐾 (𝜌) − 𝜌𝛽��1
≤ 2𝜖 +

(
2−𝑔/10+2𝑛+4 + 40𝛽 · 𝜅𝐻 · 2−𝑟 + 2𝑒4𝜏2

) 1
Υ

(
ln

1
𝜖
+ 𝑛 ln 2

2
+ 1

2
ln 𝑡𝑟 (𝜎 1

2 𝜌𝜎
1
2 𝜌)

)
,

(2.28)

for 𝐾 :=
1
𝜏2

1
Υ

(
ln

1
𝜖
+ 𝑛 ln 2

2
+ 1

2
ln 𝑡𝑟 (𝜎 1

2 𝜌𝜎
1
2 𝜌)

)
. (2.29)

27

Outline of this section. In Section 2.5 we will define the operators corresponding
to the three cases of the algorithm. In Section 2.5 to Section 2.5 we will derive
the evolution equation Eq. (2.25). In particular, we separate E into a sum of terms
according to their dependence on 𝜏. This defines the operator L which we will
analyze in later sections. Subsection 2.6 then writes LC in the Lindbladian form.
In Section 2.6 we prove the fixed point of L is unique.

Definition of Operators for the Three Cases
We will use the subscript C to denote a particular choice for {𝐶,QPE}. So, for
example,

𝑈C = QPE1,3 ◦ 𝐶 ◦ QPE1,2. (2.30)

We use (Δ0,Δ1) to denote measurement on register 4 in the computational basis,
where

Δ0 := 𝐼𝑛 ⊗ 𝐼𝑔𝑟 ⊗ 𝐼𝑔𝑟 ⊗ |0⟩ ⟨0| , (2.31)

Δ1 := 𝐼𝑛 ⊗ 𝐼𝑔𝑟 ⊗ 𝐼𝑔𝑟 ⊗ |1⟩ ⟨1| . (2.32)

If the state at the beginning of an iteration is 𝜌, then the operations performed on
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1�� in each of the three cases (before the last three registers are

traced out) can be summarized as

Accept: 𝑂𝑎,C := Δ1𝑊Δ0 ◦ 𝑈C (2.33)

AltAccept: 𝑂𝑏,C := Δ1𝑊
†Δ0 ◦ Δ0𝑊Δ0 ◦ 𝑈C (2.34)

Reject: 𝑂𝑟,C := 𝑈†C ◦ Δ0𝑊
†Δ0 ◦ Δ0𝑊Δ0 ◦ 𝑈C (2.35)

The initial Δ0 is added in for symmetry and has no effect since the last register
is always initialized as |0⟩ at the start of each iteration. For 𝑠 ∈ {𝑎, 𝑏, 𝑟} which
represents Accept, AltAccept, and Reject, the corresponding operator which
includes tracing out the last three registers is:

E (𝑠)C (𝜌) = 𝑡𝑟2,3,4

(
𝑂𝑠,C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑂

†
𝑠,C

)
, (2.36)

where E = E (𝑎) + E (𝑏) + E (𝑟) is the operator representing one iteration. In each of
the next three subsections, we will derive alternative expressions for the operators

28

in the three cases, as a sum of terms with different dependencies on the parameter
𝜏. Recall the definition of𝑊 :

𝑊 :=
∑︁

𝐸,𝐸 ′∈𝑆(𝑟)⊗𝑔
|𝐸𝐸′⟩ ⟨𝐸𝐸′| ⊗

[√︁
1 − 𝜏2 𝑓𝐸𝐸 ′ 𝜏

√︁
𝑓𝐸𝐸 ′

𝜏
√︁
𝑓𝐸𝐸 ′ −

√︁
1 − 𝜏2 𝑓𝐸𝐸 ′

]
. (2.37)

Note that𝑊 is Hermitian.

Operator for the Accept Case
Definition 10 [Operators for the Accept Case]

𝑊 (10) :=
∑︁

𝐸,𝐸 ′∈𝑆(𝑟)⊗𝑔

√︁
𝑓𝐸𝐸 ′ |𝐸𝐸′⟩ ⟨𝐸𝐸′| ⊗ |1⟩ ⟨0| (2.38)

M (𝑎)C (𝜌) := 𝑡𝑟2,3,4

(
𝑊 (10)𝑈C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈

†
C (𝑊

(10))†
)
. (2.39)

Lemma 11
E (𝑎)C (𝜌) = 𝜏

2M (𝑎)C where
���M (𝑎)C ���

★
≤ 1.

Proof: The main observation in proving the lemma is that Δ1𝑊Δ0 = 𝜏𝑊 (10) .
Therefore

E (𝑎)C (𝜌) = 𝑡𝑟2,3,4

(
𝑂𝑎,C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑂

†
𝑎,C

)
(2.40)

= 𝑡𝑟2,3,4

(
Δ1𝑊Δ0 ◦ 𝑈C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈

†
C ◦ Δ0𝑊

†Δ1

)
(2.41)

= 𝜏2 · 𝑡𝑟2,3,4

(
𝑊 (10) ◦ 𝑈C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈

†
C ◦ (𝑊

(10))†
)

(2.42)

= 𝜏2M (𝑎)C (𝜌). (2.43)

Using Lemma 37 in Appendix 2.10, we can observe that
���M (𝑎)C ���

★
≤ 1.

Operator for the AltAccept Case
Lemma 12

E (𝑏)C (𝜌) = 𝜏
2M (𝑎)C + 𝜏

4J (𝑏)C [𝜏],

where
���J (𝑏)C [𝜏]���★ ≤ 3 for 𝜏 ∈ [0, 1].

Proof: Define the function𝑊 (00) to be

𝑊 (00) =
∑︁

𝐸,𝐸 ′∈𝑆(𝑟)⊗𝑔

𝑓𝐸𝐸 ′√︁
1 − 𝜏2 𝑓𝐸𝐸 ′ + 1

|𝐸𝐸′⟩ ⟨𝐸𝐸′| ⊗ |0⟩ ⟨0| .

29

Note that 𝑓𝐸𝐸 ′/(
√︁

1 − 𝜏2 𝑓𝐸𝐸 ′ + 1) ∈ [0, 1] since both 𝜏 and 𝑓𝐸𝐸 ′ are in [0, 1]. With
this definition in place, observe that

Δ0𝑊Δ0 = Δ0 − 𝜏2𝑊 (00) ,

and

Δ1𝑊
†Δ0 ◦ Δ0𝑊Δ0 = 𝜏𝑊 (10) (Δ0 − 𝜏2𝑊 (00)) = 𝜏𝑊 (10) − 𝜏3𝑊 (10)𝑊 (00) .

Now we can express E (𝑏)C (𝜌) as

𝑡𝑟2,3,4

((
𝜏𝑊 (10) − 𝜏3𝑊 (10)𝑊 (00)

)
𝑈C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈

†
C

(
𝜏𝑊 (10) − 𝜏3𝑊 (10)𝑊 (00)

)†)
.

In multiplying out the terms, there is one 𝜏2 term:

𝜏2𝑡𝑟2,3,4

(
𝑊 (10)𝑈C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈

†
C (𝑊

(10))†
)
,

which is equal to 𝜏2M (𝑎)C . There are two 𝜏4 terms:

−𝜏4𝑡𝑟2,3,4

(
𝑊 (10)𝑊 (00)𝑈C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈

†
C (𝑊

(10))†
)
,

−𝜏4𝑡𝑟2,3,4

(
𝑊 (10)𝑈C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈

†
C (𝑊

(10)𝑊 (00))†
)
.

Finally, there is one 𝜏6 term:

𝜏6𝑡𝑟2,3,4

(
𝑊 (10)𝑊 (00)𝑈C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈

†
C (𝑊

(10)𝑊 (00))†
)
.

The sum of the two 𝜏4 term and the 𝜏6 term is denoted as 𝜏4 · J (𝑏)C [𝜏]. Using

Lemma 37 in Appendix 2.10, we can observe that
���J (𝑏)C [𝜏]���★ ≤ 3 for 𝜏 ∈ [0, 1].

Operator for the Reject Case
Definition 13 [Operators for the Reject Case]

𝑊 (000) :=
∑︁

𝐸,𝐸 ′∈𝑆(𝑟)⊗𝑔
𝑓𝐸𝐸 ′ |𝐸𝐸′⟩ ⟨𝐸𝐸′| ⊗ |0⟩ ⟨0| = (𝑊 (10))†𝑊 (10) (2.44)

M (𝑟)C (𝜌) :=
〈
02𝑔𝑟+1��𝑈†C𝑊 (000)𝑈C

��02𝑔𝑟+1〉 · 𝜌 + 𝜌 · 〈02𝑔𝑟+1��𝑈†C𝑊 (000)𝑈C
��02𝑔𝑟+1〉

(2.45)

Lemma 14
E (𝑟)C (𝜌) = I − 𝜏

2M (𝑟)C + 𝜏
4J (𝑟)C ,

where
���M (𝑟)C ���

★
≤ 2 and

���J (𝑟)C ���
★
≤ 1.

30

Proof: First observe that

Δ0𝑊Δ0 ◦ Δ0𝑊Δ0 = Δ0 − 𝜏2𝑊 (000) .

Also𝑊 (000) is Hermetian. Now we can express E (𝑟)C (𝜌) as

𝑡𝑟2,3,4

(
𝑈
†
C

(
Δ0 − 𝜏2𝑊 (000)

)
𝑈C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈

†
C

(
Δ0 − 𝜏2𝑊 (000)

)†
𝑈C

)
.

There is one term independent of 𝜏 which is the identity since Δ0 and𝑈C commute:

𝑡𝑟2,3,4

(
𝑈
†
CΔ0𝑈C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈

†
CΔ0𝑈C

)
= I(𝜌) = 𝜌.

There are two 𝜏2 terms:

−𝜏2𝑡𝑟2,3,4

(
𝑈
†
C𝑊
(000)𝑈C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��]) = −𝜏2 〈

02𝑔𝑟+1��𝑈†C𝑊 (000)𝑈C
��02𝑔𝑟+1〉 𝜌,

−𝜏2𝑡𝑟2,3,4

([
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈†C𝑊 (000)𝑈C

)
= −𝜏2𝜌·

〈
02𝑔𝑟+1��𝑈†C𝑊 (000)𝑈C

��02𝑔𝑟+1〉 .
The sum of the 𝜏2 terms is equal to −𝜏2M (𝑟)C (𝜌). Finally there is a 𝜏4:

𝜏4𝑡𝑟2,3,4

(
𝑈
†
C𝑊
(000)𝑈C

[
𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈

†
C𝑊
(000)𝑈C

)
.

This last term is defined to be J (𝑟)C . Using Lemma 37 in Appendix 2.10, we can

observe that
���M (𝑟)C ���

★
≤ 2 and

���J (𝑟)C ���
★
≤ 1 for 𝜏 ∈ [0, 1].

The Definition of Operator LC and L
Definition 15 [The Operators LC ,JC and L,J]

LC := 2M (𝑎)C −M
(𝑟)
C (2.46)

JC [𝜏] := J (𝑏)C [𝜏] + J
(𝑟)
C (2.47)

Averaging the random choices for QPE and the jump operator 𝐶,

L :=
∑︁

C={𝐶,QPE}

1
2
𝜇(𝐶)LC , (2.48)

where the 1
2 comes from the fact that QPE is chosen uniformly from {BQPE,FBQPE}.

DefineM (𝑎) ,M (𝑟) and J [𝜏] fromM (𝑎)C ,M (𝑟)C and JC [𝜏] similarly.

Lemma 16

E = I + 𝜏2L + 𝜏4J [𝜏], (2.49)

where |L|★ ≤ 4, and |J [𝜏] |★ ≤ 4 for 𝜏 ∈ [0, 1].

31

Proof: By Lemmas 11, 12, and 14,

EC = E (𝑎)C + E
(𝑏)
C + E

(𝑟)
C (2.50)

= 𝜏2M (𝑎)C + (𝜏
2M (𝑎)C + 𝜏

4J (𝑏)C [𝜏]) + (I − 𝜏
2M (𝑟)C + 𝜏

4J (𝑟)C) (2.51)

= I + 𝜏2(2M (𝑎)C −M
(𝑟)
C) + 𝜏

4(J (𝑏)C [𝜏] + J
(𝑟)
C) (2.52)

= I + 𝜏2LC + 𝜏4JC [𝜏] . (2.53)

SinceJC = J (𝑏)C [𝜏]+J
(𝑟)
C ,

���J (𝑏)C [𝜏]���★ ≤ 3, and
���J (𝑟)C ���

★
≤ 1, the bound on |JC [𝜏] |★

follows by triangle inequality. Similarly |LC |★ ≤ 2
���M (𝑎)C ���

★
+

���M (𝑟)C ���
★
≤ 4. The

equation for E comes from linearity. The bounds for |J [𝜏] |★ and |L|★ come from
triangle inequality.

2.6 Uniqueness of the Fixed Point
In this section, we rewrite L in the Lindbladian form, and prove that L has a unique
fixed point if the jump operators {𝐶 𝑗 } 𝑗 generate the full algebra. This section is
independent of Section 2.7 which proves L approximately fixes the Gibbs state, and
can be skipped temporarily.

Lindbladian form of L
Lemma 17 LC can be written in Lindbladian form, that is defining

𝑆C (𝐸𝐸′𝑧) := ⟨𝐸𝐸′𝑧 |𝑊 (10) ◦ 𝑈C
��02𝑔𝑟+1〉

we have

LC (𝜌) =
∑︁
𝐸𝐸 ′𝑧

2 · 𝑆C (𝐸𝐸′𝑧) · 𝜌 · 𝑆C (𝐸𝐸′𝑧)† −
{
𝑆C (𝐸𝐸′𝑧)†𝑆C (𝐸𝐸′𝑧), 𝜌

}
+ .

(2.54)

Proof: One can check that

LC (𝜌) = 2M (𝑎)C (𝜌) −M
(𝑟)
C (𝜌) (2.55)

=
∑︁
𝐸𝐸 ′𝑧

2 · 𝑆C (𝐸𝐸′𝑧) · 𝜌 · 𝑆C (𝐸𝐸′𝑧)† (2.56)

−
∑︁
𝐸𝐸 ′𝑧

(
𝑆C (𝐸𝐸′𝑧)† · 𝑆C (𝐸𝐸′𝑧) · 𝜌 + 𝜌 · 𝑆C (𝐸𝐸′𝑧)†𝑆C (𝐸𝐸′𝑧)

)
(2.57)

=
∑︁
𝐸𝐸 ′𝑧

2 · 𝑆C (𝐸𝐸′𝑧) · 𝜌 · 𝑆C (𝐸𝐸′𝑧)† −
{
𝑆C (𝐸𝐸′𝑧)†𝑆C (𝐸𝐸′𝑧), 𝜌

}
+ (2.58)

32

In the following we give a sketch that LC and the Davies generator D𝛼 (𝑤) have
similar forms. This observation is just for intuition and will not be used in any
proof. Due to the indeterministic and imperfect energy estimation of BQPE, it
is unclear whether the proof techniques used for Davies-generator-based Gibbs
sampler [Che+23; DLL24] can be adapted to show that ourL satisfyingL(𝜌𝛽) ≈ 0.
These proof techniques [Che+23; DLL24] are based on bounding the approximation
error by truncating the infinite integral in the (weighted) Davies generator to a finite
region.

Recall that the canonical form of Davies generator D w.r.t. jump operators {𝐴𝛼}𝛼,
in the Schrodinger picture, is given by

D(𝜌) = −𝑖[𝐻, 𝜌] +
∑︁
𝑤,𝛼

D𝛼 (𝑤) (𝜌) (2.59)

D𝛼 (𝑤) (𝜌) = 𝐺𝛼 (𝑤)
(
2 · 𝐴𝛼 (𝑤) · 𝜌 · 𝐴𝛼 (𝑤)† −

{
𝐴𝛼 (𝑤)†𝐴𝛼 (𝑤), 𝜌

}
+

)
(2.60)

𝐴𝛼 (𝑤) :=
∫ +∞

−∞
𝑒𝑖𝑤𝑡𝑒−𝑖𝐻𝑡𝐴𝛼𝑒

𝑖𝐻𝑡𝑑𝑡. (2.61)

Here𝐺𝛼 (𝑤) is the acceptance rate, 𝐴𝛼 is the jump operator, and 𝐴𝛼 (𝑤) is an operator
which maps a state of energy 𝜈 to energy 𝜈 + 𝑤. The summation

∑
𝑤 sums over all

possible energy difference {𝐸 𝑗 − 𝐸𝑘 } 𝑗 ,𝑘 . The 𝑆C (𝐸𝐸′𝑧) in our L is a conceptual
analog of

√
𝐺𝛼𝐴𝛼 (𝑤), which map states with energy approximately 𝐸 to states with

energy approximately 𝐸′. The jump operator 𝐶 is an analog of 𝐴𝛼.

Uniqueness of the Fixed Point
In this subsection, we prove the following theorem.

Theorem 18 [Uniqueness of full-rank fixed point] Suppose that in Algorithm 1, the
algebra generated by jump operators {𝐶 𝑗 } 𝑗 is equal to the full algebra, that is, the
set of all 𝑛-qubit operators. Then there is a unique 𝜌L ∈ Ξ(𝑛) such that L(𝜌L) = 0.
In addition, 𝜌L is a full-rank quantum state, and for any quantum state 𝜌,

lim
𝑡→∞

𝑒𝑡L (𝜌) = 𝜌L . (2.62)

We first prove a Lemma.

Lemma 19 𝑒𝑡L is CPTP for any 𝑡 ≥ 0.

Proof: Note that

𝑒𝑡L = lim
𝛿→0
E[𝛿]𝑡/𝛿2

, (2.63)

33

where the limit is taking by decreasing 𝛿 ≥ 0 to 0. Since E[𝛿] is CPTP for any
𝛿 ∈ [0, 1], 𝑒𝑡L is also CPTP. An alternative proof can be obtained by noticing that
Lemma 17 implies that L satisfies Theorem 40 in Appendix 2.11.

We invoke the following Theorems to prove the uniqueness of the fixed point, which
can be adapted from Corollary 7.2 of [Wol12] or Lemma 2 in [DLL24].

Theorem 20 ([Wol12; DLL24]) Suppose 𝑒P𝑡 : Ξ(𝑛) → Ξ(𝑛) is a CPTP map for
any 𝑡 ≥ 0, with generator

P(𝜌) = −𝑖[𝐻𝑠𝑦𝑠𝑡𝑒𝑚, 𝜌] +
∑︁
𝑘∈𝑆

(
𝑉𝑘𝜌𝑉

†
𝑘
− 1

2

{
𝑉
†
𝑘
𝑉𝑘 , 𝜌

}
+

)
. (2.64)

If the algebra generated by operators {𝑉𝑘 }𝑘 is the full algebra Ξ(𝑛). Then there
exists a unique 𝜌P such that P(𝜌P) = 0. In addition, 𝜌P is a full-rank quantum
state, and for any quantum state 𝜌,

lim
𝑡→∞

𝑒𝑡P (𝜌) = 𝜌P . (2.65)

We use the above Theorem to prove that L has a unique fixed point.

Proof:[Proof of Theorem 18] By Lemma 19 we know that 𝑒𝑡L is CPTP. Then we
verify the conditions in Theorem 20. Recall that in Lemma 17 we have written LC
in Lindbladian form in terms of 𝑆C (𝐸𝐸′𝑧). By definition

L =
∑︁

C={𝐶,QPE}

1
2
𝜇(𝐶) · LC . (2.66)

Define

𝐻𝑠𝑦𝑠𝑡𝑒𝑚 = 0 (2.67)

𝑉C (𝐸𝐸′𝑧) :=
√︁
𝜇(𝐶) · 𝑆C (𝐸𝐸′𝑧). (2.68)

One can check that

L = −𝑖[𝐻𝑠𝑦𝑠𝑡𝑒𝑚, 𝜌] +
∑︁
C,𝐸𝐸 ′𝑧

(
𝑉C (𝐸𝐸′𝑧)𝜌𝑉C (𝐸𝐸′𝑧)† −

1
2

{
𝑉C (𝐸𝐸′𝑧)†𝑉C (𝐸𝐸′𝑧), 𝜌

}
+

)
.

(2.69)

Recall that in Section 2.4 Eq. (2.23) we have computed��𝜂 𝑗{𝐶,BQPE}
〉

:= 𝜏 ·𝑊 (10) ◦𝑈𝐶,BQPE
��𝜓 𝑗 , 02𝑔𝑟+1〉 (2.70)

=
∑︁

𝑘;𝐸,𝐸 ′∈𝑆(𝑟)⊗𝑔
𝜏
√︁
𝑓𝐸𝐸 ′𝛽 𝑗𝐸 · 𝑐 𝑗 𝑘 · 𝛽𝑘𝐸 ′ |𝜓𝑘⟩ |𝐸⟩ |𝐸′⟩ |1⟩ . (2.71)

34

One can check that

𝑉{𝐶,BQPE} (𝐸𝐸′𝑧) =
√︁
𝜇(𝐶) · 𝑆C (𝐸𝐸′𝑧) (2.72)

=
√︁
𝜇(𝐶) · ⟨𝐸𝐸′𝑧 |𝑊 (10) ◦𝑈{𝐶,BQPE}

∑︁
𝑗

��𝜓 𝑗 〉 〈
𝜓 𝑗

�� ⊗ ��02𝑔𝑟+1〉
(2.73)

=
√︁
𝜇(𝐶) ·

∑︁
𝑗

1
𝜏
⟨𝐸𝐸′𝑧

��𝜂 𝑗{𝐶,BQPE}
〉 〈
𝜓 𝑗

�� (2.74)

=
√︁
𝜇(𝐶) 𝑓𝐸𝐸 ′ · 𝛿𝑧1

∑︁
𝑗 ,𝑘

𝛽 𝑗𝐸 · 𝑐 𝑗 𝑘 · 𝛽𝑘𝐸 ′ |𝜓𝑘⟩
〈
𝜓 𝑗

�� (2.75)

Define a matrix 𝐵𝐸 ∈ Ξ(𝑛) such that

𝐵𝐸
��𝜓 𝑗 〉 = 𝛽 𝑗𝐸 ��𝜓 𝑗 〉 , (2.76)

From Eq. (2.75) one can check that

𝑉{𝐶,BQPE} (𝐸𝐸′1) =
√︁
𝜇(𝐶) 𝑓𝐸𝐸 ′ · 𝐵𝐸 ′ · 𝐶 · 𝐵𝐸 (2.77)

From Eq. (2.170) in Appendix 2.9 we know that∑︁
𝐸

𝐵𝐸 = 𝐼𝑛, (2.78)

∑︁
𝐸𝐸 ′

1√︁
𝜇(𝐶) 𝑓𝐸𝐸 ′

𝑉{𝐶,BQPE} (𝐸𝐸′1) =
(∑︁
𝐸 ′
𝐵𝐸 ′

)
· 𝐶 ·

(∑︁
𝐸

𝐵𝐸

)
= 𝐶. (2.79)

Since the algebra generated by {𝐶 𝑗 } 𝑗 is the full algebra Ξ(𝑛), and thus the algebra
generated by {𝑉C (𝐸𝐸′𝑧)}C,𝐸,𝐸 ′,𝑧 is the full algebra Ξ(𝑛). We can then use Theorem
20 to complete the proof.

2.7 Gibbs States as Approximate Fixed Point
In this section, we will prove L approximately fixes the Gibbs state, that is

Lemma 21 If 𝑟 ≥ 𝑟𝛽𝐻 , we have��L(𝜌𝛽)��1 ≤ 2−𝑔/10+2𝑛+4 + 40𝛽 · 𝜅𝐻 · 2−𝑟 .

The outline of the proof is as follows. In section 2.7 we define a truncated Gibbs
states 𝜌𝛽0 where

��𝜌𝛽 − 𝜌𝛽0
��
1 ≈ 0, thus

��L(𝜌𝛽)��1 ≈ ��L(𝜌𝛽0)
��
1 since |L|★ is bounded.

35

The remaining subsections then focus on bounding
��L(𝜌𝛽0)

��
1. Then in Section

2.7 and Section 2.7 we define projected operators which will be used as auxiliary
notations in the following proofs. In 2.7 we show that L(𝜌𝛽0) can be written as
the sum of constant number of matrices, where each matrix has small trace norm.
Finally in Section 2.7 we complete the proof of Lemma 21.

Truncated Energy and Truncated Gibbs States
Recall that from Section 2.2, that Boosted Quantum Phase Estimation acts as

BQPE
��𝜓 𝑗 〉 |0𝑔𝑟⟩ = ��𝜓 𝑗 〉 ∑︁

𝐸∈𝑆(𝑟)⊗𝑔
𝛽 𝑗𝐸 |𝐸⟩ ,

where 𝑆(𝑟) is the set of energy estimations that are integer multiples of

𝑤 := 𝜅𝐻 · 2−𝑟 .

We have defined 𝑟𝛽𝐻 = 1 + log 𝜅𝐻 + log 𝛽, so for 𝑟 ≥ 𝑟𝛽𝐻 , we have 2𝛽𝑤 ≤ 1. For
any real value 𝜈 ≥ 0, ⌊𝜈⌋ denotes the closet value to 𝜈 which is an integer multiple
of 𝑤 and is smaller or equal to 𝜈. For any 𝑘 ∈ N, define

𝜈(𝑘) := ⌊𝜈⌋ + 𝑘𝑤, (2.80)

in particular 𝐸 (𝑘)
𝑗

:= ⌊𝐸 𝑗⌋ + 𝑘𝑤. (2.81)

Recall that 𝑍 = 𝑡𝑟 (exp(−𝛽𝐻)) is the partition function of 𝜌𝛽, and 𝑝 𝑗 = exp(−𝛽𝐸 𝑗)/𝑍
is the corresponding probability. Define the truncated probability and truncated
Gibbs states as

𝑝 𝑗 𝑘 := exp (−𝛽𝐸 (𝑘)
𝑗
)/𝑍, for 𝑘 ∈ N, (2.82)

𝜌𝛽0 :=
∑︁
𝑗

𝑝 𝑗0
��𝜓 𝑗 〉 〈

𝜓 𝑗
�� . (2.83)

One can check the following.

Lemma 22 If 2𝛽𝑤 ≤ 1, then |𝑝 𝑗 − 𝑝 𝑗0 | ≤ 𝑝 𝑗 · 2𝛽𝑤 and
��𝜌𝛽0 − 𝜌𝛽

��
1 ≤ 2𝛽𝑤.

Lemma 16 proves that |L|★ ≤ 4. Using this fact, along with the triangle inequality
and Lemma 22, we have the following.

Lemma 23��L(𝜌𝛽)��1 ≤ ��L(𝜌𝛽0)
��
1 +

��L(𝜌𝛽 − 𝜌𝛽0)
��
1 ≤

��L(𝜌𝛽0)
��
1 + 4 · 2𝛽𝑤.

The remainder of this section focuses on bounding
��L(𝜌𝛽0)

��
1.

36

Projected BQPE.
From Lemma 3, we know that the median estimation from BQPE almost always
maps to one of two possible values: 𝐸 (0)

𝑗
= ⌊𝐸 𝑗⌋ or 𝐸 (1)

𝑗
= ⌈𝐸 𝑗⌉. A remark is that

the number “two” is not important in the analysis as long as it is a constant. We
define the following projections that separate out the cases depending on the output
of BQPE:

𝑃(𝑘) :=
∑︁
𝑗

��𝜓 𝑗 〉 〈
𝜓 𝑗

�� ⊗ ∑︁
𝐸∈𝑆(𝑟)⊗𝑔: 𝐸=𝐸 (𝑘)

𝑗

|𝐸⟩ ⟨𝐸 | , for 𝑘 ∈ {0, 1}, (2.84)

𝑃(𝑒𝑙𝑠𝑒) := 𝐼 − 𝑃(0) − 𝑃(1) . (2.85)

To analyze the performance of our algorithm, we decompose BQPE into three
operators, according to the above projections. That is,

𝑇 := {0, 1, “𝑒𝑙𝑠𝑒′′}, (2.86)

BQPE =
∑︁
𝑘∈𝑇

BQPE(𝑘) , (2.87)

where BQPE(𝑘) := 𝑃(𝑘) · BQPE, (2.88)

BQPE(𝑘)
��𝜓 𝑗 〉 |0𝑔𝑟⟩ = ��𝜓 𝑗 〉 ∑︁

𝐸

𝛽
(𝑘)
𝑗𝐸
|𝐸⟩ , (2.89)

𝛽
(𝑘)
𝑗𝐸

:=

𝛽 𝑗𝐸 , if 𝐸 = 𝐸

(𝑘)
𝑗
,

0, else,
for 𝑘 ∈ {0, 1} (2.90)

𝛽𝑒𝑙𝑠𝑒𝑗𝐸 :=

𝛽 𝑗𝐸 , if 𝐸 ∉ {𝐸 (0)

𝑗
, 𝐸
(1)
𝑗
}.

0, else.
(2.91)

For convenience, for any subset 𝐴 ⊆ 𝑇 , we also define

𝑃(𝐴) :=
∑︁
𝑘∈𝐴

𝑃(𝑘) , (2.92)

and define BQPE(𝐴) , 𝛽(𝐴)
𝑗𝐸

accordingly. For FBQPE we similarly define FBQPE(𝑘)

and FBQPE(𝐴) .

Projected Operators
Recall that the L for our algorithm is defined as

LC = 2M (𝑎)C −M
(𝑟)
C ,

M (𝑎)C (𝜌) = 𝑡𝑟2,3,4

(
𝑊 (10)𝑈C [𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] 𝑈†C (𝑊 (10))†

)
,

M (𝑟)C (𝜌) =
〈
02𝑔𝑟+1��𝑈†C (𝑊 (10))†𝑊 (10)𝑈C

��02𝑔𝑟+1〉 𝜌 + 𝜌 〈
02𝑔𝑟+1��𝑈†C (𝑊 (10))†𝑊 (10)𝑈C

��02𝑔𝑟+1〉 ,

37

where

𝑊 (10) =
∑︁

𝐸,𝐸 ′∈𝑆(𝑟)⊗𝑔

√︁
𝑓𝐸𝐸 ′ |𝐸𝐸′⟩ ⟨𝐸𝐸′| ⊗ |1⟩ ⟨0| , (2.93)

𝑈C = QPE1,3 ◦ 𝐶 ◦ QPE1,2. (2.94)

For convenience, we divideM (𝑟)C into “right” and “left” terms

M (𝑟𝑟)C (𝜌) =
〈
02𝑔𝑟+1��𝑈†C (𝑊 (10))†𝑊 (10)𝑈C

��02𝑔𝑟+1〉 𝜌, (2.95)

M (𝑟𝑙)C (𝜌) = 𝜌
〈
02𝑔𝑟+1��𝑈†C (𝑊 (10))†𝑊 (10)𝑈C

��02𝑔𝑟+1〉 . (2.96)

By the following Lemma it suffices to only analyze the right termM (𝑟𝑟) .

Lemma 24 For any Hermitian 𝜌,

|L(𝜌) |1 ≤ 2
���M (𝑎) (𝜌) −M (𝑟𝑟) (𝜌)���

1
. (2.97)

Proof: Note thatM (𝑎) (𝜌) =M (𝑎) (𝜌)†,M (𝑟𝑙) (𝜌) =M (𝑟𝑟) (𝜌)†. Since
��𝑁†��1 = |𝑁 |1

for any matrix 𝑁 , we have���M (𝑎) (𝜌) −M (𝑟𝑙) (𝜌)���
1
=

���M (𝑎) (𝜌) −M (𝑟𝑟) (𝜌)���
1
.

Thus

|L(𝜌) |1 ≤
���M (𝑎) (𝜌) −M (𝑟𝑙) (𝜌)���

1
+
���M (𝑎) (𝜌) −M (𝑟𝑟) (𝜌)���

1
≤ 2

���M (𝑎) (𝜌) −M (𝑟𝑟) (𝜌)���
1
.

We can now use the decomposition of BQPE to decompose the accept and reject
operators.

Definition 25 (Projected Operators) For any subsets 𝐴, 𝐵 ⊆ 𝑇 , we define 𝑈 (𝐴𝐵)C
by substituting QPE with corresponding operators:

𝑈
(𝐴𝐵)
C := QPE(𝐴)1,3 ◦ 𝐶 ◦ QPE(𝐵)1,2 . (2.98)

Accordingly for subsets 𝐴, 𝐵, 𝑋,𝑌 ⊆ 𝑇 , we define

M (𝑎,𝐴𝐵𝑋𝑌)C (𝜌) := 𝑡𝑟2,3,4

(
𝑊 (10)𝑈 (𝐴𝐵)C [𝜌 ⊗

��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] (𝑈 (𝑋𝑌)C)†(𝑊 (10))†

)
(2.99)

M (𝑟𝑟,𝐴𝐵𝑋𝑌)C (𝜌) :=
〈
02𝑔𝑟+1�� (𝑈 (𝐵𝐴)C)†(𝑊 (10))†𝑊 (10)𝑈 (𝑌𝑋)C

��02𝑔𝑟+1〉 𝜌. (2.100)

38

Note that in Eq. (2.100) we use𝑈 (𝐵𝐴)C ,𝑈
(𝑌𝑋)
C instead of𝑈 (𝐴𝐵)C ,𝑈

(𝑋𝑌)
C .

One can directly check that the following Lemma are true, which we omit the proofs.

Lemma 26

M (𝑎)C =
∑︁

𝑢,𝑣,𝑠,𝑡∈𝑇
M (𝑎,𝑢𝑣𝑠𝑡)C , M (𝑟𝑟)C =

∑︁
𝑢,𝑣,𝑠,𝑡∈𝑇

M (𝑟𝑟,𝑢𝑣𝑠𝑡)C . (2.101)

Similarly after averaging over the random selection of C, we get

M (𝑎) =
∑︁

𝑢,𝑣,𝑠,𝑡∈𝑇
M (𝑎,𝑢𝑣𝑠𝑡) , M (𝑟𝑟) =

∑︁
𝑢,𝑣,𝑠,𝑡∈𝑇

M (𝑟𝑟,𝑢𝑣𝑠𝑡) . (2.102)

Explicit Expressions for Operators in the Accept and Reject Cases
The following two lemmas give explicit representations for the operatorsM (𝑎,𝐴𝐵𝑋𝑌)

andM (𝑟𝑟,𝐴𝐵𝑋𝑌) in terms of the energy eigenstates {
��𝜓 𝑗 〉} 𝑗 . To ease notations, we

write (𝛽(·)
𝑗𝐸
)∗ as 𝛽(·)∗

𝑗𝐸
.

Lemma 27 For any subsets 𝐴, 𝐵, 𝑋,𝑌 ⊆ 𝑇 ,

⟨𝜓𝑚 | M (𝑎,𝐴𝐵𝑋𝑌) (𝜌𝛽0) |𝜓𝑘⟩ =
∑︁
𝑗

𝑝 𝑗0
∑︁
𝐸,𝐸 ′

𝑓𝐸𝐸 ′
∑︁
𝐶

𝜇(𝐶)
(
𝑐 𝑗𝑚𝑐

∗
𝑗 𝑘

)
· ℜ(𝛽(𝐵)

𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′),

⟨𝜓𝑚 |M (𝑟𝑟,𝐴𝐵𝑋𝑌) (𝜌𝛽0) |𝜓𝑘⟩ = 𝑝𝑘0
∑︁
𝑗 ;𝐸,𝐸 ′

𝑓𝐸 ′𝐸

∑︁
𝐶

𝜇(𝐶)
(
𝑐 𝑗𝑚𝑐

∗
𝑗 𝑘

)
· ℜ

(
𝛽
(𝐵)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′

)
,

whereℜ(𝛼) = 1
2 (𝛼 + 𝛼

∗) is the real part of a complex number.

Proof: Recall that

𝜌𝛽0 =
∑︁
𝑗

𝑝 𝑗0
��𝜓 𝑗 〉 〈

𝜓 𝑗
�� . (2.103)

Suppose that the gates chosen in the algorithm are C = {BQPE, 𝐶}. Similarly to
how we derive Eq. (2.23) in Section 2.4, one can check that

𝑊 (10)𝑈 (𝐴𝐵)C
��𝜓 𝑗 〉 ��02𝑔𝑟+1〉 = ∑︁

𝑙;𝐸,𝐸 ′

√︁
𝑓𝐸𝐸 ′ 𝑐 𝑗 𝑙 · 𝛽(𝐵)𝑗𝐸 · 𝛽

(𝐴)
𝑙𝐸 ′ |𝜓𝑙⟩ |𝐸⟩ |𝐸

′⟩ |1⟩ . (2.104)

(a) Accept Case:

39

The whole operatorM (𝑎,𝐴𝐵𝑋𝑌)
𝐶

then looks like

M (𝑎,𝐴𝐵𝑋𝑌)C (
��𝜓 𝑗 〉 〈

𝜓 𝑗
��)

=𝑡𝑟2,3,4

(
𝑊 (10)𝑈 (𝐴𝐵)C [

��𝜓 𝑗 〉 〈
𝜓 𝑗

�� ⊗ ��02𝑔𝑟+1〉 〈
02𝑔𝑟+1��] (𝑈 (𝑋𝑌)C)†(𝑊 (10))†

)
(2.105)

=
∑︁

𝑙,ℎ;𝐸,𝐸 ′
𝑓𝐸𝐸 ′ (𝑐 𝑗 𝑙𝑐∗𝑗 ℎ) (𝛽

(𝐵)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸
) (𝛽(𝐴)

𝑙𝐸 ′ 𝛽
(𝑋)∗
ℎ𝐸 ′) |𝜓𝑙⟩ ⟨𝜓ℎ | . (2.106)

Then

⟨𝜓𝑚 |M (𝑎,𝐴𝐵𝑋𝑌)C
[
𝜌𝛽0

]
|𝜓𝑘⟩ =

∑︁
𝑗

𝑝 𝑗0
∑︁
𝐸,𝐸 ′

𝑓𝐸𝐸 ′ (𝑐 𝑗𝑚𝑐∗𝑗 𝑘) (𝛽
(𝐵)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸
) (𝛽(𝐴)

𝑚𝐸 ′𝛽
(𝑋)∗
𝑘𝐸 ′).

(2.107)

When we average over the choice of BQPE and FBQPE, the (𝛽(𝐵)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸
) (𝛽(𝐴)

𝑚𝐸 ′𝛽
(𝑋)∗
𝑘𝐸 ′)

term will become

1
2

(
𝛽
(𝐵)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′ + 𝛽

(𝐵)∗
𝑗𝐸

𝛽
(𝑌)
𝑗𝐸
𝛽
(𝐴)∗
𝑚𝐸 ′ 𝛽

(𝑋)
𝑘𝐸 ′

)
= ℜ(𝛽(𝐵)

𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′). (2.108)

We also average over the choice of 𝐶 and finally get

⟨𝜓𝑚 | M (𝑎,𝐴𝐵𝑋𝑌) (𝜌𝛽0) |𝜓𝑘⟩ =
∑︁
𝑗

𝑝 𝑗0
∑︁
𝐸,𝐸 ′

𝑓𝐸𝐸 ′
∑︁
𝐶

𝜇(𝐶)
(
𝑐 𝑗𝑚𝑐

∗
𝑗 𝑘

)
·ℜ(𝛽(𝐵)

𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′).

(b) Reject Case: Note that〈
02𝑔𝑟+1�� ⟨𝜓𝑚 | (𝑈 (𝐵𝐴)C)†(𝑊 (10))†𝑊 (10)𝑈 (𝑌𝑋)C |𝜓𝑘⟩

��02𝑔𝑟+1〉 (2.109)

=
∑︁
𝑙;𝐸,𝐸 ′

𝑓𝐸𝐸 ′
(
𝑐∗𝑚𝑙𝑐𝑘𝑙

) (
𝛽
(𝐵)∗
𝑙𝐸 ′ 𝛽

(𝑌)
𝑙𝐸 ′

) (
𝛽
(𝐴)∗
𝑚𝐸

𝛽
(𝑋)
𝑘𝐸

)
=

∑︁
𝑗 ;𝐸,𝐸 ′

𝑓𝐸 ′𝐸

(
𝑐∗𝑚 𝑗𝑐𝑘 𝑗

) (
𝛽
(𝐵)∗
𝑗𝐸

𝛽
(𝑌)
𝑗𝐸

) (
𝛽
(𝐴)∗
𝑚𝐸 ′ 𝛽

(𝑋)
𝑘𝐸 ′

)
,

where the last equality comes from changing the name 𝑙, 𝐸, 𝐸′ to 𝑗 , 𝐸′, 𝐸 . Use the
definition ofM (𝑟𝑟,𝐴𝐵𝑋𝑌) , we further have

⟨𝜓𝑚 |M (𝑟𝑟,𝐴𝐵𝑋𝑌)C (𝜌𝛽0) |𝜓𝑘⟩
= 𝑝𝑘0

〈
02𝑔𝑟+1�� ⟨𝜓𝑚 | (𝑈 (𝐵𝐴)C)†(𝑊 (10))†𝑊 (10)𝑈 (𝑌𝑋)C |𝜓𝑘⟩

��02𝑔𝑟+1〉 (2.110)

= 𝑝𝑘0
∑︁
𝑗 ;𝐸,𝐸 ′

𝑓𝐸 ′𝐸

(
𝑐∗𝑚 𝑗𝑐𝑘 𝑗

) (
𝛽
(𝐵)∗
𝑗𝐸

𝛽
(𝑌)
𝑗𝐸

) (
𝛽
(𝐴)∗
𝑚𝐸 ′ 𝛽

(𝑋)
𝑘𝐸 ′

)
. (2.111)

Note that in Eq. (2.111), the term
(
𝛽
(𝐵)∗
𝑗𝐸

𝛽
(𝑌)
𝑗𝐸

) (
𝛽
(𝐴)∗
𝑚𝐸 ′ 𝛽

(𝑋)
𝑘𝐸 ′

)
is the complex conjugate

of the corresponding term in Eq. (2.107). This is why in our algorithm we use

40

BQPE and FBQPE randomly to cancel this phase: when we average over the choice
of BQPE and FBQPE, the

(
𝛽
(𝐵)∗
𝑗𝐸

𝛽
(𝑌)
𝑗𝐸

) (
𝛽
(𝐴)∗
𝑚𝐸 ′ 𝛽

(𝑋)
𝑘𝐸 ′

)
term will become

1
2

(
𝛽
(𝐵)∗
𝑗𝐸

𝛽
(𝑌)
𝑗𝐸
𝛽
(𝐴)∗
𝑚𝐸 ′ 𝛽

(𝑋)
𝑘𝐸 ′ + 𝛽

(𝐵)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′

)
= ℜ(𝛽(𝐵)

𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′). (2.112)

We also average over the choice of 𝐶 and get

⟨𝜓𝑚 |M (𝑟𝑟,𝐴𝐵𝑋𝑌) (𝜌𝛽0) |𝜓𝑘⟩ = 𝑝𝑘0
∑︁
𝑗 ;𝐸,𝐸 ′

𝑓𝐸 ′𝐸

∑︁
𝐶

𝜇(𝐶)
(
𝑐∗𝑚 𝑗𝑐𝑘 𝑗

)
·ℜ

(
𝛽
(𝐵)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′

)
.

Further note that 𝜇 chooses 𝐶 and 𝐶† with the same probability, thus∑︁
𝐶

𝜇(𝐶)𝑐 𝑗𝑚𝑐∗𝑗 𝑘 =
∑︁
𝐶

𝜇(𝐶†)𝑐∗𝑚 𝑗𝑐𝑘 𝑗 =
∑︁
𝐶

𝜇(𝐶)𝑐∗𝑚 𝑗𝑐𝑘 𝑗 ,

where the amplitudes for𝐶† are obtained from𝐶 by swapping the indices and taking
the complex conjugate. Thus we conclude the proof.

Uniform Error
Before we analyze the errors, we first prove a Lemma which bound the trace norm
of certain matrices.

Lemma 28 If 2𝛽𝑤 ≤ 1, for any four subsets 𝐴, 𝐵, 𝑋,𝑌 ⊆ 𝑇 , we have���M (𝑎,𝐴𝐵𝑋𝑌)C (𝜌𝛽0)
���
1
≤ 2,

���M (𝑎,𝐴𝐵𝑋𝑌) (𝜌𝛽0)
���
1
≤ 2. (2.113)

Proof: To ease notation, we abbreviate
��𝜓 𝑗 〉 ��02𝑔𝑟+1〉 as

��𝜓 𝑗02𝑔𝑟+1〉. Recall that

M (𝑎,𝐴𝐵𝑋𝑌)C (
��𝜓 𝑗 〉 〈

𝜓 𝑗
��) = 𝑡𝑟2,3,4

(
𝑊 (10)𝑈 (𝐴𝐵)C

��𝜓 𝑗02𝑔𝑟+1〉 〈
𝜓 𝑗02𝑔𝑟+1�� (𝑈 (𝑋𝑌)C)†(𝑊 (10))†

)
(2.114)

∥𝑈 (𝐴𝐵)C ∥ ≤ ∥𝑃(𝐴) ∥ · ∥QPE1,3∥ · ∥𝐶∥ · ∥𝑃(𝐵) ∥ · ∥QPE1,2∥ ≤ 1, (2.115)

where in the last inequality we use that 𝑃(𝐴) , 𝑃(𝐵) are projections, and thus their
spectrum norm is bounded by 1. Besides, ∥𝑊 (10) ∥ ≤ 1 by definition. Thus by
Corollary 35 in Appendix 2.10 we get���M (𝑎,𝐴𝐵𝑋𝑌)C (

��𝜓 𝑗 〉 〈
𝜓 𝑗

��)���
1
≤ 1. (2.116)

41

Then when 2𝛽𝑤 ≤ 1, by Lemma 22 we have 𝑝 𝑗0 ≤ 𝑝 𝑗 · (1 + 2𝛽𝑤) ≤ 2𝑝 𝑗 . By
triangle inequality we have���M (𝑎,𝐴𝐵𝑋𝑌)C (𝜌𝛽0)

���
1
≤

∑︁
𝑗

2𝑝 𝑗
���M (𝑎,𝐴𝐵𝑋𝑌)C (

��𝜓 𝑗 〉 〈
𝜓 𝑗

��)���
1
≤ 2. (2.117)

When averaging over the random selection of C, we can get the bound forM (𝑎,𝑢𝑣𝑠𝑡)

by triangle inequality.

The following is a key lemma in the analysis which clusters the projected oper-
ators and bounds the norm of each cluster separately. While ⟨𝜓𝑚 | (M (𝑎,𝐴𝑣𝑠𝑌) −
M (𝑟𝑟,𝐴𝑣𝑠𝑌)) (𝜌𝛽0) |𝜓𝑘⟩ may not cancel exactly to 0, the error for each cluster is in-
dependent of 𝑚 and 𝑘 , which allows us to factor out the error term over the entire
matrix.

Lemma 29 Recall that 𝑇 = {0, 1, “𝑒𝑙𝑠𝑒}. Consider four subsets 𝐴, 𝐵, 𝑋,𝑌 ⊆ 𝑇 . If
2𝛽𝑤 ≤ 1

(1) For any 𝑣, 𝑠 ∈ {0, 1}, we have

⟨𝜓𝑚 | (M (𝑎,𝐴𝑣𝑠𝑌) −M (𝑟𝑟,𝐴𝑣𝑠𝑌)) (𝜌𝛽0) |𝜓𝑘⟩ = (1 − 𝑒𝛽(𝑠−𝑣)𝑤) ⟨𝜓𝑚 | M (𝑎,𝐴𝑣𝑠𝑌) (𝜌𝛽0) |𝜓𝑘⟩ .���(M (𝑎,𝐴𝑣𝑠𝑌) −M (𝑟𝑟,𝐴𝑣𝑠𝑌)) (𝜌𝛽0)
���
1
≤ 4𝛽𝑤.

Note that the error 𝑒𝛽(𝑠−𝑣)𝑤 in the first equality is uniform and independent of
𝑚, 𝑘 .

(2) If one of 𝐴, 𝐵, 𝑋,𝑌 equal to {“𝑒𝑙𝑠𝑒′′}, then we have���M (𝑎,𝐴𝐵𝑋𝑌) (𝜌𝛽0)
���
1
≤ 2 · 2−𝑔/10+2𝑛.���M (𝑟𝑟,𝐴𝐵𝑋𝑌) (𝜌𝛽0)

���
1
≤ 2 · 2−𝑔/10+2𝑛.

Proof: Recall that from Lemma 27 we have for any 𝑚, 𝑘 ,

⟨𝜓𝑚 | M (𝑎,𝐴𝐵𝑋𝑌) (𝜌𝛽0) |𝜓𝑘⟩ =
∑︁
𝑗

𝑝 𝑗0
∑︁
𝐸,𝐸 ′

𝑓𝐸𝐸 ′
∑︁
𝐶

𝜇(𝐶)
(
𝑐 𝑗𝑚𝑐

∗
𝑗 𝑘

)
· ℜ(𝛽(𝐵)

𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′).

(2.118)

⟨𝜓𝑚 |M (𝑟𝑟,𝐴𝐵𝑋𝑌) (𝜌𝛽0) |𝜓𝑘⟩ = 𝑝𝑘0
∑︁
𝑗 ;𝐸,𝐸 ′

𝑓𝐸 ′𝐸

∑︁
𝐶

𝜇(𝐶)
(
𝑐 𝑗𝑚𝑐

∗
𝑗 𝑘

)
· ℜ

(
𝛽
(𝐵)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′

)

42

Recall that
𝑝 𝑗 𝑠 = exp (−𝛽𝐸 (𝑠)

𝑗
)/𝑍.

With some abuse of notation, we use 𝑓 for both

𝑓𝐸𝐸 ′ = min
{
1, exp

(
𝛽𝐸 − 𝛽𝐸′

)}
, (2.119)

𝑓
𝐸
(𝑠)
𝑘
𝐸
(𝑣)
𝑗

= min
{
1, exp

(
𝛽𝐸
(𝑠)
𝑘
− 𝛽𝐸 (𝑣)

𝑗

)}
. (2.120)

In other words, if 𝐸 is a vector of 𝑔 energies from 𝑆(𝑟), the function 𝑓 implicitly
takes the median value in determining min

{
1, exp

(
𝛽𝐸 − 𝛽𝐸′

)}
.

For (1): Suppose 𝑣, 𝑠 ∈ {0, 1}. The key thing to notice is that, by definition 𝛽(𝑣)
𝑗𝐸

is
non-zero only if 𝐸 = 𝐸

(𝑣)
𝑗

. Similarly for 𝛽(𝑠)∗
𝑘𝐸 ′ . Thus ⟨𝜓𝑚 | M (𝑎,𝐴𝑣𝑠𝑌) (𝜌𝛽0) |𝜓𝑘⟩ is a

sum of terms, where all the non-zero terms 𝑓𝐸𝐸 ′ take a uniform value as 𝑓
𝐸
(𝑣)
𝑗
𝐸
(𝑠)
𝑘

:

⟨𝜓𝑚 | M (𝑎,𝐴𝑣𝑠𝑌) (𝜌𝛽0) |𝜓𝑘⟩

=
∑︁
𝑗

𝑝 𝑗0
∑︁

𝐸,𝐸′:𝐸=𝐸 (𝑣)
𝑗

𝐸′=𝐸 (𝑠)
𝑘

𝑓𝐸𝐸 ′
∑︁
𝐶

𝜇(𝐶)
(
𝑐 𝑗𝑚𝑐

∗
𝑗 𝑘

)
· ℜ(𝛽(𝑣)

𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑠)∗
𝑘𝐸 ′)

=
∑︁
𝑗

𝑝 𝑗0 · 𝑓𝐸 (𝑣)
𝑗
𝐸
(𝑠)
𝑘

∑︁
𝐸,𝐸′:𝐸=𝐸 (𝑣)

𝑗

𝐸′=𝐸 (𝑠)
𝑘

∑︁
𝐶

𝜇(𝐶)
(
𝑐 𝑗𝑚𝑐

∗
𝑗 𝑘

)
· ℜ(𝛽(𝑣)

𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑠)∗
𝑘𝐸 ′).

Similarly we have

⟨𝜓𝑚 |M (𝑟𝑟,𝐴𝑣𝑠𝑌) (𝜌𝛽0) |𝜓𝑘⟩

= 𝑝𝑘0
∑︁
𝑗

∑︁
𝐸,𝐸′:𝐸=𝐸 (𝑣)

𝑗

𝐸′=𝐸 (𝑠)
𝑘

𝑓𝐸 ′𝐸

∑︁
𝐶

𝜇(𝐶)
(
𝑐 𝑗𝑚𝑐

∗
𝑗 𝑘

)
· ℜ

(
𝛽
(𝑣)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑠)∗
𝑘𝐸 ′

)

=
∑︁
𝑗

𝑝𝑘0 · 𝑓𝐸 (𝑠)
𝑘
𝐸
(𝑣)
𝑗

∑︁
𝐸,𝐸′:𝐸=𝐸 (𝑣)

𝑗

𝐸′=𝐸 (𝑠)
𝑘

∑︁
𝐶

𝜇(𝐶)
(
𝑐 𝑗𝑚𝑐

∗
𝑗 𝑘

)
· ℜ

(
𝛽
(𝑣)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑠)∗
𝑘𝐸 ′

)
.

Note that by definition of 𝑓 and 𝑝𝑘𝑠 we always have

𝑝𝑘𝑠 · 𝑓𝐸 (𝑠)
𝑘
𝐸
(𝑣)
𝑗

= 𝑝 𝑗𝑣 · 𝑓𝐸 (𝑣)
𝑗
𝐸
(𝑠)
𝑘

, (2.121)

𝑝𝑘𝑠 = 𝑝𝑘0 · 𝑒−𝛽𝑠𝑤 . (2.122)

43

Thus

𝑝𝑘0 · 𝑓𝐸 (𝑠)
𝑘
𝐸
(𝑣)
𝑗

= 𝑒𝛽𝑠𝑤𝑝𝑘𝑠 · 𝑓𝐸 (𝑠)
𝑘
𝐸
(𝑣)
𝑗

(2.123)

= 𝑒𝛽𝑠𝑤𝑝 𝑗𝑣 · 𝑓𝐸 (𝑣)
𝑗
𝐸
(𝑠)
𝑘

(2.124)

= 𝑒𝛽(𝑠−𝑣)𝑤𝑝 𝑗0 · 𝑓𝐸 (𝑣)
𝑗
𝐸
(𝑠)
𝑘

. (2.125)

Note that the “error” 𝑒𝛽(𝑠−𝑣)𝑤 is independent of 𝑗 , 𝑚, 𝑘 , thus

⟨𝜓𝑚 |
(
M (𝑎,𝐴𝑣𝑠𝑌) −M (𝑟𝑟,𝐴𝑣𝑠𝑌)

)
(𝜌𝛽0) |𝜓𝑘⟩ (2.126)

= (1 − 𝑒𝛽(𝑠−𝑣)𝑤)
∑︁
𝑗

𝑝 𝑗0 · 𝑓𝐸 (𝑣)
𝑗
𝐸
(𝑠)
𝑘

∑︁
𝐸,𝐸′:𝐸=𝐸 (𝑣)

𝑗

𝐸′=𝐸 (𝑠)
𝑘

∑︁
𝐶

𝜇(𝐶)
(
𝑐 𝑗𝑚𝑐

∗
𝑗 𝑘

)
· ℜ(𝛽(𝑣)

𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑠)∗
𝑘𝐸 ′)

(2.127)

= (1 − 𝑒𝛽(𝑠−𝑣)𝑤) ⟨𝜓𝑚 | M (𝑎,𝐴𝑣𝑠𝑌) (𝜌𝛽0) |𝜓𝑘⟩ . (2.128)

Thus(
M (𝑎,𝐴𝑣𝑠𝑌) −M (𝑟𝑟,𝐴𝑣𝑠𝑌)

)
(𝜌𝛽0) = (1 − 𝑒𝛽(𝑠−𝑣)𝑤) · M (𝑎,𝐴𝑣𝑠𝑌) (𝜌𝛽0), (2.129)���(M (𝑎,𝐴𝑣𝑠𝑌) −M (𝑟𝑟,𝐴𝑣𝑠𝑌)) (𝜌𝛽0)

���
1
≤ 4𝛽𝑤. (2.130)

where for the last inequality, we use Lemma 28 and the fact that since 𝑣, 𝑠 ∈ {0, 1},
we have |𝑠 − 𝑣 | ≤ 1 and |1 − 𝑒𝛽(𝑠−𝑣)𝑤 | ≤ 2𝛽𝑤.

For (2). W.o.l.g. assume 𝑋 = {“𝑒𝑙𝑠𝑒′′}. Other cases are similar. Note that(∑︁
𝑗

���𝑐 𝑗𝑚𝑐∗𝑗 𝑘 ���)2

≤
(∑︁
𝑗

��𝑐 𝑗𝑚 ��2) (∑︁
𝑗

���𝑐∗𝑗 𝑘 ���2) ≤ 1 (2.131)(∑︁
𝐸

|𝛽(𝐵)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸
|
)2

≤
(∑︁
𝐸

���𝛽(𝐵)𝑗𝐸 ���2) (∑︁
𝐸

���𝛽(𝑌)∗𝑗𝐸

���2) ≤ 1 · 1 (2.132)(∑︁
𝐸 ′
|𝛽(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′ |

)2

≤
(∑︁
𝐸 ′

���𝛽(𝐴)𝑚𝐸 ′

���2) (∑︁
𝐸 ′

���𝛽(𝑋)∗
𝑘𝐸 ′

���2) ≤ 2−𝑔/5 · 1, (2.133)

where the first equality comes from the fact that 𝐶 is a unitary. The second equality
comes from {𝛽(𝐵)

𝑗𝐸
}𝐸 is a subset of {𝛽 𝑗𝐸 }𝐸 , and {𝛽 𝑗𝐸 }𝐸 is the amplitude of a quantum

state. For the third equality, recall that 𝑋 = {“𝑒𝑙𝑠𝑒′′}, notice that for any non-zero
𝛽𝑒𝑙𝑠𝑒
𝑚𝐸 ′ , by definition we have 𝐸′ ∉ {𝐸 (0)

𝑗
, 𝐸
(1)
𝑗
}. Then the third equality comes from

property of BQPE, which is Lemma 3.

44

Besides, note that

|ℜ(𝛽(𝐵)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′) | ≤ |𝛽

(𝐵)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸

𝛽
(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′ |. (2.134)

Since 2𝛽𝑤 ≤ 1, by Lemma 22 we have 𝑝 𝑗0 ∈ [0, 2]. Note that 𝑓𝐸𝐸 ′ ∈ [0, 1] and∑
𝐶 𝜇(𝐶) = 1, then from Eq. (2.118) we have for any 𝑚, 𝑘 ,

| ⟨𝜓𝑚 | M (𝑎,𝐴𝐵𝑋𝑌) (𝜌𝛽0) |𝜓𝑘⟩ | ≤ 2
∑︁
𝐶

𝜇(𝐶)
∑︁
𝑗

���𝑐 𝑗𝑚𝑐∗𝑗 𝑘 ��� ·∑︁
𝐸

|𝛽(𝐵)
𝑗𝐸
𝛽
(𝑌)∗
𝑗𝐸
| ·

∑︁
𝐸 ′
|𝛽(𝐴)
𝑚𝐸 ′𝛽

(𝑋)∗
𝑘𝐸 ′ |

(2.135)

≤ 2 · 2−𝑔/10. (2.136)

Then by triangle inequality,���M (𝑎,𝐴𝐵𝑋𝑌) (𝜌𝛽0)
���
1
≤

∑︁
𝑚,𝑘

|⟨𝜓𝑚 |M (𝑎,𝐴𝐵𝑋𝑌) (𝜌𝛽0) |𝜓𝑘⟩| · | |𝜓𝑚⟩ ⟨𝜓𝑘 | |1 ≤ 2 · 2−𝑔/10+2𝑛.

(2.137)

The proof for
��M (𝑟𝑟,𝐴𝐵𝑋𝑌) (𝜌𝛽0)

��
1 is similar.

Gibbs state as Approximate Fixed Point
We are ready now to complete the proof of Lemma 21, which provides an upper
bound on

��L(𝜌𝛽)��1.

Proof:[of Lemma 21] If 𝑟 ≥ 𝑟𝛽𝐻 , we have 2𝛽𝑤 ≤ 1. From Lemma 23 and Lemma
24 we have ��L(𝜌𝛽)��1 ≤ 2

���M (𝑎) (𝜌𝛽0) −M (𝑟𝑟) (𝜌𝛽0)
���
1
+ 4 · 2𝛽𝑤. (2.138)

Note that for any matrices {𝑁 (𝑢𝑣𝑠𝑡)}𝑢𝑣𝑠𝑡 , by triangle inequality we have����� ∑︁
𝑢,𝑣,𝑠,𝑡∈𝑇

𝑁 (𝑢𝑣𝑠𝑡)

�����
1

≤

�������
∑︁
𝑣=𝑒𝑙𝑠𝑒
𝑢,𝑠,𝑡∈𝑇

𝑁 (𝑢𝑣𝑠𝑡)

�������
1

+

��������
∑︁

𝑣∈{0,1},𝑠=𝑒𝑙𝑠𝑒
𝑢,𝑡∈𝑇

𝑁 (𝑢𝑣𝑠𝑡)

��������
1

+
∑︁

𝑣,𝑠∈{0,1}

�����∑︁
𝑢,𝑡∈𝑇

𝑁 (𝑢𝑣𝑠𝑡)

�����
1

.

Then by Lemma 26 and Lemma 29, we have���M (𝑎) (𝜌𝛽0) −M (𝑟𝑟) (𝜌𝛽0)
���
1
≤ 2 · (2 · 2−𝑔/10+2𝑛 + 2 · 2−𝑔/10+2𝑛) + 4 · 4𝛽𝑤·

(2.139)

Substituting 𝑤 = 𝜅𝐻 · 2−𝑟 , we complete the proof.

45

2.8 Proofs of Theorem 4 and Theorem 6
Proof:[of Theorem 4] The fact that one step of the algorithm can be expressed as
E[𝜏] (𝜌) =

(
I + 𝜏2L + 𝜏4J [𝜏]

)
(𝜌), where |J [𝜏] |★ ≤ 4 is proven in Lemma 16

in Section 2.5. The bound on
��L(𝜌𝛽)��1 is proved in Lemma 21 in Section 2.7. The

Uniqueness and Relaxation property is proved in Theorem 18 in Section 2.6.

Before proving theorem 6 we give a bound for the evolution.

Lemma 30 (Evolution) For any 𝑡 ∈ R, 𝜏 ∈ (0, 1]. If 𝐾 = 𝑡/𝜏2 is an integer, then��E𝐾 − 𝑒𝑡L ��
★
≤ 2𝑒4𝐾𝜏4. (2.140)

Proof: Note that

E𝐾 − (𝑒𝜏2L)𝐾 =

𝐾−1∑︁
𝑘=0
(𝑒𝜏2L)𝑘

(
E − 𝑒𝜏2L

)
E𝐾−𝑘−1. (2.141)

Note that E is CPTP by definition. By Lemma 19 we know 𝑒𝜏
2L is also CPTP. Thus

|E |★ and
���𝑒𝜏2L

���
★

are bounded by 1 by Lemma 38 in Appendix 2.10. Then we have���E𝐾 − (𝑒𝜏2L)𝐾
���
★
≤ 𝐾 · 1 ·

���E − 𝑒𝜏2L
���
★
· 1 ≤ 𝐾 · 𝜏42𝑒4, (2.142)

where for the last inequality, recall that E = I + 𝜏2L + 𝜏4J [𝜏] and the Taylor
expansion of 𝑒𝜏2L , we get���E − 𝑒𝜏2L

���
★
≤ |J [𝜏] |★ 𝜏4 +

∞∑︁
𝑘=2

𝜏2𝑘 |L|𝑘★
𝑘!

≤ 𝜏42𝑒4. (2.143)

where we use |J |★ ≤ 4 and |L|★ ≤ 4 from Lemma 16.

We then prove that the distance between 𝜌𝛽 and 𝜌L can be bounded in terms of the
mixing time.

Lemma 31 ��𝜌L − 𝜌𝛽��1 ≤ 𝜖 + ��L(𝜌𝛽)��1 · 𝑡𝑚𝑖𝑥 (L, 𝜖)
Proof: We abbreviate 𝑡𝑚𝑖𝑥 (L, 𝜖) as 𝑡. Let 𝜏 > 0 be a parameter such that 𝐾 = 𝑡/𝜏2

is an integer. We have��𝜌L − 𝜌𝛽��1 ≤ ��𝜌L − 𝑒𝑡L (𝜌𝛽)��1 + ��𝑒𝑡L (𝜌𝛽) − 𝜌𝛽��1 ≤ 𝜖 + ��𝑒𝑡L (𝜌𝛽) − 𝜌𝛽��1 , (2.144)

46

where the last inequality comes from the definition of mixing time. Besides, from
Lemma 16 we have |L|★ ≤ 4. Expand 𝑒𝜏2L as Taylor series in 𝜏, and use triangle
inequality we get ���(𝑒𝜏2L − I

)
(𝜌𝛽)

���
1
≤ 𝜏2 ��L(𝜌𝛽)��1 + 𝜏4

∞∑︁
𝑘=2

|L|𝑘★
𝑘!

(2.145)

≤ 𝜏2 ��L(𝜌𝛽)��1 + 𝜏4𝑒4. (2.146)

Thus ���𝑒𝐾𝜏2L (𝜌𝛽) − 𝜌𝛽
���
1
≤

1∑︁
𝑘=𝐾

���𝑒(𝑘−1)𝜏2L
(
𝑒𝜏

2L − I
)
(𝜌𝛽)

���
1

(2.147)

≤
1∑︁
𝑘=𝐾

���(𝑒𝜏2L − I
)
(𝜌𝛽)

���
1

(2.148)

≤ 𝐾𝜏2 ��L(𝜌𝛽)��1 + 𝐾𝜏4𝑒4, (2.149)

where the second inequality comes from 𝑒(𝐾−1)𝜏2L is CPTP by Lemma 19, thus its
|·|★ is bounded by 1 by Lemma 38 in Appendix 2.10. Thus we finish the proof by
substituting 𝐾𝜏2 with the mixing time 𝑡 and take the limit 𝜏 → 0.

Proof:[of Theorem 6] In the proof we abbreviate 𝑡𝑚𝑖𝑥 (L, 𝜖) as 𝑡 and 𝐾 = 𝑡/𝜏2. We
will analyze the following terms,��E𝐾 (𝜌) − 𝜌𝛽��1 ≤ ��E𝐾 (𝜌) − 𝑒𝑡L (𝜌)��1 + ��𝑒𝑡L (𝜌) − 𝜌L ��1 + ��𝜌L − 𝜌𝛽��1 . (2.150)

By Lemma 30 we can bound the first term by 2𝑒4𝐾𝜏4. By the definition of mixing
time, we can bound the second term by 𝜖 . The bound for last term comes from
Lemma 31 and Theorem 4. Thus we get the desired error bounds by substituting
𝐾𝜏2 with the mixing time 𝑡.

Acknowledgement
Part of this work was conducted while the author was visiting the Simons Institute
for the Theory of Computing, supported by DOE QSA grant #FP00010905. We
thank Yu Tong for the helpful discussion on analyzing mixing time by spectral gap
of L (𝑠) .

2.9 Appendix: More Details on Quantum Phase Estimation
(1) Adapting quantum phase estimation to estimating Hamiltonian eigenvalues.
Firstly we recall the standard quantum phase estimation in Section 5.2 in [NC10]:

47

suppose a unitary 𝑉 has an eigenstate |𝜙⟩ with eigenvalue 𝑒2𝜋𝜇, where 𝜇 ∈ [0, 1) is
unknown. Quantum Phase estimation is a quantum algorithm which has access to
|𝜙⟩ and 𝑉 , and outputs an estimate of 𝜇.

More precisely, let |𝜙⟩ :=
��𝜓 𝑗 〉, 𝑈 := 𝑒𝑖𝐻𝑡 , 𝑡 := 2𝜋

𝜅𝐻
, where 𝜅𝐻 = 𝑝𝑜𝑙𝑦(𝑛) is a

power of two that upper bounds ∥𝐻∥. For example, for local Hamiltonian 𝐻 =∑𝑚
𝑖=1 𝐻𝑖, ∥𝐻𝑖∥ ≤ 1, one can set 𝜅𝐻 to be the least integer which is a power of two

and is greater than 𝑚. Then
��𝜓 𝑗 〉 is an eigenstate of𝑈 with eigenvalue 𝑒2𝜋𝜇, for

𝜇 :=
𝐸 𝑗 𝑡

2𝜋
=
𝐸 𝑗

𝜅𝐻
∈ [0, 1).

Let 𝑟 be an integer. For any 𝒃 ∈ {0, 1}𝑟 , with some abuse of notations, we use 𝒃

both for the binary string and the integer
∑𝑟
𝑗=1 𝑏 𝑗2

𝑗−1. Denote 𝒃 (𝑗) ∈ {0, 1}𝑟 be the
integer such that 𝒃 (𝑗)/2𝑟 is the best 𝑟 bit approximation to 𝐸 𝑗

𝜅𝐻
which is less than 𝐸 𝑗

𝜅𝐻
.

Then if 𝒃 is a good approximation to 𝒃 (𝑗) , we have 𝐸 (𝒃) defined below, which is a
good approximation of 𝐸 𝑗 :

𝐸 (𝒃) := 𝜅𝐻 · 𝒃/2𝑟 . (2.151)

Note that since 𝜅𝐻 is a power of 2, the binary representation of 𝒃 can also be viewed
as the binary representation of 𝐸 (𝒃) by shifting the decimal point by log(𝜅𝐻) bits.

The quantum phase estimation w.r.t precision 𝑟 in [NC10] is a unitary, denoted as
QPE, which outputs a distribution highly peaked at 𝒃 (𝑗) ,

QPE
��𝜓 𝑗 〉 |0𝑟⟩ = ��𝜓 𝑗 〉 2𝑟−1∑︁

𝑙=−2𝑟−1+1
𝛾 𝑗 𝑙

���𝒃 (𝑗) + 𝑙 mod 2𝑟
〉
, (2.152)

where 𝛾 𝑗 𝑙 :=
1
2𝑟

2𝑟−1∑︁
𝑘=0

(
𝑒2𝜋𝑖(𝜖 𝑗−𝑙/2𝑟)

) 𝑘
=

1
2𝑟

(
1 − 𝑒2𝜋𝑖(2𝑟 𝜖 𝑗−𝑙)

1 − 𝑒2𝜋𝑖(𝜖 𝑗−𝑙/2𝑟)

)
, (2.153)

𝜖 𝑗 := 𝐸 𝑗/𝜅𝐻 − 𝑏 (𝑗)/2𝑟 . (2.154)

Lemma 32 Note that

|𝛾 𝑗0 |2 + |𝛾 𝑗1 |2 ≥ 0.8. (2.155)

Proof: By definition of 𝒃 (𝑗) and 𝜖 𝑗 we have that 𝜖 𝑗 ∈ [0, 2−𝑟). Note that if 𝜖 𝑗 = 0,
then |𝛾 𝑗0 |2 = 1, so for the remainder of the proof, we will assume 𝜖 𝑗 ∈ (0, 2−𝑟).
Define 𝜃 = 2𝑟𝜖 𝑗 ∈ (0, 1). Note that

𝛾 𝑗 𝑙 =
1
2𝑟

(
1 − 𝑒2𝜋𝑖(𝜃−𝑙)

1 − 𝑒2𝜋𝑖(𝜃−𝑙)/2𝑟

)
=

1
2𝑟

𝑒𝜋𝑖(𝜃−𝑙)

𝑒𝜋𝑖(𝜃−𝑙)/2𝑟
· sin(𝜋(𝜃 − 𝑙))

sin(𝜋(𝜃 − 𝑙)/2𝑟) . (2.156)

48

So the goal is to lower bound:

|𝛾 𝑗0 |2 + |𝛾 𝑗1 |2 =
1
4𝑟

sin2(𝜃𝜋)
sin2(𝜃𝜋/2𝑟)

+ 1
4𝑟

sin2((𝜃 − 1)𝜋)
sin2((𝜃 − 1)𝜋/2𝑟)

. (2.157)

Since sin(𝜃) ≤ 𝜃 for 𝜃 ≥ 0, we can use this lower bound in the denominator for each
term:

|𝛾 𝑗0 |2 + |𝛾 𝑗1 |2 ≥
1
4𝑟

sin2(𝜃𝜋)
(𝜃𝜋/2𝑟)2

+ 1
4𝑟

sin2((𝜃 − 1)𝜋)
((𝜃 − 1)𝜋/2𝑟)2

(2.158)

=
1
𝜋2

(
sin2(𝜃𝜋)
𝜃2 + sin2(𝜃 − 1)𝜋)

(𝜃 − 1)2

)
. (2.159)

Note that as shown in Figure 2.2 for 𝜃 ∈ (0, 1), the function in Eq. (2.159) is
symmetric around 𝜃 = 1/2 and is minimized for 𝜃 = 1/2. The value obtained by
plugging 𝜃 = 1/2 into Eq. (2.159) is at least 0.8 .

Figure 2.2: Approximating the amplitudes of the quantum phase estimation. The function
shown in Equation (2.159) is minimized for 𝜃 = 1/2.

Note that 𝛾 𝑗0 and 𝛾 𝑗1 are the amplitudes of 𝒃 (𝑗) and 𝒃 (𝑗) + 1, which are the best two
𝑟-bit approximation to 𝐸 𝑗

𝜅𝐻
. Denote the best two 𝑟-bit approximation to 𝐸 𝑗 as

⌊𝐸 𝑗⌋ := 𝐸 (𝒃 (𝑗)), ⌈𝐸 𝑗⌉ := 𝐸 (𝒃 (𝑗) + 1). (2.160)

Since there is a one-to-one correspondence between 𝑟-bit string 𝒃 and 𝐸 (𝒃) ∈ 𝑆(𝑟),
to ease notations, we rewrite Eqs. (2.152)(2.155) as

QPE
��𝜓 𝑗 〉 |0𝑟⟩ = ��𝜓 𝑗 〉 ∑︁

𝜈∈𝑆(𝑟)
𝛽 𝑗 𝜈 |𝜈⟩ , (2.161)

where |𝛽 𝑗 ⌊𝐸 𝑗⌋ |2 + |𝛽 𝑗 ⌈𝐸 𝑗⌉ |2 ≥ 0.8. (2.162)

49

In addition, one can check that ∀ 𝑗 ,∑︁
𝜈∈𝑆(𝑟)

𝛽 𝑗 𝜈 =

2𝑟−1∑︁
𝑙=−2𝑟−1+1

𝛾 𝑗 𝑙 (2.163)

=
1
2𝑟

2𝑟−1∑︁
𝑘=0

2𝑟−1∑︁
𝑙=−2𝑟−1+1

(
𝑒2𝜋𝑖𝜖 𝑗

) 𝑘 (
𝑒2𝜋𝑖(−𝑙/2𝑟)

) 𝑘
(2.164)

=
1
2𝑟

2𝑟−1∑︁
𝑘=0

(
𝑒2𝜋𝑖𝜖 𝑗

) 𝑘
· 2𝑟𝛿𝑘0 (2.165)

= 1. (2.166)

(2) Boosted Quantum Phase Estimation. Let 𝑟, 𝑔 be two integer parameters.
Taking input as

��𝜓 𝑗 〉 |0𝑟𝑔⟩, the Boosted quantum phase estimation (BQPE) in this
manuscript is just viewing the |0𝑟𝑔⟩ as 𝑔 copies of |0𝑟⟩, and sequentially perform
the standard Quantum Phase Estimation QPE w.r.t.

��𝜓 𝑗 〉 and each copy of |0𝑟⟩,

BQPE
��𝜓 𝑗 〉 |0𝑔𝑟⟩ = ��𝜓 𝑗 〉 ∑︁

𝜈1,...,𝜈𝑔∈𝑆(𝑟)
𝛽 𝑗 𝜈1 ...𝛽 𝑗 𝜈𝑔

��𝜈1...𝜈𝑔
〉
, (2.167)

=
��𝜓 𝑗 〉 ∑︁

𝐸∈𝑆(𝑟)⊗𝑔
𝛽 𝑗𝐸 |𝐸⟩ , (2.168)

where in the last equality to ease notations we write 𝐸 := 𝜈1...𝜈𝑔 and 𝛽 𝑗𝐸 :=
𝛽 𝑗 𝜈1 ...𝛽 𝑗 𝜈𝑔 . We use 𝐸 to denote the median of 𝜈1, ..., 𝜈𝑔. By Eq. (2.162) and
Chernoff bound, we have ∑︁

𝐸∈𝑆 (𝑟)⊗𝑔 :
𝐸≠⌊𝐸𝑗 ⌋,𝐸≠⌈𝐸𝑗 ⌉

|𝛽 𝑗𝐸 |2 ≤ 2−𝑔/5. (2.169)

Besides, by Eq. (2.166) we have∑︁
𝐸∈𝑆(𝑟)⊗𝑔

𝛽 𝑗𝐸 =
©«

∑︁
𝜈∈𝑆(𝑟)

𝛽 𝑗 𝜈
ª®¬
𝑔

= 1. (2.170)

(3) Flipped Boosted Quantum Phase Estimation. As explained in Section 5.2
of [NC10], the circuit for the standard Quantum Phase Estimation QPE is, (a)
First applying a layer of Hadamard gates. (b) Then apply a sequence controlled-𝑈
operators, with 𝑈 raised to successive powers of 2. Denote the operator as 𝐶𝑈. (c)
Then apply inverse quantum Fourier transform.

The Flipped Quantum Phase Estimation FQPE is similar to QPE, with the difference
that each time FQPE adds a conjugate phase: (a) First applying a layer of Hadamard

50

gate. (b) Then apply (𝐶𝑈)†. (c) Then apply quantum Fourier transform rather than
inverse quantum Fourier transform. It is worth noting that FQPE ≠ QPE†.

Recall that from (2) the Boosted Quantum Phase estimation is just running QPE for
𝑔 times. The Flipped Boosted Quantum Phase estimation (FBQPE) is just running
FQPE for 𝑔 times.

2.10 Appendix: Matrix Norm Properties
In this section we list properties on matrix norms.

Lemma 33 (Cauchy-Schwarz inequality) For any 𝑀, 𝑁 ∈ Ξ(𝑚),

|𝑡𝑟 (𝐴†𝐵) | ≤
√︁
𝑡𝑟 (𝐴†𝐴)

√︁
𝑡𝑟 (𝐵†𝐵). (2.171)

Lemma 33 is a well-known fact thus we skip the proof.

Lemma 34 (Variational Characterization of Trace Norm) For 𝑀 ∈ Ξ(𝑚), the
following variational characterization of the trace norm holds,

|𝑀 |1 = max
𝑈
|𝑡𝑟 (𝑀𝑈) |, (2.172)

where the maximization is over all 𝑚-qubit unitary operators𝑈.

Proof: Consider singular value decomposition of 𝑀 as 𝑊𝐷𝑉 , with 𝑊,𝑉 unitaries
and 𝐷 a diagonal matrix of singular values. Using Cauchy-Schwart inequality
Lemma 33 one gets

|𝑡𝑟 (𝑀𝑈) | = |𝑡𝑟 (
√
𝐷
√
𝐷𝑉𝑈𝑊) |

≤
√︃
𝑡𝑟 (
√
𝐷
√
𝐷)

√︄
𝑡𝑟

{(√
𝐷𝑉𝑈𝑊

)† (√
𝐷𝑉𝑈𝑊

)}
= 𝑡𝑟 (𝐷).

Note that 𝑡𝑟 (𝐷) = |𝑀 |1. On the other hand, |𝑀 |1 can be obtained by choosing
𝑈 = 𝑉†𝑊†.

Corollary 35 Let |𝜙⟩ , |𝜑⟩ be two unit vectors on registers 𝑎, 𝑏. Let 𝑃,𝑄 be linear
operators on registers 𝑎, 𝑏 with spectrum norm bounded by 1. Then

|𝑡𝑟𝑏 (𝑃 |𝜙⟩ ⟨𝜑|𝑄) |1 ≤ 1. (2.173)

In particular, let 𝑃 = 𝑄 = 𝐼 we get

|𝑡𝑟𝑏 (|𝜙⟩ ⟨𝜑 |) |1 ≤ 1. (2.174)

51

Proof: By Lemma 34, we have that

|𝑡𝑟𝑏 (𝑃 |𝜙⟩ ⟨𝜑 |𝑄) |1 = max
unitary𝑈 on register 𝑎

|𝑡𝑟𝑎 (𝑡𝑟𝑏 (𝑃 |𝜙⟩ ⟨𝜑 |𝑄)𝑈) | (2.175)

= |𝑡𝑟𝑎,𝑏 (𝑃 |𝜙⟩ ⟨𝜑 |𝑄𝑈) | (2.176)

= | ⟨𝜑 |𝑄𝑈𝑃 |𝜙⟩ | (2.177)

≤ 1. (2.178)

Lemma 36 Let E : Ξ(𝑚) → Ξ(𝑚) be a linear map. If for any unit vector |𝑢⟩ , |𝑣⟩,
we have |E(|𝑢⟩ ⟨𝑣 |) |1 ≤ 𝑐. Then |E |★ ≤ 𝑐.

Proof: Given any 𝑁 ∈ Ξ(𝑚) with |𝑁 |1 ≤ 1, consider its spectrum decomposition

𝑁 =
∑︁
𝑖

𝛾𝑖 |𝑢𝑖⟩ ⟨𝑣𝑖 | , (2.179)

where 𝛾𝑖 ≥ 0 are singular values. |𝑢𝑖⟩ , |𝑣𝑖⟩ are unit vectors.
∑
𝑖 𝛾𝑖 ≤ |𝑁 |1 = 1. Then

by triangle inequality we have that

|E(𝑁) |1 ≤
∑︁
𝑖

𝛾𝑖 · |E(|𝑢⟩ ⟨𝑣 |) |1 ≤ 𝑐. (2.180)

Lemma 37 Let 𝑃,𝑄 be operators on register 1, 2, 3, 4 with spectrum norm bounded
by 1. Let |𝑤⟩ be a unit vector on register 2, 3, 4. For any operator 𝑁 on register 1,
define

F (𝑁) := 𝑡𝑟2,3,4(𝑃 [𝑁 ⊗ |𝑤⟩ ⟨𝑤 |] 𝑄). (2.181)

Then |F |★ ≤ 1.

Proof: By Lemma 36 it suffices to assume 𝑁 = |𝑢⟩ ⟨𝑣 | for unit vectors |𝑢⟩ , |𝑣⟩ and
prove |F (𝑁) |1 ≤ 1. Since |𝑢⟩ |𝑤⟩ and |𝑣⟩ |𝑤⟩ are unit vectors on register 1, 2, 3, 4.
By Corollary 35 we have |F |★ ≤ 1.

Lemma 38 [Trace-Norm non-increasing of CPTP] Let E : H(𝑚) → H(𝑚) be a
CPTP map. We have |E |★ ≤ 1. That is, for any Hermitian operator 𝑀 ∈ H (𝑚),
|E(𝑀) |1 ≤ |𝑀 |1.

52

Proof: Consider the spectrum decomposition of 𝑀 =
∑
𝑗 𝜆 𝑗

��𝜙 𝑗 〉 〈
𝜙 𝑗

��. We have that

|E(𝑀) |1 ≤
∑︁
𝑗

|𝜆 𝑗 | ·
��E(��𝜙 𝑗 〉 〈

𝜙 𝑗
��)��1 =

∑︁
𝑗

|𝜆 𝑗 | = |𝑀 |1 , (2.182)

where the first equality comes from the fact that E(
��𝜙 𝑗 〉 〈

𝜙 𝑗
��) is a quantum mixed

state, and thus its trace norm is equal to 1.

Lemma 39 (Connecting trace norm and 𝜎-norm) Let 𝜎 be a Hermitian matrix
where 𝜎 ≥ 𝐼. Then ∀𝑀 ∈ Ξ(𝑛), we have that |𝑀 |21 ≤ 2𝑛 |𝑀 |2𝜎 .

Proof: Note that for any two positive Semi-definite Hermitian matrices 𝐴 ≥ 0, 𝐵 ≥
0, we have 𝑡𝑟 (𝐴𝐵) ≥ 0. Further note that 𝜎1/2 − 𝐼 ≥ 0, 𝑀†𝜎1/2𝑀 ≥ 0, and both of
them are Hermitian. Thus we have

|𝑀 |2𝜎 = 𝑡𝑟 (𝐼𝑀†𝐼𝑀) + 𝑡𝑟 (𝐼𝑀†
(
𝜎1/2 − 𝐼

)
𝑀) + 𝑡𝑟 ((𝜎1/2 − 𝐼) · 𝑀†𝜎1/2𝑀)

(2.183)

≥ 𝑡𝑟 (𝐼𝑀†𝐼𝑀). (2.184)

Denote the singular values of 𝑀 as {𝑎 𝑗 } 𝑗 . (By definition 𝑎 𝑗 ≥ 0). By Cauchy
inequality(∑︁

𝑗

𝑎 𝑗

)2

≤ 2𝑛
∑︁
𝑗

𝑎2
𝑗 ⇒ |𝑀 |21 ≤ 2𝑛𝑡𝑟 (𝐼𝑀†𝐼𝑀) ≤ 2𝑛 |𝑀 |2𝜎 . (2.185)

2.11 Appendix: Bounding Mixing time w.r.t. spectral gap of L (𝑠)

This section is based on [Wol12] and private communications. This section is
primarily for the L in our algorithm, while here we write a slightly more general
proof for Lindbladian L satisfying the following assumptions

Assumption 1 We assume 𝑒𝑡L is CPTP for 𝑡 ≥ 0 and satisfies

• L(𝜌) = ∑
𝑗 𝐿 𝑗 𝜌𝐿

†
𝑗
− 1

2

{
𝐿
†
𝑗
𝐿 𝑗 , 𝜌

}
+

for some matrices {𝐿 𝑗 } 𝑗 ⊆ Ξ(𝑛).

• {𝐿 𝑗 } 𝑗 generates the full algebra Ξ(𝑛). There exists a unique 𝜌L satisfying
L(𝜌L) = 0. Besides, this 𝜌L is a full-rank quantum state.

We use 𝜎 to denote 𝜌−1
L . Note that L in our algorithm satisfies Assumption 1 by

Lemma 17 and proofs in Section 2.6.

53

Notations. Here we define two different inner products onΞ(𝑛), that is the Schmidt-
Hilbert inner product and the weighted inner product w.r.t. 𝜎: For any𝑀, 𝑁 ∈ Ξ(𝑛),

⟨𝑀, 𝑁⟩ := 𝑡𝑟
(
𝑀†𝑁

)
, (2.186)

⟨𝑀, 𝑁⟩𝜎 := 𝑡𝑟
(
𝜎1/2𝑀†𝜎1/2𝑁

)
. (2.187)

We use L⋄ to denote the dual map w.r.t. Schmidt inner product. We use L∗ to
denote the dual map w.r.t. ⟨, ⟩𝜎. That is

⟨𝑀,L⋄(𝑁)⟩ = ⟨L(𝑀), 𝑁⟩, (2.188)

⟨𝑀,L∗(𝑁)⟩𝜎 = ⟨L(𝑀), 𝑁⟩𝜎 . (2.189)

⟨, ⟩𝜎 induces a norm where |𝑁 |2𝜎 := ⟨𝑁, 𝑁⟩𝜎. One can check that for any 𝑁 ∈ Ξ(𝑛),

L∗(𝑁) = 𝜎− 1
2L⋄

(
𝜎

1
2𝑁𝜎

1
2

)
𝜎−

1
2 (2.190)

L⋄(𝑁) =
∑︁
𝑗

𝐿
†
𝑗
𝑁𝐿 𝑗 −

1
2

{
𝐿
†
𝑗
𝐿 𝑗 , 𝑁

}
+
. (2.191)

Define the symmetrized version of L as

L (𝑠) :=
L + L∗

2
.

By definition L (𝑠) is Hermitian w.r.t. ⟨, ⟩𝜎, and thus is diagonalizable and has a real
spectrum.

Properties on L and L (𝑠) .
In this section, we prove some basic properties of L and L (𝑠) . We use the following
theorem.

Theorem 40 (Generators for Semigroup of quantum channels, Theorem 7.1 in [Wol12])
Consider a linear map P : Ξ(𝑛) → Ξ(𝑛). Then for any 𝑡 ≥ 0, 𝑒𝑡P is CPTP if there
exists a set of matrices {𝑃 𝑗 ∈ Ξ(𝑛)} 𝑗 and a Hermitian 𝐻𝑠𝑦𝑠𝑡𝑒𝑚 such that

P(𝜌) = 𝑖[𝜌, 𝐻𝑠𝑦𝑠𝑡𝑒𝑚] +
∑︁
𝑗

𝑃 𝑗 𝜌𝑃
†
𝑗
− 1

2

{
𝑃
†
𝑗
𝑃 𝑗 , 𝜌

}
+
. (2.192)

Theorem 41 For any 𝑡 ≥ 0,

(i) L(𝜌L) = 0, 𝑒𝑡L is CPTP and L⋄(𝐼) = 0.

(ii) 𝑒𝑡L∗ and 𝑒𝑡L (𝑠) are CPTP.

54

(iii) L (𝑠) has a unique fixed point, that is 𝜌L .

(iv) The spectrum of L (𝑠) lies in [−∞, 0].

(v) The spectral gap of L (𝑠) is strictly greater than 0, which is denoted as Υ and
equals to

Υ(L (𝑠)) = min
⟨𝑁,𝑁 ⟩𝜎=1
⟨𝑁,𝜌L ⟩𝜎=0

−⟨𝑁,L (𝑠) (𝑁)⟩𝜎 > 0. (2.193)

Since L (𝑠) is clear in the context we abbreviate Υ(L (𝑠)) as Υ.

Proof: For (i): Besides, by Assumption 1 we have L(𝜌L) = 0. Besides

L(𝑁) =
∑︁
𝑗

𝐿 𝑗𝑁𝐿
†
𝑗
− 1

2

{
𝐿
†
𝑗
𝐿 𝑗 , 𝑁

}
+
. (2.194)

L⋄(𝑁) =
∑︁
𝑗

𝐿
†
𝑗
𝑁𝐿 𝑗 −

1
2

{
𝐿
†
𝑗
𝐿 𝑗 , 𝑁

}
+
. (2.195)

One can directly check L⋄(𝐼) = 0. Besides 𝑒𝑡L is CPTP by Theorem 40 by setting
𝐻𝑠𝑦𝑠𝑡𝑒𝑚 = 0.

For (ii): we have

L∗(𝑁) = 𝜎− 1
2L⋄

(
𝜎

1
2𝑁𝜎

1
2

)
𝜎−

1
2 (2.196)

=
∑︁
𝑗

𝜎−
1
2 𝐿
†
𝑗
𝜎

1
2 · 𝑁 · 𝜎 1

2 𝐿 𝑗𝜎
− 1

2 − 𝜎− 1
2
1
2

{
𝐿
†
𝑗
𝐿 𝑗 , 𝜎

1
2𝑁𝜎

1
2

}
+
𝜎−

1
2 (2.197)

=
∑︁
𝑗

𝜎−
1
2 𝐿
†
𝑗
𝜎

1
2 · 𝑁 · 𝜎 1

2 𝐿 𝑗𝜎
− 1

2 − 1
2

(
𝜎−

1
2 𝐿
†
𝑗
𝐿 𝑗𝜎

1
2 · 𝑁 + 𝑁 · 𝜎 1

2 𝐿
†
𝑗
𝐿 𝑗𝜎

− 1
2

)
.

(2.198)

We will prove by properly defining a Hermitian 𝐻𝑠𝑦𝑠𝑡𝑒𝑚, the L∗ can be written in
the form of Eq. (2.192) in Theorem 40, which will imply L∗ is CPTP. Denote

𝑂 𝑗 := 𝜎−
1
2 𝐿
†
𝑗
𝜎

1
2 , 𝐾 :=

1
2
𝜎−

1
2 𝐿
†
𝑗
𝐿 𝑗𝜎

1
2 , (2.199)

𝑉 :=
1
2

∑︁
𝑗

𝑂
†
𝑗
𝑂 𝑗 , 𝐻𝑠𝑦𝑠𝑡𝑒𝑚 :=

1
2𝑖

(
𝐾 − 𝐾†

)
. (2.200)

55

Recall that L(𝜌L) = 0 and 𝜎 = 𝜌−1
L , we have∑︁

𝑗

𝐿 𝑗𝜎
−1𝐿†

𝑗
− 1

2

(
𝐿
†
𝑗
𝐿 𝑗𝜎

−1 + 𝜎−1𝐿†
𝑗
𝐿 𝑗

)
= 0. (2.201)

⇒𝜎 1
2

(∑︁
𝑗

𝐿 𝑗𝜎
−1𝐿†

𝑗
− 1

2

(
𝐿
†
𝑗
𝐿 𝑗𝜎

−1 + 𝜎−1𝐿†
𝑗
𝐿 𝑗

))
𝜎

1
2 = 0. (2.202)

⇒
∑︁
𝑗

𝜎
1
2 𝐿 𝑗𝜎

− 1
2 · 𝜎− 1

2 𝐿
†
𝑗
𝜎

1
2 − 1

2

(
𝜎

1
2 𝐿
†
𝑗
𝐿 𝑗𝜎

− 1
2 + 𝜎− 1

2 𝐿
†
𝑗
𝐿 𝑗𝜎

1
2

)
= 0. (2.203)

Thus

𝑉 =
1
2

(
𝐾† + 𝐾

)
⇒ 𝐾 = 𝑉 + 𝑖𝐻𝑠𝑦𝑠𝑡𝑒𝑚, (2.204)

where the⇒ we use 𝐻𝑠𝑦𝑠𝑡𝑒𝑚 := 1
2𝑖

(
𝐾 − 𝐾†

)
. One can verify

L∗(𝑁) =
∑︁
𝑗

𝑂 𝑗𝑁𝑂
†
𝑗
−

(
𝐾𝑁 + 𝑁𝐾†

)
(2.205)

=
∑︁
𝑗

𝑂 𝑗𝑁𝑂
†
𝑗
− (𝑉𝑁 + 𝑁𝑉) + 𝑖[𝑁, 𝐻𝑠𝑦𝑠𝑡𝑒𝑚] (2.206)

= 𝑖[𝑁, 𝐻𝑠𝑦𝑠𝑡𝑒𝑚] +
∑︁
𝑗

𝑂 𝑗𝑁𝑂
†
𝑗
− 1

2

{
𝑂
†
𝑗
𝑂 𝑗 , 𝑁

}
+

(2.207)

where the first equality comes from Eqs. (2.198)(2.199)(2.200), the second equal-
ity comes from (2.204), and the last equality comes from definition of 𝑉 in
Eq. (2.200). One can check that 𝐻𝑠𝑦𝑠𝑡𝑒𝑚 is Hermitian. Since L (𝑠) = 1

2 (L + L
∗),

from Eqs. (2.194)(2.207) we known that L (𝑠) can also be written as Eq. (2.192),
where the Lindbladian jump operator is { 1√

2
𝐿 𝑗 } ∪ { 1√

2
𝑂 𝑗 }. Thus by Theorem 40

we conclude that 𝑒𝑡L (𝑠) is CPTP for 𝑡 ≥ 0.

For (iii): From Assumption 1 we already have { 1√
2
𝐿 𝑗 } generates the full algebra.

Thus so does { 1√
2
𝐿 𝑗 } ∪ { 1√

2
𝑂 𝑗 }. By Theorem 20 we conclude that there exists a

unique 𝜌 such that L (𝑠) (𝜌) = 0. Besides, from Eq. (2.198) one can directly verify
that L∗(𝜌L) = 0, and thus L (𝑠) (𝜌L) = 0.

For (iv): By definition ofL (𝑠) : H(𝑛) → H(𝑛) it is Hermitian w.r.t. ⟨, ⟩𝜎. ThusL (𝑠)

is diagonalizable and the spectrum is real. With contradiction assume there exists
an eigenstate 𝑁 ∈ H (𝑛), 𝑁 ≠ 0 with eigenvalue 𝜆 > 0. Then

���𝑒𝑡L (𝑠) (𝑁)���
1
= 𝑒𝜆𝑡 |𝑁 |1

goes to infinity as 𝑡 → ∞, which contradicts with the fact that 𝑒𝑡L (𝑠) is CPTP from
(ii), where CPTP map does not increase trace norm of Hermitian operators (Lemma
38 in Appendix 2.10).

56

For (v): By (iii)(iv) we know the spectral gap is strictly greater than 0, and the
minimum eigenvector is 𝜌L and has eigenvalue 0. Then Eq. (2.193) is just by
definition of spectral gap.

Proof of Theorem 7
Proof:[of Theorem 7] All the properties ofL we use are summarized in Assumption
1. Define

ℎ𝑡 = 𝑒
𝑡L (𝜌) − 𝜌L .

Since L(𝜌L) = 0, one can check that

𝑑

𝑑𝑡
⟨ℎ𝑡 , ℎ𝑡⟩𝜎 = 2

〈
ℎ𝑡 ,L (𝑠) (ℎ𝑡)

〉
𝜎
. (2.208)

Further note that since 𝑒𝑡L is trace-preserving from Theorem 41 (i), we have
𝑡𝑟 (𝑒𝑡L (𝜌)) = 1. One can verify that ⟨ℎ𝑡 , 𝜌L⟩𝜎 = 0. Then by Eq. (2.208) and
Eq. (2.193), we have

𝑑

𝑑𝑡
⟨ℎ𝑡 , ℎ𝑡⟩𝜎 = 2

〈
ℎ𝑡

|ℎ𝑡 |𝜎
,L (𝑠)

(
ℎ𝑡

|ℎ𝑡 |𝜎

)〉
𝜎

· ⟨ℎ𝑡 , ℎ𝑡⟩𝜎 (2.209)

≤ −2Υ · ⟨ℎ𝑡 , ℎ𝑡⟩𝜎 . (2.210)

Then by Gronwall’s inequality we have

⟨ℎ𝑡 , ℎ𝑡⟩𝜎 ≤ ⟨ℎ0, ℎ0⟩𝜎 · exp(−2Υ𝑡). (2.211)

Recall that ℎ0 = 𝜌 − 𝜌L . Thus we have��𝑒𝑡L (𝜌) − 𝜌L ��1 ≤ 2𝑛/2
��𝑒𝑡L (𝜌) − 𝜌L ��𝜎 (2.212)

≤ 2𝑛/2 |𝜌 − 𝜌L |𝜎 · exp(−Υ𝑡) (2.213)

≤ 2𝑛/2 ·
√︃
𝑡𝑟 (𝜎 1

2 𝜌𝜎
1
2 𝜌) · exp(−Υ𝑡), (2.214)

where the first inequality comes from connecting trace-norm and |·|𝜎 by Lemma 39
in Appendix 2.10. Note that 𝜎 ≥ 𝐼 since 𝜎 = 𝜌−1

L and 𝜌L is a quantum state. The
second inequality comes from Eq. (2.211). The last inequality comes from 𝜎 = 𝜌−1

L
and 𝑡𝑟 (𝜌 − 𝜌L) = 0 since both 𝜌 and 𝜌L are quantum states, and

|𝜌 − 𝜌L |2𝜎 = 𝑡𝑟 (𝜎 1
2 (𝜌 − 𝜌L)𝜎

1
2 (𝜌 − 𝜌L)) = 𝑡𝑟 (𝜎

1
2 𝜌𝜎

1
2 𝜌) − 1. (2.215)

57

C h a p t e r 3

GIBBS STATE PREPARATION FOR COMMUTING
HAMILTONIAN

3.1 Introduction
Gibbs state preparation is a key computational technique used in physics, statis-
tics, and many other scientific fields. Given a local Hamiltonian 𝐻 and an inverse
temperature 𝛽, the Gibbs state 𝜌𝛽𝐻 ∼ exp(−𝛽𝐻) describes the thermal equilib-
rium properties of quantum systems at finite temperature, making them essential
for studying the phase diagram, stability of topological quantum memory [Has11;
LP13] as well as the thermalization process [RGE12; Mül+15]. In addition to
physics, Gibbs state preparation also has found various applications in optimiza-
tion [Bra+19; Van+17] and Bayesian Inference [Ami+18; HS83]. Various Gibbs
state preparation algorithms (or Gibbs samplers) have been proposed, including
approaches inspired by the Davies generator [Che+23; Gil+24b; RWW23; DLL24],
the Metropolis-Hasting type method [JI24; Tem+11], and ones based on Grover
amplification [PW09] and the Quantum Singular Value Transform [Gil+19].

The key requirement for a good Gibbs sampler is fast mixing, that is, the algo-
rithm prepares the Gibbs state in polynomial time. Gibbs samplers for classical
Hamiltonians have been studied for decades and fast mixing algorithms have been
successfully designed for various scenarios. In particular, Glauber dynamics yield
fast mixing Gibbs samplers for 1D systems at any constant temperature [GZ03;
Hol85; HS89] and for 2D systems at high temperature [MO94]. On the other hand,
for 2D systems like the Ising model, Glauber dynamics-based samplers are known to
suffer critical slow downs and are slow mixing at low temperature [CCS87; Ces+96;
Sch87]. Instead, the Swendsen-Wang algorithm [SW87; FGW23] and approaches
based on Barvinok’s method [Bor+20] were proved to achieve fast mixing for low
temperature 2D systems.

Recent efforts on developing fast mixing Gibbs samplers for quantum Hamiltoni-
ans have largely focused on commuting local Hamiltonians (CLHs). CLHs are
an important subclass of quantum Hamiltonian which exhibits non-trivial quantum
phenomenon. Different from classical Hamiltonians whose eigenstates are com-
putational basis, the eigenstates of a CLH instance can be highly entangled and

58

cannot be prepared by any constant depth quantum circuit, as is true for the famous
example of Kitaev’s Toric code [Kit03a]. Besides, it was shown that Gibbs sam-
pling of CLHs at constant temperature remains classically hard [BCL24; RW24].
Nonetheless, several aforementioned fast mixing results for classical Hamiltonians
have been successfully generalized to the CLH case. In particular, multiple results
utilize the Davies generator [Dav76; Dav79], which represents a quantum Markov
chain (Lindbladian) for thermalization process in the weak coupling limit. This
has yielded fast mixing Gibbs samplers for 1D CLH at any constant temperature
[Bar+23; KB16] and 2D CLH at high temperature [CRF20; KB16]. The fast mixing
proofs are obtained by generalizing classical techniques for analyzing the mixing
time of transition matrices [GZ03; Hol85; HS89; MO94; MO94] to analyzing the
mixing time of the Davies generator. These generalizations are highly non-trivial
and very technical since analyzing the spectrum of a quantum operator (in this case
the Davies generator) is generally hard. In the low temperature regime, fast mix-
ing Gibbs samplers for CLHs on two or higher dimensions are only known for the
standard 2D Toric code [AFH09; Din+24].

In this work, we introduce a new approach which does not use the Davies generator.
Instead, we design new Gibbs samplers for various CLHs by giving a reduction from
quantum Gibbs state preparation to classical Gibbs sampling. Combined with the
existing fast mixing results for classical Hamiltonians, our Gibbs sampler is able
to replicate the state-of-the-art performances mentioned above. Furthermore, our
algorithm can prepare low temperature Gibbs states as long as there exists a fast
mixing Gibbs sampler for the corresponding classical Hamiltonians. Our reductions
are summarized in the following two theorems. More details and comparisons
between previous results and the performance of our Gibbs sampler are contained
in Section 3.1.

Roughly speaking, we say that there is a Gibbs sampling reduction from a quantum
Hamiltonian𝐻 to a classical Hamiltonian𝐻 (𝑐) if, given the existence of an algorithm
that performs Gibbs sampling for (𝐻 (𝑐) , 𝛽) in time 𝑇 , there exists a quantum algo-
rithm preparing the quantum Gibbs state for (𝐻, 𝛽) in time 𝑇 plus a small overhead
polynomial in the number of qubits.1 First we notice that the Structure Lemma,
which is the key technique used in studying the complexity of CLHs [BV03; IJ23;
AKV18; Sch11], and directly gives the desired reduction for 2-local CLHs.

1In our case, we will obtain scaling like 𝑇 + O(𝑛) or 𝑇 + O(𝑛2).

59

Theorem 42 (Informal version of Theorem 49) There is a Gibbs sampling reduc-
tion from 2-local qudit commuting Hamiltonians to 2-local qudit classical Hamil-
tonians.

For more physically motivated 4-local CLHs such as the Toric code, the Structure
Lemma can no longer transform 4-local CLHs to classical Hamiltonians. Instead,
by leveraging a symmetry in the eigenspaces, we demonstrate that an oblivious
randomized correction approach yields the desired reduction for qubit CLHs in
2D, via generalizing a ground state preparation algorithm [AKV18] to Gibbs state
preparation. The locality of the resulting classical Hamiltonian depends on whether
there are classical qubits in the CLHs. Roughly speaking a qubit is classical if by
choosing proper basis of this qubit, all terms look like |0⟩⟨0| ⊗ ... + |1⟩⟨1| ⊗ ... on
this qubit.

Theorem 43 (Informal version of Theorem 58 and 76) There is a Gibbs sam-
pling reduction from 4-local qubit 2D commuting local Hamiltonian 𝐻 to qudit
classical Hamiltonians. In particular,

• If there are no classical qubits with respect to terms in 𝐻, then the classical
Hamiltonian is a 2-local qudit classical Hamiltonian on a planar graph.

• When there are classical qubits but all quantum terms (terms far away from
classical qubits) are uniformly correctable, then the classical Hamiltonian is
a O(1)-local qudit classical Hamiltonian.

Note that in the above theorem the quantum Hamiltonian is on qubits while the
classical Hamiltonian is on qudits. An example of a qubit 2D CLH without classical
qubits is the defected Toric code, a generalization of the Toric code with arbitrary
complex coefficients. We will give a technical overview based on the defected Toric
code in Section 3.1.

Our reduction also gives a quantum analogy of Stockmeyer’s result [Sto83] for the
complexity of quantum approximate counting. In particular, a fundamental result of
Stockmeyer [Sto83] states that classical approximate counting (approximating the
partition function of a classical Hamiltonian) is contained in the complexity class
BPPNP. It is natural to conjecture that the quantum approximate counting is upper
bounded by a complexity class like BQPQMA, but few results are known. By

60

the connection between quantum approximate counting and the Gibbs state prepa-
ration [Bra+21]2, our reduction shows that for various CLHs, the corresponding
quantum approximate counting problem is contained in BQPCS, where CS is an
oracle which can perform arbitrary classical Gibbs sampling.

Comparison to previous work.
Recall that most of the previous work on Gibbs samplers for CLHs are based
on simulating the Davies generator, which is a Lindbladian closely related to the
thermalization process. In this section, we give a detailed comparison between
previous results and our result, demonstrating that instead of using the Davies
generator, our reduction gives a new Gibbs sampler for CLHs directly utilizing fast
mixing Gibbs samplers for classical Hamiltonians. In particular, our reduction is
able to replicate state-of-the-art results and also derive new results. Our results are
summarized in Figure 3.1. In this section we discuss related results, and a more
thorough discussion on Gibbs state preparation can be found in [CRF20, Section
3.3].

Remark 1 Due to the relationship between Davies generator and thermalization
process, previous works analyzing the Davies generator [Bar+23; KB16; AFH09]
also yield insights into how thermal noise influences the quantum systems. Our
reduction does not cover this implication. The following comparison is only for the
task of preparing Gibbs state.

Mixing time 1D any temp 2D (2-local) 2D (4-local)
Previous work 𝑝𝑜𝑙𝑦(log 𝑛)[1] high temp: 𝑝𝑜𝑙𝑦(log 𝑛)[2] 𝑝𝑜𝑙𝑦(𝑛) for high temp[3]

low temp: unknown O(𝑛4) mixing time for TC [4]

Our results 𝑝𝑜𝑙𝑦(log 𝑛) high temp: 𝑝𝑜𝑙𝑦(log 𝑛) * 𝒑𝒐𝒍 𝒚(𝒏)
low temp: * 𝒑𝒐𝒍 𝒚(𝒏) O(𝒏2) for DTC

Figure 3.1: Mixing time of Gibbs samplers for 1D and 2D CLHs at different
temperatures (temp). TC and DTC refer to the standard Toric code and the more
general defected Toric code respectively. Improved results are in bold. The results
marked “*” indicate we achieve this mixing time, when efficient samplers for the
corresponding classical Hamiltonians are known. Our O(𝑛2) result for DTC is the
total runtime rather than just mixing time. References: [1] [CRF20]; [2] [Koc+24;
CRF20]; [3] [KB16]; [4] [Din+24].

Review of Markov chains, Lindbladians and mixing time We briefly review
some key concepts. Consider an 𝑛-qubit local Hamiltonian 𝐻 and an inverse

2Lemma 12 in [Bra+21], where the k-QMV can be estimated by measuring the Gibbs state .

61

temperature 𝛽. We assume 𝛽 ∈ O(1) unless further specified. We will first assume
𝐻 is classical and introduce key concepts for classical Gibbs sampling. Then we
will generalize to quantum Hamiltonians.

Suppose𝐻 is a classical Hamiltonian which diagonalizes in the computational basis,
and the task is performing classical Gibbs sampling for (𝐻, 𝛽). The target is the
Gibbs distribution 𝜋 which samples computational basis states |𝑥⟩ with probability
proportional to exp (−𝛽⟨𝑥 |𝐻 |𝑥⟩). The goal of classical Gibbs sampling is to design a
classical process which drives any distribution 𝜈 to 𝜋. The commonly used method
is the classical Metropolis algorithm [Met+53], which is a discrete-time Markov
chain described by a transition matrix 𝑃, such that 𝜋 is the unique fixed point of 𝑃,
i.e. 𝑃𝜋 = 𝜋. The mixing time 𝑡 (𝜖) is the time needed to get 𝜖-close to the invariant
distribution 𝜋 with respect to 1-norm (the total variation distance), that is

𝑡 (𝜖) := min{𝑡 : ∥𝑃𝑡𝜈 − 𝜋∥1 ≤ 𝜖,∀ distribution 𝜈}. (3.1)

In addition to this discrete-time Markov chain, one can also design a continuous-
time Markov chain, described by a generator matrix 𝐺 such that 𝜋 is the unique
invariant distribution of 𝐺, i.e. 𝐺𝜋 = 0 or equivalently 𝑒𝐺𝑡𝜋 = 𝜋, ∀𝑡. Similarly to
above, the mixing time is defined to be

𝑡 (𝜖) := min{𝑡 : ∥𝑒𝐺𝑡𝜈 − 𝜋∥1 ≤ 𝜖,∀ distribution 𝜈}. (3.2)

• The Markov chain is poly-time mixing, or fast mixing, if the the spectral gap
of 𝑃 or 𝐺 is Ω(1/𝑝𝑜𝑙𝑦(𝑛)), which implies 𝑡 (𝜖) = 𝑝𝑜𝑙𝑦(𝑛) × log 1

𝜖
.

• The Markov chain is rapid mixing if it reaches the invariant distribution
in a time which scales logarithmically with the system size, that is 𝑡 (𝜖) =
𝑝𝑜𝑙𝑦(log 𝑛) × log 1

𝜖
. Rapid mixing is typically proved by bounding the log-

Sobolev constant [GZ03] for the continuous-time chain.

When 𝐻 is a quantum Hamiltonian, we wish to prepare a quantum Gibbs state,
defined as

𝜌𝛽𝐻 := 𝜌(𝐻, 𝛽) :=
1

tr[exp(−𝛽𝐻)] exp(−𝛽𝐻).

The goal is to design a quantum process which drives any quantum state 𝜎 to 𝜌𝛽𝐻 .
One commonly used method is to design a Lindbladian L such that 𝜌𝛽𝐻 is the
unique fixed point of L, i.e. L(𝜌𝛽𝐻) = 0 or, equivalently, 𝑒L𝑡 (𝜌𝛽𝐻) = 𝜌𝛽𝐻 ,∀𝑡.

62

The Lindbladian is the quantum analogy of a continuous-time Markov chain. The
mixing time 𝑡 (𝜖) is defined to be

𝑡 (𝜖) := min{𝑡 : ∥𝑒L𝑡 (𝜎) − 𝜌𝛽𝐻 ∥1 ≤ 𝜖,∀𝜎}. (3.3)

The notion of poly-time mixing and rapid mixing is defined similarly to the classical
setting. One can prepare the quantum Gibbs state on a quantum computer by
Lindbladian simulation techniques [CW16; Che+23]. For simplicity we will assume
that 𝜖 = 1/𝑝𝑜𝑙𝑦(𝑛) for the remainder of the section.

Replication of poly-log time mixing algorithm for 1D commuting Hamiltonians.
For 1D classical Hamiltonians, it is well-known that there is no computational phase
transition [GZ03; Hol85; HS89]. As a result, for any constant temperature, Glauber
dynamics is rapid mixing for all translation-invariant, 1D classical Hamiltonians
with finite-range interactions.

A large body of previous work has focused on generalizing the rapid mixing results
from classical Hamiltonians to quantum CLHs. In particular, for 1D CLHs, [KB16]
proved that the Davies generator has a constant spectral gap and thus is fast (poly-
time) mixing. Then Bardet et.al. [Bar+23] strengthened the result to obtain rapid
mixing. Specifically, they proved that for any constant temperature, the Davis
generator L for any finite-range, translation-invariant 1D CLHs is rapid mixing.
This is proved by generalizing the classical technique of bounding the log-Sobolev
constant [GZ03; Hol85; HS89; Zeg90] to CLHs. Note that this generalization
is highly non-trivial since L is a quantum operator and analyzing its spectral gap
and log-Sobolev constant are complicated. Combining this bound with quantum
simulations of the Lindbladian, Bardet et.al. gives a quantum Gibbs sampler with
runtime

𝑝𝑜𝑙𝑦(log 𝑛) × 𝑓1,

where 𝑓1 is the overhead brought by simulating the Lindbladian evolution.

In contrast to [Bar+23], which obtained a rapidly mixing Gibbs sampler by de-
veloping sophisticated techniques to bound the log-Sobolev constant of the Davies
generator, our reduction gives a Gibbs sampler of similar performance by directly
using classical results

Lemma 44 (Informal version of Lemma 50) There is a Gibbs sampling reduction
from any finite-range, translation-invariant (TI) qudit 1D CLHs, to the finite-range,

63

TI 1D classical Hamiltonians. Combined with the rapid mixing Gibbs sampler
for finite-range, TI 1D classical Hamiltonian at any constant temperature [GZ03;
Hol85; HS89], we prepare the Gibbs state in time,

𝑝𝑜𝑙𝑦(log 𝑛) × 𝑓2 + O(𝑛).

Here 𝑓2 is the overhead incurred by simulating the classical Markov chain. O(𝑛)
is the time needed to prepare a constant depth quantum circuit arising from the
Structure Lemma which implements the quantum-to-classical reduction.

High and low temperature Gibbs state for 2-local CLHs on 2D. Recall that 𝛽 is
the inverse temperature, and thus low temperature corresponds to large 𝛽. We begin
with a literature review for classical Hamiltonians. Unlike 1D classical Hamilto-
nians where the Glauber dynamics is rapid mixing for any constant temperature,
2-local 2D classical Hamiltonians exhibit a constant-temperature computational
phase transition. For example, the ferromagnetic 2D Ising model has a constant
critical inverse temperature 𝛽𝑐, such that

• For 𝛽 < 𝛽𝑐 the Glauber Dynamics is poly-time mixing [MO94; MO94].

• For 𝛽 ≥ 𝛽𝑐, the Glauber dynamics meets a critical slow down where the
spectral gap of the Glauber Dynamics is smaller than exp(−𝛼

√
𝑛) for 𝛼 >

0 [CCS87; Ces+96; Sch87].

Similar results also hold for the Potts model [Ull12; GL16]. To understand this
phase transition intuitively, note that the Glauber dynamics is a Markov chain with
local update rules. Intuitively an algorithm using local updates is good at solving a
“local” problem. In the high temperature region, most spins will interact effectively
weakly thus the Gibbs state has little entanglement [Bak+24] and a local optimization
suffices. However, in the low temperature region, there are strong correlations in
large regions and thus the Gibbs state is highly non-local.3 Thus, to prepare low
temperature Gibbs state , one needs to carefully design Markov chains with non-local
update rules, such as the cluster updates in the Swendsen-Wang algorithm [SW87];
or uses other methods such as the Barvinok’s method [Bor+20].

3More precisely there is an equivalence between the mixing time and the spatial decay of
correlation in the Gibbs measure [Dye+04; Ces01; SZ92a; SZ92b]. In some classical literature,
decay of correlation is referred to as mixing condition [GZ03] or spatial mixing [Dye+04].

64

In the quantum case, to the best knowledge of the authors, all previous work on
Gibbs state preparation for 2D CLHs has focused on the high temperature region.
In particular,

• [KB16] showed that there is a constant 𝛽1 such that for 𝛽 ≤ 𝛽1 the Davies
generator is poly-time mixing.

• [CRF20] showed that there is a constant 𝛽2 such that for 𝛽 ≤ 𝛽2
4, the Schmidt

generator defined in [CRF20] is rapid mixing.

Both the Davies generator and the Schmidt generator for 2D CLHs with respect
to local jump operators are local Lindbladians. A simple adaption of the classical
proofs [CCS87; Ces+96; Sch87] will show that they are slow mixing for 2D systems
at low temperature. That is, there exists a constant 𝛽3 such that for 𝛽 ≥ 𝛽3,
the spectral gap of any 𝑂 (log 𝑛)-local Lindbladian (not necessarily the Davies
generator) which fixes the Gibbs state of 2D Ising model at inverse temperature 𝛽
has an exponentially-small spectral gap.

Our Gibbs sampler improves on the existing results in two main ways. First, in the
high temperature region our reduction again gives a way to directly utilize classical
results [Ces01] and obtain a Gibbs sampler of similar performance as the best prior
work [CRF20] (i.e., rapid mixing), without involving heavy proofs for analyzing the
log-Sobolev constant of the Schmidt generator like [CRF20].

Lemma 45 There is a Gibbs sampling reduction from any 2-local qudit 2D CLHs to
2-local qudit 2D classical Hamiltonians. Thus for high enough temperature where
there exists rapid mixing classical Gibbs samplers for the corresponding classical
Hamiltonians (e.g. from [Ces01] or Chapter 9 of [GZ03]), we can prepare the
Gibbs state for the 2D CLHs in time

𝑝𝑜𝑙𝑦(log 𝑛) × 𝑓2 + O(𝑛) ,

where 𝑓2 is the overhead incurred by simulating the classical Markov chain.

Our second contribution is in the low temperature regime. Unlike [KB16; CRF20]
which only work for the high temperature region, our reduction allows us to prepare
low-temperature Gibbs states by utilizing classical techniques such as the Swendsen-
Wang algorithm. To the best knowledge of the authors, prior work has not addressed

4We did not check whether 𝛽1, 𝛽2 and the later mentioned high temperatures are equal.

65

low-temperature Gibbs samplers for 2-local CLHs. As an example, with our reduc-
tion we can obtain the following result.

Lemma 46 (Informal version of Lemma 51) There is a Gibbs sampling reduction
from translation-invariant qubit (2-local) 2D CLHs to 2D Ising model with magnetic
fields. Then one can prepare the Gibbs state for the corresponding CLH at low
temperature in 𝑝𝑜𝑙𝑦(𝑛) time whenever there are poly-time mixing Gibbs sampler
for the corresponding Ising model at low temperature like [FGW23].

A key feature of our reduction is that it is agnostic to the underlying classical Gibbs
sampler. In the low temperature regime, when applied to qudit 2-local 2D CLHs
with large constant qudit dimension 𝑑, the Swendsen-Wang algorithm will also
mix slowly and have an exponentially-small spectral gap [Bor+99]. However, our
reduction allows us to substitute in other samplers, such as the Gibbs sampler for the
low temperature Potts model based on Barvinok’s method, which remains poly-time
for large 𝑑 [Bor+20].

4-local, 2D commuting Hamiltonian. The best prior work is due to [KB16],
who proved that for high enough temperature, the Davies generator is poly-time
mixing for 4-local 2D CLHs. Unlike their result, the mixing time of our algorithm
is dependent on the classical Hamiltonian produced by the reduction and thus our
results are not directly comparable.

For the standard Toric code, a concurrent work [Din+24] showed that for any inverse
temperature 𝛽 < +∞ (not necessarily constant), Lindbladian dynamics with nonlocal
jump operators prepares the Gibbs state efficiently (for very low temperature, the
mixing time is approximately O(𝑛4)). Our Gibbs sampler is based on different
techniques and gives a O(𝑛2)-time Gibbs state preparation algorithm for the general
defected Toric code at any non-zero temperature, where the defected Toric code is the
Toric code with arbitrary coefficients. Our Gibbs sampler is based on generalizing
the standard ground state preparation algorithm for the Toric code (which measures
all stabilizers) to the task of Gibbs state preparation via an oblivious randomized
correction technique. We will give a technical overview based on the example
of defected Toric code5 in Section 3.1 and 3.1. We remark that since our Gibbs
sampler is not based on Lindbladian, our results do not offer additional insights into
Lindbladian dynamics, unlike in [Din+24]. Another related work [GOL24] uses

5In fact, beyond the defected Toric code, our approach can also be applied to prepare the Gibbs
states of other error-correcting codes, such as the 4D Toric code.

66

classical Monte Carlo methods to simulate the Gibbs states of t-doped stabilizer
Hamiltonians, although without discussing convergence guarantees.

Besides the defected Toric code, our Theorem 43 also works for more general qubit
CLHs and can prepare the corresponding Gibbs state as long as there exists efficient
algorithm for the corresponding classical Gibbs sampling task.

In addition to the defected Toric code, Theorem 43 also works for more general
families of qubit CLHs and can prepare the corresponding Gibbs state as long as
there exists an efficient algorithm for the corresponding classical Gibbs sampling
task.

Technical overview
Recall that in Theorem 42, we construct a Gibbs sampling reduction from 2-local
qudit CLHs to 2-local qudit classical Hamiltonians,

Theorem 42 (Informal version of Theorem 49) There is a Gibbs sampling reduc-
tion from 2-local qudit commuting Hamiltonians to 2-local qudit classical Hamil-
tonians.

The proof is primarily based on the Structure Lemma [BV03; IJ23; AKV18; Sch11].
The Structure Lemma has been the principle tool in studying the complexity of CLHs
and, intuitively, says that one can transform a 2-local qudit CLH 𝐻 (2) to a 2-local
qudit classical Hamiltonian 𝐻 (2𝑐) via a constant depth quantum circuit C𝐻 . In other
words, there is a one-to-one correspondence between the computational basis of the
classical Hamiltonian 𝐻 (2𝑐) and the eigenstates of the quantum Hamiltonian 𝐻 (2) .
By this observation, there is a simple procedure to sample from the Gibbs state of
𝐻 (2) . Frst, we take a sample |𝜓⟩ from the Gibbs distribution of 𝐻 (2𝑐) (via a classical
Gibbs sampler). Then, applying a constant depth quantum circuit to |𝜓⟩ yields a
sample from the Gibbs distribution of 𝐻 (2) .

For Hamiltonians of higher locality, the exact correspondence present in the 2-local
case does not hold. Nonetheless, we show in Theorem 43 that we can extend our
techniques beyond 2-local Hamiltonians. We demonstrate a reduction from Gibbs
sampling of 4-local qubit CLHs in 2D to classical Gibbs sampling.

Theorem 43 (Informal version of Theorem 58 and 76) There is a Gibbs sam-
pling reduction from 4-local qubit 2D commuting local Hamiltonian 𝐻 to qudit
classical Hamiltonians. In particular,

67

• If there are no classical qubits with respect to terms in 𝐻, then the classical
Hamiltonian is a 2-local qudit classical Hamiltonian on a planar graph.

• When there are classical qubits but all quantum terms (terms far away from
classical qubits) are uniformly correctable, then the classical Hamiltonian is
a O(1)-local qudit classical Hamiltonian.

The case “without classical qubits” is the simpler setting. Still, even in this case,
we can no longer straightforwardly apply the Structure Lemma as is possible for
2-local Hamiltonians. This is not due to a deficiency in our techniques; rather,
4-local Hamiltonians can exhibit topological order [Kit03a] and there cannot be a
constant depth quantum circuit C𝐻 as in the previous theorem. However, we observe
that the eigenspace of qubit CLH is symmetric in some sense, and via an oblivious
randomized correction technique we can adapt an algorithm for preparing ground
state (as given in [AKV18]) to preparing a Gibbs state. In particular, [AKV18]
proves that any 2D qubit CLH without classical qubits is equivalent to a defected
Toric code permitting boundaries. That is, the “interior” terms look like Pauli X or
Pauli Z terms and terms on the “boundary” have more freedom. The presence of
boundaries makes it non-trivial to utilize this equivalence to design a Gibbs sampler
for general 2D qubit CLH. We will use the defected Toric code as an example to
explain our Gibbs sampler in Section 3.1.

When the initial Hamiltonian has classical qubits, the situation becomes more
complex, as the connection from [AKV18] between 2D qubit CLH and the Toric
code only applies when there are no classical qubits. This does not pose a problem
in [AKV18] as they simply want to verify ground energy, and an NP prover can
provide a recursive restriction of classical qubits consistent with some ground state.
This effectively removes all classical qubits and the resulting Hamiltonian can be
translated into a defected Toric code permitting boundaries.

In our case, we would like to recover the distribution over eigenstates, and thus we
cannot perform the same recursive restriction. Additionally, we need our reduction
to be efficient and should not depend on the power of an prover. We develop a
propagation lemma to characterize the limits of the recursive restriction. Combined
with an assumption that all fully quantum terms6 are uniformly correctable (see
Assumption 2), we will argue that the statement of [AKV18] can be modified to

6Intuitively, this is the set of terms which remains quantum under any recursive restriction of the
classical qubits; see Definition 75.

68

obtain a Gibbs sampling reduction from any 2D qubit CLH to a constant-locality
classical Hamiltonian.

𝑍𝑍
𝑍 𝑍

𝑋𝑋
𝑋 𝑋

(a) Partition the plaquettes
as Black B and W. Put
𝑍 terms on white plaquettes
and put 𝑋 terms on black
plaquettes then we get the
defected Toric code 𝐻𝐷𝑇 .

𝑝1

𝑝2 𝑝4

𝑝3

𝑢 𝑣

𝜏 𝑤

(b) Remove the white terms
on the odd lines, 𝐻𝐷𝑇 will
become 𝐻 (2)

𝐷𝑇
which can be

viewed as a qudit 2-local
CLH.

𝑝1

𝑝2 𝑝4

𝑝3

ℎ

(c) A correction operator
𝐿ℎ = 𝑋⊗3 (in red) for the
removed white term ℎ.

Figure 3.2: Illustration of Gibbs states preparation for the Toric code.

Extensions to more general 2D Hamiltonians For simplicity, the theorems above
are proved in the setting when the underlying Hamiltonian is placed on a 2𝐷 lattice.
However, in [AKV18] the authors consider a more general setting of Hamiltonians
on polygonal complexes. A straightforward generalization of our proofs works in
this setting as well.

Case study: the defected Toric code
To illustrate our Gibbs sampler for 2D qubit CLH, that is Theorem 43, we consider
the restricted setting of the defected Toric code. In the remainder of this section,
we assume that the inverse temperature is 𝛽 < +∞ (not necessarily a constant). We
will formally define the defected Toric code and first give a O(𝑛2)-time algorithm to
prepare its Gibbs states via an oblivious randomized correction idea. This algorithm
is specific to the defected Toric code. Then we describe a slightly different algorithm
which is not as fast as the first algorithm, but by using the tools from [AKV18] it
can be extended to prepare Gibbs state for general qubit 2D CLHs.

The defected Toric code 𝐻𝐷𝑇 is embedded on a 2D, 𝐿× 𝐿 square lattice, with qubits
placed on the vertices. Terms are grouped into “black” terms B and “white” terms
W, as in Figure 3.2a. Formally, we define

𝐻𝐷𝑇 =
∑︁
𝑝∈B

𝑐𝑝𝑋
𝑝 +

∑︁
𝑝∈W

𝑐𝑝𝑍
𝑝, (3.4)

69

where 𝑋 and 𝑍 are the standard Pauli 𝑋 and 𝑍 operators. For a given term 𝑝 acting
on qubits 𝑞1, . . . , 𝑞4, 𝑋 𝑝 denotes 𝑋𝑞1 ⊗ · · · ⊗ 𝑋𝑞4 (and same for 𝑍 𝑝). The coefficients
𝑐𝑝 can be any real number (whereas 𝑐𝑝 = −1 in the standard Toric code).

A O(𝑛2)-time algorithm for the defected Toric code.

First, we explain theO(𝑛2)-time algorithm to prepare the Gibbs states of the defected
Toric code. Let us temporarily assume that we have removed two white terms 𝑝1, 𝑝2

and two black terms 𝑝𝑎, 𝑝𝑏 in 𝐻𝐷𝑇 to obtain a new Hamiltonian 𝐻′
𝐷𝑇

with holes in
the lattice corresponding to the removed plaquettes 𝑆 := {𝑝1, 𝑝2, 𝑝𝑎, 𝑝𝑏}. For any
𝑝 ∉ 𝑆, there is a correction operator 𝐿𝑝 (realized as a tensor product of Pauli 𝑋 or
Pauli 𝑍’s), which anti-commutes with 𝑝 and commutes with all other terms not in
𝑆. To prepare the Gibbs states for the punctured Hamiltonian 𝐻′

𝐷𝑇
, we initialize

our state as the maximally mixed state, then sequentially measure and correct each
plaquette term 𝑝 in 𝐻′

𝐷𝑇
. That is, if we measure the plaquette operator 𝑝 and get

measurement outcome 𝜆 ∈ {+𝑐𝑝,−𝑐𝑝}, then we perform the following oblivious
randomized correction:

• With probability 𝑝𝑟𝑜𝑏 := exp(−𝛽𝜆)
exp(𝛽𝜆)+exp(−𝛽𝜆) we do nothing.

• With probability 1 − 𝑝𝑟𝑜𝑏 we apply the correction operation 𝐿𝑝.

The algorithm correctly prepares the Gibbs states of 𝐻′
𝐷𝑇

because 𝐿𝑝 bijectively
maps the eigenspace associated with measurement outcome +𝑐𝑝 to that of −𝑐𝑝 and
vice versa. A more detailed description of this procedure and proof of its correctness
can be found in Section 3.4. To obtain the Gibbs state for the defected Toric code,
one can perform a similar measure-and-correct operation on the current state but for
𝑝1, 𝑝2 simultaneously,7 followed by a symmetric correction for 𝑝𝑎, 𝑝𝑏.

We emphasize that the above algorithm does not work for zero temperature (when
𝛽 = +∞).8 Furthermore, the above process only performs the correction once for

7More specifically, there is a “string” correction operator 𝐿𝑝1 , 𝑝2 which anti-commutes with
𝑝1, 𝑝2 and commutes with any other terms. Then one does the following on the current state (1)
Measure the Gibbs states of 𝐻′

𝐷𝑇
with respect to commuting observables 𝑝1, 𝑝2 at the same time.

(2) Suppose the measurement outcome of 𝑝1, 𝑝2 is 𝜆1, 𝜆2. Define 𝜆 := 𝜆1 +𝜆2 and perform a similar
randomized correction by using 𝐿𝑝1 , 𝑝2 .

8Besides, we emphasize that this algorithm is unique to the defected Toric code. Even for ground
energy, other 2D CLH like the 2D Ising model with arbitrary coefficients is hard to compute, whereas
the ground energy (ground state) of the defected Toric code can be easily computed (prepared), as
explained in [AKV18, Appendix E].

70

each plaquette term, and thus should not be interpreted as an iterative, randomized
Accept/Reject process as done in the general Metropolis algorithm.

A generalizable algorithm

For general 2D qubit CLH (without classical qubits), not every plaquette term
has a correction operator; in fact, the presence of a correction operator qualitatively
characterizes the correctable interior terms and the non-correctable boundary terms.
The proof that the interior terms are correctable uses techniques from [AKV18],
and the exterior terms are handled by a reduction to classical Gibbs sampling. The
details are as below. For simplicity, we assume in this section that 𝐻𝐷𝑇 is embedded
on a plane rather than torus, and the initial boundary of the lattice naturally plays
the roles of the puncture terms 𝑆 in 𝐻𝐷𝑇 .

Reduction to Classical Hamiltonian As in [AKV18] the first step is to remove
enough terms such that the resulting Hamiltonian can be viewed as 2-local. In
the case of 𝐻𝐷𝑇 , we can simply remove alternating rows of white terms, as in
Figure 3.2b. Finally, grouping all qubits on a white term as a single 24-dimensional
qudit, we see that the white terms become 1-local and the black terms are all 2-local.
In Figure 3.2b, we group qubits 𝑢, 𝑣, 𝑤, 𝜏 to form the qudit 𝑝1. Similarly we form
the qudits 𝑝2, 𝑝3, 𝑝4. Then, the black term to the right of qudit 𝑝1 becomes 2-local,
acting on 𝑝1 and 𝑝3. Call this 2-local Hamiltonian 𝐻 (2)

𝐷𝑇
. The Structure Lemma

of [BV03] gives a way to transform 𝐻
(2)
𝐷𝑇

to a 2-local classical Hamiltonian. By
working out the details (see Section 3.6), it turns out that in this 2-local classical
Hamiltonian we obtain three distinct “types” of terms:

• ℎvert, 2-local terms corresponding to black terms acting on vertically arranged
white terms (e.g. between 𝑝1 and 𝑝2),

• ℎhoriz, 2-local terms corresponding to black terms acting on horizontally
arranged white terms (e.g. between 𝑝1 and 𝑝3), and

• ℎ𝑤, 1-local terms corresponding to the white terms.

The final classical Hamiltonian is then

𝐻
(2𝑐)
𝐷𝑇

=
∑︁

vertical𝑝𝑖 ,𝑝 𝑗

(ℎvert)𝑝𝑖 ,𝑝 𝑗 +
∑︁

horizontal𝑝𝑖 ,𝑝 𝑗

(ℎhoriz)𝑝𝑖 ,𝑝 𝑗 +
∑︁
𝑝

(ℎ𝑤)𝑝 .

71

Preparation of Quantum Gibbs State. So far, we’ve removed terms from 𝐻𝐷𝑇

to obtain 𝐻 (2)
𝐷𝑇

, then argued that we can view this as a classical Hamiltonian 𝐻 (2𝑐)
𝐷𝑇

.
Assume we are able to perform classical Gibbs sampling at a given temperature on
𝐻
(2𝑐)
𝐷𝑇

. To obtain a sampler for our original Hamiltonian, we need to reverse each
step of the reduction. First, since the transformation from 𝐻

(2)
𝐷𝑇

to 𝐻 (2𝑐)
𝐷𝑇

is via a
low-depth quantum circuit, we can easily obtain a Gibbs state of𝐻 (2)

𝐷𝑇
from the Gibbs

state on 𝐻 (2𝑐)
𝐷𝑇

. The primary challenge is to correct for the terms we have removed
to make 𝐻𝐷𝑇 2-local.

Suppose we want to correct for a remove white term 𝑝 ∈ W. We first measure the
current state 𝜓 with respect to the term 𝑝. If we only need to obtain some state with
the correct eigenvalues, whenever we obtain an incorrect outcome, we could simply
perform the correction operator 𝐿𝑝 depicted in Figure 3.2c. To obtain 𝐿𝑝, we find a
path from a corner of 𝑝 to the boundary of the lattice, and apply a Pauli 𝑋 on each
qubit along the path. However, this does not immediately work when we are trying
to sample from the Gibbs distribution.

Denote Π
𝑝
+𝑐𝑝 |𝜓⟩ be state if we get measurement outcome +𝑐𝑝 when measuring 𝑝.

Similarly for Π𝑝
−𝑐𝑝 |𝜓⟩. There are two challenges in preparing the Gibbs state. First,

we need to maintain the proper distribution over Π𝑝
+𝑐𝑝 |𝜓⟩ and Π

𝑝
−𝑐𝑝 |𝜓⟩. Second,

applying the correction 𝐿𝑝 after measuring Π
𝑝
+𝑐𝑝 may not yield Π

𝑝
−𝑐𝑝 |𝜓⟩, i.e.

𝐿𝑝Π
𝑝
+𝑐𝑝 |𝜙(𝒚)⟩ ̸∝ Π

𝑝
−𝑐𝑝 |𝜙(𝒚)⟩ . (3.5)

Nonetheless, we show that this can be done via an oblivious randomized correction
technique. That is, based on the measurement outcome, we apply the correction
operation 𝐿𝑝 with some probability 𝜇. At a high level, the correctness of the idea
comes from the symmetry of the eigenspace; despite Equation (3.5), we do have
that

𝐿𝑝Π
𝑝
+𝑐𝑝Π𝜆(𝜓)Π

𝑝
+𝑐𝑝𝐿𝑝 = Π

𝑝
−𝑐𝑝Π𝜆(𝜓)Π

𝑝
−𝑐𝑝

where Π𝜆(𝜓) is an eigenspace of the non-removed operators corresponding to |𝜓⟩.
We will leverage this fact by applying a correction uniformly across this eigenspace,
and the correction probability 𝜇 will depend only Π𝜆(𝜓) rather than |𝜓⟩ itself.

Conclusion and future work
In this manuscript, we give a reduction from Gibbs state preparation for various
families of CLHs to the task of Gibbs sampling for classical Hamiltonians. In
particular, based on the Structure Lemma we show that there is a Gibbs sampling

72

reduction from 2-local qudit CLHs to 2-local qudit classical Hamiltonians. Based
on the symmetry in qubit CLH and the idea of oblivious randomized correction
we give a Gibbs sampling reduction from various 2D qubit CLH to qudit classical
Hamiltonians. This approach yields a Gibbs sampler based on techniques very
different than those traditionally used, such as analyzing the Davies generator.
We also demonstrate that combined with existing fast mixing results for classical
Hamiltonians, our Gibbs sampler matches the performance of state-of-the-art results
in [CRF20; Bar+23; KB16].

A natural direction to explore is whether our reduction can be generalized to other
CLHs, especially those for which the complexity of proving ground energy is in NP,
such as the factorized qudit CLH on 2D lattice [IJ23], the factorized CLH on any
geometry [BV03] and the qutrit CLH on 2D [IJ23].

Our work also gives an interesting characterization for the complexity of quantum
approximate counting for specific CLHs. It is well-known that classical approx-
imate counting is in BPPNP [Sto83]. Due to the connection between quantum
approximate counting and the Gibbs state preparation [Bra+21], our work shows
that quantum approximate counting for various CLHs is contained in the complexity
class BQPCS, where CS is an oracle which can perform arbitrary classical Gibbs
sampling. It would be interesting to explore whether there exist other families of
quantum Hamiltonians where one can also upper bound the complexity of quantum
approximate counting by BQPO for some oracle O which is weaker than quantum
approximate counting.

3.2 Preliminary
Notation
For two operators ℎ and ℎ′, we use [ℎ, ℎ′] to denote the commutator ℎℎ′ − ℎ′ℎ. We
say that ℎ and ℎ′ commutes if [ℎ, ℎ′] = 0. Given two 𝑛-qubit quantum states 𝜌
and 𝜎, we use ∥𝜌 − 𝜎∥1 := 1

2 tr(|𝜌 − 𝜎 |) to denote their trace distance. Given two
probability distributionsD1 andD2 over {0, 1}𝑛, we use ∥D1 −D2∥1 to denote the
total variation distance, that is ∥D1 − D2∥1 = 1

2
∑
𝑥∈{0,1}𝑛 |D1(𝑥) − D2(𝑥) |, where

D𝑖 (𝑥) is the probability of sampling 𝑥 in distributionD𝑖. Given a graph𝐺 = (𝑉, 𝐸),
for any vertex 𝑣 ∈ 𝑉 , we use 𝑁 (𝑣) to denote the set of vertices which are adjacent to 𝑣
(excluding 𝑣). For 𝑣, 𝑤 ∈ 𝑉 , we use {𝑣, 𝑤} and ⟨𝑣, 𝑤⟩ for unordered set and ordered
set respectively. For a positive integer 𝑚 ∈ N, we use [𝑚] to denote {1, 2..., 𝑚}.

73

Formal problem definitions
𝑘-local Hamiltonians. We say an 𝑛-qudit Hermitian operator 𝐻 is a 𝑘-local Hamil-
tonian, if 𝐻 =

∑𝑚
𝑖=1 ℎ𝑖 for 𝑚 = 𝑝𝑜𝑙𝑦(𝑛), and each ℎ𝑖 only acts non-trivially on at

most 𝑘 qudits. We allow different qudits to have different dimensions.

For the special case of 𝑘 = 2, one can define 𝐻 via a graph 𝐺 = (𝑉, 𝐸). That is, on
each vertex there is a qudit, and on each edge {𝑣, 𝑤} there is a Hermitian term ℎ𝑣𝑤,
such that

𝐻𝐺 =
∑︁
{𝑣,𝑤}∈𝐸

ℎ𝑣𝑤 .

𝑞

𝑃

(a) 2D Hamiltonian

𝑋𝑋

𝑋𝑋

𝑍𝑍

𝑍𝑍

𝑋𝑋

𝑋𝑋

𝑍𝑍

𝑍𝑍

𝑋𝑋

𝑋𝑋

𝑍𝑍

𝑍𝑍

𝑋𝑋

𝑋𝑋

𝑍𝑍

𝑍𝑍

𝑋𝑋

𝑋𝑋

(b) Toric code

𝑍
𝑍

(c) 2D Ising Model

Figure 3.3: Examples of 𝑘-local Hamiltonians

2D Hamiltonians. Consider a 2D lattice 𝐺 = (𝑉, 𝐸) as in Figure 3.3a, where
qudits are placed on vertices. As above, we can define a 2-local Hamiltonian on
𝐺 via 𝐻𝐺 =

∑
{𝑣,𝑤}∈𝐸 ℎ

𝑣,𝑤. We can also define a 4-local Hamiltonian over the 2D
lattice by associating a Hermitian term to each plaquette 𝑃. We use 𝑣 ∈ 𝑃 to denote
that vertex 𝑣 is in the plaquette 𝑃. With some abuse of notations, we also use 𝑣
and 𝑃 to denote the corresponding qubit and the Hermitian term. The 2D, 4-local
Hamiltonian on the lattice is given by

𝐻 =
∑︁
𝑃

𝑃 .

For many of the proofs in this work, it will useful to partition the plaquette terms
{𝑃}𝑃 into a set of “black” terms B and “white” termsW by viewing the 2D lattice
as a chess board, as in Figure 3.3a.

There is another natural notion of a 2D local Hamiltonian where the qudits are placed
on the edges and Hermitian terms are corresponding to plaquettes and stars; this is
the version which is primarily considered in [AKV18]. However, the two settings
(where qudits are on vertices or are on edges) are equivalent when the underlying
graph is the 2D square lattice (See Appendix C in [IJ23]).

74

Commuting and classical Hamiltonians. We say a 𝑘-local Hamiltonian 𝐻 =∑𝑚
𝑖=1 ℎ𝑖 is a commuting local Hamiltonian (CLH) if [ℎ𝑖, ℎ 𝑗] = 0,∀𝑖, 𝑗 . Whenever

we have a Hamiltonian 𝐻 =
∑
𝑃 𝑃 defined over the plaquettes of a 2D lattice, we

have [𝑝, 𝑝′] = 0 ∀𝑝, 𝑝′. We say a 𝑘-local Hamiltonian 𝐻 =
∑𝑚
𝑖=1 ℎ𝑖 is classical, if

each ℎ𝑖 is diagonalized in the computational basis.

Defected Toric code and 2D Ising model. Here we give two examples of qubit
CLHs on 2D. For a vertex 𝑣 in plaquette 𝑝, we use 𝑍 𝑝𝑣 , 𝑋

𝑝
𝑣 to denote the Pauli Z and

Pauli X operator on the qubit 𝑣. When 𝑣 uniquely identifies a vertex we abbreviate
𝑍
𝑝
𝑣 as 𝑍𝑣 and similarly for other Pauli operators. For a plaquette term 𝑝, we define
𝑍 𝑝 := ⊗𝑣∈𝑝𝑍𝑣 and 𝑋 𝑝 similarly.

As shown in Figure 3.3b, the defected Toric code is defined as

𝐻 =
∑︁
𝑝∈W

𝑐𝑝𝑍
𝑝 +

∑︁
𝑝∈B

𝑐𝑝𝑋
𝑝,

where 𝑐𝑝 ∈ R can be arbitrary. The standard Toric code is a special case when all
𝑐𝑝 = −1.

Denote the 2D lattice as 𝐺 = (𝑉, 𝐸). As in Figure 3.3c, the ferromagnetic 2D Ising
model is a 2-local Hamiltonian

𝐻 =
∑︁
{𝑢,𝑣}∈𝐸

𝑍𝑢 ⊗ 𝑍𝑣 .

The 2D Ising model is a classical Hamiltonian whose eigenstates are all computa-
tional basis. The defected Toric code is not a classical Hamiltonian. The ground
state of the standard Toric code is highly entangled and cannot be prepared by any
constant depth quantum circuit.

Gibbs state preparation. Given a 𝑘-local Hamiltonian 𝐻 =
∑
𝑖 ℎ𝑖, an inverse

temperature 𝛽 < +∞, the Gibbs state with respect to (𝐻, 𝛽) is defined as

𝜌(𝐻, 𝛽) = 1
tr(exp(−𝛽𝐻)) exp(−𝛽𝐻). (3.6)

Given 𝜖 > 0, we say an algorithm A prepares 𝜌(𝐻, 𝛽) within precision 𝜖 , if A
outputs a state 𝜌 such that

∥𝜌 − 𝜌(𝐻, 𝛽)∥1 ≤ 𝜖 . (3.7)

75

When 𝐻 is classical, the classical Gibbs distribution with respect to (𝐻, 𝛽) is
denoted as D𝛽𝐻 , which samples a classical string 𝑥 ∈ {0, 1}𝑛 with probability
exp(−𝛽⟨𝑥 |𝐻 |𝑥⟩)/tr(exp(−𝛽𝐻)). We say an algorithm A performs classical Gibbs
sampling D𝛽𝐻 with precision 𝜖 , if A outputs a distribution D such that

∥D − D𝛽𝐻 ∥1 ≤ 𝜖 . (3.8)

Note that Eq. (3.8) is equivalent to Eq. (3.7) when 𝜌 and 𝜌(𝐻, 𝛽) are diagonal
matrices.

3.3 Reduction for 2-local qudit CLHs
In this section, we prepare the Gibbs state for qudit 2-local CLHs. In particular, in
Section 3.3 we will prove the Gibbs sampling reduction for general 2-local qudit
CLHs in Theorem 49. Then in Section 3.3 we will give several examples, whose
proofs are put into Appendix 3.7.

General case
Recall that a 2-local CLHs 𝐻 (2)

𝐺
is defined on a graph 𝐺 = (𝑉, 𝐸), where

𝐻
(2)
𝐺

=
∑︁
{𝑣,𝑤}∈𝐸

ℎ𝑣𝑤 .

Here {ℎ𝑣𝑤}{𝑣,𝑤}∈𝐸 are Hermitian terms and commute with each other. The super-
script (2) is to emphasize that the Hamiltonian is 2-local. In this section, we assume
on each vertex there is a qudit rather than a qubit, and we allow 𝐺 to be an arbitrary
graph rather than just a 2D lattice.

The Gibbs sampling reduction for 2-local CLHs comes from the Structure Lemma,
which was originally developed by [BV03] to study the computational complexity
of commuting Hamiltonians. A constructive proof of the Structure Lemma can be
found in Section 7.3 of [Gha+15]. Intuitively, the Structure Lemma says that one
can decouple all commuting 2-local terms. This will allow us to identify eigenstates
of a 2-local CLH 𝐻

(2)
𝐺

with the computational basis of a classical Hamiltonian 𝐻 (2𝑐)
𝐺

defined later. In addition, each such eigenstate can be prepared by a constant depth
quantum circuit. Thus, to prepare the Gibbs state of 𝐻 (2)

𝐺
, it suffices to first do

classical Gibbs sampling for 𝐻 (2𝑐)
𝐺

, yielding a distribution over computational bassi
states, then prepare the corresponding eigenstate of 𝐻 (2)

𝐺
indexed by a sampled basis

state via a constant depth quantum circuit.

We first give the formal statement of the Structure Lemma.

76

Lemma 47 (Rephrasing of the Structure Lemma [BV03]) Consider a vertex 𝑣 ∈
𝑉 and denote the Hilbert space of the qudit on 𝑣 as H 𝑣. Consider the commuting
Hermitian terms {ℎ𝑣𝑤}𝑤∈𝑁 (𝑣) . There exists a direct sum decomposition ofH 𝑣,

H 𝑣 =

𝐽𝑣⊕
𝑗𝑣=1
H 𝑣
𝑗𝑣
, (3.9)

such that∀ 𝑗𝑣, all terms {ℎ𝑣𝑤}𝑤∈𝑁 (𝑣) keeps the subspaceH 𝑣
𝑗𝑣

invariant. Furthermore,
eachH 𝑣

𝑗𝑣
has a tensor product factorization:

H 𝑣
𝑗𝑣
=

⊗
𝑤∈𝑁 (𝑣)

H ⟨𝑣,𝑤⟩
𝑗𝑣

, (3.10)

such that for all neighbors 𝑤 ∈ 𝑁 (𝑣), the term ℎ𝑣𝑤 | 𝑗𝑣 (the restriction of ℎ𝑣𝑤 onto
H 𝑣
𝑗𝑣

) acts non-trivially only onH ⟨𝑣,𝑤⟩
𝑗𝑣

, i.e.

ℎ𝑣𝑤 | 𝑗𝑣 ⊆
©«

⊗
𝑢∈𝑁 (𝑣)/{𝑤}

I
(
H ⟨𝑣,𝑢⟩
𝑗𝑣

)ª®¬ ⊗ L
(
H ⟨𝑣,𝑤⟩
𝑗𝑣
⊗ H𝑤

)
, (3.11)

where I(H) is the identity operator on spaceH , and L(H) is the set of all linear
operators onH .

The Structure Lemma can be understood via Figure 3.4. We can understand Equa-
tion (3.10) as the following: by choosing a proper local basis for the Hilbert space
H 𝑣
𝑗𝑣

, it is equivalent to the Hilbert space of |𝑁 (𝑣) | distinct new qudits.

If for every qudit 𝑣, one applies Lemma 47 and chooses an index 𝑗𝑣 ∈ [𝐽𝑣] and
corresponding subspace H 𝑣

𝑗𝑣
, this will decouple all terms in 𝐻𝐺 . Each term ℎ𝑣𝑤

restricted to the subspacesH 𝑣
𝑗𝑣
⊗ H 𝑣

𝑗𝑤
will act on distinct qudits and

ℎ𝑣𝑤 ∈ L
(
H ⟨𝑣,𝑤⟩
𝑗𝑣
⊗ H ⟨𝑤,𝑣⟩

𝑗𝑤

)
.

To define the corresponding classical Hamiltonian 𝐻 (2𝑐)
𝐺

, we use the indices { 𝑗𝑣}𝑣∈𝑉
to index the eigenstates of 𝐻 (2)

𝐺
. Denote

ℎ𝑣𝑤 | 𝑗𝑣 𝑗𝑤 := restriction of ℎ𝑣𝑤 ontoH ⟨𝑣,𝑤⟩
𝑗𝑣
⊗ H ⟨𝑤,𝑣⟩

𝑗𝑤
.

Note that eigenstates of ℎ𝑣𝑤 | 𝑗𝑣 𝑗𝑤 might not be computational basis states (and
in particular could be entangled). Nonetheless, we have shown that under the
restriction corresponding to { 𝑗𝑣}𝑣∈𝑉 , all terms ℎ𝑣𝑤 | 𝑗𝑣 , 𝑗𝑤 act on distinct qudits and

77

𝑣

𝑗𝑣

𝑤

𝑗𝑤

H ⟨𝑣,𝑤⟩
𝑗𝑣

𝑏
⟨𝑣,𝑤⟩
𝑗𝑣

H ⟨𝑤,𝑣⟩
𝑗𝑤

𝑏
⟨𝑤,𝑣⟩
𝑗𝑤

Figure 3.4: Illustration of decoupling the commuting terms. The figure contains
two vertex 𝑣 (on the left) and 𝑤 (on the right). The Structure Lemma says that
after choosing subspace 𝑗𝑣 for H 𝑣 and 𝑗𝑤 for H𝑤 , all terms are decoupled, that
is they act on different qudits. More specifically, the qudits on 𝑣 (the big ◦) can
be interpreted as the tensor product of several qudits of smaller dimension (the
small •). Similarly for the qudit on 𝑤. The term ℎ𝑣𝑤 only acts on the qudits
correspond to {𝑣, 𝑤}, that is H ⟨𝑣,𝑤⟩

𝑗𝑣
and H ⟨𝑤,𝑣⟩

𝑗𝑤
, which are associated with edge

{𝑣, 𝑤} and are not touched by any other terms. 𝑏⟨𝑣,𝑤⟩
𝑗𝑣

and 𝑏⟨𝑤,𝑣⟩
𝑗𝑤

are notations for
the computational basis states forH ⟨𝑣,𝑤⟩

𝑗𝑣
andH ⟨𝑤,𝑣⟩

𝑗𝑤
respectively.

we can use the computational basis to index the eigenstates. As shown in Figure 3.4,
let 𝐷 ⟨𝑣,𝑤⟩

𝑗𝑣
:= dim(H ⟨𝑣,𝑤⟩

𝑗𝑣
) and write the basis of each subspace H ⟨𝑣,𝑤⟩

𝑗𝑣
as

���𝑏⟨𝑣,𝑤⟩𝑗𝑣

〉
where 𝑏⟨𝑣,𝑤⟩

𝑗𝑣
ranges over [𝐷 ⟨𝑣,𝑤⟩

𝑗𝑣
]. Then

⊗
𝑤∈𝑁 (𝑣)

���𝑏⟨𝑣,𝑤⟩𝑗𝑣

〉
is a computational basis

state of H 𝑣
𝑗𝑣

. For each edge {𝑣, 𝑤} ∈ 𝐸 , the term ℎ𝑣𝑤 | 𝑗𝑣 𝑗𝑤 is Hermitian and thus

can be diagonalized; the computational basis states
���𝒃𝑣𝑤𝑗𝑣 𝑗𝑤 〉 are used to index the

eigenstates. Thus, a basis for the full eigenspace of ℎ𝑣,𝑤 | 𝑗𝑣 , 𝑗𝑤 is given by���𝒃𝑣𝑤𝑗𝑣 𝑗𝑤 〉 :=
���𝑏⟨𝑣,𝑤⟩𝑗𝑣

, 𝑏
⟨𝑤,𝑣⟩
𝑗𝑤

〉
, 𝒃𝑣,𝑤

𝑗𝑣 𝑗𝑤
∈ [𝐷 ⟨𝑣,𝑤⟩

𝑗𝑣
× 𝐷 ⟨𝑤,𝑣⟩

𝑗 ,𝑤
] . (3.12)

Given an index 𝒃𝑣,𝑤
𝑗𝑣 𝑗𝑤

, the corresponding eigenstate is denoted 𝜓(𝒃𝑣𝑤𝑗𝑣 𝑗𝑤) and the
eigenvalue 𝜆(𝒃𝑣𝑤𝑗𝑣 𝑗𝑤). The classical Hamiltonian is defined by substituting the eigen-
state with its index, that is

𝐻
(2𝑐)
𝐺

:=
∑︁
{𝑣,𝑤}∈𝐸

∑︁
𝑗𝑣 , 𝑗𝑤

∑︁
𝒃𝑣𝑤𝑗𝑣 𝑗𝑤

𝜆(𝒃𝑣𝑤𝑗𝑣 𝑗𝑤)
���𝒃𝑣𝑤𝑗𝑣 𝑗𝑤 〉 〈

𝒃𝑣𝑤𝑗𝑣 𝑗𝑤

��� . (3.13)

Following the usual convention, each term in the summand is implicitly padded with
identities as necessary.

In this way, the eigenstates of 𝐻 (2𝑐)
𝐺

are given by specifying an index 𝑗𝑣 for each
vertex 𝑣 ∈ 𝑉 , then a basis state 𝑏⟨𝑣,𝑤⟩

𝑗𝑣 𝑗𝑤
for each of the decoupled Hilbert spaces

78

H ⟨𝑣,𝑤⟩
𝑗𝑣
⊗ H ⟨𝑤,𝑣⟩

𝑗𝑤

𝒋 := { 𝑗𝑣}𝑣, (3.14)

𝒃 𝒋 := {𝑏⟨𝑣,𝑤⟩𝒋𝑣 , 𝒋𝑤
}⟨𝑣,𝑤⟩ . (3.15)

Thus, by construction, we have the following.

Lemma 48 𝐻
(2𝑐)
𝐺

is 2-local classical Hamiltonian on the graph 𝐺.

We can also easily map eigenstates of 𝐻 (2𝑐)
𝐺

to eigenstates of 𝐻 (2)
𝐺

via

𝜆(𝒃 𝒋) :=
∑︁
{𝑣,𝑤}∈𝐸

𝜆(𝒃𝑣𝑤𝑗𝑣 𝑗𝑤) (3.16)��𝜓(𝒃 𝒋)
〉

:=
⊗
{𝑣,𝑤}∈𝐸

���𝜓(𝒃𝑣𝑤𝑗𝑣 𝑗𝑤)〉 , (3.17)

and any classical Gibbs sampling procedure for 𝐻 (2𝑐)
𝐺

yields a Gibbs sampler for
𝐻
(2)
𝐺

.

Theorem 49 For any inverse temperature 𝛽, if one can do classical Gibbs sampling
w.r.t

(
𝐻
(2𝑐)
𝐺

, 𝛽

)
within precision 𝜖 in classical time 𝑇 , then one can prepare the

quantum Gibbs state w.r.t.
(
𝐻
(2)
𝐺
, 𝛽

)
within precision 𝜖 in quantum time 𝑇 + O(𝑚),

where 𝑚 is the the number of edges in graph 𝐺, by firstly using the classical Gibbs
sampling w.r.t.

(
𝐻
(2𝑐)
𝐺

, 𝛽

)
to sample the index 𝒃 𝒋 , then prepare the product state��𝜓(𝒃 𝒋)

〉
in time O(𝑚).

Proof: It suffices to notice that by construction, 𝒃 𝒋 indexes the eigenvector of 𝐻 (2)
𝐺

of eigenvalue 𝜆(𝒃 𝒋), that is
��𝜓(𝒃 𝒋)

〉
.

Examples
In this section, we write down the Gibbs sampling reduction for some specific
Hamiltonians as illustrative examples. All the proofs are deferred to Section 3.7.

We first consider an 𝑛-qudit Hamiltonian on a 1D chain

𝐻 =
∑︁
𝑖

ℎ𝑖, (3.18)

we say that 𝐻 is 𝑟-range if ℎ𝑖 only acts non-trivially on qudits 𝑖, 𝑖 + 1, .., 𝑖 + 𝑟 − 1.
For simplicity we assume 𝑛 is an integer multiple of 𝑟 and the qudit dimension

79

𝑑 is a power of 2. We say that 𝐻 is finite-range if 𝑟 is a constant, and 𝐻 is
translation-invariant if all the terms ℎ𝑖 are the same.

By coarse-graining 𝐻, we can always assume 𝐻 is 2-local: group each consecutive
set of 𝑟 qudits as a new qudit so that each ℎ𝑖 acts non-trivially on at most two
(grouped) qudits. For each pair of new qudits { 𝑗 , 𝑗 + 1}, we associate the new term
𝐻 𝑗 , 𝑗+1, which is a sum of all terms from 𝐻 acting on the corresponding qudits. Thus
𝐻 can be viewed as a 2-local qudit Hamiltonian on 1D written as 𝐻 =

∑
𝑗 𝐻 𝑗 , 𝑗+1.

Note the terms 𝐻 𝑗 , 𝑗+1 can also be made translation-invariant.

Lemma 50 Consider a finite-range translation-invariant qudit CLH on 1D chain,
denoted as 𝐻1𝐷 . Then the corresponding classical Hamiltonian 𝐻 (𝑐)1𝐷 can be made
as 1D finite-range translation-invariant Ising model.

Combined with the rapid mixing Gibbs sampler for 1D finite-range, translation-
invariant Ising model for any constant inverse temperature 𝛽 [GZ03; Hol85; HS89]
which performs classical Gibbs sampling to precision 𝜖 in time 𝑇 (𝛽, 𝜖), Theorem 49
implies that one can prepare the Gibbs state on (𝐻1𝐷 , 𝛽) to precision 𝜖 in quantum
time 𝑇 (𝛽, 𝜖) + O(𝑛).

We also give another example of a Hamiltonian on a 2D lattice. Recall our first
definition of a 2-local Hamiltonian on 2D (see Section 3.2)

𝐻2𝐷 =
∑︁
{𝑣,𝑤}∈𝐸

ℎ𝑣𝑤 .

As usual, 𝐻2𝐷 is translation-invariant if all terms ℎ𝑣𝑤 are the same. We say that
a 2D lattice has periodic boundary condition if it can be embedded onto torus; we
will assume a periodic boundary for simplicity.

Lemma 51 Consider a translation-invariant, 2-local 2-dimensional qubit CLH
𝐻2𝐷 =

∑
{𝑣,𝑤}∈𝐸 ℎ

𝑣𝑤 with a periodic boundary condition. Then the classical Hamil-
tonian 𝐻 (𝑐)2𝐷 can viewed as a 2D Ising model under a magnetic field.

Set the precision to be 1/𝑝𝑜𝑙𝑦(𝑛). If the corresponding 2D Ising model 𝐻 (𝑐)2𝐷
is ferromagnetic with a consistent field, then there exists poly-time mixing Gibbs
sampler using the Swendsen-Wang dynamics for any constant temperature (as in
[FGW23]). Via our quantum-to-classical Gibbs sampling reduction, we can prepare
the Gibbs state for the corresponding CLH 𝐻2𝐷 in quantum polynomial time.

80

3.4 Reduction for 2D 4-local qubit CLH without classical qubits
In this section we describe how to prepare the Gibbs state of 2D qubit CLHs. In
Section 3.4 we first review the canonical form of the 2D qubit CLH as developed in
[AKV18], who establishes a connection between 2D qubit CLHs and the defected
Toric code. Based on this connection and an observation on the symmetry of the
ground space, we use an oblivious randomized correction technique to generalize the
Gibbs state preparation algorithm for the defected Toric code presented in Section 3.1
to prepare the Gibbs state for the more general family of 2D qubit CLHs without
classical qubits.9

A canonical form
This section is primarily a review of the results in [AKV18]. In that work, the
authors prove that 2D qubit CLH10 without classical qubits (which we will define
shortly) is in some sense equivalent to the defected Toric code. [AKV18] used this
connection to show that one can prepare the ground state of 2D qubit CLHs similar
to the way ground states of the defected Toric code are prepared; this is via the
measure and correct approach mentioned in Section 3.1.

We summarize necessary definitions and theorems which will be used in later
sections. Recall that a 2D qubit CLH is defined as 𝐻 =

∑
𝑝∈𝑃 𝑝, where 𝑃 is the set

of plaquettes of the lattice.

Definition 52 (Boundary and interior) A qubit is in the boundary of the Hamilto-
nian, if it is acted trivially by at least one of the four adjacent plaquette terms. All
other qubits are said to be in the interior. A plaquette term 𝑝 which acts only on
interior qubits is said to be in the interior of the Hamiltonian.

Definition 53 (Classical qubit) A qubit is classical if its Hilbert space can be de-
composed into a direct sum of 1-dimensional subspace, which are invariant under
all terms {𝑝}𝑝∈𝑃. We say that there is no classical qubit if and onlf if all qubits in
the system are not classical.

In other words a qubit 𝑞 is classical if under some basis for the qubit, all terms look
like |0⟩⟨0|𝑞 ⊗ ... + |1⟩ 1𝑞 ⊗

9The formal definition of classical qubits is given in Definition 53.
10The definition of a “2D qubit CLH” in [AKV18] is slightly different; qubits are put on the

edges of 2D lattice while we put qubits on the vertices. However, the two settings are equivalent, as
explained in Appendix C of [IJ23].

81

Definition 54 (Access to boundary) We say that a plaquette term 𝑝 has access to
the boundary if there exists a path (a sequence of adjacent vertices) 𝛾𝑝 starting from
a vertex of 𝑝 and ending at a vertex correspoding to a boundary qubit. Morever,
there should be some choice of local unitary𝑈𝑣 on each vertex of the path such that
the operator

𝐿𝑝 := ⊗𝑣∈𝛾𝑝𝑈𝑣𝑋𝑣𝑈†𝑣
anti-commutes with 𝑝, and commute with all other terms. Note that by construction,
𝐿2
𝑝 = 𝐼.

Lemma 55 (Interior term) Suppose there is no classical qubit, and a term 𝑝 is in
the interior of the Hamiltonian. Then by choosing a proper basis for each qubit, we
have

𝑝 = 𝑎𝑝I + 𝑐𝑝𝑍 𝑝, (3.19)

with 𝑎𝑝, 𝑐𝑝 ∈ R, 𝑐𝑝 ≠ 0. Note that replacing 𝑝 with 𝑝 − 𝑎𝑝I does not change the
Gibbs state and thus we may assume 𝑎𝑝 = 0.

Even when all terms are in the interior, Lemma 55 does not imply all the terms
should be a tensor product of Pauli 𝑍 . To be written in the form of Eq. (3.19),
adjacent plaquettes may need different choices of basis. An example is the Toric
code, where plaquettes are alternate 𝑋⊗4 and 𝑍⊗4.

Recall the chessboard partition of the 2D lattice into black plaquettes B and white
plaquettesW.

Lemma 56 (Rephrased from Theorem 5.3 and Lemma 6.2 [AKV18]) Consider
a 2D qubit CLH 𝐻 =

∑
𝑝∈𝑃 𝑝. Suppose there are no classical qubits. Then,

(i) If the set of boundary qubits is not empty, then for any adjacent plaquette
terms 𝑝 ∈ B, 𝑝 ∈ W such that 𝑝 and 𝑝 are both in the interior, either 𝑝 or 𝑝
has access to the boundary.

(ii) If there are no boundary qubits, then 𝐻 is equivalent to the defected Toric
code: by a choosing proper basis for each qubit, we have ∀𝑝 ∈ B, 𝑝 is of the
form 𝑎𝑝I + 𝑐𝑝𝑋 𝑝 and ∀𝑝 ∈ W, 𝑝 is of form 𝑎𝑝I + 𝑐𝑝𝑍 𝑝.

In [AKV18] the authors use Lemma 56 to reduce the task of preparing the ground
state of any (4-local) 2D qubit CLH to the task of preparing the ground state of a
2-local qudit CLH. This reduction is characterized by the following Corollary.

82

Corollary 57 ([AKV18]) Consider a 2D qubit CLH 𝐻 =
∑
𝑝∈𝑃 𝑝. Suppose there

are no classical qubits, and the set of boundary qubits is not empty. Then there
exists a partition of all the terms {𝑝}𝑝 as P (punctured terms) and R (terms with
access to the boundary) such that,

(1) After grouping some qubits into qudits, 𝐻P :=
∑
𝑝∈P 𝑝 can be viewed as a

2-local qudit CLH on a constant-degree planar graph 𝐺 = (𝑉, 𝐸). When
viewed as a 2-local Hamiltonian, we also write 𝐻P as 𝐻 (2)

𝐺
=

∑
{𝑣,𝑤}∈𝐸 ℎ

𝑣𝑤 .

(2) All terms in R are in the interior of the Hamiltonian and have access to the
boundary.

For instance, in Figure 3.2 from the technical overview, P is the set of all black terms
B and non-removed white terms O. Then, 𝐻P is exactly the 2-local Hamiltonian
𝐻
(2)
𝐷𝑇

.

Reduction to a classical Hamiltonian
In this section, we describe how to reduce the task of Gibbs state preparation for
qubit CLH without classical qubits to the task of classical Gibbs sampling. An
explicit and canonical example is the Gibbs state preparation for the defected Toric
code, which is described in Section 3.6. For general qubit CLHs without classical
qubits, our result is summarized in the following theorem.

Theorem 58 Given an 2D 𝑛-qubit CLH𝐻 =
∑
𝑝∈𝑃 𝑝, suppose there are no classical

qubits, and the set of boundary qubits is not empty. Let P, R, 𝐻P :=
∑
𝑝∈P 𝑝 and

𝐻
(2)
𝐺

be as defined in Corollary 57.

Let 𝐻 (2𝑐)
𝐺

be the 2-local classical Hamiltonian derived from 𝐻
(2)
𝐺

as in Section 3.3.
Then for any inverse temperature 𝛽 and precision 𝜖 , if one can perform classical
Gibbs sampling on (𝐻 (2𝑐)

𝐺
, 𝛽) to precision 𝜖 in classical time𝑇 , then one can prepare

the Gibbs state on (𝐻, 𝛽) on a quantum computer in time 𝑇 + O(𝑛2).

On the other hand, if the set of boundary qubits is empty, then by Lemma 56 item
(ii) the Hamiltonian is equivalent to the defected Toric code and the Gibbs state can
be prepared as described in Section 3.1.

We begin with some notation. Recall that the set of all plaquette terms 𝑃 is partition
into black and white terms, i.e. 𝑃 = B ∪W. In Corollary 57 we defined R as the
set of terms which have access to the boundary. Let 𝑄 ⊆ B ∪W be an arbitrary

83

subset of the plaquette terms. We write R \𝑄 as the set difference of R and 𝑄. For
𝑝 ∈ R define the correction operator 𝐿𝑝 as in Definition 54.

Define 𝝀𝑄 := {𝜆𝑝}𝑝∈𝑄 to be a set of real values, where each 𝜆𝑝 coresponds to an
eigenvalue of 𝑝 ∈ 𝑄. Let 𝜆(𝑄) :=

∑
𝑝∈𝑄 𝜆𝑝. Recall that all plaquette terms are

commuting. Thus, the terms are simulataneously diagonalizable and the common
eigenspace of each 𝑝 ∈ 𝑄 with eigenvalue 𝜆𝑝 is well defined; we denote this as
H𝑄

𝝀𝑄
. Formally,

H𝑄

𝝀𝑄
:= {|𝜙⟩ | 𝑝 |𝜙⟩ = 𝜆𝑝 |𝜙⟩ ,∀𝑝 ∈ 𝑄}. (3.20)

Let Π𝑄

𝝀𝑄
be the projection onto H𝑄

𝝀𝑄
. Again by commutation, Π𝑄

𝝀𝑄
is equal to the

product of the individual projectors:

Π
𝑄

𝝀𝑄
=

∏
𝑝∈𝑄

Π
𝑝

𝜆𝑝
. (3.21)

Note that for a general 2D qubit CLH, a plaquette term 𝑝 can be any arbitrary 4-qubit
operator. For example one can set 𝐻 = 𝑝0 + I where 𝑝0 is an arbitrary operator on
one plaquette. Nonetheless, one can show that all terms in R are in a sense quite
regular.

Lemma 59 Each 𝑝 ∈ R has exactly two eigenvalues ±𝑐𝑝.

Proof: By definition of R, i.e. Corollary 57 (2), all terms in R are in the interior of
the Hamiltonian. Then Lemma 59 is true by Lemma 55.

Additionally, the eigenspaces corresponding to each eigenvalue of 𝑝 are symmetric.
Lemma 60 is the key observation which leads to the oblivious randomized correction
idea.

Lemma 60 For any subset 𝑄 ⊆ B ∪W and for any 𝑝 ∈ R\𝑄, we have that

𝐿𝑝Π
𝑝
+𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
+𝑐𝑝𝐿

†
𝑝 = Π

𝑝
−𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
−𝑐𝑝 (3.22)

𝐿𝑝Π
𝑝
−𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
−𝑐𝑝𝐿

†
𝑝 = Π

𝑝
+𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
+𝑐𝑝 (3.23)

Proof: We prove the first equality by moving 𝐿𝑝 on the very left of the LHS through
Π
𝑝
+𝑐𝑝 and Π

𝑄

𝝀𝑄
until we can cancel it with 𝐿†𝑝. The second equality follows from the

first and the fact that 𝐿2
𝑝 = I and 𝐿𝑝 = 𝐿†𝑝. By Lemma 59, we have

Π
𝑝
±𝑐𝑝 =

1
2𝑐𝑝

(
±𝑝 + 𝑐𝑝I

)
. (3.24)

84

By Definition 54, we have 𝐿𝑝 anti-commutes with 𝑝. Thus we have

𝐿𝑝Π
𝑝
+𝑐𝑝 = 𝐿𝑝

1
2𝑐𝑝

(
+𝑝 + 𝑐𝑝I

)
(3.25)

=
1

2𝑐𝑝
(
−𝑝 + 𝑐𝑝I

)
𝐿𝑝 (3.26)

= Π
𝑝
−𝑐𝑝𝐿𝑝, (3.27)

and we can rewrite 𝐿𝑝Π
𝑝
+𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
+𝑐𝑝𝐿

†
𝑝 as Π

𝑝
−𝑐𝑝𝐿𝑝Π

𝑄

𝝀𝑄
Π
𝑝
+𝑐𝑝𝐿

†
𝑝. Next, by Defini-

tion 54 we have that 𝐿𝑝 commutes with all terms in 𝑄, and thus 𝐿𝑝 also commutes
with each eigenspace projectors Π

𝑝′

𝜆𝑝′
, ∀𝑝′ ∈ 𝑄. Recalling the definition of Π𝑄

𝝀𝑄

in Equation (3.21), this means that 𝐿𝑝 commutes with Π
𝑄

𝝀𝑄
, and we can move 𝐿𝑝

through Π
𝑄

𝝀𝑄
. To conclude, we once again use Equation (3.27) and the fact that 𝐿𝑝

is unitary (i.e., 𝐿𝑝𝐿†𝑝 = I), obtaining

𝐿𝑝Π
𝑝
+𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
+𝑐𝑝𝐿

†
𝑝 = Π

𝑝
−𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
−𝑐𝑝 , (3.28)

as desired.

A consequence of this lemma is that the the the eigenspace corresponding to 𝝀𝑄 is
balanced across any 𝑝’s +𝑐𝑝 and −𝑐𝑝 eigenspaces.

Lemma 61 tr
(
Π
𝑝
+𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
+𝑐𝑝

)
= 1

2 tr
(
Π
𝑄

𝝀𝑄

)
.

Proof: Note that

tr
(
Π
𝑝
+𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
+𝑐𝑝 + Π

𝑝
−𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
−𝑐𝑝

)
= tr

(
(Π𝑝
+𝑐𝑝)

2Π
𝑄

𝝀𝑄
+ (Π𝑝

−𝑐𝑝)
2Π

𝑄

𝝀𝑄

)
(3.29)

= tr
(
Π
𝑄

𝝀𝑄

)
, (3.30)

where the last equality comes is because Π+𝑐𝑝 ,Π−𝑐𝑝 are projections, and Π+𝑐𝑝 +
Π−𝑐𝑝 = I.

Since 𝐿𝑝 is a unitary, by Lemma 60 we have that

tr(Π𝑝
+𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
+𝑐𝑝) = Π

𝑝
−𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
−𝑐𝑝 . (3.31)

Thus tr(Π𝑝
+𝑐𝑝Π

𝑄

𝝀𝑄
Π
𝑝
+𝑐𝑝) =

1
2 tr(Π𝑄

𝝀𝑄
).

Underyling the Theorem 58 is the following algorithm. We will prove Theorem 58
by proving correctness via Lemma 62. Recall that by Corollary 57 the Hamiltonian
𝐻
(2)
𝐺

is 2-local after we group some qubits into qudits. Using the notation from

85

Section 3.3, 𝐻 (2)
𝐺

and 𝐻 (2𝑐)
𝐺

denote the 2-local CLH and the corresponding classical
Hamiltonian, and {𝒃 𝒋}𝒃 𝒋 denote the computational basis of the grouped qudits.
Since 𝐺 is planar (Corollary 57 item (1)) the number of edges 𝑚 is O(𝑛), with
𝑛 being the number of vertices. As usual, we assume access to a classical Gibbs
sampler which obtains a computational basis state

��𝜓(𝒃 𝒋)
〉

with probability 𝑝(𝒃 𝒋)
in time 𝑇 + O(𝑚) = 𝑇 + O(𝑛). That is, we prepare a state

𝜌(P) :=
∑︁
𝒃 𝒋

𝑝(𝒃 𝒋)
��𝜓(𝒃 𝒋)

〉 〈
𝜓(𝒃 𝒋)

�� (3.32)

such that
𝜌(P) − 𝜌(𝐻 (2)

𝐺
, 𝛽)

1
≤ 𝜖 . (3.33)

Here we did not write down the explicit formula for 𝑝(𝒃 𝒋) since we will not use
it. In the second step of the algorithm, we sequentially measure the current state
with respect to each removed term 𝑝 ∈ R and perform an oblivious randomized
correction. The details are in Algorithm 2.

Algorithm 2 Oblivious Randomized Correction
1: Set the current completed set as 𝑄 = P.
2: Set the current state as 𝜌(𝑄) ←

��𝜓(𝒃 𝒋)
〉
. {Prepare 𝜌(P).} 𝑝 ∈ R

3: Measure the current state 𝜌(𝑄) w.r.t measurement 𝑝. the outcome is 𝜆𝑝 ∈
{±𝑐𝑝}

4: w.p. exp(−𝛽𝜆𝑝)
exp(−𝛽𝜆𝑝)+exp(𝛽𝜆𝑝) do nothing and w.p. exp(𝛽𝜆𝑝)

exp(−𝛽𝜆𝑝)+exp(𝛽𝜆𝑝) apply 𝐿𝑝 to the
measured states.

5: Set 𝑄 ← 𝑄 ∪ {𝑝}. Denote the current state as 𝜌(𝑄).

We prove correctness by induction. Define 𝐻𝑄 :=
∑
𝑝∈𝑄 𝑝. We claim the following.

Lemma 62 Assume 𝒃 𝒋 are sampled from the correct classical Gibbs distribution
over 𝐻 (2𝑐)

𝐺
. At the end of each for iteration in Algorithm 2, the current state 𝜌(𝑄)

satisfies

∥𝜌(𝑄) − 𝜌(𝐻𝑄 , 𝛽)∥1 ≤ 𝜖 . (3.34)

Proof: When 𝑄 = P, note that by definition 𝐻P = 𝐻
(2)
𝐺

. Thus Lemma 62 holds by
assumption on the initial distribution, as given in Equation (3.33).

Suppose Lemma 62 holds for a set 𝑄. Denote Λ𝑄 be the set of distinct vectors 𝝀𝑄
where Π

𝑄

𝝀𝑄
is not 0. Note that

𝜌(𝐻𝑄 , 𝛽) =
∑︁

𝝀𝑄∈Λ𝑄

exp(−𝛽𝜆(𝑄))
𝑍 (𝑄) · Π𝑄

𝝀𝑄
, (3.35)

86

where 𝑍 (𝑄) is the partition function for 𝐻𝑄 at inverse temperature 𝛽,

𝑍 (𝑄) :=
∑︁

𝝀𝑄∈Λ𝑄
exp(−𝛽𝜆(𝑄)) · tr

(
Π
𝑄

𝝀𝑄

)
. (3.36)

Now, consider the next iteration where we measure some 𝑝 ∈ R\𝑄. Let us first
assume that in Algorithm 2 line 3, we are measuring the exact Gibbs state

�̂�(𝑄) := 𝜌(𝐻𝑄 , 𝛽)

rather than 𝜌(𝑄). We may represent the operation performed during each iteration
as a quantum channel N𝑝. Then, the state at the end of the iteration is

�̂�(𝑄 ∪ {𝑝}) := N𝑝 (�̂�(𝑄)) (3.37)

=
∑︁
𝝀𝑄

∑︁
𝜆𝑝∈{±𝑐𝑝}

[
exp(−𝛽𝜆(𝑄))

𝑍 (𝑄) · Π𝑝

𝜆𝑝
Π
𝑄

𝝀𝑄
Π
𝑝

𝜆𝑝
·

exp(−𝛽𝜆𝑝)
exp(−𝛽𝜆𝑝) + exp(𝛽𝜆𝑝)

+exp(−𝛽𝜆(𝑄))
𝑍 (𝑄) · 𝐿𝑝Π𝑝

𝜆𝑝
Π
𝑄

𝝀𝑄
Π
𝑝

𝜆𝑝
𝐿†𝑝 ·

exp(𝛽𝜆𝑝)
exp(−𝛽𝜆𝑝) + exp(𝛽𝜆𝑝)

]
=

∑︁
𝝀𝑄

∑︁
𝜆𝑝∈{±𝑐𝑝}

[
exp(−𝛽𝜆(𝑄))

𝑍 (𝑄) · Π𝑝

𝜆𝑝
Π
𝑄

𝝀𝑄
Π
𝑝

𝜆𝑝
·

exp(−𝛽𝜆𝑝)
exp(−𝛽𝜆𝑝) + exp(𝛽𝜆𝑝)

+ exp(−𝛽𝜆(𝑄))
𝑍 (𝑄) · Π𝑝

−𝜆𝑝Π
𝑄

𝝀𝑄
Π
𝑝

−𝜆𝑝 ·
exp(𝛽𝜆𝑝)

exp(−𝛽𝜆𝑝) + exp(𝛽𝜆𝑝)

]
(3.38)

=
∑︁
𝝀𝑄

∑︁
𝜆𝑝∈{±𝑐𝑝}

2 exp(−𝛽𝜆(𝑄))
𝑍 (𝑄)

exp(−𝛽𝜆𝑝)
exp(−𝛽𝜆𝑝) + exp(𝛽𝜆𝑝)

· Π𝑝

𝜆𝑝
Π
𝑄

𝝀𝑄
Π
𝑝

𝜆𝑝

(3.39)

where Equation (3.38) comes from Lemma 60, and Equation (3.39) comes from
renaming the −𝜆𝑝 to 𝜆𝑝 in the second half of Equation (3.38).

We next argue that �̂�(𝑄 ∪ {𝑝}) is equal to 𝜌(𝐻𝑄∪{𝑝}, 𝛽). First, notice that since the
terms in 𝑄 ∪ {𝑝} are commuting, we have

Π
𝑝

𝜆𝑝
Π
𝑄

𝝀𝑄
Π
𝑝

𝜆𝑝
= Π

𝑄∪{𝑝}
𝝀𝑄∪{𝑝}

. (3.40)

Since �̂�(𝑄 ∪ {𝑝}) is a positive linear combination of positive operators, we have

87

that �̂�(𝑄 ∪ {𝑝}) ⪰ 0. Moreover, it is correctly normalized:

tr(�̂�(𝑄 ∪ {𝑝})) :=
∑︁
𝝀𝑄

∑︁
𝜆𝑝∈{±𝑐𝑝}

2 exp(−𝛽𝜆(𝑄))
𝑍 (𝑄)

exp(−𝛽𝜆𝑝)
exp(−𝛽𝜆𝑝) + exp(𝛽𝜆𝑝)

· tr(Π𝑝

𝜆𝑝
Π
𝑄

𝝀𝑄
Π
𝑝

𝜆𝑝
)

(3.41)

=
∑︁
𝝀𝑄

∑︁
𝜆𝑝∈{±𝑐𝑝}

2 exp(−𝛽𝜆(𝑄))
𝑍 (𝑄)

exp(−𝛽𝜆𝑝)
exp(−𝛽𝜆𝑝) + exp(𝛽𝜆𝑝)

· 1
2

tr(Π𝑄

𝝀𝑄
)

(3.42)

=
∑︁
𝝀𝑄

exp(−𝛽𝜆(𝑄))
𝑍 (𝑄) tr(Π𝑄

𝝀𝑄
)

∑︁
𝜆𝑝∈{±𝑐𝑝}

exp(−𝛽𝜆𝑝)
exp(−𝛽𝜆𝑝) + exp(𝛽𝜆𝑝)

(3.43)

= tr(𝜌(𝐻𝑄 , 𝛽)) (3.44)

= 1 , (3.45)

where Equation (3.42) comes from Lemma 61. In summary,

• By Equation (3.45), �̂�(𝐻 ∪ {𝑝}) is a quantum state (this can also be inferred
from the definition of the algorithm. However, the above calcuations also
show this explicitly.)

• Equations Equation (3.39) and Equation (3.40) imply that �̂�(𝐻 ∪ {𝑝}) can be
block-diagonalized with respect to the projectorsΠ𝑄∪{𝑝}

𝝀𝑄∪{𝑝}
, as should be true for

a genuine Gibbs state. Additionally, within a fixed 𝝀𝑄 , the term exp(−𝛽𝜆𝑝) +
exp(𝛽𝜆𝑝) in the denominator of the weights in Equation (3.39) takes the
same value for each 𝜆𝑝 ∈ {±𝑐𝑝}. Thus, the eigenvalues are proportional
to exp(−𝛽𝜆(𝑄) − 𝛽𝜆𝑝), which shows that �̂�(𝐻 ∪ {𝑝}) also has the correct
weights.

We conclude that

N𝑝 (�̂�(𝑄)) = �̂�(𝑄 ∪ {𝑝}) = 𝜌(𝐻𝑄∪{𝑝}, 𝛽) . (3.46)

Of course, in Algorithm 2 we start the for loop with the state 𝜌(𝑄), which may not
be the exact Gibbs state �̂�(𝑄). Nonetheless, for the final state 𝜌(𝑄∪{𝑝}), we derive

∥𝜌(𝑄 ∪ {𝑝}) − 𝜌(𝐻𝑄∪{𝑝}, 𝛽)∥1 = ∥N𝑝 (𝜌(𝑄)) − N𝑝 (�̂�(𝑄))∥1 (3.47)

≤ ∥𝜌(𝑄) − �̂�(𝑄)∥1 (3.48)

≤ 𝜖 . (3.49)

88

Equation (3.48) comes from the monotonicity of trace distance under quantum chan-
nels, and Equation (3.49) comes from the induction hypothesis that Equation (3.34)
holds at the beginning of each iteration.

Proof:[Proof of Theorem 58.] Theorem 58 is just a corollary of Lemma 62. The
runtime of Algorithm 2 is the sum of the time used for preparing the Gibbs state
of 𝐻 (2)

𝐺
and the time used to perform the randomized correction for R. Recall that

since 𝐺 is a constant-degree planar graph, the number of edges is O(𝑚) = O(𝑛).
Thus the total runtime of Algorithm 2 is

𝑇 + O(𝑚) + |R| × O(𝑛) = 𝑇 + O(𝑛2), (3.50)

where the O(𝑛) is the cost for the correction operation 𝐿𝑝 which is a tensor product
state on at most 𝑛 qubits. |R | = O(𝑛) is the size of the set R.

3.5 Reduction for 2D (4-local) qubit CLH with classical qubit
A review of the techniques of Aharonov et. al [AKV18]
Recall that [AKV18] studied the structure of qubit 2D commuting local Hamiltonians
to argue that preparing the ground state can be done in NP. The two main technical
results of our work (Theorems 58 and 76) require opening up this result so that we
are not only able to prepare a single ground state, but sample from the Gibbs state of
the Hamiltonian. This requires a good understanding of their correction operators,
as well as the role classical qubits play in their proof. As such, we dedicate this
section to reviewing the techniques used in their paper.

C★-algebras and the Structure Lemma

The primary technical tool used in [AKV18] (and in nearly all other works on
commuting local Hamiltonians [BV03; Sch11; IJ23]) is the Structure Lemma for
C★ algebras.

Definition 63 (C★-algebra) For any Hilbert space H , let L(H) be the set of all
linear operators over H . Then, a C★-algebra is any complex algebra A ⊆ L(H)
that is closed under the † operation (playing the role of complex conjugation) and
includes the identity.

Definition 64 (Commuting algebras) Let A and A′ be two C∗-algebras on H .
We say A and A′ commute if [ℎ, ℎ′] = 0 for all ℎ ∈ A and ℎ′ ∈ A′.

89

The connection between local Hamiltonians and algebras is made through the con-
cept of an “induced algebra”.

Definition 65 (Induced algebra) Let ℎ be a Hermitian operator acting on two
qudits 𝑞1 and 𝑞2. Consider the decomposition of ℎ into

ℎ =
∑︁
𝑖, 𝑗

(ℎ𝑖 𝑗)𝑞1 ⊗ (|𝑖⟩⟨ 𝑗 |)𝑞2 .

Here {|𝑖⟩𝑞2}𝑖 is an orthogonal basis of H 𝑞2 , the Hilbert space of 𝑞2. Then the
induced algebra of ℎ on 𝑞1 is the C∗-algebra generated by {ℎ𝑖 𝑗 }𝑖 𝑗 and I, denoted as

A𝑞1 (ℎ) :=
〈
{(ℎ𝑖 𝑗)𝑞1}𝑖 𝑗 ,I

〉
.

If the operator ℎ is clear from context, we will abbreviate A𝑞1 (ℎ) as A𝑞1 .

The following lemma tells us that the induced algebra is independent of the choice
of basis for 𝑞2.

Lemma 66 (Claim B.3 of [AKV18]) Let ℎ be a Hermitian operator and consider
two decompositions of ℎ

ℎ =
∑︁
𝑖, 𝑗

(ℎ𝑖 𝑗)𝑞1 ⊗ (𝑔𝑖 𝑗)𝑞2 =
∑︁
𝑖, 𝑗

(ℎ̂𝑖 𝑗)𝑞1 ⊗ (�̂�𝑖 𝑗)𝑞2 ,

where both the sets {𝑔𝑖 𝑗 }𝑖 𝑗 and {�̂�𝑖 𝑗 }𝑖 𝑗 are linearly independent. Then the C∗-
algebra generated by {ℎ𝑖 𝑗 }𝑖 𝑗 and {ℎ̂𝑖 𝑗 }𝑖 𝑗 are the same. In particular, the Schmidt
decomposition of ℎ is one way to generate an induced algebra.

The induced algebra gives us a tool to analyze whether two terms commute.

Lemma 67 Let (ℎ1)𝑞,𝑞1 and (ℎ2)𝑞,𝑞2 be two Hermitian operators. Then [ℎ1, ℎ2] = 0
if and only if A𝑞 (ℎ1) commutes with A𝑞 (ℎ2).

Finally, we recall the Structure Lemma, which was first applied to understanding
commuting local Hamiltonians by [BV03]. Since then, it has been the principal tool
used by subsequent works on the CLH [AE13; AE11; Sch11; IJ23]. At a high level,
the Structure Lemma says that algebras can be block-diagonalized, and that within
each of these blocks, the algebra takes on a tensor product structure which identifies
its commutant. For a proof of the lemma, see [Gha+15, Section 7.3].

90

Lemma 68 (The Structure Lemma) Let A ⊆ L(H 𝑞) be a C★-algebra on H 𝑞.
Then there exists a direct sum decomposition H 𝑞 =

⊕
𝑖H

𝑞

𝑖
and a tensor product

structureH 𝑞

𝑖
= H 𝑞

(𝑖,1) ⊗ H
𝑞

(𝑖,2) such that

A =
⊕
𝑖

L(H 𝑞

(𝑖,1)) ⊗ I(H
𝑞

(𝑖,2)) .

We remark that Lemma 68 is equivalent to Lemma 47 in Section 3.3.

A corollary of Lemma 68, and the reason why it is so useful for characterizing the
properties of commuting local Hamiltonians, is that in order to commute with an
algebra, another algebra must live entirely within the H 𝑞

(𝑖,2) subspaces. Formally,
we have the following.

Corollary 69 Let (ℎ)𝑞,𝑞1 and (ℎ′)𝑞,𝑞2 be two Hermitian operators with [ℎ, ℎ′] = 0.
Let A𝑞 (ℎ),A𝑞 (ℎ′) ⊆ L(H 𝑞) be the induced algebras on H 𝑞. Suppose {H 𝑞

(𝑖, 𝑗)}𝑖, 𝑗
is the decomposition induced by Lemma 68 applied to A𝑞 (ℎ). Then the following
holds:

A𝑞 (ℎ) =
⊕
𝑖

L(H 𝑞

(𝑖,1)) ⊗ I(H
𝑞

(𝑖,2))

A𝑞 (ℎ′) ⊆
⊕
𝑖

I(H 𝑞

(𝑖,1)) ⊗ L(H
𝑞

(𝑖,2)) .

Crucially, all operators keep the decompositionH 𝑞 =
⊕

𝑖H
𝑞

𝑖
invariant.

Restrictions on 2D commuting local Hamiltonians

With the Structure Lemma in hand, we can see how [AKV18] apply these tools to
show that 2D qubit CLH is in NP.

We start with some definitions. First, we review the notion of a classical qubit,
defined originally in Definition 53. For a qubit 𝑞 and a commuting Hamiltonian 𝐻,
let N(𝑞) be the set of terms acting non-trivially on 𝑞. We say that 𝑞 is classical if
there is a non-trivial decomposition of H 𝑞 (i.e. H 𝑞 =

⊕
𝑖∈ℓH

𝑞

𝑖
, with ℓ > 1) and

each term ℎ ∈ N (𝑞) keeps this decomposition invariant. We define C0(𝐻) as the set
of classical qubits of 𝐻. If the Hamiltonian 𝐻 is clear from context, we abbreviate
C0(𝐻) as C0.

Definition 70 (Classical restriction) Let𝐻 be a commuting local Hamiltonian with
classical qubits C0. Then, there exists a unitary 𝑈 = IC0

⊗
⊗

𝑞∈C0
𝑈𝑞 such that

91

𝐻 := 𝑈𝐻𝑈† is block diagonal with respect to the computational basis on C0. A
classical assignment to C0 corresponds to a string 𝑠 ∈ {0, 1} |C0 |, with restricted
Hamiltonian,

𝐻 |𝑠 = Π𝑠𝐻Π𝑠 where Π𝑠 :=
⊗
𝑞∈C0

|𝑠𝑞⟩⟨𝑠𝑞 |𝑞 .

Moreover, 𝐻 |𝑠 is still a commuting Hamiltonian.

Proof: Any classical qubit 𝑞 ∈ C0 has a decomposition into {𝜋𝑞,I − 𝜋𝑞} such that
each term ℎ ∈ N (𝑞) commutes with 𝜋𝑞 = |𝜓⟩⟨𝜓 | and I − 𝜋𝑞 = |𝜓⊥⟩⟨𝜓⊥ |, with
⟨𝜓 |𝜓⊥⟩ = 0. This implies there exists a unitary transformation𝑈𝑞 on 𝑞 such that

𝑈𝑞 |𝜓⟩ = |0⟩ and 𝑈𝑞
��𝜓⊥〉 = |1⟩ . (3.51)

Applying this to each qubit 𝑞 ∈ C0 yields the desired unitary𝑈 =
⊗

𝑞∈C0
𝑈𝑞.

To show that 𝐻 |𝑠 is commuting, we note that each ℎ in the original Hamiltonian is
block diagonal with respect to every {𝜋𝑞,I − 𝜋𝑞}, and using Equation (3.51), we
see that 𝑈ℎ𝑈† is block diagonal with respect to |0⟩⟨0| and |1⟩⟨1|. Since Π𝑆 is also
diagonal in the computational basis, 𝑈ℎ𝑈† commutes with Π𝑆 = ⊗𝑞 |𝑠𝑞⟩⟨𝑠𝑞 |. Thus,
commutation of Π𝑠𝑈ℎ𝑈

†Π𝑠 and Π𝑠𝑈ℎ
′𝑈†Π𝑠 reduces to the commutation of ℎ and

ℎ′.

Remark 2 Since each term in 𝐻 |𝑠 now acts as |𝑠𝑞⟩⟨𝑠𝑞 | on any classical qudit 𝑞, we
will treat each term ℎ ∈ 𝐻 |𝑠 as having support only on sup(ℎ) ∩ C0, where sup(ℎ)
is the set of qubits on which ℎ acts non-trivially.

A key point is that an initial restriction 𝐻 |𝑠, with 𝑠 ∈ {0, 1}C0 can lead to the creation
of new classical qubits in 𝐻 |𝑠. For instance, in Figure 3.5, setting 𝑠𝑐 = |1⟩ removes
ℎ from the Hamiltonian and causes 𝑞 to become classical.

ℎ ℎ1

ℎ2 ℎ3

𝑐

𝑞

|0⟩⟨0 | |1⟩⟨1 |

⟨𝑍 ⟩

⟨I⟩

⟨𝑋⟩

⟨𝑍 ⟩

Figure 3.5: 𝑐 is an initial classical qubit. If 𝑐 is set to |1⟩, then all terms
acting on 𝑞 have local algebras ⊆ ⟨𝑍⟩, rendering 𝑞 classical.

92

Definition 71 (Propagated classical qubits) For a commuting Hamiltonian 𝐻, let
C0 be the set of qubits which are classical with respect to 𝐻. Then given an
assignment 𝑠0 to C0, we write C1(𝑠0) to denote the classical qubits of the restricted
Hamiltonian 𝐻 |𝑠0 . In general, we write C𝑖 (𝑠0, . . . , 𝑠𝑖−1) to refer to the classical
qubits of

𝐻 | (𝑠0,...,𝑠𝑖−1) := (((𝐻 |𝑠0) |𝑠1) . . .) |𝑠𝑖−1 .

Definition 72 (Valid restriction) A valid restriction of 𝐻 is a sequence \𝑠 =

(𝑠0, . . . , 𝑠𝑖) and Hamiltonian 𝐻 |\𝑠 such that 𝑠𝑖 is supported on the classical qubits
from the prior restrictions 𝑠0, . . . , 𝑠𝑖−1, i.e. 𝑠𝑖 ∈ {0, 1}C𝑖 (𝑠0,...,𝑠𝑖−1) . We say that a valid
restriction is terminating if 𝐻 |\𝑠 has no classical qubits and C𝑖+1(𝑠0, . . . , 𝑠𝑖) = ∅.

When we refer to a terminating restriction, that restriction is implictly assumed to
be valid.

Definition 73 (Possible Classical Qubits) For a commuting Hamiltonian 𝐻, we
write C to be the set of qubit 𝑞 which are classical with respect to any valid
restriction \𝑠 and the Hamiltonian 𝐻\𝑠.

In other words, C is the set of qubits which might become classical when we
sequentially choose an assignment for the current classical qubits. For example in
Figure 3.5 𝑞 is a “possible classical qubit” and both 𝑐, 𝑞 ∈ C.

Now that we have characterized all the possible classical qubits, we define the notion
of a “fully quantum” qubit (and term).

Definition 74 (Fully quantum qubit) Given a commuting Hamiltonian 𝐻, we say
that a qubit 𝑞 is fully quantum if 𝑞 is not a possible classical qubit (i.e. for any valid
restriction \𝑠, the qubit 𝑞 remains non-classical in 𝐻 |\𝑠).

Definition 75 (Fully quantum term) We say that a term ℎ of 𝐻 is fully quantum if
all qubits 𝑞 on which 𝐻 acts non-trivially are fully quantum.

With this notation, we can understand the first step of the algorithm of [AKV18] as
applying a valid, terminating restriction \𝑠 = (𝑠0, . . . , 𝑠𝑖) to the Hamiltonian.

Classical qudits
In this section we show a reduction from a CLH instance𝐻 to a classical Hamiltonian
with constant locality, albeit with some (fully quantum) terms removed, but without

93

needing to first remove classical qubits. In general, the choice of classical qubits
can affect the correction operators for a removed term. To deal with this issue, we
make the following assumption.

Assumption 2 (Fully quantum terms are Uniformly Correctable) Let 𝐻 be an
instance of CLH and suppose ℎ is a fully quantum term (Definition 75). Consider
a terminating restriction of the Hamiltonian 𝐻 |𝑠, such that 𝐻 |𝑠 has no classical
qubits. Suppose that in 𝐻 |𝑠, ℎ is correctable via the correction operator 𝐿ℎ. Then
we assume that ℎ is correctable via the same correction operator 𝐿ℎ for any other
terminating restriction of the Hamiltonian, 𝐻 |𝑡 , 𝑡 ≠ 𝑠.

Formally, our result is stated as follows.

Theorem 76 Let 𝐻 be an instance of CLH with some classical qubits. Then, by
removing a set of fully quantum termsR, the resulting Hamiltonian can be converted
to a 2+O(1)-local classical Hamiltonian 𝐻 (𝑐) via a constant depth quantum circuit.
Moreover, if

• we assume Assumption 2 and,

• there is an algorithm to prepare the Gibbs state 𝜌′ of 𝐻 (𝑐) in time 𝑇 within
precision 𝜖 ,

then there is a quantum algorithm to prepare the Gibbs state 𝜌 of the original
Hamiltonian 𝐻 in time 𝑇 + O(𝑛2) within precision 𝜖 .

We prove this theorem in two steps. First, in Section 3.5 we show how to modify the
proof of [AKV18] so that classical qubits do not need to be removed when preparing
a single ground state. Then in Section 3.5 we show how to extend this idea to Gibbs
state sampling and get a proof for Theorem 76.

Characterization of classical qubits

Proving Theorem 76 will require characterizing the set of possible classical qubits
C (Definition 73). We begin with a lemma about algebra on qubits in the interior
(recall Definition 52).

Lemma 77 (Propagation of Classical Qubits) Let 𝑐 ∈ C0 be a classical qubit in
the original Hamiltonian 𝐻, which is acted on non-trivially by a term 𝐴. Suppose

94

𝐵 is another term which interacts non-trivially with 𝐴 on two other qubits 𝑞, 𝑞′ ≠ 𝑐.
Furthermore, suppose that 𝐵 is an interior term and is supported entirely outside
of C0. Then any projection 𝜋𝑞 and 𝜋𝑞′ respecting the local algebras A𝑞 (𝐵) and
A𝑞′ (𝐵) respectively satisfies

A𝑟 (𝐵) = A𝑟 (𝜋𝑞𝜋𝑞′𝐵𝜋𝑞′𝜋𝑞) and A𝑟 ′ (𝐵) = A𝑟 ′ (𝜋𝑞𝜋𝑞′𝐵𝜋𝑞′𝜋𝑞) ,

where 𝑟, 𝑟′ are the other qubits in the support of 𝐵. In particular, “classical-ness”
does not propagate from 𝑐 through interior terms.

𝐴

𝐵

𝑐

𝑞𝑞′

𝑟𝑟′

Figure 3.6: Illustration of the terms 𝐴 and 𝐵 and relevant qubits.

Proof: First, we claim that the assumption that 𝐵 is in the interior and supported
entirely on non-classical qubits implies that A(𝐵) = ⟨𝑍⊗4⟩, under some change of
basis. The proof is essentially by Theorem 5.3 of [AKV18], except that they prove
the claim for each interior term in the entire Hamiltonian, with the assumption that
all classical qubits have been removed. In our case, we only apply their proof for a
single term which is not supported on any classical qubits. For completeness, we
outline the required components.

Consider the sequence of qubits (𝑞, 𝑞′, 𝑟′, 𝑟) acted on by 𝐵. Since each of these
qubits is in the interior, this implies that the two “star” and two “plaquette” terms
adjacent to each qubit act non-trivially on it, and thus induce a 2-dimensional algebra
(Claim F.2 of [AKV18]). This implies (by Lemma F.5) thatA𝑝,𝑝′ (𝐵) = ⟨𝑍 ⊗ 𝑍⟩ for
every length two subsequence of (𝑞, 𝑞′, 𝑟′, 𝑟) (i.e. every edge of 𝐵). Now consider
length three subsequences (𝑝, 𝑝′, 𝑝′′). Lemma B.4 of [AKV18] tells us that

A𝑝,𝑝′,𝑝′′ (𝐵) ⊆ A𝑝,𝑝′ (𝐵) ⊗ A𝑝′′ (𝐵) = ⟨𝑍 ⊗ 𝑍⟩ ⊗ ⟨𝑍⟩.

Similarly,

A𝑝,𝑝′,𝑝′′ (𝐵) ⊆ A𝑝 (𝐵) ⊗ A𝑝′,𝑝′′ (𝐵) = ⟨𝑍⟩ ⊗ ⟨𝑍 ⊗ 𝑍⟩.

95

By writing down the permissible expressions for ℎ ∈ A𝑝,𝑝′,𝑝′′ (𝐵) subject to these
conditions, we find thatA𝑝,𝑝′,𝑝′′ (𝐵) = ⟨𝑍⊗𝑍⊗𝑍⟩ (details can be found in [AKV18]).
Extending this argument once more to length-4 sequences completes the claim.

In conclusion A(𝐵) = ⟨𝑍⊗4⟩ and thus 𝐵 = 𝛼I + 𝛽𝑍⊗4 with 𝛽 ≠ 0. Consider the
effect of applying projector 𝜋𝑞 and 𝜋𝑞′ on qubits 𝑞 and 𝑞′. SinceA𝑞 (𝐵) = A𝑞′ (𝐵) =
⟨𝑍⟩, the fact that 𝜋𝑞 and 𝜋𝑞′ respect the local algebras implies that 𝜋𝑞 and 𝜋𝑞′ are in
the 𝑍-basis. If both projectors are trivial, the algebra of 𝐵 on 𝑟, 𝑟′ is unaffected. We
give the proof for the case when both are non-trivial and dimension 1; the case when
only one is dimension 1 and the other is trivial is similar. The result of applying 𝜋𝑞
and 𝜋𝑞′ is

𝜋𝑞𝜋𝑞′𝐵𝜋𝑞′𝜋𝑞 = 𝛼𝜋𝑞 ⊗ 𝜋𝑞′ ⊗ I + 𝛽((−1)𝑏1𝜋𝑞) ⊗ ((−1)𝑏2𝜋𝑞′) ⊗ 𝑍⊗2 ,

where 𝑏1, 𝑏2 ∈ {0, 1} indicate the possible phase (corresponding to whether 𝜋𝑞, 𝜋𝑞′
correspond to the +1 or −1 eigenspaces of 𝑍). We case on the values of (𝑏1, 𝑏2).

• If 𝑏1 = 𝑏2 then we obtain the Schmidt decomposition

𝐵 = 𝜋𝑞 ⊗ 𝜋𝑞 ⊗ (𝛼I + 𝛽𝑍⊗2) ,

and A𝑟,𝑟 ′ (𝜋𝑞𝜋𝑞′𝐵𝜋𝑞′𝜋𝑞) remains ⟨𝑍⊗2⟩.

• If 𝑏1 ≠ 𝑏2 then 𝜋𝑞 ⊗ 𝜋𝑞′ and (−1)𝑏1𝜋𝑞 ⊗ (−1)𝑏2𝜋𝑞′ are orthogonal, and we
have the Schmidt decomposition

𝐵 = 𝜋𝑞 ⊗ 𝜋𝑞 ⊗ (𝛼I) + (−1)𝑏1𝜋𝑞 ⊗ (−1)𝑏2𝜋𝑞′ ⊗ 𝛽𝑍⊗2 .

Again, this leaves the local algebra unchanged.

Therefore, no choice of (consistent) projectors on 𝑞, 𝑞′ change 𝐵’s local algebra on
{𝑟, 𝑟′}.

This lemma provides strong restrictions on the possible set of classical qubits after
“propagating” the initial set of classical qubits.

Lemma 78 (Characterization of Classical Qubits) Let C be the set of all possibly
classical qubits (as in Definition 73). Then, each classical qubit 𝑐 ∈ C is either

• a classical qubit in the original Hamiltonian 𝐻, or

96

• supported on a boundary term or a term supported on C0 (i.e. adjacent to an
originally classical qubit).

Proof: Assume 𝑐 ∈ C is not originally a classical qubit. Then, there must have been
some set of projections 𝜋𝑐1 , . . . , 𝜋𝑐𝑘 such that in the Hamiltonian 𝜋𝑐𝑘 . . . 𝜋𝑐1𝐻𝜋𝑐1 . . . 𝜋𝑐𝑘 ,
the qubit 𝑐 is a classical. Suppose 𝑐 is acted on by 𝑁 (𝑐) = {ℎ1, ℎ2, ℎ3, ℎ4}. Cer-
tainly, if no projection 𝜋𝑐𝑖 is applied to a qubit in the support of any ℎ ∈ 𝑁 (𝑐),
it does not render 𝑐 a classical qubit. Otherwise, Lemma 78 implies that if each
ℎ ∈ 𝑁 (𝑐) is supported outside of C0 and in the interior of the system, no projection
applied to a qudit of ℎ𝑖 renders 𝑐 classical. Thus, some term ℎ ∈ 𝑁 (𝑐) is either a
boundary term or supported on C0.

Uniform preparation of a ground state

In this section, we describe how to avoid restricting classical qubits in the proof of
[AKV18].

Remark 3 (Comparison to the proof of Aharonov et. al [AKV18]) We emphasize
that this new proof does not qualitatively improve on their result as the initial Hamil-
tonian is block-diagonal with respect to C and thus for the task of finding a ground
state, one can always assume the first step is to perform a classical restriction.
Moreover, this new proof is worse in the sense that [AKV18] obtains a 2-local clas-
sical Hamiltonian, whereas, in general, our Hamiltonian can be 𝑘-local, for some
𝑘 ∈ O(1) depending on the stucture of the Hamiltonian. However, the ideas used
here will be useful for the full proof of Theorem 76 in Section 3.5, which allows us
to prepare the Gibbs state instead of only a single ground state.

Let us first recall the high level proof of [AKV18], which can be boiled down to:

1. The prover provides a terminating restriction \𝑠 such that 𝐻 |\𝑠 contains a
ground state of 𝐻. This removes all classical qubits.

2. Remove a set of terms R of 𝐻 |\𝑠 so that the Hamiltonian becomes two local.

3. Prepare a ground state of the two-local Hamiltonian via [BV03] (with the help
of the prover).

4. Correct the removed operators in R to get a ground state for 𝐻.

97
𝑐

|0⟩⟨0 | |1⟩⟨1 |

𝑋𝑋 𝑍𝑍

𝑍

𝑍

𝑋

𝑋

𝑍𝑋

(a) Goal: Remove one of
the two terms highlighted in
red.

𝑐

|0⟩⟨0 | |1⟩⟨1 |

𝑋𝑋 𝑍 𝑍

𝑍

𝑍

𝑋

𝑋

𝑍𝑋

𝑋

𝑋

(b) Suppose the classical
qubit 𝑐 is set to |1⟩. This
removes the top left term.
Then, the correction opera-
tor 𝐿ℎ = 𝑋 ⊗ 𝑋 commutes
with all remaining terms.

𝑐

|0⟩⟨0 | |1⟩⟨1 |

𝑋𝑋 𝑍 𝑍

𝑍

𝑍

𝑋

𝑋

𝑍𝑋

𝑍

𝑍

(c) Otherwise, if 𝑐 is set
to |0⟩, we remove the top
right term. Now, the cor-
rection operator 𝐿ℎ = 𝑍⊗𝑍
commutes with all remain-
ing terms.

Figure 3.7: The choice of correction operator may depend on the choice of classical qubits.

Our first observation is that Item 2 can be performed without first removing classical
qubits, as this step depends only on the geometric structure of the Hamiltonian.
However, the issue comes in Item 4; depending on the choice of classical qubits, the
set of “correctable” terms may be different. Therefore, if we perform Item 2 without
considering the classical restriction and the resulting set of correctable terms, we
may not be able to correct all terms in R.

More precisely, [AKV18] characterize the set of correctable terms via paths to the
boundary.

Lemma 79 (Access to the Boundary [AKV18]) Let 𝐻 be a CLH instance without
any classical qubits, and let ℎ, ℎ′ be terms in the interior of the system, such that ℎ
and ℎ′ share a single edge. Then either ℎ or ℎ′ has a path to the boundary. If ℎ (or
ℎ′) has a path to the boundary, we say that ℎ is correctable.

These “paths to the boundary” yield correction operators, and the choice to remove
ℎ or ℎ′ depends on which term is correctable. For instance in Figure 3.7, we see
that our choice for the classical qubit 𝑐 changes which of the two boxed terms may
be removed.

To avoid this issue, we take Assumption 2, which states that if some ℎ is correctable
under some valid, terminating restriction 𝐻 |\𝑠, then it is correctable under any other
valid, terminating restriction 𝐻 |\𝑡 . This implies that the classical restriction can be
deferred until after Item 3 is performed. We will now formalize this idea.

98

Figure 3.8: An example of a triangulation, followed by a co-triangulation.
Within each triangle, a central point is identified. Each point is connected
via one of the sides of the triangle to a center of an adjacent triangle. This
yields “tiles”, demarcated by the dark red lines. The set of qubits within a
tile are identified as a single qubit. Within this grouping, the only original
Hamiltonian terms that are more than 2-local are those at the centers of
the triangles.

Choice of Removed Terms. In the proof of [AKV18], the authors triangulate
the 2D complex, then construct a “co-triangulation”, dividing the surface in tiles
𝑇 ∈ T such that each qubit within a single tile 𝑇 becomes a new qudit 𝑞𝑇 in the
transformed Hamiltonian (see Figure 3.8). Under this transformation, terms in the
original Hamiltonian are either 1) internal to a single tile 𝑇 (and are now 1-local), 2)
cross between two adjacent tiles 𝑇,𝑇 ′ (and are now 2-local), or 3) on the corner of
three tiles (and are now 3-local). Since the goal is to produce a 2-local Hamiltonian,
the natural strategy is to simply set the set of removed terms R to be precisely these
corner terms. However, we need to be a bit careful, since any given term is not
necessarily correctable; all we know from Lemma 79 is that either the corner term
ℎ or its neighbor ℎ′ is correctable.11 This is easy to handle. As long as the original
triangulation has sufficient girth, the co-triangulation can be “shifted” so that its
corners lie entirely in correctable terms.

In our case, we no longer have the ambiguity of which terms is correctable, but we
instead need to deal with classical terms carefully. Consider a triangulation and
corresponding tiling T . Let ℎ be an arbitrary term containing a corner of the tiling
T . We consider the following set of cases:

• (Case 1) ℎ is a fully quantum term (Definition 75).
11Recall that in [AKV18] classical qubits have already been removed so ℎ and ℎ′ are automatically

quantum.

99

– (Case 1a) ℎ is an interior term.

– (Case 1b) ℎ is a boundary term.

• (Case 2) ℎ is supported on an originally classical qubit 𝑞 ∈ C0.

• (Case 3) ℎ is supported on a qubit 𝑞 ∈ C \ C0 (i.e. a qubit which is classical
under some restriction but which is not classical in the original Hamiltonian).

ℎ

ℎ1 ℎ2

ℎ3
𝑞𝑐

ℎ

ℎ1 ℎ2

ℎ3

𝑞𝑐

Figure 3.9: Illustration of (Case 2). When a center 𝑐 is placed on a term
supported on a classical qubit, any setting of the classical qubit induces a
hole in the 2D structure.

In the first case, we apply the same logic as [AKV18]: for Case 1a, ℎ is an interior
term, it will be correctable (in our case by Assumption 2) and we added it to the
removed set R; in Case 1b, ℎ is a boundary term which implies a neighbor acts
trivially on one of its qubits. This neighbor results in a “hole” in the original surface.
Place the corner of the co-triangulation in the hole.

In Case 2, we construct the co-triangulation such that one tile contains only the
classical qubits of ℎ; this will ensure that any assignment to the classical qubit
renders this term 2-local as well. For Case 3, we appeal to Lemma 78; since 𝑞 is
not originally classical but becomes classical, it must be on a boundary term or a
term with a classical qubit. In the boundary case, we apply the same argument as in
Case 1b. In the classical case, apply the argument from Case 2. Finally, we denote
the Hamiltonian with terms in R removed as 𝐻.

Construction of the Classical Hamiltonian. Now that we have fixed the tiling T
and chosen the set of removed terms R, it remains to describe how to translate this
into a classical Hamiltonian. To do so, we introduce some notation. For each tile
𝑇 ∈ T , we denote 𝑄(𝑇) to refer to the qubits contained entirely within 𝑇 and 𝐻 (𝑇)
as the set of original Hamiltonian terms in 𝐻 overlapping 𝑇 (i.e. acting non-trivially

100

on some 𝑞 ∈ 𝑄(𝑇)). In addition to the qubits internal to 𝑇 , the qubits “nearby” 𝑇
are also important. Define

𝑄(𝑇) =
⋃

ℎ∈𝐻 (𝑇)
𝑄(𝑇),

Additionally, let N(𝑇) be the tiles neighboring 𝑇 . Then, we define the Hilbert
space of the tile qudit 𝑞𝑇 as H𝑇 = ⊗𝑞∈𝑇H𝑞. To define the terms in the grouped
Hamiltonian, we define the following sets:

• 𝑆𝑇 is the set of Hamiltonian terms which act non-trivially on 𝑄(𝑇) \ C0 (i.e.
on a qudit in 𝑇 which is not originally classical).

• 𝑆𝑇,𝑇 ′ := 𝑆𝑇 ∩ 𝑆𝑇 ′ are the terms acting on both 𝑇 and 𝑇 ′.

• ℎ𝑇,𝑇 ′ =
∑
ℎ∈𝑆𝑇,𝑇′ ℎ will be the 2-local terms in the grouped Hamiltonian.

• ℎ𝑇 =
∑

ℎ∈𝑆𝑇
∀𝑇 ′≠𝑇,ℎ∉𝑆𝑇′

ℎ are the 1-local terms.

Then, the grouped Hamiltonian is denoted as 𝐻T =
∑
𝑇 ℎ𝑇 +

∑
𝑇 ′≠𝑇 ℎ𝑇,𝑇 ′ . Again,

note that ℎ𝑇,𝑇 ′ is technically not 2-local; it only becomes 2-local once a classical
restriction to C0 is fixed. But given such a restriction, we have the following simple
consequence of the Structure Lemma [BV03].

Lemma 80 Any restriction 𝑠 ∈ {0, 1} |C0 | to the classical qubits in C0 induces a
2-local structure in 𝐻T . Therefore, for each 𝑞𝑇 , the terms ℎ𝑇,𝑇 ′ |𝑠, 𝑇 ′ ∈ N (𝑇) are
mutually commuting and induce a decomposition of the Hilbert space of 𝑞𝑇 as

H𝑇 =

ℓ𝑇⊕
𝑖=1
H (𝑖)
𝑇

=

ℓ⊕
𝑖=1

⊗
𝑇 ′∈N (𝑇)

H (𝑖,𝑇
′)

𝑇
,

where within each subspaceH (𝑖)
𝑇

, the term ℎ𝑇,𝑇 ′ |𝑠 acts non-trivially only onH (𝑖,𝑇
′)

𝑇
.

To make the dependence on an assignment 𝑠 to C0 explicit, we refer to this decom-
position as D𝑠

𝑇
.

We can say something slightly stronger than this; for a tile 𝑇 , the above decomposi-
tion only depends on terms ℎ𝑇,𝑇 ′ which intersect 𝑇 (and the internal terms as well).
Therefore, if we consider a restriction 𝑠′ where a bit outside of 𝑄(𝑇) is flipped,
this induces the same decomposition, i.e. D𝑠′

𝑇
= D𝑠

𝑇
. As a result, when specifying

101

a restriction in the context of a triangle, we implicitly imagine 𝑠 is defined over
{0, 1} |𝑄(𝑇)∩C0 |.

Recall our goal is to argue that ℎ𝑇,𝑇 ′ |𝑠 is classical. Recalling Section 3.3, we see that
the classical terms constructed for a term ℎ𝑣,𝑤 in Equation (3.13) are only a function
of the decomposition on vertices 𝑣 and 𝑤 (in our case 𝑞𝑇 and 𝑞𝑇 ′). In particular, for
a fixed assignment 𝑠 and term ℎ𝑇,𝑇 ′ |𝑠, we obtain the classical term,

ℎ𝑇,𝑇 ′ |𝑠 :=
∑︁

\ 𝑗=(𝑗1, 𝑗2)
∈[ℓ𝑇]×[ℓ𝑇′]

∑︁
\𝑏𝑇,𝑇

′
\ 𝑗

𝜆(\𝑏𝑇,𝑇
′

\ 𝑗) |𝜓(\𝑏
𝑇,𝑇 ′

\ 𝑗)⟩⟨𝜓(\𝑏
𝑇,𝑇 ′

\ 𝑗) |, (3.52)

where \𝑏𝑇,𝑇
′

\ 𝑗 and 𝜆(\𝑏𝑇,𝑇
′

\ 𝑗) are defined as in Equations 3.14 to 3.17, except that we
use 𝑇,𝑇 ′ to refer to qudits, rather than 𝑣, 𝑤. Then, we have that the following 2-local
Hamiltonian is equivalent to 𝐻 |𝑠,

𝐻 (𝑐,𝑠) :=
∑︁
𝑇,𝑇 ′

ℎ𝑇,𝑇 ′ |𝑠 +
∑︁
𝑇

ℎ𝑇 |𝑠 .

Now, we have that by construction, any ground state |𝜓⟩ to 𝐻 (𝑐,𝑠) is (after some
1-local unitary transformations) equal to a ground state |𝜙⟩ of 𝐻 |𝑠; in turn, we can
obtain a ground state of the original Hamiltonian 𝐻 as |𝑠⟩ ⊗ |𝜙⟩. In particular, we
can write down a Hamiltonian equivalent to 𝐻 as∑︁
𝑠∈{0,1} | C0 |

|𝑠⟩⟨𝑠 | ⊗ 𝐻 (𝑐,𝑠) =
∑︁
𝑇,𝑇 ′

∑︁
𝑠∈{0,1} | C0 |

|𝑠⟩⟨𝑠 | ⊗ ℎ𝑇,𝑇 ′ |𝑠 +
∑︁
𝑇

∑︁
𝑠∈{0,1} | C0 |

|𝑠⟩⟨𝑠 | ⊗ ℎ𝑇 |𝑠 .

Unfortunately, since |C0 | can be as large as poly(𝑛), this yields an exponentially-large
Hamiltonian. But we use our earlier observation, which is that the decompositions
on 𝑇 and 𝑇 only depend on𝑄(𝑇) ∩C0. Since the local decompositions are the same,
so too are classical terms obtained in Equation (3.52). This means that for any 𝑇,𝑇 ′,∑︁

𝑠∈{0,1} | C0 |
|𝑠⟩⟨𝑠 | ⊗ ℎ(𝑐,𝑠)

𝑇,𝑇 ′ =
∑︁

𝑠′∈{0,1} | C0∩(𝑆𝑇∪𝑆𝑇′) |
|𝑠′⟩⟨𝑠′| ⊗ ℎ(𝑐,𝑠

′)
𝑇,𝑇 ′ ,

and the resulting Hamiltonian is

𝐻 (𝑐) =
∑︁
𝑇,𝑇 ′

∑︁
𝑠′∈{0,1} | C𝑇∪C𝑇′ |

|𝑠′⟩⟨𝑠′| ⊗ ℎ(𝑐,𝑠
′)

𝑇,𝑇 ′ +
∑︁
𝑇

∑︁
𝑠′∈{0,1} | C𝑇 |

|𝑠′⟩⟨𝑠′| ⊗ ℎ(𝑐,𝑠
′)

𝑇
. (3.53)

Since each tile 𝑇 is of constant size, each set C𝑇 ∪ C𝑇 ′ has constant size as well.
This implies we only get a constant blow-up in the number of terms of 𝐻, yielding
a polynomial-size instance. The locality of the instance depends on the max size of

102

the set C𝑇 ∪ C𝑇 ′ . Assuming this is bounded by 𝑘 , we obtain an 2 + 𝑘-local classical
Hamiltonian.

Correcting Removed Terms R. As in the original proof, a ground state |𝜓⟩ for
𝐻 (𝑐) can be constructed in NP. To obtain a ground state for the original Hamiltonian
𝐻, we need to correct the terms removed terms R. The first step is to remove the
classical qubits. We do this by successively measuring the classical qubits to obtain
a terminating restriction \𝑠 = (𝑠0, . . . , 𝑠ℓ).

Lemma 81 Suppose the above operation yields a series of assignments \𝑠 =

(𝑠0, . . . , 𝑠ℓ), taking |𝜓⟩ to |𝜙⟩ = |𝑠0, . . . , 𝑠ℓ⟩ |𝜙′⟩. Then, |𝜙⟩ is a ground state
for the Hamiltonian 𝐻 |\𝑠.

Proof: We show by induction. By assumption |𝜓⟩ is a ground state of𝐻 (𝑐) . Suppose
this holds for 𝑠0, . . . , 𝑠𝑖, with corresponding ground state |𝜓′⟩ of 𝐻′ := 𝐻 |𝑠0,...,𝑠𝑖 .
By definition C′ := C𝑖 (𝑠0, . . . , 𝑠𝑖−1) are the classical qubits of 𝐻′. This implies that
(after some single-qubit unitary transformation) each term ℎ ∈ 𝐻′ can be written as
ℎ =

∑
𝑠∈{0,1} | C′ | |𝑠⟩⟨𝑠 |C′ ⊗ ℎ̃𝑠, and thus 𝐻′ takes the form

∑︁
𝑠∈{0,1} | C′ |

|𝑠⟩⟨𝑠 |C′ ⊗
(∑︁
ℎ∈𝐻′

ℎ̃𝑠

)
=

∑︁
𝑠∈{0,1} | C′ |

Π𝑠 ⊗
(∑︁
ℎ∈𝐻′

ℎ̃𝑠

)
i.e., 𝐻′ is block diagonal w.r.t. the qubits in C′. Thus, if |𝜓′⟩ is a ground state of
𝐻′, then,

0 = ⟨𝜓′| 𝐻′ |𝜓′⟩ =
∑︁

𝑠∈{0,1} | C′ |
⟨𝜓′| Π𝑠𝐻

′Π𝑠 |𝜓′⟩
Π𝑠𝐻

′Π𝑠⪰0
⇐⇒ ∀𝑠 ⟨𝜓′| Π𝑠𝐻

′Π𝑠 |𝜓′⟩ = 0.

This implies that Π𝑠 |𝜓′⟩ is a ground state of 𝐻′|𝑠 for any measurement outcome 𝑠.

Therefore, the above procedure yields a Hamiltonian 𝐻′ = 𝐻 |\𝑠 and a ground state
|𝜓⟩ of 𝐻′. Now, recall that the removed term ℎ ∈ R is an interior, fully quantum
term of the Hamiltonian 𝐻. Assumption 2 implies that there is a correction unitary
operator 𝐿ℎ anti-commuting with ℎ and commuting with every other term in 𝐻′.
Thus, we may perform the measurementM = { 1

2 (I + ℎ),
1
2 (I − ℎ)} and we can

apply 𝐿ℎ to flip the measurement outcome if required.

103

Gibbs state sampling

In this section, we extend the previous proof so that rather than obtaining a single
ground state of 𝐻, we obtain a sample from the Gibbs distribution. Initially, we
apply exactly the same steps as in the previous section, until we obtain a classical
Hamiltonian

𝐻 (𝑐) =
∑︁
𝑇,𝑇 ′

∑︁
𝑠′∈{0,1} | C𝑇∪C𝑇′ |

|𝑠′⟩⟨𝑠′| ⊗ ℎ(𝑐,𝑠
′)

𝑇,𝑇 ′ +
∑︁
𝑇

∑︁
𝑠′∈{0,1} | C𝑇 |

|𝑠′⟩⟨𝑠′| ⊗ ℎ(𝑐,𝑠
′)

𝑇
(3.54)

equivalent to the original Hamiltonian with terms R removed. Now, rather than
obtaining a ground state of 𝐻 (𝑐) , we assume that we can sample from the Gibbs
distribution of 𝐻 (𝑐) , and then argue that we can recover the Gibbs distribution of the
original Hamiltonian, by correcting for the terms R. We will show how to correct
these terms inductively. Let 𝑄 be the set of terms that were either not removed or
already corrected, and let 𝐻𝑄 =

∑
ℎ∈𝑄 ℎ. Assume we have the Gibbs state 𝜌(𝑄) of

𝐻𝑄

𝜌(𝑄) :=
1
𝑍

∑︁
𝑠,𝜆

𝑄
𝑠

𝑒−𝛽𝜆
𝑄
𝑠 |𝑠⟩⟨𝑠 | ⊗ Π

𝑄

𝜆𝑠
,

where we use the fact that the Hamiltonian 𝐻𝑄 is diagonal w.r.t. 𝑠 ∈ {0, 1} |C0 |.
To correct terms ℎ ∈ R, we use the same observation from Lemma 81 that given
some classical restriction 𝑠, the resulting Hamiltonian 𝐻 |𝑠 is block-diagonal w.r.t.
the qubits in C1(𝑠). Thus, we may assume we see the state

𝜌(𝑠,𝑡) (𝑄) =
∑︁
𝜆
𝑄
𝑠,𝑡

𝑒−𝛽𝜆
𝑄
𝑠,𝑡 |𝑠, 𝑡⟩⟨𝑠, 𝑡 |Π𝑄

𝜆𝑠,𝑡

with probability proportional to
∑
𝜆
𝑄
𝑠,𝑡
𝑒−𝛽𝜆

𝑄
𝑠,𝑡 . Here, Π𝑄

𝜆𝑠,𝑡
is the projector onto the

𝜆
𝑄
𝑠,𝑡-eigenspace of 𝐻𝑄 |𝑠,𝑡 . The idea is to apply the proof of Lemma 62 within the

subspace |𝑠, 𝑡⟩⟨𝑠, 𝑡 | ⊗ I. Specifically, we make the following observations.

• Lemma 59 holds since each ℎ ∈ R is a fully quantum term (for any classical
restriction, ℎ is in the interior).

• By Assumption 2 there is a correction operator 𝐿ℎ anti-commuting with ℎ
and commuting with all other terms of 𝐻𝑄 |𝑠,𝑡 , for any choice of 𝑠, 𝑡. This
assumption means that 𝐿ℎ itself is only defined over non-classical qubits
and thus for a particular choice of 𝑠, 𝑡, we can think of this operator as
being |𝑠, 𝑡⟩⟨𝑠, 𝑡 | ⊗ 𝐿ℎ. Then, Lemma 60 follows by tensoring both sides of
Equations (3.22) and (3.23) with |𝑠, 𝑡⟩⟨𝑠, 𝑡 |.

104

• Similarly, Lemma 61 holds, again by tensoring both matrices with |𝑠, 𝑡⟩⟨𝑠, 𝑡 |.

These observations plus the proof of Lemma 62 implies that we can prepare the
state,

�̂�(𝑄 ∪ {ℎ}) = 1
𝑍 (𝑄 ∪ {ℎ})

∑︁
𝜆
𝑄
𝑠,𝑡

∑︁
𝜆ℎ∈{±𝑐𝑝}

exp(−𝛽𝜆𝑄𝑠,𝑡) · exp(−𝛽𝜆ℎ) |𝑠, 𝑡⟩⟨𝑠, 𝑡 |Π𝑄∪{ℎ}
𝜆
𝑄
𝑠,𝑡+𝜆ℎ

It’s easy to see that within the subspace |𝑠, 𝑡⟩⟨𝑠, 𝑡 | this is the correct Gibbs state.
Moreover, across different (𝑠, 𝑡), (𝑠′, 𝑡′) pairs, we retain the correct distribution.
This is because correcting additional fully quantum terms ℎ only applies an identical
multiplicative factor across each of the |𝑠, 𝑡⟩⟨𝑠, 𝑡 |-subspaces.

Acknowledgement
We thank Dominik Hangleiter, Sandy Irani, Anurag Anshu, and Yongtao Zhan for
the helpful discussion.

YH is supported by the National Science Foundation Graduate Research Fellowship
under Grant No. 2140743; YH is also supported by NSF grant CCF-2430375. Any
opinion, findings, and conclusions or recommendations expressed in this material
are those of the authors(s) and do not necessarily reflect the views of the National
Science Foundation. Jiaqing Jiang is supported by MURI Grant FA9550-18-1-0161
and the IQIM, an NSF Physics Frontiers Center (NSF Grant PHY-1125565).

3.6 Appendix: Gibbs sampling reduction for defected Toric code
As described in the proof overview section (Section 3.1), our Gibbs sampler gives
an O(𝑛2)-time algorithm for preparing the Gibbs states of the defected Toric code
𝐻𝐷𝑇 . In this section we instead describe a different and slower Gibbs sampler for
𝐻𝐷𝑇 , which achieves the following Claim 82 and captures the key ideas for our
Gibbs sampler for general qubit 2D CLHs.

We recall the defected Toric code, 𝐻𝐷𝑇 . As shown in Figure 3.10a, imagine
partitioning the plaquettes in the 2D lattice as Black B and WhiteW. The defected
Toric code is putting 𝑍 and 𝑋 terms in white and black plaquetes respectively:

𝐻𝐷𝑇 =
∑︁
𝑝∈B

𝑐𝑝𝑋
𝑝 +

∑︁
𝑝∈W

𝑐𝑝𝑍
𝑝, (3.55)

where 𝑐𝑝 can be an arbitrary real number. In the standard Toric code 𝑐𝑝 = −1 for
any 𝑝. One can check that 𝐻𝐷𝑇 is a qubit 4-local CLH on 2D.

105

𝑍𝑍
𝑍 𝑍

𝑋𝑋
𝑋 𝑋

(a) Partition the pla-
quettes as Black B and
W. Put 𝑍 terms on
white plaquettes and
put 𝑋 terms on black
plaquettes then we get
the defected Toric code
𝐻𝐷𝑇 .

𝑝1

𝑝2 𝑝4

𝑝3

𝑢 𝑣

𝜏 𝑤

(b) Remove the white
terms on the odd lines,
𝐻𝐷𝑇 will become𝐻 (2)

𝐷𝑇

which can be viewed as
a qudit 2-local CLH.

𝑞2

𝑞4

𝑞3

𝑞1

𝑞2

𝑞4

𝑞3

𝑞1

𝑞2

𝑞4

𝑞3

𝑞1

𝑞2

𝑞4

𝑞3

𝑞1

(c) The final classi-
cal Hamiltonian. On
each white plaquette
which has not been re-
moved, we put four
qubits 1,2,3,4.

Figure 3.10: Recreation of Figure 3.2. Figure 3.2 is recreated here for convenience, with
more detail on the resulting classical Hamiltonian 𝐻 (2𝑐)

𝐷𝑇
.

Claim 82 For any inverse temperature 𝛽, if one can do classical Gibbs sampling
with respect to 𝐻 (2𝑐)

𝐷𝑇
, 𝛽 within precision 𝜖 in classical time 𝑇 , then one can prepare

the quantum Gibbs state with respect to 𝐻𝐷𝑇 , 𝛽 within precision 𝜖 in quantum time
𝑇 + O(𝑛2).

In this section we describe the algorithm and the reduction in details, while as the
correctness proof is omitted, as is the same as in Section 3.4. The algorithm will
require removing a set R ⊆ W of terms from 𝐻𝐷𝑇 . In particular, if we remove
alternating rows of white terms (as in Figure 3.10b) then treat the 4 qubits in the
support of each remaining white term as a single grouped qudit, then the resulting
Hamiltonian 𝐻 (2)

𝐷𝑇
is 2-local. We’ll denote the remaining white terms as O =W\R.

Notation. For simplicity, here we assume the 2D lattice is a square 𝐿 × 𝐿 lattice
embedded on a plain which has boundaries. The number of qubits is 𝑛 = 𝐿 × 𝐿.
For better illustration, here we denote the computational basis as |𝑥⟩ ∈ {±1}𝑛 rather
than the conventional notation |𝑥⟩ ∈ {0, 1}𝑛, where the Pauli 𝑋 and 𝑍 operators act
as

𝑍 |1⟩ = |1⟩ , 𝑍 |−1⟩ = − |−1⟩ (3.56)

𝑋 |1⟩ = |−1⟩ , 𝑋 |−1⟩ = |1⟩ . (3.57)

106

This notion is only used in this section. We say |𝑥⟩ is of even Hamming weight if
there are even 1s in 𝑥.

The classical Hamiltonian𝐻 (2𝑐)
𝐷𝑇

. To map𝐻 (2)
𝐷𝑇

to the classical Hamiltonian𝐻 (2𝑐)
𝐷𝑇

,
we change the basis of the qudit. More specifically, for any term 𝑝 ∈ O, consider the
4 qubits on 𝑝, as shown in Figure 3.10b, name them as 𝑢, 𝑣, 𝑤, 𝜏 . A natural basis
for the 4 qubit Hilbert space is the computational basis, which are common eigen-
values of {𝑍𝑢}𝑢∈𝑝. An alternative labeling is choosing another set of 4 independent
stabilizers

𝑆
𝑝

1 := 𝑍 𝑝, 𝑆𝑝2 := 𝑋𝑢 ⊗ 𝑋𝑣, 𝑆𝑝3 := 𝑋𝑣 ⊗ 𝑋𝑤, 𝑆𝑝4 := 𝑋𝑤 ⊗ 𝑋𝜏, (3.58)

The 4 new stabilizers will specify a new basis for the 4-qubit Hilbert space indexed
by 𝑠 ∈ {±1}4, which can be viewed as the computational basis for 4 virtual qubits.
The 4 new stabilizers act as Pauli Z on the 4 virtual qubits. That is if we use (𝑍∗𝑖)𝑝

to denote Pauli Z on virtual qubit 𝑖 in plaquette 𝑝, then

(𝑍∗𝑖)𝑝 = 𝑆𝑝𝑖 .

Each 𝑠 ∈ {±1}4 indicates the common eigenvector of 𝑆𝑝
𝑖

w.r.t eigenvalues 𝑠𝑖. Denote
the corresponding vector as |𝑠𝑝⟩∗ where ∗ means |𝑠𝑝⟩∗ is the computational basis
for the virtual qubits rather than the original qubits. As an example one can verify
that |𝜓𝑝⟩ in Eq. (3.63) corresponds to |1111𝑝⟩∗. One can check that in this virtual
qubit basis, we have that the Hermitian terms12 can be re-phrase as

∀𝑝 ∈ O, 𝑝 = 𝑐𝑝 · (𝑍∗1)𝑝, (3.59)

Besides, note that 𝑋𝑢 ⊗ 𝑋𝜏 = 𝑆𝑝2 × 𝑆
𝑝

3 × 𝑆
𝑝

4 , and 𝑋⊗4 = 𝑋⊗2 ⊗ 𝑋⊗2, we have

For horizontal 𝑝 connecting 𝑝1, 𝑝3, 𝑝 = 𝑐𝑝 · (𝑍∗3)𝑝1 ⊗ (𝑍∗2 ⊗ 𝑍∗3 ⊗ 𝑍∗4)𝑝3 .

(3.60)

For vertical 𝑝 connecting 𝑝1, 𝑝2, 𝑝 = 𝑐𝑝 · (𝑍∗4)𝑝1 ⊗ (𝑍∗2)𝑝2 . (3.61)

Thus the resulting Hamiltonian is exactly 𝐻
(2𝑐)
𝐷𝑇

as shown in Figure 3.10c and
Eq. (3.62), where we omitting the subscript * for simplicity,

𝐻
(2𝑐)
𝐷𝑇

:=
∑︁

horizontal (𝑝, 𝑝𝑖 , 𝑝 𝑗)
𝑐𝑝 · (𝑍3)𝑝𝑖 ⊗ (𝑍2𝑍3𝑍4)𝑝 𝑗 +

∑︁
vertical (𝑝, 𝑝𝑖 , 𝑝 𝑗)

𝑐𝑝 · (𝑍4)𝑝𝑖 ⊗ (𝑍2)𝑝 𝑗 +
∑︁
𝑝∈𝑂

𝑐𝑝𝑍
𝑝

1

(3.62)
12With some abuse of notations, we use 𝑝 to denote both the plaquette and the Hermitian term

on the plaquette.

107

In summary, by choosing another basis each qudit can be viewed as four virtual
qubits, and the 2-local Hamiltonian𝐻 (2)

𝐷𝑇
becomes a classical Hamiltonian𝐻 (2𝑐)

𝐷𝑇
w.r.t

those virtual qubits. The computational basis of the virtual qubits |𝒚⟩∗ corresponds
to an eigenvector of 𝐻 (2)

𝐷𝑇
, denoted as |𝜙(𝒚)⟩. Denote the eigenvalue w.r.t |𝒚⟩∗ and

𝑝 ∈ B ∪ O as 𝜆𝑝 (𝒚), and define

𝜆B∪O (𝒚) :=
∑︁

𝑝∈B∪O
𝜆𝑝 (𝒚).

Preparation of a ground state
Before describing our Gibbs state sampler, we first review a folklore quantum
algorithm for preparing the ground state of the standard Toric code.

For ease of presentation, for any subset 𝑄 ⊆ W or 𝑄 ⊆ B, we use “terms in 𝑄” to
denote the operators (−𝑋 𝑝) if 𝑝 ∈ B, and (−𝑍 𝑝) if 𝑝 ∈ W. Note that the ground
state of the standard Toric code is the common (−1)-eigenvector of all terms inW
and B. The first step in preparing the ground state of 𝐻𝐷𝑇 is preparing the ground
state of 𝐻 (2)

𝐷𝑇
, where

𝐻
(2)
𝐷𝑇

:=
∑︁

𝑝∈B∪O
𝑝

is two local.

The ground state of 𝐻 (2)
𝐷𝑇

is easy to describe. For each term 𝑝 ∈ O, denote |𝜓𝑝⟩ as
the uniform superposition of basis states with even Hamming weights, that is

|𝜓𝑝⟩ = 1
2

∑︁
𝑥∈{±1}𝑝 ,|𝑥 | even

|𝑥𝑝⟩ , (3.63)

where {±1}𝑝 is the computational basis of the four qubits of 𝑝. One can check that���𝜓B∪O〉 := ⊗𝑝∈O |𝜓𝑝⟩ , (3.64)

is the common (−1)-eigenstate of all terms in B ∪ O.

Remark 4 The underlying reason that the common (−1)-eigenstates of plaquette
terms in B ∪ O can be chosen as a product of constant-qudit state, lies in the fact
that the Hamiltonian 𝐻 (2)

𝐷𝑇
can be viewed as a 2-local qudit commuting Hamiltonian

after grouping the four qubits in 𝑝 ∈ O as a qudit. Thus by the Structure Lemma,
one can prepare the ground state by constant depth quantum circuit.

Next, we need to correct for the removed terms 𝑝 ∈ R. Starting with
��𝜓B∪O〉, we

sequentially measure the current state w.r.t the measurement −𝑍 𝑝, for each 𝑝 ∈ R.

108

(a) If we get −1, we know the current state is the common (−1)-eigenstate for all
terms in B ∪ O ∪ {𝑝} and we move to the next 𝑝 ∈ R.

(b) Otherwise we perform a deterministic correction: as shown in Figure 3.2c, we
can connect term 𝑝 to the boundary by a path 𝛾𝑝. The deterministic correction
is done by applying a sequence of 𝑋 operator, denoted as

𝐿𝑝 = ⊗𝑣∈𝛾𝑋𝑣, (3.65)

where 𝑋𝑣 is the Pauli X on qubit 𝑣. Note that 𝐿𝑝 anti-commutes with 𝑝, and
commutes with all other terms. Thus the final state will again be the common
(−1)-eigenstate for all terms in B ∪ O ∪ {𝑝}.

Remark 5 For a state |𝜓⟩ before the measurement for 𝑝 ∈ R is applied, we end
up with a −1-eigenstate whether we fall in the first or second case above. However,
note that the exact states we obtain in each case may not be equal. This contributes
to the difficulty of obtaining a Gibbs sampler.

In summary, to prepare the ground state, one first prepares the ground state of a 2-
local Hamiltonian

∑
𝑝∈B −𝑋 𝑝+

∑
𝑝∈O −𝑍 𝑝 . Then performs a deterministic correction

to modify the ground state of the 2-local Hamiltonian to the ground state of the Toric
code. The ground state preparation for the defected Toric code is similar.

Preparation of the Gibbs state
We now describe how to generalize the ground state preparation algorithm to prepare
Gibbs state for the defected Toric code. At a high level, the idea is to:

• Step 1: First prepare the Gibbs state of the Hamiltonian

𝐻
(2)
𝐷𝑇

:=
∑︁

𝑝∈B∪O
𝑝.

by mapping it to the classical 2-local Hamiltonian 𝐻 (2𝑐)
𝐷𝑇

defined in Eq. (3.62).

• Step 2: Perform a randomized correction, to modify the current Gibbs state
for 𝐻 (2)

𝐷𝑇
to the final Gibbs state for 𝐻𝐷𝑇 .

Step 1: Gibbs state for 𝐻 (2)
𝐷𝑇

. As in Figure 3.10b, 𝐻 (2)
𝐷𝑇

is 2-local in the sense that:
if we group every 4 qubits in a plaquette 𝑝 ∈ O as one qudit, then every 𝑝 ∈ O only
acts on one qudit, every 𝑝 ∈ B acts on two qudits.

109

Moreover, since we only change local basis for every qudit, |𝜙(𝒚)⟩ is in fact a tensor
product of single-qudit state. Thus we can prepare the quantum Gibbs state of 𝐻 (2)

𝐷𝑇

by a simple algorithm: do classical Gibbs sampling for 𝐻 (2𝑐)
𝐷𝑇

, get a string 𝒚, and
prepare the tensor product state |𝜙(𝒚)⟩.

Step 2: Correcting removed terms. Step 2 is more tricky. By Step 1, we assume
that we can sample the string 𝒚 with probability exp(−𝛽𝜆B∪O (𝒚))/𝑍B∪O , where
𝑍B∪O is the normalization factor.

Then we take a term in the removed set 𝑝 ∈ R, and try to prepare the Gibbs state
w.r.t.

(
𝐻B∪O∪{𝑝}, 𝛽

)
. Consider measuring |𝜙(𝒚)⟩ w.r.t 𝑝. Denote the measurement

outcome as 𝜆 ∈ {±𝑐𝑝}. Denote the projectors to be

Π
𝑝
+𝑐𝑝 :=

1
2

(
𝐼 + 𝑝

𝑐𝑝

)
, Π

𝑝
−𝑐𝑝 :=

1
2

(
𝐼 − 𝑝

𝑐𝑝

)
. (3.66)

We have

𝑃𝑟 (outcome is 𝜆) = exp(−𝛽𝜆B∪O (𝒚))/𝑍 · ⟨𝜙(𝒚) |Π𝑝

𝜆
|𝜙(𝒚)⟩. (3.67)

Recall that at this moment, the ideal distribution we want is

𝑃𝑟𝑖𝑑𝑒𝑎𝑙 (outcome is 𝜆) is proportional to exp(−𝛽𝜆B∪O (𝒚)) · exp(−𝛽𝜆). (3.68)

Compared to the preparation of ground state, which only needs to correct the
eigenvalue, in the task of Gibbs state preparation, to get Eq. (3.68) from Eq. (3.67),
it seems that one needs to correct

• The probability incurred by measurement, that is ⟨𝜙(𝒚) |Π𝑝

𝜆
|𝜙(𝒚)⟩.

• The probability incurred by the new energy exp(−𝛽𝜆).

This first correction is tricky because it depends on 𝜙(𝒚), thus the probability to
be corrected is different for every 𝒚. We circumvent this problem by an intuitive
oblivious randomized correction. That is if we get outcome 𝜆 then

• With probability 𝑝𝑟𝑜𝑏 := exp(−𝛽𝜆)
exp(𝛽𝜆)+exp(−𝛽𝜆) we do nothing.

• With probability 1 − 𝑝𝑟𝑜𝑏 we apply the correction operation 𝐿𝑝 defined in
Eq. (3.65).

110

One may doubt whether the above algorithm successfully prepares the Gibbs state
or not, since the correction only brings us back to the right eigenspace, but does not
really help us get back to the right state, as noted in Remark 5. That is

𝐿𝑝Π
𝑝
+𝑐𝑝 |𝜙(𝒚)⟩ ̸∝ Π

𝑝
−𝑐𝑝 |𝜙(𝒚)⟩ , (3.69)

where here ̸∝ means the two vectors are not proportional to each other. In
fact, 𝐿𝑝Π+𝑐𝑝 |𝜙(𝒚)⟩ might not even be (proportional to) one of the eigenstates
{Π𝑝
+𝑐𝑝 |𝜙(𝒚)⟩}𝒚 ∪ {Π

𝑝
−𝑐𝑝 |𝜙(𝒚)⟩}𝒚. The key fact that makes this oblivious random-

ized correction work, is the symmetry of the eigenspace and the fact that 𝐿𝑝 is a
unitary. More specifically, let ΠB∪O𝒚 be the common eigenspace of 𝑝′ ∈ B ∪O w.r.t
eigenvalue 𝜆𝑝′ (𝒚). Then

𝐿𝑝Π
𝑝
+𝑐𝑝Π

B∪O
𝒚 Π

𝑝
+𝑐𝑝𝐿𝑝 = Π

𝑝
−𝑐𝑝Π

B∪O
𝒚 Π

𝑝
−𝑐𝑝 . (3.70)

Finally, note that all 𝑝 ∈ R can be corrected independently. Thus it suffices to
perform the same measure and randomized correction procedure sequentially.

For general qubit 2D CLH 𝐻 without classical qubits, denote the removable terms
R as the set of terms whose measurement value can be corrected without changing
the value of other terms. We prepare the Gibbs state of 𝐻 in a similar way as
for the defected Toric code. That is we first remove terms in R and transform the
remaining 2-local Hamiltonian 𝐻 (2) to a classical Hamiltonian 𝐻 (2𝑐) . Then we first
do classical Gibbs sampling for 𝐻 (2𝑐) , then prepare the Gibbs state of 𝐻 (2𝑐) , then
perform measurement and randomized correction to prepare the Gibbs state of 𝐻.

3.7 Appendix: Proofs of reductions for specific Hamiltonians
Proof:[Proof of Lemma 50]

By the argument in Section 3.3, we can always assume that 𝐻1𝐷 is 2-local. To make
the notation consistent with Section 3.3 we rename 𝐻1𝐷 as 𝐻 (2)1𝐷 . Then according to
Section 3.3 we can construct a 1D qudit classical 2-local Hamiltonian 𝐻 (2𝑐)1𝐷 .

By assumption, we assumed that the dimension of qudit is 𝑑 = 2𝑘 for some 𝑘 , then
every qudit can be viewed as 𝑘 qubits and the computational basis can be written
as {0, 1}𝑘 . Note that with an arbitrary ordering of the 𝑘 qubits, we can view the 𝑛
qudits on 1D chain as 𝑛𝑘 qubits on 1D chain. Let 𝑍 be the Pauli Z operator, note
that

|0⟩⟨0| = 1
2 (𝑍 + 𝐼), |1⟩⟨1| = 1

2 (𝐼 − 𝑍). (3.71)

111

Thus we can rewrite classical Hamiltonian 𝐻 (2𝑐)1𝐷 as sum of tensors of 𝑍 . that is

𝐻
(2𝑐)
1𝐷 =

∑︁
𝑆

𝑎𝑆𝑍
𝑆, (3.72)

where 𝑆 are subset of qubits, and 𝑎𝑆 = 0 if 𝑑𝑖𝑎𝑚(𝑆) ≥ 2𝑘 , where 𝑑𝑖𝑎𝑚 is the
diamater of 𝑆, that is the farthest distance between qubits in 𝑆 w.r.t the 1D chain.
𝑍𝑆 is the tensor product of Pauli 𝑍 on qubits in S.

Besides, since 𝐻1𝐷 is translation-invariant, so does 𝐻 (2𝑐)1𝐷 . Combined with the rapid
mixing Gibbs sampler for 1D finite-range, translation-invariant Ising model [GZ03;
Hol85; HS89], we complete the proof.

The proof of Lemma 51 involves the notations of induced algebra, which should be
read after reading section 3.5. Proof:[Proof of Lemma 51]

Let ℎ be the translation-invariant term in the 2D Hamiltonian which acts on two
systems (qubits) 𝑎, 𝑏. LetA𝑎

ℎ
andA𝑏

ℎ
as the induced algebra of ℎ on systems 𝑎 and

𝑏 respectively.

𝑞
𝑎 𝑏𝑏𝑎 𝑏

𝑎

𝑎

𝑏

Figure 3.11: Using translational invariance. By translational invariance, each term acting
on qubit 𝑞 is equivalent to ℎ𝑎,𝑏.

As pictured in Figure 3.11, consider a qubit 𝑞 on the 2D lattice, whose Hilbert space
is denoted byH . Since by assumption all terms are commuting, we have

[A𝑎
ℎ ,A

𝑏
ℎ] = 0.

By the Structure Lemma13, that is Lemma 68, the algebra A𝑎
ℎ

induces a decompo-
sition ofH ,

H =

𝑚⊕
𝑖=1
H𝑖, whereH𝑖 = H(𝑖,1) ⊗ H(𝑖,2) , and A𝑎

ℎ =

𝑚⊕
𝑖=1
L(H(𝑖,1)) ⊗ I(H(𝑖,2)).

Since 𝑞 is a qubit thus dim(H) = 2, we know either of the following cases holds:
13Note that there are constructive proofs for the structure Lemma, as in Section 7.3 of [Gha+15].

112

(a) 𝑚 = 1 and dim(H(1,1)) = 1. ThenA𝑎
ℎ

acts trivially onH . In other words, ℎ is
a single-qubit term acts on system 𝑏. By definition of local Hamiltonian, ℎ is
a Hermitian term. We denote (give a name to) the eigenvalues and eigenstates
as 𝜆0,|0⟩ and 𝜆1,|1⟩. One can check that

𝐻2𝐷 = 2
∑︁

𝑞 on 2D
𝜆0 |0⟩⟨0|𝑞 + 𝜆1 |1⟩⟨1|𝑞 .

(b) 𝑚 = 1 and dim(H(1,1)) = 2. By the Structure Lemma we know A𝑏
ℎ

acts
trivially onH . This case can be handled in the same way as (a).

(c) 𝑚 = 2. In this case dim(H𝑖) = 1 for 𝑖 = 1, 2. We denote the basis forH1,H2

as |0⟩ , |1⟩. Then by the Structure Lemma,A𝑎
ℎ

keeps |0⟩ , |1⟩ invariant. Since
A𝑎
ℎ
,A𝑏

ℎ
commute, by Corollary 69 A𝑏

ℎ
also keeps |0⟩ , |1⟩ invariant. Thus ℎ

keeps the computational basis {0, 1}2 invariant. In other words, ℎ diagonalize
in the computational basis, and thus is a linear combination of terms

|00⟩⟨00|, |01⟩⟨01|, |10⟩⟨10|, |11⟩⟨11|.

Note that
|0⟩⟨0| = 1

2 (𝑍 + 𝐼) and |1⟩⟨1| = 1
2 (𝐼 − 𝑍).

We rewrite 𝐻 as the 2D Ising model with magnetic fields

𝐻2𝐷 =
∑︁

𝑞 on 2D
𝛼𝐼 𝐼𝑞 + 𝛼𝑍𝑍𝑞 +

∑︁
𝑞,𝑞′ adjacent

𝛽𝑍𝑞 ⊗ 𝑍𝑞′ , (3.73)

where we implicitly use the fact that 𝐻2𝐷 is translation-invariant to get the same
coefficient 𝛼𝐼 , 𝛼𝑍 , 𝛽 for different 𝑞, 𝑞′.

113

C h a p t e r 4

LOCAL HAMILTONIAN PROBLEM WITH SUCCINCT
GROUND STATE IS MA-complete

4.1 Introduction
A fundamental question in quantum chemistry and condensed matter physics is find-
ing the ground energy of a many-body system. A main obstacle to designing efficient
classical algorithms for finding ground energy, is the need for exponentially many
parameters to completely characterize the ground state. In practice, computational
experts often make an additional assumption on the many-body system, that is, the
ground state can be well-approximated by a succinct classical description. Here
“succinct” refers to that there exists a poly-size classical circuit which computes
the amplitude of the ground state on any computational basis. For instance, the
Density Matrix Renormalization Group method (DMRG) [Whi92; Whi93; Sch05;
LVV15], extensively used in quantum chemistry, operates under the assumption
that the ground states can be represented by matrix-product states (MPS) [Vid03].
The Hartree-Fock method [Fis87], on the other hand, assumes that the ground
states can be represented as Fermionic Gaussian states. For two-dimensional and
higher-dimensional local Hamiltonians, researchers have devised successful heuris-
tic algorithms by representing the ground states by contractible projected entangled
pair states [VMC08; Cor16; Van+16]. Additionally, there have been endeavors to
model ground states using neural networks [CT17; SSC22; GD17; Car+19].

In this work, we study the complexity-theoretic implications of the succinct ground
state assumption, which is used in the above classical algorithms. Recall that the
decision version of the ground energy finding problem, often referred to as the local
Hamiltonian problem (LHP) [KKR06], is that given an 𝑛-qubit 𝑘-local Hamiltonian
𝐻 =

∑𝑚
𝑖=1 𝐻𝑖, two parameters 𝑎, 𝑏 where 𝑏 − 𝑎 ≥ 1/𝑝𝑜𝑙𝑦(𝑛), determine whether

the ground energy of 𝐻, denoted as 𝜆(𝐻), is less than 𝑎 or greater than 𝑏. Here we
introduce a variant of LHP, denoted as LHP with succinct ground state, where when
𝜆(𝐻) ≤ 𝑎, we further assume that there exists a normalized ground state |𝜓⟩ which
is succinct, that is, there exists a poly-size classical circuit 𝐶𝜓 (·) which computes
the amplitude of an unnormalized version of |𝜓⟩ as 𝐶𝜓 (𝑥) = 𝑐 · ⟨𝑥 |𝜓⟩ for some 𝑐. It
is well-established that the standard LHP is QMA-complete [KKR06]. The central

114

question (denoted as Q1) we ask is, how the assumption of a succinct ground state
affects the complexity of LHP, or more precisely, what complexity class LHP with
a succinct ground state is.

It is essential to note that the definition of succinct states is more general than MPS,
Fermionic Gaussian states, and similar representations. For instance, the concept
of a normalized state |𝜙⟩ being succinct does not necessarily imply efficient sample
access to |𝜙⟩, that is, the ability to efficiently generate sample 𝑥 with probability
|⟨𝑥 |𝜙⟩|2. This kind of sample access is a crucial element in many dequantization
algorithms [Ten+95; Bra+23b], thus those dequantization algorithms do not apply
to our setting. Besides, the Hamiltonian 𝐻 we consider is general and may not
be stoquastic, where stoquastic Hamiltonian [Bra+08] is known to be sign-free
and general Hamiltonians suffer from the sign problem [Han+20]. Due to those
difficulties, for a general succinct state |𝜙⟩, it is highly non-trivial to classically certify
the energy, that is, ⟨𝜙 |𝐻 |𝜙⟩. However, our main result, Theorem 83, demonstrates
that we can still efficiently dequantize the quantum verifier in LHP. More connections
between Theorem 83, dequantization algorithms and stoquastic Hamiltonians are
put into Section 4.1.

Theorem 83 (Main theorem) LHP with succinct ground state is MA-complete.

In addition to exploring the underlying complexity aspects of classical algorithms,
another motivation for LHP with succinct ground state is to gain insight into the
boundaries of quantum advantage. Specifically, there is a widespread belief that
quantum computers may provide an exponential advantage for quantum chemistry
and condensed matter physics [Cao+19; McA+20; Bau+20]. One of the most
promising pieces of evidence is the phase estimation algorithm [Til+22], which
suggests that if we can prepare a guided state, that is, a state which has 1/𝑝𝑜𝑙𝑦(𝑛)
overlap with the ground state, then there is an efficient quantum algorithm to estimate
the ground energy. The guided states are suggested to be obtained from existing
classical algorithms like DMRG or Hartree-Fock, which has a succinct classical
description. An important and natural question (denoted as Q2) that arises from
this context is, with such classical access to the guided states, can we dequantize the
phase estimation algorithm?

Existing literature partially refutes Q2, while many questions remain under research.
Specifically, one can define the LHP with guided state [GL22] as a variant of LHP,
where when 𝜆(𝐻) ≤ 𝑎, we further assume that there exists a guided state. For

115

the standard definition of the guided states1, existing works do indicate a potential
quantum advantage: LHP with guided state is proved to be BQP-complete by
Gharibian and Le Gall [GL22], when the guided state is given; and proved to be
QCMA-complete by Weggemans, Folkertsma and Cade [WFC23], when the guided
state is viewed as a witness. When relaxing the precision (the value of 𝑏−𝑎 in LHP)
from inverse-poly to constant, one can efficiently dequantize their algorithms, that
is, in BPP [GL22] and in NP [WFC23] respectively. Conditioned on BPP ⊊ BQP
and NP ⊊ QCMA, the above complexity results suggest that the quantum advantage
for LHP is achieving higher precision.

However, these complexity results do not provide a comprehensive answer to Q2,
since they overlooked the origin of the guided states. As numerically investigated
in [Lee+23], if the guided states are obtained from existing classical algorithms, for
Hamiltonians in practice it is possible that those guided states are much better than
the standard guided states, which will enable not only an efficient quantum algorithm
for the LHP, but also an efficient classical algorithm2. Inspired by [Lee+23], from
a complexity view we raise the following question (denoted as Q3): Is there a
definition of “strong guided states”, such that the complexity of LHP with such
guided state drops from quantum to classical?

Here quantum refers to QCMA-complete which is the complexity of LHP with
standard guided states [WFC23], classical refers to MA-complete, and LHP with
strong guided state is defined as a variant of LHP, where when 𝜆(𝐻) ≤ 𝑎, we further
assume that there exists a ground state which admits a strong guided state.

Recall that previous results [GL22; WFC23] suggest that the quantum advantage
for LHP is achieving higher precision. Our result (Theorem 83) shows that even for
inverse-poly precision, if the guided state in the Yes instance is extremely strong,
i.e. is the ground state, the complexity of LHP with such guided states does
drop to MA-complete. This opens the possibility that with a proper definition of
strong guided states, even for inverse-poly precision, the LHP with strong guided
states is MA-complete, which will give an affirmative answer to Q3. This MA-
complete will imply that heuristic randomized classical algorithms might tackle

1We refer the standard guided state to be a state which has 1/𝑝𝑜𝑙𝑦(𝑛) overlap with the ground
state, and can be prepared by polynomial-size quantum circuit [GL22; WFC23].

2[Lee+23] also argued that with even standard guided states, for chemistry Hamiltonian which is
a special case of the general local (Fermionic) hamiltonian, it is possible that the classical heuristics
can efficiently estimate the ground energy to the desired precision. Philosophically, [Lee+23] argued
that if a classical algorithm is good enough to get a good guided state, which is non-trivially close to
a ground state, then the problem itself might be classically tractable.

116

the corresponding LHP when the strong guided state is given, thus giving a partial
answer to Q2. Based on our work, we propose a definition of strong guided states
to be the succinct approximation of ground state, which has entry-wise 1/𝑝𝑜𝑙𝑦(𝑛)
overlap with the ground state:

Definition 84 (Strong guided state) We say an 𝑛-qubit normalized quantum state
|𝜙⟩ admits a strong guided state, if there is a normalized state |𝜂⟩ which is succinct,
and satisfies that

∀𝑥, ⟨𝜂 |𝑥⟩⟨𝑥 |𝜙⟩ ≥ ⟨𝜙 |𝑥⟩⟨𝑥 |𝜙⟩/𝑝𝑜𝑙𝑦(𝑛). (4.1)

Note that ⟨𝑥 |𝜙⟩ can be a complex number, ⟨𝜂 |𝑥⟩⟨𝑥 |𝜙⟩ ≥ ⟨𝜙 |𝑥⟩⟨𝑥 |𝜙⟩/𝑝𝑜𝑙𝑦(𝑛) im-
plicitly implies that |𝜂⟩ has information about the “sign” of the ground state. We
conjecture the following.

Conjecture 85 LHP with strong guided state is MA-complete.

Theorem 83 is a special case of Conjecture 85, since a succinct ground state admits
a strong guided state as itself. We hope our techniques will be useful for proving
Conjecture 85. Conjecture 85 is known to be true if the Hamiltonian in the LHP is
stoquastic [Bra14]. The definition of strong guided states here is unarguably strong,
which might not be the real reason that makes classical algorithms work [Lee+23].
Here we view the LHP with strong guided state as a starting point of quantitatively
understanding the boundary of quantum advantage for LHP — With a standard
guided state, there is an efficient quantum algorithm for the LHP. However, when
the guided state is too strong, there might also be efficient classical algorithms. What
is the precise definition of strong guided states that enable classical algorithms and
thus invalidate the potential quantum advantage?

For clarity, we give a further remark on the conceptual relationship among previous
work, Theorem 83 and Conjecture 85. Previous work [GL22; WFC23] suggests that
quantum advantage for LHP is achieving higher precision. There are two intuitive
reasons for such quantum advantage. The direct reason is that the overlap between
the guided state and the ground state is 1/𝑝𝑜𝑙𝑦(𝑛)which is relatively small compared
to one, and a quantum algorithm which can directly perform quantum operations
on guided states seems more powerful than a classical algorithm which can only
query the amplitude one by one. A further reason is that general Hamiltonians can
have sign problems which makes it hard for classical algorithms to utilize the guided

117

states. Otherwise, if the Hamiltonian is sign-free (stoquastic), even for inverse-poly
precision, previous work [Bra14] already showed that the corresponding LHP with
strong guided state could be dequantized, that is, MA-complete instead of QCMA-
complete. Our result (Theorem 83) shows that for general Hamiltonians, the sign
problem can be resolved with the help of extremely strong guided states. Our result
suggests that the sign problem might also be resolved with the help of certain strong
guided states which lie in between standard and extremely strong guided states.

Related works
In this section, we compare our work (Theorem 83) with some related works.

Stoquastic Hamiltonians and quantum Monte Carlo method. Technically,
our work is closely related to the quantum Monte Carlo method for stoquas-
tic Hamiltonian and their generalizations, especially the fixed node Monte Carlo
method [Ten+95; Bra+23b]. For a Hamiltonian 𝐻 with a ground state |𝜓⟩, the
goal of the quantum Monte Carlo method mentioned here is to define a Markov
chain which can efficiently sample from the ground state |𝜓⟩, that is, outputting 𝑥
with probability |⟨𝑥 |𝜓⟩|2. To ease notations, we denote those quantum Monte Carlo
methods as sampling algorithms, and denote the runtime required for the Markov
chain to be close to the ground state sampling as mixing time.

To begin with, Bravyi and Terhal [BT10] first proved that if the Hamiltonian is
frustration-free, stoquastic, and has a 1/𝑝𝑜𝑙𝑦(𝑛) spectral gap, one can design a
sampling algorithm with 𝑝𝑜𝑙𝑦(𝑛) mixing time. For a general Hamiltonian 𝐻, one
can transform 𝐻 to a stoquastic Hamiltonian with some heuristic information by
the fixed node Monte Carlo method [Ten+95]. Roughly speaking, given a general
Hamiltonian 𝐻 and an arbitrary known (un-normalized) state |𝜙⟩ which we have
query access to, [Ten+95] constructs a stoquastic Hamiltonian which is called the
fixed node Hamiltonian 𝐹𝐻,𝜙, such that

(1) The ground energy of 𝐹𝐻,𝜙 is always an uppper bound of the ground energy
of 𝐻, that is,

𝜆(𝐹𝐻,𝜙) ≥ 𝜆(𝐻).

(2) If |𝜙⟩ is the ground state of 𝐻, then |𝜙⟩ is the ground state of 𝐹𝐻,𝜙 and
𝜆(𝐹𝐻,𝜙) = 𝜆(𝐻).

The drawback of 𝐹𝐻,𝜙 is that its norm can be exponentially large, which might
influence the mixing time. Even assuming |𝜙⟩ is the ground state of 𝐻, there

118

is no rigorous bound for the mixing time of most sampling algorithms based on
𝐹𝐻,𝜙 [Ten+95; BH18]. A breakthrough is made by Bravyi et al. recently [Bra+23b].
Instead of defining a discrete-time Markov chain like most sampling algorithms,
from 𝐹𝐻,𝜙 Bravyi et al. defined a continuous-time Markov chain. Furthermore,
Bravyi et al. proved that if |𝜙⟩ is the true ground state of 𝐻, and the Hamiltonian
has a 1/𝑝𝑜𝑙𝑦(𝑛) spectral gap together with some other good conditions, then the
continuous-time Markov Chain has 𝑝𝑜𝑙𝑦(𝑛) mixing time, that is, can efficiently
sample from the ground state.

Our work builds from the Markov Chain in [Bra+23b] and the properties of the
fixed node Monte Carlo method [Ten+95; Bra+23b]. The main difference between
our work and [Bra+23b] is that we work on different tasks. [Bra+23b] aimed for
sampling from the ground state, with query access to a trusted ground state. While
we aim for testing ground energy, with query access to an adversarially claimed
“ground state”. The fact that the claimed “ground state” can be adversarial is the
main difficulty of solving LHP with succinct ground state. If the witness (the claimed
“ground state” |𝜙⟩) is trusted to be the true ground state, then the LHP with succinct
ground state can be trivially solved by computing the ground energy directly. That
is, 𝜆(𝐻) = ⟨𝑥 |𝐻 |𝜙⟩⟨𝑥 |𝜙⟩ for 𝑥 with ⟨𝑥 |𝜙⟩ ≠ 0, which can be computed efficiently since 𝐻
is sparse and ⟨𝑥 |𝐻 |𝜙⟩ = ∑

𝑦 ⟨𝑥 |𝐻 |𝑦⟩⟨𝑦 |𝜙⟩.

Another remark is that since we work on a different task from [Bra+23b], we do
not need the Hamiltonian to have a spectral gap or other additional conditions.
Thus even in the Yes instance, one cannot efficiently sample from the ground state.
Instead we utilize the promise gap to distinguish the Yes and No instances. Roughly
speaking, we define a “Markov chain” that is well-defined for the Yes instances but
becomes ill-defined for the No instances. Our verification algorithm distinguishes
the Yes and No instances by testing whether the “Markov chain” is well-defined.
More can be seen in the proof overview, that is, Section 4.1.

Dequantization algorithms. Conceptually, our work is close to several dequanti-
zation algorithms. In particular, Gharibian and Le Gall [GL22] proved when the
promise gap is 1/𝑝𝑜𝑙𝑦(𝑛), (promise gap is the value of 𝑏 − 𝑎 in LHP), and for
the setting where the guided state is given, that LHP with succinct guided state is
BQP-complete. When the promise gap is a constant, one can efficiently dequantize
the quantum phase estimation algorithm. Our main theorem—the MA-complete in
Theorem 83—does not contradict with their result since we are working with suc-
cinct ground state rather than with succinct guided states, and on 1/𝑝𝑜𝑙𝑦(𝑛) promise

119

gap rather than constant promise gap. Our setting is more similar to [Liu21], where
Liu proved that stoquastic LHP with succinct ground state is MA-complete. The
main difference between our work and Liu’s is that we do not assume the Hamiltonian
to be stoquastic.

Besides, although aiming for different tasks, one may wonder whether the dequan-
tization techniques initiated by Tang [Tan19; Chi+22; Chi+20] work for our setting.
Tang et al.’s settings are very different from ours, since they require sample access
to the data, while the concept of succinct does not imply sample access. To illustrate
this point, consider a 3SAT formula 𝑆(𝑥), where 𝑥 = 𝑥1𝑥2...𝑥𝑛 are the values of the
variables, 𝑆(𝑥) ∈ {0, 1} denotes whether 𝑥 is a satisfying assignment. By definition,
the 𝑛-qubit quantum state |𝜙⟩ which is a uniform superposition of all satisfying
assignments is succinct, since the 3SAT formula can compute the amplitude of an
unnormalized version of |𝜙⟩. However, it is not evident how to efficiently obtain
uniform samples of all satisfying assignments from the 3SAT formula.

Verification of matrix products. There is an extensive study of the complexity
of matrix verification [Fre79; BŠ06], that is, given query access to three matrices
𝐴, 𝐵, 𝐶 ∈ R2𝑛×2𝑛 , verifying whether 𝐴𝐵 = 𝐶. Here we use 2𝑛 as the matrix size for
convenience of comparison with our setting.

In particular, [Fre79] gave a classical algorithm with high probability in time pro-
portional to 22𝑛, and [BŠ06] gave a quantum algorithm in time 𝑂 (25𝑛/3). Our
setting is conceptually related to verifying matrix product where the matrices have
different sizes, that is, related to the question where |𝜙⟩ ∈ R2𝑛 , 𝐻 ∈ R2𝑛×2𝑛 , and
testing whether the multiplication ⟨𝜙|𝐻 |𝜙⟩ ≤ 𝑎 or ≥ 𝑏. In Theorem 83 we claim
that we have a MA-type algorithm which only needs 𝑝𝑜𝑙𝑦(𝑛)-queries instead of
𝑝𝑜𝑙𝑦(2𝑛). Note that this is achieved because we are testing ground energy rather
than testing matrix multiplication for arbitrary |𝜙⟩ , 𝐻. Besides, in our setting the
norm of 𝐻 ∈ R2𝑛×2𝑛 is bounded by 𝑝𝑜𝑙𝑦(𝑛). A more detailed generalization where
our algorithm works can be seen in Appendix 4.5. This generalization only involves
linear algebra and thus might be easier to understand for readers outside quantum
information.

Proof overview
To prove Theorem 83, one needs to prove that LHP with succinct ground state is
MA-hard and is inside MA. The MA-hardness directly comes from the Section
4 in [Bra+08], which is originally designed to prove that stoquastic Hamiltonian is

120

MA-hard. We explain why it implies LHP with succinct ground state is MA-hard
in more detail in Appendix 4.6.

Our main contribution is proving LHP with succinct ground state is inside MA. For
better illustration, we make some simplifications here. Note that if an 𝑛-qubit state
|𝜙⟩ is succinct, one can efficiently compute the ratio of any two amplitudes, that
is, ⟨𝑥 |𝜙⟩⟨𝑦 |𝜙⟩ . Since we only use the ratios, to ease notations, here we assume that we
can efficiently compute the amplitude ⟨𝑥 |𝜙⟩,∀𝑥, that is, we have query access to
|𝜙⟩. For simplicity, in this section, we also assume that 𝑎 = 0, 𝑏 = 1/𝑝𝑜𝑙𝑦(𝑛), and
assume that 𝐻 and its ground state are real-valued. We always use the notations |𝜓⟩
for the true ground state, and |𝜙⟩ for an arbitrary state.

To explain our MA verification protocol, we begin with a direct algorithm that fails,
then illustrate the ideas to overcome the difficulties. Note that when 𝑎 = 0, 𝑏 =

1/𝑝𝑜𝑙𝑦(𝑛), given 𝐻 and query access to a succinct state |𝜙⟩, the LHP with succinct
ground state is equivalent to test

• Whether 𝐻 |𝜙⟩ = 0 with 𝜆(𝐻) = 0,

• Or ⟨𝜙 |𝐻 |𝜙⟩ ≥ 1/𝑝𝑜𝑙𝑦(𝑛).

Here we assume |𝜙⟩ ≠ 0 which can be checked easily by providing a 𝑥 where
⟨𝑥 |𝜙⟩ ≠ 0.

One cannot directly compute 𝐻 |𝜙⟩, since both 𝐻 and |𝜙⟩ are of exponential size.
However, note that since 𝐻 is sparse, one can efficiently check every row of 𝐻 |𝜙⟩,
that is,

⟨𝑥 |𝐻 |𝜙⟩ =
∑︁
𝑦

⟨𝑥 |𝐻 |𝑦⟩⟨𝑦 |𝜙⟩. (4.2)

Utilizing this, one may immediately come up with the following verification algo-
rithm:

Algorithm 3 A direct algorithm
1: for 𝑡 = 1 to 𝑝𝑜𝑙𝑦(𝑛) do
2: Randomly sample 𝑥 ← {0, 1}𝑛
3: If ⟨𝑥 |𝐻 |𝜙⟩ ≠ 0, return Reject ▷ Check row 𝑥

4: end for
5: Return Accept

121

Unfortunately, Algorithm 3 does not guarantee soundness. It checks the number
of zeros in 𝐻 |𝜙⟩ rather than the corresponding energy ⟨𝜙|𝐻 |𝜙⟩. Here is a simple
counter-example: Let 𝐻 = 𝐼, let |𝜙⟩ = |0⟩⊗𝑛. 𝐻 is a No instance since 𝜆(𝐻) = 1,
while Algorithm 3 accepts with probability close to 1. Although one can easily
rule out this case by adding preprocessing, it is easy to construct more complex
counter-examples which still make Algorithm 3 fail.

Our key idea to circumvent the above problem, is instead of uniformly sampling
the rows to be checked, we use the quantum Monte Carlo method to give different
weights to different rows. Specifically, we add checks in the quantum Monte Carlo
algorithm which is originally designed for sampling from the ground state. We first
explain how [BT10] implicitly3 used this idea to prove that LHP w.r.t. frustration-
free stoquastic Hamiltonian is MA-complete, then explain how we adapt this idea
to general Hamiltonians. A remark is that the MA verification protocol below is
only a simplified version of the final protocol. In the final protocol, we need more
witnesses and more checks. In particular, for the witness, we not only need a
classical circuit for computing the amplitude of the claimed ground state, but also
need a claimed ground energy, and a “good” computational basis, which is a warm
start of the Markov chain. More details are in Section 4.4.

Let us begin with the MA verification protocol when 𝐻 is stoquastic, where sto-
quastic means ⟨𝑥 |𝐻 |𝑦⟩ ≤ 0 for all 𝑥 ≠ 𝑦. When 𝜆(𝐻) = 0, one can show that 𝐻
has a ground state |𝜓⟩ whose amplitudes are real and non-negative [BT10]. Given
query access to the ground state |𝜓⟩, one can connect 𝐻 to a Markov Chain [BT10],
whose transition matrix 𝑃 is defined as

𝑃𝑥→𝑦 = ⟨𝑦 |𝑃 |𝑥⟩ := ⟨𝑦 |𝐼 − 𝛽𝐻 |𝑥⟩ ⟨𝑦 |𝜓⟩⟨𝑥 |𝜓⟩ , (4.3)

where 𝛽 ≤ 1/∥𝐻∥ is to make ⟨𝑦 |𝐼 − 𝛽𝐻 |𝑥⟩ ≥ 0, thus to make ⟨𝑦 |𝑃 |𝑥⟩ ≥ 0 since it
represents a probability. Furthermore, when 𝜆(𝐻) = 0, every column of 𝑃 sums to
1, thus 𝑃 is a stochastic matrix and a legal transition matrix. The key connection
between the Hamiltonian𝐻 and the Markov chain𝑃, is that the stationary distribution
of 𝑃 is the distribution of sampling the ground state, that is, 𝑥 ∼ |⟨𝑥 |𝜓⟩|2. Thus one
can sample from the ground state by a random walk w.r.t. 𝑃, where the mixing time
depends on the spectral gap of 𝑃. A modification [BT10] of this sampling algorithm
can be used to decide whether 𝜆(𝐻) = 0 or 𝜆(𝐻) ≥ 1/𝑝𝑜𝑙𝑦(𝑛) when𝐻 is stoquastic.

3[BT10] does not explain their results in the way we describe here. In their setting the succinct
classical circuit for the ground state is unknown, their main focus is constructing a circuit that can
compute the ratio of the amplitudes, which obscures the idea we described here.

122

Specifically, consider performing the random walk for time 𝑡 = 𝑝𝑜𝑙𝑦(𝑛)—in the Yes
instance, 𝑃 is a legal transition matrix thus the random walk is always well-defined.
In the No instance, for some 𝑥, the probability 𝑃𝑥→𝑦 is negative or the sum of
column 𝑥 of 𝑃 is not 1, and thus the random walk is not well-defined. The algorithm
rejects if the random walk meets that 𝑥. Furthermore, in the No instance, one can
show that the accepting probability will be upper bounded by a value proportional
to (1 − 𝛽𝜆(𝐻))𝑡 , which decays exponentially fast since 𝜆(𝐻) ≥ 1/𝑝𝑜𝑙𝑦(𝑛) and
𝛽 = 1/𝑝𝑜𝑙𝑦(𝑛) in the No instance.

When 𝐻 is not stoquastic, ⟨𝑦 |𝐼 − 𝛽𝐻 |𝑥⟩ can have both positive and negative entries,
and so does the entries in the ground state |𝜓⟩. Thus the transition matrix defined
in Eq. (4.3) is not well-defined even in the Yes instance. One way to handle this
problem, that is, making the transition matrix well-defined, is to use the fixed node
Monte Carlo method [Ten+95] introduced in the related work section, which con-
structs a stoquastic Hamiltonian 𝐹𝐻,𝜙 from a general Hamiltonian and an arbitrary
state |𝜙⟩, with the property that 𝜆(𝐹𝐻,𝜙) ≥ 𝜆(𝐻). Although 𝐹𝐻,𝜙 is stoquastic and
thus can be connected to a Markov chain, the main drawback of using 𝐹𝐻,𝜙 directly
is that the norm of 𝐹𝐻,𝜙 can be exponentially large. To define a legal probability in
Eq. (4.3), that is, 𝑃𝑥→𝑦 ≥ 0, one needs to choose the scaling factor 𝛽 ≤ 1/∥𝐻∥ to be
exponentially small, which might in turn make the accepting probability in the No
instance, which is upper bounded by∼ (1−𝛽𝜆(𝐻))𝑡 , to be close to 1. In other words,
the exponentially small scaling factor 𝛽 in Eq. (4.3) hides any differences between
the 𝐻 in the Yes and No instance, thus making it hard to efficiently distinguish the
two cases.

Instead of using a discrete-time Markov chain (DTMC), we build our protocol from
the continuous-time Markov Chain (CTMC) by Bravyi et al. [Bra+23b], which is
based on the fixed node Hamiltonian 𝐹𝐻,𝜙. In case that the readers are not familiar
with CTMC, we briefly explain some key concepts here. Recall that a DTMC is
described by a transition matrix 𝑃, whose entries denote the transition probability.
A CTMC is described by a generator matrix 𝐺, whose entries denote the transition
rate, that is, for small 𝑡 and 𝑥 ≠ 𝑦, the probability of jumping from 𝑥 to 𝑦 is
approximately ⟨𝑦 |𝐺 |𝑥⟩ · 𝑡. Let the initial distribution be 𝜈, and the distribution after
evolving DTMC w.r.t. time 𝑡 and transition matrix 𝑃 is 𝑃𝑡𝜈; The distribution after
evolving CTMC w.r.t. time 𝑡 and generator 𝐺 is 𝑒𝐺𝑡𝜈.

Now we review the key property of the CTMC [Bra+23b], and explain our MA ver-
ification protocol for the non-stoquastic 𝐻. The generator of the CTMC [Bra+23b]

123

is a rescaled version of 𝐹𝐻,𝜙, that is, the 𝐺𝐻,𝜙 defined as

⟨𝑦 |𝐺𝐻,𝜙 |𝑥⟩ :=𝜆(𝐹𝐻,𝜙)𝛿𝑦,𝑥 − ⟨𝑦 |𝐹𝐻,𝜙 |𝑥⟩
⟨𝑦 |𝜙⟩
⟨𝑥 |𝜙⟩ . (4.4)

Note that 𝐺𝐻,𝜙 may also have an exponentially large norm. That means, if one
simulates the evolution w.r.t. 𝐺𝐻,𝜙 and time 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) with a fixed step-size, that
is, 𝑒𝐺𝑡 =

(
𝑒𝐺𝛿

) 𝑡/𝛿, one needs to choose 𝛿 to be exponentially small, and thus the
algorithm runs in time 𝑡/𝛿 and is in-efficient. The key result in [Bra+23b] is that if
|𝜙⟩ is the true ground state of 𝐻, then

(1) 𝐺𝐻,𝜙 is a legal generator.

(2) Furthermore, the CTMC w.r.t. time 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) can be simulated efficiently
by Gillespie’s algorithm.

Here Gillespie’s algorithm is another standard CTMC simulation method with vary-
ing step-size. In particular, [Bra+23b] proved that if the Hamiltonian has a spectral
gap and some other properties, Gillespie’s algorithm converges to the stationary dis-
tribution of the CTMC in 𝑝𝑜𝑙𝑦(𝑛) time. A very rough interpretation is that by using
the Gillespie’s algorithm, simulating this CTMC does not require the exponentially
small scaling factor 𝛽 anymore, which is what we are searching for. Inspired by the
verification algorithm for stoquastic Hamiltonian described previously, for general
Hamiltonian, our MA-verification algorithm is adding consistency checks in the
CTMC—in the Yes instance, since 𝐺𝐻,𝜙 is a legal generator, the CTMC is always
well-defined. In the No instance, some parts of the generator are not well-defined.
We reject if the random walk meets such parts.

The completeness and soundness of our protocols come from the following observa-
tions. For the completeness, a concern one may have is that, compared to [Bra+23b],
our setting does not have a large spectral gap, and thus even in the Yes instance the
CTMC cannot be close to the ground state sampling. We observe that the rapid
mixing property is irrelevant for deciding the LHP. Instead what we need is

(1) 𝐺𝐻,𝜙 is a legal generator thus the random walk is well-defined.

(2) One can efficiently simulate the CTMC w.r.t. time 𝑡 = 𝑝𝑜𝑙𝑦(𝑛).

Note that whether a generator is legal is independent of whether the generator has
a large spectral gap. We will show that both of the above conditions hold without

124

a spectral gap [Bra+23b]. The soundness of our protocol mainly comes from the
property of the Fixed node Hamiltonians, that is, the ground energy of 𝐹𝐻,𝜙 is
always an upper bound of the ground energy of 𝐻:

𝜆(𝐹𝐻,𝜙) ≥ 𝜆(𝐻),

for any adversary state |𝜙⟩ [Ten+95]. Thus in the No case, the accepting probability
decreases exponentially fast since

𝜆(𝐹𝐻,𝜙) ≥ 𝜆(𝐻) ≥ 1/𝑝𝑜𝑙𝑦(𝑛).

Conclusion and future work
In this manuscript, we study the underlying complexity question of existing classical
algorithms for LHP, which assumes that the ground state has a succinct classical de-
scription. More specifically, we define the local Hamiltonian problem with succinct
ground state, and prove this problem is MA-complete. A remark is that similar to
stoquastic, succinct is a basis dependent property. It might be interesting to study
the computational complexity of finding the basis which makes the ground state
succinct (if such basis exists), where similar questions for stoquastic have been stud-
ied in [MLH19; KT19; Ioa+20]. In addition, the MA-complete result is established
by simulating a continuous-time Markov chain using Gillespie’s algorithm. An
interesting avenue for future work would be to investigate whether this result could
also be demonstrated without this continuous-time technique.

As we illustrate in the introduction, one of the most interesting open questions is how
to relax the assumption from classical access of the ground state to classical access
of certain guided states, that is, how to give a proper definition of strong guided states
where the LHP with strong guided states is MA-complete. Based on our work, we
give a candidate definition of strong guided states as Definition 84, and give the
corresponding Conjecture 85. The intuitive reason that we believe Conjecture 85
is true, is because according to Eq. (4.1), the strong guided state contains two key
pieces of information: (a) the strong guided state knows the sign of every amplitude,
which makes the problem closer to stoquastic Hamiltonian; (b) the strong guided
state roughly knows every amplitude with certain errors. Note that although in
this manuscript we choose a basic Markov chain which is sensitive to errors and
cannot handle (b), there exist more complicated and robust quantum Monte Carlo
methods. In particular, the Projection Monte Carlo algorithm in [Bra14] can handle
similar errors as in (b), where they proved if the Hamiltonian is stoquastic, then

125

LHP with strong guided state is MA-complete. The obstacle which prevents us
from extending our Theorem 83 to Conjecture 85 by using the Projection Monte
Carlo method [Bra14], is the step before using the Markov chain. That is, the fixed
node Hamiltonian 𝐹𝐻,𝜙 builds from a strong guided state |𝜙⟩ might not keep the
promise gap. One way to tackle Conjecture 85 is to develop or identify variants of
fixed node Hamiltonians which keep the promise gap when assisted with the strong
guided states.

Our primary motivation for defining strong guided states is to dequantize quantum
algorithms, based on the conjectures [Lee+23] that the guided states from existing
classical algorithms are better than the standard guided states. However, on the other
hand, it is also interesting to ask, with strong guided states, can we design better
quantum algorithms? Here better means fewer gates, lower depth quantum circuits,
or much easier to implement in near-term quantum devices.

Structure of the chapter
The structure of this chapter is as follows. In Section 4.2 we give notations and
definitions which are used throughout this manuscript. In Section 4.3 we introduce
the techniques used in our verification protocol. In Section 4.3 we briefly explain
the argument from [Bra+23b] that w.l.o.g. we can assume that the Hamiltonian and
states are real-valued. In Section 4.3 we review the continuous-time Markov chain
and Gillespie’s algorithm. In Section 4.3 and Section 4.3 we list the construction
and key properties of the fixed node Monte Carlo method [Ten+95], and the variant
of using continuous-time Markov chain [Bra+23b].

Finally, in Section 4.4 we give our MA verification protocol and prove Theorem
83. In particular, in Section 4.4 we assume that we have access to continuous-time
randomness, that is, we assume that we can sample 𝑢 from uniform distribution of
[0, 1] in 𝑝𝑜𝑙𝑦(𝑛) time. In Section 4.4 we substitute this assumption by discrete
randomness and prove that the error induced by the discretization is small.

4.2 Notations and Definitions
Notations. We useR,C to represent the real field and complex field. Let 𝑆 ⊆ {0, 1}𝑛,
we use |𝜙⟩ ∈ R|𝑆 | to denote a vector, 𝐻, 𝑀 ∈ R|𝑆 |×|𝑆 | to denote matrices, and 𝑥, 𝑦 ∈ 𝑆
to denote bit strings. The entries of |𝜙⟩ are indexed by 𝑥 ∈ 𝑆, denoted by ⟨𝑥 |𝜙⟩,
similarly for 𝐻, 𝑀 .

We use ∥ |𝜙⟩ ∥ to denote the vector L2 norm. We say |𝜙⟩ is normalized if ∥ |𝜙⟩ ∥ = 1.

126

We say an un-normalized state |𝜙⟩ is regularized if ⟨𝑥 |𝜙⟩ ≠ 0 for all 𝑥 ∈ 𝑆. We use
∥𝑀 ∥ to denote its spectral norm, that is,

∥𝑀 ∥ := max
|𝜙⟩∈R |𝑆 | ,|𝜙⟩≠0

∥𝑀 |𝜙⟩ ∥
∥ |𝜙⟩ ∥ .

We use 𝑎𝑚𝑎𝑥(𝑀) to denote max𝑥,𝑦∈𝑆 |⟨𝑥 |𝑀 |𝑦⟩|. For a Hermitian 𝐻, we use 𝜆(𝐻)
to denote its ground energy, that is, the minimum eigenvalue. We use 𝜆𝑚𝑎𝑥 (𝐻) to
denote its maximum eigenvalue. For 𝑑 = 𝑝𝑜𝑙𝑦(𝑛), we say 𝐻 is 𝑑-sparse if

(1) Each row and each column of 𝐻 only have 𝑑 non-zero entries.

(2) Given a row index 𝑥 ∈ 𝑆 (or column index 𝑦 ∈ 𝑆), there is a poly(n)-time
algorithm which can list all the non-zero entries in row 𝑥 (or column 𝑦), that
is, list all 𝑧 ∈ 𝑆 such that ⟨𝑥 |𝐻 |𝑧⟩ ≠ 0, and similarly for column 𝑦.

We say a Hermitian matrix𝐻 or a vector |𝜙⟩ is real-valued if ⟨𝑥 |𝐻 |𝑦⟩ ∈ R,∀𝑥, 𝑦 ∈ 𝑆,
or ⟨𝑥 |𝜙⟩ ∈ R,∀𝑥 ∈ 𝑆.

A matrix 𝑀 is stochastic if

(1) ⟨𝑦 |𝑀 |𝑥⟩ ≥ 0,∀𝑥 and 𝑦.

(2)
∑
𝑦 ⟨𝑦 |𝑀 |𝑥⟩ = 1,∀𝑥.

A Hermitian matrix 𝑀 is stoquastic if

⟨𝑥 |𝑀 |𝑦⟩ ≤ 0,∀𝑥 ≠ 𝑦, 𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆.

Given a vector |𝜙⟩ ∈ C|𝑆 |, we use 𝑠𝑢𝑝𝑝(𝜙) to denote the positions of non-zero
entries, that is,

𝑠𝑢𝑝𝑝(𝜙) := {𝑥 ∈ 𝑆 |⟨𝑥 |𝜙⟩ ≠ 0}.

We use
��𝜙𝑠𝑢𝑝𝑝〉 ∈ C|𝑠𝑢𝑝𝑝(𝜙) | to denote the vector obtained by deleting 0 values in |𝜙⟩.

For a vector |𝜙⟩ ∈ R|𝑆 |, we use 𝐷𝑖𝑎𝑔(𝜙) ∈ R|𝑆 |×|𝑆 | to denote the diagonal matrix
where

⟨𝑥 |𝐷𝑖𝑎𝑔(𝜙) |𝑥⟩ := ⟨𝑥 |𝜙⟩, for 𝑥 ∈ 𝑆.

When 𝑆 = {0, 1}𝑛, we call 𝐻, 𝑀 ∈ C2𝑛×2𝑛 𝑛-qubit operators, and |𝜓⟩ , |𝜙⟩ ∈ C2𝑛

𝑛-qubit vectors. When considering an 𝑛-qubit Hermitian 𝐻, we will always use
|𝜓⟩ ∈ C2𝑛 to denote the ground state, and |𝜙⟩ ∈ C2𝑛 to denote an arbitrary 𝑛-qubit

127

state, which may or may not be the ground state. Note that in this manuscript |𝜓⟩
and |𝜙⟩ may be unnormalized.

An 𝑛-qubit 𝑘-local Hamiltonian is an 𝑛-qubit Hermitian operator 𝐻 ∈ C2𝑛×2𝑛 , where
𝐻 =

∑𝑚
𝑗=1 𝐻 𝑗 , and 𝐻 𝑗 acts nontrivially on at most 𝑘 qubits. We always assume that

𝑘 is a constant, 𝑚 = 𝑝𝑜𝑙𝑦(𝑛), and ∥𝐻∥ ≤ 𝑝𝑜𝑙𝑦(𝑛).

For any real number 𝛼, we use ⌊𝛼⌋ for the largest integer which is smaller than
𝛼, and ⌈𝛼⌉ for the smallest integer which is greater than 𝛼. We use ln (or log) to
represent the logarithm w.r.t. the natural exponent 𝑒 (or 2).

Let 𝑤 be a random variable. We use w.p. as an abbreviation for with probability.
We say 𝑤 is sampled from the uniform distribution [0, 1], if the probability density
function is 𝑝(𝑤) = 1,∀𝑤 ∈ [0, 1], and 𝑝(𝑤) = 0 for 𝑤 < 0 and 𝑤 > 1. We say 𝑤
is sampled from the exponential distribution of parameter 𝜆 > 0, if the probability
density function is 𝑝(𝑤) = 𝜆𝑒−𝜆𝑤 for 𝑤 ≥ 0, and 𝑝(𝑥) = 0 for 𝑤 < 0.

We also consider the truncated discretized version of the exponential distribution.

Definition 86 Let 𝐾 be an integer, 𝛿 ∈ R be a small value, and 𝜆 > 0. We
define the truncated discretized exponential distribution D𝐾,𝛿,𝜆 as a distribution
over {𝑘𝛿}𝑘=0,1,..,𝐾 . In particular, we say 𝑤 is sampled fromD𝐾,𝛿,𝜆 if the probability
is

𝑃𝑟𝑤∼D𝐾,𝛿,𝜆 (𝑤 = 𝑘𝛿) =
exp(−𝜆𝑘𝛿) − exp(−𝜆(𝑘 + 1)𝛿), if 0 ≤ 𝑘 ≤ 𝐾 − 1

exp(−𝜆𝑘𝛿), if 𝑘 = 𝐾

0 if 𝑘 < 0 or 𝑘 > 𝐾 .

Note that
∀𝑘 ∈ {0, ..., 𝐾}, 𝑃𝑟𝑤∼D𝐾,𝛿,𝜆 (𝑤 ≥ 𝑘𝛿) = exp(−𝜆𝑘𝛿).

Definition 87 (Succinct quantum state) We say an 𝑛-qubit normalized state |𝜙⟩
is succinct if there exists a poly(𝑛)-size classical circuit 𝐶𝜙 which can compute
the amplitude of |𝜙⟩ up to a common factor, that is, 𝐶𝜙 (𝑥) = 𝑐𝜙 (𝑛) · ⟨𝑥 |𝜙⟩, where
0 < 𝑐𝜙 (𝑛) ≤ 2𝑝𝑜𝑙𝑦(𝑛) is a function independent of 𝑥.

Note that if |𝜙⟩ is succinct then one can compute the ratio of amplitudes of |𝜙⟩,
that is, ⟨𝑥 |𝜙⟩⟨𝑦 |𝜙⟩ =

𝐶𝜙 (𝑥)
𝐶𝜙 (𝑦) . The requirement of 𝑐𝜙 (𝑛) ≤ 2𝑝𝑜𝑙𝑦(𝑛) comes from the fact that

𝐶𝜙 (𝑥) should be efficiently described by 𝑝𝑜𝑙𝑦(𝑛)-bits.

128

Definition 88 (LHP with succinct ground state) Given (𝐻, 𝑎, 𝑏)where𝐻 =
∑𝑚
𝑖=1 𝐻𝑖

is an 𝑛-qubit 𝑘-local Hamiltonian, ∥𝐻∥ = 𝑝𝑜𝑙𝑦(𝑛), 𝑚 = 𝑝𝑜𝑙𝑦(𝑛), 𝑘 is a constant;
𝑎, 𝑏 are two parameters and 𝑏 − 𝑎 ≥ 1/𝑝𝑜𝑙𝑦(𝑛). Besides, it is promised that one of
the following holds:

• Yes instance: 𝜆(𝐻) ≤ 𝑎, and there exists a ground state |𝜓⟩ which is succinct.

• No instance: 𝜆(𝐻) ≥ 𝑏.

The local Hamiltonian problem with succinct ground state is deciding whether
(𝐻, 𝑎, 𝑏) is the Yes instance or the No instance.

We implicitly assume that there is a sufficiently large polynomial 𝑝(𝑛) = 𝑝𝑜𝑙𝑦(𝑛),
such that every value in Definition 88, that is, ⟨𝑥 |𝐻 |𝑦⟩, 𝑎, 𝑏, 𝑚, 𝐶𝜓 (𝑥) can be repre-
sented by 𝑝(𝑛)-bits. More clarification on precision can be found in Appendix 4.11
Remark 6. To ease analysis, we also assume that we can use 𝑝𝑜𝑙𝑦(𝑛)-time to sample
the discretized exponential distribution D𝐾,𝛿,𝜆 exactly for parameters specified in
Appendix 4.11 Remark 7.

Recall our main theorem is as follows.

Theorem 89 Under the precision assumptions (Remark 6 and Remark 7 in Appendix
4.11), LHP with succinct ground state is MA-complete.

We will prove Theorem 89 in the following sections. A remark is that a slightly
modified proof can generalize Theorem 89 from local Hamiltonians to sparse Hamil-
tonians whose spectral norm is bounded by 𝑝𝑜𝑙𝑦(𝑛).

4.3 Preliminaries
We first give two facts on the exponential function and the spectral norm, which will
be used repetitively. The proof can be found in Appendix 4.7.

Fact 90 For any 𝑥 ∈ [−1, 1], |𝑒−𝑥 − (1 − 𝑥) | ≤ 2𝑥2.

Fact 91 Let 𝑆′ ⊆ 𝑆 ⊆ {0, 1}𝑛 be two non-empty sets. Let 𝑀 ∈ R|𝑆 |×|𝑆 | be a
Hermitian matrix. Let 𝑁 ∈ R|𝑆′ |×|𝑆′ | be the submatrix of 𝑀 by restricting rows and
columns in 𝑆′. Then

𝜆(𝑀) ≤ 𝜆(𝑁) ≤ 𝜆𝑚𝑎𝑥 (𝑁) ≤ 𝜆𝑚𝑎𝑥 (𝑀).

129

In particular,

∥𝑁 ∥ ≤ ∥𝑀 ∥.

Reduction to real Hamiltonians
In Definition 88 the 𝑛-qubit 𝑘-local Hamiltonian 𝐻 and 𝑛-qubit state |𝜓⟩ can have
complex values. This section is to explain w.l.o.g. we can assume that 𝐻 and |𝜓⟩
are real-valued by adding one ancilla qubit. The following argument is simplified
from [Bra+23b].

Let |𝜙⟩ be any eigenstate of 𝐻 of eigenvalue 𝛼. Write 𝐻 = 𝐻𝑅 + 𝑖𝐻𝐼 where 𝐻𝑅, 𝐻𝐼
are real-valued and 𝑘-local, write |𝜙⟩ = |𝜙𝑅⟩ + 𝑖 |𝜙𝐼⟩ where |𝜙𝑅⟩ , |𝜙𝐼⟩ are real-
valued. Define an (𝑛 + 1)-qubit Hamiltonian 𝐻′ and (𝑛 + 1)-qubit states

��𝜙′0〉 , ��𝜙′1〉
as

𝐻′ = 𝐻𝑅 ⊗ 𝐼 + 𝐻𝐼 ⊗
[
0 −1
1 0

]
,���𝜙′0〉 = |𝜙𝑅⟩ |0⟩ + |𝜙𝐼⟩ |1⟩ ,���𝜙′1〉 = − |𝜙𝐼⟩ |0⟩ + |𝜙𝑅⟩ |1⟩ .

One can verify that
��𝜙′0〉 , ��𝜙′1〉 are orthogonal and are of eigenvalue 𝛼 of 𝐻′.

Besides, for any orthogonal 𝑛-qubit states |𝜙⟩ and |𝜂⟩, the set {
��𝜙′0〉 , ��𝜙′1〉} is

orthogonal to {
��𝜂′0〉 , ��𝜂′1〉}. Let |𝜙⟩ ranges over all 2𝑛 eigenvectors of 𝐻, one will

get a complete set of 2 · 2𝑛 eigenvectors of 𝐻′. Thus 𝐻 and 𝐻′ have the same
spectrum. In particular 𝐻 and 𝐻′ have the same ground energy.

Given 𝐻, let |𝜓⟩ be its ground state, define the real-valued 𝐻′ and
��𝜓′0〉 as above.

Then𝐻′ is (𝑛+1)-qubit, (𝑘+1)-local. Further since𝐻 is Hermitian, thus𝐻𝑅 is sym-
metric and 𝐻𝐼 is anti-symmetric. Thus 𝐻′ is symmetric and thus Hermitian. Note
that one can efficiently calculate ⟨𝑥′|𝐻′|𝑦′⟩, ⟨𝑥′|𝜓′0⟩ with access to ⟨𝑥 |𝐻 |𝑦⟩, ⟨𝑥 |𝜓⟩,
where 𝑥, 𝑦 are the first 𝑛-bits of 𝑥′, 𝑦′. Thus w.l.o.g. we assume that 𝐻, |𝜓⟩ are
real-valued.

Review of the CTMC and Gillespie’s algorithm
This section is a brief review of the continuous-time Markov chain and Gillespie’s
algorithm. More can be seen in Section 6 of [And] and other textbooks on Markov
chain and random process [Nor98]. To ease notations, in the following we abbreviate
the discrete state space, discrete-time Markov Chain as DTMC; and abbreviate the
discrete state space, continuous-time Markov Chain as CTMC. In this section, we

130

use 𝑆 ⊆ {0, 1}𝑛 to denote the discrete state space, 𝑃, 𝐺 ∈ R|𝑆 |×|𝑆 | to denote matrices,
and 𝑥, 𝑦 ∈ 𝑆 to denote the states. For simplicity, we abbreviate

∑
𝑥∈𝑆 as

∑
𝑥 .

To introduce CTMC, we first review the concepts related to DTMC. A DTMC
with discrete state space 𝑆 is a sequence of random variables {𝜉 (𝑗)} 𝑗=0,1..., where
𝜉 (𝑗) ∈ 𝑆 is the state at discrete time 𝑗 . A DTMC is associated with a matrix
𝑃 ∈ R|𝑆 |×|𝑆 |, which is called the transition matrix, where ⟨𝑦 |𝑃 |𝑥⟩ denotes the
transition probability from state 𝑥 to state 𝑦. 𝑃 is a legal transition matrix iff 𝑃 is a
stochastic matrix, that is,

⟨𝑦 |𝑃 |𝑥⟩ ≥ 0,∀𝑥, 𝑦; and
∑︁
𝑦

⟨𝑦 |𝑃 |𝑥⟩ = 1,∀𝑥. (4.5)

The DTMC w.r.t. 𝑃 is defined as the discrete-time stochastic process such that at
any time 𝑗 where 𝜉 (𝑗) = 𝑥, one chooses the next state 𝜉 (𝑗 + 1) to be 𝑦 w.p. ⟨𝑦 |𝑃 |𝑥⟩.

A CTMC with discrete state space 𝑆 is a set of random variables {𝜉 (𝑡)}𝑡 , where
𝜉 (𝑡) is the state at time 𝑡, and 𝑡 can take values from a continuous interval, e.g.
𝑡 ∈ [0, 1]4. A CTMC is associated with a matrix 𝐺 ∈ R|𝑆 |×|𝑆 |, which is called the
generator, where ⟨𝑦 |𝐺 |𝑥⟩ is called the transition rate from state 𝑥 to state 𝑦. 𝐺 is a
legal generator iff

⟨𝑦 |𝐺 |𝑥⟩ ≥ 0 for 𝑦 ≠ 𝑥; and
∑︁
𝑦

⟨𝑦 |𝐺 |𝑥⟩ = 0.

Note that when 𝐺 is a legal generator, one can verify that exp(𝐺𝑡) is a stochastic
matrix for any 𝑡 ≥ 0. A remark is that, to make the notations consistent with previous
work [Bra+23b], stochastic matrix in this manuscript (defined as in Eq. (4.5)) has a
column sum of 1 instead of a row sum of 1. Also note that for a legal generator the
diagonal elements are non-positive, since

⟨𝑥 |𝐺 |𝑥⟩ = −
∑︁
𝑦≠𝑥

⟨𝑦 |𝐺 |𝑥⟩ ≤ 0.

We say a distribution 𝜋 over the state space 𝑆 is a stationary distribution of the
CTMC w.r.t. 𝐺 if

∀𝑦,
∑︁
𝑥

⟨𝑦 |𝐺 |𝑥⟩𝜋(𝑥) = 0,

which will imply ∑︁
𝑥

⟨𝑦 | exp(𝐺𝑡) |𝑥⟩𝜋(𝑥) = 𝜋(𝑦),∀𝑦.

4The main difference between CTMC and DTMC is, in DTMC, the index of time is discrete,
while in CTMC, the index of time is continuous.

131

There are multiple ways to define a CTMC, here we define a CTMC via Gillespie’s
algorithm as follows: Given a legal generator 𝐺 ∈ R|𝑆 |×|𝑆 |, one can first define
a DTMC named the embedded chain, where the transition matrix 𝑃 ∈ R|𝑆 |×|𝑆 | is
defined as ∀𝑥, 𝑦 ∈ 𝑆,

⟨𝑦 |𝑃 |𝑥⟩ :=

0, if 𝑥 = 𝑦.
⟨𝑦 |𝐺 |𝑥⟩
|⟨𝑥 |𝐺 |𝑥⟩| , if 𝑥 ≠ 𝑦.

(4.6)

The CTMC w.r.t. 𝐺 can be defined via “Embedded chain + Waiting time”. Roughly
speaking, the CTMC w.r.t. 𝐺 is defined as the continuous-time stochastic process
that when 𝜉 visits the state 𝑥 at time 𝜏, it will stay in the state 𝑥 for a “waiting time”
Δ𝜏, whereΔ𝜏 is sampled from the exponential distribution with parameter |⟨𝑥 |𝐺 |𝑥⟩|.
Until time 𝜏 + Δ𝜏, it will move to the next state 𝑦 according to the embedded chain,
that is, w.p. ⟨𝑦 |𝑃 |𝑥⟩. More precisely, here we define the CTMC w.r.t. a legal
generator 𝐺 by the Gillespie’s algorithm, as shown in Algorithm 4.

Algorithm 4 Gillespie’s algorithm(𝐺, 𝑥𝑖𝑛, 𝑡)
1: 𝑥 ← 𝑥𝑖𝑛,𝜏 ← 0, 𝜉 (0) ← 𝑥𝑖𝑛
2: while 𝜏 < 𝑡 do
3: if |⟨𝑥 |𝐺 |𝑥⟩| = 0 then
4: Set 𝜉 (𝑠) = 𝑥 for all 𝑠 ∈ (𝜏, 𝑡]
5: 𝜏 ← 𝑡

6: else
7: Sample 𝑢 ∈ [0, 1] from the uniform distribution [0, 1]
8: Δ𝜏 ← ln(1/𝑢)

|⟨𝑥 |𝐺 |𝑥⟩|
9: Set 𝜉 (𝑠) = 𝑥 for all 𝑠 ∈ (𝜏, 𝜏 + Δ𝜏]

10: 𝜏 ← 𝜏 + Δ𝜏
11: Sample 𝑦 ∈ 𝑆 \ {𝑥} from the probability distribution ⟨𝑦 |𝐺 |𝑥⟩

|⟨𝑥 |𝐺 |𝑥⟩|
12: 𝑥 ← 𝑦

13: end if
14: end while
15: Return 𝑥

Lemma 92 and Corollary 93 are properties of Gillespie’s algorithm. Lemma 92
describes the infinitesimal behavior of the CTMC. Roughly speaking, Lemma 92
says that at any time 𝑡 where the current state is 𝑥, during a very short time ℎ,
the probability of staying in 𝑥 is approximately 1 − |⟨𝑥 |𝐺 |𝑥⟩|ℎ. The probability of
jumping to 𝑦 ≠ 𝑥 is approximately ⟨𝑦 |𝐺 |𝑥⟩ℎ. What’s more, the probability that 𝜉
changes its value more than twice during the short time ℎ is negligible. The formal
statement is as follows.

132

Lemma 92 (Gillespie’s algorithm) Let 𝑆 ⊆ {0, 1}𝑛 be the state space, 𝑥𝑖𝑛 ∈ 𝑆,
and 𝐺 ∈ R|𝑆 |×|𝑆 | be a legal generator. Let ℎ be an infinitesimal value. Consider the
random variable 𝜉 in Algorithm 4 w.r.t. (𝐺, 𝑥𝑖𝑛, 𝑡).

For any 𝑠 < 𝑡, let 𝑇 (𝑥, ℎ) be the number of transitions between time [𝑠, 𝑠 + ℎ]
conditioned on 𝜉 (𝑠) = 𝑥, that is, the number of times that 𝜉 changes its values. Then

𝑃𝑟 (𝑇 (𝑥, ℎ) = 0) = 1 − |⟨𝑥 |𝐺 |𝑥⟩|ℎ +𝑂 (ℎ2),
𝑃𝑟 (𝑇 (𝑥, ℎ) ≥ 2) = 𝑂 (ℎ2),
𝑃𝑟 (𝑇 (𝑥, ℎ) = 1, 𝜉 (𝑠 + ℎ) = 𝑦, 𝑦 ≠ 𝑥) = ⟨𝑦 |𝐺 |𝑥⟩ℎ +𝑂 (ℎ2).

Using Lemma 92, one can prove the following.

Corollary 93 (Gillespie’s algorithm) Let 𝑆 ⊆ {0, 1}𝑛 be the state space, 𝑥𝑖𝑛 ∈ 𝑆
and 𝐺 ∈ R|𝑆 |×|𝑆 | be a legal generator. For any 𝑠 ∈ [0, 𝑡], the random variable
𝜉 (𝑠) ∈ 𝑆 generated by the Gillespie’s algorithm w.r.t. (𝐺, 𝑥𝑖𝑛, 𝑡) is distributed
according to

𝜋𝑠 (𝑥) := ⟨𝑥 | exp(𝐺𝑠) |𝑥𝑖𝑛⟩,∀𝑥.

In other words, Gillespie’s algorithm w.r.t. (𝐺, 𝑥𝑖𝑛, 𝑡) simulates a random process
with transition matrix exp(𝐺𝑠). One can find the proofs for Lemma 92 and Lemma
93 in standard textbooks on Markov chain and random process.

Fixed Node Hamiltonian
It is well-known that one can connect stoquastic Hamiltonian to Markov chain [Bra+08].
However, in Definition 88 the 𝑛-qubit 𝑘-local Hamiltonian 𝐻 can be general and
might not be stoquastic. The fixed node quantum Monte Carlo method [Ten+95] is
a method that transforms any real-valued Hamiltonian to a stoquastic Hamiltonian.

In this section, we give a brief review of the fixed node quantum Monte Carlo
method, which will be used in our protocol later. For technical reasons, in this
section, we do not directly consider 𝑛-qubit Hamiltonians. Instead we consider

• A set 𝑆 ⊆ {0, 1}𝑛.

• A real-valued symmetric5 matrix 𝐻 ∈ R|𝑆 |×|𝑆 |.

• A real-valued state |𝜙⟩ ∈ R|𝑆 |.
5Real-valued Hermitian matrix is real-valued symmetric matrix.

133

The fixed node Hamiltonian 𝐹𝐻,|𝜙⟩ ∈ R|𝑆 |×|𝑆 | is defined as follows: for 𝑥, 𝑦 ∈ 𝑆,

⟨𝑥 |𝐹𝐻,𝜙 |𝑦⟩ =

0 if (𝑥, 𝑦) ∈ 𝑆+;
⟨𝑥 |𝐻 |𝑦⟩, if (𝑥, 𝑦) ∈ 𝑆−;

⟨𝑥 |𝐻 |𝑥⟩ +
∑︁

𝑧:(𝑥,𝑧)∈𝑆+
⟨𝑥 |𝐻 |𝑧⟩ ⟨𝑧 |𝜙⟩⟨𝑥 |𝜙⟩

if 𝑥 = 𝑦,

(4.7)

where

𝑆+ = {(𝑥, 𝑦) : 𝑥 ≠ 𝑦 and ⟨𝜙 |𝑥⟩⟨𝑥 |𝐻 |𝑦⟩⟨𝑦 |𝜙⟩ > 0},
𝑆− = {(𝑥, 𝑦) : 𝑥 ≠ 𝑦 and ⟨𝜙 |𝑥⟩⟨𝑥 |𝐻 |𝑦⟩⟨𝑦 |𝜙⟩ ≤ 0}.

The key properties of 𝐹𝐻,𝜙 are

Lemma 94 ([Ten+95], also in Lemma 2 of [Bra+23b]) Given any real-valued sym-
metric matrix 𝐻 ∈ R|𝑆 |×|𝑆 | and any real-valued regularized6 unnormalized 𝑛-qubit
state |𝜙⟩ ∈ R|𝑆 | 7, define the fixed node Hamiltonian 𝐹𝐻,𝜙 ∈ R|𝑆 |×|𝑆 | as above. Then

(1) 𝐹𝐻,𝜙 is symmetric and real-valued thus Hermitian. Besides, 𝐹𝐻,𝜙 is stoquastic
modulo a change of basis |𝑥⟩ → 𝑠𝑖𝑔𝑛 (⟨𝑥 |𝜙⟩) |𝑥⟩ .

(2) 𝐹𝐻,𝜙 |𝜙⟩ = 𝐻 |𝜙⟩.

(3) 𝜆(𝐹𝐻,𝜙) ≥ 𝜆(𝐻) for any |𝜙⟩. If further |𝜙⟩ is the ground state of 𝐻, then
𝜆(𝐹𝐻,𝜙) = 𝜆(𝐻) and |𝜙⟩ is the ground state of 𝐹𝐻,𝜙, that is,

𝐹𝐻,𝜙 |𝜙⟩ = 𝜆(𝐹𝐻,𝜙) |𝜙⟩ .

For completeness, we put a proof in Appendix 4.8.

CTMC related to 𝐹𝐻,𝜙

Define 𝐹𝐻,𝜙 ∈ R|𝑆 |×|𝑆 | as in Section 4.3. It is worth noting that the norm of 𝐹𝐻,𝜙, i.e.
∥𝐹𝐻,𝜙∥, can be exponentially large, since ⟨𝑥 |𝜙⟩may be exponentially small for some
𝑥. As we discussed in the proof overview in Section 4.1, the exponentially large
norm influences the mixing time in the quantum Monte Carlo methods designed

6Otherwise Lemma 94 (1) is not a basis change thus not well-defined. In particular if |𝜙⟩=0,
then 𝐹𝐻,𝜙 = 𝐻 and 𝐹𝐻,𝜙 might not be stoquastic.

7 |𝜙⟩ can be arbitrary state. It is not necessary to be the ground state.

134

for stoquastic Hamiltonians. To handle this problem, [Bra+23b] describes a generic
way of converting a stoquastic Hamiltonian into a generator matrix of a CTMC.
More details can be found in Lemma 3 of [Bra+23b]. As a concrete application,
[Bra+23b] applies this method to the Fixed node Hamiltonian and defines a matrix
𝐺𝐻,𝜙 ∈ R|𝑆 |×|𝑆 | based on 𝐹𝐻,𝜙. Specifically, for any 𝑥, 𝑦 ∈ 𝑆, define

⟨𝑦 |𝐺𝐻,𝜙 |𝑥⟩ :=𝜆(𝐹𝐻,𝜙)𝛿𝑦,𝑥 − ⟨𝑦 |𝐹𝐻,𝜙 |𝑥⟩
⟨𝑦 |𝜙⟩
⟨𝑥 |𝜙⟩ , (4.8)

where 𝛿𝑦,𝑥 = 1 iff 𝑥 = 𝑦 and 𝛿𝑦,𝑥 = 0 otherwise. To avoid confusion, we emphasize
here that we will define a slightly different𝐺𝐻,𝜙 in the following section in Eq. (4.15),
which is used in the final verification protocol. For now, we temporarily focus on
𝐺𝐻,𝜙. It is worth noting that 𝐺𝐻,𝜙 is not symmetric. The properties of 𝐺𝐻,𝜙 are
summarized as follows.

Corollary 95 (Corollary of Lemma 3 in [Bra+23b]) Given any real-valued sym-
metric matrix 𝐻 ∈ R|𝑆 |×|𝑆 |, and any real-valued regularized state |𝜙⟩ ∈ R|𝑆 |. Define
𝐺𝐻,𝜙 as in Eq. (4.8).

(1) The spectrum of 𝐺𝐻,𝜙 is the same as the spectrum of 𝜆(𝐹𝐻,𝜙)𝐼 − 𝐹𝐻,𝜙.

(2) ⟨𝑦 |𝐺𝐻,𝜙 |𝑥⟩ ≥ 0 for 𝑦 ≠ 𝑥. Further if |𝜙⟩ is an unnormalized ground state of
𝐻, then for any 𝑥, we have

∑
𝑦 ⟨𝑦 |𝐺𝐻,𝜙 |𝑥⟩ = 0. Thus 𝐺𝐻,𝜙 is a legal generator

of a CTMC.

(3) If |𝜙⟩ is an unnormalized ground state of 𝐻. Define 𝑐 = ∥ |𝜙⟩ ∥2 and 𝜋(𝑥) =
|⟨𝑥 |𝜙⟩|2/𝑐. Then for any 𝑦,

∑
𝑥 ⟨𝑦 |𝐺𝐻,𝜙 |𝑥⟩𝜋(𝑥) = 0, thus 𝜋 is a stationary

distribution of the CTMC w.r.t. 𝐺𝐻,𝜙.

The key result in [Bra+23b] is proving Gillespie’s algorithm, i.e. Algorithm 4, can
efficiently simulate the CTMC w.r.t. 𝐺𝐻,𝜙. The formal statement is in Lemma 96.
For completeness, we put a proof in Appendix 4.9.

Lemma 96 (Lemma 4 in [Bra+23b]) Given any real-valued 𝑑-sparse symmetric
matrix 𝐻 ∈ R|𝑆 |×|𝑆 |, and real-valued regularized unnormalized state |𝜙⟩ ∈ R|𝑆 |,
where |𝜙⟩ is a ground state of 𝐻. Define 𝐺𝐻,𝜙 as in Eq. (4.8).

For any 𝑥𝑖𝑛, 𝑡, denote 𝜅(𝑥𝑖𝑛, 𝑡) as the number of transitions in Algorithm 4 w.r.t.
(𝐺𝐻,𝜙, 𝑥𝑖𝑛, 𝑡), that is, the number of times that 𝜉 (𝑠) changes its value. Then there
exists 𝑥𝑖𝑛 ∈ 𝑆 such that ⟨𝑥𝑖𝑛 |𝜙⟩ ≠ 0 and the number of transitions satisfies that

𝑃𝑟

(
𝜅 (𝑥𝑖𝑛, 𝑡) ≤ 𝑑𝑛3𝑡∥𝐻∥

)
≥ 1

2
. (4.9)

135

Note that Lemma 96 is highly non-trivial, since the norm of 𝐺𝐻,𝜙 can still be
exponentially large. In particular, in Algorithm 4 line 8, Δ𝜏 may be exponentially
small. Since the running time of Algorithm 4 is proportional to the number of
transitions, exponentially small Δ𝜏 may cause Gillespie’s algorithm w.r.t. (𝐺𝐻,𝜙,
𝑥𝑖𝑛, 𝑡) to take exponentially long time, even for 𝑡 = 𝑂 (𝑝𝑜𝑙𝑦(𝑛)). In the CTMC
literature, it means that the CTMC may transit exponentially many times in a small
time interval. However, Lemma 96 proves that with high probability, the number of
transitions is bounded, when 𝐻 is sparse and has a small norm.

4.4 The MA verification protocol
In this section, we describe a MA verification protocol for deciding the local Hamil-
tonian problem with succinct ground state, which is defined in Definition 88. Firstly
in Section 4.4, we will argue that w.l.o.g., we can assume that the instance (𝐻, 𝑎, 𝑏)
from Definition 88 satisfying

𝑎 = 0 and 𝑏 ≥ 1/𝑝𝑜𝑙𝑦(𝑛).

Then in Section 4.4 and Section 4.4, we will give two verification protocols based
on different assumptions. In particular,

• In Section 4.4 we assume Assumption (i): we can sample 𝑢 from the uniform
distribution [0, 1] in 𝑝𝑜𝑙𝑦(𝑛) time.

• In Section 4.4 we substitute Assumption (i) by Assumption (ii): we assume that
we can use 𝑝𝑜𝑙𝑦(𝑛)-time to sample from the truncated discretized exponential
distribution D𝐾,𝛿,𝜆 with parameters specified in Remark 7 in Appendix 4.11.

In both Section 4.4 and Section 4.4, we show that there is a 𝑝𝑜𝑙𝑦(𝑛)-time algorithm
which takes inputs in the form of an 𝑛-qubit local Hamiltonian 𝐻, a 𝑝𝑜𝑙𝑦(𝑛)-size
circuit 𝐶𝜙 for a succinct state |𝜙⟩, and an 𝑛-bit string 𝑥𝑖𝑛, such that

• If (𝐻, 𝑎, 𝑏) is a Yes instance, there exists 𝐶𝜙 and 𝑥𝑖𝑛 s.t. the algorithm accepts
w.p. ≥ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡;

• If (𝐻, 𝑎, 𝑏) is a No instance, then for any𝐶𝜙 and 𝑥𝑖𝑛, the accepting probability
is exponentially small.

The proof in Section 4.4 captures the key technical ideas. The proof in Section 4.4
further addresses the errors introduced by discretization and is our final proof for
Theorem 89.

136

Preprocessing
Given an instance (𝐻∗, 𝑎∗, 𝑏∗), where 𝐻∗ =

∑𝑚
𝑗=1 𝐻

∗
𝑗

is an 𝑛-qubit (𝑘 − 1)-local
Hamiltonian, 𝑚 is the number of terms in 𝐻. Here 𝑘 is a constant, 𝑚 = 𝑝𝑜𝑙𝑦(𝑛)
and ∥𝐻∗∥ = 𝑝𝑜𝑙𝑦(𝑛).

By Section 4.3, w.l.o.g. we assume that 𝐻∗ are real-valued symmetric 2𝑘𝑚-sparse
matrix, and is of size 2𝑛×2𝑛. Besides, the ground state of𝐻∗, denoted as |𝜙∗⟩ ∈ R2𝑛 ,
is also real-valued.

For the MA protocol, the witnesses are

(i) A real value 𝜆∗, which is supposed to be 𝜆(𝐻∗)8. W.l.o.g. we assume that
𝜆∗ ≤ 𝑎∗, otherwise we reject immediately.

(ii) A 𝑝𝑜𝑙𝑦(𝑛)-size circuit 𝐶𝜙∗ which succinctly represents the state |𝜙∗⟩. |𝜙∗⟩ is
supposed to be the ground state of 𝐻∗.

(iii) A computational basis 𝑥∗
𝑖𝑛
∈ {0, 1}𝑛, which is supposed to satisfy Lemma 96

w.r.t. (𝐺𝐻𝑆 ,𝜙𝑆 , 𝑥𝑖𝑛, 𝑡) which will be defined later. In particular,

• 𝐻𝑆, |𝜙𝑆⟩ , 𝑥𝑖𝑛 are defined in the following paragraphs.

• 𝐺𝐻𝑆 ,𝜙𝑆 is defined in Eq. (4.15).

• Let

𝜖 := 𝑏∗ − 𝑎∗ = 1/𝑝𝑜𝑙𝑦(𝑛), (4.10)

𝑡 := 8(𝑛 + 𝑝′(𝑛))/𝜖, (4.11)

where 𝑝′(𝑛) = 𝑝𝑜𝑙𝑦(𝑛) is defined in Remark 8 in Appendix 4.11.

Specifically, define

𝐻 := 𝐻∗ − 𝜆∗𝐼, (4.12)

|𝜙⟩ := |𝜙∗⟩ , (4.13)

𝑥𝑖𝑛 := 𝑥∗𝑖𝑛. (4.14)

The following properties hold:

• In the Yes instance, since 𝜆∗, |𝜙∗⟩ are the ground energy and the ground state
of 𝐻∗, we have 𝜆(𝐻) = 0 and |𝜙⟩ is the ground state of 𝐻. That is,

𝐻 |𝜙⟩ = 0.
8By Remark 6 in Appendix 4.11, 𝜆(𝐻∗) can be represented by 𝑝𝑜𝑙𝑦(𝑛) bits exactly.

137

• In the No instance, since 𝜆(𝐻∗) ≥ 𝑏∗ and 𝜆∗ ≤ 𝑎∗. We have

𝜆(𝐻) ≥ 𝜖 .

Define
𝑆 := 𝑆𝑢𝑝𝑝(|𝜙⟩).

Define 𝐻𝑆 ∈ R|𝑆 |×|𝑆 | to be the submatrix of 𝐻 whose rows and columns are taken
from the set 𝑆. Similarly we define |𝜙𝑆⟩ from |𝜙⟩. The main reason we define
𝐻𝑆, |𝜙𝑆⟩ is to make the proof rigorous. Feel free to assume that |𝜙⟩ is regularized,
and thus 𝐻𝑆 = 𝐻, |𝜙𝑆⟩ = |𝜙⟩. One can check the following.

Claim 97 Suppose 𝑆 ≠ ∅,

• 𝐻𝑆 is symmetric real-valued, 2𝑘𝑚-sparse, where 𝑚 = 𝑝𝑜𝑙𝑦(𝑛) and ∥𝐻𝑆∥ =
𝑝𝑜𝑙𝑦(𝑛). Besides, |𝜙𝑆⟩ is real-valued and regularized.

• In the Yes instance, 𝐻𝑆 |𝜙𝑆⟩ = 0, 𝜆(𝐻𝑆) = 09. |𝜙𝑆⟩ is a ground state of 𝐻𝑆.

• In the No instance,

𝜆(𝐻𝑆) ≥ 𝜆(𝐻) ≥ 𝜖 = 1/𝑝𝑜𝑙𝑦(𝑛).

• For 𝑥, 𝑦 ∈ 𝑆, ⟨𝑥 |𝐻𝑆 |𝑦⟩ and 𝐶𝜙𝑆 (𝑥) can be easily computed in 𝑝𝑜𝑙𝑦(𝑛) time,
which is obtained by directly computing ⟨𝑥 |𝐻 |𝑦⟩ and 𝐶𝜙 (𝑥).

Proof: It suffices to notice that by Fact 91, when 𝑆 ≠ ∅, we have

𝜆(𝐻) ≤ 𝜆(𝐻𝑆) ≤ 𝜆𝑚𝑎𝑥 (𝐻),
∥𝐻𝑆∥ ≤ ∥𝐻∥ ≤ 𝑝𝑜𝑙𝑦(𝑛).

Define 𝐹𝐻𝑆 ,𝜙𝑆 as in Eq. (4.7). Note that here instead of using 𝐺𝐻𝑆 ,𝜙𝑆 as in Eq. (4.8),
we will use 𝐺𝐻𝑆 ,𝜙𝑆 defined below:

⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ := −⟨𝑦 |𝐹𝐻𝑆 ,𝜙𝑆 |𝑥⟩ ⟨𝑦 |𝜙𝑆⟩⟨𝑥 |𝜙𝑆⟩
. (4.15)

9Since 𝜆(𝐻𝑆) ≥ 𝜆(𝐻) = 0 by Fact 91, and 0 is achieved by |𝜙𝑆⟩ .

138

The main reason that we use 𝐺𝐻𝑆 ,𝜙𝑆 instead of 𝐺𝐻𝑆 ,𝜙𝑆 is our setting is different
from in [Bra+23b]. More specifically, in [Bra+23b] |𝜙𝑆⟩ is trusted and is always the
ground state, in this situation

𝜆(𝐹𝐻𝑆 ,𝜙𝑆) = 𝜆(𝐻𝑆).

By Lemma 94 (2), the value 𝜆(𝐹𝐻𝑆 ,𝜙𝑆) can be computed by

𝜆(𝐹𝐻𝑆 ,𝜙𝑆) = 𝜆(𝐻𝑆) =
⟨𝑥 |𝐻𝑆 |𝜙𝑆⟩
⟨𝑥 |𝜙𝑆⟩

=
∑︁
𝑦

⟨𝑥 |𝐻𝑆 |𝑦⟩
⟨𝑦 |𝜙𝑆⟩
⟨𝑥 |𝜙𝑆⟩

, (4.16)

where 𝑥 ∈ 𝑆 satisfying ⟨𝑥 |𝜙𝑆⟩ ≠ 0. However, in our setting, in the No instance,
|𝜙𝑆⟩ can be any adversary state. The “𝜆(𝐹𝐻𝑆 ,𝜙𝑆)” calculated by Eq. (4.16) cannot
be trusted and might break the soundness of the protocol.

Here are some other remarks. Note that in the Yes instance, Eq. (4.8) and Eq. (4.15)
coincide since 𝜆(𝐹𝐻𝑆 ,𝜙𝑆) = 0. It is worth noting that 𝐺𝐻𝑆 ,𝜙𝑆 is not symmetric.
However, since 𝐹𝐻𝑆 ,𝜙𝑆 is symmetric, by similar argument as Corollary 95 (1) we
have the following.

Fact 98 𝐺𝐻𝑆 ,𝜙𝑆 is always diagonalizable and has the same spectrum as −𝐹𝐻𝑆 ,𝜙𝑆 .

As explained in Remark 8 in Appendix 4.11, there exists a polynomial 𝑝′(𝑛) ≫ 𝑝(𝑛)
such that

𝑎𝑚𝑎𝑥(𝐺𝐻𝑆 ,𝜙𝑆) ≤ 2𝑝
′ (𝑛) ,

∥𝐺𝐻𝑆 ,𝜙𝑆 ∥, ∥𝐹𝐻𝑆 ,𝜙𝑆 ∥ ≤ 2𝑝
′ (𝑛)+2𝑛.

Besides, if ⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑦⟩ ≠ 0, then

⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑦⟩ ≥ 1/2𝑝′ (𝑛) .

Protocol with continuous-time randomness
In this section, we assume that we can sample 𝑢 from the uniform distribution
[0, 1] in 𝑝𝑜𝑙𝑦(𝑛) time. Let 𝐻𝑆, |𝜙𝑆⟩ be the Hamiltonian and the state after the
preprocessing procedure in Section 4.4 Claim 97.

The verification protocol is shown in Algorithm 5. The protocol is very similar to
the truncated version of Gillespie’s algorithm used in [Bra+23b]. The key difference
is, instead of returning 𝑥, we add a checking procedure in line 11, and this algorithm
returns Accept/Reject. Besides, we use 𝐺𝐻𝑆 ,𝜙𝑆 defined in Eq. (4.15) instead of
𝐺𝐻𝑆 ,𝜙𝑆 in Eq. (4.8).

139

Compared to the setting in [Bra+23b], it is worth noting that in our setting, |𝜙𝑆⟩ can
be adversarial which might not be the ground state, thus 𝐺𝐻𝑆 ,𝜙𝑆 might not be a legal
generator. The first thing to check is that Algorithm 5 is well-defined:

Claim 99 Algorithm 5 is always well-defined and each line can be performed in
poly(n) time.

Proof: By line 4, w.l.o.g. we assume that 𝑆 ≠ ∅ otherwise we reject immediately.
Then 𝐺𝐻𝑆 ,𝜙𝑆 , 𝐹𝐻𝑆 ,𝜙𝑆 are well-defined since 𝑆 ≠ ∅. Also note that line 4 implies a
good 𝑥𝑖𝑛 which is not rejected by Line 5 should satisfy

⟨𝑥𝑖𝑛 |𝜙⟩ ≠ 0.

Furthermore, by definition of𝐺𝐻𝑆 ,𝜙𝑆 , that is, Eq (4.15), we have that all the 𝑥 visited
by the algorithm in Line 25 satisfies ⟨𝑥 |𝜙⟩ ≠ 0.

For line 11, since 𝐺𝐻𝑆 ,𝜙𝑆 is 𝑝𝑜𝑙𝑦(𝑛)-sparse, one can use poly-time to

• list all 𝑧 where ⟨𝑧 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ ≠ 0,

• compute
∑
𝑧∈𝑆⟨𝑧 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ and check whether one of them is strictly negative.

Similarly since 𝐺𝐻𝑆 ,𝜙𝑆 is 𝑝𝑜𝑙𝑦(𝑛)-sparse, in line 24, one can use poly-time to list
all 𝑦 where ⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ ≠ 0, and efficiently sample 𝑦 from the distribution.

Besides, when the conditions in line 11 are not satisfied, it is guaranteed that the
sampling procedure in line 24 is always well-defined, that is,∑︁

𝑦≠𝑥

⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩
|⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩|

= 1and
⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩
|⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩|

≥ 0 for 𝑦 ≠ 𝑥.

Besides, by definition ⟨𝑦 |𝐺𝐻𝑆,𝜙𝑆 |𝑥⟩
|⟨𝑥 |𝐺𝐻𝑆,𝜙𝑆 |𝑥⟩| > 0 implies 𝑦 ∈ 𝑆. Thus all the “𝑥” that 𝜉 visits

in Algorithm 5 are all in 𝑆. Thus all the lines querying entries of 𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ are
well-defined.

The performance of Algorithm 5 is summarized as follows. The proof is in Section
4.4.

Theorem 100 For any (𝐻𝑆, 𝜙𝑆, 𝑥𝑖𝑛), Algorithm 5 always runs in polynomial time.
Besides,

140

Algorithm 5 Checking(𝐻𝑆, 𝜙𝑆, 𝑥𝑖𝑛)
1: 𝜅 ← 0 ▷ Record the number of transitions
2: 𝑥 ← 𝑥𝑖𝑛, 𝜏 ← 0, 𝜉 (0) ← 𝑥𝑖𝑛
3: Set 𝑡 = 8(𝑛 + 𝑝′(𝑛))/𝜖 and 𝑀 = 2𝑘𝑚𝑛3𝑡∥𝐻∥
4: if 𝑥 ∉ 𝑆 then ▷A good 𝑥𝑖𝑛 should satisfy ⟨𝑥𝑖𝑛 |𝜙⟩ ≠ 0
5: Return Reject
6: end if
7: while 𝜏 < 𝑡 do
8: if 𝐶𝜙𝑆 (𝑥) is not represented by 𝑝(𝑛)-bits then
9: Return Reject ▷Check the format of 𝐶𝜙𝑆 (𝑥)

10: end if
11: if

∑
𝑧∈𝑆⟨𝑧 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ ≠ 0 or ∃𝑦 ≠ 𝑥, 𝑦 ∈ 𝑆 s.t. ⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ < 0 then

12: Return Reject ▷Add a Check
13: end if
14: if 𝜅 ≥ 𝑀 then
15: Return Reject
16: end if
17: if |⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩| = 0 then
18: Set 𝜉 (𝑠) = 𝑥 for all 𝑠 ∈ (𝜏, 𝑡]
19: 𝜏 ← 𝑡

20: else
21: Sample 𝑢 ∈ [0, 1] from the uniform distribution [0, 1]

Δ𝜏 ← ln(1/𝑢)
|⟨𝑥 |𝐺𝐻𝑆,𝜙𝑆 |𝑥⟩|

22: Set 𝜉 (𝑠) = 𝑥 for all 𝑠 ∈ (𝜏, 𝜏 + Δ𝜏]
23: 𝜏 ← 𝜏 + Δ𝜏
24: Sample 𝑦 ∈ 𝑆 \ {𝑥} from the probability distribution ⟨𝑦 |𝐺𝐻𝑆,𝜙𝑆 |𝑥⟩

|⟨𝑥 |𝐺𝐻𝑆,𝜙𝑆 |𝑥⟩|
25: 𝑥 ← 𝑦

26: 𝜅 ← 𝜅 + 1
27: end if
28: end while
29: Return Accept

• For the Yes instance, there exists 𝜙𝑆, 𝑥𝑖𝑛 such that Algorithm 5 accepts w.p.
≥ 1/2.

• In the No instance, ∀ 𝜙𝑆, 𝑥𝑖𝑛, Algorithm 5 rejects w.p. ≥ 1 − 2−𝑛.

Analysis

Note that the number of iterations in Algorithm 5 is bounded by 𝑀 = 𝑝𝑜𝑙𝑦(𝑛). By
Claim 99 each line can be performed in 𝑝𝑜𝑙𝑦(𝑛)-time, thus the algorithm always
runs in polynomial time.

141

In the following, we say a string 𝑥 “pass line 11” if 𝑥 does not satisfy the conditions
in line 11, thus will not be rejected immediately in line 12. In the following we give
the proof of completeness and soundness.

Proof:[of Completeness of Theorem 100.] In the Yes instance, we have that

𝜆(𝐻𝑆) = 0 and |𝜙𝑆⟩ is the ground state.

By Lemma 94 (3),
𝜆(𝐹𝐻𝑆 ,𝜙𝑆) = 𝜆(𝐻𝑆) = 0.

Thus 𝐺𝐻𝑆 ,𝜙𝑆 coincides with 𝐺𝐻𝑆 ,𝜙𝑆 , see Eq. (4.8) and Eq. (4.15). By Lemma 96,
we know that there exists 𝑥𝑖𝑛 ∈ 𝑆 such that

⟨𝑥𝑖𝑛 |𝜙𝑆⟩ ≠ 0, (4.17)

𝑃𝑟 (𝜅 (𝑥𝑖𝑛, 𝑡) ≤ 𝑀) ≥
1
2
. (4.18)

Besides, by Corollary 95 (2), we know that

∀𝑥 ∈ 𝑆,
∑︁
𝑧∈𝑆
⟨𝑧 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ = 0,

∀𝑦 ≠ 𝑥, 𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆, ⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ ≥ 0.

Thus the checks in line 4, 11 in Algorithm 5 are always passed. The check in line
14 in Algorithm 5 is passed with probability greater than 1

2 . Thus in summary, the
probability of accepting is greater than 1/2.

Proof:[of Soundness of Theorem 100.] W.l.o.g. assume line 4 is passed, otherwise
the protocol rejects immediately. Thus we have

⟨𝑥𝑖𝑛 |𝜙𝑆⟩ ≠ 0 thus |𝜙𝑆⟩ ≠ 0.

In the No instance, we know

𝜆(𝐻𝑆) ≥ 𝜖 = 1/𝑝𝑜𝑙𝑦(𝑛), (4.19)

|𝜙𝑆⟩ can be an arbitrary adversary state, and 𝐻𝑆 |𝜙𝑆⟩ ≠ 0.

In the No case 𝐺𝐻𝑆 ,𝜙𝑆 might not be a legal generator of a CTMC. To analyze the
soundness, we consider another algorithm without the check in line 14, that is,

142

deleting lines 14, 15 and 16. Denote this new algorithm as Algorithm 5∗. The
accepting probability of Algorithm 5 can only be less than Algorithm 5∗ 10.

Define 𝑆𝑔𝑜𝑜𝑑 be the set of strings which pass line 11. That is,

𝑆𝑔𝑜𝑜𝑑 :={𝑥 ∈ 𝑆 |
∑︁
𝑦∈𝑆
⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ = 0,

∀𝑦 ≠ 𝑥, 𝑦 ∈ 𝑆, ⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ ≥ 0}. (4.20)

W.o.l.g. we assume that the first execution of line 11 is passed, otherwise the
protocol rejects immediately. Thus we have

𝜉 (0) = 𝑥𝑖𝑛 ∈ 𝑆𝑔𝑜𝑜𝑑 .

Let 𝐺𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

and 𝐹
𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

be the submatrix of 𝐺𝐻𝑆 ,𝜙𝑆 , 𝐹𝐻𝑆 ,𝜙𝑆 , where the row and
column indices are in 𝑆𝑔𝑜𝑜𝑑 . Let

��𝜙𝑆𝑔𝑜𝑜𝑑 〉 be the state restricting |𝜙𝑆⟩ in 𝑆𝑔𝑜𝑜𝑑 . It is
worth noting that

𝐺
𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

≠ 𝐺
𝐻𝑆𝑔𝑜𝑜𝑑 ,𝜙𝑆𝑔𝑜𝑜𝑑 , (4.21)

since the diagonal elements are different. Instead,

𝐺
𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

= 𝐷𝑖𝑎𝑔(𝜙𝑆𝑔𝑜𝑜𝑑) (−𝐹
𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

)𝐷𝑖𝑎𝑔(𝜙𝑆𝑔𝑜𝑜𝑑)−1. (4.22)

We claim that

Claim 101

𝜆𝑚𝑎𝑥 (−𝐹𝐻𝑆 ,𝜙𝑆𝑔𝑜𝑜𝑑
) ≤ −𝜖,

∥ exp(−𝐹𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

)∥ ≤ 1 − 𝜖/2.

where 𝜖 = 1/𝑝𝑜𝑙𝑦(𝑛) ≤ 1/2,

Proof: By definition
��𝜙𝑆𝑔𝑜𝑜𝑑 〉 is regularized. Note that by Lemma 94 (3), we have

𝜆(𝐹𝐻𝑆 ,𝜙𝑆) ≥ 𝜆(𝐻𝑆) ≥ 𝜖 . (4.23)

10Imagine running Algorithm 5 without any checks, that is, without line 4, 11 and 14, and we
write down all the possible logs on a paper. Each log corresponds to a probability. What the checking
procedure does is assigning reject to some logs. Less check, Less reject. It is possible that Algorithm
5∗ runs in exponential time. We do not care about the efficiency of Algorithm 5∗, we only use it as a
technique to bound the accepting probability of Algorithm 5.

143

Since −𝐹𝐻𝑆 ,𝜙𝑆 is symmetric and thus Hermitian, by Fact 91 we have

𝜆𝑚𝑎𝑥 (−𝐹𝐻𝑆 ,𝜙𝑆𝑔𝑜𝑜𝑑
) ≤ 𝜆𝑚𝑎𝑥 (−𝐹𝐻𝑆 ,𝜙𝑆)

= −𝜆(𝐹𝐻𝑆 ,𝜙𝑆)
≤ −𝜖 .

Note that
exp(−𝑥) ≤ 1 − 𝑥/2 for 𝑥 ≤ 1/2,

and by definition of exp(·), we know all eigenvalues11 of exp(−𝐹𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

) is non-
negative, thus we conclude that12

∥ exp(−𝐹𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

)∥ ≤ 1 − 𝜖/2 for 𝜖 ≤ 1/2.

In the following, we show that, although 𝐺𝐻𝑆 ,𝜙𝑆 does not correspond to a legal
generator, Algorithm 5∗ w.r.t. to 𝐺𝐻𝑆 ,𝜙𝑆 still have similar infinitesimal properties as
Lemma 92. The properties are summarized in Claim 102.

To describe Claim 102, we define some notations. Consider running Algorithm 5∗

w.r.t.
(𝐺𝐻𝑆 ,𝜙𝑆 , 𝜙𝑆, 𝑥𝑖𝑛),

for some 𝑥𝑖𝑛13. Let 𝜏𝑒𝑛𝑑 be the value of 𝜏 when Algorithm 5∗ returns Accept/Reject.
Let 𝜉 (𝑠), 𝑠 ∈ [0, 𝜏𝑒𝑛𝑑] be the 𝜉 (𝑠) in Algorithm 5∗. We know that

𝜉 (𝑠) ∈ 𝑆𝑔𝑜𝑜𝑑 ,∀𝑠 ∈ [0, 𝜏𝑒𝑛𝑑).

To clarify, 𝜏𝑒𝑛𝑑 and 𝜉 are random variables. For any fixed 𝑠, 𝑡, let 𝑐1 be the first time
that 𝜉 changes its value after time 𝑠, conditioned on 𝜏𝑒𝑛𝑑 ≥ 𝑠 and 𝜉 (𝑠) = 𝑥, that is,

𝑐1 = min{𝜂 : 𝜂 > 𝑠, 𝜉 (𝜂) ≠ 𝑥 |𝜏𝑒𝑛𝑑 > 𝑠, 𝜉 (𝑠) = 𝑥}.

Similarly, define 𝑐2 to be the second time that 𝜉 changes its value after time 𝑠, that
is,

𝑐2 = min{𝜂 : 𝜂 > 𝑐1, 𝜉 (𝜂) ≠ 𝜉 (𝑐1) |𝜏𝑒𝑛𝑑 > 𝑠, 𝜉 (𝑠) = 𝑥}.
11𝐹

𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

is diagonalizable since it is Hermitian.
12exp(−𝐹𝐻𝑆 ,𝜙𝑆

𝑔𝑜𝑜𝑑
) is Hermitian, thus its spectral norm is its maximum absolute value of eigenval-

ues. It is worth noting that exp(𝐺𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

) is not Hermitian, although it has the same spectrum as
exp(−𝐹𝐻𝑆 ,𝜙𝑆

𝑔𝑜𝑜𝑑
), they do not have the same spectral norm.

13A probability distribution of 𝑥𝑖𝑛 will not get a higher acceptance probability than one particular
𝑥𝑖𝑛 which maximize the accepting probability.

144

Claim 102 For any fixed 𝑠 < 𝑡, any 𝑥, let ℎ be an infinitesimal value. Use notations
defined above. Conditioned on 𝜏𝑒𝑛𝑑 > 𝑠 and 𝜉 (𝑠) = 𝑥, we have14

• The probability that 𝜏𝑒𝑛𝑑 ≥ 𝑠+ℎ and 𝜉 does not change value in time [𝑥, 𝑥+ℎ]
is

𝑃𝑟 (𝑐1 ≥ 𝑠 + ℎ |𝜏𝑒𝑛𝑑 > 𝑠, 𝜉 (𝑠) = 𝑥)
= 1 − |⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩|ℎ +𝑂 (ℎ2). (4.24)

• For 𝑦 ≠ 𝑥, 𝑦 ∉ 𝑆𝑔𝑜𝑜𝑑 , the probability that Algorithm 5 ends in time between
[𝑠, 𝑠 + ℎ] by hitting 𝑦 is

𝑃𝑟 (𝑐1 ≤ 𝑠 + ℎ, 𝜉 (𝑐1) = 𝑦 |𝜏𝑒𝑛𝑑 > 𝑠, 𝜉 (𝑠) = 𝑥)
= ⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ℎ +𝑂 (ℎ2). (4.25)

• For 𝑦 ≠ 𝑥, 𝑦 ∈ 𝑆𝑔𝑜𝑜𝑑 , the probability that 𝜉 hits 𝑦 in time 𝑐1 ∈ [𝑠, 𝑠 + ℎ], and
keeps in 𝑦 in [𝑐1, 𝑠 + ℎ] is

𝑃𝑟 (𝑐1 ≤ 𝑠 + ℎ, 𝜉 (𝑐1) = 𝑦, 𝑐2 ≥ 𝑠 + ℎ |𝜏𝑒𝑛𝑑 > 𝑠, 𝜉 (𝑠) = 𝑥)
= ⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ℎ +𝑂 (ℎ2). (4.26)

• The probability of other events, that is, the probability that 𝜉 changes its value
more than once15 in [𝑠, 𝑠 + ℎ] is

𝑃𝑟 (𝑐2 ≤ 𝑠 + ℎ |𝜏𝑒𝑛𝑑 > 𝑠, 𝜉 (𝑠) = 𝑥) = 𝑂 (ℎ2). (4.27)

We rigorously prove Claim 102 in Appendix 4.10 using properties of the exponential
distribution. On the other hand, one can intuitively imagine the correctness of
Claim 102 from Lemma 92: although 𝐺𝐻𝑆 ,𝜙𝑆 may not be a legal generator, one can
consider another legal generator 𝐺 ∈ R|𝑆 |×|𝑆 | which is obtained by setting column
⟨∗|𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ to 0 for 𝑥 ∉ 𝑆𝑔𝑜𝑜𝑑 . Lemma 92 holds for this legal generator 𝐺, and
notice that the Algorithm 5∗ behaves the same w.r.t. 𝐺𝐻𝑆 ,𝜙𝑆 as w.r.t. 𝐺 conditioned
on it never hits 𝑥 ∉ 𝑆𝑔𝑜𝑜𝑑 .

With Claim 102 we can prove:
14We use 𝑐1 to state this theorem instead of using the number of transitions as in Lemma 92, since

our algorithm ends immediately when it hits a not-good string. It’s a bit tricky to use the notion of
number of transitions in time [𝑠, 𝑠 + ℎ] here.

15𝜉 may or may not hit a not-good string in 𝑐2.

145

Claim 103 The accepting probability of Algorithm 5∗ w.r.t. (𝐺𝐻𝑆 ,𝜙𝑆 , 𝜙𝑆, 𝑥𝑖𝑛) is less
than 1/2𝑛.

Proof: Consider the random process generated by running Algorithm 5∗ w.r.t.
(𝐺𝐻𝑆 ,𝜙𝑆 , 𝜙𝑆, 𝑥𝑖𝑛). w.l.o.g. assume that 𝑥𝑖𝑛 ∈ 𝑆 otherwise line 4 rejects immediately.

Let 𝑃𝑥 (𝑠) be the probability that 𝜏𝑒𝑛𝑑 ≥ 𝑠 and 𝜉 (𝑠) = 𝑥. Note that by definition of
Algorithm 5∗,

𝜉 (𝜏) ∈ 𝑆𝑔𝑜𝑜𝑑 ,∀𝜏 ∈ [0, 𝜏𝑒𝑛𝑑] .

Let
��𝑃𝑔𝑜𝑜𝑑 (𝑠)〉 ∈ R|𝑆𝑔𝑜𝑜𝑑 | be the vector

[..., 𝑃𝑥 (𝑠), ...]𝑇 for 𝑥 ∈ 𝑆𝑔𝑜𝑜𝑑 .

Let ℎ be an infinitesimal value, by Claim 102, we have for any 𝑧 ∈ 𝑆𝑔𝑜𝑜𝑑 ,

𝑃𝑧 (𝑠 + ℎ) = 𝑃𝑧 (𝑠)
(
1 − |⟨𝑧 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑧⟩|ℎ +𝑂 (ℎ2)

)
︸ ︷︷ ︸

𝜉 (𝑠) = 𝑧, stays in 𝑧 till 𝑠 + ℎ

+
∑︁

𝑥:𝑥≠𝑧,𝑥∈𝑆𝑔𝑜𝑜𝑑
𝑃𝑥 (𝑠)

(
⟨𝑧 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ℎ +𝑂 (ℎ2)

)
︸ ︷︷ ︸

𝜉 (𝑠) = 𝑥, jump to 𝑧 between time [𝑠, 𝑠 + ℎ], stays in 𝑧 till 𝑠 + ℎ

+ 𝑂 (ℎ2).︸ ︷︷ ︸
𝜉 (𝑠)∈𝑆𝑔𝑜𝑜𝑑 , jump more than once in [𝑠, 𝑠 + ℎ]

but finally stay 𝑧 in 𝑠 + ℎ

(4.28)

Note that by the definition of 𝑆𝑔𝑜𝑜𝑑 , we have

⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ = −
∑︁

𝑦≠𝑥,𝑦∈𝑆
⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩

≤ 0.

Thus we have for 𝑧 ∈ 𝑆𝑔𝑜𝑜𝑑 ,

−|⟨𝑧 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑧⟩| = ⟨𝑧 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑧⟩.

Thus Eq. (4.28) is equivalent to

𝑃𝑧 (𝑠 + ℎ) − 𝑃𝑧 (𝑠) =
∑︁

𝑥∈𝑆𝑔𝑜𝑜𝑑
⟨𝑧 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩𝑃𝑥 (𝑠)ℎ +𝑂 (ℎ2)

=
∑︁

𝑥∈𝑆𝑔𝑜𝑜𝑑
⟨𝑧 |𝐺𝐻𝑆 ,𝜙𝑆

𝑔𝑜𝑜𝑑
|𝑥⟩𝑃𝑥 (𝑠)ℎ +𝑂 (ℎ2),

146

where the last equality comes from the fact that 𝑧, 𝑥 ∈ 𝑆𝑔𝑜𝑜𝑑 . Thus

𝑃′𝑧 (𝑠) = ⟨𝑧 |𝐺
𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑
|𝑃𝑔𝑜𝑜𝑑 (𝑠)⟩,

⇒𝑃′𝑔𝑜𝑜𝑑 (𝑠) = 𝐺
𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

��𝑃𝑔𝑜𝑜𝑑 (𝑠)〉 ,
⇒𝑃𝑔𝑜𝑜𝑑 (𝑠) = exp(𝐺𝐻𝑆 ,𝜙𝑆

𝑔𝑜𝑜𝑑
𝑠) |𝑥𝑖𝑛⟩ .

Thus

𝑃𝑟 (Algorithm 5∗ Accept) (4.29)

= 𝑃𝑟 (𝜏𝑒𝑛𝑑 > 𝑡)
=

∑︁
𝑧∈𝑆𝑔𝑜𝑜𝑑

𝑃𝑧 (𝑡)

=
∑︁

𝑧∈𝑆𝑔𝑜𝑜𝑑
⟨𝑧 | exp(𝐺𝐻𝑆 ,𝜙𝑆

𝑔𝑜𝑜𝑑
𝑡) |𝑥𝑖𝑛⟩

=
∑︁

𝑧∈𝑆𝑔𝑜𝑜𝑑
⟨𝑧 |𝐷𝑖𝑎𝑔(𝜙𝑆𝑔𝑜𝑜𝑑) exp(−𝐹𝐻𝑆 ,𝜙𝑆

𝑔𝑜𝑜𝑑
𝑡)𝐷𝑖𝑎𝑔(𝜙𝑆𝑔𝑜𝑜𝑑)−1 |𝑥𝑖𝑛⟩

=
∑︁

𝑧∈𝑆𝑔𝑜𝑜𝑑

⟨𝑧 |𝜙𝑆⟩
⟨𝑥𝑖𝑛 |𝜙𝑆⟩

⟨𝑧 | exp(−𝐹𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

𝑡) |𝑥𝑖𝑛⟩.

By Claim 101 and Remark 6 in Appendix 4.11 we know that∑︁
𝑧∈𝑆𝑔𝑜𝑜𝑑

⟨𝑧 |𝜙𝑆⟩
⟨𝑥𝑖𝑛 |𝜙𝑆⟩

⟨𝑧 | exp(−𝐹𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

𝑡) |𝑥𝑖𝑛⟩ (4.30)

≤
∑︁

𝑧∈𝑆𝑔𝑜𝑜𝑑

���� ⟨𝑧 |𝜙𝑆⟩⟨𝑥𝑖𝑛 |𝜙𝑆⟩

���� · ���⟨𝑧 | exp(−𝐹𝐻𝑆 ,𝜙𝑆
𝑔𝑜𝑜𝑑

𝑡) |𝑥𝑖𝑛⟩
���

≤ 2𝑛 · 23𝑝(𝑛) · (1 − 𝜖/2)𝑡 (4.31)

≤ 2−𝑛,

for sufficiently large

𝑡 ≥ 8(𝑛 + 𝑝′(𝑛))/𝜖 ≥ 8(𝑛 + 𝑝(𝑛))/𝜖,

where 𝜖 ≤ 1/2.

Thus by Claim 103 finally we conclude that the accepting probability of Algorithm
5, is smaller than the accepting probability of Algorithm 5∗, which is smaller than
2−𝑛.

147

Protocol with discrete-time randomness
Recall that we denote 𝑆 ⊆ {0, 1}𝑛 as the state space, 𝐺 ∈ R|𝑆 |×|𝑆 | as a matrix,
and 𝑥, 𝑦 ∈ 𝑆 as the states. Additionally, 𝑝′(𝑛) = 𝑝𝑜𝑙𝑦(𝑛) is a precision parameter
explained in Appendix 4.11 Remark 8, and 𝑀 is the upper bound of the number of
transitions used in Algorithm 5,

𝑀 = 2𝑘𝑚𝑛3 · 8(𝑛 + 𝑝′(𝑛))/𝜖 · ∥𝐻∥ = 𝑝𝑜𝑙𝑦(𝑛).

In this section, we replace the assumption from Section IV B—that one can sample
uniformly from [0, 1] in 𝑝𝑜𝑙𝑦(𝑛) time, and thus can sample from an exponential
distribution in 𝑝𝑜𝑙𝑦(𝑛) time—with its discrete approximation. In particular, we
assume that we can use 𝑝𝑜𝑙𝑦(𝑛)-time to sample from the truncated discretized
exponential distribution D𝐾,𝛿,𝜆 as in Remark 7 in Appendix 4.11. The value of 𝜆
will be specified later in the algorithm, while 𝐾 and 𝛿 are chosen to be

𝛿 := 2−2𝑛/𝑀, (4.32)

𝐾 := ⌈2𝑝′ (𝑛)+2𝑛𝑀 (𝑛 ln 2 + ln𝑀))⌉ . (4.33)

Note that D𝐾,𝛿,𝜆 serves as a discrete approximation of the exponential distribution
in the following sense.

Claim 104 Sample a random variable Δ𝜏 according to the exponential distribution
with parameter 𝜆. Let Δ𝜏𝐷 be the rounded value of Δ𝜏, which is the largest value in
the set {𝑘𝛿}𝑘=0,...,𝐾 that does not exceed Δ𝜏. Then the distribution of Δ𝜏𝐷 isD𝐾,𝛿,𝜆.

Here, the subscript 𝐷 in Δ𝜏𝐷 refers to the “discrete approximation”.

The discretized MA verification protocol is derived by modifying Algorithm 5:
First, for clarity, we rename the variables (𝜏,Δ𝜏, 𝜉) to (𝜏𝐷 ,Δ𝜏𝐷 , 𝜉𝐷). Due to the
discretization error, in line 3 we change the value of 𝑡 from 8(𝑛 + 𝑝′(𝑛))/𝜖 to
(−2−𝑛) + 8(𝑛 + 𝑝′(𝑛))/𝜖 . Finally, we replace the continuous-time process (lines 21,
22 and 23 in Algorithm 5) with its discrete approximation, as shown below.

Sample Δ𝜏𝐷 from D𝐾,𝛿,|⟨𝑥 |𝐺𝐻𝑆,𝜙𝑆 |𝑥⟩|
Set 𝜉𝐷 (𝑠) = 𝑥 for all 𝑠 ∈ (𝜏𝐷 , 𝜏𝐷 + Δ𝜏𝐷]
𝜏𝐷 ← 𝜏𝐷 + Δ𝜏𝐷

We denote the discretized MA verification protocol as Algorithm 5D. The perfor-
mance of Algorithm 5D is summarized as follows.

148

Theorem 105 For any (𝐻𝑆, 𝜙𝑆, 𝑥𝑖𝑛), Algorithm 5D always runs in polynomial time.
Besides,

• For the Yes instance, there exists 𝜙𝑆, 𝑥𝑖𝑛 such that Algorithm 5D accepts w.p.
≥ 1/2 − 2−𝑛.

• In the No instance, ∀ 𝜙𝑆, 𝑥𝑖𝑛, Algorithm 5D rejects w.p. ≥ 1 − 3 · 2−𝑛.

Connecting Algorithm 5 and Algortihm 5D

Based on Claim 104 we can interpret the discretized distribution D𝐾,𝛿,𝜆 as being
derived from rounding the exponential distribution. Using this perspective16, we will
prove Theorem 105 by showing that Algorithm 5D is a good discrete approximation
of Algorithm 5.

More specifically, to aid in the proof of Theorem 105, we define a new algorithm that
couples the continuous and the discrete processes. The full description is provided
in Algorithm 6. Algorithm 6 is derived by modifying specific lines in Algorithm 5
as follows.

1O Change line 2 to contain the variables for both the continuous and discrete
process:

𝑥 ← 𝑥𝑖𝑛, 𝜏 ← 0, 𝜉 (0) ← 𝑥𝑖𝑛

𝜏𝐷 ← 0, 𝜉𝐷 (0) ← 𝑥𝑖𝑛

2O Delete the sentence in line 3. To keep Algorithm 6 flexible as an analytical
tool, we do not assign specific values to 𝑡 and 𝑀 . Accordingly, we modify
line 7 to “While True” which means loop forever. Additionally, we remove
the sentences in lines 14, 15 and 16, and delete line 29.

3O Modify lines 21, 22 and 23 to include the updates for both the continuous and
discrete processes. In particular, the discrete process is derived by rounding
the continuous process:

Sample 𝑢 ∈ [0, 1] from uniform distribution [0, 1]
Δ𝜏 ← ln(1/𝑢)

|⟨𝑥 |𝐺𝐻𝑆,𝜙𝑆 |𝑥⟩|
Set 𝜉 (𝑠) = 𝑥 for all 𝑠 ∈ (𝜏, 𝜏 + Δ𝜏]

16We thank the anonymous reviewers for suggesting this connection, which significantly simplifies
the proof.

149

Algorithm 6 Checking_Compare(𝐻𝑆, 𝜙𝑆, 𝑥𝑖𝑛)
1: 𝜅 ← 0 ▷Record the number of transitions
2: 𝑥 ← 𝑥𝑖𝑛,𝜏 ← 0, 𝜉 (0) ← 𝑥𝑖𝑛
𝜏𝐷 ← 0, 𝜉𝐷 (0) ← 𝑥𝑖𝑛

3: ▷Do not specify 𝑀, 𝑡.
4: if 𝑥 ∉ 𝑆 then ▷A good 𝑥𝑖𝑛 should satisfy ⟨𝑥𝑖𝑛 |𝜙⟩ ≠ 0
5: Return Reject
6: end if
7: while True do
8: if 𝐶𝜙𝑆 (𝑥) is not represented by 𝑝(𝑛)-bits then
9: Return Reject ▷Check the format of 𝐶𝜙𝑆 (𝑥).

10: end if
11: if

∑
𝑧∈𝑆⟨𝑧 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ ≠ 0 or ∃𝑦 ≠ 𝑥, 𝑦 ∈ 𝑆 s.t. ⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ < 0 then

12: Return Reject ▷Add a Check
13: end if
14: ▷Delete the check 𝜅 ≥ 𝑀
15:
16:
17: if |⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩| = 0 then
18: Set 𝜉 (𝑠) = 𝑥 for all 𝑠 ∈ (𝜏, +∞];

Set 𝜉𝐷 (𝑠) = 𝑥 for all 𝑠 ∈ (𝜏𝐷 , +∞];
19: 𝜏 ← +∞

𝜏𝐷 ← +∞
20: else
21: Sample 𝑢 ∈ [0, 1] from uniform distribution [0, 1]

Δ𝜏 ← ln(1/𝑢)
|⟨𝑥 |𝐺𝐻𝑆,𝜙𝑆 |𝑥⟩|

22: Set 𝜉 (𝑠) = 𝑥 for all 𝑠 ∈ (𝜏, 𝜏 + Δ𝜏]
23: 𝜏 ← 𝜏 + Δ𝜏

Let Δ𝜏𝐷 be the rounded value of Δ𝜏, which is the largest value in the set
{𝑘𝛿}𝑘=0,...,𝐾 that does not exceed Δ𝜏.

Set 𝜉𝐷 (𝑠) = 𝑥 for all 𝑠 ∈ (𝜏𝐷 , 𝜏𝐷 + Δ𝜏𝐷]
𝜏𝐷 ← 𝜏𝐷 + Δ𝜏𝐷

24: Sample 𝑦 ∈ 𝑆 \ {𝑥} from the probability distribution ⟨𝑦 |𝐺𝐻𝑆,𝜙𝑆 |𝑥⟩
|⟨𝑥 |𝐺𝐻𝑆,𝜙𝑆 |𝑥⟩|

25: 𝑥 ← 𝑦

26: 𝜅 ← 𝜅 + 1
27: end if
28: end while
29:

150

𝜏 ← 𝜏 + Δ𝜏
Let Δ𝜏𝐷 be the rounded value of Δ𝜏, which is the largest value in the set
{𝑘𝛿}𝑘=0,...,𝐾 that does not exceed Δ𝜏.
Set 𝜉𝐷 (𝑠) = 𝑥 for all 𝑠 ∈ (𝜏𝐷 , 𝜏𝐷 + Δ𝜏𝐷]
𝜏𝐷 ← 𝜏𝐷 + Δ𝜏𝐷

We similarly modify lines 18 and 19.

Algorithm 6 either returns “Reject” or loops forever. By Claim 104 and the con-
struction of Algorithm 6, we know that

• the random variables (𝜏, 𝜉) evolves in the same way as (𝜏, 𝜉) in Algorithm 5,

• the random variables (𝜏𝐷 , 𝜉𝐷) evolves in the same way as (𝜏𝐷 , 𝜉𝐷) in Algo-
rithm 5D.

Here, we outline the key observations needed to prove Theorem 105. A more formal
proof will follow in the next section. Roughly speaking, to establish that Algorithm
5D is a good discrete approximation of Algorithm 5, we analyze the differences
between the random variables (𝜏𝐷 , 𝜉𝐷) and (𝜏, 𝜉) in Algorithm 6. Specifically, we
observe that:

• The sampling of Δ𝜏 or Δ𝜏𝐷 is independent of the other steps and can therefore
be analyzed separately.

• By construction, |Δ𝜏−Δ𝜏𝐷 | ≤ 𝛿 unlessΔ𝜏 ≥ 𝐾𝛿, which is unlikely to happen.
When we further set an upper bound 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) and terminate Algorithm
6 once 𝜏 > 𝑡, the accumulated error between 𝜏𝐷 and 𝜏 is most likely within
𝛿 × (number of transitions in 𝜉).

• Note that 𝛿 is exponentially small. As long as the number of transitions is
𝑝𝑜𝑙𝑦(𝑛), we ensure that |𝜏 − 𝜏𝐷 | is exponentially small. In the Yes instance,
Lemma 96 guarantees a non-trivial probability that the number of transitions
is 𝑝𝑜𝑙𝑦(𝑛). In the NO instance, the additional check “If 𝜅 ≥ 𝑀 then Return
Reject” in Algorithm 5 and Algorithm 5D ensures that any adversary who
successfully cheats can only have 𝑀 = 𝑝𝑜𝑙𝑦(𝑛) transitions.

151

Proof of Theorem 105

The formal proof of Theorem 105 is as follows. For Algorithm 6, let 𝜅(𝑥𝑖𝑛, 𝜏𝐶) be
the random variable which denotes the number of transitions in 𝜉 (𝑠) for 𝑠 ∈ [0, 𝜏𝐶].
Similarly, let 𝜅𝐷 (𝑥𝑖𝑛, 𝜏𝐷) denote the number of transitions in 𝜉𝐷 (𝑠) for 𝑠 ∈ [0, 𝜏𝐷].

To simplify the notation, we use 𝑡𝐶 , 𝑡𝐷 and 𝑀 to represent the values specified in
Algorithm 5 and Algorithm 5D:

𝑡𝐶 := 8(𝑛 + 𝑝′(𝑛))/𝜖, (4.34)

𝑡𝐷 := 𝑡𝐶 − 2−𝑛, (4.35)

𝑀 = 2𝑘𝑚𝑛3𝑡𝐶 ∥𝐻∥. (4.36)

Note that the 𝛿 and 𝐾 from Eqs. (4.32)(4.33) satisfy

𝑀𝛿 ≤ 2−𝑛,

𝑀 · 𝑒𝑥𝑝(−𝜆𝐾𝛿) ≤ 2−𝑛, for 𝜆 ≥ 2−𝑝
′ (𝑛) .

Proof:[of Completeness of Theorem 105] Compared to Algorithm 5, its discretized
version (Algorithm 5D) only modifies the sampling of the waiting time, replacing
Δ𝜏 from a continuous process with its discrete approximation Δ𝜏𝐷 . The sampling
of Δ𝜏 or Δ𝜏𝐷 is independent of the other steps. Thus the Completeness proof of
Theorem 100 also works for Theorem 105, except that we need to bound

𝑃𝑟 (𝜅𝐷 (𝑥𝑖𝑛, 𝑡𝐷) ≤ 𝑀) instead of 𝑃𝑟 (𝜅(𝑥𝑖𝑛, 𝑡𝐶) ≤ 𝑀).

According to the randomness in Algorithm 6 we define the following two events.
𝐸𝑣𝑒𝑛𝑡1 is described w.r.t. the variables in the discrete process, and 𝐸𝑣𝑒𝑛𝑡2 is
described w.r.t. the variables in the continuous process:

𝐸𝑣𝑒𝑛𝑡1 := {𝜅𝐷 (𝑥𝑖𝑛, 𝑡𝐷) ≤ 𝑀},

𝐸𝑣𝑒𝑛𝑡2 := {𝜅(𝑥𝑖𝑛, 𝑡𝐶) ≤ 𝑀, and for all the

transitions in 𝜉 (𝑠) for 𝑠 ∈ [0, 𝑡𝐶],
none of the Δ𝜏 is greater than 𝐾𝛿.

(Thus |Δ𝜏 − Δ𝜏𝐷 | ≤ 𝛿)}.

Notice that 𝐸𝑣𝑒𝑛𝑡2 implies 𝐸𝑣𝑒𝑛𝑡1 since 𝑡𝐷 ≤ 𝑡𝐶 − 𝑀𝛿. Thus we have

𝑃𝑟 (𝜅𝐷 (𝑥𝑖𝑛, 𝑡𝐷) ≤ 𝑀) ≥ 𝑃𝑟 (𝐸𝑣𝑒𝑛𝑡2). (4.37)

152

To estimate 𝑃𝑟 (𝐸𝑣𝑒𝑛𝑡2), firstly note that the probability that a particular Δ𝜏 exceeds
𝐾𝛿 is negligible. More specifically, from line 21 in Algorithm 6, Δ𝜏 is sampled
from the exponential distribution with parameter 𝜆𝑥 := |⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩|. By line 17
we have 𝜆𝑥 ≠ 0, thus by Remark 8 in Appendix 4.11 we have

𝜆𝑥 ≥ 2−𝑝
′ (𝑛) .

Thus w.r.t. a particular 𝑥, we have

𝑃𝑟 (Δ𝜏 ≥ 𝐾𝛿) = exp(−𝜆𝑥𝐾𝛿) ≤ 2−𝑛/𝑀. (4.38)

Thus begin with Eq. (4.37) and apply a union bound, we conclude that

𝑃𝑟 (𝜅𝐷 (𝑥𝑖𝑛, 𝑡𝐷) ≤ 𝑀) (4.39)

≥ 𝑃𝑟 (𝐸𝑣𝑒𝑛𝑡2)
≥ 𝑃𝑟 (𝜅(𝑥𝑖𝑛, 𝑡𝐶) ≤ 𝑀) − 𝑀 · 2−𝑛/𝑀
≥ 1/2 − 2−𝑛,

where 𝑃𝑟 (𝜅(𝑥𝑖𝑛, 𝑡𝐶) ≤ 𝑀) ≥ 1/2 is from the completeness proof for Theorem 100.

Proof:[of Soundness of Theorem 105] Recall that Algorithm 6 either returns
“Reject” or loops forever. We define 𝜏𝑟𝑒 𝑗 and 𝜏𝑟𝑒 𝑗 ,𝐷 as the random variables which
denote the value of 𝜏 and 𝜏𝐷 respectively, at the moment Algorithm 6 returns
“Reject”.

Define two events w.r.t. the variables in the discrete process:

𝐸𝑣𝑒𝑛𝑡3 :={𝜏𝑟𝑒 𝑗 ,𝐷 ≥ 𝑡𝐷 , and 𝜅𝐷 (𝑥𝑖𝑛, 𝑡𝐷) ≤ 𝑀},
𝐸𝑣𝑒𝑛𝑡4 :={𝜏𝑟𝑒 𝑗 ,𝐷 ≥ 𝑡𝐷 , and 𝜅𝐷 (𝑥𝑖𝑛, 𝑡𝐷) ≤ 𝑀

and for all the transitions of 𝜉𝐷 (𝑠) for

𝑠 ∈ [0, 𝑡𝐷], none of the Δ𝜏 exceeds 𝐾𝛿.

(Thus |Δ𝜏 − Δ𝜏𝐷 | ≤ 𝛿)}.

By the construction of Algorithm 6 we have

𝑃𝑟 (Algorithm 5D Accept) = 𝑃𝑟 (𝐸𝑣𝑒𝑛𝑡3). (4.40)

153

Since the probability that a particular Δ𝜏 exceeds 𝐾𝛿 is negligible, similar to the
above Completeness proof of Theorem 105, using a union bound, we have

𝑃𝑟 (𝐸𝑣𝑒𝑛𝑡3) ≤ 𝑃𝑟 (𝐸𝑣𝑒𝑛𝑡4) + 𝑀 · 2−𝑛/𝑀
= 𝑃𝑟 (𝐸𝑣𝑒𝑛𝑡4) + 2−𝑛. (4.41)

Moreover, 𝐸𝑣𝑒𝑛𝑡4 implies the event {𝜏𝑟𝑒 𝑗 ≥ 𝑡𝐷 −𝑀𝛿}, which is described w.r.t. the
variables in the continuous process. Thus in the No instance,

𝑃𝑟 (Algorithm 5D Accept)
≤𝑃𝑟 (𝐸𝑣𝑒𝑛𝑡4) + 2−𝑛 (4.42)

≤𝑃𝑟 (𝜏𝑟𝑒 𝑗 ≥ 𝑡𝐷 − 𝑀𝛿) + 2−𝑛

≤𝑃𝑟 (𝜏𝑟𝑒 𝑗 ≥ 𝑡𝐶 − 2 · 2−𝑛) + 2−𝑛

=𝑃𝑟 (Algorithm 5∗ Accept when (4.43)

𝑡 is set to 𝑡𝐶 − 2 · 2−𝑛)) + 2−𝑛.

Recall that Algorithm 5∗ is defined in Section 4.4, which is Algorithm 5 without the
check “if 𝜅 ≥ 𝑀 , then Return Reject”. Using the same analysis as in Claim 103, in
particular Eqs. (4.29)(4.30)(4.31), we have that

𝑃𝑟 (Algorithm 5∗ Accept when 𝑡 is set to 𝑡𝐶 − 2 · 2−𝑛))
≤ 2𝑛 · 23𝑝(𝑛) · (1 − 𝜖/2)𝑡𝐶−2·2−𝑛

≤ 2 · 2−𝑛.

Thus we complete the proof.

4.5 Appendix:Relationship to matrix verification
Our techniques for proving Theorem 83 work for a slightly general setting, that is,
we can generalize from local Hamiltonians to sparse matrices with small norm. The
detailed setting is as follows.

Consider a matrix 𝐻 ∈ R2𝑛×2𝑛 , and a vector |𝜙⟩ ∈ R2𝑛 . 𝐻 is 𝑝𝑜𝑙𝑦(𝑛)-sparse, that is,
every row and every column only have 𝑝𝑜𝑙𝑦(𝑛) non-zero entries. Besides, 𝐻 has a
small norm, that is, ∥𝐻∥ ≤ 𝑝𝑜𝑙𝑦(𝑛). Suppose we have query access to 𝐻 and |𝜙⟩.
That is,

(1) For any 𝑥, 𝑦 ∈ {0, 1}𝑛, there is a 𝑝𝑜𝑙𝑦(𝑛) time algorithm which returns
⟨𝑥 |𝐻 |𝑦⟩.

154

(2) For any row index 𝑥, there is a polynomial time algorithm which outputs the
column indices of the non-zero entries in the row, that is, 𝑦 s.t. ⟨𝑥 |𝐻 |𝑦⟩ ≠ 0.
There is a similar algorithm for listing all non-zero entries of a chosen column.

(3) Given 𝑥, there is a 𝑝𝑜𝑙𝑦(𝑛)-time algorithm which outputs ⟨𝑥 |𝜙⟩ up to a
common factor, that is, 𝑐𝜙 (𝑛) · ⟨𝑥 |𝜙⟩ for some unknown 𝑐𝜙 (𝑛). Note that this
allows one to efficiently compute the ratio ⟨𝑥 |𝜙⟩⟨𝑦 |𝜙⟩ .

The problem is to design an algorithm to distinguish the following two cases, with
as few queries as possible:

• Yes instance: ⟨𝜙|𝐻 |𝜙⟩ = 0, |𝜙⟩ is promised to be the ground state of 𝐻.

• No instance: 𝜆(𝐻) ≥ 1/𝑝𝑜𝑙𝑦(𝑛). |𝜙⟩ can be arbitrary.

Here 𝜆(𝐻) is the ground energy of 𝐻.

Theorem 106 Under the assumptions in Remark 6 and Remark 7 in Appendix 4.11.
Given query access to (𝐻, |𝜙⟩), where (𝐻, |𝜙⟩) is promised to satisfy either the Yes
or No instance. There exists an algorithm A(𝑥) which takes an input 𝑥 ∈ {0, 1}𝑛,
runs in 𝑝𝑜𝑙𝑦(𝑛) time, and only makes 𝑝𝑜𝑙𝑦(𝑛) queries to 𝐻, |𝜙⟩ such that

• If (𝐻, |𝜙⟩) is a Yes instance, there exists 𝑥 ∈ {0, 1}𝑛 such that the algorithm
accepts with probability ≥ 1/2.

• If it is a No instance, ∀𝑥, the algorithm accepts with exponentially small
probability.

Roughly speaking A(𝑥) is a random walk over {0, 1}𝑛 which starts from the state
𝑥. We omit the proof since it is the same as the proof of Theorem 83.

4.6 Appendix:MA-hardness
In this section, we briefly explain how the proof in Section 4 of [Bra+08] implies
LHP with succinct ground state is MA-hard. We also check the Hamiltonian in
the reduction satisfies Remark 6 in Appendix 4.11. Let 𝑝(𝑛) be a sufficiently large
polynomial.

Consider a problem 𝐿 in MA, for any instance 𝑥, [Bra+08] shows that one can view
the BPP verification circuit as a quantum circuit. Specifically,

155

Definition 107 (MA𝑞1) A promise problem 𝐿𝑦𝑒𝑠, 𝐿𝑛𝑜 ⊆ Σ∗ belongs to MA𝑞1 if there
exists a polynomial 𝑝 and a poly-size classical reversible circuit 𝑉𝑥 that takes input
in (C2)⊗𝑝(|𝑥 |) and is followed by a single qubit measurement, such that

𝑥 ∈ 𝐿𝑦𝑒𝑠 ⇒ ∃ |𝜉⟩ , 𝑃
[
𝑉𝑥

(
|00...0⟩, |+⟩⊗𝑟 , |𝜉⟩

)
= 1

]
= 1, (4.44)

𝑥 ∈ 𝐿𝑛𝑜 ⇒ ∀ |𝜉⟩ , 𝑃
[
𝑉𝑥

(
|00...0⟩, |+⟩⊗𝑟 , |𝜉⟩

)
= 1

]
≤ 1/2. (4.45)

Note that w.l.o.g. we can assume that 𝑟 is even, since adding one |+⟩ state which is
independent of other parts of the circuit does not influence the accepting probability.

Lemma 108 MA = MA𝑞1. If 𝑥 ∈ 𝐿𝑦𝑒𝑠, the |𝜉⟩ in Eq. (4.44) can always be chosen
to be a computational basis, denoted as |𝑤⟩.

Proof: Compared to the definition of MA𝑞 in Definition 7 of [Bra+08], MA𝑞1 in
Definition 107 requires perfect completeness. It is well known that the complexity
class MA remains unchanged if we require perfect completeness. Based on this fact,
one can check that the Lemma 2 in [Bra+08] for proving MA = MA𝑞 also works
for proving MA = MA𝑞1.

Begin with the MA-complete problem MA𝑞1 with 𝐿𝑦𝑒𝑠∪𝐿𝑛𝑜, suppose𝑉𝑥 is consist-
ing of 𝑇 classical reversible gates, denoted as 𝑉𝑥 := 𝑅𝑇 ...𝑅1. As shown in Section 4
of [Bra+08], one can use Kitaev’s circuit to Hamiltonian reduction [KSV02] to get
a Hamiltonian 𝐻𝑥 , where 𝑥 ∈ 𝐿𝑦𝑒𝑠 or 𝑥 ∈ 𝐿𝑛𝑜 will be mapped to 𝐻𝑥 with 𝜆(𝐻𝑥) ≤ 𝑎
or 𝜆(𝐻𝑥) ≥ 𝑏 where 𝑏 − 𝑎 ≥ 1/𝑝𝑜𝑙𝑦(𝑛). Besides, one can check that each entry of
the Hamiltonian is of form 𝑁1

𝑁2
, and greater than 1/2𝑝(𝑛) .

Then we check that the above reduction from 𝑥 to 𝐻𝑥 satisfies the promise of LHP
with succinct ground state. That is, in the Yes case, there always exists a succinct
ground state. Since𝑉𝑥 has perfect completeness, one can check that the history state
below is a ground state of 𝐻𝑥 ,

|𝜓ℎ𝑖𝑠𝑡⟩ =
1

𝑇 + 1

𝑇∑︁
𝑡=0

(
𝑅𝑡 ...𝑅1 |00...0⟩ |+⟩⊗𝑟 |𝑤⟩

)
⊗ |𝑡⟩ ,

where |𝑤⟩ is the computational basis defined in Lemma 108, and the clock |𝑡⟩ uses
the unary encoding, that is,

|𝑡⟩ = | 0..0︸︷︷︸
𝑇 − 𝑡 zeros,

1..1︸︷︷︸
𝑡 ones.

⟩.

156

Given a computational basis 𝑥, denote the𝑇 bits that correspond to the clock register
as 𝑥𝑐, and the other bits as 𝑥𝑜. One can check that if 𝑥𝑐 is not of the form of unary
encoding, then ⟨𝑥 |𝜓ℎ𝑖𝑠𝑡⟩ = 0. If 𝑥𝑐 = |𝑡⟩, then

⟨𝑥 |𝜓ℎ𝑖𝑠𝑡⟩ =
1

𝑇 + 1
⟨𝑥𝑜 |𝑅𝑡 ...𝑅1 |00...0⟩ |+⟩⊗𝑟 |𝑤⟩

=
1

𝑇 + 1
1

2𝑟/2
∑︁

𝑦∈{0,1}𝑟
⟨(𝑅𝑡 ...𝑅1)†𝑥𝑜 |00...0, 𝑦, 𝑤⟩. (4.46)

Since {𝑅𝑡}𝑡 are classical reversible gates, one can easily use the poly-size classical
circuit to compute 𝑧 := (𝑅𝑡 ...𝑅1)†𝑥𝑜. If in 𝑧 the bits correspond to the ancillas
|00...0⟩ and witness 𝑤 are |00...0⟩ and |𝑤⟩, then Eq. (4.46) is the sum of one 1

𝑇+1
1

2𝑟/2

plus 2𝑟 − 1 zeros, thus

⟨𝑥 |𝜓ℎ𝑖𝑠𝑡⟩ =
1

𝑇 + 1
1

2𝑟/2
. (4.47)

Otherwise ⟨𝑥 |𝜓ℎ𝑖𝑠𝑡⟩ is a sum of 2𝑟 zeros thus equal to 0.

Since 𝑟 is even by Definition 107, one can check that ⟨𝑥 |𝜓ℎ𝑖𝑠𝑡⟩ is of form 𝑁1
𝑁2

, and
greater than

1
𝑝𝑜𝑙𝑦(𝑛)2𝑟/2

≥ 2−𝑝(𝑛) .

In summary, ⟨𝑥 |𝜓ℎ𝑖𝑠𝑡⟩ can be computed by a 𝑝𝑜𝑙𝑦(𝑛)-size classical circuit thus is
succinct, and satisfies Remark 6 in Appendix 4.11. Thus LHP with succinct ground
state is MA-hard.

4.7 Appendix:Proof of two facts
Proof:[of Fact 90] For any 𝑥 ∈ [−1, 1], consider its Taylor series with Lagrange
remainder term, we have

𝑒−𝑥 = 1 − 𝑥 + 𝑅1(𝑥), (4.48)

where 𝑅1(𝑥) = 𝑒−𝜂

2! 𝑥
2 for 𝜂 ∈ [−1, 1]. Thus

|𝑒−𝑥 − (1 − 𝑥) | ≤ 𝑒
2
𝑥2 ≤ 2𝑥2. (4.49)

157

Proof:[of Fact 91] W.l.o.g., we write 𝑀 as

𝑀 =

[
𝑁 𝐸

𝐸† 𝐹

]
, (4.50)

where 𝐸 ∈ R|𝑆′ |×(|𝑆 |−|𝑆′ |) , 𝐹 ∈ R(|𝑆 |−|𝑆′ |)×(|𝑆 |−|𝑆′ |) .

Since 𝑀, 𝑁 are Hermitians, they can be diagonalized by orthogonal basis. In
particular, for 𝑀 , for any normalized state |𝜓⟩, we have

𝜆(𝑀) ≤ ⟨𝜓 |𝑀 |𝜓⟩ ≤ 𝜆𝑚𝑎𝑥 (𝑀). (4.51)

Let |𝜂⟩ ∈ R|𝑆′ | be a normalized eigenvector of 𝑁 with eigenvalue 𝛼. Let |𝜂0⟩ ∈ R|𝑆 |

to be the state that extending |𝜂⟩ to R|𝑆 | by adding 0 values to entries in 𝑆\𝑆′. |𝜂0⟩
is normalized by definition. One can verify that

⟨𝜂0|𝑀 |𝜂0⟩ = ⟨𝜂 |𝑁 |𝜂⟩ (4.52)

= 𝛼. (4.53)

Together with inequality (4.51), we have

𝜆(𝑀) ≤ 𝛼 ≤ 𝜆𝑚𝑎𝑥 (𝑀). (4.54)

Thus

𝜆(𝑀) ≤ 𝜆(𝑁) ≤ 𝜆𝑚𝑎𝑥 (𝑁) ≤ 𝜆𝑚𝑎𝑥 (𝑀). (4.55)

4.8 Appendix:Properties of 𝐹𝐻,𝜙.
Proof:[of Lemma 94 from [Ten+95] [Bra+23b]] Note that 𝐻 is real-valued and
Hermitian, thus 𝐻 is symmetric. (1) is true by definition of stoquastic. For (2), one

158

can verify that for any 𝑥,

⟨𝑥 |𝐹𝐻,𝜙 |𝜙⟩ =
∑︁
𝑦

⟨𝑥 |𝐹𝐻,𝜙 |𝑦⟩⟨𝑦 |𝜙⟩

= ⟨𝑥 |𝐹𝐻,𝜙 |𝑥⟩⟨𝑥 |𝜙⟩ +
∑︁

𝑦:(𝑥,𝑦)∈𝑆−
⟨𝑥 |𝐻 |𝑦⟩⟨𝑦 |𝜙⟩

= ⟨𝑥 |𝐻 |𝑥⟩⟨𝑥 |𝜙⟩ +
∑︁

𝑧:(𝑥,𝑧)∈𝑆+
⟨𝑥 |𝐻 |𝑧⟩⟨𝑧 |𝜙⟩

+
∑︁

𝑦:(𝑥,𝑦)∈𝑆−
⟨𝑥 |𝐻 |𝑦⟩⟨𝑦 |𝜙⟩

=
∑︁
𝑦

⟨𝑥 |𝐻 |𝑦⟩⟨𝑦 |𝜙⟩

= ⟨𝑥 |𝐻 |𝜙⟩.

Thus 𝐹𝐻,𝜙 |𝜙⟩ = 𝐻 |𝜙⟩. For (3), by (1) 𝐹𝐻,𝜙 is Hermitian and thus diagonalizable,
thus 𝜆(𝐹𝐻,𝜙) is well-defined. Consider that for any complex-valued state |𝜉⟩, one
has

⟨𝜉 |𝐹𝐻,𝜙 − 𝐻 |𝜉⟩
=

∑︁
𝑥,𝑦

⟨𝜉 |𝑥⟩⟨𝑥 |𝐹𝐻,𝜙 − 𝐻 |𝑦⟩⟨𝑦 |𝜉⟩

=
∑︁
(𝑥,𝑦)∈𝑆+

⟨𝜉 |𝑥⟩(−⟨𝑥 |𝐻 |𝑦⟩)⟨𝑦 |𝜉⟩ +
∑︁
𝑥

⟨𝜉 |𝑥⟩⟨𝑥 |𝐹𝐻,𝜙 − 𝐻 |𝑥⟩⟨𝑥 |𝜉⟩

=
∑︁
(𝑥,𝑦)∈𝑆+

⟨𝜉 |𝑥⟩(−⟨𝑥 |𝐻 |𝑦⟩)⟨𝑦 |𝜉⟩ +
∑︁
𝑥

⟨𝜉 |𝑥⟩
∑︁

𝑦:(𝑥,𝑦)∈𝑆+
⟨𝑥 |𝐻 |𝑦⟩ ⟨𝑦 |𝜙⟩⟨𝑥 |𝜙⟩ ⟨𝑥 |𝜉⟩

=
∑︁
(𝑥,𝑦)∈𝑆+

⟨𝑥 |𝐻 |𝑦⟩
[
⟨𝑦 |𝜙⟩⟨𝜉 |𝑥⟩⟨𝑥 |𝜉⟩

⟨𝑥 |𝜙⟩ − ⟨𝜉 |𝑥⟩⟨𝑦 |𝜉⟩
]
. (4.56)

For any 𝑥, 𝑦, define
𝑠(𝑥, 𝑦) := 𝑠𝑖𝑔𝑛(⟨𝑥 |𝐻 |𝑦⟩).

Note that 𝐻 is symmetric17, and thus

𝑠(𝑥, 𝑦) = 𝑠(𝑦, 𝑥), ⟨𝑥 |𝐻 |𝑦⟩ = ⟨𝑦 |𝐻 |𝑥⟩.
17Since 𝐻 is real valued and Hermitian.

159

Using the definition of 𝑆+, one gets Eq. (4.56) equals to

=
∑︁
(𝑥,𝑦)∈𝑆+

|⟨𝑥 |𝐻 |𝑦⟩|
[
|⟨𝑦 |𝜙⟩|
|⟨𝑥 |𝜙⟩| ⟨𝜉 |𝑥⟩⟨𝑥 |𝜉⟩ − 𝑠(𝑥, 𝑦)⟨𝜉 |𝑥⟩⟨𝑦 |𝜉⟩

]
=
∑︁
(𝑥,𝑦)∈𝑆+

1
2
|⟨𝑥 |𝐻 |𝑦⟩|

�����
√︄
|⟨𝑦 |𝜙⟩|
|⟨𝑥 |𝜙⟩| ⟨𝜉 |𝑥⟩ − 𝑠(𝑥, 𝑦)

√︄
|⟨𝑥 |𝜙⟩|
|⟨𝑦 |𝜙⟩| ⟨𝜉 |𝑦⟩

�����
2

≥ 0. (4.57)

In other words, 𝐻 can always achieve smaller energy than 𝐹𝐻,𝜙, thus

𝜆(𝐹𝐻,𝜙) ≥ 𝜆(𝐻). (4.58)

Notice that when |𝜉⟩ = |𝜙⟩, Eq. (4.57) equals to 0. Thus if further |𝜙⟩ is the ground
state of 𝐻, then 𝐹𝐻,𝜙 can achieve the energy 𝜆(𝐻) w.r.t. |𝜙⟩, then |𝜙⟩ is the ground
state of 𝐹𝐻,𝜙 due to Eq. (4.58).

4.9 Appendix:Properties of the CTMC
Proof:[of Corollary 95.] The proof comes from [Bra+23b]. For (1), it suffices to
notice that

𝐺𝐻,𝜙 = 𝐷𝑖𝑎𝑔(𝜙)−1(𝜆(𝐹𝐻,𝜙)𝐼 − 𝐹𝐻,𝜙)𝐷𝑖𝑎𝑔(𝜙),

Note that 𝐷𝑖𝑎𝑔(𝜙)−1 is well-defined since 𝜙 is regularized and real-valued.

For (2), one can verify ⟨𝑦 |𝐺𝐻,𝜙 |𝑥⟩ ≥ 0 for 𝑦 ≠ 𝑥 by definition. If |𝜙⟩ is a ground
state of 𝐻,

∑︁
𝑦

⟨𝑦 |𝐺𝐻,𝜙 |𝑥⟩ = 𝜆(𝐹𝐻,𝜙) −
∑︁
𝑦

⟨𝑦 |𝐹𝐻,𝜙 |𝑥⟩ ⟨𝑦 |𝜙⟩⟨𝑥 |𝜙⟩

= 𝜆(𝐹𝐻,𝜙)−⟨𝜙|𝐹𝐻,𝜙 |𝑥⟩ 1
⟨𝑥 |𝜙⟩

= 𝜆(𝐹𝐻,𝜙)−𝜆(𝐹𝐻,𝜙)⟨𝜙 |𝑥⟩ 1
⟨𝑥 |𝜙⟩ (4.59)

= 0,

where Eq. (4.59) is from Lemma 94 (3) and the fact that 𝐹 is Hermitian, 𝜆(𝐹𝐻,𝜙)
must be real-valued as eigenvalues of Hermitian 𝐹𝐻,𝜙.

160

For (3), when |𝜙⟩ is ground state of 𝐻, by (2) we know 𝐺𝐻,𝜙 is a legal generator.
One can verify that for any 𝑦,∑︁

𝑥

⟨𝑦 |𝐺𝐻,𝜙 |𝑥⟩𝜋(𝑥)

= 𝜆(𝐹𝐻,𝜙)𝜋(𝑦) −
∑︁
𝑥

⟨𝑦 |𝐹𝐻,𝜙 |𝑥⟩ ⟨𝑦 |𝜙⟩⟨𝑥 |𝜙⟩
𝑐

= 𝜆(𝐹𝐻,𝜙)𝜋(𝑦) − ⟨𝑦 |𝐹𝐻,𝜙 |𝜙⟩ ⟨𝑦 |𝜙⟩
𝑐

= 𝜆(𝐹𝐻,𝜙)𝜋(𝑦) − 𝜆(𝐹𝐻,𝜙)⟨𝑦 |𝜙⟩ ⟨𝑦 |𝜙⟩
𝑐

= 0.

Proof:[of Lemma 96] This proof is modified from [Bra+23b]. First note that since
|𝜙⟩ is the ground state of 𝐻, by Corollary 95 (2), 𝐺𝐻,𝜙 is a legal generator of a
CTMC, thus Algorithm 4 w.r.t. 𝐺𝐻,𝜙 is well-defined.

Define 𝑐 = ∥ |𝜙⟩ ∥2 and 𝜋(𝑥) = |⟨𝑥 |𝜙⟩|2/𝑐. Let ℎ be an infinitesimal value.

For any random process generating a random variable 𝜉 : [0, 𝑡] → 𝑆, define
𝑇 (𝜏, 𝑥, ℎ) [𝜉] as the number of transitions occurring within the time interval [𝜏, 𝜏+ℎ],
conditioned on 𝜉 (𝜏) = 𝑥. Let 𝐼𝑏𝑎𝑑 [𝜉] be the indicator function that at least 2
transitions happen in any of the time intervals

[0, ℎ], [ℎ, 2ℎ],, [𝑡 − ℎ, 𝑡] for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛).

Here for simplicity we assume that 𝑡/ℎ is an integer.

Let 𝜌(𝜉) be the distribution of 𝜉 : [0, 𝑡] → 𝑆 generated by running Algorithm 4
w.r.t. (𝐺𝐻,𝜙, 𝑥𝑖𝑛, 𝑡), where 𝑥𝑖𝑛 is sampled from distribution 𝜋. By Lemma 92 we
know

𝑃𝑟𝜉∼𝜌(𝜉) (𝑇 (𝜏, 𝑥, ℎ) [𝜉] ≥ 2) = 𝑂 (ℎ2),∀𝑥, 𝜏.

By a union bound we know

𝑃𝑟𝜉∼𝜌(𝜉) (𝐼𝑏𝑎𝑑 [𝜉] = 1)

≤
𝑡/ℎ∑︁
𝑗=0

∑︁
𝑥

𝑃𝑟𝜉∼𝜌(𝜉) (𝜉 (𝑗 ℎ) = 𝑥)𝑃𝑟𝜉∼𝜌(𝜉) (𝑇 (𝑗 ℎ, 𝑥, ℎ) [𝜉] ≥ 2)

=
𝑡

ℎ
𝑂 (ℎ2)

= 𝑂 (ℎ). (4.60)

161

By Corollary 95 (3), we know that 𝜋 is a stationary distribution of 𝐺𝐻,𝜙. Thus for
𝜉 ∼ 𝜌(𝜉), at any time 𝑠 ∈ [0, 𝑡], the distribution of 𝜉 (𝑠) is given by 𝜋, which we
denote as 𝜋𝑠 = 𝜋. For 𝑠 ≤ 𝑡, let 𝜋𝑔𝑜𝑜𝑑,𝑠, 𝜋𝑏𝑎𝑑,𝑠 be the distribution of 𝜉 (𝑠) conditioned
on “good”, “bad”, that is,

𝜋𝑔𝑜𝑜𝑑,𝑠 (𝑥) = 𝑃𝑟𝜉∼𝜌(𝜉) (𝜉 (𝑠) = 𝑥 |𝐼𝑏𝑎𝑑 (𝜉) = 0), (4.61)

𝜋𝑏𝑎𝑑,𝑠 (𝑥) = 𝑃𝑟𝜉∼𝜌(𝜉) (𝜉 (𝑠) = 𝑥 |𝐼𝑏𝑎𝑑 (𝜉) = 1),

we have

𝜋𝑠 (𝑥) =𝑃𝑟𝜉∼𝜌(𝜉) (𝐼𝑏𝑎𝑑 [𝜉] = 0) 𝜋𝑔𝑜𝑜𝑑,𝑠 (𝑥)
+ 𝑃𝑟𝜉∼𝜌(𝜉) (𝐼𝑏𝑎𝑑 [𝜉] = 1) 𝜋𝑏𝑎𝑑,𝑠 (𝑥).

Thus

𝜋𝑔𝑜𝑜𝑑,𝑠 (𝑥) − 𝜋(𝑥) = 𝑂 (ℎ). (4.62)

In other words, 𝜋𝑔𝑜𝑜𝑑,𝑠 is almost 𝜋.

For 𝑠 ≤ 𝑡, where 𝑠 is an integer multiple of ℎ, let 𝑇𝑔𝑜𝑜𝑑 (𝑠) [𝜉] be the number of

162

transitions in time [0,s], conditioned on 𝐼𝑏𝑎𝑑 [𝜉] = 0. We have that18

𝐸𝜉∼𝜌(𝜉) [𝑇𝑔𝑜𝑜𝑑 (𝑠 + ℎ) [𝜉] − 𝑇𝑔𝑜𝑜𝑑 (𝑠) [𝜉]]

=
∑︁
𝑥

𝜋𝑔𝑜𝑜𝑑,𝑠 (𝑥) · 1 ·
(∑︁
𝑦≠𝑥

⟨𝑦 |𝐺𝐻,𝜙 |𝑥⟩ℎ +𝑂 (ℎ2)
)

(4.65)

=
∑︁
𝑥

𝜋(𝑥)
∑︁
𝑦:𝑦≠𝑥
⟨𝑦 |𝐺𝐻,𝜙 |𝑥⟩ℎ +𝑂 (ℎ2)

=
∑︁
𝑥

|⟨𝑥 |𝜙⟩|2
𝑐

∑︁
𝑦:𝑦≠𝑥
−⟨𝑦 |𝐹𝐻,𝜙 |𝑥⟩ ⟨𝑦 |𝜙⟩⟨𝑥 |𝜙⟩ ℎ +𝑂 (ℎ

2)

=
∑︁
𝑥

∑︁
𝑦:𝑦≠𝑥
−⟨𝑦 |𝐹𝐻,𝜙 |𝑥⟩ ⟨𝑦 |𝜙⟩⟨𝑥 |𝜙⟩

𝑐
ℎ +𝑂 (ℎ2)

=
∑︁
(𝑥,𝑦)∈𝑆−

−⟨𝑥 |𝐻 |𝑦⟩⟨𝑦 |𝜙⟩⟨𝑥 |𝜙⟩1
𝑐
ℎ +𝑂 (ℎ2). (4.66)

Thus

𝐸𝜉∼𝜌(𝜉) (𝑇𝑔𝑜𝑜𝑑 (𝑡) [𝜉])

=
∑︁
(𝑥,𝑦)∈𝑆−

−⟨𝑥 |𝐻 |𝑦⟩⟨𝑦 |𝜙⟩⟨𝑥 |𝜙⟩1
𝑐
𝑡 + 𝑡

ℎ
𝑂 (ℎ2).

18In Eq. (4.65), we use

𝑃𝑟 𝜉∼𝜌(𝜉) (𝑇 (𝑠, 𝑥, ℎ) [𝜉] = 1, 𝜉 (𝑠 + ℎ) = 𝑦 |𝜉 (𝑠) = 𝑥, 𝐼𝑏𝑎𝑑 [𝜉] = 0)
=𝑃𝑟 𝜉∼𝜌(𝜉) (𝑇 (𝑠, 𝑥, ℎ) [𝜉] = 1, 𝜉 (𝑠 + ℎ) = 𝑦 |𝜉 (𝑠) = 𝑥, 𝑇 (𝑠, 𝑥, ℎ) [𝜉] ≤ 1) (4.63)
=𝑃𝑟 𝜉∼𝜌(𝜉) (𝑇 (𝑠, 𝑥, ℎ) [𝜉] = 1, 𝜉 (𝑠 + ℎ) = 𝑦 |𝜉 (𝑠) = 𝑥)
÷ 𝑃𝑟 𝜉∼𝜌(𝜉) (𝑇 (𝑠, 𝑥, ℎ) [𝜉] ≤ 1|𝜉 (𝑠) = 𝑥) (4.64)

=

(
⟨𝑦 |𝐺𝐻,𝜙 |𝑥⟩ℎ +𝑂 (ℎ2)

)
÷

(
1 −𝑂 (ℎ2)

)
=⟨𝑦 |𝐺𝐻,𝜙 |𝑥⟩ℎ +𝑂 (ℎ2).

Here Eq. (4.63) comes from the Markov property, that is, the events occur within the time interval
[𝑠, 𝑠 + ℎ] are independent from the events occur outside this time interval. Eq. (4.64) comes from
Bayesian rule.

163

Then

𝐸𝜉∼𝜌(𝜉) [𝑇𝑔𝑜𝑜𝑑 (𝑡) [𝜉]]

≤
∑︁
(𝑥,𝑦)∈𝑆−

|⟨𝑥 |𝐻 |𝑦⟩| · |⟨𝑦 |𝜙⟩| · |⟨𝑥 |𝜙⟩|1
𝑐
𝑡 +𝑂 (ℎ)

≤
∑︁
(𝑥,𝑦)
|⟨𝑥 |𝐻 |𝑦⟩| · |⟨𝑦 |𝜙⟩| · |⟨𝑥 |𝜙⟩|1

𝑐
𝑡 +𝑂 (ℎ)

≤ ∥𝐻∥1
𝑐
𝑡
©«

∑︁
(𝑥,𝑦):⟨𝑥 |𝐻 |𝑦⟩≠0

|⟨𝑦 |𝜙⟩| · |⟨𝑥 |𝜙⟩|ª®¬ +𝑂 (ℎ)
≤ ∥𝐻∥1

𝑐
𝑡
©«

∑︁
(𝑥,𝑦):⟨𝑥 |𝐻 |𝑦⟩≠0

|⟨𝑦 |𝜙⟩|2ª®¬
1
2©«

∑︁
(𝑥,𝑦):⟨𝑥 |𝐻 |𝑦⟩≠0

|⟨𝑥 |𝜙⟩|2ª®¬
1
2

+𝑂 (ℎ)

≤ ∥𝐻∥1
𝑐
𝑡𝑑∥𝜙∥2 +𝑂 (ℎ) (4.67)

= 𝑑𝑡∥𝐻∥ +𝑂 (ℎ),

where Eq. (4.67) comes from the fact that since 𝐻 is 𝑑-sparse, for every 𝑦, we know
that |⟨𝑦 |𝜙⟩|2 appears for at most 𝑑 times in

(∑
(𝑥,𝑦):⟨𝑥 |𝐻 |𝑦⟩≠0 |⟨𝑦 |𝜙⟩|2

)
.

Let 𝜅𝑔𝑜𝑜𝑑 (𝑥, 𝑡) [𝜉] be the number of transitions between [0, 𝑡] conditioned on

𝜉 (0) = 𝑥, 𝐼𝑏𝑎𝑑 [𝜉] = 0.

Let 𝐴(𝑥) be the distribution of 𝜉 generated by Algorithm 4 w.r.t. (𝐺𝐻,𝜙, 𝑥, 𝑡). note
that

𝐸𝜉∼𝜌(𝜉) (𝑇𝑔𝑜𝑜𝑑 (𝑡) [𝜉])
=

∑︁
𝑥

𝜋(𝑥)𝐸𝜉∼𝐴(𝑥) (𝜅𝑔𝑜𝑜𝑑 (𝑥, 𝑡) [𝜉]). (4.68)

Combine Eqs. (4.67)(4.68), using an average argument, we know that there exists
an 𝑥𝑖𝑛 with 𝜋(𝑥𝑖𝑛) ≠ 0, that is, ⟨𝑥𝑖𝑛 |𝜙⟩ ≠ 0, such that

𝐸𝜉∼𝐴(𝑥𝑖𝑛) (𝜅𝑔𝑜𝑜𝑑 (𝑥𝑖𝑛, 𝑡) [𝜉]) ≤ 𝑑𝑡∥𝐻∥ +𝑂 (ℎ). (4.69)

By a Markov bound, we know

𝑃𝑟𝜉∼𝐴(𝑥𝑖𝑛)
(
𝜅𝑔𝑜𝑜𝑑 (𝑥𝑖𝑛, 𝑡) [𝜉] ≥ 𝑑𝑛3𝑡∥𝐻∥

)
≤ 1/𝑛2. (4.70)

164

Besides, we have that

𝑃𝑟𝜉∼𝐴(𝑥𝑖𝑛) (𝜅(𝑥𝑖𝑛, 𝑡) [𝜉] ≥ 𝑑𝑛3𝑡∥𝐻∥)
= 𝑃𝑟𝜉∼𝐴(𝑥𝑖𝑛) (𝐼𝑏𝑎𝑑 [𝜉] = 1, 𝜅(𝑥𝑖𝑛, 𝑡) [𝜉] ≥ 𝑑𝑛3𝑡∥𝐻∥)
+ 𝑃𝑟𝜉∼𝐴(𝑥𝑖𝑛) (𝐼𝑏𝑎𝑑 [𝜉] = 0, 𝜅(𝑥𝑖𝑛, 𝑡) [𝜉] ≥ 𝑑𝑛3𝑡∥𝐻∥).

Note that 𝑃𝑟𝜉∼𝐴(𝑥𝑖𝑛) (𝐼𝑏𝑎𝑑 [𝜉] = 1) = 𝑂 (ℎ) by a similar argument as Eq. (4.60), we
finally conclude that

𝑃𝑟𝜉∼𝐴(𝑥𝑖𝑛) (𝜅(𝑥𝑖𝑛, 𝑡) [𝜉] ≥ 𝑑𝑛3𝑡∥𝐻∥)
≤𝑃𝑟𝜉∼𝐴(𝑥𝑖𝑛) (𝐼𝑏𝑎𝑑 [𝜉] = 0, 𝜅(𝑥𝑖𝑛, 𝑡) [𝜉] ≥ 𝑑𝑛3𝑡∥𝐻∥) +𝑂 (ℎ)
=𝑃𝑟𝜉∼𝐴(𝑥𝑖𝑛) (𝐼𝑏𝑎𝑑 [𝜉] = 0)×

𝑃𝑟𝜉∼𝐴(𝑥𝑖𝑛)
(
𝜅𝑔𝑜𝑜𝑑 (𝑥𝑖𝑛, 𝑡) [𝜉] ≥ 𝑑𝑛3𝑡∥𝐻∥ | 𝐼𝑏𝑎𝑑 [𝜉] = 0

)
+𝑂 (ℎ)

≤(1 −𝑂 (ℎ))1/𝑛2 +𝑂 (ℎ)
≤1/2. (4.71)

In other words,

𝑃𝑟𝜉∼𝐴(𝑥𝑖𝑛) (𝜅(𝑥𝑖𝑛, 𝑡) [𝜉] ≤ 𝑑𝑛3𝑡∥𝐻∥) ≥ 1/2. (4.72)

4.10 Appendix: Proof of Claim 102
Proof:[of Claim 102] First we define more notations for the proof. Conditioned on
𝜏𝑒𝑛𝑑 > 𝑠, 𝜉 (𝑠) = 𝑥, let 𝑡𝑥 be the time that 𝜉 last arrives 𝑥 before time 𝑠, that is,

𝑡𝑥 := max{𝜂 ≤ 𝑠 : 𝜉 (𝜂) ≠ 𝑥}. (4.73)

Let Δ𝜏𝑥 be the waiting time sampled by line 8 when 𝜉 reaches 𝑥 at time 𝑡𝑥 . Note
that 𝑐1 = 𝑡𝑥 + Δ𝜏𝑥 . If 𝑦 ∈ 𝑆𝑔𝑜𝑜𝑑 is the state that 𝜉 visit next, that is, 𝜉 (𝑐1), similarly
define Δ𝜏𝑦 be the waiting time by line 8 when 𝜉 reaches 𝑦 at time 𝑐1.

To simplify the notations, we denote

𝑢𝑥 := |⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩|,
𝑃𝑥𝑦 := ⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩/𝑢𝑥 .

165

To ease notations, we abbreviate the probability density function 𝑝(𝑡𝑥 = 𝑠𝑥 |𝜏𝑒𝑛𝑑 >
𝑠, 𝜉 (𝑠) = 𝑥) 𝑑𝑠𝑥 as 𝑝(𝑡𝑥 = 𝑠𝑥)𝑑𝑠𝑥 . Note that by definition∫

𝑠𝑥≤𝑠
𝑝(𝑡𝑥 = 𝑠𝑥) 𝑑𝑠𝑥 = 1.

To complete the proof, notice that

• For Eq. (4.24) we can perform calculation in Appendix 4.12 AO.

• For Eq. (4.25), when 𝑦 ∉ 𝑆𝑔𝑜𝑜𝑑 , we can perform calculation in Appendix 4.12
BO.

• For Eq. (4.26), when 𝑦 ∈ 𝑆𝑔𝑜𝑜𝑑 , we can perform calculation in Appendix 4.12
CO.

• Eq. (4.27) is one minus of the probability of Eqs. (4.24)(4.25)(4.26). Since∑
𝑦 ⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ = 0, and thus we know Eq. (4.27) holds.

4.11 Appendix: Remarks on precision
Remark 6 (How we represent values)

We say 𝑥 ∈ C is represented by 𝑝(𝑛)-bits, if 𝑥 is of the form 𝑁1
𝑁2
+ 𝑁3
𝑁4
𝑖, where ∀𝑖, 𝑁𝑖

is an integer and |𝑁𝑖 | ≤ 2𝑝(𝑛) , thus can be represented by 𝑝(𝑛) binary bits.

Note that LHP with succinct ground state is a promise problem, we implicitly assume
that there is a sufficiently large polynomial 𝑝(𝑛) = 𝑝𝑜𝑙𝑦(𝑛), such that every value in
Definition 88, that is, ⟨𝑥 |𝐻 |𝑦⟩, 𝑎, 𝑏, 𝑚, 𝐶𝜓 (𝑥) can be represented by 𝑝(𝑛)-bits. Note
that those assumptions implicitly imply

(1) 𝐶𝜓 (𝑥) can be computed exactly. Thus the ratio of the amplitudes, that is,
⟨𝑥 |𝜓⟩
⟨𝑦 |𝜓⟩ , can be computed exactly for 𝑦 where 𝐶𝜓 (𝑦) ≠ 0.

(2) If 𝐶𝜓 (𝑥) ≠ 0, then |𝐶𝜓 (𝑥) | ≥ 1/2𝑝(𝑛) . Similarly for ⟨𝑥 |𝐻 |𝑦⟩.

(3) 𝜆(𝐻) can be represented exactly by 𝑝𝑜𝑙𝑦(𝑛) bits, since ⟨𝑥 |𝐻 |𝑦⟩, 𝐶𝜓 (𝑥) can be
represented by 𝑝(𝑛) bits, and 𝜆(𝐻) =

∑
𝑦 ⟨𝑥 |𝐻 |𝑦⟩𝐶𝜓 (𝑦)

𝐶𝜓 (𝑥) for some 𝑥 s.t. 𝐶𝜓 (𝑥) ≠ 0.

166

For 𝑆 ⊆ {0, 1}𝑛, we say a matrix 𝐺 ∈ C|𝑆 |×|𝑆 | can be represented by 𝑝(𝑛)-bits, if all
entries ⟨𝑥 |𝐺 |𝑦⟩ can be represented by 𝑝(𝑛)-bits.

One can check that if𝐺 can be represented by 𝑝(𝑛)/2-bits, then there exists 𝑝′(𝑛) =
𝑝𝑜𝑙𝑦(𝑛) such that19

𝑎𝑚𝑎𝑥(𝐺) ≤ 2𝑝
′ (𝑛) , ∥𝐺∥ ≤ 2𝑝

′ (𝑛)+2𝑛.

Besides, if ⟨𝑥 |𝐺 |𝑦⟩ ≠ 0, then ⟨𝑥 |𝐺 |𝑦⟩ ≥ 1/2𝑝′ (𝑛) .

Remark 7 (Assumptions for sampling)

Let 𝑀 = 𝑝𝑜𝑙𝑦(𝑛). Set parameters

𝛿 := 2−2𝑛/𝑀
𝐾 := ⌈22𝑛𝑀 (𝑛 ln 2 + ln𝑀))⌉ .

Note that for any sufficiently large 𝑞 = 𝑝𝑜𝑙𝑦(𝑛), there is a 𝑝𝑜𝑙𝑦(𝑛)-time algorithm
whose output distribution approximates the truncated discretized exponential dis-
tribution D𝐾,𝛿,𝜆 within total variation distance20 2−𝑞. Specifically, the algorithm is
sampling 𝑞2 random bits 𝑠1, ..., 𝑠𝑞 ∈ {0, 1}. Let

𝜂 =

𝑞2∑︁
𝑗=1

𝑠 𝑗2 𝑗−1.

• If 𝜂 ∈ (exp(−𝜆(𝑘 + 1)𝛿), exp(−𝜆𝑘𝛿)] for 𝑘 ≤ 𝐾 , output 𝑤 = 𝑘𝛿.

• If 𝜂 ≤ exp(−𝜆𝐾𝛿), output 𝑤 = 𝐾𝛿.

The total variation distance between the output distribution andD𝐾,𝛿,𝜆 is𝑂 (1
2𝑞2𝐾) =

𝑂 (2−𝑞) for sufficiently large 𝑞 = 𝑝𝑜𝑙𝑦(𝑛).

To ease analysis, in this manuscript we assume that for the parameters defined above,
we can use 𝑝𝑜𝑙𝑦(𝑛)-time to sample the discretized exponential distribution D𝐾,𝛿,𝜆

exactly.
19Given any matrix 𝑀 ∈ R |𝑆 |× |𝑆 | , for any normalized vector |𝜙⟩ ∈ R |𝑆 | , since |⟨𝑥 |𝜙⟩| ≤ 1,∀𝑥,

we have ⟨𝜙|𝑀†𝑀 |𝜙⟩ =
∑
𝑥,𝑦,𝑧 ⟨𝜙|𝑥⟩⟨𝑥 |𝑀† |𝑦⟩⟨𝑦 |𝑀 |𝑧⟩⟨𝑧 |𝜙⟩ ≤ 𝑎𝑚𝑎𝑥(𝑀)223𝑛. Thus ∥𝑀 ∥ ≤√︁

𝑎𝑚𝑎𝑥(𝑀)223𝑛 ≤ 𝑎𝑚𝑎𝑥(𝑀)22𝑛.
20Given two probability distribution 𝑝, 𝑞 over a discrete set Ω, the total variation distance

𝑑𝑇𝑉 (𝑝, 𝑞) between 𝑝 and 𝑞 is defined as 𝑑𝑇𝑉 (𝑝, 𝑞) =
∑
𝑥∈Ω

1
2 |𝑝(𝑥) − 𝑞(𝑥) |, where 𝑝(𝑥) is the

probability of 𝑝 = 𝑥 and similarly for 𝑞(𝑥).

167

Remark 8 (More on how we represent values)

As in Remark 6, in the following sections, we assume values in 𝐻, |𝜙⟩ can be
represented by 𝑝(𝑛)-bits. Note that by Remark 6, if ⟨𝑥𝑖𝑛 |𝜙⟩ ≠ 0, then���� ⟨𝑧 |𝜙⟩⟨𝑥𝑖𝑛 |𝜙⟩

���� = ���� 𝐶𝜙 (𝑧)𝐶𝜙 (𝑥𝑖𝑛)

���� ≤ 2𝑝(𝑛) + 2𝑝(𝑛)

1/2𝑝(𝑛)
≤ 23𝑝(𝑛) . (4.74)

We represent ⟨𝑥 |𝐹𝐻𝑆 ,𝜙𝑆 |𝑦⟩,⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑦⟩ in a similar way as in Remark 6. Note that
𝐻𝑆 is 2𝑘𝑚-sparse where 𝑘 is a constant and 𝑚 = 𝑝𝑜𝑙𝑦(𝑛), and thus there exists
another polynomial 𝑝′(𝑛), such that ⟨𝑥 |𝐹𝐻𝑆 ,𝜙𝑆 |𝑦⟩, ⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑦⟩ can be represented
by 𝑝′(𝑛)/2 bits, where

𝑝′(𝑛)/2 = 𝑂 (log[(2𝑝(𝑛)∗2𝑘𝑚]) = 𝑂 (𝑝𝑜𝑙𝑦(𝑛)).

In particular, we have

(1) The followings holds:

𝑎𝑚𝑎𝑥(𝐺𝐻𝑆 ,𝜙𝑆) ≤ 2𝑝
′ (𝑛) ,

∥𝐺𝐻𝑆 ,𝜙𝑆 ∥, ∥𝐹𝐻𝑆 ,𝜙𝑆 ∥ ≤ 2𝑝
′ (𝑛)+2𝑛.

(2) If ⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑦⟩ ≠ 0, then ⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑦⟩ ≥ 1/2𝑝′ (𝑛) .

We always assume 𝑝(𝑛), 𝑝′(𝑛) are sufficiently large polynomials, and 𝑝(𝑛) ≪ 𝑝′(𝑛).

4.12 Appendix: Calculation for Equations
The details are as follows:

AO Calculation for Claim 102 Eq. (4.24).

𝑃𝑟 (𝑐1 ≥ 𝑠 + ℎ |𝜏𝑒𝑛𝑑 > 𝑠, 𝜉 (𝑠) = 𝑥) (4.75)

=

∫
𝑠𝑥≤𝑠

𝑝(𝑡𝑥 = 𝑠𝑥)𝑃𝑟 (Δ𝜏𝑥 ≥ 𝑠 + ℎ − 𝑠𝑥 |Δ𝜏𝑥 ≥ 𝑠 − 𝑠𝑥)𝑑𝑠𝑥 (4.76)

=

∫
𝑠𝑥≤𝑠

𝑝(𝑡𝑥 = 𝑠𝑥) exp(−𝑢𝑥ℎ)𝑑𝑠𝑥 (4.77)

= 1 − 𝑢𝑥ℎ +𝑂 (ℎ2) (4.78)

= 1 − |⟨𝑥 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩|ℎ +𝑂 (ℎ2). (4.79)

168

BO Calculation for Claim 102 Eq. (4.25).

𝑃𝑟 (𝑐1 ≤ 𝑠 + ℎ, 𝜉 (𝑐1) = 𝑦 |𝜏𝑒𝑛𝑑 > 𝑠, 𝜉 (𝑠) = 𝑥) (4.80)

= 𝑃𝑟 (Δ𝜏𝑥 ≤ 𝑠 + ℎ − 𝑠𝑥 , 𝜉 (𝑠𝑥 + Δ𝜏𝑥) = 𝑦 |𝜏𝑒𝑛𝑑 > 𝑠, 𝜉 (𝑠) = 𝑥) (4.81)

=

∫
𝑠𝑥≤𝑠

𝑝(𝑡𝑥 = 𝑠𝑥)
∫
𝑠−𝑠𝑥≤ 𝑓 ≤𝑠+ℎ−𝑠𝑥

𝑝(Δ𝜏𝑥 = 𝑓 |Δ𝜏𝑥 ≥ 𝑠 − 𝑠𝑥)𝑃𝑥𝑦𝑑𝑓 𝑑𝑠𝑥 (4.82)

= 𝑃𝑥𝑦

∫
𝑠𝑥≤𝑠

𝑝(𝑡𝑥 = 𝑠𝑥)
∫
𝑠−𝑠𝑥≤ 𝑓 ≤𝑠+ℎ−𝑠𝑥

𝑢𝑥 exp [−𝑢𝑥 (𝑓 − 𝑠 + 𝑠𝑥)] 𝑑𝑓 𝑑𝑠𝑥

(4.83)

= 𝑃𝑥𝑦

∫
𝑠𝑥≤𝑠

𝑝(𝑡𝑥 = 𝑠𝑥) [1 − exp(−𝑢𝑥ℎ)] 𝑑𝑠𝑥 (4.84)

= 𝑝𝑥𝑦𝑢𝑥ℎ +𝑂 (ℎ2) (4.85)

= ⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ℎ +𝑂 (ℎ2). (4.86)

169

CO Calculation for Claim 102 Eq. (4.26).

𝑃𝑟 (𝑐1 ≤ 𝑠 + ℎ, 𝜉 (𝑐1) = 𝑦, 𝑐2 ≥ 𝑠 + ℎ |𝜏𝑒𝑛𝑑 > 𝑠, 𝜉 (𝑠) = 𝑥) (4.87)

= 𝑃𝑟 (Δ𝜏𝑥 ≤ 𝑠 + ℎ − 𝑠𝑥 , 𝜉 (𝑠𝑥 + Δ𝜏𝑥) = 𝑦, 𝑠𝑥 + Δ𝜏𝑥 + Δ𝜏𝑦 ≥ 𝑠 + ℎ |𝜏𝑒𝑛𝑑 > 𝑠, 𝜉 (𝑠) = 𝑥)
(4.88)

=

∫
𝑠𝑥≤𝑠

𝑝(𝑡𝑥 = 𝑠𝑥)
∫
𝑠−𝑠𝑥≤ 𝑓 ≤𝑠+ℎ−𝑠𝑥

𝑝(Δ𝜏𝑥 = 𝑓 |Δ𝜏𝑥 ≥ 𝑠 − 𝑠𝑥)𝑃𝑥𝑦𝑃𝑟 (Δ𝜏𝑦 ≥ ℎ − (𝑓 − 𝑠 + 𝑠𝑥))𝑑𝑓 𝑑𝑠𝑥

(4.89)

= 𝑃𝑥𝑦

∫
𝑠𝑥≤𝑠

𝑝(𝑡𝑥 = 𝑠𝑥)
∫
𝑠−𝑠𝑥≤ 𝑓 ≤𝑠+ℎ−𝑠𝑥

𝑢𝑥 exp [−𝑢𝑥 (𝑓 − 𝑠 + 𝑠𝑥)] exp
[
−𝑢𝑦 (ℎ − (𝑓 − 𝑠 + 𝑠𝑥))

]
𝑑𝑓 𝑑𝑠𝑥

(4.90)

= 𝑃𝑥𝑦

∫
𝑠𝑥≤𝑠

𝑝(𝑡𝑥 = 𝑠𝑥)
∫
𝑠−𝑠𝑥≤ 𝑓 ≤𝑠+ℎ−𝑠𝑥

𝑢𝑥 exp
[
−𝑢𝑦ℎ

]
exp

[
(𝑢𝑦 − 𝑢𝑥) (𝑓 − 𝑠 + 𝑠𝑥)

]
𝑑𝑓 𝑑𝑠𝑥

(4.91)

= 𝑃𝑥𝑦

∫
𝑠𝑥≤𝑠

𝑝(𝑡𝑥 = 𝑠𝑥)𝑢𝑥 exp
[
−𝑢𝑦ℎ

] 1
𝑢𝑦 − 𝑢𝑥

[
exp

[
(𝑢𝑦 − 𝑢𝑥)ℎ

]
− 1

]
𝑑𝑠𝑥

(4.92)

= 𝑃𝑥𝑦𝑢𝑥 exp[−𝑢𝑦ℎ]ℎ (4.93)

= ⟨𝑦 |𝐺𝐻𝑆 ,𝜙𝑆 |𝑥⟩ℎ +𝑂 (ℎ2). (4.94)

Acknowledgement
We thank Jiayu Zhang, Thomas Vidick, Urmila Mahadev, Sevag Gharibian, Yupan
Liu and Jielun Chen (Chris) for their helpful discussions. We thank the anonymous
reviewers for their valuable suggestions for presentations and open questions. Jiaqing
Jiang is supported by MURI Grant FA9550-18-1-0161 and the IQIM, an NSF Physics
Frontiers Center (NSF Grant PHY-1125565).

170

C h a p t e r 5

POSITIVE BIAS MAKES TENSOR-NETWORK CONTRACTION
TRACTABLE

5.1 Introduction
Tensor network contraction is a powerful computational tool for studying quan-
tum information and quantum many-body systems. It is widely used in estimating
ground state properties [Whi93; Whi92; MVC07; VC21], approximating parti-
tion functions [EV15; Zha+10], simulating evolution of quantum circuits [MS08;
Ped+17; Hua+20], as well as decoding for quantum error correcting codes [FP14;
BSV14]. Mathematically, a tensor network 𝑇 := 𝑇 (𝐺, 𝑀) on a graph 𝐺 = (𝑉, 𝐸)
can be interpreted as an edge labeling model. Each edge can be labeled by one of 𝑑
different colors, where 𝑑 is called the bond dimension. Each vertex 𝑣 is associated
with a function 𝑀 [𝑣] , called tensor, whose value depends on the labels of edges
adjacent to 𝑣. The tensor 𝑀 [𝑣] can be represented as a vector by enumerating its
values with respect to various edge labeling. For any edge labeling 𝑐, denote the
value (entry) of the tensor 𝑀 [𝑣] by 𝑀 [𝑣]𝑐 . The contraction value of tensor network
is defined to be

𝜒(𝑇) :=
∑︁

edge labeling 𝑐

∏
𝑣∈𝑉

𝑀
[𝑣]
𝑐 . (5.1)

In applications of tensor networks, the contraction value represents the quantities
of interest and the goal of tensor-network contraction algorithms is to compute the
contraction value to high precision.

It is therefore a fundamental question to determine when 𝜒(𝑇) can be computed effi-
ciently. Despite the practical and foundational importance of this question, unfortu-
nately most rigorous results show that tensor network contraction is extremely hard,
with very few tractable cases known, that is, cases for which a (quasi-)polynomial
time algorithm exists. Specifically, it is well-known that computing 𝜒(𝑇) exactly is
#P-hard [Sch+07] and therefore intractable in the worst case. The hardness can be
further strengthened to the average case, where Haferkamp et al. [Haf+20] showed
that even for random tensor networks on a 2D lattice, computing 𝜒(𝑇) exactly re-
mains #P-hard for typical instances. There, the randomness is modeled by sampling
the entries of the tensor network iid. from a Gaussian distribution with zero mean and

171

unit variance. Conversely, (quasi-)polynomial time algorithms are only known for
restricted cases, like tensor networks on simple graphs of small tree-width [MS08],
for example 1D line or tree; or for restrictive symmetric tensor network [PR17] where
each entry is very close to 1, which requires that ∀𝑐, 𝑣, |𝑀 [𝑣]𝑐 − 1| ≤ 0.35/(Δ + 1),
where Δ is the maximum degree of the graph. Besides, for tensor networks with
uniformly gapped parent Hamiltonians, (quasi)-polynomial time algorithm is known
for computing local expectation values [SBE17].

But while efficient and provably correct tensor-network contraction algorithms are
rare, for many many-body physics applications, state-of-the-art numerical algo-
rithms achieve desired accuracy in practice [Orú19; Ban23]. To obtain a better
understanding of when and why such heuristics work, it is important to identify
new tractable cases in tensor network contraction. With this goal in mind, a recent
line of work suggests an interesting direction, namely, that the sign structure of the
tensor entries influences the entanglement and therefore affects the the complexity
of tensor network contraction [GC24; Che+25]. In particular, it has been observed
that there is a sharp phase transition in the entanglement and thus the complexity
of approximating random tensor networks, when the mean of the entries is shifted
from zero to positive [GC24; Che+25].

Main results and technical highlights
In this work, we rigorously investigate the impact of sign structure on the complexity
of tensor network contraction in various regimes. We mainly focus on the contraction
of the physically motivated 2D tensor networks, which are widely used as ground
state ansatzes for local Hamiltonians [Cor16; Van+16] (Projected Entangled Pair
States) and for the simulation of quantum circuits [Guo+19].

Recall that for random 2D tensor network whose entry has zero mean, the exact
contraction is #P-hard [Haf+20]. We first show that a positive bias does not
decrease the complexity of the exact contraction:

Theorem 109 (Informal version of Theorem 133) The exact contraction of ran-
dom 2D tensor network whose entries are iid. sampled from a Gaussian distribution
with positive mean and unit variance remains #P-hard.

While Theorem 109 indicates the exact contraction remains hard, our main re-
sult is proving that a small positive mean significantly decreases the computational
complexity of multiplicative approximation, enabling a quasi-polynomial time algo-

172

rithm. This provides rigorous evidence that the sign structure of the tensor entries
influences the contraction complexity, as observed and conjectured in previous
works [GC24; Che+25]. In particular, we show the following.

Theorem 110 (Informal version of Theorem 123) For random 2D tensor network
with intermediate bond dimension 𝑑 ≳ 𝑛, where the entries are iid. sampled from
Gaussian distribution with mean 𝜇 ≳ 1/𝑑 and unit variance, there exists a quasi-
polynomial time algorithm which with high probability approximates the contraction
value up to arbitrary 1/𝑝𝑜𝑙𝑦 multiplicative error.

Here 𝑎 ≳ 𝑏 means that 𝑎 scales at least as fast as 𝑏.

While it is expected that tensor network contraction becomes easier when all entries
are positive so that there is no sign problem, our result is much more fine-grained
than this belief since our tensor network is only slightly positive, that is, a significant
portion of the tensor entries are still negative. In particular, note that the mean
value ≳ 1/𝑑 is far less than the unit variance of the tensor entries. Compared to
previous work [PR17] which shows that tensor-networks whose all entries are close
to 1 can be contracted using Barvinok’s method,1 our result allows the entries to
have significant fluctuations and to be a mixture of positive and negative values. We
also note that the threshold value ≳ 1/𝑑 matches the phase transition point predicted
in [Che+25]2 with respect to the entanglement-based contraction algorithm. The fact
that two different methods (our algorithm and the entanglement-based algorithm)
admit the same threshold might indicate that there is a genuine phase transition in
the complexity of tensor network contraction at this point. The requirement of 𝑑 ≳ 𝑛

on the bond dimension in Theorem 110 is due to the fact that certain concentration
effects set in at 𝑑 ∼ 𝑛. One may wonder then whether the intermediate bond
dimension and the nonzero mean make the mean contraction value 𝜇𝑛𝑑2𝑛 (attained
when all entries in the tensor network take the mean value 𝜇) a precise guess for the
contraction value, that is 𝜒(𝑇) = 𝜇𝑛𝑑2𝑛 (1 + 1/𝑝𝑜𝑙𝑦(𝑛)). This is not the case since
a simple lower bound shows that the second moment of 𝜒(𝑇)/(𝜇𝑛𝑑2𝑛) is at least
2. In comparison, our algorithm can achieve an arbitrary 1/𝑝𝑜𝑙𝑦(𝑛) multiplicative
error in quasi-polynomial runtime; recall Theorem 110. Besides, although Theorem
110 is formulated for random 2D tensor networks, the proposed algorithm is well-

1More precisely for 2D tensor network, it requires that ∀𝑐, 𝑣, |𝑀 [𝑣]𝑐 − 1| ≤ 0.35/(4 + 1) = 0.07.
2To clarify, [Che+25] draws each tensor from a Haar random distribution. If one does the same

calculation for drawing each entry from Gaussian random distribution, the predicted phase transition
point will also be approximately 1/𝑑.

173

defined and runs in quasi-polynomial time for an arbitrary graph 𝐺 of constant
degree, which may inspire new heuristic algorithms for general tensor networks.

Besides studying the average case complexity for approximating slightly positive
tensor networks, we also investigate the complexity of approximating (fully) positive
tensor networks, where all the entries are positive. Approximate contraction of
positive tensor network is directly related to approximate counting, and we give a
simple proof to show that

Theorem 111 (Informal version of Theorem 139) 1/𝑝𝑜𝑙𝑦(𝑛) multiplicative ap-
proximation of positive tensor network is StoqMA-hard. The StoqMA-hard remains
even if we relax the multiplicative error from 1/𝑝𝑜𝑙𝑦(𝑛) to a value exponentially
close to one.

Here, StoqMA is the complexity class whose canonical complete problem is to
decide the ground energy for stoquastic Hamiltonians [BBT06].

In addition to multiplicative approximation, we also investigate the impact of sign in
the hardness of tensor network contraction w.r.t. certain additive error. In particular,
previously Arad and Landau [AL10] showed that approximating the contraction
value w.r.t. the matrix 2-norm additive error is equivalent to quantum computation,
that is BQP-complete. In contrast, we prove that if the tensor network is positive,
where all entries are non-negative, then approximating the contraction value w.r.t
matrix 1-norm additive error is equivalent to classical computation, that is BPP-
complete.

Theorem 112 (Informal version of Theorem 135) Given a positive tensor network
𝑇 := 𝑇 (𝐺, 𝑀) on a constant-degree graph𝐺. Given an arbitrary order of the vertex
{𝑣}𝑣, one can view each tensor 𝑀 [𝑣] as a matrix 𝑂 [𝑣] by specifying the in-edges
and out-edges. It is BPP-complete to estimate 𝜒(𝑇) with additive error 𝜖Δ1, for
Δ1 :=

∏
𝑣 ∥𝑂 [𝑣] ∥1 and 𝜖 = 1/𝑝𝑜𝑙𝑦(𝑛).

Technically [AL10] simulates general matrix multiplication by quantum circuits. In
Theorem 112 we simulate non-negative matrix multiplication by random walks.

Technical highlights. Our main technical contribution is to show that a small mean
value dramatically decreases the complexity of approximate contraction. Our result
significantly extends the regime in which efficient approximate contraction algo-
rithms for tensor networks are known. This is formalized and proved in Theorem

174

110. The algorithm in Theorem 110 differs from commonly used numerical algo-
rithms for tensor network contraction, which are based on the truncation of singular
value decomposition and whose performance is determined by entanglement prop-
erties [Has07; Ara+17]. Instead, for Theorem 110 we use Barvinok’s method from
approximate counting. This method has previously been used for approximating the
permanent, the hafnian [Bar16a; Bar16b] and partition functions [Bar14; PR17].

At a high level, Barvinok’s method interprets the contraction value 𝜒(𝑇) as a
polynomial 𝐺 (𝑧) where 𝐺 (1) = 𝜒(𝑇), and uses Taylor expansion of ln𝐺 (𝑧) at
𝑧 = 0 to get an additive error approximation of ln𝐺 (1), thus an multiplicative
approximation of 𝜒(𝑇). The key technical part of applying Barvinok’s method to
different tasks is proving the corresponding 𝐺 (𝑧) is root-free in the disk centered
at 0 with radius slightly larger than 1, which ensures that ln𝐺 (𝑧) is analytic in
this disk. Denote this disk as B. Previously Patel and Regts [PR17] had applied
Barvinok’s method to symmetric tensor networks where all the entries are close to
1 within error 0.35/5 = 0.07, by proving that 𝐺 (𝑧) is root-free in B. Our setting
allows entries to have significant fluctuations, and thus the root-free proof in [PR17]
does not apply. We circumvent this problem using the following two ideas.

• Root-free strip inspired from approximating random permanent. Instead
of applying Barvinok’s method directly and proving 𝐺 (𝑧) is root-free in the
disk B, we apply a variant of Barvinok’s method used for approximating
random permanents by Eldar and Mehraban [EM18]. There, the idea is to use
Jensen’s formula to find a root-free strip connecting 0 and 1. The advantage of
this variant is that it allows for a constant number of zeros in the unit disk B as
long as there is a root-free path of some width connecting 0 and 1. We notice
that this method from approximating permanent can also be applied to random
tensor networks. In particular, using Jensen’s formula [EM18], the number of
roots in B can be bounded by estimating the second moment 𝐸 |ℎ(𝑧) |2, where
ℎ(𝑧) is a rescaled version of 𝐺 (𝑧), and 𝐸 denotes the expectation value over
the randomness of the tensor network. Besides, compared to [EM18], in our
setting we use a different and much simpler method to find the root-free strip.

• Mapping random instance to statistical mechanical model. Since we are
working on random tensor networks, the technique used by Eldar and Mehra-
ban [EM18] to bound 𝐸 |ℎ(𝑧) |2 for random permanents fails entirely. To
bound 𝐸 |ℎ(𝑧) |2 for random tensor networks, we adapt a technique of map-
ping random instances to a classical statistical mechanical model (statmech

175

model). This technique has been used in the physics literature to study phase
transitions in random tensor networks [Yan+22; LC21; Hay+16] and random
circuits [BCA20; BBA24].

Although in general such mapping and the properties of the statmech model
like its partition function are hard to analyze, and heuristic approximations
are needed in many related literature, we notice that in our application the
statmech model is simple enough to obtain a rigorous result. In particular, we
show that 𝐸 |ℎ(𝑧) |2 is proportional to the partition function of a 2D Ising model
with magnetic field parameterized by 𝑧. Then we further use the finite-size
variant of the Onsager solution of the 2D Ising model [Kau49; Maj66] to get
a decent estimate of 𝐸 |ℎ(𝑧) |2 for relevant ranges of 𝑧, allowing the Barvinok
method to be applied.

Conclusions and open problems
We investigate how the contraction complexity of tensor networks depends on the
sign structure of the tensor entries. For random tensor networks in 2D, we show
that there is a quasi-polynomial time approximation algorithm if the entries are
drawn with a small nonzero mean and intermediate bond dimension. At the same
time, exactly computing the contraction value in this setting remains #P-hard.
Our work thus provides rigorous evidence for the observations [GC24; Che+25]
that shifting the mean by a small amount away from zero dramatically decreases the
contraction complexity. Compared to [PR17] which similarly uses Barvinok method
but requires all entries to be close to 1, our setting allows significant fluctuations
in the entries and greatly extends the known region where (quasi-)polynomial time
average-case contraction algorithms exist. While it is expected that tensor network
contraction becomes easier when all entries are positive, our result suggests that
even for slightly positive tensor networks, one can still utilize the sign structure to
obtain a (quasi-)efficient algorithm. Moreover, [Che+25] observed that the standard
entanglement-based contraction algorithm starts working at 𝜇 ≳ 1/𝑑. We show
that a completely different rigorous Barvinok-based algorithm also starts working
at 𝜇 ≳ 1/𝑑. This might indicate that there is a genuine phase transition in the
complexity of tensor-network contraction happening here.

Indeed, we also assess the worst-case complexity of approximating fully positive
tensor networks. Specifically, we prove that approximating the contraction value of
positive tensor networks multiplicative error close to unity is StoqMA-hard. But
when requiring only an inverse polynomial additive error in matrix 1-norm there

176

exists an efficient classical algorithm.

Our work initiates the rigorous study of how the computational difficulty of con-
tracting tensor networks depends on the sign structure of the tensor entries. If one
views the hardness of contraction as a function of mean value and bond dimension,
while we identify a new tractable region, there are many open questions left.

• First, while our approximation algorithm based on Barvinok’s method works
for typical instances, it remains an open question to what extent a positive bias
can ease practical tensor network contraction. It would therefore be interesting
to understand whether our algorithm or variations of it can aid in practically
interesting cases.

• Moreover, our current proof works for intermediate bond dimension but
not for constant bond dimension. Potentially, techniques like cluster ex-
pansion [MH21; HPR19] may be used to design new contraction algorithm
for constant bond dimension, proving a correspondent of Theorem 112 for
that setting. It might be worth mentioning that a direct application of cluster
expansion does not work, where one can prove the expansion series is not
absolutely convergent. More refined techniques are thus required.

• Finally, although current numerical algorithms have poor performance for
zero-mean tensor network contraction, there is no known rigorous complexity
result to establish the hardness of approximate contraction.

In the context of approximating fully positive tensor networks, it would be interesting
to see whether there exists an efficient classical algorithm that can achieve the same
(2-norm) precision as a quantum computer for positive tensor networks, or whether
there is a room for quantum advantage even for positive tensor networks.3

Structure of the manuscript
The structure of this manuscript is as follows. In Section 5.2 we define notations and
tensor networks. In Section 5.3 we review Barvinok’s method and its variant. In
section 5.4 we adapt Barvinok’s method to tensor network contraction. In Section
5.5 we give a quasi-polynomial time algorithm for approximating random 2D tensor
networks with small mean and intermediate bond dimension. In Section 5.6 we
prove the results concerning approximating positive tensor networks.

3We acknowledge Zeph Landau for raising this question.

177

5.2 Notation and tensor networks
In this section, we introduce necessary notations and definitions for tensor networks.

Notation. We use [𝑘] for {0, 1, . . . , 𝑘 − 1}. We use 𝑧 to denote its complex
conjugate. For 𝑣 ∈ C and 𝜖 ∈ R, we say �̂� approximates 𝑣 with 𝜖-multiplicative
error if |𝑣 − �̂� | ≤ 𝜖 |𝑣 |. For 𝑥 ∈ {±1}𝑛, we use |𝑥 | to denote the number of −1 in 𝑥.
We use 𝛿𝑖 𝑗 for the delta function, where 𝛿𝑖 𝑗 = 1 if 𝑖 = 𝑗 and equals 0 otherwise.

For a matrix 𝐴 ∈ C𝑠×𝑡 , the matrix 𝑝-norm is defined as

∥𝐴∥𝑝 := sup
𝑥≠0,𝑥∈R𝑡

∥𝐴𝑥∥𝑝
∥𝑥∥𝑝

, (5.2)

The 2-norm ∥𝐴∥2 is known as the spectral norm. The 1-norm equals to the maximum
of the absolute column sum, that is

∥𝐴∥1 = max
1≤ 𝑗≤𝑡

𝑠∑︁
𝑖=1
|𝐴𝑖 𝑗 |.

For 𝜇, 𝜎 ∈ R, we use 𝑋 ∼ NR(𝜇, 𝜎2) to denote that the random variable 𝑋 is
sampled from the Gaussian distribution with mean 𝜇 and standard derivation 𝜎.
For 𝜇 ∈ C, we useℜ(𝜇),ℑ(𝜇) ∈ R to denote the real and imaginary part of 𝜇, i.e.
𝜇 = ℜ(𝜇) + ℑ(𝜇)𝑖. We use 𝑋 ∼ NC

(
𝜇, 𝜎2) if

ℜ (𝑋) ∼ NR

(
ℜ(𝜇), 𝜎

2
2
)
,ℑ(𝑋) ∼ NR

(
ℑ(𝜇), 𝜎

2
2
)
.

Tensors and tensor networks. A tensor 𝑁 of rank 𝑘 and bond dimension 𝑑 is an
array of 𝑑𝑘 complex numbers which is indexed by 𝑁𝑖1,𝑖2,...,𝑖𝑘 , where 𝑖𝑠 takes values
from [𝑑] for 1 ≤ 𝑠 ≤ 𝑘 . We call the complex numbers in the array the entries of the
tensor 𝑁 . We use 𝑁 to denote the tensor obtained by complex conjugating every
entry of 𝑁 . For two tensors 𝑁 and 𝑀 with the same rank and bond dimension,
the addition 𝑁 + 𝑀 is a new tensor obtained by addition of the two arrays. For
convenience, in the rest of the paper we assume that all the indices have the same
dimension 𝑑.4 We will always assume 𝑑 = 𝑂 (𝑝𝑜𝑙𝑦(𝑛)).

A tensor network 𝑇 := 𝑇 (𝐺, 𝑀) is described by an 𝑛-vertex graph 𝐺 = (𝑉, 𝐸) and
a set of tensors on vertices, denoted as 𝑀 = {𝑀 [𝑣]}𝑣. More specifically, on each

4This is not a restriction, since we can just take 𝑑 to be the maximum dimension of all indices
in the tensor network, and introduce dummy dimensions elsewhere.

178

...
M (1) M (2) M (1) M (2)

P

i2

i1 ik

i1

i2

Q

(a) (b) (c)

(d) (e) (f)

iw iw
=

i1 j1

ik jl

i1 j1

ik jl

v α(v,w) v w

α(v,w) α(w,v)

Figure 5.1: Tensor and operations on tensors. (a) A rank-𝑘 tensor. (b) The product of a
rank-𝑘 and a rank-𝑙 tensor. (c) Contracting two tensors by identifying edges 𝑖1 and 𝑗1. (d)
Contracting two free edges in the same tensor. (e) A special tensor which can be factorized
into a product of rank-1 tensors. (f) If all tensors have a factorized structure, then the
contraction value of tensor network can be computed by contracting the rank-1 tensors.

vertex 𝑣 of degree 𝑘𝑣 there is a tensor 𝑀 [𝑣] of rank 𝑘𝑣, where the indices 𝑖1, . . . , 𝑖𝑘𝑣
correspond to 𝑘𝑣 edges. One can interpret [𝑑] as 𝑑 different colors, and 𝑖𝑠 ∈ [𝑑]
represents that we label the corresponding edge with color 𝑖𝑠. Denote this edge
labeling as 𝑐 : 𝐸 → [𝑑] |𝐸 |, we write 𝑀 [𝑣]𝑐 := 𝑀

[𝑣]
𝑖1,...,𝑖𝑘𝑣

. With an arbitrary ordering
of edges, we can conceive of the labeling 𝑐 as a vector 𝑐 ∈ [𝑑] |𝐸 |. The contraction
value of tensor network is then defined to be

𝜒(𝑇) :=
∑︁

𝑐∈[𝑑] |𝐸 |

∏
𝑣∈𝑉

𝑀
[𝑣]
𝑐 . (5.3)

Product and contraction. Besides Eq. (5.3), another equivalent way of defining the
contraction value of tensor network 𝜒(𝑇) is via a graphical representation, which is
more intuitive and will be used in the proofs. As in Figure 5.1 (a), for a tensor of
rank 𝑘 , we represent it as a vertex with 𝑘 edges. We term such edges which connect
to only one vertex free edges.

With this graphical representation, we introduce two operations on tensors. Consider
a tensor 𝑀 (1) of rank 𝑘 , with free edges indexed by 𝑖1, . . . , 𝑖𝑘 , and another tensor
𝑀 (2) of rank 𝑙, with free edges indexed by 𝑗1, . . . , 𝑗𝑙 . We use Figure 5.1 (b) to
represent the product of 𝑀 (1) , 𝑀 (2) , that is a new tensor 𝑀 (1) ⊗ 𝑀 (2) of rank 𝑘 + 𝑙
and with free edges indexed by 𝑖1, . . . , 𝑖𝑘 ; 𝑗1, . . . , 𝑗𝑙 , where(

𝑀 (1) ⊗ 𝑀 (2)
)
𝑖1,...,𝑖𝑘 , 𝑗1,..., 𝑗𝑙

:= 𝑀 (1)
𝑖1,...,𝑖𝑘

𝑀
(2)
𝑗1,..., 𝑗𝑙

. (5.4)

179

The product operation can be generalized to multiple tensors recursively,

𝑀 (1) ⊗ 𝑀 (2) ⊗ 𝑀 (3) ⊗ 𝑀 (4) . . . :=
(((

𝑀 (1) ⊗ 𝑀 (2)
)
⊗ 𝑀 (3)

)
⊗ 𝑀 (4)

)
. . . (5.5)

One can check that the order of this recursion does not change the final tensor.

Another operation which defines a new tensor is contraction, that is, connecting
different tensors by identifying a free edge of one tensor with a free edge of another
tensor and summing over that index. Starting from the two tensors 𝑀 (1) and 𝑀 (2) ,
contracting the indices 𝑖1 and 𝑗1 results in a new tensor 𝑃 of rank 𝑘 + 𝑙 − 2, with free
edges indexed by 𝑖2, . . . , 𝑖𝑘 , 𝑗2, . . . , 𝑗𝑙 , where

𝑃𝑖2,...,𝑖𝑘 , 𝑗2,..., 𝑗𝑙 =
∑︁
𝑓 ∈[𝑑]

𝑀
(1)
𝑓 ,𝑖2,...,𝑖𝑘

𝑀
(2)
𝑓 , 𝑗2,..., 𝑗𝑙

. (5.6)

Graphically, this operation is represented by joining the two contracted edges; see
Figure 5.1 (c).

One can also contract two free edges in the same tensor. Consider the contraction
of the indices 𝑖1, 𝑖2 of 𝑀 (1) . Figure 5.1 (d) represents a new tensor 𝑄 of rank 𝑘 − 2
and with free edges 𝑖3, . . . , 𝑖𝑘 where

𝑄𝑖3,...,𝑖𝑘 =
∑︁
𝑠∈[𝑑]

𝑀
(1)
𝑠,𝑠,𝑖3,...,𝑖𝑘

. (5.7)

The contraction operations can be generalized to contracting multiple pairs of edges
by contracting the pairs one by one. Note that the order of contraction does not
change the final tensor.

One can check that given a tensor network 𝑇 = 𝑇 (𝐺, 𝑀), the contraction value of
tensor network defined by Eq. (5.3) is equal to the value obtained when contracting⊗

𝑣 𝑀
[𝑣] by identifying the free edges according to the edges of 𝐺.

For any vertex 𝑣, use 𝑁 (𝑣) for the vertices adjacent to 𝑣 in 𝐺.

Example 113 Here we give an example of how the graphical representation simpli-
fies the computation of the contraction value. Consider a case in which each 𝑀 [𝑣]

has a factorized structure, that is, there exist vectors 𝜶(𝑣,𝑤) ∈ C𝑑 for 𝑤 ∈ 𝑁 (𝑣) such
that

𝑀 [𝑣] =
⊗
𝑤∈𝑁 (𝑣)

𝜶(𝑣,𝑤) ,

equivalently the entry
𝑀
[𝑣]
...,𝑖𝑤 ,...

=
∏

𝑤∈𝑁 (𝑣)
𝜶(𝑣,𝑤)
𝑖𝑤

.

180

Then 𝑀 [𝑣] can be represented by a product of |𝑁 (𝑣) | tensors as shown in Figure 5.1
(e). As a consequence, one can check that in this special case computing 𝜒(𝑇) is
easy: as in Figure 5.1 (f), one can write 𝜒(𝑇) in a factorized way, where each edge
(𝑣, 𝑤) contributes a factor ⟨𝜶(𝑣,𝑤) ,𝜶(𝑤,𝑣)⟩ :=

∑
𝑓 ∈[𝑑] 𝜶

(𝑣,𝑤)
𝑓

𝜶(𝑤,𝑣)
𝑓

as follows:

𝜒(𝑇) =
∑︁

all edge labeling 𝑐

∏
𝑣

𝑀
[𝑣]
𝑐 (5.8)

=
∏

edges (𝑣, 𝑤)
⟨𝜶(𝑣,𝑤) ,𝜶(𝑤,𝑣)⟩. (5.9)

2D tensor network. We call a tensor network 𝑇 = 𝑇 (𝐺, 𝑀) a 2D tensor network if
the graph𝐺 is a 2D lattice. We assume the lattice has size 𝐿1× 𝐿2 with 𝑛 = 𝐿1× 𝐿2,
and satisfies periodic boundary conditions, that is can be mapped onto a torus. The
periodic boundary condition is mainly to ease the analysis. In particular, every
vertex has degree 4. For simplicity, we assume that 𝐿2 is even.

• For 𝜇 > 0, we define a 2D (𝜇, 𝑛, 𝑑)-Gaussian tensor network 𝑇 (𝐺, 𝑀) as
an 𝑛-vertex 2D tensor network with bond dimension 𝑑, where the entries of
every tensor 𝑀 [𝑣] are iid. sampled from the complex Gaussian distribution
NC(𝜇, 1), i.e.

(𝑀 [𝑣])𝑖1,𝑖2,𝑖3,𝑖4
𝑖.𝑖.𝑑.∼ NC(𝜇, 1). (5.10)

• For technical reasons, for 𝑧 ∈ C we also define the 2D (𝑧, 𝑛, 𝑑)-shifted-
Gaussian tensor network 𝑇 (𝐺, 𝑀), which is an 𝑛-vertex 2D tensor network
with bond dimension 𝑑: For every vertex 𝑣, Let (𝐴[𝑣])𝑖1,𝑖2,𝑖3,𝑖4

𝑖.𝑖.𝑑.∼ NC(0, 1),
the entries of 𝑀 [𝑣] are defined to be

(𝑀 [𝑣])𝑖1,𝑖2,𝑖3,𝑖4 := 1 + 𝑧 · (𝐴[𝑣])𝑖1,𝑖2,𝑖3,𝑖4 . (5.11)

We write the tensor 𝑀 [𝑣] as

𝑀 [𝑣] = 𝐽 [𝑣] + 𝑧𝐴[𝑣] , (5.12)

where 𝐽 [𝑣] is a tensor whose entries are all 1. Note that 𝐽 [𝑣] has a factorized
structure

𝐽 [𝑣] = [1, . . . , 1]⊗4.

We abbreviate the 2D (𝑧, 𝑛, 𝑑)-shifted-Gaussian tensor network 𝑇 (𝐺, 𝑀) as
𝑇𝐴 (𝑧) where 𝐴 := {𝐴[𝑣]}𝑣.

181

5.3 Barvinok’s method and its variant
In this section we review Barvinok’s method, which was first developed by Barvi-
nok [Bar16a; Bar16b], and is a general method for approximate counting. It has
been applied to approximating permanents [EM18], hafnians [Bar16a; Bar16b] and
partition functions [Bar14; PR17]. In particular, Barvinok’s method was applied to
contracting symmetric tensor networks where all entries are very close to 1 [PR17].
Our setting allows the entries having significant fluctuations where the standard
Barvinok’s method fails. Instead our algorithm builds from a special variant of
Barvinok’s method used in approximating random permanents [EM18], which we
summarize below. All Lemmas and Theorems quoted here are proven in [Bar16a;
Bar16b; EM18].

Roughly speaking, the idea of Barvinok’s method is to approximate an analytic
function via its Taylor series around 0. The performance of this approximation
depends on the location of the roots of the analytic function.

Consider a polynomial𝐺 (𝑧) of degree 𝑛, where𝐺 (𝑧) ≠ 0 for 𝑧 on a simply connected
open area containing 0 in the complex plain. We choose the branch of the complex
logarithm, denoted as LN , such that LN𝐺 (0) is real. Define 𝐹 (𝑧) := LN𝐺 (𝑧).
In our application, 𝐺 (1) will encode the contraction value of tensor network. An
additive approximation of 𝐹 (1) will give a multiplicative approximation to 𝐺 (1).
For 𝑟, 𝑤 > 0, we use B(𝑟) ⊂ C to denote the the disk of radius 𝑟 centered at 0, and
use T (𝑟𝑒𝑖𝜃 , 𝑤) to denote the strip of width 𝑤 around the line between 0 and 𝑟𝑒𝑖𝜃 ,
that is

B(𝑟) := {𝑧 ∈ C
�� |𝑧 | ≤ 𝑟},

T (𝑟𝑒𝑖𝜃 , 𝑤) := {𝑧 ∈ C
�� − 𝑤 ≤ ℜ(𝑧𝑒−𝑖𝜃) ≤ 𝑟 + 𝑤, |ℑ(𝑧𝑒−𝑖𝜃) | ≤ 𝑤}.

The following lemma quantifies the approximation error incurred by approximating
𝐹 (𝑧) using a root-free disk of 𝐺 (𝑧).

Lemma 114 (Approximation using a root-free disk, see the proof of Lemma 1.2 in [Bar16b])
Let 𝐺 (𝑧) be a polynomial of degree 𝑛 and suppose 𝐺 (𝑧) ≠ 0 for all |𝑧 | ≤ 𝜂 where
𝜂 > 1. Let 𝐹 (𝑧) := LN𝐺 (𝑧). Then 𝐹 (𝑧) is analytic for |𝑧 | ≤ 1. Moreover, consider
a degree 𝑚 Taylor approximation of 𝐹 (𝑧),

𝑃𝑚 (𝑧) := 𝐹 (0) +
𝑚∑︁
𝑘=1

𝜕𝑘𝐹 (𝑧)
𝜕𝑧𝑘

����
𝑧=0

𝑧𝑘

𝑘!
. (5.13)

182

Then, for all |𝑧 | ≤ 1,

|𝐹 (𝑧) − 𝑃𝑚 (𝑧) | ≤
𝑛

(𝑚 + 1)𝜂𝑚 (𝜂 − 1) . (5.14)

Recall that additive approximation of 𝐹 (𝑧) implies multiplicative approximation
of 𝐺 (𝑧). To translate Lemma 114 into an efficient algorithm, one further needs to
efficiently compute the first few derivatives of 𝐹. Barvinok shows that the derivatives
of 𝐹 can be efficiently computed using the derivatives of 𝐺.

Lemma 115 ([Bar16a]) Let 𝐺 (𝑧) be a polynomial of degree 𝑛 and 𝐺 (𝑧) ≠ 0. If
one can compute the first 𝑙 derivatives of 𝐺 (𝑧) at 𝑧 = 0 in time 𝑡 (𝑛), then one can
compute the first 𝑙 derivatives of 𝐹 (𝑧) := LN𝐺 (𝑧) at 𝑧 = 0 in time 𝑂 (𝑙2𝑡 (𝑛)).

Lemma 114 implies that the Taylor series at 𝑧 = 0 gives a good approximation to
𝐹 (𝑧) = LN𝐺 (𝑧), as long as 𝐺 (𝑧) is root-free in a disk centered at 0 that contains 𝑧.
Lemma 114 can be generalized to the case in which 𝐺 (𝑧) is allowed to have roots in
the disk, but instead there exists a root-free strip from 0 to 𝑧. The main idea in this
generalization is to construct a new polynomial 𝜙(𝑧) which embeds the disk into
a strip. Given such 𝜙, we can then approximate 𝐺 (𝜙(𝑧)) using the approximation
via a root-free disk, since 𝐺 (𝜙(𝑧)) is guaranteed to be root free in a disk of some
radius. Furthermore, we can still use this approximation to estimate 𝐺 (1), which
will encode our quantity of interest.

Lemma 116 (Embedding a disk into a strip, Lemma 8.1 in [Bar16a]) For 0 <

𝜌 < 1, define

𝛼 = 𝛼(𝜌) = 1 − 𝑒−
1
𝜌 , 𝜂 = 𝜂(𝜌) = 1 − 𝑒−1− 1

𝜌

1 − 𝑒−
1
𝜌

> 1, (5.15)

𝐾 = 𝐾 (𝜌) =
⌊(

1 + 1
𝜌

)
𝑒

1+ 1
𝜌

⌋
≥ 14, 𝜎 = 𝜎(𝜌) =

𝐾∑︁
𝑘=1

𝛼𝑘

𝑘
and (5.16)

𝜙(𝑧) = 𝜙𝜌 (𝑧) =
1
𝜎

𝐾∑︁
𝑘=1

(𝛼𝑧)𝑘
𝑘

. (5.17)

Then 𝜙(𝑧) is a polynomial of degree 𝐾 such that 𝜙(0) = 0, 𝜙(1) = 1, and embeds
the disk of radius 𝜂 into the strip of width 2𝜌, i.e.,

−𝜌 ≤ ℜ(𝜙(𝑧)) ≤ 1 + 2𝜌 and |ℑ(𝜙(𝑧)) | ≤ 2𝜌 provided |𝑧 | ≤ 𝜂. (5.18)

183

Corollary 117 (Approximation using a root-free strip) Let 𝐺 (𝑧) be a polyno-
mial of degree 𝑛 and suppose there exists a constant 𝜌 ∈ (0, 1) such that 𝐺 (𝑧) ≠ 0
for all 𝑧 in the strip T (1, 2𝜌). Define 𝜂, 𝐾, 𝜙(𝑧) as in Lemma 116 where 𝜂 > 1. Let

𝐹 (𝑧) := LN𝐺 (𝜙(𝑧)).

Then 𝐹 (𝑧) is analytic for |𝑧 | ≤ 1. Moreover, consider a degree 𝑚 Taylor approxi-
mation of 𝐹 (𝑧),

𝑃𝑚 (𝑧) := 𝐹 (0) +
𝑚∑︁
𝑘=1

𝜕𝑘𝐹 (𝑧)
𝜕𝑧𝑘

|𝑧=0
𝑧𝑘

𝑘!
. (5.19)

Then, for all |𝑧 | ≤ 1,

|𝐹 (𝑧) − 𝑃𝑚 (𝑧) | ≤
𝑛𝐾

(𝑚 + 1)𝜂𝑚 (𝜂 − 1) . (5.20)

Proof: Recall that 𝜂 > 1. By Lemma 116 and the assumption that 𝐺 (𝑧) ≠ 0
for all 𝑧 in T (1, 2𝜌), we have for any |𝑧 | ≤ 𝜂, 𝐺 (𝜙(𝑧)) ≠ 0. Note that 𝐺 (𝜙(𝑧))
is a polynomial in 𝑧 of degree 𝑛𝐾 . Then use Lemma 114 w.r.t 𝐺 (𝜙(𝑧)) and
𝐹 (𝑧) := LN𝐺 (𝜙(𝑧)) we prove the Corollary.

In the above Lemmas, we have assumed 𝐺 (𝑧) is a fixed polynomial, and the perfor-
mance of the Taylor expansion of 𝐹 (𝑧) depends on the location of roots of 𝐺 (𝑧).
When𝐺𝐴 (𝑧) are random polynomials indexed by randomness 𝐴, [EM18] illustrates
a way of using Jensen’s formula to estimate the expectation of the number of roots.

For convenience of later usage, in the following we use the notation ℎ𝐴 (𝑧) for
polynomials instead of 𝐺𝐴 (𝑧). In later applications ℎ𝐴 (𝑧) will be a rescaled version
of 𝐺𝐴 (𝑧). By Lemma 119 [EM18] connects the expected number of roots in a disk
to the second moment of ℎ𝐴.

Definition 118 (Average Sensitivity [EM18]) Let ℎ𝐴 (𝑧) be a random polynomial
where 𝐴 is sampled from some random ensembles and ℎ𝐴 (0) ≠ 0. For any real
number 𝑟 > 0, the stability of ℎ𝐴 (𝑧) at point 𝑟 is defined as

𝑘ℎ (𝑟) := 𝐸𝜃𝐸𝐴
[
|ℎ𝐴 (𝑟𝑒𝑖𝜃) |2
|ℎ𝐴 (0) |2

]
, (5.21)

where 𝐸𝜃 [·] =
∫ 2𝜋
𝜃=0 [·]

𝑑𝜃
2𝜋 is the expectation over 𝜃 from a uniform distribution over

[0, 2𝜋), and 𝐸𝐴 is the expectation over the randomness of 𝐴.

184

Lemma 119 (Proposition 8 [EM18]) Let ℎ𝐴 (𝑧) be a random polynomial where 𝐴
is sampled from some random ensemble and ℎ𝐴 (0) ≠ 0. Let 𝑁𝐴 (𝑟) be the number
of roots of ℎ𝐴 (𝑧) inside B(𝑟), and 0 < 𝜆 < 1/2. Then,

𝐸𝐴 [𝑁𝐴 (𝑟 − 𝑟𝜆)] ≤
1
2𝜆

ln 𝑘ℎ (𝑟). (5.22)

Lemma 119 bounds the expectation value of the number of roots in B(𝑟). In later
sections, we will apply Lemma 119 to show that our polynomial of interest has very
few roots in the disk. This will allow us to find a root-free strip with high probability.
For completeness, we provide a proof of Lemma 119 in Appendix 5.8.

5.4 Tensor network contraction algorithm from Barvinok’s method
We are now ready to present our algorithm for approximate tensor network con-
traction. The algorithm is based on Barvinok’s method and takes the following
inputs,

• A tensor network 𝑇 = 𝑇 (𝐺, 𝑀), where 𝐺 = (𝑉, 𝐸) is a graph comprising
𝑛 = |𝑉 | vertices and has constant degree 𝜅.

• A precision parameter 𝜖 ∈ (0, 1].

The goal is to approximate 𝜒(𝑇) with 𝜖-multiplicative error. In order to achieve this,
we will choose the following parameters that will enter the algorithm appropriately.

• A set of non-zero complex values {𝜇𝑣}𝑣∈𝐺 . We will choose 𝜇𝑣 to be the mean
value of the entries of the tensor 𝑀 [𝑣] at vertex 𝑣 ∈ 𝑉 .

• A complex value 𝑧𝑒𝑛𝑑 ≠ 0.

• A real value 0 < 𝜌 < 1. This value will determine the width of the strip
T (1, 2𝜌) in the complex plane.

The algorithm we describe in this section is well-defined for an arbitrary tensor
network. In Section 5.5 we will apply this algorithm to random 2D tensor net-
work whose entries have a small positive bias and show that it succeeds with high
probability.

185

The polynomial
To apply Barvinok’s method in Corollary 117, we map the contraction value of
tensor network to a polynomial as follows. For each vertex 𝑣, with some abuse of
notations, we use 𝐽 [𝑣] to represent the tensor by substituting all entries in 𝑀 [𝑣] by
1. We define

𝐴[𝑣] := (𝜇−1
𝑣 𝑀

[𝑣] − 𝐽 [𝑣]) · 𝑧−1
𝑒𝑛𝑑 . (5.23)

In other words,

𝜇−1
𝑣 𝑀

[𝑣] = 𝐽 [𝑣] + 𝑧𝑒𝑛𝑑 · 𝐴[𝑣] . (5.24)

Eq. (5.24) states that we intepret the normalized version of 𝑀 [𝑣] as the all-one tensor
𝐽 [𝑣] interpolated by 𝐴[𝑣] . We note that we allow 𝑧𝑒𝑛𝑑 to be much larger than 1.

Since the contraction value of 𝑇 (𝐺, {𝑀 [𝑣]}𝑣) equals
∏
𝑣 𝜇𝑣 times the contraction

value of the normalized tensor network 𝑇 (𝐺, {𝜇−1
𝑣 𝑀

[𝑣]}𝑣), without loss of general-
ity, from now on we assume that the tensor network has been normalized and

𝑀 [𝑣] = 𝐽 [𝑣] + 𝑧𝑒𝑛𝑑 · 𝐴[𝑣] . (5.25)

If we substitute 𝑧𝑒𝑛𝑑 with a variable 𝑧 in Eq. (5.25) for each tensor 𝑀 [𝑣] , we will
obtain a family of new tensor networks, denoted by 𝑇𝐴 (𝑧). The contraction value
𝜒(𝑇𝐴 (𝑧)) is a degree-𝑛 polynomial in 𝑧. Denoting this polynomial as 𝑔𝐴 (𝑧), we
have

𝑔𝐴 (𝑧) = 𝜒(𝑇𝐴 (𝑧)), 0 ≤ 𝑧 ≤ 𝑧𝑒𝑛𝑑 (5.26)

𝑔𝐴 (𝑧𝑒𝑛𝑑) = 𝜒(𝑇𝐴 (𝑧𝑒𝑛𝑑)) = 𝜒(𝑇). (5.27)

Recall that 0 < 𝜌 < 1. Define the polynomial 𝜙(𝑧) as in Lemma 116. For
convenience of applying Barvinok’s method, we also define 𝐺𝐴 (𝑧) by rescaling
𝑔(𝑧),

𝐺𝐴 (𝑧) := 𝑔𝐴 (𝑧 · 𝑧𝑒𝑛𝑑), 0 ≤ 𝑧 ≤ 1. (5.28)

𝐹𝐴 (𝑧) := LN𝐺𝐴 (𝜙(𝑧)). (5.29)

𝐹𝐴 (𝑧) will be analytic in the disk B(1) if 𝐺𝐴 (𝑧) is root-free in the strip T (1, 2𝜌).

186

Computing the derivatives of 𝑔𝐴
We first note that the first few derivatives of 𝑔𝐴 (𝑧) can be computed efficiently.

Lemma 120 For any integer 𝑚, the first 𝑚 derivatives {𝑔(𝑘)
𝐴
(0)}𝑘=0,...,𝑚 can be

computed in time 𝑂 (𝑚2𝑑𝜅𝑚𝑛𝑚+1).

Proof: For any subset 𝑆 ⊆ 𝑉 , we denote by 𝜕𝑇𝐴(𝑧)
𝜕𝑆

the tensor network which is
obtained by substituting the tensor 𝑀 [𝑣] with 𝐴[𝑣] at every vertex 𝑣 ∈ 𝑆. Using the
product rule of derivatives and induction on 𝑘 , one can check that

𝜕𝑘𝑔𝐴 (𝑧)
𝜕𝑧𝑘

=
∑︁

𝑆⊆𝑉,|𝑆 |=𝑘
𝜒

(
𝜕𝑇𝐴 (𝑧)
𝜕𝑆

)
· 𝑘! (5.30)

In particular, note that when 𝑧 = 0, by the definition of 𝜕𝑇𝐴(0)
𝜕𝑆

, for any vertex 𝑤 ∉ 𝑆,
the corresponding tensor at 𝑤 in 𝜕𝑇𝐴(0)

𝜕𝑆
is

𝑀 [𝑣] = 𝐽 [𝑣] + 0 · 𝐴[𝑣] = 𝐽 [𝑣] .

As in Example 113 and Figure 5.1 (f), we can decompose each tensor 𝐽 [𝑣] =

[1, . . . , 1]⊗𝜅 as a product of 𝜅 all-one vectors [1, . . . , 1]. Then the graphical repre-
sentation of 𝜕𝑇𝐴(0)

𝜕𝑆
consists of many disconnected sub-graphs, where each sub-graph

has at most |𝑆 | ≤ 𝑚 vertices. The contraction value 𝜒(𝜕𝑇𝐴(0)
𝜕𝑆
) is the product of the

contraction value of each subgraph, and can be computed in time 𝑛 · 𝑂 (𝑑𝜅𝑚𝑚).
Here 𝑛 is an upper bound of the number of sub-graphs, and 𝑂 (𝑑𝜅𝑚𝑚) is the cost of
directly contracting an 𝑚 vertices subgraph of a tensor network on degree-𝜅 graph.
Thus by Eq. (5.30) for any 𝑘 ≤ 𝑚, 𝑔(𝑘)

𝐴
(0) can be computed in time 𝑂 (𝑛𝑚𝑑𝜅𝑚𝑛𝑚).

We conclude that the first 𝑚 derivatives {𝑔(𝑘) (0)}𝑘=0,...,𝑚 can be computed in time
𝑂 (𝑚2𝑑𝜅𝑚𝑛𝑚+1).

In later proofs we will set 𝑚 = 𝑂 (ln (𝑛/𝜖)). When 𝑑 = 𝑝𝑜𝑙𝑦(𝑛) and 𝜖 =

𝑂 (1/𝑝𝑜𝑙𝑦(𝑛)), the cost 𝑂 (𝑚2𝑑4𝑚𝑛𝑚+1) of computing the 𝑚-th derivative is then
quasi-polynomial.

Using Lemma 120 one can efficiently compute the first few derivatives of 𝐹𝐴 (𝑧).

Lemma 121 Assume that 𝜌 is a constant. Then for any integer 𝑚, the first 𝑚
derivatives of {𝐹 (𝑘)

𝐴
(0)}𝑚

𝑘=1 can be computed in time

𝑂

(
𝑚4𝑑𝜅𝑚𝑛𝑚+1 + 𝑚6

)
.

187

Proof: By Lemma 120 and the definition of𝐺𝐴 (𝑧), the first𝑚 derivatives {𝐺 (𝑘)
𝐴
(0)}𝑚

𝑘=0
can be computed in time 𝑂 (𝑚2𝑑𝜅𝑚𝑛𝑚+1). Besides, from Lemma 116 and the as-
sumption that 𝜌 in the definition of 𝜙 is a constant, 𝜙(𝑧) is a polynomial of degree
𝐾 where 𝐾 = 𝐾 (𝜌) is a constant, thus the first 𝑚 derivatives {𝜙(𝑘) (0)}𝑚

𝑘=0 can be
computed in time 𝑂 (𝑚). Thus by Lemma 143 in Appendix 5.8, one can compute
the the first 𝑚 derivatives of the composite function 𝐺𝐴 (𝜙(𝑧)) at 𝑧 = 0 in time

𝑂 (𝑚2𝑑𝜅𝑚𝑛𝑚+1 + 𝑚4).

Note that 𝐾 is a constant and 𝐺𝐴 (𝜙(𝑧)) is a polynomial of degree 𝑛𝐾 . Then by
Lemma 115, we can compute the first 𝑚 derivatives 𝐹 (𝑘)

𝐴
(0) in time

𝑂

(
𝑚4𝑑𝜅𝑚𝑛𝑚+1 + 𝑚6

)
.

The algorithm and its performance
Our goal is to approximate LN𝐺𝐴 (1) = LN𝐺𝐴 (𝜙(1)) with respect to an additive
error, which will give a multiplicative approximation to 𝐺𝐴 (1) = 𝜒(𝑇). The
algorithm is just computing the derivatives and 𝑃𝑚 (𝑧) in Corollary 117, that is
Algorithm 7.

Algorithm 7 Barvinok(𝐺𝐴, 𝑚, 𝜌)
1: Let 𝐹𝐴 (𝑧) := ln𝐺𝐴 (𝜙(𝑧)) with 𝜙 = 𝜙𝜌 as defined in Eq. (5.17).
2: Compute the first 𝑚 derivatives {𝐹 (𝑘)

𝐴
(0)}𝑚

𝑘=0 of 𝐹𝐴 using Lemma 121.
3: Compute 𝑃𝑚 (1) := 𝐹 (0) +∑𝑚

𝑘=1 𝐹
(𝑘)
𝐴
(0) 1

𝑘! .
4: Return �̂�(𝑇) := 𝑒𝑃𝑚 (1) .

Algorithm 7 returns a good approximation of 𝜒(𝑇) with multiplicative error 𝜖 if
𝐺𝐴 (𝑧) is root-free in T (1, 2𝜌) and we set 𝑚 = 𝑂 (ln(𝑛/𝜖)).

Theorem 122 Let 0 < 𝜌 < 1 be a constant. If 𝐺𝐴 (𝑧) ≠ 0 for any 𝑧 in strip
T (1, 2𝜌), then for any 𝜖 , Algorithm 7 runs in time

𝑂

(
𝑚4𝑑𝜅𝑚𝑛𝑚+1 + 𝑚6

)
.

Choosing 𝑚 = 𝑂 (ln(𝑛/𝜖)), Algorithm 7 outputs a value �̂�(𝑇) that approximates
𝜒(𝑇) with 𝜖-multiplicative error. That is

| �̂�(𝑇) − 𝜒(𝑇) | ≤ 𝜖 |𝜒(𝑇) |.

188

Proof: As in Corollary 117 and Lemma 116, we define two constants 𝜂, 𝐾 from 𝜌.
Set

𝑚 :=
ln(𝑒𝑛𝐾/𝜖) − ln(𝜂 − 1)

ln 𝜂
= 𝑂 (ln(𝑛/𝜖)). (5.31)

Define the polynomial 𝑃𝑚 (𝑧) as in Corollary 117. Applying Corollary 117 to the
functions 𝐺𝐴 (𝑧), 𝐹𝐴 (𝑧), we have for |𝑧 | ≤ 1,

|𝐹𝐴 (𝑧) − 𝑃𝑚 (𝑧) | ≤ 𝜖/𝑒. (5.32)

One can check that |𝑒𝑥 − 1| ≤ 𝑒 |𝑥 | for complex 𝑥 where |𝑥 | ≤ 1. Thus for any
|𝑧 | ≤ 1,

|𝑒𝐹𝐴(𝑧) − 𝑒𝑃𝑚 (𝑧) | = |𝑒𝐹𝐴(𝑧) | · |1 − 𝑒𝑃𝑚 (𝑧)−𝐹𝐴(𝑧) | (5.33)

≤ |𝑒𝐹𝐴(𝑧) | · 𝑒 · 𝜖/𝑒. (5.34)

= 𝜖 · |𝑒𝐹𝐴(𝑧) |. (5.35)

Note that

𝜒(𝑇) = 𝜒(𝑇𝐴 (𝑧𝑒𝑛𝑑)) = 𝑒𝐹𝐴(1) . (5.36)

Since

�̂�(𝑇) := 𝑒𝑃𝑚 (1) . (5.37)

Eq. (5.35) implies

|𝜒(𝑇) − �̂�(𝑇) | ≤ 𝜖 · |𝜒(𝑇) |. (5.38)

The runtime of the algorithm is the time for computing the polynomial 𝑃𝑚 (1), which
is dominated by the time for computing 𝐹 (𝑘)

𝐴
(0) for 𝑘 = 1, . . . , 𝑚. By Lemma 121

we can compute the the first 𝑚 derivatives 𝐹 (𝑘)
𝐴
(0) in time

𝑂

(
𝑚4𝑑𝜅𝑚𝑛𝑚+1 + 𝑚6

)
.

5.5 Approximating random PEPS with positive mean
In this section, we apply Algorithm 7 to the task of approximating the contraction
value of 2D tensor networks. We show that the algorithm succeeds with high
probability if the tensors are drawn randomly with vanishing positive mean and
intermediate bond dimension 𝑑 ≥ 𝑛𝑐−1 for constant 𝑐. The formal statement of the
result is as follows.

189

Theorem 123 Suppose 𝑑 ≥ 𝑛𝑐−1 for some constant 𝑐. Let 𝜆 be an arbitrary small
constant satisfying 0 ≤ 𝜆 ≤ 𝑒−3𝑐/80. Let 𝜖 ∈ (0, 1] be a precision parameter.
Suppose

𝜇 ≥ 1
𝑑

1
(1 − 2𝜆) .

Then there is an algorithm A which runs in time

𝑂

(
𝑚4𝑑4𝑚𝑛𝑚+1 + 𝑚6

)
for 𝑚 = 𝑂 (ln(𝑛/𝜖)),

such that with probability at least 3
4 +

1
25 over the randomness of the 2D (𝜇, 𝑛, 𝑑)-

Gaussian tensor network 𝑇 , it outputs a value �̂�(𝑇) that approximates 𝜒(𝑇) with
𝜖-multiplicative error. That is

| �̂�(𝑇) − 𝜒(𝑇) | ≤ 𝜖 |𝜒(𝑇) |.

Note that if a random variable 𝑋 ∼ NC(𝜇, 1) with 𝜇 > 0, then 1
𝜇
𝑋 ∼ NC(1, 1

𝜇2).
That is

1
𝜇
𝑋 = 1 + 1

𝜇
𝑌 for 𝑌 ∼ NC(0, 1).

Thus approximating 2D (𝜇, 𝑛, 𝑑)-Gaussian tensor networks with multiplicative error
can be reduced to approximating 2D (𝑧, 𝑛, 𝑑)-shifted-Gaussian tensor networks for
𝑧 = 1

𝜇
.

In other words, to prove Theorem 123 it suffices to show that one can approximate
2D (𝑧, 𝑛, 𝑑)-shifted-Gaussian tensor networks 𝑇𝐴 (𝑧) for 0 ≤ 𝑧 ≤ 𝑑 · (1− 2𝜆), where

𝑧∗ =
1
𝜇
≤ 𝑑 · (1 − 2𝜆)

gives the contraction value, that is 𝜒(𝑇) = 𝜇𝑛 · 𝜒(𝑇𝐴 (𝑧∗)).

Specify parameters in the algorithm
We use the algorithm 7 in Section 5.4 to prove Theorem 123. Recall that 𝜆 is a
parameter in Theorem 123. We specify the parameters in the input of the algorithm
as:

• 𝜅 = 4 since the degree of a 2D lattice of periodic boundary condition is 4.

• 𝜇𝑣 = 1 for all 𝑣 ∈ 𝐺.

• 𝑧𝑒𝑛𝑑 = 𝑑 · (1 − 2𝜆).

190

• 𝜌 = 𝜋𝜆4

4(1−2𝜆) for the strip T (1, 2𝜌).

The key Lemma for proving Theorem 123 is showing that 𝐺𝐴 (𝑧) has no roots in
T (1, 2𝜌) with high probability. We use the same notations 𝑔𝐴 (𝑧), 𝐺𝐴 (𝑧) as defined
in Section 5.4.

Lemma 124 (Root-free strip) With probability at least 3
4 +

1
25 over the randomness

of 𝐴, 𝐺𝐴 (𝑧) has no roots in T (1, 2𝜌).

Before proving Lemma 124 we first prove that Theorem 122 and Lemma 124 together
imply Theorem 123.

Proof:[Proof of Theorem 123] By Lemma 124 with probability at least 3
4 +

1
25 over

the randomness of 𝐴, 𝐺𝐴 (𝑧) ≠ 0 for 𝑧 ∈ T (1, 2𝜌). Then we prove Theorem 123 by
Theorem 122.

Rescaling polynomials. Recall that

𝑔𝐴 (𝑧) = 𝜒(𝑇𝐴 (𝑧)), for 0 ≤ 𝑧 ≤ 𝑑 · (1 − 2𝜆) (5.39)

𝐺𝐴 (𝑧) = 𝜒(𝑇𝐴 (𝑧 · 𝑑 · (1 − 2𝜆))), for 0 ≤ 𝑧 ≤ 1. (5.40)

For convenience, we also define

ℎ𝐴 (𝑧) = 𝜒(𝑇𝐴 (𝑧𝑑)), for 0 ≤ 𝑧 ≤ 1 − 2𝜆. (5.41)

Then Lemma 124 is equivalent to the following.

Lemma 125 (Root-free strip) With probability at least 3
4 +

1
25 over the randomness

of 𝐴, ℎ𝐴 (𝑧) has no roots in T (1 − 2𝜆, 𝑤) for 𝑤 = 𝜋𝜆4/2.

The following Sections are used to prove Lemma 125. In Section 5.5 we review
the 2D Ising model. In Section 5.5 we map the random 2D tensor network to the
2D Ising model. In Section 5.5 we analyze the partition function of the 2D Ising
model and use it to find the root-free strip. Finally in Section 5.5 we prove the exact
contraction of random 2D tensor network with positive mean remains #P-hard.

2D Ising model
This section is a review of the 2D Ising model. Let 𝐿1 and 𝐿2 be two integers where

𝑛 = 𝐿1 × 𝐿2.

191

For simplicity we assume 𝐿2 is even. Consider an 𝐿1 × 𝐿2 2D lattice with periodic
boundary conditions, meaning that the lattice can be embedded onto a torus. We
assume the periodic boundary condition to simplify the analysis.

Denote the lattice as 𝐺 = (𝑉, 𝐸) and let 𝑛 := |𝑉 |. At each vertex 𝑣, there is a
spin which takes a value 𝑠𝑣 ∈ {−1, +1}. The Hamiltonian (or energy function) of
the 2D Ising model is defined to be the function 𝐻 mapping a spin configuration
𝑠 := {𝑠𝑣}𝑣∈𝑉 to its energy

𝐻 (𝑠,J , 𝜚) = −J
∑︁
(𝑣,𝑤)∈𝐸

𝑠𝑣𝑠𝑤 − 𝜚
∑︁
𝑣∈𝑉

𝑠𝑣, (5.42)

where J ∈ R is the pair-wise interaction strength and 𝜚 ∈ R quantifies the strength
of an external magnetic field. The partition function at inverse temperature 𝛽 is
defined as

Z(𝛽,J , 𝜚) =
∑︁

𝑠∈{±1}𝑛
exp(−𝛽𝐻 (𝑠,J , 𝜚)) (5.43)

=
∑︁

𝑠∈{±1}𝑛

∏
(𝑣,𝑤)∈𝐸

exp(𝛽J 𝑠𝑣𝑠𝑤) ·
∏
𝑣∈𝑉

exp(𝛽𝜚𝑠𝑣). (5.44)

It is well known that when there is no external magnetic field, that is 𝜚 = 0, the
partition function of the 2D Ising model with periodic boundary has a closed form.
In the thermodynamic limit, this formula is known as Onsager’s solution [Ons44].
For a finite-size lattice, a refined formula has been given by Kaufman [Kau49],
which is summarized in Lemma 126. There is no closed form formula for the
partition functionZ(𝛽,J , 𝜚) when 𝜚 ≠ 0.

Lemma 126 ([Kau49]) The partition function of the 2D Ising model on an 𝐿1 × 𝐿2

lattice with periodic boundary conditions and zero magnetic fields is given by

Z(𝛽,J , 0) =1
2
(2 sinh 2𝛽J)𝐿1𝐿2/2 ×

{
𝐿2∏
𝑟=1

(
2 cosh

𝐿1

2
𝛾2𝑟

)
+

𝐿2∏
𝑟=1

(
2 sinh

𝐿1

2
𝛾2𝑟

)
(5.45)

+
𝐿2∏
𝑟=1

(
2 cosh

𝐿1

2
𝛾2𝑟−1

)
+

𝐿2∏
𝑟=1

(
2 sinh

𝐿1

2
𝛾2𝑟−1

)}
, (5.46)

where for 𝑗 = 1, . . . , 2𝐿2, we define

cosh 𝛾 𝑗 := cosh 2𝐻∗ · cosh 2𝛽J − sinh 2𝐻∗ · sinh 2𝛽J · cos(𝑗𝜋/𝐿2), (5.47)

tanh𝐻∗ := exp(−2𝛽J). (5.48)

192

Notice that Eq. (5.47) does not specify the sign of 𝛾 𝑗 . Since here we are only
interested in an upper bound of Z(𝛽,J , 0), we can just assume that 𝛾 𝑗 has a
positive sign.5

Mapping random tensor networks to the Ising model
In this section, we estimate 𝐸𝐴 |ℎ𝐴 (𝑧) |2 by mapping it to the partition function of a
2D Ising model. To this end, observe that choosing 𝛽,J such that exp(𝛽J) = 𝑑2

and exp(−𝛽J) = 𝑑
√
𝑑, we can write

Z(𝛽,J , 0) =
∑︁

𝑠∈{±1}𝑛
𝑅(𝑠) (5.49)

in terms of a function

𝑅(𝑠) =
∏
(𝑣,𝑤)∈𝐸

𝑟𝑣𝑤 (𝑠), (5.50)

with weights

𝑟𝑣𝑤 (𝑠) =
{
𝑑
√
𝑑, if 𝑠𝑢 ≠ 𝑠𝑣,

𝑑2, if 𝑠𝑢 = 𝑠𝑣 .
(5.51)

We then show the following lemma.

Lemma 127 For 𝑧 ∈ C, |𝑧 | > 0, set 𝛽,J , 𝜚 in the 2D Ising model to satisfy

𝛽J =
ln 𝑑
4
, 𝛽𝜚 = ln |𝑧 |. (5.52)

Then we have that over the randomness of 𝐴, we have that

𝐸𝐴 |ℎ𝐴 (𝑧) |2 = 𝑑7𝑛/2 |𝑧 |𝑛Z(𝛽,J , 𝜚) (5.53)

=
∑︁

𝑠∈{±1}𝑛
𝑅(𝑠) |𝑧 |2|𝑠 | . (5.54)

Note that in Lemma 127, the 2D Ising model has a non-zero magnetic field 𝜚 ≠ 0, and
thus the closed form formula for 2D Ising model without magnetic fields (Lemma
126) does not directly apply.

5For readers who are interested in numerically verifying Lemma 126, the sign of 𝛾 𝑗 influences
the value of sinh 𝐿1

2 𝛾 𝑗 and thus the value of Z(𝛽,J , 0). The sign of 𝛾 𝑗 is explained in Remark 15
and Figure 3 of [Kau49]: 𝛾 𝑗 ≥ 0 for all 𝑗 ≠ 2𝑛; but 𝛾2𝑛 is negative if 𝛽J < 𝐻𝑐, and is non-negative
if 𝛽J ≥ 𝐻𝑐, where 𝐻𝑐 is the critical point which is approximately 0.4407. A remark is [Kau49]
denotes our 𝛾2𝑛 as 𝛾0.

193

In the remainder of this section, we prove Lemma 127. Here we use the techniques
of mapping random instances to classical statistical mechanical models, which are
widely used in the physics literature for studying phase transitions [BCA20; SRN19;
Yan+22; LC21]. This section will heavily use the graphical representations of tensor
networks, which was explained in Section 5.2.

Recall that in the 2D tensor network 𝑇𝐴 (𝑧𝑑), for each vertex 𝑣, the tensor 𝑀 [𝑣] can
be written as

𝑀 [𝑣] = 𝐽 [𝑣] + 𝑧𝑑 · 𝐴[𝑣] . (5.55)

In the following Lemma 128, we first compute the expectation of the product of
tensor 𝑀 [𝑣] and its conjugate, that is 𝑀 [𝑣] ⊗ 𝑀 [𝑣] . Evaluating this average will
allow us to compute 𝐸𝐴 |ℎ𝐴 (𝑧) |2, since ℎ𝐴 (𝑧) · ℎ𝐴 (𝑧) is the product of two 2D tensor
networks where, for each vertex we can pair the tensors as 𝑀 [𝑣] ⊗ 𝑀 [𝑣] , as we will
explain in detail in the proof of Lemma 127.

Lemma 128 Define the delta tensor 𝑇 𝛿 to be a tensor of rank 2 with free edges 𝑖, 𝑖′

and bond dimension 𝑑, where (𝑇 𝛿)𝑖𝑖′ = 𝛿𝑖𝑖′ . As in Figure 5.2 , we have

𝐸𝐴

[
𝐴[𝑣] ⊗ 𝐴[𝑣]

]
= 𝑇 𝛿 ⊗ 𝑇 𝛿 ⊗ 𝑇 𝛿 ⊗ 𝑇 𝛿 :=

(
𝑇 𝛿

)⊗4
, (5.56)

𝐸𝐴

[
𝑀 [𝑣] ⊗ 𝑀 [𝑣]

]
= 𝐽 [𝑣] ⊗ 𝐽 [𝑣] + |𝑧 |2(𝑑1/2 · 𝑇 𝛿)⊗4, (5.57)

where in Figure 5.2 (a) we use □ to represent the vertex for a delta tensor 𝑇 𝛿, and
in Figure 5.2 (b) we use • to represent the vertex for the tensor [1, 1, 1 . . . , 1].

i

j

k

l

i′

j′

k′

l′

=EA

A[v]

A[v]

i

j

k

l

i′

j′

k′

l′

i

j

k

l

i′

j′

k′

l′

=EA

M [v]

M [v]

i

j

k

l

i′

j′

k′

l′

+

J [v]

J [v]

d2|z|2

(a) (b)

i

j

k

l

i′

j′

k′

l′

T δ T δ

Figure 5.2: Graphical representation of the expectation of tensor products. (a) The expecta-
tion of the product of 𝐴[𝑣] and its conjugate is a product of delta tensors. (b) The expectation
of the product 𝑀 [𝑣] ⊗ 𝑀 [𝑣] decomposes into a linear combination of delta tensors and a
product of rank-1 tensors.

Proof: As in Figure 5.2 (a), we label the free edges of the first copy of 𝐴[𝑣] by
𝑖, 𝑗 , 𝑘, 𝑙, and the free edges of the second copy by 𝑖′, 𝑗 ′, 𝑘′, 𝑙′. By definition, all

194

entries of 𝐴[𝑣] are sampled independently from NC(0, 1). Thus, we have that(
𝐸𝐴

[
𝐴[𝑣] ⊗ 𝐴[𝑣]

])
𝑖 𝑗 𝑘𝑙,𝑖′ 𝑗 ′𝑘 ′𝑙′

= 𝛿𝑖𝑖′ · 𝛿 𝑗 𝑗 ′ · 𝛿𝑘𝑘 ′ · 𝛿𝑙𝑙′ , (5.58)

which proves Eq. (5.56). To prove Eq. (5.57), it suffices to notice that

𝑀 [𝑣] = 𝐽 [𝑣] + 𝑧𝑑 · 𝐴[𝑣] . (5.59)

𝐸𝐴

[
𝐽 [𝑣] ⊗ 𝐴[𝑣]

]
= 𝐸𝐴

[
𝐴[𝑣] ⊗ 𝐽 [𝑣]

]
= 0. (5.60)

Proof:[Proof of Lemma 127]

M [v]

M [v]

hA(z) · hA(z)

sv sw

d
1
2

d
1
2d

1
2

⇒

⇒

⇒

d
1
2

d

=

=

=

d
3
2

d2

d2

(a) (b)

Figure 5.3: (a) Pair the tensors 𝑀 [𝑣] and its conjugate in 𝐸𝐴|𝑔𝐴(𝑧) |2. (b) The ten-
sors with respect to edge (𝑣, 𝑤) in 𝑇 (𝑠). From top to button, the value of (𝑠𝑣 , 𝑠𝑤) are
(1,−1), (1, 1), (−1,−1) respectively.

As in Figure 5.3 (a), ℎ𝐴 (𝑧) · ℎ𝐴 (𝑧) is the product of two 2D tensor network, where
for each vertex 𝑣, we can pair the tensors as 𝑀 [𝑣] ⊗ 𝑀 [𝑣] . By Lemma 128 we know
that

𝑁 [𝑣] := 𝐸𝐴
[
𝑀 [𝑣] ⊗ 𝑀 [𝑣]

]
= 𝐽 [𝑣] ⊗ 𝐽 [𝑣] + |𝑧 |2(𝑑1/2 · 𝑇 𝛿)⊗4. (5.61)

Define a new 2D tensor network 𝑇 (𝑁) where at each vertex 𝑣 the tensor is 𝑁 [𝑣] .
Notice that 𝐸𝐴 |ℎ𝐴 (𝑧) |2 = 𝜒(𝑇 (𝑁)) since

𝐸𝐴 |ℎ𝐴 (𝑧) |2 = 𝐸𝐴
©«

∑︁
𝑐∈[𝑑] |𝐸 |

∏
𝑣∈𝑉

𝑀
[𝑣]
𝑐

ª®¬ ©«
∑︁

𝑐∈[𝑑] |𝐸 |

∏
𝑣∈𝑉

𝑀
[𝑣]
𝑐

ª®¬ (5.62)

=
∑︁

𝑐,𝑐′∈[𝑑] |𝐸 |

∏
𝑣∈𝑉

𝐸𝐴

(
𝑀 [𝑣] ⊗ 𝑀 [𝑣]

)
𝑐,𝑐′

(5.63)

= 𝜒(𝑇 (𝑁)). (5.64)

We map 𝜒(𝑇 (𝑁)) to the partition function of the 2D Ising model as follows. For
any configuration 𝑠 := {𝑠𝑣}𝑣∈𝑉 , 𝑠𝑣 ∈ {±1}, construct a new 2D tensor network 𝑇 (𝑠)
as follows:

195

• If 𝑠𝑣 = 1 we set the tensor on 𝑣 to be 𝐽 [𝑣] ⊗ 𝐽 [𝑣] ;

• If 𝑠𝑣 = −1 we set the tensor on 𝑣 to be (𝑑1/2 · 𝑇 𝛿)⊗4.

As in the top figure in Figure 5.3 (b), for an edge (𝑣, 𝑤), if (𝑠𝑣, 𝑠𝑤) = (1,−1), then
the edge (𝑣, 𝑤) contributes a scalar factor as 𝑑

3
2 to 𝑇 (𝑠), which is the contraction

value of the tensor 𝐽 [𝑣] ⊗ 𝐽 [𝑣] and the tensor (𝑑1/2 · 𝑇 𝛿)⊗4. Similarly, as in Figure
5.3 (b), if (𝑠𝑣, 𝑠𝑤) = (1, 1) or (−1,−1), the edge (𝑣, 𝑤) contributes a scalar factor
as 𝑑2. Thus one can check that the contraction value of 𝑇 (𝑠) is given by 𝑅(𝑠).

With an arbitrary ordering of the 𝑛 vertices, we write the configuration 𝑠 = {𝑠𝑣}𝑣∈𝑉
as a vector 𝑠 ∈ {±1}𝑛. Based on Eq. (5.61), one can compute 𝜒(𝑇 (𝑁)) by expanding
𝑁 [𝑣] , that is for any configuration 𝑠,

• We use 𝑠𝑣 = 1 to represent choosing 𝐽 [𝑣] ⊗ 𝐽 [𝑣] ,

• We use 𝑠𝑣 = −1 for |𝑧 |2 · (𝑑1/2 · 𝑇 𝛿)⊗4.

Then define |𝑠 | to be the number of −1 in 𝑠, we have

𝜒(𝑇 (𝑁)) =
∑︁

𝑠∈{±1}𝑛
𝜒(𝑇 (𝑠)) |𝑧 |2|𝑠 | =

∑︁
𝑠∈{±1}𝑛

𝑅(𝑠) |𝑧 |2|𝑠 | . (5.65)

One can check that setting 𝛽J = ln 𝑑
4 and 𝛽𝜚 = ln |𝑧 |, for any 𝑠 ∈ {±1}𝑛, we have

𝑑7𝑛/2 |𝑧 |𝑛 exp(−𝛽𝐻 (𝑠,J , 𝜚)) = 𝑅(𝑠) |𝑧 |2|𝑠 | . (5.66)

Finding a root-free strip
In this section, we show that one can efficiently find a root-free strip with high
probability. In particular, we will bound 𝐸𝐴 [|ℎ𝐴 (𝑧) |2] and use Lemma 119.

Recall that we consider a 2D lattice with periodic boundary conditions, where the
2D lattice has size 𝑛 = 𝐿1 × 𝐿2 and 𝐿2 is even. The 2D Ising model and 𝑅(𝑠) are
defined in Section 5.5.

The exact formula for the partition function Z(𝛽,J , 0) in Lemma 126 is intimi-
dating. We upper bound Z(𝛽,J , 0) by a simpler formula. Then we will use this
formula to bound 𝐸𝐴 [|ℎ𝐴 (𝑧) |2].

196

Lemma 129 (Bound on the partition function with no magnetic field) If 𝛽J =

1/4 · ln 𝑑 and 𝑑 ≥ 3, we have that

2𝑑
𝑛
2 ≤ Z(𝛽,J , 0) ≤ 2𝑑

𝑛
2

(
1 + 3

𝑑

)𝑛
. (5.67)

Proof: Here we use the same notation as in Lemma 126. By the definition of the
partition function, and the fact that there are 2𝑛 edges in the 2D square lattice with
periodic boundary conditions, we have

Z(𝛽,J , 0) ≥
∑︁

𝑠=00..0 or 11...1

∏
(𝑣,𝑤)∈𝐸

exp(𝛽J 𝑠𝑣𝑠𝑤) = 2𝑑𝑛/2. (5.68)

Now, note that we can rewrite the definitions in Lemma 126, for any 𝑗 as

2 cosh 𝛾 𝑗 = cosh 2𝐻∗ · 2 cosh 2𝛽J · (1 − 𝛼 cos(𝑗𝜋/𝐿2)) , (5.69)

where 𝛼 := tanh 2𝐻∗ · tanh 2𝛽J ∈ (0, 1). Since 𝐿2 is even, we have
𝐿2∏
𝑟=1
(1 − 𝛼 cos(2𝑟𝜋/𝐿2)) =

𝐿2/2∏
𝑟=1
(1 − 𝛼 cos(2𝑟𝜋/𝐿2))

(
1 − 𝛼 cos(2(𝑟 + 𝐿2

2
)𝜋/𝐿2)

)
(5.70)

=

𝐿2/2∏
𝑟=1
(1 − 𝛼 cos(2𝑟𝜋/𝐿2)) (1 + 𝛼 cos(2𝑟𝜋/𝐿2)) (5.71)

=

𝐿2/2∏
𝑟=1

(
1 − 𝛼2 cos2(2𝑟𝜋/𝐿2)

)
(5.72)

≤ 1. (5.73)

By the definition of cosh, 2 cosh 𝑘𝑥 ≤ (2 cosh 𝑥)𝑘 for any 𝑥 and any integer 𝑘 ≥ 0,
we have that
𝐿2∏
𝑟=1

(
2 cosh

𝐿1

2
𝛾2𝑟

)
≤

(
𝐿2∏
𝑟=1

2 cosh 𝛾2𝑟

)𝐿1/2

(5.74)

= (cosh 2𝐻∗ · 2 cosh 2𝛽J)𝐿1𝐿2/2
(
𝐿2∏
𝑟=1
(1 − 𝛼 cos(2𝑟𝜋/𝐿2))

)𝐿1/2

(5.75)

≤ (cosh 2𝐻∗ · 2 cosh 2𝛽J)𝐿1𝐿2/2 , (5.76)

where the second equality comes from Eq. (5.69) and the last inequality comes from
Eq. (5.73). Similarly we can get the same upper bound for

𝐿2∏
𝑟=1

(
2 cosh

𝐿1

2
𝛾2𝑟−1

)
, and

𝐿2∏
𝑟=1

(
2 sinh

𝐿1

2
𝛾2𝑟

)
,

𝐿2∏
𝑟=1

(
2 sinh

𝐿1

2
𝛾2𝑟−1

)
,

197

where we get the bound for the last two terms by | sinh 𝑥 | ≤ cosh 𝑥. Besides, from
tanh𝐻∗ = exp(−2𝛽J) we have

exp(2𝐻∗) = exp(2𝛽J) + 1
exp(2𝛽J) − 1

=

√
𝑑 + 1
√
𝑑 − 1

(5.77)

cosh 2𝐻∗ =
1
2

(√
𝑑 + 1
√
𝑑 − 1

+
√
𝑑 − 1
√
𝑑 + 1

)
≤ 1 + 3

𝑑
, for 𝑑 ≥ 3. (5.78)

We estimate

2 sinh 2𝛽J =
√
𝑑 − 1
√
𝑑
≤
√
𝑑, (5.79)

2 cosh 2𝛽J =
√
𝑑 + 1
√
𝑑
. (5.80)

Thus by Lemma 126, we finally conclude that

Z(𝛽,J , 0) ≤ 1
2
· 𝑑 𝑛4 · 4 ·

(
1 + 3

𝑑

) 𝑛
2

𝑑
𝑛
4

(
1 + 1

𝑑

) 𝑛
2

(5.81)

≤ 2𝑑
𝑛
2

(
1 + 3

𝑑

)𝑛
. (5.82)

Using Lemma 129 we can now estimate
∑
𝑠 𝑅(𝑠).

Lemma 130 ∑︁
𝑠∈{±1}𝑛

𝑅(𝑠) ≤ 2𝑑4𝑛 (1 + 3
𝑑
)𝑛 (5.83)

Proof: Since the 2D lattice we consider has 𝑛 vertices and satisfies the periodic
boundary condition, there are in total 2𝑛 edges. Set 𝑧 = 1, 𝛽J = 1/4 · ln 𝑑,
𝛽𝜚 = ln |𝑧 | = 0, (that is 𝜚 = 0). By Lemma 127 and Lemma 129 we have that∑︁

𝑠∈{±1}
𝑅(𝑠) = 𝑑7𝑛/2Z(𝛽,J , 0) ≤ 2𝑑4𝑛

(
1 + 3

𝑑

)𝑛
. (5.84)

Then we estimate 𝐸𝐴 |ℎ𝐴 (𝑧) |2 for small 𝑧 and for 𝑧 ≤ 1. For completeness we also
give a lower bound on 𝐸𝐴 |ℎ𝐴 (𝑧) |2 in Lemma 131 (c). (c) will not be used in other
proofs.

198

Lemma 131 Let 𝑐 and 𝜌 be two constants where 0 < 𝜌 < 1. Assume 𝑑 ≥ 𝑛𝑐−1.We
have

(a) For |𝑧 | ≤ 𝜌, 𝐸𝐴 |ℎ𝐴 (𝑧) |2 ≤ 𝑑4𝑛 (1 + 2𝜌2𝑒3𝑐).

(b) For |𝑧 | ≤ 1, 𝐸𝐴 |ℎ𝐴 (𝑧) |2 ≤ 𝑑4𝑛 · 2𝑒3𝑐 .

(c) For any 𝑧, 𝐸𝐴 |ℎ𝐴 (𝑧) |2 ≥ 𝑑4𝑛 (1 + |𝑧 |
2

𝑑4)𝑛.

Proof: Note that when 𝑠 = 0 . . . 0, 𝑅(𝑠) = 𝑑4𝑛. For (a), since |𝑧 | ≤ 𝜌, by Lemma
127 we have

𝐸𝐴 |ℎ𝐴 (𝑧) |2 = 𝑑4𝑛 · |𝑧 |0 +
∑︁

𝑠∈{±1}𝑛:|𝑠 |≥1

𝑅(𝑠) |𝑧 |2𝑠 (5.85)

≤ 𝑑4𝑛 + 𝜌2
∑︁

𝑠∈{±1}𝑛
𝑅(𝑠) (5.86)

≤ 𝑑4𝑛 + 𝜌2 · 2𝑑4𝑛
(
1 + 3

𝑑

)𝑛
(5.87)

≤ 𝑑4𝑛 (1 + 2𝜌2𝑒3𝑐), (5.88)

where the second inequality comes from |𝑧 | ≤ 𝜌 < 1 and 𝑅(𝑠) ≥ 0,∀𝑠; the third
inequality comes from Lemma 130; and the last inequality comes from 𝑑 ≥ 𝑛 · 𝑐−1.

For (b), by Lemma 127 and Lemma 130 we have for |𝑧 | ≤ 1,

𝐸𝐴 |ℎ𝐴 (𝑧) |2 ≤
∑︁

𝑠∈{±1}𝑛
𝑅(𝑠) · 1 (5.89)

≤ 𝑑4𝑛2
(
1 + 3

𝑑

)𝑛
(5.90)

≤ 𝑑4𝑛 · 2𝑒3𝑐 . (5.91)

For (c), note that for |𝑠 | = 𝑘 , since there are at most 4𝑘 edges (𝑣, 𝑤) in 𝑅(𝑠) which
take values 𝑟𝑣𝑤 (𝑠) = 𝑑

√
𝑑, we must have 𝑅(𝑠) ≥ 𝑑4𝑛/

√
𝑑

4𝑘
. Thus

𝐸𝐴 |ℎ𝐴 (𝑧) |2 =

𝑛∑︁
𝑘=0

∑︁
𝑠∈{±1}𝑛:|𝑠 |=𝑘

𝑅(𝑠) |𝑧 |2𝑘 . (5.92)

≥
𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝑑4𝑛

(
|𝑧 |2
𝑑2

) 𝑘
(5.93)

= 𝑑4𝑛
(
1 + |𝑧 |

2

𝑑2

)𝑛
. (5.94)

199

Recall that 𝑁𝐴 (𝑟) is the number of roots of ℎ𝐴 (𝑧) inside the disk B(𝑟). With
Lemma 131, we can estimate 𝑁𝐴 (𝑟) by using Lemma 119.

Corollary 132 Suppose 𝑑 ≥ 𝑛𝑐−1 for some constant 𝑐. Let 𝜆 be an arbitrary small
constant satisfying 0 ≤ 𝜆 ≤ 𝑒−3𝑐/80. We have

𝑃𝑟𝐴

[
𝑁𝐴 (𝜆) = 0 & 𝑁𝐴 (1 − 𝜆) ≤

1
𝜆2

]
≥ 4/5. (5.95)

Proof: Note that
ℎ𝐴 (0) = 𝑑2𝑛.

We have

𝐸𝐴 [𝑁𝐴 (𝜆)] ≤ 𝐸𝐴 [𝑁𝐴 (2𝜆 − 2𝜆 · 𝜆/2)] (5.96)

≤ 1
𝜆

ln 𝐸𝜃𝐸𝐴
|ℎ𝐴 (2𝜆 · 𝑒𝑖𝜃) |2
|ℎ𝐴 (0) |2

(5.97)

≤ 1
𝜆
· ln(1 + 8𝜆2𝑒3𝑐) (5.98)

≤ 8𝜆 · 𝑒3𝑐, (5.99)

where the first inequality comes from the fact that the disk of radius 2𝜆 − 2𝜆 · 𝜆/2
contains the disk of radius 𝜆; the second inequality comes from Lemma 119; and
the third inequality comes from Lemma 131 (a) by setting 𝜌 = 2𝜆.

Similarly from Lemma 119 and Lemma 131 (b) we get

𝐸𝐴 [𝑁𝐴 (1 − 𝜆)] ≤
1
2𝜆

ln 𝐸𝜃𝐸𝐴
|ℎ𝐴 (𝑒𝑖𝜃) |2
|ℎ𝐴 (0) |2

(5.100)

≤ 1
2𝜆
· ln(2𝑒3𝑐). (5.101)

Then by Markov inequality, we have

𝑃𝑟𝐴 [𝑁𝐴 (𝜆) ≥ 1] ≤ 𝐸𝐴 [𝑁𝐴 (𝜆)] (5.102)

≤ 8𝜆 · 𝑒3𝑐 (5.103)

≤ 1
10
. (5.104)

𝑃𝑟𝐴

[
𝑁𝐴 (1 − 𝜆) ≥

1
𝜆2

]
≤ 𝜆2 · 𝐸𝐴 [𝑁𝐴 (1 − 𝜆)] (5.105)

≤ 𝜆/2 · ln(2𝑒3𝑐) (5.106)

≤ 1
10
. (5.107)

200

Then we get the desired result by a union bound.

Finally we prove Lemma 125.

Proof:[Proof of Lemma 125] Let

𝑀 := 1/𝜆3, 𝜃 := 2𝜋/𝑀, 𝑤 := 𝜋𝜆4/2. (5.108)

For simplicity we assume that 1/𝜆 is an integer. Consider the disk B(1 − 𝜆), that is
the disk centered at 0 and of radius 1− 𝜆. As in Figure 5.4, we divide B(1− 𝜆) into
𝑀 disjoint circular sectors, where for each sector the central angle is 𝜃. Inside each
sector which is indexed by 𝑘 ∈ [𝑀], we consider a strip of width 𝑤, that is

T𝑘 := T ((1 − 2𝜆)𝑒𝑖𝑘𝜃 , 𝑤).

Note that since sin 𝑥 ≥ 𝑥/2 for 0 ≤ 𝑥 ≤ 𝜋/3, we have

𝜆 sin (𝜃/2) ≥ 𝜆𝜃/4 = 𝜋𝜆4/2 = 𝑤. (5.109)

Thus all the 𝑀 strips {T𝑘 }𝑀𝑘=1 are disjoint outside B(𝜆). Besides, one can check that
the end part of the strip T𝑘 is inside the 𝑘-th sector by noticing

0 ≤ 𝜆 ≤ 1/80⇒ (1 − 2𝜆) tan
𝜃

2
≥ 𝑤.

Denote 𝑆𝑔𝑜𝑜𝑑 as the set of tensors 𝐴 which have no roots in the disk of radius 𝜆 and
few roots in the disk of radius 1 − 𝜆:

𝑆𝑔𝑜𝑜𝑑 := {𝐴 : 𝑁𝐴 (𝜆) = 0 & 𝑁𝐴 (1 − 𝜆) ≤
1
𝜆2 }.

By Corollary 132, we know that

𝑃𝑟𝐴
[
𝐴 ∈ 𝑆𝑔𝑜𝑜𝑑

]
≥ 4/5. (5.110)

In the following we argue that 𝑆𝑔𝑜𝑜𝑑 can be further partitioned into disjoint subsets,
where in each subset, with probability at least (1 − 𝜆) over the randomness of 𝐴
there are no roots in T (1 − 2𝜆, 𝑤).

To this end, first we observe that for any 𝑘 ∈ [𝑀], by the definition of ℎ𝐴 (·), we
have

ℎ𝑒𝑖𝑘 𝜃 𝐴 (𝑧) = ℎ𝐴 (𝑒𝑖𝑘𝜃𝑧). (5.111)

201

Note that 𝑒𝑖𝑘𝜃𝑧 is just a rotation of 𝑧 in the complex plane. By the rotational
symmetry of disks, the roots of ℎ𝑒𝑖𝑘 𝜃 𝐴 (𝑧) = ℎ𝐴 (𝑒𝑖𝑘𝜃𝑧) are simply rotated compared
to the roots of ℎ𝐴 (𝑧). Thus if 𝐴 ∈ 𝑆𝑔𝑜𝑜𝑑 , then so is 𝑒𝑖𝑘𝜃𝐴.

Next, we partition 𝑆𝑔𝑜𝑜𝑑 into disjoint subsets in the way that 𝐴, 𝐴′ are in the same
subset iff there exists 𝑘 ∈ [𝑀] such that 𝐴′ = 𝑒𝑖𝑘𝜃𝐴. For convenience, for each
subset we fix an arbitrary 𝐴 as the representative and write the subset as

𝑆𝑔𝑜𝑜𝑑 (𝐴) = {𝑒𝑖𝑘𝜃𝐴| 𝑘 ∈ [𝑀]}.

By the definition of 𝑆𝑔𝑜𝑜𝑑 , for any 𝐴 ∈ 𝑆𝑔𝑜𝑜𝑑 , there are no roots in B(𝜆) and there
are at most 1/𝜆2 roots in B(1 − 𝜆). Since the 𝑀 tubes {T𝑘 }𝑀𝑘=1 are disjoint outside
B(𝜆), there is at most a 1/𝜆2

𝑀
= 𝜆 fraction of the 𝑀 tubes which contains roots of

ℎ𝐴 (𝑧). Further, recall that

ℎ𝑒𝑖𝑘 𝜃 𝐴 (𝑧) = ℎ𝐴 (𝑒𝑖𝑘𝜃𝑧),

and thus the tubeT0 with respect to to 𝑒𝑖𝑘𝜃𝐴 corresponds to the tubeT𝑘 with respect to
𝐴. Hence, there is at most a 𝜆 fraction of 𝐴′ ∈ 𝑆𝑔𝑜𝑜𝑑 (𝐴) such that the corresponding
strip T0 contains roots of ℎ𝐴 (𝑧).

Figure 5.4: Illustration of dividing the circle into 𝑀 disjoint circular sectors. The radius of
the small disk and the big disk is 𝜆 and 1 − 𝜆 respectively. We divide the big disk B(1 − 𝜆)
into 𝑀 circular sectors. In each sector we choose a strip of width 𝑤. The first strip T0 starts
from −𝑤 and ends at 1 − 2𝜆 + 𝑤. Other strips are rotations of T0. All the strips are disjoint
outside the small disk B(𝜆).

In summary, we conclude that the fraction of 𝐴 such that there are no roots in
T (1 − 2𝜆, 𝑤) is greater than

4
5
· (1 − 𝜆) ≥ 3

4
+ 1

25
.

202

#P-hardness of exact contraction
Finally we prove that the exact contraction of the random 2D tensor network with a
positive mean remains #P-hard. The proof is a simple adaption of Theorem 1 and
Theorem 3 in [Haf+20]. For completeness, we put a proof in Appendix 5.7.

To make the statement rigorous, here we consider the finite precision approximation
of the Gaussian distribution, denoted as NC(𝜇, 𝜎2), where each sample can be
represented by finite bits instead of being an arbitrary real or complex number.
For example here we set the NC(𝜇, 𝜎2) to be the distribution where each sample
𝑧 ∼ NC(𝜇, 𝜎2) is obtained by firstly sampling 𝑦 according to Gaussian distribution
NC(𝜇, 𝜎2), and then setting 𝑧 to be the value by rounding 𝑦 to 𝑛2 bits. NC(𝜇, 𝜎2)
behaves similarly as NC(𝜇, 𝜎2) but makes the statements of exact contraction and
proofs more rigorous.

Accordingly, we consider finite precision 2D (𝜇, 𝑛, 𝑑)-Gaussian tensor network
instead of 2D (𝜇, 𝑛, 𝑑)-Gaussian tensor network, where we substituteNC(𝜇, 𝜎2) by
NC(𝜇, 𝜎2).

Theorem 133 (#P-hard) For any 𝜇 ∈ [0, 𝑝𝑜𝑙𝑦(𝑛)], 𝑛 ≥ 25 and 𝑑 = 𝑂 (𝑝𝑜𝑙𝑦(𝑛)),
if there exists an algorithm A which runs in 𝑝𝑜𝑙𝑦(𝑛) time and with probability at
least 3

4 +
1
𝑛

over the randomness of the finite precision 2D (𝜇, 𝑛, 𝑑)-Gaussian tensor
network 𝑇 , it outputs the exact value of 𝜒(𝑇), then there exists an algorithm which
runs in randomized 𝑝𝑜𝑙𝑦(𝑛) time and solves #P-complete problems.

5.6 Approximating arbitrary positive tensor networks
In previous sections we have considered approximating random tensor networks. In
this section we move to the task of contracting a fixed tensor network.

For a general tensor network 𝑇 = 𝑇 (𝐺, 𝑀), computing the contraction value 𝜒(𝑇)
exactly is known to be #P-hard [Sch+07]. On the other hand, Arad and Lan-
dau [AL10] proved that approximating 𝜒(𝑇) up to an inverse polynomial additive
error in the matrix 2-norm is BQP-complete.

In this section, we focus on positive tensor network 𝑇 = 𝑇 (𝐺, 𝑀). These are defined
by tensors {𝑀 [𝑣]}𝑣 the entries of which are all non-negative. The main part of this
section will establish that when 𝑇 is a positive tensor network, approximating 𝜒(𝑇)
up to an inverse polynomial additive error in the matrix 1-norm is BPP-complete.

203

Then, in Section 5.6 we give a short proof showing that approximating positive
tensor network with inverse-poly multiplicative error is at least StoqMA-hard.
Section 5.6 is self-contained and can be read independently. We first review the
swallowing algorithm for tensor network contraction. Then we explain Arad and
Landau’s BQP-completeness result and our BPP-completeness result, which are
both based on the swallowing algorithm.

A swallowing algorithm and notations
Recall that in Section 5.2 we have introduced two operations on tensor networks,
taking their product and contraction. Given a tensor network 𝑇 = 𝑇 (𝐺, 𝑀), the
swallowing algorithm (Algorithm 8) is a standard method to exactly compute the
contraction value 𝜒(𝑇), by contracting edges of tensors {𝑀 [𝑣]}𝑣 according to the
graph 𝐺 = (𝑉, 𝐸).

Algorithm 8 The swallowing algorithm
1: Given an ordering of vertex 𝑣1, . . . , 𝑣𝑛 of 𝐺.
2: Set 𝑖 ← 1. Set the current tensor 𝐴[𝑖] to be the tensor 𝑀 [𝑣1] , which can be

pictured as one vertex and some free edges as in Figure 5.1 (a). 𝑖 ≤ 𝑛 {Adding
tensor 𝑀 [𝑣𝑖+1] to 𝐴[𝑖]} 𝑀 [𝑣𝑖+1] and 𝐴[𝑖] share edges in 𝐺

3: Construct a new tensor 𝐴[𝑖 +1] by contraction, i.e. identifying the shared edges
and summing over the corresponding indices.

4: 𝑀 [𝑣𝑖+1] and 𝐴[𝑖] has no common edge.
5: Then 𝐴[𝑖 + 1] is defined as the product 𝑀 [𝑣𝑖+1] ⊗ 𝐴[𝑖].
6: 𝑖 ← 𝑖 + 1
7: 𝜒(𝑇) ← 𝐴[𝑛]

High level ideas for Arad and Landau’s result and our result. Let us first describe
Arad and Landau’s result at a high level before writing down formal statements with
heavy notations. As in Figure 5.5, given an arbitrary ordering to the vertices, for
every vertex 𝑣𝑖, we implicitly partition the free edges of 𝑀 [𝑣𝑖] into input and output
edges. With respect to this partition of in-edges and out-edges, one can write 𝑀 [𝑣𝑖]

as a matrix denoted as 𝑀 [𝑣𝑖]𝑖𝑛,𝑜𝑢𝑡 . As in Algorithm 8, the contraction value of the
tensor network is then given by sequentially mapping the in-edges to out-edges,
which can be represented by the matrix multiplication

∏
𝑖 𝑀
[𝑣𝑖]𝑖𝑛,𝑜𝑢𝑡 ⊗ 𝐼𝑒𝑙𝑠𝑒, where

𝐼𝑒𝑙𝑠𝑒 denotes the free edges other than the input edges in 𝐴[𝑖−1]. Arad and Landau’s
result shows that this matrix multiplication can be simulated by a quantum circuit
through embedding each matrix 𝑀 [𝑣𝑖]𝑖𝑛,𝑜𝑢𝑡 into a unitary, where the embedding is
done by adding an ancillary qubit. Our result is, when every 𝑀 [𝑣𝑖]𝑖𝑛,𝑜𝑢𝑡 is a positive

204

matrix, instead of embedding it into a unitary, we embed the positive matrix into a
stochastic matrix and simulate positive matrix multiplication with a random walk.

To explain Arad and Landau’s result formally, we define more notation which is
used in the swallowing algorithm. This notation is adapted from [AL10].

Ji

Li
Ki

vi
vi−1

Si−1 Si

Fi = Ki ∪ Ji

A[i]

Figure 5.5: Illustration of the notations. 𝐹𝑖 is the edges connecting {𝑣1, ..., 𝑣𝑖−1} and
{𝑣𝑖 , ..., 𝑣𝑛}. The edges attached to 𝑣𝑖 are partitioned into the in-edges 𝐾𝑖 and out-edges 𝐿𝑖 .
When contracting the tensor 𝑀 [𝑣𝑖] we map the in-edges to out-edges. The edges in 𝐹𝑖 but
not in 𝐾𝑖 are called 𝐽𝑖 .

As in Figure 5.5, define:

• 𝑆𝑖 = {𝑣1, . . . , 𝑣𝑖}.

• 𝐹𝑖 is the set of edges which connect 𝑆𝑖−1 and 𝑉/𝑆𝑖−1. 𝐹𝑖 are the free edges in
tensor 𝐴[𝑖 − 1].

• 𝐾𝑖 is the set of edges which connects 𝑆𝑖−1 and 𝑣𝑖. 𝐾𝑖 are the edges being
contracted when contracting 𝐴[𝑖 − 1] and 𝑀 [𝑣𝑖] . Note that 𝐾1 = ∅.

• 𝐽𝑖 := 𝐹𝑖/𝐾𝑖, which are the free edges in both 𝐴[𝑖 − 1] and 𝐴[𝑖]. 𝐽1 = ∅.

• 𝐿𝑖 is the set of edges of 𝑣𝑖 which are not in 𝐾𝑖. In other words, 𝐿𝑖 are the new
free edges introduced by adding tensor 𝑀 [𝑣𝑖] to 𝐴[𝑖 − 1].

Denote edges in 𝐾𝑖 as {𝑒𝐾𝑖1 , . . . , 𝑒
𝐾𝑖
|𝐾𝑖 |}. Denote edges in 𝐽𝑖 and 𝐿𝑖 similarly. With

some abuse of notations, we use 𝑒𝐾𝑖𝑠 to denote both the name of the edge and the
colors in [𝑑] that the edge 𝑒𝐾𝑖𝑠 takes.

In the following, we explain that the update from tensors 𝐴[𝑖 − 1] to 𝐴[𝑖] can be
written as matrix multiplication. More specifically:

205

• First note that 𝐴[𝑖] can be viewed as a column vector consisting of 𝑑 |𝐹𝑖+1 |

entries, where the entries are indexed by the free edges of 𝐴[𝑖], that is

𝐹𝑖+1 = 𝐾𝑖+1 ∪ 𝐽𝑖+1 = 𝐿𝑖 ∪ 𝐽𝑖 .

More specifically, write this vector as |𝐴[𝑖]⟩ ∈ C𝑑 |𝐹𝑖+1 | , then for edges in 𝐽𝑖, 𝐿𝑖
taking colors as 𝑒𝐽𝑖1 , . . . , 𝑒

𝐽𝑖
|𝐽𝑖 |, 𝑒

𝐿𝑖
1 , . . . , 𝑒

𝐿𝑖
|𝐿𝑖 | where 𝑒𝐽𝑖𝑠 , 𝑒

𝐿𝑖
𝑡 ∈ [𝑑], we define〈

𝑒
𝐽𝑖
1 , . . . , 𝑒

𝐽𝑖
|𝐽𝑖 |, 𝑒

𝐿𝑖
1 , . . . , 𝑒

𝐿𝑖
|𝐿𝑖 |

����𝐴[𝑖]〉 := 𝐴[𝑖]
𝑒
𝐽𝑖
1 ,...,𝑒

𝐽𝑖
|𝐽𝑖 |
,𝑒
𝐿𝑖
1 ,...,𝑒

𝐿𝑖
|𝐿𝑖 |
. (5.112)

• Note that 𝑀 [𝑣𝑖] can be viewed as a matrix: when adding 𝑀 [𝑣𝑖] to 𝐴[𝑖 − 1] in
Line 3 of Algorithm 8, we contract the free edges in 𝐾𝑖 and introducing new
free edges 𝐿𝑖. One can view 𝑀 [𝑣𝑖] as a mapping from C𝑑

|𝐾𝑖 | to C𝑑
|𝐿𝑖 | , denoted

as 𝑀 [𝑣𝑖]𝐾𝑖𝐿𝑖 , which can be written as a matrix of size 𝑑 |𝐿𝑖 | × 𝑑 |𝐾𝑖 | where〈
𝑒
𝐿𝑖
1 , . . . , 𝑒

𝐿𝑖
|𝐿𝑖 |

����𝑀 [𝑣𝑖] ����𝑒𝐾𝑖1 , . . . , 𝑒
𝐾𝑖
|𝐾𝑖 |

〉
= 𝑀

[𝑣𝑖]
𝑒
𝐿𝑖
1 ,...,𝑒

𝐿𝑖
|𝐿𝑖 |

,𝑒
𝐾𝑖
1 ,...,𝑒

𝐾𝑖
|𝐾𝑖 |

(5.113)

In particular, since 𝐾1 = ∅, 𝑀 [𝑣𝑖]𝐾𝑖𝐿𝑖 is a column vector in C𝑑
|𝐿1 | . For

convenience, define |𝐴[0]⟩ to be a scalar,

|𝐴[0]⟩ := 1.

Denote 𝐼𝐽𝑖 as the identity operator on the indices with respect to edges in 𝐽𝑖.

• One can check that the updates from 𝐴[𝑖 − 1] to 𝐴[𝑖] can be written as matrix
multiplication, that is for 𝑖 = 1, . . . , 𝑛,

|𝐴[𝑖]⟩ = 𝐼𝐽𝑖 ⊗ 𝑀 [𝑣𝑖]𝐾𝑖𝐿𝑖 |𝐴[𝑖 − 1]⟩ , (5.114)

in the sense that〈
𝑒
𝐽𝑖
1 , . . . , 𝑒

𝐽𝑖
|𝐽𝑖 |, 𝑒

𝐿𝑖
1 , . . . , 𝑒

𝐿𝑖
|𝐿𝑖 |

����𝐴[𝑖]〉
=

∑︁
𝑒
𝐾𝑖
1 ,...,𝑒

𝐾𝑖
|𝐾𝑖 |

〈
𝑒
𝐿𝑖
1 , . . . , 𝑒

𝐿𝑖
|𝐿𝑖 |

����𝑀 [𝑣𝑖] ����𝑒𝐾𝑖1 , . . . , 𝑒
𝐾𝑖
|𝐾𝑖 |

〉 〈
𝑒
𝐾𝑖
1 , . . . , 𝑒

𝐾𝑖
|𝐾𝑖 |, 𝑒

𝐽𝑖
1 , . . . , 𝑒

𝐽𝑖
|𝐽𝑖 |

����𝐴[𝑖 − 1]
〉
.

(5.115)

In particular, |𝐴[𝑛]⟩ is a scalar which equals to the contraction value. Thus
we have

|𝐴[𝑛]⟩ =
𝑛∏
𝑖=1

𝐼𝐽𝑖 ⊗ 𝑀 [𝑣𝑖]𝐾𝑖𝐿𝑖 = 𝜒(𝑇). (5.116)

To ease notations we define the swallowing operator as

𝑂 [𝑣𝑖] := 𝐼𝐽𝑖 ⊗ 𝑀 [𝑣𝑖]𝐾𝑖𝐿𝑖 . (5.117)

206

BPP-completeness of additive-error approximation
According to the discussion in the previous section, one can compute 𝜒(𝑇) exactly
by updating |𝐴[𝑖]⟩ according to Eq. (5.114). It is well known that computing 𝜒(𝑇)
exactly is #P-hard even for a constant degree graph 𝐺, thus one cannot efficiently
perform the exact version of the update Eq. (5.114). However, interestingly [AL10]
showed that one can approximately perform the update efficiently using a quantum
computer, where the approximation refers to an inverse polynomial additive error in
the 2-norm of the tensors.

Theorem 134 (Additive 2-norm approximation of tensor networks [AL10]) Let
𝐺 = (𝑉, 𝐸) be an 𝑛-vertex graph of constant degree. Let 𝑇 (𝐺, 𝑀) be a tensor net-
work on 𝐺 with bond dimension 𝑑 = 𝑂 (𝑝𝑜𝑙𝑦(𝑛)). The following approximation
problem is BQP-complete: given as input

• a tensor network 𝑇 (𝐺, 𝑀), and a precision parameter 𝜖 = 1/𝑝𝑜𝑙𝑦(𝑛), and

• an ordering of the vertices 𝑣1, . . . , 𝑣𝑛, and the corresponding swallowing
operators 𝑂 [𝑣𝑖] defined in Eq. (5.117),

output a complex number �̂�(𝑇) such that

𝑃𝑟 (|𝜒(𝑇) − �̂�(𝑇) | ≤ 𝜖Δ2) ≥ 3/4, (5.118)

where

Δ2 :=
𝑛∏
𝑖=1
∥𝑂 [𝑣𝑖] ∥2. (5.119)

Note that by Eq. (5.117), both the 2-norm ∥ · ∥2 and 1-norm of ∥ · ∥1 of 𝑂 [𝑣𝑖] equal
to the corresponding norm of 𝑀 [𝑣𝑖]𝐾𝑖𝐿𝑖 .

We prove that if the tensor network 𝑇 is a positive tensor network, then instead of
using a quantum computer, we can approximate the update Eq. (5.114) efficiently
using a classical computer, where the approximation refers to an inverse polynomial
additive error in the matrix 1-norm of the matrices 𝑂 [𝑣𝑖] .

Theorem 135 (Additive 1-norm approximation of positive tensor networks) Let
𝐺 = (𝑉, 𝐸) be an 𝑛-vertex graph of constant degree. Let 𝑇 (𝐺, 𝑀) be a positive
tensor network on 𝐺 with bond dimension 𝑑 = 𝑂 (𝑝𝑜𝑙𝑦(𝑛)). The following approx-
imation problem is BPP-complete: given as input

207

• a positive tensor network𝑇 (𝐺, 𝑀), and a precision parameter 𝜖 = 1/𝑝𝑜𝑙𝑦(𝑛),
and

• an ordering of vertices 𝑣1, . . . , 𝑣𝑛, and the corresponding swallowing opera-
tors 𝑂 [𝑣𝑖] defined in Eq. (5.117),

output a complex number �̂�(𝑇) such that

𝑃𝑟 (|𝜒(𝑇) − �̂�(𝑇) | ≤ 𝜖Δ1) ≥ 3/4, (5.120)

where

Δ1 :=
𝑛∏
𝑖=1
∥𝑂 [𝑣𝑖] ∥1. (5.121)

Proof of Theorem 135
The proof of the BPP-hardness part for Theorem 135 is similar to Section 4.2 in
[AL10]. For completeness we give a proof sketch in Appendix 5.9. In the following
we prove the “inside BPP” part of Theorem 135, that is, we provide an efficient
classical algorithm that achieves Eq. (5.120). The main idea of the algorithm is to
simulate non-negative matrix multiplication via a stochastic process.

We say that a matrix is non-negative if all of its entries are non-negative. We first
give a lemma which extends a non-negative matrix to a stochastic matrix.

Lemma 136 Let 𝑀 ≠ 0 be a non-negative matrix, that is 𝑀 ∈ R𝑚×𝑛≥0 . Then there
exists 𝑁 ∈ R2𝑚×𝑛

≥0 such that 𝑁 is a stochastic matrix6, and 𝑀
∥𝑀 ∥1 is the first 𝑚 rows

of 𝑁 .

Proof: Since ∥𝑀 ∥1 = max1≤ 𝑗≤𝑛
∑𝑚
𝑖=1 |𝑀𝑖 𝑗 |, thus for each column, the column sum

of 𝑀
∥𝑀 ∥1 lies in [0, 1], thus one can embed 𝑀

∥𝑀 ∥1 as the first 𝑚 rows in a stochastic
matrix 𝑁 .

Before we state the BPP algorithm, we recall some notations. Recall that we have
defined 𝐹𝑖, 𝐽𝑖, 𝐾𝑖, 𝐿𝑖, 𝐴[𝑖], 𝑀 [𝑣𝑖]𝐾𝑖𝐿𝑖 in Section 5.6 and Figure 5.5. To ease notation,
we abbreviate𝑀 [𝑣𝑖]𝐾𝑖𝐿𝑖 as𝑀 [𝑣𝑖] . Since we are working with positive tensor network,
𝑀 [𝑣𝑖] is a non-negative matrix and the entries are indexed by 𝐾𝑖, 𝐿𝑖.

Lemma 136 says that we can embed 𝑀 [𝑣𝑖]/∥𝑀 [𝑣𝑖] ∥1 in a stochastic matrix 𝑁 [𝑣𝑖]

by adding one ancillary bit, that is 𝑁 [𝑣𝑖] is indexed by 𝐿𝑖 ∪ {𝑤𝑖} and 𝐾𝑖, where
6𝑁 is a stochastic matrix iff 𝑁 is a non-negative matrix, and each column sums to 1.

208

𝑤𝑖 ∈ {0, 1} is an index such that 𝑤𝑖 = 0 (or 1) refers to the first (or second) 𝑑 |𝐿𝑖 |

rows of 𝑁 [𝑣𝑖] . Define

𝑊𝑖 := {𝑤1, . . . , 𝑤𝑖−1}. (5.122)

We first explain the high level idea of the BPP algorithm, and then give the pseudo
code. The idea of the BPP algorithm in Theorem 135 is to mimic non-negative
matrix multiplication by stochastic methods. From a high level idea, we will embed
the vector |𝐴[𝑖]⟩ in a probability distribution, and embed the matrix 𝑀 [𝑣𝑖] in a
stochastic matrix 𝑁 [𝑣𝑖] by adding an ancillary bit. Then the update rule

|𝐴[𝑖 + 1]⟩ = 𝐼𝐽𝑖 ⊗ 𝑀 [𝑣𝑖]𝐾𝑖𝐿𝑖 |𝐴[𝑖]⟩ , (5.123)

is embedded in applying the stochastic matrix 𝑁 [𝑣𝑖] to the distribution 𝐴[𝑖], which
can be simulated by a random walk.

Before writing down the pseudo codes we explain some notations.

• We use |𝑘⟩𝐾 to represent the (ordered) coloring 𝑘 ∈ [𝑑] |𝐾 | of the edges in 𝐾 .
When 𝐾 = ∅ we view |𝑘⟩𝐾 as empty, that is writing down nothing. Similarly
for | 𝑗⟩𝐽 , |𝑤⟩𝑊 .

• We will use 𝑠𝑖 to denote a computational basis whose distribution embed the
vector 𝐴[𝑖 − 1].

• Recall that the free edges of 𝐴[𝑖 − 1] are 𝐹𝑖 = 𝐾𝑖 ∪ 𝐽𝑖. Also recall that
𝐹𝑖+1 = 𝐽𝑖 ∪ 𝐿𝑖.

The pseudo codes are stated as Algorithm 9 and Algorithm 10. Their performance
is given in Corollary 138.

Lemma 137 The probability of the Trial algorithm (Algorithm 9) to return “Suc-
cess” is 𝜒(𝑇)/Δ1 where Δ1 :=

∏𝑛
𝑖=1 ∥𝑂 [𝑣𝑖] ∥1. Its runtime is 𝑝𝑜𝑙𝑦(𝑛).

Proof: To ease notation, for a set 𝑄 ∪𝑊 where 𝑄 is a set of edges of 𝐺, and𝑊 is a
set of ancillary indices {. . . , 𝑤𝑖, . . .}, we use

𝑆𝑡𝑟𝑖𝑛𝑔(𝑄 ∪𝑊) := [𝑑] |𝑄 | × {0, 1} |𝑊 |,

where edges/indices in𝑄 take values in [𝑑], and ancillary indices in𝑊 takes values
in {0, 1}.

209

Algorithm 9 Trial(T=T(G,M))
1: 𝑖 = 1, 𝑠1 = ∅. 𝑖 ≤ 𝑛
2: Interpret 𝑠𝑖 = |𝑘⟩𝐾𝑖 | 𝑗⟩𝐽𝑖 |𝑤⟩𝑊𝑖 . {𝐾1 = 𝐽1 = 𝑊1 = ∅.}
3: Recall that 𝑁 [𝑣𝑖] has rows indexed by 𝐿𝑖 ∪ {𝑤𝑖}, column indexed by 𝐾𝑖.
4: Since 𝑁 [𝑣𝑖] is a stochastic matrix, each column of 𝑁 [𝑣𝑖] corresponds to a distri-

bution over the row index. i=1
5: 𝑁 [𝑣1] is a column vector. Denote the distribution according to this column as
D.

6: Denote the distribution according to the 𝑘-th column of 𝑁 [𝑣𝑖] as D.
7: Sample a row index according to D.
8: Denote this row index as |𝑙𝑤′⟩𝐿𝑖∪{𝑤𝑖}, where 𝑙 ∈ [𝑑] |𝐿𝑖 |, 𝑤′ ∈ {0, 1}.
9: Set 𝑠𝑖+1 ← |𝑙⟩𝐿𝑖 | 𝑗⟩𝐽𝑖 |𝑤𝑤

′⟩𝑊𝑖+1 . { 𝑁 [𝑣𝑖] maps register 𝐾𝑖 to 𝐿𝑖 ∪ {𝑤𝑖}.}
10: 𝑖 ← 𝑖 + 1.
11: Interpret 𝑠𝑛+1 = |𝑤⟩𝑊𝑛+1 {We know 𝐿𝑛 = 𝐽𝑛 = ∅}
12: Return Success if 𝑤 = 00 . . . 00, that is the all zero state; otherwise return Fail.

Algorithm 10 Approximating positive tensor network

1: Set 𝐾 = 10𝜖−2

2: Run the 𝑇𝑟𝑖𝑎𝑙 (𝑇), that is Algorithm 9, for 𝐾 times.
3: Count the number of Success as #𝑆𝑢𝑐𝑐𝑒𝑠𝑠.
4: Return �̂�(𝑇) ← #𝑆𝑢𝑐𝑐𝑒𝑠𝑠

𝐾
· Δ1 as the approximation of 𝜒(𝑇).

Define
𝑆𝑖 := 𝑆𝑡𝑟𝑖𝑛𝑔(𝐿𝑖 ∪ 𝐽𝑖 ∪𝑊𝑖+1),

define |𝜋𝑖+1⟩ as the probability distribution of 𝑠𝑖+1, which is a probability distribution
over 𝑆𝑖. Note that

|𝜋2⟩ = 𝐼𝐽1 ⊗ 𝑁 [𝑣1] , where 𝐼𝐽1 = 𝐼∅ = 1 (5.124)

|𝜋𝑖+1⟩ = 𝐼𝐽𝑖 ⊗ 𝑁 [𝑣𝑖] |𝜋𝑖⟩

=

𝑖∏
ℎ=1

𝐼𝐽ℎ ⊗ 𝑁 [𝑣ℎ] (5.125)

=

𝑖∏
ℎ=1

𝐼𝐽ℎ ⊗ 𝑀 [𝑣ℎ]

∥𝑀 [𝑣ℎ] ∥1
|0 . . . 0⟩𝑊𝑖+1 + additional terms (5.126)

=

𝑖∏
ℎ=1

𝑂 [𝑣ℎ]

∥𝑂 [𝑣ℎ] ∥1
|0 . . . 0⟩𝑊𝑖+1 + additional terms (5.127)

where Eq. (5.125) is from Algorithm 9; Eq. (5.126) is from the definition of 𝑁 [𝑣ℎ]

210

that 𝑁 [𝑣ℎ] embeds 𝑀 [𝑣ℎ] ; and the last equality comes from definition of 𝑂 [𝑣ℎ] ,

𝑂 [𝑣ℎ] = 𝐼𝐽ℎ ⊗ 𝑀 [𝑣ℎ] , (5.128)

∥𝑂 [𝑣ℎ] ∥1 = ∥𝑀 [𝑣] ∥1. (5.129)

From Eq. (5.116) we conclude

|𝜋𝑛+1⟩ =
𝜒(𝑇)
Δ1
|0 . . . 0⟩𝑊𝑛+1 + additional terms (5.130)

To prove the runtime is 𝑝𝑜𝑙𝑦(𝑛), notice that in Theorem 135 we assume that 𝐺 is a
graph of constant degree, thus |𝐿𝑖 |, |𝐾𝑖 | are constants, thus 𝑑 |𝐿𝑖 |, 𝑑 |𝐾𝑖 | are 𝑝𝑜𝑙𝑦(𝑛)
whenever 𝑑 = 𝑝𝑜𝑙𝑦(𝑛) and 𝑁 [𝑣𝑖] is a matrix of size 𝑝𝑜𝑙𝑦(𝑛) × 𝑝𝑜𝑙𝑦(𝑛). Thus Line
7 in Algorithm 9 can be done efficiently.

Corollary 138 For 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) sufficiently large, the output �̂�(𝑇) in Algorithm 10
satisfies

𝑃𝑟 (|𝜒(𝑇) − �̂�(𝑇) | ≤ 𝜖Δ1) ≥ 3/4, (5.131)

where Δ1 :=
∏𝑛
𝑖=1 ∥𝑂 [𝑣𝑖] ∥1.

Proof: The proof directly follows from Eq. (5.130) and Chebyshev’s inequality.
Write 𝑋𝑖 as the result of the 𝑖-th trial, where 𝑋𝑖 = 1 if the Trial algorithm (Algo-
rithm 9) returns Success and = 0 otherwise. By Lemma 137, we have

𝐸 [𝑋𝑖] = 𝜒(𝑇)/Δ1.

Besides, note that |𝜒(𝑇)/Δ1 | ≤ 1 since it corresponds to a probability, we have

|𝑉𝑎𝑟 (𝑋𝑖) | ≤ 𝐸 |𝑋𝑖 |2 + |𝐸 [𝑋𝑖] |2 ≤ 𝐸 |𝑋𝑖 |2 + |𝜒(𝑇)/Δ1 |2 ≤ 2. (5.132)

Define 𝑋 := (𝑋1 + . . . + 𝑋𝐾)/𝐾 , we have

𝐸 (𝑋) = 𝜒(𝑇)
Δ1

, (5.133)

𝑉𝑎𝑟 (𝑋) = 1
𝐾
𝑉𝑎𝑟 (𝑋1) ≤

2
𝐾
. (5.134)

By definition of �̂�(𝑇) in Algorithm 10, use Chebyshev’s inequality we have

𝑃𝑟 (|𝜒(𝑇) − �̂�(𝑇) | ≥ 𝜖Δ1) = 𝑃𝑟
(
| 𝜒(𝑇)
Δ1
− 𝑋 | ≥ 𝜖

)
(5.135)

≤ 𝑉𝑎𝑟 (𝑋)
𝜖2 (5.136)

≤ 2
𝐾𝜖2 (5.137)

= 1/5. (5.138)

211

StoqMA-hardness of multiplicative-error approximation
In this section, we consider the task of approximating a positive tensor network up
to a multiplicative error. We show that this approximation is StoqMA-hard up to
exponentially close to 100% error.

Theorem 139 Let𝐺 = (𝑉, 𝐸) be an 𝑛-vertex graph of constant degree. Let𝑇 (𝐺, 𝑀)
be a positive tensor network on 𝐺 with bond dimension 𝑑 = 𝑝𝑜𝑙𝑦(𝑛). Consider the
following approximation problem: given as inputs a tensor network 𝑇 (𝐺, 𝑀) and a
precision parameter 𝜖 ≤ 1 − exp(−𝑛), output a complex number �̂�(𝑇) such that

𝑃𝑟 (|𝜒(𝑇) − �̂�(𝑇) | ≤ 𝜖 |𝜒(𝑇) |) ≥ 3/4. (5.139)

If there exists a 𝑝𝑜𝑙𝑦(𝑛)-time randomized algorithm for solving the above approxi-
mation problem, then there exists a 𝑝𝑜𝑙𝑦(𝑛)-time randomized algorithm for solving
StoqMA with probability greater than 3/4.

Note that 𝜖 ≤ 1−exp(−𝑛) means we allow very large (close to 100%) multiplicative
error. Recall that StoqMA is a subclass of QMA which is related to deciding ground
energy for stoquastic Hamiltonians [BBT06]. For our purpose, we use an equivalent
definition of StoqMA that makes use of the notion of a stoquastic verifier.

Definition 140 (StoqMA, from [BBT06]) A stoquastic verifier is a tuple𝑉 = (𝑛, 𝑛𝑤, 𝑛0, 𝑛+,𝑈),
where

• 𝑛 is the number of input bits, 𝑛𝑤 is the number of input witness qubits.

• 𝑛0 is the number of input ancillas |0⟩, 𝑛+ is the number of input ancillas |+⟩.

• 𝑈 is a quantum circuit on 𝑛 + 𝑛𝑤 + 𝑛0 + 𝑛+ qubits with X, CNOT, and Toffoli
gates.

The acceptance probability of a stoquastic verifier 𝑉 on input string 𝑥 ∈ Σ𝑛 and
witness state |𝜓⟩ ∈ (C2)𝑛𝑤 is defined as

𝑃𝑟 (𝑉 ; 𝑥, 𝜓) = ⟨𝜓𝑖𝑛 |𝑈†Π𝑜𝑢𝑡𝑈 |𝜓𝑖𝑛⟩, (5.140)

where |𝜓𝑖𝑛⟩ = |𝑥⟩ ⊗ |𝜓⟩ ⊗ |0⟩⊗𝑛0 ⊗ |+⟩⊗𝑛+ , (5.141)

Π𝑜𝑢𝑡 = |+⟩ ⟨+|1 ⊗ 𝐼𝑒𝑙𝑠𝑒 . (5.142)

212

A promise problem 𝐿 = 𝐿𝑦𝑒𝑠 ∪ 𝐿𝑛𝑜 ⊆ Σ∗ belongs to StoqMA iff there exists a
uniform family of stoquastic verifier𝑉 which uses at most 𝑝𝑜𝑙𝑦(𝑛) qubits and gates,
and obeys the following:

• Completeness. If 𝑥 ∈ 𝐿𝑦𝑒𝑠, then there exists |𝜓⟩ such that 𝑃𝑟 (𝑉 ; 𝑥, 𝜓) ≥ 𝑏,

• Soundness. If 𝑥 ∈ 𝐿𝑛𝑜, then for any |𝜓⟩ we have 𝑃𝑟 (𝑉 ; 𝑥, 𝜓) ≤ 𝑎,

where 0 ≤ 𝑎 < 𝑏 ≤ 1 and 𝑏 − 𝑎 ≥ 1/𝑝𝑜𝑙𝑦(𝑛).

U†

|+⟩⟨+|
...

...

...

U

|x⟩

|0⟩⊗n0

|+⟩⊗n+

...
⟨x|

⟨0|⊗n0

⟨+|⊗n+

U†

|+⟩⟨+|
...

...

...

U

|x⟩

|0⟩⊗n0

|+⟩⊗n+

⟨x|

⟨0|⊗n0

⟨+|⊗n+

n

nw

Figure 5.6: Represent 𝑡𝑟 (𝑀2
𝑥) as a tensor network. The above figure contains two copies of

𝑀𝑥 . When connecting the right side of the first 𝑀𝑥 and the left side of the second 𝑀𝑥 , we
get the operator 𝑀2

𝑥 . Further connecting the left side of the first 𝑀𝑥 and the right side of the
second 𝑀𝑥 by the dashed line, we get 𝑡𝑟 (𝑀2

𝑥).

The proof of Theorem 139 is adapted from the folklore proof of QMA ⊆ PP, where
the adaption is mainly translating matrix operations (multiplication, trace, etc) to
tensor network operations. We only give a proof sketch here.

Proof:[Proof of Theorem 139] In this proof we use the notions in Definition 140.
Consider a language 𝐿 = 𝐿𝑦𝑒𝑠 ∪ 𝐿𝑛𝑜 in StoqMA with stoquastic verifier 𝑉 in
Definition 140. For input 𝑥, as pictured in Figure 5.6 we define a positive semi-
definite Hermitian operator acting on 𝑛𝑤 qubits as

𝑀𝑥 := ⟨𝜙 |𝑈†Π𝑜𝑢𝑡𝑈 |𝜙⟩, (5.143)

where |𝜙⟩ = |𝑥⟩ ⊗ |0⟩⊗𝑛0 ⊗ |+⟩⊗𝑛+ . (5.144)

Denote the maximum eigenvalue of 𝑀𝑥 as 𝜆max(𝑥). By assumption we have that

• If 𝑥 ∈ 𝐿𝑦𝑒𝑠, then 𝜆max(𝑥) ≥ 𝑏.

• If 𝑥 ∈ 𝐿𝑁𝑜, then 𝜆max(𝑥) ≤ 𝑎.

Since 𝑀𝑥 is positive semi-definite, then for any 𝑘 ∈ N we have

• If 𝑥 ∈ 𝐿𝑦𝑒𝑠, then 𝑡𝑟 (𝑀 𝑘
𝑥) ≥ 𝑏𝑘 .

213

• If 𝑥 ∈ 𝐿𝑁𝑜, then 𝑡𝑟 (𝑀 𝑘
𝑥) ≤ 2𝑛𝑤𝑎𝑘 .

Recall that 𝜖 ≤ 1 − exp(−𝑛) is the precision parameter. By the assumption in
Theorem 139, there is a 𝑝𝑜𝑙𝑦(𝑛)-time randomized algorithm A such that with
probability at least 3/4, the algorithm returns

(1 − 𝜖) |𝜒(𝑇) | ≤ | �̂�(𝑇) | ≤ (1 + 𝜖) |𝜒(𝑇) |. (5.145)

To distinguish the yes and no cases, set

𝑘 ≥
(
𝑛𝑤 ln 2 + ln

1 + 𝜖
1 − 𝜖

)
/ln 𝑏

𝑎
= 𝑝𝑜𝑙𝑦(𝑛).

We have

2𝑛𝑤𝑎𝑘 (1 + 𝜖) < 𝑏𝑘 (1 − 𝜖). (5.146)

Thus one can distinguish whether 𝑥 ∈ 𝐿𝑦𝑒𝑠 or 𝑥 ∈ 𝐿𝑛𝑜 by approximating 𝑡𝑟 (𝑀 𝑘
𝑥)

using the algorithm A.

It remains to explain that 𝑡𝑟 (𝑀 𝑘
𝑥) can be represented by a positive tensor network

𝑇 = 𝑇 (𝐺, 𝑀) with 𝑝𝑜𝑙𝑦(𝑛) bond dimension, where 𝐺 is a 𝑝𝑜𝑙𝑦(𝑛)-vertex graph of
constant degree.

First notice that similarly as Section 5.9 or Section 4.2 in [AL10], one can naturally
represent 𝑀𝑥 as a tensor network 𝑇 = 𝑇 (𝐺, 𝑀) with 𝑝𝑜𝑙𝑦(𝑛) bond dimension.
Since the gates in 𝑈 are X, CNOT, and Toffoli, and the ancillas are computational
basis or |+⟩, one can check that 𝑇 (𝐺, 𝑀) is a positive tensor network. Further, since
𝑈 has 𝑝𝑜𝑙𝑦(𝑛) gates and each gate has constant number of input qubits and output
qubits, we have that 𝐺 is a 𝑝𝑜𝑙𝑦(𝑛)-vertex graph of constant degree.

To represent 𝑡𝑟 (𝑀 𝑘
𝑥) as a tensor network, as in Figure 5.6, it suffices to additionally

notice that

• The tensor network for the operator 𝑀2
𝑥 can be represented by putting 2 copies

of 𝑀𝑥 in a line, then connecting the right side of the first 𝑀𝑥 and the left side
of the second 𝑀𝑥 , that is contracting the free edges w.r.t register 𝑛𝑤 for the
first and second copy.

• Similarly as explained in Eq. (5.7) in Section 5.2, if we further connect the
left side of the first 𝑀𝑥 and the right side of the second 𝑀𝑥 by the dashed line,
we get 𝑡𝑟 (𝑀2

𝑥).

214

• The tensor network for the operator 𝑡𝑟 (𝑀 𝑘
𝑥) can be represented similarly, that

is, putting 𝑘 copies of 𝑀𝑥 in a line, and then contracting the free edges w.r.t
register 𝑛𝑤 sequentially.

Acknowledgements
We thank Garnet Chan and Zeph Landau for helpful discussions. Part of this
work was conducted while the authors were visiting the Simons Institute for the
Theory of Computing during summer 2023 and spring 2024, supported by DOE
QSA grant #FP00010905. D.H. acknowledges financial support from the US DoD
through a QuICS Hartree fellowship. N.S. acknowledges financial support by the
Austrian Science Fund FWF (Grant DOIs 10.55776/COE1 and 10.55776/F71) and
the European Union’s Horizon 2020 research and innovation programme through
Grant No. 863476 (ERC-CoG SEQUAM). Jiaqing Jiang is supported by MURI Grant
FA9550-18-1-0161 and the IQIM, an NSF Physics Frontiers Center (NSF Grant
PHY-1125565). Jielun Chen is supported by the US National Science Foundation
under grant CHE-2102505.

5.7 Appendix:#P-hardness of exactly contracting random 2D tensor networks
Here we prove that the exact contraction of the random 2D tensor network with a
positive mean remains #P-hard.

Firstly we prove some properties of standard Gaussian distribution, while the finite
precision Gaussian distribution behaves similarly up to 𝑂 (exp(−𝑛)) derivation in
the error bounds. Recall that we use 𝑋 ∼ NC(𝜇, 𝜎2) (or 𝑋 ∼ NR(𝜇, 𝜎2)) to
denote that the random variable 𝑋 is sampled from the complex (or real) Gaussian
distribution with mean 𝜇 and standard derivation𝜎. We use ®𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑚) ∼∏𝑚
𝑖=1NC(𝜇𝑖, 𝜎2) to denote the random variable ®𝑋 where each 𝑋𝑖 is independently

sampled from NC(𝜇𝑖, 𝜎2). When 𝜇𝑖 = 𝜇,∀𝑖, we abbreviate the notation as ®𝑋 ∼
NC(𝜇, 𝜎2)𝑚. For two distribution D1,D2, we use ∥D1 − D2∥ to denote the total
variation distance.

https://doi.org/10.55776/COE1
https://doi.org/10.55776/F71

215

Lemma 141 (Analogy of Lemma 5 in [Haf+20]) 7 For 𝜇𝑖 ∈ C. It holds that

∥NC(𝜇, (1 − 𝜖)2𝜎2)𝑚 − NC(𝜇, 𝜎2)𝑚 ∥ ≤ 4𝑚𝜖, (5.147)

∥
𝑚∏
𝑖=1
NC(𝜇𝑖, 𝜎2) − NC(𝜇, 𝜎2)𝑚 ∥ ≤ 2

𝜎
(|𝜇1 − 𝜇 | + . . . + |𝜇𝑚 − 𝜇 |) . (5.148)

Proof: Recall that for 𝜇 ∈ C, we use ℜ(𝜇),ℑ(𝜇) ∈ R for the real and imaginary
part of 𝜇, that is 𝜇 = ℜ(𝜇) + ℑ(𝜇)𝑖. Besides, 𝑋 ∼ NC(𝜇, 𝜎2) iff ℜ(𝑋) ∼
NR(ℜ(𝜇), 𝜎

2

2),ℑ(𝑋) ∼ NR(ℑ(𝜇), 𝜎
2

2). It suffices to notice that

∥
𝑚∏
𝑖=1
NC(𝜇𝑖, 𝜎2

𝑖)𝑚 − NC(𝜇, 𝜎2)𝑚 ∥ (5.149)

=
1
2

∫
(𝑥1,...,𝑥𝑚)

����� 𝑚∏
𝑖=1

1
2𝜋(𝜎𝑖/

√
2)2

exp
− 1

2 |
𝑥𝑖−𝜇𝑖
𝜎𝑖/
√

2
|2 −

𝑚∏
𝑖=1

1
2𝜋(𝜎/2)2

exp−
1
2 |
𝑥𝑖−𝜇
𝜎/2 |

2

����� 𝑑𝑥1 . . . 𝑑𝑥𝑚

(5.150)

=
1
2

∫
(𝑥1,...,𝑥𝑚)

����� 𝑚∏
𝑖=1

1
2𝜋(𝜎𝑖/

√
2)2

exp
− 1

2 |
𝑥𝑖−𝜇𝑖+𝜇
𝜎𝑖/
√

2
|2 −

𝑚∏
𝑖=1

1
2𝜋(𝜎/2)2

exp−
1
2 |

𝑥𝑖
𝜎/2 |

2

����� 𝑑𝑥1 . . . 𝑑𝑥𝑚

(5.151)

= ∥
𝑚∏
𝑖=1
NC(𝜇𝑖 − 𝜇, 𝜎2

𝑖)𝑚 − NC(0, 𝜎2)𝑚 ∥. (5.152)

Thus by Lemma 5 in [Haf+20], we have

∥NC(𝜇, (1 − 𝜖)2𝜎2)𝑚 − NC(𝜇, 𝜎2)𝑚 ∥ = ∥NC(0, (1 − 𝜖)2𝜎2)𝑚 − NC(0, 𝜎2)𝑚 ∥

(5.153)

≤ 2 × 2𝑚𝜖 (5.154)

∥
𝑚∏
𝑖=1
NC(𝜇𝑖, 𝜎2) − NC(𝜇, 𝜎2)𝑚 ∥ = ∥

𝑚∏
𝑖=1
NC(𝜇𝑖 − 𝜇, 𝜎2) − NC(0, 𝜎2)𝑚 ∥

(5.155)

≤ 2 × 1
𝜎
(|𝜇1 − 𝜇 | + . . . + |𝜇𝑚 − 𝜇 |) ,

(5.156)

where we add a 2× since we are working with NC while Lemma 5 in [Haf+20] is
with NR.

7There is a remark on the notation difference. [Haf+20] uses NC (𝜇, 𝜎) to denote Gaussian
distribution with mean value 𝜇 and standard derivation 𝜎. In this manuscript we denote this
distribution as NC (𝜇, 𝜎2) which is the more standard notation.

216

Proof:[Proof of Theorem 133] The proof follows directly from the proof idea of
Theorem 2 in [Haf+20]. Here we only give a proof sketch.

Firstly [Haf+20; Sch+07] showed that one can encode any 𝑛-variable boolean func-
tion 𝑓 (𝑥1, . . . , 𝑥𝑛) into a projected entangled-pair states (PEPS) of 𝑝𝑜𝑙𝑦(𝑛) vertices,
which describes an un-normalized state |𝜓⟩, such that computing ⟨𝜓 |𝜓⟩ exactly is
equivalent to computing the value

𝑠(𝑓) = |{𝑥 ∈ {0, 1}𝑛 : 𝑓 (𝑥) = 1}|,

which is #P-complete. One can check that in this case ⟨𝜓 |𝜓⟩ equals to the con-
traction value of a 2D8 tensor network of 𝑝𝑜𝑙𝑦(𝑛) vertices, where the 2D tensor
network has bond dimension 𝑑 = 𝑂 (𝑝𝑜𝑙𝑦(𝑛)), and every entry of the tensor network
is bounded by a constant. one can further make the underlying 2D lattice for the 2D
tensor network to have periodic boundary condition, by adding edges connecting
boundaries and slightly modify the tensors near the boundary to make sure the con-
traction value remains invariant. Denote the final 2D lattice with periodic boundary
condition as𝐺. Denote the final 2D tensor network which encodes the fixed boolean
function 𝑓 as

𝑇

(
𝐺, (𝑃[𝑣])𝑣

)
,

where 𝑃[𝑣] is the tensor on vertex 𝑣. Note that 𝑃[𝑣] has 𝑑4 entries and thus (𝑃[𝑣])𝑣
are described by in total 𝑑4 × 𝑛 entries. For convenience, we assign an arbitrary
order to those entries and denoted them as {𝑝𝑖}𝑑

4𝑛
𝑖=1 . Recall that by construction we

have |𝑝𝑖 | ≤ 𝑐 for constant 𝑐.

Theorem 133 is proved by an argument of average to worse case reduction via
interpolation. Here we define the polynomial for the interpolation. Set

𝜖 := min
{

1
4(𝑐 + 𝜇 + 1)𝑑4𝑛3 ,

1
2

}
. (5.157)

𝑘 = 𝑝𝑜𝑙𝑦(𝑛) be sufficiently large. (5.158)

Let 𝑆 = {𝑡𝑖}𝑖∈[𝑘] be the set of 𝑘 equidistant points in [0, 𝜖]. (5.159)

Recall that 0 ≤ 𝑢 ≤ 𝑝𝑜𝑙𝑦(𝑛) thus 𝜖 = 1/𝑝𝑜𝑙𝑦(𝑛).

We randomly sample a 2D (𝜇, 𝑛, 𝑑)-Gaussian tensor network 𝑇
(
𝐺, (𝑄 [𝑣])𝑣

)
. Let

𝑡 ∈ 𝑆, define a new 2D tensor network 𝑇 (𝑡), where for vertex 𝑣 the tensor 𝑅(𝑡) [𝑣] is
8⟨𝜓 |𝜓⟩ is a stack of two PEPS. One can transform it into a 2D tensor network by contracting the

stack of two PEPS via free boundaries of the two PEPS.

217

defined as

𝑅(𝑡) [𝑣] := 𝑡𝑃[𝑣] + (1 − 𝑡)𝑄 [𝑣] . (5.160)

Denote the exact contraction value of 𝑇 (𝑡) as 𝑞(𝑡). Note that 𝑞(𝑡) is a degree-𝑛
polynomial of 𝑡. Besides, from construction we know that computing 𝑞(1) will
solve #P-complete problem.

In the following, we show that if one can compute the exact contraction value of
finite precision 2D Gaussian tensor network with high probability, then we can
compute 𝑞(1) with high probability by interpolation. More specifically, for input
𝑇 (𝑡), denote the value returned by the algorithm A in Theorem 133 as A(𝑡).

(𝑖) First we prove that since 𝑡 is small, A(𝑡) is a good approximation of 𝑞(𝑡).
Specifically, define

𝜇𝑖 = 𝑡 𝑝𝑖 + (1 − 𝑡)𝑢. (5.161)

By Eq. (5.160), we know that the entries of
(
𝑅(𝑡) [𝑣]

)
𝑣

are sampled from distribution

D :=
𝑑4𝑛∏
𝑖=1
NC(𝜇𝑖, (1 − 𝑡)2). (5.162)

Since NC approximates NC within exponential precision, we know that

∥D − NC(𝜇, 1)𝑑
4𝑛∥ ≤ 𝑂 (exp(−𝑛)) + ∥

𝑑4𝑛∏
𝑖=1
NC(𝜇𝑖, (1 − 𝑡)2) − NC(𝜇, 1)𝑑

4𝑛∥,

(5.163)

where by Lemma 141 we have

∥
𝑑4𝑛∏
𝑖=1
NC(𝜇𝑖, (1 − 𝑡)2) − NC(𝜇, 1)𝑑

4𝑛∥ ≤ ∥
𝑑4𝑛∏
𝑖=1
NC(𝜇𝑖, (1 − 𝑡)2) − NC(𝜇, (1 − 𝑡)2)𝑑

4𝑛∥

+ ∥NC(𝜇, (1 − 𝑡)2)𝑑
4𝑛 − NC(𝜇, 1)𝑑

4𝑛∥

≤ 2
(1 − 𝑡) (|𝜇1 − 𝜇 | + . . . |𝜇𝑑4𝑛 − 𝜇 |) + 4 · 𝑑4𝑛 · 𝑡,

≤ 4 · 𝑑4𝑛 · (𝑐 + 𝜇)𝜖 + 4 · 𝑑4𝑛 · 𝜖, (5.164)

≤ 4 · 𝑑4𝑛 · (𝑐 + 𝜇 + 1)𝜖

≤ 1
𝑛2 , (5.165)

218

where Eq. (5.164) comes from the fact that

𝑡 ≤ 𝜖 ≤ 1/2, (5.166)

|𝜇𝑖 − 𝜇 | = |𝑡 (𝑝𝑖 − 𝜇) | ≤ (𝑐 + 𝜇)𝜖 . (5.167)

Eqs. (5.163)(5.165) together imply

∥D − NC(𝜇, 1)𝑑
4𝑛∥ ≤ 𝑂 (exp(−𝑛)) + 1

𝑛2 . (5.168)

In other words, for any 𝑡𝑖 ∈ 𝑆, the distribution of
(
𝑅(𝑡) [𝑣]

)
𝑣

is almost the same as
the finite precision 2D (𝜇, 𝑛, 𝑑)-Gaussian tensor network. Let 𝑛 and 𝑘 = 𝑝𝑜𝑙𝑦(𝑛)
be sufficiently large. By Eq. (5.168) and the assumption of the performance of A
we have

𝑃𝑟 (A(𝑡𝑖) = 𝑞(𝑡𝑖)) ≥
3
4
+ 1
𝑛
−𝑂 (exp(−𝑛)) − 1

𝑛2 ≥
3
4
+ 1
𝑛2 , (5.169)

𝐸 |{𝑖 : A(𝑡𝑖) = 𝑞(𝑡𝑖)}| ≥
(
3
4
+ 1
𝑛2

)
𝑘, (5.170)

where in the second inequality 𝐸 refers to expectation. By Chernouff bound we
know that for sufficiently large 𝑘 = 𝑝𝑜𝑙𝑦(𝑛),

𝑃𝑟

(
|{𝑖 : A(𝑡𝑖) = 𝑞(𝑡𝑖)}| ≥

𝑘 + 𝑛
2

)
≥ 1 − exp(−𝑛). (5.171)

(𝑖𝑖) We then use the following theorem to recover the degree 𝑛 polynomial 𝑞(𝑡)

Theorem 142 (Berlekamp-Welch [Mov18]) Let 𝑞 be a degree-𝑛 polynomial over
any field F. Suppose we are given 𝑘 pairs of elements {(𝑥𝑖, 𝑦𝑖)}𝑘𝑖=1 with all 𝑥𝑖 distinct,
and with the promise that 𝑦𝑖 = 𝑞(𝑥𝑖) for at least max(𝑛 + 1, (𝑘 + 𝑛)/2) points. Then,
one can recover 𝑞 exactly in 𝑝𝑜𝑙𝑦(𝑘, 𝑛) deterministic time.

In Theorem 142 let

𝑥𝑖 := 𝑡𝑖, (5.172)

𝑦𝑖 := A(𝑡𝑖). (5.173)

Then by Eq. (5.171) we can recover 𝑞(𝑡) with probability 1 − exp(−𝑛) in 𝑝𝑜𝑙𝑦(𝑛)-
time.

(𝑖𝑖𝑖) Finally, we have 𝑞(𝑡) in hand, which is correct with probability 1 − exp(−𝑛).
Since 𝑞(𝑡) is a degree 𝑛 polynomial, we can easierly compute 𝑞(1), which solves a
#P-complete problem.

219

5.8 Appendix:More on Barvinok’s method
Proof:[Proof of Lemma 119] The proof uses Jensen’s formula and follows the idea
from [EM18]. Let 𝑧1, . . . , 𝑧 𝑗 , . . . be the roots of ℎ𝐴 (𝑧), Jensen’s formula establishes
the connection between the roots in the disk B(𝑟), and the average of ln |ℎ𝐴 (𝑧) | on
the boundary of B(𝑟):∑︁

|𝑧 𝑗 |≤𝑟
ln

𝑟

|𝑧 𝑗 |
+ ln |ℎ𝐴 (0) | = 𝐸𝜃 ln |ℎ𝐴 (𝑟𝑒𝑖𝜃) |. (5.174)

First notice that ∑︁
|𝑧 𝑗 |≤𝑟

ln
𝑟

|𝑧 𝑗 |
≥

∑︁
|𝑧 𝑗 |≤𝑟 (1−𝜆)

ln
𝑟

|𝑧 𝑗 |
(5.175)

≥
∑︁

|𝑧 𝑗 |≤𝑟 (1−𝜆)
ln

𝑟

𝑟 (1 − 𝜆) (5.176)

≥ 𝜆 · 𝑁𝐴 (𝑟 (1 − 𝜆)), (5.177)

where in the last inequality we use ln 1
(1−𝜆) ≥ 𝜆 for𝜆 ≤ 1/2. Thus by Eqs. (5.177)(5.174),

we have

𝐸𝐴 [𝑁𝐴 (𝑟 − 𝑟𝜆)] ≤
1
𝜆
𝐸𝜃𝐸𝐴 ln

|ℎ𝐴 (𝑟𝑒𝑖𝜃) |
|ℎ𝐴 (0) |

(5.178)

=
1
2𝜆
𝐸𝜃𝐸𝐴 ln

|ℎ𝐴 (𝑟𝑒𝑖𝜃) |2
|ℎ𝐴 (0) |2

(5.179)

≤ 1
2𝜆

ln 𝐸𝜃𝐸𝐴
|ℎ𝐴 (𝑟𝑒𝑖𝜃) |2
|ℎ𝐴 (0) |2

. (5.180)

where the last inequality holds since ln is a concave function.

Lemma 143 (Derivatives of composite function) Let 𝐺 (𝑧) and 𝜙(𝑧) be two func-
tions satisfying 𝜙(0) = 0. Let 𝑚 be an integer. Suppose the first 𝑚 derivatives
{𝐺 (𝑘) (0)}𝑚

𝑘=0 and {𝜙(𝑘) (0)}𝑚
𝑘=0 can be computed in time 𝑡 (𝑛) where 𝑛 is a parame-

ter. Then the first 𝑚 derivatives of the composite function 𝐺 (𝜙(𝑧)) at 𝑧 = 0, denoted
as {

𝜕𝑘

𝜕𝑧𝑘
𝐺 (𝜙(𝑧))

���
𝑧=0

}𝑚
𝑘=1

,

can be computed in time 𝑡 (𝑛) +𝑂 (𝑚4).

Proof: For integer 𝑘 and 𝑟, define the Bell polynomial to be

𝐵𝑘,𝑟 (𝜙(1) (𝑧), 𝜙(2) (𝑧), . . . , 𝜙(𝑘−𝑟+1) (𝑧))

=
∑︁ 𝑘!

𝑗1! 𝑗2! . . . 𝑗𝑘−𝑟+1!

(
𝜙(1) (𝑧)

1!

) 𝑗1 (
𝜙(2) (𝑧)

2!

) 𝑗2
. . .

(
𝜙(𝑘) (𝑧)
𝑘!

) 𝑗𝑘−𝑟+1
(5.181)

220

where the summation is

𝑗1 + 𝑗2 + . . . + 𝑗𝑘−𝑟+1 = 𝑟 and 𝑗1 + 2 𝑗2 + . . . + (𝑘 − 𝑟 + 1) 𝑗𝑘−𝑟+1 = 𝑘. (5.182)

To compute the derivative of the composite function 𝐺 (𝜙(𝑧)), we will use the Faa
di Bruno’s formula which states that

𝜕𝑘

𝜕𝑧𝑘
𝐺 (𝜙(𝑧))

���
𝑧=0

=

𝑘∑︁
𝑟=1

𝐺 (𝑟) (𝜙(0)) · 𝐵𝑘,𝑟 (𝜙(1) (0), 𝜙(2) (0), . . . , 𝜙(𝑘−𝑟+1) (0))

(5.183)

=

𝑘∑︁
𝑟=1

𝐺 (𝑟) (0) · 𝐵𝑘,𝑟 (𝜙(1) (0), 𝜙(2) (0), . . . , 𝜙(𝑘−𝑟+1) (0)), (5.184)

where the notation 𝐺 (𝑟) (𝜙(0)) refers to 𝐺 (𝑟) (𝑧) |𝑧=𝜙(0) and the last equality comes
from 𝜙(0) = 0. For each 𝐵𝑘,𝑟 , we define the corresponding partial ordinary Bell
polynomials as

�̂�𝑘,𝑟 (𝑦1, . . . , 𝑦𝑘−𝑟+1) =
𝑟!
𝑘!
𝐵𝑘,𝑟 (𝑥1, . . . , 𝑥𝑘−𝑟+1), (5.185)

where 𝑦𝑖 = 𝑥𝑖
𝑖! . They satisfy the recurrence formula

�̂�𝑘,𝑟 (𝑦1, . . . , 𝑦𝑘−𝑟+1) =
𝑘−𝑟+1∑︁
𝑖=1

𝑦𝑖 �̂�𝑘−𝑖,𝑟−1(𝑦1, . . . , 𝑦𝑘−𝑟+1−𝑖). (5.186)

Then after computing the first 𝑚 derivatives {𝐺 (𝑘) (0)}𝑚
𝑘=0 and {𝜙(𝑘) (0)}𝑚

𝑘=0 in time
𝑡 (𝑛), Algorithm 11 computes 𝐵𝑘,𝑟 in time 𝑂 (𝑘2𝑟). It suffices to compute 𝐵𝑚,𝑟 for
𝑟 = 1, . . . , 𝑚 since all lower orders can be computed along the way, which takes
total time 𝑂 (𝑚4). Therefore, the first 𝑚 derivatives of 𝐺 (𝜙(𝑧)) at 𝑧 = 0 can be
computed in time 𝑡 (𝑛) +𝑂 (𝑚4).

Algorithm 11 Compute Bell polynomials [Tag23]
1: Set 𝑦𝑖 ← 𝑥𝑖/𝑖!, 𝑖 = 1, . . . , 𝑘 − 𝑟 + 1
2: Set �̂�0,0 = 1, �̂�𝑖,0 = 0, 𝑖 = 1, . . . , 𝑘 − 𝑟 𝑙 = 1, . . . , 𝑟 𝑖 = 𝑙, . . . , 𝑘 − 𝑟 + 𝑙
3: �̂�𝑖,𝑙 (𝑦1, . . . , 𝑦𝑘−𝑟+1) ←

∑𝑖−𝑙+1
𝑗=1 𝑦 𝑗 �̂�𝑖− 𝑗 ,𝑙−1(𝑦1, . . . , 𝑦𝑘−𝑟+1)

4: Set 𝐵𝑘,𝑟 (𝑥1, . . . , 𝑥𝑘−𝑟+1) ← 𝑘!
𝑟! �̂�𝑘,𝑟 (𝑦1, . . . , 𝑦𝑘−𝑟+1)

5.9 Appendix:BPP-hardness of additive-error approximation (Theorem 135)
In this section, we prove the approximation problem in Theorem 135 is BPP-hard.
This proof is similar to Section 4.2 in [AL10] and here we give a proof sketch.

First we embed classical randomized computations into quantum circuits. Given a
parameter 𝑛, consider a quantum circuit of following form:

221

• Takes input as |0⟩𝑝 |+⟩𝑞 for 𝑝, 𝑞 = 𝑝𝑜𝑙𝑦(𝑛).

• Applies a sequence of gates 𝑄 = 𝑄𝐿 . . . 𝑄1, where 𝐿 = 𝑝𝑜𝑙𝑦(𝑛) and {𝑄𝑖}𝑖
are reversible gates on constant qubits.

• Measure the first qubit in computational basis.

Denote 𝑝0 as the probability of getting measurement outcome 0 in the first qubit.
Suppose it is promised that either one of the following holds:

• Yes case: 𝑝0 ≥ 2/3,

• No case: 𝑝0 ≤ 1/3.

One can check that the problem of given such a circuit, output Yes/No correctly with
probability greater than 2/3 is BPP-hard.9 In other word

Claim 144 An algorithm for estimating 𝑝0 with high probability is BPP-hard.

Similarly as [AL10], to write 𝑝0 as a tensor network, we first define a related circuit
𝑈 on 𝑝 + 𝑞 + 1 qubits: As shown in Figure 5.7, U firstly applies 𝑄 to |0⊗(𝑝+1) , +⊗𝑞⟩,
then copies the first qubit of 𝑄 to the additional qubit by CNOT, and then applies
𝑄−1.

Q−1 Q

⊕ |0⟩
|0⟩
|0⟩
|+⟩
|+⟩

⟨0|

⟨+|

⟨0|
⟨0|

⟨+|
Figure 5.7: Illustration of Circuit for 𝑝0.

One can check that

⟨0⊗(𝑝+1) , +⊗𝑞
��𝑈��0⊗(𝑝+1) , +⊗𝑞⟩ = 𝑝0.

One can transform ⟨0⊗(𝑝+1) , +⊗𝑞
��𝑈��0⊗(𝑝+1) , +⊗𝑞⟩ to a tensor network 𝑇 similarly as

[AL10], then

𝜒(𝑇) = ⟨0⊗(𝑝+1) , +⊗𝑞
��𝑈��0⊗(𝑝+1) , +⊗𝑞⟩ = 𝑝0, (5.187)

where
9Readers who are not familiar with randomized reduction may read Definition 7.19 in [AB09].

222

• Each reversible gate 𝑄𝑖 on constant qubits is translated to a tensor 𝑀 [𝑄𝑖] ,
which is of constant rank (constant degree) and bond dimension 2. Note that
since 𝑄𝑖 is a reversible gate, which is a permutation, thus we have ∥𝑄𝑖∥1 = 1.

• We pair the input qubits on the left and right in Figure 5.7. |0⟩⟨0| is translated

into a tensor𝑀 [0] =

[
1 0
0 0

]
, |+⟩⟨+| is translated into a tensor𝑀 [+] = 1

2

[
1 1
1 1

]
.

Note that ∥𝑀 [0] ∥1 = ∥𝑀 [+] ∥1 = 1.

Thus the approximation scaleΔ1 in Eq. (5.121) is equal to 1. Thus for 𝜖 = 1/𝑝𝑜𝑙𝑦(𝑛),
the approximation problem in Theorem 135, that is Eq. (5.120), requires approxi-
mating 𝜒(𝑇) = 𝑝0 within precision 𝜖 with high probability, thus is BPP-hard by
Claim 144.

223

C h a p t e r 6

COMMUTING LOCAL HAMILTONIAN PROBLEM ON 2D
BEYOND QUBITS

6.1 Introduction
Understanding the properties of ground states of local Hamiltonians is a central
problem in condensed matter physics. Kitaev famously formulated this problem
as a decision problem, amenable to analysis from the perspective of computational
complexity, by defining the local Hamiltonian problem (LHP), which asks whether
the ground energy of a local Hamiltonian is below one threshold or greater than
another. The LHP can be interpreted as the quantum generalization of the Boolean
Satisfiability problem (SAT), where for SAT, all the terms {ℎ𝑖}𝑖 are diagonal in the
computational basis. Kitaev showed that the LHP is QMA-complete [KKR06],
a quantum analog of the Cook–Levin theorem showing that SAT is NP-complete.
Formally, a 𝑘-local Hamiltonian𝐻 =

∑
𝑖 ℎ𝑖 is a Hermitian operator on 𝑛 qudits, where

each term ℎ𝑖 only acts on 𝑘 qudits. Given two parameters 𝑎, 𝑏 with 𝑏 − 𝑎 ≥ 1
𝑝𝑜𝑙𝑦(𝑛) ,

the LHP is to determine whether the ground energy of 𝐻, namely the minimum
eigenvalue, is smaller than 𝑎 or greater than 𝑏.

It is widely believed that QMA ≠ NP, which would imply that the LHP is strictly
harder than the SAT. A natural question then to ask is what properties make quantum
SAT (LHP) harder than classical SAT? Alternatively, what additional constraints can
make LHP easier than QMA-complete? An intermediate model that sits in between
classical and quantum Hamiltonians is the Commuting Local Hamiltonian problem
(CLHP) [BV03], in which the terms of the local Hamiltonian pairwise commute.
Compared to the general LHP, the idea that CLHs should be more classical in
nature stems from the intuition [FS97] in quantum physics, which suggests that it
is the non-commutativity that makes the quantum world different from classical
(The Heisenberg’s uncertainty principle). Moreover, since all the terms of a CLH
can be simultaneously diagonalized by a single basis, every eigenstate of the full
Hamiltonian can be specified up to degeneracies by the corresponding eigenvalue for
each term. The fact that the eigenstates have a classical specification suggests that
the structure of the eigenbasis is more classical in nature. Based on this reasoning, it
might be natural to conjecture that CLHP is equivalent to SAT. In fact, initial results

224

showing that special cases of CLHP are in NP did so by showing that the ground
states of such CLHs are of limited entanglement, i.e. can be prepared by constant
depth quantum circuits. If this held for all CLHs, then the general CLHP would
be in NP, since one can take the constant depth circuit as a witness and check the
ground energy classically by a light-cone argument. Unfortunately, it is not the case
that ground states of all CLHs exhibit limited-entanglement. Indeed, the eigenstates
of CLHs can potentially be highly entangled, as is true for the famous example of
Kitaev’s toric code [Kit03b]. Therefore, more sophisticated techniques need to be
developed to prove certain subclasses of CLHP are in NP, as will be described in
more detail later.

Commuting Hamiltonians provide a lens to study many fundamental aspects of
quantum computing and many-body systems. For example, the stabilizer frame-
work [Got97] is the basis for most error-correcting codes, and stabilizer codes can
be seen as the ground states of commuting Hamiltonians. Commuting Hamilto-
nians are commonly used as a test ground for attacking difficult problems such as
the quantum-PCP conjecture [AE11; Has13], NLTS conjecture [ABN23], Gibbs
states preparation [KB16] and fast thermalization [Bar+23; Bar+23]. In particular,
studying the ground state structure of commuting Hamiltonians could potentially
provide insight into the area law and its connection to the efficient expressibility of
ground states. The Area Law states that for ground states of gapped Hamiltonians
on a finite-dimensional lattice, the entanglement entropy between two regions of
ground states scales with the boundary between the regions as opposed to their vol-
ume. The area law is known to hold for 1D Hamiltonians and is known for 2D only
under the assumption that the Hamiltonian is frustration-free and uniformly gapped
[AAG22b]. It is widely hoped that proving the area law will lead to insight into
whether such ground states can be efficiently expressed or constructed by quantum
circuits. As a subclass of LHP, it is well known that the area law holds for CLHs,
and yet, even in 2D, we do not know whether the ground states of CLHs can be
efficiently represented or constructed.

Previous Results
Despite two decades of study, the complexity of CLHP still remains open, with a few
special cases known to be in NP ([BV03; AE13; AE11; Sch11; AKV18; Has12]).
Bravyi and Vyalyi initiated this line of work, showing that qudit 2-local CLHP is
in NP [BV03]. Their proof uses a decomposition lemma based on the theory of
finite-dimensional 𝐶∗-algebra representations. All subsequent work on the CLHP

225

has made use of this framework.

Aharonov and Eldar [AE11] extended the results to the 3-local case for qubits and
qutrits. Specifically, they proved that 3-local qubit-CLHP is in NP. They also proved
that 3-local qutrit CLHP is in NP on the Nearly Euclidean interaction graphs. All
the above results are proved by showing that there is a trivial ground state, i.e. the
ground state can be prepared by a constant depth quantum circuit. This constant
depth circuit is the NP witness and the energy of this trivial ground state can be
checked in classical polynomial time by a light-cone argument. However, for 4-local
CLHP, even if the interaction graph is a 2D square lattice, there are systems like the
Toric code which have no trivial ground states.

In this work, we mainly focus on 4-local CLHP on a 2D square lattice with qudits
(abbreviated as qudit-CLHP-2D). Specifically, consider a 2D square lattice as in
Figure 6.1(a) with a qudit 𝑞 on each vertex and on each plaquette 𝑝, there is a
Hermitian term acting on the qudits on its four vertices. With some abuse of
notations, we also use 𝑝 to denote the Hermitian term on the plaquette 𝑝. The qudit-
CLHP-2D is given an 𝑛-qudit Hamiltonian 𝐻 =

∑
𝑝 𝑝 where {𝑝}𝑝 are commuting,

two parameters 𝑎, 𝑏 where 𝑏 − 𝑎 ≥ 1/𝑝𝑜𝑙𝑦(𝑛), decide whether the minimum
eigenvalue of 𝐻 is smaller than 𝑎 or greater than 𝑏. There is an alternate 2D
setting in which qudits are placed on the edges and there are Hermitian terms on
“plaquettes” and “stars”. The two settings, i.e. qudits on vertices or qudits on edges,
are equivalent when the underlying graph is a 2D square lattice. (See Appendix
6.7.)

𝑞2 𝑞3

𝑞1 𝑞4
𝑝

(a)

𝑞

𝑝′1 𝑝2

𝑝1 𝑝′2

(b)

𝑞2 𝑞3

𝑞1 𝑞4
𝑝𝑏𝑝𝑎 𝑝𝑐

(c)

Figure 6.1: Illustration of qudit-CLHP-2D. (a) Definition of the qudit-CLHP-2D. (b) The four
terms which involve 𝑞 are 𝑝1, 𝑝2, 𝑝

′
1, 𝑝
′
2. (c) An example of 1D structure in Schuch’s [Sch11]

proof. In the figure the symbol ◦ represents the plaquette term acts non-trivially on the qudit.
Specifically here among the 9 plaquettes in (c), only terms 𝑝𝑎, 𝑝𝑏, 𝑝𝑐 acts non-trivially on
at least one of 𝑞1, 𝑞2, 𝑞3, 𝑞4.

Along this line, Schuch [Sch11] first proved that the qubit-CLHP-2D is in NP.
Schuch’s proof provides a witness showing that a low-energy state exists without

226

giving an explicit description of the state. Indeed his proof leaves open the question
of whether an explicit description of the state even exists. Aharonov, Kenneth, and
Vigdorovich [AKV18] later gave a constructive proof, showing that after some trans-
formation, the qubit-CLHP-2D is equivalent to the Toric code permitting boundaries.
We say a proof is constructive if the prover shows that the ground energy is below
𝑎 by providing a circuit for preparing the ground state. A boundary roughly means
a qubit 𝑞 where one of the four terms involving this qubit, i.e. 𝑝1, 𝑝2, 𝑝

′
1, 𝑝
′
2 in

Figure 6.1(b), acts trivially on 𝑞. A Hamiltonian is equivalent to the Toric code
permitting boundaries if after choosing an appropriate basis for each qubit, terms
{𝑝}𝑝 in the Hamiltonian act similarly as 𝑋 or 𝑍 on the non-boundary qubits. Both
proofs [Sch11; AKV18] for the qubit-CLHP-2D heavily depend on the restrictions
to the qubits, since the induced algebra of a term 𝑝 on a qubit 𝑞 can only have a very
limited structure. The limited structure for the qubits case does not hold for higher
dimensional particles, not even for qutrits.

Hastings [Has12] proved a subclass of the qudit-CLHP-2D is in NP with some
restrictive assumptions. Roughly speaking, he grouped all qudits on the same
vertical line as a supersite, then viewed the 2D lattice as a 1D line, which reduced
the qudit-CLHP-2D back to the “qudit” 2-local case [BV03]. However, the main
problem is that those supersites are not really qudit of constant dimension. In
fact, the dimension of the supersite is sub-exponential in the number of qudits.
Thus Hastings further assumes that several technical conditions hold, like certain
operators in the proof can be efficiently represented by matrix product operators of
bounded dimension.

Besides the 2-local qudit-CLHP-2D, Bravyi and Vyalyi [BV03] also addressed
the special case of the commuting Hamiltonian problem where all the terms are
factorized (CHP-factorized). That is 𝐻 =

∑
𝑖 ℎ𝑖, and each term ℎ𝑖 is a tensor product

of single-qudit Hermitian operators. For example, the Toric code is an instance of
CHP-factorized, since each term is 𝑋⊗4 or 𝑍⊗4. In general, in CHP-factorized each
ℎ𝑖 is not necessarily local, and there are no constraints on the underlying interaction
graph. Bravyi and Vyalyi give a non-constructive proof to show that the qubit-CHP-
factorized is in NP. It is an open question whether their proof can be generalized
to higher dimensional particles (qudit-CHP-factorized) or whether their proof for
qubits can be made constructive.

All of the above results prove that subclasses of CLHP are in NP. On the other
hand, Gosset, Mehta, and Vidick [GMV17] give a result that indicates CLHP might

227

be harder than NP, or even as hard as the general LHP. They show that the ground
space connectivity problem of commuting local Hamiltonian is QCMA-complete,
which is as hard as the ground space connectivity problem for the general local
Hamiltonian.

Main results and proof overview
Main results

In this work, we give two new results on the qudit-CLHP-2D. The family of Hamil-
tonians considered in both results contains the Toric code as a special case. In this
section we give an overview of those results and the correponding proof techniques.
The formal proofs are in Section 6.4 and Section 6.5.

Theorem 145 extends the results for the qubit-CLHP-2D [Sch11; AKV18] to qutrits.

Theorem 145 The qutrit-CLHP-2D is in NP.

As far as we know, Theorem 145 is the first result for CLHP on 2D lattice beyond
qubits. As noted, the results for the qubit-CLHP-2D [Sch11; AKV18] heavily
depend on the limited dimension of qubits — the induced algebras on qubits have a
very limited structure — which does not hold for qutrits. Our key idea to circumvent
this problem introduces a technique to decrease the dimension of qudits. Specifically,
denote the qudit-CLHP-2D instance as 𝐻 =

∑
𝑝 𝑝 and the Hilbert space of a qudit

𝑞 as H 𝑞. Under certain conditions, we observe that it suffices to consider a new
instance of qudit-CLHP by (1) Restricting H 𝑞 to a subspace of smaller dimension
and (2) Constructing a new Hamiltonian by projecting all 𝑝 to the smaller subspace,
and then rounding all non-1 eigenvalues of the projected terms to 0. Moreover, the
new instance preserves the correct answer in that “no” instances are converted to
“no” instances, and “yes” instances are converted to “yes” instances. Thus, we show
that our “decrease dimension and rounding” method (Lemma 167) can be interpreted
as a non-constructive self-reduction for the qudit-CLHP. Here self-reduction means
we reduce the original qudit-CLHP to a new qudit-CLHP where some qudits have
strictly smaller dimensions. We emphasize that the key lemma, Lemma 167, works
for the qudit-CLHP rather than only for qutrits, even without 2D geometry. This
lemma might be of independent interest and bring new insights to tackle the general
CLHP. We will explain this in more detail in the proof overview.

We next consider the special case of qudit-CLHP-2D where all the terms are fac-
torized (qudit-CLHP-2D-factorized). Our second result, namely Theorem 146, is a

228

constructive proof showing that qudit-CLHP-2D-factorized is in NP. Although we
do not give the details here, our proof could be considerably simplified to provide a
non-constructive version based on the ideas of [BV03] and [Sch11]. Here we give
a stronger constructive proof that characterizes the structure of the ground space.

Theorem 146 (Informal version of Theorem 189) The Hamiltonian in the qudit-
CLHP-2D-factorized is equivalent to a direct sum of qubit stabilizer Hamiltonian. In
particular, a factorized 2D commuting local Hamiltonian always has a ground state
which is equivalent to qubit stabilizer state. This implies qudit-CLHP-2D-factorized
is in NP.

We first briefly explain terminologies in Theorem 146. We say a commuting
Hamiltonian 𝐻 =

∑
𝑖 ℎ𝑖 on space H∗ := ⊗𝑞H 𝑞

∗ is equivalent to a qubit stabilizer
Hamiltonian, if (1) For eachH 𝑞

∗ , by choosing an appropriate basis,H 𝑞
∗ is factorized

as a tensor of Hilbert spaces of dimension 2. Thus each H 𝑞
∗ can be interpreted as

several qubits. We allow 𝑑𝑖𝑚(H 𝑞
∗) = 1 which corresponds to 0 qubit. (2) Each

term ℎ𝑖 acts as a Pauli operator up to phases, with respect to the basis of those
“qubits”. We say a subspaceH∗ ⊆ H := ⊗𝑞H𝑞 is simple, ifH∗ is a tensor product
of subspaces of each qudit, i.e. H∗ = ⊗𝑞H 𝑞

∗ . We say a commuting Hamiltonian
𝐻 on 𝑛-qudit space H = ⊗𝑞H 𝑞 is equivalent to a direct sum of qubit stabilizer
Hamiltonian, if the H is a direct sum of simple subspaces {H∗}∗, such that ∀𝑖, ℎ𝑖
keeps eachH∗ invariant, and 𝐻 is equivalent to qubit stabilizer Hamiltonian onH∗.

Although one might conjecture that factorized commuting Hamiltonians (CHP-
factorized) are equivalent to a direct sum of stabilizer Hamiltonians even when not
restricted to 2D, this is still an open question even for the qubit case [BV03].

To illustrate the difficulty, consider two factorized terms acting on two qudits 𝑞 and
𝑞′: ℎ := ℎ𝑞 ⊗ ℎ𝑞′ and ℎ̂ := ℎ̂𝑞 ⊗ ℎ̂𝑞′ . If ℎ𝑞 ℎ̂𝑞 ≠ 0 and ℎ𝑞′ ℎ̂𝑞′ ≠ 0, then it must be the
case that the factors in each individual qudit must commute or anti-commute which
gives rise to a stabilizer-like structure. By contrast, if ℎ𝑞 ℎ̂𝑞 = 0, then [ℎ, ℎ̂] = 0
for any choice of ℎ𝑞′ , ℎ̂𝑞′ . This means that ℎ𝑞′ and ℎ̂𝑞′ can have an arbitrary
relationship to each other and the two commuting terms ℎ, ℎ̂may look very different
from stabilizers. This second possibility suggests, alternatively, that factorized
CLHs in 2D could have a different topological order from stabilizer Hamiltonians.
More precisely, one may conjecture that there is a factorized Hamiltonian, such
that no ground state can be prepared by applying a constant depth quantum circuit
to a stabilizer state. We show a negative answer to this conjecture, by proving

229

that the qudit-CLHP-2D-factorized is equivalent to a direct sum of qubit stabilizer
Hamiltonian.

Overview for Theorem 145

We start by reducing the more general CLH problem to a slightly restricted case
where the commuting terms are projections and the energy lower bound 𝑎 is equal
to 0. We will argue that if the more restricted version is in NP then the more
general CLHP is also in NP. Consider an instance of the more general problem with
Hermitian terms {ℎ𝑖}𝑖 and bounds 𝑎 and 𝑏, where 𝑏−𝑎 ≥ 1/poly(𝑛). The NP prover
can provide a vector describing the energy eigenvalue 𝜆𝑖 for each individual term ℎ𝑖

such that
∑
𝑖 𝜆𝑖 ≤ 𝑎. Then the verifier can replace each term ℎ𝑖 with ℎ̂𝑖 = 𝐼 − Π𝑖,𝜆𝑖 ,

where Π𝑖,𝜆𝑖 is the projection onto the eigenspace of ℎ𝑖 corresponding to eigenvalue
𝜆𝑖. The new instance has a state |𝜓⟩ where ℎ̂𝑖 |𝜓⟩ = 0 for all 𝑖 if and only if
ℎ𝑖 |𝜓⟩ = 𝜆𝑖 |𝜓⟩ for all 𝑖. Since the ℎ̂𝑖 are all commuting projectors, the eigenvalues
of the Hamiltonian are non-negative integers. Thus, the verifier can set the new 𝑏 to
be equal to 1, resulting in a promise gap of 1. Therefore, when describing the proof
of Theorem 145, we shall assume the terms are projections and that the question is
whether there is a |𝜓⟩ where ℎ̂𝑖 |𝜓⟩ = 0 for all 𝑖 (i.e. a frustration-free ground state).
Note that this reduction does not work for the factorized case because even if the ℎ𝑖
is factorized, the resulting ℎ̂𝑖 is not necessarily factorized.

We start by introducing the framework of induced algebras. The basic ideas are
sketched here and specified in more detail in Section 6.3. Denote L(H) as the set
of all operators on a Hilbert space H . A 𝐶∗-algebra is any algebra A ⊆ L(H)
which is also closed under the † operations and includes the identity. Consider a
Hermitian term 𝑝 actingH ⊗ H 𝑐. The operator 𝑝 can be decomposed as

𝑝 =
∑︁
𝑖, 𝑗

ℎH𝑖 𝑗 ⊗ |𝑖⟩⟨ 𝑗 |
H 𝑐

.

The induced algebra of 𝑝 on spaceH , denoted as AH𝑝 , is the 𝐶∗-algebra generated
by {𝐼H } ∪ {ℎH𝑖 𝑗 }𝑖 𝑗 . Note that the particular decomposition of 𝑝 is not critical
other than the fact that the |𝑖⟩⟨ 𝑗 | terms acting on H 𝑐 are linearly independent.
The key technique introduced by [BV03] is the Structure Lemma which decouples
two commuting terms in their overlapping space: consider two terms 𝑝, 𝑝 sharing
only one qudit 𝑞. If [𝑝, 𝑝] = 0, then the induced algebras, AH𝑞

𝑝 and AH𝑞

𝑝
, must

commute, meaning that every operator in AH𝑞

𝑝 commutes with every operator in

230

AH𝑞

𝑝
. Furthermore, 𝑝, 𝑝′ can be decoupled in H 𝑞, in that is there exists a direct

sum decompositionH 𝑞 =
⊕

𝑖H
𝑞

𝑖
, where

• eachH 𝑞

𝑖
has a factorized structure: H 𝑞

𝑖
= H 𝑞1

𝑖
⊗ H 𝑞2

𝑖

• and 𝑝 only acts non-trivially onH 𝑞1
𝑖

and 𝑝 only acts non-trivially onH 𝑞2
𝑖

.

Both proofs showing that the qubit-CLHP-2D is in NP [Sch11; AKV18] depend
heavily on the properties of qubits. In particular, if 𝑞 is a qubit, then there are
only two ways to have a direct sum decomposition of H 𝑞, namely as the direct
sum of two 1-dimensional spaces or as a single 2-dimensional space. Note that we
must also consider the case in which an induced algebra is trivial, meaning that
AH𝑞

𝑝 = {𝑐𝐼H }𝑐 which implies that the operator 𝑝 acts trivially on qubit 𝑞. Using
the Structure Lemma the following statement is true.

Fact 147 Any two commuting non-trivial induced algebras on a qubit must be
diagonalizable in the same basis.

Note that Fact 147 is not true for qutrits. One may understand this statement
intuitively by only basic linear algebra. In particular, if ℎ1, ℎ2, ℎ are Hermitian
operators on a qubit, where ℎ is not proportional to the identity and both ℎ1 and
ℎ2 commute with ℎ, then all three operators can be diagonalized in the same basis.
This observation is not true for qutrits, as there exist operators ℎ, ℎ1, ℎ2 on a qutrit
with ℎ nontrivial, such that ℎ commutes with ℎ1 and ℎ2, but the three operators
cannot be diagonalized simultaneously.

Since the structure of our proof follows the same outline as Schuch’s proof, we briefly
explain how [Sch11] used Fact 147 to prove qubit-CLHP-2D is in NP. Consider
an arbitrary qudit-CLHP-2D instance 𝐻 =

∑
𝑝 𝑝. As argued above, we can assume

{𝑝}𝑝 are commuting projections, and the goal is to determine whether 𝜆(𝐻) = 0
or 𝜆(𝐻) ≥ 1. Note that in this setting, proving 𝜆(𝐻) = 0 is equivalent to proving
𝑡𝑟 (∏𝑝 (𝐼 − 𝑝)) > 0.

Now consider a qubit 𝑞 in a 2D lattice (as shown in Figure 6.1(b)). We name the
terms acting on 𝑞 as 𝑝1, 𝑝2, 𝑝

′
1, 𝑝
′
2. We define the set of removable qubits (defined

implicitly in [Sch11]) as follows:

• 𝑞 ∈ 𝑅: If the induced algebras of 𝑝1, 𝑝2 on 𝑞 can be diagonalized in the same
basis; or this condition holds for 𝑝′1, 𝑝

′
2.

231

The set 𝑅 is called removable since they can be effectively traced out. Specifically,
suppose 𝑞 ∈ 𝑅 and assume 𝑝1, 𝑝2 can be diagonalized in basis {|𝜙1⟩ , |𝜙2⟩}. Then

𝑡𝑟

[∏
𝑝

(𝐼 − 𝑝)
]
=

∑︁
𝑖=1,2

𝑡𝑟

[
|𝜙𝑖⟩⟨𝜙𝑖 | (1 − 𝑝1) |𝜙𝑖⟩⟨𝜙𝑖 | (1 − 𝑝2) |𝜙𝑖⟩⟨𝜙𝑖 |

∏
𝑝≠𝑝1,𝑝2

(1 − 𝑝)
]
.

Each quantity in the sum on the right is the trace of a product of two positive
semi-definite Hermitian operators, and therefore, each quantity in the sum is non-
negative. Thus, 𝑡𝑟 (∏𝑝 (𝐼 − 𝑝)) > 0 if and only if one of the two quantities in the
sum is positive. The prover will then provide a |𝜙1⟩ or |𝜙2⟩ for qubit 𝑞 for which the
trace is positive. Note that the proof is non-constructive because the ground state
may not lie entirely within either the space spanned by the space spanned by |𝜙1⟩ or
the space spanned by |𝜙2⟩. Suppose that the witness for qubit 𝑞 is |𝜙1⟩. The verifier
must verify that

𝑡𝑟

[
|𝜙1⟩⟨𝜙1 | (1 − 𝑝1) |𝜙1⟩⟨𝜙1 | (1 − 𝑝2) |𝜙1⟩⟨𝜙1 |

∏
𝑝≠𝑝1,𝑝2

(1 − 𝑝)
]
> 0.

The other two terms that might act non-trivially on qubit 𝑞 are 𝑝′1 and 𝑝′2. By Fact
147 we know either one of the induced algebras of 𝑝′1, 𝑝

′
2 on 𝑞 acts trivially on 𝑞, or

they can be diagonalized in the same basis. By considering each case separately, it
can be argued that the qubit 𝑞 can be traced out of all the terms. This process can
be applied simultaneously for all the removable qubits. The remaining Hamiltonian
will only contain terms that operate non-trivially on qubits that are not removable.

Using Fact 147, we know that if 𝑞 is not removable (𝑞 ∉ 𝑅), then one of 𝑝1, 𝑝2 and
one of 𝑝′1, 𝑝

′
2 act trivially on 𝑞. Now consider a graph where each vertex represents

a plaquette term 𝑝 and two terms are connected if they operate non-trivially on a
common qubit. Schuch argues that if none of the qubits are removable then this
graph cannot have a vertex with a degree larger than two, namely the graph is a set
of disjoint chains and cycles. The trace of each chain or cycle can be computed in
classical polynomial time by representing each term as a tensor and contracting the
tensors along the chain.

When moving to qutrits, we need to address the fact that the Structural Lemma
allows for more complex decompositions of the Hilbert space of a qutrit, and in
particular, Fact 147 no longer holds. Our key observation to tackle the problem,

232

is to introduce a new way to decrease the dimension of the particle — Decrease
Dimension and Rounding (Lemma 167, Sec. 6.4), which can be applied to qudits
that have a property which we call semi-separable.

We first describe the stronger condition of a separable qudit, which was introduced
in [AE11]. Consider a CLHP 𝐻 =

∑
𝑖 ℎ𝑖. A qudit is separable if there exists a non-

trivial decomposition H 𝑞 =
⊕

𝑗 H
𝑞

𝑗
such that all the terms ℎ𝑖 keep all subspaces

H 𝑞

𝑗
invariant. Note that if there is a separable qudit and a solution (i.e. a frustration-

free ground state) exists, then a ground state must lie entirely within one of theH 𝑞

𝑗
.

Thus a prover can provide the projector Π
𝑞

𝑗
onto the subspace of qudit 𝑞 which

contains the solution. The verifier can replace each term ℎ𝑖 with Π
𝑞

𝑗
· ℎ𝑖 ·Π𝑞

𝑗
and the

dimension of the problem has been reduced.

We now extend this notion and define a qudit to be semi-separable if we allow at
most one term to not keep the decomposition invariant. Our key observation is that,
for CLHP, even for a semi-separable qudit 𝑞, an NP prover can similarly decrease
the dimension of the qudit 𝑞, in a non-constructive way. Specifically, the NP prover
will choose a subspace H 𝑞

𝑗
and restrict all the terms in this subspace. Since there

is one term (call it ℎ0) that is inconsistent with the decomposition, such restriction
can not be done naturally. Instead, we project ℎ0 on the subspace H 𝑞

𝑗
and then

round all the not-1-eigenvalue to 0. By doing this we claim that we again get a
new CLHP instance with a smaller dimension in qudit 𝑞. More importantly, we
prove that the original CLHP has a frustration-free ground state iff there exists a 𝑗
such that the new CLHP 𝐻 | 𝑗 also has a frustration-free ground state. The reduction
is non-constructive because the ground state in the new instance may not be the
same as the ground state in the original instance. The “semi-separable” technique
is powerful especially for CLHP-2D where 𝐻 =

∑
𝑝 𝑝, since on 2D lattice as in

Figure 6.1(b), for any qudit 𝑞, if we consider the decomposition of H 𝑞 induced by
the induced algebra of 𝑝1 on 𝑞, there are at most 2 terms, i.e. 𝑝′1, 𝑝

′
2, which do not

keep the decomposition invariant. This observation is also true for CLHP embedded
on a planar graph.

By the above argument, to prove the qutrit-CLHP-2D is in NP, w.l.o.g we can assume
that there are no semi-separable qutrits. We further prove that the condition — the
qutrit-CLHP-2D without semi-separable qutrits — leads to strong restrictions on the
form of the Hamiltonian. In particular, we show that for the qutrit-CLHP-2D without
semi-separable qutrits, if we consider again the graph of plaquette terms where two
terms are connected by an edge if they act non-trivially on a common qutrit, then

233

this graph must also consist of disjoint chains or cycles. The trace of the 0-energy
space can be computed as before in classical polynomial time by contracting 1D
chains of tensors. The NP witness will be the indexes of subspaces chosen when
removing all semi-separable qudits, and the subspaces for the removable qutrits.

Overview of Theorem 146

Recall that Theorem 146 is a constructive proof for the qubit-CLHP-2D-factorized,
where factorized means each term is a tensor product of single-qudit Hermitian
operators. As we mentioned in the main results section, finding a constructive proof
that CHP-factorized is in NP is made difficult because if the product of two terms
ℎ and ℎ̂ is equal to 0, then their terms on individual qudits can have an arbitrary
relationship. Namely, it is possible that ℎ𝑞 ℎ̂𝑞 ≠ ±ℎ̂𝑞ℎ𝑞. On the other hand, [BV03]
showed that if all the terms are commuting obey the condition that ℎ𝑞 ℎ̂𝑞 = ±ℎ̂𝑞ℎ𝑞

for each qudit, then the Hamiltonian will be related to a qubit stabilizer Hamiltonian.

The key part to proving the Theorem 146, is to remove the possibility that ℎ𝑞 ℎ̂𝑞 ≠

±ℎ̂𝑞ℎ𝑞 for some 𝑞, without changing the ground space, which will imply a construc-
tive proof by showing a correspondence with stabilizer Hamiltonians. In general,
this removal is hard to achieve. Even for the qubit-CHP-factorized, it is still an open
question whether there exists a constructive proof. However surprisingly, we can
give a constructive proof for qudit-CHP-factorized, when the underlying interaction
graph is 2D, i.e. qudit-CLHP-2D-factorized. Specifically, by using proof of con-
tradiction, firstly we prove that qudit-CLHP-2D-factorized, if there are no separable
qudits, then all terms must commute in a regular way. With a slight clarification, we
show that the qudit-CLHP-2D-factorized without separable qudits is equivalent to
qubit stabilizer Hamiltonian. For the more general case where there are separable
qudits, we then notice that there exists a partition of the 𝑛-qudit space into simple
subspaces, such that the restricted Hamiltonian on each subspace has no separable
qudits. This partition is achieved by the following: when there is a separable qudit
𝑞 w.r.t decomposition H 𝑞 = ⊕ 𝑗H 𝑞

𝑗
, we partition the whole space according to this

decomposition. We recursively perform this partition until for each subspace, the
restricted Hamiltonian has no separable qudits.

Structure of the manuscript
The manuscript is structured as follows. In Sec. 6.2 we give notations and definitions
which are used throughout this manuscript. In Sec. 6.3 we review the necessary

234

definitions and techniques of 𝐶∗-algebra and the Structure Lemma required for
proving that the qutrit-CLHP-2D is in NP. In Sec. 6.4 and Sec. 6.5, we give proofs
for the qutrit-CLHP-2D and the qudit-CLHP-2D-factorized respectively.

The manuscript is written in a way that several proofs can be read separately.
In summary, for readers interested in Lemma 167 (The Decrease Dimension and
Rounding Lemma), the suggested order is Sec. 6.2 and Sec. 6.4. For readers
interested in the qutrit-CLHP-2D, the suggested order is Sec 6.2, Sec. 6.3, Sec. 6.4.
For readers interested in the qudit-CLHP-2D-factorized, the suggested order is
Sec 6.2, Sec. 6.5, and then Sec. 6.3 if necessary.

Conclusion and future work
In this manuscript, we give two new results of the qudit-CLHP-2D. First, we
proved that qutrit-CLHP-2D is in NP, by introducing a non-constructive way of
self-reduction for the qudit-CLHP, when there are semi-separable qudits. This self-
reduction (proven in Lemma 167) works for qudit and might be of independent
interest. Second, we prove that qudit-CLHP-2D-factorized is in NP, by showing
that the Hamiltonian is equivalent to a direct sum of qubit stabilizer Hamiltonian.

One direct question is whether our proof for qutrit-CLHP-2D can be made to be
constructive, that is, whether one can prepare the ground state by polynomial-size
quantum circuits. Aharonov, Kenneth and Vigdorovich [AKV18] proved that the
qubit-CLHP-2D is equivalent to the Toric code permitting boundary. It is natural to
ask whether qutrit-CLHP-2D, or general qudit-CLHP-2D, can have different ground
space properties from the stabilizer Hamiltonians. Another question is whether our
constructive proof for the qudit-CLHP-2D-factorized can be modified to prepare the
ground states of the qubit-CHP (without 2D geometry). Recall that the qubit-CHP
is in NP by a non-constructive method [BV03].

A further question is to extend the frontier of the complexity of CLHP. In particular,
we conjecture that Lemma 167 can be used in more general settings. As we have
mentioned, Lemma 167 works for qudits of any finite dimension, which implies
w.l.o.g we can assume that there are no semi-separable qudits in the Hamiltonian.
To prove qudit-CLHP-2D∈ NP, one must further prove that qudit-CLHP-2D without
semi-separable qudits is restricted in such a way that there exists an NP proof. We
are only able to prove this restriction for the qutrit case. The intuitive reason is
that 3 is a prime while 4 is not. Despite this, Lemma 167, viewed as a techinque
for simplifying qudit-CLHPs by removing semi-separable qudits, might become

235

more powerful when combined with other simplification techniques like removing
terms [AKV18]. It is interesting to see whether one can prove that the qudit-CLHP-
2D∈ NP by combining Lemma 167 and other techinques. Another promising
setting of further utilizing Lemma 167 is considering 3-local qutrit-CLHP, without
any geometry constraints. Recall that [AE11] proved for 3-local qubit-CLHP is in
NP, by showing that after removing all separable qubits, the resulting Hamiltonian
can be viewed as a 2-local qudit-CLHP. It is possible that for 3-local qutrit-CLHP, if
we remove all semi-separable qutrits, the Hamiltonian is again of a 2-local structure,
which will imply 3-local qutrit-CLHP is in NP.

Most known results are trying to show that CLHP is in NP. On the other side, it will
be very interesting to provide any evidence that CLHP might be harder than NP.

6.2 Preliminaries
Notation
Given a Hermitian operator 𝐻, we use 𝜆(𝐻) to denote its ground energy, i.e.
minimum eigenvalue. For two operators, ℎ and ℎ′, we use [ℎ, ℎ′] to denote its
commutator ℎℎ′ − ℎ′ℎ. In particular, [ℎ, ℎ′] = 0 means ℎ, ℎ′ are commuting. Two
sets of operators, 𝑆 and 𝑆, commute if [ℎ, ℎ̂] = 0,∀ℎ ∈ 𝑆, ℎ̂ ∈ 𝑆. For a set of
Hermitian operators {ℎ𝑖}𝑖, we use ker{ℎ𝑖}𝑖 to denote its common 0-eigenspace, i.e.
ker{ℎ𝑖}𝑖 := {|𝜓⟩ | ℎ𝑖 |𝜓⟩ = 0,∀𝑖}. We say ker{ℎ𝑖}𝑖 is non-trivial iff ker{ℎ𝑖}𝑖 ≠ {0}.

Here 0 refers the zero vector. With some abuse of notations, we use 0 both for real
number zero, and zero vector.

For ease of illustration, we also denote a Hermitian 𝐻 =
∑
𝑖 ℎ𝑖 as a set {ℎ𝑖}𝑖. We

say a Hermitian operator Π is a projection if Π2 = Π. When {ℎ𝑖}𝑖 are commuting
projections, we have 𝜆(𝐻) = 0 iff ker {ℎ𝑖}𝑖 is non-trivial.

Let H be a finite-dimensional Hilbert space. We use L(H) to denote the set of
linear operators on H . For Hermitian ℎ, we use ℎ ⪰ 0 to denote ℎ is positive
semidefinite, that is all of its eigenvalues are non-negative. We use 𝐼 to denote the
identity matrix. Let ℎ be a Hermitian operator on Hilbert spaceX = H ⊗Z, we say
ℎ keeps the decomposition H =

⊕
𝑖H𝑖 invariant if ℎ keeps the subspace H𝑖 ⊗ Z

invariant, ∀𝑖. We say the decompositionH =
⊕𝑚

𝑖=1H𝑖 is non-trivial if 𝑚 ≥ 2.

In the following, we use 𝑞 to denote a qudit, andH 𝑞 to denote the Hilbert space of
the qudit 𝑞. Consider an operator ℎ acting on 𝑛 qudits. We say that ℎ acts trivially
on a qudit 𝑞 if ℎ acts as identity on H 𝑞. When ℎ acts non-trivially on only 𝑘 of

236

the 𝑛 qudits, we will interchangeably view ℎ as an operator on 𝑘 qudits or a global
operator on 𝑛 qudits. The meaning will be clear in the context. We use 𝑡𝑟𝑆 () for
tracing out the qudits in 𝑆, and use 𝑡𝑟 () for tracing out all the qudits. We use 𝑆𝑐 to
denote the set of qudits outside 𝑆.

Formal Problem Definitions
Commuting 𝑘-Local Hamiltonian We say a Hermitian operator 𝐻 on 𝑛 qudits is
a commuting 𝑘-local Hamiltonian, if 𝐻 =

∑𝑚
𝑖=1 ℎ𝑖 for 𝑚 = 𝑝𝑜𝑙𝑦(𝑛), where each

ℎ𝑖 only acts non-trivially on 𝑘 qudits, and ℎ𝑖ℎ 𝑗 = ℎ 𝑗ℎ𝑖,∀𝑖, 𝑗 . We allow different
qudits to have different dimensions. In particular, for qutrit 𝑘-local commuting local
Hamiltonian, we allow the dimension of each qudit to be either 1, 2 or 3.

2D and Factorized Variants Consider a 2D square lattice as in Figure 6.1(a), on
each vertex there is a qudit 𝑞, and on each plaquette 𝑝 there is a Hermitian term
acting on the qudits on its four vertices. With some abuse of notations, we also use
𝑝 to denote the Hermitian term on the plaquette 𝑝. We say a commuting (4-local)
Hamiltonian is on 2D if there is an underlying 2D square lattice and plaquette terms
defined as above such that 𝐻 =

∑
𝑝 𝑝 and all {𝑝}𝑝 are pairwise commuting.

We further say a commuting (4-local) Hamiltonian on 2D is factorized, if each 𝑝
is factorized on its vertices, that is 𝑝 = 𝑝𝑞1 ⊗ 𝑝𝑞2 ⊗ 𝑝𝑞3 ⊗ 𝑝𝑞4 for Hermitian terms
𝑝𝑞𝑖 acting on qudit 𝑞𝑖, as shown in Figure 6.1(a). We call 𝑝𝑞𝑖 factors. For the Toric
code, 𝑝 ∈ {𝑋⊗4, 𝑍⊗4}.

Commuting 𝑘-Local Hamiltonian problem Given a family of commuting 𝑘-local
Hamiltonian𝐻 =

∑
𝑖 ℎ𝑖 on 𝑛 qudits and parameters 𝑎, 𝑏 ∈ Rwith 𝑏−𝑎 ≥ 1/𝑝𝑜𝑙𝑦(𝑛).

The commuting 𝑘-local Hamiltonian problem w.r.t (𝐻, 𝑎, 𝑏) is a promise problem
that decides whether 𝜆(𝐻) ≤ 𝑎 or 𝜆(𝐻) ≥ 𝑏. We denote this problem as 𝑘-qudit-
CLHP(𝐻, 𝑎, 𝑏), abbreviated as 𝑘-qudit-CLHP when 𝐻, 𝑎, 𝑏 are clear in the context.
For 2D and 2D-factorized variants of commuting 𝑘-local Hamiltonian problem,
𝑘 = 4 is clear and we abbreviate them as qudit-CLHP-2D and qudit-CLHP-2D-
factorized respectively.

We define a special case of the 𝑘-qudit-CLHP called 𝑘-qudit-CLHP-projection
where each term ℎ𝑖 is a projection, 𝑏 = 1, and 𝑎 = 0. Note that since {ℎ𝑖}𝑖 are
commuting projections, we know 𝜆(𝐻) must be a non-negative integer. Thus in
the No instance we use 𝜆(𝐻) ≥ 1 rather than 𝜆(𝐻) ≥ 1/𝑝𝑜𝑙𝑦(𝑛). We define
qudit-CLHP-2D-projection similarly.

237

More Definitions
Consider a commuting 𝑘-local Hamiltonian 𝐻 =

∑
𝑖 ℎ𝑖 on 𝑛 qudits with Hermitian

terms {ℎ𝑖}𝑖. Although ℎ𝑖 acts non-trivially only on 𝑘 qudits, in this section we view
it as an operator on 𝑛 qudits. We will name the 𝑛 qudits as 𝑞1, 𝑞2, ..., 𝑞𝑛. When we
refer to an arbitrary qudit, we name it as 𝑞.

Definition 148 (Separable qudit) A qudit 𝑞 is separable w.r.t Hermitian terms
{ℎ𝑖}𝑖 if there exists a non-trivial decomposition of its Hilbert spaceH 𝑞 =

⊕𝑚

𝑗=1H
𝑞

𝑗

s.t all ℎ𝑖 keep the decomposition invariant. Here non-trivial means 𝑚 ≥ 2. We use
Π 𝑗 to denote the projection ontoH 𝑞

𝑗
.

The definition of separable is first introduced by [AE11]. Roughly speaking, it says
all the Hermitian terms {ℎ𝑖}𝑖 are block-diagonalized in the same way. We introduce
the notion of semi-separable qudit, which will play a key role in the proof of the
qutrit-CLHP-2D.

Definition 149 (Semi-separable qudit) A qudit 𝑞 is semi-separable w.r.t Hermi-
tian terms {ℎ𝑖}𝑖 if there exists a non-trivial decomposition of its Hilbert space
H 𝑞 =

⊕𝑚

𝑗=1H
𝑞

𝑗
s.t all but one ℎ𝑖 keeps the decomposition invariant. Here non-

trivial means 𝑚 ≥ 2. We use Π 𝑗 as the projection onto H 𝑞

𝑗
. By convention

when referring to a specific qudit, we will denote the term which does not keep the
decomposition invariant as ℎ0.

Semi-separable qudit is a relaxation of separable qudits, in the sense that we allow
one term to be not block-diagonalized w.r.t the decomposition H 𝑞 =

⊕𝑚

𝑗=1H
𝑞

𝑗
.

Note that by the definition of semi-separable, ℎ𝑖 is Hermitian and we have [ℎ𝑖,Π 𝑗] =
0,∀𝑖 ≠ 0,∀ 𝑗 . We will repeatedly use this fact. It is also important to keep in mind
that [ℎ0,Π 𝑗] might not be equal to 0, since we allow ℎ0 not keepingH 𝑞

𝑗
invariant.

6.3 Review of 𝐶∗-algebras and the Structure Lemma
This section is a review of 𝐶∗-algebra and the Structure Lemma [BV03], which
is the key tool to analyze the structures in the commuting local Hamiltonians. A
more detailed proof on those techniques can be seen in Sec. 7.3 of [Gha+15].
The following notations and lemmas are rephrased from [AKV18] and Sec. 7.3 of
[Gha+15].

238

Basics of 𝐶∗-algebras

Definition 150 (𝐶∗-algebra) Let H be a finite dimensional Hilbert space, a 𝐶∗-
algebra is any algebra A ⊆ L(H) which is closed under the † operations and
includes the identity. We say that two 𝐶∗-algebras,A andA′, commute if [𝑎, 𝑎′] =
0,∀𝑎 ∈ A, 𝑎′ ∈ A′.

Definition 151 (Trivial operator and algebra) LetH be a finite-dimensional Hilbert
space. We say an operator ℎ ∈ L(H) acting trivially on H if ℎ = 𝑐𝐼H for some
constant 𝑐. We say a 𝐶∗-algebra on A ⊆ L(H) is trivial if every operators in A
is trivial, i.e. A = {𝑐𝐼H }𝑐. If H = H1 ⊗ H2, we say ℎ acts trivially on H1 if
ℎ = 𝑐𝐼H1 ⊗ ℎ2 for ℎ2 ∈ L(H2).

Definition 152 (Center of 𝐶∗-algebra) The center of a𝐶∗-algebraA is defined as
the set of operators in A which commutes with A, that is

Z(A) := {𝑎 ∈ A|[𝑎, 𝑎′] = 0,∀𝑎′ ∈ A}. (6.1)

Then we introduce the induced algebra, which connects a Hermitian operator and a
𝐶∗-algebra.

Definition 153 (Induced algebra) Let ℎ be a Hermitian operator acting on Hilbert
spaceH ⊗ H ′. Consider the decomposition

ℎ =
∑︁
𝑖, 𝑗

ℎH𝑖 𝑗 ⊗ |𝑖⟩⟨ 𝑗 |
H ′ , (6.2)

where {|𝑖⟩}𝑖 is an orthogonal basis ofH ′. The induced algebra of ℎ onH , denoted
as AH

ℎ
, is defined as the 𝐶∗-algebra generated by {ℎH

𝑖 𝑗
}𝑖 𝑗 ∪ {𝐼H ′}. We abbreviate

AH
ℎ

as Aℎ whenH is clear in the context. We abbreviate AH𝑞
ℎ

as A𝑞

ℎ
for qudit 𝑞.

The induced algebra is independent of the chosen decomposition for Hermitian ℎ.

Lemma 154 (Claim B.3 of [AKV18]) In Definition 153 consider two decomposi-
tions

ℎ =
∑︁
𝑖 𝑗

ℎH𝑖 𝑗 ⊗ 𝑔
H ′
𝑖 𝑗 =

∑︁
𝑖 𝑗

ℎ̂H𝑖 𝑗 ⊗ �̂�
H ′
𝑖 𝑗 , (6.3)

where the sets {𝑔H ′
𝑖 𝑗
}𝑖 𝑗 , {�̂�H

′

𝑖 𝑗
}𝑖 𝑗 are linearly independent respectively. Then the

𝐶∗-algebra generated by {ℎH
𝑖 𝑗
}𝑖 𝑗 is the same as the one generated by {ℎ̂H ′

𝑖 𝑗
}𝑖 𝑗 .

239

By Lemma 154 we know the induced algebra of ℎ onH , i.e. AH
ℎ

in Definition 153,
is independent of the decomposition we choose, thusAH

ℎ
is well-defined. Note that

if there is a decomposition H =
⊕

𝑖H𝑖 such that AH
ℎ

keeps H𝑖 invariant, ∀𝑖, then
it follows that ℎ keepsH𝑖 invariant, ∀𝑖.

The Structure Lemma
The Structure Lemma [Tak+03] says that every finite-dimensional 𝐶∗-algebra is a
direct sum of algebras of all operators on a Hilbert space. See Sec. 7.3 of [Gha+15]
for an accessible proof of the Structure Lemma. The following statement is taken
from [AKV18], which is a classification of finite dimensional 𝐶∗-algebras.

Lemma 155 (The Structure Lemma) Let A ⊆ 𝐿 (H) be a 𝐶∗-algebra where H
is finite dimensional. There exists a direct sum decomposition: H =

⊕
𝑖H𝑖 and a

tensor product structureH𝑖 = H1
𝑖
⊗ H2

𝑖
such that

A =
⊕
𝑖

L(H1
𝑖) ⊗ I(H2

𝑖).

Furthermore, the center of A is spanned by {Π𝑖}𝑖, where Π𝑖 is the projection onto
the subspaceH𝑖.

Given a 𝐶∗-algebra A, we denote the decomposition H =
⊕

𝑖H𝑖 in Lemma 155
as the decomposition induced by A. Note that here we do not argue whether the
decomposition in Lemma 155 is unique or not. However, for clarity when we
mention the decomposition induced by A, we always refer to the same canonical
decomposition. For example, we can set the canonical decomposition to be the one
obtained by the proof in Sec. 7.3 of [Gha+15]. In the following we give some
definitions of decompositions, and a further remark on Lemma 155.

Definition 156 (Trivial, Better decomposition) Consider the decomposition of a
finite-dimensional space H =

⊕𝑚

𝑖=1H𝑖. We say the decomposition is trivial if
𝑚 = 1. We say one decomposition is better 1 than another if it has a bigger 𝑚.

Lemma 155 implies all operators in A keep the decomposition H =
⊕

𝑖H𝑖 in-
variant. It is worth noting that the decomposition induced by A might not be the

1Here we measure “better” only in terms of 𝑚. We do not require any relationship between the
subspaces of the better decomposition H =

⊕𝑚

𝑖=1H𝑖 and the worse H =
⊕𝑚′

𝑖=1H ′𝑖 for 𝑚 > 𝑚′.
Note that even for two commuting algebras A, Â ⊆ 𝐿 (H), the two decompositions of H induced
byA, Â might not be finer than each other. That’s why we use “better” rather than “finer” here. We
define in this way just to ease notations and make our proof more precise.

240

best decomposition that A keeps invariant. In particular, consider the 𝐶∗-algebra
A generated by 𝐼, i.e. {𝑐𝐼}𝑐∈C. The decomposition of H induced by A is trivial,
i.e. H = H1, but A keeps any decomposition of H invariant. Using Lemma 155,
we can analyze how two induced algebras can commute with each other.

Corollary 157 (The Structure Lemma) LetAℎ be a 𝐶∗-algebra acting on a finite
dimensionalH . LetH =

⊕
𝑖H𝑖,H𝑖 = H1

𝑖
⊗ H2

𝑖
, is the decomposition induced by

Aℎ by Lemma 155. Consider another 𝐶∗-algebra Aℎ′ onH which commutes with
Aℎ, we have

Aℎ =
⊕
𝑖

L(H1
𝑖) ⊗ I(H2

𝑖)

Aℎ′ ⊆
⊕
𝑖

I(H1
𝑖) ⊗ L(H2

𝑖).

In particular, all operators in Aℎ,Aℎ′ keep the decompositionH =
⊕

𝑖H𝑖 invari-
ant.

Proof: Firstly by Lemma 155 we can get the decomposition of H induced by Aℎ.
Further let Π𝑖 be the projection onto H𝑖, by Lemma 155 we know Π𝑖 ∈ Z(Aℎ) ⊆
Aℎ. Since Aℎ′ commutes with Aℎ, thus Aℎ′ commutes with Π𝑖, thus Aℎ′ keeps
H𝑖 invariant. Since only 𝑐𝐼 can commute with all operators in a Hilbert space, i.e.
L(𝐻1

𝑖
), thus we finish the proof.

In the following, we give a sufficient condition that implies the decomposition of
space induced by the 𝐶∗-algebra is non-trivial.

Lemma 158 (Non-trivial decomposition) Let A be a 𝐶∗-algebra on a finite di-
mensional H . Denote the decomposition induced by A in Lemma 155 be H =⊕

𝑖H𝑖. Consider another 𝐶∗-algebra A′ on H which commutes with A. If
∃ℎ ≠ 0 ∈ A, ℎ′ ≠ 0 ∈ A′ such that ℎℎ′ = 0. Then the decomposition H =

⊕
𝑖 𝐻𝑖

is non-trivial.

Proof: With contradiction suppose the decomposition is trivial, i.e.

H = H1 = H1
1 ⊗ H

2
1 .

By Corollary 157 we have

ℎ ∈ A = L(H1
1) ⊗ IH2

1
,

ℎ′ ∈ A′ ⊆ IH1
1
⊗ L(H2

1).

Since ℎ ≠ 0, ℎ′ ≠ 0, we have ℎℎ′ ≠ 0 which leads to a contradiction.

241

Partitions Inducted by Commuting Operators
The following definitions will be used throughout Sec. 6.5.

Definition 159 Let ℎ, ℎ′ be two Hermitian terms acting on X ⊗ H ⊗ Z where
𝑑𝑖𝑚(H) = 𝑑. Suppose that ℎ acts trivially onZ, ℎ′ acts trivially on X, [ℎ, ℎ′] = 0,
and at least one of ℎ, ℎ′ acts non-trivially onH . Let the decompositionH =

⊕
𝑖H𝑖

be the better one induced byAH
ℎ

orAH
ℎ′ . We say that ℎ, ℎ′ commute in (𝑑1, ..., 𝑑𝑚)-

way onH if 𝑑𝑖𝑚(H𝑖) = 𝑑𝑖.

Note that by Corollary 157, ℎ, ℎ′ have a tensor-product structure on H𝑖. Since
the dimension of any Hilbert space must be an integer, two terms on a qutrit 𝑞 of
dimension 3 can only commute in the following ways.

Lemma 160 Let ℎ, ℎ′ be two Hermitian terms acting onX⊗H⊗Zwhere 𝑑𝑖𝑚(H) =
3. If ℎ acts trivially on Z, ℎ′ acts trivially on X, [ℎ, ℎ′] = 0, and at least one of
ℎ, ℎ′ acts non-trivially on H . Let the decomposition H =

⊕
𝑖H𝑖 be the better one

induced by AH
ℎ

or AH
ℎ′ . then ℎ, ℎ′ must commute on H via one of the following

ways

• (1, 1, 1)-way:
H = H1

⊕
H2

⊕
H3,

where 𝑑𝑖𝑚(H𝑖) = 1,∀𝑖.

• (1, 2)-way:
H = H1

⊕
H2,

where 𝑑𝑖𝑚(H1) = 1, 𝑑𝑖𝑚(H2) = 2.

• (3)-way:
H = H1,

where 𝑑𝑖𝑚(H1) = 3. One of ℎ, ℎ′ acts trivially on H , and for another the
induced algebra onH is the full algebra L(H).

Proof: By corollary 157, we get a decomposition

H =
⊕
𝑖

H𝑖,

whereH𝑖 = H1
𝑖
⊗H2

𝑖
. Since the dimension of a subspace must be an integer we get

the above 3 possible ways. Further for the (3)-way, by assumption the decomposition

242

induced by both AH
ℎ
,AH

ℎ′ areH = H1. Since 𝑑𝑖𝑚(H1) = 𝑑𝑖𝑚(H) = 3 is a prime,
which means it can only be a tensor product of a one-dimensional Hilbert space
and a three-dimensional Hilbert space. Thus for bothAH

ℎ
,AH

ℎ′ , they equal to either
{𝑐𝐼}𝑐 or L(H). Since at least one of ℎ, ℎ′ acts non-trivially onH , we know one of
the induced algebra are L(H), w.l.o.g suppose AH

ℎ
= L(H). Again by corollary

157, AH
ℎ′ should be {𝑐𝐼}𝑐, thus ℎ′ acts trivially onH .

Similar arguments for qubits are widely used in the proof of the qubit-CLHP-2D is
in NP [Sch11; AKV18]. We summarize it as below.

Lemma 161 If we change 𝑑𝑖𝑚(H) to be 2 in the statement of Lemma 160, then
ℎ, ℎ′ must commute onH via one of the following ways

• (1, 1)-way ifH = H1
⊕
H2 where 𝑑𝑖𝑚(H1) = 𝑑𝑖𝑚(H2) = 1.

• (2)-way ifH = H1 where 𝑑𝑖𝑚(H1) = 2. One of ℎ, ℎ′ acts trivially onH , and
for another the induced algebra onH is the full algebra L(H).

Note that Lemma 160 and Lemma 161 only involve 2 commuting terms ℎ, ℎ′, and
their overlapping space is only H . Those techniques do not directly apply to 2D
Hamiltonians, where some of the terms overlap on 2 qudits.

6.4 Qutrit Commuting Local Hamiltonian on 2D
In this section, we will prove that the qutrit-CLHP-2D is in NP. This proof is
non-constructive. Note that if the qutrit-CLHP-2D-projection is in NP, then the
qutrit-CLHP-2D is in NP. The proof of this statement is in Appendix. 6.6. Thus
in this section, w.l.o.g we assume that all the terms 𝑝 are projections and prove that
the qutrit-CLHP-2D-projection is in NP.

The proof sketch is as follows. In Sec. 6.4 we prove that we can further assume
that there are no semi-separable qudits. In Sec. 6.4 we prove that for the qutrit-
CLHP-2D without semi-separable qudits, there are strong restrictions on the form
of Hamiltonian. Finally, in Sec. 6.4 we prove that with such restrictions, we can use
Schuch’s method [Sch11] again.

Self-reduction for CLHP with semi-separable qudits
Lemmas in this section work for 𝑘-qudit-CLHP-projection 2 , that is we do not
assume that each particle is a qutrit, or the Hamiltonian is on 2D. Recall that 𝑘-

2W.l.o.g we can assume that all terms are projections by Lemma 191.

243

qudit-CLHP-projection is as follows: consider a 𝑘-qudit-CLHP 𝐻 =
∑
𝑖 ℎ𝑖 where

{ℎ𝑖}𝑖 are 𝑘-local projections for some constant 𝑘 , [ℎ𝑖, ℎ 𝑗] = 0 for 𝑖 ≠ 𝑗 . The
question is to determine whether 𝜆(𝐻) = 0 or 𝜆(𝐻) ≥ 1. Note that 𝜆(𝐻) = 0 iff
all the commuting projections {ℎ𝑖}𝑖 have a common 0-eigenvector, i.e. 𝑘𝑒𝑟{ℎ𝑖}𝑖 is
non-trivial. When 𝜆(𝐻) = 0, the common 0-eigenvectors of {ℎ𝑖}𝑖 are the ground
states of 𝐻. We also denote the Hamiltonian 𝐻 as {ℎ𝑖}𝑖.

The key lemma in this section, Lemma 167, is to prove that when there is a semi-
separable qudit, the prover can perform a non-constructive self-reduction for the
𝑘-qudit-CLHP-projection. Here self-reduction means reducing the 𝑘-qudit-CLHP-
projection to another 𝑘-qudit-CLHP-projection, where the Hilbert space of the qudit
has a smaller dimension. Before going into the formal proofs, in the following, we
intuitively explain how Lemma 167 works. Specifically, temporarily assume that
𝜆(𝐻) = 0, and thus we are in the Yes instance and try to prove 𝜆(𝐻) = 0. We begin
with the example when there is a separable qudit, then generalize this idea to the
case of semi-separable qudit, and after that we give the formal proofs.

When there is a separable qudit 𝑞, the prover can easily perform a constructive self-
reduction. Suppose 𝑞 is a separable qudit, by definition, there exists a non-trivial
decomposition

H 𝑞 =
⊕
𝑗

H 𝑞

𝑗

such that all the terms {ℎ𝑖}𝑖 keep the decomposition invariant. Then there must be a
subspaceH 𝑗0 which contains a common 0-eigenstate of {ℎ𝑖}𝑖. Denote the projector
ontoH 𝑞

𝑗0
as Π 𝑗0 . The prover can give the decomposition

H 𝑞 =
⊕
𝑗

H 𝑞

𝑗

and the index 𝑗0. The verifier checks that 𝑞 is a separable qudit, then restricts the
space of 𝑞 fromH 𝑞 toH 𝑞

𝑗0
, and restricts all terms {ℎ𝑖}𝑖 to

{ℎ< 𝑗0>
𝑖

:= Π 𝑗0ℎ𝑖Π 𝑗0}𝑖,

and ask the prover to prove that {ℎ< 𝑗0>
𝑖
}𝑖 has a common 0-eigenstate. By definition

of separable, the decomposition is non-trivial, and thus the new instance {ℎ< 𝑗0>
𝑖
}𝑖

is strictly simpler in the sense that we strictly decrease the dimension of the qudit
𝑞. Note that this method is constructive — the common 0-eigenstate of the new
instance {ℎ< 𝑗0>

𝑖
}𝑖 is also the common 0-eigenstate of the original instance {ℎ𝑖}𝑖.

244

Our key observation is, for 𝑘-qudit-CLHP-projection, even for semi-separable qudit,
the NP prover is able to perform a similar self-reduction, via a non-constructive
way. If we follow the intuition of the separable qudit case, one might try restricting
H 𝑞 → H 𝑞

𝑗
, and transform every term to be Π 𝑗ℎ𝑖Π 𝑗 . The problem is that since

ℎ0 does not keep H 𝑞

𝑗
invariant, and does not commute with Π 𝑗 , the Π 𝑗ℎ0Π 𝑗 is

no longer a projection. One may also doubt whether the resulting Hamiltonian is
commuting. A more serious problem is that, unlike the case for separable qudit,
since ℎ0 does not keep H 𝑞

𝑗
invariant, it is not clear how to connect the ground

states of the original Hamiltonian to the ground states of the new Hamiltonian. We
circumvent the problems by slightly changing the construction — rounding Π 𝑗ℎ0Π 𝑗

to its 1-eigenspace.

Definition 162 (Reduced Hamiltonian) Consider a semi-separable qudit 𝑞 w.r.t
commuting projections {ℎ𝑖}𝑖 and a non-trivial decomposition H 𝑞 =

⊕𝑚

𝑗=1H
𝑞

𝑗
,

where Π 𝑗 is the projection ontoH 𝑞

𝑗
. For any 𝑗 , we define its 𝑗-th reduced Hamilto-

nian to be {ℎ(𝑗)
𝑖
}𝑖, or written as 𝐻 (𝑗) :=

∑
𝑖 ℎ
(𝑗)
𝑖

, where

• ℎ(𝑗)
𝑖

= Π 𝑗ℎ𝑖Π 𝑗 , for 𝑖 ≥ 1.

• ℎ(𝑗)0 is the projection onto the 1-eigenspace of Π 𝑗ℎ0Π 𝑗 . Assign ℎ(𝑗)0 to be 0
when the 1-eigenspace is empty. It is equivalent to interpret ℎ(𝑗)0 is obtained
by rounding all the strictly-smaller-than-1-eigenvalues of Π 𝑗ℎ0Π 𝑗 to 0.

• We restrict the space of 𝑞 fromH 𝑞 toH 𝑞

𝑗
. Note that all terms ℎ(𝑗)

𝑖
including

ℎ
(𝑗)
0 keeps H 𝑞

𝑗
invariant, thus this restriction of space is well-defined. In

summary, the original Hamiltonian 𝐻 acts on H 𝑞 ⊗
(
⊗𝑞′≠𝑞H 𝑞′

)
, the 𝑗-th

reduced Hamiltonian 𝐻 (𝑗) acts onH 𝑞

𝑗
⊗

(
⊗𝑞′≠𝑞H 𝑞′

)
.

Note that the construction of reduced Hamiltonian is consistent with our previous
intuition for the separable qudit — If 𝑞 is separable and ℎ0 also keepsH 𝑞

𝑗
invariant,

then Π 𝑗ℎ0Π 𝑗 is a projection thus ℎ(𝑗)0 = Π 𝑗ℎ0Π 𝑗 . It is worth noting that the reduced
Hamiltonian keeps the “geometry” of the original Hamiltonian.

Lemma 163 In Def. 162, if ℎ𝑖 acts trivially on qudit 𝑞′ w.r.t space H 𝑞′ , then
ℎ
(𝑗)
𝑖

acts trivially on qudit 𝑞′ w.r.t space H 𝑞′ if 𝑞′ ≠ 𝑞 or H 𝑞′

𝑗
if 𝑞′ = 𝑞 . In

particular, if 𝐻 =
∑
𝑖 ℎ𝑖 is 𝑘-local (or on 2D), so does the 𝑗-th reduced Hamiltonian

𝐻 (𝑗) =
∑
𝑖 ℎ
(𝑗)
𝑖

.

245

Proof: We prove that if ℎ0 acts trivially on qudit 𝑞′, then so does ℎ(𝑗)0 , the proof for
𝑖 ≠ 0 is similar. By assumption, ℎ0 acts trivially on 𝑞′, thus ℎ0 = 𝐼H𝑞′ ⊗ ℎ for some
projection ℎ. Recall that 𝑞 is the semi-separable qudit in Def. 162. If 𝑞′ = 𝑞, then

Π 𝑗ℎ0Π 𝑗 = Π 𝑗 ⊗ ℎ (6.4)

= 𝐼H𝑞′
𝑗

⊗ ℎ, (6.5)

is a projection and acts trivially on H 𝑞′

𝑗
. If 𝑞′ ≠ 𝑞, Π 𝑗ℎ0Π 𝑗 = 𝐼H𝑞′ ⊗ Π 𝑗ℎΠ 𝑗 , the

1-eigenspace of Π 𝑗ℎ0Π 𝑗 is also of form 𝐼𝑞′ ⊗ ... thus acts trivially on 𝑞′.

Besides, the terms in the reduced Hamiltonian are commuting projections.

Lemma 164 If in Def. 162, {ℎ𝑖}𝑖 are commuting projections, then for any 𝑗 , the
𝑗-th reduced Hamiltonian {ℎ(𝑗)

𝑖
}𝑖 are commuting projections.

Proof: Notice that, by the definition of semi-separable, we have [ℎ𝑖,Π 𝑗] = 0,∀𝑖 ≠ 0.
It is also important to keep in mind that [ℎ0,Π 𝑗] might not equal 0.

Firstly we can check that all terms {ℎ(𝑗)
𝑖
}𝑖 are projections. Notice that ℎ(𝑗)0 is a

projection by definition. For 𝑖 ≠ 0, since ℎ𝑖 is a projection, and [ℎ𝑖,Π 𝑗] = 0, we
know ℎ

(𝑗)
𝑖

:= Π 𝑗ℎ𝑖Π 𝑗 is a projection 3. In summary, all the terms are projections.

Then we prove that all terms are commuting. Notice that for any 𝑖 ≠ 0, for any 𝑖′,
where 𝑖′ can be 0, and we have

(Π 𝑗ℎ𝑖Π 𝑗) (Π 𝑗ℎ𝑖′Π 𝑗) = (Π 𝑗Π 𝑗) (Π 𝑗ℎ𝑖ℎ𝑖′Π 𝑗) (6.6)

= (Π 𝑗Π 𝑗) (Π 𝑗ℎ𝑖′ℎ𝑖Π 𝑗Π 𝑗) (6.7)

= (Π 𝑗Π 𝑗) (Π 𝑗ℎ𝑖′Π 𝑗ℎ𝑖Π 𝑗) (6.8)

= (Π 𝑗ℎ𝑖′Π 𝑗) (Π 𝑗ℎ𝑖Π 𝑗), (6.9)

where Eq. (6.6) is from [ℎ𝑖,Π 𝑗] = 0, Eq. (6.7) is from [ℎ𝑖, ℎ𝑖′] = 0 and Π2
𝑗
= Π 𝑗 ,

Eq. (6.8) is from [ℎ𝑖,Π 𝑗] = 0. Note that we never assume that ℎ𝑖′ commutes with
Π 𝑗 .

From the Eq. (6.9), we know [ℎ(𝑗)
𝑖
, ℎ
(𝑗)
𝑖′] = 0 if 𝑖 ≠ 0, 𝑖′ ≠ 0. Besides, we know

for 𝑖 ≠ 0, [ℎ(𝑗)
𝑖
,Π 𝑗ℎ0Π 𝑗] = 0. Thus ℎ(𝑗)

𝑖
keeps the 1-eigenspace 4 of Π 𝑗ℎ0Π 𝑗

3The most direct way to understand this is imagining Π 𝑗 , ℎ𝑖 are diagonal 0, 1 matrix, since they
are commuting they can be diagonalized simultaneously.

4We emphasize it is the space spanned by all 1-eigenvector, rather than one of the eigenvector.

246

invariant. Since ℎ(𝑗)
𝑖

is Hermitian, this implies ℎ(𝑗)
𝑖

commutes with the projection
onto this 1-eigenspace of Π 𝑗ℎ0Π 𝑗 , thus [ℎ(𝑗)

𝑖
, ℎ
(𝑗)
0] = 0. In summary, all terms are

commuting.

In summary, we have

Corollary 165 (of Lemma 163 and Lemma 164) If {ℎ𝑖}𝑖 are 𝑘-local (or on 2D)
qudit commuting projections, then so does the 𝑗-th reduced Hamiltonian {ℎ(𝑗)

𝑖
}𝑖.

In addition, we give a cute lemma – Lemma 166. In the lemma description, the
right side of Eq. (6.10) is just rounding all non-zero coefficients (1 − 𝜆) to 1. This
Lemma is simple itself but captures the key idea of “rounding” used in Lemma 167.
It will explain why we can round all non-1 eigenvalue of Π 𝑗ℎ0Π 𝑗 to 0, and only use
the 1-eigenspace.

Lemma 166 Let 𝑓 (𝑗 , 𝜆) be a non-negative function. Then∑︁
𝑗

∑︁
𝜆≤1
(1 − 𝜆) 𝑓 (𝑗 , 𝜆) > 0 iff

∑︁
𝑗

∑︁
𝜆<1

𝑓 (𝑗 , 𝜆) > 0. (6.10)

Proof: Since 𝑓 (𝑗 , 𝜆) is non-negative. It suffices to notice that both the left and the
right inequalities are equivalent to ∃ 𝑗 , ∃𝜆 < 1 s.t. 𝑓 (𝑗 , 𝜆) > 0.

Now we are prepared to state our key lemma, which connects the original Hamil-
tonian to the reduced Hamiltonians. Inspired by Schuch’s idea [Sch11], we will
decompose a non-negative term into summation over many non-negative terms.
However, our method here uses very different decomposition rules, and has key
differences from his, which will be discussed in more detail after the proof.

Lemma 167 (Decrease dimension and rounding) Consider an instance of 𝑘-qudit-
CLHP-projection on 𝑛 qudits, where the 𝑘-local Hamiltonian is denoted as𝐻 =

∑
𝑖 ℎ𝑖

for commuting projections {ℎ𝑖}𝑖. Suppose there is a semi-separable qudit 𝑞 w.r.t.
{ℎ𝑖}𝑖 and non-trivial decomposition H 𝑞 =

⊕𝑚

𝑗=1H
𝑞

𝑗
. For every 𝑗 , define the 𝑗-th

reduced Hamiltonian 𝐻 (𝑗) =
∑
𝑖 ℎ
(𝑗)
𝑖

as in Definition 162. Then

𝜆(𝐻) = 0 iff ∃ 𝑗 s.t 𝜆(𝐻 (𝑗)) = 0. (6.11)

Proof: Denote the 𝑛-qudit space as H = ⊗𝑞H 𝑞. Define H 𝑗 = H 𝑞

𝑗
⊗𝑞′≠𝑞 H 𝑞′ . For

clarity, in this proof, we use 𝐼 for the identity onL(H). When using 𝑡𝑟 (ℎ) we always
view ℎ as an operator onH , and we project out all the qudits, i.e. 𝑡𝑟 (ℎ) :=

∑
𝑖 ⟨𝑖 |ℎ |𝑖⟩

247

where {|𝑖⟩}𝑖 is the computational basis forH . Especially, we view Π 𝑗 as an operator
inH , while view 𝐼H 𝑗

as an operator inH 𝑗 .

Note that {ℎ𝑖}𝑖 are commuting projections, proving 𝜆(𝐻) = 0 is equivalent to show
that

𝑡𝑟

[∏
𝑖

(𝐼 − ℎ𝑖)
]
> 0. (6.12)

Since {ℎ𝑖}𝑖 are commuting, the relative order in the above formula is unimportant.
Recall that Π 𝑗 is the projection onto H 𝑞

𝑗
. By assumption ∀𝑖 ≠ 0, ℎ𝑖 keeps H 𝑞

𝑗

invariant, and thus

𝑡𝑟

[∏
𝑖

(𝐼 − ℎ𝑖)
]
= 𝑡𝑟

[
(𝐼 − ℎ0)

∏
𝑖≠0

(∑︁
𝑗

Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)]
= 𝑡𝑟

[
(𝐼 − ℎ0)

∑︁
𝑗

∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)]
=

∑︁
𝑗

𝑡𝑟

[
(𝐼 − ℎ0)

∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)]

The first equation is from
∑
𝑗 Π 𝑗 = 𝐼, and for 𝑖 ≠ 0, ℎ𝑖 is Hermitian and keeps H 𝑞

𝑗

invariant thus
∑
𝑗 Π 𝑗ℎ𝑖Π 𝑗 = ℎ𝑖. The second equation is from {Π 𝑗 } 𝑗 are orthogonal

from each other.

Besides, since Π2
𝑗
= Π 𝑗 and 𝑡𝑟 (𝑀Π 𝑗) = 𝑡𝑟 (Π 𝑗𝑀) for arbitrary 𝑀 , we have

𝑡𝑟

[∏
𝑖

(𝐼 − ℎ𝑖)
]

=
∑︁
𝑗

𝑡𝑟

[
(𝐼 − ℎ0) Π 𝑗

∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)
Π 𝑗

]
=

∑︁
𝑗

𝑡𝑟

[
Π 𝑗 (𝐼 − ℎ0) Π 𝑗

∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)]
=

∑︁
𝑗

𝑡𝑟

[
Π 𝑗

(
𝐼 − Π 𝑗ℎ0Π 𝑗

)
Π 𝑗

∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)]
. (6.13)

The last equation is from Π2
𝑗
= Π 𝑗 . Note that Π 𝑗ℎ0Π 𝑗 is an 𝑛-qudit Hermitian

operator, and thus it can be diagonalized by a unitary matrix. Consider its eigenvalue

248

decomposition, and denote the eigenvalues and projections onto the corresponding
eigenspace as 𝜆, Π 𝑗 ,𝜆. That is

Π 𝑗ℎ0Π 𝑗 =
∑︁
𝜆

𝜆Π 𝑗 ,𝜆. (6.14)

Note that it might be possible that Π 𝑗 ,𝜆 acts non-trivially on some 𝑞′ ≠ 𝑞 as long as
ℎ0 acts non-trivially on 𝑞′. Besides, by definition of Π 𝑗 ,𝜆 we have∑︁

𝜆

Π 𝑗 ,𝜆 = 𝐼 . (6.15)

Since ℎ0 is a projection, we haveΠ 𝑗ℎ0Π 𝑗 ⪰ 0 and 𝜆 ∈ [0, 1]. Use Eqs. (6.14),(6.15),
and we have that Eq. (6.13) becomes

𝑡𝑟

[∏
𝑖

(𝐼 − ℎ𝑖)
]

=
∑︁
𝑗

𝑡𝑟

[(
Π 𝑗

(∑︁
𝜆≤1
(1 − 𝜆)Π 𝑗 ,𝜆

)
Π 𝑗

) ∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)]
=

∑︁
𝑗

∑︁
𝜆≤1
(1 − 𝜆) 𝑡𝑟

[(
Π 𝑗Π 𝑗 ,𝜆Π 𝑗

) ∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)]
.

Define

𝑓 (𝑗 , 𝜆) := 𝑡𝑟

[(
Π 𝑗Π 𝑗 ,𝜆Π 𝑗

) ∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)]
(6.16)

Since {Π 𝑗 (𝐼−ℎ𝑖)Π 𝑗 }𝑖≠0 are commuting projections, we know
∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)
⪰

0 and is Hermitian. Note that Π 𝑗Π 𝑗 ,𝜆Π 𝑗 ⪰ 0 and is Hermitian. Since the trace of
the product of two positive semi-definite Hermitian matrices is non-negative 5 , we
have that 𝑓 (𝑗 , 𝜆) is non-negative,

𝑓 (𝑗 , 𝜆) ≥ 0,∀ 𝑗 , 𝜆. (6.17)

By Lemma 166, 𝑡𝑟 [∏𝑖 (𝐼 − ℎ𝑖)] > 0 is equivalent to rounding all the non-zero
coefficients in Eq. (6.16) to 1, that is, equivalent as showing that

5Let 𝐴, 𝐵 to be arbitrary two Hermitian matrices where 𝐴 ⪰ 0, 𝐵 ⪰ 0. Since 𝐴, 𝐵 are Hermitian,
consider the eigenvalue decompositions 𝐴 =

∑
𝑖 𝑎𝑖 |𝜙𝑖⟩⟨𝜙𝑖 |, 𝑎𝑖 ≥ 0, 𝐵 =

∑
𝑗 𝑏 𝑗 |𝜓 𝑗⟩⟨𝜓 𝑗 |, 𝑏 𝑗 ≥ 0.

Then 𝑡𝑟 (𝐴𝐵) = ∑
𝑖, 𝑗 𝑎𝑖𝑏 𝑗 |⟨𝜙𝑖 |𝜓 𝑗⟩|2 ≥ 0.

249

∑︁
𝑗

∑︁
𝜆<1

𝑡𝑟

[(
Π 𝑗Π 𝑗 ,𝜆Π 𝑗

) ∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)]
> 0 (6.18)

⇔
∑︁
𝑗

𝑡𝑟

[(
Π 𝑗

(∑︁
𝜆<1

Π 𝑗 ,𝜆

)
Π 𝑗

) ∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)]
> 0

⇔
∑︁
𝑗

𝑡𝑟

[(
Π 𝑗

(
𝐼 − ℎ(𝑗)0

)
Π 𝑗

) ∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)]
> 0 (6.19)

⇔
∑︁
𝑗

𝑡𝑟

[(
Π 𝑗 − ℎ(𝑗)0

) ∏
𝑖≠0

(
Π 𝑗 (𝐼 − ℎ𝑖)Π 𝑗

)]
> 0 (6.20)

⇔
∑︁
𝑗

𝑡𝑟

[∏
𝑖

(
Π 𝑗 − ℎ(𝑗)𝑖

)]
> 0. (6.21)

Eq. (6.19) is from Eq. (6.15) and the definition of ℎ(𝑗)0 . Eq. (6.20) is fromΠ 𝑗ℎ
(𝑗)
0 Π 𝑗 =

ℎ
(𝑗)
0 . Note that Eqs. (6.18-6.21) and Eq. (6.17) imply that

𝑡𝑟

[∏
𝑖

(
Π 𝑗 − ℎ(𝑗)𝑖

)]
=

∑︁
𝜆<1

𝑓 (𝑗 , 𝜆)

≥ 0.

Thus we further have

(6.21) ⇔∃ 𝑗 s.t 𝑡𝑟

[∏
𝑖

(
Π 𝑗 − ℎ(𝑗)𝑖

)]
> 0 (6.22)

⇔∃ 𝑗 s.t 𝑡𝑟 (𝑗)
[∏
𝑖

(
𝐼H 𝑗
− ℎ(𝑗)

𝑖

)]
> 0 (6.23)

where in Eq. (6.23), the notation 𝑡𝑟 (𝑗) means now we restrict the space of qudit 𝑞
fromH 𝑞 →H 𝑞

𝑗
, and the trace is overH 𝑗 . Note that Eq. (6.23) is well defined since∏

𝑖

(
𝐼H 𝑗
− ℎ(𝑗)

𝑖

)
keepsH 𝑗 invariant.

By Lemma 164 we know {ℎ(𝑗)
𝑖
} are commuting projections on H 𝑗 = H 𝑞

𝑗
⊗(

⊗𝑞′≠𝑞H 𝑞
)
. Eq. (6.23) is equivalent to say ∃ 𝑗 such that the 𝑗-th reduced Hamil-

tonian {ℎ(𝑗)
𝑖
}𝑖 has a common 0-eigenvector, where the space of 𝑞 is H 𝑞

𝑗
and the

𝑛-qudit space isH 𝑗 .

Corollary 168 If 𝑘-qudit-CLHP-projection without semi-separable qudit is in NP,
then 𝑘-qudit-CLHP-projection is in NP.

250

Proof: Lemma 167 says when there is a semi-separable qudit, an NP prover can
efficiently reduce the 𝑘-qudit-CLHP-projection to a new 𝑘-qudit-CLHP-projection
by strictly decreasing the dimension of 𝑞. Since 𝑑𝑖𝑚(𝑞) is a constant, an NP prover
can reach to a 𝑘-qudit-CLHP-projection without semi-separable qudit by repeatedly
performing Lemma 167 in 𝑝𝑜𝑙𝑦(𝑛) time.

To help better understand Lemma 167, let us discuss the differences between Lemma
167 and the method used in Schuch’s paper [Sch11]. We both decompose some of
the terms and get a summation of non-negative quantities, but we do such decom-
position and projection in different ways. The key difference is that in our method,
we guarantee all the quantities still correspond to a commuting local Hamiltonian
problem. Our method is more like self-reduction, and we can perform such self-
reduction sequentially until this are no semi-separable qudits. On the contrary, in
Schuch’s method, the two projections he used for each qudit 6 , are not commuting
with each other, and the quantity does not correspond to commuting local Hamilto-
nian anymore, and thus this decomposition technique can only be performed once
rather than sequentially.

Restrictions on the qutrit-CLHP-2D without semi-separable qudit
From now on we will consider the 2D geometry and start our proof for the qutrit-
CLHP-2D-projection is in NP. Recall that we allow qudits in the qutrit-CLHP-2D-
projection to have different dimensions, i.e. either 1,2 or 3. By Corollary 168, we
can assume that there are no semi-separable qudits. This “no semi-separable qudits
condition”, combined with the 2D geometry, will lead to strong restrictions on the
form of the Hamiltonian, i.e. Lemma 170.

We define some notations. As shown in Figure 6.2, when considering the qutrit-
CLHP-2D-projection, for a qudit 𝑞, we use 𝑝1, 𝑝2 to denote the two plaquette
projections in the diagonal direction, 𝑝′1, 𝑝

′
2 to denote the two plaquettes projections

in the anti-diagonal direction. In the whole Sec. 6.4, the relative positions of
𝑞, 𝑝1, 𝑝2, 𝑝

′
1, 𝑝
′
2 will always obey Figure 6.2. We give the following definitions.

Definition 169 Consider a qutrit-CLHP-2D-projection instance, for any qutrit 𝑞 of
dimension 3, use the notations in Figure 6.2. For 𝐴, 𝐵 ∈ {(1, 1, 1), (1, 2), (3)}, we
say that 𝑝1, 𝑝2, 𝑝

′
1, 𝑝
′
2 acting on 𝑞 via 𝐴 × 𝐵-way, if 𝑝1, 𝑝2 commute in 𝐴-way 7 on

6Schuch wrote his proof in terms of the qubit, but the first decomposition part also works for
qudit.

7See Definition 159. More specifically, denote the set of qudits that 𝑝1, 𝑝2 acting non-trivially
on as 𝑆1, 𝑆2, then in Definition 159H := H𝑞 ,X := ⊗𝑞′∈𝑆1/𝑞H𝑞′ ,Z := ⊗𝑞′∈𝑆2/𝑞H𝑞′ .

251

𝑞4 𝑞5

𝑞 𝑞1

𝑞2 𝑞3

𝑝′1 𝑝2 𝑝′4

𝑝1 𝑝′2 𝑝3

Figure 6.2: Notations for the qutrit-CLHP-2D-projection.

H 𝑞, and 𝑝′1, 𝑝
′
2 commute in 𝐵-way on H 𝑞; or verse visa, i.e. 𝑝1, 𝑝2 commute in

𝐵-way onH 𝑞, and 𝑝′1, 𝑝
′
2 commute in 𝐴-way onH 𝑞.

Note that 𝑝1, 𝑝2 only overlap on one qudit – 𝑞 – and thus the above sentence “𝑝1, 𝑝2

commute in A-way on H 𝑞” is well-defined. Same for 𝑝′1, 𝑝
′
2. On the other hand,

𝑝1, 𝑝
′
1 overlap on two qudits, thus we cannot say 𝑝1, 𝑝

′
1 commute in some way on

H 𝑞. Another clarification is, that it is possible that some of the terms are identity,
e.g. 𝑝1 = 𝑝2 = 𝐼, then the situation does not belong to Definition 169. Those cases
will be considered separately and solved easily in the related proofs.

Recall that by Corollary 168, we can assume that there are no semi-separable qudits.
This will imply certain ways of commuting cannot exist for the qutrit-CLHP-2D-
projection.

Lemma 170 (Legal ways of commuting) Consider a qutrit-CLHP-2D-projection
Hamiltonian {𝑝}𝑝, if there is no semi-separable qudit, then there is no qutrit 𝑞 with
𝑑𝑖𝑚(H 𝑞) = 3 such that terms 𝑝1, 𝑝2, 𝑝

′
1, 𝑝
′
2 acting on 𝑞 via (1, 2) × (3)-way or

(1, 2) × (1, 2)-way.

Proof: To ease notations, in this proof we use H to denote the Hilbert space of
𝑞, instead of using H 𝑞. With contradiction, assume that there is a qudit 𝑞 with
𝑑𝑖𝑚(H 𝑞) = 3 such that

• 𝑝1, 𝑝2 commute via (1, 2)-way on H 𝑞. The decomposition w.r.t 𝑝1, 𝑝2 is
H = H1

⊕
H2, where

𝑑𝑖𝑚(H1) = 1,H1 = 𝑠𝑝𝑎𝑛(|𝜓⟩)

8 for some |𝜓⟩ ∈ H 𝑞, and

𝑑𝑖𝑚(H2) = 2,H2 = H1
2 ⊗ H

2
2 .

8One may wonder how could H1 written as H1
1 ⊗ H

2
1 in the Structure Lemma. Conceptually

one can interpretH1
1 = 𝑠𝑝𝑎𝑛{|𝜓⟩}, andH2

1 as a one-dimensional space as scalars {𝑐}𝑐.

252

Since 2 is a prime and 2 = 2 × 1, by definition the decomposition H =

H1
⊕
H2 is induced by 𝑝1 or 𝑝2, and [𝑝1, 𝑝2] = 0, by Corollary 157, one

can check that one of 𝑝1, 𝑝2 must act trivially onH2. W.l.o.g assume that

𝑑𝑖𝑚(H1
2) = 2, 𝑑𝑖𝑚(H2

2) = 1,

and 𝑝2 acts trivially onH2.

• For 𝑝′1, 𝑝
′
2, consider the following cases:

(a) 𝑝′1, 𝑝
′
2 commute via (3)-way. In this case one of 𝑝′1, 𝑝

′
2 must act trivially

on 𝑞. W.l.o.g assume that 𝑝′1 is the term.

(b) 𝑝′1, 𝑝
′
2 commute via (1, 2)-way. Similarly as above notaions for 𝑝1, 𝑝2

we have
H = H ′1

⊕
H ′2,

and define |𝜓′⟩,H ′
𝑖

similarly. And similarly assume that 𝑝′2 acts trivially
onH ′2.

□ Case (a): We will prove 𝑞 is semi-separable, which leads to a contradiction.
Consider the decomposition from (1, 2)-way for 𝑝1, 𝑝2, that is H = H1

⊕
H2.

Since 𝑝′1 acts trivially on 𝑞, it keeps those subspaces invariant as well. In summary,
all terms but 𝑝′2 keep the decomposition invariant. Since the decomposition H =

H1
⊕
H2 is non-trivial, by definition 𝑞 is semi-separable.

□Case (b): Consider term 𝑝2, by definition, 𝑝2 is Hermitian, keepsH1,H2 invariant
and acts trivially onH2. We can write

𝑝2 = |𝜓⟩ ⟨𝜓 | ⊗ 𝐴 + (𝐼𝑞 − |𝜓⟩ ⟨𝜓 |) ⊗ 𝐵. (6.24)

Here 𝐼𝑞 is the identity on H 𝑞. And 𝐴, 𝐵 (might be 0) act non-trivially at most on
the remaining three qudits 𝑞1, 𝑞4, 𝑞5, as in Figure 6.2. Rewriting ℎ := 𝐴− 𝐵, ℎ̂ = 𝐵,
we have

𝑝2 = |𝜓⟩ ⟨𝜓 | ⊗ ℎ + 𝐼𝑞 ⊗ ℎ̂. (6.25)

Since 𝑝2 is Hermitian, we know ℎ, ℎ̂ are Hermitian. Similarly, we can write

𝑝′2 = |𝜓′⟩ ⟨𝜓′| ⊗ ℎ′ + 𝐼𝑞 ⊗ ℎ̂′, (6.26)

253

where ℎ′, ℎ̂′ are Hermitian and act non-trivially at most on 𝑞1, 𝑞2, 𝑞3. If ℎ = 0
then 𝑝2 acts trivially on 𝑞. Using a similar argument as case (a) we conclude 𝑞 is
semi-separable. The case for ℎ′ = 0 is similar. So w.l.o.g, we assume that

ℎ ≠ 0, ℎ′ ≠ 0. (6.27)

In the following, we are going to prove that either 𝑞 or 𝑞1 is semi-separable, which
will lead to a contradiction. W.l.o.g assume that both |𝜓⟩ , |𝜓′⟩ are unit vectors.

• If |𝜓⟩ = 𝑒𝑖𝜃 |𝜓′⟩ for some 𝜃: then by definition, 𝑝1, 𝑝2, 𝑝
′
1, 𝑝
′
2 keep H1,H2

invariant. Thus 𝑞 is separable.

• If |𝜓⟩ ⊥ |𝜓′⟩: then one can verify that both 𝑝2, 𝑝
′
2 keeps H1,H2 invariant,

since 𝑝1 also keeps H1,H2 invariant. By definition we know 𝑞 is semi-
separable.

• If |⟨𝜓 |𝜓′⟩| ≠ 0,≠ 1: notice that

𝑝2𝑝
′
2 = ⟨𝜓 |𝜓′⟩ |𝜓⟩ ⟨𝜓′| ⊗ ℎℎ′ + |𝜓⟩ ⟨𝜓 | ⊗ ℎℎ̂′

+ |𝜓′⟩ ⟨𝜓′| ⊗ ℎ̂ℎ′ + 𝐼 ⊗ ℎ̂ℎ̂′,
𝑝′2𝑝2 = ⟨𝜓′|𝜓⟩ |𝜓′⟩ ⟨𝜓 | ⊗ ℎ′ℎ + |𝜓′⟩ ⟨𝜓′| ⊗ ℎ′ℎ̂

+ |𝜓⟩ ⟨𝜓 | ⊗ ℎ̂′ℎ + 𝐼 ⊗ ℎ̂′ℎ̂.

Since 𝑑𝑖𝑚(𝑞) = 3, there exists |𝜁⟩ ≠ 0 ∈ H 𝑞 s.t

|𝜁⟩ ⊥ |𝜓⟩ , |𝜁⟩ ⊥ |𝜓′⟩ .

By 𝑝2𝑝
′
2 = 𝑝′2𝑝2 we have ⟨𝜁 |𝑝2𝑝

′
2 |𝜁⟩ = ⟨𝜁 |𝑝

′
2𝑝2 |𝜁⟩, and thus

ℎ̂ℎ̂′ = ℎ̂′ℎ̂. (6.28)

• Since |⟨𝜓 |𝜓′⟩| ≠ 1, there exists |𝜙⟩ such that

|𝜙⟩ ⊥ |𝜓⟩ , |𝜙⟩ ̸⊥ |𝜓′⟩ .

By Eq. (6.28) and ⟨𝜙|𝑝2𝑝
′
2 |𝜙⟩ = ⟨𝜙 |𝑝

′
2𝑝2 |𝜙⟩ we have

ℎ̂ℎ′ = ℎ′ℎ̂. (6.29)

• Similarly to the above point, we have

ℎℎ̂′ = ℎ̂′ℎ. (6.30)

254

• Finally by Eqs. (6.28) (6.29) (6.30) and 𝑝2𝑝
′
2 = 𝑝′2𝑝2 we have

⟨𝜓 |𝜓′⟩ |𝜓⟩ ⟨𝜓′| ⊗ ℎℎ′ = ⟨𝜓′|𝜓⟩ |𝜓′⟩ ⟨𝜓 | ⊗ ℎ′ℎ. (6.31)

Left multiplying ⟨𝜙 | to both sides of Eq. (6.31), and use the fact that ⟨𝜓′|𝜓⟩ ≠
0, ⟨𝜙 |𝜓⟩ = 0, ⟨𝜙 |𝜓′⟩ ≠ 0, we conclude that

ℎ′ℎ = 0.

Similarly, we would get
ℎℎ′ = 0.

In summary, we showed that

(i) ℎ, ℎ̂, ℎ′, ℎ̂′ are Hermitian.

(ii) {ℎ, ℎ̂} commute with {ℎ′, ℎ̂′}.

(iii) ℎℎ′ = ℎ′ℎ = 0.

To ease the notations, we abbreviate the induced algebra of Hermitian term 𝑝 on 𝑞,
i.e. AH𝑞

𝑝 , as A𝑞
𝑝.

Intuitively the above (𝑖) (𝑖𝑖) (𝑖𝑖𝑖) say that A𝑞1
𝑝2 and A𝑞1

𝑝′2
should commute with each

other, and some elements are orthogonal to each other. We will show that this implies
𝑞1 is semi-separable. In the following we write down a careful proof, especially
because ℎ, ℎ̂ are operators which might act non-trivially on three qudits 𝑞1, 𝑞4, 𝑞5

instead of only on 𝑞1.

Let {|𝑖⟩⟨ 𝑗 |𝑞4,𝑞5}𝑖 𝑗 be the computational basis for 𝑞4, 𝑞5, similarly {|𝑘⟩⟨𝑙 |𝑞2,𝑞3}𝑘𝑙 for
𝑞2, 𝑞3. Consider the decomposition of ℎ, ℎ̂, we rewrite 𝑝2 as

𝑝2 = |𝜓⟩ ⟨𝜓 | ⊗
∑︁
𝑖 𝑗

ℎ
𝑞1
𝑖 𝑗
⊗ |𝑖⟩⟨ 𝑗 |𝑞4,𝑞5

+ 𝐼𝑞 ⊗
∑︁
𝑖 𝑗

ℎ̂
𝑞1
𝑖 𝑗
⊗ |𝑖⟩⟨ 𝑗 |𝑞4,𝑞5 ,

where {|𝑖⟩⟨ 𝑗 |𝑞4,𝑞5}𝑖 𝑗 are linearly independent. Since {|𝜓⟩ ⟨𝜓 | , 𝐼𝑞} are linearly inde-
pendent, we know

{|𝜓⟩ ⟨𝜓 | ⊗ |𝑖⟩⟨ 𝑗 |𝑞4,𝑞5}𝑖 𝑗 ∪ {𝐼 ⊗ |𝑖⟩⟨ 𝑗 |𝑞4,𝑞5}𝑖 𝑗

255

are linearly independent. By lemma 154, A𝑞1
𝑝2 is generated by {ℎ𝑞1

𝑖 𝑗
}𝑖 𝑗 ∪ {ℎ̂𝑞1

𝑖 𝑗
}𝑖 𝑗 .

Define similar notations for 𝑝′2, we will haveA𝑞1
𝑝′2

is generated by {ℎ′𝑞1
𝑘𝑙
}𝑘𝑙 ∪{ℎ̂′𝑞1

𝑘𝑙
}𝑘𝑙 .

Note that {𝑞4, 𝑞5} and {𝑞2, 𝑞3} are disjoint, the fact that [ℎ, ℎ′] = 0 implies the two
sets {ℎ𝑞1

𝑖 𝑗
}𝑖 𝑗 and {ℎ

′𝑞1
𝑘𝑙
}𝑘𝑙 commute. Similarly, (ii) implies the generators of A𝑞1

𝑝2

and A𝑞1
𝑝′2

commute, thus A𝑞1
𝑝2 and A𝑞1

𝑝′2
commute. If we name the 4 terms on 𝑞1

as 𝑝′2, 𝑝2, 𝑝3, 𝑝
′
4 as in Figure 6.2. Let H̃ be the Hilbert space of 𝑞1, consider the

decomposition H̃ =
⊕

𝑖 H̃𝑖 induced by the induced algebra of 𝑝2 on 𝑞1, i.e. A𝑞1
𝑝2 .

By Corollary 157 we know all A𝑞1
𝑝 , 𝑝 ≠ 𝑝′4 keeps the decomposition invariant.

Thus all terms expect that 𝑝′4 keeps the decomposition H̃ =
⊕

𝑖 H̃𝑖 invariant.

Furthermore, (𝑖𝑖𝑖) implies

ℎ
𝑞1
𝑖 𝑗
ℎ
′𝑞1
𝑘𝑙

= 0,∀𝑖, 𝑗 , 𝑘, 𝑙.

By Eq. (6.27) we assume that ℎ ≠ 0, ℎ′ ≠ 0, thus there exist 𝑖 𝑗 , 𝑘𝑙 such that

ℎ
𝑞1
𝑖 𝑗

≠ 0, ℎ′𝑞1
𝑘𝑙

≠ 0.

Consider Lemma 158, let

A := A𝑞1
𝑝2 ,A

′ := A𝑞1
𝑝′2
,

we know the previous decomposition H̃ =
⊕

𝑖 H̃𝑖 induced by A = A𝑞1
𝑝2 is non-

trivial.

Combining the implications of (𝑖) (𝑖𝑖) (𝑖𝑖𝑖), we conclude 𝑞1 is semi-separable, which
leads to a contradiction.

Schuch’s method and its extensions
Schuch [Sch11] proved that the qubit-CLHP-2D-projection is in NP. In this section,
we illustrate that his idea can be generalized to prove that a subclass of qudit-CLHP-
2D-projection is in NP, see Theorem 175. In the next section, i.e. Sec. 6.4, we will
show that the qutrit-CLHP-2D-projection without semi-separable qudits falls into
this subclass.

The proof for Theorem 175 is similar to [Sch11]. The main difference is that we
generalize the definitions of removable qudits from Lemma 173 to Lemma 172.
This generalization brings some subtlety so we write the proof in detail even though
the proof proceeds in a similar way as [Sch11].

256

Definition 171 (Removable qudit) For qudit-CLHP-2D-projection, consider a qu-
dit 𝑞. Denote the terms acting on it as 𝑝1, 𝑝2, 𝑝

′
1, 𝑝
′
2, as shown in Figure 6.2. Denote

H 𝑞 asH . Suppose there exists a decompositionH =
⊕

𝑖H𝑖 such that both 𝑝1, 𝑝2

keep the decomposition invariant. Let 𝑃𝑖 be the projection ontoH𝑖. Similarly define
the decompositionH =

⊕
𝑗 H ′𝑗 and 𝑃′

𝑗
for for 𝑝′1, 𝑝

′
2. We say a qudit 𝑞 is removable

if one of the following holds:

(i) ∀𝑖, 𝑗 , at most one of 𝑝1, 𝑝2 acts non-trivially onH𝑖, at most one of 𝑝′1, 𝑝
′
2 acts

non-trivially onH ′
𝑗
, and 𝑟𝑎𝑛𝑘 (𝑃𝑖𝑃

′
𝑗
) ≤ 1 9 .

(ii) 𝑝′1, 𝑝
′
2 act trivially on H . Besides, H has a tensor-product structure as

H = Ĥ1 ⊗ Ĥ2, such that 𝑝1 ∈ L(Ĥ1) ⊗ IĤ2
, 𝑝2 ∈ IĤ1

⊗ L(Ĥ2). Or similar
conditions hold when exchanging the name of 𝑝1, 𝑝2 with 𝑝′1, 𝑝

′
2.

We give some examples of removable qudits.

Lemma 172 For qudit-CLHP-2D-projection, for any qudit 𝑞, if 𝑝1, 𝑝2 commute in
(1, 1, ..., 1)-way on H 𝑞, 𝑝′1, 𝑝

′
2 commute in (𝑑′1, ..., 𝑑

′
𝑡)-way on H 𝑞 where 𝑑′

𝑖
is a

prime, ∀𝑖. Then 𝑞 is removable.

Proof: Denote H := H 𝑞. Let H =
⊕

𝑖H𝑖 be the decomposition w.r.t to 𝑝1, 𝑝2

and (1, 1, ..., 1)-way. Let H ′ =
⊕

𝑖H ′𝑖 be the decomposition w.r.t to 𝑝′1, 𝑝
′
2 and

(𝑑′1, ..., 𝑑
′
𝑡)-way. Let 𝑃𝑖,𝑃′𝑗 be the projections ontoH𝑖,H ′𝑗 .

By Definition 159, the way of commuting is obtained by the Structure Lemma. Then
by Corollary 157, we know H ′

𝑗
has a tensor-product structure as H ′

𝑗
= H ′1

𝑗
⊗ H ′2

𝑗
,

where

𝑝′1 =
⊕
𝑖

L(H ′1
𝑗) ⊗ 𝐼H ′2

𝑗
(6.32)

𝑝′2 ⊆
⊕
𝑖

𝐼H ′1
𝑗
⊗ L(H ′2

𝑗). (6.33)

Since 𝑑′
𝑗
is a prime, we know that at most one of 𝑝′1, 𝑝

′
2 acts non-trivially onH ′

𝑗
. Sim-

ilarly, since 1 is a prime, at most one of 𝑝1, 𝑝2 acts non-trivially onH𝑖. Furthermore,
note that 𝑟𝑎𝑛𝑘 (𝑃𝑖) = 1, ∀𝑖. Thus 𝑟𝑎𝑛𝑘 (𝑃𝑖𝑃′𝑗) ≤ min{𝑟𝑎𝑛𝑘 (𝑃𝑖), 𝑟𝑎𝑛𝑘 (𝑃′𝑗)} = 1.

Lemma 173 For the qubit-CLHP-2D-projection, for any qubit 𝑞, if one of {𝑝1, 𝑝2}
or {𝑝′1, 𝑝

′
2} commute in (1, 1)-way onH 𝑞, then 𝑞 is removable.

9The rank is w.r.t viewing 𝑃𝑖 , 𝑃′𝑗 as local operators in L(H𝑞).

257

Proof: Denote H := H 𝑞. W.l.o.g assume 𝑝1, 𝑝2 commute in (1, 1)-way w.r.t
H =

⊕
𝑖H𝑖. If both 𝑝′1, 𝑝

′
2 acts trivially on 𝑞, then 𝑝′1, 𝑝

′
2 also keep H =

⊕
𝑖H𝑖

invariant. One can check that Definition. 171 (i) holds. If at least one of 𝑝′1, 𝑝
′
2 acts

non-trivially on H , the by Lemma 161 𝑝′1, 𝑝
′
2 must commute on H via (1, 1) or

(2)-way. By Lemma 172, 𝑞 is removable.

We name those qudits as removable since we will “remove” them in the proof of
Theorem 175. Before proving Theorem 175, we summarize [Sch11]’s result as
below. Although written in terms of qubit, [Sch11]’s proof directly works for the
following lemma for qudits.

Lemma 174 (One-dimensional structure [Sch11]) Consider a qudit-CLHP-2D-
projection Hamiltonian 𝐻 =

∑
𝑝 𝑝 on 𝑛 qudits. Let 𝑆 be the set of qudits where

∀𝑞 ∈ 𝑆, there exist 𝑝 ∈ {𝑝1, 𝑝2} and 𝑝′ ∈ {𝑝′1, 𝑝
′
2}, such that both the induced

algebra of 𝑝, 𝑝′ onH 𝑞 are the full algebra L(H 𝑞).

Then for any quantum channels {N 𝑞
𝑝 : L(H 𝑞) → C}𝑝,𝑞, the product∏

𝑝

(
⊗𝑞∈𝑆𝐶N

𝑞
𝑝

)
[𝐼 − 𝑝]

has a one-dimensional structure, and thus

𝑡𝑟

(∏
𝑝

(
⊗𝑞∈𝑆𝐶N

𝑞
𝑝

)
[𝐼 − 𝑝]

)
can be computed in classical polynomial time.

Here
(
⊗𝑞∈𝑆𝐶N

𝑞
𝑝

)
[𝐼 − 𝑝] means applying ⊗𝑞∈𝑆𝐶N

𝑞
𝑝 on (𝐼 − 𝑝), which can be

interpreted as tracing out qudits in 𝑆𝑐.

Theorem 175 Consider a qudit-CLHP-2D-projection instance, if for each qudit 𝑞,
either

(a) 𝑞 is removable, or

(b) There exists 𝑝 ∈ {𝑝1, 𝑝2} and 𝑝′ ∈ {𝑝′1, 𝑝
′
2} such that both the induced

algebra of 𝑝, 𝑝′ onH 𝑞 are the full algebra L(H 𝑞).

Then the corresponding qudit-CLHP-2D-projection instance is in NP.

258

Proof: The proof follows the idea in [Sch11]. The main difference is that we
generalize the definitions of removable qudits from Lemma 173 to Lemma 172.
This generalization brings some subtlety so we write the proof in detail even though
the proof proceeds in a similar way as Schuch’s.

Imagine the 2D grid as a chess board and color the plaquettes as black and white.
Denote the set of the black plaquettes as P𝐵, the white plaquettes as P𝑊 . Use the
same notations as Definition 171, for any removable qudit 𝑞, w.l.o.g assume that
𝑝1, 𝑝2 are black, 𝑝′1, 𝑝

′
2 are white. If 𝑞 satisfies Definition 171 (i), one can notice

that

𝑡𝑟
[
(𝐼 − 𝑝1) (𝐼 − 𝑝2) (𝐼 − 𝑝′1) (𝐼 − 𝑝

′
2)

]
(6.34)

=𝑡𝑟

[(∑︁
𝑖

𝑃𝑖 (𝐼 − 𝑝1) (𝐼 − 𝑝2)𝑃𝑖

) (∑︁
𝑗

𝑃
′
𝑗 (𝐼 − 𝑝′1) (𝐼 − 𝑝

′
2)𝑃

′
𝑗

)]
=
∑︁
𝑖, 𝑗

𝑡𝑟

[
(𝑃𝑖 (𝐼 − 𝑝1) (𝐼 − 𝑝2)𝑃𝑖)

(
𝑃
′
𝑗 (𝐼 − 𝑝′1) (𝐼 − 𝑝

′
2)𝑃

′
𝑗

)]
. (6.35)

Note that by definition of removable qudit (i), at most one of 𝑝1, 𝑝2 acts non-
trivially on H𝑖, w.o.l.g assume that it is 𝑝1. This means 𝑃𝑖 (𝐼 − 𝑝2)𝑃𝑖 is 𝑃𝑖 tensor
some operator. Formally,

𝑃𝑖 (𝐼 − 𝑝2)𝑃𝑖 = 𝑡𝑟𝑞 (𝑃𝑖 (𝐼 − 𝑝2)𝑃𝑖)/𝑡𝑟𝑞 (𝑃𝑖) ⊗ 𝑃𝑖
= 𝑡𝑟𝑞 (𝑃𝑖 (𝐼 − 𝑝2)𝑃𝑖)/𝑡𝑟𝑞 (𝑃𝑖) ⊗ 𝐼𝑞 · 𝑃𝑖

Similarly, we assume that 𝑝′1 acts non-trivially onH ′
𝑗
. We have

𝑡𝑟

(
𝑃𝑖 (𝐼 − 𝑝1) (𝐼 − 𝑝2)𝑃𝑖𝑃

′
𝑗 (𝐼 − 𝑝′1) (𝐼 − 𝑝

′
2)𝑃

′
𝑗

)
(6.36)

= 𝑡𝑟

(
𝑃𝑖 (𝐼 − 𝑝1)𝑃𝑖 (𝐼 − 𝑝2)𝑃𝑖𝑃

′
𝑗 (𝐼 − 𝑝′1)𝑃 𝑗 (𝐼 − 𝑝

′
2)𝑃

′
𝑗

)
= 𝑡𝑟

(
𝑃𝑖 (𝐼 − 𝑝1) · 𝑡𝑟𝑞 (𝑃𝑖 (𝐼 − 𝑝2)𝑃𝑖)/𝑡𝑟𝑞 (𝑃𝑖) ⊗ 𝐼𝑞

𝑃𝑖 · 𝑃
′
𝑗 (𝐼 − 𝑝′1) · 𝑡𝑟𝑞 (𝑃

′
𝑗 (𝐼 − 𝑝′2)𝑃

′
𝑗)/𝑡𝑟𝑞 (𝑃′𝑗) ⊗ 𝐼𝑞 · 𝑃

′
𝑗

)
Note that 𝑇𝑟 (𝑀𝑁) = 𝑇𝑟 (𝑁𝑀) for any 𝑀, 𝑁 . Further, by definition of (i), there
exist un-normalized vectors |𝛼⟩𝑞 , |𝛽⟩𝑞 on 𝑞 such that 𝑃𝑖𝑃′𝑗 = |𝛼⟩𝑞 ⟨𝛽 |𝑞. Then:

=𝑡𝑟

(
|𝛽⟩𝑞 ⟨𝛼 |𝑞 (𝐼 − 𝑝1) · 𝑡𝑟𝑞 (𝑃𝑖 (𝐼 − 𝑝2)𝑃𝑖)/𝑡𝑟𝑞 (𝑃𝑖) ⊗ 𝐼𝑞

|𝛼⟩𝑞 ⟨𝛽 |𝑞 (𝐼 − 𝑝′1) · 𝑡𝑟𝑞 (𝑃
′
𝑗 (𝐼 − 𝑝′2)𝑃

′
𝑗)/𝑡𝑟𝑞 (𝑃′𝑗) ⊗ 𝐼𝑞

)
=𝑡𝑟

(
⟨𝛼 |𝑞 (𝐼 − 𝑝1) |𝛼⟩𝑞 · 𝑡𝑟𝑞 (𝑃𝑖 (𝐼 − 𝑝2)𝑃𝑖)/𝑡𝑟𝑞 (𝑃𝑖)

⟨𝛽 |𝑞 (𝐼 − 𝑝′1) |𝛽⟩𝑞 · 𝑡𝑟𝑞 (𝑃
′
𝑗 (𝐼 − 𝑝′2)𝑃

′
𝑗)/𝑡𝑟𝑞 (𝑃′𝑗)

)
(6.37)

259

Recall that {𝑝1, 𝑝2, 𝑝
′
1, 𝑝
′
2} are commuting projections. In summary, the above

calculations show two things:

• In Eq. (6.35), each quantity, i.e. Eq. (6.36), is the trace of the product of
two positive semi-definite Hermitian matrices, and thus each quantity is non-
negative. Proving

𝑡𝑟 ((𝐼 − 𝑝1) (𝐼 − 𝑝2) (𝐼 − 𝑝′1) (𝐼 − 𝑝
′
2)) > 0

is equivalent to show that one of the quantitys is > 0.

• In Eq. (6.37), we somehow “project out qudit 𝑞” for all terms. Then calculating
Eq. (6.36) is equivalent to computing the trace of a term without qudit 𝑞, i.e.
Eq. (6.37). This is why 𝑞 is named removable.

• Also note that in Eqs. (6.36)-(6.37), we do not change the relative order of
(𝐼 − 𝑝𝑖) or (𝐼 − 𝑝′

𝑖
). This is important when considering multiple removable

qudits at the same time.

If 𝑞 satisfies Definition 171 (ii), we can also “tracing out 𝑞”. Denote 𝑑𝑞 as the
dimension of 𝑞. Interpret 𝑞 as two qudits 𝑞1, 𝑞2 w.r.t Ĥ1, Ĥ2, we have

𝑡𝑟
[
(𝐼 − 𝑝1) (𝐼 − 𝑝2) (𝐼 − 𝑝′1) (𝐼 − 𝑝

′
2)

]
=𝑡𝑟

[
𝑡𝑟𝑞 ((𝐼 − 𝑝1))/𝑑𝑞2 · 𝑡𝑟𝑞 (𝐼 − 𝑝2)/𝑑𝑞1 · 𝑡𝑟𝑞 ((𝐼 − 𝑝′1))/𝑑𝑞 · 𝑡𝑟𝑞 ((𝐼 − 𝑝

′
2))/𝑑𝑞

]
(6.38)

Eqs. (6.34)-(6.38) illustrate how to project out a single removable qudit. Simi-
larly, when calculating 𝑡𝑟 (∏𝑝 (𝐼 − 𝑝)) we can project out all the removable qudits.
Specifically, we first perform Eq. (6.34)-Eq. (6.35) simultaneously for all removable
qudits, and then perform Eq. (6.36)-(6.38) to project out all removable qudits. It is
worth noting that we should be careful about the relative orders of each (𝐼 − 𝑝) —
To perform the calculations in Eq. (6.34)-Eq. (6.35), one requires that for each 𝑞,
terms 𝑝1, 𝑝2 are put in the left, and 𝑝′1, 𝑝

′
2 in the right.

To perform such decomposition for all removable qudits simultaneously, it suffices
to put all the black terms on the left and all the white terms on the right. Denote the

260

set of removable qudits as 𝑅, we have

𝑡𝑟

[∏
𝑝

(𝐼 − 𝑝)
]
= 𝑡𝑟

∏
𝑝∈P𝐵
(𝐼 − 𝑝)

∏
𝑝′∈P𝑊

(𝐼 − 𝑝′)

=
∑︁

𝑖𝑞 , 𝑗𝑞 ; 𝑞∈𝑅
𝑡𝑟

∏
𝑞∈𝑅

𝑃
𝑞

𝑖𝑞

©«
∏
𝑝∈P𝐵
(𝐼 − 𝑝)ª®¬

∏
𝑞∈𝑅

𝑃
𝑞

𝑖𝑞

∏
𝑞∈𝑅

𝑃
′𝑞
𝑗𝑞

©«
∏
𝑝∈P𝑊
(𝐼 − 𝑝)ª®¬

∏
𝑞∈𝑅

𝑃
′𝑞
𝑗𝑞

(6.39)

Then for each removable qudit 𝑞, we perform similar operations as Eq. (6.36)-(6.38)
to project out 𝑞 .

Finally for the quantity in Eq. (6.39), we project out all removable qudits for every
(𝐼 − 𝑝). All the remaining qudits originally correspond to type (b) in the Theorem
description. By Lemma 174 we know the quantity in Eq. (6.39) can be computed in
polynomial time. Note that all terms in

∏
𝑝∈P𝐵 (𝐼 − 𝑝) are commuting and positive,

and similarly for
∏

𝑝∈P𝑊 (𝐼 − 𝑝). Thus

𝑡𝑟

∏
𝑞∈𝑅

𝑃
𝑞

𝑖𝑞

©«
∏
𝑝∈P𝐵
(𝐼 − 𝑝)ª®¬

∏
𝑞∈𝑅

𝑃
𝑞

𝑖𝑞

∏
𝑞∈𝑅

𝑃
′𝑞
𝑗𝑞

©«
∏
𝑝∈P𝑊
(𝐼 − 𝑝)ª®¬

∏
𝑞∈𝑅

𝑃
′𝑞
𝑗𝑞

 ≥ 0.

In summary, proving 𝑡𝑟 (∏𝑝 (𝐼 − 𝑝)) > 0 is equivalent to proving that one of the
quantity in Eq. (6.39) is > 0, where the quantity is tracing a product which has
a one-dimensional structure, thus can be computed in classical polynomial time.
Thus we conclude the qudit-CLHP-2D-projection which satisfies Theorem 175’s
conditions is in NP.

Qutrit-CLHP-2D is in NP
Finally, to prove that the qutrit-CLHP-2D is in NP, it suffices to notice that the
qutrit-CLHP-2D-projection without semi-separable qudit satisfying conditions in
Theorem 175.

Lemma 176 For any qutrit-CLHP-2D-projection instance without semi-separable
qudit, every qudit satisfies one of the two conditions in Theorem 175.

Proof: Consider any qudit 𝑞. If 𝑑𝑖𝑚(𝑞) = 1, it is removable due to Definition
171 (i). W.l.o.g. assume 𝑑𝑖𝑚(𝑞) ∈ {2, 3}. If 𝑝′1, 𝑝

′
2 act trivially on H 𝑞, since

𝑞 is not semi-separable, we know 𝑝1, 𝑝2 must commute via (3)-way or (2)-way.

261

Furthermore, by the Structure Lemma, i.e. Corollary 157, we know there is a tensor
product structure ofH 𝑞 = H 𝑞,1 ⊗ H 𝑞,2 such that

𝑝1 ∈ L(H 𝑞,1) ⊗ IH𝑞,2 ,

𝑝2 ∈ IH𝑞,1 ⊗ L(H 𝑞,2).

Thus 𝑞 is removable due to Definition 171 (ii). A similar argument works when
𝑝1, 𝑝2 act trivially on H 𝑞. Thus w.l.o.g, we assume that at least one of 𝑝1, 𝑝2, and
one of 𝑝′1, 𝑝

′
2 act non-trivially on 𝑞. Then

• When 𝑑𝑖𝑚(𝑞) = 2, by Lemma 161 we know either one of {𝑝1, 𝑝2} or {𝑝′1, 𝑝
′
2}

commute in (1, 1)-way, or both of them commute in (2)-way. For the first
case, 𝑞 is removable due to Lemma 173. For the second case, 𝑞 satisfies
Theorem 175 condition (b).

• When 𝑑𝑖𝑚(𝑞) = 3, since there is no semi-separable qudit, for any qudit 𝑞,
by Lemma 170 and Lemma 160, we know either one of {𝑝1, 𝑝2} or {𝑝′1, 𝑝

′
2}

commute in (1, 1, 1)-way, then 𝑞 is removable by Lemma 172. Or both of
them commute in (3)-way, then 𝑞 satisfies Theorem 175 condition (b).

Combined with Corollary 192, Corollary 168, Lemma 176 and Theorem 175, we
finally conclude that

Corollary 177 The qutrit-CLHP-2D problem is in NP.

6.5 Factorized commuting local Hamiltonian on 2D
In this section, we give a constructive proof to show that qudit-CLHP-2D-factorized
is in NP, by proving that qudit-CLHP-2D-factorized is equivalent to a direct sum
of qubit stabilizer Hamiltonian (see Theorem 189). Note that in this section we do
not assume that {𝑝}𝑝 are projections. The reason for this is that if we start with
an arbitrary qudit-CLHP-2D-factorized Hamiltonian, such as the Toric code, and
replace each term with a projection that preserve the kernel (as in Lemma 191), then
the new Hamiltonian is not guaranteed to be a factorized projection. For example, if
we take a Toric code term such as ℎ = 𝑋𝑋𝑋𝑋 and replace ℎwith (𝐼 𝐼 𝐼 𝐼−𝑋𝑋𝑋𝑋)/2,
the resulting term is no longer factorized. By contrast, for the qutrit-CLHP-2D,
where we do not require that the terms be factorized, the assumption that the terms
are projections does not weaken the results due to Corollary 192.

262

The structure of this section is as follows. In Sec. 6.5 we give notations and
definitions. In Sec. 6.5 we prove that if there are no separable qudits, then the
Hamiltonian is equivalent to a direct sum of qubit stabilizer Hamiltonian. Finally in
Sec. 6.5 we prove Theorem 189.

Notations, definitions and lemmas
Notation. Let ℎ be a Hermitian operator on Hilbert spaceH . LetH ′ be a subspace
ofH and suppose ℎ keepsH ′ invariant. We define

kerH (ℎ) := {|𝜓⟩ ∈ H | ℎ |𝜓⟩ = 0}

and
kerH ′ (ℎ) := {|𝜓⟩ ∈ H ′ | ℎ |𝜓⟩ = 0}.

For two orthogonal subspaces 𝑉,𝑊 ⊆ H , their direct sum are defined as

𝑉
⊕

𝑊 = {𝑣 + 𝑤 | 𝑣 ∈ 𝑉, 𝑤 ∈ 𝑊}.

For two Hermitian operators ℎ, ℎ′ ∈ L(H), we write ℎℎ′ = ±ℎ′ℎ if either ℎℎ′ = ℎ′ℎ
or ℎℎ′ = −ℎ′ℎ. We say an 𝑛-qudit Hermitian term ℎ is factorized if ℎ = ⊗𝑞ℎ𝑞 where
ℎ𝑞 is Hermitian, ∀𝑞. When a factorized Hermitian ℎ = 0, we always rewrite ℎ to be
tensor of zeros, i.e. ℎ𝑞 = 0,∀𝑞.

We say a Hilbert spaceH is equivalent to 𝑚-qubit space, denoted asH ∼ (C2)⊗𝑚,
if there exists tensor-product structure

H = H1 ⊗ ... ⊗ H𝑚,

where 𝑑𝑖𝑚(H𝑖) = 2. When considering Hilbert space H ∼ (C2)⊗𝑛, we define
Pauli groups as the group of operators generated by {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛, with respect the
basis which makesH factorized as (C2)⊗𝑛. We denote elements in the Pauli group
as Pauli operators. First, we formally define what it means for a Hamiltonian to
be equivalent to a qubit stabilizer Hamiltonian or a direct sum of qubit stabilizer
Hamiltonians.

Definition 178 (Equivalence to qubit stabilizer) Consider a commuting (but not
necessarily local) Hamiltonian 𝐻 =

∑
𝑖 ℎ𝑖 acting on spaceH∗ := ⊗𝑞H 𝑞

∗ . We say 𝐻
is equivalent to a qubit stabilizer Hamiltonian onH∗ if the following hold:

(1) For all 𝑞,H 𝑞
∗ ∼ (C2)⊗𝑚𝑞 for some integer 𝑚𝑞.

263

(2) Each ℎ𝑖 acts as a Pauli operator up to phases onH∗, with respect to the basis
which makesH∗ ∼ (C2)⊗(

∑
𝑞 𝑚

𝑞) .

In the above definition, we allow 𝑚𝑞 = 0, where 𝑑𝑖𝑚(H 𝑞
∗) = 1, and all ℎ𝑖 acts as 𝐼

up to phases onH 𝑞
∗ .

Definition 179 (Simple subspace) Consider an n-qudit spaceH = ⊗𝑞H 𝑞. We say
a subspace H∗ of H is simple, if H∗ is a tensor product of subspace of each qudit,
i.e. H∗ = ⊗𝑞H 𝑞

∗ whereH 𝑞
∗ is a subspace ofH 𝑞.

Definition 180 (Direct sum of qubit stabilizer) Given a commuting Hamiltonian
𝐻 =

∑
𝑖 ℎ𝑖 acting on space H = ⊗𝑞H 𝑞. We say 𝐻 is equivalent to a direct sum

of qubit stabilizer Hamiltonians, if there exists a set of simple subspace {H∗ :=
⊗𝑞H 𝑞

∗ }∗∈𝑃 such that

(1) {H∗}∗∈𝑃 are pairwise orthogonal, andH =
⊕
∗∈𝑃H∗;

(2) ∀∗ ∈ 𝑃, 𝐻 keepsH∗ invariant, {ℎ𝑖}𝑖 keepsH∗ invariant, and 𝐻 is equivalent
to qubit stabilizer Hamiltonian when restricted toH∗.

Remark 9 (Terminology of “Equivalent to qubit stabilizer state” used in Theorem
146) Use notations in Definition 180, if an 𝑛-qudit Hamiltonian 𝐻 =

∑
𝑖 ℎ𝑖 is

equivalent to a direct sum of qubit stabilizer Hamiltonians, there exists a simple
subspaceH∗ = ⊗𝑞H 𝑞

∗ which contains a ground state of 𝐻, denoted as |𝜓∗⟩.

Since 𝐻 is equivalent to qubit stabilizer Hamiltonian on H∗, we know |𝜓∗⟩ can be
chosen to be a qubit stabilizer state w.r.t to the basis which makes H 𝑞

∗ ∼ (C2)⊗𝑚𝑞
in Definition 178. In this sense we say 𝐻 has a ground state which is equivalent
to qubit stabilizer state. The notion of “equivalent to qubit stabilizer state” is only
used for intuitively explaining how we prove that qudit-CLHP-2D-factorized is in
NP in Theorem 146. To avoid ambiguity, we will not use this notion further in the
following context.

We now give the definitions and lemmas for commuting in a singular/regular way.
For technical reasons, our definition is slightly different from [BV03] 10 .

Definition 181 [Singular/regular way] Consider two factorized Hermitian terms
ℎ, ℎ̂ acting on qudits, with [ℎ, ℎ̂] = 0.

10[BV03] defines the case where ℎℎ̂ = 0 and ∀𝑞, ℎ𝑞 ℎ̂𝑞 = ±ℎ̂𝑞ℎ𝑞 as commuting in a singular way.
We define this case as commuting in a regular way.

264

• We say ℎ, ℎ̂ commute in a regular way, if ∀𝑞, ℎ𝑞 ℎ̂𝑞 = ±ℎ̂𝑞ℎ𝑞.

• We say ℎ, ℎ̂ commute in a singular way if there ∃ qudit 𝑞, ℎ𝑞 ℎ̂𝑞 ≠ ±ℎ̂𝑞ℎ𝑞.

Recall that when ℎ = 0, we always rewrite ℎ to be tensor of zeros. Thus if ℎ, ℎ̂
commute in a singular way, then ℎ ≠ 0, ℎ̂ ≠ 0. We say a set of factorized Hermitian
terms {ℎ𝑖}𝑖 commute in a regular way if ∀𝑖, 𝑗 , the ℎ𝑖, ℎ 𝑗 commute in a regular
way. In the following, we introduce a lemma which states how factorized terms can
commute with each other.

Lemma 182 (Rephrase of Lemma 9 in [BV03]) Consider two factorized Hermi-
tian terms ℎ, ℎ̂ acting on 𝑛 qudits, with [ℎ, ℎ̂] = 0. If they only share one qudit 𝑞,
then [ℎ𝑞, ℎ̂𝑞] = 0. If they share two qudits 𝑞1, 𝑞2, then one of the following holds:

(1) ℎℎ̂ ≠ 0. In this case ℎ𝑞1 ℎ̂𝑞1 = ±ℎ̂𝑞1ℎ𝑞1 and ℎ𝑞2 ℎ̂𝑞2 = ±ℎ̂𝑞2ℎ𝑞2 .

(2) ℎℎ̂ = 0. In this case one of ℎ𝑞1 ℎ̂𝑞1 , or ℎ𝑞2 ℎ̂𝑞2 equals to 0.

Corollary 183 Consider two factorized Hermitian terms ℎ, ℎ̂ acting on 𝑛 qudits,
with [ℎ, ℎ̂] = 0. If ℎ, ℎ̂ share two qudits 𝑞1, 𝑞2, and commute in a singular way, then
one of ℎ𝑞1 ℎ̂𝑞1 , or ℎ𝑞2 ℎ̂𝑞2 equals to 0. For the other one qudit, denoted as 𝑞, we have
ℎ𝑞 ℎ̂𝑞 ≠ ±ℎ̂𝑞ℎ𝑞.

We also prove some useful lemmas.

Lemma 184 Consider two Hermitian terms ℎ, ℎ̂ acting on a Hilbert space H . If
ℎℎ̂ = 𝛼ℎ̂ℎ for some 𝛼 ∈ R, then ℎ keeps kerH (ℎ̂) invariant.

Proof: It suffices to notice that ∀ |𝜓⟩ ∈ kerH (ℎ̂), we have

ℎ̂ℎ(|𝜓⟩) = 𝛼ℎℎ̂ |𝜓⟩ = 0.

This implies that ℎ |𝜓⟩ ∈ kerH (ℎ̂).

Lemma 185 Consider a qudit 𝑞 and Hermitian terms ℎ̂𝑞 ≠ 0 and {ℎ𝑞
𝑖
}𝑖 acting on

H 𝑞. Suppose that
∀𝑖, ℎ̂𝑞ℎ𝑞

𝑖
= ±ℎ𝑞

𝑖
ℎ̂𝑞,

and furthermore there exists 𝑖0 such that ℎ𝑞
𝑖0
≠ 0, and ℎ̂𝑞ℎ𝑞

𝑖0
= 0. Then 𝑞 is separable

with respect to {ℎ̂𝑞} ∪ {ℎ𝑞
𝑖
}𝑖.

265

Proof: DefineH1 := ker(ℎ̂). Since both ℎ̂, ℎ𝑖0 are non-zero and ℎ̂ℎ𝑖0 = 0, we know
H1 ≠ {0} andH1 ≠ H 𝑞 . This implies the decompositionH 𝑞 = H1

⊕
H⊥1 is non-

trivial. By lemma 184, we know that all operators in {ℎ̂} ∪ {ℎ𝑖}𝑖 keepH1 invariant.
Since they are Hermitian, they also keepH⊥1 invariant. Thus 𝑞 is separable.

A weaker version without separable qudits
In this section we prove in Theorem 188 that if there are no separable qudits,
then qudit-CLHP-2D-factorized is equivalent to qubit stabilizer Hamiltonian. In
particular, we prove that in this situation, all the terms must commute in a regular
way.

Lemma 186 Consider qudit-CLHP-2D-factorized Hamiltonian 𝐻 =
∑
𝑝 𝑝 acting

on 𝑛 qudits. If there are no separable qudits, then all the terms {𝑝}𝑝 commute in a
regular way. Moreover, for any qudit 𝑞 and any term 𝑝, 𝑝 ∈ {𝑝1, 𝑝2, 𝑝

′
1, 𝑝
′
2} acting

on 𝑞, as shown in Figure 6.3 (a), we have

(1) (𝑝𝑞)2 = 𝑐𝑝𝑞 𝐼𝑞 for some constant 𝑐𝑝𝑞.

(2) 𝑝𝑞𝑝𝑞 = ±𝑝𝑞𝑝𝑞.

(3) The 𝐶∗-algebra generated by {𝑝𝑞}𝑝∈{𝑝1,𝑝2,𝑝
′
1,𝑝
′
2} is the whole algebra L(H 𝑞).

Proof: We first define some notations to help the illustration. To match the notations
in Definition 178, we denote the Hilbert space of qudit 𝑞 as H 𝑞

∗ , and the 𝑛-qudit
space asH∗ := ⊗𝑞H 𝑞

∗ .

As shown in Figure 6.3 (a), Consider a qudit 𝑞, we denote the terms acting on 𝑞
as 𝑝1, 𝑝2, 𝑝

′
1, 𝑝
′
2. Recall that all the terms are factorized, thus we can use 𝑝𝑞1 to

represent the factor of 𝑝1 on 𝑞. Use similar notations for other terms. For any two
terms

ℎ, ℎ̂ ∈ {𝑝1, 𝑝2, 𝑝
′
1, 𝑝
′
2},

we use symbols −, 0,× to represent the relationship between ℎ𝑞, ℎ̂𝑞.

• “−”: If ℎ𝑞 ℎ̂𝑞 = ±ℎ̂𝑞ℎ𝑞, and ℎ, ℎ̂ commute in a regular way.

• “0”: If ℎ𝑞 ℎ̂𝑞 = 0, and ℎ, ℎ̂ commute in a singular way.

• “×”: If ℎ𝑞 ℎ̂𝑞 ≠ ±ℎ̂𝑞ℎ𝑞, and ℎ, ℎ̂ commute in a singular way.

266

Using the above symbols, we will draw a graph to represent the relationship of
{𝑝1, 𝑝2, 𝑝

′
1, 𝑝
′
2} on qudit 𝑞. For example, the graph in Figure 6.3 (f) means: The

relationship between 𝑝𝑞1 and 𝑝𝑞2 is “−”. That is

𝑝
𝑞

1 𝑝
𝑞

2 = ±𝑝𝑞2 𝑝
𝑞

1 ,

and 𝑝1, 𝑝2 commute in a regular way. Similar for 𝑝
′𝑞
1 and 𝑝

′𝑞
2 . The relationship

between 𝑝𝑞1 and 𝑝
′𝑞
1 is “0”. That is

𝑝
𝑞

1 𝑝
′𝑞
1 = 0,

and 𝑝1, 𝑝
′
1 commute in a singular way. Similar for 𝑝

′𝑞
2 and 𝑝𝑞2 . The relationship for

𝑝
𝑞

1 , 𝑝
′𝑞
2 is “×”. That is

𝑝
𝑞

1 𝑝
′𝑞
2 ≠ ±𝑝

′𝑞
2 𝑝

𝑞

1 ,

and 𝑝1, 𝑝
′
2 commute in a singular way. Similar for 𝑝

′𝑞
1 and 𝑝

𝑞

2 . We use #𝑞0 to
represent the number of 0 in the graph for 𝑞, and similar for symbol “×”. For
example, in Figure 6.3 (f), we have

#𝑞0 = #𝑞× = 2.

For each 𝑞, we draw such a graph and assign −, 0,× to each pair

ℎ, ℎ̂ ∈ {𝑝𝑞1 , 𝑝
𝑞

2 , 𝑝
′𝑞
1 , 𝑝

′𝑞
2 }.

For 𝑞 in the boundary 11 of the lattice, some terms might be missing. We draw the
graph for the existing terms similarly.

We use #0 to represent the total number of 0 when considering all qudits, that is

#0 =
∑︁
𝑞

#𝑞0.

Similarly for #×. Note that by Corollary 183, we have

#0 = # × .

Now we are prepared to prove Lemma 186. We first prove the following.

Claim 1: There is no qudit 𝑞 such that two of the terms acting on 𝑞, i.e. two of
𝑝1, 𝑝2, 𝑝

′
1, 𝑝
′
2 in Figure 6.3(a), can commute in a singular way.

11Here we mean the physical boundary of the lattice, not the (virtual) boundary defined in
[AKV18].

267

With contradiction suppose there are such qudits, then

#0 = #× ≥ 1.

Then there must be a qudit 𝑞 such that

#𝑞0 ≥ #𝑞× ≥ 1.

We will prove that 𝑞 is separable thus leading to a contradiction. Here we suppose
𝑞 is in not on the boundary, thus there are four terms 𝑝1, 𝑝2, 𝑝

′
1, 𝑝
′
2 acting on 𝑞.

The case where 𝑞 is on the boundary and some terms are missing can be analyzed
similarly.

Note that we always have
𝑝
𝑞

1 𝑝
𝑞

2 = 𝑝
𝑞

2 𝑝
𝑞

1

since 𝑝1, 𝑝2 only shares one qudit. Similar for 𝑝
′𝑞
1 and 𝑝

′𝑞
2 . One can check that

up to rotating the lattice, the relationships of terms on 𝑞 must be related to one
of the graphs in Figure 6.3 (b-f). Please read the captions of Figure 6.3 for a
precise description of the classification. Note that if two terms ℎ, ℎ̂ on 𝑞 satisfy
0, by definition of commuting in a singular way, we have 𝑝 ≠ 0, 𝑝 ≠ 0, and thus
𝑝𝑞 ≠ 0, 𝑝𝑞 ≠ 0.

For Figure 6.3 (b-e), let

ℎ̂𝑞 := 𝑝𝑞1 , {ℎ
𝑞

𝑖
}𝑖 := {𝑝𝑞2 , 𝑝

′𝑞
1 , 𝑝

′𝑞
2 }.

By Lemma 185, we know 𝑞 is separable. For Figure 6.3 (f), let A to be the 𝐶∗-
algebra generated by 𝑝

𝑞

1 , 𝑝
′𝑞
2 , A′ to be the 𝐶∗-algebra generated by 𝑝

′𝑞
1 , 𝑝

𝑞

2 . By
Lemma 158 we know 𝑞 is separable.

𝑞

𝑝′1

𝑝1

𝑝2

𝑝′2

(a)

0

(b)

0
×

(c)

0

×

(d)

0

0
×
×

(e)

0 0
×

×

𝑝′1

𝑝1

𝑝2

𝑝′2

(f)

Figure 6.3: Relationships of factors on 𝑞. The classification is organized in the increasing
order of #𝑞×. The (b) case corresponds to when #𝑞× = 0, #𝑞0 = 1. Other cases when
#𝑞× = 0, #𝑞0 ≥ 1 can be handled in the same way. The (c)(d) cases correspond to when
#𝑞× = 1, #𝑞0 = 1. Other cases when #𝑞× = 1, #𝑞0 ≥ 1 can be handled in the same way. The
(e)(f) cases correspond to when #𝑞× = 2, #𝑞0 = 2.

268

Claim 2: The conditions (1)(2)(3) in Lemma 186 hold. Consider arbitrary qudit
𝑞, letA be the𝐶∗-algebra generated by {𝑝𝑞}𝑝∈{𝑝1,𝑝2,𝑝

′
1,𝑝
′
2}. Since 𝑞 is not separable,

by lemma 155, we know the the center of A, i.e.Z(A), must be trivial. Besides,
lemma 155 also implies

H 𝑞 = H1 ⊗ H2,A = L(H1) ⊗ IH2 .

Since 𝑞 is not separable, we must further have H2 is of dimension 1, thus A =

L(H 𝑞) (condition (3)). Otherwise 𝑞 is again separable by considering

H 𝑞 =
⊕
𝑖

H1 ⊗ |𝜙𝑖⟩ ⟨𝜙𝑖 | ,

where {𝜙𝑖} is a basis ofH2.

Since Claim 1 is true, all terms are commuting in a regular way. This means all
factors are either anti-commuting or commuting (condition (2)), and thus ∀ term 𝑝,
(𝑝𝑞)2 commute with every factor, i.e. (𝑝𝑞)2 ∈ Z(A). Since we already argued that
Z(A) must be trivial, we have (𝑝𝑞)2 = 𝑐𝑝𝑞 𝐼 for some constant 𝑐𝑝𝑞 (condition (1)).

[BV03] showed that for qudit-factorized-CHP 12 , if all terms commute in a regular
way, then one can transform the Hamiltonian into a qubit stabilizer Hamiltonian. In
particular, they proved the following lemma.

Lemma 187 (Lemma 12 of [BV03]) Let H 𝑞
∗ be a Hilbert space, 𝐺1, ..., 𝐺𝑟 ∈

L(H 𝑞
∗) be Hermitian operators such that

𝐺2
𝑎 = 𝐼, 𝐺𝑎𝐺𝑏 = ±𝐺𝑏𝐺𝑎,∀𝑎, 𝑏 ∈ {1, ..., 𝑟}

and such that the algebra generated by 𝐺1, ..., 𝐺𝑟 coincides with L(H 𝑞
∗). Then

there exists an integer 𝑛, a tensor product structure H 𝑞
∗ = (C2)⊗𝑛 and a unitary

operator 𝑈𝑞 ∈ L(H 𝑞
∗) such that 𝑈𝑞𝐺𝑎𝑈

𝑞† is a tensor of Pauli operators and the
identity (up to sign) for all 𝑎 ∈ {1, ..., 𝑟}. Here 𝑛 may be equal to 0.

Finally, we are prepared to prove the main theorem in this section.

Theorem 188 Consider a qudit-CLHP-2D-factorized Hamiltonian 𝐻 =
∑
𝑝 𝑝 on 𝑛-

qudit space. If there are no separable qudits, then 𝐻 is equivalent to qubit stabilizer
Hamiltonian onH .

12Recall that CHP represents commuting Hamiltonian problem where the Hamiltonian might not
be local.

269

Proof: To match the notations in Definition 178, we denote the Hilbert space of
qudit 𝑞 as H 𝑞

∗ , the 𝑛-qudit space as H∗ := ⊗𝑞H 𝑞
∗ . Consider a qudit-CLHP-2D-

factorized 𝐻 =
∑
𝑝 𝑝. W.o.l.g assume that all 𝑝 are non-zero. Note that since 𝑝 is

Hermitian, if 𝑝2 = 0, then 𝑝 = 0.

Consider arbitrary qudit 𝑞, use notations in Lemma 186 we know 𝑐𝑝𝑞 ≠ 0,∀𝑝, 𝑞.
For every 𝑝, define 𝑝 be a normalized version of 𝑝, that is

𝑝 = ⊗𝑞𝑝𝑞 where 𝑝𝑞 = 𝑝𝑞/𝑐𝑝𝑞 .

For any qudit 𝑞, view ..., 𝑝𝑞, ... as ..., 𝐺𝑎, By Lemma 186, one can check that
{𝑝𝑞}𝑝 satisfies the condition of Lemma 187. Thus by choosing appropriate basis
of each qudit, H 𝑞

∗ will have a factorized structure as (C2)⊗𝑚𝑞 for integer 𝑚𝑞, and
{𝑝𝑞} are tensor of Pauli operators up to sign. Thus 𝑝𝑞 acts as a Pauli operator on
this basis, up to phases. Thus 𝐻 is equivalent to qubit stabilizer Hamiltonian 𝐻 by
definition.

The full version
Finally, we remove the constraints of no separable qudits in Theorem 188 and prove
the following.

Theorem 189 Any qudit-CLHP-2D-factorized Hamiltonian𝐻 =
∑
𝑝 𝑝 is equivalent

to a direct sum of qubit stabilizer Hamiltonian.

Proof: Denote the space that 𝐻 acting on asH =
⊗

𝑞H 𝑞. Recall that if a qudit 𝑞
is separable with respect to decompositionH 𝑞 =

⊕
𝑖H

𝑞

𝑖
, for any chosen index 𝑖 we

can restrict all terms on this subspace, and get a new instance of qudit-CLHP-2D-
factorized. If we repetitively perform this restriction whenever this is a separable
qudit, after polytime we will reach the case with no separable qudits.

To prove theorem 189, it suffices to imagine the restricting process as a decision
tree. Specifically, we write down a root node and define the space of the root node
as H , and repeat the following process: Transverse all the leaf nodes. Denote the
leaf node considered currently as ∗, and its space asH∗. If 𝐻 restricting onH∗ has
separable qudits, choose an arbitrary such separable qudit. Denote this qudit as 𝑞
and the corresponding decomposition as H 𝑞 =

⊕
𝑖H

𝑞

𝑖
. For every 𝑖, we build a

child node 𝑤𝑖 to ∗, and define the space of 𝑤𝑖 as restricting H 𝑞 to H 𝑞

𝑖
in H∗. We

repeat this process until for every leaf node, there are no separable qudits. In the

270

final tree, every leaf node ∗ corresponds to a simple subspaceH∗. By the definition
of the tree, we know {H∗}∗ are orthogonal to each other and H =

⊕
∗H∗. By

Theorem 188, H is equivalent to qubit stabilizer Hamiltonian on H∗. Thus we
prove that 𝐻 is equivalent to a direct sum of qubit stabilizer Hamiltonian.

Corollary 190 Qudit-CLHP-2D-factorized is in NP.

Proof: Consider a qudit-CLHP-2D-factorized problem with Hamiltonian𝐻 =
∑
𝑝 𝑝

and parameters 𝑎, 𝑏. By Theorem 189 we know there exists a ∗, where

H∗ =
⊗
𝑞

H 𝑞
∗

is a simple subspace, such that there is a ground state lies inH∗, and 𝐻 is equivalent
to qubit stabilizer Hamiltonian on H∗. The NP prover is supposed to provide the
subspace {H 𝑞

∗ }𝑞, and provide the qudit unitary𝑈𝑞 in Theorem 187 for each 𝑞. Using
that information, the verifier firstly checks that all terms {𝑝}𝑝 keep the subspaces
{H 𝑞
∗ }𝑞 invariant. Then the verifier uses polynomial time to transform H 𝑞

∗ to be
tensor of qubit space, i.e.(C2)⊗𝑚𝑞 , and transform 𝐻 on H∗ to be a summation of
Pauli operators up to phases, denoted as

𝐻 |∗ =
∑︁
ℎ

𝑎ℎℎ.

Here ℎ is a Pauli operator.

Then the verifier is going to verify 𝜆(𝐻 |∗) ≤ 𝑎. Since {𝑎ℎℎ}ℎ are commuting,
there is a ground state which is the common eigenstate of every ℎ. Denote the
corresponding eigenvalue as 𝜆ℎ. The prover is supposed to provide such {𝜆ℎ}ℎ. The
verifier verifies that ∑︁

ℎ

𝑎ℎ𝜆ℎ ≤ 𝑎,

and verifies there is a state which is the common 1-eigenstate of commuting Pauli
operators {ℎ/𝜆ℎ}. The common 1-eigenstate verification can be done in polynomial
time by standard stabilizer formalism. Note that although we describe the prover in
an interactive way, they can in fact send all the witnesses at the same time.

Acknowledgement
We thank Thomas Vidick and Daniel Ranard for their helpful discussions. Jiaqing
Jiang is supported by MURI Grant FA9550-18-1-0161 and the IQIM, an NSF
Physics Frontiers Center (NSF Grant PHY-1125565).

271

6.6 Appendix:Relationship between general case and projection case
Lemma 191 If 𝑘-qudit-CLHP-projection is in NP, then 𝑘-qudit-CLHP is in NP.

Proof: Consider a 𝑘-qudit-CLHP(𝐻, 𝑎, 𝑏), where

𝐻 =
∑︁
𝑖

ℎ𝑖; 𝑎, 𝑏 ∈ R

and 𝑏 − 𝑎 ≥ 1/𝑝𝑜𝑙𝑦(𝑛). Denote the ground energy 𝜆 := 𝜆(𝐻). Since {ℎ𝑖}𝑖 are
commuting with each other, there exists a ground state |𝜓⟩ and {𝜆𝑖 ∈ R}𝑖 such that

ℎ𝑖 |𝜓⟩ = 𝜆𝑖 |𝜓⟩ ,∀𝑖

and
∑
𝑖 𝜆𝑖 = 𝜆. Let Π𝑖 be the projection onto the 𝜆𝑖-eigenspace of ℎ𝑖. Let

ℎ̂𝑖 = 𝐼 − Π𝑖,
�̂� =

∑︁
𝑖

ℎ̂𝑖 .

Since {ℎ𝑖}𝑖 are commuting, we know that {ℎ̂𝑖}𝑖 are also commuting.

The prover is supposed to list such {𝜆𝑖}𝑖, then the verifier can check
∑
𝑖 𝜆𝑖 < 𝑎 and

compute Π𝑖, ℎ̂𝑖 and �̂�. Then the prover is supposed to prove that qudit-CLHP-2D-
projection(�̂�) is a Yes instance — that is, proving there exists |𝜓⟩ such that

ℎ̂𝑖 |𝜓⟩ = 0,∀𝑖.

Thus if 𝑘-qudit-CLHP-projection is in NP, then 𝑘-qudit-CLHP is in NP.

Corollary 192 If the qutrit-CLHP-2D-projection is in NP, then the qutrit-CLHP-2D
is in NP.

6.7 Appendix:Qudits on the vertexs or on the edges
In this manuscript, we consider commuting local Hamiltonian on a 2D square lattice,
where qudits are on the vertices and Hermitian terms are on the plaquettes. There
is another setting that put qudits on the edges, and Hermitian terms on “plaquettes”
and “stars”. Specifically, as shown in Figure 6.4 for each plaquette 𝑝, there is a
Hermitian term 𝐵𝑝 acting on the qudits on its edges, i.e. 𝑞1, 𝑞2, 𝑞3, 𝑞4. For each
vertex 𝑣, consider the star consisting of 𝑣 and edges adjacent to 𝑣, there is a Hermitian
term 𝐴𝑣 acting on qudits on its edges, i.e. 𝑞3, 𝑞4, 𝑞5, 𝑞6. The Hamiltonian is

𝐻 =
∑︁
𝑝

𝐵𝑝 +
∑︁
𝑣

𝐴𝑣 .

272

We abbreviate this setting as “qudits on 2D edges” and the setting in Sec. 6.2 as
“qudits on 2D vertices”. In the following we will show that the two settings are
equivalent.

𝑞1
𝑞2

𝑞3

𝑞4 𝑞5

𝑞6

𝑝
𝑣

Figure 6.4: Qudits on edges to qudits on vertices

(1) “qudits on 2D edges”⇒ “qudits on 2D vertices”. Begin from “qudits on 2D
edges”, as shown in Figure 6.5, the qudits on the edges can in fact be viewed as
qudits on the vertices of another 2D square lattice defined by the dashed lines. The
terms 𝐵𝑝 and 𝐴𝑠 will correspond to plaquette terms in the dashed lattice. Thus our
techniques directly apply to the setting for qudits on the edges.

Figure 6.5: Qudits on 2D edges to qudits on 2D vertices

(1) “qudits on 2D vertices”⇒ “qudits on 2D edges”. Begin from “qudits on 2D
vertices”, as shown in Figure 6.6, the qudits on the vertices can in fact be viewed as
qudits on the edges of another 2D square lattice defined by the dashed lines. The
plaquette terms will correspond to plaquette and star terms in the dashed lattice.

Figure 6.6: Qudits on 2D edges to qudits on 2D vertices

273

BIBLIOGRAPHY

[AAG22a] Anurag Anshu, Itai Arad, and David Gosset. “An area law for 2d
frustration-free spin systems”. In: Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing. 2022, pp. 12–18.

[AAG22b] Anurag Anshu, Itai Arad, and David Gosset. “An area law for 2d
frustration-free spin systems”. In: Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing. ACM, June 2022.
doi: 10.1145/3519935.3519962. url: https://doi.org/10.
1145%2F3519935.3519962.

[AAV13] Dorit Aharonov, Itai Arad, and Thomas Vidick. “Guest column: the
quantum PCP conjecture”. In: Acm sigact news 44.2 (2013), pp. 47–79.

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern
approach. Cambridge University Press, 2009.

[ABN23] Anurag Anshu, Nikolas P Breuckmann, and Chinmay Nirkhe. “NLTS
Hamiltonians from good quantum codes”. In: Proceedings of the 55th
Annual ACM Symposium on Theory of Computing. 2023, pp. 1090–
1096.

[AE11] Dorit Aharonov and Lior Eldar. “On the complexity of commuting
local Hamiltonians, and tight conditions for topological order in such
systems”. In: 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science. IEEE. 2011, pp. 334–343.

[AE13] Dorit Aharonov and Lior Eldar. “The commuting local Hamiltonian on
locally-expanding graphs is in NP”. In: arXiv preprint arXiv:1311.7378
(2013).

[AFH09] Robert Alicki, Mark Fannes, and Michal Horodecki. “On thermaliza-
tion in Kitaev’s 2D model”. In: Journal of Physics A: Mathematical
and Theoretical 42.6 (2009), p. 065303.

[AGM20] Anurag Anshu, David Gosset, and Karen Morenz. “Beyond product
state approximations for a quantum analogue of max cut”. In: arXiv
preprint arXiv:2003.14394 (2020).

[AKV18] Dorit Aharonov, Oded Kenneth, and Itamar Vigdorovich. “On the
Complexity of Two Dimensional Commuting Local Hamiltonians”.
In: 13th Conference on the Theory of Quantum Computation, Commu-
nication and Cryptography (TQC 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. 2018.

[AL10] Itai Arad and Zeph Landau. “Quantum computation and the evaluation
of tensor networks”. In: SIAM Journal on Computing 39.7 (2010),
pp. 3089–3121. doi: https://doi.org/10.1137/080739379.

https://doi.org/10.1145/3519935.3519962
https://doi.org/10.1145%2F3519935.3519962
https://doi.org/10.1145%2F3519935.3519962
https://doi.org/https://doi.org/10.1137/080739379

274

[Alh23] Álvaro M Alhambra. “Quantum many-body systems in thermal equi-
librium”. In: PRX Quantum 4.4 (2023), p. 040201.

[Ami+18] Mohammad H Amin et al. “Quantum boltzmann machine”. In: Physi-
cal Review X 8.2 (2018), p. 021050.

[And] David F Anderson. “Lecture Notes on Stochastic Processes with Ap-
plications in Biology”. In: ().

[Ara+17] Itai Arad et al. “Rigorous RG algorithms and area laws for low energy
eigenstates in 1D”. In: Communications in Mathematical Physics 356
(2017), pp. 65–105. doi: https://doi.org/10.1007/s00220-
017-2973-z.

[Bak+24] Ainesh Bakshi et al. “High-temperature Gibbs states are unentan-
gled and efficiently preparable”. In: arXiv preprint arXiv:2403.16850
(2024).

[Ban23] Mari Carmen Banuls. “Tensor Network Algorithms: A Route Map”.
In: Annual Review of Condensed Matter Physics 14.1 (Mar. 2023),
pp. 173–191. issn: 1947-5462. doi:10.1146/annurev-conmatphys-
040721-022705. url: http://dx.doi.org/10.1146/annurev-
conmatphys-040721-022705.

[Bañ23] Mari Carmen Bañuls. “Tensor network algorithms: A route map”. In:
Annual Review of Condensed Matter Physics 14.1 (2023), pp. 173–
191.

[Bar+23] Ivan Bardet et al. “Rapid thermalization of spin chain commuting
Hamiltonians”. In: Physical Review Letters 130.6 (2023), p. 060401.

[Bar14] Alexander Barvinok. “Computing the partition function for cliques
in a graph”. In: arXiv preprint arXiv:1405.1974 (2014). doi: DOI:
10.4086/toc.2015.v011a013.

[Bar16a] Alexander Barvinok. “Approximating permanents and hafnians”. In:
arXiv preprint arXiv:1601.07518 (2016).

[Bar16b] Alexander Barvinok. “Computing the permanent of (some) complex
matrices”. In: Foundations of Computational Mathematics 16 (2016),
pp. 329–342. doi: https://doi.org/10.1007/s10208-014-
9243-7.

[Bau+20] Bela Bauer et al. “Quantum algorithms for quantum chemistry and
quantum materials science”. In: Chemical Reviews 120.22 (2020),
pp. 12685–12717.

[BBA24] Yimu Bao, Maxwell Block, and Ehud Altman. “Finite-time teleporta-
tion phase transition in random quantum circuits”. In: Physical Review
Letters 132.3 (2024), p. 030401. doi: 10.1103/physrevlett.132.
030401.

https://doi.org/https://doi.org/10.1007/s00220-017-2973-z
https://doi.org/https://doi.org/10.1007/s00220-017-2973-z
https://doi.org/10.1146/annurev-conmatphys-040721-022705
https://doi.org/10.1146/annurev-conmatphys-040721-022705
http://dx.doi.org/10.1146/annurev-conmatphys-040721-022705
http://dx.doi.org/10.1146/annurev-conmatphys-040721-022705
https://doi.org/DOI: 10.4086/toc.2015.v011a013
https://doi.org/DOI: 10.4086/toc.2015.v011a013
https://doi.org/https://doi.org/10.1007/s10208-014-9243-7
https://doi.org/https://doi.org/10.1007/s10208-014-9243-7
https://doi.org/10.1103/physrevlett.132.030401
https://doi.org/10.1103/physrevlett.132.030401

275

[BBT06] Sergey Bravyi, Arvid J Bessen, and Barbara M Terhal. “Merlin-Arthur
games and stoquastic complexity”. In: arXiv preprint quant-ph/0611021
(2006).

[BCA20] Yimu Bao, Soonwon Choi, and Ehud Altman. “Theory of the phase
transition in random unitary circuits with measurements”. In: Physical
Review B 101.10 (2020), p. 104301. doi: https://doi.org/10.
1103/PhysRevB.101.104301.

[BCK15] Dominic W Berry, Andrew M Childs, and Robin Kothari. “Hamilto-
nian simulation with nearly optimal dependence on all parameters”.
In: 2015 IEEE 56th annual symposium on foundations of computer
science. IEEE. 2015, pp. 792–809.

[BCL24] Thiago Bergamaschi, Chi-Fang Chen, and Yunchao Liu. “Quantum
computational advantage with constant-temperature Gibbs sampling”.
In: arXiv preprint arXiv:2404.14639 (2024).

[Ber+14] Dominic W Berry et al. “Exponential improvement in precision for
simulating sparse Hamiltonians”. In: Proceedings of the forty-sixth
annual ACM symposium on Theory of computing. 2014, pp. 283–292.

[Ber+15] Dominic W Berry et al. “Simulating Hamiltonian dynamics with a
truncated Taylor series”. In: Physical review letters 114.9 (2015),
p. 090502.

[BH18] Seymour Michael Blinder and James E House. Mathematical physics
in theoretical chemistry. Elsevier, 2018.

[Bor+20] Christian Borgs et al. “Efficient sampling and counting algorithms
for the Potts model on 𝑍𝑑 at all temperatures”. In: Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing.
2020, pp. 738–751.

[Bor+99] Christian Borgs et al. “Torpid mixing of some Monte Carlo Markov
chain algorithms in statistical physics”. In: 40th Annual Symposium on
Foundations of Computer Science (Cat. No. 99CB37039). IEEE. 1999,
pp. 218–229.

[Bra+08] Sergey Bravyi et al. “The complexity of stoquastic local Hamiltonian
problems”. In: Quantum Information and Computation 8.5 (2008),
pp. 361–385.

[Bra+19] Fernando GSL Brandão et al. “Quantum SDP solvers: Large speed-
ups, optimality, and applications to quantum learning”. In: 46th In-
ternational Colloquium on Automata, Languages, and Programming
(ICALP 2019). Schloss-Dagstuhl-Leibniz Zentrum für Informatik. 2019.

[Bra+21] Sergey Bravyi et al. “On the complexity of quantum partition func-
tions”. In: arXiv preprint arXiv:2110.15466 (2021).

https://doi.org/https://doi.org/10.1103/PhysRevB.101.104301
https://doi.org/https://doi.org/10.1103/PhysRevB.101.104301

276

[Bra+23a] Sergey Bravyi et al. “A rapidly mixing Markov chain from any gapped
quantum many-body system”. In: Quantum 7 (2023), p. 1173.

[Bra+23b] Sergey Bravyi et al. “A rapidly mixing Markov chain from any gapped
quantum many-body system”. In: Quantum 7 (2023), p. 1173.

[Bra14] Sergey Bravyi. “Monte Carlo simulation of stoquastic Hamiltonians”.
In: arXiv preprint arXiv:1402.2295 (2014).

[BŠ06] Harry Buhrman and Robert Špalek. “Quantum verification of matrix
products”. In: Proceedings of the seventeenth annual ACM-SIAM sym-
posium on Discrete algorithm. 2006, pp. 880–889.

[BSV14] Sergey Bravyi, Martin Suchara, and Alexander Vargo. “Efficient al-
gorithms for maximum likelihood decoding in the surface code”. In:
Physical Review A 90.3 (2014), p. 032326. doi: https://doi.org/
10.1103/PhysRevA.90.032326.

[BT10] Sergey Bravyi and Barbara Terhal. “Complexity of stoquastic frustration-
free Hamiltonians”. In: Siam journal on computing 39.4 (2010), pp. 1462–
1485.

[BV03] Sergey Bravyi and Mikhail Vyalyi. “Commutative version of the k-
local Hamiltonian problem and common eigenspace problem”. In:
arXiv preprint quant-ph/0308021 (2003).

[Cao+19] Yudong Cao et al. “Quantum chemistry in the age of quantum com-
puting”. In: Chemical reviews 119.19 (2019), pp. 10856–10915.

[Car+19] Juan Carrasquilla et al. “Reconstructing quantum states with generative
models”. In: Nature Machine Intelligence 1.3 (2019), pp. 155–161.

[CCS87] JT Chayes, L Chayes, and Roberto Henrique Schonmann. “Exponen-
tial decay of connectivities in the two-dimensional Ising model”. In:
Journal of Statistical Physics 49 (1987), pp. 433–445.

[Ces+96] Filippo Cesi et al. “On the two-dimensional stochastic Ising model in
the phase coexistence region near the critical point”. In: Journal of
statistical physics 85 (1996), pp. 55–102.

[Ces01] Filippo Cesi. “Quasi-factorization of the entropy and logarithmic Sobolev
inequalities for Gibbs random fields”. In: Probability Theory and Re-
lated Fields 120 (2001), pp. 569–584.

[Che+23] Chi-Fang Chen et al. “Quantum thermal state preparation”. In: arXiv
preprint arXiv:2303.18224 (2023).

[Che+25] Jielun Chen et al. “Sign Problem in Tensor-Network Contraction”. In:
PRX Quantum 6 (2025), p. 010312. doi: 10.1103/prxquantum.6.
010312. eprint: arXiv:2404.19023.

https://doi.org/https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1103/prxquantum.6.010312
https://doi.org/10.1103/prxquantum.6.010312
arXiv:2404.19023

277

[Chi+20] Nai-Hui Chia et al. “Quantum-inspired algorithms for solving low-rank
linear equation systems with logarithmic dependence on the dimen-
sion”. In: 31st International Symposium on Algorithms and Computa-
tion (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
2020.

[Chi+22] Nai-Hui Chia et al. “Sampling-based sublinear low-rank matrix arith-
metic framework for dequantizing quantum machine learning”. In:
Journal of the ACM 69.5 (2022), pp. 1–72.

[CKG23] Chi-Fang Chen, Michael J Kastoryano, and András Gilyén. “An effi-
cient and exact noncommutative quantum Gibbs sampler”. In: arXiv
preprint arXiv:2311.09207 (2023).

[CL16] Andrew M Childs and Tongyang Li. “Efficient simulation of sparse
Markovian quantum dynamics”. In: arXiv preprint arXiv:1611.05543
(2016).

[Con+23] Mirko Consiglio et al. “Variational Gibbs State Preparation on NISQ
devices”. In: arXiv preprint arXiv:2303.11276 (2023).

[Cor16] Philippe Corboz. “Variational optimization with infinite projected entangled-
pair states”. In: Physical Review B 94.3 (2016), p. 035133.

[CRF20] Ángela Capel, Cambyse Rouzé, and Daniel Stilck França. “The modi-
fied logarithmic Sobolev inequality for quantum spin systems: classi-
cal and commuting nearest neighbour interactions”. In: arXiv preprint
arXiv:2009.11817 (2020).

[CS16] Anirban Narayan Chowdhury and Rolando D Somma. “Quantum al-
gorithms for Gibbs sampling and hitting-time estimation”. In: arXiv
preprint arXiv:1603.02940 (2016).

[CT17] Giuseppe Carleo and Matthias Troyer. “Solving the quantum many-
body problem with artificial neural networks”. In: Science 355.6325
(2017), pp. 602–606.

[CW16] Richard Cleve and Chunhao Wang. “Efficient quantum algorithms for
simulating Lindblad evolution”. In: arXiv preprint arXiv:1612.09512
(2016).

[Dav76] Edward Brian Davies. “Quantum theory of open systems”. In: (No
Title) (1976).

[Dav79] E Brian Davies. “Generators of dynamical semigroups”. In: Journal
of Functional Analysis 34.3 (1979), pp. 421–432.

[Din+24] Zhiyan Ding et al. “Polynomial-Time Preparation of Low-Temperature
Gibbs States for 2D Toric Code”. In: 2024. url: https://api.
semanticscholar.org/CorpusID:273025835.

https://api.semanticscholar.org/CorpusID:273025835
https://api.semanticscholar.org/CorpusID:273025835

278

[DLL24] Zhiyan Ding, Bowen Li, and Lin Lin. “Efficient quantum Gibbs sam-
plers with Kubo–Martin–Schwinger detailed balance condition”. In:
arXiv preprint arXiv:2404.05998 (2024).

[Dye+04] Martin Dyer et al. “Mixing in time and space for lattice spin systems:
A combinatorial view”. In: Random Structures & Algorithms 24.4
(2004), pp. 461–479.

[EM18] Lior Eldar and Saeed Mehraban. “Approximating the permanent of
a random matrix with vanishing mean”. In: 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS). IEEE. 2018,
pp. 23–34.

[EV15] Glen Evenbly and Guifre Vidal. “Tensor network renormalization”.
In: Physical review letters 115.18 (2015), p. 180405. doi: https:
//doi.org/10.1103/PhysRevLett.115.180405.

[Fey18] Richard P Feynman. “Simulating physics with computers”. In: Feyn-
man and computation. cRc Press, 2018, pp. 133–153.

[FGW23] Weiming Feng, Heng Guo, and Jiaheng Wang. “Swendsen-Wang dy-
namics for the ferromagnetic Ising model with external fields”. In:
Information and Computation 294 (2023), p. 105066.

[Fis87] Charlotte Froese Fischer. “General hartree-fock program”. In: Com-
puter physics communications 43.3 (1987), pp. 355–365.

[FP14] Andrew J Ferris and David Poulin. “Tensor networks and quantum
error correction”. In: Physical review letters 113.3 (2014), p. 030501.
doi: https://doi.org/10.1103/PhysRevLett.113.030501.

[Fre79] Rūsin, š Freivalds. “Fast probabilistic algorithms”. In: International
Symposium on Mathematical Foundations of Computer Science. Springer.
1979, pp. 57–69.

[FS97] Gerald B Folland and Alladi Sitaram. “The uncertainty principle: a
mathematical survey”. In: Journal of Fourier analysis and applications
3 (1997), pp. 207–238.

[GC24] Johnnie Gray and Garnet Kin-Lic Chan. “Hyperoptimized approximate
contraction of tensor networks with arbitrary geometry”. In: Physical
Review X 14.1 (2024), p. 011009. doi: https://doi.org/10.1103/
PhysRevX.14.011009.

[GD17] Xun Gao and Lu-Ming Duan. “Efficient representation of quantum
many-body states with deep neural networks”. In: Nature communica-
tions 8.1 (2017), p. 662.

[Gha+15] Sevag Gharibian et al. “Quantum hamiltonian complexity”. In: Foun-
dations and Trends® in Theoretical Computer Science 10.3 (2015),
pp. 159–282.

https://doi.org/https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/https://doi.org/10.1103/PhysRevLett.113.030501
https://doi.org/https://doi.org/10.1103/PhysRevX.14.011009
https://doi.org/https://doi.org/10.1103/PhysRevX.14.011009

279

[Gil+19] András Gilyén et al. “Quantum singular value transformation and be-
yond: exponential improvements for quantum matrix arithmetics”. In:
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing. 2019, pp. 193–204.

[Gil+24a] András Gilyén et al. “Quantum generalizations of Glauber and Metropo-
lis dynamics”. In: arXiv preprint arXiv:2405.20322 (2024).

[Gil+24b] András Gilyén et al. “Quantum generalizations of Glauber and Metropo-
lis dynamics”. In: arXiv preprint arXiv:2405.20322 (2024).

[GKW16] James Gubernatis, Naoki Kawashima, and Philipp Werner. Quantum
Monte Carlo Methods. Cambridge University Press, 2016.

[GL16] Reza Gheissari and Eyal Lubetzky. “Mixing times of critical 2D Potts
models”. In: arXiv preprint arXiv:1607.02182 (2016).

[GL22] Sevag Gharibian and François Le Gall. “Dequantizing the quantum
singular value transformation: hardness and applications to quantum
chemistry and the quantum PCP conjecture”. In: Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing. 2022,
pp. 19–32.

[GMV17] David Gosset, Jenish C Mehta, and Thomas Vidick. “QCMA hard-
ness of ground space connectivity for commuting Hamiltonians”. In:
Quantum 1 (2017), p. 16.

[GOL24] Andi Gu, Salvatore FE Oliviero, and Lorenzo Leone. “Doped stabilizer
states in many-body physics and where to find them”. In: arXiv preprint
arXiv:2403.14912 (2024).

[Got97] Daniel Gottesman. Stabilizer codes and quantum error correction.
California Institute of Technology, 1997.

[Guo+19] Chu Guo et al. “General-purpose quantum circuit simulator with pro-
jected entangled-pair states and the quantum supremacy frontier”. In:
Physical review letters 123.19 (2019), p. 190501. doi: https://doi.
org/10.1103/PhysRevLett.123.190501.

[GZ03] Alice Guionnet and Bogusław Zegarlinksi. “Lectures on logarithmic
Sobolev inequalities”. In: Séminaire de probabilités XXXVI (2003),
pp. 1–134.

[Haf+20] Jonas Haferkamp et al. “Contracting projected entangled pair states is
average-case hard”. In: Physical Review Research 2.1 (2020), p. 013010.
doi: https://doi.org/10.1103/PhysRevResearch.2.013010.

[Han+20] Dominik Hangleiter et al. “Easing the Monte Carlo sign problem”. In:
Science advances 6.33 (2020), eabb8341.

https://doi.org/https://doi.org/10.1103/PhysRevLett.123.190501
https://doi.org/https://doi.org/10.1103/PhysRevLett.123.190501
https://doi.org/https://doi.org/10.1103/PhysRevResearch.2.013010

280

[Has07] Matthew B Hastings. “An area law for one-dimensional quantum sys-
tems”. In: Journal of statistical mechanics: theory and experiment
2007.08 (2007), P08024. doi: 10.1088/1742- 5468/2007/08/
P08024.

[Has11] Matthew B Hastings. “Topological order at nonzero temperature”. In:
Physical review letters 107.21 (2011), p. 210501.

[Has12] Matthew B Hastings. “Matrix product operators and central elements:
Classical description of a quantum state”. In: Geometry & Topology
Monographs 18.115-160 (2012), p. 276.

[Has13] Matthew B. Hastings. “Trivial Low Energy States for Commuting
Hamiltonians, and the Quantum PCP Conjecture”. In: Quantum Info.
Comput. 13.5–6 (May 2013), pp. 393–429. issn: 1533-7146.

[Hay+16] Patrick Hayden et al. “Holographic duality from random tensor net-
works”. In: Journal of High Energy Physics 2016.11 (2016), pp. 1–56.
doi: https://doi.org/10.1007/JHEP11(2016)009.

[Hol85] Richard Holley. “Rapid convergence to equilibrium in one dimensional
stochastic Ising models”. In: The Annals of Probability (1985), pp. 72–
89.

[HPR19] Tyler Helmuth, Will Perkins, and Guus Regts. “Algorithmic pirogov-
sinai theory”. In: Proceedings of the 51st Annual ACM SIGACT Sym-
posium on Theory of Computing. 2019, pp. 1009–1020.

[HS83] Geoffrey E Hinton and Terrence J Sejnowski. “Optimal perceptual
inference”. In: Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition. Vol. 448. Citeseer. 1983, pp. 448–453.

[HS89] Richard A Holley and Daniel W Stroock. “Uniform and L 2 conver-
gence in one dimensional stochastic Ising models”. In: Communica-
tions in mathematical physics 123.1 (1989), pp. 85–93.

[HST01] Heikki Haario, Eero Saksman, and Johanna Tamminen. “An adaptive
Metropolis algorithm”. In: (2001).

[Hua+20] Cupjin Huang et al. “Classical simulation of quantum supremacy cir-
cuits”. In: arXiv preprint arXiv:2005.06787 (2020).

[IJ23] Sandy Irani and Jiaqing Jiang. “Commuting Local Hamiltonian Prob-
lem on 2D beyond qubits”. In: arXiv preprint arXiv:2309.04910 (2023).

[Ioa+20] Marios Ioannou et al. “Termwise versus globally stoquastic local
Hamiltonians: questions of complexity and sign-curing”. In: arXiv
preprint arXiv:2007.11964 (2020).

[JI24] Jiaqing Jiang and Sandy Irani. “Quantum Metropolis Sampling via
Weak Measurement”. In: arXiv preprint arXiv:2406.16023 (2024).

https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/https://doi.org/10.1007/JHEP11(2016)009

281

[Jia+24] Jiaqing Jiang et al. “Positive bias makes tensor-network contraction
tractable”. In: arXiv preprint arXiv:2410.05414 (2024).

[Jia25] Jiaqing Jiang. “Local Hamiltonian problem with succinct ground state
is MA-complete”. In: PRX Quantum 6.2 (2025), p. 020312.

[Kau49] Bruria Kaufman. “Crystal statistics. II. Partition function evaluated
by spinor analysis”. In: Physical Review 76.8 (1949), p. 1232. doi:
https://doi.org/10.1103/PhysRev.76.1232.

[KB16] Michael J Kastoryano and Fernando GSL Brandao. “Quantum Gibbs
samplers: The commuting case”. In: Communications in Mathematical
Physics 344 (2016), pp. 915–957.

[Kit03a] A Yu Kitaev. “Fault-tolerant quantum computation by anyons”. In:
Annals of physics 303.1 (2003), pp. 2–30.

[Kit03b] A.Yu. Kitaev. “Fault-tolerant quantum computation by anyons”. In:
Annals of Physics 303.1 (Jan. 2003), pp. 2–30. doi: 10.1016/s0003-
4916(02)00018-0. url: https://doi.org/10.1016%2Fs0003-
4916%2802%2900018-0.

[KKR06] Julia Kempe, Alexei Kitaev, and Oded Regev. “The complexity of
the local Hamiltonian problem”. In: Siam journal on computing 35.5
(2006), pp. 1070–1097.

[Koc+24] Jan Kochanowski et al. “Rapid thermalization of dissipative many-body
dynamics of commuting Hamiltonians”. In: arXiv preprint arXiv:2404.16780
(2024).

[KSV02] Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical
and quantum computation. 47. American Mathematical Soc., 2002.

[KT19] Joel Klassen and Barbara M Terhal. “Two-local qubit Hamiltonians:
when are they stoquastic?” In: Quantum 3 (2019), p. 139.

[KZW06] SC Kou, Qing Zhou, and Wing Hung Wong. “Equi-energy sampler
with applications in statistical inference and statistical mechanics”. In:
(2006).

[LC19] Guang Hao Low and Isaac L Chuang. “Hamiltonian simulation by
qubitization”. In: Quantum 3 (2019), p. 163.

[LC21] Ryan Levy and Bryan K Clark. “Entanglement entropy transitions with
random tensor networks”. In: arXiv preprint arXiv:2108.02225 (2021).

[Lee+22] Chee Kong Lee et al. “Variational Quantum Simulations of Finite-
Temperature Dynamical Properties via Thermofield Dynamics”. In:
arXiv preprint arXiv:2206.05571 (2022).

[Lee+23] Seunghoon Lee et al. “Evaluating the evidence for exponential quantum
advantage in ground-state quantum chemistry”. In: Nature Communi-
cations 14.1 (2023), p. 1952.

https://doi.org/https://doi.org/10.1103/PhysRev.76.1232
https://doi.org/10.1016/s0003-4916(02)00018-0
https://doi.org/10.1016/s0003-4916(02)00018-0
https://doi.org/10.1016%2Fs0003-4916%2802%2900018-0
https://doi.org/10.1016%2Fs0003-4916%2802%2900018-0

282

[Liu21] Yupan Liu. “StoqMA Meets Distribution Testing”. In: 16th Confer-
ence on the Theory of Quantum Computation, Communication and
Cryptography. 2021.

[LP13] Olivier Landon-Cardinal and David Poulin. “Local topological order
inhibits thermal stability in 2D”. In: Physical review letters 110.9
(2013), p. 090502.

[LVV15] Zeph Landau, Umesh Vazirani, and Thomas Vidick. “A polynomial
time algorithm for the ground state of one-dimensional gapped local
Hamiltonians”. In: Nature Physics 11.7 (2015), pp. 566–569.

[LW22] Xiantao Li and Chunhao Wang. “Simulating Markovian open quan-
tum systems using higher-order series expansion”. In: arXiv preprint
arXiv:2212.02051 (2022).

[Maj66] Chanchal K Majumdar. “Analytic properties of the onsager solution of
the Ising model”. In: Physical Review 145.1 (1966), p. 158.

[McA+20] Sam McArdle et al. “Quantum computational chemistry”. In: Reviews
of Modern Physics 92.1 (2020), p. 015003.

[Met+20] Mekena Metcalf et al. “Engineered thermalization and cooling of quan-
tum many-body systems”. In: Physical Review Research 2.2 (2020),
p. 023214.

[Met+53] Nicholas Metropolis et al. “Equation of state calculations by fast com-
puting machines”. In: The journal of chemical physics 21.6 (1953),
pp. 1087–1092.

[MH21] Ryan L Mann and Tyler Helmuth. “Efficient algorithms for approximat-
ing quantum partition functions”. In: Journal of Mathematical Physics
62.2 (2021). doi: https://doi.org/10.1063/5.0013689.

[MLH19] Milad Marvian, Daniel A Lidar, and Itay Hen. “On the computational
complexity of curing non-stoquastic Hamiltonians”. In: Nature com-
munications 10.1 (2019), p. 1571.

[MO94] Fabio Martinelli and Enzo Olivieri. “Approach to equilibrium of Glauber
dynamics in the one phase region: II. The general case”. In: Commu-
nications in Mathematical Physics 161.3 (1994), pp. 487–514.

[Mot+20] Mario Motta et al. “Determining eigenstates and thermal states on
a quantum computer using quantum imaginary time evolution”. In:
Nature Physics 16.2 (2020), pp. 205–210.

[Mov18] Ramis Movassagh. “Efficient unitary paths and quantum computational
supremacy: A proof of average-case hardness of Random Circuit Sam-
pling”. In: arXiv preprint arXiv:1810.04681 (2018).

https://doi.org/https://doi.org/10.1063/5.0013689

283

[MS08] Igor L Markov and Yaoyun Shi. “Simulating quantum computation
by contracting tensor networks”. In: SIAM Journal on Computing 38.3
(2008), pp. 963–981. doi: https://doi.org/10.1137/050644756.

[Mül+15] Markus P Müller et al. “Thermalization and canonical typicality in
translation-invariant quantum lattice systems”. In: Communications in
Mathematical Physics 340 (2015), pp. 499–561.

[MVC07] Valentin Murg, Frank Verstraete, and J Ignacio Cirac. “Variational
study of hard-core bosons in a two-dimensional optical lattice using
projected entangled pair states”. In: Physical Review A 75.3 (2007),
p. 033605. doi: https://doi.org/10.1103/PhysRevA.75.
033605.

[MW05] Chris Marriott and John Watrous. “Quantum arthur–merlin games”.
In: computational complexity 14.2 (2005), pp. 122–152.

[MZ18] Mario Motta and Shiwei Zhang. “Ab initio computations of molecular
systems by the auxiliary-field quantum Monte Carlo method”. In: Wi-
ley Interdisciplinary Reviews: Computational Molecular Science 8.5
(2018), e1364.

[NC10] Michael A Nielsen and Isaac L Chuang. Quantum computation and
quantum information. Cambridge university press, 2010.

[Nor98] James R Norris. Markov chains. 2. Cambridge university press, 1998.

[Ons44] Lars Onsager. “Crystal statistics. I. A two-dimensional model with an
order-disorder transition”. In: Physical Review 65.3-4 (1944), p. 117.
doi: https://doi.org/10.1103/PhysRev.65.117.

[Orú19] Román Orús. “Tensor networks for complex quantum systems”. In:
Nature Reviews Physics 1.9 (2019), pp. 538–550. doi: https://doi.
org/10.1038/s42254-019-0086-7.

[Ped+17] Edwin Pednault et al. “Breaking the 49-qubit barrier in the simulation
of quantum circuits”. In: arXiv preprint arXiv:1710.05867 15 (2017).

[PR17] Viresh Patel and Guus Regts. “Deterministic polynomial-time approx-
imation algorithms for partition functions and graph polynomials”. In:
SIAM Journal on Computing 46.6 (2017), pp. 1893–1919.

[PW09] David Poulin and Pawel Wocjan. “Sampling from the thermal quan-
tum Gibbs state and evaluating partition functions with a quantum
computer”. In: arXiv preprint arXiv:0905.2199 (2009).

[Qin+22] Mingpu Qin et al. “The Hubbard model: A computational perspective”.
In: Annual Review of Condensed Matter Physics 13 (2022), pp. 275–
302.

https://doi.org/https://doi.org/10.1137/050644756
https://doi.org/https://doi.org/10.1103/PhysRevA.75.033605
https://doi.org/https://doi.org/10.1103/PhysRevA.75.033605
https://doi.org/https://doi.org/10.1103/PhysRev.65.117
https://doi.org/https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/https://doi.org/10.1038/s42254-019-0086-7

284

[RFA24] Cambyse Rouzé, Daniel Stilck França, and Álvaro M Alhambra. “Effi-
cient thermalization and universal quantum computing with quantum
Gibbs samplers”. In: arXiv preprint arXiv:2403.12691 (2024).

[RGE12] Arnau Riera, Christian Gogolin, and Jens Eisert. “Thermalization in
nature and on a quantum computer”. In: Physical review letters 108.8
(2012), p. 080402.

[RW24] Joel Rajakumar and James D Watson. “Gibbs Sampling gives Quantum
Advantage at Constant Temperatures with 𝑂 (1)-Local Hamiltonians”.
In: arXiv preprint arXiv:2408.01516 (2024).

[RWW23] Patrick Rall, Chunhao Wang, and Pawel Wocjan. “Thermal state prepa-
ration via rounding promises”. In: Quantum 7 (2023), p. 1132.

[SBE17] Martin Schwarz, Olivier Buerschaper, and Jens Eisert. “Approximating
local observables on projected entangled pair states”. In: Physical
Review A 95.6 (2017), p. 060102. doi: https://doi.org/10.1103/
PhysRevA.95.060102.

[Sch+07] Norbert Schuch et al. “Computational complexity of projected entan-
gled pair states”. In: Physical review letters 98.14 (2007), p. 140506.
doi: https://doi.org/10.1103/PhysRevLett.98.140506.

[Sch05] Ulrich Schollwöck. “The density-matrix renormalization group”. In:
Reviews of modern physics 77.1 (2005), p. 259.

[Sch11] Norbert Schuch. “Complexity of commuting Hamiltonians on a square
lattice of qubits”. In: Quantum Information & Computation 11.11-12
(2011), pp. 901–912.

[Sch87] Roberto H Schonmann. “Second order large deviation estimates for
ferromagnetic systems in the phase coexistence region”. In: Commu-
nications in mathematical physics 112.3 (1987), pp. 409–422.

[SN16] Alireza Shabani and Hartmut Neven. “Artificial quantum thermal bath:
Engineering temperature for a many-body quantum system”. In: Phys-
ical review A 94.5 (2016), p. 052301.

[SRN19] Brian Skinner, Jonathan Ruhman, and Adam Nahum. “Measurement-
induced phase transitions in the dynamics of entanglement”. In: Phys-
ical Review X 9.3 (2019), p. 031009. doi: https://doi.org/10.
1103/PhysRevX.9.031009.

[SSC22] Or Sharir, Amnon Shashua, and Giuseppe Carleo. “Neural tensor con-
tractions and the expressive power of deep neural quantum states”. In:
Physical Review B 106.20 (2022), p. 205136.

[Sto83] Larry Stockmeyer. “The complexity of approximate counting”. In:
Proceedings of the fifteenth annual ACM symposium on Theory of
computing. 1983, pp. 118–126.

https://doi.org/https://doi.org/10.1103/PhysRevA.95.060102
https://doi.org/https://doi.org/10.1103/PhysRevA.95.060102
https://doi.org/https://doi.org/10.1103/PhysRevLett.98.140506
https://doi.org/https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/https://doi.org/10.1103/PhysRevX.9.031009

285

[SW87] Robert H Swendsen and Jian-Sheng Wang. “Nonuniversal critical dy-
namics in Monte Carlo simulations”. In: Physical review letters 58.2
(1987), p. 86.

[SZ92a] Daniel W Stroock and Boguslaw Zegarlinski. “The equivalence of the
logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing
condition”. In: Communications in mathematical physics 144 (1992),
pp. 303–323.

[SZ92b] Daniel W Stroock and Boguslaw Zegarlinski. “The logarithmic Sobolev
inequality for discrete spin systems on a lattice”. In: Communications
in Mathematical Physics 149 (1992), pp. 175–193.

[Tag23] Hamed Taghavian. A fast algorithm for computing Bell polynomials
based on index break-downs using prime factorization. 2023. arXiv:
2004.09283 [math.CA]. url: https://arxiv.org/abs/2004.
09283.

[Tak+03] Masamichi Takesaki et al. Theory of operator algebras II. Vol. 125.
Springer, 2003.

[Tan19] Ewin Tang. “A quantum-inspired classical algorithm for recommen-
dation systems”. In: Proceedings of the 51st annual ACM SIGACT
symposium on theory of computing. 2019, pp. 217–228.

[TD00] Barbara M Terhal and David P DiVincenzo. “Problem of equilibration
and the computation of correlation functions on a quantum computer”.
In: Physical Review A 61.2 (2000), p. 022301.

[Tem+11] Kristan Temme et al. “Quantum metropolis sampling”. In: Nature
471.7336 (2011), pp. 87–90.

[Ten+95] DFB Ten Haaf et al. “Proof for an upper bound in fixed-node Monte
Carlo for lattice fermions”. In: Physical Review B 51.19 (1995), p. 13039.

[Til+22] Jules Tilly et al. “The variational quantum eigensolver: a review of
methods and best practices”. In: Physics Reports 986 (2022), pp. 1–
128.

[Ull12] Mario Ullrich. “Rapid mixing of Swendsen-Wang dynamics in two
dimensions”. In: arXiv preprint arXiv:1212.4908 (2012).

[Van+16] Laurens Vanderstraeten et al. “Gradient methods for variational op-
timization of projected entangled-pair states”. In: Physical Review B
94.15 (2016), p. 155123.

[Van+17] Joran Van Apeldoorn et al. “Quantum SDP-solvers: Better upper and
lower bounds”. In: 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS). IEEE. 2017, pp. 403–414.

https://arxiv.org/abs/2004.09283
https://arxiv.org/abs/2004.09283
https://arxiv.org/abs/2004.09283

286

[VC21] Patrick CG Vlaar and Philippe Corboz. “Simulation of three-dimensional
quantum systems with projected entangled-pair states”. In: Physical
Review B 103.20 (2021), p. 205137. doi: https://doi.org/10.
1103/PhysRevB.103.205137.

[Vid03] Guifré Vidal. “Efficient classical simulation of slightly entangled quan-
tum computations”. In: Physical review letters 91.14 (2003), p. 147902.

[VMC08] Frank Verstraete, Valentin Murg, and J Ignacio Cirac. “Matrix product
states, projected entangled pair states, and variational renormalization
group methods for quantum spin systems”. In: Advances in physics
57.2 (2008), pp. 143–224.

[WFC23] Jordi Weggemans, Marten Folkertsma, and Chris Cade. “Guidable
Local Hamiltonian Problems with Implications to Heuristic Ansatze
State Preparation and the Quantum PCP Conjecture”. In: arXiv preprint
arXiv:2302.11578 (2023).

[Whi92] Steven R White. “Density matrix formulation for quantum renormal-
ization groups”. In: Physical review letters 69.19 (1992), p. 2863.

[Whi93] Steven R White. “Density-matrix algorithms for quantum renormal-
ization groups”. In: Physical review b 48.14 (1993), p. 10345. doi:
https://doi.org/10.1103/PhysRevB.48.10345.

[WJB03] Pawel Wocjan, Dominik Janzing, and Thomas Beth. “Two QCMA-
complete problems”. In: Quantum Information & Computation 3.6
(2003), pp. 635–643.

[WLW21] Youle Wang, Guangxi Li, and Xin Wang. “Variational quantum Gibbs
state preparation with a truncated Taylor series”. In: Physical Review
Applied 16.5 (2021), p. 054035.

[Wol12] Michael M Wolf. “Quantum channels and operations-guided tour”. In:
(2012).

[WT23] Pawel Wocjan and Kristan Temme. “Szegedy walk unitaries for quan-
tum maps”. In: Communications in Mathematical Physics 402.3 (2023),
pp. 3201–3231.

[Yan+22] Zhi-Cheng Yang et al. “Entanglement phase transitions in random
stabilizer tensor networks”. In: Physical Review B 105.10 (2022),
p. 104306. doi: https://doi.org/10.1103/PhysRevB.105.
104306.

[ZBC23] Daniel Zhang, Jan Lukas Bosse, and Toby Cubitt. “Dissipative quantum
Gibbs sampling”. In: arXiv preprint arXiv:2304.04526 (2023).

[Zeg90] Bogusław Zegarlinski. “Log-Sobolev inequalities for infinite one-dimensional
lattice systems”. In: Commun. Math. Phys 133.1 (1990), pp. 147–162.

https://doi.org/https://doi.org/10.1103/PhysRevB.103.205137
https://doi.org/https://doi.org/10.1103/PhysRevB.103.205137
https://doi.org/https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/https://doi.org/10.1103/PhysRevB.105.104306
https://doi.org/https://doi.org/10.1103/PhysRevB.105.104306

287

[Zha+10] Hui-Hai Zhao et al. “Renormalization of tensor-network states”. In:
Physical Review B 81.17 (2010), p. 174411. doi: https://doi.org/
10.1103/PhysRevB.81.174411.

[ZK11] Konstantin M Zuev and Lambros S Katafygiotis. “Modified Metropolis–
Hastings algorithm with delayed rejection”. In: Probabilistic Engineer-
ing Mechanics 26.3 (2011), pp. 405–412.

https://doi.org/https://doi.org/10.1103/PhysRevB.81.174411
https://doi.org/https://doi.org/10.1103/PhysRevB.81.174411

288

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	Nomenclature
	Introduction
	Local Hamiltonians, Gibbs states, and ground states
	Quantum Gibbs sampling
	Sharpen the understanding for classical algorithms

	Quantum Metropolis Sampling via Weak Measurement
	Introduction
	Overview
	Preliminary and Settings
	Quantum Metropolis Algorithm in More Detail
	Main Theorems and the Effective Quantum Markov Chain
	Uniqueness of the Fixed Point
	Gibbs States as Approximate Fixed Point
	Proofs of Theorem 4 and Theorem 6
	Appendix: More Details on Quantum Phase Estimation
	Appendix: Matrix Norm Properties
	Appendix: Bounding Mixing time w.r.t. spectral gap of L(s)

	Gibbs state preparation for commuting Hamiltonian
	Introduction
	Preliminary
	Reduction for 2-local qudit CLHs
	Reduction for 2D 4-local qubit CLH without classical qubits
	Reduction for 2D (4-local) qubit CLH with classical qubit
	Appendix: Gibbs sampling reduction for defected Toric code
	Appendix: Proofs of reductions for specific Hamiltonians

	Local Hamiltonian problem with succinct ground state is MA-complete
	Introduction
	Notations and Definitions
	Preliminaries
	The MA verification protocol
	Appendix:Relationship to matrix verification
	Appendix:MA-hardness
	Appendix:Proof of two facts
	Appendix:Properties of FH,.
	Appendix:Properties of the CTMC
	Appendix: Proof of Claim 102
	Appendix: Remarks on precision
	Appendix: Calculation for Equations

	Positive bias makes tensor-network contraction tractable
	Introduction
	Notation and tensor networks
	Barvinok's method and its variant
	Tensor network contraction algorithm from Barvinok's method
	Approximating random PEPS with positive mean
	Approximating arbitrary positive tensor networks
	Appendix:#P-hardness of exactly contracting random 2D tensor networks
	Appendix:More on Barvinok's method
	Appendix:BPP-hardness of additive-error approximation (Theorem 135)

	Commuting Local Hamiltonian Problem on 2D beyond qubits
	Introduction
	Preliminaries
	Review of C*-algebras and the Structure Lemma
	Qutrit Commuting Local Hamiltonian on 2D
	Factorized commuting local Hamiltonian on 2D
	Appendix:Relationship between general case and projection case
	Appendix:Qudits on the vertexs or on the edges

	Bibliography

