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ABSTRACT 

The theory of a new method of matching obstacle in 

ultra high frequency transmission lines, using the two 

wire transmission line analogy, is presented. The method 

is especially suited to the resonant cavity measurement 

technique, indicates a convenient form for tabulating 

data and reduces the matching conditions to their simplest 

form. The theory is extended to cover a frequency band 

rather than a single frequency and also to junctions 

between lines of different characteristic impedances. 

Experimental examples of eac h case are given as well as an 

example of the precision obtainable with the resonant 

cavity technique. 
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Introduction 

The problem of finding the conditions for ma tching two 

obstacles placed in a wave 5uide was considered in an attempt 

to increase the usefulness of equivalent circuit data. It 

was felt that t his data, originally taken to confirm theo

retical computatio ns, s hould be useful in desi ; ning actual 

systems. However, usin~ t he conventional equivalent circuit, I •.• 

the equations involved and the conditions for matching were 

so complic a ted as to perhaps account for the little use made 

of the data. A new notation was developed which would lend 

itself more readily to engineering practice. The solution of 

the rnatc hin; problem in this notation, a long with two experi

mental examples,is given in Part I. 

The Canonical T-Section Parameters 

A lossless obstacle placed in a wave 3uide or other 

microwave transmission line can be represe nted by a 
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4-terminal network containing purely reactive i rnpedances.l 

Vie s ~: a ll c Lo ose a symmetrical T-section-l:-, but r a t he r t han 

t 1--1e 'U 0 "" 
7 X 1. . W V .. C, • ...L,. 1 and X2 (Fig. la), we s ~:11 use the canonical 

parameters S and T-:Hf (Fig. lb ) where: 
,S' = x, 
T :=: X I + '2.. )('1. 

\ 

A considerable simpli f ic ation of derivations, formulas, and 

calculatiora results from this substitution. 

I JX, ~ -- I G;J --o 
~

1 
j s I jS I _I 

I 
t---- 0 

jX l. 

0--· 

I JT I 

In terms of 

a 

Fig. 1 

these uarameters: S 
- - . '2.'r z sc. - J 'T + s 

z c., C. 
-- J 'f+S' 

z I< - +TS 
T+S' 
ry'-$ 

1Numerical superscripts refer to biblio ;i;raphy. 

b 

-;'<1"illy asymmetrical T-section is equivalent to a syrn.metrical 
section plus t he proper length of line. 

**These are closely r e l ated to the electrically equivalent 
lattice circuit. 

(1) 

(2) 

(3) 

(4) 

(S ) 
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l';;.ny T-section has two d istinct representations as long 

as measurements across the series arms are not permitted. 

This is ordinarily the case. Using the canonical parameters, 

the one representation is obtained from the other by an inter

change of Sand T. In the following, nearly all the equations 

are invariant to such an interchange. 

As we shall see later, Sand Tare measured directly by 

the resonant cavity method when the measurement is made so 

as to give the minimum error. Furthermore, the conditions 

for matching two obstacles are extremely simple in terms of 

Sand T. 

In what follows, unless ot he r wise stated, we s hall 

measure all impedances in terms of the characteristic im-
z (o'1,..,. s) 

pedance. Using the dimensionless impedance -z = 

is mathematically the s~~e as letting 

Conditions for Mattihing Two T-Sections 

I(x~ I JS I j S -~·- ~- · 0 

Z K -: / 
Z k ~ I. 

1 
· J 

. y~ j ~ V (x ) Y=i~ 

er-- ~ >• & ~.,-·- . " ' 

-x X 

Fig. 2 

If, in Fig . 2, we consider a wave advancing from the 

left with a mplitude A, and being reflected with amplitude B 
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and transmitted with amplitude C, it can be shown2* that the 

reflection coefficient 
B - v· c~.,. -t.) 
A = Cos ( s - -t) e 

and the transmission coefficient 

C. -'.)(s1-t) 
A= -J s,·..._cs-'l) C 

where: 

Further, the voltage standing wave ratio is given by 

S.w.R. = 

tance 

13 -
A 

If now we consider two obstacles separated by a dis

L, the total. reflection coefficient is given by 2** 
-./S,t-t,) -J [Sz.-rt"1.. 1-;_(s,+t:,Jt2..13LJ 

Co36,--t,)e - Cos(s .. -"l'-..)e 

I- '- -Jc ( _..,_) -J(-s,t-(;-,+-s._+1::-.._"f-:,..~LJ 
Co:s1_s,-t-, os 5.,_ '-'L- E /-

In order to have the two obstacles match, we must have zero 

reflection, or B/A=O. This is fulfilled by either of the 

following two cases, both of which require that two conditions 

be satisfied; namely, that the reflection coefficients of 

the two obstacles have (1) equal amplitudes and (2) properly 

** 
See Appendix c. 
See Appendix D. 

(6) 

(7) 

(8) 

(9) 

(10) 
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chosen phases. 

Case I S 1 --f:_ 1 =- S
2

--t 2 + n,-rr 

P,L-:: n-rr -(s,+t.,_) = plT-(S:z..+t:.,) 

Case IP.- S
1

--t,=-(S';i._--C-1..} -+W\IT 

f?>L = 11rr - (s,+s .. ) == pTT -("t-,--t--C:.'2..) 

Standing Wave Ratio Due to Small Mismatch 

Let us now consider two obstacles which almost, but not 

entirely, satisfy these requirements. We wish to find the 

standing wave ratio. In Eq. 10, let: 

(3 L 

giving: 

5 - -
A 

- j(s,-t "t,) 

Co sfr, - l.) e 

co 5 (s _ "t 1- E ) -~ C 1. b -f E) ] 

l 
I ' , e 

C O s (.3 1 - t; I ) 

_j(16·fE·) 
I - c. o s l s , - -c, JC o -.. c :s , - c:, + € > e 

Expanding and neglecting terms of second order and 

hie;her in E and ~ we get: 
-j(s,-d::,) 

B co s ( s, - --c,) e 

A 

* These are essentially the same because one can be obtained 
from t he other by using the other representation (S~T) 
for one of the obstacles. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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Hence: 

s_ w_R . 
-f- cot ( s- 1 - "t,) cs c (s, - t:,) -zl~ .._~ '-(s,- -t-,) + (if f6) "t. 

I - Cotr~,-t-,) cscfs,- t,J-Yt:=L~r.{5,-"t:,)t-(2ff-c-)~ 

Matching Over A Frequency Band,with Examples 

It is usually desirable to matc h two ob s tacles over a 

freque ncy band rather than a single frequency. 

ditions 
5..__ - -CZ... 

L - s, t: ... 
(3 

The two con-

must be satisfied throughout the range. Ordinarily s/~ and 

t/f> do not change rapidly with frequency and hence n must 

equal zero. When t he standing wave ratio of the obstacles 

is not too large, tan (s-t)~~l. This makes €- the more im-

portant term in Eq. 19 when & and ( are of the same order of 

magnitude. 

Fi g . 3 

(1 9 ) 

(20) 

(21) 
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.I\ ( cm) ~ ~ 3.30 3.35 3.40 

s-t -1.424 -1.432 -1.437 -1.440 -1.446 

E-Plane s 0.435 0.423 0.392 0.380 0.369 

Corner t -1.283 -1.287 -1.313 -1.321 -1.328 
s/r3 0.122 0.123 0.118 0.117 0.117 

s-t 1.434 1.436 1.437 1.438 1.439 

l/16"T.P. s -0.010 -0.002 -0.006 -0.004 -0. 004 
t -1.444 -1.438 -l.4!-1-3 -1.442 -1.443 
s/pi -0.003 -0.000 -0.002 -0.001 -0.001 

s-t 1.433 1.438 1.437 1.434 1.436 

1/8" T.P. s -c.020 -0.013 - 0 . 015 -0.014 -0.014 
t -1.453 -1.451 -1.452 -1.449 -1.450 
s/r3 -0. 006 -0.004 -0.004 -0.004 -0.004 

s-t 1.439 1.439 1.438 1.440 1.439 

1/411 T.P. s -0.027 -0.023 -0.027 -C.024 -0.024 
t -1.466 -1.462 -1.465 -1.464 -1.463 
s/13 -0.008 -0.007 -0.008 -0.007 -0.008 

Table I 

Fig. 3 and Table I give data for matc hing a 60 degree 

E-plane corner with 1/16 11
, 1/8", and 1/4" tuning posts. 

The tuning posts were inserted in the guide just far enough 

in eac h case to give a good matc h at the center frequency, 

3.30 cm. At first glance, it appears that the match would 

be fairly good for any of the three posts, with the 1/16 11 

one having perhaps the slight edge on t he others. Closer 

inspection s hows a rather serious di f ficulty. When L is 

calculated from Eq. 21, letting n-0, it is found to come out 

negative. This is a physical impossibility and we must make 

n-1; t hat is, add 1/2 wavelength to L. The variation of this 

1/2 wavelength with frequency produces a large effect which 

outweighs t he s mall differences among the t hree tuning posts. 
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Fig. 4 shows the measur ed standing wave ratios versus frequency 

for the 60 degree E-plane corner alone, and the C[-1,lculated 

and measured values wt en ms,tc hed wi th the 1/16" tuning post 

at 3.30 cm. Various other discontinuities such as capacitive 

change of guide hei ght and tunin3 dent were tried but none 

of t t em had the large negative value oft which is necessary 

to give a positive length when used with the E-plane corner. 

The 60 degree H-plane corner, however, lends itself more 

readily to matching with a tuning post. Fi g . 5 shows the 

measured standing wave ratio of the H-plane corner alone and 

the calcula ted and measured standing wave ratios for the 60 

degree H-plane corner when matched with the 1/4" tuning post. 

It may be noted that it is considerably better than the E

plane corner. The discrepancy between the calculated and 

measured values is probably due to the proximity effect. 

The separation between t he two obstacles is only about 1/8 

wavelength and it is likely t hat the higher modes are not 

sufficiently attenuated at t his distance. 

A (cm) 3.20 ~ hlQ 2.!.2-2 3.40 

60° E-Plane Corner 
Alone 1.341 1.322 1.309 1.300 1.286 
Wi th 1/16" T.P. 

Calculated 1.153 1. 076 1. co7 1.042 1.087 
Measured 1.150 1.079 1.016 1.035 1.080 

60° H-Plane Corner 
Alone 1.364 1.360 1.369 
With 1/4" T.P. 

Calculated 1.056 1.003 1.058 
Measured 1.074 1. 004 1.049 

Table II. Standing Wave Ratio (Voltage) 
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Table II gives the data plotted in Figs. 4 and 5. 

Summarizing, in choosing a match for an obstacle, the 

three factors, in order of importance, are: (1) The 

matching obstacle should be chosen so that the length L 

is positive; (2) The values of s-t should agree as closely 

as possible throughout the ran ge; and (3) The quantity 

s,/p + ta../> should be a constant throughout the range. 

Cavity Resonance Method 

of Measuring Equivalent Circuits 

The above equivalent circuit parameters were measured 

by a variation of a technique first developed by C. Y. Meng, 

s. c. Snowdon, and D. w. Hagelbarger under the supervision of 

W. H. Pickering. 3 We form a cavity by short-circuiting each 

end of a wave guide containing the obstacle in question. 

Power is fed in through a small hole in one end, and the 

energy in the cavity is measured with a loosely coupled 

crystal detector probe inserted through a small hole in the 

cavity wall. The equivalent circuit parameters can then be 

calculated from the positions of the shorting plungers with 

respect to the reference planes of the obstacle. The equi

valent circuit of the cavity is s hown in Fig. 6. 



-11-

Pi. 
jS ·- ------.o-------·-·--·····-··· 

Zk: -.:; I 

Fig . 6 

The resonance condition is that the sum of the admittances 

across any point in the cavity must be zero, or, since the 

,4. r1,· impedance of a short circuited line is -Z.. ~ -= jZ k; ta,,,vt .... 

= 0 

This can be rewritten in several forms. For brevity, let: 

(3/L-:. ~.:, ., ~ r,_i?,; = <f.:, 

(,r ➔ S)(cp,+cf\>~2..T'S + 14'. 4>'1.. 0 

'P. -t T cp ➔ rp 
'l.. 

From Eq. 23c it is easily seen that a plot 
rh ___ rr+s a ri ght hyperbola with 't" and 

I i'2_. 

of q> vs. cf, gives 
I 1. 

4>'1.. = .::. rr + s 
~ 

as aaymptotes. Rotating the axes 45 de grees or plotting 

rl-. -+ q> vs . <p - cp , we obtain curves symmetrical about 
~. 'l... ' '1. 

r-h_4> =O, and hence at t he maxima and minima'/>,= 9\_tbese ,, '). 

points must be c.p t - c:p 1.. -S - -

er. Cf-1- - -T --

(22) 

(23a 

(23b 

(23c 
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A more convenient method of calculating Sand Tis to plot 

,J, ~~2-- vs.~-~. In Eq. 23a, let: 

g>.-+<,>'l... -=- r ( Q. -+ P'I- ) -::. 1. o<. 

(3 (.i, ---f~) 
I 

<s>.- ~,__ - - 1-- f> - -

A = ~()<._ 

~/3 
I 

C3 = 
giving: 

( '11 + $) A ( , -t- B t) -t T ,s ( 1 - A' B ~) -1-- A~- 13 z. ::: o 

1+13"2.. J..A 
--= 
t+-/)..1.. d..\3 ll+A"-) [C'1'+;sJ(1+13 4 )-1.Ara1.rr:s -+-i.A] 

Q. £3 ( t-+1'S) 

If J ~ 
0 either I+ rr' .S -= 0 1"1 :s' -=- - I -d. ,-/ or t3 =- 0 

If TS =-I ,by Eq. 4 Zit-=- I and t he T-section is equi-

valent to a lengt h of line giving _R,4J'z_:::constant. If B=O, 

then the curve has a maximum or minimum and~ ~--f~,and from 

Eq. 24 
A1..+ Al'T'1'",s'J + <"11:S' ==-o 

A .:: - '\1 or - S 

ex :: 
<3CR, .i. ,e,.J 

- - -t 

Thus at the maximum and minimum 

rQ,-;: (3/4 .. =- - -t for one 

and ~ J. , = f-> P "l.. = - s for t t e ot her. 

(24) 

(25) 

(26) 
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Choice of Measurement Region to Give Minimum Error 

Not only is t he calculat ion of Sand T simplest at the 

maximum and minimum points, but we shall now calculate the 

error~ r in S,T due to errors in the micrometer measure-., 
ments of .J, and~.,_ and s how t r.at it has a minimum value at 

these points. Sand Tare to be measured, knowing that 

( T ~ S) (Cf, ➔ <f>~) + ~ T S ~ 2 4>. 4>-1. = o , 
where <p ~ = L 'f ,,by measurin5 two sets of values ~,., ~'l..and 

/ / 

~', ~'2... and t hen s olvin;:; t he equations 

(rr + s) ( 4. + c? 'L) + 2 'T S -+ '1. <P, 9>-i_ 
0 

('I'+ S)( 'P, 1 

+4'~) '2. T o' -+ 2 
I I 

+ er. 4'-i. 0 

for T and S. G-iven, t hat the error in '5';,.., o;.:. 
1 
is a constant 

/ 

equal for allj>, what values of '5', and '3', ( and t herefore ~1..and 
I 

<5>')..) s hould be c hosen to give a minimum error in T and in S? 

From symmetry considerations it would seem that these 

s hould be the same for both T and S. We wil l calculate t he 

values for just S, t hen, as follows. Assuming a normal dis

tribution, the standard deviation of s, a;, is given by: 

'L. 

We wish to minimize <1s' wit L cond itions t hat Eq. 23a and 23a' 

hold. This we do by solving the equations: 
1.. 

d <r,st 
d-- .:::o 

CS, 
~ 

d~ 
=0 

(23a 

(23a 

(23a 
,I 

(28) 

(2 9 ) 



/ 
for 5', and ~ .• 

-14-

f 
Diff e r entiating Eq. 23a and 23a', holding c:p2..., q:>

1 
and 

dT 
~: constant and eliminating d tj>, , we ob tain 

Since: 

I I 

:: ( 'r + ,S -+ 1. q,'l_) ( <t,, + q,'L --1- 'l ,s) 

"l_ \ 'T- ,$) ( <f\ -+ cp?. - 'P. I - <p~ ) 

- ('l'+5+~4L)(4:l,t--~~+1.,s') (i+~z_) 

:i..('f-.s') ( <l, +Cf>,,_ -cp,' - cp~') 

The ot her part i als c an be written b y inspection: 

-:)$ ( 'T + s + 1-. ~I)("'• I + 4>~I +is) 
(l+q,:) -:: 

'1. (T- s) ( '{>, + 'f\_ - 4>, I - cp ~ ) 0~.__ 

J ,5I ( f +- S + 'l cp: ) ( <-t>, + 4 .. + ~ s' ) 
(1 T cf 1- ) -- -

2_ ( 7 - ,s ) ( 4', I -t- cf - 4', - 4 2- ) 
I 

a <g, 

Substituting Eqs. 30 , 31, 32, a nd 33 i n Eq. 27, dif

fe r e n tia ting with respect to 'S I and noting t hat: 

rr + ,<; -t i <h -1.. 

T + :s' --t- 2 cP, 

We obtain, after simplifica tion: 

(30 ) 

(31) 

(32) 

(33) 
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( 4>. , + 4.. + 'l. S' ) C I + <t/·) r 
- _.:_ _ _:;=-------:---:---:::---:----:-- ('T + S ➔ 1 4>~) \ 

( rr -,sJ 1 
( 4. * 4 1- - 4, ' - 4: ) ~ ( 'T + S +- 1 "'·) 

1. 

d0$ 

(ct>,'+ 4'~~2 s)C1+cr.~) [<ct,+4\_-4.'-4>._')(4,1.+ er, f1'+t} -,) 

- c 1>. - <t> ... ) c , + t. 1.) J - ( T + S' + J. 4>, t < 'P, • + cp~' + J. s) JI. 

< 1 + q, _:-) [ < 4, + 4' 'l. - <P. ' - er~ ) ( f,._ l. _. er._ £ rr + s J - , ) 

+ ( <l\ - cp ~) ( I + cp '1- .._) ] - ( T + ,s' -t- 1 q, ~ ) 1- ( 4. -+ 4 -z_ ➔ 2 s) X 

'2..) 1.. 
(1 + <P ,' ( '{,

1 
- 4' ~) ( I + 4, ~) -i. - ( rr + f;' + 2 4' ,' ) L I(. 

( 4'
1 

+4>
2 

+ J.. ,S )( I+- cJ< 1.) 2 

( ct, -qi?.) ( I + f/·)-z.} 

d ~ can be written from Eq. 34 by interchanging cp, CS, 

(34) 

I I 

and cp
1 

and interc hanging q:>
1 

for <f'.... . We see by ins pection that 

11'l=cr =-T '-f I 'L. 
and (35) 

are soluti ons of Eqs. 23a, 23a', 28 and 29 simultaneously. 

To show that t hes e solutions are minima, we compute and 

evalu(a!~Jp)e second de:i~atives, ge t ting: 

d g,, a.. ct, . .:: 4 ?- = - 'l' 
C, I :. ct,~• :. - 3 

(
d~ ~~)· =- ~ c, + sz.~l. [ ( 'T +-S)~i" ( ! t- '1' ,s Jl.+ ~ + 1 rr~ s'J 
d ~: <t>. =- ct> ... -= - '1' ('T - 15 ) 

4, I -:C ct>.._ ' ~ - .s' 1,.. 

The firs t is zero, since ~ is independent of ~. , and 

the second is always p ositive. 
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If Eqs. 35 are satisfied, 
~ ~ ~ ... 

0 • v;, + 0, o-Clj' .... + (-1) ~.' + 

'l. ( 1 + sLJi.. v;1-

From 

are 

symmetry considerations, the solutions for 
~ .... 

do-,., dcr;, 
- =-o =-o 
d <rs, c:,i ~,' 

9\=~-i.=-T ~I= cp~=-,S 

and i.. 1... ... 

(T'l't. =- ~4. -f- ~-t. + 0 • °4' . 
'")... 1. ::- 1. ( I -1- 'i' v, 

In actual practice, the sum of the micrometer readings 

R,+R1 is plotted a gainst R,. Since R,+R.,_differs from J, ➔ ,/1,., 

only by a constant, this curve will have its maximum and 

minimum in the same regions. Also, since only t he values of 

the maximum and minimum are required, it is immaterial whether 

the data is plotted .against R, orlt.-R1.. The constant is 

determined by obtaining resonance in t he guide without the 

obstacle present. It is called thecalibration sum, (R,-t-RL\, 

and its constancy is a measure of t he uniformity of the test 

section and also the disturbing effect of the probe. 

Descrip tion of Frequency ll!iod ul a ted System 

The system shown in Figs. 7 and 8, while not capable 

of the hi ghest possible absolute precision, lends itself to 

fairly rapid measurements with good relative precision and 

ease of changing frequency. Since the system shows the 

complete resonance curve, the disturbing effect of the probe 

(36) 

(37) 
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in the test cavity and t he uniformity of the oscillator 

throughout the resonant range can be quickly checked. It 

is essentially a method of comparing the resonant frequency 

of the test cavity with t he standard cavity. The 723 A/B 

klystron is frequency modulated with a 60 r,,..1 triangular 

voltage applied to the reflector. If the tube is properly 

loaded, the frequency modulation is linear and the ampli

tude modulation is small. The standard cavity is an 

absorption type wavemeter with a hi gh Q. It is coupled to 

the system through an attenuator and tuning section so as 

to absorb energy at its resonant-. frequency. The test section 

Fig. 7 
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is coupled to the system through its hollow input plunger 

and the crystal probe is connected through amplifiers to 

the vertical deflecting plates of a cathode ray oscillo

scope. A 60-cycle sawtooth voltage synchronized with the 

modulation on the klystron is applied to the horizontal 

deflecting plates. ihen the two cavities are in resonance, 

the dip due to the standard cavity appears at the top of 

the resonance curve of t he test cavity making a double

peaked curve. For exact resonance the two peaks have the 

same hei ght. 

Fig. 9 shows the test section approaching the resonant 

frequency of the standard cavity. 

Fig. 9 

The curves, reading from top to bottom,are .OClO, 
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.occ5, .OCOl, and .0000 inches away from resonance. The 

total length of the cavity was about 5½ inches and a dis

placement of .0001 inch is easily distinguished. 

The effect of the probe on the resonant frequency of 

the test cavity is illustrated in Fig. 10. 

Fig. 10 

The depth of penetration of the .010-inch diameter 

probe into the cavity is, reading from top to bottom, . 015, 

. 020, .025, . 030 , and .035 inches. Only in the last case 

does it affect the resonance frequency appreciably (the 

horizontal displacement of the curves is due to variation 

of the synchronizing voltage and is not pertinent). 
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In Fi g . 11, the upper curve is t he resonance curve 

of t he test cavity, while t he lower curve s hows the energy 

in the main part of the system whic h is essential ly constant 

over t he range being swept. It is obtained from a monitoring 

probe in the guide between the oscillator and the standard 

cavity. It is extremely useful when changing frequency,and 

a switc h is provided for quickly connecting either it or the 

test cavity to t he oscilloscope. 

Fi g . 11 
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An interesting effect is s hown in Fig . 12 . The resonant 

frequencies of the cavities appear to be slightly different 

when the f r equency of the oscillator is increasing instead 

of decreasing . It was found that this was not due to delay 

in the wave guide system or poor low frequency response of 

amplifiers . When a frequency modulated si:nal is applied , 

one would expect a shifting of the resonance curve which is 

proportional to the Q of t he cavity , since it requires 

approximately Q cycles for the cavity to reach a steady state . 

Because the test cavity always has a lower Q than the 

Fig . 12 
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standard cavity, the two will be s hifted different amounts 

and hence, if t he resonant frequencies a ppear t he same when 

the frequency is increasing , t hey must a ppear off by twice 

the differe nce in the s hifts when t h e frequency is decreasing. 

Care was taken to always use the same one of the two resonance 

curves during a series of me~surements. 

Sources of Errors 

Perhaps the chief source of errors is t he fact that the 

resonant frequenc y of t he standard cavity is dependent on 

its coupling to the system. The 723 A/B tube is hardly 

powerful enough. Hence, at times it is necessary to couple 

the cavities t oo closely. Reading s may be repeated to 

. C00l inc h if t he setup is not disturbed. However, if it 

is torn down and reassembled, the discrepancy may be as hi gh 

as .0005 inc hes. 
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PART II 

Extension of Matching Technique to a Four Terminal 

Network Between Lines With Different Characteristics 

It is not possible to measure t he characteristic 

impedance of a transmission line us ing a re s onant cavity 

tee hnique wi t r: purely reactive elements. This is because 

the determination of the characteristic i mpedance requires 

the measurement of a voltage-to-current ratio and the 

resonant cavity method merely locates positions on the 

transmission line where t he voltage is zero. However, it is 

not necessary to know t he characteristic impedances in order 

to get maximum power transfer across the junction between 

two lines; t hat is, to eliminate reflections from the 

junctions. 

In Fi g . 13 we have two different semi-infinite trans

mission lines whose junction is represented by the T-section 
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Fig. 13 

shown. A wave of amplitude A is advancing from the left and 

is reflected witt. amplitude Band transmitted with amplitude C. 

The reflection coefficient B/A is given by: 

8 
A 

Setting 

=-

B ::::o, we have: 
A 

.ix~(R-i.. +j x"") 

R ... -1- ~ X ... 4 jX, 
Jic. 3 <.R-..+~ ~ .... ) 

R.._+J\.._+~X1 

(R,- ~X,)(Rl.~j X.._ +~ X3)- j X 3 C.R""L.+~X~)= o 

from which 

If we form a resonant cavity with portions of the same 

lines and T-section (Fig. 14), the resonant equation is: 

+ =- 0 

(38) 

(39) 

(40) 
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or RI R ,._ k- ~, Q. ~ 0-.. f ~ +- ( X. "l- + X 3) R, ~ (3, f. 

+ c x, + x ~) R l. ~ ~'2. J ~ + x, x"l- + )(.2 x-~ + Y:)x, - o 

Let us further require that 

Then: 

Now Eqs. 41 and 43 must hold simultaneously. Hence: 

L}(. '.4 + )(. ~ ) R I 
:::. 

l>C + )I. l) R 1.. - -K -
x... x z. + )( i. 'ii 1 + x""} -x, x , '/. ,. t- X ... X-. -+ X 3 X, 

R, R-i. 
-/ -

)( I '1.-i,.. + X.,_ X > + )("l)(• 

But these are the conditions for zero reflection (Eqs. 39 and 

40). hence, Eq. 42 is the condition for which we are looking. 

Fig. 14 

(41) 

(42) 

(43) 

(44) 

(45) 
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This means that if we wish to matc h a junction such as 

Fi g . 13, we may assume that the two characteristic impedances 

are both equal to unity, say , and measure the junction in 

the cavity of Fig. 14. If we calculate, using this 

assumption, the matching T-section according to the method 

outlined in Part I, then an obstacle will matc h t he junction 

providing it gives the proper T-section when measured in 

the same transmission line as the one in which it is to be 

inserted. For example, suppose we have two wave guides of 

different dimensions meeting as in Fig. 15. We form a 

resonant cavity by inserting shortcircuiting plungers. 

-- - - ---------~ 

Fi g . 15 

From the resonance curve, takine; into account the two (3 1 s 

but assuming the ZK 1 s are both unity, we find the junction 

behaves as a symmetrical T-section ( see p. 35~::: ~a..) 

about' t lie dotted line, a distance ,/ 0 from the physical 



-28-

junction, and has values Sj and t;J° • To match it, we find 

an obstacle wbich, when measured in guide .§:, has T-section 

parameters Sa... and ~o...such t hat 

We place this in guide~ at a distance f3 0..., 

from t he dotted line, as shown in Fi g . 16. We mi ght equally 

Sj +- Sc.. ·, 
'-~1 

~ ~- (---

a. b . 
,... __ , ___ ._..., __ .,.. .... ,.._ ... ,... ._.,.._ .. .__..,, __ 

' . - --- ·------ - -~ 

Fig. 16 

well have found an object which, when measured in guide b, 

gave values sb and -t: 1o such that sb-th :.-sJ +t.J· and then 

placed it in guide 12. at a distance 

as shown in Fi g . 17. 
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a.. b 

Fig. i. 7 

Representation and Measurement of the Equivalent Circuit of 

The Junction Between Two Transmission Lines With Different 

Characteristics 

Consider the junction formed by a coax line passing 

symmetrically throug h a wave guide so that the coax is 

parallel to the electric field in the guide (Fig. 18). We 

shall show that 5 parameters are required in the equivalent 

circuit of this junction. 
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Fig. 18 

A general 8-terminal black box (Fig. 19) has 4 inde

pendent voltages and 4 independent currents which are 

related by the following system of equations: 
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E - I 1 2, 1 + T 2 z,2... + I~ zq +- I4 -z,.,. -
' 

E)_ 
- I.,-z;t, +- 1.2.. Z2..-z.. +-l~z23 + 14 ZJ..'-1 -

E~ - I I 73, + I~ Z5 z.. +- I 3 Z:s 3 + I'f- -Z.3 '/--

E.'t 
- I, z'{, + I,__ z'/ 2 +- I 3 2 '{ 3 + I.., z 'f 'I -

F i g . 1 9 

Of the 16 coefficients in Eq. 46 , only 10 are different, 

since Zit- -::: Z,..~ b y t be r eciprocity t heorem. Impos ing t he 

symmetry properties of t he co ax-to-guide junction, namely 

t he two coax arms ma y be interc hanged and t he two guide arms 

may be interc hanged, we are left wit h just 5 independent 

i mpedances. 

-z..'l..._ := Z 3 !, 

z,).. = z, 1 - Z,._..,-== 7 141 

(46 ) 

(47) 
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Fig. 20 

The circuit of Fig. 20 is convenient to measure using 

the resonant cavity method. Since this circuit contains the 

5 necessary parameters, we may arbitrarily equate the 

characteristic impedances of the guide and coax. Dividing 

by this common characteristic impedance gives us dimension

less impedances. The equivalent circuit will then predict 

completely the behavior of the junction, providing only 

impedances measured in the coax system are connected to the 

coax arms and impedances measured in the guide to the 
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Fig. 21 
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guide arm.* 

If the guide arms, say, are fixed and the resonance 

curve,using just the coax arms, obtained, the junction 

should appear to be a simple T-section. If a family of 

such curves is obtained, the T-sections should all have the 

same series arms. But we have seen (p. 12) that this means 

the curves must all have a common point as either a maximum 

or a minimum. Such a family of curves is shown in Fig. 21. 

This gives a unique determination of X2 , the coax series 

arm. Repeating the same process, except with the coax arms 

fixed, and taking resonance curves with the guide arms, we 

obtain a similar set of curves and thus determine X,, the 

guide series impedance. 

To complete our measurements, we will take a resonance 

curve, keeping t re two coax arms terminated the same, and 

the two gui de arms termina ted the same. The equivalent 

circuit under these conditions reduces to Fig. 22 where: 

I 

x'l. - x'l.. -+ 1 X-t 

* If we should know the two characteristic impedances, 
as for instance in the junction formed by two different coax 
lines passing through each other, then the five impedances 
(starred) are related to the dimensionless ones above by: 

'.f,. ~ ~ ~ 
X1_ X'!. -+- Xs- Xs 

X =- X-::: 
2. Zi,;:l. 1 '?, X :::. 

I 

X 11-, 

' 
., 

(48) 
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• v t J,·2 

Fig. 22 

On p.13, we found the re gion of measurement which gives 

minimum error for a symmetrical section. The similar attack 

for the asymmetrical section is very much more complicated. 

We s hould not go too far wrong , however, if we add a length 

of line ff to one side of t he T-section and subtract it 

from the other so as to make the sections symmetrical, 

measure t he symmetrical section at its region of minimum 

error, and transform t he results back to the ori6 i nal 

asymmetrical section. The transformations are obtained by 

equating coefficients in the resonant equations for t he two 

sections. 

9, :t __J j O. l ~- -~ , 

I
·----··-◊-·---·-- I___.,.,-]~ jS ~ O 0 

[
--~i ~;--·1 . '; 

'-

• _i ---·-o---~=--·-·-----~~~L-... _ .. ,,_, ____ . __ . --- -··-··-- . o --,--- •··-···-- ·· •" · o -------- ···--

Fig . 23 
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The resonant equation for Fie; . 23 is: 

I '2. 
+ + - 0 -

~('5',+,,$) .... s ~<':Y/J.-~J +S T-S 

or writing </> -= ~'5' 0 = ~;;--., 

('r..- s )( 1+ e··)-;2 ef 1+rsl ¢ 
1. --:i. rrs e..... ' 

'2. 

+ 
('T'+S1 )(1-1--&J).J.'J..e(1+'l1S)<p + 'T's'-e 

0 ,:z - 2 T /5'0"- -z... 

When shorted lines are added to Fig. 22 to form a cavity, 

we have: I I -- -t- + :=O ¢, + )( I ~ +(' )( ' I 'l.- 1, 

or 

Equating coefficients of<ji's in Eqs. 50 and 51 and solving, 

we get:* 

.><, - d{1+t!l) + e(, r rs) 
- I- TS et... 

I sr 1 +&'-J - e{, +- r,s) 
x')., - ,_r~g-z... 

( ( T' -,s) (I+ G ') X 3, - --
1...(t-T'se') 

* Interchanging T and S gives solutions also; we have 
chosen the above because when 0-0, x:,'_.,x._'---,$'and y/- 'T'-S .... 

(49) 

(50) 

(52a) 

(52b) 

(52c) 



-37-

Numerical Results of ¥ieasurements 

On a Coax-to-Guide Junction 

Figs. 24 and 25 show the resonant cavity used for 

measuring t he equivalent circuit of the coax-to-gu ide 

Junction. The inner conductor of the coax line is part of 

one p lunger and slides inside t h e other plunger. All 

sliding contacts were fitted with spring fing ers one-quarter 

wavelength long enabling the contact to occur at a current 

minimum. Although the machining was he ld to very close 

tolerances, t he ca vity did not function as well a s it was 

hoped it would. The half wavelength varied by as much as 

Fig. 24 
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0. 005 inc hes from its theoretical value of 0.66 9 inc hes. 

This was probably due to small lateral motion of the inner 

conductor where it cro ssed t he guide. Two sets of co a x 

p lungers having different inner conductor diameters were 

made. The results of these measurements are g iven in Table 

III. The reference planes for t he guide arms are coincident 

with the axis of the coax line. The reference planes for 

the coax arms are flus h wit h t h e inside of the guide. (See 

Fig . 26.) 

Guide Width 
Guide Height 

)-.Q; y 

>--1 
Diameter of Outer Coax Conductor 

Diameter of Inner Coax Conductor 
Coax Z 1e 

x. 
xl-

s 
T 
0 

X 1 

x .. 
xf 

TABLE III 

0.900 II 

0.402 II 

3.403 cm 
2 .006 It 

0.3125 11 

0 .136 11 

49.9 .1L 

-0. 016 ¼:. 001 
-1.15 ¼.01 

-0. 158 t. 001 
- 3. 056 ±. 00 3 
0. 953±.005 

1.00 ±.01 
-0.95 ¼..01 
-2 .46 ¼.02 

0.0945 11 

71. 8 ..!'\-

0.012 ~.001 
-0. 99 ±. 01 

-0. 0 51 :1:. 001 
-3.021 :!:. 003 
1.299 ±.005 

0. 90 ±. 01 
-0.60 :¼.01 
-2. 60 ::t..02 

The errors in X 1 , X~ , S , T and 0 were estimated from 

the curves used to determine them. The errors in X 3 , X 'I 

and X 5" were computed from the errors in S, T and 0 using 
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the partial derivative of X 1 , X -f' and Xr with respect to 

S, T and 0. The values in Table III were checked using 

the resonance equation for Fig . 20: 

I 
+ -+ 

j )( ~ .... ----------
' I 

4-------:-
j )(~ + jt.....f3 .. i .... ~'X.-,_-f-/f:o....J3 .. p> 

Additional data not used in the original computation of the 

X's was checked,assuming three of the J7 'sand computing 

the fourth. In every case t he measured values of the-1•s 

agreed with the computed values within a few thousandths of 

an inch. Two sets of values for X-, ' X41 and x .J can be 

computed, de pending on whether S or T is associated with the 

maximum of the resonance curve. The two sets of va lues 

give the same resonant behavior, but one of t hem has the 
0 

-0 

phases in the coax arms shifted 180 with respect to the other. 

The alternative values are g iven in Table Illa: 

Coax z~ 49.9 ..!l.. 71.8 .s,.. 

s -3.056 -3.021 
T - 0 .158 -0.051 
e 0. 953 1.299 

X-, -3.94 -4.37 
X 4 -5. 86 -6.44 
X5 2.46 2.60 

TABLE IIIa 
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Description of Automatic Frequency Control System 

In order to obtain accuracy in a cavity containing 

several wavelengths, it is necessary that the frequency be 

held very constant. The system shown in Figs. 27 and 28 was 

designed with this in mind. The 419-B klystron was immersed 

in a water-cooled oil bath. The frequency of the reflex 

klystron being very dependent on the reflector voltage, an 

automatic frequency control feature was incorporated by 

feeding a large fraction of the output through a cavity so 

that the operating frequency was on the steep portion of its 

resonance curve. From the cavity it was taken across high 

Fig. 27 
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voltage insulation in the guide (the reflector is at 

approximately 1200 volts below ground) to a crystal de

tector. The output of the crystal was fed through a 

stable, hi ~h gain, d. c. amplifier *4 back to the reflector 

of the klystron. A voltmeter, cathode-coupled to the output 

of the amplifier, was extremely useful in ali gning the system. 

It is hi ghly desirable to have the R. F. signa l purely 

amplitude modulated so that a. c. coupled amplifiers may be 

used to detect resonance in the test cavities. This is 

ordinarily achieved by applying a square wave voltage to the 

klystron such that the tube cannot oscillate during half 

the cycle. This method has two disadvantages. First, it 

was not found possible to get the square wave flat enough 

so that the output voltage would not have some frequency 

modulation. Second, the time constant of the feedback 

circuit had to be made so long as to be practically use

less. Pure amplitude modulation was obtained in this case 

by passing the signal through a specially built cavity, one 

wall of whic h was the diaphragm of an earphone. Applying a 

1,000 c. p. s. voltage to the earphone tuned the cavity so 

that the signal in effect moved up and down the side of its 

resonance curve. It was necessary to attenuate considerably 

* The amplifier is essentially the circuit s hown on p. 429 
of John Strong's Procedures in Experimental Physics, 
which uses one pentode as the plate load for another. 
With one 6SH7 and one 6SJ7 tube, it had a voltage gain of 
4,000. Using batteries for power supply, it was extremely 
stable. 
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between the klystron and the modulating cavity so that 

the klystron's load would appear constant. The guide from 

the modulating cavity branched, one arm going to a high Q, 

invar steel, standard cavity, which was constantly monitored, 

and the other to the test cavity. When operating at its 

best, t he frequency did not deviate noticeably from the peak 

of the standard cavity, the Q of which was around 40,000, 

during periods of half an hour or so. Measurements were 

taken when the system was considered to be drifting rather 

badly, and t he drift was about one part in 200,000 per 

minute and very constant throughout the half-hour period 

the measurement occupi~d. 

Example of Precision Measurement 

To il l ustrate the precision obtainable with s uch a 

system, we give here data compar ing the wavelength measured 

in a carefully broac hed and lapped section of brass wave-

8Uide and t he wavelength as measured in two coax wavemeters. 

Wavelength in guide. 

A d "'\. 2.00585" verage measure ""', -::: 
Guide width -li-* = 0.89986 11 * 

~(_ = 1.79972" 

* Here and in t he f ollowin5 , the values given after the± 
signs are standard deviatio ns ( er ) , not probable errors. 

** See Appendix A. 
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Substituting in 

gives: 
?. /1., ::: /, 7 0 / '3 

Coax Wavemeters. 

Wavemeter A 
Salisbury Coax Waverneter 
Mico Instrument Co. #454 

Wavemeter B 
Mico Instrument Co. Cat. No. 402-A, Serial No. 2327 

Wavemeter A contained 10 resonant peak s of the principal 

mode ranging from 5 to 14 half wavelengths. It is possible 

to repeat t he settings of the wavemeter more closely t han the 

sc ale could be read (0.001 cm). The data was fitted by the 

method of least squares to the equation: 

,-V\ -= o.. ;. .., 'l /'l. 

giving: 

Run ii!: )/~ 

-L/ 
I -0.0129 cm 1.70138~1.1 X 10 cm 

-~ 
II 0.0087 cm 1.70138 ± 9 X 10 cm 

The close a greement in the;\/~ 'sis probab l y fortuitous. 

However, the error was not purely r andom. Although the two 

runs were made 3 weeks apart, the residuals appeared to be a 

periodic function of position in t he wavemeter and had a 

rank-difference coef f icient of correlation of 0. 81. 

Wavemeter B conta ined 5 resonant peaks rangin5 from 

3 to 7 half wavelengths. The least squares fitting gave: 

(53) 
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/ -5 
;\,J_::. 1.70124 -t. 4.5 x 10 cm 

Wavemete r A also contained the next higher mode, TE 11 • 

The wavelength in the wavemeter, A'-" , for this mode is given 

by: 
::::: 

x,, 

x ,, being the first root of t he equation 

✓ y / lo ) J / lo I 
J I ( X. ~) , ( (1... :;.. ' ""' - I ( ~ X I ..... ) '( ('l( ' ~ ) - 0 

!! being t he radius of t he inner conductor,£ the radius of 

t he outer conductor and t equal to 12./~. Appendix Bis a 

table of the first root of Eq. 54 for k's covering the range 

in which wavemeters a re usually built. This range of k 

occurs in wavemeters which have optimum Q 5. 

This mode, however, is not as accurate as t he principal 

mode since t he wavelength measured depends upon the radii 

of the coax line. A close examination of the wavemeter 

revealed that it was badly scored by the sliding contact 

and several thousandths of an inc h out of round at the 

places where t he legs were fastened. It is seen that the 

two runs do not agree nearly as well as the principal mode 

measured at the same time. The least square fitti ng of the 

data to Eq. 53 gave: 

Run ~ 
?. / ,:i_ 

_ '-( 

I 0.0398 cm 1. 9685 ± 1.1 X 10 cm 

0.0624 1. 9660 ±- 2 . 3 
- 'I 

II cm X 10 cm 

(54) 
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Again, the errors are not purely random, the residuals 

having a rank-difference coefficient of correlation of 0.66. 

Computing the wavelength in air, i\ : 

a ::.: O .4009" 
b =- 1.369 11 

k = 3.4148 
x,,= 0.46591 
/le= 6 • 866 

-:i _ (3 .415 
n-(3.413 

..\-- • 0005 II 
-±: • 002 II 

± . 0065 
± .00068 
± .026 cm 
± .003 cm 
± .co3 cm 

Run I} 
Run II 

The discrepancy here might be caused by the wavelength 

in the wavemeter being commensurable with the error period 

in the wavemeter screw. In any event, the hi6her mode is 

definitely inferior for precision measurements because of 

its dependence on transverse dimensions. 
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APPENDIX A 

Note on Internal Wave Guide Measurements 

In work of this sort, it is necessary to make mechanical 

measurements of dist~nces which are often not measurable 

directly with micrometers. Short pieces of drill rod, 

which is readily obtainable and accurately ground, are 

extremely useful. Two examples will be given. 

1. Measurement of Guide Width 

Fig. 29 shows the setup. A depth micrometer was used 

to measure the distance~-= ~-J1.-, and the radius .§: was 

measured with outside micrometers. Although the value of.§: 

is very critical, by placing two of the cylinders in contact 

with their axes at ri ght angles, 4 .§: was measured with a 

corresponding reduction in the error in.§:• Two different 

Fig. 29 
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sizes of drill rod, having nominal radius values of 1/411 

and 15/64 11
, were used. Five runs were made, using different 

cylinders. _/ was measured 8 times ( the cylinders were 

removed and replaced between measurements), and.§: was 

measured 10 times for each run. From Fig. 29: 
d -:::: '2 o... + -J <lo.,_ - ..f 'L 

0.2500 II 

0.234375 fl 

Typical computation: 

-V <fa .._ _ _;,, .... 

d ::. 0.9000 11 

0.3000 fl 

0.18371 II 

4.50 

4.174 

-'I 
~v::: 0.1821 11 ± 1.8 X 10 11 

-~ 
0.. 4 v-:: 0.234205 11 .+ 2.6 X 10 II 

~..R = 0.1821 - 0.1837 -0.0016 

-0.75 

-0.426 

A c:t.-::. 0.234205 - 0.234375 ;: -0.00017 

d = 0.90000 - 0.00071 + 0.00068 

=. 0.89997" 
I 

~ ::: [(4.2 X 2.6 X 10-<.:./. + (.43 X 1.8 X 10-
4

)2..]"'.i 
-s 

,::. 7.8 X 10 11 

The results for 5 runs were: 

o.89997 0.89999 

g iving : 

0.89989 0.89963 

0.89 986 II 

-S 
3.9 X 10 II 

0.89990 
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2. Measurement of 60-Degree H-Plane Corner 

It is necessary to know the distances of the reference 

planes of the corner from t he ends. These measurements are 

made with the arrangement s hown in Fi g . 30. A cylinder was 

placed in t he corner and t wo parallel blocks of steel, 

sliding smoothly in the guide, were placed one in each arm. 

Readings were taken on the two micrometers and their sum 

plotted against one of them to give t he curve s hown in Fig. 31. 

The slope of t he curves (shown dotted) can be calculated 

from 0 . The curves intersect when t he cylinder touches 

Fig . 30 
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both guide walls; in t his example this occurs when 

Then: 

3.4682 3.1837 

O . 2 845 +' d , + a 

3.1837+ d" + a 

Fig . 31 

(b 

(b 

0.2845. 
I/ 

a ) cot 

a) cot 
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APPENDIX B 

I I J I / 

First Root of the Equation J,(X} Y,'ct-tx)- , (1<:.~>Y.<><) ::::- O 

As a Function oft for Values of£ in the Region Which Gives 

Maximum Q When Used in Coaxial Lines 

X £ Ak (k+l)x ~~k+llX 

.44 3.67478 2 .05690 
.10345 -20 

• L~5 3.57133 2.05710 
.09960 10 

.46 3-47173 2.05700 
. 09553 19 

.47 3.37620 2. 05681 
.09183 31 

.48 3.28437 2.05650 
.08837 46 

.49 3 .19600 2.05604 
.oslo7 58 

.50 3.11093 s 2.05546 

The function (k+l)x is tabul a ted as an aid to interpolation. 

Method of Computation 

Rough values of k and~ were taken from a curve given 

by R. True11. 6 Values of J/(x)/Y.
1

(x) , ( .44 ~ x ~ .50) 

and J
1

1

(tn) /Y. (10,) (1.57 ~ kx ~ 1.63) were obtained for .01 

increments of the argument from tabulations of J/x) , J
1 

( '/() , 

Yc,(A) and Y,cx) 7 using the equations: 

J,
1

(x)::: Jo(i<) -

Y (X) = Yc,()() -
I 

-k- J, h) 
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Exact values of kx were obtained by matching the second 

set of values J, '(,o)/'(. (Kt-) to the first J, 'ex.) /r, '(x) , using 

the method of divided differences 8 for the inverse 

interpolation. 
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APPENDIX C 

Transmission and Reflection Coefficients of a T-Sectlon 

Inserted in an Infinite Line 

If in Fig. 2 {p. 3) V()() is the vol ta5e across the 

line and I~ is the current along the line, where .x is 

measured from the terminals of the T-section, then the 

following equations 9 hold (omi tting the time variation 

term): -~ (& )I. ~ (3 )I. 

} I - A e +- ~ e -
- l\ ~ )( \) (i X X. J... 0 

-'5 V =- A e e 

l 
-v (3 ><. 

} - C. e. -
)(.. > 0 

V - C 
-~· 0 X 

- e 

Applying ordinary circuit theory to the T-section gives: 

J_ ~ (. 't' + .~) (A+~) - ~ j (. r-r - s) C - A - 13 
-;).. 

~ j l '1' - ;5 ) (. I.\ -t B) - J. 2.. j ( 't' +- ,s ) C -= C. 

Solving for the reflection and transmission coefficients , 

i3 = A 
I+ '"P ;s' 

I - r-ri .s ~ j (T + ,s) 

C - :: A 

Letting 

(55) 

(56) 

(8) 



we obtain: 

C. 

A 
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-J(.s-1--t) 
Cos(1---t.)e 

- j(~t-t:. ) 
:::. - J ~.~cs - "t:) e 

(6) 

(7) 
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APPENDIX D 

Reflection Coefficient Due to Two Symmetrical T-Sections 

Inserted in an Infinite Line a Distance L Apart 

Consider the discontinuities, (1) and (2), in Fi g . 32, 

represented by two different symmetrical T-sections sepa

rated by a distance of L. 

A 
B' 

c' 
I~ 

-, 
e," 0 
-1~ 

C" ,~ 
I 

I 

l-

Fig. 32 

A wave of amplitude A advances from the left and is 

reflected B', and transmitted C'. Because of reflections 

from (2), there will be a wave D advancing on (1) from the 

ri ght, which is transmitted B" and reflected C". But the 

wave hitting (2) from the left is just C'+ C", with its 

phase retarded because of the distance L. Likewise, D 

is just the reflected wave F retarded by a similar phase 

change. 
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Analysis of each group separately: 

A, BI' CI 

-,ds,+-t,) 
c 1 

::.- - j A s ,·"" ( ~. -t- , J e 

D, B", C" 

E, F, C 

-·~ (s,+'t, ) 
If 

C - D Cos(s, - 't,) e 

- j(s1+-t,) 
G •' = - ~ D s .""" ( s, - "t, 'i e 

-J·(s._+t,J 
~ =- E Cos (s.,-"l:L) e 

Phase shift due to travel on line having 

I ") - ~~\.. 
\::,.::.-(C.~C. c" 

0 -:. F 

Net reflection coefficient 

Eliminating C 4- C" and D gives 
-.i (c. , + 1.,) _ ~ [ s .,_-+ t: 2. -+ ). Cs, +- t..) -t- 2 ~ L] 

Co-.; (s,-i., )e -Cos(S:,.-t ... ) e 

A 



A 

(3 

B 
(3 

a 

A 
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GLOSSARY OF SYMBOLS 

c:J, + '5'._ 
-a 
~ c;x (p. 12 only) 

<I:_?,- 91.. 

~ 

~(/(p. 12 only) 

imaginary part of propagation constant, 
equal to ~.-n / ~ j 

propagation constant of a transmission line, 
equal to j (3 for a lossless line 

propagation constant of a T-section 

small quantities 

wavelength in free space 

cutoff wavelength 

wavelength in guide 

wavelength in wavemeter 

standard deviation 

ohms 

radius of inner conductor of coax line. 
Radius of cylinder. Also used to designate 
a particular section of wave guide as dis
tinct from guide Q 

complex amplitude of wave advancing on an 
obstacle inserted in an infinite line 



b 

B 

c.p.s. 

C 

d 

I· (., 

, 

J 
j' 

I 

k 

L 

m,n,p 

Q 
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radius of outer coax conductor 

complex amplitude of wave reflected by an 
obstacle inserted in an infinite line 

cycles per second 

complex amplitude of wave transmitted by an 
obstacle inserted in an infinite line 

distance. In particular, the widt h of a 
rectangular wave guide 

• tit voltage across the '- - pair of terminals 
of a network 

. flt 
current flowing to and from the L - pair of 
terminals 

current flowing at the point~ on a trans
mission line 

F, 
derivative of the Bessel function of the 
first kind, order one, with res pect to its 
argument 

ratio of t t e outer to inner conductor radii 
of a coax line b/a 

length 
. -tt length of the <- - s hortcircui ted line forming 

part of a cavity 

length of line that must be added to one 
side of an asymmetrical T-section and sub
tracted from the other side in order that it 
may appear symmetrical 

distance between t he reference planes of two 
obstacles on the same transmission line 

integers or zero 

fi gure of merit, the ratio of energy stored 
per cycle to energy dissipated per cycle 



R 

s 

s 

s.w.R. 

t 

T 

X 

X 

Y. 

Zr 

z sc 
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-i-~ n - wavemeter scale reading 

micrometer readings (p. 16 only). Purely 
resistive characteristic impedance of a 
transmission line (pp. 25, 26) 

~ - • s 

dimensionless series impedance of symmetrical 
T-section (Fig. lb, p. 2) 

voltage standing wave ratio 

14-..-' T 

other dimensionless impedance of symmetrical 
canonical T-section (Fig. lb, p . 2) 

voltage across a transmission line at the 
point 2£ 

distance along transmission line measured 
from T-section terminals. Also root of Eq. 54 

purely reactive i mpedance, dimensionless 
unless otherwise stated. Components of 
various equivalent circuits 

derivative of Bessel function of the second 
kind, order one, with respect to its argument, 
also known as "'•' -

characteristic impedance of a transmission 
line or T-section 

input impedance of a T-section with the 
output opencircuited 

impedance terminating a length of line 

input impedance of a T-section with the 
output shortcircuited 

• t-J, mutual impedance between the t - voltage and 
the K ~ current in a multi-terminal network. 
( Self impedance if ~ ~ k ) 



1 

2 

3 

4 
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