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- SUMMARY -

Three possible definitions of orthogonality of elements 

of normed linear spaces are studied. For abstract Euclidean 

spaces, each is equivalent to the usual requirement that the 

inner product be zero. These definitions are never vacuous, 

since for each definition and any elements x and y of a 

normed linear space there is at least one number a for which 

x..J..ax+y. 

It is shovm that neither Pythagorean nor isosceles or

thogonality can be either homogeneous or additive in a normed 

linear space unless that space is abstract Euclidean, although 

both of these tY:Pes of orthogonality are symmetric. If x .1-y 

in the isosceles sense, then lµ:+kyll> ½\\idl for all k. This 

and other similar inequ~lities give a comparison of isosceles 

and spherical orthogonality. Spherical orthogonality is homo

geneous in any normed linear space, but is neither additive nor 

synnnetric in general~ It can be additive and symmetric for a 

space of three or more dimensions only if the space is abstract 

Euclidean. For two-dimensional spaces, an inner product can be 

gotten from additivity and a strengthened form of symmetry, 

expressed in terms of the differential of the norm of of the 

limits, f±(x;y), of \jx+hY~- )be\\ as h➔.:t"O. 

Because of the lack of sy:mmetry of spherical orthogonality, 

the uniqueness of the number b for which bx+y ...1.. x ( left

uniqueness) does not imply that of the number a for which 



x..Lax+y {right-unig_uenes·s). This number b is unique i:f' and 

only if the space is strictly normed, and can have any value 

for which IJbx+ylf is minimum. The number a is unique if 

and only if spherical orthogonality is additive, or if and 

only if the norm is differentiable at all non-zero points, 

and can have any value satisfying f~ {x;y)~ -a ffxO;:s f_ (x;y). 

There are many connections between the theories of 

spherical orthogonality, of linear functionals, and of max

imal linear subsets and supporting and tangent hY,Perplanes. 

For example, for a linear functional f, ff(x) I - ltf'II-\Jx:11 if 

and only if x..Lh for all h satisfying f(h) o. For any 

element x there is a maximal linear subset H with x.J...H. 

Right- and left-uniqueness are expressed in terms of conditions 

on the elements at which a linear functional takes on its ma~

imum in the- unit sphere, and of like conditions on the points 

of contact of supporting hyperplanes of the unit sphere. If 

the norm of a Banach space is differentiable at non-zero points 

and some additional assum.:pt1on such as weak compactness, 

regularity, or uniform convexity is made, then it is possible 

to give a general form for all linear functionals in terms of 

this differential or of spherical orthogonality. Then for a 

linear functional f there is an element x such that 

f(y) = -a lfxll 2 :for all y, where x i ax+y. 



- NOTATION -

U Closure of the set U (see pg. 1). 

x £.. U The element x is a member of the set u. 

Uc V The set U is contained in the set V. 

U lJV The set of all elements belonging to either U or V; 

the sum of U and v. 
Un V The set of all elements belonging to both U and V; 

the intersection of U and v. 
x + y Sum of the elements • x and y (see Definitions 1.1-1,6). 

x+U The set of all elements :x:+u, where u eu. 

U + V The set of all elements u + v, where u E.. U and v £-V. 

ax Product of the number a and element x ( see Def. 1.4). 

au The set of all elements of the form au, where u ~u. 

llx!I 
IJ:rll 

Norm of the element x (see Def. 1.6). 

Modulus of the linear functional f (see pg. 8). 

T' The conjugate space of T (see pg. 8). 

- (x ,y) Inner product of x and y (see Def. 1.9). 

x ..1. y The element :x: is orthogonal to y ~ This may be in the 

sense of Definition 2.1, 2.2, or 2.3, or of Theorem 3.1, 

depending on the section in which it is used. 

:x:.l.U The element :x: is orthogonal to every element of u. 

f (:x:;y) 

f_ (:x:;y) 

The differential of the norm at x with increment y, 

lim llx+hy}/ - llxll unless spec if ied otherwise ( as in Def .• 
.1..-+o h ' 
7.3 and 10,2). See Theorem 7.4 and Corollary 7,4. 

l:im /tx+hYII- !pell 
,t.,➔+o h 

(see Corollary 6.6 and pg. 101). 

lim. l)x+hyll - llxll . 
){➔-o . h 
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1. 

l. TOPOLOGICAL SPACES 

The topological spac~s used in this thesis will be normed 

linear spaces, Banach spaces, and abstract Euclidean spaces. 

However, these spaces are special cases of more general topolog

ical spaces which will be discussed first. 

Definition 1.1. A Hausdorff topological space1 is a set of 

elements T such that to each element x of T there are 

associated subsets of T, called neighborhoods of x, which 

satisfy the conditions: 

(1). Each element belongs to all of its neighborhoods. 

(2). For each of two distinct elements there exists a 

neighborhood which does not contain the other. 

( J). If two neighborhoods U and V each contain an element 

~' then there exists a neighborhood of x contained in the 

intersection of U and v. 

be open if every element of U .has a neighborhood contained in 

U. An element x is a limit point of a set U if every neigh

borhood of x contains an element of U (other than x). The 

-closure, U, of U is the sum of U and all of its limit points. 

A closed set is a set which is equal to its closure. Also:
2 

1. Hausdorff (III), pp. 228-229; the space satisfies postulates 
(A), {B), (C), (5). 

2. See Pontrjagin (VII), pp. 26-Jo. 



(a)• If u contains a finite number of elements, then U = u. 

{b). If u and V are any sets, then uuvcuvv. 
-( C) • For any set u, u = u. Thus u is a closed set. 

(d) • The complement 1 of an open set is closed, and the 

complement of a closed set is open • 

.(e). The sum of a finite number of closed sets is closed, 

and the intersection of a finite number of open sets is open. 

(f). The sum of any number of open sets is open, and the 

intersection of any number of closed sets is closed. 

A Hausdorff space consists only of a set of elements and 

their neighborhoods, there being no operation between elements 

defined. Such an operation can be introduced by requiring that 

the set be an abstract group. 

Definition 1.2. A set 2 G of elements is called a group if 

there is an operation in G which associates. with each pair of 

elements x, y a third element (which will be called x+y} and 

this operation satisfies the conditions: 

(1). x+(y+z) = (x+y)+z for all x, y and z. 

(2). There exists a zero element such that x+O = x for all x. 

(3). For each x there is an inverse element -x such 

that x+(-x) = o. 

Definition 1.3. A set G is called a topological group3 if 

it is an abstract group and a Hausdorff topological space and the 

group operations are continuous. That is: 

1. The complement of a set consists af all elements not in the set. 
2. Pontrjagin (VII), pg. 3. 
3. Pontrjagin (VII), pp. 52-53. 



(1). If x and y -are elements of G, then for any 

neighborhood W of x+ y there exist neighborhoods u and 

V of x . and y such that U+Vc::. w. 

(2). If x is an element of G, then for any neighborhood 

V of -x • there exists a neighborhood U of x such that -Uc.V. 

A topological group is called a topological Abelian &i:oup 

if its abstract group is Abelian1• Some of the elementary 

properties of a topological group are: 2 

(a). If F is a closed set, U an open set, P an arbitrary 

set, and :x: any element of the space, then x+F, F +x, and -F 

are closed sets, while U+P, P+U, and -U a.:re open sets. 

(b). A topological group is homogeneous; that is, it is 

sufficient to verify its local properties for a single element 

only. For example, if the zero element has a neighborhood con

taining only zero, then every element x has a neighborhood 

containing the single element x. 

(c). A topological group is regular; that is, for any 

neighborhood U of an element x there exists a neighborhood 

V of :x: such that Ve u. 

In addition to the group operation between elements of a 

topological group, it will be useful to have multiplication by 

real numbers. Because of the group operation, multiplication of 

elements of a topological group by integers is defined. The 

multiplicat'ion by real numbers will be introduced by requiring 

that the space be a linear (vector) space. 

l. A group is Abelian if the group operation is commutative; i.e. 
if x +y = y+x for all elements :x: and y. 

2. Pontrjagin (VII}, pp. 52-53. 



Definition 1. 4~ A set L is called a linear (vector) ~ /R 
space it it is an Abelian group and an operation {called multi

plication) between real numbers and elements of L is defined 

and sat.isfies the conditions: 

(1). 

and Y, 
(2). 

(J). 

(4). 

a(x+y)= ax +ay for all numbers a and elements x 

(a+ b)x=ax + bx, 

a{bx)= (ab )x, 

l•.x :: x. 

The identity (or zero) of the _Abelian group of a linear 

space is O•x, since x+O•x=l•x+ O•x = x by (2) and (4) of 

Definition 1.4. From the theory of groups the element O•x must 

be the same for all x,1 although this can be shown directly. For 

l•x+l•Y = l•x+l•y+ O•x = l•x+l•y + O•y by (2) and the commuta

tivity of addition. By subtracting the inverses of l•x and 

1.y, it follows that O•x == O•Y• Also, the inverse of x is 

(-l)x, since x+ (-l)x := l~x + (-l)x == O•x by .(~) and (4). 

Furthermore: 

(a). If ax= O, either x = O or a = 0. For if ax == O, and 

a ;fo O, then i (ax) == O == x by ( 3 ) and { 4) ~ 

(b). If ax = ay and a :;6 0, then x=y. For if ax = ay, then 

ax + a(-y)=O, since . ay+ a(-y) = O by (1). From (1), it also 

follows that a(x-y)= O and hence from (a) that x =Y• 

(c). If ax=bx and x=f.:.0, then a= b. For if ax = bx, 

then (a-b)x=O and x = O by (a) if a :t=- b. 

1. PontrjagiK {VII), pg. 4. 



Definition 1.5. A set L is called a linear topological 

space if it is a linear space and a Hausdorff topological space 

and the operations a•x and x+y are continuous simultaneously 

in a and x, and in x and Y, respectively. 

Since a linear topological space is a topological Abelian 

group, it possesses all the properties discussed below Definitions 

1.1 and 1.3. The following will also be useful: 

(a). If U is an open set in a linear topological space, 

and a .;c O, then au is an open set. For suppose y is an 

element of au. Then y·:::::ax, for some· x in u. Hence U 

contains ¾<Y)= x, and from the continuity of the product at 

<¼,y) there exists a neighborhood V of y such that ¼vc u. 

Then V e. au, and since y was arbitrary it follows that au is 

open .. 

(b). If U is any neighborhood of 

topological spa.ceT there is an open set 

the zero of a linear 

V such that aVcVcU 
aU 

for . la/ ~ 1. It follows from the continuity of the product ax 
f'M·t{._, J__JU 1, () --,. · 

at · (O,O) that' 'there is a positive number S and a neighborhood 

W of zero such that awcu if /a }"' c5 • But by (a), aw is 
. 1 

open if a =f::. o. Since the sum of open sets is open, the .. . sum V 

of all sets aw for which la l < [ is open. Clearly ave V if 

fa/ ~ 1, and vc U, kUMVU. cJ!,€ ~t> Ct W c U .. 
I 

By introducing the following generalization of absolute 

value in a linear (vector) space, one obtains a particular type 

of linear topological space--a normed linear space. 

1. See (f) following Definition 1.1. 



6. 

Definition 1 • .6. A set T is a normed linear space it it 

is a linear space and to each element x of T there corresponds 

a real number /pell, the norm of x, satisfying the conditions: 

(l). llxl) > O if x-:/=-0, 

(2). llx+y/l :s: l/xll+ JlyJ I, 
( 3). 1/~xl( = /al· 1/xU for all numbers a. 

Theorem 1.1. A normed linear space is also a linear 

topological space. 

Proof: If x is any element of the normed linear space, then 

for each number £ > 0 the set consisting of those elements y 

satisfying the inequality l/x-yll < £ will be said to be a neigh

borhood of x. Then: (1). An element belongs to each of its 

neighborhoods, 1 since II o)I = 0 by (3) of Definition 1.6; (2) if 

/lx-yH :::::.£ , then the neighborhood of x defined by 1/x-yl/ <.S does 

not contain y; (3) if x is in the neighborhoods of u and v 

defined by /lu-y/1 "" ~' and /)v-y ll < £.._ , then the neighborhood of x 

defined by //x-y)I ~ £ , where £ is the smaller of £1 -/)u-x ll and 

£~- ltv-x)I, is contained in each of these neighborhoods and hence 

in their intersection. Thus a normed linear space is a Hausdorff 

topological space. The continuity of x+ y follows immediately 

from (2), and that of ax from (2) and (3), of Definition 1.6. 

If the number l}x-ytJ is called the distance between the 

elements x and y, then it is easily seen that a normed linear 

space is also a metrie space: i.e., the distance relation 

1. See Definition 1.1. 



11:x:-yll ~ p(x,y) satisfies the conditions: 

(1). p(x,y) = Q it and only if x:;: y, 

(2). p(:x:,y) = p (y,x), 

(3). p(x,z).:s:p(x,y}+p (y,z). 

The neighborhoods of :x: defined by IJx-yll , t:. are called 

spheres with x as center and of radius £. If the distance 

from an element 

of //x-u // for 

x to a set U 

u £- U, then X 

is defined as the lower bound 
1 is a limit point of U if and 

only if ·this distance is zero. Likewise, a sequence of elements 

is said to have the limit x if lim. 1/x-:x:nl/ = o. A 
l)l~OO 

C~:\,1-0:hf sequence is a sequence xl, x2 ,· •• such that 

l:i,m. /~ --x II = o. Such a sequence in a normed linear space does 
/!11,m.~oo m n 

' 

not necessarily have a limit.i~ t t...e. Sf°'-C.~ . 

Definition 1.7. A normed linear space is said to be complete 

if all Cauchy sequences have a limit~ A complete normed linear 
2 space is called a Banach space. 

4 function is said to be a functional if its values are real 

numbers and its arguments are elements of a topological spaceo The 

norm of Definition 1.6 is an example of a functional in a normed 
-\('X+"1)=it')')~·\1 ·1) ' t (c>(~) -;:;,<>1~(-X) 

linear space. Functionals which are linear in the argument will 

be ~ound useful in studying orthogonality in normed linear spaceso 

Definition 1.8. A .functional f(x) with argument in a topo

logical Abelian group is linear if it is continuous 3 and 

1. See the discussion following Definition 1.1. 
2~ · Banach (I), pg. 53. 
J. That is, for any element x and number e > O there exists a 

neighborhood U of x such that ft (x}-f (u) I< s if U €- u. 



8. 

1' (x+y) = f (x) + f {y) for all elements x and y. 

If' a linear functional f'(x} has its argument in a 

normed l1near space, it follows that there exists a number M 

such that It (x}J~ M• 1/xll for all elements Xo 
1 The lower bound 

of' such numbers M is called the modulus of f and written Utll . 

It can be shown2 that for any element of' a normed linear 

space there is a linear functional f (x} such that f (x
0

) = 1Jx
0

II 

and lftl\ = 1. The set of all linear functionals defined on a 

normed linear space T is also a normed linear space (the 

conjugate space) if the norm of a linear functional is its modulus. 

By assuming the existence of a bilinear and symmetric 

functional o~ two variables, and relating this to the norm, it is 

possible to get a generalization for normed linear spaces of' the 

inner (scalar) product of vectors. 

Definition 1.9. An abstract Euclide~n space is a normed linear 

, space such that to each ordered pair or elements x and y there 

can be associated a number (x 2y) with the following properties: 

(1). (tx 2y) = t(x,y) for all numbers t, 

{2). 

(3). 

(4). 

(x,y) = (y,x), 

(x1y+z) = (x,y)+(x 2z), 
2 llxU = (x 2x). 

The number (x,y) is the (bilinear and symmetric) inner 

product of the elements x and y. 3 The assumption of such an 

inner product implies that any finite dimensional subset of the 

1. Banach (I), pg. 54, Theorem 1. 
2. Banach (I), pg. 55, Theorem J. 
3. See Frechet (II), pg. 707. 



space is equivalent1 to a finite dimensional Euclidean space--. 

i.e. to a space with elements of the form. x = (x
1

,x2,•••) and 

//xii= '-1~(x.2 ). For example, it is clear from (l) and (3) of 
• ' l. 

Definition 1.$, that for any abstract Euclidean space there exist 
~~ 

elements x and y such that //xii = IJy// = l and (x,y) = Q. ~~.t"~:,t 
• -

/
1 12 2 2 2 2 2 2 Then 1ax+ byJ = (ax+ by,ax + by) -:- a (x,x) + b (y,y) = a~ llxll 2-+b /lyJI • 2 

=-- Cl i- b - \\ ( CA b) !I Hence if the correspondence ax+ by~ (a, b) is set up, it -
l' 

follows that the operations of addition and multiplication by O"l<l '+,$; f-ct-4 
--7' ,·e. ;} _;_., ew. ,.,i,,.1.()'""""~1Vect'tri.A'fi1'!:JI..'-' 

real numbers are preserved under the correspondence and that 

1/ax + by ll = ll(a, b))I for all a and b. Hence the abstract 

Euclidean space generated by the elements x and y is equivalent 

to the two dimensional Euclidean space. It is evident that the 

same argument can be used for any finite dimensional abstract 

Euclidean space. 

It will be found useful to express the inner product (x,y) 

directly in terms of the norm: 

Theorem 1.2. The inner product (x,y} or an abstract Euclidean 

space is equal to: 
• D 2 21 

(1). ¼ /x+yll - 1/x-y/J :J , !2,!'. 
- • 2 2 21 

( 2). ±½ Dix ±. yJJ - I/xii -J/yl/ :J . 
2 2 2 2 

~: ( 3) • /J X + ky}/ = //x JI + k J} y l} + 2k ( X, Y) • 

Proof: F~om (4) of Definition 1.9, /Jx -+ yl/ 2 = (x ± y,x ± y). 

The additivity and symmetry of (3) and (2) of Definition 1.8 

make it possible to expand this as: 

1. In the sense that there exists a 1-to-l bilinear correspondence 
which preserves the norm. (see Banach (I), pg. 180). 



and 

II x + y /I 2 = ( x, x} + ( y , y } + 2 ( x, y } , 
2 • 

/Jx-y/1 = (x,x}+ (y,y} -2(:x:,y}. 

Using (4) of Definition 1.9, these become 

(x,y) ~ ±½Dix+ y/J
2

-Jlx/J
2

-lJyJJ
2
] . 

l.O. 

Subtracting them gives (x,y) = ¼ UJx + yJl 2 - l}x-yJl
2]! Likewise, 

2 • 
)l x+kyJ/ = (x+ ky, x + ky) = (x,x) + k 2 (y,y)+2k(x,y) 

= l/x/12+ k 2//y// 2+ 2k(x,y). 



11. 

2. ORTHOGONALITY IN NOR..Tv!ED LINEAR SPACES 

A definition of orthogonality of elements of a normed 
1 linear space has been suggested by B. D. Roberts. It is that 

two elements x and y are orthogonal if and only if 

1/x +ky /I = ])x -kyll identically in k. Unfortunately, there 

exist normed linear spaces where two elements can be orthogonal 

by Roberts• definition only if one is zero. 2 In order to avoid 

this difficulty the following three definitions have been 

developed. They are equivalent for abstract Euclidean spaces, 3 

but are not equivalent in a general normed linear space. 

Definition 2.1. Isosceles orthogonality: An element x 

of a normed linear space is orthogonal to an element y (X..LY) 

if and only if /Ix+ y ll = /Ix - y/). 

This is a generalization of the fact 

that two vectors x and y are perpendic

ular if and only if x +y and x - y are 

equal in length. The vectors x + y and 

x - y can then form the sides of an isosce

les triangle with 2y, or 2x, as base. Be

cause of the nature of geometrical addition 

·of vectors, the latter could be taken 

as the condition tor perpendicularity~ 

1. Roberts (VIII), pg. 56. 
2. See Example 2.1. 
3. See Theorem J.l. 



12. 

Definition 2.2. Pythagorean orthogonality: An element x 

of a normed linear space is orthogonal to an element y (x..Ly) 

if and only if /Jx/J 2+ JJy/J2 = Jlx-y1J
2

• t--- ~·- ::r-"' 
o/, I ·•---, J 

h., _, _______ .. _____ ::::,.. 
"1 

If a right triangle in ordinary Euclidean space is defined, 

by virtue of the Pythagorean theorem, as one such that the square· 

of the hypotenuse is the sum of the squares of the legs, then this 

is a generalization of the fact that perpendicular vectors can be 

placed so as to be the legs of a right triangle. 

Definition 2.3. Spherical orthogonality: An element x of 

a normed linear space is orthogonal to an element y (x-1.y) if 

and only if /Jx + kyll ~ //x ii for all numbers k. 

This definition could have been 

stated: "x ..L y if and only if every 

element x +ky lies on or outside 

the spherical surface consisting of 

elements z satisfying II z ll = /lxll." 

It is a generalization of the fact 

that in ordinary Euclidean space two 

vectors are perpendicular if, when in 

the position illustrated, one is tangent to the circle with 

radius x--or that the vector x + ky is longer than the radius 

of this circle for all k. 
t} ti\ ).,~-:,,.__.,_ 1lt6--vv) 

It is evident that for any of these concepts of orthogonality 

the zero element is orthogonal to every element of the space, and 
, A bo O ...:, ·!),. • ~ 'l ~ <J?Jkc,'jP ""'f .,J·, - ,, ... -1, ' 

conversely. There are other elementary properties of perpendicular 

vectors whose generalizations will.-be interesting to investigate: 



13. 

I. Symmetry: If x.1.y, then y..1.x. 

II. Homogeneity: If X.l.Y, then axJ..by for all numbers 

a and b. 

III~ Addit.ivity: If X.J..Y and x.1..z, then x..L(y+z). 

IV. If x and y are any two elements, then there exists 

a number a such that x..L.(ax+y). 

The last property is the most important, since it would 
... ~, f ~) l4~ c,.~o.--·-<-< &.t 

keep the concept of orthogonality from being vacuous (in the l' 

~-~(.~ of> rile-,) - "tr·!() <Yli!,1£1.,...~ i!,r_,.AA(...,,J~ 

sense that conditions on the orthogonality ,1.., 

would have no effect on the space). It is 

clearly satisfied for ordinary Euclidean 
if'1 )' ~u-J' ~"4il -CV:-,.,t.c,,v /lf-,\C•. .. 

space, and' it will be shown to hold for ~f- 3 

Tjr-11 °D hie orthogonality .. of- Definitions 2,i-2~ ·3. 

A slightly weaker statement of this property is: "If x and y 

are any two elements of a normed linear space, then x is orthog

onal to some element in the plane of x and y"--where a plane is 
1 a two-dimensional linear subspace~ 

Both isosceles and Pythagorean orthogonality are clearly 

symmetric, although it will be seen that spherical orthogonality 

is not. When the orthogonality is not symmetric, property IV could 

be stated either·: "There exists an a such that x.J..ax+y"', or 

"There exists an a such that ax+y J..x". However, spherical 

orthogonality will be shown to satisfy either statement. Hence 

the one form will be used for simpiicity. 

All three types of orthogonality are equivalent if the 

space is abstract Euclidean, and have properties I-IV in this case. 

l. That is, the plane of x and y consists of all elements ax+by. 
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Neither isosceles nor Pythag·orean orthogonality is homogeneous 

or additive in a normed linear space, although they are both 

symmetric. The assumption of these properties will be shown to 

imply that the space is abstract Euclidean. Spherical orthog

onality is clearly homogeneous, although it is not symmetric 

nor additive, and the assumptions of these properties will be 

shown to imply that the space is abstract Euclidean. The 

following example shows the independence of the above types of 

orthogonality in normed linear spaces, and that tor Roberts• 

definition of orthogonality there exist normed linear spaces 

where at least one of two orthogonal elements must be zero. 

Example 2.1. Let T be the normed linear space consisting 
'1' o--½~ wi.t-',\ 2 

of all continuolfs functions of the form f = ax+bx, where 

ljax + bx2/l . is the< maximum of lax + bx2 / in the interval fo,i~. 
0 

(1). Two elements of T are orthogonal by Roberts' defini

tion if and only if one is zero; i.e. 1/f+kgll= )/f-kgtl for all 

k only if f = O or g = o. Consider the function f = ax + bx2• 

If f ..Lg,then /lf + kgl / = JJf-kgl/ for all k. If /ti takes on 

its maximum only at x = l, and f ;E o, then by taking k 

sufficiently small /f + kg } and )f -kg j can be made to take on 

their maxima as near x = l as desired, because of the continuity 

of f and g. Hence g(l) must be zero if /I f + kg Jj = /I f - kg ll 

for k small, and g. must be a multiple of x -x~ __ if it is ----------,-
/ -~\ 

not zero. Thus if g ~ o, i,,t takes on its maximum only at x = i, 
/ L!,_, .. - I ~ I 

and by taking k large it follows similarly tha,t f (½) = 0 and 

f is a multiple of x -2x2, But j/f + 4g l/ i /I t - 4g l/ , since 

/I t + 4g /l = max. l5x-6x2 / = ~ and l/ f -4g /l = ma~. J3x-2x2/ = ,2. 
4o, I) .Gl.f, (o, I) 0 
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Henc~ f...Lg is im;possible if either .. lff ( or )g \ ) takes on 

its maximum only at :x: = 1, unless f or g is zero, Now 

suppose It I takes on its maximum only at . :x: = 2%, the only 

other possible point for the ma:x::imum, since f' :::: a+2bx~ Then 

reasoning as before, f..Lg implies g(~'5) ; O if f ~ o, and 

that g is either zero o:i;- a multiple of a:x:+2b:x:2, Since 11'1 

takes on its maximum only for :x:;;: 2'6, \t:1--kg\. must take on its 

maximum near :x:~ ~ if !k l is sufficiently small. But 

f±-kg = a(l±k)x+b(l±2k)x2, and for lkl small J/f+kg)t-=llf-kg\\ 

therefor·e becomes 

1 
a2(1+k)2 1 -1 a2{1 k)2 I 
4b(1+21c) \ = -l'b(1:21c) • 

But this implies k ~ O or k2 = 1/3. _T_h_er_e __ f_o_r_e_f_-1.._..g __ i_s 

:impossible if either of lfl or Jg! takes on its maximum only in 

the interior of (O,:(J, unless f or g is zero, The only remain

ing possibility is for Jf'I and Jgl to take on their max:ilna. at both 
.-. 

an interior point of (0,1) and at x = 1.. But f and g would 

then both be multiples of 2(1-f2)x-+x2, which is clearly 

impossible. 

( 2). The elements t 1 ~ x - x2 and g1 ~ :x: are orthogonal 

in the isosceles sense, since 11:x:- (:x:-:x:2) ll ~ llx+(x-:x:2 )1( d: 1. How

ever, they are not orthogonal in the Pythagorean sense,since 

lfx-x2I 2 + JJ:x:V
2 

:::: 17 /16, while Jl:r1 - g112 ~ 1. Also, "f 1 ~ 1 11 ~ 
t} ~:x: -:x:2 II ::: ( 7 /16) 2 , which is less than Jf 111 ~ ¼. Thus f 1 and 

g1 are not spherically orthogonal. 

( 3). The elements g2 ~ -2:x:+ ¼ 'f65 :x:2 are 

orthogonal in the Pythagorean sense, since 

Jtg2\\
2 = 16/65, )Jt2-g2 fJ

2 ; 81/65, and hence 

Jft2'12 ~ 1, 

,1r2 R
2+1~2 tl 2 

; llt2-g21f
2 

• 

They are not orthogonal in the isosceles sense, since 



/)r 2+ g2J)
2 = ~-½~65. Also, /lt2-½g2 IJ = ~• /2x - ½~65 x2 /= ., 

which is less than !}t 2 1/ = l. Thus f 2 and g2 m-e not 

spherically orthogonal. 

(4). The elements :r
3
:x and g

3
=2(x-x2) arespherioally 

orthogonal, since J:r 3 (1) + kg
3

(1) / = 1, and hence 

!} t 
3 
+ kg

3 
lj ~ lit 

3 
II = 1, for all k. But 1/f 3-t- g} = /1 3x-2x2 /J = ~ 

and /] f
3

-g
3

)1 : ll x-2x2 1l =l. Therefore t
3 

and g
3 

are not 

orthogonal in the isosceles sense. They are not orthogonal in 

the Pythagorean sense since lit 3'/2+//g3 11
2 = f, while 

/J r 3 - g.3 1/2 = i. 

The properties I-IV above could have been stated differ~ 

ently. For example, homogeneity and additivity could have 

been combined, and one could have general~zed the theorem: 
( 4-vi-k,;.,s,, -.,'v.5 ? 

"Every plane ~e-t ·1ng a given line contains at least one 
.,, --·--

line perpendicular to the given one". Some relations between 

this and properties I-IV for normed linear spaces are given by 

the following theorem. 

Theorem 2.1. (1). Homogeneity and additivity of orthogon

ality are equivalent to: "If x..1..y and X..Lz, then x...1..(ay + bz) 

for all numbers a .and b. 

(2) .. If orthogonality is of one of' the types of Defini

tions 2.1-2.J, then homogeneity, additivity, and property Iv1 

are equivalent to homogeneity, additivity,~: "If x, y and 

z are any three elements for which x is not orthogonal to y, 

there is a number a such that X...Lay + z. 

1. See page 1.3. 



Proof: (1}. If x ..L y and x J_ z imply x ..L (ay + bz} for 

all numbers a and b, then homogeneity can be gotten by 

taking b = 0 and additivity by taking a= b = l. Conversely, 

if' X.l Y and X j_ z_, homogeneity gives x _i_ ay and x _j_ bz. 

Addi ti vi ty then gives x -L (ay + bz}. (2). If' x, y and z 

are any three elements, property IV gives the existence of' 

numbers b and c such that x ..L bx + y and x .1.. ex + z. If x 

is not orthogonal to y, then b ¢. 0 and homogeneity gives 

x ..1. (-ex- .2. y). Additivity then gives x .L (-bey+ z). The b . 

converse can be gotten by taking y = x, if x is not orthog-

onal to itself. If one of the types of orthogonality of 

Definitions 2.1-2.3 is used, x cannot be orthogonal to itself 

unless it is zero--in which case x .J... (ax + y) for all a and 

y. 
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3. ORTHOGONALITY IN ABSTRACT EUCLIDEAN SPACES 

The most obvious requirement for the orthogonality of . . 
two elements of an abstract Euclidean ~pace1 is that their 

inner product be zero. The relation between this and the above 

types of orthogonality follows imm.ediately from Theorem 1.2 • 

.. 

Theorem 3.1. For abstract Euclidean spaces, isosceles, 

Pythagorean, and spherical orthogonality are equivalent,~ 

two elements x and y are orthogonal if and only if their 

inner product (x,y) = o. 

Proof: It is evident from (1) and (2) of Theor.em 1.2 that 

two elements x and y are orthogonal in the isosceles sense, 

or in the Pythagorean sense, if and only if 2 (x,y) = 0~ If' 

{x,y) = O, it follows from (3) of Theorem 1.2 that //x+kyl l ~ llxl\ 

for all k, and hence that x and y are spherically 

orthogonai. 3 Conversely, it also fdllows from (3) that 

//x + ky/1 > /Ix II implies k2 //y//2+ 2k{x,y) ?!-- o. Since this is zero 

( for k = o, the inequality can hold for all k only if the 

der~ ive with respect to k is zero at k = o. That is, if 

) {x,y) = o. 
I e. 'l2.n A. ./..0 • • • f !,.MU ~,.(. );, U 

r - -..uvi vW\,.... ~1.,,1,,'f}t--..., . ·"· 

<J--,>L; ;,t - U V:, ~ j•t;J .e.~ v.t ~¼-. .---~ /t,,q_ 
\' e o-,vJ1 ;.) /,)--4f-t ~f )< ~ () ~ 0Wo • 

' l) 

Since two elements x and y of an abstract Euclidean 

space are orthogonal if and only if (x , y) = o, it is clear that 

1. See Definition 1 . 99 
2. See Definitions 2.1 and 2.2. 
3. See Definition 2.3. 



symmetry, homogeneity, and additivity of the orthogonality 

are equivalent to symmetry, homogeneity, and additivity of 

the inner product. Also, because of (1), (3) and (4) of 
2 Definition 1.9, (x,ax+y) = a/fxl/ +(x,y).. Hence if x and 

y are not orthogonal, then x..Lax +Y, where a =~ (~ifJ. 
Thus if x :/= O, then the number a such that x ..1_ax +Y is 

unique'.9 

Theorem 3.2. The orthogonality of abstract Euclidean 

spaces is symmetric, homogeneous, and additive, and for an; 

two elements x (=# 0) and y there exists a unique nwµ.ber 

a such-that x.Lax+y. 

190 
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4. ISOSCELES ORTHOGONALITY 

A number of relations can be obtained between orthogonal 

elements of general normed linear spaces. Isosceles orthogonality · 

is obviously symmetric, and it can be shown that for any elements 
l x and y there is a number a such that xJ..ax+y. The 

assumption of homogeneity and additivity of the orthogonality'2 

will be shown to imply that the space -is abstract Euclidean. 

If two vectors x and y of ordinary Euclidean space are 

perpendicular, then llx+kyll > llxll for k 1:, o. While this is 

not true for isosceles orthogonality in normed linear spaces, it 

is possible to establish weaker inequalities. These give an,f 

idea of the degree of independence of isosceles and spherical 

orthogonality, as weil as interesting inequalities resulting from 

the condition llx+yl( = !Ix -yll. 

Lemma 4.1. If x and y are orthogonal elements of a 

normed linear space, then: 

(1) •. 1/x+kyJI~ lk\/~±Y/1 and llx±yll~ 1/x+kyl/, if fkl ~ l, 

( 2) • II x+kyll !: /Jx±yl! and /kl/lX±Yll <- /lx+kyl), if I k I~ 1. 

Proof: The equation x+ky = ½(k+l)(x+y) -½(k.-1) .(.:JE-y) is 

an identity in k. The triangular inequality of the norm3 there

fore gives //x+kylls l/½(k+l)(x+y)ll+ll½(k-l)(x-y)/1. If x..1..y, 

then /Ix +y ii = 1/x - y I{. Hence if /k I > 1, then llx + ky II ::: lkl llx± yl/ • 

1. Theorem 4.5 .• 
2. Whenever "orthogonality" is used in this section, it will mean 
the "isosceles orthogonality" of Definition 2.1. 

J. Condition (2) of Definition 1.6. 
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If' lkl !:: 1, then /j x -t- ky l/ ~ /Ix + y t) . Likewise, the relation 

J ½(k + l) (x + y) I/.=:: /lx + kylJ+/l½(k- 1) (x-y) l/ gives the other two 

inequalities of the Lemma. The inequalities (1) and (2) can 

also be obtained from each other by replacing k by 1 and 
k 

interchanging x and y, since isosceles orthogonality is 

synunetric. 

Theorem 4.1. If x and y are orthogonal elements of a 

normed linear space, then )Jx + kyJI ~ )lx l) for all k such that 

/kl~ 1. 

Proof: From the identity 2:i = (x + y) + (x -y), it follows 
. l 

that 2 !) x l) ~ )I x + y /l+l}x -y,J. Since IJx + y)j = IJx - yJJ, this gives 

llxl) s 1/x + Yll• But from (1) of Lemma 4.1, II x + yl/~ /Ix+ kyll if 

)k l ~ -1. Hence l/x/1 ~ J/x+kyU if )kl> l. 

The result of Theorem 4.1 is not valid if lkj< 1. In fact, 

the following example shows that it is possible to have x ..1.. y 

and //x + kyl/ as near to ½/Ix// as desired--al though it is not 

possible to have //x+kyl/ =½ I/xii . 2 
These results, and those 

following, give a comparison between isosceles and spherical 
------~--•--~~••-r.-.•---• --~--- -,1• • ••••--•-•-,-•-• "" "••••-,.·--•-~•·•.-•••, " 

orthogonality. 

Example 4.1. Let T be the normed linear space consisting 

of all pairs (a,b) of real numbers, with (a,b)+ (o 1d) = (a+c,b+d), 

k(a, b) = (ka 1kb), and 1/(a, b)I/ as the larger of la/ and /b l . 

Let x = (1,0) and . y = (n-1,n). Then llxll = l, 
(x-y) = (2-n,-n), and (x + y) = (n,n). If n?::.l, then 

l. Condition (2) of Definition 1.6. 
2. Theorem 4.2. 
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//x -y/l = //x+yl) = n, and x and y are orthogonal. But 

1 _ (n+l 1,_) x--Y- -,-2 , 
2n 2n 

and /Ix -l:.. YII= n+l, 
2n · 2n 

which approaches½ as n becomes infinite. That is, given the 

element x = (l,O) and e > o, there can be found an element y 

orthogonal to x and such that /Ix +kyl/"" ½+ £ for some k. 

However, for no normed linear space can there exist orthogonal 

elements x (~ O) and y for which 1/x+kyj) ~ ½I/xii for some k. 

This is shown by the following theorem~ · 

Theorem 4o 2. If x (,= 0) and y are orthogonal el em.en ts 

of a normed linear space, then }/x +ky IJ >½)Ix I/ for all k. 

Proof: The equation (k+l)fx-ky} = (l-k)(x+ky)+2k(x-y) 

is an identity in k. Hence it follows from the triangular 

inequality of the norm1 that lk+ll //x-kyl}'!S ll.-k/ Ux+kylj + 2 lkl }lx-y//. 

Suppose there exists a number k such that /lx+kyll = ½/Ix//. 

There is no loss of generality in taking k>O, since otherwise 

y could be replaced by -y. It then follows from Theo~em 4.1 

that O~k<l. Also, /lx-ky//~¾/lxl/, since 2)/xll~llx-kyll+}/x+kyll. 

Substituting in the above inequality, it follows that 

l(k+l))/xl/~½(l-k)llx!l+2k/lx-yl/, or (2k+l)//:x://~2k/lx-yl). 
2 
But from (2) of Lennna 4.1, k}/x- yl{~ }/x+kyll, or k/lx-y/J~ ½llxll~ 

Therefore (2k+l)llxll ~ )Ix// and k = o. But this is impossible 

if //x + ky JI = ½ /Ix II. Hence there can not be a number k such 

that /Ix +ky// = ½//x//. Since /Ix+ ky // is a continuous function 

of k, and therefore must take on all values between its maximum 

and minimum, it follows that /Jx+ky// > ii/xii for all k. 

1. Condition (2) of Definition 1.6. 
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It has been shown by Example 4.1 that Theorem 4.2 is the 

best result of its type obtainable without further assumptions 

of some kind. However, in this example /I y /) became infinite 

as ( f,;--;~yll ~pp-r~-~ch~-d --·· ½)j~-1/ . . By restricting the value of // y // 

the inequality of Theorem 4.2 can be strengthened, the following 

theorem being an example of this. 

Theorem 4.3. If x and y are orthogonal elements of a 

normed linear space, and IJy/j ~ /Jxll, then /Ix+ kyll -2: (2'{2"° -2 ){/xl/ 

for all k. 

Proof: Suppos;e /lx+ky/1 = rl/xll, where r < l. Take k to be 

positive, since otherwise y could be replaced by -y. Then 

0< k....: 1, since by Theorem 4.1, ]lx+kyl/ ~ I/xii if lkl ~ l. Then, 

since 2llxll ~:dlx+kyll+/Jx-kyll ,1 we have {2-r)/lx1I-::: lfx -kytl. -But 

{k+ 1)//x - kyll ~ {l - k) )lx+kyll +2k//x -ytl 

follows from the identity (k+l){x-ky) = {l-k)(x+ky)+2k(x-y).1 

Hence (k+l)(2-r)/lxll ~ {l-k)r)JxlJ+2kl/x-yJI, or 

{ k + l) /Ix II~ r /Ix II +k //x - y /I • 

Also, from x+y= {x+ky)+(l-k)y and the orthogonality 

condition /Ix -y/J = //x + yl l, it follows that {Ix -ylJ~llx+kyl /+(1-k)/ly//. 

Using /Jx+ky[) =rl/xlf and //yl/:5: /lxll, this gives Jlx-yll~ (1-k+r))lxl{. 

Hence (k + l) /Jxll~ rllx/l + k{l- k + r') /l x tl , which gives r~ i~• 
But ~ has a minimum (for k ~ O) of 2'J2 - 2, when k = '12 - 1. 

• .L+K 

Hence r~2'/2-2, and 1/x+kyll ~ (2'12- 2)1/x// for all k. 

As with Theorem 4.2, it is possible to give an example 

showing that the inequality of Theorem 4.3 can not be strengthened 

1. Condition (2) of Definition 1.6. 



without making further assumptions. That is, it is possible to 

have x.1.. y, /Jy/1 ~ /lxll, and /I x + kyll = {2rr - 2)/lxl/. As seen by 

the method of proof of Theorem 4.3,1 it is then necessary that 

Example 4.2. Let T be the normed linear space consisting 

of all pairs (a 2b) of real numbers, with (a 2b} + (c 2d):; (a+c,b-td), 

k(a 2b) = (ka 2kb), and //(a,b)lj = /a/ + lb) • Let x = (l,s} and 

y = (s ,-1), where s will be chosen later. Then 1/xl) = II y l} = 
Is l + 1 ~ Also , ( x + y) = ( 1 + s , s - 1 ) and { x - y) = ( 1 - s , s + l) • 

Hence /lx + y ll = /Ix -y ll = }l + s l+ll- sf and x and y are 

orthogonal. But (x+ ky) = (l+ks,s-k), and if k is taken equal 

to s, then /lx+ ky ll = l + s2 = i~s~ Jlxtl • If s = '12 -1, this 

becomes //x + ('12 -1 )y JI = . (2i2 - 2 )// x if. That is, if x = (1, f2 -1) 

and y = { f2 -1,-1), then // x + ky ll = (2'12 - 2) JJxll if k = Y2- 1~ 

It is necessary to have /I x t{ = ({ y l/ in any example of the 

limiting case of Theorem 4.J. This is evident from the proof of 

l +k2 
that theorem, since for such an example we would have r = ""I+F' 

and hence every inequality used in the derivation of the 
2 

inequality r ~ \:1ft must be valid if made an equality. Among 

these was /) y If s. /I x q. 

Corollary 4.J. If x and y are orthogonal elements of a 

normed linear space, and lj yl/ ~ //x i/ 1 then }/ x + kyl/ > (2V2- 2) // x ll 

for all k. 

There is an interesting {although very unusual) case where 

it can be shown that //x +-ky// ;?:. //x ii for all 'k, and hence that 

1. Because of the inequality r ~ I ~k: 7 and the following. 
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x and y are spherically orthogonal.1 This is shown by the 

following theorem and examples. 

Theorem 4.4~ If x and y are two elements of a normed 

linear space, and //x-y /} = //x+y/1 = 1/x ll, then /}x+ky[j = /lxJJ if 

lk) ~ l. Hence /Jx+k.y/1 ~ //xii for all k. 

Proof: If /k/ ::; 1 and //x-y/1 = /}x+y/1 = /lxl/, it follows 

from (2) of Lemma 4.1 that llx:tkyll ~ llxll~ But from 

2x = (x-ky) + (x+ky) and the triangular inequal .ity of the norm, 2 

it follows that 2/lxll :!S. Vx-kyl) + 1/x+kyl/. Hence /lx+kyll = /!x ii 

if )k) =s. 1~ ByTheorem4.l, /lx+kyll :.:::. Ux ll if lk/~l. Hence 

II x+.ky I l > llx Ii for all k. 

Example 4.J. Let T be the normed linear space consisting' 

or all continuous functions in the interval (O,l}, with 

II t!I = max. /t (x)/ • The elements f = x2 and g = 1-x satisfy 

the conditions of Theorem 4.4, since lltll = /Jgll = )Jf+gi J= 1/t-gll = l. 
Then (as must be true as a result of +1 

Theorem 4.4), )/f+kgJI = l if lk} .!S 1. 

That is, the maximum in- (0,1) of 

/x2 +k(l-x) I is 1 if !k/~ 1, as oi---:=~--7'-~-____;~ 

is evident from the figure. Thus 

f is orthogonal to g by either 

Definition 2.1 or Definition 2.J. -1 

Example 4.4. Consider the normed linear space of all pairs 

(a,b) of real numbers, with ll(a,b)/l as the larger of )al and 

l. See Definition 2.J. 
2~ Condition (2) of Definition 1.6~ 
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• /bl.
1 

Let x = (1,0) and y = (O,b), where )bl~ 1. Then 

llxl/ - //x-y// = J/x+y// -:- 1. Hence //x-t-k.yl/ = //( 1, kb) II = //xii = 1, 

if /k/ ~ ,1. Actually, /lx+kyl/ = /Jxl/ if )}ky// ~ 1/xl{, and 

II x+-kyll = /) ky J/ if // ky // ..::.. }/xii • 

For orthogonality in normed linear spaces to have a useful 

meaning, it is necessary to know that there exist non-zero 

orthogonal elements. For in that case, assumptions such as 

homogeneity and additivity of the orthogonality are not vacuous. 

That is, such assumptions made on the orthogonality will have a 

restrictive effect on the space and will not necessarily be 

trivially satisfied, if it is known that there always exist non

zero orthogonal elements. For isosceles orthogonality, it can 

be shown that for .any elements x and y of a normed linear 

space, there exists at least one number a such that x..Lax+y. 

That is, for any elements X and y the element X is orthogonal 
--....... __ ~---••·•---

--- - ,, 

ax+y) to an element in the plane of X - and Y, a~ ( of the form 
'i. 

It is also possi liYle to give limits to the value of a in terms 

of )/xii and /IY/1. Before establishing these results it is 

convenient to investigate certain limits which will arise 

numerous times in this thesis, particularly in the study of 

spherical orthogonality~ 

Lemma 4.5. If x and y are elements of a normed linear 

space, then ¼i~ L/l(n+a.)x+yll - )tnx+yll] = allx\l and 

lim DJ(n+a)x+yl/ - /Jnx+yll1 = -all:x:l/. 
m~-oo 

1. The same space as used for Example 4.1. 



Proof: Since ...!!...+ ~ = 1 identically, //( n+a)x+y }} can n+a n~a . 
be written as //nx+-1!L.+ //+a//x+...Ln all' if n is positive and n a T • 

large enough that n+a > o. Thus 

[/J(n+a)x+ y/l - l/nx+y/1] = Dlnx+ n!a I/ - Unx+y/U + a//x+r&a//• 

But }llnx+-1!L./l- //nx+y///.$ /...!....{llY//, which approaches zero as n n +a n+a 
becomes infinite. Also, lim a}/x+-Lj/ = a/Jxl/. Hence 

,,,~oo n+a 
~~[//(n+a)x+y// - ·lJnx+yl/] = a//x/1. Since the value of the limit 

is independent of y, it follows that lim [ //(n-a)x - yJI - /{nx-y}/7= 
11\~CO '..J 

-a l/xi/. But this is the same as lim[//(n+-a)x+y//-l/nx+y/l] , which 
h\?- "" 

is therefore equal to -a}/x/1. 

--+L_,_ 
I 

The above figure illustrates the validity of Lemma 4.5 

for ordinary Euclidean space. However two similar results valid 

in ordinary Euclidean space can not be generalized to normed 

linear spaces. In an ordinary Euclidean space, 

(1). lim f°bnx +Y II + //nx -y/1 - 21/nxlTI= o. 
11\+oo L!! 

This is not true in general normed linear spaces. For example, 

consider the normed linear space of .Example 4.2, consisting of 

ordered pairs of numbers (a, b) with [/(a, b)// = /a/+- /bl • Let 

x = (1,0) and y = (1,1). Then //nx+yH = n+2 if n ~o, and 

/Jnx-.yU = n if n~l. Since /Jnxl/ = n, it follows that 

/} nx+y // +- Vnx-y// - 2 /tnxl/ = 2 if n ~ 1. This is a special case of 

a more general relation which is valid in ordinary Euclidean space, 
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but not in a general normed linear space, Namely: 

(2). lim [/Jnx+ (y+z) II - /Jnx+y l/ ] = lim [ Unx+z /J - 1/ nx /lJ. 
~+~ m~-

Letting a("'= //nx +(y+z}/1 - }/nx+yll and p'"' = //nx-+zll- //nx/1, it 

is clear from the figure that 

abstract Euclidean spaces, 

lilli o< = lim 
nt--,00 /h /)\~00 

Uzl}cos B, for 

---- ---- ---- ---e 
-~--1- - -1-- -1---· 

The equality (2) is not valid for general normed linear spaces. 

If the normed linear space of Example 4,2 is used again, with 

x = (1,0), y = (1,1), and z = (0,-1), then 

// nx + (y-t-z )l/ - /Jnx+-yl/ = -1 and // nx+z/1- l/nxl{ = l. 
In fact, if the equality (2) is assumed to hold in a 

normed linear space, then a differential of the norm, 

lim hx+hy/1 - )/xi/= f (x·y) exists · at each non-zero point of the 
~~c h ' ' 
space.1 For lim I[ rq.+y/1 - 1/nxl/ = - lim /fnx-yH - {/nx// is equivalent 

t)I~ ni➔ oo 

to the existence of this differential, and results from (2) if z 

is replaced by -y. Conversely, the equation (2) is nothing more 

than an expression of the additivity of this differential2--which 

results from the assumption of the existence or lim ll x+hy// - l/xJ/ .3 
.s.-+o h • 

Thus the equality (2) holds (and the limits involved exist) if and 

only if this differential exists at each non-zero point of the space. 

1 .. Such limits and differentials will be thoroughly studied in 
relation to sphe~ical brthogonality. 

2. That is, it is equivalent to f(x;y)+f(x;z) = f(x;y+z). 
3. This is shown by Mazur (VI), pg. 128. 



Theorem 4.5. If . x and y are elements of a normed 

linear space, then there exists a number a such that 

I} ( } t . Ji i e., , x +ax+y )I = Ix - (ax+y) , p_r x..1..ax+y. 

Proof: Define the real function of a real variable, f(n), by 

f (n) = 1/x+ (nx+y)II - Ux - (nx+y)/l = 1/(n+l}x + y/l - l/(n-l)x+yn. 

Then lim f (n} = lim Dt(n+2}x + yJI - J/nx+y/U , which is equal to 
'" ~ 00 t,\ + c,o 

2//xll by Lemma 4.5. Likewise, lim f(n) =_,~_D/(n+2)x + yll - ·Jlnx+y/l] . 
M-+-GO .~~ 

Then Lermna 4.5 gives lim f (n) = -2JJxl/. Since f (n) is positive 
t'l ~-coo 

for some values of n and negative for others, it now follows 

from the continuity of f(n} 1 that there exists a number a 

such that • f (a) = o, or //x + (ax+y)J/ = //x - (ax+y} ll . Then x and 

ax+y are 0rthogonal in the isosceles sense of Definition 2.1. 

~ ?C-tj 
• If two vectors x and 2/ of ordinary Euclidean space are 

orthogonal, then the inner product (x,ax+y) = al/x/J2+(x,y) is 

zero. Also, (x,y} = J/x)JJ/y]lcoa e , where e is the angle between 

the vectors x and y., Hence a = - ';~f cos s , and la/~ i~~{ • I t 

is also clear from the figure that 

1/axl/ = Uy)/ /cos e/, and hence that 

Ja l =~~~ /cos e/. However, these 

relations do not carry over to 

normed l i near spaces. While 

j a I~ ~i:'h is not valid in general, it i s if // y l/ ~ }lxll , and it can 

be s ·hown that Jal ~ 21/rtn }Jxn if }/y/1 ~ /pcU . 

Theorem 4.6. If x (;(:. 0) and y are two ele~emts of a normed 

linear space and /Jy//.::: [Ix /) , then Jal~ ~~~~/l if x .l. ax+y. 

1. The continuity of the norm follows fro:i;i. (2) of Definition 1 . 6. 
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Proof: Define the real function of a real variable, f{n), 

as //x + {nx+y)// - /Ix - {nx+y)II. Since fix+ (nx+y)Jl = /l{n+l)x+ylJ, 
. I 

it follows from the triangular inequality of the norm that 

/Ix+ (nx+y)// .?!. /n+l/ //x)/ - }Jy/1. Likewise, //x - (nx+y)/l = J}(n-l)x:+-yJ/ 

~ ln-11 /lxl/ + 1/y//. Hence f {n) =. Qn+ll /Jxl/ - 1/y U] - Dn-11 /}xi/ +/Jy/Q , 

or f(n) =[/n+ll - ln-lD l/x)/ -21/yl/. If O~ n~l, then 

f(n) :!! 2{nl/xll-l/yR ). Hence f(n) > O if l ~ n > ~~{(. If n>l, 

then f(n) ;:,. 2(//x}l-//y//). Since l}yJ/ ~ ll xJ/, it follows that f(n) > O 

if n >-fxff• Now consider f (-n) = ... QJx -t- {nx-y)IJ-/Jx - (nx-y)-JU . 

Since the above argument is valid if y is replaced by -y, the 

only assumption being llyJ/ ~ !Ix/I, it follows that f {n)< 0 if 

n-c:;;; _ JI.IlL Thus the only region for which f (n) can be zero is I/xii ·• 
for /n/ ~ .J/lJt~ Hence if f (a) = O, or x..1-ax+y, then !al~ /~~1r· 

Theorem 4.7 • . If x (:# 0) and y are two elements of a. 

normed linear space and /ly/1 ~ /)xi/, ~ I a/ ~ 2•1J~~U lg// if x ..Lax+y. 

Proof: Take f (n) as /Ix + (nx+y )J/-1/x - (nx+y )/1. From the 

identity, n~i + ~~i = 1, it fo+lows that 

f' (n) = ll2x+ n,i )I + Q/(n-1 )x+ ~~! y j/ - II (n-1 )x+ylLJ 

if n ?!::. 1. But from the triangular inequality of the norm, we 

get /12x+ :J.i II~ l/2xf/-~Y,l! • It also follows that 

}J(n-l)x+y//s. ,,/Jy// + //{n-l)x+~y/), and hence Ii+! n+~ 

/}(n-l)x + ~~f yl/ - }l(n-l)x+ y//~ -2~~~. 

Thus f (n) :::.. 2/lx//-4_/JzlJ.. and f (n) > O if n > Z/JyJJ-llx/J It was 
- n+l' IJxU • 

assumed that n :'! l, but Z //yJ/ - UXII :::. 1 it Uy/I ~ //x i/ Al.so, 
1/XQ - • 

f (-n) = - QJx + (nx-y) ll - llx - (nx-y )fil . This differs from f (n) onl y 

in the sign of y. Since the above argument is valid if y i s 

l. Condition (2) of Definition 1.6. 



replaced by -y, the only assumption being //yll ::?::.//xii, it follows 

that f (n )~ 0 if n-<- 2 1 ~ - I/xi/• Since f (n) can not be zero 

if In}> 2 lli~iillxtL, all values of a for which f(a):::: o, or 

x1-ax+y, must be in the interval la/ -< 2 UYll-llx¥ 
- //:X:// • 

It was shown above Theorem 4.6 that for ordinary Euclidean 

space lal = ~ lcos 0/ it x..Lax+y, where 0 is the angle 

between the vectors X and y. Thus it is possible to have Jal 

as near to l¾ as desired, whether /IY/1 ~ 1/lell or not. It is 
I 

t, l-;:- \\"!Jvit•tf! 

therefore clear that the inequality of Theorem 4.6 cannot be 

strengthened without introducing some concept analogous to the 
I 

angle between x and y. Moreover, the difficulty of doing this 

is illustrated by the following Example 4.5, which shows that for 

normed linear spaces it is possible to have /aj = gj~ without 

y being a multiple of :x:. Example 4.6 shows that Theorem 4.6 

is not valid without the assumption /{y/1 s Jfx}/, and that the 

relation la I~ 2 ll;rll -1/xJI 
- I/XII of Theorem 4.7 can be an equality 

without having y a multiple of x. 

Example 4.5. Consider the normed linear space of all pairs 

(a, b) of real numbers, w-i th /l(a, b )/1 as the larger of /a1 and 

~.1 Let x = (1,0) and y = (1,1). Then x +(nx+y) = (2+n,l) 

and x-(nx+y) = (-n,-1). Hence n= -1 is the only value of n , 

for which IJx +(nx+y)/1 = 1/x - (nx+y)Jl. But llxll = llyll = 1. Since 

in this case the number a of Theorem 4.5 is -1, it is possible 

to have /af = ~if/ without y being a multiple of x. 

1. The space of Example 4.1. 
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(a,b) 

Example 4.6. Consider the .normed linear space of all pairs 
1 

of real numbers, with //(a, b )/j = /a/+ }b/ • Let x = (-1,1) 

and y = (a+l,O). Then /lxJ/ = 2 and fly//= Ja+ll. Also, 

x + (ax+y) = (O,l+a) and x - (ax+y) = {-2,1-a). If' a ~l, it 

follows that /Ix +(ax+y)// = j/x - (ax+y)// = a+l, and hence that 

x ..L.ax+y. But ~i~ = ½(a+l), and hence a > l. This 

shows that Theorem 4~6 is not valid for normed linear spaces 

without the assumption /lyll ~ llxl/. Moreover, for this example it 

is seen that a= 2 /Jf,/i;; //xii if a~l, which is the largest value 

allowed for lal by Theorem 4.7. 

It has been sh©wn (Th. 3.2) that orthogonality in abstract 

Euclidean spaces is symmetric, homogeneous, and additive, and 

that for any elements x and y there exists a number a such 
2 that :x:..Lax+y. For normed linear spaces, isosceles orthogonality 

is clearly symmetri~ and the existence of such a number a· is 

given by Theorem 4.5. The effect of assuming homogeneity and 

additivity will now be investigated, it being shown that isosceles 

orthogonality is homogeneous and additive only for abstract 

Euclide1n spaces. 

Lemma 4.8. If isosceles orthogonality is additive in a 

normed linear space T, then for any two elements x (#: 0) and 

y of T there is a unique number a such that X_Lax+y. 

Proof: By Theorem 4.5 there is at least one number a such 

that x...L.ax+y. Suppose it is also true that x.J..bx+y. Then since 

}lx+( bx+y)II = )l:x:- (bx+y)II, it is clear that x-1.-(bx-ty). Additivity 

1. The space of Example 4.20 
2. See page 13. 



then gives :x:.L(a-b)x. That is, J/:x:+(a-b)xll = }Ix - (a-b}x/J, 

or /l+(a-b)/ = /1-(a-b)/. But this can only be true if 

a-b = O, or a= b. 
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Lemma 4.8'. If isosceles orthogonality is homogeneous and 

additive in a normed linear space T and :x: ...Lax+y and y ...L by+:x:, 
2 2 

where :x: and y are any elements of T, then b/Jy// = a/Ix// • 

Proof: Clearly a non-zero element can not be orthogonal to a 

non-zero multiple of itself. Hence if y = O, then a= 0 unless 

x = O; and if x = o, then b = 0 unless y = o. If neither x 

nor y is zero and either a or b is zero, then :x:..L y and 

the other is zero because of the uniqueness given by Lemma 4.8. 

Hence the Lemma is true if one of a, b, x, or y is zero, and 

it will be supposed hereafter that none are zero. It will be 

shown first that a = b if //xi/ == 1/yl/. If :x:..Lax+y, it follows 

from homogeneity that :x:.L ax+y;, or /l:x:+1(ax+y)// = /fx - 1 (ax+y)JI. a a a 
Thus IIYII = ll2ax+y/l • Similarly, y..L byt:x:, and }/:x:J/ = l):x:+2by//. 

Thus if I/xii = 1/yll, we get 

)/2ax+y II = U:x+2byll. 

But also, )I (x+y) + (x-y) II = 2 Uxll and J/(:x:+y) - (:x:-y )11 = 21/yll • 

Hence if )):x:J} = }}y}}, .it follows that (x+y) .1- (x-y}. From homogeneity, 

(2a+l)(x+y)-L.(2a-ll(x-y). That is, //(2a+l)(x+y)+(2a-l){x-y)}j = 

/1(2a+l)(x+y) -(2a-l)(x-y)/j, or //2ax+yl/ = Vx+2ayll. Since it was 

shown that //2ax+yll = /lx+2byl/, it now follows that 

1Jx+2ay /I = /Jx+2by}j. 

But :x:+2ay =' [x +(a+b)i)+(a-b)y and x+2by = l}c+ (a+b) ~ - (a-b)y, 

and hence (a-b)y..LE£+(a+b)ij If a-b-:/,: o, homogeneity gives 

y.J...~+(a+b)~. But y-L by+x, and the uniqueness given by 
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Lemma 4. 8 implies . a = 0, contrary to assumpt.ion. Thus a = b 

if /Jy/1 = ~xi/. But if x-Lax+y and y.L by+x, then because of 

homogeneity, 

chosen so that 

rx.L. %(rx)+y and 

1/rxJ/ = }lyJ/ , then 

y ..L (br) y+rx~ 

!!. = br, or r 

Hence if r is 

a //xJ/2 = b//y)/2 • 

Theorem 4.8. If isosceles orthogonality is homogeneous and 

additive in a normed linear space T, then T . is an abstract 

Euclidean space. 

Proof: Define the inner product -(x,y) as • -a//xJJ
2

, where x 

and ax+y are orthogonal. It is only necessary to show that 

this inner product satisfies the conditions of Definition 1.9: 

(1). (tx,y) = t(x,y). If x.Lax+y, and t ¢ o, then 

tx.l..%(tx)+y if the orthogonality is homogeneous. Thus 

(tx,y) _ -!//tx/}
2 = -atl/xJ/

2
• Hence (tx,y) = t(x,y). If t = O, 

the proof is trivial. 

(2). (x,y)=(y,x}. If x..Lax+y, and y...L by+x, then 

(x,y) = -alfxl/ 2 and (y,x) = -b//y/(
2

• These are equal by Lemma 4.8'. 

(J). (x,y)+(x,z) = (x, y+z). Suppose x..Lax+y and 

x..Lbx+z. Then x..LITa+b)x+(y+z] if the orthogonality is additive. 
2 2 2 

Hence ( x , y) = -a }Ix// , ( x, z ) = -b }/x// , and ( x, y+z ) = - ( a +b ) llxJJ ~ 

(4). (:x:,x) = llxll
2

• Since /Ix+ (-x+x) JI = J/x - (-x+x)l j , 
2 

x..1. (-1 )x+x, and (x,x) = JJxJ/ • 

It can be shown that isosceles orthogonality is homogeneous 

if it is additive. This makes it possible to simplify the 

assumptions used in Theorem 4. 8,, assuming only add.it ivity. 



Homogeneity alone can also be shown to be sufficient by using 

Ficken•s condition for the existence of an inner product. 
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Theorem 4.~. If isosceles orthogonality is homogeneous or 

additive in a normed linear space T, then T is an abstract 

Euclidean · space. 

Proof: It has been proved by Ficken1 that a normed linear space 

is an abstract Euclidean space if and only if lfax+ylf = 1/x+ayll for 

all numbers a and elements x and y for wh ioh lfxll = II YII • If 

for elements x and y of T we have IJxll = llyJI , then 

V(x+y}+(x-y)}f 1/{x-t-y} - (x-y}JI and {x+y)L(x-y) •2 If isosceles 

orthogonality is homogeneous in T, then 

/l{a+l) {x+y)+ {a-1) (x-y)II = 1/(a+l) {x+y} - (a-1) (x-y}U, 

or \) ax+y f = llx-+ay fl. Thus a normed linear space for wh ioh isosceles 

orthogonality is homogeneous is an abstract Euclidean space. If 

x.i..y, then x..L-y and y.J...x because of the nature of the condition 
2 for isosceles orthogonality. Hence if the orthogonality is addi-

tive, then nx..Lmy for all integers m and n. Thus llnx+myt\:::: 

nnx-myl( and ~x+~(y)II = /lx-E(y)II. Since the norm is contin

uous, 3 it follows that //x+ty~ ; Nx-tyl for all numbers t. That 

is, x..Lty for all t. Thus isosceles orthogonality is homogeneous 

if it is additive, and a normed linear space for which isosceles 

orthogonality is additive is an abstract Euclidean space. 

Corollary 4.9. Isosceles orthogonality is additive in a 

normed linear space T if and only if it is homogeneous in T. 

1. Ficken (XIV) • 
2~ Since x.Ly if and only if /fx+yl( =\}X - YI• 
3. As follows from condition (2) of Definition 1.6. 
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5. PYTHAGORElili ORTHOGONALITY 

While Pythagorean orthogenality is perhaps the most 

obvious means of introducing orthogonality into normed linear 

spaces, it is more difficult to use than the other types1 because 

of the squaring of the norms. There is also a lack of symmetry 

resulting from the possibility of defining x and y to be 

orthogonal if }JxJ} 2+)Jy1)
2 = ~ -yJ}

2
, or it )JxJJ2+JJyJJ2 = //x + y/}2. 

One sign is as good as the other, although the two statements 

are not equivalent. More simply, x.J..y does not imply LL-y., 

as is the case with isosceles and spherical orthogonality. 

Pythagorean orthogonality is clearly symmetric, and it 

will be shown that the assumption that such orthogonality is 

homogeneous in a normed linear space T implies T is an 

abstract Euclidean space. Thus homogeneity of the orthogonality 

implies its additivity. It can also be shown that there exist 

non-zero orthogonal2 elements in any normed linear space. 

Theorem 5.1. If x and y are elements of a normed linear 

space, then there exists a number a such that 

1/xJ) 2+)/ax+y// 2 = llx. - (ax+y)J/ 
2

, or x..L (ax+y). 

Proof: Define the real valued function of a real variable, 

:t' ( n) , as }}xi/ 
2

+//nx+yl/
2 

- /1 :x: - ( nx+y) // 2 or /lxlJ2+ /Jnx+y/} 2 

- //( n-1) x+y/,2. 

Using the identity (n~l)~+ 2~;1 = 1 , we get: 

1. See Definitions 2.1-2.J. 
2. Whenever "orthogonality" is used in this section, it will mean 
the "Pythagorean Orthogonality" of Definition 2.2. 
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f (n) = /Jx/} 
2+ 2~ 1 }lnx+yJI 2+ lJ!(n-1 )x+(n~l~ y//2 - //(n-1 )x_;y/1~, 

• 2 1 ,2 = /Jxll +( 2n-l) /Ix+ nY ~ + 
Q/(n-1 )x+f-~1} y// -}/(n-1 )x+ yij] LJl{n-1 )x+(n;11 y)/+//{n-1 )x+ yJ[J • 

The triangular inequality of the norm.1 gives 

}//(n-l)x+(n~l)y}J - }l{n-l)x+y//}~ J/¼y//, and 
2 

f(n)~ /JxU 2+(2n-l)//x+½YH - I;I llYIJ [ //(n-l)x+(!!~1}y//+//(n-l)x+yJTI, 

::/JxJ1
2
+(2n-l)/lx+½yJJ

2 
- //yllD/(!!~1) x+(n;}~ y//+ }J(n;1) x+ ! yjj] • 

If n~O, it follows by using the triangular inequality of the 
2 

norm th~t JlxJ}~ ½ }/yl/+Jlx+; y/1 , and //x+ ½ y)/ 2 ?: mxJI- ;JlyJO • 

Likewise if n~l, /}(n~1 )x+(n;})y}J+H~~l)x+; yJ/~2f;1~llxl/-+ 2~:1 JJyJJ. 

Hence 

f (n)~ 2n//x}J2+ 2~;-1 )Jy//2 - 2{2r:i-~ Ux// //y//-//y// [2(n;l~ }/xii+ 2~;_1//yf[J , 

- 2n JJx}/2 - 2 p~-2) }/xii //y}/ , 

= 2 llxJI [nJJ:xll-(3~-2~ /}yJLJ , which can be made greater than zero 
' 

by taking n sufficiently large. Now consider 

f(-n) = ijxJ/ 2
+//nx-y//

2 
-//(n+l)x-yJJ

2
]. 

Using the identity ~!1f - 2~11 = 1, we get: 

f(-n) = //x}/
2

- 2~;:1 //nx-yl/
2
+[l/(n+l)x-~~~ y/1

2 
-//(n+l)x-y}/2], 

= /Jxl} 
2
- ( 2n+l) )Jx - ! y// 2+ {]j ( n+l )x -~:~ y// - //(n+l )x - :r"Jl]X 

m(n+l)x-f~1~ y}/ + /J{n+l)x -yI!J, 

_ :% JJxJ }2- (2n+l) }Ix - ! y /J 2+ ,~ ) J1Yij m(n+ 1) x - ~n:1~ y )/+/Xn+l )x - :rJ , 

= }Jx l}
2
- (2n+l) lJx-½y// 

2
+//yJ/ W~-;;~ x-(n:~ Y//+//ft1j x-! y}LJ • 

If n> 0, then /Ix -! yJI 
2 ~ }JxJ} 2 

- ¾ ltxl} }JyJI +½ J}yll 2 , and 

f (-n) .:S -2n/JxJ12+2 (-2r:7~ J/x/1 llYll - 2~~1 //yJ/2 
+UYJI [! (~l) J}x//+ 

2~~1 Uyfl] , 

L = -2 //xJI [n /Jxj/ - 3n,;"2 J/y/D • 
r us f (-n) is negative if .n is sufficiently large. Since 

1. Condition (2) ,of Definition 1.6. 
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f(n) is continuous and has positive a nd negative values, it 

follows that f (n) = O for some value a of n. 

// xJ} 2+ //ax+y/}2 = //x - (ax+y)// 2 for some number a. 

That is, 

While restrictions on the value of a are not as simple 

as for isosceles orthogonality, it is possible to obtain them 

from inequalities derived in the proof of Theorem 5.1~ Thus 

f (n}~ 2//xJ/ [ n//xl/ - 3n;2 //yfil and f (-n)~ -2//x// [ nHxJJ - 3~+2 NYJLJ . 
When }}x/) = }JyJI, these become: 

f (n)~ ¾ /JxJl 2 E12-3n+~ and f (-n)s: -¾JJxJJ 2 (E2-3n-~ . 

For this case it then follows that a must be between -½(3+i17) 

and 2, and that there is a possible value of a between 

-½ ( 3+117 ) and 1. The lack of symmetry of these limits is due 

to the condition for Pythagorean orthogonality not being equivalent 

to /JxJJ2 + //y/1
2 = // x+y/l

2• That is, x.i y does not imply x ..l.-y. 

However, Theorem 5.1 is valid if this change is made~ 

Corollary 5.1. If x and y are elements of a normed 

linear space, then there exists a number a such that 

)Jxll2+!Jax+y/1 2 = )/ x+(ax+y}// 
2

• 

Proof: 

eleIJ}.ents x 

Let a= -b. 

By Theorem 5.1, there exists a number b for the 
2 2 2 

and -y such that /}x// + Jfox-yJJ = )Ix - {bx-y)// • 
2 2 2 

Then }/xi/ + /Jax+y// = /Ix + ( ax+y) )/ • 

However, it is not always possible to find a number a 

for arbitrary x and y such that 

)]xJ/2 +//ax+yl} 
2 = }Jx - ( ax+y) I} 2 = }} x + ( ax+y) )J2. 

This is Shown by the following example: 
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Exe.mple 5.1. Consider the space of all number pairs (a,b), 

where //(a, b)}/ is the larger of /a / and /b/ .
1 

Let x - (1,0) 

and y = ( 0, 1). Then ax+y = (a, 1) and x ± ( ax+y) = ( 1± a ,±1} • 

Consider the equation }JxJJ 2+JJax+yJJ2 = /Jx - (ax+y)// 2, or 

l +/}(a,1)//
2 = //(l-a,-1)//

2
• This equation must have at least one 

solution because of Theorem 5.1. 

If 0 ~ a :~{ 1, it becomes 2 = 1, which has no solution. 

If 1 ~ a ~ 2, it becomes 2 l+a = 1, which has no solution in 

the interval (1,2). 

If a ~ 2, it becomes l +a2 = l-2a+a2 , which has no solution 

for a::::?:2. 
( 

If · -l.:$; a ::::: O, it becomes 2 - l-2a+a 2 , or a= l-"12 . 

If a .:S -1, it becomes l+a2 = l-2a+a2 , which has no solution 

for a ~ -l. 

Therefore a = l-'-/2 is the only value of a such that 

IJxJJ 2+ )Jax+y/} 
2 

-:- j/x - ( ax+y) //
2

• Similarly, a = '12 -1 is the only 

value of a such that //x//
2
+}}ax+y/J2 = //x+(ax+y))/

2
• Hence there 

is no value of a such t hat /J xU2+JJax.+yJJ2 = )Ix- (ax+y)}/
2 = 

IJx+(ax+y)//
2

• 

Pythagorean orthogonality is clearly s ymmetric, and for any 

x a nd y there exists a number a such that xi.ax+y. H6wever, 

such orthogonality is neither homogeneous nor additive, and can be 

homogeneous only if the normed linear space is abstract Euclidean. 

Thus Pythagorean orthogonality is additive if it is homogeneous. 

The converse of this is also true, and it therefore follows that 

such orthogonality can be additive in a normed linear space only 

if the space is abstract Euclidean. 

1. The space used for Example 4.1. 
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Theorem 5.2. If Pythagorean orthogonality is homogeneous 

in a normed linear space T, then T is an abstract Euclidean 

space. 

Proof: It will be shown that the condition given by Jordan 

and Neuraant for the existence of an inner product in a normed 

linear space is satisfied, namely: 

}/x+y 112 + l/x.-yJ/ 2 = 2 }J1xJJ 2+JJy JI~ 

for all elements x and y. Because of Theorem 5.1, it is known 

that for any elements x and y of T a number a exists such 

that //xl/2+.}Jax+y//
2 = //x - (ax+y)J/ 2• Assuming homogeneity, it 

follows that k2//xJ/
2 

+Hax+y// 2 = }/kx - (ax+y)//
2 

for all numbers k. 

Set k equal to a±l. This gives /lx7Fy// 2 = (a±l)2/Jxl/
2
+//ax+yJJ2 , 

and: }Jx+yl}2+/Jx-y//2 = 2J/ax+yJ/
2+ 2(a2+1))/x/J2. 

' But using homogeneity again, it follows that ax...Lax+y, and hence 

JJax+y//
2+ a.2 /JxJ/ 2 =//Y// 2

• Therefore }Jx+yJJ2+ }/x-yJ/2 = 2 f]JxJ/ 2+J/yJJ 2J. 
It has been shown that the condition for the existence of an 

inner product is satisfied for all elements x and y. Thus the 

conditions of Definition 1.9 are satisfied and T is an 

abstract Euclidean space. 

• The inner product (x,y) known to exist by Theorem 5.2 

is equal to ¼ [lfx+y//
2 

- //x-y// ~ • 
2 

It is interes_ting to note that, 
2 2 2 2 by using })x71=yl} = (a±l) /JxJI + Uax+yJ/ , as shown in the proof of 

Theorem 5.2, this reduces to (x,y) = ¼[Ja-1) 2 //xJ} 2 - {a+l) 2 )1xl/~ , or 

{x,y) = -aJ)x/j2. 
This is the definition of the inner product used in establishing 

1. See Jordan and Neumann (IV). 
2. See Theorem 1.2. 



41. 

Theorem 4.8, which is the analogy of Theorem 5.2 for isosceles 

orthogonality~ 

It was shown that isosceles orthogonality is homogeneous in 

any normed linear space in which it is additive.1 This can be 

strengthened for Pythagorean orthogonality: 

Theorem 5.J. The properties of homogeneity and additivity of 

Pythagorean orthogonality are equivalent for normed linear spaces. 

Froof: If Pythagorean orthogonality is homogeneous in a 

normed linear space T, then T is an abstract Euclidean space 

because of Theorem 5.2. The orthogonality is then additive 

because of Theorem J.2. Conversely, suppose x .Ly, where x 

and y are arbitrary elements of a normed linear space. Then 

Theorem 5.1 gives the existence of a number a such that 

x .J..ax-y. If the orthogonality is additive, then x -1.. ax, and 

hence a = 0 if x -,: o. Thus x . ..L-y. Also, y ..Lx, because of 

the nature of the condition for Pythagorean orthogonality. 2 

Using additivity, it now follows that nx.J..my for all integers 
2 2 2 

m and n. Thus llnxll + llmyll = Unx -myll , or 

llxll 2+ I(~ y/1 2 = ltx - ~ t ft 2
• 

3 2 2 2 Since the norm is continuous' it follows that llxh + lltyll = IJ x-tyn 

for all numbers t, or x .J...ty for all t. Thus Pythagorean 

orthogonality is homogeneous if it is additive. 

1. Lemm.a 4.9. ~ ~ 
2. That 11:x: ll .a. +lfyH Ux - y ll • 
J. As follows from Condition (2) of Definition 1.6. 



Clearly Theorem 5.2 is still valid if y is replaced by 

-y throughout. This and the combination of Theorems 5.2 and 

5.3 give the following Corollaries: 

Corollary 5.2. If two elements x and y of a normed 

linear space are said to be ortho~onal if and only if 

l!xJl2+ Jlyl\2 = llx+yJ2, 

and if such ortho is homo eneous or additive in a normed 

linear s ace T, then T is an abstract Euclidean space. 

Corollary 5.3. If Pythagorean orthogonality is additive 

in a normed linear S;PfiCe T, then T is an abstract Euclidean 

space. 
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6. SPHERICAL ORTHOGON.ALITY IN GENERAL NORMED LINEAR SPACES. 

It is clear from the forms of their definitions that both 

isosceles and Pythagorean orthogonality are symmetric, and that 
l spherical orthogonality is homogeneous. It has been shown that 

a normed linear space in which either_ isosceles or Pythagorean 

orthogonality is additive is an abstract Euclidean space, 2 while 

it will be shown that a normed linear space in which spherical 

orthogonality is symmetric and additive is an abstract Euclidean 

sp,aceo 3 

.As with isosceles and Pythagorean orthogonality, it follows 

that for any elements x and y of~ normed linear space there 

exists a number a such that x is orthogonal to ax+y. 4 Actually, 

a stronger theorem than this can be established by relating 

spherical orthogonality and the theory of linear functionals. 5 

Thus for any element x of a normed linear space there is a 

maximal linear subset H such that x .Lh for all h in H. 6 

This "hyperplane" is not necessarily unique. In fact, it will be 

shown in the next section that its uniqueness is equivalent to the 

existence of a differential of the norm, as well as to additivity 

of the orthogonality. 7 In Section to the relations between spherical 

1. See Definitions 2.i-2.3 .. Homogeneity, symmetry, and additivity 
of orthogonality are discussed on page 13. 

2. Theorem 4. 9 and Corollary ·$. 3, 
3. See Section 8. 
4. Whenever "orthogonality" is used in this section, it will mean 
the "spherical orthogonality'' of Definition 2. J. 

5. See Definition 1.8 and the following discussion. 
6. Theorem 6.20 
7. See Corollaries 7.3 and 7.40 



orthogonality and linear functionals will be used in finding an 

evaluation of linear functionals for certain types of normed 

linear spaces. 

The present section will deal primarily with showing the 

existence of this hyperplane and a dis cussion of the resulting 

number a for which x ..L ax+y, and with showing the existence, for 

general normed linear spaces, of limits whose equality would give 

the existence of a t ype of differential of the norm. 1 

Definition 6.1. An element x of a normed linear space T 
is orthogonal to a set U (x..LU} if and only if x ..1.. u for all, 

u E: u. -
Definition 6.2. A maximal linear subset of a normed linear 

space is a11linear subset 
"'fVl s-'tC-tl~) . 

u which is not Vcontained in any other 1-'¾rA 
linear subset. Such a subset U, or any translation x+U, is 

2 called a hyperplane. 

The properties of linear functionals which will be needed 

here are discussed on page 8 of this thesis. In particular, if 

the modulus Vt JI of the linear functional r is 1, then 
?(* 

x, and elements vcan be found for which for all 

is as near to Will as desired. The equality may not actually 

hold for any element, the 

hold if and only if there 

following theorem showing that it will 
'X 

is an element orthogonal to the hyper-

1 plane consisting of elements/\ for which 
hET 

l,, See Corollary 6.6 and Theorem 6.7. 

3 t = o. This theorem also 

2. Hyperplanes are dis·cussed by Mazur (IX}, pg. 71. 
3. That the elements form a hyperplane isshown implicitly in the 
proof of Theorem 6.1. 



enables one to show the existence, for any element x, of a 

hyperplane H f or which x ..LH. 
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Theorem 6.1.. If f, with IJ :t'fl = l ,~ is a linear functional 

on a normed linear space T, t hen }f (x)/ = Ux l( if and only if 

x ..L h for all elements h of T such that f {h) = o. 

Proof: Let H be the linear subset consisting of all 

elements h such that f(h) - o.1 
This linear subset is maximal, 

since, for any two elements x and y not in H, f(x+ky) = O 

if k - ~ ~~~.,. -Thus x+ky £ H, and hence any linear set1containing 

x and H contains y and therefore all of T. Suppose 

}f (x) / = llx ll o Since Ut ll = 1, it follows that f {h) = O implies 

• )f(x+h)k:,,-\_ lf(x) I~ Nx+hll . Hence llxll~ 1/x+hll for all h<c'...H. 
~-------~--✓ 

Since H is closed under ·multiplication, this gives x ..L.h if h £-H. 

Conversely, suppose x ..LH. Take Jr (x) J = p lfxl/ , where 

p :::: l since. llt ll = 1. Then Uxll ~ llx+h tl if h £-H, and 

}t(x+h) J = lt(x) I = PUXII !::: p /jx+hl(. 

Since H is maximal, every element -for which f is not zero is 

of the form k(x+h), where h &. H. Thus )t (y) I~ p \l y fl for all 

y £.T. Then }/t i/~ p and p = 1, or It (x)f = Rxll . 

Theorem 6.2. If x is any element of a normed linear 

space, then there is a maximal linear subset H such that x J...H. 

Proof: Let x be an arbitrary element of a normed linear 

space T, and f be a linear functional such that f(x) = lfxll 

l. H is closed under addition because of the linearity off (see 
Definition 1~8), and is closed under multiplication by real 
numbers because of the homogeneity of f which results from its 
additivity and continuity.,. 



and lltll 1 = 1. Take H as the maxim.al linear subset consisting 

of all elements h such that f(h) = o. Then by Theorem 6.1, 

x..LH. 

The/ converse of: Theorem 6.2 is not true. The most obvious 

failure is the case when H is dense in its space. 2 This is the 

case for Hilbert space3 when the maximal linear subset H 

contains the set S of elements with only a finite number of 

non-zero components, since any element x = {x1 ,x
2
,x

3
,x

4
,•••) 

is the limit of the elements (x
1

,o,o,•••), {x1 ,x
2

,GQ·i;··) 

• • • • The converse of Theorem 6.2 will be further 

investigated in SectionJD. It is closely related to the problem 

of finding an evaluation of linear functionals for normed linear 

spaces. 

Theorem 6.2 is stronger than the analogous theorems proven 

for isosceles and Pythagorean orthogonality.4 However, while 

for any elements x and y of a normed linear space there is a 

number a such that x..Lax+y, 5 or }lx+k(ax+y}ij ~ lfxl( for all k, 

it is not always possible to choose a such that 

Ux+k{ax+y)J/ > I/xi 

for all k TO -as can be done for abstract Euclidean spaces. 

This can be shown by using the normed linear space consisting or 

all pairs of real numbers (a,b}, with ll(a,b}ll as the larger of 

1. The existence of such a fU]lctional f is given by Banach {I), 
pg. 55, Theorem .3. 

2. H is dense in T if H = T • 
.3. The space of all sequences x = (x1,x2,x.3,•••) for which 

n 1
2 is convergent, with Uxll = ~~{xi) 2• 

4. Theorems 4.5 and 5.lo 
5. Theorem 6 • .3, below. 



\a\ and lb} •1 For let x = {l,O) and y = (0,1). Then 

#x +k(ax+y) II= /l(l+ka,k)II, and is less _ than /lxJ/ = l it Jkl< 1 

and -2<ka<O. Thus _ llx+k(ax+y)II~ I/xii for all k only if 

a = o. Thus x..Lax+y only if a = o. But Ux+kyll = llx ti if 

Jkj ~ I, and hence there is no number a such that 

/Jx+k(ax+y)lf-=> llxll for all k :j: o. 

Theorem 6.J. If x and y are any two elements of a normed 

linear spaee, then there exists a number a such that 

llx+k(ax+y)U > llxU for all k. That is, such that 2 x..Lax+y. 

Proof: If x = 0, then clearly x.J.. ax+y for all values of 

a. If x =, o, then Theorem 6.2 gives the existence of a maximal · 
,=i,t- ,, , r,; ,:, , . , . ,., /"I . -1, 

linear subset H such that x.LH . .... Since x is not in H, 

ax+y must be in H for some number a. For if not, the linear 

subset gotten by adding y to H would not contain x, since 

x = by+h implies - ; x+y = -l h t-H. Thus H would be properly 
b ~ , -( .1:>kci:,,wi.c. ~-l- ~e,J ""-"1 Cv-\.-"t.-\.-;, X) 

contained in another linear subset and hence would not be maximal. 

If a is taken so that ax+y E.H, then x..Lax~. 

Jor ordinary Euclidean space, it ha~ been.shown that 

I aJ:s; f&1, if x.Lax+y. 3 It was shown that this inequality was 

valid for isosceles orthogonality in normed linear spaces if 

1/yH :S. JJxH, but had to be weakened for )lyll > Vxll . 4 The following 

Corol lary shows its validity for spherical orthogonality, without 

any assumption about the relative sizes of IJylJ and I/xii. 

1. The space of Example 4.1, pg. 21. 
2. In the sense of Definition 2.J. 
J. See the discussion and figure on page 
4. Theorems 4.6 and 4.7 and Example 4.6. 

29. 



Corollary 6.1. If x (# 0) and y are elements of a 

normed linear space, and x...1..ax+y, then lal:::S. ~~J,• 
Proof: By definition, i · x-1..ax+y if and only if 

llx + k ( ax+y )// ~ I/xii 

for all k. If 1 this gives I/; Yil ~ llxll , or la l:S t~i~\ • k =--, a 

Unlike isosceles and Pythagorean orthogonality, spherical 

orthogonality is not symmetric in general normed linear spaces. 

That is, x..Ly does not imply y ..1..x. This lack of symmetry is 

shown by the normed linear space consisting of number pairs (a,b), 

with //{a,b)ll=lal+lbl. 2 Forlet x=(l,O} and y:(1,1). 

Then l/x+kyll = II (l+k,k)II = Ji+kJ + lkl ~ 1 = llxll. Thus llx+kyil;::,,. llxll 

for all k, and x..Ly. But IIY+kxll = ll{l+k,l )II= µ.+kl + 1. Since 

llyll = 2, //y+kx 1 <-1/yll if -2 "'k< o. Thus y is not orthogonal 

to x. 
( Because of this lack of symmetry, Theorem 6.3 does not 

give the existence of a number a such that ax+y.Lx. This is 

shown hy Theorem 6.4. Likewise, the uniqueness of the number a 

such that x .1.. ax+y is independent of ·that of the number b such 

that bx+y .1..x. These types of uniqueness will be studied in 

Section 7, and will be shown to be equivalent, respectively, to 

Gateaux differentiability of the norm and to the condition for a 

norpied linear space to be strictly normed. 3 

1. Definition 2.3. 
2. The space of Example 4.2, page 24. 
3. See Definitions 7.3 and 7.4, and Theorems 7.3 and 7.8. 



Theorem 6.4. If x and y are any two elements of a 

normed linear sp½l.ce, then there exists a number a such t.hat 
I I 

ax-+y...Lx. This number a is a value of k for which //kx+yll 

takes on its absolute minimum. 

Proof: By definitioh,1 ax+y ...Lx if and only if 

1/( ax+y) + kxll ~ llax+y ll 

for all k. Thus ax+y ...L x 

value of II kx+ylf . Since 
-p~iJv..~ {M I<.~ 

if and only if ll ax+y ll is the smallest 
1 ~6 'v~~ \<./t,v,,l 

1/ kx-tyll is a continuous function'--'and ;;t;, ~. 

becomes vinf ini te ,,a:t' +o1> and 
,..:,..,._, to _.'i'c 

- =, it must take on its minimum. 
I I 

The number a can then be any value of k for which Jlkx+yll 

takes on its absolute minimum. 

Because of the difference in the methods of evaluation a nd 

interpretation of the numbers for which x -1.. ax+y, and for which 

ax+y ..L x, it is interesting to consider the effect of assuming 

symmetry of spherical orthogonality. The following corollaries 

follow immediately from Theorem 6.4, using Theorems 6.1 and 6.2. 

A further result of this type is given in the next section by 

Corollary 7.,5. 

Corollary 6.2. If a normed linear space is such that 

spherical orthogonality is SYplilletric, and f is a linear functional 

with llr ll = 1 and If ( x) I - llxU , then ll kx+y H is minimum if 

f ( kx+y) = 0, ~ k = - ~ ~ i? • 
Corollary 6.3. If a normed linear space is such that spher

ical orthogonality is symmetric, then for any element x there 

exists a maximal linear subset H such that x ....LH and H..Lx. 

1.· Definition 2.3. 



/ Symmetry also aids in a further investigation of the 

relation between the numbers a and b, where x ..L ax+y and 

y ..1.. by+x. Such a relation was very important for isosceles 
2 2 orthogonality, it having been shown that b //y/[ = a /lxll if 

50. 

isosceles orthogonality is homogeneous and additive. 1 This was 

the key t.o the proof of Theorem 4. 8, which showed that isosceles 

orthogonality can be homogeneous and additive in a normed linear 

space only if the space is abstract Euclidean. 

"'l\,(Y"'\ O"./ -1} 

Theorem 6.5~ If x and y are any two Yelements of a 
I . 

normed linear .space, and x..L ax+y and y ...Lby+x, then Jab j~ l. 

If the space is such that spherical orthogonality is symmetric, 

then 0 ~ ab ~ l. 

Proof: By Corollary 6 01, }a l.::s 11~~1~ and lbl~ :J~/[ . Hence 

labl;:$ 1. If x ..L ax+y, then ax+y..L x if the orthogonality is 

for all k
1

• If symmetric o Hence ll (ax+y) + k1 x ii~ llax+y\\ 

y J.. by+x, then )l y + k2 (by+x) ll~ JlyU for all 

get II YI ~ /lax+yll . If k2 = l-~b' we get 

Hence IIYJl > Jl-abl IIYII , and 1 ~ }1-ab I. Thus 

orthogonality is symmetric. 

The validity of Theorem 

6.5 for ordinary Euclidean 

space can be easily shown. 

From the figure, i-t is evident 

that a and b are both neg

ative or both positive 

1. Lemma 4.8•, page 330 

k2• If kl= -a, we 

ll ax+y n ~ 11-abl lty ll . 

ab ~ O, if spherical 
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according as e is acute or obtuse. Also, sino<.= 1}~~1 = l\~
1
1. 

Then sih2 cx. = \ab ! , and lab I~ l. Since a and b are of the 

san;i.i ,s,
1
ign, 0 ~ ab ~ l. 

~ . '_ - .._ ~~, I .'., 

Suppose x ...Lax+y . and 

in 

y .1- by+x. By assigning particular 

)lx + k1 (ax+y )II ~ Uxli and values to k1 and k2 

\\ Y + k2 ( by+x) H ~ II y ll , a number of interesting inequalities can 
. l 

be derived: 

If 

(1). 

k
1 

= ± ½: l) (a±b)x+ yl\;?; lblllxU, if 

k1 = ;: l1 2ax+ y/f ~ laJ Uxll, 

±1 ' k
1 

= ~: /I x ± y fl ~ 1 +- al llxll , 

k b . 
1 = 1-ab· 

k l . 
l = b-a'· 

1/ by + x ll ~ l1-abj Uxll , 

/l bx+ y lJ ~ )a - bl ltxll , 

k 2 = ± ;: Jl x+ (b±a) yfl ~ \al Jlyll , 

k 2 = • ½: IJx + 2by II~ lbl /lyll , 

k2 = l~ b: IJx_± yfl ~ fl + b) llyM, 

k2 = l-~b: Uax+y)I > Jl-abf fl YII, 

k2 = a :: b: ffay+x ll ~ la - bl #YII • 

If spherical orthogonality is symmetric, it also tollows 

that ax+y .1.. x and by+x--Ly. Thus llx+k1 (ax+y)\I ~ l~I llax+yll 

and Jly+k2 (by+x)II~ lk2\ llby+xll, and other inequalities can be 

gotten by giving values to k1 and k2• But because of Theorem 

6.4, these are nothing more than consequences ot Jlax+yll and 

llby+xll being minimum. Thus by making the same substitutions as 

above, one gets the following inequalities--all or which are 

obvious results of this minimum condition, but are interesting in 

that they are the variations in equations (1) above made possible 

by the assumption of symmetry. 

/l(a±b)x+yll ~uax+yll, 

ll2ax + yll ~ »ax+yfJ, 

Jlx±ylJ ~ Jlax+Yll, 

llx + (b ± a)yll.:::,.. l/by+xll, 

Ux+2byll> lfby+xll, 

/Ix-+- YII ?:!:. llby+x II, 

1. k1 = --;- (0r analogously, k2 = -½) was used in proving 
Corollary 6.1. 
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(2) (Cont.) 
}lby+x)I~ )bl /lax+y/1 , lax+yl > \al )by+xll, 

llbx+yl ~ llax+ Yll , II ay+ x ii> I/by+ x j. 

If X and y are e leme.nts of a normed linear space, 
>"-"-- "'t'ftr:o..l..._ 

and x.1-y, then Ux+kyll ~ llx ll for all k, or It n:x:+yll ~ 1/nx II for 

all n. It thus seems interesting to investigate the limit of 

llnx+y/l - llnx/1 as n becomes infinite, both when X and y are 

orthogonal and when they are not. This limit will be shown to 

exist, and to give a condition for orthogonality, as well as~ 
4 determination of all numbers a such that x.1-ax+y. It can then 

be related to the limits of /lx+hr!- llx /1 as h approaches zero 

from the right and left, and to the Gateaux differential of the 
l norm if these limits are equal. 

Theorem 6.6. If x and y are any two elements of a 

normed linear space,~ lim IJnx-t-yll - llnxll 
m~oo 

exists. 

Proof: 2 Because of the triangular inequality of the norm, 

J llnx+y/1 - llnxll f ~ )/Yll • Thus llnx+yll - llnxll is bounded as n becomes 

infinite. Assuming that t~- \lnx+yll- Unxll does not exi:st, let 

r and s be two limit points of llnx+yll- llnxll as n becomes 

infinite. Since Hnx+yl - lnxll is a continuous function of 

there must be arbitrarily large values of n such that 

llnx+yl/-llnxl = T~ If such a value of n is greater than 

n 3 
' 

lrtsl , then, for that n, 1/nx+yll = U(n+~)xj/ , or · 

l\ITn+z;w)x+½~+I: ~-;x+½illl = J}un+ ~M)x+½i) - [- !tiili x+½fj ll ~ 

1. See Definition 7.3. 
2. Condition(!) of Definition 1.6. 
J. The continuity of the norm follows from Condition (2) or 
Definition 1.6. 

4. The existence of this limit also follows from results of 
Ascoli (XV), pp. 53-55. 



5.3. 

Theorem 4.1 then gives 

}l[]n+ rtx: )X+½i] + k[- r~: x+½ill/?: }](n+ f;~i )x + ½Y II 
for lk l ~ l., If k is replaced by 2m and this inequality 

divided by 1ml , 1 it gives 

)/ (~ +~ )x+ ¾Y - 21~tt x+ ylf ~I/(~ + ::i&,>x+ ¾YI/ . 
Now take any number p, and let n become infinite, keeping 

m = ~. This gives p 

~~~ l)(p+ PL~fx11)Jx+ -!nY- 2r~1X+YII ~ ¼~ Jl(p + t~n~) )x+ -fn YII , 
or ll(P - 2 ;rx:) x + yJI~ VPxll , 

for all p~ From Lemma 4.5, it follows that all limit points o~ 

llPx+yll - 1/pxll as p ➔ oo are greater than or equal to 2~~. But 

this is impossible if r and s are both limit points. Hence 

the assumption that lim Unx+yll - llnxll does not exist is false. 
ltl➔OO 

Corollary 6.6. If x and y are any two elements of a 

normed 1 • then lim llx+hhl/ - Jlx lf and lim Dx+hy)I - llxll inear space, _ ..h~+o .;_.._ A~-o h 

exist~ 

Proof: Theorem 6.6 gives the existence of lim !lnx+yll - Unxll . 
11\➔ 00 

Setting n = ~~ this becomes lim ljx-f.hfill - 1/ x ll . The existence of 
ll J.➔+O 

lim /l nx-y#- ll nxll is also given by Theorem 6.6, since the element 
"'➔"° 
y was arbitrary and can ,therefore be replaced by -y. This is 

equal to lim Ux-h.hll -llxll , or -lim IJ!x+hi_ll - Uxll . 
-"-++O i➔-0 ' 

Theorem 6.6 and its Corollary are essentially the same, 

but the proof is e5=sier to follow if the limits are kept as in 

the theorem. The two forms will therefore be carried together. 

1. Using Condition (3) of Definition 1.6. 



Conditions under which the llmits of Corollary 6.6 are equal 

will be studied in Section 7!
1 

The fol1owing theorem gives an evaluation of the limits 

known to exist because of Theorem 6.6. The proof is very much 

like that of Theorem 6.6, and it could have been revised so as 

not to make use of that theorem and to give it as a coroliary. 

However, the proof is much more complicated in that case and it 

therefore seems advisable to include both. 

Theorem 6.7. If x and y are any two elements of ' a 

normed linear space, with x ± O, the.n lim Hnx+yJ/-J/nxtl = -Al}xJI, 
- Z:: - m➔o0 

where A is the algebraically smallest number such that 

B is the x..LAx+y. ~' lim Jlnx-yil-Unxll = Bllxff, where 
~~~ --------

la:rgest number such that xJ_Bx+y. 

Proof: The existence of lim /lnx+y# - llnxll is given by 
M+OC> 

Theorem 6.6. But, for any number a, this limit is equal to 

lim ll(n-a}x+ax+yll-Dnxll, or because of Lemma 4.5, to 
.m➔ ao 

lim I nx + ( ax+y) JI - Unx/1-a IJxll • 
A➔~ • 

If x.1.ax+y, then llnx + (ax~)II ~ Nnxll, and hence 

lim llnx+yl/ -Unxll::::::.-a I/xii. Thus if A is the greatest lower bound 
/1\~oo 

of all numbers a such that. x ..Lax+y, then 

lim llnx+yJf-Mnxll~ -AjlxJI. 
f'\➔00 

Suppose lim IJnx+y(I -Hnxll = -r Dxll. 
fh~CO 

Let~ 

be any positive number. Then there must exist arbitrarily large 

values of n such that \llnx+ytl-Jlnxl/+rllxl/1<- E.#x//. If n > )rl, 

this can be written I llnx+yl/- ll(n-r )xii f ~£I/xii. There is then a 

number e such t .hat )el<€. and l}nx+yll- ll(n-r)xll-el/xll = o, 

l. See Theorems 7.2, 7.3, and Corollary 7.4. 



or llnx+yll = ll (n-r+e)xl\ . But this can be written: 

})fin-½rt½e )x+½Y] + fiir-½,e )x+½iJ}f = /lnn-½r+½e )x+½i.] - Il½r-½e )x-+½ill\. 

Theorem 4.1 then gives: 

J)nn-½r+½e)x+ ½;j + kU½r-½e)x+ ½ilJI > l~n-½r+½e)x+ ½Y/J 

for lk \ ~ l. If k is replaced by 2m and the inequality 

divided by lml ,1 this gives 

1/H:-¼+ ';Silx+ l Y] + (r-e }x+y// ~ //<~- ,&+ °;Si}x+ ~ y/1 • 

Now take any number p, and let n bec ome infinite, 

keeping m= .!!.. This gives p 

l~oo IRP - ~ + ¥n)x+ fn Y] + (r-e )x + YII ~ \~ }J(p -¥n +?n ):x:+ /n yJI , 
or lf(p+r-e )x.+ yQ ~ Upxl( f or all p. Since le I --< E. and £ 

was arbitrary, this gives Jfpx + ( rx+ y )}/ -=>- //pxf/ r or all p. It 

has thus been sh.own that if lim #nx+yU- llnxJI = -r llxll , then •· 
hl~OO 

x ..L rx+y. But it was ahown t hat lim lln.x+yff - lnx/1~ -A llxll , where 
m➔co 

A is the greatest l ower bound of all _numbers a such that 

x ..L ax+y. 

x ..LA:x:+y • 

It now foll ows that lim IJnx+yll - lnxll = -A lf:x:lt , and 
lh,oo 

If B is the largest number such that X...L.Bx+y, then 

-B is the smallest number such that 
2 

:x: ..L-Bx-y. Hence 

lim llnx.;.y j/ - \lnx ll = B 11:x:II , where B is the largest number such 
"'...,. oO 

that .:x: -L B:x: +y. 

Cor ollary 6.7. If x and y are any two elements of a 

normed linear space, and x :/= O, then lim H:x:+hhll - llxll = -A llxll , 
..lt.~t-o 

and i¼1E'o ll:x:+hhl/ -llx lf = -B llxll , where A and B are the algebraically 

smallest and largest of the numbers a for which x..Laxty. 

1. Using Condition (3) of Definition 1.6. 
2. Since spherical orthogonality is homogeneous. See page 13 

and Definition 2.3. 



Proof: This follows immediately by replacing n by 

½ in i~ llnx+ytj- l/nxll = -A IJxll , and n . by - ½ in 

,¾~ J/nx-yl/ - llnxJI = B I/xii , both of which are gi veh by Theorem 6. 7. 

For elements x and y of a normed linear space, 

Theorem 6. 7 gi ve.s the upper and lower bounds of all numbers a 

for which :x .J..ax~. The following results show that :x .J...ax+ y 

for all numbers a between these bounds, and hence give an eval

uation of all such numbers. This gives a necessary and sufficient 

condition for th~orthogonality of elements of a normed linear 

space. /,}r~e,,.J) 

Lemma 6.8. If x and y are any two elements of a normed 

linear space, and x..L Ax+y and x -L Bx;;r, then x .Lax+y if a 

is a nUl,liber between A and B. 

A< IS · 
Proof: For definiteness, assume -; ~~....t::.'B.,. If x ..J.. Ax+y, 

then llx + k(Ax+y)/1 ~ llxU for all k. Likewise, if x .LBx+y, 

then llx + k(Bx+y) j ~ llx ll for all k. Let a be any number such 

that A~a~B. Consider Jlx + k(ax+y)// . If k ~ O, then 

)Ix + k (ax+y) II = IJD- + k ( a-A[\ X + k (Ax+y )\I ~JfJ. +-k ( a-An x )l ?!!. \lx ll. 

I.f k :S: 0, then 

/Jx + k ( ax+y )(( = }} fJ. + k ( a-B)] x + k (Bx+y )I\ ~ I\D- + k (a-B)] x\l~ \\x l\. 

Hence \\x + k(ax+y) }I ~ Uxll for all k, and therefore ~ax+y" 



Theorem 6.8. If x and y are any two elements of a 

normed linear space, then x ..L ax+y if' _and only if , 

-lim llx+hyll - llxJJ ~ a Uxll~-Iim lx+hyll -hx ll 
J.➔+o h :K➔-o h 

Proof: It follows from Corollary 6.7 that the inequality 

of Theorem 6.8 is satisfied if a is such that x ..1.. ax+y. Also 

x -LAx+y and x ...L Bx+y where A = -lim Jlx+hyU - IJxll and 
, .;{-++O h uxll 

B = -~0 }Jx+~~ii /lx ll . Thus by Lemma 6.8, x ..Lax+y if A~a ~ B. 

Corollary 6.8. If x and y are any two elements of a 

normed linear space, _t_h_e_n_x_.L_,Y.___1._· f_a_n_d __ o_nl___..y_i_f 

and lim Dx+hylJ- llxll ~ 0.1 
,,K-}-0 li 

It follows from Theorem 6. 7 that lim fjnx+yll - llnxlij~ 
ni➔ "° ~ 

lim 'hixll -lfnx-yll], or lim ' llnx+yJl + llnx-yJf -2 JlnxJil~ o. This is also ~~=~ M➔~ ~ -~ 
2 evident rrom the triangular inequality of the norm, which gives 

2 llnx//:::; /lnxt-yll-t- llnx-yH. This limit · was investigated before. 3 

It is zero in ordinary ~uclidean space, and because of Theorem 

6-.7 (or 6.8) it being zero is necessary and sufficient for the 

uniqueness of the number a for ·which x .!.. ax+y and for the 

existence of the Gateaux differential of the norm. 4 

For any elements x and y of a normed linear space, 

Theorem 6.8 enables one to determine all numbers a such that 

x .1. ax+y. How this can be done is illustrated by the following 

example: 

1. Also see Corollary 7.2. 
2. Condition (2) of Definition 1.6. 
3. Page 27 of this thesis. 
4. See Definition 7.3. • 
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Example 6 •. 1. Let T be the normed linear space consisting 
, 

of all pairs (a,b) of ____ _.__ ___ __,;;_,;;;._.;r;;;..e.;...a..;;;;l;;;..._n.;...um_b_e.;;;.r..;..s, with JI (a, b )/l as the larger 

of la ! and l bl • 
1 

Let x = ( 1, 1 ) and y = ( 0, 1 ) • Then 

Ux-thy II = I} ( 1, 1 +h )I/ and ll x+h~ - J/xl/ = 1 if h > O and zero if 

h '<( 0 and smali. Thus 1 im Nx +hyll - }lxll = l and 1 im IJx+hyfl - llxll = O. 
~~+o n ~~-c 1i 

Then by Theorem 6. 8, x..L ax+y if and only if -1~ a ~ o. That 

is, (1,1) -1... (a,a+l) if and only if -l~ a ~ o. This conclusion 

can also be verified directly. By definition, 2 x -L ax+y if and 

only i .f llx + k(ax+y) /1::,,.. llxl/, or 

}Jl}.+ka,l+k(a+lfl)} ~ IJ(1,1)U ,- 1. 
for all k. Clearly this is true for jk l small if and only if 

a and a+l are not. of the same sign; that is, if and only if 

The two limits of Theorem 6.7, and of Corollary 6.7, can 

be added. This has the advantage of making it possible to let 

h➔ O, since tne right and left limits are then equal. rt will 

also be valuable in interpreting the following results. 

Theorem 6.9. If x and y are any two elements of a 

normed linear space, . then !~1! /lnx-t-y/t - Unx-yll = -(A+B) llx ll , or 

1~ Hx+hYII h IJx-hyU = -(A+B) llx ll , where A and B are the 

smallest and largest of the numbers a for which x _t_ ax+y. 

Proof: Theorem 6. 7 gave lim /Jnxt-yM-fnxU = -Allx/I , and 
/1\+ao 

lim llnx-yll - Unx/1 = B I/xii . Subtracting these gives 
~ ~ oO 

lim »nx+y/1 - llnx-yll = - (A+B) R:x: 11 . 
/)\ ~ CO 

1 •. The space of Example 4.1. 
2. Definition 2.3. 

If 1 n is replaced by n' this 
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bee omes l im flx+hyjJ - nx-hyjl 
~::++o h ' which is obviously equal to 

Jim IJx+hyfj - 1/x-hyll • 
-+-o h • 

The limits of Theorem 6.9 are twice the differential of 

the norm.1 if it exists. For ordinary Euclidean space, these 

limits being zero is clearly necessary and sufficient for the 

orthogonality of x and y. The following theorem shows that 

even for normed linear spaces there is always a unique number a 

for which x ...L ax+y and lim Jfnx + (ax+y) ll - llnx- (ax+y) fl = o. 
~~~ • 

Theorem 6.10. If x and y are any two elements of a 

normed linear space, and A and B are the smallest and 

largest of the numbers a for which x .l. ax+y, then x ...1.. ½ (A+B)x+y 

,~ .. ¾~ llnx + (ax+y)D - llnx- (ax+y )II = 0 if and only if a= ½(A+B). 

Proof: It follows immediately from Lemma 6.8 that 

x ..L ½(A+B)x+ y. But since A and B are the smallest and 

largest of the numbers a for which x ...1.. ax+y, it follows that 

½(A-B) and ½(B-A) are the smallest and largest of the numbers 

a' for which x .J...a•x + ½(A+B)x+ y • Hence it follows from 

Theorem 6.9 that lim //nx+ [½(A+B)x+ iJ II - J/ nx-[½(A+B)x + yJ fl = 
11\➔00 

-[½(A-B) + ·½(B-A)] = o. From this and Lemma 4o5, it is clear that 

lim //nx + (ax+y)Jl - //nx - (ax+y )Jj = 0 if and only it a = ½(A+B). 
ll'l4-"° 

It is now interesting to look at Example 6.1 again. For 

the x and y of this example, the number A of Theorem 6.10 

is -1, and B = O. Thus ½(A+B) Hence Theorem 6.10 shows 

1. See Definition 7.3. 
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that we must have lim Jlnx + (-½x+y)Jl - llnx - (-½x+y) II 
m 4-°"' 

o, or 

lim jj(n-½ ,n+½ )JI - U(n+½ ,n-½ )II = lim O = o. m+oo ~~= 

While isosceles and spherical orthogonality
1 

are not 

equivalent in general normed linear spaces, it is possible to 

establish a relation between them. Thus the unique number 

½ (A+B) of Theorem 6.10 can be shown to be lim an, where 
111 +<::IO 

nx j_anx + y in the isosceles sense. The following Lemma used 

in establishing this is a strengthened form of Lemma 4.5. 

Lemma 6.11. For any normed linear space T and any positive 

numbers E and £ there e,xis ts a number N such that for all 

elements x and y of 'T fJJ( n+a)x+ yJl - llnx+yU-a Hxllf <£; it 

la l <:: E and n > N [ ljyjl + :iJ . 

Proof: Since ..!!.. + ~ = 1 identically, ll (n+a)x + ylJ can n+a n+a 

be written as llnx + (n!a)Yll+ a}lx + (n}a)YII , if n is positive 

and large enough that n+a > o. Thus 

II ( n+a) x + yff - llnx+y/1 = JJ!nx + ( n~a) y/J - Jlnx+yl/] + a Ux + (n!a_) YI/ . 

But from' the triangular inequality of the norm., 

J llnx + (n!a) ylf - 1/nx+yflf ~ ln~J IIYII , 

and ja llx + ( n!a) Yll -a llxll J ~ In~\ lfyff • 

If N is large enough that N+a > o, then for . n > N ~ yll +JJ , 
ln!a\ IJy~I< IN l/~ :~+a\ <:: lN\ for all y. For positive numbers E 

and g_ , choose N large enough that J;J< t 
\al< E. Then l n!a\ II YII"" ¼ if n > N UIYU+ iJ 
Thus /ll{n+a)x + y)l - llnx+ yd-a llx ll} ~ £ if Ja l< E 

1. See Definitions 2.1 and 2.3. 

and N+ a > 0 if 

and \a l< E. 

and n > N [!IYN + 1] • 
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Theorem 6.11. If x and y are any two elements of a • 

normed linear space, and the numbers an are such that 

Unx+ (anx+y) fl = llnx - (anx+y) IJ , then lim an = a exists and is 
M-+00 

such that x _1_ ax+y. Also, #~ llnx+yU-Nnx-yJ/ = -2a nx 11 . 1 

Proof: The existence of lim Unx+yl( - llnx-yJI is known. 2 But 
,., ..,.00 

llnx+y ll - llnx-yJI = ijnx+y/l - ll nx + (8l.nx+y)ILJ + IJ!nx - (anx+y )JI - llnx-yli]. 

If n is large enough that II YII ~ llnxll , then Theorem 4. 6 gives 

J:n/ !:$ n~1,, or lanl~ ~ - This, with a double application of 

Lemma 6.11, gives the existence, f or any positive number ~, 

of a number N such that n > N implies 

J 11 ( n-tan) x + ylt - )lnx+y)I -an UxU J --=-:: ){ £ • 

and JlH n-an) x - YII - JJnx-y/l+an llx ll J-< K.i. 

Hence • I ll nx+y/l - llnx-yl/ + 2an llx ll )< £ if n .:::. N. Since 

lim )Jnx+yJI - Unx-yJI exists, it how follows that lim a = a 
m +~ ~ -)-«I n 

exists, and that 

it follows that 

lim \lnx+yl/ - ffnx-yfl = -2a llxll . Fr.om Theorem 6. 9, 
M ~OO 

a= ½(A+ B), where A and B are the smallest 

and largest of the numbers b such that :x: _1_ bx+y. The 

orthogonality of x and ax+y now follows from Lemma 6.8. 

Corollary 6.11. If x and y are any two elements of a 

normed linear space, then lim llx+hyJ\ -llx-hyll exists and is 
- - .:l+o h 

equal to lim -2an 1Jxll , where Jlnx + (9.nx+y)JI = llnx- (anx+y)fl. 
m➔co 

It is interesting to note that while the number a 

such that x J_ax+y is not unique in general, the particular a 

1. For any value ·of n, the existence of such a number an is 
given by Theorem 4.5. 

2. See Theorem 6.9. 
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of Theorem 6.11 is unique. In any normed linear space, 

lim Ux+hyf - jl x-hylf = -2a )Jx ll where a is the unique number of 
~~o li ' 
Theorem 6.11, and x ..L ax+y. If the number a for which 

x ...L ax+y is assumed to be unique then lim Hx+hhll - HxH 
, ,R~ 0 

and is equal to 1 
-a llx ll . 

exists 

Furthermore, Theorem 6.8, or Theorem 6,7 and Lemma 6.8, 

gives a simple evaluation of all numbers a for which x ..Lax+y. 

The largest such number is lim llnx-f// - 1/nxll or -lim llx+hy/1 - /Jx ll • 
m-+ 00 I xB ' ~~-o h //x ll ' 

the smallest is -lim llnx+ y /l - /lnxl/ or -lim llx+h~II - Ux /( . The 
m+ oo /IXII ' ,).~+o hi XII 

numbers between these two bounds are the totality of other 

numbers a for which . x ..Lax+y. The mean of these limits is 

the unique number a 

lim llx+h.yl/ -llx-hyJJ 
Jt-=,.o li 

for which lim l/nx+ylJ -Unx-y/J = o, or 
/tl+oo 

o, which are obvious conditions for 

orthogonality if x and y are elements of ordinary Euclidean 

space.· 

1. See Theorems 7.2 and 7.3. 
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7. SPHERIC.AL ORTHOGONALITY, DIFFERENTIABILITY OF THE NORM, 

MTD STRICTLY NORMED SPACES. 

In the previous section, spherical orthogonality was 

investigated for general normed linear spaces. This section 

will consider the effect on normed linear spaces of assuming 

certain types of uniqueness of orthogonal elements. For elements 

X and 
I 

y, these types of uniqueness will be defined in terms 

of the number a for which 

onality is not syrametric, 2 

1 x ..1- ax+y. Since spherical orthog-

x ..1..ax+y does not imply ax-+y ..L X, 

and this uniqueness can take the following forms: 

Definition 7.1. Orthogonality is right-unique if for any 

elements x (i 0) and y :there exists at most one number a 

such that x ..L ax+y. 

Definition 7.2. 0-rthogonality is left-unique if for any 

elements x (i 0) and y there exists at most one number a 

such that ax+y ...1... x. 

For a type of orthogonality which is homogene~us~ 3 these 

two concepts of uniqueness are equivalent, respectively, to: 

1. The existence of this number a is given by Theorem 6.3. 
2. This follows from the independence of the types of uniqueness 
given by Definitions 7.1 and 7.2, as shown by Theorems 7.3 and 
7.8, taken with Examples 7.2 and 7.3. A simple example could 
also be given to show this. • 

J. See page 13 of this thesis. Spherical orthogonality is 
homogeneous by the nature of its definition (x-1..y if and only if 
Ux+kyll~ llxll for all k) and property (3) of Definition 1.6. 



"If ..1. O th 1 l t • • t x F · , en any pane con a1n1ng an elemen x contains 

at most one element y such that x ...Ly", and: "If x ¥= O, 

th 1 l t • • 1 t en any pane con a1n1ng an e emen x contains at most one 

element y such that y ..Lx". 

If the orthogonality is symmetric, then right and left

uniqueness are equivalent. This was the case in normed linear 

spaces for the other two types of orthogonality which have 

been investigated, as is clear from their definitions. 2 Right 

and left-uniqueness of spherical orthogonality are not 

equivalent, and will be related, respectively, to the concepts 

of Gateaux differentiability of the norm and strictly normed 

spaces as given in the following definitions. For isosceles 

and Pythagorean orthogonality, additivity implies uniqueness 

(left and right). 3 For normed linear spaces, it will be shown 

that spherical orthogonality is right-unique if and only if 

it is additive, and additive if and only if t ,he Gateaux 

differential of the norm exists at all non-zero points.4 

ilso, spherical orthogonality is left-unique if and only if 

the normed linear space is strictly normed. 5 This gives a 

relation between these and other well known concepts applicable 

to normed linear spaces, and a means of investigating them by 

use of spheric~l orthogonality. 

1. "Plane" here means a two-dimensional linear subset. 
2. Definitions 2.1 and 2.2. 
J. Lemma 4.8 and Corollary 5.J. The uniqueness in abstract 
Euclidean spaces follows from Theorem J.2. 

4. Theorems 7.J and 7.4. 
5. Theorem 7.8. 



1 
Definition 7 •. 3. A f'unctional f defined on a normed 

l .inear space T is Gateaux diff e~entiab-le2 at a point x if 

li~ f(x+hyl-f(x) exists for all elements y of T. If this 

limit exists it is the Gateaux differential at x with 

increment y, and is written f(x;y). 

Definition 7.4. A normed ' linear space is strictly normed3 

if from the equality I/xii+ IIYI! = ll x+yll (y ;t; 0) it follows that 

there- is a number t for which x = ty. 

An abstract Euclidean space is strictly normed. For if 
2 2 2 

Uxll + IIYII = // x+yll , then /lx+yl/ • - I/xii - lly /1 = 2 llxll • UYH • If Y :j: 0, 

then a positive number t can be chosen such that 11:xff = ll tyl/ . 

Then (2) of r.lI1heorem 1.2 gives IJxll • l/ylf = (x,y), and 

11:x:JJ • JftylJ = (x, ty). 4- Applying ( 2) of Theorem 1 .• 2 now gives 

11:x:-tyll 2 = ll xU 2 + lftylf 2 
- 2 1/xll • IJty/1 . Thus lJx-tyl/ = 0 and x = ty c> 

Therefore any abstract Euclidean space is strictly normed. That 

the norm of such a space is Gateaux differentiable will be shown 

by Corollary 7.3,. 

Right-uniqueness of spherical orthogonality can be 

readily applied to the results of the previous section. The 

following theorem is not as important as some later ones, but 

is interesting in that it involves limits which exist and have 

been evaluated without assuming right-uniqueness of spherical 

orthogonality. 

1. See page 7. 
2~ Sometimes called weakl¥ differentiable, as by Mazur (VI). 
3. Called strictly normalized by Smulian (Il), and strictly 

convex by Clarkson (XIT). _ 
4. See Condition (1) of Definition 1.9. 
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Theorem 7.1. If a normed linear space is such that spherical 

orthogonality is right-unique, then, for any elements x and y, 

lim lnx-wll - lfnx-y /1 = -2a ,,xn ' and lim llx+hy/1 h //x-hy// = -2a /JxJ/ , 
m~00 - --1.7 o 

where a is the number such that x .J..ax+y. 

Proof: This is a restatement of Theorem 6.9, making use of 

the assumption of right-uniqueness of the orthogonality. 

Corollary 7 •. 1. If a normed linear space is such that 

spherical orthogonality is right-unique, and nx ..L anx + Y in 

the isosceles sense, then x -L ax+y in the spherical sense if 

and only if lim an= a.1 
m~00 

Proof: This follows easily from Theorem 6.11. 

Corollary 7.1 gives an interesting relation between 

spherical and isosceles orthogonality. 1 The number a of this 

Corollary is the mean of the largest and smallest of the numbers 

b for which x -L. bx+y in the spherical sense when such orthog

onality is not right-unique, 2 but is the only such number if the 

orthogonality is ri ght-unique. In any case, it is the unique 

limit of the numbers a for which nx .La x + y in the isosceles n n 
3 sense. · 

Theorem 7.2. If a normed linear snace is such that 

spherical orthogonality is right-unique, then, for any elements 

1. See Definitions 2.1 and 2.3. 
2. This follows from Theorems 6.9 and 6.11. 
J. That is, Unx + .(anx+y) IJ = Unx - (anx+y) II for all no 

existence of such a number an for ea ch n is given 
The 

by Theorem 4.5 



x (:p O) and y, 

l~ l/x+hh/1 - llxll 

lim llnx+yll - llnxll = -a Jlxll and 
M~c:0 

-a llxtl , where a is the number such that 

x ..Lax+y. 

Proof: This is merely a restatement of Theorem 6.7 and 

Corollary 6.7, making use of right-uniqueness. That is, 

using A= B = a. 

Corollary 7.2. If a normed linear space is such that 

spherical orthogonality is right-unique, then necessary and 

sufficient conditions that two elements x (# 0) and y be 

orthogonal are: 

and 

lim Vnx+y l/ - Unxll = o, 
hl~OO 

lim Ux+hr21 - llx JI o. 
~~"' 

If spherical orthogonality is right-unique, it is then 

possible to define orthogonality in terms of the conditions of 

Corollary 7.2. 1 Spherical orthogonality is homogeneous, and 

symmetry and additivity can then be restated as follows: 

Symmetry (x.ly implies y .L.x) : "If lim Jlnx+y /1 - ll nxll == O, 
/h~oO 

or 1 im Ix +hh/1 - llxll = O 
~70 J 

then lim ffny+x ll- /lny// = 0 and 
l)t~CIO 

Jy+hxll-/Jy/1 - 0 
h - • 

Addi ti vi ti (x.L y and X ..L Z imply X.L y+z): "If 

l~ l)x +hhll - 1/xU = o and l¾1g ll x+hhJl-llxll = O, then 

lim llx + h(;y:+z )11- llxlf = o. 
,,f.+o h 

1. By virtue of its definition (Definition 2.3) and Condition (3) 
of Definition 1.6. 
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This statement of additivity is equivalent to the 

additivity of the Gateaux differentia11 of the norm, which 

follows from the existence of this differential. 2 This and the 

preceding theorems can be neatly restated by use of this concept. 

Theorem 7 • .3. A normed linear space is such that spherical 

orthogonal~ty is right-unique3 if and only if the norm is Gateaux 

differentiable1 at each non-zero poi_nt. If the norm is Gateaux 

differentiable, then the differential, f(x;y), is equal to -a UxJl , 

where a is the number such that x .J..ax+y:. 

Proof: If spherical orthogonality is right-unique, then 

Theorem 7.2 gives the existence and evaluation of the Gateaux 

differential of the norm. Conversely, if the Gateaux differential 

of the norm exists at each non-zero point, then the numbers 

A and B of Corollary 6.7 must be equal. For any elements 

x (t 0) and y there can then be only one number a such that 

x .Lax+y ,. and hence s,pherical orthogonality is right-unique. 

Corollary 7.3. The norm of a normed linear space is Gateaux 

differentiable at each non-zero point if and only if for each 

non-zero element x there is a unique maximal linear subset H 

such that x ...1.. H. 

Proof: For any non-zero element x, Theorem 6.2 gives the 

existence of a maximal linear subset H such that x ..J...H. But 

if y is any element not a multiple of x, then any maximal 

1. See Definition 7.3. 
2. This is evident from Theorems 7.3 and 7.4, or see Maxur (VI), 
pages 129-130. • 

3. See Definition 7.1. 



linear subset not containing x must contain ax+y for some 

number a. 1 Thus if spherical orthogonality is right-unique, 2 

then the hyperplane H is unique. The Corollary now foll ows 

from Theorem 7.3. 

Corollary 7.3'. The norm of an abstract Euclidean space3 is 

Gateaux differentiable at each non-zer o point, 

differential f(x;y) of the norm is equal to 

x is orthogonal to ax+y if and only if a= 

and the 

Proof: The ratio ll x+h~l - flx ll can be written as 

t +hyJJ
2
- »x11

2 
Using Definition 1.9, this becomes 

(ffx+hy~ + llxJI ) • 
~x+hy,x+hy)-(x,x) 2(x,y) th(~ y) 

otx+hy/1 + llx ll J = 1/X-+hyJI + I I~ 

Gateaux . 
I 

An element 

Letting h approach zero, it is seen that the Gateaux differential 

of the norm at x with increment y {J-.¾~ llx+hhl/ - Jlx lf } is equal 

to .' ¥xlr1• The rest of the Corollary follows from Theorem 7. 3. 

Corollary 7.3n. If the Gateaux differential of the norm 

exists at each non-zero point of a normed linear space T, then 

an element x of T is orthogonal to an element y if and 

ohly if the Gateaux differential f(x;y) is zero. 

Proof: This ·is a restatement of Corollary 7.2, and is also 

immediate from Theorem 7.3. 

1. See Definition 6.2. 
2. See Definition 7.1. 
J. See Definition lo9e 
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Theorem 7.4. In a normed linear space, spherical orthog

onality is additive if and only if it is right-unique. 

L€{ Xro 
Proof: Suppose spherical orthogonality is additive and that 

there exist numbers a and b such that x .1.. ax+y and x ...L bx+y. 

Then from the homogeneity or spherical orthogonality, x ..1- -bx..;.y • 
. . 

. Hence -additivity gives x -L (a-b)x, or ll x + k(a-b)xll~ ltxll for 

all k. This is clearly not t rue if 1 
k =-~• a-o Thus a= b and 

spherical orthogonal ity is right-unique if it is additive. 

Convers ely, if spherical orthogonality i s right-unique, 
I 

Theorem 7.3 gives the existence of the Gateaux differential of 

the norm. If x ..L y and x ..1.. z and the Gateaux differential of 

the norm at x is denoted by f (x;y), then f (x;y) + f (x; z) = o.1 

But Mazur2 has shown that the Gateaux differential of the norm 

is linear if it exists. Hence f(x;y+z) = o, and by Corollary 7.3" 

x -L y+z. Thus right-uniqueness implies additiv~ty. 

That right-uniqueness of spherical orthogonality implies 

its additivity can also be proved nicely directly, and the proof 

seems interesting enough to be included. Let x be any non-zero 

element. Then there exists a linear functional f such that 

f (x) = //xU and ll t ll = 1. 3 Let y be any element such that x 

is orthogonal to Yo Since #r/1 = 1, Jr (x+ky )f ~ l}x+ky/1 . If k 

is taken so that kf(y) is positive, then )f(ky)J~ Jlx+kyfl - llx ll . 

Dividing by lkl , Jr (y)J ~ IJtx+yJI-JI! xJI • Letting k spproach 

zero and assuming uniqueness, it follows from Corollary 7.2 and 

the assumption x ....Ly that f (y) = o. Thus x ...L y implies 

f(y) = O, and likewise x ...1.. z implies f(z) = o. Since f is 

1. See Corollary 7.J". 
2. Mazur (V:t), pages 129-130. 
}. Banach (I), pg~ 55, Theorem 3. Also see page 8 of this thesis. 
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linear, it follows that f (y+z) = o. If • x..L ax + (y+z), then 

f [ax + (y+z)J = o. But f (y+z) ...: o. Hence a = 0 and x ..L {y+z). 

Thus additivity has been shown to follow from right-uniqueness. 

Corollary 7.4. Spherical orthogonality is additive in a 

normed linear space if and only if the Gateaux differential of 

the norm exists at each non-zero point. 

Proof: This follows immediately by using Theorems 7.3 

• and 7.4 together. 

By making use of the Gateaux differential f(x;y), the 

statements of symmetry and additivity of spherical orthogonality 

when right-unique, as given prior to Theorem 7.3, can now be 

stated simply: 

Symmetry: "If f(x;y) = O, then 1 f(y;x) = o. 
• Addi ti vi t y: "If f' ( x; y) = 0 and f ( x; z) = 0, then f ( x; y+z) 0. 

2 It has been shown that additivity of spherical 

orthogonality follows from the assumption of right-uniqueness or 

of Gateaux differentiability of the norm, but symmetry does not. 

This added assumption of symmetry will be studied in Section 8. 

Any normed linear space of more than two dimensions will be 

shown to be an abstract Euclidean space if spherical orthogonality 

is symmetric and unique. 

It is interesting t .o verify the evaluation of the Gateaux 

differential for a two-dimensional Euclidean space. Suppose x 

1. See Corollary 7. 5'. Also, Theorem 8 . .f shows that a strengthening 
of this condition can imply that the space is abstract Euclidean. 

2. Theorems 7.3 and 7.4. 



and y are situated as in the 

figure, with x ...1. ax+y. In this 

position, a is negative, and 

for simplicity h will be 

taken as positive. Then 

!lx+hyl/ = 1/x /l sec e+ llahx/lsec e = Jlxl/ sec e -ah //.xll sece. Hence 

IJx+hhll - lJxJ/ = //xi (sece- 1) _ a //xl/ sec 0 • 

of the same order of magnitude. 
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But h and 0 are clearly 

That is, lim sec B - l O 
,J..:,. o h = • 

Therefore lim IJx+hyJ/ - llxll = - a lfxll . 
~+ o h -

It has been shown that right-uni.queness of spherical 

orthogonality is equivalent to Gateaux differentiability of the 

norm. 1 It also follows that such orthogonality is left-unique
2 

if and only if the normed linear space is strictly normed. 3 It 

will first be shown that the concepts of left-uniqueness and 

strictly normed spaces can be interpreted in terms of functions 

of the form f(n) = Ux+nytl .. These concepts will then be investi

gated_ for spaces of continuous functions, and their independence 

shown by means of such examples. 

Theorem 7.5. If x and y are a:ril two elements of a 

normed linear s J?!:l!Ce, then the curve f (n) = Jlx+nylJ is concave 

up except for possible straight line sections. 

Proof: To prove the theorem, it is sufficient to show that 

for any straight line intersecting the curve in two points, the 

segment of the curve cut off by these t wo points lies below or 

1. Theorem 7.3. 
2. See Definition 7.2. 
3. Se-e Definition 7 .4 and Theorem 7. 8. 
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on the line. If the points of intersection are for values n1 
~ 

i 
c./ ..,.,,..,.., 

/ I 

I 

~ ... ~t-il-P,11 
I 

and of n, then 

the ordinate of the 

point having 

abscissa an
1 

+ bn
2 

and lying on the 

straight line joining 

these points is 

af ( n
1 

) + bf ( n
2

) • 

To establish the theorem, it is then sufficient t o show that 

f or all numbers a and b such that a+b = 1, it follows that 

f(an
1

+ bn
2

) ~ at(n
1

) + bf{n
2

), 

or IJx + (an1+ bn2)Yll ~ a Jlx + n1Yll+b lf x + n2yn. 

Since IJx+ (an1+bn2 )yll • /} a(x+n
1

y) + b(x+n
2
y) ff , this follows from 

the triangular inequality of the norm. 1 

Theorem 7.6. If a normed linear space is such that the 

Gateaµx differential of the norm exists at all non-zero points, 

then dllx+nyl is a continuous monotonic increasing function of 
-- dn -
_n __ e_qu_a_l_t_o __ -_an..ll:iJL , where 

Proof: It follows immediately from Theorem 7.5 that 

d l~~nyll is a monotonic increasing function of n if it exists. 

To show its continuity, let f(n) = llx+nyll . Then the Gateaux 

differential f(x+ny;y) at x+ny with increment y is 

lim /I ( x+ny) -+- hy /1 - lx+nyfl or f' (n). Thus by Theorem 7. 3, 
-1:-+o h ' 
f' ( n) = -an »YII , where (x+ny) _Lan ( x+ny) + y. Hence f' (n) is 

1. Cmndition (2) of Definition 1.6. 
2. Also sere Corollary 7.5". The existence of such a number an 
for each value of n is given by Theorem 6.J. 



continuous if and only if a is a continuous function of n 
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n. 

Suppose an is not continuous for n = n1 • By Corollary 6.1, 

la\ -< DYil and hence an is bounded and must have at least 
n - Hx+riylf' 

one limit point a~ an1 as n approaches n1 . Since the 

Gateaux differential of the norm exists, spherical orthogonality 

is right-unique
1 

and it is impossible for x+n1y to be orthogonal 

to a(x+n1y) + y. 2 Therefore there exists a number k such that 

IJ(x + n1y) + k[a(x + n1y) + yJ J}<IJx + n1y/l . 
But since a is a limit point of an as n approaches n

1
, 

it would then be possible to select a number n2 such that 

ln2-n1 ) and Jan
2

- .a f are small enough that 3 

/J(x + n2y) + k [an
2 

(x+ n2y) + y] JI~ Ux + n
2
yJJ , 

which is impossible if (x+n2y) ..L an
2

(x + n2y) + y. Therefore 

f'(n) is a continuous function of n. 

Theorems 7.5 and 7.6 raise the question of whether it is 

possible for a curve f(n) = Ux+nyll to have a straight line 

section. 4 The following example shows that this is possible 

even when the norm is Gateaux differentiable. In other words, 

d 1/x~yl! 
dn can be constant over an interval. 

Example 7.1. Let T be the space consisting of all number 

pairs (a,b), with (a,b)+ (c,d) 

ff (a' b )ff = /}_b)f tt I 
li a + a1 

= (a+c,b+d), k(a,b) = {ka,kb), and 

lal ::S lb I , 
if lal ~ lbl . 

Clearly Conditions (1) and (3) of Definition 1.6 are satisfied. 

1. Theorem 7.3. 
2 0 Since x + n1y -L an1 (x + n1y) + y. 
}. It is possible to do this beaause of the continuity of the norm, 
which follows from Condition (2) of Definition 1.6. 

4. That this is possible was implied by Theorem 4.4, and shown by 
Example 4.3. However, the norm of. Ex. 4.3 is not Gateaux a_ifferen
tiable. 
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Thus T i:s a normed linear space if Condition (2) is satisfied. 

That this "triangular inequality" is satisfied can be shown 

by considering the following curves: 

II II (\b I if 
(l,b) = "l3(l+b~) 

lbl ~ l, 
if lbl~ 1, or 

)/(0.,1)1\ 

-I - f---+ -1- I- +-
I I I I 

1 1 -, ===--t--+--~~ 1--t-
1 I I 

..--t----+--,...--t-~t---+---t---t- (l... 

Clearly the curve 11( 1, b )II is never concave downward, and hence 

r II ( 1 , b ~I~ s II ( 1 , c ) JI ~ lJ ( 1 , r ~~~ c ) JI 

for all r and s. The equality holds if b and c are both 

greater than 1 or less than -1; i.e. if only values of 1/(1,b)II 

are considered which lie on a straight line. If rb is replaced 

by r' and sc by s', it follows from the above 1.nequai'ity that 

JI ( r+s , r '+ s ' ) II ~ II( r , r ' ) /I + I/ ( s ,Js ' ) II . • 
Thus IJx+yJI ~ llxll+llylt for all x and y . of T, •and T is a 

normed linear space. The Gateaux differential of the norm of T 

exists at each non-zero point. This follows from the following 

relations, which are derived from the definition of H(a,b)ff: .: 

d 11( a, b )II 
da 

if lal ~ lbl and 
if la\ ~ lbJ and 
if Jal ~ lb I. 

0 if la J ~ lb I , 
½ ( 1 - b: ) if Ja J ~ \b I a 
i b::t. 

-z(l - a!-) if Jal'=> lb J 

and a~ o, 

and a~o. 
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By using these relations (or more simply by direct calculation): 

lim IJ (a,b) + h(A,B) JI - ll( a,b) II _ Ad ll(a,b)II + B d IJ(abb) II 
,t+o h - da d ' 

= ; if ja 1 ~ lbl , 
bB b2A aA 11 + if Jal :?:Jbl • = faf -,.t-a jal I{.laf 

This is the Gateaux differential of the norm at (a,b) with 

increment (A,B). 

Since /l (a,1) 11 = 1 if la J~ l, it follows that ax+y .Lx 

for }al~ 1 if x = (1,0) and y = (0,1). Thus spherical 

orthogonality is not left-unique for the space of Example 7.1, 

even though it is right-unique by virtue of the existence of the 

Gateaux differential of the norm. 1 Another illustration of this 

will be given later, 2 as well as an example 3 to show the converse. 

Before doing this it is to advantage to further investigate 

left-uniqueness of spherical orthogonality. The following 

theorem is different from Lemma 608 because of the lack of symm.etry 

of spherical orthogonality. The most interesting difference is 

that Ux+ky ll has the sarn.e value for all k for whi ch x+ky _L y. 

That this is not true for all k for whi ch x ...1.. kx+y can be 

seen from Example 6.1. 

Theorem 7.7. If x and y are elements of a normed linear 

space T, then Ux+kyll has the s ame value for all numbers k 

betwe:en or equal to the smallest and larges t numbers a for which 

x+ay_i_ y. Also, x+ky...L y for all numbers k in this interval. 

Proof: If x+ay_t_ y, then )f( x+ay) + ky ll~IIYII for all k. 

Hence l}x-tay lf is the minimum value of llx+kyll if and only if 

l. _See Theorem 7.J. 
2. Example 7.2. 
J. Example 7.J. 



77. 

x+ay ..L y. Therefore if x+a1y ...1.. y and x+a 2y ...J_y , t hen 

IJx + a
1

yJI = JJx + a 2ylJ . Ohviously the set of numbers a f or whi ch 

Jlx+ayJI is minimum is bounded. 1 From the continuity1 of 1/~J 1·t.ke.. 

it follows that there exist smallest and largest numbers A and 

B of this set. Then ll x+Ay ll = )lx+By JI , and these are both 

minimum values of llx+ky\l . It now f ollows from Theorem 7.5 

t hat Ux+ky l\ is constant for A~ k ~ B, and that x+ky ...L y for 

all k in this interval. 

Theorem 7. 7 es.sentially sta tes that spherical orthogonality 
·\IYt J X, c,,,.,J ~ E t"...!,f'·t'-~ 

is left-unique if and only if vno curve of the form f (n) = ll x-i-nyll 

has a "flat bottom" like that of 1/ (a,l) JI of Example 7.1. But 

if any such curve has a straight line segment, it can be shown 

that there is another with a "flat bottom". This follows from 

Theorem ·7.8, and is also the basic idea of the proof of that 

theorem. Thus it is shown that2 llxll +llytl = Jlx+yll implies the 

curve /1( 1-k)x + ky/j has a straight line segment (as illustrated 

below). It then follows that elements x' and Y' can be found 

such that the curve /lx'+ky•JI has a "flat bottom" similar to that 

of ~{a,1) 11 of Example 7.1, and ,thus that spherical orthogonality 

is not left-uniqueo 

Theorem 7.80 A necessary and sufficient condition that 

a normed linear space be strictly normed3 is that spherical 

orthogonality be left-unique. 

Proof: Suppose spherical orthogonality is not left-unique. 

There then exist elements x and y {y #, 0) and unequal 

1. This follows from Condition {2) of Definition 1.6. 
2. The following assumes the space is not strictly normed (see 
Def. 7.4). 

3. See Definitions 7.2 and 7.4. 
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numbers A arid B such that x+Ay...L y and x+By .L y. rt then 

follows from Theorem 7.7 that x + ½(A+B)y_L y and 

llx+AyJI = llx+Byll = IJx + ½ (A+B) yJI . 

Thus )lx+Ay/1 + IJx+Byll = /l(x+Ay) + (x-tBy}IJ . 

If the space is strictly normed, there then exists a number t 
1 

such that x+Ay = t(x+By). If t = 1, then either y = 0 or 

A= B, contrary to assumption. If ti 1, then x is either 

zer9 or a multiple of y, which is impossible since it would then 
2 be necessary that x+Ay = x+By = o, and hence that A= B. Hence 

a normed linear space in which spherical orthogonality is not 

left-unique cannot be strictly normed, and spherical orthogonality 

is left-unique in any normed linear space which is strictly 

normed. 

Conversely, suppose the normed linear space T is not 

strictly normed~ There then exist elements x and y (y-:;: 0) 

such that x =/: ty for any t and 11:xll + IIYII - Ux+yU. Take any 

number k such that O~ k ~ l. Then 

11 (1-k)x + ky /l~ (l-k) 11-xJI + k llyll 

because of the triangular inequality of the norm.3. But from 

x+y = D_l-k)x + ky] + kx + (1-k)y, it also follows that 

jµ:+yll~}l(l-k)x + kyll+ k llxJl+ (l-k)j/yJI . Since it was assumed that 

llxU + UYII = l/x+ylf, this gives 

1/ (1-k)x+kyJI:::.. (1-k) UxJH-k llylJ . 

Thus II( 1-k) x+ky II = (1-k) llxll+k llyfl 

for O~ k ~ l. Therefore if 

1. See Definition 7.4. 

0 '/,._ 1. 

2. Since ky ..J.. y if and only if k = 0 (see Def. 2.3), and 
x+Ay .Ly and x+By .Ly. 

J. Condition (2) of Definition 1.6. 

.. 
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_ llxll 
k - Hxll+ Jlyfl and x• = (1-k)x + ky and y• = (1-k)x - ky, then 

Jlx•II = 21:t1f6U, and »x~+y•II = Hx'-Y'II '.'"- Jlx:• 11 . Hence from 

Theorem 7 .5, 1 llx•+ky•II = llx'II JI~+¾'» 

for \k ) ~ 1. This with ' ...... _,,, 
fix '+ky •JI ~ }Ix' JI 

..._ ..;..I 
----Theorem 4.1 gives I 1(-,..'JI 

for all k. Thus 1/x' I/ must · I 

be the minimum of )Jx'+ky' IJ ' -1 -+ :1. 

and 1/(x'+ ay') + ky'II ~ lJx'+ay' II = Jlx'H for all k, if lal ~ 1. 

Thus X '+ ay ' .J.. y t if Since Y ' IJyll x +UxllY 
= llxll+llyll ' Y' can 

not be zero because xi ty for any t. Therefore spherical 

orthogonality is not left-unique, and a normed linear space for 

which ·spherical orthogonality is left-unique is strictly normed. 

/ 

Corollary 7.5. If a normed linear space is such that 

spherical orthogonality is symmetric, then the space is strictly 

normed if and only if the· norm is Gateaux differentiable at each 

non-zero point. 

If spherical orthogonality is symmetric, then such orthog

onality is clearly left-unique if and only if it is right-unique. 2 

The above corollary then follows from the equivalence of left

uniqueness to the space being strictly normed and of right

uniqueness to Gateaux differentiability of the norm. 3 But it 

has also been shown that if the Gateaux differential of the norm, 

f(x;y), at x with increment y exists, then x is orthogonal 

to y if and only if f(x;y) = o. 4 Thus in this case the 

1. Or from Theorem 4.4, which is now a corollary of Theorem 7.5. 
2. See Definitions 7.1 and 7.2. 
3. Theorems 7.3 and 7.8. 
4. Corollary 7.3". 



orthogonality is symmetric if and only if f (x ;y) 

f(y;x) = o. This gives t he foll owing corollary. 
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O i mplies 

Corollary 7.5'. If the norm of a normed linear space T is 

Gateaux differ entiable, then T is strictly normed if f(x;y) = O 

i mpl ies f(y;x) = 0 for all non-zero elements x and y of T. 1 

Corollary 7.5". If the norm of a normed linear space T is 

Gateaux differentiable, then T is strictly normed if and only 

if the Gatea~x differential of the norm, f(x+ny;y), at x+ny with 
2 increment y, is an increasing function of n. 

Proof: As in the proof of Theorem 7.6, it is clear that 

f(x+ny;y) = d ll~~yJ/ . It also follows from Theorems 7.7 and 7.8, 

or directly from the condition for a normed linear s pace to be 

strictly normed, 3 that such a space is strictly normed if and 

only if no curve f (n) = 1/x+ nyJI (y # 0), for which x :f: ty for 

any t, contains a straight line segment. · The conclusion of the 

corollary then follows from Theorem 7.6. 

It is interesting to investigate the effect on spaces of 

continuous functions of the assumption of right- or left-uniqueness 

of spherical orthogonality. This will be seen to give an easy 

means of establishing the independence of these types of uniqueness 

of orthogonality, and hence also the independence of Gateaux 

differentiability and strict normedness. 

1. The ~stronger relation f(x;$) = f(y;~) holds 
Euclidean spaces, but by Theorem _8.K~ in such 

2. As follows from- Theorem 7.6, this difference is 
if it exists. 

3. As in the proof of Theorem 7.8. 

in abstract 
spaces. 
continuous in n 
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Definition 7.5. The space (C) of continuous functions 

consists of all functi ons which are continuous in the closed 

interval (9, 1), with /lf /l defined as max. Jr (x) J . 
1 

o~x-"'l 

Theorem 7.9. 2 A subspace T of the space of continuous 

functions is strictly normed if and only if all non-zero func

tions of T whose absolute values take on their maximum at a 

common point are multiples of each other. 

Proof: Suppose there exist non-zero functions f , and g 

such that ffl and )gJ are both maximum at .some number a. 

That is, I/ti/ = jf(a) / and Ugj/ = )g(a) / . Then either )t(a)+ g(a)J 

is the maximum of Jt +g j , or )t(a)-g(a) I is the maximum of 

lf-g l• Hence either llf ll+)g l/ = ll f+g/1 or Ht ll+IJgH = llt-g ll . If 

T is strictly normed, there then exists a non-zero3 number t 

such that f = tg. 

Conversely, if T is not strictly normed, there exist non

zero functions f and g such that )lf ll+ )lgll = llt +gll and 

f :f. tg for any number t. Suppose }If )) It ( a )I , 

// g /1 = )g(b)J, and IJf + gll = Jr(c)+g(c)J. But 

It ( c ) + g ( c ) I ~ Jr ( c )) + Jg ( c )I . 

Also, 1r(c)l!S )r(a)I and Jg(c)/~ Jg(b)}. By assumption, 

\ f ( C ) -t-g ( C ) \ = }f ( a ) l + Jg ( b) ' • 

ft follows from this that }t(c) J = }f(a)j and )g(c)j = lg(b)~. 

~hat is, both \f l and jg\ take on their absolute maximum at c. 

1. See Ban~ch (I), page 11. 
2. A subspace here means a subset which is also a normed linear 
space. 

J. Non-zero since f, o. 
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The above theorem enables one to tell readily whether a 

space of continuous functions is strictly normed~ In order to 

find a simple condition that the norm of such a space be Gateaux 

differentiable, the limits of Corollary 6.7 will first be 

evaluated. Conditions for differentiability of the norm can 

then be deduced from these limits. 

Theorem 7.10. If T is a subspace of the space of contin

uous functions, and f(;c 0) and g are elements of T, then 

lim llf+kgll- llf l/ - max.(g.f) and Jim /Jf+kgl/-Jlfjf = min{g)f{\ 
--'-')-tO k - U Orr/ - ➔-0 k U -; 
where U is the set of all numbers for which /ti is maximum. 1 

Proof: Because of the continuity of f, the set of numbers 

for which ltl is maximum is closed, and hence there exists a 

number a' of this set for which 1#- takes on its maximum. 2 

Because of the 

way a' was 

chosen, it is a 

member of the 

set U of num

bers for which 

lt l is maximum. 

Since gfx)f(x) 
• f { x)J 

is maximum for 

I 
a... 

x =at, it follows that If (a' )+kg(a' )f is the maximum value of 

lf(a)+kg(a)J for a ~U, provided k is positive and small 

1. The only function of the factor½ is in determining the sign 

of (,;fhJ . · • b · th f th . d. t d . t U 2. Int e fi gure, at can e ei er o e in ica e poin s; 
consists of the points marked a' and the points between a] and 
a 2 ; and x.J.. is the point at which /jf+¼:g J/ takes · on its maximum. 

4-
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enough that lkg{a) I~ It {a)/ for all a fr u. If xk is a 

number for which lt +kg/ is maximum, then since g(x} is 

bounded and the norm of T is continuous, 1 all limit points ot 

as k approach zero belong to u. Then for k small 

and positive: 

Ut +kg ll = It (xk)+kg ( xk) I = Jr (x ))+ kg (x~) f (xk) -<..Y {a')/+ kg (xk )f ( xk) 
k Jf xk}J - Jf (xk)I ) 

and lim Uf +kgft - Uf ll ~ lim kg (x~ )f (xk) _ g (a )f (a) 
~ ~+o k __, --&++o kj(xk)f - )f{a)J' 

for the number a of U which is a limit point of xk as k 

approaches zero. But ur + kg ll~ lt(a')+ kg(a')) , 2 and hence 

lim llf+k~l/ - 1/f l} !::,.. lim)r(a')+kg(a'}l-)f(a'}j _ gfa')f~a') ~ g(a)f~a) 
.&➔-to . -- --h -+o . k - f ( a ' f - jf ( a I 
for all a £. U, because of the way a' was chosen. Hence 

1 im l!f +kg II - llf ti _ , • a ' ) f ( a ' ) _ max. g ~ a ) f ( a ) • 
-i~ +<> k - f a' - u f (a) J 

From this, 

limVf+k~A- ll t U _ lim Uf-kgll - Jlf lf _ -max. -g(a)f ~a) _ min.g(a)f (a). 
~ .+-o - .Jt+-t-o -k - u j f (a I - u jf {a )I 

It is interesting that Corollary 6.6 (and therefore also 

Theorem 6.6) could be given as a corollary of Theorem 7.10. This 

follows from the fact that any separable Banach space can be 

represented as a subspace of the space of continuous functions, 3 

in effect only only two-dimensional spaces being involved in the 

proof of this type of theorem,i. The following corollary is 

Theorem 7.10 restated with norms replaced by their defined values. 4 

Corollary 7.7 is gotten by applying Theorem 7.10 to Corollary 6.7. 

1, g(x) is bounded since it is continuous, and the norm of T is 
continuous because of Condition (2) of .Definition 1.6. 

2. See Definition 7.5. 
3. Banach (I), page 185, Theorem 9. A separable space is one which 
contains a countable subset whose closure is the whole space. 
Clearly any finite dimensional normed linear space is separable. 

4. See Definition 7.5. 



Corollary 7.6. If f and g are continuous functions 

defined over a closed interval, then 

lim max. Jf+kg /-max. !f f 
~~+o k 

= max. ~ 
u JfT ' 

and 

lim max. jf +kgJ-max. )f J _ min. ~ 
~~ -o k - U If I ' 

where U is the set of numbers for which fr l is maximum. 

Corollary 7.7 . . If T is a subsuace of the space of con

tinuous functions, and f and g are elements of T, then the 

smallest and largest nu.mbers A and B such that . f --L. Af+ g and 

f ..L Bf+ g are A= -m~x. -f- and B = -min. f, where U is the 

set of numbers for which jf j is maximum. 

Corollary 7.7 gives a simple means of finding all numbers 

a for which f ..L af+g, if f and g are elements of a space of 

continuous functions. If the orthogonality is right-unique, then 

the norm is Gateaux differentiable at all non-zero points.
1 

It 

is possible to use Theorem 7.10 to find a condition for the exis

tence of the Gateaux differential of the norm, and a means of 

evaluating this differential if it exists. This leads to simple 

conditions for orthogonality of elements of a space of continuous 

functions. 

Theorem 7.11. If T is a subspace of the space of 

continuous functions, and f (# 0) and g are elements of T, 

then the Gateaux differential, lim Ht+kgll - llf ll exists if and only 
~~o , 

if Jg(a)/ has the same value for all nurnbers a for which Jfl 

lo Theorem 7.30 



is maximum, and g (a ) and f(a) are either of the s ame sign for 

all such a, or of 

this limit eq_uals 

Jr/ is maximum. 

opposite sign for all. such a. If it exists, 
g(a)f(a) /f(a) / , where a is any number for which 

Proof: From Theorem 7.10, this Gateaux differential exists 

if and only if mux{,;f)= m~n•e:rf ) , where U is the set of numbers 

for which 1t l is maximum. But (f(a) ) has the same value for 

all a e;U. Hence for this eg_uality to hold, g(a)•f(a) must have 

the same sign for all a ~u, and /g(a) / must have the same 

value f or al!. a £- U. 

Corollary 7.8. If T is a subspace of the s pace of con-

tinuous functions, and tAe norm of T is Gateaux differentiable 

at all non-zero points , then for elements f and g of T, 

f -L -~f =~ f + g , where a is any number for which jf j is maximum. 

Proof: This follo"WS immediately from Corollary 7.7, since 

spherical orthogonality is right-unig_ue if the norm is Gateaux 

differentiable1 . It also follows from Theorems 7.3 and 7.11. 

Theorem 7.12. If T is a subspace of the space of contin-

uous. functions and the norm of T is Gateaux differentiable at 

all non-zero points, then an element f is spherically orthog

onal to an element g if and only if g(a) = 0 for numbers a 

for which jf / is maximum. 

This theorem is really a weak form of Corollary 7.8, 

but provides a very simple means of testing the orthogonality of 

1. See Theorem 7.3. 
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elements of a space of continuous functions in which the norm is 

Gateaux differentiable. If the orthogoµality is also symmetric, 

then two elements are orthogonal if and only if each is zero at 

every point where the absolute value of the other is maximum. This 

will be used extensively in the next section~ Its application is 

made possible by the fact that any separable Banach sp,ace1 is 

equivalent2 to a subspace of the space of continuous functions. 3 

The above results enable one to ~onstruct simple examples 

to show the independence of Gateaux differentiability of the 

norm and the condition for strictly normed spaces--and hence of 

right- and left-uniqueness of spherical orthogonality. Example 

7.1 showed that Gateaux differentiability of the norm does not 

imply the space is strictly normed. This is shovm more simply 

by Example 7.2, while the converse is given by Example 7.3. 

Examule 7.2. A normed linear space whose norm is Gateaux 

differentiable, but which is 

not strictly normed. Let T 

be t ,he space of all functions 

of the form f = a sin x+ b(x-1t) 

in the interval (0, 1Y ). Since 

ft = a cos x+ b, the slope of 

the curve f is of the same 

sign throughout (o, ,rr ) if 

la/ ~ /bl. Hence in this case 

0 

1. See Definition 1.7. A space T is separable if it contains 
a countable subset U such that U = T. 

2. Two normed linear spaces are equivalent if there is a 1-1 
correspondence between them which preserves the norm and the 
operations of addition and multiplication by real numbers. 

3. Banach (I), page 185, Theorem 9. 



the maximum of lf l is attained at O and 1, . Thus by 

Theorem 7.9, T is not strictly normed. 

If la}> )b I , then f' is of opposite signs at the ends of 

the interval and /t i must take on a larger value than that or 

'1tlb/ which it has at O and 1r. Thus if la /:::.. lbJ, Ir ) 

takes on its maximum at the unique point for which b cos x=- -• a 

Hence if la)> lbf , then · It I takes on its maximum at only one 

point. If lal~ lb) , jf f takes ,on its maximum at both O and 

1,. Since sin O = sin 1Y' = o, the values at O and 1T' of any 

other function Asin x +B(x- ~ ) are +~• Since the corresponding 

values of f are +~b, it now f ollows from Theorem 7.11 that 

the norm of T is Gateaux differentiabl~· 

Example 7. 3. A normed linear spac1e which is strictly normed, 

but whose norm is not Gateaux differentiable. Let T be the 

space of all func

tions of the form 

f = a sin x + b sin 2x 

in the interval 

( O, 1Y' ). Then sin 2x 

has a maximum of 1 

at ~ and ~ , being 

of opposite signs at 

these points. But 

sin x has the same 

sign at both points. Hence by Theorem 7.11, 

1-im //sin 2x + k sin xJ/ - // sin 2xll 
~o k 

does not exist, and the norm of T is not Gateaux differentiable 

at the "point" sin 2x. 
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The function f = a sin x+b sin 2x is zero at both ends of 

the interval (0, 1r ), and hence the maximum of Jasinx+bsin2xf 

must be taken on for a number x0 such that 

a cos x 0 +2b cos 2x
0 

= o. 

If the absolute value of another function F = Asin x + B sin 2x 

takes on its maximum at the same point x0 , then 

A cos x0+ 2B cos 2x0 = O! 

Since cos XO and cos 2x 
0 

cannot be zero simult.aneously, it 

follows that Ab= Ba and that any functions f and F are 

multiples of each other if they take on their absolute maxima at 

the same point. It then follows from Theorem 7.9 that T is 

strictly normed. 

Theorem 7.lJ. A normed linear space can be strictly normed 

without its norm being Gateaux differentiable, and conversely. 

Theorem 7.14. There are normed linear spaces for which 

spherical orthogonality is right-unique and not left-unique,~ 

others for which such orthogonality is left-unique and not right-

uniqueo 

These theorems are immediate consequences of the above 

Examples 7~2 and 7.3, the second making use of the equivalence of 

Gateaux differentiability of the norm and right-uniq_ueness of 

spherical orthogonality, and of the equivalence of strict 

normedness and left-uniqueness of spherical orthogonality.1 

1. Theorems 7.J and 7.8. 



8. SPIIER IDAL ORTHOGONALTI1Y AND T.dE EXIBTENCE 

OF mmR PRODUCTS 

89. 

It has been shown that if either isosceles or Pythagorean 

orthogonality is either additive or homogeneous in a normed 
1 

linear space T, then T is an abstract Euclidean space. These 

types of orthogonality are symmetric in any normed linear space, 

while spherical ortho~onality2 is -homogeneous, but neither symmew-ic 

nor additive in general normed linear spaces. Two conditions for 

the existence of an inner product3 in normed linear spaces have 

been used in this thesis as an aid in proving the existence of 

inner products from assumptions on the orthogonality. Dl. connection 

with Pythagorean orthogonality, it was convenient to use the con

dition given by Jordan and Neumann4 that a normed linear space is 

abstract Euclidean if and only if 

ltx+yJj2 + U:x:"'."ylf 2 = 2[ 1J:x:1l2 + fly1f 2] 

for all elements x and y. With isosceles orthogonality, a 

condition given by Ficken was found useful:
5 

That a normed linear 

space is abstract Euclidean if and only if 

II a:x:-ttr II = flx+ayJI 

for all numbers _ ~ and elements :x: and y for which Jl :x:11 = JI YII . 
It will be seen that it is sufficient to assume only that 

• lim \flnx+y lf - ll •+nY'ft] = o if llxll = IIYll . 6 
fh.➔ OD l!!. 

I. Theorems 4.9 and 5.2 and Corollary 5.3. Also see page 13 of 
this thesis. 

2~ See Definitions 2.1-2. 3. 
3. The existence of an inner product is equivalent to the space 
-being abstract Euclidean-. · See Definition 1.9. 

4~ See page 40 of this thesis~ and Jordan and Neumann (IV). 
5; See page 35 ·of this thesis, and Ficken {XIV)• 
6. Theorem 8_.4. 
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Garrett Birkhoff has shown that a normed linear space of 

three. or more dimensions is abstract Euclidean if and only if 

spherical orthogonalitf is symmetric and uriique, and that this is 

.!!21 true for spa?es of two dim.ensions.1 It has been shown that 

right-uniqueness of spherical orthogonality is equivalent to 

additivity of the orthogonality and to Gateaux differentiability 

of the norm of the space, and that left-uniqueness is equivalent 

to the space being strictly normed. 2 Thus Birkhoff's theorem can 

,.be stated in any of the following forms: 

Theorem. 8.1, A normed linear space of three or more dimen

sions is an abstract Euclidean space if ' and only i:e it is such~tll;~t 

spherical orthogonality is synnnetric and additive. 

Theorem s.2. A normed linear space of three or more dime~

sions is an abstract Euclidean space if and onlt if it is strictJ,y 

normed and spherical orthogonality is synnnetric.,. 

Theorem 8.3. A normed linear space of three or more dimen

sions is an abstract Euclidean space if and only if its norm is 

Gateaux differentiable at each non-zero point and spherical 

orthogonality is symme$ric. 

Examples have been given3 of normed linear spaces which sJ:nw 

the independence of the condition for strict normedness and the 

1. Birkhoff (XIII). Condit ions which are sufficient for the exis
tence of an inner product for two-d:ilnensional spaces are given by 
Theorems 8.4 and s. 5. The uniqueness assumed by Birkhoff can be 
either left or right, because of the assumption of symmetry (See 
Definitions 7.1 and 7.2.). 

2. Theorems 7.3, 7.4, and 7.8. 
3. Examples 7.1, 7.2, and 7.3. 
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existence of the Gateaux differential of the norm at non-zero 

points, making use of the equivalence of these to left- and right

uniqueness of spherical orthogonality. Since syrametry of spher

ical orthogonality clearly implies the,:: equivalence of these pro

perties, 1 it ,is interesting to consider whether the assumption of 

both left- and right-uniqueness :implies symmetry of spherical 

orthogonality. That is, whether spherical orthogonality is symmet

ric in a strictly normed space whose norm is Gateaux differentiable, 

at all non-zero points. Tha~ this is not true is shown by 

Example 8.1, and also by the following analysis: Suppose a par

ticular linear representation of a normed linear space T is 

taken and the unit pseudo-sphere S constructed as .representing 

the points whose norms are unity-2. Then it can be seen that T ~ 

strictly normed, or spherical orthogonality is left-unique in T, 

if and only if S does not contain a straight line segment. 

Also, the norm of 'f is Gateaux differentiable at~.;non-zero points, 

or spherical orthogonality is right-unique in T, if and only if 

S has a tangent hyper-plane at each point. 3 Clearly these two 

conditions can be easily met without satisfying the condition for 

symmetDy: namely, that a diameter drawn through the origin 

parallel to a tangential hyperplane at any point p ot s cut 

S in points at which the tangential hy:perJ.)lane is parallel to 

the diameter through p. 

Example s.1. A normedJ.linear s;paee which is strictly normed 

and whose norm is Gateaux differentiable at all non-zero ;points, 

1. See Corollary 7.5. 
2. See Birkhoff (XIII), page 169, The pseudo-sphere s can be in 
an Euclidean space .of any number of di!p.ensions, while Birkhoft 
uses a circle. 

3. See Definition 9.2. 
the next section. 

This will be discussed in more detail in 
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but for which spherical orthogonality is not syrn;metric. Let T 

be the normed linear space of all functions of the form F = af+bg 

in the interval {0,2), where 1/Fn = ~J· IF) and 

f = x(2-:x:) and g = ( 1-x
2 for O~ x ~ l, 

l _(x-2} 2-1 for 1s x ~. 

The function f is positive throughout (0,2) and symmetric 

about the line x = 1, while g is positive in (O,l) and negative 

in (1,2) and symmetric about the point (l,O). Thus if a and 

b are of the same sign, then )F / has its maximum in (0,1)--at 

the point x = kt,• Likewise, if a and b are of opposite 
2b-a sign, then the maximum is in (l,2)--at the point x = ·t, .. 8 • 

Clearly then the absolute values of two functions F = af+bg and 

G = Af-t-Bg can take on their maxima at the same point only if they 

are proportional, and the absolute value of a function can take on 

its maximum at only one point. Thus T is strictly normed and tm 
1 norm of T is Gateaux differentiable at every non-zero point. 

Spherical orthogonality is therefore symmetric in · T if and only 

if the absolute value of the function G which is zero where IF) 

is maximum, is maximum where F is zero. 2 If a and b are of 

the same sign, then IF l has its maximum at :x: = ab and F...LG if 

( a _ [ a a \\ r ., a2 ~+ 
e,nd only if G a+bl -A~(2-a.+b)J+B~ -(a+b)2...J = O, or 

(1). Aa(a+2b)+Bb(2a+b) = 0~ 

But then A and 
2B-A 

at X = 'ii"=A• 
B are of opposite sign and IGt 

2B-A If G.1-.F, then F (i3=A) = O, or 

(2). Aa(2B-A)+Bb(B-2A) = o. 

has its ma:x:mum 

But (1) and (2) are both satisfied if and only if Ab= -aB, and 

hence (1) and (2) are not equivalent in general. Thus spherical 

orthogonality is not symmetric in T. 

1. See Theorems ?.9 and ?.11. 
2. See Theorem 7.12. 
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It has been shoWJ;l; that for the three types of orthogonality 

of Definitions 2.1-2.3, and any elements x and 

linear space, there exists a number a for which 

y of a normed 
1 x..1.ax+y. For 

isosceles and Pythagoren orthogonality it has been shown that the 

assumption of either homogeneity or additivity of the orthogonality 

implies the normed linear space is an abstract Euclidean space. 2 

The assumption of both homogeneity and additivity of spherical 

orthogonality in normed linear spaces of three or more dimensions 

:tm.Plies the space is a~stract Euclidean, but this is not true for 

two dimensional spaces. 3 However, several conditions can be 

given which are valid for two-dimensional spaces. The first of 

these is similar to the condition of Fioke~'s,4 and makes use of 

orthogonality concepts only in the method of .. proof. 

Lermn.a. 8.4. If for a normed linear space T 1J x ii= J/y/1 

implies lim. \lnx-ty~ - llx-+nYI/ = O, then spherical orthogonality is 
M700 · • 

symmetric, additive, and unique in T, and x ..1-ax+y and y .1._by+x 

illlply ak:x: /1 2 = b fty/1
2 

• 

Proof: Let x and y be elements of T, A and B be the 

algebraically smallest and largest of the numbers a for which 

x .La:x:+y, and A' and B' be the algebraically SIIlE!.llest and 

largest • of the numbers b for which y..L by..1.x. If llx ll = II y/1 , then 

lim Unx+yJI - bx-tnylU= lim [ nx+y "- llnxli1 - lim rux-+nyll- lJnY!l = o, ~➔~ ~➔~ ~ ~➔= ~ 

since these limits are known to exist. Their existence follows 

from Theorem 6.7 , which also gives 

1. That is, there is a number a for each type of orthogonality, 
but not necessarily the same number. 

2. Theorems 4.9, 5.2 , and Cor. 5.3. Also see page 13 of this thesis . 
3. See Theorem 8 •. 1 and the preceding discussion. 
4. That ll ax+y~ ==- /I x+ayd if llxlt = U y1{ . Ficken (XIV). 
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lim fll nx+yll - 11 :x:+nytl] = -(A-A') llx l\ == o, /)1➔ 111:1 U! 

and hence that A = A'. Likewise, ~xii = Hy lt implies 

lim r,,nx-yfl - lrx-nyl[! = lim f)nx-Y1I - UnxJ~ - lim fTl:x:-ny/1 - fl nyJQ = o. 
m -)-ao I!: ~~ oo L!. I?\. +o0 I..!! 

.Another application of Theorem 6.? then gives 

lim U,nx-yl/ - 1/x-nylTI = (B-B•) lfx ll = o, 
I>\.~ 

and B = B'. Now suppose :x: _1_ y and 11 :x:II = IIYII . Then clearly 

A~ O!::i:: B, and from the above A'~ 0 ~ B'. That y ..1.. x now follows 

from Lemma 6.8 and the definitions of A' and B'. Since 

s~herical orthogonality is homogeneous, there ,was no loss of 

generality in assuming Ox " = /l y/1. It has thus been shown that 

spherical orthogonality is symmetric in a normed linear space for 

which llxll = ltyn implies lim l/nx+y11- l/x-,.ny ll = o. 
1'1-?"'° 

How suppose 

spherical orthogonality is not unique in such a normed linear 

space. There are then elements x and y and a positive number 
1 e for which I/x ii = J/y}/ and x ..L ax+y for la )<£ . From the 

symmetry that has been proved, it now follows that ax+y_t_x for 

)a }<£ , and hence from Theorem ? • ? that IJax+yJ/ = II Yil = llx /f if 

)a }<.£ . Then it follows from the original assumption that 

lim [inx + (ax+y) ll - ll x+ n(ax+y )lt] = O if la l<£ . 
/1\➔oo 

But llx+n ( ax+ y) /J = II ( l+na) x+ny II = ti nyf\ if n is large enough 

tl:lat 

a \lx ll. 

,a t-1/n 1<£ o Also, by Lemma 4.5, l-i! ffinx-+(ax-+y) ll - llnx+ylLJ = 

Thus l:im D_lnx+{ax+y)ll - 1\:x:+n(ax+y-) lij = l:im (}! nx+yll - \l nyli]+ a Ux ll , 
~➔~ ~➔~ 

and therefore can clearly not be zero for all values of a with 

)a \<£ . The assumption that spherical orthogonality was not 

right-unique in T is therefore false. such orthogonality is 

then right-unique in T, and it follows from Theorem ?.4 that it 

i. That this is true if spherical orthogonality is not right
unique follows from Lemma 6.8 and the homogeneity of spherical 
orthogonality. The symmetry makes left- and right-uniqueness 
equivalent (see Definitions 7.1 and 7.2). 
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is also additive. It now follows that if llx lf = UYII , then not 

only does A= A' and B = B', but because of the uniqueness 

just pr0ved, A= B = A' = B'. Thus x -1.axt-Y implies y ..Lay+x 

if llxll = I YII . If l/xH =F IIYU, take r such that llrx fl = IIY/1. 
If x ...L ax+y and y_t_by+x, it follows from the homogeneity of 

spherical orthogonality that rx..1._ !.(rx)+y and y_1_ (br)y+rx. 
2 r 

Then F = br, or a ll x ll = b l)y ll2 • 

Theorem 8.4. A normed linear space T is an abstract Euclid

.ean -space if and only if lim )lnx+ylf - llx+nyll = O whenever Uxll= IIYll •1 
"'-➔oo 

Proof: Define the inner product (x,y) as -a l!x11 2 , where 

x ..LaXff• This value of the inner product is unique because of 

Lemma 8.4, and it is only necessary to show that it satisfies the 

conditions of Definition 1.9: 

(1). (t:x:,y} = t(x1y). If x L ax+y, and t # o, then 

tx.Ll(tx) + Y because of the homogeneity of spherical orthogonality. 

Thus {tx,y) = -flltxlt2 = -at U:x:11 2 • Hence (tx,y) ~ t(:x:,y). If 

t = o, the proof is trivial. 

(2). (:x:,y) = (y,:x:). If x ..L a:x:t-y, and y J_ by..1.X, then 

{x,y) = -a ll:x:11 2 and (y ,:x:) = -b \lylf. These are equal by Lemma a.~ 

(3). (:x:,y} + Cxaz) = (x,y+z) ~ Suppose x ..Lax+y and :x:..L bx+z. 

Then oc J...{a+b):x:+ (y+z) because of the additivity given by Lemma 

a.4. Hence (x,y) = -allx 1' 2 , (x,z) = -b Uy /12 , and (x,y+z) = -((a+b) \\ x \l ~ 

(4). (x,x) = )lx \\ 2
• This is immediate from :x: ..L (-l)x+x. 

Conversely, it follows from the definition of an inner product 2 

that-cfor abstract Euclidean spaces l) nx+yH- llx+nyl\ = o for all n 

and elements x and y for which Ux ff = Jly fl or (x,x) = (y,y). 

I. See Theorem. 9.3 for an equivalent statement. 
2. Definition 1.9. 



It has been pointed out that if the norm of a normed 

linear space is Gateaux differentiable at each non-zero point, then 

this differential gives a convenient statement of properties of 

spherical orthogonality. 1 It was seen that the existence of this 

differential of the norm is a necessary and sufficient condition 

for spherical orthogonality to be additive. If the differential 

of the norm at x with increment y is denoted by f(x;y), this 

means that f(x;y) = o and f (:x:;z) = O imply 2 f(x;y+z) = o. 
Thus spherical orthogonality is additive and symmetric and the 

normed linear space is strictly normed if and only if the norm is 
-

Gateaux differentiable at all non-zero points and f(x;y) = o 
1m,p1ies f(y;x) = o. This is a necessary and sufficient condition 

for the existence of an inner product in a normed linear space of 

three or more dim.ensions. 3 The following theorem shows how this 

can be strengthened to give a like condition for two-dimensional 

spaces. 

Theorem a.5. A necessary and sufficient condition for a 

normed linear space to be an abstract Euclidean space is that the 

Gateaux differential of the norm exist at each ·non-zero point, 

~ f(x;in) = f(y; 1~,) for all elements x and y, where f(x;y) 

is the Gateaux differential of the norm at x with increment 4 y. 

Proof: To prove ~he sufficiency, define the inner product 

(x,y) of Definition 1.9 as -a}l x lf2 , where x .Jl.ax:+y. If the norm 

is Gateaux differentiable, then the uniqueness of (x,y) is 

given by Theorem ? • 3. It will be shovm.t t hat it satisfies the 

1. See page 71 and Corollary ?.5•. 
2. Corollary ? .4. That linearity of the differential of the norm 

follows from its existence was shovm. by Mazur (VI), pp. 129-130. 
3. Theorem s. 3. 
4. Also see Theorem 9.3. 
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conditions of Definition 1. 9. 

(1). (tx,y) = t{x,y). If :x:.J..ax+y, and t =p o, then 

tx.J..t(tx)+y because of the homogeneity of spherical orthogonality. 

Thus (t:x:,y} = -~Ht:x:112 = -atllx/12 = t(x,y). If t = o, the proof t . 
is trivial. 

(2). {x~y) = (y,x). Theorem 7.3 gave f(:x:;y) = -all:x:N, where 

:x:..Lax+y. Likewise, f(y;:x:} = -b//yll, where y..L by:r:x:. Then 
1 ~ ' 

x.L )JY11 ( ax+y) and y_t_ /J:x:lt(by+:x:), because of the homogeneity of 

spherical orthogonality~ Therefore f(:x:;~) ~ f(y;
1
~

1
} becomes 

-a -b • 2 2 I -ilYil lbcll = -mi IIYII , or -a IJ:x:l1 = -b llYlf • This is the same as 

(x,y} = (y,:x:) • 

(3). {:x:,y)+ (x,z) - (:x:,y+z). Suppose :x:..La:x:+y and :x:..Lb:x:+z. 

It follows from the existence of the Gateaux differential of 

the norm that spherical orthogonality is additive, 1 and that 

:x:..L(a+b):x:+(y+z). That is, (x,y) = -a\l:x: 112 ; (:x:,z) = -b llxfl2 ; 

and ( :x:, Y+z) = - ( a-+b) II :x: 11
2

• 
"'2 . 

(4). IJxff = (:x:,:x:J. This . is immediate from :x: ..L(-1):x:+:x:. 

conversely, if a normed linear space is an abstract 

EUclidean space, its norm can be defined by a (bilinear and 

~~~-fri~) inner product (:x:~y) • 2 Then: 
2 2 -

!1:x:~-tbd( _ ):x:+h II · - 1:x: \I · ~ (:x:+hy,:x:+ht)-{x.:x:) ~ 2(:x:~+h()ifi). 
• - :x: Yl + :x1[1 - h (!tx:+hy +IIX,0 - tlx II+ ( 

Hence the Gateaux differential f(x;y) of the norm exists and is 

(:x:.y) ( L) (xfl ~, -i:x:,y) ~ equal to ~• Then f x;j;yll = XI = ,1 · IIYU. But also 
:x: -~ -~ .L - . :x: • f(y;J'.flf) - --,ryr, _ JJilFTiYff • Therefore f(:x:, llY1\) - f(y ,16ctJ). 

1. Corollary .7 .4. 
2. See Definition 1.9. 
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9. SFHER ICAL ORTHOGONALITY'i HYPERPLANES, AND FUNCT IONAIS 

It has been shown that for any elements x and y of a 

normed linear space there can be found at least one number . a for 
1 

wh ieh x ..Lax+-Y, and a number b for which boc+y ix. An evalua-

tion of all such numbers- a and b has also been given, and 

their uniqueness has been shown to be equivalent to Gateaux 

differentiability of the norm and to strict normedness, respec

tiveJ.y. 2 Spherical orthogonality is homogeneous, a.nd the proper

ties of additivity and symmetry were also studied and related to 

strict normedness and to Gateaux differentiability of the norm 

and used to get conditions for the existence of an inner product. 3 

In this section, some of these results will be interpreted and 

extended by use of functionals and the concepts of conjugate 

spaces and supporting and tangential hyperplanes. 

I1' a linear functional f takes on its maximum in the unit 

sphere at a po int x~ then x is orthogonal to the maximal linear 

subset consisting of all elements for which f is zero.4 Thus 

while spherical orthogonality is not additive in general normed 

linear spaces, there is {for each element x) always at least one 

maximal linear subset H with 5 
X..LH. The problem of finding an 

x . orthogonal to a given linear set H will be studied in the 

next section, and will be related to the problem of finding elements 

on the unit sphere for which linear functionals take on their 

1. Theorems 6.3 and 6.4. In this section, "orthogonalitytt is the 
spherical orthogonality of Definition 2.3. 

2. Theorems 6.8 and 7~7; 7.3 and 7.8, 
3. Corollaries 7 .4 and 7.5 and Theorems s.1-s. 3. 
4. Theorem 6.1. 
5. Theorem 6~2. 



maximum values. If the Gateaux differential of the norm exists, 

then it is linear. If for an element x there is a unique 1-inear 
- 1 

i'Uilctional f t'or which f(:x:) = llxll an.4··· ll f lt == l, then f can be 

evaluated in terms of the differential of the norm and hence in 

terms of spherical orthogonality. 

Spherical orthogonality and linear functionals have been 

related by showing that x.J....H if a linear functional f, with 

Ot ll = 1 and f(:x:) = ll x ll , is zero for all elements of H.
1 

The 

following theorem establishes a reciprocal relationship. 

Theorem 9.1. If an element :x:
0 

of a normed linear space T 

is orthogonal to a linear subset H of T, then there exists a 

1inear functional f for which f (x0 ) = IJ'fl{J x0 l( and f(h) = O 

if h £ H. There is also a maximal linear subset M of -T such 

~ :x:0 .L M and He M. 

Proof: Let G be the linear subset of T generated by x
0 

and _H. Define the :f'unctional F by F(axcth) = allx0 1f , where 

h e. H. Then F is clearly linear over G. But also, \F(a:x:dh) I = 
llax0 11 and ll a:x:0 H~Uaxc,t-hll , since Xo-1-h if h e- H. Thus 

fF{ax0+h) J~ lfa:x:ot-hll . Since F(:x:0 ) = ff :x:0 \1 , it follows that 

\IF ft = 1. But there then exists a linear functional f defined 

over all of T and such ~hat ll f ll = 1 and F (x) = f{:x:) if 

:x: t:- G. 2 Then f(:x:0 ) = )\ :x:0 11 and f(h) = O if h e.. H. The maximal 

linear subset M of all elements m for which f = 0 contains 

H and is such that x.1-M4' 

1. That is~ if at least one such functional is zero on H. S,ee 
Theorem 6.1 • 

. 2. This is shovm by Banach (I), pg. 55, Theorem 2. 
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The following concept~ of tangential and supporting hyper

planes of the unit sphere of a normed- ,linear space will be found 

to be closely related to spherical orthogonality._1 

Definition 9.1. 
. 2 

A hyperplane H of a normed linear space 

T is a supporting hyperplane of the unit sphere S if the 

distance between H and S is zero and H contains no interior 

points of s. 

Definition 9.2. 2 A hyperplane H of a normed linear space 

T is the tangential hyperplane of the unit sphere S at the 

boundary point x0 of S if H is the only supporting hyper~ 

;plane containing the point :x:
0

• 

Theorem 9.1 and the preceding remark state that any element 

x of a normed linear space is orthogonal to some hyperplane 

through the origin, and that any hyperplane H through the origin 

for which there exists an element x
0
..LH is the set of elements 

for which f = o, for some linear functional f with IJtll = 1 

and f(x
0

) = )/x
0

l1 . But then f (x) = l defines a hyperplane 

through :x:0 which contains no interior points of the unit sphere. 

This hyperplane is thus a supporting hyperplane of the unit sphere. 

Hence there is a supporting hyperplane through every point of 

the unit sphere. ~ 

1. See Mazur {Dt), pp. 71-73 and 77, for a more general discussion 
of supporting hyperplanes (Stutzhyperebene) and tangential 
hyperplanes. 

2. See Definition 6.2. 
3. This also follows from Mazur ( JX), page 73, Theorem 1. 
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Theorem 9.2. .If x0 is a boundary point of the unit sphere 

S of a normed linear space and y is any element, ~ 

x
0
..Lx

0
-y if and only if s has a supporting hyPerpmane containing 

x0 and Y• 

Proof: Suppose the supporting hyperplane H contains x0 

and y. Then the set L = H-x0 is linear, where H-x consists 
. 0 

of all elements of the form h-x0 with h E. H. 1 Therefore 

k(:X:
0
-y} £. L = H-x0 for all k, and x

0
+k(x0 -y) E H. S'ince H 

contains no interior points of s, ffx0 -t-k(x0 ~y) IJ~l/x
0

11 • 1 and 

x
0
.L x0 -y. Conversely, if x

0
..Lx

0
-y, then by Theorem 9.1 there 

exists a linear functional f for which f (x
0

) = llf1Hlx0 II and 

f(x
0

-y) = o, If x
0 

is a boundary point of s, then )lx0 t/ .:_ 1 am 

:r(y) = )/t ll . Thus y is in the supporting hyperplane defined 

by f (x) = J/ f ll ~ 

It is known that if spherical orthogonality is right-unique 

or additive, then the Gateaux differentigl of the norm exists at 

all non-zero points. 2 However .J.im llxt-hylf- l)xll exists for all 
. , Ai~+o h 

elements x and y of a general normed linear space and can be 

evaluated in terms of spherical orthogonality. Thus if x ~ 0 

and this limit is denoted by f+Cx;y), then: 

(l}. A = _ fx(x;-y) 
nxlt 

where A and B- are the smallest and largest of the numbers a 

for which 3 
x .la:x:-y • If spherical orthogonality is additive, 

then this function f+ is the Gateaux differential of the norm 

1. See Def. 6.2. His a coset of the subgroup L of the abstrac t 
Abelian group of the normed linear space. 

2. Theorems 7. 3 and 7 .4. 
3. Corollary 6. 7. 
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I 

1 ' 
and is ·hence linear. It is not linear in'.;general, but does 

satisfy the following weakened linearity conditions: 2 

(2). f+(x;y+z)~ f'+(x;y)+f+Cx;z), 

(3). f+Cx;ty) = t•f+ Cx;y) for t~O, 

< 4) • t+Cx;y)~ )Jyll. 

If B is the largest of the numbers a for which :x:J_ax-sy, 

then B+T is the largeE!t of the numbers b for which 

. x..l.bx-{n+s.y) • Using this, and f+(x;rx) = rllxtl, it follows 

trom (1) that: 

( 5). :f+ {x;rx+sy) = f+Cx;rx) +f+Cx;sy), 

= rllxll+s•f+Cx;y), for s~ O and all r. 

It is known3 that, for a linear functional F with 

F(x) = IJxll and lfJrtl = 1, it follows that -f+Cx;-y)~ F(y)~ f+Cx;y) 

for all y ,:;. o. .Also, if -f+Cx;,-y).:::. a ~f+(x;y), then there is such 

a linear functional F for which F(y) = a. The following is a 
4 statement of this in terms of spherical orthogonality, but 

follows more easily directly from the evaluation of f+(x;-y) 

and f+{x;y) given by (1) above: 

(6) • x..t.ax-y if and only if -f+(x;-y)~ altxl,~ f'+(x;y) • 

In the previous section, it was possible to establish ' the 

existence of an inner product by assuming Gateaux differentiability 

1. That \~ ( IJi-iliyn- llx\l) /h is linear if it exists has been noted 
by Mazur (VI), pp. 129-130, but also follows from the additivity 
of spherical orthogonality resulting from its right-uniqueness or 
from Gateaux differentiability of the norm (see Theorems 7.3 and 
7.4) • • 

2. These three relations were given by Ascoli (XV), pp. 53-55. The 
first follows trivially from the triangular inequality of the non:n., 
while the others can be pr0ved ' easily from the theory of spherical 
orthogonality. Thus ( 3) follows immediately from f+ (x;ty) /llxl1 
and f+Cx;y)/IIXII . being .the largest of the numbers a and b, 
respectively, for which x.J...ax-tJ!: and xJ_ b:x:-y. The inequality 
Ct) follows from x..L fr+ (x;y) /uxN] x -y and Corollary 6.1. 

3. Mazur (IX), pg. 75, statement 7. 
4. The equivalence follows from Theorems 6.1 and 9.1. 
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of the norm and a type of symmetry of this differential.1 This is 

also possible .without explicitly assuming Gateaux differentiability 

. of the norm. 

Theorem 9.3. A normed linear space T is an abstract 

Euclidean space i:f' and only i:f' f+Cx;1~) ~ f+CY;iji) :f'or all 
2 non-zero elements x and y. 

Proof: Using the definition of f +(x;y), 2 it follows that: 

( _1!:_) f ( ±-) --iim llx+h,1;;11- llxll -~im lt y+h,wll - -llYII f+ :X:; a•df - + y; f'flf ....,_,_,.,.._..i.-i.;....... ------, 
,. =-H-0 h ➔+<> h 

= }~ 11:x:+ tift:~11 -IJx ll - }➔~ ff y+\ryfl - JJyJf' 

- lim llw, + hQ 11 -lld,- +h w, II 
- ~ -tt0 h , 

But by Theorem 8.4 this is zero if and only if the space is 

abstract Euclidean. 

The above theorem does not explicitly assume Gateaux differ:en

tiability of the norm. However, it must follow from the equality 

of f+(x; i~I) and f +(Y; ,~ 1) for all non-zero elements :x: and y~ 
since the norm of an abstract Euclidean space is Gateaux 

differentiable. 3 This gives the following corollary.4 

1_ X Corollary 9.1. l!: f+ Cx;ffi) = f+ (Y;(Jxi) for all non-zero ele-
2 ments x and y of a normed linear space T, then the norm of T 

is Gateaux differentiable at all non-zero points and f(x;~) = 
f(y;~}, where f(:x:;y) is the differential at x with increment y. 

1 .. Theorem s.5. 
2. Where f+(x;y) = ¼~ V!_xt-hyA- 11:xi\] /h. 
3. Corollary 7.3'. 0 

4. Compare with Theorem s. 5o 
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If spherical orthogonality is symmetric in a normed linear 

space T, then the orthogonality is rightf unique if and only if it . 
1 

is left-unique. The space T is then strictly normed if and 

only . if the norm is Gateaux differentiable at all non-zero points.2 

It was also seen that spherical orthogonality is synrrnetric in a 

normed linear space whose norm is Gateaux differentiable if and 

only if f(x;y) = 0 implies f(y;x) = O, where f(x;y) is the 

differential at•::. x with increment y. If f(x;y) is replaced 

by f+(x;y), this condition implies symmetry and the existence 

of f(x;y), 

Theorem 9.4. Spherical orthogonality is symmetric and 

additive in a normed linear space T if f+(y;x) = 0 whenever 

f+(x;y) = o, 3 where x and y are any non-zero elements. 

Proof: If x :¢ 0 and x.-1. y, then all the numbers a for 

which x..L ax-y must be .in the interval 

and A _ f+(x;-y} d B _ f+(x~y) 4 
- - llxll an • - /lxJ • 

(A,B), where A~ O::!::: B 

Then the largest number 

a for which x..L (A-a)x-y, or x..Lax-(Ax-y), must be zero. Hence 
4 

f+{x;Ax-y} = o. Then f+(Ax-y;x) = O and Ax-y..Lx. Likewise, 

the smallest nuinber a for which x..1-(B-a)x-y, or x..1-ax-(Bx-y), 

must be zero. Therefore f+(x;-(Bx-y)) = o.4 Then 

f+(-(Bx-y) ;x) = o and Bx-yi x. Since A:i.-y..1. x and Bx-y..L x, 

it follows from Theorem ? .? and A~ 0~ B that y-Lx, Thus 

spherical orthogonality is symmetric if f+(x;y) = O implies 

f+(y;x) = 0 for all non-zero elements x and y, For elements 

1. See Definitions ?.1 and ?.2. 
2. Corollary ?.5. 
3. Where f+(x;y) = \i¥1 Ulx+hyH-Nx!}/h. 
4, See (1), page 101 of0 this thesis. 
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x (=;t O) and y, suppose that x.1-ax-y if A'~ a-6B'. Then 

because of symmetry, ax-y..1-x and (from Theorem 7.7) \fax-yl\ 

is minimum and constant for A'~ a~B'. If A'< a'<-B', then 

ll(a'x-y) +hxlf-lla'x-ylf = O if \h\< a'-A' and fhl~ B'-a'. Thus 

f+'a'x-y;x) = f+(-(a'x-y) ;x) .:.."o; and hence f+(x;a'x-y) 

f+Cx;-(a'x-y)) = o. But with (6) of page 102 this implies that 

A!. = B', and that there is a unique number a for which x.1- ax-y, 

The additivity of spherical orthogonality follows from Theorem 7.4. 

Corollary 9.2. A normed linear space of three or more 

dimensions is an abstract Euclidean space if and only if 

f+(x;y) = 0 implies f~(y;x) = O for all non-zero elements 

x and y.1 

This corollary follows easily from Theorem 8.1 and 

Theorem 9.4. 

It was shown that spherical orthogonality is additive, or 

right-unique, in a normed linear space T if and only. if the 

norm of T is Gateaux d,ifferentiable. 2 This differential is a 

linearr functional if it exists, and hence furnishes a link 

between spherical orthogonality and the theory of linear func

tionals. 3 Thus the fact that for every element x0 of a normed 

linear space there is a linear functional f with f(x0 ) - 11:t.1l·\\x0\\ 

was used to prove the existence of a hyperplane H such that 

x0 ...LH, H consisting of all elements for which f = o.4 

1, Where f'+(X ;y) = .limo l])x+hyll - llxU/h. 
2. See Theorems 7.3 an~ 7.4. 
3 .• The linearity of this differential has been noted by Mazur (VI), 
pp. 129-130. It also follows from Theorem 7.3 and the additivity 
of -spherical orthogonality given by Corollary 7.4. 

4. Theorem 6.2. That f exists is shown by Banach (I), pg~ 55, 
Theorem 3~ 
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If llx
0

11 = 1, then the hyperplane defined by f ( x) = 1/f )I can 

not contain interior points of the unit sphere l)x}I ~ 1 and is 

therefore a supporting hyperplane at x0 •
1 This hyperplane is 

unique, or also a tangential hyperplane, if and only if there is 

a unique lihear functional f with /lf)I = 1 and f(x0 ) - Ux 0 Jf= 1. 

The tangential hyperplane then consists of all elements y 
• 2 

satisfying f(y) = 1. But f 

there is a unique hyperplane H 

is then unique if and only if 

3 for which x
0

..L H, and hence · if 

and:' only if spherical orthogonality is right-unique or the norm 

is Gateaux differentiable at x0 • 

defined by f ( x0 ;y) = 1Jx
0

11 , where 

This tangent hyperplane is then 

f(x •y) = lim ltx:e+hy}/- ftx 0 lf • 4 
0' JC➔ o h 

These results can be stated in terms of spherical orthogonality 

to give the following: 

Theorem 9.5 . Spherical orthogonality is right-unigue in a 

normed linear space T if and only if for any element x
0 

of T 

there is a uniaue linear functional f with /lfll = 1 and 

f(x0 ) = llx0 //. This functional f is then defined by f(y} - -allxJ\, 

where x0 .lax0+Y• 

Proof: If the number a . for which x
0

_i_ ax
0
+ y is not 

unique for each element y, then Theorem 9.1 shows that f is 

not unique. If f is not unique, then Theorem 6.1 shows that 

a is not unique for ally. Tha t f(y) = -aVx0 JI is a linear 

functional of y follows from its being equal to the Gateaux 

1. Since f(x0 ) = 1/fll , the elements x 
are of the form x0+h, where f(h) = ~ 
a maximal linear subset. See Def. 9.1 
page 100 of this thesis. 

satisfying f(x) = //f II 
and the elements h form 
and the discussion on 

2. This has been shov1m by Mazur (VI) , page 
J .. See Theorem 6.1. 

130. 

4. Also shown by Mazur (VI), page 130. 



107. 

differential of the norm at x
0 

with increment y, the linearity 

of this differential of the norm following from its existence. 1 

Since x
0

_J_ (-l)x0 + x0 , it follows that f(x0 J = llx
0

fl if 

f(y) = -a1Jx0 /I for ally, where x
0
L ax0+ y. 

Corollary 9.3. Spherical orthogonality is right-unique in 

a normed linear space T if and only if there is a tangent hyper

plane at each boundary point of the unit sphere of T. 

Theorem 9.6. There is a hyperplane tangent to the uhit 

sphere of a normed linear space T at the boundary point x0 

if and only if spherical orthogonality is additive at 

Such a tangential hyperplane consists of all elements y for 

which x0 J.._ x
0
-y. 

Proof: Since Theorem 9.2 gives x
0

_t_x
0
-y if and only if y 

is in a supporting hyperplane at x0 , it follows that if the 

tangent hyperplane exists it must consist of ally for which 

x0 ..L x0 -y. But by definition, there is a tangent hyperplane if 

and only if there is a unique supporting hyperplane, or by 

Theorem 9.2 if and only if the totality of elements y satisfying 

x
0

J_x
0

-y is a hyperplane. That is, if and only if the set of 

elements xo-Y forms a linear set. 3 

1. See Theorem 7.3. The linearity 
noted by Mazur (VI), pp. 129-130. 
Theorem 7.3 and the additivity of 
by Corollary 7.4. 

of this differential has been 
It also follows from 

spherical orthogonality given 

2. Orthogonality is additive at x0 
X0 .Ly+z for all elements y and 

of this thesis. 
3. Such a set is necessarily maximal. 

if 
z. 

Xo..L y and Xo..l._Z imply 
See III, page 13 of 

See Th. 6.3 and Def. 6.2. 
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In the above, the equivalence of Gateaux differen~iability 

of the norm to right-uniqueness of spherical orthogonality in 

normed linear spaces was used. Analogous results can be gotten 

by using the equivalence of left-uniqueness and strict normedness. 

Thus the norm of a normed linear space is Gateaux differentiable 

if and only if for each element x there is a unique linear 

functional f with /lfll = 1 and f ( x) = /lxtl, while it can be 

shown that a normed linear space is strictly normed if and only 

if for no linear functional f with 111'11 = 1 is there more 

than one point x (with llxll = 1) for which f(x) = llxfl -that 

is, no linear functional takes on its maximum. on the unit 

sphere l)xll~l at more than one point. This has been shown by 

Smulian,1 but also follows easily from the theory of spherical 

orthogonality: 

For suppose f {:-·1/:ftl = 1) takes on its maximum in the unit 

sphere at the points x1 and x2• Then f(x1) = lJx1\I and 

f(x2 ) = llx2II , where 

f(x1 +k(x2-x1 )) = 1. 

llx1 11 = /lx211 = 1. Thus f(x1 -x2 ) = 0 and 

If llf ll = 1, then l~ llx1 +k(x2-x1 )11 for 

all k. But it also follows from the triangular inequality of 

the norm2 that llx1+k(x2-x1 )1\ ~l if O~k~l. Thus 

Ux1 +k(x2-x1 )JI = 1 if O~k~l, and it follows from Theorem 6.1 

that x1 +k( x2-x1 )__t_ x2-x1 if 0~ k~l. Thus spherical orthog

onality is not left-unique, and hence the space is not strictly 

normed. 

Conversely, if a normed linear space is not strictly normed , 

then spherical orthogonality is not left-unique and for some 

1. Smulian (XI) Theorem 6. 
2. Condition (2f of Definition 1.6. 



elements x and y and number a 
' 

y_1_x and l 
ax+y-'--x. 

Theorem 9.1 gives the ··existence of a linear functional f 
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with f(y) = /ly//, f(x) = O, and ll f ll = 1. But it then follows 

from ll ax+yH = IIYII that f( ax+y) = l) ax+y/1. 2 Thus f takes on 

its maximum in the unit sphere at the two points ,,;,, and I/:~:~,,. 
For every hyperplane H there is a linear functional f 

and a number c such that H consists of all x satisfying 

f(x) = c, and conversely all x satisfying an equation of the 

form f(x) = c form a hyperplane. 3 If lltll = 1 and r(x
0

) = 
llxo !l = 1, then the hyperplane f ( x) = 1 contains no interior 

points of the unit sphere l!xll ~ 1 and is therefore a supporting 

hyperplane. Thus the above can be restated: "A normed linear 

space is strictly normed if no supporting hyperplane of the unit 

sphere contains more than one boundary point of the unit sphere." 

Using the equivalence of strict normedness and left-uniqueness 

of spherical orthogonality gives the following theorem. 

Theorem 9.7. Spherical orthogonality is left-unique in a 

normed linear space if and only if no supporting hyperplane of 

the unit sphere S contains more than one boundary point of s. 

Whi~e right- and left-uniqueness of spherical orthogon

ality have been related to Gateaux differentiability of the norm 

and to strict normedness, no direct relationship has been 

developed between these concepts except the analogy between 

Corollary 9.3 and Theorem 9.7, and the equivalence which results 

l. See Theorem 7.8 and Definition 7.2. 
2. llaxt-yll - \ly l\ because of 'rheorem 7. 7. Actually, f (Ax+y )= 

IIA.x+yll if o~A~a. 
3. Mazur (IX), page 71. 
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However, it has been shown by Smulian that if every 
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linear functional defined in a normed linear space T attains 

its maximum in the unit sphere llxll~ 1, then the conjugate space 

T' is strictly normed if and only if the norm of T is Gateaux 

differentiable. 2 With this condition, it can also be shown that 

T is strictly normed if the norm of T' is Gateaux differentiable. 

These statements are equivalent to the following theorem, 1 which 

will be proved by using the theory of spherical orthogonality. 

Theorem 9.8. If every linear functional defined on a normed 

linear space T attains its maximum in the unit sphere I/xii~ l, 

then spherical orthogonality is left-unique in T' if and only 

if it is right-unique in T, and it is left-unique in T if it 

is right-unique in T'. 

Proof: Suppose spherical orthogonality is not left-unique in 

T'. Then using Theorem 7.7 it follows that there are non-zero 

elements f and g of T' and a positive number e for which 

af+g..Lf if \af <.e, and that /laf+gll = Ilg/I for faJ<e. Take 

l/gll = 1. Since g attains its maximum in the unit sphere, there 

is an element x0 for which llx0 1f = 1 and g(x
0

} = 1. But there 

are both positive and negative values of a for which 

• llaf+g# = l. Therefore f(x0 ) = O, and af+g attains its maximum 

in the unit sphere at the point x
0 

if. \al<e. Because of 

Theorem 6.1, x
0 

is orthogonal to all elements for which g = 0 

and also ( if \al< e) , to all elements for which af+g = o. Since 

1. As a result of Theorems 7.3 and 7.8. 
2~ Smulian (XI}, Theorem 8. 
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the maximal linear subsets of T consisting of elements for 

which f and g are zero, respectively, do not coincide, it 

follows that spherical orthogonality is not right-unique in T. 

Thus spherical orthogonality is left-unique in T1 if it is 

right-unique in T. 

Suppose spherical orthogonality is not right-unique in T. 

Then it follows from Theorem 9.5 that there is an element x
0 

of 

•r for which there are two linear functionals f and g with 

l)r}I = /lglf = 1 and f(x0 ) = g(x0 ) = }/x0 1f. But then 

f(x
0

)+ k ~ (x0 )-g(x0 )] = ll:x:
0

11 , and therefore ll t+k(f-g) I ~ 1 = lltlf 

for all k. Thus f..Lf-g. Likewise, llg+k(f-g) fl~tl gll and 

g-1...f-g. Hence f+k(f-g).L f-g if k = 0 or k = -1, and 

spherical orthogonality is not left-unique in T1 • Thus spheri

cal orthogonality is right-unique in T if it is left-unique 

in T 1 • 

Suppose spherical orthogonality is not left-unique in T. 

Then it follows from Theorem 7.7 that there are non-zero elements 

x and y and a positive number e for which ax+y .Lx if 

la l< e, and that IJ ax+y ff = fl YII for \a f< e. From Theorem 9.1, 

there is then a linear functional f with ll rff = 1, f(y) = I/YI( , 

and f(x} _ o. Let g be a linear functional with g(y} = 0 

and g(x) ~ o. 1 Then 

f ( ax-t-y) + k [pr ( ax+y) + g{ ax+y[) = f ( y)+ k l},f (y) + ag ( x)] • 

Thus if lbl~ Je:~;: J , then a can be chosen so that 

Jr(ax+y} + k [ bf (ax+y) + g(ax+y j] , ~ lf(ax+ y) / = l) ax+yl\ . 

Therefore tlf + k(bf+g) ll ~urn = 1 if lbl~ \ e(g(x)J I -L -
f(y) -,- O, and 

1. The exist·ence of g follows from Banach (I), pg. 57, or from 
Theorem -9.1 and the existence of a non-zero nlLmber a for which 
ay+x J..y, as given by Theorem 6. 3. 
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spherical orthogonality is not right-unique in T'. Hence 

spherical orthogonality is left-unique in T if it is right

uniq_ue in T' • 

The fol~owing theorem serves to complete Theorem 9.8. 

It makes use . of th!.e concepts of weak convergence and weak compact

ness, both of which will be used extensively in the next section. 

Definition 9.3. A sequence (xn} of elements of a normed 

linear space T is weakly convergent if lim f(xn) 
1'1.700 

exists fo-r 

all linear functionals f defined in T. Such a sequence con-

verges weakly to an element x if lim f(xn} - f(x) ___ ..._ ___ - _______ ______ />1.7~ for all 

linear functionals f defined in T. 

Definition 9.4. A subset S of a normed linear space T 

is weakly compact if every sequence of elements of S contains 

a sequence vmic~ converges weakly to an element of T. 

Theorem 9.9. If the unit sphere of a normed linear space 

T is weakly compact, then spherical orthogonality is right-unique 

in T' if it is left-uniaue in T. 

Proof: Suppose spherical orthogonality is not right-unique 

in T' • Then spherical orthogonality is not additive in T' 1 
' 

and there therefore exist linear functionals f, g, and h, 

defined in T, for which f.Lg and f _Lh, but with f not 

orthogonal to g+h. Thus J)f+kg ll ?=:.ll t i\ and 8f+khll? ll f fl 

1. See Theorem 7.4. 
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for all k, but there is a value k1 of k for which 

ll t+kl {g-t:h)I/-< 1/f' II . 
Wi th6ut loss of generality·, ll t ll can be taken as unity and k • 

- 1 1 
to be positive. Then ll f + k{g+-h) fl<ll f ll for 0-<k~k1 . 

Now let [ :x:n~ {n = 1,2,3,•••) be a sequence of elements of 

T for which Jf:x:n fl = 1, f(Xu)~O, and 

fr(:x:n)+ !g(:x:n) f ~ 1/ f ll = 1 

for each n, and let [ Yn1 be such that )JYnl\, = 1, f{yn) ~ O, and 

I f ( Y n )+ !h ( Y n} / ~ II t ll = 1 

for each n. Since fg(xn) J~ 1/g lf and fh(yn}J~ 11 h 11 , it follows 

from O~ f(:i:cn_)~ 1 that g { :X:n )'.:?:- 0 and h(yn)~ 0 if n> lf g(f 

and n >-/lhll . If is this large and 1 
then g(:x:n) n n=S kl' 

and h{Xu) must be of opposite sign,since otherwise 

/ f(xn)+ ; f§ (xn) + h(~)]/ .• 

would not be less than llf ll = 1. Likewise, g{yn) and h{yn) 

would also be of opposite sign. Since T is weakly compact, 

there are subsequences of [xn1 and of t Yns which converge 

weakly to elements x and y of T, respectively. Clearly 

f{JSi) -+ l and f{Yn) ~ l. Thus f{:x:) = f(y) = 1~ Since 

1/ f It = l, it follows that 1 -=:; 11:x: lf and 1~ ffy ff . If F is a 

linear functional for which II F II = 1 and F(x) = fl x lf , then 

\F(:x:n) I~ IJx:n U = 1. But since F{xn) ~ F{x), it follows that 

F(:x:)-< l and thus that ll x ll~ l. Likewise fl yN~ l. Hence 

11 :x: tl £ \ly II = 1, and f takes on its maximum in the unit sphere 

at both x and y. But g(:x:) ~ O and h(x) ~ O, while 

g(y) ~ 0 and h(y) ~ O. Thus x- y is possible only if 

1. This foliows · trom the triangular inequality of the norm, or 
from Theorem 7.5. 
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g(:x:) = g(y) = h(x} = h(y) o, and hence only if 

\t(:x:)+k1Tu(:x:)+h(xil\= ltrlf . But this would contradict the assump

tion that flt+k1 (g+h)l\ < \\t~. Since :x::; y, f takes on its 

maximum ~ the unit sphere at two distin.ct points and spherical 

orthogonality is not left-unique in T.
1 

Therefore spherical 

orthogonalltyy is right-unique in T' if it is left-unique in T. 

If the unit sphere of a normed linear space is weakly 

compact, then each linear functional attains its maximum in the 
2 unit sphere. It is then possible to combine Theorems 9.8 and 

3 
9.9, However, the concepts of uniform convexity and regularity 

are also related to weak compactness,and hence to the question 

of whether a linear functional attains its maximum. It is 

known that a uniformly convex Banach space is regular,4 and 
5 that a regular Banach space is weakly compact. Thus any of 

. these three concepts can be used for the following theorem. 

Theorem 9.10. If a Banach space T is uniformly convex, 

regular, or 'i'ts2~:unit sphere is weakly compact, then spherical 

orthogonality is left-unique in T' if and only if it is right

unig,ue in T, and it is right-unique in T' if and only if it 

is left-unique in T. 

1. See the discussion on page 108 of this thesis. 
2. This is implicitlJ shown in the proof of Theorem 9.9. 
3, These concepts are defined and used in the next section. See 
Definitions 10,1 and 10.3. 

4. Milman (XVI) , Theorem · 2. Also see Pettis (XDC}. 
5. Gani,;makher and Smulian (XVIII) , Theorem 1. Also, see Milman 

(XVI}, page 244. 
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10 • Fl ALUAT IONS OF LINEAR FUNCT IONAIS • 

An essential step in finding an evaluation of a linear 

f'Unctional F defined in a normed linear space T is finding 

an element x for which F (x) = Jf]t\ ·lbd\. This is equivalent to 

the problem of finding an element x orthogonal to a given 

maxim.al linear subset H of T with ff'#, T : 1 

Theorem 10.1. A necessary and sufficient condition that 

there exist an element orthogonal to each closed linear subset 

H of a normed linear space T is that for each linear functiona.D. 

F defined in T there is an element x with F (x) = lfFIHtxH. 

Proof: If \)Fll i/:. o, then the set H of elements for which 

F = O is a linear subset with H ;; T. It follows from Theorem 

6.1 that any element x orthogonal to this set is such that 

F (x) = )j:E1t· )fx:IJ,, Conversely, suppose H is any closed linear sub

set of T. Define the functional f as being zero for elements 

of H and unity for some element x0 not in H. This fun.ct ional 

is clearly additive over the space gotten by adjoining x0 to H,. 

and its continuity follows from H being closed. It is then 

possible to extend · 2 f to all of T, Theorem 61 1 then showing 

that an element x is orthogonal to H if f(x) = ))fl)•l!Kt\. 

A.1 normed linear space has the properties of Theorem 10,,1 

if and only if each supporting hyperplane of the unit sphere S 

1, See Def. I.a and the following discussion, and Def. 6.2. In 
this section, "orthogonality" is "spherical orthogonality" of 
Definition 2.3. 

2, Banach (I), page 55, Theorem 2. 
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contains a boundary point of s. It is known that there is a 

plane of support e.t each boundary point of s, and that the 
1 

equation F(x) = )IF\\ defines a supporting hyperplane. This 

hy:perplane contains the boundary point x
0 

{ l(x0U= 1) if and 

only if F ( Xo) ~ JIFff . 
It is known that for any element x there is a maximal 

linear subset H with x.J..H, a linear functional F with 

F(x•) .:.. ltFlf•llx ll , 2 and a supporting hyperplane to the unit sphere 

at the point W~ The problem of this section is an investiga

tion of the conditions under which the converse of this is true 

and of the resulting evaluations of linear functionals. 

It shoula. be recalled that a normed linear space is 

strictly normed if and on1y if no supporting hyperplane of the 

unit sphere S contains more than one boundary point of S, or 

if and only if for no linear functional F is there more than 

one element x with F(x) · = IIFfl•llxO • 3 Likewise·, the norm is 

Gate~ux differentiable if and only if there is a tangent hyper

plane at each boundary point of s, or if and only if for every 

element x there is a unique linear functional F with 
I 

F(x) = JIFfl ·lbd\ . 4 
The latter will make it possible to evaluate 

linear functionals in terms of Gateaux differentials and 

spherical orthogonality for normed linear spaces in •which the 

norm is Gateaux differentiable and 1:inear functionals take on 

their maximum :in the unit sphere. 

1. See Definition 9,1, and the discussions following Definition 
9.2 and on page 109. 

2. Theorem 6.2 and Banach (I), page 55, Theorem 3. 
3. See Theorem 9.7 and the discussion of page 108, remembering 
that spherical orthogonality is left-unique if and only if the 
space is strictly normed (Theorem 7.8). 

4. Corollary 9.3 and Theorem 9.5, using the equivalence of Gateaux: 
differentiability of the norm and right-uniqueness of spherical 
orthogonality (Theorem 7. 3) • Also, Mazur (VI) , page 130 • 
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The evaluation of linear functionals has been done by 

LBwig for complete abstract Euclideansspaces. He showed that if 

F is a linear functional defined in a complete abstract Euclidean 

space, then there is a unique element x0 such that F{y) = (x0 ,y), 
l 

where (Xo,Y} is the inner product of x0 e.nd y. Then 

F(x0 } = (x0 ,x0 } = ffx0 \1 2 = lfE'f·ltx0 1J . 2 
The functional F thus 

Xo 
takes on its max:imum in the unit sphere only at the point lr.x:on ' 

and is the only functional te.king on its maximum at that point. 

As follo~~ from the above discussion, 3 x
0 

is orthogonal to the 

set H of all h satisfying {x
0

,~) = o. It follows that for 

every maximal linee.r subset H (with H ::fi T} in a complete 

abstract Euclidean space T there is a unique element x0 
4 which Xo.L H. It is also worthwhile to recall that 

(x ,y} 
f ( ~ ; y) = 1j§0 

II = -a llxo II , 

for 

where f(x0 ;y) is the Gateaux differential of the norm at x
0 

5 and x0 ..Lax0+y. Thus for any linear functional F{y) {with 

l!Fll = 1) in a complete abstract Euclidean space, there is e. 

unique element x0 such that F{y) is equal to f(x
0

;y), 
{xof,y) 
Uxoll , or -a )lx0 1f . .All but the form using the inner product 

can be extended to certain normed linear spaces. 

There are a number of restrictions which can be put on 

normed linear spaces e.hd which are suf'ficient to assure linear 

functionals takihg on their maximum in the unit sphere, or to give 

an element orthogonal to any ·given closed linear subset. Mazur has 

shown that for any linear functional F in a normed linear space 

1. Low.ig (V), page 11, Theorem 11; {x,y) is defined br Def'. 1.9. 
2~ See (4) of Def. 1.9. That )\f tl = Nx0D, or 1{x0 ,y) J~ )\x0 "·\Jytl , 
follows from (1) of Theorem 1.2 and {2J of Def. i.6. 

3. Also see Theorem 3.1. 
4. This is given by Lowig {V), page 15, -Theorem 16. 
5. Theorem 7.3 and Corollary 7-.3,. 
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with a weakly compact1 unit sphere there is an element X for 

which F(:x:) = \\Fll · )Jx:I\ , and equivalently that every supporting hyper

plane of the unit sphere S in such a spijce contains a boundary 

point of s. This is equivalent to the following theorem. 2 

Theorem 10.2. If the unit sphere of a normed linear spaee 

T is weakly compact, then for each closed linear subset H of 

T there is at least one element x.J..H. 

The following conditions are more restrictive than that 

used above, but are worthwhile in that they are of quite different 

f0rm and still give the desired conclusion of Theorem 10.,2. 

D;finition 10.1. A normed linear space T is regular if 

and only if for every linear functional F defined -over the 

conjugate space T' there is an element x0 of T such that 
3 

F(f) = f(x0 ) for all elements f of T'. 

Definition 10.2. A functional f defined on a normed linear 

space T possesses the Frechet differential f(x;y) at :x: if 

for any £ > 0 there is a S > O for which 

) f(x+h~)-f(x) - f{x;y) J< s\\Yll 

if lhl-< & ; _f __ {_x .... ;_y __ ) __ is_. _a_, _,_'un_1_· f_o_rm __ F_r_e_c_h_e_t_d_i_f_f_er_en_t_ia_l_'_' _1_· f_t_h_e 

number s5 can be chosen independently of :x: for lxlt = 1 . 4 

1. Mazur (VI), pp. 129-130. Also see Definition 9.4. 
2 •. See Theorem 10.1. 
3. Some authors use "reflexive" in place of "regular". Conjugate 
spaces are defined on page 8 of this thesis. 

4. These are Gateaux differentials (Def. ?.3) for which the 
convergence to f (x;y) is uniform in y when llYll.:!S 1 , and 
uniform in x,y when 11:x:M = 1 and lfyH ~ 1. 
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It is known that the unit sphere of a regular normed 
1 linear space is weakly compact, and that a Banach space is 

regular if its norm is uniformly Frechet differentiable at each 

non-zero point. 2 Thus either of these c.oD'.ditions can be used in 

place of the weak compactness of Theorem 10.2, if completeness 

is assumed with the differentiability.
3 

Uniform Frechet 

differentiability of the norm has the added advantage of implying 

Gateaux differentiability, which will be either directly or 

implicitly needed in the evaluations of linear funetionals. 

Theorem 10.3. If the normed linear space T is regular, 

or if T is complete and the norm of T is uniformly Fr~chet 

differentiable at non-zero :points, then for each closed linear 

subset H of T there is at least one element X..LH .• If F 

is a linear functional defined in T, then there is at least 

one element X for which F{x} - IIFll· llxll • 

Definit:i.Qn 10.3. A normed linear space is uniformly 

convex if for every £. > 0 there is a number sS > O for which 
4 llx\l = lfyll = 1 and llx-yH > £ imply 11:x: + Y ll < 2- S • 

It has been shown by Milman that a uniformly convex Banach 
5 

space is regular. It therefore follows that the regularity of 

1. Gantmakher and Smulian (XVIII) , Theorem 1. Also see Milman 
(XVI}, page 244. Using these and knowing that the conjugate 
space of a normed linear space T is the same as the conjugate 
space of the Banach space gotten by completing T, it follows 
that a regular normed linear space is a Banach space and• its 
unit sphere is weakly compact. 

2. Smulian (XX} , page 648. . 
3~ See Theorem 10.2 and the preceding discussion. 
4. Originally given by Clarkson (XII), Definition 1. 
5. Mil.man (XVI), Theorem. 2. Also see Pettis (XIX). 
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Theorem 10.3 can be replaced by uniform convexity and complete

ness. Furthermore, if F is a linear functional defined in a 

uniformly convex Banach space T,then there is a unique element 

x for which F ( x) ~ )IF~· ltxl\ and there is one and only one 

element orthogonal to a given maximal linear subset of T.
1 

Theorem 10.4. If a Banach space T is uniformly convex, 

then for each maximal linear subset H with H ~ T there is ,a 
I 

unique element xJ_H. If F is a linear functional defined in 

!, then there is a unique element x for which F(x) = IJFQ·ll;lf. 

If the Gateaux differential of the norm at a point x0 , 

f(Xo ;y) = 1-¥% Uxo+hr!- liXoll , 
exists in a normed linear space T, then it is a linear functional 

of y. 2 For this linear functional F(y) = f(x0 ;y), it is seen 

that F (x0 ) ~ lfx0 1 and that IIFI( = 1. 3 But the norm of a normed 

linear space is Gateaux differentiable at x0 if and only if 

there is a unique linear functional F with liF II = 1 and 

F (x
0

) , llxo ll • 4 Hence if the Gateaux differential of the norm 

exists at each non-zero point, then any linear functional F, 

with ))FU = 1 and for which there is an element x such that 

F(x} = l x ll , is equal to the Gateaux differential f(x;y). 

1. The first statement is given by Pettis (XIX:), Lemma 1. The 
two statements can be shown to be equivalent by the same reason
ing as used to prove Theorem 10.1. They then followa from the 
equivalence of left-uniqueness of spherical orthogonality and 
strict normedness, a uniformly convex space being strictly normed. 

2. That f(Xo;Y) is linear if it exists has been noted by Mazur (VI), 
pp. 129-130, but also follows from the additivity of spherical 
orthogonality resulting from its right-uniqueness or from the 
existence of f(x ;y) See Theorems 7.3 and 7.4. 

3. Since \Jlxo+hylf - ~lxollr~ llhYII , because of (2) of D,efinition 1.6. 
4, Mazur (VIJ, page 130. This also follows from Theorem. 6.1 and 
the eq~ivalence of Gateaux differentiability of the norm and 
right-uniqueness of spherical orthogonality (Theorem 7.3). 



Using Theorem 7.3, it is seen that such a functional is also 

equal to -aJJxll, where xJ..ax+y. The following theorem now 

follows easily from Theorems 10.2 and 10.3. 

Theorem 10.5. If the norm of a normed linear space 

T is Gateaux differentiable at each non-zero point and: 

(1) the unit sphere of T is weakly compact, 

.2!. ( 2) T is regular, 

then for a c linear functional F with IIFi( = 1 there is at 

least one element x for which 

F{y) = f(x;y) = -alixlf 
for all elements y, where f(x;y) • is the differential of 

the norm at x and x...Lax+y. 

121. 

However, it was shown that a normed linear space is Gateaux 

differentiable at each non-zero point if and only if spherical 

orthogonality is additive.1 This gives the following corollary. 

Corollary 10.1. If spherical orthogonality is additive 

j_n a normed linear space T and: 

(l) the unit sphere of T is weakly compact, 

or ( 2) T is regular, 

then for a linear functional F with llFI) = 1 there is at least 

one element x such that it follows from x...Lax+y that,for ally, 

F (y) = -allxll • 

If the norm of a normed linear space is uniformly Frechet 

differentiable, then it is clearly Gateaux differentiable. It 

1. Corollary 7.4. 



1 therefore follows from Theorem 10.3 that: 
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Theorem 10.6. If the norm of a Banach space is uniformly 

Frechet differentiable, then for a linear functional F with 

. l(:Efl = 1 there is at least one element • x for which 

F(y) = f(x;y) = -anxH 

for all elements y, where f(x;y) is the differential of the norm 

at x and x .J...ax+y. 

In Theorem 10,5, 10,6, and Corollary 10.1 it was not 

possible to say that there is a unique element x for which 

F (y) = f(x;y) = -a/1:xf/ . However, it is known that there can not 

be more than one such x for any linear functional F if, and 

only if, the space is strictly normed. 2 Therefore if this con

dition were added to either of these theorems, it would be pos

sible to conclude the existence of one and only one element x 

for which F(y) = f(x;y) = -a ft:xif for all y. Rather than 

assuming the space to be strictly normed, this can be included in 

uniform convexity and the following gotten from Theorem 10.4. 3 

Theorem 10.'7, If F is a uniformly convex Banach space 

whose norm is Gateaux differentiable at all non-zero points, 

then for a linear functional F with llF M = 1 there is a 

unique element x such that for all elements l 

F(y) = f(x;y) = -a lj:x.U, 

where f(x;y) is the differential of the norm at x and xJ_ax::7. 

I. By the same reasoning as preceded Theorem 10.5. 
2. Smulian XI, Theorem 6. Also see page 108 of this thesis. 
3, See Definitions '7.4 and 10.3. The reasoning is the same as 
that preceding Theorem 10.5. 
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Corollary 10.2. If spherical orthogonality is additive in 

a uniformly convex Banach space~,,. then for a linear functional F 

with flFI\ = l there is a unique element x for which 

F ( y) = -a lf:x:11 

for all elements y, where x..1..ax+y. 

This theorem would also give the result of Low:ig1 as a 

corollary, since an abstract Euclidean space is uniformly convex 

and its norm is Gateaux differentiable--the inner product (x,y} 

being equal to llxtl •f (x;y). 2 

However, the conditions of Theorem 10.7 are rather severe. 

Gateaux differentiability of the norm implies that spherical 

orthogonality is additive, 3 while uniform convexity is a stronger 

condition than strict normedness. 4 It is therefore seen from 

Theorems 8.1-8,3 that requiring spherical orthogonality to be 

symmetric in a space of three or more dimensions satisfying the 

conditions of Theorem 10.7 makes the space abstract Euclidean. 

Because of this, it seems worthwhile to consider what kind 

of a generalized inner product can be defined in normed linear 

spaces'• It was seen that for abstract Euclidean spaces the inner' 

product can be evaluated as (x,y) = -allx112, where xJ_ax+y. 5 

This can also be stated, equivalently, that if H is the maximal 

linear subset for which x..1..H and a is the number for which 
- 2 6 

y = ax-h with h £H, then (x,y) = -alJxlt • 

1. Lowig (V), Theorem 11. See page 117 of this thesis. 
2. See Corollary 7.3'• 
3. Corollary 7.4. 
4. See Definitions 7.4 and 10.3. 
5; See page 19 of this thesis. 
6. The existence of H is given by Theorem 6.2; it must be 
unique since the number a is unique. 
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Theorem 10.s~ It is 12ossible to a:ssjgn to each pair of 

elements x,y of a normed linear space T a real number oc,yJ 
satisfyin_s: 

(1). [ tx,YJ = t [x ,YJ and Bc,tyj = t [x ,y] , 

(2). 

( 3). 

( 4). 

[e,Y+zl = a:,iJ+ Cr,zl , 
Bc,il is continuous in Y, 

~ 1 :x:J = lb:U 2 
and I [x a i1 [ .:$ HxH • Jl,vU • 

There is a unique possible def'inition of [i 1 y] satisfying 

(1)-(4) if and only if orthogonality is additive.
1 

In that case: 

( 5). [;x: 1y] is continuous in :x:, 

(6). :x:..Ly if and only if u ,y] = o. 

Proof: For each element :x: of T for which lfxll = l choose 

a linear functional F:x: with IIF:x:\\ = 1 and F:x:(x) = 1, and let 

Rx be the corresponding maximal linear subset with x ..LRx• 2 

Define [kx, ~ as k \lx ll •Fx(y) or as -ak /bcH2 , where a:x:+y £.H.K . 

Since F:x:(a:x:1-y) = o, 3 these definitions are the same and clearly 

satisfy (1)-(4), the second part of (4) following either from 

)IF:x: lf = 1 or from fal ~ ,~11• 
4 

Spherical orthogonality is additive in T if and only if for 

any elements x (# O) and y there is a unique number a for 

which :x:J...a:x:+y ~ 5 From the way llc ,:ij was defined , it is clear that 

i. Other conditions equivalent to additivity of spherical orthog
onality are: (1) Right-uniqueness of spherical orthogonality; 
(2) Gateaux differentiability of the norm at non-zero points; 
(3) Uniqueness for each element :x: of the lihear functional f 
with llf l\ = 1 and f(x) = llxll ; (4) The existence of' a tangent 
hyperplana-eat each point of the unit sphere. Any of' these could 
replace sph erical orthogonality in Theorem 10.a. (See Theorems 
7.4, 7. 3, 9.5, and Corollary 9.3). 

2; See Theorem 6.2 and its proof. 
3. Theorem 6 .1. 
4. The latter is given by Corollary 6. 1 . 
5. Theorem 7 ._4. 
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the uniqueness of such definitions of ~,Y] implies the unique

ness of the number a for which :x:..l..ax+y, and therefore also 

implies additivity of spherical orthogonality. Also, if 

@c,y] = o, then ~ ,x+ki] = ~,x] and (4) gives 11xu2 
.:$ u:x:q·ltx-tkYll 

or \l:x:+kylf > 11:x:ft • Thus [ :x:,y] = TI O implies :X:.L y, and 

~ ,Y] = -a ll:x: Q
2 implies :x:..La:x:+y. Hence if s:pher ical orthog-

onality is additive, then the only value [lc ,y] can have is 

-a U:x: li2 , and :x: _Ly if and only if 8C, ~ = 0. It now only re

m.a ins to establish (6): Suppose ~ ,y] is not continuous in :x:, 

and that p_c ,Y] = -a ltxll2 • Then for some sequence .f?c11 with 

11:x:ill = 1 and :x:r~:x:, it isn •t true that ~ i , ~ --r -a ,~n2
• Since 

(4) shows that l_x1,Y] is bounded, there is a -subsequence 

such that [ :x:j ,Y] = -Aj U:x: 112 and 

[ :x:j 1 
of 

A.-+A. 
J 

and a number A 

Then, as above, :x:j..LA:X:j+Y, or U:x:j+k(Aj:x:j+y) lf>-..}l:x:jll = 1 

for all k. Sitice>t t.he norm is continuous, it follows that 

\\:x:+ k(Axw)'\1 ~\\:x:H = 1 for all k and that :x:..1-A:x:+y. But the 

number a for which :x: ..La:x:+y- is unique if spherical orthogonality 

is additive. Hence a = A and [x,yJ is continuous in :x: if 

spherical orthogonality is additi~e. 

This result gives another form in which to express 

Th lo 5 lo 7 b 1 • f ( ) )J 11 b ~' y] eorems • - • , y rep acmg x;y = -a x,, Y 11:x:H . 

If in a ddit i on to additivity of spherical orthogonality 

its symmetry is also assumed, then [;, yJ = O :implies fr ,x] = o. 
All normed linear spaces of three or more dimensions satisfying 

these conditions are abstract Euclidean. 1 For a two dimensional 

space it is necessary to , make the assumption ~ ,Y] = fr ,x] , and 

I. Theorem s.1. 



hence have all the conditions of the definition of an inner 
1 

product. 
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In the following examples, the generalized inner product 

[x,y] is expressed in terms of the general form of the linear 

functionals defined on these spaces ( for p > 1) , and interpreted 

in terms of spherical orthogonality (for p-;;:::1). 

Example 10.1. Consider the Banach space lp (p ~l) of all 

sequences x = (x1 ,x2 ,• • • ) for which ~fxil p is convergent, 

where llxll = ~ fxil ~ rt, • 
2 

By definition, xJ...y if and only if 

llx+kYi/-lfxll~O for all k. If y = (y1 ,y2 , • • • ) , this becomes 

[~ Jxi+kyiJ1
10 -}j, lxil~Yt>~o, or ~Uxi+kyi JP- lxi l~ ~o. Thus 

if x...Ly, then d> IJ p . pl 
lim h Jxj_+ky j I - Fil :J ~ o. 
-¼➔+O k 

But this clearly implies that Jim llx+kyll- lb: I\ ~ O and that 
➔+o K 

}lx+kyll ~ Jlx lt :f.'or k~O. 
3 

Using the convergence of the seri,es 

tft J xi i P and ffl; Jy 11 P, it is not difficult to show that 

r~;i~:t ;r,:i~ r: :te::: a:1 f:r ::::h lid ~ 1. Thus 

lim ~ Jxi+kYitp - ~ 1 fxi lp = Z. lim !xi+kyil P_ lx1 lp 
J;,➔+o ~:::.I ,k-')--+O k ' 

and II x-tky /l ~ \he ff for · k ~ O if and only if neither of these 

less than zero. As k ➔+o, 
lx1+1cy1l P_ lx1 1P approaches 

k . 
P lx1 lp-

2
(xiyi), if p > l or p:l and xi:; o, and it 

approaches )yif if p = 1 and xi= o. Hence )Jx+kyJl ~ ltKH 
k ~ O if and only if 

1. Definition 1.9. 
2~ This space is defined by Banach (I), page 12. 
3. See Theorem 7.5. 

is 

for 
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(1). ii lxi\ P-2 (x1y1} ~ o, if p>l; 

or (2}. ~ ,~~r + (~) fyi \ ~ O, if p = 1. 

Putting ax+y and -(ax+y) in (l) in place of y shows that 
/ 

x...Lax+y if and only if la.J/xJ/ P +?; Jxi\ p-2 (xiy
1
.fl = o, and that r oO p-2 11 i: L- • 'J 

x _1_ -ch lx1 J P (XiYi_jx + y. 1 From Theorem 7. 3, it follows that 
nxll ~ I ·l p-2 . . . 

( 3}. f (x·y} = .:. -,xi • ( iiYJ,) 
' )lxll 15- ' 

where f(x;y) is the Gateaux differential of the norm. at x. 

Thus the norm of a space lp with p >l is Gateaux 

differentiable and spherical orthogonality is right-unique and 

additive 2 
in ¾,• A space lp (p >l} is uniformly convex, and 

hence if LJC,~ is defined by 

(4) • Ix y7 = #, lxi lp-2(XiYi) 
~ ' ~ UxffP-2 ' 

then for any linear functional F . defined in lp there is an 

unique element x0 for which F(y) = [ x0 ,y] for all y. 3 Also , 

this "generalized inner product" satisfies conditions (1)-(6) 

of Theorem 10.s. 

For p = 1, putting ax- y and -(ax-y) in place of y in 
[ {f..~ x • Y i1 ftJ-, :o) 

(2) shows that x .1-ax- y if and only if ±LllxU- ~ ~il/+~IY1\~0 , 

or • (5) • ~ ~ r - ~) IY1I S allxll ,; ~ x~~f + ~IY1I • 

Thus spherical orthogonality is right-unique, or additive, 

at an element x = (x1 ,x2 , • • •) of the space 11 if and only 

if xi :;p O for any i. This condition is also necessary and 

1 .. There must be at least one number a for which x J:..ax+y. 
See Theorem 6. 3. 

2. These three concepts are equivalent in any normed linear space. 
See Theorems 7.3 and 7.4. 

3. The uniform. convexity of :I> (p > l) was shown by Clarkson {XII). 
The rest follows from Theorem 10.7, and has been known before , 
e.g. as a direct consequence of Pettis (XII) ~ Lemma 1 , and the 
satisfying of (1)-(4) of Theorem 10.s by ~,~ . . 
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sufficient for the existence of the Gateaux differential at x 

and for the unique evaluation of the linear functional F with 

IJFU = l and F(x) = 11:xfl . Thus if x 1 ::,. 0 for any i, then the 

differential of the norm is given by ( 3) and F ( y) = EC,Y] for 

. ally, where E,~ is given by (4). Comparing (5) above with (6) 

of page 102 gives: 

Example 10.2. Consider the Banach ~pace 1p (p ~ l) of all 

·functions x{t) in (0 11) for which [ lx(t) JPdt exists, where 

· Jlxll = [[fx(t) f Pd~Yt> • .An ¾, space i; uniformly convex if p >1, 2 

0 

and for a linear::·functional F defined on 1'.P (p > l) there is a 

unique element x for which F(y) = [x,Y] for all y, where 
• (

1 
2 3 

12c,Y] = t \x(t) \ P- x(t) •y(t) dt • 

This "generalized · inner product" satisfies (1)-(6) o'f Theorem 10.s. 

For the space L1 the following is analogous to the corres

ponding equations for the space 11 , U being the set of all numbers 

t in (O,l) for which x(t)-:/, 0 and 

f + (x;y) = ( x(l!)nt >at+ f IY(t) j dt; 
) 4 t-U 

1-U the complement of u. 

Since x J_ ax+y if and only if -f+ (x;y) 5 a \lxl\~ -f_(x;y), spherical 

orthogonality is right-unique, or additive, at x and there is a 

Gateaux differential of the norm at x, if and only if the set of 

numbers t 'for which x(t) ~ 0 is of measure zero. 

1. Where 'f± (x;y} = } ~ f]x+hyjJ- ltx lQ/h. 
2. Clarkson (XII)• c""t-

0 

3. This follows from Theorem 10.7 and the evaluation of the dif
ferential of the norm given by Mazur (VI), pg. 132. It is also 
immediate from Pettis (X:CX:), Lemma 1, and the satisfying of 
(1)-(4) of Theorem 10.8 by [x,i] . 
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