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Abstract

This thesis is a theoretical and experimental investigation of the intersubband transi-
tions in quantum well structures. The I-V characteristics, infrared absorption spectra,
and photoresponse spectra of superlattices are used to characterize multiple quantum
well structure properties in unipolar devices.

An important numerical method for solving the problem of bound-to-continuum
transitions, the transfer matrix method, is presented for the self-consistent calcu-
lations. Although the boundary conditions are relaxed due to the calculation self-
consistentcy, inappropriate boundary conditions were previously included in the lit-
erature.

The first observation of the quantum interference effect in the photocurrent spectra
is described using a weakly coupled bound-to-continuum transition quantum well
structure and electric field domain formation in the device. This effect persists even
at high biases where Kronig-Penny minibands of periodic superlattice potential in the
continuum are destroyed. Using this observation, the electric field domain formation
and the electron coherence length in superlattices were analyzed. A large off-resonant
energy level alignment between two neighboring wells in the high field domain was
observed. The effect of temperature on the transport properties was also discussed.
As a further study of electric field domain formation in superlattices, an optical
experiment using Stark effect is suggested.

The dependence of the absorption spectral linewidth of quantum well intersub-
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band transitions on the electron population in the well is experimentally demon-
strated using field-induced charge transfer and thermal-induced charge transfer in an
asymmetric coupled quantum well structure. We show that this population-induced
broadening is very important in the broadening of intersubband transitions in quan-
tum well structures and that previously reported linewidth values for the contribution
from donor scattering were overestimated. Many body effects and single-particle band
non-parabolicity are the likely causes. An electronic light chopper based on popula-
tion modulation was fabricated using the asymmetric coupled quantum well structure.
A modulation depth of 45% has been demonstrated using 50 periods of the coupled

well structure.
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Chapter 1

Introduction

Semiconductor quantum well structures have been of great interest for both prac-
tical applications and academic interests. Using these structures, we can engineer
the band structure so as to possess desired optical emission or absorption involv-
ing both conduction band and valence band (the interband transitions), or involving
subbands in quantum well structures within only conduction band or only valence
band (the intersubband transitions). In interband detectors, electrons in the valence
band are photo-excited to the conduction band and the photo-excited carriers, in the
presence of an applied field, are collected and they contribute to photocurrent. A
detector of this type can detect photons with energy larger than the material energy
gap. By controlling the material energy gap, the absorption spectrum and hence the
photoresponse spectrum of the detector can be changed. The detection of radiation
at around 10 gm wavelength will require a material with small energy gap of about

100 meV when interband transitions are used. In practice, it is difficult to fabricate



devices with very small energy gap materials. Quantum well structures can provide
intersubband transitions for the long wavelength infrared radiation detection. In ad-
dition, intersubband transition energies can be modified by designing the quantum
well parameters, adding extra freedom to the design of semiconductor devices.

Intersubband transitions have been studied by many researchers. Esaki and Sakaki
[1] first suggested using GaAs/AlGaAs multiple quantum wells (MQWs) to obtain
large intersubband transition optical absorption. In 1983, Smith et al. [2] and Chiu
et al. [3] first demonstrated experimentally intersubband and bound-to-continuum
infrared detectors, while Gurnick and DeTemple [4] discussed theoretically, enhance-
ment of intersubband transition optical nonlinearities. In 1985, West and Eglash [5]
demonstrated intersubband absorption at a wavelength of 10 ym with large oscillator
strength of the transition. Following these results, researchers now have a relatively
detailed understanding of intersubband absorption selection rules, oscillator strength,
intersubband transition energy spacings including many-body effects, absorption line
shapes.

One of the applications of intersubband transitions is their use in infrared pho-
todetectors. Among the materials used for intersubband studies, GaAs/AlGaAs has
been widely used because of the mature crystal growth and processing technologies.
Currently, highly uniform, large area, cost effective, high sensitivity focal plane de-
tector arrays can be achieved [6]. In addition, the current GaAs technology allows
the monolithic integration of quantum well infrared detectors with high-speed GaAs

multiplexer and other electronics.



For infrared camera applications, large focal plane arrays with moderate sensitivity
and low cost are required. PtSi Schottky barrier detector arrays have been studied for
mid-wavelength infrared (MWIR) (3 to 5 pm) applications [7]. IrSi Schottky barrier
detectors [8] and SiGe heterojunction internal photoemission detectors [9] have been
developed for long-wavelength infrared (LWIR) (7.5 to 12 pm) applications, but they
have large dark currents. GaAs/AlGaAs quantum well infrared photodetectors are

good candidates for LWIR spectral range.

1.1 Thesis outline

The work described in this thesis concentrates mainly on the applications of the quan-
tum well intersubband transitions for infrared light detection and modulation based
on the GaAs/AlGaAs material system. It is possible to design different intersubband
transition energies because of the freedom to choose the quantum well parameters.
For photodetector applications, however, the range of tuning the intersubband tran-
sition energies for given quantum well material is narrow and is discussed in Chapter
2. The intersubband transition absorption, detector photoresponse, and dark current
are also described.

It is important to include many body effects in considering intersubband transition
energies at high doping densities. It is thus necessary to perform numerical calcu-
lations self-consistently. Chapter 3 presents the transfer matrix method for solving

one-dimensional differential equations. Although other numerical methods might have



some advantages for certain applications, the transfer matrix method is very useful
for bound-to-continuum transition calculations.

In the discussion of electric field domain formation, the electron coherence length is
an important parameter. Chapter 4 describes the first observation of the quantum in-
terference effect in the photocurrent spectra of a weakly coupled bound-to-continuum
multiple quantum well structure. The electron coherence length in the superlattice
was also estimated, and the observation was used to investigate electric field domain
formation induced by sequential resonant tunneling. Finally, the effect of temperature
on the transport properties was also analyzed.

The last chapter is devoted to a discussion of expgrimental measurement of the
intersubband transition population-induced broadening. It will be shown that the
population-induced broadening has a significant contribution to the absorption linewidth.
The linewidth caused by donor scattering was previously over-estimated in the liter-
ature. The electrically induced population change in a selectively doped asymmetric
double quantum well structure was used in the design of infrared modulators mono-

lithically integrated with a photodetector.
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Chapter 2

Quantum states and quantum well
intersubband infrared

photodetectors

In this chapter, electronic subbands, intersubband transition rates, selection rules and
oscillator strength sum rule will be described. When a simple quantum well structure
is used in a detector application, the intersubband transition energy can be tuned
over a small range by changing the well width if the barrier height is fixed. A large
transition energy tuning range can be realized by changing the barrier height. Two
main parameters in detector characterization, photoresponse and dark current, will
be reviewed and discussed. In bound-to-continuum MQW structures, the normalized
dark current (I;/T) was shown to have an exponential dependence on the inverse

temperature over several orders of magnitude change of current. This indicates the



domination of dark current by thermionic emission process for temperature above

~80 K.

2.1 Electronic subbands

When a thin narrow energy gap material is sandwiched between wide energy gap
ones, the carrier motion normal to the layers is quantized and a sequence of electronic
subbands is formed. In the envelope function approximation, the spatial dependence

of the electron wavefunction in the conduction band, as an example, is written as
®(r) = (2)e™ I 1 ug(r), (2.1)

where 9(z) is the slowly varying envelope function, u.(r) is the Bloch function peri-
odic with the crystal lattices, and k ;/ is the in-plane wave vector. It is also assumed
that the Bloch functions are the same for different materials constituting the het-
erostructures. From the Ben Daniel-Duke model, the envelope functions are solutions

to the Schrédinger equation [1]:

Rrd (1 d k7, i .
B () e+ gy b+ VEBE) = Bas(), (22)

where % is the Plank constant, m*(z) is the position dependent effective mass of
the electron, E; is the i** quantized energy level, 9; is the corresponding envelope
function, and V(z) is the potential distribution. The second term on the left-hand

side of the above equation is zero at the subband edge (k;; = 0). The integration of



Equation (2.2) across a heterostructure boundary will require that

1 dis
m*(z) dz

¥;(z) and

be continuous across the interface.

In a single quantum well case as shown in Figure 2.1, if we assume piecewise

constant potentials for the well and the barriers (the potential V(z) is V,, for the

well, and Vjy, Vi, for the two barriers, respectively), the bound state subband energies

satisfy the following equation

V(z)

Figure 2.1: Single quantum well with two bound states.

v

(2.4)

m A/ 2mr (E=Vy ] . .
where kyip2 = mbl""",g il ),kw = ——2—-‘%}3—2, d is the well thickness, F is the

bound state energy.

Figure 2.2 shows the theoretical intersubband transition energy as a function of

well width for a simple quantum well structure suitable for making detectors in the
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wavelength range of 3 ~ 15um using a GaAs well and direct energy gap Al:Gaj_.As
(z < 0.45) as barrier material. In the calculation, the intersubband transition energy
is taken to be the cutoff transition energy (V; — Eo) in the case of bound-to-continuum
transition (where there is only one bound state in the well); the transition energy is
E; — E, for bound-to-bound transition (where there are two bound states in the well)
with E; close to the barrier. More bound states in the well are not considered for
this simple structure because the transition dipole matrix element (which is defined
in the next section) is much smaller between the ground state and higher order bound
states. The well width can not be very large because the photo-excited electron has
a small probability of tunneling out of the well when the excited state is deep in
the well, which is undesirable for detector applications. For fixed barrier height, the
transition energy can be tuned over a small range by changing the well width. When
the barrier height is low (or x is small), the transition energy changes by about 10
meV over a relatively large well width range. The tuning range for larger barrier
heights is, however, much larger, which implies that the transition energy is more
sensitive to well width fluctuation in this case.

In the calculation of the energy levels in highly doped quantum well structures, it
is important to use the Hartree approximation and include many body effects. This

will be discussed in the next chapter.
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Figure 2.2: Theoretical intersubband transition energy versus GaAs well width for

different Al concentrations in the barriers of single quantum well structures.
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2.2 Intersubband transition selection rule and sum

rule

The interaction of an electron in a quantum well structure with an electromagnetic
field is calculated using perturbation theory. The interaction Hamiltonian responsible

for optical transitions is given by [2]

H = _EA(T)'p’ (

O]
Ut
-~

where A(r) is the vector potential of the electromagnetic field, p is the electron mo-
mentum operator. The optical matrix element for a transition between two subbands
is proportional to

< @;|A(r) - p|®; >=

Jv @rwi(r)(&- plui(r)Ao fy &Er f7(r) filr)+ (2.6)

Jv @ru;(ryui(r) Ao fy &rf(r)(€- p)fi(r),

where electronic wavefunction ®;;y = fi)(r)uiy(r), fis) is the envelope function
for the initial state (the final state), u;(j)(r) are the Bloch functions, and € is the
optical field polarization vector. We have used the rapid spatial oscillation of the
Bloch function to separate the integral. From the orthogonality and normalization
relations of the Bloch functions, the above equation becomes

< O5|A(r) - p|®; >

—
o
BN |

N—

< ujlé - plug > Ao fy Erfi(r)fi(r) + 6ijA0 < filé-plfi > .

For intersubband transitions, the initial state and final state are in the same band and

have the same Bloch functions. Thus, the first term on the right-hand side of Equation
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(2.7) is zero. The second term is responsible for the intersubband transitions. Let

fi= ﬁ%/’i(z)eik”"'r”,

< fijlé-plfi >

= (eghks + €liky)0x,, . x,, 0ii + € < Pilp:|: > 6k, .k, ;-
The polarizations ¢,, €, give rise to allowed transtions only if the initial and final
states coincide. The intrasubband absorption (i=j) cannot be reasonably treated
in the static limit without including scattering mechanisms. One can see that only
the polarization ¢, term on the right hand side of Equation (2.8) contributes to
the intersubband transitions. This equation implies that the optical matrix element
is non-zero only when the optical field has non-zero polarization component along
the crystal growth direction, provided that the in-plane wavevector of the carrier
is conserved (vertical transitions in the k;; space). Thus, a 45° edge mirror, or a
grating [4] is often used to couple the infrared light into a quantum well structure. In
addition, if the hetersotructure Hamiltonian has a definite parity the initial and final
subbands should be of opposite parities.

The oscillator strength for a transition from the i** subband to the jth subband is

defined as

2m*
fis = = (Ei = E:) il (2.9)

where u;; = (€ €,) < ¥;|z|¢; >. From the commutator of the z and p. operators, it

can be shown that the summation of the oscillator strength over all the final states
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is unity, that is,
Zfii =1, (2.10)
b

where the dependence of m* on the position and the band nonparabolicity are ne-
glected. Reference [3] gives detailed discussion of the oscillator strength sum rule
including the effects of band nonparabolicity. Checking the oscillator strength sum
rule in numerical calculations is important, especially for the calculation of bound-

to-continuum transitions, where the quantum well structure is placed in a large box.

2.3 Intersubband absorption

Once the dipole matrix element is calculated, we could calculate the intersubband
transition rate and the absorption. From Fermi’s golden rule, the transition rate

from the ** state to the j** state is
27T ! 2 9
I = 7‘ < ®;|H'\®; > |*6(E; — E; — hw), (2.11)

The absorption is given by

a(hw) = hwr—;ing, (2.1

[
s
o
~——

where I is the incident light intensity, Nop is the :** subband two-dimensional popu-
lation, and the excited state is assumed to be empty. If we use Lorentzian lineshape

function, the above equation can be expressed as

2
Tq h|T,
hw) = —2— Nyp| i ?
albw) = 4 e Nolhiil e g o
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where n is the refractive index, c is the speed of light in vacuum, ¢ is the vacuum
permittivity, and T3 is the transition dephasing time.

Figure 2.3 shows the calculated absorption spectrum for a structure with
Alg91Gag.79As barriers and (a) 62 A, (b) 58 A, and (c) 56 A GaAs wells. As the well
gets narrower, the contribution from the continuum states becomes larger because
of the oscillator strength sum rule. The stronger absorption for bound-to-bound
transition, compared with that for bound-to-continuum transition, is due to the fact
that the wavefunction of the excited bound state is more localized and that the dipole
matrix element involves overlap integral of the initial and final state wavefunctions.
The absorption peak shifts very slightly because it is still dominated by the bound-
to-bound transition.

When the well size is further reduced, there will be only one bound state in the
well. A natural question one can ask is what would be the absorption peak position
(Epear)- There are three possibilities for the location of the absorption peak, (1) the
cutoff transition energy; (2) k,d = mm, where k, is the wave vector in the well and
m is a positive integer; (3) the transition from the bound state to the state in the
continuum with the largest oscillator strength (which we will call the resonance state).
The first two possibilities give decreasing E,..; when the well size is decreased. It has
been experimentally shown that the absorption peak corresponds to the transition
from the bound state to the resonance state in the continuum [5]. An example is
shown in Figure 2.4. It can be seen that the bound-to-continuum transition energy

is not a monotonic function of the well width.
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Figure 2.3: Theoretical  absorption  spectrum  for  bound-to-bound

and bound-to-continuum transitions (dotted line is for bound-to-bound transition,
dashed line is for bound-to-continuum transition, solid line is for the total absorp-

tion). The calculation is for SQW structure with Algo;Gag.reAs barriers and different

GaAs well width.
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structures with different GaAs well width and the same Algo5Gag rsAs barriers.

2.4 Mid-infrared absorption of bulk GaAs and air

The GaAs/AlGaAs quantum well structures studied in this thesis were grown on
lattice matched GaAs substrates. We needed to look at the mid-infrared absorption
of bulk GaAs in order to separate the properties of quantum well layers from the
background. Semi-insulating GaAs substrates were used in all of our experiments
because of the strong free carrier absorption in n*— GaAs substrates. As it can be
seen from Figure 2.5, n* — GaAs is not transparent for wavelengths larger than 9.2 um,
while the absorption of semi-insulating GaAs is small for mid-infrared radiation from

2.4 pm to 12.4 um. The absorption of n™— GaAs is, however, comparable to semi-
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insulating GaAs in the wavelength range of 2.4 ym to 4 um. Thus, for applications
in this wavelength range, both substrates can be used.

Figure 2.6 shows that moisture (H,0) and CO, in the air have absorption lines in
the photon energy range of interest. Although their absorption is small, it is necessary
to purge the experimental chamber with N to eliminate extra absorption peaks due

to moisture and CO,.

0.2
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2

0.1 L ]
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0.05 - _

0 A b { R JL Iy

50 100 150 200 250 300 350 400

Photon Energy (meV)

Figure 2.6: Air absorbance spectrum
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2.5 Quantum well intersubband infrared photode-

tectors

The transition of electrons in the ground state of a quantum well structure to the ex-
cited state can be induced by infrared light. When a multiple quantum well structure
(superlattice) is under external bias, the photo-excited electrons can either move in
the quantum well plane (for applied bias parallel to this plane), or move perpendicu-
Jarly to the quantum wells (for applied bias parallel to the crystal growth direction).
For detector applications, transport in the crystal growth direction is chosen because
the difference between the electron mobility for the ground state and for the excited
state is large, so that the dark current can be reduced. If the photo-excited elec-
trons can tunnel out of the quantum wells, they will contribute to the photocurrent.
Since electrons in the biased structure can also be thermally excited to the continuum
(thermionic emission) or tunnel through the barriers, there is an “inevitable” dark
current which is generated. In the following sub-sections, we will look at the detector

photoresponse and its dark current.

2.5.1 Detector photoresponse

The infrared detector sensitivity can be described by the amount of photocurrent
generated to the incident optical power, which is called responsivity. The responsiv-
ity spectrum can be measured as described by Levine [10], Eisenman [11]. A dual

lock-in ratio system is used to normalize the system spectral response. The absolute
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magnitude of the responsivity is determined by measuring the photocurrent with a
calibrated globar blackbody source and a monochrometer. For the Fourier Transform
Infrared spectrometer (FTIR spectrometer) used in this work, however, the photocur-
rent spectrum of a detector is used.

The blackbody spectral density [12] is

A3

W(A) = 27rc2h—-—————ehcA/kBT T

(2.14)

where A = 1/ is the wavenumber, h = 27h, kp is the Boltzmann constant, T is
the absolute temperature of the blackbody source. The temperature of the globar
blackbody source used in our experiment is 1000 K. Figure 2.7 shows the calculated
blackbody spectral density. The radiation from an assumed 300 K blackbody is also
shown in the figure for comparison. Notice that the spectral densities for the two
different sources are in different scales. It is obvious that the radiation from the
room temperature background can be neglected compared with that from an 1000 K
blackbody source when the same infrared window is used.

For a given device, the total photocurrent can be measured from the differences in
the IV characteristics of the device under infrared illumination and in the dark. This
total photocurrent can then be used to normalize the measured photoresponse spec-
trum from FTIR spectrometer (the integrated area of the measured photoresponse
spectrum should be equal to the total measured photocurrent from I-V characteris-
tics). If the infrared radiation incident on the detector is calibrated, then the detector

responsivity can be measured/calculated from the calibrated radiation and measured
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Figure 2.7: Blackbody radiation spectra.

photocurrent spectrum. The advantage of FTIR measurement is that the whole

photocurrent spectrum can be measured at once. From Zussman’s photocurrent ex-

pression [13],

total Az .
e = /A L(A)dA (2.15)
Az
— / R(A)P(A)dA, (2.16)
Ay

where A, and A, are integration wavenumber limits that extend over the responsivity,
I(A) = R(A)P(A) is the photocurrent per unit wavenumber, R(A) is the responsivity

and P(A) is the blackbody radiation power per unit wavenumber incident on the

detector. P(A) is given by

P(A) =W(A) sin? <%) ACF cos 8, (:
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where Q is the solid angle for the detector viewing the optical field, A is the detector
area, Cr takes into account FTIR spectrometer optical system reflection, dewar win-
dow reflection, and the detector edge 45° mirror reflection and  is the optical field
incident angle referring to the quantum well plane. From the above two equations,
we know

I(A) = R(A)W(A)sin®(Q/2) ACF cos 6. (2.18)

The unknown parameters in our experiment are £} and Cr, both of which are inde-
pendent from the device structure. So, we used the photocurrent spectrum I,(A) in

the device analysis.

2.5.2 Dark current

As mentioned above, the three main mechanisms contributing to dark current are
field-assisted and impurity-assisted tunneling and thermionic emission. To reduce the
dark current, we used very thick barriers (~400 A), so, the field-assisted tunneling
can be neglected. For high quality molecular beam epitaxy (MBE) grown samples,
one can usually ignore the contribution caused by impurities to the dark current at
temperature higher than ~80 K. In this temperature range, the main contribution to
dark current comes from thermionic emission or thermally-assisted tunneling which
has been studied by Kinch and Yariv [14]. The dark current for quantum well infrared

photodetectors can be expressed as:

1; = Ansquy, (2.19)
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where A is the device area, n; is carrier density contributing to the dark current and
vy is electron drift velocity which will be assumed to be temperature independent

[15]. The thermally excited carrier density n; is given by [14]

Ny

=1 5 TV E)pn(B)IE, (2:20)

where L, is the MQW period, T'(E, V) is the bias-dependent transmission coefficient
for a electron with energy E tunneling through the barrier, f(E) is the Fermi-Dirac
distribution function. In the case of bound-to-continuum transitions, if we consider

an effective barrier with potential E, varying with bias and approximate T'(E, V') by
T(E,V)=0, for E < E,

and

T(E,V)=1, for E > E,
then Equation (2.20) becomes

m*kBT

W log (1 + 6‘(Eb_Ef)/kBT) . (221)
P

ny =

When the temperature is sufficiently high (but low enough such that kpT <<

(Eb - Ef)), then

o
I\
o
~——

I\ By —E; o
1°g<T>°‘ keT (2.

To compare the dark current temperature dependence with the above equation,
a stack of GaAs/AlGaAs MQWs was grown by MBE on (100) semi-insulating GaAs

substrate [19]. The structure consisted of, from the substrate to the surface, 0.6pm



25

nt—GaAs bottom contact layer, 40 periods of 53 A CGaAs well layers sandwiched
by 440 A Aly24GagreAs barrier layers, and a 0.3um nt—GaAs top contact layer.
The center 47 A in each well was uniformly doped with Si. Following the MBE
growth, circular mesas with 200um diameter were defined by wet chemical etching.
AuGe/Ni/Au was deposited onto the top and bottom n*—GaAs layers to make ohmic
contacts. Due to the intersubband transition selection rule, a 45° mirror was polished
on the edge of the sample to couple incident infrared radiation for the photoresponse
spectrum measurement.

These devices have a peak in photoresponse spectrum at 1207 cm™!

, as shown in
Figure 2.8. The long wavelength cutoff frequency (frequency at half-peak strength)
is 1118 cm™ (i.e., By — E, = 1118 cm™"). Figure 2.9 shows the dark current as a
function of voltage at different temperatures (77 — 160 K). At these temperatures,
the dark current is dominated by thermal current. Figure 2.10 shows the normalized
dark current (I3/T) as a function of inverse temperature for two different voltages. It
can be seen that the exponential fit is very good over 4 orders of magnitude of current
change. The slope of the line in Figure 2.10 corresponds to (E, — Ef) for a given
bias voltage. (B, — E;) is plotted as a function of voltage drop per period (V) in the
Figure 2.11. As expected, the effective barrier height seen by electrons going out of
the quantum well is decreasing as the applied bias increases. But it does not show
linear dependence, in contrast to the recent study by Lee et al. [20]. This barrier

lowering effect, which has been introduced phenomenologically by Levine et al. [18]

to explain carrier escape probability out of the quantum wells under different biases,
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is thus measured directly. In addition, the peak position is not at 0 volt, which is due

to doping segregation during MBE growth of the sample [20,21].

[y

Normalized Photoresponse

L TR T S ST SOV NS TUNNE SR T S M
500 1000 1500 2000 2500

Wavenumber (cm 1)

Figure 2.8: Normalized photoresponse of the detector under Vpjps = —2V at T = 10

K. The bias polarity is defined with the bottom contact as ground.

2.6 Conclusion

Electronic subbands and intersubband absorption were described. Simple quantum
well structures can be used in photodetectors with a small tuning range of intersub-
band transition energies. The chapter also described intersubband transition selection
rules and oscillator strength sum rule. The absorption feature of bulk GaAs and air

background can be separated from that of superlattices. Detector photoresponse and
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Figure 2.9: Measured dark I-V characteristics of the detector at different tempera-

tures.

dark current were reviewed and discussed. In addition, it was shown that the nor-
malized dark current had an exponential dependence on the inverse temperature over
four orders of magnitude change of current when the dark current was dominated by

thermionic emission in a bound-to-continuum quantum well structure.
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Chapter 3

Numerical solution to
Schrodinger’s and Poisson’s

equations

To design prescribed electrical and optical response or to interpret the electrical and
optical properties of quantum well devices, it is important to develop a quantita-
tive theory. In simple quantum well structures, analytical equations can be used to
describe electronic states as discussed in Chapter 2. In this chapter, we will first
present the theoretical formulations used in the self-consistent calculation of gen-
eral quantum well structures. The inclusion of the many-body effects in the single
electron Schrédinger’s equation has been justified by Ando [1] and Stern [2]. We
limit ourselves to the discussion of the one-dimensional case, which is appropriate for

the mid-infrared devices used for our study because of the large lateral device size.
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This simplifies the numerical problem, and allows the implementation of a complex
theoretical model. Ounly time-independent phenomena will be discussed. To solve
Schrédinger’s equation with arbitrary one-dimensional potential, we use the transfer

matrix method. Some numerical examples are then presented.

3.1 Theoretical formulations

In the calculation of subband energy levels of quantum well structure in the inversion
layer of a MOSFET using Schrodinger’s equation and Poisson’s equation, it has been
shown that it is important to include the exchange-correlation energy for densities
higher than 10'! cm~2 [1]. Since the intersubband absorption is proportional to the
subband population (see Equation (2.13)), high doping density is generally used in
detector applications. Stern et al. [2], and Bloss [3] demonstrated that the Hartree
potential, the local exchange-correlation energy, the exciton effect, the depolarization
effect, and the external applied electric field are all non-negligible effects in order
to make comparisons with experiment. The exciton shift is the interaction of the
excited electron with the hole left in the ground state, similar to the interaction
of electron-hole pairs in the conduction-valence band. The depolarization shift is
a plasma shift of the transition caused by the screening of the electron gas. The
effective mass Schrodinger equation within the envelope approximation framework is
given by Equation (2.2). The term V(z) in the equation is now the total potential

including the barrier potential V5(2), the Hartree potential Vx(z), the local exchange-
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correlation potential V,.(z) which takes the many-body effects into account, and the

contribution of the externally applied field F,

V(z) = Vo(2) + Vu(z) + Vae(2) + ¢F 2. (3.1)

Hartree potential

The Hartree potential is calculated from the self-consistent solution to Poisson’s equa-
tion and Schrodinger’s equation. When the Hartree potential for electrons is in units

of volts, the Poisson equation takes the form:

(%) = L5 - nte), 32)

where N (z) is the density of ionized donors, the electron local three-dimensional

density is given by [6]

o(e) = 25 3 7 1o 1+ exp (F5 )| GO

where M} is the it* subband average effective mass given by

M = [/+°° iz )Izdz}’l’

' o mi(z)

assuming that ;(z) has been normalized, [*3 [4i(z)|*dz = 1.

Exchange-correlation potential

In accordance with the theory of Hohenberg et al. [4], the exchange-correlation po-

tential is generally an unknown functional of the electron density n(z). In the local
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density approximation, V. has been given different forms with similar quantitative
results for subband energy level by a number of authors [2,3,5]. Following Stern et

al. [2], the local exchange-correlation potential is

0.7734
£

Vao(2) = = [1 + 10.57a” ¥’

log(l-l—f)] C_ g (3.3)

where
4 1/3
o= (5)
4 1/3
(=21 <§7ra*3n(z)> )

. Amepe(2)R?
af = ———
m*(z)e?

e:(z) is the local relative dielectric constant. Ry in Equation (3.3) is the effective
Rydberg, R; = €?/(8mepe,(2)a*). The charge-image interaction is neglected in cal-
culating V;. because the change in the dielectric constant is on the order of 10% or
less for GaAs-Al,Ga;_,As heterostructures and thus the image interaction is much

smaller than the direct Coulomb interaction.

Depolarization and exciton shift

The intersubband transition energies are also affected in the absorption process by
the exciton and depolarization effects. These effects are included in our calculation
using the formalism of Ando [7]. The intersubband transition energies (AEg) are

shifted to

AE = AEg /1 + £ — B, (3.4)
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where & takes depolarization effect into account and is given by

_ 2¢*n2p Soi
- CTCOAEO ’

So; is the Coulomb matrix element given by

So; = /_ :° dz ( /_ ; dz'¢i(z')¢o(z’)>2 ,

and B accounts for the exciton effect and is given by

_ _2map ¥ a2 OVadn(2)]
ﬂ‘“AEIZ /_oo depilz) (=) =5 oy

3.2 Boundary conditions

When a given potential is applied across a quantum well structure, Dirichlet boundary

conditions should be used, and the corresponding electric field is calculated from

7

the self-consistent calculation. We can also use the Neumann boundary conditions

for a given external applied field and deduce the bias through the self-consistent

calculation. Although both boundary conditions can be used, inappropriate physical

considerations for the boundary exists in published literature [§8]. (In Reference [8],

the potential of the doped barriers can not be taken as constant.) Periodic boundary

conditions are not considered because of the short coherence length of electrons except

where indicated.
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3.3 Transfer matrix method

There are several numerical methods, such as transfer matrix, finite difference, shoot-
ing, finite element, etc., to solve Schrodinger’s and Poisson’s equations. In solving
the problem of complex energy (for quasi-bound state), the transfer matrix method
was chosen because of its simplicity. Later on, the method was developed to do the
self-consistent calculation. For some cases, such as in the absorption coefficient cal-
culation of bound-to-continuum transitions (which will be discussed in Chapter 4),
the advantage of transfer matrix method is that the accuracy of the numerical solu-
tions does not depend on the mesh size, which can not be done using other numerical
methods.

We will discuss the transfer matrix technique in the context of solving the Schrédinger
equation. The technique can also be applied to solve other differential equations, e.g.,
the Poisson equation. The transfer matrix technique consists of dividing the quantum
well structure with complicated potential profile into a number of intervals such that
in each interval the potential can be approximated by either a constant or a linearly
varying function. The envelope function in each interval is then given by the linear
combination of two plane waves or two Airy functions. We consider the case of a
constant potential in each interval as shown in Figure 3.1.

The potential profile is discretized into N + 1 intervals where the first and the
last intervals are assumed to have constant potential and to extend to infinity away

from the quantum well structure. In the ith(s = 1,..., N + 1) interval, the envelope
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Figure 3.1: Schematic figure of discretized constant potentials versus the position.

function is given by
i(2) = As exp[—ki(z — zi—1)] + Biexplki(z — zi1)], (3.5)
where k; = 1/2m3(V; — E)/h, A; and B; are complex constants to be determined from

the boundary conditions and the normalization conditions for the envelope functions,

E is the eigenvalue.

The boundary conditions for the envelope functions at the border between two

neighboring intervals can be expressed as

¥i(2i) = Yiza(z:), (3.6)
di; di;
Ly _ L ) (3.7)
m; dz 2=z miyq dz 2=z
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The factor 1/m* in Equation (3.7) is due to the conservation of particle current and
ensures stationary eigenstates when there is a discontinuity in the effective mass at
the boundaries as discussed by White et al. [9], and Bastard [10].

Applying the boundary conditions of Equations (3.6) and (3.7) to Equation (3.5),
the coefficients A;;1 and B;4y in the (2 + 1)%* interval are related to the coefficients
A; and B; in the " interval as

Aipi A;
C. .
B B;

where C; is given by

l (1 + §i) eXP[—kz‘(Zi - Zi-—l)] (1 - fi) eXP[ki(Zi - 32‘—1)]

(1 — &) explhi(zi — 2i-1)] (1 + &) exp[—ki(zi — zi1)]

i:

with & = (m},,/m?)(ki/kit1). Repeating the analysis, we can find the following

relation for Ayyy and Byyi with A; and By

AN 1 Ay
’ = (H C) (3.9)
Bt =N By

Dy Die Ay
= . . (3.10)
Dy1 Do By
For bound states, the integral of the envelope function absolute square over the

whole space should be finite, which requires that A; =0, z € (—o00, 2] and Byy1 =0,

z € [z, 400). This constraints Dy in Equation (3.10) to be zero. The solution to

Dy(E)=0 (3.11)
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is the bound state energy.

To solve self-consistently Schrodinger’s and Poisson’s equations, we start with an
approximate potential distribution. For example, we only include the barrier poten-
tial V5(z) and the external field contribution eF'z in the Schrédinger equation in the
first iteration. The solution gives us the quantized energy levels E¢' and the elec-
tronic envelope functions. The Hartree potential is then obtained from the Poisson
equation. In the second iteration, a new approximate potential profile V"**(z) (in-
cluding the Hartree potential and the local exchange-correlation potential) is used
in the Schrédinger equation, the new quantized energy levels E!** are then calcu-
lated. If EP* agrees with E® within acceptable limits after several iterations, a
self-consistent solution has been found. Otherwise, another iteration is employed.

Mathematically,
Vnew,(n-}-l)(z) — Vold,(n)(z) 4 g(n+1) . (V'new,(n)(z) _ Vold,(n)(::))

where n represents the number of iterations, g is a convergence control factor and is
independent of position z. The factor g is within the range of 0 to 1 and is chosen

from experience. In some cases, rapid convergence can be obtained for g = 1.

3.4 Numerical examples

3.4.1 Miniband structure in superlattices
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Figure 3.2: Quantum well structure with periodic potential distribution.

The first numerical example is to use transfer matrix method to calculate the mini-
band structure in superlattices. It is well known that there exist minibands in a
superlattice when the potential has spatial translational symmetry. This miniband
structure can also be calculated using the Kronig-Penny model. From this model, the
miniband E — k dispersion relation is given by the following two equations [11] for

the case of a simple superlattice structure shown in Figure 3.2.

For V> E,

cos(k(w + b)) = cos(k,w) cosh(kpb) —

| =

£ — —2— sin(k,,w) sinh(kpb), (3.12)

with
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for V<E,

L

cos(k(w + b)) = cos(kyw) cos(kyb) — % (5 + :

) sin(k,w) sin(k;b), (3.13)

with

\/2miE 2mi(E -V *
b = k mb( )g_mbkw

w= T o I T me k]

where w is the well Width, b is the barrier thickness, V is the barrier height. From
Bloch’s theorem, ¥(z) = €*?u(2), where k is the wave number of the envelope function
in the z-axis and u(z) is the periodic part in the envelope function at k = 0, u(z) =
u(z +w+b). The advantage of transfer matrix method is its flexibility in calculating
eigen energies of any potential distribution. This allows us to study finite length
superlattices as well.

Figure 3.3 shows minibands and miniband gaps for a simple periodic potential
with 60 A GaAs wells and 50 A Alg9;GagrsAs barriers. The transmission coefficient

spectrum for the same quantum well parameters but with only five periods is shown

in Figure 3.4. The miniband gaps correspond to transmission coefficient close to 0.
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funct(E)

Figure 3.3: The right-hand side of Equations (3.11) and (3.12) is plotted versus the
energy E for a periodic quantum well structure. The shaded area corresponds to the

allowed states (minibands).

3.4.2 The influence of doping on the intersubband transi-
tion energy

The effect of doping density on the intersubband transition energy can be large. A
change in the doping densities from 1 X 10! to 2 x 10'2 can change the transition
energy by about 9 meV in a simple quantum well structure (assuming the barrier
is undoped). The 9 meV correction to the intersubband transition energy is small
compared with the intersubband transition energy in the mid-infrared range, but

this correction is large when compared with the intersubband absorption linewidth.
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Figure 3.4: Transmission coefficient spectrum for a 5-period quantum well structure.

A theoretical example is shown in Figure 3.5 for a single quantum well structure
with 75 A uniformly doped GaAs well and undoped Alp5GagrsAs barriers. The
intersubband transition energy changes almost linearly with the doping density in

this case. The self-consistent calculation included all terms in Equation (3.1).

3.4.3 The effect of external field, Hartree, and exchange-
correlation interaction on intersubband transitions

Shown in Figure 3.6 is the theoretical calculation of Stark effect for a single quantum
well structure with 82 A GaAs well, where the center 50 A is uniformly doped to
2% 10 cm~2, and undoped Alg4GaggAs barriers. The self-consistent calculation with

Hartree and exchange-correlation interaction gives increased intersubband transition
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Figure 3.5: The intersubband transition energy versus the population in the well for

a single quantum well structure.

energy. Depolarization and exciton shifts, acting to increase the transition energy,
are-also significant, and thus cannot be neglected in the theory. The Stark shift as
shown in Figure 3.6(a), however, does not have noticeable change whether or not a
self-consistent calculation is used. The small change of the oscillator strength with
changing external field is shown in Figure 3.6(b).

Using an asymmetric quantum well structure to generate a large Stark effect has
been proposed theoretically and demonstrated experimentally [12,13]. As an exam-
ple, the effect of self-consistent calculation was studied for a step quantum well. This
structure consisted of Aly34GaggsAs barriers, 62 A undoped Alg17GaggsAs step bar-
rier, and 62 A selectively doped GaAs well. The selectively doped GaAs well was as-

sumed to be Si doped to 2 x 108 cm™3 in the center 50 A. Figure 3.7(a) shows that the
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Figure 3.6: (a) Calculated intersubband transition energy and (b) oscillator strength

versus external field.
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Stark shift does not change significantly when the self-consistent calculation includes
all effects, compared with the result from the non-self-consistent calculation. Again,
the subband transition energy is strongly affected by Hartree, exchange-correlation
interaction, and depolarization and exciton shifts. The oscillator strength depends

on the external field strength and polarity as shown in Figure 3.7(b).
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a step quantum well structure. (b) The oscillator strength versus external field.
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3.5 Conclusion

The transfer matrix method can be used to solve Schrodinger’s equation and Pois-
son’s equation. This method has the advantage of solving bound-to-continuum tran-
sition problems without increasing the number of mesh points to get reasonable ac-
curacy, and thus decreases the computational burden. It is necessary to perform
self-consistent calculations to obtain intersubband transition energies with proper
boundary conditions. Inclusion of external field, Hartree, exchange-correlation in-
teraction, and depolarization and exciton shifts in the calculation of intersubband

transition energy levels is important at high doping densities.
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Chapter 4

Quantum interference effect and
electric field domain formation in
quantum well infrared

photodetectors

There have been a number of interesting experimental studies of the optical and
transport properties of multiple quantum well (MQW) structures. In these “artifi-
cial molecules,” energy quantization and the wave nature of carriers have been used
to design new devices and to demonstrate some basic laws of quantum mechanics,
e.g., to observe minibands in the continuum of periodic potential superlattice [1], to
observe suppression of optical absorption in coupled potential wells [2], and to make

quantum well infrared photodetectors (QWIPs) by using minibands in the continuum
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[3]. Because of the short coherence length of electrons, most experimental work has
been done using very short period of superlattices.

The electric field domain formation due to sequential resonant tunneling in a
superlattice has been observed by the demonstration of the oscillatory behavior in
the current-voltage characteristics of the superlattice. In this chapter, we describe
the first observation of a quantum interference effect in the photocurrent spectrum of
bound-to-continuum QWIPs. Using this effect, we analyze the electric field domain
formation due to sequential resonant tunneling in the superlattice [4]. The effect of

temperature on the resonant tunneling and electric field domain formation will also

be described [5].

4.1 Quantum interference effect and electric field

domain formation in QWIPs

4.1.1 Background

The electric field domain formation was first observed in bulk GaAs and is known
as the Gunn effect, the the cause of Gunn oscillations [6]. The oscillation proper-
ties were explained through the negative differential resistance theory proposed by
Kroemer [7]. In the Gunn effect, the field domains are generally spatially moving
(there are cases that stable spatial field domains exist). The mechanisms causing the

negative differential resistance in superlattices are different. The carriers are trans-
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ported parallel ’;o the crystal growth direction. Esaki and Chang [8] first observed
the negative differential resistance in superlattices. The superlattice they used con-
sisted of 45 A GaAs wells and 40 A AlAs barriers. Because of the strong coupling
among neighboring wells, there were minibands, and the miniband width was large (5
meV miniband width for ground states). Electrons were transported through mini-
band conduction. Under external bias, negative differential conductance was observed
when miniband conduction through ground states changed into one involving tunnel-
ing through ground state to higher states and subsequent relaxation to ground level.
External bias made the ground state of one well aligned with the first excited state
of its neighboring well in the high field domain for the first formation of domains.
This was also observed by Choi et al. [9], who used weakly coupled quantum wells
with bound-to-bound transitions. The superlattice used by Choi and his co-workers
consisted of 49 periods of 76 A GaAs wells with 88 A Aly27GagrsAs barriers. The
miniband width for the ground states in this structure was ~0.4 meV and the quan-
tum well states were localized (due to well width fluctuation or external field). Choi
et al. observed very regular negative differential conductance oscillations from the -V
characteristics of their devices. Up to now, no moving electric field domains has been
observed for the case of sequential resonant tunneling induced negative differential
resistance in superlattices (when external bias is fixed). An optical experiment can

be performed to study the formation of electric field domains in superlattices.



37
4.1.2 Quantum well infrared photodetector design

In a weakly coupled MQW structure with two bound states in each well (i.e. a bound-
to-bound QWIP [3], such as the structure used by Choi et al. [9] as mentioned above),
the absorption spectrum is a Lorentzian shaped peak corresponding to a transition
between the ground state and the first excited state as shown in Figure 2.3(a). The
contribution of other states in the continuum above the barriers is negligible because
of the well-known oscillator strength sum rule (the zero-to-one transition has a much
more significant transition dipole matrix element because both states are localized in
the well).

When the quantum well parameters allow only one bound state in the well (i.e. a
bound-to-continuum QWIP), the absorption spectrum is no longer Lorentzian, since
many states above the barriers have a strong contribution to the absorption. Be-
cause these continuum states extend over the barriers and several neighboring wells
(depending on the coherence length of electronsﬂ), electron interference effects can be
observed in the absorption spectrum. At zero bias, due to the spatial translation
symmetry of the potential there exist minibands in the continuum states of the su-
perlattice [1] which can be calculated using the Kronig-Penney model or the transfer
matrix method as discussed in the previous chapter. The miniband energy gaps,
depending on the overlap of states between neighboring wells, can be designed large
enough to be observable in the absorption spectrum. However, under an applied bias,

such that the voltage drop per period is bigger than these energy gaps, the miniband
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structure is destroyed. We will show that in a QWIP even at large biases, one can still
see some features in the photocurrent spectrum due to electron interference effects
over one or two periods of the superlattice (~400 A).

The sample investigated for this study was grown by molecular beam epitaxy
(MBE) on a (100) semi-insulating GaAs substrate (Sample 1510). It consisted of 50
periods of 40 A GaAs wells, separated by 200 A Alyg.GagrsAs barriers. Each well
was uniformly doped with Si ton = 2x 10'® cm™, yielding a sheet density of 8 x 10!

cm™2,

4.1.3 Superlattice absorption characterization

After the MBE growth, the sample was polished mechanically on the bottom side.
Small pieces (3 x 5 mm?) were cleaved, and parallel 45° mirrors were polished on
the two opposing ends to allow optical multiple pass transmission. The absorption
measurement was performed using a Fourier Transform Infrared Spectrometer over
the spectral range of 500 to 4000 cm~!. The sample was mounted on a cold finger
as shown in Figure 4.1. The linearly polarized radiation was incident normally on
one of the 45° facets, and the transmitted radiation came out of the opposing facet.
Due to the well-known intersubband transition selection rule, the absorbance was
obtained from the ratio of the transmitted light intensity I, (corresponding to polar-

ization perpendicular to the quantum well plane) to the transmitted light intensity
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Figure 4.1: Schematic drawing for absorption spectrum measurement.

I, (corresponding to the polarization in the quantum well plane). that is.

L\
absorbance = —log g (—I—“—'—> . (+.1)
/1

%

The low temperature for the experimental absorption spectrum was achieved us-
ing an MMR (K-77) vacuum-assisted Joule-Thomson refrigerator by running high
pressure nitrogen gas. The low temperature limit in this setup was 79 K. Figure 4.2
shows the experimental absorption spectrum. The theoretical curve was obtained by
solving Schrédinger’s and Poisson’s equations in the envelope function approximation
as discussed in Chapter 3. The effect of exchange-correlation was included through

the one-particle exchange-correlation potential [10]. Non-parabolicity was taken into
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account as in Reference [11]. To treat the energy eigenstates above the barrier, the
MQW structure was embedded between very large barriers at sufficiently large dis-
tances such that the far distant boundary conditions did not affect the calculated
absorption spectra [12]. More than two superlattice periods were needed to fit the

experimental results.

T
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Figure 4.2: The experimental absorption spectrum at zero bias and T = 79 K (solid

line), and the calculated absorption spectrum (dotted line).

4.1.4 Photoresponse spectrum

To measure the photocurrent spectrum, circular devices of 200 pm in diameter were
defined by wet chemical etching. AuGe/Ni/Au was deposited onto the top and bottom

nt-GaAs contact layers. (The appropriate thicknesses of AuGe and Ni were chosen
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to give low contact resistance and shallow metal diffusion depth into GaAs layer
according to Reference [13].) Forty-five degree mirrors were polished on the edges
of the sample to couple incident infrared radiation in the measurement of the device
photoresponse. Details of the device processing are described in Appendix A. The

schematic drawing of the device is shown as Figure 4.3.

Infrared
radiation

Figure 4.3: Schematic drawing of a device cross section.

Figure 4.4 shows the photocurrent spectrum at 10 K for an applied bias of -3
V (defined with respect to the bottom contact layer). Three peaks are evident at
~155, 187 and 220 meV in the photocurrent spectrum. The spacings of the peaks
in the calculated absorption spectrum strongly depend on the applied field once the
quantum well parameters are specified. The theoretical results show only two peaks
in the absorption spectrum for a single quantum well. For a quantum well with its
nearest neighbors in the superlattice, there are three peaks, as shown in Figure 4.4.

The assumed electric field in the structure is ~31 kV/cm for both of these curves.
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This clearly shows that the observed peaks in the photocurrent spectrum originate
from electron interference effects over at least one superlattice period (a distance of
more than 240 A).

Although the superlattice minibands (in the Kronig-Penney sense) are destroyed
at these applied biases, the physical origin of these observed peaks is that the dipole
matrix element, which is basically an overlap integral between the localized ground
state in the well and the excited states above the barrier, possesses peaks (resonances)
reflecting interference over neighboring wells. Alternatively, this can be viewed as
the local density of the states (i.e. density of states normalized by the amplitude
of the wavefunction in the well region) having peaks. The total density of states.
which shows the energy level spacings for the whole superlattice, may not have any
noticeable structure.

One notices that even though the position and the spacing of the peaks in the
theoretical absorption spectrum match the experimental photocurrent spectrum. it is
impossible to fit them together exactly (especially in the low energy region). This is
because the photocurrent spectrum involves additional effects due to electron emis-
sion from the quantum well, transport in the superlattice, and capture in a distant
quantum well or in the contact layers [14]. The energy dependence of these additional
processes will affect the photocurrent spectrum.

To further substantiate the fact that these observed peaks in the photocurrent
spectrum originate from the local density of states in the well region and reflect

electron coherence over a few periods of the superlattice, a second device (1511) was
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Figure 4.4: The experimental photocurrent spectrum at Viias = —3V (solid line) and

theoretical absorption spectrum (dashed line for one period and dotted line for two

periods) of Sample 1510 at T = 10 K.
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fabricated and tested. This device had the same well width and barrier height as
Sample 1510, however, the barrier width was increased to 400 A. This gave a zero
bias Kronig-Penney miniband structure which was very different from that of Sample
1510, but as it can be seen in Figure 4.5(a), the experimental photocurrent spectrum
has peaks consistent with the calculated absorption spectrum of one quantum well in
the superlattice.

Since the electron wave constructive and destructive interferences over periods
of the superlattice strongly depend on the applied field, one can deduce the actual
applied electric field over the quantum wells from the position and tﬁe spacing of the
photocurrent peaks. Figure 4.5(a) shows the theoretical absorption spectrum for an
applied electric field of 12 kV/cm which is consistent with the experimental value of
-2.7 V potential drop over 50 periods of the superlattice. When the bias is decreased
to -3.8 V ( Figure 4.5(b)), the photocurrent peaks move (their separation increases by
~6 meV), the theoretical absorption spectrum which reproduces this result requires
an electric field of 17 kV/cm. This is again consistent with a -3.8 V drop over 50
periods of superlattice.

The photocurrent spectrum of the Sample 1510 (200 A barriers) showed a different
behavior as a function of applied bias. It showed the same peak positions as shown
in Figure 4.4 for all biases between -0.2 and -4.3 volts. This result is explained
through the formation of electric field domains in the multiple quantum well region.
In this device, because of thinner barriers, the coupling between quantum wells 1s

stronger. It has been observed previously that the conservation of lateral momentum
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%ias - —27V, (b) V};ias = -3.8V.
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in the tunneling process between wells induces current peaks whenever energy levels
in adjacent wells are aligned [9,15,18]. This leads to an instability which causes
formation of high and low field domains in the superlattice. In the high field domain,
there is ground level-to-excited level sequential resonant tunneling. Whereas, in the
low field domain, only ground level-to-ground level tunneling is possible. W hen the
device is under infrared illumination, the light is absorbed in all the quantum wells
but only those photoexcited carriers which are in a region with a high electric field
have high probability of being swept out and contribute to the photocurrent. Those
in low field regions have a high probability of being recaptured by their own wells,
contributing negligibly to the photocurrent. The existence of electric field domains
in the superlattice shows that electrons are coherent over about two superlattice
periods (~400 A). Tt is possible that the electron keeps phase coherence more than
two superlattice periods.

It should be noticed that the electric field (~31 kV/cm) for which the theoretical
results match the experimental ones does not correspond to an alignment betieen
the ground state of one well with its neighboring well’s resonant state. It is a little
Jess than half of the aligned value. The ~31 kV/cm field for the high field domain
in Sample 1510 seems to imply that the ground state of one well is aligned with the
first resonance state of the second nearest neighbor.

Recently, Kwok et al. [18] explained the deviation of electric field in the high field
domain from the resonant alignment through a phenomenological current continuity

model. This phenomenological current continuity model can be explained through
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a schematic diagram as shown in Figure 4.6. The two peaks at Fo and Fy are due
to Ey — Eg, Ey — E; subband resonant alignments, respectively. The electric field
strength in the field domains is determined by current continuity through the super-
lattice. Because of this continuity condition, the electric field in the high field region
is F,, which is smaller than Fy. Further increase of external bias voltage will simply
add more quantum wells to the high field region. When all the quantum wells are in
the high field domain, a further increase in the external bias will increase the electri-
cal field uniformly in the whole superlattice. If there are more bound states in each
quantum well, similar picture can be described.

For the case of our single bound state quantum well device (1510), there are two
ways to explain the subband alignment in the high field domain. One possibility
is that the ground state of one well is (almost) aligned with the resonance state of
its next neighboring well in the high field region, as shown in Figure 4.7. Another
possibility is that the ground state is simply misaligned with the first resonance state
of its immediate neighboring well because of current continuity as mentioned above
(see Figure 4.8(a)). One should notice that the current continuity model does not
rule out the first possibility. One way to check how the subband levels are aligned in
the high field domain is by applying even higher external bias across the superlattice.
If electrons are coherent over more than two superlattice periods, for bias larger than
that required to align the ground state of each well to its second nearest neighbor,
we could see the formation of a different high electric field domain in which the

voltage drop per period correspond to the alignment of one well’s ground state with
g P g g
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Figure 4.6: (a) Schematic drawing for a superlattice when electric field domains are
formed. (b) Current versus field characteristics for a superlattice with single bound
state in each well. The two peaks at Fy, Fy corresponds to Ey — FEy and Ey — E

resonant alignment, respectively. Notice that F, < Fi, and the current is continuous

only at Fy and F.,.
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its “neighboring” well’s excited state (see Figure 4.8(c)).

iy

Figure 4.7: Sketch for the electric field distribution in the superlattice of Sample 1510.

At the highest bias that we could apply to these devices (—5 V), the experimental
result, shown in Figure 4.9, shows peaks at ~128, 160, 200, and 230 meV. This could
be explained either by a uniform voltage drop over the structure (see the dotted
curve in Figure 4.9), or through the formation of a new high field domain in the
structure. In the latter case, the broader peak at ~128 meV shows the low field
domain contribution. Although we cannot conclusively determine that the ground
state of one well is aligned with the first resonance state of the second nearest neighbor
in the high field domain from this experiment, all the results are consistent with the
fact that electrons remain coherent over two periods of the superlattice (for Sample
1510).

We estimated the electron coherence length in the above discussion, but the elec-
tron coherence length was not explicitly included. The electron coherence length
can be included in the calculation of absorption spectrum through electron mean

free path L. [19]. The fraction of the electrons that are coherent in the process of



Figure 4.8: Sketch of possible electric field distribution in sample 1510.
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—z/L.

photon absorption over a distance x in the superlattice is equal to % - € , where

k = 1/(3%maz ¢=%/L¢)i5 a normalization constant, and the corresponding absorption

T=Tmin

is represented by a(z). Thus, the overall absorption is given by
a=) ke~ Tea(z). (4.2)

This calculation also shows that the average electron coherence length is about 400
A, in agreement with the above estimation. Although this calculation cannot give
an upper limit to the electron coherence length, the upper limit is estimated to be
less than 800 A because of the fact that there are no electric field domains in Sample
1511.

Another signature of electric field domain formation in the sample is the oscillatory
behavior in the IV characteristics which reflects more quantum wells entering the
high field domain region as the bias is increased [9,15,16]. In analogy to the Fabry-
Perot interferometer, the larger the mirror reflectivity of the cavity, the narrower a
Fabry-Perot mode. Similarly, the larger the barrier width in multiple quantum well
structure, the weaker the coupling strength between neighboring wells and the more
strict the requirement for energy level alignment (ground state in alignment with
excited state under external bias). When the coupling between neighboring wells is
"coo weak, there will be no different level alignment in the superlattice and thereby
the device will show smooth I-V curve. As expected, Sample 1511 did not show
any oscillations in the I-V characteristics, but there were 48 negative differential

oscillations in the differential conductance-voltage curve for Sample 1510 (see the
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inset in Figure 4.9). This number is close to the number of quantum wells in the
structure (i.e. 50). The very irregular period of these oscillations (75 + 40mV), could
originate from the fact that for this bound-to-continuum detector, the excited levels
are a series of closely spaced states above the barrier. But the mean separation of
these oscillations is close to half of the spacing in volts between the ground state and
the first resonance state, and this is consistent with the electric field value estimated
by fitting the photocurrent spectra.

Figure 4.10 shows the sweep-up and the sweep-down measurements of the I-V
characteristics, which supports the multi-stability observation of Reference [20], and
is an indication of the complexity of the growth of electric field domains in the de-
vice [21].

To check the statements about electric field domain formation in the superlattice,
a second sample (Sample 1560) with exactly the same quantum well parameters as
Sample 1510 but with half of the number of periods was grown and analyzed. It
showed similar photocurrent spectra but the G-V characteristics had 23 to 24 negative
differential oscillations. This is consistent with the smaller number of quantum wells
in the device and supports the sequential resonant tunneling theory. Figure 4.11
shows the differential conductance of Sample 1560 as a function of voltage.

The importance of the end well barrier thickness for resonant tunneling was em-
phasized in Reference [22], where it was discussed that the transmission coefficient at
the two end well barriers was several orders of magnitudes smaller than the transmis-

sion coefficient for any other well barriers if all quantum well barriers had the same
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Figure 4.9: The experimental photocurrent spectrum of Sample 1510 at Vj;0s = =5V

(solid line) and theoretical absorption spectrum (dashed line for one period and dot-
ted line for two periods) of Sample 1510 at T = 10 K. The inset is the differential
conductance versus applied voltage at T = 10 K in dark. The number of negative
differential oscillations for different devices processed out of the same wafer is between

45 to 49.
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Figure 4.11: The differential conductance versus external applied bias for Sample

1560.
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thickness. Because of the short coherence length of the electrons and the large barrier
thickness in our samples, the considerations in Reference [22] are not important in
the analysis of our results. At extremely low temperature (lower than 0.5 K), the
consideration of Reference [22] might be important because it is possible that the

electrons are coherent over a distance of several microns [23,24].

4.2 The effect of temperature on the electron co-
herence and electric field domain formation

in MQW superlattices

Electron coherence length is the fundamental parameter which influences quantum
interference effects and electric field domain formation in superlattices. Analyzing
the photocurrent and the dark current of our devices, we can study the tempera-
ture dependence of the electron coherence length. As long as incoherent transport
processes (such as thermionic emission or non-resonant tunneling) do not dominate
the electric current, it should be possible to observe electric field domain effects at
higher temperatures. Figure 4.12 shows the photocurrent spectra of Sample 1510 at
different temperatures but at the same external bias (-2 V). The measured photocur-
rent spectrum at T = 50 K had a main peak at ~150 meV, corresponding to the
transition from the ground state to the first resonant state. The small red shift of

the peak position relative to that at T = 10 K can be explained by a reduction of
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the electric field strength in the high field domain. In this temperature range, the
variation of the effective mass and the quantum well conduction band offset can be
neglected [25]. The self-consistent simulation gives an electric field strength of ~26
kV/cm in the high field domain. One also notices the presence of a side peak at
~182 meV in the photocurrent spectrum at T = 50 K. This peak, being an indication
of electron coherence over the quantum well structure [4], is less pronounced than
the 10 K one. This suggests an increased contribution of incoherent processes to the
photocurrent spectrum at higher temperatures. The reduction of electric field might
also contribute to this observation (the resonance state is less localized for smaller
electric field). The oscillations in the 50 K I-V characteristics show that the electric
field domain formation in the device is still dominant.

One sees in Figure 4.12 that at a higher temperature of 70 K, the side peak
at ~182 meV is almost invisible. This implies possible shortening of the electron
coherence length and/or a reduction of electric field in the superlattice. In contrast to
intersubband transitions between bound states, these bound-to-continuum transitions
are very sensitive to both electron coherence length and the value of the internal
electric field. This sensitivity originates from the extended nature of the excited
states and from the electron wave interference effect over neighboring quantum wells.

Figure 4.13(a) shows the calculated absorption spectra at an electric field of 31
kV/cm, for two different values of electron coherence length. One notices the disap-
pearance of side peaks for short coherence length. The theoretical absorption spectra

at a different electric field of 16.6 kV/cm, are shown in Figure 4.13(b). 1t is apparent
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Figure 4.12: Experimental photocurrent spectra for the same bias and different tem-

peratures.

that the side peak is very weak for low electric fields whatever the electron coherence
length is.

To see how these two effects (a change in the electron coherence length or a change
in the internal electric field) are contributing to the high temperature photocurrent
spectra, the I-V characteristics at 70 K (Figure 4.14) were examined. ‘The I-V char-
acteristics does not show any appreciable oscillations. Since the current is dominated
by non-resonant tunneling or thermally assisted processes, there is no sequential res-
onant tunneling induced electric field domain formation in this device. Thus, the
disappearance of the auxiliary peak at 70 K, can be explained by assuming an elec-

tron coherence length less than 240 A and/or a lower “uniform” electric field in the
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Figure 4.13: The overall absorption spectra assuming different electron coherence
length (solid line: L. = 400 A, dot line: L. < 240 A), and different electric fields (a)

F = 31 kV/cm, (b) F = 16.6 kV/cm.
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superlattice. Reference [26] discusses the non-uniformity of electric field distribution
near the edge of multiple quantum wells due to the fact that the three-dimensional
cathode has to provide large two-dimensional current in the superlattice. Because of
the large number of quantum wells and the high dopings in our structure, we neglected
these edge effects.

It is interesting to note that the peak positions in the photocurrent spectra at
70 K have a voltage dependence in contrast to the low temperature peaks. This 1s
consistent with the fact that no electric field domains exist in the device. One can

see a blue shift of ~1.3 meV, when increasing the bias from —2 V to —3 V.
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Figure 4.14: The I-V characteristics of Sample 1510 at different temperatures.

Another interesting optical experiment to study the electric field domain formation

can be performed using the Stark effect. We can design a quantum well structure



80

having both Stark effect and electric field domain formation. An example structure
is shown in Figure 4.15. As mentioned before, there will be two regions with different
electric fields in the superlattice (corresponding to low and high field domains) under
external bias. Large Stark effect is preferred in this case in order to distinguish
different absorption contributions from different field regions. Since the intersubband
transition energies depend on the electric fields in the superlattice, we will expect extra
absorption peak(s), as sketched in Figure 4.16. The peak positions are stationary with
varying external bias, instead of a continuous absorption peak shift and no extra
peak(s) in the case of no field domain formation. Notice that the relative strength of
the peaks will change with different external biases, corresponding to various sizes of

high and low electric field domains.
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Figure 4.15: An example step quantum well structure used to study electric field

domain formation: barrier: AlgsGaosAs; step barrier: Alg1sGagssds, 54 A: well:

GaAs, 59 A.
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Figure 4.16: Absorption spectrum for the structure in Figure 4.15 when there are
electric fleld domains in the superlattice. The relative strength of the peaks depends

on the size of the high and low field domains.

4.3 Conclusion

We have presented a new observation of the quantum interference effect in the pho-
tocurrent spectrum of multiple quantum well structures. We estimated the coherence
length of the electrons and analyzed the sequential resonant tunneling induced electric
field domain formation by comparing the theoretical calculation with experimental
results. A large energy level misalignment between two neighboring wells in the high
field regﬁon was observed. T hé effect of temperature on the resonant tunneling and

electric field domain formation was analyzed. Evidence for the domination of incoher-
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ent transport mechanisms at higher temperatures was presented. Electron coherence
length shortening and/or reduced electric field in the superlattice are the likely cause
of the disappearance of the auxiliary peaks in the photocurrent spectra at high tem-

peratures.
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Chapter 5

Intersubband modulation and
direct measurement of
population-induced broadening of
quantum well intersubband

transitions

In the single band model, also known as the parabolic effective mass model, intersub-
band transitions in quantum wells are discrete. In practice, electron-electron interac-
tion, quantum well width non-uniformity, electron interactions with rough interfaces,

impurities, and optical and acoustic phonons contribute to the experimentally ob-
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served linewidth of intersubband transition in quantum wells [1,2,3,4,5]. Various
broadening mechanisms can also be influenced by the applied electric field. Recently,
there has been controversy over the direct contribution of electron population to
this broadening. Bandara et al. [6,7] predicted that the dependence of the exchange
interaction on the in-plane momentum (k,;) could contribute substantially to the ex-
perimentally observed linewidths. Zaluzny [8], on the other hand, claimed that the
k;; dependence is offset by the depolarization and exciton-like many-body effects, and
the net result is that the transition linewidth is almost a constant as a function of
population. This chapter describes a method to measure directly the population de-
pendence of intersubband transition linewidth, based on the charge transfer between
two coupled quantum wells [9]. The application of this method to a monolithically

integrated intersubband modulator and detector is also investigated [12,13].

5.1 Superlattice structure

To measure the linewidth change for different electron populations in a quantum well,
we might think of growing many samples with the same quantum well parameters
except using different doping densities and measuring the absorption spectra for all
samples. But an assumption inherent in this method is that the donor contribution to
the measured linewidth is negligible or independent of different donor densities. Since
we cannot justify this assumption in the first place, we cannot make any conclusions

about the linewidth change for different electron populations and therefore cannot
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use this method .

Our solution to the above problem is to use an asymmetric coupled double quan-
tum well (ACDQW) structure as shown schematically in Figure 5.1. We use one
well as an electron reservoir and change the population in either well by applying an

external bias or changing temperature.

Lt

i
—>H<—Sidoped

Figure 5.1: A schematic drawing of an asymmetric coupled double quantum wells.

The superlattice structure used in the experiment consisted of 50 periods of
ACDQWs. A QWIP was monolithically integrated with the ACDQW superlattice
to measure the low temperature absorption spectra. A change of the population in
either of the ACDQWs will change the absorption spectrum and this can be directly
measured with the monolithically integrated detector. The ACDQWs and the QWIP
structures, shown in Figure 5.2, were grown by molecular beam epitaxy on a (100)
semi-insulating GaAs substrate. The ACDQWs consisted of an undoped 90 A-thick
GaAs narrow well, an undoped 30 A-thick Alg4GaggAs barrier, and a selectively
doped 108 A-thick GaAs wide well. The wide well was nominally Si doped to 2 x 10*®

cm~3 from 5 A to 45 A away from the barrier. The periods were separated by 422
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A of undoped Aly4GaggAs layers. This structure was designed to provide the largest
possible charge transfer between the narrow well and the wide well with external
applied bias. The absorption spectrum of the monolithically integrated QWIP was
designed to overlap with that of the narrow well in the ACDQWs, while the wide
well in the ACDQWs had an absorption peak near the tail of the QWIP photore-
sponse spectrum. The QWIP was separated from the ACDQW structure by a 0.6
pm nt—GaAs and a 0.2 um GaAs buffer layer. The QWIP consisted of 15 periods of
65 A-thick Si-doped GaAs wells with nominal doping density of 1.1 x 10'* cm™ and

440 A—tthk Alo'lgGao,ggAS barriers.
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Figure 5.2: The ACDQW superlattice and the QWIP growth sequence.
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5.2 Measurement of absorption spectra at room

temperature

The room temperature absorption spectrum was done using the 45° multi-pass geom-
etry [11]. Shown in Figure 5.3 is the absorption spectrum for the photodetector and
the modulator. By etching away the photodetector layer, the absorption spectrum of
the modulator was measured. From these two measurements, the absorption spec-
trum of the photodetector was calculated. It can be seen that the absorption peak of

the narrow well in the ACDQW is very close to the QWIP one.

5.3 Measurement of population-induced broad-

ening in intersubband transitions

As mentioned above, the absorption measurement at low temperatures was carried
out using the monolithic quantum well infrared photodetector directly integrated on
the asymmetric coupled quantum well superlattice. Figure 5.4 shows the sketch of a
processed device.

The absorption linewidth measurements for different external biases on the ACDQW
structure were made at 10 K with constant bias on the QWIP. As shown in Figure
5.5(a), the integrated absorbance for the narrow well increases almost linearly with
the application of external bias. This corresponds to the transfer of population from

the wide well to the narrow well. From the measured integrated absorbance and the
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Figure 5.3: The absorption spectra at room temperature.

ACDQW parameters, the population in the narrow well was calculated. The absorp-
tion linewidth, which is the full width half maximum (FWHM), versus external bias
is shown in Figure 5.5(b). At zero bias, the population in the narrow well was about
0.46 x 10** cm~? and the FWHM was about 3.75 meV. As it is clearly shown in Fig-
ure 5.5(b), the broadening increases with external bias. The maximum population
transferred to the narrow well was about 6 x 10™ cm™2.

Figure 5.6 shows the linewidth as a function of the population in the narrow well

with experimental data re-plotted from Figure 3.5. It also shows a theoretical plot of
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radiation

Figure 5.4: Sketch of the integrated QWIP on the asymmetric coupled double quan-

tum well superlattice.

the exchange interaction broadening using an expression in [7] and the contribution
of single-particle energy band non-parabolicity [14]. In the calculation of exchange

interaction k-dependence, the following expression has been used [T]

¢*kp
de

Eeear(k) = =225 [ do [ da'g(€.m)ln()1n(e)I" (5.1

where kp = (27rN2D)1/ 2 is the Fermi level for the two-dimensional density N,p. The

dimensionless function g(£,7) is given by

3 (n cos §++/1—n2 sin? 9)
5 7

11—
g(é,n)=;/0 i (5.2)

where ¢ = kp|z — 2| and n = k/kp. Notice that Equation (5.2) can be simplified as

1—e¢

¢

g(€,0) = , for k=10,0rn=0;
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Figure 5.5: Absorption characteristics of the narrow well as a function of external

bias at T = 10K. (a) The integrated absorbance and surface density versus external

bias. (b) FWHM versus external bias.
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The contribution from electron-electron dephasing broadening is expected to be

sen=L["a

T

, for k =kp,orn=1

small at these populations [1]. From the theoretical model [4], and from the bias-
induced broadening of constant population wells, the bias-induced broadening due to
interface roughness and impurity scattering was estimated to contribute less than 1
meV to the measured FWHM. The effective non-parabolicity created by the in-plane
momentum dependence of the exchange interaction [7] is one of the main factors
which could explain the measured broadening. It is evident from Figure 5.6 that
the theoretical exchange interaction broadening increases with the population in the
narrow well and is close to the experimental results. It should be noticed that the
single-particle energy band non-parabolicity may also contribute tothe linewidth
[14] (at most up to ~4.5 meV at the highest bias) as shown in Figure 5.6, part
of which will be compensated by depolarization and exciton effects. Because the
exchange-interaction makes a large contribution to the broadening, we expect that the
depolarization and exciton effects contribute by reducing the theoretical broadening
[8]. But they will not change the situation drastically. Our experimental results
show that the linewidth broadens as the electron population increases, instead of the
theoretical constant broadening as a function of population, which was predicted in
Reference [8]. For populations less than 1 x 10 c¢m™2, the minimum linewidth is
limited by other broadening mechanisms. When the bias is such that the ground
states of the coupled wells are anti-crossing, at which point the population in the

narrow well is about 4 x 10* cm™2, it is hard to get a convergent solution from the
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self-consistent calculation because of the anti-crossing of the ground states. Near
this anti-crossing bias, one might expect to see an increase in the broadening. This
would be due to the increase in impurity scattering and in field-induced scattering
at interfaces because the ground states are spread over both wells. Figure 5.5 shows
that this broadening is not significant, and one does not see any appreciable peak in
FWHM around the bias of 14 volts. The crossing of the ground states of the coupled
wells is further supported by the red-shift of the absorption peak position at high
biases. For larger populations near 6 x 10'* cm™?, external field-induced broadening
may have some contribution [15].

As a further check on our results, the absorption spectra at different tempera-
tures (83 ~ 380 K) were measured in multiple-pass geometry using 45° polished edge
mirrors. No bias was applied so that the populations of both the narrow and wide
quantum wells were a function of temperature only. From Nop = [ dEpap f(E),
where pyp is the two-dimensional density of states and f(E) is the Fermi function,
we might think the populations of both wells in the ACDQW structure have similar
temperature dependence since p,p is a constant. At a given doping density, changing
temperature will redistribute electrons between the coupled quantum wells because
of the ground state energy level difference and the change of this difference caused
by many-body effects. This causes the different population temperature dependence
for the coupled wells. The integrated absorbance and the FWHM as a function of
temperature is plotted in Figure 5.7.

At room temperature, the population in the narrow well was about 1.79 X 10t
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Figure 5.6: Experimental FWHM ( o ), theoretical exchange interaction broaden-
ing (solid line), and single-particle non-parabolicity broadening (dashed line) versus

surface density.

cm~2, which was 22.4% of the total population, and the corresponding broadening was
T ~ 6.6 meV. The lowest temperature for this multiple pass absorption experiment is
limited to 83 K in the experimental setup. It can be seen in Figure 5.7 that varying
the temperature from 83 K to 380 K caused an increase of the linewidth of 5.5 meV
(from 3.2 meV to 8.7 meV) in the narrow well. At the same time, the FWHM of
the wide well increased by only 1.9 meV, from 9.3 meV to 11.2 meV. Apparently,
the linewidth due to temperature effect is significant. As the temperature increased

from 83 K to 380 K, the population-induced-broadening in the wide well, whose
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Figure 5.7: The integrated absorbance and the linewidth of the narrow well versus

different temperatures.
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population dropped, acted counter temperature induced increase in linewidth. In the
narrow well, which gained population, population-induced-broadening assisted the
linewidth increase due to the temperature effect. The many-body and single-particle
non-parabolicity broadening temperature dependence are the possible causes of the
increase of FWHM with increasing temperature for both wells. It should be noticed
that the large difference of the FWHM between low and room temperatures (much
larger than the typically measured value for constant well population) is consistent
with the increase of population in the narrow well and with the thermal spread to
higher momentum states.

Although the exact population may be material dependent, our experimental re-
sults show that population-induced broadening is very important in the spectral mea-
surement of intersubband transitions in quantum wells. Even with the donors 5 A
away from the 30 A-thick barrier in our experiment, a broadening of only 3.75 meV
was achieved. Thus, the broadening may not be significantly decreased by separating
the donors from the wells at the same electron population. Although donor position
versus broadening was studied before [16], the effect of different populations in the
quantum wells for different doping positions in the quantum well barriers in [16] was

neglected.
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5.4 Intersubband absorption modulation

In two-dimensional focal plane QWIP array applications, such as imaging, there is
great interest in eliminating the dark current to avoid saturating the readout circuit
and to increase the pixel integration time. Using a light chopper in front of the
QWIPs, the photocurrent is an ‘AC’ signal, therefore, the DC dark current current
can be filtered out by AC coupling the multiplexer [17]. This section describes the
demonstration of an intersubband absorption modulator as an electronic light chop-
per. From Equation (2.7), we know that the intersubband transition absorption is

proportional to the population in the quantum well.

71'(]2 h/TZ

1) = Fceg P M B T R TR

(5.3)

hneegy

If we can modulate the population in the quantum well, we can modulate the absorp-
tion. This can be realized using a ACDQW structure such as the one discussed in
the above section because we can change the electron population in either one of the
wells by changing the external bias.

We may also notice from Equation (5.3) that the absorption spectrum has a narrow
peak. For a given incident infrared radiation (given wavelength), another way to
modulate the absorption is by shifting the absorption spectrum peak position, as
sketched in Figure 5.8. One way to achieve this is to use a specially designed quantum
well sample to have a large Stark effect (e.g., a step quantum well structure). From
the Kramer-Kronig relations [18], we know that there is a refractive index change due

to this absorption spectrum shift, which has some applications in phase modulators.
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However, it is undesirable for many high speed applications.

Absorption (a.u.)

Photon Energy (meV)

Figure 5.8: Sketch of shift absorpfion spectrum center frequency modulation.

Although a modulator based on Stark effect can be used for low speed applica-
tions such as chopper, we chose to use the ACDQW structure in a chopper. (Notice
that the detector does not detect the signal phase change. A large Stark shift will
cause the chopper to be open at different time for different wavelength, which limits
the chopper high speed application.) From the detector photoresponse spectra for
different modulator biases (see Figure 5.9), we found that a 40% modulation depth at
10.4 pm wavelength was achieved for +14 V bias we applied to the device discussed in
the above section. A 45% modulation depth was obtained at a higher bias of +20 V.

When very large negative bias was applied on the modulator, there were no electrons
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‘0 the narrow wells. The modulator should be transparent for the incident light. The
very small distortion of the —13 V detector photoresponse peak shown in Figure 5.9

is due to a very small amount of light scattered from adjacent unbiased device(s).
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Figure 5.9: The modulation depth spectrum calculated from the detector photore-

sponse spectra while the bias on the detector was kept constant.

Shown in Figure 5.10 is the absorption spectrum péa,k position of the narrow well
of the modulator at different biases. Apparently, the Stark shift is small (about 2
meV), which is good for modulator applications.

To increase the modulation depth, we could increase the number of periods of
ACDQWs in the modulator. However, a better way might be utilizing both Stark
effect and charge transfer to optimize the modulator quantum well structure because

Stark effect is not a problem for chopper applications as mentioned above. An example
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Figure 5.10: The absorption spectrum peak position versus external bias.

structure is sketched in Figure 5.11, where the intersubband transition in the step well
is used for intersubband modulation, while the other simple well is used as electron
reservoir.

We demonstrated the monolithically integrated device using 45° edge mirror to
couple the incident light. Practically, it is always desirable to use vertically incident
light coupling (i.e., the incident light is polarized in the quantum well plane). This

can be realized by using a two-dimensional metallic grating or etched GaAs grating.
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Figure 5.11: A modulator with a step well and a simple well. The intersubband
transition in the step well is used for intersubband modulation. The simple well is

used as electron I'eServoir.

5.5 Conclusion

We observed an increase of the intersubband\ absorption linewidth with increasing
electron population using field-induced charge transfer and thermally-induced charge
transfer in specially grown quantum well structure. This increase is attributed mainly
to the subband filling. Many-body effects and single-particle band non-parabolicity
are the likely causes. The field-induced charge transfer between asymmetric coupled
quantum wells could be used in intersubband modulations. 45% modulation depth

was demonstrated using a 50-period ACDQW superlattice.
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Appendix A

Device processing for a quantum

well photodetector

1. Strip off Indium on the backside of the MBE grown sample to get flat
surface. Then, clean the sample using the standard cleaning and drying
procedure (acetone + ultrasonic, methanol + ultrasonic, deionized-water
rinse, and Nj blow dry). This step is necessary for spinning photoresist on

the sample at later processes.
2. Spin on photoresist $1400-31, soft-bake at 90°C for 30 minutes.

3. Direct contact exposure, develop in developer, followed by deionized-water

rinse and blow dry.
4. Hard-bake the sample.

5. Etching GaAs/AlGaAs is generally done using H3504 : H,O, : H,O =1
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: 8 : 80. The etching depth is con£rolled by timing. (A test sample can
be used to measure the etching rate.) This step is very important because
the etching should be stopped in the middle of the bottom nt-GadAs con-
tact layer and the series connection resistance should be minimized (the
bottom nt-GaAs layer is the main contributor to the series resistance of
the photodetector). If we use R. to represent the n*-GaAs layer series

connection resistance and use the following equivalent circuit,

Ideal Detector

:j Vbias T

Vbias B

&

Figure A.1: Equivalent circuit for a processed photodetector.

we can get
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1 Viias
I=1,- o
1 + Rc/rd Td + Rc
N, prerrsieer! S—
signal darkcurrent

So, the measured I =~ I,+ (dark current) when R. << rg. R, is normally
between 25 Q to 100 Q after the following annealing step.

Selective etchants such as succinic acid with ammonia, H,0,, and H,0O
can also be used for low Al concentration (z < 0.4 in Al,Ga;_,As) devices
and in this case, an additional stop-etch layer, such as a 30 A-thick AlAs

layer, is needed in the middle of the bottom n*— GaAs contact layer [2].

. Metal contact pattern is formed using a liftoff procedure with positive
photoresist. The photolithography procedure is similar to step (2), but
the photoresist layer is thicker for the purpose of liftoff, and there is no
hard-bake. The sample is further briefly cleaned in an O, plasma chamber.
The contact metal for nT— GaAs is AuGe/Ni/Au. It is important to use
the appropriate thickness of AuGe and Ni to obtain shallow metal diffusion
depth into GaAs layer [1]. The Au thickness of 2000 A is enough for wire

bonding. The liftoff is done in acetone.

. Anneal in H, atmosphere. Annealing time should be as brief as possible
so that the metal diffusion depth into GaAs is smaller than the top n*—

GaAs contact layer thickness and long enough to make the contact ohmic.

. Evaporate AuGe/Au or Cr/Au on the backside of the sample as a mirror

to avoid the bonding epoxy absorption in the infrared region.
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Polish 45° edge mirror. (The finest power used to polish the mirror has the
grain size of X,/30 ~ X,/10, where X, is the vacuum peak intersubband

transition wavelength.)

Package the processed sample onto a multiple pin IC-package (such as

CPG08422) or a 6-pin Ortel mount.

Wire bond the devices. Notice that the etched mesa surface is only ~2 ym
above the bottom contact and there is no insulating layer for passivation
(actually, most passivation materials, such as Si0,, are absorbing in the

mid-infrared range). So, care must be taken.
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Appendix B

Note on photocurrent

measurement

The circuit shown in Figure B.1 has been used to measure the detector photoresponse
spectrum of a detector. The resistor R is about 109 [1].

The resistance R should be much smaller than the differential resistance of the
detector in order to be able to apply bias to the detector. On the other hand, since
the photocurrent is generally very small, R should be as large as possible so that
V, is larger than the noise generated in the wire itself, which is important for FTIR
measurements without lock-in amplification.

The disadvantage of using the circuit shown in Figure B.1 can be seen from the
following discussion. Assuming that the readout circuit is perfectly noiseless, we use

a perfect capacitor to represent it. The above circuit is redrawn in Figure B.2.
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+Vbias

? Detector

Vo
%R

Figure B.1: Circuit using R to measure detector photoresponse.

to readout circuit

The readout noise due to the thermal noise of R 1s

1
2=~ .4kTRAv.
%= TRy THASY

Three ways to reduce the noise are:
(1) cooling R to low temperature;
(2) increasing R to infinity;
(3) decreasing the bandwidth Av using lock-in amplification, which is very effective.
but not adopted in our experiment because it does not work with the Galaxy 2020
FTIR spectrometer.

The disadvantage of the first method is that it is not convenient when different
temperature characteristics of the detector are needed (R will change with changing
temperature, and the noise will change, too). To adopt the second method. a circuit

shown in Figure B.3 is used. In this circuit, the amplifier can be OP-80. R determines
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» Vbias
4 Detector
Vo
R  =C

Figure B.2: Circuit with capacitor load.

the gain, and the detector bias is independent of R.
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Vi :
'b 1as H -
Detector

Figure B.3: Circuit used in experiments.
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