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- SUMMARY -

Three possible definitions of orthogonality of elements
of normed linear spaces are studied, For abstract Euclidean
spaces, each is equivalent to the usual requirement that the
inner product be zero, These definitions are never vacuous,
since for each definition and any elements x and y of a
normed linear space there is at least one number a for which
Xl ax4y,

It is shown that neither Pythagorean nor isosceles or-
thogonality can be either homogeneous or additive in a normed
linear space unless that space is abstract Euclidean, although
both of these types of orthogonality are symmetric, If x Ly
in the isosceles sense, then |x+kyll>%|xll for all k. This
and other similar inequalities give a comparison of isosceles
and spherical orthogonality, Spherical orthogonality is homo-
geneous in any normed linear space, but is neither additive nor
symmetric in general, It can be additive and symmetric for a
space of three or more dimensions only if the space is abstract
Euclidean, For two-dimensional spaces, an inner product can be
gotten ffom additivity and a strengthened form of symmetry,

expressed in terms of the differential of the norm or of the

limits, f£,(x3y), of \k‘*hyﬁ'“x“ as h-—>20,
Because of the lack of symmetry of spherical orthogonality,
the uniqueness of the number b for which bx+yLlx (left-

uniqueness) does not imply that of the number a for which



xLlaxty (right-uniqueness)., This number b is unique if and
only if the space is strictly normed, and can have any value
for which [bx+yll is minimum, Thé number a is unique if
and only if spherical orthogonality is additive, or if and
only if the norm is differentiable at all non-zero points,
and can have any value satisfying £, (x;y)<<-alxl|<f_(x;¥).
There are many connections between the theories of
spherical orthogonality, of linear functionals, and of max-
imal linear subsets and supporting and tangent hyperplanes,
For example, for a linear functional £, |£(x)| = |ellxll if
and only if x4 h for all h satisfying f(h):i 0, Tor any
element x there is a maximal linear subset H with =xLH,
Right- and left-uniqueness are expressed in terms of conditions
on the elements at which a linear functional takes on its max-
irmum in the unit sphere, and of like conditions on the points
of contact of supporting hyperplanes of the unit sphere, If
the norm of a Banach space is differentiable at non-zero points
and some additional assumption such as weak compactness,
regularity, or uniform convexity is made, then it is possiblé
to give a general form for all linear functionals in terms of
this differential or of spherical orthogonality. Then for a
linear functional f +there is an element x such that

(y) = --a"xll8 for all y, where x._LaxXty,
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- NOTATION -

Closure of the set U (see pg. 1).

The element x 1is a member of the set U,

The set U is contained in the set V,

The set of all elements belonging to either U or V;
the sum of U and V.

The set of ail elements belonging to both U and V;
the intersection of U and V,

Sum of the elements X and ¥y (sée Definitions lel=1l.6),

The set of all elements X+u, where ueU,

The set of all elements u+v, where ueU and veV,

Product of the number a and element x (see Def, 1l.4),

The set of all elements of the form au, where u U,

Norm of the element x (see Def, 1.6),

Modulus of the linear functional f (see pg. 8).

The conjugate space of T (see pg. 8),

Inner product of x and y (see Def, 1l.9),

The element x is orthogonal to y. This may be in the
sense of Definition 2,1, 2.2, or 2,3, or of Theorem 3.1,
depending on the section in which it is used,

The element x 1is orthogonal to every element of U,

The differential of the norm at x with increment Yy,

l_)iné jﬁ@%’—'—'—"}’—'—, unless specified otherwise (as in Def,

X
7.3 and 10,2), See Theorem 7.4 and Corollary 7.4.

%3)120 })x+h§%ll- 2] (see Corollary 6.6 and pg. 101),

1im JEth Il = UX”.
A->—0 h
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l. TOPOLOGICAL SPACES

The topological spaces used in this thesis will be normed
linear spaces, Banach spaces, and abstract Euclidean spaces,
However, these spaces are special cases of more general topolog-

ical spaces which will be discussed first.

Definition l.1. A Hausdorff topological spacel is a set of

elenents T such that to each element’ x of T there are

associated subseté of T, called neighborhoods of x, which

satisfy the conditions:

(). Each element belongs to all of its neighborhoods.

(2). For each of two distinct elements there exists a

neighborhood which does not contain the other.

(3)e If two neighborhoods U and V each contain an element

X, then there exists a neighborhood of x contained in the

interséction of U and V.
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A subéet U/ of a Hausdorff topological space is said to
be open if every element of U .has a neighborhood contained in

U. An element x is a limit point of a set U if every neigh-

borhood of x contains an element of U (other than x). The
closure,‘ﬁ, of U is the sum of U and all of its limit points.

A closed set i3 a set which is equal to its closure, Also:2

1., Hausdorff (III), PP. 228=229; the space satisfies postulates

(4), (B), (C), (5).
2. See Pontrjagin (VII), PpPe. 26=30,
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(a)e If U contains a finite number of elements, then U = U.
(b)e If U and V are any sets, then UUV S TUV,
(¢c). For any set U, U =70U. Thus T is a closed set,
(da). The'complementl of an open set is closed, and the
complement of a c¢losed set is open.
| (e)e The sum of a finite number of closed sets is closed,
and the intersection of a finite number of open sets is open.,
(f)e The sum of any number of open sets is open, and the
intersection of any number of closed sets is closed,
A Hausdorff space consists only of a set of elements and
their neighborhoods, there being no operation between elements
defined, Such an operation can be introduced by requiring that

the set be an abstract group.

Definition l.2. A set G of elements is called a grcmp2 if

there is an 6;oeration in G4 which associates with each pair of

elements X, y @& third element (which will be called x+y) and

this operation satisfies the conditions:

(1)e x+(y+2z) = (x+y)+2z for all x, y and 2z,

(2)s There exists a zero element such that x40 = x for all x,

(3)e For each x there is an inverse element =x such

that x+(-x) = 0,

3

Definition l.3. A set G 1is called a topological group” if

it is an abstract group and a Hausdorff té@logical space and the

group operations are continuous. That is:

1., The complement of a set consists af all elements not in the set,
2. Pontrjagin (VII), pg. 3.
3., Pontrjagin (VII), pp. 52-53.
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(1) If x and y are elements of G, then for any

neighborhood W of x+y there exist neighborhoods U and

V of x and y such that U+V<W,

(2)e If x is an element of G, then for any neighborhood

V of =x  there exists a neighborhood U of x such that U<V,

A topological group is called a topological Abelian group

if its abstract group is Abelianl. Some of the elementary
properties of a topological group are:2

(a)e If F is a closed set, U an open set, P an arbitrary
set, and x any element of the space, then x+F, F+x, and -F
are closed sets, while U+P, P+U, and -U are open sets,

(b)e A& topological group is homogeneous; that is, it is
sufficient to verify its local properties for a single element
only., For example, if the zero element has a neighborhood con-
talning only zero, then every element x has a neighborhood
containing the single element x.

(c)e A topological group is regular; that is, for any
neighborhood U of an element x there exists a neighborhood
V of x such that VcU.

In addition to the group operation between elements of a
topological group, it will be useful to have multiplication by
real numbers, Because of the group operation, multiplication of
elements of a topological group by integers is defined, The
multiplication by real numbers will be introduced by requiring

that the space be a linear (vector) space,

l. A group is Abelian if the group operation is commutative; i.e.
if x4y = y+x for all elements x and vy.
2, Pontrjagin (VIIL), pp. 52-53.
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Definition l.4. A set L is called a linear (vector) ¢ver K

space if it is ‘an Abelian group and an operation (called multie

plicationl between réal numbers and elements of I is defined

and satisfies the conditions:

.(1). a(x+x):ax +ay for all numbers a and elements Xx
and y,

(2)e (a+Db)x=ax +bx,

(3). a(bx)= (ab)x,

(b)e lex=x.

The identity (or zero) of the Abelian group of a linear
space is 0°x, since X4 0ex=1le¢x+ Qex=x Dby (2) and (4) of
Definition l.4, From the theory of groups the element Oe¢x must
be the same for all x,l although this can be shown directly. For
lex+ley = leX+1ley+0ex = lexX+ley+0ey by (2) and the commuta=-
tivity of addition., By subtracting the inverses of lex and
ley, it follows that Oex=0ey, Also, the inverse of x is
(=1)x, since X+ (=1l)x=1lex+(-1)x=0ex by (2) and (4).
Furthermore:

(a)e If ax=0, either x=0 or a =0, For if ax=0, and

a# 0, then %(ax)=0:=x by (3) and (4).
(b)e If ax=ay and a0, then x=y. For if ax=ay, then

ax+a(=-y)=0, since ay+a(-y)=0 by (1).' From (1), it also
follows that a(x-y)=0 and hence from (a) that =x=y.

(e)e If ax=Dbx and x#0, them a=b, For if ax=bx,

then (a=-b)x=0 and x=0 by (a) if a#b,

1. Pontrjagim (VIL), P8e L.
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Definition l.5. A set I is called a linear topological

space if it is a linear space and a Hausdorff topological space

and the operations aex and x4y are continuous simultaneously

in a and x, and in x and y, respectively,

Since a linear topological space is a topological Abelian
group, it possesses all the properties discussed below Definitions
l.,1 and 1.3, The following will also be useful:

(a)e If U is an open set in a linear topological space,

and a>*0, then aU is an open set. For suppose y 1is an

element of aU, Then y=ax, for some x in TU. Hence U
contains %(y)::x, and from the continuity of the product at
(%:-,y) there exists a meighborhood V of y such that IV<T.
Then VecaU, and since y was arbitrary it follows that aU is

open. ,
(b)e If U is any neighborhood of the zero of a linear

topological spacef‘there is an open set V such that aVeVcU
fora“lals;l. I& fol{gys from the continuity of the product ax
Vﬁ""U

at (0,3) that there 1s a p081t1ve number 5 and a nelghborhood

W of zero such that aWk:U if Ja)J<§ e+ But by (a), aw is
open if a#0. Since thé sum of open sets is open,l the. sum V
of all sets aW for which la/< S is open, Clearly avceV if
jaj <1, and VU, becanar bl s pW U,

By introducing the following generalization of absolute
value in a linear (vector) space, one obtains a particular type

of linear topological space--a normed linear space,.

1, See (f) following Definition l.l.
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Definition 1.6, A set T is a normed linear space if it

is a linear spaée and to each element x of T there corresponds

a real number |x|], the norm of x, satisfyihg the conditions:

(1)e x>0 if x=0,

(2)e  lx+yil=< =i+ [yl

(3)e llax//= |a)-xj for all numbers a,

Theorem l,ls A normed linear space is also a linear
EEENEITEETEES

tépological sPéée.

Proof: If x 1is any element of the normed linear space, then
for each number £ >0 the set consisting of those elements ¥y
satisfying the inequality |lx-yl|<€¢ will be said to be a neigh-
borhood of x. Then: (1). An element belongs to each of its
neighborhoods,l since [|0)l=0 by (3) of Definition 1.6; (2) if
||x=y)|= £, then the neighborhood of x defined by [|x-y/<¢c does
not contain y; (3) if x is in the neighborhoods of u and v
defined by [lu-y//<§, and [v-y|/l< £., then the neighborhood of x
defined by |x-y|<¢%, where ¢ is the smaller of ¢ =|/lu-x) and
Eg-ﬁv-xﬂ, is contained in each of these neighborhoods and hence
in their intersection, Thus a normed linear space is a Hausdorff
topological space., The continuity of x+y follows immediately
from (2), and that of ax from (2) and (3), of Definition 1.6,

If the number |[/x-y| is called the distance between the

elements x and y, then it is easily seen that a normed linear

space is also a metric space: i.e,, the distance relation

l. See Definition l.l.
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llx=yll = e(x,y) satisfies the conditions:
(1)e p(x,y) =0 if and only if x =y,
(2). p(x,y) = ply,x),
(3)e px,z)=pP(x,y)+o(v,3).

The neighborhoods of x defined by |jx-y|<& are called
spheres with x as center and of radius €., If the distance
from an element x to a set U 1is defined as the lower bound
of |x-u| for wueU, then x is a limit pointl of U if and
only if this distance is zero, Likewise, a sequence of elements
X1, Xp,+c 1is said to have the limit x if lim Hx-xnll =0, A
Cauchy sequence is a sequence xl, x2,°'° such that
lim |k -x

mm-Sco = M n”
not necessarily have a limit.w the SPoce ,

= O, Such a sequence in a normed linear space does

Definition l.z. A normed linear space is said to be complete

if all Cauchy sequences have a limit, A complete normed linear

space is called a Banach spacez.

A function is said to be a functional if its values are real

numbers and its arguments are elements of a topological space, The
norm of Definition 1.6 is an example of a functional in a normed
fextm) = foo+ {emy |, Jeatn) == §00

linear space., Functionals which are linear in the argument will

be found useful in studying orthogonality in normed linear spaces,

Definition 1.8, A functional f(x) with argument in a topo-

logical Abelian group is linear if it is contin.uous3 and

l. See the discussion following Definition 1.1,

2, Banach (I), pge. 53. .

3. That is, for any element x and number & > O there exists a
neighborhood U of x such that [f(x)-f(u)|< € if ueU,



f(x4y) = f(x)+f(y) for all elements x and 7.

If a linear functional f(x) has its argument in a
normed linear space, it follows that there exists a number M
such that lf(x)fs Me x|l for all elements x,l The lower bound
of such numéers M is called the modulus of f and written )|,
It can be showng that for any element X, of a normed linear
space there is a linear functional f(x) such that f(x@) ::beu
and [fl = 1. The set of all linear functionals defined on a
normed linear space T 1is also a normed linear space (the

conjugate space) if the norm of a linear functional is its modulus,

By assuming the existence of a bilinear and symmetric
functional of two variables, and relating this to the norm, it is
possible to get a generalization for normed linear spaces of the

inner (scalar) product of vectorse.

Definition l.9, An abstract Euclidean space is a normed linear

space such that to each ordered pair of elements x and y there

can be associated a number (x,y) with the following properties:

£ 3
& 4 f
BN p 28
CAFEHCAUE v By

(L)e (tx,y) = t(x,y) for all numbers t, 7 fion
(2)0 (X)y) = (Y:X)’

(3)e (x,y+2) = (x,¥7)4+(x,2),
(1), I=dl® = (x,x).

The number (x,y) is the (bilinear and symmetric) inner

3

product of the elements x and Y. The assumption of such an

inner product implies that any finite dimensional subset of the

1, Banach (I), pg. 54, Theorem 1,
2. Banach (I), pg. 55, Theorem 3.
3., See Fréchet (II), pg. 707.
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space 1is equivalentl to a finite dimensional Euclidean sPacé-- ‘

i.e. to a space with elements of the form x;='(xl,x2,~--) and

Izl = VZ(xf o For example, it is clear from (1) and (3) of
Definition 1l.8%that for any abstract BEuclidean space there exist
elements x and y such that lixl =|)yll =1 and (x,y7) = 0,
Then )Iax—)—-by“z = (ax+by,ax+by) = az(x,x)+b2(y’,Y) 2llxll +bzllyll R

2

k= a % ‘:
Hence if the correspondence ax-+by<>(a,b) is set up, 1t b =\ (u% bl

follows that the operations of additio?w??G,Pgitiﬁif23E}?§WE¥ﬂi;*“é?WQ
real numbers are preserved under the correspondence and that
lax+byll = |[(a,b)}l for all a and b, Hence the abstract
Euclidean space generated by the elements x and y 1is equivalent
to the two dimensional Euclidean space, It is evident that the
same argument can be used for any finite dimensional abstract
Euclidean space,

It will be found useful to express the inner product (x,y)

directly in terms of the norm:

Theorem 1,2, The inner product (x,y) of an abstract Euclidean
space is equal to:

(1). }_Dlx+yll2- Hx:yl);'j, or

(2). 3 lix £ g =ixn®=ugi?l.
Also: (3). lx+ky)® = lx)P+k%)yl 2+ 26 (x, 7).

Proof: From (4) of Definitiomn 1.9, Ux::yl)z = (xty,xty),
The additivity and symmetry of (3) and (2) of Definition 1.8
make it possible to expand this as: -

1, In the sense that there exists a 1l-to-l1 bilinear corres1pondence
which preserves the norm (see Banach (I), pg. 180),
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hx+yi? = (x,x) +(y,¥) +2(x,¥),
and  Jx-yl® = (x,2)+ (v,7) = 2(x,y). |
Using (4) of Definition 1.9, these become
(x,7) = =3 [Jx= i Ixh®-lizs *].
Subtracting them gives (x,y) =% D}x +y)|2 - Ux-yilz]. Likewise,
}Ix+lcy}}2 = (x+ky, x+ky) = (x,x) +k2(y,y)+ 2k(x,¥)
= Ilxl®+ k2 /ly)*+ 2k (x,¥).
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2., ORTHOGONALITY IN NORMED LINEAR SPACES

A definition of orthogonality of elements of a normed
linear space has been suggested by B. D. Robertsl. It is that
two elements x and y are orthogonal if and only if
Iz +ky| = lx -kyl| identically in k. Unfortunately, there
exist normed linear spaces where two elements can be orthogonal
by Roberts! definition only if one is zero.2 In order to avoid
this difficulty the following three definitions have been
3

developed. They are equivalent for abstract Euclidean spaces,

but are not equivalent in a general normed linear space,

Definition 2,1, Isosceles orthogonalitz: An element x

of a normed linear space 1is orthogonal to an element y (XJtzl

if and only if lx+yl = llx =yl

This is a generalization of the fact

that two vectors x and y are perpendic-

ular if and only if x+y and x-y are

equal in length., The vectors x-+y and

X =y can then form the sides of an isosce=-

les triangle with 2y, or 2x, as base. Be-

cause of the nature of geometrical addition

‘of vectors, the latter could be taken

as the condition for perpendicularity.

1. Roberts (VIII), pg. 56.
2. See Example 2.1,
3. See Theorem 3.l.
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Definition 2.2, Pgthagorean orthogonalitg: An element x

of a normed linear space is orthogonal to an element y (xJﬂzl

if and only if Jxi® 4yl = x -y 2. TR Xy

If a right triangle in ordinary Euclidean Space is defined,
by virtue of the Pythagorean theorem, as one such that the square
of the hypotenuse is the sum of the squares of the legs, then this
is a generalization of the fact that perpendicular vectors can be

placed so as to be the legs of a right triangle.

Definition 2e3s Sgherical orthogonalitg: An element x of

a normed linear space is orthogonal to an element y (x1y) if

and only if Jlx+kyll = /x|l for all numbers k.

This definition could have been
stated: "x.Ly if and only if every
element x+ky 1lies on or outside
the spherical surface consisting of
elements z satisfying |[lzll = [Ixl."
It is a generalization of the fact

that in ordinary Euclidean space two

vectors are perpendicular if, when in
the position illustrated, one is tangent to the circle with
radius zx--cor that the vector x+ky 1is longer than the radius

of this circle for all ke

».‘ \,.‘ L ,‘:"."4\1 L . Y

It is eV1dentv£hat for any of these concepts of orthogonality
the zero element is orthogonal to every element of the space, and
f‘i?“’“‘ 0 Lhr ol uf/

conversely. There are other elementary properties of perpendicular

vectors whose generalizations will be interesting to investigate;
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I. Symmetry: If xl1y, then y.iLX,

IT. Homogenelity: If x.1y, then axlby for all numbers

a and b,

IIT, Additivity: If x4y and xl1z, then x_t(y+3).

IV, If x and y are any two elements, then there exists

a number a such that x_L(ax+y)e.

The last property is the most important, since it ‘would

F s Oon ODDas ke,

Keep the concept of orthogonality from being vacuous (in the

\°L olen ef, rtgpn - ﬁwﬂ, C"ﬂé “‘\(lre(

sense that conditions on the orthogonality oo i

would have no effect on the space). It is

el J \_(v"’:{'

clearly satlsfled for ordlnary Euelldean 3’
space, and it w1ll be shown to hold for il

’?”%fﬂ;thé orthogonality of Definitions 2.1-2.3.
J A slightly weaker statement of this property is: "If x and ¥y
are any two elemonts of a normed linear space, then x 1s orthog-
onal to some element in the plane of x and y"--where a plane is
a two-dimensional linear subspace.l

Both isosceles and Pythagorean orthogonality are clearly
symmetric, although it will be seen that spherical orthogonality
is not. When the orthogonality is not symmetric, property IV could
be stated either: "There exists an a such that =x.lax-+y", or
"There exists an a such that ax+y_Lx". However, spherical
orthogonality will be shown to satisfy either statement., Hence
the one form will be used for simplicity.

All three types of orthogonality are equivalent if the

gspace is abstract Euclidean, and have properties I-IV in this case,

l. That is, the plane of x and y consists of all elements ax+by.,
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Neither isosceles nor Pythagorean orthogonality is homogeneous
or additive in a normed linear space, although they are both
symmetric, The assumption of these properties will be shown to
imply that the space is abstract Euclidean, Spherical orthog-
onality is clearly homogeneous, although it is not symmetric
nor additive, and the assumptions of these properties will be
shown to imply that the space is abstract Euclidean. The
following example shows the independence of the above types of
orthogonality in normed linear spaces, and that for Roberts?
definition of orthogonality there exist ngrmed linear spaces

where at least one of two orthogonal clements must be zero,

Examgle 2e l. Let T be the normed linear space consisting

of all contlnuous fuﬂétlons of the form f = ax+bx2

2

, where

|ax +bx2” 'is the maximum of Jax+bx“| in the interval f(_O,l).

Then:

(1)e Two elements of T are orthogonal by Roberts® defini-

tion if and only if ome is zero; i.e. |[/f+kgll =]/f-kgll for all

k only if £f=0 or g= 0, Consider the function f = ax—f—bxz.

If f1g, then |f +kg| =|/f =kg|| for all k. If |[f] takes on
its maximum only at x = 1, and f % O, then by taking k
sufficiently small |[f +kg| and |f -kg| can be made to take on
their maxima as near x = 1 as desired, because of the continuity
of f and g. Hence g(l) .« must be zero if |[If +kgl| = [If - kgl
for k small, and g must be a multlple of x— ’2 if it is

not zero, Thus if g # O, 11'. takes on its maximum only at x = 3,
B {91
and by taking k large it follows similarly that f£(%) = O and

f is a multiple of x-2x2, But [|f+4ell £ [If -L4gll, since

£ +sell = max. |5x-6x°| = 33 ana |i£ -Lell = max. [3x-227] = 3
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Hence f.lg is impossible if either J£] /or }g)  takes on

its maximum only at x= 1, unless f or g is zero, Now

suppose |f| tekes on its meximum only at x = %p, the only
other possible point for the maximum, since f*' = a+2bx, Then
reasoning.as before, fi g implies g(:z"%) =0 if f:,";‘ 0, and
that g is either zero or a multiple of ax+2bx2. Since |f)
takes on its meximum only for x = -5-%, \f+kgl must take on its
maximum near X = — if }k{ is sufficiently small, But

2b
fikg = a(lik)x+b(1+2k)x®, end for k| small |Jevke)l =lf-kell

1& {1-:-1:52; ‘;az 1~ k 2
]

But this implies k=0 or k® = 1/3, Therefore flg is
Jdmpossible if either of If| or Ig| takes on its meximum only in

therefore becomes

the interior of (0,1), unless £ or g is zero, The only remein-

ing possibility is for )| and |g| to take on their maxima at both

an interior point of (0,1) and at x =1, But f and g would
then both be multiples of 2(1-T2)x+xz, which is‘clearly
impossible,

(2)e ‘The elements f; - x -x% and gl = x are orthogonal
in the isosceles sense, since llx-(x-x2)ll = Jx+(x-x2)] = 1. How-
ever, they are not orthogonal in the Pythagorean sense,since
lx-x21® 4 I=l® = 17/16, wnile Jf£;-g0° = 1. Also, ey2e, )l =
)&= -x?] = (7/16)%, which is less than fe,) = 2. Thus £; and
g, are not spherically orthogonal,

(3). The elements f, =x and 8o = -2x+3{65 x* are
orthogonal in the Pythagorean sense, since ":t‘z »2 =1,
leo)? = 16/6s, Meg-g501° = 81/65, and nence |z A%+ NP = Negme P

They are not orthogonal in the isosceles sense, since
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”f2+82}) %-%ﬁ. Also, |I£ -zgzu = pax. |2x - V65 x2|= 8 TeE,

which is less than ﬂfzﬂ- 1. Thus f2 and g, are not
spherically orthogonal.

(4)e The elements x and g, = 2(x -x?) are spherically

orthogonal, since ]f3(l)i-kg3(l)l:= l? and hence

Iz, + ke, ”>nf | =1, for all k. But ]lf3+33|\= HBx-2x2ll=-g.

and Hf3 H'— lx-2x?|l = 1. Therefore f; and g, are not

orthogonal in the isosceles sense, They are not orthogonal in
the Pythagorean sense since Hf3}]2+ //g3 1}2 = -f-;, while

”f3 - 831}2 -

The properties I-IV above could have been stated differ-
ently. For example, homogeneity and additivity could have
been combined, and one could have generalized the theorem:

( iL 1 1 )
"Every plane Inteﬁsggtlng a given line contains at least one

line perpendicular to the given one", Some relations between
this and properties I-IV for normed linear spaces are given by

the following theoren.

Theorem 2,1l (1). Homogeneity and additivity of orthogon-

ality are equivalent to: "If x.1y and x.3z, then x_I (ay+4bz)

for all numbers a and Db,

(2)e If orthogonality is of one of the types of Defini-

tions 2.1-2.3,‘then homogeneity, additivity, and property Ivl

are equivalent to homogeneity, additivity, and: "If X, y and

z are any three elements for which x is not orthogonal to vy,

there is a number a such that x Lay+z.

l., See page 13.
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Proof: (l). If x1y and xl1z imply x.(ay +bz) for
all numbers a and b, then homogeneity can be gotten by
taking b = 0 and additivity by taking a = b =1, Conversely,
if xi1y and x|z, homogeneity gives x_,ay and x.Lbz,
Additivity then gives x .1 (ay+bz). (2)¢ If x, y and =z
are any three elements, property IV gives the existence of
numbers b and ¢ such that x.1bx+y ahd X1lcx+2. If X

is not orthogonal to y, then b # 0 and homogeneity gives

2
b
converse can be gotten by taking y = x, if x is not orthog-

Xl (=-cx-=2y). Additivity then gives x,L(--%y+z). The
onal to itself, If one of the types of orthogonality of
Definitions 2.1-2.3 is used, x cannot be orthogonal to itself

unless it is zero--in which case x i(ax+y) for all a and

Yo
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3¢ ORTHOGONALITY IN ABSTRACT EUCLIDEAN SPACHES

The most obvious requirement for the orthogonality of
two elements of an abstract Euclidean épacel is that their
inner product be zero., The relation between this and the above

types of orthogonality follows immediately from Theorem 1.2,

Theorem 3.l., For abstract Euclidean spaces, isosceles,

Pythagorean, and spherical orthogonality are equivalent, and

two elements x and y are orthogonal if and only if their

inner product (x,y) = O.

Proof: It is evident from (1) and (2) of Theorem 1.2 that
two elements x and y are orthogonal in the isosceles sense,
or in the Pythagorean sense, if and only if (x,y) ==O._2 If
(x,y) = 0, it follows from (3) of Theorem 1,2 that |lx+kyll = |xI|
for all k, and hence that x and y are spherically
orthogonal.3 Conversely, it also follows from (3) that
Ix +kyll = x| implies k2/ly//°+2k(x,7)= 0. Since this is 26ro

//Iiorkzo, the inequality can hold for all k only if the

' derivative with respect to k is zero at k = 0, That is, if

\‘ (x,y) = 0.

bl
y

(< 'i’la..uwg "/\L‘v» E;‘»';;,a.(l;;f_,a,,\. . e

\'{) 9\,,& ;5 4311{ at K=o i B‘i{/;"ﬁ; .
Since two elements x and y of an abstract Euclidean

space are orthogonal if and only if (x,y) =0, it is clear that

l. See Definition 1.9,
2. See Definitions 2.1 and 2.2.
3. See Definition 2.3.

2
2 F LN 5 sf e - F oBFD T s e . s ¢ Tk
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symmetry, homogeneity, and additivity of the orthogonality
are equivalent to symmetry, homogeneity, and additivity of
the inner product, Also, because of (1), (3) and (4) of

Definition 1.9, (x,ax+y) :allxl.}z—f-(X,y). Hence if x and

(x,5)
lxII*
Thus if x s O, then the number a such that xiax+y is

y are not orthogonal, then x.lax+y, where a =-
unique,

Theorem 3,2, The orthogonality of abétract Euclidean

spaces is symmetric, homogeneous, and additive, and for any

two elements x (£ 0) and y there exists a unique number

& such-that XxX.lax+y.

19.
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Lo ISOSCELES ORTHOGONALITY

- A number of relations can be obtained between orthogonal
elements of general normed linear spaces, Isosceles orthogonality:
is obviously symmetric, and it can be shown that for any elements

x and y there is a number a such that xlax—;—y.l The

assumption of homogeneity and additivity of the orthogonality2
will be shown to imply that the space is abstract Euclidean.

If two vectors x and y of ordinary Euclidean space are
perpendicular, then |lx+kyll >Ixll for k # O, While this is
not true for isosceles orthogonality in normed linear spaces, it
is possible to establish weaker inequalities, These give an
idea of the degree of independence of isosceles and spherical

orthogonality, as well as interesting inequalities resulting from

the condition ||x+yll = |Ix -yl

Lemma 4,1, If x and y are orthogonal elements of a
SEEesTTETT

normed linear space, then:

(1). [xtkyll< Iklx+y) and |Ixtyll< [xtkyll, if Jk[=1,

(2)e llxtkylls Xty and Jkx+yll < [x+kyl), if |kl=1.

Proof: The equation x+ky = 3(k+1)(x+y) -2(k-1)(%y) is
an identity in k. The triangular inequality of the norm3 there-
fore gives [x-+kylls [B(k+1)(x+y)l+l3(k-1)(x-y)l|. If =xLy,
then [x+yll = ||x=yll. Hence if |k|[>1, then |x+kyl = KlIxtyl.

1., Theorem L.5. ’
2. Whenever "orthogonality™ is used in this section, it will mean
the "isosceles orthogonality"™ of Definition 2.1.

3. Condition (2) of Definition 1.6.
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If |k|=<1, then |x+kyl= |x+yl]. Likewise, the relation
I3k +1) (x+y)ll = )x+kyl+[3(k- 1) (x- y)| gives the other two
inequalities of the Lemma, The inequalities (1) and (2) can
also be obtained from each other by replacing k by :;: and
interchanging x and y, since isosceles orthogonality is

symmetric.

Theorem 4,1, If x and y are orthogonal elements of a

normed linear space, then J/x+ky|| > )xi for all k such that

k| >1,

Proof: From the identity 2X = (x+y)+(x=-y), it follows
that 2|xl/= [x+yl+lx - y)} Since ||x+y) = l|lx~-yl/, this gives
lx||s llx+y)l. But from (1) of Lemma 4.1, lx*yl=<{x+kyl it
k] >1. Hence Ixl=<|x+kyl if Jkl>1,

The result of Theorem 4,1 is not valid if |k/<1l. In fact,
the following example shows that it is possible to have x.\y
and |x+kyl as near to %l/x/ as desired--although it is not
possible to have |[[x+Kkyl = %Hx/l.z These results, and those
following, give a comparison between isosceles and spherical

orthogonality.

Examgle g. o Let T be the normed linear space consisting
of all pairs (a,b) of real numbers, with (a,b)+ (c,d) = (a+ec,b+d),

k(a,b) = (ka,kb), and [/(a,b)] as the larger of Ja/ and |bl,

Let x=(1,0) and y = (n-1,n), Then |zl =1,

(x-y) = (2-n,-n), and (x+y) = (n,n)., If n=1, then

1., Condition (2) of Definition 1.6,
2o Theorem L.2.
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[ =yl = [x+yll =n, and x and y are orthogonal. But
x--2-1537= (%’-;—11-,-%), and HX- yll— ngg
which approaches 2 as n becomes 1nf1n1te. That is, given the
element x = (1,0) and € >0, there can be found an element ¥y
orthogonal to x and such that [x+kyll<i+& for some k.
However, for no normed. linear space can there exist orthogonal

elements x (# 0) and y for which llx—k—l;jlli%llxu for some Kk,

This is shown by the following theorem,

Theorem 4.2, If x (% 0) and y are orthogonal elements

of a normed linear space, then Jx +ngl}>ﬂxll for all k.

Proof: The equation (k+1)(x-ky) = (1-k)(x+ky)+2k(x-y)
is an identity in k. Hence it follows from the triangular
inequality of the norm® that Ik+1) [lx=kyll= k| |l=+ky)|+2 Ikl le-y”.
Suppose there exists a number k such that |[lx+kyll = %lx/l.
There is no loss of generality in taking k=0, since otherwise
y could be replaced by =-y. It then follows from Theorem 4.1
that O=<k<1, Also, nx-kyuz%nxu, since 2xll=|x - kyllHx+kyll,
Substituting in the above inequality, it follows that
%(k-{-l)ﬁxﬂs%(l- k)lixll+2kflx -yll, or (2k~+1)/lxll=<2k|lx-yll.

But from (2) of Lemma 4.1, k/lx-yl=<|/x+kyll, or k(x-yl]=<3ilx.
Therefore (2k+1)llx|l=<]x| and k = 0, But this is impossible
it llx+ky)l = 1|zl Hence there can not be a number k such
that |[x+ky|l = %/x/. Since [jx+kyll is a continuous function
of k, and therefore must take on all values between its maximum

and minimum, it follows that |lx-+kyl/>2%/x] for all k.

1. Condition (2) of Definition 1.6,
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It has been shown by Example 4.1 that Theorem 4.2 is the
best result of its type obtainable wit_hout further assumptions
of some/_lg;f;ﬂnq_,”v_\_However, in this example [|y/ became infinite
as ’)x+k:yl| apprbéched 3)ixlle . By restricting the value of [/y/
the inéduality of Theoi'em L2 can be strengthened, the following

theorem being an example of this,

Theorem L3, If x and y are orthogonal elements of &

normed linear space, and |ly/l = |x/l, then [lx+ kyll ijz%-z)/lxll

for all k.

Proof: Suppose [x-+ky|l = rixl, where r<1, Take k to be
positive, since otherwise y could be replaced by -y. Then
O0<k<1, since by Theorem 4.1, |x+kyll=|xll if |k)=1., Then,
since 2|lx||sllx+ky l+lx-kyll ,l we have (2 -r)ixl= (Ix-kylle But

(k+1))lx =kyl< (1 -Kk))x+kyll +2k/lx -yl
follows from the identity (k+1)(x-ky) = (1 -k)(x+ky)+ 2k(x-y).t
Hence (k+1)(2 =x)lxll=(1 -k)r)jxl|4+2k]|x=-yl], or
| (k+1) Ixl< ixil +k/x =y
Also, from x+y = (x-+ky)+(1-k)y and the orthogonality
condition [|x=-y| = [[x+yll, it follows that [x -yl=lx+kyl-+(1-k)ly/l.
Using |x+kyl| = rlx| and /lyil< Ixl, this gives Jlx-yl| =< (1-k+r)lxl.

Hence (k-+1)/x//<zrlxll+k(1-k+r)/x/l, which gives r=> iﬁ.

2 :
But }IE-I'{E' has a minimum (for k=0) of 2V2-2, when k = Y2 - 1,
Hence r=2Y2 -2, and Jix+kyll =(2Y2=2)/x/| for all k.

As with Theorem 4.2, it is possible to give an example

showing that the inequality of Theorem 4.3 can not be strengthened

1. Condition (2) of Definition 1.6.
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without making further assumptions, That is, it is possible to
have x.y, Jlyl=Ilxl, and [x+kyll = _(?.T?-Z)Hxll. As seen by
the method of proof of Theorem A.B,l it is then necessary that
k| = Y2-1,

Example 4.2, Let T be the normed linear space consisting

of all pairs (a,b) of real numbers, with (a,b)+(c,d) = (a+c,b+d),
k(a,b) = (ka,kb), and J/(a,b)| = Jaj+ |b)s ILet x = (1,s) and

¥y = (s,-1), where 8 will be chosen later, Then |Ixll= Iyl =
|s|+1, Also, (x+y)=(1+s8,8=1) and (x-y) = (l-s,s+1),
Hence [[x+yl = |x=-yll= |1+s|+|l-s/ and x and y are
orthogonal, But (x+ky) = (l+ks,s-k), and if k is taken equal
to s, then [Ix+kyll=1+s2 = ﬁ%)ﬁm e If 8 =Y2-1, this
becomes [jx +(V2-1)y/ = (22 -2)/ix{., That is, if x = (1,Y2 -1)

and y = (V2-1,-1), then [x+kyll = (2V2-2)/xll if k = Y2-1.

It is necessary to have [/x{/= [yl in any example of the
limiting case of Theorem 4.3, This is evident from the proof of
that theorem, since for such an example we would have 1 = }E_k-é,
and hence every inequality used in the derivation of the
inequality r a%—iﬁ must be valid if made an equality, Among
these was ||yl =/lIx e

Corollary 4e3., If X and y are orthogonal elements of a

normed linear space, and |ly// = |xl, then Jx-+kyl > (2V2-2)lixi
for all k.

There is an interesting (although very unusual) case where

it can be shown that [/x +kyl =|x| for all k, and hence that

2 .
1, Because of the inequality r=> %-?%E, and the following.



25

1

x and y are spherically orthogonal, This is shown by the

following theorem and examples,

Theorem 4.4, If x and y are two elements of a normed

linear space, and |Ix-yl = |x+y)| = |lxl, then Jix+kyl = |xJl if
k|< 1. Hence [x+kyll= |x| for all k.

Proof: If |k|/£1 and Jx-yll = [x+yll = |xll, it follows
from (2) of Lemma 4.1 that |[xzxkyll=|xll. But from
2x = (x-ky)+ (x+ky) and the triangular inequality of the norm,2
it follows that 2[xl|< Jx-kyl+ llx+kylle Hence [x+kyll = [Ixll
if k)< 1. By Theorem 4.l, [lx+kyll>lxll if |k/=1, Hence
lx+kyll2lx) for all k.

Example 4.3. ILet T be the normed linear space consisting

of all continuous functions in the interval (0,1), with

| £l = max, If(x)] . The elements f = x° and g = 1l-x satisfy

lIt+g)|= le-gll = 1.

the conditions of Theorem 4.4, since [fll = |g]
Then (as must be true as a result of 1
Theorem 4.b4), ||f+kgll=1 if |k|/=<1. |

+I
That is, the maximum in (0,1) of l

[x*+k(1-x)| is 1 if |k|=1, as 0 1
is evident from the figure. Thus /{//y&/ |
f is orthogonal to g by either Z ‘
Definition 2.1 or Definition 2.3. -1 l

Example L.L4L. Consider the normed linear space of all pairs

(a,b) of real numbers, with |l(a,b)]| as the larger of Ja| and

1. See Definition 2.3,
2. Condition (2) of Definition 1l.6.
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lbl.l et x= (1,0) and y = (0,b), where )b|<1l. Then
Ixl| = [x-yll = Iix+y] = 1. Hence [x+kyl = L, ko)l = =zl =
if  |k/<1. Actually, Ix+kyl = ))xll if Jkyll <Ixll, and
Ixteyll = lkyl ir kgl =l

For orthogonality in normed linear spaces to have a useful
meaning, it 1is necessary to know that there exist non-zero
orthogonal elements. For in that case, assumptions such as
homogeneity and additivity of the orthogonality are not vacuous,
That is, such assumptions made on the orthogonality will have a
restrictive effect on fhe space and will not necessarily be
trivially satisfied, if it is known that there always exist non-
zero orthogonal elements, For isosceles orthogonality, it can
be shown that for any elements x and y of a normed linear
space, there exists at least one number a such that xlaxty.
That is, for any elements X and ¥ the element x is orthogonal
to an element in the plane of x and v and of the form ax+y;
It is also possible to give limits to the value of a in terms
of Jxll and |yl Before establishing these results it is
convenient to investigate certain limits which will arise
numerous times in this thesis, particularly in the study of

spherical orthogonality.

Temma L.5, If X and y are elements of a normed linear

space, then lim Wn+ta)x+yl| = Jnxtyl] = alx|| and

lim Hi{nra)x#-xll - |nx+y)l] = -alx).

-ye—o8

l. The same space as used for Example 4.l.



27

n
hte | nia n+a

be written as /lnx+—-y—-1/+a/x+—1-”, if n is positive and

Proof: Since = 1 identically, [[(n+a)x+yl can

large enough that n+a >0, Thus

[u(n+a)x+yu - Inxtyl] = [Jax+ BL| - Inxeyi] + & fx+ g [
JlJnx+——l- /Inx+y/l/s [.n.f:Etllyll, which approaches zero as n

becomes infinite., Also, 1lim a}lx-t—-il-%all = a/jx|l, Hence
%&D}(n}a)x—t— vyl - Inx+yl] = alx/le Since the value of the limit
is independent of y, it follows that lim [{I(n-a)x-—y“ - [nx-yl[=
~allxlle ‘But this is the same as %}Ilawfll(nm)x+yl[-[m+y)lj,‘ which

is therefore equal to =-a/x/l.

The above figure illustrates the validity of Lemma 4.5

for ordinary Euclidean space. However two similar results valid
in ordinary Euclidean space can not be generalized to normed
linear spaces, In an ordinary Euclidean space,

(1). Lim[jnx+yll + |mx -yl - 2lnx/]= o.
This is not true in general normed linear spaces, For example,
consider the normed linear space of Example 4.2, consisting of
ordered pairs of numbers (a,b) with [(a,b)l = |a/ + /bl . ILet
x= (1,0) and y= (1,1). Then [nx+y/ =n+2 if n=>0, and
Inx=y}} = n if n=1, Since /nxl = n, it follows that
| nx+yll + Jnx-yll - 2)nx) =2 if n=1. This is a special case of

a more general relation which is valid in ordinary Euclidean space,
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but not in a general normed linea: space, Namely:
(2). 1im [fnx+ (y+2)ll = InxtyV] = Lim [Inx+zd - Inxi].
Letting «, = /nx +(y+z)l = [/nx+yl and g, = Inx+zll- |nx)), it

is clear from the figure that lim « = 1im g, = lzlcos 64 for

abstract Euclidean spaces,

The equality (2) is not valid for general normed linear spaces,
If the normed linear space of Example 4.2 is used again, with
x= (1,0), y = (1,1), and z = (0,-1), then
lnx + (y+2)ll = lnx+y)) = =1  and ([nxtzl- /oxi = 1.
In fact, if the equality (2) is assumed to hold in a

normed linear space, then a differential of the norm,

}im /'1x'+hyi[l- Uxd _ £(x;y), exists at each non-zero point of the

space.l For lim Inx+yll = Inx(| = - 1im |nx-yl -(/nx) is equivalent
to the existence of this differential, and results from (2) if =z
is replaced by -y. Conversely, the equation (R) is nothing_ more

than an expression of the additivity of this differentialz--which

results from the assumption of the existence of }a%% l/x+hy;/1-1/ XH-B
Thus the equality (2) holds (and the limits involved exist) if and

only if this differential exists at each non-zero point of the space,

le Such limits and differentials will be thoroughly studied in
relation to spherical brthogonality.

2. That is, it is equivalent to f(x;y)+f(x;2) = £(x;y5+2).

3. This is shown by Mazur (VI), pg. 128,
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Theorem 4.5. If x and y are elements of a normed

linear space, then there exists a number a such that

IJx + (ax+y)) = llx = (ax+y)]|, /gi" X _Lax+y.

Proof: Define the real function of a real variable, f(n), by
f(n) = [lx+ (nx+y)ll = lx = (nx+y))| = Ho+tl)x+yl - I(n=1)x+yH.
Then %g}x& f(n) = ,.;l\._}lcg Dl(n+2)x+ vl - l/nx-f—y}D , which is equal to
2|/l by Lemma 4.5. Likewise, ,}}_qlwf(n) =m];i__x§o[)/(n+2)x+yﬂ - Inx+yll],
Then Lemma 4.5 gives }_’iln”f(n) = -2//xlle Sinece f(n) is positive
for some values of n and negative for others, it now follows
from the continuity of f(n) £ that there exists a number a

such that f(a) = 0, or |[/x +(ax+y)/ = [|x - (ax+y)|)]e Then x and

ax+y are orthogonal in the isosceles sense of Definition 2.1.

. 0o X+
If two vectors x and ¥y of ordinary Euclidean space are

orthogonal, then the inner product (x,ax+y) = al/xllz+(x,Y) is
zero, Also, (x,y) = Ix)/)ylicosé, where © is the angle between
the vectors x and y, Hence a =-loos e, ana la/illllx,- It

Jxi

is also clear from the figure that £< av

laxil = Jlyjl lcos®|, and hence that

la) = %Icosel. However, these

ORx o4

relations do not carry over to

ok —

normed linear spaces. While

lal< »-y/%/]- is not valid in general, it is if [yl £Jxli, and it can

be shown that Jaj< 2ILZIEL se iy = g

Theorem 4.6, If X (# 0) and y are two elempemts of & normed

{
linear space and [lyll< (x|, then )a]i-%%‘# if x.lax+y.

1, The continuity of the norm follows from (2) of Definition 1.6.
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Proof: Define the real function ofv a real variable, f(n),
as  Jlx+(nx+y)l| - Ix - (nxty)ll. Since [lx+tnx+y)| = MNord)x+yl),
it follows from the triangular inequality of the norml that
Ix + (nx+y)l| = [n+1/ lIx)) - llyll. Likewise, llx - (nx+y)ll = )J(n-1)x+y]l
< |n-1 Ixll+ llyll. Hence f(n)x Dn+ll x| - UY”] - [In-1 lell+Hle 5
or f(n)e.[]nﬂl - |n-1]] Iix)f = 2)lylle If O=n=<1, then
f(n)=2(nlkkil-llyl). Hence f(n)>0 if 1= n>-4%L. If n>1,
then f(n)>2(/xl-llyl). Since Il yll<Ixl, it follows that ff{n)>0
if n> lx!{, Now consider f(-n) = -Dlx +(nx=-y)ll =[x - (nx-y)”] .
Since the above argument is valid if y 1is replaced by -y, the
only assumption being |[yJ <Ix//, it follows that f(n)<0 if
n<--),%§-. Thus the only region for which f(n) can be zero is
for |n)< -{%ﬁ.. Hence if f(a) = 0, or x.Lax+y, then |a|= -]’9%”7.

Theorem 4.7. If X (# 0) and y are two elements of a
normed linear space and Jly/|>)x/|, then |a|=< 2” ” <), if x . Laxiy.

Proof: Take f(n) as [x +(nx4y)l-llx - (nx+y)ll. ’From the

identity, ‘n—2I .n_"},_ = 1, it follows that

£(n) = ll2xt 2L +[ln-D)x+ EL vl - f(n-1)2+7l]
if n=zl, But from the triangular inequality of the norm, we
2
get ”2x+n%¥I”‘ Hzx}}-% It also follows that
n-1)x +ylls ” + (n-1 x+n—"]fyH, and hence
ll(n.l)x+n-1 yll - No-1)x+yi2 -2,
Thus f(n)> 2”1(”-[;.11 T and f(n)>0 if n>2U”,}){ x| o It was
assumed that n=1, but 2_’%’[#%»1 it lyl = xl. Also,

f(-n) = -Djx+(nx-y)ll- x -(nx-y)lﬂ. This differs from f(n) only

in the sign of y. Since the above argument is valid if y 1is

l. Condition (2) of Definition 1.6.
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replaced by -y, the only assumption being ||yllx|xl|, it follows
that f(n)< O if n<-2/£"lx”. Since f(n) can mnot be zero

if |n|s 2 x.[;UXI , all values of a for which f(a) =0, or

X Lax+y, must be in the interval |a|= 2“,’}’{'}”3: .

It was shown above Theorem 4.6 that for ordinary Euclidean
space |a| = %lcos o] if x lax+y, where o is the angle

between the vectors x and y. Thus it is possible to have Jal

Inal
x|

therefore clear that the inequality of “‘i’éhheorem 4.6 cannot be

as near to as desired, whether [yl < |kl or not. It is
Yot <

strengthened without introducing some concept analogous to the
angle between x and y. Moreover, the difficulty of doing this
is illustrated by the following Example 4.5, which shows that for
normed linear spaces it is possible to have |a] = .‘%&- without
y Dbeing a multiple of x. Example 4.6 shows that Theorem 4.6

is not valid Without the assumption [yl= //xll, and that the
relation |a|= 2—”11/11?'&—”-51[ of Theerem 4.7 can be an equality

without having y a multiple of x.

Example 4.5, Consider the normed linear space of all pairs

(a,b) of real numbers, with |l(a,b))] as the larger of Ja] and

lQL.l Let x= (1,0) and ¥y = (1,1). Then x+(nx+y) = (2+n,l)
and x - (nx+y) = (-n,-1). Hence n = -1 is the only value of n
for which [lx+(nx+y)ll = lJx - (nx+y)l. But =il = Iyl =1, Since
in this case the number a of Theorem 4.5 is -1, it is possible

to have |a| = }),x" without y being a multiple of =x.

l. The space of Example L.l.
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Example L4L.6. Consider the normed linear space of all pairs

(a,b) of real numbers, with [(a,b)] = ]ar+}bl.l Let x = (-1,1)

and y = (a+1,0). Then Ixll =2 and [yl = )Ja+l). Also,

X +(ax+y) = (0,1+a) and x=- (axty) = (-2,1-a), If a=21, it

follows that |x +(ax+y)/ = J)x - (ax+y)l = a+1, and hence that
Uyl _ Iyl 3 2

X Lax+y. But T}Ic-ll' = %(a+1), and hence a>-/7;cLﬂ if a>1l. This

shows that Theorem 4,6 is not valid for normed linear spaces

without the assumption |yll= Ixl/l. Moreover, for this example it

is seen that a = 2! ,}/ﬂ' I 5¢ a>1, which is the largest value

allowed for Jal by Theorem L.7.

It has been shown (Th. 3.2) that orthogonality in abstract
Fuclidean spaces is symmetric, homogeneous, and additive, and
that for any elements x and y there exists a number a such
that xJ_ax+y.2 For normed linear spaces, isosceles orthogonality
is clearly symmetric, and the existence of such a number a is
given by Theorem 4.5, The effect of assuming homogeneity and
additivity will now be investigated, it being shown that isosceles
orthogonality is homogeneous and additive only for abstract

Euclidean spaces.

Lemma L.8. If isosceles orthogonality is additive in a

normed linear space T, then for any two elements x (& 0) and

y of T there is a unique number & such that x._ax+y,

Proof: By Theorem 4.5 there is at least one number a such
that x.lax+y. Suppose it is also true that x Lbx+y. Then since

|x+(bx+y)| = Jlx=- (bx+y)ll, it is clear that x.L-(bxty). Additivity

l. The space of Example L.Z2.
2. See page 13.
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then gives x.(a=b)x. That is, Jlx+(a-b)xl = JIx-(a-b)x/],
or Il-!-(a-b)l = ll-(a-b), « But this can only be true if

a-b=0, or a = b,

ILemma 4.8'., If isosceles orthogonality is homogeneous and

additive in a normed linear space T and x Lax+y and y_Lby+x,

where x and y are any elements of T, then b)IyN2= allxllz.

Proof: Clearly a non-zero element can not be orthogonal to a
non-zero multiple of itself., Hence if y = 0, then a = O unless
x=0; and if x =0, then b= 0 unless y =0, If neither x
nor y 1is zero and either a or b is zero, then xLy and
the other is zero because of the uniqueness given by Lemma 4,8,
Hence the Lemma is true if one of a, b, x, or y 1is zero, and
it will be supposed hereafter that none are zero., It will be
shown first that a="»b if |x/ = lyll. If =xtaxty, it follows
from homogeneity that x.l_?:?%"l, or llx-l-%-(ax-#y)l] = Ifx-;é(axﬂfm.
Thus |Jy| = llRax+yll. Similarly, yi Plgz, and Jix)| = Nx+2by/.
Thus if |x) = lyll, we get
| J2ax+yll = |=+byll,

But also, |(x+y)+(x-y)l = 2|z and [(=ty) - (x=y)| = 2]yl
Hence if x| = Jly], it follows that (x+y) L(x-y). From homogeneity,
(2a+1) (x+y)-L (2a-1) (x~y). That is, [/(2a+l)(x+y)+(2a-1)(x~y)|| =
|(2a+1) (x+y) = (2a=1) (x=y)|/, or [Rax+yl = [xt2ayll. Since it was
shown that [l2axtyl = [[x+2byl/, it now follows that

|lx+2ay ) = [|x+2by/l .
But xt+2ay = [x+(a+b)y]+(a-b)y and =+RDby = [x+(at+b)y| - (a-b)y,
‘and hence (a-b)yLf+(atb)y} If a-b # 0, homogeneity gives
y_l_E:+(a+b)5:r{. But y.Lby+x, and the uniqueness given by
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Lemma 4.8 implies a = 0, contrary to assumption. Thus a = b
if Jlyl = Ixlle But if =xlaxty and y_Lby+x, then because of
homogeneity, rx.L%(rx)—l—y and y.l (br)y+rx. Hence if r is

chosen so that [frx|/ = llyll, then % = br, or al/X//2 = b//yllz.

Theorem 4.8, If isosceles orthogonality is homogeneous and

additive in a normed linear space T, then T . 1is an abstract

Fuclidean space.

Proof: Define the inner product {x,y) as -a”x”z, where x
and ax+y are orthogonal. It is only necessary to show that
this inner product satisfies the conditions of Definition 1.9:

(1) (tx,y) = t(x,y)e If xLlax+y, and t $# 0, then

tx..l.%(tx)-}-y if the orthogonality is homogeneous, Thus
(tx,y) = -%ﬂtxl}z = —at[lx}/z. Hence (tx,y) = t(x,y)s If t =0,
the proof is trivial, '

(2)e (x,y)=(y¥,x)s If xlax+y, and y-Lby+x, then

(x,7) = -aflx]® and (y,x) = -bfy]~.

These are equal by Lemma 4,.8!,

(3). (x,y)+(x,2) = (x, y+z). Suppose x.Lax+y and

x-L. bx+z, Then x_LKa+b)x+(y+z'_)—_] if the orthogonality is additive,
. 2
Hence (x,y) = -aﬂx}lz, (x,2) = -bl/xﬂz, and (x,y+z) = =(a+b) [x]°.

(L)e (x,x) =[x Since [x+(~xix)] =[x - (-x+x)|[,

x Ll (=1)x+x, and (x,x) = ﬁxﬂz.

It can be shown that isosceles orthogonality is homogeneous
if it is additive., This makes it possible to simplify the

assumptions used in Theorem 4.8, essuming only eadditivity,



35

Homogeneity alone can also be shown to be sufficient by using

Ficken's condition for the existence of an inner product,

Theorem 4,92, If isosceles orthogonality is homogeneous or

additive in a normed linear space T, then T is an abstract

Euclidean space,

Proof: It has been proved by Fickenl that a normed linear space
is an abstract Euclidean space if and only if |laxtyll = [|xtayll for
all numbers & and elements x and y for which x| = |y, If
for elements x and y of T we have |/l = [yl, then
Jecty) +(x-y))| = M=ty) - (x-7)]] and (x+y) L(x-y).® I isosceles
orthogonality is homogeneous in T, then

(a+2) (z+y) + (a-1) (x=y)l| = [(&+D) (x+3) - (a-1) (z-y)
or "ax-f—yﬂ: Hx+ay". Thus a normed linear space for which isosceles
orthogonality is homogeneous is an abstract Euclidean space, If
x1y, then Xt -y and yLilx Dbecause of the nature of the condition
for isosceles orthogona.lity.z Hence if the orthogonality is addi-
tive, then nximy <for all integers m and n, Thus Inx+myl\=
Inx -nyll and l)x-;—%(y)" = }Ix—%-(y)ﬂ. Since the norm is contin-
uous,:3 it follows that [x+tyl = Ix-tyl for all numbers +t, That
is, xlty for all +%. Thus isosceles orthogonality is homogeneous
if it is additive, and a normed linear space for which isosceles

orthogonality is additive is an abstract Buclidean space,

Corollary 4.9, Isosceles orthogonality is additive in a

normed linear space T if and only if it is homogeneous in T,

1, Ficken (X1V).
2, Since =xLy if and only if [x+yl=\|ZX-5).
3s As follows from condition (2) of Definition 1.6,
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5. PYTHAGOREAN ORTHOGONALITY

While Pythagorean orthogonality is perhaps the most
obvious means of introducing orthogonality into normed linear
spaces, it is more difficult to use than the other typesl because
of the squaring of the norms, There is also a lack of symmetry
resulting from the possibility of defining x and y to be
orthogonal if JxJ +ly}) = }/x y)) , or if lx/ ly/} lx+y//
One sign is as good as the other, although the two statements
are not equivalent, More simply, x.y does not imply x.L -y,
as is the case with isosceles and spherical orthogonality,

Pythagorean orthogonality is clearly symmetric, and it
will be shown that the assumption that such orthogonality is
homogeneous in a normed linear space T implies T is an
abstract Euclidean space, Thus homogeneity of the orthogonality
implies its additivity. It can also be shown that there exist

2 . .
non-zero orthogonal™ elements in any normed linear space,

Theorem 5,1, If X and y are elements of a normed linear

space, then there exists a number a such that

) 2 fexeyl® = i - (aX+y)112, or x. (ax+y).

Proof: Define the real valued function of a real variable,

2 2 2 ' 2

£(n), as |l “Hneyl® - Jx = (ney)I? or el Inxry)® - n-1)zsy)”.
Using the identity (n“%)—# n-l‘_ 1, we get:

l. See Definitions 2.1-2,.3.
2. Whenever "orthogonality" is used in this section, it will mean
the "Pythagorean Orthogonality™ of Definition 2.2.



37

£(n) = 2+ 2221 o 2+ i) x4 (32Y) 3R - fn-1)x 4902
el -(20-1) ffx+ L7 P+ |
B/(n-l)X+(£fl—L) yll = ln-1)x+ v Dl(n-l)x+(£;l-l-) yil+l(n-1)x+ 5[] «
The triangular inequality of the nos:’m:L gives
}”(n 1)x+(n") ) - }l(n—l)x+yll)s]}%y], and

£(n)2 el 3 (20-1) et 25 = 2] It [Ho-1)x4 @Y g M- )x+ 5]

=l (2n-1) Jx+ 9 = I IESY) x+(EY) yl+ JEY) =+ Ly .
If n=0, it follows by using the triangular inequality of the
norm that i< &lyi+lx+Lyll, end fr+ vl i~ vl . 2
Likewise if n=1, [(Z1)x+EDy+)JE2 l)x+ vi=2{2L) iy 2221 Bylle
Hence
£ (n) 2 20/ *+ 2821y ® - 2(222L) i i - iy [2(B=2) yxi+- 222201 ]

= 2n Jx)* - (3;1'2) =l fy)) 5

= 2|z [n))xll-(%’-g) Hy}}] , Wwhich can be made greater than zero

by taking n sufficiently large. Now consider

£(-n) = [l*+ hax - yi® - (1) x - yllz:l;

+1)’~ 2n+1

Using the identity =1, we get:

£(-n) = fl? - 22 jox-y)| +[<n+1)x &0 ) - i)z - 7],
= i (2o I = £ )24 [ll0nryx -B2) g - e ) x - Ty
[Int1)x- (Ehtl.)y”w;(nﬂ)x- il
< || (2n) = }.yllz il]nyuf_(nﬂ (n+l)yu+)kn+1 -y,
.:.’-. (f—‘tl;x-@:-’;]-) I+ %‘—"'—)x--—ﬂ]
If 1>0, then [x -—yn )2 2 Il +2z y)?, end
£(-n)= -2n/x| +2(——9 el Iyt - 22£L I3 1=+l E—‘-Iil—l))xmznﬂlly[)
= -2 i) [n ] - 222 )]
’éus f(-n) is negative if n is sufficiently large. Since

)}x}] - (2n+1) Jx

1. Condition (2) of Definition 1,6,
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f(n) is continuous and has positive and negative values, it
follows that f(n) = O for some value a of n. That is,

”xﬂ‘?'+ I/ax+yl}2 = [x - (ax+y)l 2 for some number a,

While restrictions on the value of a are not as simple

as for isosceles orthogonality, it is possible to obtain them
from inequalities derived in the proof of Theorem 5.1, Thus

£(n)= 20 [n ) - 282 yi] and £ (-n)< -2/t [nfx) - )],
When ||| = [yl|], these become:

f(n)> I-zl-ﬂxﬂz}—_ilz-Bn-!-@ and f(-n)s-.zgl.ﬂxj}zﬁaz-m-é],
For this case it then follows that a must be between -%(3+V17)
and 2, and that there is a possible value of a Dbetween
-%(B-HW) and 1l., The lack of symmetry of these limits is due
to the condition for Pythagorean orthogonality not being equivalent
to  JxlP+ Il? = Jl=ryil®,

However, Theorem 5,1 is valid if this change is made,

That is, x1y does not imply x L=y,

Corollarz 5.1l¢ If x and y are elements of a normed

linear space, then there exists a number a such that

)R Joxryl)? = Jx(axiy)] 2.

Proof: By Theorem 5.1, there exists a number b for the
elements x and -y such that /}1:[/2-}-//bx--;sr}f2 = JJx - (bx-y)/}z.
2 2
Let a = -b, Then [ +/axty) € Jlx+(ax+y))| =

However, it is not always possible to find a number a
for arbitrary x and y such that
2 2 2
}}x112+))aX+yl} = |- (axty))© = [|lx+ (axty))|".

This is s8hown by the following example:
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Example 5.1, Consider the space of all number pairs (a,b),

where [J(a,b)l| is the larger of Ja] and /b}.l Let x = (1,0)

and y = (0,1)s Then axt+y = (a,l) and xz*(ax+y) = (Ixa,tl).
Consider the equation }}x[/2+//ax+y/}2 = Jx - (ax+y),//2, or
l*f-ﬂ(a,l)//2 = }/(l—a,-l)/}z. This equation must have at least one
solution because of Theorem 5.1.

If O<asxl, it becomes 2 = 1, which has no solution.

-

If lsa=2, it becomes I1+a”™ = 1, which has no solution in

the interval (1,2).

2 “

If a=2, it becomes 1+a* = l-2a+a”™, which has no solution

for a=2,

If -l=a=0, it becomes 2 = l-2a+a?

2

, Or a =1-Y2,
If as-1, it becomes l+a”~ = 1-2a+a2, which has no solution
for as-l,

Therefore a = 1-Y2 is the only value of a such that
<) 2 }}ax+3’1)2 = J|x - (ax+y)l/2. Similarly, a = V2 =1 is the only
value of a such that }Ix)}2+)}ax+y1}2 =[x+ (ax+y) 2. Hence there
is no value of a such that Hxl]?#”a:ﬁy/l?' = Jx- (ax+y))}2 =

Hx—)—(ax+y)1}2.

Pythagorean orthogonality is clearly symmetric, and for any
x and y there exists a number a such that x1lax+y., However,
such orthogonality is neither homogeneous nor additive, and can be
homogeneous only if the normed linear space is abstract Euclidean.,
Thus Pythagorean orthogonality is additive if it is'homOgeneous.
The converse of this is also true, and it therefore follows that
such orthogonality can be additive in a normed linear space only

if the space is abstract Euolidean.

1. The space used for Example L.l.
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Theorem 5.2, If Pythagorean orthogonality is homogeneous

in a normed linear space T, then T 1is an abstract Euclidean

Space,

Proof: It will be shown that the condition given by Jordan
and»Neuman% for the existence of an inner product in a normed
linear space is satisfied, namely:

ety P+ le-y)|? = 2 Elxllz-ﬁ-llyllzj
for all elements x and y. Because of Theorem 5.1, it is known
that for any elements x and y of T a number a exists such

that ”xﬂ%#”ax+yﬂ = -(ax+y)”2. Assuming homogeneity, it

2
follows that kzﬂxﬂ +fex+yll 2 = ”kx-(ax+y)ﬂ2 for all numbers k,

Set k equal to a=*l. This giveé Iyl ® = (aﬁ:l)ZIIX//2+/Iax+yI}2
s Jerg P+ f=y)? = 2flaxeg) >+ 2(a21) =)

But using homogeneity again, it follows'that axl ax+y, and hence
ﬂaxﬂf”z P /Ix/[2 ey //Y//2° Therefore ”X-I-Yllz—i-ﬂx-ﬂlz = E/X//z-f-//y}l ZJ.
It has been shown that the condition for the existence of an
inner product is satisfied for all elements x and y. Thus the
conditions of Definition 1.9 are satisfied and T 1is an

abstract Euclidean space,

The inner product (x,y) known to exist by Theorem 5.2
is equal to é[yx+y”2-ﬂx-y”§].2 It is interesting to note that,
by using Ux¥YU2 =:(ail)2ﬂxﬂg+yax+yﬂz, as shown in the proof of
Theorem 5.2, this reduces to (x,y) = %[(a-l)zﬂx}}z- (a+l)2}!x})2], or
(x,7) = -ail|,

This is the definition of the inner product used in establishing

l. See Jordan and Neumann (IV).
2., See Theorem l.2.
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Theorem 4,8, which is the analogy of Theorem 5.2 for isosceles
orthogonality.

It was shown that isosceles orthogonality is homogeneous in
any normed linear space in which it is additive.l This can be

strengthened for Pythagorean orthogonality:

Theorem 5.3, The properties of homogeneity and additivity of

Pythagorean orthogonality are equivalent for normed linear spaces,

Proof: If Pythagorean orthogonality is homogeneous in a
normed linear space T, then T 1is an abstract Euclidean space
because of Theorem 5.2, The orthogonality is then additive
because of Theorem 3,2, Conversely, suppose x1ly, where x
and y are arbitrary elements of a normed linear space, Then
Theorem 5,1 gives the existence of a number a such that
xJdax -y, If the orthogonality is additive, then x4 ax, and
hence a =0 if x# O, Thus xAi-y. Also, yLx, because of
the nature of the condition for Pythagorean orthogonality.2
Using additivity, it now follows that nxlAmy for all integers
m and n, Thus Ilnxl|2+ llmy)l2_= Inx -myllz, or

ki?+ (B yi? = =20 %
Since the norm is con‘c.inuous,3 it follows that IIXH2+ llﬁt::);')l2 = l]x-tyﬂz
for all numbers t, or xAty for all ., Thus Pythagorean

orthogonality is homogeneous if it is additive,

1. Lemma 4.9. e 2
2. That Ixl*+lyl” = kx=-yl~,
3., As follows from Condition (2) of Definition 1.6,
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Clearly Theorem 5,2 is still valid if ¥y 1is replaced by
-y throughout, This and the combination of Theorems 5.2 and

5.3 give the following Corollaries:

Corollary 5,2, If two elements x and y of a normed

linear space are said to be orthogonal if and only if
] 2
1=+ 4y 1® = Iz +g17,

and if/such orthogonality is homogeneous or additive in a normed

linear\Space T, then T 1is an abstract Buclidean space,

Corollary 5.3. If Pythagorean orthogonality is additive

in a normed linear space T, then T 1is an abstract Euclidean

Space.
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6. SPHERICAL ORTHOGONALITY IN GENERAT NORMED LINEAR SPACES.

It is clear from the forms of their definitions that both
isosceles and Pythagorean orthogonality are symmetric, and that
spherical orthogonality is homogeneous.l It has been shown that
a normed linear space in which either isosceles or Pythagorean
orthogonality is additive is an abstract Euclidean s_pace,2 while
it will be shown that a normed linear space in which spherical
orthogonality is symmetric and additive is an abstract Euclidean
space,3

As with isosceles and Pythagorean orthogonality, it follows
that for any elements x and y of a normed linear space there

L

exists a number a such that x 1is orthogonal to ax+y. Actually,

a stronger theorem than this can be established by relating

5

spherical orthogonality and the theory of linear functionals,

Thus for any element x of a normed linear space there is a

maximal linear subset H such that x4+h for all h in H.6

This "hyperplane" is not necessarily unique, In fact, it will be
shown in the next section that its uniqueness is equivalent to the
existence of a differential of the norm, as well as to additivity

7

of the orthogonality,. In Section fOthe relations between spherical

l. See Definitions 2.1-2.,3., Homogeneity, symmetry, and additivity
of orthogonality are discussed on page 13,

2., Theorem 4.9 and Corollary 5.3,

3. See Section 8,

Lo Whenever "orthogonality"™ is used in this section, it will mean
the "spherical orthogonality™ of Definition 2.3.

5., See Definition 1.8 and the following discussion,

6. Theorem 6,2,

7. See Corollaries 7.3 and 7.4,
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orthogonality and linear functionals will be used in finding an
evalﬁation of linear functionals for certain types of normed
linear spaces, '

The present section will deal primerily with showing the
existence of this hyperplane and a discussion of the resulting
number a for which xlax+y, and with showing the existence, for
general normed lineaf spaces, of limits whose equality would give

the existence of a type of differential of the norm.l

Definition 6,1, An element x of a normed linear space |

is orthogonal to & set U (x4U) if and only if xdiu for all

ueU,

Definition 6.2. A maximal linear subset of a normed linear

e e e ¥ ": 24w
space is aYlinear subset U which is not-contained in any other $rope

linear subset, Such a subset U, or any translation x+4U, is

called a hyperplane.2

i.,,’ Ve a2 ‘”"ﬁ' 4 A ol ( »7;}‘ > iy ’i,," B “'uﬂ"’ i ——)
The properties of linear functionals which will be needed
here are discussed on page 8 of this thesis, In particular, if

the moduius £l of the linear functional £ is 1, then

*

*
If(x)]s=uxu for all x, and elements can be found for which \f(x)‘
is as near to ﬁ§H as desired, The equality may not actually
hold for any element, the following theorem showing that it will

X
hold if and only if there is an element orthogonal to the hyper-
3

, plane consisting of elements«for which f = O, This theorem also

heT ‘?t’;‘bﬂ:ﬁ 'S

1., See Corollary 6.6 and Theorem 6.7.

2, Hyperplanes are discussed by Mazur (IX), pg. 71l.

3. That the elements form a hyperplane isshown implicitly in the
proof of Theorem 6,1,
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enables one to show the existence, for any element x, of a

hyperplane H for which x.LH,

Theorem 6.1, If £, with |l =1, is a linear functional

on a normed linear space T, then Jf(x)|] = lIx if and only if

x1h for all elements h of T such that f(h) = O,

Proof: ILet H be the linear subset consisting of all
elements h such that f(h) = 0.1 This linear subset is maximal,
since, for any two elements x and y not in H, f(x+ky) =
if k‘£:§%§}, Thus x+ky € H, and hence any linear set/containing
x and H contains y and therefore all of T. Suppose
|£(x)] = Ixll. Since Uzl = 1, it follows that £(h) = 0 implies
v]:f(x+h I~ I£ (x)]= lx+all, Hence |kxll=< lx+hll for all h<H,
MSlnce H is closed under multiplication, this gives xA1h if h <H.

Conversely, suppose x\AH. Take lf(x), = plxll , where
p=<1 since ffll = 1. Then Izl =|x+hll if heH, and
Jg(x+n)] = \e(x)l = pixl= p =l
Since H is maximal, every element for which f is not zero is

- of the form k(x+h), where hegH, Thus )f(y)Ls pliyll for all
vy €T. Then Jiel<p and p=1, or |£(x)| = k.

Theorem 6.2. If x is any element of a normed linear

space, then there is a maximal linear subset H such that x._LH.

Proof: ILet x be an arbitrary element of a normed linear

space T, and f Dbe a linear functional such that £(x) = [fxl|

1. E is closed under addition because of the linearity of £ (see
Definition 1,8), and is closed under multiplication by real
numbers because of the homogeneity of f which results from its

additivity and continuity,
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1
and gl = 1. Take H as the maximal linear subset consisting
of all elements h such that £(h) = O, Then by Theorem 6.1,

x1H,

The -converse of Theorem 6.2 is not true, The most obvious
failure is the case when H is dense in its sPace.2 This is the

3

case for Hilbert space” when the maximal linear subset H

contains the set S of elements with only a finite number of

)

non-zero components, since any element x = (xl’XZ’XB’Xh’
is the limit of the elements (x 0,0,°°*), (x 19%5s 990954
(xl,xz,x3,0°-0 * « ¢, The converse of Theorem 6.2 will be further
investigated in Section)0. It is closely related to the problem
of finding an evaluation of linear functionals for normed linear
spaces,

Theorem 6,2 is stronger than the analogous theorems proven
for isosceles and Pythagorean orthogonality.h However, while
for any elements x and y of & normed linear space there is a

5 or Iz +k(axey )l = Izl for all k,

number a such that xlax+y,
it is not always possible to choose a such that

Il x+ k (ax+y)l > =<l
for all K,f 0 —as can be done for abstract Euclidean spaces,
This can be shown by using the normed linear space consisting of

all pairs of real numbers (a,b), with "(a,b)d as the larger of

1., The existence of such a functional f is given by Banach (I),
pg. 55, Theorem 3,

2. H is dense in T if H=T.

3. The space of all sequences x = (Xj,Xp,X3,***) for which

zx.z' is convergent, with ||zl v:i(xi)z.
be Tteorems L.5 and 5.1,
5. Theorem 6,3, below,
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le} and hc»}.:L For let x= (1,0) and y = (0,1). Then
|x +k(ax+y)ll = l|(1+ka,k)ll, and is less than |xll =1 ir |kl<1
and -2<ka<O, Thus |x+k(ax+y)ll=|xIl for all k only if

a

il

O, Thus xlax+y only if a = 0, But Ix+kyl = Ixll if
Iklsl, and hence there is no number a such that

Jx +k(ax+y)ll>lIxll for all k # O,

Theorem 6,3, If x and y are any two elements of a normed

linear space, then there exists a number a such that

lx+k(ax+y)ll> )xl| for all k. That is, such that xJ..ax+y.2

Proof: If x ='O, then clearly x1\ ax+y for all values of
a. If x % 0, then Theorem 6.2 gives the existence of a maximal
linear subset H such that x1H, Sinéé ﬁx ié not in H,
ax+y must be in H for some number a, For if not, the linear
subset gotten by adding y to H would not contain x, since
X = by+h implies ~Lixy —'-h € H., ‘I'hus H would be properly

b
contained in another linear subsetxand hence would not be maximal.

ko S PaAAL J A[ % CoaApr

If a 1is taken so that ax+y £¢H, then x.Lax+y.

For ordinary Euclidean space, it has been shown that
Ja|= I I if xJ.ax+y.3 It was shown that this inequality was
valid for isosceles orthogonality in normed linear spaces 1if
llyl = lxf, but had to be weakened for |yl > |l 2 The following
Coroilary shows its validity for spherical orthogonality, without

any assumption about the relative sizes of |yl and Ilxll.

1. The space of Example L4.l, pg. 21,

2. In the sense of Definition 2.3.

3. See the discussion and figure on page 29.
4o Theorems L4.6 and 4.7 and Example 4
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Corollary 6,1, If x (#0) and y are elements of a

normed linear space, and Xx.lax+y, then |a|s;¥%%.

Proof: By definition,l xtax+y if and only if
Ix + k (ax+y )l = Il

1l : : 1l
for all k. If k =-%, this gives ”-5 vil2lxl|, or lal= lx‘ll'

Unlike isosceles and Pythagorean orthogonality, spherical
orthogonality is not symmetric in general normed linear spaces,
That is, x4y does not imply yl1x., This lack of symmetry is
éhown by the normed linear space consisting of number pairs (a,b),
with [(a,p)|l = lal+ Ib|.2 For let x = (1,0) and y = (1,1).
Then lxtkyll = ll(1+k, k)l = J1+kl+ lk|>1 = lIzll. Thus |=x+eyl = Ul
for all k, and xly. But |ywkxll = |J(1+k,1)l= [+c]+ 1. Since
Iyl = 2, ﬂy+kxl-<”y" if -2<k<0, Thus y is not orthogonal
to x.

/ Because of this lack of symmetry, Theorem 6,3 does not
give the existence of a number a such that ax+yLx., This is
shown by Theorem 6.,4. Likewise, the uniqueness of the number a
such that xLlax+y is independent of that of the number b such
that bx+y L x. These types of uniqueness will be studied in
Section 7, and will be shown to be equivalent, respectively, to
Gateaux differentiability of the norm and to the condition for a

normed linear space to be strictly norm_ed.3

l, Definition 2.3,
2. The space of Example L.2, page 2L.
3. See Definitions 7.3 and 7.4, and Theorems 7,3 and 7.8,
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Theorem 6.4 If x and y are any two elements of a

normed linear space, then there exists a number a such that

ax+y\ X, This number a is a value of kK for which Hﬁxfzﬂ

takes on its absolute minimum,

Proof: By definitioh,” axty Lx if and only if
llax+y ) + kxll = lax+yll
for all k. Thus ax+yLx if and only if lax+yl is the smallest
, ; % Vervialle K7l

value of lkx+yll. Since I|kx+yll is a continuous function“and b vl

F "".‘f"“\k o K= don YO ¥
becomes “infinite at +*® and --<o, it must take on its minimum,
The number a can then be any value of k for which |kx+yll

takes on its absolute minimum,

Because of the difference in the methods of evaluation and
interpretation of the numbers for which xlaxt+y, and for which
ax+y Lx, it is interesting to consider the effect of assuming
symmetry of spherical orthogonality. The following corollaries
follow immediately from Theorem 6.4, using Theorems 6,1 and 6.2,
A further result of this type is given in the next section by

Corollary 7.5.

Corollary 6,2, If a normed linear space is such that

spherical orthogonality is symmetric, and f is a linear functional

with el =1 and le(x)| = Uxl|, then Jkery)l is minimum if
N __I(y).
f(kx+y) = 0, or k = A6

Corollary 6.3. If a normed linear space is such that spher-

ical orthogonality is symmetric, then for any element x there

exists a maximal linear subset H such that x1H and H.LX.

1. Definition 2.3.
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Symﬁletry also aids in a further investigation of the
relation between the numbers a and b, where xJlax+y and
y 1l by+x. Such a relation was very important for isosceles
orthogonality, it having been shown that blly112 = allxl|2 irf
isosceles orthogonality is homogeneous and additive.l This was
the key to the proof of Theorem 4.8, which showed that isosceles
orthogonality can be homogeneous and additive in a normed linear
space only if the space is abstract Euclidean,

ANV b"r.{;
Theorem 6.5, If x and y are any twoelements of a

normed linear space, and x.Lax+y and y._Lby+x, then Jabl=1,

If the space is such that spherical orthogonality is symmetric,

then O=ab=<l,

Proof: By Corollary 6.1, )a|s-)ljl-§-’,"- and |bl= ,'}I?, Hence

Jabl]= 1., If xLlaxty, then ax+ylx if the orthogonality is

symmetric, Hence N(axt+y)+kixll=lax+yll for all koo If

yLby+x, then |y+ky(by+x)l= Uyl for all k,. If k =

get Iyl > axtyll. If k, = 55, we get [laxtyl= [1-ap| liyll.

-a, wWe

Hence |lyll> Ji-abl|lyl, and 1= )i-ab). Thus ab=0, if spherical

orthogonality is symmetric,

The validity of Theorem
6.5 for ordinary Euclidean
space can be easily shown.
From the figure, it is evident
that a and b are both neg-

ative or both positive

l, Lemma L4.8!', page 33.
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according as © is acute or obtuse, Also, sinx:%:%}.
Then sin®«x= lab|, and |abl=1. Since a and b are of the
samg_gign, O=ab=1,

\ ﬂ./Suppose x_Lax+y, and ylby+x. By assigning particular
values to ky and k, in nx+kl(ax+y)||?-.nxli and
“y-pkz(by+x)uza"yu, a number of interesting inequalities can

be derived:l

Itk =x3: axb)x4yll= blix, if k, =xL:x+ (bta)yl= lallyl,
Kl = %‘:: "2ax+yﬂ2 la Il Kz — %: [lx+2byll= lblly],
(L) k, = %: lx+yll= |1valllxl, k,= lﬁ}b: It yll= |1 b} liyl,
k= ’_“‘61-121 : Joy+xl> |1-ab) ki, k, = 2t llaxtylt= [1-abljiyl,
k, = F'T-l'é': lox+yl> Ja - blikil, ky = a_'J-:'"‘E: Jay+xll= la - vljiyll.

If spherical orthogonality is symmetric, it also follows
that ax+ylx and by+xly. Thus [lx+kl(ax+y)ll > ]k1| llax+vyll
and |ly +k, (by+x)ll= ]Kzl lby+xll, and other inequalities can be
gotten by giving values to Kl and Kz. But because of Theorem
6.4, these are nothing more than consequences of |[laxty| and
'lby+xll being minimum, Thus by making the same substitutions as
above, one gets the following inequalities--all of which are
obvious results of this minimum condition, but are interesting in
that they are the vatriations in equations (1) above made possible

by the assumption of symmetry.

(e £B)x+yll =]ax +yll, lx+(o +a)yl a oy + x|,
(2). l2ax+ yil = Jax +¥ij, Jx +2byll > lfoy +x|j,
| Ix+yli=llax+¥ll, Ix+ yll = [loy +x |,

Y. ki = -é- (or analogously, k, =--]5'-) was used in proving
Corollary 6.1.



52,

loy+xji> ol lax+yll, lax+vl= a) loy+xli,
(2) (Cont.

Ibx+yil = llax+ yil, lay+ x| = oy +x|j.

If x and y are elements of a normed 1%near space,
and x- Ly, then [xtkyll= lIxll for all k,.iﬁuqﬁ;;;yﬂézﬂnxﬂ for
all n, It thus seems interesting to investigate the limit of
Inx+yll-|nx/l as n becomes infinite, both when x and y are
orthogonal and when they are not, This 1limit will be shown to

exist, and to gi#e a condition for orthogonality, as well as a

determination of all numbers a such that xJ_ax+y.4 It can then

be related to the limits of ﬂx&hg"-nxﬂ as h approaches zero
from the right and left, and to the Gateaux differential of the

norml if these limits are equal,

Theorem 6,6, If x and y are any two elements of a

normed linear space, then lim Inx+yll -linx|| exists.,

Proof: Because of the triangular inequality of the norm,2
|nnx+yﬂ-MnXHLsMwl. Thus Jinxtyll=linxil is bounded as n becomes
infinite, Assuming that ;ggg\MJ&yﬂ-uan does not exist, let
r and s Dbe two limit points of |inxtyli-inxll as n becomes
infinite, Since lnxtyl|-linxll is a continuous function of n,3
there must be arbitrarily large values of n such that
an+y"-”nx“:=-£%§. If such a value of n 1is greater than
-Lll*'TSL, then, for that n, lnxtyll = ”(n+%"§[)xu, or

N+ 2280+ 34+ [= Fto+ 3k = |G+ 52 yx+ 39 -1 58 xwial]

l, See Definition 7.3.
2. Condition (2) of Definition 1.6,
3, The continuity of the norm follows from Condition (2) of

Definition 1.6,
4, The existence of this limit also follows from results of
Ascoli (XV), pp. 53=55,
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Theorem 4.l then gives

”[n+ LS x-39) + k- R il = Na+ FER = +av |
for Ikla:l. If k is replaced by 2m and this inequality

1

divided by |m|,” it gives

Jji2 +ﬁﬁl)x+my Siep =vll = & +2gn =+ 2] -

Now take any number p, and let n become infinite, keeping
m = 51-. This gives

},},@o Jo+ RiEEE L x4 Ry - B2 x5l = 13m, ﬂ(p+%(1—’;%f—l)x+2%y”,
or "p r+6)X+V">”Pﬂh
for all p. From Lemma 4,5, it follows that all limit points of
loxtyll-pxll as p-» oo are greater than or equal to %F%%. But
this is impossible if r and s are both limit points., Hence

the assumption that l%g)”nx+y"-unxu does not exist is false.
m

Corollary 6,6, If x and y are any two elements of a
llzx+ayll - i)l Ixc+nyll - il
hn n

and lim
= 4>—0

normed linear space, then ﬁggb

exist,

Proof: Theorem 6,6 gives the existence of %}g Inxyl - Inxil.
Setting n'='%, this becomes Lim LXHFU=ME - qpe oyistence or
A>+0
lim Inx-yl -|nxll is also given by Theorem 6.6, since the element

y was arbitrary and can therefore be replaced by -y. This is

. lx~hyll = x| _1s Uxthyll= )il
equal to | ’%_)111_1‘1) + sy O J.il._):lﬂ { o

Theorem 6.6 and its Corollary are essentially the same,
but the proof is easier to follow if the limits are kept as in

the theorem, The two forms will therefore be carried together,

1, Using Condition (3) of Definition 1,6.
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Conditions under which the limits of Corollary 6.6 are equal
will be studied in Section 7.

The following theorem gives an evaluation of the limits
known to exist because of Theorem 6.6, The proof is very much
like that of Theorem 6.6, and it could have been revised so as
not to make use of that theorem and to give it as a corollary.
However, the proof is much more complicated in that case and it

therefore seems advisable to include both,.

Theorem 6,7. If x and y are any two elements of a

normed linear space, with x # 0, then lim Jox4yll -Inxl| = -4,

where A is the algebraically smallest number such that

xLlAx+y., Also, %_1)130 Jnx —yll-lnxll = Bllxll, where B is the

largest number such that x.1 Bx+y,.

Proof: The existence of lim Inx+yl - )nx]] is given by
Theorem 6,6, But, for any number a, this limit is equal to
}'%1110 l(n-a)x+ax+yll - )nx||, or because of Lemma A4.5, to

Lim |nx +(ax+y) | = Inx/(-a llxll .
If x.lax+y, then [nx+ (ax+)||= Inxll, and hence
}131‘1310 Inx4yll = Jnxll= -a )Jxlle Thus if A is the greatest lower bound
of all numbers a such that xaiax+y, then
,:!;E‘E}Eo Inx+yll - Inxll= -A|lx)]. Suppose ,J’.‘_i)re% Jnx+yl -lnxl| = -rixll. Iet €
be any positive number., Then there must exist arbitrarily large
values of n such that lllnx+yl|-)lnxll+rllxll‘< eixlle If n>|)r|,
this can be written Illnx+yll-ll(n-r)xll|< glxlle There is then a

number e such that |e|<é€e¢ and Inx+yll- l(n-r)xl|-elxl| = O,

1. See Theorems 7.2, 7.3, and Corollary 7.k4.
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or |nxtyll = J(n-r+e)x|l. But this can be written:

"Kn-'%l"l-%e)ﬂéﬂ o+ H%r-%e)x—r%sfl” = "[(n-%w%e)ﬂ%y] - [(3r-3e)x+dy]

Theorenm 4.1 then gives:

” [(n-%r+%e)x+ %y] +k [(%r-%ge )x+ 3y])| = ”(n-%ra—%e )x+ %y”

for |kl=1, If k 4is replaced by 2m and the inequality

divided by |m] ,l this gives

n_r, e 1 - ” n_r e 1
,Bﬁ' E+E)X+ZEY]+(T e)x+y _>—”(m ﬁ+m)2€+-ﬁy" .
Now take any number p, and let n Dbecome infinite,

keeping m = B fThis gives

kY
1 Jlo- B4 S B v +e-olx o] 2 1 o - 3248z Rl
or l((p+r-e)x+yllz lpxll for all p. Since Je|<g and <
was arbitrai‘y, this gives I]px-i—(rx-i—y)”?. Joxll for all p. It
has thus been shown that if lim Ihx+yll - nx) = -rlkll, then
xLrxty. But it was shown that lim Inx+yll - Inx)l= -4 |||, where
A is the greatest lower bound of all numbers a such that
x Laxty. It now follows that lim Inx+yll = fnxll = -Allxll, and
X1 Ax+y. If B is the largest number such that =xABx+y, then
-B 1s the smallest number such that x.\.-B_x-y.2 Hence
lim Inx=yll-nxl = Blxll, where B is the largest number such

that xL BX‘\'Y °

Corollary 6,7, If x and y are any two elements of a

normed linear space, and x # O, then }_}1& xthyll = lxll -A Il ,
and Jlim ’bHQﬁll ot = -Blxll, where A and B are the algebraically

smallest and largest of the numbers a for which x.L axty.

1. Using Condition (3) of Definition 1.6.
2. Since spherical orthogonality is homogeneous. See page 13
and Definition 2.3.
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Proof: This follows immediately by replacing n by

# in Lim lnxeyli-lnxt = -Akd, and n by - in
1im Jnx-yll - Inx} = B|xl| , both of which are giveh by Theorem 6,7.

For elements x and y of a normed linear space,
Theorem 6.7 gives the upper and lower bounds of all numbers a
for which xlax4y. The following results show that xdaxty
for all numbers a between these bounds, and hence give an eval=-
uation of all such numbers, This gives a necessary and sufficient
condition for tthOrthogénality of elements of a normed linear

)

space, G SIS 4

Temma, 6.8, If x and y are any two elements of a normed

linear space, and x1L Ax+y and X1 Bx4y, then xtax+y if a

is a number between A and B,

....

Proof: For definiteness, assume A<&<B. If x4 Axty,
then Jx+k(Ax+y)|> Ix{ for all k. ILikewise, if x._LBx+y,
then |lx+k(Bx+y)l= Ilxll for all k. Iet a be any number such
that A<a<B. Consider |x+k(axty)ll. If k=0, then

e +k (axty )l = | +k(a-a]] x +k (Axry || _>,)L1.+-k(a-A§l xn?_llxll.

If k<O, then

”x+l«:(ax+y)ﬂ = ’lﬂ.+K(a-Bﬂx+K(BX+3’)">.“EL+k(a-B)] x"g\\x[\.

Hence \\x+k(ax+y))lé Ixfl for all k, and therefore X.Lax+y.
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Theorem 6.8, If x and y are any two elements of a

normed linear space, then xtax+y Iif and only if .

_lim "X+hh" o 29 <a "X"<-£§I-I-lo IX-k-hhﬂl-nx i)

>+0

Proof: It follows from Corollary 6.7 that the inequality

of Theorem 6.8 is satisfied if a is such that xl1lax+y. Also

xLlAx+y and x1Bx+y, where A = -lim x+h u,:‘cl- I and

B = -jl{.imo X”'ﬁ l;-llxll. Thus by Lemma 6,8, xlax+y if A<=a<B,
+- =

Corollary 6,8, If x and 'y are any two elements of a

normed linear space, then x.y if and only if ‘&igb thyll- il . o
—’ X

and 1lim ”X‘f‘h%”"lbdl 50.1
— A»-o

It follows from Theorem 6,7 that %§g>ﬂnx+yN-Nnxﬂ]2:
lim | hxl - lx-yi], or 1lim linxtyl+ Ynx-y)-2)nxjf=0. This is also
evident from the triangular inequality of the normf which gives
2lInxll=< |nx+yll+ Jnx-y§. This limit was investigated before.3
It is zero in ordinary EPclidean space, and because of Theorem
6.7 (or 6,8) it being zero is necessary and sufficient for the
uniqueness of the number a for which xi1ax+y and for the
existence of the Gateaux differential of the norm.h

For any elements x and y of a normed linear space,
Theorem 6.8 enables one to determine all numbers a such that

X Lax+y., How this can be done is illustrated by the following

example:

l. Also see Corollary 7.2.

2. Condition (2) of Definition 1.6.
3, Page 27 of this thesis,.

L4, See Definition 7.3.
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Example 6.1, Let T be the normed linear space consisting

of all pairs (a,b) of real numbers, with l(a,b))l as the larger

of [a] and lbj.l et x= (1,1) and y = (0,1). Then

Ix+hyll = J)(1,1+h)ll and _I)_J&Q%!_:M__: 1 if h>0 and zero if
h<0 and small, Thus lim megiél =Ml 7 ang }im, IIX+h5;1"~MXM = @,

Then by Theorem 6.8, x1lax+y if and only if -l<a=<0O0, That
is, (1,1) 1 (a,a+l) if and only if -l=a=<O, This conclusion
can also be verified ‘directly. By definition,2 xtax+y 1if and
only if |Jx+k(ax+y)l|l= Ix{, or

n@ma,lm(aﬂ)]” > i, =1
for all k., Clearly this is true for |k] small if and only if
a and at+l are not of the same sign; that is, if and only if

=l=<a=<0,

The two limits of Theorem 6,7, and of Corollary 6.7, can
be added, This has the advantage of making it possible to let
h-+0, since the right and left limits are then equal. It will

also be'valuable in interpreting the following results.

Theorem 6,9, If x and y are any two elements of a

normed linear space, then lim [nx+yll-inx-yll = -(A+B)lxl|, or

$im [x+hyll k-llbi =0yl - _(a+B)|xll, where A and B are the

smallest and largest of the numbers a for which x.iax+y.

Proof: Theorem 6,7 gave ,]n.i.;_g hoxtyll - Inxl| = -A))x), and
lim |Inx-yl - Inx)| = Blxll. Subtracting these gives

M>0

%}g jox+yll - Jnx-y)| = -(A+B) §xlle If n is replaced by %, this

l. The space of Example 4.l.
2., Definition 2.3.
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becomes Jim ﬂx-l-hyﬂ]-;)lx-hyil , which is obviously equal to
o Aty ;1 lx~hyll .

>~0

The limits of Theorem 6.9 are twice the differential of
the norml if it exists. For ordinary BEuclidean space, these
limits being zero is clearly necessary and sufficient for the
orthogonality of x and y. The following theorem shows that
even for normed linear spaces there is always a unique number a

for which xtax+y and lim JJox +(axty )| - Inx - (ax+y))| = 0.
V) <O

Theorem 6,10, If x and y are any two elements of a

normed linear space, and A and B are the smallest and

largest of the numbers a for which xiax+y, then =xL3(A+B)xXty

.and linm Inx + (ax+y ) =nx - (ax+y )| = 0 if and only if a = (A+B).

Proof: It follows immediately froﬁ Lemma 6,8 that
xL 3 (A+B)x+y. But since A and B are the smallest and
largest of the numbers a for which xlaxty, it follows that
1(A-B) and 3%(B-=A) are the smallest and largest of the numbers
at for which xlatx+2(A+B)x+y . Hence it follows from
Theoren 6.9 that lim ox+[3 (a48)x+ 7| = Jlnx =[5 (a4B)x+yl||=
-[3(4-B)+%(B-A]] = 0. From this and Lemma 4.5, it is clear that

lii"z‘r}o Jnx + (ax+y )il = Jlnx - (ax+y)] = 0 if and only if a = %(A+B).
m

It is now interesting to look at Example 6.1 again, For
the x and y of this example, the number A of Theorem 6.10

is =1, and B = 0., Thus %(A+B) = -3. Hence Theorem 6,10 shows

l. See Definition 7.3,
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that we must have llm l]nx+(- x+3b" llnx - (=3x+y7) “ = 0, or
Lim [(n-3,n+2)f -0(11+§,n-§ Il = Lim 0 = o,

While isosceles and spherical orthogonality:L are not
equivalent in general normed linear spaces, it is possible to
establish a relation between them, Thus the unique number
2 (A+B) of Theorem 6,10 can be shown to be ,J,;ir& a,, where
nxdia x+y in the isosceles sense, The following Lemma used

in establishing this is a strengthened form of Lemma 4.5,

Temma 6,11, For any normed linear space T and any positive

numbers E and £ there exists a number N such that for all

elements x and y of T ]ll(n+a)x+yll-Ilnx+yll-a”xl,<8’ if
lal<E and n>NLyl+1.

Proof: Since ﬁ%i"'ﬂ%:l identically, ll(n+a)x+yll can
be written as ”nx-l—( =)yl + 2 }Ix+(n+a)y", if n is positive

and large enough that n+a >0, Thus

n+a )i - oyl ] + 2 e+ (ml—_ar) vll.

But from the triangular inequality of the norm,

l(n+e)x +yi - Inxtyll = [ilnx+ (2=

, llnx + (B 3l - Iyl | < |;i§] s,

n+a
and lallX+ ('I-l-_‘—_-a-) yﬂ =a "X“‘ = l'ﬁ%"_g\ "y“ o

If N is large enough that N+a>0, then for n>N[l_lyﬂ+]] 5

a allyll a\ st
‘n—f—a Iyll< Nuy1|+N+a\< l'N for all y. For positive numbers E
and & , choose N large enough that I%I<-§: and N+a>0 if

laj< E. Then \K%"yll-(%_ i n>N[l|yl)+ﬂ and |a|<E.
Thus ’Il(n+a)x+y)|—|lnx+yll—allx",<£ if Ja|<E and n>N[)lyﬂ+J].

l. See Definitions 2.1 and 2.3.
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Theorem 6,11, If x and y are any two elements of a

normed linear space, and the numbers a, are such that

fInx 4 (e, x+y7)l] = Jlnx - (apx+y)[’ » then 1lim a ) =a exists and is
m oo

such that x_Lax+y. Also, ,:,,L.,ig Inxyfl = fnx-y|| = ~2a Jxf] L

Proof: The existence of ,.;L‘;L’I‘r,lo Inx+yll = Inx-y)] is known.? But
x4yl - Inx-y)l =E}nx+yll-|lnx+(anx+y)lﬂ +ﬂlnx-— (2 x+y )l = Inx=yll] .
If n is large enough that |lyll< Inx)}, then Theorem L.6 gives
a
'—nllls ﬂ!}lx"l’ or |an|s -{%&-. This, with a double application of
Lemma 6,11, gives the existence, for any positive number £,
of a number N such that n>N implies
l"(n*-an)X+ yll - Inz+yl -a, llxlI, < KE
and )"(n-an)x - yll-l}nx-yll+an”x” I< Ye,
Hence 'Illnx+yll-|lnX'Y"+Zan ||xl||<£ if n>N. Since
Lin Jhx+yll -Inx-yll exists, it how follows that lima =a
exists, and that lim Inxtyll = Jnx-y)l = -2aix)|]. From Theorem 6.9,
it follows that a = 3(A+B), where A and B are the smallest
and largest of the numbers b such that xA1bxt+y. The

orthogonality of x and ax+y now follows from Lemma 6.8,

Corollary 6.,1le If x and y are any two elements of a
lx+hyll - Ix-hyll

exists and is

normed linear space, then /]x_i)m
o

equal to %ixgo -2a, &)l , where unx+(ahx+y)l| = Jlnx- (anx+z)”.

It is interesting to note that while the number a

such that xlax+y 1is not unique in general, the particular a

l. For any value of n, the existence of such a number a is
given by Theorem L.5.

2. See Theorem 6.9,

n
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of Theorem 6,11 is unique, In any normed linear space,

313 _ILX-I-thiﬂx‘hY” = =-2axll, where a is the unique number of

Theorem 6,11, and x.tax+y, If the number a for which

xLax+y 1is assumed to be unique, then i_:‘;n‘l’ xHy |- lIx| exists
and is equal to -allx".l
Furthermore, Theorem 6,8, or Theorem 6,7 and Lemma 6.8,

gives a simple evaluation of all numbers a for which x.iax+y,.
Inx-yll - lInxl s Myl =il .
= %% ST BN

the smallest is =-lim l)nx+yﬂ-llnxll’ or -1im JEEWI=IxI  ppe
/00 =il d>+o lIx}

numbers between these two bounds are the totality of other

The largest such number is lim
m-»o©

numbers a for which xdiax+y. The mean of these limits is

the unigue number a for which lim Inx+yl) - Inx-yj] = 0, or

.3’2 Jxthyl I—;le-hyﬂ = 0, which are obvious conditions for

orthogonality if x and y are elements of ordinary Euclidean

space,

1l. See Theorems 7.2 and 7.3.
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7. SPHERICAL ORTHOGONALITY, DIFFERENTIABILITY OF THE NORM,

AND STRICTLY NORMED SPACES.

In the previous section, spherical orthogonality was
investigated for general normed linear spaces, This section
will consider the effect on normed linear spaces of assuming
certain typés of uniqueness of orthogonal elements, TFor elements
X and vy, these types of uniqueness will be defined in terms
of the number a for which xJ_ax+y.l Since spherical orthog-
onality is not symmetric,2 Xxlax+4y does not imply ax+y. LX,

and this uniqueness can take the following forms:

Definition 7.,l. Orthogonality is right-unique if for any

elements x (¥ 0) and y ‘there exists at most one number a

such that x L ax+y,.

Definition 7.2, Orthogonality is left-unique if for any

elements x (# 0) and y there exists at most one number a

such that ax4v_LX.

For a type of orthogonality which is homogeneous,3 these

two concepts of uniqueness are equivalent, respectively, to:

1., The existence of this number a is given by Theorem 6,3,

2, This follows from the independence of the types of uniqueness
given by Definitions 7.1 and 7.2, as shown by Theorems 7,3 and
7.8, taken with Examples 7.2 and 7.3, A simple example could
also be given to show this.,

3., See page 13 of this thesis, Spherical orthogonality is
homogeneous by the nature of its definition (x4y if and only if
lx+kyl > lxll for all k) and property (3) of Definition 1.6,
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1
"If x # 0, then any plane” containing an element x contains
at most one element y such that xy", and: "If x % O,
then any planel containing an element Xx contains at most one

element y sueh that y.Lx".

If the orthogonality is symmetric, then right and left-
uniqueness are equivalent. This was the case in normed linear
spaces for the other two types of orthogonality which have
been investigated, as is clear from their definitions.2 Right
and left-uniqueness of spherical orthogonality are not
equivalent, and will be related, respectively, to the concepts
of Gateaux differentiability of the norm and strictly normed
spaces as given in the following definitions, For isosceles
and Pythagorean orthogonality, additivity implies uniqueness

(left and right).3

For normed linear spaces, it will be shown
that spherical orthogonality is right-unique if and only if

it is additive, and additive if and only if the Gateaux
differential of the norm exists at all non-zero points.lP
Also, spherical orthogonality is left-unique if and only if

5

the normed linear space is strictly normed, This gives a
relation between these and other well known concepts applicable
to normed linear spaces, and a means of investigating them by

use of spherical orthogonality.

l. "Plane"™ here means a two-dimensional linear subset.

2. Definitions 2.1 and 2,2,

3, Lemma 4.8 and Corollary 5.3. The uniqueness in abstract
- Buclidean spaces follows from Theorem 3.2.

L, Theorems 7.3 and 7.4.

5, Theorem 7.8,
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1
Definition 7.3. A functional f defined on a normed
————————
2

linear space T 1is Gateaux diffefentiable
i L{xthy)-f(x)
o h

at a point x if

exists for all elements y of T. If this

limit exists it is the Gateaux differential at x with

increment vy, and is written f(x;y).

Definition 7.4, A normed linear space is strictly normed3

if from the equality |lxll+ flyll = Uxtyll (y # 0) it follows that

there is a number t for which x = ty.

'An abstract Euclidean space is strictly normed, For if
bxll+ iyl = Dxtyll, then Ieeyll*~ il “yh® = 2k e gyh. I£ ¥ # 0,
then a positive number + can be chosen such that |zl = lltyl.
Then (2) of Theorem 1,2 gives |xlllyll = (x,y), and
I« « eyl = (x,t5). b Applylng (2) of Theorem 1.2 now gives
et ® = Wxh 2+ Moyl ® - 20l foyll.  Thus -ty = 0 ana x = ty.
Therefore any abstract Euclidean space is strictly normed, That
the norm of such a space is Gateaux differentiable will be shown
by Corollary 7.3t.

Right-uniQueness of spherical orthogonality can be
readily applied to the results of the previous section. The
following theorem is not as important as some later ones, but
is interesting in that it involves limits which exist and have
been evaluated without assuming right-uniqueness of spherioal

orthogonality.

l, See page 7.

2. Sometimes called weakly differentiable, as by Mazur (VI).
3, Called strictly normalized by omulian (XI), and strictly
convex by Clarkson (XII).

L. See Condition (1) of Definition 1.9.
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Theorem 7.l. If a normed linear space is such that spherical

orthogonality is right-unigue, then, for any elements x and Yy,
. — « Ixthyll = llx=hyll _
lim Jnx+3f|- |px-yll = -2ald , and Ho J % T — —2a ),

where a 1is the number such that xLax+y.

Proof: This is a restatement of Theorem 6.9, making use of

the assumption of right-uniqueness of the orthogonality.

Corollary 7.l. If a normed linear space is such that

spherical orthogonality is right-unique, and nxla x4y in

the isosceles sense, then xJlax+y in the spherical sense if

and only if 1lim a = a,
m-><0

n

Proof: This follows easily from Theorem 6,11,

Corollary 7.1 gives an interesting relation between
spherical and isosceles orthogonality.l The number a of this
Corollary is the mean of the largest and smallest of the numbers
b for which x\1bx+y in the spherical sense when such orthog-
onality is not right-unique,2 but is the only such number if the
orthogonality is right-unique., In any case, it is the unique
limit of the numbers a, for which nxJ_anx-ky in the isosceles

3

Sense,

Theorem 7.2. If a normed linear space is such that

spherical orthogonality is right-unique, then, for any elements

1. See Definitions 2.1 and 2.3,
2. This follows from Theorems 6.9 and 6.11.
3. That is, Mnx-k(anx+y)"‘: "nx-(anxﬁv)" for all n., The

existence of such a number a, for each n is given by Theorem 4.5
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x (#0) and y, lin |nx+yll-Inxll = -ajxll and
}i% ety ll - fixl = -afxll, where a is the number such that
X Lax+y,.

Proof: This is merely a restatement of Theorem 6,7 and
Corollary 6.7, making use of right-uniqueness. That is,

using A =B

Qo

Corollary 7.2. If a normed linear space is such that

spherical orthogonality is right-unique, then necessary and

sufficient conditions that two elements x (# 0) and y be

orthogonal are:

(a)e  lim Inxyll-Inxll = 0,

. x+hyll = Ix)
and (). 1in JESE=ER o,

If spherical orthogonality is right-unique, it is then
possible to define orthogonality in terms of the conditions of
Corollary 7.2. Spherical orthogonality is homogeneous,l and

symmetry and additivity can then be restated as follows:

T - ‘ . _
Symmetry (xLy implies yx): "If lim Inx+vll-Inxl = 0O,

or lim lx+h§ﬂ-ltxll = 0, then lim Joy+xll-lnyl) = 0 and
im AP =lFl - o,

>0

Additivity (xLy and xAz imply xAoy+4z): "If

ﬁi%.ﬂEiﬁgL:ﬂél =0 and }i% Jcthzll -llxl) - 0, then

1ip JE+n(rrz)ll ==l — o,
A>o h

1., By virtue of its definition (Definition 2.3) and Condition (3)
of Definition 1,6
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This statement of additivity is equivalent to the
additivity of the Gateaux differential; of the norm, which
follows from the existence of this differential.2 This and the

preceding theorems can be neatly restated by use of this concept,

Theorem 7.3. A normed linear space is such that spherical

orthogonality is right-unique3 if and only if the norm is Gateaux

differentiablel at each non-zero point., If the norm is Gateaux

differentiable, then the differential, f(x;y), is equal to -alx,

where a 1is the number such that =x._lax4y.

Proof:: -If sphericél ofthogonality is right-unique, then
Theorem 7.2 gives the existence and evaluation of the Gateaux
differential of the norm. Conversely, if the Gateaux differential
of the norm exists at each non-zero point, then the numbers
A and B of Corollary 6.7 must be equal. For any elements
x (#0) and y ~there can then be only one number a such that

X\ ax+y, and hence spherical orthogonality is right-unique,

Corollary 7.3. The norm of a normed linear space is Gateaux

differentiable at each non-zero point if and only if for each

non-zero element x there is a unique maximal linear subset H

such that xL1H.

Proof: TFor any non-zero element x, Theorem 6,2 gives the
existence of a maximal linear subset H such that x4 H., But

if y is any element not a multiple of x, then any maximal

1. See Definition Loy

2, This is evident from Theorems 7.3 and 7.4, or see Mazur (VI),
pages 129-130.

3s See Definition 7.l.
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linear subset not containing X must contain ax+y for some
number a.l Thus if spherical orthogonality is-right-unique,2
then the hyperplane H is unique., The Corollary now follows

from Theorem 7.3.

3

Corollary 7.3'. The norm of an abstract Euclidean space” is

Gateaux differentiable at each non-zero point, and the Gateaux

differential f(x3;y) of the norm is equal to -:%Eafl. An element

X is orthogonal to ax+y if and only if a ==-é"§"i .

can be written as

Proof: The ratio "X+hgﬂ-“xu

}l)_(lxu-f-hgll 2o x| 2 : e .
yvil+ ) ° Using Definition 1.9, this becomes
x+hy ,x+hy)-(x,x) _ 2(x,y)+h )
= e R i e

Letting 'h approach zero, it is seen that the Gateaux differential

of the norm at x with increment y (}2% ”x+h%"-”X“) is equal

t0 ‘%%ﬁﬁl. The rest of the Corollary follows from Theorem 7.3.

Corollary 7.3". If the Gateaux differential of the norm

exists at each non-zero point of a normed linear space T, then

an element x of T is orthogonal to an element y if and

ohly_if the Gateaux differential f(x;y) is zero.

Proof: This is a restatement of Corollary 7.2, and is also

immediate from Theorem 7.3,

1. See Definition 6.2.
2. See Definition 7.1.
3. See Definition 1.9
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Theorem 7.4. In a normed linear space, spherical orthog-

onality is additive if and only if it is right-unique.

L@()(qhﬁ

Proof: Suppose spherical orthogonality is additive and that

there exist numbers a and b such that xtax+y and x.Lbx+y.
Then from the homogeneity of spherical orthogonality, x L -bx=y.
.Heﬁée'additivity gives x(a-b)x, or lx+k(a-b)xll=lx]] for
all k., This is clearly not true if k = -51;‘6' Thus &a = b and
spherical orthogonality is right-uhique if it is additive.
Conversely, if spherical orthogonality is right-unique,
Theorem 7.3 gives the existence of the Gateaux differential of
the norm. If x4y and x1z and the Gateaux differential of
the norm at x is denoted by f(x;y), then f(x;y)+f(x;2) = 0.l
But Mﬁazur2 has shown that the Gateaux differential of the norm
is linear if it exists. Hence f(x;y+z) = 0, and by Corollary 7.3"
XA y+z., Thus right-uniqueness implies additivity.

That right-uniqueness of spherical orthogonality implies
its additivity can also be proved nicely directly, and the proof
seems.interesting enough to be included., Iet x be any non-zero
element, Then there exists a linear functional f such that
f(x) = Izl and Izl = l.3 Iet y be any element such that x
is orthogonal to y. Since JfJ =1, lf(x+kyﬂ:£ IJ+kyll. If k
is taken so that kf(y) is positive, then |f(ky)l=< |x+kyll-Ilxll.
Dividing by |k], ,f(y”:s ”%x+y”-”%:ql. Letting k spproach
zero and assuming unigqueness, it follows from Corollary 7.2 and
the assumption x4y that f(y) = 0, Thus xly implies

f(y) = 0, and likewise x1z implies f(z) = O, Since f is

1. See Corollary 7.3%.
2, Mazur (VI), pages 129-130,
3. Banach (I), pge 55, Theorem 3., Also see page & of this thesis,
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linear, it follows that f(y+z) = 0. If  =xiax-+(y+z), then
f[ax+(y+z)] =0, But f(y+z) = 0. Hence a =0 and xL(y+z).

Thus additivity has been shown to follow from right-uniqueness,

Corollary 7.4 Spherical orthogonality is additive in a

normed linear space if and only if the Gateaux differential of

the norm exists at each non-zero point,

Proof: This follows immediately by using Theorems 7.3

" and 7.4 together,

By making use of the Gateaux differential f(x;y), the
statements of symmetry and additivity of spherical orthogonality
when right-unique, as given prior to Theorem 7.3, can now be

stated simply:

Symmetry: "If f(x;y) = 0, then £(y;x) = 0.l

‘Additivity: "If f(x;y) =0 and f(x;z) = 0, then f(x;y+z) = O,

It has been shown2 that additivity of spherical
orthogonality follows from the assumption of right-uniqueness or
of Gateaux differentiability of the norm, but symmetry does not.
This added assumption of symmetry will be studied in Section 8,
iAny normed linear space of more than two dimensions will be
shown to be an abstract Euclidean space if spherical orthogonality
is symmetric and unique,

It is interesting to verify the evaluation of the Gateaux

differential for a two-dimensional Euclidean space, Suppose X

l, See Corollary 7.5'. Also, Theorem 8.5 shows that a strengthening
of this condition can imply that the space is abstract EBuclidean.,
2. Theorems 7.3 and 7.4.
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o |

and y are situated as in the

figure, with xJdaxt+y. In this

ag 4

position, a 1is negative, and

for simplicity h will be

—>

taken as positive, Then . ¥

Ix+hyll = lxllsec &+ |lahx] sec ® = |xijsece - ah|xljsec &, Hence
Mx+h¥lll-llxll _ J=l (Seﬁe- 1)

- afxll sec 6,

But h and 6 are clearly of the same order of magnitude.

That is, lim i%&’{_’:_l = 0. Therefore Jim I)xm;gl-uxu = -alxll.

It has been shown that right-uniqueness of spherical
orthogonality is equivalent to Gateaux differentiability of the
norm.l It also follows that such orthogonality is left~unique2

3

if and only if the normed linear space is strictly normed, It
will first be shown that the concepts of left-uniqueness and
strictly normed spaces can be interpreted in terms of functions
of the form f(n) = llx+nyll. These concepts will then be investi-

gated for spaces of continuous functions, and their independence

shown by means of such examples,

Theorem 7.5, If X and y are any two elements of a

normed linear space, then the curve f(n) = |lx+ny]] is concave

up except for possible straight line sections,

Proof: To prove the theorem, it is sufficient to show that
for any straight line intersecting the curve in two points, the

segment of the curve cut off by these two points lies below or

1., Theorem 7.3,
2., See Definition 7.2.
3, See Definition 7.4 and Theorem 7.8,
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on the line, If the points of intersection are for values nq

= .
Hm %?‘ and n, of n, then
- the ordinate of the
point having
abscissa an, +bn
3: 2
and lying on the

straight line joining

these points is

af(nl)ﬂ—bf(nz).

To establish the theorem, it is then sufficient to show that

for all numbers a and b such that a+b = 1, it follows that
f(anlﬁ-bn2)=s af(nl

or Jlx +(an; +bn)yfl < ajx+nyyll+Ddllx+n,yl.

) +Dbf <n2) ’

Since ”x-#(anl+bn2)yu=é ﬂa(x%nly)i—b(x+n2y)", this follows from

the triangular inequality of the norm.

Theorem 7.6, If a normed linear space is such that the

Gateaux differential of the norm exists at all non-zero points,

then dlg;n ! is a continuous monotonic increasing function of

n_egual to =-a |ly)l, where x+ny.l_an(x+ny)4-y.2

Proof: It follows immediately from Theorem 7.5 that
dux;n | is a monotonic increasing function of n if it exists.
To show its continuity, let f(n) = llx+nyll. Then the Gateaux

differential f(x+ny;y) at x+ny with increment y is

i% ”(x+ny)ﬁi§zﬂ-lx+nyu, or f'(n). Thus by Theorem 7.3,
>

t*(n) = -apllyl]], where (x+ny)la,(xtny)+y. Hence f'(n) 1s

1. Condition (2) of Definition 1.6.
R Also see Corollary 7.5"., The existence of such a number a

for each value of n is given by Theorem 6,3, B
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continuous if and only if a, is a continuous function of n.

Suppose is not continuous for n = n;. By Corollary T

)a ‘ T—unjr and hence a is bounded and must have at least
1= JIx4ny n

one limit point a # ap; &as 1 approaches Nje Since the

Gateaux differential of the norm exists, spherical orthogonality

is right-uniquel and it is impossible for X+, y to be orthogonal

to a(x+nly)+-y.2 Therefore there exists a number k such that

€ +n,7)+kla(x +n,y)+ y]]]<l)x+nlyll.
But since a 1is a limit point of an as n approaches nl,

it would then be possible to select a number n such that

3

2
|n,-n,} and ,anz- a| are small enough that

)< +n,7)tkfan, (x4+n,7) +7] II< I +n,5
which is impossible if (X+n2y)_L_anz(x4~n2y)4-y. Therefore

ft(n) is a continuous function of n.

Theorems 7.5 and 7.6 raise the question of whether it is
possible for a curve f(n) = [lx4+ny|| to have a straight line

L

section, The following example shows that this is possible

even when the norm is Gateaux differentiable. In other words,
dﬂxzn L can be constant over an interval,

Example 7.l Let T be the space consisting of all number

pairs (a,b), with (a,b)+(c,d) = (a+c,b+d), k(a,b) = (ka,kb), and

bl ir  lal=< Iv),
’b = o
“(a m %,ai"%;{ it Jal= Iy .

Clearly Conditions (1) and (3) of Definition 1.6 are satisfied.,

1. Theorem 7.3.

2, Since x+mn;y -l an; (x+ny7)+7y.

3. It is possible to do this beesause of the continuity of the norm,
which follows from Condition (2) of Definition 1.6.

L. That this is possible was implied by Thecorem 4.4, and shown by
Example 4.3. However, the norm of Ex. 4.3 is not Gateaux differen-

tiable.
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Thus T is a normed linear space if Condition (2) is satisfied.
That this "triangular inequality"™ 1s satisfied can be shown

by considering the following curves:

| — [l ir Ipvl=>1, (1 ir al=1,
.2 'émb‘) ie i<y, °F M@0 = slavd] ir fal=1.

10,91
o)\

L
sl B
!

a

Clearly the curve l]l b " is never concave downward, and hence

(1, o+ s ]l(1,e)ll ~ ”(l ro+se)|
T+S “T¥s

for all r and s. The equality holds if b and ¢ are both
greater than 1l or less than -1; i.e, if only valués of "(l,b)“
are considered which lie on a straight line. If rb is repléced
by rt* and sc by st', it follows from the above inequality that
l(r+s,er+s )< Nx,o) |+ Uisps )|l
Thus le+yl|s)}x||+|iy|l for all x and y.of T,+and T is‘,é
normed linear space, The Gateaux diffefential of the norm of T
exists at each noﬁ-zero point, This follows from t@e following
relations, which are derived from the definition of H(a,tﬁﬁ:

1 if lal=Ibl and b=0
d (2 o)l —  J-1 if Ja} = Ib] and Db=O,
b .
— if Ja}] = |b}.

0 ir Ja)=< o),

. 2
al(gab)lz %(1-%) if Ja)j=lp] and a=0,
. 2
_%(1_%) if  Jal=lb) and a=<o,
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By using these relations (or more simply by direct calculation):

lim Il(a,b)+h(%,B)ll - Na, )l _ Ad"ﬁgazb)“ " Bdllﬁaéb)ll,

Aro

b :
=5 if lal=l,

bB

_DB _,b% ah
e a

-—yz—l-a% +a2 it Jal =] .
This is the Gateaux differential of the norm at (a,b) with
increment (A,B).

Since [(a,l))l =1 if Ja)j=<1, it follows that ax+ydx
for Jaj=1 if x= (1,0) and y = (0,1). Thus spherical
orthogonality is not left-unique for the space of Example 7.1,
even though it is right-uniqué by virtue of the existence of the
Gateaux differential of the norm.l Another illustration of this
will be given later,2 as well as an examp193 to show the converse,
Before doing this it is to advantage to further investigate
left-uniqueness of spherical orthogonality, The following
theprem is different from Lemma 6,8 because of the lack of symmetry
of spherical orthogonality. The most interesting difference is
that lx+kyll has the same value for all k for which x+ky.L7y.
That this is not true for all k for which x1kx+y can be

seen from Example 6.l1.

Theorem 7.7. If x and y are elements of a normed linear

space T, then |x3kyll] has the same value for all numbers k

between of equal to the smallest and largest numbers a for which

x+aytly. Also, x¥kyly for all numbers k 1in this interval,

Proof: If x+ayly, then u(x+ay)4—Ky";a”yu for all k.

Hence lx+ayll is the minimum value of |jxtky)]] if and only if

1. See Theorem 7.3.
2. Example 7.2,
3. Example 7.3.
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x+ay Ly. Therefore if x+ay LY and Xx+a,y Ly, then

|h>+aly" = ”xwkazy”. Obviously the set of numbers a for which
lx+eyll is minimum is bounded.l From the oontinuityl of |l€] , the
it follows that there exist smallest and largest numbers A and

B of this set, Then Jx+Ayll = Jx4Byll, and these are both

minimum values of “X+Ky“. It now follows from Theorem 7.5

that |Jx+kyl| is constant for A=<k <B, and that x+kyly for

all k in this interval.,

Theorem 7.7 essentially states that spherical orthogonality
fou off X ond Y & apoca

is left-unique if and only if no curve of the form f(n) = ||xtnyl
has a "flat bottom™ like that of |l(a,l)|]l of Example 7.1. But
if any such curve has a straight line segment, it can be shown
that there is another with a-"flat bottom", This follows from
Theorem 7.8, and is also the basic idea of the proof of that
theorem., Thus it is shown that? ll+hyll = )ix+y)l implies the
curve [|(1-k)x+kyl| has a straight line segment (as illustrated
below). It then follows that elements x*' and y*' can be found
such that the curve [lx*+ky')] has a "flat bottom" similar to that
of l(a,1)l] of Example 7.1, and thus that spherical orthogonality

is not left-unique.

Theorem 7.8, A necessary and sufficient condition that

a normed linear space be strictly normed3 is that spherical

orthogonality be left-unigue,

Proof: Suppose spherical orthogonality is not left-unigue.

There then exist elements x and y (y # 0) and unequal

l. This follows from Condition (2) of Definition 1.6.
2. The following assumes the space is not strictly normed (see

Def. 7.4).
3. See Definitions 7.2 and 7e.lbe
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numbers A and B such that zx+Ayly and x+Byly. It then
follows from Theorem 7.7 that x+3(A+B)y.Ly and
lx+ay)) = lx+Byll = J=+2 (4+3)yll.
Thus lxtayl + I8yl = J|(x+4y) + (x+By)] .
If the space is strictly normed, there then exists a number ¢
such that x+Ay = t(x+By).l If t =1, then either y =0 or
A =B, oontrary'to assumption., If t # 1, then x is either
zero or a multiple of y, which is impossible since it would then
be necessary that x+Ay = x+By = 0-,2 and hence that A = B. Hence
a normed linear space in which spherical orthogonality is not
left-unique cannot be strictly normed, and spherical orthogonality
is left-unique in any normed linear space which is strictly
hormed. |
Conversely, suppose the normed linear space T is not
strictly normed, There then exist elements x and y (y 3 O)
such that x s ty for any t and I+ llyl = lx+yll. Take any
number k such that O=x<k=<1l, Then
l(1-k) x+ ky 1< (1-k) Jl=l +Elly]
because of the triangular inequality of the normB. But from
X4y = Xll-K)x—kky]+—kx-+(l-K)y, it also follows that
Iyl < )l(1-k)x+kyll +kllxll +-(1-k) jiyll. Since it was assumed that

/
<l +Uyll = Jtyll, this gives 16-Rkt-y | /
JLmie) iyl > (o) iyl . S

: N
Thus ||(1-k)x+ey ll = (1-k) =i+ liyl s

for O<k=l, Therefore if

1., See Definition 7.L.

2. Since ky4y if and only if Kk = O (see Def, 2.3), and
xtAy Ly and X4By LY.

3, Condition (2) of Definition 1.6,
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K _—_W{’f” and x' = (l-k)x+ky and y' = (1-k)x - ky, then

Jl<ll =%}%’£%‘L, and x4y = Jk'-y'll = Jk'l|. Hence from

Theorem 7.5,% Ikmxyll = lx!l sy
for |k]<1. This with ~ -
~ -~
~ . ——
Theorem L.l gives [x'+ky )=kt | |
el
for all k. Thus |x'] must | ! &
! |
be the minimum of |x'+ky'll, 1 i
and  (xtay!)+kyll= xayl = x| for all k, if |aj=1.

Thus x'tay'ly' if J|aj=1. Since y'='y"',xj‘_"x' , ¥y' can

not be zero because X % ty for any t. Therefore spherical
orthogonality is not left-unique, and a normed linear space for

which spherical orthogonality is left-unique is strictly normed,

Corollary 7.5. If a normed linear space is such that

Spherical orthogonality is symmetric, then the space is strictly

normed if and only if the norm is Gateaux differentiable at each

non-zero point.

If spherical orthogonality is symmetric, then such orthog-
onality is clearly left-unique if and only if it is right-unique.2
The above corollary then follows from the equivalence of left-

uniqueness to the space being strictly normed and of right-

3

uniqueness to Gateaux differentiability of the norm. But it

has also been shown that if the Gateaux differential of the norm,

f(x;y), at x with increment y exists, then x 1is orthogonal

L

to y if and only if f(x;y) = O. Thus in this case the

l. Or from Theorem 4.4, which is now a corollary of Theorem 7,5.
2. See Definitions 7.1 and 7.2.

3. Theorems 7.3 and 7.8.

L. Corollary 7.3".
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orthogonality is symmetric if and only if f(x;y) = 0 implies

f(y;x) = 0. This gives the following corollary.

Corollary 7.5'. If the norm of a normed linear space T is

Gateaux differentiable, then T is strictly normed if £(x;y) =0
1

implies f(y;x) = 0 for all non-zero elements x and y of T,

Corollary 7.5". If the norm of a normed linear space T is

Gateaux differentiable, then T 1is strictly normed if and only

if the Gateaux differential of the norm, f(x+ny;y),Aat x+ny with
2

increment y, 1s an increasing function of n.

Proof: As in the proof of Theorem 7.6, it is clear that
f(x+ny;y) =.Qﬂgﬁgll. It also follows from Theorems 7.7 and 7.8,
or directly from the condition for a normed linear space to be
strictly normed,3 that such a space is strictly normed if and
only if no curve f(n) = Ixtnyj] (y # O), for which x # ty for
any t, contains a straight line sggment. The conclusion of the

corollary then follows from Theorem 7.6,

It is interesting to investigate the effect on spaces of
continuous functions of the assumption of right- or left-unigueness
of spherical orthogonality. This will be seen to give an easy
means of establishing the independence of these types of uniqueness
of orthogonality, and hence also the independence of Gateaux

differentiability and strict normedness.

1. The stronger relation f(x;p&y) = f(y;x:) holds in abstract

Euclidean spaces, but by Theorem 8.5 only in such spaces,
2. As follows from Theorem 7.6, this difference is continuous in n
if it exists,

3. As in the proof of Theorem 7.8.
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Definition 7.5. The space (C) of continuous functions

consists of all functions which are continuous in the closed

interval (0,1}, with ll£]| _defined as max.’f(x)'.l
O=x<£]1

Theorem 7.9. A subspace2 T of the space of continuous

functions is strictly normed if and only if all non-zero func-

tions of T whose absolute values take on their maximum at a

common point are multiples of each other,

S

Proof: Suppose there exist non-zero functions f and g

such that |f| and ,g] are both maximum at some number a,

That is, |f = |t(a)| and g = |e(a)]. Then either |t(al+e(a)

is the maximum of |f+g|, or )f(a)-g(a)l is the maximum of

|£-g|. Hence either |lEll+ )l = lt+ell or lel+leh = Me-gll. If
3

T 1is strictly normed, there then exists a non-zero” number t
such that f = tg.

Conversely, if T 1is not strictly normed, there exist non-

zero functions f and g such that Wel+)igl = JIf+2ll  and
f # tg for any number t. Suppose ) = lf(a)l,
lell = Je(®)], and lte+gll = |t(c)+g(c)]. But

|t (c)+ele)|=< Je(e))+ Ja(e)].

Also, lf(c)l:&)f(a)] and ’g(c)lsgjg(b)). By assumption,
|£(c)4+-ale)] = fe(a)l+ Je(b)].

zt follows from this that |f(c)] = |f(a)] and Je(c)] = |e(b)}.

hat is, both |f| and |g| take on their absolute maximum at c.

1. See Banach (I), page 11.

2. A subspace here means a subset which is also a normed linear
space.

3. Non-zero since f # O,
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The above theorem enables one to tell readily whether a
space of continuous functions is‘strictly normed, In order to
find a simple condition that the norm of such a space be Gateaux
differentiable, the limits of Corollary 6.7 will first be
evaluated., Conditions for differentiability of the norm can

then be deduced from these limits,

Theorem 7.10, If T 1s a subspace of the space of contin-

uous functions, and f(# 0) and g are elements of T, then
lim "f'*'K%u—"f” max.g—l-'f) and im _)}____&___f—!—k [l ¢ = mln.(gﬂ—),

&A~»>+o U \IE — k30

where U is the set of all numbers for which |f| is maximum,

Proof: Because of the continuity of £, the set of numbers
for which» Ifl is maximum is closed, and hence there exists a
number at' of this set for which %%? takes on its maximum.2
Because of the

&
way at' was 25N

chosen, it is a
member of the

set U of num-

?--._ ) St i
S

I
|
!
bers for which %, a '

£]  is maximum,

x) £ (x) | | :

Since
X

is maximum for
Xx = a', it follows that |f(a')4—kg(a')| is the maximum value of

'f(a)ﬁ—kg(a)l for a ¢U, provided Kk is positive and small

1, The only function of the factor —%r is in determining the sign

e ().

2., In %he figure, a' can be either of the indicated points; U
consists of the points marked at' and the points between a%m and

8,; and x% is the point at which )|f+%g]| takes on its maxim
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enough that |kg(a)|=< |£(a)] for all aevU., If x,_ isa

number for which [f-kkg[ is maximum, then since g(x) is
bounded and the norm of T is continuous,l all limit points of
Xk as k approach zero belong to U, Then for k small

and positive:

and ‘%*M Uf+kgﬂ-ﬂf” im 5( % fgxk gg f(a

for the number a of U which is a llmit p01nt of X, as k

approaches zero, But Uf-#kg">~k(a')ﬂ—Kg(a')],z and hence

kel - £ ) =)e(ar g}'fg' 5% f§
1in +§ll ll>}£ﬂlolf(a )-Hsgﬁ )] = e (ar)] a;sa)é a)a,a)

for all agU, because of the way a' was chosen., Hence

Hf+kgjl el _ glat)f(at) _ a)f(a)
}ifé )f(a')[ - a
From this,

o ey £ =kell =gl _ -g(a)f(a) _ . gla)f(a)

It is interesting that Corollary 6,6 (and therefore also

Theorem 6,6) could be given as a corollary of Theorem 7.10., This
follows from the fact that any separable Banach space can be
represented as a subspace of the space of continuous functions,

in effect only only two-dimensional spaces being involved in the
proof of this type of theoremw. The following corollary is

Theorem 7,10 restated with norms replaced by their defined values.lP

Corollary 7.7 is gotten by applying Theorem 7.10 to Corollary 6.7,

1. g(x) is bounded since it is continuous, and the norm of T is
continuous because of Condition (2) of Definition 1.6,

2. See Definition 7.5. '

3. Banach (I), page 185, Theorem 9, A separable space is one which
contains a countable subset whose closure is the whole space,
Clearly any finite dimensional normed linear space is separable,

L, See Definition 7.5
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Corollary 7.6, If f and g are continuous functions

defined over a closed interval, then

s MAXe Jf+kg|-max, ] _ oL d
in g = max. %TT’ and
19m Dex. |f+kg|-max,)f] _ pin, &:f
A K v OET

where U is the set of numbers for which |£f| is maximum,

Corollary 7.7.. If T 1s a subspace of the space of con-

tinuous functions, and f and g are elements of T, then the

smallest-and largest numbers A and B such that f1LAf4g and

f1Bi4+g are A= -m%x. -ﬁ- and B =-m{3jn. %— , Wwhere U is the

set of numbers for which |f| is maximum,

Corollary 7.7 gives a simple means of finding all numbers
a for which flaf+g, if f and g are elements of a space of
continuous functions, If the orthogonality is right-unique,vthen
the norm is Gateaux differentiable at all non-zero points.l It
is possible to use Theorem 7.10 to find a condition for the exis-
tence of the Gateaux differential of the norm, and a means of
evaluating this differential if it exists, This leads to simple
conditions for orthogonality of elements of a space of continuous

functions.

Theorem 7.,l1l., If T 1is a subspace of the space of

continuous functions, and f (# 0) and g are elements of T,

then the Gateaux differential, igg lf+k§"'”f", exists if and only

if }g(a)[ has the same value for all numbers a for which Jf|

1, Theorem 7.3,
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is maximum, and g(a) and f(a) are either of the same sign for

all such a, or of opposite sign for all such a., If it exists,

this limit equals (a)g(a)’ where a 1s any number for which

2]  is maximum,

Proof: From Theorem 7.10, this Gateaux differential exists

. . o f . ot .

f and f a = nmin, where U 1is the set of numbers
if and only 1 mUX<%?T) o %fr), | e
for which {f| is maximum. But |[f(a)] has the seme value for
all agU. Hence for this equality to hold, g(a)ef(a) must have
the same sign for all aeU, and |g(a)] must have the same

value for all aeU.

Corollary 7.8, If T is a subspace of the space of con-

tinuous functions, and the norm of T 1is Gateaux differentiable

at all non-zero points, then for elements f and g of T,

fJ.-%%%%IF#g, where a is any number for which |f] is maximum,

Proof: This follows immediately from Corollary 7.7, since
spherical orthogonality is right-unique if the norm is Gateaux

differentiablel. It also follows from Theorems 7.3 and 7.1l1.

Theorem 7.12. If T is a subspace of the space of contin-

vous functions and the norm of T 1is Gateaux differentiable at

all non-zero points, then an element f 1s spherically orthog-

onal to an element g if and only if g(a) = O for numbers a

for which |f] is maximum,

This theorem is really a weak form of Corollary 7.8,

but provides a very simple means of testing the orthogonality of

l, See Theorem 7.3.
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elements of a space of continuous functions in which the norm is
Gateaux differentiable. If the orthogonality is also symmetric,
then two elements are orthogonal if and only if each is zero at
evefy point where the absolute value of the other is maximum, This
will be used extensively in the next section, Its application is
made possible by the fact that any separable Banach spacel is
equivalent2 to a subspace of the space of continuous functions.3
The above results enable one to construct simple examples
to show the independence of Gateaux differentiability of the
norm and the condition for strictly normed spaces--and hence of
right- and left-uniqueness of spherical orthogonality. Example
7.1 showed that Gateaux differentiability of the norm does not
imply the space is strictly normed, This is shown more simply

by Example 7.2, while the converse is given by Example 7.3.

Example 7.2. A normed linear space whose norm is Gateaux

differentiable, but which is

not strictly normed, Let T

be the space of all functions

of the form f = asin x+b(x-%)

in the interval (0,m). Since

ft —acos x+b, the slope of
the curve f 1is of the same

sign throughout (0,4T) if

laj < Jbl. Hence in this case

l. See Definition 1l.7. A space T 1is separable if it contains
a countable subset U such that T = T.

2. Two normed linear spaces are equivalent if there is a 1-1
correspondence between them which preserves the norm and the
operations of addition and multiplication by real numbers,

3. Banach (I), page 185, Theorem 9,
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the maximum of [f]| is attained at 0 and M. Thus by
Theorem 7.9, T is not strictly normed.

If |aJ> Jb], then f' is of opposite signs at the ends of
the interval and |f| must take on a larger value than that of
%lo| which it hes at 0 and . Thus if la]> Jo), lf)
takes on its maximum at the unique point for which cos:c:-g.
Hence if |a]> |b|, then |f] takes on its maximum at only one
point, If Ja|= Ib), If] takes on its maximum at both O and
e Since sin O = sin®= 0, the values at 0 and 1qr of any
other function Asin x4B(x-®%) are F¥%B. Since the corresponding
values of f are =F%Lb, it now follows from Theorem 7.l11 that

the norm of T is Gateaux differentiablqr-"

Examgle 73« A normed linear spacé which is strictly normed,

but whose norm is not Gateaux differentiable. ILet T be the

space of all func-

‘)‘1¢+4‘_{

tions of the form

f =asinx+bsin 2x
in the interval
(0,mM)., Then sin2x

has a maximum of 1

at % and 3F, being
of opposite signs at

these points, But

sinx has the same

sign at both points. Hence by Theorem 7,11,

s Jsin 2x+k sin xJ -)lsin 2xll
30 Kk

does not exist, and the norm of T 1is not Gateaux differentiable

at the "point" sin 2x.
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The function f =asinx+bsin2x 1is zero at both ends of
the interval (0,r), and hence the maximum of Jasinx+bsin2x|

must be taken on for a number x such that

0
a.cos,xoﬂ-Zbcos 2xo = 0.
If the absolute value of another function F = Asin x+Bsin 2x

takes on its maximum at the same point x then .

0?
Acos xg+2Bcos 2xy = O,
Since cos X, and cos 2x0 cannot be zero simultaneously, it
follows that Ab = Ba and that any functions f and F are
multiples of each other if they take on their absolute maxima at
the same point. It then follows from Theorem 7.9 that T is

strictly normed.

Theorem 7,13, A normed linear space can be strictly normed

without its norm being CGateaux differentiable, and conversely,

Theorem 7.l4. There are normed linear spaces for which

spherical orthogonality i1s right-unigue and not left-unique, aﬁd

others for which such orthogonality is left-unique and not right-

unique,

These theorems are immediate consequences of the above
Examples 7.2 and 7.3, the second making use of the equivalence of
Gateaux differentiabllity of the norm and right-uniqueness of
- spherical orthogonality, and of the equivalence of strict

normedness and left-uniqueness of spherical orthogonality.l

l. Theorems 7.3 and 7.8,
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8. SPHFRICAL ORTHOGONALITY AND THE EXISTENCE
| OF INNFR_PRODUCTS

It has been shown that if either isosceles or Pythagorean
orthogonality is either additive or homogeneous in a normed
linear space T, then T 1is an abstract Euclidean space.l These
types of orthogonality are symmetric in any normed linear space,
while spherical orthogonalityz'iS'homogeneous, but neither symmetric
nor additive in general normed linear spaces, Two conditions for
the existence of an inner product5 in normed linear spaces have
been used in this thesis as an aid in proving the existence of
inner products from assumptions on the orthogonality, In connection
with Pythagorean orthogonality, it was convenient to use the con-
dition given by Jorden and Neumann4 that a normed linear space is
abstract Euclidean if and only if

ety I Vz-i® = 2L+ s 2] |
for all elements x and y., With isosceles orthogonality, a
condition given by Ficken was found useful:5 That & normed linear
space is abstract Euclidean if and only if
lexty |l = lIxteyl

for all numbers a and elements x and y for which ||zl =)yl .
It will be seen that it is sufficient to assume on;y that

1m[nx+yu - Jmayll= 0 i Yzl = Jiyl.°

L1, Theorems 4,9 and 5 2 and Corollary 5,3, Also see page 13 of
this thesis,

2. See Definitions 2,1-2,3,

3o The existence of an inner product is equivalent to the space
being abstract Buclidean, Seée Definition 1.9,

4, See page 40 of this thesis, and Jordan and Néumenn (IV),

5. See page 35 of this thes1s and Ficken (XIV).,

6, Theorem 8.4,
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Garrett Birkhoff has shown that a normed linear space of
three or more dimensions is abstract Euclidean if and only if
spherical orthogonality is symmetric and unique, and that this is
hot true for spaces of two dimensions.1 It has been shown that
right-uniqueness of spherical orthogonality is equivalent to
additivity of the orthogonality and to Gateaux differentiability
of the norm of the space, and that.left-uniqueness is equivalent

2

to the space being strictly normed, Thus Birkhoff's theorem can

be stated in any of the following forms:

Theorem 8.l A normed linear space of three or more dimene—

sions is an abstract Euclidean space if and only if it is such:thatb

spherical orthogonality is symmetric and additive,

Theorem 8,2, A normed linear space of three or more dimen=-

sions is an abstract Buclidean space if and only if it is strictly

normed and spherical orthogonelity is symmetric,.

Theorem 8,3, A normed linear space of three or more dimen-

gsions is an abstract Euclidean space if and only if its norm is

Gateaux differentiable at each non-zero point and spherical

orthogonality is symmedric.

Examples have been ,givenr5 of normed linear spaces which show

the independence of the condition for strict normedness and the

1, Birknoff (X1l1l). Conditions which are sufficient for the exis-
tence of an inner product for two-dimensional spaces are given by
Theorems 8.4 and 8,5, The uniqueness assumed by Birkhoff can be
either left or right, because of the assumption of symmetry (See
Definitions 7,1 and 7.2,),

2, Theorems 7,3, 7.4, and 7.8,

39 Fbcamples 701, 702, and 7,3,
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existence of the Gateaux differential of the norm at non-zero
points, meking use of the equivalence of these to left- and right-
uniqueness of spherical orthogonality, Since symmetry of spher-
ical orthogonality clearly implies the:equivalence of these pro-
perties,l it is interesting to consider whether the assumption of
both left- and right-uniqueness implies symmetry of spherical
orthogonality, That is, whether spherical orthogonality is symmet-
ric in a strietly normed space whose norm is Gatesux differentiable
at all non-zero points, Thdt this is not true is shown by

Example 8,1, and also by the following analysis: Suppose a par-
ticular linear representation of a normed linear space T is
taken and the unit pseudo-sphere S constructed as répresenting
the points whose norms are unityz. Then it can be seen that T Is
gtrictly normed, or spherical orthogonality is left-unique in T,
if and only if S does not contain a straight line segment,

Alsd, the norm of T 1is Gateaux differentiable at non-zero points,
or spherical orthogonality is right-unique in T, if and only if

S has a tangent hyper-plane at each point.3 Clearly these two
conditions can be easily met without satisfying the condition for
symmetry: nemely, that a diameter drawn through the origin
parallel to a tangential hyperplane at any point p of S cut

S 1in points at which the tangential hyperplane is parallel to

the diameter through p.

Example 8,1, A normed linear spece which is strictly normed

and whose norm is Gateaux differentiable at all non-zero points,

T. See Corollary 7.8.

2., See Birkhoff (XIII), page 169, The pseudo-sphere S can be in
an Euclidean space of any number of dimensions, while Birkhoff
uses a circle,

3. See Definition 9,2, This will be discussed in more detail in
the next section.
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but for which sphericael orthogonality is not symmetric, ZIet T

be the normed linear space of all functions of the form F - af+bg
in the interval (0,2), where [|Fl = Bax, JF| and

2
= - nd . g= Ji=x" _for 0O0=x=],
el & € (x-2)8-1 for 1=zx=2,

The function £ is positive throughout (0,2) and symmetric
about the line x = 1, while g is positive in (0,1) and negative
in (1,2) and symmetric about the point (1,0), Thus if a and

b are of the same sign, then )F/ has its maximum in (0,1)=--at

the point x = é;%. Likewise, if' a and b are of opposite
sign, then +the maximum is in (1,2)--at the point =x = %%:%.

Clearly then the absolute values of two functions T = aft+bg and

= AP+Bg can take on their maxima at the same point only if they
| are proportional, and the absolute value of a function can take on
its maximum at only one point, Thus T is strictly normed and the
norm of T 1is Gateaux differentiable at every non-zero point.l
Spherical orthogonality is therefore symmetric in T if and only
if the absolute value of the function G which is zero where lF‘
is maximum, is meXimum where F is zero.2 If a and b are of
the same sign, then IFI has its maximum at x —-15 and FLlg if
and only if G(—-5) = A a+b(2 a+b]+BY_l 7'5:’5):_’ or

(1)e Aa(a+2b)+Bb(2at+b) = 0

But then A and B are of opposite sign and |G) has its maximum

2B-A 2B~A
BoA’ If GLF, then F(B A)...0 or

at X =
(2)s Aa(2B-A)+Bb(B-2A) = 0,

But (1) and (2) are both satisfied if and or!ﬂ.y if Ab = -aB, and

hence (1) and (2) are not equivalent in general, Thus spherical

orthogonality is not symmetric in T,

1, See Theorems 7.0 and 7.1l.
2 See Theorem 7,12,
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It has been shown that for the three types of orthogonality
of Definitions 2.1—2.3, and any elements x and y of a normed
linear space, there exists a number a for which x-l—ax+y.l For
isoscoles and Pythagoren orthogonality it has been shown that the
assumption of either homogeneity or additivity of the orthogonality
implies the normed linear space is an abstract Euclidean space.z
The assumption of both homogeneity and additivity of spherical
orthogonality in normed linear spaces of three or more dimensions
implies the space is abstract Euclidean, but this is not true for
two dimensional spaces.:5 However, several conditions can be
given which are valid for two-dimensional spaces, The first of

4

these is similar to the condition of Ficken's,” and makes use of

orthogonality concepts only in the method of proof.

Lemma 8.4, If for a normed linear space T |) x|l = Jlyll
implies lim \lnx+yf - llx+nyf| = 0, then spherical orthogonality is

symmetric, additive, and unique in T, and X.lax+y and ¥yl Dbyx
imply _elx)® = by,

Proof: ILet x and y Dbe elements of T, A and B be the
algebraically smallest and largest of the numbers a for which
x‘Laxﬂ‘-y, and A' and B! be the algebraically smallest and
largest of the numbers b for which yLlbyrx, If |jxll =)iyll, then

lim &nx+yﬂ - Ixtayh|= Llim ]_Tl_nx-&—yll- x| - 1im | Iyl -lnyl] = o0,
since these limits are known to exist. Their existence follows

from Theorem 6,7, which also gives

T, Thet is, there is a number a for each type of orthogonality,
but not necessarily the same number,

2, Theorems 4,9, 5.2, and Cor. 5,3, Also see page 13 of this thesis,
3 See Theorem 8,1 and the preceding discussion.

4, That |lax+yl= [Ixtayl if |xl= lyll. Ficken (XIV),
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lim [Inx+yll -l xenyl] = -(a-At) )izl = O,
end hence that A = A'., Likewise, |x|| = Jy/ implies
lim ﬂ!nx-yll-—"x-ny”]: /33'1& [!nx—yﬂ-\)nxlﬂ - lin JIx-ny/l-Inyl]= 0.
Another application of Theorem 6,7 then gives
Lim|Inx-yll- lx-nyi] = (B-B*) Jxll = 0,
and B = B', Now suppose x.ly and |zl = |lyl¢ Then ¢learly
A=0=<B, and from the above A'< 0=<B', That y.1x now follows
from Lemma 6,8 and the definitions of A'* and B', Since
gphericael orthogonality is homogeneous, there was no loss of
generality in assuming |x| = |lylle It has thus been shown that
gpherical orthogonality is symmetriec in a normed linear space for
which |xll = |lyll implies Llim llnx+yll -l/z+ayll = 0, Xow suppose
spherical orthogonality is not unique in such a normed linear
space, There are then elements x and y and a positive number
£ for which |x/l = |ly)] and =xlaxty for lal<e .1 From the
symmetry that has been proved, it now follows that axtyLx for
laj<€, and hence from Theorem 7,7 that |axtyl = ||yil = (=l if
|a[<;£. Then it follows from the original assumption that
n]\._n)zg ﬁnx+(ax+y)ll-llx+ nlaxty)ll=0 if lal<e.,
But |=tn(axy)l = ((l+na)x+nyl = lny|l if n is large enough
that )a -|—1/nl<5° Also, by Lemma 4,5, }g.g} mnx+(ax+y)ll-llnx+ylﬂ=
allxlle Thus n%_:)tg; [ Inx-H ax+y )l - |lx+n( axw))ﬁ= ﬂ.:l.ﬁ)jg‘g x4y -Voyll+ alixi,
and therefore can clearly not be zero for all values of a with
)a[<:£. The assumption that spherical orthogonality was not
right-unique in T is therefore false, Such orthogonality is
then right-unique in T, and it follows from Theorem 7.4 that it

¢

l, That this is true if spherical orthogonality is not right-
unique follows from Lemma 6.8 and the homogeneity of spherical
orthogonality, The symmetry makes left- and right-uniqueness
equivalent (see Definitions 7.1 and 7.2).
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is also additive., It now follows that if |xl| = llyll, then not
only does A = A' and B = B!, but because of the uniqueness
just proved, A =B = A' = B', Thus xLax«r—y implies Yy Lay+ix
it )=l = Vyll. If |l # |yll, take r such that |rxll = |yll.

If xlax+y and yLlby+x, it follows from the homogeneity of
spherical orthogonality that I'XJ_%(IXH—Y and y-L (br)y+rx.

2
Then %-—-—*br, or allxl® = viyl®,

Theorem 8.4, A normed linear space T is an abstract Euclid-

— 3 - 1
can space if and only if ,,];_:';Iilo Inx+yll - lx+ayll = 0 whenever |xl=lyll.

Proof: Define the inner product (x,y) as -a ||xll2, where
x Ltaxty, This value of the inner product is unique because of
Lemma 8,4, and it is only necessary to show that it satisfies the
conditions of Definition 1,9:

(1)e (tx,y) = b(x,y)e If xLlaxty, and t # 0, then

tx_\_%(tx)+y because of the homogeneity of spherical orthogonality.,.
Thus (tx,y) =-%iltxﬂz = -at{x)®, Hence (tx,¥) = t(x,y), If
t = 0, the proof is trivial,

(2). (x,y) = (y,x)e If xlaxty, and y-Lbylx, then

{x,y7) = --al!xl!2 and (y,x) = -bl!yllz. These are equal by Lemma 8.4,
(3)e (x,7)t+(x,2) = (x,y+zl. Suppose xlaxty and xLbxtz,

Then x.l(atb)x+(y+z) because of the additivity given by Lemma
8.4, Hence (x,y) = -allx»z, (x,2) = -blly"z, and (x,y+z) = -(’a+b)hx\|2.
(4), (x,x) = Ixl®, This is inmediate from x .. (-1)xtx.

Conversely, it follows from the definition of an inner producbz
thattfor abstract Euclidean spaces |nx+yll-|lx+nyl =0 for all n
and elements x and y for which {xi = )yl or‘ (x,x) = (¥,¥)e

T. See Theorem 9,3 for an equivalent statement.,
2. Definition 1.9,
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It has been pointed out that if the norm of a normed
linear space is Gateaux differentiable at each non-zero point, then
this differential gives a convenient statement of properties of
spherical orthogonality.l Tt was seen that the existence of this
differential of the norm is a necessary and sufficient condition
for spherical orthogonality to be additive, If the differential
of the norm at x with increment y is denoted by f(x;y), this
means that f£(x;¥y) =0 and f(x;z) =0 imply f(x;y+z) ='0.2
Thus spherical orthogonality is additive and symmetric and the
normed linear space is strictly normed if and only if the norm is
Gé%eaux differentiable at all non-zero points and f£(x;y) =0
implies f£(y;x) = 0., This is a necessary and sufficient condition
for the existence of an inner product in a normed linear space of

three or more dimensions.5

The following theorem shows how this
can be strengthened to give a like condition for two-dimensional

Theorem 8,5, A necessary and sufficient condition for a

normed linear space to be an abstract Fuclidean space is that the

Gateaux differential of the norm exist at each non-zero point,

and f(x;&‘) =f(y;7§[) for all elements x and y, where f£(x3y)

is the Gateaux differential of the norm at x with increment :x.4

Proof: To prove the sufficiency, define the inner product
(x,y) of Definition 1,9 as -a"tz, where x.Lax4dy, If the norm
is Gateaux differentiable, then the uniqueness of (x,y) is

given by Theorem 7,3, It will be shownithat it satisfies the

T. See page 71 and Corollary 7.5',

2, Corollary 7.4, That linearity of the differential of the norm
follows from its existence was shown by Mazur (VI), pp. 129-130,
3 Theorem 8,3,

4, Also see Theorem 9,3,
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conditions of Definition 1.9,

(1) (tx,y) = t(x,y)s If =xlax+y, and t # O, then
tx_L%(tx)-r-y because of the homogeneity ‘of spherical orthogonality,
Thus (tx,y) =--_%be"2 = -at)lxﬂz = t(x,y)e If t = 0, the proof

is trivial,

(2)s {(x,y) = (y,x). Theorem 7.3 gave f£(x;y) = -alxlf, where
xlaxty., Likewise, f(y;x) = -bllyll, where y.Lbyrx, Then
x.l.ﬁ(a:c-{»y) and y_Lﬁl‘-'(bsq-x) because of the homogeneity of
spherical orthogonality. Therefore f(x"y") = f(y,' =) becomes
"W el = -mlfyll, or -a Ijxll = -b|yll®, This is the same as

(x,y) = (y,%).
(3)e (x,7)+(x,2) = (xX,742), Suppose =xLaxty and xLbx+z,

It follows from the existence of the Gateaux differential of
the norm that spherical orthogonality is additive,l and that
x (a+b)x+(y+2z). That is, (x,y) = -a\lxll‘?’; (X%,2) = -b»xllz;

and (x,74z) = ~(avb) I xlB,
(4) o Il = (x,x). This. is immediate from x 1 (=1) X+,

Conversely, if a normed linear space is an abstract
Euclidegn space, its norm can be defined by a (bilinear and
symme‘crlc) inner product (x,y).g Then:

l]gﬂﬁ!-llxl! - !)xﬂlylz—"x\lz K3 |x+g,xm%)-gxl,x2 E 2(:::%%1-11;%;%).
X+h i+ Ui Lix+ayi+Hix | -+ IIx(
Hence the Gateaux differential f(x;y) of the norm exists and is
equal to Lﬁ*l. Then f(x; 'l.-) - -(—1,-:%/1 x ”y o But also
f(.V,m) “W ”%W} Therefore f(x,”y“) = f(y,m).

1e Corollary 7.4,
20 See Definition 1,9,
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9, SPHFRICAL, ORTHOGONALITY,

It has been shown that for any elements x and y of a
normed linear space there can be found at least one number a for
which =x.1axty, and a number b for which bx+y4_x.l An evalua-
tion of all such numbers a and b has also been given, and
their uniqueness has been shown to be equivalent to Gateaux
differentiability of the norm and to strict normedness, respec-
tively.z Spherical orthogonality is homogeneous, and the proper-
ties of additivity and symmetry were also studied and related to
strict normedness and to Gateaux differentiability of the norm
and used to get conditions for the existence of an inner product.3
In this section, some of these results will be interpreted and
extended by use of functionals and the concepts of conjugate
spaces and supporting and tangential hyperplanes,

| If a linear functional f +tekes on its maximum in the unit
sphere at a point x, them X is orthogonal to the maximal linear

subset consisting of all elements for whieh £ is zero.4

Thus
while spherical orthogonality is not additive in general normed
linear spaces, there is (for each element x) always at least one
maximal linear subset H with x;LH.s The problem of finding an

x . orthogonal to a given linear set H will be studied in the

next section, and will be related to the problem of finding elements

on the unit sphere for which lineer functionals take on their

1, Theorems 6,3 and 6.4, In this section, "orthogonality" is the
spherical orthogonality of Definition 2.3,

2. Theorems 6.8 and 7.7; 7.3 and 7.8, .

3e Corollaries 7.4 and 7.5 and Theorems 8,1-8,3,

4, Theorem 6,1, ‘

5, Theorem 6,2,
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maximum values, If the Gateaux differential of the ﬁorm exists,
then it is linear. If for an element x +there is a unique linear
functional £ for which £(x) = Il anc;:;‘ I£ll= 1, then £ can be
evaluated in terms of the differential of the norm and hence in
terms of sphericel orthogonelity, |

Spherical orthogonality and linear functionsls have been
related by showing thet x1H if a linear functional £, with
Jell = 1 and £(x) = |Ixll, is zero for all elements of H.l The
following theorem establishes a reciprocal relationahip,

Theorem 9,1, If an element X, of a normed linear space T

is orthogonal to a linear subset H of T, then there exists a

linear functional f for which f£(x,) = })‘ﬁLonl( and f(h) =0

if heH, There is also a maximal linear subset M of T such

that xo.LM and HcM,

Proof: ILet G be the linear subset of T generated by X4
and H, Define the functional F by F(ax6\~h) = alx,ll, where

heH, Then F is clearly linear over G. But also, \F(axg—h)'
lax,l end lax,ll<|axsthll, since xy,l h if heH, Thus
lF(axo—i—h),,é laxg-hll,. Since F(xo) = nxoﬂ, it follows that

|IFl = 1. But there then exists a linear functional £ defined
over all of T and such that Jl£ll =1 and F(x) = £(x) if
x=G.2 Then £(x,) = ||x,ll and £(h) =0 if heH, The maximal
linear subset M of all elements m for which f = 0 contains

H and is such that x_LlM,

I, That Is, if at least one such functional is zero on H, See
Theorem 6,1,
.2, This is shown by Banach (I), pg. 55, Theorem 2,



100,
The following concepts of tangential and supporting hyper-
planes of the unit sphere of a2 normed linear space will be found

to0 be closely related to spherical orthogonality.l

Definition 9,1, A nyperplanez H of a normed lineer space

T is a supporting hyperplane of the unit sphere S if the

distance between H and S is zero and H contains no interior

points of S,

Definition 9.2, A hyperplane2 H of a normed linear space

T 1is the tangential hyperplane of the unit sphere S8 at the

boundary point x, of S if H is the only supporting hyper-

plane containing the point x,.

Theorem 9.1 and the preceding remark state that any element
x of a normed linear space is orthogonal to some hyperplane
through the origin, and that any hyperplane H through the origin
for which there exists an element X, LH is the set of elements
for which f = 0, for some linear functional £ with Il =1
and f£(x)) = "xoﬂ. But then f(x) = 1 defines a hyperplane
through X, which contains no interior points of the unit sphere,
This hyperplane is thus a supporting hyperplane of the unit sphers,
Hence there is a supporting hyperplane through every point of

the unit sPhere.g

I, See Mazur (IX), Dp. 71-73 and 77, for a more general discussion
of supporting hyperplanes (Stitzhyperebene) and tangential
hyperplanes,

2. See Definition 6,2,

3. This also follows from Mazur (IX), page 73, Theorem 1,
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Theorem 9,2, If x, is a boundary point of the unit sphere

S of a normed linear space and y 1is any element, then
Iyl X~y if and only if S has a supporting hyperplane containing
XO' and 20

Proof: ©Suppose the supporting hyperplane H contains X
and y. Then the set L = H-x, 1is linear, where H=X consists
of all elements of the form h-x, with hz;H.l Therefore
k(xo-y)aL=H-xo for all k, and x°+k(xo-y)£H. Since H
contains no interior points of g, f}xo-t-k(xo—y)’]e-llxol' = 1 and
XL Xo=Ye Conversely, if X, 1 x o~ Ys then by Theorem 9.1 there
exists a linear functional f for which f£(x,) = il = Il and
f(xo-y).- 0, If x_, is a boundary point of §, then )iz, | =1 and
£(y) = JJ£ll. Thus y is in the supporting hyperplane defined
vy £(x) = Jzll,

It is known that if spherical orthogonality is right-unique

or additive, then the Gateaux differentigl of the norm exists at
lxtayll- x|

h
elements x and y of a general normed linear space and can be

. . 5 .
all non-zero points.,  However, /ﬁ;ﬁ% exists for all
evaluated in terms of spherical orthogonality, Thus if x # O

and this limit is denoted by f4(x;y), then:

(1), A=-§J"Exsu-ﬂ and Bz&%"ﬁ,

where A and B are the smallest and largest of the numbers a
for which I.L&X—Y,B If spheriecal orthogonality is additive,
then this function £, is the Gateaux differential of the norm

T, See Def, 6.2, BH is a coset of the subgroup L of the abstract
Abelian group of the normed linear space,

2, Theorems 7,3 and 7.4,

3. Corollary 6.7.
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and is hence linear.l It is not linear in general, but does
satisfy the following weakened linearity conditions:2
(2) T (xsyrz) = £, (x;7)+ £, (x52),
(3). T,(x3ty) = to£,(x3y) for +=0,
(4).  f£.(x;3)=lyll.
If B is the largest of the numbers a for which x-l ax-sy,
then Btr is the largest of the numbers b for which
x Lbx=(rx+sy). TUsing this, and £4(x;rx) = rliixll, it follows "
from (1) that: '
(5)e  £,(x;rEisy) = £ (x;7%)+ 1, (x;87),
= rllxl|+s°fi(x;¥), for s=0 and all =,
It is known® that, for a linear functional F with
F(x) = )zl and W = 1, it follows that ~f(x;-7)=< F(y)=< £ (x;:¥)
for all y # 0, Also, if =~f,(x;-y)=a=1f,(x;y), then there is such
a linear functional F for which F(y) = a. The following is a
statement of this in terms of spherical orthogonality,4'but
follows more easily directly from the evaluation of £,(x;-y)
and f,(x3¥y) given by (1) above:
(6). xJ_dx-y if and only if ~f (x;-y)= alxll=<=£(x;¥).
In the previous section, it was possible to establish the

existence of an inner product by assuming Gateaux differentiability

T, That ;{;% (Thyi=-lxt) /b is linear if it exists has been noted
by Mazur (VI), pp. 129-130, but also follows from the additivity
of spherical orthogonality resulting from its right-uniqueness or
froz;: Gateaux differéntiability of the norm (see Theorems 7.3 and
7ed) e .

2. These three relations were given by Ascoli (XV), pp. 53-55, The
first follows trivially from the triangular inequality of the nom,
while the others can be proved easily from the theory of spherical
orthogonality, Thus (3) follows immediately from #£,(x;ty)/lx)
and f,(x;y)/Ixll. being the largest of the numbers & and b,
respectively, for which xlax-ty and xlbx-y., The inequality
(4) follows from =x-L [fr(x;y)/ixi]x-y and Corollary 6,1,

3. Mazur (IX), pg. 75, statement 7,

4, The equivalence follows from Theorems 6,1 and 9.1,
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of the norm and a type of symmetry of this differential.l This is
also possible without explicitly assuming Gateaux differentiability

-of the norm,

Theorem 9.3, A normed linear space T is an abstract

Euclidean space if and only if f+(x;—,g,n-) = f*“”'éi) for all

non-zero elements X and _1.2

Proof: Using the definition of £(x;y),% it follows that:
° ° e X h'i" - h—fk_ - ‘
£, (%3 %T) = f+(Y,',%,) = _)%1011 Jxt: "‘;1“" il Lim i+ llﬂl I llzl

— 1im Ix+ S vl - )l _ fy+ ##-”xll
- J%—Mo ﬁﬁ J}++°

= 14m | b || =l +h
Tt h g

s - X

= Lim |+ 1 - I+
But by Theorem 8,4 this is zero if and only if the space is
abstract Euelidean,

The above theorem does not expliditly assume Gateaux differen-
tiability of the norm, However, it must follow from the equality
of f#x;r%) and f+(y,"x") for all non-zero elements x and Yy,
since the norm of an abstract Fuclidean space is Gateaux

d:i.ff.‘e:t'en'l::i.able.:5 This gives the following corollary.4

Corollary 9,1, If f+(x;7g,ﬁ) = f_‘_(y;'%i) for all non-zero ele-
ments X and y of a normed linear space 'ZL‘,2 then the norm of T

is Gateaux differentiable at all non-zero points and f(x;-%r) =

f(y;ﬁ‘), where f(x3;y) is the differential at x with increment y.

T, Theoren BZB. ) i ey
2, Where x;y) = 1lim Ixthyl=|=l\/h,
3e Corollari,w'} 7:3'. J(%

4, Compare with Theorem 8,5,
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If spherical orthogonality is symmetric in a normed linear
space T, then the orthogonality is right=unique if and only if it
is 1eft-unique.l The space T 1is then strictly normed if and
only if the norm is Gateaux differentiable at all non-zero points.z
It was also seen that spherical orthogonality is symmetric in a
normed linear space whose norm is Gateaux differentiable if and
only if f(x;y) = 0 implies £(y;x) = 0, where f(x;y) is the
differential att x with increment y, If f(x;y) is replaced
by f,(x;y), this condition implies symmetry and the existence

of f£(x;¥y),

Theorem 9.4, Spherical orthogonality is symmetric and

additive in a normed linear space T if f,(y;x) = O whenever

£ (xsy) = 0,5 where X and Yy are any non-zero elements,

Proof: If x# O and x1y, then all the numbers a for
which xAlax-y must be in the interval (A,B), where A<O0=<3B
and A =-£‘t’£’—%§—ﬂ and B = —f—tﬁ%iy—).é“ Then the largest number
a for which xl1 (A-a)x-y, or =xJ\ax-(Ax-y), must be zero, Hence
£ (x;Ax-y) = 0.4 Then f,(Ax=-y;x) = 0 and Ax-y-lx, Likewise,
the smallest number a for which xL(B-—a)k-y, or X\ ax-(Bx-y),

must be zero, Therefore £, (x;-(Bx~y)) = a,*

Then
fi(=(Bx~y);x) = 0 and Bx-yLx, Since Ax-ylx and Bx-yLX,
it follows from Theorem 7,7 and A=<0=<B +that yLx, Thus
spherical orthogonality is symmetric if £,(x;y) = O implies

f,,_(y;x) = 0 for all non-zero elements X and y. For elements

1., oee Derinitions 7.1 and 7.2,
2. Corollary 7.5.

3, Wnere £, (X;y) = 1im |
+1%3 L |Ix+hyl -yA/h,
4, See (1), page 1!.01]1‘3)‘%1 this thesig.
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x (# 0) and y, suppose that xlax-y if A'< a=<B', Then
because of symmetry, ax-yLx and (from Theorem 7.7) ||ax-yl|

is minimum and constant for A*=<a<B', If A'<a'<B', then
latx-y) +hx)|-latx-yll = 0 if ll< at-aA*t and |u)< Br-ar, Thus
farz-y;x) = £(-(a'x-y);x) =0, and hence fy(x;atz-y) =

£ (x;~(atx-y)) = 0, But with (6) of page 102 this implies that
A?' = Bt, and that there is a unique number a <for which xi ax-y,

The additivity of spherical orthogonality follows from Theorem 7.4,

Corollary 9,2. A normed linear space of three or more

dimensions is an abstract Euclidean space if and only if

fiu(x;y) = 0 implies £,(y;x) = 0 for all non-zero elements
1

X and Ve

This corollary follows easily from Theorem 8,1 and
Theorem 9.4,

It was shown that spherical orthogonality is additive, or
right-unique, in a normed linear space T 1if and only if the
norm of T 1is Gat®aux differentiable.z This differential is a
linear:functional if it exists, and hence furnishes a link
between spherical orthogonality and the theory of linear func-
‘bionals.5 Thus the fact that for every element x, of a normed
linear space there is a linear functional £ with £(x,) = "ﬂl'“xo\\
was used to prove the existence of a hyperplane H such that

X, L H, H consisting of all elements for which f = 0,%

T, Where I,(x;y) = 1im [Jx+hyl - ixll/n,

2. See Theorems 7,3 and 7.4.

3. The linearity of this differential has been noted by Mazur (VI),
PPe. 129-130, It also follows from Theorem 7,3 and the additivity
of spherical orthogonality given by Corollary 7.4.

4, Theorem 6,2, That f exists is shown by Banach (I), pg. 55,
Theorem 3.
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If on“ = 1, then the hyperplane defined by £(x) = JJf)| can

not contain interior points of the unit sphere |l = 1 and is

1

ey This hyperplane is

- therefore a supporting hyperplane at x
unique, or also a tangential hyperplane, if and only if there is

a unique lihear functional £ with Jfl =1 and f£(x,) = [x )= 1.
The tangential hyperplane then consists of all elements ¥
satisfying f(y3 =rl.2 But f is then unique if and only if

3

there is a unique hyperplane H for which on.H, and hence if

and only if spherical orthogonality is right-unique or the norm
is Gateaux differentiable at Xo. This tangent hyperplane is then

vl — 150 Eathy) - ol b
defined by f(x,;y) = nxoﬂ, where f(xq4;y) -,ii% = p
These results can be stated in terms of spherical orthogonality

to give the following:

Theorem 9,5, Spherical orthogonalityvis right-unique in a

normed linear space T if and only if for any element Xx of T

o
there is a unicue linear functional £ with Jifll = 1 and
f(x,) = Iz ). This functional f is then defined by f£(y) = -alxj\,

where xOJ_axd+y.

Proof: If the number a for which x \axy is not
unique for each element y, then Theorem 9,1 shows that f is
not unique., If £ 1is not unique, then Theorem 6,1 shows that
a is not unique for all y., That f£(y) = -alx,ll is a linear

functional of y follows from its being equal to the Gateaux

1., Since f(Xg) = IENl, the elements =x satisfying f(x) = |zl
are of the form Xxgth, where f(h) = @ and the elements h form
a maximal linear subset., See Def, 9.1l and the discussion on
page 100 of this thesis,

2. This has been shown by mazur (VI), page 130,

3., See Theorem 6,1,

L. Also shown by Mazur (VI), page 130.
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differential of the norm at Xx. with increment ¥y, the linearity

)
of this differential of the norm following from its existence.l
Since Xyl (-1)X,+X,, it follows that f(x,) = »xo" ir

£(y) = -a|lx,)l for all y, where x_L axs+7.

Corollary 9.3. Spherical orthogonality is right-unique in

a normed linear space T if and only if there is a tangent hyper-

plane at each boundary point of the unit sphere of T,

Theorem 9,6, There is a hyperplane tangent to the uhit

sphere of a normed linear space T at the boundary point x
2

0

if and only if spherical orthogonality is additive at Xge

Such a tangential hyperplane consists of all elements y for

which X4l X, =Y.

Proof: Since Theorem 9,2 gives on_xo-y if and only if ¥y
is in a supporting hyperplane at X,, it follows that if the
tangent hyperplane exists it must consist of all y for which
Xyt Xo~y. But by definition, there is a tangent hyperplane it
and only if there is a unique supporting hyperplane, or by
Theorem 9.2 if and oﬁly if the totality of elements y satisfying
on_xo-y is a hyperplane, That is, if and only if the set of
2

elements Xx,-y Tforms a linear set,

1. See Theorem 7.3, The linearity of this differential has been
noted by Mazur (VI), pp. 129-130, It also follows from

Theorem 7,3 and the additivity of spherical orthogonality given
by Corollary 7.L.

2., Orthogonality is additive at X5 if xyLly and =xol-z imply
XoLy+z for all elements y and 2z, See III, page 13 of

of this thesis,

3, Such a set is necessarily maximal, See Th, 6,3 and Def., 6.2,
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In the above, the equivalence of Gateaux differentiability
of the norm to right-uniqueness of spherical orthogonality in
normed linear spaces was used., Analogous results can be gotten
by using the equivalence of left-unigueness and strict normedness,
Thus the norm of a normed linear space is Gateaux differentiable
if and only if for each element X there is a unique linear
functional £ with |JIfll =1 and £(x) = |xll, while it can be
shown that a normed linear space is strictly normed if and only
if for no linear functional f with JIfl = 1 is there more
than one point x (with )izl = 1) for which £(x) = |ixl —that
is, no linear functional takes on its maximum on the unit
sphere ||x]|=<1 at more than one point, This has been shown by
Smulian,l but also follows easily from the theory of spherical
orthogonality:

For suppose f (ifl= 1) takes on its maximum in the unit
sphere at the points x;, and x,, Then £(x,) ='nxlﬂ and
£(x,) = "lel, where nxl!l = ]llel = 1, Thus f(xl-xz) =0 and
£(x)+k(xp=x;)) = 1. If |l =1, then 1l<|x;+k(xy,~x;)[ for
all k., But it also follows from the triangular inequality of
the norm® that Mxl{—k(xz-xl)"s;l if O=<k=<l., Thus
"xl%—k(xzoxl)" =1 if O0<k<1, and it follows from Theorem 6.1
that xlﬂ—k(xz-xl)_L,xz-xl if O=<k=<1l, Thus spherical orthog-
onality is not left-unique, and hence the space is not strictly
normed,

Conversely, if a normed linear space is not strictly normed,

then spherical orthogonality is not left-unique and for some

1, Smulien (XI), Theorem 6,
2, Condition (25 of Definition 1.6,
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elements x and ¥y and number a, ylix and ax-y-LX,
Theorem 9.1 gives the‘existence of a linear functional ¢
with f£(y) = llyl), £(x) = 0, and lIfll = 1. But it then follows

from |lax+yl = |yll that £(axty) ='nax+yﬂ.2 Thus £ takes on

y axt
o 1Y axty

For every hyperplane H there is a linear functional ¢

its maximum in the unit sphere at the two points o
and a number ¢ such that H consists of all x satisfying
f(x) = ¢, and conversely all x satisfying an equation of the

form f(x) =c¢ form a hyperplane.3

i el =1 anda ®(x,) =
”xon = 1, then the hyperplane f(x) = 1 contains no interior
points 6f the unit sphere Hx"sél and is therefore a supporting
hyperplane., Thus the above can be restated: %A normed linear
space is strictly normed if no supporting hyperplane of the unit
sphere contains more than one boundary point of the unit sphere,”

Using the equivalence of strict normedness and left-unigueness

of spherical orthogonality gives the following theorem,

Theorem 9.7, Spherical orthogonality is left-unique in a

normed linear space if and only if no supporting hyperplane of

the unit sphere S contains more than one boundary point of S,

While right- and left-uniqueness of spherical orthogon-
ality have been related to Gateaux differentiability of the norm
and to strict normedness, no direct relationship has been
developed between these concepts except the anélogy between

Corollary 9,3 and Theorem 9,7, and the equivalence which results

1, See Theorem 7.8 and Definition 7.2.

2. Jlax+yl = \[yl because of Theorem 7.7. Actually, f(Axty)=
laix+yll ir O0=<A=a,

3. Mazur (IX), page 71,
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~from the assumption of symmetry of the orthogonality.l
However, it has been shown by Smulian that if every
“linear functional defined in a normed linear space T attains
its maximum in the unit sphere Ik|/[<1, then the conjugate space
Tt is strictly normed if and only if the norm of T 1is Gateaux
differentiable.2 With this condition, it can also be shown that
T 1is strictly normed if the norm of T!' is Gateaux differentiable,
These statements are equivalent to the following theorem,l which

will be proved by using the theory of spherical orthogonality.

Theorem 9.8, I1f every linear functional defined on a normed

linear space T attains its maximum in the unit sphere lxli<1,

then spherical orthogonality is left-unique in T*' if and only

if it is right-unigue in T, and it is left-unique in T if it

is right-unique in T°¢,

Proof: Suppose spherical orthogonality is not left-unique in
T!', Then using Theorem 7.7 it follows that there are non-zero
elements f and g of T' and a positive number e for which
aftgl f if lal <e, and that Jat+gll = gl for |aJ<e. Take
lgll = 1, Since g attains its maximum in the unit sphere, there
is an element x, for which |x,ll =1 and g(x,) = 1. But there
are both positive and negative values of a for which
Jlaf+g} = 1. Therefore f(x,) = 0, and aftg attains its maximum
in the unit sphere at the point x. if Ja|<e, Because of

o}

Theorenm 6,1, X, is orthogonal to all elements forwhich g= 0

and also (if lal<e) +to all elements for which afig = 0, Since

1. As a result of Theorems 7.3 and 7.8.
2, Smulian (XI), Theorenm 8,
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the maximal linear subsets of T consisting of elements for
which f and g are zero, respectively, do not coincide, it
follows that spherical orthogonality is not right-unique in T,
Thus spherical orthogonality is left-unique in T' if it is
right-unique in T.

Suppose spherical orthogonality is not right-unique in T,
Then it follows from Theorem 9.5 that there is an element x, of
T for which there are two linear functionals f and g with
Iell = llell = 1 and f£(x,) = g(x,) = Jx,ll. But then
f(xo)ﬂ-k[?(xo)-g(xoi] = |x,ll, and therefore letc(e-g)l=1 = £l
for all k, Thus flf-g, Likewise, [g+k(f-g)ll=0gll ana
gl f-g, Hence f+k(f-g)lf-g if k=0 or k = -1, and
spherical orthogonality is not left-unique in T', Thus spheri-
cal orthogonality is right-unique in T if it is left-unique
in T,

Suppose spherical orthogonality is not left-unique in T,
Then it follows from Theorem 7,7 that there are non-zero elements
x and y and a positive number e for which axty-Lx if
laj<e, and that |axtyll = Jlyll for \al<e. From Theorem 9,1,
there is then a linear functional f with £l =1, f£(y) = Iivl,
and f(x) =0, Let g be a linear functional with g(y) = 0
and g(x) # O.l Then

f(axty) +k[bf (axvy)+glaxry)] = £(y)+k[of(y)+ag(x)].
Thus if lblﬁi !2%%§%), then a can be chosen so that

]f@xw++kBmeww+gwwyﬂra]fwmﬁﬂ = |lax+yll,
Therefore ufﬂ~k(bf+g)"Ean“,=:1 i [bifiiﬁiffifl o 0; el

1., The existence of g follows from Banach (I), pg. 57, or from
Theorem- 9,1 and the existence of a non-zero number a for which
ay4x 1y, as given by Theorem 6,3,
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spherical orthogonality is not right-unique in T*', Hence
spherical orthogonality is left-unique in T 1if it is right-

unigue in T?,

The following theorem serves to complete Theorem 9.8,
It makes use of the concepts of weak convergence and weak compact-

ness, both of which will be used extensively in the next section,

Definition 9,3, A sequence {?n} of elements of a normed

linear space T is weakly convergent if /%}g f(xn) exists for

all linear functionals f defined in T, Such a sSeguence con-

verges weakly to an element x if %;g,f(xn) = f£(x) .for all

linear functionals f defined in T,

Definition 9.4. A subset S of a normed linear space T

Py

is weakly compact if every sequence of elements of S contains

a sequence which converges weakly to an element of T,

Theorem 9,9, If the unit sphere of a normed linear space

T is weakly compact, then spherical orthogonality is right-unique

in Tv if it is left-unicue in T,

22292: Suppose spherical orthogonality is not right-unigue
in Tt', Then spherical orthogonality is not additive in T';l
and there therefore exist linear functionals f; g; and h;

defined in T; for which flg and fJ_h; but with £ not

orthogonal to gt+h., Thus "f+kgﬂ;sz“ and [f+knll=\zll

1. See Theorem 7elio



113.

for all k; but there is a value kl of k for which
lle+x, (ern)ll < ligll.
Without loss of generality, Izl  can be taken as unity and k
to be positive. Then [lf+k(g+h)ll<lell for 0<k<ki.l
Now let {xnk (0= 1,12‘,“3’,-'-) lbe a sequence of elements of
T for which ”xnﬂ = 1, f(x,)>0, and
_ lf(xn)+-xl;g(xh)[~>-ﬂfl( =1
for each n, and let {yn’g be such that |y |l =1, £(y,)=0, and
 |rEa+gag)[= el = 1 )
for each n., Since ]g(x.n)lé llgll and 'h(yn)’g Iull, it follows
from Osf(}cn)sl that g(xy)=0 and h(yn)zo if n>)gl
and n>Jhll. If n is this large and %skl, then g(x,)
and h(xn) must be of opposite sign, since otherwise
| [£(xp1+ £ [e(x) +n(xy]]]
would not be less than [Ifll =1, Likewise, g(y,) and h(yn)
would also be of opposite sign, Since T 1is weakly compact,
there are subsequences of {x,§ and of {yn75 which converge
weakly to elements x and y of T, respectively, Clearly
f(x,)>1 and f£(yp)—>1l. Thus f(x) = f(y) = 1. Since
J£ll = 1, it follows that l=<|xl| and 1l<|y)]. If F is a
linear functional for which |Fll =1 and F(x) = (Ixll, then
\F(xn)'s lpcnl( = 1. But since F(x,)—> F(x); it follows that
F(x)<1 and thus that |lxll<1l, Likewise |Jlyl<1l. Hence
=l = Iyl = 1, and £ takes on its maximum in the unit sphere
at both x and y., But g(x)=0 and h(x)so’,_ while

g(y)=0 and h(y)=0. Thus X¥= y 1is possible only if

T, This follows from the 'triangular inequality of the norm, or
from Theorem 7,5,
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g(x) = g(y) = h(x) = h(y) = 0, and hence only if
‘f(x)—i—kl[g_(x)«l—h(xﬂ‘: llElls But this would contradict the assump-
tion that |f+k,(eth))|< liel. Since x#y, £ takes on its
maximum in the unit sphere at two distinet points and spherical
orthogonality is not left-unique in T.l Therefore spherical

orthogonality is right-unique in T' if it is left-unique in T,

If the unit sphere of a normed linear space is weakly
compact, then each linear functional attains its maximum in the
unit sphere.z It is then possible to combine Theorems 9.8 and
9.5. However, the concepts of uniform convexity and regularity5
are also related to week compactness,and hence to the guestion
of whether'a linear functional éttains its maximum, It is

% ana

known that a uniformly convex Banach space is regular,
that a regular Banach space is weakly compact.5 Thus any of

these three concepts can be used for the following theorem,

Theorem 9510. If a Banach space T 1is uniformly convex,

regular, or dits'unit sphere is weakly compact, then spherical

orthogonality is left-unique in T' if and only if it is right-

unique in T, and it is right-unidue in T* if and only if it

is left-unique in T,

1, See the discussion on page 108 of this thesis,

2o This is implicitly shown in the proof of Theorem 9.9,

3+ These concepts are defined and used in the next section, See
Definitions 10,1 and 10,3,

4, Milman (XVI), Theorem 2, Also see Pettis (XIX).

5, Gantmekher and Smulian (XVIII), Theorem 1, Also, see Milman
(XVI), page 244,
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10, EVATUATIONS OF LINEAR FUNCT TONAIS

An essential step in finding an evaluation of a linear
functional T defined in a normed linear space T is finding
an element x for which F(x) = JH-lxll. This is equivalent to
the problem of finding an element X orthogonal to a given

maximal linear subset H of T with E#T: 1

Theorem l0,l. A necessary and sufficient condition that

there exist an element orthogonal to each closed linear Subset

H_of a normed linear space T is that for each linear functionall
F_defined in T there is an element x with F(x) = |IF[-Ik),

Proof: If "F“ %0, then the set H of elements for which
F=0 is a linear subset with H s T. It follows from Theorem
6.1l that any element x orthogonal to this set is such that
F(x) = |l Jk|. Conversely, suppose H is any closed linear sub-
set of T, Define the functional £ as being zero for elements
of H and unity for some element X, not in H., This functional
is clearly additivé over the space gotten by adjoining x, to H,
and its continuity follows from H being closed, It is then
possible to extend £ to all of T,z Theorem 6,1 then showing
that an element =x is orthogonal to H if f£(x) = Je)-kki.

A normed linear space has the properties of Theorem 10,1

if and only if each supporting hyperplane of the unit sphere S

l, See Def, 1.8 and the following discussion, and Def, 6.2, In
this section, "orthogonelity" is "spherical orthogonality® of
Definition LeDe

2, Banach (I), page 55, Theorem 2,
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containg a boundary point of S. It is lmovm.that there is a
plane of support at each boundary point of S, and that the

' 1
equation F(x) = )|F“ defines a supporting hyperplane, This

hyperplane contains the boundary point x. (llxdl= 1) if and

()
only if F(x,) = Iz,

Tt is known that for any element x there is a maximal
linear subset H with x.1H, a linear functional F with
T (x) ==”FWHXN,2 and a supporting hyperplene to the unit sphere
at the point ﬂér' The problem of this section is an investiga-
tion of the conditions under whiech the converse of this is true
and of the resulting evaluations of linear functionals.;

It should be recalled that a normed linear space is
strictly normed if and only if mo supporting hyperplane of the
unit sphere S contains more than one boundary point of S, or
if and only if for no linear functional F 1is there more than
one element =x with F(x) = "Fﬂ-":dl .3 Likewise, the norm is
Gategux differentiable if and only if there is a tangent hyper-
plane at each boundary point of S, or if end only if for every
element x there is a unique linear functional F with
F(x) = !'F‘"'le“.4 The letter will make it possible to evaluate
linear functionals in terms of Gateaux differentials and
sphericel orthogonality for normed linear spaces in which the
norm is Gateaux differentiable and linear functionais take on

their maximum in the unit sphere,

l, See Definition 9,1, and the discussions following Definition
9,2 and on page 109,

2, Theorem 6,2 and Banach (I), page 55, Theorem 3,

3¢ See Theorem 9,7 and the discussion of page 108, remembering
that spherical orthogonality is left-unique if and only if the
space is strictly normed (Theorem 7.8),

4, Corollary 9,3 and Theorem 9,5, using the equivalence of Gateawx
differentiability of the norm and right-uniqueness of spherical
orthogonality (Theorem 7.3), Also, Mazur (VI), page 130,
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The evaluation of linear functiona\ls has been done by
Léwig for complete ebstract Euclideen-spaces, He showed that if
F 1is a linear functional defined in a complete abstract Euclidean
space, then there is a unique element x, such thét F(y) = (%5,Y),

. 1l
where (Xo,y) is the inner product of x, end y. Then

(o)

Flx,) = £,,%,) = "x°||2 = el |, | o 2 Dhe functionsl T thus

x
takes on its meximum in the unit sphere only at the point 9.

=
and is the only functional teking on its meximum at thet point,
As follows from the above discussion,5 Xy is orthogonel to the
set H of ell h satisfying (xo,h) = 0, It follows that for
every meximel lineer subset H (with " # T) 1in e complete
ebstract Fuclidean spece T there is & unique element X, for

whiech on_H."" It is elso worthwhile to recell that
(

(xg3y) = -?&;—‘}f,l = -a X,

where f(xy3y) 1is the Gateaux differential of the norm at X,
and xOJ-axo+y.5 Thus for eny lineer functional F(y) (with
"Fl\ = 1) 1in a complete abstract Euclideen space, there is a
unique element =x, such that F(y) is equal to f(xo;y),'
_(_‘%{,_"yl or -e llxou. All but the form using the inner product
can be extended to certain normed linear spaces,

There are a number of restrictions which can be put on
normed linear spaces end which are sufficient to assure linear
functionals tekihg on their meximum in the unit sphere, or to give

an element orthogonal to eny given closed linear subset, Meazur has

shown that for any linear functional F in a normed linear space

I, Towig (V), page 11, Theorem 11; (x,Y) is defined by Def., 1.9,
2, See (4) of Def, 1,9, That Il = kxol, or |(x ,y) < )b:ou\lyn,
follows from (1) of Theorem 1,2 and (2? of Def, i

3o Also see Theorem 3,1,

4, This is given by L&Swig (V), page 15, - Theorem 16,

5. Theorem 7,3 and Corollary 7,3',
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with a weakly compactl unit sphere there is an element x for
which F(x) = |Fll-kll, and equivalently that every supporting hyper-
plane of the unit sphere S 1in such a spgce contains a boundary

point of S, This is equivalent to the following theorem.2

Theorem 10,2, If the unit sphere of a normed linear space

T 1is weakly compact, then for each closed linear subset H of

T <there is at least one element xLH,

The following conditions are more restrictive than that
used above, but are worthwhile in that they are of quite different

form and still give the desired conclusion of Theorem 10,2,

Dﬁfinition 10,1, A normed linear space T is regular if

and only if for every linesr functional F defined over the

conjugate space T*! there is ah element X, of T such that

3
F(f) = £(x,) for all elements £ of T!,

Definition 10,2, A funetional f defined on a normed linear

spece T possesses the Fréchet differential f(x:y) at x if

for any £> 0 there is a §>0 for which

f(xm%)-f(x) - £(x;7) | < elivl)

if |nl<¢&; flx:y) is a "uniform Fréchet differential" if the

number § can be chosen independently of x for Jix|| = 1%

le Mazur (VI), pp. 129-130, Also see Definition 9.4.

2. See Theorem 10,1,

3. Some authors use "reflexive" in place of "regular", Conjugate
spaces are defined on page 8 of this thesis,

4, These are Gateaux differentials (Def. 7.3) for which the
convergence to f(x;y) is uniform in y when |yl<1, and
uniform in x,y when |xil=1 and (lyf=1.
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It is known that the unit sphere of a regular normed
linear space is weakly compact,l and that a Banach space is
regular if its norm is uniformly Fréchet differentiable at each
non-zero point._2 Thus either of these conditions can be used in
place of the weak compactness of Theorem 10,2, if completeness
is assumed with the differentiability.3 Uniform Fréchet
differentiability of the norm has the added advantage of implying
Gateaux differentiability, which will be either directly or

implicitly needed in the evaluations of linear functionals,

Theorem 10,3, If the normed linear space T is regular,

or if T is complete and the norm of T is uniformly Fréchet

differentiable at non-zero points, then for each closed linear

subset H of T there is at least one element x1LH, If F

is a linear functional defined in T, then there is at least

one element x for which F(x) = |IF]-Ixl.

Definition 10,3, A normed linear space is uniformly

convex if for every € > O there is a number ¢ >0 for which

el = flyll = 1 and |lx-yil>c imply lix+yll<s-5 .-

It has been shown by Milman that a uniformly convex Banach

5
space is regular, It therefore follows that the regularity of

1, Gantmakher and smulian (XVIII), Theorem 1, Also see Milman
(XVI), page 244, TUsing these and knowing that the conjugate
space of a normed linear space T is the same as the conjugate
space of the Banach space gotten by completing T, it follows
that a regular normed linear space is a Banach space and its
unit sphere is weekly compact,

2., Smulian (XX), page 648,

3. See Theorem 10,2 and the preceding discussion.

4, Originally given by Clarkson (XII), Definition 1,

5, Milman (XVI), Theorem 2., Also see Pettis (XIX).
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Theoren 10,3 can be replaced by uniform convexity and complete-
ness, Furthermore, if F is a linear functional defined in a
uniformly convex Banach space T, then there is a unique element
x for which TF(x) = )JFl-lkll eand there is one and only one

element orthogonal to a given maximal linear subset of T.l

Theorem 10,4, If a Banach space T is uniformly convex,

then for each meximal linear subset H with H % T there is a

unigque element X—LH.‘ If F is a linear functional defined in

T, then there is a unique element x for which F(x) = lFl-jxi.

If the Gateaux differential of the norm at a point Xx,,

exists in a normed linear space T, then 11: is a linear functional

of y.z For this linear functional F(y) = £(x,;y), it is seen
that F(xy) = [|x,] end that [P} = 1.° But the norm of a normed
linear space 1s Gateaux differentiable at x, if and only if
there is a unique linear functional F with |[Fjj=1 and

F(x,) = IEolle® Hence if the Gateaux differential of the norm
ex:.sts at each non-zero point, then any linear functional F,
with |[Fll = 1 and for which there is an element x such that
F(x) = |x||, is equal to the Gateaux differential f£(x;¥).

I, The first statement is given by Pettis (XIX), ILemma l, The

two statements can be shown to be equivalent by the same reason-
ing as used to prove Theorem 10,1, They then follows from the
equivalence of left-uniqueness of sphericel orthogonality and
strict normedness, a uniformly convex space being strictly normed,

2, That f(xy;y) is ’1inear if it exists has been noted by Mazur (VI),
Pp. 129-130, but also follows from the additivity of spherical
orthogonallty resultlng from its right-uniqueness or from the
existence of f(x ,y) See Theorems 7,3 and 7.4.

3, Since l +hyu-? ii}=< jhyll, because of (2) of Definition 1.6,

4, Mazur (V , page l e This also follows from Theorem 6,1 and
the equivalence of Gateaux differentiability of the norm and
right-uniqueness of spherical orthogonality (Theorem 7.3).



121,

Using Theorem 7.3, it is seen that such a functional is also
equal to =-aljzll, where x.laxty. The following theorem now

follows easily from Theorems 10,2 and 10,3,

Theorem 10,5, If the norm of a normed linear space

T is Gatemux differentiable at each non-zero point and:

(1) +the unit sphere of T is weakly compact,

or (2) T is regular,

then for a linear functional F with [[Fl = 1 +there is at

least one element x for which

Fly) = £(x;y) = -alixl|

for all elements y, where f(x;y) is the differential of

the norm at x and x.Llaxty,.

However, it was shown that a normed linear space is Gateaux

differentiable at each non-zero point if and only if spherical

1l

orthogonality is additive, This gives the following corollary.,

Corollarz 10,1, If spherical orthogonality is additive

in a normed linear space T and:

(1) the unit sphere of T is weakly compact,

or (2) T _is regular,

then for a linear functional F with ||Fll = 1 +there is at least

one element X such that it follows from xlaxty that,for all y,

F(y) = -allxil.

If the norm of a normed linear space is uniformly Fréchet

differentiable, then it is clearly Gateaux differentiable, It

1. Corollary 7.4,
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therefore follows from Theorem 10,3 that:l

Theorem 10,6, If the norm of a Banach space is uniformly

Fréchet differentiable, then for a linear functional T with

Bl = 1 there is at least one element x for which

F(y) = £(x3y) = ~alixi|

for all elements y, where f(x3;y) is the differential of the norm

at X and x_laxtv,

In Theorem 10,5, 10,6, and Corollary 10,1 it was not
possible to say that there is a unique element =x for which
F(y) = £(x;y) = -aj|x|. However, it is known that there can not
be more than one such x for any linear functional F if, and
only if, the space is strictly normed.g Therefore if this con-
dition were added to either of these theorems, it would be pos-
sible to conclude the existence of one and only one element X
for which F(y) = f£(x;y) = -afkl for all y, Rather than
assuming the space to be strictly normed, this can be included in

uniform'convexity and the following gotten from Theorem 10.4.3

Theorem 10,7, If F is a uniformly convex Banach space

 whose norm is Gateaux differentiable at all non-zero points,

then for a linear functional F with [IFfl = 1 there is a

unigue element =X such that for all elements ¥y
F(y) = £(x;y) = -all=il,

where f(x;y) is the differential of the norm at X and x.laxty.

1, By the same reasoning as preceded Theorem 10,5,

2. Smulian XI, Theorem 6, Also see page 108 of this thesis,
3, See Definitions 7.4 and 10,3, The reasoning is the same as
that preceding Theorem 10,5,
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Corollary 10,2, If spherical orthogonality is additive in

a uniformly convex Banach space, then for a linesr functional F

with Pl = 1 +there is a unique element x for which

F(y) = -alxil

for all elements y, where =X.AaX+y.

This theorem would also give the result of Lﬁwigl as a
corollary, since an abstract Euclidean space is uniformly convex
and its norm is Gateaux differentiable--the inner product (x,y)
being equal to |xl*£(x;y) .

However, the conditions of Theorem 10,7 are rather severe,
Gateaux differentisbility of the norm implies that spherical
orthogonality is additi've,5 while uniform convexity is a stronger
condition than strict normedness.é It is therefore seen from
Theorems 8,1-8,3 that requiring spherical orthogonality to be
symmetric in a space of three or more dimensions satisfying the
conditions of Theorem 10,7 makes the space abstract Buclidean,

Because of this, it seems worthwhile to consider what kind
of a generalized inner product can be defined in normed linear
spaces, It was seen that for abstract Euclidean spaces the inner
product cen be evaluated as (x,y) = -a"x”z, where xJ—ax+y.5
This can also be stated, equivalently, that if H is the maXimal
linear subset for which x1H and a is the number for which

¥y = ax-h with heH, then (x,y) = -a)ix!lg. &

lo Lowig (V), Theorem 11, See page 117 of this thesis,
2. See Corollary 7.3, : :

3 Corollary 7.4,

4, See Definitions 7.4 and 10,3,

5, See page 19 of this thesis,

6, The existence of H is given by Theorem 6,2; it must be
unique since the number a is unique,
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' Theorem 10.8, It is possible to assign to each pair of

elements x,y of a normed linear space T a real number [x,y1
satisfying:

(1) Dx,yl = thx,yl and [Ix,tyl = tlx,yl,

(2). Ix,yazl = x5+ [X,2),

(3)e Ix,yl is continuous in 1y,

(4), D%l = Ixii® ana  |x,3)< lixd-lvil.

There is a unique possible definition of E:,y_] satisfying

(1)=(4) if and only if orthogonality is addi’cive.l In that case:
(5)e L[x,yl is continuous in x,

(6)e xLy if and only if [x,yl = O,

Proof: TFor each element x of T <for which |z]j = 1 choose
a linear functional Fy wi'bh HFX“ =1 and F_(x) =1, and let
Hy Dbe the corresponding maximal linear subset with :c.LHx.'2
Define [kx,y| as kiix}j F (y) or as -ek|ill®, where axty s H.

3

Since TFy(axty) = 0, these definitions are the same and clearly |

satisfy (1)-(4), the second part of (4) following either from

|Pgll =1 or from |of < H. : |
Spherical orthogonality is additive in T if and only if for

any elements X (;é 0) and y there is a unique number a for

which xJ_ax+y,5 From the way [x,y| was defined, it is clear that

le Other conditions equivalent to additivity of spherical orthog-
onality are: (1) Right-uniqueness of spherical orthogonalitys
(2) Gateaux differentiability of the norm at non-zero points;
(3) Uniqueness for each element x of the lihear functional f
with |Ifll = 1 and f£(x) = jixl{; (4) The existence of a tangent
hyperplana:at each point of the unit sphere, Any of these could
replace spherical orthogonaelity in Theorem 10.8, (See Theorems
7e4d, 743, 9.5, and Corollary 9.3).

2 See Theorem 6,2 and its proof,

3¢ Theorem 6,1, '

4, The latter is given by Corollary 6.l.

5. Theorem 7.4,
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the uniqueness of such definitions of [x,y] implies the unique-
ness of the number a for which xlaxty, and therefore also
implies additivity of spherical orthogonality, Also, if

[x,7] = 0, then [x,x+ky] = [X,x] and (4) gives )Ixuzs.UxI]-”x-fkyll
or lxtkyil=|x\. Thus [x,y] =0 implies x.y, and

[x,y] = -allxllz implies x-laxty, Hence if spherical orthog-
onality is additive, then the only value [X,y] can have is
-aE}x“z, and x1y if and only if [x,y] = O. It now only re-
mains to establish (6): Suppose [x,y| is not continuous in x,
and that [x,y]| = -a ikii®. Then for some sequence {xi} with
s>, it isn't true that [x;,y]— —albc[lz. Since
(4) shows that [x;,y| is bounded, there is a subsequence {xj}

flx;il =1 and x

of f{x;| end a number A such that [x5,7] = -AjllXIIZ and
Aj——>A. Then, as above, X; LAXsy, Or [lxj—f-k(ijjﬂ—Y)"}_anu = 1
for all Kk, Since the norm is continuous, it follows that
bet+k(Axiy)| =gl = 1 for all k and that =x1lAxty., But the
number a for which XxJldax+y is unique if spherical orthogonality
is additive, Hence &a = A and [x,y] is continuous in x if

spherical orthogonality is additive,

This result gives another form in which to express
Theorems 10,5-10.7, by replacing £(x;y) = -a)xlf by -l—:’f,-;%]-

If in addition to additivity of spherical orthogonality
its symmetry is also assumed, then |x,y| = O implies [y,x] = o.
All normed linear spaces of three or more dimensions satisfying
these conditions are abstract Euclidean.l For a two dimensional

space it is necessary to.make the assumption [x,v] = [y,x]’ and

le Theorem 8,1,
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hence have all the conditions of the definition of an inner
product.l |

In the following examples, the generalized inner product
[x,y] is expressed in terms of the general form of the linear
functionals defined on these spaces (for p=>1l), and interpreted

in terms of spherical orthogonality (for p=1).

Example 10,1, Consider the Banach space lp (p=1) of all

sequences X = (xl,xz,- + ¢ ) for which %'xiﬂp is convergent,
- Ye “

where |jxl| = Lg; [xilﬂ .2 By definition, =xLly if and only if

|x+cylf - x>0 for all k. If ¥y = (yy,¥s, * * * ), this becomes

B = o Y o0
L% ixi“wiiﬂ, -[?:ixilﬂ =0, or gﬁxffkyilp- lxi|i_’]>0. Thus
if xly, then

s
s Zor sl i >
—>+0

But this clearly implies that %ﬂo eyl - kel > 0 and that
Ixtkyil = JIxll for k=0, s Using the convergence of the series

= |x;)® ana = |v;|®, it is not aifficult to show that

=1
for any £€-=>0 there is an integer n for which
= =gy P- = |x3]P

E<£ for all k with |k|<1, Thus
1lim 2:: 'xi"‘kyﬂp" %.'xi’P - % 1im lxi“'kyi]lip"’ixiip’

b>+o k 2=l fpy+o
and |[[=tkyl| =kl for k=0 if and only if neither of these is
ey g - x4 |®
k
X;¥3)y if p>1 or p=1 and xi# 0, and it

less than zero, As k>0, approaches

-2
Plxilp (
approaches ﬁyia if p=1 and x; =0, Hence |xtky)i=|xll for

k=0 if and only if

T, Definition 1.9.
2o This space is defined by Banach (I), page 12,
3¢ See Theorem 7,5,
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. . ) |
(1. = |Xi\p (x473) = 0, if p>1;
s#) X3V 3 (=2 .
ot e % [SJf th = > 0, if = 1.
(2) 7 il + P iyi% 9 D
Putting ax+y and -(ax+y) in (1) 1in plece of y shows that

xlax+y if and only if Elb:]}p+ % }xﬂ p'z(xiyiﬂ = 0, and that

= |x;|P-2 y
xl—[g lx';]f}l!p (xiyl?%x—ky.l From Theorem 7,3, it follows that
X o0

(3)e f(x3y) =

=l
where £(x;y) 1is the Gateaux differential of the norm at =X,

Thus the norm of a space J.p with p>1 is Gateaux

differentiable and spherical orthogonality is right-unique and
additive in ]T.Z A space lp (p>1) is uniformly convex, and

hence if [x,y} is defined by

o -2
(4) . [x,yj o = ixl,iz"i)-%i-yj—).,

then for any linear functional F defined in lp there is an
3

unique element X, for which F(y) =[x, ,¥| for all y.” Also,
this "generalized inner product™ satisfies conditions (1)-(6)
of Theorem 10,8,

For p = 1, putting ax—y and -(ex—y) in place of y in

- ° 1 (4-“:0
(2) shows that xlax-y if and only if i@}xﬁ-%x y:i}«pz)lyi\;o,
l &«
40 x.yi by =0) 67 o) Xa2¥ s =9
or (5) gﬁ-giyiisalhll$£ﬁ+giyiq.

Thus spherical orthogonality is right-unique, or additive,

at an element x = (x;,X5, ¢ * » ) of the space 1, if and only

1
if X3 # 0 for any i, This condition is also necessary and

1. There must be at least one number a for which X Laxty,
See Theorem 6,3, ,
2 These three concepts are equivalent in any normed linear space,
See Theorems 7,3 and 7.4,
3e The uniform convexity of 1P (p>1) was shown by Clarkson (XII).
The rest follows from Theorem*1l0,7, and has been known before,
e.g. as a direct consequence of Pettis (XIX), Lemma 1, and the
satisfying of (1)-(4) of Theorem 10.8 by Ex,:ﬂ .
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sufficient for the existence of the Gateaux differential at =x
ani for the unique evaluation of the linear functional F with
IFll =1 and F(x) = |idl. Thus if =x;# 0 for any i, then the
differential of the norm is given by (3) and F(y) = Ec,y] for
all y, where [%,yj is given by (4)., Comparing (5) above with (6)
| of page 102 gives:

(1'0' : @":0 @’o’ ) o (h_'_—?_?_)
£,.(x53) = fﬁ%%A-flyii , and £_(x:3y) = = %’;‘i- A
P o pA i s

Examgle 10,2, Consider the Banach space Ip (p=1) of all

7
functions x(t) in (0,1) for which )(Ix(t)ipdt exists, where

/ Y =
il = fﬂx(t)ipdﬂ . An L, space is uniformly convex if p>1,%

and for a linear functional F defined on Lp (p>1) there is a
unique element x for /vx;hich F(y) = [x,y] for all y, where
[x,7] = Mx(-b)ip"zx(t)-y(t) at, o
>
This "generalized inner product" satisfies (1)-(6) of Theorem 10,8,
For the space Ll the following is analogous to the corres-
ponding equations for the space 11, U being the set of all numbers

t in (0,1) for which x(t) # 0 and 1-U the complement of U,

sy) = | ELEIELE ( | ats : _}(X(tl}_’_(t! Mrgam
f, (x57) g‘-jff%fldt+/}ahy(t)' at; £_(x;¥) -q (6] at )’Eft)idt.

Since xlaxty if and only if -f (x;y)=alxll<-f_(x;y), spherical
orthogonality is right-unique, or additive, at x and there is a
Gateaux differential of the norm at x, if and only if the set of

numbers + for which x(t) = 0 is of measure zero,

I, Where f:(x;y) = lim |llx+hyl)-Ixil |/h.

2. Clarkson (xiy) . % L/

3o This follows from Theorem 10,7 and the evaluation of the dif-
ferential of the norm given by Mazur (VI), pg. 132, It is also
immediate from Pettis (XIX), Lemma 1, and the satisfying of
(1)-(4) of Theorem 10.8 by [X,¥].
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