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“God saw that it was good.”

Genesis 1

“Be joyful always,
pray at all times,
be thankful in all circumstances.
This is what God wants from you
in your life in union with Christ Jesus.”

Thessalonians I 5, 16-18

Meanwhile these three remain:
faith, hope, and love;
and the greatest of these is love.
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Abstract

Beginning with a discussion of the relationship between degrees of freedom and
capacity of the system, the original work on higher order associative memories is
described in three aspects, Learning, Capacity, and Generalization for pattern recog-
nition and neural networks with the orthogonalization of binary vectors and the
ternarization of weights, and their optical implementations using volume holograms
are suggested for optical computing. Selection of terms is considered to satisfy the
given conditions. When a simple sum of outer product learning rule is applied, higher
order memories become higher order Hopfield-type memories. Their capacities are
derived from SNR analyses for both nonzero diagonal and zero diagonal memories.
Especially in the case of quadratic and cubic memories, optical implementations are
suggested in three elegant ways due to the three-dimensional property of volume
holograms. Robustness of higher order associative memories is discussed as a gen-
eralization property with consideration of dynamic range in terms of robustness of
errors in input (error tolerance) and noise in the system (noise sensitivity). In the
case of autoassociation or bidirectional association the energy functions are used to
investigate the dynamics that provides a mechanism of escaping the local minima
to find global minima.

Algorithmic aspects and architectures of optical computing are discussed in terms

of deterministic and random algorithms.
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Chapter 1

Introduction

New aspects of computational algorithms and architectures will be introduced in
hopes of constructing a general computer. We can think of a general computer as
a black box that implements the operations yielding a desired output for any given
input. We would like to build an optimum computer to achieve not only Boolean
operations but also self-organization[21] and generalization[13, 35], which are not
accomplished by present computers. And optics has merits over electronics due to
high connectivity[15, 39], three-dimensional analog processing[32], and high speed,
inherently and algorithmically due to parallelism[28], which will be discussed in a
separate chapter. So optics is a suitable candidate for the black box.

Optics has characteristics of global operations and parallelism from the input to
the output such as the imaging system and the Fourier transform system, which will
match the characteristics of neural networks. For example, for 1000 x1000 pixels of
input and output, there are 10® parallel channels[28] as in Fig. 1.1. The human brain
has superiority to digital computers, especially with recognition problems such as
pattern recognition and speech recognition[3, 41] in a sense of generalization and
with the global operations such as dynamic systems.

An associative memory can be thought of as a global mapping Y = f(X) from an
input vector space X = {z™} to an output vector space Y’ = {y™} so that it produces
y™ as its associated output when z™ becomes an input for m = 1,..., M. We denote
by N and Ny the dimensionalities of the input and output vectors, respectively. If
the mapping also works inversely, it is called a bidirectional associative memory[22].
When the output vectors are stored as binary Ny-tuples, the associative memory can

be implemented as an array of discriminant functions, each dichotomizing the input
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Figure 1.1 Optical systems: a. Imaging system; b. Fourier transform system.



—3-
vectors into two classes. This type of associative memory is shown schematically
in Fig. 1.2. In evaluating the effectiveness of a particular associative memory, we
are concerned with its ability to store a large number of associations (capacity), the
ease with which the parameters of the memory can be set to realize the prescribed
mappings (learning), and the way in which the memory responds to input that did
not constitute its training set (generalization). We will describe associative memories
in this respect. The relationship between the number of independent parameters
or degrees of freedom of a memory and its ability to store associations[2, 10, 38] is
fundamental to this work and it will be stated in the following chapter as a theorem.

Chapter 2 concerns theoretical background for the rest of the work. It starts with
the concepts of degrees of freedom and capacity of the system. The properties of
higher order memories are analyzed with orthogonalization of binary feature vectors
and ternarization of weights. The motivation is the increase in storage capacity
that results from the increase in the number of degrees of freedom that is needed to
describe a higher order associative mapping.

In Chapter 3 two algorithmic aspects of computing are discussed in terms of
deterministic and random algorithms. The former stems from orthogonalization and
ternarization introduced in Chapter 2 and the latter is related to dynamic systems,
which explains the algorithm of the optical system for the high speed overcomming
the limitation of the digital computer using the generation of a fractal pattern[23] as
an example. The method of choosing terms that are necessary for given requirements
of a problem is also discussed and is relevant to the ternarization algorithm.

The higher order associative memory(6, 7, 13, 24, 31, 36, 37, 38, 40] is discussed
with optical implementations in Chapter 4. Higher order memories can be char-
acterized as a generalization of the linear memories using nonlinearities and have
both properties of high capacity and easy learning. They absorb the information

out of the input and utilize the correlations of the information as well as the infor-
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Figure 1.2 a. Discriminant function; b. Associative memory constructed as an

array of discriminant functions.
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mation itself to memorize the input-output data and carry out the task. It turns
out that higher order memories offer higher storage capacity and efficient algorithms
for generalizations such as invariances. The simple sum of outer product learning
rule can be applied to the memory to make it a higher order Hopfield-type memory.
Another way of describing this kind of higher order memory is that its intercon-
nection weight w;; between the :-th and the j-th neurons is affected not only by
the states of the ¢-th and the j-th neurons themselves but also by the states of the
other neurons. And we suggest the optical implementations of higher order associa-
tive memories using volume holograms and compare them with those using planar
holograms. Especially, in the case of quadratic and cubic memories, the memory
tensors w;;r and w;;k; required to describe the memories are supplied in optics by
volume holograms because of the three-dimensional properties they have[39], and
their optical implementations are suggested in three alternative ways with separate
interpretations.

In Chapter 5 robustness of higher order associative memories is discussed as
a generalization property in two respects, robustness for the errors in the input
compared to the stored data (error tolerance), and robustness for the noise in the
memory (noise sensitivity). Dynamic range of the system is considered for the real
computation.

This is mainly based on references [28], [36], [37], and [38].



Chapter 2

Characteristics of Higher Order Memories

2.1 Degrees of freedom and storage capacity

Let D be the number of independent variables (degrees of freedom) we have un-
der our control to specify input-output mappings and let each parameter have K
separate levels or values that it can assume. As an example, given vector spaces
X1, Xo, ..., X;, and Y with dimensionalities N;, N,, ... , N,, and Ny, con-
sider the cartesian product space X; x X; X --- X X, and an r-linear mapping
W™ X; x Xy x--- x X, =Y, which is linear in each argument. Then, the dimen-
sionality of the space X; x X3 x --- x X, becomes N;N,---N, and therefore the
number of degrees of freedom D is given by Ni N, - -+ N, Ny[43].

We define the storage capacity C to be the maximum number of arbitrary asso-
ciations that can be stored and recalled without error. Throughout the text, N and
Ny represent the dimensionalities of the input and output vectors, respectively. Let

Ky be the number of distinct levels that the output components can assume.

Theorem 1
S DlOgKO K.

C N,

(2.1)

Proof The number of different states of the memory is given by K and the total
number of outputs that a given set of M input patterns can be mapped to is KM,
If the number of mappings was larger than the number of distinct states of memory,
then mappings would exist that are not implementable. The requirement that all

mappings be done leads to the relationship of the theorem.

The equality in Eq. 2.1 is achieved by Boolean circuits such as programmable

logic arrays for Ky = 2. When the equality holds, resetting any one bit in any
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one of the parameters of the memory gives a different mapping. The way to get
generalization when C = Dlogg, K/Np is to impose on it the overall structure of
the memory before learning begins. One of the appealing features of neural archi-
tectures is the considerable redundancy in the degrees of freedom that is typically
available. Therefore, there is hope that while a memory learns specific input—output
correspondences it can also discover the underlying structure that may exist in the
problem and learn to respond correctly for a set of inputs much larger than the
training set. Moreover, the same redundancy is responsible for the error tolerance
that is evident in many neural architectures. Higher order memories are generally
redundant and they can provide us with a methodology for selecting the degree of
redundancy along with the number of degrees of freedom and the associated capacity
to store random problems.

It is important to keep in mind that Eq. 2.1 holds for arbitrary mappings. If the
input and output vectors are restricted in some way that happens to be matched
to the architecture of a particular associative memory, then it may be possible to
exceed this limit. However, selecting the architecture of the associative memory such
that it optimally implements only a subset of all possible associations is basically
equivalent to choosing the architecture so that it generalizes in a desirable way. For
instance, suppose that we design an associative memory so that it is shift invariant
(i.e., the output is insensitive to a translation of the input)[24, 35]. Then this system
will respond predictably to all the shifted versions of the patterns that were used to
train it. We can equivalently think of this system as having a larger storage capacity
than the limit of Eq. 2.1 over the set of shift invariant mappings. If we can identify
a priori the types of generalization that we wish the memory to exhibit and we can
find ways to impose these on the architecture, then this is certainly a sensible thing
to do. Higher order memories can also provide a convenient framework within which

this can be accomplished.
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The penalty we must pay for the increase in the storage capacity that is afforded
by the increase in the degrees of freedom in a higher order associative memory is
the increase in implementation complexity. The computer that implements a higher
order memory must have sufficient storage capacity to store a very large number
of parameters. Moreover, it must be capable of addressing the stored information
with a high degree of parallelism in order to produce an output quickly. We will
discuss in Chapter 4 optical implementations of higher order memories and we will
show a remarkable compatibility between the computational requirements of these
memories and the ability of optics to store information in three dimensions. But
in Chapter 3 the possibility of selecting terms for given problems will be shown to

reduce the complexity or the number of parameters in implementation.

2.2 Discriminant functions and associative memories

We will consider as a precursor the most familiar associative memories that are
constructed as arrays of linear discriminant functions[21]. A linear discriminant

function is a mapping from the sample space X, a subset of RV, to 1 or —1:

y = sgn{w’-z+wo}

= sgn{wo + w11 + wez2 + -+ - + wyzN} (2.2)
where
+1 ifz>0
sgn T =
-1 ifzx<0,

w is a weighting vector and wy is a threshold value. In this case, the capacity is
upperbounded by (N + 1)log, K according to our definition of capacity. In this
relatively simple case, the exact capacity is known to be equal to C = N +1 that is
given by degrees of freedom assuming the input points are in general position (points

in an /N-dimensional space are called to be in general position if no subset of N + 1
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points falls in any (N — 1) dimensioal subspace) and K = oo[10]. An associative
memory is constructed by simply forming an array of linear discriminant functions
each mapping the same input to a different binary variable. Several algorithms
exist for training such memories including the perceptron, Widrow-Hoff, sum of
outer products, pseudoinverse, simplex methods, and so on[11, 17, 21, 31, 48, 50].
This memory can be thought of as the first order of the broader class of higher
order memories that contain not only a linear expansion of the input vector but
also quadratic and higher order terms. We will see in Chapter 4 that the learning
methods that are applicable to the linear memories generalize directly to the higher
order memories. First, however, we will describe the properties of the mappings

that are implementable with higher order memories.

2.3 Properties of higher order memories

A O®-function is defined to be a fired mapping of the input vector z to an L-

dimensional vector z followed by a linear discriminant function:

y = sgn{w” z(z) + wo}

= sgn{wjz; + whzy + - -+ +whzp + wo} (2.3)

where z(z) = (21(z), 22(2), - - . ,20(z)), w' is an L-dimensional weighting vector and
z(z) is an L-dimensional vector derived from z. So it is basically a two—layer network
with the first layer fixed. The storage capacity in this case is equal to the capacity of
the second layer L+ 1[10] that is given by the degrees of freedom of the second layer
if the samples z are in general position whereas the upper bound on the capacity
from Eq. 2.1 is (L + 1)log, K. The inefficiency in this case is log, K bits, the same
as for the linear discriminant function even though the capacity can be raised by
increasing L. It is not known what the exact relationship between L and K is. That

is, we do not know whether for higher dimensions we need better resolution for the
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values of the weights to be capable of implementing a fixed fraction of the linear
mappings (it will be shown that K depends not on L but on the number of data
stored in the memory when we have binary samples and adapt simply the outer
product learning rule).

A higher order associative memory is an array of ®-functions with polynomial
neurons in the middle, that is, the mappings z(z) being polynomial expansions of
the vector z. Shown in Fig. 2.1 is the schematic diagram of a higher order associative
memory whose capacity is also L +1. When the polynomial expansion is of the r-th

order in g, then the output vector y is given by

y =sgn{W/(z,z, ... ,2) + W/ Nz, ... ,z) + --- + Wi(z,z) + W}z + wp} (2:4)

- 9

where [ = 1,..., Ny, Wf is a k-linear mapping or a (k + 1)-th order tensor and W}

is equivalent to w' in Eq. 2.2. According to Eq. 2.3,

zj(z) = ng-lm:; Ty (2.5)

where j = 1,2, ...,L, p;i € {1,2,...,N} for i = 1, ... ,r such that all z; are
different and nq,n,, ... ,n, = 0,1. Then L is (N;”) —1[10], and hence the capacity
bound is (NT“) log, K as before. For example, if r = 2, the function becomes
quadratic and has the form y; = z'W2z+ W}z +wy and the number of nonredundant
terms in the quadratic expansion is (N + 1)(N + 2)/2.

The components of the vector z are binary-valued if z is binary. In this case, the
samples cannot be assumed to be in general position, which results in the decrease

in the capacity.

Claim 2 There can be G binary vectors in N-dimensional space that lie in general

position where N +2 < G < 2N for N > 2.

Proof The number of binary vectors in general position in N-dimensional space

can not exceed 2N, since an N-dimensional cube consists of two (/N —1)-dimensional
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Y1 . . . YNo

:El . . . xN

Figure 2.1 Higher order associative memory.
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cubes and we can pick up at most N points in general position out of each (N — 1)-
dimensional cube according to the definition of general position[11].

The lower bound is derived by observing that N + 2 binary points can be chosen

to lie in general position as shown in Fig. 2.2 for three- and four-dimensional cubes

and it can be generalized for an arbitrary N. For example, G = 5 for N = 3.

We will evaluate the effectiveness of higher order mappings in producing repre-
sentations z(z) that are separable by the second layer of weights by calculating the
Hamming distance between z vectors given the Hamming distance between the cor-
responding 2 vectors. We expect that if the Hamming distance between two binary
vectors is large or if z vectors are uncorrelated with each other (or more orthogonal

to each other) then they are easy to distinguish from one another.

2.3.1 Complete polynomial expansion of binary vectors

There are at most 2" nonredundant terms in any polynomial expansion (Eq. 2.4) of
a binary vector z in N dimensions. First, we will consider the following N-th order
expansion (or equivalently bit production) for the bipolar vectors z in N dimensional

binary space {1,—1}":
z=2z(z)=(1,z1,29, ... , TN, T1Tg, ... ,T1T3... TN)". (2.6)

If we apply a linear discriminant function to the new vectors z, then the capacity
becomes 2V, which is equal to the total number of possible input vectors[36]. In
other words this memory is capable of performing any mapping of NV binary variables
to any binary output vector y. Of course the number of weights that are needed to
implement this memory grows to 2" times N, the number of bits at the output. In
what follows we show that in this extreme case the vectors z become orthogonal to

each other.
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Theorem 3 If we expand binary vectors z™ (m = 1,2,...,2N) in {1,-1}" to
2N _dimensional binary vectors z™ according to Eq. 2.6, then the following hold:
(a) < 2™, z™ >=2N§, .. where < - - > is an inner product.
() Tior =0 (m#£1).
(c) 3. 202 = 2N§, 5, and T, 2 =0 (J#1).

Example The following table is for the case of N = 3. Note the orthogonality and
the numbers of 1’s and —1’s in the new vectors and the set of each component of

them except the first vector and the set of the first components.

Iy T, T3 1 T Zq T3 T1Tg Tz T3Ty LT3
1 1 1 1 1 1 1 1 1 1 1

1 1 -1 1 1 1 -1 1 -1 -1 -1

1 -1 1 1 1 -1 1 -1 -1 1 -1

1 -1 -1 1 1 -1 -1 -1 1 -1 1
-1 1 1 1 -1 1 1 -1 1 -1 -1
-1 1 -1 1 -1 1 -1 -1 -1 1 1
-1 -1 1 1 -1 -1 1 1 -1 -1 1
-1 -1 -1 1 -1 -1 -1 1 1 1 -1

Table 2.1 Full expansion for N = 3.

Proof (a) Let us consider any two different binary vectors in the binary space of
{1, -1}" whose Hamming distance is n (1 < n < N). When they are expanded
to two 2V-dimensional binary vectors, the number of k-th order terms that have

opposite signs in the two expansions is
n\ (N —n 4 n\ (N —-n + n\ (N —-n
J\k-1 3/\ k=3 s)\k—s5) T

= ,.z%d (7;) (JZ _ zn) 2.7)
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Notice that two polynomials have different values if, and only if, they have an odd
number of terms whose signs are opposite. The Hamming distance between the two
fully expanded (up to order 2VV) vectors can be calculated by adding the number of

terms that have different signs over all the orders of the expansion:

D) GG ) )

(
4 {(’;) (N;n) 4 (g) (Nl—n)}+ ...............
A0 G2) B+ G )
B OL 0L
- 2O N

The fact that the Hamming distance is 2! for any two expanded vectors (for any
n) proves that all of the 2V vectors become orthogonal and that < z™, z™ >=
2N 8 ims -

(b) Just think of the cases where one of the two vectors is (1,1,...,1). Then, all
the other vectors z have equal numbers of 1’s and —1’s because their Hamming
distances are all 2¥-! from the (1,1, ... ,1) vector.

(c) See reference [11], page 109.

Slepian has discussed this orthogonalization property as a method for designing
orthogonal codes and has given a different proof for it[42]. The proof presented here
is useful for characterizing higher order memories because it allows us to trace the
contribution of each order of the expansion to the orthogonalization and immediately

derive results about the properties of quadratic and cubic memories.
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Each component of output vector y in this case is given by
oN
Y = sgn{z wl,-z,-} (2.9)
i=1
where | = 1,..., Ny and wy; is an Ny x 2V-dimensional weight matrix. The matrix
wy; that can implement the mapping z™ — y™ for m =1 to 2V can be formed

simply as the sum of outer products of y™ and z™ from the above theorem:
2N
w, = Z y',mzfn. (2.10)
m=1

2.3.2 Single order expansion

The orthogonalization property of the full expansion is interesting because it shows
that higher order memories provide a complete framework that takes us from the
simplest “neuron,” the linear discriminant function, to the full capability of a
Boolean look-up table. Higher order memories can indeed provide a valuable tool for
designing digital programmable logic arrays. Since associative memories are capable
of accepting input with large N (e.g., if N = 103, then 2V =~ 103®), considering a
full expansion of the input data is completely out of the question. In such a case, we
are really interested in an expansion that contains a large enough number of terms
to provide the capacity needed to learn the problem at hand. In this subsection, we
analyze the properties of partial expansions that include all the terms of one order.

We will first consider the memory consisting of all the terms of a quadratic

expansion with binary input vectors:

¥ = Sgn{zzwijkijk}
ik

= sgn{i w,’nzn} (2.11)
n=1

The number of nonredundant terms in a quadratic expansion of a binary vector is

L = N(N —1)/2. Let two input vectors have a Hamming distance n. The angle
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6, between these two vectors is given by the relation costy = 1 — (2n/N). The
angle 6, between the corresponding z(z) vectors derived from quadratic expansions

can be readily calculated since we know their Hamming distance from the proof of

Theorem 3(a):

4n(N —n)
COS 92 = 1 —m
~ 1—4p+4p* =(1-2p)? (2.12)

where p = n/N. Plotted in Fig. 2.3a are 6, and 8, versus p. For p < .5, 0, is always
larger than ;. Specifically for p < 1, §; = v/2 x 6,. For p > .5 the quadratically
expanded vectors are closer to each other than the original vectors and in the extreme
case n = N, 6, becomes zero. We see, therefore, that the quadratic mapping not
only expands the dimensionality that provides capacity but also spreads the input
samples apart, a generally desirable property, making them more orthogonal to each
other and so more uncorrelated. The insensitivity of the quadratic mapping to a
change in sign of all the bits is a property that is shared by all even order expansions.

Next, we consider a cubic memory

¥y = Sgn{zzzwz’jmm]’wm}
i k1
= sgn{zL: wfnzn} (2.13)
n=1

where L = (];7 ) In Fig. 2.3b, we plot 83, the angle between two cubically expanded
binary vectors as a function of p. For convenience, 6, is also plotted in the same
figure. In this case, 5 increases faster with p for p < .5 while for p > .5, 63 remains
smaller than 6; and in the limit p = 1, 83 = . Thus the cubic memory discriminates
between a vector and its complement. For p < 1, 65 = v/3 x 6;. At p~ .4 to .6 the
cubic expansion gives essentially orthogonal vectors.

The basic trends that are evident in the quadratic and cubic memories generalize

to any order (< N). The number of independent terms in the r-th order expansion
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Figure 2.3 a. Angles between linearly and quadratically expanded vectors as

functions of input Hamming distance; b. Angles between linearly and cubically

expanded vectors as functions of input Hamming distance.
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of a binary vector is (IX ), which has the maximum value (= \/%_N) for r & N/2
by Stirling’s formula[30]. Again this is not of practical importance because the
number of terms in a full expansion of this sort is prohibitively large. What is of
interest, however, is the effectiveness with which relatively small order expansions
can orthogonalize a set of input vectors. The angle 8, between two vectors that have
been expanded to the r-th order only is given by the following relation according to

Eq. 2.7:
(7) = 28 () (1)
7 1=odd \; J \ r—i
( N) . (2.14)
We can obtain a simpler expression for the interesting case r < N and for small p,

0, =~ \/r x 0.

cosf, =

Proposition 4 Forr < N,
cosf, = (1 —2p) (2.15)
where p = n/N. Moreover, for small p,
0, ~ /76, (2.16)
where 01 = 2,/p.

Proof For a small r, we can make the approximations (1:]) ~ N"/[rl, (’:) ~n'/il,

and (T 2) ~ (N —n)~%/(r —i)!. Then, cos b, is approximated as follows:

cosf, = 1- QZ ,p(l— p) "
i=odd * Z)
= (1-2p)

because of these relationships:

o+ =Q-pt+p) =1,

i=odd i=even

2 =2 =-(-p=p)=-(1-20)"

i=odd i=even



91—
When p < 1, cos 8., which is approximately 1 — 62/2!, is approximated by 1 — 2rp
directly from Eq. 2.14 or from Eq. 2.15. Therefore, it is followed by Eq. 2.16 that

0, ~ 2,/rp.

We plot 8, versus p for selected orders in Fig. 2.4 using Eq. 2.15. It is evident
that increasing r results in better separated feature vectors in the sense that they
are becoming less correlated to be dichotomized with ease. Polynomial mappings
act as an effective mechanism for increasing the dimensionality of the space in which
input is classified because they guarantee a very even distribution of the samples in

this new space.

2.4 Ternarization of weights for orthogonal vectors

We have discussed the orthogonalization algorithm for the binary samples and turn
to the weights. For the orthogonal vectors derived by full expansions the simulations
up to N =4 (2V = 16) and selected simulations for N = 5 showed that the weights
might be made ternary. The algorithm used in this case will be discussed in the
following chapter.

Moreover, it may be possible to make a generalization for arbitrary orthogonal
vectors without requiring them to be binary and of 2V dimensions for some integer

N. In fact, there are N orthogonal vectors in N-dimensional space.

Conjecture 5 The weights of LDFs can be ternarized (+1,0,~1) for arbitrary di-
chotomies of any set of N-dimensional orthogonal vectors (at least with high proba-

bility).

It can be explained informally as follows: in the case of N N-dimensional orthonor-
mal vectors, v™ (m = 1,...,N), there are 2V disjoint solution cones that have the

same shape filling the whole space with different orientations. The cone is decided
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Figure 2.4 Angles between expanded vectors for selected orders.
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by N vectors, y*v™, for each [-th output component, as a set

{ g: any o™ |am >0 } (2.17)
m=1

Its center axis is in the direction of the vector sum of such vectors }_,, y/"v™, the
lines through each of which from the origin are all perpendicular to each other and
determine the convex set that is the cone called an orthant. There are two kinds of
orientations: one is the orientation of the center axis and the other is the rotation
of the cone around the center axis. Thus the complexity of the cone orientation
gets larger as the dimensionality of the space becomes bigger. It is not sufficient
for each cone to include at least one weight vector with weights binary-valued (i.e.,
even if the 2"V binary weight vectors are evenly spaced in N-dimensional space and
the ratio between the number of weight vectors and that of disjoint solution cones is
equal to 1, the orientation of the sample vectors may distribute the weight vectors
to the solution cones unevenly, which means that some cones may include no binary
weight vectors inside). In the case of ternary valued weights the ratio becomes
3V /2N except that the weight vectors are not spaced evenly. The fact that the ratio
is greater than 1 and grows exponentially as N gets large implies that it may be
possible for at least one weight vector to be included inside of each cone regardless
of the uneven distributions.

Up to five-dimensional cases, we found a proof for this conjecture using geometric

pictures.

Lemma 6 For the orthant of N-dimensional space, a circular cone can be made to

contact the orthant inside with the angle Oy of the following value:

N -2
cosfy = N (2.18)

where @y is twice the angle between the center axis and the line of the circular cone

contacting the octant.
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Proof Because it does not depend on the orientation of the octant, Fig. 2.5 is
taken into consideration for simplicity in the case of N = 3. Then the unit vector

of the center axis is given by (\/_I_N_-’ _\_/__1]_v_, ey ﬁ)t and the unit vector of one of the

contacting lines by (\/]\1,_1, \/1\}._1,..., \/Jé_l,O)t. Because the angles between the

center axis and the contacting lines are all the same, the angle is obtained by the

inner product between them. So we get

cosaN-— N-t _ A=l (2.19)
2 NYyN=1 V N '
Eq. 2.18 follows from the relationship, cos 26 = 2cos?§ — 1.
Lemma 7 The convex set determined by the N vectors v' = (1,0,...,0)!, v? =

(%,%,0,...,0% v? = (\%,\%,%,0,...,0)t, ooy and 2N = (—\}W"%ﬁ"“’ﬁ)t on
the N-dimensional unit sphere has (N —1)N/2 arcs and the vector u™ on this convex

set that has the same angle ¢ from all the N vectors v™ is given by

QN:COS¢N(1,\/§—1,\/§—\/§,...,\/_]\7-—\/N—1)t (2.20)

where 0 < ¢y < 7/2 and

1
Sner(Vi—Vn = 1)

cos® gy = (2.21)

Proof For N = 2 there is one arc between v! = (1,0)" and v? = (-\—}—5, —\}—5)’5 Assume
that there are (n — 1)n/2 arcs for N = n. Then, for N = n + 1, the number of
arcs decided by n + 1 vectors is the sum of the number of arcs decided by the first
n vectors, (n — 1)n/2, and the number of arcs between v"*! and the n vectors, n,
which is in total (n — 1)n/2 +n =n(n + 1)/2.

Let the vector u™ be (z1,z3,...,2zx)! such that 2? 4+ 22 + ... 4+ 2%, = 1 since

it is on the unit sphere. Since the angle between two vectors on the unit sphere is
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Figure 2.5 An orthant for N = 3.
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directly related to the inner product the following relationship is obtained:

1 1 1
COSON = 1 = —=Ty T2) = —=(1y T3 T3z) =+ = ——=(Ty o N).
? Ao = plntnt ) U o)
(2.22)

Solving z, (2 < n < N) in terms of z; and substituting them into 3" 22 =1 we

get immediately

1

S (Vo) (228)

cos’ gy = 2% =

from which the vector u" is derived.

In two-dimensional case, consider Fig. 2.6. The solution cones whose boundaries
contain the vectors and their complements and are perpendicular to the adjacent
ones include at least one weight vector up to two inside depending on their ori-
entation because the adjacent ternary weight vectors make an angle of 45 degrees
(binary weights are not enough since they may be all on the boundaries).

Fig. 2.7 is for three-dimensional case. First of all, we normalize the weight vectors
so that they are imbedded on the unit sphere. Now the orientation of the center axis
is considered. Because of the symmetry of the weight vectors on the unit sphere the
unit vector along the center axis can be restricted to lie on the convex set that is one
sixth of the first octant of unit sphere determined by the vectors v!, v2, and v that
is illustrated in Fig. 2.7. The question is whether the solution cone will include any
ternary weight inside regardless of the rotation of the cone around the center axis
whose orientation is also varying. We draw a circular cone of angle #5/2 around the
center axis and claim that it must contain at least any one of three weight vectors,
which is a sufficient condition for the question. It is equivalent to show that the
circular cone of angle 63/2 around the vector u® defined in Lemma 7 contains all
the vectors ' and so covers the entire region we are considering in Fig. 2.7 because
of the convexity of the cone. In other words, if this is the case, then when the unit

vector along the center axis of the circular cone of angle 03/2 is at any point of the
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Figure 2.6 Two-dimensional ternary weight space.
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Figure 2.7 Three-dimensional ternary weight space.
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convex set but uV the circular cone always contains at least one of the vectors v!,
v?, and v> since at least one of the angles between the unit vector along the center
axis and the vectors v!, v?, and v® becomes smaller than ¢;. And it is true since
cos?03/2 = 2/3 < cos? ¢3 = .786, that is, 63/2 > ¢3 by Lemmas 6 and 7.

In general case we normalize the N-dimensional weight vectors into the unit
sphere. Then, there are N! regions to be checked to be covered each of which
is decided by N unit weight vectors on N-dimensional unit sphere because of the

symmetry. One such region is decided by the vectors v!, v?, ..., and vV as defined

-_—)
in Lemma 7. In order that the circular cone around u’V contains the N vectors v?,
it is required that Oy /2 > ¢x or equivalently cos? O /2 < cos? ¢y, which is satisfied

for N < 5. Therefore, we proved the following theorem.

Theorem 8 N-dimensional orthogonal vectors can be dichotomized arbitrarily by

ternary-valued weights for N <'5.

Actually, what was used to prove this theorem is a sufficient condition because
the circular cone in Lemma 6 is diminishing as the dimensionality increases. It means
that the ratio between the volume occupied by the cone and that of the orthant
becomes smaller, approaching zero as the dimensionality gets bigger. Therefore,
we need another approach to prove the conjecture for the higher dimensional case.
But the proof up to five-dimensional cases and the fact that the average number
of ternary weights included in one orthant increases exponentially as 3"V/2V are
encouraging to the conjecture (e.g., for N = 5, 6, 10, 20, and 100, 3V/2N ~ 7, 11,

57, 3.3 x 10°, and 4 x 107, respectively).
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Chapter 3

Algorithmic Optical Computing

3.1 Selection of terms in polynomial expansion

Explained in this section is the application of selecting the terms used in the poly-

nomial expansion algorithmically to meet a given requirement.

Motivation Is there a way of finding a maximum number of terms of
r bit products of the original N-dimensional input binary vectors out of
(]:7) terms such that these terms, which constitute the components of

the coded vectors, do not share the same two bits with one another and

the input bits occur equally in the new vector?

Let N be the dimensionality of the input vector z and L be the dimensionality of
the coded vector z and let m be the number of occurrences of each component of

the input vector in its coded vector. Then, the following relationship is obtained:
Lr = Nm. (3.1)

Intuitively, m can not exceed (N —1)/(r—1) and we will show that when r is a prime
number (e.g., 2,3,5,7,11,---) and N is a power of r this limit can be achieved and so
flipping any one bit of the input vector results in flipping m bits of the corresponding
coded vector flipping any two bits resulting in flipping 2m — 1 bits (it is clear that
in the special case of r = 2 there always exist ("2\{ ) terms in total that amount to
the limit). That is, when N = r/,

N-1 rt—1

r—1 r—1
I (3:2)
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And
_Nm _ N(N-1)
L= r r(r=1)
ri=1(pl — 1)
—_;‘Tl-————. (3-3)

Let n (n < N) be the Hamming distance between two input vectors and let 6,
and 8, be the angles between these two input vectors and between the corresponding
two coded vectors, respectively. Then, cos; = 1—n/N and cos b, ~ (L—2nm)/L =
1 —2rp for p « 1 where p = n/N, which correspond to Proposition 4. Thus, they
are reduced to a relationship 8, ~ 1/rf; where 6; ~ 2,/p.

As an example, consider the following tables of the index set for N = 3%

(a)

(b)

(c)

1 2 3 1 47 1 5 9 1 6 8
4 5 6 2 5 8 2 6 7 2 49
7T 8 9 3 6 9 3 4 8 3 5 7

(d)

Table 3.1 Bit selections by index set.

Each row in the tables represents the numbers of the input components that consti-
tute the bit product. For example, 1 2 3 in Table 3.1(a) denotes the term z;z,x3.
Then, there are 12 bit products satisfying the requirement stated in Motivation and
each z; occurs four times, which coincides with Egs. 3.2 and 3.3 forr =3 and N = 9.

We will prove Eqgs. 3.2 and 3.3 using an equivalence relation.

Theorem 9 Let r be a prime number and let p and n be integers satisfying 0 < p <

r—1and1 <n <r. Given an integer ¢;, let qup and m; be integers satisfying
(n—1)p+ g =mr + g, (3.4)

where 1 < ¢; <r and 0 < ¢, <r —1. In other words, ¢, = {(n — 1)p+ ¢} modr.

Then, the following hold:
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(a) Given n and p, all qfw are different for all ¢;.
(b) Given p, ny and n,, all (quJ - q,‘;zp) mod r are equal for all ¢;.

(¢) Given ¢; and different ny and ny, oll (¢, — 4;,,) mod r are different for all p.

Proof (a) Suppose that qfw and qf:p are the same for different ¢; and ¢;. Then,
Ghp — Ghp = 0 and (g, — gi,) mod r = {(n — )p+ ¢i — (n — 1)p — gu} mod r =
(¢i — g#) mod r. Since 1 < ¢;,q0 < 7, |¢;: — ¢r|(= 1) is less than r — 1. Therefore,
(¢: — g») mod r is not zero, which is a contradiction.

(b) It is easy to see this because (g}, ,—¢.,,,) mod r = (n;—ny)p mod r is independent
of g;.

(c) Suppose that ¢¢ . qu)l and qfhpz — qu,z are the same for different p; and p,.
Then, it follows that (n; — ny)py — (my — ma)r = (n1 — n2)py — (M) — m)r, which

can be reduced to

(n1 —n2)(p1 — p2) = {(m1 — ma) — (m] — my)}r. (3.5)

The left-hand side differs from zero by the assumption and therefore r must be a
divisor of (ny — n3)(p1 — p2). And1<|ny—ny|<r—land1<|py—po| <r—1
since 0 < py,po <r—1and 1 < nyyny <r. But r being a prime number gives a

contradiction.

This explains the coding method when N = r? for a prime number r as follows:
Every nearest r bits are multiplied together to form a component of z vector as
shown in Table 3.1(a). Now we are considering the ways of forming bit products of
r input components according to Motivation each of which comes from each term
constructed already. We shift circularly to the left the second row by p (0 < p <
r — 1) bits, the third row by 2p bits, and, in general, the n-th (2 < n < r) row
by (n — 1)p bits and combine each column to one term as shown in Table 3.1(b) to

(d). Then, they all together cover all the possibilities of bit products satisfying the
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condition of Motivation (Theorem 9(a)) and Theorem 9(b) and (c) tells us that when
r is a prime number they are satisfying the condition and therefore each bit appears
exactly r times and in total » + 1 times that equals an upperbound (N —1)/(r — 1),
where qu + 1 represents the original number of column that each index in n-th row
and ¢;-th (1 < ¢; < r) column belongs to before it is shifted (the first row is not
shifted, i.e., q{p = ¢; for all p). In order that all of these terms may not share the
same two bits with one another the relative bit shifts, (¢}, — ¢.,,) mod r, must
be all different for all p, which holds only when r is a prime number according to
Theorem 9(c).

We are ready to generalize this result for N = r!. For [ = 3 we can make r
blocks out of the index set that consists of r® indexes such that each of them has
r sub-blocks of the nearest r indexes explained as above for N = r2. Relabel the

r? sub-blocks from 1 to r?

, repeat the same procedure as above and then each
new index appears r + 1 times satisfying the condition of Motivation when r is a
prime number. Because one of its occurrences is equivalent to the original r blocks
of the nearest r? indexes and each of the rest can have r bit products there are
r-r 4 (r 4+ 1) terms of r bit products per each indexi. In the general case (i.e.,

=1 indexes

for arbitrary I) r blocks out of the index set can be made to have r
and equivalently to have r sub-blocks of the nearest r'~? indexes. Relabel the r?
sub-blocks and repeat the coding procedure again where the number of occurrence
of each input component in each coding that satisfies the condition of Motivation
is given by r - =2 4+ (r'~2 4 ... 4 r + 1) when r is prime number. Then, we get
rert 4 (P!t 4 =2 4 ... 4+ £ 4+ 1) bit products, which is consistent with Eq. 3.2,

because one of the codings of the new index set is the original r blocks of the nearest

r!=1 indexes. Therefore, we proved the following theorem.
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Theorem 10 When r is a prime number and N is a power of r there can exist
N(N — 1)/r(r — 1) terms of r bit products out of N input bits that satisfy the
following conditions:
(a) They do not share two same bits with one another.

(b) The input bits occur equally in those products.

3.2 Deterministic orthogonalization algorithm

The orthogonalization of binary vectors by complete polynomial expansion and the
ternarization of weights that were discussed in the previous chapter provide us with
a useful tool for a deterministic algorithm.

A direct implementation with a memory of size Ny times 2%V using a simple outer

product rule can be done according to Eq. 2.10 as shown in Fig. 3.1,

2

M
wi = Yyt (1< M <2V, (3.6)
m=1

Generalization can be achieved by only pre-imposing the overall structure on the
memory in a deterministic way according to the designer’s purpose and this kind
of memory deals with the inputs in a direct way. But as mentioned before, this
is out of the question for large N because the memory size is exceedingly huge.
The number of separate levels of wy;, K, can be 2M + 1 from —M to M that does
not depend on the input dimensionality and so L. The expectation value of wj; is
zero assuming that the outputs y* are selected randomly and independently of the
stored data z™, and its standard deviation is given by M'/2 that is not negligible for
implementation when the full capacity is expended. This dynamic range problem
may be solved by ternarizing the weight values as discussed in the previous chapter,
which will be explained in more detail in this section. Then, according to Theorem 1,
the inefficiency is log, 3 bits, which therefore is the smallest one that we can achieve

with linear discriminant functions. The role of log, 3 can be considered as choice of



35—
necessary terms out of 2%V terms.

Then how can the “2V” problem be resolved? One of the possible solutions is
introducing feature extraction[1, 11]. If it is possible to extract log, L binary features
from N-dimensional binary pattern vectors where L is the order of power of N, then
2N reduces to L, which is a reasonable value, when the orthogonalization algorithm
is used. But this is still an open problem that depends on the training samples.
Another possible way is using orthogonalization by numbering. When all of the
2NV samples are not required to be stored in the memory and only a part of them
whose number M is the polynomial of N are under consideration given arbitrary M
samples, we label them by numbers from 1 to M that can be represented as binary
vectors of [log, M| bits where [ -] denotes the smallest integer greater than or equal
to the argument inside. Regardless of the input dimensionality, these binary vectors
in turn become 2M°%2M1_dimensional orthogonal binary vectors z™ when they are
fully expanded where 2M°&2M1 s approximately M since M < 2Mloe2 M1 < 20 . Now
we apply the learning rule in Eq. 3.6 resulting in the reduced memory size that can
be handled.

These are easy learnings like higher order memories with outer product rule in
a sense that the learning process can be finished in a polynomial time in terms of
the input dimensionality with the samples whose number is also a polynomial of the
input dimensionality.

We will discuss the algorithm for the ternarization of weights based on the argu-
ment given in the previous chapter where the possibility of ternarizing the weights
for the orthogonal vectors was shown. A simple but brute force way of ternarizing
weights for arbitrary orthogonal vectors is trying all the ternary weights one by one
until we find one that fits the set of training samples. There are 3V ternary weights
to be considered for the N-dimensional orthogonal vectors.

Alternatively, a simple ternarization algorithm is presented with geometric illus-



36—

)1 . . + YN

xl . . . .',CN

Figure 3.1 Full expansion.
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trations. We can modify Eq. 3.6 without changing the overall result as follows:

2M

wy; = Z amyl z" (3.7)
m=1

where «,, is a learning coefficient for the m-th training sample. As long as each o,

is greater than zero it lies within the solution cone. Take a look at the following

ternarization:
2M
wy; = sgnn{ > amy,’"z,m} (3.8)
m=1
where for n > 0
+1 ifz>n
sgnnz =4 —1 ifz< —n

0 otherwise.

In the case of binary samples, the expanded orthogonal vectors, z™, of 2™ dimen-
sions are also binary that decide the solution cones of the weights. The vectors y;"z™
are themselves part of the ternary weight vectors. The geometry of the distribution
of ternary weights from the center axis of the solution cone to each of those weights
that decide the solution cone is symmetric and therefore a,, may be set to be all
one. We start with ¢, being all one and n zero, test the weights derived by Eq. 3.8
whether they satisfy the training samples, otherwise increment n by one and do this
procedure until a solution is found where n can not exceed 2™, which means that
when 2™ is a polynomial of N this procedure will be completed in a polynomial
time in terms of N. A simulation shows that all of the 2*-dimensional expanded
binary orthogonal vectors can be stored with n not exceeding two.

But for the arbitrary /N-dimensional orthogonal vectors the distribution of the
ternary weights is not symmetric inside the solution cone. Thus we may need learn-
ing iterations. Recall that each solution cone includes on average ternary weights as
many as about 3™ /2™ that is exponentially huge (e.g., 3V /2™ = 57 for N; = 10

and 3™ /2M ~ 3.3 x 103 for N, = 20). We start with a,, being all one and n zero,
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test the weights and if there are some vectors that are not stored correctly, then add

those to the sum,

M
wy = Sgno{z y;nz;'m—lpzylm Z;m}
m=1 m’

M
= sgn(){z amy,mz,m} (3.9)
m=1

where each «,, is either one or two and 1 < M < N. If it does not give the
solution in some finite steps, say, M steps then increment n by one and do the same
procedure until a solution is found where n can be at most M. It can be written in
general
M ! !
wy = sgnn{ E any 2" + Zylm z" } (3.10)
m=1 m'!
Therefore, this procedure will be completed in a polynomial time in terms of input
dimensionality NV, again.
The algorithm we have shown may provide a method of choosing terms in poly-
nomial expansion in the first layer for generalization and is closely related to data

compression.

3.3 Random iterational algorithm

The advantages of optical computing are known to be high interconnectivity and
three-dimensional (analog) processing due to volume holograms[32]. The purposes
of the computers may be large capacity of memory and high speed that comes from
algorithmic power of the architecture[2]. Keeping this in mind we can ask how high
a speed we can achieve with optical computing whereas high storage capacity can
be achieved by higher order memories. With the above aspects, the speed, defined
by the number of operations per unit cycle, reaches at most a constant times the

speed of conventional digital computers. That is,

To =(C x Td (311)
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where T, is the number of operations per unit cycle achievable by optical comput-
ing with the above qualities, T; that by conventional digital computers and C is at
most the number of interconnections afforded by volume holograms, which is approx-
imately 10° as will be discussed in Chapter 4. In a sense of algorithmic computation
the speed-up by constant-times does not mean much because it can not resolve the
limitation of the digital computers resulting from computational problems such as
computability[l], NP-completeness[19] and so on.

Then let’s see what would happen if we can achieve the following relationship:
T, = C" x Td (3.12)

where n is the number of iterations (or cycles). Local interconnections are also
possible in digital computers but full interconnections that can be provided by optics
are out of the question[15, 32]. In order for general computing, capability of full
interconnections is required.

Consider the optimization problems that require lots of iterations(or feedbacks)[18]
such as those shown in Fig. 4.7. It consists of matrix tensor multiplication, which
has 10® multiplication and 106 summation operations per each of 10% channels, and
feedback.

Another simple example is shown in Fig. 3.2 that explains how to generate by
iterations the Vicsek pattern[23] whose dimensionality is logz 5 and how to decide

its dimensionality, which is related to data decompression.
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Figure 3.2 Generation of Vicsek pattern.
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Chapter 4

Higher Order Associative Memories

4.1 Training of higher order memories using outer product

rule

Consider again the r-th order expansion given in Eq. 2.4 in a different form,
T
Y= sgn{z > Wi Ty T, + wo}. (4.1)
k=1 g1k

Then the capacity was given by

ng(N+:—1)=(N+r) (12)

r

N +:'1) that originates from the highest order, that

which can be approximated by (
is, r-th order terms only for r < N and a large N. Therefore, we can replace the
original expansion by the single expansion of the highest order with the same order
of capacity.

Once the initial polynomial mapping has been selected, the rest of the system in
a higher order memory is simply a linear discriminant function. As such it can be
trained by any of the existing methods for training linear discriminant functions. For
instance, the pseudoinverse[21, 31, 48] can be used to calculate the set of weights that
will map a set of L-dimensional expanded vectors 2™ to the associated output vectors
y™. Alternatively, error driven algorithms such as the perceptron or adaline can be
used to iteratively train the memory by repeatedly presenting the input vectors to
the system, monitoring the output to obtain an error signal, and modifying the
weights to gradually decrease the error. The relative ease with which higher order

memories can be trained is a very important advantageous feature of this approach.

A higher order memory is basically a multilayered network where the first layer is
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selected a priori. In terms of capacity alone, there is no advantage whatsoever in
having multiple layers with modifiable weights. From Theorem 1 we know that at
best the capacity is determined by the number of modifiable weights. For a higher
order memory we get the full advantage of the available degrees of freedom whereas
if we put the same number of weights in multiple layers the resulting degeneracies
will decrease the capacity. The relative advantage of trainable multiple layers is the
potential for generalization that emerges through the learning process.

The sum of outer products algorithm that has been used extensively for training
linear associative memories can also be used for training the higher order memories
and this algorithm generalizes to the higher order case in particularly interesting
ways. In addition, this particular learning algorithm is predominantly used for
the holographic optical implementations that are described in the following section.
Therefore, we will discuss in some detail the properties of higher order memories
that are trained using this rule.

Let us consider associative memories constructed as an expansion of the r-th
order only with input samples in N-dimensional binary space and r > 1. Then

Y= sgn{' Z Wijyjerjr Tin T * * * .Tjr} (4.3)
J1da-eir
where 1 < 1,72, ++,7r < N,and 1 <[ < Ny. The number of independent terms L
in the r-th order expansion is approximately N"/r! for r < N.
The expression for the weights of the r-th order expansion using the sum of outer

products algorithm([7, 36, 38] is

M
_ m._.m_m m
Wijsjaengy = Z Yy L5 &5 L5, (4-4)
m=1

where M is the number of vectors stored in the memory, y™

is an output vector
associated with a memory vector z™ as before. It is interesting to notice that each

weight in this case can have 2M + 1 integral levels from —M to M independently
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of the order of expansion or equivalently L. It has a binomial distribution whose
expectation value and standard deviation are given by zero and M'/2, respectively,
with the assumption that the input and the output components are selected ran-
domly and independently. Shown in Fig. 4.1 is the implementation with this weight
tensor for r = 2. The outer product z;z is formed and it is interconnected to each
output y; by weight tensor wyji; since the diagonal terms 2 in this case are all 1,
only nondiagonal terms contribute to form the output. With the above expression

for the weight tensor Eq. 4.3 can be rewritten as follows:

M N
y = sgn{ 2_:1 yr" (; z7z;) ) (4.5)

The above equation suggests an alternative implementation for higher order mem-
ories that are trained using the outer product rule. This is shown schematically in
Fig. 4.2. The inner products between the input vector and all the stored vectors z™
are formed first, then raised to the r-th power, and the signal from the m-th unit
is connected to the output through interconnective weights y instead of using an
(r + 1)-th order tensor wyj, j,...j, -

The second alternative implementation is to use nonlinear interconnections as
shown in Fig. 4.3 for a quadratic memory. The basic idea behind this scheme is that
the interconnection weight w;; between the i-th and the j-th neurons is determined
by not only the states of these neurons themselves (Hebbian learning)[17, 21] but
also the states of the other neurons as a sum of the interactions of r neurons:

yi = Sgn{Z( Z wij1j2‘“jr$.7’2 o x]r)le}

1 Jardr

= sgn{z w,-]-;cj}, (46)
J
where

Wij = Y Wijjpeiy i+ Ty (4.7)

j2"‘jr

If y™ = z™, then the memory is autoassociative, and in this case the output can be
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I3

Figure 4.1 Quadratic associative memory for N = 3.
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Figure 4.2 Outer product, r-th order associative memory.
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Figure 4.3 Quadratic mappings implemented as nonlinear interconnections.
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fed back to the input resulting in a system whose stable states are programmed to be
the vectors z™. This becomes a direct extension of the Hopfield network[4, 17, 26]

to the higher order case.

4.2 Calculation of signal-to-noise ratio

Assuming that £ = z™ is one of the stored vectors, y; becomes

N
w o= sgn{N"y? + 3 y}”(Z 7}) )
=1

m#n
= sgn{ Ny} + m(z )} (4.8)
where the first term is the desired signal term, n; is a noise term, and thresholding
weight is set to zero.
The expectation value of n;(z") is zero if the bits that comprise the stored
binary input and output vectors are drawn randomly and independently having
equal probabilities of being +1 or —1. If this is the case, then the term E] L T

for m # n will have a binomial distribution with zero average and a variance of N,

since

EQ zpal) =) 6w, E(D_ ap ) = > b (4.9)

tt! tt mm/' mm’

where §;; is the Kronecker delta function. The variance of n, is calculated as a 2r-th

moment of the binomial distribution,
N N
BOrf) = (M 1) (Y - 20 (N) &
= (M-1) Z_%?N?T-J( ) Z k’( ) (4.10)

where (%)N Nk (]Z ) is the j-th moment of binomial distribution. The variances
are, thus, given by (M — 1)N, (M —1)(3N? —2N), (M —1)(15N3 —30N? +16N),
and so on for the cases r=1, 2, 3, ---.. We can estimate easily the variance for

a large r by approximating the binomial distribution as a Gaussian distribution
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using DeMoivre-Laplace Theorem[30] such that the variance is a 2r-th moment of

Gaussian distribution of zero average and a variance N. Then the variance becomes
asymptotically (M — 1)N"(2r)!/(27r!).

The following is another approach to calculate the noise variance:

Enl) = B(L X o™ X X afap---afiafag o2l

m#n m'#£n J1J2+dr S182°8p
! 1 ’
m!, . m m!'_n _n n
Loy Lsy 00Ty T Tg, ‘Tsr)

= ™ oM™ ... g™
= B(X > X efal--ofefal ol
MFN J1J200Jr $1525r

7 n n n n n
TG TG XL TS T T ). (4.11)

In the above, we used the facts that different stored vectors are uncorrelated (i.e.,
for m # m') and y = 1. Then, the variance becomes (M —1)Q(N, r), where Q(N,r)

is the number of possible permutations such that
5’ilt1 6i2t2 et 6‘i,-t,- =1 (4.12)

where the index set {i,...,%,,%;,...,%.} spans all the possible combinations pro-
duced by the index set {j1,...,7r,81,-..,8-} in Eq. 4.11. The variances driven from
this approach are the same as those from the previous approach. We will derive
lower and upper bounds that for large N provide us with a good estimate of the

variance for any order r, which will justify our previous argument.

Proposition 11 The total number of permutations, Q(N,r), for which FEq. 4.12

holds, satisfies the following relationship:

Py, 2 (24’") P - D < Qi <oy

where P(m,n) = m!/(m — n)!.

Proof Thenumber of ways of making r pairs of 2r items is (2r—1)(2r—3)--- (3)(1) =

(2r)!/27r!. The items that we are concerned with are the indexes i;,¢;, and each of
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these indexes can take one of N values. We can only select the values of half these
variables (N" possibilities) and for each of these choices we can create r pairs. Hence
the upperbound is N"(2r)!/2"r! that is the same as one derived from the Gaussian
approximation. This is an upper bound because we have overcounted for different
pairings of variables that have the same value.

The initial lower bound is derived if each pair has a different value from all others,
which eliminates the possibility of overcounting. The number of possible ways to
satisfy Eq. 4.12 with the indexes in any two pairs not taking the same values is
P(N,r)(2r)!/27r!. This is an underestimate because all pairs that contain indexes
taking the same value should be counted once. We can thus improve the lower
bound by counting the number of ways these degenerate pairings occur and adding
them into the previous bound. For example, when two pairs out of r have the same
values with (247) choices, there are (24T) NP(N-1,r—-2)(2r—4)!/27=2(r —2)! possible
permutations where (2r — 4)!/2"=2(r — 2)! is the number of ways of making r — 2
pairs of 2r — 4 items. Therefore, Q(N,r) is lower bounded by P(NV,r)(2r)!/27r! +
()P, r —1)(2r — 4)!/27-2(r — 2)!, since NP(N — 1,7 —2) = P(N,r — 1).

4

We can get a very good approximation to the SNR using the approximations
of M -1 ~ M and Q(N,r) ~ N"(2r)!/2"r! which are very nearly true for the
interesting case r <« N:

N*

{(MN™(2r)lj2rr1}172

_ {%(%)_',}’ (4.14)

For example, the linear memory, r = 1, has an SNR ~ (N/M)Y?, the quadratic

SNR =~

memory, r = 2, an SNR of N/(3M)"/? and the cubic memory, r = 3, an SNR of
(N3/15M)1/2,

The diagonal terms in a high order memory wyj, j,..;, can be defined as those
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of which all the indexes j are not different. We form the weight tensor with zero

diagonal as follows:

rmylrxnxl -2 if js are all different, (4.15)

0 otherwise.

Wijijaemgr —

When the input is one of the stored vectors z" and the weight tensor has zero

diagonal, the output y; becomes

Yy = sgn{ Z Wiy ja-- ern .72 r} (4-16)
different j

= sgn{P(N,r)yf + o Y elal---alalal ol )

m#n  different ;
where the first term is a signal term and the second a noise term as before. The
variance of the noise term is easily shown to be (M — 1)P(N,r)r! using Eq. 4.9.
Therefore, the SNR becomes

SNR = {%}1/2 ~ {(7) /M}l/2 (4.17)

which can be approximated as (N”/Mr!)}/2 for r < N.

4.3 Capacity

The SNRs that are calculated in the previous section are ready to be used for
deriving capacities of higher order associative memories of two cases[25, 48]: one is
the case that most of the stored data are recalled correctly and another is the case
that almost all of them are recalled correctly.

The idea for the former case is
N
P(correct) = (1 - Pe) =1-—¢ (4.18)

since 1 — NP, =~ (1 — P.)V ~ exp(—NP,) for NP, < 1, whereas for the latter

)MN

P(correct) = (1 - P, =1—c¢, (4.19)
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where (0 <)e < 1 and P, is the probability of error per each bit under the assump-

tion that noise has Gaussian distribution according to the central limit theorem[30]:

Let {x;} be a sequence of mutually independent random variables and
let x = x; + --- 4+ x,. Then the density of x properly normalized tends

to a normal distribution as n — oo.

In the first case we can easily obtain an estimate for the capacity of an r-th order
memory by equating the signal to noise ratios of the linear and r-th order memories
and solving for M,, the number of stored vectors that will yield the equality, since
P. is a function of SNR. For r small compared to N, comparing its value with the

capacity M; of a linear memory([25, 48] we can obtain the relationship between the

capacities,
M, 27r!
— =Nl 4.20
And therefore the capacity is given by
TOT ’
NT27r! (4.21)

"~ 2log N (2)!

For example M, of a quadratic memory is M;N/3 and M; of a cubic memory is
M;N?/15. For large N increases in capacity are huge.

The capacity of the r-th order memory with zero diagonal can be shown com-

pared with that of a linear memory to be

M, _ (5)
= (4.22)

which is approximately N"=!/r! for r < N and a large N. And therefore

N
NT
L= () ~ . (1.23)
2log N 2rllog N

It turns out that this approaches more closely the capacity bound than the first

scheme.
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In the second case we need a little more algebra. From the assumption of Gaus-

sian distribution the probability of error can be derived
P. = Q(SNR) (4.24)

where
Qu) = \/%7 [ et (4.25)
With the approximation that Q(u) =~ 75}56-“2/ % the capacity of an r-th order

memory can be derived from Eq. 4.19

_ NT2"r!
T 2(1+r)log N (2r)!

M, (4.26)

For the zero diagonal memories, the capacity can be derived from the same

procedure,

21+ r)logN ~ 2(r+1)llog N’

M, (4.27)

4.4 Higher order bidirectional associative memories

In what follows we will consider briefly the case that interconnection weights of
higher order memories are bidirectional so that the output in the previous sections
also works as an input inversely[22, 45]. Let us take a look at Fig. 4.2 with modi-
fication that the output y is also applied to the system as an input in the reverse
direction and the input z can be obtained by thresholding the value in the way that

y was obtained. Then, z and y are related as follows:
M Ny
zi = sgn{ X =L ofw) ), (4.28)
m=1 Jj=1

Yy = sgn{ Z;l y;”(z x:"x,)r} (4.29)

=1

More generally, multiple associations can be taken into account as follows[7]: as

a simplest case,

wie = 3Ty (4.30)
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Then,
T, = sgn{Zw,-jkyjzk}, (4.31)
ik
Yy; = sgn{Zwijk:vizk}, (4.32)
tk
Zp = sgn{Zwijkziyj}. (433)
]

This kind of association is bidirectional and the SNR can be easily derived from the
analysis similar to one that was done previously. This is useful for storing multiple
associations and page modes in data storage. We can generalize this multiple as-
sociation to higher orders and introduce nonlinearities by making some of the data
appear multiply.

The convergence of the recall process of higher order bidirectional memories will

be discussed in the following chapter.

4.5 Optical implementations of higher order associative

memories

The outer product higher order associative memories described in the previous sec-
tion require basic components for their implementation: interconnection weights,
r-th power devices, and threshold nonlinearities[36, 37, 38]. In this section, we
present a variety of optical implementations using volume holograms to provide the
interconnection weights and optical or electro-optical devices to provide the required
nonlinearities.

We will first briefly discuss holography[9] and in particular the distinction be-
tween the use of planar versus volume holograms. The holographic process is shown
schematically in Fig. 4.4. In the recording stage with planar hologram (Fig. 4.4a)
the interference pattern between the reference plane wave created by collimating the

light from a point source using a lens and the wave originating from the object “A”
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Figure 4.4 Holographic recording and reconstruction. a. Recording; b. Recon-

struction.
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is recorded on a planar light sensitive medium such as a photographic plate. When
the developed plate is illuminated with the same reference wave, the field that is
diffracted by the recorded interference pattern gives a virtual image of the original
object, which can be converted to a real image with a lens. The reconstruction of
the hologram is thus equivalent to interconnecting the single point from which the
reference plane wave is derived to all the points that comprise the reconstructed
image. The weight of each interconnection is specified by the interference pattern
stored in the hologram. Volume holograms are used in the same way except that
whereas a planar hologram records the interference pattern as a two-dimensional
pattern on a plane, a volume hologram records the interference pattern throughout
the volume of a three-dimensional medium. The disparity in the dimensionalities of
the two storage methods results in marked differences in the capabilities of the two
processes.

One of the differences is explained with the aid of Figs. 4.5a and 4.5b where the
reconstructions of both a planar and a volume hologram are shown. Each hologram
is prepared to store the two images “A” and “O” by double exposures with each im-
age being associated with a reference plane wave that is incident on the hologram at
a different angle. Each reference plane wave is generated by a separate point source
and thus the reconstruction of a hologram with the two reference waves is equivalent
to interconnecting two input points to all the points on the reconstruction plane.
In the case of the planar hologram, however, when either one of the reference waves
1s incident both images are reconstructed in a way that the corresponding image is
overlapped by the shifted image of another one unless the images are multiplexed
in some way[29]. This implies that we cannot in this case independently specify
how each of the input points is connected to the output. In contrast, because of the
interaction of the fields in the third dimension[20] the volume hologram is able to

distinguish the differences in the angle of incidence of the reference beam and when
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the reference for “A” illuminates the medium, only “A” is reconstructed and simi-
larly for the second pattern. When both input points are on simultaneously, each
is interconnected to the corresponding output independently. It can be generalized
for multiple input points. Thus volume holograms provide more flexibility for im-
plementing arbitrary interconnections, which results in efficient three-dimensional
storage of the interconnection weights needed to specify the higher order memory.

Another way of drawing the distinction between planar and volume holograms
is in terms of the degrees of freedom. As an instance, the implementation of a
quadratic memory whose dimensionality of input is N requires approximately N3
interconnection weights for the third order interconnection tensor. The number of
degrees of freedom of the planar hologram of area A is upper bounded by A/é? while
that of a volume hologram is limited to V/83, where V is the volume of the crystal
and 6 is the minimum detail that can be recorded in any one dimension[34, 39, 46].
Equating the number of degrees of freedom required to provide the interconnection
weights to those that are available, the crystal volume is determined to be at least
V = N36° whereas a planar hologram to do the same job would require the area A
of N362. For comparison, a network with N = 10% can in principle be implemented
using a cubic crystal with the length of each side being I, = N§ = 1 cm, but
a square planar hologram is required to have the length of each side of at least
I, = N*% = 0.33m at § = 10 um. Thus, the volume hologram offers a more

compact means of implementing large memory systems.

4.5.1 Quadratic associative memories

There are several schemes for fully utilizing the interconnection capability of volume
holograms[39]. For the implementation of quadratic memories we use volume holo-
grams to fully interconnect a 2-D pattern to a 1-D pattern (N? — N mappings) and

also the reverse (N — N?). The geometry for recording the weights for both cases
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is shown in Fig. 4.6a and the reconstruction geometries are illustrated in Figs. 4.6b
and 4.6c. The circles represent the resolvable spots at the various planes in the
system. The waves emanating from input points are transformed into plane waves
by the Fourier transform lenses L; and L, and interfere within the crystal, creating
volume gratings.

The weights are loaded into the volume hologram with multiple holographic
exposures in the system of Fig. 4.6a that has an N — N? — N? storage operation.
For the N — N? mapping (Fig. 4.6b) that has an N> — N? — N recall operation
as will be illustrated later, in reading out the stored information, a single source in
the input array reconstructs 2-D images consisting of N? pixels that it is associated
with. The rest of the images, which are associated with the other input points,
are not read out because of the angular separability of volume holograms. The
counterpart to this scheme, shown in Fig. 4.6c, implements an arbitrary N — N
mapping. This setup is basically the same as that of Fig. 4.6b except that the roles
of the input planes have been interchanged or equivalently the direction in which

light propagates has been reversed.

N? » N Schemes First, we consider a method by which the full third order
interconnection tensor is implemented directly with a volume hologram. Recall that

if the weight tensor is trained using the sum of outer products then it is given by

M
Wik = Z yZ"w;"wZ‘, (4.34)
m=1

where z7" is an input vector and y[* its associated output vector. Such a memory is
accessed by creating an outer product of the input vector and then multiplying it

with w;;x as shown in Fig 4.1,

Yi = Sgﬂ{z > wijkmjwk}- (4.35)

1=1k=1
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The volume hologram is prepared using the set-up in Fig. 4.6a. First, the outer
product matrix of the input vector, z7'z7, is formed on a two-dimensional spatial
light modulator (SLM)[49]. Another one-dimensional SLM whose transmittance
represents the output vector y™ is placed on the other input plane, and the two
SLMs are illuminated by coherent light. The transmitted waves are then Fourier
transformed by lenses L1 and L2 to interfere within the crystal volume to create
index gratings. This procedure is repeated for all M associated input—output pairs
so that a sum of M interference patterns is created in the crystal. For the quadratic
associative memory with outer product rule whose capacity is fully used, this involves
M, exposures as given in Eq. 4.20.

We will now describe another method of recording the weight tensor in the
volume hologram that has fewer exposures and can be used not only for the outer
product scheme but also for recording any given weight tensor. The same basic
recording architecture of Fig. 4.6a is used in this case, too. In the first exposure,
the top light source in the linear array is turned on while the 2-D SLM contains
the matrix wy;x. When the SLM is illuminated with light coherent with that of
the point source, the crystal records the interference pattern between the Fourier
transform of the image w,j; and a reference beam that is the plane wave generated
from the top light source. In the next step, the second source is turned on while
the SLM stores the matrix wojr and so on. The connectivities for all the points in
the linear array at the input are sequentially specified and the memory training is
completed when all N exposures have been made. The disadvantage of this method
relative to the direct outer product recording scheme is the need to precalculate the
interconnection weights but it has the advantage of fewer exposures (N versus M)
and greater flexibility in choosing the training method.

The architecture in Fig. 4.6¢ is used to access the data stored in the hologram

by either one of the recording methods described above. The 2-D SLM is placed at
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the input plane to contain the outer product matrix ;zx of the input vector. The
light from the N? input points is interconnected with the N output points via the
recorded interconnection kernel w;;z. A linear array of N photodetectors read out
the output.

It is important to restate at this moment that this particular implementation
achieves the quadratic interconnections by first transforming the N input features
(i.e., the N components of the input vector z) into a set of N2 features via the outer
product operation. The result is that although the interconnections are quadratic
with respect to the N original features they are linear with respect to the N? trans-
formed features. This allows the application of error driven learning algorithms for
linear networks such as the Adaline[50] where the interconnections are developed by
an iterative training process. The operation of such a learning scheme is illustrated
in Fig. 4.7, which shows the same basic architecture as Fig. 4.6¢c with feedback from
the output into the input. Each iteration consists of a reading and a writing stage.
During the reading stage, the interconnection weights stored in the crystal are tested
with a particular item to be memorized by illuminating the 2-D SLM, which contains
the outer product matrix z™z™ and the output is formed on the detector array. In
the subsequent writing stage, the error pattern generated by subtracting the desired
output from the actual output pattern, ¢ = y* — 3", wije? 2], is loaded into the
1-D SLM and both SLMs (the 2-D SLM still contains z™z™) are illuminated with
coherent light, forming a set of gratings in addition to the previously recorded grat-
ings. The procedure is iteratively repeated for each item to be memorized until the
output error is sufficiently small. This algorithm is a descent procedure designed to
minimize the mean squared cost function E; = 1 Yo (TN, 1, Wikt T TT —y7)?

by iteratively updating the interconnection values.
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N — N? Schemes The N — N? mapping capability of the volume hologram that
is the inverse of that required for the architectures just described can also be used
to implement quadratic memories. The basic idea behind this scheme is illustrated
in Fig. 4.3, which shows the interconnection between the i-th and the j-th neurons
whose weight w;; is decided by the states of the other neurons as well as the states

of the ¢-th and the j-th neurons themselves as a linear combination of all of them,
N

w;; = Z Wik Tk (436)
k=1

The overall result is exactly the same as above except for the order of operations,

Yi = {Z(zk: wijkmk)ivj}- (4.37)

As implied by the equation, it consists of two stages; interconnection of an input
vector z to a matrix w;; by the weight w;;;, and vector matrix multiplication[14]
of the input vector ¢ and the weight matrix w;; to form an output vector y whose
optical implementation is shown in Fig. 4.8. The input vector on the left is the
transpose of the input vector on the right placed in a one-dimensional SLM. The
portion of the system on the left side of the SLM is the vector matrix multiplier
and it works as follows: Light from each input point is imaged horizontally but
spread out vertically so that each source illuminates a narrow, vertical area on the
2-D SLM whose reflectance corresponds to the weight matrix w;; in Eq. 4.36. The
reflected light from the SLM travels back towards the input and a portion of it is
reflected by a beam splitter and imaged horizontally but focused vertically onto a
1-D detector array. The output that represents the vector matrix product between
the input vector and the matrix represented by the 2-D reflectance of the SLM can
be fedback as an input.

The weight matrix, in this case, is not fixed but rather computed from the input

via a volume hologram by exposing the right-hand side of the SLM as shown in the
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figure. The optical system to the right of the 2-D SLM in Fig. 4.8 is the same as
the N — N? system of Fig. 4.6b. The volume hologram that has been prepared
to perform the appropriate dimension increasing operation (N +— N?) transforms
the light distribution of its one-dimensional SLM into the input dependent matrix
of weights given by Eq. 4.36. This system is functionally equivalent to the previous
system except it does not require the use of a 2-D input SLM. The 1-D devices

utilized in this architecture are easier and faster to use in practice.

4.5.2 Cubic associative memories

For cubic memories, the fourth order tensor w;jx is required to provide the inter-

connection weights,

Y, = sgn{z wijkle:vk:vl} (438)
ki
where
M
wiip = Yyl zy ey (4.39)
m=1

where 27" and y are associated input—output pairs as before. Alternatively, this
equation can be rearranged to give the idea of implementation,

yi = sga{ (3 wimesz)z; )
ikl

J

= sgn{z wijxj}, (4.40)

where the interconnection weight w;; between the i-th and the j-th neurons is de-
cided as a sum of the interactions of two neurons,
wi; = Zw,-jklkal. (4.41)
Kl
According to Eqs. 4.40 and 4.41 there are two operations; interconnection of
the outer product matrix zzx; of an input vector and a weight matrix w;; by the

weight tensor w;;k, and vector matrix multiplication of the input vector and this
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weight matrix to form an output. It is analogous to the implementation of quadratic
memories using N +— N? mapping except that it needs the N3?2 — N3/2 mapping
instead to match the available degrees of freedom of the volume hologram[39].

In the recording stage, two outer product matrices z'z]* and y"z7 are formed
on two 2-D input SLMs as shown in Fig. 4.9. The two outputs of the SLMs that are
illuminated with coherent light are Fourier transformed by lenses L1 and L2 to make
an interference pattern in the volume hologram, which is equivalent to a dimension
increasing operation N — N% — N*. This procedure is repeated for all M pairs
of associated inputs and outputs. The reconstruction process shown in Fig. 4.10 is
basically the same as one in Fig. 4.8 except that it makes use of an N3/? — N3/2
mapping method with volume hologram instead of an N — N2 mapping method for
quadratic associative memories and that therefore it needs a 2-D input SLM. The

reconstruction is a dimension decreasing operation N* — N? — N.

4.5.3 Power law implementation

The N — N? mapping technique can be used in conjunction with its inverse, the
N? — N mapping, to implement the higher order associative memory with outer
product rule using two volume holograms, a 1-D SLM, and a 2-D SLM. Shown in
Fig. 4.11 is a schematic diagram of such a system. The first hologram is prepared
with the multiple exposure scheme discussed earlier (Fig. 4.6a) where for each expo-
sure, a memory vector 2™ in the one-dimensional input array and one point in the
two-dimensional (v/M x v/M) input training array are turned on simultaneously.
The second hologram is prepared by a similar procedure except that the associated
output vectors are recorded in correspondence to each point in the two-dimensional
training plane. After the holograms are thus trained, an input vector is loaded into

the one-dimensional input array and the correlations between it and the M stored

vectors are displayed in the middle output plane[5, 27, 29, 36, 37, 38]. A 2-D SLM
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Figure 4.9 Optical interconnection for cubic associative memories. a. Recording;

b. Reconstruction.
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can be used to produce an amplitude distribution that is the square of the incident
correlation amplitudes for the quadratic memories or the r-th power for the r-th or-
der memory in general. The processed light then illuminates the second hologram,
which serves as an M — N interconnection, each correlation peak in the middle
SLM plane reading out its corresponding output vector and forming a weighted sum
of the stored data on the one-dimensional output detector array. This is the alter-
native optical implementation of the system shown in Fig. 4.2, according to Eq. 4.5
with the 2-D SLM performing the r-th power law nonlinearity at the middle plane
and the two volume holograms providing the interconnections between the input and
output. If the 2-D SLM is removed from the correlation plane this system reduces
to the Hopfield—type linear associative memory.

The implementations of bidirectional memories are basically the same as those
that were described already except that the input and the output are bidirectional.
The system in Fig. 4.11 can be used to implement r-th order bidirectional associative

memories described by Eqgs. 4.28 and 4.29 assuming that light goes in both directions.
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Chapter 5

Robustness of Higher Order Memories

The performance of any practical implementation of the higher order memories,
discussed in the previous chapter, will be degraded by the unavoidable presence of
internal or external noise, which will affect the capacity and dynamic range of the
system. The “robustness” of associative memories can be considered not only ro-
bustness for errors in the input (error tolerance)[25, 47] but also robustness for noise
inherent in the memory components (noise sensitivity)[16, 44]. It can be explained
in a way that the capacity and robustness of the memory are complementary by in-
troducing redundancies given the number of degrees of freedom[38] as will be shown
in SNRs we are going to derive as a measure of performance of the network. There
are several types of noise that can be considered and they depend on the learning
algorithm and the architecture of the systems that are to be implemented. When a
simple sum of outer product learning rule is employed, there are two kind of noise:
one is cross talk noise among stored data that does not depend on the system noise;
the other is system noise that depends on architecture. For example, if the input
is buried in noise its effect may be reduced by threshold operation on each input
component before being applied to the network, called pre-thresholding, and system
noise limits the dynamic range of the network weights and other components.

In the case of autoassociation and bidirectional associations, an energy function
can be used to describe the convergence of the memory recall process and error
correcting properties of associative memories. We will describe the noise sensitivity
of higher order memories in general, and when they are trained with the sum of
outer product learning rule we will derive their characteristics on several types of

noise that depends on the architecture, including the effect of dynamic range of the
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memory. Without loss of generality the distribution of noise will be assumed to be
normal according to the central limit theorem[30] as in the previous chapter.

Dynamic range of the system is bounded by characteristics of devices that are

used, which puts a limitation on accuracies of computation.

5.1 Error tolerance of higher order memories

In an autoassociative or bidirectional associative memory, robustness against input
errors as well as convergence property of the recall process can be explained by using

an energy function of the network.

5.1.1 Autoassociative memories

Chen and his co-workers[7] introduced an energy function[8, 17, 18] for the r-th

order autoassociative memory with feedback and outer products as follows:

M
E, =-) <z™z>* (5.1)

m=1
where < -,- > denotes an inner product of two vectors. The change in the energy

due to a change 6z in the state of the network was shown to be monotonically

decreasing for odd r:

= —(r+1)3 68z Y Wjigei T Ty TG — Ry (5.2)
U v
where
r+1 r + 1 . .
R =>> ( ; <z™z>M< g™ bz > (5.3)
m j=2

The first term in Eq. 5.2 is always nonpositive because of the specification of the
update rule: éx; > 0 if ;. wij,jpj @iy Tj, -+ T4, > 0 and vice versa. Chen et
al.[7] showed that the second term is also nonpositive by showing that R, is an

increasing function of r for r odd and R; > 0.
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For an even order autoassociative memory, convergence can be proved only if
it is updated in an asynchronous way, even though in simulations in the following
section quadratic autoassociative memories consistently converge as well when using
synchronous updating[36]. The fact that the energy is not always decreasing when r
is even may actually be helpful for getting out of spurious local minima and settling
in one of the programmed stable states, which are global minima in a region of
the energy surface. A descent procedure for which the energy is always decreasing
cannot escape from local minima since there is no mechanism for climbing out of
them. As an example, consider a quadratic memory, i.e., =2 (even), whose energy

function is given by

Ez = — Zwijkw,-:cjwk. (54)

ijk
And therefore the change in the energy becomes

AE2 = -3 Z wijk:vjxkéxi -3 Z w,-jk:vk&ci&vj — Z wijkéwi&nj&xk

ijk ijk ijk
= —-326m,~(2x}” <z™z >2) - 32 <z™z><z™ bz >?
N m m

- Z < z™ bz >3 . (5.5)

The first term is nonincreasing by the updating rule, but the second and third terms
can be increasing. If the state vector z is close to one of the stored vectors z”, then
the first term becomes dominant, and thus the energy will be nonincreasing, causing
the system to settle at z = z". If z is not close to any of the stored vectors, then
all three terms in the above equations are on the average comparable to each other.
Since two of them are not nondecreasing, the energy function may increase and it
may be possible to escape from local minima.

The following is the analysis for the above argument by calculating the SNR

between the decreasing signal term and the other terms for one step convergence[25]:



—T5-

Let the input be one of the stored vectors with random errors, 8z, such that

<z',z>=<zg",2" - bz >=(1-2p)N (5.6)

where < 2™,6z >= 2pNény, and 0 < p < 0.5 where §,,,, is one only for m = n and

zero. Then, Eq. 5.5 can be written

AE, = —3(2pN)(1-2p)’N? — 32630,(2 it < z™ )
m#n
—3(2pN)’(1-2p)N -3 > <z™, 2 >< z™, bz >*
m#n
—(2pN)’ = > < 2™ 6z > (5.7)
m#n

The expectation value of AE; becomes
E{AE,} = —{3(2pN)(1 — 2p)’N* + 3(2pN)*(1 — 2p)N + (2pN)*} (5.8)

assuming that z™ and 6z are uncorrelated for m # n, that is, E{< z™,d8z >} =

E{< z™,z >} = 0 for m # n. The noise term is

n(z) = —325$,(Zx <z ,:c>)——3z <z™z><z™ br >
m#n m#n
- <z™ bz >3, (5.9)
m#n

Then n(gv_)2 has three squared terms and one cross term having nonvanishing expec-
tation value. We will calculate E{n?} one by one with the help of Eqgs. 4.9, 4.11,
4.10, 4.12, and 4.13 as follows:

B{( 0 3 o <22 >7)'}
= ]5){2:5:1:115.’1:12 Z .’I?u ,2 Z $ 37 w 51" w,nxpx]axu}

1112 mm'#n J132J37a
= 22pNE{Z ) lew%w%x;'}lmﬂzﬁ,xnwﬂ}
m#n j1724374

= 2’pN(M —1)(3N? — 2N), (5.10)
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E{(3 <z™z><z" 6z >2)2}

m#n

m
= E{ > Zw,l 4k 'z i, Z A 1,']4 5$116$126$]36$“}

mm'#n 142 J1523374

= NE{Z Z 5T T, 1465”116‘”125%35%4}

m#n j1j2j3J4

= N(M -1)2'{3(pN)* — 2(pN)}, (5.11)

‘maam m m m m m . . . . . .
= E{ > > RS ik A 63!:115:1:]25%36:0]46:0]56:5]6}

= (M —1)2%{15(pN)® — 30(pN)? + 16pN }, (5.12)

E{Z&wi(Zx <z™z>% Y <z™ 5:z:>}

m#n m'#n

= E{ Z Zmn T T, Z T ;’2’ ;’; ;’:6%15%26&0]351’“}
mm'#n i1i2 J1325354

= N(M —1)2*{3(pN)? — 2(pN)}. (5.13)

Therefore, the signal-to-noise ratio is given by

SNR ~ (2pN)'2{3(1 —2p)*N* 43 - 2pN(1 — 2p)N + (2pN)?*}

{M{18(3N2 — 2N) + 15N23(3pN —2) + 25{15(pN)? — 30pN + 16}}}"”°
(20)!/2(3 — 6p + 4p*)N°/2

= - (5.14)
{M{(54 + 360p + 480p2)N2 — (276 + 960p)N + 512} }
As an example, consider the case of p = 0.1. Then, for N ~ 102,
. N5/2 N3
SNR 1.09 - ~011<M) (5.15)

{M(94.8N2 — 372N + 512)}

while, for p < 1 and p = .5, SNR ~ \/E(LX—;-) 12 and 0.05 (%)1/2’ respectively.

For a comparison, consider a linear memory,

AE, = —2210”:1: ox; — Zw”&c ox;
iy 17
= =2(2pN)(1-2p)N —-2> <z™z><z™ bz >
m#n
—(2pN)? = > <z™, 6z >2. (5.16)

m#n
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Then, the SNR is easily derived as
(pPN)?(1 = p)N
{M{(1+3p)N - 23}
In Fig. 5.1 are two SNRs plotted as functions of p when both memories store full
capacity, My = M;N/3, and SNRs are normalized by \/]—VT/E

SNR =~

o (5.17)

For several step convergence, in general, we assume the following

<zMz> = (1-2p)Népnn

<z™, bz > = 2dNé,, (5.18)

where p is the ratio of errors compared with the dimensionality of data, N, 6,,, is
one only for m = n, otherwise zero, and < 8z, éx >= 226 N where § N is the number
of flipped bits at each iteration and so 0 < § < 1. We expect d to be positive and

close to 6. Then
E{AE,;} = —{3(2dN)(1 — 2p)’N? + 3(2dN)*(1 — 2p)N + (2dN)*} (5.19)
and

E{n’} = 9-226N(M —1)(3N? —2N) + IN(M —1)2*{3(6N)? — 2(6N)}
+ (M —1)2%{15(6N)® — 30(6N)* + 166N}

+ 6N(M —1)2*{3(6N)* - 2(6N)}. (5.20)

Therefore, the SNR is given by

(2dN)V2{3(1 — 2p)2N? 43 .2dN(1 — 2p)N + (2dN)?}
{M{18(3N2 — 2N) + 15N23(36N — 2) + 25{15(6N)? — 306N + 16}}}
(2d)Y2{3(1 — 2p)? + 2d(1 — 2p) + 4d2} N*/
{M{(54 + 3606 + 48062) N2 — (276 + 9606) N + 512}}

SNR =~

1/2

YL (5.21)
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Figure 5.1 Normalized SNRs of energy functions for quadratic and linear memories

when full capacities are expended.
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5.1.2 Bidirectional associative memories

We will define the energy function of this case according to one in reference [22],

M M
E,=-) <y™y><ztz> -)Y <z"z><y"y>". (5.22)
m=1 m=1

Then, changes in the energy due to changes 6z and 6y in the states of the network

are given by,

AE? = E.(z + éz) — Er(z), AE! =E.(y+dy) — E.(y). (5.23)

It 1s enough to see the behavior of one of them and the argument for the convergence
of higher order bidirectional memories will be similar to the previous one. The idea
is described briefly.

Let us see a quadratic case as a simple one,
M No \
zi = sgn{ Y o vlu)*} (5.24)
m=1 j=1
M N ,
Y = sgn{z y;"“(z zit ;) } (5.25)
m=1 i=1

Then, energy E; and its change AE] are given by,

M M

E; = — Z <y"y><z"z >2 — Z <z™z><y"y >2, (5.26)
m=1 m=1

AB; = —(Fam<ymy>?Y)-sz-2(Y <y™y><z”z> z™)-6z (5.27)

—Y o <ymy><z™ x>t (5.28)

The first term is nonincreasing because of the updating rule. The second term can
be thought to come from multiple associations discussed in the previous chapter, and
the updated value of z; is given by sgn{Ejk w,-jkxjyk} where wijx = 3, 2" 2Ty
Therefore, it will be nonincreasing. And the third term can be increasing. Around
the state close to stored associations the first and the second terms are dominant

and energy function will decrease. Just like the previous argument it may help
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the state to reach global minima by providing the mechanism to escape from local
minima that the energy function may increase at the states far from any of stored
data and decrease around the states near stored data.

This can be generalized to higher orders with the same argument,

AE? = E.(z+6z)—E.(z)

~R, (5.29)

where

R =) <y™y>) (;) <z™ x> g™ br > (5.30)
m j=2

The first term is nonincreasing, the second term can be considered as a term of

multiple associations, and the term R, only may be increasing.

5.2 Simulation results of quadratic memories

Numerical simulations of the quadratic memory using outer product storage were
performed on Egs. 4.3 and 4.4 for r = 2. For an autoassociative memory (i.e.,
y™ = 2™), feedback can be used in a fashion completely analogous to a Hopfield-type
network[12, 17]. The simulations were done for autoassociative case with feedback.
Binary valued vectors in {1, —1}" were randomly selected. Two sets of experiments
are displayed in Table 5.1. The first column in Table 5.1 lists the number of 63-bit
vectors that were stored by sum of outer products and the second column lists the
number of vectors that were correctly recalled in each case. Correct recall means
that the vector obtained by implementing Eq. 4.3 exactly matched the input that is
one of the stored vectors. The value in the parenthesis is the number of incorrect bits
in the case of incorrect recalls. Notice for instance that when 140 vectors were stored

only three were not correctly recalled. This represents a dramatic increase in the
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N =63 N =32
Stored vectors|Stable vectors || Stored vectors|Stable vectors | Attraction radius
60 60 8 8 9.0
70 70 16 16 8.3
80 9 (1) 24 24 8.3
90 89 (1) 32 32 8.0
100 98 (1) 40 39 7.0
110 108 (1) 48 45 5.0
120 119 56 49 4.8
130 128
140 137
150 140

Table 5.1 Computer simulations.

capacity compared to the linear associative memory[12]. Also shown in Table 5.1 are
the results of an experiment with 32-bit vectors. In this case the radius of attraction
(i.e., the average number of bits that the initial input differs from a stored vector
and still converges to it) was also measured. The decrease in the radius of attraction
that accompanies the increase in the number of stored vectors is very gradual.

The computer simulations are consistent with the capacity result, M, = M, %’—,
given by Eq. 4.20. For instance, for N = 63, we expect an increase in storage
capacity by a factor of approximately 20. If we take as 140 the number of vectors
that were correctly stored in this case, then we calculate the number of vectors that
can be stored in the linear memory to be 7, which is about right. For N = 32, the
number of vectors that can be recalled correctly is about 40, which implies that the

increase in the storage capacity is a factor of 10.
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5.3 Sensitivity of higher order associative memories
5.3.1 Analysis

Consider, first, the single r-th order expansion with noise added to both the inputs

and the weights,

Y= Sgn{ > (Wi, + 0 )@y -z, 405 )+ (wo + ng’)}» (5.31)

J1edr
where nj . is a collection of channel noise for the desired weight wy;...;, of zero

2

- a collection of input noise for the desired input

average and a variance 0., n

o
1o
&j, - -- x;, whose average and variances are given by zero and o2, and n¥ a threshold
noise of zero average and a variance o?. In what follows, a variety of architectures
(or implementations) of higher order memories will be discussed, which introduce

different types of input and channel noise.

Architecture I As the simplest case, the first order simple sum of outer product
learning rule is discussed with the assumption that noise is mutually independent
and interconnection(or channel) noise, which depends on the training method as
well as the architecture, is independent of the stored data. When the input is set

to be one of the stored data, Eq. 5.31 is reduced to

N
Y = sgn{Z(wij + ni) (2] 4+ nj) + n},"}, (5.32)
J=1
where w;; = ¥M_ y"z7. After expanding the sum, we have

Yyi = Sgn{Ny?+ <ghn" >yl 4 )yt <z 2 ot > +2_ni(ag +nf) + "3}’

m ’ (5.33)
where the desired signal term is Ny and the other terms constitute a noise term
whose average is zero; the third term describes cross talk noise not related to system

noise. The variance of noise term can be shown to be (M — 1)N(1 4+ ¢2) + No2 +



-83—

Tk
n¥

ik

Wik

Figure 5.2 Architecture I for r = 2.

Nol(1402)+0? using the assumption. Therefore, the SNR becomes approximately

N
M1 +02)+02(1+02)+0?/N°

SNR ~ (5.34)

When each input z;, - - - z;, is pre-thresholded before it is applied to the system

ir
we can also get the SNR of r-th order memory with sum of outer product learn-
ing rule in general as shown in Eq. 5.31 with the same assumption on noise and
wy;,...;, being YM_ yma .-z when the input zj ---z; is not pre-thresholded
but applied directly to the system (Fig. 5.2 when r = 2), noise will be added com-

ponentwise to be comparable in magnitude to the desired signal as will be discussed

later. Then, when the input is one of the stored samples,

w = sen{Nyp + (X o ng.g U+ 2 U <zt zt >
Jiedr m#n
+ Eylm Z x;’: ]r 11 Jr+ Z nl]l “Jr xal"'x?r+ J1-dr +n0} (535
m#n Ji-dr J1eegr

where the first term in the right-hand side is the desired signal term and the other

terms constitute a noise term n; of zero average; the third term is cross talk as
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before. The variance of the noise term can be derived with the help of Eqs. 4.9,

4.10, and 4.13,
!
E{n?} ~ (M — 1)N’{%L)'—' +02} + N'o2 + N'o%(1 + 02) + o2, (5.36)
rr!

assuming interconnection(or channel) weights are independent of each other, that

is, different permutations of the same index set result in separate channels,

E{nfy e My, } = BARG 150} = 8oy - 6 (5.37)

818y

whereas the case where the channel weights of different permutations of an index set
add up to one will also be considered, ending in a different architecture (Architecture

IT). Therefore, the SNR is given by

SNRz{ _ N } (5.38)
M{ZE 4 62} + 02(1 + 02) + 02/N*

When the diagonal terms are zero as in Eq. 4.15 and the input is one of the
stored vectors, Eq. 5.31 is written

w = sgn{P(V,r)yp+ (X 2l --zhnl g )up

different j

ot Y afeeap(a el 4n )

m#n different j

+ Z n;l.;ljr (x.’;ll tt x.‘;?r + n;:‘l“‘jr) + n,(L)U} (5'39)
{different} ;

depending on whether the input z;, - - - z;, has diagonal components where P(m,n)
is defined to be m!/(m — n)! as before. The first term is a signal, and the variance

of the noise term, the average of which is zero, is given by either
0? = (M —1)P(N,r)(r! + 02) + P(N,r)o2 + P(N,r)o2(1 + 02) + 02  (5.40)
or

0% = (M = 1)P(N,r)(r! + 02) + P(N, 7)o + N0 (1 + 02) + o2, (5.41)
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where Eq. 5.40 is for the case of having no input diagonal terms and Eq. 5.41 is not.
Then, the approximation P(N,r) & N” for r « N gives the SNR of both cases,

N™ }%

5.42
M(r!+02) + 02(1 + 02) + 0/N" (542)

SNRz{

Therefore, it can be concluded from Eqs. 5.38 and 5.42 that higher order mem-
ories of this architecture are less sensitive to system noise than lower order ones be-
cause system noise has less influence on their performance as the order increases. In
optical implementations the dynamic ranges of interconnection weights are bounded
because of device characteristics. Moreover, the weighted sum of input vectors to a
neuron can have bounded values. It is due to the noise in channels and in devices.

And it will be discussed in the next section.

Architecture IT In the case where the channel weights of different permutations
of the same index set add up to one, the calculation of the variance of noise is rather
simple for the memories with zero diagonal terms and the input zj, - -- z;, with no

diagonals, and then the SNR can be shown to be

N™[r! 3
NR ~ . .
SNR {M(l+0§)+afu(1+a§)+a§/Nrr!} (5.43)

When the input has diagonals, with the help of Lemma 12, the SNR can be derived

for r < N from
o = MP(N,r)r!(1 + 02) + R(N,r)rle?(1 4 02) + o2. (5.44)

Lemma 12 For all the possible index sets {j1,j2, -+, -} (1 < j1,d2, -, Jr < N)

the total number of permutations, R(N,r), of indezes s1,84,++, 8, such that

{317327"’731'}={j17j27""]"r}7 1SS17327"'7S1'SN (545)

is given by

P(N,r)r! < R(N,r) < N'rl. (5.46)
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Proof The lower bound is derived by considering the case of all indexes j having
different values and the upper bound by ordering the indexes k for any case of

indexes j.

Since it is a good approximation for r < N that P(N,r) =~ N”, the SNR is given
by Eq. 5.43, again.
With the memory having non-zero diagonals like Eq. 5.35 the variance of noise

becomes, according to Lemma 12

1
E{n?} = (M — 1)NT%;—?!-°- + MR(N, r)df, + R(N,r)afu(l + 02) + a?. (5.47)

The SNR in this case is given by

W=

NT
SNR%{ | } . 5.48
M{&L 4 r152} +rlo2(1+ 02) + o7 /N" o

2l
Therefore, it follows that this architecture renders the effect of system noise
comparable to that of cross talk between the stored samples even for the higher
order case.
In the following we will discuss the cases where the input is not pre-thresholded
(preprocessed) (IILIV), where the input is partially pre-thresholded (V,VI), where

memory noise depends on each of memory data (VILVIIL. --), and where the higher

order memory is implemented using a power law (XIII).

Architecture III We first take into consideration the case where input noise is
added componentwise to the input with the other same conditions given for the first
architecture and only one input array is used to perform outer product operation so
that input noise terms are added coherently. As an example, quadratic memories

with the outer product learning rule are considered (Fig. 5.3),

yi = sgn{>_(wijk + nl5y)(z; + nf)(zx + nf) + nd'}, (5.49)
ik
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Figure 5.3 Architecture III for r = 2.

If the input is one of the stored data, and w;j is 3°,, y7* 27«7, the output y; becomes

yi = sgn{N%!+ (2N <z",n° > + < z",1° >y’

+ Dyl <z™ a2 +n" > + Y nf(a] +nf)(af +nf) +nf}, (5.50)
m#n ik

where the first term N?y? is the only desired signal term and the signal value will
be statistically (N? + No2)y? due to the contribution of the term < z",n® >?% y2.
The variance of noise can be calculated with the help of Eqgs. 4.9, 4.10, 4.11, 4.12,
and 4.13 as follows: using the fact that the average and variance of < z™, z" + 2% >
are given by zero and N(1 + 02) when m # n,

E{(3 y" <z™ 2" +n° >2)2}

m#£n

= (M -1)3N*(1+a2)?, (5.51)

B{(2NV <207 > + < 2" u® >7)” — (No2)?}

= 4N3%02 +2N?%2, (5.52)
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2
B{ (3 ni(a? + n2)(af +nf)) "}
ik
= E{ E n;'lj{1k1n};'2k2 (m.;zl + n;vl)(w;bz + n.:;Z)(wzl + n;:l)(xzz + njl)}
J1j2k1ks
= oLB{Y (a} + n%)*(a} + n)?}
ik
= oL B{3 (1 +227n? + n2?)(1 + 2afnf + n?)}
ik

= 02(N?*+2N?%?2 +4No2+ (N(N —1)+3N)o?)

%

N%62(1 4 o2)? (5.53)

Thus, the SNR is

[V [

N2
R . .04
SNR {3M(1+a§)2+4NO§+a§,(1+a§)2+a§/N2} (5:54)

This can be extended to the r-th order memories,
yl = Sgn{ Z (wljl“‘jr + n%ljr)(xﬁ + n_:;;l) e (er + n;:,-) + ng}} (5'55)
]1 .v‘jr
With the sum of outer product learning rule and an input being one of memory data
it can be written

“(r
n = Sgn{N"'yln +ylnz (k)NT-k <£n,ﬂz >k + Z y{n < zm,:_l:"n +E:1: >7
k=1 m#n

i1
where the first term is a desired signal as before and the other terms constitute a
noise term with an average of ((;) N-1g2 4 .. -)y," due to the even order terms of
< z",n® >* that is negligible compared with N7y for large N. For r < N the

variance of noise can be obtained as a sum of the following terms:

E{(Z yt < 2™, z" +n” >’)2}

m#n
= E{ ({; <z™ z" +n° >2")2}
= (M- 1)N’@(1 + a2)", (5.57)

2rp!
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Bl 55 (-t <avar )= () ot

k=1
= N¥ 1752 + O(N*¥?*risd), (5.58)

{( E nl]l Jr Zj, it nx (a;;lr + nfr))2}
J1eegr

= 2B{(3 (a7 +n?)?)’}

~ N'o2(1+a2), (5.59)

The SNR, thus, follows

DO

SNR ~ { j N } . (5.60)
M%}%—(l +02) + Nr-1r262 4+ 62 (14 02)" + 0} /N”

When the diagonal terms of the memory are zero and the input is one of the

memory data, the signal term will be P(NV, r)yJ", the variance of noise can be calcu-

lated for r < N by the similar procedures, and the SNR can be obtained with the

approximation of P(N,r) =~ N",

N

N
NR =~ . .
SNR {Mr!(l +02)"+ N-1r2e2 + 02(1+ 02) + af/N’} (5.61)

The effect of input noise, as shown in Eqgs. 5.60 and 5.61, becomes outstanding
in this architecture.

When one input array is used per each component of outer product operation,
e.g., r distinct arrays for r-th order memory, so that the input noise terms are added

in an incoherent way, Eq. 5.55 is modified to

v =sgn{ 3 (Wi, + 1l )(@s +0) - (5, +n) +np), (5.62)
1
where n®!, ---, and p® are mutually independent of each other. With the same

input and memory, signal is N"y* and noise variance is given by

o~ N¥1po? o+ (M- NT{(ZT 2(r2(1r( 1)1))' z}+NT 2(1+0) +o 2 . (5.63)
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And the SNR, therefore, is given by

r 1
SNR =~ { — ol }2. (5.64)
MEL(1 + 32502) + N'-1ro2 + 02(1 + 02)" + o7 /N”

When the memory has zero diagonals, the SNR is

W=

N’I‘
= . 5.65
SNR {Mr!(l +02)+ N™=ro2 + 02(1 4+ o2)" +at2/NT} (5.65)

Compared with Egs. 5.60 and 5.61, input noise effect is reduced by 1/r in this case.

Architecture IV If the channels of different permutations of the same indexes

J are to add up to one, when input noise is accumulated in a coherent way, then

Eq. 5.59 only will be modified for SNR,

B{( X nif (e +5) - (o, +n2))}

J1-Jr

~ R(N,r)ol + NR(N,r — D)ro2o? 4+ O(N"r(r — 2)lo2a?).  (5.66)

Therefore, the SNR is immediately

(ST

SNR ~ { _ N } . (5.67)
ML—TL(I +02) + N'-1r262 4+ rlo2 (1 + 02) + 02 /N~

27rt
For the memory with zero diagonal terms, the SNR is easily obtained
Nt [r! }5
M1 +02) + g:—;!rag +02(1+402) +a}/Nrr!)
From Egs. 5.67 and 5.68 it follows that memory noise as well as input noise have

1

SNR ~ { (5.68)

a non-negligible effect on the capacity of the memory.

When input noise is added incoherently, Eq. 5.59 will be

B{( 5 il (& + 03D (2 +07)) )

J1e-gr

= R(N,r)o? + NR(N,r — 1)ro2o2. (5.69)

The SNRs are, thus, given by

N7 1
SNR { - } (5.70)
M35 (14 5502) + N lro2 + rloZ(1 + 02) + o /N”
N™[r! 3
SNR ~ { _ } . 5.71
M(l—l—oﬁ)—i—%%oﬁ—i—ai(l+a§)+0§/NTr! (5.71)
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Figure 5.4 Architecture V for r = 3.

Architecture V  The architectures III and IV can be improved by partial prepro-
cessing when r > 3. Take into account an alternative description of a higher order
memory whose interconnection weight between two neurons is affected not only by
the states of these neurons themselves but also by the states of the other neurons as
shown in Fig. 4.3. The input components that the weights are dependent on can be

pre-thresholded. Then, for r > 3 (Fig. 5.4 for cubic memory), the output is given
by

Y= Sgn{z( E (wljl---jr + n;;,'l-ujr)(mjz R 7 M nf;»---jr)) (le + n;) + n:)U}a (572)

1 g2edr
whereas the overall operation in the case of quadratic memory(r = 2) is the same
as that in architectures III and IV. With the outer product learning rule and the
input being one of stored data,

y = sgn{NTy?-{—(N 3 an n? . +N'"" IZx” @

J2+-dr

+ Zx 3, g, ]2]r)yl+2yl<$’$>

J1+dr m#n
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T Zylmz<£m’£n>mg' L, Jer+ZyIZ<$ ll_;nn;:
m#n g2+ dr m#En

’ 2;6: i Z :I);': o x-;r: ;"1 ;:2 “r + Z n’]l Jr(m]l + n;:‘l ( Tjp e x.?r + n;;"‘jr)
m#ER 1o J1eeedr

+ n¥}, (5.73)

where N7y is a signal term and the other terms have zero average. The variance

of noise and the SNR for r > 3 are respectively

o = (M- 1)N’{% +(1+ %)aﬁ +oth+ (N 4 N2 1)g2

+ N2+ N"02(1+20% +0?) + o2, (5.74)

and

™

SNR ~

N7 }
{M{Z,T,+{1+2J§f(;rl#}a}+ N + N™1)o2 + 02(1 4 02)2 + o2/N7 )’
(5.75)

whereas the variance and SNR of quadratic memory are the same as those of archi-
tecture III.
For the memory having no diagonal terms (r > 3) the signal becomes P(N,r)y}

and the variance of noise is either
o = (M-1)PWN,r){r!+ {1+ (r - 1)}o2 + o} + {P(N,r - 1)(N - r +1)?
+ NP(N —1,r —1)"}o2 + P(N,r)s% + N"0%(1+ 202 + o) + 02, (5.76)
or
o = (M-1)PW,r){r!+ {1+ (r - 1)}e? + o} + {P(N,r — 1)(N —r +1)*
+ NP(N —1,r —1)’}o2 + P(N,r)st + P(N,r)o2 (1 + 202 + o) + o2, (5.77)

depending on whether the input z;, --- «; has diagonal components. The approxi-

mation P(N,r) = N” for r < N gives the SNR

N

SNR =~

NT
{M{r'+(l+(r—1) No2} + (N + N™=1)o2 4+ 62 (1 + 02)? +at2/NT} '
(5.78)

Quadratic memory has the same values as in architecture IV.
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Architecture VI In the case that the channels of different permutations of the

same indexes j are to add up to one, then the variance of noise is given by

o ~ (M 1)N’{ ((r_l)!+-(-2-(—-)—)—) + ot + (N (r — 1)

o7y l or— l( 1)'
+ N o2+ N (r—1Dlo2 4+ No2 {rl + 2(r — 1)l0?} + o2, (5.79)
It follows that the SNR is
NT

. {M{ Fr {0 - D)+ ez} + (N - D+ Nr-1o

2r=1(r—1)!
1

3
. 5.80
+rlo2(1 + 202) + a?/NT} (5-80)
For the memory with zero diagonals, the SNR. can be easily shown to be
N"/r! z
SNR~ — L , (5.81)
M(1+202)+ (2 + )02 + o3 (1 + 202) + 5

Architecture VII From now on, we will consider the case where memory noise is
dependent on each memory pattern but each memory noise is independent of other
memory noise: it is expected in this case that the signal is degraded more by the
memory noise. There may be three possible types of memory noise like those of
input noise. One is the case when the training samples are preprocessed (or pre-
thresholded), one is not, and the other is partially. The first case is discussed in this
and the following two subsubsections with various types of input noise as presented
in the preceding subsubsections, and then the others in separate subsubsections.
Each subsubsection will cover two architectures that are described in terms of input
noise earlier.
Consider Eq. 5.31 with the sum of outer product learning rule (Fig. 5.5 when
r=2),
yo=sen{d 3 (yraf ol +nlh ) (@ wy, nd ) A} (5.82)

L SRR
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Figure 5.5 Architecture VII for r = 2.

where nj? . is a noise of zero average and a variance o2 that is added to the m-th
training sample, nj ..; a collection of input noise for the input xj ---x; whose
average and variance are given by zero and o2, and n¥ a threshold noise of zero
average and a variance o2, as before.

With the assumptions given in architecture I and an input being one of stored

data, the signals are the same and the variances for non-zero diagonal and zero

diagonal cases are, respectively,

2r)!
E{n}} ~ MNT{%-T%)'— +a§+aﬁ,(1+az)} + o? (5.83)
and
E{n}} ~ MP(N,r){r'4+ o2 + o2 (1 + 01)} + o7 (5.84)

Therefore, the SNRs for non-zero diagonal and zero diagonal cases are, respectively,

given by

N

N'r
SNR =~ { , } 5.85
M{SE + 02 + o3(1+02)} + oF/N" (o5

277!
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Figure 5.6 Architecture VIII for r = 2.

and

D

NT
SNR =~ {M{r!+a§+a&(1+ag)}_|_Ug/N,-} . (5.86)

Using the assumptions in architecture II gives approximate SNRs for nonzero

diagonal and zero diagonal cases, respectively, by exclusively replacing o2 or o2 by

o2 or o2
N7 3
SNR ~ { , } 5.87
M{GE +rlo2 4+ rlo2(1 + 02)} + o7 /N” (5:87)
and

=

N7 /[r!
e {M{l +o2+ai(1+02)}+ a?/Nrr!} ' (588)

It will turn out that the capacity of the memory will be reduced considerably

when dynamic range is considered.

Architecture VIII When input noise is added componentwise to the input in
addition (Fig. 5.6 when r = 2), the situation will be much worse. Then, o2 will

be switched by Ma? as shown in the previous subsubsection. The SNRs, with the
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assumptions in architecture III and coherent input noise, become

[V

NT
SNR %{ } 5.89
{Lﬁl(l—f-a2 )+ o2(1+402) }-{—NT 1r2g2 4+ g2 /N™ (5.89)

2ret

and

(M [

SNR ~ { N } . (5.90)
M{r!(l +02) +02(1+ ag)’} + N7=1r202 + 02 /N*

With incoherent input noise the SNRs are

{ N JSRCEEY
{2%* 1+ 5502) +oi(1+02) } + N=1rg2 + o?/N"

[N

SNR ~

[V

SNR ~ { N } . (5.92)
M{r!(l +02)+02(1+ 02)7} + N™1rg2 + o2 /N™

The assumptions used in architecture IV give the SNRs

SNR ~ { ' N }5, (593
M{SR(1+ 02y +rlo2(1 4 02)} + N7-1r262 + 63 /N
N™/r! i
SNR ~ { _ } | o1
M{(1+ 02y + o3(1+ 02)} + igyro + o2 /N7 (5:94)
SNR { N }
M{ZE(1 4 2102) +rlod (1 + 02)} + N'Iro2 + o [N
and
T /pl 1
SNR~ { L = } . (5.95)

Architecture IX This subsubsection will cover two assumptions as given in ar-
chitectures V and VI that have improved the architectures III and IV for r > 3
(Fig. 5.7 when r = 3). It is straightforward since only o2 is required to be modified

to Mo2. Therefore, the SNRs under the assumptions in architecture V are

(SR

Nr
SNRz{ , j }
M{%‘F{l‘*‘%}dzﬂ-az(l-ka?)?}-}- N + Nr-1)g2 4+ g2 /N7
(5.96)
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Figure 5.7 Architecture IX for r = 3.
and
SNR ~ { N }
TAMP F (14 (-2 +02(1+02)2} + (N + Nr-1)g2 4+ g2/N7]) ~
(5.97)
And with those in architecture VI
N’I‘
SNR = {
M{GEE+{(r = D!+ o258} o2 + rlo3 (1 + 2o2)]
}2 (5.98)
+{N(r — 1)1+ N™-1}02% 4 ?/N"
and
N"[r! 7
SNR ~ { [r! (5.99)

M{1+202+02(1+202)} + (X + Tj(\lr—ll);) §+7\%§-ﬁ

Architecture X When the training samples are not pre-thresholded and training
sample and input noise is accumulated in a coherent manner, then applying the sum

of outer product learning rule as a learning algorithm will produce the output with
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Figure 5.8 Architecture X for r = 2.

noise of the form (Fig. 5.8 when r = 2),

= sgn{d 30 Al +n{") (@ +nir) - (@ + 0 + 0 )

™ j1edr

(@ -2, + 15,.5,) + g}

= sgn{> 30 @ +nf™)(h +ni) - (@ 4 i) (2 o2 05

m jyeedy

+30 3 nig (@, +nd ) e (5.100)

M fyeedy
where np .., is a system noise of zero average and a variance o2 that is added to the
m-th training sample, n{™ and n;m are training output and input noise with zero
average and variance o3, nj ... a collection of input noise for the input z;, - - - z;,
whose average and variance are given by zero and o2, respectively, and n¥ a threshold

noise of zero average and a variance o2, where all the noise is independent statistically

of each other and the input and memory samples.
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In this subsubsection we will deal with the assumptions given in architectures I

and II to derive the SNRs with the input being one of stored data. Then, Eq. 5.100

becomes

T r .
Yy o= sgn{N"‘yl +yl E (k) N"‘—k < E171’17'7, >k
k=1

n in in, x
+ {E ( ) BT LY SRR LY LF
]1 “Ir

+ 2y 3 @R+l (@ i)l

m#n J1eegr

+ 2on™ 30 (e gt (2 + i) (e -
m J1eedr
+ 2 3 n (af 3 4 n )

M gyeeedp

nl‘

r .71.71‘

n T
T+,

.j,+---}

(5.101)

where all terms but the first that is a desired signal N7y? constitute noise of av-

erage ((;) N2 .. ) yi* as in architecture III. Its variance is derived with the

assumptions given in architecture I as follows:

B0 3 ()07 3 nipeeenipag oean)” = () et )7}

J1--Jk

— N2r—1r20_% + O(N2r 2T4UT),

n in n_z
{(Z‘/z {Z( ) BT SRLY NP L) M [ R A

Jieedr

= N'r’clo? + O(N'r'o}ol),

E{(X o X (@ +nim) - (@ + nim)al, -2l

m#n 1

= E{(Z Yyt <z™ 4™ z" >’)2}

m#n
~ (M —1)N" (2r)(1+ 2),

(S S (o +ni) (a4 e, )}

m#n J1eedr

= 2B{(X X (@} +ni) - (o] +nin)?) ")

L PR 28

(M —1)N"(1 + 02) 02

Q

+))

)}

(5.102)

(5.103)

(5.104)

(5.105)
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E{(Xn™ < 2™ +n™, 2" >")2}

o~
~

2r)!
a%{N?"’ + N 'r?g2 4+ (M — 1)N’%(1 + cr%)"},

(5.106)
. . 2
E{ (X ni 2 (@f +ng) - (2 + ] %)
m J1eegr
~ MNToi(1+ 02) 02, (5.107)
2
E{(X 2 Mg (8 el n%,.i)) }
m gieedr
= MN"02(1+ o2). (5.108)
Therefore, the SNR is for r < N
SNR = { =" N
M{ZE + 02}(1 + 03)+1 + Mo (1 + 02) + N7o?
} (5.109)
+N7=1r¥ (o} +o7) + 0f /N7 '

For the memory with zero diagonal terms, it is not difficult to show that the
SNR is given by

SNR w~ { N
T AM@ ¥ 02)(1+ 02) ! + MoZ(1 + 02) + N7o

1

z
. q1
R AT A 10

When both training sample and input noise are added incoherently, Eq. 5.100 is
modified into

yo= sga{d 3 {@" +nm) (@ + 0t (@ 4 nl™) 4l )
m jl"‘jr
(2, -z, +0f,.5,) + né”}

= sgn{} 3 (" +nf™)(a + nim

. A RN G L [ CTARRE TR S )
M Jiejr

+30 3 N (@ g ) el ) (5.111)
m jyeegr
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iml ... and n'™ are mutually independent training input noise. With an

where n
input being one of stored data, z", the signal is given by N"y}*, and a variance of

noise whose average is zero given by

(27‘)' (2(r — 1))!
97l r2r—1(r —1)! T}
(2r)!

+ (M —1)N"(1+ o) o2 + o3 {N* + N*"'ro% + (M — 1)N"( o

’"2(72(:(_1)1))"' 03)} + MN"o%(1 + 03) 02 + MN"0%(1 + %) + o2. (5.112)

The SNR follows,

o ~ N¥1rg 4+ N'roto?+ (M — NT{

j\[T
o3) + (1+02)ro2}(1+0%) + Mo (1 + 02)} + N0}

SNR =~

{M{W 1+ 5

o

+NT“1T(U%+U§‘~)+03/NT} . (5.113)

With memory having zero diagonal terms the SNR becomes

j\[r
M{rl(1+0%)+ (1 + 0%)02}(1 + 0%) + Mo2(1l + o2) + Nro2

1

SNRz{

(5.114)

3
+N™1r(c} + 0}) + a?/N’} .
Under the assumptions given in architecture IV the SNRs for the cases of non-

zero diagonal and zero diagonal memories are approximately given by

]\[T
SNR =~ { -
M{GH(1+ o) +rl02(1 + 03) }(1 + 0B) + Mrlo (1 + 02) + N7od

: 5.115
+N7r2(02 + ok) + a?/NT} (5-115)

SNR ~ { N7/r!

T AM{(L+ 0} + 021+ 03)}(1 + 03) + Mo2 (1 + 02) + Too

(5.116)

2
+riEg(et + o) + a?/N’r!} ’
{ T
M{Qﬂ- 1+ 55503) +rl(1 + 0%)03}(1 + 0%) 4+ Mrlo2(1 + 02) + N7o%

2rrl

SNR =~

1

+N-1r(c% + 0}) + a?/NT} ’

(5.117)
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and

N7/r!
{M{(l +0%)+ (1+0%)o2} (14 0%) + Ma2(1 +02) + N’ ro%

1

SNR ~

3
_ . 5.118
+g 1)(0T+0'T)+ar /Nrr'} ( )

As the equations show, memory noise due to the training method in which noise

is added componentwise becomes significant.

Architecture XI The worst situation for both performance and analysis of higher
order memories with outer product learning rule occurs when both input and mem-
ory noise exists componentwise in each bit of input and stored data and are accumu-
lated in a coherent way such that the learning and recall procedures have the same
type of process as follows and are very similar to those of power law implementation
in analysis (Fig. 5.9 when r = 2):

w o= sgn{> 3 {" + ™) (@] +ni") - (2 0l 4l )

m Jl]r

(€5 + %)+ (zj, +n%) + g }

= sen{ 200 +0f™) 3 (@ +nT) 4 n ) e 4 ) (o, + )
J1edr
+3° > nf (@ k) (ay, + n; )+ nf,”} (5.119)
m jl"‘jr

With input being one of stored samples the output becomes

w o= sV SNS () (D) X g eoning, o
=0 J1eJk
b R ) (e e ) )
m¥#n J1edr
R () () ) (5 4 )

Jidr

+ > > nf (el +nh) (2 + ny )+ na"}. (5.120)

g
The variance of noise whose average is given by ( (;) N™=Y(o2 + o) + - -)y,” that

is negligible in comparison with N7y for large N is calculated with the help of
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Figure 5.9 Architecture XI for r = 2.

Eqgs. 5.57, 5.58, 5.59, 5.102, 5.103, 5.104, 5.105, 5.106, and 5.107 according to the

assumptions in architecture III in the following way:

5y () (D) 5 <o ey

J1+dk

~ () o))

= N7 4262 4 o2 + olo?) + O(N”‘?r“(a% + 02o? + gi)) (5.121)

B{(X X ol +ni) 4 ne 45 05))’)
MmEN J1Jr
= E{Z <z™+n™ 2" +n° >? }

m#n

~ (M- 1)1\"(22 r) (1403 (1 +a2), (5.122)
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B{(Xnfm X @+ (@ + i) (e 4+ nh) (e ) )

Jiedr

~ O'T{N2T N?7-1p 2(0'% +o2 4+ a%ai)

2 2\7r
+ (M l)N’(zr)'(l-{- 2y(1+a2)},

B{(X X o (@ +05) (@ +n2))°)

™ j1ede

~ MN"g2(1+ o2).

Therefore, the SNR follows from summing the above,

NT

SNR =~ {
M{GER(+ o)+ (L+ o) + 0% (L + 02} + Nro}

1

2z
o e s B B

With memories having zero diagonal terms the SNR becomes

NT
MU+ o3 F (1 + o2y + o (1+ 02} + Nrak

1

2
A e e e e O O

SNR =~

(5.123)

(5.124)

(5.125)

(5.126)

When both memory and input noise are added incoherently, Eq. 5.119 is modified

into

wo= sgn{d 3 @ +ni™) (@ + 0t (@ 4 nl) 4 nl )

m jp--gr

(@5 + ) - (zj, + ) + n'}

= sgn{Z(ylm +ni™) E (@7 + 0 (@7 + 0™ (2, + 0t - (2, + ni’)

J1dr

+30 3 nfg (@i + el (25, 0 + g )

mogp-de

(5.127)

When the input is z", the signal is N"y}', and a variance of noise, the average of

which is zero, is given by

2 2r—1_.( .2 2 2 2 L 2r)! (2(r —1))!
o ~ N 7'r(op+o0;+0f02)+(M—-1)N {QTT! +27—1(r—1)!r
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(62 + 02+ a%ai)}a%{Nzr + N 1r(0d + 02 + 0202) + (M — l)NT(

— |
MT(U% +02 +030?)) } + MN"02(1+ o2)". (5.128)

The SNR becomes

]\[T

SNR ~ {
M{ S (1 + 57=(0% + 02 + aT0'2))(1 +0%3)+02(1+ 03)7} + N7o2

g 5.129
+N™1r(1+ 0%)(0} + 02 + 0302) —l—atZ/NT} ( )
For the memory with zero diagonal terms, the SNR becomes
SNR ~ v
M T o)A+ o7) + o3(1 + 027} & N°o}
1
. 1
+N™1r(1 + 02)(0% + 02 + 0%02) + atZ/NT} (5.130)

When the channels of different permutations of an index set are all equivalent,
only Eq. 5.124 is to be modified according to Lemma 12 and Eq. 5.66,
m n z n T 2 2 2
E{(X X . (2} +n8) - (2} +n%)) } = MR(N,r)o?(1 +02).  (5.131)
M J19r
It gives the SNRs

NT
SNR ~ {—
M{GE(1 + o3)+1(1 + 02) + rlo2(1+ 02)} + N7od

r |

2
+N12(1 + 02) (0% + o2 + oBo2) +at2/N"} , (5.132)
N™[r!
SNR = i
M{(1+ o}y +1(1 + 02)" + 02 (1 + 02)} + o2
s -
+&55r(1 + 02)(0% + 02 + ho?) + o /N7l :
SNR = NT

{M{m( ’_1(0%—}-034—0%0%))(1-{- )+ rlok(l+ o2) }+N"

2Tt

[ C

2
or

} (5.134)
+N™1r(1 4 03)(0% + 02 + 0202) + 02/ NT
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and

{ N"[r!
M{(1+0%2)*)(1+02)+02(1+02) }4+ & ,O'T

SNR =~

N

r— 5.135
+E5 (1 + 03)(0F + 02 + 0F02) + az/Nrr!} (5.135)

It can be concluded that this architecture that allows noise to exist component-

wise both in input and in memory yields the worst performance in the presence of

noise.

Architecture XII We will discuss the situation in which both training and recall
processes have weight between two neurons depending on other neurons as well as

themselves. Then, the output for r > 3 can be improved by partial preprocessing,
= SgH{Z(_Z Wijyoie (T -+ e + 1%, 5)) (@i +15,) + 18}, (5.136)
J1 J2+dr

where wyj, ...;, is given by either

wljl"‘jr - E(yl le + nljl)(x ) n;;2 Jr) + nl]l Jr (5137)
or
Whj-wgr Z{(y’ i + nl]l )25 - 2i + ngz i)t n;?l---jr}' (5.138)

Since it is straightforward to get the SNR for the memory of Eq. 5.138 from that
of Eq. 5.137, the memory given by Eq. 5.137 is taken into consideration. As an

example, cubic memory is considered (Fig. 5.10 when r = 3),

yi = sgn{ZE (W e] +nf) (P el + ni?)(z; + nf)(zra + nf)

m gkl

+ Y (e + ) (zkz + ng) + nf,"} (5.139)
ikl

where when it is applied by input that is one of stored data the signal becomes N3y
and the variance of noise is obtained in the following way:

2
E{(zy, > af(epal + nf?) (2] + nf)(zhal +ng) — Ny7) '}

Ikl
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Figure 5.10 Architecture XII for r = 3.

= (M —1)(15N% —30N? + 16N) + N?02{N? + (M — 1)N}
+ NoZ{N*+ (M - 1)3N* - 2N)} + MN°% + o2{N*{N? + (M — 1)N}

+ N0 {N*+(M - 1)N} + MN*0? + MN°}, (5.140)

B{(X Xong (efaf" + nf) (e} + n2)(ehar + 7))

m jkl

= Noz{N*+ (M —1)(3N* —2N)} + MN%0%52 + No2o?{N*

+(M —1)(3N? = 2N)} + MN302o? + MN364(1 + 02)?, 5.141
T T T

B{(3 nihu(eg + n)(afaf + i)’}

ikl
= N°%2(1+a2)% (5.142)
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The SNR, thus, follows from summing the above

N3
SRR {M{15+4<a%+az+a%az>+<a%+az+o%az>2}

[ ST

. (5.14
VT NG T AT AN AT T - (19
It can be easily extended to r-th order memories. When one of stored data is

applied as an input, the signal term in Eq. 5.136 becomes N7y and the variance of
noise is derived with the help of Egs. 5.73 and 5.74 as follows:

E{(3 3 yral(al -

m m2 z T
L, + nj2"'jr)($.71 + n; )(xJz ng Jr) N ) }
M j1eegy

~ (M- )N 102 (N2 4 (M = 1)V} + No2{ N2
97y ' 4 T

+ (M- 1)NT-1§(;?_%'2(-;_1—)1))!} + MN"0} + o3 { N"{N* + (M — 1)N}

+ N''6M{N?+ (M —1)N} + MN"0? + MN"c%}, (5.144)

E{(X 3 (el o + nl2, Yol +nZ ) (2],

™M j1-dr

r— (2( 7 r—
= NO'%{NZ( 1)+(M——1)§;—-1-(——1)'}+MN O'TO' +N0'TO' {NZ( 1)

af 4+ n%,)) )

2r ,
+ (M_l)‘é(r_(l—("BT}+MNT‘7TU + MN"07(1 + 02)?,

(5.145)
w n T n n T 2
B{( X nt (@ +05)(ah 2k +05.5)) }
J1dr
= N762(1+4 o2)% (5.146)

Therefore, the SNR is given by

NT
SNR = { ' '
M{!zzrrr!!. + {1 + !2!7‘—1!!.

TGy (0} + 02 + 0302) + (o} + 02 + 0302)?}

1

2
+(N + N0 (0% + 02 + 0302) + o3 (1 + 02)% + o—g/Nr} - (51D

Notice existence of “beautiful” symmetricity of o2 and 02. When s% is zero and o

is ignored, Eq. 5.147 is reduced to Eq 5.75.
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With the memory having zero diagonal terms the SNR can be immediately shown
to be approximately

NT

SNR ~ {
M{r!+ {1+ (r = )!}(o} + 02 + 0}02) + (o} + 02 + oF02)?}

1

}7. (5.148)

VT NG + o2+ 3o0) oA+ o2 4 S/
The assumptions given in architecture IV give the SNRs for non-zero diagonal

and zero diagonal memories, respectively,

SNR ~ { NT
M{EE + {(r — 1!+ 252 (0% + 02 + 0%02) + (r — DI(0% + 02+
0’%0'2)2} +{N(r —1)!+ N=1}(0% + 02 + 0202) + rlo2 + 2(r — 1)lo202
1
3
14
+rlo? + 2(r — 1)!03103—{—03/]\”} ’ (5.149)
and
™/l
SNR w '/

{M {14203 + 02 + 0302) + L(o} + 02 + 0022} + {£ + 255}

P

NI

(0% + 02 + 0302) + 02 + 20202 + 0F /Nr} ' (5.150)

With the memory given by Eq. 5.138, the only change in the variance of noise
is Eq. 5.146

B{(E ¥ (o} +n3)(a o2l +05,.)) ")

™ jyeege

= MN"o2(1+ o2)2. (5.151)

Therefore, four SNRs are given in order by

SNR =~ { N
M{ZE + {1+ Z=UE Y (03 + 02 + 0302) + (0 + 02 + 0ho?)?

(N1

., (5.152)

1o%(1+ 022} + (N + N1)(oh + o2 + afo?) + oF /N" }
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NT
M{r!+ {1+ (r = 1)}}(0} + 02 + 0}02) + (0} + 02 + 0}02)?

i

*, (5.153)

SNR%{

R SR N R R

SNR =~ { Al
M{G+ {(r— 1)+ 25285303 + 02 + 0%02) + (r — D)l(oF + o2+
0302)2 + o2 {rl + 2(r — 1)lo2 + (r — 1)lod}} + {N(r — 1)! + N7-1}

1
2

, (5.154)

(0% + 02 + 0%02) + o? /N'}
and

N"/r!

SNR ~ {
M{1 +2(c3 + 02 + 0202) + 1(0 + 02 + 0%02)? + 03 (1 + 22 + Lot)}

1

- g 5.155
T AT T A T (o199

Architecture XIIT Finally, power law implementation is discussed under noise

(Fig. 5.11):
= sgn{Z(y}" + n,om)(< "+ 40t >T +n;") + n},”}, (5.156)

where n]" is a noise added to the signal in the r-th power law device for m-th stored

2

vector and its variance is assumed to be given by ¢?. When the input is one of

stored data, ", the output becomes

T, N a - i r r n 7 n .mn -\, n
Yy = sgn{Ny1+(k§N’” k;(i>(k_i)<_:c.,n"‘><_@ ,z" >* )yz
+ Zylm<§m+1}_im,2"+n_z>r+zn <z™4+n™ 2" +0n°>"
m#n m

+ Y +n™)n + nf)”} (5.157)

where the signal term is N7y} and the variance of noise term whose average is given
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8
=3
3

Figure 5.11 Architecture XIII for power law implementation.

by ((;) N=Yo% +02)+-- ) y" can be calculated as follows:
T k
E{(y?gN“";) (Z) (k " Z) <z"n? ><n, g >+)
- (e e )

~ N2T—17‘2(0'3~ 4+ o_z + U%O’g) + O(N2T_2T'4(0'% + 0-12: + 0-%,0'3:)), (5158)

E{(X v <z™+n™ 2" +0° >

m#£n

~ (M—1)N" (2';)!!

5 (14 02)"(1+02), (5.159)

E{(Zn;)m <;£m +_”lim,_-'£n +_7lz >r)2

R~ o%{N” + N¥=1r2 (02 + o2 + 0202)
(2r)!

+ (M= DN (L o) (14 a2}, (5.160)

E{ (67 + ng™ynp)’

m

= M(1+0})o2 (5.161)
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Thus, the SNR is given by

N‘r
SNR =~ { ,
M{GR(L+ oh) (14 02) +

2rr!

(1 +a2)o2} + N'oh
1

(5.162)

z
+N7=1r2(1 + 0%)(0% + 02 + 0}02) + a?/NT} '
5.3.2 Dynamic range consideration

In analog computation, dynamic range of the system that has bounded levels due
to finite value that can be assumed and noise that exists in the system makes a
limitation on the accuracy of performance[33]. Higher order memories with the
outer product learning rule have higher values in input to the output unit. These
values are approximately as big as N” for r-th order but have their weights whose
value is within order of /M with very high probability (99% within +3/M), even
though its maximum can be =M where M is the number of stored data as shown
earlier. When the full capacity is utilized, weights may have values of order of \/M,,
that is, {N”/log N}!/2. Therefore, it is required that weights and input to output

unit be normalized. For instance, the simplest case given in Eq. 5.32 is modified,

Y\/_ Noow .
Yi = sgn{ — Z(\/_w“—l-n”)(x + n? )+n0} (5.163)

where Y and W are normalized values in input to output unit and weights within
some orders, respectively, and w;; is given by Z 1Yz as before.

Eq. 5.163 can be rewritten,
Y N
Y; = Sgn{ﬁ{j;(wij +

It is possible to think that the terms 3W@n and & 1o are system and threshold noise

VM

T N w
)] + ) + g }} (5.164)

M

of zero averages and variances 75

o2 and & 7z at , respectively. Then, when the input

is one of stored data, the SNR becomes immediately

N
SNR ~ ;
\] ML+ 203)(1+ o) + 3507

(5.165)
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Therefore, it is straightforward to find SNRs for architectures that were de-
scribed, and the general one out of every four SNRs will be stated one by one with
some examples.

Eq. 5.38, which was the best performance (architecture I) is modified,

Wp=

NT
SNR ~ { , i } . 5.166
M{ZL 1 02 4 502 (14 02)} + o? (5.166)

277!
Consider Eq. 5.49 for quadratic memories with normalizations and coherent ad-

dition of input noise,

Y v M w xr x w
Yi = Sgn{'ﬁ{%(wzjk + an’jk)(xj + nj)(zk + ng) + ng }} (5.167)

Then the SNR given in Eq. 5.54 is modified with approximation

[V

2
SNR w { N } . (5.168)
M(3+ 3502)(1 + 02)2 + 4Na2 + L o7

This is expanded to r-th order case instead of Eq. 5.60 (architecture III),

=

N?’
SNR ~ { , i } . 5.169
M{&L-I- Wlfai}(l +0§)T+N"‘1r20§+%0t2 ( )

27r!
In the case of incoherent addition of input noise the SNR in Eq. 5.64 is modified to

SNR%{ ; ; } (5.170)
{Z”r'(1+2r.. )+"702(1+02)}+Nr 1,~02+N 2

=

When the input is partially preprocessed like Eq. 5.72, the SNR that was given
by Eq. 5.75 (architecture V) is modified,
SNR ~ { N } .

M{SE + {1+ 2002 + o2 (14 02)2} + (N + N7-1)o + %a?
5.171)

=

Take a look at Eq. 5.82 (architecture VII) with normalization

\/M m k4 NT w
yl Sgn{ Nr {Z Z (y _71 te + Wnljln-jr)(le e xjr + n]]]r) + Y nO }}‘

m gyeejr
(5.172)
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Then the SNR given by Eq. 5.85 is modified

N” 3
SNR ~ { , : } . 5.173
M{$% + 02} + M2g02 (1 + 02) + 3707 1)

As the equation implies, the capacities of this and the following architectures with
normalizations, which have memory noise depending on each stored data, may be
dramatically reduced in order by half. This may imply that pre-calculation of
weights or parallel learning of training samples is needed instead of serial learn-
ing.

When input noise is componentwise added to the input in addition (architecture

VIII) and accumulated in a coherent manner, the SNR given by Eq. 5.89 is modified,

=

SNR ~

NT }
. (5174
{M!&L(:L +02)" + M23502(1 4 02)r 4+ Nr-1r202 + N2 (5:174)

27!

In the case of incoherent accumulation of input noise the SNR in Eq. 5.91 is modified

to
SNR ~ { ‘ N }é (5.175)
MER(1 + 55502) + M23502(1 + 02)r + N'-1ro? + N o7
With input partially preprocessed, the SNR given by Eq. 5.96 (architecture IX)
is modified
SNR =~ N

{M{ Gl i+ 5‘,?_1{(71111;-,} b+ M?5h02(1+ 02)?

1

2
+(N + N™=1)o2 + ’,Yéa?} ’

(5.176)

When training samples are not preprocessed but the input is pre-thresholded (ar-
chitecture X) and training sample noise is accumulated coherently, then the output

is from Eq. 5.100,

o= sgn{N,. {Z Z {(yl + n;)m)(le + n (CL' + n )+ \/Mnljl jr}

mogieejr

N
(:le Ty, + nﬂ _7,) + 7"’0 }} (5.177)
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The SNR that was given by Eq. 5.109 is modified to
SNR%{ @) 2 2r+1N212 2 2
{ +U}1+0’T) + M?550%(1 +roZ) + N7os

277!

1

3
7 . 5.178
+N7-1r2(02 + 03) + L}\,’-;at?} ( )

When training sample noise is accumulated incoherently, the SNR in Eq. 5.113 is
modified into

NT
o3) + (1 + oB)ro2 M1 + 03) + M2go2 (1 + 02)}

2r)!
277!

SNR =~ {

N

- ) 5.179
+N7roZ + N™-1r(cZ + %) + %af} ( )

When both learning and recall procedures are not preprocessed (architecture XI)
and both training sample and input noise are accumulated in an incoherent way,
the SNR given in Eq. 5.125 is modified,

N*
{Mm(l + 02) (1 + 02)" + M?3502(1 + 02)" + N7oZ

277!

SNR =~

o=

(5.180)

+N™1r2(1 + 02)(0% + 02 + 0%02) + 3507 } '
In the case of incoherent accumulation of both training sample and input noise the
SNR in Eq. 5.129
NT
‘(0% + 02 + 0T02))(1 + 02) + M"5502(1 + o2)

}%. (5.181)

SNR =~

{MK;_%(

+N7o% + Nr=1r(1 + 02)(0% + 02 + 0%02) + T3 02
When the learning rule that has weights adapted to the states of all the neurons
(architecture XII) is used, the SNR in Eq. 5.147 is modified,
SNR &~ { ol
M{ZY 4 {1 + =Y (03 + 02 + 0302) + (03 + 02 + 0ho)?)

1

}2.(5182)

+M2503 (1 + 02)? + (N + N™=1) (0} + 02 + 0302) + 70}
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Finally, when power law implementation is used, Eq. 5.156 is modified to

e

Y W . N
Yy = Sgn{ﬁ;{;(yz’" +n7’”)(NT <z™ 40",z +n" > +nl) + v nb"}} (5.183)

And the SNR in Eq. 5.162 is changed to

N’I‘
{M {S 1+ o3y (1 + 02) + Mo (1 + 02)02} + N7od

1

2}5. (5.184)

+N™1r2(1 + 03)(0% + 02 + 0302) + 2507

SNR =~

The most significant in this case is noise that exists in the output of power law

device, e.g., nonuniformity, which will give a limitation on capacity.
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