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ABSTRACT

The theory of a new method of matching obstacle in
ultra high frequency transmission lines, using the two
wire transmission line analogy, is presented. The method
is especially suited to the resonant cavity measurement
technique, indicates a convenient form for tabulating
data and reduces the matching conditions to their simplest
form. The theory is extended to cover a frequency band
rather than a single frequency and also to Junctions
between lines of different characteristic impedances.
Experimental examples of each case are given as well as an
example of the precision obtainable with the resonant

cavity technique.
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PART I

Introduction

The problem of finding the conditions for matching two
obstacles placed in a wave zuide was considered in an attempt
to increase the usefulness of equivalent circuit data. It
was felt that this data, orizinally taken to confirm theo-
retical computations, should be useful in designing actual
systems. Eowgver, using the conventional eguivalent circult,
the equations involved and the conditions for matching were
so complicated as to perhaps account for the little use made
of the data. A new notation was developed which would lend
itself more readily to engineering practice. The solution of
the matcaing problem in this notation, along with two experi-

mental examples,lis given in Part I.

The Canonical T~Section Parameters

A lossless obstacle placed in a wave zuide or other

microwave transmission line can be represented by a



4-terminal network containing purely reactive impedances .t

We stall choose a symmetrical T-section®*, but rather than
the usual X7 and Xo (Fig. la), we sicll use the canonical

parameters S and T¥%* (Fig. 1lb, where:

S =
T

X
Xl+2X’L

W

A considerable simplification of derivations, formulas, and

calculatiors results from this suostitution.

c)_......__......_..‘ j_’,\ . b i e R iR s aiosd JX ‘ ..L..,..__‘_g (6 e 3 j Q i{ j S
] o =S
JK (3 % 2
=0 G
a b
Fig. 1

In terms of thecge parameters: s
Ze = 4 AT 2
T +S5

Zgs = 4 TZE

. = TS

TS
Cost\r- T__S

1. . . o
Numerical superscripts refer to bibliography.

*Any asymmetricsl T-section is equivalent to a symmetrical

section plus the proper length of line.
*%*These are closely related to the electrically equivalent
lattice circult.

(1)
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Any T-section has two distinct representations as long
as measurements across the series arms are not permitted.
This 1s ordinarily the case. Using the canonical parameters,
the one representation is obtained from the othef by an inter-
change of S and T. In the following, nearly all the equations
are invariant to such an interchange.

As we snall see later, 5 and T are measured directly by
the resonant cavity method when the measﬁrement is made so
as to give the minimum error. Furthermore, the conditions
for matching two obstacles are extremely simple in terms of
5 and T.

In what follows, unless otuerwise stated, we shall

measure 211 impedances in terms of the characteristic im-

Z2 (ohwm S)
pedance. Using the dimensionless impedance Zz = Zr Comms)
is mathematically the same as letting Ze =4 .

Conditions for Matching Two T-Sections
‘ i
I ( X_I_ o j S JS p—u-————o-«.,.-f.w..“.-,.m‘m
7= Zp =
=9
: \ =2
Yeubop Vi) Y=yp
e —
-x X
Fig. 2

If, in Fig. 2, we consider a wave advancing from the

left with amplitude A, and being reflected with amplitude B



el

and transmitted with amplitude C, it can be shownz* that the

reflection coefficient
B —o(s+¢)

Z—: Cos(s-t) < 6)

and the transmission coefficient

C ’ . —\;(s+t)

f = —~3 Siw(s-td (7)
where:

T = T & & =la.. =

(8)

Further, the voltage standing wave ratio is given by

Bl & _TT o
‘_J_‘B/Al’{COt z.(g )/ q(f-r( 2

- 18/a1 é_‘\*»},_(g_t)‘ Z(S-t( 3‘/;_-7

SR, = (9)

If now we consider two obstacles separated by a dis-

tance L, the total reflection coefficient 1s gliven by 2%
-’J(Sﬂ‘z,) ‘d. Usz+C. *1(5/*?5.)+2/3L]
_@_ = CQ5(54*?,)5 . Cos(sz’zt)e

A | - CosCS,—\é.)COSC.yL_tL)€‘VC$/fé,+5g+‘bL1.lﬁL)

(10)

In order to have the two obstacles matech, we must have zero
reflection, or B/A=0O. This is fulfilled by either of the
following two cases, both of which require that two conditions
be satisfied; namely, that the reflection coefficients of

the two obstacles have (1) equal amplitudes and (2) properly

See Appendix C.
*% See Appendix D.



chosen phases.

Case I S,-t, = S,-t, + mT
@L = nTr—(S,-»tl) - F’TT‘CSL"*t.) (ll)
(12)
Case II% S, -t, = —(5,~¢,) +mTT
(3L: nTT—(5.+sz)=pw~("b.*‘tz) (13>
(14)
m, n, P inrevcrs °F 2 er o
Standing Wave Ratio Due to Small Mismatch
Let us now consider two obstacles which almost, but not
entirely, satisfy these requirements. We wish to find the
standing wave ratio. In Eq. 10, let:
s, -, = sl_t,_‘e (15)
L ==-3.-t,~ 8§ ==3;,-F, +5~¢ (16)

giving: |
cosls,-t, +€) —~w(25+¢€)
_ a4t | — o= G._2))

5
— = Cos(s -t)e il 25+€) 1
A ) —co3(5,~C,)Cos(s,~-T,+€)€ LT

Expanding and neglecting terms of second order and

higher in € and & we get:
—J(S’,wt,)
B Cos(s,"‘—cl)e

= e S T - ' (25 + € (18)
A -~ Sl‘l—\’. (5,—7::) [e [SI ZI) ot )]

* These are essentlally the same because one can be obtained
from the other by using the other representation (5<T)
for one of the obstacles.



Hence:

| FCot(S,—-t,) C$c(5,‘é,) 1/;'14«"/5/_2‘,)+(?£7"6)1
| = CoC(5,-C) cscl5,~-¢)Yccta (5,-20)+F+E)T (19)

S wR, =

Matcning Over A Frequency Band,with Examples

It is usually desirable to match two obstacles over a

frequency band rather than a single frequency. The two con-

ditions
S, ~%, & 5,_-TC, (20)
nir .
L. — == 2 . Ta (21)
& (3 3

must be satisfied throughout the range. Ordinarily S/P and
t/@,do not change rapidly with frequency and hence n must
equal zero. When the standing wave ratio of the obstacles
is not too large, tan (s-t)»»1l. This makes & the more im-
portant term in Eq. 19 when & and g‘are of the same order of

magnitude.

EYSe

[
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A (em) 3.2C 3.25 2.30 3.35 2.40
s-t -1.424  -1.432 =1.437 -=1.440 -1.446

B s 0.435 0.423 0.392 0.380 0.369
é ane t -1.283% -1.287 -1.313% -1.321 -1.328
orner s/8  0.122 0.123 0.118 ©.117 0.117
a-t 1.434 1.4%6 1.437  1.438  1.439

1/16"T.p.  © -0.010 -0.002 =-0.006 =-0.004 =-0.C04
t 1444 -1,438 -1.443 -1.442 -1.443

sfp' -0.003 =-0.000 =-0.002 =-0.001 =-0.001

LB Tup s -C.020 -0.013 -0.C15 -0.014 -0.014
= g “1.453  -1.451 -1.452 -1.449 -1.450

s/h -0.006 =-0C.0C4 -0.004 -0.0C04 -0.C04

s-t 1.439  1.439  1.438  1.440 1.43S

1/4" 7.p s -0.027 -0.023 -0.027 -C.024 -0.024
et -1.466 -1.462 -1.465 =1.464 -1.463

;
343 -0.008 -0.007 =-0.008 =-0.0C7 =-0.008
Table 1

Fig. 3 and Table I give data for matching a 60 degree
E-plane corner with 1/16", 1/8", and 1/4" tuning posts.
The tuning posts were inserted in the guide just far enough
in each case to give a good match at the center frequency,
3.30 cm. At first glance, it appears that the match would
be fairly zood for any of the three posts, with the 1/16"
one having perhaps the'slight edge on the others. Closer
inspectlion shows a rather serious difficulty. When L 1is
calculated from Eg. 21, letting n=0, it is found to come out
negative. This is a physical impossibility and we must make
n=1; that is, add 1/2 wavelength to L. The variation of this
1/2 wavelength with frequency produces a large effect which

outweighs the small differences among the three tuning posts.
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Fig. 4 shows the measured standing wawve ratios versus frequency
for the 60 degree E-plane corner alone, and the calculated
and measured values when metched with the 1/16" tuning post
at 3.30 cm. Various other discontinuities such as capacitive
change of guide height and tuning dent were tried but none
of them had the large negative value of t which is necessary
to give a positive length when used with the E-plane corner.
The 6C degree H-plane corner, however, lends itself more
readily to matching with a tuning post. Fig. 5 shows the
measured standing wave ratio of the H-plane corner alone and
the calculated and measured standing wave ratios for the 60
degree H-plane corner when matched with the 1/4" tuning post.
It may be noted that it is considerably better than the E-
plane corner. The discrepancy between the calculated and
measured values 1is probably due to the proximity effect.
The separation between the two obstacles is only about 1/8
waveléngth and it is likely that the hizher modes are not

sufficiently attenuated at this distance.

A (cm) 3.20 3.25 3.30 3.35 3.40

60° E-Plane Corner
Alone 1.341 1.3%22 1.3C9 1.3C0 1.286
with 1/16" T.P.

Calculated 1.153 1.076 1.007 1.042 1.087

Measured 1.150 1.079 1.016 1.035 1.080
6C° H-Plsne Corner
Alone 1.364 1.360 1.369
With 1/4" T.P.

Calculated 1.056 1.C03 1.058

Measured 1.074 1.C04 1.C49

Table II. Standing Wave Ratio (Voltage)



-10-

Table II gives the data plotted in Figs. 4 and 5.
Summarizing, in choosing a match for an obstacle, the
three factors, in order of importance, are: (1) The
matching obstacle should be chosen so that the length L
is positive; (2) The values of s-t should agree as closely
as possible throughout the range; and (3) The quantity

84%4't4/ should be a constant throughout the range.

Cavity Resonance Method

of Measuring Equivalent Circuits

The above equivalent circult parameters were measured
by a variation of a technique first developed by C. Y. Meng,
5. C. Snowdon, and D. W. Hagelbarger under the supervision of

3

W. H. Pickering. We form a cavity by short-circuiting each
end of a wave gulde containing the obstacle in question.
Power is fed in through a small hole in one end, and the
energy in the cavity 1s measured with a loosely coupled
crystal detector probe inserted through a small hole in the
cavity wall. The equivalent circuit parameters can then be
calculated from the positions of the shorting plungers with

respect to the reference planes of the obstacle. The equi-

valent circuit of the cavity 1s shown in Fig. 6.
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p - e /
B | _
zl\ =i r~*;{_‘- S e Zh =
i ,
.}i": J ?) _l______,______l- ‘Y o J ‘?) 2
O o !
Fig. 6

The resonance condition is that the sum of the admittances
across any point in the cavity must be zero, or, since the

impedance of a short circuited line 1is <4¢ :jZK (Pan F/é‘:

| !
o eeesewEmEE * = = (22)
ﬁv\F’xﬂ.*'S] ZQMP[,_+A5" 7t - 5

This can be rewritten in several forms. For brevity, let:
pli= g , Gam pAe = P,
(T*’S)(CPI“CE_)*Z'T'S*QChd),L:O (23a
¢ +T B d>1_ 3 T

= s —

¢. <+ S’ q) + S-r (23b
('T' +5+Q¢1)(T+S+Q¢'):(q1_sl)7“ “ (23e¢
From Eq. 23c¢ it 1s easily seen that a plot of P vs. ¢ gives
s
a right hyperbola with d)' - - ——%—: and ¢, = =T p
“2.

as ssymptotes. Rotating the axes 45 degrees or plotting

¢, + d>l VS <t>,—— c)>1 » we obtain curves symmetrical about

({;_(_P -©O > and hence at the maxima and minima <P‘ = cblthese
' 92

points must be ¢ = = -8

! L

% =%, 77

-
I
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A more convenient method of calculating S and T is to plot
X, +/L vs./l-/é. In Eq. 23a, let:

P+, = @3Lild)=2x

S -g.c R(L-#)=2p

A = -&MOK
B = ﬁz«\pl
giving:
T 2z
(7+5)AC1+BY) 4 T 3(|-AB*) + A-R° =0
do 4B A 2B (+BY(ATTS -ALT+ST+))
dﬂ’ 1+ AT d B - U*’A“) [(T-PS)(H-B")-—?.)\GLTS-*?.A]
_ 2 B(1+T3)
T L(T+5)(1+8%)-2ARYTS +2A]
AR ﬂ_ﬂ‘ = O either l+ TS=o0 T38=-|
dfgl or B=0o

If TS =-| by Eg. 4 2Z,=| and the T-section is equi-
valent to a length of line giving ,0.41,_:constan‘o. If B=C,

then the curve has a maximum or minimum and /g, fzf,,_,and from

Eq. 24 ,
A+ A(T+s) + TS =0
Az -T or -8
v
& = 6@'*’ ) - -t ot -3
o 8

Thus at the maximum and minimum
e, = AL = -t for one

and AL, =L, = -5 for the other.

(24)

(25)

(26)
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Choice of Measurement Region to Give Minimum Error

Not only is the calculation of S and T simplest at the

maximum and minimum points, but we shall now calculate the

error'q%T,in.S,T due to errors in the micrometer measure-

ments of.faand 2 and show that it has a minimum value at

these points. S and T are to be measured, knowing that
(T4S)(¢\*¢1)+1TS‘42¢.¢1:O ’ (23a

where 43; :éﬁ»«?;)by measuring two sets of values ¢, &¢,and

<g\2 9?{_ and tten solving the equations
(T+8)( +& )+ 2TS +2 & P, (232

ﬁ*S)(¢ll+4’{)+1TJ+24’.’¢; = O (238’

o

(1

for T and 8. Glven, that the error in @ ,ogisis a constant
equal for alle, what values of @, and g?ll(and therefore @,and
q;i) should be chosen to give & minimum error in T and in S?

From symmetry considerations it would seem that these
should be the same for both T and S. We will calculate the
values for just S, then, as follows. Assuming a normal dis-
tribution, the standard deviation of S, 0y, is given by:

R LR S T PN CE PR
0@, D, 8, RE RE A 18

We wish to minimize q;hwith conditions that Eq. 23a and 23a'

hold. This we do by solving the equationss
dcr
d =, . (28)
d o,’f

;= d (29)

d <,




il

/
for @, 6 and <, .
!
Differentiating Eg. 2%a and 23a', holding q%_, 4% and

‘ 4T
¢§_constant and eliminating 315., we obtain
(S!__’?‘) -8 (T+3 v ) (b b2 S)
SRl el el Ot AT (b, -4
Since: 8 #_.i" - Sectm, = L+ P,
—‘?——S‘ _ (T+S+2d’a)<d{ vf"Ct)L +1 S’) ('+4>'z)

Pg, T 2AT-3)(d, b -d'-)
The other partials can be written by inspection:

D5 (TS ANt e2S) ey

Sa. alT-s)(d+¢,-¢' -}

Vo (Fesae) (hehnas) (e
‘ 2T-8) Cd'+ - -, )

0 X,
Efi UT+S+1é')(¢ﬁ*¢L*1$) (%
Na! - AT-8) (¢'+¢ ~-¢ -431) (+ ¢, )

Substituting Eqgqs. 3C, 31, 32, and 33 in Eq. 27, 4dif-

ferentiating with respect to<g. and noting that:

do. T4+ 58 1.
dC‘)l T+5’+Q¢l

We obtain, after simplification:

(30)

(31)

(32)
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d % @'ed e2 )

S (T-5)"(d+e,-4"-d ) (T+5+24,) %’”5‘42 &)

@ b2 8)Grg) [(406 -4 R ) (450 b T3 -1)
~($, =41+ )] = (T+5+24) (' + b +28) x
Q@) [Cd+ b, -6 - b W 4 b, sT+53 -1)
(- )+ ) [ —(T+8+ 24! ) (444,425
(r e ) (h-d ) (1445 = (Tas +24!) s
(b +¢, +2.5) 1+¢{L)1(¢.~4’1)(|+¢f)1}

(34)

kR
d Ug
d’ can be written from Eq. 34 by interchanging o,

)
and ¢3’ and interchanging CPl for ¢ . We see by inspection that

q)' - CP?. =-T and 43./: cbl = - 5 (35)

are solutions of Egs. 23%a, 23a', 28 and 29 simultaneously.
To show that these solutions are minima, we compute and

evaluate the second derivatives, getting:

EE
d?:L 4 =, =-T

&7 i mr B )

2 1 SL 1.[54"
= = 2 )fL[c’rars)‘f(H'\‘S)”i*QT ]
d )¢ -d,--T (T-5) |

4= =-5 1
The first is zero, since U¢ 1s independent of q?', and

the second is always positive.
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If Egs. 35 are satisfied,
R 2 ks P e
qﬁ = 0.0 4 ©. Ty, + (=) G+ ) T

" (36)
= 2Ci+s) Ot
3
From symmetrytconsiderations,tthe sclutlions for
d an daq _
d - ° 2
ape X o
[} [}
b= ¢, =-T b= --F
and 2 B v > 2 (37)

T k8
= 2(1+T) vg |
In actual practice, the sum of the micrometer readings

R,+R,1s plotted against R,. sSince R+R_differs from 0, +. ¢,
only by a constant, this curve will have 1ts maximum and
minimum in the same regions. Also, since only the values of
the maximum and minimum are required, it is immaterial whether
the data 1s plotted against R‘orfi‘ﬂa. The constant 1is
determined by obtaining resonance in the guide without the
obstacle present. It 1s called thecalibration sum,a?\*RLL,
and its constancy is o measure of thke uniformity of thne test

section and also the disturbing effect of the probe.

Description of Freguency Modulated System

The system shown in Figs. 7 and 8, while not capable
of the nhighest possible absolute precision, lends itself to
fairly rapid measurements with good relative precision and
ease of changing frequency. Since the system shows the

complete resonance curve, the disturbing effect of the probe
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in the test cavity and the uniformity of the oscillator
throughout the resonsnt range can be quickly checked. It
is essentially a method of comparing the resonant frequency
of the test cavity with the standard cavity. The 723 A/B
klystron is frequency modulated with a 6C A~ triangular
voltage applied to the reflector. If the tube 1is properly
loaded, the frequency modulation 1s linear and the ampli-
tude modulation is small. The standard cavity is an
absorption type wavemeter with a high Q. It is coupled to
the system through an attenuator and tuning section so as

to absorb energy at its resonant. frequency. The test section

Fige 7
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is coupled to the system through its hollow input plunger
and the crystal probe is connected through amplifiers to
the vertical deflecting plates of a cathode ray oscillo-
scope. A 60-cycle sawtooth voltage synchronized with the
modulation on the klystron is applied to the horizontal
deflecting plates. When the two cavities are in resonance,
the dip due to the standard cavity appears at the top of
the resonance curve of the test cavity making a double-
peaked curve. For exact resonance the two peaks have the
same height.

Fig. 9 shows the test section approaching the resonant

frequency of the standard cavity.

Fig. 9

The curves, reading from top to bottom,are .0ClO,



~2(0=

.0CC5, .0C0l, and .COCO inches away from resonance. The
total length of the cavity was about Sé inches and a dis-
placement of .CCOl inch is easily distinguished.

The effect of the probe on the resonant frequency of

o

the test cavity is illustrated in Fig. 10.

Fig. 10

The depth of penetration of the .Cl0O-inch diameter

probe into the cavity is, reading from top to bottom, .Cl1l5,

O

.020, .025, .030, and .035 inches. Only in the last case

r

does it affect the resonance frequency appreciably (the

horizontal displacement of the curves 1is due to variation

of the synchronizing voltage and is not pertinent).



-

In Fig. 11, the upper curve is the resonance curve
of the test cavity, while the lower curve shows the energy
in the main part of the system which is essentially constant
over the range being swept. It is obtalned from a monitoring
probe in the guide between the oscillator and the standard
cavity. It is extremely useful when changing frequency,and
a switch 1s provided for quickly connecting either it or the

test cavity to the oscilloscope.
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standard cavity, the two will be gnifted different amounts

and hence, 1if the resonant frequencies appear ﬁbe same when
the frequency is increasing, they must appear off by twice

the difference in the shifts wihen the frequency is decreasing.
Care was taken to always use the same one of the two resonance

curves during a series of megsurementse.

Sources of Errors

Perhaps the chief source of errors is the fact that the
resonant frequency of the standard cavity is dependent on
its coupling to the system. The 723 A/B tube is hardly
powerful enough. Hence, at times it is necessary to couple
the cavities too closely. Readings may be repeated to
.C001 inch if the setup is not disturbed. However, if it
is torn down and reassembled, the discrepancy may be as high

as .0005 inches.
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PART II

Extension of Matching Technique to a Four Terminal

Network Between Lines With Different Characteristics

It is not possible to measure the characteristic
impedance of a transmission line using a resonant cavity
technique witv purely reactive elements. This 1s because
the determination of the characteristic impedance requires
the measurement of a voltage-to-current ratio and the
resonant cavity method merely locates positions on the
transmission line where the voltage is zero. However, it is
not necessary to know the characteristic impedances in order
to get maximum power transfer across the junction between
two lines; that is, to eliminate reflections from the
junctionse.

In Fig. 13 we have two different semi-infinite trans-

mission lines whose junction is represented by the T-section



Fig. 13

shown. A wave of amplitude A is advancing from the left and
ig reflected with amplitude B and transmitted with amplitude C.

The reflection coefficient B/A is given by:

; éll£83>illbz
Zk—ZR _ R\ \)Xi R1+3X1*~5x3

-
—

>|®

ZerTR L B i, 4 JR(Radl
R,_+JX,_+0X3 (38)

Setting —@- =0, we have:

A
(R-IX IR, +9 X +u X3) -0 X3(R_ 43X, )= 0
from which

R\RL+Y\Y\—+XLXS+X3X ""O

‘ —

Ry (X, + X)) =R _ (X, +X4) = O ' (40)

If we form a resonant cavity with portions of the same

lines and T-section (Fig. 14), the resonant equation is:

\ \ \

+ — = O

JX, + 4 R L, TN A Y
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or R\Qlézwﬁ.ﬁ,i.(ﬁtﬂt+(XL"'X3)R.@(5|'0|

+CX.+ X;) Rléﬁd(squ.'*' x‘x-,_, +X2Y5+Y,X' — O
~1
Let us further require that @, ,ﬂ, + {5,_11 = const = o K
Then: cot(pB, h+p.l)=kK

low B R, Gon o by + kB L s Kb 4 —| = O

Now Egs. 41 and 43 must hold simultanecusly. Hence:

__Eéz;t_iélfiL _ X #x5) R -
X. Xq + K05+ K3 X, L+ X Xy 4K, X,

R. R,
—_—r = ]

XIXL+X1X‘5 +X3X,
But tuese are the conditions for zero reflection (Egqs. 35 and

4C). Hence, Eq. 42 is the condition for which we are looking.

o j X, —{ )% >
Z, R, T 2, =R
\k_. %J)\” k. .L
€ =B . ¥ Eif
..._—__._.5.......____0\,, - - o.. .,........:..‘.,\. -~ .
K A

Fig. 14

(41)

(42)

(43)

(45)
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This means that if we wish to match a junction such as
Fig. 13, we may assume that the two characteristic impedances
are poth equal to unity, say, and measure the junction in
the cavity of Fig. 14. If we calculate, using this
assumption, the matching T-section according to the metnod
outlined in Part I, then an obstacle will match the junction
providing it gives the proper T-section when measured in
the same transmission line as the one in which it is to be
inserted. For example, suppose we have two wave guldes of
different dimensions meeting as in Fig. 15. We form a

resonant cavity by inserting snortcircuiting plungers.

Fig. 15

From the resonance curve, taking into account the two @ 's
but assuming the <2, 's are both unity, we find the junction
behaves as a symmetrical T-section (see p. 35 4= 5%;')

about the dotted line, a distance o from the physical
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junction, and has values S and~g;. To match it, we find
an obstacle which, when measured in guide g, has T-section

parameters Sa. and Za such that Sa~Ta ==35; +%¢;
= &g = 8
We place this in guide a at a distance f = —iﬁggjL

from the dotted line, as shown in Fig. 16. We might equally

Fig. 16

well have found an object which, when measured in guide Db,
gave values sSp and €ty such that Sp-ty=-S;+%; and then

+-(‘"%E)fo

Sb-&SJ'

Fe

placed it in zuide b at a distance _¢=

as shown in Fig. 17.
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Fig. 17

Representation and Measurement of the Equivalent Circuit of
The Junction Between Two Transmission Lines With Different

Characteristics

Consider the junction formed by a coax line passing
symmetrically through a wave guide so that the coax is
parallel to the electric field in the guide (Fig. 18). We
shall show that 5 parameters are required in the equivalent

circuit of this junction.
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Fig. 18

A general 8-terminal black box (Fig. 19) has 4 inde-
pendent voltages and 4 independent currents which are

related by the following system of equations:



_31—.
E‘: I.Z” +'Ilz”_+ Izzw54“14—2w

E, = L, Z. + 1, Zaa r1,2z, 0 + 1y 2,4

E, = Lz, +1I,2z,, ~1I; Zyo + L Zsy
e
! i
s T
g A ol
&k ]
B 1"[\!
Fig. 19
Of the 16 coefficients in Eq. 46, only 10 are different,
since Z, . = Z,.by the reciprocity theorem. Imposing the
symmetry properties of the coax-to-guide junction, namely
the two coax arms may be interchanged and the two zuide arms
may be interchanged, we are left witn just 5 independent
impedances.
Z,L{
Zy3
le:Z‘/‘/
B (47)

zl)_:Z\3 :ZLY:Z'S“I
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Fig. 20

The circuit of Fig. 2C 1s convenient to measure using
the resonant cavity method. ©Since this circuit contains the
5 necessary parameters, we may arbitrarily equate the
characteristic impedances of the guide and coax. Dividing:
by this common characteristic impedance gives us dimension-
less impedances. The equivalent circuit will then predict
completely the behavior of the junction, providing only

impedances measured in the coax system are connected to the

coax arms. and impedances measured in the guide to the
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guide arm.%

If the guide arms, say, are fixed and the resonance
curve,using just the coax arms, obtained, the junction
should appear to be a simple T-section. . If a family of
such curves ls obtained, the T-sections should all have the
same series arms. But we have seen (p. 12) that this means
the curves must all have a common point as either a maximum
or a minimum. BSuch a family of curves 1is shown in Fig. 21.
This gives a Unique determination of Xz, the coax series
arm. Repeating the same process, except with the coax arms
fixed, and taking resonance curves with the guide arms, we
obtain a similar set of curves and thus determine X‘ » the
guide series impedance.

To complete our measurements, we will take a resonance
curve, keeping the two coax arms terminated the same, and
the two gulide arms terminated the same. The equivalent
circuit under these conditions reduces to Fig. 22 where:

X, T X,+t2X;s

X, = 9_)(5

* If we should know the two characteristic impedances,

as for instance in the junction formed by two different coax
lines passing through each other, then the five impedances
(starred) are related to the dimensionless ones above by:

* *
x * X4 X+ Xg xs
X = — ' = — . Ky ¥ L ST :
\ ey ) 2 Zx2 3 Zr Zri Zwa
7 * * X *
¥, + Xg Xs . X o e e
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—— 11 I
3 s
Gu de =
C- o

Flgs. 22

On p.l3, we found the region of measurement which gives
minimum error for a symmetrical section. The similar attack
for the asymmetrical section is very much more complicated.
We should not go too far wrong, however, if we add a length
of line 4J to one side of the T-section and subtract 1t
from the other so as to make the sections symmetrical,
measure the symmetrical section at its region of minimum
error, and transform the results back to the orizginal
asymmetrical section. The transformations are obtained Dby
equating coefficients in the resonant equations for the two

sectionse.

NW§EL~{W A a i g - W,

i s | it | .j’:)
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The resonant equation for Fig. 23 is:

; + ! -+ L = O
Gnlg,+ )+ S G, ~r7) +.S5 T-& (49)

or writing ¢ =-lane , © :é‘mﬁ'

(T+ S)1+8)-200:1+7T5)
¢; ¢‘L + Q *-2 '_r,IS( 91— ¢I

(T+Sn)(,+Qz)42(9(l+7’S)¢ + rT’,S"~ez

+ g ., = O
2 -2T5e /- TS 6O (50)
When shorted lines are added to Fig. 22 to form a cavity,
we have: o . / /
/ # F , = O
Z+x"  2ax X
or
¢ ] ! { L
b, b+ (X +X) by w(xex )b, X 0 XX, 5 1% = O (51)
Equating coefficients of95‘s in Egs. 50 and 51 and solving,
we get:¥*
= S+8%)+ @G+ Ts)
b /- TS O (52a)
x.' = S +8Y -1+ Ts)
> /I — TS OF | (52p)
x.! = (T -5)(1+8%)
g = 1) (52¢)
Z2(I-Ts e
* Interchanging T and S gives solutions also; we have

; : /
chosen the above because when € —*> O, X, X,’»s5and yg'-—-» T-8 |

“
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Numerical Results of Measurements

On a Coax-to-Guide Junction

Figs. 24 and 25 show the resonant cavity used for
measuring the equivalent circuit of the coax-to-guide
Jjunction. The inner conductor of the coax line is part of
one plunger and slides inside the other plunger. All
sliding contacts were fitted with spring fingers one-quarter
avelength long enabling the contact to occur at a current
minimum. Although the machining was held to very close

tolerances, the cavity did not function as well as it was

hoped it would. The half wavelength varied by as much as

Fig. 24
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0.005 inches from its theoretical value of 0.669 inches.
This was probably due to small lateral motion of the inner
conductor where it crossed the guide. Two sets of coax
plunzers having different inner conductor diameters were
made. The results of these measurements are given in Table
IIT. The reference planes for the guide arms are coincident
with the axis of the coax line. The reference planesgs for

the coax arms are flush with the inside of the guide. (See

Fig. 26.)
Guide Width 0.900 "
Guide Height 0.402 "
Naiv 3.403 cm
hes 2.006 "

Digmeter of Outer Coax Conductor 0.3125"

Diameter of Inner Coax Conductor 0.136" 0.0945"

Coax Z ik 49,9 N 71.8 v
X, -0.016%,001 C.012 + 001
Xl -ln15 *.Ol -0699 .&-Ol
S -0.158+«,0C1 -0.051 +£.001
Ji -3.056%,003 -3%,021 +.C03
e 0.95%+.005 1.2994.005
Xs 1.00 +.01 0.90 #.01
Xq -0095 ‘Lool —0060 ficol
X{ "'2046 *002 "2060 :L.O2

TABLE III

The errors in X, , X, , S , T and @ were estimated from

the curves used to determine them.

The errors in X, , Xy

and X o were computed from the errors in S, T and @ using



i

the partial derivative of X5, X, and X, wilth respect to
S, T and & . The values in Table III were checked using

the resonance equation for Fig. 20:

| 1 \
' -, 2 — "
S PR JXq +

. ) ' !

JXs

PXitilen B, £, +5x\*jia.~(5‘ Ry 3Xa +JT-P“J-—¢SX1+J@~/3L /s
Additional data not used in the original computation of the
X's was checked,assuming three of the.JO's and computing
the fourth. In every case the measured values of the//’s
agreed with the computed values within a few thousandths of
an inch. Two sets of values for st, XJ/ and X & can be
computed, depending on whether S or T 1s associated with the
maximum of the resonance curve. The two sets of values

give the same resonant behavior, but one of them has the

= 0

phases in the coax arms shifted 180<’with respect to the other.

The alternative values are given in Table IIIa:

Coax Zk 49,9 Su 71.8 Lt
S ~-3.056 -3.021
T -0.158 -0.,051
& 0.95% 1.299
X‘S _3-94 —4037
Xy -5.86 -6.44

TABLE IIIa
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Description of Automatic Frequency Control System

In order to obtain accuracy in a cavity containing
several wavelengths, it is necessary that the frequency be
held very constant. The system shown in Figs. 27 and 28 was
designed with this in mind. The 419-B klystron was immersed
in a water-cooled oil bath. The frequency of the reflex
klystron being very dependent on the reflector voltage, an
automatic frequency control feature was incorporated by
feeding a large fraction of the output through a cavity so
that the operating frequency was on the steep portion of its

resonance curve. From the cavity 1t was taken across high

Fig. 27
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voltage insulation in the guide (the reflector is at
approximately 1200 volts below ground) to a crystal de-
tector. The output of the crystal was fed through a
stable, high gain, d. c. amplifier =k back to the reflector
of the klystron. A voltmeter, cathode-coupled to the output
of the amplifier, was extremely useful in aligning the system.
It is highly desirable to have the R. F. signal purely
amplitude modulated so that a. c. coupled amplifiers may be
used to detect resonance in the test cavities. This 1is
ordinarily achieved by applying a square wave voltage to the
klystron suct: that the tube cannot oscillate during half
the cycle. This method has two disadvantages. First, 1t
was not found possible to get the square wave flat enough
so that the output voltage would not have some frequency
modulation. Second, the time constant of the feedback
circuit had to be made so long as to be practically use-
less. Pure amplitude modulation was obtained in this case
by passing the signal through a specially bullt cavity, one
wall of which was the diaphragm of an earphone. Applying a
1,000 ¢. p. 8. voltage to the earphone tuned the cavity s0
that the signal in effect moved up and down the side of its

resonance curve. It was necessary to attenuate considerably

* The amplifier is essentially the circuit shown on p. 429
of John Strong's Procedures in Experimentsl Physics,
which uses one pentode as the plate load for another.
With one 6SH7 and one 6SJ7 tube, it had a voltage gain of
4,000. Using batteries for power supply, it was extremely
stable.
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between the klystron and the modulating cavity so that

the klystron's load would appear constant. The guide from
the modulating cavity branched, one arm going to a high Q,
invar steel, standard cavity, which was constantly monitored,
and the other to the test cavity. When operating at its
best, the frequency did not deviate noticeably from the peak
of the standard cavity, the Q of which was around 40,000,
during periods of half an hour or so. Measurements were
taken when the system was considered to be drifting rather
badly, and the drift was about one part in 200,000 per
minute and very constant throughout the half-hour period

the measurement occupied.

Example of Precision Measurement

To illustrate the precision obtainable with such a
system, we give here data comparing the wavelength measured
in a carefully broached and lapped section of brass wave-

wulde and the wavelength as measured in two coax wavemeters.

Wavelength in guide.

-5
Average measured.ka‘= 2.00585" & 3.0 x 10 K
Guide width % = 0.89986" + 3.9 x 107,
AL = 1079972" + 708 X 10'

%

Here and in the following, the values given after the *
signs are standard deviations (o” ), not probable errors.

“% See Appendix A.



Substituting in —_— = e——

gives: -5

<

Coax Wavemeterse.

Wavemeter A
Salisbury Coax Wavemeter
Mico Instrument Co. #454
Wevemeter B
Mico Instrument Co. Cat. No. 402-A, Serial No. 2327
Wavemeter A contained 10 resonant peaks of the principal
mode ranging from 5 to 14 half wavelengths. It 1s possible
to repeat the settings of the wavemeter more closely than the
scale could be read (0.001 cm). The data was fitted by the

method of least squares to the equation:

.= & +n A /q

(53)
giving:
4
I -0.012¢ cm 1.701%38 +1.1 x 10 cm
-5
II 0.0087 cm 1.70138 £ 9 x 10 cm

The close agreement in the A/q 's is probably fortuitous.
However, the error was not purely random. Although the two
runs were made 3 weeks apart, the residuals appeared to be a
periodic function of position in the wavemeter and had a
rank-difference coefficient of correlation of 0.81l.
Wavemeter B contained 5 resonant peaks ranging from

3 to 7 half wavelengths. The least squares fitting gave:



-
-5
Ay =1.70124 + 4.5 x 10  cm
Wavemeter A also contalned the next higher mode, TE, .
The wavelength in the wavemeter, 2“;, for this mode is given

by: ] |

| . 5 aTo
2 e e whevre e =
Zw 2 2: Xy

X, being the first root of the equation
s / / /
o
J, Cxl\'\) \/; (Ex:m) - J/ (E. th) Y' Phim ) € o

8 being the radius of the inner conductor, b the radius of
the outer conductor and k equal to b/a. Appendix B is a
table of the first root of Ea. 54 for k's covering the range
in which wavemeters are usually built. This range of k
occurs in wavemeters which have optimum Q >,

This mode, however, is not as accurate as the principal
mode since thne wavelength measured depends upon the radil
of the coax line. A close examination of the wavemeter
revealed that it was badly scored by the sliding contact
and several thousandths of an inch out of round at the
places where the legs were fastened. It is seen that the_
two runs do not agree nearly as well as the principal mode
measured at the same time. The least square fitting of the
data to Eg. 53 gaves

Run a Ala

Y
I 0.0398 cm 1.9685 « 1.1 x 10 cm

-4
II 0.0624 cm 1.9660 + 2.3 x 1C cm

(54)
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Again, the errors are not purely random, the residuals

having a rank-difference coefficient of correlation of 0.66.

Computing the wavelength in air, A :

a = 0.4009" * ,0005"
b-1.369 " + ,002 "
k=3.4148 + ,C065
x.= 046591 + ,00068
A= 6.866 * ,026 cm
_(3.415 +.,003 cm Run I
A “{3.413 +.C03 ocm Run II

The discrepancy here might be caused by the wavelength
in the wavemeter being commensurable with the error period
in the wavemeter screw. In any event, the hizher mode is
definitely inferior for precision measurements because of

its dependence on transverse dimensions.
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APPFENDIX A
Note on Internal Wave Guide Measurements

In work of this sort, it ies necessary to make mechanical
megsurements of distzances which are often not measurable
directly with micrometers. Short pleces of drill rod,
which is readily obtainable and accurately ground, are

extremely useful. Two examples will be given.
1. DMeasurement of Guide Width

Fig. 29 shows the setup. A depth micrometer was used
to measure the distance,f=,ﬁaja, and the radius a was
measured with outside micrometers. Although the value of g
is very critical, by placing two of the cylinders in contact
with their axes at right angles, 4 a was measured with a

corresponding reduction in the error in a. Two different

Fig. 29



G
sizes of drill rod, having nominal radius values of 1/4"
and 15/64", were used. Five runs were made, using different
cylinders. ,/7was measured 8 times (the cylinders were
removed and replaced between measurements), and a was

measured 10 times for each run. From Fig. 29:

= QA a +1}‘/0.L-—»€1’

d
Yo
’D..E‘.: 2 +
Ela Yo - 0"
»d . KX
SE - Adar—e™
d = 0.9000"
2 d 2 d
a £ 2o 2L
0.2500 " 0.3000 " 4.50 -C.T5
0.234375 " 0.18371 " 4,174 -0.426

Typical computation:
~¢
A, =0.1821" + 1.8 x 10 "

t

-6
Rav = 0,234205" % 2.6 x 10
Al

4 a
d = 0.90000 - 0.00071 + 0.00068

"

0.1821 - 0.1837 = =-0.0016
0.234205 - C.234375 = =-C.00C17

It

= 0.89997"
- -y
o = [(4.2 x 2.6 x 10 e)m 4+ (43 % 1.8 x 10 )ZI

4
e

-5
-~ 7.8 x 10 "

The results for 5 runs were:
0.89597 0.89999 0.89989 0.89963 . 0.89990
giving:
dov = 0.89986 "

-5
o - 3.9 x 10 "
dav
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2. Measurement of 60-Degree H-Plane Corner

It is necessary to know the distances of the reference
planes of the corner from the ends. These measurements are
made with the arrangement shown in Fig. 3C. A cylinder was
placed in the corner and two parallel blocks of steel,
sliding smoothly in the gulde, were placed one in each arm.
Readings were taken on the two micrometers and their sum
plotted against one of them to give the curve shown in Fig. 31l.

The slope of the curves (shown dotted) can be calculated

from € . The curves intersect when the cylinder touches

Fig. 30
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both guide walls; in this example thisg occurs when
M, = 3.1837" and M, = 3.4682 - 3.1837 = 0.2845."

Thens

A, = 0.2845+4a, + a - (b-a)cot §

t
N, = 3.183T+d, +a - (b - a) cot %i

Fig. 31
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APPENDIX B

/ / /
First Root of the Equation J,(x) Y, (k1) - J, tkx) Y, Ex) = O

As a Function of k for Values of k in the Region Which Gives

Maximum Q When Used in Coaxial Lines

X k Ak {k4l)x  A(k+l)x
Al 3.67478 2.05690

.10345 -20
<45 3.57133 2.0571C

.029960 10
46 3.47173 2.,05700

.09553 19
A7 3.37620 2.05681

.09183 31
A48 3.28437 2.05650

.08837 46
49 3.196C0 2.05604

.08807 58
.50 3.11093 5 2.05546

The function (k+1)x is tabulated as an aid to interpolation.

Method of Computation

Rough values of k and x were taken from a curve given

Values of J.%X)//Yfkﬁ

by R. Truell.
and J,’(kx)/Y, ,(Kx) (1.57< kx £

1.63)

s ( 44 <x T

were obtained for

050)
.01

increments of the argument from tabulations of J(x) » J (%) »

Yoy and Y (x) T using the eguations:
J = Jov ~ % &)
Y0 = Y%mw- x Y®
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Exact values of kx were obtained by matching the second
U ’
gset of values J, &’b<k?nﬁ to the first J'“)/éTYU » using
the method of divided differences © for the inverse

interpolations.
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APPENDIX C

Transmission and Reflection Coefficients of a T-Section

Inserted in an Infinite Line

If in Fig. 2 (p. 3) Vo is the voltage across the
line and 1= is the current along the line, where X 1is
measured from the terminals of the T-section, then the

following equations 9 hold (omitting the time variation

° - “ .(3)(
porn): I=Ac rne } x 4o
_ Ae_dfsx R e\)@x
\/ =
_\’.6)(

'I:CC’ X >0
V:Ce—\)lﬁx

Applying ordinary circuit theory to the T-section gives:

—k ;\('T'+.S‘)(A+B)“1J“-'T'S)C = A-B3

LT =53)(AR) - L J(THSIC = C

2

Solving for the reflection and transmission coefficients,

_l—é _ 1+ T S

AT (- .S +J(T +8) (55)
< g (T-5)

A~ J-mS +0 (T+S) (56)

Letting

(8)
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we obtain:

> ~d(s+t)
Y = Cos(s5-t) =
(6)
—9—— = d. St (s ‘C)E,:J (jft)
AT "‘ -

(7)
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APPENDIX D
Reflection Coefficient Due to Two Symmetrical T-Sections

Inserted in an Infinite Line a Distance L Apart

Consider the discontinuities, (1) and (2), in Fig. 32,
represented by two different symmetrical T-sections sepa-

rated by a distance of L.

(1) ()
1 |
1
A, < EL L,
B <F |
<& o) l
1427 [
e |
| |
| |
T 1
( L |
Fig. 32

A wave of amplitude A advances from the left and is
reflected B', and transmitted C'. Recause of reflections
from (2), there will be a wave D advancing on (1) from the
right, which 1s transmitted B" and reflected C". But the
wave hitting (2) from the left is just C'4+ C", with its
phase retarded because of the distance L. Likewise, D

is Just the reflected wave F retarded by a similar phase

change.
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Analysis of each group separately:

1 '
A’ B ? C -\;(3"\-*\)
B\: A Cos (s, -1t,) &
—Q‘(St“'t‘)
C. = —'J A S\.“\ (3‘ -tc) &
D, B", C"
o V.J (S,+t‘)
C = D Cosf(s-%) =
‘J(Sl+t')
c' - -3 D s )« {s-2)
E, F, C
- =

a5 )
E Cos(s.-t) €

Phase shift due to travel on line having ze=l T30
N ] <
E = e + ¢ )6

W
D:Fe‘)@
Net reflection coefficient

\ o
B= B +B = net reflected wave

: _u(s,+t)
- ¢, '
B= A cCos(s,-%) ed<s'+ )

_.J'D Siha (5.—1:,)6"
' 7 ; : —i(s, +¢,) -
A VA st ST g ey 2O
JQL _‘ s t "
De = Cos ts,_--t,_)e'\(“r L)(c'+ o Mifp &

(=

Eliminating C4%C" and D gives

‘3(§l+t') _JI_SL“}Z-L'*JCSI'F‘to)'f'Z@L]
E - COS(S‘\tl)C -C°5(32_‘CL56
A

\— CbS(S,sC,) COS (SL‘

‘j(syft'+sk+tL‘*28
C,) e

L) (10)
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GLOSSARY OF SYMBOLS

K, + S
>

Za % (p. 12 only)

K, — Ko
X~

fo\,,,[:&'(p. 12 only)

imaginary part of propagation constant,
equal to 2WT/’13

propagation constant of a transmission line,
equal to ) (3 for a lossless line

propagation constant of a T-section

small quantities

@ Ao

Gonn A9

wavelength in free space

cutoff wavelength

wavelength in guide

wavelength in wavemeter

standard deviation

(> A

o x .

ohms

radius of inner conductor of coax line.
Radius of ecylinder. Also used to designate
a particular section of wave guide as dis-

tinct from guide b

complex amplitude of wave advancing on an
obstacle inserted in an infinite line



m,n,p
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radius of outer coax conductor

complex amplitude of wave reflected by an
obstacle inserted in an infinite line

cycles per second

complex amplitude of wave transmitted by an
obstacle inserted in an infinite line

digtance. In particular, the width of a
rectangular wave gulde

voltage across the ¢ pair of terminals
of a mnetwork

current flowing to and from the (™ pair of
terminals

current flowing at the point X on a trans-
mission line

V-1

derivative of the Bessel function of the
first kind, order one, with respect to its
argument

ratio of the outer to inner conductor radii
of a coax line b/a

length

length of the ¢ ® shorteircuited line forming
part of a cavity

length of line that must be added to one
side of an asymmetrical T-section and sub-
tracted from the other side in order that it
may appear symmetrical

distance between the reference planes of two
obstacles on the same transmission line

integers or zero

figure of merit, the ratio of energy stored
per cycle to energy dissipated per cycle
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+h
n- wavemeter scale reading

micrometer readings (p. 16 only). Purely
resistive characteristic impedance of a
transmission line (pp. 25, 26)

tfan ! S

dimensionless series impedance of symmetrical
T~-section (Fig. 1lb, p. 2)

voltage standing wave ratio

fa»«"

T
other dimensionless impedance of symmetrical
canonical T-section (Fig. 1lb, p-. ng

voltage across a transmission line at the
point x

distance along transmission line measured
from T-section terminals. Also root of Eg. 54

purely reactive impedance, dimensionless
unless otherwise stated. Components of
various equivalent circuits

derivative of Bessel function of the second
kind, order one, with respect to its argument,
also known as WM,

characteristic impedance of a transmission
line or T-section

input 1mpedance of a T-section with the
output opencircuited

impedance terminating a length of line

input impedance of a T-section with the
output shortcircuited

mutual impedance between the lfﬁvoltage and
the «™ current in a multi-terminal network.
(Self impedance Af ¢c=~ )
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