
From non-abelian anyons to quantum computation

to coin-flipping by telephone

Thesis by

Carlos Mochon

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2005

(Defended May 9, 2005)

ii

Copyright notice:

Chapter 2 is taken from [Moc03], Chapter 3 is taken from [Moc04a], Chapter 4 is taken from

[Moc04c], and Chapter 6 together with Sec. 5.5 are taken from [Moc05]. These works are copyrighted

by the American Physical Society (APS), used with permission.

Chapter 5 (excluding Sec. 5.5) is based on [Moc04b]. This work is copyrighted by the IEEE, used

with permission.

The remaining material is

c© 2005

Carlos Mochon

All Rights Reserved

iii

to Alice and Bob

(whose bitter divorce was a constant motivation)

iv

Acknowledgements

I would like to thank my advisor John Preskill for his guidance and advice, and for pointing me

in the direction of the two research topics that comprise this thesis, both of which ended up being

exceedingly fruitful. I would also like to thank Alexei Kitaev for numerous discussions and for the

opportunity to build on his results.

Over the years at Caltech I’ve had helpful discussions with many people including Patrick Hayden,

Dave Bacon, Michael Ben-Or, Rob Spekkens, Debbie Leung and Andrew Childs, plus many others

whom I’ve unfortunately forgotten to include here.

Extra special thanks are due to Jim Harrington, James Chakan, Meg Wessling, Charlene Ahn,

Andrew Landahl, Ben Toner and Graeme Smith, who’ve proofread my papers, discussed my ideas

and generally tolerated my incessant complaining.

Finally, I’d like to thank my candidacy and thesis defense committees: John Preskill, Alexei

Kitaev, Jeff Kimble, Hideo Mabuchi, Anton Kapustin and Chris Umans for helping me move from

frigid California to sunny Canada.

v

Abstract

Following their divorce, Alice and Bob would like to split some of their possessions by flipping a

coin. Unwilling to meet in person, and without a trusted third party, they must figure out a scheme

to flip the coin over a telephone that guarantees that neither party can cheat.

The preceding scenario is the traditional definition of two-party coin-flipping. In a classical

setting, without limits on the available computational power, one player can always guarantee a

coin-flipping victory by cheating. However, by employing quantum communication it is possible

to guarantee, with only information-theoretic assumptions, that neither party can win by cheating,

with a probability greater than two thirds. Along with the description of such a protocol, this thesis

derives a tight lower bound on the bias for a large family of quantum weak coin-flipping protocols,

proving such a protocol optimal within the family. The protocol described herein is an improvement

and generalization of one examined by Spekkens and Rudolph. The key steps of the analysis involve

Kitaev’s description of quantum coin-flipping as a semidefinite program whose dual problem provides

a certificate that upper bounds the amount of cheating for each party.

In order for such quantum protocols to be viable, though, a number of practical obstacles involv-

ing the communication and processing of quantum information must be resolved. In the second half

of this thesis, a scheme for processing quantum information is presented, which uses non-abelian

anyons that are the magnetic and electric excitations of a discrete-group quantum gauge theory. In

particular, the connections between group structure and computational power are examined, gener-

alizing previous work by Kitaev, Ogburn and Preskill. Anyon based computation has the advantage

of being topological, which exponentially suppresses the rate of decoherence and the errors associ-

ated with the elementary quantum gates. Though no physical systems with such excitations are

currently known to exist, it remains an exciting open possibility that such particles could be either

engineered or discovered in exotic two-dimensional systems.

vi

Contents

Acknowledgements iv

Abstract v

1 Introduction 1

1.1 Anyons: a potential implementation of quantum computation 2

1.2 Coin-flipping: a potential application of quantum information 4

2 Computing with anyons from non-solvable finite groups 11

2.1 Review . 11

2.1.1 Magnetic charges . 12

2.1.2 Electric charges and vacuum pairs . 14

2.1.3 Qudits . 15

2.1.4 Phase measurement . 16

2.2 A universal gate-set for anyons . 17

2.2.1 d odd case . 18

2.2.2 d = 2 case . 18

2.3 Universal computation for simple perfect groups . 20

2.3.1 Requirements for the physical system . 20

2.3.2 Computational basis . 21

2.3.3 Conjugation by a function . 21

2.3.4 Toffoli gate . 22

2.3.5 Measuring Z . 24

2.3.6 Constructing the zero eigenvector of X . 26

2.3.7 Choosing a dth root of unity . 27

2.3.8 Measuring X . 29

2.4 Leakage correction . 29

2.4.1 Motivation . 29

2.4.2 Implementation . 30

vii

2.5 Universal computation for non-solvable groups . 32

2.5.1 New requirements for the physical system . 34

2.5.2 Universal computation . 34

2.5.3 Leakage detection and ρ0̃ generation . 36

2.6 Creating the ancillas . 37

2.7 Mathematicalia . 40

3 Anyon computers with smaller groups 44

3.1 Review and notation . 45

3.1.1 Electric charge pairs . 45

3.1.2 Superselection sectors, fusion and vacuum pairs 46

3.1.3 Requirements for the physical system . 47

3.1.4 Probabilistic projection onto K . 48

3.2 Base case: G = Zp ×θ Zq . 49

3.2.1 Algebraic structure . 49

3.2.2 Computational basis . 50

3.2.3 Operations involving braiding fluxes . 50

3.2.4 Operations involving fusion of fluxes . 52

3.2.4.1 Production of |0̃〉 states . 53

3.2.5 Representations and fusion of electric charges 54

3.2.6 Examples . 56

3.2.6.1 S3 . 56

3.2.6.2 Z7 ×θ Z3 . 57

3.2.7 Operations involving electric charges . 58

3.2.8 On the measurement of one-dimensional representations 60

3.2.9 Other possibilities . 61

3.3 Gate-set universality . 62

3.3.1 Non-destructive measurement of Z and X . 63

3.3.1.1 |0〉 and |0̃〉 ancillas . 63

3.3.1.2 |1〉 states, |1̃〉 states; X gates, Z gates 64

3.3.1.3 Measurements of Z and X . 65

3.3.2 Completing the gate-set . 65

3.3.2.1 Using |φM1〉 . 66

3.3.2.2 Using |φM2〉 . 67

3.3.2.3 Making the magic states . 67

3.4 Computational power of magnetic charges . 70

viii

3.4.1 Conjugations with multiple sources . 72

3.4.2 Summary of computational power . 74

3.5 Solvable non-nilpotent groups . 75

3.5.1 Group decomposition . 75

3.5.2 Examples . 77

3.5.3 N -invariant ancillas . 78

3.5.4 Computational basis . 79

3.5.5 Basic operations . 79

3.5.6 Using electric charges . 82

3.5.6.1 Choosing Λ̃ . 84

3.5.6.2 The amplitudes Fh→γ . 85

3.5.6.3 Finding a non-zero amplitude . 87

3.5.6.4 Alternative Λ̃ . 88

3.5.7 Putting it all together . 90

3.5.7.1 The case p = 2 . 91

3.6 Leakage correction . 92

3.7 Concluding remarks . 94

4 Serial composition and cheat detection for quantum coin-flipping 95

4.1 Serial composition of quantum coin protocols . 96

4.2 Quadratic cheat detection is a fixed point of coin-flipping 97

4.3 Proof of lemma . 101

4.4 No-go theorem for linear cheat detection . 102

4.5 Conclusions . 105

5 Quantum weak coin-flipping with bias of 0.192 106

5.1 The protocol . 107

5.1.1 Reformulation of the protocol . 109

5.2 Coin-flipping as an SDP . 110

5.2.1 The primary problem . 111

5.2.2 The dual problem . 112

5.3 Finding solutions to the dual problem . 114

5.3.1 Choosing Z1, . . . , Zn . 115

5.3.2 Example n = 3 . 119

5.3.3 Finding the optimal Zn+1 . 120

5.4 Choosing a1, . . . , an . 126

5.5 0.192 revisited . 128

ix

6 A large family of quantum weak coin-flipping protocols 131

6.1 Notation . 131

6.2 The protocol . 133

6.2.1 Reformulation as an SDP . 138

6.2.2 Lower bounds . 141

6.2.3 Upper bounds . 143

6.2.4 Honest Bob vs. Cheating Alice . 148

6.3 Lower bounds on the bias . 149

6.4 Optimal protocols . 154

6.5 Conclusions . 158

Bibliography 160

x

1

Chapter 1

Introduction

To be or not to be, is there no other choice?

Shakespeare’s [Sha] famous words reflect a perception of the world in which an object can exist

in only one of a set of mutually exclusive states. Such a view was held by most of humanity until the

early twentieth century. The advent of quantum mechanics, however, revealed a world where these

states were only part of a continuum composed of weighted superpositions of all classical states.

Unfortunately, the effects of decoherence on large systems, which typically projects them into one

of their classical states, means that Hamlet’s decision would be no easier today than in Shakespeare’s

time. The small impact that quantum mechanics has had on the world of theater, though, was offset

by the large thud that eventually resonated through the field of Computer Science. The discovery

of quantum error correction [Sho95, Ste96] and fault-tolerant quantum computation [Sho96, Kit97b]

opened the possibility of building large scale quantum systems that can be controlled in the labora-

tory and used to process and communicate quantum information.

Computers capable of processing quantum information do not appear to be polynomially equiv-

alent to the standard Turing machine, as they can factor large numbers and compute discrete

logarithms efficiently [Sho94], a task that is not believed possible with a standard classical com-

puter. Furthermore, quantum communication has been proven to be strictly superior to classical

communication for a number of tasks, including key distribution [Wie83, BB84].

There are therefore two fundamental questions in this nascent field of quantum computation:

1. For what tasks does the ability to process quantum information offer an advantage over the

purely classical setting?

2. How can we build a system capable of harnessing this quantum power without being affected

by processing errors and decoherence?

Partial answers to both of these questions will be discussed as we examine a scheme for building

quantum computers out of non-abelian anyons, and a two-party communication problem in which

quantum information provides a considerable advantage over classical information.

2

Of course, these are just two of the myriad of answers that have appeared in the literature.

Examples of other algorithms, protocols and implementations of quantum computing can be found,

for instance, in [NC00]. Said reference also contains the longer version of the much abridged history

of quantum computing presented above.

1.1 Anyons: a potential implementation of quantum compu-

tation

The race towards the construction of the first large-scale quantum computer began in earnest in the

mid 1990s with proposals involving optical qubits [CY95], cavity QED [THL+95], ion traps [CZ95]

and NMR [CFH97, GC97, SV99]. Many other schemes have followed. Most, however, face serious

technical challenges involving noise reduction and gate accuracy, which must be addressed before a

full fledged quantum computer can be built.

The difficulty arises in the seemingly conflicting set of requirements that a quantum computer

must satisfy: On the one hand, a good quantum computer must store its information in qubits

that are sufficiently isolated from each other and the environment that the probability of an error

occurring is small. On the other hand the qubits must interact sufficiently strongly with each other,

in an externally controllable fashion, such that fast quantum gates can be realized.

One innovative approach to quantum computation was proposed by Kitaev [Kit97a] who sug-

gested storing quantum information in topologically protected subspaces. Because the environment

typically acts locally, and topological degrees of freedom can only be accessed (i.e., modified or

measured) using highly non-local operations, such subspaces are highly resistant to errors.

Of course, as discussed above, it is not sufficient to just isolate the qubits from the environment;

there must also be a way of addressing them. Fortunately, there are topological operations such as

braiding and fusion that can access the encoded information. Furthermore, the resulting operations

on the computational subspace depend only on their topological parameters and not on the details of

their implementation such as the exact paths involved. This allows the production of highly accurate

quantum gates, the second holy grail of quantum computation (the first one being long-lived qubits).

A good candidate for the implementation of the ideas of topological quantum computation is

a system with anyons, which are particles whose statistics are neither bosonic nor fermionic. In

quantum mechanics, the particle statistics are given by the action of the exchange operators, which

have the effect of exchanging neighboring particles. The square of an exchange operator is equivalent

to transporting one particle around another, which in three spatial dimension is homotopically

equivalent to doing nothing, hence the braiding operator in three dimensions has only ±1 eigenvalues

corresponding to bosons and fermions. However, the situation is more complicated in two spatial

dimensions since clockwise and counterclockwise exchanges can be distinguished. In this case, the

3

exchange operator, when acting on indistinguishable particles, can belong to any representation of

the braid group. This representation can be non-abelian, giving rise to non-abelian anyons.

Apart from unitary gates (some of which can be build out of the above exchange or braiding

operators), a quantum computer also requires a way of reading out the information. In the setting

of anyons this can be obtained from the fusion operation, which takes two anyons and combines

them into a single anyon that carries their total charge, or into the vacuum in the case when their

total charge is trivial. Fusion, like braiding, is a topological operation whose outcome depends only

on the charges of the particles involved and not on the details of the procedure.

Each set of rules for braiding and fusion describes a type or model of anyons. Of course, the

braiding and fusion rules must satisfy some consistency requirements, which are known as the quasi-

triangularity conditions. In fact, there is a beautiful mathematical theory underlying the set of

anyons, which are really representations of quasi-triangular Hopf algebras (or even more generally

quasi-Hopf algebras). However, we shall not use this highly abstract mathematical language.

In this thesis we will focus on a particular set of physically-inspired models for anyons that

correspond to the spectrum of electric and magnetic charges of a quantum gauge theory with discrete

symmetry group. Mathematically, these correspond to representations of Drinfeld’s quantum double

of the symmetry group. Physically, such models arise when a regular continuous-group quantum

gauge theory has its symmetry broken, via the Higgs mechanism, to a discrete group G. In such a

field theory all the gauge particles are massive, and hence do not mediate long-range interactions. A

set of electric and magnetic charged particles remain unscreened, however, and such charges can be

detected via Aharonov-Bohm interactions. A complete description of the spectrum can be found in

[dWPB95] (and the original work [BvDdWP92]). These particles will form the elementary building

blocks out of which a quantum computer can be built.

Returning to the question of implementations of quantum computations, one may wonder how

practical is an anyon based computer. Abelian anyons have already been observed in the fractional

quantum Hall effect, and non-abelian anyons are conjectured to exist at certain levels as well [NW96,

RR99]. Unfortunately, such anyons do not belong to the anyon model discussed above, but rather

to the one analyzed in [Fre00, FKLW01]. Though no system is currently known that supports the

model of discrete-group gauge theory anyons discussed herein, it is possible that such a system

could be engineered. Recent proposals include optical lattices [DDL02] and Josephson-junction

arrays [DIV03]. In the latter case, an explicit array is constructed that simulates on a lattice the

gauge theory with group S3, which is the smallest group for which our construction works.

The contribution of this thesis to the subject of topological quantum computation is primarily

theoretical, however. We shall not be concerned with the details of how one may obtain and control

a system with non-abelian anyons. Rather, we shall assume the existence of a system with anyons,

described by a quantum gauge theory of discrete symmetry group G, and then proceed to ask for

4

what such groups can a quantum computer be built out of the braiding and fusion of anyons. The

analysis will lead to some interesting connections between group structure and computational power.

In particular, we shall show that if G is non-nilpotent (a group property that shall be defined in

Chap. 3) then the related anyons can be used to build a universal quantum computer, and we shall

describe an explicit realization of one.

Chap. 2 deals with the simpler case of non-solvable groups and was originally published as

[Moc03]. It contains a generalization of the construction by Ogburn and Preskill [OP99, Pre97]

for the group A5. Chap. 3 generalizes the previous results to include all non-nilpotent groups and

is published as [Moc04a]. This second result, though subsuming the previous chapter, involves a

more difficult proof. The quantum computer devised in this chapter is also experimentally more

challenging, as it involves using both electric and magnetic charges, whereas the construction of

Chap. 2 requires control of magnetic charges exclusively. The work of Chap. 3 is built on unpublished

research by Kitaev [Kit02] who described a quantum computer using anyons from the group S3.

The two chapters also contain some novel gate-sets, a discussion of leakage correction and a

technique for building a reservoir of magnetic fluxes.

1.2 Coin-flipping: a potential application of quantum infor-

mation

The flip side of the difficulty of building quantum computers is their potential ability to accomplish

tasks that are either impossible or impractical with a classical computer alone.

A quantum computer can efficiently factor numbers and compute discrete logarithms [Sho94],

solve Pell’s equation [Hal02] and find the zeros of the Zeta function for certain varieties [vD04], tasks

that are believed to be hard for classical computers. In the more abstract oracle query model, we can

also find separations between quantum and classical queries, for instance in the case of unstructured

search [Gro96].

There are further surprises in the realm of quantum communication and cryptography. The

well-known case of key distribution [BB84] is useful when a set of honest users are trying to protect

their communication from potentially malicious third parties.

A different set of cryptographic problems arises, though, when two or more people try to ac-

complish a joint task while protecting themselves from potential cheating from the other players.

Typical tasks involve agreeing on a random outcome or calculating a joint function without revealing

some private information. For example, Alice and Bob may wish to find a common free day when

they can meet, without revealing to each other their schedules. Most of these problems fall under

the banner of secure computation.

Classically, given certain cryptographic assumptions (such as certain limits on computational

5

power) all two-player [Yao82] and multiplayer [GMW87] functions can be computed. In the multi-

player case it is even possible to do this with information-theoretic security (i.e., without any limits

on computational power) so long as each pair of players is connected by a secure private commu-

nication channel (and possibly an authenticated broadcast channel) [CCD88, BOGW88, RBO89].

The results can even be generalized to allow multiparty quantum computations to take place under

similar assumptions [CGS02].

In this thesis we shall focus on problems involving two players. One the one hand, this is a

much simpler scenario as one does not need to worry about issues of authentication, secrecy and

jamming. If an honest player detects a protocol deviation, he knows exactly who is cheating. On

the other hand, the security guarantees of most of the multiplayer results are only valid as long as a

majority (or sometimes a super-majority) of players are honest. This assumption obviously cannot

be imposed on two-player games, where we would like to protect an honest player from potential

cheating from the other player.

Unfortunately, there is very little that can be done classically with information-theoretic security

for two-party problems. All the known results invoke cryptographic assumptions (some of which,

such as the difficulty of factoring, will no longer be true once quantum computers become available).

It was initially hoped that quantum information could provide protocols with information-theoretic

security for all secure computation problems. This lofty goal turned out to be unattainable, but

certain partial results have been found.

Most of the work on quantum protocols has focused on two primitives called bit-commitment

and coin-flipping, to be defined below. The interest in these problems is that they are simple enough

to be comprehensibly studied and can often be used as building blocks for solving more complicated

problems. Any classical secure computation can be built up from a few primitive protocols such

as oblivious transfer [Kil88]. Early indications [Yao95] were that quantum bit-commitment could

be used to produce protocols for oblivious transfer, and hence the rest of the secure computation

problems, and many protocols for quantum bit-commitment were proposed.

Bit commitment can be defined as a two-party protocol comprising the following two stages:

• Commit stage: Alice commits herself to a bit x ∈ {0, 1}.

• Reveal stage: Alice reveals the bit x to Bob.

Each stage may involve many rounds of communication between Alice and Bob, and an arbitrary

amount of time may pass between the two stages. The protocol must satisfy two requirements:

Before the reveal stage Bob should not be able to obtain any information about the bit that Alice

committed to. However, once the commit state is done, Alice should not be able to change the value

of the committed bit.

In an information-theoretic setting, it should be clear that classical bit-commitment cannot be

6

accomplished: either Bob has enough information at the end of the commit stage to know the value

of the committed bit, or Alice can change her commitment.

By using quantum mechanics, it is possible to formulate a partial solution to the problem of bit-

commitment, where Bob has a non-unity probability of learning the committed bit, and Alice has a

non-unity probability of changing the committed bit. It should be noted that quantum mechanically,

Alice can always commit to a superposition of bit values rather than to a single value, but this is not

significantly different from the classical case where she may assign to someone else the task of picking

the committed bit without telling her its value. In these cases, the bit-commitment restriction would

say that having completed the commit phase, the maximum probability with which Alice can reveal

a zero plus the maximum probability with which she can reveal a one (possibly using a different

reveal strategy) should sum to one.

Unfortunately, it is known [May96, LC98] that ideal bit-commitment cannot be realized in a

quantum setting with information-theoretic security. Soon followed proofs that many two-party

functions cannot be securely computed either [Lo97], including all those where only one party learns

the outcome (which includes oblivious transfer as a special case). The conclusion is that while

quantum information is superior to classical information for producing bit-commitment protocols,

it is not sufficient to fully accomplish the task.

Future work on quantum two-party protocols focused on a simpler task: coin-flipping, sometimes

called coin-flipping by telephone, which was proposed initially by Manuel Blum [Blu81]. The protocol

allows two mutually distrustful parties to agree on the outcome of a coin-flip, such that neither of

them can affect the outcome by cheating. The task is easy if there exists a third party, trusted

by the first two, who can take care of flipping the coin and announcing the results. However, in

many cases no trusted third party is available, and that is where cryptographic protocols become

important.

In this thesis we shall be mainly concerned with a variant called weak coin-flipping in which each

player has a preferred outcome. It is defined as a two-party communication protocol where Alice

and Bob begin uncorrelated (and unentangled in the quantum case) and end by outputting one bit

each. We say that Alice wins on outcome zero and Bob wins on outcome one. The protocol must

guarantee the following:

1. If both players are honest, then Alice’s bit must be uniformly random and must equal Bob’s

bit.

2. If Alice is honest, then even if Bob cheats, she will not output one (i.e., Bob wins) with a

probability greater than P ∗
B .

3. Similarly, if Bob is honest, then even if Alice cheats, he will not output zero (i.e., Alice wins)

with a probability greater than P ∗
A.

7

The parameters P ∗
A and P ∗

B , which ideally should be as small as possible, describe the protocol. It

is often convenient to summarize these by specifying just one parameter: the bias ε = max(P ∗
A, P

∗
B)−

1/2. Ideal coin-flipping (i.e., when no cheating is allowed) corresponds to zero bias.

The above rules of coin-flipping are set up to correspond to the colloquial notion of flipping a

coin. The output bit of Alice and Bob when both are honest is an agreement of the coin outcome.

The requirement of starting off uncorrelated is imposed because this is effectively a protocol for

establishing correlations. The ability to begin with correlations makes the problem uninteresting.

Note that when one player is dishonest, we place no restriction on their output, as this would be

infeasible to enforce. We also do not worry about the case of two cheating players. The protocol is

only intended to protect honest players.

The requirements of coin-flipping can also be strengthened to not allow either player to cheat

in either direction. This corresponds to the case when the honest players do not have a priori a

preferred outcome. Such a task is known as strong coin-flipping, and its protocol must satisfy all

the requirements for weak coin-flipping, in addition to:

2’. If Alice is honest, then even if Bob cheats, she will not output zero with a probability greater

than P ∗
B
′.

3’. If Bob is honest, then even if Alice cheats, he will not output one with a probability greater

than P ∗
A
′.

For strong coin-flipping the bias is defined as ε = max(P ∗
A, P

∗
A
′, P ∗

B , P
∗
B
′) − 1/2.

The original definition for coin-flipping by telephone [Blu81] imposes a few extra requirements,

such as the ability to convince a third party, once the protocol is completed, of what the coin

outcome was and whether each participant was honest. Unfortunately, such requirements cannot be

demanded of a quantum protocol as the no-cloning theorem implies that a transcript of the messages

cannot be kept. Therefore, we shall not consider such extensions in this thesis.

The definition of strong coin-flipping is sometimes expanded to include an “abort” outcome to

be used when a player detects a protocol deviation. In weak coin-flipping such an outcome is never

needed because an honest player who catches her opponent cheating can always output her desired

outcome. For strong coin-flipping the situation is more complicated, though. For example, the

strategy of simply outputting a random bit when a player catches their opponent cheating is faulty,

as the cheating opponent can play normally until the last round and then only cheat if he is about to

lose, thereby guaranteeing himself a winning probability of 75%. This issue will not be important,

though, as we shall mainly be concerned with weak coin-flipping in this thesis.

Strong coin-flipping can be built out of bit-commitment as follows: Alice first commits a random

bit to Bob, then Bob sends a second random bit to Alice, and finally Alice reveals her commitment.

The coin outcome is the xor of the two random bits. On the other hand, bit-commitment cannot be

8

accomplished even given a strong coin-flipping black-box [Ken99]. Therefore, coin-flipping is weaker

than bit-commitment, and possibly more amenable to implementation using quantum information.

Classically, even weak coin-flipping cannot be implemented with information-theoretic security

with a bias less than one half. That is, one player is always allowed to maximally cheat, and the

protocol is no more secure than if that player were simply assigned the task of deciding the coin

outcome. We shall sketch an argument here.

The first step is to note that every classical coin-flipping protocol, under the assumption that

each side has unlimited computational power, can be transformed into a public-coin coin-flipping

protocol (to be defined below). We assume without loss of generality that each message consists of

a single bit. The basic idea is to inductively prove that the protocol can be run so that neither Alice

nor Bob keep any private information. It is clearly true at the start. Assume it is true immediately

before sending message n. The sender (say Alice) will send a message that depends on all previous

messages, and some private randomness that she will obtain in this round. Part of that randomness

is immediately revealed to Bob when Alice sends her message. The rest of it is not used, and so we

can postpone obtaining it until some future round, which leaves Alice with no private state.

Given that neither Alice nor Bob keep any private state, the protocol can be cast in the form of

a public-coin coin-flipping protocol: Alice and Bob alternate announcing random bits (with each bit

having a bias possibly depending on the value of all previous bits). After n messages they should

each have the same n bits, which they use as input to a public n-bit to 1-bit function to obtain the

outcome of the coin-flipping protocol.

In a public-coin protocol the scenario of two dishonest players is well defined: each player may

choose their message bits to maximize the likelihood of winning. But this scenario is simply a

standard two-player game with no possibility of tying, and therefore one player (say Bob) must

always be able to win. To complete the proof that all classical coin-flipping protocols have bias of

one half, we simply note that if Bob can guarantee a victory against Alice when she is cheating,

then he can surely guarantee a victory against Alice when she is honest.

By exploiting quantum information, better (though not perfect) protocols can be built. For

strong coin-flipping, Ambainis [Amb01] and Spekkens and Rudolph [SR02a] independently proposed

protocols that achieve a bias of 1/4. Unfortunately, Kitaev [Kit03] (see also [ABDR04]) establishes

a lower bound on the bias of 1/
√

2 − 1/2, which holds even if the players are allowed to output

“abort.” The proof bears a similarity to some of the techniques used classically to establish lower

bounds on the bias of coin-flipping problems involving multiple players [BOL85]. In fact, multiplayer

strong coin-flipping is also bounded in the quantum case [ABDR04].

The problem of whether weak coin-flipping can be achieved with arbitrarily small bias remains

open. The best known protocol prior to the work in this thesis is by Spekkens and Rudolph [SR02b],

which achieves a bias of 1/
√

2−1/2 ' 0.207. Other previous protocols include [GVW99, KN04]. The

9

best known lower bound is by Ambainis [Amb01] and states that the number of messages must grow

at least as Ω(log log 1
ε). In particular, it implies that no protocol with a fixed number of messages

can achieve arbitrarily small bias.

In this thesis we continue the search for protocols for weak quantum coin-flipping. Whereas

most previous protocols typically involve 3–5 messages, we focus on sets of protocols that can

have an arbitrary number of messages, which are particularly important in light of Ambainis lower

bound. The technique that allows us to study protocols with a large number of messages is Kitaev’s

description of coin-flipping as a semidefinite program [Kit03].

In particular, in Chap. 5 we identify a generalization of Spekkens and Rudolph’s protocol that

achieves a bias of 0.192 in the limit of arbitrarily large number of messages (though ten messages

are sufficient for a bias of 0.193). This work was originally published as [Moc04b]. Though the

derivation of the lower bound on the bias in this chapter is analytic, the protocols have a set of

parameters that were originally optimized numerically. Later, an analytic derivation (published in

[Moc05]) was found and is included in the last section of the chapter.

The rest of [Moc05] is contained in Chap. 6, which shows that the protocol with bias 0.192 is

part of a large family of quantum protocols for weak coin-flipping that are based on classical public-

coin coin-flipping protocols. The quantum protocols are obtained by replacing classical randomness

with quantum entanglement and by adding a cheat detection test in the last round that verifies the

integrity of this entanglement. This larger family contains a second generalization of the Spekkens

and Rudolph protocol that achieves a bias of 1/6.

In the same chapter, the complete family is analyzed, and a set of optimal protocols is identified

for every number of messages. These optimality results prove that a bias of 1/6 is the best that

can be achieved within the family. A previous optimality result by Ambainis [Amb02] proved that

1/
√

2−1/2 ' 0.207 is the best bias that can be achieved within a particular family of three-message

protocols. However, we believe that the result in this thesis is the first lower bound for a family

containing protocols with an arbitrary number of messages.

The problem of the optimal bias for quantum weak coin-flipping remains open, but we speculate

that it may be possible to show that every quantum protocol can be reduced to one of the protocols

discussed in Chap. 6. If such a conjecture were true, then the optimal bias would be 1/6.

Even if arbitrary small bias cannot be achieved using quantum information, there is the possibility

of constructing protocols for either coin-flipping or bit-commitment with good cheat detection. The

idea of a “cheat” outcome is essentially the same as the “abort” outcome discussed above, but the

assumption now is that the protocol will be used as part of some larger transaction where getting

caught cheating may have significantly worse consequences than losing a coin-flip.

Some aspects regarding the possibility of coin-flipping with cheat detection will be examined in

Chap. 4, where the idea of cheat detection will also be defined more precisely. Protocols for quantum

10

weak coin-flipping with cheat sensitivity have been constructed by Spekkens and Rudolph [SR02b]

and prevent cheating by a large amount without the risk of getting caught, though small amounts

of cheating may remain undetected. Aharonov et al. [ATSVY00] have a protocol with quadratic

cheat detection for either party, though the cheat detection can only be used on one party at a time.

The best known cheat detecting protocol is by Hardy and Kent [HK04] where neither party may

cheat without risking some finite probability of getting caught, though the precise functional form

of cheat detection was not determined. We note that the last two are actually protocols for bit-

commitment with cheat detection, though they can be transformed into protocols for coin-flipping

using the reduction presented above.

The work presented in Chap. 4 is published as [Moc04c], and considers cheat detection curves

similar to the ones discussed in [RS04]. It begins by showing that quantum coin-flipping can be

composed in series to produce new coin-flipping protocols. Though it is known that serial compo-

sition of standard coin-flipping protocols cannot be used to decrease the final bias [SV86], serial

composition of coin-flipping with cheat detection is a different story. However, we shall also argue

that serial composition of coin-flipping is probably not a useful tool in designing weak coin-flipping

protocols with arbitrarily small bias (yet another piece of evidence that this may not be possible).

We also use serial composition to derive an upper bound on the amount of cheat detection that can

exist in coin-flipping and bit-commitment protocols in the quantum information-theoretic setting.

In summary, this thesis presents applications of quantum information that achieve significantly

better results that what can be done solely with classical information. Though the practical appli-

cations of the protocols in this thesis remain unclear, at a minimum they should serve as further

examples of the differences between the classical world that we appear to live in, and the quantum

world where we actually reside.

11

Chapter 2

Computing with anyons from

non-solvable finite groups

In this chapter we present a constructive proof that anyons from a quantum gauge theory with a

finite non-solvable group are capable of performing universal quantum computations. The proof is

a generalization of the work done by Ogburn and Preskill in [OP99, Pre97] for anyons in the group

A5 (the smallest finite non-solvable group). These anyon computers are examples of topological

quantum computers as envisioned by Kitaev [Kit97a, FKLW01].

The chapter is organized as follows: We begin by introducing some notation and reviewing the

properties of the anyon model that will be used throughout this thesis. Sec. 2.2 presents the universal

gate-set that will be employed to prove anyons can perform quantum computations. Sections 2.3

and 2.5 contain the meat of the chapter and discuss a concrete anyonic implementation of all the

necessary gates. For pedagogical reasons, we first cover the easier subcase of simple perfect groups

in Sec. 2.3, and then discuss the required generalizations for any non-solvable group in Sec. 2.5. In

Sec. 2.4, we discuss how to make these computations fault-tolerant by performing leakage correction,

and in Sec. 2.6 we show how to create the required anyon ancillas. Finally, we include the required

mathematical proofs in Sec. 2.7.

2.1 Review

We begin by reviewing some of the braiding and fusion properties of the anyons that will be used

in this chapter. Our review will be rather abridged, but more details can be found in the excellent

review of discrete gauge theories [dWPB95] (and the original work [BvDdWP92]). The paper by

Ogburn and Preskill [OP99, Pre97] also contains a good review with emphasis on the applications

to quantum computing.

This section also establishes our notation for qudits and reviews the phase estimation circuit, a

highly useful trick that will be used often.

12

h g

h g

hhgh−1

g g−1hg

Figure 2.1: Exchanging two anyons.

2.1.1 Magnetic charges

The main players throughout this chapter will be the magnetic charges, also known as fluxes. For a

field theory with an unbroken finite group G, there is one magnetic charge for each element g ∈ G.

Quantum mechanically, we can have superpositions of these states, giving a one-particle Hilbert

space spanned by |g〉 for all g ∈ G (though strictly speaking, superpositions of charges in different

conjugacy classes are meaningless, as will be explained in the next subsection).

Specifying the exchange properties of the charges involves making a choice of gauge. The easiest

choice, which will be used in this thesis, is to keep all anyons ordered on a horizontal line. The

exchange of particles, which can be clockwise or counterclockwise, is only allowed between adjacent

pairs. In either case, the particle that passes below remains unchanged, while the particle that passes

above gets conjugated. When the exchange is in the counterclockwise direction, the upper anyon

gets conjugated by the flux of the lower one, whereas in the clockwise direction it gets conjugated

by the inverse of the lower flux. This is depicted in Fig. 2.1.

One way to visualize these exchanges is to associate with each anyon a ray that is vertical in the

plane, starting at the particle and proceeding upwards. Anyons are allowed to move freely through

the plane, but every time an anyon crosses the ray of another particle, it gets conjugated by the

flux of the owner of the ray (or by the inverse flux if crossing from left to right). Note that when a

particle passes a group of anyons, it gets conjugated by the total flux of the anyons, which is given

as the product from left to right of the individual fluxes.

Clearly, moving single anyons around can produce strange correlations throughout the system.

However, moving a pair of anyons with a total flux that is trivial will not change the state of the

system if the pair always passes below. This is why we will always be dealing with states of the form

∑

g

ag|g〉 ⊗ |g−1〉, (2.1)

which correspond to a pair of anyons with trivial total flux. When dealing only with pairs of trivial

total flux, we can swap any two pairs or bring any two pairs together without affecting the state of

13

h h−1 g g−1

h g
g−1h−1g

g−1

h g g−1
h−1

h g h−1 hg−1h−1

h h−1 hgh−1 hg−1h−1

Figure 2.2: Conjugating a pair of anyons.

the rest of the system.

We do want to allow controlled interaction between pairs, though, and this is accomplished by

a pass-through operation. The idea is to have one pair circle one anyon from the other pair. This

will conjugate the fluxes of the pair that circles, but leave the other pair invariant. This operation

is depicted using elementary exchanges in Fig. 2.2.

The net result of the pictured operation is

|h〉 ⊗ |h−1〉 ⊗ |g〉 ⊗ |g−1〉 −→ |h〉 ⊗ |h−1〉 ⊗ |hgh−1〉 ⊗ |hg−1h−1〉, (2.2)

which is a conjugation of the second pair by h. Conjugation by h−1 could be achieved by using

counterclockwise exchanges in the picture.

For notational convenience, in this thesis we will generally only mention the flux of the left

element of a pair. The above transformation will be written as

|h〉 ⊗ |g〉 −→ |h〉 ⊗ |hgh−1〉, (2.3)

leaving the compensating fluxes implicit. While we will exclusively deal in this chapter with flux

pairs with trivial flux, we will only explicitly refer to the second anyon when necessary to describe

14

the operations.

2.1.2 Electric charges and vacuum pairs

We now wish to focus on the operations of creating pairs from the vacuum and fusing pairs back

into the vacuum. However, we must first briefly discuss the complete spectrum of particles, and that

involves electric charges.

An electric charge is a particle with no flux that transforms as some non-trivial irreducible

representation of the group G. A useful analogy is to think of the representation of G as the total

spin of the particle. The internal state of the particle is then equivalent to the direction in which

the spin is pointing.

The electric charge states can be labeled as |R, V 〉, where R is a representation of G, and V is a

vector that transforms in the representation R. The electric charges do not interact with each other,

but when one of them circles a magnetic flux g, its state changes as

|R, V 〉 −→ |R,UR(g)V 〉, (2.4)

where UR(g) is the matrix corresponding to g in the representation R. This is known as the

Aharonov-Bohm effect.

While we can transform the state of an electric charge within the subspace of a representation,

there are no operations (other than fusion, which destroys the particle) that can change the repre-

sentation of a particle. Furthermore, the phase between states of different representations cannot

be measured. We can therefore effectively describe the electric charges as having decohered into

the different representations. In particle physics we would say that the different representations

correspond to different superselection sectors.

The same thing happens to the magnetic charges. Different conjugacy classes live in different

superselection sectors, so we can imagine that there is an automatic decoherence into different

conjugacy classes. Superpositions of fluxes in different conjugacy classes are therefore meaningless.

The spectrum also contains particles with both electric and magnetic charge, which are called

dyons. The only special feature is that the electric charge is a representation only of the subgroup of

G that commutes with the flux. The aforementioned magnetic charges are just dyons with a trivial

representation. The dyons also have superselection sectors that correspond to different conjugacy

classes and representations.

The purpose of discussing the full spectrum, and the idea of superselection sectors, is to find out

what kind of states we get when we create a pair of particles from the vacuum. The first thing to note

is that each of the particles will instantly decohere into a specific conjugacy class and representation.

Furthermore, because a pair created from the vacuum must have trivial total charge and flux, the

15

conjugacy classes must be inverses, and the representations must be conjugate representations.

Consider the case that the pair decoheres into plain magnetic charges, with the first one contained

in the conjugacy class C. Because the combined state still has vacuum quantum numbers, the state

must transform trivially when another flux is dragged around it. That is, it must be invariant under

conjugation. There is only one such state:

|Vac (C)〉 =
1√
|C|

∑

g∈C

|g〉 ⊗ |g−1〉. (2.5)

The vacuum states for the other superselection sectors are also unique and have similar expressions.

When a pair of anyons is created from the vacuum, it will start off in one of these states.

Another useful operation is to fuse two anyons together. Note that we are not talking about two

anyon pairs, but rather two anyons, sometimes from the same pair, and sometimes from different

pairs. The operation of fusion will turn the two particles into one, which must carry the total flux

and charge of the two. It is also possible that the two anyons will have vacuum quantum numbers

and will fuse back into the vacuum. In this case, no particle will be left behind, and their total mass

will be transformed into some other medium, such as radiation. If |Ψ〉 is the combined state of the

two anyons, and the first anyon is in the conjugacy class C, then the probability that the two will

fuse into the vacuum is given by the standard rules of quantum mechanics:

Pvacuum = |〈Vac (C)|Ψ〉|2 . (2.6)

After fusing two particles of different pairs, the fused particle may carry some flux. However,

since the total flux of the original four particles was trivial, the total flux of all the remaining particles

(including the product of the fusion) will be trivial as well. Therefore, it is possible to safely move

the group of particles away from the bulk of the computation without disturbing our quantum state.

2.1.3 Qudits

Throughout this chapter it will be useful to perform computations with qudits rather than the usual

qubits. We define our computational basis as the states |i〉 for 0 ≤ i < d, where we will assume that

d is prime. The unitary Z and X gates can be defined as follows

Z|i〉 = ωi|i〉, (2.7)

X|i〉 = |i+ 1〉, (2.8)

16

where ω is a fixed non-trivial dth root of unity, and sums are understood to be modulo d. The

operators satisfy the commutation relation

ZX = XZω. (2.9)

As usual, the eigenstates of Z correspond to the computational basis. We can also introduce the

eigenstates of X:

|̃i〉 =
1√
d

d−1∑

j=0

ω−ij |j〉, (2.10)

which have the following transformations under the action of our unitary gates:

Z |̃i〉 = |ĩ− 1〉, (2.11)

X |̃i〉 = ωi |̃i〉. (2.12)

2.1.4 Phase measurement

A very useful trick, used many times throughout this thesis, is Kitaev’s phase estimation technique

[Kit95]. In fact, we will only employ a special case of the technique, which we describe below.

Assume that we are working in a system with qudits, and we have an operator U with eigenvalues

that are dth roots of unity. We shall prove that being able to apply a controlled-U , and measure in

the X basis, is equivalent to being able to measure the operator U .

Consider applying the circuit below to an eigenstate |Ψj〉 of U with eigenvalue ωj :

U−1

|̃i〉

|Ψj〉

|ĩ+ j〉

|Ψj〉

where the controlled-U−1 can be applied as d − 1 controlled-U ’s. The circuit works as described

because the controlled-U−1 leaves the bottom state invariant, but applies a Z−j to the upper state.

On a general state |φ〉 =
∑

j cj |Ψj〉 expanded in terms of eigenvectors of U , the circuit produces the

transformation

|0̃〉 ⊗ |φ〉 −→
∑

j

cj |j̃〉 ⊗ |Ψj〉. (2.13)

Clearly, a subsequent measurement of the first qudit in the X basis is equivalent to a non-destructive

measurement of the original state in the U basis. We will use this technique in the next section to

17

measure the operators XaZb.

In a later section we will employ the equivalent circuit

X−1

|0̃〉

|̃i〉

|̃i〉

|̃i〉

run in both the forwards and backwards directions, to change between the |̃i〉 states and the readily

available |0̃〉 state that can be naturally produced from, and fused into, the vacuum.

2.2 A universal gate-set for anyons

A lot of the work in proving universality can be simplified by choosing a proper gate-set. We will

employ a generalization of the gate-set used by Ogburn and Preskill [OP99, Pre97]. The gate-set,

which involves measurements as well as unitary gates, can be applied to qudits when d is prime,

which is the only case considered in this chapter.

The universal gate-set is:

1. Measure non-destructively Z

2. Measure non-destructively X

3. Apply Toffoli operators (to any set of three qudits)

where the qudit Toffoli is defined as

T |l,m, n〉 = |l,m, lm+ n〉. (2.14)

and all computations are done modulo d.

Though tangential to the main purpose of this chapter, the above gate-set is another answer to

the question posed in [Shi02]. That is, given a Toffoli, what extra gates are required to complete a

universal set? Of course, the answer provided by the above gate-set involves measurements in an

integral way and is therefore different from the one proposed in [Shi02]. However, the above gate-set

also addresses the question: Given classical computation (i.e., Toffoli and measurements of Z), what

gates are needed to complete the universal set?

We now turn our attention to the proof of universality for the gate-set presented above. We note

that Gottesman has already proven in [Got98] that for d prime, applying and measuring products

of Z’s and X’s, plus a Toffoli, is universal for quantum computation. All we need to do in order to

18

prove universality is to show that we can apply and measure operators of the form XaZb using the

above gates.

Measurements of X followed by measurements of Z can produce |i〉 ancillas for any i. Similarly,

we can obtain |̃i〉 ancillas from measurements of Z followed by measurements of X. A controlled-sum

can be made out of a Toffoli by fixing an input to a |1〉 ancilla. Because a controlled-sum is really a

controlled-X, fixing the other input to |1〉 produces the X gate. On the other hand, a controlled-sum

from a state to a |1̃〉 ancilla produces a Z on the state:

X

|̃i〉

|1̃〉

|ĩ− 1〉

|1̃〉

The general case of applying XaZb can be done by a series of X and Z gates. All that remains

is to construct a method for measuring operators of the form XaZb. First, we note that

(
XaZb

)d
= ωabd(d−1)/2XadZbd =

1 d odd

−1ab d = 2.

(2.15)

2.2.1 d odd case

The case d = 2 is rather complicated and will be handled separately. The general case d odd

(remember we required d prime) is easy because the eigenvalues of XaZb are the dth roots of unity

just like those of X and Z. As discussed in the review of phase estimation, being able to apply

a controlled-XaZb, combined with measurements in the X basis (which includes preparation of X

eigenstates) is sufficient to measure in the XaZb basis.

All that remains is to construct the controlled-XaZb. That is, we need to be able to apply the

gate

|n〉 ⊗ |ψ〉 −→ |n〉 ⊗
(
XaZb

)n |ψ〉 = |n〉 ⊗XanZbnωabn(n−1)/2|ψ〉, (2.16)

composed of a phase |n,m〉 → ωbnm+abn(n−1)/2|n,m〉 followed by controlled-sums. The controlled-

sum is just a Toffoli with an input fixed to one. As for the phase, because we have a Toffoli, we have

universal classical computation. We can thus compute bnm+ abn(n− 1)/2 in an ancilla, apply a Z

to this ancilla, and then erase the computation.

2.2.2 d = 2 case

The d = 2 case is somewhat trickier because our gate-set is invariant under complex conjugation,

and thus there is no way of distinguishing the two eigenstates of ZX = iY . We will solve this

19

problem by creating an ancilla that is an eigenstate of ZX, defining it to be the +i eigenstate, and

then using it to measure and build more eigenstates.

Assume we were given a state

|Ψ〉 =
1√
2

(|0〉 + ω|1〉) , (2.17)

where ω2 = −1. Clearly, the state is equal to one of the two ZX eigenstates: |±Y 〉 = (|0〉 ± i|1〉) /
√

2.

Using a controlled-ZX, which is built by the method described in the d odd case, we can produce

copies of the state |Ψ〉. The idea, similar to the one used for phase estimation, is to apply the

controlled-ZX from a state |0̃〉 to the state |Ψ〉. The target state is an eigenvector of ZX with

eigenvalue ω, and therefore the relative phase is copied over to the first state:

|0̃〉 ⊗ |Ψ〉 −→ 1√
2

(|0〉 + ω|1〉) ⊗ |Ψ〉 = |Ψ〉 ⊗ |Ψ〉. (2.18)

Notice that copying works independently of whether |Ψ〉 is the +i or −i eigenstate of ZX. Naturally,

by subsequently applying a Z, we can also produce the orthogonal state |Φ〉 = (|0〉 − ω|1〉) /
√

2.

With our ancilla, we can also measure in this basis. This is done by applying a controlled-ZX

to the ancilla from the state we want to measure:

|Ψ〉 ⊗ |Ψ〉 −→ |1̃〉 ⊗ |Ψ〉, (2.19)

|Φ〉 ⊗ |Ψ〉 −→ |0̃〉 ⊗ |Ψ〉, (2.20)

and then measuring in the X basis.

As long as we are consistent in always using the same ancilla |Ψ〉, we will have broken the

conjugation symmetry and found a way to label, create and measure eigenstates of ZX. Of course,

we should keep many copies of the ancilla, which can be prepared from the original state. The

operations above also allow us to error correct our set of ancillas by copying each, comparing the

copies, and using majority voting to discard the damaged ancillas. Thus, even if there are some

errors in preparation, or some of the ancillas decay over time, computation will still be feasible.

All that remains to be explained is how to create the first copy of |Ψ〉. Because a state with a

density-matrix proportional to the identity can be written as

ρ =
1

2
I =

1

2
|+Y 〉〈+Y | + 1

2
|−Y 〉〈−Y |, (2.21)

it is equivalent to having prepared an eigenstate of ZX = iY chosen at random. The state ρ = I/2

can be produced by discarding one qubit of a bell state, and a bell state can be produced with a

controlled-sum from a |0̃〉 ancilla to a |0〉 ancilla. Therefore, we have shown that we can produce

20

the initial eigenstate of ZX, and we have completed the proof that the gate-set presented at the

beginning of this section is universal for quantum computation.

2.3 Universal computation for simple perfect groups

In this section we will prove that a set of anyons based on certain groups can perform universal

quantum computations. Instead of dealing first with the general case of non-solvable groups, we will

deal with the smaller set of groups that are both simple and perfect.

We remind the reader that non-solvable groups are those that contain a perfect subgroup, and a

perfect group is any non-trivial group, whose commutator subgroup equals the full group: [G,G] =

G. The property of simplicity means that the group has exactly two subgroups that are invariant

under conjugation: the trivial group and the whole group. Because the commutator subgroup is

invariant under conjugation, it should be clear that any simple non-abelian group is perfect. However,

we shall refer to these groups as simple and perfect to remind the reader that we are dealing with a

subcase of the general non-solvable case.

The set of simple perfect groups, which includes the groups An for n > 4, is powerful for com-

puting because in some sense we can get from one non-trivial element to any other using operations

that fix the identity. The general case of non-solvable groups will be deferred to Sec. 2.5, where we

will show that a simple perfect group can be extracted from a non-solvable group.

2.3.1 Requirements for the physical system

Here we list the operations, ancillas and measurements that we assume are available on any realistic

anyonic system, and which we will use to build our quantum gate-set:

1. We can braid or exchange any two particles.

2. We can fuse a pair of anyons and detect whether there is a particle left behind or whether they

had vacuum quantum numbers.

3. We can produce a pair of anyons in a state that is chosen at random from the two particle

subspace that has vacuum quantum numbers.

4. We have ancilla pairs of the form |g〉 ⊗ |g−1〉 for any g ∈ G, where the individual anyons have

trivial electric charge.

We remind the reader again that even though all our anyons are used in pairs of trivial total

flux, we will generally only mention one of the anyons of the pair. These conventions also apply to

ancillas, which means that we will refer to the |g〉 ⊗ |g−1〉 state as an ancilla of flux g.

21

While the first three requirements are natural operations for a laboratory system, it is not clear

where the ancillas would come from. Depending on the physical realization there may be many ways

of obtaining the ancilla reservoir. We discuss one such scheme in Sec. 2.6.

2.3.2 Computational basis

Let G be a simple and perfect finite group. Let a and b be two non-commuting elements of G. Let

d be the smallest integer such that adba−d = b. We can assume that d is prime, otherwise we could

replace a by ad/p where p is some prime that divides d.

It turns out that every simple non-abelian group has even order. This was first conjectured by

Burnside [Bur55] in 1911, and proven by Feit and Thompson [FT63] in 1963 (in fact, the complete

classification of simple finite groups was completed in the early 1980s, see for instance [GLS94]).

Using Sylow’s theorems, the fact that every simple group has even order means that they all include

a non-trivial element a such that a2 = 1. Therefore, we could always work with a basis of qubits.

However, we will present the general qudit case both for its elegance, and because in some instances

a basis of qudits is more convenient.

We will work with a basis of qudits of trivial net flux

|n〉 = |anba−n〉 ⊗ |anb−1a−n〉 (2.22)

for 0 ≤ n < d, where we have explicitly described both anyons of the pair.

It should be clear that we can initialize the computer by filling up the computational space with

|0〉 ancillas. We turn now to the task of constructing the gates presented in Sec. 2.2.

2.3.3 Conjugation by a function

We begin by describing the technique of conjugation by a function, which is especially powerful for

simple perfect groups. In Sec. 2.1.1 we showed that we could perform the transformation

|h〉 ⊗ |g〉 −→ |h〉 ⊗ |hgh−1〉, (2.23)

where we conjugate the second anyon by the flux of the first, while the first anyon remains invariant.

We can also conjugate an anyon by a product h1h2 · · ·hn

|g〉 −→ |h1h2 · · ·hngh
−1
n · · ·h−1

2 h−1
1 〉, (2.24)

where the {hi} are fluxes of other anyons that remain unchanged throughout this process. The

procedure is done by first conjugating by hn, then by hn−1, and proceeding leftward until we finally

22

conjugate by h1.

The above procedure is not terribly useful if all the {hi} are fluxes of fixed ancillas because we

could have equivalently conjugated by a single ancilla of flux h = h1h2 · · ·hn. However, some of the

fluxes in the product could correspond to anyons that represent qudits of unknown state. In this

case we can think of the above operation as conjugation by a function of the fluxes of certain qudits.

Let us consider what kind of functions can be applied in this way. Clearly we are speaking

about functions that can be written as products of elements of G. The elements can include known

constants if we use our ancillas to conjugate. We can also include the flux of a qudit, which will be

of the form aiba−i if the qudit is in the computational basis (though this may not be the case when

we are trying to correct leakage). Finally, we can include in the product the inverse of the flux of a

qudit, as discussed in Sec. 2.1.1.

In conclusion, given n qudits with fluxes g1 through gn, and a function f(g1, . . . , gn−1) of the

first n− 1 qudits, we can conjugate the last qudit by f

|gn〉 −→ |f(g1, . . . , gn−1)gnf(g1, . . . , gn−1)
−1〉, (2.25)

provided that the function f can be written in product form. By product form, we mean that f is a

product of the inputs {gi}, their inverses {g−1
i }, and fixed elements of G, each of which may appear

more than once, or not at all. For example, a valid function would be f(g1, g2) = ag2bg
−1
1 cg−1

1 d with

a, b, c, d ∈ G. Furthermore, this transformation does not change the flux of the first n − 1 qudits,

though it may entangle them with the last qudit.

2.3.4 Toffoli gate

To build the Toffoli gate we must be able to conjugate the third qudit by the function f(g1, g2),

which depends on the fluxes of the first two qudits as

f(aiba−i, ajba−j) = aij (2.26)

and is arbitrary for values of g1 and g2 that are not in the computational basis. If the third qudit

is in the state akba−k, conjugation by f produces the transformation

|akba−k〉 −→ |aij+kba−ij−k〉, (2.27)

which is the desired Toffoli gate.

Given the discussion in the previous subsection, we are left with the task of expressing the

function f in product form. However, it turns out that for simple and perfect groups every function

has such an expression:

23

Theorem 1. If G is a simple and perfect finite group, then any function f(g1, . . . , gn) : Gn → G

can be expressed as a product of the inputs {gi}, their inverses {g−1
i } and fixed elements of G, any

of which may appear multiple times in the product.

Not only does the above theorem prove that Toffoli gates are possible for any simple and perfect

group, but it directly proves that any classical function can be computed.

The proof of the theorem, which is mostly constructive, is somewhat long and will be deferred

to Sec. 2.7. However, to make this seem plausible to the casual reader, we would like to illustrate

the basic steps needed to build a Toffoli gate for qubits.

The main idea behind the construction is that the function f is basically a logical and of the

inputs. A commutator makes a good logical and because it equals the identity if either of its inputs

are the identity. Furthermore, the commutator function can be expanded as a product of its inputs.

Therefore, we would like the first input to take values 1 or c and the second input to take values 1

or d, with the requirement that d not commute with c, so that we can put them into a commutator.

Let g1 denote the flux of the first qubit, and g2 the flux of the second qubit. Each takes values

gi ∈
{
b, aba−1

}
. Define the new variables g′i = gib

−1 ∈ {1, c}, where c ≡ [a, b] ≡ aba−1b−1. It is

sufficient to show that we can express the Toffoli function as a product of g′1, g
′
2, their inverses and

fixed ancillas.

Choose an element d that does not commute with c and define e ≡ [c, d]. Imagine we could find

two functions of one element that can be expressed in product form, such that

h1(c) = d h1(1) = 1, (2.28)

h2(e) = a h2(1) = 1. (2.29)

Using these functions, the Toffoli function can be written as

f(g1, g2) = h2

([
g′1, h1(g

′
2)

])
, (2.30)

which when expanded out is a product of the correct form.

The existence of the functions hi, which is discussed in more detail in the full proof of the

theorem, is a consequence of G being simple. For any element c ∈ G, the group generated by its

conjugacy class C(c) is a normal subgroup. Because G is simple, this subgroup must equal the full

group. Therefore, every element d ∈ G has an expression of the form d = x1cx
−1
1 x2cx

−1
2 · · ·xncx

−1
n

for some n and some elements {xi} ∈ G. We can use the expression to construct h1:

h1(g) = x1gx
−1
1 x2gx

−1
2 · · ·xngx

−1
n , (2.31)

24

and a similar construction builds h2.

For a concrete example we can work with G = A5. We begin by choosing an element a, which

must satisfy a2 = I, if we wish to work with qubits (d = 2). Because of the symmetries of the

group, all choices are equivalent to a = (12)(34). The next step would involve choosing an element

b that does not commute with a, and an element d that does not commute with c ≡ [a, b]. While

any choice can produce a Toffoli, the required h1 function will be simplified if we can make c and

d fall in the same conjugacy class. The same can be said for h2 if e ≡ [c, d] and a are in the same

conjugacy class.

At this point, a little trial and error yield b = (345) and d = (234). The computational basis is

now defined as

|0〉 = |b〉 = |(345)〉,

|1〉 = |aba−1〉 = |(435)〉, (2.32)

and the remaining group elements are fixed as

c =
(
aba−1

)
b−1 = (435)(435) = (345),

e =
(
cdc−1

)
d−1 = (245)(324) = (25)(34). (2.33)

The hi functions, which are the only non-constructive part of the proof, can be built as simple

conjugations because of the choices we made earlier:

h1(g) = h2(g) = (521)g(125), (2.34)

where both happen to be the same function by coincidence. Putting all the steps together we have

a function

f (g1, g2) = (521)

[
g1(435), (521)g2(435)(125)

]
(125)

= (521)g1(435)(521)g2(435)(125)(345)g
−1
1 (521)(345)g−1

2 (125)(125)

= (521)g1(14352)g2(124)g
−1
1 (15342)g−1

2 (521), (2.35)

which can be applied with nine elementary conjugations.

2.3.5 Measuring Z

The basic idea behind measuring in the computational basis is that if we fuse a flux with another flux

of the inverse group element, there is a finite chance that they will have vacuum quantum numbers

25

and disappear. On the other hand, if the product of the two fluxes is not unity then there must be

a particle left behind to carry the remaining flux (i.e., the total flux is always conserved).

At this point it might be useful to remind the reader why a fusion of g with g−1 will not always

turn into the vacuum. The short story is that the combined state is not invariant when another flux

encircles them, implying that they have an electric charge component. The state that has vacuum

quantum numbers is invariant under the effect of all fluxes, and hence is the sum of all the states

in the conjugacy class of g, with the same phase. We can figure out the probability of fusion into

the vacuum by calculating the overlap of the vacuum state with the state of two anyons to be fused.

The result is

P =
∣∣〈Vac (C)|

(
|g〉 ⊗ |g−1〉

)∣∣2 =
1

|C(g)| (2.36)

where C(g) is the conjugacy class of g, and the vacuum state was defined in Sec. 2.1.2.

Because one fusion will only probabilistically tell us the desired result, we should repeat the

measurement many times to obtain a sufficient degree of accuracy. Besides, if we are working with

qudits with d > 2 we need to test fusion with at least two different fluxes. We therefore need to

have many copies of the state to be measured.

Because of the no cloning theorem, copying cannot be done exactly, but the transformation

∑

i

Ci|i〉 −→
∑

i

Ci|i〉 ⊗ |i〉 ⊗ |i〉 ⊗ · · · ⊗ |i〉 (2.37)

means that we can measure each of the separate copies in the Z basis and expect to get the same

answer. The above transformation can be done with a controlled-sum (Toffoli with one input fixed

to |1〉) from the original state to a |0〉 ancilla. Repeating this controlled-sum with many target

ancillas will produce the above entangled state.

To summarize, the procedure for measuring in the Z basis is first to create an entangled state

using a controlled-sum. Then try to fuse each of the qudits with one of the inverses of the fluxes

that are Z eigenstates. Eventually, one will disappear into the vacuum, and the inverse of the flux of

that ancilla is the result. Even in the presence of errors, this measurement will have a good fidelity

because the probability of failure is exponentially small in the number of fusions.

A final note is that, because we are always dealing with pairs of fluxes, what fusion really means

is that we fuse the first anyon of our qubit with the first anyon of the ancilla.

26

2.3.6 Constructing the zero eigenvector of X

For the next gates, we are going to need a supply of states that are eigenvectors of X with zero

eigenvalue:

|0̃〉 =
1√
d

d−1∑

i=0

|i〉. (2.38)

We will produce them out of pairs of anyons with vacuum quantum numbers. As usual we will

just discuss one member of the pair and assume that the equivalent operations are being performed

on the other anyon.

One of the possible states that (when paired) have vacuum quantum numbers is the sum of fluxes

in the conjugacy class of b. This is approximately what we want. Sadly, in general, a state created

from the vacuum will be a mix of this desired state plus other states, including states that involve

dyonic particles (particles with both electric and magnetic charge). We will have to filter through

all this noise to get our X eigenstate.

The procedure that we will describe below is effectively an incomplete swap that has been ex-

tended to the full Hilbert space in a logical way. In the computational basis, the operations act

as

X

X−1|Ψ〉

|0〉

|0〉

|Ψ〉

which performs a swap provided that the second qudit started in the |0〉 state. Outside of the

computational basis, though, the operations are chosen so that we can detect whether we obtained

the desired |0̃〉 state or not.

We start with two qudit states, one created from the vacuum and one which is a |0〉 ancilla:

|Vac〉 ⊗ |0〉 =
(
C|0̃〉 +D|Ψ⊥〉

)
⊗ |0〉, (2.39)

where |Ψ⊥〉 is a state orthogonal to the computational subspace. If the vacuum pair decohered into

a superselection sector other than the one that contains the computational basis, the constant C

will be zero. This will not be a problem as we will be able to detect this case and then start again

from this step.

Using the theorem from Sec. 2.3.4, we can conjugate the |0〉 ancilla by a function of the flux of

27

the vacuum pair that has the following form:

f(aiba−i) = ai,

f(anything else) = I, (2.40)

which is essentially a controlled-sum that has been properly defined outside the computational basis.

The state of the combined system after conjugation will be

C√
d

d−1∑

i=0

|aiba−i〉 ⊗ |aiba−i〉 +

d−1∑

i=0

Di|Ψi⊥〉 ⊗ |aiba−i〉, (2.41)

where {Di} are some constants, and {|Ψi⊥〉} are states perpendicular to the computational basis.

Note that the states |Ψi⊥〉 for i 6= 0 are the ones that have flux aiba−i but have non-trivial charge.

The state |Ψ0⊥〉 includes all the other fluxes and charges. Depending on the superselection sector

in which the vacuum state was created, many of the constants C and {Di} will be zero.

Now we conjugate by f−1 from the ancilla to the vacuum state yielding

C|b〉 ⊗ |0̃〉 +

d−1∑

i=0

Di|Ψ′
i⊥〉 ⊗ |aiba−i〉, (2.42)

where {|Ψ′
0⊥〉} = {|Ψ0⊥〉} and the states {|Ψ′

i⊥〉, i > 0} have flux b but non-trivial charge.

Now we try to fuse the first qudit with an ancilla of flux b−1 and trivial charge. The only state

that can fuse into the vacuum with the ancilla is |b〉, and this will happen with finite probability.

Note that the ancilla can never vanish into the vacuum with a state with charge because there is no

way of extending the basis to be invariant under the stabilizer group of the flux.

In the end, if the particles disappear into the vacuum, the ancilla is left in the desired X eigen-

state. Otherwise, we repeat the procedure from the beginning until eventually the state appears.

2.3.7 Choosing a dth root of unity

Before we continue building our gate-set, we have to address a problem that appears for d > 2,

similar to the problem that occurred for d = 2 when proving that the gate-set is universal.

So far, we have defined everything in terms of ω, a non-trivial dth root of unity. But there are

d−1 of these, and there is a symmetry that interchanges them. We will have to break this symmetry

by using an ancilla.

In particular, we need an ancilla that is an eigenstate of X with eigenvalue not equal to 1. We

28

will then define this state to be the |1̃〉 state in the X basis, i.e.,

|1̃〉 =
1√
d

d−1∑

i=0

ω−i|i〉, (2.43)

which has eigenvalue ω, thus fixing our root of unity. We then define the other X eigenstates by

|ñ〉 =
1√
d

d−1∑

i=0

ω−ni|i〉, (2.44)

and the operator Z by |ñ〉 → |ñ− 1〉.

How do we produce the first |1̃〉 in terms of which everything is defined? We start with a |0̃〉
(which is always well defined and which we know how to construct from the previous section), and

we apply a controlled-X−1 (which is a classical function, and thus computable from the Toffoli) from

this ancilla to a |0〉 ancilla, which produces the output

|0̃〉 ⊗ |0〉 −→ 1√
d

∑

i

|̃i〉 ⊗ |̃i〉. (2.45)

If we discard the second state, we will have a mixed state that is a combination of the different

X eigenstates. This is equivalent to being handed an arbitrarily chosen X eigenstate, which we will

call |̃i〉.

We can obtain copies of this state by applying a controlled-X−1 from a |0̃〉 ancilla to this state,

which applies the transformation

|0̃〉 ⊗ |̃i〉 −→ |̃i〉 ⊗ |̃i〉. (2.46)

We can thus build arbitrarily many copies of the state. We still have to worry that this might be

the |0̃〉 state. However, below in the section for measuring X, we will give a procedure to detect the

|0̃〉, which does not rely on having |1̃〉 ancillas. If we determine that i = 0, we throw away all the

copies and start over (this will only happen with probability 1/d). Otherwise, we relabel our state

as |1̃〉, fixing a value for ω.

Because we can copy the |1̃〉 state, and below we will also show how to measure it, we can build

a reservoir of ancillas in this state, which will be used for all future computations. We can even use

copying, comparing and majority voting to error correct our reservoir, thus allowing for computation

even in the presence of noise.

29

2.3.8 Measuring X

The last gate needed for universality is the measurement of X. The basic idea is to fuse the pair

of anyons that form the state to be measured. The |0̃〉 eigenstate will have some overlap with the

vacuum and will vanish with probability p = d/ |C(b)|, where C(b) is the conjugacy class of b.

The other X eigenstates have zero probability of vanishing because |̃i〉 = 1√
d

∑
i ω

−i|aiba−i〉 is

orthogonal to the vacuum for i > 0. To detect the state |̃i〉 we first apply a Zi and then use the

above fusion procedure. The Z gate can be applied as a controlled-sum with a |1̃〉 target as discussed

in Sec. 2.2.

Of course, the above will require us to have many copies on which to measure, which means we

need to perform the transformation

∑

i

Ci |̃i〉 −→
∑

i

Ci |̃i〉 ⊗ |̃i〉 ⊗ |̃i〉 ⊗ · · · ⊗ |̃i〉, (2.47)

which is done using a controlled-X−1 with a |0̃〉 ancilla as control and the state to be copied as

target.

To perform the measurement non-destructively, we can fuse all but one of the copies of the state.

Alternatively, using the Z gate and |0̃〉 ancillas, we can always produce the rest of the |̃i〉 states.

The rest of the logic is similar to the Z measurement procedure.

Having completed the construction of the universal gates, we have proven that universal quantum

computation can be performed with anyons from simple and perfect finite groups. We now turn to

the question of whether these operations can be performed in a fault-tolerant fashion.

2.4 Leakage correction

In this section we will discuss both the motivation and the techniques needed to implement error

correction and fault tolerance in the software of an anyonic computer. The main result will be

the construction of a leakage correction circuit for anyons, which enables the use of the standard

techniques for handling errors.

2.4.1 Motivation

Any quantum system that uses non-locality to protect its data will be susceptible to errors if a large

number of its local components are damaged simultaneously. The probability for failure is generally

exponentially small in the size of the system and is zero in the theoretical limit of an infinite system.

However, all physical systems are finite. Furthermore, practical considerations may force a given

setup to have a size such that the error of probability is small but non-negligible.

30

In the case of anyons, errors can occur due to quantum tunneling, which is an effect of the high-

energy degrees of freedom that were frozen out to obtain a two-dimensional discrete gauge theory.

The probability of this type of error goes as e−mL, where m is the mass of the lightest particle that

can mediate a charge interaction, and L is the separation between anyons.

Finite temperature effects are another source of error. These effects involve the creation of

charge pairs from the vacuum. Because these pairs have trivial total charge, even if they braid with

a computational anyon, the net charges of the collective three particle excitation will still be correct.

However, if one of these particles separates from the group, or separately braids with another anyon,

then errors will be introduced. The density of the thermal excitations goes as e−∆/T , where ∆ is

the mass gap and T is the temperature.

A good anyonic quantum computer should therefore have L >> m and T << ∆. In some

implementations, however, it may be more practical to accept a small error rate from the hardware,

and then to correct it using standard quantum error correction techniques. For such cases, we

present below the necessary steps needed to implement software based error correction for anyons.

While any of the error correcting codes can be used, most techniques require embedding a code

space inside a Hilbert space on which we can do universal quantum computation. However, in the

case at hand, our computational states are embedded in a Hilbert space (the states with arbitrary flux

and charge) in which we cannot perform universal quantum computation. Therefore, before starting

the recovery protocol, we must first deal with states that have leaked out of the computational

subspace (the subspace in which we can perform universal computations).

2.4.2 Implementation

To deal with leakage errors we can construct a version of the swap-if-leaked gate described by

Kempe et al. [KBDW01]. The idea behind the gate is to implement a projective measurement that

can distinguish the computational subspace from its complement. If a state is found to be in the

computational subspace, it is left alone. Otherwise, it is replaced with an arbitrary ancilla that is

in the computational subspace. The ancilla will still be an error, but one that is correctable by

standard quantum error correcting codes. In fact, the general methods of quantum error correction

and fault-tolerant computation can be applied to anyons as long as we can reliably project leaked

qudits into a state in the computational subspace.

We again focus on the case of simple and perfect groups, and defer the general leakage correction

protocol to the next section. In the current formalism, the computational basis is the set of states

of a pair of anyons with zero total magnetic charge, where each anyon has zero electric charge and

a magnetic flux of the form aiba−i or its inverse.

The first type of error that we will deal with is when the total magnetic flux of the pair is non-

trivial. This is a particularly grievous error because, if we drag around a pair with a non-trivial net

31

flux, we could be introducing errors into all the other qudits. Furthermore, our assumption that

we can perform the operation h, g → h, hgh−1 relied on the fact that the second pair had zero net

magnetic flux, so it is important that we detect and fix this error first.

To detect a net flux, we take an ancilla |g〉⊗ |g−1〉 and encircle it by the qudit we are performing

the leakage correction on. The ancilla will get conjugated by the net flux of the qudit, and the qudit

will get conjugated by the net flux of the ancilla, which should be zero. We then fuse the ancilla

with a pair with opposite flux. If the net flux of the qudit is in the stabilizer of g, the fusion will

have vacuum quantum numbers with a finite probability, whereas if the conjugation changed the

flux of the ancilla, there will always be a particle left behind. If we repeat this many times with

many different ancillas |g〉 ⊗ |g−1〉, with good statistical confidence we will be able to tell if the net

flux of the qudit is in the stabilizer of g. Because G has no center, the intersection of all stabilizers

is the identity, and hence repeating the above with sufficiently many different elements g, we can

detect a non-zero net magnetic charge.

If we detected a net flux, we replace the state with an ancilla in the state |0〉. Of course, we

must be very careful when moving the damaged ancilla pair out of the region of qudits, so as not to

damage other states. That is, when moving past other anyons, we always do so in the direction in

which the damaged pair gets conjugated and the good qudits are unaffected.

In the case when the qudit passes the above test, then we have projected into the zero net flux

subspace, but otherwise left the state unchanged. The next step is to deal with electric charge.

Because it is very difficult to measure the electric charge of a single anyon, we will start with a fresh

ancilla |0〉, made from two anyons neither of which have electric charge, and copy the state over.

Once again we will be using the incomplete swap circuit

X

X−1|Ψ〉

|0〉

|0〉

|Ψ〉

when acting on the computational basis. Of course, the heart of a leakage detection algorithm is how

to extend the operations outside of the computational subspace. The procedure cannot be described

simply by a circuit, and therefore we will present a way of completing the controlled-sum gate so

that the above operation will always yield a state that is in the computational subspace.

The following procedure is almost identical to the one used to produce |0̃〉 states. This is because

|0̃〉 states are obtained by taking a vacuum state and projecting to the computational basis, which

is primarily leakage detection. The main difference is that when doing leakage detection, we only

get one chance of using the qudit (because of the no-cloning theorem), but if the state leaked, it is

32

acceptable to replace it by anything in the computational basis. The latter is clearly not acceptable

when creating |0̃〉 ancillas.

We will use the incomplete swap procedure for the second round of leakage detection. Recall

that by this point we have projected the qudit into the zero net flux subspace. Take the qudit and

a |0〉 ancilla, and conjugate the ancilla by a function of the qudit’s flux:

f(aiba−i) = ai

f(anything else) = I. (2.48)

This is the same extension of a controlled sum that was used to produce |0̃〉 ancillas.

Afterward, we conjugate the original qudit by f(g)−1, where g is the flux of the ancilla. Note

that because we know at this point that the original qudit has net flux zero, the state of the ancilla

will not exit the computational basis during this operation (though it might change within the

computational basis if the original state had non-zero electric charge). The result of the past two

controlled-sums is:

|ψ‖〉 ⊗ |0〉 + |ψ⊥〉 ⊗ |0〉 −→ |0〉 ⊗ |ψ‖〉 +

d−1∑

i=0

|ψ⊥i〉 ⊗ |i〉, (2.49)

where parallel and perpendicular refer to inside and outside the computational basis, and none of

the ψ states are normalized. Finally, we replace the original pair with the ancilla pair and discard

the original pair.

Clearly, the new state will be in the computational basis. Furthermore, if the original state was

in the computational basis, then the new state will be equal to the old state, and unentangled with

the old anyons.

Having complemented our gate-set with a leakage correction scheme, we have proven not only

that we can do universal quantum computation with anyons, but that these computations can be

made fault-tolerant.

2.5 Universal computation for non-solvable groups

We will now generalize the results of the previous section to any non-solvable group. Unfortunately,

in our proofs for the simple perfect case, we made extensive use of the fact that we can compute

any classical function simply by multiplying the inputs with ancillas. This is no longer true, even if

we restrict ourselves just to perfect groups that are not simple. The quickest example is A5 × A5,

which is perfect, but has two normal subgroups given by each of the A5 factors. Thus, if our two

inputs are 1× 1 and g× 1, there is no expression made out of products in which the results differ in

33

the second factor.

The above example can easily be fixed by working within one A5 subgroup. In general, though,

even this is not possible, as not all perfect groups have a perfect and simple subgroup. However, the

following theorem comes to the rescue:

Theorem 2. If G is a non-solvable finite group, then there exists a normal subgroup P of G and a

subgroup N , normal in P , such that P/N is perfect and simple.

Once again we defer the proof to Sec. 2.7.

What the theorem tells us is that we want to work with cosets of N in P . That is, we would like

to replace our old flux eigenstates with states that are labeled by elements in P/N and invariant

under N . A good guess would be

|x〉 =
1√
|N |

∑

n∈N

|x′n〉, (2.50)

where x is an element of P/N , and x′ is an element in the coset that x represents. More specifically,

if f : P → P/N is the canonical epimorphism that maps elements to cosets, then we require that

f(x′) = x. The particular choice of x′ has no effect on the above definition.

The above is a good guess but not quite right. A given coset may intersect many different

conjugacy classes of G, each of which lies in a different superselection sector. Thus, we are effectively

working with mixed states.

Remembering that we really want to keep our anyons in pairs of zero net flux, the right choice

for the new states is

ρx =
1

|N |
∑

C∈C(G)

∑

x′∈(C∩f−1(x))

|x′〉 ⊗ |x′−1〉

⊗

∑

x′∈(C∩f−1(x))

〈x′| ⊗ 〈x′−1|

 , (2.51)

where again x is an element of P/N , and C(G) is the set of conjugacy classes of G.

These states have the nice property that when conjugated by any element h′ ∈ P (or equivalently,

when a flux h′ ∈ P is dragged around them), the effect only depends on the coset f(h′) of h′, and

generates the transformation

ρg −→ ρf(h′) g f(h′)−1. (2.52)

Because of this, if we use the usual scheme of passing one pair of anyons in between another,

and they are both prepared in states of the above form, the net effect is that the inner pair will get

conjugated by the outer pair as

ρh ⊗ ρg −→ ρh ⊗ ρhgh−1, (2.53)

34

keeping the pair unentangled.

2.5.1 New requirements for the physical system

While the operations of braiding, fusion and vacuum pair creation described in Sec. 2.3.1 all seem

like reasonable requirements to demand from the physical system, the requirement of flux ancillas

is somewhat harder to justify.

In particular, take the case of a group that has a non-trivial center, which can occur even if the

group is perfect. Consider two fluxes g and cg that differ by multiplication of an element c in the

center. These two fluxes cannot be distinguished by conjugation, since cgx(cg)−1 = gxg−1. Thus,

it may be a difficult problem to distill these flux eigenstates from the vacuum.

A more reasonable assumption is to require the existence of ancillas only for the fluxes in the

perfect subgroup. Another improvement might be to assume that we only have ancillas in the mixed

states ρx defined above, where x ∈ P/N . These states might be easier to produce because they

are obtained from the vacuum by first throwing away the anyons with flux not in P or with non-

trivial charge, and then projecting to a definite coset of N in P . Therefore, we will replace our old

requirement for the existence of flux ancillas by:

4’ We have ancillas in the state ρx for any x ∈ P/N .

It would be highly desirable to be able to prove that requirements 1 through 4 are sufficient

to create the states in 4’. Unfortunately, it appears that requirements 1-3 combined with 4’ may

neither be a subset nor a superset of requirements 1-4. Thus, in a sense, we are imposing a different

set of requirements for this section. One ameliorating fact is that in the case when P is simple,

the states ρx are just flux eigenstates. We therefore could have used requirement 4’ for all sections

of this chapter. We will not attempt to describe in Sec. 2.6 a protocol by which these generalized

ancillas can be created, however.

2.5.2 Universal computation

As in Sec. 2.3.2, we choose two elements a, b ∈ P/N such that adba−d = b for some prime d, and

aiba−i 6= b for 0 < i < d. We then define our computational basis states as

ρi = ρaiba−i , (2.54)

35

which we define as eigenstates of the Z operator. The X operator is defined by X(ρi) ≡ XρiX
† =

ρi+1, and its eigenstates can be obtained using the projection operators Pi =
∑d−1

j=0 ω
−iXi/d by

ρĩ = d× Piρ0P
†
i =

1

d

d−1∑

j=0

ω−iXi

 ρ0

d−1∑

j=0

ωiXi†

 . (2.55)

At this point proving that universal quantum computation can be achieved is fairly straightfor-

ward and is almost identical to the discussion in Sec. 2.3. The major differences occur when we have

to deal with states outside of the computational basis, that is, when creating ρ0̃ states and when

dealing with leakage correction. Both of these issues will be dealt with in the next subsection. As

for the rest of the operations, we will only give a very brief discussion:

Because the ρx states have the same braiding properties as those of the fluxes of a group P/N (and

in particular two Z eigenstates remain unentangled after braiding), the same method for producing

a Toffoli applies to them.

Measuring Z is easy because the ρi states have support in orthogonal subspaces. The copy (using

the Toffoli) and fuse with ancillas procedure will work just as well as before.

For the interested reader, we will carry out below some of the calculations needed to deal with

X eigenstates and prove universality. Most of the results seem almost miraculous when expressed in

the language of density operators. However, the reader should bear in mind that we are only using

density operators to account for the different superselection sectors. If we just fixed a superselection

sector for each particle, we would be dealing with pure states, and all of the proofs from the past

section would carry through.

We begin by studying the action of the controlled-X−1 on X eigenstates:

ρm̃ ⊗ ρñ =
1

d

d−1∑

i=0

d−1∑

j=0

ω−im+jmXiρ0X
j† ⊗ ρñ

−→ 1

d

d−1∑

i=0

d−1∑

j=0

ω−im+jmXiρ0X
j† ⊗X−iρñX

−j†

=
1

d

d−1∑

i=0

d−1∑

j=0

ω−im+jmXiρ0X
j† ⊗ ω−inρñω

jn

=
1

d

d−1∑

i=0

d−1∑

j=0

ω−i+j(m+n)Xiρ0X
j† ⊗ ρñ

= ρm̃+n ⊗ ρñ, (2.56)

which is equivalent to its action on pure states. Therefore, once we have ρ0̃ states, we can use

the same trick as before to break the symmetry and obtain a dth root of unity. That is, we do a

36

controlled-X−1 from the ρ0̃ with a ρ0 target to create the state

ρ0̃ ⊗ ρ0 =

1

d

d−1∑

i=0

d−1∑

j=0

Xiρ0X
j†

⊗

(
d−1∑

n=0

d−1∑

m=0

Pnρ0P
†
m

)

−→ 1

d

d−1∑

i=0

d−1∑

j=0

d−1∑

n=0

d−1∑

m=0

Xiρ0X
j† ⊗ ω−in+jmPnρ0P

†
m

= d

d−1∑

n=0

d−1∑

m=0

(
Pnρ0P

†
m

)
⊗
(
Pnρ0P

†
m

)
(2.57)

and then discard (trace out) the first state to get the state ρ =
∑

n Pnρ0Pn =
∑

n ρñ/d, which gives

us an unknown eigenstate of X as before. We then discard and repeat if we obtained the ρ0̃ state,

and otherwise we relabel the state as ρ1̃.

Once the ρ1̃ state is available, we can use a controlled-sum to produce the Z gate, which will

allow us to produce any X ancilla including more ρ1̃ states.

Finally, measuring X works by fusing the pair of anyons, because the ρĩ are orthogonal to the

vacuum for i > 0. The full measurement proceeds as before by copying and permuting states using

the Z gate, and then fusing.

2.5.3 Leakage detection and ρ0̃ generation

One final issue remains: How do we measure whether a state is in the computational subspace?

Projecting onto the computational subspace is useful because a ρ0̃ is just the projection of a vacuum

state to the computational basis. Furthermore, this projection will allow us to perform leakage

correction.

One of the new issues that arises for general non-solvable groups is that if we have a state in the

computational basis, and we braid it with an electric charge carrying a non-trivial representation of

the subgroup N , then the state will move outside the computational basis. The other issue is that

the conjugacy class of an element in G might be larger than the conjugacy class of the element in

P ; though given that P is normal, the first set will be entirely contained in P .

Let us begin by examining how the leakage correction algorithm must be changed. The first step

is to detect whether the net flux or charge of the pair of anyons we are working on has a non-trivial

effect on the states ρx. The procedure is to braid the pair around the ancilla pair and then fuse the

ancilla with another ancilla in the state ρx−1 . If the anyon pair has an effect on the ancilla states ρx,

then the fusion statistics will be altered, and this will be detectable after many repetitions. If our

state is found defective, we discard it as usual and replace it by a state in the computational basis.

Otherwise, we move on to the next step. Note that if the anyon pair had a net flux in the subgroup

N , or in some element outside of P that commutes with P , then the state will still advance to the

37

next round of error correction. However, this anomalous flux or charge will not affect the usual

braiding properties.

The second round of error correction is a swap with an ancilla in the ρ0 state. Note that using

our universal classical computation in P , we can guarantee that if the original state was in P , then

the ancilla ends up in the computational basis. However, if the original anyons are outside of P ,

we will get a state that is within P (because P is normal) but not necessarily in the computational

subspace. The final step is to perform a swap with a second ancilla in the ρ0 state, where now we

know that the first ancilla had to be composed of anyons with no charge and fluxes only in P . This

guarantees that the final state of the second ancilla is in the computational basis, and equals the

original state if it did not leak, completing the leakage correction procedure.

To create ρ0̃ we also use a swap, this time between a pair created from the vacuum and a ρ0

ancilla. We then try to fuse the leftover vacuum state with a ρb−1 . If they fuse into the vacuum,

then the ancilla is in a ρ0 state. The logic is as follows: if the vacuum pair had electric charge when

created, then the swap will not change the charge, and hence it cannot disappear into the vacuum.

If the vacuum pair has no electric charge but is outside of P , then the ancilla is still guaranteed to

be in P . Furthermore, when conjugating the vacuum state, we will be conjugating by an element in

P . The vacuum state will end in a flux state outside of P , which is orthogonal to ρb−1 . Finally, if the

vacuum pair is a pair of fluxes in P , then it will be of the form ρ0̃, possibly superposed with other

states ρx outside the computational basis. But the generalized swap can guarantee that a state in

P outside of the computational basis will remain outside of the computational basis (just like in the

simple perfect case). Only when the ancilla is in the state ρ0̃ can the fusion into the vacuum occur.

The above procedure for producing ρ0̃ ancillas completes the gate-set for non-solvable groups and

proves the main result of this chapter: that anyons with fluxes in a non-solvable group can perform

universal quantum computation.

2.6 Creating the ancillas

As discussed above, the requirement of a supply of calibrated flux ancillas needs further justification.

In this section we will show that for a perfect and simple group, the requirements of braiding, fusion

and vacuum pair creation can be supplemented by one extra measurement to allow the distillation

of flux ancillas. We will not cover the general non-solvable case, though.

The new measurement involves determining whether a single anyon has trivial flux or not. Indeed,

this measurement may even be done destructively. The plausibility of this measurement relies on

the fact that non-zero flux charges are topologically non-trivial configurations that often have much

higher masses than their electric charge counterparts. Naturally, dyons also have large masses and

will be detected as having non-trivial flux.

38

Step 1: Creating electric ancilla pairs

The procedure for creating flux ancillas begins by creating single anyons with zero flux. These are

obtained by creating a vacuum pair, measuring the flux of the first particle of the pair, and discarding

the second one if the first one had non-trivial flux.

The next step is to create pairs of anyons, where each anyon has zero flux and unknown charge,

but the pair has vacuum quantum numbers. Of course, if we could non-destructively distinguish

trivial from nontrivial flux, we could skip this step, as the vacuum pairs always have vacuum quantum

numbers.

Take two of the single electric charges we have produced. We are going to try to project this

state onto the desired state with vacuum quantum numbers. Consider the process of creating a

pair of anyons from the vacuum, braiding one of them around the pair of charges, and then fusing

the vacuum pair. If the pair of charges had vacuum quantum numbers, then the vacuum pair will

remain in the vacuum state throughout this process and fuse into the vacuum at the end with unit

probability. On the other hand, if the pair of charges does not have vacuum quantum numbers, then

there will be a finite probability that the pair created from the vacuum will leave a particle behind

after fusion (since the vacuum is the only state that is left invariant by the action of every flux).

Repeated application of this process will be a projective measurement that determines whether

the pair of charges has vacuum quantum numbers. If we project onto a vacuum pair, then we have

found a good charge ancilla pair. If the pair does not project onto the vacuum state (because the two

anyons do not transform in conjugate representations, or because we projected to a state orthogonal

to the vacuum), then we pair them up with other charges and repeat the process. While slow, this

process will eventually yield as many electric charge pairs with vacuum quantum numbers as needed.

Step 2: Identifying the magnetic charges

The electric ancilla pairs are useful because they can perform a non-destructive measurement of

magnetic flux. The procedure is to take a member of the electric charge pair, drag it around the

anyons or group of anyons whose total flux we want to measure, and then fuse it with its pair.

To describe the effect of the fluxes, let R(g) be the representation of the first electric charge of

the pair. Let |n〉 be an orthonormal basis for the space on which R acts, and let |n∗〉 be the dual

basis for the conjugate representation R∗ under which the second charge transforms. The effect of

a flux g is then

∑

n

|n〉 ⊗ |n∗〉 −→
∑

n

(R(g)|n〉) ⊗ |n∗〉. (2.58)

Just as before, if the total flux is non-trivial, there will be a good chance that the fusion of the

39

e ē g2 g−1
2 g1 g−1

1

Figure 2.3: Using electric charges to check if g1 = g2.

electric charges will leave a particle behind. On the other hand, if the total flux is trivial, even if

the total charge is not, the pair of electric charges will always fuse into the vacuum.

Repeated application of this procedure will determine whether the total flux is trivial or not.

Furthermore, this procedure will at worst introduce decoherence in the flux basis, but will leave all

flux eigenstates unchanged.

We can use this procedure to compare the fluxes of two anyons. In particular, consider two pairs

created from the vacuum. Measure the total flux of the first anyon of the first pair combined with

the second anyon of the second pair. If the combined flux is trivial, the first anyon of each pair has

the same flux; otherwise the flux is different. The procedure is depicted in Fig. 2.3.

The above procedure allows us to sort the flux pairs into “bins” that depend on the total flux of

the first anyon of the pair. We will get as many bins as elements of G, each containing an unlimited

supply of vacuum pairs that carry the same flux in the first anyon of the pair. At this point, if the

fluxes have not decohered in the flux basis, then we must have an entangled state involving all anyons

in a given bin. Throwing away a single flux from each bin will produce the desired decoherence, just

as it did when breaking the various symmetries in the main part of this chapter.

All that remains is to identify each bin with an element of G. Assume that we were given an

assignment of an element of G to each bin. The assignment could be checked by using the following

procedure. First, we note that any finite group G may be described by a set of elements {gi} and

a set of relations of the form gi1 · · · gin
= 1, which they obey. To check that the assignment is

correct, we just need to check all the relations (supplemented by the trivial one element relations

gn
i g

m
i = gnm

i). These can be checked again with the electric charge ancillas, using a loop that circles

each of the fluxes in the relation in the correct sequence.

To generate guesses, we could just randomly assign to each bin an element of g, which gives us a

probability of success of at least 1/(|G|)!. Of course, we can be a lot smarter, as the above procedure

can help us figure out the powers of a given element (including its inverse) and even the elements in

its conjugacy class. Thus the need for guesswork is minimal, and some of the choices correspond to

different valid assignments (i.e., automorphisms) of the group.

40

Analysis of the produced ancillas

At this point we have almost produced the desired ancillas, with one caveat: the individual anyons

do not have trivial charge (i.e., they may be dyons). However, all we have done to the pairs, after

creating them from the vacuum, is to measure the flux of one of the anyons. That means that

the electric charge portion of the state is still in the vacuum state. More technically, if the ancilla

pair circles a flux that commutes with the flux of one anyon of the ancilla, then the state remains

unaltered. This is the same behavior that the pure magnetic charges would have.

Some careful thought at this point shows that these states are good enough for the quantum

computation procedure presented in the bulk of the chapter. Indeed, going back and repeating all

the steps with these generalized ancillas would require very few modifications. The fusion to measure

in the Z basis would now have a lower success probability, which is compensated by a higher rate

of producing acceptable |0̃〉 states, but otherwise most gates remain unaltered. We have therefore

succeeded in constructing an ancilla reservoir, which, while slightly different then the one initially

desired, is useful for universal quantum computation.

2.7 Mathematicalia

In this section we prove the major mathematical theorems needed in the bulk of the chapter. We

begin by stating the definitions of some of the mathematical terms used:

Perfect group: A non-trivial group G such that [G,G] = G. Note that [G,G] is not the set of

elements of the form [g1, g2] ≡ g1g2g
−1
1 g−1

2 but rather the group generated by these elements. Even

if G is perfect, there may not be a commutator expression for every element.

Non-solvable group: A group that has a perfect subgroup.

Normal subgroup: A subgroup H of a group G such that ghg−1 ∈ H for every h ∈ H and g ∈ G.

Simple group: A group with no normal subgroups other than the whole group and the trivial group.

Before we get to our main theorem, we will prove a theorem that will allow us to deal with

general non-solvable groups. We intend to show that we can extract from non-solvable groups a

simple and perfect group. The simple perfect groups (which can also be described as the simple

non-abelian groups) are the ones on which we can perform universal classical computation and are

therefore important for this chapter.

We begin by defining the nth derived subgroups by the relations G(n) = [G(n−1), G(n−1)] and

G(1) = [G,G]. A solvable group is one for which G(i) = {1} for some i. A non-solvable group must

have an i such that for every j > i, G(i) = G(j) and G(i) is non-trivial. The group G(i) is perfect,

thus the definition for solvable groups is consistent with the definition for non-solvable groups given

above.

Furthermore, all the groups G(n) are normal subgroups of G. This can be proven by recalling the

41

property g[g1, g2]g
−1 = [gg1g

−1, gg2g
−1]. The rest follows by induction because G(1) is normal in G,

and G(i) is normal in G if G(i−1) is normal in G. We have therefore shown that every non-solvable

group G has a perfect normal subgroup P .

Sadly, this subgroup is not necessarily simple. However, we can prove that every perfect group P

has a normal subgroup N such that P/N is perfect and simple. We choose N to be a normal proper

subgroup of P such that no other normal proper subgroup of P has more elements, which is well

defined because P is finite. Let f be the canonical epimorphism P → P/N , which maps elements

into cosets. Because f is surjective we have [P/N,P/N] = [f(P), f(P)] = f([P, P]) = f(P) = P/N ,

which, combined with the fact that P/N is non-trivial, shows that P/N is perfect.

Finally, assume that P/N has a normal, non-trivial proper subgroup A. Then B = f−1(A)

is a normal subgroup of P , because for any elements b1, b2 ∈ B and p ∈ P , we have f(b1b2) =

f(b1)f(b2) ∈ A and f(pb1p
−1) = f(p)f(b1)f(p)−1 ∈ A. Furthermore, B is a proper subgroup of P ,

and N = f−1(1) is smaller than B = f−1(A), leading to a contradiction. Therefore, P/N is simple,

and we have finished proving the following theorem:

Theorem 3. If G is a non-solvable finite group, then there exists a normal subgroup P of G and a

subgroup N , normal in P , such that P/N is perfect and simple.

We now turn our attention to using our groups to compute classical functions. We shall prove

that the set of functions that can be written in product form is complete, in the sense that it includes

every function from Gn → G, if G is simple and perfect (or equivalently simple and non-abelian).

This was first proven in the mathematical literature by Maurer in 1965 [MR65]. In the computer

science literature, a related result was proven by Barrington [Bar89]. In this thesis, we will provide

our own constructive proof for the following theorem:

Theorem 4. If G is a simple and perfect finite group, then any function f(g1, . . . , gn) : Gn → G

can be expressed as a product of the inputs {gi}, their inverses {g−1
i } and fixed elements of G, any

of which may appear multiple times in the product.

Proof. Throughout this proof we will refer to the set of functions that can be expressed in the above

form as “computable.” Proving the above statement is equivalent to showing that all functions are

computable. The proof consists of building a series of computable delta functions that map most

elements to the identity and then expressing arbitrary functions as a product of these delta functions.

Step 1: Given a group element a not equal to the identity, let C(a) denote its conjugacy class.

Then the subgroup generated by the elements of C(a) is equal to G. This is because the subgroup

is a nontrivial, normal subgroup of G and G is simple.

Step 2: Fix two disjoint subsets A and B of G. Define a family of functions {δA,B
c (g) : A∪B → G}

42

with elements labeled by c ∈ G:

δA,B
c (a) = 1 ∀ a ∈ A

δA,B
c (b) = c ∀ b ∈ B. (2.59)

If the function δA,B
c is computable for some c 6= 1, then every function in the family is computable.

To prove this choose any d ∈ G. By Step 1 there is an expression for d as a product of elements in

the conjugacy class of c (for instance, d = g1cg
−1
1 g2cg

−1
2 c). Then δA,B

d is obtained by substituting

δA,B
c for c in the expression.

Step 3: Fix a set A, an element b not in A, and an element x 6= b. If a function δA,B
c is computable

for some B such that b ∈ B, then there exists a computable function δA′,B′

c with two new sets such

that A ∪ {x} ⊂ A′ and b ∈ B′. The function can be obtained from

δA′,B′

e (g) = [δA,B
d (g), gx−1] (2.60)

using Step 2. The above equation assumes that we have extended the domain of δA,B
d to G, which

can be done in a natural way once we have fixed a product representation for δA,B
d . The element

d was chosen to not commute with bx−1. Such an element must exist because G is simple and

non-abelian, and hence has no center. The element e is just e = [d, bx−1].

Step 4: The functions defined by δb
c(g) ≡ δA,B

c , with A = G − {b} and B = {b}, are computable.

To prove this start with A1 = {1} and B1 = {b}. The function δA1,B1
c is computable because it is

in the same family as f(g) = g = δA1,B1
g . Then proceed by induction, using Step 3, on the elements

in G− {b} that are not included in Ai.

Step 5: For a fixed set of ordered elements b1, . . . , bi define a family of functions labeled by c:

δb1...bi
c (g1, . . . , gi) = c g1 = b1, . . . , and gi = bi

δb1...bi
c (g1, . . . , gi) = 1 otherwise. (2.61)

The same proof in Step 2 shows that if any function of the family with c 6= 1 is computable, then

the entire family is computable.

Step 6: Fix i ∈ Z+ and elements b1, . . . , bi+1 ∈ G. If the function δb1...bi
c (g1, . . . , gi) is computable,

then so is the function δ
b1...bi+1
c (g1, . . . , gi, gi+1). By Step 5 it is sufficient to be able to compute

δb1...bi+1
e (g1, . . . , gi+1) =

[
δb1...bi
c (g1, . . . , gi), δ

bi+1

d (gi+1)
]
, (2.62)

where the function δ
bi+1

d (gi+1) is computable by Step 4, and d is chosen so that e = [c, d] 6= 1.

Step 7: Using induction on the number of inputs of the function, and starting from the base case

43

δb1
c (g1), it is clear that all the functions defined in Step 5 are computable.

Step 8: Every function is computable because

f (g1, . . . , gi) =
∏

b1∈G

· · ·
∏

bi∈G

δb1...bi

f(b1,...,bi)
(g1, . . . , gi) . (2.63)

44

Chapter 3

Anyon computers with smaller

groups

The previous chapter has shown that finite non-solvable groups produce anyons capable of universal

quantum computation. However, the smallest finite non-solvable group is A5, the even permutations

of five objects, which has 60 elements. Unfortunately, anyons with a large symmetry group are less

likely to be found in nature and are also harder to engineer. A more desirable symmetry group

would be S3, with only 6 elements. The purpose of this chapter is to study the feasibility of quantum

computation with these smaller groups. In fact, it will be shown that the groups that are solvable but

not nilpotent, which includes S3 as the smallest case, produce anyons capable of universal quantum

computation. The caveat, though, is that the constructions in this chapter require both electric and

magnetic charges, whereas magnetic charges alone were sufficient in the non-solvable case. The use

of electric charges complicates the procedure significantly and will occupy the bulk of the discussion.

This chapter will also elucidate the relationship between symmetry group structure and anyon

computation power, and some of the connections with the theory of classical automata will be briefly

discussed. The ideas of this chapter are based on an unpublished construction by Kitaev for the

group S3 [Kit02], and in particular his use of electric charges to obtain a magic state capable of

completing the universal gate-set.

The organization of this chapter is as follows: Sec. 3.1 introduces some notation beyond what

was used in the previous chapter. The next two sections prove the universality of anyons based

on groups that are semidirect products of certain cyclic groups of prime order, which includes the

important case of S3. Sec. 3.2 constructs an abstract set of gates out of the fundamental anyon

operations, whereas Sec. 3.3 proves that this gate-set is universal. In Sec. 3.4, the discussion is

expanded to general finite groups, and the relationship between group structure and computational

power is established. This section will also review the definitions of solvability and nilpotency. The

main result of this chapter, which is the feasibility of universal quantum computation with anyons

from groups that are solvable but non-nilpotent, is proven in Sec. 3.5. The discussion in Sec. 3.5 is

45

motivated by Sec. 3.2 and includes many of the same steps, but the details are significantly more

complicated. Finally, Sec. 3.6 discusses a leakage correction scheme that can be applied to anyons,

as well as many other quantum systems.

3.1 Review and notation

Most of the notation introduced in the previous chapter will be reused. We will also introduce some

extra notation in order to deal with the electric charges and the special type of gate that they will

produce.

In particular, we shall retain the notation for magnetic flux pairs, where the state |g〉, referred

to as a state of flux g, will denote a pair of anyons one with flux g and one with flux g−1 (and hence

trivial total flux). We will also extensively employ the “conjugations by a function” developed in

the last chapter. We also retain the notation for qudits from the last chapter and leave implicit that

all operations are to be done modulo d where appropriate.

3.1.1 Electric charge pairs

Recall that electric charges correspond to irreducible representations R of the group G and contain

an internal state that transforms as a vector under R. In addition to pairs of magnetic charges,

this chapter will often deal with pairs of electric charges, where the first charge transforms under

the irreducible representation R, and the second charge transforms under the complex conjugate

representation R∗. Of course, for some representations R∗ ' R, which will not be a problem for

what follows.

We introduce the bases {|iR〉} and {|jR∗〉} on which the representations act. The indices i, j

take values from 1 to dR, the dimension of the representation. We assume that the basis vectors are

compatible in the sense that

〈iR∗ |R∗(g)|jR∗〉 = 〈iR|R(g)|jR〉∗. (3.1)

The combined state of the two charges is spanned by the vectors |iR〉⊗|jR∗〉 and can be described

by specifying a d× d matrix M

|M〉R ≡ 1√
dR

∑

i,j

Mij |iR〉 ⊗ |jR∗〉, (3.2)

where we have introduced a convenient normalization factor.

We will be interested in the braiding and fusion properties of these states. However, when

two electric charges move past each other, even when they are not in pairs, their charges remain

46

unchanged. It is only the magnetic fluxes that have an effect on the electric charges. In particular,

when a magnetic flux g goes around an electric charge, the flux remains invariant, but the charge

transforms as if multiplied by g in the representation R. Starting with a state |M〉R, if the flux

circles the first electric charge, then it becomes

U(g) ⊗ I|M〉R =
1√
dR

∑

i,j,k

Rik(g)Mkj |iR〉 ⊗ |jR∗〉 = |R(g)M〉R (3.3)

where R(g)M is the matrix obtained by left multiplying M by the element g in the representation

R. Similarly, if we act on the second charge, we obtain

I ⊗ U(g)|M〉R =
1√
dR

∑

i,j,k

MikR
∗
jk(g)|iR〉 ⊗ |jR∗〉

=
1√
dR

∑

i,j,k

MikR
†
kj(g)|iR〉 ⊗ |jR∗〉 = |MR(g−1)〉R (3.4)

where we have used the fact that R is unitary.

Note that, just as in the case of the magnetic charges, if we have a function f({gi}) of some

anyon fluxes, written out in product form, then we can apply this function to our charges

|M〉R −→ U (f) ⊗ I|M〉R = |R (f)M〉R (3.5)

by applying sequentially from right to left the elements of the product.

3.1.2 Superselection sectors, fusion and vacuum pairs

The rules for fusion and vacuum pair creation of magnetic charges (and their decomposition into

superselection sectors) is the same as in the prior chapter. In the case of electric charges, the vacuum

state for representation R is simply |R(I)〉R, where R(I) is the dR × dR identity matrix.

The fusion of two electric charges can only produce another electric charge (or the vacuum, which

is the charge carrying the trivial representation). To calculate the possible products of fusion, note

that fusion implies that a flux can no longer be braided around only one of the two electric charges.

Mathematically, it is a restriction to the diagonal transformations

|M〉R −→ U(g) ⊗ U(g)|M〉R = |R(g)MR(g−1)〉R. (3.6)

However, the above action of the group is not irreducible on this space. The vector space spanned

by all possible states |M〉R decomposes into invariant subspaces. The invariant subspaces correspond

to electric charges transforming under irreducible representations. The probability of obtaining each

irreducible representation corresponds to the magnitude of the state vector projected down to the

47

appropriate invariant subspace. Furthermore, after fusion, it is no longer possible to measure the

relative phase between the different representations and therefore decoherence effectively occurs in

the representation basis.

The net result of fusion is a mixed state of different representations. Which representations

occur is determined by the decomposition of R(g) ⊗ R∗(g) into irreducible representations. The

probability of obtaining each of these representations is determined by the projection of M to the

different invariant subspaces.

In particular, the trace of M is the unique invariant under conjugation by G (which is the content

of Schur’s lemma). Therefore the probability of fusion into the vacuum is

Pvac = |〈R(1)|M〉R|
2

=

∣∣∣∣
TrM

dR

∣∣∣∣
2

. (3.7)

3.1.3 Requirements for the physical system

We list here the operations, ancillas and measurements that we assume are available on any realistic

system, and which we will use to build our quantum gate-set:

1. We can braid or exchange any two particles.

2. We can fuse a pair of anyons and detect whether there is a particle left behind or whether they

had vacuum quantum numbers.

3. We can produce a pair of anyons in a state that is chosen at random from the two particle

subspace that has vacuum quantum numbers.

4. We have a supply of ancillas of the form |g〉 for any g ∈ G.

5. We have a supply of ancillas of the form |R(I)〉R for any irreducible unitary representation R.

The last two requirements are the only questionable ones, as it is not obvious how to produce

this reservoir of calibrated electric and magnetic charges. In fact, since many of these ancillas will

be destroyed during fusion, the reservoir will have to have a large number of ancillas of each type.

Note that the main difference between the constructions in this chapter, and the one used in

producing computations with non-solvable groups in the last chapter, is that the latter case required

no electric charge ancillas, which may be harder to produce. The production of calibrated flux and

charge ancillas for the groups discussed in the present chapter, though similar to the case discussed

in the previous chapter, will not be addressed here.

A final note is that the requirement of calibrated magnetic charge ancillas will have to be slightly

modified in Sec. 3.5.3, in order to work with certain large groups.

48

3.1.4 Probabilistic projection onto K

To conclude with the introduction of notation, we define a new type of gate called a probabilistic

projection onto a subspace. The operation is essentially a projective measurement that distinguishes

between a subspace K and its orthogonal complement. However, the operation has a one-sided

probability of error, corresponding to a failure to notice the projection into K.

For example, consider an operation that emits a photon if and only if the state is projected into

the subspace K. The photon is then received at a photodetector that has a probability 0 < p ≤ 1 of

absorbing the photon. A photon will never be detected if the state was projected into the complement

of K; but even if the measurement projected into K, the photodetector may remain silent.

To formalize the idea of a probabilistic projection, let K be a subspace of a Hilbert space H,

and let PK be the projection onto K. We define a probabilistic projection onto K as a two-outcome

POVM with operators

F0 = pPPPK, F1 = 1 − pPPPK, (3.8)

where 0 < pPP ≤ 1. We say that we can do a probabilistic projection onto K if we can do the above

operation for any fixed pPP .

Furthermore, we demand that if outcome 0 is obtained when applying the operation to a state

|Ψ〉, we obtain the state

|Ψ0〉 =
PK|Ψ〉√
〈Ψ|PK|Ψ〉

. (3.9)

On the other hand, if we get the result 1, we will consider the state damaged and trace it out of our

computational system.

As an example consider

|Ψ〉 =
1√
2

(|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉) , (3.10)

and let K = {|0〉}. Applying a probabilistic projection to the first qubit, we obtain with probability

pPP /2 the state

|Ψ0〉 = |0〉 ⊗ |1〉, (3.11)

and with probability 1 − pPP /2 we obtain the mixed state

ρ1 =
1

2 − pPP

[
(1 − pPP) |1〉〈1| + |0〉〈0|

]
, (3.12)

49

where we have already traced out the first qubit. Notice that if the probabilistic projection onto

|0〉 is applied to both qubits simultaneously, it is possible to obtain the result 1 twice, but it is not

possible to obtain the result 0 twice.

3.2 Base case: G = Zp ×θ Zq

Before tackling the general case of groups that are solvable but not nilpotent, we will describe the

procedure for producing quantum computation using a special type of group based on the semidirect

product. The construction for these groups is very similar to the general case, but can be described

in more concrete terms. In particular, these groups are very useful in eliminating operations whose

usefulness is unclear in the general case, but that have no computational power when reduced to

this special case.

3.2.1 Algebraic structure

We will be interested in the groups G = Zp ×θ Zq, the semidirect product of the cyclic groups of

order p and q. We assume that p 6= q are both prime and that the function θ is non-trivial, which

guarantees that G is not nilpotent.

The group can be described using two generators a and b, which satisfy the relations:

ap = 1, bq = 1, bab−1 = at, (3.13)

where specifying an integer t between 0 and p is equivalent to specifying the function θ : Zq →
Aut(Zp) used for the semidirect product. We will require that t 6= 1, which is equivalent to θ being

non-trivial. Furthermore, consistency requires that

a = bqab−q = atq

=⇒ tq = 1 mod p, (3.14)

which can always be solved for some t as long as q divides p − 1. We henceforth assume that p, q

and t have been chosen in a self-consistent fashion.

The best example of one of these groups, and in fact the smallest non-abelian group, is S3. This

group can be expressed as Z3 ×θ Z2, with t = 2. We can choose a to be any order three element

such as (123), and we can choose b to be any order two element such as (12).

The first example of such a group with odd order is Z7 ×θ Z3 with t = 2 or t = 4, both of which

are equivalent. One of the most important features of this example is that not all the non-trivial

powers of a are conjugate to one another. The elements a, a2 and a4 form one conjugacy class,

whereas the elements a3, a5 and a6 form another.

50

Both of the above examples will be revisited when we discuss group representations and fusion

of electric charges.

3.2.2 Computational basis

We choose a qudit computational basis

|i〉 = |aiba−i〉, (3.15)

for 0 ≤ i < p. Note that all these states are unique because aiba−i = ai(1−t)b, and a1−t is a

non-trivial generator of the group Zp. We are therefore using a complete conjugacy class for the

computational subspace.

While the above choice of computational subspace may seem arbitrary, most other choices are

either equivalent or less powerful. The conjugacy classes aibja−i, for different non-trivial values of

j, are all equivalent. Dyons with these fluxes are also equivalent since they are just the combination

of the above states with electric charges that cannot be detected by braiding. Finally, the powers of

a and pure electric charges are suboptimal as they are difficult to entangle (for more on this see the

discussion on using nilpotent groups in Sec. 3.4).

Initializing a quantum computer in this basis is easy, as we have assumed the existence of flux

ancillas in the state |0〉, which can be used as computational anyons. We therefore turn to the task

of implementing gates on this space.

3.2.3 Operations involving braiding fluxes

We begin by characterizing the operations that can be achieved by braiding fluxes. Fix a target

qudit that we will be conjugating, and assume that it is in the computational subspace. We can

conjugate this qudit by the fluxes of arbitrary ancillas in the group. It can also be conjugated by

the fluxes of other qudits, which we will also assume to have a definite flux in the computational

subspace (as the effect of a superposition of fluxes can be inferred by linearity).

Let us begin with the case when only one qudit (in addition to the target) is involved. If the

source qudit is in a state |g〉, then the target will get conjugated by an expression

f(g) = c1gc2gc3 . . . cn, (3.16)

for some n, where the {cj} are fixed elements of G corresponding to the ancillas used. Of course,

these elements represent the product of any ancillas that were used in series and can equal the

identity if no ancillas were used.

Because of the structure of the group, all the fixed elements can be expanded as ci = ajibki for

51

some integers ji, ki. Furthermore, since the source flux is in the computational basis, it can be

written out as g = axba−x = ax(1−t)b, for some x. Inserting these expressions, we get

f(g) = aj1bk1ax(1−t)baj2bk2 . . . ajnbkn . (3.17)

Using the group relation bai = aitb, we can move all the b’s to the right and combine factors to

get

f(g) = aαaβxbδ, (3.18)

for some integers α, β and δ. The effect of each of these factors can be considered separately.

Conjugating by aα is just the application of the gate Xα. Conjugating by aβx is just a controlled-X

from the source to the target, repeated β times. Finally, conjugating by b maps |i〉 to |it〉. This

operation can be generated using a controlled-X gate and an ancilla |0〉:

Xt

X− 1
t|i〉

|0〉

|0〉

|it〉

where −1/t is computed modulo p. Following the above circuit, we can either replace the original

qudit with the ancilla, or use a swap, which can also be built out of controlled-X gates.

So far we have shown that the X and controlled-X gates generate the set of operations achieved

by conjugations. However, we have yet to show that these operations are in fact included in the set

of achievable operations. The X gate is rather trivial as it is a conjugation by an ancilla of flux a.

The controlled-X is a conjugation by the function

f(g) =
(
gb−1

)1/(1−t) mod p
=
(
ax(1−t)b b−1

)1/(1−t) mod p

= ax, (3.19)

where 1/(1 − t) can be computed modulo p because we assumed 1 < t < p.

The case involving many source qudits, all of which can be used to conjugate the target, is very

similar to the above. The expression can be simplified by moving all the b’s to the left and combining

similar factors. In the end, the net effect will again be a series of X and controlled-X gates.

Finally, one may wonder about using an ancilla as an intermediate step. That is, first we take

an ancilla (say, g′), conjugate it by some function (say, f) of some qudits, and then conjugate the

target by the ancilla. However, the same effect can be achieved by conjugating the target first by

f−1, then by g′ and finally by f . This procedure therefore provides no extra computational power.

52

The conclusion is that the operations achievable from braiding magnetic charges are exactly those

generated by the X and controlled-X gates. In fact, the X gate is redundant as we have assumed

the existence of |1〉 ancillas, which can be used as control qudits in a controlled-X.

3.2.4 Operations involving fusion of fluxes

Now we turn to the operations achieved by the fusion of magnetic fluxes. For these operations it will

be sufficient to determine whether the two particles fused into the vacuum or not, thereby obtaining

at most one bit of information from each fusion.

At this point we remind the reader that standard states consist of pairs of anyons, whose total

flux is trivial. That is, the state |g〉 describes an anyon of flux g paired with an anyon of flux g−1.

There are therefore two basic choices for fusion: we can fuse the two anyons that compose a single

pair with each other, or we can fuse one of them with an anyon from another pair, typically an

ancilla. To avoid confusion, in the latter case we will always use the anyon of flux g (rather than

g−1) for the fusion.

The case of fusion with an ancilla will lead to a measurement in the Z basis. The fusion of

anyons from the same pair will lead to a measurement in the X basis. However, we will delay

the construction of the actual measurement gates until the next section. For this section, we will

simply describe the fusions as abstract operations on the computational space by employing the

construction of probabilistic projections.

The fusion of an anyon from a state |Ψ〉 with an anyon ancilla of flux b−1 is a probabilistic

projection onto the subspace K = {|0〉}. That is, an anyon of flux aiba−i can only fuse into the

vacuum with a flux b−1 if i = 0 (modulo p as usual). When i > 0 there must be an anyon left over

to carry the non-trivial total flux. When i = 0 the fusion can either produce the vacuum state or

an anyon with non-trivial charge. The probability for fusion into the vacuum in this case is 1/p.

Furthermore, if we fuse into the vacuum we can replace the state with a |0〉 ancilla. Therefore the

whole operation is a probabilistic projection onto |0〉 with pPP = 1/p.

The fusion of two anyons from the same pair is a probabilistic projection onto the subspace

K = {|0̃〉}. Because the total magnetic flux of the pair is always trivial, the fusion product must be

an electric charge. The charge corresponds to a representation of G given by the action of conjugation

on the anyon fluxes. The state |0̃〉 transforms trivially and corresponds to the vacuum, whereas the

states |̃i〉, for i > 0, are orthogonal to the vacuum and correspond to non-trivial representations.

In fact, this procedure is a probabilistic projection with pPP = 1. However, since the state is

destroyed during fusion, to complete the projection we must be able to produce |0̃〉 states. This will

be discussed below.

The other choices for fusion are equivalent to a combination of one of the above measurements

and an X or controlled-X gate. Fusing with a flux of the form aib−1a−i is equivalent to first applying

53

a X−i gate and then performing a fusion with b−1. A fusion with any other flux can never produce

the vacuum if the qudit is in the computational subspace. Finally, one can consider fusion of anyons

from two different qudits. If the state of the two qudits is |i〉 ⊗ |j〉, the fusion will only produce the

vacuum state if i = j. Therefore, the operation can be simulated by a controlled-X−1, followed by

the fusion of the target with a b−1 flux.

The conclusion so far is that fusion of magnetic charges provides us with two new operations: the

probabilistic projections onto the subspaces |0〉 and |0̃〉, which will eventually become measurements

in the Z and X bases. The only operation that has not been considered is using the products of

fusion for further operations or fusions. This subject will be briefly touched upon after discussing

fusion of electric charges.

3.2.4.1 Production of |0̃〉 states

To conclude the discussion on fusion of fluxes, we present the construction of |0̃〉 states, which were

needed to complete the probabilistic projection onto |0̃〉.
Just as the state |0̃〉 naturally fuses into the vacuum, it is also naturally produced from the

vacuum. Unfortunately, producing a pair of anyons from the vacuum is just as likely to produce the

vacuum state for one of the other superselection sectors as it is to produce the state |0̃〉. Therefore,

after producing a vacuum state we must measure its superselection sector. Vacuum pairs that are

produced in the computation subspace (magnetic charge in the conjugacy class of b) will be kept as

|0̃〉 states, and the rest will be tossed out.

Since measurements are done by fusion, which is a destructive procedure, we must copy the

vacuum state before measuring the conjugacy class. The procedure starts with a pair created from

the vacuum and a |0〉 ancilla:

|Vac〉 ⊗ |0〉 (3.20)

and applies to it a swap, made out of the conjugation-based controlled-X:

X

X−1|0̃〉

|0〉

|0〉

|0̃〉

where the circuit depicts the result for the case when the vacuum pair was created in the computa-

tional superselection sector, in which case |Vac〉 = |0̃〉.
In the case when the vacuum state was not created in the computational superselection sector,

the effect of the conjugations will be different. However, since the conjugations are performed using

54

braiding, which never changes the superselection sector, the vacuum state can only be transformed

into a state that is orthogonal to |0〉 = |b〉.
After applying the above controlled-X gates, we attempt to fuse an anyon from what was the

vacuum state with an ancilla of flux b−1. If they fuse into the vacuum, this implies that the

vacuum state was created in the computational superselection sector, and the above circuit worked

correctly. The ancillas |0〉 will have been transformed properly into a |0̃〉 ancilla, which can be used

for computation. In the case when the fusion does not produce a vacuum state, the swap probably

did not produce the desired state, so we discard it and start over.

To summarize, we now have a source of |0̃〉 ancillas, which can be used as the last step needed

to complete the probabilistic projection onto |0̃〉.

3.2.5 Representations and fusion of electric charges

Thus far, we have only considered operations involving magnetic fluxes. These operations led to a

controlled-X and measurements in the X and Z bases. However, these gates do not form a universal

gate-set. We must therefore consider operations involving electric charges as well.

The electric charges transform as irreducible representation of the group G. To obtain the

spectrum of electric charges, as well as their braiding and fusion rules, we must therefore discuss the

representation theory of G.

It is easy to see that the commutator subgroup G′ of groups of the form G = Zp ×θ Zq is just

G′ = Zp. The representation theory of G can be obtained by inducing representations from G′.

Starting from the trivial representation on G′, the induced representations are the one-dimensional

representations where a→ 1 and b is a qth root of unity.

The rest of the irreducible representations have dimension q and are obtained by inducing from

the non-trivial representations of Zp. The induced representations are all irreducible though not

necessarily distinct. In fact, they can be easily described in their natural basis as

a→

ω

ωt

. . .

ωtq−1

, b→

0 1

0

. . . 1

1 0

,

where ω is the pth root of unity of the representation from which we are inducing. The matrix for

a is diagonal, whereas b is the permutation matrix with entries 1 above the diagonal.

Even though the representation theory for these particular groups is easy, we will use abstract

language to describe the fusion rules, which will make the connection to the general case clearer.

Take any non-abelian irreducible representation, and consider a pair of electric charges in the

55

state |R(ai)〉R. What representations do we get if we fuse the two charges? The product of fusion

is invariant under the action of a:

U(a) ⊗ U(a)|R(ai)〉R = |R(a)R(ai)R(a−1)〉R = |R(ai)〉R (3.21)

and therefore represents the commutator subgroup G′ by the identity. This implies that the repre-

sentation is abelian! In particular, it is easy to see that the one-dimensional subspaces

|
[
γj
]
〉
R
≡ |diag

(
γj , γ2j , . . . , γqj

)
〉
R

(3.22)

with γq = 1 are the spaces corresponding to the representations a→ 1, b→ γj .

We will be interested in the quantum amplitude that a state |R(ai)〉R fuses into the b → γj

representation. This quantity will be denoted by the fusion amplitude

Fi→j ≡
〈 [
γj
] ∣∣R(ai)

〉
R

=
1

q

q∑

k=1

γ−kjωit(k−1)

, (3.23)

with 0 ≤ i < p and 0 ≤ j < q.

Let |Ψ〉 be an arbitrary state entangled with an electric charge pair

|Ψ〉 =

p−1∑

i=0

|Ψi〉 ⊗ |R(ai)〉R (3.24)

where the |Ψi〉 denotes (unnormalized) states of the rest of the system. The fusion amplitudes allow

|Ψ〉 to be rewritten as

|Ψ〉 =

p−1∑

i=0

q−1∑

j=0

Fi→j |Ψi〉 ⊗ |
[
γj
]
〉
R
. (3.25)

The basis |[γj]〉R labels the total charge of the two anyons that comprise the electric charge pair. A

fusion of the two electric charges, followed by a measurement of the resulting fusion product, will

be a measurement in this basis.

Note that the basis |[γj]〉R only spans the diagonal subspace of |M〉R. However, this is the

subspace containing all the states |R(ai)〉R. The subspaces spanned by |R(bjai)〉R, for some fixed

j > 0, are mapped unchanged into the space of a single higher-dimensional irreducible representation

and are therefore not useful for our purposes.

While the representation R does not appear explicitly in the fusion coefficients, it enters implicitly

in the above expression as the choice for pth root of unity ω. Though we could use the notation

ωR, this will not be necessary as we will generally work with only one higher-dimensional irreducible

56

representation.

The most important feature of the Fi→j coefficients is that |R(a0)〉R is the vacuum state and

therefore

F0→j = δj,0, (3.26)

which can be verified by direct calculation. Another important property is that

|Fi→j | > 0 (3.27)

for all i > 0. The proof involves showing that a linear relation of roots of unity only vanishes if it is

a combination of the obvious regular polygon relations (which is proven in [Sch64]).

A final interesting property is that

Fitk→j = γ−jkFi→j , (3.28)

which is a consequence of

|R(aitk

)〉R = |R(bkaib−k)〉R = U(bk) ⊗ U(bk)|R(ai)〉R. (3.29)

3.2.6 Examples

3.2.6.1 S3

The group S3 has three irreducible representations, the trivial (identity) representation (where a→ 1,

b→ 1), the sign of the permutation (where a→ 1, b→ −1) and a two-dimensional one:

a→

ω 0

0 ω̄

 , b→

0 1

1 0

 , (3.30)

where ω is a non-trivial cube root of unity. The fusion amplitudes are

F0→0 = 1, F1→0 = −1

2
, F2→0 = −1

2
,

F0→1 = 0, F1→1 = −i
√

3

2
, F2→1 = i

√
3

2
. (3.31)

The best way to visualize these coefficients is to start with a state |0̃〉 and a pair of electric

charges in the vacuum state of the two-dimensional representation: |R(I)〉R. Then entangle with a

57

controlled-sum to get

1√
3

∑

j

|j〉|R(aj)〉R =
1√
3

∑

j

|j〉

∣∣∣∣∣∣

ω

j 0

0 ω̄j

〉

R

. (3.32)

Fusion of the electric charge pair produces either the vacuum (trivial representation) or a charge

transforming under the sign representation. The probability of getting each is

Pvac =
∑

j

∣∣∣∣
1√
3
Fj→0

∣∣∣∣
2

=
1

2
,

Psgn =
∑

j

∣∣∣∣
1√
3
Fj→1

∣∣∣∣
2

=
1

2
, (3.33)

and the state of the magnetic charges afterwards is one of

|Ψvac〉 =
1√
6

(2|0〉 − |1〉 − |2〉) ,

|Ψsgn〉 =
1√
2

(|1〉 − |2〉) . (3.34)

These are obtained by multiplying the initial state by the appropriate F coefficients and renormal-

izing to unit magnitude. In the case of the second state we also introduced an extra global phase of

i, which is related to the arbitrary choice of phase of the |[γj]〉R states.

3.2.6.2 Z7 ×θ Z3

The group Z7 ×θ Z3 has five irreducible representations. Three of them are one dimensional and

set a → 1 and b to a cube root of unity. The other two are three dimensional and are complex

conjugates of each other.

The main new feature of this group is that the non-trivial powers of a are not all conjugate to

one another. This leads to more complicated fusion coefficients. For example:

F0→1 = 0,

F1→1 =
1

3
A, F2→1 =

γ2

3
A, F3→1 =

γ

3
B,

F4→1 =
γ

3
A, F5→1 =

γ2

3
B, F6→1 =

1

3
B, (3.35)

with

A = γ2ω + γω2 + ω4 = e2πi 17
21 + e2πi 13

21 + e2πi 12
21 ,

B = γ2ω−1 + γω−2 + ω−4 = e2πi 11
21 + e2πi 1

21 + e2πi 9
21 , (3.36)

58

where we have chosen γ = e2πi/3 and ω = e2πi/7. Notice how A is close in magnitude to 3 whereas

B is close in magnitude to 1.

3.2.7 Operations involving electric charges

Now it is time to apply the discussion in the previous subsections to build a useful operation out

of electric charges. While there seems to be a wealth of strange ancillas that could be produced

using electric charges, most of them have complicated relative amplitudes or phases that are hard

to use in a constructive proof of universal computation. We will therefore focus our attention on

producing an operation that arises naturally from the fusion amplitudes: the projection onto the

subspace orthogonal to |0〉.

Consider a qudit in the state

|Ψ〉 =

p−1∑

i=0

ψi|i〉, (3.37)

where the coefficients {ψi} could either be complex numbers, or could represent the state of the rest

of the system if the qudit is entangled with other qudits.

We append to the qudit an electric charge pair |R(I)〉R in the vacuum state of a non-abelian

representation R. Using braiding, we can right multiply the state of the electric charge by some

function f of the qudits flux:

|Ψ〉 ⊗ |R(I)〉R −→
p−1∑

i=0

ψi|i〉 ⊗ |R(f(i))〉R. (3.38)

We have shown in Sec. 3.2.3 that the most general function is of the form f(i) = aαaβibδ.

Choosing δ 6= 0 turns out not to be useful, and choosing α 6= 0 can be used to get projections to the

spaces orthogonal to |i〉 for i > 0, but this can be achieved as well with an X gate. We will therefore

focus on f(i) = aβi so that we obtain the state

p−1∑

i=0

ψi|i〉 ⊗ |R(aβi)〉R =

p−1∑

i=0

q−1∑

j=0

Fβi→jψi|i〉 ⊗ |
[
γj
]
〉
R
. (3.39)

A fusion of the electric charge pair, followed by a measurement of the resulting electric charge

(the feasibility of which will be the subject of Sec. 3.2.8 below), leads to a state that is proportional

to

p−1∑

i=0

Fβi→jψi|i〉, (3.40)

59

where j now labels the result of the measurement in the basis |
[
γj
]
〉
R
.

Because of the property F0→j = δj,0, if the measurement result is j 6= 0, we will have projected

into the space orthogonal to |0〉. Unfortunately, we will have also introduced undesired relative

phases and amplitudes. The trick will be to balance these out.

Consider repeating the above procedure p − 1 times, with β taking values from 1 to p − 1.

Furthermore, assume that in each case the fusion results in j = 1. The resulting state will be, up to

normalization:

∝
p−1∑

i=1

p−1∏

β=1

Fβi→1

ψi|i〉 ∝

p−1∑

i=1

ψi|i〉, (3.41)

where we have used the fact that multiplication by i, modulo p, is just a rearrangement of the values

of β.

The above procedure is a probabilistic projection onto K = |0〉⊥. As usual, if we do not obtain

j = 1 as the result of each measurement, we just discard the state being projected.

What is the probability of success of the above procedure? The probability for obtaining j = 1

on the first try is

Pj=1 =

p−1∑

i=1

|Fi→1ψi|2 ≥ min
i>0

(
|Fi→1|2

) p−1∑

i=1

|ψi|2 . (3.42)

On subsequent measurements, the state has previously been projected to |0〉⊥ and renormalized.

Therefore the probability of success for each trial is simply bounded by

Pj=1 ≥ min
i>0

(
|Fi→1|2

)
. (3.43)

The total probability of success is just the product of these quantities. In particular, the proba-

bility pPP associated with the probabilistic projection can be bounded by

pPP ≥ min
i>0

(
|Fi→1|2

)p−1

> 0, (3.44)

where we used the fact that |Fi→j | > 0 for i > 0.

Of course, the above is an underestimation of the probability of obtaining a good projection. For

example, if all the results j were equal to some fixed j > 1, the same argument would show that

a correct projection was obtained. Furthermore, there are many other ways in which the relative

phases and amplitudes can cancel out. A classical computer, with knowledge of the values of Fi→j ,

can keep repeating the procedure until such a cancellation occurs. The computer would also be

required to stop after a long sequence of j = 0 results, in which case the state would have been

60

projected onto |0〉.
In the end, as long as pPP is fixed and finite, we have produced the desired probabilistic projection

to the space |0〉⊥. Different values of pPP will just affect the complexity of an algorithm as a

multiplicative constant. Furthermore, for the small groups that are likely to appear in the laboratory,

pPP should be reasonably large. For example, in the case of G = S3, pPP can be made exponentially

close to one in the number of measurements.

It should be noted that because we are working with qudits of dimension d = p, and the semidirect

product requires p > q ≥ 2, the above projection will always be a non-trivial operation. In fact, it

will always be powerful enough to complete a universal gate-set.

At this point, all that remains to be done is to prove the universality of the gates constructed

from the basic anyon operations. This will be the subject of Sec. 3.3. However, before closing this

section, we shall discuss some issues regarding the measurability of electric charges and look at some

alternative operations that could have been employed.

3.2.8 On the measurement of one-dimensional representations

The feasibility and accuracy of the probabilistic projection onto |0〉⊥ depend crucially on being able

to identify electric charges carrying one-dimensional representations. However, these charges have

a special property that makes them hard to identify: when only using braiding, a one-dimensional

representation is indistinguishable from the vacuum!

The reason behind the above difficulty is that one-dimensional representations of a group G are

constant on conjugacy classes of G. Therefore, a magnetic charge that is braided around one of

these electric charges will have its state change by an overall phase. These global phases are not

measurable in quantum mechanics.

Of course, an interference experiment would produce a measurement of the charge. The standard

double-slit experiment, with the electric charge located in between the slits, will produce a pattern

on the screen that depends on the representation of the electric charge. However, during the exper-

iment, the anyon will be in a superposition of spatial positions, which is no longer protected from

decoherence by topology. Since the interference experiment can be repeated many times without

affecting the electric charge, this may not necessarily be a problem. However, it does involve working

in a regime where the anyons can be treated as waves rather than particles.

On the bright side, these electric charges can also be detected by fusion, assuming the availability

of electric charge ancillas with one-dimensional representations. Their fusion rules are particularly

simple because these states have a one-dimensional internal Hilbert space. Furthermore, their fusions

always produce unique results. If γ(g) and γ ′(g) are two one-dimensional representations of a

group G, then the fusion of the electric charges carrying these representations produces a charge

of representation γ′′(g) = γ(g)γ′(g). A charge will only fuse into the vacuum when fused with its

61

conjugate representation. Therefore, after a series of fusions that end up producing the vacuum

state, we can determine the representation of the original electric charge.

In fact, for groups with q = 2 such as S3, there is a further simplification. In these groups there

are only two one-dimensional representations: the vacuum and the sign representation. Since the

fusion of |R(ai)〉R produces a one-dimensional charge, if it does not fuse into the vacuum, then it must

have produced the sign charge. Therefore, for these groups, we do not even require one-dimensional

electric charge ancillas.

3.2.9 Other possibilities

In this section, we will briefly discuss one last possibility for producing useful operations: using the

products of fusion. Though not strictly needed to complete a universal gate-set, this subsection is

an interesting study of alternative operations and the effects of decoherence during fusion.

At first sight, it appears that the projection onto |0〉⊥ can be done without using electric charges

with the following procedure: first fuse one anyon from the state to be measured with a b−1 flux.

Only the |0〉 state can fuse into the vacuum. If an anyon remains, fuse again with a b flux to

restore it to its previous state, and pair it with its old partner. Repeating the procedure multiple

times (because the |0〉 could turn into an electric charge rather than the vacuum) yields the desired

projection.

There are, however, two problems with the above construction. The first, and smaller, problem

is that when fusing with b−1 or with b we could be turning our magnetic charges into dyons. For

groups of the form Zp ×θ Zq the dyonic electric charges are all one dimensional, however, and will

therefore have no effect on braiding, as discussed in the previous section. The probabilities of fusion

into the vacuum will be reduced, and therefore so will the respective projection probabilities, but

they will still remain non-zero. In fact, a careful examination of the operations constructed so far

shows that they work with a probabilistic mixture of dyons and regular magnetic charges.

The second and larger problem, though, is decoherence. The fluxes aiba−ib−1 = ai(1−t) belong,

in general, to different conjugacy classes and therefore different superselection sectors. When the

quantum state is encoded in this form, it is susceptible to decohere into the different superselection

sectors.

When does this decoherence occur? It occurs during fusion. In general, fusion takes two n-

dimensional Hilbert spaces H and maps them to one: H1 ×H2 → H3. But quantum mechanics is

unitary; therefore, what must really be happening is a mapping to a tensor product of H and the

environment: H1×H2 → H3×E . When two states are mapped onto new states that are orthogonal

in the environment subspace, decoherence occurs.

How do we know if states will have orthogonal environment components after fusion? If two

states belong to the same superselection sectors, they are related by symmetry, which protects them

62

from decoherence. This may not be the case when they come from different superselection sectors,

though.

For example, consider the states |ai〉 ⊗ |ajb〉 for i and j between 0 and p − 1, where the kets

will denote single anyons in this paragraph and the next. States of different j are all in the same

conjugacy class, but states of different i are grouped into conjugacy classes of q elements (except for

i = 0, which is its own conjugacy class). In total, we are talking about p2 states.

These states fuse into the states with flux akb for 0 ≤ k < p. The resulting states may also have

one of q electric charges. In total, we fuse into a space containing pq states. Since pq < p2, what

must be happening is that different conjugacy classes are mapped to states that are orthogonal in

the environment subspace.

Note that the decoherence seems to occur when fusing out of a state made up of different

superselection sectors. However, fusion is the only operation that could have measured the relative

phase between the sectors, and it clearly does not. Therefore, it is acceptable to assume that the

decoherence occurs as soon as states are mapped into different superselection sectors.

Returning to the question of alternative implementations of the projection onto |0〉⊥, it is clear

that the procedure described above does not achieve its goals without causing decoherence in the

general case. However, in the special case when q = p − 1, the non-trivial powers of a form one

conjugacy class. Therefore, the above trick can produce a projection onto |0〉⊥ using only magnetic

charges. Of course, q = p− 1 only holds for G = S3.

For other groups, the operation could become useful if we could tell into which superselection

sector the state decohered, producing a probabilistic projection onto a smaller space. The smaller

projections may also be computationally powerful. However, since we have completed a univer-

sal gate-set without the results of this subsection, we shall work on proving universality from the

previously constructed gates, rather than pursuing this matter further.

3.3 Gate-set universality

The goal of this section is to prove the universality of the following qudit gate-set, which includes

measurements:

1. Controlled-X,

2. Probabilistic projection onto |0〉,

3. Probabilistic projection onto |0̃〉,

4. Probabilistic projection onto |0〉⊥,

63

where we assume that the qudits are of dimension d > 2, with d prime. The first requirement on d is

needed to make the gate-set universal, whereas the second one will allow us to relate this gate-set to

Gottesman’s gate-set [Got98]. The above gate-set must be supplemented by a controlling computer

capable of universal classical computation.

The above gates were selected as those arising naturally from the anyons based on the groups

Zp×θZq. The proof of universality of the above gate-set is the last step needed to show that universal

quantum computation is feasible with these anyons.

The proof of universality will proceed in two steps. In the first step we will turn the second and

third gates into proper measurements in the Z and X bases. Most of the methods of the first step

were described while building computation with non-solvable anyons in Chap. 2, though we include

the discussion for completeness. The second step involves using the probabilistic projection onto

|0〉⊥ to construct magic states that complete the universal gate-set. This is the new element needed

to achieve universality with solvable anyons.

3.3.1 Non-destructive measurement of Z and X

By the end of this subsection we will have constructed measurements in the Z and X bases. These

measurements will be non-destructive in the sense that if result i was obtained, the measured qudit

will be in state |i〉 or |̃i〉, respectively. Because the measurements in question are complete, the

non-destructive requirement can be achieved by having ancillas for every eigenstate of X and Z, and

then using the controlled-X to swap the ancillas into the computational space.

The construction begins by producing a set of basic ancillas. Along the way we will also produce

the X and Z unitary gates.

3.3.1.1 |0〉 and |0̃〉 ancillas

Clearly, given |0〉 ancillas we can use the third gate to produce |0̃〉 ancillas. Similarly, given |0̃〉
ancillas we can use the second gate to produce |0〉 ancillas. Therefore, if the initial state of the

quantum computer overlaps with either state, we can produce both kinds of ancilla.

Usually, the initial state of the quantum computer is |0〉. However, by using the controlled-

X gate, in combination with the projections onto |0〉, we can obtain these states no matter what

the qudits are initialized to. The procedure is just to apply a controlled-X−1 (equivalent to d − 1

controlled-X gates) to two qudits, and then to project the target to the |0〉 space. If the initial state

had some overlap with any of the states |i〉⊗|i〉, then this produces the desired ancillas. Furthermore,

even if we allow states that are initially entangled, once we involve more than d qudits, at least one

pair must have an overlap with the diagonal states. Therefore, |0〉 states can always be produced.

Henceforth, we shall assume an ample supply of |0〉 and |0̃〉 ancillas.

64

3.3.1.2 |1〉 states, |1̃〉 states; X gates, Z gates

The next step is to produce |1〉 and |1̃〉 ancillas. The importance of these ancillas is that they will

break the symmetry currently present in the one-qudit Hilbert space.

There are two symmetries in the Hilbert space that are not fixed by the basic four gates of our

set. The first symmetry is a relabeling |ix〉 → |i〉, calculated modulo d, for some 0 < x < d. The

second, is the relabeling Zy → Z, for integer 0 < y < d. For fixed x, the second symmetry is a

relabeling of our dth root of unity ω by ωy → ω and a relabeling |j̃y〉 → |j̃〉.
Therefore, given an ancilla in a state |x〉, with x > 0, we can just rename it so that it becomes

a |1〉 ancilla. Similarly, given an ancilla in a state |ỹ〉, y > 0, we can relabel it as |1̃〉. In fact, both

can be done simultaneously in a consistent fashion, even if we do not know the values of x and y.

The initial states |x〉 and |ỹ〉 can be obtained from two maximally mixed states. The maximally

mixed states can be described either as a state |x〉 with x chosen at random, or a state |ỹ〉 with y

chosen at random. Therefore, two maximally mixed states serve our purpose as long as we do not

obtain x = 0 or y = 0. These two bad cases will be detected below, in which case the process can

be restarted with two new mixed states.

To produce the maximally mixed states we apply a controlled-X with |0̃〉 as source and |0〉 as

target. The result is a maximally entangled state, which can be turned into a maximally mixed

state by discarding one of the two qudits. Two of these mixed states will serve as our ancillas.

Given our two ancillas, which we have now labeled |1〉 and |1̃〉, we can build X and Z gates,

which are consistent with the new labeling. The X gate is clearly just a controlled-X with a |1〉
state as control, whereas the Z gate is just a controlled-X with a |1̃〉 as target. The less familiar

second construction is just a specific case of the following circuit:

X

|̃i〉

|j̃〉

|ĩ− j〉 = Zj |̃i〉

|j̃〉

At this point, if we were unlucky enough to get x = 0 or y = 0, then one of the transformations

X or Z will be the identity operator. This can easily be checked by applying them to |0〉 or |0̃〉
ancillas and then using the available probabilistic projections.

The X and Z gates can also be used to produce a reservoir of |1〉 and |1̃〉 ancillas that will be

consistent with the original states. Two elements in the reservoir can also be compared, for example,

by applying a Z built from one ancilla followed by a Z−1 built from the other. Therefore, even if

the states were to decay over time, by using majority voting the damaged states can be weeded out.

In some cases, the one-qubit Hilbert spaces do have natural |1〉 or |1̃〉 states, which implies a

natural way of measuring or obtaining such states. For those systems, either the natural ancillas

65

or the arbitrary ones constructed above can be used. For example, for the anyons |1〉 = |aba−1〉.
However, choosing a different |1〉 state is equivalent to choosing a different element a.

3.3.1.3 Measurements of Z and X

At this point all the elements are in place to produce measurements in either the Z basis or the X

basis.

The key element of the X basis measurement is the circuit

X−1

Zj|0̃〉

|̃i〉

|ĩ− j〉

|̃i〉

applied to a |0̃〉 ancilla and the state to be measured. If the above circuit is repeated many times,

each time with a different |0̃〉 ancilla, and with j varying from 0 to d−1, we obtain the transformation

∑

i

βi |̃i〉 −→
∑

i

βi |̃i〉 ⊗ |̃i〉 · · · ⊗ |ĩ− 1〉 ⊗ |ĩ− 1〉 · · · ⊗ | ˜i− d+ 1〉. (3.45)

A probabilistic projection onto |0̃〉 can then be applied to each qudit. If one of the qudits of the

form |ĩ− j〉 projects onto the space |0̃〉, then the outcome of the measurement is j.

Note that because of the one-sided error model of the probabilistic projection, an erroneous

measurement result can never be obtained, no matter how small pPP is. The worst possible outcome

is that after all the qudits have been measured, no conclusion can be reached. Of course, a standard,

small, two-sided probability of error can also be made exponentially small by using enough qudits

in the above measurement.

The measurement in the Z basis proceeds similarly, where the transformation

∑

i

αi|i〉 −→
∑

i

αi|i〉 ⊗ |i〉 · · · ⊗ |i− 1〉 ⊗ |i− 1〉 · · · ⊗ |i− d+ 1〉 (3.46)

is performed using the X and controlled-X gates, followed by a probabilistic projection onto |0〉.
Finally, the above measurements can be performed non-destructively, by projecting all but one

of the qudits. Alternatively, the eigenstates of X and Z can be directly constructed from these gates

and |0〉 or |0̃〉 eigenstates.

3.3.2 Completing the gate-set

So far, we have only shown that our gates can realize operations in the Clifford group. In order to

achieve universal quantum computation we need to complete the gate-set with an operation outside

66

the Clifford group.

It was shown in Chap. 2 that the Toffoli gate, combined with measurements in the X and Z

bases, is universal for quantum computation. Therefore, a successful construction of the Toffoli out

of our gate-set will prove it universal. The Toffoli gate will be constructed out of the previously

described operations, together with the thus far unused probabilistic projection onto |0〉⊥.

In addition to producing measurement gates, probabilistic projections are particularly useful for

preparing magic states, which are ancillas whose use allows us to perform new gates such as the

Toffoli. In particular, we shall show that we can produce the two magic states

|φM1〉 =
1

d

∑

i,j

|i〉 ⊗ |j〉 ⊗ |ij〉,

|φM2〉 =
1

d

∑

i,j

ωδi,0δj,0 |i〉 ⊗ |j〉, (3.47)

where δi,j is the Kronecker delta function. The first of these states produces the Toffoli gate up to

some errors in the Clifford group. The second magic state allows us to correct these errors, and in

fact, allows the construction of the complete Clifford group even without the use of the first magic

state.

We shall begin by discussing how to use each of the magic states and then afterwards turn to

the task of describing their construction out of the available operations.

3.3.2.1 Using |φM1〉

The magic state |φM1〉 and its use in producing the Toffoli gate was first introduced by Shor [Sho96]

and generalized to qudits in [Got98]. We shall give a brief description of its use in order to give an

account of the exact Clifford group operations needed in the last step as corrections.

The procedure begins with a general state

|Ψ〉 =
∑

a,b,c

ψa,b,c|a〉 ⊗ |b〉 ⊗ |c〉, (3.48)

to which an ancilla |φM1〉 is appended. A controlled-X−1 is applied to the first data qudit with the

first ancilla qudit as control. Similarly, a controlled-X−1 is applied to the second data qudit from

the second ancilla qudit, and a controlled-X is applied to the third ancilla qudit, from the third

data qudit. The first two data qudits are then measured in the Z basis, and the third data qudit is

measured in the X basis. If the results of the measurements are α, β and γ, respectively, then the

remaining qudits are left in the state

∑

a,b,c

ψa,b,c ω
γc |a− α〉 ⊗ |b− β〉 ⊗ |(a− α)(b− β) + c〉. (3.49)

67

The corrections begin by applying an Xα ⊗Xβ ⊗X−αβ gate followed by a controlled-Xβ from

the first qudit to the third qudit and a controlled-Xα from the second qudit to the third qudit. The

state then becomes

∑

a,b,c

ψa,b,c ω
γc |a〉 ⊗ |b〉 ⊗ |ab+ c〉. (3.50)

All that is needed to complete the Toffoli gate is a Z−γ gate applied to the third qudit and a phase

ωγab applied to the first two qudits. Unfortunately, we must first build the latter transformation

out of the second magic state.

3.3.2.2 Using |φM2〉

Once again, the magic state is appended to a pair of qudits. Now controlled-X gates are applied with

the data qudits as source and the ancilla qudits as targets. Then the ancilla qudits are measured in

the computational basis. The outcomes α and β will be uniformly distributed, and at the end we

will have produced the transformation

∑

a,b

ψa,b|a〉 ⊗ |b〉 −→
∑

a,b

ψa,b ω
δa,αδb,β |a〉 ⊗ |b〉. (3.51)

This procedure randomly and uniformly chooses a computational basis state and multiplies it by

a phase of ω. Repeated application of this transformation will eventually yield any of the dd2

states

of the form

∑

a,b

ψa,b ω
f(a,b) |a〉 ⊗ |b〉, (3.52)

where f is an arbitrary integer-valued function. This process is effectively a classical random walk

on a d2 dimensional periodic lattice with dd2

nodes, where each use of a magic state is equivalent

to taking one step. Because the lattice is finite, after a polynomially large number of steps the

probability of not having arrived at least once at any one of the above states becomes exponentially

small.

The final correction needed to complete the Toffoli gate was the phase transformation to the

state with f(a, b) = γab and can therefore be realized using many copies of the second magic state.

All that remains to prove universality is to describe the production of the magic states.

3.3.2.3 Making the magic states

The final piece of the puzzle is the production of the magic states using the probabilistic projection

onto |0〉⊥.

68

Probabilistic projections onto a subspace are particularly powerful for making magic states be-

cause it can be assumed that they successfully project into the subspace every time. That is, if

the probabilistic projection does not project onto the desired subspace, the state is tossed out, and

the procedure is restarted from the beginning. Therefore, the probabilistic projection onto |0〉⊥

effectively takes a state and removes the |0〉 component of the state:

d−1∑

i=0

αi|i〉 −→ A

d−1∑

i=1

αi|i〉, (3.53)

where A is some normalization constant. In fact, by combining this projection with the X gate, we

can remove any of the components |i〉.

The main strategy for this section is to construct a series of ancilla states of increasing complexity,

until finally the desired magic states are obtained. At this point, we have a supply of ancillas of the

form |i〉 and |j̃〉 for any i and j. From the |0̃〉 state we can also make the ancilla (|0〉 + |1〉)/
√

2 by

removing all |i〉 for i > 1 with the probabilistic projection.

The next step is to produce entangled two-qudit ancillas. Given a supply of ancillas of the form

|Ψ〉 =
∑

i ψi|i〉 we shall produce ancillas of the form

|Ψ′〉 =

(
ψ0|0〉 ⊗ |1〉 +

d−1∑

i=1

ψi|i〉 ⊗ |0〉
)

=

d−1∑

i=0

ψi|i〉 ⊗ |δi,0〉. (3.54)

The procedure begins with the state

|Ψ〉 ⊗
(

1√
2
|0〉 +

1√
2
|1〉
)

=
1√
2

d−1∑

i=0

1∑

j=0

ψi|i〉 ⊗ |j〉, (3.55)

which in general has 2d non-zero coefficients. We need to remove d of these coefficients to obtain

the state |Ψ′〉.

The procedure, done once for each k from 1 to d−1, is the following: First, apply a controlled-Xk

with the left qudit as source and the right qudit as target. Then, the right qudit is projected onto

|0〉⊥, and finally the controlled-Xk is undone. For each k, we remove the components |0〉 ⊗ |0〉 and

|−1/k〉 ⊗ |1〉. The operation −1/k is modulo d as usual, and ranges over all integers between 1 and

d− 1 because d is prime. Therefore, given a supply of |Ψ〉 ancillas, we can probabilistically convert

some of them into a supply of |Ψ′〉 ancillas.

Note that the above procedure works even if the coefficients ψi represent the state of other qudits,

as long as these are ancilla qudits that can be tossed out if the projection procedure fails. In the

69

same spirit, given ancillas of the form

|Φ〉 =
1∑

i=0

1∑

j=0

φi,j |i〉 ⊗ |j〉, (3.56)

we can produce the three-qudit ancillas

|Φ′〉 =

1∑

i=0

1∑

j=0

φi,j |i〉 ⊗ |j〉 ⊗ |δi,0δj,0〉. (3.57)

The procedure again involves appending (|0〉+ |1〉)/
√

2 to the ancilla |Φ〉, which now generically

has eight non-zero coefficients, and removing four of them. This is done with a set of controlled-X

gates with the third qudit as target, followed by a probabilistic projection of the third qudit onto

|0〉⊥, followed by the inverse controlled-X gates. If we use two controlled-X−1 gates controlled by

the first two qudits, respectively, the projection will remove the components with labels |0〉|0〉|0〉,
|1〉|0〉|1〉 and |0〉|1〉|1〉. In addition, using two controlled-X (d−1)/2 gates, we remove |1〉|1〉|1〉 and

|0〉|0〉|0〉 (again). These are the four states that need to be removed to produce the ancilla |Φ′〉.

The above two procedures allow us to finally produce the desired magic states. Starting with

|0̃〉 ⊗ |0̃〉, we apply the first procedure to each ancilla and then apply the second procedure to the

appended qudits. The resulting state is

1

d

d−1∑

i=0

d−1∑

j=0

|i〉 ⊗ |j〉 ⊗ |δi,0〉 ⊗ |δj,0〉 ⊗ |δi,0δj,0〉. (3.58)

If the last three qudits are measured in the X basis, and the results are 0, 0 and 1, respectively,

then we will have produced the magic state |φM2〉.

In fact, measuring in the X basis and only accepting if the result is zero is a convenient way to

unentangle the system with temporary qudits. Therefore, the previously described procedures can

be combined into the probabilistic transformation

d−1∑

i=0

d−1∑

j=0

ψi,j |i〉 ⊗ |j〉 −→
d−1∑

i=0

d−1∑

j=0

ψi,j |i〉 ⊗ |j〉 ⊗ |δi,nδj,m〉, (3.59)

where the first state is either transformed into the second state with some nonzero probability, or

else it is damaged. The above transformation has only been discussed so far for n = m = 0, but a

trivial use of X gates before and after the transformation will allow any n and m.

70

Starting with |0̃〉 ⊗ |0̃〉 ⊗ |0〉, repeated application of the above procedure can produce

1

d

d−1∑

i=0

d−1∑

j=0

|i〉 ⊗ |j〉 ⊗ |0〉 −→ 1

d

d−1∑

i=0

d−1∑

j=0

|i〉 ⊗ |j〉 ⊗ |0〉
d−1⊗

n=0

d−1⊗

m=0

|δi,nδj,m〉

−→ 1

d

d−1∑

i=0

d−1∑

j=0

|i〉 ⊗ |j〉 ⊗ |ij〉
d−1⊗

n=0

d−1⊗

m=0

|δi,nδj,m〉, (3.60)

where the second step involves only controlled-X gates from the extra qudits to the third qudit.

Erasing the extra qudits with a measurement in the X basis, and retaining only when all results are

zero, produces the desired magic state |φM1〉.

The construction of the magic states out of the probabilistic projection onto |0〉⊥ completes the

description of the Toffoli gate. Though the procedures of this section are far from optimal in terms

of resources, they are sufficient to demonstrate universality. In particular, this completes the proof

that universal quantum computation is feasible with anyons from groups of the form Zp ×θ Zq.

3.4 Computational power of magnetic charges

In this section, we will be interested in classifying the computational power that can be achieved by

braiding anyonic magnetic charges of a finite group. The range of operations that can be achieved

by braiding is closely related to the structure of the group to which the magnetic charges belong.

In particular, the possibility of realizing the operations of controlled-X and Toffoli (equivalently a

doubly-controlled-X) are respectively related to the group properties of nilpotency and solvability.

These standard properties of group theory will also be defined below.

There are certain important assumptions that go into the discussion in this section. First, we

assume that each qubit is carried by a pair of anyons. Furthermore, we choose a computational

basis corresponding to the states of definite flux (e.g., |0〉 = |g〉 for some g ∈ G). We remind

the reader at this point that the state |g〉 corresponds to an anyon of magnetic charge g paired

with a compensating anyon of charge g−1 whose only purpose is to allow the pair to move through

the system without introducing undesired correlations. Finally, we will restrict the discussion to

operations that can be achieved by braiding magnetic charges. The consequences of lifting these

restrictions will be discussed near the end of this section.

Let the fluxes corresponding to the zero and one states be the elements b, b′ ∈ G, respectively.

If we desire a coherent superposition between the zero and one states, they must be in the same

conjugacy class, and therefore b′ = aba−1 for some non-trivial a ∈ G. This is summarized by:

|0〉 = |b〉, |1〉 = |b′〉 = |aba−1〉. (3.61)

71

Even if the basis in use is a qudit basis, with additional states, we will only concern ourselves with

states that have support on the above two basis vectors.

Consider now a pair of these states. We are interested in the operations that can be achieved by

conjugating the second state by the flux of the first state, with the help of ancillas. Let g ∈ {b, b′}
be the flux of the first state. The most general conjugation possible is by a function of the form

f(g) = c1gc2gc3g · · · gcn (3.62)

=
(
d1g

′d−1
1

) (
d2g

′d−1
2

)
· · ·
(
dn−1g

′d−1
n−1

)
dn,

for some fixed elements {ci} ∈ G. In the second line, the expression has been rewritten in terms of

g′ = gb−1 and new elements {di} ∈ G, which can easily be determined in terms of {ci} ∈ G. For

example, d2 = c1bc2.

The power of the second line is that it expresses the conjugation as a composition of two basic

operations. The first is a conjugation by an ancilla with flux dn and is independent of the state of

the first qubit. The second is conjugation by a product of conjugates of g′, which was defined so

that if g = b then g′ = 1 and the product of its conjugates is trivial. In the other case, if g = b′ then

g′ = [a, b] ≡ aba−1b−1, and the operation is conjugation by a product of conjugates of [a, b].

We define CG(x) as the conjugacy class of x in G, and C#
G (x) as the group generated by the

elements in CG(x). The operations discussed so far are conjugation by fixed elements in G, and

controlled conjugation by elements in C#
G ([a, b]).

The most natural controlled operation is the logical controlled-X gate, which acts as a controlled

conjugation by a. Naturally, if a2 6= 1, then we could arrive at the qudit state |2〉 = |a2ba−2〉.
However, our interest lies in proving that certain groups cannot produce a controlled-X, in which

case it is sufficient to prove that a controlled conjugation by a is unfeasible.

It seems that a requirement for a controlled conjugation by a is the existence of elements a, b

such that a ∈ C#
G ([a, b]). There is a potential loophole in the argument, though, because different

qubits could use different basis fluxes. The target qubit could use b2 as the zero state, and a2b2a
−1
2

as the one state. If a2 ∈ C#
G ([a1, b1]) then the controlled-X would be possible. Considering many

qubits requires a sequence of non-trivial elements {ai} and {bi}, which satisfy, at a minimum, the

conditions:

ai+1 ∈ C#
G ([ai, bi]). (3.63)

The above equations are related to the series of subgroups of G, defined by

G((j+1)) =
[
G((j)), G

]
, (3.64)

72

with base case G((0)) = G. By definition, if ai ∈ G((j)) then [ai, bi] ∈ G((j+1)). Furthermore, since

the group G((j+1)) is normal in G, the requirement on ai+1 reads

ai+1 ∈ C#
G ([ai, bi]) ⊂ G((j+1)). (3.65)

Of course, a1 ∈ G((0)) = G. Therefore, repeating the above argument shows that a controlled-X

requires ai ∈ G((i−1)) with ai 6= 1 for every i ≥ 1.

Given that G is finite, and G((j+1)) ⊂ G((j)), the series must converge after a finite number of

subgroups to some final subgroup G((∞)). The final subgroup can either be trivial or non-trivial.

The groups with G((∞)) = {1} are called nilpotent. The conclusion thus far is that nilpotent groups

cannot implement a controlled-X by braiding. The inverse of this statement—i.e., that groups that

are not nilpotent can implement the controlled-X—will be shown in Sec. 3.5.

3.4.1 Conjugations with multiple sources

A similar analysis can be used to study the relationship between group structure and gates produced

using multiple qubits as sources of conjugation. Clearly any group that is not nilpotent can produce a

series of controlled-X gates with different sources. However, certain groups are capable of producing

much more powerful gates such as the Toffoli, which is universal for classical computation.

In the rest of this section we shall prove that groups that are solvable cannot produce a Toffoli

gate, or equivalently universal classical computation, by braiding magnetic charges. This connection

between universality for classical computation and non-solvability had been previously identified by

Barrington [Bar89] in 1989. Though we shall mostly be interested in groups that are solvable, this

result will place limits on the power that we can expect to obtain from braiding magnetic charges.

Just as above, the most general conjugation with m sources is the conjugation by a function of

the form

f(g1, . . . , gm) =
(
d1g

′
i1d

−1
1

) (
d2g

′
i2d

−1
2

)
· · ·
(
dn−1g

′
in−1

d−1
n−1

)
dn, (3.66)

where g′i = gib
−1 and the indices i take values from 1 to m. For brevity, we assume that all qubits

are expressed in the same basis, though the general case would not be very different.

The Toffoli gate is simply a conjugation by a function fT (g′1, g
′
2), such that

fT (ck, cl) = akl, (3.67)

which has been expressed as a function of g′i and where we introduced c ≡ [a, b]. In order to produce

the Toffoli gate using conjugation alone, we must be able to express the above equation in the form

of Eq. (3.66) with m = 2. We shall show that this is not possible for a solvable group.

73

For m = 2, Eq. (3.66) is a product of conjugates of g′1 and g′2. We can rewrite it by moving all

the conjugates of g′1 to the left, and all the conjugates of g′2 to the right. In the center we will pick

up factors of the form [dig
′
1d

−1
i , djg

′
2d

−1
j] and commutators of commutators, and so on. In the end

we will obtain:

f(g′1, g
′
2) = f1(g

′
1)fC(g′1, g

′
2)f2(g

′
2)dn, (3.68)

where dn is a constant element of G, fi is a product of conjugates of g′i, and fC(g′1, g
′
2) is the factor

with all the commutators. The function fC has the property that fC(g′1, 1) = fC(1, g′2) = 1.

Setting f = fT implies the conditions

1 = f(1, 1) = dn,

1 = f(c, 1) = f1(c)dn,

1 = f(1, c) = f2(c)dn,

a = f(c, c) = f1(c)fC(c, c)f2(c)dn, (3.69)

which imply fC(c, c) = a.

However, fC has the additional property that, if N is a normal subgroup of G containing c, then

fC(c, c) ∈ [N,N]. Furthermore, since c = [a, b], the requirement on c needed to express the Toffoli

function in product form is

c ∈ N =⇒ c ∈ [N,N], (3.70)

for any normal subgroup N . This condition is related to the series of subgroups defined by

G(j+1) =
[
G(j), G(j)

]
, (3.71)

again with base case G(0) = G. Just as before, this series must converge to a final subgroup G(∞).

The groups where G(∞) = {1} are known as solvable. Any group that is nilpotent is also solvable.

Because the subgroups G(j) are all normal in G, the requirement of Eq. (3.70) can only be

satisfied if c, which by definition cannot be 1, is contained in G(∞). We have therefore shown that

if the group is solvable, then the function fT cannot be expressed in product form, and therefore

we cannot conjugate by it. This is true even if the target of conjugation is in a known state, which

implies that even if we had used the target as a source of conjugations as well (i.e., by using it to

conjugate ancillas, and then using the ancillas) the Toffoli gate would still not be feasible by using

only braiding of anyons from a solvable group.

The fact that the Toffoli gate can be produced for non-solvable groups is a consequence of the

74

Abelian Nilpotent Solvable Example Computational Power
yes yes yes Z2 I
no yes yes Q X
no no yes S3 Controlled-X
no no no A5 Toffoli

Table 3.1: Computational power achieved by conjugation for different groups.

results of [Bar89] (also proved in the last section of Chap. 2) and will not be discussed here. In

fact, the computational model discussed in this section resembles the non-uniform deterministic

finite automata presented in [BST90]. For non-solvable groups, the two models are almost identical.

Nonetheless, for solvable groups, the magnetic charges presented in this section have significantly

less computational power because the zero and one states have to be represented by group elements

in the same conjugacy class.

3.4.2 Summary of computational power

The results discussed so far have been summarized by Table 3.1. For each type of group, it describes

the computational operations that can be achieved through braiding of magnetic fluxes, as well as

an example. The examples are the smallest group in the class, with the exception of the abelian

case where the trivial group could also be listed. For the non-abelian, nilpotent case there are two

examples with eight elements: the dihedral group D4, and the quaternionic group Q, which is listed

in the table and has elements ±1,±i,±j,±k.

The most basic case is when G is abelian, in which case it is also nilpotent and solvable. Clearly

conjugation can only produce the identity transformation. In fact, every superselection sector con-

sists of a one-dimensional Hilbert space, and therefore quantum information cannot even be stored

in abelian anyons in a topologically protected manner.

At the other extreme are anyons from non-solvable groups. Universal classical computation

can be accomplished through braiding, and universal quantum computation can be obtained by

completing the gate-set with measurements in the X and Z bases. The complete construction for

this case was discussed in the previous chapter.

Anyons from groups that are solvable but not nilpotent can also be used for universal quantum

computation, but the construction is more complicated. A controlled-X can be constructed from

flux braiding, and measurements in the X and Z bases can be constructed in a manner similar to

the non-solvable groups. However, to complete a universal gate-set, fusions of electric charges must

be employed. The proof of universality, along with the details of the gates, will be the subject of

the rest of this chapter.

Finally, anyons from groups that are nilpotent seem insufficient for universal computation. In

75

the constructions for the non-nilpotent groups, the only operation that can produce entanglement

between multiple qudits is the controlled-X or Toffoli gates obtained by braiding fluxes. However,

for nilpotent groups, braiding fluxes does not seem to yield an operation capable of producing

entanglement. Either a new type of operation, or a different basis must be used. Simple modifications

to the basis, such as encoding a qudit on multiple anyons, are of no help. However, there are countless

strange bases that are hard to discredit. For example, a lattice of electric charges could serve as a

Hilbert space, with magnetic charges used to create or measure entanglement among the charges.

Therefore, while the prospects of universal computation with nilpotent anyons seem bleak, the

question remains open.

3.5 Solvable non-nilpotent groups

In this section, we will prove that anyons based on a finite group that is solvable but not nilpotent are

sufficient for universal quantum computation. The first step will be to decompose an arbitrary group

G that is solvable but non-nilpotent, into a form similar to the previously studied Zp ×θ Zq groups.

The proof of universality will then be a small generalization of the ideas presented in Sec. 3.2.

3.5.1 Group decomposition

Let G be a group as above, and define H ≡ G((∞)) in terms of the series discussed in Sec. 3.4.

Because G is non-nilpotent H is non-trivial, and because G is solvable H 6= G. Furthermore, H is

normal in G, and G/H is nilpotent. The second fact is due to

(G/H)
((i+1))

=
[
(G/H)

((i))
, (G/H)

]
=
[
G((i)), G

]
/H = G((i+1))/H, (3.72)

and therefore (G/H)((∞)) = H/H = {1}.

Any nilpotent group can be written as the direct product of its Sylow p-groups, which are groups

whose order is a prime power. Therefore

G/H = Kq1
×Kq2

× · · · ×Kql
, (3.73)

where Kq denotes a group of order qm for some prime q and integer m. We further define NKqi
to

be the lifting of Kqi
to the full group G that is NKqi

/N = Kqi
. Note that to maintain consistency

with the notation in Sec. 3.2, the primes involved in these p-groups are labeled by the letter q.

Having fully characterized G/H, we turn to the study of H itself. Let N be the largest normal

subgroup of G that also satisfies N ⊂ H and N 6= H. If more than one subgroup satisfies the above

requirements, then let N be any such subgroup. Because H is finite, there must be at least one

76

maximal subgroup.

We shall prove that H/N = Zn
p for some prime p and integer n. The basic idea is that working

modulo N , H/N is a normal subgroup of G/N . Furthermore H/N has no proper subgroups that are

normal in G/N . In particular, this implies that H/N is abelian, because its commutator subgroup

is a normal subgroup of G/N . Note that the possibility that the commutator subgroup of H/N is

equal to H/N is excluded because H/N is solvable.

For any x ∈ H/N consider C#
G/N (x), the group generated by the conjugates of x in G/N . This

is a subgroup of H/N and is normal in G/N . Therefore

C#
G/N (x) = H/N, ∀x ∈ H/N, (3.74)

which implies that all elements in H/N , with the exception of the identity, have the same order.

That is because conjugates of x have the same order as x, and a product of elements of order k, in

an abelian group, must have order less than or equal to k. This concludes the proof that H/N = Zn
p .

Thus far, we have the following tower of groups

N ⊂ H ⊂ HKqi
⊂ G, (3.75)

where N , H and HKqi
are all normal in G, and the group HKqi

can be any of the groups found

above.

Because (G/N)((∞)) = H/N = Zn
p , the group G/N is also solvable and non-nilpotent. However,

its structure is simpler than that of the full group G. We shall therefore be interested in working

modulo N and shall denote groups modulo N by a tilde. That is

G̃ = G/N, H̃Kqi
= HKqi

/N, H̃ = H/N = Zn
p . (3.76)

The final step is to study the relationship between H̃ and the groups H̃Kqi
. By construction,

we know [G̃, H̃] = H̃ = Zn
p , but what about [H̃Kqi

, H̃]? Because both H̃Kqi
(for any i) and H̃ are

normal in G̃, [H̃Kqi
, H̃] is normal in G̃ and, furthermore, is contained in H̃. But N was defined to

be the largest proper subgroup of H that was normal in G̃. Therefore H̃ has no proper subgroups

that are normal in G̃, and [H̃Kqi
, H̃] must be either the trivial group or all of H̃.

If qi = p then H̃Kqi
is a p-group, and therefore nilpotent. This means that [H̃Kp, H̃] 6= H̃ and

by the previous paragraph [H̃Kp, H̃] = {1}. The rest of the groups H̃Kqi
can either commute or

not with H̃. However, because [G̃, H̃] = H̃, at least one of them must not commute. Fix an i such

that [H̃Kqi
, H̃] = H̃, and define K = Kqi

, H̃K = H̃Kqi
and q = qi. This will be the group to take

the place of Zq.

We would like to show that there exists an element b ∈ H̃K, such that [b, H̃] = H̃. Let X be the

77

stabilizer of H̃ in H̃K, that is, the largest subgroup of H̃K such that [X, H̃] = 1. Clearly H ⊂ X

and X 6= H̃K. Because H̃K/X is nilpotent, it has a non-trivial center. Let b ∈ H̃K be any element

that projects modulo X to one of the non-trivial elements in the center. We will show that [b, H̃] is

normal in G̃, which implies [b, H̃] = H̃. The proof is that modulo X (which is normal in G̃), every

element g ∈ G̃ commutes with b. Therefore gbg−1 = bx for some x ∈ X and

g [b, h] g−1 = bxh′x−1b−1h′−1 = bh′b−1h′−1 ∈
[
b, H̃

]
, (3.77)

for any h ∈ H̃, where h′ = ghg−1 ∈ H̃.

To summarize, working modulo N , we have the following tower of subgroups:

H̃ ⊂ H̃K ⊂ G̃, (3.78)

with H̃ = Zn
p for some prime p. Furthermore, H̃K/H̃ = K is a subgroup of order a power of q, for

some prime q not equal to p. Finally, ∃b ∈ H̃K such that [b, H̃] = H̃.

Note that this notation is consistent with the one used in Sec. 3.2. That is, if G = Zp ×θ Zq,

then N = {1}, H = Zp, K = Zq, and the definitions of p, q and b would be consistent.

3.5.2 Examples

There are a few good examples to keep in mind that illustrate the potential new complications

arising from groups with more structure than Zp ×θ Zq.

The first example is A4 = Z2
2×θ Z3. The group can be described as a1 = (12)(34), a2 = (23)(41),

b = (123) with

a2
1 = a2

2 = 1, a1a2 = a2a1,

b3 = 1, bai
1a

j
2b

−1 = aj
1a

i+j
2 . (3.79)

For this group N = {1}, H = Z2
2 and K = Z3. Its most important feature is that p = 2, which was

not previously possible. Because p = 2 implies working with qubits, these groups will be have to be

handled specially.

The next example is G = (Z2
3) ×θ (Z3 × Z2). Let a1, a2 be the generators of Z2

3, let b be the

generator of Z2 and let x be the generator of the remaining Z3. The semidirect product is defined

by the conjugations

bai
1a

j
2b

−1 = a−i
1 a−j

2 , xai
1a

j
2x

−1 = a−j
1 ai−j

2 . (3.80)

For this group H = Z2
3 because [G,G] = [G,H] = H. The subgroup generated by a1a

−1
2 is normal

78

in G and therefore N = Z3. Finally H/N = Z3 and K = Z2. Note that x commutes with H modulo

N , as discussed in the last section.

The final pair of examples illustrates the case where K is non-abelian. The examples are Z2
3×θQ

and Z2
3 ×θ D4. Labeling the generators of Z2

3 by a1 and a2, the semidirect product for Z2
3 ×θ Q is

defined by

iax
1a

y
2i

−1 = ay
1a

−x
2 , jax

1a
y
2j

−1 = ax+y
1 ax−y

2 , (3.81)

where ±1, ±i, ±j, ±k are the standard quaternionic elements. For Z2
3 ×θ D4 the semidirect product

is defined by

βax
1a

y
2β

−1 = ay
1a

−x
2 , γax

1a
y
2γ

−1 = ay
1a

x
2 , (3.82)

where the relations β4 = γ2 = 1 and γβγ = β−1 define D4.

In both of the above cases p = 3, q = 2, N = {1} and H = Z2
3. However, for Z2

3 ×θ Q the

non-trivial elements of H are conjugate to one another, and none of the non-trivial elements of Q

commute with any of the non-trivial elements ofH. The Z2
3×θD4 case dividesH into three conjugacy

classes (including the identity). Furthermore, each of the elements of the form β iγ commute with two

non-trivial elements of H. These differences will become important when discussing the operations

involving electric charges.

3.5.3 N-invariant ancillas

The first lesson from the above analysis is that we should work modulo N . That is, we want flux

states labeled by elements of G̃ = G/N , that are invariant under N . The idea of N -invariant

states was already discussed in the previous chapter when generalizing simple non-abelian anyons

to non-solvable ones, and therefore the discussion below will be brief.

A basis for the N -invariant magnetic fluxes is just |g〉 for g ∈ G̃. The braiding and fusion

properties of these states behave almost exactly as if the full group were G̃ and these states were

flux eigenstates. The only difference is that when fusing two anyons from pairs with opposite fluxes,

the probability of disappearing into the vacuum is lower.

Even producing anyons from the vacuum behaves correctly with respect to N -invariance. Pairs

produced from the vacuum are naturally invariant under the full group G. Normally, when braiding

with other states, this invariance will be broken. However, if the vacuum pair only interacts with

N -invariant states, then the invariance under the group N will remain.

At this point we will change our requirements for the physical system. Instead of requiring a

reservoir of flux ancillas for every element of G, we will require a reservoir of N -invariant flux ancillas

79

for every element of G̃. This is likely a reasonable modification, as it appears that the latter ancillas

are no harder to produce than the original ones.

It should be noted that, when working modulo N , the electric charges need no modification.

That is, because N is normal in G, any representation of G̃ extends to a representation of G that

is invariant under N . Furthermore, fusing two N -invariant electric charges must produce a new

N -invariant electric charge. Therefore, working with N -invariant electric charges simply involves

working with a subset of the charges of the group G.

Given the above caveats, we can effectively replace the group G with the group G̃ = G/N , which

will be done without further comment for the rest of this section.

3.5.4 Computational basis

We will begin by defining an extended computational basis and will discuss the operations that can

be performed on this extended subspace. Toward the end of this section, a subset of these states

will be singled out as the true computational basis.

Let a1, . . . , an be a set of generators for H̃ = Zn
p , and recall the definition of the element b ∈ G̃.

The extended computational basis consists of the states

|i1, . . . , in〉 ≡ |ai1
1 · · · ain

n ba
−in
n · · · a−i1

1 〉, (3.83)

where each of the i’s takes values from 0 to p− 1.

To prove that the states are all distinct consider the map from H → H defined by

[g, ·] : h→ [g, h] . (3.84)

Because H̃ is abelian, this map is an homomorphism for any g ∈ G̃. In particular, since [b, H̃] = H̃,

the homomorphism defined by [b, ·] is surjective and has trivial kernel. That is, no element of H̃

commutes with b. But

hbh−1 = h′bh′−1 ⇒ (h′−1h)b(h′−1h)−1 = b, (3.85)

for any elements h, h′ ∈ H̃, which can only be true if h = h′.

3.5.5 Basic operations

The generalized controlled-X is the transformation

|i1, . . . , in〉 ⊗ |j1, . . . , jn〉 −→ |i1, . . . , in〉 ⊗ |i1 + j1, . . . , in + jn〉. (3.86)

It can be implemented as a conjugation of the second anyon by a function of the flux of the first

80

anyon such that

f(hbh−1) = h, (3.87)

for any h ∈ H̃. Because the map [b, ·] defined above is just a permutation of the elements of H̃, it

has a finite period (say l). The desired function is

f(g) =

[[[
gb−1, b

]
, b
]
· · · , b

]
, (3.88)

which consists of l− 1 nested commutators. The final commutator needed to complete the period is

the one formed in the expression gb−1 when g has the form hbh−1.

At this point, one may wonder how does working modulo a normal subgroup N affect the

discussion regarding the computability of the controlled-X gate. The controlled-X can only be

implemented because G̃ is non-nilpotent. In a sense, G̃ was constructed to be as small as possible,

but still maintain the property of being non-nilpotent. On the other hand, if a group G is nilpotent

to begin with, then any subgroup or quotient group will also be nilpotent, and no controlled-X can

be constructed using braiding.

Using the same techniques as in Sec. 3.2.4, anyon fusions can be used to perform measurements.

Fusion with |b−1〉 ancillas produces a probabilistic projection onto |0, . . . , 0〉. Fusing the two anyons

that form a qudit is a probabilistic projection onto

|0̃, . . . , 0̃〉 ≡ 1√
pn

p−1∑

i1=0

· · ·
p−1∑

in=0

|i1, . . . , in〉. (3.89)

As usual, to complete the probabilistic projection, these fusions must be supplemented by a

reservoir of |0, . . . , 0〉 and |0̃, . . . , 0̃〉 ancillas. The first case is trivial, because the existence of these

ancillas has been assumed as one of the physical requirements of the system. The production of

|0̃, . . . , 0̃〉 ancillas is more complicated and will occupy the rest of the subsection.

The procedure to distill |0̃, . . . , 0̃〉 states begins with a pair created from the vacuum and a

|0, . . . , 0〉 ancilla:

|Vac〉 ⊗ |0, . . . , 0〉. (3.90)

Using only braiding, an incomplete swap is applied to the state:

81

X

X−1|Vac〉

|0, . . . , 0〉

Once again, the circuit denotes the action of the conjugations on the computational basis, but their

extension to the full Hilbert space needs to be discussed. After applying the necessary braidings to

perform the circuit, the top state is fused with a |b−1〉 ancilla. If the fusion does not produce the

vacuum state, the final product is discarded and the procedure restarted from the beginning. Since

conjugations cannot change the superselection sector, the only case that needs to be considered

is when the vacuum state is created in the superselection sector that contains the computational

subspace (i.e., the conjugacy class of b). In this superselection sector the vacuum state has the form

|Vac〉 ∝ |0̃, . . . , 0̃〉 + |Ψ⊥〉, (3.91)

where |Ψ⊥〉 is a state in the space spanned by vectors of the form |gbg−1〉 that are not contained in

the computational basis.

Because we want to guarantee that after the controlled-X the state |0, . . . , 0〉 remains in the

computational subspace, we need the conjugation function to satisfy

f(G̃) ∈ H̃, and

f(hbh−1) = h ∀h ∈ H̃. (3.92)

The second requirement can be satisfied by choosing f as a sequence of commutators as in Eq. (3.88),

as long as the number of commutators is one minus a multiple of l (the period of [b, ·]). Furthermore,

the result after i commutators must be contained in G̃((i)). Because the series is finite, G̃((j)) =

G̃((∞)) = H̃ for some finite j, and the first requirement can also be satisfied by defining f to be a long

enough sequence of commutators. Both requirements can be satisfied simultaneously by correctly

choosing the number of commutators in the expression, and this completes the definition of the first

controlled-X.

The second controlled-X can be a regular controlled-X because in this case the control is known

to be in the computational subspace. In the end, the vacuum state will be conjugated by an element

of H̃, and therefore can only have flux b if it was originally in the computational subspace.

Having completed the construction of the |0̃, . . . , 0̃〉 ancillas, all that is required to complete a

universal set of gates is an analog of the probabilistic projection onto |0〉⊥ constructed out of fusions

of electric charges.

82

3.5.6 Using electric charges

The ideal goal for this section would be the construction of the probabilistic projection onto the

state |0, . . . , 0〉⊥. Unfortunately, this is not possible for most groups. However, we will produce a

pair of gates that have an equivalent computational power.

The first gate involves a non-trivial subgroup Λ̃ ⊂ H̃, to be defined later, which could equal all

of H̃. Note that this subgroup defines a subspace of the computational space spanned by

|λbλ−1〉, (3.93)

for all elements λ ∈ Λ̃, which will also be denoted by Λ̃. The probabilistic projection onto Λ̃ will be

the first gate.

The second gate is the probabilistic projection onto |0, . . . , 0〉⊥ ∩ Λ̃. This second gate can be

thought of as an application of the first gate, followed by a probabilistic projection onto |0〉⊥ that

only works on states contained in Λ̃. For the moment, we will assume that the first gate can be

implemented and will work on the construction of the second gate.

The basic building block for this section involves working with the state to be measured |Ψ〉 and

an electric charge pair in the vacuum state |R(I)〉R of some non-abelian representation R. The state

to be measured is contained in the computational basis and can therefore be expanded as

|Ψ〉 =
∑

h∈H̃

ψh|hbh−1〉, (3.94)

where, as in Sec. 3.2.7, the coefficients {ψh} could be numbers or could denote the state of the rest

of the system.

Using braiding, the state |Ψ〉 can be entangled with the electric charges. In particular, if φ(g) is

a function constructed as a product of g and fixed elements of G̃, then the following transformation

can be realized:

|Ψ〉 ⊗ |R(I)〉R −→
∑

h∈H̃

ψh|hbh−1〉 ⊗ |R(φ(h))〉R. (3.95)

Note that the state of the electric charge can depend on φ(h) rather than φ(hbh−1) by composing

with the function defined in Eq. (3.88). That is φ(f(hbh−1)) = φ(h).

Now the electric charge pair is fused together, and the resulting particle is measured. More

specifically, in accordance with the discussion in Sec. 3.2.8, we just check whether the resulting

particle belongs to some one-dimensional representation labeled γ. If the charge γ is detected, then

the electric charge will have disentangled with the state being measured because its internal Hilbert

space is one dimensional. Furthermore, because each one-dimensional representation occurs only

83

once in the decomposition of R ⊗ R∗, the state will be unentangled with the environment as well.

The proof of the latter property uses Schur’s lemma and the fact that if |M1〉R and |M2〉R always

fuse into representation γ then |M1M
†
2 〉R will always fuse into the vacuum.

The result of the complete operation, when the outcome γ is obtained, is the transformation

|Ψ〉 −→
∑

h∈H̃

Fφ(h)→γψh|hbh−1〉, (3.96)

where the state after the measurement has been left unnormalized. The coefficients Fh→γ depend

implicitly on the original representation R and will be defined carefully below.

The above procedure can be repeated many times for different functions φ(g). If on each occur-

rence the outcome γ is obtained, the resulting (unnormalized) state will be

∑

h∈H̃

∏

φ∈Φ

Fφ(h)→γ

ψh|hbh−1〉, (3.97)

where Φ is the set of functions used. As usual, if the outcome γ is not obtained on each instance,

the state is discarded, and the probabilistic projection reports a projection onto the complement.

We assume that all functions in the set Φ are products of conjugates of the input, and therefore

φ(I) = I for any φ ∈ Φ. Because |R(I)〉R is the vacuum state, it will always fuse back into the

vacuum. Therefore, if γ is a non-trivial representation then FI→γ = 0 and the above operation

projects out the |0, . . . , 0〉 state.

At this point we have almost constructed a probabilistic projection onto |0, . . . , 0〉⊥ ∩ Λ̃. The

states outside of Λ̃ can be removed using the probabilistic projection onto Λ̃, which for the moment

we assume can be implemented. Therefore, the desired gate will be complete if the coefficients

∏

φ∈Φ

Fφ(λ)→γ (3.98)

are non-zero and equal for every non-trivial λ ∈ Λ̃. The requirement of equality is accomplished if

the orbits under the functions in Φ, of all non-trivial λ ∈ Λ̃, are equal.

More specifically, let Φ be a set of maps from Λ̃ to Λ̃ that fix the identity. We say that Φ is

balanced on Λ̃ if it satisfies the relation

#(λ1 → λ′) = #(λ2 → λ′) ∀ λ1, λ2, λ
′ ∈ Λ̃ − {I}, (3.99)

where #(λ→ λ′) denotes the number of elements φ ∈ Φ such that φ(λ) = λ′. The requirement that

Φ be balanced guarantees that the expressions in Eq. (3.98) are equal for every λ. Of course, for the

coefficients to be non-zero, we must prove separately that the value of Fλ→γ is non-zero for every

84

non-trivial λ ∈ Λ̃.

The goal for the rest of this section is, therefore, to find: a subgroup Λ̃ of H̃, an irreducible

representation R of G̃, and a one-dimensional representation γ of G̃ such that:

1. The probabilistic projection onto Λ̃ can be implemented.

2. Fλ→γ 6= 0 for every non-trivial λ ∈ Λ̃.

3. There exists a set of maps from Λ̃ to Λ̃, that is balanced on Λ̃, and can be expressed as

φ(g) =
∏

i

gigg
−1
i , (3.100)

for some elements {gi} ∈ G̃.

3.5.6.1 Choosing Λ̃

There are groups, such as Z2
3 ×θ D4, for which there is no choice of R and non-trivial γ such that

Fh→γ 6= 0 for all non-trivial h ∈ H̃. It is therefore advantageous to choose Λ̃ as small as possible.

Furthermore, a small Λ̃ will also help when proving the existence of a set of functions balanced on

Λ̃.

Let a be a non-trivial element of H̃, and consider the set of functions of the form

φ(g) =
∏

i

gigg
−1
i , (3.101)

such that φ(a) = I. The kernel of each of these functions is a subgroup of H̃ that contains the

element a. We define Λ̃ as the intersection of all these kernels.

Because there is a finite set of maps from H̃ to H̃, we can find a finite set of functions {φi}, in

the form of Eq. (3.101), satisfying

λ ∈ Λ̃ =⇒ ∀i φi(λ) = I,

h /∈ Λ̃ =⇒ ∃i φi(h) 6= I. (3.102)

A probabilistic projection onto Λ̃ can be constructed using controlled conjugations on an ancilla |b〉:

∑

h∈H̃

αh|hbh−1〉 ⊗ |b〉 −→
∑

h∈H̃

αh|hbh−1〉 ⊗ |φi(h)bφi(h)
−1〉, (3.103)

and then using fusion to make sure that the ancilla remains in the |b〉 state. Repeating the procedure

for each φi produces the desired projection.

85

To build the set of functions that are balanced on Λ̃, let Φ be the set of functions in the form of

Eq. (3.101) such that φ(a) ∈ Λ̃ − {I}. We shall prove that this is the desired set of functions.

Let λ ∈ Λ̃ be non-trivial and let φ be any map in Φ. The value of φ(λ) must be non-trivial

and contained in Λ̃. Otherwise, it would be possible to construct a map in product form such

that a is in its kernel but λ is not, contrary to the definition of Λ̃. In fact, the functions in Φ

are just automorphisms of Λ̃ and form a group with multiplication given by function composition.

Furthermore, because C#

G̃
(a) = H̃, for any non-trivial λ ∈ Λ̃ there exists a function φa→λ ∈ Φ such

that φa→λ(a) = λ. If λ′ ∈ Λ̃ is a third non-trivial element, then for every function φ ∈ Φ such that

φ(λ) = λ′ there is a function φ′(a) = λ′ given by φ′ = φ ◦ φa→λ. Therefore, Φ is balanced on Λ̃.

3.5.6.2 The amplitudes Fh→γ

To choose R and γ we first need to examine and define Fh→γ more carefully. Since we are mostly

interested in whether Fh→γ is zero or non-zero, we will generally work with its magnitude squared,

which has the simple expression

|Fh→γ |2 =
∣∣∣Pγ |R (h)〉R

∣∣∣
2

, (3.104)

where Pγ is the projector onto the space that will turn into the representation γ after fusion. This

subspace is just the subspace that transforms as γ under conjugation. It can be projected out using

the orthogonality of characters (and matrix entries for non-abelian representations):

Pγ |Ψ〉 =
1

|G̃|
∑

g∈G̃

γ̄g U(g) ⊗ U(g)|Ψ〉, (3.105)

where γ̄ is the conjugate representation. Note that the values of the representation γ on g ∈ G̃ will

be denoted by γg, as a reminder that it is always a power of some root of unity that we shall also

denote by γ.

Combining the expressions for the projector and the electric charge state we obtain

|Fh→γ |2 =

∣∣∣∣
1

|G̃|
∑

g∈G̃

γ̄g|R
(
ghg−1

)
〉
R

∣∣∣∣
2

=
1

dR|G̃|2

∣∣∣∣
∑

g∈G̃

γ̄gR
(
ghg−1

) ∣∣∣∣
2

, (3.106)

where dR is the dimension of representation R. In the second line, the magnitude squared of the

matrix is given by |M |2 = TrMM †, which is equivalent to the sum of the magnitude squared of the

entries of the matrix.

Because H̃ is abelian, the representation R can be diagonalized on H̃ so that the diagonal

86

entries are one-dimensional representations of H̃. These representations can be labeled by an index

i running along the diagonal of the matrices R, and described by functions ωh
i : H̃ → C. With the

new notation:

|Fh→γ |2 =
1

dR|G̃|2
dR∑

i=1

∣∣∣∣
∑

g∈G̃

γ̄g ωghg−1

i

∣∣∣∣
2

, (3.107)

where the representation R is now implicit in the definition of the representations {ωi}.

Finally, let S̃ be the stabilizer of H̃ in G̃, that is, the subgroup of G that commutes with every

element of H̃. Clearly, it is a normal subgroup of G̃, and H̃ ⊂ S̃. Furthermore, we had argued that

if qi = p then Kqi
∈ S̃. Therefore |G̃/S̃| is not divisible by p.

Since the function Fh→γ will be zero unless we choose a representation such that γ S̃ = 1, we

shall assume this from now on, and write

|Fh→γ |2 =
|S̃|2
dR|G̃|2

dR∑

i=1

∣∣∣∣
∑

g∈G̃/S̃

γ̄g ωghg−1

i

∣∣∣∣
2

. (3.108)

We are now guaranteed that γ corresponds to powers of an nth root of unity such that p does

not divide n. The terms in the above expression have the form

p−1∑

i=0

ciω
i, (3.109)

where the coefficients ci are sums of nth roots of unity. By [Sch64], the expression will be zero if

and only if the n coefficients ci are all equal.

Using the above notation it is easy to show two properties of the amplitudes Fh→γ . If |Fh→γ | 6= 0

then

∣∣Fhj→γ

∣∣2 =
|S̃|2
dR|G̃|2

dR∑

i=1

∣∣∣∣
∑

g∈G̃/S̃

γ̄g
(
ωghg−1

i

)j
∣∣∣∣
2

6= 0, (3.110)

as long as p does not divide j. Note that in general |Fh→γ | 6= |Fhj→γ |. The fact that was used above

is that |Fh→γ | 6= 0 implies that at least two coefficients of different powers of ω must be different.

Replacing ω by a power of itself just permutes the coefficients ci in Eq. (3.109).

The second property is easier to prove in the form of Eq. (3.107) and states that given |Fh→γ | 6= 0

87

then

|Fxhx→γ |2 =
1

dR|G̃|2
dR∑

i=1

∣∣∣∣
∑

g∈G̃

γ̄g ωgxhxg−1

i

∣∣∣∣
2

=
1

dR|G̃|2
dR∑

i=1

∣∣∣∣
∑

g∈G̃

γ̄gx−1

ωghg−1

i

∣∣∣∣
2

= |Fh→γ |2 6= 0, (3.111)

for any x ∈ G̃. The second line involves a relabeling of the summation variable, whereas the third

line is true because γ is a group homomorphism and γ̄−x is just an overall phase.

Together, the two properties imply that, if |Fh→γ |2 is non-zero, then so are the amplitudes

|Fh′→γ |2 for any non-trivial h′ = ghig−1. Unfortunately, even after adding the identity element, this

set is in general not a group. Furthermore, it remains to be shown that the amplitude is non-zero

for at least one h.

3.5.6.3 Finding a non-zero amplitude

It is possible to indirectly show that, for every element h ∈ H̃, there is a pair of representations R

and γ meeting our requirements, such that |Fh→γ |2 6= 0.

The basic idea is to consider the regular representation of G̃. Let HG̃ be the Hilbert space

spanned by the vectors

|g〉G̃ (3.112)

for g ∈ G̃. For the moment, these are just abstract vectors in a Hilbert space, and therefore we use

the above notation to distinguish them from the anyon magnetic charges.

The group G̃ has both a left and a right action on this vector space, which transforms as the

regular representation in both cases. More generally, we could say that there is an action of the

group G̃× G̃ on this vector space given by

|g〉G̃ −→ |g1gg−1
2 〉G̃ (3.113)

for any element g1 × g2 ∈ G̃× G̃.

Let HR be the Hilbert space spanned by the vectors of the form |M〉R, where R in an irreducible

representation of G̃. These spaces are also representations of G̃ × G̃ and, in fact, are irreducible.

The space HG̃ decomposes as a sum of irreducible representations of G̃× G̃ as

HG̃ =
⊕

R

HR (3.114)

88

with each irreducible representation R appearing exactly once. Fusion corresponds to a further

decomposition into the irreducible representations of the diagonal group G̃.

The state |I〉G̃ transforms as the identity under the diagonal group and can therefore be written

as a sum of states |R(I)〉R for different representations R. Hence a state |h〉G̃ can be written as

a sum of states |R(h)〉R. If the state |h〉G̃ has a non-zero projection to a representation γ of the

diagonal group, then we know that |Fh→γ | 6= 0 for at least one irreducible representation R.

More explicitly, the projection is

Pγ |h〉G̃ =
1

|G̃|
∑

g∈G̃

γ̄g|ghg−1〉G̃. (3.115)

To make it non-zero, it is sufficient to choose γ to be constant over the stabilizer, Sh, in G̃ of h.

This is still possible, even with our requirements that γ be one-dimensional and non-trivial, because

Sh/H̃ is a proper subgroup of the nilpotent group G̃/H̃. Proper subgroups of nilpotent groups

are always contained in proper normal subgroups because the normalizer of the proper subgroup

is always a larger group (and eventually the operation of replacing a subgroup with its normalizer

must yield a normal subgroup). This concludes the proof that, for any non-trivial h ∈ H̃, there

exists a choice of γ and R such that |Fh→γ | 6= 0.

In fact, for any two non-trivial elements λ1, λ2 ∈ Λ̃, the same representation γ is useful because

Sλ1
= Sλ2

. However, it is not clear that it is possible to pick R such that both |Fλ1→γ | 6= 0 and

|Fλ2→γ | 6= 0. This is illustrated by working with the group Z2
5 ×θ (Z2 ×Z3), where certain choices of

γ consistent with the above discussion lead to zero amplitudes for at least one non-trivial element of

Λ̃, no matter which R is used. On the other hand, the same example does have simultaneous choices

of R and γ that satisfy all our requirements. It is unclear to the author whether it is possible, for any

group G̃, to choose R and γ such that |Fλ→γ | 6= 0 for all non-trivial elements λ ∈ Λ̃ simultaneously.

3.5.6.4 Alternative Λ̃

What happens if R and γ cannot be chosen so that |Fλ→γ | 6= 0 over all non-trivial elements λ ∈ Λ̃?

While none of the examples in this chapter have this problem, if such a case arises, we could try to

shrink Λ̃. In particular, if Λ̃ = Zp, then the problem is solved. That is, because we can always choose

the representations so that the amplitude is non-zero for some element, and then it is guaranteed to

be non-zero for the powers of that element as well.

The set of functions balanced on Λ̃ = Zp can be easily constructed as simply φ(g) = gi for

0 < i < p. However, the probabilistic projection onto Λ̃ is more difficult. It can be achieved if we

are willing to relax the error model of the probabilistic projections. That is, we use an approximate

probabilistic projection, where the probabilities and projected states are close to the desired results.

While the results will be exponentially close in the number of successful fusions, they will only be

89

polynomially close in the number of actual fusions, and therefore the machinery of fault tolerant

quantum computation must be employed. Computation with the approximate gate will still be

feasible, but one of the advantages of topological quantum computation, that is, the exactness of

gates, will be lost.

To construct this approximate projection, consider the amplitude for the fusion of the electric

charges into the vacuum, denoted by Fh→I . It is the same quantity that has been dealt with thus

far, only with the representation γ replaced by the identity representation. These quantities have

the expression

|Fh→I |2 =
1

dR|G̃|2
dR∑

i=1

∣∣∣∣
∑

g∈G̃

ωghg−1

i

∣∣∣∣
2

=
1

dR|CG̃(h)|2
dR∑

i=1

∣∣∣∣
∑

h′∈CG̃(h)

ωh′

i

∣∣∣∣
2

, (3.116)

where CG̃(h) is the conjugacy class of h in G̃. The amplitudes satisfy the properties

0 < |Fh→I |2 < |FI→I |2 (3.117)

for any non-trivial h ∈ H̃. The first inequality comes from the fact that we are summing pth roots

of unity and the number of summands is not divisible by p. The second inequality comes from the

fact that ωh′

i must be non-constant over the conjugacy class of h. The equation

I =
∏

h′∈CG̃(h)

h′, (3.118)

is true because the right-hand side commutes with all of G̃, and therefore must be the identity.

Because the number of factors on the right is not divisible by p, ωi cannot be constant over the

conjugacy class unless it is the identity. Furthermore, since the conjugacy class generates H̃, and R

is non-trivial, one of the ωi must not be the identity. This proves the second inequality of Eq. (3.117).

The standard procedure of entangling a state with an electric charge pair, which is then fused,

can then be used. The state is now kept if the pair fuses into the vacuum, which always has a

non-zero probability of occurring. The basis state that was entangled with |R(I)〉R will have its

amplitude increased relative to the other basis states. Using braiding to achieve a function of the

form f(h) = hai, for some element a ∈ Λ̃ and different values of i, we can make the basis states in

Λ̃ consisting of powers of a have an arbitrarily large amplitude relative to the other states. Even if

|Fh→I | varies significantly over the non-trivial elements of H̃, we can use the old Λ̃ projector and

functions in Φ to balance out the non-trivial elements while increasing the amplitude of the state

with f(h) = I. After many repetitions, the basis states with flux aiba−i can be made to have an

90

amplitude much larger then all the other states. This completes the construction of the approximate

probabilistic projection onto the new Λ̃ for the special cases when we require Λ̃ = Zp.

3.5.7 Putting it all together

At this point we have shown the existence of an extended computational space, with elements labeled

by H̃ = Zn
p , on which we can perform the generalized controlled-X, and probabilistic projections

onto |0, . . . , 0〉 and |0̃, . . . , 0̃〉. Furthermore, there exists a non-trivial subgroup Λ̃ ⊂ H̃, such that we

can implement probabilistic projections onto Λ̃ and |0, . . . , 0〉⊥ ∩ Λ̃.

To define the real computational subspace, choose a non-trivial element a ∈ Λ̃, and define

|i〉 ≡ |aiba−i〉, (3.119)

for 0 ≤ i < p. This subspace corresponds to the subgroup {ai} ⊂ Λ̃ of powers of a.

A probabilistic projection onto the real computational space, corresponding to {ai}, can be

achieved in two steps. The first step is to apply the probabilistic projection onto Λ̃. The second

step is repeated for each λ ∈ Λ̃ that is not in {ai}. For fixed λ, we use an ancilla to conjugate by

λ−1, then do the probabilistic projection onto |0, . . . , 0〉⊥∩ Λ̃ and then conjugate by λ using another

ancilla:

∑

x∈Λ̃

αx|xbx−1〉 −→
∑

x∈Λ̃

αx|λxbx−1λ−1〉

−→ C
∑

x∈Λ̃,x6=λ

αx|λxbx−1λ−1〉

−→ C
∑

x∈Λ̃,x6=λ

αx|xbx−1〉, (3.120)

where the probabilistic projection was assumed to succeed in the second step, and therefore the

state is renormalized by the constant C. The net effect of one such operation is to project out the

state |λbλ−1〉. If all the projections succeed, then we will have projected the original state into the

computational basis, completing the probabilistic projection onto {ai}.
For the case of qudits with d = p > 2 we are now done. The generalized controlled-X behaves

as a controlled-X when restricted to act on the computational space. A probabilistic projection

onto |0〉 is just the probabilistic projection onto |0, . . . , 0〉 because |0, . . . , 0〉 = |0〉. The probabilistic

projection onto |0̃, . . . , 0̃〉 behaves as a probabilistic projection onto |0̃〉 because

〈̃i|0̃, . . . , 0̃〉 ∝ δi,0 (3.121)

with the caveat that we must use the projection onto the computational basis to turn the |0̃, . . . , 0̃〉

91

ancillas into |0̃〉 ancillas. Finally, the probabilistic projection onto |0, . . . , 0〉⊥ ∩ Λ̃ reduces to a

probabilistic projection onto |0〉⊥ when acting on states in the computational subspace. These are

the gates that were proven universal for quantum computation in Sec. 3.3.

3.5.7.1 The case p = 2

Special treatment must be given to the case when p = 2, that is, when working with qubits. Though

all the gates constructed above are valid for p = 2, the gate-set is not universal. The problem is that

the probabilistic projection onto |0〉⊥ = |1〉 does not provide any additional computational power

beyond the probabilistic projection onto |0〉.
Just as in Sec. 3.3.2, the gate-set can be made universal given a supply of the magic states:

|φM1〉 =
1

2

∑

i,j

|i〉 ⊗ |j〉 ⊗ |ij〉,

|φM2〉 =
1

2

∑

i,j

ωδi,1δj,1 |i〉 ⊗ |j〉, (3.122)

where the second state can be produced from the first one by measuring the third qudit in the X

basis.

The production of the magic state |φM1〉 is the step that requires a projection constructed from

the fusion of electric charges. Given our choice of a ∈ Λ̃ above, assume that bab−1 ∈ Λ̃. This must

be the case if Λ̃ was defined as the intersection of kernels of functions. Clearly, we can apply a

controlled conjugation by a, and therefore, additionally, the controlled conjugation by bab−1 and by

abab−1. Note that a 6= bab−1 because b was chosen to not commute with a.

We begin with the |0̃〉 ⊗ |0̃〉 ⊗ |0̃〉 state and append a |0〉 = |b〉 ancilla. We then conjugate it to

obtain

1√
8

1∑

i=0

1∑

j=0

1∑

k=0

|i〉 ⊗ |j〉 ⊗ |k〉 ⊗ |fi,j,kbf
−1
i,j,k〉, (3.123)

where

fi,j,k = a1−i
(
bab−1

)1−j
xk, (3.124)

with x to be determined in a moment. A probabilistic projection onto |0, . . . , 0〉⊥ is then applied to

the last ancilla, and the conjugations are undone.

If the projection succeeds we will have projected out two of the initial eight basis states, depending

on the value of x ∈ {a, bab−1, abab−1}. In all cases, the state |1〉 ⊗ |1〉 ⊗ |0〉 is removed, and for

each of the three values of x, one of the other undesirable basis states is removed. Repeating the

procedure once for each value of x produces the desired magic state |φM1〉. Note that the above

92

procedure succeeds because a2 = 1, and a commutes with bab−1.

What happens if bab−1 is not in Λ̃? This is the case when fusions of electric charges into the

vacuum must be used. In particular, instead of projecting out the undesirable basis states, we

increase the amplitude of the desired basis states and obtain an ancilla that is exponentially close

to the desired magic state. The procedure is almost unchanged, except that the function involved is

fi,j,k = ai
(
bab−1

)j
x1−k, (3.125)

and the function f ′
i,j,k = ai

(
bab−1

)j
must also be used to adjust the relative amplitude of |1〉⊗|1〉⊗|1〉

with respect to the other desired states.

In either case, we have now shown that the case of qubits can be dealt with in a similar fashion

to the general qudit case, and therefore, we have completed the construction of universal quantum

computation for anyons based on solvable non-nilpotent groups.

3.6 Leakage correction

Before concluding this chapter, it is important to address the issue of fault tolerance. A physical

system with anyons will have sources of errors due to the finite separation of anyons and non-zero

temperature as discussed in the previous chapter. While the probability of error is exponentially

small in the distance and temperature, it is in general non-zero. These errors could be especially

relevant if anyons are used as long-term quantum memory, in which case error correcting codes must

be employed.

While most of the machinery of error correcting codes can be applied directly to anyons, it

requires that states with errors remain within the computational subspace (that is, the subspace on

which universal quantum computation can be done). For our model of computation, this is only a

small subspace corresponding to anyons that are magnetic charges with fluxes such as aiba−i and

are arranged in pairs of trivial total flux. Note that only the magnetic charges need error correction

as they are the ones in which the quantum state is stored.

All that is required to perform quantum error correction is to be able to replace qudits that have

“leaked out” of the computational subspace with arbitrary states that are in the computational

subspace. This step can then be followed by the standard error correcting step, which will remove

the errors. The leakage correction step is equivalent to the swap-if-leaked gate described by Kempe

et al. [KBDW01].

In the previous chapter a leakage correction scheme was presented for non-solvable anyons. While

a similar scheme could be constructed for the solvable anyons discussed in the present chapter, it

will be easier to present a generic leakage correction scheme that can also be applied to anyons.

93

|ψ〉

|Φ〉

M

XaZb |ψ〉

a, b

Figure 3.1: Leakage correction circuit.

The scheme is simply to teleport a computational qudit to a fresh qudit. The standard steps,

shown in Fig. 3.1, are first to create the entangled ancilla |Φ〉 =
∑

i |i〉 ⊗ |i〉/
√
d, and then measure

the computational qudit and the first ancilla qudit in the basis |a, b〉 = XaZb ⊗ I|Φ〉, obtaining

outcome a, b. The correction gate XaZb is then applied to the second ancilla qudit, which now

becomes part of the computational space. All these operations can be performed using the anyon

gates discussed so far.

If the original qudit was in the computational space, then its state will be flawlessly transfered

into the new qudit (in our case, a fresh anyon pair). However, if the original qudit had leaked, then

the new qudit will be guaranteed to be in the computational subspace because it was obtained by

applying Pauli operators to a qudit known to be in the computational subspace. This is the desired

leakage correction protocol.

In fact, this scheme can be applied to almost any system, as long as we can guarantee that the

measurement of the first two qudits will not affect the third qudit in any way, as should be the case

if they are sufficiently separated.

The leakage correction scheme has a caveat from a theoretical standpoint, though. We are

effectively assuming that we possess a classical leakage detection machine, through which the data

“a, b” is run. That is, if the measurement produced an outcome in the form of a voltage, and then the

gate XaZb was constructed as a Hamiltonian controlled by this voltage, we would need to guarantee

that only the d2 acceptable voltage signals could reach the machine operating on the third qudit.

However, in practice, leakage correcting a classical signal is trivial, as classical information can be

measured without any negative side effects.

A very similar scheme can be produced given a quantum system that is known to have exactly

d states. The qudit is simply swapped into the new system, the first system is then erased and

restored into the computational space, and then the qudit is swapped back. In this context, the

teleportation scheme is in effect a way of swapping a qudit into a classical system.

Though the leakage correction scheme was discussed in general terms, it clearly applies to the

anyons discussed in this thesis, and its use allows quantum error correction and fault tolerance to be

employed. We have therefore shown that even in the presence of small sources of noise, the anyons

can still be used for universal quantum computation.

94

3.7 Concluding remarks

The main result of this chapter is that anyons from finite groups that are solvable but not nilpotent

are capable of universal quantum computation. This set includes many groups of small size, which

are more likely to be found in a physical system. Combined with the results of the previous chapter,

we have proven that every finite group that is not nilpotent produces anyons capable of universal

quantum computation.

Furthermore, except for the groups where the methods of Sec. 3.5.6.4 must be used, the com-

putations with anyons can be made error free in the following sense: in the theoretical limit of

zero temperature and infinite separation between anyons, an arbitrarily long calculation can pro-

ceed without the need of error correction. The elementary unitaries are always perfect, whereas the

measurements are either perfect, or are known to have failed (i.e., when none of the probabilistic

projections succeed). This occurs with a probability that can be made exponentially small in the

number of fusions. Of course, a real system will have additional exponentially small errors due to

finite size and temperature effects.

The physical requirements for the constructions in this chapter include a supply of electric charge

ancillas, in addition to the requirements of the previous chapter. The necessity of the electric charges

may present an extra source of difficulties for a real implementation. The exception is S3, in which

case only magnetic charges are required, as mentioned at the end of Sec. 3.2. In either case, the issue

of producing the elementary electric or magnetic ancillas is not addressed in this chapter, though a

generalization of the construction in Sec. 2.6 may be sufficient.

We have also neglected to present an account of the resources used to perform computations.

While it should be clear that computations can be done with at worst a polynomial overhead in the

size of the input, some gates (in particular those that require calculations of arbitrary functions over

the group) may require resources that are exponential in the size of the group. A lot of the wasted

resources may come from the description in terms of general groups, though. For a fixed group, the

resources can probably be significantly reduced.

Another open question is whether anyons from non-abelian nilpotent groups are capable of uni-

versal quantum computation. Additionally, not much is known about computing with anyons that

do not belong to the electric and magnetic charge model discussed in this thesis. On the other hand,

the universality of anyons from certain continuous groups has been discussed in [Fre00, FKLW01].

Of course, the most important open question is whether we can find a laboratory system with

anyons out of which a quantum computer can be built. The requirement of a two-dimensional space

severely limits the possibilities. Even if no physical implementations are ever found, though, this

subject will hopefully still be interesting because of its beautiful mix of computation, particle physics

and group theory.

95

Chapter 4

Serial composition and cheat

detection for quantum coin-flipping

Analyzing quantum protocols with a large number of rounds is often difficult. One approach to

obtaining a weak coin-flipping protocol with arbitrarily small bias could be to take a quantum coin-

flipping protocol with a fixed number of rounds and compose it in series with itself to obtain a better

coin-flipping protocol. It is well known that quantum coin protocols compose well in series, and an

argument for this is given in Sec. 4.1.

Unfortunately, serially composing standard coin-flipping protocols does not decrease the over-

all bias [SV86]. However, quantum mechanics is good at detecting state disturbance and other

deviations from a protocol. It is therefore possible to construct coin-flipping protocols with cheat

sensitivity, where a dishonest player may be able to cheat by a significant amount, but only at

the risk of getting caught by the honest player. Cheat sensitive protocols can produce improved

coin-flipping protocols when composed in series under certain conditions.

In the present chapter, we will analyze the serial composition of cheat sensitive coin-flipping

protocols. We shall treat the cheat sensitive protocols as oracles or black boxes, with a cheat

sensitivity that is given by a function of the target bias. This will lead to our two main results.

In Sec. 4.2 we show that quadratic cheat detection protocols, where the probability of getting

caught is proportional to the square of the bias, are a fixed point of serial composition, at least to

leading order. This means that no matter how many times the protocol is composed with itself, the

amount of cheat detection remains approximately the same. Because most known cheat sensitive

protocols are quadratic or worse, this result is evidence that serial composition may not be useful

to obtain weak coin-flipping. The main lemma used in this result is proven in Sec. 4.3.

In Sec. 4.4 we show that linear cheat detection cannot exist for strong coin-flipping. This is

done by composing the linear cheat detection to obtain a strong coin-flipping protocol with arbi-

trarily small bias, in violation of Kitaev’s lower bound. Note that the second result only uses serial

composition as a tool for the proof, and the result holds for all cheat sensitive strong coin-flipping

96

protocols.

The result of 4.4 also applies to bit-commitment, which is a cryptographic protocol related to

coin-flipping. Cheat detection as a function of ε can be defined in a way similar to [ATSVY00]. For

Alice, ε is the amount by which she can change the probabilities associated with the committed bit,

whereas for Bob, ε is the additional probability of guessing Alice’s committed bit correctly. Because

linear cheat detection in bit-commitment can be used to produce a strong coin-flipping protocol with

linear cheat detection, it is also ruled out as a possible quantum protocol.

4.1 Serial composition of quantum coin protocols

Protocols for coin-flipping can be naturally composed in series to obtain new coin-flipping protocols.

What is surprising at first is that quantum protocols for coin-flipping compose serially in such a

way that a cheating party does not get any unexpected advantage by using entanglement. We shall

prove this below, but let us first define carefully what we mean by unexpected advantage.

Let P be any quantum coin-flipping protocol. At the end of the protocol each player will output

one of {0, 1, C} where the last entry denotes the output when one player catches the other player

cheating. Let us assume that Alice is honest and Bob is cheating. For each cheating strategy

employed by Bob, there will be a triple of probabilities (P0, P1, PC), one for each of Alice’s possible

outputs. Let ΩA(P) be the set of all such attainable triples. Clearly (1/2, 1/2, 0) ∈ ΩA(P) since

Bob can always play honestly. If the protocol does not allow Bob to fully bias toward 1 then

(0, 1, 0) /∈ ΩA(P). Some protocols may not have any cheat detection, in which case PC will always

be zero. For honest Bob and cheating Alice there is a similarly defined ΩB(P).

Assume we take the protocol P and run it many times in series. We are interested in proving

that a cheating player, say Bob, does not obtain any extra cheating power by using entanglement

between different rounds. That is, that for every round j, independently of previous outcomes and

strategies used by Bob, any strategy that Bob employs will make Alice output based on a triple of

probabilities in ΩA(P).

Clearly Bob can vary his strategy in each coin-flip round and even base his strategy on the

outcomes of the previous coin-flips. However, when flipping N coins in series, Bob cannot obtain an

outcome of all ones with a probability greater than (P1,max)
N , where P1,max is the maximum value

of P1 over any triple in ΩA(P).

The reason that quantum coin-flipping can be serially composed stems from the following con-

ditions, which are always imposed on coin-flipping protocols:

1. There is always at least one honest party.

2. The details of the protocol, which can be described in terms of fixed unitaries acting on a fixed

97

initial state, are known to all parties.

3. The protocol begins in an unentangled state, a condition that can be enforced by the honest

party.

The first condition arises because no constraint is imposed on the case when both parties are cheating,

and therefore the case never needs consideration. The third condition is always imposed to avoid

trivial protocols, since establishing correlations is the goal of a coin-flipping procedure.

The proof of composition is fairly simple. At the beginning of the kth round, the cheater will be

unentangled from the honest player. The honest player has erased her Hilbert space and reset it to

the initial state of the protocol. All that the cheating player has left over from the previous rounds

is some quantum state in his Hilbert space. However, because the honest protocol is public, the

cheating player knows exactly the state of his Hilbert space (which may be a mixed state, caused

by the honest player erasing her Hilbert space).

Now assume that he could, with the help of this state, force the honest player (say Alice) to

output with probabilities not in ΩA(P). Then with the same state, he could obtain the same results

in the first round or even when protocol P is used in a one-shot run, contradicting the definition of

ΩA(P). To put it another way, Bob can simulate in his private Hilbert space the first k − 1 rounds

and start playing the first round from that point, but this clearly can give him no extra advantage.

The conclusion of this section is that, given a quantum protocol for coin-flipping, we may treat

the protocol as a black box when composing it in series with itself (or even with other coin-flipping

protocols) without worrying about entanglement between rounds. We shall use this fact to derive

two interesting results.

4.2 Quadratic cheat detection is a fixed point of coin-flipping

Because quantum coin-flipping composes in series, it is tempting to try to use a classical game layer

on top of a known quantum coin-flipping protocol in order to reduce its maximum bias. That is, we

wish to construct a two-player classical game that uses the quantum coin as a black box. The game

could be, for instance, flipping a coin N times, and the party that wins a majority of coin tosses

wins the game.

The ideal goal for this process would be to produce a weak coin-flipping protocol with arbitrarily

small bias. While it is known that games built out of standard coin-flipping protocols can never

reduce the maximum bias, the situation is different when cheat detection is available. Especially in

the case of weak coin-flipping, where an honest player may declare himself the winner if he detects the

other party cheating, there are certain black-box protocols that can be used to produce arbitrarily

small bias. The question is how much cheat detection is needed in order for successive compositions

98

to improve a coin-flipping protocol?

We will be interested in protocols with symmetric, monomial cheat detection. Let P be a protocol

where both parties have equal cheating opportunities (i.e., ΩA(P) = ΩB(P) ≡ Ω(P)) and such that

all probabilities (P0, P1, PC) ∈ Ω(P) have the form:

P0 = (1 − PC)

(
1

2
+ ε

)
, (4.1)

P1 = (1 − PC)

(
1

2
− ε

)
, (4.2)

PC ≥ a|ε|b, (4.3)

which can be viewed as a function of a parameter ε that is controlled by the cheating party. The

constants a > 0 and b ≥ 0 denote the amount of cheat detection. Strictly speaking, PC should also

be considered a second parameter that can be controlled by the cheater, as he can always use a

less optimal cheating strategy. In practice, a cheater will always minimize PC for a given bias, and

therefore we may assume equality in Eq. (4.3). We shall call the case b = 1 linear cheat detection,

and the case b = 2 quadratic cheat detection.

When building games out of cheat sensitive coin-flips, the outcome of the entire game will be

“cheating” if in any individual coin-flip a cheating outcome was obtained. To leading order in epsilon,

the composite game will have a cheat sensitivity of the same form, with the same coefficient b, but

in general a different a. When b is small, successive compositions increase a thereby producing a

more cheat sensitive protocol, whereas in the large b regime composition has the opposite effect. We

intend to prove in this section that b = 2 is a fixed point of coin-flipping. That is, for all possible

games that use a coin with quadratic cheat detection as a black box, the resulting protocol has

exactly the same amount of cheat detection to leading order in epsilon.

We begin by describing the set of all possible games that employs a cheat sensitive coin-flip as

a black box. These can be put in correspondence with the set of binary trees, where the leaf nodes

are labeled by either zero or one. For instance, the tree corresponding to the “best two out of three”

game is depicted in Fig. 4.1. Each binary node corresponds to a coin flip, with up corresponding to

the outcome zero and down to the outcome one. The leaves are endpoints of the game, and their

labels correspond to the final game outcome at that node.

Other examples of games that produce coin-flips include “first outcome that is repeated N times”

and “first outcome to occur a total of N times more than the other,” both of which correspond to

trees of infinite length. Allowing for trees of infinite length also accounts for all games that have a

tie outcome, after which the game is restarted. For trees of infinite length we impose the additional

constraint that when playing honestly, the probability of never reaching a leaf node is zero.

Let x be a variable that ranges over the binary nodes of the tree. A general cheating strategy is

99

0

1

0

1
1

0

PW = 1
2

∆= 1
2

PW = 1
4

∆= 1
2

PW = 3
4

∆= 1
2

PW = 1
2

∆=1

PW = 1
2

∆=1

Figure 4.1: “Best two out of three” game tree. Binary nodes are labeled by the probability of
winning for an honest player trying to obtain outcome 0.

a function ε(x), which assigns a bias to each node where a coin-flip takes place. We also define pε(x)

as the probability of arriving at node x given a cheating strategy ε(x). In defining this quantity, we

assume that if the cheater is caught at a given node, the game stops, thereby reducing the probability

of arriving at the child nodes. In terms of these quantities we can write the total probability of getting

caught:

PC,tot =
∑

x

apε(x) |ε(x)|b . (4.4)

To leading order in ε(x), we can replace pε(x) with the probability of arriving at the node in the

honest protocol. This can be written as 2−D(x) where D(x) is the depth of the node x, with the

root node having depth zero. The formula becomes:

PC,tot =
∑

x

a2−D(x) |ε(x)|b . (4.5)

To expand the total bias to leading order in epsilon, we only need to keep track of terms that

are linear in ε(x) and can therefore disregard the multiplicative factor 1−PC in the probabilities for

obtaining zero or one. Of course, we are assuming b > 1 at this point and will soon concentrate on

b = 2. The probability of the cheater obtaining his desired outcome, and winning the game, satisfies

a simple recursion relation:

PW (x) =
1

2

(
PW (x↑) + PW (x↓)

)
+ ε(x)

(
PW (x↑) − PW (x↓)

)
, (4.6)

where PW (x) is the probability of winning having arrived at node x, and x↑, x↓ are the two children

of node x. At the root node the probability of winning is

PW,tot =
1

2
+
∑

x

2−D(x)∆(x)ε(x), (4.7)

where ∆(x) = PW (x↑) − PW (x↓), which can be computed at this point from the honest probability

100

of winning.

The total bias for the game is given to leading order by |εtot| = PW −1/2, where we have excluded

cases where the cheating benefits the honest player. For a given total bias, the cheater will choose

ε(x) to minimize the probability of getting caught. The calculation to minimize PC,tot under the

constraint of fixed εtot can easily be done using a Lagrange multiplier, to obtain the result:

ε(x) = sgn(λ∆(x))

∣∣∣∣
λ∆(x)

ab

∣∣∣∣

1
b−1

, (4.8)

where λ is the Lagrange multiplier. We have allowed ε(x) to range over the reals, but will show

below that for quadratic cheat detection the optimal solution satisfies the requirement |ε(x)| ≤ 1/2.

To eliminate the Lagrange multiplier, we can substitute the expression for εtot into the expression

for PC,tot to obtain:

PC,tot = anew |εtot|b , (4.9)

where

anew = a

(
∑

x

2−D(x) |∆(x)|
b

b−1

)1−b

. (4.10)

For the case b = 2, the following lemma shows that anew = a for all game trees:

Lemma 5. For all game trees as described above, we have the equality

∑

x

2−D(x)∆(x)2 = 1. (4.11)

The lemma can be proven using a simple combinatorial argument that is presented for the interested

reader in the next section.

From Eq. (4.8) we see that for b = 2, the amount of cheating at node x is proportional to ∆(x).

The constant of proportionality, as well as the Lagrange multiplier, are fixed by Eq. (4.7). After

eliminating a factor of 1 using the above lemma we obtain that the optimal strategy is ε(x) =

|εtot|∆(x). This satisfies the intuition that the cheater will choose a larger bias on coin-flips that are

more consequential. Furthermore, because |∆(x)| ≤ 1, we have shown that the optimal strategy is

achievable (i.e., |ε(x)| ≤ 1/2 for every x) whenever |εtot| ≤ 1/2.

For other values of b near two, we can consider the derivative of anew with respect to b. For any

fixed graph, this derivative is negative. The conclusion is that for every graph, serial composition

of b < 2 cheat detection leads to improvement to lowest order, whereas in the b > 2 case the cheat

101

sensitivity worsens.

The above results complete our argument that quadratic cheat detection is a fixed point for

coin-flipping. The argument is only valid in the regime where all biases, including the total bias, are

small. Unfortunately, because a protocol producing weak coin-flipping with arbitrarily small bias

would have to employ arbitrarily large trees, it is not sufficient to simply take the small bias limit

on a fixed tree.

In essence, associated with each weak coin-flipping protocol there is a function PC(ε) indicating

the minimum probability with which a party will get caught cheating if they try to bias the coin by

ε. Composing this protocol in series one obtains a new protocol with function PC,tot(εtot). That is,

serial composition with a given game tree induces a map from the set of functions PC(ε) to itself.

We have shown that, independent of the tree, if the original function behaves as aε2 for small ε, then

so will its image.

The fact that the coefficient of the quadratic term remains fixed under the map induced by

every game tree is a peculiar and interesting feature. It is indicative that serial composition of

quadratic cheat detection may not be useful for producing weak coin-flipping with arbitrarily small

bias. However, further research in this direction is needed in order to conclusively settle the issue.

4.3 Proof of lemma

In this section we shall prove Lemma 5, but first we introduce some notation. Let T be a binary

tree. We will use the variable x to denote a binary node of T and y to denote a leaf.

Associated with T there is a function PW (y) on the leaf nodes that takes the values zero or

one. The function can be extended to the rest of the nodes by defining PW (x) as the average of the

function on its two descendants. In terms of coins, PW is simply the probability of winning when

playing honestly starting from the given node. The function corresponds to the coin outcomes on

the leaf nodes if the goal is to obtain 1, and otherwise the coin outcome is 1 − PW (y). To obtain a

fair coin toss, we require that PW equal 1/2 on the root node. Otherwise, the function and the tree

are arbitrary.

We also arbitrarily label the two outgoing edges from each binary node as up and down, and

define ∆(x) = PW (x↑) − PW (x↓). Finally, let D(x) be the depth of node x, with the root node

having depth zero.

Lemma 6 (restatement of lemma 5). Given a tree T and function PW as described above, the

following equality holds:

∑

x

2−D(x)∆(x)2 = 1. (4.12)

102

Proof. ∆(x) is a linear combination of PW (x) on its descendants, which in turn is a linear combina-

tion of PW (y) on the leaf nodes. Therefore the left-hand side of the above equation is a quadratic

polynomial of PW (y).

Fix a leaf node y. The function PW (y) only appears in ∆(x) if y is a descendant of x, in which

case it has a coefficient of ±2D(x)+1−D(y). The coefficient of PW (y)2 in this polynomial is therefore

given by
D(y)−1∑

i=0

2−i22(i+1−D(y)) = 22(1−D(y))
(
2D(y) − 1

)
. (4.13)

Fix a second leaf node y′ 6= y. Let x′ be the unique node that has y as a descendant along one

branch and y′ along the other. The coefficient of PW (y)PW (y′) is

2

D(x′)−1∑

i=0

2−i+2(i+1)−D(y)−D(y′)

− 2D(x′)−D(y)−D(y′)+3 = −23−D(y)−D(y′), (4.14)

where the only negative term is contributed by ∆(x′). Note the extra factor of 2 accounting for the

double occurrence of PW (y)PW (y′).

Combining these results, the left-hand side of Eq. (4.12) is

4
∑

y

2−D(y)PW (y)2 − 4

[
∑

y

2−D(y)PW (y)

]2

. (4.15)

Note that the factor in brackets is just PW at the root node, which must equal 1/2. The left

summand can be simplified by using PW (y)2 = PW (y), in which case it can also be written in terms

of PW at the root node. We have shown that the left-hand side equals 4(1/2) − 4(1/2)2 = 1 as

desired.

4.4 No-go theorem for linear cheat detection

In this section we shall switch gears and focus on serial composition of linear cheat detection proto-

cols. We shall prove that linear cheat detection can be serially composed to produce not only weak

coin-flipping but also strong coin-flipping with arbitrarily small bias. Because of Kitaev’s bound

for quantum strong coin-flipping [Kit03], the result in this section proves that a strong coin-flipping

protocol with linear cheat detection cannot exist.

The result of this section only applies to strong coin-flipping schemes with cheat sensitivity as

described in Eq. (4.3). An alternative not covered by the proof in this section is the case where Alice

can force outcome 1 (and Bob can force outcome 0) without getting caught, which corresponds to

cheat sensitive weak coin-flipping. Because weak cheat sensitivity can be simulated by strong cheat

sensitivity, the result of the previous section applies to weak cheat sensitivity as well. However, the

103

opposite is not true, and the results of the present section do not apply to linear cheat sensitivity in

weak coin-flipping.

Since strong coin-flipping can be constructed out of bit-commitment, the result of this section can

also be applied to cheat sensitive bit-commitment protocols. In fact, the only known coin-flipping

protocol, where neither side can cheat by a finite amount without getting caught, is described in

[HK04] and is a strong coin-flipping protocol that is constructed out of bit-commitment.

For the proof of the above statements, we assume the existence of a quantum protocol P described

by Eq. (4.3) with b = 1 and some non-zero a. We shall describe a game, that uses P as a black box,

which achieves strong coin-flipping with bias that becomes arbitrarily small in the limit of a game

parameter N → ∞. Though, for the purposes of comparing against Kitaev’s bound, it is sufficient

to allow honest players to output “cheat” at the end; we will construct the game so that the honest

player always outputs one of the outcomes zero or one.

The game is the random walk on a 1-D line, starting from the origin, using the coin provided by

P. The game ends with the first arrival at one of the two sites ±N , with the right end corresponding

to the outcome zero, and the left end to one.

If one party detects cheating, they will continue the game using a private fair coin, and output

according to the outcome of the game. Let z ∈ {−N, . . . , N} be a variable that runs along the

line. If cheating occurs when the game is at z, then the honest players can simply output using

P0 = (N + z)/2N and P1 = (N − z)/2N . In essence, the only deterrent to the cheater is that he

may be able to cheat more effectively in a future round. Note that the honest party cannot just flip

a balanced coin after detecting cheating because in this case the cheating party would only cheat

when he is about to lose.

Because the honest player keeps no state beyond the current location along the line, z, there is

an optimal cheating strategy where the bias only depends on z. That is, we only need to consider

functions ε(z) when maximizing over cheating strategies.

We assume that the cheating player is trying to bias toward zero (i.e., the right side). We can

then define the function Wε(z) to be the probability of winning starting from node z, using biases

ε(z). The function is similar to PW defined in the previous section, except that we are now using

large biases, which cannot be ignored in calculating the probability of winning.

The function has the constraints Wε(N) = 1, Wε(−N) = 0 and

Wε(z) = P0(ε(z))W (z + 1) + P1(ε(z))W (z − 1) + PC(ε(z))
N + z

2N
. (4.16)

Clearly, for optimal strategies, Wε(z) ≥ (N + z)/2N for all z because the cheating party can always

play honestly.

The value of Wε(0) is simply the probability of winning the entire game. The cheater will chose

104

ε(z) in order to maximize Wε(0). We shall prove that max [Wε(0) − 1/2] → 0 as N → ∞.

The analysis is made easier by using a modified black box protocol P ′ with achievable probabilities

of the form:

P0 =
1

2
+ ε, (4.17)

P1 =
1

2
− (1 + a)ε, (4.18)

PC = aε, (4.19)

for 0 ≤ ε ≤ εmax where εmax = 1/(2 + 2a). For every ε, protocol P ′ gives the cheater a slightly

higher probability of obtaining the desired outcome than with protocol P. Therefore, any bounds

on cheating obtained using P ′ as a black box will apply when using P instead.

Consider using P ′ and varying independently each of the nodes of the complete game tree. The

bias ε(x) of each node enters linearly into Wε(0), which can be maximized by letting the biases take

only the boundary values of 0 or εmax. As discussed above, the optimal biases will depend only on

the corresponding value of z, and therefore we need only consider functions ε(z), which take values

in {0, εmax}.
The maximization is now easy to analyze. Define δ(z) = Wε(z)− (N + z)/2N , which is the extra

probability of winning that the cheater is getting at position z. We shall prove below that

δ(z + 1) ≤ 2 + a

2aN
=⇒ δ(z) ≤ 2 + a

2aN
. (4.20)

If ε(z) = εmax the above statement is true because Eq. (4.16) states that:

δ(z) =

(
1

2
+ εmax

)(
δ(z + 1) +

1

2N

)
=

2 + a

2 + 2a

(
δ(z + 1) − 2 + a

2aN

)
+

2 + a

2aN
. (4.21)

On the other hand, if ε(z) = 0 then Eq. (4.16) states that:

δ(z + 1) − δ(z) = δ(z) − δ(z − 1), (4.22)

that is, δ has a constant slope around z. If for all z′ < z we have ε(z′) = 0, then the slope must be

constant through this entire region. Since δ(−N) = 0, the slope can only be negative (i.e., increasing

toward the left) if δ(z) < 0, which proves Eq. (4.20) for this case. Otherwise, let z′ < z be the largest

integer such that ε(z′) = εmax. Again the slope must be constant from z′, in which case, by Eq. (4.21)

the slope can only be negative if δ(z′) < (2 + a)/2aN , which implies δ(z) < (2 + a)/2aN .

Having proven Eq. (4.20), and using the initial case δ(N) = 0, we have shown

εtot ≡Wε(0) −
1

2
= δ(0) ≤ 2 + a

2aN
, (4.23)

105

which can be made arbitrarily small by taking the limit N → ∞.

The game described in this section shows that a strong coin-flipping protocol with linear cheat

detection can be serially composed to obtain a strong coin-flipping protocol with arbitrarily small

bias. The conclusion is that quantum strong coin-flipping protocols with linear cheat detection

cannot exist.

4.5 Conclusions

Using serial composition of coin-flipping we have established an upper bound on the amount of

cheat detection possible in quantum protocols for coin-flipping and bit-commitment. We have also

presented evidence that serially composing quadratic cheat sensitive protocols does not lead to an

improvement in the amount of cheat detection. We speculate that quadratic or worse cheat sensitivity

(b ≥ 2) cannot be composed in series to obtain weak coin-flipping with arbitrarily small bias. We

also speculate that cheat detection better than quadratic (b < 2) does not exist for bit-commitment

or strong coin-flipping, and probably not for weak coin-flipping either.

Nevertheless, linear cheat detection in weak coin-flipping remains an open, though unlikely,

possibility. In fact, by serially composing weak coin-flipping with linear cheat detection, it is not

hard to show that one can construct a weak coin-flipping protocol with a bias of exactly zero. The

apparent contradiction with the result of Lo and Chau [LC98] is resolved by noting that they only

considered protocols with a fixed number of rounds. However, there are protocols where the number

of rounds is variable and possibly arbitrarily large (a good classical example is rock-paper-scissors),

while still having a zero probability of going on forever. For these protocols the measurements cannot

be delayed to the final round, and therefore the analysis of Lo and Chau does not apply. These

protocols can always be truncated to a finite number of rounds, though, at the cost of allowing an

arbitrarily small bias.

Other questions that remain open include: What happens to serial composition of quadratic

cheat detection in the large bias regime? And what can be said for other functional forms of cheat

detection versus bias, including cases where one party may be able to cheat by a small amount

without getting caught? Unfortunately, these questions will remain open as we turn our attention

in the following chapters to protocols for weak coin-flipping with no explicit cheat detection.

106

Chapter 5

Quantum weak coin-flipping with

bias of 0.192

In this chapter we shall describe a family of protocols for quantum weak coin-flipping that achieve

biases as low as 0.192. The set of protocols described in this chapter will only be a small subset of

the family of protocols presented in the next chapter. Nevertheless, some of the key steps in upper

bounding the bias will be taken in this chapter.

The actual protocols are described in Sec. 5.1 and are indexed by an integer n > 1, with n + 2

messages. The case of n = 2 with four messages will be equivalent to Spekkens and Rudolph’s

original protocol. The protocols with more rounds will achieve an even better bias.

The main achievement of this chapter is the construction of quantum weak coin-flipping protocols,

which achieve a bias less than ε = 1/
√

2 − 1/2. This excludes the possibility that Kitaev’s bound

for strong coin-flipping can be directly extended to weak coin-flipping and establishes that it is not

possible for the minimum bias of weak coin-flipping to equal that for strong coin-flipping in the

context of quantum mechanics.

The main technique used in this chapter is Kitaev’s description of coin-flipping as a semidefinite

program. This description provides a dual problem whose solutions bound the amount that a party

may cheat. Though this material has been previously published, it will be reviewed in Sec. 5.2.

The main contribution of the chapter is in Sec. 5.3, where we shall construct solutions to the

problem dual to the protocol of Sec. 5.1. These shall provide analytic upper bounds on the bias of

the protocol.

Our protocol for a given n depends on n parameters subject to one constraint, and we shall

express the upper bound as a function of these parameters. Any choice of the parameters, consistent

with the constraint, will give a valid protocol together with an upper bound on its bias. To find

good protocols with small bias, we shall use a numerical minimization over the space of parameters.

This will be done in Sec. 5.4.

We stress, however, that given a set of values for the parameters, these can be put into the

107

analytic expression to obtain a valid upper bound on the bias. The existence of weak coin-flipping

protocols with the quoted biases does not depend in any way on the accuracy or quality of the

numerical minimization.

We also include in Sec. 5.5 an analytical derivation of the bias in the limit n → ∞, which will

show that most reasonable choices of the protocol parameters converge to the same bias.

5.1 The protocol

In this section we will describe a family of weak coin-flipping protocols, indexed by an integer n ≥ 2,

which will involve n+ 2 messages. The protocols will also depend on a set of parameters a1, . . . , an

to be fixed later. These parameters define the two-qubit states

|φi〉 =
√
ai|00〉 +

√
1 − ai|11〉. (5.1)

The protocol begins with Alice preparing in her private Hilbert space the states |φi〉 for odd i, while

Bob prepares the states with even i in his Hilbert space.

The first n messages of the protocol consist of sending halves of the states |φi〉. More explicitly,

the ith message involves the owner of state |φi〉, who sends one of the two qubits comprising the

state to the other party. After the first n messages, if both players were honest, the state of the

system should be:

|ψ〉AB =

n⊗

i=1

(√
ai|0〉A ⊗ |0〉B +

√
1 − ai|1〉A ⊗ |1〉B

)
, (5.2)

where the labels A,B denote the owner of the qubit in question.

At this point each side will apply a two-outcome projective measurement {E0, E1} to their

n qubits. These operators will be described below but will have the properties E2
i = Ei and

(Ei)A ⊗ IB |ψ〉AB = IA ⊗ (Ei)B |ψ〉AB . These properties guarantee that when both parties are

honest, their answers are perfectly correlated. We can therefore associate the outcome E0 with an

outcome of zero for the coin flip, and the outcome E1 with coin outcome one. The requirement that

the coin-flip be fair when both parties are honest:

〈ψ|Ei ⊗ Ei|ψ〉 =
1

2
(5.3)

will impose a constraint on the parameters {ai}.
At this point both parties should know the “honest” outcome of the coin-flip. Now they enter a

stage of cheat detection in which the loser will examine the qubits of the winner. If no cheating is

detected (which is guaranteed when both players are honest) then the “honest” outcome becomes the

108

final outcome. Otherwise, if the losing party detects cheating, that party may ignore the “honest”

outcome and instead output his or her desired outcome (zero for Alice and one for Bob). This is

acceptable because the rules of weak coin-flipping don’t require the parties to output the same bit

when one party is dishonest.

We now describe the cheat detection stage, which will involve the last two messages: the winner

of the coin toss according to the measurement {E0, E1} sends over their entire Hilbert space for

inspection. If Bob wins, he should send over his n qubits so that Alice obtains both halves of the

state:

√
2E1 ⊗ E1|ψ〉 =

√
2E1 ⊗ I|ψ〉. (5.4)

This is a pure state, and Alice can perform a two-outcome projection onto this state and its com-

plement. If she obtains the complement as outcome, she knows Bob must have cheated. More

specifically, define

Fi =
Ei ⊗ Ei|ψ〉〈ψ|Ei ⊗ Ei

〈ψ|Ei ⊗ Ei|ψ〉
. (5.5)

Alice measures using the projections {F1, I − F1}, where outcome I − F1 implies Bob has cheated.

In the case when the honest outcome is zero, Bob does the equivalent steps with {F0, I − F0}.
Officially, we shall define the protocol so that Alice always uses message n + 1 to either send

her qubits (or nothing if she lost the honest coin toss), whereas Bob will use message n + 2 if he

needs to send qubits. The ordering is irrelevant though, and it could also be defined so that Bob

sends his verification qubits first when n is odd, thereby avoiding two messages in a row from Alice.

Alternatively, they could be sent in the opposite order, combining the verification state with the last

message in order to run the protocol with only n+ 1 messages.

All that remains is to describe the projections E0 and E1. Heuristically, the measurement consists

of the following process: examine the qubits in order starting from the one belonging to |φn〉 and

ending with the one belonging to |φ1〉. The qubits are to be measured in the computational basis,

until the first zero outcome is obtained, which implies that the sender of that qubit loses. If all

qubits produce outcome one then Alice (being the first message sender) is the winner. Of course,

the measurement is not performed in stages as described above but rather using the unique pair of

projectors that produces the same distribution of probabilities. For example, for n = 2 we have

E0 = |00〉〈00| + |10〉〈10| + |11〉〈11|, (5.6)

E1 = |01〉〈01|, (5.7)

where the leftmost qubit corresponds to the first qubit sent or received. The rest can be defined

109

inductively by the formulas

E
(k+1)
0 = I ⊗ E

(k)
1 + |1 · · · 1〉〈1 · · · 1|, (5.8)

E
(k+1)
1 = I ⊗ E

(k)
0 − |1 · · · 1〉〈1 · · · 1|, (5.9)

where the superscript indicates the number of qubits on which they are to act. For brevity, these

superscripts shall be omitted, though.

The case of n = 2 is equivalent to the protocol described by Spekkens and Rudolph in [SR02b],

which achieves the tradeoff P ∗
AP

∗
B = 1/2. The connection is made by setting a1 = x and (1 − a2) =

1/(2x).

Summarizing, the protocol involves the following steps:

1. Alice prepares |φ1〉 ⊗ |φ3〉 ⊗ |φ5〉 · · · ,
Bob prepares |φ2〉 ⊗ |φ4〉 ⊗ |φ6〉 · · · .

2. For i = 1 to n:

If i is odd: Alice sends half of the state |φi〉 to Bob,

If i is even: Bob sends half of the state |φi〉 to Alice.

3. Alice performs the two-outcome measurement {E0, E1} on her n qubits. Bob performs the

same two-outcome measurement {E0, E1} on his n qubits.

4. If Alice obtains E0 she outputs zero and sends all her qubits to Bob.

5. If Bob obtains E1 he outputs one and sends all his qubits to Alice.

6. If Alice obtained E1 she measures her qubits plus any qubits received from Bob with the

projections {F1, I − F1}. If she obtains F1 she outputs one, otherwise (or if she receives the

wrong number of qubits from Bob) she outputs zero.

7. If Bob obtained E0 he measures his qubits plus any qubits received from Alice with the

projections {F0, I − F0}. If he obtains F0 he outputs zero, otherwise (or if he receives the

wrong number of qubits from Alice) he outputs one.

5.1.1 Reformulation of the protocol

For the analysis in the following section, it will be helpful to delay all measurements to the last step.

It will be also useful to never have to apply a unitary or, equivalently, send qubits conditioned on

the outcome of a measurement. We will be able to formulate protocols with these properties if we

are willing to allow one side to have increased cheating power.

110

The idea is that the analysis of a coin-flipping protocol is divided into two separate steps: we

need to analyze the case when Alice is honest and Bob is cheating, and then we need to analyze the

case when Bob is honest and Alice is cheating. Let us focus on the first case when Alice is honest.

We wish to describe a new coin-flipping protocol, where Bob’s ability to cheat is exactly the same

as in the original protocol, but where Alice may be able to cheat more than usual. We shall call the

original protocol P and the new protocol P ′. The idea is that P ′ will be simpler to describe than P
and, since at the moment we are only concerned with bounding Bob’s ability to cheat, any bound

derived for one protocol will apply to the other.

The protocol P ′ begins with the same initial state as P, and the first n messages are identical.

However, in P ′ after the first n messages no measurements occur. Instead, Bob sends all of his n

qubits to Alice. After this last message Alice performs the two-outcome projective measurement

{F1, I − F1} as before and reports outcome F1 as Bob winning and I − F1 as Alice winning. Note

that in P ′, even when Bob is honest the outcome I−F1 can arise, that is, Alice does not differentiate

between Bob losing honestly and Bob getting caught cheating.

Technically, we should allow one last classical message from Alice to Bob, where Alice announces

her outcome and then Bob repeats it as his own, but this won’t be necessary as we are only concerned

with the probabilities associated with Alice’s output.

It is not hard to see that any cheating strategy for Bob that can be used in P will produce the

same probability of winning in P ′, because the only thing that changed from Alice’s perspective is

that now she always expects to receive Bob’s qubits. However, as protocol P was written, the only

time that Bob could win was when he sent his qubits, so he loses nothing by always sending them.

From a mathematical perspective, we are using the fact that F1E1 = F1 and (I−F1)E1+E0 = I−F1.

In conclusion, when analyzing the case of honest Alice, we can use protocol P ′. Of course, when

analyzing the case of honest Bob and cheating Alice, P ′ is no longer useful, but we can define a new

protocol P ′′ in a similar way, where Alice always sends all her qubits to Bob. This protocol can be

used to bound Alice’s cheating power in P.

For the rest of this chapter, we shall employ protocols P ′ and P ′′ where appropriate without

further comment. However, all bounds derived will apply to the original protocol P as well.

5.2 Coin-flipping as an SDP

The problem of finding the optimal cheating strategy for a player can be cast as a semidefinite pro-

gram (SDP). The dual problem then provides bounds on the maximum bias that the cheating player

may achieve. This approach was first described by Kitaev [Kit03] (and summarized in [ABDR04]).

In the following section we will review Kitaev’s construction, though using a somewhat different

language than the original. What few results are needed from the theory of semidefinite programming

111

will be derived along the way in order to keep this chapter as self contained as possible. The discussion

in this section will be completely general in the sense that it applies to any coin-flipping protocol.

The results of this section will then be applied to the protocol at hand in Sec. 5.3.

5.2.1 The primary problem

For simplicity, we shall focus on the case when Alice is honest and Bob is cheating. The opposite

case when Bob is honest is nearly identical.

We will work with protocols that can be cast in the following form: The initial state is a fixed

pure unentangled state shared by Alice and Bob. The protocol proceeds by applying unitaries on

each individual side, and by sending qubits from Alice to Bob and vice-versa. In the last step, each

party performs a two-outcome projective measurement and outputs the result.

In fact, the communication part of the protocol (i.e., everything but the initial state preparation

and the final measurement) can be described as a sequence of the following three elementary oper-

ations: one of Alice’s qubits is sent to Bob, one of Bob’s qubits is sent to Alice, or each side applies

a unitary to their qubits. The unitary step is often not needed and can be completely removed if

we allow each party to decompose their space into qubits in different ways on each round.

Given a protocol, let m be the number of elementary steps, and let ρ0 be the density matrix

describing Alice’s qubits in the first step. Let ρi be the density matrix describing Alice’s qubits after

the first i elementary operations, given some cheating strategy for Bob. These matrices must satisfy

the following equations:

• If step i involves sending qubit j from Alice to Bob:

ρi = Trj ρi−1. (5.10)

• If step i involves Alice receiving a qubit from Bob and assigning it name j:

Trj ρi = ρi−1. (5.11)

• If step i involves Alice applying unitary Ui:

ρi = Uiρi−1U
−1
i . (5.12)

It will be convenient to have a shorthand notation for these equations. They shall be written as

Li(ρi) = Ri(ρi−1), where Li and Ri are linear operators corresponding to the identity, partial trace

or conjugation by a unitary as needed to match the above equations.

112

Clearly, no matter what Bob’s strategy is, the above equations must be satisfied. Furthermore,

because Alice’s output probabilities are entirely determined by ρm, a cheating strategy for Bob can

be described in terms of the above sequence of density operators {ρi}. In fact, it is not hard to see

that by keeping the total state pure, Bob can make Alice have any sequence of density operators that

are consistent with the above equations. Therefore, there is a one-to-one correspondence between

cheating strategies of Bob (up to isomorphisms that produce the same result on Alice’s side) and

density operators ρ0, . . . , ρm satisfying the above equations.

After the communication rounds have been completed, Alice makes a two-outcome projective

measurement {EA, EB} to determine her output. Outcome EA will correspond to Alice winning

(i.e., final outcome zero) and EB will correspond to Bob winning (i.e., final outcome one). Note that

these operators are not the same as the {E0, E1} used in the last section, and in fact, when applied

to our protocol EB will correspond to F1.

Bob’s goal is to choose a sequence of positive semidefinite operators ρ1, . . . , ρm satisfying the

above protocol dependent equations, in order to maximize Tr(EBρm). Note that ρ0 is always fixed

by Alice’s initial state, and the above equations fix the trace of the remaining matrices, therefore the

maximization can indeed be done over all positive semidefinite matrices. We have therefore proven

the following lemma:

Lemma 7. The maximum probability of winning that can be attained by Bob through cheating in

a coin-flipping protocol described by the data m, ρ0, {Li}, {Ri}, EB is given by the solution of the

maximization problem

P ∗
B = max Tr (EBρm) , (5.13)

involving the m positive semidefinite matrices ρ1, . . . , ρm subject to the constraints

Li(ρi) = Ri(ρi−1) for all i = 1, . . . ,m. (5.14)

5.2.2 The dual problem

The beauty of semidefinite programing is that each SDP has a dual SDP. When the original problem

involves a maximization, the dual problem involves a minimization. Furthermore, the optimal

solution of the dual problem will be greater than or equal to the optimal maximum of the original

problem. In terms of coin-flipping each solution of the dual problem provides an upper bound on

the amount that Bob can cheat.

The variables of a dual SDP are Lagrange multipliers, one for each constraint in the original

problem. There are m equality constraints given by the m elementary operations of the protocol,

therefore there will be m Lagrange multipliers Z1, . . . , Zm. Each Zi will be a Hermitian matrix of

113

the same dimension as Li(ρi) and will be added in as a term of the form Tr[Zi(Li(ρi) −Ri(ρi−1))].

We will now lift the conditions Li(ρi) = Ri(ρi−1) on the operators {ρi} allowing them to vary

freely. The constraints will be dynamically imposed by the Lagrange multiplier terms. However,

because the traces of {ρi} are no longer fixed we shall impose the constraints ρi ≤ I so as to keep

the expression TrEBρm finite. We now have:

P ∗
B = max

0≤ρ1,...,ρm≤I

{
TrEBρm − sup

Z1,...,Zm

m∑

i=1

Tr [Zi(Li(ρi) −Ri(ρi−1))]

}

= max
0≤ρ1,...,ρm≤I

inf
Z1,...,Zm

{
TrEBρm −

m∑

i=1

TrZiLi(ρi) +

m∑

i=1

TrZiRi(ρi−1)

}

= max
0≤ρ1,...,ρm≤I

inf
Z1,...,Zm

{
TrZ1R1(ρ0) +

m∑

i=1

(TrRi+1(ρi)Zi+1 − TrLi(ρi)Zi)

}

= max
0≤ρ1,...,ρm≤I

inf
Z1,...,Zm

{
TrZ1R1(ρ0) +

m∑

i=1

Tr
[
ρi

(
Rd

i+1(Zi+1) − Ld
i (Zi)

)]
}
, (5.15)

where in the third line we introduced Zm+1 ≡ EB and Rm+1(ρ) = ρ. In the fourth line, we introduced

the dual operators to Li and Ri in the sense that Tr[Li(ρ)Z] = Tr[ρLd
i (Z)] and Tr[Ri(ρ)Z] =

Tr[ρRd
i (Z)] for all ρ and Z. These are easily constructed as follows: if Ri(ρ) = ρ then Rd

i (Z) = Z,

if Ri(ρ) = UiρU
−1
i then Rd

i (Z) = U−1
i ZUi, and if Ri(ρ) = Trj ρ then Rd

i (Z) = Z ⊗ Ij , where the

identity is inserted into the empty slot of qubit j. The expressions for Ld
i are defined similarly.

From the above equation it should be clear that

P ∗
B ≤ Tr[Z1R1(ρ0)], (5.16)

for any Hermitian matrices Z1, . . . , Zm subject to the m constraints

Rd
i+1(Zi+1) − Ld

i (Zi) ≤ 0, (5.17)

because under this constraint the second term is guaranteed to be non-positive for any set of {ρi}.
We have therefore proven the following theorem:

Theorem 8. Let Z1, . . . , Zm be any set of Hermitian matrices satisfying the m inequalities

Ld
i (Zi) ≥ Rd

i+1(Zi+1) for i = 1, . . . ,m, (5.18)

where m, Ld
i , R

d
i , Zm+1 ≡ EB and ρ0 are data associated with a coin-flipping protocol. The maximum

probability that Bob can win such a coin-flip by cheating is bounded by

P ∗
B ≤ Tr[Z1R1(ρ0)]. (5.19)

114

|φ1〉
|φ2〉

|φ3〉

1 2 3 n+1 n+2 n+3

Figure 5.1: State ordering for n = 3. Black qubits are initially prepared by Alice.

Our goal in the next section will be to guess sets of matrices Z1, . . . , Zm satisfying the inequalities

Eq. (5.18), and try to find a set that produces a good bound on P ∗
B without worrying whether the

bound is optimal.

5.3 Finding solutions to the dual problem

Continuing the analysis of the case where Alice is honest and Bob is cheating, we need to find the

problem dual to P ′. The protocol P ′ can be thought of as having m = n+ 1 elementary operations

if we relax the definition somewhat to allow the receiving of n qubits in the last message as one step.

Each elementary step consists of either sending or receiving a message, and unitaries are never used.

The final measurement is done with EB = F1, EA = I − F1.

It will be useful to define a specific ordering for the qubits in Alice’s Hilbert space. The intuition

is to picture qubits as carried by particles in a lattice. When played honestly, the initial state will

be prepared on 2n particles, some of which will be controlled by Alice, and some by Bob. Sending a

qubit from Alice to Bob simply means that the particle will now be controlled by Bob rather than

Alice. Alice’s full Hilbert space at each step will be the ordered tensor product of the Hilbert spaces

of all particles she controls in that step. Note that this does not restrict the power of a cheating

player, who could have as many extra qubits as he wants that can interact with any particle under

his control.

The ordering of the states will be as follows. The initial state is prepared so that |φi〉 is carried

by particles i and n+ i. When n is even Alice starts off with all the odd particles in her possession

whereas Bob has all the even particles. When n is odd Alice owns the odd particles between 1 and

n inclusive, and the even particles between n+ 1 and 2n inclusive. This is depicted in Fig. 5.1.

The first steps involve Alice sending qubit n+1, then receiving qubit 2, then sending qubit n+3,

and so on. At the end of the first n messages Alice will control the first n qubits. The last step

involves Alice taking possession of the other n qubits.

115

With these conventions, the primal problem reads:

ρi = Trn+i ρi−1 for odd i ≤ n, (5.20)

Tri ρi = ρi−1 for even i ≤ n, (5.21)

plus one final equation

Trn+1,...,2n ρn+1 = ρn. (5.22)

With these conventions the dual problem involves finding m Hermitian matrices Z1, . . . , Zm,

where m = n+ 1. When n is odd, all the matrices have dimension 2n, whereas when n is even the

matrix Zn+1 has dimension 2n and the rest have dimension 2n−1. They must satisfy the following

equations

Zi ≥ Zi+1 for odd i ≤ n, (5.23)

Zi ⊗ Ii ≥ Zi+1 ⊗ In+i+1 for even i < n, (5.24)

where the subscript on the qubit identity matrices indicate into which slot it should be inserted. If

n is even, we also need Zn ⊗ In ≥ Zn+1. Finally, in addition to the previous n inequalities we need

to satisfy

Zn+1 ⊗ In+1,...,2n ≥ Zn+2 ≡ F1, (5.25)

where the identity is inserted into the slot of the last n qubits. The goal is to choose the matrices

in order to minimize 〈ϕ|Z1 ⊗ In+1|ϕ〉 where |ϕ〉 = |φ1〉 ⊗ |φ3〉 ⊗ · · · .

5.3.1 Choosing Z1, . . . , Zn

Let β = 〈ϕ|Z1⊗In+1|ϕ〉. To minimize this quantity, it is to our advantage to choose the Zi matrices

as small as possible in a sense to be discussed below. In particular, the optimal choice for Z1 is

simply to satisfy the equality Z1 = Z2. We can remove Z1 from our equations and write

β = 〈ϕ|Z2 ⊗ In+1|ϕ〉 = 〈ϕ3|Tra1
Z2|ϕ3〉, (5.26)

where |ϕ3〉 = |φ3〉 ⊗ |φ5〉 ⊗ · · · , and Tra1
denotes a weighted partial trace on the first qubit with

weights a1 and 1 − a1. For example, when acting on a matrix that only involves the first qubit

Tra1
M = a1〈0|M |0〉 + (1 − a1)〈1|M |1〉. (5.27)

116

Note that in a slight abuse of notation, the subscript 1 in Tra1
indicates both which ai is used and

on which qubit the partial trace is performed.

The next inequality, which reads Z2⊗I2 ≥ Z3⊗In+3, is harder to satisfy, and in general equality

cannot be achieved. However, we don’t need to pay much attention to what happens in the subspace

orthogonal to |ϕ3〉, and we can in a sense sacrifice this subspace in order to obtain small entries in

the subspace that we are interested in.

More specifically, let T3 be the partial trace

T3(M) = Tr|ϕ3〉[(I1,2 ⊗ |ϕ3〉〈ϕ3|)M], (5.28)

where the trace is taken only over qubits that are involved in |ϕ3〉, that is, qubits 3, n+ 3, 5, n+ 5,

and so on. The equation Z2 ⊗ I2 ≥ Z3 ⊗ In+3 requires T3(Z2 ⊗ I2) ≥ T3(Z3 ⊗ In+3), which is an

equation involving only the first two qubits. We will begin by finding the optimal choice in this

subspace.

Let us assume that T3(Z3 ⊗ In+3) is a diagonal matrix with entries x00, x01, x10, x11. We want to

choose T3(Z2 ⊗ I2) to be as small as possible while still satisfying the inequality. However, because

of the linearity of T3, the matrix T3(Z2 ⊗ I2) will have the form M ⊗ I2, for some one-qubit operator

M . The equation M ⊗ I2 ≥ T3(Z3 ⊗ In+3) becomes

M0 0 Mc 0

0 M0 0 Mc

M∗
c 0 M1 0

0 M∗
c 0 M1

≥

x00 0 0 0

0 x01 0 0

0 0 x10 0

0 0 0 x11

, (5.29)

where M0, M1 are the diagonal entries of M in the computational basis, and Mc is the complex

off-diagonal entry.

Since we are trying to minimize 〈ϕ3|Tra1
Z2|ϕ3〉 = Tra1

M , the best choice is to take M0 =

max(x00, x01), M1 = max(x10, x11) and Mc = 0, which clearly satisfies the inequality. Notice that

the maximum is taken over pairs of eigenvalues whose computational basis eigenvectors differ only

in the second qubit. Symbolically, we shall write this as

M = max
2

[T3(Z3 ⊗ In+3)] , (5.30)

where the operator max is defined only for diagonal matrices. The subscript 2 specifies that the

maximum is to be taken over subspaces that differ in the second qubit.

The above discussion is only valid when T3(Z3 ⊗ In+3) is diagonal, but we can impose this

constraint on Z3 (and the equivalent constraint on future Zi), which is acceptable because we are

117

only looking for a solution of the inequalities, even if it is not the optimal solution.

Now if we could choose Z2 to satisfy the full inequality, and still satisfy T3(Z2) = M for the

matrix chosen above we would have

β = Tra1
max

2
[T3(Z3 ⊗ In+3)] . (5.31)

The following lemma shows that it is possible to choose Z2 so that we can get arbitrarily close

to the above result. Because we will use β to upper bound P ∗
B , it doesn’t matter if it is an infimum,

and therefore we can use the lemma to eliminate Z2 in favor of the above expression.

Lemma 9. Let T3 be as above, and let H be a Hermitian matrix with finite eigenvalues. Given a

Hermitian matrix M such that M ⊗ I2 ≥ T3(H) and an ε > 0, there exists a matrix M ′ such that

M ′ ⊗ I2 ≥ H and T3(M
′) = M + εI.

Proof. Let P = I1,2 ⊗ |ϕ3〉〈ϕ3| be the projector that was used in defining T3. This divides the

Hilbert space on which H acts into the direct sum of two parts, one invariant under P and one

perpendicular to it. We write this as H = H‖ ⊕H⊥.

Let λ be the largest eigenvalue of (I − P)H(I − P). Define the block diagonal matrix B as

follows: the block acting on the space H‖ has the form M ⊗ I2 + εI, and the block acting on H⊥

has the form (λ+ y)I for some constant y > 0.

Let γ be the maximum over normalized states |Ψ〉,|Φ〉 of |〈Φ|PH(I − P)|Ψ〉|. Then for any

normalized state |Ψ〉 we have

〈Ψ|(B −H)|Ψ〉 ≥ ε〈Ψ|P |Ψ〉 + y〈Ψ|(I − P)|Ψ〉 − 2γ
√

〈Ψ|P |Ψ〉〈Ψ|(I − P)|Ψ〉. (5.32)

As long as y >
√

γ

ε , the expression is greater than zero, which implies B > H. It should be clear

that B has the form M ′ ⊗ I2 and that the M ′ defined in this way satisfies T3(M
′) = M + εI.

The above lemma is used with H = Z3 ⊗ In+3 and letting Z2 = M ′. At this point the pattern

begins to repeat itself. We can choose Z3 = Z4 and get

β = Tra1
max

2
[T3(Z4 ⊗ In+3)] = Tra1

max
2

[Tra3
T5(Z4)] , (5.33)

where T5 is the partial trace using the state |ϕ5〉 = |φ5〉 ⊗ |φ7〉 ⊗ · · · .
Using the lemma again we eliminate Z4 in favor of Z5:

β = Tra1
max

2

[
Tra3

max
4

[T5(Z5 ⊗ In+5)]
]
, (5.34)

where the expression is only valid if T5(Z5 ⊗ In+5) is diagonal in the computational basis (which

118

will force T3(Z3 ⊗ In+3) to be diagonal as well).

One may worry that repeated uses of the lemma will make Z3 have arbitrarily large entries, which

means that the lemma can no longer be used to eliminate Z2. But the problems can be eliminated

by taking the limits in the proper order, or more appropriately, by making sure that the coefficient y

associated with Z2 is much larger than the one associated with Z4, which in turn needs to be much

larger than the one associated with Z6 and so on.

The process is repeated until in the last step, when n is odd, the innermost expression is of the

form Tn(Zn ⊗ I2n) = Tn(Zn+1 ⊗ I2n) = Tran
Zn+1, yielding

β = Tra1
max

2

[
Tra3

max
4

[Tra5
· · ·Tran

[Zn+1]]
]
. (5.35)

When n is even, we have the special inequality Zn ⊗ In ≥ Zn+1, which is satisfied by choosing

Zn = max
n

[Zn+1], so that we get the same alternating expression, with the innermost operation a

max:

β = Tra1
max

2

[
Tra3

max
4

[
Tra5

· · ·max
n

[Zn+1]
]]
. (5.36)

Both of these formulas are valid only if Zn+1 is diagonal in the computational basis, which will make

all the matrices of the form Ti(Zi) for odd i diagonal as well.

We are now left with the task of minimizing β as a function of Zn+1 with the constraint that Zn+1

must be real and diagonal in the computational basis and must satisfy the inequality Zn+1⊗I ≥ F1.

In fact, when Zn+1 is diagonal the inequality can be simplified further. In the qubit ordering we

have chosen, the final state of the protocol right before measurement should be |ψ〉 = |φ1〉1,n+1 ⊗
|φ2〉2,n+2 ⊗ · · · ⊗ |φn〉n,2n where we have explicitly listed the location of each qubit. Therefore

F1 = 2E1 ⊗ E1|ψ〉〈ψ|E1 ⊗ E1 has support only on the 2n dimensional subspace spanned by states

where qubits i and i+ n are equal for all i. The constraint Zn+1 ⊗ I ≥ F1 need only be checked in

this subspace where it takes the form

Zn+1 ≥ |ξB〉〈ξB |, (5.37)

where

|ξ〉 =
(√
a1|0〉 +

√
1 − a1|1〉

)
⊗
(√
a2|0〉 +

√
1 − a2|1〉

)
⊗ · · · ⊗

(√
an|0〉 +

√
1 − an|1〉

)
, (5.38)

and |ξB〉 =
√

2E1|ξ〉, which is correctly normalized by the factor
√

2 if the coin is fair when both

players are honest.

119

β

∑
a1

max max

∑
a3

∑
a3

∑
a3

∑
a3

x0 0 x2 x3 x4 0 x6 0

Figure 5.2: Cheating Bob’s Sum-Max Tree.

5.3.2 Example n = 3

At this point an example would probably be helpful. We shall look at the case n = 3:

|ξB〉 =
√

2
(√

a1a2a3|000〉 +
√
a1(1 − a2)a3|010〉 +

√
a1(1 − a2)(1 − a3)|011〉

+
√

(1 − a1)a2a3|100〉 +
√

(1 − a1)(1 − a2)a3|110〉
)
, (5.39)

and the matrix Z4 can be chosen as

Z4 =

x0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 x2 0 0 0 0 0

0 0 0 x3 0 0 0 0

0 0 0 0 x4 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 x6 0

0 0 0 0 0 0 0 0

(5.40)

where the top row corresponds to |000〉, the second one to |001〉 and so on. The entries along the

diagonal of Z4 outside of the support of |ξB〉〈ξB | have already been set to zero, which should be

expected for all optimal solutions. Otherwise, any set of {xi} that satisfies Z4 ≥ |ξB〉〈ξB | is a valid

solution of the dual problem. The corresponding bound can be calculated from these variables using

Eqs. (5.35) or equivalently by evaluating the tree depicted in Fig. 5.2.

The tree is evaluated as follows: each node has a value that is either the maximum or the weighted

sum of the nodes below it. The weighted sum is just ai times the value of the left descendant plus

1 − ai times the value of the right descendant. The value of the root node corresponds to β and is

120

an upper bound on P ∗
B . We shall call trees of this form Sum-Max trees.

Sum-Max trees appear naturally when analyzing classical protocols for coin-flipping. The basic

idea is that these protocols can be described as a sequence of public random bits, with the first one

announced by Alice, then the second one by Bob and so on. At the end both parties look at the

sequence of bits and determine the outcome of the coin-flip. The whole protocol can be described as

a binary tree, with Alice’s bits choosing the path at the odd depth nodes and Bob’s bits controlling

the rest.

A player attempting to cheat in such a protocol will not output random bits but will instead

choose the path that maximizes his chances of winning at each node. If we put ones and zeros in

the leaf nodes corresponding to a win or loss, the maximum probability with which the cheater can

win is given by evaluating the corresponding Sum-Max tree.

If we ignore the cheat detection stage in the protocol, then it can be described completely

classically. Its Sum-Max tree would be the same as Fig. 5.2, except that all the variables would be

replaced by the number one. This can easily be seen from our formalism because the only effect of

removing the last round is to force Zn+1 to equal E1, which is diagonal with ones in place of the

variables {xi}.
It is well known that in the classical case, one party can always fully bias the coin in their favor.

However, in the quantum case with cheat detection, because the leaves of Sum-Max tree are less

restricted, there is the possibility of obtaining a stronger bound on the amount of cheating.

The analysis so far has been of the case when Alice is honest and Bob is cheating. The case

of Bob honest and Alice cheating is almost identical, though. The first major difference, is that

this case has to be analyzed from Bob’s perspective, so that the odd messages consist of receiving a

qubit and the even ones involve sending a qubit. This has the effect of switching sums with maxes

and vice versa. The other difference is the final state that Bob will use to verify that Alice is not

cheating. For n = 3 it has the form

|ξA〉 =
√

2
(√

a1a2(1 − a3)|001〉 +
√

(1 − a1)a2(1 − a3)|101〉 +
√

(1 − a1)(1 − a2)(1 − a3)|111〉
)
.

(5.41)

The maximum probability with which Alice can cheat, P ∗
A, is bounded above by α, calculated

from the Max-Sum tree in Fig. 5.3, where the leaves are the diagonal elements of Z4 and must satisfy

Z4 ≥ |ξA〉〈ξA|.

5.3.3 Finding the optimal Zn+1

Returning to the case of honest Alice, we need to finish the general case by choosing a matrix Zn+1

in order to obtain an expression for β in terms of the parameters a1, . . . , an. Recall that we have

restricted our analysis to matrices Zn+1 that are diagonal in the computational basis. We shall now

121

α

max

∑
a2

∑
a2

max max max max

0 x1 0 0 0 x5 0 x7

Figure 5.3: Cheating Alice’s Sum-Max Tree.

search for the minimum value of β consistent with this choice.

Let x1, . . . , x2n be the diagonal entries of Zn+1. We will, as in the example above, set the variables

to zero when their corresponding basis vector is orthogonal to |ξB〉, which will leave around half of

the variables. We also wish to work in the subspace where the two values entering a max node in

the Sum-Max tree are equal. For example, this is the space consistent with a3x0 = a3x2 +(1−a3)x3

and x4 = x6 in the example above. The only potential problem exists at the lowest level of max

nodes, where a zero can be entering the node. For the following we will assume that n is odd, which

eliminates this problem. The even case will be derived from the odd case below.

Working in this subspace we can replace all the maximums with weighted sums with any weight

of our choice. In this situation, β can be calculated as a weighted trace of Zn+1. That is, there

exist diagonal matrices W such that β = Tr(Zn+1W) for any Zn+1 in this subspace. For example,

a valid choice for W is the diagonal part of |ξ〉〈ξ|, which replaces the max nodes at each level i by

the weighted sum using ai. That is

Tr[Zn+1 diag(|ξ〉〈ξ|)] = Tra1
Tra2

Tra3
· · ·Tran

Zn+1. (5.42)

This will turn out to be the wrong choice for W but it gets us closer to the following lemma:

Lemma 10. Let |Ψ〉 be a state, not necessarily normalized, and let D be the diagonal part of |Ψ〉〈Ψ|.
Let E = E2 be a diagonal projector. The minimum of Tr(ZD) over diagonal real matrices Z, subject

to the constraint Z ≥ 2E|Ψ〉〈Ψ|E, is given by 2|〈Ψ|E|Ψ〉|2 and is attained by

Z = 2〈Ψ|E|Ψ〉E. (5.43)

Proof. Because Z is diagonal we can write Tr(ZD) as 〈Ψ|Z|Ψ〉. Clearly if Z ≥ 2E|Ψ〉〈Ψ|E then

Tr(ZD) = 〈Ψ|Z|Ψ〉 ≥ 2|〈Ψ|E|Ψ〉|2. It is also attainable using Z = 2〈Ψ|E|Ψ〉E, which satisfies

122

the inequality constraint because by Cauchy-Schwarz 〈Φ|E|Ψ〉〈Ψ|E|Φ〉 ≤ 〈Ψ|E|Ψ〉〈Φ|E|Φ〉 for any

|Φ〉.

Because |ξB〉〈ξB | = 2E1|ξ〉〈ξ|E1, we are almost in the situation covered by the above lemma.

Unfortunately, we are only maximizing over the space consistent with the entries to every max node

being equal (while keeping the zero entries in Zn+1 equal to zero), so in general Zn+1 proportional

to E1 is not a valid solution. However, by rescaling the variables, we can get to the situation where

this subspace contains E1, and therefore the above lemma is useful.

More specifically, let S be a diagonal positive matrix. Define Z ′
n+1 =

√
SZn+1

√
S. We now can

minimize β = Tr(Z ′
n+1

√
S−1W

√
S−1) subject to the constraint Z ′

n+1 ≥
√
S|ξB〉〈ξB |

√
S. We would

like to choose S so that Z ′
n+1 = E1 is a valid solution, that is, when Zn+1 =

√
S−1E1

√
S−1 = S−1E1

is put into the Sum-Max tree, the pair of values entering each max node are equal. We also need to

define W as the diagonal part of S|ξ〉〈ξ|S. For this to be valid, we must show that we can compute

β as a function of Zn+1 by the expression Tr(Zn+1W) for every Zn+1 consistent with the original

requirements. If these two conditions are satisfied, though, then the lemma tells us that

β = 2 |〈ξ|SE1|ξ〉|2 , (5.44)

where we used the fact that both S and E1 are diagonal in the computational basis.

We begin by analyzing as an example the case of n = 3 depicted in Fig. 5.2. Define ei = 〈i|E1|i〉,
which takes the values zero or one. Similarly, let si = 〈i|S|i〉. We construct S so that

s0 = s1 = σ0σ0L, (5.45)

s2 = s3 = σ0σ0R, (5.46)

s4 = s5 = σ1σ1L, (5.47)

s6 = s7 = σ1σ1R. (5.48)

The factors σ0, σ0L and σ0R should be thought of as being associated with the left max node. The

first one is a normalization factor, and the other two will be used to balance the values of the left

and right descendants. Similarly, the other three variables are associated with the right max node.

To satisfy the first constraint, we set Zn+1 = S−1E1, or equivalently, xi = s−1
i ei. Note that the

ei factor will force the appropriate xi variables to be zero. We focus on the left max node. The

value entering through the left descendant is

a3x0 + (1 − a3)x1 =
a3e0 + (1 − a3)e1

σ0σ0L
, (5.49)

123

whereas entering on the right side is

a3x2 + (1 − a3)x3 =
a3e2 + (1 − a3)e3

σ0σ0R
. (5.50)

For the two values to be equal, we can choose σ0L = a3e0 + (1− a3)e1 and σ0R = a3e2 + (1− a3)e3.

Similarly, the constraint at the other max node can be met by choosing σ1L = a3e4 +(1− a3)e5 and

σ1R = a3e6 + (1 − a3)e7.

Now we need to check the constraint on W = diag(S|ξ〉〈ξ|S). Now Tr(Zn+1W) can be described

as the Max-Sum tree in Fig. 5.2, with the max nodes replaced by sums. Focusing again on the left

max node, it adds a2σ
2
0σ

2
0L of its left descendant plus (1 − a2)σ

2
0σ

2
0R of the right descendant. We

need these quantities to sum to one, and therefore σ0 = [a2σ
2
0L + (1 − a2)σ

2
0R]−1/2. Similarly, we

choose σ1 = [a2σ
2
1L + (1 − a2)σ

2
1R]−1/2 to normalize the sum replacing the right max node.

Now we can finally evaluate β = 2 |〈ξ|SE1|ξ〉|2. This can also be represented by a tree similar to

the one in Fig. 5.2, with the max nodes replaced by different sums as follows: the left max evaluates

to a2σ0σ0L times the input from the left plus (1− a2)σ0σ0R times the right input. But the left and

right inputs are respectively equal to a3e0 + (1 − a3)e1 = σ0L and a3e2 + (1 − a3)e3 = σ0R, so the

node evaluates to

a2σ0σ
2
0L + (1 − a2)σ0σ

2
0R =

√
a2σ2

0L + (1 − a2)σ2
0R, (5.51)

which can be though of as the weighted root mean square of the values of the two descendant nodes.

The same thing happens at the right max node. The complete expression then becomes

β = 2

{
a1

√
a2 [a3e0 + (1 − a3)e1]

2
+ (1 − a2) [a3e2 + (1 − a3)e3]

2

+(1 − a1)

√
a2 [a3e4 + (1 − a3)e5]

2
+ (1 − a2) [a3e6 + (1 − a3)e7]

2

}2

= 2

{
a1

√
a2a2

3 + (1 − a2) + (1 − a1)a3

}2

. (5.52)

The above has the shorthand notation given by

β = 2 (Tra1
RMSa2

Tra3
E1)

2
(5.53)

where we define RMSai
only on diagonal matrices, as a weighted root mean square of eigenvalues

whose basis vectors differ only on qubit i. This is in the same spirit as Trai
, which does a regular

weighted average.

For completeness, we also give the expression for α when n = 3, which can be obtained from the

124

formulas derived below:

α = 2(1 − a3)
(
a1a

2
2 + (1 − a1)

)
. (5.54)

The general case is almost identical. Consider the original Sum-Max tree for a given odd n. Let

M be the set of max nodes of the original tree, that is, the set of binary nodes with odd depth (where

we define the depth of the root node as zero). For each µ ∈ M we introduce three variables: σµ, σµL

and σµR, which are to be associated with the corresponding max node. We define the components

of S in terms of these variables as follows: the value of sj , which is to be associated with leaf j, is

given as the product of σµσµL for every node µ of which j is a left descendant, times the product of

σµσµR for every node µ of which j is a right descendant.

The conditions on W are always satisfied by choosing σµ = [aµσ
2
µL + (1 − aµ)σ2

µR]−1/2 for

every µ ∈ M, where in a slight abuse of notation aµ is the parameter associated with µ (i.e.,

aµ = ad(µ)+1, where d(µ) is the depth of node µ). The next condition that needs to be checked

is that, when the diagonal entries of S−1E1 are placed on the leaves of the original tree, the left

and right descendants of each max node must be equal. We shall choose the values of σµL and

σµR in order to guarantee this, in a process that begins at the lower nodes and proceeds upwards.

At the lowest level they are chosen so that σµL = aneµLL + (1 − an)eµLR, where eµLL and eµLR

are respectively the left and right leaf values under the left child of node µ. Similarly, we also set

σµR = aneµRL + (1 − an)eµRR, in terms of the leaves under the right leg of node µ. Having made

such a choice, the value of node µ in the Sum-Max tree equals σ−1
µ (up to multiplication by σ factors

from higher nodes). For every other µ ∈ M that is not associated with the lowest level max nodes,

we set σµL = ad(µ)+2σ
−1
µ′ + (1 − ad(µ)+2)σ

−1
µ′′ , where µ′ and µ′′ are respectively the left and right

max nodes located under the left leg of max node µ. With an equivalent choice for σµR, the value

entering either leg of max node µ will be σ−1
µ (up to σ factors from higher nodes) and the second

condition will be satisfied.

Finally we need to evaluate 〈ξ|SE1|ξ〉. Once again this is to be done as a tree, with binary nodes

corresponding to sums. The factors of σµ, σµL and σµR can be moved up the tree so that the node

µ becomes the weighted sum of aµσµσµL times the left descendant plus (1 − aµ)σµσµR times the

right descendant. All that remains on the leaves are the zero or one values of E1. The tree can be

evaluated recursively from the bottom up, in which case it is easy to see that the value of a non-root

binary node outside of M (i.e., one of the original sum nodes), is equal to either σµL or σµR, where

µ denotes its parent node, depending on whether it is a left or right descendant, respectively. On

the other hand, for µ ∈ M, node µ has value aµσµσ
2
µL + (1 − aµ)σµσ

2
µR = σ−1

µ . The root node

(which originally was a sum node) has value a1σ
−1
µ′ + (1− a1)σ

−1
µ′′ , where µ′ and µ′′ are respectively

its left and right descendants. The square of this quantity multiplied by two is the the value of our

125

upper bound, which can be expanded using the definitions for the σ variables to obtain:

β = 2 (Tra1
RMSa2

Tra3
RMSa4

· · ·Tran
E1)

2
, (5.55)

valid only for n odd, to which the above discussion was restricted. Though the case of even n can

also be found similarly, it can be obtained from the above formula by the following observation:

the protocol with n steps and constants a1, . . . , an is equivalent to the protocol with n + 1 steps

and constants a′1, . . . , a
′
n+1 with a′n+1 = 0 and a′i = ai for all 1 ≤ i ≤ n. Furthermore, if E1 is the

projector associated with the n step protocol, and E ′
1 is the projector associated with the n+1 step

protocol, the two matrices are related by Tran+1=0E
′
1 = RMSan+1=0

E′
1 = E1. Therefore, for even n

we have

β = 2 (Tra1
RMSa2

Tra3
RMSa4

· · ·RMSan
E1)

2
. (5.56)

All that remains is to analyze the case where Bob is honest and Alice is cheating. Though this

could be analyzed using the methods presented in this section, we can exploit further symmetries of

the protocols to obtain the result. In particular, the protocol with n steps and constants a1, . . . , an

is equivalent to the protocol with n+ 1 steps and constants a′1, . . . , a
′
n+1 with a′1 = 1, a′i+1 = ai for

all 1 ≤ i ≤ n, and Alice’s and Bob’s roles switched. Furthermore, if E0 is a projector associated

with the n message protocol, and E ′
1 the projector associated with the n+ 1 step protocol, the two

matrices are related by Tra1=1E
′
1 = E0. We also need to use the fact that Tra1=1 commutes through

all the RMS operators because it is a projector onto a subspace rather than a trace. Combining all

the results, we have proven the following theorem:

Theorem 11. In the protocol described in Sec. 5.1, Alice’s and Bob’s ability to win by cheating are

upper bounded by

P ∗
A ≤ α = 2 (RMSa1

Tra2
RMSa3

Tra4
· · ·Tran

E0)
2
,

P ∗
B ≤ β = 2 (Tra1

RMSa2
Tra3

RMSa4
· · ·RMSan

E1)
2
,

when n is even, and by

P ∗
A ≤ α = 2 (RMSa1

Tra2
RMSa3

Tra4
· · ·RMSan

E0)
2

P ∗
B ≤ β = 2 (Tra1

RMSa2
Tra3

RMSa4
· · ·Tran

E1)
2
,

when n is odd.

Note that all the above formulas are valid only when the parameters a1, . . . , an are chosen so

126

that the honest probability of winning is 1/2. This is the source of the factor of 2 appearing in front

of the expressions, which could be replaced by one over the honest probability of winning for more

general scenarios.

In fact, the above formulas are even more general, as they apply to any choice of {E0, E1} as

long as they are diagonal projectors. In such a case, the symmetries that were used above are no

longer valid, but direct computations should lead to the same formulas. Such a computation will be

carried out in the next chapter.

5.4 Choosing a1, . . . , an

Recall that any choice of parameters a1, . . . , an subject to the constraint 〈ψ|Ei⊗Ei|ψ〉 = 1
2 describes

a valid quantum weak coin-flipping protocol. Furthermore, we have an analytic upper bound on the

bias given by

ε ≤ max (α, β) − 1

2
, (5.57)

expressed as a function of these parameters. Now we need to chose values for the parameters, which

ideally should be selected to produce a bias as small as possible.

Because the expressions for α and β are complicated, we shall employ numerical minimization to

find optimal values for the parameters for certain small values of n. The values obtained will prove

the existence of protocols with the quoted biases.

Fortunately, the quality of the minimization does not need to be verified. For example, it would

be perfectly acceptable if rather than finding the true minimum, we only found a local minimum,

or even if the outputted parameters did not constitute a minimum at all. All that is needed is

for the parameters to satisfy the constraint and produce the quoted bias when substituted into the

expressions for α and β.

Note there is an issue with the constraint because it can only be satisfied to the accuracy with

which the parameters are specified. That is, when the parameters are described to finite accuracy,

the coin will not be exactly fair when both players are honest. Of course, this is to be expected

for any practical implementation of the protocol. However, we also claim that from a theoretical

perspective, there are parameters close to the ones quoted that satisfy the constraint exactly and

produce protocols with a bias equal to the quoted numbers to the given accuracy.

In addition to the constraint 〈ψ|Ei ⊗ Ei|ψ〉 = 1
2 , the minimizations were carried out with the

constraint α = β. For n = 3, we find α = β ' 0.69905 at a1 = 0.74094, a2 = 0.479696 and

a3 = 0.186312. Though strictly speaking we should write that there exists a protocol with n = 3

and ε ≤ 0.1991, for simplicity we will write ε = 0.199, which is understood to be correct only up to

127

the given accuracy.

Though so far we have only derived an upper bound on the bias, it is fair to claim that there

exist protocols with a bias equal to the upper bound because protocols can always be weakened. For

example, in the first round with some probability Alice decides to let Bob determine the outcome

of the coin, otherwise, with some probability Bob decides to let Alice determine the coin outcome

and, if none of these events take place, then the protocol is started normally.

Continuing with the analysis of small n, we find: for n = 4 we get ε ' 0.1957, for n = 6 we

get ε ' 0.1937, for n = 8 we get ε ' 0.1931, and for n = 10 we get ε ' 0.1927. For completeness,

we list the values used for n = 8: a1 = 0.680706, a2 = 0.43281, a3 = 0.323787, a4 = 0.264123,

a5 = 0.224377, a6 = 0.197997, a7 = 0.177191 and a8 = 0.0834815.

To analyze larger values of n one needs to change the exponential formulas for α and β into

expressions that can be computed in a time linear in n. This can be done because of the special

structure of our choice of {E0, E1}. Because the construction is not central to the claims of this

chapter, we shall only sketch the proof.

The expression Tra1
RMSa2

· · ·Tran
E1 can be computed using a tree, with binary nodes alter-

nating between weighted sums and weighted root mean square. The leaves at the lowest level take

only the two values zero and one, which should be thought of as a high value and a low value.

Entering into the lowest sum nodes are only two possibilities: both entries are the high value, or

the left descendant is high and the right one low. Therefore, if we assign values to the sum nodes

they will only take on two values, a high value (equal to the previous high value) and a low value

(equal to the weighted sum anHigh + (1 − an)Low). Entering into the next level RMS node there

are also only two possibilities: two low values, or a high (from the right) and a low (from the left).

This structure repeats all the way up to the root node, which is computed as the weighted sum of

the high and low of the previous node. The original expression can therefore be calculated from

a sequence of pairs of values, which depend only on the previous pair of the sequence (a precise

formulation will be given in the next section). The value of the constraint can also be computed in

a similar way by replacing the weighted root mean square average with a weighted linear average.

Using these linear time formulas, it is possible to compute α and β for large values of n given a

specific functional form for ak as a function of k ≤ n. A theoretically pleasant, though non-optimal

choice, is ak = 1/k for n even. Recall that {E0, E1} can be described by the process whereby the

qubits are examined starting from qubit n to qubit 1, and the first zero that is found determines

the winner. With ak = 1/k, the probability that qubit k needs to be examined is k/n, and therefore

each qubit determines the outcome with a probability of 1/n. The problem with this choice is that

Bob’s probability of winning given that qubit k needs to be examined keeps oscillating between 1/2

and numbers greater than 1/2. That is why for ak = 1/k, Bob has the ability to cheat a lot, whereas

Alice is more restricted. With some work, the problem could be fixed by adjusting the values of ak

128

1000 2000 3000 4000 5000

0.6915

0.692

0.6925

0.693

Figure 5.4: Plot of the bounds on cheating as a function of n, for parameters ak = 1/k. The solid
line corresponds to β and dotted line to α. These bounds are only valid for even n.

for k ∼ 1 and k ∼ n.

The values of α and β as a function of even n for ak = 1/k have been plotted in Fig. 5.4. The

upper solid line corresponds to β and the lower dotted line to α. For odd n we would have to use

ak = 1/(k + 1) to satisfy the constraint, and this would switch the values of α and β.

For large n, the graphs converge towards 0.6922, or a bias of ε = 0.1922. The same behavior

occurs with many other reasonable choices for ak as a function of k.

5.5 0.192 revisited

In this section we shall derive an analytical expression that corresponds to the bias of 0.192, that is,

the bias of the protocol obtained in the n → ∞ limit. Since the protocol with bias 0.192 has been

superseded by the results in the next chapter, we shall only sketch the proof. Nonetheless, we hope

that the techniques used in deriving this expression, which are rather different than the approach

taken in the rest of the thesis, will be of use in some future applications.

As discussed above, the expression for the bias given a set of variables a1, . . . , an can be computed

using the following sequences: set Hn = 1 and Ln = 0 and define

Hk =
√
ak+1L2

k+1 + (1 − ak+1)H2
k+1, (5.58)

Lk = Lk+1, (5.59)

for even k ≥ 0, and

Hk = Hk+1, (5.60)

Lk = ak+1Hk+1 + (1 − ak+1)Lk+1, (5.61)

129

for odd k ≥ 0. The value of P ∗
A is then given by 2H2

0 , as long as the variables ai satisfy the fair coin

constraint.

The sequence is defined so that H decreases and L increases with decreasing k. At every step

the condition 1 ≥ Hk ≥ Lk ≥ 0 holds. For good choices of ak the two sequences will approach each

other and H0 will be close to L0.

A good sequence of parameters will also have ak small for large k. For k small, ak can be larger

as long as ak(Hk − Lk) remains small. In such a case, we can use the expansion

Hk ' Hk+1 − ak+1

H2
k+1 − L2

k+1

2Hk+1
, (5.62)

for even k.

Furthermore, if ak is slowly varying, we can replace it with a continuous function a(k), and the

above computation can be approximated by the coupled differential equations

dH

dk
=

a(k)

2

H2 − L2

2H
, (5.63)

dL

dk
= −a(k)

2
(H − L), (5.64)

where now H and L are treated as functions of the continuous variable k ∈ [0, n]. An extra factor of

1/2 was picked up on the right hand side of the above equations because H and L only get updated

every other integer in the discrete sequence.

Of course, we are only concerned with the convergence point where H ' L. In the limit n→ ∞,

and for appropriate a(k), the two expressions will converge to the same point H0 = L0. To study

the convergence point we can study H as a function of L, which satisfies the differential equation

dH

dL
= −H + L

2H
. (5.65)

Surprisingly, the function a(k) drops out of the above expression, which means it only controls the

rate of convergence but not the final point of convergence (assuming it satisfies the requirements

discussed above).

The differential equation is invariant under simultaneous rescaling of H and L, and therefore

becomes separable under the change of variables H → H/L. Its solutions have the form

log

(
H2 +

1

2
LH +

1

2
L2

)
+

2√
7

arctan

√
7L

4H + L
= const. (5.66)

The initial condition for the differential equation is H(L = 0) = 1, which corresponds to the

initial starting point when k → ∞. Applying the initial condition we obtain const = 0. We are

130

interested in the point where H and L converge, that is, the value L0 such that H(L0) = L0:

log 2L2
0 = − 2√

7
arctan

√
7

5
. (5.67)

From this value we can obtain P ∗
A = 2H2

0 = 2L2
0. When ak varies slowly enough and meets the other

requirements above, it also produces a protocol that is arbitrarily close to being symmetric between

Alice and Bob. This guarantees that the fair coin constraint is satisfied and that P ∗
B = P ∗

A, hence

P ∗
A = P ∗

B = Exp

[
− 2√

7
arctan

√
7

5

]

' 0.692181687, (5.68)

which corresponds to the bias ε ' 0.192 found numerically.

131

Chapter 6

A large family of quantum weak

coin-flipping protocols

The purpose of this chapter is to define and study a large family of protocols for quantum weak

coin-flipping that are based on classical public-coin coin-flipping protocols. The family will contain

all protocols discussed in the previous chapter. In particular, we will prove that the optimal protocol

in this family has a bias of 1/6, though such a bias can only be reached in the limit of arbitrarily

large number of messages. Because our lower bound analysis is constructive, we shall give explicit

descriptions of protocols with biases that are arbitrarily close to 1/6.

Note that whereas the usual definition of coin-flipping requires the final bit output by Alice and

Bob to be uniformly random when both are honest, in this chapter we shall consider a slightly more

general scenario. Let PA be Alice’s probability of winning when both Alice and Bob play honestly,

and let PB be Bob’s probability of winning when both play honestly. In this chapter we shall allow

any value of PA ∈ [0, 1], with PB = 1 − PA, rather than the usual case of PA = PB = 1/2.

The chapter is organized as follows: Sec. 6.1 describes some of our notation concerning tree

variables and will introduce the theorem relating classical coin games to quantum protocols for weak

coin-flipping. Then in Sec. 6.2 we shall prove the theorem, while giving a more explicit description

of the protocols themselves. Much of the work needed is simply a generalization of the results of the

previous chapter.

The main new results of this chapter are the proof of lower bounds for the bias in Sec. 6.3 and

the description of matching protocols in Sec. 6.4. These sections will identify the parameters needed

to construct a quantum weak coin-flipping protocol with bias 1/6.

6.1 Notation

Throughout this chapter we shall make ample use of binary trees. All trees henceforth will be

composed exclusively of binary nodes and leaves, and the leaves will all be located at the same

132

Gr

G0 G1

G00 G01 G10 G11

G000 G001 G010 G011 G100 G101 G110 G111

Figure 6.1: A depth 3 binary tree.

depth.

The nodes of a tree will be labeled by binary strings so that the leftmost node at depth k gets

labeled by k zeroes, and the rest will equal one plus the binary value of the node to their left (keeping

the number of digits constant). The root node will be denoted by the letter r, which will behave

as the empty string so that x = r implies x0 = 0 and x1 = 1. With these conventions the left

descendant of node x is x0, and the right descendant is x1. We define |x| as the length of the binary

string x, which also corresponds to the depth of node x.

In this chapter we shall use calligraphic fonts, such as G, to denote an assignment of a number

or expression to each node of a binary tree. Given an assignment G, the value of node x will be Gx.

Most of our notation is summarized by Fig. (6.1). Note that, though we shall always be working

with trees of fixed finite depth, we shall usually leave the depth implicit.

We define an n-Coin-Game as an assignment G to a depth n binary tree such that Gx ∈ [0, 1]

for all x and Gx ∈ {0, 1} for all leaves (i.e., for all x such that |x| = n). To each n-Coin-Game, G,

we can associate a classical n-message public-coin coin-flipping protocol as follows: the state of the

protocol at each step will be described by a node in the tree, and this information will be kept by

both Alice and Bob. The game begins at the root node and proceeds downward until reaching a

leaf node. If the current node x is a binary node of even depth, then Alice chooses which path to

follow and announces the choice to Bob. This is done probabilistically, by announcing the outcome

of a public coin with bias Gx, so that Alice chooses the left path with probability Gx and the right

path with probability 1−Gx. The same mechanism occurs at odd binary nodes, except that Bob is

responsible for choosing the direction and announcing it to Alice. The game ends when arriving at

a leaf node x, in which case Alice wins if Gx = 0 and Bob wins if Gx = 1.

Note that we do not require that the coin-flip be fair when both Alice and Bob are honest. Given

133

an n-Coin-Game G, we can define H on a tree of the same depth by the equations:

Hx =

Gx if |x| = n,

GxHx0 + (1 − Gx)Hx1 if |x| < n.

(6.1)

The value of Hx indicates the conditional probability that Bob would win given that the game

arrived at node x, assuming both players play honestly. The value of Hr is Bob’s probability of

winning for an honest game, which is clearly bounded between 0 and 1.

For each n-Coin-Game G, we also define A and B on a tree of the same depth by the equations:

Ax =

1 − Gx for |x| = n,

GxA2
x0 + (1 − Gx)A2

x1 |x| even, |x| < n,

Gx

√
Ax0 + (1 − Gx)

√
Ax1 |x| odd, |x| < n,

Bx =

Gx for |x| = n,

Gx

√
Bx0 + (1 − Gx)

√
Bx1 |x| even, |x| < n,

GxB2
x0 + (1 − Gx)B2

x1 |x| odd, |x| < n.

(6.2)

The importance of these quantities is given by the following theorem:

Theorem 12. For each n-Coin-Game, G, there exists an (n+1)-message quantum weak coin-flipping

protocol such that

PAP
∗
A = Ar, (6.3)

PBP
∗
B = B2

r , (6.4)

and the honest probabilities of winning are

PA = (1 − PB) = (1 −Hr), (6.5)

where A, B and H are defined in terms of G by Eqs. (6.1,6.2).

6.2 The protocol

The purpose of this section is to describe the (n+ 1)-message quantum weak coin-flipping protocol

associated to each n-Coin-Game. For each protocol we shall also derive matching upper and lower

bounds on the amount that each party can cheat and thereby prove Theorem 12.

All the general ideas needed in this section have appeared in the previous chapter, though in a

134

somewhat different notation. The new elements needed here are

1. Chap. 5 was restricted to n-Game-Trees where all the binary nodes at the same depth had the

same value (i.e, Gx = Gx′ if |x| = |x′| < n). These variables were given the name ai so that

Gx = a|x|+1. In this section we lift the restriction and consider general n-Game-Trees.

2. An upper bound on P ∗
A and P ∗

B was derived in Chap. 5 but was not proven optimal. In this

section we shall derive a matching lower bound.

Because most of the key ideas here have been discussed in the previous chapter, we shall simply

prove the necessary facts in this section without providing the intuition or motivation behind the

constructions.

We begin by fixing an n-Coin-Game G, which will be used throughout this section. We also fix

H, A and B as given by Eqs. (6.1,6.2). Because optimal protocols with Hr = 0 and Hr = 1 are easy

to construct even classically, for what follows we shall assume that 0 < Hr < 1.

To describe the quantum protocol associated with G we employ the standard quantum com-

munication model involving the Hilbert space decomposition HA ⊗HM ⊗HB , where HA is Alice’s

private space, HB is Bob’s private space, and HM is the space used for passing messages. We further

subdivide these spaces as follows:

HA = Ha ⊗Ha′ ⊗Hac, (6.6)

HB = Hb ⊗Hb′ ⊗Hbc, (6.7)

HM = Hm ⊗Hmn. (6.8)

The spaces Ha and Hb each consists of n qubits and will be used to store a binary string x cor-

responding to a node in G. The individual qubits comprising each space will be referred to as a1

through an and b1 though bn, respectively. The one-qubit space Hm will be the primary means of

communication between Alice and Bob, and will be referred to as qubit m.

The rest of the spaces will only be used in the last pair of messages. The spaces Ha′ , Hb′ and

Hmn each involve n qubits whereas Hac and Hbc each contain one qubit.

Before describing the protocol we need to define a set of unitaries on HA ⊗HM . We begin with

the controlled rotations RA,k defined for k = 1, . . . , n by

RA,k =
∑

x
|x|=k−1

|x〉〈x|a1,...,ak−1
⊗ U(Gx)ak,m, (6.9)

135

where

U(z) =

√
z 0 0 −

√
1 − z

0
√
z −

√
1 − z 0

0
√

1 − z
√
z 0

√
1 − z 0 0

√
z

. (6.10)

The subscripts on the operators and matrices indicate what qubits they act on, and RA,k acts

trivially on all qubits of HA ⊗HM not explicitly mentioned. For the case k = 1 the operator is not

a controlled rotation but rather a regular rotation using parameter Gr.

We shall also need the controlled rotation

RA,E =
∑

x
|x|=n

|x〉〈x|a1,...,an
⊗

1 − Gx −Gx

Gx 1 − Gx

ac

, (6.11)

which is unitary because Gx ∈ {0, 1} for |x| = n. The gate is simply a controlled-X applied to the

qubit in space Hac, where the control depends on a function of the qubits in Ha. Note that RA,E

can also be defined as an operator acting purely on HA rather than HA ⊗HM .

Finally, define SA,k for k = 1, . . . , n to swap qubit ak with qubit m:

SA,k = SWAP(ak,m). (6.12)

We also need TA,0, which swaps Ha with Hmn conditioned on qubit ac being zero, and TA,1, which

swaps the space Ha′ with the space Hnm, conditioned on qubit ac being one:

TA,0 = |0〉〈0|ac ⊗ SWAP(Ha, Hmn) + |1〉〈1|ac ⊗ I, (6.13)

TA,1 = |1〉〈1|ac ⊗ SWAP(Hmn, Ha′) + |0〉〈0|ac ⊗ I. (6.14)

The first one is used to send the qubits in Ha when Alice wins, whereas the second one is used to

receive Bob’s qubits and put them in Ha′ when Alice loses.

All the above operators act on Alice’s Hilbert space. We can similarly define the operators

RB,k, RB,E , SB,k acting in the same way on Bob’s qubits. The operator TB,0 however has to be

defined to swap Hb′ with Hmn conditioned on qubit bc being zero, whereas TB,1 swaps Hb with Hmn

conditioned on qubit bc being one.

136

To characterize the final measurements it is useful to define the probability tree P by

Px =

1 if x = r,

GyPy if x = y0,

(1 − Gy)Py if x = y1.

(6.15)

That is, Px is the probability of reaching node x when the classical coin-flipping game associated

with G is played honestly. We can now define the two normalized states

|ψA,1〉 =
1√
Hr

∑

x
|x|=n
Gx=1

√
Px|x〉Ha

⊗ |x〉Ha′
⊗ |1〉Hac

,

|ψB,0〉 =
1√

1 −Hr

∑

x
|x|=n
Gx=0

√
Px|x〉Hb

⊗ |x〉Hb′
⊗ |0〉Hbc

.

(6.16)

The normalization is correct because Hr is the probability of arriving at a leaf x such that Gx = 1,

whereas 1 −Hr is the probability of arriving at a leaf with Gx = 0. We are now ready to describe

the main protocol.

Protocol 1. Given an n-Coin-Game, G, and the associated operators described above, define a

quantum weak coin-flipping protocol by the following steps:

1. Setup: Alice starts with HA ⊗HM and Bob with HB. They each initialize their space to the

state |0〉.

2. First n messages. For k = 1 to n:

• If k is odd, Alice applies RA,k and sends HM to Bob who applies SB,k.

• If k is even, Bob applies RB,k and sends HM to Alice who applies SA,k.

3. Alice applies RA,E to HA and Bob applies RB,E to HB. No messages are needed for this step.

4. If Bob has HM he sends it to Alice.

5. Alice applies TA,0 and sends HM to Bob who applies TB,0.

6. Bob applies TB,1 and sends HM to Alice who applies TA,1.

7. Alice measures using the two outcome POVM {I − |ψA,1〉〈ψA,1|, |ψA,1〉〈ψA,1|}. Bob measures

the two outcome POVM {|ψB,0〉〈ψB,0|, I − |ψB,0〉〈ψB,0|}. They each output zero for the first

outcome and one for the second.

137

The basic intuition behind the protocol is that the first three steps above is a quantum imple-

mentation of the classical public-coin coin-flipping protocol associated with G described in Sec. 6.1.

After k messages the first k bits of HA contain a length k string indicating the depth k node at

which we are currently located. The quantum amplitude associated with each such state is
√
Px.

Step 3 is a unitary realization of the measurement that looks at the n bit string x corresponding to

a leaf and stores the classical coin outcome in the qubit associated with Hac for Alice and Hbc for

Bob.

The rest of the steps involve cheat detection. Effectively, the winner declares victory immediately

and then sends as much of their state as possible to the other party. The losing party then checks

that the state is correct before accepting defeat.

Note that, as written, the above protocol takes either n + 2 or n + 3 messages. However, it is

easy to see that the protocol can be run with only n+ 1 messages. For starters, only the space Hm

needs to be sent back and forth in step 2, whereas only Hmn is used in steps 5 and 6. If we allow

such a splitting, Alice starts with Hmn and step 4 is never needed. This reduces the protocol to

n + 2 messages always. But if n is odd then Alice ends up sending two messages in a row. The

two messages can be combined into a single longer message and therefore the protocol only requires

n + 1 messages. We will also argue below that steps 5 and 6 can be interchanged, in which case

when n is even Bob sends two messages in a row, and their merger leads again to a protocol with

only n+ 1 messages.

We turn to the task of describing the evolution of the game when both players are honest.

The action of RA,k entangles qubit ak with qubit m, whereas SB,k swaps qubit m with bk. Their

combined effect is the transformation

√
Px|x〉a1,...,ak−1

⊗ |0〉ak
⊗ |0〉bk

−→
√
Px0|x〉a1,...,ak−1

⊗ |0〉ak
⊗ |0〉bk

+
√
Px1|x〉a1,...,ak−1

⊗ |1〉ak
⊗ |1〉bk

. (6.17)

The same effect occurs on even rounds when Alice’s and Bob’s actions are reversed. Therefore, the

state after the first k passes through step 2 is given by

|ψk〉 =
∑

x
|x|=k

√
Px|x0 · · · 0〉Ha

⊗ |0〉Ha′⊗Hac
⊗ |x0 · · · 0〉Hb

⊗ |0〉Hb′⊗Hbc
⊗ |0〉HM

, (6.18)

where there are n− k zeroes following each x.

Step 3 simply has the effect of setting up the fair coin outcome in Hac and Hbc:

|ψE〉 =
∑

x
|x|=n

√
Px|x〉Ha

⊗ |0〉Ha′
⊗ |Gx〉Hac

⊗ |x〉Hb
⊗ |0〉Hb′

⊗ |Gx〉Hbc
⊗ |0〉HM

. (6.19)

138

Finally, when both players are honest, step 5 has the effect of moving Ha to Hb′ conditioned on

qubits ac and bc both being one. Step 6 has the effect of swapping Hb to Ha′ conditioned on ac and

bc being both zero. The final state of the protocol is therefore:

|ψF 〉 =
∑

x
|x|=n
Gx=1

√
Px|x〉Ha

⊗ |x〉Ha′
⊗ |1〉Hac

⊗ |0〉Hb
⊗ |0〉Hb′

⊗ |1〉Hbc
⊗ |0〉HM

(6.20)

+
∑

x
|x|=n
Gx=0

√
Px|0〉Ha

⊗ |0〉Ha′
⊗ |0〉Hac

⊗ |x〉Hb
⊗ |x〉Hb′

⊗ |0〉Hbc
⊗ |0〉HM

=
√
Hr|ψA,1〉 ⊗ |0〉Hb⊗Hb′

⊗ |1〉Hbc
⊗ |0〉HM

+
√

1 −Hr|0〉Ha⊗Ha′
⊗ |0〉Hac

⊗ |ψB,0〉 ⊗ |0〉HM
.

Because |ψA,1〉 is orthogonal to any state with the value zero in register Hac and |ψB,1〉 is

orthogonal to any state with the value one in register Hbc, there are only two possible outcomes for

the final measurements:

• Alice obtains I − |ψA,1〉〈ψA,1| and Bob obtains |ψB,0〉〈ψB,0| in which case they both output

zero, that is, Alice wins. This happens with probability 1 −Hr.

• Alice obtains |ψA,1〉〈ψA,1| and Bob obtains I − |ψB,0〉〈ψB,0| in which case they both output

one, that is, Bob wins. This happens with probability Hr.

We have therefore proven the following lemma:

Lemma 13. When playing Protocol 1 honestly, Alice’s and Bob’s outputs are perfectly correlated

and satisfy

PA = 1 −Hr, PB = Hr. (6.21)

6.2.1 Reformulation as an SDP

We now turn to the analysis of the advantage that a cheating player can attain. Specifically, we

shall focus on the case of honest Alice and cheating Bob. The case where Alice is cheating is fairly

similar and will be derived at the end of the section from the case of cheating Bob.

When Bob is cheating we don’t know exactly what operations (unitaries, measurements or su-

peroperators) he may be applying to his qubits. In fact, we don’t even know how many qubits

he may have in his laboratory. We shall therefore focus only on the evolution of the qubits under

Alice’s control. This approach, first advocated by Kitaev [Kit03], will transform the maximization

over Bob’s cheating strategies into a semidefinite program (SDP).

139

Let ρ0 be the initial state of all qubits under Alice’s control, that is, it is a density operator on

HA ⊗HM . Let ρ1, . . . , ρn be the state of the qubits under Alice’s control after each of the n passes

through step 2. Note that ρk is a density operator for HA when k is odd and for HA ⊗HM when

k is even. Finally let ρE be the state of HA ⊗HM at the end of step 4 and let ρF be the state of

HA ⊗HM at the end of step 6.

Because Alice initializes her own qubits as prescribed by the protocol without interference from

Bob, their initial state is given by

ρ0 = |0〉〈0|HA⊗HM
. (6.22)

For odd k, Alice first applies the unitary RA,k and then sends HM to Bob, leaving the state

ρk = TrM

[
RA,k ρk−1R

−1
A,k

]
(for k odd). (6.23)

For even k, we can’t fully characterize ρk in terms of ρk−1 but we know that given ρk, if we undo

the swap SA,k and then send back HM we must end up with ρk−1, therefore

TrM

[
S−1

A,k ρkSA,k

]
= ρk−1 (for k even). (6.24)

Step 3 only involved the use of RA,E , a unitary on HA. Step 4, the recovery of HM , is only

needed when n is odd. Therefore,

ρE = RA,E ρnR
−1
A,E for n even, (6.25)

TrM ρE = RA,E ρnR
−1
A,E for n odd. (6.26)

Finally, the state of the qubits on HA after applying TA,0 to ρE must equal the state ρF if we

undo TA,1 (because as usual, Bob has no effect on Alice’s qubits):

TrM

[
T−1

A,1 ρFTA,1

]
= TrM

[
TA,0 ρET

−1
A,0

]
. (6.27)

The probability that Bob wins is given by the final measurement

Tr [|ψA,1〉〈ψA,1| ρF] , (6.28)

where it is understood that |ψA,1〉〈ψA,1| can be extended to an operator on HA ⊗HM by tensoring

with the identity IM .

The preceding arguments show that no matter what cheating strategy Bob employs, the sequence

of states for Alice’s qubits must satisfy the above equations, and therefore P ∗
B is upper bounded by

140

the maximum of Eq. (6.28) over all assignments to the variables ρ0, . . . , ρn, ρE , ρF consistent with

the above equations. It is also not hard to see that Bob can achieve any set of density matrices

consistent with the above equations by maintaining the purification of Alice’s state. As this reduction

from maximization over cheating strategies to SDP has already appeared both in the literature

[Kit03, ABDR04] and in the previous chapter, we won’t belabor the point and simply state the

lemma we have proven:

Lemma 14. The maximum probability with which Bob can win by cheating in Protocol 1 is given

by the solution of the SDP:

P ∗
B = max Tr [|ψA,1〉〈ψA,1| ρF] , (6.29)

over the positive semidefinite variables ρ0, . . . , ρn, ρE, ρF subject to the constraints of Eqs. (6.22–

6.27).

The security of the above result depends solely on the laws of quantum mechanics and the

assumption that Bob cannot directly influence the qubits in Alice’s laboratory. We note that we are

assuming, as is usual in coin-flipping protocols, that Alice can measure the size of the Hilbert space

HM (i.e., the number of qubits sent by Bob in each message) and that if at any point she receives

more or less than the required number of qubits she aborts the protocol and declares herself the

winner. The optimal strategy for Bob involves sending the right number of qubits in each message

and therefore is described by the above formalism.

It will be important below to know that we can exchange steps 5 and 6. This would work as

follows: given ρE we send HM to Bob, who is supposed to apply TB,1 to his qubits. Upon return,

Alice applies TA,1 followed by TA,0 ending up with state ρ′F satisfying

TrM

[
T−1

A,1T
−1
A,0 ρ

′
FTA,0TA,1

]
= TrM [ρE] . (6.30)

The final measurement can be done immediately before sending HM to Bob because it only has

support on HA. The probability of Bob winning is

Tr [|ψA,1〉〈ψA,1| ρ′F] . (6.31)

However, |ψA,1〉 only has support on the space where qubit ac is one, and in this subspace TA,0

acts trivially (and TA,0 and TA,1 commute). Applying projectors to both sides of the Eq. (6.27) and

Eq. (6.30) we see that both SDPs are equivalent, and therefore steps 5 and 6 are interchangeable,

at least from the perspective of honest Alice.

141

6.2.2 Lower bounds

To find a lower bound on P ∗
B we shall describe a specific assignment of the variables ρ that satisfies

the above equations and from it calculate Tr [|ψA,1〉〈ψA,1| ρF]. Because P ∗
B is a maximum over such

assignments, this will serve as a lower bound.

Let

ρk =

σk ⊗ |0〉〈0|ak+1,...,an
⊗ |0〉〈0|Ha′⊗Hac

k odd

σk ⊗ |0〉〈0|ak+1,...,an
⊗ |0〉〈0|Ha′⊗Hac⊗HM

k even

(6.32)

where σk is a density operator for qubits a1 through ak. The operators ρ1 through ρn satisfy

Eqs. (6.23,6.24) provided that

σk = Trm

[
RA,k

(
σk−1 ⊗ |0〉〈0|ak,m

)
R−1

A,k

]
(for k odd) (6.33)

where σ0 = 1 is the unit, and

Trak
[σk] = σk−1 (for k even). (6.34)

The σ operators above will be defined using a tree variable W given by the equation

Wx =

1 x = r

GyWy x = y0 and |x| odd

(1 − Gy)Wy x = y1 and |x| odd

GyB2
xWy/By x = y0 and |x| even

(1 − Gy)B2
xWy/By x = y1 and |x| even,

(6.35)

which is based on the weight matrix W of the previous chapter. Note that, though it is possible

for By to be zero, this can only occur if both By0 and By1 are zero as well, in this case we define

Wy0 = Wy1 = 0, which resolves the potential division by zero.

Because B is computed bottom-up, whereas W is computed top-down, every node of W depends

on the complete n-Coin-Game assignment G. The appearance at every node of such global informa-

tion about the protocol is crucial for optimal solutions of these SDPs and will also occur with the

tree variable Z defined below in the section on upper bounds.

Define the σ operators as diagonal matrices with entries given by

〈x|σk|x〉 = Wx for |x| = k. (6.36)

142

The requirements of Eq. (6.33) are satisfied if

Wy0 = GyWy and Wy1 = (1 − Gy)Wy (for |y| even), (6.37)

whereas Eq. (6.34) only imposes the weaker requirement

Wy = Wy0 + Wy1 (for |y| odd), (6.38)

both of which are clearly satisfied by W. We have therefore outlined a valid cheating strategy for

Bob through step 2.

The next two steps will follow the protocol exactly, in which case the operator ρE follows from

ρn by adjusting the space Hac:

ρE =
∑

x

Wx|x〉〈x|Ha
⊗ |0〉〈0|Ha′

⊗ |Gx〉〈Gx|Hac
⊗ |0〉〈0|HM

. (6.39)

Finally, in the last steps, conditioned on qubit ac being zero, Alice sends her state to Bob.

Conditioned on qubit ac begin one, Bob returns the purification of the remaining qubits, so the final

state is:

ρF = |φ1〉〈φ1|Ha⊗Ha′
⊗ |1〉〈1|Hac

⊗ |0〉〈0|HM
(6.40)

+C0|0〉〈0|Ha⊗Ha′
⊗ |0〉〈0|Hac

⊗ |0〉〈0|HM
,

where C0 is an unimportant constant (equal to the sum of Wx for all x such that Gx = 0), and |φ1〉
is the unnormalized state given by

|φ1〉 =
∑

x
|x|=n
Gx=1

√
Wx|x〉Ha

⊗ |x〉Ha′
. (6.41)

Bob’s probability of winning is given by

p =
∣∣∣
(
〈φ1|Ha⊗Ha′

⊗ 〈1|Hac

)
|ψA,1〉

∣∣∣
2

(6.42)

=

∣∣∣∣∣∣∣

∑

x
|x|=n

Gx

√
WxPx

∣∣∣∣∣∣∣

2

/Hr,

where the factor of Gx ensures that the sum is only taken over strings x satisfying Gx = 1.

While the expression for computing p seems rather daunting, we shall show in a moment that

when properly written, it is a conserved quantity that has the same value at every depth in the tree.

143

We begin with the following two observations: for |y| even

√
By0

√
Wy0Py0 +

√
By1

√
Wy1Py1 =

(
Gy

√
By0 + (1 − Gy)

√
By1

)√
WyPy = By

√
WyPy (6.43)

whereas for |y| odd we have

By0

√
Wy0Py0 + By1

√
Wy1Py1 =

(
GyB2

y0 + (1 − Gy)B2
y1

)√
WyPy/By =

√
By

√
WyPy. (6.44)

For the special case when By = 0 the equation is also valid as it reads 0 + 0 = 0. By induction, we

can obtain the following result

Br

√
WrPr =

∑
x;|x|=k Bx

√
WxPx for any even k,

∑
x;|x|=k

√
Bx

√
WxPx for any odd k,

(6.45)

where as usual 0 ≤ k ≤ n. In particular, because for |x| = n we have Gx = Bx =
√
Bx ∈ {0, 1}

we have shown that p =
∣∣Br

√
WrPr

∣∣2 /Hr, which is the probability with which Bob can win the

coin-flip by cheating using the strategy outlined above. Since Wr = Pr = 1 we have proven the

desired lower bound:

Lemma 15. For Protocol 1:

P ∗
B ≥ B2

r

Hr
. (6.46)

6.2.3 Upper bounds

We shall prove an upper bound by exhibiting a solution to the dual SDP. We use the derivation of

the dual in [ABDR04], though a direct derivation would be fairly simple as well.

Our protocol can be rewritten in the notation of [ABDR04]. Let m = b(n + 1)/2c and define

UA,1 = RA,1, UA,j = RA,2j−1SA,2j−2 for j = 2, . . . ,m, UA,m+1 = TA,0RA,ESA,n (or if n is odd

just UA,m+1 = TA,0RA,E) and UA,m+2 = TA,1. The final measurement is ΠA,1 = |ψA,1〉〈ψA,1|. In

this notation, we are looking for the maximum of Tr[ΠA,1 ρA,m+2] over assignments of the positive

semidefinite variables ρA,0, . . . , ρA,m+2 satisfying:

TrM [ρA,j] = TrM

[
UA,j ρA,j−1 U

−1
A,j

]
(6.47)

for j = 1, . . . ,m+ 2 and TrM [ρA,0] = |0〉〈0|HA
. The initial condition for ρA,0 (rather than the usual

ρA,0 = |0〉〈0|HA⊗HM
) simply gives Bob a little more cheating power (i.e., to initialize HM) but this

is acceptable as we are now focusing on deriving upper bounds on P ∗
B , and this extra cheating power

will not be helpful.

144

The dual SDP is given by Lemma 11 of [ABDR04] as the minimization of 〈0|YA,0|0〉, subject to

YA,j ⊗ IHM
≥ U−1

A,j+1 (YA,j+1 ⊗ IHM
)UA,j+1 (6.48)

for 0 ≤ j ≤ m+1, where Y0, . . . , Ym+1 are Hermitian operators on HA and YA,m+2 ≡ ΠA,1. Because

this is the dual SDP to the original coin-flipping SDP corresponding to Protocol 1, any assignment

of the variables YA,i that satisfies the constraints will produce a value of 〈0|YA,0|0〉 that is an upper

bound on P ∗
B . However, rather than finding a solution to the above dual SDP, we shall study a

modified, but equivalent, SDP:

Lemma 16. Let Z0, . . . , Zn+2 be a set of Hermitian matrices, defined on HA, satisfying the following

equations:

Zk ⊗ IHM
≥ R−1

A,k+1 (Zk+1 ⊗ IHM
)RA,k+1 (k even),

Zk ⊗ IHM
≥ S−1

A,k+1 (Zk+1 ⊗ IHM
)SA,k+1 (k odd), (6.49)

where 0 ≤ k < n, and

Zn ⊗ IHM
≥ R−1

A,E (Zn+1 ⊗ IHM
)RA,E , (6.50)

Zn+1 ⊗ IHM
≥ T−1

A,0 (Zn+2 ⊗ IHM
)TA,0, (6.51)

Zn+2 ⊗ IHM
≥ T−1

A,1 (|ψA,1〉〈ψA,1| ⊗ IHM
)TA,1. (6.52)

then β ≡ 〈0|Z0|0〉 is an upper bound on P ∗
B.

The proof follows by noting that given a set of Z0, . . . , Zn+2 satisfying the above equations, we

can set Y0 = Z0, Yj = Z2j−1 for j = 1, . . . ,m and Ym+1 = Zn+2 to obtain a solution with the same

minimum as the original dual SDP.

We introduce a new variable, defined on a tree of depth n, which shall be used in constructing

solutions of the dual SDP:

Zx =

B2
r/Hr x = r

√
BxZy/By |x| odd

Zy |x| even

(6.53)

where y is the parent node of x (i.e., either x = y0 or x = y1). Once again we resolve the division

by zero by declaring Zy0 = Zy1 = 0 whenever By = 0 and |y| is even.

145

We begin the description of the solution to the dual SDP by choosing

Zn+2 =
∑

x
|x|=n
Gx=1

Zx|x〉〈x|Ha
⊗ IHa′

⊗ |1〉〈1|Hac
. (6.54)

To verify that Zn+2 satisfies Eq. (6.52), we note that we can move the unitary operators TA,1 to the

left hand side of the equation, where they act trivially (i.e., they exchange IHa′
with IHmn

). We are

left with the task of proving Zn+2 ≥ |ψA,1〉〈ψA,1|.
It is sufficient to show that

Zn+2 + εIHA
≥ |ψA,1〉〈ψA,1| (6.55)

for every ε > 0. Because Zn+2 is non-negative, the left-hand-side above is positive definite. We can

rescale our space by (Zn+2 + εIHA
)−1/2 to obtain the equivalent equation

I ≥ (Zn+2 + εIHA
)
− 1

2 |ψA,1〉〈ψA,1| (Zn+2 + εIHA
)
− 1

2 . (6.56)

The right-hand-side of the above equation has only one non-zero eigenvalue, it is therefore sufficient

to check that

1 ≥ 〈ψA,1| (Zn+2 + εIHA
)
−1 |ψA,1〉. (6.57)

We need to study the quantity

〈ψA,1| (Zn+2 + εIHA
)
−1 |ψA,1〉 =

∑

x
|x|=n
Gx=1

Px

Hr(Zx + ε)
, (6.58)

which once again is related to a conserved quantity at every level of the tree. However, we first note

the following properties that can be checked directly from the definitions:

• Px > 0 implies Py > 0 for every node y that has x as a descendant.

• Px > 0 and Bx > 0 implies that By > 0 for every node y that has x as a descendant.

• Px > 0 and Bx > 0 implies Zx > 0.

We can now remove ε from the above expression, because if Zx = 0 then either Px = 0 or Bx = 0

(which implies Gx = 0):

〈ψA,1| (Zn+2 + εIHA
)
−1 |ψA,1〉 ≤

∑

x
|x|=n
Zx>1

GxPx

HrZx
(6.59)

146

where the factor Gx imposes the condition Gx = 1, and the condition Zx > 0 has been moved into

the sum.

If |y| is odd and Zy > 0 we have

B2
y0Py0

Zy0
+

B2
y1Py1

Zy1
=
(
B2

y0Gy + B2
y1(1 − Gy)

) Py

Zy
=

ByPy

Zy
, (6.60)

where the left-hand side is well defined because Zy0 = Zy1 = Zy > 0. If |y| is even we have

By0Py0

Zy0
+

By1Py1

Zy1
=
(√

By0Gy +
√
By1(1 − Gy)

) ByPy

Zy
=

B2
yPy

Zy
. (6.61)

Even if Zy > 0 it is possible for either Zy0 or Zy1 (or both) to be zero. If both are zero, then so is

ByPy. If only one of them is zero (say Zy0) then the equation is still valid with the offending term

removed (that is, By1Py1/Zy1 = B2
yPy/Zy). Using induction, we can prove

1 =
B2

rPr

HrZr
=

∑
x;|x|=k;Zx>0

B2
xPx

HrZx
for any even k

∑
x;|x|=k;Zx>0

BxPx

HrZx
for any odd k

(6.62)

and in particular, because Gx = Bx = B2
x for |x| = n we have shown 〈ψA,1| (Zn+2 + εIHA

)
−1 |ψA,1〉 ≤

1 for every ε > 0, thus completing the proof that our choice for Zn+2 satisfies the requirement

imposed by Eq. (6.52).

The next few requirements are easier to check. Since Zn+2 only has support on the space in

which qubit ac is one, on which TA,0 acts trivially, we can satisfy Eq. (6.51) by choosing

Zn+1 =
∑

x
|x|=n

Zx|x〉〈x|Ha
⊗ IHa′

⊗ |Gx〉〈Gx|Hac
≥ Zn+2, (6.63)

where the inequality follows because we have simply included the (non-negative) coefficients for the

states with Gx = 0.

The unitary RA,E operates only on the space HA hence Eq. (6.50) can be satisfied by choosing

Zn = R−1
A,EZn+1RA,E =

∑

x
|x|=n

Zx|x〉〈x|Ha
⊗ IHa′

⊗ |0〉〈0|Hac
. (6.64)

Finally, fix a new parameter ε′ > 0, and define

Zk =
∑

x
|x|=k

(
Zx +

(n− k)ε′

n

)
|x〉〈x|a1,...,ak

⊗ |0〉〈0|Hak+1,...,an⊗Ha′⊗Hac
(6.65)

+Ck Ia1,...,ak
⊗ (I − |0〉〈0|)Hak+1,...,an⊗Ha′⊗Hac

,

147

for k = 0, . . . , n − 1. The constants Ck will be defined recursively below, starting with Cn−1. For

k = 0 the above should be interpreted as

Z0 = (Zr + ε′) |0〉〈0|HA
+ C0 (I − |0〉〈0|)HA

. (6.66)

In order to prove that our solution to the dual SDP is valid, all that remains is to check Eq. (6.49).

The case of k odd is fairly simple because Zy = Zy0 = Zy1 for |y| odd, therefore qubit ak+1 of

Zk+1 is unentangled with the rest of the qubits, and its state is the identity density matrix (i.e.,

Zk+1 = Iak+1
⊗ Z ′ where Z ′ is an operator on the rest of the qubits). As the swap operator SA,k+1

acts trivially on Zk+1⊗ IHM
, it is sufficient to check Zk ≥ Zk+1, which is satisfied if Ck ≥ Ck+1. For

the special case of k = n− 1 (and n even) it suffices to choose Ck ≥ maxZx where the maximum is

taken over all strings x such that |x| = n.

What remains to be proven is Eq. (6.49) for the case of even k. Fix some even value of k, and let

α = Zk ⊗ IHM
and β = R−1

A,k+1 (Zk+1 ⊗ IHM
)RA,k+1. There are just the left- and right-hand sides

of the equation we are trying to prove: α ≥ β. Define the projector

Π = Ia1,...,ak
⊗ |0〉〈0|Hak+1,...,an⊗H′

a⊗Hac
⊗ IHM

. (6.67)

We shall prove in a moment Π(α−β)Π = ε′

n Π. It is also easy to see that Πα(I−Π) = (I−Π)αΠ = 0

and (I − Π)α(I − Π) = Ck(I − Π). Under these conditions, it is always possible to choose a large

enough Ck so that α ≥ β, which defines Ck in terms of Ck+1 (except for Cn−1, which can be defined

directly from Zn). For a proof, see for instance the proof of Lemma 9 in the previous chapter.

To prove Π(α − β)Π = ε′

n Π we need to study the effect of the unitary RA,k+1 on Zn+1. The

expression has the form of a sum of |x〉〈x|a1,...,ak
tensored with

U(Gx)−1
[(

Zx0|0〉〈0|ak+1
+ Zx1|1〉〈1|ak+1

)
⊗ Im

]
U(Gx) (6.68)

for |x| = k, where U(z) is defined by Eq. (6.10). The component of the above that survives the

projection Π has the form

(GxZx0 + (1 − Gx)Zx1) |0〉〈0|ak+1
⊗ Im =

(
Gx

√
Bx0 + (1 − Gx)

√
Bx1

) Zx

Bx
|0〉〈0|ak+1

⊗ Im

= Zx|0〉〈0|ak+1
⊗ Im. (6.69)

It is now straightforward to check that ΠαΠ = ΠβΠ + ε′

n Π, completing the proof that our choice of

Zk satisfies Eq. (6.49).

Note that, while the original protocol only depends on the first column of the matrix U(z), the

above calculation involved the entire matrix. The reason for this is that when transforming from the

148

SDP involving the Y variables to the SDP involving the Z variables we gave Bob a small amount of

extra cheating power to set the qubits in HM between application of SA,k and RA,k+1, in which case

the full matrix U(z) becomes important. However, since the upper bound derived in this section

matches the lower bound from the last section, it should be clear that such extra power is not useful.

The result thus far is the description of a set of variables Z0, . . . , Zn+2 satisfying the equations

of the dual SDP. This gives us an upper bound P ∗
B ≤ β = 〈0|Z0|0〉 = Zr + ε′. However, since ε′ > 0

is arbitrary, we have proven

Lemma 17. For Protocol 1:

P ∗
B ≤ B2

r

Hr
. (6.70)

6.2.4 Honest Bob vs. Cheating Alice

The analysis of the case of honest Bob and cheating Alice is fairly similar to the above calculations.

Fortunately, we can exploit certain symmetries in the protocol to derive expressions for P ∗
A from the

above expressions for P ∗
B .

Given an n-Game-Tree G, define a new (n+1)-Game-Tree, G ′ by the rules G′
r = 1, G′

0x = G′
1x = Gx

for |x| < n and G′
0x = G′

1x = 1 − Gx for |x| = n. We’d like to argue that the quantum protocol

associated with G′ is equivalent to the protocol associated with G but with Alice’s and Bob’s roles

exchanged.

The basic idea is that the first message of G ′, which Alice sends to Bob, is the pure state |0〉. If

Bob is cheating this state reveals no extra information about Alice’s state, and if Alice is cheating

she has no incentive to reveal herself as a cheater by sending anything other than the state |0〉. The

subsequent messages in G ′ correspond to those of G but with Alice and Bob reversed. The only

potential problem with this argument is that the order of the cheat detection messages (steps 5

and 6) needs to be switched in order to make the protocols equivalent. However, we argued after

formulating the problem as an SDP that these two steps could be exchanged without increasing or

decreasing P ∗
B .

Therefore, Bob’s maximum probability of winning by cheating in G ′, which we call P ∗
B
′ and can

be calculated using the above formulas, equals P ∗
A. But B′

r =
√
Ar and H′

r = 1 − Hr, where the

primed variables are calculated from G ′. The conclusion is that

P ∗
A = P ∗

B
′ =

B′2
r

H′
r

=
Ar

1 −Hr
. (6.71)

In particular we have proven the main result of this section, which is equivalent to Theorem 12:

Theorem 18. The quantum weak coin-flipping protocol associated to an n-Coin-Game G by Protocol

149

1 satisfies:

P ∗
A =

Ar

1 −Hr
, P ∗

B =
B2

r

Hr
, (6.72)

and PA = 1 − PB = 1 −Hr, where A, B and H are defined in terms of G by Eqs. (6.1,6.2).

The above result could be made more symmetric between Alice and Bob if we were to redefine

A and B by

A(new)
x =

√
Ax |x| even

Ax |x| odd

(6.73)

B(new)
x =

Bx |x| even

√
Bx |x| odd,

(6.74)

which could be computed bottom-up by a sequence of linear and root-mean-squared averages as in

the previous chapter. The new definitions would also make the conserved quantities in Eqs. (6.45,

6.62) have the same expression at even and odd depths. However, the old definitions make manifest

the convexity that will be exploited in the next sections of this chapter, and therefore these definitions

were selected.

6.3 Lower bounds on the bias

In this section we shall derive lower bounds for the set of P ∗
A and P ∗

B that can be achieved with

quantum protocols based on n-Coin-Games as defined above in Theorem 18.

Definition 19. For n ∈ Z+, define the set Λn ⊂ R2 so that (A,B) ∈ Λn if and only if there exists

an n-Coin-Game, G, with A = Ar and B = Br and A and B defined in terms of G by Eq. (6.2).

For each (A,B) ∈ Λn there exists an (n + 1)-message quantum coin-flipping protocol such that

PAP
∗
A = A and PBP

∗
B = B2. Furthermore, if (PAP

∗
A,
√
PBP ∗

B) /∈ Λn then there is no protocol built

out of a n-Coin-Game that achieves PA, P ∗
A and P ∗

B . However, it is not true that (PAP
∗
A,
√
PBP ∗

B) ∈
Λn implies the existence of a protocol with those parameters. For example, (0.3531,

√
0.3531) ∈ Λ2

because there exists a 3-message protocol with PA ' 0.515, P ∗
A ' 0.686, P ∗

B ' 0.728; however, there

are no 3-message protocols with PA = PB = 1/2 and P ∗
A = P ∗

B ' 2 ∗ 0.353 = 0.706. The optimal

symmetric 3-message protocol is the one by Spekkens and Rudolph [SR02b] with P ∗
A = P ∗

B = 1/
√

2 =

0.707. Though it would be preferable to study the set of achievable triplets (Ar,Br,Hr), the sets

Λn are easier to analyze and in the limit n→ ∞ will provide us with interesting bounds.

We begin the study of the sets Λn by showing that they can be obtained inductively:

150

Lemma 20. The set Λn is the convex combination of pairs of points of the form {(B2,
√
A) | (A,B) ∈

Λn−1}.

Proof. Given an n-Coin-Game, G, define the variable γ ≡ Gr ∈ [0, 1] and the two (n−1)-Coin-Games

G(0) and G(1) by

G(i)
x =

1 − Gix for |x| = n− 1,

Gix for |x| < n− 1,

(6.75)

for i = 0, 1. There is a natural isomorphism between G and the triplet γ,G(0),G(1).

Furthermore define A(i) and B(i) in terms of G(i) in the usual way. Note that A(i) and B(i) are

not the left and right branches of A and B defined from G but rather A(i)
x = Bix and B(i)

x = Aix.

Therefore

Ar = γ
(
B(0)

r

)2

+ (1 − γ)
(
B(1)

r

)2

, (6.76)

Br = γ

√
A(0)

r + (1 − γ)

√
A(1)

r . (6.77)

The set Λ1 is fairly simple and corresponds to the convex combinations of the two points (1, 0)

and (0, 1), which could be thought of as comprising Λ0. Using Λ1 and the above lemma we can

prove two simple properties of the sets Λn:

1. (0, 1) ∈ Λn and (1, 0) ∈ Λn for all n.

2. Λn ⊂ [0, 1] × [0, 1] for all n.

Both properties are clearly true for Λ1. By induction (0, 1) ∈ Λn−1 and (1, 0) ∈ Λn−1 implies that

(12,
√

0) and (02,
√

1) are in Λn. Similarly, if (A,B) ∈ Λn−1 implies A ∈ [0, 1] and B ∈ [0, 1], then

(B2,
√
A) ∈ [0, 1] × [0, 1] and so are convex combinations of such points.

The first non-trivial set is Λ2, which is the convex combination of the points on the curve

(t2,
√

1 − t) for t ∈ [0, 1]. The curve is plotted in Fig. 6.2. The dotted line marks the lower boundary

of its convex hull, which can be achieved using convex combinations of two points (the rest of the

lower boundary of the convex hull is simply the curve itself).

Rather than keeping track of the sets Λn, it will be simpler to study exclusively their lower

boundary, which will be curves connecting the points (1, 0) and (0, 1). All the optimal protocols will

live on these curves, and all points below the curves will be unattainable. To formalize the notion

151

0.2 0.4 0.6 0.8 1
A

0.2

0.4

0.6

0.8

1

B

Figure 6.2: The curve (t2,
√

1 − t) for t ∈ [0, 1]. The convex hull of the curve is the region Λ2, with
the dashed line serving as lower boundary.

of lower boundary we associate to every function f(z) : [0, 1] → [0, 1] the following sets:

f+ = {(z, w) | z ∈ [0, 1], f(z) < w ≤ 1}, (6.78)

f= = {(z, w) | z ∈ [0, 1], f(z) = w}, (6.79)

f− = {(z, w) | z ∈ [0, 1], f(z) > w ≥ 0}. (6.80)

Returning to the case of Λ2 and Fig. 6.2, we see that the lower boundary follows the original curve
√

1 −√
z between (1, 0) and some point that we shall call (α2, β2). It then turns into a straight line

connecting the point (α2, β2) to the point (0, 1). The point (α2, β2) can be found by calculating the

slope of the line connecting each point to (0, 1) and choosing the point that achieves the maximum.

In fact, all of the lower boundaries will have this form. Define for n > 1

fn(z) =

√
1 −

(
1−β2

n√
αn

)√
z for z ∈ [0, αn],

βn

1−αn
(1 − z) for z ∈ [αn, 1],

(6.81)

where

αn =
n− 1

3(n+ 1)
, βn =

√
n+ 2

3n
. (6.82)

For the case n = 1 we define f1(z) = 1 − z, which is the limit of fn as n → 1. Because αn ∈ (0, 1)

and βn ∈ (0, 1) for all n > 1, the functions satisfy fn(z) ∈ [0, 1] for all z ∈ [0, 1]. These functions are

also the lower boundaries of convex regions:

Lemma 21. For all n ≥ 1, the function fn is strictly decreasing, and the region f=
n ∪ f+

n is convex.

152

Proof. The case of n = 1 is trivial. For n > 1 we have

f ′n(z) =

− 1−β2
n

4
√

αn

√
zfn(z)

for z ∈ [0, αn],

− βn

1−αn
for z ∈ [αn, 1],

(6.83)

which is well defined and negative on (0, 1]. For z near zero, f(z) ' 1−(1−β2
n)/(2

√
αn)

√
z, therefore

f(z) is also strictly decreasing at z = 0.

The derivative is also continuous on (0, 1] because at z = αn we have

βn

1 − αn
=

√
3(n+ 1)

2
√
n(n+ 2)

=
1 − β2

n

4αnβn
. (6.84)

Furthermore, in the region (0, αn), the second derivative is

f ′′n (z) = f ′n(z)

[
− 1

2z
− f ′n(z)

fn(z)

]
=

−f ′n(z)

4z
√
αnf2

n(z)

[
2
√
αn − 3(1 − β2

n)
√
z
]
> 0 (6.85)

where the inequality holds because 3(1 − β2
n) < 2. Therefore f ′

n(z) is monotonically increasing on

(0, 1], and the region above fn(z) in this interval is convex. The point (0, 1) can be included because

the closure of a convex set is convex.

We are now ready to prove the main lemma of this section.

Lemma 22. For all n ∈ Z+, Λn ⊂ f=
n ∪ f+

n and f=
n ⊂ Λn.

Proof. The statement is clearly true for n = 1 since Λ1 = f=
1 . We will prove the rest of the cases

inductively. Assume the theorem holds for Λn, which implies that (z, fn(z)) ∈ Λn for all z. By

Lemma 20 we have that (f2
n(z),

√
z) ∈ Λn+1 for all z ∈ [0, 1] and so are convex combinations of

pairs of such points. The curve parametrized by (f 2
n(z),

√
z) can also be described by the points

(w, gn(w)) for

gn(w) =

√
1 −

(
1−αn

βn

)√
w for w ∈ [0, β2

n],

√
αn

1−β2
n
(1 − w) for w ∈ [β2

n, 1].

(6.86)

Note how under the map (x, y) → (y2,
√
x) the straight line turns into a curve, and the curve turns

into a straight line. Furthermore, because of the exchange of x and y, the straight line ends up on

the right-hand side.

The pattern of points αn and βn, in addition to guaranteeing that the region above fn(z) is

convex, also satisfies the recursion relation

1 − αn

βn
=

2
√
n(n+ 2)√
3(n+ 1)

=
1 − β2

n+1√
αn+1

(6.87)

153

and therefore gn(z) = fn+1(z) in the region [0, αn+1] (since αn+1 ≤ 1/3 ≤ β2
n). Pictorially, the curve

g=
n is like the curve f=

n+1, except that the straight line intersects the curve somewhat to the right,

and hence the region above g=
n is not convex. Its convex hull will give us the region above the curve

f=
n+1.

Thus far we have shown g=
n ⊂ Λn+1, as are convex combinations of pairs of points on the curve

g=
n . Because g=

n = f=
n+1 in the region [0, αn+1] we know that this segment of the curve is in Λn+1.

The rest of the curve f=
n+1 is simply the convex combination of the points (αn+1, βn+1) and (1, 0)

both of which are in g=
n . We have therefore proven the second part of the lemma: f=

n+1 ⊂ Λn+1.

We now intend to prove that gn(z) ≥ fn+1(z) for all z ∈ [0, 1]. The statement is clearly true

in the region [0, αn+1] where both are equal. In the region [β2
n, 1] it is also true because both

functions are straight lines ending in (1, 0), and the starting point of the lines are gn(β2
n) =

√
αn and

fn+1(β
2
n) = βn+1(1− β2

n)/(1−αn+1). The inequality fn+1(β
2
n) ≥ gn(β2

n) can be proven by checking

that [fn+1(β
2
n)/gn(β2

n)]2 − 1 = −4/[n2(n + 3)] ≤ 0 for n ≥ 1. Finally, in the region [αn+1, β
2
n] the

functions fn+1(z) and gn(z) start off at the same point, with the same derivative, but f ′′
n+1(z) = 0

in this region whereas g′′n(z) initially is positive and has only one zero in the region, which can be

checked as in Eq. (6.85). If the curve gn were to cross the curve fn+1 at any point in this region, then

it would have to end below it. However, we already argued that gn(β2
n) ≥ fn+1(β

2
n), and therefore

the curve g=
n must lie above the curve f=

n+1 in the middle region as well.

So far we have shown that (g=
n ∪g+

n) ⊂ (f=
n+1∪f+

n+1). By the induction assumption, Λn ⊂ f=
n ∪f+

n .

Under the map (x, y) → (y2,
√
x), the region f=

n ∪ f+
n maps into the region to the right of the

curve g=
n , which also equals the region g=

n ∪ g+
n because gn(z) is strictly decreasing, gn(1) = 0 and

gn(0) = 1. Finally, using Lemma 20 we know that Λn+1 is contained in the convex combination

of points in g=
n ∪ g+

n . Because (g=
n ∪ g+

n) ⊂ (f=
n+1 ∪ f+

n+1) and f=
n+1 ∪ f+

n+1 is convex, we have

Λn+1 ⊂ f=
n+1 ∪ f+

n+1.

Combining the previous lemma with the definition of the sets Λn, we have proven the following

theorem:

Theorem 23. Every (n+1)-message quantum weak coin-flipping protocol based on an n-Coin-Game

satisfies

PBP
∗
B ≥ f2

n(PAP
∗
A). (6.88)

Additionally, we have the following corollary for the limit of n→ ∞:

Corollary 24. All quantum weak coin-flipping protocols based on an n-Coin-Game (for any n ∈ Z+)

154

satisfy

PAP
∗
A ≤ 1

3
=⇒ PBP

∗
B ≥ 1 − 2

√
PAP ∗

A

3
≥ 1

3
(6.89)

PBP
∗
B ≤ 1

3
=⇒ PAP

∗
A ≥ 1 − 2

√
PBP ∗

B

3
≥ 1

3
(6.90)

In particular,

max (PAP
∗
A, PBP

∗
B) ≥ 1

3
, (6.91)

and

max(P ∗
A, P

∗
B) ≥ 2

3
for PA = PB =

1

2
. (6.92)

Proof. The above results use the limit:

f∞(z) =

√
1 − 2√

3

√
z for z ∈ [0, 1

3],
√

3
2 (1 − z) for z ∈ [13 , 1],

(6.93)

which has the symmetry b = f 2
∞(a) ⇒ a = f2

∞(b).

6.4 Optimal protocols

In this section we will describe protocols that match the lower bounds derived in the previous

section. In a sense, most of the work has already been done since the proof of the previous section

was constructive. What remains undone is to explicitly construct the Game-Trees and to calculate

from them PA, P ∗
A and P ∗

B (rather than only their products).

From the discussion of the previous section we can see that the interesting Game-Trees of depth

n + 1 live on the curve f=
n+1. The points on the rounded part of the curve (the left segment)

involve no convex combinations of points from n-Game-Trees and therefore are not new (i.e., they

are protocols that can be described by a single n-Game-Tree with Alice’s and Bob’s role reversed).

The interesting points at level n + 1 lie on the straight segment and are the combination of the

points (αn+1, βn+1) and (1, 0). To understand this segment we need to describe the n-Game-Trees

that produce points (β2
n+1,

√
αn+1) and (0, 1). The second point corresponds to a tree that is fairly

simple: it has the value 1 at every leaf, and the rest of the nodes are irrelevant. The n-Game-Tree

for (β2
n+1,

√
αn+1) is what we shall describe next.

155

Lemma 25. For each n ∈ Z+ there is an n-Game-Tree, G(n), such that

A(n)
r = β2

n+1 =
n+ 3

3(n+ 1)
, (6.94)

B(n)
r =

√
αn+1 =

√
n

3(n+ 2)
, (6.95)

H(n)
r =

n
2(n+1) n even,

n+1
2(n+2) n odd,

(6.96)

with A(n), B(n) and H(n) defined in terms of G(n) by Eqs. (6.1, 6.2). In particular, the associated

quantum weak coin-flipping protocols have:

PA(n) = 1 −H(n)
r =

n+2
2(n+1) n even,

n+3
2(n+2) n odd,

(6.97)

P ∗
A(n) =

A(n)
r

1−H(n)
r

=

2(n+3)
3(n+2) n even,

2(n+2)
3(n+1) n odd,

(6.98)

P ∗
B(n) =

(B(n)
r)

2

H(n)
r

=

2(n+1)
3(n+2) n even,

2n
3(n+1) n odd.

(6.99)

Proof. Define the parameters

γn =
n

n+ 2
, (6.100)

which are the weights needed for the convex combinations. And let

G(1)
r = γ1, G(1)

0 = 1, G(1)
1 = 0, (6.101)

which leads to A(1)
r = 2/3 and B(1)

r = H(1)
r = 1/3. The rest of the Game-Trees are defined induc-

tively:

G(n)
r = γn, (6.102)

G(n)
0x =

1 − G(n−1)
x for |x| = n− 1,

G(n−1)
x for |x| < n− 1,

(6.103)

G(n)
1x =

0 for |x| = n− 1,

G(n−1)
x for |x| < n− 1.

(6.104)

156

0

1

0

10

γ4

γ3

γ2

γ1

Figure 6.3: A truncated tree equivalent to G(4).

The values of G(n)
1x for |x| < n − 1 are actually irrelevant but were chosen so that G(n)

x = γn−|x|

whenever |x| < n− 1.

The reason for inverting the value of the leaves relates to our insistence that Alice always send

the first message, which implies that the sender of the last message alternates as n is increased and

correspondingly the assignments of winning and losing for the coin outcome need to be flipped.

In fact, the pattern of the leaves is fairly simple. It is chosen so that it depends on the parity of

the location (from left to right) of the first 1 symbol in the string x. In the quantum protocol this

translates into the first sender of a 1 qubit being the winner of the coin-flip (assuming they pass the

cheat detection phase).

In fact, the trees G(n) would best be described by truncated trees of the form of Fig 6.3. However,

we shall continue using trees with all leaves at the same depth in order to be consistent with the

previous section.

Returning to the proof of the lemma, it is easy to see that A(n)
1x = 1 and B(n)

1x = H(n)
1x = 0 for all

strings x. The left side of the tree satisfies A(n)
0x = B(n−1)

x , B(n)
0x = A(n−1)

x and H(n)
0x = 1−H(n−1)

x for

all strings x. Therefore the root nodes are

A(n)
r = γn

(
B(n−1)

r

)2

+(1 − γn) 1, (6.105)

B(n)
r = γn

√
A(n−1)

r +(1 − γn) 0, (6.106)

H(n)
r = γn

(
1 −H(n−1)

r

)
+(1 − γn) 0. (6.107)

It is then straightforward to plug in the expressions as functions of n for all the above parameters

and check that Eqs. (6.94–6.96) are always satisfied.

Interestingly, the sequence of protocols is such that PA and PB do not change when n increases

from an odd integer to an even one, whereas P ∗
A and P ∗

B do not change when n increases from an

157

even integer to an odd one. We offer no intuition for this property. Note, however, that for a given

n, the associated protocol corresponds to a single point on the surface of optimal protocols in the

3-dimensional space of triplets (PA, P
∗
A, P

∗
B) that can be achieved with n+ 1 quantum messages.

For large n, the sequence of protocols converges to PA = PB = 1/2 and P ∗
A = P ∗

B = 2/3,

yielding a protocol with bias of 1/6. It would also be desirable to show the existence of a sequence

of protocols that converges to the same point but such that PA = PB = 1/2 for every protocol in

the sequence. This can be easily accomplished by choosing, for each n, the point along the curve f=
n

that has Hr = 1/2. In the Game-Tree language we need to modify the top coin Gr, and we therefore

introduce a new sequence of Game-Trees G ′(n)
defined as

G′
x
(n)

=

1/
(
2 − 2H(n−1)

r

)
x = r,

G(n)
x otherwise.

(6.108)

For simplicity, we will concentrate on the case when n is even so that:

A′
r
(n)

=
n+ 1

n+ 2

(
B(n−1)

r

)2

+
1

n+ 2
, (6.109)

B′
r
(n)

=
n+ 1

n+ 2

√
A(n−1)

r , (6.110)

H′
r
(n)

=
n+ 1

n+ 2
(1 −H(n−1)

r) =
1

2
(6.111)

and the associated probabilities of winning by cheating are

P ∗
A(n)′ = 2A′

r
(n)

=
2

3
, (6.112)

P ∗
B(n)′ = 2

(
B′

r
(n)
)2

=
2

3

(n+ 1)2

n(n+ 2)
. (6.113)

That is, we have identified a nice sequence of quantum protocols with n + 1 messages (for n even)

where PA = PB = 1/2 and P ∗
A = 2/3 are all fixed and P ∗

B decreases from 3/4 to 2/3. Of course, the

case n = 2 belongs to the family studied by Spekkens and Rudolph [SR02b] and satisfies P ∗
AP

∗
B = 1/2.

As discussed in the introduction to the previous section, the above protocols are optimal in the

following sense: to decrease one of P ∗
A or P ∗

B while keeping the number of messages fixed, we would

have to increase the other parameter. However, the protocols are not optimal in the sense that they

minimize the bias ε = max(P ∗
A, P

∗
B) − 1/2 for a fixed number of messages. Only in the limit of

infinite messages is the bias of the above protocols optimal.

Thus far, we have identified the point (1/3,
√

1/3) ∈ f=
∞ as a protocol with PA = 1/2 and

P ∗
A = P ∗

B = 2/3. The other points on the curve f=
∞ can be found using the same trick of modifying

the top coin Gr. That is, let G′(n)
be as above but with G′

r
(n)

= t, where t ∈ [0, 1] is a parameter we

158

can choose freely. In the limit of n→ ∞ we find:

A′
r
(∞)

(t) = t
1

3
+ (1 − t), (6.114)

B′
r
(∞)

(t) = t

√
1

3
, (6.115)

H′
r
(∞)

(t) = t
1

2
. (6.116)

The associated quantum weak coin-flipping parameters are

PA(t) = 1 − t

2
, (6.117)

P ∗
A(t) =

2

3

3 − 2t

2 − t
, (6.118)

P ∗
B(t) =

2

3
t. (6.119)

These protocols correspond to the right half of the curve f=
∞ (i.e., the points (z, f∞(z)) for z ∈

[1/3, 1]). The other half of the curve can be obtained by symmetry between Alice and Bob. In the

Game-Tree formalism this symmetry arises by creating a new (n + 1)-Game-Tree, G ′, out of given

n-Game-Tree, G, by the rules G ′
r = 1, G′

0x = G′
1x = Gx for |x| < n and G′

0x = G′
1x = 1 − Gx for

|x| = n. In the language of protocols, we are forcing Alice’s first message to have no content, which

is equivalent to allowing Bob to begin the game.

The results can be best summarized by eliminating the variable t from Eqs. (6.117–6.119), which

proves this section’s main theorem:

Theorem 26. There exist quantum weak coin-flipping protocols that asymptotically approach the

curve

P ∗
A + P ∗

B − 3

4
P ∗

AP
∗
B = 1 (6.120)

in the limit of large number of messages. The corresponding probabilities of winning when the game

is played honestly are

PA =
3

4
P ∗

A when P ∗
A ≤ P ∗

B , (6.121)

PB =
3

4
P ∗

B when P ∗
A ≥ P ∗

B . (6.122)

6.5 Conclusions

We have identified a large family of quantum protocols for weak coin-flipping, that are based on

classical public-coin games. The family contains protocols approaching the curve P ∗
A+P ∗

B− 3
4P

∗
AP

∗
B =

159

1, which can be reached asymptotically in the limit of large number of messages. The most important

of these protocols is symmetric between Alice and Bob and achieves PA = PB = 1/2 and P ∗
A = P ∗

B =

2/3, that is, it has a bias of 1/6.

Furthermore, we have proven lower bounds for the bias achievable by protocols in this family. In

particular, max(P ∗
A, P

∗
B) ≥ 2/3 or equivalently ε ≥ 1/6. These lower bounds show that the protocols

found above are optimal within their family.

Our lower bounds also establish a strict hierarchy among coin-flipping protocols in our family

with different number of messages. Admittedly, the hierarchy is of little practical interest since a

small number of messages suffices in all cases to construct protocols that are reasonably close to

optimal.

The question of optimal bias for a general quantum weak coin-flipping protocol remains open.

We speculate that it might be possible to show that every protocol is equivalent to one contained in

the family analyzed in this chapter. Future work will be needed to verify this conjecture.

Though it is not clear that the protocols presented in this thesis will ever find a practical ap-

plication, they do demonstrate the power of quantum information, as summarized by the beautiful

and simple equation

1

6
≤ 1

2
. (6.123)

160

Bibliography

[ABDR04] A. Ambainis, H. Buhrman, Y. Dodis and H. Roehrig, Multiparty Quantum Coin

Flipping, in 19th IEEE Annual Conference on Computational Complexity, pages

250–259, IEEE Computer Society, 2004, quant-ph/0304112.

[Amb01] A. Ambainis, A New Protocol and Lower Bounds for Quantum Coin Flipping, in

33rd Symposium on Theory of Computing (STOC ’01), pages 134–142, ACM Press,

2001, quant-ph/0204022.

[Amb02] A. Ambainis, Lower bound for a class of weak quantum coin flipping protocols,

(2002), quant-ph/0204063.

[ATSVY00] D. Aharonov, A. Ta-Shma, U. Vazirani and A. Yao, Quantum Bit Escrow, in 32nd

Symposium on Theory of Computing (STOC ’00), pages 705–724, ACM Press, 2000,

quant-ph/0004017.

[Bar89] D. A. Barrington, Bounded-Width Polynomial-Size Branching Programs Recognize

Exactly Those Languages in NC1, J. Comput. Syst. Sci. 38, 150–164 (1989).

[BB84] C. H. Bennet and G. Brassard, Quantum Cryptography: Public Key Distribution

and Coin Tossing, in IEEE International Conference on Computers, Systems, and

Signal Processing, pages 175–179, IEEE Computer Society, 1984.

[Blu81] M. Blum, Coin flipping by telephone, in Advances in Cryptology: A Report on

CRYPTO ’81, edited by A. Gersho, pages 11–15, Santa Barbara, 1981, ECE Report

No 82-04.

[BOGW88] M. Ben-Or, S. Goldwasser and A. Wigderson, Completeness theorems for non-

cryptographic fault-tolerant distributed computation, in 20th Symposium on Theory

of Computing (STOC ’88), pages 1–10, ACM Press, 1988.

[BOL85] M. Ben-Or and N. Linial, Collective coin flipping, robust voting schemes and minima

of Banzhaf values, in 26th Symposium on Foundations of Computer Science (FOCS

’85), pages 408–416, IEEE Computer Society, 1985.

http://arxiv.org/abs/quant-ph/0304112
http://arxiv.org/abs/quant-ph/0204022
http://arxiv.org/abs/quant-ph/0204063
http://arxiv.org/abs/quant-ph/0004017

161

[BST90] D. A. M. Barrington, H. Straubing and D. Therien, Non-uniform Automata over

Groups, Information and Computation 89, 109–132 (1990).

[Bur55] W. Burnside, Theory of Groups of Finite Order, Dover, New York, second edition,

1955, Note M.

[BvDdWP92] F. A. Bais, P. van Driel and M. de Wild Propitius, Quantum symmetries in discrete

gauge theories, Phys. Lett. B 280, 63–70 (1992), hep-th/9203046.

[CCD88] D. Chaum, C. Crepeau and I. Damgard, Multiparty unconditionally secure protocols,

in 20th Symposium on Theory of Computing (STOC ’88), pages 11–19, ACM Press,

1988.

[CFH97] D. G. Cory, A. F. Fahmy and T. F. Havel, Ensemble quantum computing by NMR

spectroscopy, Proc. Natl. Acad. Sci. USA 94, 1634–1639 (1997).

[CGS02] C. Crepeau, D. Gottesman and A. Smith, Secure multi-party quantum computation,

in 34th Symposium on Theory of Computing (STOC ’02), pages 643–652, ACM

Press, 2002, quant-ph/0206138.

[CY95] I. L. Chuang and Y. Yamamoto, Simple quantum computer, Phys. Rev. A 52,

3489–3496 (1995), quant-ph/9505011.

[CZ95] J. I. Cirac and P. Zoller, Quantum Computations with Cold Trapped Ions, Phys.

Rev. A 74, 4091–4094 (1995).

[DDL02] L.-M. Duan, E. Demler and M. D. Lukin, Controlling Spin Exchange Interactions of

Ultracold Atoms in Optical Lattices, (2002), cond-mat/0210564.

[DIV03] B. Doucot, L. B. Ioffe and J. Vidal, Discrete non-Abelian gauge theories in two-

dimensional lattices and their realizations in Josephson-junction arrays, (2003),

cond-mat/0302104.

[dWPB95] M. de Wild Propitius and F. A. Bais, Discrete gauge theories, (1995), hep-th/9511201,

Lectures presented at Particles and Fields 94.

[FKLW01] M. Freedman, A. Kitaev, M. Larsen and Z. Wang, Topological Quantum Computa-

tion, (2001), quant-ph/0101025.

[Fre00] M. Freedman, Quantum Computation and the localization of Modular Functors,

(2000), quant-ph/0003128.

[FT63] W. Feit and J. G. Thompson, Solvability of Groups of Odd Order, Pac. J. Math 13,

775–1029 (1963).

http://arxiv.org/abs/hep-th/9203046
http://arxiv.org/abs/quant-ph/0206138
http://arxiv.org/abs/quant-ph/9505011
http://arxiv.org/abs/cond-mat/0210564
http://arxiv.org/abs/cond-mat/0302104
http://arxiv.org/abs/hep-th/9511201
http://arxiv.org/abs/quant-ph/0101025
http://arxiv.org/abs/quant-ph/0003128

162

[GC97] N. A. Gershenfeld and I. L. Chuang, Bulk Spin-Resonance Quantum Computation,

Science 275, 350–356 (1997).

[GLS94] D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple

Groups, AMS, Providence, RI, 1994.

[GMW87] O. Goldreich, S. Micali and A. Wigderson, How to play ANY mental game, in 19th

Symposium on Theory of Computing (STOC ’87), pages 218–229, ACM Press, 1987.

[Got98] D. Gottesman, Fault-Tolerant Quantum Computation with Higher-Dimensional Sys-

tems, in QCQC ’98, edited by C. P. Williams, pages 302–313, Berlin, 1998, Springer-

Verlag, quant-ph/9802007.

[Gro96] L. K. Grover, A fast quantum mechanical algorithm for database search, in 28th

Symposium on Theory of Computing (STOC ’96), pages 212–219, ACM Press, 1996,

quant-ph/9605043.

[GVW99] L. Goldenberg, L. Vaidman and S. Wiesner, Quantum Gambling, Phys. Rev. Lett.

82, 3356–3359 (1999), quant-ph/9808001.

[Hal02] S. Hallgren, Polynomial-time quantum algorithms for Pell’s equation and the principal

ideal problem, in 34th Symposium on Theory of Computing (STOC ’02), pages 653–

658, ACM Press, 2002.

[HK04] L. Hardy and A. Kent, Cheat Sensitive Quantum Bit Commitment, Phys. Rev. Lett.

92, 157901 (2004), quant-ph/9911043.

[KBDW01] J. Kempe, D. Bacon, D. P. DiVincenzo and K. B. Whaley, Encoded Universality

from a Single Physical Interaction, Quantum Information and Computation 1, 33–

55 (2001), quant-ph/0112013.

[Ken99] A. Kent, Coin Tossing is Strictly Weaker than Bit Commitment, Phys. Rev. Lett.

83, 5382–5384 (1999), quant-ph/9810067.

[Kil88] J. Kilian, Founding cryptography on oblivious transfer, in 20th Symposium on

Theory of Computing (STOC ’89), pages 20–31, ACM Press, 1988.

[Kit95] A. Kitaev, Quantum measurements and the Abelian Stabilizer Problem, (1995),

quant-ph/9511026.

[Kit97a] A. Kitaev, Fault-tolerant quantum computation by anyons, (1997),

quant-ph/9707021.

http://arxiv.org/abs/quant-ph/9802007
http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/quant-ph/9808001
http://arxiv.org/abs/quant-ph/9911043
http://arxiv.org/abs/quant-ph/0112013
http://arxiv.org/abs/quant-ph/9810067
http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/9707021

163

[Kit97b] A. Kitaev, Quantum Computations: algorithms and error correction, Russ. Math.

Surv. 52, 1191 (1997).

[Kit02] A. Kitaev, 2002, Private communication.

[Kit03] A. Kitaev, 2003, Results presented at QIP 2003 (slides and video available from

MSRI).

[KN04] I. Kerenidis and A. Nayak, Weak coin flipping with small bias, Inf. Process. Lett.

89, 131–135 (2004).

[LC98] H.-K. Lo and H. F. Chau, Why quantum bit commitment and ideal quantum coin

tossing are impossible, Physica D 120, 177–187 (1998), quant-ph/9711065.

[Lo97] H.-K. Lo, Insecurity of quantum secure computations, Phys. Rev. A 56, 1154–1162

(1997), quant-ph/9611031.

[May96] D. Mayers, Unconditionally secure quantum bit commitment is impossible, (1996),

quant-ph/9605044.

[Moc03] C. Mochon, Anyons from non-solvable finite groups are sufficient for universal quan-

tum computation, Phys. Rev. A 67, 022315 (2003), quant-ph/0206128.

[Moc04a] C. Mochon, Anyon computers with smaller groups, Phys. Rev. A 69, 032306 (2004),

quant-ph/0306063.

[Moc04b] C. Mochon, Quantum weak coin-flipping with bias of 0.192, in 45th Symposium on

Foundations of Computer Science (FOCS ’04), pages 2–11, IEEE Computer Society,

2004, quant-ph/0403193.

[Moc04c] C. Mochon, Serial composition of quantum coin-flipping, and bounds on cheat de-

tection for bit-commitment, Phys. Rev. A 70, 032312 (2004), quant-ph/0311165.

[Moc05] C. Mochon, A large family of quantum weak coin-flipping protocols, (2005),

quant-ph/0502068.

[MR65] W. D. Maurer and J. L. Rhodes, A Property of Finite Simple Non-Abelian Groups,

Proc. Am. Math. Soc. 16(3), 552–554 (1965).

[NC00] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information,

Cambridge University Press, Cambridge, First edition, 2000.

[NW96] C. Nayak and F. Wilczek, 2n-quasihole states realize 2n−1-dimensional spinor braid-

ing statistics in paired quantum Hall states, Nucl. Phys. B 479, 529–553 (1996),

cond-mat/9605145.

http://arxiv.org/abs/quant-ph/9711065
http://arxiv.org/abs/quant-ph/9611031
http://arxiv.org/abs/quant-ph/9605044
http://arxiv.org/abs/quant-ph/0206128
http://arxiv.org/abs/quant-ph/0306063
http://arxiv.org/abs/quant-ph/0403193
http://arxiv.org/abs/quant-ph/0311165
http://arxiv.org/abs/quant-ph/0502068
http://arxiv.org/abs/cond-mat/9605145

164

[OP99] R. W. Ogburn and J. Preskill, Topological Quantum Computation, in QCQC ’98,

edited by C. P. Williams, pages 341–356, Berlin, 1999, Springer-Verlag.

[Pre97] J. Preskill, Fault-tolerant quantum computation, (1997), quant-ph/9712048.

[RBO89] T. Rabin and M. Ben-Or, Verifiable secret sharing and multiparty protocols with

honest majority, in 21th Symposium on Theory of Computing (STOC ’89), pages

73–85, ACM Press, 1989.

[RR99] N. Read and E. Rezayi, Beyond paired quantum Hall states: Parafermions and

incompressible states in the first excited Landau level, Phys. Rev. B 59, 8084–8092

(1999), cond-mat/9609079.

[RS04] T. Rudolph and R. W. Spekkens, Quantum state targeting, Phys. Rev. A 70, 052306

(2004), quant-ph/0310060.

[Sch64] I. J. Schoenberg, A note on the cyclotomic polynomial, Mathematika 11, 131–136

(1964).

[Sha] W. Shakespeare, The Tragedy of Hamlet, Prince of Denmark, Washington Square

Press, New York, August 2004 edition, Act 3, Scene 1.

[Shi02] Y. Shi, Both Toffoli and Controlled-NOT need little help to do universal quantum

computation, (2002), quant-ph/0205115.

[Sho94] P. W. Shor, Algorithms for Quantum Computation: Discrete Logarithms and Fac-

toring, in 35th Symposium on Foundations of Computer Science (FOCS ’94), pages

124–134, IEEE Computer Society, 1994.

[Sho95] P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys.

Rev. A. 52, 2493–2496 (1995).

[Sho96] P. W. Shor, Fault-tolerant quantum computation, in 37th Symposium on Founda-

tions of Computer Science (FOCS ’96), pages 56–65, IEEE Computer Society, 1996,

quant-ph/9605011.

[SR02a] R. W. Spekkens and T. Rudolph, Degrees of concealment and bindingness in quantum

bit commitment protocols, Phys. Rev. A 65, 012310 (2002), quant-ph/0106019.

[SR02b] R. W. Spekkens and T. Rudolph, Quantum Protocol for Cheat-Sensitive Weak Coin

Flipping, Phys. Rev. Lett. 89, 227901 (2002), quant-ph/0202118.

[Ste96] A. M. Steane, Error Correcting Codes in Quantum Theory, Phys. Rev. Lett. 77,

793–797 (1996).

http://arxiv.org/abs/quant-ph/9712048
http://arxiv.org/abs/cond-mat/9609079
http://arxiv.org/abs/quant-ph/0310060
http://arxiv.org/abs/quant-ph/0205115
http://arxiv.org/abs/quant-ph/9605011
http://arxiv.org/abs/quant-ph/0106019
http://arxiv.org/abs/quant-ph/0202118

165

[SV86] M. Santha and U. V. Vazirani, Generating Quasi-random Sequences from Semi-

random Sources, J. Comput. Syst. Sci. 33, 75–87 (1986).

[SV99] L. J. Schulman and U. Vazirani, Scalable NMR Quantum Computation, in 31st

Symposium on Theory of Computing (STOC ’99), pages 322–329, ACM Press, 1999,

quant-ph/9804060.

[THL+95] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi and H. J. Kimble, Measurement

of Conditional Phase Shifts for Quantum Logic, Phys. Rev. Lett. 75, 4710–4713

(1995), quant-ph/9511008.

[vD04] W. van Dam, Quantum Computing and Zeroes of Zeta Functions, (2004),

quant-ph/0405081.

[Wie83] S. Wiesner, Conjugate coding, SIGACT News 15, 77 (1983).

[Yao82] A. C. Yao, Protocols for Secure Computation, in 23rd Symposium on Foundations

of Computer Science (FOCS ’82), pages 160–164, IEEE Computer Society, 1982.

[Yao95] A. C. Yao, Security of quantum protocols against coherent measurements, in 27th

Symposium on Theory of Computing (STOC ’95), pages 67–75, ACM Press, 1995.

http://arxiv.org/abs/quant-ph/9804060
http://arxiv.org/abs/quant-ph/9511008
http://arxiv.org/abs/quant-ph/0405081

	Acknowledgements
	Abstract
	Introduction
	Anyons: a potential implementation of quantum computation
	Coin-flipping: a potential application of quantum information

	Computing with anyons from non-solvable finite groups
	Review
	Magnetic charges
	Electric charges and vacuum pairs
	Qudits
	Phase measurement

	A universal gate-set for anyons
	d odd case
	d=2 case

	Universal computation for simple perfect groups
	Requirements for the physical system
	Computational basis
	Conjugation by a function
	Toffoli gate
	Measuring Z
	Constructing the zero eigenvector of X
	Choosing a dth root of unity
	Measuring X

	Leakage correction
	Motivation
	Implementation

	Universal computation for non-solvable groups
	New requirements for the physical system
	Universal computation
	Leakage detection and generation

	Creating the ancillas
	Mathematicalia

	Anyon computers with smaller groups
	Review and notation
	Electric charge pairs
	Superselection sectors, fusion and vacuum pairs
	Requirements for the physical system
	Probabilistic projection onto K

	Base case: G = Zp Zq
	Algebraic structure
	Computational basis
	Operations involving braiding fluxes
	Operations involving fusion of fluxes
	Production of |"526930B states

	Representations and fusion of electric charges
	Examples
	S3
	Z7 Z3

	Operations involving electric charges
	On the measurement of one-dimensional representations
	Other possibilities

	Gate-set universality
	Non-destructive measurement of Z and X
	|0"526930B and |"526930B ancillas
	|1"526930B states, |"526930B states; X gates, Z gates
	Measurements of Z and X

	Completing the gate-set
	Using |M1"526930B
	Using |M2"526930B
	Making the magic states

	Computational power of magnetic charges
	Conjugations with multiple sources
	Summary of computational power

	Solvable non-nilpotent groups
	Group decomposition
	Examples
	N-invariant ancillas
	Computational basis
	Basic operations
	Using electric charges
	Choosing
	The amplitudes Fh
	Finding a non-zero amplitude
	Alternative

	Putting it all together
	The case p=2

	Leakage correction
	Concluding remarks

	Serial composition and cheat detection for quantum coin-flipping
	Serial composition of quantum coin protocols
	Quadratic cheat detection is a fixed point of coin-flipping
	Proof of lemma
	No-go theorem for linear cheat detection
	Conclusions

	Quantum weak coin-flipping with bias of 0.192
	The protocol
	Reformulation of the protocol

	Coin-flipping as an SDP
	The primary problem
	The dual problem

	Finding solutions to the dual problem
	Choosing Z1,…,Zn
	Example n=3
	Finding the optimal Zn+1

	Choosing a1,…,an
	0.192 revisited

	A large family of quantum weak coin-flipping protocols
	Notation
	The protocol
	Reformulation as an SDP
	Lower bounds
	Upper bounds
	Honest Bob vs. Cheating Alice

	Lower bounds on the bias
	Optimal protocols
	Conclusions

	Bibliography

