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Abstract 
 

 
Biology is inherently spatial, with tissue architecture and cell–cell interactions shaping 

dynamic developmental and homeostatic processes. In this thesis, we harness high-

resolution spatial transcriptomics via RNA seqFISH+ to show how spatial information can 

be used to resolve temporal information in complex tissues, using adult mouse 

spermatogenesis as a model. By profiling 2,638 genes in over 216,000 cells, we find that 

each seminiferous tubule cross-section represents a distinct timepoint of the seminiferous 

epithelial cycle, and collectively all tubules form a circular topology in gene expression 

space that precisely aligns with the known 12-stage progression. Intriguingly, Sertoli cells 

exhibit a robust cyclic transcriptional program synchronized with germ cell differentiation, 

raising the question of whether this cycle is driven solely by germ cells or whether Sertoli 

cells display an intrinsic cyclic expression profile. To address this, we ablate differentiating 

germ cells using a DNA alkylating agent, busulfan. In this model, despite the lack of 

differentiating germ cells, Sertoli cells maintain much of their cyclic expression suggesting 

an autonomous cycle that partially dephases without germ cell input. Integrative analyses 

suggest that the underlying mechanism of this oscillation may involve an innate retinoic 

acid metabolic cycle and/or an interconnected transcription factor network. Finally, we 

discuss how these findings broaden our understanding of tissue processes and propose that 

spatial transcriptomics can be adopted to reconstruct temporal dynamics for many tissues 

from static snapshots. 

 
 
 
 
 
 
 
 



 vi 

Published Content and Contributions 

 
Chakravorty, A., Simons, B. D., Yoshida, S. & Cai, L. (2024).“Spatial transcriptomics 

reveals the temporal architecture of the seminiferous epithelial cycle and precise Sertoli-

germ synchronization.” bioRxiv. doi:10.1101/2024.10.28.620681. 

A.C. conceptualized the study, conducted experiments, collected and analyzed 

data, interpreted results, and wrote the manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii 

Table of Contents 
Acknowledgments ............................................................................................................ iii 

Abstract .............................................................................................................................. v 
Published Content and Contributions ........................................................................... vi 

Table of Figures .............................................................................................................. viii 

 

Chapter 1: Motivations ..................................................................................................... 1 
1.1 Spatial organization in biology ................................................................................. 1 
1.2 Spatial transcriptomics tools ..................................................................................... 3 
1.3 Decoding temporal dynamics from spatial organization .......................................... 6 
1.4 Closing remarks ........................................................................................................ 8 
1.5 References ................................................................................................................. 9 

 

Chapter 2: Resolving the temporal architecture of the seminiferous epithelial cycle 
using spatial transcriptomics ......................................................................................... 12 

2.1 Abstract ................................................................................................................... 12 
2.2 Introduction ............................................................................................................. 13 
2.3 Results ..................................................................................................................... 16 
2.4 Discussion ............................................................................................................... 33 
2.5 Supplementary Data and Figures ............................................................................ 35 
2.6 Methods................................................................................................................... 47 
2.7 References ............................................................................................................... 61 

 

Chapter 3: An innate Sertoli transcriptional cycle tied to the seminiferous epithelial 
cycle .................................................................................................................................. 66 

3.1 Abstract ................................................................................................................... 66 
3.2 Introduction ............................................................................................................. 67 
3.3 Results ..................................................................................................................... 69 
3.4 Discussion ............................................................................................................... 85 
3.5 Limitations of the Study .......................................................................................... 87 
3.5 Supplementary Data and Figures ............................................................................ 88 
3.6 Methods................................................................................................................... 97 
3.7 References ............................................................................................................. 100 

 

Chapter 4: Broader Thoughts ..................................................................................... 107 
4.1 Spatial Organization as a Window into Temporal Dynamics ............................... 107 
4.2 Cellular Oscillators in Tissue Organization .......................................................... 110 
4.3 The Sertoli-germ association across evolutionary timescales .............................. 113 

 



 viii 

Table of Figures 
Chapter 1 
Figure 1: Principles and workflow of seqFISH+ ............................................................. 5 
 
Chapter 2 
Figure 1: SeqFISH+ resolves 26 major cell types at single-cell resolution in wildtype 
Mouse ................................................................................................................................ 18 
 

Figure 2: A tubule-level analysis reveals the temporal architecture of the seminiferous 
epithelial cycle. ................................................................................................................. 23 
 

Figure 3: Sertoli Cells display a cyclic transcriptional profile synchronized with the 
seminiferous epithelial cycle. ............................................................................................ 28 
 

Figure 4: Sertoli cells are the only somatic cells synchronized with the seminiferous 
epithelial cycle. ................................................................................................................. 31 
 

Figure S1: Validation and characterization of SeqFISH+ measurements in adult 
mouse testes. ..................................................................................................................... 35 
 

Figure S2: Validation of cell-types identified and spatial locations. ............................... 38 
 

Figure S3: Expression profiles of Stem Cells and Early Spermatogonia. ....................... 40 
 

Figure S4: A Modified Moran’s I for Cyclic Parameters shows that Tubule 
Stages/Angles are organized randomly in testis cross sections ........................................ 41 
 

Figure S5: Order, Angle, and Stages for Tubules. ........................................................... 43 
 

Figure S6: Overall Population Dynamics and Visualization of Tubule Stages and 
Compositions. ................................................................................................................... 45 
 
Chapter 3 
Figure 1: Sertoli cells independent of germ cells maintain a cyclic transcriptional 
Profile ................................................................................................................................ 72 
 

Figure 2: Sertoli cells independent of germ cells retain intra-tubular synchronization 
but inter-tubular desynchronization. ................................................................................. 77 
 

Figure 3: Sertoli Cells present an innate retinoic acid cycle and transcriptional 
machinery for oscillations that coordinates with signaling from germ cells .................... 83 
 

Figure S1: Validation and characterization of seqFISH+ measurements in adult 
mouse testes treated with Busulfan. .................................................................................. 88 
 

Figure S2: Topological analysis of Sertoli cells in Busulfan datasets. ............................ 90 
 

Figure S3: Gene expression across downregulated pathways between Sertoli cells in 
Untreated and Busulfan conditions. .................................................................................. 92 
 

Figure S4: Ligand-Receptor interactions across Germ cells and Sertoli cells. ................ 93 
 

Figure S5: Conserved TF network and Extended Signaling Heatmaps. .......................... 95 



 1 

Chapter 1: Motivations 
 

 

The organization of biological systems is inherently spatial. From the precise 

arrangement of proteins within a cell, to the intricate patterning of organs in developing 

embryos, life depends on the careful positioning of molecules, cells, and tissues across 

space. This spatial organization is not merely a consequence of biological processes but 

rather a fundamental principle that enables and directs them. Understanding how cells and 

tissues achieve and maintain spatial organization, and how this organization in turn shapes 

their function, represents a central challenge in biology. This chapter explores three key 

aspects of this challenge. First, we examine how spatial organization directs biological 

processes across scales, from molecular gradients to tissue architecture. Second, we review 

emerging technologies that enable comprehensive mapping of gene expression within 

spatial contexts. Finally, we explore how spatial patterns can encode temporal information, 

particularly in tissues with repetitive developmental programs. This foundation sets up our 

investigation of the mouse seminiferous epithelium, where spatial organization provides a 

unique window into the temporal dynamics of spermatogenesis. 

 
 
 
1.1 Spatial Organization in Biology  

 

Spatial organization in biological systems emerges through the interplay of 

molecular signals, physical forces, and cellular behaviors. Across various biological 

systems, spatial dimensions establish physical constraints that enable the formation of 

localized microenvironments. These microenvironments compartmentalize cellular 

processes and leverage localized signals, concentration gradients, and mechanical forces 

to direct cellular behavior and tissue organization. 

 

The power of spatial organization in directing biological processes is perhaps best 

illustrated in development. In the Drosophila embryo, for instance, the discovery of 
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transcription factor gradients, such as that of Bicoid, revealed how positional information 

can direct embryogenesis. By forming a concentration gradient along the embryonic 

anterior-posterior axis1,2, Bicoid provides positional information that becomes 

progressively integrated through cross-regulatory interactions between gap genes, 

converting continuous gradient information into discrete transcriptional states3. These 

states demarcate boundaries between cells of different fates, reflecting an underlying 

temporal progression of developmental commitment. Similar principles operate in 

vertebrate development. In the vertebrate neural tube, for instance, Sonic Hedgehog (Shh) 

forms a ventral-to-dorsal gradient that spans several hundred micrometers and specifies 

distinct neuronal subtypes4. Here, unlike the relatively simple Bicoid gradient, cells 

respond not just to the amplitude of Shh signaling, but also to the duration of exposure — 

a temporal integration of signal and transcriptional response5. The interpretation of these 

morphogen gradients can be further modulated by tissue geometry and mechanical 

constraints which can influence both the distribution and response to these signals, for 

example in the case of follicle patterns in birds6. In vertebrate limb development, spatial 

gradients can span even larger distances - up to several millimeters - with Shh from the 

zone of polarizing activity forming a gradient that patterns digit identity. Despite these 

differences in scale and complexity, the fundamental principle remains the same: spatial 

information, encoded in molecular gradients or localized signals, can provide positional 

cues that guide cell fate decisions. 

 

In adult mammalian tissues, spatial organization continues to play a crucial role, 

though often operating at different scales and in more specialized contexts. The intestinal 

crypt-villus axis provides a striking example, where the ~250–300μm structure maintains 

precise spatial positioning of cells through carefully regulated signaling gradients. Wnt and 

Notch signals are spatially restricted to the crypt base, maintaining stem cells and directing 

their differentiation as they move up the crypt axis7. The hematopoietic system 

demonstrates similar principles in a different architectural context, with stem cell niches 

organized around specialized stromal structures that create local microenvironments 

through short-range signals8. In the liver, metabolic zonation along the ~400μm portal-

central axis creates distinct functional zones through gradients of oxygen, nutrients, and 
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hormones9. Across these adult tissues, the same conceptual thread emerges: where a cell 

resides profoundly influences what the cell becomes and how it behaves. 

 

1.2 Spatial Transcriptomics Tools  
 

Recognizing that spatial context underlies cell fate and function, the development 

of new technologies capable of capturing these patterns in situ is particularly exciting. 

While traditional transcriptomics methods, bulk or single-cell RNA-seq, require tissue 

dissociation thereby losing all spatial information, spatial transcriptomics preserve and 

leverage this contextual information.  The evolution of these methods reflects a journey 

from single-gene visualization to comprehensive spatial profiling of the whole 

transcriptome.  

 

The foundation of spatial transcriptomics lies in the development of single-

molecule fluorescence in situ hybridization(smFISH), which achieves close to 100% 

detection efficiency of single RNA transcripts using fluorophore labeled 

oligonucleotides10. However, the constraints of available fluorescence channels (typically 

limited to 4–5), initially limited simultaneous gene detection.  Sequential FISH (seqFISH) 

overcame this limitation through an elegant solution relying on unique barcodes for each 

RNA species through sequential rounds of hybridization11,12. Because RNA molecules 

remain fixed in position throughout imaging, multiple rounds of hybridization can build 

temporal barcodes that identify specific transcripts. This innovation dramatically expanded 

the number of genes that could be detected, as the number of possible barcodes scales 

exponentially with hybridization rounds. 

 

 Further refinements led to seqFISH+ which solved key technical challenges, 

particularly the optical crowding that occurs when imaging many RNA molecules in dense 

tissues13. The method addresses this challenge through a clever strategy: instead of trying 

to detect all genes simultaneously, it images just a subset of genes in each round of 

detection. Specifically, seqFISH+ first hybridizes primary probes to all genes of interest, 

but then sequentially detects different subsets of these genes across multiple rounds. By 
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spreading the detection across multiple rounds and combining these signals 

computationally, the method can achieve high-density imaging while avoiding optical 

crowding. The detection process works through iterative rounds of fluorescent probe 

hybridization, imaging, and probe removal (Figure 1). In each cycle, fluorescent readout 

probes bind to a specific subset of the primary probes, these signals are imaged, and then 

the readout probes are removed while the primary probes remain bound. By repeating this 

process multiple times with different readout probes, a unique temporal sequence of 

signals, essentially a "barcode," is built up for each gene. Since the RNA molecules remain 

fixed in place throughout imaging, these temporal barcodes can be mapped back to specific 

spots in the tissue, providing both the identity and location of each transcript.  

 

Through this approach, seqFISH+ can profile thousands of genes simultaneously at 

single-molecule resolution while preserving spatial information, enabling detailed maps of 

gene expression within intact tissue architecture13. By combining this molecular 

information with cellular boundaries identified through imaging, seqFISH+ achieves true 

single-cell resolution - allowing the assignment of transcripts to individual cells while 

maintaining their spatial context. This unprecedented spatial and molecular resolution 

opens new possibilities for investigating tissue organization. Most importantly, seqFISH+ 

enables the study of how cells within the same region co-vary in their expression patterns, 

revealing potential communication networks and interdependent cellular behaviors. For 

example, one might discover that a subset of injured endothelial cells expresses specific 

ligands whose receptors are predominantly found in closely adjacent fibroblast cells, 

illuminating a key cell–cell communication pathway14.  
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Figure 1: Principles and workflow of seqFISH+. Primary oligonucleotide probes(24 – 

36 per gene) against genes of interest are hybridized in tissue. Overhang sequences on each 

of the primary probes correspond to four rounds of barcoding (I – IV). An eighth of the 

genes in each fluorescent channel are labeled by readout probes in each pseudocolor 

hybridization, lowering the density of transcripts in each image. Individual mRNA are 

detected with subpixel resolution using gaussian fitting of the fluorescent dots. The 

transcript identity is then decoded by co-localizing dots across hybridization rounds and 

decoding the unique barcode sequence. Adapted from Chee-Huat et al. 2019 13. 

 

Beyond seqFISH, other spatial transcriptomics platforms have emerged with 

different strengths and trade-offs. For instance, spot-based array approaches, including 

10X Genomics Visium and Slide-seq15,16, capture and sequence transcripts in situ by 

hybridizing tissue sections onto spatially barcoded arrays. While these methods have much 

coarser spatial resolution (on the order of tens of microns), they can survey the entire 

transcriptome across large tissue sections in a high-throughput manner. Meanwhile, in situ 

sequencing technologies, such as FISSEQ and STARmap, perform cyclic sequencing 

reactions of RNAs directly on tissue sections17,18. These approaches can achieve single-

molecule resolution for detailed spatial readouts but often require more complex protocols, 

can be limited by short read-lengths, and can suffer from low efficiency - underscoring 

inherent trade-offs between resolution, throughput, and technical complexity across 

platforms.   
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The emergence of these spatial technologies represents a fundamental advancement 

over traditional RNA sequencing methods that rely on tissue dissociation and thus lose 

crucial spatial information. By preserving the native organization of cells, these spatial 

transcriptomic methods allow us to address complex questions at a systems level: How do 

signals propagate through tissues during development or regeneration? How do cells 

coordinate their behaviors across space to drive tissue-level functions? And how do stem 

cells and their progeny arrange themselves to shape overall tissue organization? By 

capturing gene expression within intact tissue architecture, spatial transcriptomics now 

empowers us to tackle these questions, offering unprecedented insights into how cells 

communicate, interact, and self-organize, ultimately enriching our understanding of 

complex biological systems. 

 

1.3 Decoding Temporal Dynamics from Spatial Organization 
 

Spatial patterns may encode more than just static view of positional information. 

Consider how molecules like Bicoid or Shh diffuse over time, or how short-range signals 

in a stem cell niche operate on minute-to-hour timescales. The geometry of these gradients 

and the distribution of cell states arise from dynamic processes. This raises a compelling 

possibility: can we decode temporal dynamics from spatial organization? 

 

This question taps into a rich history of thinking about pattern formation starting 

with Alan Turing’s seminal work on reaction-diffusion systems, which showed how spatial 

patterns can emerge and evolve over time from an initial random disturbance in a 

homogeneous startpoint19. Turing introduced the term “morphogen” in this context, 

referring to hypothetical chemical substances whose distribution and interaction could 

drive self-organization of a tissue into distinct spatial domains. Notably, this was well 

before the experimental discovery of actual morphogen molecules, like Bicoid and Shh, 

that operate through graded signals that specify cell fate.  Building on this insight, a spatial 

snapshot of a tissue then reflects a slice of time in the evolution of temporal dynamics. 

Furthermore, if cells in different regions are at different phases of a developmental 
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sequence, then analyzing these varying states might allow a reconstruction of the temporal 

progression without live imaging.  

 

In practice, this has been explored in single-cell RNA sequencing through 

algorithms that infer “pseudotime,” or the likely sequence of states that a cell traverses 

based on an inferred high dimensional trajectory20. These computational approaches 

leverage the asynchronous nature of biological processes — where cells in a population 

exist at different stages of development — to order cells along a continuous trajectory of 

gene expression changes. By connecting cells through their transcriptional similarities, 

these algorithms can reconstruct the sequence of molecular events that occurs as cells 

progress through development, even though each cell is only measured once21. A similar 

concept could apply to spatial transcriptomics, where distinct tissue regions that appear 

along a gradient can serve as inferred timepoints in a process that scales minutes to days. 

Such “decoding” of time from space raises intriguing possibilities. Instead of labor-

intensive time-lapse imaging, we might glean insights of the dynamic history of a tissue 

from a single, static sample. Furthermore, tissues often develop slowly and thus continuous 

tracking/imaging can be prohibitively complex. However, if spatial regions or gradients 

can reliably reflect the temporal ordering of events, then we can reconstruct, at least 

partially, how these events progressed. In essence each region/position becomes a snapshot 

of the same global timeline.  

  

Of course, there are many caveats with trying to decode temporal dynamics from 

spatial organization. Not all tissues exhibit a gradient based arrangement, and the 

assumption that each spatial region correlates with a specific time point may break down 

if cells move around extensively or if local feedback loops create discontinuous 

microenvironments. Moreover, certain signaling processes might be masked by 

heterogenous tissue architectures or by overlapping temporal and spatial cues that are 

difficult to disentangle without additional data. Nevertheless, in tissues where 

morphological constrains channel differentiation and produce repetitive patterns, spatial 

transcriptomics can function as a powerful time-mapping tool.  
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For a tissue to serve as an effective model to see if spatial transcriptomics can serve 

to model time from space, it ideally exhibits several characteristics. First, it should contain 

multiple, discrete “units” or regions that exist at distinct stages of a repeated developmental 

trajectory or cycle, thereby allowing a single snapshot to capture multiple points along a 

temporal trajectory. These “units” must be readily interpretable — whether it is a gradient, 

an array of discrete compartments, or any repeatable pattern. Second, cells within these 

“units” should exhibit minimal long-range cell migration, ensuring that a spatial snapshot 

remains representative of different developmental timepoints rather than blurred by 

extensive cell movement. Finally, having at least a broad understanding of the tissue’s 

developmental stages or known markers supports the validation of any inferred timeline.  

 

While several tissues meet these criteria — for example the embryonic kidney, 

intestinal crypt-villus axis, and hair follicles — the seminiferous epithelium of the testis 

stands out for its especially clear periodic organization of germ cell differentiation. Here, 

each cross section a testis contains tubule cross sections, each representing distinct and 

independent timepoints of the seminiferous epithelial cycle, the cycle of male germ cell 

development. In this thesis, we show how spatial transcriptomics can resolve the precise 

temporal dynamics of the seminiferous epithelial cycle22. Furthermore, leveraging spatial 

information to study co-varying transcriptional patterns yields key insights into a clear 

dynamic synchronization between cell-types along the cycle. Finally, with this 

understanding of the system, guided perturbations start to reveal innate programs that may 

organize the tissue fundamentally22. 

 

 

1.4 Closing Remarks 
 

In summary, spatial transcriptomics holds the promise of recovering not only 

positional but also temporal information from static tissue samples. Tissues that feature 

repeated, distinct developmental stages — coupled with minimal cell migration and known 

morphological markers — are particularly conducive to this approach. The mouse testis 

epitomizes these criteria, offering a naturally asynchronous but well-defined cycle of germ 

cell differentiation. In the next chapters, we present a spatially resolved, high-throughput 
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transcriptomic analysis (via seqFISH+) of the seminiferous tubules, demonstrating how 

spatial patterns can be harnessed to 1) reconstruct the precise temporal dynamics of the 

seminiferous epithelial cycle, and 2) uncover synchronized cellular behaviors among germ 

and somatic lineages. 
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Chapter 2: Resolving the temporal architecture of the seminiferous 

epithelial cycle using spatial transcriptomics 
 
 

2.1 Abstract 
 

Spermatogenesis in mammals occurs through the seminiferous epithelial cycle, a 

precisely orchestrated process of germ cell development that repeats along each 

seminiferous tubule. Although the stages of the process have been characterized 

histologically, the full transcriptional landscape underlying this cycle, and how somatic 

cells participate, remains incompletely understood. Here we demonstrate how spatial 

transcriptomics can decode the temporal architecture of this developmental process. Using 

RNA seqFISH+, we profiled 2,638 genes at single-molecule resolution in over 216,000 

cells from adult mouse testis, identifying 26 major cell populations spanning the complete 

spectrum of germ cell differentiation and supporting somatic cells. By analyzing the 

transcriptional profiles of individual tubule cross-sections, we found that these spatial units 

form a circular topology in gene expression space. This topology precisely maps to the 12 

stages of the seminiferous epithelial cycle since each tubule cross-section captures a 

distinct temporal state. Strikingly, among all somatic cell types, only Sertoli cells exhibited 

a synchronized cyclic expression program with the seminiferous epithelial cycle. These 

findings establish a powerful framework for extracting temporal information from spatially 

organized tissues and reveal how supporting cells align their transcriptional programs with 

tissue-level developmental processes. 
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2.2 Introduction 
 

Spermatogenesis is the highly orchestrated, complex process that involves the 

transition of diploid spermatogonia into haploid spermatozoa, the male gametes essential 

for sexual reproduction. This intricately regulated process occurs within the seminiferous 

tubules of the testis and involves multiple stages of cellular differentiation, meiosis, and 

morphological remodeling. Each stage is marked by a unique set of cellular events and 

gene expression profiles, the regulation of which is still not fully understood. 

 

Recent advancements in single-cell RNA sequencing technologies have unveiled 

the transcriptional landscapes during spermatogenesis, illuminating marker genes and 

transient states pivotal to the process1–4. Yet, scRNA-seq is not without its limitations with 

tissue dissociation often resulting in a selective loss of cell types, particularly somatic cells 

in the testes. Moreover, while scRNA-seq excels in capturing transcriptional states, it 

surrenders information on the spatial cellular organization and relationships within the 

seminiferous tubules — a critical component when examining spermatogenesis. This 

spatial dimension, characterized by intricate geometries along two principal axes, plays a 

pivotal role in guiding cell-cell interactions, providing positional cues, and ensuring the 

systematic progression of differentiation. 

 

Within the context of the seminiferous tubules, the phases of germ cell 

differentiation are separated along two principal axes. The first, the seminiferous epithelial 

cycle, exhibits a laminar differentiation geometry; in a cross section of seminiferous tubule, 

stem cells and spermatogonia are positioned along the basement membrane and as these 

cells differentiate, they move towards the central lumen, transitioning through various 

stages of development 5,6. This arrangement mirrors laminar differentiation geometry 

found in other tissues such as the skin interfollicular epithelium, the dentate gyrus of the 

hippocampus, and the retina7–9. The key stages of germ cell differentiation, including stem 

cell commitment, meiosis initiation, translocation from the basal to adluminal 

compartment, and spermiation, are coordinated by periodic signaling through retinoic 
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acid10. In mice, this entire cycle takes ~8.6 days and is divided into twelve stages, I to XII, 

and is defined by combinations of different cell types of maturing germ cells5.  

 

A second principal axis of differentiation exists along the length of a seminiferous 

tubule, known as the spermatogenic wave. Here, the twelve stages of the periodic 

seminiferous epithelial cycle are organized in a sequential and periodic manner along the 

length of a seminiferous tubule, forming a wave-like pattern 11,12. This organization ensures 

the staggered and continuous production of mature sperm, underscoring the importance of 

spatial coordination in this intricate process. While the spermatogenic wave in rodents 

appears as successive stages of the epithelial cycle along the seminiferous tubule, the 

process is organized in more complex configurations in other species13. Nevertheless, the 

existence of the seminiferous epithelial cycle and the spermatogenic wave has been 

demonstrated in all amniote species examined, including humans14. Therefore, these spatial 

geometries are key conserved elements of spermatogenic regulation and play an important 

role in male fertility. 

 

This precise spatial organization, where each tubule cross-section represents a 

distinct stage of the cycle, makes the seminiferous epithelium an ideal system for studying 

the relationship between spatial and temporal information. The spatial organization of the 

seminiferous tubules presents a unique opportunity to decode temporal dynamics from 

spatial information. This approach of inferring time from space has precedent in 

developmental biology, where spatial patterns often reflect temporal progression. For 

instance, in the developing neural tube, the spatial distribution of cells along the dorsal-

ventral axis reveals the temporal sequence of neuronal specification15. Similarly, in the 

intestinal crypts, the spatial position of cells along the crypt-villus axis mirrors their 

developmental timeline16. However, these systems often present challenges for temporal 

reconstruction due to continuous cell migration and complex feedback mechanisms. 

 

A recent endeavor in the realm of spatial transcriptomics captured this intricate 

spatial organization of spermatogenesis using Slide-seq, offering a resolution of 10uM17,18. 

While these studies shed light on the cellular compositions of spermatogonial 
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microenvironments and stage-dependent gene expression patterns, each bead would 

capture mRNA from 2–3 adjacent cells, and often different cell types, limiting the ability 

to truly analyze single-cell interactions. Moreover, these studies also did not capture the 

precise temporal architecture of the seminiferous epithelial cycle. 

  

Here, we apply seqFISH+, a method that resolves mRNA transcripts at a single 

molecule resolution, to adult mouse testis to study spermatogenesis. Using entire testis 

cross-sections, we systematically identified 26 cell types across 216,090 cells with 2638 

genes. Since each tubule cross section represents a distinct timepoint in the seminiferous 

epithelial cycle, we were able to reconstruct the complete temporal progression by mapping 

transcripts to individual tubules and computing their temporal order. At a high dimensional 

level, the tubules present a circular transcriptional topology, an expected feature of periodic 

transcriptional patterns. Analysis of somatic cells reveals that Sertoli cells exhibit a cyclic 

transcriptional profile closely synchronized with that of germ cells along the seminiferous 

epithelial cycle, while other somatic cells like peritubular cells and Leydig cells do not 

demonstrate such synchronization. 
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2.3 Results 

 
seqFISH+ identifies 26 major cell types in the adult mouse testis at a single cell 
resolution 
 

To study gene expression across the different cell types in the mouse testis, 

particularly within major signaling pathways, we identified 2638 genes encompassing a 

broad range of signaling pathways. This list included 1300 transcription factors and 

numerous cell-type specific markers (Methods). SeqFISH+ was performed on testis cross 

sections from two 8-week-old adult C57BL/6 mice. In total, we decoded >120m transcripts 

across 216,090 cells, at an average of 494.8 counts/cell. Furthermore, the data showed high 

reproducibility between batches (r = 0.98) (Figure S1A) and a strong correlation with bulk 

RNA seq data of adult mouse testes (r = 0.82) (Figure S1B). Across both batches, the mean 

false positive rate was 0.60% (Fig. 2S1C,D,E). 

  

For cell segmentation we used Concanavalin A(conA), a lectin that selectively 

binds to cell membrane glycoproteins a-mannopyranosyl and a-glucopyranosyl, thereby 

enabling accurate identification of cell membranes (Methods). To obtain cell segmentation 

masks we trained a Cellpose 2.0 model to use both conA and the DAPI stains to obtain 

precise cell segmentation masks 19,20 (Figure S2C and Methods). Transcripts were then 

assigned to each cell based on the cell-masks. 

  

After performing preprocessing and clustering steps (Methods), a UMAP 

projection revealed a continuum of germ cell populations alongside distinct clusters 

representing somatic cell types (Figure 1B, S1H). Using previously identified cell-type 

markers, we successfully identified all major germ cell populations covering the full 

developmental spectrum, in addition to all major somatic cell populations (Figure 1D). 

Notably, the extensive dataset allowed us to identify subcategories within undifferentiated 

spermatogonial stem cell populations (SSCs) (Fig. 1D, S3). These included SSCs primed 

for differentiation, as indicated by the expression of genes including Neurog3, Sox3, and 

Sall1. We also identified SSCs primed for self-renewal, marked by Gfra1 expression. 

Additionally, we identified SSCs with an intermediate expression profile, suggesting a 
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transitional state between renewal-primed and differentiation-primed states, a finding that 

aligns with our recent study21. Importantly, our dataset uniquely captured a broad range of 

somatic cell types, including Sertoli, Leydig, peritubular, macrophages, endothelial, and 

perivascular cells, which are often underrepresented in scRNA-seq datasets. 

  

By mapping cell-type identities back to their spatial coordinates, we observed a 

strong concordance between cellular identity and expected anatomical location (Figure 1C, 

S2B). For instance, spermatogonia including SSCs were consistently localized at the tubule 

border, while spermatocytes were found in the adjacent layer. Round spermatids were 

found in the following inner layer, and elongated spermatids showed closest localization 

to the tubular lumen. Alongside the stem cells and spermatogonia, Sertoli cells were 

interspersed along the basement membrane, with peritubular cells delineating the tubule 

border. Finally, in the interstitial spaces we found somatic cells including macrophages, 

Leydig, perivascular, and endothelial cells. In rare instances we also found examples of T-

cells, all restricted to the interstitial spaces. Thus, our dataset not only enabled the 

identification of all major cell types but also facilitated the delineation of previously 

unappreciated subtypes, all while mapping these cells to their precise anatomical locations. 

  

When viewing all cell types across the full testes cross section, it became evident 

that each individual tubule possesses a distinct cellular composition (Figure 1C). This 

variability aligns well with the concept that each tubule-cross section represents a unique 

stage of development thereby echoing the established dynamics of the seminiferous 

epithelial cycle. For example, tubules that were identified to be at Stage VII–VIII based on 

expression of Stra8 and DAPI nuclear morphology, showed presence of early 

differentiating spermatogonia, preleptotene spermatocytes, pachytene spermatocytes, and 

elongating spermatids. In contrast, tubules at Stage I–III showed the presence of early 

round spermatids, a hallmark of these stages. Thus, each tubule manifests a characteristic 

stage of differentiation that is consistent with the seminiferous epithelial cycle. 
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Figure 1: SeqFISH+ resolves 26 major cell types at single-cell resolution in wildtype 

mouse (A) Experimental workflow: Fresh frozen cross-sections of 8-week-old adult 
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Figure 1 (continued from previous page) mouse testes were imaged using seqFISH+ for 

a panel of 2638 genes. Primary probes hybridize directly to the complementary target RNA, 

and readout probes bind to the primary probe, resolving each RNA at a single-molecule 

resolution. Over 216,090 cells were identified. (B) Uniform Manifold Approximation and 

Projection (UMAP) visualization of integrated seqFISH+ datasets. Cluster colors are 

consistent with panel C. Germ cells form a continuum reflecting their differentiation 

trajectory, while somatic cells cluster separately. (C) A spatial map from a full testes cross 

section showing the locations of 26 different cell types identified by transcriptional profile. 

Stem cells and other spermatogonia were found along the basement membrane of the 

seminiferous tubules, while spermatocytes and spermatids were found to be organized 

laminarly towards the tubular lumen. Sertoli cells were found spaced out along the 

basement membrane of each tubule while Leydig cells, perivascular, and endothelial cells 

were found in interstitial spaces. Finally, two types of peritubular cells were identified 

forming the border of each tubule cross section. A detailed visual of each cell type is 

presented in Figure S2. (D) Marker genes for each of the identified cell types. Upper panel 

focuses on germ cell markers while the lower panel focuses on markers for the somatic cell 

populations. See Figure S1 and Figure S2 for additional data. 
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A tubule-level analysis reveals the temporal architecture of seminiferous epithelial 
cycle 
 

From our initial observation that each tubule cross-section has a distinct cellular 

composition, we deduced that individual tubule cross sections represent discrete time 

points along the seminiferous epithelial cycle. To explore this temporal architecture further, 

we aggregated transcript counts for each tubule to analyze our data at a tubule level (Fig. 

2B). Post-normalization and scaling (Methods), we found that the tubules organized into a 

circular transcriptional topology in PC space (Fig. 2D). This topology is reminiscent of 

other cyclic biological processes such as the cell cycle and circadian rhythm.  

 

To determine whether the circular transcriptional profile represents the entire 

seminiferous epithelial cycle, in which tubules cyclically transition from Stage I through 

Stage XII (Fig. 2A), we investigated the population dynamics of cells along this circular 

transcriptional profile. We first computed an ordering of the tubules using scPrisma, a 

package designed to find the order of cells along cyclic processes using topological priors22 

(Fig. S5B, S5C). These orderings were then converted to angles uniformly from 0 degrees 

to 360 degrees for a more universal metric, called ‘Tubule Angle’ (Methods) (Fig. S5B, 

S5D). Subsequently, we plotted the known cell-type populations of each tubule, derived 

from our spatial transcriptomics dataset, as a function of the Tubule Angle (Fig. 2F). We 

reasoned that if the circular transcriptional profile represents the seminiferous epithelial 

cycle, we would see sequential and predictable changes in the prevalence of different cell 

types corresponding to each stage of the cycle. For instance, we would expect a decline in 

spermatogonia populations, due to differentiation, to coincide with an increase in 

spermatocyte numbers. Similarly, tubules with round spermatids would be followed by 

those enriched for elongating spermatids.  

  

Indeed, our data corroborated these expectations precisely. A consistent germ cell 

ordering — from A1–A3 spermatogonia to elongated spermatid 14–16 — was evident 

along the tubule sequence (Fig. 2F). Importantly, each cell type displayed a correlated 

decrease in prevalence concomitant with a rise in its immediate derivative cell type. This 
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pattern held true across all stages of cell differentiation and maturation, demonstrating a 

continuous, stepwise progression along the tubule ordering. 

  

Having established that the order of tubules in PC space represents the seminiferous 

epithelial cycle, we next sought to align these with classical stages, I–XII. First, we 

explored whether our testis cross-sections displayed any bias for specific tubule stages by 

quantitatively measuring spatial autocorrelation using a modified Moran’s I for cyclic 

parameters (Fig. 2C, Fig. S4, Methods). Consistent with histological observations 11,23, we 

found that tubule stages are not organized spatially in a testis cross section. Specifically, 

we found that the observed Tubule Angles were random with respect to the whole testis 

cross section, presenting robust evidence for the lack of global inter-tubular 

organization(Fig. 2C, Fig. S4). Thus, each tubule cross section represents a random discrete 

time point along the seminiferous epithelial cycle. 

 

Given our large sample size of 337 tubule cross sections, we quantitatively 

validated that moving averages would reliably estimate the true temporal dynamics of the 

seminiferous epithelial cycle (Fig. S4F). Using known frequencies and timescales of each 

stage6 (Fig S5B, S5E), we mapped back our Tubule Angles to stages, validated by DAPI 

nuclear morphology(Fig. S6B), and found precise consistency between cell population 

dynamics and the known dynamics of seminiferous epithelial cycle (Fig. 2F). For instance, 

at stage VII we see the impact of retinoic acid causing: 1) the commitment to differentiation 

and the rise in Kit+ A1–A3 spermatogonia; and 2) commitment to meiosis and the rise of 

Stra8+ preleptotene spermatocytes. As another example, at stage I we see the rise of 

populations of pachytene spermatocytes and round spermatids. Finally, our analysis 

suggests that four complete cycles of the seminiferous epithelium are required to transition 

from A1–A3 Spermatogonia to mature elongated spermatids, in perfect agreement with 

longstanding literature (Fig. 2E)11,24. Overall, all staging and cell type populations mapped 

precisely to known populations of the seminiferous epithelial cycle, and an overall 

schematic is shown in Figure S6A. 
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Notably, we were able to profile the population dynamics of SSCs across the 

different subtypes identified: renewal-primed (Zbtb16+, Sox3-, Sall3-, Gfra1+), 

differentiation-primed (Zbtb16+, Sox3+, Sall3+, Gfra1-), and the transitional/other stem 

cell populations (Zbtb16+, Sox3+, Sall3+, Gfra1+) (Fig. 2F, Fig S3A-H). We found that 

differentiation-primed SSCs increased from stage IX to VII but sharply declined at stage 

VII — coinciding with retinoic acid presence — and were replaced by Kit+ A1–A3 

spermatogonia (Fig. 2F). Renewal-primed SSCs remained stable at ~2 cell/tubule cross-

section, unaffected by retinoic acid, with slight increases from stage XII to I. 

Transitional/other SSCs, exhibiting both self-renewal and early differentiation markers, 

were relatively stable but also decreased at stage VII suggesting a potential impact of 

retinoic acid on the transition of stem cells between renewal and differentiation-primed 

states. These stage-dependencies show striking agreement with cell type distribution of 

SSCs defined by protein expression21, indicating the transcriptional states faithfully capture 

the phenotypes in these cells.  
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Figure 2: A tubule-level analysis reveals the temporal architecture of the seminiferous 

epithelial cycle. (A) Visualization of the seminiferous epithelial cycle. Along each 

seminiferous tubule, stages of the seminiferous epithelial cycles are represented 

periodically (I–XII). As time passes, each cross section of the tubule progresses through 

the seminiferous epithelial cycle. (B) Transcripts per tubule were mapped based on tubule 

masks and the resulting tubule x gene matrix was analyzed. (C) A modified Moran’s I for 

cyclic parameters, Icyclic, was used to evaluate whether Tubule Angle was spatially 

organized across testis cross sections. For both replicates, the tubule organization was 

found to be within random range, with an Icyclic =-0.004 and 0.054 for each replicate, 

respectively.  (D) Principal component analysis showed a circular transcriptional profile in 

PC1 and PC2, which was found to be representative of the cyclic process of the 

seminiferous epithelial cycle. (E) Approximately 4 cycles of the seminiferous epithelial 
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Figure 2 (continued from previous page): cycle are required for stem cells to mature into 

spermatids. A UMAP representation of the full dataset shows the 4 cycles of the 

seminiferous epithelial cycle, with cells colored by their corresponding tubule stage. (F) 

Cell counts per tubule, mean +/- SEM, for each cell type along each cycle of the 

seminiferous epithelium. Four complete cycles are required for stem cells to mature into 

spermatids. See Figure S4, Figure S5, and Figure S6 for additional data. 
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Sertoli Cells display a dynamic transcriptional profile linked to the seminiferous 
epithelial cycle 
 

Mammalian testes are characterized by a complex cellular landscape, consisting of 

a diverse repertoire of both germ cells and somatic cells. While the classical staging of the 

seminiferous epithelial cycle has primarily focused on the developmental stages of germ 

cells, our understanding of the transcriptional dynamics of somatic cells through the cycle 

remains poorly characterized. 

  

When Sertoli cells were clustered independently of germ cells, we observed a 

circular transcriptional profile in the gene expression space, which strikingly resembled the 

cyclical nature observed in the seminiferous epithelial cycle. Furthermore, by mapping 

these Sertoli cells backs to their respective Tubule Angle — based on their physical 

location within individual tubules — we found a high degree of congruence between the 

circular manifold and the Tubule Angle (Fig. 3A). This shows that the transcriptional 

landscape of Sertoli cells is intricately linked to the stages of the seminiferous epithelial 

cycle (Fig. 3B), consistent with lines of evidence that have noted stage-dependent 

expression in Sertoli cells 1,17,25–29. The clear cyclical expression profile observed in our 

dataset was uniquely captured due to the unbiased sampling of Sertoli cells across all stages 

of the cycle. Unlike traditional single-cell approaches where the complex branched 

architecture of Sertoli cells makes them particularly vulnerable to damage during tissue 

dissociation, resulting in their significant underrepresentation in single-cell datasets 1,4, our 

spatial method preserves their architecture and enables comprehensive profiling spanning 

thousands of cells in each replicate. 

  

To further characterize this dynamic expression landscape of Sertoli cells, we 

explored the gene expression profile as a function of Tubule Angle/stage of the 

seminiferous epithelial cycle. Among the 2638 genes profiled in our study, over 700 genes 

displayed dynamics visibly tied to the seminiferous epithelial cycle (Fig. 3C, Fig. 4G, 

Supplementary Table 2). Importantly, many of these genes clustered into groups, 

suggesting the involvement of broad signaling mechanisms in these expression changes. 

  



 26 

Our Gene Ontology (GO) analysis revealed functional relevance to these 

dynamically expressed genes, implicating various types of cellular junctions (e.g., tight 

junction, cell-cell junction, anchoring junction) and morphological changes (e.g., 

lamellipodium, extrinsic component of membrane, cytoskeletal organization) and 

phosphorylation-based events (Fig. 3D,E). The dynamic expression of genes related to 

cellular junctions and extracellular matrix modifications reinforces the active role Sertoli 

cells play in supporting and guiding the spermatogenic process 30–32.  

 

Among genes related to junction activity, we found orthogonal expression in two 

pathways, Scribble and Par3/Par6/aPKC, that are reciprocally inhibitory and related to 

establishment of cell polarity. The Scribble polarity complex, a major basolateral polarity 

regulator composed of Scribble(Scrib), Discs Large(Dlg1, Dlg3), and Lethal Giant 

Larvae(Llgl1, Lgl2) were found to be expressed between stages II–VII (Fig. 3F). In 

contrast, expression of Par3/Par6/aPKC complex, known for conserved set of apical 

polarity factors including Pard6g, Pard6a, and Pard6b, part of the Par6 complex, and 

Prkcz, an aPKC member, were found to be expressed from stages VII–XI (Fig. 3F). This 

alternating pattern suggests a dynamic remodeling of the cellular junctions forming the 

blood-testis barrier (BTB). The expression of the Scribble complex proteins at earlier 

stages(II–VII) suggests a role in maintaining the basolateral domain, consistent with its 

role in epithelial cells 33,34. The subsequent expression of Par complex proteins from Stage 

VII coincides with the known period of BTB restructuring 30, likely driving the remodeling 

of tight junctions apically as seen in other systems 33,35. This temporal sequence would 

facilitate the migration of preleptotene/leptotene spermatocytes from the basal to adluminal 

compartment around stage IX, while preserving overall barrier integrity. Supporting this 

model, Cdc42, essential for activating the Par complex 33, and Magi proteins (Magi1, 

Magi3), crucial for proper localization of Par complexes apically36, were also expressed 

from Stage VII–XI(Fig. 3F). Following spermatocyte migration into the adluminal 

compartment, tight junctions are re-established at the basolateral domain driven at least 

partly by the Scribble pathway.  In addition, Arhgap17 (also Rich1), a Cdc42-specific 

RhoGAP37,38, is specifically expressed from stages III–VI (Fig. 3F), likely controlling the 

activity of Cdc42, maintaining junctions laterally39. This process creates a “treadmill-like” 
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movement of tight junctions that allow migration of spermatocytes while maintaining BTB 

integrity.  

 

To characterize the gene regulatory networks of Sertoli cells we identified 

transcription factors(TFs) and target genes that displayed enrichment of the respective 

binding motif and similar expression profiles40 (Fig. 3G, 3H). These TFs included marker 

genes such as Sox9, Gata4, Foxp1, among others. While some of these genes have been 

noted to display stage specific expression 41,25 , the precise role of these TFs is yet to be 

explored systematically. 
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Figure 3: Sertoli Cells display a cyclic transcriptional profile synchronized with the 

seminiferous epithelial cycle. (A, B) Sertoli cells were isolated and analyzed. In PC 
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Figure 3 (continued from previous page) space, the transcriptional profile showed a 

circular topology. When colored by the Tubule Angle and Tubule stage (stages being a 

discretized version of Tubule Angle) from which the Sertoli cells originated, the cyclic 

transcriptional topology appears to be synchronized with the seminiferous epithelial cycle. 

(C) All 2,638 genes expressed in Sertoli cells were clustered based on their expression 

profile along Tubule Angle/Tubule Stages. Many clusters (1–7) showed specific phase-

dependent expression patterns, while other clusters showed no phase-dependent patterns. 

(D) Example expression profiles of genes related to cell-cell junctions or extracellular 

matrix components in Sertoli cells from clusters 1–7 in subpanel C. 95% confidence 

intervals were evaluated by randomizing time points and determining the interval for noise. 

(E) Gene ontology analysis for the dynamic genes in clusters 1–7 showed enrichment in 

terms associated with junction complexes and extracellular matrix formation, such as cell-

cell junction, anchoring junction, tight junction, bicellular tight junction, and extracellular 

membrane components, among others. (F) Heatmap showing the cyclic expression patterns 

of genes related to the Scribble and Par3/Par6/aPKC polarity complexes in Sertoli cells 

across the seminiferous epithelial cycle. (G) The role of transcription factors on expression 

of target genes was evaluated using the Scenic pipeline40. Transcription factors with target 

genes with clear phase dependent expression were identified and summarized. (H) 

Examples of 4 regulons for transcription factors Bhlhe40, Smad3, Jun, and Rora. Each 

transcription factor and its respective target genes displayed phase-dependent expression 

patterns. The specific binding motif found to be enriched for the target genes specific to 

each transcription factor is also shown. 
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Sertoli cells are the only somatic cells precisely synchronized with the seminiferous 
epithelial cycle 
 

While Sertoli cells displayed a cyclic transcriptional profile that was clearly linked 

to the seminiferous epithelial cycle, we sought to uncover the degree of synchronization 

and whether other somatic cells shared similar synchronization. To quantify the correlation, 

we grouped somatic cell types and germ cells according to their associated or nearest 

tubules and then independently calculated and compared the tubule ordering for both 

groupings using scPrisma22 (Fig. 4A). The degree of correlation between these independent 

orderings quantifies the synchronization between each somatic cell type and germ cells at 

a broad topographic level.  

 

Our results showed that Sertoli cells were the only somatic cells that showed a high 

correlation between tubule orderings (Fig. 4B). Indeed, Sertoli cells showed a level of 

synchronization significantly greater than our null model, which was synchronized at a 

stage level. This suggests that Sertoli cells are precisely synchronized to the dynamics of 

the seminiferous epithelial cycle along a continuum, rather than limited to state transitions. 

In contrast, all other somatic cells including peritubular, Leydig, macrophage, perivascular, 

and endothelial cells, showed correlations comparable to our null model for 

unsynchronized behavior (Fig. 4B, Fig. 4E). 

 

We further quantified whether any genes in all somatic cell types displayed 

dynamics that were synchronized with the seminiferous epithelial cycle by comparing their 

expression profiles to our noise estimates, obtained from scrambling the time points (Fig. 

4F). Consistent with our previous findings, only Sertoli cells had genes that were 

synchronized with the seminiferous epithelial cycle while no genes were found to be 

synchronized in all other somatic cell types (Fig. 4G). 
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Figure 4: Sertoli cells are the only somatic cells synchronized with the seminiferous 

epithelial cycle. (A) Each somatic cell type was isolated and grouped by the tubule they 

were in or closest to. Similarly, germ cells were grouped by tubule. Using the scPrisma 

pipeline (Methods), the order of the tubules for the germ cell groupings and the somatic 

cell groupings were independently calculated and compared. The degree of correlation 

between the independent orderings quantifies the degree of synchronization between the 

somatic cell type and the germ cells at a topographic level. These independent orderings 

were computed one thousand times for each cell type. (B) Pearson circular correlation was 

computed between the independent orderings of each somatic cell type and germ cell 

groupings by tubule. Only Sertoli cells displayed a high correlation, exceeding the 

correlation for the null models expected for Unsynchronized and Synchronized by Stage 

phenotypes (p = 0.000, p = 0.000, respectively). On the other hand, all other somatic cell 

types, peritubular, peritubular2, Leydig, macrophage, perivascular, endothelial displayed a 

correlation that was not statistically different from the Null model for Unsynchronized 

behavior (p= 1.000, 0.998, 1.000, 1.000, 1.000, 1.000, respectively). (C) Example iteration 

of independent ordering of Sertoli cell groupings compared with independent ordering of 

germ cell groupings. (D) Example iteration of germ cell orderings compared  
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Figure 4 (continued from previous page): with null model for synchronization by stage. 

(E) Example iteration of germ cell orderings compared with Unsynchronized null model. 

(F) To evaluate the synchrony of specific genes, the 99% confidence interval of noise was 

computed by scrambling the time points (Tubule Angle) randomly. The true expression 

profiles were then compared to the profiles for noise to determine which genes displayed 

expression that were phase-dependent, or synchronized with the seminiferous epithelial 

cycle. An example of synchronized behavior and unsynchronized expression profiles 

compared to noise is shown. (G) Only Sertoli cells showed gene expression profiles outside 

the expected range of noise. 738 genes showed expression profiles characterized as 

synchronized to the seminiferous epithelial cycle. For all other somatic cell types no genes 

were found to be synchronized to the seminiferous epithelial cycle. 
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2.4 Discussion 

In this study, we demonstrate how spatial transcriptomics can be leveraged to 

decode temporal dynamics in tissue organization. By analyzing the transcriptional profiles 

of individual tubule cross-sections in the adult mouse testis, we reveal a circular topology 

in gene expression space that precisely maps to the seminiferous epithelial cycle. This 

finding establishes that each tubule cross-section effectively captures a distinct temporal 

state, providing a powerful approach for studying cyclic biological processes without the 

need for continuous live imaging or complex time-series experiments. 

Our ability to extract temporal information from spatial data relies on several key 

features of the seminiferous tubules. First, the random distribution of tubule stages across 

tissue cross-sections, which we confirmed through spatial autocorrelation analysis, ensures 

unbiased sampling of time points. Second, the relatively constrained movement of cells 

within the tubules maintains the fidelity of spatial patterns as temporal signatures. Third, 

the extensive prior characterization of the seminiferous epithelial cycle provided crucial 

validation of our temporal reconstruction. These properties may serve as important criteria 

when applying similar approaches to other biological systems. 

The high resolution of seqFISH+ enabled several advances over previous spatial 

transcriptomic studies of spermatogenesis. Beyond simply identifying cell types, we 

uncovered distinct substates within the stem cell population, including renewal-primed and 

differentiation-primed SSCs. The stage-specific dynamics of these populations align with 

recent protein-level analyses, suggesting that transcriptional states faithfully reflect 

functional phenotypes. Moreover, our ability to maintain intact tissue architecture allowed 

comprehensive profiling of Sertoli cells, which are typically underrepresented in 

dissociation-based methods. 

Perhaps our most striking finding is the precise synchronization between Sertoli 

cells and the seminiferous epithelial cycle. While previous studies have noted stage-

specific expression of individual genes in Sertoli cells1,25, our genome-wide analysis 

reveals that over 700 genes show coordinated cyclic expression. The temporal organization 
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of junction-related genes, particularly the alternating expression of Scribble and Par 

complex components, suggests a carefully orchestrated program of junction remodeling 

that facilitates germ cell migration while maintaining barrier integrity. This 

synchronization appears to be unique to Sertoli cells, as other somatic cell types showed 

no significant cyclic gene expression, highlighting the specialized role of Sertoli cells in 

coordinating the spermatogenic program. 

These findings raise intriguing questions about the mechanisms that maintain this 

synchronization. Do Sertoli cells actively coordinate germ cell development, or do they 

respond to signals from maturing germ cells? The cyclic expression of numerous 

transcription factors suggests an intrinsic regulatory program, yet the precise signals that 

entrain this program remain to be determined. Furthermore, the lack of synchronization in 

other somatic cells implies the existence of mechanisms that specifically couple Sertoli cell 

transcription to the seminiferous epithelial cycle. 

Beyond spermatogenesis, our work establishes a broader framework for extracting 

temporal information from spatial transcriptomic data. This approach may be particularly 

valuable for studying other cyclic processes or tissues with spatial gradients of 

differentiation, where continuous observation is impractical. The key will be identifying 

systems that, like the seminiferous tubules, maintain sufficient spatial organization to serve 

as reliable proxies for temporal progression. 

Looking forward, this ability to decode time from space opens new possibilities for 

studying tissue organization and cellular dynamics. By combining spatial transcriptomics 

with perturbation approaches, we can begin to dissect the mechanisms that coordinate cell 

behavior across space and time, advancing our understanding of how complex tissues 

maintain their intricate organization. 
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2.5 Supplementary Data and Figures 
 

Figure S1: Validation and characterization of SeqFISH+ measurements in adult 

mouse testes. (A) seqFISH+ counts per gene were highly reproducible, with a Pearson  
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Figure S1 (continued from previous page): correlation of 0.98 across the two replicates. 

(B) seqFISH+ counts per gene were consistent with measurements from bulk RNA-seq 

with a Pearson correlation of 0.82. (C) Visual representation of on- and off-target barcode 

counts in each cell. Off-target barcodes were those barcodes that did not map to any gene 

in the probe pool. Of the 3072 possible barcodes,  2622 mapped to genes while 450 mapped 

to unused barcodes and were considered off-target barcode counts. The median false 

positive rate for each cell was ~0.00% while the mean false positive rate was ~0.60%. (D) 

Counts across all barcodes. On target barcodes showed significantly higher barcode 

counts/cell than off-target barcodes. (E) Histogram showing on-target barcodes vs off-

target barcodes across both wildtype replicates. The false-positive rate, calculated by 

normalizing the available off-target barcodes in the codebook, was 0.50% in Replicate 1 

and 0.67% Replicate 2. In replicate 1, the total number of on-target and off-target counts 

were 56,206,237 and 47,868, respectively. In replicate 2, the total number of on-target and 

off-target counts were 70,662,837 and 80,102, respectively. (F,G) Total cells per cluster 

and counts/cell per cluster are shown. Clusters 16, 17, 18 represent Renewal Primed Stem 

Cells, Differentiation Primed Stem Cells, and Other Stem Cells, respectively. Clusters were 

ordered from 1 – 26, consistent with the order of cell types presented in Figure 1C. 

Specifically, Clusters 1, 2, 3, 4 represent A1–A3 Spg, A3–A4 Spg, In Spg, and B Spg, 

respectively. Clusters 5, 6, 7, 8, 9 represent Preleptotene, Leptotene, Zygotene, Pachytene, 

and Diplotene/Secondary Spermatocytes, respectively. Clusters 10, 11, 12 represent 

Round1–3, Round4–6, Round 7–8, respectively. Clusters 13,14,15, represent Elongating 

9–10, Elongating 11–13, Elongating 14–16, respectively. Finally, Clusters 19,20,21,22, 23, 

24, 25, 26 represent Sertoli, Peritubular, Peritubular 2, Leydig, Endothelial, T-Cell, 

Perivascular, and Macrophages, respectively. (H) Uniform Manifold Approximation and 

Projection (UMAP) of integrated seqFISH+ datasets. Cluster colors are consistent with 

definitions from subfigure F and G. Germ cell clusters are grouped along a continuum 

consistent with the path of differentiation while Somatic cells cluster separately. (I) 

seqFISH+ clusters were compared with clusters from those obtained in a single-cell RNA-

seq study1. Pearson correlations between cluster averages showed consistent cell-type 

definitions. A previously unknown cluster from the scRNA-seq dataset shows mapping to 
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the two Peritubular types. (J) A heatmap of the scaled expression of cell-type marker genes 

across all seqFISH+ clusters. 
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Figure S2: Validation of cell-types identified and spatial locations. (A) Stitched DAPI 

images of two biological replicates showing full wildtype testis cross-sections used for  
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Figure S2 (continued from previous page): seqFISH+ analysis. Replicate 1 covered 271 

positions while Replicate 2 covered 223 positions. Scale bar: 200 μm.  (B) Spatial maps of 

identified cell types across different stages of spermatogenesis and supporting cells. From 

top to bottom: stem cells, spermatogonia, spermatocytes, round spermatids, elongating 

spermatids, and somatic cells (Sertoli, Leydig, and Peritubular cells). Each colored dot 

represents a cell, with the color corresponding to the cell type or stage as indicated in the 

legend. Spatial maps corresponded precisely with identified cell types. (C) Validation of 

cell segmentation. Top: DAPI staining showing nuclei. Middle: Concanavalin A membrane 

staining. Bottom: Generated masks from the using a Cellpose 2.0 custom-trained model, 

with colors corresponding to different cell types as indicated in the legend. (D) Validation 

of marker genes for different cell types and stages. From top to bottom: stem cells and 

spermatogonia, spermatocytes, round and elongating spermatids, and somatic cells. Marker 

genes are listed for each cell type/stage and correspond to the colored dots in the images. 

(E) Quantification of cell area by cell type, showing the distribution of cell sizes across 

different stages of spermatogenesis and supporting cell types. The x-axis shows cell area 

in μm², and the y-axis lists cell types/stages. 
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Figure S3: Expression profiles of Stem Cells and Early Spermatogonia. (A) UMAP 

projection of different stem cell types and early spermatogonia. (B-G) Marker gene 

expression shown in UMAP plots. Zbtb16 is a general stem cell marker. Gfra1 is a marker 

for stem cells primed for renewal. Sall1 and Sox3 are markers for stem cells primed for 

differentiation. Sox3 shows continued expression into A1–A3 Spg stages. Kit and Stra8 

mark the commitment towards the spermatogenesis differentiation pathway, expressed in 

A1–A3 Spg from Stage VII–VIII. (H) Heatmap of additional marker genes shown across 

all stem cells and A1–A3 Spg. 
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Figure S4: A Modified Moran’s I for Cyclic Parameters shows that Tubule 

Stages/Angles are organized randomly in testis cross sections. (A, B) Two wildtype 

replicates of testes are shown with tubules colored by Tubule Angle. (C) A modified 

Moran's I, Icyclic, was developed to analyze the spatial autocorrelation for the cyclic 

parameter, tubule angle. Details on the derivation are provided in Methods. (D, E) The 

observed Moran's I for each replicate was compared with the distribution of Moran's I 

values if tubule angles were assigned randomly across all tubules. The observed Moran's I 

fell within the distributions for random assignment. Furthermore, the values for Moran's I 

were close to zero (-0.004 and 0.054, p values: 0.875, 0.167, respectively), providing strong 

evidence that Tubule Angles/Stages are organized randomly in testis cross sections. (F) 

Because tubule angles observed are spatially randomly organized in testes cross sections, 
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Figure S4 (continued from previous page): each tubule cross section represents a random 

distinct time point in the seminiferous epithelial cycle. Using a windowed moving average 

of 30 time points, 337 random time points along the ~208-hour seminiferous epithelial 

cycle can precisely recapitulate the true temporal dynamics. (G-H) Example cross sections 

with tubule angles randomized with computed Icyclic values.  
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Figure S5: Order, Angle, and Stages for Tubules. (A) The counts and genes/tubule 

across 337 wildtype tubules are shown. On average, counts equaled 271,302 while mean 

genes detected was 2343. (B) The order of tubules was determined using the de-novo cyclic 

pipeline  in scPrisma22. After establishing the cyclic order, we converted these orders to 

Tubule Angles evenly distributed across 0–360 degrees. This conversion from Order to 

Angle is justified and appropriate based on our demonstration of random organization of 

tubules across testis cross-sections, which we established using spatial autocorrelation 

analysis(Figure S4 and Modified Moran's I section). Tubules Stages were then assigned 

based on previously characterized frequencies11 and validated through analysis of cellular 

composition and DAPI morphology (Figure 2, Figure S5). (C-E) Principal component 

plots showing Tubule Order, Tubule Angle, and Tubule Stage, respectively. (F) Gene 

expression along Tubule Angle and Stage across all Tubules.  
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Figure S5 (continued from previous page): Genes were sorted by the phase of 

expression. (F-M)  Show the expression patterns of Stra8, Prm1, Ccna1, Piwil1, Foxj1, 

Slc9a1, Sall1, and Esx1, respectively. The x-axis represents the angle within the tubule (0–

360°), corresponding to stages I–XII of the seminiferous epithelium cycle as indicated by 

the color bar below each graph. The y-axis shows the normalized gene expression level. 

Blue lines represent mean expression, with light blue shading indicating the 95% 

confidence interval. (F) Stra8 is specific to retinoic acid signaling and is expressed between 

Stages VII–VIII, consistent with its role in initiating meiosis. (G) Prm1 increases in later 

stages (IX–XII) corresponding to high expression in elongating spermatids and consistent 

with its function in chromatin condensation. (H) Ccna1 peaks around X–XII, showing high 

expression in late pachytene and diplotene/secondary spermatocytes. (I) Piwil1 is highly 

expressed in mid-late pachytene spermatocytes, thus showing a peak expression between 

IV–XI. (J) Foxj1 shows high expression from XII–II, aligning with the emergence of round 

spermatids. (K) Slc9a1 is highly expressed in late round spermatids and early elongating 

spermatids, coinciding with expression in stages VII–X. (L) Sall1 is expressed in 

Differentiation Primed Spermatogonia, thus shows expression from I–VII, with a steep 

decrease thereafter. (M) Esx1 is highly expressed in Spermatogonia, A1–B, aligning with 

expression between I–VI.  
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Figure S6: Overall Population Dynamics and Visualization of Tubule Stages and 

Compositions. (A) Overall population dynamics across stages of spermatogenic wave, 

each stage containing a unique composition of cell types. Abbreviations are as follows: A: 

Type A Spermatogonia,  In: Intermediate Spermatogonia, B: Type B Spermatogonia, Pl: 

Preleptotene Spermatocytes, L: Leptotene Spermatocytes, Z: Zygotene Spermatocytes, P: 

Pachytene Spermatocytes, D: Diplotene Spermatocytes, Mi: Secondary  
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Figure S6 (continued from previous page): Spermatocytes. Numerical abbreviations 1–

16 refer to rounds spermatids(1–8) or elongating spermatids(9–16). B) Example DAPI 

images of tubules identified of each stage from Replicate 1 and corresponding numbers of 

cell-types. 
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2.6 Methods 

Gene Selection: An initial panel of mouse transcription factors and signaling pathway 

genes (total 3073 genes) was selected from the Kegg Pathways Database. This initial panel 

included genes from major signaling pathways (e.g., MapK, Notch, Wnt, Jak-Stat etc.) and 

all transcription factors in mouse. Expression levels for these genes were then analyzed 

using bulk-RNA seq expression data from the Mouse Encode transcriptome data covering 

30 mouse tissues (GEO: GSE36025)42. As a generalized mouse tissue pool, genes with 

FPKM levels >1000 across many tissues were removed from the panel. In addition, genes 

for known housekeeping genes (e.g., Eef2) were removed. The final barcoded panel 

includes 2622 genes covering >1300 transcription factors and >1300 signaling genes. A 

full list of genes is provided in Supplemental Table 1. For these barcoded genes the average 

FPKM per hybridization was estimated to be ~1300 in mouse testis. Based on previous 

experiments, this was an ideal dot density to avoid optical crowding. 

To supplement our gene pool for studying spermatogenesis we included an additional pool 

of marker genes that would be visualized using smFISH for stem cells, spermatogonia, 

spermatocytes, spermatids, Sertoli and Leydig cells. In total, the final experiments covered 

2638 genes, including 2622 barcoded genes and 16 genes using smFISH. For the busulfan 

condition, we further added additional genes for visualization using smFISH related to 

retinoic acid metabolism. The full list of genes is provided in Supplementary Table 1.  

 RNA seqFISH+ encoding strategy: To spatially resolve mRNA profiles for 2622 genes 

in the mouse testis we used a modified version of RNA seqFISH+ encoding scheme. The 

2622 were split into two pools, one containing signaling genes(1322 genes) while the other 

contained all transcription factors (1300 genes). Each pool was encoded using 8-

pseudocolor bases with 4 rounds of barcoding including one-error correction round, which 

can accommodate up to 512 genes, in one fluorescent channel (635 nm), and 1536 genes 

across 3 fluorescent channels (640nm, 561nm, 488nm) (Supplementary Table 1). An 

additional 16 genes for mRNA marker genes were encoded as a non-barcoded seqFISH 

scheme. In total 2638 genes were measured in the untreated wildtype condition.  
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Primary-probe design: To obtain probe sets for >2600 different genes, 35-nucleotide (nt) 

sequences of each gene were extracted, using the exons from within the coding region. The 

masked genome and annotation from the University of California Santa Cruz (UCSC) were 

used to look up the gene sequences. Probe sequences were required to have GC content 

within the range 45–65%. Any probe sequences that contained five or more consecutive 

bases of the same kind were dropped. Any genes that did not achieve a minimum number 

of 24 probes were dropped. A local BLAST query was run on each probe against the mouse 

transcriptome to ensure specificity. BLAST hits on any sequences other than the target 

gene with a 15-nt match were considered off targets. ENCODE RNA-seq data across 

different mouse samples were used to generate an off-target copy-number table. Any probe 

that hit an expected total off-target copy number exceeding 10,000 FPKM was dropped to 

remove housekeeping genes, ribosomal genes and very highly expressed genes. To 

minimize cross-hybridization between probe sets, a local BLAST database was constructed 

from the probe sequences, and probes with hits of 17 nt or longer were removed by 

dropping the matched probe from the larger probe set. 

  

Once 35nt sequences for each probe was obtained, we assigned barcodes to each gene 

randomly across the potential codebook. Because of the large number of genes, random 

assignment created roughly equal expression in each hybridization round. These barcodes 

corresponded to pseudocolors that would be read out using specific readout probes. The 

corresponding reverse complements for the readout probes, effectively representing a 

specific barcode, were appended as overhangs to either side of the primary probe. While 

each gene received a barcode of 4 pseudocolors (described in SeqFISH+ encoding 

strategy), each probe received a total of 6 readout sites corresponding to the 4 pseudocolor 

barcode. Thus, for any individual probe 2 of the pseudocolors had two readout sites, while 

the other 2 pseudocolors had one readout site. By varying which readout sites were repeated 

across all the probes there were 1.5 readout sites per pseudocolor per probe on average for 

any given gene. 
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Readout-probe design and synthesis: Readout probes of 15-nucleotide length were 

designed as previously introduced29. In brief, the probe sequences were randomly 

generated with combinations of A, T, G or C nucleotides, with a GC content in the range 

of 40–60%. To validate the specificity of the generated readout sequences, we performed 

a BLAST search against the mouse transcriptome. To minimize cross-hybridization of the 

readout probes, all probes with 10 contiguously matching sequences between the readout 

probes were removed. The reverse complements of these readout probe sequences were 

included in the primary probes according to the designed barcodes. The fluorescently-

labeled readout probes (Integrated DNA Technologies) that can bind to the readout 

sequences on the primary probes were conjugated in-house to Alexa Fluor 647–NHS ester 

(Invitrogen A20006), Cy3B–NHS ester (GE Healthcare PA63101), or Alexa Fluor 488–

NHS ester (Invitrogen A20000) as described before30 or directly purchased (Integrated 

DNA Technologies). 

 

Primary-probe construction: Primary probes were ordered as oligoarray complex pools 

from Twist Bioscience and were constructed as previously described with some 

modifications30. In brief, limited PCR cycles were used to amplify the designated probe 

sequences from the oligo complex pool. Then, the amplified PCR products were purified 

using the QIAquick PCR Purification Kit (28104; Qiagen) according to the manufacturer’s 

instructions. The PCR products were used as the template for in vitro transcription 

(E2040S; NEB) followed by reverse transcription (EP7051; Thermo Fisher). After reverse 

transcription, the probes were subjected exonuclease I(M0293S; NEB) to digest any 

unused remnant primers, while the complete RNA-DNA hybrids  would remain intact. 

Then, the single-stranded DNA (ssDNA) probes were alkaline hydrolyzed with 1 M NaOH 

at 65 °C for 15 min to degrade the RNA templates, followed by 1 M acetic acid 

neutralization. Finally, to clean up the probes, we performed ethanol precipitation to 

remove stray nucleotides, phenol–chloroform extraction to remove protein, and used 

SPRIselect beads (B23317, Beckman) to remove any residual nucleotides and phenol 

contaminants. The probes were stored at −20 °C until use. 
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SeqFISH+ Imaging: SeqFISH+ imaging was carried as described previously30. In brief, 

the flow cell of the sample was connected to the automated fluidics system. Then the region 

of interest (ROI) was registered using nuclei signals stained with 7.5μg ml−1 DAPI (D8417; 

Sigma). Each serial hybridization buffer contained three unique sequences with different 

concentrations of 15-nt readouts conjugated to either Alexa Fluor 647 (50 nM), Cy3B (50 

nM) or Alexa Fluor 488 (100 nM) in EC buffer (10% ethylene carbonate (E26258; Sigma), 

10% dextran sulfate (D4911; Sigma), 4× SSC and 1:100 dilution of SUPERase In RNase 

inhibitor(AM2694; Invitrogen). The 100 μl of serial hybridization buffers for 70 rounds of 

seqFISH+ imaging (including smFISH genes) with a repeat for round 1 (in total 71 rounds) 

was pipetted into a 96-well plate. During each serial hybridization, the automated sampler 

moves to the well of the designated hybridization buffer and moves the 100 μl hybridization 

buffer through a multichannel fluidic valve (EZ1213-820-4; IDEX Health & Science) to 

the flow cell (requires ~25 μl) using a syringe pump (63133-01, Hamilton Company). The 

serial hybridization solution was incubated for 20min at room temperature. After serial 

hybridization, the sample was washed with ~300 μl of 10% formamide wash buffer (10% 

formamide and 0.1% Triton X-100 in 2× SSC) to remove excess readout probes and non-

specific binding. Then, the sample was rinsed with ~300 μl of 4× SSC supplemented with 

a 1:1,000 dilution of SUPERase In RNase Inhibitor, before being stained with DAPI 

solution (7.5 μg ml−1 of DAPI, 4× SSC, and a 1:1,000 dilution of SUPERase In RNase 

inhibitor) for ~15 s. Next, an anti-bleaching buffer solution made of 10% (w/v) glucose, 

1:100 diluted catalase (Sigma C3155), 0.5 mg ml−1 glucose oxidase (Sigma G2133), 0.02 

U μl−1 SUPERase In RNase inhibitor and 50 mM pH 8 Tris-HCl in 4× SSC was flowed 

through the samples. Imaging was done with a microscope (Leica DMi8) equipped with a 

confocal scanner unit (Yokogawa CSU-W1), a sCMOS camera (Andor Zyla 4.2 Plus), a 

63× oil objective lens (Leica 1.40 NA) and a motorized stage (ASI MS2000). Lasers from 

CNI and filter sets from Semrock were used. Snapshots across a single z slice per FOV 

across 647-nm, 561-nm, 488-nm and 405-nm fluorescent channels. After imaging, 

stripping buffer (55% formamide and 0.1% Triton-X 100 in 2× SSC) was flowed through 

for 1 min, followed by an incubation time of 3 min before rinsing with 4× SSC solution. In 

general, the 15-nt readouts were stripped off within seconds, and a 3-min wash ensured the 

removal of any residual signal. The serial hybridization, imaging and signal extinguishing 
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steps were repeated for 64 rounds. Then, staining buffer for segmentation After all RNA 

SeqFISH+ imaging rounds, concanavalin-A (conA) conjugated to Alexa Fluor 647 

(ThermoFisher C21421) was flown into the tissue using the SeqFISH fluidics system at 

50ug/mL in 1X PBS for 5 minutes. Afterwards, the sample was washed 3 times with 55% 

Wash Buffer for 5 minutes each time to wash out residual conA. The tissue was then 

imaged again but with a shorter 300ms exposure time in the 647 channel. The integration 

of automated fluidics delivery system and imaging was controlled by a custom written 

script in μManager. 

 

Image Processing and Decoding of SeqFISH data: Image analysis was performed as 

previously described43 with some modifications.  

 

Image alignment: Image alignment was performed either using phase correlation on DAPI-

stained images for each field of view, or using scale-invariant feature transform. The 

segmentation hybridization round was used as a reference for estimating translational shifts 

in the x and y direction.  

 

Image preprocessing: A 5x5 high-pass Gaussian filter removed residual background, 

followed by a 3x3 low-pass filter to mitigate hot pixels and enhance spot Gaussian profiles 

for improved 2D fitting. Image intensities were normalized across channels and serial 

hybridizations using 80-99.999% percentile clipping and 0-1 rescaling. 

 

Dot detection: Sub-pixel spot centroids were identified using DAOStarFinder from 

Astropy, performing fast 2D Gaussian fits. FWHM was optimized for optimal spot calling. 

Features recorded include flux, peak amplitude, sharpness, symmetry (bilateral to four-

fold), and Gaussian fit symmetry. Additional features, like total spot area, were obtained 

using a 7x7 bounding box and local adaptive thresholding with a Gaussian kernel. 

Decoding: Super-resolved, mapped spots undergo SVM-embedded, feature-based 

symmetrical nearest neighbor decoding. An SVM model with RBF or polynomial kernel 

filters false spots based on characteristics. Spots receive likelihood scores for true barcode 

correspondence. A radial search (0.75–1.5 pixels) across barcoding rounds scores spots on 
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distance, intensity, and size. Best spots are chosen for each round, assigning overall 

codeword and ambiguity scores. Barcodes undergo parity checks, spot set consistency 

filtering (≥3 appearances), and overlap resolution. Unused spots are resubmitted for up to 

2 additional decoding rounds. Decoded spots are sorted by codeword score and subsampled 

to calculate FPR. Spots with FPR ≤5% are used to generate the final gene-by-cell matrix 

for downstream analysis. 

SVM training: Quick-pass decoding labels true and fake spots. The classifier activates with 

500-500,000 fake spots. True spots are down-sampled to match fake spot count. Data is 

split 80% for training, 20% for validation. Features are normalized using MinMax Scaler. 

GridSearchCV with 8-fold cross-validation tunes C, gamma, and degree parameters for 

polynomial or radial-basis function kernels. Test set performance is evaluated using 

training data scaling parameters. 

False Positive rate: False Positive Rate, or FPR was determined as following:  

 
Where:  

● Real Barcodes: Number of gene-coding barcodes in the codebook  

● Fake Barcodes: Number of non-coding (empty) barcodes  

● off_target_count: Number of decoded fake barcodes  

● on_target_count: Number of decoded real barcodes 

 

Code Availability: Scripts used for pre-processing seqFISH images can be found at 

https://github.com/CaiGroup/pyfish_tools.  

 

Cell Segmentation: After all RNA SeqFISH+ imaging rounds, concanavalin-A (conA) 

conjugated to Alexa Fluor 647 (ThermoFisher C21421) was flown into the tissue using the 

SeqFISH fluidics system at 50ug/mL in 1X PBS for 5 minutes. Afterwards, the sample was 

washed 3 times with 55% Wash Buffer for 5 minutes each time to wash out residual conA. 

The tissue was then imaged again but with a shorter 300ms exposure time in the 647 

channel. 
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To computationally identify cell masks, a Cellpose 2.0 model was trained using >1000 

cells for each experiment. The models were trained to identify cell masks using both the 

nuclear DAPI stains as well as the conA membrane stains 13,31. Using these trained models, 

we used Cellpose to obtain our final cell masks which were contracted by 2–4 pixels to 

further increase specificity. Finally, decoded RNA transcripts were assigned to individual 

cells based on whether they fell within the 2-dimensional cell masks. 

 

Tubule Segmentation: Since the tubules were readily distinguishable in the stitched 

images of testis cross-sections and were limited in number, they were manually segmented 

using FIJI's ROI Manager. Each tubule was demarcated as a distinct ROI and assigned a 

unique integer identifier. After all the tubules were added to the ROI Manager for a given 

testis cross-section, a labeled mask image was generated and exported for each tubule cross 

section. In this image, each pixel value corresponds either to the integer identifier of a 

specific tubule or to zero if no tubule was present at that location. These labeled mask 

images were subsequently imported into Python as numpy arrays. These arrays were then 

used as overlay masks to identify and isolate the corresponding spatial regions in the 

AnnData object for tubule-level analysis or tubule identification. 

 

Coverslip functionalization: Coverslips were cleaned with a plasma cleaner on a high 

setting (PDC-001, Harrick Plasma) for 5 min, followed by rinsing with 100% ethanol three 

times, and heat-dried in an oven at >90 °C for 30 min. Next, the coverslips were treated 

with 100 μg μl−1 of poly-D-lysine (P6407; Sigma) in water for >5 h at room temperature, 

followed by three rinses with water. The coverslips were then air-dried and kept at 4 °C for 

no longer than a few days. 

 

Mice: All animal care and experiments were carried out in accordance with Caltech 

Institutional Animal Care and Use Committee (IACUC) and NIH guidelines. Adult 5–8 

week old wildtype mice C57BL/6J were used for the experiments. 
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Testis tissue extraction and processing: In brief, mice were euthanized via asphyxiation 

using CO2 followed by cervical dislocation and decapitation. The mouse testis were 

removed from the mouse within 5 minutes of death and immediately flash frozen in OCT 

medium using an isopentane bath that was cooled with surrounded liquid nitrogen. These 

flash frozen testis were stored at −80 °C until ready to be sectioned. Each experiment was 

conducted using a different mouse. 

  

10 micrometer sections were cut using a cryotome and immediately placed on 

functionalized coverslips. Then thin tissue slices were then fixed using 4% 

Paraformaldehyde(28908; ThermoFisher) in 1X PBS for 10 minutes at room temperature. 

After fixation the slides were gently washed with 1X PBS and placed in 1X PBS baths for 

10 minutes to remove residual PFA and further quenched by 100mM Tris-HCl, pH 7.4 for 

10 minutes. Slides were finally rinsed again with 1X PBS. Slides were then permeabilized 

by placing into 70% ethanol overnight at -4°C. Afterwards, the tissue was further 

permeabilized using 8% SDS(AM9822; Invitrogen)  in 1X PBS for 15 minutes. 1X PBS 

was used to wash away any residual SDS followed by washed with 70% ethanol. The 

samples were then placed in 4X SSC (15557036, Thermo Fisher) overnight. 

 Samples were hybridized with primary probes in the hybridization buffer (35% 

formamide, 10% dextran sulfate and 2X SSC) at 37 °C with a concentration of 

~1.4nM/probe for 3 days. After hybridization the samples were washed with 55% WB 

(55% formamide and 0.1% Triton-X 100 in 2× SSC) and incubated for another 30 minutes 

at 37 °C to reduce any non-specific binding. The sample was washed with 4X SSC several 

times and placed into the microscope holder for imaging. 

 

 

Modified Moran’s I: Each cross section of the testis consists of seminiferous tubule cross 

sections organized spatially. To assess whether there is global spatial organization in the 

stages of these tubules, we employed a spatial autocorrelation analysis. While Moran's I is 

a standard tool for such analyses, it has limitations when applied to cyclic datasets. Namely, 

Euclidean distances fail to accurately measure adjacency between points, e.g., 360° = 0°. 
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To address these limitations, we developed a modified version for cyclic parameters, Icyclic, 

similarly developed for neural imaging data32. 

One way of defining distance for circular data is to treat each angle/phase as a point on the 

unit circle of the complex plane. Thus, distance between two angles  and would be 

computed used , a 2-argument arctangent function with a full range from -180 to 180: 

. 

To compute the average angle,  can be calculated by computing the average component 

of sin,  and the average component of cosine, . 

 

 

 

Thus, the full equation for the modified Moran's I for cyclic parameter, , is: 

 

 : the number of tubules 

 and  : the distance between angle values  and , respectively, and the mean angle  

 : sum of all spatial weights . 
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Gene expression preprocessing and clustering: The python package Scanpy (version 

1.10)44 was used to process the cell by gene matrices. For the single cell analysis, counts 

were normalized to 1000, log normalized, and scaled using the pp.normalize_total(), 

pp.log1p(), and pp.scale() function, respectively. Batch correction was performed prior to 

scaling using the built-in combat module in scanpy45. The functions pp.pca(), 

pp.neighbors(), and tl.umap() was used for dimensionality reduction and cluster 

identification resulting in 30 clusters. The distribution of clusters across samples and 

imaged positions was examined and 4 clusters showed a strong position bias caused by 

technical issues during imaging rounds resulting in decreased barcodes decoded that 

included specific hybridization rounds. These positions were removed altogether from one 

dataset. Differentially expressed genes between clusters were identified using 

tl.rank_genes_groups() with the standard wilcox statistical testing. The same process was 

used for the tubule level analysis, except the counts were normalized to 10,000. 

Determining order of tubules and Tubule Angle : The order of tubules in both untreated 

and busulfan conditions was determined using the de-novo cyclic pipeline in scPrisma22. 

Prior to running the pipeline, counts were normalized and log-scaled. The cyclic order was 

reconstructed using the ‘reconstruction_cyclic’ function and the function was run for 500–

1000 iterations to ensure convergence and stability of the cyclic ordering. To ensure 

robustness of the cyclic ordering, we repeated the pipeline multiple times for each dataset 

and compared the resulting cyclic orders for consistency.  

After establishing the cyclic order, we converted these orders to Tubule Angles evenly 

distributed across 0–360 degrees. This conversion from Order to Angle is justified and 

appropriate based on our demonstration of random organization of tubules across testis 

cross-sections, which we established using spatial autocorrelation analysis (see Figure S4 

and Modified Moran's I section). The absence of global spatial organization in tubule stages 

across the testis cross-section enables us to confidently represent the cyclic order as a 

continuous variable mapped onto a circular space. 

 



 57 

Mapping to Tubule Stages: The frequency and time scale of the stages of the seminiferous 

epithelial cycle have been well characterized by sampling across 3,000 random tubule cross 

sections from 12 wildtype mice 11. Our sample size of 337 random tubule cross sections in 

untreated wildtype testis was sufficiently large to enable accurate mapping of the 

order/Tubule Angle across these previously characterized frequencies. We validated the 

stages of tubules primarily through analysis of cellular composition (Figure 2, Figure S5), 

complemented by examination of DAPI morphology. The stages we determined aligned 

precisely with the expected cellular composition and DAPI morphology for each stage of 

the seminiferous epithelial cycle. This mapping process allowed us to confidently associate 

each Tubule Angle with a specific stage of the seminiferous epithelial cycle, providing a 

robust framework for analyzing gene expression patterns across the progression of 

spermatogenesis. 

Population Dynamics: To analyze the distribution of different cell types across the 

seminiferous epithelial cycle, cell type information was extracted from the AnnData object, 

creating separate dataframes for each unique cell type. We developed a custom function to 

bin the data into 6-degree intervals across the 360-degree cycle and calculate circular 

moving averages using a window size of 5 bins. This approach accounted for the circular 

nature of the data, ensuring continuity at the 0/360-degree boundary. A custom plotting 

function was then used to visualize the distribution of cell types, where the x-axis 

represents the cycle angle (0–360 degrees) and the y-axis shows the average count of cells 

per tubule with 95% confidence intervals displayed as shaded areas.  

SCENIC analysis: The python implementation of the SCENIC pipeline was used for 

regulatory network reconstruction providing insight into cis-regulatory insight between 

transcription factors and target gene expression. First, GRNBoost2, a gradient boosting 

algorithm, was used to infer gene regulatory networks from the expression data at the single 

cell level. This step was performed using the SCENIC CLI tools. Afterwards cisTarget was 

used to predict regulons. This step involves identifying enriched transcription factor 

binding motifs in the regulatory regions of the target genes. We used three different motif 

databases for this analysis specific for mouse and covering different genomic regions 
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(500bp upstream, 10kb centered on TSS, and 5kb centered on TSS). For motif annotations, 

we used the file 'motifs-v9-nr.mgi-m0.001-o0.0.tbl,' which provides information about 

mouse transcription factor motifs used in the analysis. The 'mgi' in the filename indicates 

that it uses Mouse Genome Informatics (MGI) nomenclature, ensuring mouse-specific 

annotations. The results from this analysis were used to identify key transcription factors 

and infer target genes.  

Quantifying synchronization: To compare the synchronization between somatic cells and 

the seminiferous epithelial cycle at a topological level, we employed a computational 

approach using the scPrisma algorithm. We first created separate AnnData objects for germ 

cells and the somatic cell type of interest (e.g., endothelial cells), aggregating gene 

expression data at the tubule level. For somatic cells that were outside tubule masks, they 

were assigned the tubule that was closest. We then used scPrisma's cyclic reconstruction 

function to independently determine the ordering of tubules based on gene expression 

patterns in both germ cells and somatic cells. This process was repeated 31 times using 

parallel processing to ensure robustness, with each iteration performing the reconstruction 

for both germ cells and somatic cells. The resulting orders from each run were saved 

separately for both cell types. The circular correlations between the orderings were then 

used to assess the degree of synchronization between the somatic cells and the seminiferous 

epithelial cycle (Figure 4A,B). To quantify significance, we used a bayesian statistics 

approach using PyMC3 to compare the mean difference in correlations between each 

somatic cell type and the null models. The likelihood for each group was modeled as a 

normal distribution and the probability that the difference falls within a region of practical 

equivalence (ROPE) was evaluated and reported as our p value.  

To quantify gene expression at the gene level for each somatic cell type, we developed a 

computational pipeline that analyzed expression patterns in relation to the spermatogenic 

cycle. For each gene, we calculated the moving average of expression across the cycle 

using a window size of 5 and bin size of 6 degrees. To assess the significance of these 

expression patterns, we performed 1000 permutations for each gene, randomly shuffling 

the cell angles to generate a null distribution. We then calculated 99% confidence intervals 
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from these permutations to define the expected noise level. Real expression patterns were 

compared against these noise intervals to determine if a gene exhibited significant cyclic 

expression (Figure 4F). This process was parallelized using a job array such that each gene 

was assigned a separate computational node. The analysis was performed separately for 

each somatic cell type (e.g., peritubular cells, Sertoli cells). Genes were considered to have 

significant cyclic expression if their real expression pattern exceeded the noise confidence 

intervals for more than 50 contiguous degrees of the cycle.  

To quantify gene dephasing between untreated and busulfan-treated samples, we 

developed a computational pipeline that analyzed expression patterns across the 

spermatogenic cycle. First, we preprocessed the data using Scanpy, normalizing to 1000 

counts per cell, applying log-transformation, and performing batch correction. We then 

ordered genes based on their dynamic expression patterns and extracted expression data 

for both untreated and busulfan-treated samples. To smooth the data, we applied a circular 

moving average with a window size of 50 degrees. We then employed Fourier transform-

based autocorrelation to assess the periodicity of gene expression patterns. The degree of 

dephasing for each gene was estimated by determining the lag at which the autocorrelation 

dropped below a threshold of 0.80. This process was performed for both untreated and 

busulfan-treated samples. The lag at which the autocorrelation dropped to 0.80 was plotted 

for both busulfan and untreated genes (Figure 6D). Thus, a gene with a larger lag to reach 

the threshold autocorrelation in the busulfan condition compared to untreated would be 

found to be dephased. This approach allowed us to quantify the extent to which Busulfan 

treatment disrupted the cyclic expression patterns of individual genes.  

 

Gene and Pathway enrichment analysis: Gene Ontology analysis for gene expressed 

dynamically in Sertoli cells along the seminiferous epithelial cycle was performed using 

the GOATOOLS Python library. Mouse gene symbols were converted to Entrez Gene IDs 

using the mygene package. The GO database (go-basic.obo, dated 2023-07-27) and mouse 

gene association files were downloaded from the Gene Ontology Consortium. Enrichment 

analysis was run using the GOEnrichmentStudyNS() function. The background gene set 

included only genes in our study, and p values were adjusted using the Benjamini-hochberg 
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procedure. Only GO terms that were statistically significant, having an adjusted p value < 

.05, were reported.  

 

To identify pathways and genes altered in busulfan-treated samples compared to untreated, 

we employed a multi-step computational approach. The data was preprocessed including 

normalizing counts to 20,000 counts per cell, applying log-transformation, and performing 

batch correction. We then calculated moving averages of gene expression across the 

spermatogenic cycle using a 50-degree window. To quantify changes in gene expression 

patterns, we computed the Kolmogorov-Smirnov statistic between untreated and busulfan-

treated samples for each gene. We focused on the top 200 genes with the highest KS 

statistic for further analysis. Using the clusterProfiler R package, we performed pathway 

enrichment analysis on these genes, utilizing a custom-filtered set of KEGG pathways 

focused on signaling cascades. We used a conservative background set that included only 

genes in the KEGG pathways and also present in our experiment. After enrichment analysis 

we employed the Benjamini-Hochberg method for multiple testing correction. Pathways 

with an adjusted p-value < 0.05 were considered significantly enriched. This approach 

allowed us to identify both individual genes and broader pathways disrupted by the lack of 

germ-cell communication. 
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Chapter 3: An innate Sertoli transcriptional cycle tied to the 

seminiferous epithelial cycle 
 
 
3.1 Abstract 
 

In the previous chapter, we established that Sertoli cells exhibit a robust cyclic 

transcriptional profile synchronized with the seminiferous epithelial cycle. However, 

whether this cycle is driven by germ cell signals or is an intrinsic program of Sertoli cells 

remains unclear. Here, we address this question by ablating differentiating germ cells using 

a DNA alkylating agent, busulfan, and applying RNA seqFISH+ to profile Sertoli cell gene 

expression in the absence of germ cells. Remarkably, Sertoli cells continue to display a 

cyclic transcriptional program even without ongoing spermatogenesis, indicating an innate 

oscillatory mechanism. At the same time, germ cell loss leads to partial dephasing of 

certain genes and a downregulation of pathways that typically rely on germ cell–Sertoli 

cell communication. These results reveal that although Sertoli cells harbor an autonomous 

transcriptional clock, germ cells are crucial for reinforcing and fine-tuning its phase 

coherence. Finally, we identify specific retinoic acid metabolic enzymes and a tightly 

interconnected transcription factor network that may underlie this autonomously cycling 

transcriptional program. Overall, our findings illustrate how a somatic lineage in the testis 

can operate as an intrinsic oscillator while also integrating signals from germ cells to 

achieve fully synchronized spermatogenesis. 
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3.2 Introduction 
 

Sertoli cells play a pivotal role in spermatogenesis by providing structural support, 

mediating nutrient delivery, and releasing short-range signals that guide germ cell 

development. In Chapter 2, we demonstrated that these somatic “nurse cells” exhibit a 

highly dynamic transcriptional program synchronized to the seminiferous epithelial 

cycle—a periodic process traditionally attributed to germ cell-intrinsic phases of 

differentiation. Uniquely among the somatic cell types we profiled, Sertoli cells displayed 

hundreds of genes with expression patterns tied to the cyclical progression of germ cell 

development. Such broad transcriptional oscillations raises a central question: Is this 

cyclicity intrinsically encoded in Sertoli cells, or is it entirely driven by ongoing germ cell 

development? 

 

Historically, Sertoli cells have been viewed as facilitators of germ cell 

differentiation, responding to stimuli such as retinoic acid(RA)1 and hormones2 while 

dynamically restructuring the blood-testis barrier3. However, earlier in vivo observations 

hinted that Sertoli cells might sustain some cyclic properties even when germ cells are 

depleted and even when germ cells have not even become committed to differentiation. 

First, observations of just a few genes indicated that Sertoli cells might retain stage-specific 

features even under conditions of germ cell depletion, hinting at an intrinsic cyclic 

program4. Furthermore, in the embryonic testis, key stage specific genes showed 

differential expression suggesting that the seminiferous epithelial cycle is “pre-figured” in 

the Sertoli cells before germ cells have committed to differentiation5. These findings 

suggested that certain aspects of the Sertoli cell stage-specific behavior could persist in the 

absence of maturing germ cells, yet direct transcriptome-level evidence has been lacking. 

Single-cell or bulk RNA-sequencing approaches, while informative, often underrepresent 

Sertoli cells due to their extensive cytoplasmic arborizations and the difficulties of tissue 

dissociation. Furthermore, since Sertoli cells are not synchronized across all tubules any 

bulk measurement, or single-cell measurement that cannot consider the context of Sertoli 

cells is unlikely to be able to disentangle a transcriptional oscillation. Thus, critical details, 
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such as whether Sertoli cell gene expression continues to oscillate without germ cells have 

remain unresolved.  

 

To address this gap, we used busulfan, a DNA-alkylating agent widely used in germ 

cell transplantation models, to ablate differentiating germ cells in mice6,7. Because Sertoli 

cells and other somatic cells are mitotically inactive, they are unaffected by the treatment, 

and creates a testis devoid of actively differentiating germ cells while preserving Sertoli 

cells. Using the same RNA seqFISH+ pipeline introduced in Chapter 2, we can now 

directly observe Sertoli cell gene expression in a germ cell-depleted environment.  

 

Here, we demonstrate that Sertoli cells maintain a cyclic transcriptional program 

even in the absence of differentiating germ cells, revealing an autonomous oscillatory 

mechanism. However, this program shows distinct alterations from the wildtype state – 

certain genes become partially dephased, and pathways involved in germ cell-Sertoli cell 

communication are downregulated. Through detailed analysis of transcription factor 

networks and metabolic pathways, we identify specific factors, including retinoic acid 

metabolic enzymes, that may drive this autonomous cycle. These results suggest a model 

where Sertoli cells possess an intrinsic oscillator that is normally reinforced and fine-tuned 

through interaction with germ cells to achieve optimal synchronization of the seminiferous 

epithelial cycle. 
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3.3 Results 
 
 
Sertoli cells autonomously maintain a cyclic transcriptional profile without the 

presence of germ cells 

 

Having established the unique synchronization of Sertoli cells with the 

seminiferous epithelial cycle we next sought to address a fundamental question: are Sertoli 

cells the drivers of this cyclic program, or are they merely responding to signals from the 

germ cells? While traditionally it has been thought that Sertoli cells are guided by germ 

cells and simply provide support, other results have brought this into question, suggesting 

a potential innate cyclical program4. Thus, we devised an experiment to observe Sertoli 

cell behavior in the absence of germ cells. We hypothesized that if Sertoli cells maintain 

their cyclic transcriptional profile without germ cells, it would suggest an intrinsic program 

within Sertoli cells themselves.  

 

Using busulfan, a DNA-alkylating agent commonly used for ablation and 

transplantation experiments, we ablated all differentiating germ cells in wildtype mice 
6,7(Fig 1A). Importantly, since all Sertoli and other somatic cells are not dividing, this 

treatment does not affect them. Thirty days after treatment, the busulfan treated testes 

revealed a stark contrast compared to wildtype, displaying empty tubules while Sertoli and 

other somatic cells remained (Fig. 1B–C, Fig. S1). Remarkably, after plotting Sertoli cells 

grouped by tubule we saw a discernible cyclic topology in PC space (Fig. 1D). 

Furthermore, when these tubules were plotted along untreated Sertoli groupings, we saw 

that the busulfan treated Sertoli groupings occupied a cyclic transcriptional profile within 

the cyclic transcriptional profile of the untreated Sertoli groupings (Fig. 1E). 

 

Across many genes the cyclic transcriptional profile of the Sertoli cells from the 

busulfan conditions displayed similar albeit less coherent patterns to the untreated 

condition suggesting that the gene programs still retained the same innate program (Fig. 
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1F). To quantify this, we computed the circular Pearson correlation for each gene between 

the two conditions (Fig. 1G). Genes that we had previously identified as synchronized to 

the seminiferous epithelial cycle showed a high correlation (median r = 0.67) between 

untreated and busulfan conditions. In contrast, genes that we had classified as 

unsynchronized showed a low correlation (median r = 0.08). This provided strong evidence 

that the cyclic transcriptional profile of Sertoli cells persists independently of germ cells.  

 

The persistence of a cyclic transcriptional profile in Sertoli cells in the busulfan 

condition similar to that of Sertoli cells in the untreated conditions suggests that Sertoli 

cells are either continuing to cycle or are frozen in time. To investigate this we examined 

tubules in the busulfan condition containing remnant spermatids. If the Sertoli cells were 

indeed frozen in time, we would expect them to have gene expression patterns 

corresponding to the Sertoli cells that are present with elongated spermatids in the untreated 

condition (Fig 1I). For instance, in the untreated testis, elongated spermatids only occupy 

Tubule Angles between 180°–210°, coinciding with the Stage VIII and the end of the 4th 

round of the seminiferous epithelial cycle (Fig 1J). However, in the busulfan condition, we 

found that tubules containing elongated spermatids were encompassing Sertoli cells 

occupying all Tubule Angles from 0°–360° (Fig 1K), strongly suggesting Sertoli cells 

continue to transcriptionally cycle even after there are no longer any differentiating germ 

cells. This is also consistent with earlier findings where Sertoli cells in mice lacking 

differentiating germ cells show variable expression of stage-specific proteins, galectin and 

tPa, similar to those observed in normal testis, suggesting a cell-intrinsic cycle 4. 

 

Our findings also revealed important differences in the Sertoli cells program 

without germ cells. When we examined gene expression patterns across specific tubule 

angles (Fig. 1H), we noticed a level of dephasing in the busulfan-treated condition. While 

Sertoli cells in untreated animals at 90°, 180°, 270°, and 360° tubule angles displayed 

distinct expression profiles, Sertoli cells from busulfan-treated testes showed more mixed 

expression profiles. This blending of previously orthogonal expression patterns suggests 
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that while the overall cyclic program is maintained, the fine-tuning and precise 

synchronization of gene expression relies on the presence of germ cells. 
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Figure 1: Sertoli cells independent of germ cells maintain a cyclic transcriptional 
profile. 
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Figure 1 (continued from previous page): (A) 5–6 week old wildtype mice were injected 

with Busulfan at a concentration of 30 or 45mg/kg intraperitoneally. After 30 days, the 

testes were harvested and processed for seqFISH+ imaging. (B) DAPI images comparing 

untreated testis cross section vs a busulfan treated testis cross section. The busulfan treated 

testis cross sections showed tubules void of differentiating germ cells while somatic cells 

were still visible (C) Post-cell typing, the numbers of each cell type of untreated testis were 

compared with busulfan treated testis. Complete ablation of differentiating germ cells was 

observed with remnant elongated spermatids. Somatic cells were unaffected and retained 

similar population levels as untreated. (D) Sertoli cells in the busulfan treated testes were 

grouped by tubule and plotted in PC space using genes known to be dynamically expressed 

in the untreated condition. Each tubule was also scored by the expression of gene sets found 

to be expressed in a synchronized manner to the seminiferous epithelial cycle. Tubules 

were colored by the gene set that scored highest. Specifically gene set 1,2,3,4,5 consisted 

of genes from Cluster 1 & 2, 3, 4, 5 & 6, 7 from Figure 3C, respectively. (E) Sertoli cells 

averaged by tubule were merged from the untreated condition and busulfan condition, 

analyzed, and plotted in PC space. Sertoli cell groupings from the busulfan condition 

display a cyclic transcriptional profile within the confines of the cyclic profile of the 

untreated Sertoli cell groupings. (F) Expression of many genes showed expression in 

similar points in the manifolds of untreated and busulfan treated Sertoli cell groupings. 

Shown are example genes, Notch1, Rora, Fyb, Lama3, which were expressed in orthogonal 

phases of the seminiferous epithelial cycle in untreated Sertoli cells. (G) The order of 

tubules was computed independently for Sertoli cells grouped by tubule for the busulfan 

condition and optimally aligned to the order of untreated Sertoli groupings based on gene 

expression profiles. The circular Pearson correlation was then computed for each gene. 

Genes synchronized to the seminiferous epithelial cycle showed a high median correlation 

(r = 0.67) between the busulfan condition and the untreated condition, while genes 

identified as unsynchronized to the seminiferous epithelial cycle showed a low median 

correlation (r = 0.08), providing strong evidence that the cyclic transcriptional profile of 

Sertoli cells in the busulfan condition is similar to that of the cyclic profile of Sertoli cells 

in untreated tubules.  



 74 

Figure 1 (continued from previous page): (H) Gene expression patterns across distinct 

Tubule Angle +/- 2 degrees in Sertoli cells in the untreated condition versus busulfan 

condition. Across many genes a level of dephasing was noticeable. While Sertoli cells in 

untreated animals at 90, 180, 270, and 360 display distinct expression profiles, Sertoli cells 

from the busulfan condition display mixed expression profiles signifying a level of 

dephasing and blending between previously orthogonal expression profiles. (I) Graphical 

illustration for examining if Sertoli cells in the busulfan condition are frozen in time or 

continue to cycle. Elongated spermatids exist in untreated testis in Stage VIII tubules, 

roughly between Tubule Angle 150–210. In the busulfan condition, Sertoli cells in tubules 

with elongated spermatids were inspected. If Sertoli cells were frozen in time, we would 

expect those Sertoli cells to only match the Tubule Angle where elongated spermatids are 

typically found. If Sertoli cells continue to cycle after spermatids have matured completely 

and all other differentiating germ cells are absent, we would expect to see all Tubule Angles 

represented. (J-K) Distribution of Tubule Angles represented by tubules containing 

elongated spermatids, defined as elongating spermatids with fewer than 30 counts, in 

untreated and the busulfan condition. As expected, elongated spermatids in untreated are 

only seen in predominantly 180–210 degrees, coinciding roughly with Stage VIII and the 

completion of the spermatogenesis and prior to the release of elongated spermatids at the 

end of Stage VIII.  In contrast, elongated spermatids are found at all Tubule Angles, 

suggesting the Sertoli cells continue to cycle even after spermatogenesis is complete and 

there are no longer any remaining differentiating germ cells. See Figure S1 and Figure S2 

for additional data. 
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Sertoli cells retain intratubular synchronization in the absence of germ cells but gene 

expression levels dephase and specific signaling pathways downregulate. 

 

Since our previous analysis focused at a tubule level, the dephasing observed at a 

gene level brings two possible scenarios: 1) Sertoli cells of the same tubule were 

desynchronized causing the mixed expression profile of the tubule, 2) Sertoli cells at a 

single cell level develop mixed expression profiles due to dephasing of the cyclic 

expression profile (Fig. 2A). To answer this question, we analyzed the distance of the 

expression profiles of single cells within tubules vs across tubules. We expected that if case 

1) were true, distance between cells within tubules would increase, while if case 2) were 

true, distance between cells would remain similar, but distance between cells from different 

tubules would decrease.  

 

Our results showed that while intra-tubular distance between Sertoli cells remained 

similar, inter-tubular distance between Sertoli cells decreased significantly (Fig. 2B, C). 

Thus, while Sertoli cells in the busulfan condition remain synchronized to a similar degree, 

displaying similar expression profiles with their neighbors of the same tubule, each tubule 

has less distinct expression profiles than in the untreated condition. In support of this, when 

analyzed at a single cell level, Sertoli cells from the busulfan condition occupy a space 

within the circular topology of untreated Sertoli cells in PC space (Fig. S2E,G).  

  

To better understand this dephasing, we quantified the level of dephasing by 

computing the correlation decay with time shifts (Methods). Across 208 genes we found 

significant dephasing, with an average of ~32 degrees. We also noticed a trend where genes 

that typically had a very narrow temporal expression profile were less dephased compared 

to other genes with broader expression profiles (Fig. 2D,E).  

 

To quantify changes in gene expression at a pathway level we identified the top 200 

downregulated genes and found they were significantly enriched in genes related to the 

PI3K-Akt, MAPK, HIF-1, and Notch signaling pathways (Fig. 2G). At a network level, 

while PI3K-Akt, MAPK and HIF-1  signaling pathways share many connections, the Notch 
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pathway seems independent (Fig. 2H, Fig S3). In untreated Sertoli cells Notch1 was 

expressed around Stage VII, along with respective ligands, such as Dll1, Dll3, Jag1, Jag2, 

being expressed at the same in many germ cell types. Notably, this co-expression is also 

accompanied by the expression of transcription factors tied to Notch activation such as 

Hes1, Hes5, Heyl, Hey2, and Hes3 (Fig 2I). However, while Notch1 was expressed in 

Sertoli cells from the busulfan condition, they lacked expression of Hes1, Hes5, Heyl, 

Hey2, and Hes3 providing evidence that lack of germ cell communication resulted in 

decreased expression across the Notch signaling pathway (Fig 2I). In support of this, 

ligands were expressed around the same phase in germ cells that would activate Notch 

signaling pathways in Sertoli cells (Fig S4A,D,G). Thus, the decrease in distance between 

tubule profiles along the cyclic transcriptional profile for Sertoli cells in the busulfan 

condition compared to untreated is likely due to the lack of communication with germ cells, 

causing dephasing across gene expression profiles and downregulation of communication 

dependent pathways (Fig. S5J).  
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Figure 2: Sertoli cells independent of germ cells retain intra-tubular synchronization 

but inter-tubular desynchronization characterized by gene level dephasing and 

downregulation across major signaling pathways. (A) Schematic illustrating two 

possible scenarios of tubule level gene desynchronization after germ cell ablation. Scenario 

1: Sertoli cells within the same tubule desynchronize from one another to cause a mixed 

expression profile for tubule. Scenario 2: Single cells within a tubule dephase and show 

mixed expression profiles typically expressed orthogonally. (B-C) Violin plots showing 

Euclidean (B) and Wasserstein (C) distances between Sertoli cells within the same tubule 

and across different tubules in untreated and busulfan-treated conditions. *** indicates p < 

0.001. (D) Quantification of gene dephasing between busulfan and untreated conditions, 

measured in degrees of lag (Tubule Angle) until autocorrelation drops below 0.80 

(Methods). The gray dashed line represents no dephasing, while the green trend line shows 

the overall shift towards increased dephasing in the busulfan treated Sertoli cells. Example  
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Figure 2 (continued from previous page): dephased genes are highlighted in red, while 

example genes with no dephasing are highlighted in green.  (E-F) Gene expression profiles 

across tubule angles for selected genes in untreated (blue) and busulfan-treated (orange) 

conditions. (E) shows genes with showing evidence of dephasing, while (F) shows genes 

with no dephasing. (G) Volcano plot of pathway enrichment analysis for downregulated 

genes in busulfan-treated Sertoli cells. Red dots indicate significantly enriched pathways 

in the Kegg Pathways database. (H) Network representation of top down-regulated genes 

in busulfan-treated Sertoli cells in pathways found to be significantly downregulated. (I) 

Heatmaps showing expression of Notch receptors and target genes across tubule angles in 

WT (top) and busulfan-treated (bottom) Sertoli cells. Untreated Sertoli cells showed 

activation of Notch, evidenced by expression of target genes while Busulfan-treated Sertoli 

cells did not. See Figure S3 for additional data. 
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Sertoli cells, independent of germ cells, display an innate retinoic acid cycle and a 

connected cycle of transcription factors 

 

The discovery of a cyclic transcriptional profile in Sertoli cells—even without 

differentiating germ cells—suggests an innate oscillatory gene program. Since retinoic acid 

(RA) signaling is known to synchronize spermatogenesis and influence its timing, we 

analyzed the transcriptional dynamics of RA metabolic components4,8. We found that 

Sertoli cells in the busulfan condition possess an innate RA cycle, displaying a distinct 

cyclic pattern in the expression of genes involved in RA metabolism (Fig. 3A,B). This 

intrinsic RA cycle in Sertoli cells can be divided into three main phases: an early stage (0°–

120°) characterized by balanced production (high Aldh1a1) and degradation (high 

Cyp26b1), suggested an overall low RA level; a middle stage (120°–225°) marked by high 

RA production (high Aldh1a2) and no degradation, leading to high RA levels; and a late 

stage (225°–360°) showing no RA production, high degradation (high Cyp26a1 and 

Cyp26c1), and preparation for the next cycle via increased Rdh10 expression for Retinal 

formation (Fig. 3A,B). Importantly, these 3 phases could be explained by biochemical 

feedback loops that would drive a limit cycle4 (Fig 3A). In the middle stage, elevated RA 

levels inhibit further RA production and drive degradative enzymes, leading to the late 

stage with low RA. This transitions into the early stage, where the rates of RA degradation 

and production are balanced causing a buildup of oxidized metabolites. These metabolites 

then inhibit further degradation and activate enzymes that produce more RA, returning the 

cycle to the middle stage. This Sertoli cell RA cycle persists even in the absence of germ 

cells, suggesting it is autonomous. However, in the intact testis, this baseline rhythm is 

likely modulated by the presence of differentiating germ cells that produce RA along Stage 

VII–VIII providing additional feedback via retinoic acid receptors on Sertoli cells 4,9. The 

cyclic nature of RA metabolism in Sertoli cells may also explain why external RA 

administration can synchronize the spermatogenic cycle 10,11,4,8. Exogenous RA likely 

pushes the system towards the middle stage state, where RA levels are naturally highest, 

effectively resetting all Sertoli cells to this phase and allowing subsequent synchronized 

progression through the cycle. This mechanism could also facilitate synchronization of 

Sertoli cells within a local tubule environment, consistent with literature 4,12.  
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While retinoic acid is a key cycling component, it is likely that other networks 

contribute to the Sertoli cells maintaining their transcriptional oscillation. Using the 

SCENIC pipeline13, we found a sparsely connected network of transcription factors (TFs) 

with cyclic activation that is conserved in both untreated and busulfan-treated Sertoli cells 

(Fig. 3G, Supplementary Table 2). We observed features in the network including sparse 

connectivity, presence of feedback loops, and a hierarchical structure. The structure of this 

transcription factor network shares some features with known oscillatory systems, 

suggesting a potential mechanism that could contribute to cyclic gene expression14–16. The 

preservation of this network in both untreated and busulfan-treated conditions hints at its 

potential role in maintaining cyclic gene expression patterns. Supporting the functional 

relevance of this network we found a coherent association between transcription factor 

activity and target gene activity between the conditions; synchronized transcription factors 

predominantly targeted genes that also remained synchronized, while TFs that were not 

synchronized predominantly targeted genes that were not synchronized (Fig S5H-I).  For 

example, Klf15, which remains synchronized across conditions, also has synchronized 

target genes Foxp1, Mxi1, and Nfat5 (Fig. 3G).  

 

Among the transcription factors identified in the network, we observed several 

known repressive interactions that could contribute to generating a limit cycle (Fig. 3G). 

These include repression of Dbp, Stat1, and Gata4 by Bhlhe40 (also Dec1) 17–20, repression 

of Rora, Dbp, Bhlhe40 by Nr1d1 (also Rev-Erbɑ) 21–23, repression of Smad3 by Hdac6 24, 

repression of Gata4 by Klf15 25, and negative autoregulation of Mnt 26. Future studies could 

explore different parameters, such as regulatory strengths, time decays, degradation rates, 

and post-translational dynamics, needed to generate an oscillatory network. 

 

Many of the genes involved in these repressive interactions (Bhlhe40, Nr1d1, Rora, 

Dbp) are known components of the circadian clock machinery. However, our observed 

cycle is unrelated to intra-day dynamics since all Sertoli cells are observed from a cross 

section spanning many tubules captured at a single time point, eliminating daily circadian 

or hormonal fluctuations as drivers for this network. The presence of circadian clock 
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components in this longer-term oscillatory network suggests a repurposing of these 

molecular mechanisms to generate and maintain cycles on a different timescale. This 

repurposing is supported by the antiphase relationship between Bhlhe40/Nr1d1 and 

Dbp/Rora, mirroring dynamics in the circadian rhythm 19,23. Similar repurposing of 

circadian clock genes for non-circadian processes have been observed in other biological 

cycles such as the 3 week hair follicle cycle in mouse dorsal skin27 and the 12-hour rhythms 

in the liver 28,29.  

 

To understand how this conserved transcription factor(TF) network could interact 

with the identified retinoic acid(RA) cycle, we analyzed the TFs for potential regulation of 

RA cycle genes. Several TFs showed enriched binding motifs in the RA cycle gene 

promoters and matched the expression phase (Fig. 3G). We also identified two TFs known 

to be inducible by retinoic acid: Bhlhe40 (also known as Sensitive to retinoic acid 13, 

Stra13) and Mafb 30–33. These genes peaked between 150° and 200°, coinciding with the 

expected peak of retinoic acid levels (Fig. 3A,B). These temporal alignments suggest a 

feedback mechanism between the TF network and the RA cycle, potentially contributing 

to the robustness and coherence of Sertoli cell rhythms, while retinoic acid remains the 

major regulator of tubular level synchronization4. 

 

Finally, we investigated whether signaling pathways, including those we identified 

as downregulated (Fig 2G,H), influence the TF network through germ cell communication. 

We found germ cell communication would reinforce the network through interactions 

involving the Wnt, Notch, TNF, and MAPK signaling pathways. In untreated control, 

interactions across these signaling pathways lead to expression of known canonical TFs 

that interact with the network in a phase consistent manner. However, in the Busulfan 

condition, these TFs are not expressed or lack coherent expression. These TFs included 

Lef1(Wnt pathway, Fig 7C), Hes/Hey TFs(Notch Pathway, Fig 2I), Rela (TNF pathway, 

Fig 3F), and Stat3 (MAPK pathway, Fig 3E), respectively. Notably, AP-1 transcription 

factors Jun and Fos showed distinct expression patterns in relation to Notch signaling (Fig 

3D). In untreated conditions, Jun expression occurs before and after Notch activation, while 

Fos activity follows it. However, in the busulfan condition, both Jun and Fos are expressed 
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throughout typical Notch-active phases (Fig. 3D), aligning with models where Notch 

signaling indirectly represses AP-1 transcription factor activity 34,35. These observations 

indicate that germ cell-derived signals can enhance the robustness and synchronization of 

the transcriptional oscillation in Sertoli cells by reinforcing the TF network through 

signaling pathways. Moreover, these communication pathways may provide a mechanism 

for germ cells to modulate the timing of spermatogenesis, which could further explain 

observations where donor germ cells alter the length of the seminiferous epithelial cycle 
36.  
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Figure 3: Sertoli Cells present an innate retinoic acid cycle and transcriptional 

machinery for oscillations that coordinates with signaling from germ cells. 
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Figure 3(continued from previous page): (A) Schematic representation of the Sertoli cell 

innate retinoic acid cycle, divided into early, middle, and late stages. (B) Heatmap showing 

the expression of genes involved in retinoic acid metabolism across Tubule Angles in 

busulfan-treated testes. (C) Heatmaps showing expression of average Wnt signaling 

interactions in the untreated condition, and downstream expression of canonical Wnt target 

transcription factors (Axin2, Lef1, Bcl2) in the untreated and busulfan conditions. While 

expression of target TFs are expressed in untreated, they are not expressed in the busulfan 

condition. (D) Heatmaps showing expression of AP1 transcription factors Jun and Fos 

across tubule angles in untreated and busulfan-treated testes in relation to Notch 

interactions present in the untreated condition. AP1 transcription factors seem to be 

inhibited by Notch in the untreated condition, but lacking inhibition in the busulfan 

condition. (E) Heatmap showing ligand-receptor interaction between Igf1-Igf1r resulting 

in expression in Stat3 in the untreated condition. The busulfan-treated Sertoli cells lack 

similar Stat3 expression. (F) Heatmaps showing expression of TNF signaling-related genes 

across tubule angles in untreated and busulfan-treated testes. Untreated Sertoli cells show 

expression of downstream TNF signaling genes including Rela, Tnfaip3, while Sertoli cells 

from the busulfan condition do not. Based on literature, Tnf is expressed from stage VII– 

XI in germ cells37. (G) Conserved TF network was inferred via the Scenic pipeline13 using 

connections conserved in the busulfan condition and untreated condition (Supplementary 

Table 2). Connections to retinoic acid genes were inferred using busulfan condition Sertoli 

cells, which were screened for retinoic acid metabolism genes. Connections to signaling 

by germ cells were identified by identifying signaling pathways (Notch, TNF, Wnt, and 

MAPK) with visibly absent downstream targets in the busulfan condition Sertoli cells. 

Many of these absent TFs showed connections to the conserved network in the untreated 

condition, suggesting how germ cell signaling can coordinate with the innate TF network. 

See Figure S5 for additional data. 
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3.4 Discussion 
 

In this study, we present a comprehensive spatial and temporal map of 

spermatogenesis at a single-cell resolution, revealing novel insights into the organization 

and regulation of this complex process. Our findings not only provide a detailed 

characterization of the seminiferous epithelial cycle but also uncover a previously 

unrecognized role for Sertoli cells as innate oscillators coordinating with spermatogenesis. 

 

Our application of spatial transcriptomics via RNA SeqFISH+ leverages the unique 

spatial geometries of seminiferous tubules, where each tubule cross-section represents a 

distinct time point, to infer temporal dynamics. This approach overcomes limitations of 

previous studies that relied on dissociated cells, enabling us to reconstruct the temporal 

dynamics of spermatogenesis with unprecedented resolution. The circular transcriptional 

profile we observed in the gene expression space of tubule cross-sections precisely 

recapitulates the known stages of the seminiferous epithelial cycle, validating our approach 

and providing a quantitative framework for mapping temporal dynamics using spatial 

geometries. This method of bridging spatial geometries to temporal dynamics has broad 

application in various biological systems where time is encoded in space. For instance, in 

other cyclical biological processes, such as hair follicle cycle, bone remodeling, and 

intestinal epithelial turnover, where different stages are spatially segregated, our approach 

could help reconstruct temporal dynamics from spatial snapshots 38–42. Moreover, this 

approach can be generalized to infer pseudotimes for non-cyclical processes in tissues with 

spatially organized developmental or functional gradients.   

 

A striking finding of our study is the observation that Sertoli cells exhibit a cyclic 

transcriptional profile closely synchronized with germ cell development. The fact that 

Sertoli cells were the only somatic cell type to show such synchronization further 

emphasizes their unique position in the regulation of spermatogenesis. This is consistent 

with early studies that have identified anatomical changes in Sertoli cells over the 

seminiferous epithelial cycle 43,44. However, it is important to note why previous 
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sequencing studies did not fully capture this phenomenon; those using scRNA-seq and 

microarray, provided insights into stage-dependent expression45–47  but were limited in 

their ability to directly correlate transcriptional dynamics with germ cell development 

dynamics due to the dissociation process or limited resolution. Furthermore, Sertoli cells 

are significantly underrepresented in scRNAseq datasets due to the difficulties with the 

dissociation process45,48. Our spatial transcriptomics approach, in contrast, preserves this 

crucial spatial context allowing us to observe how Sertoli cell transcriptional profiles 

change in synchrony with germ cell development.  

Importantly, we found that this cyclic transcriptional profile is maintained 

autonomously in Sertoli cells, even in the absence of germ cells, suggesting an intrinsic 

oscillatory program that may coordinate with the synchronized development of germ cells, 

reminiscent of other biological oscillators such as the segmentation clock in somitogenesis 

or the circadian rhythm49. However, while the cyclic transcriptional profile remained, there 

was significant downregulation of signaling pathways such as PI3K-Akt, MAPK, and 

Notch. Thus, the absence of germ cells suggests that while a core oscillator is autonomous, 

its fine-tuning and robustness depend on reciprocal signaling with germ cells. This 

interplay between cell-autonomous oscillations and cell-cell communication is reminiscent 

of the coupling between cellular clocks that maintains coherent rhythms at the tissue and 

organism level 50–52.  

Our findings finally reveal two cyclic processes in Sertoli cells that may underlie 

the mechanism for the observed cyclic transcriptional profile. First, the intrinsic RA cycle, 

characterized by three distinct phases, serves to synchronize Sertoli cells within a tubule 

even in the absence of germ cells. This cycle may also explain the synchronizing effect of 

exogenous RA on spermatogenesis observed in previous studies 4,8,12,53. Second, we 

identified a sparsely connected network of transcription factors displaying cyclic 

activation. Importantly, both cycles persist in Sertoli cells even in the absence of germ 

cells, suggesting they form the basis of an autonomous oscillatory system. However, the 

presence of germ cells likely provides additional modulation, refinement, and 
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reinforcement of these processes, resulting in the precise orchestration of spermatogenesis 

observed in vivo. This is supported by the downregulation of signaling pathways in Sertoli 

cells in the absence of germ cells, and transcription factors only expressed in the presence 

of germ cells that would target genes in the oscillatory network, such as Lef1, Rela, 

Hes/Hey, and Stat3. This would also explain why transplantation experiments where rat 

germ cells supported by mouse Sertoli cells still developed at the rate of the rat 

seminiferous epithelial cycle36. While somatic cells in various stem cell niches are known 

to influence stem cell behavior 54–56, the discovery of an autonomous, cyclic transcriptional 

program in Sertoli cells represents provides a new perspective on how somatic niche cells 

might coordinate with the complex timing of stem cell behavior, and provides insights into 

the general principles of biological oscillators and tissue organization. 

 

 

3.5 Limitations of the Study 
 

While our study captured the cycle of the Sertoli cell, several important questions 

remain. First, without the presence of differentiating germ cells we cannot capture if the 

period of oscillation differs from the normal seminiferous epithelial cycle. Second, our 

RNA-based measurements do not capture potential dynamic regulation through post-

translational modifications. Third, while our transcription factor network is inferred from 

binding motifs and single-cell expression data, direct experimental validation of these 

connections is still needed. Further studies should investigate how the Sertoli cell cyclic 

transcriptional profile interacts with germ cells in transplantation experiments where the 

period of the seminiferous epithelial cycle changes 36,47,57. While Sertoli cells may present 

as baseline rhythm, this rhythm may even be overridden by specific cues such as retinoic 

acid and other signaling from germ cells 4,8. These insights could have far-reaching 

implications for reproductive biology, especially as sequencing studies suggest that many 

genes associated with idiopathic human non-obstructive azoospermia, accounting for 

~15% of male infertility cases, were predominantly expressed in Sertoli cells 58,59. 
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3.5 Supplementary Data and Figures 
 

Figure S1: Validation and characterization of seqFISH+ measurements in adult 
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mouse testes treated with Busulfan. (A) seqFISH+ counts per gene were highly 

reproducible, with a Pearson correlation of 0.92 across the two replicates. (B) Visual 

representation of on- and off-target barcode counts in each cell. Off-target barcodes were 

those barcodes that did not map to any gene in the probe pool. Of the 3072 possible 

barcodes,  2622 mapped to genes while 450 mapped to unused barcodes and were 

considered off-target barcode counts. The median false positive rate for each cell was 

~0.00% while the mean false positive rate was ~2.60%. (C) Counts across all barcodes. On 

target barcodes showed significantly higher barcode counts/cell than off-target barcodes. 

(D) Histogram showing on-target barcodes vs off-target barcodes across both busulfan 

replicates. The false-positive rate, calculated by normalizing the available off-target 

barcodes in the codebook, was 1.77% in replicate 1 and 1.31% replicate 2. In replicate 1, 

the total number of on-target and off-target counts were 11,566,335 and 34,570, 

respectively. In replicate 2, the total number of on-target and off-target counts were 

6,567,794 and 14,508, respectively. (E) seqFISH+ clusters were compared with clusters 

from those obtained in a single cell RNA-seq study45. Pearson correlations between cluster 

averages showed consistent cell-type definitions. (F) seqFISH+ clusters were compared 

between untreated and busulfan conditions showing consistent cell-type definitions across 

the two conditions. (G) Counts/cell type are shown. Whiskers represent 5 and 95 percentile. 

(H) Spatial map of cells (counts >50) represented. 
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Figure S2: Topological analysis of Sertoli cells in Busulfan datasets. (A - D) PC level 

plots of busulfan condition datasets for Sertoli cells(A,D) and pseudobulked by tubule 

(B,C). Subfigure A,B show the datasets by replicate while subfigure C,D show the datasets 

colored by Tubule Angle, calculated at the tubule level independently for the busulfan 

condition datasets. (E - H) PC level plots of integrated datasets covering both busulfan and 

untreated conditions for Sertoli cells (E,G) and grouped by tubule (F,H). Subfigure E,F 

show the datasets by condition for the Single cell and grouped by tubule level, respectively. 

Subfigure G,H show the datasets colored by Tubule Angle for the single cell and tubule 
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level, respectively. (I - J) Expression data for Sertoli cells across Tubule Angle for 

untreated  

Figure S2 (continued from previous page): and busulfan condition, respectively. A 

dephasing of gene expression profiles was visible in the busulfan condition compared to 

the untreated condition. (K) The tubules at ~90 degrees and ~270 degrees were selected 

from the busulfan and untreated conditions and the cells from the constituent cells are 

highlighted. Across all tubules, the distance between cells in the same tubules across PC 

space was similar in the untreated and busulfan condition(Figure 6B, C). (L - M) 

Comparison of Tubule Angles represented by tubules with >10% Elongating Spermatids 

11–13 in both untreated and busulfan condition. Since all Tubule Angles were represented 

in the busulfan condition, the Sertoli cells must be cycling independently of the present 

spermatids. (N - O) Comparison of Tubule Angles represented by tubules with >10% 

Elongating Spermatids 14–16 in both untreated and busulfan condition. Since all Tubule 

Angles were represented in the busulfan condition, the Sertoli cells must be cycling 

independently of the remnant spermatids. 
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Figure S3: Gene expression across downregulated pathways between Sertoli cells in 

Untreated and Busulfan conditions. (A-H) Heatmaps showing expression for genes 
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Figure S3 (continued from previous page): across pathways showing significant 

differences between untreated and busulfan conditions. Displayed genes amongst the top 

200 genes with the most difference in expression patterns compared to untreated as 

computed using a Kolmogorov-Smirnov test. 

 

Figure S4: Ligand-Receptor interactions across Germ cells and Sertoli cells. (A - C) 

Enriched Ligand-receptor interactions across Notch signaling pathway. (A) shows the 
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Figure S4 (continued from previous page): aggregate signal of the interactions while (B) 

and (C) show the expression of ligands in germ cells and the receptors in Sertoli cells, 

respectively. (D - F) Enriched Ligand-receptor interactions across the Wnt signaling 

pathway. (A) shows the aggregate signal of the interactions while (B) and (C)  the receptors 

in Sertoli cells show the expression of ligands in germ cells, respectively. (G - I) Enriched 

Ligand-receptor interactions across the MAPK signaling pathway. (A) shows the aggregate 

signal of the interactions while (B) and (C) show the receptors in Sertoli cells show the 

expression of ligands in germ cells, respectively. 
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Figure S5: Conserved TF network and Extended Signaling Heatmaps. (A - B) 

Heatmaps showing expression along Tubule Angle for TFs in conserved network( Fig 7G) 
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Figure S5 (continued from previous page): in Sertoli cells in the untreated and busulfan 

condition. (C - D) Heatmaps showing expression along Tubule Angle for genes involved 

with Wnt Signaling in Sertoli cells in untreated and busulfan conditions. While Sertoli cells 

in the busulfan conditions still maintain signaling components including receptors and 

transcription factors (Fzd5, Fzd4, Fzd9, Tcf7l1, Tcf7l2), downstream transcriptional targets 

are not expressed due to lack of signaling from germ cells (Ccnd1, Axin2, Lef1, Bcl2). (E-

F) Heatmaps showing expression along Tubule Angle for genes involved with TNF 

Signaling in Sertoli cells in untreated  and busulfan conditions. TNF is known to be 

expressed between stages VII-XI in germ cells37, and results in expression of canonical 

target genes Rela and Bcl2. Other genes Tnfaip3, Nfil3, Socs3, Traf1 are all involved in the 

TNF signaling pathway. In Sertoli cells in the busulfan condition Tnfaip3, Nfil3 show 

downregulation, while Socs3 and Traf1 show upregulation. Socs3, in particular has been 

shown to be upregulated as a compensatory mechanism to downregulate cytokine signaling 

due to lack of TNF signaling60. (H - I) Histograms quantifying the number of target genes 

that were synchronized or out-of-phase between the Sertoli cells in the untreated and 

busulfan conditions. Synchronized was defined as having a Pearson correlation along 

tubule angle >0.80 and a peak angle that was within 40 degrees in both datasets. Out of 

phase was defined as fitting neither of these categories. (J) Schematic of overall model; 

Sertoli cells in the absence of germ cells maintain an innate cyclic transcriptional profile. 

With communication of germ cells, including signaling via MAPK, Notch, TNF, Wnt, 

retinoic acid, and other signaling mechanisms, germ cells can reinforce this cyclic 

transcriptional profile. At a topology level, the innate cyclic transcriptional profile occupies 

a space within the reinforced cyclic transcriptional profile in the presence of germ cells. 
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3.6 Methods 
 
Mice: All animal care and experiments were carried out in accordance with Caltech 

Institutional Animal Care and Use Committee (IACUC) and NIH guidelines. Adult 5-8 

week old wildtype mice C57BL/6J were used for the experiments. 

Busulfan Treatment: 10mg of busulfan (ThermoFisher J61348) was dissolved in 1mL 

DMSO and subsequently added to 9mL of DPBS to make a 1mg/mL stock solution. This 

stock was sterilized with a 0.2um filter and subsequently injected intraperitoneally in 5 

week old C57BL/6 mice. To completely ablate differentiating germ cells a concentration 

of 30mg/kg or 45mg/kg was injected. Both doses caused complete ablation of 

differentiating germ cells, consistent with dosing response literature7. The mice were then 

housed in sterile housing due to the potential immunosuppressive properties and busulfan. 

After 30 days from injection, the testes were collected from the mice euthanized via 

asphyxiation using CO2 followed by cervical dislocation and decapitation. 

SCENIC analysis: The python implementation of the SCENIC pipeline was used for 

regulatory network reconstruction providing insight into cis-regulatory insight between 

transcription factors and target gene expression. First, GRNBoost2, a gradient boosting 

algorithm, was used to infer gene regulatory networks from the expression data at the single 

cell level. This step was performed using the SCENIC CLI tools. Afterwards cisTarget was 

used to predict regulons. This step involves identifying enriched transcription factor 

binding motifs in the regulatory regions of the target genes. We used three different motif 

databases for this analysis specific for mouse and covering different genomic regions 

(500bp upstream, 10kb centered on TSS, and 5kb centered on TSS). For motif annotations, 

we used the file 'motifs-v9-nr.mgi-m0.001-o0.0.tbl,' which provides information about 

mouse transcription factor motifs used in the analysis. The 'mgi' in the filename indicates 

that it uses Mouse Genome Informatics (MGI) nomenclature, ensuring mouse-specific 

annotations. The results from this analysis were used to identify key transcription factors 

and infer target genes.  
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The core transcription factor network conserved between untreated and the busulfan 

condition was identified by retaining conserved connections between TFs that were 

inferred in both the untreated and the busulfan condition.  

Quantifying Dephasing: To quantify gene dephasing between untreated and busulfan-

treated samples, we developed a computational pipeline that analyzed expression patterns 

across the spermatogenic cycle. First, we preprocessed the data using Scanpy, normalizing 

to 1000 counts per cell, applying log-transformation, and performing batch correction. We 

then ordered genes based on their dynamic expression patterns and extracted expression 

data for both untreated and busulfan-treated samples. To smooth the data, we applied a 

circular moving average with a window size of 50 degrees. We then employed Fourier 

transform-based autocorrelation to assess the periodicity of gene expression patterns. The 

degree of dephasing for each gene was estimated by determining the lag at which the 

autocorrelation dropped below a threshold of 0.80. This process was performed for both 

untreated and busulfan-treated samples. The lag at which the autocorrelation dropped to 

0.80 was plotted for both busulfan and untreated genes (Figure 2D). Thus, a gene with a 

larger lag to reach the threshold autocorrelation in the busulfan condition compared to 

untreated would be found to be dephased. This approach allowed us to quantify the extent 

to which Busulfan treatment disrupted the cyclic expression patterns of individual genes.  

 

Gene and Pathway enrichment analysis: Gene Ontology analysis for gene expressed 

dynamically in Sertoli cells along the seminiferous epithelial cycle was performed using 

the GOATOOLS Python library. Mouse gene symbols were converted to Entrez Gene IDs 

using the mygene package. The GO database (go-basic.obo, dated 2023-07-27) and mouse 

gene association files were downloaded from the Gene Ontology Consortium. Enrichment 

analysis was run using the GOEnrichmentStudyNS() function. The background gene set 

included only genes in our study, and p values were adjusted using the Benjamini-hochberg 

procedure. Only GO terms that were statistically significant, having an adjusted p value < 

.05, were reported.  
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To identify pathways and genes altered in busulfan-treated samples compared to untreated, 

we employed a multi-step computational approach. The data was preprocessed including 

normalizing counts to 20,000 counts per cell, applying log-transformation, and performing 

batch correction. We then calculated moving averages of gene expression across the 

spermatogenic cycle using a 50-degree window. To quantify changes in gene expression 

patterns, we computed the Kolmogorov-Smirnov statistic between untreated and busulfan-

treated samples for each gene. We focused on the top 200 genes with the highest KS 

statistic for further analysis. Using the clusterProfiler R package, we performed pathway 

enrichment analysis on these genes, utilizing a custom-filtered set of KEGG pathways 

focused on signaling cascades. We used a conservative background set that included only 

genes in the KEGG pathways and also present in our experiment. After enrichment analysis 

we employed the Benjamini-Hochberg method for multiple testing correction. Pathways 

with an adjusted p-value < 0.05 were considered significantly enriched. This approach 

allowed us to identify both individual genes and broader pathways disrupted by the lack of 

germ-cell communication. 

 

Ligand-Receptor Analysis: Ligand-receptor interaction analysis was performed using 

gene expression data from germ cells and Sertoli cells. A comprehensive list of ligand-

receptor pairs was compiled from CellTalkDB61. The interaction scores were computed as 

the product of the normalized ligand and receptor expression values when expression of 

ligands in germ cells and receptors in Sertoli cells occurred within the same tubule. Thus 

interaction scores were calculated across all tubules and these were then standardized using 

z-score normalization. To identify dynamic interaction patterns, the standardized scores 

were smoothed using a moving average with a window size of 5 bins, each representing 6 

degrees. This analysis allowed for the identification of spatially-regulated ligand-receptor 

interactions between germ cells and Sertoli cells throughout the seminiferous epithelial 

cycle. 
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Chapter 4: Broader Thoughts 
 
4.1 Spatial Organization as a Window into Temporal Dynamics 

Our ability to decode temporal dynamics from spatial patterns in the seminiferous 

tubules raises intriguing possibilities for understanding other biological systems. While 

time-lapse imaging has traditionally been the gold standard for studying temporal 

processes, many biological events occur over timescales or in contexts that make 

continuous observation impractical. Spatial transcriptomics offers an alternative approach: 

using spatial patterns to infer temporal progression. 

The key insight from our study is that spatial organization can encode temporal 

information in multiple ways. At the most basic level, developmental tissues often contain 

functional units that are naturally asynchronized in their progression. This asynchrony 

means that a single snapshot can capture multiple timepoints of the same developmental 

process. In the seminiferous tubules, this manifests as individual tubule cross-sections 

representing different stages of the seminiferous epithelial cycle1. Beyond just capturing 

different timepoints, spatial transcriptomics reveals how cells within these functional units 

covary in their gene expression, providing insights into the coordination between different 

cell types during development. What criteria then should we use to identify other systems 

where spatial patterns might encode temporal information? First, the system should exhibit 

some form of reproducible spatial organization — whether defined compartments or a 

gradient/periodic pattern. Second, cell movement should be relatively constrained, 

ensuring that spatial relationships reflect genuine developmental relationships rather than 

random mixing. Third, there should be some prior knowledge of the temporal process to 

validate any inferred dynamics. The seminiferous tubules exemplify these criteria with 

their periodic organization, laminar architecture, and well-characterized stages. 

Several other tissues show promise for this approach. The hair follicle cycle creates 

distinct spatial domains that reflect different temporal phases of regeneration. In fact, a 

recent preprint exemplifies this where spatial transcriptomics was used to reconstruct the 

developmental trajectories across hundreds of asynchronously developing follicles2. The 
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developing kidney presents another compelling example, where a single embryonic section 

contains nephrons at different developmental stages — from early condensing 

mesenchyme to mature nephrons — enabling reconstruction of the complete nephrogenesis 

program3,4. This asynchronous development is particularly evident in mouse embryonic 

kidneys between E12.5-E15.5, when nephron formation is at its peak3. However, the 

approach becomes even more valuable when studying human kidney development, where 

live imaging is essentially impossible and developmental timepoints are difficult to access. 

A single human fetal kidney section from 10-30 weeks of gestation contains hundreds of 

nephrons at different developmental stages, from the earliest cap mesenchyme 

condensation through to mature nephrons6. Similarly, during pancreas development, 

particularly during the secondary transition (E13.5-E15.5 in mouse), endocrine cell clusters 

form asynchronously, allowing capture of different stages of islet development within a 

single section — from early hormone-expressing cells to mature organized islets7. 

Beyond tissues with discrete asynchronous units, spatial transcriptomics can likely 

decode temporal information from continuous gradients and dynamic tissue states. While 

developmental morphogen gradients like Sonic Hedgehog create both spatial patterns and 

temporal sequences of differentiation7, adult tissues maintain their own dynamic spatial 

gradients that encode temporal information. The adult liver demonstrates metabolic 

zonation where waves of activity propagate from pericentral to periportal regions, 

coordinating responses to feeding and fasting8,9. Similarly, the bone marrow maintains 

gradients of oxygen tension and stromal signals that create spatiotemporal waves of 

hematopoietic activity10. 

Particularly intriguing are partial epithelial-mesenchymal transitions (EMT) states, 

where cells gradually shift from a stable, adherent epithelial state to a more mobile 

mesenchymal state, in both normal and pathological contexts. During wound healing, cells 

at different distances from the wound edge display varying degrees of EMT activation, 

creating a spatial gradient that reflects the temporal progression of the wound response11. 

In tumors, cells often exhibit spatial gradients of EMT states — from epithelial cells in the 

tumor core to increasingly mesenchymal states at the invasive edge12. These spatial patterns 

may reveal the temporal sequence of transitions cells undergo during invasion. This is 
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particularly evident in melanoma, where distinct phases of radial and vertical growth create 

natural spatial gradients that may encode the temporal sequence of molecular changes 

driving invasion. Studies have shown that key regulatory genes for cell adhesion and 

motility like CD44 and integrins display varying expression levels that correlate with 

proximity to the tumor core and edges13,14. Even immune-related proteins show spatial 

patterns relative to growth, with distinct expression at tumor-stromal boundaries, 

suggesting a progression of immuno-editing that parallels invasion15. These findings 

support the concept that spatial arrangement of gene expression within a tumor not only 

reflects its current state but also encapsulates its developmental history. 

These diverse examples — from development to homeostasis to pathology —

demonstrate how spatial patterns can encode rich temporal information about biological 

processes. While each system presents unique challenges, several common principles 

emerge: the importance of constrained cell movement, the presence of reproducible spatial 

organization, and the value of prior knowledge to validate temporal reconstructions. 

Looking forward, integrating spatial transcriptomics with complementary techniques like 

lineage tracing and targeted perturbations16,17 will be crucial for validating temporal 

relationships inferred from spatial patterns. Additionally, new computational methods will 

be needed to reliably extract temporal information from spatial data, particularly in systems 

more complex than the seminiferous tubules. This approach is particularly valuable for 

human tissues, where live imaging is often impossible and developmental timepoints are 

difficult to access. By carefully considering the relationship between spatial and temporal 

organization, we can leverage single snapshots to reveal the dynamic processes that shape 

tissue development, maintenance, and disease. 
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4.2 Cellular Oscillators in Tissue Organization 

Our discovery of an autonomous transcriptional oscillator in Sertoli cells raises 

intriguing questions about the role of cell-intrinsic timing mechanisms in tissue 

organization. While cellular oscillators are well-known in contexts like the circadian clock, 

where individual cells maintain daily rhythms even in isolation, finding such a program in 

a supporting cell type of a stem cell niche is particularly revealing. It suggests that somatic 

support cells might play more active roles in coordinating tissue dynamics than previously 

appreciated. 

The Sertoli cell oscillator shares interesting parallels with other biological timing 

systems. Like the circadian clock, it maintains its rhythm autonomously but can be 

entrained by external signals — in this case, from developing germ cells rather than light. 

Similarly, in embryonic development, segmentation clock oscillations establish spatial 

patterns,18,19 and the Sertoli cell cycle helps organize a complex developmental sequence. 

However, unlike these classical oscillators which typically operate on hours-long 

timescales, the Sertoli cell program maintains a remarkably long period of 8.6 days (when 

germ cells are present), raising questions about the molecular mechanisms that can sustain 

such extended rhythms. 

The existence of autonomous oscillators in support cells may represent a broader 

strategy for robust tissue-level organization. In the seminiferous tubules, the Sertoli cell 

program provides a baseline rhythm that helps coordinate the complex process of 

spermatogenesis, while remaining responsive to feedback from germ cells. This 

architectural principle where support cells maintain a cyclic program that can be modulated 

by the tissue environment might be present in other stem cell niches. For instance, the hair 

follicle cycle involves coordination among multiple cell types, and there is evidence that 

hair growth proceeds in cyclic waves spanning centimeters over several days 20,21. While 

these broad tissue-level waves may be guided by intrinsic cycles, autologous skin graft 

transplantations suggest that external cues can entrain internal cues or vice versa, 

suggesting a highly dynamic and bidirectional system-level control21. In other words, the 

transplanted tissue eventually synchronizes with the wave fronts of the host skin tissue. 
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Notably, cellular oscillations emerge even in eukaryotic amoebas via cAMP oscillations, 

that allow individual cells to coordinate and self-organize into multicellular fruiting 

bodies22. Our own findings further highlight how the Sertoli cell oscillator remains active 

even without germ cells, underscoring the fundamental role of cell-autonomous timing 

mechanisms in orchestrating tissue-level processes. Thus, it seems highly likely that 

cellular oscillations that self-organize are a conserved feature and strategy for pattern 

formation.   

The identification of the Sertoli cell oscillator also provides new perspectives on 

intrinsic cellular autonomy in tissue organization. While individual cells, especially 

permanent interstitial cells, are often viewed as responders to their environment, our 

findings suggest they can act as independent oscillators that help establish tissue-level 

rhythms. This raises the possibility that other supporting cell types might harbor 

undiscovered oscillatory mechanisms that contribute to tissue homeostasis and 

regeneration. For instance, in the skin the periodic expression of BMP2/4 in dermal cells 

and adipocytes suggests these cells might possess intrinsic timing mechanisms that 

coordinate to create tissue-level waves. Similarly, fibroblasts have been shown to exhibit 

autonomous and asynchronous two-hour oscillations in transcription and DNA 

methylation23,24. In the embryo, the somite segmentation clock demonstrates how cellular 

oscillators, operating through Notch, FGF, and Wnt pathways can coordinate to generate 

precise spatial patterns18. Even in cell culture, NF-kB signaling shows autonomous 

oscillations in response to TNF-a stimulation25. This balance between autonomous 

programs and tissue-level signals may provide both robustness and adaptability — the 

intrinsic rhythm ensures continued function even when external signals are perturbed, 

while the ability to respond to environmental cues allows for coordination across the tissue. 

Understanding how cells achieve this balance between autonomy and responsiveness could 

provide insights into tissue organization more broadly.  

Altogether, the discovery of an autonomous oscillator in Sertoli cells reveals how 

cell-intrinsic timing mechanisms can drive coordinated tissue-level organization. Similar 

oscillatory phenomena in systems ranging from the segmentation clock to circadian 

rhythms underscore the prevalence of this strategy in biology. Rather than acting solely as 
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passive support, oscillation-capable somatic cells may be crucial organizers, ensuring 

robust patterning and functionality across diverse developmental and regenerative 

contexts. 
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4.3 The Sertoli-Germ Association Across Evolutionary Timescales 

Spermatogenesis has long been understood as a precisely choreographed process in 

which germ cells undergo successive rounds of differentiation within the seminiferous 

epithelium. The classical narrative envisions germ cells as the “drivers” of each stage, with 

Sertoli cells providing indispensable, but subordinate, support. However, emerging 

evidence, especially our spatial transcriptomics data presented in earlier chapters of this 

thesis, calls for a reexamination of this framework1,26,27. Specifically, the discovery that 

Sertoli cells maintain a cyclic transcriptional program, even in the absence of 

differentiating germ cells, suggests that Sertoli cells themselves may possess an intrinsic 

clock that operates even without germ cell signals. 

This innate Sertoli cycle raises the question: Have Sertoli cells always been 

“orchestrators,” or did they evolve an autonomous clock as a backup mechanism? 

Specifically, one possibility is that over evolutionary time, Sertoli cells have acquired 

redundant features in their gene regulatory networks to ensure robust support of germ cell 

development across different architectural contexts. However, an alternative and perhaps 

more intriguing possibility is that Sertoli cells have always been the primary timekeepers 

of spermatogenesis, with their intrinsic rhythm serving as a baseline that germ cells can 

modulate but not override. This would suggest that rather than being purely responsive 

supporting cells, Sertoli cells might be the fundamental organizers of the tissue, with 

different species evolving distinct ways for germ cells to engage with this core oscillatory 

program. 

A comparative view across vertebrates suggests that this question may trace back 

more than 500 million years. Early chordates, including jawless fishes such as hagfishes 

and lampreys, already possessed “proto-Sertoli” cells that physically encompassed and 

nurtured germ cells, forming discrete spermatocysts in males28. Even at this early stage, 

these cells were not merely structural — they created specialized microenvironments 

through tight and gap junctions, secreted regulatory factors, and maintained immune 

privilege29–31. This sophisticated supporting role emerged coincident with the evolution of 

true gonads, suggesting Sertoli cells may have been essential organizers from the 
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beginning28. This arrangement laid the groundwork for what would become a deeply 

conserved germinal epithelium spanning all major vertebrate lineages. As vertebrates 

diverged into cartilaginous and bony fishes, amphibians, reptiles, birds, and mammals, 

Sertoli-like cells acquired more sophisticated functions, from creating immunologically 

privileged sites to mediating hormone signaling29,31,32. 

The organization of spermatogenesis varies dramatically across vertebrate lineages, 

with two primary patterns emerging: cystic and non-cystic spermatogenesis. In the cystic 

pattern, found in most anamniotes (fish and amphibians), a single Sertoli cell encloses a 

synchronously developing clone of germ cells within a discrete cyst, forming a structural 

and functional unit called a spermatocyst30,33. All germ cells within this cyst proceed 

through differentiation in perfect temporal alignment, completing spermatogenesis as a 

cohort33. The molecular mechanisms ensuring this synchronization remain incompletely 

understood, though studies suggest that gap junctions between Sertoli cells and their 

enclosed germ cells play a crucial role34. In contrast, the non-cystic pattern, characteristic 

of amniotes (reptiles, birds, and mammals), features a more complex arrangement where 

each Sertoli cell simultaneously supports multiple germ cells at different developmental 

stages within a continuous epithelium35,36. This shift from cystic to non-cystic organization 

represents a major evolutionary transition in vertebrate reproduction, likely requiring new 

mechanisms of temporal control. 

The transition from cystic to non-cystic organization highlights an important 

principle about Sertoli cell evolution. In cystic spermatogenesis, each Sertoli cell already 

demonstrates a remarkable capacity for temporal control — it orchestrates the perfectly 

synchronized development of an entire germ cell cohort from start to finish. This basic 

competence for temporal coordination appears to be an ancient feature of Sertoli cells, 

predating the evolution of the seminiferous epithelial cycle we see in mammals. Notably, 

even in cystic arrangements, Sertoli cells demonstrate sophisticated control — they must 

proliferate at precise times to accommodate growing cyst size, coordinate the progression 

of a single germ cell cohort, and manage local signaling environments. In fish like 

Astyanax altiparanae, the number of Sertoli cells per cyst increases progressively from 

undifferentiated spermatogonia through meiotic stages, showing their ability to match their 
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own development to germ cell needs37. This precise coordination in the simpler cystic 

system may have provided the foundation for evolving the more complex temporal control 

needed in non-cystic arrangements. 

When viewed in this light, the autonomous cyclic program we discovered in 

mammalian Sertoli cells may not have evolved as a backup mechanism or redundancy, but 

rather as an elaboration of an ancestral timing capability.  This view is supported by studies 

showing that in both cystic and non-cystic arrangements, Sertoli cells seem to actively 

regulate the local environment, including phagocytic activity, apocrine secretion of 

nutritive factors, and formation of specialized junction 31,38–40. The transition to non-cystic 

spermatogenesis required Sertoli cells to coordinate multiple developmental stages 

simultaneously — a more complex version of their original synchronizing function. The 

cyclic transcriptional program could represent a molecular solution to this challenge, 

allowing Sertoli cells to provide stage-appropriate support to different germ cells through 

periodic changes in their gene expression. 

This perspective aligns with our observation that over 700 genes participate in the 

Sertoli cell cycle, affecting diverse cellular processes from junction dynamics to 

metabolism1. Such broad transcriptional coordination seems more consistent with a 

primary regulatory mechanism that evolved to manage multiple germ cell stages, rather 

than a backup system. Furthermore, the persistence of this program even without germ 

cells suggests its fundamental nature — much like how the cystic Sertoli cells of fish and 

amphibians establish developmental timing for their germ cell cohorts. 

This evolutionary perspective gains further support when we consider the retinoic 

acid (RA) metabolism cycle we identified in Sertoli cells. Components of RA signaling are 

deeply conserved across vertebrates, with roles in spermatogenesis documented from fish 

to mammals41–43. In fish with cystic spermatogenesis, RA is already crucial for initiating 

germ cell differentiation43. Our finding that mammalian Sertoli cells maintain an 

autonomous RA metabolic cycle - even without germ cells — suggests this ancient 

signaling pathway may have been co-opted and temporally organized to help coordinate 

the more complex non-cystic arrangement. Furthermore, some teleost fish species show 
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cyclical shifts in junction-related proteins and support-cell gene expression, suggesting that 

even at these early evolutionary stages, a basic oscillatory or "proto-oscillatory" program 

was already in place30,38,44,45. 

The evolutionary transition from cystic to non-cystic organization also involved 

tradeoffs in cellular efficiency. In fish with cystic organization, a single Sertoli cell can 

support 80-140 developing spermatids — an efficiency far exceeding what is seen in 

mammals31,37,38. This high efficiency appears to be enabled by the simpler task of 

coordinating a single, synchronously developing cohort of germ cells31. The shift to 

supporting multiple developmental stages in non-cystic organization, while reducing 

cellular efficiency, may have provided advantages in terms of continuous sperm production 

and adaptability. This tradeoff between efficiency and flexibility further suggests that the 

autonomous Sertoli cycle evolved not as a backup system, but as a solution to the increased 

complexity of coordinating multiple developmental stages simultaneously. 

The molecular architecture of the Sertoli cell cycle provides additional evidence for 

evolutionary modification of ancestral features. The transcription factor network we 

identified includes deeply conserved regulators like Dmrt1, Sox9, and Gata4, which are 

expressed in Sertoli cells across vertebrate lineages46. In mammals, these factors have 

become integrated into a cyclic program, but their presence in fish and amphibian Sertoli 

cells suggests the regulatory machinery was already in place before the evolution of the 

seminiferous epithelial cycle. Rather than evolving entirely new regulatory mechanisms, 

mammalian Sertoli cells appear to have temporally organized existing developmental 

regulators  to meet the increasing demands of coordinating multiple germ cell stages. This 

evolutionary perspective reframes our understanding of the Sertoli-germ cell relationship 

- rather than viewing Sertoli cells as passive supporters that acquired backup mechanisms 

over time, the evidence suggests they have been fundamental orchestrators of 

spermatogenesis from the beginning, with their ancestral timing capabilities elaborated and 

refined to enable increasingly sophisticated modes of germ cell development. 
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