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“God saw that it was good.”

Genesis 1

“Be joyful always,
pray at all times,
be thankful in all circumstances.
This is what God wants from you
in your life in union with Christ Jesus.”

Thessalonians I 5, 16-18

Meanwhile these three remain:
faith, hope, and love;
and the greatest of these is love.

Corinthians I 13, 13
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Abstract

Beginning with a discussion of the relationship between degrees of freedom and
capacity of the system, the original work on higher order associative memories is
described in three aspects, Learning, Capacity, and Generalization for pattern recog-
nition and neural networks with the orthogonalization of binary vectors and the
ternarization of weights, and their optical implementations using volume holograms
are suggested for optical computing. Selection of terms is considered to satisfy the
given conditions. When a simple sum of outer product learning rule is applied, higher
order memories become higher order Hopfield-type memories. Their capacities are
derived from SNR analyses for both nonzero diagonal and zero diagonal memories.
Especially in the case of quadratic and cubic memories, optical implementations are
suggested in three elegant ways due to the three-dimensional property of volume
holograms. Robustness of higher order associative memories is discussed as a gen-
eralization property with consideration of dynamic range in terms of robustness of
errors in input (error tolerance) and noise in the system (noise sensitivity). In the
case of autoassociation or bidirectional association the energy functions are used to
investigate the dynamics that provides a mechanism of escaping the local minima
to find global minima.

Algorithmic aspects and architectures of optical computing are discussed in terms

of deterministic and random algorithms.
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Chapter 1

Introduction

New aspects of computational algorithms and architectures will be introduced in
hopes of constructing a general computer. We can think of a general computer as
a black box that implements the operations yielding a desired output for any given
input. We would like to build an optimum computer to achieve not only Boolean
operations but also self-organization[21] and generalization[13, 35], which are not
accomplished by present computers. And optics has merits over electronics due to
high connectivity[15, 39], three-dimensional analog processing[32], and high speed,
inherently and algorithmically due to parallelism[28], which will be discussed in a
separate chapter. So optics is a suitable candidate for the black box.

Optics has characteristics of global operations and parallelism from the input to
the output such as the imaging system and the Fourier transform system, which will
match the characteristics of neural networks. For example, for 1000 x1000 pixels of
input and output, there are 10® parallel channels[28] as in Fig. 1.1. The human brain
has superiority to digital computers, especially with recognition problems such as
pattern recognition and speech recognition[3, 41] in a sense of generalization and
with the global operations such as dynamic systems.

An associative memory can be thought of as a global mapping Y = f(X) from an
input vector space X = {z™} to an output vector space Y’ = {y™} so that it produces
y™ as its associated output when z™ becomes an input for m = 1,..., M. We denote
by N and Ny the dimensionalities of the input and output vectors, respectively. If
the mapping also works inversely, it is called a bidirectional associative memory[22].
When the output vectors are stored as binary Ny-tuples, the associative memory can

be implemented as an array of discriminant functions, each dichotomizing the input
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Figure 1.1 Optical systems: a. Imaging system; b. Fourier transform system.
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vectors into two classes. This type of associative memory is shown schematically
in Fig. 1.2. In evaluating the effectiveness of a particular associative memory, we
are concerned with its ability to store a large number of associations (capacity), the
ease with which the parameters of the memory can be set to realize the prescribed
mappings (learning), and the way in which the memory responds to input that did
not constitute its training set (generalization). We will describe associative memories
in this respect. The relationship between the number of independent parameters
or degrees of freedom of a memory and its ability to store associations[2, 10, 38] is
fundamental to this work and it will be stated in the following chapter as a theorem.

Chapter 2 concerns theoretical background for the rest of the work. It starts with
the concepts of degrees of freedom and capacity of the system. The properties of
higher order memories are analyzed with orthogonalization of binary feature vectors
and ternarization of weights. The motivation is the increase in storage capacity
that results from the increase in the number of degrees of freedom that is needed to
describe a higher order associative mapping.

In Chapter 3 two algorithmic aspects of computing are discussed in terms of
deterministic and random algorithms. The former stems from orthogonalization and
ternarization introduced in Chapter 2 and the latter is related to dynamic systems,
which explains the algorithm of the optical system for the high speed overcomming
the limitation of the digital computer using the generation of a fractal pattern[23] as
an example. The method of choosing terms that are necessary for given requirements
of a problem is also discussed and is relevant to the ternarization algorithm.

The higher order associative memory(6, 7, 13, 24, 31, 36, 37, 38, 40] is discussed
with optical implementations in Chapter 4. Higher order memories can be char-
acterized as a generalization of the linear memories using nonlinearities and have
both properties of high capacity and easy learning. They absorb the information

out of the input and utilize the correlations of the information as well as the infor-
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Figure 1.2 a. Discriminant function; b. Associative memory constructed as an

array of discriminant functions.
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mation itself to memorize the input-output data and carry out the task. It turns
out that higher order memories offer higher storage capacity and efficient algorithms
for generalizations such as invariances. The simple sum of outer product learning
rule can be applied to the memory to make it a higher order Hopfield-type memory.
Another way of describing this kind of higher order memory is that its intercon-
nection weight w;; between the :-th and the j-th neurons is affected not only by
the states of the ¢-th and the j-th neurons themselves but also by the states of the
other neurons. And we suggest the optical implementations of higher order associa-
tive memories using volume holograms and compare them with those using planar
holograms. Especially, in the case of quadratic and cubic memories, the memory
tensors w;;r and w;;k; required to describe the memories are supplied in optics by
volume holograms because of the three-dimensional properties they have[39], and
their optical implementations are suggested in three alternative ways with separate
interpretations.

In Chapter 5 robustness of higher order associative memories is discussed as
a generalization property in two respects, robustness for the errors in the input
compared to the stored data (error tolerance), and robustness for the noise in the
memory (noise sensitivity). Dynamic range of the system is considered for the real
computation.

This is mainly based on references [28], [36], [37], and [38].



Chapter 2

Characteristics of Higher Order Memories

2.1 Degrees of freedom and storage capacity

Let D be the number of independent variables (degrees of freedom) we have un-
der our control to specify input-output mappings and let each parameter have K
separate levels or values that it can assume. As an example, given vector spaces
X1, Xo, ..., X;, and Y with dimensionalities N;, N,, ... , N,, and Ny, con-
sider the cartesian product space X; x X; X --- X X, and an r-linear mapping
W™ X; x Xy x--- x X, =Y, which is linear in each argument. Then, the dimen-
sionality of the space X; x X3 x --- x X, becomes N;N,---N, and therefore the
number of degrees of freedom D is given by Ni N, - -+ N, Ny[43].

We define the storage capacity C to be the maximum number of arbitrary asso-
ciations that can be stored and recalled without error. Throughout the text, N and
Ny represent the dimensionalities of the input and output vectors, respectively. Let

Ky be the number of distinct levels that the output components can assume.

Theorem 1
S DlOgKO K.

C N,

(2.1)

Proof The number of different states of the memory is given by K and the total
number of outputs that a given set of M input patterns can be mapped to is KM,
If the number of mappings was larger than the number of distinct states of memory,
then mappings would exist that are not implementable. The requirement that all

mappings be done leads to the relationship of the theorem.

The equality in Eq. 2.1 is achieved by Boolean circuits such as programmable

logic arrays for Ky = 2. When the equality holds, resetting any one bit in any
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one of the parameters of the memory gives a different mapping. The way to get
generalization when C = Dlogg, K/Np is to impose on it the overall structure of
the memory before learning begins. One of the appealing features of neural archi-
tectures is the considerable redundancy in the degrees of freedom that is typically
available. Therefore, there is hope that while a memory learns specific input—output
correspondences it can also discover the underlying structure that may exist in the
problem and learn to respond correctly for a set of inputs much larger than the
training set. Moreover, the same redundancy is responsible for the error tolerance
that is evident in many neural architectures. Higher order memories are generally
redundant and they can provide us with a methodology for selecting the degree of
redundancy along with the number of degrees of freedom and the associated capacity
to store random problems.

It is important to keep in mind that Eq. 2.1 holds for arbitrary mappings. If the
input and output vectors are restricted in some way that happens to be matched
to the architecture of a particular associative memory, then it may be possible to
exceed this limit. However, selecting the architecture of the associative memory such
that it optimally implements only a subset of all possible associations is basically
equivalent to choosing the architecture so that it generalizes in a desirable way. For
instance, suppose that we design an associative memory so that it is shift invariant
(i.e., the output is insensitive to a translation of the input)[24, 35]. Then this system
will respond predictably to all the shifted versions of the patterns that were used to
train it. We can equivalently think of this system as having a larger storage capacity
than the limit of Eq. 2.1 over the set of shift invariant mappings. If we can identify
a priori the types of generalization that we wish the memory to exhibit and we can
find ways to impose these on the architecture, then this is certainly a sensible thing
to do. Higher order memories can also provide a convenient framework within which

this can be accomplished.
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The penalty we must pay for the increase in the storage capacity that is afforded
by the increase in the degrees of freedom in a higher order associative memory is
the increase in implementation complexity. The computer that implements a higher
order memory must have sufficient storage capacity to store a very large number
of parameters. Moreover, it must be capable of addressing the stored information
with a high degree of parallelism in order to produce an output quickly. We will
discuss in Chapter 4 optical implementations of higher order memories and we will
show a remarkable compatibility between the computational requirements of these
memories and the ability of optics to store information in three dimensions. But
in Chapter 3 the possibility of selecting terms for given problems will be shown to

reduce the complexity or the number of parameters in implementation.

2.2 Discriminant functions and associative memories

We will consider as a precursor the most familiar associative memories that are
constructed as arrays of linear discriminant functions[21]. A linear discriminant

function is a mapping from the sample space X, a subset of RV, to 1 or —1:

y = sgn{w’-z+wo}

= sgn{wo + w11 + wez2 + -+ - + wyzN} (2.2)
where
+1 ifz>0
sgn T =
-1 ifzx<0,

w is a weighting vector and wy is a threshold value. In this case, the capacity is
upperbounded by (N + 1)log, K according to our definition of capacity. In this
relatively simple case, the exact capacity is known to be equal to C = N +1 that is
given by degrees of freedom assuming the input points are in general position (points

in an /N-dimensional space are called to be in general position if no subset of N + 1
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points falls in any (N — 1) dimensioal subspace) and K = oo[10]. An associative
memory is constructed by simply forming an array of linear discriminant functions
each mapping the same input to a different binary variable. Several algorithms
exist for training such memories including the perceptron, Widrow-Hoff, sum of
outer products, pseudoinverse, simplex methods, and so on[11, 17, 21, 31, 48, 50].
This memory can be thought of as the first order of the broader class of higher
order memories that contain not only a linear expansion of the input vector but
also quadratic and higher order terms. We will see in Chapter 4 that the learning
methods that are applicable to the linear memories generalize directly to the higher
order memories. First, however, we will describe the properties of the mappings

that are implementable with higher order memories.

2.3 Properties of higher order memories

A O®-function is defined to be a fired mapping of the input vector z to an L-

dimensional vector z followed by a linear discriminant function:

y = sgn{w” z(z) + wo}

= sgn{wjz; + whzy + - -+ +whzp + wo} (2.3)

where z(z) = (21(z), 22(2), - - . ,20(z)), w' is an L-dimensional weighting vector and
z(z) is an L-dimensional vector derived from z. So it is basically a two—layer network
with the first layer fixed. The storage capacity in this case is equal to the capacity of
the second layer L+ 1[10] that is given by the degrees of freedom of the second layer
if the samples z are in general position whereas the upper bound on the capacity
from Eq. 2.1 is (L + 1)log, K. The inefficiency in this case is log, K bits, the same
as for the linear discriminant function even though the capacity can be raised by
increasing L. It is not known what the exact relationship between L and K is. That

is, we do not know whether for higher dimensions we need better resolution for the
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values of the weights to be capable of implementing a fixed fraction of the linear
mappings (it will be shown that K depends not on L but on the number of data
stored in the memory when we have binary samples and adapt simply the outer
product learning rule).

A higher order associative memory is an array of ®-functions with polynomial
neurons in the middle, that is, the mappings z(z) being polynomial expansions of
the vector z. Shown in Fig. 2.1 is the schematic diagram of a higher order associative
memory whose capacity is also L +1. When the polynomial expansion is of the r-th

order in g, then the output vector y is given by

y =sgn{W/(z,z, ... ,2) + W/ Nz, ... ,z) + --- + Wi(z,z) + W}z + wp} (2:4)

- 9

where [ = 1,..., Ny, Wf is a k-linear mapping or a (k + 1)-th order tensor and W}

is equivalent to w' in Eq. 2.2. According to Eq. 2.3,

zj(z) = ng-lm:; Ty (2.5)

where j = 1,2, ...,L, p;i € {1,2,...,N} for i = 1, ... ,r such that all z; are
different and nq,n,, ... ,n, = 0,1. Then L is (N;”) —1[10], and hence the capacity
bound is (NT“) log, K as before. For example, if r = 2, the function becomes
quadratic and has the form y; = z'W2z+ W}z +wy and the number of nonredundant
terms in the quadratic expansion is (N + 1)(N + 2)/2.

The components of the vector z are binary-valued if z is binary. In this case, the
samples cannot be assumed to be in general position, which results in the decrease

in the capacity.

Claim 2 There can be G binary vectors in N-dimensional space that lie in general

position where N +2 < G < 2N for N > 2.

Proof The number of binary vectors in general position in N-dimensional space

can not exceed 2N, since an N-dimensional cube consists of two (/N —1)-dimensional
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Y1 . . . YNo

:El . . . xN

Figure 2.1 Higher order associative memory.
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cubes and we can pick up at most N points in general position out of each (N — 1)-
dimensional cube according to the definition of general position[11].

The lower bound is derived by observing that N + 2 binary points can be chosen

to lie in general position as shown in Fig. 2.2 for three- and four-dimensional cubes

and it can be generalized for an arbitrary N. For example, G = 5 for N = 3.

We will evaluate the effectiveness of higher order mappings in producing repre-
sentations z(z) that are separable by the second layer of weights by calculating the
Hamming distance between z vectors given the Hamming distance between the cor-
responding 2 vectors. We expect that if the Hamming distance between two binary
vectors is large or if z vectors are uncorrelated with each other (or more orthogonal

to each other) then they are easy to distinguish from one another.

2.3.1 Complete polynomial expansion of binary vectors

There are at most 2" nonredundant terms in any polynomial expansion (Eq. 2.4) of
a binary vector z in N dimensions. First, we will consider the following N-th order
expansion (or equivalently bit production) for the bipolar vectors z in N dimensional

binary space {1,—1}":
z=2z(z)=(1,z1,29, ... , TN, T1Tg, ... ,T1T3... TN)". (2.6)

If we apply a linear discriminant function to the new vectors z, then the capacity
becomes 2V, which is equal to the total number of possible input vectors[36]. In
other words this memory is capable of performing any mapping of NV binary variables
to any binary output vector y. Of course the number of weights that are needed to
implement this memory grows to 2" times N, the number of bits at the output. In
what follows we show that in this extreme case the vectors z become orthogonal to

each other.
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Theorem 3 If we expand binary vectors z™ (m = 1,2,...,2N) in {1,-1}" to
2N _dimensional binary vectors z™ according to Eq. 2.6, then the following hold:
(a) < 2™, z™ >=2N§, .. where < - - > is an inner product.
() Tior =0 (m#£1).
(c) 3. 202 = 2N§, 5, and T, 2 =0 (J#1).

Example The following table is for the case of N = 3. Note the orthogonality and
the numbers of 1’s and —1’s in the new vectors and the set of each component of

them except the first vector and the set of the first components.

Iy T, T3 1 T Zq T3 T1Tg Tz T3Ty LT3
1 1 1 1 1 1 1 1 1 1 1

1 1 -1 1 1 1 -1 1 -1 -1 -1

1 -1 1 1 1 -1 1 -1 -1 1 -1

1 -1 -1 1 1 -1 -1 -1 1 -1 1
-1 1 1 1 -1 1 1 -1 1 -1 -1
-1 1 -1 1 -1 1 -1 -1 -1 1 1
-1 -1 1 1 -1 -1 1 1 -1 -1 1
-1 -1 -1 1 -1 -1 -1 1 1 1 -1

Table 2.1 Full expansion for N = 3.

Proof (a) Let us consider any two different binary vectors in the binary space of
{1, -1}" whose Hamming distance is n (1 < n < N). When they are expanded
to two 2V-dimensional binary vectors, the number of k-th order terms that have

opposite signs in the two expansions is
n\ (N —n 4 n\ (N —-n + n\ (N —-n
J\k-1 3/\ k=3 s)\k—s5) T

= ,.z%d (7;) (JZ _ zn) 2.7)
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Notice that two polynomials have different values if, and only if, they have an odd
number of terms whose signs are opposite. The Hamming distance between the two
fully expanded (up to order 2VV) vectors can be calculated by adding the number of

terms that have different signs over all the orders of the expansion:

D) GG ) )

(
4 {(’;) (N;n) 4 (g) (Nl—n)}+ ...............
A0 G2) B+ G )
B OL 0L
- 2O N

The fact that the Hamming distance is 2! for any two expanded vectors (for any
n) proves that all of the 2V vectors become orthogonal and that < z™, z™ >=
2N 8 ims -

(b) Just think of the cases where one of the two vectors is (1,1,...,1). Then, all
the other vectors z have equal numbers of 1’s and —1’s because their Hamming
distances are all 2¥-! from the (1,1, ... ,1) vector.

(c) See reference [11], page 109.

Slepian has discussed this orthogonalization property as a method for designing
orthogonal codes and has given a different proof for it[42]. The proof presented here
is useful for characterizing higher order memories because it allows us to trace the
contribution of each order of the expansion to the orthogonalization and immediately

derive results about the properties of quadratic and cubic memories.
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Each component of output vector y in this case is given by
oN
Y = sgn{z wl,-z,-} (2.9)
i=1
where | = 1,..., Ny and wy; is an Ny x 2V-dimensional weight matrix. The matrix
wy; that can implement the mapping z™ — y™ for m =1 to 2V can be formed

simply as the sum of outer products of y™ and z™ from the above theorem:
2N
w, = Z y',mzfn. (2.10)
m=1

2.3.2 Single order expansion

The orthogonalization property of the full expansion is interesting because it shows
that higher order memories provide a complete framework that takes us from the
simplest “neuron,” the linear discriminant function, to the full capability of a
Boolean look-up table. Higher order memories can indeed provide a valuable tool for
designing digital programmable logic arrays. Since associative memories are capable
of accepting input with large N (e.g., if N = 103, then 2V =~ 103®), considering a
full expansion of the input data is completely out of the question. In such a case, we
are really interested in an expansion that contains a large enough number of terms
to provide the capacity needed to learn the problem at hand. In this subsection, we
analyze the properties of partial expansions that include all the terms of one order.

We will first consider the memory consisting of all the terms of a quadratic

expansion with binary input vectors:

¥ = Sgn{zzwijkijk}
ik

= sgn{i w,’nzn} (2.11)
n=1

The number of nonredundant terms in a quadratic expansion of a binary vector is

L = N(N —1)/2. Let two input vectors have a Hamming distance n. The angle
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6, between these two vectors is given by the relation costy = 1 — (2n/N). The
angle 6, between the corresponding z(z) vectors derived from quadratic expansions

can be readily calculated since we know their Hamming distance from the proof of

Theorem 3(a):

4n(N —n)
COS 92 = 1 —m
~ 1—4p+4p* =(1-2p)? (2.12)

where p = n/N. Plotted in Fig. 2.3a are 6, and 8, versus p. For p < .5, 0, is always
larger than ;. Specifically for p < 1, §; = v/2 x 6,. For p > .5 the quadratically
expanded vectors are closer to each other than the original vectors and in the extreme
case n = N, 6, becomes zero. We see, therefore, that the quadratic mapping not
only expands the dimensionality that provides capacity but also spreads the input
samples apart, a generally desirable property, making them more orthogonal to each
other and so more uncorrelated. The insensitivity of the quadratic mapping to a
change in sign of all the bits is a property that is shared by all even order expansions.

Next, we consider a cubic memory

¥y = Sgn{zzzwz’jmm]’wm}
i k1
= sgn{zL: wfnzn} (2.13)
n=1

where L = (];7 ) In Fig. 2.3b, we plot 83, the angle between two cubically expanded
binary vectors as a function of p. For convenience, 6, is also plotted in the same
figure. In this case, 5 increases faster with p for p < .5 while for p > .5, 63 remains
smaller than 6; and in the limit p = 1, 83 = . Thus the cubic memory discriminates
between a vector and its complement. For p < 1, 65 = v/3 x 6;. At p~ .4 to .6 the
cubic expansion gives essentially orthogonal vectors.

The basic trends that are evident in the quadratic and cubic memories generalize

to any order (< N). The number of independent terms in the r-th order expansion
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Figure 2.3 a. Angles between linearly and quadratically expanded vectors as

functions of input Hamming distance; b. Angles between linearly and cubically

expanded vectors as functions of input Hamming distance.
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of a binary vector is (IX ), which has the maximum value (= \/%_N) for r & N/2
by Stirling’s formula[30]. Again this is not of practical importance because the
number of terms in a full expansion of this sort is prohibitively large. What is of
interest, however, is the effectiveness with which relatively small order expansions
can orthogonalize a set of input vectors. The angle 8, between two vectors that have
been expanded to the r-th order only is given by the following relation according to

Eq. 2.7:
(7) = 28 () (1)
7 1=odd \; J \ r—i
( N) . (2.14)
We can obtain a simpler expression for the interesting case r < N and for small p,

0, =~ \/r x 0.

cosf, =

Proposition 4 Forr < N,
cosf, = (1 —2p) (2.15)
where p = n/N. Moreover, for small p,
0, ~ /76, (2.16)
where 01 = 2,/p.

Proof For a small r, we can make the approximations (1:]) ~ N"/[rl, (’:) ~n'/il,

and (T 2) ~ (N —n)~%/(r —i)!. Then, cos b, is approximated as follows:

cosf, = 1- QZ ,p(l— p) "
i=odd * Z)
= (1-2p)

because of these relationships:

o+ =Q-pt+p) =1,

i=odd i=even

2 =2 =-(-p=p)=-(1-20)"

i=odd i=even
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When p < 1, cos 8., which is approximately 1 — 62/2!, is approximated by 1 — 2rp
directly from Eq. 2.14 or from Eq. 2.15. Therefore, it is followed by Eq. 2.16 that

0, ~ 2,/rp.

We plot 8, versus p for selected orders in Fig. 2.4 using Eq. 2.15. It is evident
that increasing r results in better separated feature vectors in the sense that they
are becoming less correlated to be dichotomized with ease. Polynomial mappings
act as an effective mechanism for increasing the dimensionality of the space in which
input is classified because they guarantee a very even distribution of the samples in

this new space.

2.4 Ternarization of weights for orthogonal vectors

We have discussed the orthogonalization algorithm for the binary samples and turn
to the weights. For the orthogonal vectors derived by full expansions the simulations
up to N =4 (2V = 16) and selected simulations for N = 5 showed that the weights
might be made ternary. The algorithm used in this case will be discussed in the
following chapter.

Moreover, it may be possible to make a generalization for arbitrary orthogonal
vectors without requiring them to be binary and of 2V dimensions for some integer

N. In fact, there are N orthogonal vectors in N-dimensional space.

Conjecture 5 The weights of LDFs can be ternarized (+1,0,~1) for arbitrary di-
chotomies of any set of N-dimensional orthogonal vectors (at least with high proba-

bility).

It can be explained informally as follows: in the case of N N-dimensional orthonor-
mal vectors, v™ (m = 1,...,N), there are 2V disjoint solution cones that have the

same shape filling the whole space with different orientations. The cone is decided
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Figure 2.4 Angles between expanded vectors for selected orders.
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by N vectors, y*v™, for each [-th output component, as a set

{ g: any o™ |am >0 } (2.17)
m=1

Its center axis is in the direction of the vector sum of such vectors }_,, y/"v™, the
lines through each of which from the origin are all perpendicular to each other and
determine the convex set that is the cone called an orthant. There are two kinds of
orientations: one is the orientation of the center axis and the other is the rotation
of the cone around the center axis. Thus the complexity of the cone orientation
gets larger as the dimensionality of the space becomes bigger. It is not sufficient
for each cone to include at least one weight vector with weights binary-valued (i.e.,
even if the 2"V binary weight vectors are evenly spaced in N-dimensional space and
the ratio between the number of weight vectors and that of disjoint solution cones is
equal to 1, the orientation of the sample vectors may distribute the weight vectors
to the solution cones unevenly, which means that some cones may include no binary
weight vectors inside). In the case of ternary valued weights the ratio becomes
3V /2N except that the weight vectors are not spaced evenly. The fact that the ratio
is greater than 1 and grows exponentially as N gets large implies that it may be
possible for at least one weight vector to be included inside of each cone regardless
of the uneven distributions.

Up to five-dimensional cases, we found a proof for this conjecture using geometric

pictures.

Lemma 6 For the orthant of N-dimensional space, a circular cone can be made to

contact the orthant inside with the angle Oy of the following value:

N -2
cosfy = N (2.18)

where @y is twice the angle between the center axis and the line of the circular cone

contacting the octant.
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Proof Because it does not depend on the orientation of the octant, Fig. 2.5 is
taken into consideration for simplicity in the case of N = 3. Then the unit vector

of the center axis is given by (\/_I_N_-’ _\_/__1]_v_, ey ﬁ)t and the unit vector of one of the

contacting lines by (\/]\1,_1, \/1\}._1,..., \/Jé_l,O)t. Because the angles between the

center axis and the contacting lines are all the same, the angle is obtained by the

inner product between them. So we get

cosaN-— N-t _ A=l (2.19)
2 NYyN=1 V N '
Eq. 2.18 follows from the relationship, cos 26 = 2cos?§ — 1.
Lemma 7 The convex set determined by the N vectors v' = (1,0,...,0)!, v? =

(%,%,0,...,0% v? = (\%,\%,%,0,...,0)t, ooy and 2N = (—\}W"%ﬁ"“’ﬁ)t on
the N-dimensional unit sphere has (N —1)N/2 arcs and the vector u™ on this convex

set that has the same angle ¢ from all the N vectors v™ is given by

QN:COS¢N(1,\/§—1,\/§—\/§,...,\/_]\7-—\/N—1)t (2.20)

where 0 < ¢y < 7/2 and

1
Sner(Vi—Vn = 1)

cos® gy = (2.21)

Proof For N = 2 there is one arc between v! = (1,0)" and v? = (-\—}—5, —\}—5)’5 Assume
that there are (n — 1)n/2 arcs for N = n. Then, for N = n + 1, the number of
arcs decided by n + 1 vectors is the sum of the number of arcs decided by the first
n vectors, (n — 1)n/2, and the number of arcs between v"*! and the n vectors, n,
which is in total (n — 1)n/2 +n =n(n + 1)/2.

Let the vector u™ be (z1,z3,...,2zx)! such that 2? 4+ 22 + ... 4+ 2%, = 1 since

it is on the unit sphere. Since the angle between two vectors on the unit sphere is
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Figure 2.5 An orthant for N = 3.
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directly related to the inner product the following relationship is obtained:

1 1 1
COSON = 1 = —=Ty T2) = —=(1y T3 T3z) =+ = ——=(Ty o N).
? Ao = plntnt ) U o)
(2.22)

Solving z, (2 < n < N) in terms of z; and substituting them into 3" 22 =1 we

get immediately

1

S (Vo) (228)

cos’ gy = 2% =

from which the vector u" is derived.

In two-dimensional case, consider Fig. 2.6. The solution cones whose boundaries
contain the vectors and their complements and are perpendicular to the adjacent
ones include at least one weight vector up to two inside depending on their ori-
entation because the adjacent ternary weight vectors make an angle of 45 degrees
(binary weights are not enough since they may be all on the boundaries).

Fig. 2.7 is for three-dimensional case. First of all, we normalize the weight vectors
so that they are imbedded on the unit sphere. Now the orientation of the center axis
is considered. Because of the symmetry of the weight vectors on the unit sphere the
unit vector along the center axis can be restricted to lie on the convex set that is one
sixth of the first octant of unit sphere determined by the vectors v!, v2, and v that
is illustrated in Fig. 2.7. The question is whether the solution cone will include any
ternary weight inside regardless of the rotation of the cone around the center axis
whose orientation is also varying. We draw a circular cone of angle #5/2 around the
center axis and claim that it must contain at least any one of three weight vectors,
which is a sufficient condition for the question. It is equivalent to show that the
circular cone of angle 63/2 around the vector u® defined in Lemma 7 contains all
the vectors ' and so covers the entire region we are considering in Fig. 2.7 because
of the convexity of the cone. In other words, if this is the case, then when the unit

vector along the center axis of the circular cone of angle 03/2 is at any point of the
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Figure 2.6 Two-dimensional ternary weight space.
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Figure 2.7 Three-dimensional ternary weight space.
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convex set but uV the circular cone always contains at least one of the vectors v!,
v?, and v> since at least one of the angles between the unit vector along the center
axis and the vectors v!, v?, and v® becomes smaller than ¢;. And it is true since
cos?03/2 = 2/3 < cos? ¢3 = .786, that is, 63/2 > ¢3 by Lemmas 6 and 7.

In general case we normalize the N-dimensional weight vectors into the unit
sphere. Then, there are N! regions to be checked to be covered each of which
is decided by N unit weight vectors on N-dimensional unit sphere because of the

symmetry. One such region is decided by the vectors v!, v?, ..., and vV as defined

-_—)
in Lemma 7. In order that the circular cone around u’V contains the N vectors v?,
it is required that Oy /2 > ¢x or equivalently cos? O /2 < cos? ¢y, which is satisfied

for N < 5. Therefore, we proved the following theorem.

Theorem 8 N-dimensional orthogonal vectors can be dichotomized arbitrarily by

ternary-valued weights for N <'5.

Actually, what was used to prove this theorem is a sufficient condition because
the circular cone in Lemma 6 is diminishing as the dimensionality increases. It means
that the ratio between the volume occupied by the cone and that of the orthant
becomes smaller, approaching zero as the dimensionality gets bigger. Therefore,
we need another approach to prove the conjecture for the higher dimensional case.
But the proof up to five-dimensional cases and the fact that the average number
of ternary weights included in one orthant increases exponentially as 3"V/2V are
encouraging to the conjecture (e.g., for N = 5, 6, 10, 20, and 100, 3V/2N ~ 7, 11,

57, 3.3 x 10°, and 4 x 107, respectively).
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Chapter 3

Algorithmic Optical Computing

3.1 Selection of terms in polynomial expansion

Explained in this section is the application of selecting the terms used in the poly-

nomial expansion algorithmically to meet a given requirement.

Motivation Is there a way of finding a maximum number of terms of
r bit products of the original N-dimensional input binary vectors out of
(]:7) terms such that these terms, which constitute the components of

the coded vectors, do not share the same two bits with one another and

the input bits occur equally in the new vector?

Let N be the dimensionality of the input vector z and L be the dimensionality of
the coded vector z and let m be the number of occurrences of each component of

the input vector in its coded vector. Then, the following relationship is obtained:
Lr = Nm. (3.1)

Intuitively, m can not exceed (N —1)/(r—1) and we will show that when r is a prime
number (e.g., 2,3,5,7,11,---) and N is a power of r this limit can be achieved and so
flipping any one bit of the input vector results in flipping m bits of the corresponding
coded vector flipping any two bits resulting in flipping 2m — 1 bits (it is clear that
in the special case of r = 2 there always exist ("2\{ ) terms in total that amount to
the limit). That is, when N = r/,

N-1 rt—1

r—1 r—1
I (3:2)
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And
_Nm _ N(N-1)
L= r r(r=1)
ri=1(pl — 1)
—_;‘Tl-————. (3-3)

Let n (n < N) be the Hamming distance between two input vectors and let 6,
and 8, be the angles between these two input vectors and between the corresponding
two coded vectors, respectively. Then, cos; = 1—n/N and cos b, ~ (L—2nm)/L =
1 —2rp for p « 1 where p = n/N, which correspond to Proposition 4. Thus, they
are reduced to a relationship 8, ~ 1/rf; where 6; ~ 2,/p.

As an example, consider the following tables of the index set for N = 3%

(a)

(b)

(c)

1 2 3 1 47 1 5 9 1 6 8
4 5 6 2 5 8 2 6 7 2 49
7T 8 9 3 6 9 3 4 8 3 5 7

(d)

Table 3.1 Bit selections by index set.

Each row in the tables represents the numbers of the input components that consti-
tute the bit product. For example, 1 2 3 in Table 3.1(a) denotes the term z;z,x3.
Then, there are 12 bit products satisfying the requirement stated in Motivation and
each z; occurs four times, which coincides with Egs. 3.2 and 3.3 forr =3 and N = 9.

We will prove Eqgs. 3.2 and 3.3 using an equivalence relation.

Theorem 9 Let r be a prime number and let p and n be integers satisfying 0 < p <

r—1and1 <n <r. Given an integer ¢;, let qup and m; be integers satisfying
(n—1)p+ g =mr + g, (3.4)

where 1 < ¢; <r and 0 < ¢, <r —1. In other words, ¢, = {(n — 1)p+ ¢} modr.

Then, the following hold:
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(a) Given n and p, all qfw are different for all ¢;.
(b) Given p, ny and n,, all (quJ - q,‘;zp) mod r are equal for all ¢;.

(¢) Given ¢; and different ny and ny, oll (¢, — 4;,,) mod r are different for all p.

Proof (a) Suppose that qfw and qf:p are the same for different ¢; and ¢;. Then,
Ghp — Ghp = 0 and (g, — gi,) mod r = {(n — )p+ ¢i — (n — 1)p — gu} mod r =
(¢i — g#) mod r. Since 1 < ¢;,q0 < 7, |¢;: — ¢r|(= 1) is less than r — 1. Therefore,
(¢: — g») mod r is not zero, which is a contradiction.

(b) It is easy to see this because (g}, ,—¢.,,,) mod r = (n;—ny)p mod r is independent
of g;.

(c) Suppose that ¢¢ . qu)l and qfhpz — qu,z are the same for different p; and p,.
Then, it follows that (n; — ny)py — (my — ma)r = (n1 — n2)py — (M) — m)r, which

can be reduced to

(n1 —n2)(p1 — p2) = {(m1 — ma) — (m] — my)}r. (3.5)

The left-hand side differs from zero by the assumption and therefore r must be a
divisor of (ny — n3)(p1 — p2). And1<|ny—ny|<r—land1<|py—po| <r—1
since 0 < py,po <r—1and 1 < nyyny <r. But r being a prime number gives a

contradiction.

This explains the coding method when N = r? for a prime number r as follows:
Every nearest r bits are multiplied together to form a component of z vector as
shown in Table 3.1(a). Now we are considering the ways of forming bit products of
r input components according to Motivation each of which comes from each term
constructed already. We shift circularly to the left the second row by p (0 < p <
r — 1) bits, the third row by 2p bits, and, in general, the n-th (2 < n < r) row
by (n — 1)p bits and combine each column to one term as shown in Table 3.1(b) to

(d). Then, they all together cover all the possibilities of bit products satisfying the
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condition of Motivation (Theorem 9(a)) and Theorem 9(b) and (c) tells us that when
r is a prime number they are satisfying the condition and therefore each bit appears
exactly r times and in total » + 1 times that equals an upperbound (N —1)/(r — 1),
where qu + 1 represents the original number of column that each index in n-th row
and ¢;-th (1 < ¢; < r) column belongs to before it is shifted (the first row is not
shifted, i.e., q{p = ¢; for all p). In order that all of these terms may not share the
same two bits with one another the relative bit shifts, (¢}, — ¢.,,) mod r, must
be all different for all p, which holds only when r is a prime number according to
Theorem 9(c).

We are ready to generalize this result for N = r!. For [ = 3 we can make r
blocks out of the index set that consists of r® indexes such that each of them has
r sub-blocks of the nearest r indexes explained as above for N = r2. Relabel the

r? sub-blocks from 1 to r?

, repeat the same procedure as above and then each
new index appears r + 1 times satisfying the condition of Motivation when r is a
prime number. Because one of its occurrences is equivalent to the original r blocks
of the nearest r? indexes and each of the rest can have r bit products there are
r-r 4 (r 4+ 1) terms of r bit products per each indexi. In the general case (i.e.,

=1 indexes

for arbitrary I) r blocks out of the index set can be made to have r
and equivalently to have r sub-blocks of the nearest r'~? indexes. Relabel the r?
sub-blocks and repeat the coding procedure again where the number of occurrence
of each input component in each coding that satisfies the condition of Motivation
is given by r - =2 4+ (r'~2 4 ... 4 r + 1) when r is prime number. Then, we get
rert 4 (P!t 4 =2 4 ... 4+ £ 4+ 1) bit products, which is consistent with Eq. 3.2,

because one of the codings of the new index set is the original r blocks of the nearest

r!=1 indexes. Therefore, we proved the following theorem.
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Theorem 10 When r is a prime number and N is a power of r there can exist
N(N — 1)/r(r — 1) terms of r bit products out of N input bits that satisfy the
following conditions:
(a) They do not share two same bits with one another.

(b) The input bits occur equally in those products.

3.2 Deterministic orthogonalization algorithm

The orthogonalization of binary vectors by complete polynomial expansion and the
ternarization of weights that were discussed in the previous chapter provide us with
a useful tool for a deterministic algorithm.

A direct implementation with a memory of size Ny times 2%V using a simple outer

product rule can be done according to Eq. 2.10 as shown in Fig. 3.1,

2

M
wi = Yyt (1< M <2V, (3.6)
m=1

Generalization can be achieved by only pre-imposing the overall structure on the
memory in a deterministic way according to the designer’s purpose and this kind
of memory deals with the inputs in a direct way. But as mentioned before, this
is out of the question for large N because the memory size is exceedingly huge.
The number of separate levels of wy;, K, can be 2M + 1 from —M to M that does
not depend on the input dimensionality and so L. The expectation value of wj; is
zero assuming that the outputs y* are selected randomly and independently of the
stored data z™, and its standard deviation is given by M'/2 that is not negligible for
implementation when the full capacity is expended. This dynamic range problem
may be solved by ternarizing the weight values as discussed in the previous chapter,
which will be explained in more detail in this section. Then, according to Theorem 1,
the inefficiency is log, 3 bits, which therefore is the smallest one that we can achieve

with linear discriminant functions. The role of log, 3 can be considered as choice of
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necessary terms out of 2%V terms.

Then how can the “2V” problem be resolved? One of the possible solutions is
introducing feature extraction[1, 11]. If it is possible to extract log, L binary features
from N-dimensional binary pattern vectors where L is the order of power of N, then
2N reduces to L, which is a reasonable value, when the orthogonalization algorithm
is used. But this is still an open problem that depends on the training samples.
Another possible way is using orthogonalization by numbering. When all of the
2NV samples are not required to be stored in the memory and only a part of them
whose number M is the polynomial of N are under consideration given arbitrary M
samples, we label them by numbers from 1 to M that can be represented as binary
vectors of [log, M| bits where [ -] denotes the smallest integer greater than or equal
to the argument inside. Regardless of the input dimensionality, these binary vectors
in turn become 2M°%2M1_dimensional orthogonal binary vectors z™ when they are
fully expanded where 2M°&2M1 s approximately M since M < 2Mloe2 M1 < 20 . Now
we apply the learning rule in Eq. 3.6 resulting in the reduced memory size that can
be handled.

These are easy learnings like higher order memories with outer product rule in
a sense that the learning process can be finished in a polynomial time in terms of
the input dimensionality with the samples whose number is also a polynomial of the
input dimensionality.

We will discuss the algorithm for the ternarization of weights based on the argu-
ment given in the previous chapter where the possibility of ternarizing the weights
for the orthogonal vectors was shown. A simple but brute force way of ternarizing
weights for arbitrary orthogonal vectors is trying all the ternary weights one by one
until we find one that fits the set of training samples. There are 3V ternary weights
to be considered for the N-dimensional orthogonal vectors.

Alternatively, a simple ternarization algorithm is presented with geometric illus-
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trations. We can modify Eq. 3.6 without changing the overall result as follows:

2M

wy; = Z amyl z" (3.7)
m=1

where «,, is a learning coefficient for the m-th training sample. As long as each o,

is greater than zero it lies within the solution cone. Take a look at the following

ternarization:
2M
wy; = sgnn{ > amy,’"z,m} (3.8)
m=1
where for n > 0
+1 ifz>n
sgnnz =4 —1 ifz< —n

0 otherwise.

In the case of binary samples, the expanded orthogonal vectors, z™, of 2™ dimen-
sions are also binary that decide the solution cones of the weights. The vectors y;"z™
are themselves part of the ternary weight vectors. The geometry of the distribution
of ternary weights from the center axis of the solution cone to each of those weights
that decide the solution cone is symmetric and therefore a,, may be set to be all
one. We start with ¢, being all one and n zero, test the weights derived by Eq. 3.8
whether they satisfy the training samples, otherwise increment n by one and do this
procedure until a solution is found where n can not exceed 2™, which means that
when 2™ is a polynomial of N this procedure will be completed in a polynomial
time in terms of N. A simulation shows that all of the 2*-dimensional expanded
binary orthogonal vectors can be stored with n not exceeding two.

But for the arbitrary /N-dimensional orthogonal vectors the distribution of the
ternary weights is not symmetric inside the solution cone. Thus we may need learn-
ing iterations. Recall that each solution cone includes on average ternary weights as
many as about 3™ /2™ that is exponentially huge (e.g., 3V /2™ = 57 for N; = 10

and 3™ /2M ~ 3.3 x 103 for N, = 20). We start with a,, being all one and n zero,
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test the weights and if there are some vectors that are not stored correctly, then add

those to the sum,

M
wy = Sgno{z y;nz;'m—lpzylm Z;m}
m=1 m’

M
= sgn(){z amy,mz,m} (3.9)
m=1

where each «,, is either one or two and 1 < M < N. If it does not give the
solution in some finite steps, say, M steps then increment n by one and do the same
procedure until a solution is found where n can be at most M. It can be written in
general
M ! !
wy = sgnn{ E any 2" + Zylm z" } (3.10)
m=1 m'!
Therefore, this procedure will be completed in a polynomial time in terms of input
dimensionality NV, again.
The algorithm we have shown may provide a method of choosing terms in poly-
nomial expansion in the first layer for generalization and is closely related to data

compression.

3.3 Random iterational algorithm

The advantages of optical computing are known to be high interconnectivity and
three-dimensional (analog) processing due to volume holograms[32]. The purposes
of the computers may be large capacity of memory and high speed that comes from
algorithmic power of the architecture[2]. Keeping this in mind we can ask how high
a speed we can achieve with optical computing whereas high storage capacity can
be achieved by higher order memories. With the above aspects, the speed, defined
by the number of operations per unit cycle, reaches at most a constant times the

speed of conventional digital computers. That is,

To =(C x Td (311)
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where T, is the number of operations per unit cycle achievable by optical comput-
ing with the above qualities, T; that by conventional digital computers and C is at
most the number of interconnections afforded by volume holograms, which is approx-
imately 10° as will be discussed in Chapter 4. In a sense of algorithmic computation
the speed-up by constant-times does not mean much because it can not resolve the
limitation of the digital computers resulting from computational problems such as
computability[l], NP-completeness[19] and so on.

Then let’s see what would happen if we can achieve the following relationship:
T, = C" x Td (3.12)

where n is the number of iterations (or cycles). Local interconnections are also
possible in digital computers but full interconnections that can be provided by optics
are out of the question[15, 32]. In order for general computing, capability of full
interconnections is required.

Consider the optimization problems that require lots of iterations(or feedbacks)[18]
such as those shown in Fig. 4.7. It consists of matrix tensor multiplication, which
has 10® multiplication and 106 summation operations per each of 10% channels, and
feedback.

Another simple example is shown in Fig. 3.2 that explains how to generate by
iterations the Vicsek pattern[23] whose dimensionality is logz 5 and how to decide

its dimensionality, which is related to data decompression.
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Figure 3.2 Generation of Vicsek pattern.
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Chapter 4

Higher Order Associative Memories

4.1 Training of higher order memories using outer product

rule

Consider again the r-th order expansion given in Eq. 2.4 in a different form,
T
Y= sgn{z > Wi Ty T, + wo}. (4.1)
k=1 g1k

Then the capacity was given by

ng(N+:—1)=(N+r) (12)

r

N +:'1) that originates from the highest order, that

which can be approximated by (
is, r-th order terms only for r < N and a large N. Therefore, we can replace the
original expansion by the single expansion of the highest order with the same order
of capacity.

Once the initial polynomial mapping has been selected, the rest of the system in
a higher order memory is simply a linear discriminant function. As such it can be
trained by any of the existing methods for training linear discriminant functions. For
instance, the pseudoinverse[21, 31, 48] can be used to calculate the set of weights that
will map a set of L-dimensional expanded vectors 2™ to the associated output vectors
y™. Alternatively, error driven algorithms such as the perceptron or adaline can be
used to iteratively train the memory by repeatedly presenting the input vectors to
the system, monitoring the output to obtain an error signal, and modifying the
weights to gradually decrease the error. The relative ease with which higher order

memories can be trained is a very important advantageous feature of this approach.

A higher order memory is basically a multilayered network where the first layer is
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selected a priori. In terms of capacity alone, there is no advantage whatsoever in
having multiple layers with modifiable weights. From Theorem 1 we know that at
best the capacity is determined by the number of modifiable weights. For a higher
order memory we get the full advantage of the available degrees of freedom whereas
if we put the same number of weights in multiple layers the resulting degeneracies
will decrease the capacity. The relative advantage of trainable multiple layers is the
potential for generalization that emerges through the learning process.

The sum of outer products algorithm that has been used extensively for training
linear associative memories can also be used for training the higher order memories
and this algorithm generalizes to the higher order case in particularly interesting
ways. In addition, this particular learning algorithm is predominantly used for
the holographic optical implementations that are described in the following section.
Therefore, we will discuss in some detail the properties of higher order memories
that are trained using this rule.

Let us consider associative memories constructed as an expansion of the r-th
order only with input samples in N-dimensional binary space and r > 1. Then

Y= sgn{' Z Wijyjerjr Tin T * * * .Tjr} (4.3)
J1da-eir
where 1 < 1,72, ++,7r < N,and 1 <[ < Ny. The number of independent terms L
in the r-th order expansion is approximately N"/r! for r < N.
The expression for the weights of the r-th order expansion using the sum of outer

products algorithm([7, 36, 38] is

M
_ m._.m_m m
Wijsjaengy = Z Yy L5 &5 L5, (4-4)
m=1

where M is the number of vectors stored in the memory, y™

is an output vector
associated with a memory vector z™ as before. It is interesting to notice that each

weight in this case can have 2M + 1 integral levels from —M to M independently
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of the order of expansion or equivalently L. It has a binomial distribution whose
expectation value and standard deviation are given by zero and M'/2, respectively,
with the assumption that the input and the output components are selected ran-
domly and independently. Shown in Fig. 4.1 is the implementation with this weight
tensor for r = 2. The outer product z;z is formed and it is interconnected to each
output y; by weight tensor wyji; since the diagonal terms 2 in this case are all 1,
only nondiagonal terms contribute to form the output. With the above expression

for the weight tensor Eq. 4.3 can be rewritten as follows:

M N
y = sgn{ 2_:1 yr" (; z7z;) ) (4.5)

The above equation suggests an alternative implementation for higher order mem-
ories that are trained using the outer product rule. This is shown schematically in
Fig. 4.2. The inner products between the input vector and all the stored vectors z™
are formed first, then raised to the r-th power, and the signal from the m-th unit
is connected to the output through interconnective weights y instead of using an
(r + 1)-th order tensor wyj, j,...j, -

The second alternative implementation is to use nonlinear interconnections as
shown in Fig. 4.3 for a quadratic memory. The basic idea behind this scheme is that
the interconnection weight w;; between the i-th and the j-th neurons is determined
by not only the states of these neurons themselves (Hebbian learning)[17, 21] but
also the states of the other neurons as a sum of the interactions of r neurons:

yi = Sgn{Z( Z wij1j2‘“jr$.7’2 o x]r)le}

1 Jardr

= sgn{z w,-]-;cj}, (46)
J
where

Wij = Y Wijjpeiy i+ Ty (4.7)

j2"‘jr

If y™ = z™, then the memory is autoassociative, and in this case the output can be
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I3

Figure 4.1 Quadratic associative memory for N = 3.
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Figure 4.2 Outer product, r-th order associative memory.
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7-th Neuron 1-th Neuron

Neuron 1 + "Neuron N

Figure 4.3 Quadratic mappings implemented as nonlinear interconnections.
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fed back to the input resulting in a system whose stable states are programmed to be
the vectors z™. This becomes a direct extension of the Hopfield network[4, 17, 26]

to the higher order case.

4.2 Calculation of signal-to-noise ratio

Assuming that £ = z™ is one of the stored vectors, y; becomes

N
w o= sgn{N"y? + 3 y}”(Z 7}) )
=1

m#n
= sgn{ Ny} + m(z )} (4.8)
where the first term is the desired signal term, n; is a noise term, and thresholding
weight is set to zero.
The expectation value of n;(z") is zero if the bits that comprise the stored
binary input and output vectors are drawn randomly and independently having
equal probabilities of being +1 or —1. If this is the case, then the term E] L T

for m # n will have a binomial distribution with zero average and a variance of N,

since

EQ zpal) =) 6w, E(D_ ap ) = > b (4.9)

tt! tt mm/' mm’

where §;; is the Kronecker delta function. The variance of n, is calculated as a 2r-th

moment of the binomial distribution,
N N
BOrf) = (M 1) (Y - 20 (N) &
= (M-1) Z_%?N?T-J( ) Z k’( ) (4.10)

where (%)N Nk (]Z ) is the j-th moment of binomial distribution. The variances
are, thus, given by (M — 1)N, (M —1)(3N? —2N), (M —1)(15N3 —30N? +16N),
and so on for the cases r=1, 2, 3, ---.. We can estimate easily the variance for

a large r by approximating the binomial distribution as a Gaussian distribution
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using DeMoivre-Laplace Theorem[30] such that the variance is a 2r-th moment of

Gaussian distribution of zero average and a variance N. Then the variance becomes
asymptotically (M — 1)N"(2r)!/(27r!).

The following is another approach to calculate the noise variance:

Enl) = B(L X o™ X X afap---afiafag o2l

m#n m'#£n J1J2+dr S182°8p
! 1 ’
m!, . m m!'_n _n n
Loy Lsy 00Ty T Tg, ‘Tsr)

= ™ oM™ ... g™
= B(X > X efal--ofefal ol
MFN J1J200Jr $1525r

7 n n n n n
TG TG XL TS T T ). (4.11)

In the above, we used the facts that different stored vectors are uncorrelated (i.e.,
for m # m') and y = 1. Then, the variance becomes (M —1)Q(N, r), where Q(N,r)

is the number of possible permutations such that
5’ilt1 6i2t2 et 6‘i,-t,- =1 (4.12)

where the index set {i,...,%,,%;,...,%.} spans all the possible combinations pro-
duced by the index set {j1,...,7r,81,-..,8-} in Eq. 4.11. The variances driven from
this approach are the same as those from the previous approach. We will derive
lower and upper bounds that for large N provide us with a good estimate of the

variance for any order r, which will justify our previous argument.

Proposition 11 The total number of permutations, Q(N,r), for which FEq. 4.12

holds, satisfies the following relationship:

Py, 2 (24’") P - D < Qi <oy

where P(m,n) = m!/(m — n)!.

Proof Thenumber of ways of making r pairs of 2r items is (2r—1)(2r—3)--- (3)(1) =

(2r)!/27r!. The items that we are concerned with are the indexes i;,¢;, and each of
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these indexes can take one of N values. We can only select the values of half these
variables (N" possibilities) and for each of these choices we can create r pairs. Hence
the upperbound is N"(2r)!/2"r! that is the same as one derived from the Gaussian
approximation. This is an upper bound because we have overcounted for different
pairings of variables that have the same value.

The initial lower bound is derived if each pair has a different value from all others,
which eliminates the possibility of overcounting. The number of possible ways to
satisfy Eq. 4.12 with the indexes in any two pairs not taking the same values is
P(N,r)(2r)!/27r!. This is an underestimate because all pairs that contain indexes
taking the same value should be counted once. We can thus improve the lower
bound by counting the number of ways these degenerate pairings occur and adding
them into the previous bound. For example, when two pairs out of r have the same
values with (247) choices, there are (24T) NP(N-1,r—-2)(2r—4)!/27=2(r —2)! possible
permutations where (2r — 4)!/2"=2(r — 2)! is the number of ways of making r — 2
pairs of 2r — 4 items. Therefore, Q(N,r) is lower bounded by P(NV,r)(2r)!/27r! +
()P, r —1)(2r — 4)!/27-2(r — 2)!, since NP(N — 1,7 —2) = P(N,r — 1).

4

We can get a very good approximation to the SNR using the approximations
of M -1 ~ M and Q(N,r) ~ N"(2r)!/2"r! which are very nearly true for the
interesting case r <« N:

N*

{(MN™(2r)lj2rr1}172

_ {%(%)_',}’ (4.14)

For example, the linear memory, r = 1, has an SNR ~ (N/M)Y?, the quadratic

SNR =~

memory, r = 2, an SNR of N/(3M)"/? and the cubic memory, r = 3, an SNR of
(N3/15M)1/2,

The diagonal terms in a high order memory wyj, j,..;, can be defined as those
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of which all the indexes j are not different. We form the weight tensor with zero

diagonal as follows:

rmylrxnxl -2 if js are all different, (4.15)

0 otherwise.

Wijijaemgr —

When the input is one of the stored vectors z" and the weight tensor has zero

diagonal, the output y; becomes

Yy = sgn{ Z Wiy ja-- ern .72 r} (4-16)
different j

= sgn{P(N,r)yf + o Y elal---alalal ol )

m#n  different ;
where the first term is a signal term and the second a noise term as before. The
variance of the noise term is easily shown to be (M — 1)P(N,r)r! using Eq. 4.9.
Therefore, the SNR becomes

SNR = {%}1/2 ~ {(7) /M}l/2 (4.17)

which can be approximated as (N”/Mr!)}/2 for r < N.

4.3 Capacity

The SNRs that are calculated in the previous section are ready to be used for
deriving capacities of higher order associative memories of two cases[25, 48]: one is
the case that most of the stored data are recalled correctly and another is the case
that almost all of them are recalled correctly.

The idea for the former case is
N
P(correct) = (1 - Pe) =1-—¢ (4.18)

since 1 — NP, =~ (1 — P.)V ~ exp(—NP,) for NP, < 1, whereas for the latter

)MN

P(correct) = (1 - P, =1—c¢, (4.19)
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where (0 <)e < 1 and P, is the probability of error per each bit under the assump-

tion that noise has Gaussian distribution according to the central limit theorem[30]:

Let {x;} be a sequence of mutually independent random variables and
let x = x; + --- 4+ x,. Then the density of x properly normalized tends

to a normal distribution as n — oo.

In the first case we can easily obtain an estimate for the capacity of an r-th order
memory by equating the signal to noise ratios of the linear and r-th order memories
and solving for M,, the number of stored vectors that will yield the equality, since
P. is a function of SNR. For r small compared to N, comparing its value with the

capacity M; of a linear memory([25, 48] we can obtain the relationship between the

capacities,
M, 27r!
— =Nl 4.20
And therefore the capacity is given by
TOT ’
NT27r! (4.21)

"~ 2log N (2)!

For example M, of a quadratic memory is M;N/3 and M; of a cubic memory is
M;N?/15. For large N increases in capacity are huge.

The capacity of the r-th order memory with zero diagonal can be shown com-

pared with that of a linear memory to be

M, _ (5)
= (4.22)

which is approximately N"=!/r! for r < N and a large N. And therefore

N
NT
L= () ~ . (1.23)
2log N 2rllog N

It turns out that this approaches more closely the capacity bound than the first

scheme.
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In the second case we need a little more algebra. From the assumption of Gaus-

sian distribution the probability of error can be derived
P. = Q(SNR) (4.24)

where
Qu) = \/%7 [ et (4.25)
With the approximation that Q(u) =~ 75}56-“2/ % the capacity of an r-th order

memory can be derived from Eq. 4.19

_ NT2"r!
T 2(1+r)log N (2r)!

M, (4.26)

For the zero diagonal memories, the capacity can be derived from the same

procedure,

21+ r)logN ~ 2(r+1)llog N’

M, (4.27)

4.4 Higher order bidirectional associative memories

In what follows we will consider briefly the case that interconnection weights of
higher order memories are bidirectional so that the output in the previous sections
also works as an input inversely[22, 45]. Let us take a look at Fig. 4.2 with modi-
fication that the output y is also applied to the system as an input in the reverse
direction and the input z can be obtained by thresholding the value in the way that

y was obtained. Then, z and y are related as follows:
M Ny
zi = sgn{ X =L ofw) ), (4.28)
m=1 Jj=1

Yy = sgn{ Z;l y;”(z x:"x,)r} (4.29)

=1

More generally, multiple associations can be taken into account as follows[7]: as

a simplest case,

wie = 3Ty (4.30)
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Then,
T, = sgn{Zw,-jkyjzk}, (4.31)
ik
Yy; = sgn{Zwijk:vizk}, (4.32)
tk
Zp = sgn{Zwijkziyj}. (433)
]

This kind of association is bidirectional and the SNR can be easily derived from the
analysis similar to one that was done previously. This is useful for storing multiple
associations and page modes in data storage. We can generalize this multiple as-
sociation to higher orders and introduce nonlinearities by making some of the data
appear multiply.

The convergence of the recall process of higher order bidirectional memories will

be discussed in the following chapter.

4.5 Optical implementations of higher order associative

memories

The outer product higher order associative memories described in the previous sec-
tion require basic components for their implementation: interconnection weights,
r-th power devices, and threshold nonlinearities[36, 37, 38]. In this section, we
present a variety of optical implementations using volume holograms to provide the
interconnection weights and optical or electro-optical devices to provide the required
nonlinearities.

We will first briefly discuss holography[9] and in particular the distinction be-
tween the use of planar versus volume holograms. The holographic process is shown
schematically in Fig. 4.4. In the recording stage with planar hologram (Fig. 4.4a)
the interference pattern between the reference plane wave created by collimating the

light from a point source using a lens and the wave originating from the object “A”
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Figure 4.4 Holographic recording and reconstruction. a. Recording; b. Recon-

struction.
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is recorded on a planar light sensitive medium such as a photographic plate. When
the developed plate is illuminated with the same reference wave, the field that is
diffracted by the recorded interference pattern gives a virtual image of the original
object, which can be converted to a real image with a lens. The reconstruction of
the hologram is thus equivalent to interconnecting the single point from which the
reference plane wave is derived to all the points that comprise the reconstructed
image. The weight of each interconnection is specified by the interference pattern
stored in the hologram. Volume holograms are used in the same way except that
whereas a planar hologram records the interference pattern as a two-dimensional
pattern on a plane, a volume hologram records the interference pattern throughout
the volume of a three-dimensional medium. The disparity in the dimensionalities of
the two storage methods results in marked differences in the capabilities of the two
processes.

One of the differences is explained with the aid of Figs. 4.5a and 4.5b where the
reconstructions of both a planar and a volume hologram are shown. Each hologram
is prepared to store the two images “A” and “O” by double exposures with each im-
age being associated with a reference plane wave that is incident on the hologram at
a different angle. Each reference plane wave is generated by a separate point source
and thus the reconstruction of a hologram with the two reference waves is equivalent
to interconnecting two input points to all the points on the reconstruction plane.
In the case of the planar hologram, however, when either one of th