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ABSTRACT

This paper on information economics contains three chapters. In the first chapter,
we study how to incentivize information acquisition in a principal-agent model. A
principal hires an agent to collect information about a state. We study the optimal
contract that incentivizes the agent to acquire the most precise information. In the
second chapter, we study how to recover information in the selection model. We
show that, given the selection rule and the observed selected outcome distribution,
the entire outcome distribution can be characterized as the fixed point of an operator,
which we prove to be a functional contraction. In the third chapter, we study how to
implement randomized allocation rules with outcome-contingent transfers.
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C h a p t e r 1

INCENTIVIZING INFORMATION ACQUISITION

1.1 Introduction
In many situations, an agent is tasked with collecting information about a quantity of
interest. Examples include a statistician collecting data for the Bureau of Statistics, a
meteorologist forecasting weather for the National Weather Service, or a consultant
assessing the profitability of a new market. A natural question is how to design a
contract to incentivize the agent to collect information and report it accurately.

A difficulty in designing such contracts is that the agent’s effort and the information
acquired are often unobservable to the principal. For example, a statistician might
be able to fabricate part of their data. Similarly, in the case of a meteorologist
analyzing weather patterns, the amount of time and effort spent on the analysis
might not be easily observable. In the case of the consultant, predicting market
profitability may rely on private connections or specialized skills, which are often
proprietary. Therefore, the contract between the principal and the agent must take
into account moral hazard.

In this paper, I study the design of an optimal contract for a principal (she) that
incentivizes the agent (he) to gather information and maximize its precision. The
agent conducts a location-scale experiment that is centered around the state and
controls the precision (the inverse of the scale) at a cost. Eventually, the state
is revealed and the contract can depend on the state and the agent’s report. I
abstract from the principal’s broader decision problem—that is, the way in which
the principal uses the information generated by the agent—and focus on the problem
where the principal’s objective is only to maximize precision subject to some fixed
budget constraint on transfers. My analysis and results shall be robust to whatever
the broader decision problem may be. The budget reflects the maximum amount of
transfer that the principal is able to use.

In practice, a budget that can only be used for a specific task is commonly observed.
For example, government agencies typically operate within budget limits imposed
by government funding and must return any unused funds to the government.1

1Schick (2008) provides an in-depth look at how the federal budget is structured and constrained
by funding limits imposed by the government.



2

There are numerous reports of unspent government funding being returned to the
government, such as Mansouri (2024), Cuccia, 2023.2 In firms, it is also common
for agents to operate under a budget and to eventually return unused funds to the
firm. Anthony et al. (2007) and Horngren (2009) provide comprehensive empirical
evidence for this practice.3 In the consulting example, the transfer could take the
form of a promotion, a recommendation, or a grade. Sometimes, budgets are
restricted by external funding designated for specific purposes, such as university
grants.

In such settings, a simple contract is to allocate the entire budget to the agent if
their report is close to the actual state, and withhold payment otherwise. I call
these incentive schemes cutoff transfers. The cutoff transfer is the simplest transfer
rule; it is straightforward to understand and easy to implement. The literature
on principal-agent problems has long been interested in when simple contracts
are optimal (Carroll, 2015; Herweg, Müller, and Weinschenk, 2010; Oyer, 2000;
Gottlieb and Moreira, 2022).

My main result is that cutoff transfers are optimal across a large variety of settings. In
particular, I identify a sufficient and necessary condition on the agent’s information
structure such that for all cost functions, there exists an optimal transfer that is a
cutoff transfer.

Formally, I study a model in which the principal wants to incentivize the agent to
acquire information on an underlying state 𝜃 ∈ R. For simplicity, I assume the state
𝜃 admits an improper uniform common prior.4 The agent can acquire a costly signal
𝑠 ∈ R about the state. The signal takes the form 𝑠 = 𝜃 + 1

𝜆
𝜀 where 𝜀 is drawn from

some symmetric and single-peaked probability density function, and 𝜆 is a measure
of precision controlled by the agent. An important example is the case where 𝜀
admits a standard Gaussian distribution. The agent chooses precision 𝜆 at a cost
𝑐(𝜆).

The principal observes neither the agent’s signal 𝑠 nor the agent’s choice of precision
𝜆. The agent makes a report 𝑎 ∈ R after observing the signal. The principal wants

2Federal regulations also specify where unspent grant money is returned, as seen at the National
Archives, 2024.

3Anthony et al. (2007) offer an extensive analysis of organizational budget management, high-
lighting the frequent practice of returning unspent funds to a central or general fund in both private
and public sectors. Horngren (2009) explores cost control and budget allocation, noting how unused
resources are often returned to a central pool for future use.

4I generalize the model to the case where the state is multi-dimensional and the case with
Gaussian prior.
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to incentivize the agent to maximize precision and truthfully report his signal. She
does so by a transfer rule 𝑡 that depends on the report 𝑎 and the state 𝜃, which is
eventually observed by both players.5 I impose limited liability (𝑡 ≥ 0) and limited
budget. The budget can only be used for this task. The agent’s payoff is his expected
utility on transfer minus the cost. I allow for any increasing utility function, which
accommodates arbitrary risk attitude of the agent.

I refer to a transfer rule as optimal if it induces the maximum precision among
all transfers and elicits truthful reports. There are at least two difficulties in this
problem. First, the transfer design problem is an infinite-dimensional optimization
problem, as the transfer rule itself is a function. Second, there are two layers of
incentive compatibility issues. The principal does not observe the precision chosen
by the agent, which is a moral hazard problem, and she does not observe the signal
either, leading to a communication problem.

I say that a transfer rule is a cutoff transfer if it pays the entire budget when the
distance between the report and the state is below a cutoff 𝑑 and pays 0 otherwise.
For which signal distributions are cutoff transfers optimal?

My main result (Theorem 1) identifies a sufficient and necessary condition for cutoff
transfers to be optimal. This condition is weaker than the monotone likelihood
ratio property (Milgrom, 1981; Rogerson, 1985; Jewitt, 1988) and is satisfied by
most common distributions, including Gaussian, Laplace, logistic, and the uniform
distribution. Theorem 1 shows that if this condition holds, then for all cost functions
cutoff transfers are optimal. Conversely, if the condition does not hold, then there is
a cost function for which no cutoff transfer is optimal. Moreover, this cost function is
not pathological and can be taken to be increasing and differentiable. Furthermore,
when the condition holds, I characterize the optimal cutoff (Theorem 2).

An intuition for the optimality of cutoff rules is that they provide the strongest
incentives among all contracts. Loosely speaking, since more precise signal struc-
tures generate signals that are “more concentrated” around the state, a precision-
maximizing contract must pay the agent more for the report closer to the state.
The cutoff transfers take this logic to the extreme: the principal exhausts her entire
budget when the report is sufficiently close to the state and pays nothing otherwise.
Importantly, however, this intuition is incomplete, because the notion of “more con-

5I study the case where the state is unobservable but the principal has a private signal about the
state later.
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centrated” signals is imprecise. My condition is exactly what is needed to make this
logic tight.

All the results generalize to the 𝑛-dimensional case. The signal distribution is still
symmetric, single-peaked, and centered around 𝜃. Here the symmetry means that
the density of the distribution depends only on the Euclidean distance from the state
𝜃. A cutoff transfer pays 1 when the Euclidean distance between the report and the
state is less than a cutoff 𝑑. In this setting I show that an analogous result holds
(Proposition 2).

I also generalize my results to the case of a proper Gaussian prior and Gaussian
signals. I show that for all cost functions, cutoff transfers are optimal (Proposition
3).

In addition, I extend my results to the setting where the state is unobservable.
Instead, the principal privately receives a signal about the state. When designing the
transfer, she uses her signal instead of the state to discipline the agent. I show that
given a Gaussian or uniform prior and Gaussian signal, cutoff transfers are optimal
(Proposition 4).

Lastly, I apply my results to a classic principal-agent problem, offering new insights
into the optimality of simple contracts. In the classic setting, a principal incentivizes
the agent to produce an output. Unlike the traditional framework, in which the
principal’s goal is to maximize expected payoff (of outputs) minus transfers, I assume
the principal’s sole objective is to maximize output, constrained by a budget limit.6

As a corollary of my main result, the monotone likelihood ratio property is sufficient
to ensure the optimality of cutoff transfers (Corollary 3). Here, the cutoff transfer
pays the entire budget if the output is above a cutoff. This corollary provides an
alternative explanation for simple contracts: the optimality of cutoff transfers stems
from the nature of budgets in many contracting scenarios. In contrast, closed-form
solutions for the optimal transfers in the classic setting are generally not obtainable
(see Bolton and Dewatripont, 2004, Chapter 4.5).

One point to note is that my proof relies on techniques from monotone comparative
statics. This allows me to analyze the problem under weak assumptions on the cost
function and signal distribution. In particular, I do not need to assume the validity
of the first-order approach (Rogerson, 1985; Jewitt, 1988).

6This is a common practice in firms; see Anthony et al. (2007) and Horngren (2009).
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Related Literature
My paper is related to the literature on incentivizing information acquisition (see,
e.g., Osband, 1989; Li and Libgober, 2023; Li, Hartline, et al., 2022; Neyman,
Noarov, and Weinberg, 2021; Zermeno, 2011; Carroll, 2019; Chen et al., 2023;
Chade and Kovrijnykh, 2016; Whitmeyer and Zhang, 2023; Sharma, Tsakas, and
Voorneveld, 2023; Clark and Reggiani, 2021).7

In Li, Hartline, et al. (2022), an agent exerts a binary level of effort to refine
a posterior from a prior. The paper studies optimizing proper scoring rules by
maximizing the increase in the score with effort. In Li and Libgober (2023), a
principal hires an agent to learn about a binary state. The agent acquires information
over time through a Poisson information arrival technology. The principal rewards
the agent with a fixed-value prize as a function of the agent’s sequence of reports
and the state. Li and Libgober (2023) identify conditions under which it is without
loss to elicit a single report after all the information has been acquired.

Osband (1989) studies a principal with a quadratic prediction cost who incentivizes
an expert to collect information. The expert can increase the precision (the inverse
of variance) of the prediction at a constant cost. The principal minimizes the sum
of the expected error variance and the expected transfer. In this stylized setting, the
optimal transfer consists of a quadratic report error term plus a linear term on an
initial belief error, with three parameters.

In Whitmeyer and Zhang (2023) and Sharma, Tsakas, and Voorneveld (2023), a
rational inattentive agent can acquire information flexibly subject to a posterior
separable cost. The principal wants to minimize the expected monetary cost of
implementing a given information structure. Similarly, Clark and Reggiani (2021)
study the Pareto optimal contract that maximizes social welfare. In all these papers,
both the experiment and the signal are unobservable to the principal. In Rappoport
and Somma (2017), a principal hires an agent to acquire costly information to
influence a third party’s decision. This paper assumes that the realized piece of
information is observable and contractible.

Zermeno (2011) and Papireddygari and Waggoner (2022) study menu design with
information acquisition. In their setting, the principal first offers a menu of contracts.

7In Neyman, Noarov, and Weinberg (2021), a rational expert aims to predict the probability of a
biased coin flip. He acquires information by choosing the number of flip trials at a fixed cost per flip.
Neyman, Noarov, and Weinberg (2021) study the optimal scoring rule that incentivizes precision.
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Then the agent privately acquire costly information. Next, the agent selects a contract
from the menu. The selection therefore reveals some information the agent acquired.

In Carroll (2019), the principal is uncertain about the expert’s information acquisi-
tion technology and only knows some experiments that the agent can choose. The
principal evaluates the incentive contract by a worse-case criterion.

Argenziano, Severinov, and Squintani (2016) and Kreutzkamp (2023) study costly
information acquisition and transmission. In both papers, there is no transfer and the
agent cares about the principal’s action. In Kreutzkamp (2023) setting, the sender
publicly chooses an experiment. In Argenziano, Severinov, and Squintani (2016),
the expert acquires information by choosing a number of binary trials to perform.

In the classic principal-agent model, several papers also show the optimality of the
cutoff transfer but rely on different assumptions. Oyer (2000) assumes the validity
of the first-order approach, the existence of the optimal contract, and the absence
of the IR constraint. He shows that cutoff transfers are optimal among monotone
contracts for a risk neutral agent. Herweg, Müller, and Weinschenk (2010) show
that cutoff transfers are optimal for expectation-based loss averse and risk neutral
agent.

Notably, there is a growing literature that adopts the same assumption that the
principal cannot take money from the agent and can only reward the agent with a
prize for which they have no other uses; see Li and Libgober (2023), Li, Hartline,
et al. (2022), Deb, Pai, and Said (2018), Deb, Pai, and Said (2023), Dasgupta (2023),
Hébert and Zhong (2022), and Wong (2023).

1.2 Model
I study a principal-agent model, where the principal (she) wants to incentivize the
agent (he) to acquire information regarding an underlying state 𝜃 ∈ R. They share a
common prior over 𝜃. It will be convenient to assume the prior to be an improper
uniform prior on R. I generalize my results to the case in which the state is multi-
dimensional in Section 1.5, and I study the case of a proper Gaussian prior in Section
1.5.

The agent can acquire a costly signal 𝑠 ∈ R of the form

𝑠 = 𝜃 + 1
𝜆
𝜀,

where 𝜀 is drawn from a distribution with a symmetric and single-peaked probability
density function (PDF) 𝜙. I assume 𝜙 is continuously differentiable. The function 𝜙
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is supported on an interval, which can be bounded or unbounded. The parameter 𝜆
is a measure of the signal’s precision, a scale parameter that is inversely proportional
to the standard deviation of 𝑠. The PDF of the signal, given 𝜃 and 𝜆, is denoted by
𝜑(·; 𝜃, 𝜆). It takes the form

𝜑(𝑥; 𝜃, 𝜆) = 𝜆𝜙(𝜆(𝑥 − 𝜃)).

For example, if 𝜙 is the PDF of the standard Gaussian distribution, then 𝜑(·; 𝜃, 𝜆) is
the PDF of a Gaussian distribution with mean 𝜃 and standard deviation 1/𝜆. Note
that 𝜙(𝑥) = 𝜑(𝑥; 0, 1).

The agent chooses the precision 𝜆 at a cost 𝑐(𝜆). For example, suppose the agent’s
signal is the aggregation of many small independent signals. Then as the number of
small signals becomes large, the aggregate signal tends to a Gaussian distribution.
If the agent incurs a cost that depends on the number of small signals he gathers,
then the agent effectively controls the standard deviation of the aggregate signal at
a cost. I assume that the cost function 𝑐 is lower semicontinuous.8 The pair (𝜙, 𝑐)
constitutes the primitive of the model.

The principal observes neither the agent’s signal 𝑠 nor the agent’s choice of precision
𝜆. Instead, after observing the signal, the agent sends a report 𝑎 ∈ R to the principal.
Eventually both players observe the state 𝜃.9 The principal wants to incentivize the
agent to maximize precision and truthfully report his signal. She does so by means
of a transfer. The transfer can depend on the state and the agent’s report. The
assumption that the realized state is contractible is familiar from the literature on
belief elicitation via (proper) scoring rules and prediction markets, ubiquitous in the
principal-expert literature, and well-suited to economic applications in which the
state is publicly observable ex post (e.g., the outcome of an election being forecast
by a pollster, or the conditions of a new market being analyzed by a consultant).

I assume that the transfer 𝑡 is a function of the difference 𝜃 − 𝑎 and it vanishes at
infinity. That is, it satisfies

lim
𝑥→−∞

𝑡 (𝑥) = lim
𝑥→∞

𝑡 (𝑥) = 0.

As I discuss below, the assumption that the transfer depends only on the difference
between 𝑎 − 𝜃 is to ensure the agent’s payoff is well-defined. I also assume limited

8It would be natural to also assume that the cost function is increasing—that is, the higher the
precision, the higher the cost. Imposing this assumption or not does not affect my results.

9I relax this assumption in Section 1.5 where instead of eventually observing the state, they
eventually observe a signal about the state.
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liability, i.e., that the principal cannot take money from the agent, so that 𝑡 ≥ 0. In
addition, the principal has a limited budget that does not depend on the state. She
can use this budget only for the transfer. Without loss, I take the budget to be 1.

The timing of moves is as follows:

1. The principal commits to a transfer rule 𝑡 : R→ [0, 1].

2. The agent chooses to accept or not. The game continues if the agent accepts
and terminates otherwise.

3. The agent privately chooses a signal precision 𝜆.

4. The agent privately observes a signal realization 𝑠 drawn from the distribution
𝜑(·; 𝜃, 𝜆).

5. The agent makes a report 𝑎 ∈ R.

6. Finally, the state 𝜃 is revealed and the agent receives the transfer 𝑡 (𝜃 − 𝑎).

The agent’s payoff is given by the expected utility of the transfer minus the cost of
acquiring information:

E𝑢(𝑡) − 𝑐(𝜆),

where 𝑢 : [0, 1] → R is strictly increasing and continuous, and normalized so that
𝑢(0) = 0, and 𝑢(1) = 1.10 To ease the notation, it will be convenient to treat the
transfer rule as paying in utils, rather than money. Under my assumptions on 𝑢, this
is equivalent, and without loss of generality, to assuming 𝑢 is the identity function.
Finally, I assume the agent has an outside option which gives payoff 0 if he rejects
the contract.

After choosing 𝜆, the agent observes a signal. Conditional on a signal realization
𝑠, it follows from Bayes’ rule (adapted to a uniform prior) that the agent’s posterior
has PDF 𝜑(·; 𝑠, 𝜆). The agent now chooses a report 𝑎 to maximize the expected
transfer, which is therefore given by

𝐸 (𝜆; 𝑡) = max
𝑎∈R

∫
R
𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′.

10Here I can drop the continuity assumption on 𝑢 and only require 𝑢 to be weakly increasing. All
my results still hold.
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Maximizing over report 𝑎 shows that when choosing the precision, the agent antici-
pates how he optimally reports later. Thus, the model allows for double deviation.
The assumption that 𝑡 vanishes at infinity ensures that the maximum is well defined.11

Note that as 𝑡 depends only on the difference 𝜃 − 𝑎, the expected transfer computed
above does not depend on 𝑠.12 Consequently, the agent’s (interim) expected transfer
conditional on signal 𝑠 does not depend on 𝑠, which must coincide with his uncondi-
tional expected transfer. If 𝑡 depends arbitrarily on 𝑎 and 𝜃, the agent’s unconditional
expected transfer might not be well-defined, since the distribution of 𝑠 is improper.
In Appendix 1.7, I show that when the agent’s expected transfer is well-defined, it
is without loss to assume that the transfer depends only on the difference 𝑎 − 𝜃. An
interesting fact is that almost all popular key performance indicators in the forecast
industry depend only on the prediction error 𝑎 − 𝜃 (Vandeput, 2021).

The principal’s objective is to maximize 𝜆 under the constraint of inducing a truthful
report from the agent. (As I show later, this constraint will not be binding.) This
objective can be interpreted as capturing, in reduced-form, settings in which the
principal uses the information conveyed by the agent’s report to solve some (un-
modeled) decision problem. Indeed, under broad conditions, it is optimal for
the principal to maximize precision regardless of the decision problem that she
faces. First, when the density 𝜙 is strongly unimodal, for a large class of monotone
decision problems (Karlin and Rubin, 1956), higher precision is always better for
the principal (see Lehmann, 2011, Theorem 5.1 and 5.2).13,14 Second, when
the distribution 𝜙 is self-decomposable, the signal with different precisions are
ranked in the Blackwell order; thus the principal is better off with higher precision
for all decision problems. The self-decomposable distributions include all stable
distributions (such as Gaussian and Cauchy distributions) and some non-stable ones

11I prove this in Lemma 5 in the appendix.
12To see this, note that

max
𝑎

∫
R
𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′ = max

𝑎

∫
R
𝑡 (𝜃′ − 𝑎 + 𝑠)𝜑(𝜃′; 0, 𝜆)𝑑𝜃′ = max

𝑎

∫
R
𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 0, 𝜆)𝑑𝜃′

13𝜙 is strongly unimodal if − ln 𝜙 is convex. This is slightly stronger than global increasing
elasticity.

14The class of monotone decision problems is defined in terms of the action space and the
permissible loss functions. For each 𝜃, there is a correct action 𝐴(𝜃). The function 𝐴(𝜃) is real-
valued and nondecreasing. The range of 𝐴(𝜃) is the action space. The loss function is minimized at
the correct action and is nondecreasing as the action moves away from the correct action on either
side.
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such as Laplace.15

1.3 Preliminary Analysis
First, I define a relaxed problem, in which the principal designs a transfer to maximize
the agent’s signal precision, without incentivizing truthful reporting.

maximize
𝜆, 𝑡

𝜆

subject to 0 ≤ 𝑡 ≤ 1

𝜆 ∈ arg max 𝐸 (·; 𝑡) − 𝑐(·) IC

𝐸 (𝜆; 𝑡) − 𝑐(𝜆) ≥ 0 IR

(1.1)

The first constraint in the relaxed problem is limited liability and limited budget.
The second constraint is an incentive compatibility constraint, since the precision 𝜆
is chosen by the agent and is unobserved by the principal and cannot be contracted
upon.16 The last constraint is a participation constraint, also known as individual
rationality, and is implied by the outside option available to the agent. A transfer
rule 𝑡 is optimal if it solves problem (1.1) and induces the agent to report truthfully.

A quantity that will be key to the analysis is the elasticity of the standardized signal
distribution 𝜙.

Definition 1. The elasticity 𝜂 of signal distribution 𝜙 at 𝑥 > 0 is defined as

𝜂(𝑥) = −𝑑𝜙(𝑥)/𝜙(𝑥)
𝑑𝑥/𝑥 .

For 𝑥 such that 𝜙(𝑥) = 0, I let 𝜂(𝑥) = +∞.

Elasticity measures by how much a percentage change in 𝑥 leads to a percentage
change in the density function 𝜙(𝑥). For example, if 𝜙 is the PDF of a standard
Gaussian, then 𝜂(𝑥) = 𝑥2. If 𝜙 is the PDF of a standard Laplace, then 𝜂(𝑥) =
𝑥. Notice that both examples have weakly increasing elasticity. In fact, weakly
increasing elasticity is satisfied by most common nonatomic distributions defined
on an interval, including the uniform distribution, the triangular distribution, and
the logistic distribution. The next lemma shows that the weakly increasing elasticity
condition is equivalent to a monotone likelihood property: for any 0 ≤ 𝑥1 ≤ 𝑥2, the
ratio 𝜑(𝑥1;0,𝜆)

𝜑(𝑥2;0,𝜆) increases in 𝜆. That is, a more accurate signal (𝑥1) is more likely to
appear than a less accurate signal (𝑥2) as precision increases.

15See Goel and DeGroot, 1979 and Lehmann, 2011 for a detailed discussion.
16The continuity of 𝐸 (·; 𝑡) and the lower semicontinuity of 𝑐 ensures that the arg max in IC is

well defined.
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𝑡

𝜃 − 𝑎0

1

𝑑−𝑑

Figure 1.1: Cutoff Transfer.

Lemma 1.
𝜕 [ln 𝜙(𝜆𝑥)]
𝜕 ln𝜆

= −𝜂(𝜆𝑥).

In particular, for any 0 ≤ 𝑥1 ≤ 𝑥2,

𝜑(𝑥1; 0, 𝜆)
𝜑(𝑥2; 0, 𝜆) increases in 𝜆 ⇔ 𝜂(𝜆𝑥1) ≤ 𝜂(𝜆𝑥2).

Next, I define a weaker condition.

Definition 2. The signal distribution satisfies increasing elasticity above 1 if 𝜂
single-crosses 1 from below and is weakly increasing after the cross, i.e., if for every
𝑥 > 0

𝜂(𝑥) > 1 implies 𝜂(𝑦) ≥ 𝜂(𝑥) for all 𝑦 > 𝑥.

I define a useful quantity.

𝜂−1(1) = inf{𝑥 ∈ R+ |𝜂(𝑥) > 1}.

Note that 𝜂−1(1) is well-defined, as the density function 𝜙 is integrable.17 Later on,
when I generalize the state and the signal to be 𝑛 dimensional, 𝜂−1(𝑛) is defined
similarly.

1.4 Characterization of the Optimal Transfer
A simple transfer rule is the cutoff transfer that pays the agent 1 when the distance
between the report and the state is less than a cutoff 𝑑 and pays 0 otherwise (see
Figure 1.1). As cutoff transfers are symmetric and single-peaked, they have the
additional desirable property of inducing truthful reports by the agent.

As transfer rules are functions, the principal faces an infinite dimensional optimiza-
tion problem. In my main result I show that when the standardized distribution 𝜙

17Notice that function 1/𝑥 is not integrable over any neighborhood around 0. Thus, 𝜂(0+) < 1
since 𝜙 is integrable over any neighborhood around 0. Moreover, function 1/𝑥 is not integrable over
any neighborhood around +∞. Thus, 𝜂(𝑥) > 1 must hold for some 𝑥 ∈ R+.
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satisfies increasing elasticity above one—which holds for all commonly used signal
distributions—the principal chooses a cutoff transfer rule, reducing the problem to
a one-dimensional one. Moreover, I show that this property of 𝜙 is also necessary
for cutoff transfer rules to always be optimal.

Theorem 1. The following are equivalent.

1. For all cost functions, there exists an optimal transfer that is a cutoff transfer.

2. For all increasing and differentiable cost functions, there exists an optimal
transfer that is a cutoff transfer.

3. Signal density function 𝜙 satisfies increasing elasticity above 1.

Note that Theorem 1 holds even if we assume that all cost functions are differentiable
and increasing; that is, the result is not driven by considering ill behaved cost
functions.

Once we verify the condition in statement (3), then we do not need to worry about
the infinite dimensional optimization problem, as cutoff transfers shall be optimal.
Moreover, the condition is very easy to check. We only need to compute the elasticity
and check if it is monotone in some region. A direct implication of Theorem 1 is that
for all cost functions, there exists an optimal transfer that is a cutoff transfer when
the signal distribution is Gaussian, since the elasticity of a Gaussian distribution is
increasing. The lower bound 1 in the statement is the dimension of the problem.
So far both the state and the report are one-dimensional. In Section 1.5, where I
generalize this result to 𝑛-dimensional signal and states, the dimension 𝑛will replace
1.

Note that there is a unique solution—which must be a cutoff transfer—if we addi-
tionally impose three mild assumptions.18

1. Signal density function 𝜙 satisfies strictly increasing elasticity above19 1.

2. The cost function is continuously differentiable.

3. The optimal precision is an interior solution.
18I prove this uniqueness result at the end of the Proof of Theorem 1.
19Density function 𝜙 satisfies strictly increasing elasticity above 1 if 𝜂(·) single-crosses 1 from

below, {𝑥 |𝜂(𝑥) = 1} is a singleton, and is strictly increasing after the cross.
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In the following, I shall first illustrate the sufficiency part (i.e., why (3) implies (1)).
Second, I optimize over cutoff transfers and characterize the optimal cutoff. Third,
I provide intuition for the necessity part (i.e., why (2) implies (3)).

I define the agent’s expected payoff given transfer 𝑡 as

𝜋(𝑡) = max
𝜆
𝐸 (𝜆; 𝑡) − 𝑐(𝜆)

and the agent’s choice of precision given 𝑡

𝝀(𝑡) =


max[arg max𝜆 𝐸 (𝜆; 𝑡) − 𝑐(𝜆)] if 𝜋(𝑡) ≥ 0,

0 otherwise.

When analyzing cutoff transfers, with slight abuse of notations, I use 𝐸 (𝜆; 𝑑) to
represent the expected transfer at precision 𝜆 given the cutoff transfer with cutoff 𝑑,
i.e., 𝐸 (𝜆; 𝑑) = 𝐸 (𝜆; 1|𝜃−𝑎 |≤𝑑). Similarly, I denote by 𝜋(𝑑) and 𝝀(𝑑) the expected
payoff and choice of precision for the cutoff transfer 𝑑, respectively.

Cutoff Transfers Are Optimal
I explain why increasing elasticity above 1 implies that for all cost functions, cutoff
transfers are optimal. Suppose that increasing elasticity above 1 holds. I show that
for any transfer rule 𝑡, there exists a cutoff transfer that induces a weakly larger
precision and truthful report.

Here, for ease of exposition, I assume that 𝜂 is weakly increasing and consider a
transfer rule 𝑡 that is symmetric in 𝜃 − 𝑎 and weakly decreases in |𝜃 − 𝑎 |. Given
such a transfer rule, the agent reports truthfully and chooses the precision 𝝀(𝑡). I
construct a cutoff transfer by choosing a cutoff 𝑑 such that

𝐸 (𝝀(𝑡); 𝑑) = 𝐸 (𝝀(𝑡); 𝑡). (1.2)

Such a 𝑑 exists because 𝐸 (𝝀(𝑡); 𝑑) increases in 𝑑 from 0 to 1 (as the budget is 1).
See Figure 1.2 for an example.

Next, I argue that

𝐸 (𝜆; 𝑑) − 𝐸 (𝜆; 𝑡) ≥ 0 for 𝜆 > 𝝀(𝑡)
𝐸 (𝜆; 𝑑) − 𝐸 (𝜆; 𝑡) ≤ 0 for 𝜆 < 𝝀(𝑡). (1.3)

This is depicted in Figure 1.3.
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𝜃 − 𝑎𝑡𝜑(·; 0, 𝝀(𝑑))
𝜑(·; 0, 𝝀(𝑡))

0−𝑑 𝑑

1

Note: The given transfer 𝑡 and the matching cutoff transfer 𝑑 are shown in black. The
wider distribution shown in blue is the signal distribution chosen by the agent under 𝑡,
while the narrower (more precise) distribution in red is the one chosen under 𝑑.

Figure 1.2: The Transfer 𝑡 and The Cutoff Transfer 𝑑.

To see this, note that as the cutoff transfer pays the entire budget 1 when |𝜃 − 𝑎 | ≤ 𝑑,
it is larger than the transfer 𝑡 within the cutoff region. In addition, Lemma 1 shows
that, since the elasticity of 𝜙 is weakly increasing, for any 0 < 𝑥1 < 𝑑 < 𝑥2 the ratio

𝜑(𝑥1; 0, 𝜆)
𝜑(𝑥2; 0, 𝜆)

increases in 𝜆. Since 𝐸 (𝜆; 𝑡) is the integral of the transfer with respect to the signal
distribution, (1.3) follows. As a result, we have 𝝀(𝑑) ≥ 𝝀(𝑡) (see Figure 1.3).

𝐸

𝜆

𝑐(𝜆)

𝝀(𝑡)

𝐸 (𝜆; 𝑡)

𝐸 (𝜆; 𝑑)

Figure 1.3: Expected Transfer.

In the argument above, I use a stronger condition, global increasing elasticity, to
show that cutoff transfers are optimal. By Lemma 1, global increasing elasticity is
equivalent to the monotone ratio likelihood property:

For all 0 < 𝑥1 < 𝑥2,
𝜑(𝑥1; 0, 𝜆)
𝜑(𝑥2; 0, 𝜆) is increasing in 𝜆.
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Thus, this property is a sufficient condition for cutoff transfers to be optimal.

Corollary 1. If for all 𝑥2 > 𝑥1 > 0, 𝜑(𝑥1;0,𝜆)
𝜑(𝑥2;0,𝜆) increases in 𝜆, there exists an optimal

transfer that is a cutoff transfer.

To complete the proof of sufficiency in the general setting, there are two more
technical issues. First, for a general transfer 𝑡 (which is not necessarily symmetric),
the agent’s report depends on both the signal and the precision. But in our previous
example (Figure 1.3), the agent’s report equals the signal and does not depend on the
precision. Second, the proof sketch above assumed globally increasing elasticity,
which is stronger than increasing elasticity above 1. Under this weaker assumption,
we do not have for all 𝑥2 > 𝑥1 > 0, 𝜑(𝑥1;0,𝜆)

𝜑(𝑥2;0,𝜆) increases in 𝜆. The proof in the appendix
deals with both issues.

Optimization of Cutoff Transfers
When 𝜙 satisfies increasing elasticity above 1, Theorem 1 reduces the infinite
dimensional optimization problem to a one-dimensional problem of finding the
value of the optimal cutoff. In this section, I will solve this one-dimensional
problem and identify the optimal cutoff.

As the cutoff 𝑑 increases, the agent’s expected transfer 𝐸 (·; 𝑑) increases. Let 𝑑
denote the minimum cutoff such that IR constraint holds, i.e.,

𝑑 = min{𝑑 ≥ 0|𝜋(𝑑) ≥ 0}.

Notice that 𝑑 depends on the cost function 𝑐. The continuity of 𝐸 (·; 𝑑) for all 𝑑 and
the lower semicontinuity of 𝑐 ensures that this minimum is well defined.

Theorem 2. If 𝜙 satisfies increasing elasticity above 1, the cutoff transfer

𝑑∗ = min{𝑑 ≥ 𝑑 |𝝀(𝑑)𝑑 ≥ 𝜂−1(1)}

is optimal.

To obtain this result, the following lemma is crucial.

Lemma 2 (Complements or Substitutes). The expected transfer 𝐸 (𝜆; 𝑑) satisfies:

𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

≥ 0 ⇔ 𝜂(𝜆𝑑) ≤ 1.
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𝜑

𝜃 − 𝑎0

1/𝑥

𝑑𝑑

𝐸 (𝜆; 𝑑)

Note: The agent slightly increases precision from 𝜆 to 𝜆 + Δ𝜆. The area of the red region is
the expected transfer 𝐸 (𝜆; 𝑑). The area of two blue regions is the increment of probability
that the signal falls into the cutoff.

Figure 1.4: Increment of Expected Transfer When Increasing 𝜆.

This lemma characterizes whether the precision and the cutoff are complements
or substitutes. When the cross derivative 𝜕2𝐸 (𝜆;𝑑)

𝜕𝜆𝜕𝑑
is positive, increasing the cutoff

would increase the marginal return to the precision; thus they are complements. On
the other hand, when the cross derivative is negative, the cutoff and the precision
are substitutes.

I illustrate the intuition of the boundary case when 𝜂(𝜆𝑑) = 1 and show that

𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

= 0.

I plot the agent’s the expected transfer in Figure 1.4. Since the agent receives transfer
1 when the signal lies in the cutoff, the expected transfer 𝐸 (𝜆; 𝑑) is the probability
that the signal lies in the cutoff, which is the area of the light red region. Suppose
that the agent slightly increases precision from 𝜆 to 𝜆 + Δ𝜆. The signal shall lie in
the cutoff with a higher probability. The area of dark blue region is the incremental
probability that the signal lies in the cutoff. Since 𝜂(𝜆𝑑) = 1, in a neighborhood of
𝑑, 𝜑(·; 0, 𝜆) behaves like 𝑥−1. We can compute the incremental expected transfer,
which coincides with the incremental probability, by the area of the dark blue region

𝐸 (𝜆 + Δ𝜆; 𝑑) − 𝐸 (𝜆; 𝑑) ≈ 2𝜑(𝑑; 0, 𝜆)
(
𝑑 − 𝑑 𝜆

𝜆 + Δ𝜆

)
which is independent of 𝑑 as 𝜑(·; 0, 𝜆) decays at 𝑥−1. As a result, 𝜕

2𝐸 (𝜆;𝑑)
𝜕𝜆𝜕𝑑

= 0. A
similar argument shows that 𝜕

2𝐸 (𝜆;𝑑)
𝜕𝜆𝜕𝑑

and 𝜂(𝜆𝑑) − 1 have the opposite sign. Here 1
appears as this problem is one dimensional, which is also why "increasing elasticity
above 1" appears in Theorem 1 and 𝜂−1(1) appears in Theorem 2. Later on when I
generalize this problem to 𝑛-dimensional, 𝑛 shows up in both characterizations.

As the expected transfer 𝐸 (𝜆; 𝑑) is the probability that a signal falls within the cutoff
region, we have 𝐸 (𝜆; 𝑑) = 2Φ(𝜆𝑑) − 1 where Φ is the CDF of the distribution 𝜙.
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𝐸

𝜆

𝐸 (𝜆; 𝑑)

𝜆𝑑 = 𝜂−1 (1)
Complement

Substitute

Figure 1.5: Expected Transfer

Consequently, 𝐸 (𝜆; 𝑑) is increasing in 𝜆𝑑. Since 𝜕2𝐸 (𝜆;𝑑)
𝜕𝜆𝜕𝑑

and 𝜂(𝜆𝑑) − 1 have the
opposite sign, by the definition of 𝜂−1(1), we have

𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

≥ 0 if 𝜆𝑑 ≤ 𝜂−1(1)

𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

≤ 0 if 𝜆𝑑 ≥ 𝜂−1(1).

Thus, the graph of expected transfer is separated into two parts (see Figure 1.5).
When 𝜆𝑑 ≥ 𝜂−1(1), 𝜕

2𝐸 (𝜆;𝑑)
𝜕𝜆𝜕𝑑

≤ 0, I refer to this part as the substitute region. When
𝜆𝑑 < 𝜂−1(1), 𝜕

2𝐸 (𝜆;𝑑)
𝜕𝜆𝜕𝑑

> 0, I refer to this part as the complement region.

Recall that 𝑑 denotes the minimum cutoff that the agent is willing to work. If
(𝑑, 𝝀(𝑑)) lies in the substitute region, increasing 𝑑 shall reduce 𝝀(𝑑), which is not
optimal for the principal. Consequently, she should set the cutoff at the minimum 𝑑.
In this case, the IR constraint is binding and the agent’s surplus is zero. If (𝑑, 𝝀(𝑑))
lies in the complement region, increasing 𝑑 shall first increase 𝝀(𝑑), and 𝝀(𝑑)𝑑 shall
increase until it hits the boundary 𝜂−1(1). After hitting the boundary, if we further
increase 𝑑, then 𝝀(𝑑) shall decrease as (𝑑, 𝝀(𝑑)) enters the substitute region. Thus,
the optimal cutoff is the 𝑑 where 𝝀(𝑑)𝑑 first hits the boundary 𝜂−1(1). In this case,
the IR constraint is relaxed and the agent enjoys some surplus.

Note that although 𝜆∗ is unique by design, the optimal cutoff transfer is not necessar-
ily unique. To see this, recall that changing 𝑑 causes the curve 𝐸 (·; 𝑑) to rotate. If
the cost function 𝑐 has a kink and 𝝀(𝑑) is stuck at this kink, rotating 𝐸 (·; 𝑑) slightly
might not affect 𝝀(𝑑), which gives rise to multiple optimal cutoff transfers. The
cutoff 𝑑∗ in Theorem 2 is the optimal cutoff transfer that provides the strongest local
incentive around 𝜆∗, i.e., it has the largest derivative 𝜕𝐸 (𝜆;𝑑)

𝜕𝜆

��
𝜆=𝜆∗ among all optimal

cutoff transfers. But this example is not generic due to the kink in the cost function.
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This is also why a continuous differentiable cost function helps us to get a unique
optimal transfer rule.

The Necessity of Increasing Elasticity above 1
In this section, I explain the intuition behind the necessity result—(2) implies (3)—
in Theorem 1. That is, why increasing elasticity above 1 is necessary for a cutoff
transfer to always be optimal.

I first provide an example where 𝜙 does not satisfy increasing elasticity above 1. In
this case, for some increasing and differentiable cost function, all cutoff transfers
are suboptimal.

Example 1. The standardized signal distribution is truncated exp(1/𝑥):

𝜙(𝑥) =


𝑘 exp(1/𝜖), if 𝑥 ∈ [0, 𝜖),

𝑘 exp(1/𝑥), if 𝑥 ∈ [𝜖, 1],

0, otherwise,

where 𝑘 is a normalizing factor (see the left panel of Figure 1.6). I plot the elasticity
of 𝜙 on the right panel of Figure 1.6. The signal distribution does not satisfy
increasing elasticity above 1 as 𝜂(𝑥) is decreasing for 𝑥 ∈ [𝜖, 1]. Fix a pair (𝜆∗, 𝑑∗)
such that 𝜖 < 𝜆∗𝑑∗ < 1. Suppose an increasing cost function 𝑐 ∈ 𝐶1 is tangent to
𝐸 (·; 𝑑∗) at 𝜆 = 𝜆∗ and 𝑐(𝜆) is strictly above 𝐸 (𝜆; 𝑑∗) for all 𝜆 ≠ 𝜆∗ (see the right
panel of Figure 1.7).

𝑥

𝜙(𝑥)

0

𝑘 exp( 1
𝑥
)

1−1 𝜖 𝑥

𝜂(𝑥)

1
𝑥

1𝜖

1

Figure 1.6: Signal Distribution and Elasticity

First, note that 𝑑∗ is the best cutoff among all cutoff transfers: by design, 𝑑∗ is the
minimum cutoff for the agent to work. By Lemma 2, as (𝜆∗, 𝑑∗) lies in the substitute
region, any cutoff transfer with cutoff 𝑑 > 𝑑∗ induces a smaller precision. Thus, 𝑑∗

is the best cutoff transfer.
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𝑠𝜃

𝑡

𝜑(𝑠; 𝜃, 𝜆∗)

𝑑∗

𝐸

𝜆

𝑐(𝜆)

𝜆∗

𝐸 (𝜆; 𝑑∗)
𝐸 (𝜆; 𝑡)

Complement

Substitute

Figure 1.7: The New Transfer Rule and The Expected Transfer

Second, I construct a new transfer rule 𝑡 which induces a strictly larger precision.
Starting with the best cutoff transfer rule 𝑑∗, I modify the transfer rule by setting
one interior region (dark blue) within the cutoff to 0 and one exterior region (light
brown) outside the cutoff to 1 (see the left panel of Figure 1.7). These two regions
are chosen such that the area of the dark blue region and the light brown region
are the same. Note that the area of each region is the expected transfer contributed
by this region at precision 𝜆∗. Thus, the new transfer rule 𝑡 has the same expected
transfer as cutoff transfer 𝑑∗ at precision 𝜆∗.

As the signal distribution features decreasing elasticity, the density function 𝜑(𝑠; 𝜃, 𝜆∗)
is steeper at the blue region. Once we increase precision, the blue area shall shrink
more than the brown area. This implies that the new transfer rule 𝑡 has higher
expected transfer than the cutoff transfer 𝑑∗ for slightly higher precision. I translate
this comparison to the right panel of Figure 1.7. For higher precision 𝜆 > 𝜆∗,
𝐸 (𝜆; 𝑡) > 𝐸 (𝜆; 𝑑∗). Thus, 𝑡 shall induce a higher precision.

This example is key to understand more generally the necessity of increasing elas-
ticity above 1. I call a pair (𝜆∗, 𝑑∗) exposed if the cutoff transfer 𝑑∗ is the optimal
transfer for some increasing cost function 𝑐 ∈ 𝐶1 and induces precision 𝜆∗. A pair
(𝜆∗, 𝑑∗) being exposed implies that 𝜂(𝑥1) ≤ 𝜂(𝑥2) for all 0 ≤ 𝑥1 ≤ 𝜆∗𝑑∗ ≤ 𝑥2.
Otherwise, I can use the construction in Example 1 to construct a new transfer than
induces a strictly larger precision. In Theorem 2, all (𝑑∗, 𝜆∗) pairs in the substitute
region are exposed, as I can always find an increasing and continuously differentiable
cost function that is tangent to 𝐸 (·; 𝑑∗) at 𝜆∗ and strictly above 𝐸 (·; 𝑑∗) everywhere
else. Similarly, when for all increasing and differentiable cost functions there exists
an optimal transfer that is a cutoff transfer, all pairs with 𝜂(𝑑∗𝜆∗) ≥ 1 are exposed.
This implies increasing elasticity above 1. However, as the construction in the ex-
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ample above only works in the substitute region, pairs in the complement regions
are not exposed. Consequently, we do not have monotonicity for 𝜂 when it is below
1.

Comparative Statics
Next I study how the optimal cutoff changes with the cost function. Without loss
of generality, I assume that the cost function is weakly increasing.20 I express
dependence on the cost function. Let 𝑑∗(𝑐) and 𝜆∗(𝑐) denote the optimal cutoff and
precision given cost function 𝑐. Consider two cost functions 𝑐1 ≤ 𝑐2 where 𝑐1 is
less costly. Intuitively, if the agent’s cost is higher, the optimal cutoff increases. The
next result formalizes this intuition.

Proposition 1 (Comparative Statics). Suppose that 𝜙 satisfies increasing elasticity
above 1 and 𝑐1 ≤ 𝑐2. If 𝑐2(𝜆)−𝑐1(𝜆) is weakly increasing in𝜆, then 𝑑∗(𝑐1) ≤ 𝑑∗(𝑐2)
and 𝜆∗(𝑐2) ≤ 𝜆∗(𝑐1). In particular, if 𝑐2 = 𝑘𝑐1 for some constant 𝑘 > 1, then
𝑑∗(𝑐1) ≤ 𝑑∗(𝑐2) and 𝜆∗(𝑐2) ≤ 𝜆∗(𝑐1).

The cost difference 𝑐2(𝜆) − 𝑐1(𝜆) being weakly increasing occurs if 𝑐2 is more
convex than 𝑐1. Another interesting comparative statics is to change the budget
from 1 to 1/𝑘 . This is equivalent to keeping the budget at 1 and change the cost
function from 𝑐1 to 𝑘𝑐1. Thus, lowering the budget would lead to a larger optimal
cutoff.

As a direct corollary, I can study what happens if the agent’s signal is more precise.
Suppose that 𝜀2 = 𝑘𝜀1 with some constant 𝑘 > 1. Recall that the agent’s signal is
𝑠 = 𝜃 + 1

𝜆
𝜀. Thus, a smaller noise 𝜀1 corresponds to a more precise signal, which

leads to a smaller cutoff by the next result.

Corollary 2. Suppose that the cost function is weakly convex. If 𝜀2 = 𝑘𝜀1 with some
constant 𝑘 > 1, 𝑑∗1 ≤ 𝑑

∗
2.

What if the cost difference 𝑐2 − 𝑐1 is not increasing? Then the answer is more
involved. Denote by 𝝀(𝑑; 𝑐) the induced precision given cutoff transfer 𝑑 and the cost
function 𝑐. Given the cost function 𝑐1, the minimum cutoff 𝑑 (𝑐1) and the induced
precision 𝝀(𝑑 (𝑐1); 𝑐1) pair lies either in the substitute region 𝝀(𝑑 (𝑐1); 𝑐1)𝑑 (𝑐1) ≥
𝜂−1(1) or not. If this pair lies in the substitute region, then the optimal cutoff

20Given any cost function 𝑐 that is not weakly increasing, I can define a new cost function 𝑐 to be
the largest weakly increasing function that is below 𝑐. The agent’s precision choice problem under
cost function 𝑐 is the same as under cost 𝑐, because 𝐸 (𝜆; 𝑑) is weakly increasing in 𝜆.
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coincides with the minimum cutoff, 𝑑∗(𝑐1) = 𝑑 (𝑐1), by Theorem 2. Then given a
larger cost function 𝑐2, the minimum cutoff must be larger, 𝑑 (𝑐2) ≥ 𝑑 (𝑐1), which
entails a larger optimal cutoff, 𝑑∗(𝑐2) ≥ 𝑑∗(𝑐1).

However, if the 𝝀(𝑑 (𝑐1); 𝑐1), 𝑑 (𝑐1) pair lies in the complement region, the com-
parison of 𝑑∗ can go both directions. If 𝑐2 − 𝑐1 is decreasing, it may render higher
precision relatively more attractive to the agent under cost 𝑐2 than 𝑐1. This may
induce a higher precision for each cutoff transfer. As the optimal precision and
optimal cutoff are substitutes by Theorem 2, a higher induced precision leads to a
lower optimal cutoff.

Readers may wonder what happens to the optimal precision 𝜆∗ given 𝑐2 ≥ 𝑐1. It
turns out that increasing the cost function can shift 𝜆∗ in both directions, depending
on the shape of the cost difference 𝑐2 − 𝑐1.

1.5 Extensions
The Multi-Dimensional Case
My results can generalize to the case with a multi-dimensional state. In this section,
suppose the state, the signal, and the report are n-dimensional, i.e., 𝜃, 𝑠, 𝑎 ∈ R𝑛. The
signal distribution is still symmetric, single-peaked, and centered around 𝜃. Here
symmetry means that the density of the distribution depends only on the Euclidean
distance from the state 𝜃. A cutoff transfer pays 1 when the Euclidean distance
between the report and the state is less than a cutoff 𝑑. The next proposition shows
that a statement analogous to that of Theorem 1 applies in this case too.

Proposition 2. Suppose the state is n-dimensional. The following statements are
equivalent.

1. For all cost functions, there exists an optimal transfer that is a cutoff transfer.

2. For all increasing and differentiable cost functions, there exists an optimal
transfer that is a cutoff transfer.

3. Density function 𝜙 satisfies increasing elasticity above 𝑛.

Moreover, if 𝜙 satisfies increasing elasticity above 𝑛, the cutoff transfer

𝑑∗ = min{𝑑 ≥ 𝑑 |𝝀(𝑑)𝑑 ≥ 𝜂−1(𝑛)}

is optimal.
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Note that the increasing elasticity condition of Theorem 1 is generalized in this
proposition to increasing elasticity above the dimension 𝑛, providing an explanation
for why the number 1 appeared in Theorem 1.

Gaussian Prior and Gaussian Signal
In this section, I assume that both the prior and the signal admit Gaussian distri-
butions. Since the prior is no longer uniform, a slight adjustment is that now the
principal wants the agent to truthfully report the posterior mean rather than the
signal.

Let the prior distribution be N(0, 1/𝜆2
0). Conditional on a signal 𝑠, the agent’s

posterior is also Gaussian

N( 𝑠𝜆2

𝜆2
0 + 𝜆2

,
1

𝜆2
0 + 𝜆2

),

where 𝜆 is the agent’s choice of precision. I let Λ denote the precision of the
posterior

Λ(𝜆) =
√︃
𝜆2

0 + 𝜆2.

Then, the expected transfer becomes 𝐸 (Λ(𝜆); 𝑡) instead of 𝐸 (𝜆; 𝑡). Therefore, Λ(𝜆)
shall replace 𝜆 in the characterization. Other than this difference, the results remain
the same as in previous sections, as the posterior is Gaussian whose elasticity is
increasing.

Proposition 3. Suppose the prior and the signal admit Gaussian distribution. There
exists an optimal transfer that is a cutoff transfer. Moreover, the cutoff transfer

𝑑∗ = min{𝑑 ≥ 𝑑 |Λ(𝝀(𝑑))𝑑 ≥ 𝜂−1(1)}

is optimal.

Unobserved State
In this section, I extend my results to the setting where the state is unobservable.
Instead, the principal has some private information about the state. When designing
the transfer, she uses her private information instead of the state to discipline the
agent.21

21Note that the principal does not have utility for their budget, and so have no incentive to lie
about their private signals. Thus, it is without loss of generality to assume that the principal has
commitment power.
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I assume that the prior is uniform or GaussianN(0, 1/𝜆2
0). The principal wants the

agent to truthfully report his posterior mean and maximizes 𝜆. The principal and the
agent receive independent Gaussian signals: 𝑠𝑝 ∼ N(𝜃, 1/𝜆2

𝑝) and 𝑠 ∼ N(𝜃, 1/𝜆2).
I show that it is without loss to focus on cutoff transfers that pay 1 when |𝑠𝑝 − 𝑎 | is
less than a cutoff and 0 otherwise.

Proposition 4. Suppose that the state is unobservable and the prior admits uniform
or Gaussian distribution. The principal and the agent receive independent Gaussian
signals. There exists an optimal transfer that is a cutoff transfer. Moreover, the cutoff
transfer

𝑑∗ = min{𝑑 ≥ 𝑑 |Λ(𝑑)𝑑 ≥ 𝜂−1(1)}

is optimal where Λ(𝑑) = ( 1
𝜆2
𝑝
+ 1

𝝀2 (𝑑) )
− 1

2 for the uniform prior and Λ(𝑑) = ( 1
𝜆2
𝑝
+

1
𝝀2 (𝑑)+𝜆2

0
)− 1

2 for the Gaussian prior.

1.6 Implications for Classic Principal-Agent Problem
In this section, I demonstrate how my results apply to a classic principal-agent
problem, offering new insights into the optimality of simple contracts. In the
classic setting, a principal incentivizes the agent to produce an output. Unlike the
traditional framework, in which the principal’s goal is to maximize expected payoff
(of outputs) minus transfers, I assume the principal’s sole objective is to maximize
output, constrained by a budget limit. The budget with a specific usage is a common
practice in firms. Anthony et al. (2007) and Horngren (2009) provide comprehensive
empirical evidence for this approach. In firms, managers (the principals in my
model) control the resources without being the ultimate owners, giving rise to
agency costs, known as residual loss in finance (Jensen and Meckling, 1976). To
combat this loss, a budget constraint with a specific usage is commonly deployed.

Suppose that an agent chooses an effort level 𝑒 ≥ 0, which can be discrete or
continuous. A continuous output 𝑦 ≥ 0 is random and distributed according to
a probability density function 𝑔(𝑦; 𝑒). A principal’s objective is to maximize the
agent’s output, subject to a budget constraint equals to 1. The transfer 𝑡 (𝑦) depends
on the output 𝑦, such that 0 ≤ 𝑡 (𝑦) ≤ 1. A cutoff transfer with parameter 𝑑 is of the
form 𝑡 (𝑦) = 1 if 𝑦 ≥ 𝑑 and 𝑡 (𝑦) = 0 otherwise. The agent’s cost of effort is given
by a lower semi-continuous function 𝑐(𝑒) and he maximizes the expected transfer
minus the cost.

Corollary 3. Suppose that 𝑔 satisfies the monotone likelihood ratio condition: for



24

all 𝑦1 ≤ 𝑦2, 𝑔(𝑦2;𝑒)
𝑔(𝑦1;𝑒) is weakly increasing in 𝑒. Then, there exists an optimal transfer

that is a cutoff transfer.22

This is an immediate corollary of Corollary 1. My model can be “projected down”
onto this classic setting. The argument involves making the signal 𝑠 publicly
observable, which removes the truthful report issue. Then set output 𝑦 = 1/|𝑠 − 𝜃 |
and effort 𝑒 = 𝜆. I formalize a sense that my principal-expert setting is strictly
richer than the classic principal-agent setting and derive new results for the classic
setting. Economically, this corollary suggests that my insights apply not only to
contracting for modern “knowledge/information economy” jobs but also for classic
“production/manufacturing” jobs.

The literature on principal-agent problems has long been interested in when simple
contracts are optimal (Carroll, 2015; Herweg, Müller, and Weinschenk, 2010; Oyer,
2000). This corollary provides an alternative explanation for simple contracts: the
optimality of cutoff transfers stems from the nature of budgets in many contracting
scenarios. The bounded budget that can only be used for this task can lead to
the optimality of cutoff transfers, and the monotone likelihood ratio property is a
sufficient condition to generate this sharp characterization.

Classic principal-agent models maximize the principal’s expected payoff (of outputs)
minus transfers, subject to incentive compatibility (IC), individual rationality (IR),
and sometimes limited liability constraints. Generally, closed-form solutions for the
optimal transfers are not obtainable (see Bolton and Dewatripont, 2004, Chapter 4.5).
In a special case with binary effort levels and a risk-neutral principal, a well-known
result emerges: the monotone likelihood ratio property is necessary and sufficient
for optimal transfers to increase with output (see Laffont and Martimort, 2009,
Proposition 4.6). However, analyzing the general case with more than two effort
levels is much more challenging. Grossman and Hart (1983) study this problem
with continuous effort under the assumption of finite output levels. Their findings
show that even the monotone likelihood ratio property is not sufficient to ensure

22Banks and Sundaram (1998) study how a long-lived principal interacts with a series of short-
lived agents with moral hazard and adverse selection. Agents have different types (abilities) and can
derive utility from working. Each agent can work for at most two periods. The principal designs a
retention rule that maps from the first-period output to two outcomes: retain or fire. The principal
aims to maximize output. Banks and Sundaram (1998) show that a cutoff retention rule can be
optimal under some condition on the agent’s preference and MLRP. However, the principal is unable
to induce effort with moral hazard alone. See their proposition 3.5 for a detailed discussion.
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optimal transfers to be increasing. Beyond some weak predictions, we do not have
a characterization of optimal transfers.23

From a methodological perspective, my results rely on techniques of monotone
comparative statics, which allows me to impose relatively mild assumptions on the
output distribution. Another popular method is the first-order approach (Rogerson,
1985; Jewitt, 1988). To ensure the validity of the first-order approach, people either
impose restrictive conditions on the distribution of outputs, like the convexity of
output distribution (Rogerson, 1985), or impose strong assumptions on the agent’s
utility function (Jewitt, 1988). My results do not rely on the first-order approach.

23For a risk-neutral principal, we only know that the optimal transfer cannot be decreasing
everywhere, nor can it increase faster than the output everywhere.
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1.7 The Assumption That Transfer Depends Only on the Difference Between
the State and Report

In this section, I show that given the uniform prior, it is without loss to assume that
the transfer depends only on the difference 𝑎 − 𝜃. To make the expected transfer
well-defined for the uniform prior, I take two approaches. In the first approach, I
define the agent’s expected transfer to be conditional on the event that the signal
falls in some set of finite Lebegue measure. Then I show that the conclusion holds
for any such set. The conditioning on some set is merely an artifact to deal with
the improperness of unbounded uniform prior. In the second approach, I study an
alternative setting where the state space is a circle in R2 and the prior is proper and
uniform. This unit circle is similar to the one-point compactification of R.

Throughout this section, I allow the transfer to depend on both the state and the
report. To ensure that the agent’s report is well-defined, I assume that the family of
maps 𝑎 ↦→ 𝑡 (𝑦 +𝑎, 𝑎) parametrized by 𝑦 is equicontinuous. This is trivially satisfied
when the transfer depends only on 𝜃 − 𝑎, as 𝑡 (𝑦 + 𝑎, 𝑎) stays constant as 𝑎 varies.
When the prior is improper uniform on R, I additionally assume that 𝑡 (𝜃, 𝜃 + 𝑥)
vanishes uniformly (in 𝜃) as 𝑥 tends to infinity.

First, I show that the agent’s report is well-defined.

Lemma 3. The maximum

max
𝑎∈R

∫
R
𝑡 (𝜃′, 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

is well-defined.

Proof of Lemma 3. Fix a signal 𝑠 and precision 𝜆. Let 𝑇 (𝑎) be the agent’s expected
transfer after reporting 𝑎,

𝑇 (𝑎) =
∫

𝑡 (𝜃′, 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′.

If 𝑇 (𝑎) = 0 for all 𝑎 ∈ R, then the maximum is well-defined. Suppose that there
exists 𝑎1 ∈ R such that 𝑇 (𝑎1) > 0. As 𝑡 (𝜃, 𝜃 + 𝑥) vanishes uniformly (in 𝜃) as 𝑥
tends to infinity, there exists a 𝐾1 > 0 such that for all |𝜃 − 𝑎 | > 𝐾1, 𝑡 (𝜃, 𝑎) < 𝑇 (𝑎1)

2 .
Moreover, there exists a𝐾2 > 0 such thatΦ(𝜆𝐾2) > 1−𝑇 (𝑎1)

4 . Let𝐾 = max(𝐾1, 𝐾2).
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If |𝑎 − 𝑠 | > 2𝐾 ,

𝑇 (𝑎) =
∫

𝑡 (𝜃′, 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

=

∫
𝜃′:|𝜃′−𝑠 |<𝐾

𝑡 (𝜃′, 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′ +
∫
𝜃′:|𝜃′−𝑠 |≥𝐾

𝑡 (𝜃′, 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

≤𝑇 (𝑎1)
2

∫
𝜃′:|𝜃′−𝑠 |<𝐾

𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′ + 1 ·
∫
𝜃′:|𝜃′−𝑠 |≥𝐾

𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

≤𝑇 (𝑎1)
2
+ 2[1 −Φ(𝜆𝐾)]

=𝑇 (𝑎1).

Thus,
max
𝑎∈R

𝑇 (𝑎) = max
|𝑎−𝑠 |≤2𝐾

𝑇 (𝑎).

Next, I show that 𝑇 (·) is continuous.

𝑇 (𝑎 + 𝜖) − 𝑇 (𝑎) =
∫

𝑡 (𝜃′, 𝑎 + 𝜖)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′ −
∫

𝑡 (𝜃′, 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

=

∫
[𝑡 (𝜃′, 𝑎 + 𝜖) − 𝑡 (𝜃′ − 𝜖, 𝑎)]𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′ +

∫
[𝑡 (𝜃′ − 𝜖, 𝑎) − 𝑡 (𝜃′, 𝑎)]𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

=

∫
[𝑡 (𝜃′, 𝑎 + 𝜖) − 𝑡 (𝜃′ − 𝜖, 𝑎)]𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′ +

∫
𝑡 (𝜃′, 𝑎) [𝜑(𝜃′ + 𝜖 ; 𝑠, 𝜆) − 𝜑(𝜃′; 𝑠, 𝜆)]𝑑𝜃′

|𝑇 (𝑎 + 𝜖) − 𝑇 (𝑎) | ≤ sup
𝜃′
|𝑡 (𝜃′, 𝑎 + 𝜖) − 𝑡 (𝜃′ − 𝜖, 𝑎) | +

���� ∫ 𝑡 (𝜃′, 𝑎) [𝜑(𝜃′; 𝑠 − 𝜖, 𝜆) − 𝜑(𝜃′; 𝑠, 𝜆)]𝑑𝜃′
����

≤ sup
𝜃′
|𝑡 (𝜃′, 𝑎 + 𝜖) − 𝑡 (𝜃′ − 𝜖, 𝑎) | +

∫
|𝜑(𝜃′; 𝑠 − 𝜖, 𝜆) − 𝜑(𝜃′; 𝑠, 𝜆) |𝑑𝜃′

≤ sup
𝜃′
|𝑡 (𝜃′, 𝑎 + 𝜖) − 𝑡 (𝜃′ − 𝜖, 𝑎) | + 2

∫
𝜃′≤𝑠− 𝜖2

𝜑(𝜃′; 𝑠 − 𝜖, 𝜆) − 𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

≤ sup
𝜃′
|𝑡 (𝜃′, 𝑎 + 𝜖) − 𝑡 (𝜃′ − 𝜖, 𝑎) | + 2[Φ( 𝜖

2
𝜆) −Φ(−𝜖

2
𝜆)]

Note that sup𝜃′ |𝑡 (𝜃′, 𝑎+𝜖)−𝑡 (𝜃′−𝜖, 𝑎) | tends to 0 as 𝜖 tends to 0 by the equicontinuity
of 𝑡. Moreover, the CDF Φ is continuous. Thus, 𝑇 is continuous. A continuous
function achieves a maximum on a compact set. So the maximum is well-defined.

□

Next, I show that it is without loss to assume that the transfer depends only on the
difference 𝜃−𝑎. For a transfer rule 𝑡 (𝜃−𝑎) that depends only on the difference 𝜃−𝑎,
let �̂� (𝜆; 𝑡) denote the agent’s expected transfer when he has to report truthfully,

�̂� (𝜆; 𝑡) =
∫
R
𝑡 (𝜃′)𝜑(𝜃′; 0, 𝜆)𝑑𝜃′.
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Let �̂�(𝑡) denote the corresponding induced precision,

�̂�(𝑡) =


max[arg max �̂� (·; 𝑡) − 𝑐(·)], if max �̂� (·; 𝑡) − 𝑐(·) ≥ 0,

0, otherwise.

For a transfer rule 𝑡 (𝜃, 𝑎) that depends on both the state and the report, we need to
integrate the signal when computing the expected transfer. Let 𝑔 denote the PDF
of the signal, which is also uniform. Fix any measureable set 𝐴 of finite Lebegue
measure. I define the agent’s expected transfer conditional on the signal falls in set
𝐴, i.e., 𝑠 ∈ 𝐴

𝐸 (𝜆; 𝑡) =
∫
𝑠∈𝐴

𝑔(𝑠)𝑑𝑠
(

max
𝑎

∫
𝑡 (𝜃′, 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

)
𝝀(𝑡) =


max[arg max 𝐸 (·; 𝑡) − 𝑐(·)], if max 𝐸 (·; 𝑡) − 𝑐(·) ≥ 0,

0, otherwise.

Lemma 4. For a transfer rule 𝑡 (𝜃, 𝑎), there exists a transfer rule 𝑡∗(𝜃 − 𝑎) that
depends only on the difference 𝜃 − 𝑎; given transfer rule 𝑡∗, the agent chooses
precision 𝝀(𝑡) when he is forced to reveal the signal. That is,

𝝀(𝑡) = �̂�(𝑡∗).

Proof. Let 𝒂(𝑠;𝜆) denote the agent’s report after observing signal 𝑠 given precision
𝜆.

𝒂(𝑠;𝜆) = arg max
𝑎

∫
R
𝑡 (𝜃′, 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′.

𝐸 (𝜆; 𝑡) =
∫
𝑠∈𝐴

𝑔(𝑠)𝑑𝑠
∫

𝑡 (𝜃′, 𝒂(𝑠;𝜆))𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

Note that this integral is well-defined since 𝒂(𝑠;𝜆) is well-defined and the set 𝐴 has
finite Lebegue measure. Let 𝜃′′ = 𝜃′ − 𝑠,

𝐸 (𝜆; 𝑡) =
∫
𝑠∈𝐴

𝑔(𝑠)𝑑𝑠
∫

𝑡 (𝜃′′ + 𝑠, 𝒂(𝑠;𝜆))𝜑(𝜃′′; 0, 𝜆)𝑑𝜃′′.

Let 𝑡∗(𝜃′′) =
∫
𝑠∈𝐴 𝑔(𝑠)𝑡 (𝜃

′′ + 𝑠, 𝒂(𝑠; 𝝀(𝑡)))𝑑𝑠. By Fubini-Tonelli Theorem,

𝐸 (𝝀(𝑡); 𝑡) =
∫
𝑠∈𝐴

𝑔(𝑠)𝑑𝑠
∫

𝑡 (𝜃′′ + 𝑠, 𝒂(𝑠; 𝝀(𝑡)))𝜑(𝜃′′; 0, 𝝀(𝑡))𝑑𝜃′′

=

∫
R
𝑡∗(𝜃′′)𝜑(𝜃′′; 0, 𝝀(𝑡))𝑑𝜃′′

= �̂� (𝝀(𝑡); 𝑡∗).
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Moreover, at 𝜆 ≠ 𝝀(𝑡),

𝐸 (𝜆; 𝑡) =
∫
𝑠∈𝐴

𝑔(𝑠)𝑑𝑠
∫
R
𝑡 (𝜃′, 𝒂(𝑠;𝜆))𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

≥
∫
𝑠∈𝐴

𝑔(𝑠)𝑑𝑠
∫
R
𝑡 (𝜃′, 𝒂(𝑠; 𝝀(𝑡)))𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

=

∫
𝑠∈𝐴

𝑔(𝑠)𝑑𝑠
∫

𝑡 (𝜃′′ + 𝑠, 𝒂(𝑠; 𝝀(𝑡)))𝜑(𝜃′′; 0, 𝜆)𝑑𝜃′′

=

∫
R
𝑡∗(𝜃′′)𝜑(𝜃′′; 0, 𝜆)𝑑𝜃′′

= �̂� (𝜆; 𝑡∗)

where the inequality follows by the definition of 𝒂(𝑠;𝜆). By the definition of 𝝀(𝑡),
�̂�(𝑡∗) = 𝝀(𝑡). □

Given this Lemma, we can input the constructed 𝑡∗ into the proof of Theorem 1,
where I show that there exists a cutoff transfer that induces a higher precision.

In the second approach, the state space is a circle in R2 with a circumference of 1,
and the prior distribution is uniform. This setup corresponds to cases where the
state is periodic, such as the unit vector in R2 which corresponds a direction in R2

(In Machina triangle, each direction corresponds to an indifference curve.), the time
of day (e.g., 15:20) or the day of the year (e.g., October 19). The model remains
almost the same. The only exception is that 𝜙 admits a compact support [−𝑀, 𝑀]
and the precision 𝜆 ∈ [2𝑀, +∞]. The proof that it is without loss to assume that
transfer depends only on the difference 𝜃 − 𝑎 is almost the same as above. The
exception is that the integral of 𝑠 in Lemma 4 can be taken over the entire circle.

1.8 Omitted Proofs

Proof of Lemma 1.
𝜕 ln 𝜙(𝜆𝑥)
𝜕 ln𝜆

=
𝜙′(𝜆𝑥)
𝜙(𝜆𝑥) 𝜆𝑥 = −𝜂(𝜆𝑥).

Thus, we have
𝜕 [ln 𝜙(𝜆𝑥1)

𝜙(𝜆𝑥2) ]
𝜕 ln𝜆

= 𝜂(𝜆𝑥2) − 𝜂(𝜆𝑥1).

The second part follows by

𝜕 [ 𝜑(𝑥1;0,𝜆)
𝜑(𝑥2;0,𝜆) ]
𝜕𝜆

=
𝜕 [ 𝜙(𝜆𝑥1)

𝜙(𝜆𝑥2) ]
𝜕𝜆

.

□
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Proof of Lemma 2. Let Φ denote the anti-derivative of 𝜙, i.e., Φ(𝑥) =
∫ 𝑥
−∞ 𝜙(𝑦)𝑑𝑦.

We compute the expected transfer given the cutoff transfer 𝑑

𝐸 (𝜆; 𝑑) = 2Φ(𝜆𝑑) − 1.

The derivative of the expected transfer with respect to 𝜆 is

𝜕𝐸 (𝜆; 𝑑)
𝜕𝜆

= 2𝑑𝜙(𝜆𝑑).

Let us see how the derivative changes when varying 𝑑,

𝜕
𝜕𝐸 (𝜆;𝑑)
𝜕𝜆

𝜕𝑑
= 2𝜙(𝜆𝑑) [1 − 𝜂(𝜆𝑑)] .

□

Lemma 5. The agent’s expected transfer

𝐸 (𝜆; 𝑡) = max
𝑎∈R

∫
R
𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

is well-defined.

Proof of Lemma 5. I show that the maximum is well-defined, given that the transfer
rule 𝑡 vanished at infinity. Fix a signal 𝑠 and precision 𝜆. Let 𝑇 (𝑎) be the agent’s
expected transfer after reporting 𝑎,

𝑇 (𝑎) =
∫

𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′.

If 𝑇 (𝑎) = 0 for all 𝑎 ∈ R, the arg max𝑎 𝑇 (𝑎) is well-defined. Suppose that there
exists 𝑎1 ∈ R such that 𝑇 (𝑎1) > 0. As 𝑡 vanished at infinity, there exists a 𝐾1 > 0
such that for all |𝑥 | > 𝐾1, 𝑡 (𝑥) < 𝑇 (𝑎1)

2 . Moreover, there exists a 𝐾2 > 0 such that
Φ(𝜆𝐾2) > 1 − 𝑇 (𝑎1)

4 . Let 𝐾 = max(𝐾1, 𝐾2). If |𝑎 − 𝑠 | > 2𝐾 ,

𝑇 (𝑎) =
∫

𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

=

∫
𝜃′:|𝜃′−𝑠 |<𝐾

𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′ +
∫
𝜃′:|𝜃′−𝑠 |≥𝐾

𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

≤𝑇 (𝑎1)
2

∫
𝜃′:|𝜃′−𝑠 |<𝐾

𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′ + 1 ·
∫
𝜃′:|𝜃′−𝑠 |≥𝐾

𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

≤𝑇 (𝑎1)
2
+ 2[1 −Φ(𝜆𝐾)]

=𝑇 (𝑎1).
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Thus,
arg max

𝑎∈R
𝑇 (𝑎) = arg max

|𝑎−𝑠 |≤2𝐾
𝑇 (𝑎).

Next, I show that 𝑇 (·) is continuous.

|𝑇 (𝑎 + 𝜖) − 𝑇 (𝑎) | =
���� ∫ 𝑡 (𝜃′ − 𝑎 − 𝜖)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′ −

∫
𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

����
=

���� ∫ 𝑡 (𝜃′ − 𝑎)𝜑(𝜃′ + 𝜖 ; 𝑠, 𝜆)𝑑𝜃′ −
∫

𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′
����

=

���� ∫ 𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 𝑠 − 𝜖, 𝜆)𝑑𝜃′ −
∫

𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′
����

=

���� ∫ 𝑡 (𝜃′ − 𝑎) [𝜑(𝜃′; 𝑠 − 𝜖, 𝜆) − 𝜑(𝜃′; 𝑠, 𝜆)]𝑑𝜃′
����

≤
∫ ����𝜑(𝜃′; 𝑠 − 𝜖, 𝜆) − 𝜑(𝜃′; 𝑠, 𝜆)����𝑑𝜃′

=2
∫
𝜃′≤𝑠− 𝜖2

𝜑(𝜃′; 𝑠 − 𝜖, 𝜆) − 𝜑(𝜃′; 𝑠, 𝜆)𝑑𝜃′

=2[Φ( 𝜖
2
𝜆) −Φ(−𝜖

2
𝜆)]

Thus, 𝑇 is continuous as the CDF Φ is continuous. A continuous function achieves
a maximum on a compact set. So the maximum in 𝐸 (𝜆; 𝑡) is well-defined. □

Let �̂� (𝜆; 𝑡) denote the agent’s expected transfer when he has to report truthfully

�̂� (𝜆; 𝑡) =
∫
R
𝑡 (𝜃′)𝜑(𝜃′; 0, 𝜆)𝑑𝜃′.

Let �̂�(𝑡) denote the corresponding induced precision

�̂�(𝑡) =


max[arg max �̂� (·; 𝑡) − 𝑐(·)], if max �̂� (·; 𝑡) − 𝑐(·) ≥ 0,

0, otherwise.

Lemma 6. Suppose 𝑓 satisfies increasing elasticity above 1. Suppose the agent has
to report truthfully. Given a symmetric transfer rule 𝑡 and induced 𝜆∗ = �̂�(𝑡), the
new transfer

𝑡′(𝑥) =


1, if 𝜆∗ |𝑥 | < 𝜂−1(1),

𝑡 (𝑥), otherwise

can induce a weakly higher precision �̂�(𝑡′) ≥ �̂�(𝑡).

Proof of Lemma 6. Let Δ𝑡 = 𝑡′ − 𝑡. I shall show that

�̂� (𝜆∗;Δ𝑡) ≥ �̂� (𝜆;Δ𝑡) for all 𝜆 ≤ 𝜆∗.
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This implies that �̂�(𝑡′) ≥ �̂�(𝑡) since �̂�(𝑡) = max[arg max �̂� (·; 𝑡) − 𝑐(·)].

Consider two cutoff transfers 0 < 𝑑1 < 𝑑2 ≤ 𝜂−1(1)/𝜆∗. For all 𝜆 ≤ 𝜆∗, we have
𝜂(𝜆𝑑1) ≤ 1, 𝜂(𝜆𝑑2) ≤ 1. By Lemma 2,

𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

≥ 0 ⇔ 𝜂(𝜆𝑑) ≤ 1.

This implies 𝜕𝐸 (𝜆;𝑑)
𝜕𝜆

increases in 𝑑 ∈ [𝑑1, 𝑑2] for all𝜆 ≤ 𝜆∗, which implies𝐸 (𝜆; 𝑑2)−
𝐸 (𝜆; 𝑑1) increases in 𝜆 ∈ [0, 𝜆∗]. As Δ𝑡 is an integral of such difference of cutoff
transfers and �̂� (𝜆; 𝑡) is linear in 𝑡, �̂� (𝜆;Δ𝑡) increases in 𝜆 ∈ [0, 𝜆∗].

□

Lemma 7. Suppose 𝑓 satisfies increasing elasticity above 1. Let 𝜂−1(1) < 𝑥1 < 𝑥2.
Then

𝜙(𝜆′𝑥2)
𝜙(𝜆′𝑥1)

≥ 𝜙(𝑥2)
𝜙(𝑥1)

for all 𝜆′ < 1.

Proof of Lemma 7. By Lemma 1,

ln
𝜙(𝜆′𝑥)
𝜙(𝑥) =

∫ 1

𝜆′
𝜂(𝜆𝑥)𝑑 ln𝜆.

Then,
𝜙(𝜆′𝑥1)
𝜙(𝑥1)

≤ 𝜙(𝜆
′𝑥2)

𝜙(𝑥2)
for all 𝜆′ < 1

is equivalent to∫ 1

𝜆′
𝜂(𝜆𝑥1)𝑑 ln𝜆 ≤

∫ 1

𝜆′
𝜂(𝜆𝑥2)𝑑 ln𝜆 for all 𝜆′ < 1.

Let 𝑦 = ln𝜆, then it suffices to show∫ 0

ln𝜆′
𝜂(𝑥1 exp(𝑦))𝑑𝑦 ≤

∫ 0

ln𝜆′
𝜂(𝑥2 exp(𝑦))𝑑𝑦 for all 𝜆′ < 1.

Let Δ𝑦 = ln(𝑥2/𝑥1) > 0. Then it suffices to show∫ 0

ln𝜆′
𝜂(𝑥2 exp(𝑦 − Δ𝑦))𝑑𝑦 ≤

∫ 0

ln𝜆′
𝜂(𝑥2 exp(𝑦))𝑑𝑦 for all 𝜆′ < 1.

Let 𝑔(𝑦) = 𝜂(𝑥2 exp(𝑦)). Then it suffices to show∫ 0

ln𝜆′
𝑔(𝑦 − Δ𝑦)𝑑𝑦 ≤

∫ 0

ln𝜆′
𝑔(𝑦)𝑑𝑦 for all 𝜆′ < 1. (1.4)
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Note that function 𝑔(𝑦) is increasing in 𝑦 ∈ [ln 𝜂−1 (1)
𝑥2

, 0] and single-crosses 1 from

below at ln 𝜂−1 (1)
𝑥2

.

If ln𝜆′ ≥ −Δ𝑦, then for all 𝑦 ∈ [ln𝜆′, 0],

𝑔(𝑦) ≥ 𝑔(ln𝜆′) ≥ 𝑔(−Δ𝑦) ≥ 𝑔(𝑦 − Δ𝑦).

Suppose ln𝜆′ < −Δ𝑦. Equation (1.4) is∫ −Δ𝑦

ln𝜆′−Δ𝑦
𝑔(𝑦)𝑑𝑦 ≤

∫ 0

ln𝜆′
𝑔(𝑦)𝑑𝑦 for all 𝜆′ < 1.

I can subtract
∫ −Δ𝑦

ln𝜆′ 𝑔(𝑦)𝑑𝑦 from both sides. Then the inequality becomes∫ ln𝜆′

ln𝜆′−Δ𝑦
𝑔(𝑦)𝑑𝑦 ≤

∫ 0

−Δ𝑦
𝑔(𝑦)𝑑𝑦 for all 𝜆′ < 1.

It holds since for all 𝑦 ∈ [−Δ𝑦, 0], 𝑦′ ∈ [ln𝜆′ − Δ𝑦, ln𝜆′],

𝑔(𝑦) ≥ 𝑔(−Δ𝑦) ≥ 𝑔(ln𝜆′) ≥ 𝑔(𝑦′).

□

Proof of Theorem 1 (3) implies (1) and Proof of Theorem 2. Suppose that 𝑓 satis-
fies increasing elasticity above 1. If there is no 𝑡 such that 𝝀(𝑡) > 0, then the
problem is trivial.24 Now suppose there exists a 𝑡 such that 𝝀(𝑡) > 0. In step 1, I
shall show that for all transfer 𝑡 with 𝝀(𝑡) > 0, I can construct a new cutoff transfer
𝑑 such that 𝝀(𝑑) ≥ 𝝀(𝑡). That is, cutoff transfer 𝑑 weakly improves over 𝑡. In step
2, I shall optimize over cutoff transfers and prove Theorem 2. In step 3, I show
uniqueness under stronger conditions.

Step 1: Optimality of Cutoff Transfers

Fix a transfer rule 𝑡. First, I show that there exists a transfer rule 𝑡∗(𝜃 − 𝑎) such that
given 𝑡∗, the agent chooses precision 𝝀(𝑡) when he has to report truthfully. That is,

�̂�(𝑡∗) = 𝝀(𝑡).

For the transfer rule 𝑡 that depends on the state and the report, Lemma 4 gives us the
desired 𝑡∗. Now assume that 𝑡 depends only on the difference between the state and

24In this case, we adopt the convention that every transfer is optimal.
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the report, 𝜃 − 𝑎. The construction of 𝑡∗ is simpler and is as follows. Let 𝒂(𝑠; 𝝀(𝑡))
denote the agent’s report after observing signal 𝑠 at the precision 𝝀(𝑡).

𝒂(𝑠; 𝝀(𝑡)) = arg max
𝑎

∫
R
𝑡 (𝜃′ − 𝑎)𝜑(𝜃′; 𝑠, 𝝀(𝑡))𝑑𝜃′.

As both 𝑡 and 𝜑 are translation invariant, 𝒂(𝑠; 𝝀(𝑡)) − 𝑠 is a constant. I define a new
transfer rule 𝑡∗ by

𝑡∗(𝑥) = 𝑡 (𝑥 + 𝑠 − 𝒂(𝑠; 𝝀(𝑡))).

Given transfer 𝑡∗, the agent reports truthfully at 𝝀(𝑡). Note that replacing 𝑡 by 𝑡∗ only
changes the agent’s report by a constant. Two transfers 𝑡 and 𝑡∗ provide the same
incentive for the agent to choose 𝜆, i.e.,

𝐸 (·; 𝑡) = 𝐸 (·; 𝑡∗), 𝝀(𝑡∗) = 𝝀(𝑡).

I define an auxiliary problem: the agent has to reveal his signal. The agent’s expected
transfer is

�̂� (𝜆; 𝑡∗) =
∫
R
𝑡∗(𝜃′)𝜑(𝜃′; 0, 𝜆)𝑑𝜃′.

It must be true that for all 𝜆 ∈ R+,

�̂� (𝜆; 𝑡∗) ≤ 𝐸 (𝜆; 𝑡∗) (1.5)

and
�̂� (𝝀(𝑡); 𝑡∗) = 𝐸 (𝝀(𝑡); 𝑡∗). (1.6)

The inequality holds as the agent loses the flexibility to misreport in the auxiliary
problem. The equality holds as the agent reports truthfully at 𝜆 = 𝝀(𝑡). By Equation
(1.5) and (1.6),

�̂�(𝑡∗) = 𝝀(𝑡∗) = 𝝀(𝑡).

Then, I symmetrify the transfer rule 𝑡∗ to obtain

𝑡 (𝑥) = 1
2
[𝑡∗(𝑥) + 𝑡∗(−𝑥)] .

For all 𝜆 ∈ R+, we have
�̂� (𝜆; 𝑡) = �̂� (𝜆; 𝑡∗).

�̂�(𝑡) = �̂�(𝑡∗) = 𝝀(𝑡).

By Lemma 6, I can augment transfer 𝑡 to a new transfer 𝑡′

𝑡′(𝑥) =


1, if 𝝀(𝑡) |𝑥 | < 𝜂−1(1),

𝑡 (𝑥), otherwise
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and induces higher precision

�̂�(𝑡′) ≥ �̂�(𝑡) = 𝝀(𝑡).

Then I can construct a cutoff transfer 𝑑. I pin down the cutoff by requiring that
cutoff transfer 𝑑 and 𝑡′ offers the same expected transfer at 𝝀(𝑡), i.e.,

𝐸 (𝝀(𝑡); 𝑑) = �̂� (𝝀(𝑡); 𝑡′). (1.7)

Let Δ𝑡 (𝑥) = 1|𝑥 |≤𝑑 − 𝑡′(𝑥) denote the transfer difference. The transfer difference
must take the form

Δ𝑡 (𝑥)


= 0, if |𝑥 | ≤ 𝜂−1(1)/𝝀(𝑡),

≥ 0, if 𝜂−1(1)/𝝀(𝑡) < |𝑥 | ≤ 𝑑,

≤ 0, otherwise.

Compare the expected transfer given cutoff transfer 𝑑 and the expected transfer 𝑡′ in
the auxiliary problem.

𝐸 (𝜆; 𝑑) − �̂� (𝜆; 𝑡′) =
∫
R
Δ𝑡 (𝜃′)𝜑(𝜃′; 0, 𝜆)𝑑𝜃′.

Consider 𝑦1, 𝑦2 such that 𝜂−1(1)/𝝀(𝑡) < 𝑦1 < 𝑦2. Let 𝑥1 = 𝝀(𝑡)𝑦1, 𝑥2 = 𝝀(𝑡)𝑦2.
Then 𝜂−1(1) < 𝑥1 < 𝑥2. By Lemma 7, for all 𝜆 < 𝝀(𝑡), we have

𝜙(𝑥2𝜆/𝝀(𝑡))
𝜙(𝑥1𝜆/𝝀(𝑡))

≥ 𝜙(𝑥2)
𝜙(𝑥1)

.

𝜙(𝜆𝑦2)
𝜙(𝜆𝑦1)

≥ 𝜙(𝝀(𝑡)𝑦2)
𝜙(𝝀(𝑡)𝑦1)

.

𝜑(𝑦2; 0, 𝜆)
𝜑(𝑦1; 0, 𝜆) ≥

𝜑(𝑦2; 0, 𝝀(𝑡))
𝜑(𝑦1; 0, 𝝀(𝑡)) .

This implies
𝐸 (𝜆; 𝑑) − �̂� (𝜆; 𝑡′) ≤ 0, if 𝜆 < 𝝀(𝑡).

As �̂�(𝑡′) ≥ 𝝀(𝑡) and the definition 𝝀(𝑡) = max[arg max 𝐸 (·; 𝑡) − 𝑐(·)], we have
𝝀(𝑑) ≥ 𝝀(𝑡) (see Figure 1.8).

Step 2: Proof of Theorem 2

Next, I optimize over cutoff transfers to prove Theorem 2 and show the existence of
the optimal cutoff transfer. If we set 𝑑 < 𝑑, the agent never chooses to work. So
consider 𝑑 ≥ 𝑑.
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𝐸

𝜆

𝑐(𝜆)

𝐸 (𝜆; 𝑡)
�̂� (𝜆; 𝑡∗) = �̂� (𝜆; 𝑡)

𝝀(𝑡)

�̂� (𝜆; 𝑡′)

�̂�(𝑡′)

𝐸 (𝜆; 𝑑)

Figure 1.8: Expected Transfer

Case 1: 𝝀(𝑑)𝑑 ≥ 𝜂−1(1).

Let �̃� = 𝜂−1(1)/𝑑 ≤ 𝝀(𝑑). For any 𝑑 > 𝑑, if 𝝀(𝑑) ≤ �̃�, then 𝝀(𝑑) ≤ 𝝀(𝑑). Consider
𝝀(𝑑) > �̃�. For all 𝑑 ≥ 𝑑 and 𝜆 ≥ �̃�,

𝜂(𝜆𝑑) ≥ 𝜂(𝑑�̃�) ≥ 1 ⇒ 𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

≤ 0.

Since 𝝀(𝑑) = max[arg max 𝐸 (·; 𝑑) − 𝑐(·)]. By the Topkis’ monotone comparative
statics theorem, 𝝀(𝑑) ≤ 𝝀(𝑑) for all 𝑑 ≥ 𝑑. Thus, 𝑑 is the optimal cutoff.

Case 2: 𝝀(𝑑)𝑑 < 𝜂−1(1). For all 𝑑 ≤ 𝑑 ≤ 𝑑∗ and 𝜆 ≤ 𝜂−1 (1)
𝑑

,

𝜂(𝜆𝑑) ≤ 1 ⇒ 𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

≥ 0.

This implies 𝝀(𝑑) is increasing in 𝑑 for 𝑑 ≤ 𝑑 ≤ 𝑑∗. Now suppose 𝑑 > 𝑑∗. If
𝝀(𝑑)𝑑 ≤ 𝜂−1(1), then

𝝀(𝑑) ≤ 𝜂−1(1)/𝑑 ≤ 𝜂−1(1)/𝑑∗ = 𝜆∗.

If 𝝀(𝑑)𝑑 > 𝜂−1(1), for all 𝑑 ≥ 𝑑∗ and 𝜆 ≥ 𝜂−1(1)/𝑑,

𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

≤ 0 ⇒ 𝝀(𝑑) ≤ 𝝀(𝑑∗)

by the Topkis’ monotone comparative statics theorem.

Now, I prove existence. In case 1, 𝑑 is the optimal cutoff transfer. In case 2, I can
increase 𝑑 starting from 𝑑. Before hitting 𝑑∗, 𝝀(𝑑) increases in 𝑑. As 𝜂−1(1) is well-
defined and finite given that 𝑓 satisfies increasing elasticity above 1. Eventually,
increasing 𝝀(𝑑)𝑑 can hit 𝜂−1(1). Thus, 𝑑∗ is well defined.
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Step 3: Uniqueness

Finally, suppose that 𝜙 satisfies strictly increasing elasticity above 1, the cost function
is continuously differentiable, and the optimal precision is an interior solution (not
0 or +∞).25 I show that the optimal transfer rule is unique. First, I show that for
any transfer rule 𝑡 that is not a cutoff transfer, the cutoff transfer constructed above
induces a strictly larger precision: 𝝀(𝑑) > 𝝀(𝑡). Since 𝑡 is not a cutoff transfer, at
least one of 𝑡′ − 𝑡 and Δ𝑡 is a non-zero function. If 𝑡′ − 𝑡 is non-zero,

𝜕 [�̂� (𝜆; 𝑡′) − �̂� (𝜆; 𝑡)]
𝜕𝜆

����
𝜆=𝜆∗

> 0. (1.8)

This follows by a strict version of Lemma 6 in which strictly increasing elasticity
above 1 implies

𝜂(𝜆𝑑) < 1 ⇒ 𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

> 0.

As �̂� (·; 𝑡) − 𝑐(·) is continuously differentiable,26 �̂�(𝑡) is interior, Equation (1.8)
implies �̂�(𝑡′) > �̂�(𝑡) by Edlin and Shannon, 1998. This implies 𝝀(𝑑) > 𝝀(𝑡).

If Δ𝑡 is non-zero, next I show

𝜕 [𝐸 (𝜆; 𝑑) − �̂� (𝜆; 𝑡′)]
𝜕𝜆

����
𝜆=𝝀(𝑡)

> 0. (1.9)

By the construction of Δ𝑡, ∫
Δ𝑡 (𝑥)𝜑(𝑥; 0, 𝝀(𝑡))𝑑𝑥 = 0 (1.10)∫
Δ𝑡 (𝑥)𝜙(𝝀(𝑡)𝑥)𝑑𝑥 = 0.

Take some small 𝜖 > 0. Let 𝜆′ = 𝝀(𝑡) exp(𝜖). Consider

𝐸 (𝜆′; 𝑑) − �̂� (𝜆′; 𝑡′) =
∫

Δ𝑡 (𝑥)𝜆′𝜙(𝜆′𝑥)𝑑𝑥.

By ln(𝜆′) − ln(𝝀(𝑡)) = 𝜖 and Lemma 1,

ln 𝜙(𝜆′𝑥) − ln 𝜙(𝝀(𝑡)𝑥) = −𝜂(𝝀(𝑡) |𝑥 |))𝜖 + O(𝜖).
25Distribution 𝜙 satisfies strictly increasing elasticity above 1 if 𝜂(·) single-crosses 1 from below,

{𝑥 |𝜂(𝑥) = 1} is a singleton, and is strictly increasing after the cross.
26�̂� (·; 𝑡) is continuously differentiable as 𝜙 is continuously differentiable.
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Thus,

𝐸 (𝜆′; 𝑑) − �̂� (𝜆′; 𝑡′) =
∫

Δ𝑡 (𝑥)𝜆′𝜙(𝜆′𝑥)𝑑𝑥

= 𝜆′
∫

Δ𝑡 (𝑥)𝜙(𝝀(𝑡)𝑥) exp(−𝜖𝜂(𝝀(𝑡) |𝑥 |))𝑑𝑥 + O(𝜖)

= −𝜆′
∫

Δ𝑡 (𝑥)𝜙(𝝀(𝑡)𝑥)𝜖𝜂(𝝀(𝑡) |𝑥 |)𝑑𝑥 + O(𝜖),

where the last equality follows by Equation (1.10).

lim
𝜖→0

𝐸 (𝜆′; 𝑑) − �̂� (𝜆′; 𝑡′)
𝜖

= −𝝀(𝑡)
∫

Δ𝑡 (𝑥)𝜙(𝝀(𝑡)𝑥)𝜂(𝝀(𝑡) |𝑥 |)𝑑𝑥

= −
∫

Δ𝑡 (𝑥)𝜑(𝑥; 0, 𝝀(𝑡))𝜂(𝝀(𝑡) |𝑥 |)𝑑𝑥

𝜕 [𝐸 (𝜆; 𝑑) − �̂� (𝜆; 𝑡′)]
𝜕𝜆

����
𝜆=𝝀(𝑡)

= − 1
𝝀(𝑡)

∫
Δ𝑡 (𝑥)𝜑(𝑥; 0, 𝝀(𝑡))𝜂(𝝀(𝑡) |𝑥 |)𝑑𝑥

which is strictly positive by Equation (1.10), 𝜂(𝑦) being strictly increasing for
𝑦 > 𝜂−1(1), and Δ𝑡 (𝑥) being supported on |𝑥 | ≥ 𝜂−1 (1)

𝝀(𝑡) . Again by �̂� (·; 𝑡′) − 𝑐(·)
being continuously differentiable, �̂�(𝑡′) is interior, Equation (1.9) implies 𝝀(𝑑) >
�̂�(𝑡′) ≥ 𝝀(𝑡) by Edlin and Shannon (1998).

I have shown that for any transfer rule 𝑡 that is not a cutoff transfer, 𝝀(𝑑) > 𝝀(𝑡).
Thus, any optimal transfer must be a cutoff transfer. Given strictly increasing
elasticity above 1, cost function being continuously differentiable, optimal precision
being interior, all comparative statics analyses in the proof of Theorem 2 are strict.
Thus, there exists a unique optimal transfer rule, which is a cutoff transfer.

□

Lemma 8. Suppose that for all cost functions, there exists an optimal transfer that
is a cutoff transfer. For a cost function 𝑐 ∈ 𝐶1, let 𝑑∗ be the optimal cutoff and
𝜆∗ be the induced precision with 𝜂(𝜆∗𝑑∗) ≥ 1. Then for all 𝑥1 ∈ [0, 𝜆∗𝑑∗) and
𝑥2 ∈ [𝜆∗𝑑∗, +∞),

𝜂(𝑥1) ≤ 𝜂(𝑥2).

Proof of Lemma 8. Without loss I can assume 𝑐(𝜆∗) = 𝐸 (𝜆∗; 𝑑∗) since I can increase
𝑐 by a constant without affecting 𝑑∗ and 𝜆∗. Similarly, without loss of generality, I
assume that 𝜆∗ uniquely maximizes 𝐸 (𝜆; 𝑑∗) − 𝑐(𝜆).27

27Otherwise, I can always increase 𝑐(𝜆) for 𝜆 ≠ 𝜆∗, without affecting 𝑑∗ and 𝜆∗.
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Towards a contradiction, suppose ∃ 𝑥1 ∈ [0, 𝜆∗𝑑∗), 𝑥2 ∈ [𝜆∗𝑑∗, +∞) such that
𝜂(𝑥1) > 𝜂(𝑥2). As 𝜂(·) is continuous, I can pick 𝛿1 > 0, 𝛿2 > 0 small enough such
that for all 𝑦1 ∈ [ 𝑥1

𝜆∗ − 𝛿1,
𝑥1
𝜆∗ + 𝛿1] and 𝑦2 ∈ [ 𝑥2

𝜆∗ − 𝛿2,
𝑥2
𝜆∗ + 𝛿2],

𝜂(𝑦1𝜆
∗) > 𝜂(𝑦2𝜆

∗) (1.11)

and ∫ 𝑥1
𝜆∗ +𝛿1

𝑥1
𝜆∗ −𝛿1

𝜑(𝑥; 0, 𝜆∗)𝑑𝑥 =
∫ 𝑥2

𝜆∗ +𝛿2

𝑥2
𝜆∗ −𝛿2

𝜑(𝑥; 0, 𝜆∗)𝑑𝑥.

I define
Δ𝑡 (𝑥) = −1|𝑥 |∈[ 𝑥1

𝜆∗ −𝛿1,
𝑥1
𝜆∗ +𝛿1] + 1|𝑥 |∈[ 𝑥2

𝜆∗ −𝛿2,
𝑥2
𝜆∗ +𝛿2]

and a new transfer 𝑡 (𝑥) = 1|𝑥 |≤𝑑∗ + Δ𝑡 (𝑥).

I can set 𝛿1 and 𝛿2 to be small enough such that the agent reports truthfully given
the transfer 𝑡, since 𝜑′(𝑑∗; 0, 𝜆∗) < 0 is bounded from above due to 𝜂(𝜆∗𝑑∗) ≥ 1.
To see this, it suffices to consider the case 𝜆∗ = 1. If the agent reports truthfully, the
expected transfer is 2Φ(𝑑∗) − 1. Now suppose the agent misreports by 𝜖′ > 0. Then
his expected transfer is

Φ(𝑑∗ − 𝜖′) +Φ(𝑑∗ + 𝜖′) − 1

+Φ(𝑥2 − 𝜖′ + 𝛿2) −Φ(𝑥2 − 𝜖′ − 𝛿2) +Φ(𝑥2 + 𝜖′ + 𝛿2) −Φ(𝑥2 + 𝜖′ − 𝛿2)
−[Φ(𝑥1 − 𝜖′ + 𝛿1) −Φ(𝑥1 − 𝜖′ − 𝛿1)] − [Φ(𝑥1 + 𝜖′ + 𝛿1) −Φ(𝑥1 + 𝜖 ′ − 𝛿1)],

where the second and the third line can be made arbitrarily close to 0 as 𝛿1 and 𝛿2

tend to 0, since 𝐹 is continuous. Moreover, the difference

Φ(𝑑∗ − 𝜖′) +Φ(𝑑∗ + 𝜖′) − 2Φ(𝑑∗)

is strictly negative and is strictly decreasing in 𝜖′, due to 𝑓 being single-peaked and
𝜂(𝑑∗) = − 𝑓

′ (𝑑∗)
𝜙(𝑑∗) 𝑑

∗ ≥ 1. Therefore, the expected transfer under misreport is lower
than 2Φ(𝑑∗) − 1 when 𝛿1 and 𝛿2 are small enough.

Then we have
𝐸 (𝜆∗; 𝑡) = 𝐸 (𝜆∗; 𝑑∗).

By Lemma 1 and Equation (1.11),

𝜕 [𝐸 (𝜆; 𝑡) − 𝐸 (𝜆; 𝑑∗)]
𝜕𝜆

����
𝜆=𝜆∗

> 0.
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Since previously 𝜆∗ uniquely maximizes 𝐸 (𝜆; 𝑑∗) − 𝑐(𝜆), we can pick 𝛿1 and 𝛿2

small enough such that 𝝀(𝑡) ∈ (𝜆∗ − 𝜖, 𝜆∗ + 𝜖), for some small 𝜖 > 0. As 𝑐 is
continuously differentiable, 𝐸 (𝜆∗; 𝑡) = 𝐸 (𝜆∗; 𝑑∗),

𝜕 [𝐸 (𝜆; 𝑡) − 𝐸 (𝜆; 𝑑∗)]
𝜕𝜆

����
𝜆=𝜆∗

> 0,

by Edlin and Shannon, 1998 we have 𝝀(𝑡) > 𝜆∗, contradicting that (𝑑∗, 𝜆∗) is optimal
(Figure 1.9).

𝐸

𝜆

𝑐(𝜆)

𝐸 (𝜆; 𝑡)

𝐸 (𝜆; 𝑑∗)

𝜆∗

Figure 1.9: Expected Transfer

□

Proof of Theorem 1 (2) implies (3). Suppose that for all increasing and continu-
ously differentiable cost functions, there exists an optimal transfer that is a cut-
off transfer. Take a increasing cost function 𝑐0 ∈ 𝐶1, with 𝑑0 and 𝜆0 being the
corresponding optimal cutoff and induced precision. I can pick 𝑐0 such that 𝜆0

is the unique maximizer of28 𝐸 (·; 𝑑0) − 𝑐0(·). As 𝐸 (·; 𝑑0) − 𝑐(·) is continuously
differentiable, I can use the first-order approach. As

𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

≤ 0 ⇔ 𝜂(𝜆𝑑) ≥ 1,

we have 𝜂(𝜆0𝑑0) ≥ 1. If not, I can slightly increase 𝑑0, which leads to a larger

𝜕𝐸 (𝜆; 𝑑)
𝜕𝜆

����
𝜆=𝜆0

.

28Given any increasing cost function 𝑐0 ∈ 𝐶1, I can always construct a new increasing and
continuously differentiable cost function by increasing 𝑐0 (𝜆) for all 𝜆 ≠ 𝜆0 while keeping 𝑐0 (𝜆0)
and 𝑑𝑐0

𝑑𝜆
|𝜆=𝜆0 unchanged.
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This induces a larger 𝜆 > 𝜆0, a contradiction.29

Since the cutoff transfer 𝑑0 is the optimal transfer and 𝑐0 ∈ 𝐶1, by Lemma 8 and
𝜂(·) being continuous,

𝜂(𝑥) ≤ 𝜂(𝜆0𝑑0) if 𝑥 ≤ 𝜆0𝑑0

𝜂(𝑥) ≥ 𝜂(𝜆0𝑑0) if 𝑥 ≥ 𝜆0𝑑0.

Note that 𝜂(0+) < 0 (as 𝑓 is integrable around 0), 𝜂(𝜆0𝑑0) ≥ 1, 𝜂(·) is continuous,
I can find the largest 𝑥 where 𝜂(·) crosses 1 from below

𝑥1 = min{𝑥 |𝜂(𝑥′) ≥ 1, if 𝑥′ ≥ 𝑥} ≤ 𝜆0𝑑0.

𝜂(𝑥) ≥ 1 when 𝑥 ≥ 𝑥1.

Now pick 𝑑1 and 𝜆1 such that 𝜆1𝑑1 = 𝑥1. Construct an increasing cost function
𝑐1 ∈ 𝐶1 such that

𝑐1(𝜆) > 𝐸 (𝜆; 𝑑1) if 𝜆 ≠ 𝜆1

𝑐1(𝜆1) = 𝐸 (𝜆1; 𝑑1)
𝜕𝐸 (𝜆; 𝑑1)

𝜕𝜆

����
𝜆=𝜆1

=
𝑑𝑐1(𝜆)
𝑑𝜆

����
𝜆=𝜆1

.

As
𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

≤ 0 ⇔ 𝜂(𝜆𝑑) ≥ 1

and 𝜂(𝑥) ≥ 1 for all 𝑥 ≥ 𝑥1, the cutoff transfer 𝑑1 is the best among all cutoff
transfers for cost function 𝑐1. Since there exists an optimal transfer that is a cutoff
transfer, cutoff transfer 𝑑1 is the optimal transfer, and 𝜆1 is the maximum precision.
By Lemma 8,

𝜂(𝑥) ≤ 1 if 𝑥 ≤ 𝑥1

𝜂(𝑥) ≥ 1 if 𝑥 ≥ 𝑥1.

Thus, 𝜂(·) single-crosses 1 at 𝑥1.

Similarly, for all 𝑥2 > 𝑥1, I can pick 𝑑2 and 𝜆2 such that 𝜆2𝑑2 = 𝑥2. Pick a increasing
cost function 𝑐2 ∈ 𝐶1 such that

𝑐2(𝜆) > 𝐸 (𝜆; 𝑑2) if 𝜆 ≠ 𝜆2

𝑐2(𝜆2) = 𝐸 (𝜆2; 𝑑2)
29As 𝜆0 is the unique maximizer of 𝐸 (·; 𝑑0) − 𝑐0 (·), I can always make the increment on 𝑑0 small

enough such that the new maximizer never falls in [0, 𝜆0).
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𝜕𝐸 (𝜆; 𝑑2)
𝜕𝜆

����
𝜆=𝜆2

=
𝑑𝑐2(𝜆)
𝑑𝜆

����
𝜆=𝜆2

.

By the same argument, we have

𝜂(𝑥) ≤ 𝜂(𝑥2) if 𝑥 ≤ 𝑥2

𝜂(𝑥) ≥ 𝜂(𝑥2) if 𝑥 ≥ 𝑥2.

Thus, 𝜂(·) is increasing once it goes above 1 at 𝑥1.

□

Proof of Proposition 1. First suppose for all𝜆, 𝑐2(𝜆) ≥ 𝐸 (𝜆; 𝑑∗(𝑐1)). Then 𝑑 (𝑐2) ≥
𝑑∗(𝑐1), implying 𝑑∗(𝑐2) ≥ 𝑑∗(𝑐1). Moreover, since

for all 𝜆 ≥ 𝜆∗(𝑐1) and 𝑑 ≥ 𝑑∗(𝑐1),
𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

≤ 0

and 𝑐2 − 𝑐1 is increasing,

max[arg max
𝜆
𝐸 (𝜆; 𝑑∗(𝑐2)) − 𝑐2(𝜆)] ≤ max[arg max

𝜆
𝐸 (𝜆; 𝑑∗(𝑐1)) − 𝑐1(𝜆)] .

Thus, 𝜆∗(𝑐2) ≤ 𝜆∗(𝑐1). Now suppose for some 𝜆, 𝑐2(𝜆) ≤ 𝐸 (𝜆; 𝑑∗(𝑐1)). Note that

max[arg max
𝜆
𝐸 (𝜆; 𝑑∗(𝑐1)) − 𝑐2(𝜆)]

=max[arg max
𝜆
𝐸 (𝜆; 𝑑∗(𝑐1)) − 𝑐1(𝜆) − (𝑐2(𝜆) − 𝑐1(𝜆))]

≤max[arg max
𝜆
𝐸 (𝜆; 𝑑∗(𝑐1)) − 𝑐1(𝜆)] = 𝜆∗(𝑐1),

where the inequality follows by 𝑐2 − 𝑐1 being increasing. Thus,

𝝀(𝑑∗(𝑐1); 𝑐2)𝑑∗(𝑐1) ≤ 𝜆∗(𝑐1)𝑑∗(𝑐1) = 𝜂−1(1).

By the proof of Theorem 2, 𝑑∗(𝑐2) ≥ 𝑑∗(𝑐1) and 𝜆∗(𝑐2) ≤ 𝜆∗(𝑐1).

□

Proof of Corollary 2. Changing the noise from 𝜀1 to 𝑘𝜀1 is equivalent to keeping
the noise at 𝜀1 and changing the cost function from 𝑐1(𝜆) to 𝑐2(𝜆) = 𝑐1(𝑘𝜆). Notice
that

𝑐2(𝜆) − 𝑐1(𝜆) = 𝑐1(𝑘𝜆) − 𝑐1(𝜆)

which is increasing in 𝜆 due to the convexity of 𝑐1. The conclusion follows by
Proposition 1. □
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Proof of Proposition 2. The proof of the first part remains the same as Theorem 1.
For proving the second part, the only difference is to note that the expected transfer
is

𝐸 (𝜆; 𝑑) =
∫ 𝜆𝑑

0
𝜙(𝑟) 𝜋𝑛/2

Γ(𝑛/2 + 1) 𝑑𝑟
𝑛,

where Γ is the gamma function and 𝜋𝑛/2

Γ(𝑛/2+1) 𝑟
𝑛 is the volume of the n-dimensional

ball.
𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

=
𝑛𝜋𝑛/2

Γ(𝑛/2 + 1) 𝜙(𝜆𝑑) (𝜆𝑑)
𝑛−1 [𝑛 − 𝜂(𝜆𝑑)] .

Thus,
𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

≥ 0 ⇔ 𝜂(𝜆𝑑) ≤ 𝑛.

The rest of the argument remains the same.

□

Proof of Proposition 3. The optimality of cutoff transfers follows by the Proof of
Theorem 1 (3) implies (1), as Gaussian distributions satisfy increasing elasticity.

For proving the counterpart of Theorem 2, it suffices to notice that

𝜕2𝐸 (𝜆; 𝑑)
𝜕𝜆𝜕𝑑

=
𝑛𝜋𝑛/2

Γ(𝑛/2 + 1) 𝜙(Λ(𝜆)𝑑) (Λ(𝜆)𝑑)
𝑛−1 𝑑Λ(𝜆)

𝑑𝜆
[𝑛 − 𝜂(Λ(𝜆)𝑑)],

where Λ(𝜆) = ( 1
𝜆2
𝑝
+ 1
𝜆2 )−

1
2 for uniform prior and Λ(𝜆) = ( 1

𝜆2
𝑝
+ 1
𝜆2+𝜆2

0
)− 1

2 for Gaussian
prior. □

Proof of Proposition 4. I first prove the case of uniform prior. Given the agent’s
signal 𝑠, his posterior belief about the state is N(𝑠, 1/𝜆2). Since the principal’s
signal is Gaussian centered at 𝜃 with variance 1

𝜆2
𝑝
, the agent’s posterior belief about

𝑠𝑝 is

N(𝑠, 1
𝜆2 +

1
𝜆2
𝑝

).

Now the agent’s payoff maximization problem is same as in Section 1.4 except that
𝑠𝑝 replaces 𝜃 and his precision is ( 1

𝜆2 + 1
𝜆2
𝑝
)− 1

2 . Thus, Proposition 4 follows from
Theorem 1 and 2.

The proof for the Gaussian prior is similar. The only difference is that conditional
on a signal 𝑠, the agent’s posterior about 𝑠𝑝 is

N( 𝑠𝜆2

𝜆2
0 + 𝜆2

,
1

𝜆2
0 + 𝜆2

+ 1
𝑠2
𝑝

).
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Thus, the precision is Λ = [ 1
𝜆2

0+𝜆2 + 1
𝑠2
𝑝
]− 1

2 . □
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C h a p t e r 2

ESTIMATING NONSEPARABLE SELECTION MODELS: A
FUNCTIONAL CONTRACTION APPROACH

2.1 Introduction
Sample selection issues arise when the data available for analysis is not representative
of the entire population due to a selection process that systematically excludes certain
observations. For example, in consumer demand studies, researchers often only have
access to the transaction prices of chosen products, while the prices of non-selected
products remain unobserved (Goldberg, 1996; Cicala, 2015; Crawford, Pavanini,
and Schivardi, 2018; Allen, Clark, and Houde, 2019; Salz, 2022; Sagl, 2023;
Cosconati et al., 2024). Similarly, in auctions, data may include only the winning
bids (or certain order statistics), excluding all other submitted bids (Athey and Haile,
2002; Komarova, 2013; Guerre and Y. Luo, 2019; Allen, Clark, Hickman, et al.,
2024). Sample selection issues have long been recognized in labor market studies
as well. For instance, wage data is typically available only for individuals who
choose to work (Gronau, 1974; Heckman, 1974), and, in the original Roy model
(Roy, 1951), which examines the occupational distribution of earnings, we observe
earnings within an occupation only for those who self-select into working in that
sector.

Observing only a selected sample of outcomes—such as prices, bids, or wages—
presents significant challenges for estimating two key elements: (1) the model that
governs the selection process, such as a consumer demand model, an auction’s win-
ning rule, or a labor force participation model; and (2) the distribution of outcomes
prior to selection, often referred to as “potential outcomes" in the literature. Typi-
cally, it is assumed that potential outcomes are generated by an outcome equation,
which depends on both observable characteristics and unobservable error terms.
Flexibly estimating potential outcome distributions is crucial in many empirical
contexts, such as analyzing price distributions to understand firms’ pricing strate-
gies and wage distributions to examine inequality.

The first solution to sample selection bias is to use maximum likelihood estimation,
as in Heckman (1974) and L.-F. Lee (1982, 1983), which relies heavily on distribu-
tional assumptions regarding the error terms. More commonly employed methods
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for sample selection models are two-step estimators proposed by Heckman (1976,
1979), which introduce a correction term to account for the non-random nature of
the sample. A substantial body of theoretical work has been developed to relax the
distributional assumptions in the two stages of the estimation procedure (Ahn and
Powell, 1993; Andrews and Schafgans, 1998; Chen and Khan, 2003; Das, Newey,
and Vella, 2003; Newey, 2007; Newey, 2009; Chernozhukov, Iván Fernández-Val,
and S. Luo, 2023). See also Vella (1998) for a comprehensive survey on semi-
parametric two-step estimation for selection models.

Our paper proposes a fundamentally different and novel approach to estimating
selection models where the outcome equation is nonparametric and nonseparable
in error terms. Rather than constructing a reduced-form bias correction term and
controlling it in the outcome equation, we directly analyze how the selection model
maps the potential outcome distributions to the distributions of selected outcomes
and seek to invert the mapping. The key insight of our approach is that, given the
selection model and potential outcome distributions across all alternatives, we can
derive the likelihood of an outcome being selected. Conversely, if this selection
likelihood were known, we could recover the potential outcome distributions from
the observed outcome distributions. This two-way relationship characterizes a fixed-
point problem. Building on this intuition, we construct an operator whose fixed
point represents the potential outcome distributions and show that this operator is a
functional contraction.

Formally, we consider a discrete choice problem in which each alternative is asso-
ciated with a potential outcome distribution. A selection function maps a vector of
realized potential outcomes to a probability distribution over the alternatives. For
example, in the consumer demand setting, each alternative represents a product, and
the potential outcome is the offered price, with the selection function micro-founded
by the consumer’s utility maximization problem. We allow the outcome equations to
be fully nonparametric with nonseparable error terms and to vary flexibly across dif-
ferent alternatives. We assume that potential outcomes across different alternatives
are conditionally independent given observables.

Given the selection function, we construct an operator whose fixed point is the
potential outcome distributions. We establish sufficient conditions for it to be a
functional contraction (Theorems 3 and 4). Proving contraction within a function
space is challenging; to address this, we construct a metric in the same spirit
as that in Thompson, 1963. Our results imply that, given the selection function
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and the observed distributions of selected outcomes, we can nonparametrically
recover the potential outcome distributions. Moreover, this identification result is
constructive: starting with any initial guess for the potential outcome distributions,
we iteratively apply the operator. As the number of iterations approaches infinity,
this process converges to the potential outcome distributions associated with the
selection function.

We propose a two-step semi-parametric maximum likelihood estimator for the se-
lection function, parameterized by a finite-dimensional parameter, and potential
outcome distributions. In the first step, we obtain a nonparametric estimate of the
selected outcome distribution directly from the data. Given this estimate, we use our
contraction result to recover the potential outcome distributions for any parameter
in the selection function. In the second step, we construct the model-implied choice
probabilities and match them with the data moments. Once we have an estimator for
the selection parameter, a plug-in estimator for the potential outcome distribution
can be readily obtained.

We establish the consistency and asymptotic normality of the proposed estimator
(Theorems 5 and 6). This is particularly challenging because the mapping from
the potential to the selected outcome distributions does not have a closed form. We
prove that this mapping is a homeomorphism, a key result in establishing consistency
and asymptotic normality.

To examine the finite sample properties of our estimator, we conduct Monte Carlo
simulations across various designs of the outcome equation. Our results show that
the biases in our estimator are generally small, and the standard deviation decreases
as the sample size increases across all simulation designs. Our nonparametric
estimation of the potential outcome distributions outperforms the standard two-step
method when the two-step method misspecifies the outcome equations. Notably,
even when the selection function is misspecified by econometricians, our method
performs robustly in estimating the potential outcome distributions.

Compared to the traditional two-step method, our approach offers several key ad-
vantages. First, we allow for fully nonparametric estimation of potential outcome
distributions. Importantly, our approach accommodates nonseparable error terms
in the outcome equation, allowing for fully heterogeneous effects of covariates on
outcomes. Moreover, we impose no symmetry assumptions, allowing the potential
outcome distributions to vary flexibly across alternatives. Unlike most selection
correction approaches that focus on estimating conditional mean models (e.g., Das,
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Newey, and Vella, 2003 and various other semi-parametric versions)1, our goal is to
recover the entire outcome distribution with a flexible specification. We correct for
sample selection bias across the entire distribution of potential outcomes by examin-
ing how the bias is systematically generated by the selection model. More recently,
Arellano and Bonhomme (2017) propose a method to correct for sample selection
in quantile regression models; see also Newey (2007) and Ivan Fernández-Val, van
Vuuren, and Vella (2024) for recent developments in nonseparable sample selection
models.

Second, our approach does not require an instrument to exogenously shift the choice
probability, a typical requirement in the two-step method to avoid multicollinear-
ity, nor does our approach rely on identification-at-infinity arguments. In practice,
finding a suitable instrument can be quite challenging (see Vella, 1998 for fur-
ther discussion). d’Haultfoeuille and Maurel (2013a) and D’Haultfœuille, Maurel,
and Zhang (2018) develop estimation methods for semiparametric sample selec-
tion models without an instrument or a large-support regressor, leveraging the
independence-at-infinity assumption.

Our approach relies on an alternative assumption: conditional independence of
potential outcomes given observables. This assumption is commonly invoked in
auction models (e.g., independent private value auctions or mineral rights models)2

and becomes more plausible when econometricians have access to a rich set of
observables. In a binary selection model (e.g., the decision to work) where the
potential outcome for one alternative is constant (e.g., the wage for not working
is 0) or in censored regression models with a single observed dependent variable,
our conditional independence assumption is trivially satisfied. We provide further
discussion of this assumption in Section 2.2.

Finally, our method accommodates a flexible selection function, applicable to a
variety of empirical settings, including consumer demand, multi-attribute auctions,
and labor market decisions. The agent’s utility in our model can depend on potential
outcomes, observable characteristics, unobserved alternative-specific heterogeneity
(such as product quality, compensating differentials, and other nonpecuniary fac-
tors), and random preference shocks. Incorporating nonpecuniary components into

1These models restrict covariates to affecting only the location of the outcome distribution. A
recent paper by Chernozhukov, Iván Fernández-Val, and S. Luo (2023) proposes a semi-parametric
generalization of the Heckman selection model which accommodates rich patterns of heterogeneity
in the effects of covariates on outcomes and selection.

2See Athey and Haile (2007) for further discussion on the conditional independence assumption
in auction models and potential testing approaches.
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the selection model has proven essential in empirical studies (e.g., Heckman and
Sedlacek, 1985; S. T. Berry, 1994; S. Berry, Levinsohn, and Pakes, 1995) and has
gained attention in recent theoretical research (Bayer, Khan, and Timmins, 2011;
d’Haultfoeuille and Maurel, 2013b; Mourifie, Henry, and Meango, 2020; Canay,
Mogstad, and Mountjoy, 2024; J. H. Lee and Park, 2023).

Our method is applicable to a wide range of empirical applications. For example, in a
companion paper (Cosconati et al., 2024), we estimate consumer demand in the auto
insurance market when only the transaction prices of selected insurance plans are
observed. In this market, insurance companies employ risk-based pricing, leading
to significant price variation across consumers. Our method enables nonparametric,
firm-specific estimates of the offered price distribution, offering valuable insights
into the heterogeneity of firms’ pricing strategies and, ultimately, the precision of
their risk-rating technology. In Section 2.6, we provide a more detailed discussion
on applications to three empirical settings: consumer demand, auction models with
incomplete bid information, and Roy models in labor economics, along with related
literature.

The rest of the paper is organized as follows. Section 2.2 formally introduces our
model, with an illustrative example provided at the end. Section 2.3 presents the
main theoretical results. In Section 2.4, we describe the semi-parametric maxi-
mum likelihood estimator and its asymptotic properties. Section 2.5 reports the
results of our Monte Carlo simulations, and Section 2.6 discusses various empirical
applications. Finally, Section 2.7 concludes.

2.2 Model
In Sections 2.2–2.3, all analyses are conditional on observable characteristics 𝑥,
which we omit to simplify notation. Throughout the paper, we use the consumer de-
mand example to illustrate the main results and clarify ideas; however, the approach
is broadly applicable to other selection models.

Consider a discrete choice problem. There is a finite set of alternatives J =

{1, · · · , 𝐽}. Each alternative is associated with a price distribution. Let 𝐺 𝑗 ∈
Δ( [𝑝

𝑗
, 𝑝 𝑗 ]) represent the price distribution associated with alternative 𝑗 , where

Δ(𝑌 ) denotes the set of all cumulative distribution functions over a set 𝑌 ⊂ R. We
assume that 𝑝 𝑗 ∼ 𝐺 𝑗 are independently distributed across alternatives (conditional
on 𝑥). The collection of 𝐺 𝑗 is denoted by 𝐺 =

∏
𝑗∈J 𝐺 𝑗 . We refer to 𝐺 as the

offered price distribution.
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A selection function is denoted by 𝑓 = ( 𝑓1, 𝑓2, · · · , 𝑓𝐽) where 𝑓 𝑗 maps the prices of
alternatives 𝒑 = (𝑝1, · · · , 𝑝𝐽) to a strictly positive probability of selecting alternative
𝑗 ∈ J .3 We assume that the selection function is continuously differentiable,

𝑓 𝑗 ∈ 𝒞1 :
∏
𝑗

[𝑝
𝑗
, 𝑝 𝑗 ] → (0, 1),

with
∑
𝑗∈J 𝑓 𝑗 ≤ 1. Here, the inequality allows for the case with an outside option.

The selection function is a primitive of the model. To provide a microfoundation,
for example, 𝑓 might be derived from a consumer’s utility maximization problem
as illustrated in Section 2.2.

Let 𝒑− 𝑗 = (𝑝1, · · · , 𝑝 𝑗−1, 𝑝 𝑗+1, · · · , 𝑝𝐽) denote the vector of prices excluding 𝑗’s
price. The probability of selecting 𝑗 conditional on 𝑝 𝑗 is given by

𝑃𝑟 𝑗 (𝑝 𝑗 ;𝐺) =
∫
𝒑− 𝑗

𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
∏
𝑘≠ 𝑗

𝑑𝐺𝑘 (𝑝𝑘 ), (2.1)

where 𝑃𝑟 𝑗 (·;𝐺) is a function defined on [𝑝
𝑗
, 𝑝 𝑗 ]. The assumption that prices are

independent across different alternatives allows us to express the joint distribution
of 𝒑− 𝑗 as the product of their individual marginal distribution functions.

Let �̃� 𝑗 ∈ Δ( [𝑝
𝑗
, 𝑝 𝑗 ]) represent the price distribution conditional on selecting

alternative 𝑗 . We derive �̃� 𝑗 using Bayes’ rule:

�̃� 𝑗 (𝑝) =

∫ 𝑝

𝑝
𝑗

𝑃𝑟 𝑗 (𝑦;𝐺)𝑑𝐺 𝑗 (𝑦)∫ 𝑝 𝑗

𝑝
𝑗

𝑃𝑟 𝑗 (𝑦;𝐺)𝑑𝐺 𝑗 (𝑦)
. (2.2)

Note that 𝐺 𝑗 and �̃� 𝑗 share the same support, as selection function 𝑓 𝑗 is strictly pos-
itive. Let �̃� =

∏
𝑗∈J �̃� 𝑗 and we call �̃� selected price distribution. Equations (2.1)

and (2.2) define a mapping from𝐺 to �̃�. Let 𝐹 :
∏

𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]) →
∏

𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ])
denote this mapping, i.e., �̃� = 𝐹 (𝐺).

In many empirical settings, researchers have access only to the selected price distri-
bution. However, the key primitives of interest are often the offered price distribu-
tion. Our research question is how to recover the offered price distribution 𝐺 from

3The assumption that the probability of selecting each alternative is strictly positive is analogous
to the overlap assumption in the treatment effect literature, which requires each individual to have a
positive probability of receiving each treatment level. This assumption is crucial for recovering the
offered price distribution. To illustrate, consider a scenario where 𝑓 𝑗 = 0 whenever 𝑝 𝑗 falls within a
certain subset of [𝑝

𝑗
, 𝑝 𝑗 ]. In this case, any 𝑝 𝑗 within that subset would not be observed in the data,

making it impossible to identify 𝐺 𝑗 within that subset without introducing additional assumptions.
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the observed selected price distribution �̃�. Note that both 𝐺 and �̃� are collections
of 𝐽 cumulative distribution functions. Therefore, the cardinality of unknowns and
constraints are exactly the same in Equation (2.2) (assuming the selection function is
known). Since a cumulative distribution function is an infinite-dimensional object,
the key challenge is solving for a collection of infinite-dimensional objects entangled
in a nonlinear system. We will explore this in detail in Section 2.3.

An Illustrative Example
We now present a simple example to illustrate the key assumptions of our model and
compare them to the standard assumptions in the literature. Consider a consumer
choosing between two products, 𝑗 = 1, 2, to maximize her utility. The consumer’s
utility from product 𝑗 is given by a scaler value:

𝑢 𝑗 = 𝛾𝑝 𝑗 + 𝜀 𝑗 , (2.3)

where 𝑝 𝑗 represents the price of product 𝑗 for this consumer, and 𝜀 𝑗 represents an
unobserved utility shock. We abstract from the possibility that the consumer’s utility
may depend on observable characteristics and unobserved product heterogeneity for
this example. In this model, the price sensitivity parameter 𝛾 and the distribution of
𝜀 𝑗 determine the selection function 𝑓 . Let 𝜀 = 𝜀1 − 𝜀2 denote the error difference.
If 𝜀 ∼ N(0, 1), this represents a binary probit model, and the selection function for
product 1 takes the following form:

𝑓1(𝑝1, 𝑝2) = 1 −ΦN (𝛾(𝑝2 − 𝑝1)) ,

where ΦN denotes the CDF for standard normal distribution.

In this illustrative example, we consider a simple linear outcome equation with an
additive error term. For each product 𝑗 = 1, 2, the price is generated by the following
equation:

𝑝 𝑗 = 𝑥𝛽 𝑗 + 𝜂 𝑗 , (2.4)

where 𝑥 represents observable characteristics, and 𝜂 𝑗 denotes a random shock,
which, for simplicity, is assumed to be independent of 𝑥.

Suppose the econometrician observes the price of product 1 only when it is chosen
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by the consumer. We derive the conditional mean of 𝑝1 given that it is observed:

𝐸 (𝑝1 |𝑥, 𝑢1 > 𝑢2) = 𝑥𝛽1 + 𝐸 (𝜂1 |𝛾𝑝1 + 𝜀1 − (𝛾𝑝2 + 𝜀2) > 0)
= 𝑥𝛽1 + 𝐸 (𝜂1 |𝑥 𝛾(𝛽1 − 𝛽2)︸       ︷︷       ︸

𝛽∗

+ [𝛾(𝜂1 − 𝜂2) + 𝜀]︸               ︷︷               ︸
composite error: 𝜀∗

> 0)

= 𝑥𝛽1 + 𝐸 (𝜂1 |𝑥𝛽∗ + 𝜀∗ > 0). (2.5)

The conditioning term 𝑥𝛽∗ + 𝜀∗ > 0 in Equation (2.5) represents the reduced-
form selection model typically seen in the literature. Sample selection issue arises
when 𝜂1 and 𝜀∗ are correlated, so that 𝐸 (𝜂1 |𝑥𝛽∗ + 𝜀∗ > 0) ≠ 0. In the two-step
estimation literature, researchers often impose assumptions on the joint distribution
of (𝜀∗, 𝜂1, 𝜂2). For example,

𝜀∗

𝜂1

𝜂2

 ∼ N
©«

0
0
0

 ,


1 𝜎12 𝜎13

𝜎12 𝜎2
2 𝜎23

𝜎13 𝜎23 𝜎2
3


ª®®¬ .

We now take a closer look at the correlation between the composite error (𝜀∗) and
the error in the outcome equation (𝜂1). Specifically,

𝑐𝑜𝑣(𝜀∗, 𝜂1) = 𝑐𝑜𝑣(𝛾(𝜂1 − 𝜂2) + 𝜀, 𝜂1)
= 𝛾𝑣𝑎𝑟 (𝜂1) − 𝛾𝑐𝑜𝑣(𝜂1, 𝜂2) + 𝑐𝑜𝑣(𝜂1, 𝜀). (2.6)

Equation (2.6) shows that the error term 𝜂1 directly enters the composite error 𝜀∗,
implying that 𝑐𝑜𝑣(𝜀∗, 𝜂1) ≠ 0 unless 𝛾 = 0. This correlation is by construction in
selection models, as agents make decisions after observing the potential outcomes.
Another common concern regarding selection bias arises from potential correlation
between errors in the outcome equation (e.g., 𝜂1) and those in the structural selection
model (e.g., 𝜀), as represented by the third term in Equation (2.6). For example, un-
observed productivity factors may create correlation between a worker’s willingness
to work and their wage. Our model also accommodates this type of correlation.

The only assumption we impose is that the error terms in outcome equations across
different alternatives are independent conditional on observables. This implies that
𝑐𝑜𝑣(𝜂1, 𝜂2) = 0 in Equation (2.6). In a simple binary model with only one dependent
variable of interest, such as Tobit Type 1 or Type 2, this assumption holds trivially.
Heckman and Honore (1990) show that, under a strong log-normality assumption,
the correlation structure between two outcome variables can be identified; however,
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this result does not hold more generally (see discussions in French and Taber,
2011). Due to the nature of the selection problem, the data include only the price of
the selected alternative, while competing prices for unselected alternatives are not
observed. If the prices of the two products tend to move together, we would not be
able to observe this pattern. French and Taber (2011) point out that since the data
provides only two one-dimensional price distributions, it is impossible to recover
the full joint distribution of a two-dimensional object without imposing additional
assumptions.

The conditional independence assumption is commonly employed in auction models,
such as independent private value auctions or mineral rights models, where signals
are assumed to be independent given the common value. This assumption is more
plausible when econometricians have access to a rich set of observables. The
conditional independence assumption essentially rules out the presence of a common
unobserved factor, 𝑥∗, that introduces correlation between outcomes, even after
conditioning on observables. When this assumption is not satisfied, the observed
price distribution for each alternative, conditional on observable 𝑥, is a mixture
of price distributions conditional on (𝑥, 𝑥∗). We then need to first analyze this
mixture model and use additional parametric structures or instruments to identify
the selected price distributions conditional on (𝑥, 𝑥∗). Techniques for this type of
deconvolution problem have been studied in the literature (see the recent survey
articles by Compiani and Kitamura, 2016; Hu, 2017) and are beyond the scope of
this paper. We maintain the conditional independence assumption for the remainder
of the paper.

Finally, we highlight several additional features that differentiate our model from
the existing literature. First, our model allows the outcome equation to be fully
flexible and nonparametrically specified as 𝑝 𝑗 = ℎ 𝑗 (𝑥, 𝜂 𝑗 ), where ℎ 𝑗 is an unknown
function that may be nonseparable in the error term. Our goal is to recover the entire
distribution of 𝑝 𝑗 conditional on 𝑥, rather than only estimating the parameters in the
conditional mean function, such as 𝛽 𝑗 in Equation (2.4). Importantly, we fully ac-
count for heterogeneity in the effects of covariates on outcomes. Second, our model
does not require an instrument that exogenously shifts choices between alternatives
and is excluded from the outcome equation—a critical requirement for identifica-
tion and estimation in the two-step method. In other words, we allow the same set
of observables to enter both the outcome and selection equations. Moreover, we
impose minimal assumptions on the selection function. It can accommodate non-
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parametric, nonseparable relationships between observable and unobserved errors,
offering much greater flexibility than the utility specification in Equation (2.3); in
fact, it does not even need to be derived from a utility maximization problem. Our
framework also allows for alternative-specific unobserved heterogeneity, which is a
desirable feature in many empirical contexts.

2.3 Main Results
We define an operator𝑇 :

∏
𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]) →

∏
𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]) by inverting Equation

(2.2). Let Ψ = (Ψ1,Ψ2, · · · ,Ψ𝐽) ∈
∏

𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]).

(𝑇Ψ) 𝑗 (𝑝) =

∫ 𝑝

𝑝
𝑗

𝑑�̃� 𝑗 (𝑦)/𝑃𝑟 𝑗 (𝑦;Ψ)∫ 𝑝 𝑗

𝑝
𝑗

𝑑�̃� 𝑗 (𝑦)/𝑃𝑟 𝑗 (𝑦;Ψ)
. (2.7)

Note that in Equation (2.7), 𝑃𝑟 𝑗 (𝑦;Ψ) is the probability of selecting 𝑗 conditional
on 𝑝 𝑗 = 𝑦 and Ψ− 𝑗 , where Ψ− 𝑗 is the collection of offered price distributions of all
alternatives except 𝑗 .

An intuitive way to understand the operator in Equation (2.7) is as follows. Suppose
we begin with a conjecture for the offered price distribution, denoted by Ψ. Based
on this conjecture, we can calculate the probability of selecting alternative 𝑗 given
𝑝 𝑗 = 𝑦, i.e., 𝑃𝑟 𝑗 (𝑦;Ψ). Using this selection probability, we can invert the observed
distribution of selected prices to infer the distribution of offered prices by dividing
𝑑�̃� 𝑗 (𝑦) by 𝑃𝑟 𝑗 (𝑦;Ψ). The denominator in Equation (2.7) serves as a normalizing
factor. This process updates the initial conjecture Ψ. If the conjecture Ψ is correct
and matches the true distribution 𝐺, the update will also equal 𝐺. Thus, the offered
price distribution 𝐺 a fixed point of the operator 𝑇 .

The operator 𝑇 is a contraction if there exists some real number 0 ≤ 𝜌 < 1 such that
for all Ψ,Φ ∈ ∏ 𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]),

𝐷 (𝑇Ψ, 𝑇Φ) ≤ 𝜌𝐷 (Ψ,Φ),

given some metric 𝐷.4 In the reminder of this section, we first construct the metric
𝐷 and then characterize the modulus 𝜌. We discuss several special cases of our
model at the end.

4We adopt the convention that +∞ and +∞ are not comparable, but 𝑐 < +∞ for any 𝑐 ∈ R+.



58

Constructing the Metric
We begin by defining a metric in the set of all cumulative distribution functions for
an alternative 𝑗 . Let Ψ 𝑗 and Φ 𝑗 denote two probability measures in Δ( [𝑝

𝑗
, 𝑝 𝑗 ]).

Recall that two probability measures Ψ 𝑗 and Φ 𝑗 are equivalent, denoted Ψ 𝑗 ∼ Φ 𝑗 ,
if they are absolutely continuous with respect to each other. When Ψ 𝑗 ∼ Φ 𝑗 , the
Radon-Nikodym derivative,

𝑑Ψ 𝑗

𝑑Φ 𝑗

: [𝑝
𝑗
, 𝑝 𝑗 ] → (0,∞),

exists, as guaranteed by the Radon-Nikodym Theorem. If both Ψ 𝑗 and Φ 𝑗 have con-
tinuous densities, the Radon-Nikodym derivative simplifies to the ratio of densities:

𝑑Ψ 𝑗

𝑑Φ 𝑗

(𝑝) =
Ψ′
𝑗
(𝑝)

Φ′
𝑗
(𝑝) .

Note that
Ψ 𝑗 = Φ 𝑗 ⇔

𝑑Ψ 𝑗

𝑑Φ 𝑗

(𝑝) = 1 Φ 𝑗 -a.e.

In the space Δ( [𝑝
𝑗
, 𝑝 𝑗 ]), we define a metric 𝑑 : Δ( [𝑝

𝑗
, 𝑝 𝑗 ]) × Δ( [𝑝

𝑗
, 𝑝 𝑗 ]) →

[0, +∞] to simplify the analysis.5

𝑑 (Ψ 𝑗 ,Φ 𝑗 ) =


ln ess sup𝑦∈[𝑝
𝑗
,𝑝 𝑗 ]

𝑑Ψ 𝑗
𝑑Φ 𝑗
(𝑦) + ln ess sup𝑦∈[𝑝

𝑗
,𝑝 𝑗 ]

𝑑Φ 𝑗

𝑑Ψ 𝑗
(𝑦), if Ψ 𝑗 ∼ Φ 𝑗 ,

+∞ otherwise.

Given our operator 𝑇 in Equation (2.7), for all Ψ 𝑗 ,Φ 𝑗 ∈ Δ( [𝑝
𝑗
, 𝑝 𝑗 ]),

(𝑇Ψ) 𝑗 ∼ �̃� 𝑗 ∼ (𝑇Φ) 𝑗 .

Thus,

𝑑 ((𝑇Ψ) 𝑗 , (𝑇Φ) 𝑗 ) = ln ess sup
𝑝 𝑗

𝑑 (𝑇Ψ) 𝑗
𝑑 (𝑇Φ) 𝑗

(𝑝 𝑗 ) + ln ess sup
𝑝 𝑗

𝑑 (𝑇Φ) 𝑗
𝑑 (𝑇Ψ) 𝑗

(𝑝 𝑗 ).

The observed selected price distribution �̃� 𝑗 appears in both (𝑇Ψ) 𝑗 and (𝑇Φ) 𝑗 . As
a result, �̃� 𝑗 cancels out in the distance above. Moreover, the denominator in our

5This metric is a variant of the Thompson metric (Thompson, 1963). The Thompson metric
between two functions 𝑠, 𝑞 ∈ R𝑌 is

𝑑𝑇ℎ𝑜𝑚𝑝𝑠𝑜𝑛 (𝑠, 𝑞) = max{ln sup
𝑠(𝑦)
𝑞(𝑦) , ln sup

𝑞(𝑦)
𝑠(𝑦) }.
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operator is a normalizing factor, which is also canceled out after we take the sum of
log ratios. Consequently, the distance between (𝑇Ψ) 𝑗 and (𝑇Φ) 𝑗 only relies on the
ratio between selection probabilities:

𝑑 ((𝑇Ψ) 𝑗 , (𝑇Φ) 𝑗 ) ≤ sup
𝑝 𝑗

ln
𝑃𝑟 𝑗 (𝑝 𝑗 ;Ψ)
𝑃𝑟 𝑗 (𝑝 𝑗 ;Φ)

+ sup
𝑝 𝑗

ln
𝑃𝑟 𝑗 (𝑝 𝑗 ;Φ)
𝑃𝑟 𝑗 (𝑝 𝑗 ;Ψ)

,

where equality holds when �̃� 𝑗 admits full support on [𝑝
𝑗
, 𝑝 𝑗 ].

Next, we define a metric in the space
∏

𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]) by taking the maximum
distance among all alternatives:

𝐷 (Ψ,Φ) = max
𝑗∈J

𝑑 (Ψ 𝑗 ,Φ 𝑗 )

for any Ψ,Φ ∈ ∏
𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]). From now on, we work with the metric space

(∏ 𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]), 𝐷).

Functional Contraction
For 𝑗 ∈ J , we define the maximum semi-elasticity difference as

𝑀 𝑗 = sup
𝑝 𝑗 , 𝒑− 𝑗 , 𝒑

′
− 𝑗

����𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

−
𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑′− 𝑗 )

𝜕𝑝 𝑗

����. (2.8)

The quantity 𝜕 ln 𝑓 𝑗
𝜕𝑝 𝑗

measures how sensitive the log of the choice probability changes
with respective to the price, and therefore represents the semi-elasticity. Let

𝜌 =
𝐽 − 1

4
max
𝑗∈J
(𝑝 𝑗 − 𝑝 𝑗 )𝑀 𝑗 .

Theorem 3. If 𝜌 < 1, the operator 𝑇 is a contraction with modulus less than 𝜌.

By the Banach fixed point theorem, whenever 𝜌 < 1, any selected distribution �̃�
corresponds to a unique offered distribution 𝐺. Theorem 3 implies that we can
nonparametrically identify the potential outcome distributions 𝐺 from the observed
selected outcome distribution �̃�, given the selection function 𝑓 . Moreover, this
result provides a constructive method for solving 𝐺. Take any Ψ ∈ ∏ 𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]),
by Theorem 3,

𝐷 (𝑇𝑛Ψ, 𝐺) = 𝐷 (𝑇𝑛Ψ, 𝑇𝐺) ≤ 𝜌𝐷 (𝑇𝑛−1Ψ, 𝐺) ≤ 𝜌𝑛−1𝐷 (𝑇Ψ, 𝐺),

where 𝐷 (𝑇Ψ, 𝐺) is finite. This implies

lim
𝑛→∞

𝐷 (𝑇𝑛Ψ, 𝐺) = 0.
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lim
𝑛→∞

𝑇𝑛Ψ = 𝐺.

Thus, we can simply take an initial guess for the potential outcome distributions
and iteratively apply the operator. As the number of iterations approaches infinity,
this process converges to the potential outcome distributions associated with the
selection function.

Note that the condition of Theorem 3 is a joint constraint on the selection function
and the price range. The bound on the modulus, 𝜌, consists of the product between
the number of alternatives, the price range 𝑝 𝑗 − 𝑝 𝑗 , and the maximum semi-elasticity
difference.6 Our condition requires this product to be small. If we expand the support
[𝑝

𝑗
, 𝑝 𝑗 ] to [𝑝′

𝑗
, 𝑝′𝑗 ] where

𝑝′
𝑗
< 𝑝

𝑗
< 𝑝 𝑗 < 𝑝′𝑗

with �̃� unchanged, 𝜌 becomes weakly larger, which implies now it is more difficult
for the operator 𝑇 to contract. This comparison is intuitive. Since the domain∏
𝑘≠ 𝑗 Δ( [𝑝𝑘 , 𝑝𝑘 ]) × Δ( [𝑝′

𝑗
, 𝑝′𝑗 ]) is larger, we are considering more collections of

probability measures, making it more challenging to control 𝐷 (𝑇Ψ,𝑇Φ)
𝐷 (Ψ,Φ) for all Ψ and

Φ in this domain.

To understand the maximum semi-elasticity difference 𝑀 𝑗 in the modulus 𝜌, con-
sider an extreme case where the choice probabilities do not vary with prices at all,
indicating perfectly inelastic demand. In this scenario, there is effectively no selec-
tion and the offered price distribution coincides with the selected price distribution.
The modulus equals 0 and we obtain the fixed point immediately.

It may be a concern that a large number of alternatives 𝐽 would result in a large
modulus. However, we show that a large number of alternatives could lead to a small
maximum semi-elasticity difference. For example, consider the multinomial logit
model, arguably the most popular model for discrete choices due to its analytical
form and ease of estimation:

𝑓 𝑗 (𝑝1, · · · , 𝑝𝐽) =
exp(𝛾𝑝 𝑗 )∑𝐽
𝑘=1 exp(𝛾𝑝𝑘 )

,

where 𝛾 represents the consumer’s price sensitivity. We derive the semi-elasticity
for the logit model,

𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

= 𝛾(1 − 𝑓 𝑗 ( 𝒑)).

6Note that by definition 𝜌 is unitless. Changing the unit of price does not affect 𝜌.
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When 𝐽 is large, the choice probability for each alternative tends to be small, so
that the log derivative is approximately equal to 𝛾. As a result, the maximum
semi-elasticity difference is close to 0.

The crux and the bulk of the proof for Theorem 3 is to provide a bound on the ratio

sup
Ψ,Φ∈∏ 𝑗 Δ( [𝑝 𝑗 ,𝑝 𝑗 ])

𝐷 (𝑇Ψ, 𝑇Φ)
𝐷 (Ψ,Φ) .

This is difficult as the domain of the supreme,
∏

𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]), is a large space. For
instance, if 𝐽 = 10, the supreme is over 20 functions. In the proof of this theorem
in Section 2.9, we employ a technique called a change of measure, also know as
the tilted measure, and combine it with insights from transportation problem. The
bound 𝜌 is relatively tight: there exist selection functions for which the supremum
is arbitrarily close 𝜌. In Section 2.8, we connect our contraction result with quantal
response equilibria (McKelvey and Palfrey, 1995).

Special Cases
Thus far, we have not imposed any structure on the selection function. For a
general selection function, we have to take the supreme over 𝒑− 𝑗 , 𝒑

′
− 𝑗 to compute

the maximum semi-elasticity difference. Now we impose an assumption on the
selection function to determine where the supreme is attained.

Assumption 1 (Log Supermodularity). For all 𝑗 ∈ J and 𝑝 𝑗 ∈ [𝑝
𝑗
, 𝑝 𝑗 ],

𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

is weakly increasing in each 𝑝𝑘 with 𝑘 ≠ 𝑗 .

Given log supermodularity, the maximum semi-elasticity difference is attained at
the boundary,

𝑀 𝑗 = sup
𝑝 𝑗

����𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

−
𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

𝜕𝑝 𝑗

����.
What is left in the definition of maximum semi-elasticity difference is the supreme
over 𝑝 𝑗 . It turns out that we can use 𝑝 𝑗 − 𝑝 𝑗 in the definition of 𝜌 to eliminate the
supreme over 𝑝 𝑗 and give a tighter bound. The result is as follows,

𝜌∗ =
𝐽 − 1

4
max
𝑗∈J
[ln 𝑓 𝑗 ( 𝒑) − ln 𝑓 𝑗 (𝑝

𝑗
, 𝒑− 𝑗 ) − ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 ) + ln 𝑓 𝑗 ( 𝒑)] .

Theorem 4. Suppose that Assumption 1 holds. If 𝜌∗ < 1, the operator 𝑇 is a
contraction with modulus less than 𝜌∗.
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Under Assumption 1, the modulus 𝜌∗ takes a much simpler form and is straight-
forward to compute. The log-supermodularity assumption holds in models widely
adopted by empirical researchers. For example, the multinomial logit model satisfies
Assumption 1. Another example is the binary probit model we describe in Section
2.2. The log-supermodularity condition in Assumption 1 holds for the binary probit
model and Theorem 4 applies.7 However, Assumption 1 may not hold for probit
models with three or more alternatives; in such cases, the more general results in
Theorem 3 can be applied.

To summarize, our contraction results provide a novel method for identifying the
potential outcome distribution from the observed selected outcome distribution,
given any selection function 𝑓—whether parametric or nonparametric, and regard-
less of whether it is microfounded in a utility maximization problem. Moreover,
the identification is constructive: starting with an initial guess, iterative application
of the operator converges to the potential outcome distributions associated with the
selection function. These theoretical results are essential for estimating the selection
function and potential outcome distributions, which will be discussed in the next
section.

2.4 Estimation
Building on the theoretical results in Section 2.3, we now turn to the estimation
of the model’s primitives. We begin by discussing the estimation of the offered
price distribution 𝐺 when the selection function 𝑓 is known, followed by the more
complex case where both 𝑓 and 𝐺 must be jointly estimated.

In the data, for each individual 𝑖, we observe their choice, characteristics, and the
price of the selected product. Let 𝑦𝑖 𝑗 = 1 if 𝑗 is chosen by 𝑖, and 0 otherwise.
Since the alternatives are exclusive,

∑𝐽
𝑗=1 𝑦𝑖 𝑗 = 1. Let 𝑥𝑖 𝑗 represent a vector of

observable characteristics. We define 𝑦𝑖 = (𝑦𝑖1, · · · , 𝑦𝑖𝐽)′ and 𝑥𝑖 = (𝑥′𝑖1, · · · , 𝑥
′
𝑖𝐽
)′ ∈

𝑋 . The observed selected prices in the data enable us to estimate �̃� using standard
7To see this, we compute the log derivative for the binary probit model:

𝜕 ln 𝑓1 (𝑝1, 𝑝2)
𝜕𝑝1

=
𝛾𝜙N (Δ)

1 −ΦN (Δ)
,

𝜕2 ln 𝑓1 (𝑝1, 𝑝2)
𝜕𝑝1𝜕𝑝2

= 𝛾2 𝑑

𝑑Δ

[
𝜙N (Δ)

1 −ΦN (Δ)

]
,

where Δ = 𝛾(𝑝2 − 𝑝1) and the term in the square bracket is known as the hazard rate or inverse Mills
ratio. As Gaussian satisfies increasing hazard rate (Baricz, 2008), the log-supermodularity condition
in Assumption 1 holds.
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nonparametric methods. Let �̂� denote the estimate of �̃�, and �̂� (𝑥) denote the
estimate conditional on observable 𝑥.

Estimation with a Known Selection Function
In Section 2.3, we show that for a given selection function 𝑓 , the offered price
distribution𝐺 can be uniquely determined from the selected price distribution �̃�, as
the number of iterations of the operator 𝑇 defined in Equation (2.7) goes to infinity.
In practice, however, econometricians typically do not observe the true selected
price distribution �̃�, but rather an estimate �̂�, which is subject to sampling errors.
Moreover, when iterating the operator 𝑇 to obtain the offered price distribution 𝐺,
the process stops after a finite number of iterations 𝑚. Therefore, our estimation of
𝐺 contains these two sources of error.

Let 𝑇𝑚
�̂�
Ψ denote our estimator for 𝐺, using the estimated selected price distribution

�̂� and initiating the operator iteration with Ψ ∈ ∏
𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]). The distance

between our estimator and the true 𝐺 is bounded by the sum of sampling errors
from a finite sample size and the approximation errors from finite iterations, as
shown in the following triangular inequality.

𝐷 (𝐺,𝑇𝑚
�̂�
Ψ) ≤ 𝐷 (𝐺, 𝐹−1(�̂�))︸            ︷︷            ︸

finite sample size

+𝐷 (𝐹−1(�̂�), 𝑇𝑚
�̂�
Ψ)︸                 ︷︷                 ︸

finite iteration

,

where 𝐹−1 denotes the inverse of 𝐹. Recall that 𝐹 is the mapping from 𝐺 to �̃�
defined in Equations (2.1) and (2.2). The inverse mapping, 𝐹−1, maps �̃� back to 𝐺.
Theorem 3 guarantees that we can obtain 𝐺 from �̃� by iterating the operator 𝑇 an
infinite number of times.

We first focus on the sampling error 𝐷 (𝐺, 𝐹−1(�̂�)). The next proposition shows
that this error goes to zero as �̂� converges to �̃�.

Proposition 5. Suppose 𝜌 < 1. The mapping 𝐹 is a homeomorphism. Moreover,
both 𝐹 and 𝐹−1 are Lipschitz continuous, with Lipschitz constants 1 + 𝜌 and 1

1−𝜌 ,
respectively.

Since 𝐹 is a homeomorphism, the inverse 𝐹−1 is well-defined and 𝐺 = 𝐹−1(�̃�).
Since 𝐹−1 is continuous, we have

𝐹−1(�̂�)
𝑝
→ 𝐹−1(�̃�) as �̂�

𝑝
→ �̃�.

Moreover, as 𝐹−1 is Lipschitz continuous, 𝐹−1(�̂�) converges to 𝐺 at the same rate
as �̂� converges to �̃�.
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We now analyze the approximation error 𝐷 (𝑇𝑚
�̂�
Ψ, 𝐹−1(�̂�)) due to the finite number

of iterations. Note that this error term tends to 0 at speed 𝜌𝑚. Thus, if 𝜌𝑚 decays
faster than the convergence rate of �̂� to �̃�, then 𝑇𝑚

�̂�
Ψ converges to 𝐺 at the same

rate as �̂� converges to �̃�. We let 𝑚(𝑛) express the dependence of the number of
iterations on the sample size. The following result summarizes the discussion above.

Corollary 4. Suppose that �̂�
𝑝
→ �̃� at a polynomial rate of 𝑛𝑘 with 𝑘 > 0. If

lim inf
𝑛→+∞

𝑚(𝑛)
ln 𝑛

> 𝑘 (ln(1/𝜌))−1,

then 𝑇𝑚(𝑛)
�̂�

Ψ
𝑝
→ 𝐺 at rate 𝑛𝑘 .

For instance, if the support of �̃� is finite, �̂� → �̃� at rate
√
𝑛. If

lim
𝑛→∞

𝜌𝑚(𝑛)
√
𝑛 = 0 or lim inf

𝑛→+∞
𝑚(𝑛)
ln 𝑛

>
1
2
(ln(1/𝜌))−1,

𝑇𝑚
�̂�
Ψ converges to 𝐺 at rate

√
𝑛.

Estimation with an Unknown Selection Function
We now consider the case where the selection function 𝑓 is unknown to econome-
tricians and we jointly estimate 𝑓 and 𝐺. As discussed in Section 2.3, given any
selection function 𝑓 , whether parametric or nonparametric, our contraction results
provide a straightforward method for recovering the potential outcome distribution
from the observed selected outcome distribution. This step utilizes all the informa-
tion contained in the selected outcome distribution. To further identify and estimate
the selection function 𝑓 , we must leverage additional data, specifically the "market
share" of each alternative.

The dimensionality of market shares determines how flexibly we can estimate 𝑓 .
For example, if market shares are observed conditional on continuously distributed
covariates, it is possible to estimate a semiparametric single-index model (Ichimura,
1993; Klein and Spady, 1993) for the selection function 𝑓 . While allowing for a
semiparametric or nonparametric selection function is theoretically possible, imple-
menting it would be highly complex and data-intensive. In most empirical settings,
market shares are observed conditional on discrete values of covariates. We there-
fore focus on the case where the selection function is parametrically specified in the
estimation.8

8In our Monte Carlo simulations, we consider a scenario where the selection function is mis-
specified by the econometrician. We find that our estimates of the potential outcome distributions
remain quite robust even when the selection function is misspecified.
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We assume that the selection function 𝑓 is derived from a standard multinomial
choice model with an indirect utility given by

𝑢𝑖 𝑗 = 𝑣 𝑗 (𝑝𝑖 𝑗 , 𝑥𝑖 𝑗 , 𝜀𝑖 𝑗 ; 𝜃),

where 𝑣 𝑗 is a known function parametrized by a finite-dimensional parameter 𝜃; 𝑝𝑖 𝑗
denotes the offered price of alternative 𝑗 for individual 𝑖; the vector of unobserved
error terms 𝜀𝑖 = (𝜀𝑖1, · · · , 𝜀𝑖𝐽) is jointly distributed according to a known distribu-
tion. Note that our framework fully allows that the unobserved error term enters
the utility function in a nonseparable way. The individual chooses an alternative to
maximize utility, and the selection function 𝑓 is captured by the parameter 𝜃. Let
𝜃0 denote the true parameter. For example, one commonly used specification is as
follows:

𝑢𝑖 𝑗 = 𝛾𝑝𝑖 𝑗 + 𝑥′𝑖 𝑗 𝛽 + 𝜉 𝑗 + 𝜀𝑖 𝑗 , 𝑗 = 1, 2, · · · , 𝐽,

where 𝜉 𝑗 represents a scalar-valued unobserved characteristic of alternative 𝑗 . In
this example, 𝜃 = (𝛾, 𝛽, 𝝃), where 𝝃 = (𝜉1, · · · , 𝜉𝐽).

We estimate the parameter 𝜃 in the selection function by matching the model-implied
choice probabilities to those observed in the data. Specifically, for an individual
with observable characteristic 𝑥𝑖, the probability of choosing alternative 𝑗 is given
by the following equation:

𝑃𝑟𝑜𝑏 𝑗 (𝑥; 𝜃, �̂�, 𝑚) =
∫
𝒑
𝑓 𝑗 ( 𝒑; 𝑥, 𝜃)𝑑

(
𝑇𝑚
�̂� (𝑥),𝜃Ψ

)
( 𝒑), (2.9)

where 𝑇𝑚
�̂� (𝑥),𝜃

Ψ represents the estimated offered price distribution after iterating the
operator 𝑇 for 𝑚 steps, starting with the initial value Ψ. The operator is constructed
using the estimated selected price distribution conditional on 𝑥, denoted by �̂� (𝑥),
and the selection function parameterized by 𝜃. Note that 𝜃 affects the choice
probabilities both directly through the selection function and indirectly through the
estimated offered price distribution.

Let 𝑧𝑖 = {𝑥𝑖, 𝑦𝑖}. Given an i.i.d. sample of {𝑧𝑖}𝑛𝑖=1 and a first-step nonparametric
estimator �̂� (𝑥), we propose a semiparametric maximum likelihood estimator for 𝜃:

𝜃 = arg max
𝜃∈Θ

�̂�𝑛 (𝜃), (2.10)

where

�̂�𝑛 (𝜃) =
1
𝑛

𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑦𝑖 𝑗 ln 𝑃𝑟𝑜𝑏 𝑗 (𝑥𝑖; 𝜃, �̂�, 𝑚(𝑛)). (2.11)

Once 𝜃 is obtained, a plug-in estimator for 𝐺 is given by 𝑇𝑚(𝑛)
�̂�,𝜃

Ψ.
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Consistency and Asymptotic Normality
In this section, we show that the estimator defined in Equation (2.10) is consistent
and asymptotically normal. We maintain the previous assumptions on the selection
function: 𝑓 𝑗 ∈ 𝒞

1 :
∏

𝑗 [𝑝 𝑗 , 𝑝 𝑗 ] → (0, 1). The additional technical conditions
required for the consistency of 𝜃 are as follows.

Assumption 2. (i) The space Θ of parameter 𝜃 is compact; (ii) for each 𝑥 ∈ 𝑋 , the
selection function 𝑓 ( 𝒑; 𝑥, 𝜃) is jointly continuous in 𝜃 and 𝒑; (iii) the condition in
Theorem 3 holds for all 𝜃 ∈ Θ, that is, sup𝜃∈Θ 𝜌(𝜃) ≤ �̄� < 1 for some �̄�; (iv) the
number of iterations 𝑚(𝑛) → ∞; (v) �̂�

𝑝
→ �̃�.

Assumption 3 (Identification). There does no exist 𝜃′ ∈ Θ, 𝜃′ ≠ 𝜃0, offered price
distributions 𝐺, 𝐺′ ∈

( ∏
𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ])

)𝑋 such that for all 𝑗 ∈ J and 𝑥 ∈ 𝑋

𝐹 (𝐺 (𝑥); 𝜃0) = 𝐹 (𝐺′(𝑥); 𝜃′),∫
𝒑
𝑓 𝑗 ( 𝒑; 𝑥, 𝜃0)𝑑𝐺 (𝑥) ( 𝒑) =

∫
𝒑
𝑓 𝑗 ( 𝒑; 𝑥, 𝜃′)𝑑𝐺′(𝑥) ( 𝒑).

Assumption 2 (i) and (ii) are standard regularity conditions. Assumption 2 (iii)
ensures that for all 𝜃 ∈ Θ, the operator 𝑇 is a contraction. Assumption 2 (iv)
requires that the number of iterations 𝑚 tends to infinity, but it does not impose any
restrictions on the rate at which 𝑚 approaches infinity. Assumption 2 (v) ensures
that our first-step estimator �̂� is consistent. Assumption 3 imposes the identification
condition, which requires that there does not exist another parameter that can yield
the same selected price distribution and choice probabilities.

Theorem 5 (Consistency). Under Assumptions 2 and 3, 𝜃
𝑝
→ 𝜃0, 𝑇𝑚(𝑛)

�̂�,𝜃
Ψ

𝑝
→ 𝐺.

Proving this theorem turns out to be challenging. We cannot rely on the standard
consistency arguments for maximum likelihood estimators, as �̂�𝑛 (𝜃) is not a sample
average. Since all data points are already used to estimate �̂�, each term in �̂�𝑛 (𝜃)
depends on the entire dataset. Moreover, the number of iterations depends on the
sample size 𝑛.

To prove consistency, we invoke the fundamental consistency theorem for extremum
estimators (Theorem 2.1 in Newey and McFadden, 1994). We construct the true
population objective function as follows:

𝑄0(𝜃) = E𝑥
𝐽∑︁
𝑗=1

( ∫
𝒑
𝑓 𝑗 ( 𝒑; 𝑥, 𝜃0)𝑑𝐺 (𝑥) ( 𝒑)

)
ln

(
𝑃𝑟𝑜𝑏∗𝑗 (𝑥; 𝜃, �̃�)

)
,



67

where
∫
𝒑
𝑓 𝑗 ( 𝒑; 𝑥, 𝜃0)𝑑𝐺 (𝑥) ( 𝒑) represents the true probability of selecting alterna-

tive 𝑗 conditional on 𝑥; and

𝑃𝑟𝑜𝑏∗𝑗 (𝑥; 𝜃, �̃�) =
∫
𝒑
𝑓 𝑗 ( 𝒑; 𝑥, 𝜃)𝑑𝐹−1(�̃� (𝑥), 𝜃) ( 𝒑). (2.12)

Equation (2.12) represents the model-implied choice probability for alternative 𝑗

conditional on 𝑥, given the model parameter 𝜃, the true selected price distribution
�̃�, and as the number of iterations goes to infinity. By the identification condition
in Assumption 3, 𝑄0 is uniquely maximized at 𝜃0.

Similarly to Section 2.4, there are two sources of error in the sample objective
function �̂�𝑛 (𝜃) when approximating the true population objective function 𝑄0(𝜃):
(1) sampling error, and (2) errors resulting from the finite number of iterations of the
operator 𝑇 . To focus on the sampling error, we construct the following intermediate
objective function where the number of iterations 𝑚 in Equation (2.11) goes to
infinity:

�̂�∗𝑛 (𝜃) =
1
𝑛

𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑦𝑖 𝑗 ln
(
𝑃𝑟𝑜𝑏∗𝑗 (𝑥𝑖; 𝜃, �̂�)

)
.

We use the homeomorphism in Proposition 5 to show that �̂�∗𝑛 converges pointwise
to 𝑄0 in probability. We then prove that �̂�∗𝑛 is equicontinuous, which ensures
its uniform convergence to 𝑄0. Lastly, we show that �̂�𝑛 converges uniformly in
probability to �̂�∗𝑛 as the number of iterations approaches infinity, which implies that
�̂�𝑛 converges uniformly in probability to 𝑄0, a key to establishing the consistency
result. Further details of each step can be found in Section 2.9.

Next, we show that the estimator defined in Equation (2.10) is asymptotically normal.
Motivated by our discussion above, we first study the behavior of the estimator when
𝑚 tends to infinity for each 𝑛. Let

𝜃∗ = arg max
𝜃
�̂�∗𝑛 (𝜃),

𝔤∗(𝑧𝑖; 𝜃, �̂�) = ∇𝜃
( 𝐽∑︁
𝑗=1

𝑦𝑖 𝑗 ln 𝑃𝑟𝑜𝑏∗𝑗 (𝑥𝑖; 𝜃, �̂�)
)
,

where ∇𝜃 denote the gradient operator with respect to 𝜃. The estimator 𝜃∗ solves
the first-order condition

1
𝑛

𝑛∑︁
𝑖=1

𝔤∗(𝑧𝑖; 𝜃∗, �̂�) = 0.
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Proving the asymptotic normality of a semiparametric two-step estimator typically
requires a first-order expansion around the nonparametric estimator (see Theorem
8.1 in Newey and McFadden, 1994). In our case, this involves expanding the
equation above around �̂�. A standard argument would apply if �̂� entered directly
into Equation (2.12). However, it enters through 𝐹−1, for which we lack an analytic
form. As a result, continuing to work with an infinite-dimensional distribution �̃�
becomes extremely challenging.

To make the analysis tractable, we assume that the support of �̃� is finite. This
assumption is practically innocuous, as nonparametric estimators are always rep-
resented as finite-dimensional vectors in numerical applications. For instance, in
consumer demand estimation, �̃� represents a distribution over prices, which are
measured in discrete units (e.g., cents), so this assumption is reasonable.

Assumption 4. (i) supp(�̃�) is finite. (ii) 𝜃0 is in the interior of Θ. (iii) 𝑓 is
twice continuously differentiable in 𝜃. (iv) E∇𝜃𝔤∗(𝑧; 𝜃0, �̃�) is nonsingular. (v) The
number of iterations satisfies lim inf𝑛→+∞ 𝑚(𝑛)

ln 𝑛 > 1
2 (ln(1/�̄�))

−1.

Assumption 4(ii)–(iv) are standard regularity conditions. Assumption 2–4(iv) en-
sure that the estimator 𝜃∗ is asymptotically normal. Assumption 4(v) requires that
the number of iterations increases rapidly enough for the error introduced by fi-
nite iterations to become negligible compared to the error of 𝜃∗. Particularly, it
guarantees

√
𝑛(𝜃 − 𝜃∗)

𝑝
→ 0, which gives us the next result.

Theorem 6 (Asymptotic Normality). Suppose that Assumption 2, 3, and 4 hold.
Then 𝜃 is asymptotically normal and

√
𝑛(𝜃 − 𝜃0)

𝑑→ N(0, 𝑉).9 𝑇𝑚(𝑛)
�̂�,𝜃

Ψ converges
to 𝐺 in probability at rate

√
𝑛.

2.5 Monte Carlo Simulations
To examine how our estimator for 𝜃 and the offered price distribution may perform
in practice, we conduct a Monte Carlo simulation experiment with 𝐽 = 2. The utility
individual 𝑖 derives from the two alterantives are specified as follows:

𝑢𝑖1 = −𝛾 log(𝑝𝑖1) + 𝜉1 + 𝛽𝑥𝑖1 + 𝜀𝑖,
𝑢𝑖2 = −𝛾 log(𝑝𝑖2) + 𝜉2,

where 𝑝𝑖 𝑗 and 𝜉 𝑗 are, respectively, the offered price and unobserved heterogeneity for
alternative 𝑗 ; 𝑥𝑖1 ∈ {0, 1} is a binary observable with 𝑃𝑟 (𝑥𝑖1 = 1) = 0.5 that shifts

9See the analytical form of 𝑉 in the proof of Lemma 15.
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individual 𝑖’s choice probabilities; and 𝜀𝑖 ∼ 𝑁 (0, 1) is the error term. Throughout
the simulation exercises, we set the utility parameters as follows: 𝛾 = 1, 𝜉1 = 0,
𝜉2 = 1, 𝛽 = 0.5. Let 𝑦𝑖 ∈ {1, 2} denote the choice of individual 𝑖.

We consider five data generating processes for the offered prices. Let 𝑥𝑖2 denote
the observable characteristic of individual 𝑖 that enters the pricing equation. For
simplicity, we also restrict 𝑥𝑖2 to take binary values from {0, 1}, with 𝑃𝑟 (𝑥𝑖2 = 1) =
0.7.

DGP 1: log(𝑝𝑖 𝑗 ) = 𝛿0 𝑗 + 𝛿 𝑗𝑥𝑖2 + 𝜂𝑖 𝑗 , where 𝛿01 = 0.2, 𝛿1 = 0.5, 𝜂𝑖1 ∼ 𝑁 (0, 0.1),
𝛿02 = 0.1, 𝛿2 = 1, 𝜂𝑖2 ∼ 𝑁 (0, 0.2).

DGP 2: log(𝑝𝑖 𝑗 ) = 𝛿0 𝑗 + 𝛿 𝑗𝑥𝑖2 + 𝜂𝑖 𝑗 , where 𝛿01 = 0.2, 𝛿1 = 0.5, 𝜂𝑖1 ∼ 𝐸𝑉 (0, 0.1),
𝛿02 = 0.1, 𝛿2 = 1, 𝜂𝑖2 ∼ 𝐸𝑉 (0, 0.2).

DGP 3: log(𝑝𝑖 𝑗 ) = (𝛿0 𝑗+𝛿 𝑗𝑥𝑖2) (1+𝜂𝑖 𝑗 ), where 𝛿01 = 0.2, 𝛿1 = 0.5, 𝜂𝑖1 ∼ 𝑁 (0, 0.1),
𝛿02 = 0.1, 𝛿2 = 1, 𝜂𝑖2 ∼ 𝑁 (0, 0.3).

DGP 4: log(𝑝𝑖 𝑗 ) = exp
(
(𝛿0 𝑗 + 𝛿 𝑗𝑥𝑖2) (1 + 𝜂𝑖 𝑗 )

)
, where 𝛿01 = 0.2, 𝛿1 = 0.1, 𝜂𝑖1 ∼

𝑁 (0, 0.1), 𝛿02 = 0.1, 𝛿2 = 0.3, 𝜂𝑖2 ∼ 𝑁 (0, 0.2).

DGP 5: log(𝑝𝑖 𝑗 ) = (𝛿0 𝑗 + 𝛿 𝑗𝑥𝑖2) (1 + 𝜂𝑖 𝑗 )−1, where 𝛿01 = 0.2, 𝛿1 = 0.1, 𝜂𝑖1 ∼
𝑁 (0, 0.1), 𝛿02 = 0.1, 𝛿2 = 0.3, 𝜂𝑖2 ∼ 𝑁 (0, 0.2).

In DGP 1, the error term in the pricing equation is additively separable and follows
a normal distribution, which is commonly assumed in empirical applications. DGP
2 assumes instead that the error term follows an extreme value distribution, while in
DGP 3, we relax the homoskedasticity assumption. Finally, DGPs 4 and 5 consider
scenarios where the pricing function takes a nonseparable form.10

For each DGP, we simulate offered prices and individual choices, and assume that
the econometricians observe (𝑦𝑖, 𝑥𝑖1, 𝑥𝑖2, 𝑝𝑖), where 𝑝𝑖 is the price of the chosen
alternative. We then apply our method from Section 2.4 to estimate the parameters
of the selection function, i.e., 𝜃 = (𝛾, 𝜉2, 𝛽) with 𝜉1 normalized to 0, along with
the offered price distribution for each alternative.11 For comparison, we employ the

10Although all the offer price distributions admit unbounded support, in simulation we shall
assume that the realized price range coincides with the true price range. Given a large sample size,
the realized price range supports almost all the probability mass of the offered price distribution.
Later we show that the estimation of the offered price distribution performs well.

11We estimate the cumulative distribution function of prices at 300 grid points.
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classic two-step method, assuming that the pricing equations are linearly separable,
with an error term that is independent of 𝑥𝑖2 and normally distributed. Under this
assumption, the two-step method misspecifies the pricing equation under DGPs 2–5.
For each design, we run 500 simulations of 1000 and 5000 observations.

We report Monte Carlo biases, standard deviations, and root mean squared errors
for 𝜃 using our method in the first three columns of Table 2.1. For the cumulative
distribution functions of log(price), we compute the integrated squared biases and
integrated mean squared errors, as shown in the first two columns of Table 2.2.
These results are based on a sample size of 𝑁 = 1000. The results for 𝑁 = 5000 are
provided in Tables 2.3–2.4 in Section 2.10. Our estimator performs well in finite
samples across all DGPs we consider. The biases of our estimator are small, and the
standard deviation decreases as the sample size increases in all simulation designs.

Table 2.1: Simulation Results for Utility Parameters: 𝑁 = 1000

Functional Contraction Two-Step Method
Bias Std. Dev. RMSE Bias Std. Dev. RMSE

DGP 1
𝛾 -0.0075 0.1958 0.1957 0.0027 0.2126 0.2124
𝜉2 0.0021 0.0721 0.0721 0.0003 0.0980 0.0979
𝛽 -0.0010 0.0906 0.0905 0.0016 0.0929 0.0929

DGP 2
𝛾 -0.0087 0.1990 0.1990 0.0196 0.2451 0.2457
𝜉2 0.0021 0.0728 0.0728 0.0183 0.1203 0.1215
𝛽 -0.0049 0.0945 0.0946 0.0036 0.0960 0.0960

DGP 3
𝛾 -0.0254 0.1603 0.1621 0.1704 0.2398 0.2940
𝜉2 -0.0006 0.0702 0.0701 0.0097 0.0860 0.0864
𝛽 -0.0045 0.0930 0.0930 -0.0023 0.0947 0.0946

DGP 4
𝛾 -0.0131 0.3485 0.3484 0.0368 0.3826 0.3840
𝜉2 -0.0016 0.0677 0.0676 -0.0044 0.0731 0.0731
𝛽 -0.0045 0.0933 0.0933 -0.0040 0.0941 0.0941

DGP 5
𝛾 0.0551 0.9650 0.9656 0.1873 0.7830 0.8044
𝜉2 -0.0023 0.0671 0.0671 0.0047 0.0675 0.0676
𝛽 -0.0050 0.0886 0.0886 -0.0050 0.0885 0.0886

Compared to the classic two-step method, our estimator outperforms the standard
approach in DGPs 2–5. Because our method allows for nonparametric estimation of
the offered price distributions, while the standard method misspecifies the pricing
equation, we achieve significantly lower integrated squared bias and mean squared
error for the cumulative distribution functions of log(price). This result can also be
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Table 2.2: Simulation Results for CDF of log(Price): 𝑁 = 1000

Func. Contraction Two-Step Method
IBias2 IMSE IBias2 IMSE

DGP 1
𝐹1(·|𝑥𝑖2 = 0) 0.0003 0.0029 0.0006 0.0211
𝐹2(·|𝑥𝑖2 = 0) 0.0001 0.0006 0.0000 0.0016
𝐹1(·|𝑥𝑖2 = 1) 0.0004 0.0032 0.0003 0.0125
𝐹2(·|𝑥𝑖2 = 1) 0.0002 0.0013 0.0001 0.0042

DGP 2
𝐹1(·|𝑥𝑖2 = 0) 0.0006 0.0032 0.0042 0.0269
𝐹2(·|𝑥𝑖2 = 0) 0.0002 0.0006 0.0021 0.0040
𝐹1(·|𝑥𝑖2 = 1) 0.0008 0.0037 0.0035 0.0177
𝐹2(·|𝑥𝑖2 = 1) 0.0003 0.0014 0.0022 0.0070

DGP 3
𝐹1(·|𝑥𝑖2 = 0) 0.0060 0.0086 0.0247 0.0501
𝐹2(·|𝑥𝑖2 = 0) 0.0028 0.0032 0.0499 0.0525
𝐹1(·|𝑥𝑖2 = 1) 0.0007 0.0033 0.0022 0.0119
𝐹2(·|𝑥𝑖2 = 1) 0.0002 0.0013 0.0129 0.0170

DGP 4
𝐹1(·|𝑥𝑖2 = 0) 0.0007 0.0033 0.0049 0.0304
𝐹2(·|𝑥𝑖2 = 0) 0.0008 0.0012 0.0281 0.0303
𝐹1(·|𝑥𝑖2 = 1) 0.0005 0.0046 0.0005 0.0161
𝐹2(·|𝑥𝑖2 = 1) 0.0002 0.0011 0.0087 0.0112

DGP 5
𝐹1(·|𝑥𝑖2 = 0) 0.0014 0.0034 0.0026 0.0226
𝐹2(·|𝑥𝑖2 = 0) 0.0014 0.0018 0.0211 0.0234
𝐹1(·|𝑥𝑖2 = 1) 0.0008 0.0058 0.0008 0.0192
𝐹2(·|𝑥𝑖2 = 1) 0.0002 0.0011 0.0071 0.0086

Note: The IBias2 of a function ℎ is calculated as follows. Let ℎ̂𝑟 be the estimate of ℎ from the
𝑟-th simulated dataset, and ℎ̄(𝑥) = 1

𝑅

∑𝑅
𝑟=1 ℎ̂𝑟 (𝑥) be the point-wise average over 𝑅 simulations.

The integrated squared bias is calculated by numerically integrating the point-wise squared bias
( ℎ̄(𝑥) − ℎ(𝑥))2 over the distribution of 𝑥. The integrated MSE is computed in a similar way.

visualized in Figure 2.1, where we plot the true CDFs of log(price) for firms 1 and
2, alongside those obtained using our method and the two-step method.

For the two-step method, the misspecification of the pricing equation also creates
a severe bias in estimating the parameters in the selection function. In particular,
when the error term exhibits heteroskedasticity (DGP 3) or is nonseparable in the
pricing equation (DGPs 4–5), the bias for the price sensitivity parameter 𝛾 is large
and does not vanish as the sample size increases.

Another key advantage of our approach is that it does not require an instrument
to exogenously shift the selection probability. It is well known in the literature
that the two-step method is nearly unidentified when the same regressors are used
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Two-step method: firm 1
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Functional contraction: firm 2

Note: The black, blue, and red curves represent the true CDF, the CDF estimated using the
two-step method, and the CDF estimated using the functional contraction method,
respectively. Solid lines represent the CDFs for firm 1, while dashed lines represent those
for firm 2.

Figure 2.1: CDF of log(price) for firms 1 and 2 (conditional on 𝑥 = 0).

in both the selection function and the outcome equation. This occurs because the
inverse Mills ratio is approximately linear over a wide range of its argument. In our
simulations, when the regressor in the pricing equation is discrete, the bias correction
term becomes perfectly collinear with the regressor, rendering the two-step method
infeasible without an excluded variable in the selection equation.

In contrast, our approach does not require an excluded variable in the selection
equation. To illustrate this, we conduct a set of Monte Carlo simulations where
the excluded variable 𝑥𝑖1 is removed from the indirect utility, using the same five
DGPs for log(price). The results for this specification are reported in Tables 2.5–
2.6 in Section 2.10. As shown, our estimator performs well in finite samples,
even without an additional excluded variable to exogenously shift the selection
probability. Our estimator consistently shows low bias across different DGPs and
exhibits a decreasing standard deviation as the sample size increases.



73

Our method requires that the functional form of the selection function is known to
econometricians. To assess the performance of our estimator when the selection
function is misspecified, we conduct a series of Monte Carlo simulations. Specif-
ically, we consider a scenario where the econometrician assumes that 𝜀 follows a
logistic distribution, while it is actually generated from a normal distribution. In
Tables 2.7–2.8 in Section 2.10, we report the estimation results for the utility param-
eters and CDFs of log(price) under this misspecification. Although we observe a
7–8% bias in the utility parameters, our estimator for the offered price distributions
performs well. The integrated squared bias and mean squared errors of the CDFs
remain close to those in Table 2.2. This exercise suggests that our estimator for
the offered price distributions is robust to misspecification of the selection func-
tion, a valuable feature in practice, especially when the econometrician lacks prior
knowledge about the form of the selection function.

Finally, we briefly discuss how our functional contraction performs in practice.
We compute the modulus 𝜌∗ across all five simulation designs. Except for DGP
2—where the error term in the pricing equations is drawn from extreme value
distributions, resulting in a wider price range—the modulus in all other cases is
quite small (for example, 𝜌∗ = 0.37 in DGP 1).12 Consequently, our iteration
process converges within 3–5 iterations. For DGP 2, although the modulus exceeds
1 (𝜌∗ = 1.23), the iteration process still performs well and converges to the same
fixed point, even with different initial values. This is not surprising, as Theorems 3
and 4 provide only sufficient conditions for the contraction.

2.6 Applications
Our estimator introduced in Section 2.4 is broadly applicable to a variety of empir-
ical settings. It effectively addresses the challenge of selection bias, which arises
when only the outcomes of chosen alternatives are observed in the data. We im-
pose no parametric restrictions on the potential outcome distribution and allow it
to vary flexibly across alternatives. Moreover, the selection function in our model
can incorporate alternative-specific unobserved heterogeneity and does not require
an excluded variable, which is desirable in many empirical settings. In the follow-
ing section, we discuss three types of empirical applications: consumer demand

12The magnitude of the modulus depends heavily on the product of the price sensitivity parameter
𝛾 and price range. In our Monte Carlo simulations, 𝛾 is normalized to be 1. In DGP 1, a price
range of approximately 2.5 leads to a small 𝜌∗ = 0.37. In empirical applications, the price sensitivity
parameter 𝛾 is around 10−3 (for example, see Cosconati et al., 2024). Then with a price range around
2500 euros, the modulus remains small.
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estimation, auctions with missing bids, and Roy models.

Consumer Demand
The first application of our method is the standard differentiated product demand
estimation pioneered by S. T. Berry (1994) and S. Berry, Levinsohn, and Pakes
(1995). In classic demand models, the price of a product is often assumed to be
uniform across all consumers (e.g., the list price of a vehicle). But this assumption
does not hold in contexts involving price discrimination or personalized pricing
(Sagl, 2023; Buchholz et al., 2020; Dubé and Misra, 2023), discount negotiation
(Goldberg, 1996; Allen, Clark, and Houde, 2014), or risk-based pricing (Crawford,
Pavanini, and Schivardi, 2018; Cosconati et al., 2024). In these contexts, researchers
can relatively easily gather data on the transaction prices consumers pay, but it is
challenging to gain access to competing prices offered to consumers.

In a companion paper with coauthors (Cosconati et al., 2024), we apply our method
to estimate demand and insurance companies’ information technology in the auto
insurance market, where only the transaction prices of selected insurance plans are
observed. In this market, insurance companies employ risk-based pricing. For each
consumer, an insurance company generates a noisy estimate of their risk type and
prices accordingly. Our goal is to quantify the heterogeneity in insurers’ information
technology, as measured by the dispersion of their risk estimates. Since the shape
of the offered price distribution reflects the distribution of risk estimates, allowing
for flexible estimation of the offered price distribution is crucial.

We nonparametrically estimate each insurance company’s offered price distribution
using our functional contraction approach. In this application, we assume that the
offered prices across different firms are independent, conditional on the consumer’s
true risk type, which is estimated using a panel of ex-post realized claim records
over multiple years.

In Figure 2.2, we plot the nonparamtrically estimated density functions for prices
from several firms. These distributions vary significantly, with noticeable differ-
ences in mean, variance, and skewness, across firms, suggesting substantial het-
erogeneity in their information technology and pricing strategies. Building on
this estimation, we further estimate the price sensitivity parameter, firm-specific
unobserved heterogeneity (e.g., service quality or brand loyalty), and each firm’s
information precision. Our findings provides key insight for analyzing competition
under various forms of supply-side heterogeneity in this market (Cosconati et al.,
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Figure 2.2: Estimated density functions

2024).

From a practical point of view, our iterative procedure to numerically solve for
the offered price distributions given demand parameters is easy to implement and
performs well in practice. In our empirical application using data from 11 insurers,
the iterative algorithm converges very quickly, typically requiring only 6–7 iterations.

Auctions with Missing Bids
In certain auctions, not all bids are available, either due to the auction’s structure or
incomplete data. For instance, in Dutch auctions, only the winning bid is recorded,
as the auction concludes as soon as the first bid is placed. Allen, Clark, Hickman,
et al. (2024) study FDIC auctions for insolvent banks, where only the winning
and the second-highest bids are recorded. Similarly, U.S. Forest Service timber
auctions record only the top fourteen bids, while the Washington State Department
of Transportation publishes only the three lowest bids for their highway procurement
auctions.

The existing literature has shown that certain types of auction models can be iden-
tified using only winning bids or transaction prices. For example, Athey and Haile
(2002) show that the symmetric IPV models are identified with the transaction price
by exploiting a one-to-one mapping between an order statistic and its parent distri-
bution. Komarova (2013) analyzes asymmetric second-price auctions where only
the winning bids and the winner’s identity are observed. A related result for gen-
eralized competing risks models can be found in Meilijson (1981). More recently,
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Guerre and Y. Luo (2019) examine nonparametric identification of symmetric IPV
first-price auctions with only winning bids, accounting for unobserved competition.

Our method is valuable for nonparametrically recovering the complete bid distribu-
tion and the auctioneer’s scoring weights in multi-attribute auctions when the data
contain only the winning bids and winner’s identity, particularly in the presence
of bidder asymmetry.13 Auctions in many settings have used the scoring rule that
departs from the lowest bid criterion by accounting for quality differences (Asker
and Cantillon, 2008; Lewis and Bajari, 2011; Nakabayashi, 2013; Yoganarasimhan,
2016; Takahashi, 2018; Krasnokutskaya, Song, and Tang, 2020; Allen, Clark, Hick-
man, et al., 2024). Our selection model is closely related to Krasnokutskaya, Song,
and Tang (2020), which employs a discrete choice framework with unknown, buyer-
specific weights in the scoring rule. We allow the scoring rule to depend on both
observed (𝑥𝑖 𝑗 ) and unobserved bidder heterogeneity (𝜉 𝑗 ), with the error term (𝜀𝑖 𝑗 )
capturing uncertainty in the scoring rule.14

Beyond independent private value models, our method can be applied to certain
common value auction models, such as the mineral rights model, where bidders’
signals are assumed to be independent conditional on the common value. In these
auctions, we can recover the bid distributions conditional on the ex-post realized
common value.

Roy Models
Another important application of our method is estimating Roy models (Roy, 1951)
in labor market contexts. Variants of the Roy model have been widely used in
the literature to study decisions such as whether to continue schooling (Willis and
Rosen, 1979), which occupation to pursue (Heckman and Sedlacek, 1985), whether
to join a union (L.-F. Lee, 1978), and whether to migrate (Borjas, 1987). Our
selection model falls within the framework of "Generalized Roy Model", as defined
by Heckman and Vytlacil (2007). We allow the utility that individual 𝑖 gains from
alternative 𝑗 to depend not only on prices (or wages in labor market contexts) but
also on non-pecuniary aspects of the alternative, either observable or unobservable

13Flexibly accommodating bidder asymmetries is known to be challenging in auction models
(see discussions in the handbook chapter by Athey and Haile, 2007). Bidder asymmetries may arise
from factors such as distance to the contract location (Flambard and Perrigne, 2006), information
advantages (Hendricks and Porter, 1988; De Silva, Kosmopoulou, and Lamarche, 2009), varying
risk attitudes (Campo, 2012), or strategic sophistication (Hortaçsu et al., 2019).

14Other recent papers that consider unknown weights in the scoring rule include Takahashi (2018)
and Allen, Clark, Hickman, et al. (2024).
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to the econometrician. The comparison between our approach and standard two-step
methods for estimating Roy models has already been discussed in the introduction;
therefore, we do not reiterate it here.

2.7 Conclusion
We introduce a novel method for estimating nonseparable selection models when
only a selected sample of outcomes is observed. We show that potential outcome
distributions can be nonparametrically identified from the observed distribution of
selected outcomes, given a selection function. We achieve this by constructing
an operator whose fixed point represents the potential outcome distributions and
proving that this operator is a functional contraction. Building on this theoretical
result, we propose a two-step semiparametric maximum likelihood estimator for
both the selection function and potential outcome distributions. The consistency
and asymptotic normality of the proposed estimator are established.

Our approach fundamentally differs from the classic two-step method for addressing
sample selection bias. We allow the outcome equation to be fully nonparametric and
nonseparable in error terms. Our goal is to recover the entire distribution of potential
outcomes rather than focusing on specific moments or quantiles. In essence, we
correct for sample selection bias across the entire distribution of potential outcomes
by examining how the bias is systematically generated by the selection model. This
approach allows for fully heterogeneous effects of covariates on outcomes, which
is a crucial feature for empirical analysis, as discussed in Chernozhukov, Iván
Fernández-Val, and S. Luo, 2023. Another key advantage of our approach is that
it does not rely on instruments to exogenously shift selection probabilities, which
are often challenging to find in empirical settings, or on identification-at-infinity
arguments. Our approach also accommodates asymmetry in outcome distributions
across alternatives and flexibly incorporates unobserved alternative-specific hetero-
geneity in the selection model.

We find that the proposed estimation strategy performs well in both simulations and
real-world data applications (see our demand estimation using insurance market data
in Cosconati et al., 2024). Moreover, our approach is straightforward to implement
and computationally efficient, making it highly appealing to empirical researchers.
The estimator can be readily applied to a variety of empirical settings where only a
selected sample of outcomes is observed, including consumer demand models with
only transaction prices, auctions with incomplete bid data, and various selection
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models in labor economics. Our method is particularly valuable in applications
where the entire distribution of outcomes is of interest.
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2.8 Connection to Quantal Response Equilibria
In this section, we connect our result to the quantal response equilibria (McKelvey
and Palfrey, 1995).

Let us rename our variables. There is a set J = {1, 2, · · · , 𝐽} of players. For each
player 𝑗 ∈ J , there is a finite set 𝑃 𝑗 = {𝑝 𝑗1, 𝑝 𝑗2, · · · , 𝑝 𝑗𝑛 𝑗 } ⊂ [𝑝 𝑗 , 𝑝 𝑗 ] consisting
of 𝑛 𝑗 pure strategies. A payoff function 𝑓 :

∏
𝑗∈J 𝑃 𝑗 → Δ(J) assigns payoff 𝑓 𝑗

to player 𝑗 . Let 𝑔 𝑗 ∈ Δ𝑃 𝑗 denote player 𝑗’ mixed strategy and 𝑔 =
∏

𝑗∈J 𝑔 𝑗 . The
player 𝑗’s expected payoff for playing pure strategy 𝑝 𝑗 , given other players’ strategy
𝑔− 𝑗 , is

𝑃𝑟 𝑗 (𝑝 𝑗 ; 𝑔) =
∫
𝒑− 𝑗

𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
∏
𝑘≠ 𝑗

𝑔𝑘 (𝑝𝑘 ).

We define the quantal response operator T :
∏

𝑗 Δ(𝑃 𝑗 ) →
∏

𝑗 Δ(𝑃 𝑗 ) by

(T𝑔) 𝑗 (𝑝 𝑗 ) =
exp(−𝜆𝑃𝑟 𝑗 (𝑝 𝑗 ; 𝑔))∑

𝑝 𝑗∈𝑃 𝑗 exp(−𝜆𝑃𝑟 𝑗 (𝑝 𝑗 ; 𝑔))
.

In words, given the expected payoff 𝑃𝑟 𝑗 (𝑝 𝑗 ; 𝑔), player 𝑗’s probability of playing
strategy 𝑝 𝑗 is proportional to exp(−𝜆𝑃𝑟 𝑗 (𝑝 𝑗 ; 𝑔)). Lemma 1 in McKelvey and
Palfrey, 1995 states that operator T is a contraction for a sufficiently small 𝜆. This
is intuitive as T sends probability measures to the center of the simplex when 𝜆 is
small.

Note that our operator 𝑇 is quite different. By definition,

(𝑇Ψ) 𝑗 (𝑝) =

∫ 𝑝

𝑝
𝑗

𝑑�̃� 𝑗 (𝑦)/𝑃𝑟 𝑗 (𝑦;Ψ)∫ 𝑝 𝑗

𝑝
𝑗

𝑑�̃� 𝑗 (𝑦)/𝑃𝑟 𝑗 (𝑦;Ψ)
.

Given the expected probability 𝑃𝑟 , to compute the new measure, each 𝑝 𝑗 is weighted
by 𝑑�̃� (𝑝 𝑗 ), where �̃� can be any measure. This distinction complicates our problem.
With the sup norm, McKelvey and Palfrey, 1995 show that T is a contraction for
sufficiently small 𝜆. However, the presence of �̃� renders the sup norm not suitable
for our task. Instead, our metric 𝑑 is designed specifically to deal with �̃�.
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2.9 Omitted Proofs
Proof of Theorem 3
Lemma 9. For two probability measures 𝑆, 𝑄 ∈ Δ(𝑌 ), 𝛿 > 0,

sup
𝑑 (𝑆,𝑄)≤𝛿

| |𝑆 −𝑄 | |𝑇𝑉 ≤ 𝛿/2.

Proof of Lemma 9. We first consider the case where 𝑌 contains only two elements.
Then we can identify 𝑆 with (𝑝, 1) for some 𝑝 ∈ [0, 1]. We can pin down the 𝑄
that achieves the maximum | |𝑆 − 𝑄 | |𝑇𝑉 under the constraint that 𝑑 (𝑆, 𝑄) ≤ 𝛿. At
the maximum, this constraint is binding. Let 𝑄 = (𝑝 − 𝜖, 1). By 𝑑 (𝑆, 𝑄) = 𝛿,

ln
𝑝

𝑝 − 𝜖 + ln
1 − 𝑝 + 𝜖

1 − 𝑝 = 𝛿. (2.13)

We can solve for 𝜖
𝜖 =

𝑝(1 − 𝑝) (𝑒𝛿 − 1)
𝑝 + (1 − 𝑝)𝑒𝛿

.

Plug this into the total variation norm

1
2
| |𝑆 −𝑄 | |𝑇𝑉 = 𝜖 = (𝑒𝛿 − 1) [ 1

1 − 𝑝 +
𝑒𝛿

𝑝
]−1.

Then we take sup over 𝑝. Note that 1
1−𝑝 +

𝑒𝛿

𝑝
as a function of 𝑝 is convex and achieves

a unique minimum at 𝑝 = 𝑒𝛿/2

1+𝑒𝛿/2 . As a result,

sup
𝑑 (𝑆,𝑄)≤𝛿

1
2
| |𝑆 −𝑄 | |𝑇𝑉 =

(𝑒𝛿 − 1)
(1 + 𝑒𝛿/2)2

=
𝑒𝛿/2 − 1
𝑒𝛿/2 + 1

.

To show sup𝑑 (𝑆,𝑄)≤𝛿 | |𝑆 −𝑄 | |𝑇𝑉 ≤ 𝛿/2, it suffices to show that for all 𝛿 ≥ 0,

𝑒𝛿/2 − 1
𝑒𝛿/2 + 1

≤ 𝛿/4

which holds true.15 Note that the limiting case 𝛿 → 0, 𝑝 = 1
2 , 𝜖 = 𝛿

4 achieves this
upper bound.

15To see this,

𝑒𝛿 − 1
𝑒𝛿 + 1

≤ 𝛿/2

⇔1 − 2
𝑒𝛿 + 1

≤ 𝛿
2

⇔2 − 𝛿 ≤ 4
𝑒𝛿 + 1

which is true since function 4
𝑒𝛿+1 is convex and is tangent to the function 2 − 𝛿 at 𝛿 = 0.
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Now we prove this lemma for a general space 𝑌 and general CDF. For any 𝑆, 𝑄 ∈
Δ(𝑌 ) and 𝑑 (𝑆, 𝑄) ≤ 𝛿. Define two functions

𝑃𝑄 (𝑆, 𝑄) =
∫
𝑦∈𝑌 : 𝑑𝑆

𝑑𝑄
(𝑦)≥1

𝑑𝑄(𝑦)

𝑃𝑆 (𝑆, 𝑄) =
∫
𝑦∈𝑌 : 𝑑𝑆

𝑑𝑄
(𝑦)≥1

𝑑𝑆(𝑦).

Note that
𝑃𝑆 (𝑆, 𝑄)
𝑃𝑄 (𝑆, 𝑄)

≤ ess sup
𝑦∈𝑌

𝑑𝑆

𝑑𝑄
(𝑦)

1 − 𝑃𝑄 (𝑆, 𝑄)
1 − 𝑃𝑆 (𝑆, 𝑄)

≤ ess sup
𝑦∈𝑌

𝑑𝑄

𝑑𝑆
(𝑦)

which implies

ln
𝑃𝑆 (𝑆, 𝑄)
𝑃𝑄 (𝑆, 𝑄)

+ ln
1 − 𝑃𝑄 (𝑆, 𝑄)
1 − 𝑃𝑆 (𝑆, 𝑄)

≤ ess sup ln
𝑑𝑆

𝑑𝑄
(𝑦) + ess sup ln

𝑑𝑄

𝑑𝑆
(𝑦) ≤ 𝛿

since 𝑑 (𝑆, 𝑄) ≤ 𝛿. Observe that here 𝑃𝑆 (𝑆, 𝑄) faces the same constraint as 𝑝 in the
two-point support case in Equation (2.13). Thus, the total variation norm

| |𝑆 −𝑄 | |𝑇𝑉 = 2[𝑃𝑆 (𝑆, 𝑄) − 𝑃𝑄 (𝑆, 𝑄)] ≤ 𝛿/2.

□

Proof of Theorem 3. Recall that

𝑃𝑟 𝑗 (𝑝 𝑗 ;Ψ) =
∫
𝒑− 𝑗

𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
∏
𝑘,𝑘≠ 𝑗

𝑑Ψ𝑘 (𝑝𝑘 ).

Define the ratio function

𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ) =
𝑃𝑟 𝑗 (𝑝 𝑗 ;Ψ)
𝑃𝑟 𝑗 (𝑝 𝑗 ;Φ)

.

We show that for all Ψ,Φ ∈ ∏ 𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]),

𝐷 (𝑇Ψ, 𝑇Φ) ≤ 𝜌𝐷 (Ψ,Φ).

Given Equation (2.7) and the definition of the metric 𝑑, we have

𝑑 ((𝑇Ψ) 𝑗 , (𝑇Φ) 𝑗 ) ≤ sup
𝑝 𝑗

ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ) − inf
𝑝 𝑗

ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ).
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The equality holds when �̃� 𝑗 admits full support on [𝑝
𝑗
, 𝑝 𝑗 ]. Thus, it suffices to

show that for all 𝑗 ∈ J

sup
𝑝 𝑗

ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ) − inf
𝑝 𝑗

ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ) ≤ 𝜌𝐷 (Ψ,Φ) (2.14)

We evaluate how the log ratio changes with 𝑝 𝑗 ,

𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

=

∫
𝒑− 𝑗

𝜕 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

∏
𝑘,𝑘≠ 𝑗 𝑑Ψ𝑘 (𝑝𝑘 )∫

𝒑− 𝑗
𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

∏
𝑘,𝑘≠ 𝑗 𝑑Ψ𝑘 (𝑝𝑘 )

−

∫
𝒑− 𝑗

𝜕 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

∏
𝑘,𝑘≠ 𝑗 𝑑Φ𝑘 (𝑝𝑘 )∫

𝒑− 𝑗
𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

∏
𝑘,𝑘≠ 𝑗 𝑑Φ𝑘 (𝑝𝑘 )

(2.15)

=

∫
𝒑− 𝑗

𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

𝑓 𝑗
∏
𝑘,𝑘≠ 𝑗 𝑑Ψ𝑘 (𝑝𝑘 )∫

𝒑− 𝑗
𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

∏
𝑘,𝑘≠ 𝑗 𝑑Ψ𝑘 (𝑝𝑘 )

−

∫
𝒑− 𝑗

𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

𝑓 𝑗
∏
𝑘,𝑘≠ 𝑗 𝑑Φ𝑘 (𝑝𝑘 )∫

𝒑− 𝑗
𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

∏
𝑘,𝑘≠ 𝑗 𝑑Φ𝑘 (𝑝𝑘 )

.

(2.16)

Next, we define a new measure 𝑓 𝑗Ψ− 𝑗 ∈ Δ(
∏
𝑘≠ 𝑗 [𝑝𝑘 , 𝑝𝑘 ])

𝑓 𝑗Ψ− 𝑗 (𝑦) =

∫ 𝑦

𝒑− 𝑗
𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

∏
𝑘,𝑘≠ 𝑗 𝑑Ψ𝑘 (𝑝𝑘 )∫

𝒑− 𝑗
𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

∏
𝑘,𝑘≠ 𝑗 𝑑Ψ𝑘 (𝑝𝑘 )

.

Similarly, we define measure 𝑓 𝑗Φ− 𝑗 ∈ Δ(∏𝑘≠ 𝑗 [𝑝𝑘 , 𝑝𝑘 ]). (Both measures depend
on 𝑝 𝑗 .) Given these measures, we can rewrite Equation (2.16)

𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

= E
𝒑− 𝑗∼ 𝑓 𝑗Ψ− 𝑗

𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

− E
𝒑− 𝑗∼ 𝑓 𝑗Φ− 𝑗

𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

(2.17)

=

∫
𝒑− 𝑗

𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

[𝑑𝑓 𝑗Ψ− 𝑗 ( 𝒑− 𝑗 ) − 𝑑𝑓 𝑗Φ− 𝑗 ( 𝒑− 𝑗 )] . (2.18)

We shall upper bound this integral under the constraint 𝐷 (Ψ,Φ) ≤ 𝛿 for some
arbitrary 𝛿 > 0.

sup
𝐷 (Ψ,Φ)≤𝛿

����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

���� = sup
𝐷 (Ψ,Φ)≤𝛿

���� ∫
𝒑− 𝑗

𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

[𝑑𝑓 𝑗Ψ− 𝑗 ( 𝒑− 𝑗 ) − 𝑑𝑓 𝑗Φ− 𝑗 ( 𝒑− 𝑗 )]
����

≤𝑀 𝑗 sup
𝐷 (Ψ,Φ)≤𝛿

1
2
| | 𝑓 𝑗Ψ− 𝑗 − 𝑓 𝑗Φ− 𝑗 | |𝑇𝑉 .

The inequality follows by interpreting the integral as a transportation problem. We
transport the mass from distribution 𝑓 𝑗Φ− 𝑗 to 𝑓 𝑗Ψ− 𝑗 . The function 𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

𝜕𝑝 𝑗
is
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the height. Then the integral is the change in the gravitational potential, which is
bounded by the product of the total transportation mass 1

2 | | 𝑓 𝑗Ψ− 𝑗 − 𝑓 𝑗Φ− 𝑗 | |𝑇𝑉 and
the largest height difference, 𝑀 𝑗 . Note that given 𝐷 (Ψ,Φ) ≤ 𝛿,

𝑑 ( 𝑓 𝑗Ψ− 𝑗 , 𝑓 𝑗Φ− 𝑗 ) = 𝑑 (Ψ− 𝑗 ,Φ− 𝑗 ) ≤ (𝐽 − 1)𝛿,

as for all 𝑗 , 𝑑 (Ψ 𝑗 ,Φ 𝑗 ) ≤ 𝐷 (Ψ,Φ) ≤ 𝛿. Thus, for all 𝛿 > 0,

sup
𝐷 (Ψ,Φ)≤𝛿

����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

���� ≤𝑀 𝑗 sup
𝐷 (Ψ,Φ)≤𝛿

1
2
| | 𝑓 𝑗Ψ− 𝑗 − 𝑓 𝑗Φ− 𝑗 | |𝑇𝑉

≤𝑀 𝑗 sup
𝑑 ( 𝑓 𝑗Ψ− 𝑗 , 𝑓 𝑗Φ− 𝑗 )≤(𝐽−1)𝛿

1
2
| | 𝑓 𝑗Ψ− 𝑗 − 𝑓 𝑗Φ− 𝑗 | |𝑇𝑉

≤𝑀 𝑗

1
4
(𝐽 − 1)𝛿, (2.19)

where the last inequality follows by Lemma 9. By Lemma 10,

sup
Ψ,Φ

����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

1
𝐷 (Ψ,Φ)

���� = sup
𝐷 (Ψ,Φ)≤𝛿

����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

1
𝐷 (Ψ,Φ)

���� ≤ 𝐽 − 1
4

𝑀 𝑗 .

To see why the inequality holds, towards a contradiction, suppose it does not hold.
Then there exists Ψ̃, Φ̃ with 𝐷 (Ψ̃, Φ̃) = 𝛿1 and����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ; Ψ̃, Φ̃)

𝑑𝑝 𝑗

1
𝐷 (Ψ̃, Φ̃)

���� > 𝐽 − 1
4

𝑀 𝑗����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ; Ψ̃, Φ̃)
𝑑𝑝 𝑗

���� > 𝐽 − 1
4

𝑀 𝑗𝐷 (Ψ̃, Φ̃)

which implies that

sup
𝐷 (Ψ,Φ)≤𝛿1

����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

1
𝐷 (Ψ,Φ)

���� ≥ ����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ; Ψ̃, Φ̃)
𝑑𝑝 𝑗

1
𝐷 (Ψ̃, Φ̃)

���� > 𝐽 − 1
4

𝑀 𝑗

contradicting Equation (2.19) which holds for all 𝛿 > 0.

By the fundamental theorem of calculus, for all 𝑝 𝑗 , 𝑝′𝑗 ∈ [𝑝 𝑗 , 𝑝 𝑗 ],

sup
Ψ,Φ

���� ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ) − ln 𝑅 𝑗 (𝑝′𝑗 ;Ψ,Φ)
𝐷 (Ψ,Φ)

���� ≤ 𝐽 − 1
4

𝑀 𝑗 (𝑝 𝑗 − 𝑝 𝑗 ).

Finally, for all 𝑗 ∈ J , all Ψ, Φ,

sup
𝑝 𝑗

ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ) − inf
𝑝 𝑗

ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ) ≤ 𝜌𝐷 (Ψ,Φ).

□
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Lemma 10. For all 𝛿 > 0,

sup
Ψ,Φ

����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

1
𝐷 (Ψ,Φ)

���� = sup
Ψ,Φ,𝐷 (Ψ,Φ)≤𝛿

����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

1
𝐷 (Ψ,Φ)

����.
(2.20)

Proof of Lemma 10. We prove this lemma through a continuous interpolation. Fix-
ing any Ψ,Φ ∈ ∏

𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]), we define a continuous interpolation Υ(·;𝜆) ∈∏
𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]) parametrized by 𝜆 ∈ [0, 1]:

Υ𝑗 (𝑝 𝑗 ;𝜆) =

∫ 𝑝 𝑗

𝑝
𝑗

𝑑Φ 𝑗 (𝑦) ·
(
𝑑Ψ 𝑗
𝑑Φ 𝑗
(𝑦)

)𝜆
∫ 𝑝 𝑗

𝑝
𝑗

𝑑Φ 𝑗 (𝑦) ·
(
𝑑Ψ 𝑗
𝑑Φ 𝑗
(𝑦)

)𝜆
Notice that Υ(·; 0) = Φ, Υ(·; 1) = Ψ. Moreover,

𝑑 (Υ𝑗 (·;𝜆1),Υ𝑗 (·;𝜆2)) = |𝜆1 − 𝜆2 |𝑑 (Ψ 𝑗 ,Φ 𝑗 ).

Thus, in our metric space, Υ(·;𝜆) is an interpolation that is linear in the metric.16

That is, for all 𝜆1, 𝜆2 ∈ [0, 1],

𝐷 (Υ(·;𝜆1),Υ(·;𝜆2)) = |𝜆1 − 𝜆2 |𝐷 (Ψ,Φ).

We define a new function by adapting Equation (2.17).

𝑘 (𝜆) = E
𝒑− 𝑗∼ 𝑓 𝑗Υ− 𝑗 (·;𝜆)

𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

− E
𝒑− 𝑗∼ 𝑓 𝑗Φ− 𝑗

𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

.

Notice that when 𝜆 = 1, this reduces to Equation (2.17). As 𝑘 is continuously
differentiable, there exists 0 ≤ 𝜆 < 𝜆 + 𝑑𝜆 ≤ 1 and 𝑑𝜆 ≤ 𝛿

𝐷 (Ψ,Φ) such that

|𝑘 (1) | ≤
���� 𝑘 (𝜆 + 𝑑𝜆) − 𝑘 (𝜆)𝑑𝜆

����
16Note that Υ(·;𝜆) is also a linear interpolation in the Kullback-Leibler divergence, since

𝐷𝐾𝐿 (Φ| |Υ(·;𝜆)) = 𝜆𝐷𝐾𝐿 (Φ| |Ψ)

and
𝐷𝐾𝐿 (Ψ| |Υ(·;𝜆)) = (1 − 𝜆)𝐷𝐾𝐿 (Ψ| |Φ).
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This is equivalent to���� 𝑘 (1)
𝐷 (Ψ,Φ)

���� ≤ ���� 𝑘 (𝜆 + 𝑑𝜆) − 𝑘 (𝜆)𝑑𝜆𝐷 (Ψ,Φ)

����
⇔

����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

1
𝐷 (Ψ,Φ)

���� ≤ ����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Υ(·;𝜆 + 𝑑𝜆),Υ(·;𝜆))
𝑑𝑝 𝑗

1
𝑑𝜆𝐷 (Ψ,Φ)

����
⇔

����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

1
𝐷 (Ψ,Φ)

���� ≤ ����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Υ(·;𝜆 + 𝑑𝜆),Υ(·;𝜆))
𝑑𝑝 𝑗

1
𝐷 (Υ(·;𝜆 + 𝑑𝜆),Υ(·;𝜆))

����
As 𝐷 (Υ(·;𝜆 + 𝑑𝜆),Υ(·;𝜆)) = 𝑑𝜆𝐷 (Ψ,Φ) ≤ 𝛿, we have established Equation
(2.20). □

Proof of Theorem 4
Proof of Theorem 4. With Assumption 1, we can provide tighter bound on the right-
hand side of Equation (2.18).

sup
𝐷 (Ψ,Φ)≤𝛿

����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

����
= sup
𝐷 (Ψ,Φ)≤𝛿

���� ∫
𝒑− 𝑗

𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )
𝜕𝑝 𝑗

[𝑑𝑓 𝑗Ψ− 𝑗 ( 𝒑− 𝑗 ) − 𝑑𝑓 𝑗Φ− 𝑗 ( 𝒑− 𝑗 )]
����

≤
[
𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

𝜕𝑝 𝑗
−
𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

𝜕𝑝 𝑗

]
sup

𝐷 (Ψ,Φ)≤𝛿

1
2
| | 𝑓 𝑗Ψ− 𝑗 − 𝑓 𝑗Φ− 𝑗 | |𝑇𝑉

≤
[
𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

𝜕𝑝 𝑗
−
𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

𝜕𝑝 𝑗

]
𝐽 − 1

4
𝛿.

By Lemma 10,

sup
Ψ,Φ

����𝑑 ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ)
𝑑𝑝 𝑗

1
𝐷 (Ψ,Φ)

���� ≤ 𝐽 − 1
4

[
𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

𝜕𝑝 𝑗
−
𝜕 ln 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 )

𝜕𝑝 𝑗

]
.

By the fundamental theorem of calculus, for all 𝑝 𝑗 , 𝑝′𝑗 ∈ [𝑝 𝑗 , 𝑝 𝑗 ],

sup
Ψ,Φ

���� ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ) − ln 𝑅 𝑗 (𝑝′𝑗 ;Ψ,Φ)
𝐷 (Ψ,Φ)

���� ≤ 𝜌∗.
Finally, for all 𝑗 ∈ J , all Ψ, Φ,

sup
𝑝 𝑗

ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ) − inf
𝑝 𝑗

ln 𝑅 𝑗 (𝑝 𝑗 ;Ψ,Φ) ≤ 𝜌∗𝐷 (Ψ,Φ).

□
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Proof of Theorem 5
Proof of Proposition 5. Suppose 𝜌 < 1. By Theorem 3, the operator 𝑇 is a
contraction. This implies that 𝐹 is surjective, since for any �̃�, we can take a
Ψ ∈ ∏ 𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]),

𝐹 ( lim
𝑛→∞

𝑇𝑛Ψ) = �̃�.

Moreover, 𝐹 is injective. Towards a contradiction, suppose 𝐹 maps both𝐺1 ≠ 𝐺2 ∈∏
𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]) to the same �̃�. Then both 𝐺1 and 𝐺2 are fixed points for operator

𝑇 , contradicting contraction.

The mapping 𝐹 is continuous by Equation (2.1) and (2.2). Take two offered distri-
butions 𝐺 and 𝐺′. By Equation (2.2) and the definition of our metric,

𝑑 (𝐹 (𝐺) 𝑗 , 𝐹 (𝐺′) 𝑗 ) = ln ess sup
𝑝∈[𝑝

𝑗
,𝑝 𝑗 ]

(
𝑑𝐺 𝑗

𝑑𝐺′
𝑗

(𝑝)
𝑃𝑟 𝑗 (𝑝;𝐺)
𝑃𝑟 𝑗 (𝑝;𝐺′)

)
+ ln ess sup

𝑝∈[𝑝
𝑗
,𝑝 𝑗 ]

(
𝑑𝐺′

𝑗

𝑑𝐺 𝑗

(𝑝)
𝑃𝑟 𝑗 (𝑝;𝐺′)
𝑃𝑟 𝑗 (𝑝;𝐺)

)
≤ ln ess sup

𝑝∈[𝑝
𝑗
,𝑝 𝑗 ]

𝑑𝐺 𝑗

𝑑𝐺′
𝑗

(𝑝) + ln ess sup
𝑝∈[𝑝

𝑗
,𝑝 𝑗 ]

𝑑𝐺′
𝑗

𝑑𝐺 𝑗

(𝑝)

+ ln sup
𝑝∈[𝑝

𝑗
,𝑝 𝑗 ]

(
𝑃𝑟 𝑗 (𝑝;𝐺)
𝑃𝑟 𝑗 (𝑝;𝐺′)

)
+ ln sup

𝑝∈[𝑝
𝑗
,𝑝 𝑗 ]

(
𝑃𝑟 𝑗 (𝑝;𝐺′)
𝑃𝑟 𝑗 (𝑝;𝐺)

)
≤ 𝐷 (𝐺,𝐺′) + 𝜌𝐷 (𝐺,𝐺′),

where the last inequality is by Equation (2.14). Consequently,

𝐷 (𝐹 (𝐺), 𝐹 (𝐺′)) ≤ (1 + 𝜌)𝐷 (𝐺,𝐺′),

𝐹 is Lipschitz continuous with Lipschitz constant 1 + 𝜌.

Next, we show 𝐹−1 is Lipschitz continuous. Take two selected distributions �̃� ≠

�̃�′ ∈ ∏ 𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]) where �̃� = 𝐹 (𝐺). Let 𝑇�̃� and 𝑇�̃�′ denote the corresponding
operator 𝑇 . Here we express dependence on the selected distribution. Note that

𝐷 (�̃�, �̃�′) = 𝐷 (𝑇�̃�𝐺,𝑇�̃�′𝐺) = 𝐷 (𝐺,𝑇�̃�′𝐺),

where the first equality is by the definition of the operator 𝑇 and the metric 𝐷, while
the second equality is by 𝐺 being a fixed point of 𝑇�̃� . Observe that

𝐷 (𝑇 𝑘
�̃�′
𝐺,𝑇 𝑘+1

�̃�′
𝐺) ≤ 𝜌𝑘𝐷 (𝐺,𝑇�̃�′𝐺) = 𝜌𝑘𝐷 (�̃�, �̃�′)
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𝐷 (𝐹−1(�̃�), 𝐹−1(�̃�′)) = 𝐷 (𝐺, 𝐹−1(�̃�′)) =𝐷 (𝐺,𝑇∞
�̃�′
𝐺)

≤
∞∑︁
𝑘=0

𝐷 (𝑇 𝑘
�̃�′
𝐺,𝑇 𝑘+1

�̃�′
𝐺)

≤
∞∑︁
𝑘=0

𝜌𝑘𝐷 (�̃�, �̃�′)

=
1

1 − 𝜌𝐷 (�̃�, �̃�
′),

where the first inequality is by triangular inequality. This proves that 𝐹−1 is Lipschitz
continuous with Lipschitz constant 1

1−𝜌 . □

For proofs below, it suffices to prove the case without variable 𝑥. So we shall drop
it. We next prove the consistency result (Proposition 5). The proof requires a
combination of Lemma 11-14 below. We first collect useful notations below. Let

𝑄0(𝜃) =
∑︁
𝑗

ln
(
𝑃𝑟𝑜𝑏∗𝑗 (𝜃, �̃�)

) ∫
𝒑
𝑓 𝑗 ( 𝒑; 𝜃0)𝑑𝐺 ( 𝒑).

�̂�∗𝑛 (𝜃) =
1
𝑛

𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑦𝑖 𝑗 ln
(
𝑃𝑟𝑜𝑏∗𝑗 (𝜃, �̂�)

)
,

𝑃𝑟𝑜𝑏∗𝑗 (𝜃, �̂�) =
∫
𝒑
𝑓 𝑗 ( 𝒑; 𝜃)𝑑𝐹−1(�̂�, 𝜃) ( 𝒑).

�̂�𝑛,𝑚 (𝜃) =
1
𝑛

𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑦𝑖 𝑗 ln
(
𝑃𝑟𝑜𝑏 𝑗 (𝜃, �̂�, 𝑚)

)
,

𝑃𝑟𝑜𝑏 𝑗 (𝜃, �̂�, 𝑚) =
∫
𝒑
𝑓 𝑗 ( 𝒑; 𝜃)𝑑

(
𝑇𝑚
�̂�,𝜃

Ψ
)
( 𝒑).

�̂�𝑛 (𝜃) =
1
𝑛

𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑦𝑖 𝑗 ln
(
𝑃𝑟𝑜𝑏 𝑗 (𝜃, �̂�, 𝑚(𝑛))

)
,

𝔤∗(𝑧𝑖, 𝜃, �̂�) = ∇𝜃
( 𝐽∑︁
𝑗=1

𝑦𝑖 𝑗 ln 𝑃𝑟𝑜𝑏∗𝑗 (𝜃, �̂�)
)
,

𝔤(𝑧𝑖, 𝜃, �̂�, 𝑛) = ∇𝜃
( 𝐽∑︁
𝑗=1

𝑦𝑖 𝑗 ln 𝑃𝑟𝑜𝑏 𝑗 (𝜃, �̂�, 𝑚(𝑛))
)
.

Lemma 11. 𝐹−1(�̂�, 𝜃) is continuous in 𝜃.
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Proof of Lemma 11. Let 𝜃, 𝜃′ ∈ Θ. Let

�̃� = 𝐹 (𝐺; 𝜃)
𝐺′ = 𝐹−1(�̃�; 𝜃′)
�̃�′ = 𝐹 (𝐺′; 𝜃).

As 𝜃′ → 𝜃, by 𝐹 (𝐺′; 𝜃) being continuous in 𝜃, �̃� → �̃�′. By 𝐹−1(�̃�; 𝜃) being
continuous in �̃� (Proposition 5), 𝐹−1(�̃�; 𝜃) → 𝐹−1(�̃�′; 𝜃). This is equivalent to
𝐺′→ 𝐺, which is 𝐹−1(�̃�; 𝜃′) → 𝐹−1(�̃�; 𝜃). This implies that 𝐹−1 is continuous in
𝜃.

□

For the next lemma, we view 𝐹−1(𝜃; �̂�) as a function of 𝜃 parametrized by �̂�.

Lemma 12. The function 𝐹−1(𝜃; �̂�) is equicontinuous in 𝜃, i.e., for all 𝜃 ∈ Θ, 𝜖 > 0,
there exists a 𝛿 > 0 such that for all |𝜃′ − 𝜃 | < 𝛿, �̂� ∈ ∏ 𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]),

𝐷 (𝐹−1(𝜃; �̂�), 𝐹−1(𝜃′; �̂�)) ≤ 𝜖 .

Proof of Lemma 12. Since the function 𝑓 is continuous on a compact set
∏

𝑗 [𝑝 𝑗 , 𝑝 𝑗 ]×
Θ and the image of 𝑓 is in the interior of the simplex, there exists 𝑓 and 𝑓 ,
0 < 𝑓 ≤ 𝑓 < 1 such that for all 𝑗 ∈ J , 𝜃 ∈ Θ, 𝒑 ∈ ∏ 𝑗 [𝑝 𝑗 , 𝑝 𝑗 ],

𝑓 < 𝑓 𝑗 ( 𝒑; 𝜃) < 𝑓 .

Consequently, for all 𝑗 ∈ J , 𝜃 ∈ Θ, 𝑝 𝑗 ∈ [𝑝
𝑗
, 𝑝 𝑗 ], 𝐺 ∈

∏
𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]),

𝑓 < 𝑃𝑟 𝑗 (𝑝 𝑗 ;𝐺, 𝜃) < 𝑓 . (2.21)

Moreover, since the function 𝑓 is continuous on a compact set
∏

𝑗 [𝑝 𝑗 , 𝑝 𝑗 ] × Θ, 𝑓
is uniformly continuous. Thus, for any 𝜖′ > 0, there exists a 𝛿′ > 0 such that for all
𝑗 ∈ J , 𝒑 ∈ ∏ 𝑗 [𝑝 𝑗 , 𝑝 𝑗 ], 𝜃, 𝜃

′ ∈ Θ with |𝜃 − 𝜃′| < 𝛿′,

| 𝑓 𝑗 ( 𝒑, 𝜃) − 𝑓 𝑗 ( 𝒑, 𝜃′) | < 𝜖′.

Therefore, for all 𝑗 ∈ J , 𝑝 𝑗 ∈ [𝑝
𝑗
, 𝑝 𝑗 ], 𝐺 ∈

∏
𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]), 𝜃, 𝜃

′ ∈ Θ with
|𝜃 − 𝜃′| < 𝛿′,

|𝑃𝑟 𝑗 (𝑝 𝑗 ;𝐺, 𝜃) − 𝑃𝑟 𝑗 (𝑝 𝑗 ;𝐺, 𝜃′) |

=

���� ∫
𝒑− 𝑗

[ 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 ; 𝜃) − 𝑓 𝑗 (𝑝 𝑗 , 𝒑− 𝑗 ; 𝜃′)]
∏
𝑘,𝑘≠ 𝑗

𝑑𝐺𝑘 (𝑝𝑘 )
���� < 𝜖′. (2.22)
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Take an arbitrary �̂� ∈ ∏
𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]). Let 𝐺𝜃 = 𝐹−1(𝜃; �̂�), 𝐺𝜃′ = 𝐹−1(𝜃′; �̂�).

Let 𝑇𝜃 and 𝑇𝜃′ be the operator 𝑇 associated with selected distribution �̂�, when the
parameter is 𝜃 and 𝜃′, respectively: for any Ψ ∈ ∏ 𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]),

(𝑇𝜃Ψ) 𝑗 (𝑝) =

∫ 𝑝

𝑝
𝑗

𝑑�̂� 𝑗 (𝑦)/𝑃𝑟 𝑗 (𝑦;Ψ, 𝜃)∫ 𝑝 𝑗

𝑝
𝑗

𝑑�̂� 𝑗 (𝑦)/𝑃𝑟 𝑗 (𝑦;Ψ, 𝜃)
.

By the definition of metric 𝐷,

𝐷 (𝑇𝜃𝐺𝜃 , 𝑇𝜃′𝐺𝜃) ≤ max
𝑗

[
sup
𝑝

ln
𝑃𝑟 𝑗 (𝑝;𝐺𝜃 , 𝜃)
𝑃𝑟 𝑗 (𝑝;𝐺𝜃 , 𝜃

′) + sup
𝑝

ln
𝑃𝑟 𝑗 (𝑝;𝐺𝜃 , 𝜃

′)
𝑃𝑟 𝑗 (𝑝;𝐺𝜃 , 𝜃)

]
.

By Equation (2.21) and (2.22), for all �̂� ∈ ∏ 𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]), 𝜃, 𝜃
′ ∈ Θ with |𝜃 − 𝜃′| <

𝛿′,

𝐷 (𝑇𝜃𝐺𝜃 , 𝑇𝜃′𝐺𝜃) ≤ 2 ln
𝑓 + 𝜖′

𝑓
,

𝐷 (𝐹−1(𝜃; �̂�), 𝐹−1(𝜃′; �̂�)) =𝐷 (𝐺𝜃 , 𝑇
∞
𝜃′ 𝐺𝜃)

≤
∞∑︁
𝑘=0

𝐷 (𝑇 𝑘𝜃′𝐺𝜃 , 𝑇
𝑘+1
𝜃′ 𝐺𝜃)

≤
∞∑︁
𝑘=0

�̄�𝑘𝐷 (𝐺𝜃 , 𝑇𝜃′𝐺𝜃)

=
1

1 − �̄� 𝐷 (𝑇𝜃𝐺𝜃 , 𝑇𝜃′𝐺𝜃)

≤ 2
1 − �̄� ln

𝑓 + 𝜖′

𝑓
.

Finally, for any 𝜖 > 0, let 𝜖′ be such that 2
1−�̄� ln

𝑓 +𝜖 ′

𝑓
= 𝜖 . The 𝛿′ corresponding to

this 𝜖′ is the desired 𝛿 in the statement of the Lemma.

□

Lemma 13. �̂�∗𝑛 (𝜃) converges uniformly in probability to 𝑄0(𝜃).

Proof of Lemma 13. By Lemma 12 and the uniform continuity of 𝑓 , for all 𝑗 ,
𝑃𝑟𝑜𝑏∗

𝑗
(𝜃; �̂�) is equicontinuous in 𝜃, parametrized by �̂�. That is, for all 𝜃 ∈ Θ,

𝜖 > 0, there exists a 𝛿 > 0 such that for all |𝜃′ − 𝜃 | < 𝛿, �̂� ∈ ∏ 𝑗 Δ( [𝑝 𝑗 , 𝑝 𝑗 ]),

|𝑃𝑟𝑜𝑏∗𝑗 (𝜃; �̂�) − 𝑃𝑟𝑜𝑏∗𝑗 (𝜃′; �̂�) | ≤ 𝜖 .
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Consequently, by Equation (2.21), for all 𝜃 ∈ Θ, 𝜖 > 0, there exists a 𝛿 > 0 such
that for all |𝜃′ − 𝜃 | < 𝛿, {𝑧𝑖}𝑛𝑖=1,

|�̂�∗𝑛 (𝜃) − �̂�∗𝑛 (𝜃′) | ≤ ln
𝑓 + 𝜖
𝑓
.

Thus, �̂�∗𝑛 (𝜃) is equicontinuous in 𝜃.

For all 𝜃 ∈ Θ, �̂�∗𝑛 (𝜃) converges in probability to 𝑄0(𝜃), by the weakly law of
large numbers, �̂�

𝑝
→ �̃�, and 𝐹−1 being continuous (Proposition 5). Lastly, �̂�∗𝑛 (𝜃)

converges uniformly in probability to 𝑄0(𝜃), as �̂�∗𝑛 is equicontinuous in 𝜃 (Lemma
2.8 in Newey and McFadden, 1994). □

Lemma 14. �̂�𝑛 (𝜃) converges uniformly in probability to 𝑄0(𝜃).

Proof of Lemma 14. Pick a Ψ ∼ �̂�.17 Fix some 𝜖′ > 0. As �̂�
𝑝
→ �̃�, there exists

some 𝛿(𝑛) → 0 as 𝑛→∞ such that

𝐷 (�̂�, �̃�) < 𝜖′ with probability above 1 − 𝛿(𝑛).

Moreover, with probability approaching 1, we have �̂� ∼ �̃� and thus Ψ ∼ 𝐺. Given
�̃�, let

𝐷 = max
𝜃∈Θ,𝐷 (�̂�,�̃�)<𝜖 ′

𝐷 (Ψ, 𝐹−1(�̂�; 𝜃)) ≤ max
𝜃∈Θ

𝐷 (Ψ, 𝐹−1(�̃�; 𝜃)) + 𝜖′

1 − �̄� ,

where the second inequality follows by for all 𝜃, 𝐹−1(�̃�; 𝜃) being Lipschitz con-
tinuous in �̃� with Lipschitz constant 1

1−�̄� and the triangle inequality. Note that
with probability approaching 1, max𝜃∈Θ 𝐷 (Ψ, 𝐹−1(�̃�; 𝜃)) is well-defined, since (1).
Ψ ∼ �̃� with probability approaching 1, (2). 𝐹−1(�̃�; 𝜃) is continuous in 𝜃 by Lemma
11, (3). metric 𝐷 is continuous and Θ is compact.

Next, I show that with probability above 1 − 𝛿(𝑛), �̂�𝑛,𝑚 → �̂�∗𝑛 uniformly in proba-
bility as 𝑚 → +∞, and the convergence speed does not depend on 𝑛. Fix some 𝑛.
Note

𝑃𝑟𝑜𝑏 𝑗 (𝜃, �̂�, 𝑚) − 𝑃𝑟𝑜𝑏∗𝑗 (𝜃, �̂�) =
∫
𝒑
𝑓 𝑗 ( 𝒑; 𝜃)𝑑

(
𝑇𝑚
�̂�,𝜃

Ψ − 𝐹−1(�̂�, 𝜃)
)
( 𝒑).

With probability above 1 − 𝛿(𝑛), we have 𝐷 (�̂�, �̃�) < 𝜖′,

𝐷 (𝑇𝑚
�̂�,𝜃

Ψ, 𝐹−1(�̂�, 𝜃)) ≤ �̄�𝑚𝐷 (Ψ, 𝐹−1(�̂�, 𝜃)) ≤ �̄�𝑚𝐷
17Even if Ψ is not equivalent to �̂�, 𝑇�̂�Ψ is equivalent to �̂�.



91��𝑃𝑟𝑜𝑏 𝑗 (𝜃, �̂�, 𝑚) − 𝑃𝑟𝑜𝑏∗𝑗 (𝜃, �̂�)�� ≤ ���� sup
𝐷 (Φ,Υ)≤ �̄�𝑚𝐷

∫
𝒑
𝑓 𝑗 ( 𝒑; 𝜃)𝑑

(
Φ − Υ

)
( 𝒑)

����
≤ ( 𝑓 − 𝑓 )1

2
sup

𝐷 (Φ,Υ)≤ �̄�𝑚𝐷
| |Φ − Υ| |𝑇𝑉

≤ ( 𝑓 − 𝑓 )1
2

1
2
𝐽 �̄�𝑚𝐷,

where the last inequality is by applying Lemma 9 to the product measure. (Here we
have an additional factor of 𝐽.18) Consequently,���̂�𝑛,𝑚 (𝜃) − �̂�∗𝑛 (𝜃)�� ≤ ln

𝑓 + 1
4 ( 𝑓 − 𝑓 )𝐽 �̄�

𝑚𝐷

𝑓
with probability above 1 − 𝛿(𝑛).

Note this bound does not depend on 𝜃 or 𝑛.

Lastly,

sup
𝜃∈Θ

���̂�𝑛 (𝜃) −𝑄0(𝜃)
�� ≤ sup

𝜃∈Θ

���̂�𝑛 (𝜃) − �̂�∗𝑛 (𝜃)�� + sup
𝜃∈Θ

���̂�∗𝑛 (𝜃) −𝑄0(𝜃)
��,

where sup𝜃∈Θ
���̂�∗𝑛 (𝜃) −𝑄0(𝜃)

�� 𝑝
→ 0 by Lemma 13. By 𝛿(𝑛) → 0, 𝑚(𝑛) → +∞, and

lim
𝑚→+∞

ln
𝑓 + 1

4 ( 𝑓 − 𝑓 )𝐽 �̄�
𝑚𝐷

𝑓
= 0,

we have sup𝜃∈Θ
���̂�𝑛 (𝜃) − �̂�∗𝑛 (𝜃)�� 𝑝

→ 0. Thus, sup𝜃∈Θ
���̂�𝑛 (𝜃) −𝑄0(𝜃)

�� 𝑝
→ 0. □

Proof of Theorem 5. We are ready to apply Theorem 2.1 in Newey and McFadden,
1994. (1). By the identification assumption 3, 𝑄0(𝜃) is uniquely maximized at 𝜃0.
(2). Θ is compact. (3). As 𝑃𝑟𝑜𝑏∗

𝑗
(𝜃; �̃�) is also bounded below by 𝑓 and continuous

in 𝜃 by Lemma 11, 𝑄0(𝜃) is continuous. (4). �̂�𝑛 (𝜃) converges in probability to
𝑄0(𝜃), by Lemma 14. Thus, 𝜃 is consistent.

To see 𝑇𝑚(𝑛)
�̂�,𝜃

Ψ
𝑝
→ 𝐺, note that

𝐷 (𝑇𝑚(𝑛)
�̂�,𝜃

Ψ, 𝐺) ≤ 𝐷 (𝑇𝑚(𝑛)
�̂�,𝜃

Ψ, 𝐹−1(�̂�, 𝜃))+𝐷 (𝐹−1(�̂�, 𝜃), 𝐹−1(�̂�, 𝜃0))+𝐷 (𝐹−1(�̂�, 𝜃0), 𝐺).

The first term

𝐷 (𝑇𝑚(𝑛)
�̂�,𝜃

Ψ, 𝐹−1(�̂�, 𝜃)) → 0 as 𝑚(𝑛) → ∞.

The second term

𝐷 (𝐹−1(�̂�, 𝜃), 𝐹−1(�̂�, 𝜃0))
𝑝
→ 0, as 𝜃

𝑝
→ 𝜃0

18This bound is not tight.
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and 𝐹−1 is continuous in 𝜃 by Lemma 11. The third term

𝐷 (𝐹−1(�̂�, 𝜃0), 𝐺)
𝑝
→ 0, as �̂�

𝑝
→ �̃�

and 𝐹 is a homeomorphism by Proposition 5.

□

Proof of Theorem 6
Lemma 15. If Assumption 2, 3, and 4 hold, then 𝜃∗ is asymptotically normal and
√
𝑛(𝜃∗ − 𝜃0)

𝑑→ N(0, 𝑉).

Proof of Lemma 15. We shall first rewrite the estimator as a generalized method
of moment estimator. We let ˆ𝑃𝑟𝑜𝑏 = ( ˆ𝑃𝑟𝑜𝑏1, ˆ𝑃𝑟𝑜𝑏2, · · · , ˆ𝑃𝑟𝑜𝑏𝐽)′ denote the
observed frequency of alternatives. Let 1𝑝 denote the cumulative indicator vector
that assigns 0 for entries 𝑝 𝑗 < 𝑝 and 1 for entries 𝑝 𝑗 ≥ 𝑝. Estimator 𝜃∗ solves the
first-order condition of Equation (2.11)

1
𝑛

𝑛∑︁
𝑖=1

𝔤∗(𝑧𝑖, 𝜃, �̂�) = 0,

where �̂� satisfies the moment condition

1
𝑛

𝑛∑︁
𝑖=1
( ˆ𝑃𝑟𝑜𝑏 − 𝑦𝑖) = 0 (2.23)

1
𝑛

𝑛∑︁
𝑖=1
(�̂� 𝑗 − 𝑦𝑖 𝑗1𝑝𝑖/ ˆ𝑃𝑟𝑜𝑏 𝑗 ) = 0 for all 𝑗 ∈ J , (2.24)

where 𝑝𝑖 is the observed selected price for individual 𝑖.

For this standard GMM estimator, we can directly invoke Theorem 6.1 in Newey
and McFadden, 1994. Note that our 𝔤∗ is their 𝑔 and our ( ˆ𝑃𝑟𝑜𝑏, �̂�) is their �̂� in
Newey and McFadden, 1994. Let

𝔪1(𝑧𝑖, ˆ𝑃𝑟𝑜𝑏) = ˆ𝑃𝑟𝑜𝑏 − 𝑦𝑖,

𝔪2(𝑧𝑖, ˆ𝑃𝑟𝑜𝑏, �̂�) = [[�̂�1−𝑦𝑖11𝑝𝑖/ ˆ𝑃𝑟𝑜𝑏1]′, [�̂�2−𝑦𝑖21𝑝𝑖/ ˆ𝑃𝑟𝑜𝑏2]′, · · · , [�̂�𝐽−𝑦𝐽21𝑝𝑖/ ˆ𝑃𝑟𝑜𝑏𝐽]′]′.

We stack 𝔤∗, 𝔪1, 𝔪2 to form �̃�∗

�̃�∗(𝑧, 𝜃, ˆ𝑃𝑟𝑜𝑏, �̂�) = [𝔤∗(𝑧, 𝜃, �̂�)′,𝔪1(𝑧, ˆ𝑃𝑟𝑜𝑏)′,𝔪2(𝑧, ˆ𝑃𝑟𝑜𝑏, �̂�)′]′.
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By the proof of Theorem 5 and Lemma 13, 𝜃∗
𝑝
→ 𝜃0. By the weak law of large

numbers, �̂�
𝑝
→ �̃� and ˆ𝑃𝑟𝑜𝑏

𝑝
→ 𝑃𝑟𝑜𝑏0 = 𝑃𝑟𝑜𝑏∗(𝜃0, �̃�). By Assumption 4, 𝜃0 ∈ Θo.

Next, we verify that �̃�∗(𝑧, 𝜃, ˆ𝑃𝑟𝑜𝑏, �̂�) is continuously differentiable in 𝜃, ˆ𝑃𝑟𝑜𝑏, �̂�.

First, we verify that 𝔤∗(𝑧, 𝜃, �̂�) is continuously differentiable in 𝜃. It suffices to
show that 𝑃𝑟𝑜𝑏∗(𝜃, �̂�) is twice continuously differentiable in 𝜃. As 𝑓 is twice
continuously differentiable in 𝜃, we only need to show that 𝐹−1(�̂�, 𝜃) is twice
continuously differentiable in 𝜃. By Equation (2.1), (2.2) and 𝑓 being twice con-
tinuously differentiable in 𝜃, 𝐹 (𝐺, 𝜃) is twice continuously differentiable in 𝜃 and
infinitely continuously differentiable in 𝐺. Thus, by the implicit function theorem,

∇𝜃𝐹−1(�̃�, 𝜃) = −
[
∇𝐺𝐹 (𝐺, 𝜃)

]−1∇𝜃𝐹 (𝐺, 𝜃),

where the matrix ∇𝐺𝐹 (𝐺, 𝜃) is non-singular by 𝐹−1 being Lipschitz continuous.
Consequently, 𝐹−1 is twice continuously differentiable in 𝜃.

Next, we verify that 𝔤∗(𝑧, 𝜃, �̂�) is continuously differentiable in �̂�. It suffices to
show that 𝐹−1(�̂�, 𝜃) is continuously differentiable in �̂�. As 𝐹 (𝐺, 𝜃) is infinitely
continuously differentiable in 𝐺 and 𝐹−1(�̂�, 𝜃) is Lipschitz continuous in �̂�, we
have

∇�̂�𝐹
−1(�̂�, 𝜃) = [∇𝐺𝐹 (𝐺, 𝜃)]−1

which is continuous in �̂�. Additionally, 𝔪1 and 𝔪2 are infinitely continuously
differentiable in all parameters 𝜃, �̂�, �̂�𝑟𝑜𝑏. Consequently, we have show that
�̃�∗(𝑧, 𝜃, ˆ𝑃𝑟𝑜𝑏, �̂�) is continuously differentiable in 𝜃, ˆ𝑃𝑟𝑜𝑏, �̂�.

In addition,
E[𝔤∗(𝑧, 𝜃0, �̃�)] = 0

by the first-order condition of𝑄0. Since 𝑓 𝑗 is bounded from 0, | |𝔤∗(𝑧, 𝜃0, �̃�) | | is finite
for each 𝑧. Furthermore, as supp(𝐺) is finite, there is only a finite possible values
of 𝑧. Thus, E[| |𝔤∗(𝑧, 𝜃0, �̃�) | |2] is finite. By �̃�∗(𝑧, 𝜃, ˆ𝑃𝑟𝑜𝑏, �̂�) being continuously
differentiable in (𝜃, ˆ𝑃𝑟𝑜𝑏, �̂�) and a finite possible values of 𝑧,

E[ sup
𝜃, ˆ𝑃𝑟𝑜𝑏,�̂�

| |∇𝜃, ˆ𝑃𝑟𝑜𝑏,�̂� �̃�
∗(𝑧, 𝜃, ˆ𝑃𝑟𝑜𝑏, �̂�) | |] < ∞.

The last condition we need is that

E[∇𝜃, ˆ𝑃𝑟𝑜𝑏,�̂� �̃�
∗(𝑧, 𝜃0, 𝑃𝑟𝑜𝑏0, �̃�)]
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being nonsingular. The matrix ∇𝜃, ˆ𝑃𝑟𝑜𝑏,�̂� �̃�
∗(𝑧, 𝜃0, 𝑃𝑟𝑜𝑏0, �̃�) is

©«
∇𝜃𝔤∗(𝑧, 𝜃0, �̃�) 0 ∇�̂�𝔤∗(𝑧, 𝜃0, �̃�)

0 𝑰 0
0 ∇ ˆ𝑃𝑟𝑜𝑏𝔪2(𝑧, 𝑃𝑟𝑜𝑏0, �̃�) 𝑰

ª®®¬ .
Its expectation being nonsingular is equivalent toE∇𝜃𝔤∗(𝑧, 𝜃0, �̃�) being nonsingular,
which is in Assumption 4.

We can write down the variance matrix𝑉 by Theorem 6.1 in Newey and McFadden,
1994.

𝐴(𝑧) =𝔤∗(𝑧, 𝜃0, �̃�) +
(
E∇�̂�𝔤

∗(𝑧, 𝜃0, �̃�)
)
×[ (

E∇ ˆ𝑃𝑟𝑜𝑏𝑚2(𝑧, 𝑃𝑟𝑜𝑏0, �̃�)
)
×𝔪1(𝑧, 𝑃𝑟𝑜𝑏0) −𝔪2(𝑧, 𝑃𝑟𝑜𝑏0, �̃�)

]
.

𝑉 =
(
E∇𝜃𝔤∗(𝑧, 𝜃0, �̃�)

)−1 × E(𝐴(𝑧)𝐴(𝑧)′) ×
( (
E∇𝜃𝔤∗(𝑧, 𝜃0, �̃�)

)−1
)′
.

□

Proof of Theorem 6. Recall 𝜃 solves the first-order condition

1
𝑛

𝑛∑︁
𝑖=1

𝔤(𝑧𝑖; 𝜃, �̂�, 𝑛) = 0.

We expand this equation around 𝜃0 and solve for
√
𝑛(𝜃 − 𝜃0)

√
𝑛(𝜃 − 𝜃0) = −

[
1
𝑛

𝑛∑︁
𝑖=1
∇𝜃𝔤(𝑧𝑖, 𝜃, �̂�, 𝑛)

]−1 𝑛∑︁
𝑖=1

1
√
𝑛
𝔤(𝑧𝑖, 𝜃0, �̂�, 𝑛),

where the second summation is
𝑛∑︁
𝑖=1

1
√
𝑛
𝔤(𝑧𝑖, 𝜃0, �̂�, 𝑛) =

𝑛∑︁
𝑖=1

1
√
𝑛

(
𝔤∗(𝑧𝑖, 𝜃0, �̂�)+O𝑝 (

1
√
𝑛
)
)
=

𝑛∑︁
𝑖=1

1
√
𝑛
𝔤∗(𝑧𝑖, 𝜃0, �̂�)+O𝑝 (1)

by Assumption 4 (v). Similarly,

1
𝑛

𝑛∑︁
𝑖=1
∇𝜃𝔤(𝑧𝑖, 𝜃, �̂�, 𝑛) =

1
𝑛

𝑛∑︁
𝑖=1
∇𝜃𝔤∗(𝑧𝑖, 𝜃, �̂�) + O𝑝 (1).

Thus,
√
𝑛(𝜃 − 𝜃0) converges to(

E∇𝜃𝔤∗(𝑧; 𝜃0, �̃�)
)−1 𝑛∑︁

𝑖=1

1
√
𝑛
𝔤∗(𝑧𝑖, 𝜃0, �̂�) + O𝑝 (1)

which has the same limiting distribution as
√
𝑛(𝜃∗ − 𝜃0). Thus,

√
𝑛(𝜃 − 𝜃0)

𝑑→
N(0, 𝑉) by Lemma 15. □
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To see the convergence rate of 𝑇𝑚(𝑛)
�̂�,𝜃

Ψ, note that

𝐷 (𝑇𝑚(𝑛)
�̂�,𝜃

Ψ, 𝐺) ≤ 𝐷 (𝑇𝑚(𝑛)
�̂�,𝜃

Ψ, 𝐹−1(�̂�, 𝜃))+𝐷 (𝐹−1(�̂�, 𝜃), 𝐹−1(�̂�, 𝜃0))+𝐷 (𝐹−1(�̂�, 𝜃0), 𝐺).

The first term goes to 0 at rate faster than
√
𝑛 by Assumption 4 (v). By the proof of

Lemma 15, 𝐹−1 is continuously differentiable in 𝜃; asΘ is compact, 𝐹−1 is Lipschitz
continuous in 𝜃. As 𝜃

𝑝
→ 𝜃0 at rate

√
𝑛,

𝐷 (𝐹−1(�̂�, 𝜃), 𝐹−1(�̂�, 𝜃0))
𝑝
→ 0 at rate

√
𝑛.

The last term converges in probability to 0 at rate
√
𝑛, as �̂�

𝑝
→ �̃� at rate

√
𝑛 and by

Proposition 5.



96

2.10 Tables
Table 2.3: Simulation Results for Utility Parameters: 𝑁 = 5000

Functional Contraction Two-Step Method
Bias Std. Dev. RMSE Bias Std. Dev. RMSE

DGP 1
𝛾 -0.0022 0.0864 0.0864 0.0017 0.0917 0.0916
𝜉2 0.0028 0.0345 0.0345 0.0045 0.0427 0.0429
𝛽 -0.0007 0.0412 0.0411 0.0003 0.0417 0.0416

DGP 2
𝛾 0.0011 0.0858 0.0857 0.0157 0.0982 0.0994
𝜉2 0.0001 0.0344 0.0344 0.0051 0.0510 0.0512
𝛽 -0.0009 0.0427 0.0427 0.0052 0.0434 0.0436

DGP 3
𝛾 -0.0133 0.0707 0.0719 0.1611 0.0984 0.1887
𝜉2 0.0019 0.0317 0.0317 0.0137 0.0363 0.0388
𝛽 -0.0012 0.0414 0.0414 -0.0002 0.0417 0.0417

DGP 4
𝛾 0.0026 0.1544 0.1543 0.0433 0.1666 0.1720
𝜉2 0.0009 0.0306 0.0306 -0.0001 0.0314 0.0314
𝛽 -0.0003 0.0404 0.0404 -0.0002 0.0406 0.0405

DGP 5
𝛾 -0.0054 0.4395 0.4391 -0.0043 0.4274 0.4270
𝜉2 0.0009 0.0304 0.0304 0.0010 0.0305 0.0305
𝛽 0.0002 0.0399 0.0398 0.0003 0.0398 0.0398
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Table 2.4: Simulation Results for CDF of log(Price): 𝑁 = 5000

Func. Contraction Two-Step Method
IBias2 IMSE IBias2 IMSE

DGP 1
𝐹1(·|𝑥𝑖2 = 0) 0.0002 0.0007 0.0000 0.0040
𝐹2(·|𝑥𝑖2 = 0) 0.0001 0.0002 0.0000 0.0003
𝐹1(·|𝑥𝑖2 = 1) 0.0002 0.0009 0.0000 0.0024
𝐹2(·|𝑥𝑖2 = 1) 0.0001 0.0003 0.0000 0.0008

DGP 2
𝐹1(·|𝑥𝑖2 = 0) 0.0003 0.0009 0.0024 0.0078
𝐹2(·|𝑥𝑖2 = 0) 0.0001 0.0002 0.0020 0.0023
𝐹1(·|𝑥𝑖2 = 1) 0.0004 0.0010 0.0024 0.0056
𝐹2(·|𝑥𝑖2 = 1) 0.0001 0.0003 0.0020 0.0029

DGP 3
𝐹1(·|𝑥𝑖2 = 0) 0.0059 0.0064 0.0209 0.0269
𝐹2(·|𝑥𝑖2 = 0) 0.0028 0.0029 0.0493 0.0499
𝐹1(·|𝑥𝑖2 = 1) 0.0005 0.0011 0.0037 0.0057
𝐹2(·|𝑥𝑖2 = 1) 0.0001 0.0003 0.0143 0.0152

DGP 4
𝐹1(·|𝑥𝑖2 = 0) 0.0006 0.0011 0.0024 0.0077
𝐹2(·|𝑥𝑖2 = 0) 0.0007 0.0008 0.0272 0.0277
𝐹1(·|𝑥𝑖2 = 1) 0.0003 0.0012 0.0016 0.0047
𝐹2(·|𝑥𝑖2 = 1) 0.0001 0.0003 0.0098 0.0104

DGP 5
𝐹1(·|𝑥𝑖2 = 0) 0.0014 0.0018 0.0011 0.0053
𝐹2(·|𝑥𝑖2 = 0) 0.0014 0.0015 0.0202 0.0206
𝐹1(·|𝑥𝑖2 = 1) 0.0007 0.0018 0.0016 0.0055
𝐹2(·|𝑥𝑖2 = 1) 0.0001 0.0003 0.0081 0.0084

Note: The IBias2 of a function ℎ is calculated as follows. Let ℎ̂𝑟 be the estimate of ℎ from the
𝑟-th simulated dataset, and ℎ̄(𝑥) = 1

𝑅

∑𝑅
𝑟=1 ℎ̂𝑟 (𝑥) be the point-wise average over 𝑅 simulations.

The integrated squared bias is calculated by numerically integrating the point-wise squared bias
( ℎ̄(𝑥) − ℎ(𝑥))2 over the distribution of 𝑥. The integrated MSE is computed in a similar way.
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Table 2.5: Simulation Results for Utility Parameters: Removing the Excluded
Variable

𝑁 = 1000 𝑁 = 5000
Bias Std. Dev. RMSE Bias Std. Dev. RMSE

DGP 1
𝛾 -0.0011 0.2082 0.2080 0.0018 0.0866 0.0865
𝜉2 0.0074 0.0570 0.0574 0.0000 0.0254 0.0253

DGP 2
𝛾 -0.0018 0.2066 0.2064 0.0024 0.1000 0.0999
𝜉2 0.0033 0.0535 0.0535 0.0028 0.0264 0.0265

DGP 3
𝛾 -0.0163 0.1581 0.1587 -0.0043 0.0728 0.0729
𝜉2 0.0061 0.0542 0.0544 0.0007 0.0238 0.0238

DGP 4
𝛾 0.0019 0.3660 0.3656 0.0059 0.1563 0.1563
𝜉2 0.0050 0.0498 0.0500 -0.0005 0.0225 0.0225

DGP 5
𝛾 0.0000 1.0797 1.0786 -0.0146 0.4409 0.4407
𝜉2 0.0014 0.0531 0.0530 -0.0007 0.0233 0.0233

Note: In these specifications, we remove the excluded variable from the selection function, so the
parameter 𝛽 in 𝑢𝑖1 is not estimated.
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Table 2.6: Simulation Results for CDF of log(Price): Removing the Excluded
Variable

𝑁 = 1000 𝑁 = 5000
IBias2 IMSE IBias2 IMSE

DGP 1
𝐹1(·|𝑥𝑖2 = 0) 0.0002 0.0018 0.0002 0.0004
𝐹2(·|𝑥𝑖2 = 0) 0.0001 0.0003 0.0000 0.0001
𝐹1(·|𝑥𝑖2 = 1) 0.0003 0.0019 0.0002 0.0005
𝐹2(·|𝑥𝑖2 = 1) 0.0001 0.0007 0.0001 0.0002

DGP 2
𝐹1(·|𝑥𝑖2 = 0) 0.0004 0.0017 0.0003 0.0006
𝐹2(·|𝑥𝑖2 = 0) 0.0002 0.0004 0.0001 0.0001
𝐹1(·|𝑥𝑖2 = 1) 0.0005 0.0018 0.0003 0.0006
𝐹2(·|𝑥𝑖2 = 1) 0.0002 0.0007 0.0001 0.0002

DGP 3
𝐹1(·|𝑥𝑖2 = 0) 0.0058 0.0073 0.0061 0.0064
𝐹2(·|𝑥𝑖2 = 0) 0.0029 0.0031 0.0028 0.0028
𝐹1(·|𝑥𝑖2 = 1) 0.0006 0.0021 0.0005 0.0008
𝐹2(·|𝑥𝑖2 = 1) 0.0001 0.0007 0.0000 0.0002

DGP 4
𝐹1(·|𝑥𝑖2 = 0) 0.0006 0.0021 0.0006 0.0008
𝐹2(·|𝑥𝑖2 = 0) 0.0008 0.0010 0.0007 0.0007
𝐹1(·|𝑥𝑖2 = 1) 0.0004 0.0024 0.0003 0.0007
𝐹2(·|𝑥𝑖2 = 1) 0.0001 0.0006 0.0000 0.0002

DGP 5
𝐹1(·|𝑥𝑖2 = 0) 0.0014 0.0025 0.0013 0.0016
𝐹2(·|𝑥𝑖2 = 0) 0.0013 0.0015 0.0014 0.0014
𝐹1(·|𝑥𝑖2 = 1) 0.0007 0.0033 0.0006 0.0012
𝐹2(·|𝑥𝑖2 = 1) 0.0002 0.0006 0.0001 0.0002

Note: In these specifications, we remove the excluded variable from the selection function. The
IBias2 of a function ℎ is calculated as follows. Let ℎ̂𝑟 be the estimate of ℎ from the 𝑟-th simulated
dataset, and ℎ̄(𝑥) = 1

𝑅

∑𝑅
𝑟=1 ℎ̂𝑟 (𝑥) be the point-wise average over 𝑅 simulations. The integrated

squared bias is calculated by numerically integrating the point-wise squared bias ( ℎ̄(𝑥) − ℎ(𝑥))2 over
the distribution of 𝑥. The integrated MSE is computed in a similar way.
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Table 2.7: Simulation Results for Utility Parameters: Misspecifying the Selection
Function

𝑁 = 1000 𝑁 = 5000
Bias Std. Dev. RMSE Bias Std. Dev. RMSE

DGP 1
𝛾 -0.0793 0.1826 0.1989 -0.0743 0.0806 0.1096
𝜉2 -0.0754 0.0714 0.1038 -0.0752 0.0342 0.0826
𝛽 -0.0309 0.0856 0.0909 -0.0306 0.0392 0.0497

DGP 2
𝛾 -0.0748 0.1864 0.2007 -0.0667 0.0806 0.1045
𝜉2 -0.0714 0.0727 0.1018 -0.0742 0.0340 0.0816
𝛽 -0.0315 0.0902 0.0954 -0.0282 0.0407 0.0495

DGP 3
𝛾 -0.1051 0.1475 0.1810 -0.0940 0.0650 0.1142
𝜉2 -0.0789 0.0698 0.1053 -0.0768 0.0317 0.0830
𝛽 -0.0323 0.0887 0.0943 -0.0293 0.0398 0.0494

DGP 4
𝛾 -0.0746 0.3249 0.3330 -0.0584 0.1442 0.1554
𝜉2 -0.0776 0.0679 0.1030 -0.0755 0.0307 0.0814
𝛽 -0.0263 0.0900 0.0937 -0.0222 0.0392 0.0450

DGP 5
𝛾 0.0029 0.9169 0.9160 -0.0606 0.4177 0.4217
𝜉2 -0.0827 0.0667 0.1063 -0.0801 0.0302 0.0856
𝛽 -0.0315 0.0847 0.0902 -0.0266 0.0381 0.0465

Note: In these specifications, we misspecify the selection model, assuming that the error term 𝜀𝑖 is
drawn from 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0, 1).
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Table 2.8: Simulation Results for CDF of log(Price): Misspecifying the Selection
Function

𝑁 = 1000 𝑁 = 5000
IBias2 IMSE IBias2 IMSE

DGP 1
𝐹1(·|𝑥𝑖2 = 0) 0.0004 0.0029 0.0002 0.0007
𝐹2(·|𝑥𝑖2 = 0) 0.0001 0.0006 0.0001 0.0002
𝐹1(·|𝑥𝑖2 = 1) 0.0004 0.0032 0.0002 0.0009
𝐹2(·|𝑥𝑖2 = 1) 0.0002 0.0013 0.0001 0.0003

DGP 2
𝐹1(·|𝑥𝑖2 = 0) 0.0006 0.0033 0.0005 0.0010
𝐹2(·|𝑥𝑖2 = 0) 0.0002 0.0006 0.0001 0.0002
𝐹1(·|𝑥𝑖2 = 1) 0.0007 0.0037 0.0004 0.0010
𝐹2(·|𝑥𝑖2 = 1) 0.0003 0.0015 0.0001 0.0004

DGP 3
𝐹1(·|𝑥𝑖2 = 0) 0.0062 0.0087 0.0061 0.0066
𝐹2(·|𝑥𝑖2 = 0) 0.0028 0.0032 0.0028 0.0029
𝐹1(·|𝑥𝑖2 = 1) 0.0007 0.0033 0.0005 0.0011
𝐹2(·|𝑥𝑖2 = 1) 0.0002 0.0013 0.0001 0.0003

DGP 4
𝐹1(·|𝑥𝑖2 = 0) 0.0008 0.0034 0.0006 0.0012
𝐹2(·|𝑥𝑖2 = 0) 0.0008 0.0012 0.0007 0.0008
𝐹1(·|𝑥𝑖2 = 1) 0.0006 0.0046 0.0003 0.0012
𝐹2(·|𝑥𝑖2 = 1) 0.0002 0.0011 0.0001 0.0003

DGP 5
𝐹1(·|𝑥𝑖2 = 0) 0.0014 0.0034 0.0014 0.0019
𝐹2(·|𝑥𝑖2 = 0) 0.0014 0.0018 0.0014 0.0015
𝐹1(·|𝑥𝑖2 = 1) 0.0008 0.0058 0.0007 0.0018
𝐹2(·|𝑥𝑖2 = 1) 0.0002 0.0011 0.0001 0.0003

Note: In these specifications, we misspecify the selection model, assuming that the error term 𝜀𝑖 is
drawn from 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0, 1). The IBias2 of a function ℎ is calculated as follows. Let ℎ̂𝑟 be the estimate
of ℎ from the 𝑟-th simulated dataset, and ℎ̄(𝑥) = 1

𝑅

∑𝑅
𝑟=1 ℎ̂𝑟 (𝑥) be the point-wise average over 𝑅

simulations. The integrated squared bias is calculated by numerically integrating the point-wise
squared bias ( ℎ̄(𝑥) − ℎ(𝑥))2 over the distribution of 𝑥. The integrated MSE is computed in a similar
way.
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C h a p t e r 3

IMPLEMENTING RANDOMIZED ALLOCATION RULES WITH
OUTCOME-CONTINGENT TRANSFERS

Liu, Yi and Fan Wu (2024). “Implementing randomized allocation rules with
outcome-contingent transfers”. In: Journal of Economic Theory 220, p. 105878.
issn: 0022-0531. doi: https://doi.org/10.1016/j.jet.2024.105878.
url:https://www.sciencedirect.com/science/article/pii/S002205312400084X.

3.1 Introduction
A central topic in accounting is earnings management. Each year, firms are re-
quired to report their annual economic activities to an auditing company in order to
compile financial statements. Auditors exercise a certain level of discretion in this
task due to reputation and potential legal implications. These financial statements
hold significant importance for the firm, as they directly impact future financing
costs. Furthermore, taxes are calculated based on these statements. In practice,
some firms resort to tactics such as window dressing, which involves inflating their
reports to present a more favorable financial picture. Firms may also engage in
earning manipulation, deliberately under reporting their performance to minimize
tax liabilities. This prompts a natural question: is there a tax regime that could
encourage firms to report truthfully? If such a regime exists, what does it look like?

Similar challenges arise in the field of political science. For instance, on an annual
basis, each province in China reports its economic growth, fiscal surplus, expected
annual budget, and other relevant information to the Bureau of Statistics. This report
comprises high-dimensional data, encompassing all aspects of economic activity.
The Bureau of Statistics evaluates the overall economic condition of each province.
The evaluation is of particular interest to the provinces as it may influence their
economic policies in the future.1 Based on the evaluation, the central government

1For example, many of China’s economic special zones and new areas are selected due to fast
economic growth, including Shenzhen Special Economic Zone, Shanghai Pudong New Area, and
Zhuhai Hengqin New Area in Guangdong. Once established as special economic zones or new
areas, a district enjoys special policy treatment, including tax reduction, relaxation of market access,
simplification of administrative approval, etc.

https://doi.org/https://doi.org/10.1016/j.jet.2024.105878
https://www.sciencedirect.com/science/article/pii/S002205312400084X
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determines the fiscal transfers between provinces.2 Is it possible for the central
government to devise a transfer scheme that incentivizes every province to truthfully
report its economic condition?

We analyze these problems using a mechanism design approach. We study a model
where an agent knows the underlying state of the world, 𝜃, which belongs to a set Θ.
The agent reports a state to an exogenous allocation rule, a function 𝜋 : Θ→ Δ(𝑋)
mapping each state to a distribution over a finite outcome space 𝑋 . The agent’s
valuation of the outcome 𝑥 in state 𝜃 is given by 𝑣(𝜃, 𝑥). A planner designs an
outcome-contingent transfer 𝑡 : 𝑋 → R describing the agent’s monetary payoff as a
function of the outcome. Our research question is whether there exists an outcome-
contingent transfer to induce the agent to report the state truthfully.

In the earnings management example, the agent is a firm that reports its financial
situation 𝜃 to an auditing company. The company’s auditing produces a financial
statement 𝑥. The allocation rule summarizes the auditor’s practices and protocol.
Then the government collects tax 𝑡 (𝑥) based on the financial statement. In the fiscal
transfer example, the agent is a province that reports its economic activities 𝜃 to
the Bureau of Statistics. The Bureau of Statistics assigns an economic evaluation
𝑥 to the province. The allocation rule summarizes the evaluation procedure. (The
randomness in the evaluation rule is to reduce a province’s incentive to manipulate its
report.) Then the central government assigns a transfer 𝑡 (𝑥) based on the evaluation.3

In these two examples, the transfer’s contingency on the evaluation (financial state-
ment) stems from the fact that different entities are responsible for evaluation (audit-
ing) and transfer (tax) assignments. Moreover, as the provincial (firm’s) economic
activity is high-dimensional, part of the Bureau of Statistics’ (auditor’s) job is to
simplify the task of transfer (tax) assignment for the central government.

The key novelty in our model is that the allocation rule allows for randomization
and that transfers depend on the allocation outcome rather than directly on the
report. When an allocation rule is deterministic, whether the transfer depends on
the report or the outcome is irrelevant. This is also known as the taxation principle
or tariff principle. In real life, we observe tariffs more often than direct revelation
mechanisms, because the set of possible type spaces may be hard to describe in

2The magnitude of transfer for each province is roughly ten billion dollars. The aggregate
transfer is roughly a trillion dollars.

3The transfer’s contingency on evaluations and the randomness in the evaluation/allocation rule
also arise from confidentiality concerns. If the transfer were to depend directly on the state, it would
reveal too much information about the state, as the transfer is publicly observable.
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reality (Tadelis and Segal, 2005). So simplicity is a prominent advantage of tariffs
and our mechanism directly inherits this advantage when the type space is large.

Another motivation for our mechanism is that it could be useful in other mechanism
design problems. The standard mechanism with report-contingent transfer specifies
a mapping that assigns to each type an allocation and a transfer. Our model, instead,
decouples this mapping into two functions, the allocation rule 𝜋 : Θ → Δ(𝑋) and
the transfer rule 𝑡 : 𝑋 → R. This decomposition also appears in the canonical
mechanism in Doval and Skreta, 2022. In their leading example (see their Section
3.1), the canonical mechanism is a mechanism with outcome-contingent transfers.4

Our paper answers the question of when such transfers exist under the truthful report
(IC) constraint.

The taxation principle states that when an allocation rule is deterministic, whether the
transfer depends on the report or the outcome is irrelevant. However, if the allocation
rule is randomized, we show that it is harder to implement with outcome-contingent
transfers (see Observation 1). We say that the allocation rule is implementable with
outcome-contingent transfers if there exist outcome-contingent transfers such that it
is optimal for the agent to report truthfully in each state.

Our main result is a characterization of implementable allocation rules. We collect
the agent’s valuation of all outcomes in state 𝜃 into a |𝑋 |-dimensional vector 𝑣(𝜃).
For each pair of states (𝜃, 𝜃′) we define the allocation difference as the difference in
probabilities

𝑑𝜋(𝜃, 𝜃′) = 𝜋(𝜃) − 𝜋(𝜃′)

and the valuation loss as the agent’s difference in valuation in the two states:

vl(𝜃, 𝜃′) = 𝑑𝜋(𝜃, 𝜃′) · 𝑣(𝜃).

We collect the allocation differences into a |𝑋 | × |Θ|2 dimensional matrix 𝐷𝜋

consisting columns of 𝑑𝜋(𝜃, 𝜃′), and all valuation losses vl(𝜃, 𝜃′) into a valuation
loss vector VL, by ordering pairs of states (𝜃, 𝜃′) in the same order.

Recall that a matrix’s positive kernel ker+ is the intersection of the kernel and the
positive orthant. We show that the allocation rule is implementable if and only if
VL lies in the dual cone of ker+(𝐷𝜋) (Theorem 7). Moreover, we offer another

4In their leading example, the disclosure rule maps a report to a distribution over posterior
beliefs, and the price depends only on the realized posterior belief. Their posterior belief is our
allocation outcome and their price is our transfer.
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geometric characterization. Each pair of distinct states (𝜃, 𝜃′) determines an allo-
cation difference 𝑑𝜋(𝜃, 𝜃′) and a valuation loss vl(𝜃, 𝜃′). This (𝑑𝜋(𝜃, 𝜃′), vl(𝜃, 𝜃′))
corresponds to a point in R|𝑋 | ×R. For all such points, we can construct their convex
envelope 𝑐𝑜𝑛𝑣 : R|𝑋 | → R. We show that the allocation rule is implementable if
and only if the convex envelope’s intercept 𝑐𝑜𝑛𝑣(0), the value of 𝑐𝑜𝑛𝑣 evaluated at
0, is weakly positive (Theorem 7).

Moreover, when the allocation rule is implementable with outcome-contingent trans-
fers, we show how transfer payments can be constructed (Proposition 6). In partic-
ular, we show that transfers can be recovered from the subgradient of the convex
envelope at 𝑑𝜋 = 0. When the convex envelope intercept is strictly positive, we
show that the allocation rule is strictly implementable (Proposition 7).5

In addition, we show that the classic cyclic monotonicity condition of Rochet, 1987
is a necessary condition for implementation in our setup as well (Observation 1).
However, without further assumptions on the valuation structure and the allocation
rule, cyclic monotonicity is not sufficient in general. Yet we show that cyclic
monotonicity is also sufficient when the allocation measures {𝜋(𝜃)}𝜃∈Θ are linearly
independent (Proposition 8). Additionally, when there are fewer than exactly four
states, cyclic monotonicity is also sufficient (Proposition 10). Furthermore, when
{𝜋(𝜃)}𝜃∈Θ are convex dependent, we show that it is without loss to only check
whether one candidate transfer can implement the allocation rule (Proposition 9).

Literature Review
Our paper contributes to the literature on implementation by studying randomized
allocation rules with outcome-contingent transfers. The implementation literature
has explored when allocation rules can be truthfully implemented by transfer that
depends on the report; see Roberts (1979), Rochet (1987), McAfee and McMillan
(1988), Jehiel, Moldovanu, and Stacchetti (1999), Gui, Müller, and Vohra (2004),
Saks and Yu (2005), Bikhchandani et al. (2006), Müller, Perea, and Wolf (2007),
Archer and Kleinberg (2008), Ashlagi et al. (2010), Bergemann, Morris, and Taka-
hashi (2012), Carroll (2012), Carbajal and Müller (2015), Carbajal and Müller
(2017), Kushnir and Lokutsievskiy (2021), and Frongillo and Kash (2021).

For single agent settings, Myerson (1981) shows the implementability condition
is the subgradient condition in a one-dimensional continuous-type environment.

5We say that the allocation rule is strictly implementable with outcome-contingent transfers if
there exist outcome-contingent transfers such that it is strictly optimal for the agent to report truthfully
in each state.



111

Müller, Perea, and Wolf (2007) and Archer and Kleinberg (2008) propose several
equivalent conditions. Rochet (1987) studies when an allocation rule is imple-
mentable in dominant strategy mechanisms. He shows that the cyclic monotonicity
condition is sufficient and necessary for an allocation rule to be implementable.
Bergemann, Morris, and Takahashi (2012) analyze this implementability problem
in Bayesian incentive-compatible mechanisms.

In quasilinear environments with a complete domain, Roberts (1979) shows that a
positive association of differences is necessary and sufficient for dominant-strategy
incentive compatibility. In addition, he derives another characterization in terms of
affine maximizers. For a selection of restricted domains, Bikhchandani et al. (2006)
characterize dominant-strategy incentive compatibility by weak (cyclic) monotonic-
ity. Gui, Müller, and Vohra (2004) notice that this result holds for the unrestricted
domain and for every cube. Saks and Yu (2005) extend this result to any convex
multi-dimensional type space. Ashlagi et al. (2010) shows that if the closure of a
domain is not convex, then there exists a finite-valued monotone allocation rule that
is not implementable. Several more recent works (Kushnir and Lokutsievskiy, 2021;
Carbajal and Müller, 2015; Carbajal and Müller, 2017) also identify some conditions
under which weak monotonicity (2-cycle monotonicity) is sufficient to implement
the allocation rule. Frongillo and Kash (2021) provide a unified framework nesting
mechanisms and scoring rules and characterize scoring rules for non-convex sets of
distributions.

From a modeling perspective, our work is closely related to the literature of Bayesian
persuasion. Our randomized allocation rule can equivalently be seen as a Blackwell
experiment.6 Perez-Richet and Skreta (2022) study the receiver-optimal Blackwell
experiment when the sender can falsify the state of the world as the input of the
experiment at some cost. Lin and Liu (2024) study when a Blackwell experiment is
credible, i.e., when the sender cannot profitably deviate to another experiment while
fixing the marginal distribution of realizations. Their credibility also boils down to
a cyclic monotonicity condition. Yet their cyclic monotonicity condition is ex-post
rather than ex-ante.

6Nguyen and Tan (2021) study a model of Bayesian persuasion where the sender does not observe
the underlying state, commits to a Blackwell experiment, and privately observes the experiment
realization. The sender can misrepresent the experiment’s realization with some lying cost. The cost
depends on both the experiment realization and the message sent.
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3.2 Model
Primitives. We are given a finite set Θ of states. (Our main result Theorem 7
has two sufficient and necessary conditions. The cone condition only applies to
finite state spaces. For infinite state space, the envelope condition still holds.) An
agent observes the state and sends a report to a predetermined allocation rule. An
allocation rule 𝜋 maps a reported state to a distribution over a finite set of outcomes
𝑋 = {𝑥1, . . . , 𝑥𝑛}, i.e., 𝜋 : Θ→ Δ(𝑋). Thus each 𝜋(𝜃) is a probability measure over
the outcome space 𝑋 . We denote by 𝜋(𝑥 |𝜃) the probability assigned to 𝑥 by the
measure 𝜋(𝜃).

𝜋(𝜃) = (𝜋(𝑥1 |𝜃), 𝜋(𝑥2 |𝜃), · · · , 𝜋(𝑥𝑛 |𝜃))⊤.

The allocation rule can be seen as outside of the planner’s influence, as in our
motivating examples, or can be interpreted as the planner’s objective. The agent’s
valuation for outcome 𝑥 in state 𝜃 is equal to 𝑣(𝜃, 𝑥). We write 𝑣(𝜃) as the |𝑋 |-
dimensional vector consisting of entries 𝑣(𝜃, 𝑥) for all 𝑥 ∈ 𝑋 ,

𝑣(𝜃) = (𝑣(𝜃, 𝑥1), 𝑣(𝜃, 𝑥2), · · · , 𝑣(𝜃, 𝑥𝑛))⊤.

Transfer Design. The agent’s total payoff is linear in the valuation and the transfer.
The transfer depends only on the outcome and we let 𝑡 (𝑥) denote the transfer to the
agent given outcome 𝑥. We use 𝑇 to denote the 𝑛-dimensional transfer vector
consisting of entries 𝑡 (𝑥) for all 𝑥 ∈ 𝑋 ,

𝑇 = (𝑡 (𝑥1), 𝑡 (𝑥2), · · · , 𝑡 (𝑥𝑛))⊤.

We say that the allocation rule is implementable with outcome-contingent transfers
if there exists a vector 𝑇 such that for all 𝜃, 𝜃′ ∈ Θ,

𝜋(𝜃) · (𝑣(𝜃) + 𝑇) ≥ 𝜋(𝜃′) · (𝑣(𝜃) + 𝑇).

Compared to the standard implementation with report-contingent transfers, our
notion has the additional requirement that the transfer is linear in the allocation rule
𝜋. That is, the report-contingent transfer takes the form of 𝜋(𝜃) · 𝑇 .

For any transfer vector 𝑇 that satisfies this incentive compatibility constraint, any
translation 𝑇 + (𝑐, 𝑐, · · · , 𝑐) also satisfies the condition. Thus, we are free to impose
an ex-ante budget balance condition. For example, suppose we are given a prior
distribution over the states. Given truthful reports, the allocation rule induces
a distribution over outcomes. Then we can impose an ex-ante budget balance
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condition, i.e., 𝐸𝑥𝑡 (𝑥) = 0 where 𝐸𝑥 is the expectation with respect to the random
outcome 𝑥.

𝜋(𝜃)
𝑣(𝜃)

𝑣(𝜃) + 𝑇

𝚷

Supporting hyperplane of 𝜋(𝜃).

Figure 3.1: The Supporting Hyperplane

Problem Reformulation. Next, we reformulate the implementation problem into
the following geometric form. Given the set 𝚷 = {𝜋(𝜃) |𝜃 ∈ Θ} in R𝑛, we associate
to each vector 𝜋(𝜃) the vector 𝑣(𝜃) ∈ R𝑛. We ask if there exists a vector 𝑇 ∈ R𝑛

such that for all 𝜋(𝜃), 𝑇 + 𝑣(𝜃) is the outer normal of a supporting hyperplane of the
set 𝚷 at 𝜋(𝜃). That is, for all 𝜃, 𝜃′ ∈ Θ,

[𝜋(𝜃) − 𝜋(𝜃′)] · (𝑣(𝜃) + 𝑇) ≥ 0.

Informally, we want a common adjustment vector 𝑇 such that for all the points in
𝚷, the new vector 𝑣 +𝑇 is the outer normal of a supporting hyperplane of the set 𝚷
(see Figure 3.1).

3.3 Main Results
We first provide an example where the allocation rule is implementable with standard
report-contingent transfers but not with outcome-contingent ones.

Example 2. There are four possible types and two outcomes: Θ = {0, 1
3 ,

2
3 , 1},

𝑋 = {𝑥1, 𝑥2}. The allocation rule is

𝜋(𝜃) = (𝜃, 1 − 𝜃)⊤.

The valuation vector is
𝑣(𝜃) = (𝜃, 0)⊤.

Note that report-contingent transfer 𝑡 (𝜃) = −1
2𝜃

2 can implement the allocation rule.

We show that 𝜋 is not implementable with outcome-contingent transfers and the
agent always has an incentive to misreport. For the agent with type 𝜃, the payoff
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difference between truthful reporting and misreporting 𝜃′ is

(𝜃 − 𝜃′) (𝜃 + 𝑡 (𝑥1) − 𝑡 (𝑥2)).

If 𝑡 (𝑥1)−𝑡 (𝑥2)+𝜃 > 0, the agent would prefer to report 𝜃′ = 1. If 𝑡 (𝑥1)−𝑡 (𝑥2)+𝜃 < 0,
the agent would prefer to report 𝜃′ = 0. The agent with type 𝜃 that is not 0 or 1
would truthfully report if and only if 𝜃 = 𝑡 (𝑥2) − 𝑡 (𝑥1). Thus, any transfer that elicits
type 1/3 cannot elicit type 2/3. This example shows that our implementation notion
is stronger than the standard one.

We call
𝑑𝜋(𝜃, 𝜃′) = 𝜋(𝜃) − 𝜋(𝜃′)

the allocation difference between state 𝜃 and 𝜃′. We define the valuation loss for
state 𝜃 when inputting 𝜃′ to be the agent’s expected loss on the valuation

vl(𝜃, 𝜃′) = 𝑑𝜋(𝜃, 𝜃′) · 𝑣(𝜃).

We can calculate the agent’s expected deviation loss in state 𝜃 when reporting 𝜃′ as
vl(𝜃, 𝜃′) + 𝑑𝜋(𝜃, 𝜃′) · 𝑇 . Then the incentive compatibility constraint can be written
as for all 𝜃, 𝜃′ ∈ Θ,

vl(𝜃, 𝜃′) + 𝑑𝜋(𝜃, 𝜃′) · 𝑇 ≥ 0.

Let VL ∈ 𝑅 |Θ|×|Θ| denote the vector consisting entries vl(𝜃, 𝜃′) by numerating all
(𝜃, 𝜃′) pairs. We let 𝐷𝜋 denote a |𝑋 | × |Θ|2 dimensional matrix consisting columns
𝑑𝜋(𝜃, 𝜃′) with (𝜃, 𝜃′) arranged in the same order as VL. We define the positive
kernel of 𝐷𝜋 to be

ker+(𝐷𝜋) =
{
𝜆 ∈ R|Θ|×|Θ|+ :

∑︁
𝜃,𝜃′∈Θ

𝜆𝜃𝜃′𝑑𝜋(𝜃, 𝜃′) = 0

}
.

This set is non-empty as we can set 𝜆𝜃1𝜃2 = 𝜆𝜃2𝜃1 = 1 and all other entries to be
zero. Since the positive kernel is the intersection between the kernel of 𝐷𝜋 (a linear
subspace) and the nonnegative orthant, it is a finitely generated convex cone. Its
dual cone is given by

[ker+(𝐷𝜋)]∗ = {𝑦 ∈ R|Θ|×|Θ| |𝑦 · 𝜆 ≥ 0,∀𝜆 ∈ ker+(𝐷𝜋)}.

We append the valuation loss to the allocation difference vector to get a new set of
vectors

𝐷 = {(𝑑𝜋(𝜃, 𝜃′), vl(𝜃, 𝜃′)) |𝜃 ≠ 𝜃′ ∈ Θ},
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which we call the difference set. We let 𝑐𝑜𝑛𝑣(𝐷) denote the convex envelope of the
set 𝐷

𝑐𝑜𝑛𝑣(𝐷) (·) = sup{𝑔(·) |𝑔 : R𝑛 → R 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 𝑎𝑛𝑑 𝑔(𝑑𝜋(𝜃, 𝜃′)) ≤ vl(𝜃, 𝜃′),∀𝜃 ≠ 𝜃′ ∈ Θ}.

We call 𝑐𝑜𝑛𝑣(𝐷) (0) the convex envelope intercept.

Now we are ready to characterize the implementation condition.

Theorem 7. The following are equivalent.

1. The allocation rule is implementable with outcome-contingent transfers.

2. VL ∈ [ker+(𝐷𝜋)]∗.

3. The convex envelope intercept is weakly positive.

𝑑𝜋

vl

O

Figure 3.2: An Illustration of Convex Envelope

We provide a geometric example to use the last condition in Theorem 7 to check
implementation. Suppose there are three states Θ = {𝜃1, 𝜃2, 𝜃3} and two outcomes.
The allocation rule is 𝜋(𝜃1) = (1, 0)𝑇 , 𝜋(𝜃2) = ( 23 ,

1
3 )
𝑇 and 𝜋(𝜃3) = (0, 1)𝑇 . The

agent’s valuations are 𝑣(𝜃1) = (1, 0)𝑇 , 𝑣(𝜃2) = (1, 2)𝑇 , 𝑣(𝜃3) = (0, 1)𝑇 . Then we
construct the difference set

𝐷 = {((1
3
,−1

3
), 1

3
), ((−1

3
,

1
3
), 1

3
), ((1,−1), 1), ((−1, 1), 1), ((2

3
,−2

3
),−2

3
), ((−2

3
,

2
3
), 2

3
)}.

Since the entries of 𝑑𝜋(𝜃, 𝜃′) sum up to zero, we can identify each 𝑑𝜋with an element
in R and plot them in Figure 3.2. The red dashed line is the convex envelope of
𝐷 and the value of the convex envelope evaluated at 0 is 0. So by Theorem 7, the
allocation rule is implementable with outcome-contingent transfers.
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We illustrate the intuition for the necessity of the convex envelope intercept con-
dition. Suppose Θ = {𝜃1, 𝜃2, · · · } and vl(𝜃1, 𝜃2) + vl(𝜃2, 𝜃1) < 0 (see the left
panel of Figure 3.3). Then, vl(𝜃1, 𝜃2) + vl(𝜃2, 𝜃1) < 0 implies 𝑐𝑜𝑛𝑣(𝐷) (0) < 0,
as 𝑑𝜋(𝜃1, 𝜃2) = −𝑑𝜋(𝜃2, 𝜃1). Similar to Example 2, any transfer 𝑇 that elicits 𝜃1

cannot elicit 𝜃2. To elicit 𝜃1, we must have 𝑑𝜋(𝜃1, 𝜃2) · 𝑇 + vl(𝜃1, 𝜃2) ≥ 0. As
𝑑𝜋(𝜃1, 𝜃2) = −𝑑𝜋(𝜃2, 𝜃1), the transfer 𝑇 must have the opposite effect on type 𝜃2.
That is, whenever we use some transfer to ensure 𝑑𝜋(𝜃1, 𝜃2) ·𝑇 +vl(𝜃1, 𝜃2) ≥ 0, this
leads to 𝑑𝜋(𝜃2, 𝜃1) · 𝑇 + vl(𝜃2, 𝜃1) < 0, as the intercept is preserved (see the right
panel of Figure 3.3). In fact, the condition vl(𝜃1, 𝜃2) + vl(𝜃2, 𝜃1) ≥ 0 is exactly the
weak monotonicity and so it must hold for implementation. But the opposing effect
around the intercept is driving the necessity of 𝑐𝑜𝑛𝑣(𝐷) (0) ≥ 0. The intuition
carries over in general such that if 𝑐𝑜𝑛𝑣(𝐷) (0) < 0, for all transfer 𝑇 , at least one
pair (𝜃𝑖, 𝜃 𝑗 ) has 𝑑𝜋(𝜃𝑖, 𝜃 𝑗 ) · 𝑇 + vl(𝜃𝑖, 𝜃 𝑗 ) < 0.

𝑑𝜋

vl

O

(𝜃2, 𝜃1)

(𝜃1, 𝜃2)
𝑑𝜋

vl + 𝑇 · 𝑑𝜋

O
(𝜃2, 𝜃1)

(𝜃1, 𝜃2)

Figure 3.3: The Effect of Transfer

Next, we prove the necessity of the second statement, i.e., 1⇒ 2. If the allocation
rule is implementable with outcome-contingent transfers, there exists 𝑇 such that
for all 𝜃, 𝜃′ ∈ Θ

vl(𝜃, 𝜃′) + 𝑑𝜋(𝜃, 𝜃′) · 𝑇 ≥ 0.

For any 𝜆𝜃𝜃′ > 0, we have

𝜆𝜃𝜃′ (vl(𝜃, 𝜃′) + 𝑑𝜋(𝜃, 𝜃′) · 𝑇) ≥ 0.

For any 𝜆 ∈ ker+(𝐷𝜋), summing over all 𝜃, 𝜃′, the second term is zero. What left is∑︁
𝜃,𝜃′

𝜆𝜃𝜃′vl(𝜃, 𝜃′) ≥ 0.

Since this holds for all 𝜆 ∈ ker+(𝐷𝜋), we have VL ∈ [ker+(𝐷𝜋)]∗.
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The equivalence between statements 2 and 3 follows by a property of the convex
envelope (see Boyd and Vandenberghe, 2004 p.119)

𝑐𝑜𝑛𝑣(𝐷) (z) = inf

{ ∑︁
𝜃,𝜃′∈Θ

𝜆𝜃𝜃′vl(𝜃, 𝜃′)
�� ∑︁
𝜃≠𝜃′∈Θ

𝜆𝜃𝜃′ = 1, 𝜆𝜃𝜃′ ≥ 0,
∑︁
𝜃,𝜃′∈Θ

𝜆𝜃𝜃′𝑑𝜋(𝜃, 𝜃′) = z

}
,

𝑐𝑜𝑛𝑣(𝐷) (0) = inf

{
𝜆 · VL

�� ∑︁
𝜃≠𝜃′∈Θ

𝜆𝜃𝜃′ = 1, 𝜆 ∈ ker+(𝐷𝜋)
}
.

Then 𝑐𝑜𝑛𝑣(𝐷) (0) ≥ 0 is equivalent to 𝜆 · VL ≥ 0 for all 𝜆 ∈ ker+(𝐷𝜋), which is
VL ∈ [ker+(𝐷𝜋)]∗

The sufficiency condition states that as long as the convex envelope intercept is
weakly positive, the allocation rule is implementable with outcome-contingent trans-
fers. Now we construct a transfer𝑇 such that for all 𝜃, 𝜃′ ∈ Θ, vl(𝜃, 𝜃′)+𝑑𝜋(𝜃, 𝜃′)·𝑇 ≥
0. Suppose 𝑐𝑜𝑛𝑣(𝐷) (0) ≥ 0. Let 𝑇 be the negative of any subgradient of
𝑐𝑜𝑛𝑣(𝐷) (·) at 𝑑𝜋 = 0, i.e.,

−𝑇 ∈ 𝜕𝑐𝑜𝑛𝑣(𝐷) (0),

where 𝜕𝑐𝑜𝑛𝑣(𝐷) (0) denotes the subdifferential of 𝑐𝑜𝑛𝑣(𝐷) (·) at 0. By the defini-
tion of the convex envelope and subgradient, for all 𝜃, 𝜃′ ∈ Θ,

vl(𝜃, 𝜃′) ≥ 𝑐𝑜𝑛𝑣(𝐷) (𝑑𝜋(𝜃, 𝜃′)) ≥ 𝑐𝑜𝑛𝑣(𝐷) (0) − 𝑇 · 𝑑𝜋(𝜃, 𝜃′).

vl(𝜃, 𝜃′) + 𝑑𝜋(𝜃, 𝜃′) · 𝑇 ≥ 𝑐𝑜𝑛𝑣(𝐷) (0) ≥ 0.

Geometrically, we rotate the difference set 𝐷 around (0, 𝑐𝑜𝑛𝑣(𝐷) (0)) such that the
convex envelope is above the vl = 0 plane while preserving the intercept with the
vl-axis. In the example in Figure 3.2, all deviation losses will be positive after the
rotation, as shown in Figure 3.4.

We summarize the construction of the transfer.

Proposition 6. If the allocation rule is implementable with outcome-contingent
transfers, any 𝑇 ∈ −𝜕𝑐𝑜𝑛𝑣(𝐷) (0) can implement the allocation rule.

The convex envelope intercept provides a measure of robustness of the imple-
mentation. Given the transfer identified above, the deviation loss is always above
𝑐𝑜𝑛𝑣(𝐷) (0). (This is reminiscent of the definition of 𝜖-Nash equilibrium.) Given
this observation, we can characterize when an allocation rule is strictly imple-
mentable, i.e., the incentive to report truthfully is strict. We say that the allocation
rule is strictly implementable if there exists a transfer 𝑇 such that for all 𝜃 ≠ 𝜃′ ∈ Θ,

𝜋(𝜃) · (𝑣(𝜃) + 𝑇) > 𝜋(𝜃′) · (𝑣(𝜃) + 𝑇).
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𝑑𝜋

vl + 𝑇 · 𝑑𝜋

O

Figure 3.4: The Deviation Loss with Transfer

Proposition 7. If the convex envelope intercept is strictly positive, the allocation
rule is strictly implementable.

Similar to the definition of 𝜖-Nash equilibrium, we can also adopt a weaker condition
on implementation. For any 𝜖 , we say that an allocation rule is 𝜖-implementable
with outcome-contingent transfers if there exists a transfer 𝑇 such that the total gain
from deviation is always less than 𝜖 , i.e., for all 𝜃, 𝜃′ ∈ Θ,

𝜋(𝜃′) · (𝑣(𝜃) + 𝑇) − 𝜋(𝜃) · (𝑣(𝜃) + 𝑇) ≤ 𝜖 .

Corollary 5. The allocation rule is −𝑐𝑜𝑛𝑣(𝐷) (0)-implementable.

3.4 Discussions
Rochet, 1987 studies the implementability condition with report-contingent transfer
and shows that the cyclic monotonicity is sufficient and necessary. Formally, cyclic
monotonicity is equivalent to the existence of a function 𝑡 : Θ→ R such that for all
𝜃, 𝜃′,

𝜋(𝜃) · 𝑣(𝜃) + 𝑡 (𝜃) ≥ 𝜋(𝜃′) · 𝑣(𝜃) + 𝑡 (𝜃′).

Note the difference between report-contingent transfer and outcome-contingent
transfer. Our implementation additionally requires that 𝑡 is linear in the alloca-
tion rule. If an allocation rule is implementable with outcome-contingent transfers,
then the function 𝑡 must exist: 𝑡 (𝜃) = 𝜋(𝜃) ·𝑇 . We thus obtain a necessary condition.

Observation 1. The allocation rule is implementable with outcome-contingent
transfers only if vl(·, ·) satisfies cyclic monotonicity, i.e., for all 𝜃1, · · · , 𝜃𝑘 ∈ Θ,

vl(𝜃1, 𝜃2) + vl(𝜃2, 𝜃3) + · · · + vl(𝜃𝑘 , 𝜃1) ≥ 0.
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Yet the condition of cyclic monotonicity does not guarantee the existence of outcome-
contingent transfers. In Example 2, a report-contingent transfer can implement the
allocation rule. Thus, cyclic monotonicity holds. However, no outcome-contingent
transfer can implement the allocation rule. Hence, our condition in Theorem 7 is
stronger than cyclic monotonicity.

Special Cases
Our model imposes no assumptions on the allocation rule, the state space, or the
valuation structure. Next, we shall investigate some special cases where we impose
more structure on each of these model primitives. We first show that when {𝜋(𝜃)}𝜃∈Θ
are linearly independent, cyclic monotonicity is also sufficient.

Proposition 8. When {𝜋(𝜃)}𝜃∈Θ are linearly independent, the allocation rule is
implementable with outcome-contingent transfers if and only if vl(·, ·) satisfies cyclic
monotonicity.

Proof of Proposition 8. Observation 1 shows the necessity. We only need to show
the sufficiency. By our previous discussion, cyclic monotonicity already ensures the
existence of 𝑡. We only need to show that there exists a transfer 𝑇 ∈ R𝑛 such that for
all 𝜃 ∈ Θ,

𝜋(𝜃) · 𝑇 = 𝑡 (𝜃).

We rewrite it in matrix form. We define 𝚷 be the |Θ| × 𝑛 matrix representing
𝜋 : 𝜃 → Δ(𝑋) and𝑇 be the |Θ|-dimension column vector representing 𝑡 (·) : Θ→ R.
So the matrix form of the above linear system is

𝚷𝑇 = 𝑇. (3.1)

The vector 𝑇 lies in the span of column vectors of 𝚷. Thus, there exists a
𝑇 satisfying the above matrix equation if and only if 𝑟𝑎𝑛𝑘 (𝚷) = 𝑟𝑎𝑛𝑘 (𝚷, 𝑇)
where 𝚷, 𝑇 represents the augmented matrix. Since 𝜋(𝜃) is linearly independent,
𝑟𝑎𝑛𝑘 (𝚷) = |Θ| = 𝑟𝑎𝑛𝑘 (𝚷, 𝑇). □

This proposition highlights the difference between allocation rules that are imple-
mentable with outcome-contingent transfers versus report-contingent transfers. If
the cardinality of the outcomes is larger than the cardinality of states, then we have
more flexibility in setting 𝑡 (𝑥) to induce truthful reports. That is, generically, a
matrix Π such that |𝑋 | ≥ |Θ| guarantees the existence of a solution to Equation
(3.1). Conversely, when |𝑋 | < |Θ|, it is more likely that no solution exists. This
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insight sheds light on the motivating examples. How far are the allocation rules that
are implementable with outcome-contingent transfers compared to the ones with
standard transfers? The answer largely lies in the granularity of outcomes versus
states. In the political transfer example, as the state is high-dimensional, it is very
hard to implement with outcome-contingent transfers if the evaluations are finite.
However, the two implementation notions are closer given a larger evaluation set.

Next, we show that in some cases, it is easy to check whether an allocation rule
is implementable. Consider the support problem in Figure 3.5. The outcome-
contingent transfer rule is the common vector adjustment in the vector field that
makes 𝑣(𝜃) + 𝑇 (the outer normal of) a supporting hyperplane. Consider the point
𝜋(𝜃4) in Figure 3.5. As 𝜋(𝜃4) is in the convex hull of {𝜋(𝜃) |𝜃 ∈ Θ}, no hyperplane
can support {𝜋(𝜃) |𝜃 ∈ Θ}. Therefore, the outer normal 𝑣(𝜃4) + 𝑇 must be zero
and 𝑇 = −𝑣(𝜃4).7 Consequently, this is the only candidate transfer that we need to
check. This insight carries over in general.

𝜋(𝜃4)

𝜋(𝜃1)

𝜋(𝜃2) 𝜋(𝜃3)

𝑣(𝜃1)

𝑣(𝜃2)

𝑣(𝜃3)𝑣(𝜃4)

𝑣(𝜃1) + 𝑇

Supporting hyperplane of 𝜋(𝜃1).

Figure 3.5: The Support Problem

Proposition 9. Suppose that some 𝜋(𝜃𝑖) is in the interior of the convex hull of
{𝜋(𝜃) |𝜃 ∈ Θ}. The allocation rule 𝜋 is implementable with outcome-contingent
transfers if and only if 𝑇 = −𝑣(𝜃𝑖) implements 𝜋.

We can apply this result to our Example 2. As 𝜋(𝜃2) is in the interior of the convex
hull of {𝜋(𝜃) |𝜃 ∈ Θ}, it is without loss to consider only the transfer 𝑇 = −𝑣(𝜃2).

7Formally, 𝑣(𝜃4) +𝑇 can be non-zero but must be orthogonal to the affine hull of {𝜋(𝜃) |𝜃 ∈ Θ}.
But then it is without loss to consider only 𝑇 = −𝑣(𝜃4).
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But this transfer cannot elicit 𝜃3 to report truthfully. Thus, the allocation rule is not
implementable.

Note that this proposition has no bite if the points {𝜋(𝜃) |𝜃 ∈ Θ} are in a convex
position (also known as convex independent). On the other hand, when {𝜋(𝜃) |𝜃 ∈ Θ}
are convex dependent, implementation is generally difficult. Even when such an
allocation can be implemented, the transfer rule is very restricted. In Appendix
3.7, we consider the planner’s design problem where he optimizes over allocation-
transfer rules. We show that for a general objective function, it is without loss to
restrict attention to convex independent allocation rules.

In addition, we show that when the state space is small, cyclic monotonicity is also
sufficient.

Proposition 10. When |Θ| ≤ 3, the allocation rule is implementable with outcome-
contingent transfers if and only if vl(·, ·) satisfies cyclic monotonicity.

By Proposition 8, the conclusion follows when 𝜋(𝜃) are linearly independent. Now
suppose 𝜋(𝜃) are linearly dependent. When |Θ| = 2, linear dependence of 𝜋(𝜃)
implies 𝜋(𝜃1) = 𝜋(𝜃2) and the conclusion holds trivially. When |Θ| = 3, the linear
dependence of 𝜋(𝜃) is equivalent to convex dependence. Suppose that 𝜋(𝜃1) is a
convex combination of 𝜋(𝜃2) and 𝜋(𝜃3). By Proposition 9, it is without loss to take
𝑇 = −𝑣(𝜃1). Given this transfer, all the incentive compatibility constraints reduce
to weak monotonicity.8 Thus, cyclic monotonicity is also sufficient.

The argument above fails catastrophically for |Θ| ≥ 4. First, when there are more
than three states, linear dependence does not imply convex dependence. Second,
even if convex dependence of {𝜋(𝜃) |𝜃 ∈ Θ} holds, we can no longer reduce all IC
constraints to weak monotonicity. This occurs in Example 2, where |Θ| = 4 and

8To see this, let 𝜋(𝜃1) = 𝜆𝜋(𝜃2) + (1 − 𝜆)𝜋(𝜃3). Given 𝑇 = −𝑣(𝜃1), the incentive compatibility
requires that for all 𝑖 ≠ 𝑗 ∈ {1, 2, 3},

𝜋(𝜃𝑖) · (𝑣(𝜃𝑖) − 𝑣(𝜃1)) ≥ 𝜋(𝜃 𝑗 ) · (𝑣(𝜃𝑖) − 𝑣(𝜃1)).

When 𝑖 = 1, the inequality holds trivially. When 𝑗 = 1, the inequality reduces to weak monotonicity
between 𝜃𝑖 and 𝜃1. When 𝑖, 𝑗 ∈ {2, 3}, replacing 𝜋(𝜃 𝑗 ) with

𝜋(𝜃1) − 𝜆𝑖𝜋(𝜃𝑖)
1 − 𝜆𝑖

,

where 𝜆𝑖 = 𝜆 if 𝑖 = 2 and 𝜆𝑖 = 1 − 𝜆 otherwise, the inequality also reduces to weak monotonicity
between 𝜃𝑖 and 𝜃1.
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cyclic monotonicity holds. Thus, when |Θ| ≥ 4, cyclic monotonicity may no longer
be sufficient.

In the incentive compatibility constraint, we take expectation of the random outcome.
Thus, we can view the implementation with outcome-contingent transfers as an
interim condition. A more demanding notion can require the allocation rule to
be ex-post implementable with outcome-contingent transfers, i.e., if there exists a
transfer 𝑡 such that for all 𝜃 and 𝑥 ∈ supp{𝜋(·|𝜃)},

𝑣(𝜃, 𝑥) + 𝑡 (𝑥) ≥ 𝑣(𝜃, 𝑥′) + 𝑡 (𝑥′),∀𝑥′ ∈ 𝑋.

It turns out that this ex-post implementability is equivalent to the following sufficient
condition on the valuation structure.9

Proposition 11. The allocation rule is implementable with outcome-contingent
transfers if for any sequence of (𝜃1, 𝑥1), · · · , (𝜃𝑚, 𝑥𝑚), (𝜃𝑚+1, 𝑥𝑚+1) = (𝜃1, 𝑥1) where
𝑥𝑖 ∈ supp{𝜋(·|𝜃𝑖)},

𝑚∑︁
𝑖=1

𝑣(𝜃𝑖, 𝑥𝑖) ≥
𝑚∑︁
𝑖=1

𝑣(𝜃𝑖, 𝑥𝑖+1).

Another important case is when the agent’s preference is separable in the state and
outcome. We say that the agent’s preference is additively separable if there exists
𝑣1 and 𝑣2 such that

𝑣(𝜃, 𝑥) = 𝑣1(𝜃) + 𝑣2(𝑥).

It includes the case where the agent’s preference is state-independent. State-
independent preference, or transparent motive, has been widely studied in the com-
munication and persuasion literature (see, for example, Chakraborty and Harbaugh,
2010; Lipnowski and Ravid, 2020; Lipnowski, Ravid, and Shishkin, 2022). When
the agent’s preference is additively separable, the transfer 𝑡 (𝑥) = −𝑣2(𝑥) can imple-
ment all allocation rules. Moreover, the converse is true as well, i.e., this is the only
preference where all allocation rules are implementable with outcome-contingent
transfers.

3.5 Conclusion
We study whether we can implement a randomized allocation rule with outcome-
contingent transfers. For this implementation, we characterize sufficient and neces-
sary conditions. One natural extension is to study a principal’s revenue maximization

9We thank one anonymous referee for providing this result.
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problem when the agent reports through a noisy signal, which can be viewed as our
allocation rule. The principal allocates one indivisible item conditional on the mes-
sage generated by the signal. Given the agent’s IR constraint, the principal designs
transfers to maximize revenue. We leave this question to future research.
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3.6 Omitted Proofs
Proof of Theorem 7. 1⇒ 2. If the allocation rule is implementable with outcome-
contingent transfers, there exists 𝑇 such that for all 𝜃, 𝜃′ ∈ Θ

vl(𝜃, 𝜃′) + 𝑑𝜋(𝜃, 𝜃′) · 𝑇 ≥ 0.

For any 𝜆𝜃𝜃′ > 0, we have

𝜆𝜃𝜃′ (vl(𝜃, 𝜃′) + 𝑑𝜋(𝜃, 𝜃′) · 𝑇) ≥ 0.

For any 𝜆 ∈ ker+(𝐷𝜋), summing over all 𝜃, 𝜃′,∑︁
𝜃,𝜃′

𝜆𝜃𝜃′vl(𝜃, 𝜃′) ≥ 0

we have VL ∈ [ker+(𝐷𝜋)]∗.

2 ⇒ 3. If VL ∈ [ker+(𝐷𝜋)]∗, the optimal value of following linear programming
problem is zero.

min
∑︁
𝜃,𝜃′∈Θ

𝜆𝜃𝜃′vl(𝜃, 𝜃′)

𝑠.𝑡.
∑︁
𝜃,𝜃′∈Θ

𝜆𝜃𝜃′𝑑𝜋(𝜃, 𝜃′) = 0,

𝜆𝜃𝜃′ ≥ 0.

(3.2)

Then, for any 𝜆𝜃𝜃′ ≥ 0 satisfies
∑
𝜃,𝜃′∈Θ 𝜆𝜃𝜃′𝑑𝜋(𝜃, 𝜃′) = 0 and

∑
𝜃≠𝜃′∈Θ 𝜆𝜃𝜃′ = 1, we

have
∑
𝜃,𝜃′∈Θ 𝜆𝜃𝜃′vl(𝜃, 𝜃′) ≥ 0.

By the definition of convex envelope,10

𝑐𝑜𝑛𝑣(𝐷) (z) = inf{
∑︁
𝜃,𝜃′∈Θ

𝜆𝜃𝜃′vl(𝜃, 𝜃′)
�� ∑︁
𝜃≠𝜃′∈Θ

𝜆𝜃𝜃′ = 1, 𝜆𝜃𝜃′ ≥ 0,
∑︁
𝜃,𝜃′∈Θ

𝜆𝜃𝜃′𝑑𝜋(𝜃, 𝜃′) = z}.

Thus we get 𝑐𝑜𝑛𝑣(𝐷) (0) ≥ 0.

3 ⇒ 1. Since 𝑐𝑜𝑛𝑣(𝐷) (0) ≥ 0, the convex hull of set 𝐷, 𝑐𝑜𝑛ℎ𝑢𝑙𝑙 (𝐷), and the
convex set {(0, 𝑙)

��𝑙 < 0, 0 ∈ R𝑛} have no intersection. By Separating Hyperplane
Theorem, there exists a non-zero vector (𝑇, 𝛼) where 𝑇 ∈ R𝑛, 𝛼 ≥ 0 such that for
any (𝑑𝜋(𝜃, 𝜃′), vl(𝜃, 𝜃′)) ∈ 𝐷 and 𝑙 < 0 we have

𝑑𝜋(𝜃, 𝜃′) · 𝑇 + 𝛼vl(𝜃, 𝜃′) > 𝛼𝑙. (3.3)
10Here we adopt the convention that inf ∅ = +∞.
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If 𝛼 = 0, we get 𝑑𝜋(𝜃, 𝜃′) ·𝑇 > 0 and 𝑑𝜋(𝜃′, 𝜃) ·𝑇 > 0. But 𝑑𝜋(𝜃, 𝜃′)+𝑑𝜋(𝜃′, 𝜃) = 0,
a contradiction. Then it must be that 𝛼 > 0. Set 𝑇 = 𝑇

𝛼
, then by (3.3)

𝑑𝜋(𝜃, 𝜃′) · 𝑇 + vl(𝜃, 𝜃′) > 𝑙.

As 𝑙 < 0, take the supremum of 𝑙,

𝑑𝜋(𝜃, 𝜃′) · 𝑇 + vl(𝜃, 𝜃′) ≥ 0.

This implies that 𝑇 is the transfer that implements the allocation rule. □

Proof of Proposition 9. The "if" part is obvious and we prove the "only if" part.
Suppose that the allocation rule {𝜋(𝜃)} is implementable. We assume that the
transfer 𝑇 ′ implements this allocation rule. Since 𝜋(𝜃𝑖) is in the interior of the
convex hull of {𝜋(𝜃) |𝜃 ∈ Θ}, there exists 𝜆(𝜃) > 0 such that

∑
𝜃≠𝜃𝑖

𝜆(𝜃) = 1 and
𝜋(𝜃𝑖) =

∑
𝜃≠𝜃𝑖

𝜆(𝜃)𝜋(𝜃).

By the incentive-compatible constraint, we have that for any 𝜃 ≠ 𝜃𝑖,

𝜆(𝜃)𝜋(𝜃𝑖) · (𝑣(𝜃𝑖) + 𝑇 ′) ≥ 𝜆(𝜃)𝜋(𝜃) · (𝑣(𝜃𝑖) + 𝑇 ′).

Sum them up, we get

𝜋(𝜃𝑖) · (𝑣(𝜃𝑖) + 𝑇 ′) ≥ 𝜋(𝜃𝑖) · (𝑣(𝜃𝑖) + 𝑇 ′).

Consequently, all above inequalities must be equalities

𝜋(𝜃𝑖) · (𝑣(𝜃𝑖) + 𝑇 ′) = 𝜋(𝜃) · (𝑣(𝜃𝑖) + 𝑇 ′)

for all 𝜃 ≠ 𝜃𝑖.

Next, we verify that 𝑇 = −𝑣(𝜃𝑖) also implements the allocation rule. For any
𝜃, 𝜃′ ∈ Θ,

𝜋(𝜃) · (𝑣(𝜃) + 𝑇) = 𝜋(𝜃) · (𝑣(𝜃) + 𝑇 ′) − 𝜋(𝜃) · (𝑣(𝜃𝑖) + 𝑇 ′)
≥ 𝜋(𝜃′) · (𝑣(𝜃) + 𝑇 ′) − 𝜋(𝜃𝑖) · (𝑣(𝜃𝑖) + 𝑇 ′)
= 𝜋(𝜃′) · (𝑣(𝜃) + 𝑇 ′) − 𝜋(𝜃′) · (𝑣(𝜃𝑖) + 𝑇 ′)
= 𝜋(𝜃′) · (𝑣(𝜃) + 𝑇).

Thus 𝑇 = −𝑣(𝜃𝑖) implements the allocation rule {𝜋(𝜃)}𝜃∈Θ. □
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Proof of Proposition 10. Observation 1 shows the necessity. We only need to show
sufficiency. When {𝜋(𝜃)}𝜃∈Θ are linearly independent, the conclusion holds by
Proposition 8. Now suppose {𝜋(𝜃)}𝜃∈Θ are linearly dependent.

When |Θ| = 1, the problem is trivial. WhenΘ = {𝜃1, 𝜃2}, the only linearly dependent
case is 𝜋(𝜃1) = 𝜋(𝜃2). It trivially satisfies the cyclic monotonicity condition and
the allocation rule is implementable.

Now suppose Θ = {𝜃1, 𝜃2, 𝜃3}. The result trivially holds when 𝜋(𝜃1) = 𝜋(𝜃2) =
𝜋(𝜃3). For the other cases, there is a unique 𝑡 ∈ [0, 1] such that

𝜋(𝜃3) = 𝑡𝜋(𝜃1) + (1 − 𝑡)𝜋(𝜃2) (3.4)

and 𝜋(𝜃1) ≠ 𝜋(𝜃2). This holds without loss of generality, since {𝜋(𝜃)}𝜃∈Θ are
linearly dependent and 𝜋(𝜃) ≥ 0. Consequently, the dimension of ker+(𝐷𝜋) is 1.
For any 𝜆 ∈ ker+(𝐷𝜋), the coefficient of 𝜋(𝜃𝑖) in

∑
𝜃,𝜃′∈Θ 𝜆𝜃𝜃′𝑑𝜋(𝜃, 𝜃′) is∑︁

𝑗≠𝑖

(𝜆𝜃𝑖𝜃 𝑗 − 𝜆𝜃 𝑗𝜃𝑖 ).

Since the dimension of the kernel space is 1, by (3.4), there exists a real number 𝐾
such that ∑︁

𝑗≠1
(𝜆𝜃1𝜃 𝑗 − 𝜆𝜃 𝑗𝜃1) = 𝐾𝑡∑︁

𝑗≠2
(𝜆𝜃2𝜃 𝑗 − 𝜆𝜃 𝑗𝜃2) = 𝐾 (1 − 𝑡)∑︁
𝑗≠3
(𝜆𝜃3𝜃 𝑗 − 𝜆𝜃 𝑗𝜃3) = −𝐾.

(3.5)

Take any 𝜆 ∈ ker+(𝐷𝜋). If there exists a cycle (𝑠1, 𝑠2, · · · , 𝑠𝑘 ) ⊆ Θ such that
𝜆𝑠1𝑠2 × · · · × 𝜆𝑠𝜅 𝑠1 ≠ 0. Then let

𝑦 = min{𝜆𝑠1𝑠2 , · · · , 𝜆𝑠𝜅 𝑠1} > 0,

and update the values of 𝜆𝑠1𝑠2 , 𝜆𝑠2𝑠3 , · · · , 𝜆𝑠𝜅 𝑠1 as the following:

𝜆𝑠1𝑠2 ← 𝜆𝑠1𝑠2 − 𝑦
· · ·

𝜆𝑠𝜅 𝑠1 ← 𝜆𝑠𝜅 𝑠1 − 𝑦.

Let 𝜆∗ denote the updated value. 𝜆∗ still satisfies equation (3.5). This implies
𝜆∗ ∈ ker+(𝐷𝜋).∑︁

𝜃𝜃′
𝜆𝜃𝜃′vl(𝜃, 𝜃′) −

∑︁
𝜃𝜃′
𝜆∗𝜃𝜃′vl(𝜃, 𝜃′) = 𝑦

𝜅∑︁
𝑖=1

vl(𝑠𝑖, 𝑠𝑖+1) ≥ 0
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by cyclic monotonicity. So it suffices to show that for all 𝜆∗ ∈ ker+(𝐷𝜋), we have
𝜆∗ · VL ≥ 0.

Thus, we can assume that there is no cycle that (𝑠1, 𝑠2, · · · , 𝑠𝑘 ) such that 𝜆𝑠1𝑠2 ×
· · · × 𝜆𝑠𝜅 𝑠1 ≠ 0. As |Θ| = 3, there must be a 𝜃𝑖 such that

𝜆𝜃 𝑗𝜃𝑖 = 0, ∀ 𝑗 ≠ 𝑖.

We say that such 𝑖 has the lowest topological order. And there must be a 𝜃𝑖 such that

𝜆𝜃𝑖𝜃 𝑗 = 0, ∀ 𝑗 ≠ 𝑖.

We say that such 𝑖 has the highest topological order. We consider two cases.

Case 1: 𝐾 ≥ 0. The lowest topological order index 𝑖 must be 1 or 2. By symmetry,
we assume that it is 1. And the highest topological order index must be 3. Then by
(3.5),

𝜆𝜃1𝜃2 + 𝜆𝜃1𝜃3 = 𝐾𝑡,

𝜆𝜃2𝜃3 − 𝜆𝜃1𝜃2 = 𝐾 (1 − 𝑡).
(3.6)

We calculate VL · 𝜆,∑︁
𝜃𝜃′
𝜆𝜃𝜃′vl(𝜃, 𝜃′) = 𝜆𝜃1𝜃2vl(𝜃1, 𝜃2) + 𝜆𝜃1𝜃3vl(𝜃1, 𝜃3) + 𝜆𝜃2𝜃3vl(𝜃2, 𝜃3)

= 𝜆𝜃1𝜃2vl(𝜃1, 𝜃2) + 𝜆𝜃1𝜃3 [𝜋(𝜃1) − 𝜋(𝜃3)] · 𝑣(𝜃1) + 𝜆𝜃2𝜃3 [𝜋(𝜃2) − 𝜋(𝜃3)] · 𝑣(𝜃2)
= 𝜆𝜃1𝜃2vl(𝜃1, 𝜃2) + (1 − 𝑡)𝜆𝜃1𝜃3vl(𝜃1, 𝜃2) + 𝑡𝜆𝜃2𝜃3vl(𝜃2, 𝜃1)
= 𝐾𝑡 (1 − 𝑡) (vl(𝜃1, 𝜃2) + vl(𝜃2, 𝜃1)) + 𝑡𝜆𝜃1𝜃2 (vl(𝜃1, 𝜃2) + vl(𝜃2, 𝜃1))
≥ 0,

where the third equality follows by replacing 𝜋(𝜃3) with 𝑡𝜋(𝜃1) + (1 − 𝑡)𝜋(𝜃2), and
the last equality follows by (3.6).

Case 2: 𝐾 < 0. The highest topological order index 𝑖 must be 1 or 2. By symmetry,
we assume that it is 1. And the lowest topological order index must be 3. Then by
(3.5),

𝜆𝜃2𝜃1 + 𝜆𝜃3𝜃1 = −𝐾𝑡,

𝜆𝜃3𝜃2 − 𝜆𝜃2𝜃1 = −𝐾 (1 − 𝑡).
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If 𝑡 = 0, then 𝜆𝜃2𝜃1 = 𝜆𝜃3𝜃1 = 0 and vl(𝜃3, 𝜃2) = 0, the value
∑
𝜃𝜃′ 𝜆𝜃𝜃′vl(𝜃, 𝜃′) = 0.

If 𝑡 > 0, then∑︁
𝜃𝜃′
𝜆𝜃𝜃′vl(𝜃, 𝜃′) = 𝜆𝜃3𝜃1vl(𝜃3, 𝜃1) + 𝜆𝜃3𝜃2vl(𝜃3, 𝜃2) + 𝜆𝜃2𝜃1vl(𝜃2, 𝜃1)

=
𝑡 − 1
𝑡
𝜆𝜃3𝜃1vl(𝜃3, 𝜃2) + 𝜆𝜃3𝜃2vl(𝜃3, 𝜃2) +

1
𝑡
𝜆𝜃2𝜃1vl(𝜃2, 𝜃3)

=
𝜆𝜃2𝜃1

𝑡
(vl(𝜃2, 𝜃3) + vl(𝜃3, 𝜃2))

≥ 0.

Hence, we have VL ∈ [ker+(𝐷𝜋)]∗. By Theorem 7, the allocation rule is imple-
mentable with outcome-contingent transfers. □

Proof of Proposition 11. By Kantorovich Duality (Theorem 5.10 in Villani et al.,
2009), there exists 𝑡 : 𝑋 → R such that for all for all 𝜃 and 𝑥 ∈ supp{𝜋(·|𝜃)},

𝑣(𝜃, 𝑥) + 𝑡 (𝑥) ≥ 𝑣(𝜃, 𝑥′) + 𝑡 (𝑥′),∀𝑥′ ∈ 𝑋

if and only if𝜆∗ = 𝜇0(𝜃)𝜋(𝑥 |𝜃) is optimal solution for the following optimal transport
problem,

max
𝜆∈Δ(Θ×𝑋)

∑︁
𝜃,𝑥

𝜆(𝜃, 𝑥)𝑣(𝜃, 𝑥)

𝑠.𝑡.𝜆𝜃 = 𝜇0, 𝜆𝑋 = 𝜈,

where 𝜇0 is a full-support distribution on Θ and 𝜈(𝑥) = ∑
𝜃∈Θ 𝜇(𝜃)𝜋(𝑥 |𝜃). Again

by Theorem 5.10 in Villani et al., 2009, 𝜆∗ is the solution of above optimal trans-
port problem if and only if for any sequence (𝜃1, 𝑥1), · · · , (𝜃𝑚, 𝑥𝑚), (𝜃𝑚+1, 𝑥𝑚+1) =
(𝜃1, 𝑥1) where (𝜃𝑖, 𝑥𝑖) ∈ supp{𝜆∗},

𝑚∑︁
𝑖=1

𝑣(𝜃𝑖, 𝑥𝑖) ≥
𝑚∑︁
𝑖=1

𝑣(𝜃𝑖, 𝑥𝑖+1).

Note that (𝜃𝑖, 𝑥𝑖) ∈ supp{𝜆∗} if and only if 𝑥𝑖 ∈ supp{𝜋(·|𝜃𝑖)}. □

Proof of Claim: All allocation rules are implementable with outcome-contingent
transfers if and only if the agent’s preference is additively separable.

The "if" part is taken care of by transfer 𝑡 (𝑥) = −𝑣2(𝑥). The "only if" part:
Suppose all allocation rules are implementable with outcome-contingent transfers.
Then we know that for any {𝜋(𝜃)}𝜃∈Θ, by Observation 1, vl(·, ·) satisfies the cyclic
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monotonicity condition. Then for any 𝜃 ≠ 𝜃′ ∈ Θ, 𝑥 ≠ 𝑥′ ∈ 𝑋 . If we consider
𝜋(𝑥 |𝜃) = 1, 𝜋(𝑥′|𝜃′) = 1, the cyclic monotonicity condition requires that

𝑣(𝜃, 𝑥) + 𝑣(𝜃′, 𝑥′) ≥ 𝑣(𝜃′, 𝑥) + 𝑣(𝜃, 𝑥′).

If we consider 𝜋(𝑥′|𝜃) = 1, 𝜋(𝑥 |𝜃′) = 1, the cyclic monotonicity condition requires
that

𝑣(𝜃, 𝑥) + 𝑣(𝜃′, 𝑥′) ≤ 𝑣(𝜃′, 𝑥) + 𝑣(𝜃, 𝑥′).

Then we know that for any 𝜃 ≠ 𝜃′ ∈ Θ, 𝑥 ≠ 𝑥′ ∈ 𝑋 , we must have 𝑣(𝜃, 𝑥) −
𝑣(𝜃, 𝑥′) = 𝑣(𝜃′, 𝑥) − 𝑣(𝜃′, 𝑥′). Then fix 𝑥0 ∈ 𝑋 , then there is 𝑣2 : 𝑋 → R such that
𝑣(𝜃, 𝑥) − 𝑣(𝜃, 𝑥0) = 𝑣2(𝑥) for all 𝜃 ∈ Θ. Thus we let 𝑣1(𝜃) = 𝑣(𝜃, 𝑥0), then 𝑣(𝜃, 𝑥) =
𝑣1(𝜃) + 𝑣2(𝑥) which implies the agent’s preference is additive separable. □

3.7 Optimization over Allocation Rules
In this section, we take allocation rules as endogenous and consider a design problem.
The planner’s ex-post payoff function is 𝑓 (𝜃, 𝑥, 𝑡). The planner sets up an outcome-
contingent allocation and transfer rule (𝜋(𝜃), 𝑇) to maximize expected payoff

𝐸𝜃{
∑︁
𝑥

𝜋(𝑥 |𝜃) 𝑓 (𝑥, 𝜃, 𝑡 (𝑥))}

subject to the IC constraint

∀𝜃, 𝜃′ ∈ Θ, 𝜋(𝜃) · (𝑣(𝜃) + 𝑇) ≥ 𝜋(𝜃′) · (𝑣(𝜃) + 𝑇)

and IR (participation) constraint

∀𝜃 ∈ Θ, 𝜋(𝜃) · (𝑣(𝜃) + 𝑇) ≥ 0.

We show that it is without loss to restrict attention to convex independent allocation
rules.

Proposition 12. It is without loss for the planner to focus on convex independent
allocation rules.

Proof. Suppose that (𝜋, 𝑇) satisfies the IC and IR constraints. We show that there
is a convex independent allocation rule 𝜋′ such that (𝜋′, 𝑇) yields a weakly larger
payoff for the planner.

Let Θ′ ⊂ Θ collect all 𝜃 such that 𝜋(𝜃) is the extreme point of the convex hull of
{𝜋(𝜃) |𝜃 ∈ Θ}. Fix some 𝜃𝑖 ∈ Θ. There exists 𝜆(·) : Θ′→ R≥0 such that

𝜋(𝜃𝑖) =
∑︁
𝜃∈Θ′

𝜆(𝜃)𝜋(𝜃) and
∑︁
𝜃∈Θ′

𝜆(𝜃) = 1.
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Note that the planner’s expected payoff conditional on 𝜃𝑖 is∑︁
𝑥

𝜋(𝑥 |𝜃𝑖) 𝑓 (𝑥, 𝜃𝑖, 𝑡 (𝑥)) =
∑︁
𝜃∈Θ′

𝜆(𝜃)
∑︁
𝑥

𝜋(𝑥 |𝜃) 𝑓 (𝑥, 𝜃𝑖, 𝑡 (𝑥)).

There must exist some 𝜃′
𝑖
∈ Θ′ such that∑︁

𝑥

𝜋(𝑥 |𝜃′𝑖) 𝑓 (𝑥, 𝜃𝑖, 𝑡 (𝑥)) ≥
∑︁
𝑥

𝜋(𝑥 |𝜃𝑖) 𝑓 (𝑥, 𝜃𝑖, 𝑡 (𝑥)).

We define a new allocation rule 𝜋′ by 𝜋′(𝜃𝑖) = 𝜋(𝜃′
𝑖
). Note that (𝜋′, 𝑇) generates

a weakly higher payoff for the planner. Lastly, by Proposition 9, agent 𝜃𝑖’s payoff
does not change,

(𝑣(𝜃𝑖) + 𝑇) · 𝜋(𝜃𝑖) = (𝑣(𝜃𝑖) + 𝑇) · 𝜋′(𝜃𝑖).

Thus, IR still holds. The set of IC constraints is smaller due to

{𝜋′(𝜃) |𝜃 ∈ Θ} = {𝜋(𝜃) |𝜃 ∈ Θ′} ⊂ {𝜋(𝜃) |𝜃 ∈ Θ}.

Thus, IC still holds.

□



131

BIBLIOGRAPHY

Archer, Aaron and Robert Kleinberg (2008). “Truthful germs are contagious: a
local to global characterization of truthfulness”. In: Proceedings of the 9th ACM
Conference on Electronic Commerce, pp. 21–30.

Ashlagi, Itai et al. (2010). “Monotonicity and implementability”. In: Econometrica
78.5, pp. 1749–1772.

Bergemann, Dirk, Stephen Morris, and Satoru Takahashi (2012). “Efficient auctions
and interdependent types”. In: American Economic Review Papers & Proceedings
102.3, pp. 319–324.

Bikhchandani, Sushil et al. (2006). “Weak monotonicity characterizes deterministic
dominant-strategy implementation”. In: Econometrica 74.4, pp. 1109–1132.

Boyd, Stephen P and Lieven Vandenberghe (2004). Convex optimization. Cambridge
university press.

Carbajal, Juan Carlos and Rudolf Müller (2015). “Implementability under monotonic
transformations in differences”. In: Journal of Economic Theory 160, pp. 114–
131.

– (2017). “Monotonicity and revenue equivalence domains by monotonic trans-
formations in differences”. In: Journal of Mathematical Economics 70, pp. 29–
35.

Carroll, Gabriel (2012). “When are local incentive constraints sufficient?” In: Econo-
metrica 80.2, pp. 661–686.

Chakraborty, Archishman and Rick Harbaugh (2010). “Persuasion by cheap talk”.
In: American Economic Review 100.5, pp. 2361–2382.

Doval, Laura and Vasiliki Skreta (2022). “Mechanism design with limited commit-
ment”. In: Econometrica 90.4, pp. 1463–1500.

Frongillo, Rafael M and Ian A Kash (2021). “General truthfulness characterizations
via convex analysis”. In: Games and Economic Behavior 130, pp. 636–662.

Gui, Hongwei, Rudolf Müller, and Rakesh V Vohra (2004). Dominant strategy
mechanisms with multidimensional types. Tech. rep. Discussion Paper.

Jehiel, Philippe, Benny Moldovanu, and Ennio Stacchetti (1999). “Multidimensional
mechanism design for auctions with externalities”. In: Journal of economic theory
85.2, pp. 258–293.

Kushnir, Alexey I and Lev V Lokutsievskiy (2021). “When is a monotone function
cyclically monotone?” In: Theoretical Economics 16.3, pp. 853–879.

Lin, Xiao and Ce Liu (2024). “Credible Persuasion”. In: Journal of Political Econ-
omy 132.7, pp. 2228–2273.



132

Lipnowski, Elliot and Doron Ravid (2020). “Cheap talk with transparent motives”.
In: Econometrica 88.4, pp. 1631–1660.

Lipnowski, Elliot, Doron Ravid, and Denis Shishkin (2022). “Persuasion via weak
institutions”. In: Journal of Political Economy 130.10, pp. 2705–2730.

McAfee, R Preston and John McMillan (1988). “Multidimensional incentive com-
patibility and mechanism design”. In: Journal of Economic theory 46.2, pp. 335–
354.

Müller, Rudolf, Andrés Perea, and Sascha Wolf (2007). “Weak monotonicity and
Bayes–Nash incentive compatibility”. In: Games and Economic Behavior 61.2,
pp. 344–358.

Myerson, Roger B (1981). “Optimal auction design”. In: Mathematics of Operations
Research 6.1, pp. 58–73.

Nguyen, Anh and Teck Yong Tan (2021). “Bayesian persuasion with costly mes-
sages”. In: Journal of Economic Theory 193, p. 105212. issn: 0022-0531.

Perez-Richet, Eduardo and Vasiliki Skreta (2022). “Test design under falsification”.
In: Econometrica 90.3, pp. 1109–1142.

Roberts, Kevin (1979). “The characterization of implementable choice rules”. In:
Aggregation and revelation of preferences 12.2, pp. 321–348.

Rochet, Jean-Charles (1987). “A necessary and sufficient condition for rationaliz-
ability in a quasi-linear context”. In: Journal of Mathematical Economics 16.2,
pp. 191–200.

Saks, Michael and Lan Yu (2005). “Weak monotonicity suffices for truthfulness
on convex domains”. In: Proceedings of the 6th ACM conference on Electronic
commerce, pp. 286–293.

Tadelis, Steve and Ilya Segal (2005). Lectures in Contract Theory.

Villani, Cédric et al. (2009). Optimal transport: old and new. Vol. 338. Springer.


	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Incentivizing Information Acquisition
	Introduction
	Model
	Preliminary Analysis
	Characterization of the Optimal Transfer
	Extensions
	Implications for Classic Principal-Agent Problem
	The Assumption That Transfer Depends Only on the Difference Between the State and Report
	Omitted Proofs

	Estimating Nonseparable Selection Models: A Functional Contraction Approach
	Introduction
	Model
	Main Results
	Estimation
	Monte Carlo Simulations
	Applications
	Conclusion
	Connection to Quantal Response Equilibria
	Omitted Proofs
	Tables

	Implementing Randomized Allocation Rules with Outcome-Contingent Transfers
	Introduction
	Model
	Main Results
	Discussions
	Conclusion
	Omitted Proofs
	Optimization over Allocation Rules


