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ABSTRACT

The ability to control the properties of light in a compact, reconfigurable platform
is essential for advancing nanophotonic technologies. Active metasurfaces — flat
optical components with tunable subwavelength elements — enable real-time ma-
nipulation of wavefronts and thus offer a path toward versatile optical systems. This
thesis furthers the development of electrically programmable metasurfaces as a step
toward a universal platform for independent and comprehensive wavefront con-
trol. By integrating system-level optimization strategies, novel operation modes,
and advanced material platforms, we establish a framework for next-generation,
on-demand optical processing components.

First, we introduce an array-level inverse design approach for beam steering meta-
surfaces, that co-optimizes the spatial amplitude and phase responses to enhance
target functionalities. Using the platform of a plasmonic, indium tin oxide (ITO)-
based active metasurfaces, we demonstrate non-intuitive configurations that achieve
high-directivity, continuous-angle beam steering up to 70◦. Experimental validation
confirms the effectiveness of this approach, which we further extend to advanced
applications including flat-top beams, tunable beam widths, and multi-beam steer-
ing.

To expand the functional channel capacity of active metasurfaces, we then explore
space-time modulation as a means of enabling multi-frequency operation. By
modulating ITO-based metasurfaces operating at near-infrared wavelengths with
tailored waveforms at frequencies up to 10 MHz, we experimentally generate desired
frequency harmonics, which appear as sidebands offset from the incident laser
frequency. Introducing phase offsets between the driving waveforms enables tunable
diffraction of frequency-shifted light. Theoretical extensions of this work highlight
the potential of space-time metasurfaces to realize active multitasking components
capable of dynamically performing multiple independent functions.

For improved efficiency and broadband operation, we investigate electro-optically
tunable metasurfaces based on the Pockels effect in barium titanate (BTO). We
develop a scalable fabrication technique to obtain high-quality, thin-film BTO via
stress-induced exfoliation from single-crystal substrates, preserving its bulk electro-
optic properties. The experimentally measured Pockels coefficient 𝑟33 exceeds that
of commercially available thin-film lithium niobate, demonstrating the potential of
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this material platform for integration into high-speed, low-loss optical metasurfaces.
Leveraging these properties, we design transmissive BTO-based metasurfaces for
high efficiency beam steering at visible wavelengths.

The results presented in this thesis lay the foundation for next-generation pro-
grammable metasurfaces by addressing key challenges in materials, design method-
ologies, and system-level control architectures. We conclude with a discussion of
future directions, including the discovery of high-performance tunable materials,
the development of advanced unit cell designs for independent control over multiple
optical properties, and the miniaturization of control networks for large-scale meta-
surfaces. Ultimately, this work advances the development of reconfigurable and
intelligent optical systems capable of adapting to diverse technological demands in
a broad range of imaging, communication, and computing applications.
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C h a p t e r 1

INTRODUCTION

1.1 Optical wavefront engineering: Micro- and nanoscale platforms
The first reported optical lens, dating back to the Ancient Egyptian era (2620 BC),
employed convex polished rock crystals to form the eyes of ornate statues [1]. The
unique function of these lenses enabled the eyes to appear to track the viewer’s
movement around the statue [2]. Ever since, scientists have dedicated efforts to
comprehend and manipulate the properties of light, leading to a variety of advanced
technologies that are now integral to society. Notable examples include the in-
vention of the telescope, enabling distant objects to be observed as if they were
nearby, and the development of the first photographic camera, capable of capturing
the visual information from a scene. In these constructs, optical wavefronts are
controlled using bulky optical elements which have a thickness of several millime-
ters. However, with significant advances in micro- and nanofabrication in recent
decades, researchers are now pioneering the development of next-generation micro-
and nanoscale optical components. These components allow for precise manipula-
tion of optical wavefronts, giving rise to versatile and unprecedented control over
light. In the following, we provide an overview of three micro- and nanoscale tech-
nologies that have recently emerged as promising pathways for optical wavefront
engineering: optical phased arrays (OPAs), spatial light modulators (SLMs), and
(active) metasurfaces.

Optical phased arrays
Optical phased arrays (OPAs) function as the optical analog of radio-wave-based
phased arrays and were first realized in the early 1970s [3]. In an OPA, a light source
is divided into an array of individual optical emitters, typically facilitated by waveg-
uides connected to antennas. The integration of independently addressable phase
shifters enables precise manipulation of the emitted phase at each individual ele-
ment, enabling applications such as dynamic beam steering. The primary methods
employed for implementing phase shifters in OPAs include utilizing thermo-optic
effects [4, 5] or p-i-n junctions [6]. Thermo-optic phase shifters offer minimal
loss, but typically rely on higher power consumptions and operate at lower speeds.
By contrast, p-i-n junctions induce phase delays through refractive index change
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Figure 1.1: Schematic representation of optical phased array (OPA) for two-
dimensional beam steering. (a) One-dimensional OPA with laser wavelength
tuning for steering along longitudinal direction, (b) two-dimensional grating cou-
pler array. (c) Emitted wavefront with no phase delay between emitters and (d)
incremental phase delay for steering along transversal direction. © 2021 IEEE [8]

via dopants. Although electro-optic p-i-n phase shifters provide higher modulation
frequencies (up to 200 MHz [7]) and lower power consumption compared to their
thermo-optic counterparts, dopants typically introduce waveguide losses [8].

The performance and application scope of OPAs further depend on the type of
antennas they employ. Typically, antennas in OPAs are constructed using either
grating couplers or edge and end fire couplers [9, 10]. Edge emitters are primarily
employed for one-dimensional beam steering, while two-dimensional steering has
been achieved using grating couplers. One common strategy for achieving two-
dimensional beam steering using this platform involves a one-dimensional array of
grating couplers, where steering in the longitudinal direction, 𝜃, is accomplished
through laser wavelength tuning and steering along the transversal direction, 𝜙, is
achieved using phase shifters (Fig. 1.1a) [4]. In this configuration, researchers have
demonstrated pixel sizes as small as 0.8 𝜇m [11]. Alternatively, a two-dimensional
array of individually addressable grating couplers can be employed (Fig. 1.1b)
[5]. However, the spatial arrangement of waveguides in arrays typically necessitates
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large inter-antenna spacings to prevent crosstalk between adjacent emitters. This
spacing requirement is further compounded by the need for two-dimensional phase
shifter arrays, leading to larger pixel sizes of up to 9 𝜇m [5] that ultimately limit
the grating lobe-free steering range. Notably, researchers have demonstrated beam
steering with large field of view (FOV) using non-uniform antenna arrangements in
sparse arrays [12, 13]. Nonetheless, considerable amounts of background noise are
reported in the measured far-field radiation patterns.

In summary, given the operation principle of OPAs, they excel primarily in beam
steering and other applications reliant on spatial manipulation of the optical phase
front, as schematically illustrated in Fig. 1.1c and d. However, their utility in
controlling the properties of an electromagnetic wave beyond amplitude and phase
is limited.

Spatial light modulators
Spatial light modulators (SLMs) enable precise control over the amplitude, phase,
and polarization of optical wavefronts in response to electrical or optical stimuli
[14]. Unlike OPAs, which comprise individual emitters within each unit cell, SLMs
function by modulating light transmitted or reflected through a medium, with an
individual unit cell, or pixel, defined by the control architecture employed in its
implementation.

Among the diverse range of SLMs realized to date, the predominant platforms used
in the commercial landscape are based on microelectromechanical systems (MEMS)
[15] or liquid crystals [16]. MEMS-based SLMs, exemplified by digital micromirror
devices (DMDs), utilize miniaturized mirrors that can be tilted to selectively reflect
light, and therefore alter the scattered light amplitude. An individual pixel in this
configuration is defined by the size of a micromirror and typically ranges around 10
𝜇m or larger [17]. Operating frequencies in such DMDs can reach several tens of
kHz [14].

On the other hand, Liquid Crystal on Silicon (LCoS) technology offers smaller pixel
sizes and thus precise phase mapping over a larger FOV. In LCoS SLMs, a liquid
crystal cell containing electrodes controls the orientation of the naturally birefringent
liquid crystal molecules, thus altering the refractive index of the medium. Typical
pixel sizes in this configuration range between 3 − 4 𝜇m [18]. Further reduction in
pixel size is limited by crosstalk resulting from the high driving voltages required to
modulate a thick liquid crystal cell necessary for full phase control [19]. However,
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recent advances in nanophotonic device design and microfabrication have allowed
a reduction of the pixel size to ∼1 𝜇m by modulating phase via resonance tuning
rather than accumulation across the layer thickness [20]. While this advancement
significantly enhances FOV capabilities, the pixel size remains a limiting factor
for achieving diffraction-free steering within the visible spectrum. Furthermore,
the limited response time of liquid crystal-based SLMs, ranging from hundreds
of microseconds to milliseconds, hinders their application in high-frequency beam
manipulation [21].

Metasurfaces
Metasurfaces represent a cutting-edge approach to optical manipulation utilizing
two-dimensional (2D) arrays of resonant scatterers, typically on the nanoscale.
These scatterers have the ability to locally and abruptly alter various properties of
light impinging on an interface [22], including its amplitude, phase, polarization,
spectrum, and momentum. The collective response from an array of scatterers
results in constructive far-field effects that lead to to a variety of phenomena like
anomalous reflection [23], polarization control [24], or beam focusing [25]. Due to
the subwavelength scale of each metasurface unit cell, metasurfaces enable higher
diffraction angles and numerical apertures compared to conventional diffractive
optical elements [21] and provide a promising alternative to optical phased arrays
and spatial light modulators.

Metasurfaces have garnered significant interest from industries that greatly benefit
from the availability of miniaturized and efficient optical components, which can
easily be integrated in optoelectronic systems at low cost. Initial efforts focused
on passive metasurfaces, where individual scatterers are geometrically designed to
induce desired local changes in the electric field (e.g., a phase offset) at the oper-
ating wavelength [22, 26–28]. Using this approach, researchers have demonstrated
multifunctional passive metasurfaces capable of performing several tasks simultane-
ously [29], which would traditionally require a combination of multiple bulk optical
components.

However, a fundamental limitation of passive metasurfaces is their static nature,
lacking post-fabrication tunability. This restriction confines their use to specific,
pre-defined functions. In contrast, many modern applications in the realms of optical
imaging, communication, and computation require dynamically tunable components
for on-demand wavefront shaping. This demand has led to the development of active
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metasurfaces that can be reconfigured at frequencies up to several GHz, depending
on the choice of the material platform. The subsequent section provides a summary
of the current state-of-the-art on active metasurfaces.

1.2 Active metasurfaces
Active metasurfaces, in contrast to their passive counterparts, consist of an array of
geometrically periodic, often identical, unit cells. Dynamic control over the optical
response of the metasurface is obtained through application of an external stimulus.
This external stimulus can modify the resonant properties of the subwavelength
scatterers via actively inducing a refractive index change in an active material layer
integrated into the metasurface. Alternatively, the application of an external stimulus
can alter the metasurface unit cell dimensions or the relative position of individual
scatterers, thereby enabling dynamic control of the wavefront of light reflected or
transmitted from the array.

To date, active tuning of metasurfaces has leveraged mechanical deformation of
nanophotonic structures [37, 38], field-effect tuning [30, 39], electro-optic [31],
thermo-optic [32], electrochemical [33] and chemical effects [40], structural changes
in phase change materials [34, 41] and liquid crystals [35], as well as all-optical
modulation schemes [36] (Fig. 1.2). Moreover, recent experimental demonstrations
have showcased multifunctional active metasurfaces capable of switching between
multiple continuously tunable functions. The basis for such devices lies in imple-
menting an active metasurface with individually addressable unit cells. Using this
concept, Kafaie Shirmanesh et al. [42] demonstrated switching between diverse
optically tunable functions, such as dynamic beam steering and varifocal lensing, by
adjusting the spatial configuration of voltages applied to a single field-effect tunable
metasurface. By using specifically tailored metasurface designs and varying the
external stimulus applied onto each metasurface unit cell, researchers have further
managed to dynamically generate desired changes in the amplitude, phase, and
polarization of the scattered electric field.

The timescale of active reconfiguration of a metasurface is an important characteris-
tic that determines its mode of operation. When the temporal rate of reconfiguration
is significantly smaller than the optical frequency, the metasurface operates within
what we term the quasi-static regime (Figure 1.3a). Conversely, when the metasur-
face elements are actuated with frequencies higher than the incident laser linewidth,
typically a few tens of kHz for state-of-the-art lasers at optical wavelengths, the time-
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Figure 1.2: Active metasurface modulation platforms. (a) Schematic of MEMS-
tunable metalens consisting of a moving lens on a membrane (left) and a stationary
lens on a substrate; reprinted from [29]. (b) Schematic of field-effect tunable
metasurface for beam switching. The tunable semiconductor layer (indium tin
oxide, ITO) undergoes an epsilon-near-zero (ENZ) crossing upon carrier modula-
tion. Reprinted with permission from [30]. Copyright 2016 American Chemical
Society. (c) Schematic of Mie-resonance based electro-optic metasurface using
JRD1 molecules and operation principle. The transmitted intensity undergoes a
resonance shift upon voltage application; reprinted from [31]. (d) Thermo-optic
tuning of the resonance in lead tellurium (PbTe) Mie resonators. Adapted with
permission from [32]. Copyright 2017 American Chemical Society. (e) Schematic
of electro-chemical modulation through formation of silver filaments in dielectric
layer upon bias application; adapted from [33]. (f) Schematic of metasurface unit
cell based on vanadium dioxide (VO2) phase change material. VO2 undergoes an
insulator-to-metal phase transition in vanadium dioxide (VO2) upon resistive heat-
ing. Reprinted with permission from [34]. Copyright 2019 American Chemical
Society. (g) Schematic of beam switching metasurface infiltrated with liquid crys-
tals. The liquid crystals transition from the nematic to isotropic phase upon heating.
Adapted with permission from [35]. Copyright 2018 American Chemical Soci-
ety. (h) Schematic illustration of all-optical resonance tuning in a gallium arsenide
(GaAs) metasurface using femtosecond laser pulses. Free-carrier injection and sub-
sequent recombination allow modulation on picosecond timescales; reprinted from
[36].
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Figure 1.3: Quasi-static and time-modulated metasurfaces. Incident light of
frequency 𝑓0 is reflected from an electrically programmable metasurface. (a) In the
quasi-static operation regime, the frequency of the reflected light remains unchanged
and only the propagation direction is altered. (b) In the time-modulated regime,
metasurface elements are collectively driven at a high frequency, 𝑓𝑚, allowing the
generation of higher order harmonics in the reflected light with frequencies 𝑓0+𝑛 𝑓𝑚.
(c) In a space-time modulated metasurface, a phase offset 𝜑𝑖 is added between the
time-modulated signals of individual metasurface elements using external phase
shifters. This enables shaping of frequency-modulated reflected waves.

modulated operation regime is reached. In this regime, the metasurface gives rise
to additional frequency harmonics that appear as sidebands, displaced in frequency
relative to the incident laser frequency, as depicted in Figure 1.3b. These individual
frequency harmonics can be independently controlled using space-time modulated
metasurfaces (Figure 1.3c). Here, an additional phase offset is introduced between
the high-frequency driving waveform of each metasurface element using external
non-resonant phase shifters [43, 44]. This concept holds significant promise for
optical communications applications, where high-frequency time modulation en-
ables an increase in the number of communication channels, similar to wavelength
division multiplexing (WDM) in optical fiber communications [45]. Furthermore,
the ability to simultaneously control multiple frequency sidebands opens the door to
increased processing speeds and parallelization capabilities in the realms of optical
imaging and computation.

1.3 Goals of this thesis
The ability to dynamically control the optical response in both quasi-static and time-
modulated regimes unlocks a vast design space that can be fully exploited by engi-
neering suitable structures for the arbitrary control of light. Currently, researchers
are increasingly working toward maximizing the information capacity that can be
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controlled with an individual nanophotonic element by leveraging control over vari-
ous input variables, such as modulation amplitude and frequency, to simultaneously
alter multiple properties of the scattered light, e.g., its propagation direction, fre-
quency, and polarization. The practical implementation of such devices ultimately
involves designing highly efficient optical elements capable of operating at specific
optical wavelengths and modulation frequencies. Addressing these challenges re-
quires a holistic approach that encompasses system-level problems, nanophotonic
design optimization, and understanding of fundamental materials science. This
thesis addresses multiple aspects of this broader objective.

Chapter 2 of this thesis focuses on the optimization of spatially varying wavefronts
scattered from an active metasurface using an array-level inverse design approach.
The optimization is numerically and experimentally demonstrated for a field-effect
tunable indium tin oxide (ITO)-based metasurface with independently addressable
metasurface unit cells. The tools developed in this chapter are applicable to a variety
of active metasurfaces that are based on localized modes and provide a pathway for
minimizing system-level losses in metasurfaces. We study the impact of nonideal
phase and amplitude response and analyze the requirements for high-directivity
beam steering metasurfaces.

In Chapter 3, we experimentally realize space-time modulated metasurfaces at opti-
cal frequencies, by driving ITO-based metasurfaces operating at telecommunication
wavelengths with MHz voltage waveforms. By tailoring the phase offsets of applied
waveforms, we engineer spatiotemporally varying configurations for targeted steer-
ing of frequency-shifted beams. This concept allows us to extend the information
capacity of an individual metasurface, ultimately forming a path toward active mul-
titasking metasurfaces, that allow simultaneous and independent dynamic control
over multiple frequency channels.

Chapter 4 delves into the aspects of increased efficiency and operation at target
wavelengths across the visible spectrum using the electro-optic response of barium
titanate (BaTiO3, BTO). We demonstrate a novel synthesis approach for single-
crystalline thin films that involves exfoliation from a stressed single crystal bulk
substrate. We furthermore characterize the BTO thin films in terms of their physical
properties as well as their electro-optic response. Finally, we design electrically tun-
able transmissive metasurfaces based on BTO for operation in the visible spectrum.

In Chapter 5, we provide an outlook toward the development of universal active
metasurfaces, discussing the requirements to achieve this goal and identifying key
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challenges that remain. This chapter synthesizes insights from the preceding chap-
ters to outline the future of active metasurface research. We additionally delve
into prospective use cases of universal active metasurfaces in the realms of optical
imaging, communication, and computation. The dissertation is concluded with a
summary of the key findings, highlighting significant advances and potential impacts
on the field of nanophotonics, in Chapter 6.
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