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by

George T. Paloczi
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Abstract

Polymer materials are becoming increasingly important for integrated photonic

circuits in optical communications networks. The optical and mechanical proper-

ties of polymers for integrated optics are explored in this thesis and it is shown that

the manipulation of these properties leads to developments that in other optical

materials could not be achieved as quickly or as easily, or not achieved at all.

So that the benefits of a large range of operating wavelengths due to low ma-

terial dispersion in polymers, are not lost to the wavelength dependence of optical

couplers, we design wavelength-invariant couplers using a geometrical represen-

tation of coupled mode theory. Simulations of the resulting couplers confirm a

virtually constant response over a large range of input wavelengths.

The direct-write ability of electron beam sensitive polymers enables rapid fab-

rication of high-precision optical devices. Microring resonator optical filters and a

compact microring-based inline reflector are fabricated by this method and char-

acterized. Chaining multiple rings together results in the coupled resonator optical

waveguide (CROW). A CROW-Mach-Zehnder interferometer is fabricated and the

measured response corresponds well with the predictions based on the matrix the-

ory.

Polymer materials can be patterned by a variety of methods not possible with

traditional optical materials. Soft-stamp replica molding presents a means to fur-
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ther reduce the costs of implementing polymer materials. Demonstrating the po-

tential of the method, microring resonators are fabricated, with excellent agree-

ment between the responses of the original and the replica. To further demonstrate

the effectiveness of the process, it is applied in the fabrication of Mach-Zehnder

modulators. The modulators exhibit excellent properties, with single-arm modula-

tion voltages of 8 V and extinction ratios better than 19 dB. Successive repetition

of the molding process allows for multilayer polymer optical devices. Finally, the

flexible properties of polymers are exploited for pliable, all-polymer freestanding

optical circuits.
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Chapter 1

Introduction

1.1 Background and Motivation

Devices used in high speed optical communications networks comprise a wide array

of material systems [1]. Among the key material systems are silica (both fiber and

silica-on-silicon), silicon oxynitride, sol-gel, dielectric thin film, lithium niobate,

galium arsenide, indium phosphide, magneto-optic materials, birefringent crystals,

and polymer. Such a wide array of material systems is necessary because of the

unique requirements of the constituent passive or active componentry [2]. Passive

devices in integrated optics include simple waveguides, arrayed waveguide gratings,

Bragg gratings, thin film filters, and microring resonator filters. Important active

integrated optical devices include modulators (using electro-optic, acousto-optic,

or electro-absoption effects), amplifiers (using heterostructures, quantum wells,

or rare-earth doping), and switches (using electro-optic, thermo-optic, electro-

absorption, or micro-electro-mechanical means). These building-block passive

and active components are fundamental in higher-function devices such as opti-

cal add/drop multiplexers, interleavers, routers, variable optical attenuators, gain

flattening filters, sources, receivers, and detectors.

While semiconductor and other inorganic materials have been extensively inves-

tigated and developed during the past decades to meet the demands of high-speed

optical communications and large-scale integrated optical circuits [3], the stringent
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requirements of next-generation optical communications networks are pushing the

limits of conventional materials. As a new material available for optical integrated

optics, polymer materials remain among the lesser studied and developed materi-

als despite having properties amenable to future requirements. Recently, however,

more attention has been given to polymeric materials for use in integrated optical

devices because of several advantageous features [4]. These features, and manipu-

lation of these features to accomplish feats impossible or not easily achieved with

traditional inorganic materials, are the subject of this thesis.

With several important recent advances, polymers are fast becoming impor-

tant materials for optoelectronics. Significant examples include mechanically flex-

ible “electronic paper” [5] and high efficiency light-emitting diodes based on elec-

troluminescent conjugated polymers [6]. Similar promise is being presented for

polymers in telecommunications-related integrated optical devices due to several

favorable material features [7]. For instance, as required by the application, poly-

mer materials can be made functional in several ways. Otherwise passive poly-

mers that are not intrinsically functional can be doped with numerous optically

active dopants such as organic laser dyes [8], rare-earth light-amplifying complexes

[9], or electro-optic chromophores [10]. The “soft” nature of the materials differs

from crystalline materials, enabling, for example, flexible free-standing electro-

optic modulators [11]. Perhaps most significantly, the low material costs are the

motivation towards mass production of polymer optoelectronic devices. In contrast

to semiconductor materials that require several successive growths with compli-

cated equipment to make the raw material, polymer waveguide and cladding layers

are simply sequentially spun-cast onto a rigid substrate. Thus far, the fabrication

techniques for polymeric integrated optical devices have been mostly limited to

standard semiconductor fabrication techniques such as ultraviolet photo-, electron

beam, or interference lithography, reactive ion etching, and/or wet etching. Novel

fabrication techniques that reduce both the cost and time required for fabricating

integrated optical components must be employed to fully take advantage of the

low material costs and distinctive intrinsic properties of polymers.
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A major effort in the recent development of polymers for communications-

based integrated optics has been related to their use for electro-optic modulators.

Since passive polymers can be doped with chromophore molecules chemically en-

gineered to have very high nonlinearities, the likelihood of low switching voltage

Mach-Zehnder modulators has served as the impetus for much of the work. To-

ward this end, modulators with switching voltages of less than 1 V have been

demonstrated [12]. Further, using the exceptional material bandwidth of polymer,

polymer modulators have been demonstrated with modulation rates far beyond

what traditional materials are capable of, as high as 1.6 THz [13]. With respect to

passive polymers for integrated optics, the development has been limited mostly to

simple waveguide structures, such as couplers, interconnects or Bragg wavelength

filters, with few examples of complex passive optical structures demonstrated in

polymer [4, 7].

In my research, the undertaking was to develop and characterize integrated

optical devices, specifically fabricated of polymer materials. There was no infra-

structure in polymer devices, nor specific experience to enable competing with

other research groups as far as electro-optic polymer modulator switching volt-

age or bandwidth were concerned. Both for passive and active polymer devices,

I could not afford to simply improve upon what was previously demonstrated, as

the engineering would have been far too time consuming and comparatively fruit-

less. Instead, the motivation was to creatively make use of the material properties

of polymer – distinct from those of traditional integrated optical materials – in

applying polymers to integrated optical devices. The goal was to determine truly

what differentiated polymer materials from common inorganic optical materials,

and to exploit these properties in new ways for integrated optics.

1.2 Thesis Outline

In Chapter 2, the theory of optical waveguides and couplers upon which much of

this thesis relies is established. Based on the theory of optical couplers, a geomet-
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rical representation is presented, with an emphasis on the design of new types of

couplers. Espousing this geometrical representation, a new class of coupler – the

non-adiabatic mode evolution coupler – is developed and characterized through

optical simulations [14]. The results of the simulations clearly demonstrate that

these couplers have a wide operating bandwidth and a high degree of tolerance to

fabrication error.

Chapter 3 deals with aspects of microring resonators in polymer integrated

optics. The basic theory of microring resonators is put forth, as well as the theories

of waveguide loss mechanisms for straight and curved waveguides. The properties

of passive polymers are demonstrated in the fabrication and measurement of a

polymer microring resonator optical filter. Using the flexible, plastic nature of

polymer materials, freestanding all-polymer microring resonator optical devices

[15, 16] are presented. Based on the filtering properties of a single microring

resonator, an inline optical reflector is presented theoretically and experimentally

verified in passive polymer [17].

The subject of Chapter 4 is the coupled resonator optical waveguide (CROW).

Both the matrix analysis and the tight-binding method of analysis are presented, en

route to an experimental demonstration of a CROW in passive polymer. A Mach-

Zehnder interferometer, with a conventional waveguide in one interferometer arm

and a CROW in the other, is fabricated and characterized [18]. Good agreement is

found between the measurement and the theoretical expectations. The possibility

of polymer CROWs as delay lines is briefly proposed.

In Chapter 5, the development of a soft stamp replica molding fabrication pro-

cedure for polymer integrated optical devices is presented. The basic technique and

the effects of a background residue of polymer material are presented and analyzed

[19]. The high fidelity of this fabrication process is demonstrated in the replica-

tion of a polymer microring resonator and comparison of the optical spectrum of

the molded microring resonator with the original [20]. Taking the technique a

step further, subsequent repetition of the basic replica molding technique enables

fabrication of three-dimensional multilayer polymer optical circuits [21].
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Chapter 6 concerns further demonstration of the utility of the replica mold-

ing process, specifically as applied to electro-optic polymers. The definition and

properties of electro-optic polymers are explored, as well as the poling of these

materials. A short, proof-of-concept prototype electro-optic Mach-Zehnder modu-

lator is fabricated by the soft stamp replica molding process and characterized [22].

Application of the fabrication procedure to a much larger, and thus lower switching

voltage, Mach-Zehnder modulator is demonstrated with very good results [23].

In Chapter 7, a synopsis of the thesis work is given. The long term outlook for

polymers for integrated telecommunications optics are considered.

Appendix A and B describe two of the numerical simulation methods used

throughout this thesis: the beam propagation method and the finite difference

mode solver, respectively.
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Chapter 2

Coupled Mode Theory and Its Geometrical

Representation

2.1 Introduction

Polymer waveguide materials have very little material dispersion (i.e., dn/dλ is

small), in the same range as SiO2 [4]. This feature suggests their use in devices

with a wide range of operating wavelengths since the change in refractive index

with wavelength variations often ruins the intended performance and activity of

the constituent elements in integrated optical devices. An obvious place to start

the study of wavelength dependent components is the directional coupler. The

directional coupler consists of two waveguides in close proximity to each other,

such that light is transferred from one waveguide to another through optical cou-

pling. The coupled mode theory of optical waveguides reveals that these devices

are wavelength dependent through the wavelength dependent coupling coefficient.

This sensitivity often undermines any attempt to produce wide-bandwidth inte-

grated optical devices, for which couplers are fundamental building blocks. It

would be useful to have a design method for optical couplers that allows for tai-

loring of the waveguide coupling to render changes in wavelength ineffective in the

response of the coupler. This type of wavelength invariant coupler would form the

cornerstone of complex wide-bandwidth integrated optical devices.

In this chapter, the theory of wavelength and fabrication-error tolerant optical
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couplers is developed. The fundamental theory of optical waveguides is presented,

including waveguide mode profile and propagation constant determination. The

basic theory of coupled waveguide modes is examined. Following this, a geometrical

representation of coupled mode theory is established, and demonstrated with the

analysis of directional, adiabatic, and non-adiabatic mode evolution couplers in the

geometrical framework. Using this geometrical method as a design tool, optical

couplers with wavelength and fabrication-error insensitivity are set forth and are

compared to standard directional couplers using numerical simulations.

2.2 Fundamental Theory of Optical Waveguides

2.2.1 The Wave Equation and Plane Waves

The equations that form the basis for all of electromagnetic theory and the experi-

ments in this thesis are, of course, the fundamental equations of electromagnetism

accredited to Maxwell [24]:

∇ · ~D = ρ (2.1)

∇ · ~B = 0 (2.2)

∇× ~H = ~J +
∂ ~D
∂t

(2.3)

∇× ~E = −∂~B
∂t

(2.4)

where ~E is the electric field vector, ~B is the magnetic flux density vector, ~D is

the electric flux density vector, and ~H is the magnetic field vector. The remain-

ing quantities are ~J, the free current density vector, and ρ, the density of free

charge. The equations relating the field vectors and the flux density vectors in

some medium are the constitutive relations:

~D = ε~E (2.5)

~H =
1
µ

~B (2.6)
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where ε and µ are the electric and magnetic susceptibilities, respectively, of the

medium.

For what follows, we consider a special case of the Maxwell equations appro-

priate for most guided wave optical systems. First, we assume that the fields are

present in a linear medium, that is, one for which the susceptibilities are indepen-

dent of the fields. Second, we assume that the medium has sufficiently small varia-

tions of the susceptibilities in both space (∇ε=0) and time (∇× ∂µ~H
∂t = µ ∂

∂t∇× ~H).

Third, we assume that there are no free charges (ρ = 0) and no free currents

(~J = 0). Taking the curl of (2.4), using (2.6) and (2.3), as well as the aforemen-

tioned assumptions, we obtain the familiar wave equation

∇2~E− µε
∂2~E
∂t2

= 0 (2.7)

Taking the case of a single frequency solution, we separate the time dependence of

the electric field from its magnitude in the product ~E(~r, t) = ~E(~r)eiωt. Equation

(2.7) then becomes

∇2~E(~r) + k2
0n

2~E(~r) = 0 (2.8)

where k2
0n

2 = ω2µε, with k0 = 2πλ
c , and n is the refractive index of the medium.

The solutions to (2.8) propagating in the +r direction are of the form

~E = ~E0e
i(ωt−k0n~r) (2.9)

Such waves are referred to as plane waves because for each plane (i.e., for which

~r = const.) the phase is a constant in space.

2.2.2 The Slab Waveguide

The most basic form of a dielectric guide for electromagnetic radiation is the slab

waveguide as shown in Figure 2.1. We assume propagation in the +z direction.

There is no variation in the y direction, but in the x dimension, there are three

dielectric layers with refractive indices n1, n2, and n3. To guide light, the core
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Figure 2.1: The slab waveguide structure. The waveguide core with index n1 and

thickness t is surrounded by the upper cladding with index n3 and lower cladding

with index n2.

refractive index n1 must be of a larger value than the others [1].

The general plane wave solution (2.9) for the case of a plane wave with phase

fronts normal to the z direction becomes

~E(x, y, z) = ~E0(x, y)e−iβz (2.10)

where β is referred to as the propagation constant.

Since there is no variation in the y direction, we can set ∂
∂y = 0, and thus

rewrite (2.8) and insert (2.10), to yield

∂2

∂x2
E(x, y) +

(
k2

0n
2
i − β2

)
E(x, y) = 0 (2.11)

which is valid for each of the dielectric layers i = 1, 2, 3, and for both of the

components E(x, y) of the vector ~E(x, y).

In this thesis, we are concerned primarily with waveguides that support only

a single mode as shown in Figure 2.2. For a full description of higher order modes

and the conditions required for these higher order modes to exist, one can consult,

for instance, reference [1].

There exist two possible polarizations for the slab waveguide. The first, in

which the electric field vector points in the y direction, with field components Ey,
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Figure 2.2: A schematic of the field distribution of the lowest order TE mode of

the slab waveguide structure described in Figure 2.1.

Hx, and Hz, is referred to as transverse electric (TE). The second is characterized

by the electric field confined to the x−z plane, with field components Ex, Ez, and

Hy, and is called transverse magnetic (TM).

As mentioned earlier, a condition for guiding was that the core refractive index

n1 be larger than the cladding indices. Let us assume that n1 > n2 > n3. For the

slab waveguide to have a single guided mode, the propagation constant must obey

k0n2 < β < k0n1 [1]. This guarantees an electric field solution that is sinusoidal

in the region of n = n1 and decaying exponentials elsewhere. The TE solution for

the electric field in the three sections of the slab waveguide are given by

ETE(x) = A cos(hx− φ) where n = n1 (2.12)

ETE(x) = Beqx where n = n2 (2.13)

ETE(x) = Ce−p(x−t) where n = n3 (2.14)

where the amplitude coefficients A, B, and C are determined by normalization
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Figure 2.3: Cross sections of three typical waveguide geometries: (a) the raised

strip, (b) the buried channel, and (c) the rib guide.

and h, q, and p are

h =
√

k2
0n

2
1 − β2 (2.15)

q =
√

β2 − k2
0n

2
2 (2.16)

p =
√

β2 − k2
0n

2
3 (2.17)

These latter constants are determined by ensuring continuity of the field solutions

at the interfaces. A numerical solution of the resulting eigenvalue equation de-

termines the value of β, the propagation constant. The propagation constant is

not only important for determining the phase accumulated in propagation in the

z direction, but its frequency derivative is also related to the group velocity by

vg =
1
dβ
dω

(2.18)

2.2.3 The Effective Index Method

In the preceding section, the waveguides provided confinement within a plane. In

reality, however, waveguides are rarely of this form. In integrated optics, another

dimension of confinement is used to further limit the spatial location of the light.

As shown in Figure 2.3, the most common waveguides in integrated optics can be

categorized in the following forms: the raised strip, the buried channel, or the rib

form. For the raised strip, a waveguide of refractive index n1 is fabricated on a

substrate with index n3, and the upper cladding of index n2 can be air or some
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Figure 2.4: Illustration of the effective index method. The upper drawing shows

the actual rib waveguide cross section and the lower drawing shows the reduced

slab waveguide structure.

other material. For the buried channel guide, the core index n1 is surrounded by

a substrate and clad material of the same refractive index n2. The rib guide is

similar to the raised strip except that there is some residual core material between

the cladding and the substrate covering the extent of the substrate.

These waveguides are difficult to analyze without invoking numerical tools to

predict their optical properties. One such method, called the effective index method

[25], reduces three dimensional guided wave geometries to two dimensions. This

greatly reduces the complexity of such problems and allows the routine analysis

of the slab waveguide to be used to determine the optical properties of these

waveguides.

To illustrate the method by example, the rib waveguide shown in Figure 2.4

will be analyzed using the effective index method. The general concept is to
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regard the three sections of the waveguide cross-section (left, center, and right) as

three separate slab waveguides. The steps to calculate the modal properties are as

follows, closely following [25]. The procedure is the same for the channel and the

lateral sections, given by subscripts f and l, respectively. First, the normalized

thicknesses for channel (Vf ) and lateral (Vl) regions are defined as

Vf,l = ktf,l

√
n2

1 − n2
3 (2.19)

where tf,l are the thicknesses of the channel (tf ) and the lateral (tl) sections, as

shown in Figure 2.4, and k is the free space wavenumber. Next, the asymmetry

parameter is defined:

a =
(
n2

2 − n2
3

)
(
n2

1 − n2
2

) (2.20)

Numerical solutions for bf,l, the normalized guide index, are found using the equa-

tion (valid for TE modes):

Vf,l

√
1− bf,l = νπ + arctan

√
bf,l

1− bf,l
+ arctan

√
bf,l + a

1− bf,l
(2.21)

where ν gives the mode number, i.e., ν = 0, 1, 2 gives the appropriate value of

the normalized guide index for the zeroth-, first-, and second-order modes. The

equivalent effective indices Nf,l of the three regions, are given by:

(Nf,l)
2 ' n2

3 + bf,l

(
n2

1 − n2
3

)
(2.22)

At this point, we have an equivalent slab waveguide with equivalent indices Nf

and Nl. Now, for any two-dimensional slab waveguide simulations, we use the

value of Nf for the core refractive index and Nl for the cladding refractive index.

The three dimensional structure has been reduced by one dimension, allowing for

simple analysis and simulation.

To determine the propagation constants of the modes in the waveguide, we

repeat the previous steps that we used to solve each individual slab to calculate
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the effective index of the equivalent slab. First, find the normalized thickness

Veq = kw
√

N2
f −N2

l (2.23)

Again solve for the normalized guide index beq:

Veq

√
1− beq = νπ + arctan

√
beq

1− beq
+ arctan

√
beq + aeq

1− beq
(2.24)

Finally, solve for the effective index of the waveguide

neff ≡ Neq = N2
l + beq

(
N2

f −N2
l

)
(2.25)

which gives the propagation constant through the relation β = kneff . This simple

procedure allows a rapid analysis of the three dimensional structures shown in

Figure 2.3.

2.3 Coupled Mode Theory

Coupled mode theory [1] presents the basic analytic tool to determine the features

of light tunneling between two (or several) waveguides in close physical proximity.

Consider two isolated waveguides, each with z-propagating fields given by

~E1,2(x, y, z) = ~E1,2(x, y)e−iβ1,2z (2.26)

which are solutions to the individual wave equations

∂2

∂x2
E1,2(x, y) +

∂2

∂y2
E1,2(x, y) +

(
k2

0n
2
1,2 − β2

1,2

)
E1,2(x, y) = 0 (2.27)

The fields, refractive indices and propagation constants of the two waveguides are

denoted by the subscript 1, 2. Assuming two waveguides are in close proximity to
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each other, the overall field is taken to be the superposition of the individual fields

~E(x, y, z) = C̃1(z)~E1(x, y)e−iβ1z + C̃2(z)~E2(x, y)e−iβ2z (2.28)

This crucial assumption, the so-called weak coupling condition, requires that the

proximity of a second waveguide does not perturb the field in the other significantly,

and thus take (2.28) to be a solution of

∇2~E + k2
2n

2(x, y)~E = 0 (2.29)

where, here, n(x, y) is the composite refractive index profile of the two-waveguide

system. Inserting the ansatz (2.28) into (2.29) and assuming that the field ampli-

tudes do not vary rapidly while propagating (the slowly-varying approximation,

i.e., taking δ2C̃1
δz2 = 0 and δ2C̃2

δz2 = 0) the result is

(
−2iβ1

δC̃1

δz
+ k2

0

(
n2 − n2

1

))
~E1(x, y)e−iβ1z+

(
−2iβ2

δC̃2

δz
+ k2

0

(
n2 − n2

2

))
~E2(x, y)e−iβ2z = 0

(2.30)

Multiplying (2.30) by ~E∗1(x, y) and integrating over all x and y yields the first

coupled mode equation. Repeating this step but multiplying by ~E∗2(x, y) instead

yields the second coupled mode equation. Together, the coupled mode equations

are
dC̃1

dz
+ ie−i(β2−β1)zκ12C̃2 = 0 (2.31)

dC̃2

dz
+ ie−i(β1−β2)zκ21C̃1 = 0 (2.32)

with the coupling coefficients given by

κ12 =
k2

0

2β1

∫ ∫ (
n2 − n2

2

)
~E2

~E∗1dxdy∫ ∫
~E1

~E∗1dxdy
(2.33)

κ21 =
k2

0

2β2

∫ ∫ (
n2 − n2

1

)
~E1

~E∗2dxdy∫ ∫
~E2

~E∗2dxdy
(2.34)

The coupling coefficients determine the strength of coupling from one wave-
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Figure 2.5: Illustration of the refractive index terms used in coupled mode theory

calculations. The spatial integration in κ12,21 are only over the areas shown in the

bottom two drawings.

guide to another. The term
(
n2 − n2

1,2

)
represents the difference between the

composite refractive index profile and the refractive index profile of the individual

waveguides, as illustrated in Figure 2.5.

To rewrite the coupled mode equations in a more manageable form, we sub-

stitute C̃1,2 = C1,2e
iβ1,2z. For waveguides similar in cross-section, a stipulation to

be tested for each case, one can observe that κ12 ≈ κ21 by inspecting (2.33) and

(2.34). Defining κ ≡ −iκ21, we finally have

d

dz




C1

C2


 =



−iβ1 −κ∗

κ −iβ2







C1

C2


 = M




C1

C2


 (2.35)

It should be noted that typically κ21 in (2.34) is a real number, so κ in (2.35) is a

negative, purely imaginary number.

For a z-independent coupling matrix M represented in (2.35), a solution of the

coupled mode equations ~C(z) = [C1(z) C2(z)]T is found by direct integration.



17

The result is

~C(z) = eMz ~C(0) (2.36)

Using the definition for the exponential of a matrix, the solution (2.36) is explicitly

~C(z) = T~C(0) (2.37)

where

T = e−iβ̄z




cos(σz)− i δ
σ sin(σz) −i |κ|σ sin(σz)

−i |κ|σ sin(σz) cos(σz) + i δ
σ sin(σz)


 (2.38)

and

β̄ ≡ β1 + β2

2
δ ≡ β1 − β2

2
σ ≡

√
δ2 + |κ|2 (2.39)

The term e−iβ̄z is typically ignored as a common phase that disappears upon

calculating the power.

For similar waveguides, i.e., for which β1 = β2 ≡ β, (2.38) reduces to a more

tractable form. This type of waveguide structure is called the directional coupler

and has the transfer matrix given by

T = e−iβz




cos(|κ|z) −i sin(|κ|z)

−i sin(|κ|z) cos(|κ|z)


 (2.40)

Thus, for light input to waveguide one, ~C(0) = [1 0]T , the output is

C1(z) = e−iβz cos(|κ|z), C2(z) = −ie−iβz sin(|κ|z) (2.41)

Physically, the input power “sloshes” back and forth in a sinusoidal manner, with

the final output power ratio being precisely determined by the distance z over

which the waveguides are coupled. The coupling coefficient (2.33) for two similar

waveguides of a directional coupler is [1]

κ =
2h2pe−ps

β (w + 2/p) (h2 + p2)
(2.42)
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where h and p are defined in (2.15) and (2.17), w is the waveguide width, and β

is the propagation constant.

For all but the most simple systems, (2.38) is quite formidable. It is often

written in shorthand as

T =




t −κ∗

κ t∗


 (2.43)

It should be made abundantly clear that κ in (2.43) is not the same coupling

coefficient as that of (2.42), but is rather a shorthand notation for the off-diagonal

elements in (2.38).

2.4 The Geometrical Representation of Coupled Mode

Theory

Optical couplers are of obvious importance in optical electronics and have been

analyzed by various formulations of coupled mode theory (CMT) for many years

[1, 26]. Whereas CMT excels in analysis, other tools may prove more useful in

design. A useful geometrical representation of CMT would yield intuition into the

nature of various couplers and would facilitate design as well as analysis. The

geometrical representation employed in what follows is not in itself new. Feyn-

man et al., originally formulated a similar geometrical representation for the two

dimensional Schrödinger equation in solving maser problems [27]. Ulrich first cast

CMT into an analogous geometrical representation [28] that was later extended

and generalized in References [29, 30]. Besides the original examples of the geo-

metrical representation, little work has been done to explore its worth as a design

implement.

Using the geometrical representation as a guide, we classify optical couplers

into three groups: (1) stationary mode, (2) adiabatic mode evolution, and (3)

non-adiabatic mode evolution. Stationary mode couplers are standard symmetric

directional couplers, for which the system eigenmodes remain the same throughout

the length of the coupler. A mode evolution coupler, as in Reference [31], has con-
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tinuously changing refractive index profile throughout the length of the coupler,

resulting in continuous evolution of the system eigenmodes. Such a coupler is adi-

abatic when the change in shape is gradual enough to satisfy the adiabatic criteria

[32], so the actual states closely follow the evolving eigenmodes. For non-adiabatic

mode evolution couplers, changes in refractive index profile are fast enough such

that the actual states of the guided beam do not closely follow the changing eigen-

modes, but we assume are slow enough so as not to introduce excessive loss.

A viable design and characterization tool for the general non-adiabatic mode

evolution type coupler has yet to be devised, as was pointed out by Li and Henry

[33]: “In general, a coupler can be neither symmetrical nor adiabatic. . . There is

currently no simple and general method for visualizing the physical process and

predicting the transmission properties of such general couplers.” The geometrical

representation that follows succeeds in this endeavor.

From Section 2.3, specifically (2.35), the complex optical field amplitudes ~C

evolve in a coupler according to the equations

d~C

dz
= M~C (2.44)

where M is the coupling matrix given in (2.35), with diagonal elements M11 =

−iβ1, M22 = −iβ2 and off-diagonal elements M12 = −κ∗, M21 = κ.

A normalized state ĉ = ~C√
~C ~C∗

is depicted in the geometrical representation of

CMT as a unit vector delineating a point in a real three dimensional space using

the relations [29, 34]

sk = ĉ†σk ĉ (2.45)

where the σk are the Pauli spin matrices (cyclically permuted from the standard

order)

σ1 =




1 0

0 −1


 σ2 =




0 1

1 0


 σ3 =




0 −i

i 0


 (2.46)

The state vector base states and the corresponding waveguide states are shown in
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Figure 2.6: The Poincaré sphere base states. A state vector s on any of the axes

represents the two-waveguide state as shown. The numbers represent the relative

amplitudes and phases in each waveguide for the corresponding base states.

Figure 2.6.

The coupling operator, M, similarly transforms in this representation into a

real three-element rotation vector according to

Ωk = iTr(Mσk) (2.47)

Using (2.45) and (2.47) in conjunction with (2.44), the transformed coupled mode

equations become
d~s

dz
= ~Ω× ~s (2.48)

The coupled mode equations are now regarded dynamically as sequential infinites-

imal rotations of the instantaneous state vector s(z0) on the unit sphere around

the instantaneous rotation axis Ω(z0). As seen from (2.48), a state vector is sta-

tionary when collinear with the rotation vector. Thus the antipodal points ±Ω̂
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represent the two local eigenstates of the waveguide system. For non-constant

Ω(z), a solution of (2.48) is obtained by direct numerical integration. This pic-

torial representation of a two-state system is analogous to the Poincaré sphere of

polarization optics [34].

Specifically, for the coupled mode equations above, the instantaneous rotation

vector (2.47) becomes

~Ω =




2∆β

2Im(κ)

−2Re(κ)




(2.49)

where κ = Re(κ) + iIm(κ) and 2∆β = (β2 − β1). As we noted in Section 2.3, the

coupling coefficient is typically taken as purely imaginary. However, in general,

it may be complex (e.g., when there is gain or loss, or when one accounts for

the effect of non-parallel waveguides). Here we assume the convention that κ is

purely imaginary. Consequently for the remainder of this chapter, we consider only

rotation vectors that lie on the equator of the sphere, in the plane given by the

first two components of (2.49), with magnitude of rotation |Ω| = √
(|κ|)2 + (∆β)2.

While the rotation vector is confined to the equator, the state vector can take

any position on the sphere. Consistent with this restriction on ~Ω, we design the

evolution of the rotation vector to produce a state vector trajectory exhibiting

desired properties. In the following section, we describe three design examples

utilizing this approach.

2.5 Symmetric and Mode Evolution Optical Couplers

2.5.1 Symmetric Optical Couplers

A stationary mode coupler is defined as having eigenmodes that do not change

with z and so the rotation axes, ±Ω̂, are stationary. The magnitude of ~Ω, on

the other hand, may vary. Starting at some initial state ~s0, the state vector ~s(z)

performs a rotation around the diameter connecting ±Ω̂ at a varying rate |Ω(z)|.
As an example let us consider a standard symmetric 3-dB directional coupler with
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Figure 2.7: Geometrical representation of a 3-dB stationary mode coupler. The

rotation vector, Ω, (filled circle) remains statically collinear with the s2 axis, while

the magnitude of the rotation vector dictates the rotation of the state vector, s,

(unfilled circles) from the s1-axis to the s2-axis.

identical waveguides whose geometrical representation is given in Figure 2.7.

Since ∆β = 0 and κ is purely imaginary, using (2.49), we obtain the rotation

vector ~Ω = 2|κ|[0 1 0]T . In this case ±Ω̂ corresponds to the well-known symmetric

and antisymmetric eigenmodes (also referred to as supermodes), ĉ± = 1√
2
[1 ±1]T .

Assuming that light is launched into waveguide 1, the initial amplitude state is

ĉi = [1 0]T , with corresponding state vector ~si = [1 0 0]T on the sphere. We obtain

3-dB coupling (ĉf = 1√
2
[1 i]T ) by controlling the magnitude of the rotation vector

|~Ω| = 2|κ| in the following way:

At the input of the coupler |~Ω| is very small where the waveguides are far

apart. The magnitude is then increased to the maximum value in the coupling

region where it remains for the prescribed length, at which point the waveguides

diverge and |~Ω| again becomes small. The total trajectory of the state vector

is simply the quarter rotation of the initial state vector to the final state vector

~sf = [0 0 1]T around the rotation axis.
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2.5.2 Adiabatic Mode Evolution Optical Couplers

In adiabatic mode evolution couplers, the changes in the direction of the rotation

vector are slow enough so that system states closely follow the evolving eigenmodes.

The requirement for the ‘slowness’ of change is determined by an adiabaticity

condition. Typically, one requires that any change in the waveguide structure

occurs over a distance much longer than the beat length between the two local

eigenmodes [35]. In our notation, this beat length is 2π
|~Ω| . If this condition is

satisfied, an input state vector aligned with one of the eigenmodes will remain so

for the entire span of the coupler.

An intuitive adiabaticity condition for optical couplers can be derived in the

geometrical representation. As previously described, a state vector circulates on

the sphere around the diameter connecting the eigenstates, with a rotational ve-

locity equal to |~Ω|. Let ρ be the radius of rotation, given by the sine of the angle

between the actual state of the optical beam and the local eigenmode. For the

actual state to remain ‘near’ the eigenmode for the duration of the coupler, the

tangential velocity of the state vector must be larger than, or at least equal to, the

tangential velocity of the eigenmodes on the sphere:

ρ|~Ω| ≥
∣∣∣∣∣
dΩ̂
dz

∣∣∣∣∣ (2.50)

For the strictly adiabatic case, the states would ideally occupy the local eigenmodes

for all z, that is, ρ = 0, but it is evident from (2.50) that for finite |~Ω|, any change

in the eigenmodes would require infinite distance in z. The choice of the allowed

range of ρ presents a design trade-off between long coupler length and the deviation

from the desired output ratio.

As an example we consider a 3-dB adiabatic coupler whose geometrical repre-

sentation is given in Figure 2.8. As before, light is launched in waveguide 1, corre-

sponding to normalized field amplitude ĉi = [1 0]T and state vector ~si = [1 0 0]T .

The initial eigenmode ideally would be the same as the initial state vector. How-

ever, this requires κ = 0 and therefore, infinite separation between the waveg-
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Figure 2.8: Geometrical representation of a 3-dB adiabatic mode evolution coupler.

The rotation vector (filled circles) itself rotates from the s1-axis, corresponding

to the individual waveguide modes, to the s2-axis, representing modes of equal

amplitude and phase. The magnitude of the rotation vector is large so that the

state vector (unfilled circles) closely follows the trajectory of the rotation vector.

uides. Thus, we choose as our initial eigenmode Ω̂ =
[√

1− δ2 δ 0
]T

, where δ is

the small deviation from the actual state. The final eigenmode for 3-dB coupling

is Ω̂ = [0 1 0]T . Between its endpoint values, many choices for the rotation vec-

tor Ω̂ = [cos (Θ(z)) sin (Θ(z)) 0]T are available. One such choice, used for this

example, is

Θ(z) =





(
Θ0
2 − π

2

) (
cos

(
πz
l − 1

))
+ Θ0

π
2

0 < z < l

l < z < L





(2.51)

The magnitude |Ω| = √
(|κ|)2 + (∆β)2 is large and constant until Ω̂ attains its final

constant position, z = l , where the magnitude decreases exponentially, resulting

in linear divergence of the two waveguides.

2.5.3 Non-Adiabatic Mode Evolution Optical Couplers

Non-adiabatic mode evolution couplers have neither stationary modes nor adia-

batic mode conversion. As with adiabatic-type couplers, the eigenmodes change
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Figure 2.9: Geometrical representation of a 3-dB non-adiabatic mode evolution

coupler. The rotation vector (filled circles) rotates from the s1-axis to the s2-

axis and back. However, the magnitude of the rotation vector is smaller than in

the adiabatic case (Figure 2.8), so that the state vector (unfilled circles) cannot

closely follow the rotation vector. In this way, the state vector is transported from

its initial state on the s1-axis to the meridian representing equal amplitude.

with z. However, in this case, the adiabaticity condition (i.e., 2.50) is not met. On

the sphere, the magnitude of the rotation vector is smaller than in the adiabatic

case, so the state vector does not closely follow the evolving eigenmode. Rather

the rotation vector is controlled to produce a state vector trajectory with desired

properties.

Let us consider a 3-dB non-adiabatic mode evolution coupler corresponding to

the geometrical representation of Figure 2.9. Again, we take the initial state as

in the previous two cases. However, for the output, we only require that the final

state lies on the meridian through s2 and s3, representing equal intensity. Here,

for reasons explained below, we take the initial and final rotation vectors to be the

same, Ω̂ = [1 0 0]T . Between initial and final points, the rotation vector sweeps

towards and back from some maximal point in the plane. Specifically, again taking
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Ω̂ = [cos (Θ(z)) sin (Θ(z)) 0]T , we choose:

Θ(z) =
(

π

2

)
e−( 4z

L
−2)2

(2.52)

The magnitude is selected to be large and constant. Physically, this corresponds

to beginning and ending the coupler with large dephasing and little coupling,

and achieving the maximum coupling (minimum dephasing) in the center of the

device. The reason for this is best understood in the context of the sphere. The

motion of the rotation vector, when divided into infinitesimal sections, constitutes

a series of infinitesimal rotations of the state vector. If the functional form of ~Ω is

chosen properly, the finite rotation comprised of infinitesimal rotations transports

the state vector along some trajectory between the requisite endpoints. Once the

rotation vector has returned to its original starting point, the state can only rotate

around the line connecting the final eigenmodes, i.e., on the meridian defining

an equal amplitude sum of the original eigenmodes. Note that any continued

rotation merely contributes to the relative phases of the waveguide outputs while

maintaining the output intensity ratio.

2.5.4 Coupler Index Profiles and Simulations

In designing optical couplers using the geometrical representation, we begin by

defining ~Ω that generally varies in both amplitude and direction. The task at

hand is to convert this trajectory into a waveguide refractive index profile. For

simplicity, we choose to model our waveguide structures as stepped-index slabs,

since using effective index methods, three-dimensional structures can be approxi-

mated as slabs.

Given ~Ω, the propagation constants of the waveguides are determined from

(2.49) according to β1(z) = β̄ + ∆β(z) and β2(z) = β̄ −∆β(z), where the average

propagation constant β̄ = β1+β2

2 is chosen so that the waveguides remain single-

mode. The widths of the waveguides are likewise chosen to be of the form w1(z) =

w̄ + ∆w(z) and w2(z) = w̄ − ∆w(z). From the well-known solution to the slab
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(a) (b) (c)

Figure 2.10: Refractive index profiles for the three types of couplers described

above. In (a) the symmetric directional coupler, in (b) the adiabatic coupler, and

in (c) the non-adiabatic mode evolution coupler.

waveguide [1], the widths of the waveguides w1,2 can be numerically calculated

given the propagation parameters β1,2 and core and cladding indices.

Upon obtaining the widths w1(z) and w2(z) of the waveguides, and given Im(κ)

from (2.49), the gap g(z) between the waveguide centers can be determined. Stan-

dard coupled mode theory expressions for the coupling coefficient [1] can be nu-

merically inverted to determine the gap g(z) between waveguides for each z.

Figure 2.10 shows the refractive index profiles, calculated using the preceding

steps, for the three example couplers discussed above. To verify the predictions of

the geometrical representation, we implement the split-step fast-Fourier transform

beam propagation method (BPM, see Appendix A). For the simulations, the index

contrast is taken to be 0.05 for the adiabatic mode evolution coupler and 0.10 for

the others. The field width and calculation step size are taken as 25 µm and 0.2

(1.0 for the adiabatic coupler) µm, respectively. The lengths are as shown in Figure

2.10. The results of the BPM simulations shown in Figure 2.11 corroborate the

predictions of the geometrical representation.

The geometrical representation of coupled mode theory can be used effectively

to visualize and predict the output properties of general optical couplers. The in-

tuitive insight gleaned by this representation is its primary advantage in analysis.

However, as has been demonstrated, the geometrical representation also proves

useful as an effective design tool for achieving specified amplitude and phase re-
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(a) (b) (c)

Figure 2.11: Beam propagation simulations for the three refractive index profiles

shown in Figure 2.10. In each case, light is input into one waveguide and the

resultant output is that of equal power between the two waveguide outputs. In

(a) the symmetric directional coupler, in (b) the adiabatic coupler, and in (c) the

non-adiabatic mode evolution coupler.

sponses of optical couplers. The design of a coupler reduces to the designation

of an eigenmode trajectory and a corresponding state vector trajectory on the

sphere. Fine detail, such as output phase relationship or wavelength response, is

more easily resolved in this representation, enabling exploration of non-standard

couplers exhibiting special characteristics. For instance, novel non-adiabatic mode

evolution couplers can be designed to have an arbitrary phase relationship between

the coupler outputs or a specific wavelength response, as will be presented in the

following section.

2.6 Wavelength-Invariant and Fabrication Error Tol-

erant Optical Couplers

Two-by-two optical couplers that maintain output differential phase and relative

amplitude conditions despite operating wavelength variation and fabrication errors

are of utmost importance in integrated optics, especially for cascaded filters and

modulators [36]. To this end, Mach-Zehnder structures can be constructed with a

good degree of tolerance in the output amplitudes [37], however in such construc-

tions the output differential phase changes maximally with wavelength variations,
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Figure 2.12: Power output ratio as a function of |Ω| for the raised cosine shape

function. Points A, B, and C represent couplers with the desired 3-dB power

output ratio.

rendering these devices less useful in filter applications. The most promising tech-

nology for achieving the desired tolerances has been the adiabatic coupler [35],

for which the local system states follow adiabatically the local eigenstates of the

waveguiding system and, thus, mode conversion between eigenstate populations

is minimized. However, this requires structures that change over distances much

longer than the beat length at any cross section of the coupler, thus limiting the

usefulness of adiabatic couplers. Here we describe a novel design approach which is

based on varying the local eigenstates while keeping their beat length constant. It

is shown that by choosing the beat length with discretion while relaxing adiabatic

criteria, adiabatic-like wavelength variation immunity and fabrication tolerance

can be realized for much shorter device lengths.

We now describe by an example, how the formalism of Section 2.4 can be used

for the design of novel couplers with unique features. The device we examine is a

3-dB non-adiabatic mode evolution coupler that, unlike a conventional directional

coupler, yields no phase shift between the output waveguides. In choosing the

shape function θ(z) to obtain the desired 3-dB power output ratio and phase

relationship, we require the initial and final eigenstates, assuming light is input
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in waveguide 1, to be ε̂initial = [1 0]T and ε̂final = (1/
√

2)[1 1]T, corresponding in

the geometrical representation to Ω̂initial = [1 0 0]T and Ω̂final = [0 1 0]T. We

thus need a smoothly changing function with beginning and ending points θ = 0

and θ = π/2. Various shape functions have been compared [31], however, here we

choose for illustrative purposes the raised cosine function

θ(z) =
(

θ0

2
− π

4

) (
cos

πz

l
− 1

)
+ θ0 (2.53)

where l is the half-length of the coupler and θ0 is an additive constant preventing

|κ| = 0 (infinite waveguide separation). The magnitude of the rotation vector

is taken to be constant throughout the length of the 3-dB portion of the cou-

pler for simplicity. Beyond the point where the desired 3-dB output is obtained,

the magnitude of rotation can be exponentially decreased, linearly separating the

waveguides. This latter portion is of little consequence in the current study and is

ignored in what follows. As discussed previously [38], to obtain the desired power

output ratio, it is important to carefully choose specific ranges of the product |Ω| ·l
for a given shape function. As optical component miniaturization and integration

progresses and as planar lightwave circuit complexity grows, coupler lengths are

severely restricted, so it is more realistic in this point of view to consider the length

as restricted to a constant, and to carefully select ranges of |Ω| to obtain the de-

sired output. Figure 2.12 shows a plot of the power output ratio for the raised

cosine shape function, as a function of |Ω|. As can be seen, there exist several

values of |Ω| where the desired power output ratio (0.5) is obtained. Shape func-

tions exhibiting smaller ripple exist, but at the cost of larger |Ω| or longer length.

Larger |Ω| results in couplers that change rapidly in shape, increasing scattering

loss, and alternatively longer lengths are against the spirit of this study. Referring

to Figure 2.12, the perfectly adiabatic limit results from |Ω| · l →∞.

Once the magnitude |Ω(z)| and shape function θ(z) are chosen to achieve the

desired output ratio and phase, the refractive index profile is computed as follows.

For simplicity, we model the system as a slab waveguide structure of length 300
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a b

c d

Figure 2.13: Geometrical representation of the eigenstate (◦) and system state

(×) trajectories. The system states begin occupying one eigenmode, that is, light

is injected into waveguide 1, and end in the eigenmode given by equal output

power and phase. Figures 2.13 (a), (b), and (c) depict trajectories as calculated

for |Ω| given by points A, B, and C, respectively, for Figure 2.12. In (d) we show

the coincident system state and eigenstate trajectories of a long-length adiabatic

coupler for comparison.

µm, with core and cladding refractive indices of 1.55 and 1.5. The first element

of the rotation vector immediately yields the individual propagation constants

β1(z) = β̄ + ∆β(z) and β2(z) = β̄ − ∆β(z), assuming a constant average propa-

gation constant β̄ = (β1 + β2)/2 that ensures single-mode operation. From these,

the waveguide widths are obtained by inverting the solutions for the propagation

constants of slab waveguides as detailed in [1]. Finally, the second element of the

rotation vector is used in the equation relating the coupling coefficients to the

waveguide widths and center-to-center separation.

Consider points A, B, and C in Figure 2.12, where the magnitude of the rota-
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Figure 2.14: Power output ratios and relative output phases as a function of wave-

length (a,b) and width scaling factor (c,d). The dash-dot (- · -) line represents a

symmetric directional coupler for comparison. The dashed (- - -) and solid (—)

lines give the output ratios and relative phases corresponding to couplers designed

with |Ω| as given by points (a) and (b) in Figure 2.12, respectively.

tion vector yields couplers exhibiting the desired 3-dB power splitting and phase

relationship. To give a geometrical understanding to couplers designed with |Ω|
at these points, we calculate the state vector trajectories and plot them in the ge-

ometrical representation along with the eigenstate trajectories in Figure 2.13 (a),

(b), and (c), corresponding with the letter designations in Figure 2.12. These tra-

jectories represent the crossing of the final state and the final desired state. With

increasing |Ω|, the trajectories tend toward adiabatic behavior, for which the state

vector and eigenstate remain arbitrarily close, as in Figure 2.13 (d).

To illustrate the wavelength insensitivity of the power output ratios and rela-

tive output phases for such non-adiabatic 3-dB coupling structures, we calculate

the state vector trajectories as a function of wavelength using the model param-
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eters as described above. The power output ratios are plotted in Figure 2.14 (a),

over a wavelength range of 1300 to 1600 nm. For comparison, the wavelength de-

pendence of a standard symmetric directional coupler is also shown. Clearly, the

coupler designed using |Ω(z)| chosen at point A is a marginal improvement over

a directional coupler, but the choice of |Ω(z)| at point B yields a coupler with a

good degree of wavelength invariance. Point C gives even further improvement,

but is not shown as it essentially matches the desired 3-dB output throughout the

band. The relative output phases are shown in Figure 2.14 (b), and as for the case

of the power output ratio, a good degree of phase invariance is obtained for the

choice of |Ω(z)| at point B in Figure 2.12.

In photo- or electron-beam lithography used for the production of optical inte-

grated circuits, an exposure error may result in a disparity of the intended wave-

guide widths and the actual values. To simulate this, we calculate the power output

ratio and output phases while varying the intended waveguide width via a scaling

factor ranging from 0.75 to 1.25. The power output ratio results as calculated

using matrix methods are shown in Figure 2.14 (c), and the corresponding relative

output phase calculations are shown in Figure 2.14 (d). Again, as in the case of

wavelength variations, we see marked improvement over a directional coupler when

|Ω(z)| is chosen as point B of Figure 2.12.

As an independent corroboration of the results as calculated using the matrix

methods, beam propagation method (BPM, see Appendix A) simulations were

employed. Results of the simulations agree quite well with the wavelength and

scaling factor responses as predicted by the matrix method, and thus, are not

shown.

We have presented a scheme for the design of optical couplers with a high

degree of wavelength insensitivity and fabrication tolerance. It has been demon-

strated that it is possible to obtain properties similar to those of purely adiabatic

couplers, i.e., good wavelength insensitivity and fabrication tolerances, if the de-

sign parameters are chosen with care. The physical reason for the adiabatic-like

features is due to the fact that as the wavelength is varied or the waveguide shapes
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are scaled, |Ω(z)| is changed by some amount. The key feature, therefore, to

attaining the desirable properties of adiabatic couplers, is the slope of the curve

shown in Figure 2.12 near the points of 3-dB output. The smaller the slope, the

smaller the deviation from the desired output.
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Chapter 3

Polymer Microring Resonator Optical Filters

3.1 Introduction

The practical application of many devices envisioned for integrated optics has been

hindered due to immaturity of the fabrication methods necessary for realization.

The advent of high resolution and rapid processing of passive polymers enables

fulfilment of the proposals of optical communications engineers. Among the most

important of these previously proposed devices is the microring resonator.

Originally proposed in 1969 for channel dropping in optical communications

systems [39], microring and microdisk resonators have recently become the sub-

ject of intense research for a variety of applications [40, 41, 42, 43, 44, 45, 46,

50, 69, 70, 73, 74]. The original ideas of wavelength routing and switching have

been extended, resulting in several synthesis and analysis techniques for high-order

filtering using multiple resonators [40, 41]. Microrings have been used to demon-

strate optical modulation using the electro-optic effect in polymer [42], and for

all-optical switching using free-carrier injection in GaAs-AlGaAs [43]. In virtue

of their long photon lifetimes, high quality factor resonators may be applied as

optical delay lines [44] and for low threshold lasers [45]. More recently, interest

in biological sensing has led to the development of photonic biosensors based on

microring resonators [46].

In this chapter, microring resonators are examined using the established the-
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Figure 3.1: Microring resonators side coupled to one waveguide in (a), and side

coupled to two waveguides in (b).

ory and are experimentally demonstrated using optical polymers. First, the fun-

damental properties of microring resonators are ascertained, demonstrating the

wavelength filtering properties and quantities such as the quality factor, finesse,

free spectral range, etc. Loss mechanisms in straight and curved waveguides are

explained and the properties of passive polymer materials are examined. Microring

resonator devices based on these polymer materials are demonstrated, including a

chip-based microring resonator optical filter, a free-standing all-polymer microring

resonator optical filter, and a microring resonator based inline reflector.

3.2 Fundamental Theory of Microring Resonators

3.2.1 The Spectral Response and Related Quantities

The theory that serves as the basis of microring resonators is very similar to that

of Fabry-Perot resonators. In the following analysis, Reference [47] is followed

closely. A schematic diagram of the simple ring resonator side coupled to a single
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waveguide is shown in Figure 3.1(a). From Section 2.3, the boxed portion of Figure

3.1(a) obeys the coupled mode equations, with the solution given by




B1

B2


 =




t −κ∗

κ t∗







A1

A2


 (3.1)

where A1,2 and B1,2 are the optical field amplitudes as given in shown in Figure

3.1, t is the field amplitude that passes the coupler given a unity input, and κ is

the field amplitude that couples into or out of the ring for a unity input.

In traveling the ring circumference, the optical field B2 that couples into the

ring incurs a phase accumulation and amplitude decrease that result in an input

to the coupler A2 given by

A2 = α exp(iθ)B2 (3.2)

The phase term θ = βL is equal to the propagation constant β multiplied by the

length L = 2πr the field travels for a ring with radius r. The propagation constant

can be calculated using the effective index method of the previous chapter, and the

relation β = 2πneff

λ , where neff is the effective refractive index of the waveguide

and λ is the propagation wavelength. The term α represents the field amplitude

remaining after one circulation, i.e., α = 1 for zero internal loss.

Inserting (3.2) into (3.1), and solving for the normalized output amplitude, the

result is
B1

A1
=

t− α exp(iθ)
1− t∗α exp(iθ)

(3.3)

The normalized circulating field is similarly

A2

A1
=

κα exp(iθ)
1− t∗α exp(iθ)

(3.4)

Multiplying each of the above by the corresponding complex conjugate, the nor-

malized power output and normalized circulating power are

T =
∣∣∣∣
B1

A1

∣∣∣∣
2

=
α2 + |t|2 − 2α|t| cos(θ + φt)
1 + α2|t|2 − 2α|t| cos(θ + φt)

(3.5)
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and ∣∣∣∣
A2

A1

∣∣∣∣
2

=
α2

(
1− |t|2)

1 + α2|t|2 − 2α|t| cos(θ + φt)
(3.6)

where t = |t| exp(iφt). When (θ + φt) = 2mπ, for integer m, the input wavelength

is said to be resonant with the ring, and the output and circulating power are

∣∣∣∣
B1

A1

∣∣∣∣
2

=
(α− |t|)2
(1− α|t|)2 (3.7)

and ∣∣∣∣
A2

A1

∣∣∣∣
2

=
α2

(
1− |t|2)

(1− α|t|)2 (3.8)

It is seen from (3.7) that when the term representing transmission past the ring, t,

is equal in magnitude to the field remaining after a round trip in the ring, α, then

(3.7) is equal to zero and there is no light output from the device. Borrowing the

term from microwave optics, this condition is known as critical coupling.

The maximum and minimum values of T in (3.5) are

Tmax = (α+|t|)2
(1+α|t|)2 Tmin = (α−|t|)2

(1−α|t|)2 (3.9)

To minimize Tmin, critical coupling α ≈ t must be satisfied. To simultaneously

maximize Tmax, the resonator should be weakly coupled to the ring and the round

trip loss must be low, that is, α ≈ t ≈ 1.

Shown in Figure 3.2 are plots of (3.5) for several values of t and α as stated

in the caption. The critical coupling conditions are satisfied in each plot for the

curve representing |t| = α. When the magnitude of the transmission term t is

larger than the loss term α, the response is termed under-coupled. The opposite

case, when |t| < α, refers to an over-coupled system.

The optical filter response of the ring resonator is a periodic array of notches,

occurring for wavelengths resonant with the ring, i.e., for wavelengths λm that

satisfy θ = βL = 2mπ (assuming θ À φt). The separation between successive

resonances, each occurring for mode number m = neff (λm)L
λm

, is the free spectral

range (FSR ≡ λm+1−λm). To calculate the FSR, subtract two adjacent resonance
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Figure 3.2: The output power of a single ring resonator coupled to a waveguide.

Each plot shows the spectra with t = 0.1, 0.3, 0.5, 0.7 and 0.9. The upper, middle,

and lower plots represent spectra with α = 0.3, 0.5 and 0.7, respectively.
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mode numbers

m = neff (λm)L
λm

, m + 1 = neff (λm+1)L
λm+1

(3.10)

to eliminate m. Solving for λm+1 − λm gives the FSR. Over a large range of

wavelengths, the propagation constant is not strictly constant due to waveguide

dispersion. To account for this, the group index N is used rather than the effective

index. The group index is given by

N ≡ dβ

dk
= neff + k

dneff

dk
= neff − λ

dneff

dλ
(3.11)

Taking neff (λm) ≈ neff (λm+1) ≈ N and λm · λm+1 ≈ λ2, the result is

FSR = λm+1 − λm ≈ λ2

NL
(3.12)

The wavelength selectivity of the filter is characterized by the quality factor –

or Q factor – of the resonator. Fundamentally, the Q factor is defined as the radian

frequency multiplied by the ratio of the stored energy and the power dissipated in

the resonator [1]. The Q can be calculated from the measured data by using the

relation

Q =
λ0

4λFWHM
(3.13)

where λ0 is the center wavelength of the resonance and 4λFWHM is the full width

of the response curve at the half-maximum points. A related quantity often quoted

for similar purposes is the finesse (F ) of the filter, defined as

F =
FSR

4λFWHM
(3.14)

For the specific case of a single ring resonator coupled to a single waveguide,

the quality factor and finesse are calculated as follows:
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The output transmission given in (3.5) can be rewritten in the form

T = 1−
(
1− α2

) (
1− |t|2)

(1− α|t|)2 + 4αt sin2
(

θ
2

) (3.15)

The right hand term in the above equation is exactly the same form as the trans-

mission of a Fabry-Perot cavity [48], with the end-mirror reflectivities replaced by

t and α. The full spectral width at half-maximum transmission, 4λFWHM , for

the Fabry-Perot cavity is [49]

4λFWHM =
λ2

0

NL

(
1− α|t|
π
√

α|t|

)
(3.16)

where the reflectivities have been replaced by α and t. An assumption used in the

calculation of (3.16) was that the mirrors are highly reflecting (or, in our case, that

the waveguide was weakly coupled to the resonator), as manifested in the small-

angle approximation sin(θ) ≈ θ. Since, for a normalized function, the FWHM

of the function is equal to the FWHM of one minus this function, we take the

Fabry-Perot results for finesse and quality factor, and directly apply them to the

ring resonator filter. Thus, from (3.13), the Q of the ring resonator filter is

Q =
NL

λ0

(
π
√

α|t|
1− α|t|

)
(3.17)

The finesse F is therefore

F =
π
√

α|t|
1− α|t| (3.18)

Another common geometry involving a single ring resonator is shown in Figure

3.1(b). In this case, two waveguides are coupled to the ring rather than one

waveguide. For analysis, from the point of view of the first waveguide, the second

waveguide merely acts as another loss mechanism. The preceding equations are

valid for this case if we substitute α|t2| for α and |t1| for |t| [47]. The transmission
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function then becomes [50]

T =
∣∣∣∣
B1

A1

∣∣∣∣
2

=
α2|t2|2 + |t1|2 − 2α|t1||t2| cos(θ + φt1 + φt2)
1 + α2|t1|2|t2|2 − 2α|t1||t2| cos(θ + φt1 + φt2)

(3.19)

The power exiting the device from the lower left waveguide in Figure 3.1(b) is [50]

Pdrop =
α2

(
1− |t1|2

) (
1− |t2|2

)

1 + α2|t1|2|t2|2 − 2α|t1||t2| cos(θ + φt1 + φt2)
(3.20)

This is referred to as the drop port of the device, because for wavelengths resonant

with the ring, light exits this port rather than the through port denoted by B1. To

get the full input power output from the drop port, two conditions must be met.

First, the internal loss of the ring must be small, such that α ≈ 1. Second, the

couplers must be identical |t1| = |t2|.
It follows that the wavelength FWHM of the add/drop filter is similar to the

above, but with the replacement of α|t2| for α and |t1| for |t|:

4λFWHM =
λ2

0

NL

(
1− α|t1||t2|
π
√

α|t1||t2|

)
(3.21)

This results in a quality factor given by

Q =
NL

λ0

(
π
√

α|t1||t2|
1− α|t1||t2|

)
(3.22)

and therefore the finesse for the two-waveguide ring resonator filter is

F =
π
√

α|t1||t2|
1− α|t1||t2| (3.23)

The quality factors and finesses discussed above were the so-called loaded val-

ues, referring to the fact that the quantities included the power decay due to

the coupling to the waveguides in addition to the intrinsic power decay due to

waveguide loss. A more fundamental property of the resonator often quoted is the

unloaded Q. For this case, the coupling terms |t1,2| are set equal to one, simulating

the case in which there are no coupling waveguides present. The unloaded quality
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radiation

  caustic

Figure 3.3: A curved waveguide section with the first order mode illustrated. The

radiated field is on the constant phase line beyond the radiation caustic.

factor is then

Q =
NL

λ0

(
π
√

α

1− α

)
(3.24)

for both the single and dual waveguide configurations.

3.2.2 Radiation Loss in Bent Waveguides

A curved waveguide results in power attenuation due to the leakage of light around

the bend [51]. It is a fundamental issue when designing any type of integrated op-

tical structure, but it is an especially important design consideration for microring

resonators. As shown in the previous section, the intrinsic loss of the ring res-

onator is a crucial factor in achieving critical coupling, and hence in achieving

proper filtering characteristics. Further, it is the internal loss of the ring resonator

that determines the wavelength selectivity of the filter, given by the quality (Q)

factor.

The physical mechanism responsible for bend loss is described by a simple

model [36, 51]. In Figure 3.3, a curved section of waveguide is shown, along with a

schematic of the first order mode intensity. From basic considerations, the phase
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Figure 3.4: Slab waveguide refractive index profile n(x) and corresponding equiv-

alent refractive index profile nequ(x).

velocity of light in the guided mode must not exceed the speed of light in the

bulk material. The constant phase line is shown as the dashed line from the

origin outward. Further from the origin on the equiphase line, the phase velocity

increases. The radius at which the phase velocity increases beyond that of the

guided mode is called the radiation caustic, as illustrated in Figure 3.3. The field

that lies beyond this radius is lost in the form of radiation, as it must disassociate

from the guided field so as not to achieve vphase > vbulk cladding material. Physically,

the mode does not distort, as the radiated portion of the field essentially “detaches”

and the field constantly “heals” to retain its modal shape while radiating power

outward.

The refractive index profile of a curved waveguide can be approximated by

a straight waveguide with a modified refractive index profile due to the curved

coordinate system. The modification is manifested in a conformal transformation

[52]. In its simplest form, the transformation is of the form

nequ(x) = n(x)
√

1 +
2x

R
for x ¿ R (3.25)



45

where nequ(x) is the transformed equivalent index profile of the original index

profile n(x) at a position x in a curved system with radius of curvature R. The

linear transformation is valid for large radii of curvature.

Shown in Figure 3.4 are the refractive index profile of the original curved struc-

ture, along with the equivalent index profile of the straight, transformed coordi-

nate system. For light to be guided, the propagation constant obeys the relation

nclad < β/k0 < ncore. Where nclad > β/k0, the light is radiated. The radiation

caustic is the point for which the equivalent index becomes larger than β/k0, and

thus, represents the location of the onset of radiation.

An accurate and simple scheme to numerically predict the attenuation of the

propagating power in curved waveguides was developed by Marcuse [53]. The

decay of the intensity in the waveguide after propagating a distance z is assumed

to have the form

I = I0e
−αz (3.26)

By calculating the fields in curved waveguides in terms of Hankel functions and

finding the power carried in these fields, an approximation for the attenuation

coefficient is found to be [53]

α =
ph2ewpe−U

(
n2

core − n2
clad

)
k2

0β (w/2 + 1/p)
(3.27)

where

U =
[
β

p
ln

(
1 + p/β

1− p/β

)
− 2

]
pR (3.28)

and h =
√

k2
0n

2
core − β2, p =

√
β2 − k2

0n
2
clad, w is the waveguide width, and β is

the propagation constant.

In Figure 3.5, we show the bend loss as calculated from (3.27) and (3.28). The

core refractive index is taken to be a constant 1.60 while the cladding refractive

index takes the values 1.45, 1.50, and 1.53. Clearly, the bend loss is very sensitive

to refractive index differences and higher index contrast results in lower losses for

a given radius. The curves exhibit the characteristic “elbow” at which the bend
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Figure 3.5: Typical “elbow” curves of bend loss for several cladding refractive

indexes (nclad=1.45, 1.50, 1.53) and fixed core index (ncore=1.60).

loss becomes small for some radius. Beyond this radius, the bend loss is generally

negligible, but for radii smaller than this “elbow” value, the bend loss is a very

strong function of radius.

An earlier, three dimensional analysis of bend loss due to Marcatili [39], con-

cludes some important qualitative results. The analysis compares waveguides with

widths less than, comparable to, and larger than, the thickness. The conclusion

is that waveguides with widths larger than the thickness result in reduced bend

losses. This is intuitive, as waveguides with less width have more field outside of

the core and thus, more power at the radiation caustic. The reduction in bend

loss, however, is found only for widths up to

w ∼
(

rλ0

πn2
core

)1/3

(3.29)

3.2.3 Waveguide Surface Scattering Loss

A significant source of loss for both bent and straight waveguides is due to surface

scattering. Since, as shown in Chapter 2, three dimensional waveguide systems

can be reduced to equivalent slab waveguide systems, we consider the surface

scattering of the slab waveguide system dealt with in Section 2.2.2. In the ray-
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optics picture of a slab waveguide, as propagating light reflects off of the interfaces,

it has associated with each reflection a loss determined by the Rayleigh criterion.

The expression for the Rayleigh criterion states that an incident beam with power

Pi results in a specularly reflected beam with power

Pt = Pi exp

[
−

(
4πσ

λ
cos(θ′m)

)2
]

(3.30)

where σ is the root mean square (RMS) surface roughness, λ is the wavelength

in the core, and θ′m is the compliment of the propagation angle (that is, θm =

arccos (β/k0ncore) and θ′m = π/2 − θm). Based on this simple expression, the

surface scattering loss can be expressed as [54]

αscattering = A2

(
cos3 θ′m
2 sin θ′m

) (
1

t + (1/q) + (1/p)

)
(3.31)

where t is the waveguide width, and q and p are the extinction coefficients as given

for the slab waveguide in Section 2.2.2. The coefficient A is a composite RMS

surface roughness given by

A =
4π

λ

(
σ2

12 + σ2
13

)1/2
(3.32)

for the surfaces of the slab waveguide. To convert the loss from inverse centimeters

to dB/cm, (3.31) is multiplied by 4.343.

It is clear from (3.31) that the loss is proportional to the square of the RMS

surface roughness, given by A, and thus, smoother waveguides result in less scat-

tering loss. The loss is also inversely proportional to the waveguide thickness plus

the terms 1/q and 1/p. This results in decreased scattering from thicker waveg-

uides as there are smaller field tales at the interfaces for thicker waveguides. From

numerical investigations, the loss goes approximately as t−3 [55]. The refractive

index contrast of the waveguide core to the cladding materials also has a significant

effect on the scattering loss since the contrast also determines how well the field

is confined. Given an index contrast 4n = (ncore − nclad), the loss is found to
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Figure 3.6: The chemical structure of the SU-8 molecule showing the eight epoxy

groups.

be proportional to (4n)2 [55]. Lastly, higher order modes are susceptible to more

scattering loss because higher order modes are characterized by smaller θ′m.

3.3 Passive Polymer Planar Optics Using SU-8

SU-8 (Microchem Corp.) is a negative-tone epoxy-based resist that can be cured by

exposure to ultraviolet radiation (365 nm), an electron beam, or X-ray radiation.

The chemical structure of the base epoxy EPON SU-8 developed by Shell Chemical

Company is shown in Figure 3.6. As a resist, SU-8 was developed by IBM-Watson

Research Center in 1989 [56]. The high functionality of its eight epoxy groups is

responsible for its high sensitivity as a resist, and the low molecular weight results

in extremely high resolution. To formulate as a resist, the EPON SU-8 resin is first

dissolved in either gamma-butytolactone or cyclopentanone [57]. Subsequently, a

photoacid generator, in the form of triarylsulfonium hexafluroantimonate salt, is

added to the solution. Upon exposure, the photoacid generator decomposes to

an acid activating the epoxy groups and enabling polymerization with other ac-

tivated epoxy groups. Thus SU-8 exhibits the negative-tone property that the

exposed material remains, whereas unexposed material is removed upon devel-

oping in the appropriate solvent. This is in contrast to polymethylmethacrylate
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(PMMA), a positive-tone resist that when exposed to beam of energetic electrons

undergoes scission of the polymer backbone and the material in the exposed areas

are subsequently removed by developing in solvent.

SU-8 is widely used as a resist because of its remarkable properties in com-

parison to other commercially available resists. By varying the solid/solvent ra-

tio and hence, varying the viscosity, single spin film thicknesses can be attained

from the sub-micron level up to the millimeter level. Very good transparency for

wavelengths longer than ∼ 360 nm allows for high aspect ratio structures with

near-vertical sidewalls. High resolution patterns are possible with as low as sub-50

nm features because of the low initial molecular weight of pre-polymerized SU-8

[58]. The high functionality of the epoxy groups produces extremely high sensi-

tivity, such that very low photon or electron fluences are needed for crosslinking.

The electron beam exposure required to crosslink is on the order of 100 times less

than what is needed to expose PMMA. Further, the high functionality and num-

ber of epoxy groups provides a high level of crosslinking. This very dense three-

dimensional crosslinked network results in a comparatively high glass-transition

temperature of Tg ∼200◦C and degradation temperature of ∼380◦C. There are no

known chemical solvents that dissolve cured films of SU-8 predictably and repro-

ducibly. Clearly, the chemical resistance of cured SU-8 is very good.

The preceding properties of SU-8 contributed to extensive use in the fabrication

of micro-electromechanical systems (MEMS) devices, as well as the production of

micro-fluidic devices. Recently, however, SU-8 has proven to be a useful mate-

rial for planar integrated optics devices. One of the earliest implementations of

SU-8 for integrated optics is Reference [59], in which several optical properties

were investigated. The refractive index of an SU-8 film illuminated with 1550

nm light was found to be 1.575. This value is higher than most other polymer

materials typically used for cladding layers, and ensures good optical confinement.

Waveguides with cross sections 6 µm by 1.8 µm were fabricated with SU-8 core ma-

terial, with Norland epoxy NOA61 as the lower cladding, and either air or NOA61

as the upper cladding. Cut-back loss measurements resulted in propagation loss
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values of 0.41 dB/cm and 0.49 dB/cm for air-clad propagation at 1310 nm and

1550 nm, respectively. When similar waveguides are measured with NOA61 upper

cladding, the propagation losses reduce to 0.22 dB/cm and 0.48 dB/cm at 1310 nm

and 1550 nm, respectively. These figures are commensurate with measurements

of other polymer core materials. As for environmental degradation, the authors

report negligible changes in propagation loss after 200 hours at 90 ◦C and 95%

relative humidity.

Electron beam lithography has been applied as one of the most effective meth-

ods for modern micro- and nano-fabrication. Electron beam lithography utilizes

the effect that some materials such as SU-8 resist will undergo chemical changes

when exposed to a beam of energetic electrons such as that described in the pre-

ceding paragraphs. Since the diameter of a well-collimated electron beam is typ-

ically much smaller than the diffraction limited spot of UV light, this method

has an inherent advantage over photolithography. Electron beam lithography has

made it possible to fabricate high-resolution devices impossible to make by pho-

tolithographic techniques. Single-mode integrated optic structures typically have

cross-section dimensions on the order of micrometers and minimum features on the

nanometer scale. Fabrication on these scales is routine for electron beam lithogra-

phy, but is near the limit of photolithography and requires an optimized system.

Where photolithography has an advantage over electron-beam lithography is in

throughput; that electron-beam lithography must be carried out in a high-vacuum

environment causes the method to be much more time consuming as compared to

photolithography.

Shown in Figure 3.7 are scanning electron micrographs of waveguides fabri-

cated by optimized electron beam lithography of SU-8. The substrate material is

thermally grown silica (6 µm thick) on silicon. The fabrication method of such

waveguides is extraordinarily simple. A layer of SU-8 is spun onto the substrate at

a thickness of ∼ 1.5− 2 µm. The thickness versus spin speed for a given solution

of SU-8 can be calibrated by spinning at various rates, curing with exposure to a

UV-lamp, and measuring the depth of fully scratched away section with a stylus
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Figure 3.7: Scanning electron microscope images of SU-8 waveguides fabricated by

direct electron beam exposure of the core.

profilometer. This type of calibration must be done for each new polymer solution,

and for the same polymer solution every few weeks, as small quantities of evapo-

rated solvent result in large differences in the calibration curve. Once the desired

film thickness is achieved, the chip is baked at approximately 90◦C for approxi-

mately one minute to remove any residual solvents. Electron beam lithography

is performed, with the electron beam tracing out a path predetermined in the

lithography software. The electron beam dosage is an extremely critical quantity

to generate good quality structures. This again must be individually calibrated

for the particular lithography apparatus. The appropriate dosage can be distin-

guished from too high of a dose by observation of “shoulders” surrounding the

exposed structures indicating overexposure. These “shoulders” result from elec-

trons scattered at the substrate surface impinging on surrounding material and

crosslinking areas not intended. A low dosage is indicated by less than full height

of the exposed area. For instance, if an initial 2 µm film results in 1 µm features,

this is an indication of underexposure. Once the appropriate exposure conditions

are obtained, the structures are exposed by the sweep of the electron beam and the

chip is removed. Convention suggests a post-exposure bake at approximately 90◦C

for approximately 1 minute to fully crosslink the exposed SU-8. However, struc-

tures similar in character have been fabricated both with and without this post-
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Figure 3.8: A waveguide grating fabricated by direct electron beam exposure of

SU-8.

exposure bake. If anything, the post-exposure back results in further crosslinking

and structures that appear as if overexposed. The structures are then developed

by immersing the chip in propylenglygol-monomethylether-acetate (PGMEA) for

approximately 2 minutes, followed by immersion in isopropyl alcohol (IPA). If in

the IPA step, any white or milky substance appears, the develop step was not fully

achieved and must be repeated.

As discussed, the optical properties of SU-8 make it an attractive material for

polymer integrated optics applications. Beyond these optical properties, SU-8 is

unique because the patterning is performed directly on the core material. This

is in contrast to the more typical fabrication procedure for polymer integrated

optics. More typically, a photoresist to be patterned is spun atop the polymer

core material, and then the pattern is transferred to the underlying optical core

using reactive ion etching (RIE). This method adds several more time-consuming

steps on several apparatus, not to mention opportunities for fabrication errors.

Since the core is patterned directly using SU-8, the fabrication is extraordinarily

rapid. Given a CAD drawing of the desired pattern, a passive SU-8 device can

be fabricated from start to finish in approximately one hour. This incredible

speed enables rapid prototyping and less overall time for the numerous iterations

necessary in optical device research and development.
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Since the direct fabrication of SU-8 waveguides can be performed with either

UV lithography, or with electron beam lithography, the process can be tailored

to the desired speed or device resolution. If high-throughput fabrication is the

premium quality in the fabrication, large areas of SU-8 can be patterned to pro-

duce hundreds of devices in parallel. However, the resolution of UV lithography

is limited. In this case, electron beam lithography is employed to make devices

otherwise impossible using UV lithography. For instance, waveguides with surface

corrugations such as that shown in Figure 3.8 are useful as Bragg grating wave-

length filters. An surface grating wavelength filter was fabricated in SU-8 and

measured to have up to -27 dB extinction of the rejected wavelength in Reference

[60]. Surface gratings are made in SU-8 by setting the spacing of consecutive raster

lines of the electron beam to the desired corrugation spacing. This spacing is eas-

ily calculated as Λ = λBragg/(2neff ), where Λ is the grating period, λBragg is the

reflected wavelength in free space, and neff is the waveguide group index. The

high resolution lithography possible with electron beam lithography is useful not

only for Bragg grating devices. Optical couplers as discussed in Chapter 2 require

careful control of the coupling constant to achieve the desired coupling ratio. This

coupling ratio is determined by the separation between the coupled waveguides

and is typically on the order of hundreds of nanometers. Therefore, to achieve

the critical coupling condition for a ring resonator coupled to a waveguide, it is

highly advantageous to use electron beam lithography to precisely set the coupling

to match the ring round-trip loss.

3.4 Polymer Microring Resonators

The microring resonator structure is one of the most useful integrated optics ele-

ments with several applications. For instance, when doped with luminescent dyes,

polymer microring resonators can be optically pumped to exhibit lasing [61, 62,

63, 64]. The key feature is the dramatic modification of the spontaneous emission

due to the resonant characteristics of the microring. In addition to lasing, when
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Figure 3.9: An early example of a microring resonator optical filter fabricated in

SU-8 by direct electron beam writing.

evanescently coupled to a waveguide as described in Section 3.2, a passive microring

resonator acts as an optical filter. The frequency response is typified by a periodic

sequence of narrow notches, acting as a highly selective frequency rejection filter.

Although several polymeric microring lasers have been produced during the past

few years, the studies of polymer microring resonator optical filters have been

limited. The limiting factors have been overcoming the high propagation loss

figures typically associated with polymer core materials, and the ability to precisely

fabricate low scattering loss waveguides and good quality, controllable waveguide-

to-ring couplers.

As alluded to in the previous section, the properties of SU-8 provide an enabling

technology toward rapid fabrication of highly precise optical integrated circuits.

This provides a good platform for the fabrication of polymer microring resonator

devices. Shown in Figure 3.9 is an example of one such device. The fabrication

was done by direct electron beam lithography of SU-8 on a substrate consisting of

lower cladding silica, thermally grown atop a piece of silicon wafer. The waveguides

end-facets were prepared by cleaving the silicon substrate. Because of the good

adhesion between the polymer material and the silica, the core polymer shears
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at the location of the silicon wafer cleave. Scanning electron microscope (SEM)

images reveal shear planes of the waveguide input/output parallel to the cleavage

planes, with smooth faces to within the resolution of the SEM. The resulting

waveguide end facets provide – albeit not optimal – reasonably good input and

output coupling efficiencies for device interrogation.

The polymer ring has a radius of 100 µm that with air cladding assures negli-

gible bending loss. The core cross section is approximately 2 µm in thickness and

width to provide a single transverse waveguide mode in the resonator.

The measurement setup is typical of standard integrated optical device mea-

surement apparatus. After passing through a polarization controller, light from a

tunable laser was input to the waveguide via commercially available (Oz Optics)

tapered and lensed SMF-28 optical fibers. The spot size of the tapered and lensed

fiber was specified to be 1.5 µm by 3 µm to ensure good modal overlap and thus

good coupling efficiency. A microscope was used to align the input tapered fiber

to the polymer waveguide using five-axis stages. The output waveguide end-facet

was focused on an infrared CCD camera for viewing, or on a photodetector for

measurement. A computer GPIB controller stepped the laser through wavelength

and recorded the voltage output from the photodetector at each wavelength step.

The spectral output of the SU-8 polymer microring resonator is shown in Figure

3.10. As predicted by the preceding theory, the output spectrum is characterized

by a periodic series of notches. The maximum extinction ratio shown in the inset

is approximately -22 dB. This indicates that the critical coupling condition was

achieved to a high degree of precision. This is a testament to the ability of direct

electron beam writing to fabricate precise gaps. The wide spectral data shows that

the extinction ratio does not change very much over a wide wavelength range. This

indicates that the coupling between the ring and waveguide is relatively immune to

variations in wavelength and that the polymer waveguides have little dependance

of loss on the wavelength.
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Figure 3.10: The measured output spectrum for the microring resonator depicted

in Figure 3.9.

3.5 Freestanding All-Polymer Optical Devices

Electronic integrated circuits (EICs) face fundamental material and fabrication

limitations which are hindering to their future use in high-speed telecommunica-

tions, optical networking and optical computing. Alternatively, optical integrated

circuits (OICs) are currently receiving more attention for potential use for these

and other applications. The materials for advanced OICs will not be limited to

semiconductors. Foremost among the new materials, polymers are becoming in-

creasingly important for OIC applications because their optical, mechanical and

functional properties can be broadly tuned by changing their chemical structures

through molecular design and proper synthesis procedures. During the past two

decades, significant progress was made in polymer materials for OIC applications

[4, 65]. Recently, for example, electro-optic polymer materials with highly ac-

tive nonlinear-optical chromophores have been proven to be excellent for use in

optical modulator devices [12, 13, 66]. However, compared with common materi-

als used today for OIC devices (most of which are semiconductor and inorganic

single crystals), polymer materials are not only highly-efficient and low-cost, but
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also mechanically flexible. This flexibility is one of the distinct advantages over

other materials, making it possible to make pliable and transparent all-polymer

devices, and to reshape the devices by adhering to non-flat surfaces for special pur-

poses. Recently, Larsen et al. [67] have used soft-lithography to make freestanding

polymeric structures proposed as waveguides, while Steier et al. [68] described a

method to lift off a thick (> 100 m) and long section (> 2 cm) of flexible modulator

from a solid substrate.

In the following section, we demonstrate a simple method to fabricate thin free-

standing all-polymer OIC devices and their successful transfer to various substrates

such as curved glass surfaces of capillary tubes. We also demonstrate a passive

microring resonator optical filter device with a -27 dB notch extinction for certain

wavelengths in the telecommunication band (∼1.55 µm), which is the best value

reported in similar polymer devices and is within the range of the requirements

for practical telecommunications applications. By utilizing the poor adhesion be-

tween the lower cladding polymer and gold, we can easily peel off a very thin layer

several square centimeters in extent containing a large number of all-polymer OIC

devices, and with a total thickness of less than 10 µm. Surprisingly, the end-facets

of the OIC devices can be easily cut by normal scalpel blades yielding good optical

quality inputs and outputs. Each device, or the film of several devices, can also

adhere to many different types of surfaces by heating while the optical properties

are minimally changed. This last point is possibly the most significant aspect of

freestanding all-polymer OIC devices, setting them apart from their crystalline

counterparts.

3.5.1 Fabrication

Figure 3.11 shows the schematic diagram of the complete procedure of making

free-standing OIC devices. A very thin layer of Cr (∼5 nm) is evaporated onto the

freshly cleaned silicon wafer to improve the adhesion between Au (300 nm) and sil-

icon. UV15 (Masterbond), an optically clear UV curable epoxy with low refractive

index (1.504 at 1550 nm), is applied as the lower cladding layer of thickness 6 µm.
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Figure 3.11: Schematic fabrication procedure for freestanding polymer integrated

optical devices. For clarity, the thicknesses are not drawn in proportion to the real

device.

A 2 µm thick SU-8 core layer is spin coated and exposed by electron beam using a

scanning electron microscope (SEM). The structure is dried, without post-baking,

by nitrogen gas after being developed by propylene glycol monomethyl ether ac-

etate. Using the previously mentioned weak adhesion between the UV15 lower

cladding layer and the gold, a film of several structures can be easily peeled off

from the substrate. To protect the optical devices from contaminants or to meet

refractive index requirements for the optics, we can also apply an upper cladding

polymer, OG125 (Epotek, refractive index 1.456 at 1550 nm).

To be useful in OIC applications, the waveguide sections of the devices must

have input and output end-facets of good optical quality, exhibiting low optical

loss and good interconnection coupling. Typical of polymer OIC devices that

are left on the silicon substrate, the end-facets are prepared by dicing the silicon

substrate and the polymer with a semiconductor saw, and polishing the end-facets
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Figure 3.12: Preparation of freestanding all-polymer optical device end-facets using

scalpel blades.

to produce good optical quality interfaces. An added complication is that the

polymer waveguides must be protected from the by-products of the dicing and

polishing by the use of an encapsulating polymer. Clearly in the case of the films

produced by our procedure, there is no substrate to be diced, although dicing or

cleaving the substrate before peeling off the optical devices is possible, but only one

device can be put on each substrate. To solve the difficulty of preparing the end-

facets of the freestanding polymer waveguides, we find that a simple but effective

method is to cut through the film using normal scalpel blades. As shown in Figure

3.12, both air clad devices and those with polymer upper cladding layers can be cut

easily using scalpel blades. Using optical measurements and SEM observations, we

find that the end-facets of the polymer waveguides cut in this fashion are of good

optical quality. In principle, one can envision cutting and reassembling polymer

optical components to form reconfigurable OICs.

We show in Figure 3.13 several optical microscope images of our model struc-

tures with freestanding polymer films prepared using the method described above.

In Figures 3.13(a) and 3.13(b), we show a passive microring and microdisk still on

the substrate. Films containing several of these structures are peeled up without
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Figure 3.13: Optical microscopic images of polymeric model structures. All struc-

tures are made with SU-8 core layers on UV15 lower cladding using electron beam

lithography. (a) Microring with 200 µm diameter. (b) Microdisk with 200 µm

diameter with 2 µm wide waveguides. (c) Freestanding all-polymer film with a

microring array, illuminated with a HeNe laser. The bright wedge is the fine tip

of the tweezers used to hold the film. (d) Curved freestanding polymer film with

microring array (5 by 5) and microdisk array (3 by 3). (e) and (f) All-polymer

microring array on curved surface. The structures are peeled off of the substrate

and reattached on a glass capillary tube (2 mm diameter) by heating.
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damage and become freestanding polymer microring and microdisk arrays, as in

Figures 3.13(c) and 3.13(d). Once heated to ∼125◦C, perhaps due to localized

melting of the polymer surface, the freestanding film can be adhered to surfaces of

arbitrary shape or different material. Figures 3.13(e) and 3.13(f) show the exam-

ples of microring arrays adhered to the curved outer surface of capillary tubes. This

way of adhering the polymer films onto arbitrary surfaces is perhaps the easiest

way to make non-flat OIC devices. An important use for the adhesion of poly-

meric optical devices to foreign substrates lies in the potential for hybrid-material

devices, i.e., with the polymer devices integrated with semiconductor lasers, or

functional materials for chemical or biological sensing.

3.5.2 Measurement Results and Discussion

As previously discussed, an important application of microring resonators for

wavelength-division multiplexed (WDM) systems is the conditioning and filtering

of an input optical waveform. Here, we describe a high-performance microring res-

onator optical filter based on critical coupling between a microring and a straight

side-coupled waveguide. A schematic diagram of device is presented in Figure

3.14(a). In Section 3.2, we have shown that this device can be analyzed by a

transmission matrix method that describes the evanescent coupling of the optical

field into the resonator, and the optical field output as the function of input wave-

length. In brief, when the wavelength is such that the optical phase accumulated

in a round trip of the resonator is 2πm where m is an integer, this is defined as

the resonance condition of the microring. In this case, the field returning to the

coupler from the ring after traversing the ring length interferes destructively with

the field impinging on the coupler from the straight waveguide. If the amplitudes

of the interfering fields are equal, the destructive interference is complete, and the

through output of the straight waveguide vanishes. Mathematically, this complete

extinction of the output occurs at wavelengths right on resonance, when α – de-

fined as the field amplitude remaining after one round trip in the resonator – is

equal to |t|, the field amplitude that is not coupled into the ring. This critical
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Figure 3.14: Freestanding all-polymer microring resonator optical filter. (a)

Schematic diagram of a microring resonator optical filter. (b) SEM image of free-

standing microring resonator optical filter, purposely curled to show the excellent

flexibility. (c) SEM image of a waveguide (SU-8) and lower cladding layer (UV15).

The end-facet of device is prepared by scalpel blade cutting method. (d) Polymer

microring resonator optical filters on a curved surface. The devices are peeled

off of the substrate and heated to adhere to small glass capillary tube (0.8 mm

diameter).
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coupling condition is one of the desired properties of a microring resonator based

optical filter.

In our experiments, the radius of the microring resonator is designed to be

100 µm, and the width and thickness of the core waveguide 2 µm and 2 µm, re-

spectively. In Figure 3.14(c) we present an SEM image of the cross-section of a

freestanding all-polymer waveguide end-facet as prepared by a scalpel. The end-

facet of the waveguide is smooth. Note that the cross section does not appear

perfectly square due to the electrons backscattered from the lower cladding mate-

rial during exposure, but this does not adversely affect the optical properties of the

waveguide. The total thickness of the device is about 8 µm. As in the case of the

microdisk and microring arrays, we can adhere the microring optical filter to the

outer surface of a glass capillary tube (0.8 mm diameter). An SEM image of this

is presented in Figure 3.14(d) showing minimal change in the physical properties

of the device.

The experimental measurement setup is shown in Figure 3.15. A tunable laser

is employed as the source for the transmission measurements. The laser is input

by a tapered/lensed fiber and coupled into one end of the polymer waveguide. The

optical transmission signal emitted from the other end of the waveguide is collected

by an aspherical objective lens and then focused onto an IR-CCD camera for

imaging. The emitted signal intensity is measured by a femtowatt IR photodetector

and acquired by a digital multimeter. All the equipment is controlled by MATLAB

via GPIB interface.

The measured data is presented in Figure 3.16. One of the key characteristics

for a good filter response is, among other things, high extinction of the wave-

length rejection nulls in the spectral response, requiring critical coupling, α = |t|
of the resonator/waveguide system. Since the loss parameter is set by the size and

waveguiding properties of the ring, we must find the appropriate gap between the

waveguide and the resonator to control |t|, thus achieving critical coupling. The

gap needed to maximize extinction was experimentally found to be 250 nm. Fig-

ure 3.16, shows the measured spectral transfer function of this device in a spectral
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Figure 3.15: Schematic diagram of measurement setup for the microring resonator

optical filter. TE-polarized laser light is coupled into the input end of polymer

device via a tapered fiber, and the output optical signal was collected by an IR-

CCD camera or IR photodetector (PD). The two IR-CCD images of the output

light are at different wavelengths, with the arrows indicating the position of the

output end of the device. In (a), the wavelength of the light is off-resonance for

the microring and in (b), on-resonance.
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Figure 3.16: Spectral transfer function of a freestanding air-clad critically coupled

microring resonator optical filter. The open square is experimental data and the

line is theoretical calculation. The inset is a higher resolution measurement (open

circle) around 1550 nm and theoretical calculation (line).

band which is important for optical communications. Using simple finite differ-

ence simulations (see Appendix B), we verify that for wavelengths around 1550

nm, there is only one mode that can propagate through the waveguide structure

we have fabricated. By combining the effective refractive index of the single prop-

agating mode, the size of the ring and waveguides, and the waveguide loss, we can

fit the data based on matrix methods described in Section 3.2. The theoretical fit

is shown as solid line in Figure 3.16 and shows excellent coincidence.

The deep notches in the measured spectral response – up to -27 dB (0.2 %) of

the maximum signal – is to the best of our knowledge, the lowest value reported

for any polymer ring resonator to date, whether on a substrate or freestanding.

This indicates that the properties of the freestanding all-polymer optical filter are

as good as can be achieved in a polymer device on a substrate. Furthermore, the
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Figure 3.17: The integration of freestanding all-polymer waveguide devices with

CMOS drive or trimming circuitry.

value of -27 dB of the maximum response also represents the noise floor of our

measurement apparatus, i.e., the photodetector voltage measured when the laser

diode is turned off relative to the maximum signal.

In summary, we have developed a novel method to fabricate freestanding flex-

ible all-polymer integrated optical devices with total film thicknesses of less than

10 µm. A microring resonator optical filter demonstrated by this method shows

the most promising results among similar reports and meets the practical rejection

requirements of telecommunications systems. This method can be applied not only

to devices fabricated by direct electron-beam writing as described here, but also

to other fabrication methods such as photolithography and imprint techniques.

3.5.3 Potential Applications of Freestanding All-Polymer Optical

Circuits

Freestanding polymer optical circuits take advantage of the most basic property of

polymer material: the plastic, malleable nature of polymers. As shown in the pre-

vious section, by simply peeling the polymer waveguide films from their crystalline

substrates, flexible waveguide structures are achieved. Among the myriad appli-
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Figure 3.18: The creation of a three-dimensional densely integrated optical waveg-

uide circuit by stacking several freestanding all-polymer waveguide devices.

cations one can envision for freestanding all-polymer optical circuits, we briefly

present two such possibilities.

While polymer materials for optical devices are advocated in this thesis, the

electronics used to drive or trim optical devices are fabricated in silicon using stan-

dard CMOS technology. All modulators must in some way be coupled to the drive

and trim circuitry. The freestanding all-polymer optical circuits enable a unique

way to achieve this coupling of optical device to drive circuitry. Shown in Figure

3.17 is a schematic diagram of how one can achieve this coupling. The initially

separate devices are adhered together using the adhesion properties of the polymer

material upon heating. The waveguiding film is simply aligned appropriately with

the CMOS chip, and modest heat (approximately the lower cladding layer’s glass

transition temperature) is applied to secure the polymer film to the circuitry chip.

Another application is presented in Figure 3.18. There exists great interest in

three-dimensional integration of separate optical elements, forming a sort of mul-
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tilayer optical circuit board. Freestanding polymer waveguide technology allows

for a simple implementation of multilayer optical devices. As shown in the figure,

a single film containing the desired devices is fabricated by whatever appropriate

method. This film is then diced to separate the devices into many freestanding

polymer microdevices. Integration is achieved in much the same way as the pre-

vious application. The different layers are aligned as desired, and the composite

structure is heated to a temperature at which the polymer becomes soft. At this

point, the different layers adhere to one another and become a three-dimensional,

densely packed optical waveguiding circuit.

3.6 Microring Resonator Based Reflector

Here we present a novel geometry for wavelength-selective reflectors employing

microring resonators, in the spirit of References [69] and [70]. Inline reflectors

– particularly fiber Bragg gratings [71] – are widely used components in optical

telecommunications systems. Applications include external wavelength stabiliza-

tion for lasers, gain-flattening, dispersion-compensation, and add/drop filtering.

Integration of inline reflectors into planar optical circuits is important for several

reasons. Integrated reflectors can be much smaller than corresponding fiber devices

and can be fabricated in a variety of materials with special nonlinear functional-

ity or with specific dispersion properties. In addition, integrated optical reflectors

can be combined on a single chip with additional photonic devices such as mod-

ulators, couplers, sources, etc. However, integration of Bragg gratings within a

planar waveguide optical circuit is difficult due to the high-resolution lithography

required over large areas necessary to achieve high reflection efficiency and low

scattering loss [72]. This is especially the case in integrated geometries requiring

aperiodic gratings. An alternative to Bragg gratings for planar integrated optic

inline reflectors is shown in Figure 3.19. Here, we present the design, fabrication

and characterization of a microring-based inline integrated optical reflector. We

discuss the potential applications and various advantages of the device.
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Figure 3.19: A scanning electron microscope perspective image of a device similar

to that measured here. The input, reflected, and transmitted signals are labeled

i, r and t, respectively. Two sets of fields, a, b, c and the corresponding primes,

obey Equations 3.34 and 3.35.

3.6.1 Theory

Referring to the device shown in Figure 3.19, the central portion between the Y-

junctions is the well-known microring resonator add/drop filter. Each of the two

waveguides interacts with the ring according to the coupling matrix (see Section

3.2):

T =




t κ

−κ∗ t∗


 (3.33)

where, for a unity input, t is the field amplitude transmitted past the coupler,

and κ is the field amplitude coupled across the coupler. For a lossless coupler,

|t|2 + |κ|2 = 1. In general, the two couplers need not be the same, but in the

following we assume identical couplers.

Given an input, a, as shown in Figure 3.19, the normalized intensity past the

resonator is given by (see Section 3.2):

∣∣∣∣
b

a

∣∣∣∣
2

=
|t|2 + |t|2α2 − 2|t|2α cos(Θ)
1 + |t|4α2 − 2|t|2α cos(Θ)

(3.34)



70

Figure 3.20: Normalized transmission (upper) and reflection (lower) signals for the

microring-based inline reflector. For the calculation, the microring radius is 108.25

microns, the effective refractive index is 1.515, t is 0.85, and the loss parameter α

is taken to be 1.

where α is the field amplitude remaining after one round-trip in the resonator, and

Θ = β · L is the phase accumulated over a ring circumference L for a waveguide

with propagation constant β. The normalized intensity of the field exiting the

drop port of the add/drop filter is given by (see Section 3.2):

∣∣∣∣
c

a

∣∣∣∣
2

=
(
1− |t|2)2

α2

1 + |t|4α2 − 2|t|2α cos(Θ)
(3.35)

When Θ is an integer multiple of 2π, and if the loss term α is close to one, then

the input light exits through the drop port and no light is transmitted past the

resonator.

As shown in Figure 3.19, a Y-junction splitter equally divides the input light

between the upper and lower arms of the device. Thus, there are two identical

sets of fields (a, b, c and a′, b′, c′) obeying (3.34) and (3.35). Since the drop ports
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are connected to the input, the dropped signals of (3.35) are the reflected signals.

Figure 3.20 shows the predicted transmitted signal (upper plot) and the reflected

signal (lower plot) for parameters as described in the figure caption.

3.6.2 Demonstration

For demonstration purposes, the microring-based inline reflector was fabricated

in optical polymer. A silicon wafer with 5 microns thermal oxide (n=1.445)

served as the device substrate and lower cladding layer. The core polymer, SU-8

(n=1.565), was crosslinked using direct electron beam exposure. The waveguide

dimensions were 2 microns in width and 1.8 microns in thickness. Finite-difference

mode solver calculations (see Appendix B) predict a well confined first-order mode

(neff = 1.515) and weakly guided second- and third-order modes around 1550

nm. The microring resonator radius was 108 microns. The separation between the

waveguides and the microring were designed to be 250 nm, resulting in approxi-

mately 25% power coupling. For measurement, the end-facets were prepared by

cleaving the substrate wafer.

Transverse electric polarized light from a tunable laser was fiber-coupled to

the device after passing through a circulator. Index matching fluid was applied,

covering both the device and the fiber input to reduce the reflected signal noise

to an acceptably low level. The reflected signal was collected by connecting the

reflection port of the circulator to a photodetector. The transmitted signal was

collected by focusing the output on a photodetector using a microscope objective.

The wavelength was scanned from 1550 to 1570 nm and the normalized transmitted

(upper plot) and reflected (lower plot) signals were recorded, as shown in Figure

3.21.

3.6.3 Discussion

Comparing the theoretical fit in Figure 3.20 to the measurement in Figure 3.21,

we find good agreement. As expected, the nulls of the transmitted signal occur at

the same wavelengths as the reflected peaks. The rejection ratio of the transmit-
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Figure 3.21: Measurement results showing the normalized transmission (upper)

and reflection (lower) signals. The extinction ratios for the nulls in the transmission

signal are better than 10 dB.

ted signal nulls is better than 10 dB. These nulls appear every free spectral range

(FSR) of 2.33 nm. A closer inspection of the smaller features in the data shows

a high degree of complementarity between the transmitted and reflected signals.

These smaller features were caused by the weakly guided higher-order modes. This

is supported by similar multimode behavior previously observed in slightly thicker

SU-8 waveguides, and the lack of such features in slightly thinner waveguides. A

best-fit of the data suggests a propagation loss of approximately 15 dB/cm. How-

ever, in the demonstration, there was no attempt to minimize the propagation

loss. Since the bend radii are large, we attribute the propagation loss predomi-

nantly to scattering loss. This is reduced by stabilization of the lithography or by

post-fabrication annealing of the polymer.

As an alternative to an integrated Bragg grating reflection filter, the microring-

based reflector presents several advantages and increased flexibility. Most notably,

the microring-based reflector is more compact than typical integrated waveguide
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Figure 3.22: In (a): a reflector employing three microring resonators to exhibit a

special spectral response (e.g., a wavelength-flattened reflection band). In (b): a

reflector employing the Vernier effect with resonators of different radii.

gratings, allowing for simpler and more controlled fabrication, as well as for the

possibility of incorporation with additional photonic devices.

The ability to simply manipulate the lineshape of the transmitted and reflected

responses presents a significant advantage over both Bragg grating structures

and the ring-based reflector suggested in Reference [69]. As previously pointed

out, there exist several synthesis techniques for constructing higher-order filter

responses using multiple microrings [40, 41]. Applying these algorithms to the

reflectors presented here, one can design a system to deliver the desired lineshape

transmission and reflection. One restriction is that there must always be an odd

number of resonators for the device to act as a reflector. Shown schematically in

Figure 3.22 (a) is such a device, employing three microrings to achieve a 3rd-order

response.

Along similar lines, composite structures involving different resonators can be

used, as illustrated in Figure 3.22 (b). When resonators of different circumference

are placed in series, only wavelengths that are resonant with all resonators are

transmitted in steady state. Thus, the reflected peaks and the transmitted nulls

will only occur at wavelengths for which m · FSR1 = n · FSR2 = . . . (the Vernier

effect) for integers [73]. By employing this effect, integrated inline reflectors with
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large free spectral ranges can be devised.

Finally, these reflective devices are easily rendered tunable by using the thermo-

optic or electro-optic effects. These can be exploited to either tune the lineshape

in multiple resonator structures, or to alter the resonant wavelength of an indi-

vidual reflector. These tunable reflective elements can serve as laser end mirrors,

providing wavelength selectivity as in Reference [74].

In conclusion, simple wavelength-selective inline reflectors based on microring

resonator add/drop filters have been presented. The concept was demonstrated

in optical polymer. The resulting device exhibited a rejection ratio better than

10 dB. The measured transmission and reflection signals were observed to have a

high degree of complementarity, as expected from theoretical considerations. The

versatility of these inline reflectors lies in the fact that multiple rings can be used

for higher-order responses or to employ the Vernier effect. The compact structures

can be fabricated using conventional techniques and thus, are readily incorporated

with other photonic devices. Use of thermo-optic or electro-optic effects renders

the reflected wavelengths or lineshapes tunable for use as laser end-mirrors.
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Chapter 4

Coupled Resonator Optical Waveguides

4.1 Introduction

Serially coupled microresonators have been studied as optical filters exhibiting

large free spectral range [75] and higher-order filter characteristics [40, 41, 76, 77].

In addition, it was recently shown that serially coupled microresonators present a

fundamentally new form of waveguiding. Shown in Figure 4.1 are illustrations of

three forms of waveguiding. Figure 4.1(a) represents the familiar and most com-

mon type of light confinement in which a refractive index difference between the

core and the cladding traps the light within the core by total internal reflection.

Examples of this type of waveguides are optical fibers and the planar waveguides

described in Chapter 3. The second type of waveguiding uses Bragg reflections to

reflect light impinging on the waveguide walls back toward the core layer. This

is illustrated in Figure 4.1(b). Examples of these types of waveguides are pho-

tonic crystals and distributed feedback lasers. The newest class of waveguides has

been termed coupled-resonator optical waveguides (CROWs) [78], and is shown

in Figure 4.1(c). In this case, light circulates many times around the circumfer-

ence of each resonator, each time weakly coupling to the adjacent resonators. The

coupling acts to transmit power through the waveguide at a group velocity de-

termined by the magnitude of the coupling, as will be shown. Although CROWs

have also been proposed incorporating coupled photonic crystal defects, coupled
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(a)

(b)

(c)

Figure 4.1: Three types of waveguiding structures. In (a), a conventional dielectric

waveguide using total internal reflection for confinement. In (b), light is guided by

Bragg reflection at the waveguide boundaries. In (c), light propagates by coupling

from each resonator to the subsequent resonator.

Bragg resonators, or coupled whispering-gallery mode disks among others, we con-

sider CROWs incorporating waveguide microrings as the resonators as depicted in

Figure 4.1(c).

In this chapter, the development of CROW devices in polymer is presented.

The fundamental theory of CROWs is first set forth as the basis for design and

examination of the fabricated devices. Both the tight-binding method and a matrix

method are introduced. A hybrid Mach-Zehnder CROW device is demonstrated

in optical polymer, confirming both the validity of the analysis method and the

ability to fabricate high-precision devices in polymers. Further, the advent of

polymer CROW devices as optical delay lines is discussed.
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4.2 Fundamental Theory of Coupled Resonator Opti-

cal Waveguides

4.2.1 Tight Binding Model

For the case of an infinite number of resonators, each weakly coupled only to

nearest-neighboring resonators, a simple tight-binding formalism can accurately

analyze the CROW [78]. In this limit, CROWs can exhibit reduced group velocity

dependent only on nearest neighbor mode overlap integrals. The reduction in

group velocity can improve the efficiency of nonlinear frequency conversion, or in

the limit of zero group velocity, result in “frozen” pulses [79, 80].

The assumption of weak coupling between individual resonators implies that

the individual resonator modes are perturbed only slightly by the adjacent res-

onators. This allows for the eigenmode of the individual resonator to be used as

the basis for the CROW mode. This is essentially the same as the tight-binding

(or linear combination of atomic orbitals, LCAO) analysis of electronic wave func-

tions in a lattice of atoms. The analogy holds by making the individual resonators

counterparts of the atoms and the CROW equivalent to the lattice. Similar to the

initial assumption of the tight-binding analysis, the CROW eigenmode EK(r, t) is

chosen to be a linear combination of individual resonator eigenmodes EΩ(r). Each

resonator is located on the ẑ axis at z = nR for resonator n. The resulting CROW

eigenmode is

EK(r, t) = E0e
iωKt

∑
n

e−inKREΩ(r− nRẑ) (4.1)

It is also assumed that the individual resonator modes are nondegenerate, a re-

quirement that is satisfied if only unidirectional propagation is assumed in each

resonator. This is true in cases where there are negligible back reflections due to

surface imperfections or very short coupling regions.

It is essential to calculate the dispersion relation to understand light propaga-

tion in CROWs. This is attained by inserting the ansatz CROW eigenmode (4.1)

into the wave equation and finding the eigenvalue equation. The wave equation in
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this case is

∇× (∇×EK) = ε(r)
ω2

K

c2
EK (4.2)

where ε(r) is the dielectric constant of the composite system of resonators and ωK

is the eigenfrequency of the mode. The same wave equation governs the individual

resonator modes EΩ(r) if ωK is replaced by Ω, the eigenfrequency of an individual

resonator, and ε(r) by ε0(r), the dielectric constant of an individual resonator.

To determine the dispersion relation, (4.1) is inserted into (4.2), and both sides

are multiplied by EΩ(r). Integrating over all space, the dispersion relation is

ω2
K = Ω2 1 +

∑
n6=0 e−inKRβn

1 +4α +
∑

n 6=0 e−inKRαn
(4.3)

where αn, βn, and 4α are overlap integrals defined by

αn =
∫

d3rε(r)EΩ(r)×EΩ(r− nRẑ) n 6= 0 (4.4)

βn =
∫

d3rε0(r− nRẑ)EΩ(r)×EΩ(r− nRẑ) n 6= 0 (4.5)

4α =
∫

d3r(ε(r)− ε0(r))EΩ(r)×EΩ(r) (4.6)

The full dispersion relation of the CROW (4.3) can be simplified significantly

by applying a few reasonable assumptions. First, it is assumed that the individual

CROW modes are limited spatially to only couple to its nearest neighbors. Thus,

one need only consider the coupling terms αn and βn for n = 1 and n = −1, as

all others are set to zero. It is also assumed that the system is symmetric so that

α1 = α−1 and β1 = β−1. The weak coupling means that the overlap integrals α1,

β1, and 4α are small. The resulting simplified dispersion relation is

ωK = Ω
(

1− 4α

2
+ κ1 cos(KR)

)
(4.7)
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Figure 4.2: Left: Dispersion diagram showing plots of (4.7) with κ = 0.1 and

0.2. The frequency ωK is normalized to Ω. The wave vector is represented on the

horizontal axis as KR/π. Right: Group velocity as a function of normalized wave

vector for κ = 0.1 and 0.2.

where κ1, the coupling coefficient, is defined as

κ1 = β1 − α1 =
∫

d3r [ε0(r−Rẑ)− ε(r−Rẑ)]EΩ(r)×EΩ(r− nRẑ) (4.8)

Shown on the left-hand portion of Figure 4.2 are plots of (4.7) for two values of

κ1.

Taking the derivative of the dispersion relation with respect to the wave vector

yields the group velocity

vg(K) =
dωK

dK
= −ΩRκ1 sin(KR) (4.9)

It is an important feature that the group velocity of the CROW is determined

only by the coupling constant κ1. The right-hand portion of Figure 4.2 illustrates

the dependance of the group velocity on the coupling coefficient. This feature can

be manipulated to implement CROWs as optical delay lines, to be discussed in

sections to follow.
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Figure 4.3: Coupled resonator optical waveguide with N rings (N odd for the

output direction as shown). The arrows signify the direction of light propagation.

The matrix P represents the coupling segments and Q accounts for the phase and

loss accumulated in the resonators.

4.2.2 Matrix Method for CROW Analysis

For the present analysis, we employ an alternative analysis method in which each

coupling section is represented by a coupling matrix and the phase and loss accu-

mulated in the resonator are represented by a propagation matrix. By cascading

the matrices, the transmission of the CROW is built up for an arbitrary series of

resonators with arbitrary coupling between them. The model used here embodies

a more general approach than the matrix method, restricted to neither the special

case of weak coupling, nor an infinite number of resonators. The convergence of

the matrix and tight-binding methods and an investigation on the limits of validity

of the tight-binding method is presented elsewhere [81].

We describe the optical response of a CROW with a unidirectional (2× 2) ma-

trix model incorporating the evanescent ring-to-ring coupling and the propagation

within each ring [40, 47]. The notation for the complex field amplitudes of the

CROW device is shown in Figure 4.3.

The (assumed lossless) evanescent coupling of two waveguides is given by the
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well-known coupling matrix of coupled-mode theory (see Section 2.3)




b′n

bn+1


 =




t κ

−κ∗ t∗







a′n

an+1


 , |κ|2 + |t|2 = 1 (4.10)

where κ denotes the normalized coupling and t the transmitted field past the

coupler. These are determined by the physical separation between the two coupled

waveguides. (4.10) can be rewritten in the form




an+1

bn+1


 = P




a′n

b′n


 , P =

1
κ



−t 1

−1 t∗


 (4.11)

The optical phase and the waveguide loss accumulated over a half-ring distance is

given by a propagation matrix




a′n

b′n


 = Q




an

bn


 , Q =




0 e−iβπR−απR

eiβπR+απR 0


 (4.12)

where α is the absorption coefficient per unit length, R is the ring radius, and

β = 2πneff/λ0 is the propagation constant of the waveguide. For the case of

N − 1 resonators with N coupling regions, we form the full transmission matrix of

the CROW by cascading the matrices P and Q:




aN+1

bN+1


 = (PQ)N (PQ)N−1(. . .)(PQ)2P1




a0

b0


 = T




a0

b0


 (4.13)

For simplicity we adopt the notation

T =




A B

C D


 (4.14)

Assuming an input a0, and taking aN+1 = 0, the output complex field amplitudes
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normalized to the input are

b0

a0
= −A

B
,

bN+1

a0
= C − AD

B
(4.15)

Starting with (4.13) and applying the Bloch theorem, the dispersion relation

is [81]

sin(βπR) = ±Im(κ) cos(KΛ) (4.16)

where K is the Bloch wave vector and Λ is the periodicity. The ± results from

considering forward and backward propagating waves. Expanding the left hand

side of (4.16) and assuming small argument (corresponding to weak coupling) and

forward wave propagation, the resulting dispersion relation is [81]

ω = Ω
[
1 +

|κ|
mπ

cos(KΛ)
]

(4.17)

where m is the azimuthal mode number. This result calculated in the matrix

formalism is in essence identical to (4.7), which was calculated from the tight

binding method when we make the association between κ1 and κ/mπ.

4.3 CROW Mach-Zehnder Interferometer

The Mach-Zehnder interferometer (MZI) presents one of the simplest geometries

for interrogating optical phase characteristics of waveguides through interference.

A MZI composed completely of coupled photonic crystal defects was proposed and

fabricated with aluminum rods, and interference nulls were observed in the mi-

crowave regime [82]. However, by incorporating a CROW as only one path of the

MZI, interference occurs between the field amplitudes of a waveguide whose phase

properties we know (conventional ridge waveguide) and a waveguide whose phase

properties we are interested in (CROW). A similar concept was used to investi-

gate light propagation for coupled defects in an aluminum rod photonic crystal by

measuring the interference of microwaves in free-space and in the coupled-defect

device [83]. A schematic diagram of the CROW-MZI device we propose is illus-
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Figure 4.4: Schematic diagram of a CROW-MZI with one arm as a ridge waveguide

of length L, with propagation constant β, and the other arm consisting of coupled

microresonators, spaced by a distance d, with propagation constant βCROW . Y-

branches divide and add the optical field equally between the two arms. Adiabatic

tapers act as impedance matched terminations after the field couples to the first

resonator, ensuring no back reflected fields.

trated in Figure 4.4. In this section, we demonstrate a CROW-MZI fabricated in a

polymeric waveguide material for operation near telecommunications wavelengths

(λ ∼1550 nm). Good agreement is found between the measured results and the

predictions of the matrix theory.

4.3.1 Fabrication and Measurement

The devices were prepared by first spinning a 1.6 µm thick optical core layer of

SU-8 (n=1.565) onto a silicon wafer with 5 µm of thermal silicon-oxide serving

as the lower cladding. Waveguides of width 2 µm were directly patterned by

electron beam crosslinking of the SU-8 core using a scanning electron microscope

(SEM). The end facets of the waveguides were left as prepared by cleaving the
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Figure 4.5: Optical microscope image of the CROW-MZI showing a total device

width of approximately 1.2 mm. The identical racetrack microresonators had 50

micron straight coupling sections and 100 micron bend radii in the curved sections.

substrate. The racetrack resonators had semi-circular sections of radius 100 µm,

and 50 µm long parallel coupling regions. The waveguides in the coupling section

were separated by 750 nm, although further SEM investigation revealed a layer

of residual SU-8 between the waveguides, decreasing the effective separation and

increasing the coupling beyond what would be expected for a 750 nm gap. The

effective refractive index of the waveguide was calculated to be 1.485 by semi-

vectorial finite difference simulation (see Appendix B). The free spectral range of

an individual resonator is therefore 2.2 nm for transverse electric (TE) polarized

light in the vicinity of the 1550 nm telecommunication band. An optical microscope

image of the fabricated device is shown in Figure 4.5.

For measurement, a tunable laser diode provided the input TE-polarized opti-

cal signal via a polarization controller and a tapered single-mode fiber. The device

output was collected by a 20x microscope objective focused on either an infrared

CCD for viewing or a photodetector for measurement. Both the tunable laser and
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Figure 4.6: Normalized measured output power of the polymer CROW-MZI rang-

ing over a spectral bandwidth of 50 nanometers, approximately 22 single resonator

free spectral ranges.

the photodetector measurement were controlled by computer. Shown in Figure 4.6

is a measured spectrum of the CROW-MZI transmission for an input wavelength

scan of 50 nanometers, ranging from 1500 to 1550 nanometers, covering approxi-

mately 22 individual-resonator free spectral ranges. The output spectrum shows

an intricate, but essentially periodic, interferometric waveform.

4.3.2 Results and Discussion

In resonant optical systems, small parameter deviations due to slight fabrication er-

rors typically result in unintended spectral features. For instance, small deviations

(fractions of a wavelength) in the radii of the N − 1 constituent resonators result

in different resonance frequencies that potentially spoil sharp spectral transmis-

sion features of a CROW device. Furthermore, the transmission is very sensitive

to small differences (tens of nm) in the N gaps between the coupled waveguides

that comprise the CROW. Thus, for a proper analysis of the device fabricated and

measured here, we would expect the need for N − 1 fitting parameters for the ring

radii and N for the coupling sections. In addition, other variables to be included

in the fit are: the length of the ridge waveguide arm, the waveguide loss per unit

length, the polarization mixing ratio, the waveguide effective refractive index for

both polarizations, and the overall wavelength shift.
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To greatly simplify the analysis, we undertake the assumption of single values

for the resonator radii and coupling coefficients. Considering this special case of

(4.13) with identical matrices P and Q, the transmission matrix becomes




aN+1

bN+1


 = (PQ)N P




a0

b0


 (4.18)

In the CROW-MZI shown in Figure 4.5, a dividing Y-branch evenly distributes the

optical field between the ridge waveguide and CROW sections of the interferometer,

while an adding Y-branch combines the fields that have traveled the separate paths.

Thus, light is input only at one port of the CROW section and the output field

amplitudes for this arm are given by (4.15), with T defined by (4.18). At the

combining Y-branch, the field in the ridge waveguide arm has accumulated an

optical phase and loss given by e−(α+iβ)L in a length L. The output transmitted

power is proportional to the square of the summed complex amplitudes of the fields

passing through the two arms

output ∝
∣∣∣∣C − AD

B
+ e−(α+iβ)L

∣∣∣∣
2

(4.19)

Finally, this simple analysis method does not incorporate waveguide dispersion –

typically a linear function of wavelength – nor does it account for the wavelength

dependence of the coupling coefficient which can vary significantly over the large

bandwidth measured here.

In Figure 4.7, we show the theoretical fit (blue) of the CROW-MZI trans-

mission superimposed on the experimental data (black). A wavelength range of

approximately 30 nm is shown to more clearly show the detail of the fit to the

data. The parameters used for the fit are noted in the caption of Figure 4.7 and

are consistent with expected values. Using these parameters, the intrinsic CROW

response is given by (4.15). The qualitative agreement in Figure 4.7 between the

theory and experiment is remarkable, considering the many simplifying assump-

tions described above. Clearly the precision of the fabrication was sufficient to
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Figure 4.7: Experimental data (thin line with filled circles) and the theoretical fit

(solid thick line) based on (4.18). The fitting parameters used for the fit were:

polarization 93% TE and 7% TM, effective indices 1.48475 for TE and 1.48555 for

TM, power coupling coefficients 0.46 for TE and 0.85 for TM, and waveguide loss

of 30 dB/cm.

validate our assumptions and confirm the theory.

We have demonstrated at telecommunications wavelengths a novel polymeric

MZI geometry that uses serially coupled microresonators. In a conventional MZI,

light that traverses two separate optical paths interferes after accumulating differ-

ent optical phases. The optical paths typically differ only in the effective optical

length so that only a phase difference, but no intrinsic amplitude response, is in-

curred in each arm. Here, however, one path is a ridge waveguide, while the other

arm consists of coupled resonators. The response of the coupled resonator arm

exhibits not only more complicated phase properties than a simple ridge waveg-

uide, but also a periodic spectral response of the absolute field amplitude. Thus,

the overall transmission is a mixture of the interference of different phases accu-

mulated in the two arms of the device, and the spectral amplitude response of the

CROW arm. Although these phenomena cannot be simply decoupled in a CROW

with a finite number of resonators, the simple matrix model used to analyze the

CROW-MZI shows good agreement with the measured spectral output. Using the

assumption of exactly equal ring radii and coupling coefficients, the agreement

of the experimental data and the theoretical fit attests to the precision of the
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fabrication.

4.4 Potential Applications of Polymer CROWs

There are several applications envisioned for CROWs in integrated optics. For in-

stance, more efficient frequency conversion in a nonlinear medium can be attained

because the propagation of light in a CROW is slower than propagation in standard

ridge waveguides, and because high power levels are built up as light circulating

within each resonator. Specifically, by fabricating a CROW in material capable of

second harmonic generation (SHG), the high fields and slow propagation result in

increased second harmonic efficiency [79]. Further, the dispersion diagram can be

manipulated through careful design to ensure proper phase matching of the funda-

mental and second harmonic signals. Manipulation of the dispersion diagrams can

also be used to offset unwanted dispersion of optical pulses in wavelength division

multiplexed systems. As a single resonator acts as an optical filter, a CROW acts

as a high-order optical filter capable of passing the desired wavelengths with high

extinction ratio [40, 41, 76, 77]. Similarly, a CROW with dissimilar resonators can

be used for an optical filter with free spectral range large enough such that there

is only one pass or rejected signal within a wide communications spectrum [75].

Among the most compelling applications of CROWs are for use as optical delay

lines or pulse storage devices. Delay lines are important in optical time division

multiplexed systems where data signals must be made to coincide with tag or

control signals. Delay lines are also important for radio-frequency phased-arrays

to provide tunable signal time delay for beam steering.

Optical delays can be achieved by either changing the physical distance light

travels, or by enhancing the travel distance of the light by the use of optical

resonators. Resonators achieve this length enhancement by increasing the effective

length of flight for a light beam through the many reflections within the cavity

before the light is transmitted. It has been shown that a CROW acts as an

equivalent waveguide with effective length indicative of the delay, given by the
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Figure 4.8: An example of a CROW delay line consisting of 27 microring res-

onators, each with radius 50 µm and separated by 200 nm, fabricated in SU-8 by

direct electron-beam exposure.

simple form [84]

Leff =
πRN

|κ| (4.20)

where |κ| is the coupling coefficient, R is the ring radius, and N is the number

of rings. Clearly, either more resonators or a smaller coupling results in a longer

effective length and longer delay. This is intuitively simple; with smaller coupling,

it takes longer for the light to couple from one resonator to the next down the

waveguide so the group velocity is decreased and delay increased.

From (4.20), we see that the goal in designing optical delay lines in CROWs is

to decrease the coupling and to increase the number of resonators. However, there

is a penalty for decreasing the coupling. Since resonant structures are incorporated

in the device, smaller coupling results in narrower pass-bands. This means that the

usable bandwidth of the delay line is decreased as the delay is increased through

smaller coupling. See Reference [84] for a more thorough discussion of the tradeoffs

in the design of CROW delay lines.
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An example of a polymer CROW delay line is shown in Figure 4.8. Fabricated

in SU-8 directly on a silicon wafer with 6 µm silica serving as the lower cladding, the

CROW incorporates 27 microresontors. Each microresonator is 50 µm in radius,

separated by 200 nm, and has waveguide dimensions of 1.6 by 2.0 µm. This device

has not been characterized at the time of writing this thesis. Polymer materials

present a good platform for CROW delay lines due to the ease and flexibility of

fabrication, the ability to produce reasonably high-Q resonators, and the ability

to integrate the CROWs with other on-chip devices. Further, the functionality of

the material can be enhanced by blending in the polymer a multitude of dopant

molecules such as electro-optic molecules or lasing dyes capable of providing gain,

to render CROW delay lines tunable.
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Chapter 5

Soft-Stamp Replica Molded Polymer

Integrated Optical Devices

5.1 Introduction

As has been demonstrated in the preceding chapters, many devices used for inte-

grated optics inherently require high resolution in their patterning. High resolution

fabrication is achievable through the use of electron beam lithography. The major

limitation of electron beam lithography, however, is the limited throughput of the

procedure when compared to other lithography techniques, most notably, ultravi-

olet photolithography. The main factor in making electron beam lithography an

inefficient method is that it must occur within a vacuum, and thus, several minutes

are spent for each sample for the chamber to pump down to appropriate pressures.

This time-consuming procedure oftentimes negates the use of electron beam lithog-

raphy in industrial settings as a tool for mass fabrication of optical devices. Thus,

there is a quandary: on the one hand, there is a need for high-resolution fabrica-

tion, but on the other there is also a demand for high-throughput fabrication. The

procedure in this chapter evokes promise for solving the resolution/throughput

predicament.

In this chapter, the method of soft-stamp replica molding of polymer opti-

cal integrated circuits is discussed and demonstrated. First, the basic method is

described. A difficulty that is characteristic of the method is presented and the
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overcoming of this issue is detailed. Next, the efficacy of this method for replicating

precise optical elements is demonstrated through fabrication and characterization

of a microring resonator. Finally, a more advanced application of replica molding

is demonstrated: the ability to mold several devices successively on separate layers,

thus producing a three-dimensional polymer integrated optical chip.

5.2 Soft-Stamp Replica Molding

5.2.1 The Technique

Soft lithography has proven to be a powerful technique for fabricating many novel

structures [85, 86, 87]. Optical devices made by soft lithography have been mostly

limited to the visible regime. The process is, however, largely unexplored for pro-

ducing complex polymer optical elements useful for infrared telecommunications

applications. Implemented by Zhao et al. to make polymer optical couplers [88] in

the visible regime, the technique has been extended to make polymer distributed

feedback and distributed Bragg reflector lasers [89], hybrid organic/inorganic pho-

tonic crystal lasers [90], and mesoporous silica waveguide lasers [91]. It has been

recently shown that soft lithography is amenable to producing integrated opti-

cal components in the infrared regime such as optical interconnects [92]. The

early fundamental research particularly demonstrates the high fidelity and preci-

sion required to achieve the performance needed for fabrication of devices in the

telecommunications component industry.

In contrast, hard-mold replication – or hot embossing – of polymer devices

has been used to make several devices (e.g., microring resonators [93]), but this

technique presents several difficulties. For complex multi-layer devices, this proce-

dure is less useful due to the high temperatures needed to reflow the polymer film.

The high temperatures needed for reflow could disturb lower cladding layers and

may possibly alter optically active dopant molecules. Furthermore, this process

is also of limited use for cross-linking polymer films because for these materials,

the degradation and glassy temperatures occur at nearly the same temperature.
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Finally, hard molding is less useful for mass production due to pattern defects

caused by the physical contact between the mold and the substrate, thus limit-

ing multiple use of the hard mold. In contrast, for soft-stamp replica molding,

polydimethylsiloxane (PDMS) is used to make the mechanically flexible molds be-

cause its relatively low surface energy results in weak adhesion to other materials.

This property allows a large number of PDMS molds to be produced from one

master device. It also allows for the easy release of the molded polymeric repli-

cas from the PDMS mold without damage. Using soft lithography, several simple

optoelectronic components have been fabricated such as distributed feedback struc-

tures [89, 94, 95, 96], photonic band-gap structures [90], microlens arrays [97], and

waveguides [67, 88].

The process-flow diagram is shown in Figure 5.1. The master device is first

prepared by photo-lithographic or electron beam patterning of SU-8 resist on a

bare silicon substrate (Figure 5.1(a)). The master is baked for one hour at 150 ◦C

to harden the structures and to smooth out nanometer scale sidewall and surface

imperfections due to the exposure and developing. To make the mold, liquid

poly (dimethylsiloxane) (PDMS) is poured atop the master device in a Petri dish

(Figure 5.1(b)). The PDMS is cured for one hour at 80 ◦C, upon which the mold

is peeled from the master device (Figure 5.1(c)).

To make the replica device, a drop of solution is placed on an appropriate

substrate (Figure 5.1(e)) and the mold is depressed (Figure 5.1(f)). To guide light,

the substrate must have a layer of material with a lower refractive index than

the core light-guiding material. Typically, a layer of SiO2 (n=1.45) or another

polymer (n'1.3-1.6) is used. Droplets of the core polymer solution are placed

on the substrate, and as the mold is depressed, the force exerted on the mold is

monitored with a force gauge (see Figure 5.2). For evaporative-cured polymers, the

solvent escapes through the PDMS mold, thus solidifying the waveguide structures.

The mold is released and removed from the substrate, revealing the waveguide

structures (Figure 5.1(g)). The molded replica device is baked at 100 ◦C for two

hours to remove any remaining solvent. A photograph of the basic molding setup
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Figure 5.1: Schematic diagram of the replica molding process for polymer waveg-

uide devices. (a) The master device is fabricated is SU-8 resist by ultraviolet or

electron beam exposure. (b) PDMS is poured atop the master device and ther-

mally cured. (c) Once cured, the PDMS mold is peeled from the master device.

(d) A drop of the core polymer solution is placed on an appropriate substrate. (e)

The PDMS mold is depressed. (f) Once cured, the PDMS mold is peeled to expose

the molded replica.
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Figure 5.2: Photograph of the molding setup.

is shown in Figure 5.2. The necessary components other than the mold and sample

substrate are a two-axis stage, a mirror mount, and a force gauge.

An example application of polymer waveguide molding is shown in Figure 5.3.

Given a semiconductor chip with CMOS drive or trimming circuitry, active poly-

mer waveguides and devices can be molded directly on the circuitry. The resulting

hybrid device represents multi-material and multi-functional integration of optical

and electrical devices. Clearly, such integration is not so simply achieved using

crystalline materials.

5.2.2 The Background Residue

A limiting difficulty of this technique remains. The ubiquitous presence of a back-

ground residue of polymer material has the potential to ruin the desired optical

performance of devices. We study numerically the impact of the presence of the

residue on simple optical waveguides, on the coupling output ratio of directional

couplers, and on the radiation losses in waveguide bends. We investigate techniques

of reducing the residue to acceptable levels. Control of the residue to acceptable
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Optical Devices

Semiconductor

Electrical Circuit
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V-Grooves For

Optical Fibers

Figure 5.3: Molding of polymer waveguide structures directly on electrical cir-

cuitry.

levels leads the way to the mass production and deployment of polymer integrated

optical devices fabricated by soft-mold replication.

Here, for the investigation of the effects of molding parameters on the struc-

tural features, we use bare silicon as the substrate. The core polymer solution is

prepared by dissolving a polycarbonate, Poly[Bisphenol A carbonate-co-4,4’-(3,3,5-

trimethylcyclohexylidene)diphenol carbonate] (Aldrich) in dibromomethane, CH2Br2

in varying concentrations from 7.2 to 0.45 wt.%. The polycarbonate is of prac-

tical interest as it is the same polymer host material used in the state-of-the-art

electro-optic guest-host systems [10].

As seen in Figure 5.4, the replica molding process of polycarbonate ridge waveg-

uides results in an undesired background residue film. It is crucial to know to what

extent this residue impairs the performance of integrated optical devices. Several

test cases can be investigated using simulation tools. Here, we study the effects

of the background residue on three fundamental properties important for inte-

grated optical waveguide devices: the modal properties of individual waveguides,

the output coupling ratio in directional couplers, and the radiation loss due to the

curvature of waveguide bends.
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Figure 5.4: Scanning electron microscope image of a molded waveguide, and the

surrounding residue, overhanging a cleaved silicon substrate.

Numerical Simulations

Of basic interest for any guided wave device are the modal properties of an in-

dividual waveguide, described chiefly by the mode effective indices neff . Since

the mode effective indices are governed in part by the cross-sectional shape of the

waveguide, it is expected that the presence of the residue will alter the modal

properties of the waveguide. For effective indices below the bulk refractive index

of the cladding material, the mode is cut-off and will not be guided. Further,

modes that are near cut-off are more weakly guided and typically exhibit more

propagation loss. The effective indices of the several lowest-order modes are calcu-

lated using a semi-vectorial finite-difference method mode-solving algorithm (see

Appendix B) for residue thicknesses varying from zero to 1 µm. The waveguide is

taken to have a 2.5 µm square cross-section, independent of the residue, with core

index 1.6. The cladding index of 1.55 is chosen to ensure single-mode operation

for transverse-electric polarized light at 1550 nm, with no residue present. Figure

5.5 shows the results of the calculations. The first-order mode is guided for all

values of the residue thickness, and the effective index increases as the residue

increases in thickness. The second- and third-order mode effective indices become

larger than the cladding index when the residue thickness is approximately 200
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Figure 5.5: Effective indices of the first, second and third order mode as a function

of residue thickness.

nm. However, at this residue thickness, these modes are presumed to be weakly

guided and exhibit high propagation loss. For thicker residues, the effective in-

dices of these higher-order modes become significantly greater than the cladding

index and are thus more strongly guided. These modes would degrade device per-

formance through mode-mixing. From these results, we find that for preventing

multimode behavior, restricting the residue thickness is important. If the residue

cannot be restricted, it is important to know the thickness so the other waveguide

dimensions can be reduced appropriately to ensure single mode guiding. For the

parameters used in this example, limiting the residue thickness to several hundred

nanometers is essential, but for different waveguide cross-sections, this value could

be more or less, depending on how close the higher-order modes are to cut-off.

Directional couplers are passive devices that divide input light between two out-

put waveguides due to the proximity of the waveguides. As such, directional cou-

plers form fundamental elements in Mach-Zehnder modulators, optical switches,

and lattice filters [36]. The proportion of light coupled from one waveguide to an-



99

Figure 5.6: Output ratio of a directional coupler as a function of residue thickness.

other is determined by the field amplitude overlap integral. Because this overlap

integral is determined by the individual waveguide field profiles, the results of the

previous section suggest that the output coupling ratio should be strongly affected

by the presence of a residue. To study the effects of the residue on the performance

of optical couplers, a finite-Fourier-transform beam propagation method algorithm

(see Appendix A) is used to calculate the coupling output ratio for varying residue

thickness. Two waveguides, each of the same cross-section and refractive indices

as in the previous section, are separated by 1.4 µm for a coupling length of 147

µm. The separation and coupling length are chosen as such so light input into

one waveguide results in an output coupling ratio of 50% (3-dB coupling) with no

residue. The results of the calculation, shown in Figure 5.6, indicate that indeed,

the output coupling ratio increases with increasing residue thickness. For small

residue thicknesses, the deviation from the desired 3-dB coupling is small, but for

residue thicknesses greater than a few hundred nanometers, the deviation becomes

significant. This is due to the fact that as the residue gets thicker, more of the

individual mode field amplitude occupies the area shared by both individual modes
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Figure 5.7: Bend loss as a function of residue thickness.

so the overlap integral is increased.

Waveguide bends are integral in nearly all integrated optical circuits. More

specifically, a waveguide that bends back upon itself forms a ring resonator that

exhibits resonances periodic in wavelength, each occurring when light acquires a

phase equal to an integer multiple of 2π radians. Such structures are used for

channel-dropping filters [41], intensity modulators [42], and dispersion compen-

sators [36]. For a given bend radius, bend loss is predominantly determined by

the degree of confinement. As the residue thickness increases, more of the field

occupies the residue, which is not laterally restricted by refractive index, so it

is expected that the bend loss significantly increases as a function of the residue

thickness. To test this supposition, an azimuthal beam propagation algorithm [98]

is used to calculate the bend loss by monitoring the remaining field amplitude in

the waveguide after each revolution of the optical field. As in the previous two

calculations, we take the waveguide cross-section to be 2.5 µm square with core

and cladding index 1.6 and 1.55. The bend radius is 400 µm, chosen because

it gives essentially no bend loss for the ring without residue. The results of the
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calculation, Figure 5.7, show that bend loss is a dramatic function of the residue

thickness. For residues up to 400 nm, the bend loss is less than one dB/revolution,

however, the bend loss quickly increases to unacceptable levels for residues thicker

than 400 nm.

Reduction of the Residue

The reduction of the residue is of paramount importance for replica molding to be

a useful technique for polymer waveguide fabrication. The previous simulations

have shown that while small residue thicknesses are tolerable in many cases, as the

residue becomes thicker, the waveguides may exhibit multimode behavior, direc-

tional couplers will not divide light as intended, and waveguide bends will exhibit

unacceptably high loss. In defining what variables are at hand for reducing the

residue, there exist several plausible possibilities. Two apparent means of reducing

the residue thickness are changing the concentration of the polymer solution or the

force with which the mold is depressed. Although chemical or plasma etching is a

possible treatment for reducing the residue, this adds a costly step to the otherwise

simple fabrication procedure and introduces spurious effects such as changing the

surface features such as smoothness and reducing the waveguide thickness. An-

other possibility that must be immediately disregarded is the change in the shape

or size of the structures. The waveguide structures cannot be modified because the

dimensions are determined by the modal waveguide requirements (e.g., as required

for the optical device). However, previous results suggest that typical polymer op-

tical waveguide dimensions are in the correct size and shape regimes to avoid mold

deformations: the waveguides are thin enough so that there is no sagging of the

mold, but wide enough and separated enough to avoid lateral deformations of the

mold [99].

The solution concentration is an obvious candidate for reducing the residue, as

the residue thickness will be dependent on the solution viscosity and density. Previ-

ously, dilution of a resist solution was used to reduce the residue in soft molding of

etch resist, allowing a single-step etch to pattern a silica substrate [100]. To deter-
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Figure 5.8: Waveguide and residue thickness for various solution concentrations.

mine the functional dependence of the solution concentration, we mold amorphous

polycarbonate waveguide structures using several concentrations of the polycar-

bonate solution. A stock solution of 7.2 wt.% polycarbonate in dibromomethane

is diluted in factors of two resulting in concentrations of 7.2, 3.6, 1.8, 0.9, and 0.45

wt.%. Each solution is used to mold the waveguide structures with a constant force

of 50 N applied to the mold in each case. Upon solvent evaporation and removal

of the mold, it is visually clear that the background films are greatly reduced by

reducing the solution concentrations. A stylus profiler is used to precisely measure

the thickness of both the background residue and the waveguide thickness for each

of the test samples. The thicknesses at several locations – the same for each sam-

ple – were measured and averaged. The measurement results are shown in Figure

5.8. The residue thickness is strongly reduced by decreasing the concentration of

the solution, suggesting that carefully selecting the appropriate solution concen-

tration is a good means of reducing or controlling the residue thickness. The cost

of reducing the residue by thinning the solution, however, is the reduction in the

thickness of the waveguides for very low concentrations. This is because for low
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Figure 5.9: Waveguide and residue thickness for various forces applied to the mold.

concentrations, there is not enough solid in the volume of solution that fills the

waveguide mold and so the condensed solid volume is much less than the intended

thickness.

The mechanism that results in the residue appears to be trapping the solu-

tion between the mold and the substrate, forming pockets within which the solid

residue forms. It is reasonable to assume that the force with which the mold is

depressed may be a useful parameter for the reduction of the background residue

because higher force would drive out more of the trapped solution. We mold sev-

eral waveguide structures using a similar procedure as above, but at a constant

concentration (1.8 wt.%) for various forces applied to the mold (2-100 N). The

corresponding range of pressures on the mold is 3 × 104 (0.3) to 1.46 × 105 Pa

(14.6 N/cm2). When the samples are cured, the mold is removed and the film and

waveguide thicknesses are measured with a stylus profiler. The results are shown

in Figure 5.9. The thickness of both the residue and the waveguide are changed

very little over a wide range of applied forces, demonstrating that the force applied

to the mold is not a useful means for reducing the residue. Since the residue is very
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weakly affected by the force on the mold, we must consider two other observed

effects that could potentially degrade device performance. First, for low forces,

the mold did not make conformal contact [101] with the substrate and a very thick

residue was often observed at an edge or corner of the molded area. Second, for

very high forces, the mold began to deform around the edges, distorting the device

features at the extremities of the mold.

As proposed, the mechanism for the formation of the residue is due to the soft

and flexible nature of the PDMS mold. As the mold is depressed, the solution on

the substrate is forced into the waveguide structures and the excess escapes to the

edges of the mold. What solution does not escape, however, forms pockets sur-

rounding the waveguides by flexing the mold in these regions upwards, as shown in

Figure 5.10 (a) and (b). The regions of greatest rigidity to vertical forces are the

sidewalls of the waveguide structures, and although they might deform laterally

slightly, they do not buckle and are in close contact to the substrate. Therefore the

residue is thinnest in the regions immediately surrounding the waveguides, and the

residue is thickest between two far-apart waveguides. In Figure 5.10 (c), we show

a top-view microscope image of a molded waveguide. The previously noted phe-

nomenon is observable in this image: the dark colored waveguides are immediately

surrounded by light color, corresponding to a very thin residue. Further from the

waveguide, the residue gets thicker, shown as a darker color. The ramifications of

this effect in soft-mold replica molding are significant for optical applications. The

simulations presented above are worst-case, upper-bound scenarios and the actual

waveguide performance is better than what the simulations predict. This result

does not invalidate the importance of reducing the background residue, however.

In conclusion, soft lithography replication is a good technique for inexpen-

sive, fast, mass fabrication of polymer integrated optical devices. The resolution

requirements have been previously demonstrated. The major remaining fabrica-

tion difficulty preventing wide-spread polymer device replication is the unavoid-

able residue remaining after the molding process. For rational polymer waveguide

cross-sectional parameters, we calculate that a small residue up to several hundred
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Figure 5.10: Formation of background residue. In (a) the PDMS mold and polymer

solution before molding. In (b) the mold is pressed atop the solution/substrate,

forming the waveguide structures, but leaving a polymer residue layer surrounding

the waveguides. In (c), optical microscope image showing a waveguide (black)

surrounded by thin residue (white) that gets thicker farther from the waveguide

(gray). The measured thicknesses correspond to the gray areas, the areas of thick-

est residue.
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nanometers is tolerable. Beyond several hundred nanometers of residue, waveg-

uides become multimode, directional couplers do not exhibit the intended coupling

ratios, and waveguide bends exhibit exorbitant losses. To correct the problem of

the residue, the use of dilute polymer solutions greatly reduces the residue. Ap-

plying more force to the mold during the formation of the waveguides does not

affect the thickness of the residue. The force does affect the conformal contact

of the mold to the substrate. Finally, the molded devices yield structures with

the residue being thinnest immediately surrounding the waveguides because for

the aspect ratios of waveguides, there is little lateral deformation of the mold and

no buckling of the waveguide walls. The thinness of the residue surrounding the

waveguides will tend to reduce the deleterious effects predicted by the simulations.

5.3 Polymer Microring Resonators Fabricated by Replica

Molding

Among integrated optical circuits, the microring optical resonator is a key device

for optical communications. Due to the resonant nature of microrings, light of

certain wavelengths can be canceled by interference, resulting in periodic notches

of the transmission spectrum (see Section 3.2). There are several reports of poly-

meric microring resonators. The typical fabrication procedure uses reactive ion

etching (RIE) [42] to form the guiding structures, similar to the fabrication meth-

ods of semiconductors. A potential disadvantage of RIE for polymeric devices is

that waveguide scattering loss can be significantly increased due to dry etching

processes. An alternative method for making polymeric microrings is an imprint-

ing technique in which the polymer reflows at high temperature and fills a hard

mold with “negative” relief features [93]. However, this method also requires com-

plicated etching processes to get a proper mold.

In the following, we demonstrate the comparison of a master microring optical

resonator device made by electron beam lithography to the replicated devices made

by soft lithography, using the same materials. The results show that soft lithog-
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Figure 5.11: Schematic diagram of fabrication processes. Generally, the ultraviolet

curable polymer can be either the same material used for electron beam lithography

or different ones.

raphy meets the rigorous requirements of high-precision fabrication for integrated

optical devices.

5.3.1 Fabrication and Measurement

Figure 5.11 is the flowchart of fabrication processes used in this section. Briefly,

we make the master devices by electron beam lithography and replicate them

using a PDMS mold to form the devices in the same materials as the master. The

substrates are silicon wafers covered with a 5 µm thermally grown amorphous silica

film (refractive index 1.445). A thin film (2 µm) of SU-8 (refractive index 1.565) is
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Figure 5.12: Optical setup for transmission measurement.

spin coated on the substrates and exposed by electron beam lithography to form

the master device. After developing in SU-8 developer, the structure is covered

by PDMS and baked at 80◦C for 1 h. Once cured, the PDMS mold is peeled off.

To mold the replicas, a drop of SU-8 is placed onto a new silica substrate and

stamped with PDMS mold. The replicated device is cured under ultraviolet light

until solidified. Both the master and replicated devices are cleaved to expose the

waveguide end-facets for optical measurement.

The measurement setup is shown in Figure 5.12. Light from a tunable laser

is coupled into one end of the straight waveguide using a tapered fiber (also see

Figure 5.13). The transmission signal, collected by an objective from the other

end facet of the device, is measured using a femtowatt infrared photoreceiver.

Both master devices (fabricated by electron beam lithography) and molded

devices (by soft lithography) are tested under the same conditions. Figure 5.13

shows that the PDMS mold can successfully reproduce the details of master devices

and transfer to molded ones.
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Figure 5.13: Optical microscope image of microring optical resonator fabricated by

soft lithography. The inset shows the detail of coupling region. The ring diameter

is designed to be 200 µm and the waveguide width is 2µm. Light from a He-Ne

laser is input into the device for illustration only.

Figure 5.14: Schematic geometry for waveguide ring resonator coupling. The

color plot is a finite-difference time-domain simulation of the coupling between the

straight waveguide and the ring.
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5.3.2 Results and Discussion

The generic geometry of a microring optical resonator is illustrated in Figure 5.14.

The evanescent coupling of light between the waveguide and the ring is analyzed

by well-known coupled mode theory. As shown in Section 3.2, the transmission of

the device is ∣∣∣∣
b1

a1

∣∣∣∣
2

=
α2 + |t|2 − 2α|t| cos θ

1 + α2|t|2 − 2α|t| cos θ
. (5.1)

At resonance, i.e., θ = m2π, m an integer, the equation above can be written as

∣∣∣∣
b1

a1

∣∣∣∣
2

=
(α− |t|)2
(1− α|t|)2 . (5.2)

The condition α = |t|, i.e., the critical coupling condition that results in a null

of the output is the desired condition for a microring resonator optical filter. In

practice, for a given microring structure, α is determined by the material loss and

the bend loss. To achieve critical coupling, the coupling (represented by t) must

be tuned by varying the gap between the straight waveguide and the microring.

Precise duplication of this parameter is key to good replication of the master

device.

The two transmission spectra shown in Fig. 5.15 are attributed to the master

and the molded replica devices. The shapes of transmission spectra are clearly

quite similar. Furthermore, the extinction of the notches which is extremely sen-

sitive to the coupling between the straight waveguide and the microring resonator

are almost the same (∼ −9 dB), indicating that the soft lithography method pre-

cisely replicates the master devices on the nanometer scale. The obvious difference

in the spectra of the master and molded replica devices is the shift of notch po-

sitions due to slightly different free spectral ranges (FSRs). We attribute these

differences to small discrepancies between the effective refractive indexes of the

two devices. The difference of effective refractive index is about 5× 10−4 accord-

ing to this measurement. In practical applications where active material is used,

this shift could be controlled by a bias voltage.
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Figure 5.15: Comparison of transmission spectra of the master (blue) to molded

(red) ring resonator.

In conclusion, microring optical resonators are fabricated by electron beam

lithography and replicated by soft lithography. Evaluating the quality of the

replication, we demonstrate excellent agreement in the optical properties between

molded replicated devices and master devices. This result shows the potential of

soft lithography for industrialized integrated optical circuit fabrication. Compared

to conventional fabrication methods currently used for polymer integrated optics,

soft lithography shows promise by not only achieving the requirement of precise

fabrication, but also of decreasing the fabrication cost through low material costs

and high fabrication throughput.

5.4 Multilayer Molding

Integrated optical devices, especially planar lightwave circuits (PLCs), are impor-

tant elements of modern communications and networking. Conventional PLCs

are two-dimensional photonic circuits and the degree of integration is limited by

the size of the devices. Stacking PLCs to make three-dimensional (3D) structures
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Figure 5.16: Schematic flowchart of the fabrication of 3D integrated optical mi-

crochips.

will efficiently increase the density of photonic circuits. Polymers, as one class of

promising materials for the next generation of optical devices, have been inves-

tigated for several years [4]. Several polymer 3D integrated optical devices have

been realized by conventional lithography [102, 103]. As shown in the preceding

sections, soft lithography has been applied to fabricate high quality polymer in-

tegrated optical devices. Soft lithography has also been shown to be a powerful

method for generating 3D multilayer structures [104, 105]. In what follows, we

describe and demonstrate the development of a multistep soft lithography method

to fabricate 3D multilayer integrated optical devices.

5.4.1 Fabrication and Measurement

The schematic fabrication procedure of the multistep soft lithography is shown

in Figure 5.16. A poly(dimethylsiloxane) (PDMS) stamp, which constitutes a

negative relief of the device, is used as the mold to reproduce the polymeric core

structure. In our demonstration, electron beam lithography of SU-8 is used to

generate the master structures of the core layers, shown in Figure 5.16(a). PDMS

prepolymer (RTV-615, GE) is poured on and cured (Figure 5.16(b)) to form the

mold. After cooling to room temperature, the cured PDMS layer can be easily

peeled off (Figure 5.16(c)), preserving the original master, to serve as the soft
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mold. A polymer with a lower refractive index such as OG-125 (Epotek, n=1.46)

is spun on a silicon wafer and cured by ultraviolet light, serving as the lower

cladding layer (Figure 5.16(d)). A drop of the solution of the core polymer with

a higher refractive index is placed upon the cladding layer and the PDMS mold

is pressed on the substrate (Figure 5.16(e)) until the solidification of the core is

complete. By releasing the PDMS mold, the core structure – identical to the

master device – is formed (Figure 5.16(f)). Another layer of OG-125 material is

spun atop the core layer just molded (Figure 5.16(g)) to serve as both the upper-

cladding for the first core layer underneath and the under-cladding layer for the

second core layer. By repeating the molding-cladding procedure (Figure 5.16(h-

k)), a two-layer structure is fabricated. The thickness of the cladding layer between

the two core layers can be adjusted by changing the parameters of the spin-coating

and the concentration of the cladding solution. By choosing the correct cladding

material and film thickness, the crosstalk between the core layers can be adjusted

or avoided. This procedure can be repeated to fabricate 3D multilayer structures

with more than two layers.

There are several intrinsic advantages of applying the multistep soft litho-

graphic method to fabricate integrated optical devices. First, compared with the

other fabrication methods for 3D optical devices such as multilayer grayscale op-

tical lithography [102] and two-photon lithography [106], our multistep soft litho-

graphic method has obvious cost advantages. Furthermore, multistep soft lithog-

raphy allows for the application of different core structures for the layers and inte-

gration of various optical functions on a single chip. As shown in Figure 5.17(a),

we fabricated a three-layer integrated optical microchip with a different struc-

ture in each layer. The lower layer (layer 1) is a waveguide Y-splitter made of

amorphous polycarbonate (n=1.60). The molding solution is a dibromomethane

solution containing 2 wt.% polycarbonate. The middle layer (layer 2) is a ring res-

onator optical filter (ring diameter 400 µm) made of polystyrene (n=1.60). This

core layer is molded from a 4 wt.% toluene solution of polystyrene. The upper layer

(layer 3) is a waveguide made of SU-8 (n=1.57) by ultraviolet curing during the
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Figure 5.17: Optical microscope images of multilayer devices. A three-layer mi-

crochip and its schematic structure are shown in (a). Each layer consists of a dif-

ferent polymer material. A two-layer microchip containing a microring resonator

optical filter in each layer is shown in (b). (c) and (d) are infrared camera images

of the outputs of the microring resonator filters in the upper layer (input/output

1) and in the lower layer (input/output 2), respectively. The squares in (c) and

(d) are the positions of the end facets of the other output.
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molding step. The four cladding layers between which three different core layers

are fabricated, are all made of OG-125. This chip with three different core struc-

tures and different core materials can be fabricated by multistep soft lithography

using only PDMS molds and a press, and each mold can be used hundreds of times

for reproduction. With conventional etching techniques, this chip would require

complicated and lengthy processing. Moreover, in contrast to conventional top-

down etching methods, the bottom-up method is more suitable for constructing 3D

structures on existing devices, which may be important for hybrid optoelectronic

integration.

In order to investigate the optical properties of each layer of the multilayer

structure, we fabricate a two-layer microchip in which both layers have micror-

ing resonator optical filters molded from the same PDMS mold. The microring

resonator optical filter consists of a straight waveguide evanescently coupled to

a filtering waveguide ring. As we have seen in Section 3.2, when the coupling

between the straight waveguide and the ring reaches the critical coupling condi-

tion, the resonance wavelengths will be completely attenuated at the output of the

waveguide.

Figure 5.17(b) shows the optical microscope image of the 3D microchip con-

taining two layers of microring resonator optical filters. Each optical filter has an

input end and output end (Input 1 and Output 1 in Figure 5.17(b) belong to the

upper layer, while Input 2 and Output 2 belong to the lower layer), and the end

facets are prepared by cleaving the silicon substrate. The cores of the microring

resonator optical filters are made from SU-8 and the cladding layers are OG-125.

The cross section of the core waveguides is 2 µm × 1.6 µm and the OG-125 lay-

ers are 3 µm thick. Light from a tunable laser is coupled into one of the inputs

through a tapered single-mode fiber and optical transmission from the outputs are

collected by a 10× aspherical objective and then detected by an IR photodetec-

tor. The tapered fiber can be controlled by a moving stage to selectively couple

the laser into one of the two inputs of the chip. When the laser is coupled into

Input 1 (upper layer), we observe light at Output 1 (Figure 5.17(c)). When we
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Figure 5.18: Transmission spectra of the microring resonator optical filters in the

two layers of the microchip, as shown in Figure 5.17(b). The experimental data

are shown as solid circles (lower layer) and solid squares (upper layer). The solid

line and dashed line are the fitting curves of experimental data of the upper layer

and the lower layer, respectively. The inset shows detailed spectra around 1550

nm.

move the tapered fiber to the lower layer and couple the light into Input 2, an

output is observed at Output 2 (Figure 5.17(d)). The position of the end facet of

the waveguide in the layer that we have not coupled light into has been marked

by a square in the images to indicate the horizontal and vertical displacement.

Both images show the good mode confinement of the SU-8 waveguide surrounded

by OG-125 cladding, indicating that the refractive index contrast is suitable for

single mode transmission. Finite difference simulations (see Appendix B) confirm

the waveguides are single-mode near 1550 nm. By design, no crosstalk is observed

in the experiment due to the thick cladding layer between the core layers.
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5.4.2 Results and Discussion

Figure 5.18 shows the transmission spectra of the dual-layer microring optical

filter chip. In order to achieve the critical coupling condition, the gap between the

straight waveguide and the ring resonator is designed to be 400 nm. Both spectra

show periodic notches with extinction ratios of around -15 dB, indicating that

the critical coupling condition is nearly achieved with our design and fabrication.

Besides the extinction ratio which is extremely sensitive to the fabrication accuracy,

the two spectra are also similar in terms of their free spectral ranges (FSRs) and

shapes. The FSRs of the lower layer and the upper layer are both measured to be

1.201 nm. The unloaded quality (Q) factors of the two microring resonators are

estimated by data fitting to be around 1.0 ×104. The similarities indicate that

the two layers of microring resonator optical filters are nearly identical. The 0.1

nm offset between the two spectra is due to slightly different effective refractive

indices. According to the data fitting of the two spectra, the difference in the

effective refractive indices is 0.0001. The essentially identical microring resonator

optical filters in this dual-layer device shows the significant accuracy and fidelity

of soft lithography, as well as the potential of polymer integrated optical devices

in 3D optical circuits.

In summary, our experimental demonstration of 3D multilayer integrated opti-

cal devices made by multistep soft lithography points the way to highly integrated

multilayer optical circuits which can be easily fabricated with low cost polymer

materials. Through a highly efficient and well-controlled soft molding process,

planar lightwave circuits with various functionalities in different materials can be

stacked together to form high-density multifunctional optical chips.
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Chapter 6

Electro-Optic Polymer Mach-Zehnder

Modulators

6.1 Introduction

In the preceding chapter, the demonstration of replica molding for the fabrica-

tion of polymer integrated optics was applied only to passive polymer materials.

While passive polymers are useful in their own right, they do not take advantage

of a property that renders polymer-based devices interesting to the optics-based

communications industry. That property is the ability to achieve extraordinary

electro-optic efficiencies in polymer materials by doping certain passive polymer

hosts with highly electro-optic chromophore molecules. These polymer materials

promise the advent of incredibly high-bandwidth and very low switching volt-

age electro-optic modulators for future high-speed communications systems. The

demonstration of such devices fabricated by replica molding is crucial in proving

the usefulness of this method for polymer integrated optics. Upon this proof, the

advantage of electro-optic polymers is not only found in high bandwidth and low

switching voltage, but also in robust and extremely high throughput fabrication.

Since electro-optic polymers are not generally photocurable themselves, fabri-

cation of polymer modulators has been mostly limited to traditional semiconductor

etching techniques such as reactive ion etching. An alternative fabrication tech-

nique that takes advantage of the plastic nature of electro-optic polymers is the
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soft-stamp replica molding lithography discussed in the previous chapter. Materi-

als fabricated by this method can be either photo-curable due to the transparency

of the stamp material to ultraviolet light, or solidified by solvent evaporation made

possible by the permeability of the stamp material to common polymer solvents.

Previously, this technique has been employed to make optical couplers [88] and

polymer distributed feedback and distributed Bragg reflector lasers [89] for use in

the visible regime. For infrared applications, this technique has been applied to op-

tical interconnects [92] and microring resonator optical filters [20] as demonstrated

in Chapter 5.

In this chapter, the method of replica molding is applied to electro-optic poly-

mers. A brief introduction to electro-optic guest-host polymers is first given. These

materials in their basic state do not exhibit electro-optic properties, so poling of

these materials is necessary to align the dopant molecules. The method of corona

poling is explained. This is followed by a proof-of-principle, prototype electro-optic

polymer modulator fabricated by replicating a small Mach-Zehnder structure pat-

terned by electron beam lithography. Although the prototype proves the principle,

it is not a worthy example of the ability of the molding method. Thus, a full size

electro-optic polymer Mach-Zehnder modulator is fabricated by replica molding of

a master patterned by photolithography. Measurements of this device prove the

ability to make industry-grade polymer electro-optic devices using the molding

method.

6.2 Electro-Optic Polymers

Organic nonlinear optical materials have been the subject of significant recent tech-

nological advances with the aim of commercial deployment, especially for telecom-

munications applications [107]. Polymers for integrated optical circuits exhibit

several advantageous features. The raw materials are lower in cost than their crys-

talline and semiconductor counterparts and offer more flexible fabrication methods

[4]. Electro-optic polymers have low material dispersion and thus, low velocity mis-
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Figure 6.1: The chemical structure of AJL8 chromophore.

match between optical signals and microwave modulation, allowing electro-optic

modulation bandwidths up to 1.6 THz [13]. The chromophore dopants responsible

for the nonlinear optical characteristics are devised to achieve high nonlinearities,

allowing for modulators with switching voltages of less than 1 V [12]. Recent ad-

vanced chromophore design has resulted in the development of highly nonlinear

chromophores with good thermal- and photo-stability [107]. Shown in Figure 6.1

is the chemical structure of one such newly developed chromophore, referred to as

AJL8 [108]. Films of AJL8 doped in an amorphous polycarbonate matrix exhibit

a very high r33 value of 94 pm/V at 1300 nm. The onset degradation temperature

was found to be 220 ◦C and around 80% of its original r33 value maintained very

constantly for more than 500 hours at 85 ◦C [108].

Most polymers are not in and of themselves electro-optic. Rather, the polymer

must host dopant molecules such as the AJL8 molecule shown in Figure 6.1 that

do exhibit electro-optic activity. These hybrid materials in which electro-optic

molecules are mixed with polymer hosts are termed guest-host electro-optic poly-

mers. Alternatively, in an attempt to stabilize the materials against environmental

and chemical damage, the electro-optic molecules can be attached to the polymer

backbone, or locked into position by crosslinking the polymers while the dopants

are in collective alignment [109]. Guest-host materials, however, have been shown

to be remarkably reliable over long periods of time at elevated temperatures and
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in several ambient environments [108, 110].

The dopant molecules that exhibit electro-optic effects are typically dye, or

chromophore, molecules that strongly absorb light at certain wavelengths. Among

the earliest of the electro-optic chromophores was the commercially available Dis-

perse Red 1 dye. Recently, however, materials scientists and chemists have become

interested in the development of new, more highly nonlinear chromophores. The

microscopic properties that result in strong macroscopic electro-optic effect are a

large dipole moment (µ) and large first hyperpolarizability (β). The large dipole

moment is important in the alignment of the molecules, to be discussed in the

following section. The microscopic hyperpolarizability β is related to the second-

order susceptibility χ(2) by the relation [107]

χ(2)
zzz = Nβf(ω) < cos3 θ > (6.1)

and

χ(2)
zxx = Nβf(ω) < cos θ >< cos2 θ > (6.2)

where N is the chromophore number density, f(ω) takes into account how the

local field is attenuated by the local environment of the chromophore, and the

cosine terms are the order parameter related to the alignment of the molecules.

χ
(2)
zzz and χ

(2)
zxx are used to define the electro-optic coefficients r33 and r13, respec-

tively. Thus, in developing the newest generation of chromophores for electro-optic

devices, enhancement of β via quantum mechanical calculations and molecular en-

gineering will ensure higher nonlinearity and more efficient devices. In the simplest

picture, an increase in the molecular hyperpolarizability is obtained by increasing

the length of the pi-electron system [107].

6.2.1 Poling of Guest-Host Electro-Optic Polymers

Once the chromophores have been designed and synthesized, the objective in max-

imizing the electro-optic efficiency is to create a film of highly ordered molecules

– that is, to maximize the order parameter < cos3 θ >. The chromophores are ini-
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Figure 6.2: Schematic diagram of the corona poling method for alignment of the

chromophores in guest-host electro-optic polymers.

tially mixed with the polymer in a solvent. This solution is spun onto a substrate,

consisting of a lower cladding atop some foundation material such as silicon. The

spun film is amorphous and cannot exhibit electro-optic activity. To orient the

molecules in the film, obtaining a collective electro-optic effect, one must make use

of the dipolar properties of the chromophores. This alignment of the chromophores

is known as electric field poling. In this procedure, the polymer is heated to a tem-

perature near its glass-transition temperature. At this elevated temperature, the

polymer material becomes soft and allows for reorientation of the chromophores.

This is done by subsequently applying a strong electric field that rotates the dipo-

lar molecules into alignment with the field. At this point, the temperature is

allowed to drop to room temperature, effectively locking the molecules into proper

alignment. As the temperature of the film reaches room temperature, the electric

field is turned off and the sample removed.

There are two common ways in which to accomplish electric field poling. One

method is the contact poling method. In this case, the voltage is applied directly

to metallic contacts previously deposited on the film surface. These contacts are

generally also used for microwave driving fields in electro-optic polymer modula-

tors, and so this method is a good choice for such structures. Further, in contact

poling, the poling is limited to areas covered by the electrodes. This allows for sep-



123

arate contacts to be at different voltages on the same device. In this way, two arms

of a Mach-Zehnder interferometer can be poled oppositely by applying a positive

voltage on one arm and a negative voltage on the other. This is commonly used

for low voltage polymer modulators in which this “push-pull” operation results in

a factor of two decrease in the switching voltage [12]. A limitation of the contact

poling method is that lower poling fields are achieved compared to other methods.

In addition, the spatial field distribution of the poling field can be an issue for

certain structures.

The second method of electric field poling, illustrated in Figure 6.2, is corona

poling [109]. A corona is defined as self-sustainable, non-disruptive electrical dis-

charge due to partial dielectric breakdown of a gas. To create the corona, a metallic

needle is positioned several centimeters from the film surface. A voltage of several

kilovolts is applied to the needle, while the silicon substrate is grounded. The large

field between the needle and the ground plane ionizes the molecules of the gaseous

environment and accelerates the ions towards the film surface. The ions build up

upon the film surface, thereby creating a very strong electric field across the film.

An advantage of this method is that stronger fields can be achieved across the

polymer films, leading to better poling efficiencies and better performing devices

[107]. Further, the method allows for large area poling across (e.g., 6 or 8 inch

wafers) with good uniformity. This is important for mass production of poled

electro-optic devices.

It is important to monitor and limit the corona current in the poling process

to avoid full breakdown of the environment. If this occurs, a violent discharge

damages the film and renders any further poling impossible. The environment in

which one practices the corona poling is of great importance. The environment is

important because poling in an oxygen rich environment results in infiltration of

the film with oxygen molecules that electrochemically damage the chromophores

and reduce the electro-optic effect. Therefore, it is of interest to perform the

poling in an inert gas environment, thereby purging the damaging oxygen. Shown

in Figure 6.3 are measurements of the current as a function of the tip-to-sample
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Figure 6.3: The corona current versus the tip-to-sample voltage in both nitrogen

and ambient environments, with and without the sample present.

voltage in a nitrogen and in an ambient environment. It is seen that the current

increases much more rapidly in the nitrogen environment. This results in stability

problems and in the increased likelihood of full dielectric breakdown.

An appropriate method of characterizing the efficiency of the poling of the

polymer films is required. Easily observable in the laboratory, second-harmonic

generation provides a rapid test of the poling quality. Using the output of a Nd-

YAG laser (λ = 1064 nm) as the fundamental beam impinging on the poled electro-

optic polymer film, the second-harmonic at 532 nm can be measured. Since the

second-harmonic intensity is proportional to the square of the nonlinear coefficient,

one can compare the measurement of the polymer film to that of a baseline material

such as lithium niobate.
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6.3 Prototype Polymer Electro-Optic Modulator Fab-

ricated by Soft-Stamp Replica Molding Using the

CLD-1 Chromophore

As discussed in the previous chapter, soft lithography, which utilizes a master

device to generate several soft molds each used to reproduce identical replicas,

has been extensively developed during the past ten years and has shown promise

for improving optical waveguide manufacturing throughput [111]. This simple

method has been applied in a number of fields to transfer and reproduce micro- or

nanometer patterns and features. The limiting feature size can be on the order of

1 nm [87], indicating that soft lithography is a competent technique for producing

high-quality polymer integrated optical devices.

Here we demonstrate a prototype Mach-Zehnder interferometer modulator fab-

ricated by soft lithography. For this prototype device, we employ electron beam

lithography to prepare the master device. This limits the overall device size to

the small field of view of an electron beam microscope. However, this method is

used to rapidly produce a prototype device. A brief description of the fabrication

process is given in the next subsection. For the full description, see Section 6.4.

6.3.1 Fabrication and Measurement

The structure of the device is shown in Figure 6.4. A guest-host material, CLD-

1/APC, is used as the electro-optically active polymeric material core. The dopant

molecule is CLD-1 [110], and the passive host polymer is amorphous polycarbonate

(APC). The total length of the active section of the interferometer, limited by the

electron beam lithography system, is restricted to 2 mm. We directly pattern the

master Mach-Zehnder interferometer in a 2 µm SU-8 film on a silicon substrate.

After developing and hard baking, this structure is used to make the PDMS mold.

A 200 nm thick Au layer was deposited onto the Cr coated (10nm) silicon substrate,

serving as the bottom electrode. A 5 µm layer of UV15 is spun onto the Au,

serving as the lower cladding. After one minute of ultraviolet exposure and post
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Figure 6.4: The structure of the polymeric Mach-Zehnder interferometer modula-

tor: (a) Top view, (b) Side view.

baking at 310K for 30 minutes, the UV15 cladding is fully cured. A drop of

CLD-1/APC guest-host polymer dissolved in trichloroethylene solution is placed

onto the UV15 cladding layer and stamped by the PDMS mold with pressure

2×105 Pa for 20 minutes to form the core waveguide. After the PDMS mold has

been released, OG-125 (3 µm) is spun on the molded device serving as the upper

cladding. After the OG-125 layer is cured by ultraviolet exposure, the entire

structure is heated near the glass-transition temperature of APC and poled by a

corona poling setup. The poling voltage is set to 8 kV and the distance between

the corona electrode and the sample is 2 cm. The temperature is increased to

∼ 140 ◦C, and both the temperature and poling voltage are kept constant for

30 minutes. The poling voltage is applied continuously while the temperature is

allowed to drop to room temperature, fixing the orientation of the chromophores

in the polymer waveguide. The concentration of the second-order nonlinear optical
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Figure 6.5: Halfwave voltage measurement from a 2 mm soft lithographic Mach-

Zehnder interferometer modulator device.

chromophore CLD-1 is optimized for the best electro-optic effect, according to the

investigation on the competition of intermolecular electrostatic and poling-field

interactions for guest-host polymer materials [112]. The measurement setup of the

Mach-Zehnder interferometer modulator device is similar to that of the microring

resonator, except the wavelength is fixed and a voltage is applied to one arm of

the modulator.

6.3.2 Results and Discussion

The intensity of the output signal is changed by the applied voltage as shown in

Figure 6.5. The figure shows that the halfwave voltage (Vπ) of our modulator is

about 80 V. This number is unacceptably high for practical applications; how-

ever, there are several reasons for this high value. The practical figure of merit

for electro-optic modulators is the halfwave voltage times the active length, VπL.

In our case this figure of merit is 0.16 Vm, corresponding to 8 V for a 2 cm

active section. The voltage will also be proportionally reduced by reducing the

overall film thickness. Optimized poling will further reduce Vπ. Finally, using a
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push-pull electrode configuration will result in another factor of two reduction in

Vπ. Accounting for these considerations, our results indicate that soft lithogra-

phy is suitable for making low-cost, high fabrication throughput polymeric optical

intensity modulators.

6.4 Low-Voltage Polymer Electro-Optic Modulator Fab-

ricated by Soft-Stamp Replica Molding Using AJL8

Chromophore

In the previous section, a prototype of a polymer electro-optic modulator was fab-

ricated using the rapid and simple procedure of soft-stamp replica molding. That

a working modulator can be produced by this fabrication method was demon-

strated. However, to truly demonstrate the usefulness of the method for devices

useful in the telecommunications industry, a lower operating voltage device must

be demonstrated. In what follows, a larger Mach-Zehnder interferometer modula-

tor fabricated by soft-stamp replica molding is demonstrated. To further improve

the properties of the device, a newly developed chromophore material – AJL8

shown in Figure 6.1 – is employed to enhance the low-voltage properties and the

temperature stability of the device.

6.4.1 Fabrication and Measurement

The first portion in the replica molding process (shown in Figure 6.6 (a-c)) is

the production of a mechanically flexible poly(dimethysiloxane) (PDMS) stamp.

Because of the low surface energy of the elastomer stamp material, the master

device to be replicated can be made of many commonly used resist, glass, or

semiconductor materials. Ultraviolet lithography of photoresist is frequently used

for patterning the master device. For smaller and higher resolution structures,

electron beam lithography can be used. Liquid PDMS is poured atop the master

structure and cured for two hours at 80 ◦C. The cured PDMS stamp is peeled from

the master device and diced to the required size. Since the curing and peeling of
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(a) (b) (c)

Figure 6.6: Fabrication of the PDMS stamp. A master MZI device (a) is patterned

by photolithography of SU-8. PDMS is poured on the master device (b), cured,

peeled, and diced (c).

(a) (b) (c)

Figure 6.7: Procedure for making the replica from the mold. A drop of electro-

optic core solution is placed on the appropriate substrate (a). The PDMS stamp

is depressed (b) until the core polymer is cured. The stamp is peeled to reveal the

high-fidelity replicated device (c).

the PDMS stamp does not alter the original master, the master can be used to

make additional stamps by repeating the preceding steps.

The replication procedure is shown in Figure 6.7 (a-c). Similar to the case of the

master device, the low surface adhesion and the chemical inertness of the PDMS

allow virtually any polymer material in many solvents to be used for the replica-

tion. A droplet of the core polymer solution tens of µL in volume is placed on an

appropriate substrate. The PDMS stamp is depressed on the solution/substrate,

while monitoring the force with a force gauge. The force applied should be suffi-

cient to ensure conformal contact between the stamp and the substrate; however,
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previous results suggest that the molded features are relatively immune to varia-

tions in pressure, so the actual force beyond what is required for conformal contact

is not relevant [19]. After the solvent of the core polymer solution has evaporated

through the PDMS, the stamp is removed from the substrate, revealing a high-

fidelity replica of the original master device.

The structure patterned by replica molding is a Mach-Zehnder interferometer

(MZI), shown schematically in Figure 6.7(c). A Y-junction equally divides the

input light between the two arms of the interferometer and another Y-junction

combines the light having traversed two different optical path lengths. Each Y-

junction consists of two S-shaped bends with bend radii of 1 mm, ensuring low

radiation loss. The interferometer arms are 2 cm in length. The MZI masters

are exposed by photolithography of SU-8 on a silicon substrate. The masters are

baked at 150 ◦C for one hour to smooth nanometer scale sidewall and surface

imperfections. Two complete MZI structures comprise each mold with a total

mold size of 3.8 × 1.8 cm.

The core polymer is composed of the aforementioned AJL8 chromophore as the

nonlinear optical dopant in amorphous polycarbonate (APC, Aldrich). APC has

been shown to have excellent thermal stability as a polymer host material [107].

The ratio of chromophore to passive polymer was 20 wt.% as in Reference [108].

A final solution concentration of 1.6 wt.% was achieved by dissolving the solid in

dibromomethane, yielding a solution with a moderate evaporation rate appropriate

for the replica molding process.

The cross-sectional view of the replica molded electro-optic waveguide struc-

ture is shown in Figure 6.8. The silicon substrate is coated with Cr and Au, serving

as the bottom electrode. A lower cladding layer is necessary to optically isolate

the guided light from the metal electrode. The challenge in choosing low refrac-

tive index polymer for the lower cladding is that it must be chemically resistant

to the core polymer solution solvent. There exists a similar difficulty with the

upper cladding polymer as its solvent must dissolve neither the core polymer nor

the lower cladding. A commercial ultraviolet-curable epoxy, WR-513 (Luvantix,
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Figure 6.8: Cross sectional view of the electro-optic waveguide structure. The core

electro-optic polymer is AJL8/APC and the upper and lower cladding materials

are low refractive index epoxy WR-513.

n=1.50), is spun to a thickness of 3.2 µm for the lower cladding. The film is cured

under an ultraviolet lamp for five minutes and baked at 100 ◦C for two hours to

lattice-harden the film, ensuring resistance to the solvent of the electro-optic poly-

mer solution. The MZI structure is molded as described above. The width and

thickness of the molded waveguide core is 4.5 µm and 2.6 µm, respectively. Due to

the process of molding with a soft stamp, a thin residue of electro-optic polymer

material is present; however, this residue can be controlled and maintained at a

tolerable level [19]. The structure is baked at 100 ◦C for two hours to remove any

remaining solvent. Another 3.2 µm thick WR-513 film is spun on as the upper

cladding. Finally, 100 nm of Au is evaporated over one arm of the MZI, serving

as the upper electrode.

The randomly oriented chromophores dispersed in the APC matrix must be

aligned to result in a collective electro-optic effect. By heating the polymer film

above its glassy temperature (Tg '145 ◦C for AJL8/APC) while applying a strong

electric field, the dipolar chromophores are aligned. We employ the corona poling

method [109] with a needle-to-sample separation of 2 cm. The needle tip is biased
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Figure 6.9: Measured modulator output as a function of applied voltage. An

applied voltage of Vπ=8.4 V renders the input 1600 nm light null.

to approximately 5.6 kV. As the sample is heated to 145 ◦C, the corona current is

monitored by measuring the voltage drop across a 10 MΩ resistor and is limited

to 2 µA in an ambient air environment. The sample is poled for approximately

45 minutes, and then cooled while keeping the voltage applied. At ∼40 ◦C, the

voltage is turned off and the sample is removed.

To prepare for measurement, the substrate is cleaved and the waveguide end-

facets are left unpolished. Laser light at 1600 nm wavelength is fed through a

polarizer and input into the MZI through a tapered fiber. The output signal is

collected using another fiber and is measured using a photodetector. The voltage

is applied to the MZI using either a voltage source or a function generator. The

entire setup is controlled by GPIB.
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6.4.2 Results and Discussion

The measurement results are shown in Figure 6.9. Voltages ranging from -40

V to +40 V are sequentially applied in 0.25 V increments while monitoring the

photodetector output signal. The measurement was also confirmed using a 1-

kHz triangle wave and an oscilloscope. With no applied voltage, the output is

approximately half its maximum, indicating that the two arms of the interferometer

are of slightly different length. The half-wave voltage Vπ, defined as the voltage

required to switch the output from full-on to full-off, is found to be 8.4 V. This

value is within a factor of two of the value that commercial devices exhibit. Several

means can be employed to further reduce this value. First, thinning of the cladding

layers would proportionally reduce Vπ. Second, the voltage was applied to only one

arm of the MZI – not to both arms in a “push-pull” fashion – which would result

in a factor of two reduction in Vπ. Finally, optimization of the poling efficiency is

necessary to further reduce Vπ. The total insertion loss was not measured since

the waveguide end-facets were left unpolished and were not mode-matched to the

input/output fibers.

While the halfwave voltage is indicative of the polymer nonlinearity and the

electrode configuration, the on/off extinction ratio of the modulator signifies the

quality and precision of the fabrication. In the MZI structure, light interferes after

having traveled different optical path lengths and the degree of destructive inter-

ference depends on the quality of both the Y-junction splitter and combiner, and

on any differential loss in the arms of the MZI. The extinction ratios of the nulls

in the output shown in Figure 6.9 are better than 19 dB, similar to recent reports

using traditional electro-optic polymer fabrication techniques [68]. The deep ex-

tinction of the nulls for the replica molded MZI suggests that the Y-junctions are

of precise 3-dB splitting ratio and that there is very little differential loss in the

interferometer arms. This demonstrates the accuracy of the replication process

enabling high-resolution features of the Y-branch junction to be reproduced in the

replica. The achieved low differential loss indicates that the replica molding pro-

cess produces a low number of waveguide defects and good waveguide uniformity
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over many square centimeters.

In summary, a Mach-Zehnder electro-optic polymer modulator was fabricated

by soft-stamp replica molding. The core polymer incorporated state-of-the-art

nonlinear optical chromophores that are highly nonlinear and show good thermal-

and photo-stability. The resultant device was measured with 1600 nm incident

light to have a halfwave voltage of 8.4 V and an extinction ratio better than 19

dB. These results establish that the replica molding process has the potential

to meet the demanding requirements of high-resolution necessary for inexpensive

mass production of electro-optic polymer modulators.



135

Chapter 7

Conclusions

7.1 Synopsis

In this thesis, the properties of polymers as differentiated from more traditional

integrated optics materials have been described, and the manipulation of these

properties have led to developments that could not be achieved as quickly, as

easily, or at all in semiconductor or other inorganic materials. In what follows, a

brief synopsis of the highlights of this thesis are given.

Because of the low material dispersion inherent to polymer optical materials,

there was an interest in developing waveguide couplers that operate over wide

wavelength ranges. Presented in Chapter 2 was a novel analysis tool based on the

three-dimensional geometrical representation of the 2-by-2 coupled mode theory.

The analysis of directional, adiabatic, and non-adiabatic mode evolution couplers

evinced the utility of the geometrical representation. Further, the geometrical rep-

resentation was applied as a design tool, allowing for the design of wide bandwidth

non-adiabatic mode evolution couplers. These are couplers that exhibit perfor-

mance similar to adiabatic couplers, but are of much smaller and more reasonable

physical extent. The theoretical expectations from the geometrical representation

were tested using beam propagation method simulations and excellent results were

observed. The resultant design exhibited a flat 3-dB splitting ratio over operating

wavelengths from 1300 nm to 1600 nm and little deviation in splitting ratio when
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the waveguide widths were scaled from 0.8 to 1.2 times their intended widths. This

type of wavelength-invariant and fabrication-error tolerant construction is of great

utility for couplers in integrated optical circuits to be effectively used over a wide

range of communications wavelengths.

Recent advances in fabrication methods for integrated optical devices have

allowed the manufacture of devices that require extremely high precision. Pas-

sive polymer microring resonators were presented as examples of devices requiring

high precision, whose fabrication has only become possible in recent years using,

for example, electron beam lithography. Microring resonators are important as

add/drop filters, modulators, switches, chemical or biological sensors, dispersion

compensators and lasers. In Chapter 3, the general theory of microring resonators

was examined, fleshing out the useful attributes and design rules. Using the high

precision of electron beam lithography and the rapid prototyping ability of di-

rect write polymer resists, polymer microring resonators were fabricated in SU-8

epoxy and optically characterized. The unique features of polymers allowed the

fabrication of thin, flexible, all-polymer freestanding films containing many mi-

croring resonator optical filters. The measurements of these devices proved that

freestanding devices performed comparably to similar devices with rigid crystalline

substrates. This type of flexible all-polymer film may find use by adhesion of films

of microoptical devices to non-flat surfaces, or to different functional structures

such as electronic drive circuitry. Further, these films can be rolled up or folded

for storage and unrolled for future deployment. The rapid prototyping ability of

SU-8 was also applied to the fabrication of novel microring resonator-based in-

line reflectors. These devices are a unique alternative to inline reflectors such as

dielectric mirrors or Bragg-grating reflectors.

Several of the individual microring resonators can be chained together to form

a new class of waveguide termed the coupled resonator optical waveguide (CROW)

– the subject of Chapter 4. The interest in these devices is primarily due to the

means propagation; a portion of the photons in each microring essentially hops

from one resonator to the adjacent resonator, and thus, an overall transmission
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of the light down the chain is achieved. Comparing to a conventional waveguide

of the same physical length, this can lead to a slower propagation through the

CROW waveguide, with the group velocity determined by the coupling coefficient

between the individual rings, enabling use as optical delay lines or pulse storage

units. By virtue of the tailorable wavelength response, CROWs are also of interest

as dispersion compensators and high-order optical filters. The two theoretical

frameworks used to describe and design CROWs – the tight-binding method and

the matrix method – were presented. To demonstrate the ability to fabricate

and effectively characterize CROW devices in polymer, a CROW-Mach-Zehnder

interferometer was demonstrated in SU-8 polymer. Using the matrix analysis

method, very good agreement was observed between the measured interferometric

response and the prediction of the matrix method. This agreement is particularly

impressive because in the fitting, a single value of the coupling and a single value

of the ring radius were assumed, thus demonstrating the extremely high precision

of the direct electron beam fabrication. These results point toward the use of

polymers for optical delay lines comprising many individual microrings, fabricated

by direct electron beam patterning.

Although a variety of high performance polymer optical devices have been

previously demonstrated by other research groups with impressive results, these

devices almost universally were fabricated using traditional semiconductor fab-

rication technology. Addressed in Chapter 5 is the manipulation of the unique

properties of optical polymer materials to enable a new means of fabrication. The

novel fabrication method is based on the use of a soft PDMS rubber mold to form

polymer waveguide devices. High-fidelity replicas of the original master devices

are achievable using this molding method. Polymer materials can be patterned by

the molding method because, unlike semiconductor or most inorganic optical ma-

terials, polymers can be dissolved in solution that can be molded into the desired

shape while being cured. Because of the low surface energy of PDMS, the master

devices used to make the mold can be fabricated in virtually any material and

by virtually any means. Many PDMS molds can be made from each master, and
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each mold can be used many times to make the replicas. This economy of scales

furthers the cost advantages of polymers for industrial applications. To demon-

strate the ability of the method for high-fidelity replication, a microring resonator

was replicated and the optical response of the replica was compared to that of

the original master device, both being fabricated in SU-8. Excellent agreement of

the optical responses demonstrated that the soft-stamp replica molding fabrication

method is capable of device fabrication with precision necessary for high quality

polymer integrated optical components. A drawback of the use of soft PDMS

as the mold material is the ubiquitous presence of a background residue of thin

polymer material. It was shown that the thickness of the residue can be reduced

to acceptable levels (as determined by numerical simulations) by careful choice of

the solution concentration. Further, the residue was thinnest near the waveguides,

thereby minimizing the deleterious effects of its presence. Finally, the replica mold-

ing technique can be sequentially repeated to form multilayer, three-dimensional

integrated optical devices with each layer being separated by a polymer cladding

layer. A multilayer device with two microring resonators on separate layers was

fabricated and characterized to demonstrate this function of the replica molding

technique.

Among the most promising applications of polymers for telecommunications-

industry applications are electro-optic polymer modulators exhibiting exception-

ally high operating bandwidth and low switching voltages. Demonstrated in Chap-

ter 6 is the effort to further prove the utility of the replica molding technique

for industry-grade optical devices by applying the method to the construction of

electro-optic polymer modulators. Polymers are generally not natively electro-

optic, so passive polymers are doped with chromophore molecules chemically en-

gineered to exhibit extremely high nonlinearities. These dopant molecules must

be aligned by high-voltage poling of the polymer films, resulting in a collective

electro-optic effect. For a first proof-of-concept experiment, a short Mach-Zehnder

modulator was fabricated by replication of a master device patterned by electron

beam lithography. The properties of this device predicted good performance for a
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full size Mach-Zehnder. To this end, a full size Mach-Zehnder modulator was fab-

ricated by a modified replica molding technique, allowing molding over large areas

of several square centimeters. Employing newly developed AJL8 chromophores,

the resulting modulator exhibited a switching voltage of 8.4 V at 1600 nm with

single arm modulation. Dual arm modulation in the push-pull format would re-

sult in a switching voltage of approximately 4 V, and further improvement of the

poling would result in even lower values. The extinction ratio of the modulator

was measured to be better than 19 dB, demonstrating high quality fabrication of

the Y-junctions and low differential loss in the arms of the modulator. Together

with the low switching voltages, these results prove the usefulness of the replica

molding technique for the manufacture of high performance polymer modulators,

with cost and time savings for both set up and fabrication.

7.2 Outlook

Polymer materials will be deployed in industrial telecommunications applications

in the near future. There are simply too many useful attributes of the material

for it not to be implemented. For instance, the low material costs compared to

semiconductor or other crystalline materials make polymers especially attractive

for industrial applications. The versatility and simplicity of the fabrication meth-

ods are an enticing attribute, further reducing manufacturing costs and enabling

device architectures not possible with crystalline materials. Further, polymers can

be doped with various functional molecules to exhibit, for instance, gain or the

electro-optic effect. The electro-optic dopants can be designed and synthesized to

have extremely high nonlinearities, much larger than those of crystalline materials

such as lithium niobate.

Despite the attractive properties of polymer materials, there exists skepticism

among photonic engineers due to the difficulties not overcome in the nearly two

decades of research on optical polymers. Among the predominant concerns are

the relatively high material loss, the temperature dependance of the refractive
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index, and the long term stability of both the passive and doped materials. These

limitations have prevented most polymer-based devices from passing Telcordia

standards tests, a necessity for the serious consideration of polymers for various

industrial applications.

The issue of loss in polymers has recently been of particular research interest

resulting in several lower loss commercial materials. Since the loss in polymer

waveguides is due to the absorption of molecular resonances, lower loss is achieved

by substituting hydrogen atoms with fluorine atoms and hence, moving the ab-

sorption resonances outside the communications bands. This can result in poly-

mer films with material losses on the order of 0.1 dB/cm. Addressing waveguide

sidewall scattering loss, the plastic nature of polymers allows for post fabrication

smoothing of defects by heating the materials to near the glass transition temper-

ature. Finally, the refractive index of optical polymers is similar to that of silica,

providing for potentially lower transition loss between the polymer waveguide de-

vice and the pigtailed fiber.

While it is true and unavoidable that polymers do not stand up well to very

high temperatures, many are materially stable at sustained temperatures of 85 ◦C

and humidity of 85 %. This stability includes electro-optic guest-host polymers

that have been shown to retain approximately 80 % of the original nonlinearity

after 500 hours at 85 ◦C. Clever engineering and future material advances can fur-

ther reduce degradation with temperature. For instance, crosslinkable polymers

incorporating electro-optic chromophores promise much better long term and en-

vironmental stability. In addition, hermetic packaging of polymer devices results

in greatly improved long term stability. As for the temperature sensitivity of the

refractive index, simple trimming circuits can be added to alleviate any response

changes from the variation in refractive index.

The foremost issues preventing deployment of polymers in industrial settings

are based primarily on longstanding and fundamental material shortcomings. There

is clearly a need for the chemistry and materials community to design and synthe-

size new and better materials to address these issues. This rapid advance appears
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to have begun in earnest, with new low-loss materials and more stable electro-optic

polymers demonstrating improved performance and becoming more readily avail-

able with each year. In addition to the properties that make polymer materials

advantageous in replacing semiconductor or other crystalline materials, there is a

need to consider applications that are not possible with other materials. On this

level, there is a need for close collaboration between the chemists and optical engi-

neers. An application that necessitates polymer materials and is impossible with

traditional optical materials may serve as a further catalyst towards future research

on newer, better performing, and more stable materials with unique features.
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Appendix A

Beam Propagation Method

The beam propagation method (BPM) is an especially valuable design and analy-

sis tool for integrated optics. It is simple to understand and execute. As the name

suggests, BPM simulates the propagation of an initial beam through some refrac-

tive index profile, prescribed in both cross-section and propagation direction. The

method is especially useful for designing optical couplers and waveguide tapers. In

what follows, the original formulation of Feit and Fleck [113] is followed closely. In

brief, the initial electro-magnetic field is propagated through the waveguide struc-

ture approximated by consecutive discretized sections of free space propagation

and lensing. The power can be plotted at each cross-section, giving a pictorial

representation of the power flow in the device.

A.1 Conceptual Underpinnings

Light within a waveguide is described by the transverse electric field E(ω, x, y, z)

that is a solution to the scalar Helmholtz equation

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

ω2

c2
n2(ω, x, y)

)
E(ω, x, y, z) = 0 (A.1)

where ω is the radian frequency of the light, and the refractive index n(ω, x, y) is

assumed to be independent of z.
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At z = 4z, (A.1) can be written in terms of the electric field at z = 0 using

E(x, y,4z) = exp


±i4z

(
52
⊥ +

ω2

c2
n2

) 1
2


 E(x, y, 0) (A.2)

where 52
⊥ = ∂2

∂x2 + ∂2

∂y2 . The argument of the exponential in (A.2) is rewritten as

(
52
⊥ +

ω2

c2
n2

) 1
2

=
52
⊥(

52
⊥ + ω2

c2
n2

) 1
2 + ω

c n

+
ω

c
n (A.3)

The refractive index n in the first term on the right-hand-side of (A.3) is replaced

by a reference value, n0, typically taken to be the refractive index of the waveguide

cladding. This approximation is valid for small variations in n(x, y) and thus the

BPM method must be used with care for high-index contrast waveguide systems.

(A.3) then becomes

(
52
⊥ +

ω2

c2
n2

) 1
2 ∼= 52

⊥(52
⊥ + k2

) 1
2 + k

+ k + k

[
n

n0
− 1

]
(A.4)

where k = ω
c n0.

The time dependance of the solution appears in the field as E(ω, x, y, z) =

E(x, y, z) exp(iωt) and is assumed in what follows. The solution is taken to be

that of a single wave propagating in the +z direction, of the form E(x, y, z) =

ε(x, y, z) exp(−ikz). Inserting this solution into (A.2), taking the negative sign

and using (A.4), yields

ε(x, y,4z) = exp


−i4z


 52

⊥(52
⊥ + k2

) 1
2 + k

+ χ(x, y)





 ε(x, y, 0) (A.5)

where χ(x, y) = k
(

n
n0
− 1

)
.
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We rewrite (A.5) in the split-symmetrized form

ε(x, y,4z) = exp

[
− i4z

2

(
52
⊥

(52
⊥+k2)

1
2 +k

)]
exp(−i4zχ(x, y))

× exp

[
− i4z

2

(
52
⊥

(52
⊥+k2)

1
2 +k

)]
ε(x, y, 0)

+O(4z)3

(A.6)

where the error O(4z)3 is due to the noncommutation of 52
⊥ and χ(x, y).

To glean more physical insight into the meaning of (A.6), we view the operators

in the following way. The term

exp


−i4z


 52

⊥(52
⊥ + k2

) 1
2 + k





 ε(x, y, 0) (A.7)

represents a solution to the Helmholtz equation, with the initial condition E(x, y, 0),

in a homogeneous medium with refractive index n0. The operator

exp(−i4zχ(x, y)) (A.8)

corresponds to transmission of a field ε(x, y, 0) through a lens, imposing a phase

φ(x, y) = 4zχ(x, y). This term incorporates the information about the waveguide

cross-section. Thus the field is built up by successive operations. The initial field

is transported through a homogeneous medium for a distance 4z
2 , then the field

incurs the phase of a lens, then it propagates in homogeneous space a distance
4z
2 until the next lens, and the procedure repeats for as many partitions as is

programmed.
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A.2 Practical Application

The first step in the practical application of BPM is to decompose ε(x, y, z) into

its Fourier series

ε(x, y, z) =
M/2∑

m=−M/2+1

N/2∑

n=−N/2+1

εmn(z) exp

(
2πimx

Lx
+

2πimy

Ly

)
(A.9)

where Lx and Ly are the computational grid lengths in the x and y directions.

The propagation of light through a homogeneous medium, with refractive index

n0, over a distance 4z, can be calculated from the Fourier coefficients of the initial

field by

εmn(4z) = exp


i4z


 k2

x + k2
y√

−k2
x − k2

y + k2 + k





 (A.10)

where kx and ky are the transverse wavenumbers given by kx = (2πm)/Lx and

ky = (2πn)/Ly, and as before k = (2π/λ)n0. The lensing step that follows the

propagation step is

ε(x, y)′ = exp(−i4zχ)ε(x, y,4z) (A.11)

The fast Fourier transform (FFT) algorithm is a useful macro in many pro-

gramming environments enabling fast and easy development of the BPM algorithm.

One must begin with an initial field, which could be an approximate guess of the

waveguide mode or of the excitation. The FFT of this field is multiplied by the

homogeneous space propagation operator, as in (A.10). The resulting field is then

inverse Fourier transformed (IFFT), and multiplied by the lensing operator as in

(A.11). The preceding two steps are then repeated in a loop for each step 4z,

until the extent of the computational grid is reached. The saved fields can then be

displayed at any cross-section of the computational grid.

Due to aliasing problems commonly associated with the FFT procedure, one

must include some sort of boundary conditions. By far the most simple is to employ

slightly absorbing zones near the transverse edges of the computational field. This

is done by adding a small (ca. 1%) imaginary component to the refractive index
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Figure A.1: 3-dimensional BPM simulation of a straight waveguide side-coupled

to a microring resonator.

in the selected regions.

As an example, shown in Figure A.1 is a 3-dimensional BPM simulation of a

straight waveguide side-coupled to a microring resonator with a 100 µm radius.

The calculation window is 125 µm long, 20 µm wide, and 7.5 µm thick. The

waveguides are 1.5 µm square, with core refractive index 1.6 and cladding refractive

index 1.5. The gap between the waveguide and the ring is 650 nm. Light, at 1550

nm, is input to the straight waveguide on the left side of the calculation window.

The field propagates as a waveguide mode until reaching the coupling region, at

which point a portion of the field couples into the resonator. The coupling ratio

of a given structure can be estimated in this manner.
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Appendix B

Finite Difference Mode Solver

For optical elements such as the ring resonators described in earlier chapters, it

is important to carefully design the structures such that only a single mode is

guided within the waveguide core. The semivectorial finite-difference method de-

veloped by Stern [114] enables the calculation of the mode for a given waveguide

cross-section. This method is clearly outlined in Reference [115]. In brief, the

electro-magnetic equations describing the mode of a waveguide are solved by dis-

cretizing the cross-section. The resulting solutions to an eigenvalue equation yield

the modes corresponding to the propagation constant eigenvalues. For eigenvec-

tors with propagation constants larger than the propagation constant for the bulk

cladding, the modes are guided. This can be confirmed graphically by plotting the

mode profiles.

B.1 Conceptual Underpinnings

As with any finite difference algorithm, the key to the method is the approximation

that derivatives of a function can be replaced, for example, by a difference quotient

df(x0)
dx

=
f(x0 − h)− f(x0 + h)

2h
. (B.1)

Employing the difference quotients, the equations that we are to solve are the
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semivectorial wave equations. Beginning with the vectorial wave equation

52E +5
(5ε(r)

r̂
·E

)
+ k2

0ε(r)E = 0 (B.2)

we first make the identification that dε(r)
dz = 0, since we are solving for a waveguide

cross-section in the x-y plane. Rewriting the terms of (B.2) and substituting
∂
∂z = −iβ, the vectorial wave equations become

∂2Ex

∂x2
+

∂

∂x

(
1

ε(r)
∂ε(r)
∂x

Ex

)
+

∂2Ex

∂y2
+

(
k2

0ε(r)− β2
)

Ex +
∂

∂x

(
1

ε(r)
∂ε(r)
∂y

Ey

)
= 0

(B.3)

for the x component, and

∂2Ey

∂x2
+

∂

∂y

(
1

ε(r)
∂ε(r)
∂y

Ey

)
+

∂2Ey

∂y2
+

(
k2

0ε(r)− β2
)

Ey +
∂

∂y

(
1

ε(r)
∂ε(r)
∂x

Ex

)
= 0

(B.4)

for the y component.

To attain the semivectorial wave equations from the above, the terms rep-

resenting the interactions between the x components and the y components are

considered to be small in comparison with the other terms in (B.3) and (B.4).

Therefore the terms

∂

∂x

(
1

ε(r)
∂ε(r)
∂y

Ey

)
and

∂

∂y

(
1

ε(r)
∂ε(r)
∂x

Ex

)
(B.5)

are set to zero. The problem is now reduced to solving for a quasi-TE mode

involving Ex or a quasi-TM mode for Ey.

B.2 Practical Application

We consider only the quasi-TE mode since we can solve for the quasi-TM mode

by simply rotating space by 90 degrees. The basic semivectorial wave equation to
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be discretized is

∂2Ex

∂x2
+

∂

∂x

(
1

ε(r)
∂ε(r)
∂x

Ex

)
+

∂2Ex

∂y2
+

(
k2

0ε(r)− β2
)

Ex = 0 (B.6)

Evaluation of the terms in (B.6) in terms of discretized quantities is achieved by

formulating Taylor series expansions around nodes (x, y) of the field and dielec-

tric constant. This process, found in Reference [115], is rather lengthy and its

presentation here would be superfluous.

On a grid where the indices p and q give the node, the necessary identities are

Ep,q = E(xp, yq) (B.7)

n = yq − yq−1 e = xp+1 − xp

s = yq + 1− yq w = xp − xp−1

(B.8)

The various n, s, e, and w are the nodal spacings. The finite difference represen-

tation of (B.6) is

αwEp−1,q+αeEp+1,q+αnEp,q−1+αsEp,q+1+(αx+αy)Ep,q+
[
k2

0ε(p, q)− β2
]
Ep,q = 0

(B.9)

where
αw = 2

w(e+w)
2ε(p−1,q)

ε(p,q)+ε(p−1,q)

αe = 2
e(e+w)

2ε(p+1,q)
ε(p,q)+ε(p+1,q)

αn = 2
n(n+s)

αs = 2
s(n+s)

αx = − 4
ew + αe + αw

αy = − 2
ns

(B.10)

For programming, (B.9) is recast as an eigenvalue equation in the form

[A]{φ} = β2{φ} (B.11)
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where β2 is an eigenvalue, {φ} is the eigenvector represented by

{φ} =
(

φ1 φ2 φ3 . . . φM

)
(B.12)

and [A] is the matrix populated by the various coefficients in (B.9). The number

of eigenvectors is M = Mx ×My and [A] is a M ×M matrix.

Since the calculation grid is not infinite, some sort of artificial boundary con-

ditions need to be applied. There are three types of boundary conditions applied

to finite difference calculations. The first and simplest is the Dirichlet boundary

condition, represented by

φoutside = 0 (B.13)

for nodes outside the calculation window. This forces the field to be zero at the

edges of the analysis grid. The Neumann boundary condition requires that the field

just outside the calculation window is equal to the field just inside the window.

This is represented by

φoutside = φboundary (B.14)

The third boundary condition is the analytical boundary condition, for which

it is assumed that the field exponentially decays outside the calculation window

according to

φoutside =
(

e
−k0

√
|n2

eff
−ε(p,q)|∆

)
φboundary (B.15)

where ∆ is the discretization width at the boundary.

As programmed in Matlab, the eigenvalues and eigenvectors of [A] can be

calculated with the function eigs. Several of the largest eigenvalues are found,

giving the several largest effective mode indices. If these effective indices are larger

than the refractive index of the bulk cladding material, the mode is guided. The

corresponding eigenvectors are plotted, giving a pictorial representation of the first

few mode profiles.

An example result is shown in Figure B.1. The waveguide dimensions are 2 µm

wide, 2 µm thick at the waveguide core, and with a 1 µm core material background
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Figure B.1: Outline of waveguide cross-section, with power contours of the first

order mode as calculated for a quasi-TE mode using the semivectorial finite dif-

ference method.

elsewhere. The first-order mode of a rib waveguide is displayed as a contour plot

of the power in the waveguide cross-section. The core refractive index is 1.55 and

the cladding 1.5. The effective index of this first order mode is 1.515 and no other

modes are guided.
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