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ABSTRACT

This dissertation consists of three essays on matching theory. The first two essays
examine provide new cooperative solutions for two problems arising within matching
markets in practice. The third contributes a theoretical analysis of the causes and
effects of a market failure within the medical residency match.

Chapter 1 analyzes a matching market in which some agents have made prior com-
mitments to each other. Typically, matching market models ignore prior commit-
ments. I analyze two-sided matching markets with pre-existing binding agreements
between market participants. In this model, a pair of participants bound to each
other by a pre-existing agreement must agree to any action they take. To analyze
their behavior, I propose a new solution concept, the agreeable core, consisting
of the matches which cannot be renegotiated without violating the binding agree-
ments. My main contribution is an algorithm that constructs such a match by a
novel combination of the Deferred Acceptance and Top Trading Cycles algorithms.
The algorithm is robust to various manipulations and has applications to numerous
markets including the resident-to-hospital match, college admissions, school choice,
and labor markets.

In Chapter 2, I turn to the problem of increasing the efficiency of student assignments
in school choice subject to constraints imposed by policymakers. In school choice,
policymakers consolidate a district’s objectives for a school into a priority ordering
over students. They then face a trade-off between respecting these priorities and
assigning students to more-preferred schools. However, because priorities are the
amalgamation of multiple policy goals, some may be more flexible than others.
This paper introduces a model that distinguishes between two types of priority: a
between-group priority that ranks groups of students and must be respected, and a
within-group priority for efficiently allocating seats within each group. The solution
I introduce, the unified core, integrates both types. I provide a two-stage algorithm,
the DA-TTC, that implements the unified core and generalizes both the Deferred
Acceptance and Top Trading Cycles algorithms. This approach provides a method
for improving efficiency in school choice while honoring policymakers’ objectives.

Chapter 3 introduces a a behavioral model of early matching within the context of
the National Resident Matching Program, the system by which graduating medical
students are matched to hospital residency programs. In my model, two hospitals
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compete to match to a continuum of doctors. Each hospital can make early offers
or wait until the match is produced through the matching program. Some doctors
have a behavioral preference to match early while others do not. I show that the
less-desirable hospital benefits from the option to make early offers. My results
provide a theoretical foundation for behavior widely documented within the medical
ethics and graduate medical education literature and confirm beliefs commonly held
by residency program directors.
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C h a p t e r 1

MATCHING WITH PRE-EXISTING BINDING AGREEMENTS:
THE AGREEABLE CORE

1.1 Introduction
In matching markets, pre-existing agreements are common. For example, when a
student is admitted to a college through an Early Decision program, she commits
to attend the college; she is bound to the college, and it now controls her right to
participate in the regular admission cycle. When a professional athlete signs on
to a sports team, that team purchases her right to sign on to other teams. Both
examples include market participants—whether students or athletes—who have
bound themselves to others. They are denied the right to find a new partner unless
they are released from their agreements.

The standard model of matching markets ignores these interdependencies. It gives
participants unrestricted rights to form new agreements, regardless of their earlier
agreements. That is clearly unrealistic.

I propose a new model to solve this problem that makes it possible to analyze
such markets. At bottom, my model requires that any action taken by one person
must receive the approval of the person to whom she is bound. For example, a
professional athlete can only seek another position with the approval of her team.
Without the approval, she faces penalties for breaching her agreement. To manage
these constraints, I introduce the concept of an agreeable group of participants.
A group is agreeable if no member of the group is bound to someone outside of
the group by a pre-existing agreement. In my example, an agreeable group only
contains the athlete if it also contains her team, and vice versa. Critically, neither
the athlete nor the team needs to be released from an agreement by anyone outside
of the group.

My solution, the agreeable core, consists of the outcomes that cannot be renegotiated
by any agreeable group. For a candidate outcome 𝜇, the agreeable core considers
every agreeable group and checks whether the group can achieve a better outcome
for its members. If no such agreeable group exists, then the agreeable core includes
𝜇. In the professional sports example, an agreeable group may contain some athletes
and their respective teams. The agreeable core allows those athletes and teams to
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renegotiate their new contracts before they are signed so long as every member of
the group benefits. For example, a team may condition the release of a player from
their pre-existing contract on whether it secures a more-preferred replacement to
sign a new contract. No person outside of this group can impede the negotiation
because the group is agreeable.

Notably, I show that there are only two ways that agreements are dissolved in the
agreeable core (Proposition 3). First, some agreements are dissolved unconditionally
by both parties, which corresponds to the legal concept of mutual separation. Both
parties are able to find better alternative partners regardless of the action the other
takes. The outcome would be the same with or without the agreement. For example,
this occurs when a team and an athlete jointly agree to cancel their contract; whether
or not the contract initially existed is irrelevant to their future decisions. Second,
the remaining agreements are only dissolved through “trades,” which correspond to
multilateral agreements. In a trade, two or more participants exchange the partners
to whom they bound. For example, this occurs when two teams trade players. I
show that at every outcome in the agreeable core, every dissolved agreement is of
one of these forms.

The main contribution of this chapter is a two-stage algorithm, the Propose-
Exchange algorithm (PE), which always produces an outcome in the agreeable
core. The novel feature of the PE is how it leverages Proposition 3 to partition
the participants according to how they dissolve their agreements. The PE uses a
cascading process to determine which agreements can be dissolved unconditionally.
Among participants who unconditionally dissolve their agreements, the PE then uses
Deferred Acceptance algorithm (DA) from two-sided matching theory to assign a
match in the core (Gale and Shapley, 1962). For the participants who are bound
by some agreements, the PE allows participants to trade their partners as in the Top
Trading Cycles algorithm (TTC) from the object allocation literature (Shapley and
Scarf, 1974).

The PE algorithm can replace existing algorithms in markets that suffer from a lack
of participation. Two prominent applications of market design—“The Match” con-
ducted by the National Resident Matching Program (NRMP) and open-enrollment
programs—are only incomplete markets. In the NRMP, some residents are offered
posts outside of The Match. Prospective residents are forced to decide between
accepting an early offer and participating in The Match. In open-enrollment pro-
grams, students can simultaneously hold offers from both the school district and
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private schools, leading to market congestion. Both problems arise because some
agents accept offers through a decentralized system. The PE algorithm resolves
this problem by integrating the centralized market with the decentralized market.
Both the NRMP and open-enrollment programs use a version of the DA or TTC,
so the PE can implement either. Incorporating the decentralized market is also
straightforward: simply take the outcome of the decentralized market as the set of
binding agreements. Because the PE (and the agreeable core in general) leaves no
agent worse off than they are with their pre-existing binding agreements, the PE
encourages agents to participate who normally would not. Participating in the PE is
a weakly dominant strategy for agents who have created binding agreements in the
decentralized market.

Second, the agreeable core provides an explainable solution in matching with min-
imum constraints. In some applications agents have minimum quotas that the
designer must respect. In the context of matching residents to hospitals in Japan,
the Japanese government seeks to guarantee that some regions receive a minimum
number of residents (Kojima, Tamura and Yokoo, 2018). In public-school open-
enrollment, the designer may have a preference for maintaining socioeconomic
diversity at the schools; these are frequently written as minimum constraints as-
signed to different socioeconomic tiers; see Fragiadakis and Troyan (2017) for a
discussion of these examples. In the United States Military Academy, cadets are
assigned to positions subject to minimum manning constraints (Fragiadakis and
Troyan, 2017). To accommodate minimum constraints in the agreeable core, the
designer only needs to create artificial binding agreements. For example, if the
designer adds an agreement between a hospital and a resident, then the hospital is
guaranteed to match to (at least one) resident. The agreeable core provides a robust
justification for the outcome: no other outcome could be reached without violating
either agents’ preferences or the minimum constraints.

The results of this chapter are grounded in the formalization of binding agreements
as an initial match denoted 𝜇0. In this formalization, each participant is initially
matched to at most one other participant. For concreteness, I label one side workers
and the other side firms, and I refer to groups of agents as coalitions. The initial match
rules out any participant being “double-booked”; otherwise, one participant may
be bound to two others, creating ambiguity as to which agreement has precedence.
Similarly, the initial match only allows for binding agreements to be two-way. For
example, this formulation requires that if a student is bound to a college, then
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that college is bound to this student. There are ways to allow for some types
of one-way agreements, but these require modifying participants’ preferences. In
this formalization, agreeable coalitions of agents are those which only include one
participant if and only if her initial match is also a member of the coalition.

The agreeable core is an entirely different approach compared to previous research
on matching with an initial match. Previous research emphasizes the properties of
specific algorithms, such as strategy-proofness or efficiency (Combe and Schlegel,
2024; Combe, Tercieux and Terrier, 2022; Guillen and Kesten, 2012; Hafalir, Kojima
and Yenmez, 2023; Hamada et al., 2017). In contrast, this chapter first develops
a solution concept and then constructs an algorithm. The advantage is that the
outcome in the agreeable core can be justified without relying upon the properties
of the particular algorithm used to select it. My approach complements existing
research because outcome-oriented solutions (which only require static definitions)
are easier to explain and justify to stakeholders than algorithmic properties.1 The
trade-off is that the PE algorithm does not have the same incentive properties that
are often baked into existing algorithms; however, I show that the PE satisfies a
weakened version of strategy-proofness.

The Propose-Exchange algorithm is novel in its combination of both the Deferred
Acceptance and Top Trading Cycles algorithms and has no similar predecessors. To
the best of my knowledge, the only other algorithm capable of implementing both
the DA and the TTC is the Stable Improvement Cycles algorithm of Abdulkadiroğlu
(2011), which operates in a very different fashion. My use of the DA to divide the
matching problem into two is entirely new and has promising applications in other
markets with an initial match.

The rest of the chapter proceeds as follows. In Section 1.2 I motivate the agreeable
core through an illustrative example. Section 1.3 presents the model. In Section 1.4
I present the proof of my main result, the Propose-Exchange algorithm that always
produces a match in the agreeable core. Section 1.5 contains several results related
to the manipulability of the Propose-Exchange algorithm. I defer a discussion of the
related literature until Section 1.6, where I discuss how the agreeable core presents
an alternative understanding of several economic applications.

1For example, the statement your child is at the highest ranked school you listed where she
is above the school’s cutoff is easier for parents to understand than some axiomatizations of the
Deferred Acceptance, such as we used the only algorithm that satisfies non-wastefulness, population
monotonicity, weak Maskin monotonicity, and mutual best; see (Morrill, 2013a). I emphasize that
axiomatic approaches have significant value both in research and practice, but in some applications
other justifications are more helpful.
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1.2 A Motivating Example
In this section I introduce an example to illustrate my main definitions. This example
highlights the limitations of the standard solution concept—the core—in matching
markets where an initial match exists (the pre-existing binding agreements). By
way of reminder, a match is in the core if no group of agents, known as a blocking
coalition, can strictly improve their outcomes by forming an alternative match solely
among themselves. The core does not account for the binding agreements and fails
to improve upon the initial match.

Example 1. There are four workers (𝑤1, 𝑤2, 𝑤3, and 𝑤4) and four firms ( 𝑓𝐴, 𝑓𝐵, 𝑓𝐶 ,
and 𝑓𝐷). All workers prefer 𝑓𝐴 to 𝑓𝐵 to 𝑓𝐶 to 𝑓𝐷 , except worker 𝑤1 who swaps the
order of 𝑓𝐴 and 𝑓𝐵. All firms prefer 𝑤3 to 𝑤1 to 𝑤2 to 𝑤4, except for firm 𝑓𝐴 who
swaps the order of 𝑤1 and 𝑤2. Worker 𝑤1 and firm 𝑓𝐴 have a contract, as do worker
𝑤2 and firm 𝑓𝐵, and also 𝑤4 and firm 𝑓𝐷 . Worker 𝑤3 and firm 𝑓𝐶 do not have a
contract. In the language of my model, these contracts are the initial match 𝜇0 to
which any agent can appeal (the set of pre-existing binding agreements which cannot
be dissolved without the agreement both parties). Any outcome must guarantee that
all agents are weakly better off than under the initial match. The initial match is
essential because it limits the participants’ flexibility in forming new contracts. The
preferences are summarized in Figure 1.1, with the initial match circled.

Consider the core of this market. At any core outcome, worker 𝑤3 must be matched
to firm 𝑓𝐴 because they mutually rank each other as best; otherwise, the coalition
of {𝑤3, 𝑓𝐴} blocks the match. However, this implies that either 𝑤1 or 𝑤2 is not
matched to 𝑓𝐴 or 𝑓𝐵 and thus is worse-off than under 𝜇0. This a violation of the
initial match 𝜇0. Therefore there is no match in the core that improves upon the
initial match.

The failure of the core to provide a match that improves upon the initial match arises
from the blocking coalitions allowed. Allowing every subset of agents to block is too
permissive and ignores the initial match 𝜇0. The core is usually justified by arguing
that agents in a blocking coalition could form contracts among only themselves,
which allows for coalitions such as {𝑤3, 𝑓𝐴}.

Although the core is unsatisfactory, there are two Pareto improvements of the initial
match, indicated in Figure 1.2. In both, 𝑤1 is matched to 𝑓𝐵 and 𝑤2 is matched
to 𝑓𝐴. The first Pareto improvement, labeled �̄�, matches 𝑤3 to 𝑓𝐶 and 𝑤4 to 𝑓𝐷 .
Every blocking coalition contains {𝑤3, 𝑓𝐴} or {𝑤3, 𝑓𝐵} because no firm wants 𝑤4
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𝑤1 𝑤2 𝑤3 𝑤4

𝑓𝐵 𝑓𝐴 𝑓𝐴 𝑓𝐴

𝑓𝐴 𝑓𝐵 𝑓𝐵 𝑓𝐵

𝑓𝐶 𝑓𝐶 𝑓𝐶 𝑓𝐶

𝑓𝐷 𝑓𝐷 𝑓𝐷 𝑓𝐷

∅ ∅ ∅ ∅

𝑓𝐴 𝑓𝐵 𝑓𝐶 𝑓𝐷

𝑤3 𝑤3 𝑤3 𝑤3

𝑤2 𝑤1 𝑤1 𝑤1

𝑤1 𝑤2 𝑤2 𝑤2

𝑤4 𝑤4 𝑤4 𝑤4

∅ ∅ ∅ ∅

= initial match 𝜇0.

Figure 1.1: Preferences in Example 1, listed from most to least preferred, with ∅
indicating a preference for remaining unmatched; for example, this first column
reads 𝑤1 strictly prefers 𝑓𝐵 to 𝑓𝐴 to 𝑓𝐶 to 𝑓𝐷 to being unmatched. The circles
indicate the initial match 𝜇0; for example, 𝑤1 is initially matched (that is, under
contract) to 𝑓𝐴.

more than its partner in �̄�, and both 𝑤1 and 𝑤2 are matched to their most-preferred
partners. Consider {𝑤3, 𝑓𝐴} first. Both 𝑤3 and 𝑓𝐴 prefer each other to the proposed
match �̄�. But would worker 𝑤1 release 𝑓𝐴 from her contract to go and match to
𝑤3? Worker 𝑤1’s release of 𝑓𝐴 is contingent upon 𝑤1 signing a contract with 𝑓𝐵,
but 𝑓𝐵 has the same constraint: 𝑤2 must be induced to release 𝑓𝐵, which cannot be
done without guaranteeing that 𝑤2 matches to 𝑓𝐴. But the premise of this blocking
coalition is that 𝑓𝐴 will match to 𝑤3 instead of 𝑤2, so 𝑤2 would not consent to
this plan. In the language of my model, the coalition {𝑤3, 𝑓𝐴} is not agreeable and
thus cannot renegotiate its contracts; a similar argument follows for the coalition
{𝑤3, 𝑓𝐵}.

The story is different for the other Pareto improvement, labeled ¤𝜇. In this match,
𝑤3 is matched to 𝑓𝐷 and 𝑤4 to 𝑓𝐶 . Here, the coalition {𝑤3, 𝑓𝐶} blocks the match.
Because neither 𝑤3 nor 𝑓𝐶 is under contract, no agent can prevent them from
renegotiating a new match. This coalition qualifies as agreeable. The agreeable
core intuitively selects the first match but not the second.

To illustrate the mechanics of the Propose-Exchange algorithm, the following steps
outline how tentative matches are proposed and refined until no further improve-
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𝑤1 𝑤2 𝑤3 𝑤4

𝑓𝐵 𝑓𝐴 𝑓𝐴 𝑓𝐴

𝑓𝐴 𝑓𝐵 𝑓𝐵 𝑓𝐵

𝑓𝐶 𝑓𝐶 𝑓𝐶 𝑓𝐶

𝑓𝐷 𝑓𝐷 𝑓𝐷 𝑓𝐷

∅ ∅ ∅ ∅

𝑓𝐴 𝑓𝐵 𝑓𝐶 𝑓𝐷

𝑤3 𝑤3 𝑤3 𝑤3

𝑤2 𝑤1 𝑤1 𝑤1

𝑤1 𝑤2 𝑤2 𝑤2

𝑤4 𝑤4 𝑤4 𝑤4

∅ ∅ ∅ ∅

(a) First Pareto Improvement, �̄�

𝑤1 𝑤2 𝑤3 𝑤4

𝑓𝐵 𝑓𝐴 𝑓𝐴 𝑓𝐴

𝑓𝐴 𝑓𝐵 𝑓𝐵 𝑓𝐵

𝑓𝐶 𝑓𝐶 𝑓𝐶 𝑓𝐶

𝑓𝐷 𝑓𝐷 𝑓𝐷 𝑓𝐷

∅ ∅ ∅ ∅

𝑓𝐴 𝑓𝐵 𝑓𝐶 𝑓𝐷

𝑤3 𝑤3 𝑤3 𝑤3

𝑤2 𝑤1 𝑤1 𝑤1

𝑤1 𝑤2 𝑤2 𝑤2

𝑤4 𝑤4 𝑤4 𝑤4

∅ ∅ ∅ ∅

(b) Second Pareto improvement, ¤𝜇

Figure 1.2: Pareto improvements of 𝜇0.

Note: throughout I use solid lines to denote the initial match and dashed
lines to denote possible other matches

ments can be made. To compute the first Pareto improvement ( �̄� ), I leverage the
Propose-Exchange algorithm. In this example the Propose stage takes worker 𝑤3,
who is initially unmatched, declares him “active.” The Propose stage allows active
workers to make proposals to their favorite firm which has not rejected them so far.
In the first step, both 𝑤3 proposes to 𝑓𝐴, who tentatively accepts him. Because 𝑓𝐴
receives a proposal she prefers to her initial worker 𝑤1, 𝑤1 is now declared “active”
as well. This guarantees that every firm weakly prefers the outcome of the Propose
stage to the initial match 𝜇0 because she only releases her initial worker once she
has a more-preferred tentative match. In the second step, 𝑤1 proposes to 𝑓𝐵, who
tentatively accepts 𝑤1. Again, because 𝑓𝐵 receives a proposal she prefers to her
initial worker 𝑤2, 𝑤2 is now declared “active.” In the third step, 𝑤2 proposes to 𝑓𝐴,
who rejects him. In the fourth step, 𝑤2 proposes to his initial firm 𝑓𝐵; the Propose
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(d) Step 4

𝑓𝐴𝑤1

𝑓𝐵𝑤2
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(e) Step 5
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(f) Step 6
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𝑓𝐷𝑤4

(h) Output 𝜇1

Figure 1.3: A visualization of the steps of the Propose stage. The black dashed
lines indicate active proposals, and the light gray dashed lines indicate rejected
proposals. Note that 𝑤1 and 𝑤2 only make proposals after 𝑓𝐴 and 𝑓𝐵 have each
received a proposal, respectively. Worker 𝑤4 never makes a proposal because 𝑓𝐷
never receives a proposal.

stage requires that 𝑓𝐵 accept 𝑤2’s proposal and reject 𝑤1. This guarantees that
every worker weakly prefers the outcome of the Propose stage to the initial match
𝜇0. Continuing in this fashion, 𝑤1 proposes to his initial firm 𝑓1, which causes 𝑤3

to be rejected. Worker 𝑤3 proposes to 𝑓𝐵 and is rejected, and then to 𝑓𝐶 and is
tentatively accepted. These steps are visualized in Figure 1.3. The outcome of the
Propose stage is denoted 𝜇1 and is depicted in panel (h). However, an agreeable
blocking coalition still exists because workers 𝑤1 and 𝑤2 would prefer to exchange
their initial firms 𝑓𝐴 and 𝑓𝐵, and these firms also would prefer the exchange.

The Exchange stage modifies the outcome of the Propose stage to remove the
agreeable blocking coalition {𝑤1, 𝑤2, 𝑓𝐴, 𝑓𝐵} of 𝜇1. In the Exchange stage, workers
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𝑓𝐴𝑤1

𝑓𝐵𝑤2

𝑓𝐶𝑤3

𝑓𝐷𝑤4

(a) 𝜇0 (solid), 𝜇1 (dashed)

𝑓𝐴𝑤1

𝑓𝐵𝑤2

𝑓𝐶𝑤3

𝑓𝐷𝑤4

(b) Step 1

𝑓𝐴𝑤1

𝑓𝐵𝑤2

𝑓𝐶𝑤3

𝑓𝐷𝑤4

(c) Output 𝜇2

Figure 1.4: A visualization of the steps of the Exchange stage. Agents 𝑤3 and 𝑓𝐶 are
excluded because their 𝜇0- and 𝜇1-partners differ. There is only one step because
each active agent is in a cycle in Step 1.

𝑤1, 𝑤2, and 𝑤4 and firms 𝑓𝐴, 𝑓𝐵, and 𝑓𝐷 are active because they have not improved
their initial match through the Propose stage, while 𝑤3 and 𝑓3 are inactive. In the
first step, 𝑤1 points to 𝑓𝐵 because 𝑓𝐵 is 𝑤1’s most-preferred firm. Again, 𝑤2 points
to 𝑓𝐴 because 𝑓𝐴 is 𝑤2’s most-preferred active firm. Worker 𝑤4 would point to
either 𝑓𝐴 or 𝑓𝐵, but neither prefer him to their initial match, so 𝑤4 is only allowed
to point to his own firm 𝑓𝐷 . This will guarantee that every firm weakly prefers the
outcome of the Exchange stage to the initial match 𝜇0. Each active firm points to
her initial worker. The cycle 𝑤1 → 𝑓𝐵 → 𝑤2 → 𝑓𝐴 → 𝑤1 forms, and 𝑤1 and 𝑤2

are both permanently matched to the firms they point at. The cycle 𝑤4 → 𝑓𝐷 also
forms, and 𝑤4 is permanently matched to 𝑓𝐷 . The output is 𝜇2, which is depicted in
Figure 1.4. As expected, 𝜇2 is the first Pareto improvement that was discussed, the
unique element of the agreeable core.

The Propose-Exchange algorithm involves both a “free market” phase in the Propose
stage (but with participation restrictions on 𝑤1, 𝑤2, and 𝑤4) as well as a “trading”
phase in which could 𝑤1, 𝑤2, and 𝑤4 exchanged their firm. The match at every stage
of the Propose-Exchange algorithm is an improvement of the initial match.

1.3 Model
In this section I present a one-to-one matching model. Although many of my
applications are many-to-one (e.g. many students match to one school), I defer a
discussion of the nuances until Section 1.6. In most examples, the many-to-one case
is a simple extension of the one-to-one model. Below I introduce the elements of
a matching problem, which is a tuple (𝑊, 𝐹, ≻, 𝜇0) consisting of workers, firms, a
profile of preferences, and an initial match.
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There is a set of workers 𝑊 and the set of firms 𝐹, and the union of both is the
set of agents 𝐴 ≡ 𝑊 ∪ 𝐹. For clarity of exposition I use masculine pronouns for
workers and feminine pronouns for firms. Every worker 𝑤 ∈ 𝑊 has preference ≿𝑤
over 𝐹 ∪ {𝑤} and every 𝑓 ∈ 𝐹 has a preference ≿ 𝑓 over𝑊 ∪ { 𝑓 }. A preference for
oneself is a preference to be unmatched: if 𝑎 prefers 𝑎 to 𝑏 this means that 𝑎 prefers
to remain unmatched than to match to 𝑏. Throughout I assume that ≿𝑎 is complete,
reflexive, transitive, and anti-symmetric, that is, that 𝑎 can rank partners from most
to least preferred with no ties.

A match is a function 𝜇 that takes in an agent 𝑎 and returns the agent 𝜇(𝑎) that he
or she is matched, where 𝑎 = 𝜇(𝑎) means that 𝑎 is unmatched. Formally, match is
a function 𝜇 : 𝐴→ 𝐴 such that:

1. if 𝑤 ∈ 𝑊 then 𝜇(𝑤) ∈ 𝐹 ∪ {𝑤}; and

2. if 𝑓 ∈ 𝐹 then 𝜇( 𝑓 ) ∈ 𝑊 ∪ { 𝑓 }; and

3. 𝜇(𝜇(𝑎)) = 𝑎.

The first two require that the match is two-sided: every worker matches to a firm
(or is unmatched) and every firm matches to a worker (or is unmatched). The third
requires that every agent is matched to the agent matched to him or her. If 𝜇(𝑎) = 𝑎
then 𝑎 is 𝜇-unmatched; otherwise, 𝜇(𝑎) is the 𝜇-partner of 𝑎 (or possibly 𝜇-firm or
𝜇-worker). I write 𝜇 ≿𝑋 𝜇′ to mean 𝜇(𝑥) ≿𝑥 𝜇′(𝑥) for all 𝑥 ∈ 𝑋 .

There is an initial match 𝜇0. The initial match limits the set of matches I consider
to the set of matches I consider to those satisfying the following:

Definition 1. Match 𝜇 is individually rational if 𝜇 ≿𝐴 𝜇0.

The interpretation is that if an agent prefers their initial match 𝜇0 to the proposed
match 𝜇, they retain the right to demand 𝜇0, as it represents an enforceable agree-
ment.

The Core
Here I formally introduce the core, which is the set of all individually rational
matches not blocked by any coalition of agents. A coalition blocks a match if it can
collectively form a match within the coalition that everyone weakly prefers to the
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current match. Formally, a coalition 𝐶 ⊆ 𝐴 is a nonempty2 subset of agents who
may form a match among themselves. Let 𝜇(𝐶) ≡ {𝜇(𝑎) : 𝑎 ∈ 𝐶}. Note that if
𝜇(𝐶) ⊆ 𝐶, then 𝜇(𝐶) = 𝐶. If a coalition weakly prefers a match 𝜇′ to 𝜇 and 𝜇′ only
matches agents in 𝐶 to agents in 𝐶, then 𝐶 may block 𝜇; formally,

Definition 2. Coalition 𝐶 blocks 𝜇 through 𝜈 if 𝜈 ≿𝐶 𝜇, 𝜈(𝑎) ≻𝑎 𝜇(𝑎) for at least
one 𝑎 ∈ 𝐶, and 𝜈(𝐶) = 𝐶.

The core is the set of all individually rational matches not blocked by any coalition
through any match.3

The Agreeable Core
Example 1 demonstrates that the core may be empty. The nonexistence of a match
that is both individually rational and unblocked by every coalition of agents moti-
vates restricting either the matches a coalition can block through or the coalitions
considered. The choice is nontrivial and hinges upon the interpretation of the initial
match.

If the matches that a coalition can block through are restricted, then the natural
requirement is that any coalition can block but only through an individually rational
match 𝜇. The interpretation is that the initial match is inviolable ex post. In order
to block a match, a coalition needs only to suggest an individually rational match;
as long as all agents are weakly better off than at 𝜇0, no agent can complain about
his or her partner. However, it is easy to construct examples where this solution is
empty.

The alternative is to restrict the set of coalitions but not the matches they can block
through. The interpretation is that the initial match is not only inviolable ex post
but also that any new contract formed by an agent requires the ex ante approval of
his or her 𝜇0-partner. I consider only coalitions meeting the following criterion:

Definition 3. A coalition 𝐶 is agreeable if 𝜇0(𝐶) = 𝐶.

A coalition 𝐶 is agreeable if any contract in 𝜇0 does not contain both an agent
in 𝐶 and an agent not in 𝐶. By restricting my attention to agreeable coalitions, I

2Coalitions throughout the chapter are assumed to be nonempty. For ease of exposition this
quantifier will not be listed.

3Formally, this is the strong core because I consider all weak blocks (allowing some coalition
members to be indifferent between 𝜇′ and 𝜇). In two-sided matching without indifferences all weak
blocks are strong blocks. Because the coalitions I will consider later will usually contain agents who
do not change partners, I use the strong core as it is smaller.
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require that every agent in a blocking coalition of 𝜇 guarantees his or her 𝜇0-partner
a weakly better partner at match 𝜇′ than at 𝜇. To guarantee such an improvement,
the 𝜇0-partner’s partner at 𝜇′ must also be included in the coalition, which implies
that the 𝜇0-partner’s 𝜇′-partner must also be included in the coalition, and so on.
Definition 4 formalizes this idea.

Definition 4. The agreeable core is the set of individually rational matches not
blocked by any agreeable coalition.

The agreeable core puts a strong requirement on blocking coalitions: every agent in
the coalition and their 𝜇0-partners must be made weakly better off. My interpretation
is that if some agent 𝑎 is harmed by a block and his or her 𝜇0-partner is in the blocking
coalition, then 𝑎 can veto the block by refusing to dissolve the initial contract. The
important nuance is that the harmed agent can veto 𝜇′ even if he or she prefers 𝜇′ to
𝜇0.

The veto power inherent in the agreeable core allows one member of a initial match
to dictate the matches his or her partner can form. The picture to have in mind is both
agents in a initial match simultaneously searching for better matches. They both
agree to cancel their initial match simultaneous to both confirming new partners.
Because the match of one partner influences who is willing to match with the other,
both must agree not only to cancel their initial match but also approve of the other’s
new match. By only considering agreeable coalitions, I allow agents to veto a
blocking coalition before the coalition acts.

I find the following justification for the agreeable core helpful in explaining the
agreeable core and how I allow agents veto blocking coalitions ex ante. For a given
initial match 𝜇0, agents are considering forming the individually rational match
𝜇. Before 𝜇 is realized among the agents (say, before the agents cancel their initial
agreements and form the 𝜇 agreements), a coalition considers enforcing some match
𝜇′ among themselves. If some agent 𝑎 is in the coalition but 𝜇0(𝑎) is not in the
coalition, then 𝜇0(𝑎) may refuse to permit 𝑎 to form 𝜇′ unless 𝜇0(𝑎) is certain he
or she will prefer 𝜇′ to 𝜇. Hence, 𝜇0(𝜇) must also be in the coalition.

Perhaps surprisingly, the set of matches not blocked by any agreeable coalition is not
a subset of the individually rational matches. My definition of blocking coalition
does not allow an agent to demand 𝜇0, and hence the restriction to individually
rational matches is substantive. For a simple example, restrict Example 1 to just
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contractor 1 and city 𝐴. The match 𝜇(1) = 1 and 𝜇(𝐴) = 𝐴 is not blocked by any
coalition but does not Pareto improve 𝜇0.

I devote Section 1.4 to developing the machinery to prove my main result, namely,
that the agreeable core is never empty. In the remainder of this section I briefly
touch on several aspects of the agreeable core that do not require my more involved
techniques. Section 1.3 shows that the agreeable core is always Pareto efficient, and
conversely if 𝜇0 is Pareto efficient then {𝜇0} is the agreeable core. As alluded to in the
introduction, my model features several connections with both the classical model of
stability (Gale and Shapley, 1962) and more recent models of reassignment (Combe,
Tercieux and Terrier, 2022; Pereyra, 2013). In Section 1.3 and Section 1.3 I develop
these connections; as an expository device and a prelude to my algorithm, I highlight
the two leading algorithms in two-sided matching—the Deferred Acceptance and
the Top Trading Cycles algorithms—and their adaptations used in the literature to
guarantee individual rationality.

Efficiency
In this subsection I investigate the efficiency of the agreeable core. My first observa-
tion is that no match in the agreeable core is Pareto dominated:4 if 𝜈 Pareto dominates
𝜇, then the grand coalition 𝐴 (which is always agreeable) blocks 𝜇 through 𝜈. My
second observations is a kind of a converse: if 𝜇0 is not Pareto dominated, then 𝜇0

is in the agreeable core. To see this, suppose (toward a contradiction) that some
agreeable coalition 𝐶 blocks 𝜇0 through 𝜇. But then because 𝜇0(𝐶) = 𝜇(𝐶) = 𝐶, I
can define 𝜇′ that agrees with 𝜇 for agents in 𝐶 and agrees with 𝜇0 everywhere else.
But 𝜇′ then Pareto dominates 𝜇0, a contradiction to the supposition that 𝜇0 is Pareto
efficient.

Remark 1. Every 𝜇 in the agreeable core is Pareto efficient.5 Moreover, 𝜇0 is
Pareto efficient if and only if the 𝜇0 is the unique element of the agreeable core.

Remark 1 assures us that the agreeable core satisfies the most common efficiency
standard.

4I say that 𝜈 Pareto dominates 𝜇 if every agent weakly prefers 𝜈 to 𝜇 and at least one agent strictly
prefers 𝜈 to 𝜇.

5If 𝜇 is not Pareto dominated by any 𝜈, then 𝜇 is Pareto efficient.
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Connection to Stability
In this subsection I discuss the parallels between the agreeable core and the classic
theory of stability introduced by Gale and Shapley (1962). The models are the same
except that the classical model does not include an initial match in the primitives.
This connection allows me to leverage a significant tool from two-sided stability,
the Deferred Acceptance algorithm (DA), in my analysis

In the classic model, a blocking pair of a match is any worker and firm pair such
that both prefer each other to their match. A match is stable if all agents prefer
their match to being unmatched and there are no blocking pairs of the match. It is
well-known (Roth and Sotomayor, 1990) that the set of stable matches is the core
that I defined previously. My definition of the agreeable core guarantees that if
𝜇0(𝑎) = 𝑎 for all 𝑎 ∈ 𝐴, then the agreeable core corresponds to the core because
every coalition is agreeable. Therefore stability is the special case of the agreeable
core when 𝜇0 leaves all agents unmatched.

Gale and Shapley (1962) gives an efficient algorithm for constructing a stable match:
the Deferred Acceptance algorithm (Algorithm 1). Initially, the DA “activates” every
worker and designates every agent as “currently unmatched.” At every step of the
DA, some active worker matched proposes to the firm he prefers the most among
those he has not proposed to yet (if he would rather be unmatched, he is matched
to himself and deactivated). Every firm then reviews the proposals she receives and
her current match and rejects all but her most preferred proposal or match. The
process continues until no more workers are matched active.

Algorithm 1 Deferred Acceptance (DA) algorithm
Notation: when I write 𝜇DA(𝑎) ← 𝑤, I mean that 𝑎 is matched to 𝑤 and 𝑤 is
deactivated. If another worker 𝑤′ was matched to 𝑎, then 𝑎 rejects 𝑤′, 𝑤′ is
matched to himself, and 𝑤′ is activated.

set 𝜇DA( 𝑓 ) ← 𝑓 for all 𝑓 ∈ 𝐹.
activate every worker.
while some worker 𝑤 is activated do

𝑤 proposes to his most-preferred firm 𝑓 that he has not yet proposed to; if
he would rather be unmatched, instead he proposes to himself and is deactivated,
and we set 𝜇DA(𝑤) ← 𝑤.

if 𝑓 prefers 𝑤 to 𝜇DA( 𝑓 ) then set 𝜇DA( 𝑓 ) ← 𝑤.
else 𝑓 rejects 𝑤.

end while
return 𝜇DA
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Although guaranteed to produce a match unblocked by any coalition, the DA fails to
satisfy individual rationality (see Pereyra (2013) and Combe, Tercieux and Terrier
(2022)). There are two ways in which individual rationality can fail. First, a worker
may strictly prefer his 𝜇0-partner to his match. Pereyra (2013) resolves this issue
by requiring that each firm accepts her 𝜇0-partner if he proposes to her. This
modification guarantees that workers find the outcome individually rational because
no worker proposes to a less preferred firm without being rejected by his 𝜇0-partner.

In my setting firms also have individual rationality constraints. The DA fails to
accommodate these because a worker makes proposals (and may be matched to
another firm) even though his 𝜇0-firm has not received a proposal she prefers to
the worker. I will see in Section 1.4 how to resolve this tension by limiting which
workers can propose.

Connection to Reassignment
In this subsection I highlight the connection between the agreeable core and the
standard model of reassignment. Recent research in reassignment seeks to find
a match through a strategyproof mechanism that is both individually rational and
maximizes some objective function (see (Combe, Tercieux and Terrier, 2022; Dur
and Ünver, 2019) for two such examples). Because the agreeable core is motivated
with first principles (the core) rather than with an objective in mind (obtaining
a strategyproof mechanism), there are substantial differences in definitions and
results. However, both approaches employ the same method: the Top Trading
Cycles algorithm (TTC).

The TTC finds a match such that no coalition of workers can reallocate their 𝜇0-firms
among themselves and improve their matches. The TTC starts with every worker
and firm “active.” At every step, every active firm points at the worker she is initially
matched to, and every active worker points at his favorite active firm. At every step
a cycle must form. The TTC assigns each worker in the cycle to the firm he points
at, and then the agents in the cycle become inactive. The process terminates when
no agents are active.

I define the TTC in Algorithm 2.

If some agents are matched by 𝜇0, then the TTC may not be individually rational.
To accommodate this, Combe, Tercieux and Terrier (2022) and Combe (2023) make
the following two modifications. First, a firm must point to her 𝜇0-worker so long
as he is active. This guarantees that 𝜇TTC ≿𝑊 𝜇0. Second, no worker may point
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Algorithm 2 Top Trading Cycles (TTC) algorithm
set 𝜇TTC(𝑎) = 𝑎 for all 𝑎.
every agent is activated.
while at least one agent is active do

every active worker points to his most-preferred of the active firms.
every active firm points to her most preferred of the active workers.
choose an arbitrary cycle (𝑤1, 𝑓2, . . . 𝑤2𝑘−1 ≡ 𝑤1, 𝑓2𝑘 ≡ 𝑓2) such that every

agent points to the next agent in the cycle.
all agents in the cycle are deactivated.
match every 𝑤𝑘 to 𝑓𝑘+1.

end while
return 𝜇TTC

to a firm if that firm prefers her 𝜇0-partner to the worker. This guarantees that
𝜇TTC ≿𝑊 𝜇0.

In my setting, however, these modifications are not enough. As I saw in Section 1.3,
the agreeable core equals the set of stable matches when all agents are 𝜇0-unmatched.
At least in this case firms must be given power to decide between the workers pointing
to them, as in the DA. In Section 1.4 I incorporate this by limiting which workers
and firms participate in the TTC.

1.4 A Proof of Existence: The Propose-Exchange Algorithm
In this section I present a computationally efficient and economically meaningful
algorithm that always produces a match 𝜇2 (defined through this section) in the
agreeable core. My algorithm is the Propose-Exchange algorithm (PE) and is
composed of two stages. The Propose stage resembles the Deferred Acceptance
algorithm and eliminates any block by a coalition that either includes an agent
who is unmatched in the initial match or who becomes unmatched by the block.
The Exchange stage resembles the Top Trading Cycles algorithm and eliminates
all blocks that involve reshuffling initial partners among themselves. For readers
unfamiliar with the Deferred Acceptance and the Top Trading Cycles algorithms, I
refer the reader to Section 1.3 and Section 1.3, respectively.

The PE directly implies that the agreeable core exists and provides some insight into
its structure. My main result is the following:

Theorem 1. 𝜇2 is in the agreeable core.

The proof (and definition of 𝜇2) occupies the remainder of this section. I first
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introduce a particular directed graph representation of the matching problem in
Section 1.4, then introduce the Propose stage in Section 1.4, and finally the Exchange
stage in Section 1.4. I conclude this section by noting how the introduction of initial
matches creates additional complexity in analyzing the structure of the agreeable
core. All omitted proofs are contained in Section 1.A.

A Graph-Theoretic Depiction
Despite my parsimonious definition of the agreeable core, so far testing whether
𝜇 is in the agreeable core requires checking whether any coalition can block 𝜇

through any 𝜇′, which is only feasible in small examples. My main result from this
subsection is a characterization of blocking coalitions in terms of paths in a directed
graph, which is computationally efficient. I use the language of graph theory to
formalize my ideas.

A digraph 𝐺 is a pair (𝑉, 𝐸) where 𝑉 is a set of vertices and 𝐸 is a set of ordered
pairs of vertices called (directed) edges, possibly including an edge from a vertex to
itself, called a loop. The one nuance to my construction is that I allow for loops to be
repeated once in 𝐸 ; formally, 𝐸 is a multiset, but this will not cause any confusion.

I consider digraphs where the vertices are agents, and the edges represent matches.
Edges going from 𝐹 to 𝑊 (and loops) are drawn from 𝜇0, while the edges going
from𝑊 to 𝐹 (and possibly repeated loops) are drawn from 𝜇 and any blocking pairs
of 𝜇. I abuse notation and write 𝜇0 for both the function and for the set of ordered
pairs:

𝜇0 = {( 𝑓 , 𝑤) : 𝜇0( 𝑓 ) = 𝑤} ∪ {(𝑎, 𝑎) : 𝜇0(𝑎) = 𝑎}
𝜇 = {(𝑤, 𝑓 ) : 𝜇(𝑤) = 𝑓 } ∪ {(𝑎, 𝑎) : 𝜇(𝑎) = 𝑎}.

It is critical to understand that 𝜇0 and 𝜇 go in opposite directions (except for any
loops). I always follow the convention that edges from the initial match travel from
𝐹 to𝑊 , so although the matches 𝜇0 or 𝜇 may change, from context the direction of
the edges is always clear. To include the blocking pairs, I define

𝐼 (𝜇) = {(𝑤, 𝑓 ) : 𝑓 ≻𝑤 𝜇(𝑤) and ≻ 𝑓 𝜇( 𝑓 )} ∪ {(𝑎, 𝑎) : 𝑎 ≻𝑤 𝜇(𝑎)}.

My main digraph of interest is (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)). That is, the vertices are agents,
the first set of edges connects initial partners, and the second set of edges connects
all pairs that weakly prefer each other over their 𝜇-partners.

Figure 1.5 depicts the three types of edges using the set-up of Example 1 and a
match 𝜇 that modifies the initial match 𝜇0 by leaving 𝑓𝐷 unmatched and matching
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𝑓𝐴𝑤1

𝑓𝐵𝑤2

𝑓𝐶𝑤3

𝑓𝐷𝑤4

(a) Initial Match 𝜇0

𝑓𝐴𝑤1

𝑓𝐵𝑤2

𝑓𝐶𝑤3

𝑓𝐷𝑤4

(b) Proposed Match 𝜇

𝑓𝐴𝑤1

𝑓𝐵𝑤2

𝑓𝐶𝑤3

𝑓𝐷𝑤4

(c) Blocking Pairs of 𝜇

𝑓𝐴𝑤1

𝑓𝐵𝑤2

𝑓𝐶𝑤3

𝑓𝐷𝑤4

(d) Acyclic Blocking Path

𝑓𝐴𝑤1

𝑓𝐵𝑤2

𝑓𝐶𝑤3

𝑓𝐷𝑤4

(e) Cyclic Blocking Path

Figure 1.5: The blocking digraph (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)) is the union of the digraphs in
subfigures (a), (b), and (c). Subfigures (d) and (e) depict the two kinds of blocking
paths.

𝑤4 to 𝑓𝐶 . Subfigure (a) includes the edges from 𝜇0, which are either loops (in the
case of 𝑤3 and 𝑓𝐶) or point from 𝐹 to 𝑊 . Subfigure (b) includes the edges from
𝜇, which point from 𝑊 to 𝐹. Subfigure (c) includes the blocking pairs of 𝜇, which
point from𝑊 to 𝐹.

A (simple) path in (𝑉, 𝐸) is a vector of edges 𝑃 = (𝑒1, . . . , 𝑒𝑛) such that the second
coordinate of 𝑒𝑘 equals the first coordinate of 𝑒𝑘+1 for 1 ≤ 𝑘 < 𝑛 and no vertex
appears in more than two edges. Recall that a loop may appear twice (in both 𝜇0

and 𝜇 ∪ 𝐼 (𝜇)) so it is possible for path to consist of exactly two loops. I say a vertex
is in a path if the path contains an edge that contains the vertex. I sometimes abuse
notation and write 𝑃 for the vertices in 𝑃.

A path 𝑃 is complete if every vertex contained in the path is contained in exactly two
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edges of the path. A path is alternating if it no two consecutive edges (including
loops) alternate between 𝜇0 and 𝜇 ∪ 𝐼 (𝜇).6 Two complete and alternating paths
are depicted in subfigures (d) and (e) of Figure 1.5. For an arbitrary complete and
alternating path 𝑃 in (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)), I define 𝜇𝑃 (𝑎) as follows:

• if (𝑤, 𝑓 ) is in 𝑃, then 𝜇𝑃 (𝑤) = 𝑓 .

• if 𝑎 is not in 𝑃 but 𝜇(𝑎) is in 𝑃, then 𝜇𝑃 (𝑎) = 𝑎;

• if 𝑎 is not in 𝑃 and 𝜇(𝑎) is not in 𝑃, then 𝜇𝑃 (𝑎) = 𝜇(𝑎).

That is, 𝜇𝑃 matches 𝑎 ∈ 𝑃 to the agent whom 𝑎 shares an edge from 𝜇 ∪ 𝐼 (𝜇) in
𝑃 with; other matches are left unchanged where possible. By Lemma 1.A.1 in the
appendix, every agent in 𝑃 is contained in one edge from 𝜇0 and one edge is from
𝜇 ∪ 𝐼 (𝜇), so 𝜇𝑃 is well defined and 𝜇𝑃 (𝑃) = 𝑃.

My main result of this subsection is that a path that is complete, alternating,
and contains an edge from 𝐼 (𝜇) corresponds to an agreeable blocking coalition
in (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)). I formalize this as follows:

Definition 5. Path 𝑃 is a blocking path of 𝜇 if 𝑃 is a complete and alternating path
in (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)) that contains at least one edge from 𝐼 (𝜇).

A blocking path of 𝜇 is aptly named as it corresponds to a blocking coalition of 𝜇.

Proposition 1. An individually rational match 𝜇 is in the agreeable core if and only
if 𝜇 admits no blocking paths. Moreover, if 𝑃 is a blocking path of 𝜇 then 𝑃 blocks
𝜇 through 𝜇𝑃.

Proposition 1 provides a test that is linear in the number of edges to see if 𝜇 is in the
agreeable core.7

The Propose-Exchange algorithm is built on a partition of paths between those that
form cycles and those that do not.

Definition 6. Let 𝑃 = (𝑒1, . . . , 𝑒𝑛). If the first coordinate of 𝑒1 is the second
coordinate of 𝑒𝑛, then 𝑃 is cyclic; otherwise, 𝑃 is acyclic.

6Although the directed nature of the digraph makes most paths alternating, by formally requiring
that a path is alternating I rule out the case that (𝑤, 𝑓 ) and ( 𝑓 , 𝑓 ) may both be from 𝜇 ∪ 𝐼 (𝜇).

7A depth first search initiated from every edge in 𝐼 (𝜇) is sufficient.
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As the name suggests, cyclic paths start with an agent and then return to that agent.
In (𝐴, 𝜇0∪ 𝜇∪ 𝐼 (𝜇)), a cyclic, complete, and alternating path corresponds to agents
(who are 𝜇0-matched) trading their 𝜇0-partners among themselves. Acyclic paths
that are also complete and alternating start with a loop and end with a loop, forming
a line in the digraph. See subfigures (d) and (e) of Figure 1.5 for example cyclic and
acyclic blocking paths. In (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)), an acyclic, complete, and alternating
path corresponds to agents trading their 𝜇0-firms among themselves, except that
two agents are unmatched by one or both sets of edges. The Propose-Exchange
algorithm works by first producing a match 𝜇1 that admits no acyclic blocking
paths, then finding a series of Pareto improvements of 𝜇1 to produce a match 𝜇2 that
has no cyclic blocking paths.

The Propose Stage
The first stage of my algorithm outputs a match 𝜇1 by systematically removing all
acyclic blocking paths from (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)). An acyclic blocking path 𝑃 in
(𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)) corresponds to a series of trades, but the agents at either end of
the path are either 𝜇0-unmatched or 𝜇𝑃-unmatched. These may be thought of as a
cycle that includes the “unmatched” agent.

The Propose algorithm is a variation of the Deferred Acceptance algorithm. The
DA is designed for markets where all agents are unmatched under 𝜇0 and is defined
in Algorithm 1. I noted in Section 1.3 that the DA may fail individual rationality for
both workers and firms. I provide guarantees to the agents in the Propose algorithm
by only allowing a worker to make a proposal once his 𝜇0-firm has received a
more preferred proposal and by requiring that a firm accept any proposal from her
𝜇0-worker. These adjustments, shown in italics, are essential to the success of
the Propose stage. The Propose stage algorithm is defined in Algorithm 3. By
construction, 𝜇1 is individually rational. If 𝑤 strictly prefers 𝜇0 to 𝜇1, then 𝑤 would
have proposed to 𝜇0 (and not been rejected). Again, if 𝜇0( 𝑓 ) is matched by 𝜇1 to
a firm other than 𝑓 , then 𝑓 received a proposal she prefers to 𝜇0( 𝑓 ) and hence she
prefers 𝜇1 to 𝜇0.

I then show that at the end of the Propose algorithm, no blocking path of 𝜇1 is
acyclic.

Lemma 1. 𝜇1 admits no acyclic blocking paths.

My proof leverages that an acyclic blocking path 𝑃 in (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)) always
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Algorithm 3 Propose Stage algorithm
Notation: when I write 𝜇1(𝑎) ← 𝑤, I mean that 𝑎 is matched to 𝑤 and 𝑤 is
deactivated. If another worker 𝑤′ was matched to 𝑎, then 𝑎 rejects 𝑤′, 𝑤′ is
matched to himself, and 𝑤′ is activated.

set 𝜇1 ← 𝜇0
activate every worker.
if 𝑤’s 𝜇0-firm prefers 𝑤 to being unmatched, then deactivate 𝑤.
while some worker 𝑤 is active do

𝑤 proposes to his most-preferred firm 𝑓 that he has not yet proposed to; if
he would rather be unmatched, instead he proposes to himself and is deactivated,
and we set 𝜇1(𝑤) ← 𝑤.

if 𝑓 is 𝑤’s 𝜇0-partner, then set 𝜇1( 𝑓 ) ← 𝑤 and have 𝑓 reject all future
proposals.

else if 𝑓 prefers 𝑤 to 𝜇1( 𝑓 ) and to being unmatched, then set 𝜇1( 𝑓 ) ← 𝑤.
else 𝑓 rejects 𝑤.

end while
return 𝜇1

begins with either a worker who is 𝜇0-unmatched and hence proposes or a firm who
is 𝜇𝑃-unmatched (and hence her 𝜇0-worker starts out active). Because the start and
finish of the path are connected by workers who (weakly) prefer the firm they receive
in the block, I can show that every worker in the path must have had the opportunity
to propose. I then show that the path must terminate with either a worker who
is 𝜇0-matched or a firm who is 𝜇0-unmatched, neither of which would reject the
proposal made through the path. I conclude by showing that every firm accepts the
proposal from her 𝜇𝑃-partner, which contradicts that 𝜇 ≠ 𝜇𝑃.

The while step admits ambiguity because which worker is selected to propose is not
specified. I show in Proposition 2 that the order in which workers are selected is
irrelevant.

Proposition 2. The output of the Propose stage is independent of the order the
workers are called to propose in.

The Exchange Stage
In the second stage of the algorithm, I eliminate all cyclic blocking paths. I do
this by allowing agents to trade their initial agreements. Cyclic blocking paths in
(𝐴, 𝜇0∪ 𝜇∪ 𝐼 (𝜇)) correspond to workers and their 𝜇0-firms rearranging their initial
matches among themselves. No agent in a cyclic path is unmatched by either 𝜇 or
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𝜇0. A cyclic blocking path represents an inefficient allocation for 𝐶: the coalition
could have rearranged their initial matches among themselves and obtained a better
match.

The Exchange algorithm is an adaptation of the Top Trading Cycles algorithm to find
these cycles and remove them. The difficulty with using solely the TTC in my setting
is that the TTC does not give firms the ability to select between workers. Although
firm’s preferences limit the set of acceptable workers, which worker is matched to
the firm ultimately depends on the worker the firm is required to point at. If only
some workers or firms are matched by 𝜇0, then the firm’s lack of choice can lead to
violations of the agreeable core. I resolve this by only applying the TTC to workers
and firms who did not both find better partners through the Propose algorithm, with
my addition indicated in italics. This modification guarantees that the Exchange
stage is a Pareto improvement of 𝜇1; by selecting a Pareto improvement, I do not
create any new acyclic blocking paths in the blocking digraph. The Exchange
algorithm is defined in Algorithm 4.

Algorithm 4 Exchange Stage algorithm
set 𝜇2(𝑎) = 𝜇1(𝑎) for all 𝑎.
every 𝑤 such that 𝜇1(𝑤) = 𝜇0(𝑤) is activated with 𝜇0(𝑤).
while at least one worker is active do

every active worker points to his most-preferred of the active firms who prefer
him to her 𝜇0-worker.

every active firm points to her 𝜇0-worker.
choose an arbitrary cycle (𝑤1, 𝑓2, . . . 𝑤2𝑘−1 ≡ 𝑤1, 𝑓2𝑘 ≡ 𝑓2) such that every

agent points to the next agent in the cycle.
all agents in the cycle sit down.
match every 𝑤𝑘 to 𝑓𝑘+1.

end while
return 𝜇2

My first observation is that the Exchange algorithm makes no agents worse off than
under 𝜇1. Workers only point to firms they prefer to 𝜇0, and by my simplification
of workers’ preferences, firms can only be pointed at by workers they prefer to 𝜇0.
The result is that at the end of the Exchange algorithm, 𝜇2 admits no cyclic blocking
paths.

Lemma 2. 𝜇2 admits no cyclic blocking paths.

My proof leverages that if 𝑤 strictly prefers 𝑓 to 𝜇2(𝑤), then 𝑓 must sit down at least
one step before 𝑤. A cyclic blocking path then implies that the firms in the path sit
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down on average strictly before the workers in the path sit down. However, because
every worker’s 𝜇0-firm is in the path and they sit down in the same step, it must be
that the firms in the path sit down on average in the same step as the workers in the
path sit down. This contradiction rules out cyclic blocking paths.

Existence
I am now ready to prove that 𝜇2 is in the agreeable core.

Proof of Theorem 1: Suppose (toward a contradiction) that 𝜇2 is not in the agreeable
core. Then by Proposition 1 the digraph (𝐴, 𝜇0 ∪ 𝜇2 ∪ 𝐼 (𝜇2)) contains a blocking
path 𝑃. By Lemma 2, 𝑃 is acyclic. But 𝑃 is also blocking path in (𝐴, 𝜇0∪𝜇1∪ 𝐼 (𝜇1))
because 𝜇2∪ 𝐼 (𝜇2) ⊆ 𝜇1∪ 𝐼 (𝜇1) and 𝐼 (𝜇2) ⊆ 𝐼 (𝜇1). By Lemma 1, 𝑃 is not acyclic.
This is a contradiction, which proves the claim. □

The importance of the Propose-Exchange algorithm in my proof cannot be un-
derstated. However, the algorithm has practical implications because it is also
computationally efficient. The Propose stage runs in polynomial time because each
worker can make at most |𝐹 | + 1 proposals. Similarly, one cycle is removed in every
iteration of the Exchange stage, and at most |𝐹 | cycles can be removed. An efficient
algorithm is necessary for implementing the agreeable core in applications.

Structure
In this subsection, I highlight the difficulty in characterizing the underlying structure
of the agreeable core and how it relates to other classes of algorithms commonly
used to compute core outcomes. Although the set of stable matches has a well-
understood structure which I summarize in the following paragraph, the agreeable
core is not as tame. The hurdle in the analysis comes from the Exchange stage. To
the best of my knowledge, there are no results from the literature that apply to the
agreeable core when every agent is 𝜇0-matched.

I briefly summarize the main structural results on the set of stable matches. First, a
lattice is a partially ordered set (𝐿, ≥) such that any two elements of 𝐿 have a unique
least upper bound, called the join of 𝑥 and 𝑦, and a unique greatest lower bound,
called the meet of 𝑥 and 𝑦. That is, there is a unique 𝑥 ∨ 𝑦 such that if 𝑧 ≥ 𝑥 and
𝑧 ≥ 𝑦 then 𝑧 ≥ 𝑥 ∨ 𝑦, and there is a unique 𝑥 ∧ 𝑦 such that if 𝑥 ≥ 𝑧 and 𝑦 ≥ 𝑥 then
𝑥 ∧ 𝑦 ≥ 𝑧. A key result in two-sided matching is that the set of stable matches forms
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𝑤1 𝑤2 𝑤3

𝑓𝐶 𝑓𝐴 𝑓𝐴

𝑓𝐵 𝑓𝐵 𝑓𝐶

𝑓𝐴 ∅ ∅

∅ 𝑓𝐶 𝑓𝐶

𝑓𝐴 𝑓𝐵 𝑓𝐶

𝑤2 𝑤1 𝑤1

𝑤3 𝑤2 𝑤3

𝑤1 ∅ ∅

∅ 𝑤3 𝑤2

(a) Initial match—𝜇0

𝑤1 𝑤2 𝑤3

𝑓𝐶 𝑓𝐴 𝑓𝐴

𝑓𝐵 𝑓𝐵 𝑓𝐶

𝑓𝐴 ∅ ∅

∅ 𝑓𝐶 𝑓𝐶

𝑓𝐴 𝑓𝐵 𝑓𝐶

𝑤2 𝑤1 𝑤1

𝑤3 𝑤2 𝑤3

1 ∅ ∅

∅ 𝑤3 𝑤2

(b) 𝑤2, 𝑓𝐴, and 𝑓𝐵’s preferred match—�̄�

𝑤1 𝑤2 𝑤3

𝑓𝐶 𝑓𝐴 𝑓𝐴

𝑓𝐵 𝑓𝐵 𝑓𝐶

𝑓𝐴 ∅ ∅

∅ 𝑓𝐶 𝑓𝐶

𝑓𝐴 𝑓𝐵 𝑓𝐶

𝑤2 𝑤1 𝑤1

𝑤3 𝑤2 𝑤3

𝑤1 ∅ ∅

∅ 𝑤3 𝑤2

(c) 𝑤1, 𝑤3, and 𝑓𝐶’s preferred match— ¤𝜇

Figure 1.6: An example showing that the outcomes in the agreeable core cannot be
ordered by ≿𝑊 .

a lattice with the partial order ≿𝑊 .8 The join of two matches 𝜇 and 𝜈 is the match
that gives every worker 𝑤 his more preferred partner from {𝜇(𝑤), 𝜈(𝑤)} and every
𝑓 her less preferred partner from {𝜇( 𝑓 ), 𝜈( 𝑓 )}; the meet is given symmetrically.
This implies that there is a conflict of interest between the workers and the firms: if
every worker weakly prefers a stable 𝜇 to a stable 𝜈, then every firm weakly prefers
𝜈 to 𝜇. Moreover, there is a worker optimal stable match and a firm optimal stable
match.

To show that the agreeable core fails to be a lattice, consider the following example.
Let 𝜇0(𝑤1) = 𝑓𝐴, 𝜇0(𝑤2) = 𝑓𝐵, and 𝜇0(𝑤3) = 𝑓𝐶 , and preferences are given as in
Section 1.4. Both the pair 𝑤2 and 𝑓𝐵 and the pair 𝑤3 and 𝑓𝐶 prefer to participate in
a cycle with the pair 𝑤1 and 𝑓𝐴, but 𝑤1 and 𝑓𝐴 have opposing preferences over the
two possible cycles. Worker 𝑤1 prefers firm 𝑓𝐶 and firm 𝑓𝐴 prefers worker 𝑤2, and
so either cycle may be in the agreeable core. The agreeable core consists uniquely
of the �̄� match and the ¤𝜇 match, a pair which is not ordered by ≿𝑊 . In this example
there is no worker optimal match.

8Donald Knuth attributes this to John H. Conway.
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Despite the impossibility of recovering a complete lattice over the agreeable core
as in the classic model of stability, I show that a narrower result continues to hold.
Given that the lattice structure failed in the example because two competing cycles
exist in the agreeable core, an astute reader may conjecture that the lattice structure
continues to hold for workers and firms who do not lie in such cycles. Suggestively,
say that 𝑎 is a free agent in 𝜇 if 𝑎 lies on an acyclic, complete, and alternating path
of (𝐴, 𝜇0, 𝜇). My first proposition justifies my terminology:

Proposition 3. If 𝜇 is in the agreeable core, then there are no blocking pairs among
free agents in 𝜇. Moreover, every free agent 𝑎 in 𝜇 weakly prefers 𝜇(𝑎) to being
unmatched.

The proof of Proposition 3 shows that these agents are “free” to form blocking pairs
because each can satisfy a sequence formed by alternating edges from 𝜇0 and 𝜇.
Free agents resemble the agents in the classic model: their 𝜇0-partner (if any) is not
concerned with the partner she finds.

However, an obstacle arises because the free agents depend on 𝜇; that is, 𝑎 may be
a free agent in 𝜇 but not in 𝜈. What I can show is that, if 𝜇 and 𝜈 share the same
set of free agents and they agree on the agents who are not free, then 𝜇 ∨ 𝜈 is in the
agreeable core. Toward that end, I say that 𝜇 and 𝜈 are structurally similar if they
have the same set of free agents and 𝜇(𝑎) = 𝜈(𝑎) for every agent which is not free.
The following lemma shows that structurally similar matches in the agreeable core
play nicely with the join and meet operators defined previously:

Lemma 3. Let 𝜇 and 𝜈 be structurally similar matches in the agreeable core. Then
𝜇 ∨ 𝜈 is a match. The same holds for 𝜇 ∧ 𝜈.

Notably, 𝜇∨ 𝜈 may not be structurally similar to 𝜇 and 𝜈.9 The (possible) structural
differences between 𝜇∨𝜈 and 𝜇 force us to discard any hope of obtaining a lattice-like
result. However, the join and meet operators still produce matches in the agreeable
core:

Theorem 2. Let 𝜇 and 𝜈 be structurally similar matches in the agreeable core. Then
𝜇 ∨ 𝜈 and 𝜇 ∧ 𝜈 are both in the agreeable core.

9I have an example demonstrating this (available upon request), but it is too lengthy to include
because it involves eight workers and eight firms.
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The conflict of interest continues to hold for structurally similar matches. That is, if
𝜇 and 𝜈 are in the agreeable core and are structurally similar, then if every worker
weakly prefers 𝜇 to 𝜈, then every firm weakly prefers 𝜈 to 𝜇. Conversely, in the
classic matching framework, 𝜇0(𝑎) = 𝑎 for every agent and thus every agent is
free. Every match is then structurally similar and hence my Theorem 2 generalizes
standard results.

1.5 Incentives in the Propose-Exchange algorithm
This section addresses the incentive properties of the Propose-Exchange algorithm.
The results provide insight into how robust the PE is to manipulation by participants.
This is crucial for implementing the PE in practice because the output of the PE is
only guaranteed to be in the agreeable core if the inputs are accurate. I find that
while the PE is more susceptible to more kinds of manipulations than either the DA
or the TTC, the new manipulations are difficult to execute.

I consider two kinds of manipulations in these subsections. In the first, I allow a
worker to arbitrarily misreport his preference.10 In the second, I allow a worker and
a firm to create an artificial initial match, a misreport of 𝜇0.

For clarity through this section, I write ≿′𝑤-Propose stage to indicate the operation
of the Propose stage on the matching problem when 𝑤’s preference ≿𝑤 is replaced
by ≿′𝑤. A similar shorthand is used when 𝜇0 is replaced by 𝜇′0.

Preference Manipulation
In this subsection I discuss preference manipulations by workers. I allow a worker
𝑤 to misreport his preference ≿𝑤 by reporting ≿′𝑤 instead. The intuition is that a
worker may benefit from manipulating which agents (including himself) are active
in the Exchange stage. I show that there may exist a worker who can profitably
misreport his preference in the PE. However, this problem is not unique to the PE,
but exists for every algorithm that produces a match in the agreeable core. These
results are in contrast to their parallels in existing theory: no worker can profitably
misreport his preferences in the DA or TTC (Dubins and Freedman, 1981; Dur and
Ünver, 2019). I connect these results by showing that only workers who participate
in both stages of the PE can profitably misreport their preferences.

Formally, mechanism𝜓 is a function of (𝑊, 𝐹,≿, 𝜇0) that returns a match𝜓(𝑊, 𝐹,≿
, 𝜇0).

10It is well-known that a firm can manipulate the DA by misreporting her preference, so I only
consider the problem from the worker’s perspective.
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𝑤1 𝑤2 𝑤3

𝑓𝐴 𝑓𝐵 𝑓𝐶

𝑓𝐵 𝑓𝐴 𝑓𝐴

𝑓𝐶 𝑓𝐶 𝑓𝐵

𝑓𝐴 𝑓𝐵 𝑓𝐶

𝑤2 𝑤1 𝑤3

𝑤3 𝑤2 𝑤2

𝑤1 𝑤3 𝑤1

(a) Outcome of DA before preference
swap

𝑤1 𝑤2 𝑤3

𝑓𝐴 𝑓𝐵 𝑓𝐴

𝑓𝐵 𝑓𝐴 𝑓𝐶

𝑓𝐶 𝑓𝐶 𝑓𝐵

𝐴 𝐵 𝐶

𝑤2 𝑤1 𝑤3

𝑤3 𝑤2 𝑤2

𝑤1 𝑤3 𝑤1

(b) Outcome of DA after preference swap

Figure 1.7: Worker 𝑤3’s exchange of the order of 𝑓𝐶 and 𝑓𝐴 in his preference leaves
his partner unchanged, but causes workers 𝑤1 and 𝑤2 to receive new partners.

Definition 7. A mechanism is preference manipulable if there is at least one match-
ing problem (𝑊, 𝐹,≿, 𝜇0), worker 𝑤, and preference ≿′𝑤 such that

𝜓(𝑊, 𝐹,≿−𝑤,≿′𝑤, 𝜇0) ≿𝑤 𝜓(𝑊, 𝐹,≿, 𝜇0).

In words, if for some example a worker 𝑤 would rather report ≿′𝑤 instead of ≿𝑤,
then 𝜓 is preference manipulable.

A natural question arises as to whether a mechanism exists that is non-preference-
manipulable and produces a match in the agreeable core. Proposition 4 provides a
negative answer:

Proposition 4. If 𝜓(≿) is in the agreeable core for all ≿, then 𝜓 is preference
manipulable.

I prove Proposition 4 through a counterexample. The counterexample is driven
my the possibility of bossiness within the DA. A mechanism is bossy if an agent
can, by misreporting his preference, affect the matches of the other agents without
changing his own. Consider the example in Figure 1.7. Worker 𝑤3 can cause
workers 𝑤1 and 𝑤2 to exchange partners by misreporting a preference for firm 𝐴.
In the counterexample in the proof of Proposition 4, there is a worker 𝑤1 who
would like to exchange initial partners with 𝑤2. Worker 𝑤1 reduces 𝑤2’s ability to
match to an initially unmatched firm by including that firm in his own preferences.
Effectively, if 𝑤2 is a free agent then 𝑤1 will not be able to match to 𝜇0(𝑤1). Thus,
𝑤1 manipulates 𝑤2’s options to keep 𝑤2 matched to 𝜇0(𝑤2) to cause an exchange.

Theorem 3 formalizes this intuition. It shows that a worker only has two avenues
through which to profit from a misreport. First, the worker may profit from finding
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a partner in the Exchange stage rather than the Propose stage. This is similar to
truncating11 his preferences. Second, the worker may find his partner in the Exchange
stage but choose to manipulate which workers who participate in the Exchange stage,
as in the counterexample previously discussed.

Theorem 3. If worker 𝑤 has a profitable misreport ≿′𝑤, then 𝑤 is active in both
stages of the ≿′𝑤-Propose-Exchange algorithm.

Because whether a worker is active in the Propose stage is independent of his reported
preferences, Theorem 3 further restricts the set of workers who can profitably
misreport. A worker can only profitably misreport if he both has a 𝜇0-firm and
is active in the Propose stage. For a market designer, these conditions are easy to
verify and provide an upper bound on the number of workers who can profitably
manipulate. Additionally, Theorem 3 highlights the informational requirements
necessary to profitably misreport. A worker must be able to predict the outcome
of the Exchange stage, which itself is a complicated object and depends on which
agents participate in the Exchange stage.

Manipulating 𝜇0

In this subsection I complement the analysis of how preferences may be profitably
misreported with an analysis of how the initial match may be profitably misreported.
The concern is that because the initial match 𝜇0 affects the output of the PE, a pair
of agents may find it in their interest to create a superfluous artificial agreement. I
show that, while such a manipulation is possible, it usually requires an additional
preference manipulation to be successful. I conclude that profitably misreporting the
initial match requires a similar level of sophistication as a preference manipulation.

Formally, let 𝜇0 be given (and fixed throughout this subsection) with 𝜇2 the output
of the 𝜇0-PE. Let worker 𝑤 and firm 𝑓 be both 𝜇0-unmatched, and let 𝜇′0 be formed
from 𝜇0 by matching 𝑤 and 𝑓 . Let 𝜇′1 and 𝜇′2 be the respective outputs of the
𝜇′0-Propose and 𝜇′0-Exchange stages. If both 𝑤 and 𝑓 strictly prefer 𝜇′2 to 𝜇′1, then
𝑤 and 𝑓 can profitably misreport an initial match. Profitably misreporting an initial
match requires that both 𝑤 and 𝑓 strictly gain from the deviation.

I show that, although it is possible for the PE to be manipulated in this way, its
extent is quite limited and involves substantial risk for the worker. First, I show in
Theorem 4 that any profitable misreport pushes 𝑤 and 𝑓 from the Propose stage

11moving his initial partner higher; see Roth and Rothblum (1999).
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into the Exchange stage (𝜇′1(𝑤) = 𝑓 ). The intuition is that if 𝜇′1( 𝑓 ) ≠ 𝑤, then 𝑓

has received a better partner in the 𝜇′0-Propose stage and thus that all of the workers
have received a worse partner. Second, Theorem 4 also shows that for any profitable
misreport, 𝑤 cannot be active in the 𝜇′0-Propose stage.

Theorem 4. If 𝑤 and 𝑓 can profitably misreport an initial match, then 𝜇′1(𝑤) = 𝑓

and 𝑤 is not active in the 𝜇′0-Propose stage.

The interpretation of Theorem 4 is that 𝑓 must prefer 𝑤 to 𝑓 ’s match when 𝑤 is
removed from the matching problem entirely. In effect, 𝑓 faces little risk from the
misreporting because 𝑤 is as good as (if not better than) what 𝑓 would receive if 𝑤
were not present. For 𝑤 however, an initial match with 𝑓 could carry great risk if
𝑓 is low on 𝑤’s preferences relative to 𝜇1(𝑤). This strategy may backfire because
a mistake in 𝑤’s calculations (or a misrepresentation by 𝑓 ) could render 𝑤 assigned
to 𝑓 .

In summary, neither misreporting preferences or the initial match appears likely to
succeed without detailed knowledge of the other participants’ preferences. Mis-
reports frequently expose misreporting agents to a large downside risk. These
incentive findings inform the broader applicability of the PE, which I discuss in the
following section.

1.6 Conclusion
This chapter has shown the strength of the agreeable core in providing a theory of
equilibrium for a broad class of matching markets. The initial match organically
models numerous real-world examples, and the Propose-Exchange algorithm is
ready to be implemented in a variety of applications. In this closing section I
discuss three topics. First, I review the connections between this chapter and
existing research. Second, I provide guidance on applying the Propose-Exchange
algorithm in several environments. Last, I close with a discussion of my modeling
choices and possible extensions.

Connection to the Literature
This chapter develops a novel theory of matching under initial contracts that bridges
object allocation and two-sided matching. It connects several literatures on two-
sided matching. An exhaustive review of the literature is far beyond the scope of
this chapter, so I list the only the most closely related work and its connections with
this chapter.
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I integrate the classic model of two-sided matching with recent advances in recon-
tracting. In the classic model, a stable match always exists and can be found by the
DA (Gale and Shapley, 1962). It is well known that the set of pairwise-stable matches
corresponds to the core of a related cooperative game (Roth and Sotomayor, 1990).
Later research largely discarded the connection with the core in favor of pairwise-
stability notions. When considering matching with an initial match (in which the
intersection of pairwise stable and individually rational outcomes may be empty),
Pereyra (2013) and Guillen and Kesten (2012) generalize pairwise-stability by parti-
tioning claims between valid and invalid claims and then removing all valid claims.
This may be strongly inefficient (Combe and Schlegel, 2024; Combe, Tercieux and
Terrier, 2022), and hence a mechanism with minimal envy is considered (Kwon and
Shorrer, 2023). Although efficient, these minimal envy mechanisms are inscrutable
to participants: the designer allows some claims but not others only because doing
so minimizes some objective. This chapter advances this literature by reconnecting
the initial back to the core, a more interpretable solution. I both minimize envy as
in Kwon and Shorrer (2023) but also provide a clear definition of valid and invalid
claims as in Pereyra (2013).

Research in school choice has made extensive use of both the DA and TTC. Ab-
dulkadiroğlu and Sönmez (2003) suggests the Deferred Acceptance algorithm from
Gale and Shapley (1962) or the Top Trading Cycles algorithm from Shapley and
Scarf (1974) as desirable and implementable solutions. Both algorithms run in
polynomial time, are relatively easy to describe, and are strategyproof. The DA
is fair (no blocking pairs) while the TTC is efficient (Pareto efficient for the stu-
dents). A handful of researchers seek to combine or modify the two algorithms
to reconcile these properties, allowing certain priority violations (Abdulkadiroğlu,
2011; Dur, Gitmez and Yılmaz, 2019; Kesten, 2006; Kwon and Shorrer, 2023; Reny,
2022; Troyan, Delacrétaz and Kloosterman, 2020; Morrill, 2013b; Dur and Morrill,
2017). Papers in this vein typically define a set of properties of a mechanism (such
as the allowable priority violations, efficiency, strategyproofness, etc.), and then
present a satisfactory algorithm, typically a variation of the DA or TTC. My work
complements this approach by an algorithm derived from first principles rather than
with specific objectives in mind. My approach draws from cooperative game theory
rather than emphasizing certain desirable properties of the final allocation.

A connected branch of matching theory develops methods for matching with mini-
mum quotas. Schools are modeled as having both a maximum capacity for students
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but also a minimum required quota of students. One approach is to allow for wasted
seats but not envy (Fragiadakis and Troyan, 2017). A separate approach uses an
auxiliary “master list” (Ueda et al., 2012) or “precedence list” (Fragiadakis et al.,
2016; Hamada et al., 2017) as a means to break ties: if two students wish to take
an empty seat but the minimum quota requires that only one may do so, the list de-
termines which worker can. The algorithms described in both approaches typically
either sacrifice efficiency (based on the DA) or fairness (based on the TTC), and
both require that all agents are mutually acceptable. I develop both approaches by
endogenizing the master list into the initial match and not requiring any assumptions
on preferences. Although a master list is natural in some applications, whether a
master list or the initial match is more appropriate depends on the application.

Surprisingly, no authors have connected matching with minimum quotas and the
matching with an initial match. I combine these subfields with the observation that,
if the initial match provides a guarantee for both workers and firms, then minimum
quotas are the special case when every firm is assigned workers equal to its minimum
quota in the initial match. The initial match provides a different justification for why
some blocking pairs are allowable but others are not, one which I think applies well
to school choice.

Finally, the paper closest in spirit to ours is Abdulkadiroğlu and Sönmez (1999),
“House Allocation with Existing Tenants.” Their model is one-sided, and they show
that a hybrid of the Serial Dictatorship algorithm and the TTC algorithm provides
an efficient improvement over the initial match. I present a two-sided model with a
hybrid algorithm between the DA and the TTC. Although my models are different,
my approach is remarkably similar to theirs.

Applications
The PE can unify out-of-match residencies with the NRMP, creating a larger over-
arching match that nests both and guarantees Pareto efficiency while allowing for
early matches. It is well-known that a fraction of medical residencies are offered
independently of the centralized clearinghouse operated by the NRMP. These out-
of-match residency programs entice prospective residents to sign binding contracts
prior to the operation of the NRMP because these contracts provide guarantees to
risk-averse residents. Because the rules of the NRMP forbid residents from par-
ticipating if they have already accepted an out-of-match offer, these two markets
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operate independently.12 The out-of-match offers introduce inefficiency by dividing
the market temporally. Under the PE, the out-of-match market operates essentially
unchanged: programs can entice residents with early offers. However, if the NRMP
uses the Propose-Exchange algorithm, the residents and programs who have already
formed contracts are allowed to participate as agents under an initial match. Re-
mark 1 guarantees that the final match is Pareto efficient. A similar construction can
be used to integrate Early Decision agreements into the regular college admission
cycle.

The PE also allows for asymmetrical obligations, such as professional sports con-
tracts or tenured positions, which bind participants unequally. For example, an
athlete’s contract with a team may allow the team to trade the athlete to another
without the athlete’s consent, but the athlete cannot “trade” his team without the
team’s consent. Similarly a tenured professor or teacher’s contract allows her to
leave her institution unilaterally, and restricts the institutions ability to remove her;
see Combe, Tercieux and Terrier (2022) for an application to the French public
school system. To incorporate this one-way obligation into the PE, I modify the
participants’ preferences. For the professor 𝑤 tenured at (that is, initially matched
to) institution 𝑓 , I modify 𝑓 ’s preference ≿ 𝑓 by moving 𝑤 to the bottom of ≿ 𝑓 . This
guarantees that 𝑤 is never required to remain at 𝑓 , but always may choose to do
so. Without an initial match, the standard model is instead forced to move 𝑤 to
the top of ≿ 𝑓 ; this achieves the same result (𝑤 can always match to 𝑓 ), but suffers
from inefficiency (Pereyra, 2013). The one-way contracts that allow for trades, as
in professional sports, can similarly be included under additional assumptions.13

The initial match can also be leveraged to achieve minimum quotas that balance
individual preferences and institutional needs. Examples of minimum quotas are
minimum enrollment at a school or in a class, or guarantees that some “rural”

12Recently, the NRMP has implemented the “All-In” policy in an attempt to curtail residency
programs from offering out-of-match residencies. The All-In policy requires that any residency
program participating in the NRMP offer residencies exclusively through the NRMP.

13For instance, a “tradable” contract can be included through modifying the athlete’s preference
by putting the team and being unmatched at the bottom of the preference. Therefore, the athlete is
always matched to a team, but the identity of the team can change. However, there is a tension: if
the athlete can express a preference for being unmatched, then the team can terminate the athlete at
will. Hence, in this model it is essential that the athlete can only be traded to a set of teams which
he prefers to being unmatched.
Again, there is a limit to who can have tradable contracts. If a team is allowed to trade an athlete, then
the PE algorithm must have the teams propose and point. This precludes any athlete from trading her
team. In professional sports this is a reasonable assumption, but caution is needed in more general
applications.
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hospitals are matched to residents. For instance, a minimum quota of students
may be required for a school to operate or for a class to be offered. The PE can
incorporate these quotas by using the initial match to assign the minimum number
of students to the school or class. By then modifying the school’s or class’s priority
order (preferences) over students by moving the initially assigned students to the
bottom, just above being unmatched, the designer guarantees that the school or class
will enroll at least its minimum quota. The initial assignments are only binding if no
other student desires the school or class. In this way, the initial match requires the
minimal restriction on students’ choices while meeting the institutional objective.
The agreeable core provides a clear justification for why some students’ choices are
restricted. If a restricted student would like to attend another school, then at least
one school would not meet its minimum quota or some student would be harmed.

Future Directions
The many-to-one setting introduces complex constraints because firms participating
in an agreeable coalition must consider multiple binding agreements. The motiva-
tion behind my focus on one-to-one matching is driven by two competing models
of a firm in many-to-one markets. In the first model, each firm is modeled as a
collection of unit-demand sub-firms, each endowed with the master firm’s prefer-
ence over individual workers. This is the model used in most applications because
eliciting a single ranking over workers from each firm is easier than a preference
over sets of workers. The agreeable core then treats each sub-firm as an individual
agent. A worker is initially matched to a single sub-firm, and he must include
that sub-firm in any agreeable coalition. This model straightforwardly extends the
one-to-one theory, and the same results hold.14 In the second model, each firm is
treated as an agent with a preference over sets of workers. Even in the classic model
without an initial match, restrictions such as substitutability need to be placed on
firm preferences to guarantee existence.15 Beyond the question of existence, the
requirement that 𝜈(𝐶) = 𝐶 for a coalition 𝐶 blocking with match 𝜈 implies that
the size of an agreeable blocking coalition increases dramatically. For example, if
a firm seeks to join a coalition, that coalition must include all of its initial workers
(who themselves are possibly matched to other firms) and all of the workers it will

14There are some interesting additional questions in this environment, such as how a worker
should construct his preference over two identical sub-firms which are initially matched to different
workers, and whether a firm could rearrange the initial matches of its sub-firms to construct a new
agreeable and blocking coalition.

15See Echenique and Oviedo (2004) for a unified treatment of the many-to-many case.
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match to (who themselves may be initially matched to other firms). In a market with
many workers initially matched, agreeable coalitions quickly must contain almost
every agent in the model. The usefulness of the agreeable core in this context is
unclear, and adapting it to these environments is a future avenue of research.

The agreeable core can provide insights into the formation of the initial match 𝜇0.
The model is agnostic as to how 𝜇0 is determined. It could be interesting to use
the agreeable core or the Propose-Exchange algorithm in combination with a model
of the formation of 𝜇0 to understand pre-matching dynamics. Because the initial
match is instrumental in the PE, developing a theory of pre-match formation could
be insightful for other market-design applications. Theorem 4 addresses one such
question, but more questions abound.

1.A Appendix to Chapter 1: Omitted Proofs
Throughout the appendix I abuse notation and write 𝑎 ∈ 𝑒 to mean that either the
first or second coordinate of 𝑒 is 𝑎.

Lemma 1.A.1. If 𝑃 is a complete and alternating path in (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)), then
every agent contained in 𝑃 is in exactly one edge from 𝜇0 and one edge from 𝜇∪𝐼 (𝜇).

Proof. Let 𝑃 = (𝑒1, . . . , 𝑒𝑛) be a complete and alternating path in (𝐴, 𝜇0 ∪ 𝜇 ∪
𝐼 (𝜇)) and let 𝑎 be contained in 𝑃. If 𝑛 = 2, then the statement is trivial because
completeness implies every 𝑎 ∈ 𝑃 is in both 𝑒1 and 𝑒2 and 𝑃 alternating implies
that one of {𝑒1, 𝑒2} is in 𝜇0 and the other is in 𝜇 ∪ 𝐼 (𝜇). Hence, let 𝑛 ≥ 3.

Again, if 𝑎 ∈ 𝑒𝑘 ∩ 𝑒𝑘+1 for 𝑘 ≥ 1 then the statement is true because completeness
implies 𝑒𝑘 and 𝑒𝑘+1 are the only edges in 𝑃 containing 𝑎, both 𝑒𝑘 and 𝑒𝑘+1 cannot be
from 𝜇0 by construction, and 𝑃 alternating implies that both 𝑒𝑘 , and 𝑒𝑘+1 cannot be
from 𝜇∪ 𝐼 (𝜇). Therefore, one of {𝑒𝑘 , 𝑒𝑘+1} is from 𝜇0 and the other from 𝜇∪ 𝐼 (𝜇).
Hence, let 𝑎 ∈ 𝑒1 ∩ 𝑒𝑛 and thus 𝑃 is cyclic. Let 𝑎 be a worker; the argument is
symmetric if 𝑎 is a firm.

Because there is a bĳection16 between the workers and firms contained in 𝑃 and
every agent in 𝑃 is contained in two edges of 𝑃, 𝑛 is even. Therefore, if 𝑒1 ∈ 𝜇0

then 𝑒𝑛 ∈ 𝜇 ∪ 𝐼 (𝜇), and if 𝑒1 ∈ 𝜇 ∪ 𝐼 (𝜇) then 𝑒𝑛 ∈ 𝜇0. This proves the result. □

Proof of Proposition 1: Let 𝜇 be individually rational.

16namely, 𝜇0
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For the (⇒) direction: I prove the contrapositive; that is, if 𝜇 admits a blocking
path, then 𝜇 is not in the agreeable core. Let 𝑃 = (𝑒1, . . . , 𝑒𝑛) be a blocking path in
(𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)). Note that 𝜇0(𝑃) = 𝑃 and 𝜇𝑃 (𝑃) = 𝑃.

By the definition of 𝐼 (𝜇), it follows that 𝜇𝑃 ≿𝑃 𝜇. Because 𝑃 is blocking, there is
an edge 𝑒 in 𝑃 that is also in 𝐼 (𝜇). Hence, both agents in 𝑒 strictly prefer 𝜇𝑃 to 𝜇.
Therefore, 𝑃 is an agreeable blocking coalition and 𝜇 is not in the agreeable core.

For the (⇐) direction: I prove the contrapositive; that is, if 𝜇 is not in the agreeable
core then 𝜇 admits a blocking path. Let 𝜇 be not in the agreeable core. Then there
exists an agreeable blocking coalition 𝐶 that blocks 𝜇 through 𝜈.

Let 𝑎1 be an agent in 𝐶 such that 𝜈(𝑎1) ≻𝑎1 𝜇(𝑎1); such an agent exists by the
definition of a blocking coalition. I will construct a path 𝑃 from 𝑎1 by iteratively
adding alternating edges from 𝜇0 and 𝜈 to {𝑎1, 𝜈(𝑎1)}, first with increasing indices
and then with decreasing indices. I assume that 𝑎1 ∈ 𝑊 ; the other case follows from
a symmetric argument.

Starting with 𝑒1 ≡ (𝑎1, 𝜈(𝑎1)) and 𝑃1 ≡ (𝑒1), do the following iteratively. Choose
an edge 𝑒𝑘+1 from 𝜇0 or 𝜈 that is not already present in 𝑃𝑘 such that the second
coordinate of 𝑒𝑘 is the first coordinate of 𝑒𝑘+1, then define 𝑃𝑘+1 by appending 𝑒𝑘+1
to 𝑃𝑘 . Continue until no more edges may be added in this way. Finally, repeat the
same process starting from 𝑒1, but prepending edges 𝑒0, 𝑒−1, . . . to 𝑃𝑘 .

Observe that 𝑃 is a path in (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)) because 𝜈 ≿𝐶 𝜇. Next, observe that
because every agent in 𝑃 is contained in at most two edges (one from 𝜇0 and the
other form 𝜈); every agent in 𝑃 is contained in at least two edges because edges
are added until no more can be added without including repeats and therefore 𝑃 is
complete. Also, 𝑃 is alternating because 𝑒2𝑘 ∈ 𝜇0 and 𝑒2𝑘−1 ∈ 𝜈. Finally, observe
that 𝑒1 ∈ 𝐼 (𝜇). Therefore, 𝑃 is a blocking path of 𝜇. Therefore (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇))
contains a blocking path, completing the proof. □

Introduction to the proofs of Lemma 1 and Proposition 2:

Before proving Lemma 1, I first introduce some notation and a short result:

Definition 1.A.1. I say that loop 𝑒 = (𝑎, 𝑎) is a proposal source if either

1(a) : (𝑎, 𝑎) ∈ 𝜇0 and 𝑎 ∈ 𝑊 , or

1(b) : (𝑎, 𝑎) ∉ 𝜇0 and 𝑎 ∈ 𝐹.



36

I say that loop 𝑒 = (𝑎, 𝑎) is a proposal sink if 𝑒 in not a proposal source; that is, if
either

2(a) : (𝑎, 𝑎) ∉ 𝜇0 and 𝑎 ∈ 𝑊 or

2(b) : (𝑎, 𝑎) ∈ 𝜇0 and 𝑎 ∈ 𝐹.

A straightforward parity argument shows that if 𝑃 = (𝑒1, . . . , 𝑒𝑛) is a complete,
alternating, and acyclic path in (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)), then 𝑒1 is a proposal source and
𝑒𝑛 is a proposal sink.

Lemma 1.A.2. Let 𝑃 = (𝑒1, . . . , 𝑒𝑛) be a complete, alternating, and acyclic path in
(𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)) with 𝑛 ≥ 3. Then 𝑒1 is a proposal source and 𝑒𝑛 is a proposal
sink.

Proof. Because 𝑃 is acyclic and complete, 𝑒1 and 𝑒𝑛 are both loops. Let 𝑒1 =

(𝑎1, 𝑎1) and 𝑒𝑛 = (𝑎𝑛−1, 𝑎𝑛−1). Similarly, let 𝑒2 = (𝑎1, 𝑎2) and 𝑒𝑛−1 = (𝑎𝑛−2, 𝑎𝑛−1).
Because 𝑛 ≥ 3, 𝑎1 ≠ 𝑎2 and 𝑎𝑛−2 ≠ 𝑎𝑛−1.

Consider the following cases:

1. 𝑎1 ∈ 𝑊 : Then because there are no edges between two distinct workers, it
follows that 𝑎2 ∈ 𝐹. Therefore, 𝑒2 ∈ 𝜇 ∪ 𝐼 (𝜇). This implies that 𝑒1 ∈ 𝜇0.
Therefore 𝑒1 is a proposal source.

2. 𝑎1 ∈ 𝐹: Then because there are no edges between two distinct workers, it
follows that 𝑎2 ∈ 𝑊 . Therefore, 𝑒2 ∈ 𝜇0. This implies that 𝑒1 ∈ 𝜇 ∪ 𝐼 (𝜇).
Therefore 𝑒1 is a proposal source.

Symmetric arguments show that 𝑒𝑛 is a proposal sink. □

Proof of Lemma 1:

Suppose (toward a contradiction) that 𝑃 = (𝑒1, . . . , 𝑒𝑛) is an acyclic blocking path
of 𝜇1. Because 𝑃 is acyclic and complete, 𝑒1 and 𝑒𝑛 are both loops and 𝑛 ≥ 3. By
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Lemma 1.A.2, 𝑒1 is a proposal source and 𝑒𝑛 is a proposal sink. Let

𝑒1 = (𝑎1)
𝑒2 = (𝑎1, 𝑎2)

...

𝑒𝑛−1 = (𝑎𝑛−2, 𝑎𝑛−1)
𝑒𝑛 = (𝑎𝑛−1).

I argue by induction that every worker 𝑎𝑘 ∈ 𝑃 makes a proposal during the Propose
algorithm. Because every agent contained in 𝑃 weakly prefers 𝜇𝑃 to 𝜇1, it follows
that every worker contained in 𝑃 who proposes proposed to his 𝜇𝑃-partner. In my
base case I show that the worker with the lowest index contained in 𝑃 proposes
during the Propose algorithm. There are two possibilities:

1. 𝑎1 is a worker: Because 𝑒1 is a proposal source by definition 𝜇0(𝑎1) = 𝑎1.
Hence 𝑎1 begins the Propose algorithm activated. Therefore, 𝑎1 proposes
during the Propose algorithm.

2. 𝑎1 is a firm: Because 𝑒1 is a proposal source, by definition 𝜇0(𝑎1) ≠ 𝑎1.
Therefore 𝜇0(𝑎1) = 𝑎2. Because 𝑎1 prefers 𝜇𝑃 to 𝜇0 and 𝜇𝑃 (𝑎1) = 𝑎1

because 𝑒1 is loop, it follows that 𝑎2 is activated at the start of the Propose
algorithm. Therefore, 𝑎2 proposes during the Propose algorithm.

For the inductive step, suppose 𝑎𝑘−1 ∈ 𝑊 makes a proposal; I will show that the
worker with the next highest index makes a proposal. If 𝑘 − 1 ≥ 𝑛 − 2, then 𝑎𝑘−1

is the worker with the highest index and the claim is vacuous; therefore, suppose
𝑘 − 1 < 𝑛 − 2. Because 𝜇𝑃 (𝑎𝑘−1) = 𝑎𝑘 , it follows that 𝑎𝑘−1 proposes at some point
to 𝑎𝑘 . Because 𝜇1 is individually rational and 𝜇0(𝑎𝑘 ) = 𝑎𝑘+1, it follows that 𝑎𝑘
weakly prefers 𝑎𝑘−1 to 𝑎𝑘+1. Therefore 𝑎𝑘+1 is activated at some point and thus 𝑎𝑘+1
makes at least one proposal during the Propose algorithm, concluding my inductive
argument.

Next, I show that an agent contained in a proposal sink never rejects a proposal from
their 𝜇𝑃-partner. If 𝑎𝑛−1 is a worker, then he never rejects a proposal from himself.
If 𝑎𝑛−1 is a firm, then 𝜇0(𝑎𝑛−1) = 𝑎𝑛−1 by definition. Because 𝑎𝑛−1 prefers 𝜇𝑃 to
both 𝜇0 and 𝜇1 and because 𝑎𝑛−1 receives no proposals she prefers to 𝜇1(𝑎𝑛−1) (by
construction of 𝜇1), it follows that 𝑎𝑛−1 does not reject a proposal from 𝜇𝑃 (𝑎𝑛−1).
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Finally, I show that no worker contained in 𝑃 is rejected by his 𝜇𝑃-partner. To see
this, suppose (toward a contradiction) that 𝑘 − 1 is the largest index such that 𝑎𝑘−1

is rejected by 𝜇𝑃 (𝑎𝑘−1). Because a proposal sink does not reject a proposal by his
or her 𝜇𝑃-partner, it follows that 𝑘 − 1 < 𝑛 − 2 (that is, 𝑎𝑘−1 is not one of the last
two agents in the path).

Because 𝑎𝑘 prefers 𝑎𝑘−1 to 𝜇1(𝑎𝑘 ) and yet 𝑎𝑘 rejects 𝑎𝑘−1, it must be that 𝜇0(𝑎𝑘 ) =
𝜇1(𝑎𝑘 ) (by construction of 𝜇1). Therefore 𝑎𝑘 is matched to 𝑎𝑘+1 by both 𝜇0 and 𝜇1.
Because matches are bĳective, I have 𝜇1(𝑎𝑘+1) = 𝜇0(𝑎𝑘+1) = 𝑎𝑘 . Consider that,
because 𝑃 is a complete and 𝑛 ≥ 3, it follows that 𝜇𝑃 (𝑎𝑘+1) ≠ 𝜇1(𝑎𝑘+1). Therefore
𝑎𝑘+1 must be rejected by 𝜇𝑃 (𝑎𝑘+1), a contradiction to my supposition that 𝑘 − 1 is
the largest index for which a worker is rejected by his 𝜇𝑃-match.

Therefore, because no worker in 𝑃 is rejected by his 𝜇𝑃-partner, it follows that 𝜇𝑃

agrees with 𝜇1 on 𝑃. Hence, every edge in 𝑃 from 𝜇1∪𝐼 (𝜇1) is from 𝜇1. But because
𝑃 is a blocking path, it must contain an edge from 𝐼 (𝜇1). Because 𝜇 ∩ 𝐼 (𝜇1) = ∅,
this is a contradiction. Therefore no blocking path of 𝜇1 is acyclic. □

Proof of Proposition 2: I say that a proposal order is a function that, at every step
of the Propose phase, indicates which worker makes the next proposal. Let 𝑇 and
𝑇 ′ be two proposal orders, and let the output of the Propose stage using order 𝑇 be
𝜇 and using 𝑇 ′ be 𝜇′. Suppose (toward a contradiction) that 𝜇 ≠ 𝜇′. Let

𝑈 = {𝑤 ∈ 𝑊 : 𝜇(𝑤) ≠ 𝜇′(𝑤)}
𝑉 = {𝑤 ∈ 𝑊 : 𝑤 proposes under both 𝑇 and 𝑇 ′}.

There are two cases:

1. 𝑈 ∩ 𝑉 ≠ ∅: WLOG, there is some worker in 𝑈 ∩ 𝑉 who strictly prefers 𝜇′ to
𝜇. Let 𝑤 be the first such worker who is rejected by 𝑓 ′ ≡ 𝜇′(𝑤) in the Propose
stage under 𝑇 . Because 𝑓 ′ is 𝑤’s 𝜇′-partner, this implies that 𝑓 ′ prefers 𝑤 to
being unmatched. Therefore, 𝑓 ′ must reject 𝑤 in favor of some 𝑤∗. Because
𝑓 ′ is 𝑤’s 𝜇′-partner, this implies that 𝑤∗ does not propose to 𝑓 ′ under 𝑇 ′.

Because𝑤∗makes a proposal under𝑇 , it follows that there is some sequence of
workers 𝑤1, . . . , 𝑤𝑛−1, 𝑤

∗ ≡ 𝑤𝑛 such that 𝑤1 or 𝜇0(𝑤1) is a proposal source,
and each 𝑤𝑘 makes the first proposal to 𝜇0(𝑤𝑘+1) under 𝑇 . Let 𝑘 be the
greatest index such that 𝑤𝑘 ∈ 𝑉 . Then it follows that 𝑤𝑘 strictly prefers 𝜇′ to
𝜇. Therefore, 𝑤𝑘 must be rejected by 𝜇′(𝑤𝑘 ) earlier than 𝑤 is rejected by 𝑓 ′

under 𝑇 , a contradiction.
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2. 𝑈 ∩ 𝑉 = ∅: Observe that 𝑈 is nonempty by supposition. Let 𝑤∗ ∈ 𝑈 and
WLOG let 𝑤∗ strictly prefer 𝜇 to 𝜇′. Thus, 𝑤∗ must make a proposal under 𝑇 .
It follows that there is some sequence of workers 𝑤1, . . . , 𝑤𝑛−1, 𝑤

∗ ≡ 𝑤𝑛 such
that 𝑤1 or 𝜇0(𝑤1) is a proposal source, and each 𝑤𝑘 makes the first proposal
to 𝜇0(𝑤𝑘+1) under 𝑇 . Observe that 𝑤1 ∈ 𝑉 . Furthermore, if 𝑤𝑘 ∈ 𝑉 , then
𝜇(𝑤𝑘 ) = 𝜇′(𝑤𝑘 ) by supposition. Hence, 𝑤𝑘+1 makes a proposal under both
𝑇 and 𝑇 ′. Therefore, 𝑤𝑘+1 ∈ 𝑉 . It follows that 𝑤∗ ∈ 𝑉 , a contradiction to the
supposition that𝑈 ∩𝑉 is empty.

Therefore, 𝜇 = 𝜇′. □

Proof of Lemma 2: Suppose (toward a contradiction) 𝑃 = (𝑒1, . . . 𝑒𝑛) is a cyclic
blocking path in (𝐴, 𝜇0 ∪ 𝜇2 ∪ 𝐼 (𝜇2)). Because there is a bĳection17 between the
workers and firms contained in 𝑃, 𝑛 is even. Define 𝑚 ≡ 𝑛

2 .

From 𝑃 (after a possible relabeling) define a vector of agents (𝑎1, 𝑎2, . . . , 𝑎𝑛 ≡ 𝑎0)
such that (𝑎𝑘−1, 𝑎𝑘 ) = 𝑒𝑘−1, 𝑎1 ∈ 𝑊 , and 𝑒1 ∈ 𝐼 (𝜇2). Because 𝑃 is alternating,
every odd agent is a worker and every even agent is a firm.

I first show that every agent in 𝑃 is active in the Exchange stage. To see this, suppose
(toward a contradiction) that some worker 𝑎𝑘 in 𝑃 is not active during the Exchange
stage. Then 𝑎𝑘 makes a proposal during the Propose stage to 𝑎𝑘+1. Therefore,
𝑎𝑘+2 makes a proposal during the Propose stage. I can iterate this argument to
show that every worker in 𝑃 makes a proposal during the Propose stage. Because
𝑃 is a blocking path, each firm in 𝑃 prefers her respective proposal to her 𝜇1-
partner. Because 𝑎𝑘−2 is rejected by 𝑎𝑘−1, it necessarily follows that 𝜇1(𝑎𝑘 ) = 𝑎𝑘−1.
Therefore, 𝑎𝑘 is active in the Exchange stage, a contradiction. Therefore, every
agent in 𝑃 is active during the Exchange stage.

Let 𝑡𝑘 be the iteration of the while . . . do loop of the Exchange algorithm that 𝑎𝑘 sits
down in.18 During the Exchange algorithm every worker 𝑎2𝑘−1 points to firm 𝑎2𝑘 ;
hence, firm 𝑎2𝑘 sits down weakly earlier than worker 𝑎2𝑘−1. In symbols, 𝑡2𝑘−1 ≥ 𝑡2𝑘
for all 1 ≤ 𝑘 ≤ 𝑚. Because 𝑒1 ∈ 𝐼 (𝜇2), it follows that 𝑡1 > 𝑡2. Therefore,

𝑚∑︁
𝑘=1

𝑡2𝑘−1 >

𝑚∑︁
𝑘=1

𝑡2𝑘 .

17namely, 𝜇0
18That is, if 𝑎𝑘 sits down on the fourth iteration of the while loop, then 𝑡𝑘 = 4.
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However, every worker 𝑎2𝑘+1 sits down at the same time firm 𝑎2𝑘 sits down. In
symbols, 𝑡2𝑘+1 = 𝑡2𝑘 for all 1 ≤ 𝑘 ≤ 𝑚. Therefore,

𝑚∑︁
𝑘=1

𝑡2𝑘+1 =

𝑚∑︁
𝑘=1

𝑡2𝑘 .

Because
∑𝑚
𝑘=1 𝑡2𝑘+1 =

∑𝑚
𝑘=1 𝑡2𝑘−1, I reach a contradiction. □

Proof of Proposition 3: For the first claim, suppose (toward a contradiction) that 𝑤
and 𝑓 are both free agents in 𝜇 who also both prefer each other to 𝜇(𝑤) and 𝜇( 𝑓 ),
respectively. I construct a blocking path in (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)), a contradiction to
the supposition that 𝜇 is in the agreeable core.

Because 𝑤 is a free agent in 𝜇, 𝑤 lies on an acyclic, complete, and alternating path
𝑃𝑤 of (𝐴, 𝜇0, 𝜇). Rewrite 𝑃𝑤 such that

𝑃𝑤 =
(
𝑒1, . . . , 𝑒𝑘−1,

(
𝜇0(𝑤), 𝑤

)
,
(
𝑤, 𝜇(𝑤)

)
, . . .

)
.

Similarly, there is a complete and alternating 𝑃 𝑓 such that

𝑃 𝑓 =
(
. . . ,

(
𝜇( 𝑓 ), 𝑓

)
,
(
𝑓 , 𝜇0( 𝑓 )

)
, 𝑒𝑘+1, . . . , 𝑒𝑛

)
.

There are two cases:

1. 𝑃𝑤 and 𝑃 𝑓 do not intersect: Then(
𝑒1, . . . , 𝑒𝑘−1,

(
𝑤, 𝑓

)
, 𝑒𝑘+1, 𝑒𝑛

)
is a blocking path of 𝜇.

2. 𝑃𝑤 and 𝑃 𝑓 do intersect: Then let 𝑖 be the greatest index less than 𝑘 such that
𝑒𝑖 is in 𝑃 𝑓 . Let 𝑒 𝑗 be the edge in 𝑃 𝑓 such that 𝑒𝑖 = 𝑒 𝑗 . Therefore the path(

𝑒 𝑗 , . . . , 𝑒𝑘−1,
(
𝑤, 𝑓

)
, 𝑒𝑘+1, . . . 𝑒 𝑗−1

)
is a blocking path of 𝜇.

In either case there is a blocking path of 𝜇. But then 𝜇 is not in the agreeable core,
a contradiction.

For the second claim I can repeat the argument from the first claim, substituting the
edge (𝑤, 𝑤) for {𝑤, 𝜇(𝑤)} in path 𝑃𝑤 and ( 𝑓 , 𝑓 ) for {𝜇( 𝑓 ), 𝑓 } in path 𝑃 𝑓 . □
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Lemma 1.A.3. Let 𝜇 and 𝜈 be structurally similar matches in the agreeable core.
Then (𝜇∨𝜈) (𝑤) ∈ 𝐹 if and only if 𝜇(𝑤) ∈ 𝐹 or 𝜈(𝑤) ∈ 𝐹. Similarly, (𝜇∨𝜈) ( 𝑓 ) ∈ 𝑊
if and only if 𝜇( 𝑓 ) ∈ 𝑊 and 𝜈( 𝑓 ) ∈ 𝑊 . A symmetric result holds for ∧.

Proof. Both statements clearly hold for every agent that is not free in 𝜇 (and 𝜈

because 𝜇 and 𝜈 are structurally similar). Hence, I show that the statements hold for
the free agents in 𝜇.

For the first statement:

• For the (⇒) direction: I show that if 𝜇(𝑤) ∉ 𝐹 and 𝜈(𝑤) ∉ 𝐹, then (𝜇 ∨
𝜈) (𝑤) ∉ 𝐹. Then 𝜇(𝑤) = 𝜈(𝑤) = 𝑤, which implies (𝜇 ∨ 𝜈) (𝑤) = 𝑤. Thus
(𝜇 ∨ 𝜈) (𝑤) ∉ 𝐹.

• For the (⇐) direction: I show that if 𝜇(𝑤) ∈ 𝐹 or 𝜈(𝑤) ∈ 𝐹, then (𝜇∨𝜈) (𝑤) ∈
𝐹. To see this, note that if 𝜇(𝑤) = 𝑓 or 𝜈(𝑤) = 𝑓 , then 𝑤 strictly prefers 𝑓
to being unmatched (𝑤) by Proposition 3. Therefore, 𝜇 ∨ 𝜈 cannot leave 𝑤
unmatched and therefore (𝜇 ∨ 𝜈) (𝑤) ∈ 𝐹.

For the second statement:

• For the (⇒) direction: I show that if either 𝜇( 𝑓 ) ∉ 𝑊 or 𝜈( 𝑓 ) ∉ 𝑊 , then
(𝜇 ∨ 𝜈) ( 𝑓 ) ∉ 𝑊 . Then 𝜇( 𝑓 ) = 𝑓 or 𝜈( 𝑓 ) = 𝑓 . By Proposition 3, 𝑓
weakly prefers both 𝜇( 𝑓 ) and 𝜈( 𝑓 ) being unmatched. By the definition of ∨,
(𝜇 ∨ 𝜈) ( 𝑓 ) = 𝑓 . Therefore, (𝜇 ∨ 𝜈) ( 𝑓 ) ∉ 𝑊 .

• For the (⇐) direction: I show that if 𝜇( 𝑓 ) ∈ 𝑊 and 𝜈( 𝑓 ) ∈ 𝑊 , then
(𝜇 ∨ 𝜈) ( 𝑓 ) ∈ 𝑊 . Then {𝜇( 𝑓 ), 𝜈( 𝑓 )} ⊆ 𝑊 . Therefore (𝜇 ∨ 𝜈) ( 𝑓 ) ∈ 𝑊 .

This completes the proof. □

Proof of Lemma 3: I draw my proof from the proof of Theorem 2.16 in Roth and
Sotomayor (1990). I show that 𝜇∨𝜈 is a match; the argument for 𝜇∧𝜈 is symmetric.

Because the free agents are the same in 𝜇 and 𝜈, I need only to show that 𝜇 ∨ 𝜈
is a match on the free agents of 𝜇 and 𝜈; all other matches are left unchanged
because 𝜇 and 𝜈 are structurally similar. It is immediate from the definition of ∨
that items 1 and 2 from the definition of a match hold. That is, I only need that
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(𝜇 ∨ 𝜈) (𝑎) = 𝑏 ⇐⇒ (𝜇 ∨ 𝜈) (𝑏) = 𝑎. Of course, if 𝑎 = 𝑏 then the statement is
tautological; hence, I prove for 𝑤 ∈ 𝑊 and 𝑓 ∈ 𝐹:

(𝜇 ∨ 𝜈) (𝑤) = 𝑓 ⇐⇒ (𝜇 ∨ 𝜈) ( 𝑓 ) = 𝑤.

For the (⇒) direction: I show that (𝜇 ∨ 𝜈) (𝑤) = 𝑓 implies (𝜇 ∨ 𝜈) ( 𝑓 ) = 𝑤. I
consider the case when 𝜇(𝑤) = 𝑓 ; the other case is symmetric. Suppose (toward
a contradiction) that (𝜇 ∨ 𝜈) ( 𝑓 ) ≠ 𝑤. Then (𝜇 ∨ 𝜈) ( 𝑓 ) = 𝜈( 𝑓 ). Then 𝑓 strictly
prefers 𝑤 to 𝜈( 𝑓 ) and 𝑤 strictly prefers 𝑓 to 𝜈(𝑤), so 𝑤 and 𝑓 is a blocking pair of
𝜈, a contradiction by Proposition 3. This completes this direction.

For the (⇐) direction: I show that (𝜇∨ 𝜈) ( 𝑓 ) = 𝑤 implies (𝜇∨ 𝜈) (𝑤) = 𝑓 . I define
a sequence of sets, then study their cardinality. Let

𝑊′ ≡ {𝑤 ∈ 𝑊 : (𝜇 ∨ 𝜈) (𝑤) ∈ 𝐹}
= {𝑤 ∈ 𝑊 : 𝜇(𝑤) ∈ 𝐹 or 𝜈(𝑤) ∈ 𝐹} ∵ 𝐿𝑒𝑚𝑚𝑎 1.𝐴.3.

and

𝐹′ ≡ { 𝑓 ∈ 𝐹 : (𝜇 ∨ 𝜈) ( 𝑓 ) ∈ 𝑊}
= { 𝑓 ∈ 𝐹 : 𝜇( 𝑓 ) ∈ 𝑊 and 𝜈( 𝑓 ) ∈ 𝑊} ∵ 𝐿𝑒𝑚𝑚𝑎 1.𝐴.3.

Observe the following relations:

|𝐹′| = |𝜇(𝐹′) | ∵ 𝜇 is a match

𝜇(𝐹′) ⊆ 𝑊′ ∵ Definition of 𝐹′ and𝑊′.

Therefore |𝐹′| ≤ |𝑊′|. Similarly,

|𝑊′| = | (𝜇 ∨ 𝜈) (𝑊′) | ∵ (⇒) implication

(𝜇 ∨ 𝜈) (𝑊′) ⊆ 𝐹′ ∵ (⇒) implication.

Therefore |𝑊′| ≤ |𝐹′| and thus |𝑊′| = |𝐹′|. Therefore | (𝜇∨ 𝜈) (𝑊′) | = |𝐹′| and thus
(𝜇 ∨ 𝜈) (𝑊′) = 𝐹′.

The final string of implications is as follows: If (𝜇 ∨ 𝜈) ( 𝑓 ) ∈ 𝑊 , then 𝑓 ∈ 𝐹′. If
𝑓 ∈ 𝐹′, then there exists 𝑤 in 𝑤 ∈ 𝑊′ such that (𝜇 ∨ 𝜈) (𝑤) = 𝑓 . This completes
this direction.

Therefore, 𝜇 ∨ 𝜈 satisfies item 3 from the definition of a match and thus 𝜇 ∨ 𝜈 is a
match. □
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Lemma 1.A.4. Let 𝜇 and 𝜈 be structurally similar matches in the agreeable core.
Then 𝜇 ∨ 𝜈 ⊆ 𝜇 ∪ 𝜈 and 𝐼 (𝜇 ∨ 𝜈) ⊆ 𝐼 (𝜇) ∪ 𝐼 (𝜈). The same holds for 𝜇 ∧ 𝜈.

Proof. By construction, 𝜇∨ 𝜈 only contains matches from 𝜇 and 𝜈 and thus 𝜇∨ 𝜈 ⊆
𝜇 ∪ 𝜈.

Let {𝑤, 𝑓 } ∈ 𝐼 (𝜇 ∨ 𝜈) and let 𝐴𝐹 be the free agents in 𝜇 (and 𝜈 because 𝜇 and 𝜈 are
structurally similar). There are three cases:

1. |{𝑤, 𝑓 } ∩ 𝐴𝐹 | = 0: Then (𝜇 ∨ 𝜈) (𝑤) = 𝜇(𝑤) and (𝜇 ∨ 𝜈) ( 𝑓 ) = 𝜇( 𝑓 ) by
construction, so {𝑤, 𝑓 } ∈ 𝐼 (𝜇).

2. |{𝑤, 𝑓 } ∩ 𝐴𝐹 | = 1: Suppose that 𝑤 ∈ 𝐴𝐹 ; the other case is symmetric. Then
either (𝜇∨𝜈) (𝑤) = 𝜇(𝑤) or (𝜇∨𝜈) (𝑤) = 𝜈( 𝑓 ); again, let (𝜇∨𝜈) (𝑤) = 𝜇(𝑤)
and the other case is symmetric. Then (𝜇 ∨ 𝜈) ( 𝑓 ) = 𝜇( 𝑓 ) by construction, so
{𝑤, 𝑓 } ∈ 𝐼 (𝜇).

3. |{𝑤, 𝑓 } ∩ 𝐴𝐹 | = 2: This contradicts Proposition 3 and thus cannot happen.

In the cases that do not lead to a contradiction I see that {𝑤, 𝑓 } ∈ 𝐼 (𝜇) ∪ 𝐼 (𝜈), which
completes the proof. □

Definition 1.A.2. A crossing edge at 𝜇 contains both a free agent and an agent who
is not free at 𝜇.

Lemma 1.A.5. Let 𝜇 and 𝜈 be structurally similar matches in the agreeable core.
Then any blocking path of 𝜇 ∨ 𝜈 must contain two crossing edges at 𝜇. All crossing
edges at 𝜇 of any blocking path of 𝜇 ∨ 𝜈 are contained in either 𝐼 (𝜇) or 𝐼 (𝜈).

A symmetric result holds for 𝜇 ∧ 𝜈.

Proof. Let 𝐴𝐹 denote the free agents in 𝜇 (and 𝜈 because 𝜇 and 𝜈 are structurally
similar), and let 𝑃 be a blocking path of 𝜇 ∨ 𝜈.

I first prove that all crossing edges at 𝜇 of any blocking path of 𝜇 ∨ 𝜈 are contained
in either 𝐼 (𝜇) or 𝐼 (𝜈). To see this, let (𝑎, 𝑏) ∈ 𝑃 be a crossing edge with 𝑎 ∈ 𝐴𝐹

and 𝑏 ∈ 𝐴\𝐴𝐹 . Because 𝜇0(𝐴𝐹) = 𝐴𝐹 , it follows that (𝑎, 𝑏) ∈ 𝜇 ∨ 𝜈 ∪ 𝐼 (𝜇 ∨ 𝜈).
Because 𝜇(𝐴𝐹) = 𝐴𝐹 and 𝜈(𝐴𝐹) = 𝐴𝐹 by construction it follows that {𝑎, 𝑏} ∉ 𝜇∨𝜈.
Therefore (𝑎, 𝑏) ∈ 𝐼 (𝜇 ∨ 𝜈).

Next, I show that 𝑃 ⊈ 𝐴𝐹 and 𝑃 ⊈ 𝐴\𝐴𝐹 . To see this, consider both cases (toward
a contradiction in each case):
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1. Suppose 𝑃 ⊆ 𝐴𝐹 : Then exists an edge 𝑒 in 𝑃 such that 𝑒 ∈ 𝐼 (𝜇 ∨ 𝜈). By
Lemma 1.A.4, 𝑒 ∈ 𝐼 (𝜇) (the other case is symmetric). If 𝑒 = (𝑤, 𝑓 ), then
𝑒 constitutes a blocking pair and contradicts Proposition 3. If 𝑒 = (𝑎, 𝑎),
then 𝑎 strictly prefers being unmatched to 𝜇 and contradicts Proposition 3.
Therefore, 𝑃 ⊈ 𝐴𝐹 .

2. Suppose 𝑃 ⊆ 𝐴\𝐴𝐹 : Note that 𝜇∨𝜈 agrees with 𝜇 on 𝐴\𝐴𝐹 . If 𝑃 blocks 𝜇∨𝜈
then 𝑃 blocks 𝜇, a contradiction to the supposition that 𝜇 is in the agreeable
core. Therefore, 𝑃 ⊈ 𝐴\𝐴𝐹 .

Therefore, 𝑃 intersects both 𝐴 and 𝐴\𝐴𝐹 . By the definition of a path, there exists
some crossing edge at 𝜇 in 𝑃.

Third, to see that two crossing edges at 𝜇 exist, suppose not. Let (𝑎, 𝑏) be the
crossing edge at 𝜇 in 𝑃 such that 𝑎 ∈ 𝐴𝐹 and 𝑏 ∉ 𝐴𝐹 . As observed earlier,
(𝑎, 𝑏) ∈ 𝐼 (𝜇 ∨ 𝜈). By Lemma 1.A.4, it follows that (𝑎, 𝑏) ∈ 𝐼 (𝜇) (the other case
is symmetric). Suppose that 𝑎 ∈ 𝑊 ; the other case is symmetric. Then 𝑃 may be
written

𝑃 = (

contained in 𝐴𝐹︷                        ︸︸                        ︷
𝑒1, . . . , 𝑒𝑘−1, (𝜇0(𝑎), 𝑎), (𝑎, 𝑏),︸ ︷︷ ︸

contained in 𝐼 (𝜇)

contained in 𝐴\𝐴𝐹︷     ︸︸     ︷
𝑒𝑘 . . . , 𝑒𝐾 ).

Note that every edge from 𝑒𝑘 to 𝑒𝐾 exists in (𝐴, 𝜇0∪ 𝜇∪ 𝐼 (𝜇)) because 𝜇∨ 𝜈 agrees
with 𝜇 for these agents. Because 𝑎 ∈ 𝐴𝐹 , there is an alternating, complete, and
acyclic path 𝑃𝑎 in (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)) such that

𝑃𝑎 = (𝑒𝑎1 , . . . , 𝑒
𝑎
𝑙−1, (𝜇0(𝑎), 𝑎), (𝑎, 𝜇(𝑎)), 𝑒𝑎𝑙 . . . , 𝑒

𝑎
𝐿).

Because 𝜇0(𝐴𝐹) = 𝐴𝐹 and 𝜇(𝐴𝐹) = 𝐴𝐹 by construction, it follows that every agent
in 𝑃𝑎 is in 𝐴𝐹 . Observe that the path

𝑃∗ = (𝑒𝑎1 , . . . , 𝑒
𝑎
𝑙−1, (𝜇0(𝑎), 𝑎), (𝑎, 𝑏), 𝑒𝑘 . . . , 𝑒𝐾)

is a blocking path of 𝜇, a contradiction. Hence, there are at least two edges that
intersect both 𝐴𝐹 and 𝐴\𝐴𝐹 . □

Proof of Theorem 2: I show that 𝜇 ∨ 𝜈 is in the agreeable core; the argument for
𝜇 ∧ 𝜈 is symmetric. By Lemma 3, 𝜇 ∨ 𝜈 is a match. Because 𝜇 and 𝜈 are both
individually rational, 𝜇 ∨ 𝜈 is individually rational. The remaining step is to show
that there are no blocking paths of 𝜇 ∨ 𝜈.
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Suppose (toward a contradiction) that 𝜇 ∨ 𝜈 is blocked by an agreeable coalition.
By Proposition 1, there is a blocking path 𝑃 of 𝜇 ∨ 𝜈. Let 𝐴𝐹 denote the free agents
in 𝜇 (and 𝜈 because 𝜇 and 𝜈 are structurally similar).

By Lemma 1.A.5, there are two crossing edges at 𝜇 in 𝑃, and both of these is in
𝐼 (𝜇 ∨ 𝜈). There are two cases:

1. There exists two crossing edges 𝑒𝑘 and 𝑒𝐾 at 𝜇 in path 𝑃 such that the edges
𝑒𝑘+1, . . . , 𝑒𝐾−1 (if any) are contained within 𝐴\𝐴𝐹 . Let {𝑤, 𝑓 } = 𝑒𝑘 and
(𝑤′, 𝑓 ′) = 𝑒𝐾 with 𝑎𝑘 , 𝑎𝐾 ∈ 𝐴𝐹 and 𝑏𝑘 , 𝑏𝐾 ∈ 𝐴\𝐴𝐹 . Because 𝜇 ∨ 𝜈 ≿𝑊 𝜇

and 𝜇 ∨ 𝜈 ≿𝑊 𝜈, it follows that one of (𝑤, 𝑓 ) ∈ 𝐼 (𝜇) and (𝑤, 𝑓 ) ∈ 𝐼 (𝜈). By
Lemma 1.A.4, let (𝑤′, 𝑓 ′) ∈ 𝐼 (𝜇) (the other case is symmetric).

Because 𝑤 ∈ 𝐴𝐹 , there exists an acyclic, complete, and alternating path 𝑃𝑤

of (𝐴, 𝜇0 ∪ 𝜇 ∪ 𝐼 (𝜇)):

𝑃𝑤 = (𝑒𝑤1 , . . . , 𝑒
𝑤
𝑖−1, {𝜇0(𝑤), 𝑤}, {𝑤, 𝜇(𝑤)}, . . .).

Similarly because 𝑓 ′ ∈ 𝐴𝐹 :

𝑃 𝑓
′
= (. . . , (𝜇( 𝑓 ′), 𝑓 ′), ( 𝑓 ′, 𝜇0( 𝑓 ′)), 𝑒 𝑓

′

𝑗−1, . . . , 𝑒
𝑓 ′

1 ).

Then the path

𝑃∗ =(𝑒𝑤1 , . . . , 𝑒
𝑤
𝑖−1, (𝜇0(𝑤), 𝑤),︸                          ︷︷                          ︸
𝑃𝑤

𝑃︷                                   ︸︸                                   ︷
(𝑤, 𝑓 ), 𝑒𝑘+1, . . . , 𝑒𝐾−1, (𝑤′, 𝑓 ′),

( 𝑓 ′, 𝜇0( 𝑓 ′)), 𝑒 𝑓
′

𝑗−1, . . . , 𝑒
𝑓 ′

1︸                            ︷︷                            ︸
𝑃 𝑓 ′

)

is a blocking path of 𝜇, a contradiction to the supposition that 𝜇 is in the
agreeable core.

2. There does not exist two crossing edges 𝑒𝑘 and 𝑒𝐾 at 𝜇 in path 𝑃 such that
the edges 𝑒𝑘+1, . . . , 𝑒𝐾−1 (if any) are contained within 𝐴\𝐴𝐹 . Let (𝑎, 𝑏) be a
crossing edge of 𝜇 of 𝑃 with 𝑎 ∈ 𝐴𝐹 . Let 𝑏 ∈ 𝑊 ; the other case is symmetric.
The supposition implies that 𝑃 must be acyclic and hence can be written

𝑃 = ( 𝑒1, . . . , 𝑒𝑘−1,︸         ︷︷         ︸
contained in 𝐴\𝐴𝐹

(𝑏, 𝑎), (𝑎, 𝜇0(𝑎)), . . .).
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Because 𝑎 ∈ 𝐴𝐹 , there exists an acyclic, complete, and alternating path 𝑃𝑎 of
(𝐴, 𝜇0, 𝜇 ∪ 𝐼 (𝜇)):

𝑃𝑎 = (. . . , (𝜇(𝑎), 𝑎), (𝑎, 𝜇0(𝑎)), 𝑒𝑎𝑖−1, . . . , 𝑒
𝑎
1).

Then the path

𝑃∗ = (
𝑃︷         ︸︸         ︷

𝑒1, . . . , 𝑒𝑘−1, (𝑎, 𝜇0(𝑎)), 𝑒𝑎𝑖−1, . . . , 𝑒
𝑎
1︸                        ︷︷                        ︸

𝑃𝑎

)

is a blocking path of 𝜇 because 𝜇 and 𝜇∨ 𝜈 agree on the agents in 𝐴\𝐴𝐹 . This
is a contradiction to the supposition that 𝜇 is in the agreeable core.

Therefore, there are no blocking paths of 𝜇 ∨ 𝜈, which implies that 𝜇 ∨ 𝜈 is in the
agreeable core. □

Proof of Proposition 4: Consider the following counterexample. There are three
workers denoted by the numbers 1, 2, and 9, and three firms denoted by the letters
𝐴, 𝐵, and 𝑍 . Workers 1 and 2 are reference matched to 𝐴 and 𝐵, respectively, while
worker 9 and firm 𝑍 are each reference matched to him or herself. Formally,

𝜇0(1) = 𝐴 𝜇0(2) = 𝐵 𝜇0(9) = 9

𝜇0(𝐴) = 1 𝜇0(𝐵) = 2 𝜇0(𝑍) = 𝑍.

A profile of preferences ≻ and an alternate profile of worker preferences are given
in Figure 1.8. I use the circles to indicate match 𝜇◦, the squares to indicate match
𝜇□, and ˜ to indicate �̃�.

𝜇◦(1) = 𝐵 𝜇◦(2) = 𝐴 𝜇◦(9) = 𝑍
𝜇◦(𝐴) = 2 𝜇◦(𝐵) = 1 𝜇◦(𝑍) = 9

𝜇□(1) = 𝐴 𝜇□(2) = 𝑍 𝜇□(9) = 𝐵
𝜇□(𝐴) = 1 𝜇□(𝐵) = 9 𝜇□(𝑍) = 2

�̃�(1) = 𝐴 �̃�(2) = 𝐵 �̃�(9) = 𝑍
�̃�(𝐴) = 1 �̃�(𝐵) = 2 �̃�(𝑍) = 9.
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≻′1 ≻2 ≻9

𝐵◦ 𝑍□ 𝐵□

𝑍 𝐴◦ 𝑍◦

𝐴□ 𝐵

≻′1 ≻′2 ≻9

𝐵◦ 𝑍□ 𝐵□

𝑍◦ 𝐴 �̃�

�̃�□ �̃�

≻1 ≻2 ≻9

𝐵◦ 𝑍 𝐵

𝑍 𝐴◦ 𝑍◦

𝐴□ 𝐵

≻′1 ≻′2 ≻′9
𝐵 𝑍□ 𝐵□

𝑍◦ 𝐴 𝑍

𝐴□ 𝐵

≻𝐴 ≻𝐵 ≻𝑍

𝐴 9□ 9̃◦

2◦ 1◦ 1

1̃□ 2̃ 2□

𝑃1 𝑃2 𝑃3 𝑃4

Figure 1.8: Tables provide preferences ≻ and alternate worker preferences ≻′. A
grayed-out firm in ≻′ indicates that the worker matching to himself more than to
that firm. If the table does not specify a preference over an alternative, then they are
worse than every alternative listed.

I keep the firm preference profile fixed at ≻𝐴, ≻𝐵, and ≻𝑍 for the firms and only
specify preferences for the workers.

To prove the result, suppose that 𝜓 is not preference manipulable. I consider the
sequence of preference profiles 𝑃1, 𝑃2, 𝑃3, and 𝑃4 formed by swapping ≻′1 for ≻1,
then ≻′2 for ≻2, and then ≻′9 for ≻9. I use the non-manipulability of 𝜓 to restrict 𝜓 to
a unique match in each case. I then show that at 𝑃3 worker 9 can profitably deviate
to ≻′9, a contradiction to the non-manipulability of 𝜓.

First, I limit the scope of matches I consider. Consider any 𝜇 and any 𝑃 𝑗 .

• If 𝐴 ≻1 𝜇(1) then 1 strictly prefers 𝜇0(1) to 𝜇(1), hence 𝜇 is not in the
agreeable core; the same holds for 𝐵 ≻2 𝜇(2), 2 ≻𝐵 𝜇(𝐵), and 1 ≻𝐴 𝜇(𝐴).

• If 𝑗 ≠ 4 and 𝑍 ≻9 𝜇(9), then {9, 𝑍} is an agreeable coalition that blocks 𝜇.

• If 𝑗 = 4 and 𝑍 ≻9 𝜇(9), then 𝜇 in the agreeable core implies that 𝜇(1) ≠ 𝑍

and hence 𝐵 ≻9 𝜇(9) implies that {2, 9, 𝐵, 𝑍} is an agreeable coalition that
blocks 𝜇; hence, if 𝜇 is in the agreeable core then 𝜇(9) = 𝐵.
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• If 𝜇(1) = 𝑍 and 𝜇(2) = 𝐴, then for 𝑃1 {1, 𝐴, 𝑍} is an agreeable blocking
coalition and for 𝑃2, 𝑃3, and 𝑃4 𝐴 ≻′1 𝑍 . Hence for all 𝑃 𝑗 𝜇(1) = 𝑍 and
𝜇(2) = 𝐴 imply that 𝜇 is not in the agreeable core.

It follows that every worker is matched to a firm, and thus every firm is matched to a
worker. Therefore, any match in the agreeable core only occurs between agents who
are listed on each other’s preferences in Figure 1.8. An exhaustive search reveals
that 𝜇◦, 𝜇□, and �̃� are the only matches that meet these criteria.

For 𝑃1, the agreeable core is {𝜇◦} because:

✓ 𝜇◦ is the output of the PE algorithm and hence is in the agreeable core.

✗ 𝜇□ is blocked by the agreeable coalition {1, 𝐴, 𝑍} with any deviation 𝜇′ such
that 𝜇′(1) = 𝑍 and 𝜇′(𝐴) = 𝐴.

✗ �̃� is blocked by the agreeable coalition {1, 2, 𝐴, 𝐵} with any deviation 𝜇′ such
that 𝜇′(1) = 𝐵 and 𝜇′(2) = 𝐴.

Hence, 𝜓(𝑃1) = 𝜇◦.

For preferences 𝑃2, the agreeable core is {𝜇◦, 𝜇□} because:

✓ 𝜇◦ does not match any worker to a firm he dropped from his preference,
so every blocking coalition under these preferences forms under the prior
preferences.

✓ 𝜇□ is the output of the PE algorithm and hence is in the agreeable core.

✗ �̃� is blocked by the agreeable coalition {1, 2, 𝐴, 𝐵} with any deviation 𝜇′ such
that 𝜇′(1) = 𝐵 and 𝜇′(2) = 𝐴.

If 𝜓(𝑃2) = 𝜇□, then consider the deviation by worker 1 of misreporting ≻1 at 𝑃2.
Because 𝜇◦(1) ≻′1 𝜇

□(1), this is a profitable deviation. Therefore, because 𝜓 is not
preference manipulable, 𝜓(𝑃2) = 𝜇◦.

For preferences 𝑃3, the agreeable core is {𝜇□, �̃�} because:

✗ 𝜇◦matches worker 2 to firm 𝐴, which violates the requirement that 𝜇(2) ≿2 𝐵.

✓ 𝜇□ is the output of the PE algorithm and hence is in the agreeable core.
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✓ �̃�: Observe that 𝑍 cannot be strictly better off in any blocking coalition,
and thus 2 cannot be strictly better any blocking coalition. Furthermore, any
agreeable coalition that makes 1 strictly better off must include 𝐵 and hence,
because the coalition is agreeable, 2. Therefore, any agreeable blocking
coalition cannot make any worker strictly better off. Hence, �̃� is also in the
agreeable core.

If 𝜓(𝑃3) = 𝜇□, then consider the deviation by worker 2 of reporting ≻′2 at 𝑃2.
Because 𝜇□(2) ≻2 𝜇

◦(2), this is a profitable deviation. Therefore, because 𝜓 is not
preference manipulable, 𝜓(𝑃3) = �̃�.

In this final step, I note that the core under 𝑃4 is the singleton 𝜇□. To see this,
observe that 𝜇◦ and �̃� each match a worker to a firm he lists below his reference
match, and therefore none of these three matches is in the agreeable core. 𝜇□ is the
output of the PE algorithm and hence is in the agreeable core. However, consider
the deviation by worker 9 of reporting ≻′9 at 𝑃3. Because 𝜇□(9) ≻9 �̃�(9), this is a
profitable deviation. Therefore, 𝜓 is preference manipulable, a contradiction. □

Introduction to the proofs of Theorem 3:

Lemma 1.A.6. For any 𝜇1, there is no 𝑤 and 𝑓 such that all three conditions are
true:

1. 𝑤 is active in the Propose stage; and

2. 𝜇0( 𝑓 ) ≠ 𝜇1( 𝑓 ); and

3. (𝑤, 𝑓 ) is a blocking pair of 𝜇1.

Proof. Toward a contradiction, suppose (𝑤, 𝑓 ) is such a pair. Because 𝑤 is active
and 𝑤 strictly prefers 𝑓 to 𝜇1(𝑤), 𝑤 makes a proposal to 𝑓 . Because 𝜇0( 𝑓 ) ≠ 𝜇1( 𝑓 )
and 𝑓 strictly prefers 𝑤 to 𝜇1( 𝑓 ), 𝑓 does not reject the proposal from 𝑤. This is a
contradiction to the supposition that (𝑤, 𝑓 ) is a blocking pair. Therefore, no such
pair exists. □

Proof of Theorem 3: Suppose (toward a contradiction) that 𝑤 can profitably mis-
report ≿′𝑤 but that 𝑤 is not active in both the ≿′𝑤-Propose and ≿′𝑤-Exchange stages.
First I consider the case when 𝑤 is not active in the ≿′𝑤-Propose stage, and then the
case when 𝑤 is not active in the ≿′𝑤-Exchange stage. Before continuing, I note that
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𝑤’s preferences do not affect whether 𝑤 is active in the ≿𝑤-Propose or ≿′𝑤-Propose
stages.

Suppose 𝑤 is not active in the ≿′𝑤-Propose stage. The rest of the proof follows
directly from the non-manipulability of the Top Trading Cycles algorithm. This is
well-known in the literature; see Ma (1994) for one such proof, and footnote 4 of
Dur and Ünver (2019) for a list of references to other proofs. This is a contradiction
to the supposition that 𝑤 can profitably misreport ≿′𝑤.

The remainder of the proof is built on the proof of the blocking lemma of Roth and
Sotomayor (1990).

For the remainder of the proof, suppose that 𝑤 is active in the ≿′𝑤-Propose stage but
not in the ≿′𝑤-Exchange stage. Therefore, 𝑤 is active in the ≿𝑤-Propose stage as
well. Let 𝜇′1 be the output of the ≿′𝑤-Propose stage. Let 𝑊′ be the set of workers
who strictly prefer 𝜇′1 to 𝜇1 and are active in the ≿𝑤-Propose stage. By supposition,
𝑤 ∈ 𝑊′, so 𝑊′ is nonempty. Because 𝜇1 is individually rational, every worker in
𝑊′ is active in the ≿′𝑤-Propose stage but not active in the ≿′𝑤-Exchange stage.

Next, I show that there always exists a worker 𝑤∗ and firm 𝑓 ∗ such that the following
four conditions hold:

1. 𝑤∗ is active in the ≿′𝑤-Propose stage; and

2. 𝜇0( 𝑓 ∗) ≠ 𝜇′1( 𝑓
∗); and

3. (𝑤∗, 𝑓 ∗) is a blocking pair of 𝜇′1; and

4. 𝑤∗ ≠ 𝑤.

There are two cases:

1. 𝜇′1(𝑊
′) = 𝜇1(𝑊′): First, I show that every 𝑤′ who is active in the ≿𝑤-Propose

stage is also active in the ≿′𝑤-Propose stage. To see this, note that there is a
sequence of workers𝑤1, . . . , 𝑤𝑛 ≡ 𝑤′ such that𝑤𝑘 is acceptable19 to 𝜇0(𝑤𝑘+1)
and 𝑤𝑘 is the first worker to propose to 𝜇0(𝑤𝑘+1) in the ≿𝑤-Propose stage.
Toward a contradiction, suppose that some workers in the sequence are not
active in the ≿′𝑤-Propose stage, and let 𝑤𝑘 be the one with the lowest index.
Obviously, 𝑘 ≠ 1. By construction, 𝑤𝑘−1 is active in the≿′𝑤-Propose stage and

19That is, 𝑓 ∗ prefers �̃� to 𝜇0 ( 𝑓 ∗).
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prefers 𝜇′1 to 𝜇1 because 𝑤𝑘−1 does not propose to 𝜇0(𝑤𝑘 ). By supposition,
𝜇′1(𝑊

′) = 𝜇1(𝑊′). Therefore, there is some acceptable �̃� ∈ 𝑊′ who proposes
to 𝜇0(𝑤𝑘 ) in the ≿′𝑤-Propose stage. Hence 𝑤𝑘 is active in the ≿′𝑤-Propose
stage, a contradiction. Therefore 𝑤′ is active in the ≿′𝑤-Propose stage.

Let 𝐹′ ≡ 𝜇′1(𝑊
′). Fix an arbitrary order of proposals and let 𝑓 ∗ be the last firm

in 𝐹′ to receive a proposal from an acceptable worker in𝑊′ in the ≿𝑤-Propose
stage. Because 𝜇′1 is individually rational, each worker in 𝑊′ is acceptable
to her 𝜇′1-partner. Because 𝑊′ is nonempty and every worker in 𝑊′ makes a
proposal in the ≿𝑤-Propose stage, such a firm exists.

Because every worker in 𝑊′ strictly prefers 𝜇′1 to 𝜇1 and is active in the
≿𝑤-Propose stage, every firm in 𝐹′ must have rejected at least one proposal
from an acceptable worker in𝑊′ in the ≿𝑤-Propose stage (namely, the firm’s
𝜇′1-partner). Thus 𝑓 ∗ was matched to some 𝑤∗ ∈ 𝑊 when she received this
last proposal and 𝑓 ∗ rejects 𝑤∗. Note that 𝑤∗ cannot be in𝑊′; otherwise, after
being rejected by 𝑓 ∗, 𝑤∗ would have proposed to another firm in 𝐹′ because
𝜇1(𝑊′) = 𝐹′. Hence, 𝑤∗ ≠ 𝑤. Note that 𝑤∗ is active in the ≿𝑤-Propose stage,
so he is also active in the ≿′𝑤-Propose stage. This satisfies conditions 1 and
4.

Next, note that 𝜇0( 𝑓 ∗) ≠ 𝜇′1( 𝑓
∗) because 𝜇1( 𝑓 ∗) ∈ 𝑊′ and no worker in

𝑊′ is active in the ≿′𝑤-Exchange stage (see earlier comment). This satisfies
condition 2.

Finally, note that 𝑓 ∗ strictly prefers 𝑤∗ to 𝜇′1( 𝑓
∗) because 𝑓 ∗ must have

rejected 𝜇′1( 𝑓
∗) but 𝑤∗ was tentatively accepted immediately prior to 𝑓 ∗

accepting 𝜇1( 𝑓 ∗) in the ≿𝑤-Propose stage. Because 𝑤∗ is active in both the
≿𝑤- and ≿′𝑤-Propose stages and 𝑤 ∉ 𝑊′, it follows that 𝑤 weakly prefers 𝜇1

to 𝜇′1 Because 𝑤∗ strictly prefers 𝑓 to 𝜇1(𝑤) and 𝑤 weakly prefers 𝜇1 to 𝜇′1, it
follows that 𝑤∗ strictly prefers 𝑓 to 𝜇′1(𝑤

∗). Therefore, (𝑤∗, 𝑓 ∗) is a blocking
pair of 𝜇′1. This satisfies condition 3.

This completes this case.

2. 𝜇′1(𝑊
′) ≠ 𝜇1(𝑊′): Fix an arbitrary order of proposals and let 𝑓 ∗ be the first

firm in 𝜇′1(𝑊
′)\𝜇1(𝑊′) to receive a proposal from 𝜇′1( 𝑓

∗) in the ≿′𝑤-Propose
stage. Note that 𝜇0( 𝑓 ∗) ≠ 𝜇′1( 𝑓

∗) because 𝜇′1( 𝑓
∗) ∈ 𝑊′ and no worker in

𝑊′ is active in the ≿′𝑤-Exchange stage (see earlier comment). This satisfies
condition 2.
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Let 𝑤∗ ≡ 𝜇1( 𝑓 ∗). Note that 𝑤∗ ∉ 𝑊′ and thus 𝑤∗ ≠ 𝑤. This satisfies
condition 4.

Let𝑤′ ≡ 𝜇′1( 𝑓
∗). Note that𝑤′ proposes to 𝑓 ∗ in the≿𝑤-Propose stage because

𝑤′ ∈ 𝑊′. Therefore, 𝑤∗ is active in the ≿𝑤-Propose stage.

Next, I show that 𝑤∗ is active in the ≿′𝑤-Propose stage. To see this, note
that there is a sequence of workers 𝑤1, . . . , 𝑤𝑛 ≡ 𝑤∗ such that in the ≿𝑤-
Propose stage, 𝑤𝑘 is acceptable to 𝜇0(𝑤𝑘+1) and 𝑤𝑘 is the first worker to
propose to 𝜇0(𝑤𝑘+1). Toward a contradiction, suppose that some workers in
the sequence are not active in the ≿′𝑤-Propose stage, and let 𝑤𝑘 be the one
with the lowest index. Obviously, 𝑘 ≠ 1. By construction, 𝑤𝑘−1 is active in
the ≿′𝑤-Propose stage and prefers 𝜇′1 to 𝜇1 because 𝑤𝑘−1 does not propose to
𝜇0(𝑤𝑘 ). Therefore, 𝑤𝑘−1 must propose to 𝜇′1(𝑤𝑘−1) at an earlier step of the
≿′𝑤-Propose stage than 𝑤′ proposes to 𝑓 ∗, a contradiction to the supposition
that 𝑤′ is the first such worker to do so. Hence 𝑤𝑘 is active in the ≿′𝑤-Propose
stage, a contradiction. Therefore 𝑤∗ is active in the ≿′𝑤-Propose stage. This
satisfies condition 1.

Note that 𝑤∗ strictly prefers 𝑓 ∗ to 𝜇′1(𝑤
∗) because 𝑤∗ ∉ 𝑊′, 𝑤∗ is active in

both Propose stages, and 𝑓 ∗ = 𝜇1(𝑤∗) ≠ 𝜇′1(𝑤
∗). Similarly, 𝑤∗ ≠ 𝜇0( 𝑓 ∗)

because 𝜇′1 is individually rational. Because 𝑤′ is rejected by 𝑓 ∗ in favor of 𝑤∗

in the ≿𝑤-Propose stage, it follows that 𝑓 ∗ strictly prefers 𝑤∗ to 𝑤′. Therefore,
(𝑤∗, 𝑓 ∗) is a blocking pair of 𝜇′1. This satisfies condition 3.

This completes this case.

Because only 𝑤 misreports, 𝑤∗ in each case has the same preferences. Therefore,
the conditions of lemma 1.A.6 are met, a contradiction to the supposition that 𝜇′1 is
the output of the ≿′𝑤-Propose stage. This completes the proof.

□

Proof of Theorem 4: This proof has two parts. In the first, I show that 𝜇′1(𝑤) = 𝑓 .
In the second, I show that 𝑤 is not active the 𝜇′0-Propose stage.

Suppose (toward a contradiction) that 𝜇′1(𝑤) ≠ 𝑓 . I show that every worker who
proposes in the 𝜇0-Propose stage weakly prefers 𝜇1 to 𝜇′1. This contradicts the
supposition that 𝑤 strictly prefers 𝜇′1 to 𝜇1.

First, choose an arbitrary proposal order for the 𝜇0-Propose stage such that 𝑤 only
makes his first proposal if he is the only active worker. Use the notation (�̃�, 𝑓 ) to
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indicate that �̃� proposes to 𝑓 , and let (𝑤1, 𝑓1), (𝑤2, 𝑓2), . . . , (𝑤𝑛, 𝑓𝑛) be the order
of proposals. By Proposition 2 the output of the Propose stage is independent of the
proposal order.

Second, I argue by induction that there is a proposal order for the 𝜇′0-Propose stage
such that the first 𝑛 proposals are (𝑤1, 𝑓1), (𝑤2, 𝑓2), . . . , (𝑤𝑛, 𝑓𝑛). In the base case,
consider (𝑤1, 𝑓1). There are two cases:

1. 𝑤1 ≠ 𝑤: Then 𝑤1 or 𝜇0(𝑤1) is a proposal source in 𝜇0. Thus 𝑤1 or 𝜇0(𝑤1) is
a proposal source in 𝜇′0. Therefore 𝑤1 is active at the start of the 𝜇′0-Propose
stage.

2. 𝑤1 = 𝑤: Then 𝑤 is the only active worker at the start of the 𝜇0-Propose
stage. Because 𝜇′1(𝑤) ≠ 𝑓 , this implies that 𝑤 is active at some point in the
𝜇′0-Propose stage. Therefore, 𝑤 is active at the start of the 𝜇′0-Propose stage.

Therefore there is a proposal order such that (𝑤1, 𝑓1) is the first proposal in the
𝜇′0-Propose stage.

For the inductive step, suppose that there is a proposal order such that (𝑤1,

𝑓1), (𝑤2, 𝑓2), . . . , (𝑤𝑘−1, 𝑓𝑘−1) are the first 𝑘 − 1 proposals in the 𝜇′0-Propose stage.
There are two cases:

1. 𝑤 𝑗 ≠ 𝑤 for any 𝑗 < 𝑘: Observe that there are weakly more rejections in the
𝜇′0-Propose stage. Therefore, the set of active agents is weakly larger in the
𝜇′0-Propose stage, with the possible exception of 𝑤. If 𝑤𝑘 = 𝑤, then 𝑤 is the
only active worker in the 𝜇0-Propose stage. Because 𝜇′1(𝑤) ≠ 𝑓 , this implies
that 𝑤 is active at some point in the 𝜇′0-Propose stage. Therefore 𝑤 must be
active at the 𝑘 th step of the 𝜇′0-Propose stage. Therefore 𝑤𝑘 must be active at
the 𝑘 th step of the 𝜇′0-Propose stage

2. 𝑤 𝑗 = 𝑤 for some 𝑗 < 𝑘: Observe that there are weakly more rejections in the
𝜇′0-Propose stage. Therefore, the set of active agents is weakly larger in the
𝜇′0-Propose stage because 𝑤 has been active at least once. Therefore 𝑤𝑘 must
be active at the 𝑘 th step of the 𝜇′0-Propose stage.

Therefore, 𝑤 makes weakly more proposals in the 𝜇′0-Propose stage, a contradiction
to the supposition that 𝑤 and 𝑓 profitably misreport the initial match. Therefore,
𝜇′1(𝑤) = 𝑓 .
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Suppose (toward a contradiction) that 𝑤 is active in the Propose phase 𝜇′0-Propose
stage. Let

𝑤1 ≡ 𝑤, 𝑓1 ≡ 𝜇′2(𝑤1), 𝑤2 ≡ 𝜇′0( 𝑓1), . . . , 𝑓𝑛 ≡ 𝑓

be the cycle in which 𝑤 and 𝑓 sit down in in the 𝜇′0-Exchange stage.

Consider any 𝑤𝑘 in this cycle. If 𝑤𝑘 is active in the 𝜇′0-Propose stage, then 𝑤𝑘
proposes to 𝑓𝑘 in the 𝜇′0-Propose stage because 𝜇′1(𝑤𝑘 ) = 𝜇

′
0(𝑤𝑘 ). Because 𝜇′2( 𝑓𝑘 ) =

𝑤𝑘 , it follows that 𝑓𝑘 weakly prefers 𝑤𝑘 to 𝜇′0( 𝑓𝑘 ). Because 𝑓𝑘 rejects 𝑤𝑘 at some
point of the 𝜇′0-Propose stage, it then follows that 𝑤𝑘+1 is active in the 𝜇′0-Propose
stage. By supposition, 𝑤 is active in the 𝜇′0-Propose stage.

Therefore, 𝑤𝑛 is active in the 𝜇′0-Propose stage. Therefore, 𝑤𝑛 proposes to 𝑓 in the
𝜇′0-Propose stage but 𝑓 rejects 𝑤𝑛. Because 𝑓 strictly prefers 𝜇′2( 𝑓 ) to 𝜇2( 𝑓 ), and
weakly prefers 𝜇2( 𝑓 ) to being unmatched, it follows that 𝑓 does not reject a proposal
from 𝑤𝑛, a contradiction. Therefore, 𝑤 is not active in the 𝜇′0-Propose stage. □
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C h a p t e r 2

A UNIFIED THEORY OF SCHOOL CHOICE

2.1 Introduction
School choice programs1 allocate school seats using priorities (such as sibling status
or proximity): when a school is oversubscribed, these priorities determine which
students are admitted. The interpretation of these priorities is fundamental to the
program’s design, and there are two leading interpretations. The stronger interpreta-
tion posits that priorities are the right to attend the school ahead of those with lower
priorities. In the weaker interpretation, priorities reflect “better opportunities” to
attend a school, all else equal (Abdulkadiroğlu and Sönmez, 2003).

These interpretations underpin the central trade-off in school choice between fairness
and efficiency. Fairness means no student is denied admission to a school in favor of
a lower-priority student; efficiency means students are assigned to schools in such a
way that no student can be improved without harming another student. By requiring
the stronger interpretation, the designer arrives at a fair match because no student
prefers a school that a lower-priority student is assigned to. However, allowing for
the weaker interpretation shifts the set of permissible assignments to include an
efficient match. The main dilemma is that no algorithm delivers a match that is both
fair and efficient.

Despite the appeal of efficiency, policymakers consistently choose fairness.2 Empir-
ically, the cost is substantial: for instance, Abdulkadiroğlu, Pathak and Roth (2009)
finds that the assignments of 4300 eighth-grade students in New York City could
have been improved without harming any other students. In response to this, recent
research focuses on weaker versions of fairness to allow for efficiency gains.

However, an examination of why policymakers side with fairness reveals that they are
frequently concerned with the violations of some priorities but not with others. For
instance, a priority derived from a high test score may have a stronger interpretation

1What economists refer to as school choice—the ability to choose between public schools—is
frequently called “open enrollment” in the media. Although, in common parlance, “school choice”
refers to voucher or tax credit programs for defraying the costs of private schooling or homeschooling,
I will use the standard language in economics.

2New Orleans Recovery School District and the Common App is the only example I know of
that sought an efficient outcome in some rounds of the assignment process, but this was abandoned
after the first year.
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than a priority assigned based on proximity to the school. Because economists
have not considered how policymakers may treat some priorities differently than
others, this omission has precluded a promising approach to reconciling fairness
and efficiency. The key to understanding how policymakers view priorities lies in
the two-step process that is typically used to construct priorities.

In the first step, the policymaker identifies a set of student characteristics to prioritize
and uses these characteristics to partition students into priority groups.3 Then, the
policymaker assigns a priority over the priority groups that reflects the policymaker’s
objectives for the school; this is the between-group priority. In the second step, within
each group, another within-group priority is provided to break ties, which could
depend upon other student characteristics or a random lottery. A student’s priority
at a school is lexicographically determined first by her between-group priority and
then by her within-group priority.

Policymakers understand that because priorities arise from different sources, they
require different interpretations. Allocating a seat to a student in a lower priority
group ahead of a student in a higher priority group may be unacceptable, but
assignments within groups may be more subtle. The prominent case of Boston Public
Schools (BPS)—the first district to carefully consider its assignment mechanism—
illustrates this difference.

BPS created two priority groups: students with a sibling attending the school
and all other students, with the former given higher between-group priority than
the latter. Within each priority group, BPS gave higher within-group priority to
students residing in the school’s walk zone, and broke any remaining ties with a
random lottery. When comparing the efficient algorithm with the fair algorithm,
Superintendent Payzant implies that the between-priority derived from having a
sibling present should be treated differently from the within-priorities:

[The efficient system] presents the opportunity for the priority of one
student at a given school to be “traded” for the priority of a student at
another school, [. . . ] There may be advantages to this approach, [. . . ]
It may be argued, however, that certain priorities – e.g., sibling priority
– apply only to students for particular schools and should not be traded
away. (Abdulkadiroğlu et al., 2006)

3For example, these characteristics frequently include whether the student has a sibling attending
the school, whether the student is within a particular geographic region, the student’s test scores,
etc., and a priority group consists of the students with the same set of characteristics.
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The implication from his silence concerning walk-zone priority is that, in some
cases, walk zone priorities could be traded away. Sibling priority has the stronger
interpretation while walk zone priority has the weaker interpretation of a better
opportunity to attend the school.4

Despite the different interpretation of priorities within these two steps, economists
usually remain agnostic about the source of the priority. The nuances between
priority groups are dismissed, and all priorities are treated equally. The existing
options afforded to policymakers do not allow them to express these nuances. This
leaves policymakers in a quandary because a more efficient match is better than
not, but violating the stronger priorities may be impermissible. When BPS faced
this decision, they erred on the side of respecting priorities and implemented the
fair mechanism even though only a subset of their priorities required the stronger
interpretation.

In this paper, I introduce a model that explicitly distinguishes between two types
of priority—between-group and within-group—and I propose the unified core to
connect the two. In my model, each school’s priority consists of two layers. The
first layer is the between-group priority, a weak preference that specifies which
students belong to which priority group and how those groups are ordered. The
second layer is the within-group priority, a strict preference that refines the between-
group priority.5 Accordingly, only the between-group priority is interpreted as a
right to attend the school ahead of lower-priority students, and it cannot be violated.
On the other hand, the within-group priority has the milder interpretation of an
opportunity to attend the school; it is a means of allocating the school seat, but it
is not inviolable. The interpretation of the within-group priority is weak enough to
guarantee efficiency within a group while still using the priority to allocate the seat.

The unified core connects the two cores that underlie the fair and efficient algorithms,
and is implemented by carefully combining the algorithms that implement the fair

4Readers familiar with this story will note that my exposition of the priority groups is slightly
different than that of Abdulkadiroğlu et al. (2006). Formally, BPS designated five priority groups:
continuing students, sibling-walk, sibling, walk, and all others. However, as Payzant’s quote illus-
trates, sibling priority and walk zone priority are normatively different. Conveniently, the order
on the priority groups allows for walk zone priority to be viewed as a tiebreaker within the sibling
priority group. If BPS ranked these groups differently, my model would not apply directly. For ease
of exposition, I exclude the continuing students from the model; continuing students can be easily
added to the model by including an additional priority group.

5In most applications, the within-group priority consists of a random lottery. However, I
refrain from referring to it as a tiebreaker because the within-group priority may include substantive
components, such as geographic location (as in the case of BPS). The emphasis, however, is that
these priorities have a weaker interpretation.
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and efficient cores. The core underlying the fair algorithm is the fair core of Gale
and Shapley (1962) (henceforth GS), which allows a student to claim a seat at a
school if she has a higher priority than a student currently there. This stems from
the strong interpretation of priorities and treats the school as a strategic player and
the priority as the school’s preference. The result is a fair match because any unfair
match can be blocked by the student whose priority is violated.

The core underlying the efficient algorithm is from Rong, Tang and Zhang (2022)
(henceforth RTZ),6 who develop their efficient core to provide a foundation for the
use of several efficient algorithms in school choice. RTZ’s efficient core allows
a student to take possession of a school provided no higher-priority students can
veto that action. In effect, the efficient core allows for a form of tradable priorities,
where a low-priority student can receive a priority from another student so long as
no higher-priority students are harmed. As is paralleled in many economic models,
the power to trade freely (in this case, trade school seats) guarantees that an efficient
allocation is reached.

Whether policymakers prefer the outcomes of the fair core or the efficient core
ultimately depends on the source of the students’ priorities. If the priority reflects
different priority groups, then the fair core is appealing; if it reflects within-group
tiebreakers such as a random lottery, the efficient core allows more students to attend
the schools that they prefer. However, neither the fair core nor the efficient core
allows for combinations of the two priorities.

The unified core resolves this tension and connects the two cores by allowing the
policymaker to explicitly designate two kinds of priorities. By treating the between-
group priorities as in the fair core while the within-group priorities as in the efficient
core, the unified core generalizes both cores. Students can always claim a seat
at a school if they have a higher between-group priority than a currently assigned
student, as in GS. Within-group priorities, however, may be traded amongst students
within the same priority class, as in RTZ. This guarantees a form of “within-group”
efficiency. The way I implement this mirrors RTZ: a student can take a seat provided
no within-group interrupters in her priority group can block her.

The main challenge in crafting a solution for this model is integrating the differ-
ing normative implications of the two priorities. Unlike the model of Erdil and

6It is worth mentioning here that RTZ’s core identifies precisely the just assignments of Morrill
(2015).
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Ergin (2008) (henceforth EE),7 the within-group priorities are not merely random
tiebreakers. Within-group priority may encode substantive differences (as in the
case of BPS) that must be respected, just not in the same fashion as the between-
group priority. The difficulty lies in creating a unified model that allows for both
interpretations, one between groups and the other within groups.

The power of the unified core lies in its ability to interpolate between the frameworks
of GS and RTZ. When the between-group priority is a strict ranking where each
student forms a singleton priority group, the unified core corresponds to the fair
core of GS. On the other hand, when the between-group priority is indifferent over
all students (there is a single priority group), then the unified core corresponds to
the efficient core of RTZ. At intermediate stages, the unified core blends both RTZ
and GS in a principled manner.

To make the unified core practical, I introduce a novel two stage algorithm—the
DA-TTC algorithm—that always produces a match in the unified core. In the
first stage, I allow students to freely apply to their most-preferred schools as in
the Deferred Acceptance algorithm of GS. Schools tentatively accept the highest-
priority applicants and immediately reject the rest. The process continues until no
more students are rejected, at which point the first stage terminates and returns the
match 𝜇1.

In the second stage, I adapt Gale’s Top Trading Cycles algorithm but with a restriction
on the allowable trades (Shapley and Scarf, 1974). Essentially, students may only
trade their seats (that they have from 𝜇1) to other students in the same priority
group. I iteratively find groups of students who can, by trading their assigned
schools among themselves, be matched to their most-preferred school out of the
ones currently available. This algorithm is the crux of this paper, and is presented
in Section 2.3. I label the resulting match 𝜇2. Once all students have been removed,
the second stage terminates and returns the match 𝜇2.

My main result establishes that 𝜇2 belongs to the unified core. The advantage of
my approach is a practical algorithm to finding an element of the unified core. The
DA-TTC is also computationally feasible.8

7I discuss the differences in models in Section 2.1, and the differences in our techniques in
Section 2.4. In short, EE uses only between-group priorities; however, I must use more care because
of the within-group priorities. This prevents a direct application of the Stable Improvement Cycles
algorithm.

8It runs in polynomial time.
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A key advantage of the unified core in applications is the simplicity of its definition.9
First, there are no between-group priority violations, so the fairness property of the
fair core is preserved. However, when there is a within-group priority violation, the
explanation is straightforward: rectifying the violation would harm a student with
higher within-group priority. By focusing on a reasonable outcome, the definition
of the unified core lends itself to applications in school choice.

The rest of this paper is structured as follows. First, I close out this section with a
discussion of the relevant papers, emphasizing the differences between the unified
core, related concepts, and the methods used. Section 2.2 introduces the model, the
bulk of which is devoted to the distinction between within-group and between-group
priorities. In Section 2.3, I develop my main result (Theorem 2.1) which shows that a
match in the unified core can always be found using an efficient algorithm. I conclude
in Section 2.4 with a discussion of the result and further avenues of research.

Related Literature
This paper connects several strands of research.

First, as mentioned previously, the model in this paper has substantial overlap with
Erdil and Ergin (2008) (henceforth, EE). The key difference between my model and
EE’s model is that I include the within-group priorities in the model primitives,
while they take these priorities as randomly generated from the between-group
priorities. Although mathematically similar, because the within-group priorities
may carry normative implications, the outcomes in the unified core are restricted.
In EE, any student within the same priority group can be assigned to the school so
long as the match is Pareto optimal among the matches that are stable with respect
to the between-group priorities. In contrast, in the unified core, a student of higher
within-group priority can claim a seat so long as no higher priority students in
the same group are harmed. The within-group priority disciplines how seats are
allocated within priority groups.

Second, ever since Abdulkadiroğlu and Sönmez (2003), researchers have been trying
to modify the Deferred Acceptance algorithm to accommodate efficiency gains
(Ehlers and Morrill, 2020; Kesten, 2010; Troyan, Delacrétaz and Kloosterman,
2020; Reny, 2022). These approaches, however, take the priorities as given and
weaken the definition of the core. The unified core complements this approach by

9Indeed, Payzant expressed reservation concerning the TTC because of the complexity of the
algorithm. I return to this topic in the discussion.
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weakening the priorities and then adapting the core to this framework. The upshot
of the unified core is that the definition of the core is simpler, but the downside is
that the preferences must have a two-stage structure to make any efficiency gains.

Third, a separate approach has been to provide foundations for the use of the Top
Trading Cycles algorithm in school choice (Abdulkadiroğlu and Che, 2010; Morrill,
2013a; Abdulkadiroğlu et al., 2017; Chen, Chen and Hsu, 2021; Rong, Tang and
Zhang, 2022; Dur and Paiement, 2024). These axiomatic definitions ground this
work, and I extend our understanding of these mechanisms by integrating them into
the fairness framework of GS.

The paper closest in spirit to mine is Abdulkadiroğlu (2011). The main difference
between his paper and mine is the restriction they place on between-priorities: in
their model, between-group priorities either express indifference or a strict prefer-
ence over all students. Additionally, his focus is on student optimality rather than on
the core. He uses the within-priorities in a similar way, but only in his algorithm;
the unified core provides the underpinnings for his solution.

2.2 Model
In this section I present the formal model of a school choice problem and my key
definitions. In the first subsection, I introduce the standard primitives, except that
I replace a school’s one priority with two priorities: the between-group priority
and within-group priority. In the second subsection, I develop the theory of the
unified core. In the third subsection, I turn to the solutions of GS, RTZ, and EE,
and highlight the differences and advantages of the unified core.

The Primitives
There is a finite set of students 𝐼 and a finite set of schools 𝑆, collectively called
agents. Each school has a capacity 𝑞𝑠 ≥ 1 of seats. A match is a function
𝜇 : 𝐼 → 𝐼 ∪ 𝑆 with the following two properties:

1. if 𝑖 ∈ 𝐼, then 𝜇(𝑖) ∈ 𝑆 ∪ {𝑖}; and

2. if 𝑠 ∈ 𝑆, then |𝜇−1(𝑠) | ≤ 𝑞𝑠.

The first requirement guarantees that the market is two-sided: students are matched
to schools or unmatched (this is denoted as being matched to oneself). The second
requirement guarantees that capacities are not exceeded.
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Every student has a strict preference ≻𝑖 over 𝑆∪ {𝑖}; the associated weak preference
is ≿𝑖. A match 𝜇 is individually rational if for every 𝑖 ∈ 𝐼, 𝜇(𝑖) ≿𝑖 𝑖. When
considering a set of students 𝐶 ⊆ 𝐼, I say that 𝐶 prefers 𝜈 to 𝜇 if for every 𝑖 ∈ 𝐶,
𝜈(𝑖) ≿𝑖 𝜇(𝑖) and the comparison is strict for some student in 𝐶.

Schools, however, come equipped with two orders over 𝐼, the between-group pri-
ority and the within-group priority.10 The between-group priority order is a weak
preference ≿𝑠.11 It represents the priorities that require the stronger interpretation
as a right to attend the school ahead of others. When ≿𝑠 does not rank two students
strictly, it means that they are in the same priority group. Formally, denote the
priority group of student 𝑖 at 𝑠 as

[𝑎]𝑠 ≡ { 𝑗 ∈ 𝐼 : 𝑗 ∼𝑠 𝑖}.

The within-group priority order is a strict preference ≻∗𝑠 . It represents the priorities
that are allowed the weaker interpretation of a better opportunity to attend the school.
In practice, the priority that a policymaker uses is the lexicographic combination
of ≿𝑠 and ≻∗𝑠 : first, ≿𝑠 is used to partition students into groups, and then ≻∗𝑠 is
used to break ties within groups. Rather than define a combined priority, I assume
that ≻∗𝑠 is a refinement of ≿𝑠; that is, if 𝑎 ≻𝑠 𝑏, then 𝑎 ≻∗𝑠 𝑏. That is, ≻∗𝑠 is what
most researchers refer to as school priority, whereas for me it is the result of the
policymaker breaking ties within priority groups.

Because this model is many-to-one, it is necessary to construct the school’s between-
group priority over groups of students.12 Toward this end, I make the standard
assumption that the school’s between-group priority over groups of students is
responsive (Roth, 1985). In words, this means that for equally-sized groups, the first
has greater between-group priority than the second if every student in the first can
be paired with a student in the second such that the first has greater between-group
priority. For unevenly sized groups, the smaller group never has greater between-
group priority than the larger group, but the larger group has greater between-group
priority if there is a subset of the larger group that is the same size as the smaller
group and has greater between-group priority.

10Implicit here is the assumption that every student is acceptable to every school. Extending this
model to incorporate unacceptable students is straightforward, but adds unnecessary notation.

11The irreflexive portion is ≻𝑠 (the strict preference relation) and the reflexive portion is ∼𝑠 (the
indifference relation).

12Extending the within-group priority in a similar manner is unnecessary in my analysis.
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Formally, I construct ≿𝑠 for groups of students in the following way. For 𝐶,𝐶′ ⊆ 𝐼
such that |𝐶 | = |𝐶′|, I write 𝐶 ≿𝑠 𝐶′ if the students in 𝐶 and 𝐶′ can be indexed
such that 𝑐1 ≿𝑠 𝑐

′
1, 𝑐2 ≿𝑠 𝑐

′
2, . . . , 𝑐 |𝐶 | ≿𝑠 𝑐′|𝐶 |. When 𝐶 ≿𝑠 𝐶′ and 𝐶′ ≿𝑠 𝐶, I write

𝐶 ∼𝑠 𝐶′.13 If 𝐶 ≿𝑠 𝐶′ but not 𝐶′ ≿𝑠 𝐶, then I write 𝐶 ≻𝑠 𝐶′. When |𝐶 | ≠ |𝐶′|, I
write 𝐶 ≿𝑠 𝐶′ if |𝐶 | > |𝐶′| and there is some �̃� ⊆ 𝐶′ such that �̃� ≿𝑠 𝐶′.

Unified Core
With the primitives in hand, I turn to a discussion of the core of the model. As
introduced earlier, policymakers view between-group and within-group priorities
differently. To accommodate both types of priorities, I introduce two separate types
of blocks. In both cases the conditions on student preferences are the same: the
coalition of students must prefer the new match to the old one. What changes is the
definition of what the coalition can enforce.

The between-group priorities resemble the preferences in the GS two-sided model.
However, within my framework I focus on students as the active players. To accom-
modate this, Definition 2.1 allows a student to block a match if her between-group
priority has been violated. This definition mirrors the standard blocking definition
of GS. It rules out any violations of the between-group priority order.

Definition 2.1. The coalition 𝐶 can between-group enforce match 𝜈 over match
𝜇 if for every 𝑖 ∈ 𝐶, either there is a student 𝑗 ∈ 𝜇−1(𝜈(𝑖)) such that 𝑖 ≻𝑠 𝑗 or
|𝜇−1(𝜈(𝑖)) | < 𝑞𝜈(𝑖) .14

The definition of blocking is standard: a coalition can between-group block match
𝜇 if it can between-group enforce some match 𝜈 that the coalition prefers to 𝜇. Note
that if a match is not individually rational, then it is between-group blocked by some
student who wishes to be unmatched.

Between-group blocks are useful in school choice models, but do not fully model
the priorities given by schools. As seen in EE, using between-group blocks alone
can provide substantial welfare improvements for students. However, the within-
priorities may also carry normative value as Payzant implied. To address this, I turn
to a treatment of within-group priorities.

13Note that ≿𝑠 may not be a complete relation over groups of students: there are some coalitions
𝐶 and 𝐶′ such that neither 𝐶 ≿𝑠 𝐶′ nor 𝐶′ ≿𝑠 𝐶.

14Traditionally in GS-style models, the schools are included in the coalition; however, in RTZ-
style models (see next paragraph), this is not the case. I present this student-only version for use
here. The downside is that the definition of enforcement relies on 𝜇; the upside is fewer cases in the
definition of the unified core.
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The within-group priorities are modeled as in the RTZ framework. In their model, a
coalition of students can enforce a match to some schools only if no group of students
outside the coalition could veto such a match by asserting their stronger claims. I
import this definition into my model by restricting attention only to students within
the same priority group. To formalize this, I first define the within-group upper
contour set:

𝑈𝑠 (𝑖) = { 𝑗 ∈ [𝑖]𝑠 : 𝑗 ≿∗𝑠 𝑖}.

In words, 𝑗 is in𝑈𝑠 (𝑖) if 𝑗 has a higher within-group priority at 𝑠. When considering
whether 𝑖 can claim a seat at 𝑠,𝑈𝑠 (𝑖) are the students who could prevent this match
because they have a stronger within-group claim to 𝑠. For example, suppose 𝑞𝑠 = 1;
if 𝑖 wishes to match to 𝑠, then 𝑖 must guarantee that students in𝑈𝑠 (𝑖) are not harmed
by this action. I call students in𝑈𝑠 (𝑖) but not in𝐶 the within-group interrupters of 𝑖.
A sufficient condition is that there are no within-group interrupters. When 𝑞𝑠 > 1,
it is not necessary to eliminate every within-group interrupter: if 𝑛 students from 𝐶

match to 𝑠, then 𝑞𝑠 −𝑛 within-group interrupters do not need to be included because
the within-group interrupters (even when acting together) are unable to prevent
the coalition members from claiming their seats at the school.15 Definition 2.2
formalizes this intuition.

Definition 2.2. A coalition 𝐶 ⊆ 𝐼 can within-group enforce match 𝜈 over match 𝜇
if for every school 𝑠 ∈ 𝜈(𝐶), the following two conditions hold:

1. 𝜈−1(𝑠) ∼𝑠 𝜇−1(𝑠), and

2. the sum of the number of within-group interrupters across all students in 𝐶
that are matched to 𝑠 is less than or equal to 𝑞𝑠 − |𝜈−1(𝑠) |.

Again, the definition of blocking is symmetric: a coalition can within-group block
match 𝜇 if it can within-group enforce some match 𝜈 that the coalition prefers to 𝜇.

The main difference between within-group blocks and between-group blocks is
their treatment of schools. Schools must strictly benefit (according to the between-
priority) from between-group blocks, but may be indifferent in a within-group

15The reader may wonder why I (and RTZ) include this slackness in the definition of enforceability.
Without it, a student with top priority might trade multiple seats away. The intuition is that, if every
within-group interrupter is included, then including the highest-priority student might necessitate
(through a chain of enforceability claims) including two or more lower-priority students who are
matched to the school. An example demonstrating this is available upon request.
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block. The within-group block compensates by placing a stronger condition upon
the student coalition.

With both types of blocks in hand, I turn to defining the unified core in definition 2.3.

Definition 2.3. 𝜇 is in the unified core if it is neither between-group blocked nor
within-group blocked.

In Section 2.3, I provide a two-stage algorithm that always finds a match in the
unified core. Before introducing the algorithm, I first discuss the two most-closely
related solutions.

Comparison with Related Models
In this subsection, I briefly introduce the models of GS and RTZ.

In the fairness framework of GS, a match 𝜇 is fair if there is no student 𝑖 and 𝑠 such
that 𝑠 ≻𝑖 𝜇(𝑖) and either there is a 𝑗 ∈ 𝜇−1(𝑠) such that 𝑖 ≻∗𝑠 𝑗 or |𝜇−1(𝑠) | < 𝑞𝑠.
Note that when the between-group priority orders all students strictly, then the set
of fair matches and the unified core are the same.

In contrast, the efficiency framework of RTZ uses priorities to allocate school seats
as if they were objects. The within-group priority represents a form of ownership of
the school and allows for a form of trading. The key difference between the efficient
core and the unified core is that the efficient core assumes that there is a single
priority group: any group of students can use their priorities to trade their schools.
This is made by a slight change in definitions: the efficient upper contour set is

𝑈∗𝑠 (𝑖) = { 𝑗 ∈ 𝐼 : 𝑗 ≻∗𝑠 𝑖}

and for a coalition 𝐶 and match 𝜈, the efficient interrupters of 𝑖 ∈ 𝐶 are the students
in 𝑈∗

𝜈(𝑖) (𝑖) but not 𝐶. The definition of efficient enforcement is then the same as
within-group enforcement except that the condition 𝜈−1(𝑠) ∼𝑠 𝜇−1(𝑠) is dropped
and the efficient interrupters are counted instead of within-group interrupters. The
definition of efficient blocking and the efficient core is similar. When the between-
group priority places all students within the same priority group, the efficient core
and the unified core are the same.

The power of the unified core is its ability to interpolate between the efficient and fair
cores. By allowing for the between-group priority to range between a strict ranking
of all students and complete indifference, the unified core captures the nuances of
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policymakers’ objectives and the two-stage nature of priorities. In example 21, I
show how the unified core models what the fair and efficient cores cannot.

Example 21. Consider a school choice problem with six students and six schools,
each school having one seat. The students’ preferences and the schools’ between- and
within-priority orders are as follows (unlisted preferences/priorities are irrelevant):

≻1 ≻2 ≻3 ≻1′ ≻2′ ≻3′

𝑎 𝑏 𝑎 𝑎′ 𝑏′ 𝑎′

𝑏 𝑎 𝑐 𝑏′ 𝑎′ 𝑐′

... ... ... ... ... ...

≻𝑎 ≻𝑏 ≻𝑐 ≻𝑎′ ≻𝑏′ ≻𝑐′

1, 2, 3 1, 2 3 2′ 1′ 3′

... ... ... 3′ 2′ ...

1′ ...

...

≻∗𝑎 ≻∗
𝑏
≻∗𝑐 ≻∗

𝑎′ ≻∗𝑏′ ≻
∗
𝑐′

2 1 3 2′ 1′ 3′

3 2 ... 3′ 2′ ...

1 ... 1′ ...

... ...

Notice that this example consists of two parallel problems side-by-side. In the first,
the students 1 and 2 are the highest-priority students at the school the other most-
prefers (schools 𝑎 and 𝑏, respectively), and in the second, students 1′ and 2′ are the
highest-priority at the school the other most-prefers (schools 𝑎′ and 𝑏′, respectively).
The fair core is the match:

𝜇GS =
©«
1 2 3 1′ 2′ 3′

𝑏 𝑎 𝑐 𝑏′ 𝑎′ 𝑐′

ª®®¬ .
The fair core does not incorporate the difference between the between-group and
within-group priorities; hence it is less efficient than allowed. However, the efficient
core is also unsatisfactory:

𝜇RTZ =
©«
1 2 3 1′ 2′ 3′

𝑎 𝑏 𝑐 𝑎′ 𝑏′ 𝑐′

ª®®¬ .
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The difficulty with RTZ is that it does not recognize that student 3′ can claim a seat
at school 𝑎′ ahead of student 1′.

The unified core, however, correctly identifies the difference between these priority
groups:

𝜇UC =
©«
1 2 3 1′ 2′ 3′

𝑎 𝑏 𝑐 𝑏′ 𝑎′ 𝑐′

ª®®¬ .
2.3 Analysis
In this section, I present my main result (Theorem 2.1). It states that the unified
core is non-empty for every school choice problem and provides an algorithm for
finding one such match.

I use a two-stage algorithm to prove the result. In the first stage, I leverage the
Deferred Acceptance algorithm (DA) to produce a match that is not between-group
blocked (Gale and Shapley, 1962). In the second stage, I build a variation of the
Top Trading Cycles algorithm (TTC) to remove any within-group blocks from the
previous match while not adding any between-group blocks (Shapley and Scarf,
1974). The match produced is in the unified core.

Removing between-group blocks: The Deferred Acceptance Algorithm
In this subsection, I present the first stage of the DA-TTC: the Deferred Acceptance
algorithm from GS. In the DA, students initially start unmatched. In the first round,
students “propose” to their favorite school. Every school tentatively accepts students
up to its capacity (picking the highest according to its within-group priority) and
immediately rejects the rest. In subsequent rounds, students who are not tentatively
accepted propose to their favorite school among those that have not rejected them.
Every school considers the new proposals simultaneously with the students it has
tentatively accepted, and again rejects all but the top students up to its capacity.
This process continues until every student is matched or has been rejected by every
acceptable school. I formally write this in Algorithm 5.

The DA was originally designed by GS to construct a fair match. Fairness is a
stronger requirement than not being between-group blocked, this result applies to
my model. Lemma 2.1 translates the standard result into my model. The proof is
standard and is relegated to Section 2.A.

Lemma 2.1. 𝜇1 is not between-group blocked by any coalition.
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Algorithm 5 Deferred Acceptance Algorithm
every student 𝑖 points to the ≿𝑖-highest agent
while more than 𝑞𝑠 students point to some school 𝑠 do

𝑠 rejects all but the ≻∗𝑠 -top 𝑞𝑠 students who proposed to 𝑠
every student 𝑖 points to the ≿𝑖-highest agent who has not rejected him yet

end while
𝜇1 assigns each student to the agent he last proposed to

Removing within-group blocks: The Top Trading Cycles Algorithm
In this subsection, I present the second stage of the DA-TTC: the Top Trading Cycles
algorithm of Shapley and Scarf (1974). In the TTC, each student “owns” a seat at
the school she is matched to in 𝜇1. Students are allowed to trade the seats that they
own with others, but only within priority groups.

The way that I implement this is by first restricting which students and schools are
active, and then restrict which schools a student can “point” to. At the start of the
TTC, each student 𝑖 is active if she is in the lowest priority group of 𝜇1(𝑖) among
the students matched to 𝜇1(𝑖) (i.e. for every 𝑗 ∈ 𝜇−1

1 (𝜇1(𝑖)), 𝑗 ≿𝜇1 (𝑖) 𝑖). Throughout
the TTC, each school 𝑠 is active if at least one student in 𝜇−1

1 (𝑠) is active (at the start
of the TTC, every school such that |𝜇−1

1 (𝑠) | ≥ 1 is active by construction).

In every round of the TTC, for each student, construct the list of admissible schools.
A school 𝑠 is admissible to student 𝑖 if there is some active 𝑗 ∈ 𝜇−1

1 (𝑠) such that
𝑖 ∼𝑠 𝑗 . Each student points to her most-preferred admissible school, and each active
school points to the highest-priority active student in 𝜇−1

1 (𝑠) (by definition, a school
is only active if there is an active student in 𝜇−1

1 (𝑠), so this is well-defined). Because
every active student points to an active school, and every active school points to an
active student, a cycle must form. Every student on the cycle is assigned a seat at the
school she points to and becomes inactive. The process is repeated until no students
(and hence no schools) are active. Algorithm 6 provides the formal definition.

Theorem 2.1. 𝜇2 is in the unified core.

The full proof of Theorem 2.1 is available in Section 2.A. Here, I outline the key
points in the argument. A preliminary step is to show that 𝜇2 is not between-group
blocked; given that 𝜇2 is a Pareto improvement of 𝜇1 for the students but is equivalent
under the between-priorities, this is not difficult to show.16 The rest of the proof

16But the importance of this cannot be overstated; as I discuss in Section 2.4, having to find a
Pareto improvement of 𝜇1 is has restricted the kinds of algorithms available in school choice.
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Algorithm 6 Top Trading Cycles Algorithm
initialize 𝜇2 ← 𝜇1
for all 𝑖 ∈ 𝐼 do ⊲ activates students in the lowest-priority group at their assigned
school

initialize 𝑖 as active if 𝑗 ≿𝜇1 (𝑖) 𝑖 for every 𝑗 ∈ 𝜇−1
1 (𝜇1(𝑖))

end for
for 𝑠 ∈ 𝑆 do

initialize 𝑠 as active if there is an active student in 𝜇−1
1 (𝑠)

end for
while there is an active student do

for every active student 𝑖 do ⊲ students point to most-preferred admissible
school

𝑖 points to her ≻𝑖-most preferred active school in {𝑠 : exists active 𝑗 ∈
𝜇−1

1 (𝑠) s.t. 𝑖 ∼𝑠 𝑗}
end for
each active school points to the highest-priority active student in 𝜇−1

1 (𝑠)
a cycle 𝑖1, 𝑠1, . . . , 𝑖𝑛, 𝑠𝑛 exists
for all 1 ≤ 𝑘 ≤ 𝑛 do ⊲ removes students in cycle from problem, then restarts

set 𝜇2(𝑖𝑘 ) to 𝑠𝑘
deactivate 𝑖𝑘
if there are no active students in 𝜇−1

1 (𝑠𝑘 ), then deactivate 𝑠
end for

end while

supposes that 𝐶 within-group blocks 𝜇2 with 𝜈, and then finds a contradiction.

The major difficulty with applying a standard proof that the TTC is in the core is
that, for a school 𝑠 in 𝜈(𝐶), not every student in 𝜈−1(𝑠) is necessarily in 𝐶. Put
differently, using the TTC usually requires a well-defined set of owners, which the
unified core lacks. The crux of the proof is a construction of a bĳection 𝑇𝑠 between
students in 𝜈−1(𝑠) ∩ 𝐶 and students in 𝜇−1

2 (𝑠) ∩ 𝐶, which identifies an owner for
each relevant seat. I construct 𝑇𝑠 by addressing students in both 𝜈−1(𝑠) ∩ 𝐶 and
𝜇−1

2 (𝑠) ∩ 𝐶 separately from those in only 𝜈−1(𝑠) ∩ 𝐶. For those in both, I make 𝑇𝑠
the identity function. For those in only 𝜈−1(𝑠) ∩𝐶, I leverage the 𝜈−1(𝑠) ∼𝑠 𝜇−1

2 (𝑠)
of within-group enforcement requirement to find an equally-sized set of students in
(𝜇−1

2 (𝑠) ∩ 𝐶)\𝜈
−1(𝑠). I further show that if 𝑖 is active in the TTC, then 𝑇𝜈(𝑖) (𝑖) is

also active in the TTC and 𝑇𝜈(𝑖) (𝑖) ∈ 𝑈𝜈(𝑖) (𝑖). Hence, for active students, the 𝑇𝑠
essentially identifies which student owns which seat at 𝑠.

With the bĳection 𝑇𝑠 in hand, I then can use standard methods. I construct a cycle
of students 𝑖1, . . . 𝑖𝑛 in 𝐶 where 𝜈(𝑖𝑘 ) = 𝜇2(𝑖𝑘+1) as in most proofs involving the
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TTC. I construct it such that least one student in this cycle must strictly prefer 𝜈 to
𝜇2. But I also show that every 𝑖𝑘 is active in the Top Trading Cycles algorithm, so
each must be deactivated only after the next student. This then leads to a situation
in which 𝑖𝑘 must be deactivated strictly before 𝑖𝑘 is, a contradiction.

2.4 Discussion
In this section, I place Theorem 2.1 and the DA-TTC in conversation with existing
results and point toward several avenues for future research. I first compare this
result with that of EE, highlighting the complexities arising from the within-group
blocks. I then turn to the question of finding a constrained efficient match. Finally, I
turn to a more general discussion of the DA and TTC in school choice, and highlight
the difficulties present in bridging these two algorithms.

With the proof of the non-emptiness of the unified core in hand, I turn to a discus-
sion of the differences between the DA-TTC and the Stable Improvement Cycles
algorithm (DA-SIC) of EE. For context, EE considers the matches that are not
between-group blocked. The DA-SIC starts by running the DA using the within-
group priorities to establish a baseline match that is not between-group blocked.
The SIC then checks for a cycle of students who each prefer the next student’s
match such that, if the students exchange seats, no between-group blocks are cre-
ated; this is the eponymous stable improvement cycle. The output of the SIC stage
is a student-optimal match among those that are not between-group blocked. The
critical difference between the SIC and the TTC is that the SIC allows for trades
across priority groups while the TTC does not. The following example with three
students and two schools (each with one seat) illustrates this:

≻1 ≻2 ≻3

𝑎 𝑏 𝑎

𝑏 𝑎 𝑏

≻𝑎 ≻𝑏

2 1

1, 3 2, 3

≻∗𝑎 ≻∗
𝑏

2 1

3 3

1 2

𝜇DA =
©«
1 2 3

𝑏 𝑎 3

ª®®¬ .

At the match 𝜇DA, EE identifies a stable improvement cycle of 1 → 𝑎 and 2 → 𝑏.
However, allowing this pair to trade schools violates student 3’s within-priority at
both schools: after the trade, the coalition of {3} can within enforce a match to
either 𝑎 or 𝑏. In effect, the stable improvement cycle is stable with respect to ≿,
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but disregards ≻∗.17 This allows for these trades between priority groups. This
difference is not a mere technical nuance; in the case of BPS, it is precisely trades
like this that concern the policymaker.

Thus far, I have dealt only with existence rather than constrained-efficiency. The ma-
jor drive of EE is to find a student-optimal match subject to the stability constraints,
which they show can be found by iteratively eliminating stable improvement cycles.
Given the similarity between the DA-TTC and the DA-SIC, the natural question
arises as to whether an analogous method can be used to eliminate “unified” stable
improvement cycles. Unfortunately, this approach seems doomed to failure. Al-
though for the between-priority the stable improvement cycle can be imported as-is,
checking whether a cycle respects within-priority is significantly more complex.
The crux is that a student’s within-priority can be violated when a higher-priority
student trades her seat to a lower-priority agent. However, in a cycle, whether such
a “trade” can be found depends upon the matches of students outside the cycle. Put
differently, a stable improvement cycle may involve trades across priority groups,
but then a trade within the priority group must be found to protect the former trade.
The problem is compounded by the possibility that the latter trade may itself be the
result of another simultaneous trade. Whether a constrained efficient match can be
found using this technique or others is an open question.

There are several open questions about algorithms similar to the DA-TTC. The
DA-TTC is a part of a growing set of algorithms that can be roughly described as
“DA baseline, then trade to improve.” Starting with Abdulkadiroğlu and Sönmez
(2003), several authors have used this formula, such as EE, Kesten (2010), and
Doe (2024). The difficulty with combining these two families of algorithms is
maintaining monotonicity on a set of matches. Echenique and Oviedo (2004) shows
how the DA can be viewed as a monotonic function on matches; however, the TTC
does not share this property (Echenique, Goel and Lee, 2024). When combining
these two algorithms, care must be taken to guarantee that the trades made in the
TTC do not upset the match found in the DA, which is why the previous papers allow
students only to trade the school they received from the DA rather than any school
they have the highest-priority for. Going the other way around is tougher: if the

17There is a second difference between the DA-TTC and the DA-SIC. Consider a school choice
problem with one school (with one seat) and two students, both of whom desire the seat at the
school. If the students are in the same priority group, then the DA-SIC could assign either student
to the school. The DA-TTC, however, is constrained to only assign the higher-priority student. Put
differently, the DA-TTC can emulate the TTC because the DA-TTC makes use of the within-group
priority; the DA-SIC cannot.
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designer first allows students to trade schools and then attempts to remove fairness
violations, a student may trade for a school that is taken away; with one student-
school pair removed from the group of trading students, the outcome of the TTC
shifts unpredictably. The only paper to tackle both simultaneously is Abdulkadiroğlu
(2011). Is this approach to connecting the DA and TTC the only viable option? Can
conditions be placed upon priorities to ameliorate the non-monotonicity of the TTC
in the presence of the DA?

Another obstacle to implementing the TTC is the complexity of the algorithm.
Payzant alludes to this; after his previous quote, he continued: “Moreover, Top
Trading Cycles is less transparent – and therefore more difficult to explain to parents
– because of the trading feature executed by the algorithm, which may perpetuate
the need or perceived need to ‘game the system.’” Concerns like Payzant’s have
spurred a growing body of literature to understand the complexity of the TTC
(Gonczarowski and Thomas, 2024; Leshno and Lo, 2017). In this paper, I instead
focused on properties of the match rather than the process used to reach the match.
The properties of a match may prove more transparent to stakeholders than the
properties of an algorithm.

I close with a brief note about the DA and TTC. Within the literature on school choice,
the vast majority of algorithms stem from the DA and the TTC. The monotonicity
of the DA is well-suited for the lattice structure of the stable matches, and the TTC
flexibly handles ownership economies (Gusfield and Irving, 1989; Papai, 2000).
However, as I note in the previous paragraphs, these algorithms are difficult to
combine. Additionally, given the complexity of the TTC and how few districts
have attempted to implement it, relying on TTC-style algorithms to improve the
efficiency of the DA may not be successful in applications. Developing general
algorithms—as in Abdulkadiroğlu (2011)—to probe the efficiency-fairness frontier
is a research direction of primary importance.

2.A Appendix to Chapter 2: Omitted Proofs
Lemma 2.A.1. Every student weakly prefers 𝜇1 to being unmatched.

Proof. Observe that no student rejects a proposal from herself (because students do
not make rejections). This implies that no student prefers being unmatched more
than 𝜇1. □

Proof of Lemma 2.1:
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Suppose (toward a contradiction) that 𝜇1 is between-group blocked by a coalition 𝐶
between-enforcing a match 𝜈 which it prefers.

First, by lemma 2.A.1, there is some school in 𝜇1(𝐶).

Second, observe that a school only rejects students if it receives more proposals
(cumulatively) than its capacity 𝑞𝑠. Therefore, if 𝑖 strictly prefers a school to 𝜇1(𝑖),
then that school is filled to capacity at 𝜇1.

The previous two points imply the existence of a school 𝑠 and two students 𝑖 and 𝑗
with the following properties:

1. 𝑠 ∈ 𝜈(𝐶); and

2. 𝑖 ∈ 𝐶 ∩ 𝜈−1(𝑠) but 𝑖 ∉ 𝜇−1
1 (𝑠); and

3. 𝑗 ∈ 𝜇−1
1 (𝑠) but 𝑗 ∉ 𝜈−1(𝑠); and

4. 𝑖 ≻𝑠 𝑗 .

But then notice that 𝑖 must have proposed to 𝑠 but have been rejected. However,
𝑗 must have proposed to 𝑠 but not have been rejected. If 𝑗 proposed to 𝑠 before 𝑠
rejects 𝑖, then 𝑠 rejects 𝑗 before rejecting 𝑖, a contradiction. If 𝑗 proposed to 𝑠 after
𝑠 rejects 𝑖, then 𝑠 must have rejected 𝑖 in favor of a higher within-group priority
student 𝑖∗; hence, 𝑗 is also rejected, a contradiction.

Therefore, there is no coalition which between-group blocks 𝜇1. □

Lemma 2.A.2. If 𝐶 ∼𝑠 𝐶′, then for every 𝑖 ∈ 𝐼: | [𝑖]𝑠 ∩ 𝐶 | = | [𝑖]𝑠 ∩ 𝐶′|

Proof. Suppose (toward a contradiction) that for some 𝑖 ∈ 𝐼: | [𝑖]𝑠∩𝐶 | ≠ | [𝑖]𝑠∩𝐶′|.
Without loss of generality, let 𝑖 be in the≿-highest priority group such that | [𝑖]𝑠∩𝐶 | ≠
| [𝑖]𝑠 ∩ 𝐶′|. Again, without loss of generality, let | [𝑖]𝑠 ∩ 𝐶 | > | [𝑖]𝑠 ∩ 𝐶′|. Consider
that 𝐶 ∼𝑠 𝐶′ implies 𝐶′ ≿𝑠 𝐶. But then 𝐶′ and 𝐶 cannot be indexed such that
𝑐′
𝑘
≿𝑠 𝑐𝑘 because every student in a ≿-more preferred priority group must be paired

with a student in that same priority group and the students in the [𝑖]𝑠 priority group
are imbalanced. This is a contradiction. □

Lemma 2.A.3. The following statements are true:

1. If𝐶 within-group blocks 𝜇2 by within-enforcing 𝜈, then𝐶 within-group blocks
𝜇1 by within-enforcing 𝜈 as well.
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2. If 𝐶 between-group blocks 𝜇2 by between-enforcing 𝜈, then 𝐶 within-group
blocks 𝜇1 by within-enforcing 𝜈 as well.

Proof. I show that 𝐶 can within-group enforce or between-group enforce 𝜈 over
𝜇1 (respectively). Because every student weakly prefers 𝜇2 to 𝜇1, it follows that 𝐶
prefers 𝜈 to 𝜇1 and hence within-group blocks or between-group blocks 𝜇1 with 𝜈.

For the first statement, suppose that 𝐶 within-group blocks 𝜇2 by within-enforcing
𝜈. I show that𝐶 can within-group enforce 𝜈 over 𝜇1. To see this, notice that𝑈𝑠 (𝑖) is
independent of 𝜇2. Hence, the sum of within-group interrupters across all students
in 𝜈−1(𝑠) ∩ 𝐶 is the same for both 𝜇2 and 𝜇1. Additionally, by definition, for every
𝑠 ∈ 𝜈(𝐶): 𝜇−1

2 (𝑠) ∼𝑠 𝜈
−1(𝑠). By the construction of 𝜇2: 𝜇−1

2 (𝑠) ∼𝑠 𝜇
−1
1 (𝑠). Hence,

𝜈(𝑠) ∼𝑠 𝜇−1
1 (𝑠). Therefore, 𝐶 can within-group enforce 𝜈 over 𝜇1.

For the second statement, suppose that 𝐶 between-group blocks 𝜇2 by within-
enforcing 𝜈. I show that 𝐶 can between-group enforce 𝜈 over 𝜇1. To see this, notice
that for every school 𝑠, 𝜇2 ∼𝑠 𝜇1. Hence, if 𝜈−1(𝑠) ≻𝑠 𝜇2, then 𝜈−1(𝑠) ≻𝑠 𝜇1.
Therefore, 𝐶 can between-group enforce 𝜈 over 𝜇1.

This completes the proof. □

Lemma 2.A.4. If 𝐶 within-group blocks 𝜇2 with 𝜈, then 𝑖 ∈ 𝐶 strictly prefers 𝜈(𝑖)
to 𝜇2(𝑠) only if 𝑠 is filled to capacity at 𝜇2.

Proof. Suppose (toward a contradiction) that 𝑖 ∈ 𝐶 strictly prefers 𝜈(𝑖) ≡ 𝑖 to 𝜇2(𝑠)
but |𝜇−1

2 (𝑠) | < 𝑞𝑠.

By lemma 2.A.3, 𝐶 within-group blocks 𝜇1 with 𝜈. By the construction of 𝜇2,
|𝜇−1

2 (𝑠) | = |𝜇
−1
1 (𝑠) |. By the construction of 𝜇1, 𝑠 only rejects 𝑖 if more than |𝑞𝑠 |

students point to 𝑠. But less than 𝑞𝑠 other students point at 𝑠, so 𝑠 does not reject
𝑖. Therefore, 𝑖 weakly prefers 𝜇1 to 𝑖. This contradicts that 𝑖 strictly prefers 𝑠 to 𝜇2.
Therefore, |𝜇−1

2 (𝑠) | = 𝑞𝑠. □

Proof of Theorem 2.1: By lemma 2.A.3, 𝜇2 is not between-group blocked; other-
wise, 𝜇1 would be between blocked, a contradiction to lemma 2.1.

Now consider within-group blocks. Suppose (toward a contradiction) that 𝜇2 is
within-group blocked by a coalition 𝐶 within-enforcing a match 𝜈.

First, for every school 𝑠 ∈ 𝜈(𝐶), I define an injection 𝑇𝑠 : 𝜈−1(𝑠) ∩𝐶 → 𝜇−1
1 (𝑠) ∩𝐶

in the following manner. Let 𝜈−1(𝑠) ∩ 𝐶 = {𝑖1, 𝑖2, . . . , 𝑖𝑛} be indexed such that
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𝑖𝑘+1 ≻∗𝑠 𝑖𝑘 for every 𝑘 . Notice that by the construction of 𝜇1, if 𝑖𝑘 ∈ 𝜇−1
1 (𝑠), then for

𝑘′ > 𝑘 , 𝑖𝑘 ′ ∈ 𝜇−1
1 (𝑠). Therefore, there is a unique 𝑚 (possibly taking the value of 0

or 𝑛) such that 𝑖𝑚 ∉ 𝜇−1
1 (𝑠) but 𝑖𝑚+1 ∈ 𝜇−1

1 (𝑠). I define 𝑇𝑠 piecewise based on the
index 𝑘:

• For 𝑚 + 1 ≤ 𝑘 ≤ 𝑛, let 𝑇𝑠 (𝑖𝑘 ) ≡ 𝑖𝑘 .

Observe that 𝑇𝑠 (𝑖𝑘 ) ∈ 𝜇−1
1 (𝑠) by the definition of 𝑚. Notice that 𝑇𝑠 (𝑖𝑘 ) ∈ 𝐶

because 𝑖𝑘 ∈ 𝜈−1(𝑖) ∩ 𝐶. This piece of 𝑇𝑠 is clearly injective.

• For 1 ≤ 𝑘 ≤ 𝑚, consider the following argument:

Because 𝐶 within-group enforces 𝜈 at 𝜇2, it follows that 𝜈−1(𝑠) ∼𝑠 𝜇−1
2 (𝑠).

By construction, 𝜇−1
1 (𝑠) ∼𝑠 𝜇

−1
2 (𝑠). By construction of 𝜇1, every student

in 𝜇−1
1 (𝑠) is strictly ≻∗𝑠 -preferred to every student in 𝑖1, . . . , 𝑖𝑚. Hence by

lemma 2.A.2, 𝑖1, . . . , 𝑖𝑚 ∈ [𝑖𝑚]𝑠.

Again, because 𝐶 within-group enforces 𝜈 over 𝜇2, there are at most 𝑞𝑠 −
|𝜈−1(𝑠) | within-group interrupters for student 𝑖𝑚. Because |𝜈−1(𝑠) | = 𝑞𝑠 by
lemma 2.A.4, it follows that there are no within-group interrupters of 𝑖𝑚.
Hence, 𝑈𝑠 (𝑖𝑚) ⊆ 𝐶. But every student in 𝜇−1

1 (𝑠) is ≻∗𝑠 -preferred to 𝑖𝑚. Thus,
𝜇−1

1 (𝑠) ∩ [𝑖𝑚]𝑠 ⊆ 𝑈𝑠 (𝑖𝑚). Therefore, 𝜇−1
1 (𝑠) ∩ [𝑖𝑚]𝑠 ⊆ 𝐶.

Finally, note that |𝜇−1
1 (𝑠) ∩ [𝑖𝑚]𝑠 | = |𝜈

−1(𝑠) ∩ [𝑖𝑚]𝑠 | by lemma 2.A.2. Let
𝑀 be the greatest index such that 𝑖𝑀 ∈ [𝑖𝑚]𝑠, and note that {𝑖1, . . . 𝑖𝑀} ⊆
𝜈−1(𝑠) ∩ [𝑖𝑚]𝑠. But then I have���𝜇−1

1 (𝑠) ∩ [𝑖𝑚]𝑠
��� ≥ ���{𝑖1, . . . , 𝑖𝑚, . . . 𝑖𝑀}���.

However, because {𝑖𝑚+1, . . . , 𝑖𝑀} ⊆ 𝜇−1
1 (𝑠), this can be rewritten:��� (𝜇−1

1 (𝑠) ∩ [𝑖𝑚]𝑠
)
\{𝑖𝑚+1, . . . , 𝑖𝑀}

��� + ���{𝑖𝑚+1, . . . , 𝑖𝑀}��� ≥ ���{𝑖1, . . . , 𝑖𝑚, . . . 𝑖𝑀}���.
This further implies��� (𝜇−1

1 (𝑠) ∩ [𝑖𝑚]𝑠
)
\{𝑖𝑚+1, . . . , 𝑖𝑀}

��� ≥ ���{𝑖1, . . . , 𝑖𝑚}���. (2.1)

Define 𝑇𝑠 (𝑖𝑘 ) as the 𝑘 th ≻∗𝑠 least-preferred student in(
𝜇−1

1 (𝑠)∩ [𝑖𝑚]𝑠
)
\{𝑖𝑚+1, . . . , 𝑖𝑀}. By equation (2.1),𝑇𝑠 (𝑖𝑘 ) is well-defined and

is an injection on this piece. Because 𝑇𝑠 (𝑖𝑘 ) ∉ {𝑖𝑚+1, . . . , 𝑖𝑀}, this piece of 𝑇𝑠
has no overlap with the first piece. Finally, by the above argument, 𝑇𝑠 (𝑖𝑘 ) ∈ 𝐶.
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Hence, there is a well-defined injection 𝑇𝑠 : 𝜈−1(𝑠) ∩ 𝐶 → 𝜇−1
1 (𝑠) ∩ 𝐶.

Second, iteratively construct the following sequence of students. Let 𝑖1 be some
student in 𝐶 such that 𝜈(𝑖1) ≠ 𝜇2(𝑖1). Because 𝐶 prefers 𝜈 to 𝜇2, such a student
exists. Let 𝑖𝑘+1 ≡ 𝑇𝜈(𝑖𝑘) (𝑖𝑘 ).

Third, I claim that 𝑖𝑘 is well-defined, 𝑖𝑘 ∈ 𝐶, and 𝜇1(𝑖𝑘 ) ≠ 𝜈(𝑖𝑘 ). I show this by
induction. For the base case when 𝑘 = 1, I make three observations:

1. That 𝑖1 is well-defined is noted previously.

2. 𝑖1 ∈ 𝐶 by definition.

3. Because 𝑖1 strictly prefers 𝜈(𝑖1) to 𝜇2(𝑖1) and 𝑖1 weakly prefers 𝜇2 to 𝜇1 by
construction, it follows that 𝜈(𝑖1) ≠ 𝜇1(𝑖1).

For the inductive step, suppose that every student with index less than 𝑘 is well-
defined, is in 𝐶, and is not matched to the same school in 𝜈 and 𝜇1. I make three
observations:

1. Note that 𝜈(𝑖𝑘−1) ∈ 𝜈(𝐶). Similarly, note that 𝜈(𝑖𝑘−1) ∈ 𝑆 because 𝜇2 is
individually rational. Hence, 𝑇𝜈(𝑖𝑘−1) is well-defined. Therefore 𝑖𝑘 is well-
defined.

2. 𝑖𝑘 ∈ 𝐶 because the domain of 𝑇𝜈(𝑖𝑘−1) is a subset of 𝐶.

3. Because 𝜈(𝑖𝑘−1) ≠ 𝜇2(𝑖𝑘−1) and 𝑖𝑘−1 weakly prefers 𝜇2 to 𝜇1, it follows
that 𝜈(𝑖𝑘−1) ≠ 𝜇1(𝑖𝑘−1). Thus, 𝑖𝑘−1 ∉ 𝜇−1

1 (𝜈(𝑖𝑘−1)). By the construction
of 𝑇𝜈(𝑖𝑘−1) , it follows that 𝜇1(𝑖𝑘 ) = 𝜈(𝑖𝑘−1) and 𝜈(𝑖𝑘 ) ≠ 𝜈(𝑖𝑘−1). Therefore,
𝜇1(𝑖𝑘 ) ≠ 𝜈(𝑖𝑘 ).

Fourth, because each 𝑇𝜈(𝑖𝑘) is an injection and each student 𝑖𝑘 is matched to only
one school in 𝜇1, it follows that if 𝑖𝑘 ≠ 𝑖𝑙 , then 𝑇𝜈(𝑖𝑘) ≠ 𝑇𝜈(𝑖𝑙) . Because there are
a finite number of students, it follows that there is a (minimal) index 𝑛 such that
𝑖1 = 𝑖𝑛+1.

Fifth, consider the cycle 𝑖1, . . . , 𝑖𝑛. Because 𝑇𝜈(𝑖𝑘−1) (𝑖𝑘−1) ≠ 𝑖𝑘 , it follows that
𝑗 ≿𝜇1 (𝑖𝑘) 𝑖𝑘 for every 𝑗 ∈ 𝜇−1

1 (𝜇1(𝑖𝑘 )). Hence, every student in the cycle is active
the Top Trading Cycles stage. Notice that each 𝑖𝑘 must be deactivated weakly later
than 𝑖𝑘+1 because 𝑖𝑘 points to 𝜇1(𝑖𝑘+1). However, 𝑖1 must be deactivated strictly later
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than 𝑖2 because 𝜈(𝑖1) ≠ 𝜇1(𝑖2). Therefore, 𝑖1 must be deactivated strictly before 𝑖1,
a contradiction.

Therefore, there is no coalition that within-group blocks 𝜈. □
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C h a p t e r 3

RANKED-TO-MATCH: THE EFFECTS OF EARLY MATCHING
IN THE NRMP

3.1 Introduction
The National Resident Matching Program (NRMP) is the leading example of success
in market design. Since 1952 the NRMP has brokered matches between medical
school graduates and residency programs. Its persistence is viewed as a conse-
quence of the stability of the implemented match (Roth, 1991) and the timing of
the availability of information in the market. Recent research in medical ethics
and medical education identifies coercive post-interview communication (PIC) as a
potential source of market failure; residency programs are successfully arranging
matches through coercive PIC with doctors prior to the operation of the NRMP
match, but these matches may be inefficient. The unraveling of the medical resident
market to a date before the NRMP operates has welfare implications that I examine
in this paper.

I focus on communication by hospital residency programs that either states how a
hospital ranks a doctor, asks a doctor how she ranks the hospital, or implies that a
positive rank by the hospital of the doctor depends upon a commitment from the
doctor to rank the hospital first on her list.1 Such PIC is a violation of the Match
Agreement.2 I refer to PIC involving these questions or statements as coercive, and
connect unraveling with coercive PIC. Early matches (which are a form of unravel-
ing) are either formal offers for outside-of-match positions or informal agreements
to mutually top-rank each other. Numerous free-form responses of surveyed doctors
support a direct connection between coercive PIC and early matches. For instance,
one doctor reported:

“Many program directors explicitly stated that my position on their rank
list depended on postinterview communication. That a commitment
to rank them first would increase my chances of matching at their
program.” (Williams et al., 2019)

1For conciseness, I refer to hospital residency programs as “hospitals” and medical students as
“doctors”. Additionally, I use masculine pronouns for hospitals and feminine pronouns for doctors.

2See NRMP Match Code of Conduct, Section 6.5.

https://www.nrmp.org/wp-content/uploads/2023/08/NRMP-Match-Code-of-Conduct_Programs.pdf
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As discussed in section 1.2, PIC is the object of numerous studies in the medical
ethics and medical graduate education literatures. In these studies, doctors con-
sistently report changes to their submitted Rank-Order List (ROL) as a result of
PIC. That coercive PIC results in early matches (and hence unraveling) is well-
documented by this literature.

In my model two hospitals hold a common preference over doctors, but the doctors’
preferences are uncertain. A hospital that makes many early offers risks that too
many doctors may accept, and hence not enough positions remain for doctors who
only participate in the NRMP match. Conversely, a hospital that makes too few
early offers allows desirable doctors to be poached by the other hospital in the early
match process. When choosing to offer early matches to doctors, hospitals are
forced to weigh the uncertain response of the doctors against the risk of desirable
doctors accepting early match offers from another hospital. This forces hospitals to
hedge by making early offers to doctors that the hospital may not want (depending
on what the doctors’ preferences are) to prevent these doctors from accepting early
offers from the other hospital. Because the less-desirable hospital matches to lower-
ranked doctors, the less-desirable hospital is able to poach lower-ranked doctors that
the more-desirable program has not made early offers to but may desire when the
doctors’ preferences are revealed.

My main result is that the program that is less-desirable in expectation benefits from
early matching at the expense of the program that is more desirable. The utility
transfer occurs because the less-desirable program successfully poaches doctors near
the bottom of the more-desirable program’s accepted doctors. As the effectiveness
of coercive PIC increases, so does the transfer from the more-desirable program to
the less-desirable program.

This result theoretically supports widely held beliefs in medical education. For
instance, in a survey of program directors in internal medicine about the impact of a
policy banning formal early matches (the All-In policy), Adams et al. (2012) states

“The most commonly cited concern [about the All-In policy] was
that smaller, nonuniversity programs and those in geographically less-
desirable areas would suffer in recruitment.”

My interpretation is that banning formal early matches makes coercive PIC less
effective. Program directors predicted that reducing the effectiveness of coercive
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PIC would transfer qualified doctors from lower-ranked to higher-ranked hospitals.
I establish that coercive PIC is detrimental to more-desirable hospitals. I also find
that the responsiveness of the doctors to coercive PIC has an effect on the distortion
caused.

Institutional Background
Medical students spend four years in medical school before beginning residency.
Residency programs provide medical graduates with hands-on experience in partic-
ular fields of medicine. A residency program lasts between three and seven years,
and completion of the first year is required to become a licensed physician within
the United States. In the 2022-2023 admissions cycle there were 48,156 applicants
for 40,375 residency positions (Program, 2023).

The application cycle begins in September of the fourth year when the Electronic
Residency Application System (ERAS) opens. Applicants have already completed
the Step One and Step Two exams, and the Step Three exam is not completed
until after matches are announced in March. In late September the applications are
simultaneously released to residency programs. In early October, Medical Student
Performance Evaluations are released by the medical schools to residency programs.
Shortly after this, residency programs contact applicants to arrange interviews, with
the majority of interviews concluded by the end of the year.

Each student and residency program submits a Rank-Order List (ROL) to the NRMP,
with the deadline for both sides set in February. The NRMP computes a slightly
modified version of the doctor-proposing deferred acceptance algorithm.3 On Match
Day in March, the NRMP announces to doctors and residency programs whom they
have been matched with. The match outputted by the NRMP is a legally binding
contract between doctors and residency programs.

For doctors who did not match and for residency programs with vacant seats remain-
ing, the NRMP facilitates the Supplemental Offer and Acceptance Program (SOAP).
SOAP is held for about a week shortly after the matches have been announced, and
is colloquially referred to as the “scramble.”

Notably, there is little to no new information revealed after the interview stage. After
a doctor completes an interview at a residency program, typically there is no more

3The modifications have been shown by Roth and Peranson (1999) to have a minimal impact on
the match achieved.



81

information about the program that the doctor learns.4 Similarly, after a residency
program interviews a doctor, the only institutional feature by which the program
may (potentially) gain information would be through the release of the Fall semester
grades, but I have come across no discussion of these as factors in the formulation
of the ROL. In essence, all relevant information to make a ROL based on a doctor’s
or program’s merits is available after interviews are conducted.

Literature Review
This paper bridges the medical ethics literature on inappropriate PIC with the market
design literature on unraveling. Below, I summarize key contributions from each
literature.

Studies on inappropriate PIC have been conducted within numerous medical spe-
cialties. The vast majority of studies are unincentivized surveys administered either
to residents (prospective or current) or to program directors of residency programs,
with a response rate of roughly 50% common among these surveys. Many ad-
dress both coercive PIC and other kinds of inappropriate PIC, such as questions by
hospitals concerning marital status, family plans, religion, and other interviews.

Surveys of (prospective) residents (either administered by a medical school to its
students or by a residency to applicants) generally find substantial levels of inap-
propriate PIC. Fields surveyed include Pediatrics (Opel et al., 2007), Emergency
Medicine (Thurman et al., 2009), Dermatology (Sbicca et al., 2010, 2012), Radiation
Oncology (Holliday, Thomas Jr and Kusano, 2015; Berriochoa et al., 2016), Ortho-
pedic Surgery (Camp et al., 2016), Internal Medicine (Cornett et al., 2017; Williams
et al., 2019; Swan and Baudendistel, 2014), and Integrated Vascular Surgery (Fer-
eydooni et al., 2022). Additionally, numerous surveys are not specific to one field:
Anderson, Jacobs and Blue (1999); Pearson and Innes (1999); Miller et al. (2003);
Jena et al. (2012); Monir et al. (2021). Several other studies find similar patterns
within other matches: in the Urology match (Teichman et al., 2000; Sebesta et al.,
2018; Handa et al., 2021) and in the military match (Ratcliffe et al., 2012).

There is not a standard template for the questions in these surveys. However, a few
themes are apparent in the results. Doctors commonly report (∼ 15% of respondents)
being told they are “ranked-to-match,” which is interpreted as meaning the doctor
is ranked at the top of the program’s ROL. Less frequently (∼ 5% of respondents),

4Some doctors are invited back to the residency program for a “Second Look,” but the surveys
discussed in Section 3.1 indicate that most doctors do not find these opportunities to be informative.



82

doctors report being offered incentives to match early. Quite commonly (∼ 25%
of respondents), doctors report changing their rank as a result of inappropriate
(although not always coercive) PIC. Although the data quality is low due to the
nature of the studies, the overall picture from these surveys is that coercive PIC
occurs in some but not all cases, and that it has a meaningful impact on the final
match.

Surveys to program directors are less frequent but still cover a wide spectrum of med-
ical fields. Fields surveyed include General Surgery (Anderson and Jacobs, 2000),
Family Practice (Carek et al., 2000), Dermatology (Sbicca et al., 2010), Obstetrics
and Gynecology (Curran et al., 2012; Frishman et al., 2014), Internal Medicine
(Chacko et al., 2018), Urology (Farber et al., 2019), and Otolaryngology (Harvey
et al., 2019). Additionally, Grimm, Avery and Maxfield (2016) surveys program
directors without reference to a specific field. Program directors commonly report
(∼ 50% of respondents) that they feel doctors have made an informal commitment
to rank the hospital first. Understandably, surveys of program directors imply that
substantially less inappropriate PIC is initiated by programs than implied by surveys
of doctors.

Economists have focused more on the causes of unraveling than on its consequences.
The three primary causes of unraveling identified in the literature are the following.
First, several authors identify the instability of the mechanism as a cause (Roth, 1991;
Sönmez, 1999). Second, others identify uncertainty over the preferences of one or
both sides as a cause (Roth and Xing, 1994; Li and Rosen, 1998; Hałaburda, 2010;
Niederle, Roth and Ünver, 2013; Ambuehl and Groves, 2020). The uncertainty that
these models impose is on a common quality that is uncertain for one or both sides
of the market but will be revealed. Third, a few authors identify costs as a source
of unraveling; Damiano, Li and Suen (2005) examines search frictions as a source
of unraveling, and Echenique and Pereyra (2016) identifies discounting combined
with strategic complementarities as a source.

This paper is most similar to the papers which identify search costs as a cause
of unraveling. From the institutional background provided in Section 3.1, the
mechanism is stable and there is no uncertainty over the quality of either side of the
market that will be revealed before the match is arranged. I depart from the prior
literature by assuming that unraveling occurs and focusing on its welfare effects.
The only other authors to address early matching in the context of the NRMP are
Ashlagi et al. (2023). They use data from OB/GYN programs to study the welfare
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Figure 3.1: Doctor preferences conditioned on type

effects of institutionalizing an early match, and find that an institutionalized early
match would have negative welfare consequences.

3.2 Model
Basics
There are two hospitals 𝐻 and 𝐿 (High and Low), each with capacity Cap. There is
a continuum of doctors with scores distributed on the interval [0, 1]. Doctor types
are further differentiated along two dimensions. First, each doctor has a hospital
preference of 𝐻 or 𝐿 corresponding to preferences 𝐻 ≻ 𝐿 ≻ ∅ or 𝐿 ≻ 𝐻 ≻ ∅,
respectively. Second, each doctor has a match preference of early (ER) or late (LA). I
defineΘ = [0, 1]×{𝐻, 𝐿}×{ER,LA} as the doctor space, and let 𝑓Full : Θ×Ω→ R+
be the density of doctors for the state 𝜔. For simplicity, I assume that the doctor’s
score, hospital preference, and match timing preference are mutually independent,
and that the state 𝜔 only enters 𝑓Full through the hospital preference term. Hence, I
have

𝑓Full(𝑥, 𝐼, 𝑃 | 𝜔) = 𝑓 (𝑥) · ℎ(𝐼 | 𝜔) · 𝑝(P)

with the normalization

ℎ(𝐻 | 𝜔) + ℎ(𝐿 | 𝜔) = 1

𝑝(ER) + 𝑝(LA) = 1.

I assume that ER doctors exhibit a behavioral bias toward a guaranteed partner:
given the opportunity to match to her second-favorite hospital with certainty or to
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partake in the NRMP match, the ER doctor prefers the former. In contrast, LA
doctors never reveal their preferences if asked and always reject early offers. I
interpret this as LA doctors complying fully with the Match Agreement statements
about persuasion.5

I assume that 𝑝(ER) = 𝑟 for 0 < 𝑟 < 1. I call 𝑟 the responsiveness of the market
because it reflects how likely a doctor is to respond to an offer to match before the
stable match is arranged.

Hospital preferences over doctors are given by the following utility function. If 𝜇 is
a matching, then the utility of hospital 𝐼 ∈ {𝐻, 𝐿} is

𝑢𝐼 (𝜇 | 𝜔) =
∫
Θ

𝜇𝜃 (𝐼)𝜃1 𝑓Full(𝜃 | 𝜔)𝑑𝜃.

I denote the expected utility:

𝑢𝐼 (𝜇) = E𝜔
[ ∫

Θ

𝜇𝜃 (𝐼)𝜃1 𝑓Full(𝜃 | 𝜔)𝑑𝜃
]
.

A matching is a function 𝜇 : {𝐻, 𝐿} × Θ → {0, 1} such that 𝜇𝜃 (𝐻) + 𝜇𝜃 (𝐿) ≤ 1.
A matching 𝜇 is stable if there no 𝐼 ∈ {𝐻, 𝐿} and 𝜃, 𝜃′ ∈ Θ such that 𝜃1 > 𝜃′1,
𝜇𝜃 (𝐼) = 0, 𝜇𝜃′ (𝐼) = 1, and 𝐼 ≻𝜃1 𝐽 for 𝜇𝜃 (𝐽) = 1.

Uncertainty
I assume that there is uncertainty over the aggregate hospital preferences of the
doctors. I model this by making the state 𝜔 ∈ {𝜔𝐻 , 𝜔𝐿} a random variable and
assume that

ℎ(𝐻 | 𝜔𝐻) = 1

ℎ(𝐻 | 𝜔𝐿) =
1
2
.

If 𝜔 = 𝜔𝐻 , then I say that 𝐻 is popular and 𝐿 is unpopular. Otherwise, I say that
𝐿 is popular and 𝐻 is unpopular. Which hospital is popular is unknown to both
hospitals, but both hospitals share the same belief.

I choose 1 and 1
2 here to simplify the analysis. When ℎ(𝐻 | 𝜔𝐿) ≠ 1

2 , finding the
equilibrium of the model becomes substantially more difficult and counterintuitive.
I consider that the clarity of exposition is worth the simplification. I conjecture that

5An alternate interpretation is that LA doctors are unsure of their own preferences, or have yet
to conclude interviews, etc.
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Figure 3.2: Distribution of doctor types conditioned on the state 𝜔

my results still hold on a portion of the parameter space when this requirement is
relaxed.

Pr(𝐻 is popular) = Pr(𝜔 = 𝜔𝐻) =
1
2
.

I emphasize here that the only uncertainty facing a doctor is the aggregate preferences
of the other doctors; every doctor knows her own preferences (whether 𝐻 or 𝐿 is
preferred and whether the doctor is ER or LA) and 𝑓 (·) and 𝑝(·).

To summarize, hospitals are uncertain over doctors’ preferences. This uncertainty
is both individual (hospitals do not know 𝜃’s preferences) and aggregate (hospitals
do not know which hospital is popular). Each hospital and each doctor, however, is
certain of his or her own preferences.

Structure
There are two phases. First, in the early-matching phase, each hospital 𝐼 chooses a
Lebesgue-measurable set Π𝐼 to make private offers to, and let Π = (Π𝐻 ,Π𝐿). I use
𝜆 to denote the Lebesgue measure. Each doctor type 𝜃 observes the set of offers
made to her. Doctors of type 𝜃 then respond by choosing a function 𝜌𝜃 (𝐼 | Π) such
that

𝜌𝜃 (𝐼 | Π) ∈ {0, 1} ∀𝐼 ∈ {𝐻, 𝐿} (3.1)

𝜌𝜃 (𝐻 | Π) + 𝜌𝜃 (𝐿 | Π) ≤ 1. (3.2)

Line 1 requires that 𝜃 gives a binary response, and line 2 requires that 𝜃 accept at
most one early offer. I note that 𝜌 is a matching.
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Figure 3.3: Timeline of events

If a doctor accepts an offer, it is a binding commitment between the hospital and the
doctor; the doctor is matched with the hospital, and the hospital sets a new capacity
Cap𝐼 (𝜌, 𝜔) = Cap𝐼 −

∫
Θ
𝜌𝜃 (𝐼 | Π) 𝑓Full(𝜃 | 𝜔)𝑑𝜃. The density of remaining doctors

is 𝑔(𝜃 | 𝜌, 𝜔) = 𝑓Full(𝜃 | 𝜔) · (1 − 𝜌𝜃 (𝐻 | Π) − 𝜌𝜃 (𝐿 | Π)).

Second, in the late-matching phase, the doctor-optimal stable match 𝜇(· | 𝑔,Cap)
is implemented among the remaining doctors and the remaining hospital capacities
based on agents’ true preferences regardless of any early offers made.6 In this case
(See Azevedo and Leshno (2016) for more details), each hospital sets a cutoff (𝐻
sets 𝑞𝐻 and 𝐿 sets 𝑞𝐿) and the match correspondence is

𝜇(𝑥,𝐻,P) (𝐻 | 𝑔,Cap) = ⊮{𝑥 ≥ 𝑞𝐻}
𝜇(𝑥,𝐻,P) (𝐿 | 𝑔,Cap) = ⊮{𝑥 ≥ 𝑞𝐿 and 𝑥 < 𝑞𝐻}

and similarly for (𝑥, 𝐿, P).

If a hospital s its capacity with early matches, it keeps only the highest-scoring
doctors and discards the rest. That is, if for some 𝐼,

∫
Θ
𝜌𝜃 (𝐼 | Π) 𝑓Full(𝜃 | 𝜔)𝑑𝜃 >

Cap, then I truncate 𝜌𝜃 (𝐼 | Π) to �̃�𝜃 (𝐼 | Π) as follows. Define 𝑥 such that∫
{𝜃 | 𝜃1≥𝑥}

𝜌𝜃 (𝐼 | Π) 𝑓Full𝑑𝜃 = Cap. Then

�̃�𝜃 (𝐼 | Π) =

𝜌𝜃 (𝐼 | Π) 𝜃1 ≥ 𝑥

0 otherwise.

However, to incorporate the reputation costs borne by hospitals that renege their
promises, I include that if the hospital 𝐼 that exceeded capacity in the early match,
then it is penalized by having 3 deducted from his utility, where 3 is chosen so that
neither hospital would choose to exceed capacity.

6The condition that hospitals only need rank accepting doctors first is crucial. Otherwise, the
offers in the late match phase would be more difficult to analyze.
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Figure 3.4: Cut-off structure

Equilibria
Each doctor responds deterministically based on her type 𝜃 to offers made. If
𝜃3 = LA (the doctor has a preference for late matching), then 𝜌𝜃 (· | Π) = 0 (the
doctor rejects all offers). If 𝜃3 = ER (the doctor has a preference for early matching),
then the doctor accepts the offer from her most-preferred hospital (if she receives
an offer). Formally, 𝜌𝜃 (𝜃2 | Π) = Π𝜃2 (𝜃1) and 𝜌𝜃 (𝐼 | Π) = 1 Π𝜃2 (𝜃1) = 0 and
Π𝐼 (𝜃1) = 1 for 𝐼 ≠ 𝜃2, and Π𝐼 (𝜃1) = 0 otherwise.

Let

LATE𝜃 (· | Π, 𝜔) = 𝜇
(
· | 𝑔

(
· | 𝜌𝜃 (· | Π), 𝜔

)
,Cap

(
𝜌𝜃 (· | Π), 𝜔

) )
.

A strategy for hospital 𝐼 is a Lebesgue-measurable set Π𝐼 ⊆ [0, 1]. To clarify the
exposition, I provide the following definition to reduce the number of equilibria.
Informally, two strategies are outcome-equivalent if they yield the same matchings
(up to a set of doctors of measure zero) in both the early and late phases.

Definition 3.1. Two strategies Π and Π′ are said to be outcome-equivalent if
𝜌𝜃 (𝐼 | Π) + LATE(𝐼 | Π) = 𝜌𝜃 (𝐼 | Π′) + LATE(𝐼 | Π′) for almost every 𝜃 for both
𝐼 ∈ {𝐻, 𝐿} and both 𝜔 ∈ {𝜔𝐻 , 𝜔𝐿}.

My equilibrium concept is a pure-strategy Nash equilibrium. An equilibrium is a
vector Π such that each hospital maximizes its expected utility given the strategy of
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the other. Formally,

Π𝐼 ∈ arg max
Π′

𝐼

E𝜔𝑢
(
𝜌(𝐼 | Π) + LATE(𝐼 | Π, 𝜔)

)
.

Although pure-strategy equilibria are not guaranteed to exist, in my analysis I prove
its existence in this model.

3.3 Analysis
My analysis has two main results. Theorem 3.1 establishes the existence and
uniqueness of equilibrium. It further shows that, in equilibrium, hospitals use cut-
off strategies. Theorem 3.2 conducts comparative statics with respect to 𝑟, and
shows that hospital 𝐿’s utility is increasing in 𝑟 while 𝐻’s utility decreases in 𝑟.

Formally, my results are the following. First, if Π𝐼 is outcome-equivalent to Π̃𝐼 =

[𝜋𝐼 , 1], then I say that Π𝐼 is a cutoff strategy. That is, each hospital chooses a
threshold score and makes early offers to all doctor types who score above that
threshold. For simplicity, I refer cutoff strategies by the cutoff 𝜋.

Let

𝜋∗𝐻 (𝑟) = 1 − 4Cap
3 + 𝑟

𝜋∗𝐿 (𝑟) = 1 − 6Cap
3 + 𝑟 .

I depict 𝜋∗(𝑟) in Figure 4. Since the cutoffs in the match phase are deterministic
given Π and the state 𝜔, I write 𝑞𝐻 (Π | 𝜔) and 𝑞𝐿 (Π | 𝜔).

My first result is that 𝜋∗(𝑟) is an equilibrium for every 𝑟 ∈ [0, 1], and is unique.

Theorem 3.1. 𝜋∗(𝑟) is the unique equilibrium.

Despite the flexibility in choosing Π, each hospital only uses cutoff strategies.
Perhaps counterintuitively, in Lemma 3.1 I show that every best-response is a cutoff
strategy.

To prove Theorem 3.1, I use backward induction. The critical step is the proof that
if Π𝐼 is a best-response, then Π𝐼 is a cutoff strategy. I state this in Lemma 3.1:

Lemma 3.1. If Π𝐼 is a best response to Π𝐽 , then there exists some Π∗
𝐼

that is
outcome-equivalent to Π𝐼 such that

Π∗𝐼 = [𝜋𝐼 , 1],

where 𝑞𝐼 (Π | 𝜔𝐽) ≤ 𝜋𝐼 ≤ 𝑞𝐼 (Π | 𝜔𝐼).
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Figure 3.5: Illustration of the equilibrium when Cap = 1/2. Notice that hospital
𝐻 over admits in the early stage when 𝐻 is popular: 𝑞𝐻 (𝜋∗(𝑟) | 𝜔𝐻) ≠ 𝜋∗

𝐻
(𝑟).

In contrast, hospital 𝐿 never over admits: 𝑞𝐿 (𝜋∗(𝑟) | 𝜔𝐿) = 𝜋∗
𝐿
(𝑟). Because

Cap ≥ 1/2, every doctor is admitted by at least one hospital in the the stable match
(𝑞𝐻 (𝜋∗(𝑟) | 𝜔𝐿) = 𝑞𝐿 (𝜋∗(𝑟) | 𝜔𝐻) = 0).

If there are multiple 𝜋 that satisfy Lemma 3.1, I take 𝜋 to be the smallest one.

Lemma 3.1 narrows the scope of possible deviations Π′
𝐼

tremendously. Because
𝑞 is a deterministic function 𝜋, finding equilibria becomes equivalent to checking
possible 𝜋𝐼 ∈ [0, 1].

The main difficulty in proving Lemma 3.1 is that early offers made by 𝐼 to doctors in
Π𝐽 have different yields based on the state 𝜔, whereas early offers made to doctors
not in Π𝐽 always result in perfect yield. A generic strategy Π𝐼 could produce a
variety of combinations of yield based on the state 𝜔 that cutoff strategies cannot
replicate.

The insight that resolves this difficulty is that when hospital 𝐼 drops doctors from
Π𝐼 , these doctors either accept early offers from hospital 𝐽 (giving hospital 𝐼 access
to doctors on the margin of 𝑞𝐽) or are still available (so hospital 𝐼 is just as well off).
The proof of Lemma 3.1 leverages this in case 3.

Here I provide a sketch of the proof of Lemma 3.1. Toward a contradiction, I
suppose that Lemma 3.1 does not hold. Then there are two sets of doctors 𝐴 and 𝐵
with positive measure such that 𝐵 is above 𝐴 with regards to 𝜃1, 𝐴 is in Π𝐼 but 𝐵 is
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not in Π𝐼 . The three cases are:

1. If 𝐵 is above 𝑞𝐼 (𝜋∗ | 𝜔𝐼), then hospital 𝐼 should always make early offers to
doctors in 𝐵.

2. If 𝐵 is below 𝑞𝐼 (𝜋∗ | 𝜔𝐼) and below 𝑞𝐽 (𝜋∗ | 𝜔𝐽), then hospital 𝐼 should drop
doctors in 𝐴. This follows because if 𝜔 = 𝜔𝐼 , hospital 𝐼 does not want these
doctors, and if 𝜔 = 𝜔𝐽 , then hospital 𝐽 will not make regular offers to 𝐴 (and
any doctor hospital 𝐽 gains from hospital 𝐼 dropping 𝐴 lets hospital 𝐼 gain a
doctor on the margin of 𝑞𝐽 (𝜋∗ | 𝜔𝐽)).

3. If 𝐵 is below 𝑞𝐼 (𝜋∗ | 𝜔𝐼) and above 𝑞𝐽 (𝜋∗ | 𝜔𝐽), then hospital 𝐼 should
drop some doctors in 𝐴 and admit some doctors in 𝐵 such that 𝑞𝐼 (𝜋∗ | 𝜔𝐼)
remains the same. This works because, in state 𝜔𝐼 , hospital 𝐼 shifts toward
higher scoring doctors without affecting the cutoffs. If 𝜔 = 𝜔𝐽 , then hospital
𝐼 is better off because any doctor in 𝐴 that also received an early offer from
hospital 𝐽 now accepts the early offer from hospital 𝐽, making hospital 𝐽
worse off. Because the set of matched doctors is the same (all doctors with
𝜃1 ∈ [1 − 2Cap, 1]), I see that any loss to hospital 𝐽 is a gain for hospital 𝐼.

These cases complete the proof.

Using Lemma 3.1, proving Theorem 3.1 involves tedious algebra and case work.
The proof mostly consists of hypothesizing the order of the cutoffs 𝑞 and 𝜋 and
verifying that these are correct. The proof is relegated to Section 3.A.

In my second theorem, I analyze the comparative statics of varying 𝑟. I see that
hospital 𝐻’s utility decreases in 𝑟.

Theorem 3.2. 𝑢𝐻 (𝜋∗(𝑟)) is decreasing in 𝑟.

The proof of Theorem 3.2 relies only on calculating a derivative, so I relegate it to the
supplementary Mathematica notebook. Because the same set of doctors is accepted
for every 𝑟 and no hospital exceeds capacity, it follows that hospital 𝐿’s utility is
increasing when hospital 𝐻’s utility is decreasing. Hence, hospital 𝐿 prefers larger
𝑟.

3.4 Discussion
Theorem 3.2 provides a theoretical foundation for the commonly held belief that
the All-In policy would harm less competitive programs. In my model, 𝑟 reflects
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Case:

Should
be in-
cluded
in Π𝐼

Should
be

dropped
from
Π𝐼

Some
should

be
added
to Π𝐼

Some
should

be
dropped
from
Π𝐼

1

𝑞𝐼 (𝜋∗ | 𝜔𝐼)

𝑞𝐽 (𝜋∗ | 𝜔𝐽)

𝐴

𝐵

2

𝑞𝐼 (𝜋∗ | 𝜔𝐼)

𝑞𝐽 (𝜋∗ | 𝜔𝐽)

𝐴

𝐵

3

𝑞𝐼 (𝜋∗ | 𝜔𝐼)

𝑞𝐽 (𝜋∗ | 𝜔𝐽)

𝐴

𝐵

Figure 3.6: Illustration of the proof of Lemma 3.1. Hospital 𝐼 makes offers to
doctors in 𝐴 but not in 𝐵. In Case 1, hospital 𝐼 should always make offers to doctors
in 𝐵 because regardless of the state𝜔 hospital 𝐼 always wants these doctors. In Case
2, hospital 𝐼 should never make offers to doctors in 𝐴 because regardless of the state
𝜔 hospital 𝐼 never wants these doctors. In Case 3, hospital 𝐼 should replace offers
made to doctors in 𝐴 with offers made to doctors in 𝐵 because hospital 𝐼 prefers
doctors in 𝐵 and if the state is 𝜔𝐽 then every doctor in 𝐴 is still available (or is early
matched to hospital 𝐽, which hurts hospital 𝐽 and thus helps hospital 𝐼).

how attractive early offers are to doctors; a higher 𝑟 translates to more doctors being
willing to accept early offers. If hospitals are unable to make contractual agreements
with doctors prior to the NRMP, then some doctors who could have been persuaded
to accept an early offer will not accept it. Similarly, stronger restrictions on PIC may
prevent hospitals from as effectively persuading doctors to accept an early match. I
interpret these as lowering the responsiveness of the market, 𝑟. Theorem 3.2 predicts
that the less competitive hospitals would be harmed by these policies.

My model does not allow me to test different proposals to reduce early matching,
but it does provide predictions about the number of early offers made and the
hospitals that benefit from early matches. Counterintuitively, as doctors become
less responsive to early offers (lower 𝑟), hospitals make more early offers. Policies
intended to reduce the rate of early matches are likely to increase the number of
early offers made even though the number of early matches decreases.

Beyond the direct policy implications, Theorem 3.1 is a technical advancement
that could be useful for other applications in matching theory. The main difficulty
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with establishing that best-responses are only in cutoff strategies is that non-cutoff
strategies are able to flexibly combine doctors included in other hospitals’ early offer
sets to produce complex lotteries over the early match 𝜌. Theorem 3.1 demonstrates
that when there are just two hospitals, this flexibility is unnecessary. The two-
hospital assumption makes the analysis tractable.

Two directions for future work are apparent. The first is to increase the number of
hospitals. Extending Lemma 3.1 to this case may prove impossible, and I conjecture
that hospitals will have a cutoff for every combination of other hospitals. The key
insight from the proof of Lemma 3.1 is that when hospital 𝐼 makes early offers to
doctors below 𝑞𝐽 (𝜋 | 𝜔𝐽) (hospital 𝐽’s cutoff when 𝐽 is popular), these early offers
are only beneficial to hospital 𝐼 in the state that 𝐽 is popular; hence the early offers
to these doctors are unnecessary. It is not apparent how viable this lemma is with
more than two hospitals.

In my model, hospital 𝐿 gains utility from early offers because hospital 𝐿 has lower
cutoffs in the late match than hospital 𝐻. Hospital 𝐿 does not need to hedge his bets
concerning 𝑞𝐿 because 𝑞𝐿 is always below 𝜋𝐻 . For a multi-hospital extension, it is
unclear how this property would translate. It would be fruitful to further understand
the properties of a hospital that cause it to gain from early offers.

A second extension is to consider the welfare of the doctors. It would be interesting
to examine which types of doctors are impacted most by early offers, and whether
some doctors are likely to gain from the early offer system.

3.A Appendix to Chapter 3: Omitted Proofs
Proof of Lemma 3.1: Toward a contradiction, suppose that Π𝐼 is a best response to
Π𝐽 and that Π𝐼 is not outcome-equivalent to Π∗

𝐼
for any 𝜋𝐼 . Then there are sets 𝐴

and 𝐵 such that 𝜆(𝐴) > 0, 𝜆(𝐵) > 0, inf 𝐵 ≥ sup 𝐴, 𝐴 is in Π𝐼 , and 𝐵 is not in Π𝐼 .
WLOG there are three cases:

1. inf 𝐵 > 𝑞𝐼 (Π | 𝜔𝐼): In this case, consider the deviation

Π
𝛽

𝐼
= Π𝐼 ∪ {𝑏 ∈ 𝐵 s.t. 𝑏 ≥ 𝛽}.

Because 𝑟 > 0 there exists some 𝛽∗ such that 𝛽∗ ≥ 𝑞𝐼 (Π𝛽∗

𝐼
,Π𝐽 | 𝜔𝐼) and

𝜆( [𝛽∗, 1] ∩ 𝐵) > 0.

If 𝑞𝐼 (Π𝛽∗

𝐼
,Π𝐽 | 𝜔𝐼) = 𝑞𝐼 (Π | 𝜔𝐼) for every such 𝐵 and 𝛽, then the supposition

that Π𝐼 is not outcome-equivalent to some Π∗
𝐼

is violated, a contradiction.
Hence, take 𝐵 and 𝛽∗ such that 𝑞𝐼 (Π𝛽∗

𝐼
,Π𝐽 | 𝜔𝐼) ≠ 𝑞𝐼 (Π | 𝜔𝐼).



93

Because Π∗
𝐼
⊃ Π𝐼 , it follows that∫

Θ

𝜌𝜃 (𝐼 | Π𝛽∗

𝐼
,Π𝐽) 𝑓Full(𝜃 | 𝜔)𝑑𝜃 >

∫
Θ

𝜌𝜃 (𝐼 | Π) 𝑓Full(𝜃 | 𝜔)𝑑𝜃.

Hence, 𝑞𝐼 (Π𝛽∗

𝐼
,Π𝐽 | 𝜔𝐼) > 𝑞𝐼 (Π | 𝜔𝐼).

• If𝜔 = 𝜔𝐼 , then 𝐼 has traded doctors in the interval [𝑞𝐼 (Π | 𝜔𝐼), 𝑞𝐼 (Π𝛽∗

𝐼
,Π𝐽 | 𝜔𝐼)]

for doctors above 𝛽∗.

• If𝜔 = 𝜔𝐽 , then 𝐼 has traded doctors in the interval [𝑞𝐼 (Π | 𝜔𝐽), 𝑞𝐼 (Π𝛽∗

𝐼
,Π𝐽 | 𝜔𝐽)]

for doctors above 𝛽∗.

Hence, 𝐼 is strictly better off in both states, a contradiction. This also estab-
lishes that 𝜋𝐼 ≤ 𝑞𝐼 (Π | 𝜔𝐼).

2. sup 𝐵 < 𝑞𝐼 (Π | 𝜔𝐼) and sup 𝐵 < 𝑞𝐽 (Π | 𝜔𝐽): In this case, consider the
deviation

Π𝛼
𝐼 = Π𝐼\{𝑎 ∈ 𝐴 s.t. 𝑎 < 𝛼}.

Because 𝑟 > 0 there exists some 𝛼∗ such that 𝜆( [0, 𝛼∗] ∩ 𝐴) > 0 and
𝑞𝐼 (Π𝛼∗

𝐼
,Π𝐽 | 𝜔𝐼) ≠ 𝑞𝐼 (Π | 𝜔𝐼). and sup 𝐴 < 𝑞𝐽 (Π𝛼∗

𝐼
,Π𝐽 | 𝜔𝐼).

If 𝑞𝐼 (Π𝛼∗

𝐼
,Π𝐽 | 𝜔𝐼) = 𝑞𝐼 (Π | 𝜔𝐼) for every such 𝐴 and 𝛼, then the supposition

that Π𝐼 is not outcome-equivalent to some Π∗
𝐼

is violated, a contradiction.
Hence, take 𝐴 and 𝛼∗ such that 𝑞𝐼 (Π𝛼∗

𝐼
,Π𝐽 | 𝜔𝐼) ≠ 𝑞𝐼 (Π | 𝜔𝐼).

Because Π∗
𝐼
⊂ Π𝐼 , it follows that∫

Θ

𝜌𝜃 (𝐼 | Π𝛼∗

𝐼 ,Π𝐽) 𝑓Full(𝜃 | 𝜔)𝑑𝜃 <
∫
Θ

𝜌𝜃 (𝐼 | Π) 𝑓Full(𝜃 | 𝜔)𝑑𝜃.

Hence, 𝑞𝐼 (Π𝛼∗

𝐼
,Π𝐽 | 𝜔𝐼) < 𝑞𝐼 (Π | 𝜔𝐼).

• If 𝜔 = 𝜔𝐼 , then 𝐼 has traded doctors below 𝛼∗ for doctors in the interval
[𝑞𝐼 (Π𝛼∗

𝐼
,Π𝐽 | 𝜔𝐼), 𝑞𝐼 (Π | 𝜔𝐼)]. This is a strict improvement.

• If 𝜔 = 𝜔𝐽 , then every doctor that 𝐼 forgoes (doctors (𝜃1, 𝐼,ER) such
that 𝜃1 < 𝛼

∗, 𝜃1 ∈ 𝐴, and 𝜃1 ∈ Π𝐽) is either still available (if 𝐽 overfills
his capacity in the early match) or implies that 𝐼 can acquire a doctor in
[𝑞𝐽 (Π𝛼∗

𝐼
,Π𝐽 | 𝜔𝐼), 𝑞𝐽 (Π | 𝜔𝐼)]. This is a weak improvement.

Hence, 𝐼 is strictly better off, a contradiction.
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3. sup 𝐵 < 𝑞𝐼 (Π | 𝜔𝐼) and inf 𝐵 > 𝑞𝐽 (Π | 𝜔𝐽): In this case, consider the
deviation

Π
𝛼,𝛽

𝐼
=

(
Π𝐼 ∪ {𝑏 ∈ 𝐵 s.t. 𝑏 ≥ 𝛽}

)
\{𝑎 ∈ 𝐴 s.t. 𝑎 < 𝛼}.

There exists some 𝛼∗ and 𝛽∗ such that 𝜆( [0, 𝛼∗] ∩ 𝐴) > 0, 𝜆( [𝛽∗, 1] ∩𝐵) > 0,
and 𝑞𝐼 (Π𝛼∗,𝛽∗

𝐼
,Π𝐽 | 𝜔𝐼) = 𝑞𝐼 (Π | 𝜔𝐼).

It follows that∫
Θ

𝜌𝜃 (𝐼 | Π𝛼∗,𝛽∗

𝐼
,Π𝐽) 𝑓Full(𝜃 | 𝜔)𝑑𝜃 =

∫
Θ

𝜌𝜃 (𝐼 | Π) 𝑓Full(𝜃 | 𝜔)𝑑𝜃.

Observe also that∫
Θ

𝜌𝜃 (𝐼 | Π𝛼∗,𝛽∗

𝐼
,Π𝐽) 𝑓Full(𝜃 | 𝜔𝐽)𝑑𝜃 ≤

∫
Θ

𝜌𝜃 (𝐼 | Π) 𝑓Full(𝜃 | 𝜔𝐽)𝑑𝜃

with strict inequality if𝜆(𝐴∩[0, 𝑞𝐽 (Π | 𝜔𝐽)]) > 0. Hence 𝑞𝐽 (Π𝛼∗,𝛽∗

𝐼
,Π𝐽 | 𝜔𝐽) ≤

𝑞𝐽 (Π | 𝜔𝐽).

• If 𝜔 = 𝜔𝐼 , then 𝐼 has traded doctors below 𝛼∗ for doctors above 𝛽∗. This
is a strict improvement.

• If 𝜔 = 𝜔𝐽 , observe that 𝑞𝐽 (Π𝛼∗,𝛽∗

𝐼
,Π𝐽 | 𝜔𝐽) ≤ 𝑞𝐽 (Π | 𝜔𝐽). Hence, 𝐽

acquires weakly worse doctors under Π𝛼∗,𝛽∗

𝐼
than Π𝐼 . Because the every

doctor who was matched under Π is matched under Π𝛼∗,𝛽∗

𝐼
,Π𝐽 , it follows

that 𝐼 is weakly better off.

Hence, 𝐼 is strictly better off, a contradiction.

In all three cases, a contradiction was reached. Hence, Π𝐼 is outcome-equivalent to
[𝜋𝐼 , 1] for some 𝜋𝐼 .

To establish the final claim that 𝜋𝐼 ≥ 𝑞𝐼 (Π | 𝜔𝐽), suppose toward a contradiction that
𝜋𝐼 < 𝑞𝐼 (Π | 𝜔𝐽). Then hospital 𝐼 could instead respond with 𝜋𝐼 + 𝜖 for 𝜖 > 0. For 𝜖
small enough, 𝜋𝐼+𝜖 < 𝑞𝐼 (𝜋𝐼+𝜖,Π𝐽 | 𝜔𝐽). Hospital 𝐼 prefers to not be matched with
doctors with scores in [𝜋𝐼 , 𝜋𝐼 + 𝜖] and instead be matched with doctors in the range
[𝑞𝐼 (𝜋𝐼 ,Π𝐽 | 𝜔𝐽), 𝑞𝐼 (𝜋𝐼 + 𝜖,Π𝐽 | 𝜔𝐽)] or [𝑞𝐼 (𝜋𝐼 ,Π𝐽 | 𝜔𝐼), 𝑞𝐼 (𝜋𝐼 + 𝜖,Π𝐽 | 𝜔𝐼)].
Hence, 𝜋𝐼 + 𝜖 is a better response, a contradiction. □

Lemma 3.A.1. If 𝜋𝐼 is a best-response to 𝜋𝐽 such that 𝜋𝐼 < 𝜋𝐽 ≤ 𝑞𝐽 (𝜋 | 𝜔𝐽), then
𝜋𝐼 = 𝑞𝐼 (𝜋 | 𝜔𝐼).
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Proof. Suppose toward a contradiction that 𝜋𝐼 < 𝜋𝐽 ≤ 𝑞𝐽 (𝜋 | 𝜔𝐽) and 𝜋𝐼 ≠

𝑞𝐼 (𝜋 | 𝜔𝐼). If 𝜋𝐼 > 𝑞𝐼 (𝜋 | 𝜔𝐼) a contradiction is immediate because hospital
𝐼 can profitably deviate to 𝜋𝐼 − 𝜖 for some 𝜖 > 0 that is small such that 𝜋𝐼 >
𝑞𝐼 (𝜋𝐼 − 𝜖, 𝜋𝐽 | 𝜔𝐼). If 𝜋𝐼 < 𝑞𝐼 (𝜋 | 𝜔𝐼) then observe that 𝜋𝐽 < 𝑞𝐽 (𝜋 | 𝜔𝐽) by
lemma 1. Consider the deviation by hospital 𝐼 to 𝜋𝐼 + 𝜖 for 𝜖 > 0 small such that
𝜋𝐼 + 𝜖 ≤ 𝑞𝐼 (𝜋𝐼 + 𝜖, 𝜋𝐽 | 𝜔𝐼).

• If 𝜔 = 𝜔𝐼 , then hospital 𝐼 is strictly better off as he has exchanged doctors in
[𝜋, 𝜋𝐼+𝜖] for doctors in [𝑞𝐼 (𝜋𝐼+𝜖, 𝜋𝐽 | 𝜔𝐼), 𝑞𝐼 (𝜋 | 𝜔𝐼)], a strict improvement.

• If𝜔 = 𝜔𝐽 , then hospital 𝐼 is weakly better off because every doctor in [𝜋, 𝜋𝐼+𝜖]
is still available to hospital 𝐼.

Hence, the deviation by hospital 𝐼 to 𝜋𝐼 + 𝜖 is a strict improvement. □

Corollary 1. If 𝜋 is a equilibrium such that 𝜋𝐿 < 𝜋𝐻 , then 𝜋𝐿 = 𝑞𝐿 (𝜋 | 𝜔𝐿).

Corollary 2. There is no equilibrium 𝜋 such that 𝜋𝐿 > 𝜋𝐻 .

Proof. Suppose toward a contradiction that 𝜋𝐿 > 𝜋𝐻 . Then 𝑞𝐿 (𝜋 | 𝜔𝐿) > 𝜋𝐿

by Lemma 1. Lemma 2 implies that 𝜋𝐻 = 𝑞𝐻 (𝜋 | 𝜔𝐻). But by definition,
𝑞𝐿 (𝜋 | 𝜔𝐿) < 𝑞𝐻 (𝜋 | 𝜔𝐻), a contradiction. □

Proof of Theorem 3.1: The proof is as follows. First, I conjecture that for some 𝜋
the following holds:

𝑞𝐻 (𝜋 | 𝜔𝐿) = 𝑞𝐿 (𝜋 | 𝜔𝐻) ≤ 𝜋𝐿 ≤ 𝑞𝐿 (𝜋 | 𝜔𝐿) ≤ 𝜋𝐻 < 𝑞𝐻 (𝜋 | 𝜔𝐻) (∗).

Under (∗) I can calculate 𝑞 as a function of 𝜋. I then solve for the first-order
conditions to find 𝜋∗ and see that (∗) holds under 𝜋∗. I then check if either hospital
has a profitable deviation �̃�. When checking for profitable deviations, I use Lemmas
1 and 2 to make the search tractable.

To show uniqueness, I again use Lemmas 1 and 2, and also Corollaries 1 and 2, to
rule out many possible alternative equilibria 𝜋′. I then check any remaining 𝜋′ by
hand.

I use the computer software Mathematica to assist with algebraic manipulation. The
commands executed can be found in the Supplementary Materials.
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First, observe that (∗) implies

𝑞𝐻 (𝜋 | 𝜔𝐿) = 1 − 2Cap

𝑞𝐿 (𝜋 | 𝜔𝐻) = 1 − 2Cap

𝑞𝐿 (𝜋 | 𝜔𝐿) =
1 − 2Cap + 𝜋𝐻𝑟 − 2𝜋𝐿𝑟

1 − 𝑟
𝑞𝐻 (𝜋 | 𝜔𝐻) =

1 − Cap − 𝜋𝐻𝑟
1 − 𝑟 .

I then calculate

𝑢𝐻 (𝜋) =
(
Cap2(6 − 8𝑟) + 𝑟 (1 + 3(−2 + 𝜋𝐻)𝜋𝐻 − 2(−2 + 𝜋𝐿)𝜋𝐿 − 2(𝜋𝐻 − 𝜋𝐿)2𝑟)

+ 8Cap(−1 + (1 + 𝜋𝐻 − 𝜋𝐿)𝑟)
) (

8(−1 + 𝑟)
)−1

𝑢𝐿 (𝜋) =
(
Cap2(10 − 8𝑟) + 𝑟 (−1 − 3(−2 + 𝜋𝐻)𝜋𝐻 + 2(−2 + 𝜋𝐿)𝜋𝐿 + 2(𝜋𝐻 − 𝜋𝐿)2𝑟)

+ 8Cap(−1 + (1 − 𝜋𝐻 + 𝜋𝐿)𝑟)
) (

8(−1 + 𝑟)
)−1
.

I see that 𝑢𝐻 (𝜋) is concave in 𝜋𝐻 , and 𝑢𝐿 (𝜋) is concave in 𝜋𝐿 . Hence, I need only
solve the first-order conditions, which yields

𝜋∗𝐻 (𝑟) = 1 − 4Cap
3 + 𝑟

𝜋∗𝐿 (𝑟) = 1 − 6Cap
3 + 𝑟 .

Under 𝜋∗(𝑟) I see that (∗) holds.

I now check for profitable deviations.

Suppose (toward a contradiction) that �̃�𝐿 is a profitable deviation for hospital 𝐿 that
is a best-response to 𝜋∗

𝐻
. Consider the following cases:

• If �̃�𝐿 > 𝜋∗
𝐿
, then I observe 𝑞𝐿 (�̃�𝐿 , 𝜋∗𝐻 | 𝜔𝐿) < 𝑞𝐿 (𝜋∗ | 𝜔𝐿) < �̃�𝐿 , a

contradiction to Lemma 1.

• If �̃�𝐿 < 𝜋∗
𝐿
, then I observe 𝑞𝐿 (�̃�𝐿 , 𝜋∗𝐻 | 𝜔𝐿) > 𝑞𝐿 (𝜋∗ | 𝜔𝐿) > �̃�𝐿 , a

contradiction to Lemma 2.

Hence, hospital 𝐿 has no profitable deviations.

Suppose (toward a contradiction) that �̃�𝐻 is a profitable deviation for hospital 𝐻 that
is a best-response to 𝜋∗

𝑙
. Consider the following cases:
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• If �̃�𝐻 > 𝜋∗
𝐻

such that �̃�𝐻 > 𝑞𝐻 (�̃�𝐻 , 𝜋∗𝐿 | 𝜔𝐻), then this is a contradiction to
lemma 1.

• If �̃�𝐻 > 𝜋∗𝐻 such that �̃�𝐻 ≤ 𝑞𝐻 (�̃�𝐻 , 𝜋∗𝐿 | 𝜔𝐻), then observe that 𝑞𝐿 (�̃�𝐻 , 𝜋∗𝐿 | 𝜔𝐿) ≤
�̃�𝐻 . Thus (∗) continues to hold. This is a contradiction to 𝜋∗

𝐻
maximizing

𝑢𝐻 (𝑥, 𝜋∗𝐿) under (∗).

• If �̃�𝐻 < 𝜋∗
𝐻

such that �̃�𝐻 > 𝜋∗
𝐿
, then observe that 𝑞𝐿 (�̃�𝐻 , 𝜋∗𝐿 | 𝜔𝐿) < 𝜋∗

𝐿
.

This case is considered in the cell “DEVIATION 1” in the supplementary
Mathematica notebook. There, I derive 𝑞 given 𝜋∗

𝐿
and �̃�𝐻 . I then derive

hospital 𝐻’s utility, show that it is concave in �̃�𝐻 , and that the first order
conditions are satisfied for �̃�𝐻 > 𝜋∗

𝐻
. Hence, the best-response must be

�̃�𝐻 = 𝜋∗
𝐻

, a contradiction.

• If �̃�𝐻 < 𝜋∗
𝐻

such that �̃�𝐻 ≤ 𝜋∗
𝐿

and �̃�𝐻 ≥ 𝑞𝐻 (�̃�𝐻 , 𝜋∗𝐿 | 𝜔𝐿), then ob-
serve that 𝑞𝐿 (�̃�𝐻 , 𝜋∗𝐿 | 𝜔𝐿) = 𝑞𝐿 (�̃�𝐻 , 𝜋∗𝐿 | 𝜔𝐻) and 𝑞𝐻 (�̃�𝐻 , 𝜋∗𝐿 | 𝜔𝐿) ≥
𝑞𝐿 (�̃�𝐻 , 𝜋∗𝐿 | 𝜔𝐿). I note that the reversal in the order of 𝑞𝐿 (�̃�𝐻 , 𝜋∗𝐿 | 𝜔𝐿) and
𝑞𝐻 (�̃�𝐻 , 𝜋∗𝐿 | 𝜔𝐿) occurs precisely when �̃�𝐻 and 𝜋∗

𝐿
switch order. This case

is considered in the cell “DEVIATION 2” in the supplementary Mathematica
notebook. There, I derive 𝑞 given 𝜋∗

𝐿
and �̃�𝐻 . I then derive hospital𝐻’s utility,

show that it is concave in �̃�𝐻 , and that the first order conditions are satisfied
for �̃�𝐻 > 𝜋∗𝐻 . Hence, the best response must be �̃�𝐻 = 𝜋∗

𝐿
, a contradiction.

• If �̃�𝐻 < 𝜋∗𝐻 such that �̃�𝐻 ≤ 𝜋∗𝐿 and �̃�𝐻 < 𝑞𝐻 (�̃�𝐻 , 𝜋∗𝐿 | 𝜔𝐿), then observe by
Lemma 1 this cannot be a best response, a contradiction.

Hence, 𝜋∗ is an equilibrium.

To show uniqueness, I note that by corollaries 1 and 2 (and lemma 1), I need only con-
sider other equilibria 𝜋′ of the form 𝜋′

𝐿
= 𝜋′

𝐻
. Suppose (toward a contradiction) that

such a 𝜋′ is an equilibrium. Then by Lemma 1 𝑞𝐻 (𝜋′ | 𝜔𝐻) ≥ 𝜋′𝐻 ≥ 𝑞𝐻 (𝜋′ | 𝜔𝐿)
and 𝑞𝐿 (𝜋′ | 𝜔𝐿) ≥ 𝜋′𝐿 ≥ 𝑞𝐿 (𝜋′ | 𝜔𝐻). Observe that 𝑞𝐻 (𝜋′ | 𝜔𝐿) = 𝑞𝐿 (𝜋′ | 𝜔𝐿).
This implies that either 𝑞𝐻 (𝜋′ | 𝜔𝐻) = 1 − 2Cap or 𝑞𝐿 (𝜋′ | 𝜔𝐿) = 1 − 2Cap. I then
observe that 𝑞𝐿 (𝜋′ | 𝜔𝐿) ≤ 𝑞𝐻 (𝜋′ | 𝜔𝐻). Thus, 𝑞𝐿 (𝜋′ | 𝜔𝐿) = 1 − 2Cap. Hence,
𝜋′
𝐻
= 𝜋′

𝐿
= 1 − 2Cap.

In the cell “ALTERNATE EQUILIBRIUM BEST RESPONSE” in the attached
Mathematica notebook, I show that the deviation

𝜋∗𝐻 (𝑟) = 1 + 2Cap
(
− 1 + 1

3 − 2𝑟

)
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is a profitable deviation, a contradiction. Hence, 𝜋∗ is the unique equilibrium, and
the theorem is proved.

□
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