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ABSTRACT

In this thesis, we present recent contributions to the study of Type-I non-abelian
fracton models, which led us to propose the notion of generalized foliated fracton
orders that captures the universal properties of both abelian and non-abelian Type-I
fracton models.

Fracton models are known for their exotic properties such as point-like excitations
with restricted mobilities and robust topological ground state degeneracy that grows
sub-extensively with the system size. A multitude of Type-I fracton models whose
excitations obey either abelian or non-abelian fusion rules have recently been con-
structed. Among them, a large number of the abelian fracton models have been
shown to possess foliation structures, where models of different system sizes can
be related through the addition / removal of an entire piece of topologically ordered
system on a sub-dimensional manifold via the action of a finite-depth local unitary
circuit. In this thesis, this is referred to as the original foliation renormalization
group (RG) scheme, which leads us to the notion of original foliation fracton orders.
The Ising cage-net model and other similar non-abelian models are closely related
to these abelian models in terms of their excitation structures and coupled layers
construction etc. However, it was not known whether their fracton orders can also
be understood within the original foliation framework. We address this problem in
this thesis.

In Chapter 2, we show that the Ising cage-net model does not fit into the original
definition of foliated fracton orders, by calculating its ground state degeneracy.
We realize that there exists naturally a more general way to define foliation – the
generalized foliation scheme (Chapter 3). The Ising cage-net and other similar
non-abelian fracton models are foliated according to this generalized scheme. In the
generalized foliation scheme, the RG transformation is defined by, from the excitation
perspective, the condensation of planons / gauging subsystem symmetries. In terms
of quantum circuits, this RG transformation is equivalent to a sequential linear-depth
circuit that acts near a sub-dimensional manifold. With this definition, we can study
phase relation of the Ising cage-net with other known fracton models. In Chapter 4,
via gauging composite subsystem symmetries, we further show that the Ising cage-
net belongs to the same generalized foliated fracton phases as the prototypical
X-cube model. Furthermore, gauging composite subsystem symmetries opens up
a new route to constructing non-abelian fracton models hosting exotic non-abelian



vi

fractons. An example is the tri-Ising-fracton model (Sec. 4.5).
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C h a p t e r 1

INTRODUCTION

Quantum computers hold promising potential to efficiently solve problems that are
expensive on classical machines [2]. However, they are prone to errors. Today’s
quantum computers have error rates on the order of 10−3 for two-qubit gates [3–13],
underscoring the need for fault-tolerant schemes. Fault-tolerant schemes suppress
errors from the physical components of a quantum computer, provided that these
components operate below some error rate threshold. Below this threshold, these
schemes correct errors faster than new errors could occur. Thereby, the encoded
logical information is maintained. One route to fault-tolerance is to protect log-
ical information by encoding it across multiple entangled qubits. This led to the
development of fault-tolerant schemes via quantum error correction codes [14–17].

For quantum processors, fault-tolerant computation can be achieved by performing
error correction actively using quantum codes. Errors originating from the compo-
nents of a quantum computer do affect encoded information in the quantum codes.
However, their impact can be reversed. To do so, these codes require an accompa-
nying fast decoding protocol. Decoding involves two steps. First, the presence of
errors must be detected as they occur. Second, a recovery operation must be applied
before the errors can propagate to inflict irreversible damage to the encoded logical
information. Significant progress has been made in the implementation of quantum
codes in quantum processors. Notably, the Google Quantum team recently reported
the achievement of below-threshold quantum error correction using the surface code
on their superconducting-qubit-based quantum computer [18].

For quantum memories, on the other hand, a higher goal is to store the encoded
information without active error correction. To achieve this, quantum codes are
required to be intrinsically resilient against errors and, in the thermodynamic limit,
the coherence time for the encoded information diverges. This led to the notion
of self-correcting codes [19]. To date, self-correcting codes still await theoretical
breakthrough.

Self-correcting codes exist in 4D. The prototypical example is the 4D toric code,
where the energy cost of creating a logical error grows in the linear system size and
where, below a critical temperature, the encoded information has a coherence time
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that scales exponentially in the linear system size [20]. Are there self-correcting
codes in lower dimensions? More specifically, do they exist in 3D? In an attempt to
answer this question, Haah’s cubic code was proposed.

It is known that string-like logical operators, whose generation involves only constant
energy cost, were impediments to self-correction. This is the key to proving the no-
go theorems for self-correcting codes in 2D [21–23]. To search for self-correcting
codes in any dimension, we need to, first, find codes without string-like operators.
An outcome of this search in 3D is the Haah’s cubic code (code No.1 in Ref. [24]),
which was later recognized to be the defining model of a new class of quantum
phases of matter – fracton orders [25]. It is to be noted that Haah’s cubic code does
not achieve an exponential storage time [26]. The search for low dimensional (≤ 3)
self-correcting codes remains open.

1.1 Debut of fractons
Introduced in 2011, Haah’s cubic code is a 3D quantum stabilizer code defined
on a three-dimensional cubic lattice without string-like logical operators [24]. The
excitations are point-like and are created by tetrahedron-shaped operators. As shown
in the leftmost illustration in Fig. 1.1, such an operator creates four point excitations
at the corners. The four point excitations can move in a coordinated manner with the
enlargement of the tetrahedron-shaped operator across multiple cubic cells (middle
and rightmost illustrations of Fig. 1.1). However, individual point excitation cannot
be moved from one cubic cell to another without incurring additional energy costs. In
other words, there does not exist an operator that transports a single point excitation.
Hence, individual point excitations are immobile.

Figure 1.1: Excitations in the Haah’s cubic code and their movements. Every yellow
cube indicates the location of a point excitation. These point excitations are created
by the tetrahedron-shaped operators in purple. The excitations are only move in a
coordinated fashion as shown in the left, middle, and right. Illustrations taken from
Ref. [27].



3

Such an immobile point excitation is termed fracton in 2016 [25]. The name comes
from the observation that these excitations can only move in a coordinated formation.
When the entire formation is viewed as a single mobile quasiparticle, each individual
point excitation may be interpreted as a fraction of that quasiparticle, hence the name
[25].

Haah’s cubic code has properties that are different from the familiar topologically
ordered systems. On the 3-torus, it has a ground state degeneracy (GSD) that
exhibits strong oscillations dependent on the linear system size, bounded within an
exponentially scaling envelope [24]. Therefore, it does not fit into the notion of
topological order where the GSD on a manifold depends only on its topology but
not the system size1 [29]. The dependence of the GSD on the system size signals
that Haah’s cubic code has a different order.

Given the exotic features of Haah’s cubic code, an immediate question arises: do
fractons exist in other models? The answer is yes. In retrospect, the first fracton
model is the Chamon model, discovered in 2005 [30]. Similar to Haah’s cubic
code, the Chamon model has a GSD that scales exponentially in the linear size of
the system, and it has point excitations that are individually immobile, i.e. fractons
[31]. Moreover, the Chamon model hosts additional point excitations that are
partially mobile: lineons, which are only mobile along a line, and planons, which
are only mobile within a plane.

The Chamon model and Haah’s cubic code are representatives of the two types of
fracton models based on their excitations’ mobilities. Type-II fracton models, such
as the Haah’s cubic code, feature only fractons. Type-I fracton models, such as the
Chamon model, feature excitations that possess partial mobilities.

1.2 Zoo of fracton models
Fractons emerged unexpectedly from the discovery of the Chamon model and Haah’s
cubic code. This naturally raises the question: how do we systematically construct
fracton models? More fundamentally, what physical mechanisms give rise to the
characteristic restricted mobilities?

In 2016, it was discovered that fractons can be constructed from gauging subsystem
symmetries [25]. For example, fractons can arise from gauging planar subsystem

1Take the toric codes as examples of topologically ordered systems. The 2D toric code has a
GSD of 4 on the 2-torus [17], and the 3D toric code has a GSD of 8 on the 3-torus [28]. None
depends on the system size.
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symmetries in all three directions. As shown in (a) of Fig 1.2, a symmetry charge that
transforms under only one planar symmetry is fully mobile within the plane. When
a symmetry charge transforms under two intersecting planar symmetries, the charge
is restricted to move along the intersection of the two planes and thus is a lineon,
(b) of Fig 1.2. Finally, as shown in (c) of Fig 1.2, if a symmetry charge transforms
under three intersecting planar symmetries, then it is immobile. Upon gauging,
these symmetry charges become fractionalized excitation with the corresponding
mobilities. That is, the symmetry charge in (a) after gauging becomes a planon.
The symmetry charge in (b) becomes a lineons. Lastly, the symmetry charge in (c)
becomes a fracton.

Figure 1.2: Mobilities of the symmetry charges (the red dots). (a) a symmetry
charge, transforming under one planar symmetry, is mobile within the plane. Upon
gauging it becomes a planon; (b) a symmetry charge, transforming under two planar
symmetries, becomes a lineon after gauging; (c) a symmetry charge, transforming
under three planar symmetries, becomes immobile and hence a fracton after gauging.

Gauging subsystem symmetries is a powerful method for building fracton models.
The Chamon model and Haah’s cubic code can be obtained by gauging planar and
fractal subsystem symmetries respectively [25]. The method also yields another
paradigmatic example of fracton, the X-cube model [25], which we review in Chap-
ter 3. Subsequent works, including Chapter 4 of this thesis, unveiled many more
exotic fracton models [32–37].

Another route to constructing fracton models is by coupling together lower dimen-
sional lattice systems [38–41]. A notable example obtained via a coupling method is
the Ising cage-net, which hosts non-abelian lineons [42]. The Ising cage-net serves
as the prime example of a non-abelian fracton model in this thesis. We briefly
mention its significance in Sec. 1.4 and review it in detail in Chapter 2.

Parallel to the lattice model constructions, fracton models have also been built from
field-theoretic approaches. In 2017, it was discovered that fracton can arise from the
conservation of dipole and higher moments of charges in higer-rank gauge theories
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[43, 44]. In 2018, it was discovered that the rank-two𝑈 (1) gauge theory can lead to
the X-cube model via the Higgs mechanism [45, 46]. The quest for building fracton
models was carried on by several following works such as Ref. [47, 48].

1.3 The notion of fracton phases: (original) foliation
Fracton models are representatives of different orders than the topological orders.
Recall from Sec. 1.1, the Chamon and Haah’s cubic code have GSDs that grow sub-
extensively with the system size. This feature is ubiquitous among fracton models.
However, it is not present in topologically ordered models where the GSDs depend
on the topology but invariant with respect to the size of the system. If we were to
naively classify fracton models according to the definition of topological orders [29,
49–51], then each system size of a fracton model would be classified to represent
a different topological order. Therefore, the classification of fracton models by the
notion of topological orders is not meaningful. This calls for a new notion to classify
fracton models – fracton orders.

How do we define fracton orders? More technically, since quantum phases are
defined by renormalization group (RG) transformations, the question for fracton
phases boils down to: how do we define RG transformations for fracton models?
For Type-I fracton models, it was discovered that many of them possess a foliation
structure.

2D finite-depth
circuit

fracton
model

2D topological order

Lx × Ly × Lz Lx × Ly × (Lz − 1)

Figure 1.3: An illustration of the original foliated RG scheme in 3D. In this scheme,
a layer of 2D topologically ordered system can be added into or removed from a
fracton model via a finite-depth local unitary circuit near the plane. For an example,
see Sec. 3.1 where we review the foliation structure of the X-cube model.

In 2018, it was found that we can enlarge (or shrink) the 3D X-cube model by adding
(or removing) a 2D toric code topological order via a finite-depth local unitary
circuit near the 2D sub-manifold [52]. This immediately led to the introduction
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of the (original) foliated RG as illustrated in Fig. 1.3, and subsequently (original)
foliated fracton orders [32, 52, 53].

3D
finite-depth

circuit

fracton
model
A

fracton
model
B

stacks of 2D topologically ordered systems

+++

Figure 1.4: An illustration of the equivalence relation for original foliated fracton
orders in 3D. This equivalence relation is induced by the original foliation RG
(Fig. 1.3). Two fracton models A and B have the same original foliated fracton order
if they can be transformed into each other via a 3D finite-depth circuit with stacks
of 2D topologically ordered systems as resources.

The original foliation RG scheme induces an equivalence relation for fracton models.
This equivalence relation then defines the notion of original foliated fracton orders.
Fracton models are said to have the same original foliated fracton order if they
can be transformed into each other via the addition or removal of sub-dimensional
topological orders through finite-depth local unitary circuits as shown in Fig 1.4
[32, 52, 53]. Under this equivalence relation, the X-cube model, the semionic X-
cube, the checkerboard model, and the Majorana checkerboard model can all be
transformed into each other [53–55]. Therefore, they have the same original foliated
fracton order.

1.4 Beyond foliation? – Ising cage-net and generalized foliation
Not all fracton models are foliated in the sense of Sec. 1.3, even for some of the
Type-I models2. In 2019, a non-abelian Type-I fracton model, the Ising cage-net,
was discovered [42]. A question immediately arises: is the Ising cage-net foliated?
The Ising cage-net is similar to the foliated models such as the X-cube model in many
ways. Both models have fractons, lineons, and planons. Both can be constructed
by coupling intersecting stacks of the doubled-Ising string-net (in the case of Ising
cage-net) and intersecting stacks of the 2D toric code (in the case of X-cube) [41,
42]. A naive expectation is that the Ising cage-net is foliated. However, in Chapter 2,
we answer this question in the negative: the Ising cage-net cannot fit into the original
foliated RG scheme.

It is then curious to ask: can we think of the Ising cage-net model as a fixed point
2Haah’s cubic code and similar Type-II fracton models obviously cannot be foliated.
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2D sequential linear-depth
circuit

condensation / “uncondensation”
of planons

Lx × Ly × Lz Lx × Ly × (Lz − 1)

Figure 1.5: An illustration of the generalized foliation RG scheme in 3D. It contains
the original foliation as a special case. The generalized foliation RG transformations
are given by condensation of bosonic planons / “uncondensation" (i.e. gauging, see
Chapter 4), or equivalently, by a sequential linear-depth circuit near the plane.

of a suitably generalized RG? More specifically, can the foliated RG be generalized
somehow to include the Ising cage-net model? In Chapter 3, we answer this question
in the positive. We find that there is a natural way to generalize the original foliation
to the generalized foliation scheme. We show that the Ising cage-net is a fixed point
model under this scheme. The generalized RG transformation can be understood
from two perspectives in terms of excitations and quantum circuits, as shown in
Fig. 1.5. From the excitation point of view, the RG transformation is defined by
condensation / “uncondensation" of bosonic planons. In terms of quantum circuits,
the RG is given by a sequential linear-depth circuit3.

finite-depth of
2D sequential linear-depth circuits

Figure 1.6: An illustration of the equivalence relation for generalized foliated fracton
orders in 3D. Two fracton models are in the same foliated fracton phases if they can
be related via a circuit of finite-depth of 2D sequential linear-depth circuits.

The generalized foliated RG scheme induces equivalence relations between fracton
models, which subsequently define the notion of generalized foliated fracton order.
As shown in Fig. 1.6, two fracton models are in the same generalized foliated fracton
order if they can be transformed into each other via a circuit that is a finite-depth of
sub-dimensional sequential linear-depth circuits. Using this equivalence relation,

3The original foliated RG arises as a special case of the generalized procedure, because finite-
depth local unitary circuits are strictly a subset contained in the set of sequential linear-depth circuits
near the sub-manifold.
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we show that the Ising cage-net and the X-cube model have the same generalized
foliated fracton order (Chapter 4).

1.5 Non-abelian fracton from gauging composite subsystem symmetries
Given the generalized foliated scheme, we can ask: to which generalized foliated
fracton phase does the Ising cage-net belong? We show that the Ising cage-net and
the X-cube model are in the same generalized foliated fracton order in Chapter 4.
We establish this equivalence through a method that we call gauging composite
subsystem symmetries. Precisely, we find that the Ising cage-net can be obtained by
dressing up fractional excitations of the X-cube model via condensation of planons.
The power of gauging composite subsystem symmetries goes beyond reproducing
the Ising cage-net. Many more exotic fracton models can be built, including non-
abelian fractons.

Non-abelian fractons have been elusive and challenging to construct. Extensive
efforts have been devoted to finding these model [39, 42, 56–62]. In Sec. 4.5, via
gauging composite subsystem symmetries, we discover a new Type-I fracton model,
in which all fractons are non-abelian. This new model is obtained by decorating the
fracton of the X-cube model with three Ising anyons. Therefore, each of the fractons
has a quantum dimension of (

√
2)3. We name this model the tri-Ising-fracton model.

We note that, in terms of the generalized foliation, the tri-Ising-fracton model have
the same order as the X-cube model and the Ising cage-net.

1.6 What’s next for fractons?
The study of fracton is at its early stage. There are still many open questions. For
example, having established the notion of generalized foliated fracton order, what
are the invariant quantities? In the original foliated fracton orders, two invariant
quantities are the quotient superselection sectors [53] and entanglement entropy
[63]. In view of the generalized scheme, do these quantities remain as invariants
of generalized foliated fracton orders? If not, what are their counterparts in the
generalized orders? Furthermore, besides the X-cube / the Ising cage-net order,
are there other universality classes? Specifically, in the original foliation, the
twisted models in Ref. [64] represent distinct fracton phases from that of the X-cube
model. In the generalized scheme, do these twisted models still represent different
generalized foliated fracton orders than that of the X-cube? On the other hand,
we expect that the fracton models constructed through gauging strong subsystem
symmetry protected topological (SSPT) models cannot be obtained from gauging
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composite subsystem symmetries (Chapter 4). Therefore, we expect these gauged
SSPT models represent different generalized foliated fracton orders than that of the
X-cube. Is our expectation correct? These questions await future explorations.

Recently, Type-I fracton models have been studied in the infinite component Chern-
Simons theories [65–67]. They do not have fractons. Still, they host excitations
with restricted mobilities: lineons and planons. Many of these models are not
foliated even according to the generalized scheme. It then remains open to design
RG transformations for these models and, in turn, to classify their orders.

1.7 Organization of the thesis
In this section, we summarize the contents of this thesis as well as the connections
between the Chapters.

In Chapter 2, we calculate the ground state degeneracy of the Ising cage-net model
and find that, even though it follows a similar coupled layer structure as the X-cube
model, the Ising cage-net model cannot be foliated in the same sense as with the
X-cube model as defined in Ref. [52]. A generalized notion of foliation is hence
needed to understand the renormalization group transformation of the Ising cage-net
model. The calculation is performed using an operator algebra approach that we
develop in this Chapter, and we demonstrate its validity through a series of examples.

In Chapter 3, we introduce the generalized foliated RG scheme under which the
Ising cage-net is a fixed point model, and which includes the original foliated RG as
a special case. The Ising cage-net model thus gives a prototypical example of the
generalized foliated RG, and its system size can be changed either by condensing /
“uncondensing" bosonic planon excitations near a 2D plane or through a linear-depth
quantum circuit in the same plane. We show that these two apparently different RG
procedures are closely related, as they lead to the same gapped boundary when
implemented in part of a plane.

In Chapter 4, we construct fracton models with exotic lineons and fractons via
gauging composite symmetries. More specifically, we investigate 3D systems with
planar symmetries where, for example, the planar symmetry of a planon charge
is combined with one of the planar symmetries of a fracton charge. We propose
the principle of Remote Detectability to determine how the gauge fluxes bind and
potentially change their mobilities. This understanding is then used to design fracton
models with sub-dimensional excitations that are decorated with excitations having
nontrivial statistics or non-abelian fusion rules. In particular, we show that the
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Ising cage-net can be obtained by the decoration of the excitations in the X-cube
model. Therefore, the Ising cage-net and the X-cube model belong to the same order
according to generalized foliation scheme in Chapter 3. We also discover a new
Type-I non-abelian fracton model, the tri-Ising-fracton model.



11

C h a p t e r 2

GROUND STATE DEGENERACY OF FRACTON MODELS: AN
OPERATOR ALGEBRA PERSPECTIVE

Is the Ising cage-net foliated? The original foliation scheme1 requires that for
a foliated fracton model, an entire layer of 2D topological order to be added or
removed from the model [32, 52]. It then follows that a necessary condition for a
fracton model to be foliated is: on given a topology, its GSD for different system sizes
must be related by an integral factor. That is, for 𝐿1 > 𝐿2, GSD(𝐿1)/GSD(𝐿2) ∈ Z.
Therefore, one thing we can check is the GSD of the Ising cage-net on the 3-torus.

The Ising cage-net model is an exactly solvable model. We can compute the GSD
by constructing the ground space projector from its Hamiltonian terms. However,
since the Ising cage-net model is not a stabilizer model, the computation of its GSD
is not simple (the GSD of minimal Ising cage-net of size 1 × 1 × 1 is computed
in Appendix 2.11). To overcome this challenge, we develop an operator algebra
method for computing the ground state degeneracy of the Ising cage-net model.

Using this method, we find the GSD of an 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 Ising cage-net to be

GSD =
1
8
(𝐸3 + 𝐸2 + 5𝐸1 + 45) , (2.1)

where 𝐸3 = 9𝐿𝑥+𝐿𝑦+𝐿𝑧 , 𝐸2 = 9𝐿𝑥+𝐿𝑦 + 9𝐿𝑦+𝐿𝑧 + 9𝐿𝑧+𝐿𝑥 , and 𝐸1 = 9𝐿𝑥 + 9𝐿𝑦 + 9𝐿𝑧 .
Direct calculation shows that the GSD does not grow by integer multiples when the
system size grows. For example, when 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 2, GSD = 69048; when
𝐿𝑥 = 𝐿𝑦 = 2, 𝐿𝑧 = 3, GSD = 614016. Therefore, Ising cage-net cannot be foliated
in the sense that its system size can be increased / decrease by adding / removing
2D topological orders via a finite-depth circuit.

In Chapter 3, we show that the system size of Ising cage-net can be changed
by condensing / “uncondensing” bosonic planon excitations near a 2D plane or,
correspondingly, through a linear depth circuit that scales with the size of the plane.
This constitutes what we call the generalized foliated scheme for renormalization
group transformation.

The rest of this Chapter is organized as follows: In Section 2.1, we review the Ising
cage-net. In Section 2.3, we introduce the operator algebra approach to calculating

1We have introduced it in Sec. 1.3, and we will review it in detail in Chapter 3.
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GSD by studying the simple example of the chiral Ising anyon model. The un-
derlying mathematics of the operator algebra approach is the theory of semisimple
algebras, and we discuss the structure of semisimple algebras in Section 2.4. More
mathematical details can be found in Appendix 2.8. The construction of Ising cage-
net involves p-loop condensation, and we study boson condensation in the operator
algebra approach in Section 2.5 with the example of a condensation transition in
the doubled Ising string-net model. We then use the operator algebra approach in
Section 2.6 to study a more complicated 2D topological order, the one-foliated Ising
cage-net model. This model is closely related to Ising cage-net – the main focus of
this paper – but is still a 2D model so we can check the consistency of the operator
algebra approach with anyon counting. Also in Section 2.6, we present another
method of computing the GSD using a Cartan subalgebra. In Section 2.7, we put all
of these tools together and compute the GSD of Ising cage-net in two ways: Cartan
subalgebra and the full algebra of logical operators.

2.1 Review: the Ising cage-net
The building block of Ising cage-net is the doubled Ising string-net model [68]
(doubled Ising for short). As a string-net model, doubled Ising can be realized on
any 2D trivalent lattice. For the purpose of constructing Ising cage-net later, we
choose a square-octagon lattice (Fig. 2.1). On each edge of the lattice, we put a local
Hilbert space of dimension 3, with orthonormal basis vectors |0⟩, |1⟩ and |2⟩. The
labels {0, 1, 2} are understood as values of “strings” located at the edges. We also
need a set of symbols (𝛿𝑖 𝑗 𝑘 , 𝑑𝑠, 𝐹𝑖 𝑗𝑚𝑘𝑙𝑛 ), where all indices take values in {0, 1, 2}. For
example, 𝛿𝑖 𝑗 𝑘 = 1 if 𝑖 𝑗 𝑘 = 000, 011, 022, 112 or their permutations, and 𝛿𝑖 𝑗 𝑘 = 0
otherwise.

Av

Bs
p

Wψψ̄
l

Figure 2.1: A square-octagon lattice. A vertex term 𝐴𝑣 and a plaquette term 𝐵𝑠𝑝

are shown. The string operator 𝑊𝜓𝜓̄

𝑙
creates a 𝜓𝜓̄ excitation on each of the two

plaquettes bordering the edge 𝑙.
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The Hamiltonian consists of a vertex term 𝐴𝑣 for each vertex 𝑣 and a plaquette term
𝐵𝑝 for each plaquette 𝑝. The vertex term is

𝐴𝑣

����� 𝑗

𝑖 𝑘

〉
= 𝛿𝑖 𝑗 𝑘

����� 𝑗

𝑖 𝑘

〉
,

which allows certain ways for the strings to “fuse” at a vertex at low energy. The
plaquette term is

𝐵𝑝 =

∑
𝑠 𝑑𝑠𝐵

𝑠
𝑝∑

𝑠 𝑑
2
𝑠

,

where the operator 𝐵𝑠𝑝 involves the symbols 𝐹𝑖 𝑗𝑚
𝑘𝑙𝑛

and essentially acts by fusing an
𝑠-loop into the plaquette 𝑝. The precise definition of 𝐵𝑠𝑝 is reviewed in Appendix 2.9.
The full Hamiltonian is then

𝐻 = −
∑︁
𝑣

𝐴𝑣 −
∑︁
𝑝

𝐵𝑝 .

This is a commuting projector Hamiltonian when restricted to the low-energy sub-
space where 𝐴𝑣 = 1 for all 𝑣. It has anyons 1, 𝜎, 𝜎̄, 𝜓, 𝜓̄, 𝜎𝜓̄, 𝜓𝜎̄, 𝜎𝜎̄ and
𝜓𝜓̄, where 𝜓̄ is the time-reversal of 𝜓 but otherwise unrelated to 𝜓, and similarly
for 𝜎̄. In fact, doubled Ising can be viewed as the chiral Ising anyon model [69]
(more discussion in Section 2.3) which has anyons 1, 𝜎 and 𝜓, stacked with its
time-reversal which has anyons 1, 𝜎̄ and 𝜓̄. This is where the name “doubled” Ising
comes from. The fusion rules for 𝜎 and 𝜓 are 𝜎×𝜎 = 1+𝜓, 𝜎×𝜓 = 𝜎, 𝜓 ×𝜓 = 1;
similarly for 𝜎̄ and 𝜓̄. The 𝑅-symbols and string operators of the anyons can be
found in Ref. [68], and we mention some important ones here:

• The braiding of 𝜎 with 𝜓 gives a phase −1, and 𝜓 braids trivially with 𝜓; same
for 𝜎̄ and 𝜓̄.

• The operator𝑊𝜓𝜓̄

𝑙
= (−1)𝑛1 (𝑙) creates a𝜓𝜓̄ excitation on each of the two plaquettes

bordering the edge 𝑙, where 𝑛1(𝑙) = 1 if the state on the edge 𝑙 is |1⟩, and 𝑛1(𝑙) = 0
otherwise (Fig. 2.1). We can extend the blue dashed line to obtain a string operator
of 𝜓𝜓̄.

As a 2D topological order, the GSD of doubled Ising is equal to the number of
anyons [70], i.e. GSD = 9.

To construct Ising cage-net [42], we first stack up layers of doubled Ising in the 𝑥, 𝑦
and 𝑧 directions. The resulting lattice is a truncated cubic lattice (Fig. 2.2). In this
lattice, an edge 𝑙𝜇 parallel to the 𝜇 direction for 𝜇 = 𝑥, 𝑦 or 𝑧 is called a principal
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Figure 2.2: A truncated cubic lattice built from intersecting layers of the square-
octagon lattice.

Figure 2.3: A 𝜓𝜓̄ p-loop shown in red. It is created by the operator 𝑉𝑙𝜇 , the green
cylinder. Connecting the 𝜓𝜓̄ particles with line segments orthogonal to their hosting
plaquettes, we obtain the p-loop.

edge. We will also distinguish the octagon and square plaquettes, denoting them by
𝑝o and 𝑝s, respectively. On a principal edge 𝑙𝜇, the operator

𝑉𝑙𝜇 = 𝑊
(𝜓𝜓̄)𝜈
𝑙𝜇

𝑊
(𝜓𝜓̄)𝜌
𝑙𝜇

= (−1)𝑛𝜈1 (𝑙𝜇) (−1)𝑛
𝜌

1 (𝑙𝜇) (2.2)

creates a 𝜓𝜓̄ particle-loop (“p-loop” for short) around the edge (Fig. 2.3), where
𝜇, 𝜈 and 𝜌 are distinct. To be precise, 𝑎𝜇 (𝑖) denotes the anyon 𝑎 in the 𝑖th plane
orthogonal to the 𝜇 direction, and we may omit the 𝑖 label when it is clear from
context. For example, if 𝜇 = 𝑥 then we can take 𝜈 = 𝑦, 𝜌 = 𝑧, and the 𝜓𝜓̄ particles
in the p-loop originate from the 𝑥𝑧 and 𝑥𝑦 planes. We can condense these p-loops
with the Hamiltonian

𝐻0 − 𝐽
∑︁
𝜇

∑︁
𝑙𝜇

𝑉𝑙𝜇 ,

where 𝐻0 is the Hamiltonian for the decoupled layers of doubled Ising, and 𝐽 > 0 is
a large coefficient enforcing the condensation. This reduces the low-energy Hilbert
space on each edge to one of dimension 5, spanned by |00⟩, |02⟩, |20⟩, |22⟩ and |11⟩.
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If we apply perturbation theory with 𝐻0 as the perturbation, the plaquette terms 𝐵1
𝑝o

must be assembled into cube terms

𝐵𝑐 =
∏
𝑝o∈𝑐

√
2

2
𝐵1
𝑝o

for each cube 𝑐. The resulting Hamiltonian of Ising cage-net is

𝐻 = −
∑︁
𝑣,𝜇

𝐴
𝜇
𝑣 −

∑︁
𝑝s

𝐵𝑝s −
∑︁
𝑝o

1
4
(1 + 𝐵2

𝑝o) −
∑︁
𝑐

𝐵𝑐, (2.3)

where 𝐴𝜇𝑣 is the vertex term at vertex 𝑣 orthogonal to the 𝜇 direction, and 𝐵2
𝑝o is

the plaquette term of the 2-loop (not the square of an operator). The terms are
shown in Fig. 2.4. This is a commuting projector Hamiltonian when restricted to
the low-energy subspace where all vertex terms are satisfied.

Figure 2.4: Hamiltonian terms of Ising cage-net. The full Hamiltonian is given by
(2.3).

In order for an anyon to remain deconfined upon condensation, its string operator
must commute with 𝑉𝑙𝜇 . In other words, the anyon must braid trivially with the
𝜓𝜓̄ p-loop. For example, a 𝜎 planon in an 𝑥𝑦 plane has a braiding phase −1 with
a 𝜓𝜓̄ p-loop created by some 𝑉𝑙𝑥 or 𝑉𝑙𝑦 , and is therefore confined. On the other
hand, a 𝜎 planon in an 𝑥𝑦 plane combines with a 𝜎 planon in an 𝑥𝑧 plane to form a
lineon that moves in the 𝑥 direction, and this lineon is deconfined. We summarize
the deconfined excitations in Table 2.1.

Although Ising cage-net is exactly solvable, it is not obvious how to calculate its
GSD. In the following sections, we will introduce a new way of calculating the GSD
that applies to Ising cage-net. We will start with some simple 2D topological orders,
and work our way up to Ising cage-net.

2.2 Overview of the method: operator algebra approach to GSD
As an exactly solvable model, the GSD of Ising cage-net can in principle be explicitly
determined, but the non-abelian nature of the model complicates the problem. We
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Mobility Type Excitations

Planon
Abelian 𝜓𝜇 (𝑖), 𝜓̄𝜇 (𝑖)

Non-abelian 𝜎𝜇 (𝑖)𝜎𝜇 ( 𝑗), 𝜎̄𝜇 (𝑖)𝜎𝜇 ( 𝑗),
𝜎𝜇 (𝑖)𝜎̄𝜇 ( 𝑗), 𝜎̄𝜇 (𝑖)𝜎̄𝜇 ( 𝑗)

Lineon
Abelian

Non-abelian 𝜎𝜇 (𝑖)𝜎𝜈 ( 𝑗), 𝜎̄𝜇 (𝑖)𝜎𝜈 ( 𝑗),
𝜎𝜇 (𝑖)𝜎̄𝜈 ( 𝑗), 𝜎̄𝜇 (𝑖)𝜎̄𝜈 ( 𝑗)

Table 2.1: Elementary excitations in Ising cage-net. We have 𝜇 ≠ 𝜈 in the lineon
sector. The lineon 𝜎𝑥 (𝑖)𝜎𝑦 ( 𝑗) moves in the 𝑧 direction; similarly for the other
non-abelian lineons.

deal with it, as shown below, by focusing on the operator algebra of the logical
operators in the ground space of the model. By logical operators, we mean all
possible operators acting on the ground space. We use the fact that if the ground
space has dimension 𝑛, then the logical operators form the algebra Mat𝑛 of all
𝑛 × 𝑛 complex matrices, and a maximal, abelian, diagonalizable subset among all
logical operators has dimension 𝑛. Hence the dimension of the ground space can be
determined from the dimension of either the full algebra or the Cartan subalgebra
of the logical operators.

To determine the dimension of the operator algebras, we make use of the coupled
layer condensation picture of the model. In particular, we start from a straight-
forward but redundant operator algebra 𝐴 which is the tensor product of operators
algebras coming from the decoupled doubled Ising layers. The layers are coupled
through 𝑝-loop condensation. Correspondingly, we take the commutant 𝑀′ of
the condensate algebra 𝑀 within 𝐴, obtaining the deconfined algebra. Moreover,
the deconfined algebra is further restricted by the constraints coming from the
Hamiltonian (cube terms in Ising cage-net). When the set of both types of constraints
is modded out, we get a semisimple algebra 𝑃𝑀′, i.e. one with a block-diagonal form.
The full logical operator algebra 𝐴0 should be a matrix algebra, i.e. containing a
single block. This structure will be recovered once we take into account the splitting
of certain logical operators after condensation. This process is illustrated in Fig. 2.5.

2.3 GSD of the chiral Ising
The chiral Ising anyon model [69] (“chiral Ising” for short) is a 2D topological order
whose properties such as GSD and anyon structure are well-known. As explained in
Section 2.1, we can use chiral Ising to construct doubled Ising and hence Ising cage-
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Figure 2.5: Procedure for determining the algebra of logical operators on the Ising
cage-net ground space.

net. In this section, we review chiral Ising and calculate its GSD with an alternative
method, namely the operator algebra approach. While this approach may seem over-
complicated for this relatively simple model, we aim to set up the general formalism
and present several useful mathematical statements, as this approach will be used in
Section 2.7 for calculating the GSD of Ising cage-net.

There are three anyons in chiral Ising: 1, 𝜎 and 𝜓. This model can be obtained
e.g. by gauging the Z2 fermion parity symmetry in a 𝑝 + 𝑖𝑝 superconductor. In this
context, 1 is the vacuum, 𝜎 is the 𝜋 gauge flux, and 𝜓 is the gauge charge. The
fusion rules are 𝜎 × 𝜎 = 1 + 𝜓, 𝜎 × 𝜓 = 𝜎, 𝜓 × 𝜓 = 1. The 𝐹- and 𝑅-symbols
can be found in Ref. [71]. The GSD of a 2D topological order on a torus is equal to
its number of anyons, so the Ising anyon model has GSD = 3. This is equivalent to
saying that the algebra of logical operators is 𝐴0 = Mat3. Here, Mat𝑛 is the set of
all 𝑛 × 𝑛 complex matrices. In the operator algebra approach which we will discuss
now, we treat 𝐴0 as the more fundamental object, design a framework to compute
𝐴0 without knowledge of the ground space H0, and view H0 as a representation
space of 𝐴0.

The starting point of the operator algebra approach is a set of logical operators. We
require these operators to linearly span the vector space of all logical operators, but
we don’t require them to be linearly independent. For a 2D topological order on a
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torus, we take these to be operators of the form

𝑣(𝑎, 𝑏, 𝑐) = 𝑎

𝑏

𝑎

𝑏

𝑐 , (2.4)

where 𝑎, 𝑏, 𝑐 are anyons consistent with the fusion rules (for simplicity we assume
no fusion multiplicity). We call such an operator an elementary operator. If 𝑏 = 1
then we must have 𝑎 = 𝑐, and we will sometimes use the short-hand notation
𝑎𝑥 = 𝑣(𝑎, 1, 𝑎); similarly 𝑏𝑦 = 𝑣(1, 𝑏, 𝑏).

Of course, an elementary operator acts on the ground space H0 and has a matrix
representation, but our discussion here does not rely on such a representation.
Instead, we view the elementary operators as abstract objects. We can form a
complex vector space 𝐴 over the elementary operators, with formal addition and
formal scalar multiplication. The vector space 𝐴 has an additional operation called
multiplication, defined for a pair of elementary operators by stacking one operator
on top of the other and reducing the diagram to a sum of elementary operators using
𝐹 and 𝑅 symbols:

𝑣(𝑎, 𝑏, 𝑐)𝑣(𝑎′, 𝑏′, 𝑐′) = 𝑎

𝑏

𝑎′

𝑏′𝑐

𝑐′

=
∑︁
𝑓 ,𝑔

√︄
𝑑 𝑓 𝑑𝑔

𝑑𝑎𝑑𝑎′𝑑𝑏𝑑𝑏′ 𝑐

𝑐′
𝑎′

𝑎

𝑏 𝑔

𝑏′

𝑓

𝑏′

𝑎′
𝑏

𝑎

=
∑︁
𝑓 ,𝑔,ℎ

𝜆( 𝑓 , 𝑔, ℎ)𝑣( 𝑓 , 𝑔, ℎ),

with some coefficients 𝜆( 𝑓 , 𝑔, ℎ). Here 𝑓 , 𝑔 and ℎ are some anyons, and 𝑑𝑎 is the
quantum dimension of 𝑎. Going from the first line to the second line, we fused 𝑎
with 𝑎′ to get 𝑓 , and 𝑏 with 𝑏′ to get 𝑔; going from the second line to the third line,
we used 𝐹- and 𝑅-moves to transform the diagrams into elementary operators. In
principle, we can compute 𝜆( 𝑓 , 𝑔, ℎ) for a general anyon theory, but in this paper
we will only need some simple cases. For example, in chiral Ising we have

𝜓𝑥𝜓𝑦 = 𝑣(𝜓, 1, 𝜓)𝑣(1, 𝜓, 𝜓) = −𝑣(𝜓, 𝜓, 1),

where the minus sign comes from 𝑅
𝜓,𝜓

1 = −1. The multiplication has an identity
1 = 𝑣(1, 1, 1). We say that 𝐴 is an algebra, which is a complex vector space equipped
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with multiplication and a multiplicative identity (Definition 8 in Appendix 2.8
explains this concept more rigorously). If one views the elements of 𝐴 as operators
on H0, then the addition, scalar multiplication and multiplication are the usual
matrix operations. However, we stress again that we would like to view 𝐴 as a
structure in its own right and not interpret it as a matrix algebra acting on a Hilbert
space just yet.

For the chiral Ising, we have 10 elementary operators

𝑣(1, 1, 1), 𝑣(𝜓, 1, 𝜓),
𝑣(1, 𝜓, 𝜓), 𝑣(𝜓, 𝜓, 1),
𝑣(𝜎, 1, 𝜎), 𝑣(1, 𝜎, 𝜎),
𝑣(𝜎, 𝜓, 𝜎), 𝑣(𝜓, 𝜎, 𝜎),
𝑣(𝜎, 𝜎, 1), 𝑣(𝜎, 𝜎, 𝜓).

Therefore, dim(𝐴) = 10. However, we know that the algebra of logical operators
should be 𝐴0 = Mat3 which has dim(𝐴0) = 9, so 𝐴 is too large. This means that we
need to reduce the redundancy in 𝐴 by modding out some relations. Conveniently,
this redundancy reduction turns out to be equivalent to acting on 𝐴 by a projector
𝑃, which kills the subspace (1 − 𝑃)𝐴 and preserves its complement 𝑃𝐴.

Before discussing where the relations come from, we want to first answer a question:
How do we know whether we have found sufficiently many relations so that 𝑃𝐴 is
small enough? For a topological or fractonic order, its algebra of logical operators
should be Mat𝑛 for some 𝑛. Conversely, a matrix algebra Mat𝑛 has the property that
no more redundancy can be modded out (Definition 10 and Lemma 11). Therefore,
the redundancy reduction stops if and only if 𝑃𝐴 is a matrix algebra.

Furthermore, all of the algebras in the physical models in this paper have the
additional property of being so-called semisimple.

Definition 1. An algebra 𝐴 is semisimple if it can be written as a direct sum

𝐴 = 𝐴1 ⊕ · · · ⊕ 𝐴𝑚, (2.5)

where each 𝐴𝑖 is a matrix algebra.

The redundancy reduction amounts to finding a projector 𝑃 that kills all but one 𝐴𝑖,
and then the true algebra of logical operators is this 𝐴𝑖. The kernel of 𝑃 consists of
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operators that we identify with 0, so we are taking a “quotient” of 𝐴 (see details in
Appendix 2.8).

Given 𝐴, its decomposition (2.5) can be performed systematically, but for the case
of chiral Ising in this section, we will first write down the result:

𝐴 = Mat3 ⊕ Mat1. (2.6)

A systematic derivation can be found in Section 2.4. In this decomposition, we have

Mat3 = span{1 + 𝜓𝑥 , 1 + 𝜓𝑦, 1 + 𝑟,
𝜎𝑥 , 𝜎𝑦, 𝑣(𝜎, 𝜓, 𝜎), 𝑣(𝜓, 𝜎, 𝜎),
𝑣(𝜎, 𝜎, 1), 𝑣(𝜎, 𝜎, 𝜓)},

Mat1 = span{1 − 𝑟},

where
𝑟 =

1
2

(
1 + 𝜓𝑥 + 𝜓𝑦 − 𝜓𝑥𝜓𝑦

)
. (2.7)

The 9 spanning elements of Mat3 are not very important, but the element 𝑟 will be
useful throughout this paper.

Given the decomposition (2.6), clearly we want to define the projector 𝑃 such that
𝑃𝐴 = Mat3. However, if we didn’t know that 𝐴0 = Mat3 in the first place, then we
would need to justify this choice of 𝑃. To do so, we note that 𝐴 is obtained only
using fusion rules, 𝐹-symbols and 𝑅-symbols, while further information such as the
topology of the torus hasn’t been fully utilized. Indeed, we can put a contractible
𝜎-loop “around the corners” of the torus, reduce it to a sum of elementary operators
on the one hand, and demand it be equal to the quantum dimension

√
2 of 𝜎 on the

other hand. Using red lines for 𝜎-strings and blue lines for 𝜓-strings, the reduction
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to elementary operators is performed as follows:

1
√

2
=

1
√

2
=

1
√

2

∑︁
𝑎,𝑏

√︄
𝑑𝑎𝑑𝑏

𝑑4
𝜎

𝑎

𝑏

=
1

2
√

2

©­­­« + + +
ª®®®¬

=
1

2
√

2

©­­­« + + +
ª®®®¬

=
1

2
√

2

(√
2 +

√
2𝜓𝑥 +

√
2𝜓𝑦 +

√
2𝑣(𝜓, 𝜓, 1)

)
=

1
2
(1 + 𝜓𝑥 + 𝜓𝑦 − 𝜓𝑥𝜓𝑦)

= 𝑟,

(2.8)

where we moved the
√

2 to the denominator. In this calculation, we first moved
the 𝜎-strings close together, and then fused the parallel 𝜎-strings to obtain four
outcomes (second line). The result is demanding 𝑟 = 1. In other words, we identify
1 − 𝑟 with 0 by taking the projector 𝑃 = (1 + 𝑟)/2, which precisely kills 1 − 𝑟. The
same relation was also found in Ref. [72]. We can repeat the same calculation for
a 1-loop or a 𝜓-loop “around the corners”, but in the end we obtain tautological
relations. Only non-abelian anyons can give non-trivial relations.

To conclude this section, we summarize the operator algebra approach as follows:

Protocol 2. Suppose we have a topological or fractonic order.

1. We take a set of logical operators that span the space of all logical operators but
are not necessarily linearly independent.

2. We reduce the redundancy of these logical operators with 𝐹- and 𝑅-moves
as much as possible. Then we take the formal algebra 𝐴 over the remaining
operators, which is a semisimple algebra. In a 2D topological order, if we take
the operators 𝑣(𝑎, 𝑏, 𝑐) as in (2.4), then these operators have no such redundancy
and there is no need for this step.

3. We find relations in 𝐴 by physical argument. In a 2D topological order, the
relations are given by loops of (non-abelian) anyons “around the corners”. For
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Ising cage-net, we will see that the relations are given by cage structures of non-
abelian strings. We then mod out the relations by acting with the corresponding
projector 𝑃. If 𝑃𝐴 is a matrix algebra, then the true algebra of logical operators
is 𝐴0 = 𝑃𝐴. In Section 2.4, we will discuss a quick way to find 𝑃.

2.4 Structure of semisimple algebra
The correctness of the decomposition (2.6) can be checked by hand, but this is far
from systematic. At the same time, we also do not have a systematic method for
converting relations to projectors. In this section, we resolve these two issues by
discussing the structure of a semisimple algebra, and provide an efficient way to
compute projectors. Several statements in this section will be used in the calculations
in later sections.

In the decomposition (2.5) of a semisimple algebra 𝐴, each component 𝐴𝑖 has its
own multiplicative identity 𝑃𝑖, called a primitive central projector of 𝐴.

Definition 3. An element 𝑥 ∈ 𝐴 is central if [𝑥, 𝑦] = 0 for all 𝑦 ∈ 𝐴. The set of
all central elements of 𝐴 is the center of 𝐴, written as 𝑍 (𝐴). A central element
𝑥 ∈ 𝑍 (𝐴) is a central projector if 𝑥2 = 𝑥. A central projector 𝑥 is primitive if for all
central projector 𝑦 ∈ 𝐴, we have 𝑥𝑦 = 0 or 𝑥.

The primitive central projectors 𝑃𝑖 have the property that every central projector 𝑄
can be written as

𝑄 =
∑︁
𝑖

𝜆𝑖𝑃𝑖,

where 𝜆𝑖 = 0 or 1. If we represent 𝐴 as block-diagonal matrices, then a central
projector is the identity of several blocks, and a primitive one occupies exactly
one block. It behaves like a projector in the usual sense when acting on 𝐴 by left
multiplication (equivalent to right multiplication and conjugation since𝑄 is central).

In principle, given a basis {𝑣𝛼} of 𝐴 and structure constants 𝑓 𝛾
𝛼𝛽

defined by

𝑣𝛼𝑣𝛽 =
∑︁
𝛾

𝑓
𝛾

𝛼𝛽
𝑣𝛾, (2.9)

the central projectors are the solutions to the equations

[𝑥, 𝑣𝛼] = 0 for all 𝛼,

𝑥2 = 𝑥.
(2.10)
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If the solutions are {𝑄𝑘 }, then the primitive ones form the subset {𝑃𝑖} ⊂ {𝑄𝑘 } of
maximal size such that 𝑃𝑖𝑃 𝑗 = 0 for all 𝑖 ≠ 𝑗 . We then obtain the decomposition
(2.5) where 𝐴𝑖 = 𝑃𝑖𝐴.

Next, we discuss the conversion of relations into projectors. In this paper, the
relations obtained from physical argument happen to all be central in 𝐴. It also
happens that a simply linear rescaling is enough to convert all the relations into
central projectors, e.g. the rescaling of 1− 𝑟 into (1− 𝑟)/2 for chiral Ising. Suppose
that we have relations 𝑄1, . . . , 𝑄𝑚 where each 𝑄𝑘 is a central projector. Then the
overall projector is

𝑃 = (1 −𝑄1) · · · (1 −𝑄𝑚). (2.11)

Such a projector can also be constructed without the assumption that 𝑄𝑘 is central,
and this construction is discussed in Appendix 2.8.

Following this procedure, we find the primitive central projectors of chiral Ising to
be

𝑃1 =
1
2
(1 + 𝑟), 𝑃2 =

1
2
(1 − 𝑟).

Applying (2.11) with 𝑄 = 𝑃2, we find

𝑃𝐴 = (1 − 𝑃2)𝐴 = 𝑃1𝐴 = Mat3,

which is the matrix algebra we want.

In the remaining sections, (2.11) will be used constantly for computing projectors.

2.5 Doubled-Ising to toric code: an operator algebra view of anyon conden-
sation

Ising cage-net is obtained via p-loop condensation, an example of Bose-Einstein
condensation. In this section, we discuss the topic of condensation in the operator
algebra approach by studying the simple example of condensation in doubled Ising.

As explained in Section 2.1, doubled Ising is a stack of two copies of chiral Ising,
whose anyons are 1, 𝜎, 𝜓 and 1, 𝜎̄, 𝜓̄, respectively. Now suppose we want to
condense the boson 𝜓𝜓̄. For an anyon to remain deconfined upon condensation, it
must braid trivially with𝜓𝜓̄. Such anyons are 1 = 𝜓𝜓̄, 𝜓 = 𝜓̄ and𝜎𝜎̄. Furthermore,
𝜎𝜎̄ is no longer a simple particle, but instead “splits” into two anyons 𝜎𝜎̄ = 𝑒 +𝑚.
To see why, note that 𝜎𝜎̄ is the fusion product of two Majorana modes and hence
a (complex) fermion mode. The parity 𝑝 of this fermion mode can be 0 (unfilled)
or 1 (filled), and braiding with 𝜎 or 𝜎̄ switches the value of 𝑝, so 𝑝 is not a good
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quantum number in doubled Ising. However, if 𝜓𝜓̄ is condensed then both 𝜎 and 𝜎̄
are confined, and therefore 𝑝 becomes a good quantum number that distinguishes the
unfilled fermion mode (anyon 𝑒) from the filled (anyon𝑚). The resulting topological
order is the toric code [73].

It turns out that the operator algebra approach provides a nice description of con-
densation and, in particular, the “splitting” of anyons. To begin with, we follow
Steps 1 and 2 of Protocol 2 to obtain a semisimple algebra 𝐴 with dim(𝐴) = 100.
Since doubled Ising is two copies of chiral Ising, we can find the decomposition of
𝐴 by taking a tensor product:

𝐴 = (Mat3 ⊕ Mat1)⊗2

= Mat9 ⊕ Mat3 ⊕ Mat3 ⊕ Mat1. (2.12)

The quantum dimensions of 𝜎 and 𝜎̄ give us two relations 𝑟 = 1 and 𝑟 = 1, where

𝑟 =
1
2

(
1 + 𝜓𝑥 + 𝜓𝑦 − 𝜓𝑥𝜓𝑦

)
,

𝑟 =
1
2

(
1 + 𝜓̄𝑥 + 𝜓̄𝑦 − 𝜓̄𝑥𝜓̄𝑦

)
.

By (2.11), these relations give rise to a projector

𝑃 =
1
4
(1 + 𝑟) (1 + 𝑟),

and 𝑃𝐴 = Mat9 is the correct (ground space) operator algebra of doubled Ising. Of
course, 𝜎𝜎̄ is also a non-abelian anyon, and it gives a relation 𝑟𝑟 = 1, but we don’t
need to consider this relation separately because 𝑟 = 1 = 𝑟 already implies 𝑟𝑟 = 1.

To condense 𝜓𝜓̄, we want to identify 𝜓𝑥𝜓̄𝑥 and 𝜓𝑦𝜓̄𝑦 with 1 and understand the
consequence of doing so. Let 𝑀 be the subalgebra of 𝐴 generated by 𝜓𝑥𝜓̄𝑥 and
𝜓𝑦𝜓̄𝑦. 𝑀 is an abelian subalgebra since we have [𝑥, 𝑦] = 0 for all 𝑥, 𝑦 ∈ 𝑀 .
Upon condensation, the logical operators that remain “deconfined” are those that
commute with 𝑀 . Such deconfined operators form the commutant of 𝑀 , which is
a semisimple subalgebra of 𝐴 defined as

𝑀′ = {𝑥 ∈ 𝐴 | [𝑥, 𝑦] = 0 for all 𝑦 ∈ 𝑀}.

Since 𝑀 is abelian, we have 𝑀 ⊂ 𝑀′. To be precise, 𝑀′ is spanned by elementary
operators 𝑣(𝑎, 𝑏, 𝑐) where 𝑎 and 𝑏 take values in {1, 𝜓, 𝜓̄, 𝜓𝜓̄, 𝜎𝜎̄}. A straightfor-
ward calculation shows dim(𝑀′) = 28. By analyzing the primitive central projectors
of 𝑀′ using (2.10), we can decompose 𝑀′ as

𝑀′ = (Mat3 ⊕ 3Mat2) ⊕ 3Mat1 ⊕ 3Mat1 ⊕ Mat1, (2.13)
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where 3Mat2 means Mat2 ⊕Mat2 ⊕Mat2, etc. Here, the summands are organized in
correspondence with the summands in (2.12), i.e. (Mat3 ⊕ 3Mat2) is a subalgebra
of the Mat9 in (2.12), the first 3Mat1 is a subalgebra of the first Mat3 in (2.12), and
so on.

Next, we need to mod out all relations we know. Firstly, we have the quantum
dimension of 𝜎𝜎̄, which demands 𝑟𝑟 = 1. By (2.11), this gives a projector

𝑃12 =
1
2
(1 + 𝑟𝑟).

We chose the notation 𝑃12 for consistency with the discussion in Section 2.6. Now
we note that

𝑃12𝐴 = Mat9 ⊕ Mat1,

since 𝑟 and 𝑟 both act as +1 on Mat9, and both act as −1 on Mat1. Therefore, by
restricting the action of (1 + 𝑟𝑟)/2 to 𝑀′, we have

𝑃12𝑀
′ = (Mat3 ⊕ 3Mat2) ⊕ Mat1.

Secondly, we have the condensation which demands 𝜓𝑥𝜓̄𝑥 = 1 and 𝜓𝑦𝜓̄𝑦 = 1. Again
by (2.11), these two relations give a projector

𝑃c =
1
4
(1 + 𝜓𝑥𝜓̄𝑥) (1 + 𝜓𝑦𝜓̄𝑦),

where the subscript “c” stands for “condensation”. Thus the overall projector is

𝑃 = 𝑃c𝑃12,

and we need to check the action of 𝑃c on (Mat3 ⊕ 3Mat2) and on Mat1. The latter is
straightforward: Mat1 is spanned by (1 − 𝑟) (1 − 𝑟), and explicit calculation shows

𝑃c(1 − 𝑟) (1 − 𝑟) = (1 − 𝑟) (1 − 𝑟).

Therefore, Mat1 is in 𝑃𝑀′. On the other hand, let𝑄0 = (1+𝑟) (1+𝑟)/4 be the central
projector that projects 𝐴 onto Mat9. Since both 𝑃c and 𝑄0 are central projectors,
so is 𝑃c𝑄0, and we also claim that 𝑃c𝑄0 is primitive. This is a consequence of the
following lemma:

Lemma 4. Let 𝐵 be a matrix algebra, 𝑁 an abelian subalgebra of 𝐵, and 𝑁′ the
commutant of 𝑁 . Then we have 𝑍 (𝑁′) = 𝑁 .
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It is easy to see that 𝑁 ⊂ 𝑍 (𝑁′), and Lemma 4 says that the two are actually equal.
Technically, 𝑁 must satisfy another condition, and Lemma 13 in Appendix 2.8
explains this point more rigorously. Applying Lemma 4 with 𝐵 = 𝑄0𝐴 and 𝑁 =

𝑄0𝑀 , we know that 𝑍 (𝑄0𝑀
′) is generated by 𝜓𝑥𝜓̄𝑥𝑄0 and 𝜓𝑦𝜓̄𝑦𝑄0. It is then

straightforward to use the prescription in Section 2.4 to find the primitive projectors
from the central elements, and indeed 𝑃c𝑄0 is one of them. Thus we know that
𝑃c𝑄0𝑀

′ is a matrix algebra, and we need to determine whether it is Mat3 or
one of the three copies of Mat2. For this purpose, we note that for any operator
𝑥 ∈ 𝐴, we can represent 𝑥𝑄0 as a 9 × 9 matrix 𝜌9(𝑥𝑄0), or 𝜌9(𝑥) for short. The
subscript 𝑙 in 𝜌𝑙 indicates the matrix dimension. A systematic way to determine this
representation 𝜌9 can be found in Appendix 2.8, but here we will start with a 3 × 3
matrix representation 𝜌3 of operators in chiral Ising:

𝜌3(𝜓𝑥) =
©­­«
1

1
−1

ª®®¬ , 𝜌3(𝜎𝑥) =
©­­«

0
√

2 0√
2 0 0

0 0 0

ª®®¬ ,
𝜌3(𝜓𝑦) =

©­­«
1

−1
1

ª®®¬ , 𝜌3(𝜎𝑦) =
©­­«

0 0
√

2
0 0 0√
2 0 0

ª®®¬ .
(2.14)

The correctness of this representation can be confirmed by hand or by following the
discussion in Appendix 2.8. The operators in Mat9 can be obtained by tensoring the
above matrices. In particular, 𝜌9(𝑄0) is the 9 × 9 identity, and we find 𝜌9(𝑃c𝑄0) to
be a diagonal matrix

𝜌9(𝑃c𝑄0) = diag(1, 0, 0, 0, 1, 0, 0, 0, 1). (2.15)

Since tr(𝜌9(𝑃c𝑄0)) = 3, we have 𝑃c𝑄0𝑀
′ = Mat3. To summarize, we have

𝑃𝑀′ = Mat3 ⊕ Mat1, (2.16)

where the projector 𝑃 accounts for deconfined anyons and the condensation condi-
tion.

The bottom line of (2.16) is that even after modding out all the relations we know,
we still do not obtain a matrix algebra. However, we know that the algebra of logical
operators must be a matrix algebra, so we need to do something to 𝑃𝑀′. For this
purpose, we visualize 𝑃𝑀′ as block-diagonal matrices embedded in Mat4:

𝑃𝑀′ = . (2.17)
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We have the following observation: The splitting of 𝜎𝜎̄ precisely “fills the blanks”
in (2.17) to turn Mat3 ⊕ Mat1 into Mat4.

To justify this observation, we will work out a 4 × 4 matrix representation 𝜌4 of,
say, 𝑒𝑥 and compare it with the known result from the toric code. By (2.15), the
Mat3 block of an element 𝑥 ∈ 𝑃𝑀′ is obtained by taking rows and columns 1, 5 and
9 from 𝜌9(𝑥). On the other hand, the Mat1 block of 𝑥 ∈ 𝑃𝑀′ is determined by its
action on the generator (1 − 𝑟) (1 − 𝑟) of Mat1. For example,

𝜓𝑥 (1 − 𝑟) (1 − 𝑟) = −(1 − 𝑟) (1 − 𝑟),
𝜎𝑥𝜎̄𝑥 (1 − 𝑟) (1 − 𝑟) = 0.

Using this method, we find the 𝜌4 representations of some operators in 𝑃𝑀′ to be

𝜌4(𝜓𝑥) =
©­­­­­«
1

1
−1

−1

ª®®®®®¬
, 𝜌4(𝜎𝑥𝜎̄𝑥) =

©­­­­­«
0 2 0 0
2 0 0 0
0 0 0 0
0 0 0 0

ª®®®®®¬
,

𝜌4(𝜓𝑦) =
©­­­­­«
1

−1
1

−1

ª®®®®®¬
, 𝜌4(𝜎𝑦𝜎̄𝑦) =

©­­­­­«
0 0 2 0
0 0 0 0
2 0 0 0
0 0 0 0

ª®®®®®¬
.

We want to use physical argument to find 𝜌4(𝑒𝑥). We have equations

𝜌4(𝑒𝑥)† = 𝜌4(𝑒𝑥),
(1 + 𝜌4(𝜓𝑥))𝜌4(𝑒𝑥) = 𝜌4(𝜎𝑥𝜎̄𝑥),

𝜌4(𝑒𝑥)𝜌4(𝜓𝑦) = −𝜌4(𝜓𝑦)𝜌4(𝑒𝑥),
𝜌4(𝑒𝑥)2 = 1.

Line 1 says that 𝑒 is its own antiparticle; line 2 comes from𝜓×𝑒 = 𝑚 and𝜎𝜎̄ = 𝑒+𝑚;
line 3 says that 𝑒 and 𝜓 braid with a −1 phase; line 4 comes from the fusion rule of
𝑒. The most general solution is

𝜌4(𝑒𝑥) =
©­­­­­«
0 1
1 0

0 𝑒𝑖𝜃

𝑒−𝑖𝜃 0

ª®®®®®¬
.
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As expected, 𝜌4(𝑒𝑥) has entries 𝑒±𝑖𝜃 in the “blank” areas of (2.17). There is no way
to fix 𝜃, since conjugation by

𝑈 =

©­­­­­«
1

1
1

𝑒𝑖𝜙

ª®®®®®¬
acts trivially on Mat3 ⊕Mat1 but non-trivially on Mat4, mapping 𝜃 to 𝜃±𝜙. Without
loss of generality, we choose 𝜃 = 0. This gives

𝜌4(𝑒𝑥) =
©­­­­­«
0 1
1 0

0 1
1 0

ª®®®®®¬
, 𝜌4(𝑚𝑥) =

©­­­­­«
0 1
1 0

0 −1
−1 0

ª®®®®®¬
.

Using the same method while demanding 𝜌4(𝑒𝑦) commute with 𝜌4(𝑒𝑥), we find

𝜌4(𝑒𝑦) =
©­­­­­«
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

ª®®®®®¬
, 𝜌4(𝑚𝑦) =

©­­­­­«
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

ª®®®®®¬
.

One may check that these indeed obey the (ground space) operator algebra of the
toric code. Moreover, they generate matrices such as

©­­­­­«
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

ª®®®®®¬
=

1
4
𝜌4(𝜎𝑥𝜎̄𝑥) [𝜌4(𝑒𝑦) − 𝜌4(𝑚𝑦)],

and hence all other matrices with entries in the “blank” areas of (2.17).

To conclude this section, we summarize condensation in the operator algebra ap-
proach as follows:

Protocol 5. Let 𝐴 be the semisimple algebra of a topological or fractonic order, and
suppose that {𝑎} is a set of bosons to be condensed.

1. We define 𝑀 as the subalgebra of logical operators of {𝑎}. If {𝑎} can be
condensed simultaneously, then 𝑀 is always abelian.
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2. Let 𝑀′ be the commutant of 𝑀 . We define 𝑃 as the projector due to the
condensation condition, relations due to deconfined anyons as well as relations
from other physical arguments. For Ising cage-net, the physical arguments will
come from the plaquette and cage terms of the Hamiltonian (2.3). We then take
the algebra 𝑃𝑀′.

3. If the semisimple algebra

𝑃𝑀′ = Mat𝑑1 ⊕ · · · ⊕ Mat𝑑𝑚

has more than one component, then certain operators must split. The result of
splitting is a matrix algebra

𝐴0 = Mat𝑑1+···+𝑑𝑚 ,

which is obtained by “filling the blanks” in the matrix representation of 𝑃𝑀′. The
correctness of this operation can be confirmed manually for all the 2D models
in this paper, and we conjecture that this holds for all topological or fractonic
orders.

2.6 GSD of the one-foliated Ising cage-net
We will discuss one more 2D topological order in this section before going to Ising
cage-net in Section 2.7. In particular, we will show a method of computing the GSD
using a Cartan subalgebra, which is very convenient when applied to Ising cage-net.

The model we want to discuss is called the one-foliated Ising cage-net model (“1-F
Ising” for short), which is constructed as follows: We take a stack of 2𝐿 copies of
chiral Ising, and condense the boson Ψ = 𝜓(1) × · · · × 𝜓(2𝐿), where 𝜓(𝑘) is the
𝜓 particle from the 𝑘th layer. The chirality of these copies of chiral Ising does not
affect the GSD. The condensation of doubled Ising into the toric code in Section 2.5
is a special case of this construction with 𝐿 = 1.

In the limit 𝐿 → ∞, 1-F Ising can be viewed as a fracton model, whose partially
mobile excitations are planons. It is related to Ising cage-net as follows: In Ising
cage-net, let 𝑆𝑥 be a set of principal edges 𝑙𝑥 related to each other by translation in
the 𝑧 direction (green edges in Fig. 2.6). Then the operator∏

𝑙𝑥∈𝑆𝑥
𝑉𝑙𝑥 , (2.18)

where 𝑉𝑙𝑥 is a condensation operator defined in (2.2), creates a pair of 𝜓𝜓̄ anyons in
each 𝑥𝑦 plane. Therefore, Ψ in the 𝑥𝑦 plane is part of the condensate in Ising cage-
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net. So are Ψ in the 𝑦𝑧 and 𝑧𝑥 planes. In this sense, 1-F Ising is the “one-foliated”
version of Ising cage-net, while Ising cage-net is “three-foliated”.

Figure 2.6: 1-F Ising obtained from layers of doubled Ising on a square-octagon
lattice, similar to the construction of Ising cage-net. Each plane is a layer of doubled
Ising. The product of 𝑉𝑙𝑥 on the green edges (the set 𝑆𝑥 in (2.18)) creates a pair
of 𝜓𝜓̄ in each 𝑥𝑦 plane. If we condense the Ψ particles created this way, then we
obtain 1-F Ising together with decoupled layers of doubled Ising in the 𝑦𝑧 and 𝑧𝑥
planes.

GSD from anyon counting
Since the 1-F Ising is a 2D topological order, its GSD can be obtained by counting
anyons. In order for an anyon to be deconfined upon condensation, it must contain
an even number of 𝜎′𝑠 in order to braid trivially with Ψ = 𝜓1 × · · · × 𝜓2𝐿 . The
only such particles are ones where there are an even number of layers with 𝜎.
Additionally, we can attach 𝜓 to any layer where there is no 𝜎, since that does not
affect the braiding with Ψ. The condensation of Ψ identifies some pairs of anyons
with each other, which reduces the number of distinct anyons. Finally, the anyon
Σ = 𝜎(1) × · · · × 𝜎(2𝐿) splits into two simple particles Σ = 𝑒 +𝑚 since the overall
fermion parity of Σ is a good quantum number. Another way to see this is to note
that Σ×Σ = 1+Ψ+· · ·, so the presence of two identity channels implies that Σ splits
into two particles. These conditions give constraints on a label 𝑎(1) × · · · × 𝑎(2𝐿)
of an anyon.

We now count the number of such labelings. If we choose 2𝑘 layers 𝑖1, . . . , 𝑖2𝑘 to
attach 𝜎 to, where 𝑘 = 0, . . . , 𝐿 − 1, then there are (2𝐿 − 2𝑘) places left to attach
𝜓. It would seem, therefore, that there are 22𝐿−2𝑘 inequivalent ways to attach 𝜓 to
the layers. However, Ψ = 1 reduces the number of distinct labelings by a factor
of 2. For example, consider the case where 𝐿 = 4. Here, the particles 𝜎1𝜎2𝜓3

and 𝜎1𝜎2𝜓4 are equivalent, since 𝜎1𝜎2𝜓3 = 𝜎1𝜎2 × 𝜓1𝜓2𝜓3 = 𝜎1𝜎2 × 𝜓4 using
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Ψ = 𝜓1𝜓2𝜓3𝜓4 = 1. This generalizes straightforwardly to an arbitrary number of
layers and 𝜎’s, halving the number of anyons in the theory. Therefore, there are(2𝐿

2𝑘
)
22𝐿−2𝑘−1 inequivalent ways to choose 2𝑘 layers to place 𝜎 and attach 1’s or 𝜓’s

to the remaining layers. The case where 𝑘 = 𝐿 needs to be considered separately.
In this case, the anyon of interest is Σ, which splits into 𝑒 and 𝑚. Thus the total
number of anyons in the theory (equal to the GSD) is

GSD =

𝐿−1∑︁
𝑘=0

(
2𝐿
2𝑘

)
22𝐿−2𝑘−1 + 2

=

𝐿∑︁
𝑘=0

(
2𝐿
2𝑘

)
22𝐿−2𝑘−1 + 2 − 1

2
,

where the +2 accounts for the 𝑘 = 𝐿 case. To evaluate this, we use the binomial
theorem

(1 + 𝑥)2𝐿 + (1 − 𝑥)2𝐿 =

2𝐿∑︁
𝑗=0

(
2𝐿
𝑗

) (
𝑥2𝐿− 𝑗 + (−𝑥)2𝐿− 𝑗

)
= 2

𝐿∑︁
𝑘=0

(
2𝐿
2𝑘

)
𝑥2𝐿−2𝑘 .

This can be used to find the GSD:

GSD =

𝐿∑︁
𝑘=0

(
2𝐿
2𝑘

)
22𝐿−2𝑘−1 + 2 − 1

2

=
1
4
(1 + 2)2𝐿 + 1

4
(1 − 2)2𝐿 + 3

2

=
1
4

(
9𝐿 + 7

)
. (2.19)

The same result was obtained by K. Slagle, D. Aasen, D. Williamson and W. Shirley
[74].

GSD from Cartan subalgebra
We now try to reproduce (2.19) using the operator algebra approach. Protocol 5 is
based on the full algebra of 1-F Ising, but we delay this calculation to Section 2.6.
Instead, here we will compute the GSD using a so-called Cartan subalgebra of the
full algebra.

Definition 6. A subalgebra 𝐶 of an algebra 𝐴 is a Cartan subalgebra if it is abelian
and maximal. Abelian means that [𝑥, 𝑦] = 0 for all 𝑥, 𝑦 ∈ 𝐶; maximal means that if
any subalgebra 𝐶′ ⊂ 𝐴 is abelian and 𝐶 ⊂ 𝐶′, then 𝐶′ = 𝐶.
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Note that this definition is not entirely rigorous mathematically: There is another
condition on 𝐶 which we did not mention, and this condition holds for the choice of
𝐶 that we will use later. Definition 15 in Appendix 2.8 explains this extra condition.

A Cartan subalgebra is related to the GSD by the following lemma:

Lemma 7. Let 𝐴0 be a matrix algebra, 𝐶0 ⊂ 𝐴0 a Cartan subalgebra. Then
dim(𝐶0)2 = dim(𝐴0). In particular, if 𝐴0 is a (ground space) operator algebra, then
GSD = dim(𝐶0).

To understand this lemma with an example, take𝐶0 to be the set of diagonal matrices
in 𝐴0. The lemma is obvious in this case.

For 2𝐿 copies of chiral Ising with semisimple algebra

𝐴 = (Mat3 ⊕ Mat1)⊗2𝐿 ,

we have a convenient choice of a Cartan subalgebra 𝐶, which is spanned by the
elementary operators with no 𝜎. To compute the GSD, we want to understand the
transition from𝐶 to𝐶0. Our approach will be similar to Steps 1 and 2 of Protocol 5,
although we will adapt these steps to fit with the Cartan subalgebra. Let 𝑀 be the
subalgebra of 𝐴 generated by Ψ𝑥 and Ψ𝑦 (the condensate). In the commutant 𝑀′ of
𝑀 , we have central projectors

𝑃c =
1
4
(1 + Ψ𝑥) (1 + Ψ𝑦) (2.20)

due to condensation, and
𝑃𝑖 𝑗 =

1
2
(1 + 𝑟 (𝑖)𝑟 ( 𝑗)) (2.21)

due to deconfined anyons 𝜎(𝑖)𝜎( 𝑗), where 1 ≤ 𝑖 < 𝑗 ≤ 2𝐿 and

𝑟 (𝑖) = 1
2

(
1 + 𝜓𝑥 (𝑖) + 𝜓𝑦 (𝑖) − 𝜓𝑥 (𝑖)𝜓𝑦 (𝑖)

)
.

Although there are also non-abelian anyons consisting of more than two 𝜎’s and
possibly 𝜓’s, for the purpose of constructing projectors it suffices to only con-
sider pairs of 𝜎’s. This is because e.g. 𝜎(1)𝜎(2)𝜎(3)𝜎(4) gives a relation
𝑟 (1)𝑟 (2)𝑟 (3)𝑟 (4) = 1, but this is already implied by 𝑟 (1)𝑟 (2) = 1 and 𝑟 (3)𝑟 (4) = 1.

From this point on, we will focus only on the Cartan subalgebra. Importantly, in
this specific case we have 𝐶 ⊂ 𝑀′, and the central projectors 𝑃c and 𝑃𝑖 𝑗 all map 𝐶
to𝐶 since they also contain no 𝜎. Meanwhile, we can argue physically that splitting
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does not enlarge the Cartan subalgebra. This is because the braiding of Σ with e.g.
𝜓(1) gives a −1 phase and thus the same holds for the anyons 𝑒 and 𝑚 split from Σ.
Therefore, the entirety of 𝐶0 can be obtained by projection on 𝐶. In other words,
we have 𝐶0 = 𝑃𝐶, where

𝑃 = 𝑃c
∏
𝑖< 𝑗

𝑃𝑖 𝑗 . (2.22)

Since 𝑃 is a projector, we have

GSD = dim(𝑃𝐶) = tr(𝑃).

We stress that the underlying vector space here is 𝐶, and that we are taking the trace
of the action of 𝑃 on 𝐶.

To find tr(𝑃), we note that in principle, we can write

𝑃 =
∑︁
𝑎,𝑏

𝜇(𝑎, 𝑏)𝑣(𝑎, 𝑏, 𝑎 × 𝑏), (2.23)

where neither 𝑎 nor 𝑏 contains any 𝜎 (and hence 𝑎 × 𝑏 is unique), and 𝜇(𝑎, 𝑏) are
some coefficients. We then observe that when 𝑣(𝑐, 𝑑, 𝑐 × 𝑑) ∈ 𝐶 is multiplied by
𝑣(𝑎, 𝑏, 𝑎 × 𝑏) in (2.23), the result

±𝑣(𝑎 × 𝑐, 𝑏 × 𝑑, 𝑎 × 𝑏 × 𝑐 × 𝑑)

is never proportional to 𝑣(𝑐, 𝑑, 𝑐 × 𝑑) unless 𝑎 = 𝑏 = 1. As a result, only 𝑣(1, 1, 1)
contributes to tr(𝑃), so we only need to find the coefficient 𝜇(1, 1). For this purpose,
we need to expand (2.22). Firstly, we use 𝑟 (𝑖)2 = 1 to obtain∏

𝑖< 𝑗

𝑃𝑖 𝑗 =
1

22𝐿−1

𝐿∑︁
𝑘=0

∏
𝑖1<···<𝑖2𝑘

𝑟 (𝑖1) · · · 𝑟 (𝑖2𝑘 )

=
1

22𝐿

[ 2𝐿∏
𝑖=1

(1 + 𝑟 (𝑖)) +
2𝐿∏
𝑖=1

(1 − 𝑟 (𝑖))
]
.

The first line is a sum of all products of an even number of 𝑟 (𝑖)’s; the second line
can be interpreted as forcing the 𝑟 (𝑖)’s to be all +1 or all −1, which is a consequence
of forcing each pair of the 𝑟 (𝑖)’s to be both +1 or both −1 due to {𝑃𝑖 𝑗 }. Thus

𝑃 =
1
4
(1 + Ψ𝑥 + Ψ𝑦 + Ψ𝑥Ψ𝑦)

× 1
22𝐿

[ 2𝐿∏
𝑖=1

(1 + 𝑟 (𝑖)) +
2𝐿∏
𝑖=1

(1 − 𝑟 (𝑖))
]
.
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Now since

1 + 𝑟 (𝑖) = 3
2
+ 1

2
𝜓𝑥 (𝑖) +

1
2
𝜓𝑦 (𝑖) −

1
2
𝜓𝑥 (𝑖)𝜓𝑦 (𝑖),

1 − 𝑟 (𝑖) = 1
2
− 1

2
𝜓𝑥 (𝑖) −

1
2
𝜓𝑦 (𝑖) +

1
2
𝜓𝑥 (𝑖)𝜓𝑦 (𝑖),

the only four terms in the expansion of
∏
𝑖 (1 + 𝑟 (𝑖)) that combines with one of 1,

Ψ𝑥 , Ψ𝑦 and Ψ𝑥Ψ𝑦 to contribute to 𝜇(1, 1) are(
3
2

)2𝐿
,
∏
𝑖

(
1
2
𝜓𝑥 (𝑖)

)
,
∏
𝑖

(
1
2
𝜓𝑦 (𝑖)

)
,
∏
𝑖

(
−1

2
𝜓𝑥 (𝑖)𝜓𝑦 (𝑖)

)
.

Summing these up, we find that the contribution of the
∏
𝑖 (1 + 𝑟 (𝑖)) part to 𝜇(1, 1)

is
(
9𝐿 + 3

)
/24𝐿+2. Similarly, the contribution of the

∏
𝑖 (1 − 𝑟 (𝑖)) part is 4/24𝐿+2.

Combining these together, we obtain

GSD = tr(𝑃) = 24𝐿𝜇(1, 1) = 1
4

(
9𝐿 + 7

)
,

where we used the fact that dim(𝐶) = 24𝐿 .

This calculation is almost entirely combinatorial and straightforward. However,
it is also highly specific to simple examples such as Ising – it relies on a nice
Cartan subalgebra which is fixed by the central projectors and cannot be enlarged
by splitting due to physical arguments.

GSD from full algebra
Finally for the discussion of 1-F Ising, we compute its GSD using Protocol 5.

Again, we take 𝑀 to be the subalgebra of 𝐴 generated by Ψ𝑥 and Ψ𝑦, and 𝑀′ the
commutant of 𝑀 . We want to find 𝑃𝑀′ where 𝑃 is given by (2.22). We will not try
to decompose 𝑀′ into matrix algebras like we did for doubled Ising in Section 2.5,
since most of the components of 𝐴 will be killed by the central projectors 𝑃𝑖 𝑗 , just
like the two copies of Mat3 in (2.12). Instead, we will first discuss the action of 𝑃𝑖 𝑗
on 𝐴, and then apply 𝑃c. To start with, we have∏

𝑖< 𝑗

𝑃𝑖 𝑗 𝐴 = 𝐵0 ⊕ 𝐵1,

where 𝐵0 = Mat9𝐿 and 𝐵1 = Mat1. This is because {𝑃𝑖 𝑗 } forces the 𝑟 (𝑖)’s to be all
+1 or all −1. As a result, we have∏

𝑖< 𝑗

𝑃𝑖 𝑗𝑀
′ ⊂ 𝐵0 ⊕ 𝐵1,
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so we need to find the action of 𝑃c on (𝐵0 ⊕ 𝐵1) ∩ 𝑀′.

For the 𝐵1 ∩ 𝑀′ part, we know that 𝐵1 ⊂ 𝑍 (𝐴) since 𝐵1 is a 1 × 1 block. Thus
𝐵1 ∩ 𝑀′ = 𝐵1. Each of 𝜓𝑥 (𝑖) and 𝜓𝑦 (𝑖) acts on 𝐵1 as −1, so 𝑃c preserves 𝐵1. We
conclude that 𝑃c(𝐵1 ∩ 𝑀′) = Mat1.

For the 𝐵0 ∩ 𝑀′ part, we will repeat what we did in Section 2.5 for Mat3 ⊕ 3Mat2,
and use a matrix representation of 𝑃c to determine its action. Let

𝑄0 =
1

22𝐿

∏
𝑖

(1 + 𝑟 (𝑖))

be the central projector that projects onto 𝐵0. By Lemma 4, the central projector
𝑃c𝑄0 is primitive, and hence the algebra 𝑃c𝑄0𝑀

′ is a matrix algebra. On 𝐵0, the
action of operators such as 𝑃c has representation 𝜌9𝐿 . Thus we have 𝑃c𝑄0𝑀

′ = Mat𝑛
where 𝑛 = tr(𝜌9𝐿 (𝑃c𝑄0)). To find 𝑛, we use

𝑛 = dim(eigenspace 𝜌9𝐿 (𝑃c) = 1)
= dim(eigenspace 𝜌9𝐿 (Ψ𝑥) = 𝜌9𝐿 (Ψ𝑦) = +1).

Let 𝐷𝑠𝑡
2𝐿 , where 𝑠, 𝑡 can be + or −, be the dimension of the common eigenspace {𝑤}

of 𝜌9𝐿 (Ψ𝑥) and 𝜌9𝐿 (Ψ𝑦) where 𝜌9𝐿 (Ψ𝑥)𝑤 = 𝑠𝑤 and 𝜌9𝐿 (Ψ𝑦) = 𝑡𝑤 (i.e. ±𝑤). From
the representation 𝜌3 of 𝜓𝑥 and 𝜓𝑦 in (2.14), we find

𝐷++
2𝐿 =

1
4

(
9𝐿 + 3

)
,

𝐷+−
2𝐿 = 𝐷−+

2𝐿 = 𝐷−−
2𝐿 =

1
4

(
9𝐿 − 1

)
.

(2.24)

We will show the calculation of 𝐷+−
2𝐿 as an example. Let {𝑢1, 𝑢2, 𝑢3} be the standard

basis for C3, and
𝑤 = 𝑢

⊗𝑘1
1 ⊗ 𝑢⊗𝑘2

2 ⊗ 𝑢⊗𝑘3
3 .

In order for 𝜌9𝐿 (Ψ𝑥)𝑤 = +𝑤 and 𝜌9𝐿 (Ψ𝑦)𝑤 = −𝑤, according to (2.14), we must have
𝑘3 odd, 𝑘2 even, and hence 𝑘1 odd. The number of such combinations of (𝑘1, 𝑘2, 𝑘3)
satisfying 𝑘1 + 𝑘2 + 𝑘3 = 2𝐿 can be found using the multinomial theorem:

𝐷+−
2𝐿 =

1
4

[
(1 + 1 + 1)2𝐿 − (1 + 1 − 1)2𝐿

+(1 − 1 + 1)2𝐿 − (1 − 1 − 1)2𝐿]
=

1
4

(
9𝐿 − 1

)
.

Using (2.24), we find tr(𝜌9𝐿 (𝑃c𝑄0)) = 𝐷++
2𝐿 =

(
9𝐿 + 3

)
/4. Although here we only

made use of 𝐷++
2𝐿 , the other 𝐷’s will be used in Section 2.7.
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Figure 2.7: Constituents 𝑣𝑥 (𝑎𝑥𝑦, 𝑏𝑥𝑧 , 𝑐𝑥), 𝑣𝑦 (𝑎
𝑦
𝑧 , 𝑏

𝑦
𝑥 , 𝑐

𝑦) and 𝑣𝑧 (𝑎𝑧𝑥 , 𝑏𝑧𝑦, 𝑐𝑧) of an ele-
mentary operator in Ising cage-net. Arrows are not drawn since in Ising cage-net,
every particle is its own antiparticle.

Putting the 𝐵0 ∩ 𝑀′ and 𝐵1 ∩ 𝑀′ parts together, we conclude that

𝑃𝑀′ = Mat(9𝐿+3)/4 ⊕ Mat1.

This is a semisimple algebra. Similar to what we did in Section 2.5 for condensation
in doubled Ising, we can also find matrix representations of 𝑒𝑥 , 𝑚𝑥 , 𝑒𝑦 and 𝑚𝑦 and
confirm that they have non-zero entries in the “blank” areas of 𝑃𝑀′, but we omit
this calculation here. The semisimple algebra then turns into a matrix algebra

𝐴0 = Mat(9𝐿+7)/4,

and GSD =
(
9𝐿 + 7

)
/4 as expected.

2.7 GSD of the Ising cage-net
In this section, we compute the GSD of Ising cage-net, first using a Cartan subalge-
bra, and then using the full algebra.

We consider a system where we stack 𝐿𝑥 , 𝐿𝑦 and 𝐿𝑧 layers of doubled Ising in the
𝑥, 𝑦 and 𝑧 directions, respectively. The elementary operators here are products of
the 2D elementary operators 𝑣𝑥 (𝑎𝑥𝑦, 𝑏𝑥𝑧 , 𝑐𝑥) in the 𝑦𝑧 planes, 𝑣𝑦 (𝑎𝑦𝑧 , 𝑏𝑦𝑥 , 𝑐𝑦) in the 𝑧𝑥
planes, and 𝑣𝑧 (𝑎𝑧𝑥 , 𝑏𝑧𝑦, 𝑐𝑧) in the 𝑥𝑦 planes (Fig. 2.7). We will also use notations
such as 𝜓𝑥𝑦 (𝑖) to denote the string operator of 𝜓 from the 𝑖th plane orthogonal to
the 𝑥 direction (i.e. a 𝑦𝑧 plane) traversing the 𝑦 direction. To obtain Ising cage-
net from these decoupled layers, we need to condense 𝜓𝜓̄ p-loops as discussed in
Section 2.1. Since our approach uses the operator algebra on the ground space,
we need to combine the condensation operators 𝑉𝑙𝜇 defined in (2.2) into a logical
operator (of the decoupled layers). An example of such a logical operator is shown
in Fig. 2.8 (a), which looks like a “net” orthogonal to the 𝑧 direction. We call it a
Ψ-net and denote it by Ψ𝑧. Explicitly, if 𝑇 𝑧 is a set of principal edges 𝑙𝑧 related to



37

each other by translation in the 𝑥 and 𝑦 directions (red edges in Fig. 2.9), then

Ψ𝑧 =
∏
𝑙𝑧∈𝑇 𝑧

𝑉𝑙𝑧 =

𝐿𝑥∏
𝑖=1

(𝜓𝜓̄)𝑥𝑦 (𝑖)
𝐿𝑦∏
𝑗=1

(𝜓𝜓̄)𝑦𝑥 ( 𝑗). (2.25)

Different choices of 𝑇 𝑧 at different 𝑥𝑦 planes give the same Ψ𝑧 when acting on the
ground space. Similarly, we can define Ψ𝑥 and Ψ𝑦.

If we take the net shape of Fig. 2.8 (a) but replace all 𝜓𝜓̄’s with 𝜎𝜎̄’s, then we obtain
an operator which we call a Σ-net, or Σ𝑧 in this case, to be more precise. Each Σ𝛼

splits into two operators Σ𝛼 = 𝑒𝛼 +𝑚𝛼 of the same net shape. In the case of Σ𝑧, the
operators 𝑒𝑧 and 𝑚𝑧 are distinguished by the parity 𝑝𝑧 of the fermion mode

𝐿𝑥∏
𝑖=1

(𝜎𝜎̄)𝑥 (𝑖)
𝐿𝑦∏
𝑗=1

(𝜎𝜎̄)𝑦 ( 𝑗),

which is a good quantum number. This is because anyons such as 𝜎𝑥 (𝑖) which can
change 𝑝𝑧 by braiding with Σ𝑧 are confined.

Figure 2.8: Net-shaped logical operator Ψ𝑧 defined in (2.25), which is to be con-
densed in Ising cage-net. In (a), each plane is a layer of doubled Ising, and the red
strings are (𝜓𝜓̄)𝑥𝑦 (𝑖) and (𝜓𝜓̄)𝑦𝑥 ( 𝑗). In (b), equivalently, each plane is a layer of
chiral Ising, and the red strings are 𝜓𝑥𝑦 (𝑖) and 𝜓𝑦𝑥 ( 𝑗).

The semisimple algebra of the decoupled layers is

𝐴 = (Mat3 ⊕ Mat1)⊗2(𝐿𝑥+𝐿𝑦+𝐿𝑧) .

Besides the condensation condition, we need to quotient 𝐴 by relations due to
deconfined excitations. Since Ising cage-net has deconfined fractons, lineons and
planons, it is not obvious where exactly the relations come from. Therefore, we



38

Figure 2.9: Action on the lattice degrees of freedom of the operator Ψ𝑧, which is
to be condensed in Ising cage-net. The product of 𝑉𝑙𝑧 on the red edges (the set 𝑇 𝑧
in (2.25)) is the net-shaped logical operator Ψ𝑧 shown in Fig. 2.8 (a). Note that
(2.25) shown here is a logical operator, whereas (2.18) shown in Fig. 2.6 creates
excitations.

return to the Hamiltonian (2.3) and construct the relations from the Hamiltonian
terms.

Firstly, the Hamiltonian (2.3) contains the doubled Ising plaquette terms 𝐵0
𝑝 = 1 and

𝐵2
𝑝, so a ground state must satisfy the projector

1
2

(
1 + 𝐵2

𝑝

)
=

1
2

(
𝐵1
𝑝

)2
(2.26)

In the string-net model of doubled Ising, a 1-loop on a (smallest) plaquette can be
viewed as a 𝜎-loop or, equivalently, a 𝜎̄-loop. Here, we interpret (2.26) as creating
a loop of 𝜎𝜎̄ at a plaquette. Suppose that this plaquette term is placed “around the
corner edges” like

1
2

(
𝐵1
𝑝

)2
= .

This simplifies to the relation

𝑟𝛼 (𝑖)𝑟𝛼 (𝑖) = 1 (2.27)

in each layer 𝑖 orthogonal to the 𝛼 direction, where e.g.

𝑟𝑥 (𝑖) = 1
2

(
1 + 𝜓𝑥𝑦 (𝑖) + 𝜓𝑥𝑧 (𝑖) − 𝜓𝑥𝑦 (𝑖)𝜓𝑥𝑧 (𝑖)

)
,

and similarly for 𝑟𝛼 (𝑖).
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Secondly, we can also place a cage term 𝐵𝑐 “around the corner edges” (Fig. 2.10).
This term involves 1-loops in the 𝑥𝑦, 𝑦𝑧 and 𝑧𝑥 planes. In the setup of Fig. 2.10, we
can bring the 1-loops closer together by enlarging the cube 𝑐 to size 𝐿𝑥×𝐿𝑦×1. The
result is a flat, degenerate cuboid, some of whose edges coincide with each other.
This enlargement is allowed since the 1-loops can be deformed individually in each
layer of doubled Ising and the enlarged cage term commutes with the condensation
terms 𝑉𝑙𝜇 . We can then simplify this large cage term. The red strings give

𝑥

𝑦

= 2𝑟 𝑧 (𝑖)𝑟 𝑧 (𝑖 + 1),

where the two 1-loops are in different 𝑥𝑦 planes but drawn in the same plane for
illustration, and we draw the degenerate cuboid as a large yet non-degenerate one.
We chose to interpret the two 1-loops as two 𝜎-loops; other interpretations such as
one 𝜎-loop and one 𝜎̄-loop are all equivalent due to (2.27). The green strings give

𝑦

𝑧

= 2,

Note that this simplification uses only the fusion rules, 𝐹-symbols and 𝑅-symbols.
Similarly, the blue strings simplify to a constant 2. Therefore, Fig. 2.10 gives a
relation 𝑟 𝑧 (𝑖)𝑟 𝑧 (𝑖 + 1) = 1.

y
x

z

Figure 2.10: Cage term 𝐵𝑐 of Ising cage-net placed ’around the corner edges’. The
red, green and blue strings are 1-loops in the 𝑥𝑦, 𝑦𝑧 and 𝑧𝑥 planes, respectively.

In summary, the Hamiltonian (2.3) implies that the product of 𝑟𝛼 (𝑖) or 𝑟𝛼 (𝑖) with
any other 𝑟𝛼 ( 𝑗) or 𝑟𝛼 ( 𝑗) should be 1, where 𝑖 and 𝑗 may or may not be equal.
We observe that for the purpose of writing down relations, there is no difference



40

between anyons with and without bars. Therefore, from now on we will consider the
system as 2𝐿𝑥 , 2𝐿𝑦 and 2𝐿𝑧 layers of chiral Ising. The names of operators change
accordingly, e.g.

Ψ𝑧 =

2𝐿𝑥∏
𝑖=1

𝜓𝑥𝑦 (𝑖)
2𝐿𝑦∏
𝑗=1
𝜓
𝑦
𝑥 ( 𝑗),

as shown in Figure 2.8 (b). Let 𝑀 be the subalgebra of 𝐴 generated by Ψ𝑥 , Ψ𝑦

and Ψ𝑧, and 𝑀′ the commutant of 𝑀 . Inside 𝑀′, the relations amount to central
projectors

𝑃c =
1
8
(1 + Ψ𝑥) (1 + Ψ𝑦) (1 + Ψ𝑧) (2.28)

due to condensation, and

𝑃𝛼𝑖 𝑗 =
1
2
(1 + 𝑟𝛼 (𝑖)𝑟𝛼 ( 𝑗)) (2.29)

due to deconfined planons and cage terms. Their product is

𝑃 = 𝑃𝑐

∏
𝛼

∏
𝑖< 𝑗

𝑃𝛼𝑖 𝑗 . (2.30)

With the above setup, we are ready to calculate the GSD.

GSD from Cartan subalgebra
Following Section 2.6, we calculate the GSD of Ising cage-net using a Cartan
subalgebra. The semisimple algebra 𝐴 has a Cartan subalgebra 𝐶 spanned by the
elementary operators with no 𝜎. Just like in Section 2.6, it happens that 𝐶 ⊂ 𝑀′,
and the central projectors 𝑃c and 𝑃𝛼

𝑖 𝑗
all map 𝐶 to 𝐶. We also have the splitting of

the Σ-nets, but this does not enlarge the Cartan subalgebra. This is because every
Σ𝛼 (and hence 𝑒𝛼 and 𝑚𝛼) braids non-trivially with some 𝜓 operator. Therefore,
we have GSD = tr(𝑃), where the underlying vector space is 𝐶. Again using the
argument in Section 2.6, if 𝑃 is expanded into a linear combination of elementary
operators, then only the constant term 𝜇0 = 𝜇(1, 1, 1, 1, 1, 1) (which is called 𝜇(1, 1)
for 1-F Ising) contributes to tr(𝑃).

To compute 𝜇0, we need to expand (2.30). This is very similar to the calculation in
Section 2.6. Firstly, we have∏

𝑖< 𝑗

𝑃𝛼𝑖 𝑗 =
1

22𝐿𝛼

[2𝐿𝛼∏
𝑖=1

(1 + 𝑟𝛼 (𝑖)) +
2𝐿𝛼∏
𝑖=1

(1 − 𝑟𝛼 (𝑖))
]
.
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Thus

𝑃 =
1
8
(1 + Ψ𝑥 + Ψ𝑦 + Ψ𝑧

+ Ψ𝑦Ψ𝑧 + Ψ𝑧Ψ𝑥 + Ψ𝑥Ψ𝑦 + Ψ𝑥Ψ𝑦Ψ𝑧)

×
∏
𝛼

1
22𝐿𝛼

[2𝐿𝛼∏
𝑖=1

(1 + 𝑟𝛼 (𝑖)) +
2𝐿𝛼∏
𝑖=1

(1 − 𝑟𝛼 (𝑖))
]
.

We need to find terms in the expansion of
∏
𝛼 (· · · ) that combines with one of the

eight terms 1,Ψ𝑥 , . . . ,Ψ𝑥Ψ𝑦Ψ𝑧 to give a constant term. Now, for example, the only
four terms in the expansion of

∏
𝑖 (1 + 𝑟 𝑧 (𝑖)) that can possibly contribute to 𝜇0 are(

3
2

)2𝐿𝑧
,
∏
𝑖

(
1
2
𝜓𝑧𝑥 (𝑖)

)
,
∏
𝑖

(
1
2
𝜓𝑧𝑦 (𝑖)

)
,
∏
𝑖

(
−1

2
𝜓𝑧𝑥 (𝑖)𝜓𝑧𝑦 (𝑖)

)
.

Therefore, we can write

𝑃 =
1
8
(1 + Ψ𝑥 + Ψ𝑦 + Ψ𝑧 + Ψ𝑦Ψ𝑧 + Ψ𝑧Ψ𝑥 + Ψ𝑥Ψ𝑦 + Ψ𝑥Ψ𝑦Ψ𝑧)

× 1
24𝐿𝑥

[(
9𝐿𝑥 + 1

)
+ 2

∏
𝑖

𝜓𝑥𝑦 (𝑖) + 2
∏
𝑖

𝜓𝑥𝑧 (𝑖) + 2
∏
𝑖

𝜓𝑥𝑦 (𝑖)𝜓𝑥𝑧 (𝑖)
]

× 1
24𝐿𝑦

[(
9𝐿𝑦 + 1

)
+ 2

∏
𝑗

𝜓
𝑦
𝑧 ( 𝑗) + 2

∏
𝑗

𝜓
𝑦
𝑥 ( 𝑗) + 2

∏
𝑗

𝜓
𝑦
𝑧 ( 𝑗)𝜓𝑦𝑥 ( 𝑗)

]
× 1

24𝐿𝑧

[(
9𝐿𝑧 + 1

)
+ 2

∏
𝑘

𝜓𝑧𝑥 (𝑘) + 2
∏
𝑘

𝜓𝑧𝑦 (𝑘) + 2
∏
𝑘

𝜓𝑧𝑥 (𝑘)𝜓𝑧𝑦 (𝑘)
]
+ · · · ,

where “· · · ” means terms that cannot possibly contribute to 𝜇0. Up to permutation
of 𝑥, 𝑦 and 𝑧, the pairing of the terms works as follows:

1 ⇐⇒
(
9𝐿𝑥 + 1

)
×

(
9𝐿𝑦 + 1

)
×

(
9𝐿𝑧 + 1

)
,

Ψ𝑧 ⇐⇒
(
9𝐿𝑧 + 1

)
× 2

∏
𝑖

𝜓𝑥𝑦 (𝑖) × 2
∏
𝑗

𝜓
𝑦
𝑥 ( 𝑗),

Ψ𝑥Ψ𝑦 ⇐⇒ 2
∏
𝑖

𝜓𝑥𝑧 (𝑖) × 2
∏
𝑗

𝜓
𝑦
𝑧 ( 𝑗)

× 2
∏
𝑘

𝜓𝑧𝑥 (𝑘)𝜓𝑧𝑦 (𝑘),

Ψ𝑥Ψ𝑦Ψ𝑧 ⇐⇒ 2
∏
𝑖

𝜓𝑥𝑦 (𝑖)𝜓𝑥𝑧 (𝑖) × 2
∏
𝑗

𝜓
𝑦
𝑧 ( 𝑗)𝜓𝑦𝑥 ( 𝑗)

× 2
∏
𝑘

𝜓𝑧𝑥 (𝑘)𝜓𝑧𝑦 (𝑘),
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where “ ⇐⇒ ” indicates the pairing. Combining these together, we obtain

GSD = 24(𝐿𝑥+𝐿𝑦+𝐿𝑧)𝜇0

=
1
8
[(

9𝐿𝑥 + 1
) (

9𝐿𝑦 + 1
) (

9𝐿𝑧 + 1
)

+ 4
(
9𝐿𝑥 + 1

)
+ 4

(
9𝐿𝑦 + 1

)
+ 4

(
9𝐿𝑧 + 1

)
+ 8 + 8 + 8 + 8

]
=

1
8
(𝐸3 + 𝐸2 + 5𝐸1 + 45),

where 𝐸3 = 9𝐿𝑥+𝐿𝑦+𝐿𝑧 , 𝐸2 = 9𝐿𝑥+𝐿𝑦 + 9𝐿𝑦+𝐿𝑧 + 9𝐿𝑧+𝐿𝑥 , and 𝐸1 = 9𝐿𝑥 + 9𝐿𝑦 + 9𝐿𝑧 . In
Appendix 2.11, we confirm this result for the smallest system size 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 1
with a lattice calculation independent of the operator algebra approach.

GSD from full algebra
To conclude our discussion of Ising cage-net, we calculate its GSD using the full
semisimple algebra, as we did in Sections 2.5 and 2.6.

Similar to 1-F Ising, the central projectors 𝑃𝛼
𝑖 𝑗

defined in (2.29) kill most of the
components of the semisimple algebra 𝑀′. This is because for each 𝛼, projection
by 𝑃𝛼

𝑖 𝑗
forces the 𝑟𝛼 (𝑖)’s to be all +1 or all −1. We have∏

𝛼

∏
𝑖< 𝑗

𝑃𝛼𝑖 𝑗 𝐴 = (𝐵𝑥0 ⊕ 𝐵
𝑥
1) ⊗ (𝐵𝑦0 ⊕ 𝐵𝑦1) ⊗ (𝐵𝑧0 ⊕ 𝐵

𝑧
1),

where 𝐵𝛼0 � Mat9𝐿𝛼 and 𝐵𝛼1 � Mat1. We can define central projectors

𝑄𝑠𝑥 𝑠𝑦𝑠𝑧 =
∏
𝛼

[
1

22𝐿𝛼

2𝐿𝛼∏
𝑖=1

(1 + (−1)𝑠𝛼𝑟𝛼 (𝑖))
]
,

where 𝑠𝛼 = 0 or 1, which project onto the components

𝐵𝑠𝑥 𝑠𝑦𝑠𝑧 =
⊗
𝛼

𝐵𝛼𝑠𝛼 .

We need to find the action of 𝑃c defined in (2.28) on[⊗
𝛼

(𝐵𝛼0 ⊕ 𝐵𝛼1 )
]
∩ 𝑀′.

This intersection has eight components, which are 𝐵000 ∩ 𝑀′ and so on. Up to
permutation of 𝑥, 𝑦 and 𝑧, we have four cases, and we discuss them in ascending
order of difficulty:
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(1) On 𝐵111 ∩ 𝑀′ = 𝐵111, every 𝜓𝛼
𝛽
(𝑖) acts as −1, so 𝑃c𝑄111𝑀

′ = 𝐵111 = Mat1.

(2) On 𝐵110 ∩ 𝑀′, each of 𝜓𝑥𝑦 (𝑖), 𝜓𝑥𝑧 (𝑖), 𝜓
𝑦
𝑧 ( 𝑗) and 𝜓𝑦𝑥 ( 𝑗) acts as −1, while each of

𝜓𝑧𝑥 (𝑘) and 𝜓𝑧𝑦 (𝑘) has the representation 𝜌3 given by (2.14). By Lemma 4, the central
projector 𝑃c𝑄110 is primitive. To determine the matrix algebra 𝑃c𝑄110𝑀

′, we need
the representation 𝜌𝑙 of Mat1 ⊗ Mat1 ⊗ Mat9𝐿𝑧 where 𝑙 = 9𝐿𝑧 . More precisely, we
need the common eigenspace {𝑤} such that 𝜌𝑙 (Ψ𝛼)𝑤 = +𝑤 for all 𝛼. Now we
already have 𝜌𝑙 (Ψ𝑧)𝑤 = +𝑤 because 𝜓𝑥𝑦 (𝑖) = −1 and 𝜓𝑦𝑥 ( 𝑗) = −1. To ensure e.g.
𝜌𝑙 (Ψ𝑥)𝑤 = +𝑤, we must have[⊗

𝑘

𝜌3 [𝜓𝑧𝑦 (𝑘)]
]
𝑤 = +𝑤, (2.31)

since 𝜓𝑦𝑧 ( 𝑗) = −1. Similarly, we must also have[⊗
𝑘

𝜌3 [𝜓𝑧𝑥 (𝑘)]
]
𝑤 = +𝑤. (2.32)

The dimension of the eigenspace that satisfies (2.31) and (2.32) is precisely 𝐷++
2𝐿𝑧

defined in (2.24). Therefore, we have 𝑃c𝑄110𝑀
′ = Mat(9𝐿𝑧+3)/4.

(3) On 𝐵001 ∩ 𝑀′, each of 𝜓𝑧𝑥 (𝑘) and 𝜓𝑧𝑦 (𝑘) acts as −1, while each of 𝜓𝑥𝑦 (𝑖),
𝜓𝑥𝑧 (𝑖), 𝜓

𝑦
𝑧 ( 𝑗) and 𝜓𝑦𝑥 ( 𝑗) has the representation 𝜌3. To determine the matrix algebra

𝑃c𝑄001𝑀
′, we need the common eigenspace {𝑤} such that 𝜌𝑙 (Ψ𝛼)𝑤 = +𝑤 in the

representation 𝜌𝑙 of Mat9𝐿𝑥 ⊗ Mat9𝐿𝑦 ⊗ Mat1 where 𝑙 = 9𝐿𝑥+𝐿𝑦 . From 𝜌𝑙 (Ψ𝑥)𝑤 =

𝜌𝑙 (Ψ𝑦)𝑤 = +𝑤 and 𝜓𝑧𝑥 (𝑘) = 𝜓𝑧𝑦 (𝑘) = −1 we obtain[⊗
𝑖

𝜌3 [𝜓𝑥𝑧 (𝑖)]
]
𝑤 =

[⊗
𝑗

𝜌3 [𝜓𝑦𝑧 ( 𝑗)]
]
𝑤 = +𝑤.

Meanwhile, 𝜌𝑙 (Ψ𝑧)𝑤 = +𝑤 implies two possibilities[⊗
𝑖

𝜌3 [𝜓𝑥𝑦 (𝑖)]
]
𝑤 =

[⊗
𝑗

𝜌3 [𝜓𝑦𝑥 (𝑖)]
]
𝑤 = ±𝑤. (2.33)

If we take the +𝑤 in (2.33), then we obtain a subspace of dimension 𝐷++
2𝐿𝑥
𝐷++

2𝐿𝑦
. On

the other hand, if we take the −𝑤 in (2.33), then we obtain a subspace of dimension
𝐷−+

2𝐿𝑥
𝐷+−

2𝐿𝑦
. Overall, we have 𝑃c𝑄001𝑀

′ = Mat(9𝐿𝑥+𝐿𝑦+9𝐿𝑥+9𝐿𝑦+5)/8.

(4) On 𝐵000 ∩ 𝑀′, every 𝜓𝛼
𝛽
(𝑖) has the representation 𝜌3. To determine the matrix

algebra 𝑃c𝑄000𝑀
′, we need the common eigenspace {𝑤} such that 𝜌𝑙 (Ψ𝛼)𝑤 = +𝑤
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in the representation of Mat9𝐿𝑥 ⊗ Mat9𝐿𝑦 ⊗ Mat9𝐿𝑧 where 𝑙 = 9𝐿𝑥+𝐿𝑦+𝐿𝑧 . This gives
the equations [⊗

𝑗

𝜌3 [𝜓𝑦𝑧 ( 𝑗)]
]
𝑤 =

[⊗
𝑘

𝜌3 [𝜓𝑧𝑦 (𝑘)]
]
𝑤 = ±𝑤, (2.34)[⊗

𝑘

𝜌3 [𝜓𝑧𝑥 (𝑘)]
]
𝑤 =

[⊗
𝑖

𝜌3 [𝜓𝑥𝑧 (𝑖)]
]
𝑤 = ±𝑤, (2.35)[⊗

𝑖

𝜌3 [𝜓𝑥𝑦 (𝑖)]
]
𝑤 =

[⊗
𝑗

𝜌3 [𝜓𝑦𝑥 (𝑖)]
]
𝑤 = ±𝑤. (2.36)

Depending on the choice of ±𝑤 in these equations, we have eight possibilities. For
example, we can choose −𝑤 in (2.34) and (2.35) and +𝑤 in (2.36), which has a
contribution of 𝐷+−

2𝐿𝑥
𝐷−+

2𝐿𝑦
𝐷−−

2𝐿𝑧 to the dimension of the common eigenspace. The
total dimension is

𝐷++
2𝐿𝑥
𝐷++

2𝐿𝑦
𝐷++

2𝐿𝑧 +
(
𝐷−+

2𝐿𝑥
𝐷+−

2𝐿𝑦
𝐷++

2𝐿𝑧 + perm.
)

+
(
𝐷+−

2𝐿𝑥
𝐷−+

2𝐿𝑦
𝐷−−

2𝐿𝑧 + perm.
)
+ 𝐷−−

2𝐿𝑥
𝐷−−

2𝐿𝑦
𝐷−−

2𝐿𝑧

=
1
8
(𝐸3 + 𝐸1 + 4),

where “perm.” means permutations of 𝑥, 𝑦 and 𝑧. Since 𝐷+−
2𝐿 = 𝐷−+

2𝐿 , only cyclic
permutations are included. Therefore, we have 𝑃c𝑄000𝑀

′ = Mat(𝐸3+𝐸1+4)/8.

Summarizing all four cases, we have

𝑃𝑀′ = Mat(𝐸3+𝐸1+4)/8

⊕
(
Mat(9𝐿𝑥+𝐿𝑦+9𝐿𝑥+9𝐿𝑦+5)/8 ⊕ perm.

)
⊕

(
Mat(9𝐿𝑧+3)/4 ⊕ perm.

)
⊕ Mat1.

Using Protocol 5 with the conjecture of “filling the blanks”, we obtain GSD =

(𝐸3 + 𝐸2 + 5𝐸1 + 45)/8. In Appendix 2.11, we confirm this result for the smallest
system size 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 1 with a lattice calculation independent of the operator
algebra approach.

2.8 Appendix A: additional math details
In this section, we list some definitions and theorems that are used in the main text.
They can also be found in mathematics textbooks such as Ref. [75].
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Definition 8. An algebra is a complex vector space 𝐴 equipped with associative
multiplication and a multiplicative identity 1, such that

(𝑥 + 𝑦)𝑧 = 𝑥𝑧 + 𝑦𝑧,
𝑧(𝑥 + 𝑦) = 𝑧𝑥 + 𝑧𝑦,
(𝜆𝑥) (𝜇𝑦) = (𝜆𝜇) (𝑥𝑦),

for all 𝑥, 𝑦, 𝑧 ∈ 𝐴, and 𝜆, 𝜇 ∈ C. An involution is an antilinear map 𝑥 ↦→ 𝑥∗ on 𝐴
such that 1∗ = 1, 𝑥∗∗ = 𝑥 and (𝑥𝑦)∗ = 𝑦∗𝑥∗ for all 𝑥, 𝑦 ∈ 𝐴. The involution is positive
if 𝑥∗𝑥 ≠ 0 for all 𝑥 ≠ 0.

For a semisimple algebra 𝐴 in 2D, the involution is defined on elementary operators
by replacing anyons 𝑎, 𝑏, 𝑐with their respective antiparticles 𝑎∗, 𝑏∗, 𝑐∗, and extended
to 𝐴 antilinearly, i.e. (𝜆𝑥)∗ = 𝜆∗𝑥∗ where 𝜆 ∈ C, 𝑥 ∈ 𝐴 and 𝜆∗ is the complex
conjugate of 𝜆. In the examples in this paper, all anyons are self-dual, so the
involution acts trivially on the elementary operators. We can check explicitly
for chiral Ising that this map is indeed an involution and is positive. Note that
this check is performed manually on elementary operators for the definition of
involution, and on an arbitrary operator for positivity. We cannot trivialize this check
by identifying the operators with block-diagonal matrices, which would require
Theorem 12. Although the check is tedious, we do not know an easier method.

In an algebra, the structures that can be quotiented out are called ideals.

Definition 9. A subset 𝐼 ⊂ 𝐴 is an ideal if 𝐼 is a vector subspace of 𝐴 and for all
𝑟 ∈ 𝐼, 𝑥 ∈ 𝐴, we have 𝑟𝑥 ∈ 𝐼, 𝑥𝑟 ∈ 𝐼. In the presence of an involution, an ideal
𝐼 ⊂ 𝐴 is involutive if it is closed under the involution.

Basically, an involutive ideal is a set of elements that can be identified with 0
consistently, since if 𝑟 is identified with 0 then so are 𝑟∗, 𝑟𝑥 and 𝑥𝑟 for all 𝑥 ∈ 𝐴. If
𝐼 is an involutive ideal, then the quotient algebra 𝐴/𝐼 is defined in the same way as
for quotients of vector spaces. If 𝐴 is finite dimensional, then 𝐴/𝐼 is also an algebra
with positive involution (positivity is a consequence of Theorem 12). When we
reduced 𝐴 to 𝐴0 in Section 2.3, we found relations among the elementary operators
from physical argument, generated an ideal 𝐼 from the relations, and then took the
quotient 𝐴/𝐼. Here, ifΩ ⊂ 𝐴 is a subset, e.g. Ω = {𝜔1, 𝜔2}, then the ideal generated
by Ω is written as

⟨𝜔1, 𝜔2⟩id, 𝐴 = {𝑥1𝜔1𝑦1 + 𝑥2𝜔2𝑦2 | 𝑥𝑖, 𝑦𝑖 ∈ 𝐴},
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where the subscript 𝐴 indicates the overall algebra. In other words, the ideal
generated by Ω is the smallest ideal of 𝐴 containing Ω, as we need to multiply 𝜔𝑖 on
both the left and the right, and then take linear combinations to make it an ideal. In
all of the physical examples in this paper, such ideals happen to be involutive. When
it is clear from context, we will drop the word “involutive” and simply say “ideal”.

The fact that matrix algebras do not have non-trivial ideals can be summarized as
follows:

Definition 10. An algebra 𝐴0 is simple if its only (not necessarily involutive) ideals
are {0} and 𝐴0 itself.

Lemma 11. A finite dimensional algebra is simple if and only if it is a matrix
algebra.

Note that the notions of simplicity and semisimplicity (Definition 1) do not rely on
an involution. The following theorem relates semisimple algebras to algebras with
positive involution:

Theorem 12. Let 𝐴 be a finite dimensional algebra with positive involution. Then
𝐴 is semisimple, and can be written in the form of (2.5) where the involution acts
as Hermitian conjugation of matrices.

This is why positivity of the involution is important, and the theorem fails if the
involution is not positive (see example in Appendix 2.8). The ideals of a semisimple
algebra (2.5) are of the form 𝐴𝑖1 ⊕ · · · ⊕ 𝐴𝑖𝑘 where 1 ≤ 𝑖1 < · · · < 𝑖𝑘 ≤ 𝑚. In other
words, to write down an ideal 𝐼 of 𝐴, we simply throw away some of the summands
in (2.5) and keep the rest. Therefore, to make the quotient 𝐴/𝐼 simple, we need to
throw away precisely one 𝐴𝑖 and put the rest into the ideal 𝐼, and 𝐴/𝐼 is isomorphic
to this 𝐴𝑖.

To generate an ideal from relations, we need to use the primitive central projectors
{𝑃𝑖}. Suppose we want an ideal 𝐼 = ⟨{𝑥𝑘 }⟩id, 𝐴 where {𝑥𝑘 } are some general
elements. Let

𝑆 = {𝑖 | 𝑃𝑖𝑥𝑘 ≠ 0 for some 𝑘}.

Then we have

𝐼 =
⊕
𝑖∈𝑆

𝐴𝑖, 𝐴/𝐼 =
⊕
𝑖∉𝑆

𝐴𝑖 =

(∑︁
𝑖∉𝑆

𝑃𝑖

)
𝐴.
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The proof is straightforward, and the idea is that if 𝑥𝑘 has a non-trivial component
in some 𝐴𝑖, then the entirety of 𝐴𝑖 must be in 𝐼. We can view this statement as a
more general version of (2.11).

Finally, we have a more rigorous version of Lemma 4:

Lemma 13. Let 𝐵 be a finite dimensional simple algebra with positive involution,
𝑁 an abelian, involutive subalgebra of 𝐵, and 𝑁′ the commutant of 𝑁 . Then we
have 𝑍 (𝑁′) = 𝑁 .

This can be derived from the so-called von Neumann Bicommutant Theorem:

Theorem 14. Let 𝐵, 𝑁 and 𝑁′ be as in Lemma 4, and 𝑁′′ the commutant of 𝑁′.
Then we have 𝑁′′ = 𝑁 .

Using this theorem, we have 𝑁′′ = 𝑁 ⊂ 𝑍 (𝑁′) ⊂ 𝑁′′, so 𝑁 = 𝑍 (𝑁′).

When discussing Definition 6, we mentioned that a Cartan subalgebra must satisfy
an extra condition. Here is a rigorous definition of a Cartan subalgebra:

Definition 15. A subalgebra 𝐶 of an algebra 𝐴 is a Cartan subalgebra if it is
abelian, diagonalizable and maximal. Diagonalizable means that every 𝑥 ∈ 𝐶 is
diagonalizable in its (faithful) block-diagonal matrix representation; maximal means
that if any subalgebra𝐶′ ⊂ 𝐴 is abelian and diagonalizable and𝐶 ⊂ 𝐶′, then𝐶′ = 𝐶.

Diagonalizability can also be characterized intrinsically: An element 𝑥 ∈ 𝐴 is
diagonalizable if and only if its minimal polynomial has distinct linear factors [76].
This statement can be used to show that the Cartan subalgebras we chose for 1-F
Ising and Ising cage-net are indeed diagonalizable, since their operators all satisfy
the polynomial 𝑡2 − 1 = (𝑡 + 1) (𝑡 − 1), which has distinct linear factors (𝑡 + 1) and
(𝑡 − 1). Diagonalizability is needed for Lemma 7 to hold since e.g. the subalgebra
of Mat4 consisting of elements of the form

©­­­­­«
𝑎 0 𝑏 𝑐

𝑎 𝑑 𝑒

𝑎 0
𝑎

ª®®®®®¬
is abelian, contains non-diagonalizable elements, and has dimension 5.
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Examples of non-semisimple algebras
In this section, we give three examples of non-semisimple algebras and thus highlight
the premises of Theorem 12.

(1) Let 𝐴 ⊂ Mat2 be the algebra of 2×2 upper triangular matrices. Since dim(𝐴) = 3,
if 𝐴 is semisimple then it must be 3Mat1. However, this implies that 𝐴 is abelian,
which is false. Therefore, 𝐴 is not semisimple. Intuitively, this can be understood as
due to the lack of an involution, since 𝐴 is not closed under Hermitian conjugation.

(2) Let 𝐴 be the involutive algebra generated by two formal elements 1 and 𝑎, where
1 is the multiplicative identity, 𝑎2 = 0 and 𝑎∗ = 𝑎. This involution is not positive,
so Theorem 12 does not apply here. Indeed, since dim(𝐴) = 2, if 𝐴 is semisimple
then it must be 2Mat1. However, we have an element 𝑎 ≠ 0, 𝑎2 = 0, but there is no
such element in 2Mat1. Therefore, 𝐴 is not semisimple.

(3) Let 𝑉 be a complex vector space, possibly infinite dimensional. The tensor
algebra over 𝑉 is

𝑇 (𝑉) =
∞⊕
𝑘=0

𝑉⊗𝑘 ,

where 𝑉⊗0 = C. The multiplication is formal, i.e. if 𝑥 ∈ 𝑉⊗𝑚 and 𝑦 ∈ 𝑉⊗𝑛 then
𝑥𝑦 ∈ 𝑉⊗(𝑚+𝑛) . The tensor algebra is always infinite dimensional regardless of
dim(𝑉), so Theorem 12 also does not apply here. Indeed, 𝐴 is semisimple if and
only if𝑉 = {0} (we allow infinite direct sum in Definition 1). Suppose, for example,
that 𝑉 is spanned by a single element 𝑎. Then the quotient

𝑇 (𝑉)/
〈
𝑎2〉

id, 𝑇 (𝑉)

is precisely the 𝐴 in the previous example, which is not semisimple. However, we
know that a quotient of a semisimple algebra is also semisimple. Therefore, 𝑇 (𝑉)
is not semisimple. Since semisimplicity does not rely on an involution, here we do
not need to assign an involution to 𝑇 (𝑉) even though we could.

Incidentally, the finite dimensional semisimple algebra 𝐴 in the operator algebra
approach discussed in this paper can also be viewed as a quotient 𝑇 (𝑉)/𝐾 of the
tensor algebra. Here, 𝑉 is the formal vector space over the elementary operators,
and 𝐾 is the ideal generated by multiplication rules which themselves are due to
fusion rules, 𝐹-symbols and 𝑅-symbols.
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Matrix representation of simple algebra
In this section, we answer the following question: Given an abstract finite di-
mensional simple algebra 𝐴0 with positive involution, how do we find a matrix
representation for it? Of course we have an isomorphism 𝜌𝑛 : 𝐴0 → Mat𝑛 for some
𝑛, such that the involution on 𝐴0 maps to Hermitian conjugation on Mat𝑛. However,
we want to determine 𝜌𝑛 while only assuming knowledge of the structure constants
𝑓
𝛾

𝛼𝛽
with respect to some basis {𝑣𝛼}, as defined in (2.9), as well as the action of

the involution. This will lead to the representation (2.14) of chiral Ising operators
without prior knowledge.

In our construction of 𝜌𝑛, we will make several claims without proof, and the proofs
can be found in Ref. [75]. To start with, we solve the following set of linear and
quadratic equations in the variables 𝜀𝛼, 𝜆𝛼 ∈ C:

𝜀∗ = 𝜀,

𝜀2 = 1,

𝜀𝑣𝛼𝜀 = 𝜆𝛼𝜀 for all 𝛼,

(2.37)

where 𝜀 =
∑
𝛼 𝜀𝛼𝑣𝛼. We claim that (2.37) always has solutions. In fact, if 𝑛 > 1

then there are many solutions, in which case we choose one solution. We can think
of 𝜀 as the elementary matrices whose only non-zero entry is the (1, 1) entry, which
is 1. The variables 𝜆𝛼 will be of no use for us.

Let 𝑉 be the vector space spanned by {𝑣𝛼𝜀}. We claim that dim(𝑉) = 𝑛 even
though we defined it as the span of 𝑛2 elements. Clearly 𝑉 is closed under left
multiplication by 𝐴0, and indeed it is the vector space that affords the representation
𝜌𝑛 of 𝐴0. Practically, we may reduce the overcomplete set {𝑣𝛼𝜀} to obtain a basis
for𝑉 . We want an inner product ⟨𝑥, 𝑦⟩ for all 𝑥, 𝑦 ∈ 𝑉 , which then defines Hermitian
conjugation of matrices. By the definition of 𝑉 , there exist 𝑎, 𝑏 ∈ 𝐴0 (not unique)
such that 𝑥 = 𝑎𝜀, 𝑦 = 𝑏𝜀. By (2.37), we have

𝑥∗𝑦 = 𝜀𝑎∗𝑏𝜀 = 𝜆𝜀

for some 𝜆 ∈ C. Since 𝜀 ≠ 0, this 𝜆 does not depend on the choice of 𝑎, 𝑏. We
define ⟨𝑥, 𝑦⟩ = 𝜆, and we claim that this is an inner product.

The Hermitian conjugation derived from this inner product is compatible with the
involution on 𝐴0. This is because for all 𝑧 ∈ 𝐴0 and 𝑥, 𝑦 ∈ 𝑉 , we have

⟨𝑥, 𝑧∗𝑦⟩ 𝜀 = 𝑥∗𝑧∗𝑦𝜀 = (𝑧𝑥)∗𝑦𝜀 = ⟨𝑧𝑥, 𝑦⟩ 𝜀 =
〈
𝑥, 𝑧†𝑦

〉
𝜀,
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which implies 𝑧∗ = 𝑧†. Therefore, the action of 𝐴0 on𝑉 by left multiplication serves
as a representation 𝜌𝑛.

2.9 Appendix B: string-net models
In Appendix, we review the basics of the string-net models that are relevant for our
purposes, and discuss the string-net models on the minimal lattice on the torus.. We
follow the original construction as introduced in Ref. [68]. For more comprehensive
introductions, we refer the readers to Ref. [68, 77–79].

String-net models
The input data of a string-net model is a unitary fusion category [80], which includes
an index set {0, 1, ..., 𝑁} and the associated data set (𝛿𝑖 𝑗 𝑘 , 𝑑𝑠, 𝐹𝑖 𝑗𝑚𝑘ℓ𝑛 ). A string-net
model is defined on a trivalent lattice, where the local DOF live on the edges. Each
edge has a Hilbert space of spanC{|0⟩ , |1⟩ ..., |𝑁⟩}. Usually, an edge of the string-
net is represented by a directed line. For a directed edge, 𝑖∗ represents the edge in
the state 𝑖 pointing in the opposite direction. That is

𝑖∗ 𝑖
= . (2.38)

In particular, 0∗ = 0.

The 𝛿-symbol specifies the vertex rules. 𝛿𝑖 𝑗 𝑘 takes values in {0, 1} and it is symmetric
under permutation of the indices. 𝛿𝑖 𝑗 𝑘 determines the allowed states on edges at a
trivalent vertex. A vertex is stable[78] if

𝑖

𝑗
𝑘

(2.39)

satisfies 𝛿𝑖 𝑗 𝑘 = 1. A vertex is not stable if 𝛿𝑖 𝑗 𝑘 = 0.

The 𝑑- and 𝐹-symbols define the graphical rules. The 𝑑-symbols evaluate loops to
real numbers as

s
= ds = ds∗ =

s∗
, (2.40)

where 𝑑0 = 1. They satisfy the equation

𝑑𝑖𝑑 𝑗 =
∑︁
𝑘

𝛿𝑖 𝑗 𝑘∗𝑑𝑘 . (2.41)

The 𝐹-symbols define the transformations

i

j

m
ℓ

k

=
∑

n

F ijmkℓn

i ℓ
n

j k

, (2.42)
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where the 𝐹-symbols are nonzero if all the vertices satisfy the vertex rules. They
are normalized as

𝐹
𝑖 𝑗 𝑘

𝑗∗𝑖∗0 =

√︄
𝑑𝑘

𝑑𝑖𝑑 𝑗
𝛿𝑖 𝑗 𝑘 . (2.43)

For the cases of interest in this paper, the 𝐹-symbols satisfy the tetrahedral symmetry

𝐹
𝑖 𝑗𝑚

𝑘ℓ𝑛
= 𝐹ℓ𝑘𝑚

∗
𝑗𝑖𝑛 = 𝐹

𝑗𝑖𝑚

ℓ𝑘𝑛∗ = 𝐹
𝑖𝑚 𝑗

𝑘∗𝑛ℓ

√︄
𝑑𝑚𝑑𝑛

𝑑 𝑗𝑑ℓ
, (2.44)

as well as the pentagon equation∑︁
𝑛

𝐹
𝑖 𝑗𝑚

𝑘ℓ𝑛
𝐹
𝑝𝑠ℓ∗

𝑖𝑛𝑞
𝐹
𝑝𝑞𝑛

𝑗 𝑘𝑟∗ = 𝐹
𝑝𝑠ℓ∗

𝑚∗𝑘𝑟∗𝐹
𝑟𝑠𝑚∗
𝑖 𝑗𝑞 . (2.45)

From the pentagon equation, we can derive the orthogonality relation of the 𝐹-
symbols that ∑︁

𝑛

𝐹
𝑖 𝑗𝑚′

𝑘ℓ𝑛

(
𝐹
𝑖 𝑗𝑚

𝑘ℓ𝑛

)∗
= 𝛿𝑚𝑚′ , (2.46)

where the complex conjugation on the 𝐹-symbol is given by(
𝐹
𝑖 𝑗𝑚

𝑘ℓ𝑛

)∗
= 𝐹

𝑖∗ 𝑗∗𝑚∗

𝑘∗ℓ∗𝑛∗ . (2.47)

The ground state wave-function of the string-net model |Ψ⟩ is given by

|Ψ⟩ =
∑︁

|𝑋⟩∈HSN
𝑄𝑣

Ψ(𝑋) |𝑋⟩ , (2.48)

where Ψ(𝑋) = ⟨𝑋 |Ψ⟩, and |𝑋⟩ denotes a string-net configuration in the stable vertex
subspace HSN

𝑄𝑣
. A vector |𝑋⟩ is a product state. Note that the set of all different

|𝑋⟩’s form an orthonormal basis for this subspace. The graphical rules define a set
of relations between the amplitudes

Ψ

(
i i′

k

j

)
=

(√
dkdj
di

)∗

δii′Ψ

(
i

)
,

Ψ

( i

j

ℓ

k

m
)

=
∑

n

(
F ijmkℓn

)∗
Ψ

( i

j

ℓ

k

n

)
.

(2.49)

Moreover, the graphical rules can be used to define transformations for a generic
string-net configuration ket-vector. Eq. (2.51) and Eq. (3.6) are examples.
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The commuting projector Hamiltonian, which has the above wave-function as the
ground state, is given by

𝐻SN = −
∑︁
𝑣

𝑄𝑣 −
∑︁
𝑝

𝐵𝑝, (2.50)

where𝑄𝑣 is the vertex projector enforcing the vertex rules 𝛿𝑖 𝑗 𝑘 , and 𝐵𝑝 =
∑
𝑠 (𝑑𝑠/𝐷)𝐵𝑠𝑝

with𝐷 =
∑
𝑠 (𝑑𝑠)2 being the total quantum dimension is the plaquette projector. Each

𝐵𝑠𝑝 adds a counter-clockwise directed loop of 𝑠 in the interior of a plaquette. Its
action can be evaluated by the 𝐹-symbols as for example,

Bs
p

∣∣∣∣∣

ℓ6

ℓ5

ℓ8

ℓ7ℓ2
ℓ1

ℓ4
ℓ3

e2

e4 e6

e8

e3

e5

e7

e1

〉
=

∣∣∣∣∣

ℓ6

ℓ5

ℓ8

ℓ7ℓ2
ℓ1

ℓ4
ℓ3

e2

e4 e6

e8

e3

e5

e7

e1

s
〉

=
∑

e′1,e
′
2,...,e

′
8

(
8∏

i=1

F
ℓi ei+1 ei
s e′i e

′
i+1

)∣∣∣∣∣

ℓ6

ℓ5

ℓ8

ℓ7ℓ2
ℓ1

ℓ4
ℓ3

e′2

e′4 e′6

e′8

e′3

e′5

e′7

e′1

〉
.

(2.51)

Eq. (2.41) implies that the 𝐵𝑠𝑝’s satisfy

𝐵𝑖𝑝𝐵
𝑗
𝑝 =

∑︁
𝑘

𝛿𝑖 𝑗 𝑘∗𝐵
𝑘
𝑝 . (2.52)

The ground state satisfies

𝑄𝑣 |Ψ⟩ = |Ψ⟩ , 𝐵𝑝 |Ψ⟩ = |Ψ⟩ (2.53)

for all 𝑣 and 𝑝.

The minimal lattice
A string-net model can be defined on the minimal trivalent lattice on the torus. The
minimal lattice consists of three edges, two vertices, and one plaquette as shown in
Fig. 2.11. The ground states first have to satisfy the vertex constraints 𝑄𝑣. Recall
that a vertex is called stable if the vertex constraint is satisfied. We denote a basis
vector of the stable vertex subspace on the minimal lattice by

|𝑖 𝑗 𝑘⟩ =
∣∣∣∣∣

i

i

j

jk

〉
∈ HSN

𝑄𝑣
. (2.54)
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ij

k
y

x

Figure 2.11: The minimal trivalent lattice on the torus. The lattice has three edges
colored by red, blue, and green; two vertices; and one plaquette. 𝑖, 𝑗 , and 𝑘 are state
labels on the colored edges.
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j

j

k

Cx

Cy

y

x

Figure 2.12: An illustration of the two non-contractible loops 𝐶𝑥 and 𝐶𝑦 on the
minimal lattice, taken by the logical operators𝑊𝐶𝑖

𝛼 where 𝛼 is the excitation label.

The logical operators act within HSN
𝑄𝑣

. Illustrated in Fig. 2.12 are the two different
paths taken by the logical operators {𝑊𝐶𝑖

𝛼 } where 𝑖 ∈ {𝑥, 𝑦} and 𝛼 ∈ {excitations}.
The action of the logical operators on a basis vector |𝑖 𝑗 𝑘⟩ can be computed by the
method introduced in Ref. [68], which we will not discuss in this paper. We will
review a string-operator construction for the double-Ising in Appendix 2.10.

Next, the ground states need to satisfy the one plaquette term on the minimal lattice.
Consider the action of 𝐵𝑠𝑝 on a basis vector |𝑎𝑏𝑐⟩. Instead of directly fusing the
𝑠-loop into the edges, we can first fuse different parts of the 𝑠-loop together and map
it into a trivalent diagram

𝐵𝑠𝑝

�����
𝑎

𝑎

𝑏

𝑏
𝑐

〉
=

�����
𝑎

𝑎

𝑏

𝑏
𝑐

s

〉
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=

�����
𝑎

𝑎

𝑏

𝑏

𝑐 s

〉

=
∑︁
ℎ,𝑔

𝐹𝑠
∗𝑠0
𝑠∗𝑠ℎ∗𝐹

𝑠∗𝑠0
𝑠∗𝑠𝑔

�����
𝑎

𝑎

𝑏

𝑏

𝑐s g

h 〉

=
∑︁
ℎ,𝑔

𝐹𝑠
∗𝑠0
𝑠∗𝑠ℎ∗𝐹

𝑠∗𝑠0
𝑠∗𝑠𝑔

�����
𝑎

𝑎

𝑏

𝑏
𝑐

s

g

g

h

h

〉

=
∑︁
ℎ,𝑔,
𝑡1,𝑡2

𝐹𝑠
∗𝑠0
𝑠∗𝑠ℎ∗𝐹

𝑠∗𝑠0
𝑠∗𝑠𝑔𝐹

𝑠∗ℎ𝑠
𝑔𝑠𝑡1 𝐹

𝑠𝑔∗𝑠∗

ℎ∗𝑠∗𝑡∗2

�����
𝑎

𝑎

𝑏

𝑏
𝑐

s

g

g

h

h

t2

t1
〉

=
∑︁
ℎ,𝑔,𝑡1

𝑑𝑠

(𝑑𝑠)2

√︄
𝑑ℎ𝑑𝑔

𝑑𝑡1
𝐹𝑠

∗ℎ𝑠
𝑔𝑠𝑡1 𝐹

𝑠𝑔∗𝑠∗

ℎ∗𝑠∗𝑡∗1

�����
𝑎

𝑎

𝑏

𝑏
𝑐

g

g

h

h

t1
〉
, (2.55)

where in the second equality, we have brought the 𝑠-loop over the lattice. We can
also bring the loop below the lattice. The choice does not matter. The action of the
𝐵𝑠𝑝 term can then be determined by fusing the trivalent diagram (orange) into the
underlying lattice (black).

This will help us to show that for abelian string-net models, the plaquette term on
the minimal lattice is trivial. For abelian string-net models, the fusion of 𝑠 and 𝑠∗ is
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0. So, the above equation reduces to

Bs
p

∣∣∣∣∣

a

a

b

bc

〉

abelian

=
ds

(ds)2

∣∣∣∣∣

a

a

b

b
c

0

0

0

0

0
〉

abelian

= ds

∣∣∣∣∣

a

a

b

bc

〉

abelian

,

(2.56)

where to get to the last line, we have used (𝑑𝑠)2 = 1 for abelian models. Hence,
we see that 𝐵𝑝 acts as identity on HSN

𝑄𝑣
in abelian models. In other words, on the

minimal lattice, HSN
𝑄𝑣

is the ground space of the abelian models.

2.10 Appendix C: the doubled-Ising string-net model
In this Appendix, we discuss the ground states of the doubled-Ising string-net on the
minimal lattice. We show that when we put the doubled-Ising state on a lattice with
smooth boundary, 𝜓𝜓̄ and 𝜎𝜎̄ are condensed on the boundary. The condensation
is relevant to Chapter 3.

Doubled-Ising on minimal lattice
The doubled-Ising string-net on the minimal lattice has a 10-dimensional stable
vertex subspace HD.I.

𝑄𝑣
, spanned by |000⟩, |220⟩, |202⟩, |022⟩, |110⟩, |112⟩, |101⟩,

|011⟩, |211⟩, and |121⟩.

One of the dimensions is not part of the ground space, because the projector 𝐵𝑝 has
the eigenvalue of 0 on this state. To find the ground space, we calculate the action
of 𝐵1

𝑝. Following from Eq. (2.55) (the actions of 𝐵0
𝑝 and 𝐵2

𝑝 are trivial), we find

B1
p

∣∣∣∣∣

a

a

b

bc

〉
=

1√
2

∣∣∣∣∣

a

a

b

b
c

0
0

0

0

0

〉
+

1√
2

∣∣∣∣∣

a

a

b

b
c

2
0

0

2

2

〉
+

1√
2

∣∣∣∣∣

a

a

b

b
c

2
2

2

0

0

〉
+

1√
2

∣∣∣∣∣

a

a

b

b
c

0
2

2

2

2

〉
.

(2.57)
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That is,
𝐵1
𝑝 |𝑎𝑏𝑐⟩ =

1
√

2

(
I +𝑊𝐶𝑦

𝜓
+𝑊𝐶𝑥

𝜓
−𝑊𝐶𝑥

𝜓
𝑊
𝐶𝑦

𝜓

)
|𝑎𝑏𝑐⟩

=
1
√

2

(
I +𝑊𝐶𝑦

𝜓̄
+𝑊𝐶𝑥

𝜓̄
−𝑊𝐶𝑥

𝜓̄
𝑊
𝐶𝑦

𝜓̄

)
|𝑎𝑏𝑐⟩ ,

(2.58)

where we have identified the logical operators by the construction discussed in
Appendix 2.10, and the second equality follows from that we can bring the 𝑠-loop
below the lattice in Eq. (2.55). We can further compute the action of 𝐵1

𝑝 by fusing
the orange trivalent diagram into the underlying lattice. At this point, it is clear that
a product state |𝑎𝑏𝑐⟩ is generally not an eigenstate of 𝐵1

𝑝.

An explicit calculation shows that |𝜓𝜓̄D.I.
min⟩ = −1

2 |000⟩ + 1
2 |202⟩ + 1

2 |022⟩ + 1
2 |220⟩

has the eigenvalue −
√

2 under 𝐵1
𝑝. Hence, it is an excited state, which carries a 𝜓𝜓̄

fluxon. The other 9 dimensions have the eigenvalue
√

2 under 𝐵1
𝑝 and are, thus,

ground states on the minimal lattice.

An orthonormal basis for the nine-dimensional ground space can be chosen to be
the common eigenstates of logical operators 𝑊𝐶𝑥

𝜓
, 𝑊𝐶𝑦

𝜓
, 𝑊𝐶𝑥

𝜓̄
, and 𝑊𝐶𝑦

𝜓̄
, which all

commute with each other. The nine common eigenstates are

|ΨD.I.
min⟩1 =

1
2
|000⟩ + 1

2
|202⟩ + 1

2
|022⟩ − 1

2
|220⟩ ,

|ΨD.I.
min⟩2 =

1
√

2
|011⟩ + 𝑖

√
2
|211⟩ ,

|ΨD.I.
min⟩3 =

1
√

2
|101⟩ − 𝑖

√
2
|121⟩ ,

|ΨD.I.
min⟩4 =

1
√

2
|011⟩ − 𝑖

√
2
|211⟩ ,

|ΨD.I.
min⟩5 =

1
2
|000⟩ − 1

2
|202⟩ + 1

2
|022⟩ + 1

2
|220⟩ ,

|ΨD.I.
min⟩6 =

𝑒−
𝑖 𝜋
8

√
2

|110⟩ + 𝑖𝑒
− 𝑖 𝜋

8
√

2
|112⟩ ,

|ΨD.I.
min⟩7 =

1
√

2
|101⟩ + 𝑖

√
2
|121⟩ ,

|ΨD.I.
min⟩8 =

𝑒
𝑖 𝜋
8

√
2
|110⟩ − 𝑖𝑒

𝑖 𝜋
8

√
2

|112⟩ ,

|ΨD.I.
min⟩9 =

1
2
|000⟩ + 1

2
|202⟩ − 1

2
|022⟩ + 1

2
|220⟩ .

The 10th dimension |𝜓𝜓̄D.I.
min⟩ is also a common eigenstate of 𝑊𝐶𝑥

𝜓
, 𝑊𝐶𝑦

𝜓
, 𝑊𝐶𝑥

𝜓̄
, and
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𝑊
𝐶𝑦

𝜓̄
. In this basis, the logical operators takes the diagonal form

𝑊
𝐶𝑥

𝜓
=


©­­«

1 0 0
0 1 0
0 0 −1

ª®®¬ ⊗ I3×3

 ⊕ (−1), (2.59)

𝑊
𝐶𝑦

𝜓
=


©­­«

1 0 0
0 −1 0
0 0 1

ª®®¬ ⊗ I3×3

 ⊕ (−1), (2.60)

𝑊
𝐶𝑥

𝜓̄
=

I3×3 ⊗
©­­«

1 0 0
0 1 0
0 0 −1

ª®®¬
 ⊕ (−1), (2.61)

𝑊
𝐶𝑦

𝜓̄
=

I3×3 ⊗
©­­«

1 0 0
0 −1 0
0 0 1

ª®®¬
 ⊕ (−1). (2.62)

The aforementioned 10 states are obtained by directly diagonalizing the logical
operators within the stable vertex space. Besides a computation using the 𝐹 and the
𝑅 symbols (see the next subsection for details), another way to compute the matrix
elements of the logical operators is to use the Ω symbols or the half-braid tensors
as in the original string-net paper [68]. We will not review them here. The reader
should refer to Ref. [68, 78] for definition and details. However, for completeness,
we present a solution to these Ω symbols for the doubled-Ising string-net:
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Figure 2.13: An illustration of an open ended fluxon string-operator 𝑊path
fluxon acting

on a wave-function of the doubled-Ising string-net. 𝑊path
fluxon creates the fluxon and

its antiparticle on the plaquettes 𝑝1 and 𝑝2. It does not create any excitations along
the path. 𝑊path

fluxon is constructed by a loop of 𝑠-string that vertically penetrates the
square-octagon lattice at the two plaquettes. The string-operators of 𝜓𝜓̄ and 𝜎𝜎̄ are
given by a loop of 2-string and a loop of 1-string respectively.

Figure 2.14: The open ended chargeon string-operators of the doubled-Ising string-
net. They are constructed by line segements of the strings, which can be either
above or below the lattice depending on the type of the chargeon excitations. On a
ground state of the doubled-Ising, An open chargeon string-operator creates a vertex
violation at each end. The 𝜓 and 𝜎 string-operators correspond to a 2-string and a
1-string above the lattice respectively. The string-operators for 𝜓̄ and 𝜎̄ correspond
to those below the lattice.

Condensation on smooth boundary
Using the string-operator construction discussed in Ref. [77, 81], we can readily
show that on the smooth boundary, the bosonic fluxons 𝜓𝜓̄ and 𝜎𝜎̄ condense.

Let us start with a review of the fluxon string-operators. Consider a large square-
octagon lattice placed on the 𝑥𝑦-plane as shown in Fig. 2.13. An open ended fluxon
string-operator is given by a loop of 𝑠-string which vertically penetrates the lattice
through the center of the plaquettes 𝑝1 and 𝑝2. The fluxon excitations are created at
𝑝1 and 𝑝2 respectively. The 𝜓𝜓̄ string-operator is given by a loop of 2-string, and
that of 𝜎𝜎̄ is given by a loop of 1-string.

An open ended string-operator of a chargeon is constructed by a line segement,
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which can be either above or below the lattice, as shown in Fig. 2.14.

To compute the action of the string-operators, we need the 𝑅-symbols and the
𝑆-matrix [49, 82]. The 𝑅-symbols define the braiding transformations

b a

c

= Rbac

b a

c

, (2.63)

where 𝑅𝑏𝑎𝑐 ∈ C. The inverse transformations are defined by

b a

c

=
(
Rbac

)∗
b a

c

. (2.64)

Same as the 𝐹-symbols, 𝑅𝑏𝑎𝑐 ≠ 0 if 𝛿𝑏𝑎𝑐 ≠ 0. Elements of the 𝑆-matrix are given by

𝑆𝑎𝑏 =
1

√
𝐷

∑︁
𝑐

𝑑𝑐𝑅
𝑏𝑎
𝑐 𝑅

𝑎𝑏
𝑐 , (2.65)

where
√
𝐷 =

√︁∑
𝑠 (𝑑𝑠)2 = 2 is the total quantum dimension of the Ising unitary

modular tensor category. The full 𝑆-matrix is

𝑆 =
1
2

©­­«
1

√
2 1√

2 0 −
√

2
1 −

√
2 1

ª®®¬ . (2.66)

Using the 𝑅- and 𝐹-symbols, we can always fuse the chargeon string-operators into
the lattice at the cost of violating the vertex constraints at the ends. On the other
hand, the fluxon string-operators can be fused into the lattice without introducing
any vertex violations. For example, consider the action of a non-trivial fluxon
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string-operator on the string-net wave-function�����
ℓ1 ℓ4

𝑒

ℓ2 ℓ3

s

〉

=
∑︁
𝑗

𝐹𝑠𝑠0𝑒𝑒 𝑗

�����
ℓ1 ℓ4

𝑒

𝑒
ℓ2 ℓ3

s j

〉

=
∑︁
𝑗

𝐹𝑠𝑠0𝑒𝑒 𝑗

(
𝑅𝑒𝑠𝑗

)∗ (
𝑅𝑠𝑒𝑗

)∗ �����
ℓ1 ℓ4

𝑒

𝑒
ℓ2 ℓ3

s j

〉

=
∑︁
𝑗

𝑑 𝑗

𝑑𝑒

(
𝑅𝑒𝑠𝑗

)∗ (
𝑅𝑠𝑒𝑗

)∗ �����
ℓ1 ℓ4

𝑒

ℓ2 ℓ3 〉

=

√
𝐷

𝑑𝑒
𝑆𝑠𝑒

�����
ℓ1 ℓ4

𝑒

ℓ2 ℓ3 〉
.

(2.67)

Note that the expression above differs from that of Ref. [77] by a normalization
factor, which is not important for our purposes. For an example of a chargeon
string-operator, let us consider a line segment below the lattice. We compute

�����
ℓ1 ℓ4

𝑒

ℓ2 ℓ3

s

〉

=
∑︁
𝑗

𝐹𝑠𝑠0𝑒𝑒 𝑗

�����
ℓ1 ℓ4

𝑒

𝑒
ℓ2 ℓ3

s
s j

〉

=
∑︁
𝑗

𝐹𝑠𝑠0𝑒𝑒 𝑗

(
𝑅𝑒𝑠𝑗

)∗ �����
ℓ1 ℓ4

𝑒

𝑒
ℓ2 ℓ3

s
s j

〉

=
∑︁
𝑗

𝐹𝑠𝑠0𝑒𝑒 𝑗

(
𝑅𝑒𝑠𝑗

)∗ �����
ℓ1 ℓ4

𝑒

𝑒
ℓ2 ℓ3

j

〉
,

(2.68)
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where in the last step we have removed the 𝑠-strings. So, we see that an open
chargeon string-operator always creates violations to the vertex constraints.

Moreover, different fluxons correspond to different sets of eigenvalues of 𝐵𝑎𝑝. To
determine these eigenvalues, we need the graphical rule

𝑎

𝑏
=
𝑆𝑎𝑏

𝑆0𝑏
𝑏 . (2.69)

As an example, let us compute

Ba
pW

path

ψψ̄
|ΨD.I.⟩

= Ba
p

∣∣∣∣∣

2 〉

ΨD.I.

=

∣∣∣∣∣

2
a

〉

ΨD.I.

=
Sa2
S02

∣∣∣∣∣

2 〉

ΨD.I.

,

(2.70)

from which we see that the 𝜓𝜓̄ fluxon has the eigenvalues of 1, −
√

2, and 1 for 𝐵0
𝑝,

𝐵1
𝑝, and 𝐵2

𝑝 respectively. This result is exactly what we found for the 𝜓𝜓̄ fluxon
state in Appendix 2.10. It is easy to see that the 𝜎𝜎̄ fluxon has 𝐵0

𝑝 = 1, 𝐵1
𝑝 = 0, and

𝐵2
𝑝 = −1.

We now show that, on the smooth boundary, the fluxons 𝜓𝜓̄ and 𝜎𝜎̄ are condensed.
Without loss of generality, let us consider the doubled-Ising string-net with a single
plaquette and everywhere else is set to |0⟩. Consider the action of an open ended
fluxon string-operator passing through the lattice just outside the plaquette

s

Since the 𝑠-loop does not pass through the region enclosed by the plaquette, the
string-operator does not create any fluxon excitation on the plaquette. Via the 𝐹-
and 𝑅-symbols, we can fuse the 𝑠-loop into the edges of the plaquette without
changing any of the edges outside the plaquette or introducing any vertex violations.
Therefore, we see that the fluxons all condense on the smooth boundary. On the other
hand, because the chargeon string-operators necessarily introduce vertex violations,
the chargeons remain as excitations on the boundary. Thus, we reach the conclusion
that, on the smooth boundary, the condensed excitations are the fluxons 𝜓𝜓̄ and 𝜎𝜎̄.
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2.11 Appendix D: GSD of the minimal Ising cage-net
In this appendix, we use the Hamiltonian (2.3) to calculate the GSD of Ising cage-
net with system size 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 1 in terms of doubled Ising layers. This
calculation does not involve the operator algebra approach and therefore serves
as an independent check of (2.1) for the minimal system size. Indeed, we find
GSD = 144 in agreement with (2.1).

aa

b

b

c
1

y

x

Figure 2.15: A minimal trivalent lattice, a state vector |𝑎𝑏𝑐⟩, and the plaquette term
𝐵1
𝑝 (the blue 1-loop).

Recall from the last section that the string-net model of doubled Ising can be written
on a minimal trivalent lattice (Fig. 2.15). State vectors are written as |𝑎𝑏𝑐⟩, where
𝑎, 𝑏, 𝑐 = 0, 1 or 2. The subspace of the Hilbert space that satisfies the vertex terms
𝐴𝑣 has dimension 10. It is spanned by (note that the vectors below form a different
basis of the ground space than those in Appendix 2.9)

𝑤1 = |101⟩ , 𝑤2 = |011⟩ , 𝑤3 = |110⟩ ,
𝑤4 = |121⟩ , 𝑤5 = |211⟩ , 𝑤6 = |112⟩ ,

𝑤7 =
1
2
|000⟩ + 1

2
|202⟩ + 1

2
|022⟩ − 1

2
|220⟩ ,

𝑤8 =
1
2
|000⟩ − 1

2
|202⟩ + 1

2
|022⟩ + 1

2
|220⟩ ,

𝑤9 =
1
2
|000⟩ + 1

2
|202⟩ − 1

2
|022⟩ + 1

2
|220⟩ ,

𝑤10 = −1
2
|000⟩ + 1

2
|202⟩ + 1

2
|022⟩ + 1

2
|220⟩ .

(2.71)

The only nontrivial plaquette term is 𝐵1
𝑝 (Fig. 2.15), which is a 1-loop that traverses

each edge twice. It can also be viewed as a 𝜎-loop (or equivalently, a 𝜎̄-loop)
placed “around the corners”. Using the method of (2.8), we find 𝐵1

𝑝 =
√

2 𝑟, whose
eigenvalues are ±

√
2. We then find

𝐵1
𝑝𝑤𝑖 = +

√
2𝑤𝑖 for 𝑖 = 1, . . . , 9,

𝐵1
𝑝𝑤10 = −

√
2𝑤10.



63

The details of this calculation are not important and we omit it here, as 𝐵1
𝑝 does not

appear in the minimal Ising cage-net since it does not commute with the condensation
operators 𝑉𝑙𝜇 . We conclude that the ground space of the minimal doubled Ising is
spanned by 𝑤1, . . . , 𝑤9.

The minimal Ising cage-net
The minimal Ising cage-net is obtained by condensing 𝜓𝜓̄ p-loops in three copies
of minimal doubled Ising which are pairwise orthogonal. We label the states in e.g.
the doubled Ising perpendicular to the 𝑧 direction by |𝑎𝑧𝑥𝑏𝑧𝑦𝑐𝑧⟩, where 𝑎𝑧𝑥 is on the
edge in the 𝑥 direction, etc. The Hamiltonian consists of condensation operators
𝑉𝑙𝜇 , vertex terms 𝐴𝑣 and a single cube term 𝐵𝑐, but with an important caveat: 𝐵𝑐
acts on a “degenerate” cube, whose opposite faces are identified. For example, its
upper and lower faces are both proportional to

𝑟 𝑧 =
1
2
(1 + 𝜓𝑧𝑥 + 𝜓𝑧𝑦 − 𝜓𝑧𝑥𝜓𝑧𝑦).

Since (𝑟 𝑧)2 = 1, the product of these two faces is a constant. Thus 𝐵𝑐 is a constant
and we can ignore it.

The subspace of the Hilbert space that satisfies the vertex terms is spanned by
𝑤𝑥
𝑖
⊗ 𝑤𝑦

𝑗
⊗ 𝑤𝑧

𝑘
, where 𝑤𝛼

𝑖
are given by (2.71) and 𝑖, 𝑗 , 𝑘 = 1, . . . , 10. According to

(2.2), in order for a state to satisfy the condensation operators 𝑉𝑙𝜇 , we must have

(𝑎𝑧𝑥 , 𝑏
𝑦
𝑥), (𝑎𝑥𝑦, 𝑏𝑧𝑦), (𝑎

𝑦
𝑧 , 𝑏

𝑥
𝑧 ) = (1, 1) or contain no 1. (2.72)

Therefore, we need to count the number of states 𝑤𝑥
𝑖
⊗ 𝑤𝑦

𝑗
⊗ 𝑤𝑧

𝑘
that satisfy (2.72).

Up to permutation of 𝑥, 𝑦 and 𝑧, we have four cases:

(1) If none of the 𝑎’s or 𝑏’s (and hence 𝑐’s) is 1, then the states are 𝑤𝑥
𝑖
⊗ 𝑤𝑦

𝑗
⊗ 𝑤𝑧

𝑘

where 𝑖, 𝑗 , 𝑘 = 7, 8, 9 or 10. There are 4 × 4 × 4 = 64 possibilities.

(2) If (𝑎𝑦𝑧 , 𝑏𝑥𝑧 ) = (1, 1) and (𝑎𝑧𝑥 , 𝑏
𝑦
𝑥), (𝑎𝑥𝑦, 𝑏𝑧𝑦) contain no 1, then we can take 𝑖 = 2 or

5, 𝑗 = 1 or 4, and 𝑘 = 7, 8, 9 or 10. There are 2 × 2 × 4 = 16 possibilities.

(3) If (𝑎𝑧𝑥 , 𝑏
𝑦
𝑥), (𝑎𝑥𝑦, 𝑏𝑧𝑦) = (1, 1) and (𝑎𝑦𝑧 , 𝑏𝑥𝑧 ) contains no 1, then we can take 𝑖 = 1

or 4, 𝑗 = 2 or 5, and 𝑘 = 3 or 6. There are 2 × 2 × 2 = 8 possibilities.

(4) If all 𝑎’s and 𝑏’s are 1, then we can take 𝑖, 𝑗 , 𝑘 = 3 or 6. There are 2 × 2 × 2 = 8
possibilities.

Summarizing these cases, we have

GSD = 64 + 3 × 16 + 3 × 8 + 8 = 144,
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where the factors of 3 account for permutations of 𝑥, 𝑦 and 𝑧. The result agrees with
(2.1).
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C h a p t e r 3

FRACTON PHASES: GENERALIZED FOLIATION

In Chapter 2, we have shown that the Ising cage-net is not foliated according to
the definition of (original) foliation [32, 52]. Yet, the Ising cage-net model shares
many features with the X-cube model, which is known to be foliated (we review
this in Sec. 3.1). Both models host fractons, lineons, and planons, and can be built
by coupling intersecting stacks of 2D topologically ordered systems [41, 42]. A
natural question then arises: can we find a generalized RG scheme such that the
Ising cage-net is a fixed-point model? In this Chapter, we answer this question in
the affirmative. We find that the original foliation can be naturally extended to the
generalized foliation scheme, under which the Ising cage-net is a fixed-point.

This Chapter is organized as follows. After a review of the original foliation in
Sec. 3.1, we point out some unnatural restrictions within the (original) foliated RG
in Sec. 3.2, and proposes the generalized foliated RG where these restrictions are
removed. In Sec. 3.3, we show that the Ising cage-net model is foliated in terms of
a generalized foliated RG defined by planon condensation. Then, in Sec. 3.4, we
demonstrate that the generalized foliated RG can also be implemented by a planar
linear depth circuit. The linear depth circuit has a special structure, and we dub it a
sequential circuit; in Sec. 3.5 we show how the sequential circuit we use is closely
related to the condensation of planons via gapped boundaries.

3.1 (Original) foliation and the X-cube model
Before our discussion of the ‘generalized foliation’, it is instructive to review the
original notion of foliation and see how the corresponding RG procedure is carried
out for the X-cube. The X-cube model has a foliated structure, where layers of the
toric code can be added to or removed from the X-cube via a finite depth circuit S
[52]. Given an X-cube ground state |ΨX.C.⟩ of the system size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 and a
toric code ground state |ΨT.C.⟩, S yields a |ΨX.C.⟩ of the size 𝐿𝑥 × 𝐿𝑦 × (𝐿𝑧 + 1). In
rest of this section, we review the finite depth circuit S on the three-torus.

Let us consider the X-cube Hamiltonian defined on a cubic lattice on the three-torus;
and one copy of the toric code Hamiltonian defined on a square lattice on the two-
torus. For both models, the local qubit DOFs are placed on the edges. The X-cube
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(a) (b)

Figure 3.1: (a) The three types of vertex terms in the X-cube Hamiltonian 𝐴𝑥𝑣 , 𝐴
𝑦
𝑣 ,

and 𝐴𝑧𝑣, which are tensor products of Pauli-𝑍 operators. (b) The cube term 𝐵𝑐.

(a) (b)

Figure 3.2: (a) The vertex term 𝑄𝑣 in the toric code Hamiltonian. (b) The plaquette
term 𝐵𝑝.

Hamiltonian [25]

𝐻X.C. = −
∑︁
𝑣

(
𝐴𝑥𝑣 + 𝐴

𝑦
𝑣 + 𝐴𝑧𝑣

)
−

∑︁
𝑐

𝐵𝑐 (3.1)

contains three types of vertex terms 𝐴𝑥𝑣 , 𝐴
𝑦
𝑣 , and 𝐴𝑧𝑣; and one type of cube term 𝐵𝑐,

as shown in Fig. 3.1. The toric code Hamiltonian [17]

𝐻T.C. = −
∑︁
𝑣

𝑄𝑣 −
∑︁
𝑝

𝐵𝑝 (3.2)

is a sum of local terms as shown in Fig. 3.2.

To construct the circuit, we first insert a decoupled toric code into the X-cube. As
depicted in Fig. 3.3, when the inserted toric code lies in the 𝑥𝑦-plane, it bisects the
𝑧-direction edges in the X-cube model, thus creating new qubit edges 𝑘′ colored
in orange. These new 𝑘′ edges are added to the system as product states whose
Hamiltonian is chosen to be 𝐻0 = −∑

{𝑘 ′} 𝑍𝑘 ′ . For each bisected edge 𝑖 in the
X-cube Hamiltonian, we substitute 𝑍𝑖 → 𝑍𝑖′ and 𝑋𝑖 → 𝑋𝑖′ .

The circuit S is a product of two finite depth circuits S2 and S1, S = S2S1. Each
is a product of the controlled-NOT (CNOT) gates. The circuit S1 acts on the edges
of the modified X-cube Hamiltonian, as shown in Fig. 3.4a. Every CNOT gate in
S1 has an 𝑖′ edge serving as the controlled qubit and the corresponding 𝑘′ edge as
the target. On the other hand, S2 acts on both edges of the X-cube and those of the
toric code. Every edge of the toric code serves as the controlled qubit for the CNOT
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Figure 3.3: The insertion of a layer of toric code living on an 𝑥𝑦-plane (blue colored
square lattice) into a cubic lattice, which hosts the X-cube. The inserted layer bisects
an edge 𝑖 near the inserted plane into edges labeled by 𝑖′ and 𝑘′. For every bisected
edge, the X-cube Hamiltonian is modified by replacing 𝑍𝑖 → 𝑍𝑖′ and 𝑋𝑖 → 𝑋𝑖′ . The
new edges 𝑘′ are product states with the Hamiltonian of 𝐻0 = −∑

{𝑘 ′} 𝑍𝑘 ′ .

(a) (b)

Figure 3.4: An illustration of the finite depth circuit S = S2S1. (a) The action of
the circuit S1 when focus on an elementary cube of the original cubic lattice. The
arrows, representing the CNOT gates, point from the controlled qubits to the targets.
(b) S2’s action viewed at a cube.

gates whose targets are edges in the modified X-cube. An illustration of S2 is given
in Fig. 3.4b. The CNOT gate, acting by conjugation, has the actions of

𝑍𝐼 ↦→ 𝑍𝐼, 𝐼𝑍 ↔ 𝑍𝑍,

𝑋𝐼 ↔ 𝑋𝑋, 𝐼𝑋 ↦→ 𝐼𝑋,
(3.3)

where the first qubit is the control and the second is the target. All the CNOT gates
in S1 or S2 commute with each other. Therefore, S is a finite depth circuit. By
direct computation, we see that

S
(
𝐻̃

(𝐿𝑥 ,𝐿𝑦 ,𝐿𝑧)
X.C. + 𝐻T.C. + 𝐻0

)
S† � 𝐻

(𝐿𝑥 ,𝐿𝑦 ,𝐿𝑧+1)
X.C. , (3.4)

where 𝐻̃X.C. is the modified X-cube Hamiltonian, and the symbol � denotes that the
L.H.S. and the R.H.S. share the same ground space.
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3.2 Generalizing the notion of foliation
The calculation of the GSD for Ising cage-net model shows that it is not foliated in
the usual sense (recall from Chapter 2). However, from its construction in terms of
stacks of 2D topological orders, it is reasonable to expect that it may be foliated in
some generalized sense. Indeed, once we examine the original defnition of foliation
in more detail, we can uncover two parallel ways in which it is unnaturally restrictive.

First, let us formulate the original foliated RG process purely in terms of quantum
circuits. Recall that foliated RG in the X-cube model involves adding a topologically
ordered layer and then coupling it to the X-cube bulk with a finite-depth quantum
circuit. The topological layer cannot itself be created with a finite-depth circuit from
a product state. However, it is now well-understood that it can be created with a
linear-depth circuit [83, 84]. Therefore, if we view foliated RG as a generalization
of usual entanglement RG [85, 86], in which one is allowed to add ancillary degrees
of freedom in a product state and then apply finite-depth circuits, moving to foliated
RG corresponds to additionally allowing linear-depth circuits within a 2D subsystem
of the 3D model. However, from this perspective, the current definition of foliated
RG is restricted, in that we only allow the linear-depth circuit to act on the ancillae
qubits and not on the 3D bulk. A more natural definition would be to allow the
linear-depth circuit to act arbitrarily within a 2D layer on both the ancillae and the
bulk. We remark that the kinds of linear-depth circuits involved here have a special
structure that preserves the area law of entanglement, as discussed in more detail in
Sec. 3.5.

Second, we can also view foliated RG in terms of condensation. Namely, suppose
we want to implement the inverse process of removing a single layer from the X-cube
model, reducing its size in one direction. This can be achieved by condensing a
planon within a single layer, corresponding to disentangling the toric code layer and
then trivializing that layer by condensing a boson. In this case, the planon which
we condense is very special: it can be viewed as being part of a 2D theory that
is decoupled from the rest of the excitation spectrum of the 3D bulk. To be more
general, if we allow condensation of planons in RG, we should allow condensation
of arbitrary planons, not only those that are part of decoupled 2D theories.

In light of the above, there are two natural ways to extend the notion of foliated
RG: linear-depth circuits and planon condensation. In what follows, we will show
that both approaches lead to a generalized foliated RG that is applicable to the
Ising cage-net model. Then, in Sec. 3.5, we argue that these two approaches, while
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𝑧 = −1

𝑧 = 0

𝑧 = 1

Figure 3.5: An illustration of the relevant 𝑥𝑦-planes of a 𝐿𝑥 ×𝐿𝑦×𝐿𝑧 Ising cage-net.
Via the condensation process described in the text, we remove the 𝑧 = 0 plane and
obtain a 𝐿𝑥 × 𝐿𝑦 × (𝐿𝑧 − 1) Ising cage-net.

seemingly distinct, are in fact very closely related to each other.

3.3 RG via condensation
How can the system size of the Ising cage-net model be increased / decreased? In this
section, we show that it can be changed through condensation and un-condensation
of bosonic planons. This is closely tied to the topic of anyon condensation in 2D
systems, which we briefly review in Appendix 3.7. For a comprehensive review, we
refer the reader to Ref. [87] and references therein.

Let us begin by considering the process of condensing planons in an 𝑥𝑦-plane to
decrease the system size in the 𝑧 direction by one (Fig. 3.5). Recall from the last
section that for each 𝑥𝑦-plane there is a bosonic planon 𝜓𝜓̄ which can be condensed.
When 𝜓𝜓̄ in plane 𝑧 = 0 is condensed, the quasi-particle content of the model
changes as follows:

1. Since 𝜓𝜓̄ is the fracton dipole, fractons between planes 𝑧 = 0 and 𝑧 = 1 are
identified with the corresponding fracton between planes 𝑧 = −1 and 𝑧 = 0.

2. The planons 𝜓 and 𝜓̄ on the 𝑧 = 0 plane are identified.

3. The 𝜎𝜎̄ planon on the 𝑧 = 0 plane splits into two abelian bosonic planons 𝑒
and 𝑚 with a mutual −1 braiding statistics.

4. The lineons in the 𝑧 = 0 plane composed of 𝜎𝑥𝑦𝜎𝑥𝑧, 𝜎̄𝑥𝑦𝜎𝑥𝑧, 𝜎𝑥𝑦𝜎̄𝑥𝑧, and
𝜎̄𝑥𝑦𝜎̄𝑥𝑧 are all confined.
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5. Planons and lineons on other planes are unchanged.

After this step, we can further condense either 𝑒 or 𝑚. This gets rid of the remaining
planons on the 𝑧 = 0 plane without affecting other quasi-particle excitations. Now,
we see that the quasi-particle content of the model is the same as that of an Ising
cage-net model with the 𝑧 = 0 plane removed. The planons and lineons on planes
other than 𝑧 = 0 are left intact. Moreover, the fracton between 𝑧 = 0 and 𝑧 = 1,
which is now identified with the fracton between 𝑧 = −1 and 𝑧 = 0, becomes the
new fracton between 𝑧 = −1 and 𝑧 = 1. Therefore, the size of the Ising cage-net
model can be decreased by one in the 𝑧 direction by first condensing the 𝜓𝜓̄ planon
in a plane, and then by condensing one of the split channels of the 𝜎𝜎̄ planon on
the same plane.

We see that if we allow condensation of bosonic planons as a RG operation, we
obtain a generalized foliated RG under which the Ising cage-net model is a fixed
point. As noted in Sec. 3.2, the original foliated RG for the X-cube model can also
be viewed in terms of such condensation.

The condensation of planons is, of course, a singular process where the bulk gap
needs to close and then reopen, corresponding to a phase transition between different
phases. This means that, similar to the original foliated RG, the generalized foliated
RG operations can move across certain phase boundaries. However, only certain
phase boundaries can be crossed; the singularity involved in planon condensation is
localized to a selected plane and is hence a “subsystem" singularity, not one in the
full 3D bulk.

A useful way to think about the condensation process is to use the fact that the Ising
cage-net model can be obtained by gauging the planar 𝑍2 symmetries of a subsystem
symmetry protected topological (SSPT) model protected by the planar symmetries1.
Note that, subsystem symmetries usually contain generators associated with rigid
subsystems like 𝑥, 𝑦, 𝑧 planes in the 3D bulk. They are different from higher-
form symmetries [88] with generators associated with deformable subsystems. The
planons being condensed correspond to the symmetry charges of the planar sym-
metries in the SSPT model. Hence the condensation of the planons in a given plane
corresponds to breaking / removing that planar symmetry and reducing the size of
the model. On the other hand, if we want to increase the size of the system by adding

1to be discussed in future work
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a plane at 𝑧 = 0, we need to add the planar symmetry and the corresponding planar
state back to the SSPT model and ‘re-gauge’ the planar symmetry.

3.4 RG via planar linear depth circuit
The planar linear depth circuit we construct for the Ising cage-net model is a direct
generalization of a RG scheme that maps product states to ground states of a string-
net model, introduced by Liu Y. et al. [84]. We review this RG procedure for the
string-net models. We describe carefully an initialization step that is nontrivial for
non-abelian string-net models, which was not discussed in detail in Ref. [84]. Then,
we describe the RG scheme as a linear depth circuit for the Ising cage-net model.
We will see that the initialization step is also important and nontrivial.

String-net RG
In this section, we will first describe an important step in the RG procedure – the
‘controlled gate’ which adds a plaquette to the string-net wave-function. After that,
we will describe the full RG procedure starting from the string-net wave-function
on the minimal lattice on a torus and then adding plaquettes row by row. A brief
review of the string-net models is given in Appendix 2.9.

Adding plaquettes via the controlled gate

The controlled gate can be used to add a plaquette to the string-net wave-function. We
present the definition and properties of the gate in this sub-section. Computational
details of the results discussed here can be found in Appendix 3.6.

Suppose that on a trivalent lattice, a plaquette is added by adding an edge (the red
edge in the diagrams below), and we want to extend the string-net wave-function
from the original lattice to that including this new plaquette. When the edge is
added, it is not entangled with the rest of the lattice and is in the state |0⟩. To merge
the added edge into the lattice, first, map it to

∑
𝑠
𝑑𝑠√
𝐷
|𝑠⟩ where 𝐷 is the total quantum

dimension of the string-net.

|0⟩ ↦→
∑︁
𝑠

𝑑𝑠√
𝐷
|𝑠⟩ (3.5)

Then, we use this edge as the control to draw loops around the added plaquette.
More specifically, we can represent the controlled gate 𝐺 𝑝 =

∑
𝑠 𝐺

𝑠
𝑝 graphically as

in Eq. (3.6). The action of 𝐺𝑠
𝑝 is similar to the action of 𝐵𝑠𝑝 which adds a loop 𝑠 to

a plaquette, but for the graphical evaluation of 𝐺𝑠
𝑝, we treat the control edge as if it
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is in the state |0⟩, i.e.
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(3.6)
where the red line with an arrow marks the control edge. We carry out the explicit
graphical evaluation in Appendix 3.6. Note that𝐺𝑠

𝑝 can be defined on any polygonal
plaquette.

𝐺𝑠
𝑝 is not a unitary on the full Hilbert space, but only between subspaces. More

specifically, it is an isometry from VSN
𝑝,𝑠 to HSN

𝑝,𝑠 , both of which involve the DOF
around a plaquette 𝑝. In VSN

𝑝,𝑠 , the control edge is set to |𝑠⟩ while the other edges
come from the string-net wave-function on the lattice with the control edge missing
(pretending that it is set to |0⟩). The vertices containing the control edge, then,
involve configurations like

ℓ∗

ℓ
s

(3.7)

In HSN
𝑝,𝑠 , all edges, including the control edge, come from the string-net wave-

function with the control edge set to |𝑠⟩.

In Appendix 3.6, we prove that𝐺𝑠
𝑝 is an isometry fromVSN

𝑝,𝑠 toHSN
𝑝,𝑠 by demonstrating
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The controlled gates commute with each other[
𝐺𝑠
𝑝, 𝐺

𝑠′
𝑝′

]
=0 =

[
𝐺𝑠
𝑝
†
, 𝐺𝑠′

𝑝′

]
, (3.9)

as long as they do not act on each other’s controlled edge. Moreover, we can show[
𝐺𝑠
𝑝, 𝐵

𝑠′
𝑝′

]
= 0 =

[
𝐺𝑠
𝑝
†
, 𝐵𝑠

′
𝑝′

]
, (3.10)
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provided that 𝐵𝑠′
𝑝′ does not act on the control edge of 𝐺𝑠

𝑝. We prove these commu-
tation relations in Appendix 3.6.

In Appendix 3.6, we prove a useful equation, which we call the central equation

𝐺𝑠
𝑝 ( |𝑠⟩ ⟨𝑠′|)ct𝐺

𝑠′
𝑝

†
= 𝑃𝑠ct

(∑︁
𝑘

𝑑𝑘

𝑑𝑠𝑑𝑠′
𝐵𝑘𝑝

)
𝑃𝑠

′
ct , (3.11)

where ( |𝑠⟩ ⟨𝑠′|)ct acts on the control edge and 𝑃𝑠ct = |𝑠⟩ ⟨𝑠 | is a projector on the
control edge. With the central equation, we can show that the controlled gate does
what we claimed – it adds a plaquette to the string-net wave-function. In particular,
we show below that under conjugation by 𝐺 𝑝 =

∑
𝑠 𝐺

𝑠
𝑝, the projector on the control

edge 𝑃ct =
∑
𝑠,𝑠′

𝑑𝑠𝑑𝑠′
𝐷

|𝑠⟩⟨𝑠′| is mapped to the plaquette projector 𝐵𝑝 =
∑
𝑠
𝑑𝑠
𝐷
𝐵𝑠𝑝.

𝐺 𝑝𝑃ct𝐺
†
𝑝 =

∑︁
𝑠,𝑠′

𝑑𝑠𝑑𝑠′

𝐷
𝐺𝑠
𝑝 ( |𝑠⟩⟨𝑠′|)ct𝐺

𝑠′
𝑝

†

=
∑︁
𝑠,𝑠′,𝑘

𝑑𝑘

𝐷
𝑃𝑠ct𝐵

𝑘
𝑝𝑃

𝑠′
ct

=
∑︁
𝑘

𝑑𝑘

𝐷
𝐵𝑘𝑝 = 𝐵𝑝

(3.12)

The RG circuit

Using the controlled gate as a building block, we can construct the full linear depth
circuit that maps a product state to the string-net wave-function. We present the
linear depth circuit in two steps: 1. from a product state to a string-net wave-
function on the minimal lattice on torus; 2. from the string-net wave-function on
the minimal lattice to the full lattice by adding plaquettes. We are going to focus on
the trivalent square-octagon lattice, although the general procedure applies to other
trivalent graphs as well.

The minimal lattice on the torus consists of three edges, two vertices, and one
plaquette, as shown in Fig. 2.11. On the square-octagon lattice, we start from the
product state ⊗𝑙 |0⟩𝑙 . Pick three edges around a vertex as shown in Fig. 3.6. Apply a
local unitary transformation on the three edges so that they become one of the ground
states on the minimal lattice. Note that for abelian string-net states, the ground states
can be chosen to be a product state of the three edges. In fact, the ⊗𝑙 |0⟩𝑙 state is a
legitimate state already, because it satisfies the vertex term while the plaquette term
is trivial for abelian strings on the minimal lattice (for proof see Appendix 2.9).
However, for non-abelian string-nets, the 𝐵𝑠𝑝 term for a non-abelian 𝑠-string acts
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non-trivially in the stable vertex subspace, and the ground states generally become
entangled. In the case of the doubled-Ising on the minimal lattice, ten configurations
satisfy the vertex constraints. Of this ten-dimensional space, only nine dimensions
belong to the ground space, where 𝐵0

𝑝 = 1, 𝐵1
𝑝 =

√
2, and 𝐵2

𝑝 = 1. The remaining
one dimension carries a 𝜓𝜓̄ fluxon excitation such that 𝐵0

𝑝 = 1, 𝐵1
𝑝 = −

√
2, and

𝐵2
𝑝 = 1. One possible choice of the nine doubled-Ising ground states on the minimal

lattice is given in Appendix 2.10.

Now, we need to grow this minimal structure so that it reaches the full extent of
the lattice. To do this, we ‘copy’ the states on the 𝑖 and 𝑗 edges along the non-
contractible loops in the 𝑦 and 𝑥 directions. To achieve this, we use controlled gates
of the form

∑
𝑖 |𝑖⟩|𝑖⟩⟨𝑖 |⟨0|, and apply them sequentially along the non-contractible

loops, as shown in Fig. 3.6. As this step has to be done sequentially along the loop,
its depth increases linearly with the size of the lattice. This completes step 1 of the
linear depth circuit, which we call initialization.

i
j k

i
j k

y

x

Figure 3.6: The initialization step in the RG circuit for generating the string-net
wave-function. Left: pick three edges around a vertex and map them into one of
the ground states of the string-net on the minimal lattice. Right: grow the minimal
structure by copying the string states |𝑖⟩ and | 𝑗⟩ along non-contractible loops so that
they reach the full extent of the lattice.

Step 2 is also of linear depth. The minimal lattice has only one plaquette. In step 2,
we add more plaquettes to the lattice using the controlled gate introduced in Sec. 3.4.
The plaquettes cannot be added all at once, because the controlled gates commute
only when they do not act on each other’s control edge. A linear depth circuit is
hence needed to add all the plaquettes to the square-octagon lattice. A particular
sequence for adding these plaquettes is shown in Fig. 3.7. Firstly, all the square
plaquettes (red circles) can be added at the same time because they do not overlap
with each other. The small circle indicates the control edge while the big circle



75

(2)

(1)

(2)

(Ly − 1)

(1) {1}(Lx − 1)

p̃

y

x

Figure 3.7: Adding loops to plaquettes in step 2 of the RG circuit for generating the
string-net wavefunction. The state has been initialized into one of the ground states
on the minimal lattice (black lines). First, loops are added to the square plaquettes
(shown in red) in a single step. Then, loops are added to octagon plaquettes in
row (1), (2), ... (𝑙𝑦 − 1) sequentially. For the last row, loops are added to octagon
plaquette in column (1), (2), ...., (𝐿𝑥 − 1) sequentially. No action is needed in the
last plaquette 𝑝.

indicates the action of 𝐺𝑠
𝑝. Secondly, we add the square-octagon lattice in row one

(labeled (1) in Fig. 3.7). All controlled gates in row one commute with each other
so they can be added in one step. Then we add row two, row three, etc., until the
next to last row (labeled (𝐿𝑦 −1) in Fig. 3.7). For the last row, we need to choose the
control edges side ways because we need un-entangled edges to be used as control
edge. Due to this change, the plaquettes in the last row need to be added sequentially
as the controlled gates do not commute any more. As shown in the figure, we can
add them in the order of (green labels) (1), (2), ..., (𝐿𝑥 − 1). We do not need to act
in the last plaquette (labeled 𝑝) as the constraint due to the last plaquette is already
implied by that of the largest plaquette that we started from combined with all the
small plaquettes added so far. Therefore, at this point, we have finished the linear
depth RG procedure that starts from a product state and maps it to the the string-net
wave-function on the square-octagon lattice.

Ising cage-net
In this section, we use the controlled gate of Eq. (3.6) to build up the RG circuit
to enlarge an Ising cage-net ground state on the three-torus by one layer. We will
start, in Sec. 3.4, by introducing finite depth circuits that grow cages on the cage-net
ground state. They serve as the building blocks of the full planar linear depth RG
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circuit, which we discuss in Sec. 3.4.

Adding cages via the controlled gate

In 2D, we have seen that a plaquette can be added to the string-net wave function,
via the controlled gates, after an edge is added to the lattice. We can extend this
procedure to 3D cage-net states.

Figure 3.8: Insertion of an 𝑥𝑦-plane bisects a cube in the original cage-net lattice
into two cubes. Each intersection point between the 𝑥𝑦-plane and the 𝑧-principal
edges is expanded into an octahedron to preserve the trivalent structure in the 𝑥𝑦,
𝑦𝑧 and 𝑧𝑥 planes.

Suppose that we start with the Ising cage-net ground state on the truncated cubic
lattice (Fig. 2.2) and add a plane in the 𝑥𝑦 direction. At each point where the
added plane bisects the 𝑧 direction edges, an octahedron is added, as shown in
Fig. 3.8, to ensure the trivalent structure in each of the coupled planes. In the
added plane, octagonal plaquettes fill in the space between the octahedrons. Every
edge of the added octahedrons carries a three dimensional Hilbert space spanned
by {|0⟩, |1⟩, |2⟩}. We start with these edges all set to the state |0⟩. The principal
edges on the octagons each carry a five dimensional Hilbert space spanned by
{|00⟩, |02⟩, |20⟩, |22⟩, |11⟩}, which is a subspace of the tensor product Hilbert space
of two three dimensional DOFs {|0⟩, |1⟩, |2⟩} ⊗ {|0⟩, |1⟩, |2⟩} that come from the
two intersecting planes. We start with these principal edges in the state |00⟩.

We describe first the process to add one cube into the new layer, which consists
of two steps: 1. add the octahedrons to the cage-net wave-function; 2. grow a
cage structure in the upper truncated cube of Fig. 3.8. In step one, we first need
to copy the state of the bisected 𝑧-principal edge onto some of the octahedron
edges so that the vertex rules are satisfied at the octahedrons’ vertices. Suppose
the bisected edge is in the state |𝑥𝑦⟩. The copying process can be achieved with
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Figure 3.9: ‘Copying’ the states on the bisected 𝑧-principal edges onto edges of
the added octahedron to satisfy vertex rules in the 𝑥𝑧 and 𝑦𝑧 planes. The copying
process can be performed by controlled gates of the form

∑
𝑥𝑦 |𝑥𝑦⟩⟨𝑥𝑦 | ⊗ |𝑥⟩⟨0| and∑

𝑥𝑦 |𝑥𝑦⟩⟨𝑥𝑦 | ⊗ |𝑦⟩⟨0|, indicated by the arrows pointing from the control to the target.

the controlled gates
∑
𝑥𝑦 |𝑥𝑦⟩⟨𝑥𝑦 | ⊗ |𝑥⟩⟨0| and

∑
𝑥𝑦 |𝑥𝑦⟩⟨𝑥𝑦 | ⊗ |𝑦⟩⟨0| as indicated

by the blue and green arrows in Fig. 3.9. Then, we add the square plaquettes to the
cage-net wave-function. This can be done as described in the previous section on
how to add a square plaquette to the doubled-Ising string-net wave function, as the
square plaquettes remain unaffected when the doubled-Ising layers are coupled into
Ising cage-net. More specifically, for each square plaquette, we pick an edge in the
state |0⟩ as the control edge, map it to

∑
𝑠
𝑑𝑠√
𝐷
|𝑠⟩, and use it as the control in the

controlled gate 𝐺 𝑝 that adds loops into the plaquette.

(a) (b)

Figure 3.10: Growing a cage structure in an added cube. (a) First, using an edge
from the bottom face (colored green) as control, add loops to the bottom and top
faces, (b) then use the edges on the side faces (colored green) as control to add loops
to the side face.

Step 2, which adds a cage structure to the cube, is more complicated. As shown
in Fig. 3.10, first we add loops to the bottom and top faces and then to the side
faces. More specifically, first we pick a principal edge on the bottom face in the
state |00⟩ as the control. We will use the convention where the first |0⟩ comes from
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the 𝑥𝑦 plane while the second |0⟩ comes from the vertical 𝑥𝑧 and 𝑦𝑧 planes. Map
the control edge as

|00⟩ ↦→
∑︁
𝑠

𝑑𝑠√
𝐷

|𝑠0⟩ , (3.13)

Note that this takes the controlled edge out of the five dimensional subspace of
{|00⟩, |02⟩, |20⟩, |22⟩, |11⟩} but keeps it in the nine dimensional space of {|0⟩, |1⟩, |2⟩}⊗2.
This will also happen to other principal edges as we implement the procedure, but
at the end of the process of growing a cube, all principal edges will be back to the
five dimensional subspace.

Now, using the |𝑠⟩ state as the control, apply the controlled gate to the bottom face
𝑝𝑏 and top face 𝑝𝑡 as

𝐺0
𝑝𝑏

+ 𝐺2
𝑝𝑏

+ 1
√

2
𝐺1
𝑝𝑏
𝐵1
𝑝𝑡

(3.14)

as shown in Fig. 3.10 (a). Note that 𝐺𝑠
𝑝𝑏

and 𝐵𝑠𝑝𝑡 act on the first part of the principal
edges (the part that comes from horizontal planes). After these controlled gates, the
projector on the control edge |0⟩⟨0| (the first part) gets mapped to

( |0⟩⟨0|)ct ↦→
∑︁
𝑠𝑠′

𝑑𝑠𝑑𝑠′

𝐷
( |𝑠⟩⟨𝑠′|)ct

↦→ 𝐵0
𝑝𝑏

+ 𝐵2
𝑝𝑏

+ 𝐵1
𝑝𝑏
𝐵1
𝑝𝑡
,

(3.15)

where in deriving the last line, we used the fact that the top face is part of the original
cage-net wave-function and 𝐵0

𝑝𝑡
= 𝐵2

𝑝𝑡
= 1. Note that it might seem that the operator

in Eq. (3.14) is not unitary as 𝐵1
𝑝 is not. But since 𝐵1

𝑝𝑡
𝐵1†

𝑝𝑡
= 𝐵0

𝑝𝑡
+ 𝐵2

𝑝𝑡
= 2, the

action of the operator restricted to the ground space of the original cage-net model
is indeed unitary.

Next, we need to add loops to the side faces. To do this, we take the principal edges
on the bottom face, which are now in the states |𝑠0⟩ and send them to |𝑠𝛼𝑠⟩, where
𝛼𝑠 comes from the 𝑥𝑧 or 𝑦𝑧 planes and 𝛼𝑠 = 0 if 𝑠 is even, 𝛼𝑠 = 1 if 𝑠 is odd. This
brings the principal edges on the bottom face back to the five dimensional Hilbert
space. Then map the |𝛼𝑠⟩ states to

|0⟩ ↦→ 1
√

2
( |0⟩ + |2⟩) , |1⟩ ↦→ |1⟩ (3.16)

Use the |𝛼𝑠⟩ states as the control to draw loop on the side faces by applying
∑
𝛼𝑠
𝐺
𝛼𝑠
𝑝𝑠

as shown in Fig. 3.10 (b) to each side face. Let us see how the Hamiltonian terms
in Eq. (3.15) transforms. We show the step by step calculation for the third term
𝐵1
𝑝𝑏
𝐵1
𝑝𝑡

. The 𝐵1
𝑝𝑡

part is not affected by the transformation and will be omitted from
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the following equation. Let us focus on the transformation induced by on principal
edge. We label the two three-dimensional DOFs on the principal edge as 1 and 2
respectively, where 1 comes from the bottom face whose state is labeled by 𝑠 and 2
comes from the side face whose state is labeled by 𝛼𝑠.[

(𝑃0
1 + 𝑃

2
1)𝐵

1
𝑝𝑏
𝑃1

1 + 𝑃
1
1𝐵

1
𝑝𝑏
(𝑃0

1 + 𝑃
2
1)

]
⊗ (|0⟩⟨0|)2

↦→ 1
√

2
(𝑃0

1 + 𝑃
2
1)𝐵

1
𝑝𝑏
𝑃1

1 ⊗ (|0⟩2 + |2⟩2) 2⟨1|

+ 1
√

2
𝑃1

1𝐵
1
𝑝𝑏
(𝑃0

1 + 𝑃
2
1) ⊗ |1⟩2 (2⟨0| + 2⟨2|)

↦→ 1
√

2
(𝑃0

1 + 𝑃
2
1)𝐵

1
𝑝𝑏
𝑃1

1 ⊗
(
𝑃0

2 + 𝑃
2
2

)
𝐵1
𝑝𝑠
𝑃1

2

+ 1
√

2
𝑃1

1𝐵
1
𝑝𝑏
(𝑃0

1 + 𝑃
2
1) ⊗ 𝑃

1
2𝐵

1
𝑝𝑠

(
𝑃0

2 + 𝑃
2
2

)
(3.17)

The result is the product of 𝐵1
𝑝𝑏

and 𝐵1
𝑝𝑠

projected onto the five dimensional subspace
of the principal edge, as promised. This works for all side faces. Similar calculations
can be carried out for the first two terms in Eq. (3.15). If we put everything together
and omit the projection onto the five dimensional subspace of the principal edges,
we see the Hamiltonian terms in Eq. (3.15) becomes(

𝐵0
𝑝𝑏

+ 𝐵2
𝑝𝑏

) ∏
𝑝𝑠

(
𝐵0
𝑝𝑠
+ 𝐵2

𝑝𝑠

)
+ 𝐵1

𝑝𝑏
𝐵1
𝑝𝑡

∏
𝑝𝑠

𝐵1
𝑝𝑠
, (3.18)

which is a sum over the desired plaquette terms on the bottom and side faces as well
as the cube term on the cube.

Figure 3.11: Adding a row of cubes to the cage-net state, step 1: the inserted 𝑥𝑦-
plane bisects the cubes into two; octahedrons are added at the intersection point.

In the RG circuit to be discussed in the next section, we need to grow cubes in the
same row at the same time. This works in a similar way as growing a single cube
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(a) (b)

Figure 3.12: Adding a row of cubes to the cage-net state, step 2: (a) first, we
simultaneously add loops to the bottom and the top faces of all cubes in the row;
(b), use the edges on the side face (colored green) as control to add loops to all the
side faces at the same time.

and we describe the procedure here. First, as shown in Fig. 3.11 which illustrates
the situation with two cubes in the row, a new plane is added which bisects the
row of cubes into two. Octahedrons are added to the intersection points to preserve
the trivalent structure in the coupled 𝑥𝑦, 𝑦𝑧 and 𝑧𝑥 planes. The ‘copying’ process
illustrated in Fig. 3.9 is then used to restore vertex rules at the vertices of the
octahedrons and then the square plaquettes in the octahedrons are added to the
cage-net wave-function. The next step is illustrated in Fig. 3.12, which adds cage
structures to a whole row of cubes at the same time. This is done by first picking the
principal edge in, for example, the 𝑥 direction and use them as controls to add loops
in the bottom and top faces as described above for each cube in the row (Fig. 3.12
(a)). The operations in each cube commute with that in another cube, and hence
they can be done all at the same time. Next, loops are added to the side faces using
the principal edges on the bottom face as control, as shown in Fig. 3.12 (b). Again,
the operations on each side face commute with each other, so they can be done at the
same time. As a result of this process, all the cubes in the row are now added to the
cage-net wave-function. Note that the process illustrated in Fig. 3.12 applies to the
first row in the added plane. When we try to add subsequent rows, some of the side
faces would have been added to the cage-net state already. Those side faces can be
treated in the same way as the top face. That is, apply 𝐵1

𝑝𝑠
in step Fig. 3.12 (a) when

the 𝑥-principal edge is in the state |10⟩, instead of applying
∑
𝛼𝑠
𝐺
𝛼𝑠
𝑝𝑠 controlled by

the bottom principal edge of the side face in the state |𝑠𝛼𝑠⟩. A similar procedure
applies to the cubes in the last row of the added plane as well, which have to be
added one by one.
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RG circuit – Ising cage-net

The processes for adding single cubes and a row of cubes are building blocks for
the full RG circuit that adds a full plane to the cage-net state. Similar to the case of
the doubled-Ising, we first need to initialize the added plane into proper eigenstates
of the non-local logical operators before adding the local structures of cubic cages
(plaquettes in the case of doubled-Ising).

A commuting set of logical operators of the Ising cage-net ground space can be
chosen to be generated by the string-operators of 𝜓, 𝜓̄ planons in each 𝜇𝜈 plane
along the 𝜇 and 𝜈 directions respectively. We can choose the original cage-net state
(before adding the plane) to be an eigenstate of all such logical operators. The added
𝑥𝑦 plane can be initialized into an eigenstate of 𝜓𝑥 , 𝜓𝑦, 𝜓̄𝑥 and 𝜓̄𝑦 on that plane. The
circuit described in the last section on how to add cubic cages and plaquette terms
to the wave-function does not affect these nonlocal logical operators. Therefore,
the resulting cage-net state after the RG circuit remains an eigenstate of all the 𝜓, 𝜓̄
logical operators.

But the choice of the eigenvalue for the 𝜓, 𝜓̄ logical operators is not arbitrary as the
operators are related to each other and hence their eigenvalues are constrained. In
Chapter 2, we study carefully the relations among these operators, which allowed us
to derive the ground state degeneracy of the Ising cage-net model. The relations are
listed below. For derivation, see the discussion in Sec. 2.7. For {𝜇, 𝜈, 𝜆} = {𝑥, 𝑦, 𝑧}∏

𝑖

(
𝜓𝜓̄

)𝜇
𝜇𝜆

(𝜈 = 𝑖)
∏
𝑗

(
𝜓𝜓̄

)𝜈
𝜈𝜆

(𝜇 = 𝑖) = 1

𝑟𝜇𝜈 (𝜆 = 𝑖)𝑟𝜇𝜈 (𝜆 = 𝑖) = 1,∀𝑖,∀{𝜇, 𝜈}
𝑟𝜇𝜈 (𝜆 = 𝑖)𝑟𝜇𝜈 (𝜆 = 𝑖 + 1) = 1,∀𝑖,∀{𝜇, 𝜈} (3.19)

where 𝑟𝜇𝜈 = 1
2

(
1 + 𝜓𝜇𝜇𝜈 + 𝜓𝜈𝜇𝜈 − 𝜓

𝜇
𝜇𝜈𝜓

𝜈
𝜇𝜈

)
, 𝑟𝜇𝜈 = 1

2

(
1 + 𝜓̄𝜇𝜇𝜈 + 𝜓̄𝜈𝜇𝜈 − 𝜓̄

𝜇
𝜇𝜈𝜓̄

𝜈
𝜇𝜈

)
. As

we started from a ground state of the cage-net model, the original set of 𝜓, 𝜓̄
operators satisfy the relations in Eq. (3.19). When we add a new 𝑥𝑦-plane, we need
to make sure that after the new 𝜓𝑥𝑥𝑦, 𝜓

𝑦
𝑥𝑦, 𝜓̄𝑥𝑥𝑦, 𝜓̄

𝑦
𝑥𝑦 operators are added to the original

set, the total set still satisfy the relations in Eq. (3.19). This can be guaranteed when
the added string-operators satisfy

𝜓𝑥𝑥𝑦𝜓̄
𝑥
𝑥𝑦 = 1, 𝜓𝑦𝑥𝑦𝜓̄

𝑦
𝑥𝑦 = 1 (3.20)

𝑟𝑥𝑦 = 𝑟𝑥𝑦 = ±1 (3.21)
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The choice of ±1 in the last relation depends on whether 𝑟𝑥𝑦 (𝑧 = 𝑖) = 1 or −1 in the
original set. Compared to the eigenstates listed in Appendix 2.10, |ΨD.I.

min⟩1, |ΨD.I.
min⟩5,

|ΨD.I.
min⟩9 satisfy the relations in Eq. (3.20) and 𝑟𝑥𝑦 = 1 while |𝜓𝜓̄D.I.

min⟩ satisfies the
relations in Eq. (3.20) and 𝑟𝑥𝑦 = −1. Therefore, we can initialize the added layer
into one of these states.

Figure 3.13: Inserting an 𝑥𝑦-plane into the original cage-net lattice. Each red ball
represents an octahedron. The new principal edges are shown in blue.

In particular, consider the added 𝑥𝑦-plane in Fig. 3.13. Each red ball represents an
octahedron. The added DOF are initially set to be either in state |0⟩ (on edges of the
octahedron) or |00⟩ (on principal edges). Now initialize the trivalent lattice in the
𝑥𝑦-plane into one of |ΨD.I.

min⟩1, |ΨD.I.
min⟩5, |ΨD.I.

min⟩9 and |𝜓𝜓̄D.I.
min⟩ following the procedure

described in Fig. 3.6. This linear depth process set up the stage for the next step of
the RG circuit: adding cage structures to the cubes.

Now we can use the procedure described in the last section to add cage structures
to the cubes. As shown in Fig. 3.14, on top of the minimal structure set up in the
initialization step (red lines), cage structures are added to the cubes in the 1st row,
the 2nd row, ... the (𝐿𝑦 − 1)th row in each step. In the last row, cage structures
are added to the cube in the 1st column, 2nd column, ..., (𝐿𝑥 − 1)th column in each
step. No action is required in the last cube. This process has depth ∼ (𝐿𝑥 + 𝐿𝑦) and
completes the addition of a new layer into the cage-net wave-function.

3.5 Relating condensation and linear-depth circuits via gapped boundaries
General discussion
In Sec. 3.3, we discussed the RG process in terms of condensation of planons. In
Sec. 3.4, we discussed the RG process in terms of a linear depth circuit. In this
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Figure 3.14: Adding cage structures to the cubes in step 2 of the RG circuit for the
cage-net state. The red lines indicate the minimal lattice state determined by the
initialization step. Cage structures are added to the cubes in the 1st row, the 2nd
row, ... the (𝐿𝑦 − 1)th row in each step. In the last row, cage structures are added
to the cube in the 1st column, 2nd column, ..., (𝐿𝑥 − 1)th column in each step. No
action is required in the last cube.

section, we show that these two are closely related to each other by understanding
each in terms of gapped boundaries.

We first consider a gapped boundary between a 2D topological order and vacuum.
If an excitation moves from the bulk to the boundary, it may become trivial in the
sense that it can be destroyed by a local operator on the boundary. This phenomenon
is referred to as condensation at the boundary. On the other hand, some excitations
remain non-trivial as they approach the boundary. These phenomena can be charac-
terized precisely in a category-theoretic language [89–92]; in the abelian case, this
amounts to specifying a maximal subset of bosons that can simultaneously condense
at the boundary [93–96]. It is believed the universality class of a gapped boundary
is fully determined by its category-theoretic characterization.

The above discussion allows us to define distinct types of anyon condensation (to
vacuum) in a precise way, as distinct types of gapped boundaries (to vacuum). Such
a definition is natural if we view the vacuum as a condensate of certain anyons in the
2D topological order. For instance, creating a puddle of anyon condensate within
the bulk 2D topological order amounts to creating a puddle of trivial state (vacuum)
separated from the bulk by a gapped boundary. This discussion, and the definition
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of anyon condensation in terms of gapped boundaries, can be generalized to gapped
boundaries between arbitrary 2D topological orders.

In the context of generalized foliated RG, we consider condensation of planons.
Condensation of a single planon can similarly be associated with – and defined in
terms of – certain gapped boundaries between two fracton orders, with the property
that the boundary should be transparent to mobile excitations away from the selected
plane where the condensation occurs. It will be an interesting problem for future
work to fully characterize those boundaries between fracton phases that correspond
to planon condensation. We note that there has been some related prior work
discussing gapped boundaries of fracton models in terms of condensation [97, 98].

It turns out that the kind of linear-depth circuits considered here can also be asso-
ciated with a type of gapped boundary. A linear depth circuit has the general form
U =

∏𝐾
ℓ=1𝑈ℓ where each layer 𝑈ℓ consists of a number of local unitary gates with

non-overlapping support, and the number of layers 𝐾 is proportional to the linear
system size 𝐿. In general, 𝑈ℓ can contain gates acting across the entire system.
However, for the circuits we employed for RG, each layer 𝑈ℓ only contains gates
acting in a lower dimensional subsystem of the entire system, such as the rows
in Figs. 3.7 and 3.14. Such circuits are much more restrictive than generic dense
linear-depth circuits, particularly because they preserve the area law when acting on
a state. We call this class of circuits sequential circuits.

Again we first focus on the 2D case, where as we have discussed, sequential circuits
can be used to generate topologically ordered ground states from an initial product
state (the topological “vacuum”). In order to avoid complications associated with
periodic boundary conditions, we make a simplification as compared to the circuits
discussed in Sec. 3.4; namely, we work with an infinite system and consider circuits
that generate a disc of 2D topological order from vacuum. If desired, the size of
the disc can later be taken to infinity. This allows us to drop the initialization step,
whose role is to take care of the non-trivial ground state degeneracy on a 2-torus.
We can also drop the final linear-depth sequence of gates needed to stitch two gapped
boundaries together in a manner consistent with periodic boundary conditions.

With these simplifications, the circuits operate in the following way. We slice the
2D space into 1D concentric circles surrounding the center of the disc, and order
these subspaces according to their radial coordinate. The ℓth layer of the circuit is
assumed to be supported near (but not entirely within) the ℓth circle. After applying
some number of layers of the circuit, one is left with a disc of topological order
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which has a gapped boundary to the vacuum region which has not yet been acted on
by the circuit. Then, the next layer in the circuit acts only within the vicinity of the
one-dimensional gapped boundary between the topological order and the vacuum.
The action of the unitary in this layer is to “grow” the topological order by a small
amount, pushing the gapped boundary further into the vacuum region. Continuing
in this way allows one to grow the topologically ordered region arbitrarily.

Based on the above, given a sequential circuit, we can associate the universality class
of the gapped boundary to vacuum which emerges when the circuit is truncated at
some radius. This association is well-defined in the following sense. We can define
a truncation of the circuit Ū =

∑𝐾0
ℓ=1𝑈ℓ where 𝐾0 < 𝐾 . This will create a disc of

topological order with a particular gapped boundary to vacuum. Now, consider a
different truncation Ū′ =

∑𝐾0
ℓ=1𝑉ℓ where each 𝑉ℓ again consists of non-overlapping

gates such that 𝑉ℓ = 𝑈ℓ for ℓ sufficiently less than 𝐾0, but the layers near the
boundary may differ. By definition, the two truncated circuits differ only by a finite-
depth circuit near the boundary. But a 1D finite depth circuit cannot change the
universality class of the gapped boundary, i.e. it cannot change the set of anyons
which can condense on the boundary. So the gapped boundary type is independent
of how the sequential circuit is truncated. We note this conclusion only holds for
truncations that are compatible with the 1D layer structure of concentric circles; the
key property is that the truncation only cuts through a finite number of 1D layers,
which is bounded above as the size of the disc increases.

We emphasize that this discussion can be generalized to gapped boundaries between
two different 2D topological orders. That is, given two topological orders referred
to as A and B that admit a gapped boundary, an A-ground-state can be converted
into a B-ground-state by applying a sequential circuit. Or, if we apply a truncated
version of the same sequential circuit, we can create a puddle of B within the bulk
topological order A, separated by a gapped boundary whose universality class does
not depend on how the circuit is truncated.

In formulating the generalized foliated RG in terms of quantum circuits, we apply
sequential circuits within 2D layers of a 3D fracton model. Truncating such a
sequential circuit (along its 1D layer structure) results in a gapped boundary between
two different fracton orders, where some of the mobile excitations may condense
along the layer where the circuit is applied. This is how we described planon
condensation above, and thus we propose that planon condensation and applying
2D sequential circuits are different ways to realize the same operation in generalized
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foliated RG.

Condensation in the Ising cage-net circuit
In accordance with the above discussion, we now identify the type of gapped bound-
ary that is associated with the sequential circuits used to create Ising cage-net model.
To accomplish this, we are going to apply the circuit only to a finite disc-shaped
region within a plane; we will not take the limit that the size of the disc goes to in-
finity. Inside the region, we get the fracton order as expected. Outside of the region,
the added degrees of freedom remain unentangled. There is a gapped boundary
between the two sides. We show that the gapped boundary and the region outside
can be obtained by condensing bosonic planons starting from a complete fractonic
state.

s-loop

i

i− 1

i 1

p

p′

Figure 3.15: Condensation of the 𝜓𝜓̄ and the𝜎𝜎̄ fluxons on the smooth boundary of
the doubled-Ising model. The vertex details are omitted. The dashed lines represent
the unentangled edges. An open ended fluxon string-operator is constructed from
a loop of 𝑠-string that passes through the lattice plane vertically at a plaquette. If
the plaquette (for example, the one labeled 𝑝) lies within the doubled-Ising region,
it creates a fluxon excitation. If the plaquette (for example, the one labeled 𝑝′)
falls outside the string-net region, then no excitation is generated. Thus, all fluxons
condense on the smooth boundary. For computational details on the condensation,
see Appendix 2.10.

First, let’s see how a similar relation works in the doubled-Ising string-net state.
We imagine a very large disc of string-net state, and we ignore the curvature of the
disc’s boundary to simplify the following discussion. Recall that in the RG circuit,
the plaquettes are added row by row. Suppose that we stop the process at row 𝑖.
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The boundary between row 𝑖 and row 𝑖 + 1 is a smooth boundary on the lattice. As
the Hamiltonian terms remain commuting throughout the process, the boundary is
gapped.

The gapped boundary can be induced by the condensation of ‘fluxon excitations’[77]
𝜓𝜓̄ and 𝜎𝜎̄ on the boundary and beyond. To see that, consider a string-operator of
the form shown in Fig. 3.15, which consists of a string segment above the lattice,
a parallel segment under the lattice and the two are connected by segments that
vertically go through the lattice plane. Note that, while embedded in the 3D space,
the string-operator is a closed loop, from the 2D perspective, it ends at the locations
where the string goes through the lattice plane and can create excitations at those
points. In particular, such string-operators in general violate the plaquette term at
their ends, as the plaquette terms correspond to a loop operator that links with the
string-operator and the linking generates nontrivial action. Therefore, in the bulk of
the string-net state, the string-operator generates ‘fluxon excitations’ at its ends. In
the doubled-Ising model, there are two string-operators of this type, corresponding
respectively to a loop of string type 1 and a loop of string type 2. The two string-
operators generate the 𝜓𝜓̄ and 𝜎𝜎̄ excitations, respectively. If the string-operator
ends (goes vertically through the lattice plane) outside of the smooth boundary
(Fig. 3.15), there are no more plaquette terms to violate and the string-operator does
not generate any excitations. Detailed calculations can be found in Appendix 2.10.
Therefore, the 𝜓𝜓̄ and 𝜎𝜎̄ excitations condense on the boundary and beyond, thus
demonstrating the connection between anyon condensation and the linear depth
circuit for the doubled-Ising string-net state.

The situation is very similar in the Ising cage-net model. The RG circuit is again
implemented row by row in a sequential manner. Suppose that we stop the process
at row 𝑖, there will be a gapped boundary between row 𝑖 and row 𝑖 + 1. As shown
in Fig. 3.16, like for the string-nets, a vertical loop operator that goes through the
lattice plane at two points generates planon excitations 𝜓𝜓̄ and 𝜎𝜎̄ in the bulk of
the cage-net state (in rows 𝑗 ≤ 𝑖). Beyond row 𝑖, however, it does not generate
any excitations and hence the 𝜓𝜓̄ and 𝜎𝜎̄ are condensed. This agrees with the RG
procedure driven by condensation described in Sec. 3.3. Therefore, the process of
sequential application in the linear depth circuit can be interpreted as moving the
boundary between the cage-net state and the condensed state, hence enlarging or
shrinking the fracton order in the plane.
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s-loop𝒙𝒚

i

i 1

p

p′

Figure 3.16: Condensation of the 𝜓𝜓̄ and the 𝜎𝜎̄ fluxon excitations in the half
𝑥𝑦-plane (shown in blue) in the Ising cage-net. If the end of the the fluxon string
operator falls within the Ising cage-net region (for example at the plaquette 𝑝), a
fluxon excitation is created. If the end falls outside of the Ising cage-net region (for
example at the plaquette 𝑝′), then no excitation is generated. Therefore, both 𝜓𝜓̄
and 𝜎𝜎̄ planons condense on the boundary.

3.6 Appendix A: controlled gate details
In this Appendix, we present the details of the graphical definition of𝐺𝑠

𝑝, its inverse,
the commutation relations, and the proof for the central equation. See Appendix 2.9
for a condensed review of the string-net models.
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Graphical definition
We perform the graphical calculation that leads to the last line in Eq. (3.6). We
compute

Gs
p

∣∣∣∣∣
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= · · · (repeat similar steps across the subsequent vertices around the plaquette)
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(3.22)

Isometric property
We now show that 𝐺𝑠

𝑝 is an isometry. That is, 𝐺𝑠
𝑝
†𝐺𝑠

𝑝 equals identity on the input
space, which we called VSN

𝑝,𝑠 in section 3.4.

Graphically, 𝐺𝑠
𝑝
† removes a string of 𝑠 from the edges of the plaquette when the

controlled edge is in the state |𝑠⟩. Let us denote the matrix elements of 𝐺𝑠
𝑝 by

[𝐺𝑠
𝑝]

(𝑠,𝛼,𝛽,𝛾,𝛿,𝜀,𝜂,𝜏)
(𝑠′,ℓ∗1 ,𝑎,ℓ2,𝑏,ℓ3,𝑐,ℓ4)

(ℓ1, ℓ̄1, ℓ̄2,
¯̄ℓ2, ℓ̄3,

¯̄ℓ3, ℓ̄4, ℓ4)

= 𝛿𝑠𝑠′𝐹
ℓ1ℓ

∗
10

𝑠𝑠∗𝛼 𝐹
ℓ̄1𝑎ℓ1
𝑠𝛼∗𝛽 𝐹

ℓ̄2ℓ2𝑎
∗

𝑠𝛽∗𝛾 𝐹
¯̄ℓ2𝑏ℓ∗2
𝑠𝛾∗𝛿 𝐹

ℓ̄3ℓ3𝑏
∗

𝑠𝛿∗𝜀 𝐹
¯̄ℓ3𝑐ℓ∗3
𝑠𝜀∗𝜂 𝐹

ℓ̄4ℓ4𝑐
∗

𝑠𝜂∗𝜏 .

(3.23)
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Then, 𝐺𝑠
𝑝
† has an algebraic expression of

𝐺𝑠
𝑝
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〉
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(3.24)

Using the orthogonality relation Eq. (2.46), we find
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p
†Gs
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thereby establishing 𝐺𝑠
𝑝 as an isometry. Hence, 𝐺 𝑝 =

∑
𝑠 𝐺

𝑠
𝑝 is also an isometry.

Commutation relations
The commutation relations of the 𝐺𝑠

𝑝 operators immediately follow from the graph-
ical definition. Any two 𝐺𝑠

𝑝 and 𝐺𝑠′
𝑝′ commute, provided that they do not act on

each other’s controlled edge. When 𝑝 and 𝑝′ are the same plaquette, 𝐺𝑠
𝑝 and 𝐺𝑠′

𝑝

commute trivially, because they act on orthogonal spaces with the control edge in
|𝑠⟩ and |𝑠′⟩ respectively. If the plaquettes 𝑝 and 𝑝′ are not next to each other, 𝐺𝑠

𝑝

and 𝐺𝑠′
𝑝′ obviously commute. When 𝑝 and 𝑝′ are adjacent, the proof of commuta-

tion amounts to showing the order, in which the string 𝑠 and 𝑠′ are fused into the
bordering edges, does not matter.



91

Consider 𝐺𝑠
𝑝 and 𝐺𝑠′

𝑝′ acting on two adjacent plaquettes 𝑝 and 𝑝′. We focus on
the bordering edges of these two plaquettes. We will show that the 𝐹-symbols
associated with the two diagrams (the thickened red arrows indicate the direction of
motion of the 𝑠- and 𝑠′-strings),

s′

s

1st 2nd

p′

p

and

s′

s

2nd 1st

p′

p

are equal. The left diagram corresponds to computing 𝐺𝑠
𝑝𝐺

𝑠′
𝑝′ on a reference ket-

vector, and the right diagram corresponds to 𝐺𝑠′
𝑝′𝐺

𝑠
𝑝.

In the case where 𝑠′ moves first, we find
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In the case where 𝑠 moves first, we have
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(3.27)

For each fixed 𝑞, we want to show that the coefficients, i.e. free sums over 𝜌, in
Eq. (3.26) and Eq. (3.27) are equal. To do this, we consider an alternative way of
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moving the strings 𝑠 and 𝑠′. We will show that this alternative expression can be
simplified, via the pentagon equation, to produce either Eq. (3.26) or Eq. (3.27).
The alternative expression is obtained by moving both 𝑠 and 𝑠′ to the central edge,

����� s′
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𝑑 𝛼
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,

where, for each 𝑞, the coefficient of the alternative expression is

𝐶coef.(𝑞) =
∑︁
𝜂′,𝛽

𝐹𝑏
∗𝑐𝑎

𝑠′𝜀′∗𝜂′𝐹
𝑑𝑐∗𝑒∗

𝑠𝛼∗𝛽 𝐹
𝑠𝛽∗𝑐∗

𝑠′𝜂′∗𝑞𝐹
𝛼∗𝑑𝛽
𝑠′𝑞∗𝜏′𝐹

𝜀′∗𝑏∗𝜂′
𝑠𝑞𝛾 . (3.28)

Manipulating the 𝐹-symbols via the tetrahedral symmetry Eq. (2.44) and performing
the above sum over either 𝜂′ or 𝛽 via the pentagon equation Eq. (2.45), we obtain

∑︁
𝜌

𝐹𝑏
∗𝑐𝑎

𝑠′𝜀′∗𝜌𝐹
𝑒∗𝑑𝑐∗
𝑠′𝜌∗𝜏′𝐹

𝜏′𝜌∗𝑒∗

𝑠𝛼∗𝑞∗ 𝐹
𝜀′∗𝑏∗𝜌
𝑠𝑞𝛾 if sum over 𝛽,∑︁

𝜌

𝐹𝑑𝑐
∗𝑒∗

𝑠𝛼∗𝜌 𝐹
𝑎𝑏∗𝑐
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𝛾𝜌∗𝑎
𝑠′𝜀′∗𝑞𝐹

𝛼∗𝑑𝜌
𝑠′𝑞∗𝜏′ if sum over 𝜂′,

(3.29)

which are exactly the coefficients in Eq. (3.26) and Eq. (3.27) for fixed 𝑞. Hence,
the order, in which the strings 𝑠 and 𝑠′ are fused into the bordering edges does not
matter. That is, [𝐺𝑠

𝑝, 𝐺
𝑠′
𝑝′] = 0, as long as they do not act on each other’s controlled

edge. The proofs for the remaining commutation relations in Eq. (3.9) and Eq. (3.10)
are similar.
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The central equation
Let us prove the central equation on a triangular plaquette. The proof on any
polygon-shaped plaquette is similar. With the graphical definitions, we find
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∗𝑎
𝑐ℓ∗10

) �����
ℓ2

ℓ3ℓ1

ℓ∗1 ℓ3

γ

〉

=𝛿𝑐𝑐′
(
𝐹
ℓ2𝑎

∗𝑏
𝑐ℓ3ℓ1

𝐹
ℓ1𝑐

∗𝑎
𝑐ℓ∗10

) ∑︁
𝛼

𝐹
ℓ∗1ℓ10
𝛾∗𝛾𝛼∗

�����
ℓ2

ℓ3ℓ1

𝛼
ℓ∗1 ℓ3

γ

〉

=𝛿𝑐𝑐′
∑︁
𝛼,𝛽

𝐹
ℓ2𝑎

∗𝑏
𝑐ℓ3ℓ1

𝐹
ℓ1𝑐

∗𝑎
𝑐ℓ∗10 𝐹

ℓ∗1ℓ10
𝛾∗𝛾𝛼∗𝐹

ℓ2ℓ3ℓ1
𝛾𝛼∗𝛽

�����
ℓ2

ℓ3ℓ1
γ

𝛼 𝛽

〉
, (3.30)

Now, it remains to show that the coefficient for every basis ket-vector (i.e. fixing
𝛼 and 𝛽) is the same as that of

∑
𝑘 𝑃

𝛾
ct

(
𝑑𝑘
𝑑𝛾𝑑𝑐

𝐵𝑘𝑝

)
𝑃𝑐ct. To do this, first, let us write

the pentagon equation Eq. (2.45) in a different form via the tetrahedral symmetry
Eq. (2.44)

𝐹
𝑖 𝑗 𝑝

𝑘𝑞∗𝑟𝐹
𝑖𝑞∗𝑟
ℓ∗𝑠𝑚 =

∑︁
𝑛

𝐹
𝑟 𝑗∗𝑘∗

𝑛ℓ𝑠∗ 𝐹
𝑖𝑝 𝑗
𝑛𝑠𝑚𝐹

𝑞∗𝑘 𝑝∗

𝑛𝑚∗ℓ∗
𝑑𝑛𝑑𝑟√︁
𝑑𝑘𝑑𝑠𝑑 𝑗𝑑ℓ

. (3.31)
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Focusing on the 𝐹-symbols of Eq. (3.30), we find

𝐹
ℓ2𝑎

∗𝑏
𝑐ℓ3ℓ1

𝐹
ℓ1𝑐

∗𝑎
𝑐ℓ∗10 𝐹

ℓ∗1ℓ10
𝛾∗𝛾𝛼∗𝐹

ℓ2ℓ3ℓ1
𝛾𝛼∗𝛽

=

√︄
𝑑𝛼

𝑑ℓ1𝑑𝛾

√︄
𝑑𝑎

𝑑ℓ1𝑑𝑐
𝐹
ℓ2𝑎

∗𝑏
𝑐ℓ3ℓ1

𝐹
ℓ2ℓ3ℓ1
𝛾𝛼∗𝛽

=
∑︁
𝑘

𝑑𝑘

𝑑𝛾𝑑𝑐
𝐹
ℓ1𝑎𝑐

∗

𝑘𝛾∗𝛼 𝐹
ℓ2𝑏𝑎

∗

𝑘𝛼∗𝛽 𝐹
ℓ3𝑐𝑏

∗

𝑘𝛽∗𝛾 ,

(3.32)

The first equality follows from the normalization of 𝐹-symbols in Eq. (2.43), and
we have used Eq. (3.31) in the second equality to get the last line. The last line is
exactly the coefficient of

∑
𝑘 𝑃

𝛾
ct

(
𝑑𝑘
𝑑𝛾𝑑𝑐

𝐵𝑘𝑝

)
𝑃𝑐ct on the same ket-vector. Hence, we

have proven the central equation on the triangular plaquette.

3.7 Appendix B: anyon condensation on a lattice
In this section, we briefly review the lattice realization of anyon condensation as
discussed in Ref. [73, 99, 100]. Specifically, we review condensation of abelian
bosonic anyons through two examples: condensation of 𝜓𝜓̄ in the doubled-Ising
string-net and condensation of 𝑒 or 𝑚 in the toric code model. For a comprehensive
review, we refer the reader to Ref. [87] and references therein.

Condensation of 𝜓𝜓̄ in doubled-Ising
After condensing the abelian boson 𝜓𝜓̄ in the doubled-Ising string-net, the resultant
system has a topological order that is the same as the toric code.[89] For the lattice
model, the condensation is achieved as follows [73, 99].

First, we couple the doubled-Ising Hamiltonian with the shortest open-ended string-
operator of 𝜓𝜓̄. That is, we add the operator𝑊𝜓𝜓̄

𝑙
for every edge 𝑙 as

𝐻D.I. − 𝐽
∑︁
𝑙

𝑊
𝜓𝜓̄

𝑙
, (3.33)

where 𝐻D.I. is string-net Hamiltonian for the doubled-Ising theory, 𝐽 > 0 is a
real parameter controlling the strength of the coupling, and 𝑊𝜓𝜓̄

𝑙
= (−1)𝑛1 (𝑙) with

𝑛1(𝑙) = 1 if 𝑙 is in the state |1⟩ and 𝑛1(𝑙) = 0 otherwise (see Section 2.10 for a
derivation). 𝑊𝜓𝜓̄

𝑙
creates a pair of 𝜓𝜓̄ excitations, each at a plaquette bordering 𝑙

(see Fig. 2.1).

Next, we energetically favor the creation of 𝜓𝜓̄ excitations by increasing 𝐽. The
system is then driven across a phase transition. The ground state of the resultant
phase is a condensate of 𝜓𝜓̄ excitations.
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To see the𝜓𝜓̄-condensed phase has the topological order of the toric code, let us take
the 𝐽 → +∞ limit. The coupling term𝑊

𝜓𝜓̄

𝑙
imposes energy costs for every edge in

the state |1⟩. Taking the limit essentially removes every string-net configuration that
contains a 1-string. Treating 𝐻D.I. as a perturbation, we find a commuting projector
Hamiltonian

𝐻 = −
∑︁
𝑣

𝑃𝑄𝑣𝑃 −
∑︁
𝑝

1
2

(
𝐵0
𝑝 + 𝐵2

𝑝

)
, (3.34)

where 𝑃 =
∏
𝑙

1
2

(
I +𝑊𝜓𝜓̄

𝑙

)
is the projector onto the Hilbert space of the condensed

phase. This Hamiltonian is exactly that of the toric code [68].

Condensation of 𝑒 or 𝑚 in toric code
Condensing either the 𝑒 or the 𝑚 boson in the toric code model leads to the trivial
phase without any topological order. On the lattice level, this is analyzed extensively
in Ref. [100]. Here, we quickly review the results of Ref. [100].

Let us start by considering the condensation of the 𝑒 excitations. The condensation
can be induced by coupling the toric code Hamiltonian (see Eq. (3.2)) with𝑊 𝑒

𝑙
= 𝑋𝑙 ,

the shortest open-ended string-operator of 𝑒. That is, we consider the Hamiltonian

𝐻T.C. − 𝐽
∑︁
𝑙

𝑊 𝑒
𝑙 . (3.35)

To see the condensed phase has the trivial topological order, we again take the
𝐽 → +∞ limit. We see that the ground state is a product state given by ⊗𝑙 |+⟩𝑙 ,
where |+⟩ = 1√

2
( |0⟩ + |1⟩) is the +1 eigenstate of 𝑋 . Hence, no topological order.

Similarly, for the condensation of 𝑚 excitations, we consider the Hamiltonian

𝐻T.C. − 𝐽
∑︁
𝑙

𝑊𝑚
𝑙 , (3.36)

where𝑊𝑚
𝑙
= 𝑍𝑙 . At the 𝐽 → +∞ limit deep inside the condensed phase, we find the

ground state is again a product state given by ⊗𝑙 |0⟩𝑙 .
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C h a p t e r 4

CONSTRUCTION OF FRACTONS FROM GAUGING
COMPOSITE SUBSYSTEM SYMMETRIES

In the generalized foliation scheme, a fracton model of different sizes are related
via sub-dimensional sequential linear-depth circuits, or from the perspective of
excitations, via condensation of planons, to reach a model of a smaller size, and
“uncondensation" of them i.e. gauging, to reach a larger size. This naturally induces
an equivalence relation for fracton orders: fracton models are in the same generalized
foliated fracton order if they can be transformed into each other via a circuit, which
is a finite-depth of sequential linear-depth circuits acting near sub-dimensional
manifolds (recall Fig. 1.6), or via the equivalent planon condensation process. In
this Chapter, we show that the Ising cage-net can be obtained by decorating the
X-cube model with the Ising anyons via gauging composite subsystem symmetries,
which has an equivalent picture as condensation of planons (Sec. 4.7). Therefore,
the Ising cage-net and the X-cube model belong to the same generalized foliated
fracton order. Moreover, we discover a new Type-I non-abelian fracton model whose
fractons are non-abelian with quantum dimensions of (

√
2)3 (Sec. 4.5). We call this

model the tri-Ising-fracton model.

4.1 Overview of gauging composite symmetry
In gauge theories of global symmetries, it is well understood that if we start with
two independent global symmetries and condense the composite of the two gauge
charges, their corresponding fluxes bind together to remain deconfined in the con-
densate. Consider, for example, two 2D planes, each with a global Z2 symmetry,
as shown in Fig. 4.1. When the planes are coupled to Z2 gauge fields separately,
they each have a Z2 gauge charge (𝑒1 and 𝑒2) and a corresponding Z2 flux (𝑚1 and
𝑚2). If, instead, only the composite global symmetry is gauged (the two planes
are coupled to the same gauge field), the composite of the two symmetry charges
𝑒1𝑒2 is no longer a symmetry charge. In the gauge theory, this corresponds to the
condensation of the gauge charge pair. As a result, individual gauge fluxes become
confined, while the flux pair remains deconfined, meaning that 𝑚1, and 𝑚2 always
appear together. Such a mechanism is, of course, well understood and plays a vital
role in, for example, coupled layer construction of 3D models such as the 3D toric
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code and twisted gauge theories.

condensed

combine

Figure 4.1: Gauging two planes with Z2 global symmetries. (a): gauging the two
layers separately. We have two copies of the Z2 gauge theory with planon charges 𝑒𝑖
and planon fluxes 𝑚𝑖. (b): gauging the combined symmetry of the two planes. The
gauge fluxes 𝑚1 and 𝑚2 now bind together, becoming a new planon flux. Individual
charge 𝑒1 or 𝑒2 remains deconfined planon excitations while the charge pair 𝑒1𝑒2 is
condensed.

Figure 4.2: Gauging correspondence for planar subsystem symmetries. (a) planon
charge (red, transforming under one planar symmetry) and the corresponding planon
flux (blue); (b) lineon charge (transforming under two planar symmetries) and
the corresponding lineon flux; (c) fracton charge (transforming under three planar
symmetries) and the corresponding lineon fluxes.

What happens if we have subsystem symmetries instead of global 0-form symme-
tries? For simplicity, we will focus on planar symmetries in 3D systems in this paper.
There are several possibilities. First, the symmetry charges can be planons, lineons,
fractons, which are point excitations that move in 2D, 1D, and 0D submanifolds
in the system. The planons, lineons, and fractons transform under one, two, and
three sets of (intersecting) planar symmetries, respectively, as shown in Fig. 4.2.
When the symmetries are gauged, the corresponding gauge flux of a planon charge
is a planon in the same plane; the gauge flux of a lineon charge is a lineon along
the same line; the gauge fluxes of a fracton charge are lineons in 𝑥, 𝑦, 𝑧 directions
that fuse into identity, as shown in Fig. 4.2. This set of correspondence was shown
explicitly in Ref. [32]. When we combine the subsystem symmetries of different
charges, there are several potential outcomes. One possibility is when we have
charges of the same type, and all their overlapping planar symmetry generators are
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respectively combined to give the new symmetries. For example, given two fracton
charges, we can combine their planar symmetries in 𝑥𝑦, 𝑦𝑧, 𝑧𝑥 planes, respectively.
If separately gauged, the two charges correspond to the same type of flux, and it is
natural to expect that when such a combined symmetry is gauged, the two fluxes
bind together to give the new flux with the same mobility. The second possibility
is a composite symmetry combination, which happens when we have charges of
potentially different types such that not all of their planar symmetry generators can
or are one-to-one combined. For example, we may have a fracton charge with planar
symmetry in 𝑥𝑦, 𝑦𝑧, and 𝑧𝑥 planes and a planon charge in the 𝑥𝑦 plane, and their
𝑥𝑦 planar symmetries are combined. If gauged separately, the fracton charge corre-
sponds to lineon fluxes in 𝑥, 𝑦, and 𝑧 directions, while the planar charge corresponds
to planar flux in the 𝑥𝑦 plane. When the combined symmetry is gauged, what is the
new flux like? Do the original 𝑥, 𝑦, 𝑧 lineon, and 𝑥𝑦 planon fluxes bind into new
lineon fluxes, planon fluxes, or fracton fluxes?

We address this problem in the following sections. We find that the way the original
fluxes bind to give the new fluxes depends not only on the mobility of the original
fluxes and the plane where symmetries are combined but also sensitively on how the
symmetries are combined exactly. In particular, we are going to show in section 4.2,
two examples, both of which start with one set of fracton charges and three sets
of planon charges in 𝑥𝑦, 𝑦𝑧, 𝑧𝑥 planes, and the three sets of planar symmetries
of the fracton charge are respectively combined with the planar symmetries of the
planon charges. However, the way the original lineon fluxes and planon fluxes bind
together to give the new fluxes are very different. In Model FP1, two original planon
fluxes from intersecting planes attach to an original lineon flux along the intersection
line to give a new lineon flux. In Model FP2, the lineon flux disappears, and the
lineon dipole binds with an original planon flux to give a new planon flux. We
obtain this result by solving the gauge theory lattice model. Can we arrive at the
result without doing lattice level calculation? In section 4.3, we use the principle of
“remote detectability": For fractional (charge) excitations, there exist operators that
detect their existence at a large distance; for non-fractional (charge) excitations, no
operator can detect their existence at a large distance. Applying this principle to the
subsystem symmetry cases we are interested in, we can see directly why Models FP1
and FP2 work differently, as described above. This understanding is helpful because
we can design models where subsystem symmetry fluxes are bound to planon fluxes
in specific ways and acquire nontrivial statistics or non-abelian features through the
process. We discuss in section 4.4, how lineon and fracton fluxes can be decorated in
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this way, reproducing nontrivial fracton order like semionic X-cube, Ising cage-net,
etc. In section 4.5, we construct new fracton models. We establish the connection
between this gauging approach and the cage-net construction in section 4.6.

4.2 Fracton + planon: two examples Model FP1 and Model FP2
In this section, we present examples of ‘gauging composite symmetry’ and demon-
strate the phenomenon of flux binding. We present two classes of models, Model
FP1 and Model FP2. The construction of these models uses a fracton-charge system
and stacks of planon-charge systems. The former is associated with Z2 fracton
charges transforming under 𝑥𝑦, 𝑦𝑧, and 𝑧𝑥 planar symmetries, and the latter is
associated with Z2 planon charges that transform under the planar symmetries of
the layers in the stacks. We consider the stacks of planon-charge systems along
three directions, i.e., the 𝑥𝑦, 𝑦𝑧, and 𝑧𝑥 planes. Thus, in both the fracton-charge
and planon-charge systems, we have a planar symmetry associated with each lattice
plane. We now consider a symmetry of the combined system generated by products
of planar symmetries of the fracton-charge system and the planon-charge system.
In particular, in each 𝑥𝑦 plane, the planar Z2 symmetry associated with the fracton
charge is combined with the 𝑥𝑦 planar Z2 symmetry associated with the 𝑥𝑦 planons
to yield a symmetry generator of the combined system. The symmetry generators
in the 𝑦𝑧 and 𝑧𝑥 planes are defined similarly for the combined system. We refer to
this symmetry of the combined system as the composite symmetry. This general
description of the composite symmetry holds for both Model FP1 and Model FP2.
However, as we will see below, the exact structures of the planar-charge system and
the planar symmetry are different for Model FP1 and Model FP2. This leads to a
difference in the gauge fluxes of Model FP1 and Model FP2.

For both examples, we start from the paramagnetic product state where all matter
qubits are in the |+⟩ = 1√

2
( |0⟩ + |1⟩) state. Our goal is to study the exact solvable

model obtained by gauging the composite symmetry [25, 32] and compare it to
the models obtained by gauging the individual symmetries of the fracton-charge
and planon-charge systems separately; in particular, we observe how the fluxes of
the model obtained by gauging the composite symmetry are a composite of the
fluxes of the decoupled gauged models. For instance, gauging the fracton-charge
system alone gives a model with lineon fluxes, while gauging the planon-charge
system alone gives planon fluxes. In Model FP1 obtained by gauging the composite
symmetry, the lineon flux of the gauged fracton charge system binds with two planon
fluxes of the gauged planon charge system to form a new lineon flux. In Model FP2
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obtained by gauging the composite symmetry of a different nature, each lineon flux
gets confined, but a lineon dipole binds with a planon flux to form a new planon
flux.

Below, we first illustrate the procedure of gauging the composite symmetry with
a simple example. In particular, we consider a 2D bilayer Ising paramagnet, such
that two global planar symmetries of the two layers can be combined into a planar
composite symmetry (see Fig. 4.1) and gauged. Following that, we discuss Model
FP1 and Model FP2.

Warm-up: Bilayer Planon Model

“on-site” symmetry term

(a) (b)

Figure 4.3: Bilayer Planon model. (a): from left to right, the “on-site" symmetry
term 𝑋

(1)
𝑣 𝑋

(2)
𝑣 ; the minimal coupling terms and the flux termsC (1) ,C (2) andE. The

E-type flux term does not contribute to superselection sectors because its excitation
can be converted into C-type excitations on either the top or the bottom plane by the
action of a Pauli-𝑋 operator, e.g. 𝛽𝑥(1) . Hence, we can set E𝑝 = I. (b): Consider the
product of fourE terms. The same product is equal to that ofC (1)

𝑝 andC (2)
𝑝 . Hence,

these two C terms must be simultaneously excited since E𝑝 = I. Notice that the
C terms are exactly the original flux terms had we gauged the planes individually.
Constructing the string operator, we find that the original fluxes must bind together
to remain deconfined.

We consider a 2D bilayer Ising system, consisting of two layers of 2D Ising para-
magnets, each with a Z2 on-site global symmetry

∏
𝑣 𝑋

(1|2)
𝑣 where 1 and 2 are the

layer indices. On gauging the planar symmetry of each layer individually, the min-
imal couplings are intralayer 2-qubit terms, which we denote as 𝛽. The resulting
pure gauge theory is just two decoupled copies of the 2D Toric Code, with the
Hamiltonian,

𝐻 = −
∑︁

ℓ∈{1,2}

∑︁
𝑝∈𝑃ℓ

C (ℓ)
𝑝 − (charge terms). (4.1)

where ℓ is a layer index, 𝑃ℓ denotes the plaquettes in each layer and C denote the
4-qubit flux terms of 𝛽 gauge qubits around a plaquette; see Fig. 4.3(a). Here, we
write only the flux terms in notation form, as our goal is to demonstrate flux binding.
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We are now interested in gauging the composite symmetry
∏
𝑣 𝑋

(1)
𝑣 𝑋

(2)
𝑣 of the

bilayer system. For this composite symmetry, we again have the 2-qubit intralayer
minimal couplings in each plane; we denote these as 𝛽. However, there is now
an additional 2-body coupling that acts on one qubit on the bottom layer and one
qubit on the top layer; we label these as 𝛼. For gauging, we add the corresponding
𝛽 and 𝛼 gauge qubits on the edges defining the minimal couplings. We get the
aforementioned C-flux terms from the 𝛽 minimal couplings. Due to the additional
minimal coupling, a new flux term arises, a 4-qubit term acting on two 𝛼 gauge
qubits and two 𝛽 gauge qubits; we dub these the E-flux terms.

We integrate out the original matter qubits, i.e., by setting their states to |+⟩ in this
case, to obtain a pure gauge theory. This pure gauge theory has one vertex term
per matter spin and two kinds of flux terms C and E, see (a) of Fig. 4.3. The
Hamiltonian is given by

𝐻 = −
∑︁

ℓ∈{1,2}

∑︁
𝑝∈𝑃ℓ

C (ℓ)
𝑝 −

∑︁
𝑝′

E𝑝′ − (charge terms), (4.2)

where 𝑃ℓ stands for the planes and 𝑝′ denotes plaquettes connecting the two layers.
As mentioned, the C-type flux terms are also the flux terms obtained from gauging
the individual symmetries of the layers. In contrast, the E flux terms are purely due
to the gauging of the composite symmetry1.

We now observe that the flux in the model given by Eq. 4.1 is a composite of
the original fluxes. We see this through a relation between the original fluxes and
new fluxes. We consider an excitation of a single E𝑝 flux; by applying a Pauli X
operator, we can convert this single E𝑝 excitation to either a pair of C (1)

𝑝 or a pair
of C (2)

𝑝 excitations (see Fig. 4.3(a)). Hence, the E terms do not contribute to the
superselection sectors. In other words, this equivalence allows us to set the E-type
fluxes equal to the identity (E𝑝 = I), so the new E-type fluxes give rise to a relation
between the C-type fluxes: the product of a pair of C-type fluxes with one flux in
each plane is equivalent to a product of four E-type fluxes around the side faces of a
cube; see Fig. 4.3(b). If E𝑝 = I, the two C-type flux terms must be simultaneously
excited, as the product of the two C fluxes must have eigenvalue +1. In this sense,

1In our examples, we’ll use a choice of gauge fields that also produces the original flux terms;
this is a particular choice that is of interest to us because we want to see the relation between the
new and original fluxes from the decoupled theories. One could gauge the composite symmetry
differently so the original fluxes no longer appear.
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the two C planon fluxes bind together to give the planon flux of the model with
gauged composite symmetry2.

Fracton+Planon: Model FP1

(a)

“on-site”
symmetry term

(b)

Figure 4.4: Model FP1. (a): lattice setup. We consider a 3D Ising paramagnet with
planar subsystem symmetries on a cubic lattice with the qubits living on the vertices
(red spheres). For the stacks of the 2D Ising paramagnet systems (indicated by the
planes) with 2D global symmetry, we place the qubits (green disks) at the centers
of the edges. (b): the sandwiched structure of the composite symmetry in Eq. (4.3).

We now introduce our first nontrivial example. As mentioned above, the model is
built by combining a fracton-charge system and planon-charge systems and gauging
a symmetry of the integrated system generated by composite planar symmetries.
Below we show that the gauge theory obtained from gauging the composite sym-
metry has a lineon flux composed of planon and lineon fluxes from the decoupled
gauge theories.

We consider a cubic lattice where the matter qubits of a classical Ising model
live on the vertices as shown in (a) of Fig. 4.4. We call this the fracton-charge
system due to the symmetries we consider for this model. The fracton-charge
system has planar subsystem symmetries given by

∏
𝑣∈𝑃𝜇

𝑖𝜇
𝑋𝑣 for every plane 𝑃𝜇

𝑖𝜇

with 𝜇 ∈ {𝑥, 𝑦, 𝑧} and 𝑖𝜇 being the position index of the plane. We then insert
three stacks of Ising paramagnets (planon-charge systems) such that their qubits are
located on the edges. Each planon-charge system has a 2D global symmetry given
by

∏
𝜌∈𝑃𝜇

(𝑖𝜇 ,𝑖𝜇+1)
𝑋𝜌 where (𝑖𝜇, 𝑖𝜇 + 1) indicates the edges on which the qubits of the

planon-charge systems live. We gauge the composite subsystem symmetry whose
generators as shown in Fig. 4.4 (b) are given by

S𝜇

𝑖𝜇
=

∏
𝜌∈𝑃𝜇

(𝑖𝜇 ,𝑖𝜇+1)

∏
𝑣∈𝑃𝜇

𝑖𝜇

∏
𝜌′∈𝑃𝜇

(𝑖𝜇−1,𝑖𝜇 )

𝑋𝜌𝑋𝑣𝑋𝜌′ . (4.3)

2This binding can be verified by explicitly writing the string operators for the fluxes.
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Recall each symmetry generator is a “sandwich" involving 2 planon-charge symme-
try generators and 1 fracton-charge symmetry generator. Hence taking the product
of all symmetry generators orthogonal to a given axis should leave only the prod-
uct of all fracton symmetry generators orthogonal to that axis. Hence we notice a
relation among the symmetry generators of this model.∏

𝑖𝑥

S𝑥𝑖𝑦 =
∏
𝑖𝑦

S𝑥𝑖𝑦 =
∏
𝑖𝑧

S𝑥𝑖𝑧 (4.4)

We note that this composite symmetry group for Model FP1 is isomorphic to the
symmetry group of the undecorated plaquette Ising model.

(a) (b) (c)

Figure 4.5: Model FP1: the minimal coupling terms. (a): A 3-qubit minimal
coupling term of S𝜇

𝑖𝜇
. We add a Z2 gauge qubit to the edge connecting the three

matter qubits; we label this gauge qubit as 𝛼 corresponding to the 𝛼-coupling. The
charges associated with the 𝛼-coupling are the ‘composite condensate’ of this model.
It requires a planon charge to fuse with a fracton dipole into the topological vacuum.
(b): A 2-qubit minimal coupling term of S𝜇

𝑖𝜇
. The 𝛽 gauge qubit lives on the edge

shown by the dashed line. Apart from a directional label, 𝛽 has a plane label in
the square brackets. We suppress the position index of the plane. The 𝛽’s are also
the original minimal coupling terms for the planon-charge systems. (c): A 4-qubit
minimal coupling term of the fracton-charge system. 𝛾, however, is not a minimal
coupling term for S𝜇

𝑖𝜇
.

We consider three types of coupling terms associated withS𝜇

𝑖𝜇
. There are the 3-qubit

coupling terms (red and green qubits shown in Fig. 4.5(a)), which we label as 𝛼.
There are the 2-qubit coupling terms (green qubits shown in Fig. 4.5(b)), which
we label as 𝛽. Lastly, there are the 4-qubit coupling terms (red qubits shown in
Fig. 4.5(c)), which we label as 𝛾. Even though the 𝛾 couplings are generated by
the 𝛼 and 𝛽 coupling terms, we consider them in our gauging process since we
are interested in demonstrating how the fluxes from decoupled gauged models bind
together and form fluxes for the model obtained by gauging the composite symmetry.
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(a) (b) (c) (d)

Figure 4.6: Model FP1: The three types of flux terms: C𝜇
𝑝 , 𝚪𝜇𝑝, and E

[𝜇] (𝜈)
𝑝 . (a) &

(b): A C 𝑧
𝑝 flux term and a 𝚪𝑧𝑝 flux term. They are those of the 2D planon-charge

and the 3D fracton-charge systems respectively. (c) & (d): there are two kinds of
E-type flux terms on the face of a cube of the cubic lattice. Drawn here are (c)
E

[𝑧] (𝑦)
𝑝 and (d) E [𝑧] (𝑥)

𝑝 on the same face 𝑝.

To gauge the composite symmetry, we add a gauge qubit for each type of coupling
term [25, 32] as shown in Fig. 4.5. We label the gauge qubits as 𝛼, 𝛽, and 𝛾

corresponding to the minimal couplings they are associated with. Following the
gauging procedure, we obtain the Hamiltonian for Model FP1 as 3,

𝐻𝐹𝑃1 = −
∑︁
𝜇,{𝑖𝜇}

( ∑︁
𝑝∈𝑃𝜇

𝑖𝜇

𝚪𝜇𝑝+
∑︁

𝑝∈𝑃𝜇

(𝑖𝜇 ,𝑖𝜇+1)

C
𝜇
𝑝 +

∑︁
𝜈,𝑝∈𝑃𝜇

𝑖𝜇

E
[𝜇] (𝜈)
𝑝

)
−(charge terms). (4.6)

Here, the C-type flux terms are the original fluxes of the planon-charge systems,
and the 𝚪-type flux terms are the original flux terms of the fracton-charge system.
The E-type flux terms are the new flux terms that arise in the model obtained from
gauging composite symmetries. Similar to the bilayer model, we observe that the
E terms do not contribute to the superselection sectors. For an excitation of the
E-type flux term i.e., E [𝜇] (𝜈)

𝑝 = −1, we can act a Pauli 𝑋 operator to turn it into two
C-type fluxes with the two corresponding C terms having the eigenvalue of −1.
Hence, we can set all E [𝜇] (𝜈)

𝑝 = I. This gives a relation between the 𝚪 and the C

terms. The product of four E terms around the side faces of a cube must be identity,
but the product is also equal to the product of a 𝚪 and a C flux terms; see Fig. 4.7.

3As mentioned earlier in footnote 1, this is a particular choice of gauging of interest to us. We
can make a different choice of gauging such that the fluxes of the gauged Hamiltonian 𝐻𝐴 come
from only the 𝛼 and 𝛽 couplings as

𝐻𝐴 = −
∑︁

𝜇,{𝑖𝜇 }

( ∑︁
𝑝∈𝑃𝜇

(𝑖𝜇 ,𝑖𝜇+1)

C
𝜇
𝑝 +

∑︁
𝑝∈𝑃𝜇

𝑖𝜇

B
𝜇
𝑝

)
− (𝛼, 𝛽 charge terms), (4.5)

where B𝜇
𝑝 = E

[𝜇] (𝜈)
𝑝 ×E

[𝜇] (𝜌)
𝑝 is the product of two E terms on the same plaquette 𝑝.
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The lineon string operator that satisfies this set of relations and the trivial E-flux
condition is described in Fig. 4.7. We observe that the string operator is the product
of a lineon flux string operator from the fracton-charge system, together with two
planon flux string operators from two intersecting planon-charge systems. Thus, we
conclude that the new lineon flux is the composite of a lineon flux and two planon
fluxes from the decoupled models, respectively.

Figure 4.7: Model FP1: one of the relations between the original flux terms. The
remaining relations can be obtained by rotations. LHS: the relation is the product of
the four E-type flux terms as shown, two E

[𝑦] (𝑥)
𝑝 ’s and two E

[𝑥] (𝑦)
𝑝 ’s. RHS: the C-

type and 𝚪-type flux terms also have a relation. Right: Model FP1: the new lineon
string operator for a 𝑦-mobile lineon. The locations of the new lineon excitations are
indicated by the pink cubes. From this string operator, we see clearly that the new
lineon is a composite of the original lineon flux together with two original planon
fluxes from perpendicular planes.

Fracton+Planon: Model FP2
We present another nontrivial example of a model obtained from gauging composite
symmetry. The underlying models consist of the same fracton-charge systems and
the planon-charge systems as considered for Model FP1. However, the planon-
charge systems are laid out such that the matter qubits live on the vertices; thus
the nature of the composite symmetry is different. Below we show that the gauge
theory obtained from gauging the composite symmetry has only planon fluxes; each
is a composite of a planon flux and a lineon dipole flux from the decoupled gauged
theories.

Similar to Model FP1, we have the fracton-charge system with matter qubits on the
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vertices. We insert the three stacks of planon-charge systems into the cubic lattice,
as shown in Fig. 4.8(a). The plaquettes of the planon-charge systems (not drawn)
coincide with those of the cubic lattice. Each vertex hosts four matter qubits, one (the
red sphere) from the fracton-charge system and three (the green disks) from three
mutually intersecting planon-charge systems. We gauge the composite symmetry
whose generators are given by

S𝜇

𝑖𝜇
=

∏
𝑣∈𝑃𝜇

𝑖𝜇

𝑋𝑣, 𝑓 𝑋𝑣,𝜇, (4.7)

where 𝑓 denotes the matter qubit belonging to the fracton-charge system and 𝜇

denotes the matter qubit belonging to the planon charge system in the plane with
direction 𝑖𝜇. We note that the composite symmetry group of Model FP2 is isomor-
phic to that of 3 decoupled stacks of planon symmetry generators with no global
relation.

(a) (b) (c)

Figure 4.8: Model FP2. (a): lattice setup. Same as in Model FP1, we place the
matter qubits of the fracton-charge system on the vertices. The stacks of planon-
charge systems are arranged such that their qubits also live on the vertices. The
plaquettes of the planon-charge systems coincide with those of the cubic lattice.
(b): the original minimal coupling terms. The 2-qubit 𝛽-coupling terms are also
minimal coupling for the composite symmetry Eq. (4.7). (c): the new minimal
coupling term as a result of gauging the composite symmetry.

The couplings associated with the composite symmetry are the 2-qubit 𝛽-coupling
terms, the 4-qubit 𝛾-coupling terms, and the 2-qubit 𝛼-coupling terms as shown
in Fig. 4.8. We add gauge qubits for each coupling term. Following the gauging
procedure, we obtain the Hamiltonian for Model FP2 as

𝐻𝐹𝑃2 = −
∑︁
𝜇,{𝑖𝜇}

( ∑︁
𝑝∈𝑃𝜇

𝑖𝜇

𝚪𝜇𝑝 +
∑︁
𝑝∈𝑃𝜇

𝑖𝜇

C
𝜇
𝑝 +

∑︁
𝜈,𝑝∈𝑃𝜇

𝑖𝜇

E
[𝜇] (𝜈)
𝑝

)
− (charge terms). (4.8)

The fluxes consist of the original flux terms of the decoupled models, i.e., the C-
type and 𝚪-type flux terms similar to Model FP1. But we also have the new E-type
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(a) (b) (c)

Figure 4.9: Model FP2. (a): One of the E-type flux terms (E𝑝). The other E-type
flux terms are plaquettes of the same form in the other 2 spatial planes. (b): One
of the relations between the original flux terms. The remaining relations can be
obtained by rotations. LHS: the relation is the product of the four E-type flux
terms as shown, two E

[𝑦] (𝑥)
𝑝 ’s and two E

[𝑥] (𝑦)
𝑝 ’s. RHS: the C-type and 𝚪-type flux

terms also have a relation. (c): The new planon string operator for a 𝑧-plane mobile
planon. We indicate the locations of the new planon excitations by the pink cubes.
Notice that this string operator is exactly the product of an original 𝑧-plane planon
flux string operator and an original 𝑧-plane lineon dipole flux string operator.

flux terms, Fig. 4.9, that arise from gauging the composite symmetry. Similar to
the bilayer Model and Model FP1, we observe that the E terms do not contribute
to the superselection sectors. In fact, on setting E

[𝜇]
𝑝 to Identity, we get a relation

between the C and the 𝚪 flux terms. The corresponding gauge flux is a planon
composed of a planon flux from the planon-charge system and a lineon dipole flux
from the fracton-charge system; see the string operator for this combined gauge flux
in Fig. 4.9.

We note that Model FP2 is equivalent to stacks of 2D toric codes. To see this, we
recall that the gauge charges in Model FP2 consist of one fracton and three planons
(in the 𝑥𝑦, 𝑦𝑧, 𝑧𝑥 directions). We write this charge basis as { 𝑓 , 𝑝𝑥𝑦, 𝑝𝑦𝑧, 𝑝𝑧𝑥}. The
new minimal coupling (see Fig. 4.8(c)) corresponding to the composite symmetry
is a product of the four elements of the charge basis. Hence 𝑓 × 𝑝𝑥𝑦 × 𝑝𝑦𝑧 × 𝑝𝑧𝑥 = 1,
which implies that 𝑝𝑥𝑦 × 𝑝𝑦𝑧 × 𝑝𝑧𝑥 = 𝑓 . This suggests that the charge basis
is not independent, as the planon charges ({𝑝𝑥𝑦, 𝑝𝑦𝑧, 𝑝𝑧𝑥}) generate the fracton
charge ( 𝑓 ). Thus, we can choose an independent charge basis consisting of only
planons ({𝑝𝑥𝑦, 𝑝𝑦𝑧, 𝑝𝑧𝑥}). For each basis planon, we can apply an entanglement
renormalization circuit to extract a toric code layer [101, 102], leading to the result
that Model FP2 is just a stack of 2D toric codes. Thus, we see that different patterns
of flux binding, due to gauging different composite symmetries, result in different
topological orders.
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4.3 Flux binding via Remote Detectability
In the previous section, we saw through exactly solvable stabilizer models how the
lineon fluxes of a fracton charge bind with the planon fluxes of planon charges when
some composite planar symmetries of the fracton and planon charges are gauged.
In this section, we arrive at the same result without solving the lattice models. In
particular, we will use the principle of “remote detectability” to deduce how the old
fluxes bind together to form new fluxes. This argument does not rely on the Model
FP2 being a stabilizer or even exactly solvable and can be applied generally. We
will apply the resulting insight to reproduce some interesting fracton models and
construct new ones with nontrivial features in the next section.

The principle of “remote detectability” says: fractional excitations can be detected
with some ‘remote’ unitary operators which act only at a large distance from the ex-
citation; non-fractional excitations, on the other hand, cannot be detected remotely.

We apply this principle to fractional charge excitations in a gauge theory and deduce
the corresponding form of the gauge flux4. In particular, knowing the form of the
gauge charge, we can deduce the form of the remote detection operator. Truncating
the remote detection operator then exposes the shape and mobility of the gauge
flux excitation. We illustrate this line of argument using models with 2D global
symmetry and 3D planar subsystem symmetries. Moreover, if we start with two
independent systems but only keep some of their composite symmetries, certain local
composites of the symmetry charges will no longer carry nontrivial charges. When
the composite symmetries are gauged, remote detection operators that detect such
local composites no longer give rise to deconfined flux excitations once truncated.
We will see how this mechanism leads to the binding of individual fluxes when
composite symmetries are gauged.

Flux excitations from truncating remote detection operators
Consider first a 2D system with global Z2 symmetry. A single charged particle
carries a nontrivial symmetry charge while a charge pair does not. After coupling to
the gauge field, the remote defection operator, therefore, should be able to detect a
single charge but not a pair. This can be achieved, of course, with a loop integration
of an electric field that intersects and anti-commutes with the Wilson line connecting
to the single charge when it is created, as shown in Fig. 4.10(c). When the loop-

4Although remote detection operators do not necessarily act as pure 𝑈 (1) phases (in the case
of non-abelian anyons with degeneracies), in this paper we only consider systems in which remote
detection operators act as𝑈 (1) phases on the excited states.
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shaped remote detection operator is truncated, it leaves two endpoints (Fig. 4.10(d)),
which correspond to a pair of point flux excitations that can move along the loop
operator that twists and turns freely on the 2D plane. The flux excitations are hence
planons.

In a 3D model with planar Z2 symmetry in each 𝑥𝑦, 𝑦𝑧, and 𝑧𝑥 plane and one charge
at each triple intersection point of three perpendicular planes, local symmetric
processes create a minimum of four charges at a time (Fig. 4.11 (a)). The remote
detection operator should be able to detect not only single charges but also charge
pairs remotely. This is achieved with the wireframe operator in Fig. 4.11 (b). When
the wireframe encloses a single charge, it intersects and anti-commutes with the
Wilson ‘membrane’ that extends from the single charge and detects its existence.
The same configuration can be used to detect charge pairs. For example, to detect
the vertical pair of charges on the left in Fig. 4.11 (c), we can use a wireframe
operator such that half of the charge pair is ‘inside’ the wireframe while the other
half is outside. Although the two charges in the pair can be very close to each other,
this is still a ‘remote’ detection method because the wireframe operator only acts
along the edges of the cube area it encloses and never gets close to either of the
charges. Truncating the wireframe operator exposes point flux excitations that move
along rigid wireframe edge directions (Fig. 4.10(d)). The flux excitations are hence
lineons, and lineons in the 𝑥, 𝑦, and 𝑧 directions fuse into the vacuum.

To determine the principle of truncation of remote detection (RD) operators, we find
and slice the RD operators of a 2D model with global symmetry and a 3D system
with planar symmetry and fracton charge (the ingredient models in our construction
of sample models with a gauged composite symmetry). We first consider the 2D
system, whose remote detection operator is a loop consisting of products of charge
operators shown in Fig. 4.10(a). To determine the exact product of charge operators
needed to create the RD loop, we refer to Fig. 4.10(b). The operator depicted in this
figure detects charge excitations within the bulk in the ungauged theory; if there is an
odd number of violations (eigenvalue -1) within this membrane of Pauli 𝑋 operators,
the operator is measured to be −1 (hence it can detect violations). Thus adding the
gauge fields associated with each qubit in Fig. 4.10(b) should give the gauged RD
operator (see Fig. 4.10(c)). An equivalent method of determining the particular
form of the RD operator is to note what product of charge operators annihilates all
gauge fields in the bulk and leaves gauge fields only at the region’s boundary over
which the product of terms is taken. Using this, one can see that a product of charge
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terms in a closed loop satisfies this exact condition; hence the charge RD operator
for a 2D system with global symmetry is a loop operator. This loop RD operator
can detect individual anyon charges within the loop by anti-commuting with the
excitation creation operator (see Fig. 4.10(d)). Truncating this loop RD operator
(see Fig. 4.10(e)) reveals a single anyon (violation of 𝑍 plaquette stabilizer) at each
endpoint; we conclude that the flux excitations of the 2D system are anyons. The
same analysis can be done for a general 3D model with planar symmetry and a
fracton charge.

Figure 4.10: 2D model with global symmetry. (a): Minimal couplings and gauge
symmetry operator. Qubits (green disks) live on vertices, and gauge fields (purple
edges) are assigned to edges. (b): Operator that detects charges within the bulk
(in the ungauged theory). (c): Remote detection operator capable of detecting
excitations within the loop (shown in orange). This RD operator is formed by taking
products of gauge symmetry operators such that the gauge fields in the bulk cancel
out. (d): Loop RD operator detecting anyon charge via anticommutation between
the loop and string creation operator. (e): Truncated remote detection operator.
The excitations at the boundary of the truncation possess the same mobility as flux
excitations.

Looking at the 3D model, the charge terms are given by cube operators (violations
of which are fractons) shown in Fig. 4.11(a). Similar to the 2D model, we can see
that in the ungauged theory, to detect a single violation of a Pauli 𝑋 operator inside
a finite volume, we take the product of Pauli 𝑋’s at the body centers within the
cubic volume (see Fig. 4.11(b)). Adding in the gauge fields according to the cubic
charge operator, we see that the gauged RD operator is a cubic wireframe with gauge
fields along the edges (see Fig. 4.11(c)). This wireframe detects fracton charges by
anti-commuting with the membrane creation operator (see Fig. 4.11(d)). Truncating
this RD operator (see Fig. 4.11(e)) shows that the excitations at the endpoints of the
wireframe are lineons, i.e., the violations of the 𝑍 vertex terms of the 3D system.
Additionally, note that since the endpoints of the truncated RD operator are lineons,
RD operators can also be viewed as operators that move the flux excitations in a
closed path far from the charge.
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Figure 4.11: 3D model with planar symmetries and fracton charge. (a): Minimal
couplings and gauge symmetry operator. Qubits (red spheres) live at body centers,
and gauge fields (cyan spheres) are assigned to edges. (b): Operator that detects
charges within the bulk (in the ungauged theory). (c): Remote detection operator
capable of detecting excitations within the wireframe (shown in blue). This RD
operator is formed by taking products of gauge symmetry operators such that the
gauge fields in the bulk cancel out. (d): Wireframe RD operator detecting fracton
charge via anticommutation between wireframe and membrane creation operator.
This operator detects a fracton dipole in 2 steps: it first detects one fracton and
then is moved to detect the second fracton in the dipole. (e): Truncated remote
detection operator. The excitations at the boundary of the truncation possess the
same mobility as flux excitations.

Figure 4.12: Model FP1. (a): The new 3-body minimal coupling due to gauging
the composite symmetry. (b): Remote detection operator capable of detecting
excitations within the decorated wireframe (shown in black). This RD operator
is formed by taking gauge symmetry operators’ products such that the bulk gauge
fields cancel out. (c): The RD operator cannot detect the new minimal coupling;
hence it is not a fractional excitation. (d): Truncated remote detection operator.
The excitations at the boundary of the truncation possess the same mobility as flux
excitations.

Remote detection in Model FP1
Now we will use the remote detection principle to see how the fluxes bind in Model
FP1. Recall that in Model FP1, we had fracton charges at lattice sites of a cube lattice
and planon charges on three sets of planes cutting through edges of the cube lattices.
If the fracton-charge system is gauged alone, the remote detection operators are in
the shape of a wire-frame, and correspondingly, the flux excitations are lineons, as



112

Figure 4.13: Model FP2. (a): The new 3-body minimal coupling due to gauging
the composite symmetry. (b): Remote detection operator capable of detecting
excitations within the decorated wireframe (shown in black). This RD operator
is formed by taking gauge symmetry operators’ products such that the bulk gauge
fields cancel out. (c): The RD operator cannot detect the new minimal coupling;
hence it is not a fractional excitation. (d): Truncated remote detection operator.
The excitations at the boundary of the truncation possess the same mobility as flux
excitations.

discussed above. If the planon-charge system is gauged alone, the remote detection
operators are loops, and correspondingly the flux excitations are planons. If some
composite symmetry is gauged, the lineon and planon fluxes must bind together.
In particular, according to how the planar symmetries are combined in Model FP1,
there is a new type of minimal coupling term containing both the fracton and the
planon charges as shown in Fig. 4.12 (a). The wire-frame and loop remote detection
operator would each detect the existence of such a term so we need to combine them
in a way that this three-body term is not detected by any remote detection operator as
it corresponds to a trivial superselection sector. This can be achieved with a remote
detection operator, as shown in Fig. 4.12(b), where the loop operators are attached
to the six surfaces of the wire-frame operator.

The new operator still takes the shape of a wire-frame. We can check that 1.
individual fracton charges and fracton dipoles can still be detected if properly placed
inside the decorated wire-frame operator; 2. individual planon charges can still be
detected if placed on the surface of the decorated wire-frame operator; 3. the new
three-body minimal coupling cannot be detected by any of the decorated wire-frame
operators, whether the minimal coupling is entirely inside the operator or partially
outside as shown in Fig. 4.12(c). From this operator, we can then determine the
form of the new flux excitation. Since the operator still takes the shape of a wire-
frame, we can see from its truncation that the flux excitations are still lineons. This
conclusion is consistent with that obtained in section 4.2 but applies more generally.
In particular, the argument we use in this section is independent of the symmetric
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state of the fracton and planon charges, so it works even when they form some
nontrivial symmetry-protected topological state.

Remote detection in Model FP2
A similar argument can be applied to Model FP2. We will see how the difference
in the composite symmetry results in a different binding of fluxes compared to
Model FP1, such that the new fluxes are planons instead of lineons. In Model FP2,
the fracton charges are still at the lattice sites of a cubic lattice, while the planon
charges lie on the 𝑥𝑦, 𝑦𝑧, and 𝑧𝑥 planes of the cubic lattice. The planar symmetries
are combined so that there is a new type of minimal coupling term containing the
fracton charge and three planon charges at the same lattice site, as shown in Fig. 4.13
(a). To not detect this term, we need to combine the wire-frame operator with all
the loop operators that wind around the wire-frame in a particular direction. For
example, Fig. 4.13 (b) shows one such operator with the wire-frame bound to loop
operators in the 𝑥𝑦 plane. There are two other types of operators with loops in the
𝑦𝑧 and 𝑧𝑥 planes, respectively.

We can check that: 1. individual fracton charges and fracton dipoles can still be
detected if properly placed inside the decorated wire-frame operator; 2. individual
planon charges can still be detected if placed inside the wire-frame operator with
loop operators in the same plane; 3. the new four-body minimal coupling cannot
be detected by any of the new remote detection operators as shown in Fig. 4.13
(c). Truncating the remote detection operator exposes the new flux excitations. The
operator is not a wire-frame anymore but instead takes the shape of a ribbon loop.
When the ribbon is thin, the endpoints of the truncated operator are point excitations
that move in planes. Therefore, the elementary flux excitations are planons in 𝑥𝑦,
𝑦𝑧, and 𝑧𝑥 planes, respectively. Again, this result is derived independent of the
symmetric state formed by the fractons and planons.

4.4 Decoration of sub-dimensional excitations
The flux-binding result derived in section 4.3 allows us to construct interesting frac-
ton models by binding lineons / fractons with planons, thereby passing the non-trivial
statistics or non-abelian internal structure of the planons onto the lineons or fractons.
We discuss the decoration of lineon excitations and fracton excitations. In partic-
ular, we demonstrate how some of the cage-net models discussed in Ref. [42] can
be obtained by gauging the subsystem symmetry of an SSPT (subsystem symmetry
protected topological) model.
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Decoration of lineons
To construct the models with the decoration of lineon flux superselection sectors,
we follow the construction of Model FP1 (Sec. 4.2) but use the 2D symmetry-
protected topological phases (SPT) or symmetry-enriched topological orders (SET)
with Z2 planar symmetry as the planon-charge systems (see Fig. 4.14). We recall
that in Model FP1, the new gauge flux is a composite of the original lineon flux
of the fracton-charge system and two planon fluxes from orthogonal planon-charge
systems. Below, we consider examples where we replace the 2D Ising paramagnet
on the ungauged side by the 2D Levin-Gu SPT with global Z2 symmetry or the 2D
toric code with global 𝑒 ↔ 𝑚 anyon-swap symmetry. We obtain decorated lineon
superselection sectors with nontrivial statistics or non-abelian fusion rules in these
cases.

Figure 4.14: The general setup for Model FP1. We have a fracton-charge system
(red spheres) and 2D planon-charge systems (colored planes). The green, blue,
and red planes represent the planon-charge system, which are in some potentially
non-trivial SPT or SET states.

• Example of Model FP1 with decorated lineons that have nontrivial statistics
We consider an example of Model FP1 where we introduce nontrivial Z2

SPTs as the planon-charge systems. In particular, we can use the Levin-Gu
SPTs [103] as the planon-charge systems. Gauging just the Z2 symmetry
of the Levin-Gu SPT yields the double semion model that has two semionic
fluxes. The flux binding result of Model FP1 implies that upon gauging its
composite symmetry, the two semionic fluxes from two orthogonal double
semion planes must bind with the lineon flux of the fracton-charge system to
yield a lineon flux composite. The resulting 3D model is the 3D semionic
X-cube model [41]. One can show that two lineon fluxes of this model have
mutual statistics of 𝜋 by designing processes analogous to braiding in 2D
topological orders [41].
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• Example of Model FP1 with decorated lineons that have non-abelian fusion
rules
We now discuss an example of Model FP1, where we introduce nontrivial
SETs as the planon-charge systems. For instance, we consider toric code SETs
(enriched by the 𝑒 − 𝑚 swap symmetry) and gauge the composite symmetry
that is a product of this planar swap symmetry and the planar symmetries
of the fracton-charge system. Gauging the swap symmetry alone in the
toric code layer would give the doubled Ising string-net model with non-
abelian fluxes, the Ising anyons 𝜎’s and 𝜎̄’s, each with quantum dimension√

2. On gauging the composite symmetry, the non-abelian Ising anyons from
orthogonal doubled-Ising string-net planes must bind with the lineon flux
of the gauged fracton-charge system to yield a decorated lineon flux that is
non-abelian with quantum dimension 2. The resulting 3D model is the Ising
cage-net model [42].

4.5 Decoration of fractons: Model LP
We now consider a different model of flux binding such that we obtain decorated
fracton superselection sectors. In particular, we consider a class of models obtained
from combining a 3D lineon-charge system with three stacks of 2D planon-charge
systems. Hence, we refer to this class of models as Model LP. The key difference
between Model LP and Model FP1 is that the construction of the former uses a
lineon-charge system, while the latter uses a fracton-charge system instead in its
construction. It is due to this change that the gauged model hosts decorated fracton
flux superselection sectors instead of decorated lineon flux superselection sectors;
the fracton flux is a composite of the original fracton flux with three planon fluxes,
each from a different 2D system.

We demonstrate Model LP’s flux binding of fracton flux with planon fluxes by
considering a 3D Ising paramagnet with planar symmetries as the lineon-charge
system and stacks of 2D models with on-site Z2 planar symmetries as the planar-
charge systems. This lineon-charge system, a 3D Ising paramagnet with planar
symmetries, is “dual” to the fracton-charge system discussed earlier; gauging the
planar systems in either of these, i.e., the lineon-charge system or the fracton-charge
system, yields the X-cube model [32]. The difference in the resulting gauged models
is that in the gauging of the lineon-charge system, the X-cube fracton is the flux
excitation, while in the gauging of the fracton-charge system, the X-cube lineon is
the flux excitation.
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(a) (b) (c)

Figure 4.15: Model LP: lattice setup. We take the 3D lineon-charge system, a
model that is dual to the fracton-charge system [32], on the cubic lattice. The
orange and red spheres represent the qubits. As in Model FP1 (Sec. 4.2), we insert
three stacks of the 2D planon-charge systems bisecting the edges. The green disks
show their qubits. (b) & (c): the minimal coupling terms. (a): all three kinds of the
original minimal coupling terms 𝛾 of the 3D lineon-charge system (inside the dashed
cyan colored loops), and an example of the minimal coupling of the planon-charge
systems 𝛽. (b): the new minimal coupling terms 𝛼 for the composite symmetry are
highlighted by the dashed blue loops. The 𝛽’s and 𝛾’s remain minimal coupling
terms for the composite symmetry.

We put the lineon-charge system on the cubic lattice with two matter qubits per
vertex, the orange and the red spheres in Fig. 4.15. The orange spins transform under
the planar symmetries of the 𝑦- and 𝑥-planes, and the red spins transform under the
𝑧- and 𝑥-planes. These subsystem symmetries are defined by:

∏
𝑣∈𝑃𝑥

𝑖𝑥
𝑋r
𝑣 𝑋

o
𝑣 for the

𝑥-planes;
∏
𝑣∈𝑃𝑦

𝑖𝑦
𝑋o
𝑣 for the 𝑦-planes; and

∏
𝑣∈𝑃𝑧

𝑖𝑧
𝑋r
𝑣 for the 𝑧-planes. We place the

qubits of the planon-charge systems on the edges. We recall that each planon-charge
system has the 2D global symmetry of

∏
𝜌∈𝑃𝜇

(𝑖𝜇 ,𝑖𝜇+1)
𝑋𝜌 where (𝑖𝜇, 𝑖𝜇+1) indicates the

edges on which the qubits of the planon-charge systems live. Like Model FP1, the
composite symmetry we gauge here also has a sandwiched structure. Specifically,
for each direction, we consider the symmetry generators,

S𝑥𝑖𝑥 =
∏

𝜌∈𝑃𝑥
(𝑖𝑥 ,𝑖𝑥+1)

∏
𝑣∈𝑃𝑥

𝑖𝑥

∏
𝜌′∈𝑃𝑥

(𝑖𝑥−1,𝑖𝑥 )

𝑋𝜌𝑋
r
𝑣 𝑋

o
𝑣 𝑋𝜌′ , (4.9)

S𝑦

𝑖𝑦
=

∏
𝜌∈𝑃𝑦

(𝑖𝑦 ,𝑖𝑦+1)

∏
𝑣∈𝑃𝑦

𝑖𝑦

∏
𝜌′∈𝑃𝑦

(𝑖𝑦−1,𝑖𝑦 )

𝑋𝜌𝑋
o
𝑣 𝑋𝜌′ , (4.10)

S𝑧
𝑖𝑧
=

∏
𝜌∈𝑃𝑧

(𝑖𝑧 ,𝑖𝑧+1)

∏
𝑣∈𝑃𝑧

𝑖𝑧

∏
𝜌′∈𝑃𝑧

(𝑖𝑧−1,𝑖𝑧 )

𝑋𝜌𝑋
r
𝑣 𝑋𝜌′ . (4.11)

We illustrate the minimal couplings associated with the original decoupled symme-
tries and the new composite symmetry in Fig. 4.15(b) and Fig. 4.15(c) respectively.
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(a) (b)

Figure 4.16: Model LP: flux binding from remote detection operators. (a): A
new charge remote detection (RD) operator, which is built from the original RD
operators supported on four sides of the cube. The membrane charge RD operator of
the lineon-charge system is drawn in cyan color. The green and purple loops are the
RD operators of the planon-charge system on the 𝑦- and 𝑧-planes, respectively. (b):
cutting the charge RD operator reveals a membrane with fractons (purple cubes) at
the corners and planons (red plaquettes and green and purple edges) along the sides.

We denote the original minimal couplings (for decoupled symmetries) as 𝛽 and 𝛾
while the new minimal couplings (for composite symmetries) as 𝛼. The 𝛼 terms
along different directions 𝑥 |𝑦 |𝑧 are specified by adding a subscript (𝑥) | (𝑦) | (𝑧).

We can determine the flux binding of this model using the principle of Remote
Detectability5. We recall from Sec. 4.3 that the closed local membrane operators
for the new fluxes in the model obtained by gauging the composite symmetry are
the RD operators for the charges. These new RD operators can be constructed using
the original RD operators such that they do not detect the ‘composite condensates’,
i.e., the charges associated with the new minimal couplings that were not present
for decoupled symmetries. For example, consider the RD operator for charges
of the lineon-charge system, drawn in cyan in Fig. 4.16(a). This operator detects
the original 𝑥 and 𝑦 lineons. So, it can also detect our ‘composite condensates’
associated with 𝛼(𝑧) and 𝛼(𝑦) coupling terms. To prevent the detection of 𝛼(𝑧) , we
add two remote detection operators of the planon-charge system on the side planes
(the purple loops). Similarly, for 𝛼(𝑦) , we add two remote detection operators on the
front and back faces, as indicated by the green loops. This yields the required remote
detection operator, as stated earlier. By slicing this closed membrane operator, we
get the creation operator for the new fracton flux, as shown in Fig. 4.16(b). The
excitation created by this sliced membrane operator is our bound flux excitation

5See Section 4.5 for an alternative explanation of flux binding by writing the gauged model and
looking at independent superselection sectors.
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which is a composite of the original fracton fluxes of the gauged lineon-charge
system and three planon fluxes from the gauged planon-charge systems in orthogonal
layers.

Above, we described a particular example of Model LP class to demonstrate the
flux binding that yields decorated fractons. In general, we can consider different
planon-charge systems with globalZ2 symmetry instead of the 2D Ising paramagnet.
The general setup for Model LP is illustrated in Fig. 4.17.

Figure 4.17: The general setup for Model LP. The Model LP consists of a lineon-
charge system and a stack of 2D planon-charge systems. The lineon-charge system
has red and orange qubits on vertices, and the 2D planon-charge systems live on
dual planes, as shown. The composite symmetry generators act on the qubits of the
lineon-charge system and the planon-charge system together.

We now present an example of ModelLP where we use nontrivial SETs as the
planon-charge systems. For instance, we consider 2D toric code SETs (enriched
by the e-m swap symmetry) as planon-charge systems. We gauge the composite
symmetry, each generator of which is a product of the swap symmetries of two
toric code layers and a planar symmetry of the lineon-charge system. As mentioned
earlier, gauging the swap symmetry alone in the toric code layer would give the
doubled Ising string-net model with non-abelian planons; the gauge fluxes are the
Ising anyons 𝜎’s and 𝜎̄’s, each with quantum dimension

√
2. Now, in the case of

gauging the composite symmetry, the fractons in the model obtained from gauging
composite symmetry are decorated with these non-abelian anyons and are, hence,
non-abelian. In particular, three non-abelian planon fluxes decorate the original
fracton flux; hence, this decorated fracton flux has a quantum dimension of (

√
2)3.

This model is similar to that constructed from the Ising anyons in Ref. [39, 57].
However, the non-abelian fracton model obtained here is different from the model
in Ref. [39] where the planons are non-abelian and the model in Ref. [57] where
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the non-abelian fracton has a quantum dimension of
√

2. To give this new model
a name, we call it the tri-Ising-fracton model. We note that it is also possible to
obtain non-abelian fractons from gauging twisted abelian theories as discussed in
Ref. [59].

Model LP: gauged Hamiltonian
We have introduced a lineon-charge system that is the dual of the fracton-charge
system used in Sec. 4.2. Gauging this model yields the X-cube model but now with
the identification of the fracton superselection sectors as fluxes. We added three
stacks of 2D planon charge systems to the model (shown in Fig. 4.15(a)) and gauged
a composite symmetry with generators supported on both models to yield the model
LP with decorated fracton superselection sectors. To illustrate the flux binding that
leads to the decorated fracton superselection sectors, we constructed the remote
detection operator (a membrane operator shown in Fig. 4.16(c)) of the fluxes in the
model with gauged composite symmetry. In this Section, we show the flux binding
by writing the fully gauged Hamiltonian.

(a) (b) (c)

Figure 4.18: Model LP: the E-type flux terms. Drawn here are: (a) the E [𝑧] (𝑥)
𝑝 , and

(b) the E
[𝑧] (𝑦)
𝑝 terms. The remaining E [𝑥] (·)

𝑝 and E
[𝑦] (·)
𝑝 terms are similar. (c): one

of the three relations between the original flux terms, which is the product of a cube
flux term of the lineon-charge system and a plaquette flux term of the planon-charge
system. It is obtained from multiplying the E-type flux terms around the faces of a
cube. The other two relations can be obtained by rotations.

Following the procedure in Sec. 4.2, we add gauge fields to the coupling terms as
shown in (b) and (c) of Fig. 4.15.

𝐻𝐿𝑃 = −
∑︁

𝑥′∈𝑃𝑥
(𝑖𝑥 ,𝑖𝑥+1)

∑︁
𝑦′∈𝑃𝑦

(𝑖𝑦 ,𝑖𝑦+1)

∑︁
𝑧′∈𝑃𝑧

(𝑖𝑧 ,𝑖𝑧+1)

𝚪(𝑥′,𝑦′,𝑧′)

−
∑︁
𝜇,{𝑖𝜇}

( ∑︁
𝑝∈𝑃𝜇

(𝑖𝜇 ,𝑖𝜇+1)

C
𝜇
𝑝 +

∑︁
𝜈,𝑝∈𝑃𝜇

𝑖𝜇

E
[𝜇] (𝜈)
𝑝

)
− (charge terms).

(4.12)
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Figure 4.19: Model LP: the new fracton membrane operator where the fractons are
created at the four corners, the blue cubes. The new fracton flux is a product of three
original planon fluxes from three mutually perpendicular planon-charge systems
together with the original fracton flux from the 3D lineon-charge system.

The 𝚪-type flux terms are the original 12-body cube fluxes of the lineon-charge
system. The C-type flux terms are the original 4-body plaquette fluxes of the
planon-charge system (shown in Fig. 4.6(a)). The E-type flux terms, involving both
the original minimal couplings and the new minimal couplings, are given in (a)
and (b) of Fig. 4.18. Since these E terms do not contribute to the superselection
sectors (since they can be converted to C-type fluxes via a 𝛽𝑥[𝜇] (𝜈) operator), we can
set them to the identity. This yields relations between the original flux terms, e.g.
(c) of Fig. 4.18. The product of 4 E terms around the faces of a cube equals the
identity, but it is also equivalent to the product of a 𝚪 and a C flux term. Using these
constraints, we construct the logical operator for the new flux excitation in Fig. 4.19.
The new flux is also a fracton since it is a composite of an original fracton together
with three original planon fluxes, each from a different 2D system.

4.6 Connection to cage-net fracton models
In Sec. 4.4, we saw that Model FP1 (Sec. 4.2) can give rise to the cage-net fracton
models [41, 42]. The cage-net models are constructed using three stacks of 2D
topological orders and then coupled with particle-loop (p-loop) condensation. Here,
we show how the p-loop condensation can be understood as gauging a composite
symmetry.

Consider two ‘composite condensates’ in the 𝑧-direction, i.e. the charges associated
with the 𝛼(𝑧)-coupling term, Fig. 4.5(a). And two ‘composite condensates’ in the
𝑥-direction. The product of these four terms is equal to four planon charges on the
same face of a cube, Fig. 4.20. If we represent a planon charge by a line orthogonal
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Figure 4.20: Particle-loop (p-loop) condensation in Model FP1. The p-loop, the
orange loop on the RHS, is generated by the ‘composite condensates’ on the LHS.

to its plane, then we get a loop, i.e. the orange loop in Fig. 4.20. This loop is
precisely the p-loop considered in Ref. [41, 42]. Since we constructed this p-loop
through the ‘composite condensates’, it is also condensed. Therefore, gauging the
composite symmetry is the same as condensing the p-loop. We can then regard
Model FP1 as the ungauged version of the cage-net fracton models.

4.7 The models and their generalized foliated fracton orders
The model obtained by gauging the composite symmetry can be equivalently ob-
tained by condensing a composite of gauge charges in the gauged decoupled models.
This composite gauge charge corresponds to the new minimal coupling obtained for
the composite symmetry. We expect that such a condensation can be realized using
a sequential linear-depth circuit. Since we consider only planar symmetries in this
work, such a sequential linear-depth circuit would also be in-plane. In particular,
starting from Model FP1 or FP2, we can obtain the gauged decoupled models by
application of in-plane sequential linear-depth circuits that condense fractional exci-
tations in foliations. The gauged models could, hence, be understood as generalized
foliated fracton models where the notion of generalized foliation is described in
Chapter 3. Thus, in this sense of generalized foliation, our models are equivalent
to the decoupled models6. On the ungauged side, this corresponds to having a
weak subsystem symmetry-protected topological phase (SSPT) [33] if we apply
the notion of generalized foliation in the definition of SSPTs. Thus, we expect the
models obtained by gauging strong SSPTs cannot be obtained using the construction
presented in this work.

6Therefore, for example, the Ising cage-net and the tri-Ising-fracton model are in the same
generalized foliated fracton order as the X-cube.
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