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ABSTRACT

Since the first detection of gravitational-waves in 2015, the field of gravitational-
wave astronomy has developed rapidly. Today, there are more than 300
transient gravitational-wave event candidates from stellar-mass sources and
we have found evidence for a stochastic background of supermassive black-
holes. In this thesis I present work addressing two significant challenges on
analyzing these data. The first: mitigating transient, non-Gaussian noise in
gravitational-wave detectors, or “glitches”, that can bias our estimates of phys-
ical properties of compact objects. The second: introducing a faster method
to analyze pulsar-timing data containing a stochastic background of super-
massive black-hole sources. Gravitational-wave astronomy is a data-rich field,
and is only becoming more so with upgraded detectors, additional detectors,
and longer observing time; we need robust, fast, and unbiased techniques to
analyze that data.
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analysis (pink) to the “CBCOnly” analysis (blue). Differences
between these posteriors are smaller than those between differ-
ent waveform models reported in [40]. . . . . . . . . . . . . . . 65

5.22 Whitened time-domain reconstruction for an analysis of data
that contain only a single tomte glitch. We show medians and
90% credible intervals for hrec

CBC+G (magenta), gCBC+G (gold), and
hrec

CBC (blue). The data are consistent with the presence of solely
a tomte glitch in LLO and do not recover any coherent power
(the magenta CBC reconstruction is consistent with zero) when
there is none. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.23 Whitened time-domain reconstruction for S191225 in LLO (top)
and Virgo (bottom). We show the median and 90% credible in-
tervals for hrec

CBC+G (magenta), gCBC+G (gold), and hrec
CBC (blue).

Some low-frequency coherent power is recovered by hrec
CBC+G whereas

the high-frequency power is largely incoherent and is recovered
by the glitch model. . . . . . . . . . . . . . . . . . . . . . . . . 68

5.24 Posteriors for select parameters for S191225 from the “CBC+Glitch”
analysis (pink) to the “CBCOnly” analysis (blue). . . . . . . . 69

5.25 Run time estimates (90% intervals) for each glitch type and run
setting we employ as a function of data points N (segment length
× sample rate). The x-axis is normalized by the shortest runs
performed. Since runtime is (approximately) linear with the
number of MCMC samples and number of chains, we rescale
estimates to Number of Chains = 20 and Number of Iterations
= 4 × 106, which are the default settings. Lighter settings can
be used to expedite certain analyses. . . . . . . . . . . . . . . 70
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6.1 One- and two-dimensional marginalized posteriors for select in-
trinsic binary parameters: detector frame chirp-mass M, mass
ratio q, effective spin χeff, and precessing spin χp. See Table 6.1
for analysis settings and App. 6.9 for detailed parameter defi-
nitions. Two-dimensional panels show 50% and 90% contours.
The black dashed line marks the minimum bound of q=1/6 in
NRSur7dq4’s region of validity. Shaded regions shows the prior
for q, χeff, χp. The M prior increases monotonically to the maxi-
mum allowed value (see App. 6.9 for details on choices of priors).
Left panel: comparison between analyses that use solely LIGO
Hanford (red; H), LIGO Livingston (blue; L), and Virgo (pur-
ple; V) data. Right panel: comparison between analyses of all
three detectors (yellow; HLV), only LIGO data (green; HL) and
only Virgo data (purple; V). The evidence for spin-precession
originates solely from the LIGO Livingston data as the other
detectors give uninformative χp posteriors. Additionally, the bi-
nary masses inferred based on Virgo only are inconsistent with
those from the LIGO data. . . . . . . . . . . . . . . . . . . . . 78

6.2 Similar to the right panel of Fig. 6.1 but for select extrinsic pa-
rameters: luminosity distance dL, angle between total angular
momentum and line of sight θjn, right ascension α, and declina-
tion δ. For reference, the median optimal SNR for each run is
HLV: 27.6, HL: 26.9, V: 6.7. . . . . . . . . . . . . . . . . . . . . 79
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6.3 90% credible intervals for the whitened time-domain reconstruc-
tion (left) and spectrum (right) of the signal in Virgo from a
Virgo-only (purple; V) and a full 3-detector (yellow; HLV) anal-
ysis, see Table 6.1 for analysis settings. The data are shown in
gray and the noise PSD in black. The time on the left plot is rel-
ative to GPS 1264316116. The high value of the PSD at ∼ 50 Hz
was imposed due to miscalibration of the relevant data [38]. Ver-
tical shaded regions at each panel correspond to the 90% cred-
ible intervals of the merger time (left; defined as the time of
peak strain amplitude) and merger frequency (right; approxi-
mated via the dominant ringdown mode frequency as computed
with qnm [325], merger remnant properties were computed with
surfinBH [363]). The Virgo data point to a heavier binary that
merges ∼ 20ms earlier than the full 3-detector results that are
dominated by the LIGO detectors. . . . . . . . . . . . . . . . . 80

6.4 Whitened time-domain reconstruction (left) and spectrum (right)
of GW200129 in LIGO Hanford (top) and LIGO Livingston (bot-
tom). Shaded regions show the 90% credible intervals for the
signal using a spin-precessing (light blue and red) and a spin-
aligned (dark blue and red) analysis based on NRSur7dq4; see
Table 6.1 for run settings. In gray we show the analyzed data
where the gwsubtract estimate for the glitch (black line) has al-
ready been subtracted. The black line in the right panels is the
noise PSD. The glitch overlaps with the part of the inferred sig-
nal where the spin-aligned amplitude is on average larger than
the spin-precessing one. . . . . . . . . . . . . . . . . . . . . . . 82
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6.5 One- and two-dimensional marginalized posterior for the mass
ratio q, the precession parameter χp, and the effective spin pa-
rameter χeff for analyses using a progressively increasing low fre-
quency cutoff in LIGO Livingston but all the LIGO Hanford
data, see Table 6.1 for details. The median network SNR for
each value of the frequency cutoff is given in the legend. Contours
represent 90% credible regions and the prior is shaded in gray.
As the glitch-affected data are removed from the analysis, the
posterior approaches that of an equal-mass binary and becomes
uninformative about χp. This behavior does not immediately in-
dicate data quality issues and we only use this increasing-flow(L)
analysis to isolate the data which contribute the evidence of spin-
precession when compared to the rest of the data to within 20–
50 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.6 90% contours for the two-dimensional marginalized posteriors
for the mass ratio q and the precessing parameter χp obtained
from analyzing data from each LIGO detector separately for 10
simulated signals. The signal parameters are drawn from the
posterior for GW200129 when using LIGO Livingston data only
and true values are indicated by black lines. Due to the spin
priors disfavoring large χp, the injected value is outside the two-
dimensional 90% contour in some cases. We only encounter
an inconsistency between LIGO Hanford (red; H) and LIGO
Livingston (blue; L) as observed for GW200129 in Fig. 6.1 in
O(5/100) injections. . . . . . . . . . . . . . . . . . . . . . . . . 85

6.7 Spectrogram of the data in each detector, plotted using the
Q-transform [102, 237]. Listed times are with respect to GPS
1264316116. Besides the clear chirp morphology in LIGO, there
is visible excess power ∼ 1 s after the signal in LIGO Livingston.
Virgo demonstrates a high amount of excess power, though most
is due to scattered light and concentrated at frequencies < 30 Hz.
The excess power in Virgo that is coincident with GW200129
does not have a chirp morphology. . . . . . . . . . . . . . . . . 87
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6.8 Whitened time-domain reconstruction of the signal in Virgo ob-
tained after analysis of data from all three detectors relative
to GPS 1264316116. Shaded regions correspond to 90% and
50% (where applicable) credible intervals. Green corresponds to
the same 3-detector result obtained with NRSur7dq4 as Fig. 6.3,
while pink and gold correspond to the CBC and glitch part of the
“CBC+glitch” analysis with BayesWave. See Tables 6.1 and 6.2
for run settings. The two CBC reconstructions largely overlap,
suggesting that the lack of spin-precession in BayesWave’s anal-
ysis does not affect the reconstruction considerably. A glitch
overlapping with the signal is, however, recovered. . . . . . . . 89

6.9 Comparison of optimal SNR estimates for Virgo from differ-
ent analyses. In green is the posterior for the expected SNR
in Virgo from just the LIGO data using the NRSur7dq4 wave-
form (HL analysis of Fig. 6.1), while purple corresponds to the
SNR from an analysis of the Virgo data only (V analysis of
Fig. 6.1). The CBC and glitch SNR posterior from BayesWave’s
full “CBC+glitch” model (Fig. 6.8) are shown in pink and orange
respectively. Part of the latter is consistent with zero, which cor-
responds to no glitch (as also seen from the 90% credible interval
in Fig. 6.8). The SNR posterior from a “glitchOnly” BayesWave
is shown in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.10 Whitened time-domain reconstruction of the data in LIGO Liv-
ingston obtained after analysis of data from the two LIGO detec-
tors. Shaded regions correspond to 90% and 50% (where appli-
cable) credible intervals and gray gives the original data without
any glitch mitigation. Green corresponds to the same 2-detector
result obtained with NRSur7dq4 as Fig. 6.4, while pink and gold
correspond to the CBC and glitch part of the joint “CBC+glitch”
analysis with BayesWave. The black line shows an estimate for
the glitch obtained through auxiliary channels. All analyses use
only LIGO data. . . . . . . . . . . . . . . . . . . . . . . . . . . 93
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6.11 Bottom: Whitened, time domain reconstructions of various glitch
reconstructions subtracted from LIGO Livingston data. The
green line corresponds to the glitch reconstruction obtained from
auxiliary data using gwsubtract. The rest are glitch posterior
draws from the BayesWave “CBC+Glitch” analysis on HL un-
mitigated data. Top: Marginalized posterior distributions corre-
sponding to parameter estimation performed with the NRSur7dq4
waveform model on HL data where each respective glitch realiza-
tion was subtracted from LIGO Livingston (same colors). Pink
corresponds to the original data without any glitch subtraction.
Larger glitch reconstruction amplitudes roughly lead to less in-
formative χp posteriors and eliminate the q − χp inconsistency
between LIGO Hanford and LIGO Livingston. . . . . . . . . . 95

6.12 Two-dimensional posterior distributions for χp and q (50% and
90% contours) from single-detector parameter estimation runs.
The far left panel shows the same tension as the LIGO Hanford
and LIGO Livingston data plotted in Fig. 6.1 when using the
gwsubtract estimate for the glitch. Subsequent figures show in-
ferred posterior distributions using data where the same three
different BayesWave glitch models as Fig. 6.11 have been sub-
tracted. These results show less tension between the two poste-
rior distributions. . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.13 Comparison between the two glitch reconstruction and subtrac-
tion methods for a glitch in LIGO Livingston ∼ 1 s after GW200129,
see the middle panel of Fig. 6.7. We plot the original data with
no glitch mitigation (grey), the glitch reconstruction obtained
from auxiliary channels with 90% confidence intervals (black),
and the 50% and 90% credible intervals for the glitch obtained
with BayesWave that uses only the strain data (gold). . . . . . 96

6.14 Similar to Fig. 6.1, using data from LIGO Livingston and LIGO
Hanford. The comparison shows slight tension between results
when using NRSur7dq4 and IMRPhenomXPHM, though quali-
tatively IMRPhenomXPHM also seems to support the evidence
for spin-precession. . . . . . . . . . . . . . . . . . . . . . . . . . 107
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7.1 Spectrograms of the original (before glitch mitigation) data in
LLO centered around the time of GW191109. The top panel
shows ±8 s of data, while the bottom panel zooms in around
the event. Onto this, we plot the time-frequency tracks of the
scattered light glitch, as predicted by the motion observed in the
witness channel L1:SUS-ETMX_L2_WIT_L_DQ. This is the witness
to the penultimate stage of the reaction chain pendulum for the
X-arm end test mass. The scattering surface is the final stage of
the reaction chain, and so this witness does not perfectly capture
the motion of the scattering surface; to compensate, we apply a
static coefficient of 1.38 to the predicted frequency, such that
it is calibrated to the prominent scattering arches ∼ 3 s before
the event. We also plot the inferred signal from a NRSur7dq4
analysis of full-bandwidth data after glitch subtraction (Run 1 in
Table 7.1). We annotate three regions of interest: the prominent
scattering before the event (top panel), the long-duration excess
power at 24 Hz (bottom panel), and the short-duration excess
power at 36 Hz (bottom panel). Both the 24 Hz and the 36 Hz
excess power coincide with expected glitch arches, however only
the former has an arch-like shape. . . . . . . . . . . . . . . . . 114
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7.2 Tracing the χeff inference across frequencies and times. The
top panel shows the spectrogram of the glitch-subtracted data
around GW191109, with residual excess power at 36 Hz high-
lighted along with the signal track. We progressively remove
data in the frequency domain (pink) and the time domain (blue)
and reanalyze the restricted data. Vertical and horizontal lines in
the top panel denote the time and frequency cuts, respectively;
only data to the left or above these lines are analyzed. The two
middle panels show the whitened time-domain data (grey) and
signal reconstruction (pink and blue). Lighter colors correspond
to the analyses of the full data, while darker colors correspond
to the most restricted data (frequencies above 40 Hz and times
from −0.04 s before merger onwards). The bottom row shows the
χeff prior (gray) and χeff marginal posteriors from analyses with
varying levels of data restriction, each corresponding to the lines
on the top panel. The legend notes the SNR squared ρ2 fraction
in Livingston that remains in the analysis band after each data
restriction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 Shifts in the probability of χeff ≤ 0 for 100 simulated signals
consistent with GW191109 in Gaussian noise (dots) and the real
signal (cross). The x-axis corresponds to a full-band analysis,
while the y-axis corresponds to a restricted-band analysis with
fL = 40 Hz. Going clockwise, the top left quadrant (red-orange
axes) would contain cases where the posterior shifted from major-
ity positive to negative (of which there were none), the top right
quadrant (green axes) contains cases which were majority nega-
tive in both full- and restricted-band analyses, the bottom right
quadrant (orange axes) contains cases which started majority
negative and became majority positive (including GW191109),
and the bottom left quadrant (blue axes) contains cases which
were consistently majority positive. The x = y line (dashed
brown) corresponds to no shift in the probability for χeff ≤ 0. . 124
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7.4 Jointly modeling the glitch with the physical slow scattering
model and the signal with NRSur7dq4 (Run 13 in Table 7.1).
In the top panel, we show a spectrogram of the data, along with
the posterior for the glitch arches (median and 90% credible in-
tervals; multiple colors), the signal track (blue), and the predic-
tion of the witness channel (black dashed). In the middle panel,
we show the whitened time-domain posterior reconstruction for
the glitch (blue) and the signal (CBC; pink). In the bottom left
panel, we show the marginalized χeff posterior from this analysis
(pink), along with the equivalent result from glitch-subtracted
data (Run 1 in Table 7.1; blue). In the bottom right panel, we
show the marginalized posterior for the optimal SNR of each in-
dividual arch. Finally, in the bottom middle panel, we show a
scatter plot of individual posterior samples in the ρopt−χeff plane
for each arch, showing that no correlation exists. . . . . . . . . 127

7.5 Jointly modeling the glitch with sine-Gaussian wavelets and the
signal with IMRPhenomXPHM (Run 21 in Table 7.1). The top
panel shows the whitened time-domain data (grey) and median
and 90% credible intervals for the glitch (green) and signal (CBC;
pink). The bottom row displays marginalized posteriors. The
right panel shows the glitch-marginalized χeff posterior, which
displays a much larger spread than the results of Fig. 7.4, now
being consistent with χeff = 0. The left panel shows the scatter
plot between χeff and the minimum quality factor Q among all
wavelets of each posterior sample. Positive χeff is correlated with
low Q. Scattered light is characterized by larger Q-values [192],
confirming that χeff > 0 only if the glitch does not match the
expected scattered light morphology. The middle panel shows
a scatter plot between χeff and the glitch SNR which are again
correlated: higher glitch power leads to a more positive χeff. . 129

7.6 Jointly modeling both the glitch and the signal with sine-Gaussian
wavelets (Run 20 in Table 7.1). We plot the whitened time-
domain data (grey) and median and 90% credible intervals for
the glitch (orange) and signal (GW Wavelets; purple). The 36 Hz
excess power is consistent with originating from either the glitch
or the signal at the 90% credible level. . . . . . . . . . . . . . 130
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7.7 Comparison of reconstructions for the LIGO Livingston glitch
that overlapped with GW191109 obtained by various analyses.
The data are shown in grey, and for reference, we also show the
maximum-likelihood GW reconstruction from the full-band anal-
ysis on the glitch-subtracted data in black (Run 1 in Table 7.1).
The single realization subtracted for the GWTC-3 analysis is
shown in pink [38]. The glitch inferred from the joint slow scat-
tering and NRSur7dq4 analysis (Run 13 in Table 7.1) is shown
in blue. The glitch inferred with wavelets is shown in green when
the signal is modeled with IMRPhenomXPHM (Run 21 in Ta-
ble 7.1) and orange when the signal is also modeled with wavelets
(Run 20 in Table 7.1). . . . . . . . . . . . . . . . . . . . . . . 132

7.8 Similar to Fig. 7.1 but for LHO data at the time of GW191109,
with the scattering tracks predicted by the motion of the witness
channel H1:SUS-ETMX_L2_WIT_L_DQ. The absolute intensity of
the slow scattering was significantly worse than in LLO, but the
signal occurred at a minimum in the scattering, such that there
is no overlap in time and frequency between the glitch arches
and the GW191109 track (blue). . . . . . . . . . . . . . . . . . 135

7.9 Distribution of χ2
r in both detectors for the glitch-subtracted

analysis (blue; Run 1) and the glitch-marginalized analysis (pur-
ple; Run 13). The colormap corresponds to the distribution of χ̄2

r

from simulated signals consistent with GW191109, Runs 22-121.
Dots denote the distribution mean and contours denote the 90%
level. For the reference distribution, we histogram the χ̄2

r values
in LHO and LLO from each simulation. . . . . . . . . . . . . . 139
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8.1 Time-frequency breakdown of the CBC analysis window, schemat-
ically describing the ways in which glitches can be positioned
with respect to signals. Region I (solid line) encloses all time-
frequency tracks (including those of higher order modes) within
the analysis prior. For reference, in pink we plot the time-
frequency content of the (2, 2) mode prior. Region II contains
glitches coincident in time and frequency, but never concurrently.
We split between Region IIa, those above the (4,4) mode in fre-
quency, and Region IIb, those below the (2,1) mode. Region III
contains glitches coincident in frequency, but not in time. Re-
gion IV contains glitches not coincident in frequency.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2 Percentile–Percentile (P-P) plots for various simulations, each

drawn from the same CBC prior (Table 8.1) but varying in glitch
content (Table 8.2). The titles of each plot specify the relative
time between the glitch distribution and the CBC time distribu-
tion, with the leftmost plot representing data without glitches
and subsequent plots showing glitches progressively closer to the
CBC. Each plot comprises 400 simulations, with recovery per-
formed using only a CBC model. Each plot includes 15 lines,
one for each CBC parameter, displaying the cumulative distri-
bution function of the percentiles of the true values within their
marginal posteriors. Lines are color-coded in red (blue) to indi-
cate whether the parameter failed, p ≤ 0.05 (passed, p > 0.05)
the P-P test. A failure rejects the null hypothesis: the percentiles
of the true values are uniformly distributed across their posteri-
ors. Three-sigma confidence intervals are plotted in gray. Left:
P–P plot when only the CBC model is simulated and recovered.
All parameters pass the P-P test which serves as a baseline for
the test and its implementation. Center (left to right): P–P plots
for glitches in Region III. Right: P–P plot for glitches in Region
I. When glitches overlap with the signals, all parameters fail the
P-P test.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
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8.3 Top: Time domain whitened waveforms for the CBC (magenta)
and a glitch with increasing SNR from 5 to 5000 (various colors),
0.38 s after the signal, see Table 8.3 and Table 8.4 for details.
Second down: Efficiency when reweighting from a posterior on
data with no glitch to a posterior on data with a glitch as a
function of the glitch SNR. Bottom 3: 1-dimensional posteriors
for select CBC parameters as a function of the glitch SNR. True
values are marked in magenta. The direct-sampled posterior on
glitch-impacted data is colored and the corresponding reweighted
posterior is marked with black dashed lines. To the right we show
the control dataset, a posterior recovered from data with iden-
tical Gaussian noise but without any glitch; all gray posteriors
are identical. For glitch SNR ≥ 1000 we omit the direct-sampled
posteriors due to nonphysically waveform behavior, further dis-
cussed in App. 8.8. The efficiency, indicates that glitches louder
than SNR 500 start impacting inference. . . . . . . . . . . . . . 155

8.4 Left: Time-frequency locations of 200 glitches simulated in Re-
gion III; after the signal. The glitch time-frequency locations are
colored by the SNR at which that glitch induces a measurable
change in the CBC posterior and are gray if the requisite SNR is
above 500. For reference, Region I (black-dashed) and the time-
frequency content of the (2,2) mode across the CBC prior (blue
dots) are displayed. Bottom right: Maximum Jensen-Shannon
divergence across CBC parameters between a CBC posterior on
glitch-free data and the posterior on glitch-impacted data, plot-
ted as a function of glitch SNR. Each curve corresponds to a
glitch in the left figure. The black horizontal line is the threshold
for posteriors considered distinct [28]. The gray dashed line is the
JS divergence due only to stochastic sampling uncertainty [298],
plotted for reference. As the glitch SNR increases, so does does
DJS. Top right: Cumulative distribution function of the num-
ber of glitches that induce a requisite divergence as a function of
glitch SNR. Glitches below SNR 50 never induce a measurable
bias. Higher-SNR glitches might induce a bias if within 0.5 s
from the signal merger. . . . . . . . . . . . . . . . . . . . . . . 157
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8.5 Inference results on a GW150914-like signal with SNR 25 glitches
of increasing frequency. Left: Time-frequency track of the GW150914-
like signal with glitches overlaid. Region I is outlined in black-
dashed lines; it includes the time-frequency content of the en-
tire GW model prior. The solid magenta line shows the (2,2)
frequency track of the simulated CBC and the dotted lines dis-
play the higher-order modes, each labeled with its correspond-
ing color. The location in time-frequency space of the glitches is
shown in a colored box, each displaying three e-folds of the expo-
nential time and frequency glitch decay. The only glitches that
share time-frequency content with the GW model are the ones
at 25 Hz and 50 Hz. Center: 1-dimensional posteriors for select
CBC parameters from data with a glitch at the corresponding
frequency (y-axis and color). In the lower half of each violin plot
we show the posterior from identical data but without a glitch
(gray); all such posteriors are identical. On the top of each vio-
lin plot are the posteriors recovered in glitch-impacted data; the
colored posterior are those recovered with BayesWaveCpp (direct
sampling), and the black-dashed lines are the posterior obtained
via reweighting. Right: Reweighting efficiency as a function of
glitch frequency. Where the posteriors differ the most, at glitch
frequency 25 Hz, the efficiency drops to 0. At 50 Hz, even though
the posteriors are visually similar, the efficiency also dips to 50%,
meaning that the glitch is nonetheless impacting the posterior. 160



xxix

8.6 Left: Time-frequency locations of 200 glitches simulated in Re-
gion IIa. The glitch time-frequency locations are colored by the
SNR at which that glitch induces a measurable change in the
CBC posterior and are gray if the requisite SNR is above 500.
For reference, Region I (black-dashed) and the time-frequency
content of the (2,2) mode across the CBC prior (blue dots) are
displayed. Bottom right: Maximum Jensen-Shannon divergence
across CBC parameters between a CBC posterior on glitch-free
data and the posterior on glitch-impacted data, plotted as a func-
tion of glitch SNR. Each curve corresponds to a glitch in the left
figure, and are colored in the same manner. The black horizon-
tal line is the threshold for posteriors considered distinct [28].
The gray dashed line is the JS divergence expected to arise due
to stochastic sampling uncertainty [298], displayed for reference.
As the glitch SNR increases, so does DJS. Top right: Cumula-
tive distribution function of the number of glitches that induced
a requisite divergence as a function of glitch SNR. Only a single
glitch with SNR less than 100 induces a measurable bias. Even
at SNR 1000 fewer than 20% of the glitches induced a difference
greater than one would expect from stochastic sampling. . . . . 162

8.7 Spectral amplitude for the SNR 5000 glitch from Sec. 8.5. We
show the noise ASD (square root of the PSD) in black as well
as the simulated CBC (gold) and glitch (green). The pink line
shows the maximum likelihood posterior sample recovered when
directly sampling the posterior with BayesWaveCpp and IMRPhenomXPHM.
The sampler stumbled upon a rare waveform pathology that re-
sulted in a spike in frequency that was able to fit the glitch.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
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9.1 Figure from [50]. The figure illustrates the angular-separation-
binned interpulsar correlations compared against the Hellings
and Downs curve (dashed-line), providing a clear visual com-
parison between the observed and theoretically expected sig-
nals. This serves as a validation step, demonstrating consistency
between the measured correlations from the North American
Nanohertz Observatory for Gravitational Waves (NANOGrav)
15-year dataset and the signature of a stochastic gravitational-
wave background (SGWB). In the absence of gravitational-radiation,
the signal is expected to be uncorrelated, following the horizontal
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.1 Posteriors for γGW and log10 AGW and ln L distribution for sim-
ulated PTA data with a log10(AGW) = −14.8 GWB. We show
histograms for direct sampling of CP (blue), HD (green), and for
CP-to-HD reweighting (orange). Black lines indicate the injected
values. For this plot we selected one of our simulations with the
most visually different CP and HD GW posteriors. Even so, the
direct-sampling and reweighted HD posteriors are almost identi-
cal. The reweighted posterior is well sampled, with 51% efficiency.186
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10.2 Top: BHD
CP vs simulated GWB amplitude. Bayes factors recov-

ered via reweighting, Eq. (10.10), are colored by their efficiency
E , Eq. (10.12). Bayes factors recovered via the hypermodel are
plotted as coral Xs. The hypermodel error is calculated with
a bootstrap method described in [184] whereas the reweighting
error is estimated with Eq. (10.13), although both errors are
too small to see. Bottom: relative difference in the hypermodel
and recovered Bayes factors, again colored by efficiency. The
error bars are propagated from the hypermodel and reweighting
errors above. As the GWB amplitude increases, the efficiency
decreases due to the distribution of the weights broadening as
in Eq. (10.11). The relative difference between these Bayes fac-
tors is usually small, typically −0.5 ± 4%, but can be as large as
10%. A 10% difference in BHD

CP is not large enough to change a
detection conclusion to a nondetection conclusion or vice versa
and therefore we can consider the difference small. For instance,
a Bayes factor of 100 would lead to the same qualitative con-
clusion as a Bayes factor of 110. The pink vertical line in both
plots is log10 AGW = −14.8, the posterior plotted in Fig. 10.1 to
demonstrate that this posterior is typical. . . . . . . . . . . . . 188

10.3 Top: total KL divergence, Eq. (10.16), vs efficiency, Eq. (10.12),
between the CP and the reweighted HD posterior. As the KL di-
vergence increases, the posteriors become more distinct, and the
sampling efficiency decreases. Bottom: fractional contributions
to total KL divergence from sets of parameters including all the
IRN amplitudes and spectral indices (pink and red, respectively)
and the GWB amplitude and spectral index (blue and gold re-
spectively). The set of all IRN parameters contribute more to
the total divergence than the GWB parameters individually. . . 191

10.4 P-P plots for all 92 reweighted, HD-model parameters (teal) with
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C h a p t e r 1

OVERVIEW OF GRAVITATIONAL-WAVE ASTRONOMY

When massive stars reach the end of their lives they collapse, then explode
(“supernova”), leaving behind remnants, either black holes or neutron stars [188].
Neutron stars represent the densest state of matter that can exist before col-
lapsing into black holes—regions of space where matter becomes so dense that
not even light can escape. The term “black hole” is somewhat misleading,
as it suggests emptiness, when in fact black holes are regions of such extreme
compactness that not even light can escape. When these compact objects orbit
each other, their immense gravitational pull causes them to emit gravitational
waves—ripples in the fabric of space-time itself. This gravitational radiation
carries energy away from the system, causing the objects to spiral inward and
eventually combine, or “merge”.

Since the first direct detection of gravitational waves in 2015 [20], the global
detector network operated by the LIGO Virgo KAGRA (LVK) collaboration
has identified more than 200 “mergers” of compact objects [38, 116]. This
network includes the Laser Interferometer Gravitational-Wave Observatory [1]
(LIGO) with detectors in Hanford, Washington and Livingston, Louisiana, the
Virgo observatory [43] (Virgo) in Italy, the GEO600 detector in Germany [48,
149], and the Kamioka Gravitational Wave Detector (KAGRA) in Japan [55,
70, 321].

This ever-growing set of detections allows us to study not only the properties
of individual black holes and neutron stars (e.g. their masses and angular
momenta (spins)) in binaries, but also the distributions of these properties
across the astrophysical population. From these observations, we have learned
that compact binaries observable by the LVK can have masses ranging from
∼ 1 − 100 M⊙ and that, on average, they have small spins that are generally
aligned with the orbital angular momentum [15, 34, 35].

Current analyses have yet to conclusively determine the origin of the binary
black holes observable by the LVK, although there are two leading theories.
The first is isolated binary evolution, in which two stars orbit together and,
after collapsing individually into black holes, remain gravitationally bound.
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This scenario tends to predict lower total masses and spins that are pri-
marily aligned, though supernova “kicks” may introduce some isotropy [e.g.
74, 75, 168, 205, 239, 241, 277, 286, 350]. The second theory is dynamical for-
mation in dense stellar environments, like nuclear or stellar clusters, which pre-
dicts higher masses, isotropic spin distributions, and potentially even second-
generation mergers1 [e.g 247, 276, 294, 319]. Understanding the distribution
of spin, in particular, is one of the most promising ways to understand binary
black hole formation and evolution: spin provides unique insight into angular
momentum transfer, mass transfer, and tidal interactions within stellar binary
systems [e.g. 75, 165, 286, 326, 390].

Gravitational waves also can contain novel information about matter at nuclear
densities. Neutron stars are objects the size of cities with masses ∼ 1.4 M⊙,
meaning that they are more dense nucleus of an atom [258]. When neutron
stars are in orbit, they pull and stretch each other “tidally”2, which modi-
fies their orbit, and thus the gravitational-wave signal, in an observable way.
In this way, gravitational-waves from binary neutron-star signals probe how
much this nuclear-density matter, which is impossible to create in a labora-
tory, can bend and stretch [9]. The first detection of gravitational-waves from a
binary neutron star merger3 was actually detected not only as a gravitational-
wave signal but also from its optical “kilonova” signal, detected with light
by traditional telescopes [18]. This signal, because it was measured both as
gravitational-radiation and as light, allowed us to constrain the Hubble con-
stant H0, a measurement of the expansion-rate of the universe, in a completely
independent way from historic methods [8].

Gravitational waves are also used to “test” Einstein’s theory of general rela-
tivity. We use general relativity to create models or “waveforms” that predict
what we expect gravitational-waves to look like for systems with some speci-
fied parameters: mass, spin, etc. By measuring the deviations between what
general relativity predicts and what we measure, we can use our observations

1that is, mergers of binary black holes that were themselves created from other binary
black hole mergers.

2To picture this, recall how the gravitational pull from the moon cause the ocean to rise
and fall. Now imagine that the moon had the mass of the sun, was the size of a city, and
was orbiting the earth 100 times per second. These tidal forces are strong.

3The first evidence of gravitational-radiation however was in the form of a the shrinking
orbit of a neutron star (specifically a pulsar) in orbit with another neutron star [196] which
was consistent with the predictions of general-relativity [331].
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to test the accuracy of the theory. So far general relativity has proved itself
to be a remarkably accurate theory [6, 11, 30, 32]4.

Transient gravitational waves from solar-mass compact objects are not the only
sources of gravitational waves. Supermassive black-hole binaries (SMBHBs)
are galaxy-mass black holes, with masses more than a billion times the mass
of our sun, 109 − 1010 M⊙ formed by the inspirals of galaxies themselves.
Unlike the stellar-mass black holes that merge in seconds5, these black holes
are far from their final merger, and orbit one other anywhere between a few
times a year to once a decade [51, 65]. However, unlike the observations of
individual black holes as measured by the LVK collaboration, NANOGrav
instead is looking for a “stochastic background” of gravitational-waves from a
combination of all SMBHBs in the Universe. The background is “stochastic”
or random because, unlike LVK-like signals, the individual black hole systems
are not resolved. The background is created not by one but by thousands to
tens of thousands of these SMBHBs all inspiraling between us on Earth (at
redshift 0) to galaxies at redshift 2, roughly 10 billion years ago [304]. This
means that NANOGrav is sensitive to gravitational waves that were emitted 6
billion years before the earth even existed) 6. Though this background has not
yet been “detected” per se, there is strong evidence that the signal measured
by Pulsar Timing Arrays is indeed gravitational waves from SMBHBs8 [50].
If the stochastic gravitational-wave background signal is detected, it will be
the first proof that SMBHBs do form, evolve to sub-parsec distances, and
eventually coalesce [51]. If instead the gravitational-wave background has a
different origin, it would prove an exciting challenge to the standard model
and cosmology.

4Despite what the bi-weekly emails I receive might have you believe.
5Merge in seconds in the LVK frequency band; they inspiral for much longer.
6Redshift, z, is a fundamental concept in astronomy and better known in other fields

as a Doppler-shift, the result of relative motion between the emitter and the observer7.
Since the universe is expanding at an accelerating rate, light (and gravitational-waves) get
stretched out to lower frequencies by a factor of 1/(1 + z), the ratio of the size of the
Universe at creation and the size at observation. This effect dominates any other Doppler
shifts in all but the most local universe. Because of this, z is directly related to other
cosmological quantities associated with the expansion of the universe like distance, the age
of the universe at emission, and the volume of the universe, among others. A redshift of
z = 1 is, for instance, the distance away that light (or gravitational-waves) has to come from
to have its wavelength stretched by a factor of two (or identically, its frequency halved).
Earth is located at redshift z = 0.

7We witness, or more, hear Doppler shifts every day; for instance an ambulance traveling
away from you has a lower pitch than an ambulance heading towards you.

8The method by which they are detected I discuss further in Chapter 9
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C h a p t e r 2

OVERVIEW OF THESIS

In this thesis I explore analysis methods across the gravitational-wave spec-
trum. I will focus on two topics—in Part I (Chapters 4–8) I analyze tran-
sient gravitational wave data in the presence of non-Gaussian detector noise
(glitches) and in Part II (Chapters 9 and 10) I present work that helped re-
searchers studying the Nano Hz SGWB speed up some analyses by orders of
magnitude, which assisted in finding evidence of the SGWB [50].

In Chapter 4, I provide a brief introduction to gravitational waves, focusing
on transient signals (since I cover the SGWB in Part II). I discuss what gravi-
tational waves are, the astrophysical phenomena that produce them, and how
they are detected. The chapter then transitions to an overview of parame-
ter estimation methods for gravitational waves, the techniques employed, and
the challenges involved—particularly the presence of non-Gaussian noise in
detectors, commonly referred to as “glitches.”

Chapter 5 introduces a method for mitigating glitches while accounting for
the uncertainty in the mitigation process—a critical component that has been
absent in previous LIGO collaboration analyses. Following this, Chapter 6
and Chapter 7 explore the impact of glitches on real gravitational-wave events
GW200129 and GW191109, respectively, illustrating how different glitch mit-
igation strategies can profoundly alter the astrophysical conclusions drawn.
Finally, Chapter 8 examines when and where within the gravitational-wave
analysis window glitches influence inference, providing a more nuanced under-
standing of their effects.

In the second part of the thesis I begin with an introduction to the SGWB
in Chapter 9, what it is, the SMBHBs that likely produce it, and how it is
analyzed. I then discuss my contributions to the detection of the SGWB in
Chapter 10.

Finally, I summarize the thesis and future work in Chapter 10.7.



Part I

Gravitational wave transients:
Analysis and challenges

6
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C h a p t e r 3

OVERVIEW OF PART I

In Chapter 4 I give a brief introduction to gravitational waves, their detec-
tion, how we measure them, and difficulties thereof, primarily, the difficulty
being non-Gaussian noise, or glitches. I also introduce Bayesian parameter
estimation.

In Chapter 5 I present a project that I helped conceptualize, ran all the anal-
yses for and was the lead paper-writer. There I expanded upon a method
originated in [110] that proposed a method to include the uncertainty from
glitch mitigation.

In Chapter 6 and Chapter 7 I present applications of the analysis introduced
in Chapter 5 on real LVK events. Here we show that that astrophysical con-
clusions depend quite heavily on the glitch model used in the analysis meaning
that for events coincident with glitches, the noise model is incredibly important
to astrophyical conclusions.

In Chapter 8 I analyze when and where glitches in the gravitational-wave
detectors can actually bias parameter estimation, and crucially where they
cannot.
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C h a p t e r 4

BACKGROUND ON TRANSIENT ANALYSES

In Part I I will cover the analysis and challenges associated with the recovery
of gravitational-wave parameters from transient events. For the non-expert,
in this section I will cover first what are gravitational waves, what produce
them, and how can we measure their properties.

4.1 What are gravitational-waves? Explanation by analogy
For a mathematical description of gravitational waves as metric perturbations
in general relativity, please see e.g. Maggiore [238]; here I only attempt to
build intuition.

Gravitational waves are ripples in spacetime. In Einstein’s theory of general
relativity, gravity is explained as masses curving spacetime. That is the reason,
for instance, that we, as massive objects1, feel gravity. Imagine a pool ball
(the earth) on a thin, stretchy surface held above the ground. An ant on that
surface would fall towards the pool ball, similar to us falling towards the earth.
The pool ball curves that stretchy surface around it, but the further away from
that pool ball, the less curved the surface is. The moon, for instance, is both
less massive and less dense than the Earth, meaning that it curves spacetime
less, and the pull of gravity is less strong on the moon.

If we now send a marble rolling towards that pool ball at an angle such that it
rolls around the ball, it will fall into something looking like an orbit because
the fabric is warped. Unlike the Newtonian theory of gravity where two masses
can orbit each other indefinitely, in general relativity orbits radiate energy; in
our fabric system, it takes energy to move around on that stretchy surface.
The marble and pool ball are moving and accelerating relative to each other
and warping that stretchy fabric as they do so. The energy to send ripples
through the fabric then must come from somewhere, on our fabric system it
will likely just come from the kinetic energy of the marble and likely a bit of
gravitational energy as it falls down the potential well made by the pool ball;
in orbital systems the energy comes from the gravitational-attraction between

1Here meaning objects with mass.
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them.

An observer nearby these two masses might have a difficult time describing
the rapidly changing ripples nearby2 but as one gets further away from the
source of the ripples the description of them gets simpler. As the marble falls
inwards it will orbit faster and faster around the pool ball meaning that any
ripples (or “waves”) observed far away will come at smaller and smaller time
increments. Finally they will collide and the orbit will stop, meaning that the
ripples will as well. If you can picture this simplified example, then you can
understand the basic physics of gravitational waves from binary black holes.

Creating observable ripples in spacetime requires much more energy than can
be stored in a pool ball. For these ripples in spacetime we need incredibly
massive objects. But, recall that as the marble moved closer it started to
radiate more energy. So having objects be massive and close to each other
will make the signals as loud as possible. Recall also that as the marble and
pool ball got too close, they hit each other and stopped moving. So the objects
need to not only be massive, but also dense enough that they can get extremely
close without touching. While not at all relevant in the marble case, we also
need objects that are bound together tightly enough such that they do not rip
each other apart as they get closer and closer together, a process known as
tidal disruption.

4.2 Detection of gravitational-waves
While any accelerating masses can technically create gravitational waves, the
processes that generate measurable gravitational waves on Earth are some of
the most energetic in the universe. However, just as a light bulb looks dimmer
as you get further from it, gravitational waves get weaker (or lower-amplitude)
as they travel away from the source. The sources the LVK measures are
billions of light-years away3; by the time they reach the LVK interferometers,
the gravitational waves change the size of the detector by a distance that is
10,000 times smaller than the nucleus of an atom [20].

The LVK detects gravitational waves as the change of spacetime (measured as
an actual change of length) of the arms of a Michelson interferometer. Michel-

2This area is known as the “near field” or “strong field”.
3The binary black hole merger associated with the first gravitational wave observation,

GW150914, merged 1.4 billion years ago. For a sense of time, on Earth ∼ 1.4 billion years
ago, the first eukaryotic cells evolved.
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son interferometers function as follows: a laser beam, which can be thought
of as a simple sinusoidal wave, is split into two beams of equal intensity. Each
beam travels along one of two arms of the interferometer which form a 90◦ an-
gle. These arms extend 4 km, each ending with a mirror that reflects the laser
back the source where the light from each arm recombines at a photodiode.
If the mirrors are equidistant from the beam splitter, the two beams traverse
identical path lengths. Upon recombination at the beam splitter, the waves
remain in phase, constructively interfering to produce a measurable signal. If
the path lengths differ, for instance, by half the wavelength of the beam, they
would interfere destructively. In this way by measuring the intensity of the re-
combined light, Michelson interferometers can measure distance to incredible
precision4.

A gravitational wave passing over such an interferometer would change the
length of the arms, stretching and compressing them as it propagates. De-
pending on the direction and orientation of the wave, each arm will change
different amounts. The waves coming over the detector will cause the recom-
bined light at the photodetector to pulse, the frequency of that pulsing in turn
gives us a measurement of the frequency of the gravitational wave.

Gravitational waves were first directly detected on September 14, 2015, by
the LIGO interferometers. This landmark event, designated GW150914, fol-
lows the convention of naming transient gravitational-wave events based on
their detection date [20]. Since this initial discovery, the global network of
gravitational-wave observatories has expanded with the inclusion of detectors
Virgo and KAGRA. Together, these instruments have enabled the detection
of, as of this writing, around 300 gravitational-wave events [116], with many
more expected in upcoming observing runs.

4.3 Gravitational Waveforms
Given the physical properties of a compact binary system (like masses, spins,
distance, etc), general relativity predicts the orbits of the compact objects
and the associated gravitational waves radiated. This waveform is not made
of light or matter, but spacetime itself, and as such each is given as “strain”

4The sensitivity of the strain ( ∆L
L ) measured is in part a function of the length L of the

interferometer arms. While I offered a simple picture, the actual interferometers contain
Fabry Perot cavities which bounce the light back and forth, effectively increasing the path
length from 4 km to ∼ 1200 km.
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Figure 4.1: Figure from Abbott et al. [20]. Top: Visualization of the inspiral,
merger, ringdown of the first detected gravitational-wave event, GW150914.
We can see the black holes get closer together as their orbit radiates away
energy (inspiral), the frequency of the wave increases until the black holes
collide (merger), and spacetime settles down to that outside of a single black
hole (ringdown)
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Figure 4.2: Figure from Abbott et al. [20]. Gravitational-wave event
GW150914 split between the LHO detector (left) and the LLO detector (right).
Top row: Band passed strain. Second row down: Predictions from numeri-
cal relativity compared to wavelet and physical waveform (template) predic-
tions. Third row down: Residual once the numerical-relativity waveform had
been subtracted from the data. Bottom row: Q-scans or spectrograms of the
whitened gravitational-wave data plotted as a function of time vs frequency,
colored by power in that time-frequency bin.

as a function of time, a dimensionless change of distance over some reference
distance. These gravitational radiation patterns, or “waveforms”, usually writ-
ten as h(t) are solutions to the far-field, general relativistic two-body problem.
These waveforms can be used to understand what signal was observed in the
gravitational-wave detectors in a process described in Section 4.4.

These waveforms are typically described in three phases, “inspiral” where the
two bodies are in orbit, “merger” when the two bodies collide, and “ring-
down” where the once-rapidly changing spacetime settles down to a stationary
state [371].
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Understanding gravitational waveforms
Below I provide some equations that approximate the orbital evolution of a
simple binary system to provide a basic understanding of how energy is radi-
ated in gravitational-wave inspirals and the approximate form of that radia-
tion5. We take the simplifying assumptions (which are valid only in the inspiral
regime) that 1) the energy radiated is small in comparison to the gravitational
energy of the orbit, 2) the speeds are not relativistic, 3) the orbits are ap-
proximately circular6, 4) the orbits are approximately Keplerian, and 5) the
individual objects have negligible spins.

Under these assumptions, we use Einstein’s equations [17, 153] to derive that
in this regime, the energy lost to gravitational radiation is given as

d
dtEGW = 32

5
G

c5µ
2r4ω6, (4.1)

where G is the Gravitational constant, c is the speed of light, r is the separation
of the objects, ω is the orbital angular velocity, and µ = m1m2

M
is the “reduced

mass”, where mi represent the masses of the individual objects and M =
m1 + m2 is the total mass of the system. Since the energy is radiated from
the potential energy of the orbit, we have − d

dtEGW = d
dtEorb, where Eorb =

−GMµ
2r

. This leaves d
dtEGW = −GMµ

2r2 ṙ, where we use ẋ to mean the derivative
of a quantity with respect to time. Then, since the orbits are approximately
Keplerian, we use Kepler’s third law r3 = GM/ω2 and its derivative ṙ =
−2

3rω̇/ω to obtain both

ṙ = −64
5
G3M2µ

c5
1
r3 , (4.2)

ω̇3 =
(96

5

)3 G5M2µ3

c15 ω11. (4.3)

How do these equations govern the orbits of the system and therefore the
observed gravitational wave? First: the change in distance between the ob-
jects (ṙ) is always negative, meaning the objects get closer each orbit. Sec-
ond: the change in frequency is always positive; the objects orbit around each

5A detailed derivation of the basic physics is provided in Abbott et al. [17] and a complete
derivation is in Maggiore [238].

6This is a surprisingly accurate assumption as gravitational waves actually cause orbits
to circularize [271]. Eccentric (i.e. non-circular) systems cannot remain eccentric for long.
However, since an inspiraling orbit cannot possibly be actually circular (since the radius of
a circle does not get smaller...), this is an approximation.
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other faster and faster. Both of these are visible in the example gravitational-
waveform displayed in Fig 4.1 as well as the characteristic “chirp” in the bot-
tom of fig Fig. 4.2. Key features to note are the increasing amplitude and
frequency of the signal. The increasing frequency is immediately apparent in
Eq 4.3. As to the increasing power: gravitational waves drain the gravitational
potential energy. As the objects fall closer together, they radiate more energy,
causing them to fall even closer together and radiate even more energy. This
feedback loop creates an increasing energetic signal until the objects finally
merge into a single, and quiescent, merged remnant (usually a black hole).

Gravitational-waveforms and source parameters
So far we have seen how at least the mass parameter affects the gravitational
waveform, but other parameters also determine their evolution. Gravitational
waveforms from binary black holes are somewhat simple in that they can be
entirely characterized with 15 parameters7,8. Each compact object has a mass,
a three-dimensional spin vector, and (for neutron stars) a tidal deformability.
These parameters are known as intrinsic parameters because they govern the
dynamics of the actual physical system. In this section we discuss how some
of those different parameters change the dynamics of the system, and others
change the observed waveform. The remaining parameters are the extrinsic
parameters, which govern what an outside observer sees but do not affect the
actual dynamics of the binary system. These include the inclination angle
ι9, which is defined as the angle between the orbital angular momentum of
the system and the line-of-sight to the observer. Other extrinsic parameters
are the distance to the event, the propagation direction of the gravitational
wave (given as a sky location, right ascension, and declination), the time the
event occurred, the phase of the gravitational wave at coalescence, and the
polarization angle between the plus and cross modes of the gravitational wave.

An important feature of gravitational waveforms is that high mass binaries
merge more quickly than binaries with lower masses (from a given frequency) [238].
Why? Orbital energy Eorb is proportional to the total mass of the system.
More massive systems have more energy and as we can see in Eq 4.2, the

717 for neutron star mergers since they also have parameters determining their tidal
deformability (when using a single nuclear equation of state).

8Including the effects of eccentricity also adds two more parameters: the eccentricity e
and the mean anomaly.

9also called θln
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higher the mass, the more negative ṙ becomes, the more the orbit falls in-
ward. Therefore, if we had a high and a low mass system orbiting at the same
frequency, in a single orbit, the higher mass system will radiate more energy
away. Therefore the high mass systems will spend less time at any given fre-
quency, meaning the objects will merge more quickly, and spend less time in
the LIGO frequency band ranging from O(10−103) Hz. This means that there
is a relationship between the frequency at which the binary merges and the
mass of the system.

Cosmology research has found that our universe is expanding, and that dis-
tant points are becoming even more distant [195]. This causes a “redshift”,
z, which causes visible light emitted from distant galaxies to shift to lower
frequencies (i.e. become more red since that is the lowest frequency of visible
light) depending on how far away from us the system itself is10. The exact
same frequency shift happens to gravitational waves; the gravitational waves
observed in the LVK detectors will appear lower frequency (and therefore,
higher mass) when observed. We then distinguish between detector mass and
source-frame mass, which are related as such:

m = (1 + z) ms, (4.4)

where m represents any mass parameter in the “detector frame”11 and ms its
corresponding value in the source frame. Since the distance to the source itself
is getting stretched as the gravitational wave travels incredible distances, the
distance is reported as luminosity distance, DL, where DL = (1+z)DM , where
DM is the co-moving transverse distance, i.e. the frozen distance to the source
when the gravitational wave is observed.

Gravitational waves are transverse meaning that they stretch and squeeze
spacetime perpendicular to their propagation direction. General relativity
predicts that gravitational waves have two polarization: the plus polarization
which stretch and squeeze masses along the horizontal axis, and the cross
polarization which acts along the diagonal. These polarizations, in the time

10Since the universe is expanding, light (and gravitational waves) get stretched out to
lower frequencies. This is similar to the Doppler effect where an ambulance traveling away
from you sounds lower in pitch than an ambulance heading towards you. A redshift of
z = 1 is the distance away that light (or gravitational-waves) has to come from to have
its wavelength stretched by a factor of two (or identically, its frequency halved). Earth is
located at redshift z = 0.

11i.e. the mass corresponding to the frequency as measured in the detector
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domain, are related like so

h+(t) = 1
2AGW

(
1 + cos2(ι)

)
cos (ϕGW(t)) , (4.5)

h×(t) = AGW cos(ι) sin (ϕGW(t)) , (4.6)

where cos ι = L̂ · N̂ is the “inclination angle” between the orbital angular
momentum L and the line of sight from the observer to the source, N, AGW is
the amplitude of the signal and ϕGW is the phase evolution of the wave [161].

The transverse nature of gravitational waves means that a wave traveling in the
plane of an LVK-like interferometer along one arm will not stretch or squeeze
that arm (although it will still affect the other). In contrast, if the wave trav-
els perpendicular to the interferometer, the arms are maximally stretched and
squeezed12. The detector sensitivity to gravitational-wave direction and po-
larization is represented with the scalar valued “detector response functions”,
F+(α, δ, ψ, tc) and F×(α, δ, ψ, tc), where α and δ specify the sky location of
the wave (right ascension and declination), and ψ represents its polarization,
and the time tc at which the event was observed13. These functions ultimately
allow us to calculate h̃(f), the strain in the detector as a function of the
gravitational wave’s frequency,

h̃(f) =
[
F+(α, δ, ψ, tc) h̃+(f, {m1,χ1,Λ1}, {m2, χ2,Λ2}, ι, DL, ϕc)

+ F×(α, δ, ψ, tc) h̃×(f, {m1,χ1,Λ1}, {m2, χ2,Λ2}, ι, DL, ϕc)
]
e−2πiftc ,

(4.7)

where χi = Ŝ is the dimensionless spin vector of object i, Λi is the tidal de-
formability 14, DL is the luminosity distance, ϕc is the phase at coalescence,
and tc is the coalescence time, which just shifts the whole waveform in time15.
Here I omitted the eccentricity and mean anomaly of the system, the effects
of which are expected to be small except, perhaps, in systems formed dynam-
ically [271].

12When also the polarization of the wave is aligned with the arms
13The event time is necessary because Earth’s rotation alters detector sensitivity to dif-

ferent celestial directions. For transient analyses lasting seconds to minutes, we assume this
rotation does not significantly change the detector response over the course of the event in
the detector, although doing so is possible.

14Relevant only for neutron stars.
15A time shift h(t − tc) in the time domain becomes a simple phase shift e−2πitc in the

frequency domain
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Spin-effects on gravitational-waveforms

Systems where the component spins are large and aligned with the orbital
angular momentum experience a so-called “orbital hangup effect” where the
the merger is delayed relative to an otherwise identical system with smaller
spin [97]. When instead the spins of the system are mis-aligned to the angular
momentum of the system the orbital plane and spins “precess” about the
total angular momentum [61, 210]. Whereas aligned spin waveforms evolve
with increasing amplitude, spin-orbit precession causes the orbital angular
momentum of the system, L, to precess around the total angular momentum
J = L + S. This means that as the orbit evolves and L precesses, the binary
changes its orbital alignment to an outside observer, ι. Because “face-on”
(ι = 0) mergers are louder than “edge on” (ι = π

2 ) as in Eq 4.5, characteristic
amplitude modulations are created in the inspiral portion of the waveform
[62, 211]. Though these modulations are typically weak [318, 373, 375], a
strong measurement of the effect is highly sought after as spin-precession could
distinguish between formation channels of binary black holes [240, 388, 391].

Actually computing gravitational waveforms

In Sec 4.3 we made many approximations in order to get a heuristic under-
standing of how orbits evolve when accounting for the emission of gravitational-
radiation. The most accurate way to compute gravitational-waveforms is by
evolving the system using numerical relativity. Such numerical relativity codes
solve the full Einstein Field Equations, creating waveforms accurate to within
numerical error [176]. However, solving the Einstein Field Equations is com-
putationally expensive; each simulation takes anywhere from weeks to months
to complete. The ∼ 4, 000 waveforms in Simulating Extreme Spacetimes (SXS)
catalog are therefore insufficient for determining the parameters of the system
(which require O(106) waveform evaluations for each event: see Sec 4.4); there
are simply not enough computational resources to ever cover the entire pa-
rameter space.

So-called “waveform approximants” have been developed to bridge this compu-
tational gap. These waveforms include include inspiral-only post-Newtonian
waveform models [63, 82–84, 251, 310, 369], inspiral-merger-ringdown mod-
els that are calibrated to numerical relativity [166, 178, 198, 207, 279, 281],
effective one-body approximants [86, 87, 90, 131–135, 284, 330], and “surro-
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gate” models, which are templates created by interpolating numerical relativity
waveforms [79–81, 202, 362].

4.4 Parameter estimation
Now that we have discussed how the detectors work in Section 4.2 and de-
scribed how general relativity relates the source properties to what is observed
in the detector in Section 4.3, we are ready to determine the parameters of
a gravitational-wave source from data, d, containing a signal observed by a
detector. In an idealized scenario—free from any noise and with perfect wave-
form models h(θ)—this task would reduce to finding parameters θ such that
|d − h(θ)| = 0. However, three significant challenges complicate this process:

1. Detector Noise: Real detectors introduce noise, making the signal
extraction less straightforward.

2. Model Imperfections: Waveform models are approximations and in-
herently imperfect.

3. High-Dimensional Parameter Space: The parameter space of θ
spans 15–19 dimensions, is highly correlated, and often features sharply
peaked structures. Additionally, evaluating gravitational-wave models
in this complex space is computationally intensive.

Because of the noise and model imperfections, we are instead tasked with
finding the probability distribution p(θ|d), the probability that, given some
data, we observed a gravitational wave with parameters θ.

Though the goal is straightforward, sampling a highly correlated 15-19 dimen-
sional space is difficult, and as such, these challenges form the core of my thesis
work. In this section, I will detail how we determine the probability distri-
bution of parameters that are most likely to describe the gravitational-wave
signal observed in the detectors.

Bayesian Inference
In Sec 4.4 I describe how the essential challenge of gravitational-wave parame-
ter estimation is sampling a probability distribution in many dimensions. Here
I lay out what that probability distribution actually is.
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We are interested in finding the “posterior” distribution,

p(θ|d), (4.8)

the probability p of a gravitational-wave with parameters θ16 given that we
have observed data d. The posterior is normalized such that∫

dθ p(θ|d) = 1. (4.9)

Using only conditional probability, we know that p(d|θ)p(θ) = p(θ|d)p(d). We
rewrite this in a perhaps more familiar form, Bayes Theorem:

p(θ|d) = p(d|θ)p(θ)
p(d) , (4.10)

and then again, this time with more suggestive notation

p(θ|d) = L(d|θ)π(θ)
Z

. (4.11)

Here p(d|θ) became L(d|θ), our “likelihood”. The likelihood is the probability
of observing some data d given that there is an event with some parameters
θ. The likelihood function is determined by our noise distribution, and the
assumptions required to describe the noise; we discuss how to formulate our
likelihood in Sec 4.4.

π(θ) is our “prior”, it incorporates the belief about θ before we actually take
our measurement and, like the likelihood, it is something that we get to choose.
The prior is where the physical assumptions of our models are baked in. Some-
times there is an obvious choice of a prior; we might expect that the gravita-
tional waves we observe to have no preferred sky location, so we might weight
every patch on the sky as equally likely. In other cases, the prior is less obvious,
and we might instead express our ignorance by choosing an “uninformative”
or “flat” prior, usually either uniform or log-uniform.

The final piece is Z, our “evidence”, or the probability of observing that data
at all (given a noise model and a prior). That is, we can rewrite the evidence

16Here the parameters represent the masses, spins, etc of a gravitational wave. We call
these the parameters or the model parameters, so there is an implicit assumption that a
model is being chosen. Some authors prefer to write p(θ|d, M) where M represents some
model, but unless two models are being compared, this notation is clunky.
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as

Z =
∫
dπ L(d|θ) (4.12)

=
∫

π
dθ π(θ) L(d|θ). (4.13)

Essentially, the evidence is a normalization term of equation, e.g. it is defined
such that Eq 4.9 is true. The evidence is the expected value of the likelihood
over the prior. It is in some ways an absolute measurement of the goodness-
of-fit of a model. It is common to directly compare the evidences of two
models and take the ratio of their evidences as the “Bayes factor”. The one
with a higher evidence will therefore be the more statistically favored model.
However it is important to note that as in Eq 4.12, changing the prior can
have an outsized affect on the evidence [374]. Unless comparing models with
the same or similar priors, direct model comparison can become misleading.

Likelihood and noise model
To choose our likelihood model, we have to describe what our data looks like
without the presence of gravitational waves17. In other words, this is what our
background or “noise” model is.

For transient analyses where we analyze data of 2 min or less18, we assume
that (i) the detector noise is uncorrelated between the detectors, (ii) our noise
follows a Gaussian distribution with a zero-mean and (iii) the noise is sta-
tionary, i.e. the mean and standard deviation do not change over the course
of the analysis window. The first assumption could be violated through e.g.
distant lightning strikes activating Schumann resonances in the Earth’s mag-
netic field that can cause correlated detector noise [204]. Such noise could
cause glitches (see Sec 4.5) in both detectors and affect the interpretation of
a SGWB [96, 125, 190, 191, 246, 338, 340]. The second and third assump-
tions are that the noise is Gaussian and stationary over short timescales [109].
Longer signals, however, might be subject to noise non-stationarity, motivating
other studies [118, 152, 253, 354].

Now we lay out how to get the functional form of the likelihood distribution
17or other non-Gaussianities in the data
18more often 4 − 8 sec, but of course the analysis length depends on the mass of the

system(s) we are interested in as in Sec 4.3
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given these assumptions. Gravitational-wave data d19 from detectors is a
combination of a gravitational-wave signal h and noise n.

The assumption that n is stationary means that the noise is uncorrelated be-
tween frequency bins. Gaussianity means that the noise is described by a zero-
mean Gaussian distribution at each frequency. This per-frequency Gaussian
distribution is entirely described by the variance at each frequency, its power
spectrum Sn. That is, the real an imaginary component of the noise at each
frequency fj is distributed according to a Gaussian with variance proportional
to Snk, that is,

ℜ (ñj) ∼ N

(
0,
√

1
4∆f Snj

)
, (4.14)

where ∆f is the frequency resolution 20, which is likewise true for ℑ (ñj).

The stationarity assumption means that the behavior of noise in one frequency
bin does not affect the behavior of the noise in another. Then, in the absence
of non-Gaussian noise or gravitational wave signal, the distribution of the noise
in each frequency bin is

p(ñj) = ∆f
2πSnj

exp
(

−2∆f |ñj|2

Snj

)
. (4.15)

Note that compared to a one-dimensional Gaussian, the normalization factor is
missing a square root in the prefactor. This is because the frequency domain
data are complex, and so the distribution is the product of two Gaussian
distributions (one for each of the real and imaginary components) [122, 339,
378]. Now again because we assumed that our frequencies are independent,
then the log probability of observing the whole realization of our noise n is

ln p(ñ) = ln
∏

i

p(ñi) (4.16)

= ln
∏

i

∆f
2πSni

exp
(

−2∆f |ñi|2

Sni

)
(4.17)

= −1
2 ⟨ñ|ñ⟩ −

∑
i

ln 2πSni , (4.18)

19We use d to represent the time-domain data, which corresponds to the strain ∆L
L

measured by the detectors. This strain is the relative change in the interferometer arm
length, ∆L, divided by the arm length L. The strain is sampled at discrete times ti, forming
a time series d. In the frequency domain, the Fourier-transformed data is represented as d̃.
The values of the strain at a specific time or frequency are denoted by di and d̃j , respectively.

20The exact normalization will be a function of your choice of Fourier transform normal-
ization
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where we have defined our noise-weighted inner product

⟨a,b⟩ = 4∆f
∑

j

ℜ
a∗

jbj

Snj

. (4.19)

Now that we know what the noise distribution is at each frequency, let’s take
another look at the data. The data are just going to be whatever model m we
use to describe the signal h and the noise n

d = m(θ) + n. (4.20)

So therefore, our data, once you subtract away whatever model you have,
should be distributed the same way that n is distributed. That is, our likeli-
hood function will become

ln L
(
d̃|θ

)
= −1

2 ⟨d − m(θ)|d − m(θ)⟩ −
∑

i

ln 2πSni. (4.21)

4.5 Glitches
In Section 4.4 we laid out all the assumptions that go into the likelihood model
for transient gravitational-wave parameter estimation. What I have yet to
mention are all the ways that the real detector data breaks these assumptions,
specifically, with the presence of glitches.

Glitches are transient, non-Gaussian noise that appear in gravitational-wave
detectors as bursts of excess power. They originate from a variety of envi-
ronmental and/or instrumental couplings. For instance, laser light scattering
inside the detectors [322], thunder [142], ravens pecking at ice nearby the de-
tector [126], camera shutters [38], and a litany of other sources that are both
identified and unidentified. Examples of the time-frequency morphology of a
subset of these glitches are shown as a spectrogram in Fig. 5.3.

LVK detectors have gotten increasingly sensitive between observing runs al-
lowing us, in The first half of the LVK’s fourth observing run lasting from May
24th 2023 - January 16th, 2024 (O4a), to observe gravitational-wave events ap-
proximately once every two days [116] in comparison to LVK’s third observing
run (April 1, 2019 - March 27, 2020) (O3) which observed gravitational-wave
events approximately once a week. In contrast, both in O4a and O3, the glitch
rates were ∼ 1/min, meaning O(1500) per day in each detector [8, 33, 38].
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4.6 Glitch impact on parameter estimation
Glitches break the noise assumptions laid out in Section 4.4, primarily the
assumption that the noise is stationary and Gaussian21. When left unmit-
igated, glitches can bias gravitational-wave parameter estimation, as shown
in [150, 265, 278]. This issue is discussed in depth in Chapters 5 (regarding
what can be done about glitches), 6 and 7 (in the context of glitch mitigation
on individual events), and 8 (on determining where in an analysis segment
glitches impact parameter estimation).

4.7 Glitch mitigation strategies
Just as there are a litany of glitch types, there are an array of different strate-
gies to get rid of them. These strategies fall into a few broad categories: (i) sub-
tract the glitch from the data [115, 137, 150, 243, 252, 259, 345, 354, 368, 384],
(ii) zero-out the data containing the glitch (which throws away signal infor-
mation) [18, 307, 327, 353, 385, 393], (iii) fit for both the signal and the glitch
simultaneously (thus marginalizing over the glitch parameters and their asso-
ciated uncertainty; see Chapters 5–7 for details and references), and (iv) avoid
the data containing the glitch (if possible; see Sec. 8 for details).

Scientists are often able to determine what the glitch was and stop them from
occurring in the first place. This was done to mitigate e.g. scattering glitches
in O3 [142], but here I focus on the methods to remove the glitch once it has
already occurred.

Glitch subtraction
By and large, the most popular method for glitch mitigation is glitch sub-
traction. Glitch subtraction is the process of removing a glitch from the
gravitational-wave data by subtracting a glitch model from the data, and an-
alyzing the more Gaussian (d − glitch model) instead of the original data, d.
To perform this, a model of the glitch is needed.

While there are a few glitch classes that can be described with physical models,
such as slow and fast scattering [351], and in some cases a model can be
constructed using a transfer function of a “witness” channel [137], for the
majority of glitches, there is neither physical models to parameterize them nor
a well characterized witness channel. Instead, a phenomenological model that

21Generally, glitches do not violate the assumption that the noise is uncorrelated between
detectors, though there are possible exceptions [204].
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fits for glitches as sums of sine-Gaussian wavelets is used [124, 222]22.

To perform the glitch mitigation for LVK’s second observing run (November
30 2016 - August 25th 2017) (O2) and O3, sine-Gaussian wavelets were used
to model both the gravitational waves and glitches in the data. Then a single
draw from the glitch posterior was subtracted to create the glitch subtracted
data used by all downstream parameter estimation analyses (see [138]). Start-
ing in O4a, now instead glitch subtraction is performed using the analysis I
study in Chapter 5 where the glitch is sampled alongside a physical waveform
model, although a single realization is still subtracted.

Removing contaminated data
The simplest approach to handling glitches in the data is to not analyze data
containing glitches. Specifically, if the glitch has frequency components that
are either exclusively higher or lower than those of the gravitational-wave
signal, one can restrict the frequency window of the segment without altering
other aspects of the analysis. However, if one tried to do this on the first binary
neutron star event GW170818, there would be no data left to analyze since the
glitch contaminated every frequency bin [18]. In this way, this method carries
the risk of discarding potentially valuable data. In O3, this approach was not
employed [33, 140].

Some more brute-force methods zero the contaminated data in the time domain
(known as “gating”; see e.g. [393]) whereas others “inpaint” or fill the zeroed
data back with simulated Gaussian noise [385]. These methods are fast, but
in areas where you destroy part of the gravitational-wave signal, they can
remove important data or bias results. While gating is used in gravitational-
wave searches, because it “throws away” detector data, it has not been used
in official LVK transient parameter estimation results.

Glitch marginalization
So-called glitch marginalization is the process by which we model the glitch
alongside the gravitational-wave parameters. This process is outlined in Chap-
ter 5 and Chapter 6 for an aligned-spin waveform modeled alongside sine-
Gaussian wavelets, and in Chapter 7 for a spin-precessing waveform model.

22Sine-Gaussian wavelets are chosen because they form an over-complete basis in smooth
functional space and can thus be used model essentially any function, but particularly for
transient (short-duration) functions.
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This chapter first discusses a physical model for scattering glitches [351] and
later examines the use of sine-Gaussian wavelets.

The upside of this glitch marginalization method is that the uncertainty in
the glitch model is propagated to the uncertainty of the gravitational-wave
parameters (unlike the subtraction method described above). The downside
of glitch marginalization is that it is slow and either requires sampling a large
parameter space (see Chapter 5) or having a model for the glitch class which
exists for only a small subset of all glitches (see Chapter 7).

4.8 BayesWave and BayesWave++
Given the frequent references to BayesWave throughout this work, it merits its
own dedicated section. A significant portion of this thesis focuses on the devel-
opment of both the BayesWave software and its upgraded version, BayesWave
++. While the earlier iteration of BayesWave is thoroughly discussed in Cor-
nish and Littenberg [121], Littenberg and Cornish [226] and in Chapter 5, this
section provides an overview and outlines the primary distinctions between
BayesWave and BayesWave ++.

BayesWave is a parallel tempered reversible jump Markov chain Monte Carlo
(MCMC) sampler that has been developed and widely utilized for gravitational-
wave data analysis. Specifically, BayesWave plays a central role in estimating
the power spectral density (PSD) around gravitational-wave events23 [13, 33,
38], performing consistency checks for general relativity e.g. [32], potentially
following up burst events [249], and facilitating glitch subtraction [8, 18, 38,
140].

What distinguishes BayesWave from other parameter estimation codes used
within the LIGO-Virgo-KAGRA (LVK) collaboration, such as bilby [69, 223],
is its implementation of a “trans-dimensional” or “reversible jump” algorithm.
This functionality enables BayesWave to sample multi-dimensional posteriors,
a feature that sets it apart from other samplers. The subsequent sections will
explain how this method is applied across the different models implemented
in BayesWave.

BayesWave models
The different BayesWave models are described below.

23More precisely, power spectral density estimation is done by the subroutine BayesLine
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• The noise model, or PSD model, represents the noise power spectral
density as a combination of Akima splines and Lorentzian functions. The
Akima splines provide a smooth fit to the broadband background noise,
while the Lorentzians account for narrow, prominent spectral features.

• The glitch model models transient noise artifacts in the detector as a sum
of sine-Gaussian wavelets. Each detector has its own independent set of
wavelets, allowing the model to adapt to specific noise features. The
model’s complexity is dynamic, as wavelets can be added or removed to
optimize the fit.

• The CBC model captures compact binary coalescence (CBC) signals
by utilizing waveform templates like those described in Sec 4.3. In
BayesWave itself, the signal model is restricted to aligned spin wave-
forms. However, in BayesWave ++, there is no such restriction and any
waveform model available in LAL can be sampled over24.

• The coherent wavelet model (formerly called the signal model) is designed
to capture unmodeled astrophysical signals e.g. [169]. Like the glitch
model, it uses sine-Gaussian wavelets, but with the added constraint
that the wavelets must exhibit coherence across the network, as expected
for genuine astrophysical signals. If this signal model were run on data
with a single detector, it should return an identical posterior as the
glitch model run on the same data (with the main difference being (likely
uninformative) extrinsic parameters returned as well for the coherent
wavelet model).

In BayesWave ++, any combination of these models can be used at once and I
have extensively tested the glitch model and the CBC model individually. See
Figure 5.2 for how the sampler actually works in action.

24Eccentric models will need to be implemented.



27

C h a p t e r 5

ACCURATE MODELING AND MITIGATION OF
OVERLAPPING SIGNALS AND GLITCHES IN

GRAVITATIONAL-WAVE DATA

This chapter contains work from

Sophie Hourihane, Katerina Chatziioannou, Marcella Wijngaarden, Derek
Davis, Tyson Littenberg, and Neil Cornish. Accurate modeling and miti-
gation of overlapping signals and glitches in gravitational-wave data. Phys.
Rev. D, 106(4):042006, 2022. doi: 10.1103/PhysRevD.106.042006. Reprinted
here as Chapter 5. SH performed all analyses, authored the text, helped
conceptualize and scope the project, and created all figures.

5.1 Abstract
The increasing sensitivity of gravitational-wave detectors has brought about
an increase in the rate of astrophysical signal detections as well as the rate
of “glitches”; transient and non-Gaussian detector noise. Temporal overlap of
signals and glitches in the detector presents a challenge for inference analy-
ses that typically assume the presence of only Gaussian detector noise. In this
study we perform an extensive exploration of the efficacy of a recently proposed
method that models the glitch with sine-Gaussian wavelets while simultane-
ously modeling the signal with compact-binary waveform templates. We ex-
plore a wide range of glitch families and signal morphologies and demonstrate
that the joint modeling of glitches and signals (with wavelets and templates
respectively) can reliably separate the two. We find that the glitches that most
affect parameter estimation are also the glitches that are well modeled by such
wavelets due to their compact time-frequency signature. As a further test, we
investigate the robustness of this analysis against waveform systematics like
those arising from the exclusion of higher-order modes and spin-precession ef-
fects. Our analysis provides an estimate of the signal parameters; the glitch
waveform to be subtracted from the data; and an assessment of whether some
detected excess power consists of a glitch, signal, or both. We analyze the
low-significance triggers (191225_215715 and 200114_020818) and find that
they are both consistent with glitches overlapping high-mass signals.
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5.2 Introduction
Gravitational-wave (GW) analyses require accurate models for both the astro-
physical signals and the detector noise [19]. The majority of source properties
inference for transient signals such as compact binary coalescences (CBCs) is
based on three assumptions about the detector noise that inform the func-
tional form of the likelihood function: (i) the detector noise is uncorrelated
between the detectors, (ii) it follows a Gaussian distribution, and (iii) it is
stationary, i.e. its mean and covariance do not change with time. Violation of
these assumptions could impact detection and inference efforts. For example,
Schumann resonances in the Earth’s large-scale magnetic field could cause cor-
related detector noise and affect detection and interpretation of a stochastic
GW background [96, 125, 190, 191, 246, 338, 340]. Additionally, the detec-
tor Gaussian noise is stationary over short timescales [109], but longer signals
might be subject to noise nonstationarity which has motivated relevant stud-
ies [118, 152, 253, 354].

Transient noise artifacts, i.e., glitches, in a detector violate the assumption
of Gaussianity and could bias parameter inference when they overlap with
signals [150, 265, 278]. In the recent third observing run (O3), LIGO [1]
and Virgo [43] have detected an astrophysical event approximately once ev-
ery five days [33, 38]. Glitches, however, appear in the detectors far more
frequently. The average rates for glitch transients with signal-to-noise ratio
(SNR) > 6.5 in the first and second half of the third observing run were
0.3 min−1 in LIGO Hanford (LHO), 1.13 min−1 in LIGO Livingston (LLO),
and 0.75 min−1 in the Virgo detector [33, 38]. Overall, in O3 a total of 18
events required some form of glitch mitigation [33, 38]. Glitches are most
likely to intersect lower-mass, long-duration events such as binary neutron
star (BNS) mergers; indeed, both such detected events have overlapped with
a glitch and required mitigation [4, 18]. As detector sensitivity improves not
only will the event rate increase, but also the glitch rate might increase as
weaker glitches that are currently below the noise floor could emerge above it.
Additional detectors such as KAGRA [54] in the next observing run (O4) also
increase the likelihood that a glitch will appear in at least one detector. In
order to have an accurate and unbiased catalog of GW events, effective and
generic methods for separating signal and glitch power are necessary. Pro-
posed approaches for glitch subtraction include removing the contaminated
data [18, 307, 327, 353, 385, 393] or subtracting detector noise based on data
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from auxiliary channels [115, 137, 150, 243, 252, 259, 345, 354, 368, 384]. The
glitches discussed in this paper are those that remain after the noise mitigation
described in [137, 368].

A complementary analysis was proposed in Ref. [110] based on the BayesWave
algorithm [121, 124, 226]. This analysis expands glitch-mitigation techniques
already applied to LIGO and Virgo data [18, 33, 38], where it was used to
subtract glitches in 15 out of 18 O3 events that required glitch mitigation [33,
38]. The analysis of [110] simultaneously models the signal and glitch using
waveform templates and wavelets respectively. The waveform templates are
models for CBC signals that are obtained as solutions to the two-body problem
in General Relativity. The glitch model is based on a sum of sine-Gaussian
wavelets and it is flexible enough to be able to reliably describe a wide range of
potential glitch morphologies. This first study presented a number of examples
of data containing binary black hole (BBH) signals and common glitch types
and demonstrated the ability of the analysis to reliably separate the two [110].
In this study we expand upon this analysis by considering a wider rage of glitch
classes, more instances of each class, and CBC injections of varying masses.

Our analysis results in a posterior distribution for the parameters of the glitch
and the CBC signal. Depending on the exact placement of the signal in rela-
tion to the glitch, correlations between the two might exist and the resulting
CBC posteriors might not be identical to those from data with no glitches.
This is unsurprisingly most prominent for signals and glitches with similar
time-frequency morphology. Despite this, the CBC parameters are correctly
estimated within the extent of the posterior. As a point of comparison for each
case, we also examine the bias incurred on CBC parameters by performing a
standard analysis that ignores the presence of the glitch in the data entirely.

Our process allows us to obtain both a model for the glitch that can be sub-
tracted from the data and parameter estimation results for the CBC signal,
though the latter are restricted by the assumption of aligned-spins in the
current algorithm implementation. The glitch-subtracted data are ready for
downstream analyses with more sophisticated waveform or detector calibra-
tion models. We demonstrate that the lack of spin-precession and higher-order
modes in our CBC waveform models does not hinder accurate CBC-glitch sep-
aration. We also test whether we can do glitch subtraction on single-detector
data. The additional examples and checks presented here demonstrate that
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the analysis is ready to tackle incoming data in O4 [16].

Finally, we consider some low-significance triggers and attempt to distinguish
between CBC signals, Gaussian noise, glitches, or a combination of all three
present in the data. Standard detection efforts consider only the possibility
that either a CBC signal or a glitch is present in some data. It is therefore pos-
sible that the significance of a CBC signal could be impacted if it overlaps with
a glitch as this could make the data inconsistent with our CBC model. We find
that trigger 191225_215715 (hereon S191225) [38] and trigger 200114_020818
(hereon S200114) [40] are consistent with the presence of both a glitch and a
CBC signal. The above results are subject to the caveat that we use a CBC
waveform model without spin-precession or higher-order modes.

The paper continues as follows. In Sec. 5.3, we describe the BayesWave algo-
rithm, focusing on the CBC (templated) and the glitch models. In Sec. 5.4 we
present our injection and recovery scheme. In Sec. 5.5 we present our results
on an array of different glitch classes. We test the systematics and limitations
of our CBC sampler in Sec. 5.6 by including injections containing higher order
modes, spin-precession, and events in a single detector. Finally, in Sec. 5.7,
we apply our analysis on triggers S191225 and S200114 in order to assess the
presence of signals and/or glitches in the data. In Sec. 5.8 we conclude.

5.3 General Methodology Description
In this section we describe the main features of our analysis that estimates pa-
rameters of GW events using templates while jointly modeling detector glitches
using wavelets. We briefly introduce our inference scheme, then discuss the
features of BayesWave relevant for this study including the models, priors, and
the joint sampler.

Brief Introduction to Inference Scheme
GW parameter estimation aims to compute p(θh|d), the posterior probability
distribution that a model h with parameters θh describes the given data, d.
The quantity h can contain any component of the data we attempt to model,
for example a CBC signal, a glitch, or Gaussian noise. In the case of CBC
signals, h is typically a waveform template and θh are parameters that describe
the binary. The posterior p(θh|d) is proportional to the prior p(θh) times the
likelihood of observing data d given the model h(θh), p(d|θh). The likelihood
function encodes our assumption about the detector noise. For LIGO analyses



31

−5 −4 −3 −2 −1 0 1 2 3

Time since ttrig [s]

−2

−1

0

1

2

W
h

it
en

ed
S

tr
ai

n Glitch Time Prior, TW

CBC Time Prior

C
lea

n
in

g
W

in
d
ow

C
lea

n
in

g
W

in
d
ow

Figure 5.1: Analysis setup with the different time intervals and priors for the
analysis of a CBC signal (magenta) and a glitch (gold). The CBC (glitch)
time prior is depicted by the magenta (gold) shaded region, although the two
regions need not share a common center. The preprocessing cleaning phase is
used to permanently subtract wavelets from the data in the green region.

and stationary, Gaussian noise with power spectral density (PSD) Sn(f) in
each detector, the likelihood is given by Eq. 3 in [124]. Under this formulation,
the multidimensional parameter posterior p(θh|d) is typically explored with
stochastic sampling methods such as Markov Chain Monte Carlo (MCMC)
and nested sampling [299, 367].

BayesWave Analysis
BayesWave [121, 124, 222, 226] is a flexible data analysis algorithm that mod-
els various components in GW data including signals, glitches, and noise.
BayesWave explores the joint posterior distribution of its models using a com-
bination of MCMC and reversible jump (RJ) MCMC [174] samplers. The
algorithm has a wide range of applications including an unmodeled search
pipeline [14, 31], on-source PSD generation [33, 38, 109], tests of General Rel-
ativity [21, 23, 30, 111] and consistency tests [169], and various studies of
poorly modeled or unmodeled sources including binary neutron star (BNS)
postmergers [22, 105, 349], eccentric BBH mergers [130], and supernova [289].
BayesWave has also been used to perform glitch subtraction [18, 33, 38, 265].
With this flexibility to model a wide range of signal and glitch morphologies in
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hand, in Ref. [110] we extended the algorithm capabilities to include a model
for CBC signals based on CBC waveform templates. The algorithm implemen-
tation is described in detail in [121, 124, 226, 379] and we briefly summarize
the most relevant features here.

Whereas most GW parameter estimation analyses [299, 367] use single, point
estimates of the PSD and assume that the data contains no glitches, BayesWave
can relax both assumptions by modeling the CBC signal, the noise PSD, and
any potential transient noise all at once.1 The full BayesWave model for this
study is the union of a CBC (waveform template) model, a glitch model, and
a noise PSD model. The different BayesWave models are described below.

• The noise model, or PSD model, expresses the noise PSD as a sum
of splines and Lorentzians. The splines capture the smooth underly-
ing broadband noise whereas the Lorentzians capture the sharp spectral
peaks. Within this paper, we use the color grey to represent the noise
model.

• The glitch model expresses excess detector transient noise as the sum of
sine-Gaussian wavelets: accordingly, each detector has its own, indepen-
dent, set of glitch wavelets. The set of all sine-Gaussian wavelets form
an overcomplete basis over smooth function space, and are thus able
to describe a glitch of any morphology provided that it is sufficiently
loud. The number of wavelets and hence the model dimensionality is
not fixed and wavelets can be added or subtracted as needed. Each
wavelet is described by five parameters (θglitch :) central time, frequency,
quality factor, amplitude, and phase. The quality factor is related to
the damping time of the sine-Gaussian, and together with the frequency
determines the duration of each wavelet. The functional form of the
wavelet is given by Eq. 4 in [124]. Within this paper, we use gold to
represent the glitch model.

• The CBC model uses waveform templates to capture the CBC signal
in a manner similar to traditional GW parameter estimation [299, 367].
Details of the implementation of the CBC model in BayesWave are given
in [379]. For this analysis we restrict to quasicircular CBC signals whose

1The effect of PSD uncertainty in CBC analyses has also been explored in [67, 73, 77,
151, 227, 305, 306, 329, 355].
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spins are aligned with the orbital angular momentum. Such signals are
characterized by up to 13 parameters, namely four intrinsic CBC pa-
rameters (the two masses m1,m2 and two dimensionless spins χ1, χ2

projected onto the Newtonian orbital angular momentum) and seven
extrinsic parameters (a time and phase, the right ascension and declina-
tion, the luminosity distance DL, the inclination ι, and the polarization
angle). For binary neutron stars (BNSs), we also have two tidal param-
eters Λ1,Λ2. In what follows, we express the masses through the chirp
mass Mc ≡ (m1m2)3/5 (m1 +m2)−1/5 which determines the GW phase
evolution to leading order and the mass ratio q ≡ m2/m2 < 1. We also
express the spin through χeff ≡ (m1χ1 +m2χ2)/(m1 +m2), which is con-
served approximately throughout the binary inspiral [287]. Within this
paper, we use pink to represent the CBC model.

• Though not used here, for completeness we also mention the signal model
that fits for coherent, excess power (“unmodeled” astrophysical signals)
using again sine-Gaussian wavelets. Unlike the glitch model, the signal
model enforces that the wavelets must be coherent across the detector
network as a genuine astrophysical signal would be. Both the signal and
the CBC model have the potential to capture a CBC source though the
former is more flexible, and thus less sensitive, particularly to weak or
long-duration signals.

Priors
The priors for the glitch and CBC model parameters remain mostly unchanged
compared to [110, 379]. However, for some combinations of glitch and CBC
signals, we find that additional flexibility is required in the time placement of
glitch wavelets and the CBC template. By construction, BayesWave analyzes
data of duration Tobs around some trigger time ttrig. The prior on the central
time of the glitch wavelets then has support within a “window” of length Tw <

Tobs around ttrig, while the CBC time prior is by default (ttrig −0.5s, ttrig +1.5s).
Here we relax the requirement that glitches and CBC signals have a time prior
around a common time ttrig and allow for them to be placed in different time
intervals, though still within Tobs. The priors for the noise PSD model are all
unchanged compared to [110, 226]. Figure 5.1 shows the relation between the
different time intervals.
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Though the wavelets that model the glitch can have central times only within
Tw, the current BayesWave implementation employs a preprocessing “cleaning
phase”. During this phase, the algorithm is run with only the glitch model
activated and Tw = Tobs, i.e., wavelets can be placed anywhere in the analyzed
data segment. At the end of the cleaning phase and before proceeding to
the main analysis, wavelets with time centered within a specified interval are
permanently subtracted from the data. We typically use a 1s cleaning window
at the beginning and end of the data segment. This procedure removes any
glitch power that might be present in the analysis segment but not necessarily
close to the CBC signal itself as well as data artifacts caused by the finite
segment duration and that could bias the PSD estimation.

Sampler
To characterize the joint glitch, CBC, and noise posterior, BayesWave uses
a combination of MCMC and RJMCMC samplers stringed together within a
blocked Gibbs sampler. The blocked samplers give us the flexibility to trivially
turn models on and off during an analysis. Here we sketch the workflow for the
“CBC+Glitch” analysis, but other BayesWave running modes with different
model combinations vary only in which samplers are active.

Instead of sampling all parameters concurrently, we separate them into groups
of related parameters that are sampled together while other parameters are
held fixed. The order of the corresponding samplers and a breakdown of the
fixed or varying parameters within each sampler is displayed in Fig. 5.2. Each
component sampler runs for a predetermined number of iterations, typically
O(100) and returns its last iteration to be used as fixed parameters by the
other samplers. We iterate through the Gibbs sampler loop O(104) times
before completing.

Before the Gibbs sampler begins, each model (i.e. PSD, CBC, and glitch) needs
to be initialized. An initial estimate for the PSD is generated by the methods
described in [124]. To initialize the CBC parameters we follow [120]. An
optional GlitchBuster step finds initial parameters for the glitch wavelets by
iteratively estimating the PSD, wavelet-transforming the data, and removing
excess power wavelets [348]. The procedure is described in more detail in [124].
Without GlitchBuster, the glitch model begins with no wavelets.

The sampling procedure, and specifically the integration of the CBC sampler is
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Figure 5.2: Visual depiction of the BayesWave workflow described in Sec. 5.3.
Each colored box represents a component sampler and displays its name
(bolded) and its input data (in LaTeX). Pink (gold, grey) boxes indicate the
sampler that searches over the CBC (glitch, PSD) parameter space. Under-
neath each colored box, the sampled (fixed) parameters are boxed (unboxed).
The Gibbs sampler (i.e., the cycle of component samplers) is boxed in red. Be-
fore entering the Gibbs sampler, we use the Fourier domain strain data, d̃(f),
to obtain initial points for the noise and CBC samplers through the procedure
described in [120]. We also optionally (dotted box) obtain an initial point
for the glitch model [124], otherwise the glitch model begins with 0 wavelets.
Within the Gibbs sampler, each component (RJ)MCMC goes through O(102)
iterations before passing its values to the next sampler. After each Gibbs sam-
pler loop, a single sample for all parameters is returned. The Gibbs sampler
loops O(104) times.
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Signal m1(M⊙) m2(M⊙) min(Tobs) (s) Λ1 Λ2

HM BBH 36 29 4 - -
LM BBH 12 7 16 - -
BNS 1.5 1.4 128 115 320

Table 5.1: Parameters of the injected signals we consider. For all the injections
we set χeff = 0, cos ι = 0.88, ϕ0 = 1.23, and ψ = 0.3. The sky location is fixed
overhead LLO, while the distance is varied to keep the network SNR fixed at
∼ 15. For each injection type, we display the minimum segment length Tobs
necessary to contain the signal, but certain long-duration glitches required an
increased segment length.

described in detail in [379]. Below we briefly describe each individual sampler.

• The “wavelet (glitch) RJMCMC” updates the parameters of one of the
current wavelets or adds/subtracts a wavelet. Details of the RJMCMC
implementation are presented in [121, 124].

• The “extrinsic MCMC” updates the extrinsic parameters of the signal,
namely the distance, sky-location, inclination and polarization angles,
and time2. Details are provided in [121, 124, 379].

• The “CBC MCMC” updates the intrinsic CBC parameters (masses,
spins, tides) as well as parameters that are correlated with them, namely
the distance, time, and phase. We use waveforms implemented in the
LALSimulation suite of models [242]. The sampler can operate with
any non-precessing model available in LALSimulation and in this study
we rely on IMRPhenomD [198, 207]. We currently do not account for
nonaligned spin degrees of freedom but plan to extend our analysis to
include the effect of spin-precession in the future. The sampling propos-
als as well as the heterodyne procedure [119, 120] used to speed up the
likelihood calculation are described in [379].

• The “noise RJMCMC” updates the number and parameters of the splines
and Lorentzians that describe the noise PSD. Details are provided in [226].
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Figure 5.3: Spectrograms of representative glitches for each glitch family we
consider in our study. We display two spectrograms for the same fast and slow
scattering glitches to demonstrate the long- and short-term behavior of such
glitch types. See Tab. 5.4 for glitch GPS times.

Quantity Data Recovery Description
gCBC+G glitch and CBC CBC+Glitch recovered glitch
gG glitch GlitchOnly recovered glitch
hrec

CBC+G glitch and CBC CBC+Glitch recovered CBC
hrec

CBC glitch and CBC CBCOnly recovered CBC
hinj N/A N/A injected CBC

Table 5.2: Summary of quantities used in the overlaps. From left to right
columns provide the symbol, the relevant data, the models active during re-
covery, and a description of what each quantity is.



38

5.4 Data and Analysis Setup
To test the efficacy of our analysis, we use LIGO data from O2 and O3,
available through the GW Open Science Center [39]. Since we do not have
exact first-principles models for glitches3, we identify data containing genuine
detector glitches, which were classified through Gravity Spy [386]. We then
inject a known CBC signal on top of the glitch, and analyze the data by
simultaneously modeling the CBC, glitch, and noise. We label such analyses
as “CBC+Glitch”. In each case we also analyze the same data using only the
CBC and noise models, i.e., ignoring the presence of the glitch. We label such
analyses as “CBCOnly”. To create a point of reference for the glitch, we also
consider the original data with no CBC injection with a “GlitchOnly” run
using only the glitch and noise models.

Going beyond the study of [110], here we analyze a more extensive set of glitch
types (as classified by GravitySpy [323, 390]), glitch instances, and a set of both
BBH and BNS injections. The injected signals include high-mass (HM) BBH
(GW150914-like [20]), low-mass (LM) BBH (GW170608-like [7]), and BNS
(GW170817-like [18]) injections; their parameters are provided in Table 5.1.
Though initially we targeted specific glitches, in many cases secondary glitches
(occurring in either or both detectors) were present in the data, speaking to
the high occurrence rate of glitches. In those cases we do not discard the data;
we analyze them nonetheless and attempt to model all glitches. These analyses
also show that BayesWave can differentiate between signals and glitches even
when they occur in multiple detectors. A spectrogram of one glitch per glitch
family is shown in Fig. 5.3. Although the “worst case scenario” for CBC
analyses is a glitch with SNR similar to or greater than that of the signal that
has a similar time-frequency morphology, in our validation studies we include
a wide range of combinations of signals and glitches.

We fix the intrinsic parameters and the sky location within injections of
the same CBC type. For each combination of glitch and CBC type, we
inject the signal at different times with respect to the glitch in order to
vary the amount of overlap between the two. Each signal has a network
signal-to-noise ratio (SNR) of 15 and we use the IMRPhenomD [198, 207]

2Though not used in the study, the BayesWave signal model that describes a GW signal
with coherent sine-Gaussian wavelets also makes use of the extrinsic sampler.

3Phenomonological models for some glitch types have been constructed, for exam-
ple [244].
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(IMRPhenomD_NRTidalv2 [146–148]) model for the BBH (BNS) signals for
injection and recovery unless otherwise indicated. For computational efficiency
and since the BNSs overlap with all glitches at low frequencies (below 40Hz),
we use a low sampling rate that does not allow us to extract tidal parameters.
The possibility of separating BNSs and glitches when they overlap in the high
frequencies relevant for tidal effects was shown in [103] using the same analysis
as here.

The recovered CBC parameters can be compared with the injected ones di-
rectly to assess the recovery reliability. However, no such comparison is possi-
ble for glitches as they are obtained from real data. We therefore use various
overlaps (O, defined in Eq. 8 of [169]) and mismatches (one minus the overlap,
M = 1 − O) between the recovered CBC and glitch to quantify the quality
of the CBC-glitch separation. Definitions are given in Table 5.2. Specifically,
for each glitch we also analyze the original data with no CBC injection using
only the glitch and noise models. This gives us access to a baseline estimate
for the glitch that can be compared to estimates of the same glitch recovered
in data coincident with a signal. We then compute the mismatch between the
median glitch recovery from analyses with (gCBC+G) and without (gG) injected
CBC signals as a way to test whether the recovered glitch subsumes part of the
CBC signal power. A high mismatch could suggest that either the glitch model
captures part of the CBC (and leads to it being inadvertently subtracted from
the data) or the glitch model misses part of the glitch and fails to subtract all
glitch power. Additionally, we compute the posterior for M(hrec

CBC|hinj), the
mismatch between the injected and the recovered CBC signal whose expected
value is a function of SNR [107].

In each case we also carry out a “CBCOnly” analysis that is akin to tradi-
tional parameter estimation (with the difference that we also marginalize over
the PSD). Though such an analysis is not well motivated as the model can-
not exactly match the data (and we encounter increased convergence issues),
we find it instructive to compare its results to the full “CBC+Glitch” anal-
ysis. We do so by plotting both posteriors when discussing each glitch, and
also via the Jensen-Shannon divergence in Sec. 5.5. We denote the recovered
CBC signal from such an analysis as hrec

CBC and compute M(gG|hrec
CBC) as an

estimate of how much of the glitch the CBC model can recover. We also com-
pare M(hrec

CBC+G|hinj) against M(hrec
CBC|hinj) to test the effect of assuming pure



40

M(hrec
CBC+G|hinj)

M(hrec
CBC|hinj)

M(gG|gCBC+G)

O(gG|hinj)

O(gG|hrec
CBC+G)

O(gG|hrec
CBC)

−4 −2 0

log10(M)

−0.25 0.00 0.25 0.50

O

Figure 5.4: Example result for the mismatches defined in Table 5.3. In
this case the glitch recovery is not impacted by the presence of the CBC as
M(gG|gCBC+G) (gold cross; left panel) is low. Additionally M(hrec

CBC+G|hinj) <
M(hrec

CBC|hinj) (magenta/teal and blue/teal; left panel) so the CBC model is
recovering part of the glitch if one uses an analysis that assumes pure Gaus-
sian noise. We see O(gG|hinj) < O(gG|hrec

CBC+G) < O(hrec
CBC|gG) (teal/gold,

magenta/gold, and blue/gold; right panel) meaning that the CBC model is
absorbing part of the glitch power, but doing less so when the glitch is part of
the model. However, such overlaps are quite low, so the effect is small.

Gaussian noise on CBC recovery in the presence of a glitch. An example re-
sult for the various overlaps is presented in Fig. 5.4 and described in detail in
Table 5.3. Generally speaking, good CBC-glitch separation is achieved when
the quantities on each panel of Fig. 5.4 and equivalent figures in later sections
are small.

Another potential test that was explored over the course of this analysis is the
Anderson-Darling statistic [58]. This test can be used to assess the degree of
Gaussianity in the residual and has been proposed in the context of PSDs [109].
Specifically, we explored the option of subtracting some point estimate (such
as the median, or a fair posterior draw) for the CBC and the glitch models
from the data and then computing the Anderson-Darling statistic. However,
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Mismatch Symbol Interpretation
M(gG|gCBC+G) Mismatch between the median glitch reconstruction

from data with and without a CBC injection. A high
value means that the recovered glitch has been im-
pacted by the presence of the CBC.

M(hrec
CBC+G|hinj) Median mismatch between injected and recovered CBC

signal when accounting for the glitch. The lower its
value, the better the CBC recovery, though the ex-
pected value depends on the signal SNR.

M(hrec
CBC|hinj) Median mismatch between injected and recovered

CBC signal without accounting for the glitch. If
M(hrec

CBC+G|hinj) < M(hrec
CBC|hinj), then the CBC model

is subsuming glitch power when the latter is left unac-
counted for.

O(gG|hinj) Overlap between injected CBC signal and the median
glitch recovered without a CBC injection. The absolute
value of O(gG|hinj) indicates how similar the CBC and
the glitch are, and thus how difficult the separation will
be.

O(gG|hrec
CBC+G) Overlap between the median CBC recovered when ac-

counting for glitch power and the median glitch re-
covered without a CBC injection. If O(gG|hrec

CBC+G) >
O(gG|hinj), then the CBC model might be absorbing
undue glitch power.

O(hrec
CBC|gG) Overlap between the median CBC recovered without

accounting for glitch power and the median glitch re-
covered without a CBC injection. If O(hrec

CBC|gG) >
O(gG|hinj), then the CBC model might be absorbing
undue glitch power.

Table 5.3: Detailed description of the various mismatches we compute using
the reconstructions defined in Table 5.2. An example result for these mis-
matches is plotted in Fig. 5.4. Throughout, pink and light blue are used for
CBC reconstructions with and without the glitch model respectively, gold is
used for glitch reconstructions, and teal is used for CBC injections. The split
colors indicate the two models used for the overlap or mismatch.
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Run Label GPS Time Injected Glitches Tobs[s] Tw[s] Qmax Dmax flow[Hz]

signal
B1_HM_BBH 1168989748 HM BBH Blip LHO 4 1 40 100 16
B1_LM_BBH 1168989748 LM BBH Blip LHO 16 1 40 100 16
B1_BNS 1168989748 BNS Blip LLO 128 1 60 100 16
B2_HM_BBH 1165578732 HM BBH 2×Blip LHO 4 1 40 100 16
B2_LM_BBH 1165578732 LM BBH 2×Blip LHO 16 1 40 100 16
B3_HM_BBH 1171588982 HM BBH Blip LLO / Unclassified LHO 4 1 40 100 16
B3_LM_BBH 1171588982 LM BBH Blip LLO / Unclassified LHO 16 1 40 100 16
S1_HM_BBH 1172917780 HM BBH Slow Scattering LLO 8 4 160 100 8
S1_LM_BBH 1172917780 LM BBH Slow Scattering LLO 16 4 160 100 8
S2_HM_BBH 1166358283 HM BBH Slow Scattering / Blip / 8 4 250 100 16

High Frequency Lines LLO
S2_LM_BBH 1166358283 LM BBH Slow Scattering / Blip / 16 4 250 100 16

High Frequency Lines LLO
S2_BNS 1166358288 BNS 2×Slow Scattering / Blip / 128 30 250 100 16

High Frequency Lines LLO
S3_HM_BBH 1177523957 HM BBH Slow Scattering LLO 8 4.5 250 100 8
S3_LM_BBH 1177523957 LM BBH Slow Scattering LLO 16 4.5 250 100 8
FS1_HM_BBH 1238326223 HM BBH Fast Scattering LLO 4 2 60 100 16
FS1_LM_BBH 1238326212 LM BBH Fast Scattering LLO 32 23 60 200 16
FS1_BNS 1238326221 BNS Fast Scattering LLO 128 84.7 60 100 16
FS2_HM_BBH 1265656683 HM BBH Fast Scattering LLO 4 3 60 100 16
FS2_LM_BBH 1265656673 LM BBH Fast Scattering LLO 64 32 60 100 16
FS3_HM_BBH 1266384078 HM BBH Fast Scattering LLO/ 4 3 60 100 16

Blip LHO
FS3_LM_BBH 1266384070 LM BBH Fast Scattering LLO/ 32 30 60 100 16

Blip LHO
BL1_HM_BBH 1256909978 HM BBH Low-Frequency Blip LLO 4 1 40 100 16
T1_HM_BBH 1243679046 HM BBH Tomte LLO/Blip LHO 4 1 40 100 8
T1_LM_BBH 1243679046 LM BBH Tomte LLO/Blip LHO 16 3 100 100 16
W1_HM_BBH 1253426470 HM BBH Whistle LLO 4 1 100 400 16

Table 5.4: Settings for the analyses of Sec. 5.5. From left to right, columns
correspond to the run label used in subsequent plots, the approximate GPS
time of the given glitch (center of Tw as in Fig. 5.1), the type of injected signal,
the glitches encountered and the affected detector(s), the segment length Tobs,
the duration of the time window where glitch wavelets can be placed Tw, the
maximum quality factor of the glitch wavelets Qmax, the maximum number
of wavelets allowed Dmax, and the low-frequency cutoff flow. All BBH runs
have a sampling rate of 2048Hz whereas the BNS runs used a sampling rate
of 1024 Hz (which precludes any possibility of recovering tidal parameters).
Horizontal lines group analyses that target overlapping data, though the exact
center of the glitch window (GPS time) might be shifted according to long-
and short-term glitch behavior.

we found that the test is very forgiving and even fails to identify large amounts
of residual glitch power. We attribute this to the fact that the form of the
Anderson-Darling test we employ is better suited for identifying large non-
Gaussian tails in distributions (and thus it is well suited for PSDs [109, 329])
than for coherent non-Gaussian residual that affects only a few data points.
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5.5 Results on overlapping signals and glitches
In this section we present results from our injection study. Each subsection
corresponds to a different glitch family and injections using three different
CBC sources, see Table 5.1. In many cases, especially for the longer signal
analyses, the data contain additional glitches beyond what was intended. We
point these cases out, but our inability to easily find glitch-free data of du-
ration 1–2 minutes speaks to their prevalence in LIGO data. Details about
the times analyzed and the glitches that we encountered either intentionally
or accidentally are provided in Table 5.4, together with analysis settings.

Blip Glitches
Blip glitches are short-duration glitches that occur in the most sensitive fre-
quency band of the detectors with a frequency range from ∼ 32Hz up through
1024Hz. Because of their short duration and prevalence, they challenge anal-
yses of high-mass events [92], especially for sources with unequal masses and
high spins [68]. Their origin is largely unknown; < 8% of LHO glitches and
< 2% of LLO glitches were identified with auxiliary channels during the first
and second observing runs [92]. Details about the blip glitches used for this
study are provided in Table 5.4 while a spectrogram is provided in Fig. 5.3.
By chance, the data around GPS time 1165578732 contain a second glitch
in LHO, 1s later. The presence of the additional glitch did not require any
modification of the priors since it occurs entirely after the signal and has a low
SNR. Figure 5.5 presents our results, with runs labeled according to Table 5.4.
Each row corresponds to the same data with a given glitch and the same CBC
signal injected at various times relative to the glitch. The merger time of the
CBC relative to the glitch center is given on the y axis.

The first and second column show various mismatches following the format
of Fig. 5.4. The set in the first column measure how well the models were
reconstructed: the lower the mismatch, the more faithful each model recovery
is. Specifically in all cases we find M(gG|gCBC+G) ≤ 0.01, suggesting that the
recovered glitch model does not consume any significant amount of the injected
CBC signal, nor does it miss part of the glitch due to the presence of the signal.
The first column also shows that typically M(hrec

CBC+G|hinj) ∼ M(hrec
CBC|hinj),

though we also occasionally find M(hrec
CBC+G|hinj) < M(hrec

CBC|hinj); in these
cases the CBC model captures part of the glitch if we ignore the presence of
the latter by analyzing the data assuming pure Gaussian noise.
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Figure 5.5: Results for CBC signals injected on top of blip glitches for high-
mass BBH (top), low-mass BBH (middle), and BNS (bottom). Each row rep-
resents an instance of a glitch and a CBC signal injected at different times (y
axis) with respect to the glitch; compare run labels to Table 5.4. The first two
columns follow Fig. 5.4 and Table 5.3. The violin plots show marginalized pos-
teriors for select recovered parameters, specifically from left to right: detector-
frame chirp mass Mc, luminosity distance DL, and effective spin χeff. The pink
(light blue) violin plots show the posteriors recovered with a “CBC+Glitch”
(“CBCOnly”) analysis. The correct, injected value is plotted with a dashed,
navy blue line. Pink and light blue are used for hrec

CBC and hrec
CBC+G respectively,

gold is used for glitch reconstructions, teal is used for CBC injections. The
split colors indicate the two models used to calculate an overlap or mismatch.
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In the second column we present information quantifying how similar the glitch
the CBC are and, by extension, how difficult it is to separate them. Again
the format is similar to Fig. 5.4. Since O(gG|hinj) is evaluated on the injected
CBC parameters and not maximized over CBC parameters, it does not di-
rectly correspond to how well a CBC template can recover the glitch, but it is
a conservative estimate of the similarity between the glitch and injected signal.
All overlaps are small, however these is some clear variation. Specifically, we
find O(gG|hinj) ∼ O(gG|hrec

CBC+G) ≤ O(hrec
CBC|gG) which means that in the “CB-

COnly” analysis the CBC model absorbs part of the glitch power. This is not
the case with the full “CBC+Glitch” model; indeed in all cases O(gG|hrec

CBC+G)
is closer to the original value of O(gG|hinj).

The remaining columns show the marginalized posterior distributions for the
(detector frame) chirp mass Mc, luminosity distance DL, and effective spin
χeff respectively. The light blue posterior correspond to hrec

CBC (“CBCOnly”)
whereas the magenta posteriors correspond to hrec

CBC+G (“CBC+Glitch”). In
all cases the parameters recovered with the full “CBC+Glitch” model are con-
sistent with the injected value. We find differences in the posteriors for the
same CBC signal injected at different times with respect to the glitch. This
is expected for two reasons. Firstly, the glitch and CBC posteriors are not
completely uncorrelated, and hence the marginal CBC posterior will not be
exactly the same as if there was no glitch. Secondly, each CBC is injected
at slightly different times, and hence is subject to a different realization of
the detector Gaussian noise. This distinction becomes more important for
shorter signals, and indeed we find that the posteriors become more simi-
lar as the CBC signal duration increases from top to bottom. Additionally,
we find numerous instances where the “CBCOnly” posteriors are significantly
shifted and even inconsistent with the injected value. These cases are typi-
cally accompanied by M(hrec

CBC+G|hinj) < M(hrec
CBC|hinj) (first column) and/or

O(hrec
CBC|gG) < O(gG|hrec

CBC+G) (second column). Similar biases were reported
in [232] for extrinsic signal parameters computed in low latency.

Blip glitches are one of the most common glitch types and are very similar
to high-mass BBHs. However, they are also one of the most straightforward
glitch types to deal with due to their compactness in time and similarity to
wavelets. The analyses presented here typically used the default BayesWave
glitch settings (apart from cases where there were additional glitches in the
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data beyond blips), and could be easily automated.

Slow-Scattering Glitches
Glitches from slow-scattered light appear in the detectors as long duration,
O(4s), arches in the time-frequency domain, evenly stacked in frequency, usu-
ally in the range 8−64 Hz. Each set of arches often recurs multiple times in the
detector as shown in Fig. 5.3. Unlike blip glitches, they are not morphologi-
cally similar to CBC signals, yet they create long periods of non-Gaussianity
and nonstationarity in the data, thus posing a challenge for noise PSD estima-
tion. Their rate of occurrence increased during O3, when slow scattered light
glitches overlapped with nine events throughout the observing run [33, 38].
Due to their morphology, slow scattered light glitches required longer analysis
segments and wavelets of higher quality factors compared to short duration
glitches such as blip glitches. A few of the glitches also extended to lower
frequencies than other glitch types, so we used flow = 8 Hz for come cases. See
Table 5.4 for run settings.

Figure 5.6 presents our results. All recovered CBC posteriors from the full
“CBC+Glitch” analysis are consistent with the injected values. Unlike the
blip glitch case discussed in Sec. 5.5, the “CBCOnly” analysis that ignores the
presence of the glitch returns largely unbiased posteriors as well, exhibiting
mostly small shifts. This is likely due to the fact that fast scattering glitches
are morphologically very different than the types of CBC signals we consider.

The left column shows some variation between the median recovered glitch
reconstructions. Though M(gG|gCBC+G) remains mostly low and around 0.01,
it can reach ∼ 0.1 in some cases mostly for the second scatter glitch (runs
whose label starts with S2). We explore this further in Fig. 5.7 where we
plot the spectrum of the data, signal, and glitch as well as spectrogram of
the data for the S2_HM_BBH injection at −500ms compared to the glitch.
In each row, we plot the spectrum (left panel) and subtract from the data
(right panel) the median glitch reconstruction (top panel) or a fair draw from
the posterior (middle panel). In the middle right panel, more of the glitch
has been subtracted compared to the top right panel. This is due to the
low SNR of the glitch (11.9 for S2 compared to 15.1 for S1; computed by
the Omicron pipeline [293]), which results in some of the scattering arches
residing in the threshold for reconstruction by the glitch model and thus not
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Figure 5.6: Same as Fig. 5.5 but for the analyses anchored around slow scat-
tering glitches. See Table 5.4 for run settings and labels.
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Figure 5.7: Spectra and residual plots for the S2_HM_BBH injection at
−500ms from the glitch, described in Sec. 5.5. The first column shows the
power spectra of hinj (teal), the raw data (grey) and a point estimate for the
PSD (black), hrec

CBC+G (pink), and gCBC+G (gold). The second column shows
spectrograms of the original data without the injection, while the third col-
umn shows spectrograms of the data where an estimate of the glitch has also
been subtracted. The first and second row show results with the median glitch
reconstruction and a fair draw from the posterior respectively. The third row
shows results where the glitch amplitude prior set to peak at SNR=1 that aids
identification of lower-SNR glitches. Due to the low SNR of the glitch, we
find that all these choices impact the quality of glitch reconstruction and the
subtraction.
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consistently included in the median. As a result, the median reconstruction
has a large variation between different analyses, resulting in higher values for
M(gG|gCBC+G). In such cases, the glitch-subtracted data are sensitive to the
choice of which glitch reconstruction to subtract (median or some fair draw)
and additional case-by-case attention is needed.

Motivated by the low SNR of the S2 glitch, we also considered the effect of
the default priors in BayesWave. The prior on the amplitude of the wavelets
is broad, but peaks at SNR=5 per wavelet by default, see Fig. 5 of [124]. The
bottom panel of Fig. 5.7 shows results with a wavelet amplitude prior that
peaks at SNR=1 per wavelet. Clearly more of the low-SNR glitch is subtracted.
We leave further tests of the prior tunings such as this to future work. We
conclude that although analysis of high-SNR slow scattering glitches can be
potentially automated, lower-SNR instances will require some user attention.

Fast Scattering Glitches
Fast-scattering glitches (also referred to as “crowns” [323]) are long duration
glitches composed of many short bliplike bursts in frequencies from 10 − 60
Hz. Fast-scattering glitches have been linked to light scattered off the LIGO
optical systems, particularly during ground motion [323]. They were the most
common glitch type in LLO in O3, comprising 27% of all glitches [323]. Two
spectrograms of fast-scattering glitches are given in Fig. 5.3 and display the
long- and short-term glitch behavior; relevant run settings are presented in
Table 5.4.

Since a single fast-scattering glitch contains multiple, time-separated bursts,
some adjusted settings are required. Such glitches create long-term nonsta-
tionarity, particularly at low frequencies so we increase the duration of the
analyzed segments from 16 to 32 seconds for the low-mass BBHs. Despite
the overall long duration of the glitch, we found that an increase in Qmax is
not necessary, as each glitch consists of individual shorter burst that are each
reconstructed by a few low-Q wavelets.

Figure 5.8 presents our results. Overall, we find similar results to the slow-
scattering case of Fig. 5.6, as the full “CBC+Glitch” analysis is able to separate
the signals and glitches while reliably estimating the parameters of the former.
The “CBCOnly” analysis returns mostly unbiased results, with the exception
of isolated cases. Additionally, we find M(gG|gCBC+G) < 0.01 in the first
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Figure 5.8: Same as Fig. 5.5 but for the analyses anchored around fast-
scattering glitches. See Table 5.4 for run settings and labels.
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Figure 5.9: Same as Fig. 5.5 but for the analyses anchored around a tomte
glitch. See Table 5.4 for run settings and labels. The recovered CBC posteri-
ors without simultaneous glitch modeling (light-blue violin plots) are heavily
biased.
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Figure 5.10: Same as Fig. 5.5 but for the analyses anchored around a low-
frequency blip glitch. See Table 5.4 for run settings and labels.

column which indicates that the glitch reconstruction is reliable even in the
presence of a CBC signal. Due to the adjusted settings required for this
analysis, automating analyses of fast-scattering glitches will be challenging.

Tomte Glitches
Tomte glitches are similar to blip glitches in that they can resemble CBCs
with high, unequal masses and high spins [68]. We again initially considered
various instances of tomte glitches in LIGO data. However, we found the
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Figure 5.11: Same as Fig. 5.5 but for the analyses anchored around the whistle
glitch. See Table 5.4 for run settings and labels.

various tomte glitches to be morphologically very similar to each other, and
therefore here restrict to a single instance. The glitch spectrogram is again
given in Fig. 5.3 and results are presented in Fig. 5.9. We find broadly similar
results to the blip glitch case.

Similar to blip glitches, the “CBCOnly” analysis leads to large biases for all
CBC parameters, both intrinsic and extrinsic. This suggests that of all glitches
analyzed so far, tomtes are the ones most morphologically similar to CBCs.
This is also evident in the second column of Fig. 5.9, where O(hrec

CBC|gG) ∼ 1
and O(gG|hinj) ∼ 0, which means that in the “CBCOnly” analysis the CBC
model ignored the signal entirely in favor of the glitch. However, even in
this challenging case, the joint “CBC+Glitch” analysis is able to separate the
signal and the glitch and result in reliable CBC parameter estimates and glitch
reconstruction.

Low-Frequency Blip Glitches
Low-frequency blips, as the name suggests, are similar in morphology to blip
glitches except that they infect lower frequency bands, see the spectrogram in
Fig. 5.3. Given their similarity to blips, we consider a single instance of a low-
frequency blip glitch and show results in Fig. 5.10. We obtain similar results
to the blip glitch case, Fig. 5.5, with small mismatches M(gG|gCBC+G) ≤ 0.01
and recovered posteriors that are consistent with the injected values. However,
low-frequency blips do not cause as significant a bias on the recovered CBC
parameters when the glitch is not included in the model. This might be due to
their low-frequency nature, which means that they do not significantly overlap
with the CBCs in the most sensitive detector frequency band.
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Figure 5.12: Spectra and residual plots for the W1_HM_BBH injection at
100ms from the glitch, described in Sec. 5.5 in similar format as Fig 5.7. The
right plot shows the final data where we have subtracted the median glitch
reconstruction (top panel) or a fair draw from the glitch posterior (bottom
panel), leaving behind Gaussian noise. The median reconstruction leads to
oversubtraction of the glitch; we therefore favor the fair draw.

Whistle
Whistle glitches are fairly loud glitches with a characteristic morphology de-
picted in the spectrogram of Fig. 5.3. Our chosen instance of this glitch has
an SNR of ∼ 275. Given their strength, more than 200 wavelets are required
to model them accurately, which poses a considerable challenge for sampler
convergence. Given this fact, we only attempted injections on short duration
segments.

To aid convergence, we use GlitchBuster to initialize the glitch model, see
Sec. 5.3. Despite the short duration, the high frequency of the glitch results in
a lot of waveform cycles, we therefore also increase the maximum quality factor
of the wavelets. Finally, we also increase the number of iterations within the
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wavelet RJMCMC (see Fig. 5.2) from 102 to 103 as this glitch reconstruction
requires upwards of 230 wavelets at every posterior sample. By default, we
retain one out of 100 samples, and only update (i.e., add/remove/change)
a single glitch wavelet at each sampler step. These default settings would
therefore not lead to independent samples as not all wavelets have a chance
to be updated before a posterior sample is retained. Details about the run
settings are provided in Table 5.4.

Results are presented in Fig. 5.11 where we find that we are able to sub-
tract the glitch consistently as well as estimate the CBC parameters. Despite
the strength of the glitch, the “CBCOnly” analysis returns mostly unbiased
parameter posteriors, possibly due to the fact that whistle glitches are not
morphologically similar to high-mass BBHs. The quality of glitch modeling
and subtraction is further explored in Fig. 5.12 for the analysis of Fig. 5.11,
specifically the injection at 100 ms relative to the glitch. Comparison be-
tween the middle and right panel shows that we can efficiently subtract the
glitch power. In this case, we also find that the median glitch reconstruction
(top panel) results in an oversubtraction of the glitch. The fair draw (bot-
tom panel) leads to data that look more consistent with Gaussian noise. For
this and the reasons discussed in Sec. 5.5 we generally prefer working with
fair posterior draws rather than median glitch reconstructions when making
glitch-subtracted data.

Jensen-Shannon Divergence
As a final test, we compute a simple summary statistic for the differences be-
tween the “CBCOnly” and the “CBC+Glitch” posteriors: the Jensen-Shannon
(JS) divergence. The JS divergence describes the similarity of two distribu-
tions with JS = 0 for identical distributions and JS = 1 for disparate distribu-
tions. We plot the median and maximum/minimum JS for DL, χeff, and Mc

across CBC injections on the same glitch at different times in Fig. 5.13. With
the exception of the tomte glitch (discussed in Sec. 5.5) where the posteriors
are completely different, we recover the general trend that the JS divergence is
smaller for low masses, which implies that the “CBCOnly” and “CBC+Glitch”
posteriors are more similar for lower-mass events. This again supports the pre-
vious conclusion that though glitches are more likely to overlap long duration
events, glitch subtraction is more important for high-mass than low-mass sig-
nals. Among the different parameters, the chirp mass is the one with the lowest
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Figure 5.13: Jensen-Shannon (JS) divergence between the “CBC only” and
the “CBC+Glitch” marginalized one-dimensional posteriors for DL, χeff, and
Mc. We then plot the median (marker) and minimum to maximum values
(error bars) over CBC injections at different times with respect to the same
glitch. The breaks in the y axis of the plot indicate different mass ranges,
increasing upwards from the origin. The general trend is that JS increases
with the signal mass, again suggesting that glitches affect high-mass systems
more.

JS on average, which is expected given the fact that it is the best measured
intrinsic source parameter.

5.6 Further validation studies
The results of Sec. 5.5 show that the full “CBC+Glitch” analysis can separate
signals and glitches. In this section we provide some further validation tests
regarding robustness against waveform systematics in the case of injections in-
cluding higher-order modes or spin precession. We also assess the performance
for signals that are observed by a single detector. Run settings and injection
parameters for this section are presented in Tables 5.5 and 5.6 respectively.
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Run Label GPS Time Injected signal Glitches Tobs [s] Tw [s] Qmax Dmax flow [Hz]

B1_HM_BBH_HOM 1168989748 HM BBH w/ HOM Blip LHO 4 1 40 100 16
T1_HM_BBH_SPIN 1243679046 HM BBH w/ SPIN Tomte LLO 4 1 40 100 8
B1_HM_BBH_SING 1168989748 HM BBH w/ SING Blip LHO 4 3 40 100 16

Table 5.5: Settings for the runs of Sec. 5.6 that test the effect of omitting
higher-order modes (HOM), spin precession (SPIN), or considering only a single
detector (SING). Columns give the same information as those of Table 5.4.

Signal Injected Waveform Varied param. min. max.
HOM IMRPhenomHM cos(ι) -1 1
SPIN IMRPhenomPv2 χp 0.23 0.60

Table 5.6: Parameters of the injected signals for the tests of higher-order modes
(HOM) and spin precession (SPIN). For high-order modes (spin precession) we
vary cos(ι) (χp) between a minimum and a maximum value (third and fourth
columns) to modify the strength of the deviation between the IMRPhenomD
recovery waveform and the injected waveform.
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Figure 5.14: Similar to Fig. 5.5 for a blip glitch and different high-mass BBH
signals injected with higher-order modes but recovered without. The y axis
now shows the binary inclination. See Table 5.5 for run settings and labels.

Waveform Systematics: Higher-Order Modes
The results of Sec. 5.5 are based on IMRPhenomD [198, 207], a waveform
model that does not include higher-order modes, i.e., power from spherical
harmonics beyond the dominant l = |m| = 2 mode. Such modes change the
waveform morphology and thus neglecting them will lead to biases, especially
for high SNR, unequal-mass systems, observed “edge-on” (cos ι = 0) [93, 94,
112, 270, 360, 361]4. Our current CBC sampler can work with waveform models
that include higher-order modes such as IMRPhenomHM [228], however, we

4The inclination ι ∈ [0, π] is defined as the angle between our line-of-sight and the
binary’s Newtonian orbital angular momentum.
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Figure 5.15: Whitened time-domain reconstruction (top) and spectrum (bot-
tom) for a high-mass BBH injected with higher-order modes and edge-on. We
show medians and 90% credible intervals for the CBC signal (magenta), the
glitch (gold), and the noise PSD (grey/black) from the “CBC+glitch” analysis.
The injected signal is given with a dashed teal line. The higher-order modes re-
sult in oscillations in the inspiral spectral amplitude as well as additional power
at high frequencies. The CBC waveform used for the reconstruction does not
include higher-order modes, however the reconstructed glitch model does not
recover the excess power from higher-order modes. The CBC model from a
“CBCOnly” analysis (light blue) is similar to the one from the “CBC+glitch”
analysis.
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do not perform such runs here because we lack an implementation of the
heterodyne procedure [119, 120] that speeds up the likelihood calculation for
such waveforms. Such an extension was described in [221] and we plan to
implement it in the future.

Because a real signal will inevitably contain some amount of higher-order
modes, recovery with a waveform that neglects them could induce a systematic
error in parameter extraction. Perhaps even more worrisome would the pos-
sibility that the glitch model subsumes some of the higher-order mode power
which is then inadvertently subtracted from the data together with the glitch.
We check for both effects by injecting the high-mass BBH signal from Ta-
ble 5.1 using IMRPhenomHM [228] with varying inclination cos ι ∈ [−1, 1]
onto one of our blip glitches and recover them again with IMRPhenomD.
Figure 5.14 shows recovered parameters for different system inclinations and
Fig. 5.15 shows the recovered CBC and glitch reconstruction for the case with
cos ι = 0.

Compared to the top row of Fig. 5.5, i.e., the same injected CBC and glitch but
without higher-order modes and different inclinations, we find that M(gG|gCBC+G)
has increased, but still remains ≤ 0.01. The other mismatches are compara-
ble between Figs. 5.14 and 5.5. Despite the increase in M(gG|gCBC+G), its
value remains small and comparable to results from other blip glitches with-
out higher-order modes, for example the second row of Fig. 5.5. We attribute
this to the fact that the higher-order mode power is still too low to overcome
the parsimony requirement of the glitch model to be picked up. Figure 5.15
further reinforces this picture, by showing that the main effect of higher-order
modes is additional high-frequency power that cannot be captured by the tem-
plate (compare the magenta reconstruction to the teal injection). However,
this residual power is still two orders of magnitude below the glitch power in
the same frequency range.

Figure 5.14 also confirms that the amount of bias expected on the CBC pa-
rameters (notably DL) is a function of the binary inclination. Furthermore,
we find that not including the glitch in the model now leads to more pro-
nounced parameter biases (blue violin plots). Regardless, even in the edge-on
case the glitch and CBC signal can be separated sufficiently well as demon-
strated by the mismatches in the first column. Higher SNR signals or, in
general, a signal with more than SNR∼ 6 − 7 in the higher-order modes could
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Figure 5.16: Similar to Fig. 5.5 but for a tomte glitch and different precessing
high-mass BBH signals as a function of the injected binary precession param-
eter χp. See Table 5.5 for run settings and labels.

have more noticeable deviations from waveforms without higher-order modes
where their power could then be picked up by the glitch model. However,
current events with detectable higher-order mode content are below this SNR
threshold [24, 25, 193, 250, 387].

Waveform Systematics: Spin Precession
In physical scenarios where the component spins are misaligned with the or-
bital angular momentum, the binary system experiences spin-precession which
modulates the observed waveform [61]. The current implementation of the
CBC sampler used here only accounts for spins aligned with the orbital an-
gular momentum, so we assumed that the injected waveforms in our main
analysis were also nonprecessing, motivated also by the lack of strong preces-
sion effects in event catalogues [37, 38]. However, signals with large in-plane
spins, unequal masses, and/or observed edge-on could exhibit strong preces-
sional effects [62, 104, 106, 206, 208, 209, 261, 280, 281, 313, 314]. The CBC
sampler will be extended to include misaligned spin degrees of freedom in the
future.

Similar to our analysis of the impact of higher-order modes, we study the
impact of using nonprecessing templates by performing injections of high-
mass BBHs with misaligned spins on the tomte glitch. The tomte glitch
family was selected for this study as it is similar morphologically to highly-
spinning, massive BBHs [68], and also because it consistently leads to the
largest biases in CBC parameters when mismodeled (see Fig. 5.9). For the
injections we use IMRPhenomPv2 [178] and we recover the signals with the
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Figure 5.17: Similar to Fig. 5.15 for a spin-precessing high-mass BBH signal
with χp = 0.592. Spin precession induces oscillations in the inspiral spectral
amplitude, most visible at around 40 Hz. The CBC waveform template used
for the reconstruction assumes the spins are aligned with the orbital angular
momentum, however the reconstructed glitch model appears unaffected. The
CBC model from a “CBCOnly” analysis instead attempts to recover the glitch.

same IMRPhenomD waveform as before. The degree of spin-precession in a
signal is commonly characterized by the parameter χp which is proportional to
a mass-weighted maximum (over the two compact objects) of the in-plane spin
magnitude [315]. Its range is χp ∈ [0, 1], where χp = 0 describes a system with
aligned spins (no precession) and χp = 1 is a maximally precessing system.
Figure 5.16 shows results for different values of χp and Fig. 5.17 shows the
recovered CBC and glitch reconstructions for the case the largest χp.

Compared to Fig. 5.9 that shows results with the same signal and glitch but
with a nonprecessing injection, we find that parameter recovery is increasingly
biased as the injected χp increases. Again the “CBCOnly” analysis (blue violin
plots) leads to overwhelming parameter biases, which seems to be a generic
feature of tomte glitches. This is again reflected in the fact that O(hrec

CBC|gG) ∼
1 whereas O(gG|hinj) ∼ 0. Importantly, however, M(gG|gCBC+G) ≤ 0.01 and
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Figure 5.18: Similar to Fig. 5.5 but for a blip glitch and high-mass BBH (top)
and low-mass BBH (bottom) signals observed in a single LHO detector. See
Table 5.5 for run settings and labels.

is similar to the corresponding mismatches of Fig. 5.9; this means that the
excess power due to spin-precession is not recovered by the glitch model, as
its power is too low to be significant to the glitch model.

A similar conclusion is drawn from Fig. 5.17. The recovered signal is notice-
ably different from the injected signal, most prominently shown in the bottom
panel where the precession-induced amplitude oscillations are absent from the
posterior. However, again the glitch reconstruction appears to be unaffected,
most likely because the relevant residual power is 2–3 orders of magnitude
below the glitch power in the relevant frequency range. Higher binary incli-
nations and higher signal SNRs might make the difference between precessing
and nonprecessing waveforms more stark, causing the glitch model to cap-
ture any residual power due to spin precession. However, with current signal
strengths and inferred amounts of spin precession, we find this to be unlikely.
Though the CBC parameters recovered are clearly biased, the glitch modeling
appears to be robust. Glitch-subtracted data can therefore be constructed and
further analyzed with more complete waveform models. Nonetheless, we plan
to extend the analysis to include spin-precession effects in the CBC sampler.
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Figure 5.19: Similar to Fig. 5.15 for the B1_HM_BBH_SING injection at
100ms from the glitch. When using the full “CBC+Glitch” model, hrec

CBC+G
and gCBC+G recover the CBC signal and glitch respectively even when data
from a single detector only are available. The CBC model from a “CBCOnly”
analysis instead attempts to recover the glitch.

Single-detector signals
The joint analysis of CBCs and glitches assumes that the astrophysical signal is
coherent across the detector network, while the glitch is not. Hence, the results
presented so far are based on data from both LIGO detectors. However, single-
detector candidates have been reported [38], and we therefore test here if our
analysis could separate them from glitches. The CBC waveform template we
employ is a fairly restrictive model and we indeed find that this allows us in
some cases to separate them from glitches even in single-detector data. Such a
separation would be inherently impossible for the previous BayesWave analyses
that distinguished between signal and glitch solely via coherence within a
detector network [124].

We revisit runs B1_BBH_HM and B1_BBH_LM from Table 5.4 and analyze now
only the LHO data that contain the glitch. We decrease the distance so that
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Trigger GPS Time Tobs [s] Tw [s] Qmax Dmax flow [Hz]
S191225 1261346253 4 1 40 100 16
S200114 1263002916 4 2 40 100 16
Tomte 1 1243679046 4 1 40 100 16

Table 5.7: Settings for the analyses of Sec. 5.7. The first two columns provide
the trigger name and GPS time. The remaining columns are the same as
Table 5.4. Additionally, S191225 used a sampling rate of 1024 Hz whereas
S200114 used a sampling rate of 2048 Hz.

the single-detector SNR is 15 for consistency with all other analyses. We
present parameter results in Fig. 5.18 and find that we are largely able to
seperate the signal and the glitch. Even in this single-detector case the full
“CBC+Glitch” model outperforms the simpler “CBCOnly” analysis and the
glitch reconstruction is consistent with the one from data with no CBC in-
jections. An example reconstruction plot is shown in Fig. 5.19 where again
the CBC and glitch components of the full “CBC+Glitch” model recover their
corresponding data component. The “CBCOnly” analysis, on the other hand,
largely mistakes the glitch for a signal. Although these preliminary results
are promising, we remain cautious of such cases. If presented with a similar
scenario during an actual observing run, our analysis would require additional
case-by-case attention and testing.

5.7 Classifying triggers
The joint “CBC+Glitch” analysis simultaneously models CBC signals and
glitches, however, the priors for both the CBC and the glitch model allow for
the possibility of no CBC and/or no glitch in the data. In the glitch case, this
is straightforward, as the model allows for 0 wavelets in all detectors, as was
for example recovered in the case of GW150914 in [110]. While the CBC priors
ensure the presence of a CBC in the data, the luminosity distance prior extends
to 10Gpc, which effectively corresponds to a signal with negligibly small SNR.
This suggests that our analysis can be used to assess whether certain detected
excess power consists of a CBC signal, a glitch, both, or neither. We revisit
two low-significance candidates from [33, 40] and analyze them with the joint
“CBC+Glitch” and the “CBCOnly” analysis. Analysis settings are provided
in Table 5.7.
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Figure 5.20: Whitened time-domain reconstruction for S200114 in each de-
tector. We show medians and 90% credible intervals for hrec

CBC+G (magenta),
gCBC+G (gold), and hrec

CBC (blue). The data are consistent with the presence of
both a CBC signal (i.e., coherent power that is morphologically similar to a
CBC), and a glitch (i.e., additional incoherent power in LLO).
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Figure 5.21: Posteriors for select parameters for S200114 from the
“CBC+Glitch” analysis (pink) to the “CBCOnly” analysis (blue). Differences
between these posteriors are smaller than those between different waveform
models reported in [40].

S200114

We begin with 200114_020818 (referred to as S200114 from now on), which
was identified by Coherent Wave Burst [212] with a false-alarm rate of 0.058
yr−1 [40]. Despite the low false alarm rate, the conclusion was that although
an astrophysical origin could not be excluded, the trigger is of likely glitch
origin since the estimated CBC parameters depended heavily on the choice of
waveform model.

Figure 5.20 shows the time-domain reconstruction in each detector and Fig. 5.21
shows a few marginalized parameter posteriors. The joint “CBC+Glitch” anal-
ysis is consistent with the presence of both a CBC signal (at the 90% credible
level) and a low-frequency glitch in LLO. The morphology of the LLO glitch
is consistent with a low-frequency blip or a tomte. This suggests that while
there is excess power that is morphologically similar to a CBC and is coherent
between LHO and LLO, there is also additional incoherent power in LLO that
is captured by the glitch model. The CBC reconstruction is consistent with
zero in Virgo at the 90% credible level. Additionally, the “CBCOnly” analysis
finds a broadly consistent CBC reconstruction, with small differences at low
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frequencies. Differences between the “CBCOnly” and “CBC+glitch” CBC pa-
rameter posteriors are much smaller than the waveform systematics reported
in [40].

The presence of some amount of coherent power is consistent with the low false-
alarm rate reported by a coherent detection pipeline in [40]. The additional
incoherent power in LLO could explain the inconsistent parameter estimation
results between different waveform models presented in [40], especially since
the NRSur7dq4 [362], SEOBNRv4PHM [261], and IMRPhenomXPHM [281] waveform
models used in [40] include the effects of spin-precession and higher-order
modes. Thus they can account for more complicated morphologies [95, 264]
in the CBC signal than the PhenomD model used here.

The glitch in LLO is similar to a tomte which we have found to be recovered as
a CBC in “CBCOnly” analyses. To check whether a single tomte glitch could
trick the “CBC+glitch” analysis into concluding that both a CBC and a glitch
are present in the data, we revisit the tomte glitch from Table 5.4, perform
no CBC injection, and carry out a “CBC+Glitch” analysis. Reassuringly, the
sampler indeed converges to the correct answer as shown in Fig. 5.22, namely
that no CBC is present in the data, rather only a glitch. This suggests that
the results of Fig. 5.20 cannot be the outcome of a single tomte glitch and the
“CBC+glitch” analysis does not recover coherent power when there is none.

However, we do not attempt to obtain a background estimate and thus cannot
assess the probability that such a combination of coherent/incoherent power
has a terrestrial origin. Such a full background estimate could result in the
calculation of a false alarm rate similarly to the BayesWave analysis in [14, 27]
based on the signal and glitch models only. In our case, we would use the
“CBC+glitch” analysis to estimate Bayes Factors for the various models of
interest and compare them to similar results obtained from data that have
been shifted in time between LHO and LLO.

S191225

We then consider 191225_215715 (labeled S191225 from now on), a low-
significance LLO-Virgo trigger found by the PyCBC Live [257] and the PyCBC-
IMBH [101] searches with false-alarm rates of 0.4 yr−1 and 0.47 yr−1 respec-
tively in O3 [38, 40]. This candidate was ultimately deemed a glitch due
to similar detector behavior surrounding the event. The reconstructed time-
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Figure 5.22: Whitened time-domain reconstruction for an analysis of data
that contain only a single tomte glitch. We show medians and 90% credible
intervals for hrec

CBC+G (magenta), gCBC+G (gold), and hrec
CBC (blue). The data are

consistent with the presence of solely a tomte glitch in LLO and do not recover
any coherent power (the magenta CBC reconstruction is consistent with zero)
when there is none.
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Figure 5.23: Whitened time-domain reconstruction for S191225 in LLO (top)
and Virgo (bottom). We show the median and 90% credible intervals for
hrec

CBC+G (magenta), gCBC+G (gold), and hrec
CBC (blue). Some low-frequency co-

herent power is recovered by hrec
CBC+G whereas the high-frequency power is

largely incoherent and is recovered by the glitch model.
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Figure 5.24: Posteriors for select parameters for S191225 from the
“CBC+Glitch” analysis (pink) to the “CBCOnly” analysis (blue).

domain signal is shown in Fig. 5.23 for each detector, where we find that the
data are consistent with a very high mass CBC and a glitch.

When contrasting parameters from the “CBCOnly” analysis to the “CBC+Glitch”
analysis. Fig. 5.24, we find that the former displays the telltale signs of a glitch;
negative χeff and unequal masses [68]. The latter still recovers some coherent
power with recovered parameters instead pointing to a much higher mass bi-
nary (total mass > 300M⊙). Since the new recovered mass is much larger than
the original one, we might expect the false-alarm rate for this event to increase,
although a full background estimate is outside the scope of this study.

Overall, we find that S191225 is consistent with a glitch in LLO (possibly a
tomte) atop of some coherent power, which agrees and expands upon with the
conclusions of [38, 40].

5.8 Conclusions
The various models that form the BayesWave algorithm allow us to analyze
GW data that include multiple components, specifically noise PSD, glitches,
and a CBC signal. We present multiple tests with injected signals that overlap
with real LIGO glitches and show that we can reliably separate signals and
glitches, estimate the CBC parameters, and provide estimates for the glitch to
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Figure 5.25: Run time estimates (90% intervals) for each glitch type and run
setting we employ as a function of data points N (segment length × sample
rate). The x-axis is normalized by the shortest runs performed. Since runtime
is (approximately) linear with the number of MCMC samples and number
of chains, we rescale estimates to Number of Chains = 20 and Number of
Iterations = 4 × 106, which are the default settings. Lighter settings can be
used to expedite certain analyses.
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be subtracted from the data. Runtime estimates for the various analyses are
presented in App. 5.10.

Our analysis is able to identify all glitches analyzed. It is particularly reli-
able for short-duration glitches such as blips, tomtes, and low-frequency blips
which could be tackled in an automated way with default analysis settings.
These are also the glitch types that cause the largest biases for CBC param-
eters when left unaccounted for. Long-duration glitches such as fast and slow
scattering glitches are more challenging and in some cases need specialized
settings. Crucially, the necessary settings (such as maximum wavelet quality
factor or analysis segment length) differ even between glitches of the same fam-
ily, suggesting that automation is not yet feasible. This effect is particularly
prominent for fast-scattering glitches that create long periods of nonstationar-
ity that challenge PSD estimation, especially at low frequencies (below 40 Hz).
Luckily, these glitches incur smaller biases in CBC parameter, most likely for
the same reason they are difficult to model: they have a large time-frequency
footprint that does not resemble a CBC chirp.

In this study, (with one exception) changes on glitch wavelet priors concerned
their ranges, while their shapes were unaltered compared to default settings.
However, dedicated glitch priors that target particularly problematic glitch
families would improve glitch modeling. For example, a prior that favors
wavelets with lower amplitude can lead to improved results for the low-SNR
slow-scattering glitch (S2). Further examples of dedicated priors include a
trained model based on a principal component analysis for tomte glitches [244]
or prior information about the frequency spacing of the scattering arches [41,
322]. Depending on the characteristics of the most prevalent and problematic
glitch types in O4, we plan to explore such dedicated priors in the future.
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5.10 Appendix
Runtimes
Including a variable-dimensional glitch and PSD model comes at an additional
computational cost compared to standard CBC analyses. We display the run-
times for the different glitch types and analyses presented in this paper in
Fig. 5.25. There is an essentially linear dependence between the number of
data points (the segment length times the sampling rate) and the run time.
The whistle glitch runs are outliers as additional settings were required to sub-
tract such high-SNR glitches (see Sec. 5.5). Since runtime is (approximately)
linear with the number of parallel chains and the number of iterations, we
rescale time by the default settings of 20 chains and 4 × 106 iterations, though
lighter settings can be used for expedited results. For example, the BNS runs
for Fast-Scattering and Blip glitches used 10 chains for speed, and the whistle
glitch was run with 25 chains for convergence. The rest were run with 20
chains. These estimates are further based on single-core runs and will be sped
up accordingly by ongoing work to parallelize the chains.
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C h a p t e r 6

IMPACT OF GLITCH MITIGATION ON GW200129

This chapter contains work from

Ethan Payne, Sophie Hourihane, Jacob Golomb, Rhiannon Udall, Richard
Udall, Derek Davis, and Katerina Chatziioannou. Curious case of GW200129:
Interplay between spin-precession inference and data-quality issues. Phys.
Rev. D, 106(10):104017, 2022. doi: 10.1103/PhysRevD.106.104017. Reprinted
here as Chapter 6. SH helped conceptualize the project, led all BayesWave
analyses, and created related figures, and authored related text.

6.1 Abstract
Measurement of spin-precession in black hole binary mergers observed with
gravitational waves is an exciting milestone as it relates to both general rela-
tivistic dynamics and astrophysical binary formation scenarios. In this study,
we revisit the evidence for spin-precession in GW200129 and localize its ori-
gin to data in LIGO Livingston in the 20–50 Hz frequency range where the
signal amplitude is lower than expected from a non-precessing binary given
all the other data. These data are subject to known data quality issues as a
glitch was subtracted from the detector’s strain data. The lack of evidence for
spin-precession in LIGO Hanford leads to a noticeable inconsistency between
the inferred binary mass ratio and precessing spin in the two LIGO detectors,
something not expected from solely different Gaussian noise realizations. We
revisit the LIGO Livingston glitch mitigation and show that the difference be-
tween a spin-precessing and a non-precessing interpretation for GW200129 is
smaller than the statistical and systematic uncertainty of the glitch subtrac-
tion, finding that the support for spin-precession depends sensitively on the
glitch modeling. We also investigate the signal-to-noise ratio ∼ 7 trigger in the
less sensitive Virgo detector. Though not influencing the spin-precession stud-
ies, the Virgo trigger is grossly inconsistent with the ones in LIGO Hanford
and LIGO Livingston as it points to a much heavier system. We interpret the
Virgo data in the context of further data quality issues. While our results do
not disprove the presence of spin-precession in GW200129, we argue that any
such inference is contingent upon the statistical and systematic uncertainty of
the glitch mitigation. Our study highlights the role of data quality investi-
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gations when inferring subtle effects such as spin-precession for short signals
such as the ones produced by high-mass systems.

6.2 Introduction
GW200129_065458 (henceforth GW200129) is a gravitational wave (GW) can-
didate reported in GWTC-3 [38]. The signal was observed by all three LIGO-
Virgo detectors [1, 43] operational during the third observing run (O3) and it
is consistent with the coalescence of two black holes (BHs) with source-frame
masses 34.5+9.9

−3.2 M⊙ and 28.9+3.4
−9.3 M⊙ at the 90% credible level. Though the

masses are typical within the population of observed events [37], the event’s
signal-to-noise-ratio (SNR) of 26.8+0.2

−0.2 makes it the loudest binary BH (BBH)
observed to date. Additionally, it is one of the loudest triggers in the Virgo
detector with a detected SNR of 6–7 depending on the detection pipeline [38].
The signal temporally overlapped with a glitch in the LIGO Livingston de-
tector, which was subtracted using information from auxiliary channels [138].
The detection and glitch mitigation procedures for this event are recapped in
App. 6.9.

The interpretation of some events in GWTC-3 was impacted by waveform sys-
tematics, with GW200129 being one of the most extreme examples. As part
of the catalog, results were obtained with the IMRPhenomXPHM [281] and
SEOBNRv4PHM [261] waveform models using the parameter inference algo-
rithms Bilby [69, 299] and RIFT [381] respectively. Both waveforms correspond
to quasicircular binary inspirals and include high-order radiation modes and
the effect of relativistic spin-precession arising from interactions between the
component spins and the orbital angular momentum. All analyses used the
glitch-subtracted LIGO Livingston data. The IMRPhenomXPHM result was
characterized by large spins and a bimodal structure with peaks at ∼ 0.45 and
∼ 0.9 for the binary mass ratio. The SEOBNRv4PHM results, on the other
hand, pointed to more moderate spins and near equal binary masses. Both
waveforms, however, reported a mass-weighted spin aligned with the Newto-
nian orbital angular momentum of χeff ∼ 0.1, and thus the inferred large spins
with IMRPhenomXPHM corresponded to spin components in the binary or-
bital plane and spin-precession. Such differences between the waveform models
are not unexpected for high SNR signals [285]. Waveform systematics are also
likely more prominent when it comes to spin-precession, as modeling prescrip-
tions vary and are not calibrated to numerical relativity simulations featuring
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spin-precession [261, 280, 281]. Data quality issues could further lead to evi-
dence for spin-precession [68]. Due to differences in the inference algorithms
and waveform systematics, GWTC-3 argued that definitive conclusions could
not be drawn regarding the possibility of spin-precession in this event [38].

Stronger conclusions in favor of spin-precession [179] and a merger remnant
that experienced a large recoil velocity [364] were put forward by means of a
third waveform model. NRSur7dq4 [362] is a surrogate to numerical relativ-
ity simulations of merging BHs that is also restricted to quasicircular orbits
and models the effect of high-order modes and spin-precession. This model
exhibits the smallest mismatch against numerical relativity waveforms, some-
times comparable to the numerical error in the simulations. It is thus expected
to generally yield the smallest errors due to waveform systematics [362]. This
fact was exploited in Hannam et al. [179] to break the waveform systematics tie
and argue that the source of GW200129 exhibited relativistic spin-precession
with a primary component spin magnitude of χ1 = 0.9+0.1

−0.5 at the 90% credible
level.

During a binary inspiral, spin-precession is described through post-Newtonian
theory [62, 210]. Spin components that are not aligned with the orbital angu-
lar momentum give rise to spin-orbit and spin-spin interactions that cause the
orbit to change direction in space as the binary inspirals, e.g., [88, 89, 106, 107,
167, 178, 206, 288, 313, 314]. The emitted GW signal is modulated in ampli-
tude and phase, and morphologically resembles the beating between two spin-
aligned waveforms [159] or a spin-aligned waveform that has been “twisted-
up” [313, 314]. As the binary reaches merger, numerical simulations suggest
that the direction of peak emission continues precessing [260]. Parameter es-
timation analyses using NRSur7dq4 find that spins and spin-precession can be
measured from merger-dominated signals for certain spin configurations [78],
however the lack of analytic understanding of the phenomenon means that it
is not clear how such a measurement is achieved.

The main motivation for this study is to revisit GW200129 and attempt to
understand how spins and spin-precession can be measured from a heavy BBH
with a merger-dominated observed signal. In Sec. 6.3 we use NRSur7dq4 to
conclude that the evidence for spin-precession originates exclusively from the
LIGO Livingston data in the 20–50 Hz frequency range, where the inferred
signal amplitude is lower than what a spin-aligned binary would imply given
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the rest of the data. This range coincides with the known data quality issues
described in App. 6.9 and first identified in GWTC-3 [38]. LIGO Hanford
is consistent with a spin-aligned signal, causing an inconsistency between the
inferred mass ratio q and precession parameter χp inferred from each LIGO
detector separately. By means of simulated signals, we argue that such q−χp

inconsistency is unlikely to be caused solely by the different Gaussian noise
realizations in each detector at the time of the signal, rather pointing to re-
maining data quality issues beyond the original glitch-subtraction [38]. We also
re-analyze the LIGO Livingston data above 50 Hz, (while keeping the original
frequency range of the LIGO Hanford data) and confirm that all evidence for
spin-precession disappears.

In the process, we find that the Virgo trigger, though consistent with a spin-
aligned BBH, is inconsistent with the signal seen in the LIGO Hanford and
LIGO Livingston detectors. Specifically, the Virgo data are pointing to a
much heavier BBH that merges ∼20 ms earlier than the one observed by the
LIGO detectors. We discuss Virgo data quality considerations in Sec. 6.4
within the context of a potential glitch that affects the inferred binary param-
eters if unmitigated. As a consequence, we do not include Virgo data in the
sections examining spin-precession unless otherwise stated. The Virgo-LIGO
inconsistency can be resolved if we use BayesWave [121, 124, 226] to simul-
taneously model a CBC signal and glitches with CBC waveform models and
sine-Gaussian wavelets respectively [110, 192]. The Virgo data are now con-
sistent with the presence of both a signal that is consistent with the one in the
LIGO detectors and an overlaping glitch with SNR ∼ 4.6.

In Sec. 6.5 we revisit the LIGO Livingston data quality issues and compare
the original glitch-subtraction based on gwsubtract [137, 138] that uses in-
formation from auxiliary channels and the glitch estimate from BayesWave
that uses only strain data. Though the CBC model used in BayesWave does
not include the effect of spin-precession, we show that differences between
the reconstructed waveforms from a non-precessing and spin-precessing anal-
ysis for GW200129 are smaller than the statistical uncertainty in the glitch
inference. Such differences can therefore not be reliably resolved in the pres-
ence of the glitch and its subtraction procedure. The two glitch estimation
methods give similar results within their statistical errors, however gwsubtract
yields typically a lower glitch amplitude. We conclude that any evidence for
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spin-precession from GW200129 is contingent upon the systematic and sta-
tistical uncertainties of the LIGO Livingston glitch subtraction. Given the
low SNR of the LIGO Livingston glitch and the glitch modeling uncertainties,
we can at present not conclude whether the source of GW200129 exhibited
spin-precession or not.

In Sec. 6.6 we summarize our arguments that remaining data quality issues
in LIGO Livingston cast doubt on the evidence for spin-precession. Besides
data quality studies (i.e., spectrograms, glitch modeling, auxiliary channels),
our investigations are based on comparisons between different detectors as well
as different frequency bands of the same detector. We propose that similar
investigations in further events of interest with exceptional inferred properties
could help alleviate potential contamination due to data quality issues.

6.3 The origin of the evidence for spin-precession
Our main goal is to pinpoint the parts of the GW200129 data that are in-
consistent with a non-precessing binary and understand the relevant signal
morphology. Due to different orientations, sensitivities, and noise realizations,
different detectors in the network do not observe an identical signal. The de-
tector orientation, especially, affects the signal polarization content and thus
the degree to which spin-precession might be measurable in each detector.
Motivated by this, we begin by examining data using different detector com-
binations.

We perform parameter estimation using the NRSur7dq4 waveform and examine
data from each detector separately (left panel) as well as the relation between
the LIGO and the Virgo data (right panel) and show posteriors for select
intrinsic parameters in Fig. 6.1. Analysis settings and details are provided in
App. 6.9 and in all cases we use the same LIGO Livingston data as GWTC-
3 [38] where the glitch has been subtracted. Though we do not expect the
posterior distributions for the various signal parameters inferred with different
detector combinations to be identical, they should have broadly overlapping
regions of support. If the triggers recorded by the different detectors are indeed
consistent, any shift between the posteriors should be at the level of Gaussian
noise fluctuations.

The left panel shows that the evidence for spin-precession arises primarily
from the LIGO Livingston data, whereas the precession parameter χp poste-
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Figure 6.1: One- and two-dimensional marginalized posteriors for select in-
trinsic binary parameters: detector frame chirp-mass M, mass ratio q, effec-
tive spin χeff, and precessing spin χp. See Table 6.1 for analysis settings and
App. 6.9 for detailed parameter definitions. Two-dimensional panels show 50%
and 90% contours. The black dashed line marks the minimum bound of q=1/6
in NRSur7dq4’s region of validity. Shaded regions shows the prior for q, χeff,
χp. The M prior increases monotonically to the maximum allowed value (see
App. 6.9 for details on choices of priors). Left panel: comparison between
analyses that use solely LIGO Hanford (red; H), LIGO Livingston (blue; L),
and Virgo (purple; V) data. Right panel: comparison between analyses of all
three detectors (yellow; HLV), only LIGO data (green; HL) and only Virgo
data (purple; V). The evidence for spin-precession originates solely from the
LIGO Livingston data as the other detectors give uninformative χp posteriors.
Additionally, the binary masses inferred based on Virgo only are inconsistent
with those from the LIGO data.

rior is much closer to its prior when only LIGO Hanford or Virgo data are
considered. A similar conclusion was reached in Hannam et al. [179]. There
is reasonable overlap between the two-dimensional distributions that involve
the chirp mass M, the mass ratio q, and the effective spin χeff inferred by
the two LIGO detectors, as expected from detectors that observe the same
signal under different Gaussian noise realizations. The discrepancy between
the spin-precession inference in the two LIGO detectors, however, is evident
in the q − χp panel. The two detectors lead to non overlapping distributions
that point to either unequal masses and spin-precession (LIGO Livingston),
or equal masses and no information for spin-precession (LIGO Hanford).

Besides an uninformative posterior on χp, the left panel points to a bigger issue
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Figure 6.2: Similar to the right panel of Fig. 6.1 but for select extrinsic param-
eters: luminosity distance dL, angle between total angular momentum and line
of sight θjn, right ascension α, and declination δ. For reference, the median
optimal SNR for each run is HLV: 27.6, HL: 26.9, V: 6.7.

with the Virgo data: inconsistent inferred masses. The right panel examines
the role of Virgo in more detail in comparison to the LIGO data. Due to the
lower SNR in Virgo, the intrinsic parameter posteriors are essentially identical
between the HL and the HLV analyses. The lower total SNR means that the
Virgo-only posteriors will be wider, but they are still expected to overlap with
the ones inferred from the two LIGO detectors. However, this is not the case
for the mass parameters as is most evident from the two dimensional panels
involving the chirp mass. While the LIGO data are consistent with a typical
binary with (detector-frame) chirp mass 30.3+2.5

−1.6 M⊙ at the 90% credible level,
the Virgo data point to a much heavier binary with 66.7+19.7

−22.6 M⊙ at the same
credible level.
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Figure 6.3: 90% credible intervals for the whitened time-domain reconstruction
(left) and spectrum (right) of the signal in Virgo from a Virgo-only (purple; V)
and a full 3-detector (yellow; HLV) analysis, see Table 6.1 for analysis settings.
The data are shown in gray and the noise PSD in black. The time on the left
plot is relative to GPS 1264316116. The high value of the PSD at ∼ 50 Hz was
imposed due to miscalibration of the relevant data [38]. Vertical shaded regions
at each panel correspond to the 90% credible intervals of the merger time (left;
defined as the time of peak strain amplitude) and merger frequency (right;
approximated via the dominant ringdown mode frequency as computed with
qnm [325], merger remnant properties were computed with surfinBH [363]).
The Virgo data point to a heavier binary that merges ∼ 20ms earlier than the
full 3-detector results that are dominated by the LIGO detectors.

The role of Virgo data on the inferred binary extrinsic parameters is explored
in Fig. 6.2. In general, Virgo data have a larger influence on the extrinsic
than the intrinsic parameters as the measured time and amplitude helps break
existing degeneracies. The extrinsic parameter posteriors show a large degree
of overlap. The Virgo distance posterior does not rail against the upper prior
cut off, suggesting that this detector does observe some excess power. The
HL sky localization also overlaps with the Virgo-only one, though the latter is
merely the antenna pattern of the detector that excludes the four Virgo “blind
spots”. We use the HL results to calculate the projected waveform in Virgo
and calculate the 90% lower limit on the signal SNR to be 4.2. This suggests
that given the LIGO data, Virgo should be observing a signal with at least
that SNR at the 90% level.

In order to track down the cause of the discrepancy in the inferred mass param-
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eters, we examine the Virgo strain data directly. Figure 6.3 shows the whitened
time-domain reconstruction (left panel) and the spectrum (right panel) of the
signal in Virgo from a Virgo-only and a full 3-detector analysis. Compared
to Figs. 6.1 and 6.2, here we only consider a 3-detector analysis as the recon-
structed signal in Virgo inferred from solely LIGO data would not be phase-
coherent with the data, and thus would be uninformative. Given the higher
signal SNR in the two LIGO detectors, the signal reconstruction morphology
in Virgo is driven by them, as evident from the intrinsic parameter posteriors
from the right panel of Fig. 6.1.

The two reconstructions in Fig. 6.3 are morphologically distinct. The 3-
detector inferred signal is dominated by the LIGO data and resembles a typical
“chirp” with increasing amplitude and frequency. This signal is, however, in-
consistent with the Virgo data as it underpredicts the strain at t ∼0.382 s
in the left panel. The Virgo-only inferred signal matches the data better by
instead placing the merger at earlier times to capture the increased strain at
t ∼0.382 s as shown by the shaded vertical region denoting the merger time.
Rather than a “chirp,” the signal is dominated by the subsequent ringdown
phase with an amplitude that decreases slowly over ∼2 cycles. As also con-
cluded from the inferred masses in Fig. 6.1, the Virgo data point to a heavier
binary with lower ringdown frequency (vertical regions in the right panel).

Despite these large inconsistencies, the issues with the Virgo data do not af-
fect our main goal, which is identifying the origin of the evidence for spin-
precession. In order to avoid further ambiguities for the remainder of this sec-
tion we restrict to data from the two LIGO detectors unless otherwise noted.
In Fig. 6.1 we concluded that LIGO Livingston alone drives this measurement
and here we attempt to further zero in on the data that support spin-precession
by comparing results from a spin-precessing and a spin-aligned analysis with
NRSur7dq4 (see App. 6.9 for details). Figure 6.4 shows the whitened time-
domain reconstruction (left panel) and the spectrum (right panel) in LIGO
Hanford (top) and LIGO Livingston (bottom). The two reconstructions re-
main phase-coherent, however there are some differences in the inferred ampli-
tudes, with the spin-aligned amplitude being slightly larger at ∼30–50 Hz and
slightly smaller for ≳ 100 Hz. Comparison to the estimate for the glitch that
was subtracted from the data based on information from auxiliary channels
with gwsubtract shows that the glitch overlaps with the part of the signal
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Figure 6.4: Whitened time-domain reconstruction (left) and spectrum (right)
of GW200129 in LIGO Hanford (top) and LIGO Livingston (bottom). Shaded
regions show the 90% credible intervals for the signal using a spin-precessing
(light blue and red) and a spin-aligned (dark blue and red) analysis based on
NRSur7dq4; see Table 6.1 for run settings. In gray we show the analyzed data
where the gwsubtract estimate for the glitch (black line) has already been
subtracted. The black line in the right panels is the noise PSD. The glitch
overlaps with the part of the inferred signal where the spin-aligned amplitude
is on average larger than the spin-precessing one.
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Figure 6.5: One- and two-dimensional marginalized posterior for the mass
ratio q, the precession parameter χp, and the effective spin parameter χeff
for analyses using a progressively increasing low frequency cutoff in LIGO
Livingston but all the LIGO Hanford data, see Table 6.1 for details. The
median network SNR for each value of the frequency cutoff is given in the
legend. Contours represent 90% credible regions and the prior is shaded in
gray. As the glitch-affected data are removed from the analysis, the posterior
approaches that of an equal-mass binary and becomes uninformative about χp.
This behavior does not immediately indicate data quality issues and we only
use this increasing-flow(L) analysis to isolate the data which contribute the
evidence of spin-precession when compared to the rest of the data to within
20–50 Hz.

where the spin-precessing amplitude is smaller than the spin-aligned one. The
glitch subtraction and data quality issues are therefore related to the evidence
for spin-precession.

We confirm that the low-frequency data in LIGO Livingston (in relation to
the rest of the data) are the sole source of the evidence for spin-precession, by
carrying out analyses with a progressively increasing low frequency cutoff in
LIGO Livingston only, while leaving the LIGO Hanford data intact. Figure 6.5
shows the effect on the posterior for χp, q, and χeff. When we use the full data
bandwidth, flow(L) = 20 Hz, we find that q and χp are correlated and their
two-dimensional posterior appears similar to the combination of the individual-
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detector posteriors from Fig. 6.1. However, as the low frequency cutoff in LIGO
Livingston is increased and the data affected by the glitch are removed, the
posterior progressively becomes more consistent with an equal-mass binary
and χp approaches its prior. By flow(L) = 50 Hz, χp is similar to its prior and
further increasing flow(L) has a marginal effect. This confirms that given all
the other data, the LIGO Livingston data in 20–50 Hz drive the inference for
spin-precession.

The signal network SNR (i.e., the SNR in both detectors added in quadrature)
is given in the legend for each value of the low frequency cutoff. By flow(L) =
50 Hz where all evidence for spin-precession has been eliminated, the SNR
reduction is only 1.5 units, suggesting that the large majority of the signal
is consistent with a non-precessing origin. This might also suggest that χp

inference is not degraded solely due to loss of SNR, as the latter is very small.
The χeff posterior is generally only minimally affected, with a small shift to
higher values driven by the q − χeff correlation [128]. We have verified that
these conclusions are robust against re-including the Virgo data (using their
full bandwidth).

The above analysis is not on its own an indication of data quality issues in
LIGO Livingston, but we now turn to an observation that might be more
problematic: the q− χp inconsistency between LIGO Hanford and LIGO Liv-
ingston identified in Fig. 6.1. In order to examine whether such an effect could
arise from the different Gaussian noise realizations in each detector, we con-
sider simulated signals. We use 100 posterior samples obtained from analyzing
solely the LIGO Livingston data, make simulated data that include a noise
realization with the same noise PSDs as GW200129, and analyze data from
the two LIGO detectors separately. To quantify the degree to which the LIGO
Hanford and LIGO Livingston posteriors overlap, we compute the Bayes factor
for overlapping posterior distributions relative to if the two distributions do
not overlap [180, 181],

Boverlapping
not overlapping =

∫∫
dχpdq pL(χp, q|d)pH(χp, q|d)

π(χp, q)
, (6.1)

where we compute the overlap within the q−χp plane, pL(χp, q|d) and pH(χp, q|d)
are the LIGO Livingston and LIGO Hanford posteriors, and π(χp, q) is the
prior. While evaluating this quantity is subject to sizeable sampling uncer-
tainty for events where the two distributions are more distinct (i.e., the case of
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Figure 6.6: 90% contours for the two-dimensional marginalized posteriors for
the mass ratio q and the precessing parameter χp obtained from analyzing
data from each LIGO detector separately for 10 simulated signals. The signal
parameters are drawn from the posterior for GW200129 when using LIGO
Livingston data only and true values are indicated by black lines. Due to
the spin priors disfavoring large χp, the injected value is outside the two-
dimensional 90% contour in some cases. We only encounter an inconsistency
between LIGO Hanford (red; H) and LIGO Livingston (blue; L) as observed
for GW200129 in Fig. 6.1 in O(5/100) injections.

GW200129), we find O(5/100) injections have a similar overlap as GW200129
(Fig. 6.1). Figure 6.6 shows a selection of q − χp posteriors for 10 injections
as inferred from each detector separately. The posteriors typically overlap,
though they are shifted with respect to each other as expected from the dif-
ferent noise realizations.

We conclude that the evidence for spin-precession originates exclusively from
the LIGO Livingston data that overlapped with a glitch. This causes an incon-
sistency between the LIGO Hanford and LIGO Livingston that we typically do
not encounter in simulated signals in pure Gaussian noise. This inconsistency
suggests that there might be residual data quality issues in LIGO Livingston
that were not fully resolved by the original glitch subtraction. Though incon-
sequential for the spin-precession investigation, we also identify severe data
quality issues in Virgo. Before returning to the investigation of spin-precession,
we first examine the Virgo data in detail in Sec. 6.4 and argue that they should
be removed from subsequent analyses. We reprise the spin-precession investi-
gations in Sec. 6.5.
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6.4 Data quality issues: Virgo
Having established that the Virgo trigger is coincident but not fully coherent
with the triggers in the two LIGO detectors, we explore potential reasons
for this discrepancy. Figure 6.7 shows a spectrogram of the data in each
detector centered around the time of the event. A clear chirp morphology is
visible in the LIGO detectors but not in Virgo, though this might also be due
to the low SNR of the Virgo trigger. Within a few seconds of the trigger,
however, a number of other glitches are also present in Virgo, mostly assigned
to scattered light. We estimate the SNR of the Virgo trigger without assuming
it is a CBC signal (i.e., without using a CBC model) through Omicron [293]
and BayesWave using its glitch model that fits the data with sine-Gaussian
wavelets; see Table 6.2 for run settings1. The former finds a matched-filter
Omicron SNR2 of 7.0, while the latter finds an optimal SNR of 7.3 for the
median glitch reconstruction.

Given the prevalence of glitches, the first option is that the Virgo trigger is
actually a detector glitch that happened to coincide with a signal in the LIGO
detectors. To estimate the probability that such a coincidence could happen
by chance, we consider the glitch rate in Virgo. In O3, the median rate of
glitches in Virgo was 1.11/min, with significant variation versus time [38].
When we consider the hour of data around the event, the rate of glitches with
Omicron SNR > 6.5 is 10.2/min. Most of the glitches in Virgo at this time
are due to scattered light [41, 44, 229, 230, 322]. While Fig. 6.7 shows that
there are scattered light glitches in the Virgo data near the time of GW200129,
the excess power from these glitches are concentrated at frequencies < 30 Hz.
To account for the excess power corresponding to GW200129 in Virgo, there
must be a different type of glitch present in the data. The rate of glitches at
frequencies similar to the signal is much lower; using data from 4 days around
the event, the rate of glitches with frequency 60-120 Hz is only 0.06/hr. Given
this rate, we calculate the probability that a glitch occurred in Virgo within
a 0.06 s window (roughly corresponding to twice the light-travel time between
the LIGO detectors and Virgo) around a trigger in the LIGO detectors. We
find that if glitches at any frequency are considered, the probability of coin-

1=The BayesWave analyses described here does not concurrently marginalize over the
PSD uncertainty.

2The SNR reported by Omicron is normalized so that the expectation value of the SNR
is 0, rather than

√
2 [293]. To highlight this difference, we use the phrase “Omicron SNR”

whenever a reported result uses this normalization.
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Figure 6.7: Spectrogram of the data in each detector, plotted using the Q-
transform [102, 237]. Listed times are with respect to GPS 1264316116. Be-
sides the clear chirp morphology in LIGO, there is visible excess power ∼ 1 s
after the signal in LIGO Livingston. Virgo demonstrates a high amount of ex-
cess power, though most is due to scattered light and concentrated at frequen-
cies < 30 Hz. The excess power in Virgo that is coincident with GW200129
does not have a chirp morphology.
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cidence per event is O(0.01), and if only glitches with similar frequencies are
considered, the same probability is O(10−5).

Another option is that the Virgo trigger is a combination of a genuine signal
and a detector glitch. We explore this possibility using BayesWave [121, 124,
226] to simultaneously model a potential CBC signal that is coherent across
the detector network and overlapping glitches that are incoherent [110, 192].
In this “CBC+glitch” analysis, BayesWave models the CBC signal with the
IMRPhenomD waveform [198, 207] and glitches with sine-Gaussian wavelets.
Details about the models and run settings are provided in App. 6.9. An
important caveat here is that IMRPhenomD does not include the effects of
higher-order modes and spin-precession. A concern is, therefore, that the
CBC model could fail to model precession-induced modulations in the signal
amplitude and instead assign them to the glitch model. This precise scenario
is tested in Hourihane et al. [192] where the analysis was shown to be robust
against such systematics. Below we argue that the same is true here for the
Virgo data, especially since they are consistent with a spin-aligned binary as
shown in Fig. 6.1.

Figure 6.8 compares BayesWave’s reconstruction in Virgo with the one ob-
tained with the NRSur7dq4 analysis from Fig. 6.3 that ignores a potential glitch
but models spin-precession and higher order modes. All results are obtained
using data from all three detectors. The CBC reconstruction from BayesWave
with IMRPhenomD is consistent with the one from NRSur7dq4 to within the
90% credible level at all times. This is unsurprising given Fig. 6.1 that shows
that Virgo data are consistent with a spin-aligned BBH. Crucially, there is
no noticeable difference between the two CBC reconstructions for times when
the inferred glitch is the loudest. This suggests that the lack of higher-order
modes and spin-precession in IMRPhenomD does not lead to a noticeable dif-
ference in the signal reconstruction and could thus not account for the inferred
glitch. The differences between the inferred signals using IMRPhenomD and
NRSur7dq4 are much smaller than the amount of incoherent power present in
Virgo. In fact, the glitch reconstruction is larger than the signal at the 50%
credible level, though not at the 90% level. This result suggests that a poten-
tial explanation for the trigger in Virgo is a combination of a signal consistent
with the one in the LIGO detectors and a glitch.

Figure 6.9 summarizes the various SNR estimates for the excess power in
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Figure 6.8: Whitened time-domain reconstruction of the signal in Virgo
obtained after analysis of data from all three detectors relative to GPS
1264316116. Shaded regions correspond to 90% and 50% (where applicable)
credible intervals. Green corresponds to the same 3-detector result obtained
with NRSur7dq4 as Fig. 6.3, while pink and gold correspond to the CBC and
glitch part of the “CBC+glitch” analysis with BayesWave. See Tables 6.1
and 6.2 for run settings. The two CBC reconstructions largely overlap, sug-
gesting that the lack of spin-precession in BayesWave’s analysis does not affect
the reconstruction considerably. A glitch overlapping with the signal is, how-
ever, recovered.
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Virgo. We plot an estimate of the SNR in Virgo suggested by LIGO data; in
other words it is the SNR that is consistent with GW200129 as observed by
LIGO. In comparison, we also show the SNR from a Virgo-only analysis and
the SNR from BayesWave’s “glitchOnly” analysis that models the excess power
with sine-Gaussian wavelets without the requirement that it is consistent with
a CBC. The fact that the SNR inferred from HL data is smaller than the other
two again suggests that the Virgo trigger is not consistent with the one seen
by LIGO and contains additional power. BayesWave’s “CBC+glitch” analysis
is able to separate the part of the trigger that is consistent with a CBC and
recovers a CBC SNR that is consistent to the one inferred from LIGO only.
The “remaining” power is assigned to a glitch with SNR ∼ 4.6 (computed
through the median BayesWave glitch reconstruction).

Based on the glitch SNR calculated by the BayesWave “CBC+glitch” model,
we revisit the probability of overlap with a signal based on the SNR distribu-
tion of Omicron triggers. Since the lowest SNR recorded in Omicron analyses
is 5.0, we fit the SNR distribution of glitches with Omicron SNR > 5.0 with a
power-law and extrapolate to SNR 4.6. We find that the rate of glitches with
frequencies similar to the one in Fig. 6.8 with SNR > 4.6 is 0.31/min and the
probability of overlap with a signal in Virgo is O(10−3). Given the 60 events
from GWTC-3 that were identified in Virgo during O3, the overall chance of
at least one glitch of this SNR overlapping a signal is O(0.1).

The above studies suggest that the most likely scenario is that the Virgo trigger
consists of a signal and a glitch. However, due to the low SNR of both, this
interpretation is subject to sizeable statistical uncertainties and we therefore
do not attempt to make glitch-subtracted Virgo data. Such data would be
extremely dependent on which glitch reconstruction we chose to subtract, for
example the median or a fair draw from the BayesWave glitch posterior. For
these reasons and due to its low sensitivity, we do not include Virgo data in
what follows.

6.5 Data quality issues: LIGO Livingston
The data quality issues in LIGO Livingston were identified and mitigated in
GWTC-3 [38] through use of information from auxiliary channels [137, 138]
and the gwsubtract pipeline as also described in App. 6.9. The comparison
of Figs. 6.1 and 6.6, however, suggest that residual data quality issues might
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Figure 6.9: Comparison of optimal SNR estimates for Virgo from different
analyses. In green is the posterior for the expected SNR in Virgo from just
the LIGO data using the NRSur7dq4 waveform (HL analysis of Fig. 6.1), while
purple corresponds to the SNR from an analysis of the Virgo data only (V
analysis of Fig. 6.1). The CBC and glitch SNR posterior from BayesWave’s
full “CBC+glitch” model (Fig. 6.8) are shown in pink and orange respectively.
Part of the latter is consistent with zero, which corresponds to no glitch (as
also seen from the 90% credible interval in Fig. 6.8). The SNR posterior from
a “glitchOnly” BayesWave is shown in blue.
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remain, as the two LIGO detectors result in inconsistent inferred q−χp param-
eters beyond what is expected from typical Gaussian noise fluctuations. Here
we revisit the LIGO Livingston glitch with BayesWave and again model both
the CBC and potential glitches. This analysis offers a point of comparison
to gwsubtract as it uses solely strain data to infer the glitch instead of aux-
iliary channels. Additionally, BayesWave computes a posterior for the glitch,
rather than a single point estimate, and thus allows us to explore the statis-
tical uncertainty of the glitch mitigation. In all analyses involving BayesWave
we use the original LIGO Livingston data without any of the data mitigation
described in App. 6.9.

Figure 6.10 shows BayesWave’s CBC and glitch reconstructions in LIGO Liv-
ingston compared to the one based on the NRSur7dq4 (from glitch-mitigated
data) and the glitch model computed with gwsubstract. All analyses use data
from the two LIGO detectors only. Unsurprisingly, now, the CBC reconstruc-
tions based on IMRPhenomD and NRSur7dq4 do not fully overlap around
t=0.3 s, though they are consistent during the signal merger phase. This is
expected from the fact that LIGO Livingston supports spin-precession as well
as Fig. 6.4. However, this difference is smaller than the statistical uncertainty
in the inferred glitch from BayesWave (yellow) and well as differences between
the BayesWave and the gwsubtract glitch estimates. This suggests that even
though the BayesWave glitch estimate might be affected by the lack of spin-
precession in its CBC model, this effect is smaller than the glitch uncertainty.

We also model the signal as a superposition of coherent wavelets in addition to
the incoherent glitch wavelets using BayesWave [121, 124, 226]. This approach
has been previously utilized for glitch subtraction [38]. However, we do not
recover strong evidence for a glitch overlapping the signal in LIGO Livingston
when running with this “signal+glitch” analysis. The “signal+glitch” analysis
attempts to describe both the signal and the glitch with wavelets and hence
it is significantly less sensitive than the “CBC+glitch” model. In the data of
interest, both the signal and the glitch whitened amplitudes are ∼ 1σ and
as such they are difficult to separate using coherent and incoherent wavelets.
Given that we know (based on the auxiliary channel data) that there is some
non-Gaussian noise in LIGO Livingston, we find that the “signal+glitch” anal-
ysis is not sensitive enough for our data.

The large statistical uncertainty in the glitch reconstruction (yellow bands
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Figure 6.10: Whitened time-domain reconstruction of the data in LIGO Liv-
ingston obtained after analysis of data from the two LIGO detectors. Shaded
regions correspond to 90% and 50% (where applicable) credible intervals and
gray gives the original data without any glitch mitigation. Green corresponds
to the same 2-detector result obtained with NRSur7dq4 as Fig. 6.4, while pink
and gold correspond to the CBC and glitch part of the joint “CBC+glitch”
analysis with BayesWave. The black line shows an estimate for the glitch ob-
tained through auxiliary channels. All analyses use only LIGO data.
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in Fig. 6.10) implies that the difference between the spin-precessing and non-
precessing interpretation of GW200129 cannot be reliably resolved. To confirm
this, we select three random samples from the glitch posterior of Fig. 6.10, sub-
tract them from the unmitigated LIGO Livingston data, and repeat the param-
eter estimation analysis with NRSur7dq4. The BayesWave glitch-subtracted
frames and associated NRSur7dq4 parameter estimation results are available
in [269]. For reference, we also analyze the original unmitigated data (no
glitch subtraction whatsoever). Figure 6.11 confirms that the spin-precession
evidence depends sensitively on the glitch subtraction. The original unmiti-
gated data and the gwsubtract subtraction yield the largest evidence for spin-
precession, but this is reduced -or completely eliminated- with different real-
izations of the BayesWave glitch model. In general, larger glitch amplitudes
lead to less support for spin-precession, suggesting that the evidence for spin-
precession is increased when the glitch is undersubtracted.

Figure 6.12 compares the corresponding q − χp posterior inferred from LIGO
Hanford and LIGO Livingston separately under each different estimate for the
glitch. Each of the three BayesWave glitch draws results in single-detector pos-
teriors that fully overlap, thus resolving the inconsistency seen in q−χp when
using the gwsubtract glitch estimate. Due to the lack of spin-precession model-
ing in the “CBC+glitch” analysis of Fig. 6.10, however, we cannot definitively
conclude that any one of the new glitch-subtracted results is preferable. The 3
BayeWave glitch draws result in different levels of support for spin-precession,
it is therefore possible that GW200129 is still consistent with a spin-precessing
system. We do conclude, though, that the evidence for spin-precession is con-
tingent upon the large statistical uncertainty of the glitch subtraction.

As a further check of whether the lack of spin-precession in BayesWave’s CBC
model could severely bias a potential glitch recovery, we revisit the 10 simu-
lated signals from Fig. 6.6 and analyze them with the “CBC+glitch” model.
These signals are consistent with GW200129 as inferred from LIGO Livingston
data only, and thus exhibit the largest amount of spin-precession consistent
with the signal. In all cases we find that the glitch part of the “CBC+glitch”
model has median and 50% credible intervals that are consistent with zero at
all times. This again confirms that the differences between the spin-precessing
and the spin-aligned inferred signals in Fig. 6.10 is smaller than the uncer-
tainty in the glitch. This tests suggests that the glitch model is not strongly
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Figure 6.11: Bottom: Whitened, time domain reconstructions of various
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line corresponds to the glitch reconstruction obtained from auxiliary data
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rior distributions corresponding to parameter estimation performed with the
NRSur7dq4 waveform model on HL data where each respective glitch realiza-
tion was subtracted from LIGO Livingston (same colors). Pink corresponds to
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amplitudes roughly lead to less informative χp posteriors and eliminate the
q − χp inconsistency between LIGO Hanford and LIGO Livingston.
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Figure 6.12: Two-dimensional posterior distributions for χp and q (50% and
90% contours) from single-detector parameter estimation runs. The far left
panel shows the same tension as the LIGO Hanford and LIGO Livingston data
plotted in Fig. 6.1 when using the gwsubtract estimate for the glitch. Subse-
quent figures show inferred posterior distributions using data where the same
three different BayesWave glitch models as Fig. 6.11 have been subtracted.
These results show less tension between the two posterior distributions.
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Figure 6.13: Comparison between the two glitch reconstruction and subtrac-
tion methods for a glitch in LIGO Livingston ∼ 1 s after GW200129, see the
middle panel of Fig. 6.7. We plot the original data with no glitch mitigation
(grey), the glitch reconstruction obtained from auxiliary channels with 90%
confidence intervals (black), and the 50% and 90% credible intervals for the
glitch obtained with BayesWave that uses only the strain data (gold).

biased by the lack of spin-precession, however it does not preclude small bi-
ases (within the glitch statistical uncertainty); it is therefore necessary but not
sufficient.

As a final point of comparison between BayesWave’s glitch reconstruction that
is based on strain data and the gwsubtract glitch reconstruction based on
auxiliary channels, we consider a different glitch in LIGO Livingston approx-
imately 1s after the signal, see Fig. 6.7. Studying this glitch offers the advan-
tage of direct comparison of the two glitch reconstruction methods without
contamination from the CBC signal and uncertainties about its modeling.
We analyze the original data with no previous glitch mitigation around that
glitch using BayesWave’s glitch model and plot the results in Fig. 6.13. For
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the gwsubtract reconstruction we also include 90% confidence intervals, as
described in App. 6.9.

The two estimates of the glitch are broadly similar but they do not always
overlap within their uncertainties. The main disagreement comes from the
sharp data “spike” at t = 1.43 s that is missed by gwsubtract, but recovered
by BayesWave. The reason is that the the maximum frequency considered
by gwsubtract was 128 Hz and thus cannot capture such a sharp noise fea-
ture [138]. Away from the “spike,” the two glitch estimates are approximately
phase-coherent. On average BayesWave recovers a larger glitch amplitude as
the gwsubtract result typically falls on BayesWave’s lower 90% credible level.

Figures 6.10 and 6.13 broadly suggest that BayesWave recovers a higher-
amplitude glitch. Figure 6.11 shows that the evidence for spin-precession is
indeed reduced, the LIGO Hanford-LIGO Livingston inconsistency is allevi-
ated (Fig. 6.12), and the LIGO Livingston data become more consistent across
low and high frequencies (Fig. 6.5) if the glitch was originally undersubtracted.
However, due to the low SNR of the glitch and other systematic uncertainties
it is not straightforward to select a “preferred” set of glitch-subtracted data.
All studies, however, indicate that the statistical uncertainty of the glitch am-
plitude is larger than the difference between the inferred spin-precessing and
spin-aligned signals.

6.6 Conclusions
Though it might be possible to infer the presence of spin-precession and large
spins in heavy BBHs, our investigations suggest that in the case of GW200129
any such evidence is contaminated by data quality issues in the LIGO Liv-
ingston detector. In agreement with [179] we find that the evidence for spin-
precession originates exclusively from data from that detector. However, we
go beyond this and also demonstrate the following.

1. The evidence for spin-precession in LIGO Livingston is localized in the
20–50 Hz band in comparison to the rest of the data, precisely where the
glitch overlapped the signal. Excluding this frequency range from the
analysis, we find that GW200129 is consistent with an equal-mass BBH
with an uninformative χp posterior; it is thus similar to the majority
of BBH detections [12, 29, 37]. However, the fact that there is no evi-
dence for spin-precession if flow(L) > 50 Hz is not on its own cause for
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concern as it might be due to Gaussian noise fluctuations or the precise
precessional dynamics of the system.

2. LIGO Hanford is not only uninformative about spin-precession (which
again could be due to Gaussian noise fluctuations or the lower signal
SNR in that detector), but it also yields an inconsistent q−χp posterior
compared to LIGO Livingston. Using simulated signals, we find that
the latter, i.e., the q−χp inconsistency, is larger than O(95%) of results
expected from Gaussian noise fluctuations.

3. Given the LIGO Livingston glitch’s low SNR, the statistical uncertainty
in modeling it is larger than the difference between a spin-precessing
and a non-precessing analysis for GW200129. Inferring the presence
of spin-precession requires reliably resolving this difference, something
challenging as we found by using different realizations of the glitch model
from the BayesWave glitch posterior. Crucially, any evidence for spin-
precession in GW200129 depends sensitively on the glitch model and
priors employed.

4. Given the large statistical uncertainty in modeling the glitch, evidence
for systematic differences between BayesWave and gwsubtract that use
strain and auxiliary data respectively is tentative. However, the BayesWave
estimate typically predicts a larger glitch amplitude, which would re-
duce the evidence for spin-precession and alleviate the tension between
LIGO Hanford and LIGO Livingston. Additionally, we do not recover
any support for a glitch when injecting spin-precessing signals from the
LIGO Livingston-only posterior distribution into Gaussian noise. This
indicates that BayesWave is unlikely to be strongly biasing the glitch
recovery due to its lack of spin-precession.

Overall, given the uncertainty surrounding the LIGO Livingston glitch miti-
gation, we cannot conclude that the source of GW200129 was spin-precessing.
We do not conclude the opposite either, however. Though we obtain tentative
evidence that the glitch was undersubtracted, we can at present not estimate
how much it was undersubtracted by due to large statistical and potential
systematic uncertainties. It is possible that some evidence for spin-precession
remains, albeit reduced given the glitch statistical uncertainty.
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In addition, we verify that this uncertainty in the glitch modeling is larger
than uncertainty induced by detector calibration. We repeat select analyses in
Appendix 6.9 and confirm that the inclusion of uncertainty in the calibration
of the gravitational-wave detectors negligibly impacts the spin-precession in-
ference, as expected. Indeed, the glitch impacts the data at a level comparable
to the signal strain, c.f., Fig. 6.10, whereas the calibration uncertainty within
20 to 70 Hz is only ∼ 5% in amplitude and 5◦ in phase [328]. Therefore, the
glitch in LIGO Livingston’s data dominates over uncertainties about the data
calibration.

Though not critical to the discussion and evidence for spin-precession, we
also identified data quality issues in Virgo. The inconsistency between Virgo
and the LIGO detectors is in fact more severe than the one between the two
LIGO detectors, however the Virgo data do not influence the overall signal
interpretation due to the low signal SNR in Virgo. Nonetheless, we argue that
the most likely explanation is that the Virgo data contain both the GW200129
signal and a glitch.

These conclusions are obtained with NRSur7dq4, which is expected to be
the more reliable waveform model including spin-precession and higher-order
modes in this region of the parameter space [179, 362]. We repeated select
analyses with IMRPhenomXPHM which also favored a spin-precessing inter-
pretation for GW200129 [38]. We found largely consistent but not identical
results between NRSur7dq4 and IMRPhenomXPHM, suggesting that there
are additional systematic differences between the two waveform models. Ap-
pendix 6.10 shows some example results. Nonetheless, our results are directly
comparable to the ones of [179, 364] as they were obtained with the same
waveform model.

Our analysis suggests that extra caution is needed when attempting to infer
the role of subdominant physical effects in the detected GW signals, for ex-
ample spin-precession or eccentricity. Low-mass signals are dominated by a
long inspiral phase that in principle allows for the detection of multiple spin-
precession cycles or eccentricity-induced modulations. However, the majority
of detected events, such as GW200129, have high masses and are dominated
by the merger phase. The subtlety of the effect of interest and the lack of an-
alytical understanding might make inference susceptible not only to waveform
systematics, but also (as argued in this study) potential small data quality
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issues.

Indeed, Fig. 6.11 shows that a difference in the glitch amplitude of < 0.5σ
can make the difference between an uninformative χp posterior and one that
strongly favors spin-precession. This also demonstrates that low-SNR glitches
are capable of biasing inference of these subtle physical effects. Low-SNR
departures from Gaussian noise have been commonly observed by statistical
tests of the residual power present in the strain data after subtracting the
best-fit waveform of events [23, 30, 32]. If indeed such low-SNR glitches are
prevalent, they might be individually indistinguishable from Gaussian noise
fluctuations. Potential ways to safeguard our analyses and conclusions against
them are (i) the detector and frequency band consistency checks performed
here, (ii) extending the BayesWave “CBC+glitch” analysis to account for spin-
precession and eccentricity while carefully accounting for the impact of glitch
modeling and priors especially for low SNR glitches, and (iii) and modeling
insight on the morphology of subtle physical effects of interest such as spin-
precession and eccentricity in relation to common detector glitch types.
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6.8 Appendix
6.9 Analysis details
In this appendix we provide details and settings for the analyses presented in
the main text. All data are obtained via the GW Open Science Center [39].
Throughout we use geometric units, G = c = 1.

Detection and Glitch-subtracted data
GW200129 was identified in low latency [224] by GstLAL [177, 245], cWB [212],
PyCBC Live [129, 257], MBTAOnline [46], and SPIIR [114]. The quoted false
alarm rate of the signal in low latency was approximately 1 in 1023 years, mak-
ing this an unambiguous detection. Below we recap the detection and glitch
mitigation process from [38].

Multiple data quality issues were identified in the data surrounding GW200129.
As a part of the rapid response procedures, scattered light noise [41, 44] was
identified in the Virgo data, as seen in Fig. 6.7 in the frequency range 10–60 Hz.
These glitches did not overlap the signal, and no mitigation steps were taken
with the Virgo data. During offline investigations of the LIGO Livingston data
quality, a malfunction of the 45 MHz electro-optic modulator system [5] was
found to have caused numerous glitches in the days surrounding GW200129.
To help search pipelines differentiate these types from glitches, a data quality
flag was generated for this noise source [139]. These data quality vetoes are
used by some pipelines to veto any candidates identified during the data qual-
ity flag time segments [142]. The glitches from the electro-optic modulator
system directly overlapped GW200129, meaning that the time of the signal
overlapped the time of the data quality flag.

Although clearly an astrophysical signal, the data quality issues present in
LIGO Livingston introduced additional complexities into the estimation of
the significance of this signal [38]. Due to the data quality veto, the signal was
not identified in LIGO Livingston by the PyCBC [136, 256] MBTA [71], and
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cWB [212] pipelines. PyCBC was still able to identify GW200129 as a LIGO
Hanford – Virgo detection, but the signal was not identified by MBTA due to
the high SNR in LIGO Hanford and cWB due to post-production cuts. The
GstLAL [98, 307] analysis did not incorporate data quality vetoes in its O3
analyses and was therefore able to identify the signal in all three detectors.

The excess power from the glitch directly overlapping GW200129 in LIGO
Livingston was subtracted before estimation of the signal’s source proper-
ties [38, 138] using the gwsubtract algorithm [137]. This method relies on
an auxiliary sensor at LIGO Livingston that also witnesses glitches present in
the strain data. The transfer function between the sensor and the strain data
channel is measured using a long stretch of data by calculating the inner prod-
uct of the two time series with a high frequency resolution and then averaging
the measured value at nearby frequencies to produce a transfer function with
lower frequency resolution [57]. This transfer function is convolved with the
auxiliary channel time series to estimate the contribution of this particular
noise source to the strain data. Therefore, the effectiveness of this subtraction
method is limited by the accuracy of the auxiliary sensor and the transfer func-
tion estimate. This tool was previously used for broadband noise subtraction
with the O2 LIGO dataset [137], but this was the first time it was used for
targeted glitch subtraction. Additional details about the use of gwsubtract
for the GW200129 glitch subtraction can be found in Davis et al. [138].

The gwsubtract glitch model does not include a corresponding interval that
accounts for all sources of statistical errors as is done by BayesWave. However,
a confidence interval based on only uncertainties due to random correlations
between the auxiliary channel and the strain data can be computed. For
the GW200129 glitch model, this interval is ±0.022 in the whitened strain
data [138]. Additional systematic uncertainties due to time variation in the
measured transfer function and effectiveness of the chosen auxiliary channel
are expected to be present but are not quantified. The relative size of these
uncertainties is dependent on the specific noise source that is being modeled
and chosen auxiliary channel.

Bilby parameter estimation analyses
Quasicircular BBHs are characterized by 15 parameters, divided into 8 intrinsic
and 7 extrinsic parameters. Each component BH has source frame mass ms

i ,
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Figure(s) Waveform Model Detector Network Glitch mitigation flow (Hz)
6.1, 6.12 NRSur7dq4 H gwsubtract 20
6.1, 6.12 NRSur7dq4 L gwsubtract 20

6.1, 6.2, 6.3 NRSur7dq4 V gwsubtract 20
6.1, 6.2, 6.3, 6.8 NRSur7dq4 HLV gwsubtract 20

6.1, 6.2, 6.4, 6.10, 6.11, 6.14 NRSur7dq4 HL gwsubtract 20
6.4 NRSur7dq4 spin-aligned HL gwsubtract 20

6.5 NRSur7dq4 HL gwsubtract {20,30,40,50,60,70} in L,
20 in H

6.11 NRSur7dq4 HL No mitigation 20
6.11 NRSur7dq4 HL BayesWave fair draws 20
6.12 NRSur7dq4 L BayesWave fair draws 20
6.14 IMRPhenomXPHM HL gwsubtract 20

Table 6.1: Table of Bilby runs and settings. All analyses use 4 s of data, and
a sampling rate of 4096 Hz. Columns correspond to the main text figures
each analysis appears in, the waveform model, the detector network used (H:
LIGO Hanford, L: LIGO Livingston, V: Virgo), the type of glitch mitigation
in LIGO Livingston, and the low frequency cutoff of the analysis. Figure 6.6
also presents results for a set of 10 injections drawn from the LIGO Livingston
only posterior distribution with flow(L) = 20 Hz. These analyses use the same
settings as above with flow(L) = 20 Hz.

i ∈ {1, 2}. In the main text we mainly use the corresponding detector frame
(redshifted) masses mi = (1+z)ms

i , where z is the redshift, as we are interested
in investigating data quality issues and detector frame quantities better relate
to the signal as observed. Each component BH also has dimensionless spin
vector χ⃗i, and χi is the magnitude of this vector. We also use parameter
combinations that are useful in various contexts: total mass M = m1 + m2,
mass ratio q = m2/m1 < 1, chirp mass M = (m1m2)3/5(m1 + m2)−1/5 [82,
161, 273], effective orbit-aligned spin parameter [53, 287, 309]

χeff = χ⃗1 · L⃗+ qχ⃗2 · L⃗
1 + q

, (6.2)

where L⃗ is the Newtonian orbital angular momentum, and effective precession
spin parameter [178, 315]

χp = max
(
χ1⊥, qχ2⊥

3q + 4
4q + 3

)
, (6.3)

where χ1⊥ is the χ⃗i component that is perpendicular to L⃗. The remaining
parameters are observer dependent, and hence referred to as extrinsic. The
right ascension α and declination δ designate the location of the source in the
sky, while the luminosity distance to the source is dL. The angle between total
angular momentum and the observer’s line of sight is θjn; for systems without



104

perpendicular spins it reduces to the inclination ι, the angle between the orbital
angular momentum and observer’s line of sight. The time of coalescence tc is
the geocenter coalescence time of the binary. The phase of the signal ϕ is
defined at a given reference frequency, and the polarization angle ψ completes
the geometric description of the sources position and orientation relative to
us; neither of these are used directly in this work.

Parameter estimation results are obtained with parallel Bilby [69, 299, 320]
using the nested sampler, Dynesty [324]. The numerical relativity surrogate,
NRSur7dq4 [362], is used for all main results due to its accuracy over the regime
of highly precessing signals. Its space of validity is limited by the availability of
numerical simulations [85] to q > 1/4 and component spin magnitudes χ < 0.8,
though it maintains reasonable accuracy when extrapolated to q > 1/6 and
χ < 1 [362].

The majority of our analyses use the publicly released strain data, including
the aforementioned glitch subtraction in LIGO Livingston [138], and noise
power spectral densities (PSDs) [38]. The exception to the publicly released
data was the construction of glitch-subtracted strain data using BayesWave for
LIGO Livingston, as discussed in Sec. 6.5. We do not incorporate the impact of
uncertainty about the detector calibration as the SNR of the signal is far below
the anticipated regime where calibration uncertainty is non-negligible [157,
267, 372, 376]. Furthermore, we confirm that including marginalization of
calibration uncertainty does not qualitatively change the recovered posterior
distributions or our main conclusions by also directly repeating select runs.

As is done in GWTC-3 [38], we choose a prior that is uniform in detector frame
component masses, while sampling in chirp mass and mass ratio. The mass
ratio prior bounds are 1/6 and 1, where we utilize the extrapolation region of
NRSur7dq4. Since NRSur7dq4 is trained against numerical relativity simula-
tions which typically have a short duration, only a limited number of cycles are
captured before coalescence. With a reduced signal model duration, our anal-
ysis is restricted to heavier systems so that the model has content spanning
the frequencies analyzed (20 Hz and above). We therefore enforce an addi-
tional constraint on the total detector-frame mass to be greater than 60M⊙.
We verify that our posteriors reside comfortably above this lower bound. The
luminosity distance prior is chosen to be uniform in comoving volume. The
prior distribution on the sky location is isotropic with a uniform distribution
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Figure(s) Models Detector Network
6.8, 6.9 CBC+glitch HLV

6.10, 6.11 CBC+glitch HL
6.9 glitch V
6.13 glitch L

Table 6.2: Table of BayesWave runs and settings. All analyses use 4 s of
data, a low frequency cut-off of flow = 20 Hz, a sampling rate of 2048 Hz, and
the IMRPhenomD waveform when the CBC model is used. Furthermore, all
analyses use the original strain data without the glitch mitigation described in
Sec. 6.9. Columns correspond to the main text figures each analysis appears
in, the BayesWave models that are used, and the detector network (H: LIGO
Hanford, L: LIGO Livingston, V: Virgo). While not plotted in any figure,
we also performed “CBC+Glitch” analyses on injections into the HL detector
network as a glitch background study on GW200129-like sources, see Sec. 6.5.

on the polarization angle. Finally, for most analyses, the prior on the spin
distributions is isotropic in orientation and uniform in spin magnitude up to
χ = 0.99. For the spin-aligned analyses, a prior is chosen on the aligned spin to
mimic an isotropic and uniform spin magnitude prior. These settings and data
are utilized in conjunction with differing GW detector network configurations
and minimum frequencies in LIGO Livingston. The differences between runs
and their corresponding figures are presented in Tab. 6.1.

BayesWave CBC and glitch analyses
BayesWave [121, 124, 226] is a flexible data analysis algorithm that models
combinations of coherent generic signals, glitches, Gaussian noise, and most
recently, CBC signals that appear in the data [110, 192, 379]. To sample from
the multi-dimensional posterior for all the different models, BayesWave uses a
“Gibbs sampler” which cycles between sampling different models while holding
the parameters of the non-sampling model(s) fixed.

For this analysis, we mainly use the CBC and glitch models (a setting we refer
to as “CBC+Glitch”). The CBC model parameters (see App. 6.9) are sampled
via a fixed-dimension Markov Chain Monte Carlo sampler (MCMC) using the
priors described in Wijngaarden et al. [379]. The glitch model is based on
sine-Gaussian wavelets and samples over both the parameters of each wavelet
(central time, central frequency, quality factor, amplitude, phase [121]) and
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the number of wavelets via a trans-dimensional or Reverse-jump MCMC. In
some cases, we also make use of solely the glitch model (termed “glitchOnly”
analyses) that assumes no CBC signal and the excess power is described only
with wavelets. The differences between runs and the figures in which they
appear are presented in Tab. 6.2.

Though BayesWave typically marginalizes over uncertainty in the noise PSD [226],
in this work we use the same fixed PSD as the Bilby runs for more direct com-
parisons. Additionally, we use identical data as App. 6.9 for the LIGO Hanford
and Virgo detectors. However, when it comes to LIGO Livingston we use the
original (i.e., “unmitigated,” without any glitch subtraction) data in order to
independently infer the glitch. We do not marginalize over uncertainty in the
detector calibration.

6.10 Select results with IMRPhenomXPHM
In this Appendix, we present select results obtained with the IMRPhenomXPHM [281]
waveform model that also resulted in evidence for spin-precession in GWTC-
3 [38]. Even though IMRPhenomXPHM and NRSur7dq4 both support spin-
precesion, in contrast to SEOBNRv4PHM, there are still noticeable system-
atic differences between them. Figure 6.14 shows that while NRSur7dq4 and
IMRPhenomXPHM generally have overlapping regions of posterior support,
IMRPhenomXPHM shows slightly more preference for higher q and less sup-
port for extreme precession when compared to NRSur7dq4. Waveform sys-
tematics are expected to play a significant role in GW200129’s inference (e.g.
Refs. [38, 179, 194]), which motivates utilizing NRSur7dq4 for all of our main
text results.
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Figure 6.14: Similar to Fig. 6.1, using data from LIGO Livingston
and LIGO Hanford. The comparison shows slight tension between re-
sults when using NRSur7dq4 and IMRPhenomXPHM, though qualitatively
IMRPhenomXPHM also seems to support the evidence for spin-precession.
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C h a p t e r 7

IMPACT OF GLITCH MITIGATION ON GW191109

This chapter contains work from

Rhiannon Udall, Sophie Hourihane, Simona Miller, Derek Davis, Kate-
rina Chatziioannou, Max Isi, and Howard Deshong. Antialigned spin of
GW191109: Glitch mitigation and its implications. Phys. Rev. D, 111(2):
024046, 2025. doi: 10.1103/PhysRevD.111.024046. Reprinted as Chapter 7.
SH helped conceptualize the project, led all BayesWave analyses, created
related figures, and authored related text.

7.1 Abstract
With a high total mass and an inferred effective spin anti-aligned with the
orbital axis at the 99.9% level, GW191109 is one of the most promising can-
didates for a dynamical formation origin among gravitational wave events ob-
served so far. However, the data containing GW191109 are afflicted with ter-
restrial noise transients, i.e., detector glitches, generated by the scattering of
laser light in both LIGO detectors. We study the implications of the glitch(es)
on the inferred properties and astrophysical interpretation of GW191109. Us-
ing time- and frequency-domain analysis methods, we isolate the critical data
for spin inference to 35 − 40 Hz and 0.1 − 0.04 s before the merger in LIGO
Livingston, directly coincident with the glitch. Using two models of glitch be-
havior, one tailored to slow scattered light and one more generic, we perform
joint inference of the glitch and binary parameters. When the glitch is modeled
as slow scattered light, the binary parameters favor anti-aligned spins, in agree-
ment with existing interpretations. When more flexible glitch modeling based
on sine-Gaussian wavelets is used instead, a bimodal aligned/anti-aligned solu-
tion emerges. The anti-aligned spin mode is correlated with a weaker inferred
glitch and preferred by ∼ 70 : 30 compared to the aligned spin mode and a
stronger inferred glitch. We conclude that if we assume that the data are only
impacted by slow scattering noise, then the anti-aligned spin inference is ro-
bust. However, the data alone cannot validate this assumption and resolve the
anti-aligned spin and potentially dynamical formation history of GW191109.
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7.2 Introduction
Reported in the third gravitational wave (GW) transient catalog (GWTC-
3) [38], GW191109_010717 (more concisely GW191109) stands out among
existing binary black hole (BBH) signals. With source-frame primary and
secondary masses of m1 = 65+11

−11 M⊙ and m2 = 47+15
−13 M⊙ (90% symmetric

credible intervals), it is among the most massive events. Furthermore, there
is significant support for black hole (BH) spins anti-aligned with the orbital
angular momentum: the mass-weighted effective spin [53, 287, 309] is χeff =
−0.29+0.42

−0.31. For these reasons, as well as support for unequal masses, q =
m2/m1 = 0.73+0.21

−0.24, spin-precession, and hints of eccentricity [175, 303], the
binary is potentially of dynamical and/or hierarchical origin [59, 391] and
impacts population inference [45, 347].

Multiple GW191109 properties hint toward a dynamical origin. High masses,
above the pair-instability supernova (PISN) limit of 45 − 70M⊙ (depending
on modeling assumptions) [160, 380], may require a hierarchical mechanism
in order to form and merge. Asymmetric masses, in particular, might imply
the merger of a second- and a first-generation BH [59]. Furthermore, popula-
tion synthesis simulations of isolated formation scenarios typically find little
support for spins anti-aligned with the orbital angular momentum, unless su-
pernova kicks are exceptionally high [168, 205, 391]. Finally, eccentricity would
also be challenging to explain except by dynamical processes [302, 303, 389],
due to the rapid orbit circularization by GW emission [271].

Given their astrophysical implications, the inferred properties of GW191109
are worth scrutinizing. The first potential source of systematics is the wave-
form used to model the signal. GWTC-3 employed the IMRPhenomX-
PHM [281] and SEOBNRv4PHM approximants [261], with inference per-
formed by Bilby [69, 299] and RIFT [218] respectively. Both models include
the physical effects of higher-order modes and spin-precession, and headline
results (as quoted above) are their average. However, GW191109 is flagged
for systematic differences between approximants [38], especially for the binary
inclination (edge-on versus face-on/off respectively) and the longer χeff > 0
tail with IMRPhenomXPHM. A third waveform, NRSur7dq4 [362], was
employed in Ref. [203]. A direct surrogate of numerical relativity simulations,
NRSur7dq4 is expected to be the most accurate available model for systems
with high masses and spins [179, 203, 362]. These results bolster the evidence
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for dynamical origin, with a more negative spin, χeff = −0.38+0.21
−0.20, asymmetric

masses, q = 0.65+0.20
−0.19, and a precessing spin parameter [315] of χp = 0.59+0.26

−0.27.
While waveform systematics remain relevant, the broad agreement between
three waveforms (including a direct surrogate to numerical relativity) that
χeff ≲ 0 to varying credibility, suggests that subsequent interpretations of its
formation history remain valid.

A second potential source of systematics concerns modeling the detector noise.
Around GW191109’s arrival, both LIGO [1] detectors experienced a terrestrial
noise transient known as a scattered light glitch [38, 138, 351]. The Virgo de-
tector [42] was offline at this time, and so only the LIGO detectors contributed
to the observation. In LIGO Hanford (LHO), the glitch power was at a nadir
while the event was in the detection band, making its impact on the inferred
parameters negligible, see App. 7.8. As such, we ignore the LHO glitch going
forward. By contrast, glitch power in the Livingston detector (LLO) was di-
rectly coincident in time and frequency with the signal, a circumstance which
could bias astrophysical inference [4, 110, 192, 265, 268]. Specifically, glitch
power extends up to ∼ 40 Hz, coincident with the signal, see Fig. 7.1. Spin
parameters might be particularly susceptible to such data quality issues due to
the relatively smaller imprint they leave on signals compared to, e.g., the BH
masses. For example, GW200129 shows evidence of spin-precession [38, 179],
but its significance depends on how the glitch that overlapped that signal is
modeled [233, 268].

The headline GWTC-3 results were obtained after an estimate for the glitch
had been subtracted from the data. The two-step process involved first mod-
eling the signal and the glitch with a flexible sum of coherent and incoherent
wavelets respectively with BayesWave [121, 124, 226]. Second, a fair draw
from the glitch posterior was subtracted and the system parameters were in-
ferred as quoted above. This procedure has been shown to generally lead to
unbiased mass and (aligned) spin inference [192, 265]. However, uncertainties
remain related to BayesWave’s glitch model and in the fair draw chosen to
be subtracted. These effects were investigated in Ref. [138], albeit with a sim-
pler waveform model with single-spin precession and no higher-order modes,
IMRPhenomPv2 [178]. Glitch mitigation was found to affect the χeff in-
ference by a similar amount as waveform systematics. Completely removing
the glitch-affected data, i.e. all LLO data below 40 Hz, instead resulted in a
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dramatic shift of χeff to positive values χeff = 0.27+0.24
−0.48.

The stark impact of glitch-affected data on astrophysically-impactful spin in-
ference motivates our study. In Sec. 7.4 we extend Ref. [138] to explore the
manner in which the data inform the system parameters. Using NRSur7dq4
and a frequency-domain analysis, we find that the LLO data between 30 and
40 Hz are crucial for spin inference: excluding 30 − 40 Hz data shifts the prob-
ability of χeff < 0 from 99.4% to 32.2%, effectively wiping out any preference
for for anti-aligned spins. A similar time-domain analysis [248] highlights the
role of the data 0.1 − 0.04 s prior to merger. These data, which inform the
χeff < 0 measurement, coincide in time and frequency with excess power in
LLO, see Fig. 7.2 and in particular the excess power at ∼ 36 Hz. To check
whether such dramatic shifts in support for χeff < 0 are possible from Gaussian
noise alone, we analyze 100 simulated signals consistent with GW191109. We
find that shifts of this magnitude are unlikely but not impossible as 6% of the
simulations experience a larger shift than GW191109.

In Sec. 7.5, we focus on the 36 Hz excess power and address the key question:
is the excess power part of the signal (and hence χeff < 0) or is it part of
the glitch (and hence inference has been affected by systematics)? Rather
than the two-step process of glitch fitting and subtraction, we perform a full
analysis where we simultaneously model both the signal and the glitch. Using
a physically motivated model for scattered light glitches [351] we find χeff < 0
at the 99.9% level using NRSur7dq4. We attribute this to the fact that the
36 Hz power is more contained in time than expected for scattered light glitches
that are characterized by extended arches in time-frequency. This analysis,
therefore, attributes the 36 Hz power to the signal and thus prefers χeff < 0.
It is, however, possible that not all terrestrial power is due to scattered light
or that the physical model of Ref. [351] does not capture all scattered light
power. Instead, using a more flexible model for the glitch based on wavelets
and BayesWave and IMRPhenomXPHM we obtain a bimodal solution for
the spin. One mode, preferred at the 70 : 30 level, attributes most of the
36 Hz power to the signal and results in χeff < 0. The second mode attributes
this power to the glitch and results in χeff > 0. Given the low signal-to-noise
ratio (SNR) of the 36 Hz power, these results are impacted by the priors of the
glitch model parameters at the few percent level.

In Sec. 7.6 we summarize our conclusions. Physically grounded assumptions
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about the behavior of scattered light glitches lend support to χeff < 0 for
GW191109, and thus a dynamical origin. However, both systematic limita-
tions on scattered light models and statistical uncertainty due to low SNR
of the excess power and the impact of glitch priors prevent us from making
that determination confidently. While the crucial 36 Hz power is not part of
the scattered light glitch as modeled in Ref. [351], we cannot rule out glitch
mismodeling or other types of terrestrial noise.

7.3 Modeling signals and glitches
The relevant data contain the GW191109 signal, glitch power, and Gaussian
noise. In this section, we describe how we model the signal (Sec. 7.3), the
glitch (Sec. 7.3), and methods for glitch mitigation (Sec. 7.3). We focus on
the respective strengths and weaknesses of each approach and what unique
information each supplies. All analyses model the Gaussian noise component
with the power spectral densities (PSDs) from the GWTC-3 data release [3,
36]. Detailed settings and identification numbers for all analyses are given in
Table 7.1 in App. 7.9.

Modeling the Compact Binary Signal
We use both time- and frequency-domain techniques to model the signal with
either waveform approximants for compact binary signals or, more generi-
cally, with sine-Gaussian wavelets. All analyses consider data surrounding the
nominal trigger time of GW191109, GPS time 1257296855.22, and employ a
sampling rate of 1024 Hz, with the maximum analysis frequency set to 7/8 of
the Nyquist frequency. Unless otherwise noted, analyses that model only the
compact binary (and not the glitch) use a minimum frequency of 20 Hz in both
detectors. We use standard compact-binary priors [299], notably uniform in
detector-frame component masses and spin magnitude and orientation.

Frequency-domain inference

Frequency domain analyses with waveform approximants are based on Bilby [69,
299] with its implementation of the dynesty sampler [324] and BayesWave [110],
both analyzing 4 s of data. The former models the signal with NRSur7dq4 [362]
and the latter with IMRPhenomXPHM [281] (though for consistency we also
perform checks with the former using IMRPhenomXPHM in App. 7.10).
NRSur7dq4 supports a minimum mass ratio of 0.25 and minimum detector-
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frame chirp mass of 35M⊙; neither restriction affects the analysis. We extend
into the extrapolation region in spins, setting a maximum spin magnitude of
0.99. For comparison, we also perform analyses with BayesWave where the
signal is modeled as a flexible sum of coherent sine-Gaussian wavelets [121,
124]. Settings are similar to the glitch wavelet analysis described in Sec. 7.3,
only here, the wavelets are coherently projected across the two detectors rather
than being independent.

Time-domain inference

While GW inference is typically conducted in the frequency domain for compu-
tational efficiency, it can equivalently be conducted in the time domain [100,
199–201]. Frequency domain analyses are non-local in time; to avoid non-
trivial likelihood modifications [99], time-domain inference is necessary in or-
der to isolate purely temporal features of the data. Below, we truncate the
GW191109 data at different times around the 36 Hz excess power, and indepen-
dently conduct inference on the pre- or post-cutoff-time data. For this, we use
the time-domain inference code employed in Ref. [248] to study the GW190521
properties and which was based on time-domain implementations targeting
post-merger data [200, 201]. All time-domain results are based on regions of
1 s of data around GW191109’s trigger time and employ NRSur7dq4 [362].
The same PSDs are used in the time domain analyses are the same as those
in the frequency domain analyses, i.e. from the GWTC-3 data release [36].

Modeling the Glitch
Both LHO and LLO experienced slow scattering noise around the time of
GW191109. We use two models for the glitch power: a physically motivated
model tailored to slow scattering, implemented in Bilby, and a more flexible
wavelet model, implemented in BayesWave.

Physically-parameterized scattering

As the name implies, scattered light glitches arise due to laser light that scat-
ters off the main beam path, bounces off a surface, and recombines with the
main beam [41, 142, 322, 346, 351]. During periods of significant ground
motion when the scattering surface moves, this light acquires a phase offset,
resulting in excess noise. Figure 7.1 shows a spectrogram of the LLO data,
along with the frequency tracks of the scattering excess noise as predicted by
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Figure 7.1: Spectrograms of the original (before glitch mitigation) data in
LLO centered around the time of GW191109. The top panel shows ±8 s of
data, while the bottom panel zooms in around the event. Onto this, we plot
the time-frequency tracks of the scattered light glitch, as predicted by the mo-
tion observed in the witness channel L1:SUS-ETMX_L2_WIT_L_DQ. This is the
witness to the penultimate stage of the reaction chain pendulum for the X-arm
end test mass. The scattering surface is the final stage of the reaction chain,
and so this witness does not perfectly capture the motion of the scattering
surface; to compensate, we apply a static coefficient of 1.38 to the predicted
frequency, such that it is calibrated to the prominent scattering arches ∼ 3 s
before the event. We also plot the inferred signal from a NRSur7dq4 anal-
ysis of full-bandwidth data after glitch subtraction (Run 1 in Table 7.1). We
annotate three regions of interest: the prominent scattering before the event
(top panel), the long-duration excess power at 24 Hz (bottom panel), and the
short-duration excess power at 36 Hz (bottom panel). Both the 24 Hz and the
36 Hz excess power coincide with expected glitch arches, however only the for-
mer has an arch-like shape.
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a witness data stream that captured the motion of the suspected scattering
surface. The effect of scattering is most easily discernible 3 s before the signal,
taking the form of a “stack” of arches, which is characteristic of slow scatter-
ing. Slow scattering results from low-frequency ground motion, ∼0.05−0.3 Hz,
driving slow movement of the scattering surface [322]. This induces phase noise
with frequency [41]

f(t) =
∣∣∣∣∣2vsc(t)

λ

∣∣∣∣∣ , (7.1)

with vsc(t) being the velocity of the scattering surface and λ = 1064 nm is
the wavelength of the laser. In order for the glitch frequency to reach the
analysis band, the scattered light must bounce multiple times, yielding a fixed
frequency ratio between arches as the same amount of phase offset is accumu-
lated with each successive bounce.

This picture forms the basis for a parametrized model for slow scattering
that treats the scattering surface as a simple harmonic oscillator. We use the
physically parameterized scattering model proposed in Ref. [351]. The model
is a sum of frequency-modulated sinusoids with 2N + 4 parameters, where N
is the number of arches:

g(t) =
N∑

k=0
Ak sin

[
fh,0 + kδfh

fmod

sin
(

2πfmod(t− tc)
)

+ ϕk

]
. (7.2)

The peak frequency of the lowest arch is fh,0 and the spacing in peak fre-
quencies between adjacent arches is δfh, such that the peak frequency of the
kth arch is fh,0 + kδfh,0.1 The modulation frequency fmod corresponds to the
motion of the scattering surface (and hence the driving ground motion) and
sets the width of the arch, while tc is the time of peak frequency. Each arch k
further has an independent amplitude Ak and phase ϕk.

Priors on these parameters reflect the physical slow scattering picture. For
δfh and fh,0, we place uniform priors around the approximate values read
from Fig. 7.1, δfh ∼ U(5, 8) Hz and fh,0 ∼ U(18, 20) Hz, while for ϕk we
set a uniform periodic prior, ϕk ∼ U(0, 2π). We employ two sets of priors
on fmod. “Physical” priors limit the modulation frequency to the microseism
band fmod ∼ U(0.05 − 0.3) Hz [322]. “Targeted” priors further restrict the
modulation based on the witness motion fmod ∼ U(0.05 − 0.15) Hz. While the

1Unlike Ref. [351], we fix the frequency ratio between arches to δfh,0, thus eliminating
N − 1 parameters.
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former choice is more agnostic, the latter maximizes information from witness
channels. Since the detector sensitivity varies by orders of magnitude in the
frequency region spanned by the arches, we explore both a uniform and log-
uniform amplitude for the amplitude Ak. We do not impose a relation between
the arch amplitudes; while amplitudes might be expected to decrease with each
arch, this is not universally the case [351].

The number of arches N is fixed and not a parameter of the model that is
varied, unlike the flexible glitch model with BayesWave discussed in Sec. 7.3.
The choice of the number of arches, therefore, impacts the results, especially
for the uniform amplitude prior. Motivated by Fig. 7.1 we set N = 5, a choice
which we investigate in App. 7.11. All analyses that model the glitch with the
slow scattering model further employ a reduced minimum frequency of 16 Hz
in LLO. Though the signal SNR, ρ, is negligible between 16 and 20 Hz (0.16%
of ρ2 in LLO), this setting accommodates the ∼ 18 Hz arch, which in turn
informs the upper arches.

If the glitch overlapping GW191109 is consistent with the physical picture
that motivates the slow scattering model, corresponding analyses provide the
most sensitive results on the system properties. However, the model is also
restricted to an interpretation of slow scattering and does not provide a means
to test this assumption. If other non-Gaussian transient noise is present or if
the physical picture does not fully capture the glitch morphology, biases might
arise.

Wavelet glitch model

To mitigate against glitch modeling systematics, we also employ a more flexible
approach with BayesWave which models transient, non-Gaussian noise inde-
pendently in each detector as sums of sine-Gaussian, Morlet-Gabor wavelets [121,
124]. Such wavelets are an overcomplete basis and any smooth function can be
described with some linear combination of wavelets. Thus, this glitch model
is flexible enough to fit a wide range of non-Gaussian transients without fine-
tuning, including slow scattering [110, 192]. Unlike the parameterized scatter-
ing model, the BayesWave glitch model is purely phenomenological, though
motivated by the generic morphology of the LIGO glitches. Each wavelet is
described by five parameters: central time t and frequency f , quality factor
Q describing how quickly it is damped, amplitude A, and phase ϕ. We em-
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ploy uniform priors over all parameters other than the amplitude, which is set
through a prior on the wavelet SNR that peaks at 5 [121]. In addition to these
parameters, the number of wavelets in each detector is also a variable and
sampled over with a uniform prior. Uniform prior bounds are wide enough so
as to not affect the posterior.

Glitch Mitigation Approaches
We employ three approaches to mitigate and study the impact of the glitch on
inference: (1) discarding the affected data, (2) subtracting an estimate for the
glitch from the data, and (3) simultaneously modeling the signal and glitch and
obtaining source parameters for the former by marginalizing over the latter.

Discarding Affected Data

The most straightforward way to mitigate the impact of a glitch is to dis-
card the affected data, either by band-passing in the frequency domain or by
analyzing limited segments in the time domain [138, 265, 268]. While straight-
forward to implement, such methods forego all information in the discarded
data, making them suboptimal. We instead follow Refs. [138, 268] and discard
glitch-affected data only as a consistency check and to study the impact of the
glitch, or its residual, on inference. Such analyses confirm that mitigation is
necessary and provide insights into the detailed behavior of the data.

Subtraction of a Glitch Estimate

GWTC-3 results on GW191109 were obtained after an estimate of the glitch
was subtracted from the data [38]. In most cases, the estimate for the glitch
is a fair draw from a previous analysis with BayesWave [10, 13, 33, 38] but
estimates generated from witness channels such as in GWsubtract are also
possible [138]. Glitch-subtracted data are then used for downstream source
inference. This method retains all the data and information available and is,
therefore, more suitable for production analyses. However, its efficacy hinges
on the subtracted glitch estimate since the true morphology of the glitch cannot
be perfectly known. In the fair draw case, the expected glitch residual SNR
is non-zero due to statistical uncertainty [127]. In the witness channel case,
the relevant transfer functions induce further systematic and/or statistical
uncertainty [268]. Residual glitch power that could bias inference is therefore
expected.
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Marginalization Over Glitch Realizations

Since selecting a single glitch estimate to subtract results in residual glitch
SNR, the final method is to marginalize over the glitch. This approach is the
most robust, but it is also typically more difficult to implement. Given some
parameterized glitch model g(ϕ), we can model the data as

d = n+ h(θ) + g(ϕ). (7.3)

From this, we may extend the typical likelihood in a single detector to include
the glitch:

ln L(d|θ, ϕ) = −1
2
∑

k

{
[dk − hk(θ) − ϕk(ϕ)]2

Sn(fk)

+ ln(2πSn(fk))
}
, (7.4)

where k indexes the frequency bins being summed over, and Sn(fk) is the
power spectral density in the k’th frequency bin. In detectors without glitches
this reduces to the standard CBC likelihood, and they combine in the usual
way. Using this formulation, one may then sample over both h(θ) and g(ϕ)
simultaneously. From these samples, one may then marginalize over ϕ to
produce CBC posteriors which reflect uncertainties in the modeling of the
glitch.

We perform three glitch-marginalized analyses on GW191109. First, using
BayesWave, we combine the signal model with IMRPhenomXPHM de-
scribed in Sec. 7.3 and the sine-Gaussian glitch model described in Sec. 7.3.
Compared to previous relevant analyses [110, 192, 268] we have extended
the signal model to support waveforms with spin-precession and higher-order
modes. Second, again using BayesWave, we combine the coherent wavelet
signal model described in Sec. 7.3 and the incoherent wavelet glitch model
described in Sec. 7.3 [4]. This analysis uses a more flexible—and thus less
sensitive—model for the GW signal; it is thus used as an additional check.
Even though BayesWave has the capability to also marginalize over the
Gaussian noise PSD [109, 226], we fix it for consistency with other analyses
and since its effect on source inference is generally minimal [7]. Third, we
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implemented the physically-motivated scattered light glitch model of Sec. 7.3
in Bilby. This allows us to jointly use the slow scattering model and the
NRSur7dq4 approximant for the signal.

7.4 Understanding the GW191109 Inference
In this section, we explore the relation between the GW191109 inference, es-
pecially the χeff < 0 measurement, and the glitch-affected data. In Fig. 7.1 we
show spectrograms of the original data (without any glitch mitigation) in LLO
at the time of the event.2 Arch-like traces (multiple colors) show the glitch
time-frequency tracks as predicted by a witness channel. The light blue track
corresponds to GW191109 as inferred with NRSur7dq4 from data after the
glitch was subtracted (Run 1 in Table 7.1). The upper panel presents 16 s
of data; scattering arches are visible leading up to the event. In the bottom
panel, we focus on the vicinity of the signal and highlight the intersection
of the signal track with visible excess power along the projected scattering
tracks. The first is at ∼24 Hz and has the expected duration and morphol-
ogy of a scattering arch. The second is at ∼36 Hz and while it coincides with
the glitch track predicted by the witness, the excess power duration is short
and does not match the expected behavior of slow scattering. As noted in
Ref. [138], this 36 Hz excess power is not included in the original BayesWave
glitch reconstruction and thus not subtracted in the GWTC-3 data.

We begin by confirming and extending the results of Ref. [138] with NR-
Sur7dq4. Analyzing data from each detector separately (Runs 8 and 9 in
Table 7.1) we confirm that the measurement is driven solely by LLO, which
prefers χeff < 0 at 99.6%, compared to 20.0% in LHO. Coherent analysis
of both detectors (Run 1 in Table 7.1) tends to the LLO conclusion due to
LLO’s higher sensitivity in the relevant frequency range, shown below to be
20−40 Hz. Indeed, the maximum likelihood waveform from the coherent anal-
ysis accumulates 20% (8%) of its SNR squared in LLO (LHO) for frequencies
below 40 Hz. This estimate further suggests that LHO data cannot aid in de-
termining whether the critical ∼36 Hz excess power is part of the signal or the
glitch.

Similar differences in parameter inference per detector are present for other pa-
rameters as well, notably the detector-frame total mass M and luminosity dis-

2A similar plot for the LHO data showing that the scattered light glitch does not overlap
with the signal is given in App. 7.8.
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tance DL; see footnote 3 for a discussion of the correlation between χeff and DL.
For example, in individual detector analyses (Runs 8 and 9 in Table 7.1) the
detector-frame total mass is M = 133+14

−14 M⊙ (M = 162+21
−20 M⊙) in LLO (LHO),

while the luminosity distance is DL = 1630+1360
−850 Mpc (DL = 2760+2300

−1570 Mpc)
in LLO (LHO). The corresponding source-frame total mass remains the same
as the increases in detector-frame mass and distance effectively “cancel out”.
Though different, these estimates are still consistent with each other within
statistical uncertainties so there is no indication of a discrepancy across de-
tectors as was the case for GW200129 [268]. Moreover, these differences do
not lead to diverging astrophysical interpretations like the χeff inference; we
therefore focus on the latter in what follows.

Tracing inference across frequencies
To more precisely track the origin of the χeff < 0 measurement across LLO
data, we perform a series of coherent 2-detector analyses where we successively
restrict the LLO frequencies, incrementing the minimum frequency fL by 5 Hz
from 20 to 45 Hz (Runs 1–5 in Table 7.1). We use the glitch-subtracted data
where the 24 Hz arch from Fig. 7.1 has been subtracted, but the 36 Hz excess
power has not [38]. A subset of these results are shown in Fig. 7.2 (pink
shading). The top panel shows a spectrogram of the glitch-subtracted data;
compared to Fig. 7.1, there is no excess noise at ∼24 Hz.

Marginalized posteriors for χeff are shown in the bottom panel. The legend
denotes the percentage of the total SNR squared ρ2 (computed based on the
maximum-likelihood full-band signal) that remains in the analysis window
after each restriction. Removing data between 20−30 Hz (solid vs dashed hor-
izontal lines in the top panel and histograms in the bottom panel) or 30−35 Hz
(dashed vs dotted) removes 6% of ρ2 but does not dramatically alter inference:
χeff < 0 is still preferred at 96.3% for fL = 35 Hz. Such small shifts are likely
consistent with the SNR reduction and regression to the prior (gray). Re-
moving data 35 − 40 Hz (dotted vs dot-dashed) removes an additional 6% of
ρ2 and instead results in an abrupt shift in χeff, with χeff < 0 now only at
32.2%, a moderate preference for positive values.3 Further bandwidth reduc-

3Since the χeff prior is centered at zero, this shift to mildly positive values goes beyond
regression to the prior. We attribute this to a mild χeff − DL degeneracy that arises for
merger-only signals. The uniform-in-volume prior favors larger DL and results in larger χeff
to compensate for the amplitude reduction. This degeneracy is less pronounced when the
signal inspiral is visible, as then χeff is constrained by the inspiral phase evolution beyond
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Figure 7.2: Tracing the χeff inference across frequencies and times. The top
panel shows the spectrogram of the glitch-subtracted data around GW191109,
with residual excess power at 36 Hz highlighted along with the signal track.
We progressively remove data in the frequency domain (pink) and the time
domain (blue) and reanalyze the restricted data. Vertical and horizontal lines
in the top panel denote the time and frequency cuts, respectively; only data
to the left or above these lines are analyzed. The two middle panels show the
whitened time-domain data (grey) and signal reconstruction (pink and blue).
Lighter colors correspond to the analyses of the full data, while darker colors
correspond to the most restricted data (frequencies above 40 Hz and times
from −0.04 s before merger onwards). The bottom row shows the χeff prior
(gray) and χeff marginal posteriors from analyses with varying levels of data
restriction, each corresponding to the lines on the top panel. The legend notes
the SNR squared ρ2 fraction in Livingston that remains in the analysis band
after each data restriction.
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tion does not modify the χeff posterior substantially (solid dark pink). These
results indicate that it is the LLO data between 35 and 40 Hz that are crucial
for measuring χeff, coinciding with the 36 Hz excess power visible in both the
original data, Fig. 7.1, and the glitch subtracted data, Fig. 7.2.

The second panel from the top of Fig. 7.2 shows the whitened time-domain
reconstructions. We compare signal reconstructions from two analyses with
dramatically different χeff posteriors: the full bandwidth analysis that prefers
χeff < 0 against the fL = 40 Hz analysis with a mildly positive χeff. While the
two analyses are conducted on different data subsets, we can still evaluate the
waveforms across the same times and plot them together. The reconstructions
are consistent during the merger (corresponding to high frequencies included
in both analyses), but start diverging 2 − 3 cycles before merger. By eye, the
full-band reconstruction better matches the data for t ≈ −0.6 s, corresponding
to the 36 Hz excess power. When that power is included in the analysis, the
signal model absorbs it by setting χeff < 0 and pushing the GW cycle to earlier
times. If that power is not part of the analysis, χeff is no longer required to be
negative and the 36 Hz excess power is left unaccounted for.

This conclusion raises the question of whether the 36 Hz excess power is part
of the signal or part of a glitch that remained unsubtracted. Though the shift
in the χeff posterior is suggestive of anomalous noise, it is possible that it is
at least partly due to loss of information as 6% of ρ2 in LLO is contained in
the 35−40 Hz frequency band. In Sec. 7.4 we contextualize this χeff shift with
simulated signals.

Tracing inference across times
Having identified the crucial frequencies for χeff inference, here we do the
same across time with the time-domain analysis described in Sec. 7.3. When
used on the full dataset, frequency- and time-domain analyses should yield
equivalent results. Indeed, we find consistent posteriors for χeff when analyzing
GW191109 in the frequency and time domains, as seen by the solid histograms
in Fig. 7.2.4

just the merger amplitude.
4The time- and frequency-domain analyses employ different priors on masses, luminosity

distance, and time. The time-domain inference uses priors which are uniform in detector-
frame total mass, mass ratio, and luminosity distance; and are normally distributed in
geocenter time, centered at 1257296855.2114642 with a width of 0.005 seconds. We confirm
that the differences in time and the mass priors effect the posteriors minimally. Reweight-
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However, as Fig. 7.1 shows, there is no 1-to-1 mapping between time and
frequency for the glitch. Though not as apparent, the same is true for the
signal beyond the inspiral regime or due to spin-precession and higher-order
modes. Truncating the data in the time domain is, therefore, not equivalent
to truncating in the frequency domain, as the former allows us to probe the
effect of individual cycles (or parts of cycles) of the signal or the glitch.

Results from progressively excluding the earlier portion of the signal in the
time-domain (Run 10 in Table 7.1) are shown in Fig. 7.2 (blue shading). We
find broadly similar results as the frequency-domain analysis: the full data
yield preference for χeff < 0. As the segment that contains the 36 Hz excess
power is progressively removed (blue vertical lines in the top panel), the χeff

posterior shifts to being principally positive (equivalent blue histograms in
the bottom panel). Overall, the data 0.1−0.04 s before merger are crucial for
χeff < 0 inference. Compared to the frequency-domain results, the shift in
the χeff posterior is more gradual, likely due to the fact that the 36 Hz power
is more concentrated in frequency, hence no time “cut” abruptly completely
excludes it. Waveform reconstructions from the time-domain analysis (third
panel from the top in Fig. 7.2) yield consistent conclusions.

Simulated signals
We investigate the degree to which the abrupt shift in the χeff posterior in
Fig. 7.2 is consistent with SNR loss from removing data with simulated signals.
We simulate 100 signals drawn from the GW191109 full-band posterior (Run 1
in Table 7.1), add them to Gaussian noise drawn from the GW191109 PSDs
in LLO and LHO, and analyze the full data versus the > 40 Hz data in LLO
independently (Runs 22–221 in Table 7.1). Signals have true values χeff < 0 but
as data and signal SNR are removed when fL = 40 Hz, we expect the posterior
to become more prior-like and shift toward χeff = 0. For each simulated signal,
Fig. 7.3 shows the probability of χeff ≤ 0 from the full-data, fL = 20 Hz, and
the restricted-data, fL = 40 Hz, analysis.

For almost all signals removing low-frequency LLO data results in a χeff poste-
rior that shifts closer to the prior and positive values (lying below the diagonal)
ing between the two luminosity distance priors proves difficult due to finite sampling and
upweighting portions of parameter space with no support in the posterior. However, the
luminosity distance posteriors from the time- and frequency-domain analyses are in high
agreement when the full data is analyzed, despite using different priors.
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cases which were consistently majority positive. The x = y line (dashed brown)
corresponds to no shift in the probability for χeff ≤ 0.
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as expected for signals with true values of χeff < 0. In most cases, this shift is
marginal, and posteriors stay majority-negative, as evidenced by the high den-
sity (64% of all signals) in the top right quadrant (green axes). The next most
likely outcome is the bottom right quadrant (orange axes), which contains 34%
of the signals, including GW191109: here the χeff posterior shifts from favor-
ing negative to positive values. Among these, GW191109 is one of the more
extreme cases, exhibiting a shift more significant than 94% of the simulations.
Therefore, we conclude that the χeff shift presented in Fig. 7.2 is unlikely, but
not impossible, to be explained by a random Gaussian noise instantiation,
i.e. without needing to invoke residual glitch power. In App. 7.12 we present
further results based on a χ2 test used in search algorithms that tracks how
SNR is accumulated along the signal [56, 141, 353]. Consistent with Fig. 7.3,
the test is inconclusive: the full-band analysis (Run 1 in Table 7.1) has be-
havior more extreme than most simulations, but it is not strongly inconsistent
with them.

7.5 Glitch-Marginalized Inference
Having established that the 35–40 Hz data drive the negative χeff inference,
we turn to the question of whether these data are meaningfully impacted by
residual glitch power. We go beyond subtracting a single estimate for the
glitch and simultaneously model both the signal and the glitch as described
in Sec. 7.3. All analyses in this section use the original data in both detectors
with no prior glitch mitigation. While this approach is robust against residual
glitch power from subtracting a single glitch estimate, it is still impacted by
modeling choices, specifically both the parametrized model (physical scattering
model or wavelets) and the corresponding glitch parameter priors.

Since the 36 Hz excess power coincides in frequency with an arch predicted by
the witness channel, Fig. 7.1, it is reasonable to expect it to be part of the
scattering event and thus a prime target for the slow scattering model [351].
However, the time-frequency morphology of the 36 Hz excess power does not re-
semble scattering arches, which motivates the alternative wavelet-based glitch
model. In principle, BayesWave can fit any excess power by adding enough
wavelets. Such a many-wavelet fit might be statistically disfavored, though,
as it relies on a large number of parameters and a reduced posterior-to-prior
volume. The exact quantitative impact of this Occam penalty is controlled by
the wavelet parameter priors, which influence whether it is statistically favor-
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able to add a wavelet to capture the excess power or instead attribute it to the
signal. The most influential prior is likely the one for the wavelet amplitude,
which—although broad—favors wavelets with SNR ∼5. The situation is fur-
ther complicated by the the low LHO sensitivity in the relevant frequencies,
which weakens its contribution to the likelihood, making the discrimination
between glitch and signal even more dependent on the prior shape.

Slow scattering glitch model
We begin with the scattered light model in Fig. 7.4 (Run 13 in Table 7.1),
which models five arches with a uniform amplitude prior and the “Targeted”
modulation prior that is informed by the witness motion. The signal is modeled
with NRSur7dq4. The top panel shows a spectrogram of the data and the
signal and glitch posteriors. The inferred glitch arches (multiple colors) match
the witness prediction for the arch peak frequency spacing (∼6 Hz) in the
region of maximum glitch power. The optimal SNR ρopt posterior for each arch
is shown in the bottom right panel, which reveals that three non-consecutive
arches are confidently recovered with ρopt > 0: the first one at 18 Hz (blue),
the second at 24 Hz (yellow), and the fourth at 36 Hz (orange). The third arch
at 30 Hz has negligible SNR, ρopt < 2 at 88% credibility. Though seemingly
surprising given the physical interpretation of scattered light based on bounces
off of moving surfaces, a varying arch amplitude is commonly observed and
the SNR further depends on the noise PSD that decreases with frequency in
this range. The full glitch reconstruction in the time domain is plotted in
the middle panel (blue) along with the signal (pink). As expected from the
presence of multiple arches, the glitch does not have a constant frequency.

The χeff inference is presented in the bottom row. The bottom left panel shows
the marginalized χeff posterior from this analysis (pink). For comparison, we
also plot the posterior from the standard two-step analysis where the glitch has
been pre-subtracted and only the signal is analyzed (Run 1 in Table 7.1; blue).
Under glitch marginalization, χeff remains definitively negative at ∼100% cred-
ibility, though the median increases from −0.40 to −0.33. The glitch and χeff

inference are uncorrelated, as shown in the bottom middle panel through a
scatter plot for χeff and the optimal SNR of each arch.5 This suggests that

5Rather than the 36 Hz power, we attribute the small shift in the χeff median in Fig. 7.4
to the particular glitch realization that was subtracted for the GWTC-3 analysis. Indeed
when we analyze the original data (no glitch mitigation) with only a signal (Run 12 in
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Figure 7.4: Jointly modeling the glitch with the physical slow scattering model
and the signal with NRSur7dq4 (Run 13 in Table 7.1). In the top panel,
we show a spectrogram of the data, along with the posterior for the glitch
arches (median and 90% credible intervals; multiple colors), the signal track
(blue), and the prediction of the witness channel (black dashed). In the middle
panel, we show the whitened time-domain posterior reconstruction for the
glitch (blue) and the signal (CBC; pink). In the bottom left panel, we show the
marginalized χeff posterior from this analysis (pink), along with the equivalent
result from glitch-subtracted data (Run 1 in Table 7.1; blue). In the bottom
right panel, we show the marginalized posterior for the optimal SNR of each
individual arch. Finally, in the bottom middle panel, we show a scatter plot
of individual posterior samples in the ρopt − χeff plane for each arch, showing
that no correlation exists.
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even though there is a glitch arch at 36 Hz its time-frequency morphology does
not match the 36 Hz excess power. Even when the signal and glitch are simul-
taneously modeled, most of the 36 Hz excess power is attributed to the signal
and results in χeff < 0. The time-domain reconstructions in the middle panel
confirm this interpretation, with the signal reconstruction closely resembling
those in Fig. 7.2, while a lower-amplitude glitch oscillation accounts for the re-
mainder. We have verified that these χeff results are robust under alternative,
yet reasonable, priors for the glitch: log-uniform in amplitude and the “Phys-
ical” modulation prior discussed in Sec. 7.3 (Runs 14, 15, and 16 in Table 7.1
for uniform amplitude with physical modulation, log-uniform amplitude with
targeted modulation, and log-uniform amplitude with physical modulation re-
spectively). We have also verified that other parameters, such as the binary
total mass and mass ratio, remain consistent between glitch-subtracted and
glitch-marginalized analyses.

To summarize, we conclude that the 36 Hz power is not exclusively due to
the signal. Not only does the witness channel predict some glitch power, but
also the slow scattering model places an ρopt ∼ 3 arch, notably louder than
its adjacent arches. However, the excess power is not entirely attributed to
scattered light as it is morphologically inconsistent with a slow scattering arch.6

The χeff < 0 inference, therefore, persists under the physical slow scattering
interpretation of this glitch.

Wavelet glitch model
The physically-motivated slow scattering model finds some glitch power at
36 Hz but cannot account for the entire 36 Hz excess power. This might be be-
cause of modeling systematics, the presence of other (beyond slow-scattering)
non-Gaussian noise, or simply because the 36 Hz excess power is indeed part
of the signal. We explore these possibilities with BayesWave and its more
flexible wavelet-based glitch model as described in Sec. 7.3. We present two
analyses: both marginalize over the glitch with wavelets but the GW signal is
modeled with either the compact binary model IMRPhenomXPHM or with
Table 7.1), we obtain a χeff posterior more similar to that of the marginalized analysis with
a median χeff of −0.36.

6In App. 7.11 we show that unphysical priors on the slow scattering parameters can
indeed twist the model into fully absorbing the 36 Hz power and eliminating the χeff < 0
inference. Such priors are, however inconsistent with slow scattering, which forms the basis
of the glitch model to being with.
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Figure 7.5: Jointly modeling the glitch with sine-Gaussian wavelets and the
signal with IMRPhenomXPHM (Run 21 in Table 7.1). The top panel shows
the whitened time-domain data (grey) and median and 90% credible inter-
vals for the glitch (green) and signal (CBC; pink). The bottom row displays
marginalized posteriors. The right panel shows the glitch-marginalized χeff
posterior, which displays a much larger spread than the results of Fig. 7.4,
now being consistent with χeff = 0. The left panel shows the scatter plot
between χeff and the minimum quality factor Q among all wavelets of each
posterior sample. Positive χeff is correlated with low Q. Scattered light is
characterized by larger Q-values [192], confirming that χeff > 0 only if the
glitch does not match the expected scattered light morphology. The middle
panel shows a scatter plot between χeff and the glitch SNR which are again
correlated: higher glitch power leads to a more positive χeff.

coherent wavelets.

IMRPhenomXPHM

In Fig. 7.5 we show results from the joint analysis with IMRPhenomXPHM
for the signal and wavelets for the glitch (Run 21 in Table 7.1). The top
panel shows the whitened time-domain reconstructions. Compared to the re-
constructions in Fig. 7.4 there is now increased uncertainty around the 36 Hz
excess power, i.e. between times −0.09 and −0.04 s. This is due to the larger
flexibility of the glitch model, which can now compete with the signal for the
data around −0.06 s, leading to larger uncertainties for both models. The
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Figure 7.6: Jointly modeling both the glitch and the signal with sine-Gaussian
wavelets (Run 20 in Table 7.1). We plot the whitened time-domain data (grey)
and median and 90% credible intervals for the glitch (orange) and signal (GW
Wavelets; purple). The 36 Hz excess power is consistent with originating from
either the glitch or the signal at the 90% credible level.

larger uncertainty is also reflected in the glitch-marginalized χeff posterior
shown in the bottom right panel. Compared to Fig. 7.4, the χeff posterior
is now much wider and entirely consistent with zero. It displayes a broadly
bimodal structure with one mode favoring χeff < 0 and peaking at ∼−0.4 and
the other favoring χeff > 0 and peaking at at ∼0.4. The antialigned mode is
weakly favored at 70% of the posterior samples have χeff < 0.

The increased χeff uncertainty is entirely due to the glitch and the competition
between the signal and the glitch models. The bottom middle panel shows a
posterior scatter plot for χeff and the SNR of the glitch in LIGO Livingston.7

The glitch SNR is strongly correlated with χeff: a higher glitch power results
in a more positive χeff. A small fraction of posterior samples, ∼ 6%, have
vanishing glitch SNR (zero wavelets) and a strongly negative χeff, consistent
with results from Fig. 7.4. Besides the glitch power, we examine the recov-
ered glitch morphology in the bottom left panel, where we plot χeff against
the minimum quality factor among wavelets in a particular posterior sample.
The quality factor corresponds to the number of cycles in a wavelet, therefore
scattering arches are characterized by larger values of Q [192]. This plot con-
firms the conclusions of Fig. 7.4: if the glitch is scattering-like (large Q), the
model cannot capture the 36 Hz power, and χeff tends to be negative. Support
for χeff > 0 requires low values of Q which morphologically do not resemble

7This analysis allows for glitches in both detectors, but the Hanford data are consistent
with no glitch power in the analysis window.
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scattering arches.

These results are qualitatively robust against different glitch priors. When
using a prior for the amplitude of each wavelet that peaks at an SNR of 3
(instead of the default value of 5), we recover the same bimodal solution for
χeff and the glitch SNR. However, the preference for the antialigned mode
shifts from 70% to 60% suggesting that our quantitative results are impacted
by the glitch prior at the few percent level. This shift is attributed to the fact
that the updated prior makes it easier to low-SNR wavelets to be added to the
posterior and thus capture the 36 Hz excess power away from the signal model.
The impact of glitch priors is akin to the impact of compact-binary parameters
on inference [374] and is expected to be more prominent for low-SNR glitches.

We perform a final sanity check by comparing the total (signal plus glitch)
reconstructions of posterior samples with χeff > 0 to those with χeff < 0.
Although the two posterior modes result in different interpretations of which
parts of the data are signal and which are glitch, their sums are consistent
with each other. This is expected as it is the total strain of signal-plus-glitch
that is compared to the data to calculate the likelihood. So any solution must
result in the same total strain. While we view this as a sanity check on the
analysis convergence, it also suggests that there are two distinct ways to model
the data, and this analysis does not strongly prefer one over the other.

Coherent wavelet model

For completeness, we present a final analysis where both the glitch and the
GW are modeled with sums of wavelets [4] (Run 20 in Table 7.1). Since
the signal model is now also phenomenological, we do not extract any binary
parameters such as χeff which has thus far been guiding our conclusions. In-
stead, we directly interpret the time-domain reconstructions in Fig. 7.6. As
expected, using more flexible models results in increased uncertainties. The
36 Hz (−0.06 s in the plot) power is still traded between the two models, and
neither can rule out that it belongs to them at the 90% credible level. In
contrast to the signal reconstructions thus far, Figs. 7.4 and 7.5, the coher-
ent wavelet model is not able to confidently recover the signal inspiral between
times −0.1 and −0.04 s. This is again due to the large flexibility of the wavelet
signal model, which needs to extract each portion of the signal independently
of the others [169] as opposed to the waveform model that coherently models
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Figure 7.7: Comparison of reconstructions for the LIGO Livingston glitch
that overlapped with GW191109 obtained by various analyses. The data are
shown in grey, and for reference, we also show the maximum-likelihood GW
reconstruction from the full-band analysis on the glitch-subtracted data in
black (Run 1 in Table 7.1). The single realization subtracted for the GWTC-3
analysis is shown in pink [38]. The glitch inferred from the joint slow scattering
and NRSur7dq4 analysis (Run 13 in Table 7.1) is shown in blue. The glitch
inferred with wavelets is shown in green when the signal is modeled with
IMRPhenomXPHM (Run 21 in Table 7.1) and orange when the signal is
also modeled with wavelets (Run 20 in Table 7.1).

the whole signal across inspiral and merger.

Comparing glitch reconstructions
Finally, we compare glitch reconstructions from the various glitch inferences
considered in Fig. 7.7. The comparison includes the single glitch realization
considered in GWTC-3 [38] and the three glitch-marginalized analyses pre-
sented in this study, Figs. 7.4, 7.5, and 7.6. The glitch reconstructions are
largely consistent with each other, with the largest differences encountered
in the crucial −0.06 s region. As expected, the wavelet-based reconstructions
have a larger statistical uncertainty due to the larger model flexibility. This
allows them to reach a larger amplitude at −0.06 s which is necessary in order
to capture the 36 Hz excess power.

7.6 Conclusions
When seeking to interpret GW data in the presence of glitches, absolute con-
fidence in all aspects of the analysis is impossible. Unlike compact-binary
signals for which we have exact numerical relativity simulations to compare
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models against, glitch modeling does not have the luxury of a “ground truth”
solution. Nonetheless, we have sought an understanding of GW191109, its
astrophysically-influential χeff < 0 inference, and the overlapping glitch within
the limitations of imperfect glitch models and large statistical uncertainties.

We showed that the χeff < 0 measurement is attributed to a segment of LIGO
Livingston data occurring between 0.1 and 0.04 s before the merger, and be-
tween 30 and 40 Hz. These data are impacted by excess scattered light non-
Gaussian noise, consistent with Ref. [138]. Simultaneously modeling the GW
signal with compact-binary waveforms and the glitch yields results that depend
on the glitch model. A physical glitch model tailored to slow scattering glitches
cannot morphologically match the excess power observed in the 36 Hz range.
Therefore the χeff < 0 measurement still stands. A more flexible wavelet-based
glitch model is instead able to fully account for the 36 Hz excess power and
wipe out all support for χeff < 0. Though witness channel information suggests
that slow scattering was indeed what occurred during GW191109, we cannot
rule out shortcomings of the slow scattering parametrized model or additional
non-Gaussian noise.

Given this, we cannot make absolute statements about the properties of GW191109.
If, as expected from witness channel information, the data contain Gaussian
noise, a well-modeled slow scattering glitch, and a GW signal, then GW191109
likely had asymmetric masses and χeff < 0, strongly implying a dynamical ori-
gin [391]. However, if other non-Gaussian noise was present in the data, or
the glitch morphology varied from classical slow scattering, spin inference be-
comes uninformative—though in any situation, GW191109 remains one of the
heaviest observations to date. Distinguishing between these interpretations
is challenging. Firstly, LIGO Hanford’s sensitivity in the relevant frequency
range is diminished, it can therefore not contribute to the question of whether
the crucial 36 Hz power is coherent (and thus part of the signal) or incoherent
(and thus part of the glitch). Secondly, the overall low SNR of the glitch makes
results depend on the glitch model priors, e.g. the BayesWave glitch prior
explored in Sec. 7.5.

Our analysis builds upon Refs. [138, 268] to propose a framework for in-depth
analyses of glitch-afflicted data. The framework includes cross-detector com-
parisons, band- and time-limited analyses, simulated signals, marginalizing
over the glitch, and exploring different glitch models (tailored to a specific
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glitch family or flexible) and prior assumptions.

As GW astronomy collects more data and seeks to constrain increasingly more
subtle effects, mitigating systematics related to data quality presents a comple-
mentary challenge to waveform systematics. Similar to waveform systematics,
data quality systematics can be particularly troublesome for spin inference,
which typically leaves a subtle imprint on the data and is concentrated on a
small (time or frequency) region of data. Studies such as the ones presented
here and in Ref. [268] are based on targeted, intensive follow-up of selected
events, hand-chosen for the astrophysically important inference. Data qual-
ity systematics aggregating over catalogs of detections require additional care
to identify and mitigate in an automated way, e.g., [186]. Such efforts will
be significantly aided by the work of experts in reducing the absolute rate of
glitches, in characterizing the state of the detectors, and in developing efficient
and statistically sound analyses in the presence of glitches. In this work we
present techniques to help address these challenges moving forward.
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Figure 7.8: Similar to Fig. 7.1 but for LHO data at the time of GW191109,
with the scattering tracks predicted by the motion of the witness channel
H1:SUS-ETMX_L2_WIT_L_DQ. The absolute intensity of the slow scattering was
significantly worse than in LLO, but the signal occurred at a minimum in the
scattering, such that there is no overlap in time and frequency between the
glitch arches and the GW191109 track (blue).
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7.8 Scattered light glitches in LHO
In Fig. 7.8 we show a spectrogram of the data in LHO at the time of GW191109
and the scattering tracks predicted by the witness channel. When GW191109
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entered the LHO frequency band, the scattering surface motion was at a min-
imum, so that the signal and the glitch are disjoint in time and frequency.
Accordingly, we expect source inference to be unaffected by the glitch. Ref-
erence [138] reached similar conclusions. We confirm this expectation by per-
forming analyses which restrict the frequency band in LHO in a similar fashion
to main-text LLO analyses. When restricting to > 40 Hz in LHO (Run 6 in
Table 7.1) but with no LLO restrictions, the χeff posterior remains almost
entirely negative (χeff < 0 at 99.9% credibility, the same as Run 1 in Ta-
ble 7.1 that uses all data in both detectors). When removing sub-40 Hz data
in both detectors (Run 7 in Table 7.1), we obtain a modestly positive result
(χeff < 0 at 33.3% credibility), but no more so than when we only restricting
the LLO data (32.2%) (Run 4 in Table 7.1). While it is mildly surprising that
removing so much low-frequency data in LHO has so little apparent effect on
inference, we attribute this to the significant difference between LLO and LHO
low-frequency sensitivity.

7.9 Detailed analysis settings
In this appendix we provide details about the settings of all analyses presented
in this study. Table 7.1 identifies all analyses with a unique index, referenced
throughout the text. We also list the data analyzed, the relevant glitch and
signal models, any restrictions applied to the data being analyzed, and the
analysis type (both the software used and the data domain in which it oper-
ates). Data for these analyses is made public in the associated zenodo dataset
[352].

7.10 IMRPhenomXPHM Analyses with bilby
To assess whether differences between BayesWave results and bilby results
are due to waveform systematics, we also perform two analyses using bilby
and IMRPhenomXPHM: one on subtracted data (Run 11 in Table 7.1),
and one using the slow scattering glitch model (Run 19 in Table 7.1). The
analysis on subtracted data found χeff ≤ 0 at 99.3% credibility, while the
analysis marginalizing over the slow scattering model found χeff ≤ 0 at 99.9%
credibility. From this we conclude that the observed differences between bilby
and BayesWave are due to the choice of glitch model, rather than the choice
of waveform approximant.
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Run ID Data Glitch Model Signal Model Data Restrictions Analysis Type

1 Subtracted –– NRSur7dq4 –– Bilby-FD
2 Subtracted –– NRSur7dq4 fL = 30 Hz Bilby-FD
3 Subtracted –– NRSur7dq4 fL = 35 Hz Bilby-FD
4 Subtracted –– NRSur7dq4 fL = 40 Hz Bilby-FD
5 Subtracted –– NRSur7dq4 fL = 45 Hz Bilby-FD
6 Subtracted –– NRSur7dq4 fH = 40 Hz Bilby-FD
7 Subtracted –– NRSur7dq4 fL = fH = 40 Hz Bilby-FD
8 Subtracted –– NRSur7dq4 No LHO Bilby-FD
9 Subtracted –– NRSur7dq4 No LLO Bilby-FD
10 Subtracted –– NRSur7dq4 Various tH , tL TD
11 Subtracted –– IMRPhenomXPHM –– Bilby-FD
12 Original –– NRSur7dq4 –– Bilby-FD
13 Original Slow Scattering (Uniform + Targeted) NRSur7dq4 –– Bilby-FD
14 Original Slow Scattering (Uniform + Physical) NRSur7dq4 –– Bilby-FD
15 Original Slow Scattering (Log-Uniform + Targeted) NRSur7dq4 –– Bilby-FD
16 Original Slow Scattering (Log Uniform + Physical) NRSur7dq4 –– Bilby-FD
17 Original Slow Scattering (Uniform + Targeted, N=4) NRSur7dq4 –– Bilby-FD
18 Original Slow Scattering (Uniform + Unphysical) NRSur7dq4 –– Bilby-FD
19 Original Slow Scattering (Uniform + Targeted) IMRPhenomXPHM –– Bilby-FD
20 Original Wavelets Wavelets –– BayesWave-FD
21 Original Wavelets IMRPhenomXPHM –– BayesWave-FD

22-121 Simulated –– NRSur7dq4 –– Bilby-FD
122-221 Simulated –– NRSur7dq4 fL = 40 Hz Bilby-FD

Table 7.1: Settings and properties for all analyses presented in this work. We
list from left to right: a unique run ID hyperlinked in the text, the type of
data used (original or glitch-subtracted GWTC-3 data [2, 36]), how the glitch
is modeled per Sec. 7.3, how the CBC signal is modeled per Sec. 7.3, frequency
or time cuts on the data on top of the default settings, and the analysis type
(software and data domain - FD for frequency and TD for time). Analy-
ses based on glitch-subtracted data use the data provided by GWTC-3 [38],
while analyses that marginalize over the glitch employ the original unmitigated
data. Frequency bands are described by fH and fL designating the minimum
frequency of analysis in LHO and LLO respectively. For runs which us the pa-
rameterized slow scattering model, the parenthetical descriptions correspond
to the choice of amplitude prior and modulation frequency prior respectively
for each run. All slow scattering analyses model five slow scattering arches,
with the exception of Run 17.

7.11 Alternate Slow Scattering Glitch Priors
To test our assumption that it is appropriate to use the slow scattering model
with five scattering arches, we also perform a test using four scattering arches
with uniform amplitude and targeted modulation frequency priors (Run 17 in
Table 7.1). This result finds χeff ≤ 0 with ∼ 100% credibility, indicating that
the inclusion of an arch around 42 Hz does not alter the conclusions of this
work.

The slow scattering model under the physically expected range of modulation
frequencies fmod ∼ U(0.05 − 0.3) Hz results in arches that are too extended in
time to match the 36 Hz excess power morphology. We explore what values
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of fmod are required in order to impact χeff inference, with an analysis that
employs a uniform amplitude prior and a maximum modulation frequency
of 5 Hz (Run 18 in Table 7.1). We recover a tri-modal structure favoring
fmod = 1.5 Hz and a less negative χeff, with χeff < 0 at 77.1% credibility.
However, fmod = 1.5 Hz is 10 times larger than the scattering surface motion
witnessed by the channel L1:SUS-ETMX_L2_WIT_L_DQ. Such a result would
presume the existence of some alternative source of frequency modulated phase
noise, either due to another scattering surface driven at a different frequency, or
some non-scattering mechanism, coincidentally aligned in time and frequency
with the known scatterer. While we cannot rule out the existence of such
a source, there is no physical motivation to presuppose its existence. We
instead use this analysis to emphasize the conclusion from the BayesWave
study, namely that sufficiently flexible glitch models allow for a wider range
of possibilities.

7.12 Frequency Bin χ Test
Tests which assess the Gaussianity of data [231, 383] may be applied to residual
data after glitch and signal subtraction, but these do not address whether
the signal model is capturing any glitch power. In this Appendix we instead
consider the frequency bin χ2 test as employed by search algorithms [56, 141,
353]. Qualitatively, it assesses tension between the signal waveform and the
data over the entire frequency band, and hence measures deviations due both
to model misspecification and to distribution of power not characteristic of a
CBC, e.g., a glitch.

For each posterior waveform, we divide the frequency band into p bins of
equal optimal SNR. If the data are consistent with the sum of the waveform in
question and Gaussian noise, then the matched-filter SNR will also be evenly
distributed over these bins. For the jth bin, the matched-filter SNR ρmf,j will
deviate from the mean ρmf

∆ρmf,j = ρmf,j − ρmf

p
. (7.5)

The statistic
χ2 = p

p∑
j=1

|∆ρmf,j|2 , (7.6)

is distributed according to a χ2 distribution with 2p − 2 degrees of freedom
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under Gaussian noise[56].8 The normalized statistic

χ2
r = χ2

2p− 2 , (7.7)

will then have an expected value of 1. Deviations indicate that the data might
not be solely described by the waveform plus Gaussian noise, likely due to a
glitch. We compute χ2

r for each GW191109 signal posterior sample on data
where the corresponding glitch posterior sample has been subtracted. We de-
note the mean statistic over posterior samples as χ̄2

r. We then compare against
corresponding results from the simulated signals of Sec. 7.4. The reason we
compare against simulations rather than directly the frequentist expectation
for Eq. (7.7) is that the distribution over the posterior samples is not equivalent
to a distribution over many Gaussian noise realizations.

In Fig. 7.9 we plot the statistic distribution over posterior samples in both de-
tectors for the glitch-subtracted analysis of Run 1 and the glitch-marginalized
analysis with the slow-scattering model of Run 13. The colormap corresponds
to results from simulated signals where we bin the mean statistic χ̄2

r for each
simulated signal. Glitch-marginalization results in a statistic whose mean is
more closely in accordance with the frequentist expectation value in both de-
tectors (χ̄2

r = 0.96 and χ̄2
r = 0.97 in LHO and LLO respectively) than glitch-

subtraction (χ̄2
r = 1.16 and χ̄2

r = 1.24 in LHO and LLO). Compared to the
simulated signals, glitch-marginalization results in χ̄2

r more extreme than that
of 41% (45%) of simulations in LHO (LLO), while the glitch-subtracted result
has a χ̄2

r more extreme than 81% (90%) of simulations in LHO (LLO). To pro-
duce a meta-statistic, we use Fisher’s method [162] to compute the likelihood
of these statistics occurring together, assuming that the p-values are uncorre-
lated. This creates another χ2 statistic, this time with two degrees of freedom
per detector. For the glitch-marginalized result, we obtain 2.25, corresponding
to a p-value of 0.69, while for the glitch-subtracted results we have 7.93, giving
a p-value of 0.09. Consistent with expectations, glitch-marginalization results
in residuals that are more consistent with Gaussian noise after removing the
glitch and signal reconstruction.

8Two degrees of freedom correspond to the real and imaginary components in each bin,
while two are removed since deviations must sum to zero in each of the real and imaginary
components.
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C h a p t e r 8

WHERE GLITCHES DO NOT MATTER

This chapter contains work from

Sophie Hourihane and Katerina Chatziioannou. Glitches far from transient
gravitational-wave events do not bias inference. In Prep, 2025. Currently
in preparation, presented here in 8. SH conceptualized the project, led all
analyses, created all figures, and authored the text.

8.1 Abstract
Non-Gaussian noise in gravitational-wave detectors, known as “glitches,” can
bias the inferred parameters of transient signals when they occur nearby in
time and frequency. These biases are addressed with a variety of methods
that remove or otherwise mitigate the impact of the glitch. Given the com-
putational cost and human effort required for glitch mitigation, we study the
conditions under which it is strictly necessary. We consider simulated glitches
and gravitational-wave signals in various configurations that probe their prox-
imity both in time and in frequency. We determine that glitches located out-
side the time-frequency space spanned by the gravitational-wave model prior
and with a signal-to-noise ratio below 100 do not impact estimation of the
signal parameters.

8.2 Introduction
The properties of compact binary coalescences (CBCs) observed via gravitational-
waves (GWs) [33, 38], offer insights on the astrophysical properties of black
holes and neutron stars [35] and test General Relativity [32]. Since the first di-
rect detection of GWs [20] the LIGO-Virgo-Kagra (LVK) detector network [1,
43] has identified 89 more CBCs [38]. The current fourth observing run has
so far tallied a further ∼200 event candidates [116], for an approximate event
rate of once every other day.

Also present in the data are transient, short-duration bursts of power of terres-
trial origin, “glitches,” with a rate of 0.5-1.28 per minute in each detector [8].
When glitches overlap with a signal, i.e., they are coincident in both time and
frequency, they impact the inferred source parameters [1, 1, 1, 4, 110, 214, 232,
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253, 265, 278]. This is because glitches violate two fundamental assumptions
that underlie GW inference, namely that the noise is stationary and Gaussian.
In practice, the impact of glitches ranges from biasing inference of subdomi-
nant effects like spin-precession [268] or spin-alignment [1], to mimicking an
entirely different signal [18, 265]. Simply put, glitches make the noise non-
Gaussian such that the common Whittle likelihood (see Sec. 8.3) no longer
describes it.

GW inference is based on a time-frequency “analysis window” that is de-
termined by the detector and signal properties, see Appendix E of Abbott
et al. [38] for details. The window frequency extent is defined by a lower
bound, flow = 20 Hz, set by the detector low-frequency sensitivity, and an up-
per bound, fhigh, chosen to contain the merger frequency of the (ℓ, |m|) = (3, 3)
signal mode. The time extent is designed to enclose the signal from flow to
merger (and ringdown) with an additional 2 s of data post-merger [26]. For ref-
erence, a typical analysis window for a 30M⊙+30M⊙ (detector-frame masses)
binary is 4 − 8 s whereas for a 1.4M⊙+1.4M⊙ binary the analysis window is
128 − 256 s in length.

Every event candidate is vetted for glitches within the analysis window [8, 138],
and if one is identified, it is subtracted [138]. Notably, this procedure flags
glitches anywhere in the analysis window, regardless of whether they overlap,
with the signal, i.e., whether they intercept the actual signal time-frequency
track [8, 138]. For instance, of the 16 events flagged for glitch subtraction [33,
38],1 in only 12 cases did the glitch overlap with the dominant, (ℓ, |m|) = (2, 2),
signal mode. Since each event requires considerable compute and person time
(including vetting, review, run time, etc. [138]) it is desirable to restrict to
only cases were mitigation is necessary to avoid biases.

In this study, we explore the conditions under which glitch mitigation can be
avoided. Specifically, we address whether glitches that do not overlap with
signals in time-frequency bias inference. We focus on high-detector-frame
mass events, m ∈ (20, 100)M⊙, as glitches disproportionately impact shorter,
higher-mass events compared to longer ones containing neutron stars [1]. This
is likely due to the fact that inference for short signals hinges on less data,
sometimes a single cycle [248, 268], and can thus be affected by short glitches.

1An additional 10 were initially flagged by visual inspection, but were ultimately deemed
consistent with Gaussian noise [138, 365].
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Figure 8.1: Time-frequency breakdown of the CBC analysis window,
schematically describing the ways in which glitches can be positioned with
respect to signals. Region I (solid line) encloses all time-frequency tracks
(including those of higher order modes) within the analysis prior. For
reference, in pink we plot the time-frequency content of the (2, 2) mode
prior. Region II contains glitches coincident in time and frequency, but never
concurrently. We split between Region IIa, those above the (4,4) mode in
frequency, and Region IIb, those below the (2,1) mode. Region III contains
glitches coincident in frequency, but not in time. Region IV contains glitches
not coincident in frequency.

We schematically lay out the potential glitch-signal configurations in Fig. 8.1
that outlines four (non exclusive) regions.

• Region I contains glitches that overlap with at least one signal within
the CBC model prior. Previous studies [1, 1, 1, 4, 110, 214, 232, 253,
265, 278] have shown that such overlaps can lead to biases when not
mitigated properly. We confirm these results, primarily using this region
for comparison to others.
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• Region II contains glitches that are coincident in time and frequency,
but not simultaneously. We further distinguish between Region IIa,
glitches above the signal, and Region IIb, glitches below the signal (in fre-
quency). Since we are focusing on high-mass events that evolve faster and
merge at comparatively lower frequencies than their lower-mass counter-
parts, Region IIb is very small. We therefore focus on the comparatively
much larger Region IIa. We evaluate differences in CBC parameter pos-
teriors from data with and without glitches within this region. Glitches
can induce a bias only when they have SNR above 100 and they are close
in frequency to the CBC merger frequency.

• Region III includes glitches that share frequency content with the sig-
nal, but are not coincident in time. We again simulate glitches within
that region and vary the distance (in time) from the signal, as well as
the glitch signal-to-noise ratio (SNR).2 Via a standard P-P test, we find
that glitches in this region leave no statistical imprint on a population
of signals. When considering individual glitches and a GW150914-like
signal, glitches with SNR < 50 never induce a bias, neither do glitches
with SNR< 100 if more than 0.5 s after from the signal.

• Region IV contains glitches that do not share any frequency content
with the event. We analytically show that such glitches do not impact
inference.

This rest of the paper is organized as follows. In Sec. 8.3 we recap current glitch
mitigation techniques and lay out the noise assumptions that are the founda-
tions for CBC parameter estimation. In Sec. 8.4 we lay out the methodology
of our study. In Sec. 8.5 we go through each Region in Fig. 8.1 and present
our results. In Sec. 8.6 we conclude.

8.3 Background

In this section we recap glitch mitigation in Sec. 8.3 and standard inference
under Gaussian noise in Sec. 8.3.

2We only consider glitches after the signal because, as those before it are typically cut
from the analysis window
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Glitches and Glitch Mitigation
During the third observing run, glitches occurred more than once every minute
in each detector [28, 38]. Of the total 79 events with an astrophysical probabil-
ity greater than 0.5, 16 contained glitches within their analysis window. In 4 of
16 glitch-mitigated events, the glitch did not overlap the signal time-frequency
track [26, 33, 38, 138]. Assuming a fixed glitch rate between 1 − 1.5 glitches
per minute, the number of signals requiring glitch mitigation during the fourth
LVK observing run is expected to increase simply due to the increased event
rate. Adopting a 4 s analysis window and two detectors, we expect 26-40
(13 − 20%) of the 203 current candidates to contain glitches within their anal-
ysis window [116]. The increased demand for glitch mitigation motivates our
detailed look into the conditions that require it.

The amount of glitch-signal overlap will determine how biased inference will
be. A glitch and a GW signal overlap in frequency when, under a Fourier
decomposition, there are frequencies, fi, for which they are both nonzero.
A glitch and a signal overlap in time when there are times, ti, for which
they are both nonzero. A glitch and a signal overlap in time-frequency if,
when decomposed into time-frequency space, there are bins with non-zero
content from both. Therefore a glitch and signal can overlap in both time and
frequency, but not overlap in time-frequency. These definitions apply even for
GWs with higher-order modes, for which there is no 1-1 relationship between
time and frequency. In this case, we consider all the CBC (ℓ, |m|) to determine
overlaps, e.g., Fig. 8.1.

Currently, if a glitch cannot be excluded from the analysis by redefinition of the
analysis window (subject to the established criteria [38]), it is subject to miti-
gation. Common mitigation methods include: (i) subtracting a single estimate
of the glitch from the data, a process known as “glitch subtraction” [137, 138],
(ii) modeling both the signal and the glitch and thus marginalizing over the
uncertainty of both models [1, 1, 4, 109], and (ii) removing all affected data
by zeroing [393] or by replacing with Gaussian noise [385]. Glitch subtraction
requires some (time or frequency) reconstruction of the glitch. Some glitch
classes can be described with physical models such as slow and fast scatter-
ing [351]. Another option is to utilize a “witness" channel [137] (if one ex-
ists). In the absence of physically-motivated models or witness channels, most
glitches are targeted phenomenologically with BayesWave [121, 124], further
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described in Sec. 8.4.

Gaussian Noise likelihood
The noise assumptions underlying GW data analysis determine the form of the
likelihood [296]. The data, d, are a combination of a GW signal h and noise n,
which is a sum of Gaussian, nG, and transient, non-Gaussian noise (glitches),
g. All quantities are considered in the frequency domain. For stationary nG,
the noise is uncorrelated between frequency bins, meaning that the frequency
domain noise-covariance matrix is diagonal. Gaussianity means that the noise
is described by a Gaussian distribution at each frequency. The per-frequency
Gaussian distribution is then entirely described by the variance, leading to
a frequency-domain noise-covariance matrix that is proportional to the noise
power spectral density (PSD), Sn.

The likelihood for the GW model with parameters θ, hθ in a single detector is
then [296],

L (d|θ) = exp
−1

2 |d − hθ|2 −
∑
fi

ln (2πSni)
 , (8.1)

where |a| is the noise-weighted magnitude

|a| =
√

(a|a) , (8.2)

(a|b) is the noise-weighted inner product

(a|b) = 4∆f
fhigh∑

fi=flow

aibi
∗

Sni

, (8.3)

and ∆f is the frequency resolution. The likelihood across all detectors is the
product of each individual-detector likelihood.

8.4 Methods

In this section, we describe our methodology. We simulate data containing
CBC signals and glitches and analyze them ignoring the presence of the glitch.
In Sec. 8.4 we introduce the BayesWaveCpp analysis package that is used to
sample from the posterior for the CBC parameters, Sec. 8.4, and to simu-
late glitches, Sec 8.4. We then introduce “glitch reweighting” in Sec. 8.4 as a
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method to (i) quickly generate posteriors and (ii) to quantify the degree of sim-
ilarity between two probability distributions, specifically those obtained from
data with and without glitches. We introduce the Jensen Shannon Divergence
in Sec. 8.4 as another quantity with which to compare two posteriors.

BayesWaveCpp
BayesWaveCpp [144] is a rewrite of and upgrade to BayesWave [121, 124, 222],
a software package used to stochastically sample the posteriors of signals,
glitches, and noise PSDs in GW data. GWs can be modeled through coherent
sums of sine-Gaussian wavelets, physical CBC waveform models, and combi-
nations thereof. Glitches are modeled as sums of sine-Gaussian wavelets. The
noise PSD is modeled via broadband splines and Lorentzians for the spectral
lines. For the purposes of this study, BayesWaveCpp is only used the sample
the CBC posterior under a CBC waveform model. Though it has the capacity
to do so, we do not sample the glitch or PSD posterior, assuming no glitch for
the former and a known PSD for the latter.

CBC model

We model the CBC signal with IMRPhenomXPHM [281], an inspiral-merger-
ringdown model that includes precession and higher order modes, but does
not include eccentricity.3 The CBC parameters and their priors are listed in
Table 8.1, here we briefly describe some parameters of interest that feature in
the following figures. The total mass, M , is the sum of the component masses
of the compact binary in the detector frame. The spin angular momentum of
the compact binary system can be summarized with “effective" parameters:
the effective precessing parameter χp (Eq. 3.4 in [316]) and the effective spin-
aligned parameter χeff (Eq. 2 in [28]). Both parameters have been shown to
be susceptible to biases due to the presence of glitches in real data [1, 268].

Simulated glitches

We simulate glitches using BayesWaveCpp’s glitch model for convenience, which
consists of sums of sine-Gaussian Morlet-Gabor wavelets. Such wavelets consti-
tute an over-complete basis over a smooth function space and are thus flexible
enough to mimic most noise transients in GW data. In addition to each of

3The ability to model precession is novel to BayesWaveCpp, whereas BayesWave is re-
stricted to spin-aligned waveforms.
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Parameter Symbol Prior

Mass mi U[20, 100]M⊙

Spin amplitude χi U[0, 1]
Spin in-plane angle ϕi U[0, 2π]
Spin polar angle θi cos θi ∼ U[-1, 1]
Hanford time tLHO U[-0.05, 0.05] s
Luminosity distance DL D3

L ∼ U[1, 100003] Mpc3

Inclination ι cos ι ∼ U[0, 1]
Right ascension α U[0, 2π]
Declination δ sin δ ∼ U[-1, 1]
Polarization ψ U[0, 2π]
Coalescence phase ϕ U[0, 2π]

Table 8.1: Parameter definition, notation, and prior distribution for all CBC
parameters. Here i ∈ {1, 2} indexes the compact objects; i = 1 (2) is the
larger (smaller) mass object. The time in the Hanford detector is centered 2 s
before the end of the 4 s analysis window.

Parameter Symbol Prior

Dimension Dg U[1, 10]
Wavelet central time t0 U[-0.1, 0.1]
Wavelet central frequency f0 U[16, 1024] Hz
Wavelet quality factor Q U[0.1, 40]
Wavelet amplitude A ρi ∈ [1, 100]
Wavelet phase ϕ U[0, 2π]

Table 8.2: Parameter definition, notation, and prior distribution for the glitch
model, used to simulate glitches. Here ρi is the approximate SNR of the
wavelet (Eq. 12 in [124]). This distribution is only used to simulate glitches.
The wavelet central time distribution is centered at {0, 0.25, 0.5, 1} s after the
center of the CBC time prior.



149

the five parameters describing each wavelet (time, frequency, quality factor,
amplitude, phase), the number of wavelets itself can be varied. We adopt the
BayesWaveCpp glitch prior as the distribution from which we draw glitches to
simulate, listed in Table 8.2.

The use of Morlet-Gabor wavelets allows us to quantify the glitch support in
time and frequency space, e.g., Fig. 8.1. Each wavelet is characterized by a
central time t0 and a central frequency f0, around which its power decreases
exponentially, forming a Gaussian envelope in both time and frequency. In
the time domain, the decay has an e-folding time scale of

τ = Q

2πf0
, (8.4)

where Q is the wavelet quality factor. Similarly, in the frequency domain,
the decay e-folding frequency scale is 1/τ . So, a wavelet that is well-localized
in time will be poorly localized in frequency and vice-versa. We use these
estimates to approximately place the glitch with respect to the signal in sub-
sequent sections.

Glitch reweighting
We quantify the impact of glitches on the CBC posterior by reweighting the
posterior from data without to data with a glitch. Equal-weighted samples from
one (reference) probability distribution can be “reweighted” to approximate
another (target) probability distribution; this is a form of importance sampling
called “reweighting". The exact formalism for reweighting is laid out in Sec. II
of Hourihane et al. [11], which we adopt here. Reweighting provides a metric
to compare how similar or disparate the two distributions are via the efficiency,

E = neff

Ns

(8.5)

where neff is the effective number of samples (Eq. 11 in Ref.[11]) after reweight-
ing and Ns is the original number of samples. Distributions with an efficiency
of 1 are identical whereas disparate distributions have an efficiency of 0.

In this work we use reweighting in a somewhat novel way. While reweighting
has been employed to change the likelihood function [11], the model [266, 300–
303], the prior, or to evaluate posteriors from a neural network approxi-
mate [143], here we change the data. That is, we use reweighting to transform
a CBC posterior distribution in Gaussian noise, p(θ | dNG), to a posterior
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distribution of identical data plus a glitch, p(θ | dG). The (unnormalized) log
weights are

lnw(θ) = ln L(dG|θ) − ln L(dNG|θ)

= −1
2 |dNG + g − hθ|2 + 1

2 |dNG − hθ|2

= (g|hθ) − Cg , (8.6)

where Cg = (g|g)/2 + (d|g) is constant.

Reweighting has a number of advantages. Firstly, it provides a sensitive, di-
rect estimate of the difference between two probability distributions via the
efficiency, Eq. (8.5).4 Secondly, reweighting bypasses expensive stochastic sam-
pling and allows us to consider a wide range of glitches from a single glitch-free
set of samples. Thirdly, reweighting is not subject to sampling uncertainty
when stochastically sampling from a posterior. That is, E ≠ 1 if and only if
the standard deviation of the likelihood over the posterior changes between
between the approximate and the target distribution. Since glitches far away
from the signal have a small impact on the posterior, we expect reweighting
to be a particularly effective method for our purposes.

Such glitch-reweighting is possible on simulated data because we have access to
glitch-free data. It is still possible to use glitch-reweighting on real data if there
is a model for the glitch; for instance, the model used in glitch subtraction.
The efficiency of such post-facto glitch-reweighting would serve as an estimate
of the impact of that glitch on inference. In cases where the efficiency is low, it
might be important to consider the uncertainty of the glitch model, e.g. [1, 1].

Jensen Shannon Divergence
We also quantify the difference between two posteriors using the Jensen Shan-
non (JS) Divergence [225], see App. A of Abbott et al. [28] for more details.
The JS divergence between probability distributions p and q, DJS(p, q), is
smoothed, normalized, and symmetrized. We adopt the threshold of 0.007
bit [28]. For a Gaussian, this corresponds to a 20% shift in the mean, which is
larger than the 0.002 bit JS divergence expected between two identical poste-
riors from sampling uncertainty alone [298]. We compute the JS divergence of

4Another option is to use the Kullback-Liebler divergence which can likewise be com-
puted from the weights. However, efficiency is normalized so we prefer it.
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the 15 marginalized, 1-dimensional CBC posteriors and report the maximum

max
θ
Dθ

JS = max
i∈1...15

DJS [p(θi|dG), p(θi|dNG)] . (8.7)

8.5 Results
In this section we study how glitches impact CBC inference in each region of
Fig. 8.1.

Region IV, Glitches above the signal
When the glitch and signal do not overlap in frequency, the CBC posterior
is unaffected by the presence of the glitch, even when the glitch frequency is
part of the analysis bandwidth. The proof presented below is based on the
fact that the noise-covariance is diagonal in the frequency domain, and thus
the likelihood is a 1-dimensional integral in frequency. Consider a GW signal
only containing frequency content up to frequency F , coincident in time with
a glitch that contains only frequency content above F . Then (g|h) = 0. If
additionally the frequency content of hθ(f > F ) = 0 for all θ in the CBC
prior, π, it follows that, for all θ ∈ π, the likelihood is independent of any
glitch-signal cross-terms. That is:

L (d|θ) ∝ exp
[
−1

2
(
|dNG + g|2 + |dNG − hθ|2 − 2(g|hθ)

)]
= exp

[
−1

2
(
|dNG − g|2 + |dNG − hθ|2

)]
. (8.8)

The |dNG + g|2 term is constant and does not depend on θ.5 Since the likeli-
hood is not normalized θ, the extra glitch term does not change the shape of
the posterior. It will, however, scale the evidence, the expected value of the
likelihood over the prior.

Region III, Glitches after the signal
We now turn to glitches occurring after a GW event that do not overlap with
the GW in time. The proof of Sec. 8.5–glitches that do not overlap in frequency
do not bias inference–no longer applies. This is because the noise-covariance
is no longer diagonal in the time domain, and distinct times are correlated, see
Sec. 8.3. Even if a glitch and signal do not overlap in time, the correlations
between their times could induce a bias. We study this bias for a population of
signals and glitches in Sec. 8.5, and for individual glitches on a GW150914-like
event in Secs. 8.5 and 8.5.

5In analyses where the glitch is also sampled, this term would no longer be constant.
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Figure 8.2: Percentile–Percentile (P-P) plots for various simulations, each
drawn from the same CBC prior (Table 8.1) but varying in glitch content
(Table 8.2). The titles of each plot specify the relative time between the
glitch distribution and the CBC time distribution, with the leftmost plot
representing data without glitches and subsequent plots showing glitches
progressively closer to the CBC. Each plot comprises 400 simulations, with
recovery performed using only a CBC model. Each plot includes 15 lines, one
for each CBC parameter, displaying the cumulative distribution function of
the percentiles of the true values within their marginal posteriors. Lines are
color-coded in red (blue) to indicate whether the parameter failed, p ≤ 0.05
(passed, p > 0.05) the P-P test. A failure rejects the null hypothesis: the
percentiles of the true values are uniformly distributed across their posteriors.
Three-sigma confidence intervals are plotted in gray. Left: P–P plot when
only the CBC model is simulated and recovered. All parameters pass the P-P
test which serves as a baseline for the test and its implementation. Center
(left to right): P–P plots for glitches in Region III. Right: P–P plot for
glitches in Region I. When glitches overlap with the signals, all parameters
fail the P-P test.

Percentile-Percentile Test

We first introduce the percentile-percentile (P-P) test, a standard method to
determine if an ensemble of posteriors are statistically robust [117, 170]. In a
P-P test, a set of simulations is generated by drawing parameters from the prior
distribution of a model. The posterior is then computed with the same model
and prior. If the prior reflects the underlying population (including the noise
model) and the posteriors have the correct statistical coverage, the percentiles
of the true parameter values within their respective posteriors should follow
a uniform distribution. Consequently, the cumulative distribution function
(CDF) of these percentiles should form a diagonal line with a slope of 1.

We perform this test with 400 simulated CBC signals (without glitches) in
Gaussian noise and the CBC prior of Table 8.1. The leftmost panel of Fig. 8.2
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shows the CDF for each of the 15 CBC model parameters. All parameters
lie within the 3-sigma confidence region (indicated by the gray outline) as
expected. This demonstrates that the BayesWaveCpp CBC sampler is unbiased
under the conditions of the P-P test.

Varying distance between glitch and signal

To assess the impact of glitches, we perform a variation of the standard P-
P test described in Sec. 8.5. Instead of pure Gaussian noise, the simulated
data now also contain glitches drawn from the distribution of Table 8.2. The
glitch time distribution is progressively moved closer to the signal. Still, just
as in Sec. 8.5, the posterior is computed only over the CBC model, leaving
the glitch unaccounted for. Five scenarios are compared in Fig. 8.2: a control
case with no glitches, and four cases with glitches whose time distributions
have a width of 0.2 and are centered at 1 s, 0.5 s, 0.25 s, and 0 s after the
center of the CBC time prior. All simulations are performed with a single,
LIGO Hanford (LHO) detector (to maximize the impact of glitches), and the
Advanced LIGO sensitivity [1]. By leaving the glitch unaccounted for during
recovery and varying the timing of the glitch relative to the CBC, we explore
how the timing of glitches impacts inference.

Results are shown in Fig. 8.2. The leftmost panel displays the control case with
no glitches; all parameters pass the P–P test, indicating unbiased recovery.
The center three panels (from left to right) depict results on data containing
glitches after, but progressively closer to, the CBC signals. Recovery remains
largely unaffected, with most of the 15 CBC parameters passing the test for
each distance. A few cases with p < 0.05, are not unexpected given the large
number of tests performed. In contrast, the rightmost panel, corresponding to
glitches coincident in time with the CBC signals, reveals that all parameters
fail the P–P test, highlighting significant biases. These result suggest that
glitches occurring after a GW signal (Region III) have minimal impact on
recovery for an ensemble of signals. However, glitches coincident with the
signal (Region I) severely bias the recovered parameters, confirming previous
results [1, 1, 1, 4, 110, 214, 232, 253, 265, 278].
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Parameter Value

Masses m1 = 38.2M⊙,
m2 = 32.9M⊙

Spin amplitudes a1 = 0.998,
a2 = 0.126

Spin in-plane angle ϕ1 = 0.55π rad,
ϕ2 = 0.364π rad

Spin polar angle θ1 = 0.14π rad
θ2 = 0.49π rad

Hanford time 1126259462.424 s
2.42455 s (in segment)

Luminosity distance DL = 415.66 Mpc
Inclination ι = 0.88π rad
Right ascension α = 0.35π rad
Declination δ = −0.36π rad
Polarization ψ = 0.42π rad
Coalescence phase ϕ = 1.30π rad

Table 8.3: Simulated CBC parameters for Sec. 8.5, Sec. 8.5, and Sec. 8.5.

Parameter Value

Glitch dimension Dg = 1
Wavelet central time t1 = 2.38 s
Wavelet central frequency f1 = 100 Hz
Wavelet quality factor Q1 = 28.73
Wavelet amplitude A1: Varied such that

ρ1 ∈ {5, 10, 50, 100,
500, 1000, 5000}

Wavelet phase ϕ1 = 1.61π rad

Table 8.4: Simulated glitch parameters used in Sec. 8.5.
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Figure 8.3: Top: Time domain whitened waveforms for the CBC (magenta)
and a glitch with increasing SNR from 5 to 5000 (various colors), 0.38 s after the
signal, see Table 8.3 and Table 8.4 for details. Second down: Efficiency when
reweighting from a posterior on data with no glitch to a posterior on data with
a glitch as a function of the glitch SNR. Bottom 3: 1-dimensional posteriors for
select CBC parameters as a function of the glitch SNR. True values are marked
in magenta. The direct-sampled posterior on glitch-impacted data is colored
and the corresponding reweighted posterior is marked with black dashed lines.
To the right we show the control dataset, a posterior recovered from data
with identical Gaussian noise but without any glitch; all gray posteriors are
identical. For glitch SNR ≥ 1000 we omit the direct-sampled posteriors due to
nonphysically waveform behavior, further discussed in App. 8.8. The efficiency,
indicates that glitches louder than SNR 500 start impacting inference.



156

Can very loud glitches bias inference?

We now consider a single instance of a CBC and a glitch and study at which
SNR a glitch can create a bias. We compare two datasets, again in a single
LHO detector:

1. Control Dataset: A simulated GW150914-like signal with a network
SNR of 25, injected into Gaussian noise. The CBC parameters are de-
tailed in Table 8.3.

2. Glitch-impacted Dataset: The glitch-impacted dataset is identical
to the control one in terms of the CBC and Gaussian noise realization
but includes seven distinct glitch configurations. The glitches share all
parameters, Table 8.4, but SNR which we incrementally increase from 5
and 5000.

We analyze both datasets with BayesWaveCpp, modeling only the CBC sig-
nal, leaving again the glitch power entirely unmodeled. Results for the control
dataset serve as a baseline for comparison; if the glitches have no impact, the
posteriors from the glitch-impacted dataset will match those from the glitch-
free dataset. We compute glitch-impacted posteriors both with direct sampling
(BayesWaveCpp) and via reweighting from the control to the glitch-impacted
dataset, see Section 8.4. If the glitches have no impact, then the reweighting
efficiency will be 1.

We present the results in Fig. 8.3. The top panel shows the whitened time-
domain waveforms of the CBC (magenta) and the glitches (various colors) for
reference. Below that, we plot the reweighting efficiency and posteriors for se-
lect CBC parameters (total mass, χeff, and χp) as a function of glitch SNR. The
direct-sampled, glitch-impacted, BayesWaveCpp posteriors are colored and the
corresponding reweighted posteriors are plotted with black dashed lines. The
fiducial, glitch-free posterior is displayed in gray. For glitch SNR ≤ 5006 we
find that not only are the glitch-impacted posteriors visually indistinguishable
to the glitch-free one, but they are actually identical; the reweighting efficiency
between the two distributions is 100%. As the glitch SNR is increased, the
efficiency does drop. At glitch SNR of 1000 the posteriors are still visually

6For reference, the glitch on the binary neutron star merger, GW170817, was SNR
∼ 800 [265].
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Figure 8.4: Left: Time-frequency locations of 200 glitches simulated in Re-
gion III; after the signal. The glitch time-frequency locations are colored by the
SNR at which that glitch induces a measurable change in the CBC posterior
and are gray if the requisite SNR is above 500. For reference, Region I (black-
dashed) and the time-frequency content of the (2,2) mode across the CBC
prior (blue dots) are displayed. Bottom right: Maximum Jensen-Shannon di-
vergence across CBC parameters between a CBC posterior on glitch-free data
and the posterior on glitch-impacted data, plotted as a function of glitch SNR.
Each curve corresponds to a glitch in the left figure. The black horizontal line
is the threshold for posteriors considered distinct [28]. The gray dashed line is
the JS divergence due only to stochastic sampling uncertainty [298], plotted
for reference. As the glitch SNR increases, so does does DJS. Top right: Cu-
mulative distribution function of the number of glitches that induce a requisite
divergence as a function of glitch SNR. Glitches below SNR 50 never induce a
measurable bias. Higher-SNR glitches might induce a bias if within 0.5 s from
the signal merger.

identical, but the efficiency is 80%, suggesting it is a more sensitive test than
visual comparison (it also depends on the full 15-dimensional posterior and not
select marginal ones). By a glitch SNR of 5000, the efficiency is zero, signaling
severe biases.

At what glitch SNR can we expect a bias?

Finally, we consider a random collection of 200 glitches per Table 8.5 in Re-
gion III after the same CBC signal from Table 8.3. Since we expect glitch-
induced biases to be low, we omit direct sampling, and instead only compute
posteriors via reweighting. Since the weights are proportional to the glitch
SNR, per Eq. (8.6), the reweighted posterior for a single glitch can be trivially
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Parameter Value

Glitch dimension Dg = 1
Wavelet central time t1 ∼ U [0, 4] s
Wavelet central frequency f1 ∼ U [20, 700] Hz
Wavelet quality factor Q1 ∼ U [0.1, 40]
Wavelet amplitude A1: Varied
Wavelet phase ϕ1 ∼ U [0, 2π]

Table 8.5: Parameter distribution of simulated glitches in Sec. 8.5, additionally
restricted to Region III, and in Sec. 8.5, likewise restricted to Region IIa.

scaled in SNR. We leverage this for each of the 200 glitches to compute the
maximum JS divergence over all CBC parameters, and determine the glitch
SNR at which it exceeds a JS threshold.

Results are displayed in Fig. 8.4. The time-frequency locations of the 200
simulated glitches are displayed in the leftmost panel, corresponding to three
e-folds of exponential decay in each direction, see Sec. 8.4). Boxes are colored
by the SNR at which that glitch induces a posterior with a JS divergence above
0.007 compared to glitch-free data. Glitches are colored gray if the requisite
SNR is above 500. On the bottom right we plot the maximum (among all 15
CBC parameters) JS divergence between the glitch-impacted and glitch-less
datasets, plotted as a function of glitch SNR. Each curve corresponds to a
glitch in the left figure, colored in the same manner. The top right shows
the cumulative distribution of the number of glitches that induce an above-
threshold divergence, plotted as a function of glitch SNR.

The majority of glitches do not incur a bias unless their SNR is greater than
500. However, glitches closer to the signal (per the left plot, within 0.5 s after
merger) can incur a bias at SNR as low as ∼ 56 ∼100. Those are rare (2%
at SNR 100 and 17% at SNR 500) and will likely need mitigation. Even at
SNR 1000, fewer than 40% of the glitches induced a bias greater than one
would expect from stochastic sampling. Overall, no glitches below SNR 50 in
Region III induce a measurable bias, no matter how close to (but confidently
after) the signal.
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Parameter Value

Glitch dimension Dg = 1
Wavelet central time t1 = 2.04 s
Wavelet central frequency f1 ∈ {25, 50, 100, 250, 500, 750} Hz
Wavelet quality factor Q1 = 28.73
Wavelet amplitude A1: Varied such that ρ1 = 25
Wavelet phase ϕ1 = 1.61π rad

Table 8.6: Simulated glitch parameters in Sec. 8.5.

Region II, Glitches sharing time and frequency content but not con-
currently
Now we move to glitches that overlap with the GW signal (or its prior) in
either time or frequency, but not concurrently. These are glitches “just above,"
Region IIa, or “just below," Region IIb, the signal. No pure time- or frequency-
domain analysis can exclude those with analysis window redefinition.

Region IIa: Glitches just above the signal

We follow the methodology of Sec. 8.5 and consider two simulated datasets:

1. Control Dataset: Identical to that in Sec 8.5, with a GW150914-like
signal given in Table 8.3 in Gaussian noise.

2. Glitch-impacted Dataset: identical to the control dataset in terms of
CBC and Gaussin noise, but it includes six distinct glitch configurations.
All glitches have an SNR of 25 and are centered ∼13 cycles before merger;
further parameters are given in Table 8.6. The frequency of the glitch is
incrementally increased, starting with one that overlaps with the CBC’s
(2,2) mode and continuing until the glitch is outside the entire CBC
model prior.

The left panel of Fig. 8.5 displays the time-frequency tracks for the modes
of the injected CBC signal (colored lines), overlaid with the time-frequency
support of the simulated glitches (colored boxes). The solid magenta line
represents the dominant (2,2) frequency track, while the dashed lines indicate
higher-order modes. The dashed black line encloses the CBC model prior,
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Figure 8.5: Inference results on a GW150914-like signal with SNR 25 glitches of
increasing frequency. Left: Time-frequency track of the GW150914-like signal
with glitches overlaid. Region I is outlined in black-dashed lines; it includes
the time-frequency content of the entire GW model prior. The solid magenta
line shows the (2,2) frequency track of the simulated CBC and the dotted lines
display the higher-order modes, each labeled with its corresponding color. The
location in time-frequency space of the glitches is shown in a colored box, each
displaying three e-folds of the exponential time and frequency glitch decay.
The only glitches that share time-frequency content with the GW model are
the ones at 25 Hz and 50 Hz. Center: 1-dimensional posteriors for select CBC
parameters from data with a glitch at the corresponding frequency (y-axis and
color). In the lower half of each violin plot we show the posterior from identical
data but without a glitch (gray); all such posteriors are identical. On the top
of each violin plot are the posteriors recovered in glitch-impacted data; the
colored posterior are those recovered with BayesWaveCpp (direct sampling),
and the black-dashed lines are the posterior obtained via reweighting. Right:
Reweighting efficiency as a function of glitch frequency. Where the posteriors
differ the most, at glitch frequency 25 Hz, the efficiency drops to 0. At 50 Hz,
even though the posteriors are visually similar, the efficiency also dips to 50%,
meaning that the glitch is nonetheless impacting the posterior.
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including all higher-order modes. The glitches at 25 Hz and 50 Hz overlap
with the time-frequency GW prior, but only the glitch at 25 Hz overlaps with
the (2,2) mode.

As always, we analyze the data leaving the glitch unmodeled. In the central
panels of Fig. 8.5 we plot select marginalized CBC posteriors corresponding
to each glitch (same color as the boxes) as well as the fiducial, glitch-less
posterior (gray). The y-axis corresponds to the glitch central frequency. The
black, dashed lines are again the glitch-reweighted distributions which should
be identical to the colored distributions (for sufficiently high efficiency). Above
25 Hz, all distributions agree on visual inspection for all parameters. Glitches
that do not overlap with the signal (2,2) mode do not have a noticeable visual
effect on the posteriors.

The 25 Hz glitch overlaps the CBC’s (2,2) mode in time-frequency space, and
thus falls squarely into Region I. It is clearly biasing inference, increasing the
total mass and χeff. The reweighing efficiency (right panel) is close to 0%, and
thus reweighting is unable to reconstruct the direct-sampled posteriors.

Glitches with central frequencies 100 Hz and above have efficiencies close to
100%, meaning that posteriors from data with and without the glitch are in-
distinguishable. This is visually evident for M,χeff, and χp (middle panels),
but the efficiency is a stronger test that considers the full 15-dimensional pos-
teriors. Thus, glitches that do not overlap in time-frequency with the CBC
model prior do not impact inference in this example.

The 50 Hz glitch presents a middle case: identical-looking posteriors but an
efficiency of 50%, indicating a measurable bias. This is because that glitch
shares time-frequency content with the signal’s high-order modes as well as
the general CBC model prior (left panel). Glitches that overlap with a signal’s
high-order modes can therefore still lead to small biases, even if the dominant
(2,2) mode is not impacted.

At what glitch SNR can we expect a bias?

Finally, we repeat the analysis of Sec. 8.5 with 200 random glitches in Re-
gion IIa. The analysis setup is identical and refer to that discussion for details.
We present on our results in Fig. 8.6 in similar format to Fig. 8.6. All glitches
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Figure 8.6: Left: Time-frequency locations of 200 glitches simulated in Re-
gion IIa. The glitch time-frequency locations are colored by the SNR at which
that glitch induces a measurable change in the CBC posterior and are gray if
the requisite SNR is above 500. For reference, Region I (black-dashed) and the
time-frequency content of the (2,2) mode across the CBC prior (blue dots) are
displayed. Bottom right: Maximum Jensen-Shannon divergence across CBC
parameters between a CBC posterior on glitch-free data and the posterior on
glitch-impacted data, plotted as a function of glitch SNR. Each curve corre-
sponds to a glitch in the left figure, and are colored in the same manner. The
black horizontal line is the threshold for posteriors considered distinct [28].
The gray dashed line is the JS divergence expected to arise due to stochas-
tic sampling uncertainty [298], displayed for reference. As the glitch SNR
increases, so does DJS. Top right: Cumulative distribution function of the
number of glitches that induced a requisite divergence as a function of glitch
SNR. Only a single glitch with SNR less than 100 induces a measurable bias.
Even at SNR 1000 fewer than 20% of the glitches induced a difference greater
than one would expect from stochastic sampling.

that result in a bias for SNR less than 500 have central frequencies close to the
CBC merger frequency, 150 Hz to 400 Hz. Even then, biases are rare. Only
a single glitch (0.005%) causes a bias by SNR 100. Somewhat surprisingly,
glitches in this region have, on average, a smaller impact on inference than
those in Region III.

Region IIb: Glitches just below the signal

Since we are focusing on high-mass events (where inference is most heavily
impacted by glitches [1]), Region IIb is very small. Figure 8.1 shows that
there is very little time-frequency space below the waveform and outside the
prior. We therefore do not perform any analyses here, instead expecting similar
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results to Region IIa. Region IIb will be bigger (and could contain glitches)
for lower-mass signals.

Region I, Glitches on top of the signal
It has been shown both on real events [1, 1, 265] and simulations [1] that
glitches overlapping GWs can be detrimental to inference. We do not present
further dedicated studies of this region here, but nonetheless confirm the pre-
vious results in the right panel on Fig. 8.2 and Fig. 8.5. The former shows
that a population of glitches that overlap the time-frequency prior of a pop-
ulation of CBCs will results in strong biases. The “s-curves" in a P-P plot
are indicative of the standard deviation of the posterior being incorrect. The
latter shows that glitches that overlap to dominant signal mode can lead to
large (visible) biases, but a smaller impact is also expected when the glitch
overlaps the higher-order modes.

8.6 Conclusion
The purpose of this study was to determine if there are time-frequency loca-
tions where one can ignore glitches nearby a transient GW, even when it is
in the analysis window. We split our findings and recommendations into the
same Regions as in Fig. 8.1.

• Region I includes glitches that are coincident in time-frequency with the
GW event and have been shown to impact inference on real signals [1,
265, 268]. We confirm these results even at the population level; such
glitches need to be carefully mitigated.

• Region II includes glitches just above and just below the GW model
prior in time-frequency. That is, these glitches overlap in time and in
frequency with the signal, but not concurrently. Glitches in this region
do not impacting inference and thus do not require mitigation, unless
they have SNR above 100 and are close in frequency to the CBC merger
frequency.

• Region III includes glitches that share frequency content with the CBC
and its prior, but occur after the GW, and thus do not overlap in time.
For a fiducial population of glitches, biases are not expected for a glitch
SNR below 50, or an SNR below 100 if the glitch is more than 0.5 s
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after the merger. Mitigation is again not strictly required, though in
that case it is significantly simpler to perform though inpainting [385],
gating [393], or modeling solely the glitch with BayesWaveCpp with an
appropriate analysis window that excludes the CBC [138].

• Region IV includes glitches that do not share frequency content with
the GW signal. Even if these frequencies are included in the analysis
window, they cannot impact inference.

Throughout this study we have assumed that the noise PSD is perfectly known
and can be estimated regardless of the glitch. When estimating the PSD
“on source” [108, 124, 226] the glitch model is present to account for non
Gaussian noise that could affect the PSD is the glitch is loud. The uncertainty
associated with the power spectrum estimate is also not accounted for here,
although such uncertainty is a subdominant effect in CBC analyses on glitch-
subtracted data [7]. Other noise-mitigation techniques such as inpainting do
require knowledge of the PSD which could be estimated off-source.

In summary, glitches outside Region I in Fig 8.1 are unlikely to affect parameter
estimation unless they are sufficiently loud and close to the merger in time
and/or frequency. Though the results quantifying the glitch SNR required
for biases were based on a single, representative CBC signal, we probed a
large number of potential glitch parameters and time-frequency configurations.
Moreover, the population analysis of Sec. 8.5 confirms these expectations for
CBC signals drawn from the prior. Quieter glitches (conservatively, below
SNR 50) can thus be left in the data. Loud glitches are fortunately much rarer
than their low SNR counterparts.
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8.8 Appendix: Waveform Conditioning and Systematics
In Sec. 8.5, while we showed that the reweighting efficiency decreases for glitch
SNRs of 1000 and 5000, we omitted posteriors created by direct-sampling (via
BayesWaveCpp) on the glitch-impacted data. This was because in these cases
the CBC model ended up fitting part of the glitch due to some waveform
unphysical behavior. In Fig. 8.7, we show the maximum likelihood waveform
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recovered on this data, which has a clear, non-physical spike caused by a
known [158] failure in the multibanding [281] of the waveform.

Regardless of present waveform systematic, we recover a drop in efficiency due
to the presence of these high SNR glitches. This efficiency drop (coputed via
reweighting) cannot be caused by the aforementioned waveform systematic.
On glitch-free data, such a pathological waveform is so disfavored by the like-
lihood and occupies a minute region of parameter space, that it has a vanishing
probability of appearing in a direct-sampled glitch-free posterior. We interpret
the fact that the BayesWaveCpp sampler located this pathological behavior as
a testament to its efficiency.

If such inference was obtained from a real signal, the issue would be immedi-
ately obvious. Nonetheless, we recommend that glitches with an SNR above
500 be mitigated.
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C h a p t e r 9

BACKGROUND ON THE STOCHASTIC
GRAVITATIONAL-WAVE BACKGROUND

9.1 What is a stochastic gravitational-wave background
Unlike the LVK transient signals discussed in Part I that can be picked out
and analyzed on top of detector noise, a stochastic gravitational-wave back-
ground (SGWB) is an incoherent accumulation of every gravitational-wave
source adding on top of each other. That is, the SGWB can be characterized
only statistically, in terms of expectation values. If a transient gravitational
wave is a ripple in a pond, the SGWB is the signal from a rainstorm1. In this
part of my thesis I discuss specifically the gravitational-wave background for
gravitational waves in the nanohertz frequency band, as that is the target of
pulsar timing array analyses.

9.2 What could create the nanohertz stochastic gravitational-wave
background

Most, if not all, massive galaxies contain a supermassive black-hole (SMBH)
at their center [292]. Over-densities in the early universe are the theorized
site of galaxy formation. In such a high-density environment, galaxy mergers
are common, naturally leading to the formation of supermassive black-hole
binaries (SMBHBs) [215, 262, 377]. As these galaxy-mass black holes inspiral
around each other they radiate energy as gravitational waves (see Sec 4.1).

The nanohertz frequency hum of all the combination of these SMBHBs out to
z ≈ 2 are the most likely source of a SGWB. However, there are other possible
sources of the SGWB including cosmic strings and gravitational waves from
the early Universe [49], but here I will limit the discussion to SMBHBs.

9.3 How can the stochastic gravitational-wave background be de-
tected?

In Chapter 4 I discussed how gravitational-wave signals from transient, solar-
mass sources can be modeled, found, and their parameters can be estimated

1a very quiet rainstorm
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using gravitational-waveforms. But how do you model something that is ran-
dom?

Additionally, a nanohertz signal takes ∼31.7 years to complete a cycle, meaning
that to even hope to detect something at that low of a frequency, you have to
have been measuring for at least 31.7 years 2.

Such low frequency gravitational waves cannot be studied with ground-based
interferometers described in Chapter 4. The primary reason for that being
that the mirrors at the end of the arms in the LVK detectors are suspended
pendulums and gravitational waves can only be detected above that reso-
nance frequency. Gravitational-waves at or below the resonance cause the
pendulums to swing, which make the detection of low-frequency gravitational-
waves impossible with this method [311]. In order to have an interferometric
gravitational-wave detector sensitive to nanohertz frequencies, the pendulum
would need to be3, 2.5 × 1017 meters; 26.4 light-years long. So an interferom-
eter working on the same principles as LIGO simply will not be feasible.

Pulsar timing arrays were first proposed as a means of detecting a low-frequency
SGWB in 1978 [312].

Pulsars
Pulsars are rapidly rotating neutron stars [189] that possess incredibly strong
magnetic fields, O(109 − 1015 G)4, and they can emit a constant beam of light
along their magnetic field lines. When a pulsar’s magnetic poles are not aligned
with its axis of rotation, the pulsar acts like a “lighthouse”. If the Earth
happens to be aligned just-so, we observe the pulsar as a lighthouse-like signal
flashing intermittently as it points towards and away from the Earth.

Pulsars vary in both the frequency of the light (e.g. radio waves vs. X-
rays) and the period of their rotation. Millisecond pulsars, first discovered
in 1982 [72], have periods of rotation of O(ms) which remain stable and pre-
dictable over very long timescales.

2As of the time of writing, I haven’t even been alive that long
3using f = 1

2π

√
g
L

4The magnetic field of the Earth, for reference, is O(0.2 − 0.7 G).
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Single gravitational-wave effect on pulse time of arrival
Because millisecond pulsars have remarkably stable rotation periods, we can
predict the arrival of an upcoming pulse very accurately (O(10 − 100 ns) in
some cases) using information gained from studying previous pulses over many
years. Here we follow the derivation in Taylor [333].

Let’s imagine the pulses from a single pulsar p, located at p⃗, a distance L

from the Earth with period P . A gravitational field hab(t, x⃗) will cause the
spacetime in between the Earth and the pulsar to shrink or stretch making
that pulse arrive early or late respectively. That is the timing difference ∆P
between what we expect in flat space and what we observe in the presence of
a gravitational-field is given by

∆P ≡ tobs − t′obs − P = papb

2

∫ tem+L

tem
dt′ (hab[t′ + P, x⃗0(t′ + P )] − hab[t′, x⃗0(t′)])

(9.1)
where x⃗0(t′) = (tem + L − t′) p̂ is simply a way to parameterize the path
traveled by the pulsar pulse (which is necessary because of course the pulse
will only be affected by the space it travels through). Since the period is of
order milliseconds and the gravitational-wave periods are months to decades,
we can Taylor expand leaving

∆P
P

≈ papb

2

∫ tem+L

tem
dt′

∂

∂t′
(hab[t′, x⃗0(t′)]) . (9.2)

If we imagine now the field is caused by some fiducial monochromatic plane
wave with frequency ωGW propagating in the Ω̂ direction then we can write

hab(t, x⃗) = Aab(Ω̂) cos
(
ωGW(t− Ω̂ · x⃗)

)
. (9.3)

Substituting this into equation 9.2,

∆P
P

= 1
2
papbAab

(1 + Ω̂ · p̂)

{
cos (ωGWtobs) − cos

(
ωGW(tem − L Ω̂ · p̂)

)}
. (9.4)

Here we see that the timing difference will be minimized when the gravitational
wave is propagating parallel to the path of the pulse Ω̂ · p̂ = 1. This is
again because gravitational-waves are transverse and will not warp space in
the direction of propagation.

We can generalize the gravitational-wave timing delay to be from any kind of
plane wave traveling in the Ω̂ direction and define the “GW-induced redshift
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of the pulse arrival rate”, z(t) := ν0−ν(t)
ν0

= ∆P
P

giving us

z(t, Ω̂) = 1
2

papb

(1 + Ω̂ · p̂)
[hab(t, x⃗earth) − hab(t− L, x⃗pulsar)] , (9.5)

= FA(Ω̂)∆hA , (9.6)

where FA(Ω̂) = 1
2

papb

(1 + Ω̂ · p̂)
eA

ab(Ω̂) (9.7)

and ∆hA = [hA(t, x⃗earth) − hA(t− L, x⃗pulsar)] , (9.8)

finding that the timing delay is only a function of the gravitational-field when
the pulse was observed at Earth and the field when it was emitted by the
pulsar, and nothing in between. We have also replaced the geometric term
relating the response of the plane wave to the gravitational-wave as FA(Ω̂)
which details the response of the pulsar to some gravitational-wave (maximal
when they are perpendicular, minimal when they are aligned (papbhab = 0)).

In the frequency domain the gravitational-wave induced redshift becomes

z̃(f, Ω̂) = (e−2πifL(1+Ω̂·p̂) − 1)
∑

A∈{+×}
hA(f, Ω̂)FA(Ω̂) (9.9)

which is the pulsar-timing array version of equation 4.5.

Correlating signals between pulsars
So now we know how to predict the “timing residual” ∆P from a plane wave.
However, the gravitational-wave background is a sum of all of these plane-
wave-like sources, piling up in each frequency bin making them impossible
to resolve individually. We will only be able to characterize it statistically
meaning that we won’t be able to predict z̃(f), but we can predict, for instance
⟨z̃2(f)⟩. This will end up acting like a noise process in a single pulsar.

However, there are plenty of other processes that could also make the pulse
arrive early or late that act stochastically but are not from the SGWB. For
example, the radio waves can get dispersed by ions in the interstellar medium,
and we need to account for this (radio) frequency-dependent delay. Addi-
tionally, internal physics in the neutron stars can cause “intrinsic noise” that
make that star’s rotation period fluctuate stochastically over long timescales.
Many of these noise processes can look like a SGWB when you observe a single
pulsar, but they should not be correlated between pulsars.
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So now that we know that we need to analyze the SGWB through expec-
tation values and correlations between pulsars, let’s compute the expected
sky-averaged correlation of the gravitational-wave induced redshifts between
pulsar i and pulsar j,

⟨z̃i(f)z̃∗
j (f ′)⟩ =

∫
S2

∫
S′ 2

d2Ω̂d2Ω̂′
[
e−2πifLi(1+Ω̂·p̂i) − 1

] [
e2πif ′Lj(1+Ω̂′·p̂j) − 1

]
× ⟨

∑
A∈{+×}

hA(f, Ω̂)FA
i (Ω̂)

∑
A′∈{+×}

h∗
A′(f ′, Ω̂′)FA′

j (Ω̂′)⟩ , (9.10)

which by stationarity, Gaussianity, isotropy can be written

⟨z̃i(f)z̃∗
j (f ′)⟩ = 1

2δ(f − f ′)Ss(f)ij (9.11)

= 1
2δ(f − f ′)Sh(f)

∫
S2

d2Ω̂
8π κij(f, Ω̂)

∑
A′∈{+×}

FA
i (Ω̂)FA

j (Ω̂)

(9.12)

where
κij(f, Ω̂) =

[
e−2πifLi(1+Ω̂·p̂i) − 1

] [
e2πifLj(1+Ω̂·p̂j) − 1

]
(9.13)

and Sh(f) is the one-sided power spectral density (PSD) of the Fourier modes
of the SGWB. κij controls how rapidly the pulsar terms of induced redshift
vary. Since f ≈ 10−9Hz, the closest known millisecond pulsars are > 100
parsecs away, leaves fL > 105. This means that the rapidly oscillating terms
contribute negligibly to the above integral except where we are comparing the
correlations of a pulsar to itself, i = j. Then when i = j κij → 2 and κij → 1
otherwise.

This leaves us with the integral over the response functions

Γij =
∫

S2

d2Ω̂
4π κij(f, Ω̂)

∑
A′∈{+×}

FA
i (Ω̂)FA

j (Ω̂) , (9.14)

≈ 3
2xij ln(xij) − 1

4xij + 1
2 + 1

2δij where xij = 1 − cos(θij)
2 , (9.15)

where θij is the angular separation between the positions of pulsars on the
sky. Γij is the so called “Hellings-Downs” curve [187] which is displayed in
Fig. 9.1. It represents how correlated the residuals from two pulsars are. This

5In other words, we can ignore this term because the pulsars are much further than the
gravitational-wavelengths
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Figure 9.1: Figure from [50]. The figure illustrates the angular-separation-
binned interpulsar correlations compared against the Hellings and Downs curve
(dashed-line), providing a clear visual comparison between the observed and
theoretically expected signals. This serves as a validation step, demonstrat-
ing consistency between the measured correlations from the NANOGrav 15-
year dataset and the signature of a SGWB. In the absence of gravitational-
radiation, the signal is expected to be uncorrelated, following the horizontal
line.

curve has notable features. Firstly, the maximal cross-correlation is no greater
than 0.5, this is because of the κij term; since the pulsars are much further
away than a single gravitational-wavelength the contribution of the oscillatory
terms all but disappear. Because of this, pulsars at different distances but
with 0◦ degrees between them will also only be correlated a maximum of 50%
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6. Second, the correlation is not purely quadrupolar; the value at θij = 180◦

does not equal the value at θij = 0◦

With this Hellings-Downs function, our expected signal becomes

⟨z̃i(f)z̃∗
j (f ′)⟩ = 1

3ΓijSh(f). (9.16)

Correlating pulsar times of arrival
Now pick another pulsar, b, on the sky some angular distance θab away from
pulsar a.Because the pulses are measured on Earth, they will go through the
same gravitational-field, but this pulse will not be at a optimal angle! This
means that the effect of a gravitational wave on these two pulsars will be
correlated, but not the same.

9.4 SGWB spectrum expected from supermassive black hole bina-
ries

Now that we understand how pulsars can be used to find a background we
want to understand, what do we expect the signal from the SGWB to look
like? Here I follow the derivation from Phinney [272].

Since our background is stochastic its strain cannot be described like a wave
in the same way we did in Chapter 4, it can only be described by expectation
values [296]. In this case we choose the second moment (the variance) of the
time derivative of the strain field—the energy density [296], Egw. To make this
a more immediately meaningful value, we want to compare it to all the other
contributions to the energy density of the universe, so we normalize by ρcc

2,
the energy density required to make the universe flat7.

6If two pulsars have timing residuals that are 50% correlated, this implies that 25%
of the variability in one pulsar’s residuals can be explained by the variability in the other
due to their shared response to a gravitational-wave signal. Consequently, knowing the
timing of the residuals in one pulsar provides partial information about the timing in the
other. Specifically, for two series A and B, the correlation implies that the optimal linear
relationship minimizes the residual variance ⟨(A − αB)2⟩, where α is determined by the
covariance between A and B. This relationship can be expressed as

⟨(A − αB)2⟩ = 0.5⟨A2⟩,

highlighting that only a fraction of A’s variance is reduced by accounting for its correlation
with B.

7Cosmology research has found that the universe is flat [47, 52]. So we are finding the
contribution of gravitational-waves to the total energy in the universe
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Then the total energy density due to gravitational radiation EGW is then

EGW := ρcc
2
∫ ∞

0
ΩGW(f)d ln(f) = ρcc

2
∫ ∞

0
ΩGW(f)df

f
, (9.17)

where we have introduced ΩGW(f), the dimensionless energy density per log-
arithmic frequency bin.

If we then take the universe to be isotropic and homogeneous8 then it should
be true that the total energy in gravitational waves in the Universe should
be be equal to the sum of densities radiated at each redshift. Let fr be the
gravitational-wave frequency as measured in the rest frame of the source and f
be the frequency as measured on Earth. They are then related by the redshift
fr = (1 + z)f . Then, the total present day energy in gravitational radiation 9

EGW =
∫ ∞

0

∫ ∞

0
N(z)dEGW

df

fr

fr

dfdz ,

=
∫ ∞

0

∫ ∞

0
N(z) 1

1 + z
fr
dEGW

dfr

dz
df

f
. (9.18)

Then, we can equate Eq 9.18 to Eq 9.17 to get

ρcc
2ΩGW(f) =

∫ ∞

0
N(z)fr

dEGW

dfr

dz . (9.19)

If we then assume that our SGWB is made from inspiraling binaries in quasi-
circular orbits, as we did in Chap 4, we get

dEGW

dfr

= π

3
1
G

(GM) 5
3

(πfr)
1
3
, (9.20)

which we can derive using only the potential energy of the system, Kepler’s
laws, their derivatives, and knowing nothing about gravitational-waves other
than that the gravitational radiation has twice the orbital frequency [17].

Inserting eq. 9.20 into eq. 9.19 gives us

ΩGW(f) = π
2
3 (G M) 5

3

3 G
1
ρcc2f

2
3

∫ N(z)
(1 + z) 1

3
dz , (9.21)

8Isotropic, meaning the same in all directions. Homogeneous, meaning the same at all
points in space.

9which must be modified to account for the redshift taken to reach Earth
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giving us the important relationship, ΩGW(f) ∝ f
2
3 . Since pulsar timing

arrays measure timing residuals10 this power is generally instead given as the
timing-residual cross-power spectral density11

Sij(f) = Γij
A2

GWB
12π2

(
f

fyr

)−γ

f−3
yr , (9.22)

between pulsars a and b, where AGWB is the amplitude of the SGWB and our
spectral index γ = 13

3 [66]. Γij is the “overlap reduction function” (AKA
our Hellings-Downs function), see equation 9.15 which encodes the expected
correlation between the timing residuals from pulsar i and j. fyr = 1/yr.

9.5 What has been measured so far
Thus far, pulsar timing arrays have found strong evidence of a shared “common
process” (essentially equation 9.22 but with the Hellings-Downs correlations
Γij = δij). This means that there is support for a shared noise-process in all
pulsars that accelerates or delays pulsar timing residuals [50, 66].

Gravitational-waves in the nanohertz frequency band ((10−8.75, 10−7.5) Hz)
have yet to be conclusively detected by finding these Hellings-Downs corre-
lations, although strong evidence has been found by multiple pulsar timing
array collaborations [50, 60, 290, 382].

10A timing residual is the offset between the actual arrival of a pulse and its predicted
arrival from some deterministic model. There are a few potential contributions to these
residuals, including intrinsic noise in the pulsars, detector noise, or gravitational waves
(among others) [333].

11which essentially is the variance of timing residuals, similar in principal to the PSD in
Part I
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C h a p t e r 10

LIKELIHOOD REWEIGHTING WITH PULSAR TIMING
ARRAYS

Sophie Hourihane, Patrick Meyers, Aaron Johnson, Katerina Chatzi-
ioannou, and Michele Vallisneri. Accurate characterization of the stochas-
tic gravitational-wave background with pulsar timing arrays by likelihood
reweighting. Phys. Rev. D, 107(8):084045, 2023. doi: 10.1103/PhysRevD.
107.084045. Printed here as Chapter 10. SH conceptualized the project, au-
thored the text, performed all analyses except for P-P tests, and all figures.

10.1 Abstract
An isotropic stochastic background of nanohertz gravitational waves creates
excess residual power in pulsar-timing-array datasets, with characteristic in-
terpulsar correlations described by the Hellings-Downs function. These cor-
relations appear as non-diagonal terms in the noise covariance matrix, which
must be inverted to obtain the pulsar-timing-array likelihood. Searches for the
stochastic background, which require many likelihood evaluations, are there-
fore quite computationally expensive. We propose a more efficient method:
we first compute approximate posteriors by ignoring cross correlations, and
then reweight them to exact posteriors via importance sampling. We show
that this technique results in accurate posteriors and marginal likelihood ra-
tios, because the approximate and exact posteriors are similar, which makes
reweighting especially accurate. The Bayes ratio between the marginal like-
lihoods of the exact and approximate models, commonly used as a detection
statistic, is also estimated reliably by our method, up to ratios of at least 106.

10.2 Introduction
The nanohertz stochastic gravitational-wave (GW) background can be de-
tected through the induced delay on the times of arrival of pulses from mil-
lisecond pulsars [145, 187, 333]. Recent evidence that the datasets collected
by the three major pulsar-timing-array (PTA) consortia all include excess tim-
ing noise of common amplitude and spectral shape [60, 66, 113, 172] suggests
that we might be getting closer to detection [65, 274]. However, since such
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common-spectrum noise may arise from a non-GW astrophysical or terres-
trial source [172, 392] (even if this seems unlikely in current data [66, 173]),
a GW detection claim needs to wait for the finding that the excess noise is
correlated across pulsars with the characteristic angular pattern known as the
Hellings-Downs curve [187].

In PTA data analysis, timing noise is represented as a Gaussian process with
covariance matrix Cai bj, where a, b range over pulsars and i, j over timing
measurements (or equivalently frequency components). For common-spectrum
uncorrelated noise, the matrix factorizes as Cijδab; for an isotropic GW back-
ground, it is given by CijΓab, with Γab = Γ(θab) the Hellings-Downs correlation
coefficient, a function of the angular separation θab between pairs of pulsars.
The PTA data model includes several other stochastic components, but GW
detection is usually formulated by comparing a common process (CP) model
that includes common-spectrum uncorrelated noise and an “HD” model that
includes common-spectrum Hellings-Downs–correlated noise.1 By contrast, in-
formation about the GW amplitude and spectral shape is carried primarily by
the autocorrelation terms (the Cai bj elements with a = b).

Parameter estimation and model selection for the CP and HD models are
both typically handled through stochastic sampling, which requires repeated
evaluations of the data likelihood. Since the CP excess-noise covariance matrix
factorizes across pulsars but the HD matrix does not [337], the likelihood
is significantly slower to compute for the latter model (e.g., a factor of ∼
25 for the NANOGrav 12.5yr dataset, which will only grow larger as more
pulsars are observed). The number of likelihood evaluations is magnified by
the thinning of sample chains (typically by Nt ∼ O(103)) and by the use of
parallel tempering schemes (typically by Nc ∼ O(10) temperatures) which
require many likelihood evaluations per CP posterior sample. The overall cost
can be prohibitive for the HD model, particularly when multiple background
analyses (e.g., “sky scrambles” [123, 332] and “phase shifts” [332]) are required
to estimate the significance of a result.

Methods to optimize PTA search strategies in both data acquisition and mod-
eling have been studied extensively. On the data acquisition side, studies
found the most impactful observing cadences and radio frequency bands for

1In the NANOGrav 12.5yr stochastic background analysis that initially reported the
evidence for a common process [66], the CP and HD models are labeled model 2A and 3A,
respectively.
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detecting a GW background (GWB) [216, 217, 219]. On the modeling side,
improvements in computational efficiency have been made by using Fourier ba-
sis methods [220, 358] to characterize red-noise processes, as opposed to dense
covariance matrix approaches [359]. More recently, the factorized likelihood
approach reduces the wall clock time needed to evaluate a CP-only model by
a factor proportional to the number of pulsars [337], and Hamiltonian Monte
Carlo methods have been implemented to improve sampling efficiency [164].

In this study we propose an approach that further mitigates computational cost
of producing posterior samples for the HD model in terms of both CPU and
wall clock time. Rather than exploring the HD model stochastically, we reuse
parameter-estimation results for the inexpensive CP model and “reweight”
them to obtain posteriors and marginal likelihoods under the HD model.
Specifically, a thinned set of CP-model samples yields a set of weighted HD-
model samples, with weights equal to the ratios of the HD and CP likeli-
hoods. The computational gains are realized by performing only one HD like-
lihood evaluation per HD posterior sample, and parallelizing the calculation
of weights.

The general reweighting formalism can be applied to any combination of mod-
els, though convergence and low sampling error depend on stochastic chains
for the original posterior having a sufficient number of samples in the support
of the target posterior. This is the case for the HD and CP posteriors, since
both are dominated by single-pulsar autocorrelation terms. Additionally, the
two models share the same parameters and corresponding priors. In this paper
we apply the reweighting formalism to simulated PTA data, and compare pos-
teriors and marginal likelihoods obtained by reweighting and by brute-force
sampling. We find that (i) the posteriors recovered through reweighting are
statistically unbiased, and that (ii) the HD vs. CP Bayes factors (the ratios of
marginal likelihoods) agree with the “hypermodel” method typically used in
PTA analyses [185] to within 10% uncertainty for Bayes factors ∈ [10−3, 107].

The rest of the paper is organized as follows. In Sec. 10.3 we introduce the
general reweighting formalism following [266]. In Sec. 10.4 we describe the HD
and CP models in more detail. In Sec. 10.5 we present results from simulated
data that validate the reweighting approach. In Sec. 10.6 we conclude by
discussing the application of our method and its computational gains.
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10.3 Posterior reweighting
Samples distributed according to one posterior distribution can, under some
circumstances, be reweighted to estimate a second posterior distribution; this
is a form of importance sampling. In this section, we present the general
methodology behind this posterior reweighting following Ref. [266], and de-
scribe how it can be used to also estimate the marginal likelihood of a model
and the Bayes factor between models.

The posterior distribution, p(θ|d, T ) for a target model T with parameters θ
given data d can be written explicitly in terms of the Bayes theorem,

p(θ|d, T ) = L(d|θ, T )π(θ|T )
ZT

, (10.1)

where L(d|θ, T ) is the likelihood, π(θ|T ) is the prior, and ZT is the marginal
likelihood (also known as evidence, though we do not use this term here). We
rewrite this target posterior distribution in terms of the likelihood and prior
for another “approximate” model A,

p(θ|d, T ) =
L(d|θ, A)L(d|θ,T )

L(d|θ,A)π(θ|A)π(θ|T )
π(θ|A)

ZT

(10.2)

= wL(d|θ)wπ(θ)L(d|θ, A)π(θ|A)
ZT

. (10.3)

In the last line we have introduced weights given by the ratio of the likelihoods
and priors of the two models

wL(d|θ) = L(d|θ, T )
L(d|θA) , (10.4)

wπ(θ) = π(θ|T )
π(θ|A) ; (10.5)

we can also combine the weights to get

w(d|θ) = wL(d|θ)wπ(θ) . (10.6)

Given Ns posterior samples θs ∼ p(θ|d,A) for model A, we can resample them
with weights w(d|θs) to obtain a posterior sampling of model T ; the marginal
likelihood ZT can also be estimated as

ZT =
∫
dθL(d|θ, T )π(θ|T ) (10.7)

= ZA

∫
dθ wL(d|θ)wπ(θ)p(θ|d,A) . (10.8)
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The integral in Eq. (10.8) can be approximated with Monte Carlo integration:

ZT ≈ ZA

Ns

Ns∑
s=1

wL(d|θs)wπ(θs) = ZAw̄ , (10.9)

where w̄ is the mean of the weights, w(d|θ). If we are interested in model se-
lection between the approximate and target models, the Bayes factor between
them is then simply

BT
A = w̄ . (10.10)

Though the reweighting procedure is mathematically exact, it is subject to
sampling errors, especially if the approximate and target posteriors are too
disjoint. We quantify sampling error with the “effective number of samples”
neff—the approximate number of samples drawn independently from the target
posterior that would approximate ZT as accurately as the reweighting estimate
(10.9). Reference [156] estimates neff as

neff ≈ [∑s wL(d|θs)wπ(θs)]2∑
s [wL(d|θs)wπ(θs)]2

= Ns

1 +
(

σw

w̄

)2 , (10.11)

where σw is the standard deviation of the weights. We also define the efficiency

E ≡ neff

Ns

. (10.12)

It follows from Eq. (10.10) that the error σB on the mean BT
A is

σB = σw√
neff

= σw√
E Ns

. (10.13)

If we represent the target posterior by a set of equal-weight samples by per-
forming a weighted redraw from the approximate distribution, then Eq. (10.11)
makes intuitive sense. It implies that a few samples with high weights (rela-
tive to w̄), will result in the same sample being drawn many times and lead to
comparatively lower neff . Equivalently, such high individual weights (relative
to w̄) increase σw and thus decrease neff . In the limit of vanishing variance,
neff → Ns, while as variance grows neff → 0.

We can also use the weights to estimate the statistical distance between the
approximate and target posteriors in the form of the Kullback-Leibler (KL)
divergence. That is,

DKL(A||T ) ≡
∫
dθ pT (θ) ln pA(θ)

pT (θ) , (10.14)
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≈
∑

θ∼pA

1
Ns

ln pA(θ)
pT (θ) , (10.15)

= ln(w̄) − ln(w) , (10.16)

where we have written the posteriors pK(θ) ≡ p(θ|d,K) for K ∈ {A, T} and
ln(w) is the average of the log of the weights. This equation can be used in
combination with Eq. (10.11) to provide guidance when reweighting leads to
low efficiency.

The main reason for low efficiency is that a region of low posterior for the
approximate model overlaps with a region of high posterior for the target
model. Samples in this region get very high weights and can lead to poor
reconstruction of the target posterior. Understanding when and where this can
occur is an area of active research, and has led to other forms of importance
sampling [366].

10.4 The pulsar-timing-array models for stochastic gravitational
waves

In this section we discuss the statistical framework used to detect a stochastic
GW background with an array of regularly timed millisecond pulsars. We first
introduce a Gaussian likelihood that includes the full interpulsar correlations
induced by GWs (the Hellings-Downs model). We then introduce a secondary
model that ignores interpulsar correlations and includes GWs as a common
(but uncorrelated) power law spectrum in each pulsar’s residuals (a common
process model). We claim evidence for GWs when a dataset significantly favors
HD over CP.

These two models contain the same parameters and priors; furthermore, the
posterior distributions of model parameters are not affected strongly by the
inclusion of interpulsar correlations. This makes the CP likelihood a good
approximate distribution for the HD likelihood. As we discuss below, the CP
model is significantly faster to evaluate, and so we will use CP as our approx-
imate likelihood, LA, while the HD model will be the target LT . An added
bonus of our choice of these models is that, in implementing the reweight-
ing scheme discussed above to speed up computation of the HD posterior, we
naturally also calculate Bayes factors that can be used as a GW detection
statistic.
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Pulsar-timing-array likelihood
A detailed presentation of the PTA likelihood derivation can be found in
Refs. [64, 220, 332, 333, 357, 358]; in this section we describe only the rel-
evant details. A reader familiar with PTA analyses can skip to Sec. 10.4.

Pulse arrival times [time(s) of arrival (TOA)] are affected by both deterministic
and stochastic processes. The deterministic contribution (described more fully
in [332]) contains terms relating to the motion of the pulsar, such as sky
location, rotation period, etc., as well as individually resolvable GW sources
such as continuous waves. An initial solution for the timing model is subtracted
from the measured TOA, leaving behind the fit residuals δt. The uncertainties
on this timing model are described by a Taylor expansion in timing parameters
ϵ with partial derivatives (comprising the design matrix) M evaluated at the
initial timing solution.

The stochastic contribution to the TOA is due to a combination of the intrinsic
low-frequency spin noise (or “red noise”) of individual pulsars (IRN) and a
common, stochastic process induced by a GW background. We model both as
stationary zero-mean Gaussian random processes with Fourier vector bases.
It follows that the Fourier coefficients a (the basis weights) are described
entirely by their covariance ϕ|η = ⟨aaiabj⟩. Here indices a, b index pulsars, i, j
index frequencies, brackets indicate the ensemble average, and the η are the
“hyperparameters” associated with the distribution of a.

With both the deterministic and stochastic contributions to the noise modeled,
the timing residuals r are

r = δt − Mϵ − Fa = δt − Tb , (10.17)

where the matrix F collects the Fourier basis vectors evaluated at the TOA
and where we have introduced

T ≡ [M F ] , b ≡

ϵ
a

 , (10.18)

for ease of notation. The residuals r should now be white and Gaussian, with
a covariance matrix N that describes the uncertainty associated with each
TOA observation. The likelihood is then

L(δt|b) =
exp

(
−1

2r
TN−1r

)
√

det 2πN
. (10.19)
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We complement the likelihood with the Gaussian-process prior for the Fourier
components,

π(a|η) =
exp(−1

2a
Tϕ|−1

η a)√
det 2πϕ|η

. (10.20)

The Gaussian form of the likelihood and prior means that we can marginalize
analytically over the a, leaving only the hyperparameters η. A similar choice
is made for the timing model correction prior π(ϵ) [332]. The marginalized
likelihood is then

L(δt|η) =
∫
db L(δt|b) π(a|η) π(ϵ) , (10.21)

∝
exp

(
−1

2δt
TC−1δt

)
√

det (2πC)
, (10.22)

where C = N + TBT T is the covariance kernel, and

B =

∞ 0

0 ϕ

 . (10.23)

Here ∞ represents a formal limit of covariance for a uniform unbounded prior
on ϵ.

Pulsar-timing-array stochastic models
We model both the IRN and the GWB as power laws in the frequency domain.2

The model hyperparameters are then η = (Aa, γa, AGW, γGW) where γa, γGW

and Aa, AGW are the negative spectral indices and amplitudes of the IRN and
GW power laws respectively. We split ϕ into its two contributions; one from
the IRN and the other the common GWB

ϕ = ϕIRN + ϕGW . (10.24)

By stationarity, both the IRN and the GWB are uncorrelated between fre-
quencies. Therefore ϕ will contain no cross-frequency terms, and ϕai,bj ∝ δij.

By definition, the IRN is an independent process in each pulsar:

ϕ|IRN
η (ai),(bj) = κi(ηa)δabδij . (10.25)

2Power laws are not the only choice for the distribution of Fourier coefficients. Other
choices include (but are not limited to) a free spectral model with independent densities for
each Fourier frequency, and a broken power law [66, 308, 334].
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The IRN power κi(ηa) in frequency bin i for pulsar a is modeled as the power
law

κi(ηa) = κi(Aa, γa) = A2
a

12π2
1
T

(
νi

yr−1

)−γa

yr2 , (10.26)

where T is the total observation time and νi is the frequency associated with
bin i.

In contrast to the IRN, the GW background is correlated between pulsars:

ϕ|GW
η (ai),(bj) = Γabκi(ηGW)δij . (10.27)

Here κi is again given by Eq. (10.26), except that every pulsar has the same
amplitude AGW and spectral index γGW. The function Γab describes GW
correlations between pulsars a and b and is known as the Hellings-Downs curve
[[187], Eq. (5)].

The a = b components of Eq. (10.27) represent the excess-noise power induced
by the GWB in each pulsar. Half of this power is caused by the “Earth term” in
the pulsar GW response, and contributes to interpulsar correlations; the other
half is caused by the “pulsar term” and is statistically uncorrelated among
pulsars. The first indications of a GWB in PTA data will appear through these
diagonal self-correlations [65, 297], so they could be detected using the CP
model as well as the HD model. However, evidence for CP could also be caused
by physical effects such as the solar wind [343] or by model misspecification,
such as incorrect priors [392] or poor IRN models [173]. Other mechanisms
can induce interpulsar correlations that are inconsistent with the Hellings-
Downs curve, such as clock errors with monopolar correlations [343, 344] or
Solar System ephemeris errors with dipolar correlations [91, 171, 295, 356].
Thus, the detection of HD correlations through the off-diagonal terms of ϕGW

is considered the decisive factor in claiming a GWB detection, and the CP vs.
HD Bayes factor is used as a GWB detection statistic [60, 66, 113, 173].

Implementation and computational considerations
The standard PTA likelihood (10.22) requires the inverse noise covariance
matrix C−1 and therefore the inverse of ϕ|η. Although the PTA analysis
software, such as Enterprise [155], is optimized to speed up the likelihood
evaluation, inversion becomes the most expensive computation when ϕ|η is
not pulsar diagonal. For instance, for the NANOGrav “12.5yr” dataset each
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Figure 10.1: Posteriors for γGW and log10 AGW and ln L distribution for sim-
ulated PTA data with a log10(AGW) = −14.8 GWB. We show histograms for
direct sampling of CP (blue), HD (green), and for CP-to-HD reweighting (or-
ange). Black lines indicate the injected values. For this plot we selected one of
our simulations with the most visually different CP and HD GW posteriors.
Even so, the direct-sampling and reweighted HD posteriors are almost identi-
cal. The reweighted posterior is well sampled, with 51% efficiency.
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HD-model likelihood is ∼ 25 slower than the corresponding CP likelihood.
This factor applies to 45 pulsars over a 12.9 year dataset and will increase
with the number of pulsars.

The current workhorse method to compute BHD
CP is a hypermodel Markov chain

Monte Carlo sampler [154, 185, 335]. In such an analysis, a discrete metapa-
rameter tracks the current model (HD or CP) while the sampler jumps between
them. The final Bayes factor is the number of samples in the HD model di-
vided by the number of samples in the CP model. The two posteriors are also
selected by the value of the metaparameter. As the evidence for a GWB be-
comes stronger, the HD model will be sampled more often than the CP model,
slowing down calculations further.3

Despite the difference in likelihood functions and computation time, the pos-
teriors for CP and HD are generally quite similar. Figure 10.1 displays the
marginalized one- and two-dimensional γGW and AGW posteriors and the ln L
distributions for CP (blue) and HD (green), as recovered by hypermodel sam-
pling. The similarity between the posteriors and the ∼25x likelihood speedup
suggest that this problem is well suited for the reweighting method introduced
in Sec. 10.3.4 The HD posterior created by reweighting the CP posterior is
plotted in orange and is almost identical to the direct-sampling HD posterior.
The efficiency of the reweighting method as posterior differences is discussed
in the next section.

10.5 Demonstration of the method
To show that we can safely reweight CP to HD, we simulate PTA datasets
containing GWBs with different amplitudes, and demonstrate that reweighting
yields unbiased Bayes factors and posteriors.

Bayes factors
To test BHD

CP recovery, we simulate 100 datasets for 45 pulsars over 12.9 years,
using maximum-likelihood red-noise hyperparameters from the 12.5yr NANOGrav

3A constant added to the CP log-likelihood can mitigate this particular issue and result
in a comparable number of samples in each model. That constant should be close to the
Bayes factor, which is unknown a priori in real data. In our study we estimated this
constant by using the likelihood ratio between the CP and HD models evaluated at the
injected parameters. This ensured that both models contained enough samples particularly
in high Bayes factor regimes.

4Here we use identical priors between the target and the original distribution, meaning
the prior weights wπ(θ) = 1.
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Figure 10.2: Top: BHD
CP vs simulated GWB amplitude. Bayes factors recovered

via reweighting, Eq. (10.10), are colored by their efficiency E , Eq. (10.12).
Bayes factors recovered via the hypermodel are plotted as coral Xs. The
hypermodel error is calculated with a bootstrap method described in [184]
whereas the reweighting error is estimated with Eq. (10.13), although both
errors are too small to see. Bottom: relative difference in the hypermodel
and recovered Bayes factors, again colored by efficiency. The error bars are
propagated from the hypermodel and reweighting errors above. As the GWB
amplitude increases, the efficiency decreases due to the distribution of the
weights broadening as in Eq. (10.11). The relative difference between these
Bayes factors is usually small, typically −0.5±4%, but can be as large as 10%.
A 10% difference in BHD

CP is not large enough to change a detection conclusion
to a nondetection conclusion or vice versa and therefore we can consider the
difference small. For instance, a Bayes factor of 100 would lead to the same
qualitative conclusion as a Bayes factor of 110. The pink vertical line in both
plots is log10 AGW = −14.8, the posterior plotted in Fig. 10.1 to demonstrate
that this posterior is typical.
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dataset [65, 254].5 Each simulation includes a power-law GWB with log10 AGW

varying uniformly between −15 and −14. We set γGW to 13/3, the theoretical
value for a GW background from supermassive black-hole binaries [272]. For
each simulated dataset, we obtain a thinned set of CP posterior samples us-
ing PTMCMCSampler [154]. We reweight the CP posterior sample to the
HD model and calculate BHD

CP following Eq. (10.10). To verify the accuracy of
these reweighted BHD

CP s, we obtain an independent estimate from hypermodel
runs on the same simulations. We compare the reweighted and hypermodel
Bayes factors in Fig. 10.2, finding them in excellent agreement. The top panel
shows the BHD

CP estimates plotted against log10 AGW; the bottom panel shows
the relative difference of the BHD

CP estimates (reweighted minus hypermodel,
divided by their average). Marker colors encode reweighting efficiency. The
mean relative difference is −0.5 ± 4%, so we observe no systematic effect. The
maximum relative difference is 10%, small enough that it could not affect a
GWB detection claim. Error bars are computed by combining (in quadrature)
reweighted Bayes factor errors from Eq. (10.13) and hypermodel Bayes factor
errors from the bootstrap method of [184]. Bayes factor differences are not
strongly correlated with the injected GW amplitude or the Bayes factor, al-
though the difference uncertainties are inversely correlated with efficiency [see
Eq. (10.13)].

Figure 10.2 shows also that as we increase the simulated amplitude, the sam-
pling efficiency tends to decrease. This is expected; as the amplitude of the
GWB increases, the off-diagonal terms in Eq. (10.27) become more significant.
The likelihood can then change between the two models significantly, which
affects w̄, and can even be maximized in different parts of parameter space.
Such conditions can lead to a large spread in the weights as some points get
heavily upweighted and others get downweighted. From Eq. (10.11), a large
spread in the weights means that neff will decrease, and more samples from the
CP distribution will be needed in order to faithfully represent the HD poste-
rior and calculate BHD

CP accurately: see Eq. (10.13). In our simulated datasets,
however, the recovered Bayes factor remains within 10% of that calculated
with the hypermodel even in regions where BHD

CP > 106.

In order to study the relation between the model posterior similarity and the ef-
ficiency of the reweighting procedure, we compute the Kullback–Leibler diver-

5The NANOGrav 12.5yr dataset is actually 12.9 years in length.
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gence [213], which quantifies the difference between two distributions. We plot
the relationship between the KL divergence and the efficiency in Fig. 10.3. The
upper plot shows total KL divergence [Eq. (10.16)] vs. efficiency [Eq. (10.12)]
for the CP and HD posteriors. As the KL divergence increases, the posteriors
become more distinct and the sampling efficiency decreases. The bottom plot
shows the fractional contributions of different model parameters to the total
KL divergence.6 We split the 92 parameters into four sets: the IRN ampli-
tudes and spectral indices (pink and red respectively) and the GW background
amplitude and spectral index (blue and gold respectively). We compute the
partial KL divergence of the CP and HD marginalized posteriors for each pa-
rameter and sum those of the IRN parameters. The fractional contribution is
then obtained by dividing those partial KL divergences by the total. The set
of all red-noise parameters contributes more to the total divergence than do
the GWB parameters individually. The set of all IRN amplitude posteriors
is the major contributor to the divergence (55 ± 11%), followed by the set of
all IRN spectral indices (27 ± 8%); the contribution from AGW and γGW are
roughly equivalent at percent level, 9 ± 8% each.

Posterior recovery
Figure 10.1 offered visual confirmation that the GWB parameter posteriors
under the HD model are recovered without bias via reweighting. In this section
we confirm these initial findings through a more extensive percentile-percentile
(P-P) test [170]. We generate 100 simulations similar to those described in
Sec. 10.5, except that each simulated parameter is drawn from its analysis
prior, as required to achieve Bayesian coverage. The priors for the spectral
indices are γGW, γ

a ∈ U [2, 6], and the priors for the amplitudes are log10 AGW ∈
U [−15,−12] and log10 A

a ∈ U[−16,−14]. We recover CP posteriors from
these simulations with direct sampling, and then reweight and resample those
posteriors to the HD model.

The P-P test is a standard measure of bias in recovered posteriors. Data-
sets are first simulated by drawing parameters from their priors and adding
Gaussian noise. The posterior of each data-set is then sampled. The percentile

6The total KL divergences are not directly comparable to the KL divergences of the var-
ious marginalized posteriors; the total KL divergence is equal to the sum of the marginalized
KL divergences only when parameters are uncorrelated. Although this is not the case in our
analysis, the normalized marginal KL divergences still inform us of parameters that most
greatly influence the total KL divergence.
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Figure 10.3: Top: total KL divergence, Eq. (10.16), vs efficiency, Eq. (10.12),
between the CP and the reweighted HD posterior. As the KL divergence
increases, the posteriors become more distinct, and the sampling efficiency
decreases. Bottom: fractional contributions to total KL divergence from sets
of parameters including all the IRN amplitudes and spectral indices (pink and
red, respectively) and the GWB amplitude and spectral index (blue and gold
respectively). The set of all IRN parameters contribute more to the total
divergence than the GWB parameters individually.
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of each of the “true” or injected values is calculated in the marginalized, one
dimensional posterior of each parameter. For a set unbiased posteriors, the
injected value will be distributed according to each posterior. That is, the
percentile of where each injected value lands in a 1-D marginalized posterior
will be distributed uniformly between the 0th and 100th percentile, the x-axis
of Fig. 10.4. This test of uniformity in posterior space is represented with the
cumulative distribution function (CDF) of the posteriors percentile. Since the
CDF of a uniform distribution between 0 and 1 (0th and 100th percentile) is a
line of slope 1, the P-P plot is usually represented this way. A P-P plot showing
a line consistently below (above) the line x = y is indicative of parameter bias
of overestimating (underestimating) the parameter value. An S-curve going
above (below) then below (above) the diagonal is indicative of a overestimate
(underestimate) of the posterior’s standard-deviation.

Figure 10.4 shows the corresponding P-P plots. The 92 different parameters
(γa, Aa for 45 pulsars as well as γGW, AGW for the GWB) are plotted in teal.
The expected 1-, 2-, and 3-σ confidence intervals are plotted in black. The
recovered posteriors agree with expectations; only two lines briefly leave the
three-sigma error bars. This suggests that the reweighting method neither
over- nor underestimates parameters systematically, as would be the case if
some parameters were always above or below the diagonal; nor does it recover
incorrect variance, as would be indicated by S-curves around the diagonal.

Bayes factor recovery on extended dataset
To this point, we have demonstrated that likelihood reweighting is a promis-
ing tool for recovering accurate Bayes factors and unbiased posteriors in a
simulated data-set with 12.9 years of timing data, 45 pulsars, and a range
of injected GWB amplitudes. As PTAs continue to collect more data, it be-
comes natural to ask at what point the reweighting scheme could fail, either
by misestimating Bayes factors or by exhibiting low efficiencies. We examine
the performance of likelihood reweighting after the addition of additional pul-
sars and additional observation time to the dataset. We find that even for 80
pulsars and 22 years of data, the efficiency remains above 20% and the errors
between the Bayes factor calculated with direct sampling and reweighting are
comparable to those in Sec. 10.5.

To create this extended dataset, we simulate realistic pulsars and add ad-
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Figure 10.4: P-P plots for all 92 reweighted, HD-model parameters (teal) with
the 1-, 2-, and 3-σ standard deviations (black). The y-axis is the percentile of
each parameter’s injected value in its marginalized posterior. The x-axis is the
percentile of the sorted y-axis values. The recovered posteriors are consistent
with expectations, suggesting that the posterior recovery is unbiased.

ditional observing time to each pulsar. To create new pulsars, we sample
sky locations by fitting existing pulsar locations with a kernel density esti-
mate and sample from it. Each new pulsar is assigned white noise parameters
and observing epochs (plus Gaussian scatter) from an existing pulsar. To
simulate additional years of data, to each pulsar we add TOAs with Gaus-
sian scatter. The red noise parameters for the new pulsars are drawn from
the IRN prior. For existing pulsars, the red-noise amplitudes were set from
the maximum-likelihood draw as in Sec. 10.5. The GWB was injected with
AGW = 1.92×10−15, the median posterior amplitude of the NANOGrav 12.5yr
analysis [66]. In total, we simulated 22 years of data in 80 pulsars; below we
present results based subsets of that data.

In Fig. 10.5 we plot BHD
CP as a function of the number of pulsars, N , and for

different observation durations, Tobs. We find that the relative difference be-
tween the BHD

CP recovered by direct sampling and by reweighting remain within
10% of each other, suggesting that the reweighting scheme remains valid for
these extended data-sets. Moreover, we find that while the ratio between the
HD and CP likelihood computation times is approximately constant across
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Figure 10.5: Top: BHD
CP vs number of pulsars for sets of fixed observation

times between 10 and 22 years, Tobs. Bayes factors recovered via reweighting,
Eq. (10.10), are colored by their efficiency, E , Eq. (10.12). Bayes factors recov-
ered via the hypermodel are plotted as coral Xs. The error estimate of each
point is described in the caption of Fig. 10.2. For a fixed number of pulsars,
an increase in the observation time leads to a higher Bayes factor. In each
case, as N increases, the efficiency decreases. Additionally, as the observation
time increases, efficiency tends to decrease, albeit less distinctly. The relative
difference between the direct sampling and reweighting Bayes factors remains
quite small and is independent of both Tobs and N . The small errors and high
efficiencies (each greater than 20%) imply that likelihood reweighting remains
reliable when additional time and pulsars are added.

extended observation time, the ratio scales with the number of pulsars (rang-
ing between 10 and 40). Thus as more pulsars are added to the dataset,
reweighting becomes more important.

10.6 Discussion and Conclusions
We have introduced a reweighting method to efficiently and reliably obtain GW
posterior and marginal likelihood for a GWB model in PTA data analysis. We
first compute an inexpensive approximate posterior (CP) that omits pulsar-
pulsar correlations, then reweight it to a full posterior (HD) that includes
them. We have validated this method by comparing reweighted posteriors and
Bayes factors with distributions and factors obtained with direct sampling.
Reweighting appears to be reliable and unbiased. Even in cases with low
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reweighting efficiency (as defined by the reduction in the number of effective
samples), the reweighted Bayes factor estimate remained robust up to BHD

CP >

106, far larger than required for a confident GWB detection.

Even though our method requires evaluating the computationally expensive
HD likelihood, it is still much more efficient than direct stochastic sampling.
This is due to the additional evaluations required for the latter, which do not
need to be repeated when reweighting. Direct sampling results in very auto-
correlated sample chains, which are thinned [by factors Nt ∼ O(103), on the
order of the chain autocorrelation length] to obtain quasi-independent samples.
By contrast, reweighting is applied after thinning, reducing the number of HD
likelihood evaluations by Nt. In addition, the weights of Eq. (10.4) can be
computed in parallel on multiple cores, allowing a further wall clock speedup
(by the number NP of parallel processes). Finally, if parallel tempering was
used to sample the approximate model, only samples from the coldest chain
should need be reweighted, decreasing the necessary number of computations
by a factor of the number of chains Nc ∼ O(10).

While the reweighting procedure is mathematically exact, the method is sub-
ject to sampling error; reweighted posteriors could have too few effective sam-
ples to accurately reflect the true distribution. Constructing generic diagnostic
tools for such situations can be challenging, as the effective number of inde-
pendent samples neff can vary between applications. In such cases, estimating
the Bayes factor sampling error or inspecting posteriors visually can help iden-
tify undersampling. If neff is low, a few strategies are available. The simplest
is to increase the number of samples for the approximate model. A more so-
phisticated option involves the importance sampling of the approximate model
by concentrating on the region of parameter space that the target seems to
prefer. In the most extreme case, so many approximate-model samples are
needed that the method becomes less efficient than direct sampling. This hap-
pens when the efficiency drops to the ratio of likelihood computation times
(e.g., to 1/25 for the NANOGrav 12.5yr dataset). If parallel tempering is used
then “hot” chains, with a correspondingly broader posterior, could be used in
situations where efficiency is low due to a lack of samples from the approximate
distribution available to estimate tails in the target distribution.

The reweighting formalism is generic and can be applied to any pair of approx-
imate and target distributions. For example, one could model a clock error
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by including a process with monopolar correlations in addition to the HD cor-
relations. In this situation, extra parameters are added to the target model,
which requires drawing samples from some proposal distribution for the new
parameters (see [300, 301] for examples of reweighting between models with
varying numbers of parameters). In practice, sampling error (efficiency) in-
creases (decreases) if the approximate and target posteriors do not overlap, as
quantified in Fig. 10.3 using the Kullback-Leibler divergence.

Throughout this work we have presented examples that are based on the
NANOGrav 12.5yr analysis. Although our simulations are consistent with
the NANOGrav dataset and our understanding of the stochastic GWB, we
have not simulated realistic radio frequency noise such as dispersion mea-
sure variations or solar wind fluctuations. More “advanced” noise model-
ing adds numerous extra parameters to each pulsar to measure chromatic
effects [171, 183, 341–343] increasing the complexity of the analysis. Given
that most of these additional parameters impact only individual pulsar mea-
surements, a factorized-likelihood approach to estimate the CP model, followed
by this reweighting scheme could significantly reduce the wall clock time of an
analysis that uses more advanced noise models.

In the context of PTA searches for GWBs, the reweighting formalism intro-
duced in this paper offers an accurate and computationally efficient shortcut
to GW posteriors and HD vs. CP Bayes factors. In this paper we tested
the method on simulated datasets with increasing GWB amplitudes, which
served a proxy for increased observing time and number of pulsars. Our re-
sults suggest that reweighting remains robust for PTA datasets with Bayes
factors of at least 106, orders of magnitude larger than current results. Thus,
our method can reliably characterize the GWB from PTA datasets for the
foreseeable future and into the detection regime.
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10.8 Future
The presence of transient, non-Gaussian noise artifacts, or “glitches,” signif-
icantly impacts the noise environment for gravitational-wave detection and
introduces biases into our analyses. While current methods mitigate glitches
on individual gravitational-wave events by subtracting single estimates, this
completely neglects the uncertainty on the glitch model. Glitch subtraction has
been shown to bias the estimation of various parameters, with inferred spin
proving particularly sensitive to which glitch point estimate is taken (Chap 6
and Chap 7).

Throughout this thesis I have shown that glitch mitigation has out-sized ef-
fects on the physical measurements of individual events, there has never to-date
been a study of the impact of glitch-mitigation on population analyses. This
lack of attention is alarming: whereas current detectors observe mergers ap-
proximately once per day [116], glitches occur about once every minute; ∼ 20%
of events require glitch mitigation [28? ]. As gravitational-wave astronomy
matures and becomes more data-driven with future detectors like LISA [76],
Cosmic Explorer [291], and Einstein Telescope [283], we will need accurate,
automatic, and fast methods to mitigate noise for individual events, and a de-
veloped way to incorporate such advancements into population measurements
and tests of general relativity.
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